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Chapter 1

Introduction

The aim of quantum chemistry and condensed matter physics is to describe the

properties and the interaction of molecules, nano-structures and condensed matter.

A detailed understanding is essential for the design of new molecules, materials or

functional devices at a nano-scale. In principle the problem is easily outlined: We

want to describe a system of electrons and nuclei on a quantum mechanical level.

The mathematical description is given by the Schrödinger equation. It explains

all desired properties to a high level of accuracy. However, the effort to solve this

equation numerically is usually prohibitively large. Already representing the wave

function on a computer is not possible in a straight forward way for most systems

of interest, as the memory requirements increase exponentially with the number of

particles under consideration. This is already an issue for small molecules. The

number of degrees of freedom in a realistic system that resembles a solid is usually

of the order of 1023 particles. To deal with this one often considers systems which

are strictly periodic crystals as a first approximation to a real material. Using the

Bloch theorem this reduces the number of degrees of freedom we have to deal with to

something usually between ten and some thousands of degrees of freedom. Actually

the Bloch theorem in its most well known form only applies to non-interacting

particles. I will later come back on how to introduce an interaction.

There is another issue with the degrees of freedom we are dealing with. The mass

of the nuclei differs by a factor of about one thousand to one hundred thousand to

the mass of the electrons. This makes it very cumbersome to treat them on the

same footing, at least numerically. This is usually fixed by the Born-Oppenheimer-

Approximation. That is, one fixes the positions of the nuclei and solves the problem

on how the electrons act in this fixed frame of nuclei. Roughly speaking this is

like treating the nuclei as if they had infinite mass. In a second step one can then

describe the behavior of the nuclei, but let us, for the moment, focus on excitations

of the system of electrons. The question whether this separation of the system in

electronic and nuclear degrees of freedom can be made is not an easy one. I will
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Chapter 1 Introduction

come back to this. Finally, one has to decide to which extent relativistic effects

are included. Often neglecting relativistic corrections can still provide reasonable

results, at least when no heavy nuclei are present in the system of interest.

So we want to describe a non-relativistic periodic solid or a molecule in the Born-

Oppenheimer-Approximation. For very small molecules, it is in fact possible to

directly approximate the ground state wave function and to derive relevant prop-

erties from that. The most accurate methods for this are configuration interaction

methods and extensions of them [1, 2]. This approach is limited to about ten to

some hundreds of degrees of freedom, depending on the system, the desired accuracy

and the properties one actually wants to characterize. Diffusion Monte Carlo meth-

ods can increase the number of particles one can deal with considerably, though at

the cost of a reduced accuracy and making the access to most excitation properties

much more difficult [2].

For larger systems the full wave function can no longer be approximated so well.

The difficult part is the interaction among the particles. One of the first successful

approaches to obtain ground state energies of atoms or molecules was the Hartree

approximation, which replaces the interaction part of the Hamiltonian by its mean

field potential. As a result the wave function becomes much simpler, namely a Slater

determinant, which can be represented on a computer even for systems of moderate

size. The Kohn-Sham system of density functional theory (DFT) [3, 4, 5] can be

viewed as the exactification of this approach. It describes a way, how one could in

principle find an effective local one-body potential that allows for the calculation of

the ground state energy and its electron density. This approach has two important

limitations. First, it relies on a suitable approximation of the so called exchange-

correlation energy functional. The most famous and a very successful one is the

local density approximation. It has been and still is an active field of research to

find new such functionals in order to further improve on these approximations. The

second fundamental limitation of Kohn-Sham DFT is the fact that it does not grant

access to excited state properties of the system. It is constructed in such a way

that the ground state density and total energy can be obtained. Properties that

are related to excitations of the system are not immediately accessible. It is well

known that even the exact exchange-correlation energy functional would not yield

a Kohn-Sham system with the same excitation energies as the interacting system.

Also ground state expectation values of relevant operators do not coincide in the

Kohn-Sham system and the actual interacting system.

A theory that allows to predict excitation properties of a system is time-dependent

DFT [6, 5]. In this case the interaction is replaced by a time-dependent exchange

correlation potential. Unfortunately, finding good functionals becomes even more

involved than in ordinary DFT. The functional not only depends on one density
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Chapter 1 Introduction

distribution in space, but also on its history. There is no systematic way known to

improve existing functionals.

Due to the limitations of the theories described above, I take another route. To-

wards this end let us consider a very successful tool in the field of quantum mechan-

ics: perturbation theory. For that one splits the total Hamiltonian into a part that

can be solved to high accuracy, like in this case the non-interacting system and a

remaining part.

H = H0 + λHI, (1.1)

where the λ is an artificially introduced real parameter. Then one expands the

quantity of interest into a Taylor series with respect to λ. The first or the first few

terms of this expansion can often be calculated relatively easily. If one neglects all

other terms and sets λ = 1 one can hope to obtain a good approximation. This

works well whenever the part that was treated perturbatively is, in a sense, small.

In the context of molecular or solid state physics the interaction among the parti-

cles is the Coulomb interaction. Unfortunately, this can almost never be regarded as

small. In fact the very first term of this expansion, which is known as Hartree-Fock

term, is not even well defined in a solid. The reason is the long ranged nature of the

Coulomb interaction, which leads to an infinite energy density due to the repulsion

of the electrons in the infinite solid. This is only compensated by the Coulomb

interaction with the nuclei, which render the solid overall neutral. This issue is easy

to deal with: one can change the reference system to be the one that includes the

Hartree potential and regard the Coulomb interaction minus the Hartree potential

as the perturbation. This renders all contributions finite.

Interestingly, such an approach introduces a completely new feature. It is well

known that the Hartree or Hartree-Fock problem often has more than one self-

consistent solution, even when following an aufbau-principle [7, 8, 9, 10, 11]. It

is particularly interesting that even for systems in which the ground state is not

degenerate, there may be several solutions to the Hartree-Fock problem, all with

the lowest energy possible in this approximation. This has for instance been studied

for cases like the stretched hydrogen molecule [12] or other diatomic molecules [11]

where the lowest Hartree-Fock solution can be symmetry breaking.

This feature is also present for DFT in the Kohn-Sham formulation [13, 14],

which should not be surprising, as the trivial exchange correlation functional which

vanishes identically, is the Hartree problem. In this context one can argue that the

ambiguity in the solutions is introduced when the functional is approximated. In

fact the exact functional is known to allow for one self-consistent solution only and

convergence to this can be guaranteed with appropriate algorithms [15].
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This point of view clearly supports the approach to try to improve DFT func-

tionals. There are important limitations to this, however. The more practical one

is that there is no clear guideline on how these can be improved further. The more

fundamental issue is that DFT, in principle, does not provide access to excitation

properties of the system. Instead the Kohn Sham system is an artificial mapping

to a system of strictly non-interacting particles. Apart from the limitations on the

approximation of the functional, this mapping is exact. As stressed before, the

Coulomb interaction cannot be viewed as a small perturbation of the system. Hence

one would not expect that the Kohn-Sham system has much in common with the

real system. Despite of this DFT calculations are often used to directly compare

to band structures, i.e. excitation properties, which have been obtained experimen-

tally. The very concept of a band structure is actually based on a picture of non- or

at least weakly interacting particles.

The key to understand this discrepancy is the concept of quasi particles [16,

17]. For the description of most of the properties of a material, only the low lying

excitations are of interest. And as it turns out those can often be described by

effective, weakly interacting particles. When an electron moves through a solid it

repels other electrons, leading to a polarization cloud around it. This change of

charge density in the vicinity plus the electron itself is called quasi electron. The

polarization cloud effectively screens the charge of the electron, so that indeed two

such quasi-particles interact less strongly than free electrons would.

The description of materials in terms of these quasi particles is surprisingly suc-

cessful. Only with this background it can be understood, why band structures are

actually meaningful concepts despite the Coulomb interaction among the electrons.

This is also the reason why the Kohn Sham system is more than a mathematical

tool. It often yields a decent approximation to the quasi particles just described [18].

If we want to get a description which is more accurate and keeps information on

the remaining interactions among the quasi particles, we have to go beyond DFT.

One path one can follow is many body theory. This is formulated in the language of

Green’s functions [19, 20, 17, 21, 22], which are a natural tool to describe the quasi

particles of the system. The term Green’s function is actually a bit misleading,

as this is only a mathematical Green’s function for non-interacting systems. An

accurate approximation to the Green’s function (GF) grants access to a number

of experimentally relevant quantities, including not only ground state expectation

values, but also linear response properties and excitation spectra [17]. In order

to calculate the GF of an interacting system without using the wave function of

the interacting system one can use many body perturbation theory. This approach

can be viewed as a perturbative expansion of the Green’s functions in terms of

the interaction among the particles. It was originally developed in the context of
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quantum electrodynamics and turned out to be a useful tool in solid state physics

as well.

The mentioned expansions give rise to a number of interesting questions. It is well

known that perturbative expansions usually have a convergence radius of zero [23,

24, 25, 26, 27], even for examples as simple as the harmonic oscillator perturbed by

a cubic or quartic potential [28] or the Hydrogen atom perturbed by an electric or

magnetic field (Stark and Zeeman-effect), which are closely related problems [29].

However, if the perturbation is small the first few terms decrease in magnitude

and can nonetheless provide accurate results. At the same time one can often only

calculate the first few terms in such an expansion.

These considerations show that it is very important to formulate the theory in

such a way that the perturbation one expands in, is small. As already discussed this

condition is not met for the Coulomb interaction. It would be desirable to describe

the system using an effective interaction that more or less resembles the weaker

interaction between the quasi particles described above. Then an expansion in terms

of such an interaction can be hoped to provide good approximations, even if only a

limited number of terms is evaluated. Remarkably such an approach was successfully

implemented by Hedin, already half a century ago [30]. The equations he derived for

this approach are now known as Hedin equations. They are formally exact equations

that allowed Hedin to obtain the first terms of an expansion needed to calculate the

Green’s function. The expansion is formulated in terms of the so called screened

interaction, which is the Coulomb interaction screened by the polarization of the

medium, similar to the quasi-particle interaction described above [17]. Though the

first few iterations have already been carried out by Hedin [30], he did not comment

on whether or not this procedure converges. In a recent book by G. Stefanucci

and R. van Leeuwen [22] it is stated that “[the authors] are not aware of any proof

that such an iterative scheme converges, nor that it generates all possible skeleton

diagrams for the self-energy”. One result of this work is such a proof.

The original motivation for this work was a series of papers on the so-called

one-point-model [31, 32, 33, 34] that treat Hedin’s equations in a simplified but

unphysical framework, where functions appearing in the equations are only consid-

ered for one point in space and time. Since those were solved explicitly, it was a

natural question to ask, whether or not one can solve the equations for more than

one point. One has to deal with a non-linear partial differential equation, for two

or more points. Unfortunately, for non-linear partial differential equations already

the question of existence and uniqueness of solutions is very complicated. Even long

known and intensively studied issues such as the famous millennium problem on the

existence and uniqueness questions for the Navier-Stokes equation are still unsolved

due to the complications arising from chaotic or fractal behavior at small length
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scales [35]. In the present case, it is also not obvious which boundary conditions

would be natural. The discussion becomes easier, if the space of allowed solutions

is restricted to analytic functions. For the equation at hand I was able to prove

that there is at most one solution, and there is no freedom of choice for boundary

conditions if one wants a solution that is analytic near the non-interacting case.

This unique solution is of course identical to the sum of many body perturbation

theory, whenever it converges. Finding closed expressions for this sum is of course a

difficult task, and the result would depend on the precise way how the discretization

takes place. The question whether one can find a closed expression in general, and

perform the limit when the number of points considered tends to infinity remains

open. As this would necessarily reproduce the exact solution to many body theory

it would certainly be necessary to introduce approximations at some point.

The first parts of the present work focus on Hedin’s equations. In the third chapter

I discuss the convergence of the process of iterating Hedin’s or similar equations

symbolically. For this sake, I develop a theory to analyze equations formulated in

terms of Feynman diagrams. In the famous 1965 article by Hedin [30] the first

couple of iterations were illustrated and lead to expansions in terms of an effective

interaction as described above. I clarify how this iteration process can be put into

precise terms, by introducing another object which I call polarization vertex. This

makes the iterative process more transparent. I then prove that such a process

always converges to a unique formal diagrammatic expansion, independent from

the starting set of diagrams. The theory developed to show this is general enough

to cover many similar systems of equations. I will highlight some important such

examples along the way towards Hedin’s equations.

In chapter four, I consider the same equations, but rather than analyzing the

diagrammatic expansions, I discuss the equations as partial differential equations.

I provide a proof that the solution in the space of analytic functions is unique. I

also investigate the most famous approximation based on Hedin’s equations: the

GW -approximation [36, 18, 37, 38]. To this end I analyze the fixed point structure

of the emerging equations and study the convergence behavior both analytically and

to a lesser extent also numerically.

In the fifth and final chapter I analyze the concept of the Berry phase in the

framework of the exact factorization. This is about how one can lift the Born-

Oppenheimer approximation and which effective interactions emerge for the system

of nuclei when the electron degrees of freedom are integrated out. While this ap-

proach is not related to Green’s function methods (yet), the underlying mathemati-

cal concepts employed are the same. In fact for both, the analysis of the solutions to

Hedin’s equations, and the analysis of the properties of the Berry phase in the exact

factorization, the understanding of the nodal structure of polynomial equations is
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essential. In the former case the polynomials emerge from coupled integral equa-

tions by discretization of the space. And in the latter case the space of parameter

dependent hermitian operators with degeneracies turn out to be important. The

latter can be characterized by nodes of the characteristic polynomial.

The main result of this last chapter is that the most common type of a molec-

ular Berry phase, namely a topological Berry phase, never shows up in the exact

factorization. I also show that for time reversal symmetric states (i.e. when the

wave function can be chosen real) there is no Berry phase at all in this prescrip-

tion. Finally, I show some no-go theorems about the nuclear wave function of the

exact factorization, which provide important guidelines for further analytical study-

ing and numerically implementing the theory of the exact factorization, both in the

time-dependent and time-independent case.
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Chapter 2

Basics

In this chapter I introduce some basic mathematical concepts and methods that we

will need in the subsequent parts of this work.

Notation I try to be ISO-80000 conformal, i.e. I use italic letters for variables

and upright letters for mathematical and physical constants and fixed symbols,

including names. This makes it easier to read a formula and reduces the risk of

misunderstandings. So for example the letters e and i would be italic, if they appear

as variables, while they are written upright, if the Euler constant or the imaginary

unit is referred to. Similarly a subscript like in GH is written upright, when it refers

to a name, like in this case Hartree, while an italic subscript, like in φR indicates that

the object actually depends on a variable called R. Similarly, functions are usually

italic (f(x), g(y), . . . ), but fixed mathematical symbols like the gamma function or

the delta distribution are written upright (Γ(n), δ(x), . . . ).

A convention in many body perturbation theory is to use numbers as variables,

which can be a bit confusing at first sight. I will stick to this, but try limit any

possible confusion, by putting italic numbers for that (1 , 2 , 3 , 4 , . . . ). As they are

connected I will use the same italic numbers as labels in Feynman diagrams, though

there they may be thought of as as just numbers or labels (as opposed to variables)

assign to a vertex of a graph.

2.1 Systems of polynomial equations

Many physical problems lead to coupled non-linear equations. Often times approxi-

mations can transform them to systems of linear equations, which can then be solved

by means of linear algebra. If one is not in such a fortunate situation, it might still

be possible to reduce the problem to a system of polynomial equations. This section

will provide a basic introduction on how such systems can be solved and what the
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properties of such systems are. With the physical applications in mind, we only

consider real or complex numbers for the space of solutions.

There are two limiting cases of polynomial equations that are easy to understand.

One is the case that there is only one variable and one equation, the other is a

system of linear equations. Let us consider the former first:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 = 0, (2.1)

where the ak are complex (or real) coefficients and we seek for a complex solution

x. Then the famous fundamental theorem of algebra tells us that the order of the

polynomial n equals the number of solutions to the system. For specific coefficients

it may happen that some of the solutions fall on top of another, effectively reducing

the total number of distinct solutions. E.g. if a1 = a0 = 0 and a3 6= 0, then x0 = 0

is a solution with multiplicity two, meaning that one can write the polynomial as a

product of (x − x0)2 and another polynomial. This case is however the exception.

Generically, all solutions are different. More specifically, if we choose all the coeffi-

cients at random (e.g. uniformly distributed on some interval), then the probability

that there is a degeneracy is zero. The most obvious approach to find solutions to

such an equation is to minimize the modulus of the polynomial. It is not hard to

show that the only local minima are the roots of the polynomial, which guarantees

that this minimization will always lead to solutions.

Now let us consider the other limiting case of systems of polynomial equations: A

system of linear equations. We further restrict ourselves to the case that the number

of equations equals the number of unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1
...

an1x1 + an2x2 + · · ·+ annxn = bn

As is well known, the structure of the solution space depends on the coefficient

matrix aij . If the determinant of it is not zero (the generic case) then there is

exactly one solution to this system. If the determinant happens to be zero, there is

either no solution at all, or a space of solutions of dimension n minus the rank of

the matrix (which is the number of linear independent row-vectors of the matrix).

After this little warm up, let us consider the case of a system of polynomial

equations. As before we restrict ourselves to the case that the number of equations
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equals the number of variables.

P1(x1, x2, . . . , xn) = 0
...

Pn(x1, x2, . . . , xn) = 0,

(2.2)

where Pi are polynomials in the denoted variables (i.e. linear combinations of prod-

ucts of these variables). As in the case of linear equations it may happen that some

of the equations are automatically satisfied for all solutions of the other equations.

Then the solutions may not only contain lines, planes and hyperplanes, but also

objects like circles, parabolas, spheres, cones or hyper-spheres, to name but a few

examples. However, in the generic case (meaning for random coefficients), the space

of solutions is simply a finite set of isolated points [39].

In order to solve such a system of polynomial equations, one can apply Buch-

berger’s algorithm [40]. It is possible, though a bit more involved than in the linear

case, to eliminate one variable from all but one equation. We will describe this

process in a moment. Given that this is possible, it is natural to follow the strategy

of the famous Gauss elimination method. The first step is to get rid of one of the

variables in all but one of the equations. This way one obtains (n− 1) equations in

(n− 1) variables, which can be simplified further by repeating this strategy. What

one ends up with is a system of equations in triangle form

Q1(x1) = 0

Q2(x1, x2) = 0

Q3(x1, x2, x3) = 0
...

Qn(x1, x2, x3, . . . , xn) = 0,

(2.3)

where the Qk are again polynomials. If this system of equations is equivalent to the

original one, it is a so-called Gröbner basis of the original system. This is straight

forward to solve. The first equation is a polynomial equation in one variable. Once a

solution to this is found, it can be inserted in the second equation. Then this is again

a polynomial in one variable, which can be solved in turn. This can be continued

until all equations are solved simultaneously. That way one can obtain all solutions

to the system (though there are numerically much more stable algorithms).

