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ABSTRACT 

Molecular modeling and computer-aided drug design (CADD) have been extensively used as 

innovative tools in medicinal chemistry to accelerate drug discovery. Hit identifications, hit-to-lead 

optimizations, ligand binding analysis and lead optimizations are applied in the early stages of the 

drug discovery pipeline. Moreover, Computational Drug Design is a widely used approach in 

pharmaceutical and biochemical industry. 

The current work started by a combination of in silico and in vitro screening in order to identify 

novel protein kinase C-related kinase 1 (PRK1) and membrane-associated tyrosine/threonine 

(PKMYT1) inhibitors. Several approaches of structure- and ligand-based virtual screening were 

carried out to screen the kinase inhibitor libraries from GlaxoSmithKline (GSK dataset I and II), 

and Selleckchem. The employed computational approaches combined homology modeling, 

ensemble docking, binding free energy calculations, molecular dynamics simulations, protein-

ligand interaction analysis, and applications of quantitative structure–activity relationship (QSAR) 

models including 2D and/or 3D molecular descriptors. As a consequence, several hits were 

identified as PRK1 inhibitors active in the low-nanomolar range. The identified inhibitors represent 

valuable tools to confirm the biological roles of PRK1, and to be leads for lead optimization. 

Meanwhile, few hits were found to inhibit PKMYT1 in the nanomolar range, and several chemical 

scaffolds were used as starting point to develop novel PKMYT1 inhibitors. Subsequently, novel 

PKMYT1 inhibitors were synthesized and biologically evaluated. The derived biological results 

provid the basis for further chemical optimizations and for further analysis of PKMYT1 as target 

for cancer therapy. 

In further projects, molecular docking and structural analysis were implemented to explore the 

potential binding mode of novel epidermal growth factor receptor (EGFR), insulin-like growth 

factor 1 receptor (IGF-1R), platelet-derived growth factor receptor beta-type (PDGFR-β), and 

vascular endothelial growth factor receptor 2 (VEDFR2) kinase inhibitors and to rationalize the 

observed biological activities. This led to the development of dual kinase inhibitors active in the 

low-nanomolar range that were additionally tested for their cancer cell growth inhibition. 

In conclusion, the applied molecular modeling methods showed a proven ability to guide, and 

rationalize the development of novel kinase inhibitors, which have to be further evaluated on their 

potential as candidates for cancer treatment.   

Keywords: kinase, PKMYT1, PRK1, EGFR, IGF-1R, PDGFR-β, VEDFR2, kinase inhibitors, 

drug discovery, computer-aided drug design, molecular docking, binding free energy calculations, 

molecular dynamics simulation, homology modeling, QSAR, virtual screening, anticancer. 
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KURZFASSUNG 

Molekulare Modellierung und computergestütztes Wirkstoffdesign haben sich in der medizinischen 

Chemie als innovative und essenzielle Werkzeuge zur Beschleunigung der Wirkstoffforschung und 

-entwicklung bewährt. Hit Identifikationen, „Hit-to-Lead“-Optimierung, Vorhersagen von 

Bindungsmodi und Optimierungen von Leitstrukturen werden in der frühen Phase der 

Arzneimittelentwicklung eingesetzt. Darüber hinaus werden computergestützte Wirkstoffdesign-

Verfahren  oft in der Pharmaindustrie eingesetzt. 

Die aktuelle Arbeit begann mit einer Kombination aus in silico und in vitro Screening, um neue 

PRK1 und PKMYT1 Inhibitoren zu identifizieren. Mehrere Ansätze des virtuellen Screenings auf 

Struktur- und Ligandenbasis wurden durchgeführt, um fokussierte kommerzielle chemische 

Bibliotheken (GlaxoSmithKline; GSK-Datensatz I und II) und Selleckchem nach potentiellen 

Inhibitoren zu durchsuchen. Die computergestützten Ansätze kombinieren Homologie-

Modellierung, Ensemble-Docking, Berechnungen der freien Bindungsenergie, Molekulardynamik-

Simulationen, „Fingerabdrücke“ von Protein-Ligand-Wechselwirkungen und Anwendungen 

quantitativer Struktur-Aktivitäts-Beziehungs-Modelle (QSAR) einschließlich 2D / 3D-

Moleküldeskriptoren zur Vorhersage der biologischen Aktivitäten. Folglich wurden einige  Hits 

identifiziert, die PRK1 im niedrigen nanomolaren Bereich inhibieren konnten. Die identifizierten 

Inhibitoren stellen wertvolle Werkzeuge dar, um die biologische Rolle von PRK1 zu erforschen 

und dienen als Leitstrukturen für weitere medizinalchemischen Optimierungen. Weiterhin, wurden 

einige Hits identifiziert, die PKMYT1 im nanomolaren Bereich hemmen konnten. Verschiedene 

chemische Grundgerüste wurden daraufhin verwendet, um neuartige PKMYT1 Inhibitoren zu 

entwickeln. Somit wurde eine Reihe neuer PKMYT1-Inhibitoren synthetisiert und biologisch 

bewertet. Die erhaltenen Ergebnisse liefern die Grundlage für eine weitere chemische Optimierung 

der PKMYT1-Inhibitoren und für eine weitere Analyse von PKMYT1 als Ziel für die 

Krebstherapie.  