Now we come back to how the elimination of variables actually works. Let us

consider an example:

y2 + x2 − 2 = 0 (2.4)

xy − 1 = 0 (2.5)

12



Chapter 2 Basics

The first equation describes a circle for real x and y. Since they are allowed to

take arbitrary complex values, we notice that for purely imaginary x and real y,

hyperbolas are described by this as well. In the same sense, the second equation

describes hyperbolas as well as circles. In order to solve this system one could of

course solve the second for one of the variables in terms of the other and plug the

solution into the first equation. This would lead to a single equation in one variable.

However, this approach only works for polynomials of low order. For higher order

polynomials there are no explicit solution formulas known. Let us say we want to

eliminate y from one of the equations. The strategy is to consider x as a parameter

and remove the highest order of y first. In this example the highest order of y

is two, which appears in the first term of the first equation. We can eliminate it

by multiplying the first equation with 2x and the second equation with −y and

summing the resulting equations.∣∣∣∣ y2 + x2 − 2 = 0

xy − 1 = 0

∣∣∣∣ ·x x·(−y)
(2.6)

⇒
∣∣∣∣ x3 − 2x+ y = 0

xy − 1 = 0

∣∣∣∣ (2.7)

⇒
∣∣∣∣ y +x3 − 2x = 0

xy −1 = 0

∣∣∣∣ , (2.8)

where in the last step we rearranged the terms. Now there is no term quadratic in

y left. We can now remove the term linear with respect to y.∣∣∣∣ y +x3 − 2x = 0

xy −1 = 0

∣∣∣∣ ·x x·(−1)
(2.9)

⇒
∣∣∣∣ x4 − 2x2 + 1 = 0

xy − 1 = 0

∣∣∣∣ (2.10)

Now the system has the triangular form of Eq. (2.3). The first equation has the

solutions minus one and plus one, both with multiplicity two. If we insert one of

those solutions into the second equation, we obtain the corresponding y. Hence the

complete set of solutions of the system is

(x, y) ∈ {(−1,−1), (1, 1)}.

Note that we need to check against the original equation, as in the process spu-

rious extra solutions can appear. This example illustrates how the process works

in general. If more variables and equations are present one can always regard the

extra variables as parameters. Then one can remove one variable order by order,
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beginning from the highest order, just as in the presented example. Eventually one

will always end up with a system like 2.3. The order of the polynomials can increase

exponentially with the number of equations and variables one starts with. As we

already mentioned, generically the solutions to this system are then just isolated

points. For the case of generic polynomials that is all that is to it. More specifically,

if in each polynomial the constant term is chosen randomly, then the number of

solutions to the system is finite with probability one [39]. Otherwise there may be

a continuum of solutions.

2.2 Implicit function theorem

In the previous section, we considered systems of algebraic equations in which the

number of equations equal the number of variables. Physically motivated equations

do almost always contain some parameters, which may take different values. One

might face an equation of the form

f(x, y) = 0, (2.11)

where f is a known function, x are parameters of the problem and y are the unknowns

one is interested in. For given parameters this equation should not allow for a

continuum of solutions, hence the number of equations should equal the number of

unknowns. So if y is an n-dimensional vector, f should be an n-dimensional vector

as well, while there may be any number of parameters m.

x ∈ Rm, y ∈ Rn, f : x, y 7→ f(x, y) ∈ Rn. (2.12)

One of course wants to solve the equations, i.e. one seeks a function y(x), which

describes the dependency of the unknowns on the parameters. Unfortunately, it

is often not possible to solve for this function explicitly (meaning to express this

function in terms of some known basic functions). Is is anyway possible to obtain

properties of this solution, even if we cannot write it down explicitly. The main tool

for this is the so-called implicit function theorem, which states that such a function

exists under reasonable conditions and that if f is in a certain sense well behaved,

then so is the function y(x). A natural condition is of course that the equation does

have a solution at all. The precise statement is [41, 42]

Theorem 1. Let f : Rm×Rn → Rn be a continuously differentiable function. And

let x0, y0 be a solution to f(x0, y0) = 0. If the Jacobian matrix Ja,b := ∂fa
∂yb

∣∣∣
x0,y0

has

non-zero determinant, then there exists a neighborhood U = U ′ × U ′′ ⊂ Rm+n of

14
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(x0, y0) ∈ U and a function y : U ′ → U ′′ : x 7→ y(x) such that for all x ∈ U ′ this

function satisfies f(x, y(x)) = 0 and there is no other y in U ′′ that solves f = 0.

Further more, if f is k times continuously differentiable in U , then so is y(x) in U ′.

Similarly, if f is analytic in U , then so is y(x) in U ′.

It is important to notice that the statement about the unique solution is only

valid in a neighborhood. One can see from simple examples that the provided

conditions are not sufficient to allow for a global statement about the uniqueness of

the solution [42].
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Chapter 3

Feynman diagrams and Hedin’s

equations

Most works in the general context of solid state theory start with writing down a

Hamiltonian, setting up the problem to solve. We will not do that. Firstly because

the formalism we develop does not only apply to solid state physics, but also partly to

other theories that can be described using diagrammatic techniques. These include

for example the Feynman diagrams of other theories, like those of particle physics

or the diagrams appearing in renormalization group theory [43]. The second reason

is that this way, this chapter will be completely self contained, while we will need

to refer to the literature on the theory of many body theory, when we introduce it.

We start with some definitions from graph theory. We will work out some im-

portant identities of Green’s function theory without even defining what a Green’s

functions is in physical terms. Afterward we will of course clarify how all this re-

lates to physical quantities of interest. We will then derive the analog of Hedin’s

equations in the language of Feynman diagrams, as alternative route to the original

derivation, that uses the Martin-Schwinger functional derivative technique [30].

3.1 Graphs for QED Feynman diagrams

In this section we will formally define what we mean by expansions in terms of

Feynman diagrams. We are doing this in a detailed way in order to be absolutely

clear as to what we are talking about in the subsequent sections. For the reader

familiar with Feynman diagrams there should not be any surprise here.

The most basic definition of a graph is a set of vertices with edges linking them.

We will need a slightly more general notion of graphs, vertices and edges. We first

define the basic building blocks

Definition 1. A vertex is represented by a set of labels (e.g. {1}).
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Usually this set contains one element only. However, we will later also allow for

several labels at one vertex.

Definition 2. A directed edge is a symbol and an ordered pair of vertices. The

interpretation is that the edge points from the second vertex to the first one.

Definition 3. An undirected edge is a symbol and a set of two vertices.

The interpretation of the symbol will allow us to attach a physical meaning to the

edge. Examples of symbols we will deal with are G0, GH, G, v and W , representing

different Green’s functions (GFs) and interactions, respectively.

Definition 4. A graph is a triple of a finite set of vertices and, built from these, a

set of directed edges and a set of undirected edges. The set of vertices is not empty

and no label appears twice in the set of vertices.

Definition 5. A graph is called quantum electrodynamics Feynman diagram (or

just diagram), if each vertex is linked to at most one ingoing, at most one outgoing

and at most one undirected edge. We call vertices that are connected to three edges

internal vertices, and all other external vertices.

We will from now on call the directed edges GF lines and the undirected ones

interaction lines. We will call external vertices that miss an ingoing (outgoing) GF

line open end for ingoing (outgoing) GFs. Analogously we call external vertices that

miss an interaction line open end for interaction lines.

Definition 6. Two graphs are considered equal if one can relabel the internal vertices

so that the graphs are equal in the sense of sets.

In this sense diagrams are only represented by the sets introduced above. If we,

for instance, talk about the set of all diagrams, we actually mean the set of all

equivalence classes of diagrams.

An example of a graphical representation of a Feynman diagram is provided in

Fig. 3.1. We represent interaction lines by wiggly lines and GF lines by straight

lines with an arrow. We highlight vertices with open ends by drawing a short wiggly

or directed line to it. These short lines are no GF - or interaction lines, but are

rather guides for the eye. We will usually not do this if the vertex is an open end

for both an interaction line and a GF line. We will, of course, label edges with their

corresponding symbols whenever necessary.

Definition 7. We call the open ends of two diagrams A and B compatible, if for

each label, labeling an external vertex of diagram A, there is the same label appearing
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Figure 3.1: Example of a Feynman diagram with six vertices. Vertex 1 is an open

end for both an outgoing GF and an interaction line. Vertex 4 and 6

are a open ends for an interaction line and an ingoing GF respectively.

The small wiggly line at vertex 4 and the small ingoing line at vertex 6

are not representing an interaction - or GF line. They rather highlight

the fact that these vertices are open ends.

in diagram B, labeling the same type of open end (one example of a type is an open

end for an ingoing GF line and an interaction line) and vice versa.

A vertex, which has an open end for two (three) edges may have two (two or three)

labels, each corresponding to one (one or two) of the edges. In this case diagrams

are still considered compatible, if the labels can be matched up appropriately.

To illustrate this consider the example

and . (3.1)

The first diagram has two open ends, one for an ingoing and one for an outgoing

GF line. Each of them is labeled once. On the other hand, the second diagram has

only one external vertex, labeled twice. If we now consider the labels of the second

diagram as belonging to the outgoing and ingoing GF line respectively, then the

diagrams are compatible in the sense of the definition above.

This compatibility is important: compatible diagrams can be linked to other

diagrams in the same way. E.g. if one wants to link a GF line to two different

diagrams, then they should, of course, both have an open end for it.

Eventually one can assign complex numbers to the diagrams defined here by means

of the Feynman rules, which we will describe in the next chapter. It can make sense

to build linear combinations of these complex numbers. One of the major results of

many body perturbation theory (MBPT) is that one can approximate the Green’s

function by certain such linear combinations. It is very similar to approximating

a function by linear combinations of monomials (better known as polynomials). In

this chapter we are only interested in the coefficients of these linear combinations.

The notion of formal power series allows one to discuss the coefficients appearing in

a Taylor expansion of a function, even without assigning a number to the variable,

18



Chapter 3 Feynman diagrams and Hedin’s equations

and even when the expansion does not even converge. We will adopt this strategy

for the expansions of the functions of interest in MBPT.

Definition 8. We define diagrammatic expansions in analogy to formal power se-

ries, as series of complex numbers, being interpreted as coefficients of the Feynman

diagrams ordered in some way (How they are ordered precisely is not important. The

only thing we need is that they can be enumerated somehow). In an expansion all

Diagrams with non-zero prefactor should have compatible open ends. We consider

two expansions equal, if the corresponding series are equal.

Whenever we consider linear combinations of diagrams, we also demand that they

have compatible open ends. With that linear combinations of diagrams are of course

equivalent to diagrammatic expansions with only finitely many nonzero coefficients.

We will most of the time deal with diagrammatic expansions in which most of the

coefficients are simply zero and the remaining ones are one. In this situation it

is natural to represent these expansions just by drawing the diagrams that have a

non-vanishing coefficient.

An illustration of the previous definitions and at the same time an important

object is provided by

Definition 9. The interacting GF (or just the GF) G(1 , 2 ) is the diagrammatic

expansion representing the sum of all connected diagrams with an open end labeled

1 and an open end labeled 2 with the properties

1. all GF lines have the symbol G0 .

2. all interaction lines have the symbol v.

3. the vertex labeled 1 is only linked to a GF line that points towards this vertex.

4. the vertex labeled 2 is only linked to a GF line that points away from this

vertex.

The term connected is understood in the same way as it is common in graph

theory. It means for any pair of vertices there is a path built from edges that links

them. We use the labels 1 and 2 in this definition only as placeholders. We will of

course call this expansion a GF even when other labels are used. Symbolically this

definition can be summarized as

, (3.2)
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which becomes unambiguous if we state that the RHS consists of all connected

diagrams. It is clear according to our definition that the diagrams on the RHS have

two external vertices, that are supposed to be labeled. For brevity, we drop those

labels, whenever there is no ambiguity.

We will also use different symbols for edges that correspond to different symbols

(G0, G, v etc.). Note that we no longer draw the vertices explicitly and that we

sometimes drop the arrows on lines, when this does not lead to ambiguities, as e.g.

in the last two terms written out in Eq. (3.2).

We now define several operations of diagrammatic expansions or linear combina-

tions of diagrams (the latter can be regarded a special case of the former in which

only finitely many non-zero coefficients appear).

Definition 10.

The linear combination of two or more diagrammatic expansions is defined as

the coefficient-wise linear combination. We allow this operation only on diagrams,

where the open ends are compatible.

The contraction of two open ends of one diagram is obtained by replacing two

external vertices by one that is linked to the edges that were linked to the original

vertices (Note that this operation can map different diagrams to the same one and

that the resulting vertex can be internal or external). We will denote this either by

directly drawing the corresponding vertices on top of each other, or by linking the

two vertices with a dashed line. This is extended to linear combinations by applying

the operation for each diagram individually (i.e. the contraction commutes with

multiplication and addition). For expansions this is extended in a natural way, i.e.

the coefficient of a given diagram is obtained as the sum of the coefficients of the

diagrams leading to this given diagram via contraction. Note that this definition is

only meaningful, after we demanded that expansions and linear combinations always

represent sums of diagrams with compatible open ends.

The combination of two diagrams is understood as the (disconnected) diagram

obtained from union of the vertices and the union of the edges of each diagram.

Graphically this means just drawing the two diagrams next to each other. We demand

that the sets of vertices of the combined diagrams are disjoint. We generalize this to

linear combinations, by summing over the result from the combination of each pair

of diagrams, where the prefactor is obtained as the product of the prefactors of the

diagrams used as building blocks (i.e. the operation “combination” commutes with

multiplication and distributes over addition). The extension to expansions shall be

understood in the natural way, i.e. the coefficient of a given diagram is the sum of

the product the coefficients of each pair of diagrams leading to the given diagram.

Note that this sum is always a finite sum, so there is no ambiguity related to choosing
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the order of summation.

The contraction of two expansions is understood as the corresponding con-

traction of the single expansion obtained from the combination of the two expansions.

Now we provide examples illustrating the previous definitions. Let us define the

two expansions (and at the same time linear combinations)

and . (3.3)

Note the difference in A and the first term in B. The diagram A consists of two more

bare GF lines and has an open end for both an ingoing GF line and an interaction

line, and an open end for an outgoing GF line and an interaction line, while the short

arrows in B do not represent GF lines, but rather highlight the fact that there are

open ends for ingoing or outgoing GFs. Now we can combine A and B to a single

diagram with four open ends and contract the resulting diagram, or equivalently

contract A and B. The result is an expansion with two open ends. This can again

be contracted with a bare GF line, yielding

. (3.4)

As another example, we define the linear combination

. (3.5)

We can contract this expansion with itself and another diagram to obtain

. (3.6)

Note that in this example one of the diagrams appeared twice. Such a multiple

appearance of a diagram is often referred to as double counting.
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Note that our notation for graphs and the notation for combining and contracting

expansions is identical. Hence expressions like for instance the LHS of Eq. (3.6) can

be understood either as a single Feynman diagram, where in this case some GF lines

are labeled Gexample, or as contractions of expansions of diagrams.

3.2 From equations for graphs to Hedin’s equations

3.2.1 The vertex insertion operator

Building on the basic definitions made in the previous section, we will now introduce

further concepts to manipulate graphs and develop a theory to analyze the resulting

equations. Based on these concepts, we will not only derive Hedin’s equations, but

also characterize the solution structure to those and similar equations.

Definition 11. We define the vertex insertion operator “ ” as a map from a label

and an expansions of diagrams to an expansion of diagrams in the following way

1. The action on a single link is given by

(3.7)

, (3.8)

i.e. a bare GF is replaced by two that are linked to a new vertex and a bare

interaction line is mapped to zero.

2. It satisfies a product rule

, (3.9)

where A and B represent any two diagrams, each with any number of open

ends. They may be linked by any number of contractions, as suggested by the

ellipsis (zero is allowed as well). In the LHS of the equation we mean the action

of the operator on the diagram obtained from contracting A and B, while on

the RHS in each term the diagram obtained from acting with the operator is

linked to the other diagram.
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3. The action of the operator on a linear combination is the linear combination

of the action on each term (the operator commutes with multiplication and

distributes over addition). This also applies to expansions (viewed as “infinite

linear combinations”) in an analogous fashion.

Whenever we provide a graphical representation of this operator acting on diagrams,

we consider it acting before any combination or contraction is done (The only ex-

ception is the LHS of Eq. (3.9)).

This definition means that the operator maps a diagram that consists of n bare

GFs to the sum of n diagrams, where in each term, one of the GFs is replaced by

two that are linked to an external vertex. We can illustrate this by acting with this

operator on the GF of the example of the previous section (see Eq. (3.5))

(3.10)

3.2.2 Graph equations

We can now state our first theorem

Theorem 2. The unique solution G = to the equation

(3.11)

is the sum of all connected diagrams, i.e. the full GF, we defined in Def. 9 (p. 19).

We will base all our derivations on this equation. Before we provide the proof, we

show the existence and uniqueness in a more general context. Eq. (3.11) is our first

example of

Definition 12. A grapherential equation for an unknown expansion X is an equation

of the form 0 = D[X], where D[X] stands symbolically for any linear combination of

expansions, each built from combinations and contractions of any of X, the vertex

insertion operator acting on X, GF lines and interaction lines (see Def. 10 (p. 20)

and Def. 11 (p. 22)).

We call the grapherential equation nice, if this linear combination includes the

diagram X alone (without extra GF lines, interaction lines, or the vertex insertion
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operator acting) and does not include a term in which X is contracted exclusively

with itself.

We call the grapherential equation an algegraphic equation, if the vertex insertion

operator does not appear.

Everything we will state for grapherential equations will also apply to algegraphic

equations. For that reason it is convenient to regard the latter as a special case of

the former.

A nice grapherential equation can be written as

X = A+D[X], (3.12)

where A is a linear combination of diagrams that do not involve X, and D is a linear

combination of diagrams that do not involve any diagrams withoutX appearing (this

part was put in A) and not the object X alone (that part was pulled to the LHS of

the equation).

Lemma 1. The solution of a nice grapherential equation

X = A+D[X], (3.13)

exists and is unique. It can be obtained by iteration of

Xn+1 = A+D[Xn], (3.14)

as the limiting expansion (in the sense of coefficient-wise convergence), independent

on the starting expansion X0.

We emphasize that coefficient-wise convergence, though useful to construct a solu-

tion, is a rather weak notion of convergence, as opposed to e.g. uniform convergence.

To illustrate this, imagine we iterate Eq. (3.11), starting from a disconnected graph

as initial guess for G (we would do this explicitly, but the number of graphs in-

creases so fast that it is impractical to provide them explicitly). Throughout the

iteration process one would generate more and more disconnected diagrams, which

one would not obtain, if one started with a connected diagram (or with zero) as an

initial guess. However, this is in no contradiction to the provided lemma, as for any

given disconnected diagram the coefficient differs from zero only for finitely many

iterations and hence the limit of each such coefficient is indeed zero.

Proof. Of Lemma 1.
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Step 1 We consider a nice grapherential equation

X = A+D[X], (3.15)

where D[X] involves only diagrams in which X appears at least once. Applying the

vertex insertion operator or adding GFs or interaction lines (while keeping the same

set of open ends) increases the number of vertices. Hence, if Y consist of diagrams,

each with at least n vertices, then D[Y ] contains only diagrams that contain at

least n+ 1 vertices (remember that we excluded the case that D[Y ] includes terms

in which Y is contracted with itself only (see Def. 12 (p. 23)). Without that, the

diagram consisting of one vertex only would spoil this property). What happens, if

we add an expansion Ok to Y , assuming that Ok consists of diagrams, each with

at least k vertices? Due to the commutation and distribution relations the allowed

operations satisfy, it is clear that we get the same diagrams as before plus diagrams

that are built using diagrams appearing in Ok. These extra diagrams contain at

least k + 1 vertices, by the same reasoning as before. We conclude

D[Y + Ok] = D[Y ] + Ok+1, (3.16)

where Ok+1 is an expansion of diagrams, each with at least k+1 vertices (In analogy

to the big-O-notation, we use this symbol for any expansion, i.e. Ok can refer to a

different expansion in each equation).

Step 2 Now we define a series Xn via

X0 = 0 (3.17)

Xn+1 = A+D[Xn] (3.18)

and prove by induction that

Xn+1 = Xn + On+1, (3.19)

i.e. Xn and Xn+1 do only differ by diagrams with more than n vertices. The

inductive base is trivial, even if we allow for any other initial expansion X0. For the

inductive step we assume that Eq. (3.19) is valid for n− 1, i.e.

Xn = Xn−1 + On (3.20)
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and show that it follows for n by

Xn+1 = A+D[Xn] (3.21)

Xn+1 (3.20)
= A+D[Xn−1 + On] (3.22)

Xn+1 (3.16)
= A+D[Xn−1] + On+1 (3.23)

Xn+1 (3.18)
= Xn + On+1. (3.24)

This concludes the inductive proof that Eq. (3.19) is valid in general.

Step 3 From Eq. (3.19) we conclude that for any given FD, its coefficient in the

expansion Xn converges to a final value as n tends to infinity (if a diagram has k

vertices, the coefficient is constant for all n ≥ k). Hence the series has a limiting

series X∞, to which it converges coefficient-wise. Now we want to prove that X∞ is

the unique solution to Eq. (3.15). First we prove that it is a solution. By construction

Xn = X∞ + On+1 (3.25)

We plug this in the LHS and RHS of Eq. (3.18) and get

X∞ = A+D[X∞ + On] + On+1 (3.26)

X∞ = A+D[X∞] + On+1, (3.27)

where we used Eq. (3.16) to pull out the On and the extra terms were absorbed in

the On+1. This means that Eq. (3.15) is true, if we consider only the diagrams with

at most n vertices. However this is valid for any value of n and hence actually for

all coefficients. So X∞ is a solution to Eq. (3.15).

What is left to be proven is that there is no other solution. So let us assume that

both X and Y satisfy Eq. (3.15). If we further assume that

Y = X + On, (3.28)

i.e. X and Y have the same coefficients in front of the diagrams with at most n− 1

vertices (n = 1 is allowed), then

Y = A+D[Y ] (3.29)

Y
(3.28)

= A+D[X + On] (3.30)

Y
(3.16)

= A+D[X] + On+1 (3.31)

Y
(3.15)

= X + On+1. (3.32)
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Hence X and Y have the same coefficients even in front of all diagrams with up

to n vertices. By induction it follows that X = Y and hence that the solution is

unique.

This Lemma can be generalized to systems of grapherential equations.

Definition 13. A nice system of grapherential equations for the unknown expansions

X1, X2, . . . , XN is a set of equations of the form

X1 = A1 +D1[X1, X2, . . . , XN ]

X2 = A2 +D2[X1, X2, . . . , XN ]

. . .

XN = AN +DN [X1, X2, . . . , XN ],

where each Ak is a linear combination of diagrams that do not involve any Xl, and

each Dk[X1, . . . , XN ] is a linear combination of diagrams that include at least one

of the Xl with the property

Dk[X1 + On, . . . , XN + On] = Dk[X1, . . . , XN ] + On+1, (3.33)

where in each argument On can stand for any expansion of diagrams, each with at

least n internal vertices.

The property of Eq. (3.33) is satisfied, if in all terms of Dk there is at least one

contraction or one vertex insertion operator acting. Note that we specialized the

meaning of On slightly, in that n now refers to the number of internal vertices rather

than to the total number of vertices. This distinction was not important in the case

of a single equation, but here it allows for equations that do increase the number

of internal vertices while leaving the total number of vertices unchanged. Note,

however that we could equally well deal with equations in which all of the appearing

Dk do increase the total number, rather than the number of internal vertices.

Theorem 3. The solution of a nice system of grapherential equations exists and is

unique. It can be obtained by iteration of

Xn+1
k = Ak +Dk[X

n
1 , . . . , X

n
N ], (3.34)

as the limiting expansions (again in the sense of coefficient-wise convergence), in-

dependent on the starting expansions X0
k .

Proof. The generalization of the previous proof is straight forward. One just needs

to replace the object X by the vector composed of the Xk and replace the term

vertices by internal vertices. Eq. (3.33) is the generalization of Eq. (3.16).
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This Theorem 3 will be the basis for almost all existence and uniqueness state-

ments that will come up. Every equation we will find in this chapter will be derived

from the one we stated first (Theorem 2). That the objects introduced are then

always well defined can be concluded from the theorem just proven.

3.2.3 Expansion in terms of the bare Green’s function and the

bare interaction

We need two more Lemmas in preparation of the proof of our first Theorem.

Lemma 2. The contraction of the full GF with itself is the sum of all connected

diagrams with one open end for interaction lines:

. (3.35)

Proof. Consider a connected diagram with one open end for an interaction line (a

diagram from the RHS of Eq. (3.35)). At the open end one GF is going in and one

is going out. If we replace this vertex by two, each connected to one of these two

GFs we obtain a connected diagram with two open ends. Hence this diagram clearly

appears on the LHS of Eq. (3.35).

Finally we observe that connected diagrams lead to connected diagrams when

contracted and in the case considered different diagrams can never lead to the same

diagram. Hence we obtain each diagram on the RHS exactly once.

Lemma 3. When acting with the vertex insertion operator on the full GF one

obtains the sum of all connected diagrams with the according open ends.

. (3.36)

Proof. Clearly the diagrams remain connected when acting with the vertex insertion

operator. We need two more steps.
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Step 1 We show that every connected diagram appears. Consider a connected

diagram with three open ends as on the RHS of Eq. (3.36). One can find the diagram

that leads to it when acting with the vertex insertion operator by removing the open

end for interaction lines and replacing the two GFs that were linked to it by one.

This diagram is clearly connected and hence included in the expansion of the GF.

Step 2 We show that no diagram appears twice. As described in the first step one

can construct the single diagram that leads to a given diagram. Also one diagram

cannot lead to the same diagram twice, as there are no equivalent GF lines (This is

only true since we are considering connected diagrams which have open ends).

We are now prepared to prove Theorem 2. For convenience we repeat that the

statement of this Theorem is that the GF, i.e. the sum of all connected diagrams,

satisfies

(3.37)

Proof. Of Theorem 2

The existence and uniqueness can be concluded from Theorem 3. What is left to do

is to show that, the full GF is this solution.

Step 1 We show that every diagram appearing on the LHS also appears on the

RHS at least once. So consider a GF diagram A (i.e. a connected one with the

appropriate open ends). If it is only a single GF line, we are done, otherwise we can

write the diagram as

. (3.38)

Now we distinguish two cases:

Case 1 Diagram B is connected. Then by Lemma 3 this diagram is included in

the third term of the RHS of Eq. (3.37).

Case 2 Diagram B is not connected. Since A is connected this is only possible if

A can be written as

, (3.39)
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where C and D are connected diagrams (We pulled D out of B, leaving C behind.

B is hence the combination of C and D). By Lemma 2 this appears in the second

term of Eq. (3.37).

Step 2 We show that on the RHS no diagram appears twice. The first term is

only one single diagram, which is clearly not included in the other two terms. Those

also do not lead to identical diagrams, as the second term becomes disconnected

by cutting the interaction line next to the first GF line, while the other remains

connected.

Step 3 Finally it is obvious that on the RHS there is no disconnected diagram.

We conclude that each diagrams of the LHS appears exactly once on the RHS.

It is interesting to note that there is no algegraphic equation that determines G

in terms of G0, which can be seen from the fact that the number of diagrams grows

factorially, while algegraphic equations would produce at most exponentially many

diagrams.

3.2.4 The Hartree Green’s function

Now we would like to pull part of the “complication” into the links, i.e. we would

like to find a way to express G in terms of so-called dressed quantities and reduce

the number of diagrams. Towards this end we define the Hartree GF as the one

satisfying the equation we get when dropping the last term in Eq. (3.11)

GH = = . (3.40)

One could also have replaced the GF in the loop by the bare or the Hartree GF

itself, but this way of doing it turns out to be more useful. The solution to this

equation is provided by

Lemma 4. Let A and B be linear combinations of diagrams, where B does not

include the diagram with one vertex only. An algegraphic equation of the form

, (3.41)

(Dyson equation) where A and X may have more open ends than indicated has the

unique solution

(3.42)
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Proof. That this is a solution is easily verified. That this is the only solution follows

from Theorem 3.

So the Hartree GF can be written as

=

(3.43)

We can now get rid of the second term in Eq. (3.11), at the cost of replacing G0 by

GH.

Lemma 5. The GF satisfies

(3.44)

Proof. Using Eq. (3.40) in Eq. (3.11) leads to

0 = (3.45)

0 = (3.46)

0 =
( )

,

(3.47)

of which the solution to Eq. (3.44) clearly is a solution.

3.2.5 The modified vertex insertion operator and the screened

interaction

Note that the vertex insertion operator still requires us to express GH in terms of

G0 before it can be applied. To analyze this problem, we evaluate the action of the

vertex insertion operator on a single Hartree line. In anticipation of the result we
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link this to an interaction line. Acting on both sides of Eq. (3.40) provides

(3.48)

. (3.49)

This equation has the structure needed in Lemma 4, where A is the sum of the first

two terms on the RHS. Using Eq. (3.43) in the solution, we obtain

, (3.50)

where we defined the so-called screened interaction W := as

. (3.51)

This result motivates the definition of a modified vertex insertion operator

that acts on Hartree GF in an analogous way to how the ordinary vertex insertion

operator acts on bare GFs

. (3.52)

We also want it to act just in the same way, i.e. it shall satisfy a product rule

and map bare interaction lines to zero (see Def. 11 (p. 22)). Then Eq. (3.50) can be

written as

. (3.53)

As both operators satisfy a product rule this property can be extended to any

diagram. Hence the operator equation

(3.54)

holds, i.e. the result of linking a bare interaction line to the expansion obtained from

acting with the ordinary vertex insertion operator is the same as the result of linking
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a screened interaction line to what is obtained from acting with the modified vertex

insertion operator. We will further discuss the range of validity of this identity in a

moment. Using Eq. (3.54) in Eq. (3.51) leads to

. (3.55)

This equation has the structure of a Dyson equation, as needed in Lemma 4 (p. 30).

Hence the solution can be written as

. (3.56)

We use Eq. (3.54) also on Eq. (3.44) to find

(3.57)

(3.58)

By virtue of Theorem 3 this system of grapherential equations generates expansions

G[GH , v] and W [GH , v] by iteration as the unique solution of this system. By this

we mean that the GF and the screened interaction W are obtained as an expansion

in graphs built from GF lines labeled GH and the bare interaction. Remarkably it

was possible to eliminate any reference to G0. As we derived these equations, they

of course are correct in the sense that inserting the expansion of GH in terms of G0

and v provides the expansion G[G0, v] of Def. 9 (p. 19).

Note that we applied the modified vertex insertion operator on G before we ac-

tually knew that it can be expanded in terms of GH. However, this can be justified

a posteriori, as we could have taken Eqs. (3.57), (3.58) as definitions and then show

that those are equal to the objects we defined in Eq. (3.51) and Def. 9 (p. 19).

If we now consider Eq. (3.40) as an equation to determine G0 in terms of GH and

G, we find that it can be solved by virtue of Lemma 4. If we then replace G by its

expansion in terms of GH and v, we obtain an expansion of the bare GF in terms of

GH and v. This shows that it is possible to write any expansion in terms of G0 also

as an expansion in terms of GH, and hence the modified vertex insertion operator

can be applied to any diagram and the identity Eq. (3.54) is always valid (i.e. we

need no longer worry about whether or not we can act with the modified vertex

insertion operator on a diagram, as it is always possible).
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3.2.6 Expansion in terms of the screened interaction

As only W appears in the equation for G, it is natural to ask whether one can also

drop the reference to v. In order to do so, one of course needs to work out how the

vertex insertion operator acts on W lines. We act with the modified vertex insertion

operator on Eq. (3.55) to obtain

. (3.59)

Note that the notation does not allow us to distinguish in which order the vertex

insertion operators act. However, this is no problem, as the way it is defined allows

us to conclude that both orders lead to the same result. This would not be true if

both the ordinary and the modified vertex insertion operator appeared at the same

time. Eq. (3.59) has the form of a Dyson equation, as needed in Lemma 4 (p. 30).

We immediately use Eq. (3.56) to write the solution as

(3.60)

, (3.61)

where we introduced a new object

. (3.62)

With that we can summarize the action of the modified vertex insertion operator

on a diagram given in terms of GH and W lines as follows: One picks out one of the

edges of the graph. If it is a Hartree GF it is replaced by a vertex and two Hartree

GFs, as before. If it is an interaction line W , one replaces it by two such interaction

lines, joined by the object A. Finally one has to sum over each possible edge one

can pick out. We summarize the equations we derived:

.

(3.63)

(3.64)

(3.65)
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This system of equations allows us to obtain G[GH ,W ] and A[GH ,W ] by iterating.

In this iteration process one needs to use the current expansion of A in the way

illustrated by Eq. (3.65) whenever the modified vertex insertion operator acts. This

action does of course increase the number of internal vertices of the obtained diagram

relative to the diagram the operator acts on. Hence the conditions of Theorem 3 are

meet1.

3.2.7 Expansion in terms of the interacting Green’s function and

the screened interaction

It is worthwhile to introduce a symbol for the already used polarizability

. (3.66)

In terms of this, A can be written as

(3.67)

and the Dyson equation for the screened interaction becomes

(3.68)

Remarkably G satisfies a Dyson equation as well, reading

. (3.69)

This equation can be understood as a definition for the selfenergy (SE) Σ, as the

following Lemma shows

Lemma 6. The the expansion Σ that solves Eq. (3.69) exits and is unique.

1More accurately, in order to apply the theorem, one needs to regards these equations
as a system of the first two equations only, where the operators D1 and D2 appearing
in the definition of a nice system of grapherential equations are acting with the vertex
insertion operator, using the current set of diagrams in A in the way indicated by the
third equation.
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Proof. As we discussed after Eq. (3.58), we can expand the GF in terms of GH and v.

In this expansion the diagram with one GH-line only has a prefactor of one. Hence

we can write G as

, (3.70)

with an appropriate expansion A. Now comes the crucial step: We can understand

this as a nice grapherential equation for GH. This provides us with an expansion of

GH in terms of G an v. For this expansion the prefactor of the diagram with one

G-line also has a prefactor of one. This allows us to write GH as

, (3.71)

where B is another expansion. Now we have all parts we need to construct the

selfenergy. Starting from Eq. (3.70) we get

(3.72)

, (3.73)

where we used Eq. (3.71). With this we see that

Σ = (3.74)

is a solution to Eq. (3.69)

We can now work out the action of the modified vertex insertion operator on G

using Eq. (3.69)

(3.75)

.

(3.76)

Again we obtained a Dyson equation. In the resulting solution (see Lemma 4) we

use the solution of Eq. (3.69), which is given by Lemma 4. The result is

(3.77)

, (3.78)
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where we defined the socalled dressed vertex

. (3.79)

Note that we distinguish the symbols for A and Γ by the open ends only. The first

term on the RHS of Eq. (3.79) denotes the graph that consists of a single vertex

(endowed with three labels) and no links.

We obtained the remarkable result that it is possible to interpret the action of

the modified vertex insertion operator on the full GF again as a vertex insertion

operator that replaces one dressed GF by two and an appropriately defined vertex

function Γ . Now we use this result in Eq. (3.69) leading to

. (3.80)

comparison with Eq. (3.69) allows us to conclude

. (3.81)

Finally we use Eq. (3.78) in Eq. (3.66) to obtain

. (3.82)

We summarize the so-called Hedin equations

Σ =

P =

Γ =

A =

(3.83)

(3.84)

(3.85)

(3.86)

the rules on how the vertex insertion operator acts on different links

(3.87)

(3.88)
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and the Dyson equations

G = (3.89)

W = . (3.90)

These equations allow us to construct expansions Σ[G,W ], P [G,W ], Γ [G,W ] and

A[G,W ] by iteration. The first few iterations have already been carried out by

Hedin [30], however, without commenting on whether or not this procedure con-

verges. In a recent book by G. Stefanucci and R. van Leeuwen [22] it is stated that

“[the authors] are not aware of any proof that such an iterative scheme converges,

nor that it generates all possible skeleton diagrams for the self-energy”. Now we fill

this gap.

Theorem 4. Iterating Eq. (3.83) - Eq. (3.86), using Eqs. (3.87), (3.88) for the eval-

uation of the modified vertex insertion operator, generates (as a limiting expansion)

the unique set of expansions (Σ[G,W ], P [G,W ], Γ [G,W ], A[G,W ]) that solves this

set of equations. This solution is correct in the sense that inserting the expansions

G[G0, v], GH[G0, v] and W [G0, v], defined in Eqs. (3.40), (3.51) and Def. 9 (p. 19)

into these expansions Σ[G,W ] and P [G,W ] and in Eqs. (3.89), (3.90) leads to valid

equations.

Proof. That the unique solution is obtained by iteration is guaranteed by Theorem 3.

The correctness of this unique solutions follows from the fact that we derived the

equations.

3.2.8 Counterexamples

Every single equation we introduced in the last sections had a unique solution.