Weiterhin wurde Docking eingesetzt, um die möglichen Bindungsmodi neuer EGFR-, IGF-1R-, 

PDGFR-β, VEDFR2-Kinase-Inhibitoren zu untersuchen und die beobachteten biologischen 

Aktivitäten zu erklären. Dies ermöglichte die Entwicklung neuer Dual-Kinase-Inhibitoren, die eine 

inhibitorische Aktivität im niedrigen nanomolaren Bereich zeigten und eine 

Krebszellenwachstumshemmung aufwiesen. 

Schließlich zeigten Molekulare Modellierung und computergestütztes Wirkstoffdesign eine 

nachgewiesene Fähigkeit, die Entwicklung neuer Kinase-Inhibitoren zu steuern und zu 

rationalisieren. Diese Kinase-Inhibitoren könnten möglicherweise Kandidaten für die Behandlung 

von verschiedenen Tumorarten sein. 
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INTRODUCTION 

The introduction gives a general overview of the druggable genome and highlights the importance 

of the human kinome as drug target. The overall structure of the conserved kinase domain besides 

the ATP-binding pocket as an important pocket for designing kinase inhibitors is described. In 

addition, the role of conformational changes in the binding pocket is discussed. Small molecules as 

drug candidates for the kinase inhibition are discussed revealing several classes of recently 

approved kinase inhibitors. Finally, a general evaluation of the limitation and challenging face of 

the kinase drug discovery is introduced in this chapter.  
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1.1. Druggable genome 

Druggable genome is a term firstly presented in 2002 by Hopkins and Groom [1]. The concept of 

druggable genome refers to a portion of the human genome, which expresses proteins able to bind 

drug-like molecules. Previously, an analysis of 483 targets revealed that there could be 5,000-

10,000 potential targets which were estimated based on the number of disease-related genes, 

without focusing on the properties of the drugs that define those targets [2]. However, a druggable 

target must show specific characteristics mainly to be directly involved in a disorder, locally 

expressed in tissues or organs and functionally and structurally characterized [3, 4].  

Hopkins et al. systematically mined the human genome for putative drug targets amenable to drug-

like high affinity interactions (Ki < 10 μM) with small molecules that are compliant with the 

Lipinski’s rules [5]. As a result, they obtained a list of about 400 non-redundant proteins fulfilling 

these requirements [1]. Moreover, they found a large percentage of these targets clustered into target 

families, such as G-protein-coupled receptors (GPCRs), serine, threonine and tyrosine kinases, 

serine, cysteine, aspartic acid and metalloproteases, ion channels and nuclear hormone receptors. 

Thus, approximately 3,050 putative protein targets were theoretically extracted by the systematic 

extrapolation within the corresponding families (Fig. 1). 

 

Figure 1. Drug-target families. Gene-family distribution of (a) the targets of current rule of five-

complaint experimental and marketed drugs, and (b) the druggable genome. Adapted from Hopkins 

et al. [1]. 
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A particular attention has been recently given to proteases, kinases and G-protein-coupled receptors 

(GPCRs) [6]. A recent analysis of the comprehensive map of molecular drug targets was performed 

in 2017 by Santos et al. covering 893 human and pathogen-derived biomolecules through which 

1,578 US FDA-approved drugs act [7]. This analysis at the target family level revealed a higher 

number of recently approved drugs that modulate kinases compared to the number of recently 

approved drugs targeting either nuclear receptors or ion channels (Fig. 2). From 2011 to 2015, 

twenty kinase inhibitors were approved by the FDA (Table 1A, see Appendix). However, due to 

the broad poly-pharmacology typical of small-molecule kinase inhibitors, there is a large difference 

between the drug and the target fractions for kinases [7, 8].   

 

Figure 2. Bar chart represents number of drugs modulating four privileged target families, 

distributed per year of first approval. The total approved drug number is displayed on top of each 

bar (bold), together with the number and percentage of drugs approved from 2011 to 2015. Adapted 

from Santos et al. [7].  

1.2. Kinases as drug targets 

As can be seen in Fig1, the majority of targets in the druggable genome are related to kinases (Fig. 

1). Moreover, Rask-Andersen et al. reported in 2014 that the kinase family is the largest category 

of the potentially novel clinical trial drug targets [9]. In total, 145 unique kinases were identified as 

the targets of established and clinical trial agents. Interestingly, approved pharmaceuticals do not 

target 93 of these potentially novel kinases, hence, making them the largest target-family in the 

clinical trials [9].  
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Kinases perform key regulatory roles in signal transduction modules that regulate apoptosis, cell 

cycle progression, cytoskeletal rearrangement, differentiation, development, the immune response, 

nervous system function, and transcription [10]. Kinases are considered one of the most promising 

drug targets for the treatment of several diseases [11], which are associated with the dysfunction of 

several kinases. The vast majority of kinases have been investigated for the treatment of cancer [12-

14]. Furthermore, kinases have also been targeted in the treatment of inflammatory diseases [15, 

16], central nervous system (CNS) disorders (such as Alzheimer’s disease and Parkinson’s disease) 

[17-19], cardiovascular diseases [20], and complications of diabetes [21]. Thus, the regulation of 

kinase activity is an important therapeutic strategy for the treatment of the above mentioned 

diseases. 