This might lead to the impression that that is the only possible outcome. One

might think: Given that there was no approximation done, what else other than the

correct result should come out? To illustrate that things are not that simple, we

consider a little example. One may ask: what happens, if we start from Eq. (3.11)

and link it to another non-interacting GF? We obtain the new equation

, (3.91)

which is no longer a nice grapherential equation in the sense of Def. 12 (p. 23). As

we derived it from an equation that is valid for G the full GF is still a solution to
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it, but is it unique? In this case the answer turns out to be yes, while if we linked

with the interacting GF to obtain

, (3.92)

the trivial solution G = 0 would appear as an extra solution. Furthermore, if we

subtract Eq. (3.92) from Eq. (3.91), we obtain an equation that has two non-trivial

solutions, namely the full GF and the bare GF, as is easily verified. It is indeed not

difficult to construct equations with any desired finite set of extra solutions (e.g. if

we decorated the bare GF in Eq. (3.91) with, say, a Hartree insertion, then the extra

solution after taking the difference of the two equations would be this decorated

GF). We hope this illustrates not only that the question on uniqueness is not a

trivial one, but also that the conditions needed for our Theorems on uniqueness

cannot simply be dropped, i.e. the example illustrates that it is not sufficient to

demand that there is a diagram in which the unknown object appears only once.

Instead we demand that it appears without any decorations (see the definition of a

nice grapherential equation, Def. 12 (p. 23)).

3.3 Many body theory

Up to now we have only talked about equations for graphs. We will now establish

the link to the many body theory of solid state physics. We stress again that the

theory presented in the previous paragraphs is mathematically completely strict.

Once we evaluate Feynman Diagrams, however, it is no longer clear whether or not

the emerging series do converge. There are many physical examples where it has

been shown [28, 23, 24, 25, 26, 29] or argued [27] that a perturbative expansion

does not converge. Even though divergence seems to be the rule rather than the

exception, this does not at all mean that the perturbative treatment of quantum

mechanical problems is useless. Usually the first couple of terms improve a calcu-

lated result, even when the series does not converge [28, 44, 25]. Often a system

can be described by expanding the underlying wave function in a finite basis set.

Once this approximation is done the eigenvalues and eigenstates of the Hamilton are

analytic functions of a parameter that appears in the Hamiltonian [45] and conse-

quently perturbative expansions do then converge at least in some finite range of the

interaction parameter. Note, however that this remarkable result is no longer valid

if there are two or more parameters that are varied simultaneously, as the example

of the conical intersection shows [46, 47].
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We will now briefly review the parts of MBPT that are relevant for us. We will

closely follow Ref. [22] in notation and presentation.

3.3.1 Equations of motion

We want to describe a quantum mechanical systems of electrons in a solid or

molecule. In the non-relativistic limit and the Born Oppenheimer approximation.

Such a problem can be described by a Hamiltonian operator of the form

H(t) =

∫
dx ψ†(x) h(x, t) ψ(x) +

∫
dxdy v(x, y) ψ†(y)ψ†(x)ψ(x)ψ(y), (3.93)

where ψ† and ψ are electron creation and annihilation operators, respectively, x =

(r, σ) represents a real space coordinate and a spin index, h is the kinetic energy

operator plus a possibly time-dependent external potential and v is a two body

interaction (e.g. the Coulomb interaction).

There exist several Green’s function formalisms which can include a finite temper-

ature and/or a time-dependent perturbation or not. However, “all [these] Green’s

function formalisms usually treated as independent naturally follow from a single

one” [22]. We will need the one body GF and the two body GF, defined as [21, 22]

G(1 , 2 ) = −i
Tr
[
T e−i

∫
dτ H(τ) ψ(1 )ψ†(2 )

]
Tr
[
T e−i

∫
dτ H(τ)

] (3.94)

G(2)(1 , 2 , 3 , 4 ) = −
Tr
[
T e−i

∫
dτ H(τ) ψ(1 )ψ(2 )ψ†(4 )ψ†(3 )

]
Tr
[
T e−i

∫
dτ H(τ)

] , (3.95)

where 1 = (τ1 , x1 ) = (τ1 , r1 , σ1 ) includes a space and spin coordinate and a contour

time argument τ1 (running from zero to infinity and back on the real axis and then

from zero to −iβ on the imaginary axis), T is the contour-time ordering symbol and

ψ† and ψ are the fermion creation and annihilation operators (the time argument

does not refer to the Heisenberg picture, but is artificially introduced to specify how

the time-ordering symbol acts on them). The Hamilton H(τ) is defined as the one

given in Eq. (3.93), whenever τ lies on one of the branches on the real axis. On the

remaining branch it is a fixed Hamiltonian, that specifies the statistical average in

which the system is assumed to be initially prepared.

Depending on the further assumptions or simplifications one makes, one can drop

parts of the contour, leading to the finite temperature Matsubara formalism [17],
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the zero-temperature formalism [17], the (original) Keldysh formalism [48] or the

Konstantinov-Perel’ formalism [22].

Using the Heisenberg equation of motion for the field operators, it is straight

forward to derive the so-called equation of motion for the one body Green’s func-

tion [17](
i

d

dτ1
− h(1 )

)
G(1 , 2 ) = δ(1 − 2 )− i

∫
d3 v(1 , 3 ) G(2)(1 , 3 , 2 , 3 +) . (3.96)

For a non-interacting system this equation defines a mathematical GF(
i

d

dτ1
− h(1 )

)
G0(1 , 2 ) = δ(1 − 2 ) . (3.97)

The analogous equation for the Two-Body GF involves also the Three-Body GF

and so on. This is the famous Martin-Schwinger hierarchy [22]. The appeal of these

equations lies in the fact that very simple approximations on a high level of Green’s

function, can already provide very accurate approximations for lower level Green’s

functions.

We want to proceed on a different path, that remains exact in principle. Instead

of expressing the two-body GF by higher and higher order GFs, one can express

it by a functional derivative of the one-body GF with respect to to an artificial

(contour-) time-dependent potential S(x, τ) that one introduces by adding∫
dx S(x, τ)ψ†(x)ψ(x) (3.98)

to the Hamiltonian. Note that S may take different values on different branches of

the contour, even when they belong to the same real-time argument. The action

of the functional derivative operator can now be evaluated easily, as all operators

on which the time ordering symbol acts can be treated as if they would (anti-)

commute. We find [22]

dG(1 , 2 )

dS(3 )
= −G(2)(1 , 3 , 2 , 3 +) +G(1 , 2 ) G(3 , 3 +). (3.99)

Note that in the non-interacting case this simplifies to

dG0(1 , 2 )

dS(3 )
= −G0(1 , 3 ) G0(3 , 2 ). (3.100)
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If we now insert Eq. (3.99) into Eq. (3.96), multiply with G0 from the left, do an

integration by parts and use thatG0 also satisfies an equation analogous to Eq. (3.97)

for its second argument, we obtain

G(1 , 2 ) = G0(1 , 2 )− i

∫
d3 d4 G0(1 , 3 ) v(3 , 4 ) G(4 , 4 +) G(3 , 2 ) (3.101)

+ i

∫
d3 d4 G0(1 , 3 ) v(3 , 4 )

dG(3 , 2 )

dS(4 )
. (3.102)

In the next section we will see that this equation is the one corresponding to the

Graph equation we used to define the GF in terms of graphs. We stress again that

this derivation is valid in all GF formalisms mentioned above. The only thing that

changes is the contour along which one integrates when evaluating the integrals.

3.3.2 Evaluation of Feynman diagrams

We now link the previous section and the section about graph theory. This link is

established by the Feynman rules, which can be found in many textbooks [17].

Surprisingly few authors highlight that Feynman Diagrams are nothing else than

a visual representation of tensor contractions [49, 50]. In this work every link should

be understood as a rank two tensor (as introduced in the previous section) and the

bare vertex as a rank three tensor, namely

γ(1 , 2 , 3 ) = δ(1 , 2 )δ(1 , 3 ) . (3.103)

One can then build up every diagram by combinations and contractions of these

building blocks. The combination (contraction) of two (one or two) graphs corre-

sponds to the outer product (the contraction) of the tensors corresponding to the

graphs. Consider for example the diagram

. (3.104)

It consists of two bare vertices, a bare GF and an interaction line. The tensors

corresponding to the links were already named G0(1 , 2 ) and v(1 , 2 ) in the previous

section. There is some choice on which tensor indices are considered covariant and

which ones are considered contravariant. The only restriction is that the indices

of the bare vertex must match the indices of the interaction line and the incoming

and outgoing GFs. We could for example take all indices of the vertex to be con-

travariant. Then all indices of the links have to be covariant. As this choice does

not matter, there is no need to distinguish upper and lower indices. We will come
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back to this point when we introduce a basis in which we expand the tensors. The

four tensors in Eq. (3.104) with a total of ten indices are contracted four times. As

each contraction eliminates two indices, there are two external indices left, which

are labeled. For the moment the tensor indices live in a continuous space, namely

the spin-space-contour-time. Contractions can be expressed as integrations over this

space:

= i

∫
γ(1 , 3 , 5 ) G0(3 , 4 ) v(5 , 6 ) γ(4 , 2 , 6 ) d3456 . (3.105)

As in the previous chapter this notation is understood as a four fold integration,

each over the real space and the time contour and also includes a spin summation.

Finally, each diagram is associated with a prefactor of ik(−1)l, where k is the number

of interaction lines and l is the number of GF-loops (i.e. the number of closed paths

built from the GF lines alone). We mention that there is another numerical prefactor,

related to the numbers of equivalent edges in a diagram [17]. However, it does not

appear in the present work, as we are only dealing with connected diagrams with

at least one open end. These diagrams have the special property that there are no

equivalent edges and hence that this prefactor is always simply one. With that it

should be clear how to translate Feynman diagrams into tensor contractions and

vice versa. Using Eq. (3.100) we can also see that the vertex insertion operator 11

is related to the functional derivative with respect to S as

= − dA

dS(1 )
, (3.106)

where A is understood as a diagram in terms of G0 and v and may have any number

of open ends.

With that one can see that the final equation we derived in the previous section

Eq. (3.102) is equivalent to the definition of the GF we gave in terms of diagrams

Eq. (3.11). Hence Theorem 2 actually proves the Feynman rules above. Note in

particular that the rule for the prefactor cannot be chosen in any other consistent

way if we want Eq. (3.102) to be equivalent to Eq. (3.11). As we already mentioned

there is no guarantee that this series for G does converge. That means that even

though our proof is valid as long as one is only speaking of diagrams, one cannot

always evaluate the diagrams and sum up the series.

We can now use the rules described in this paragraph to write the grapherential

equations of the previous section in terms of functions instead of graphs. It was

already mentioned that Eq. (3.11) is equivalent to Eq. (3.102). Rewriting Eqs. (3.83)-
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(3.90) yields

Σ(1 , 2 ) = i

∫
G(1 , 4 )W (1 +, 3 )Γ (4 , 2 , 3 )d3 d4 (3.107)

Π(1 , 2 ) = −i

∫
G(2 , 3 )G(4 , 2 +)Γ (3 , 4 , 1 )d3 d4 (3.108)

Γ (1 , 2 , 3 ) = Γ0(1 , 2 , 3 ) +
δΣ(1 , 2 )

δV (3 )
(3.109)

A(1 , 2 , 3 ) =
δΠ(1 , 2 )

δV (3 )
, (3.110)

with the functional derivative acting as

δG(1 , 2 )

δV (3 )
=

∫
G(1 , 4 )G(5 , 2 )Γ (4 , 5 , 3 )d4 d5 (3.111)

δW (1 , 2 )

δV (3 )
=

∫
W (1 , 4 )W (5 , 2 )A(4 , 5 , 3 )d4 d5 . (3.112)

and the Dyson equations

G(1 , 2 ) = GH(1 , 2 ) +

∫
GH(1 , 3 )Σ(3 , 4 )G(4 , 2 )d(3 )d(4 ) (3.113)

W (1 , 2 ) = v(1 , 2 ) +

∫
v(1 , 3 )Π(3 , 4 )W (4 , 2 )d(3 )d(4 ). (3.114)

Eq. (3.52) becomes

δGH(1 , 2 )

δV (3 )
=

∫
GH(1 , 3 )GH(3 , 2 ) . (3.115)

Apart from inconsequential sign conventions one can choose when writing down

these equations, the mapping between Feynman diagrams and integrals over func-

tions is one-to-one. Accordingly, the theorems developed do equally well apply to

these functional integro-differential equations, i.e. symbolically iterating these equa-

tions generates formal series expansions of the appearing objects in terms of G and

W , and by Theorem 3 one obtains a unique formal expansion. We will come back

to this in the next chapter.

For later reference, we note that, using the chain rule, we can rewrite Eqs. (3.109),
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(3.110). If we use Eqs. (3.111), (3.112), we obtain

Γ (1 , 2 , 3 ) = Γ0(1 , 2 , 3 )+

∫
Γ (4 ′, 5 ′, 3 )G(4 , 4 ′)G(5 ′, 5 )

δΣ(1 , 2 )

δG(4 , 5 )
d4 d4 ′d5 d5 ′

(3.116)

+

∫
A(4 ′, 5 ′, 3 )W (4 , 4 ′)W (5 ′, 5 )

δΣ(1 , 2 )

δW (4 , 5 )
d4 d4 ′d5 d5 ′

(3.117)

A(1 , 2 , 3 ) =

∫
Γ (4 ′, 5 ′, 3 )G(4 , 4 ′)G(5 ′, 5 )

δΠ(1 , 2 )

δG(4 , 5 )
d4 d4 ′d5 d5 ′

(3.118)

+

∫
A(4 ′, 5 ′, 3 )W (4 , 4 ′)W (5 ′, 5 )

δΠ(1 , 2 )

δW (4 , 5 )
d4 d4 ′d5 d5 ′.

(3.119)

If we instead used Eq. (3.115) the equation for the vertex would read [51, 32]

Γ (1 , 2 , 3 ) = Γ0(1 , 2 , 3 )+

∫
GH(4 , 3 )GH(3 , 5 )

δΣ(1 , 2 )

δGH(4 , 5 )
d4 d5 , (3.120)

where v is kept fixed in the functional derivative. Note that in the expression above,

I used the symbol δ
δG for the partial functional derivative with respect to G, while the

(maybe a bit unconventional) notation d
dV refers to the total functional derivative.

This relationship has first been derived in ref. [51] in order to provide a set of

equations which allows to construct the expansions G[GH , v], W [GH , v], Σ[GH , v],

Π[GH , v] and Γ [GH , v] by iteration. Note that we derived a different version of

Hedin’s equations, which leads to expansions in terms of G and W when iterated.

However, the theorems proven cover both sets of equations and allow to conclude

that in both cases the obtained expansion is unique and independent on the starting

expansions.

3.3.3 Martin-Schwinger-Hierarchy

Instead of closing the Martin-Schwinger-Hierarchy in the way done in Eq. (3.102),

one can express the one-body-GF in terms of the two-body-GF, which in turn is

expressed by the three-body-GF and so on. Finally one can close the hierarchy, by

employing a relation analogous to Eq. (3.99). This system of equation can than be

rewritten in a fashion analogous to Eq. (3.102). For the obtained system of equations

one can again ask whether there is a unique solution, and how one can construct

it. Theorem 3 is general enough to be applicable to this situation as well. Hence
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for any level of the Martin-Schwinger-Hierarchy, iterating the equations leads to the

unique diagrammatic expansions of the appearing objects that solve these equations.

Further more this remains valid for a large class of modified equations that one might

want to introduce, by introducing for example objects like the reducible particle-

hole-propagator etc., whenever the (easily checked) conditions of Theorem 3 are

satisfied.
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Hedin’s equations in discrete space

and time

In this chapter, as in the previous, we consider the same equations, however in

discretized space and time in a finite space-time-volume. We hope of course that

any quantity of interest can be recovered in the continuum limit. However, we have

to be aware that we cannot describe certain properties one might be interested in.

Phase transitions for instance do not appear in such a discrete finite system, even if

we leave the time variable continuous [52, 45]. There is also no continuous spectrum

and the total energy of the system is limited.

One can also have some basis set in mind, in which all functions are expanded.

This does not change the form of any of the equations that we can express diagram-

matically as tensor contractions are basis-independent [50]. Of course the tensors

themselves are basis-dependent and even the bare vertex takes different values in a

different basis. In energy-momentum space it is just one delta function (if we are

dealing with a translationally invariant system), while it is the product of two delta

functions in real space and time.

4.1 Hedin’s equations in discrete space and time

4.1.1 One Point Model

It is instructive to study the solutions to Hedin’s equations with the simplification

of taking only one point in space, spin and time, i.e. N = 1. This framework has

recently been investigated by several authors [31, 32, 33, 34]. One simply drops

the tensor indexes appearing in the equations and regards each quantity as a single

complex number. Hence one is left with four algebraic equations and one ordinary

differential equation. Even though this no longer corresponds to any physical sys-

tem, we can learn a lot about general properties of the perturbation series and the
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structure of the solutions to the equations.

The equations now read

G = GH +GHΣG (4.1)

W = v + vΠW (4.2)

Σ = ΓGWλ (4.3)

Π = l ΓGGλ (4.4)

Γ = λ+ λG2dΣ

dG
, (4.5)

where l = +1 corresponds to bosons and l = −1 to fermions and ′ = d
dGH

. One

can now eliminate all but one dependent variable, say Σ. The resulting differential

equation is

Σ(1−G2dΣ

dG
) = Gv + lΣG2v. (4.6)

Before we continue to solve this equation, we illustrate the behavior of the solutions

on a simpler example that we can solve explicitly but still has the same features.

Consider the differential equation

f = x2f ′ − 2x3 + x2. (4.7)

As in Eqs. (4.5), (4.6), we have multiplied the derivative of the function with the

square of the independent variable. The last two terms were added to make the

solutions not too simple. One easily verifies that the solutions are

f = A e−
1
x + x2, (4.8)

where A is a constant of integration. These solutions are plotted in Fig. 4.1. The

point x = 0 obviously needs to be treated carefully. If we are looking for solutions

of the differential equation that include that point, then there is only one choice

for the constant of integration in the region x < 0, while any choice of integration

constant provides a solution in the region x > 0. So if x = 0 is included in the

region in which we want to solve the equation, the solutions are

f =

{
x2, x ≤ 0

A e−
1
x + x2, x > 0 .

(4.9)

Note that all these functions are infinitely often continuously differentiable, even

at x = 0. In this sense they are perfectly smooth functions, just as x2 is. The
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Figure 4.1: Behavior of the Solutions of Eq. (4.7). Coming from negative values of

x, there is only one non-diverging solution (black parabola). Coming

from positive values of x all solutions tend to the same value. Also all

derivatives tend to the same value as x approaches zero.

distinctive feature of the latter function is that it is the only solution that is also

analytic. It is interesting to note that if one wanted to solve the equation as an

initial value problem, starting with some given value for the function f(x0) = f0 at

some negative x0, then there is only one value for which the equation can be solved

past x = 0. Even then, the continuation of the function past x = 0 is not unique,

as all solutions in Eq. (4.9) are valid continuations, not only the one for A = 0.

Let us come back to Eq. (4.6). If we assume that Σ can be expanded in a power

series, we can obtain a recurrence relation for the expansion coefficients [32, 33, 53].

When solving “well behaved” differential equations one can usually choose one of the

expansion coefficients and the others follow by the recurrence relation. This is not

the case for this differential equation (due to the G2 in front of the derivative term).

There is only one solution for the recurrence relation and consequently this solution

is the only analytic solution to the differential equation, just as in the example we

solved in the previous paragraph. We will later generalize this result to the case,

where N is arbitrary and the equations are partial differential equations.

This unique analytic solution is surprisingly simple:

Σ = Gv (4.10)
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and hence Σ + VH = 0. Consequently G is in fact the non-interacting Green’s

function G = G0 (also excluding the Hartree potential).

What can we learn from that? Since the expansion coefficients are equal to the

number of the various diagrams [32] it tells us that the number of (self-energy plus

hartree)-diagrams with even and odd loop numbers cancel. In other words the

number of diagrams with odd number of fermion loops equals the number with even

fermion loops. This holds for both expansions Σ[G0, v] and Σ[G, v]. It is interesting

to note that the Dyson equation

G = GH +GHΣG (4.11)

does not have a unique solution for G, even when we provide the exact functional

Σ[G] = Gv. One of the two solutions to this quadratic equation tends to infinity

for v → 0.

Remarkably, the situation is qualitatively different for bosons, i.e. l = +1. Here

the solution to the recurrence relation mentioned above yields expansion coefficients

that grow factorially [32] and hence there is no analytic solution to the equations.

Approach without self energy - solved for one point

We now analyze Eq. (3.102) for the case of N = 1. In contrast to the situation in

the previous paragraph, the analysis of analyticity is more difficult. However, it

is possible to solve the equation explicitly and then address this question directly.

This is unfortunately not as easily transferable to the general case with arbitrary

N . The equation reads

G = G0 + l G0 v G︸︷︷︸
VH

G +G0 φ G + G0 v G
′, (4.12)

There is of course again a family of solutions. It turns out that in this family there

is exactly one solution that is analytic with respect to v, while all others are not.

It seems reasonable to identify this unique solution with the physical one, since this

is known to be analytic, at least in the continuous time and discrete, finite space

case [45].

As we will see in a moment the unique analytic solution to Eq. (4.12) is simply

the non-interacting Green’s function [54] (and hence the result is consistent with

the one of the previous paragraph)

G = (1−G0φ)−1G0. (4.13)
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We now calculate the full solution of Eq. (4.12) (this has also been done in

Ref. [54]). First we simplify the equation by a transformation of variables

g =
√
vG, g0 =

√
vG0, x =

φ√
v
− 1

g0
,

d

dx
=
√
v
d

dφ
, (4.14)

transforming Eq. (4.12) into

0 = g′ + lg2 + xg + 1. (4.15)

Note that the three parameters G0, v and φ are reduced to one parameter x. This

Riccati ODE can be solved with the ansatz

g = l−1u
′

u
(4.16)

leading to the linear equation

0 = u′′ + xu′ + lu. (4.17)

We now take l = −1 and find the solution set to be

u(x) = Ax+B

(
e−

x2

2 +

√
π

2
x erf

(
x√
2

))
, (4.18)

where A and B are constants of integration. We insert this into Eq. (4.16) an get

g = −
A+B

√
π
2 erf

(
x√
2

)
Ax+B

(
e−

x2

2 +
√

π
2 x erf

(
x√
2

)) . (4.19)

Now we can identify the set of analytic solutions for G. So let us assume G is

analytic with respect to v at least near (G0, v, φ) = (0, 0, 0). Then g =
√
vG will

change its sign when rotating v in the complex plane once (v → e2πiv). The same

is true for x = φ−G0
−1

√
v

. Hence a necessary condition for G to be analytic is that

the right hand side of Eq. (4.19) is an odd function of x (we actually use that the

right hand side is a meromorphic function of x and hence 1) it cannot introduce

the minus sign in any different way and 2) it is odd everywhere once we know it is

odd somewhere). This however leaves only two choices: either A or B must be zero

(otherwise the function has a finite value at x = 0 being a contradiction to being

odd). The latter choice lead to the already provided solution of the non-interacting

Green’s function, while the other has a singularity at v = 0.
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Of cause I also ran into dead ends. I spend almost a year on the attempt to solve

two or three point models, using Borel summation and other integral transformations

until I finally realized, that the problem I was trying to solve becommes trivial, if

one only chooses the way the space is discretized in a clever way. Without going into

the details, the result was that this made the solution of the N -point model very

simple. Unfortunately, the next step of taking the N → ∞ limit did not provide

any new insights, as the only thing one could get would be that the solution is

given by many body perturbation theory (if it converges). Ultimately the problem

with this approach is, that there is no obvious way to introduce physically justified

approximations. And without that, there is litte chance, that the problem can be

cast in a way that is easier to solve numerically than any already known approach.

4.1.2 Unique analytic solution of pde

We now consider not only one point in space and time, but rather a finite lattice of

space time points. Then Hedin’s equations are a set of partial differential equations

(pde). Some things we have learned in the discussion of the one-point-model can be

generalized to this case as well.

Theorem 5. Consider Hedin’s equations in finite and discrete space and time. As-

sume that the selfenergy Σ[GH] is not singular at GH = 0. Then Hedin’s equations

have no more than one solution G[GH] that is analytic with respect to GH near

GH = 0.

The idea of the proof is the same as for Theorem 3.

Proof. For technical reasons we eliminate the equation for the polarization by plug-

ging it into the equation for the screened interaction. The remaining equations

are

G = GH +GHΣG (4.20)

W = v + v(ΓGG)W (4.21)

Σ = lΓGW (4.22)

Γ = Γ0 +GHGH
∂Σ

∂GH
, (4.23)

where we did not write out the tensor indexes and the associated contractions. Now

we assume G[GH] is analytic.
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Step 1: We show that G can be written as G = G̃GH, where G̃ is an analytic

function of GH and that also F = (G̃,W,Σ, Γ ) is analytic.

Eq. (4.20) tells us that Σ = G−1−GH
−1 and hence the selfenergy is a meromorphic

function of GH. We also assumed it to have no singularity at GH = 0, hence it is

even an analytic function in a neighborhood of GH = 0. We can now also conclude

that G̃ ≡ (1 − GHΣ)−1 is also analytic and hence G = G̃GH can be written as

a product of an analytic function and GH. Once we know that the selfenergy is

analytic we can conclude the same for the vertex and the screened interaction just

by their defining equations Eqs. (4.21), (4.23).

Step 2: We show that Hedin’s equations imply a unique series expansion of F in

terms of GH.

By step 1 we can write

F =

∞∑
n=0

∑
k1...kn

Fk1...kn(GH)k1 . . . (GH)kn , (4.24)

where each ki is an index pair ki = (1, 1), (1, 2), . . . , (Nbas, Nbas). Now we compare

the coefficients of each power of GH. The constant part provides F [0] = (1, v, 0, Γ0).

The term linear in GH then provides F = (1, v, 0, Γ0) + (0, 0, GHGHv, 0) +O(GH
2).

In general the coefficients Fk1,...kn are uniquely determined by the coefficients F ,

Fk1 , Fk1k2 , . . . , Fk1...kn−1
. The reason is that each (non-constant) term on the RHS

contains at least one factor of GH and the derivative term has a prefactor with two

GH’s.

4.2 GW -type approximations

In this section we introduce approximations to the equations that allow us to solve

them numerically. The focus is still on the general behavior of the solutions. A

natural approximation to express the interacting GF in terms of the non interacting

one would be to use MBPT, i.e. Eq. (3.2) and drop all but the first few terms. This

way one obtains an explicit expression for G in terms of G0. Hence it is immediately

clear that there is only one solution. However, this can also be understood as an

expansion of the GF in terms of the Coulomb interaction. At least in a solid such an

expansion is doomed to fail due to the long ranged nature of the interaction. The

most severe problem with this is that the charge of the nuclei needs to be compen-

sated by the charge of the electrons. Otherwise the energy density of the system is
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formally infinite and hence G0 is not well defined. To deal with that, one can expand

the GF in terms of the Hartree GF and the Coulomb interaction, which is a well

defined expansion in which the Hartree diagram no longer appears (see Eq. (3.57)).

Even then the quantities one expands in are not well adapted to the problem at

hand.At the same time, one can easily compute GFs that describe the system much

better than the Hartree GF. Methods for that include the Hartree-Fock approxima-

tion [8] and Kohn-Sham Density Functional Theory [3, 4, 5]. The fact that these

methods alone provide already remarkably good descriptions in many systems can

only be understood, if one views the described system as a system of quasi-particles,

i.e. single effective particles that describe the behavior of electrons in combination

with a polarization cloud surrounding them [55, 56]. These quasi-particles interact

less strongly, as the polarization cloud effectively screens the interaction.

In this light it appears natural to try to use an expansion in terms of a screened

interaction. As discussed before one can expand the selfenergy in terms of the

screened interaction W and the full GF G. Or equivalently one can use a truncated

expansion of the vertex in terms of G and W . The selfenergy and the polarizability

can then be expressed by the vertex. The resulting equations in conjunction with

the Dyson equations provide a closed system, i.e. a system of equations with as

many unknowns as equations. The simplest approximation of the described type is

obtained, if one drops all but the constant term in the expansion of the vertex in

terms of G and W . This is the famous GW -approximation [30, 18], which is used in

almost all practical calculations that are based on Hedin’s equations. With that the

self-energy takes on the simple form Σ(1 , 2 ) = iλ2G(1 , 2 )W (1 , 2 ). We will now

describe a new algorithm for solving Hedin’s equations which includes corrections

far beyond this GW approximation.

The computational storage requirements for this first order perturbation theory

for the vertex scales as N3 and the corresponding number of operations scales as

N4, where N is the number of basis functions as detailed in the next paragraph.

Algorithm 1 (see below) for calculating Σ[G,W ] and Π[G,W ] goes much beyond

GW without worsening this scaling. Note that all the relations in the algorithm are

exact apart from the two which have the derivatives of Γ removed – these would

require N4 storage. Solving Algorithm 1 together with the Dyson equations we

refer to as the ‘Starfish’ algorithm. It is interesting to work out which diagrams

this algorithm corresponds to: finding the the self-consistent solution to Starfish is
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equivalent to solving

�Γ = �Γ0 +�
G

W

+� +�

1

(4.25)

self-consistently with the equations for Σ and Π (Eqs. (3.107) and (3.108)).

Algorithm 1 Hedin equations solver for Σ[G,W ] and Π[G,W ]. Here the short-

hand G′(1 , 2 ; 3 ) = δG(1 , 2 )/δV (3 ), etc., is used and the function arguments are

omitted1.

Require: G and W

Set Γ = Γ0

repeat

G′ =
∫
GGΓ

Π′ = −iλ
∫ (

G′GΓ +GG′ Γ +GGΓ ′////////
)

W ′ =
∫
W W Π′

Σ′ = iλ
∫ (

G′W Γ +GW ′ Γ +GW Γ ′/////////
)

Γ = Γ0 +Σ′

until Γ converged

Σ = iλ
∫
GW Γ

Π = −iλ
∫
GGΓ

4.2.1 Number and stability of solutions

Discretization of space-time is required for the purpose of closely examining solutions

to these equations. There is some ambiguity as to how this should be done, but

1This algorithm is due to S. Sharma
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at this level, we merely assume that there are N space-time points in total, and

that limits in the time variable such as G(4 , 2 +) are taken to mean G(4 , 2 ). One

can equally well think of any different basis like for instance an orbital-frequency

basis. By discretizing one loses the physical meaning of these equations, but we

will assume that the true physical solution can be recovered in the continuum limit

when N →∞. In discrete space all eigenstates and eigenvalues of the Hamiltonian

are analytic functions of λ on the whole real axis [45]. Consequently phenomena like

phase transitions can only be described in the N →∞ limit.

The equations to be solved now form a closed system of polynomial equations

enabling us to prove general theorems about such a system. To do so we define a

concise notation. Let

F ≡ (G,W,Π, Σ, Γ ) ∈ Cn,

be the vector of all dependent (or unknown) variables. Here n = 4N2 + N3 is the

number of unknowns. We regard the matrices G0 and v (and the bare vertex) as

known and fixed. Equations (3.107), (3.108), (3.113), (3.114) and a vertex equation

like Eq. (4.25) can now be written in a compact form as F = g(F ) or h(F ) = 0

with h(F ) ≡ g(F ) − F , where g = (g1, . . . , gn) is a set of polynomials in several

variables.

It is important to point out that most of the following considerations do not

depend on the precise form of the vertex equation. For example the trivial vertex

equation Γ = Γ0 corresponding to the GW approximation is also allowed here. In

this case one can eliminate the vertex from the equations and redefine F, g and h in

order to include only the smaller set of quantities and equations. Similarly, if one

were to fix W in the Starfish algorithm then F would be (G,Σ, Γ ) and the equations

for W and Π could be eliminated.

Since we are interested in the dependence of these equations and their solutions

on the coupling strength λ, the equations to be solved are

F = gλ(F ) or hλ(F ) = 0. (4.26)

For the non-interacting case the solution is unique. We call this F 0.

We now want to determine the number of solutions to Eq. (4.26) in the interacting

case. An upper bound is provided by Bézout’s theorem [57, 58] which states that the

maximum number of solutions to a system of polynomial equations (if finite) is equal

to the product of the total degree of each equation. Thus the GW approximation

with fixed W has at most 2N
2

solutions, and the Starfish algorithm, also for fixed W ,

has at most 7N
3

22N2

solutions. A similar observation for the number of solutions of

the equations underlying Hartree Fock calculations was made in Ref [7]. There also
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a lower bound for the number of solutions is provided, which grows exponentially

with the number of electrons in the system. It has also been shown numerically that

in HF [8, 59, 60, 61], DFT [13, 14] and many other methods based on self-consistent

equations [62, 63, 64, 65, 9, 10, 11] one can obtain more than one solution.

Buchberger’s algorithm is a method of systematically determining the exact num-

ber of roots by decomposing the equations into a Gröbner basis (see Section 2.1).

This procedure is, however, computationally very demanding and can be performed

only for small (and therefore non-physical) N . For example for N = 2 the GW

approximation with fixed W turns out to have precisely 6 solutions for generic G0

and W . Likewise, for N = 1 the Starfish algorithm yields 3 solutions. From these

considerations, it seems quite surprising that self-consistent GW works at all for

realistic values of N . We will now provide two theorems that may explain this

apparent success.

Theorem 6. For all choices of Eq.(4.26) mentioned above (GW , Starfish and the

versions with fixed W ), the solutions have the following properties

(i) Eq.(4.26) has one solution F λphys that tends to the non-interacting one F 0 in

the non-interacting limit:

F λphys−→
λ→0

F 0.

(ii) All other solutions tend to infinity:

inf
{
‖F‖ : hλ(F ) = 0, F 6= F λphys

}
−→
λ→0

∞,

where ‖·‖ is, say, the Euclidean vector norm.

(iii) F λphys is an analytic function with respect to λ in a vicinity of λ = 0.

This behavior suggests that at least in some low coupling regime Fphys is indeed

the physical solution while all other are far away from the right result.

Proof. In the non-interacting case the Jacobian ∂h/∂F is a triangular matrix having

−1’s on the diagonal. Hence its determinant is not zero. In this situation the

implicit function theorem [41] implies that one can solve for F as a function of λ

in a neighborhood U = U ′ × U ′′ ⊂ Cn+1 of (0, F 0) ∈ U . It also implies that this

function is analytic and that there is no other solution in U . This proves (i) and

(iii).

Now for any compact set Ω where Ω ⊂ Cn one can restrict λ such that hλ and

h0 are point-wise closer to each other in Ω \ U ′′ than infF∈Ω\U ′′‖h0(F )‖ 6= 0. This
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Figure 4.2: Schematic of the reasoning used in Theorem 6. Polynomial functions h0

and hλ are drawn in red and blue on the domain Ω ⊂ Cn. The arrow

at a represents the largest point-wise separation between hλ and h0 on

Ω \ U ′′. The arrow at b represents infF∈Ω\U ′′‖h0(F )‖.

is schematically illustrated in Fig. 4.2. Then hλ has no zero in Ω \ U ′′ and by the

previous paragraph only F λphys in U ′′. Since this can be done for any Ω this proves

(ii).

In practice, one solves Eq. (4.26) iteratively. That is, one starts with some initial

guess F0, inserts it into the right hand side of F = g(F ) and obtains a new guess.

Iterating this procedure defines a sequence

Fi+1 = g(Fi). (4.27)

A natural starting point for this is the non-interacting solution F0 = F 0, but this is

by no means necessary. The hope is that this sequence converges to a fixed point, i.e.

a solution to the equations. A priori it is unknown if the calculation will actually

converge, and if a fixed point obtained this way actually corresponds to the physical

solution. So one may wonder, why GW and similar schemes do, in fact, work in

many situations. We now show that, for weak coupling convergence to the unique

solution is guaranteed.

Theorem 7. For small λ the physical solution Fphys is an attractive fixed point of

Eq. (4.27). The size of the attracting region tends to infinity as λ→ 0.

Here size can for instance be understood as the diameter of the largest ball that

is contained in the attracting region.
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Proof. It is sufficient to show that for any starting point we can restrict λ such

that convergence to Fphys is guaranteed. For a, b, c ∈ R we define the following

transformation:

G0
′ = aG0 v′ = bv Γ ′0 = cΓ0

G′ = aG W ′ = bW Γ ′ = cΓ

Σ′ = a−1Σ Π′ = b−1Π λ′ = cλ

(4.28)

with a2bc2 = 1. (We will use these transformations in this section only, to avoid

confusion of the meaning of the primes with the derivatives as used earlier). This

transformation leaves Eq. (4.27) invariant:

F ′i+1 = g′(F ′i ).

We now apply the transformation with, say, a = λ1/4, b = λ1/2, c = λ−1/2. This way

g′ depends on λ explicitly and implicitly through a, b and c. Observe that all coef-

ficients appearing in g′ tend to zero as λ→ 0. This is not true for the transformed

starting values since the self-energy becomes larger due to the transformation. This

is repaired by the first iteration: The quantities F ′1 = g′(F ′0) tend to zero as λ→ 0.

In this situation Banach’s fixed point theorem can be applied for the map g′ defined

in an appropriate neighborhood of zero that contains F1
′. We can conclude that for

small λ the transformed quantities tend to a fixed point. Since the transformation

can be inverted, this remains true for the original quantities. By Theorem 6 for

small λ the solution Fphys is the solution nearest to the non-interacting one. Hence

the fixed point obtained is indeed Fphys.