1.2.1. Kinases 

The kinase family is one of the largest family including 900 genes encoded within the human 

genome [10, 22].  In total, 539 kinases genes have been identified so far [23]. Protein kinases are 

enzymes that catalyze the transfer of a phosphate group from γ-phosphate of adenosine-5’-

triphosphate (ATP) to protein substrates. The attached phosphate binds covalently to serine, 

threonine, or tyrosine (Table 2A, see Appendix). Based on the resource of the phosphorylated OH 

group, kinases are mainly classified as protein-serine/threonine kinases or protein-tyrosine kinases 

[24]. The protein-serine/threonine kinases are the largest sub-family within the kinase family. The 

majority of the protein-tyrosine kinases are tyrosine-kinase-receptors which are composed of an 

extracellular, a transmembrane, and an intracellular domain. The remaining protein-tyrosine kinases 

are non-receptors occurring intracellularly [24]. However, a small group of kinases, which is called 

dual specificity kinases e.g. MEK1 and MEK2, catalyzes the phosphorylation of both threonine and 

tyrosine on known substrates [24]. 

In 2002, Manning et al. identified 518 protein kinases and classified them in two major categories: 

typical kinases including 478 kinase and atypical kinases containing 40 kinase [10]. Their 

classification extended the original  kinase classification introduced by Hanks and Hunter in 1995 

[25], expanding it from five broad kinase groups, 44 families, and 51 sub-families to a total of nine  

groups, 90 families and 145 sub-families [10]. Kinases were initially classified based on sequence 

comparison of their catalytic domain, the  knowledge of the sequence similarity and the domain 

structure outside of their catalytic domains, their known biological functions, and a similar 

classification of the yeast, worm, and fly kinomes [26]. Figure 3 shows the human kinome and its 

classification. The nine kinase groups are generally as follows [10]: 

AGC Protein kinase A, G and C (63 human kinases). 

CMGC CDK, MAPK, GSK3 and CLK (61 human kinases). 

CAMK Calmodulin/Calcium regulated kinases CAMK (74 human kinases). 
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CK1 Casein Kinases 1 (12 human kinases). 

STE Homologs of the yeast sterile kinases STE7, STE11 and STE20 (47 human kinases). 

TK Tyrosine kinase (90 human kinases). 

TKL Tyrosine kinase-like (43 human kinases). 

RGC Receptor Guanylate Cyclase (5 human kinases). 

Other Containing conserved sequences that have not yet been classified as domains and 

whose functions are unknown (83 human kinases). 

The 40 atypical kinases show no sequence similarity to the typical kinases but they were reported 

to have biochemical kinase activity plus similar structural fold to the typical kinases. The atypical 

kinases were classified into 13 families in the human kinome [10].   
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Figure 3. Human kinome classification. Calmodulin/Calcium-regulated kinases (CAMK) A, G and 

C protein kinases (AGC), Casein kinases 1 (CK1), Sterile kinases (STE), Tyrosine kinases (TK), 

Tyrosine kinases-like (TKL) and CDK, MAPK, GSK3 and CLK kinases (CMGC), Receptor 

Guanylate Cyclase (RGC) includes GYC kinases. Adapted from Manning et al. [10]. 
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1.2.2. Kinase 3D structure 

Despite the diversity in the primary amino acid sequences of human kinases, they share a great 

degree of similarity in their 3D structures, mainly in the catalytic domain where the ATP-binding 

pocket is located [27]. The overall structure of the kinase domain (ca. 300 residues) is conserved 

with 10 key residues mediating the core function of the catalytic domain [10, 28, 29]. Meanwhile, 

the remaining structural elements serve as either regulatory or targeting modules [30, 31]. The 

kinase domain consists of a small, dominantly β-stranded N-lobe and a larger α-helical C-lobe, 

which are connected by a short hinge region (Figure 4). The ATP binding pocket is located between 

the N- and C- terminal lobes of the kinase domain, where the adenine of the bound ATP is 

surrounded by hydrophilic residues and forms hydrogen bonds with the hinge region residues [32-

34]. The N-terminal lobe is composed of five-stranded β-sheets (β1-β5) and a single α-helix, called 

C-helix (αC) (Figure 4). A flexible Glycine-rich (GxGxxG) loop, known as P-loop or G-loop, lies 

between the β1 and β2 sheets of the N-terminal lobe and contains a key hydrophobic residue at its 

tip, which contributes to the coordination of the phosphates of ATP (Figure 4) [33-35]. The P-loop 

folds over the γ-phosphate of ATP and adopts different conformations depending on the catalytic 

state [36].  

The N-terminus of the C-helix interfaces with the activation loop, which is also called activation 

segment or A-loop (Figure 4) [37]. The activation loop adopts either an open, for the active state 

of the kinase, or various closed conformations indicating the inactive state with no access to the 

substrate binding pocket [34, 35]. The A-loop provides the platform, together with the helical 

subdomain of the C-lobe, for binding and positioning the hydroxyl group residue in the substrate 

[34, 38]. For an efficient catalysis, a conserved salt bridge, between the active site lysine (of the 

AXK-motif in the β3-strand) and the glutamate from the C-helix (αC-in) is formed thereby assisting 

the correct positioning of the N-terminus of the C-helix. The presence of the salt bridge is required 

for the formation of the active state. Meanwhile, rotating the N-terminus of the C-helix in a 

suboptimal position for catalysis (αC-out) results in an inactive state of the kinase [29, 33, 35, 39]. 