Both theorems apply not only to the mentioned examples but to a large class of

algorithms: it has already been demonstrated that they apply to different vertex

equations. Another example would be to choose the solved form of the Dyson

equations, e.g. G = (1−G0Σ)−1G0. This does not change the proof of Theorem 1

at all. For theorem 2 one would need the additional assumption that in the first step

the matrix inverse exists. Then they will also exist in subsequent steps provided λ

is small enough and due to the same arguments as before Fi would converge to the

physical solution.

4.2.2 Numerical investigation

Numerical checks of the above theorems were performed for both self-consistent

GW and the Starfish algorithm. General methods to obtain solutions to polynomial

equations are described in ref. [39]. Some important mathematical properties of the

59



Chapter 4 Hedin’s equations in discrete space and time

behavior of the solutions under change of parameters in the equations are covered

there as well, while still remaining much more readable than most of the literature

on algebraic geometry. As already mentioned, obtaining all solutions is in practice

only possible for very small N . Hence for GW we set N = 2 and for Starfish

we use N = 1. Plotted in Fig. 4.3 are all the solutions for these algorithms as
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Figure 4.3: Plot of the distance of a matrix element of the Green’s function to the

non-interacting one versus the coupling strength λ for all possible solu-

tions of GW with N = 2 and Starfish with N = 1, for random G0 and

W . W is kept fixed in both cases. Always only one solution tends to the

non-interacting one for the weak coupling limit.

a function of λ. The numerical input, in this case G0 and W , were chosen to be

random complex numbers, and W was kept fixed (which is common practice for real

GW calculations). As mentioned earlier, there are 6 solutions in the GW case. Of

these 5 tend to infinity and the remaining solution tends to G0 as λ → 0. This is

a visualization of Theorem 6. For Starfish 2 of the 3 solutions tend to a constant.

This may seem to be in violation of the theorem but in this case the vertex Γ

(and therefore F ) diverges. We can also examine the domains of convergence for

both of these algorithms. For N = 1 we fix v = 1 and λ = 1 and plot the region

of convergence of G0 for the fully self-consistent GW and Starfish algorithm (for

which W is also computed self-consistently) in Fig. 4.4. It can be observed that
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Figure 4.4: Domain of convergence of GW (green) and Starfish (purple) with N = 1

for input values of G0 in the complex plane, when using the non-

interacting solution as starting point1. Here v = 1 and λ = 1. The

crosses mark the chosen G0 for investigating the starting point depen-

dence while fixing G0, see Fig. 4.5.

the region of stability shrinks for the higher-order method. Also noteworthy is that

the region has a fractal boundary (this may be unsurprising since for case G0W = 1

the domain is the Mandelbrot set). Perhaps even more interesting is the region of

starting points for which the algorithms converge. These are plotted in Fig. 4.5 for

the same v and λ but this time with G0 = 1 + i for GW and G0 = 1/4 + i/4 for

Starfish, and with a variable starting point for G. These points are indicated by

crosses in Fig. 4.4. Once again the region of convergence is smaller for Starfish, but

in both cases only one solution is found, irrespective of the starting point. This is

a numerical confirmation of Theorem 7. Note that for GW a situation was picked,

where the non-interacting starting point does not lead to convergence. Hence this

can be considered a large coupling situation. But still there seems to be only one

stable fixed point. The boundary of the region is also fractal (this corresponds to

the Julia set).

1This calculation was done by K. Dewhurst.
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Figure 4.5: Domain of convergence of GW (green) and Starfish (purple) with N = 1

for different starting points of the fixed point cycle1. The values of G0

are fixed to 1 + i for GW and 1/4 + i/4 for Starfish, as indicated by the

crosses in Fig. 4.4.

4.2.3 Mixing

In most realistic calculations of the self-consistent GW approximation, the previous

and current quantities are mixed with one another using various mixing schemes [66].

This can both ensure convergence to the fixed point as well as accelerate it. In our

notation, this is equivalent to modifying Eq. (4.27) as follows:

Fi+1 = βg(Fi) + (1− β)(Fi), (4.29)

where, in general, β is a matrix. The modified map g̃(F ) = βg(F ) + (1 − β)F

yields h̃(F ) = β(g(F ) − F ) = βh. Thus if β is an invertible matrix then the fixed

points of g are preserved. We also note that a fixed point is asymptotically stable

if all the eigenvalues of its Jacobian J̃ = ∂h̃/∂F = βJ have negative real parts. If

any eigenvalue has a positive real part, then the fixed point is unstable. One may

therefore choose the matrix β such that the eigenvalues of J̃ have arbitrary real

1This calculation was done by K. Dewhurst.

62



Chapter 4 Hedin’s equations in discrete space and time

parts. In this way particular fixed points can be made either stable or unstable as

desired.

To illustrate the utility of mixing we recalculate the stability regions in Fig. 4.5

for the GW approximation by mixing the Green’s function alone

Gi+1 = βGi + (1− β)Gi,

with β taken to be a positive real number. The effect of this is plotted in Fig. 4.6.

Figure 4.6: Domain of convergence of GW as a function of the mixing parameter1.

Three different solutions are plotted with different colors: blue, yellow

and red. Black indicates non-convergence.

1This calculation was done by K. Dewhurst.
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Two interesting aspects are observed: first, the domain of convergence increases

dramatically with decreasing mixing parameter β; and second, different solutions

emerge as a function of β (these are indicated by three different colors in the plot).

Note that for β = 1 only one solution was found. These observations may have

consequences for realistic GW calculations, namely that adjusting the mixing pa-

rameter can fundamentally change the obtained solution. In our simple example, we

chose β to be a positive real number but it could also have been negative, complex,

a diagonal matrix with non-zero entries or a general invertible matrix.

We have argued that truncating Hedin’s equations to some order yields systems of

polynomial equations which have a large number of solutions. As an example of this,

the Starfish algorithm was introduced which includes vertex corrections beyond GW

and consequently has even more fixed point solutions. Two theorems were presented

that shed some light on the general behavior of these fixed points. In particular we

have shown that there is exactly one solution that tends to the non-interacting case

for small coupling, while all others are divergent in this limit [67, 68, 69]. Numerical

tests of self-consistent GW and the Starfish algorithm for small N demonstrated

that the system also converges uniquely to one fixed point even for fairly large

coupling. Furthermore, the region of stability may be fractal in nature, indicating

that finding simple necessary and sufficient conditions for ensuring convergence of

GW calculations a priori, may be impossible. Lastly, we found that mixing current

and previous solutions with a certain mixing parameter not only increases the radius

of convergence but also allows different solutions to be obtained. This observation

may be of use in realistic GW calculations to assist in finding these other solutions

and investigate their properties.
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The Berry phase in the exact

factorization

Notation As in the previous chapters we try to be ISO-80000 conformal, i.e. we use

italic letters for variables and upright letters for mathematical an physical constants

and fixed symbols, including names for the reasons already detailed in Chapter 2.

From here on, we also use bold letters to denote 2- and 3-vectors. Apart from

that, we decided not to introduce any notation to emphasize vectors, matrices or

operators, as this would only clutter formulas. This is also intended to highlight

the difference between 3-vectors (bold letters) and higher dimensional vectors (not

bold). To ease the reading, we use Latin letters (a, b, c, . . . ) as subscripts of coor-

dinates of electrons and Greek letters (α, β, γ, . . . ) for nuclear coordinates. We use

Latin letters, starting from i, j, k, . . . , if an index runs through both of these sets of

coordinates.

5.1 Choice of coordinates

We investigate the wave function ψ(R, r) that describes a molecule in the non-

relativistic description. It depends on d ·Nn nuclear coordinates R = (R1, . . . ,RNn
)

and d ·Ne electronic coordinates r = (r1, . . . , rNe
), where d is the number of spatial

dimensions considered (usually d = 3). The Hamiltonian for such a system is

H = Tn + Te + V, (5.1)

where V (R, r) is the Coulomb interaction among all particles and Tn and Te are the

kinetic energy of nuclei and electrons respectively

Tn = −
d·Nn∑
α=1

1

2Mα

∂2

∂R2
α
, Te = −

d·Ne∑
a=1

1

2ma

∂2

∂r2
a
. (5.2)
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Mα and ma are the mass of the nucleus or electron to which this coordinate cor-

responds. If we want to describe a molecule in an external potential, this can be

absorbed into V . If instead V is a potential that depends on relative coordinates

only, the center of mass motion can be split off explicitly. A particular convenient

choice of coordinates are the Jacobi coordinates [47]

qk =

∑k
i=1mix i∑k
i=1mi

− x k+1, qN =

∑N
i=1mix i∑N
i=1mi

, (5.3)

where N = Ne+Nn is the total number of particles considered and x i runs through

all electronic and nuclear coordinates with the corresponding masses mi. The kth

new coordinate is the difference vector of the (k + 1)th particle and the center of

mass of the first k particles. In these new coordinates the total kinetic energy of the

system still has the same form

Tn + Te = −
d·N∑
k=1

1

2µk

∂2

∂q2
k

. (5.4)

The only difference is that the masses need to be changed according to

µ−1
k =

k+1∑
i=1

m−1
i , µN =

N∑
i=1

mi, (5.5)

where the first formula defines the (N − 1) reduced masses and the second one, the

total mass. The simple form of the total kinetic energy is the reason that these

coordinates are so useful. If we would have made the more obvious choice of taking

just the difference of each coordinate to the center of mass, while dropping one of

the coordinates in favor of the center of mass, the expressions would have become

slightly more complicated.

Note that the coordinate transformation described here is just one choice among

many which preserve this simple form of the kinetic energy operator. We just picked

the simplest choice of Jacobi coordinates possible for the sake of illustration. There

may be coordinates which are better suited for numerical calculations. It is also

worth mentioning that one can also get rid of the mass parameters by a simple

rescaling of the coordinates according to

qk →
√
µkqk. (5.6)

That way they no longer appear in the kinetic energy operator. However, they are

merely shifted to the interaction potential V .
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After these coordinate transformations, we are left with (N − 1) relative coor-

dinates q1, . . . , qN−1 and one center of mass coordinate qN . As we assume that

the interaction potential does not depend on the latter, the Hamiltonian commutes

with the total momentum operator i ∂
∂qN

. It can even be written as the sum of the

kinetic energy of the center of mass motion and a remaining part. The latter no

longer depends or acts on the center of mass coordinate. The total wave function

can hence be decomposed into a product of a wave function that depends on the

(N − 1) relative coordinates only and a wave function which describes a plane wave

with respect to to the center of mass coordinate.

The remarkable result of this exercise is that we cannot only get rid of d (d is the

dimension of the space, usually three) coordinates by splitting off the center of mass

motion, but also keep the original form of the total kinetic energy operator. We will

even go back to the same symbols we initially introduced. We should, however, keep

in mind that the meaning of the coordinates and parameters changed. The ma and

Mα are now effective masses. Though one can think of the Rα as relative nuclear

coordinates and the ra as coordinates that are essentially the electronic coordinates

relative to the total center of mass, this is by no means necessary. We will in a

moment split the system into two sets of coordinates R and r. As we will treat

the equations in an exact manner, i.e. we are not making the Born-Oppenheimer

approximation or the like, this splitting can be done in any way. One might for

instance consider only some of the nuclei as the system described by the coordinates

R and consider the others and the electrons through the coordinates r. Another

interesting possibility is to regard the electronic coordinates as R and the nuclear

coordinates as r. That being said, we will go back to calling the coordinates R

and r nuclear and electronic coordinates respectively. The same applies to the mass

parameters. We will later discuss the topology of the nodal structure of the wave

function. As we are dealing with a linear and invertible coordinate transformation

all topological properties of the original wave function are identical to those of the

wave function with the center of mass coordinate split off.

There is another symmetry of the molecular Hamiltonian that is usually utilized.

The rigid rotation of the molecule does not change its total energy. The operators

of the total angular momentum hence commute with the Hamiltonian. This allows

elimination of three more coordinates if we consider the three dimensional case. In

two dimensions only one more degree of freedom could be removed. Either way, the

remaining Hamiltonian does, in contrast to the center of mass motion case, depend

on the chosen quantum numbers. This should not come as a surprise, as there are

Coriolis and centrifugal forces. What is even worse, the form of the kinetic energy

operator becomes much more involved. For that reason it is more convenient to

discuss the problem without explicitly eliminating these coordinates.
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5.2 Born-Oppenheimer Expansion

We consider eigenfunctions of the total Hamiltonian, which still has the form of

Eq. (5.1), but with the slightly changed meaning of the coordinates and parameters

described in the previous section

Hψ = Eψ, (5.7)

with

H = Tn + Te + V. (5.8)

We define the electronic Hamiltonian as the operator

h(R) = Te + V (R), (5.9)

which can be viewed as an operator that depends parametrically on the nuclear

coordinates and acts in the space of electronic wave functions, i.e., wave functions

which depend on the electronic coordinates alone. Many authors split up the poten-

tial further into a part that acts on the nuclei alone, a part that act on the electrons

alone and a part that describes the interaction among them. Also the part that acts

on the nuclei alone is often not included in this electronic Hamiltonian but is added

later, when the full Hamiltonian is considered. These definitions are completely

equivalent, the only difference is that the interaction among the nuclei is already

included in the eigenvalues of the electronic system. As this operator depends on

R, its eigenfunctions and eigenvalues depend on R as well

h(R)|aR〉 = εa(R)|aR〉. (5.10)

The eigenenergies as a function of R are called Born-Oppenheimer surfaces. We will

use the bra-ket-notation exclusively for the electronic space, while the R-dependence

will be made explicit. For instance the total wave function is viewed as a R-

dependent ket |ψ(R)〉.
The expansion of the full wave function in terms of this basis is called Born-

Oppenheimer expansion

|ψ(R)〉 =
∑
a

χa(R)|aR〉, (5.11)

where the R-dependent coefficients χa(R), known as nuclear wave functions, have

been introduced.
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Using this expansion in the full Schrödinger equation Eq. (5.7) and multiplying

with a bra-vector leads to a Schrödinger like equation for the nuclear wave functions,

which can be written as [47][
1

2
(A(R)− i∇)2 + ε(R)

]
χ(R) = E χ(R), (5.12)

where χ = (χ1, χ2, . . . )
T is the column vector of the nuclear wave functions,

ε = diag(ε1, ε2, . . . ) (5.13)

is the diagonal matrix of Born-Oppenheimer surfaces and

Aab(R) = 〈a|i∇|b〉 (5.14)

is the so-called gauge connection, which can be viewed as a vector of matrices or

equivalently a matrix of vectors. Note that the square in Eq. (5.12) imposes a matrix

multiplication as well as a scalar product of this vector. Specifically Eq. (5.12) stands

for [
1

2
((Aα)ac − iδac∂α)((Aα)cb − iδcb∂α) + εaδab

]
χb = E χa. (5.15)

The gauge-covariant curvature two-form is defined as [47]

Fαβ = ∂αAβ − ∂βAα − i[Aα, Aβ], (5.16)

This turns out to be zero wherever the derivatives are well defined [47], as the

following calculation shows (remember that Latin letters correspond to the electronic

space and Greek letters to the nuclear coordinates):

(Fαβ)cd = ∂α(Aβ)cd − i(Aα)ce(Aβ)ed − α↔ β (5.17)

= i∂α〈c|∂β|d〉+ i 〈c|∂α|e〉︸ ︷︷ ︸
=−〈∂αc|e〉

〈e|∂β|d〉 − α↔ β (5.18)

= i〈∂αc|∂β|d〉+ i〈c|∂α∂β|d〉 − i 〈∂αc|e〉〈e|∂β|d〉︸ ︷︷ ︸
=〈∂αc|∂β |d〉

− α↔ β (5.19)

= i〈c|∂α∂β|d〉 − α↔ β (5.20)

= 0, (5.21)

where “α ↔ β” stands for “the same terms but with α and β interchanged”, the

first line is just the definition, in the second and third line we used that the elec-

tronic states form an orthonormal and complete basis for any fixed set of nuclear

coordinates and in the last line we used the symmetry of second derivatives.
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It can be shown that this implies A can be gauged away by a unitary transfor-

mation in any simply connected region in which the electronic wave functions are

continuously differentiable [47, 70]. In the next section, we will analyze the condi-

tions for the electronic wave functions to be continuously differentiable with respect

to nuclear coordinates.

5.2.1 Conical intersections

We clearly need to understand how and when it is possible that the electronic wave

functions do not depend smoothly on the nuclear coordinates. In order to analyze

this, it is necessary (or at least convenient) to consider a truncated Hilbert space for

the electronic coordinates only. That way the electronic Hamiltonian h(R) can be

represented by a hermitian matrix of the dimension de of this space. Fortunately,

the behavior of the eigenvectors and eigenvalues of a parameter dependent hermitian

matrix is understood very well [45]. A remarkable property is that if the matrix

depends only on a single parameter, then all eigenvalues and eigenvectors can be

chosen to be analytic functions of it. This is no longer true, if two parameters

are considered simultaneously. The crucial point is degeneracy. All of this can be

understood by considering the properties of the eigenvectors and eigenvalues in a

two dimensional subspace that we consider decoupled from the rest of the space.

We write the electronic Hamiltonian as

h =

(
h2×2 0

0 h̃

)
, h2×2 =

(
d+ c a+ bi

a− bi d− c

)
, (5.22)

where a, b, c and d are real parameters, which depend on the nuclear coordinates.

This is the most general two dimensional selfadjoint operator. It is real if b = 0.

We could obviously have parametrized it in a slightly simpler way, but this way the

upcoming formulas are a little simpler. The Hamiltonian can be written as

h2×2 = B ·σ + d, (5.23)

where B = (a, b, c)T and σ is the vector of the three Pauli matrices. So d is merely an

R-dependent shift in total energy, while a, b and c can be viewed as the components

of a magnetic field. Note that all we have done is to consider the most general two

by two Hamiltonian. This just means that any such system is equivalent to a spin

one-half particle in a magnetic field. This also applies in cases in which no magnetic

field is present at all. The eigenvalues are

ε± = d±
√
a2 + b2 + c2 = d±B, (5.24)
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where B was defined as the modulus of B . Now one can see that for fixed a, b and d

with a or b non-zero, these are clearly analytic functions with respect to c. This is an

illustration of the fact mentioned earlier that the eigenvalues are analytic functions

of a single parameter. However, what happens if a = b = 0? Then ε+ = d + |c|,
which is clearly not analytic near c = 0. In this case, we can change the labeling

of the eigenvalues to ε1/2 = d± c. That way we get back to two analytic functions.

Such a trick does no longer work if we consider two or more parameters at the same

time. If we consider the case d = c = 0, then the two energy eigenvalues as a

function of a and b form a double cone. At the tip of such a cone, the functions are

obviously not analytic. This is what is called a conical intersection.

The eigenvectors are most conveniently expressed in terms of spherical coordi-

nates, which we introduce via

a = B cos(β) sin(α) (5.25)

b = B sin(β) sin(α) (5.26)

c = B cos(α). (5.27)

So the introduced coordinates α and β are just the standard spherical coordinates

to describe the angle of the B -vector. All directions can be covered for 0 ≤ α ≤ π
and 0 ≤ β ≤ 2π. The eigenfunctions do not depend on d or B. They can be written

as

|+〉 = cos(α/2)e−iβ/2|↑〉+ sin(α/2)eiβ/2|↓〉 (5.28)

|−〉 = − sin(α/2)e−iβ/2|↑〉+ cos(α/2)eiβ/2|↓〉, (5.29)

where |↑〉 and |↓〉 are the basis functions spanning the two dimensional space we are

considering. Let us now focus on the state with lower energy |−〉. The way we have

chosen the phase of this state it changes sign under a full rotation β → β+2π. Since

the choice of phase is arbitrary, we can switch to a different gauge. That is we can

choose the phase of the wave function in a different R or equivalently β dependent

way. The function

|φ〉 = eiβ/2|−〉 = − sin(α/2)|↑〉+ cos(α/2)eiβ|↓〉 (5.30)

is single valued. The corresponding vector potential can be calculated

Aµ = 〈φ|i∂µ|φ〉 = −
(

1

2
+

1

2
cos(α)

)
∂β

∂Rµ
(5.31)
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The phase associated with a closed loop for fixed α is

γ =

∮
AµdRµ (5.32)

= −
∮ (

1

2
+

1

2
cos(α)

)
∂β

∂Rµ
dRµ (5.33)

= −
∮ (

1

2
+

1

2
cos(α)

)
dβ (5.34)

= −(1 + cos(α))nπ, (5.35)

where n is the winding number, how often the two dimensional vector (a, b) winds

around the origin.

We would like to discuss this result for two cases. First consider the case that

cos(α) = 0, which means that the Hamiltonian can be chosen real. In this case the

phase is an integer multiple of π. It does no longer depend on the precise shape of

the integration path, but only on the winding number n. The phase is a topological

quantity. Second consider the case of a general complex Hamiltonian. Then the

phase is actually the solid angle B encircles by on the integration path. It depends

in a continuous way on the geometry of the integration contour. It is a geometric

phase.

Dimension of Conical Intersections In the previous section we established the

relevance of degeneracies of the electronic Hamiltonian. We would now like to get a

better understanding of the dependency of degeneracies on the nuclear coordinates.

Towards this end we apply the spectral theorem in order to write the electronic

Hamiltonian as

h = U † ε U, (5.36)

where U is a de × de unitary matrix and ε = diag(ε1, . . . , εde) is a the already

introduced diagonal matrix of Born Oppenheimer surfaces (though now it is consid-

ered finite dimensional). We can now ask: What is the dimension of the space of

electronic Hamiltonians? We consider the case that we are dealing with r distinct

eigenvalues, with multiplicities gi, such that
∑r

i=1 gi = de. From Eq. (5.36) we can

see that we are free to choose r eigenvalues and a de × de unitary matrix. The

former provides r parameters and the latter d2
e real parameters. Then the action of

a gi × gi dimensional unitary matrix acting in the eigenspace corresponding to the

ith distinct eigenvalue, will not change the Hamiltonian (i.e. the action of U and

U † will compensate each other). Hence we have to subtract the dimension of these
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spaces. We end up with a total dimension of [47]

d2
e + r −

r∑
i=1

g2
i (5.37)

for the space of electronic Hamiltonians with degeneracies gi. That means that the

space of Hamiltonians without any degeneracy is d2
e (take r = de and g1 = g2 = · · · =

gr = 1). As expected, this is just the dimension of the space of hermitian matrices.

The dimension of the space of Hamiltonians with one degeneracy (r = de − 1,

g1 = 2, g2 = g3 = · · · = gr = 1) is d2
e−3 instead. The condition that a degeneracy is

present is hence equivalent to three real constraints [47]. For real Hamiltonians the

diagonalization can be done with orthogonal matrices. The number of parameters

determining a Hamiltonian is then [47]

1

2
de(de − 1) + r −

r∑
i=1

1

2
gi(gi − 1). (5.38)

The dimension of the space of real Hamiltonians with one degeneracy turns hence

out to be two less than the dimension of the space of all real Hamiltonians. So for

real Hamiltonians, the condition that there is a degeneracy is equivalent to two real

constraints [47].

At this point one tends to conclude that this means that the dimension of the space

of nuclear coordinates that lead to such a degeneracy in the electronic Hamiltonian

is also the dimension of the entire space minus three or minus two for complex or real

Hamiltonians respectively [46, 47]. However this conclusion is not true in general.

A more detailed analysis of the symmetries of the problem is needed. Consider the

case of H+
2 . After removing the center of mass motion as described in a previous

section, we are left with the three component relative coordinate of the nuclei and

the three coordinates of the electron (relative to the center of the nuclei).

5.3 Exact factorization

Up until now, we considered the Born Oppenheimer expansion

|ψ(R)〉 =
∑
a

χa(R)|aR〉, (5.39)

where the electronic wave functions |aR〉 were eigenfunctions of the electronic Hamil-

tonian. If the sum is truncated after the first term, this is the Born Oppenheimer
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approximation, in which the total wave function is a single product of a nuclear wave

function and an electronic wave function. There is an alternative approach, which

does not impose any approximation, but still expresses the total wave function as a

single product [71]

ψ(R, r) = χ̄(R)φ̄R(r), (5.40)

where we put the bar over χ and φ to distinguish from the wave functions introduced

in the previous section. Instead of demanding that the electronic wave function is

an eigenstate of the electronic Hamiltonian, we define the nuclear wave function in

such a way that it provides the correct nuclear density of the full wave function

|χ̄(R)|2 =

∫
dr |ψ(R, r)|2 (5.41)

and then the electronic wave function is defined by Eq. (5.40) and is normalized for

any fixed nuclear configuration ∫
dr
∣∣φ̄∣∣2 = 1. (5.42)

This does not yet fix the phase of χ̄ and φ̄, leaving the gauge-like freedom

χ̄(R) → eiθ(R) χ̄(R) (5.43)

φ̄R(r) → e−iθ(R) φ̄R(r), (5.44)

which leaves the total wave function ψ unchanged. It is not hard to show that the

nuclear wave function satisfies a Shrödinger-like equation [72][
1

2
(Ā(R)− i∇)2 + ε̄(R)

]
χ̄(R) = E χ̄(R), (5.45)

which has the exact same form as the equation we obtained using the Born Oppen-

heimer expansion, but with Ā defined as

Āk(R) = i

∫
dr φ̄∗R(r)

∂

∂k
φ̄R(r) (5.46)

and a function ε̄, which can also be expressed in terms of φ̄ (see Ref. [71]). The

Ā-field transforms under the gauge transformation above as

Āk(R) → Āk(R)− ∂

∂k
θ(R) (5.47)
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Though Eq. (5.45) looks like a Schrödinger equation for the nuclei in an effective

external field ε and an external magnetic field described by Ā, the situation is

more complicated than that. It is not too surprising that ε(R) can depend on all

nuclear coordinates simultaneously, even though the Coulomb interaction depended

only on the pairwise distance. The Āk-term does, however, also depend on all

nuclear coordinates simultaneously, meaning that this equation cannot simply be

interpreted as (effectively) interacting nuclei in one effective electromagnetic field.

Instead one could say that the effective magnetic field felt by one nucleus depends

on the positions of all other nuclei. Note that also the effective interaction between

the nuclei is very different from its original. When describing a bound state of a

molecule, this interaction must clearly be attracting at least partly, in contrast to the

original interaction between the nuclei, which was repelling. This is very intuitive,

though, as this effective attraction can be viewed as the electrons gluing the nuclei

together.

We define the Berry phase associated to a gauge-field Ā and a closed path C

through the space of nuclear coordinates R as

γ̄ =

∫
C

Ā(R) · dR, (5.48)

where the dot emphasizes the inner product of Ā and dR. If we define the Berry

curvature as the exterior derivative of Ā

Ω̄ab(R) =
∂

∂a
Āb(R)− ∂

∂b
Āa(R). (5.49)

then Stokes theorem links such an integral to an integral over a surface S

γ̄ =

∫
S

Ω̄ab(R) dRadRb, (5.50)

where C is the boundary of S. Both the Berry phase and the Berry curvature are

gauge-independent.

Let us end this section with a remark that appears to be made too rarely in the

literature: Instead of defining the Berry curvature via a derivative, as in Eq. (5.49),

we could define it as the function which satisfies Eq. (5.50), where the Berry phase is

retrieved from Eq. (5.48). This way of defining the Berry curvature is not only more

natural, in the sense that the definition directly tells us what the object means, but

it is also more general, as it allows us to define the Berry Curvature even when the

derivatives of Ā do not exist. In this case the Berry phase is, of course, a distribution.

The alternative to the way of making the definition of the Berry phase more

general is to simply deal with the limitation of the given definition. This approach
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is probably easier to grasp, as we can always consider the objects we are dealing

with as ordinary functions. The downside is that we cannot use Stokes theorem, as

the space where our quantities are well defined might not be simply connected.

In order to avoid this whole issue, we will use the Berry connection most of the

time. It is generally enough to consider it on paths for which it is well defined, as

the exceptional points are sufficiently rare, as we will see later.

5.3.1 Triviality for current-free wave functions

We now introduce the nuclear density and current density

n(R) =

∫
dr |ψ(R, r)|2 = |χ̄(R)|2 (5.51)

jk(R) = Im

[∫
dr ψ∗(R, r)

∂

∂k
ψ(R, r)

]
. (5.52)

Using the definition of Ā and Eq. (5.40) in the latter equation reveals that χ̄ not

only reproduces the correct nuclear density, but also the nuclear current density one

would expect for a gauge theory, with the given gauge connection

jk(R) = −n(R)Āk(R) + Im

[
χ̄∗(R)

∂

∂k
χ̄(R)

]
. (5.53)

A similar equation can be derived by using the Born Oppenheimer expansion in

Eq. (5.52). Both ways we obtain the same nuclear current, which implies an in-

teresting relationship between the exact factorization and the non-abelian gauge

connection

nĀk − Im

[
χ̄∗

∂

∂k
χ̄

]
= χ∗a(Ak)abχb − Im

[
χ∗a

∂

∂k
χa

]
. (5.54)

If in both descriptions the gauge in which the nuclear wave functions are real is

chosen then the gauge connection of the exact factorization is the average of the

matrix elements of the original gauge connection, with the nuclear wave functions

as weights (note that they can be negative as well, though, implying the possibility

of cancellations).

Let us now consider a system in which the nuclear current density is zero and

choose a gauge in which χ̄ is real and non-negative:

χ̄(R) =

√∫
dr |ψ(R, r)|2 (5.55)

φ̄R(r) =
ψ(R, r)

χ̄(R)
. (5.56)
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In this special case both the LHS and the second term on the RHS of Eq. (5.53)

vanish

n(R)Āk(R) = 0. (5.57)

To satisfy this equation one of the factors must be zero. We arrive at the important

conclusion

Theorem 8. Consider a wave function for which the nuclear n-body current density

vanishes everywhere. Then in the gauge given in Eq. (5.55), the gauge connection is

zero everywhere except possibly where the nuclear density vanishes. The same holds

for the (gauge-independent) Berry curvature

χ̄(R) 6= 0 ⇒ Āk(R) = 0. (5.58)

χ̄(R) 6= 0 ⇒ Ω̄ab(R) = 0. (5.59)

Proof. To get from Eq. (5.57) to Eq. (5.59) we use that n(R) is continuous and hence

whenever it is non-zero for a given R, then it is also non-zero in a neighborhood,

implying that not only Ā(R), but also its derivatives are zero.

This means that the Berry phase is zero for all paths except if they contain nodes

of the nuclear wave function. We stress that here “contains nodes” refers to points

on the path - paths winding around a node are covered. The exclusion of the nodal

structure of the nuclear wave function is natural, as the gauge connection and the

Berry curvature are not well defined there.

We will see in the next section that nodes appear only wherever the Fermi ex-

clusion principle demands it, i.e. whenever two fermionic nuclei have the same

coordinates. Consequently, for any path that contains a node, one can make a small

deformation of this path to avoid the node (Any generic deformation would achieve

this). This is true for any dimension d ≥ 2.

Hence, it will turn out that the exceptional set where χ̄(R) = 0 is a removable

singularity and the Berry curvature is zero everywhere.

5.3.2 Nodal structure

As we have learned in the previous paragraph, we need to understand the nodal

structure of the nuclear wave function in order to learn more about the Berry curva-

ture and the gauge potential. The general properties of the nodal structure of a wave

function is an active field of research [73, 74]. However, this refers to wave functions

directly derived from a Schrödinger equation, rather than a function obtained by

integrating out degrees of freedom after solving a Schrödinger equation.
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Figure 5.1: A function in two variables and its nodal line (red). A function with a

nodal line parallel to the y-axis (like the dashed red line) would lead to

a function with a zero, when its modulus is integrated versus y.

Based on literature on the exact factorization and the discussion of the nodal

structure [75, 76] one could get the idea that the nuclear wave function of the exact

factorization is nodeless in general. Unfortunately this is not the case. Obviously

the nuclear wave function has nodes if fermionic nuclei are present.

In order to illustrate what happens when we integrate out the electronic degrees of

freedom, consider a function of two real coordinates f(x, y). We define the integrated

function

g(x) =

∫
dy |f(x, y)| (5.60)

and ask: When does g have a node? For a generic function f , we can expect that

the space where f is zero is a one dimensional manifold, i.e. one or several lines in

the x-y-plane, see Fig. 5.1. Now the integrand in Eq. (5.60) is non-negative. Hence

if f is continuous g(x) is only zero, if f is zero for all y simultaneously at this x. In

other words g can only acquire nodes, if f has a nodal line parallel to the y-axis.

This however is not to be expected for a generic function f , except if there is more

known about it. For instance if it can be written as a single product of one function

depending on x and another depending on y then g would share the nodes of the

x-dependent function. Another example would be that f is antisymmetric with

respect to x. Then g would automatically have a node at x = 0.

After this example let us come back to the nuclear wave function χ̄(R) that

corresponds to a given total wave function ψ(R, r) via

|χ̄(R)|2 =

∫
dr |ψ(R, r)|2 (5.61)
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The situation is very similar to the example just discussed: The integrand is still

a non-negative function and hence χ̄(R) is only zero for a given R if ψ(R, r) is

zero for all electronic coordinates r simultaneously. The squares appearing do not

change the discussion, as the square of a function is zero whenever the function

is zero and vice versa. What is different is that we are now dealing with a high

dimensional space, namely r ∈ Rd·Ne and R ∈ Rd·Nn , where as before d is the

number of spatial dimension (usually 3) and Ne and Nn are the number of electrons

and nuclei, respectively. We are interested in the space

Λχ=0 := {R | χ̄(R) = 0} (5.62)

= {R | ∀r : ψ(R, r) = 0}. (5.63)

If we consider time reversal symmetric systems (i.e. we do not allow for an external

magnetic field) the wave function can be chosen real and the condition to have a

node ψ(R, r) = 0 is one constraint (without time reversal symmetry these would

be two constraints, one for the real and one for the imaginary part). This reduces

the dimensionality of the total space by one, leaving us with a (d(Ne + Nn) − 1)-

dimensional nodal manifold for the total wave function (we exclude the already

discussed case that the wave function is positive everywhere)

Λψ=0 := {(R, r) | ψ(R, r) = 0} (5.64)

dψ=0 := dim(Λψ=0) = d(Ne +Nn)− 1. (5.65)

There may be two or more identical fermionic nuclei in the system. These are

important for the nodal structure. We define

ΛPauli := {R | Ri = Rj , for some i 6= j that correspond

to identical fermionic nuclei}.

By Pauli’s exclusion principle the wave function is zero whenever two identical

fermionic nuclei have the same coordinates. Hence

ΛPauli ⊂ Λχ=0. (5.66)

Now imagine sitting on a point (R, r) with R 6∈ ΛPauli but ψ(R, r) = 0. This is a

point on the nodal manifold of ψ that is not automatically zero by the exclusion

principle. We want to know whether or not this point leads to a node in χ̄, i.e. is

R ∈ Λχ=0? For this to be possible the normal vector on the nodal hyper surface

must be orthogonal to all directions that change only electronic coordinates. Even

if it is, this vector generally will change its direction when we change the electronic
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coordinates. If the total wave function can be written as a single product of a

nuclear wave function and an electronic wave function that depends on r only, then

a node of this nuclear wave function would lead to a nodal hyper surface of the total

wave function which is parallel to all electronic coordinate directions simultaneously.

However for an interacting system, one would in general expect that this is not the

case. Instead the nodal manifold is expected to be curved, in the sense that the

normal vector will not stay perpendicular to all electronic coordinate axes upon

arbitrary change of electronic coordinates. We can conclude

Lemma 7. If the total wave function ψ is an eigenstate of a Hamiltonian with a

generic interaction between nuclei and electrons then the only nodes of the nuclear

wave function are those dictated by the exclusion principle:

Λχ=0 = ΛPauli. (5.67)

We put the term “generic interaction” because the arguments that lead to this

result are based on the tricky assumption that the wave function is itself in a way

generic. Interestingly, a similar observation was already made for the special case

of diatomic molecules in Ref. [77]. It was also argued that χ̄ should have no node

at all, based on the Born-Huang expansion (see Ref. [75]). The idea is conceptually

quite similar to the reasoning presented here, though they did not consider fermionic

nuclei, as already pointed out in Ref. [78].

Though we find it plausible that the result is valid in general for the Coulomb

interaction, it is not difficult to construct an example of an interacting Hamiltonian

which leads to any nodal structure one desires: We can take a wave function with

the nodal structure we want to have, e.g. the nodal structure of a wave function

which is a single product, like the one of a non-interacting system. We can then

construct an interaction potential by inverting the Schrödinger equation

V (R, r) = −(Tn + Te − E)ψ(R, r)

ψ(R, r)
. (5.68)

The wave function with our desired nodal structure is a solution to the Schrödinger

equation with this potential. In order to ensure that one obtains a truly interacting

system one can multiply the wave function with the desired nodal structure by a

strictly positive function of R and r that does not factorize. This guarantees that the

obtained potential V describes a truly interacting system, while the nodal structure

remains the same.

Note that it is not hard to construct such an interaction potential that is rather

regular, i.e. a potential that is both smooth and bounded can be achieved by

starting from a system without electron-nuclear interaction and modifying the wave
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function only in regions where it is non-zero. This guarantees that the potential is

equal to the one of the non-interacting system in the vicinity of the nodes of ψ and

is modified only where the expression in Eq. (5.68) has a non-zero denominator and

hence is smooth and bounded. The question, whether one can also find two-particle

interactions that lead to a given nodal structure is probably much harder.