The first residue in the N-terminus of the hinge region, which is located deep in the ATP binding 

pocket and called the gatekeeper, controls the access to a back-pocket located behind it (Figure 5) 

[33, 39-41]. 

The helices are dominant in the C-terminal lobe of the kinase domain (Figure 4). The catalytic loop 

starts with β6 strand followed by β7 strand, which contains the well-conserved catalytic machinery 

tyrosine/histidine-arginine-aspartate (Y/HRD-motif). The last two short β-strands (β8 and β9) are 

included in the activation loop (A-loop), which is stuck to the aspartate-phenylalanine-glycine motif 

(DFG-motif). The HRD-motif and the catalytic loop are surrounding the actual site of the phosphate 

transfer (Figure 5). 



8 
 

Figure 4. Overall structure of  active kinase domain (PKMYT1, PDB ID: 5VCZ [42]). Black box 

marks the catalytic site of the kinase domain. 
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The conserved aspartate residue of the Y/HRD-motif is responsible for the correct orientation of 

the phosphate-OH acceptor group of the substrate. Meanwhile, the conserved Y/H of the Y/HRD-

motif serves as a central scaffold, which binds with the aspartate side chain of the Y/HRD-motif 

and undergoes hydrophobic interactions with the phenylalanine of the DFG-motif (Figure 5). The 

Mg2+ positioning loop including the DFG-motif precedes the β9 strand, which forms an antiparallel 

β-sheet with the β6 strand of the catalytic loop (Figure 4). The Mg2+ positioning loop consists of 

the first five residues of the A-loop and binds Mg2+ which in turn coordinates the α-, β-, and γ-

phosphates of ATP. In most kinases, the A-loop starts with the DFG-motif and ends with Ala-Pro-

Glu (APE-motif) [24]. The phenylalanine of the DFG-motif has an impact on the appropriate 

position of the aspartate residue of the DFG-motif and the ability for the accommodation of the C-

helix, which facilitates the formation of the Lys-Glu salt bridge (Figure 5). Hence, the DFG-motif 

controls the access to the active site [43]. Moreover, the DFG-motif reveals distinct conformations 

depending on the activation states of the kinase domain [40, 44]. In the inactive state, which displays 

a DFG-out conformation, the Asp of the DFG-motif is directed outwards the active site and the Phe 

of the DFG-motif is directed inside (Figure 6). In the active state, the Asp of the DFG-motif is 

directed into the active site and the Phe is outward (Figure 6). The remaining helices of the C-lobe 

including helices G, H, and I (GHI domain, (Figure 4) are unique to the different kinases and serve 

as a platform for the binding of the substrate and regulatory proteins [33]. Therefore, the catalysis 

needs the collaboration of the following three motifs (Figure 5) [25, 33, 35]:  

 The active site Lys of the AXK-motif forms a salt bridge with the conserved Glu of the C-

helix which interacts with the α and β phosphates of ATP to stabilize and orient the ATP.  

 The Asp within the Y/HRD-motif is considered a catalytic residue and serves as a base 

acceptor for the proton transfer from the phosphate-OH acceptor group of the substrate, 

thereby, facilitating the nucleophilic attack of the hydroxyl group on the γ-phosphate group 

of ATP. 

 The Asp of the DFG-motif binds to the Mg2+ ion that coordinates the β and γ phosphates of 

the ATP in the binding pocket preparing the ATP for the phosphate transfer. 

The re-orientation of the C-helix (C-helix-in) brings the conserved Glu residue into the active site. 

Then, a salt bridge between Glu and the active site Lys of the AXK-motif is formed (Figure 5). 

Consequently, the kinase is activated. The activation is also associated with the altering in the DFG-

motif conformation, where the Asp of the DFG-motif moves from out (DFG-out) into the binding 

site (DFG-in). The catalytic loop Y/HRD-motif is stable during the changing between the active 

and inactive states [37]. The fully open conformation of the A-loop can be stabilized either via a 

salt bridge with the side chain of the HRD-motif and one or more of phosphorylated residues in the 

A-loop or interactions with accessory regulatory proteins [34, 41, 45]. The P-loop assists in 

coordinating the phosphates of ATP [35].  
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In summary, three main regulatory elements of the kinase domain are observed including the N-

terminal lobe of the C-helix (αC-in, active; αC-out, inactive), the DFG conformations (Asp: DFG-

in, active; DFG-out, inactive), and the A-loop conformations (open, active; closed, inactive) 

(Figure 6). 

 

Figure 5. Catalytic site of the kinase domain (FGFR2, PDB ID: 2PVF [46]). Key residues in the 

hinge region (gatekeeper and residues forming conserved hydrogen bonds) are colored dark green. 

The conserved catalytic Glu in the C-helix colored gold. DFG-motif is colored cyan as well as the 

A-loop. HRD-motif of the catalytic loop is colored blue. The active site Lys and the AXK-motif 

are colored white. ATP residue is shown in green. The substrate and the acceptor OH group of the 

tyrosine are colored violet. Hydrogen bonds and metal coordination are displayed as black dashed 

lines. The brown sphere indicate Mg2+ ion.  
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Figure 6. Activation states of the kinase domain. A: Active state of EGFR (PDB ID: 1M17 [47]), 

which reveals DFG-in, αC-in, and open-A-loop conformations. B: Inactive state of Abl (PDB ID: 

3OXZ [48]) displays DFG-out, αC-in, and closed-A-loop conformations. C: Inactive EGFR (PDB 

ID: 4HJO [49]) shows DFG-in, αC-out, and closed-A-loop conformations. 

1.2.3. Kinase inhibition 

The largest category of established and clinical trial agents are small molecules. They comprise 

~86% of FDA-approved therapeutic agents and about 63% of clinical trial agents that target the 

human druggable targets [9]. The remaining categories are namely monoclonal antibodies and 

recombinant proteins, synthetic peptides, proteins purified from biological sources, vaccines, 

adenoviral gene delivery, and small interfering RNAs (siRNAs) (Fig. 7) [9]. 

Santos et al. analyzed the FDA-approved kinase inhibitors till 2015 (Figure 2). In their work, they 

recognized that most of the approved kinase inhibitors were within the period of 2011 to 2015 [7]; 

the majority of them are small molecules with molecular weight less than 500 Daltons. A deeper 

analysis of the FDA-approved kinase inhibitors was performed by Wu et al [50]. They reported 15 

new small molecule kinase inhibitors that were approved by FDA for the time between January 

2012 and February 2015 [50] in addition to a large number of other compounds currently being 

evaluated in clinical and preclinical trails. So far, small molecule kinase inhibitors have been 

identified for 20% of the human kinome. By April 2018, 41 small molecule kinase inhibitors were 
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approved by FDA a (Table 1A adapted from www.brimr.org/PKI/PKIs.htm, Fabbro et al. and 

Roskoski, see Appendix) [24, 37]. So, additional small molecule kinase inhibitors have been 

approved by FDA from January 2015 to April 2018, (Table 1A, see Appendix). Thus, the 

development of small molecule kinase inhibitors can be considered as one of the most extensively 

pursued areas of drug discovery.  

 

Figure 7. Categories of established (a) and clinical trial agents (b). Adapted from Rask-Andersen 

et al [9]. 

Historically, kinase drug discovery started in 1995 when fasudil (HA-1077) was approved in Japan 

as an ATP-competitive inhibitor of ROCK1/2 kinase for the treatment of cerebral vasospasm [51, 

52]. The second approved kinase inhibitor was sirolimus (Rapamune) in 1999, which is an allosteric 

inhibitor of mTOR kinase; used in a combination with cyclosporine for the prevention of the organ 

rejection in patients receiving renal transplants [53, 54]. The first FDA-approved kinase inhibitor 

was imatinib (CGP57148, STI571, Glivec, Gleevec), a compound designed and developed by 

Novartis in 2001. Imatinib binds to the inactive state of the Abelson (Abl) kinase in the context of 

the Bcr-Abl translocation found in chronic myeloid leukemia (CML) [55, 56]. The kinase drug 

discovery was running slowly in the first decade of the 21th century with almost one new approval 

per year on average. 
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1.2.4. Classification of small molecule kinase inhibitors  

Generally, several classifications of the kinase inhibitors have been described based on the 

activation state of the protein kinase. Dar and Shokat defined three classes of small molecule kinase 

inhibitors, which they labeled type I, II, and III [57]. Kinase inhibitors that bind to the active state 

(DFG-in), were considered as type I. Type II refers to inhibitors binding to the inactive state (DFG-

out), while type III indicates non-ATP competitive inhibitors or allosteric inhibitors binding outside 

the ATP-binding site [58]. An additional class, called type I1/2, was introduced by Zuccotto et al. to 

describe the kinase inhibitors that bind to the kinase state which display DFG-in and αC-out 

conformations [59]. Garvin and Saiah further divided allosteric inhibitors into two classes (III and 

IV), where type III inhibitors bind within the cleft between the small and large lobes adjacent to the 

ATP-binding pocket, whereas type IV describes inhibitors outside the cleft and the phosphor-

acceptor region [60]. In 2012, class V was presented to label bivalent molecules that extend  in two 

regions of the kinase domain while small molecules that form covalent adducts with the kinase 

domain were labeled as type VI [61]. A recent and relevant classification of the small molecules 

kinase inhibitors was described by Roskoski [24]. He divided the type I1/2 and type II into A and B 

subtypes. A summary of the most advanced classification of small molecule kinase inhibitors is 

shown in Table 1 below [24].  

Table 1. Classification of small molecule protein kinase inhibitors [24, 57, 59-61]. 