Let us finally remark that one of course has to treat results that are based on the

argument that something is “generic” with caution. If for instance we had overlooked

that Pauli’s exclusion principle dictates nodes of the nuclear wave function, our

conclusion would have been that χ̄ has no nodes at all, which is not correct (this

point was not mentioned in Ref. [75]). Symmetries can indeed lead to situations

which one would not expect “in a generic situation”. A famous example is the

hydrogen atom in which the excited states are degenerate due to a not so obvious

symmetry of the Coulomb interaction [79]. Hence one might be worried that the

reasoning above does not apply to the Coulomb interaction in particular. Though

this is logically possible, it is not very plausible. The reason being that the presence

of a Berry phase in the usual Born-Oppenheimer sense is stable with respect to slight

changes of the shape of the Coulomb interaction or the external field and hence not

depending on any symmetry properties of them. Note also that spatial symmetries

do not imply any nodes in the nuclear wave function [80].

5.3.3 Time reversal symmetry versus rotational symmetry

After we established that the Berry phase does not appear in the framework of the

exact factorization whenever the wave function considered has a vanishing nuclear

current, one might ask for situations where this happens. The answer to this is time

reversal symmetry. If we think of non-relativistic systems without external magnetic

fields, the time reversal symmetry operator commutes with the Hamiltonian of the

molecule. Hence we can choose the eigenstates of the Hamiltonian to be eigenstates

of this symmetry operator as well. As the current is odd under time reversal symme-

try, it must vanish for these states. Hence Theorem 8 actually tells us that for any

molecule the eigenstates can be chosen in such a way that no Berry phase appears.

On the other hand we might want to choose our energy eigenstates to be eigen-

states of the total angular momentum operator. In this case the nuclear current is

not zero except for total angular momentum zero. Hence for this case the theorem

is not applicable. However, note that the discussion about the nodal structure of

the nuclear wave function is still valid.
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Figure 5.2: When the Berry curvature is distribution valued on a line (left), any

path that winds around it will lead to the same Berry phase. The value

of the phase does not depend on the details of the path, but only on

its topology. In the exact factorization, the Berry curvature is smeared

out along a line-like region (right). Deformations of the path lead to a

continuous change of the the Berry phase.

5.3.4 States with nuclear current

As we discussed in the previous section, one might want to consider nuclear wave

functions that have a non-zero nuclear current. One may then wonder whether or

not a Berry phase appears.

In the usual description of conical intersections one talks about the so-called seam

space, which is the set of nuclear coordinates for which two potential energy sur-

faces are degenerate. For the most common conical intersections [46] this space has

a dimension of the total space minus two and the Berry phase for a path that winds

around such an intersection is an odd multiple of π. In such a case the Berry curva-

ture is zero everywhere except for the seam space, on which it is distribution valued.

We will now show that such a situation is not possible in the exact factorization.

Theorem 9. Under the same conditions as for Lemma 7 and for d = 3, there is no

topological Berry phase in the exact factorization, i.e. any closed path in coordinate

space can be shrunk to a point in such a way that the associated Berry phase changes

continuously to zero.

Proof. Fortunately it has already been shown that the wave function ψ for a bound

eigenstate of a molecule is guaranteed to be continuous and have bound first partial

derivatives everywhere except for the coordinates where the Coulomb interaction is

singular [52]. The latter set of coordinates is again a set of the total dimension of
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the space minus 3. The theorem of dominated convergence allows us to conclude

that this continuity and the property of a bounded first partial derivative transfers

to the nuclear wave function in the positive gauge Eq. (5.55) everywhere except

where χ̄(R) = 0. With this it is immediate that also the electronic wave function

Eq. (5.56) is continuous (this was already observed in Ref. [81], though they excluded

the coordinates where the coulomb potential is singular, rather than the set where

the nuclear wave function vanishes) and has bounded first derivatives in any compact

set where χ̄ 6= 0. That is all we need to conclude that also the Berry connection we

defined is bounded and continuous for these sets. Now for d = 3 any closed loop

that does not run through a point on which χ̄(R) = 0 can be continuously deformed

and be shrunk to a point where χ̄(R) 6= 0, without running trough a node at any

time (Remember that by Lemma 7, the space where χ̄(R) = 0 is a set of the total

dimension of the space minus 3). During this deformation the Berry phase can also

only change in a continuous manner, as we established that Ā is continuous and

bounded. As we shrink the loop to a point the Berry phase must clearly tend to

zero, again because Ā is continuous and bounded.

This implies that a situation where the Berry phase is an odd multiple of π for

loops like in the usual description of conical intersections as mentioned above is

not possible. This implies that the Berry phase of the exact factorization is not

a topological quantity as in the Born Oppenheimer expansion case. The Berry

curvature is no longer distribution valued, but at best a smeared out function, as

sketched in Fig. 5.2 [80].

All in all the Berry phase, as it appears in the exact factorization is conceptually

very different from the one that is defined in terms of the Born Oppenheimer expan-

sion, despite the similarities in the defining equations. While the latter is defined

solely in terms of the electronic Hamiltonian, the former depends on the details of

the full Hamiltonian. Namely, the masses of the nuclei and also the nucleus-nucleus

interaction potential can change the Berry phase of the exact factorization. An-

other feature that is not present in the original Berry phase, is the dependency on

the choice of the total wave function. Though the Berry phase of the exact factor-

ization can be non-trivial in general, in time reversal symmetric systems, there is

always a choice of eigenstates that shows no Berry phase at all. Even if a state with-

out time reversal symmetry is chosen, there is still a fundamental difference between

the two kinds of Berry phase. While the original Berry phase can have a topological

character, this is not possible for the Berry phase of the exact factorization. Instead

of a distribution valued Berry curvature, one is left with a smeared out function.
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5.3.5 Structure of the nuclear wave function and the potential

energy surface

When two or more of the nuclei under consideration are identical fermions, it seems

natural to try to chose a nuclear wave function that is antisymmetric with respect

to exchange of those particles. This, however, is more problematic than one might

anticipate.

Lemma 8. In d = 2 dimensions, the nuclear wave function χ̄ cannot be chosen real,

antisymmetric with respect to exchange of two nuclei and continuous simultaneously.

Proof. We assume that χ̄ is antisymmetric and real. We have to show that it cannot

be continuous at the same time. Let R ∈ R2 be the relative coordinate of two nuclei.

Then antisymmetry with respect to to exchange of these two nuclei means

χ̄(−R) = −χ̄(R). (5.69)

We consider all other coordinates fixed in such a way that no other pair of nuclei

happens to be on top of another. Then, by virtue of Lemma 7 we can pick a radius

|R0| such that

|χ̄(R)| > 0 for all R with |R| = |R0|. (5.70)

We can assume w.l.o.g. that χ̄(R0) > 0. Eq. (5.69) then implies that χ(−R0) < 0.

This means that on the circle |R| = |R0|, χ̄ is a nodeless function, which takes on

positive as well as negative values. In this situation the intermediate value theorem

implies that χ̄ cannot be continuous.

It is probably not a good idea to drop the continuity of the nuclear wave function:

This would introduce discontinuities of the electronic wave function as well, as it

has to compensate the discontinuities in such a way that the total wave function

is continuous. So, if one wants the nuclear wave function to be antisymmetric,

choosing it complex is the only choice left. However, in the case that the total wave

function is real, the gauge connection is zero only when choosing a real nuclear wave

function as well. Hence one can either choose a gauge in which there is no A-field,

or choose the nuclear wave function antisymmetric. Both at once is not possible.

The situation is even more problematic in the three dimensional case.

Lemma 9. In d = 3 dimensions, the nuclear wave function χ̄ cannot be chosen both

antisymmetric with respect to exchange of two nuclei and continuous.
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Proof. As in Lemma 8, we assume antisymmetry

χ̄(−R) = −χ̄(R) (5.71)

and use Lemma 7 to ensure that

|χ̄(R)| > 0 for all R with |R| = |R0|, (5.72)

for some R0. This time R,R0 ∈ R3. We use reductio ad absurdum, i.e. we assume

that χ̄ is continuous and seek a contradiction. Towards this end we consider a

continuous path R(s) on the sphere with |R| = |R0|, where s ∈ [0, 1]. On this path

χ̄ takes complex values. This defines a continuous path χ̄(R(s)) in the complex

plane. According to Eq. (5.72) this path does not run through zero. For a closed

path a winding number can be defined [82]. This is the number of times the complex

number winds around zero in counter-clock-wise sense minus the number how often

it winds around zero in clock-wise sense.

We can now consider the path that runs along the equator of the sphere. Let

w.l.o.g. R0 be the starting point of this path. As χ̄(−R0) = −χ̄(R0), after half a

rotation, the phase of χ̄ changed by a total of

π + 2πk, (5.73)

with an integer k. The antisymmetry ensures that the remaining half of the circle

changes the phase of χ̄ by the same amount, with the same orientation. The total

change of phase is hence

2(π + 2πk) = (2k + 1)2π, (5.74)

i.e. the winding number is odd.

Now, we consider deformations of the path. As χ̄ is assumed to be continuous

and non-zero this cannot change the winding number. If we shrink the path R(s)

to a point on the sphere, also the path of χ̄(R(s)) in the complex plane shrinks to

a point. This point cannot be zero, as χ̄ is non-zero on the sphere. In this limit the

winding number is clearly zero, in contradiction to being odd.

This Lemma shows that any choice of the nuclear wave function that respects the

antisymmetry of the nuclei (like the one suggested in Ref. [78]) necessarily renders

it discontinuous. It is hence probably more natural to simply choose the gauge

in which the nuclear wave function is positive everywhere. The antisymmetry is

then absorbed in the parametric dependence of the electronic wave function on the

nuclear coordinates. The nuclear wave function will then have a cusp at coordinates

85



Chapter 5 The Berry phase in the exact factorization

on which two fermionic nuclei are on top of each other. This might remind one

of the cusp condition [52, 83]. However, the cusps discussed here emerge from the

exchange symmetry alone. They are present even when considering an interaction

potential that is not as singular as the Coulomb interaction.

The existence of cusps in the nuclear wave function imply that the potential energy

surface diverges near fermionic nuclei that are getting close to one another. To see

this consider a nuclear wave function that can be approximated by a constant times

the modulus of R in a region near R = 0

χ̄(R) = a|R|+ O(R2), (5.75)

where R is again the relative coordinate of two identical fermionic nuclei. Then

for vanishing A-field, the potential energy surface can be obtained by inverting

Eq. (5.45), providing

ε(R) = E +
∇2χ

2χ
≈
{
a |R|−2 for d = 3
a
2 |R|

−2 for d = 2 ,
(5.76)

where on the R.H.S only the most singular part near R = 0 was written out. The re-

sult can be obtained by using the Laplace operator in spherical or polar coordinates,

respectively. Note that the potential energy surface is gauge-independent [71, 78].

Fortunately, this singularity is in a region of nuclear coordinate space, in which the

wave function is usually small anyways due to the nucleus-nucleus repulsion.

It is interesting to study the behavior of the potential energy surface, in the case

that the Born Oppenheimer approximation is already very accurate. In such a

situation the Born Oppenheimer expansion

|ψ(R)〉 =
∑
a

χa(R)|aR〉 (5.77)

is dominated by a single term

χ1 � χa, a = 2, 3, 4, . . . , (5.78)

where the electronic state with index one may or may not be the electronic ground

state. To be more accurate, let us assume that

χ1 = (1− λ2)
1
2 χ̃1, (5.79)

χa = λ χ̃a, a = 2, 3, 4, . . . , (5.80)

where λ is a positive real number and χ̃a are some λ-independent nuclear wave

functions. We can then consider the leading terms in the λ → 0 limit. Note that
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this is kind of a short cut to get an idea of what happens if the Born-Oppenheimer

approximation is good. To make more accurate statements, one should study the

high mass limit more carefully, but we keep this simpler approach here.

The λ→ 0 limit has particularly interesting consequences in regions where χ1(R)

has a node. Expressing the nuclear wave function of the exact factorization χ̄ in

terms of χa and using the relationship to the potential energy surface Eq. (5.45)

leads to

ε(R) ≈ |∇χ1(R)|2

2|χ̄(R)|2
=
|∇χ1(R)|2

2
∑

a |χa(R)|2
, (5.81)

where only the term that diverges in the λ→ 0 limit was kept. This shows that the

potential energy surface is peaked on the hyper-surfaces of nodes of the dominating

nuclear wave function of the Born Oppenheimer expansion. The height of these

peaks diverges in the Born Oppenheimer limit. This result can be viewed as a

generalization and improvement of an observation that was made in Ref. [77]. They

found that for the special case of a non-rotating diatomic molecule (i.e. for the

case that there is only one dimension in the space of nuclear coordinates left) in the

Born Oppenheimer limit, the height of the potential exceeds the total energy. It

also shows that a similar analysis done in Ref. [75] comes to the right conclusion for

the wrong reason. There this leading term was neglected (which is not a sensible

approximation) and it was argued that the potential energy surface has a barrier

(which is correct, as we have shown here).

This is bad news, if one is attempting to solve the time-independent or time-

dependent equations (which we did not discuss here; see Ref. [72]) for the wave

functions of the exact factorization. Firstly, because peaks in the potential energy

surface make the numeric solution of the equations more difficult. And secondly and

more importantly, one needs to find good approximations to determine the potential

energy surface in the first place. There appears to be no way to locate such peaks

without prior knowledge of the nodal structure of the Born Oppenheimer nuclear

wave functions. One should hence carefully check any approximation based on these

equations regarding the behavior in the case that the BO description shows nodes

in the nuclear wave function.
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Summary

I studied Hedin’s equations on several levels. First I discussed the equations on

a symbolic level. For that I introduced the concept of the vertex insertion opera-

tor, which is the diagrammatic correspondence of the Martin-Schwinger functional

derivative operator. Based on this, a general theory on equations in terms of Feyn-

man diagrams (termed grapherential equations) and the emerging formal expansions

was developed. I proved a general existence and uniqueness theorem and applied it

to a number of systems of such grapherential equations. The equation of motion of

the Green’s function can be closed using the Martin-Schwinger functional derivative

to re-express the two body Green’s function in terms of the one-body Green’s func-

tion. This equation served as the first application of the developed formalism, which

immediately yields existence and uniqueness of the solution. The proof that this so-

lution is the well known perturbative series of all connected Feynman diagrams is

surprisingly straight forward within this formalism.

Starting from there, I found other systems of equations that generate expansions

in terms of dressed quantities, namely the Hartree Green’s function, the screened

interaction and eventually also the full interacting Green’s function, culminating in

Hedin’s equations, which generate expansions of the selfenergy and polarization in

terms of the interacting Green’s function and the dressed Coulomb interaction.

These findings can either be viewed in the language of Feynman diagrams in which

I developed the formalism or be translated to formal expansions in functions like the

Green’s function or the screened interaction. In the latter case the introduced vertex

insertion operator is a functional differential operator instead. While the latter view

is more commonly used, the first one is more rigorous in the sense that there is no

doubt that all the introduced objects are well defined, the series converge and all

operations are meaningful.

I also studied Hedin’s equations as non-linear partial differential equations and

found that restricting the space of functions considered to analytic ones renders the

solution unique. For the case of one space-time point only, called the one-point-
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model, I discussed the general solution to the emerging set of equations.

The most common approximation to Hedin’s equations is the GW approximation.

I found that on a discretized finite space-time, it is enough to demand that the

solution is bounded in the non-interacting limit to render it unique. As I found that

all other solutions diverge in this limit, one can conclude that this is also the solution

closest to the exact one if the interaction is only small enough. Convergence to this

unique solution is no longer guaranteed when iterating the equations. Instead, I

found that for any given starting point of the iteration, one can choose the interaction

strength small enough to make the process converge to this unique solution. Though

this explains, why the approach works in cases in whichGW is only a small correction

to the starting solution, it also tells us that one needs to be cautious in situations

where the solution is no longer close to the starting point.

In summary I found for all the cases studied an appropriate space of solutions,

which is sufficiently small to render the solution unique. This is an important step

to improve our understanding of the equations we are looking at.

Finally I discussed the exact factorization of the electron-nuclear wave function. I

found that for states without nuclear currents, no Berry phase or gauge connection

appears. This means in particular that for molecules without external magnetic

field in the non-relativistic description, one can choose the eigenstates of the total

Hamiltonian in such a way that there is no Berry phase at all (and therefore no

gauge connection) in the exact factorization. Even for states with nuclear current, I

was able to show that no topological Berry phase can appear. This fits in very well

with the findings in Ref. [80], where for a specific model system, only a smeared out,

rather than a topological Berry curvature appears and a choice of wave function

without a Berry phase is possible.

I was able to show that in the exact factorization a continuous nuclear wave func-

tion cannot be antisymmetric under exchange of nuclei. Also the potential energy

surface of the exact factorization necessarily has divergences, whenever identical

fermionic nuclei of the same spin are present. I also argued that the potential en-

ergy surface may have peaks that diverge in the Born Oppenheimer limit, indicating

that a numerical treatment may be difficult also for finite nuclear masses. Such peaks

were already found numerically for certain model systems [80, 84].
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Halle (Saale), den 30. Dezember 2017

Falk Tandetzky



Liste der Gutachter 

 

Prof. Dr. E. Gross, Max-Planck-Institut für Mikrostrukturphysik, Halle 

Prof. Dr. M. Marques, Martin Luther Universität Halle 

Prof. Dr. G. Stefanucci, Universität Tor Vergata, Rom 

 

 

Verteidigungsdatum:    6.12.2018 


	thesis
	Introduction
	Basics
	Systems of polynomial equations
	Implicit function theorem

	Feynman diagrams and Hedin's equations
	Graphs for QED Feynman diagrams
	From equations for graphs to Hedin's equations
	The vertex insertion operator
	Graph equations
	Expansion in terms of the bare Green's function and the bare interaction
	The Hartree Green's function
	The modified vertex insertion operator and the screened interaction
	Expansion in terms of the screened interaction
	Expansion in terms of the interacting Green's function and the screened interaction
	Counterexamples

	Many body theory
	Equations of motion
	Evaluation of Feynman diagrams
	Martin-Schwinger-Hierarchy


	Hedin's equations in discrete space and time
	Hedin's equations in discrete space and time
	One Point Model
	Unique analytic solution of pde

	GW-type approximations
	Number and stability of solutions
	Numerical investigation
	Mixing


	The Berry phase in the exact factorization
	Choice of coordinates
	Born-Oppenheimer Expansion
	Conical intersections

	Exact factorization
	Triviality for current-free wave functions
	Nodal structure
	Time reversal symmetry versus rotational symmetry
	States with nuclear current
	Structure of the nuclear wave function and the potential energy surface


	Summary
	Bibliography
	Eidesstattliche Erklärung

	Liste der Gutachter