Properties Type I
 

type I1/2 

(A/B) 

Type II 

(A/B) 

Type III Type IV Type V Type VI 

 Binds in 

the 

ATP- 

pocket 

of the 

active 

state 

Binds in 

the 

ATP- 

pocket 

of the 

inactive 

state 

Binds in 

the 

ATP- 

pocket 

of the 

inactive 

state 

Allosteric 

inhibitors 

bound 

next to 

the ATP-

site 

Allosteric 

inhibitors 

not 

bound 

next to 

the ATP-

site 

Bivalent 

inhibitor 

spanning 

two 

regions 

Covalent 

inhibitors 

Extends into 

back cleft 

No (A)Yes/ 

(B) No 

(A)Yes/ 

(B) No 

Yes No Variable Variable 

DFG In In Out Variable Variable Variable Variable 

A-loop Out Variable Variable Variable Variable Variable Variable 

αC In Variable Variable Out Variable Variable Variable 

ATP-

competitive 

Yes Yes Yes No No Variable No 

Reversible Yes Yes Yes Yes Yes Yes Usually not 
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Generally, the FDA-approved inhibitors form hydrogen bonds with one or more hinge residues 

except the allosteric ones. Most of the inhibitors form hydrophilic contacts with residues of the 

solvent-accessible area such as β2, β3, and β7 strands (Figure 4 and 8). Moreover, many inhibitors 

are involved in hydrophobic interactions with the aliphatic side chain of the active site lysine. About 

half of the inhibitors interact with one or more of the C-helix residues and the gatekeeper residue 

(Figure 8). In addition, the gatekeeper may also be involved in a hydrogen bond or hydrophobic 

interactions depending on its nature [24]. Two-thirds of the inhibitors interact with one or more 

residues of the C-helix and β4 in the back-pocket.  

 

Figure 8. Scheme of the ATP-binding pocket of the kinase domain. Colored spheres illustrate: 

Solvent-accessible area, which includes the front-pocket (yellow), ribose-binding pocket (red), 

phosphate region (blue), adenine region (white brown), back cleft as a part of the back-pocket 

(green). 

1.2.5. Lipid kinase inhibitors 

In July 2014, the first lipid kinase inhibitors, idelalisib (Zydelig, Gilead Sciences), was approved 

for the treatment of chronic lymphocytic leukemia [62].  Idelalisib is a PI3Kδ inhibitor and reveals 

a type II binding, where it adopts a propeller binding mode with the DFG-motif conformations [63]. 

Interestingly, it shows the conserved interactions found in small molecule kinase inhibitors 

including hydrogen bonds with hinge residues and hydrophobic interactions with the back-pocket 

[64]. More than 20 other PI3K inhibitors are in development for the treatment of cancer and 
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inflammatory diseases e.g. buparlisib (Phase III, Novartis) as a selective-isoform inhibitor of 

PI3Kα, dual inhibitors of PI3K and mTOR, and pan-class I PI3K inhibitors [65]. 

1.3. Limitations, challenges, and future perspectives in kinase drug discovery 

Despite the progress in the kinase drug discovery in the 21th century, several significant challenges 

for developing kinase inhibitors should be addressed. 

Firstly, only a small subset of the human kinome has so far been studied. Furthermore, most of the 

discovered kinase inhibitors are limited to a select group of the human kinome. Also, the vast 

majority of the FDA-approved kinase inhibitors (18 out of 27) only target three groups of tyrosine 

kinases, namely Bcr-Abl, ErbBs, and VEGFRs [50]. Therefore, there is a need to develop chemical 

tools to uncover the functions of the so far less studied kinases. 

Secondly, although kinase signaling cascades regulate diverse cellular activities and are related to 

several diseases including informatory diseases, CNS disorders, cardiovascular disease, diabetes, 

and cancer, most of the currently available kinase inhibitors (e.g. 26 of 28) are mainly used in cancer 

treatments [50]. 

Thirdly, only a small subset of the chemotypes has been investigated within the approved inhibitors. 

This is due to the fact that many of the kinase inhibitors were developed based on previously 

approved molecules. Thus, novel tools are needed to explore pharmacophores so as to diversify the 

scaffolds of kinase inhibitors.  

Fourthly, the selectivity of the kinase inhibitors is a big challenge. Most of the inhibitors are 

reversible and bind within the ATP-binding pocket, where the similarity is very high among the 

kinases. It is, therefore, sometimes a necessary requirement to design selective kinase inhibitors in 

order to avoid off-targets interactions. However at the same time, dual- and/or multi-targets kinase 

inhibitors might be more favourable for cancer treatments than highly selective inhibitors. Thus, a 

favourable selectivity profile of the kinase inhibitors is required to balance efficacy and toxicity.  
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AIM OF THE WORK 

Membrane-associated inhibitory kinase PKMYT1 belongs to Wee1-kinase family and regulates the 

cell cycle at G2/M transition. G2 checkpoint abrogation through the inhibition of PKMYT1 

immediately causes apoptotic or non-apoptotic cell death. Inhibition of PKMYT1 by small 

molecules is therefore proposed to be a promising option for further analysis of PKMYT1 as a target 

for cancer treatments. 

Protein kinase C related kinase (PRK1) is a serine/threonine enzyme and is a regulator of the 

Androgen Receptors (AR). Recently it was shown that PRK1 is a promising therapeutic target for 

prostate cancer therapy.  

The aim of this work (Publications 1-5) was to analyze ligand binding of small molecule inhibitors 

to PKMYT1 and PRK1 and to design novel specific inhibitors using structure/ligand-based drug 

design methods. In addition, novel computer-based approaches for the prediction of kinase activity 

were evaluated on larger kinase data sets. Due to the absence of crystal structures for PRK1 at the 

beginning of the project, homology modeling approaches were applied to generate 3D structures of 

the enzyme. Virtual screening methods were employed on the PRK1 homology models and the 

available PKMYT1 crystal structures to search for novel lead compounds in commercial databases. 

Molecular dynamics based binding free energy methods were used to optimize or prioritize these 

lead compounds. In order to develop novel inhibitors, the identified inhibitors were used to derive 

a quantitative structure-activity relationships (QSAR) to guide the development of novel PKMYT1 

and PRK1 inhibitors. The availability of small molecule inhibitors of PRK1 and PKMYT1 that are 

selective and bioavailable will represent a major breakthrough in this field for further analysis of 

PKMYT1 and PRK1 as targets for cancer treatments.  

Developing kinase inhibitors for receptors of the growth factors EGFR, IGF-1R, VEGFR2, and 

PDGFR1 (Publications 6-9). Cancer initiation requires the accumulation of a number of genetic 

mutations, which transform the normal cells into highly malignant cells. The expansion and 

progression into metastatic carcinomas depends on a multi-step process regulated by several growth 

factors. The growth factors bind to transmembrane receptors harboring kinase activity such as 

EGFR, IGF-1R, VEGFR2, and PDGFR-β to stimulate specific intracellular signaling pathways. On 

the other hand, overexpression of these receptors may enable cancer cells to become hyper-

responsive to the growth factors. Therefore, inhibition of the receptors of the growth factors offers 

opportunities for the cancer therapy. 

Due to occurring resistance against the known inhibitors of EGFR, IGF-1R, VEGFR2, and PDGFR-

β, the search for novel lead compounds with new scaffolds is necessary to reverse the over-activity 

of the growth factors receptors. Part of this research project aimed to develop novel 

pyrrolopyrimidine derivatives in order to inhibit specific growth factors receptors, which might be 
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useful in cancer therapy. Therefore, molecular modeling and analysis of the ligand binding was 

investigated to provide a potential rationalization for the detected in vitro activity and to further 

guide the development of novel inhibitors. Moreover, to design selective inhibitors for EGFR, IGF-

1R, VEGFR2, and PDGFR-β, structural analysis of their ATP-binding pockets was performed in 

order to study their similarity and their diversity. For lead optimization, the relevant pharmacophore 

features within the ATP-binding pocket were considered to enhance the activity of the novel 

compounds. The availability of novel inhibitors for growth factors kinase receptors might reduce 

the resistance development in cancer cells.    
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METHODS AND MATERIALS 

A brief description of the computational methods used in the current work is presented in this 

chapter. These methods combine binding mode predictions, fragment-based approaches, virtual 

screening, homology modeling, molecular docking, molecular dynamics simulation, and binding 

free energy calculations. In addition, the implemented in vitro assays are introduced.  
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2.1. Computer-aided drug design (CADD) 

Computational methods have been extensively used as innovative tools to accelerate drug 

discovery. Hits identifications, binding modes predictions and lead optimizations are considered 

the main applications of computational approaches. The recognition of the biologically active 

conformer for a molecule plays an important role in the structure-based drug design. Rational drug 

design relies on the accurate characterization of the bioactive conformation of a given molecule 

within the protein binding pocket. The observed binding modes serve as atomic-level descriptions 

of how the ligands interact with the binding pocket residues [66]. The binding modes also provide 

a way to map the experimental biological activities to individual structural features, which is useful 

for designing novel drug candidates [67, 68]. Therefore, several computational and experimental 

tools from biophysical methods e.g. X-ray crystallography and NMR have been established to 

reveal the binding modes of the ligands within the protein structures. Molecular docking is 

considered as an important process to predict the ligand binding mode(s) besides its ability in hits 

identifications and lead optimizations [69, 70]. Numerous studies have evaluated the docking 

algorithms to assess their ability to re-produce the experimental binding conformations of the 

ligands [70-77]. Although most of the docking algorithms perform well for ligand binding modes 

generations and prediction, the scoring functions often fail to predict the corresponding affinity [70-

77]. Molecular visualization of the ligand binding modes in the current work has been performed 

using several programs including Molecular Operation Environment System (MOE) (Chemical 

Computing Group Inc., Montreal, QC, Canada), Maestro (Schrödinger, LLC, New York, NY), 

PyMOL (The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC), and  Chimera 

[78].  

2.1.1. Fragment-based drug design (FBDD)  

One of the promising approaches in CADD is fragment-based Drug Design (FBDD) which was 

established in last decade as an approach for hit identification and lead generations [79-81]. FBDD 

shows a high ability to sample the chemical space compared to other techniques [82]. Fragments 

are defined by Astex using the Jorgensen’s “Rule of Three” as small molecules for which the 

molecular weight is <300, the number of hydrogen bond donors is ≤3, the number of hydrogen bond 

acceptors is ≤3, and the cLogP is ≤3 [83]. Once the fragment hits are identified, the process of hit 

to lead generation is performed by growing, linking and merging approaches. In addition, fragment 

growing approach provides useful tools for hit and lead optimization, which aims to build additional 

interactions with the adjacent pockets [84, 85].  Two metrics ligand efficiency (LE) and ligand 

lipophilicity efficiency (LLE) are available to aid in the fragment hit selection and optimization. 

Whereas the LE metric is used to rank fragments and to monitor progress of the optimization, LLE 

is a metric used to monitor the lipophilicity in respect to the in vitro potency of a molecule [86-88]. 
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During the optimization of novel kinase inhibitors, several chemical scaffolds, which were 

extracted from the identified hits, were used as starting points. The fragment growing approach, 

which allows the coverage of a larger chemical space, was applied to design novel kinase inhibitors. 

The ideal values of LLE are located in the range of 5 to 7 or greater [80, 89, 90]. The following 

equations were used to estimate the LE and LLE:   

LE = 1.4(-logKi)/HAC,    HAC is heavy atoms count 

LLE = pKi – cLogP,   cLogP was calculated using MOE (Chemical Computing Group Inc., 

Montreal, QC, Canada) or Maestro (Schrödinger, LLC, New York, NY) [91-93].  

2.1.2. Virtual screening 

Virtual Screening (VS) is considered as a complementary approach to experimental or physical 

high throughput screening HTS [94]. It is a computational tool for a rapid in silico screening of 

large chemical databases in order to identify bioactive compounds prior to in vitro testing. VS 

approaches are divided into two categories: ligand-based and structure-based VS. Both approaches 

were used in the current work.  

Ligand-based VS depends on the availability of known active compounds. In most cases, it is 

employed when the structure of the drug target is unknown or there is not enough structural 

information about the target protein. Ligand-based VS relies on the fact that similar molecules are 

prone to exhibit a similar biological activity [95, 96]. Due to the lack of structural information of 

the targeted kinase e.g. PRK1 kinase, a ligand-based approach was employed to search for 

molecules similar to known actives based on the 2D chemical fingerprints or 3D shape-based. The 

similarity search was performed using either MOLEPRINT 2D [97, 98] or MACCS key fingerprints 

implemented in MOE. The quantification of the similarity was given by the Tanimoto coefficient 

[99]. 

Structure-based VS, on the other hand, depends mainly on the availability of the 3D structure of the 

target protein, chemical database, and a docking algorithm [100, 101]. Structure-based VS makes 

use of docking algorithm to place and score molecules within the protein binding site. This allows 

to predict the binding modes and evaluate each molecule separately [102, 103]. In the current work, 

the 3D structures of the targeted kinase e.g. PKMYT1 and EGFR were obtained either from the 

Protein Data Bank (RSCB PBD; www.rcsb.org) [104] or from homology modeling e.g. PRK1, (see 

Section 2.3). Molecular docking into the ATP-binding pocket was performed using GOLD v5.2 

[105] and Glide (Schrödinger, LLC, New York, NY) [91-93] as described in section 2.4. 
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2.2. Homology modeling 

Homology modeling (HM) or comparative modeling is a methodology which allows modeling 3D 

structures for unknown protein structures. HM has been used to derived the 3D protein structures 

of non-resolved protein kinases e.g. PRK1. The HM process depends on two fundamental points: 

First of all, knowing the primary amino acid sequences of the target protein. Secondly, similar 

sequences display similar 3D structures [106]. Generally, HM includes [107]:  

1. Identification and recognition of the closest homolog, which is used as a template.  

2. Alignment of the target sequence and the template sequence.  

3. Building models from the target sequence based on a 3D structure of the template.  

4. Validation of the models.  

The primary sequence of the target kinases was retrieved from UniProt Knowledgebase 

(www.uniprot.org) [108]. Then, a basic local alignment search tool (BLAST) [109] search using 

the Protein Data Bank (RCSB PBD; www.rcsb.org) [104] or  Swiss-Model [110], was used as a 

query to identify  the best templates, which were other family members of the human kinome. The 

templates were selected based on the sequence similarity, the X-ray resolution, as well as a 

consideration of several conformations of the kinase domain. Once the template was established, 

the alignment of the sequences was performed using either MOE (Chemical Computing Group Inc., 

Montreal, QC, Canada) or MODELLER [111, 112]. The alignment performance was evaluated 

based on the key residues, for instance DFG-motif, gatekeeper, AXK-motif, and HRD-motif in the 

kinase domain, which are conserved among kinases. Finally, the homology models were built in 

MODELLER [111, 112]. Generally, five homology models were generated for each query. The 

selection of the best model relied on an internal score in  MODELLER, which is called Discrete 

Optimized Protein Energy (DOPE) [113] given for each model. The quality of the homology models 

were subsequently evaluated by means of Ramachandran plot using PROCHECK to analyze the 

stereochemical quality [114]. 

2.3. Molecular docking 

Preparation of the inhibitors databases 

Ligands were prepared using LigPrep module in Schrödinger (LigPrep, Schrödinger, LLC, New 

York, NY). The preparation process involved 3D protonation at pH=7.4 using Epik module [115, 

116]. This was followed by an energy minimization step using the integrated Optimized Potentials 

for Liquid Simulations (OPLS_2005) force field [117]. Lastly, the generation of ten low energy 

conformations per ligand was executed. Further preparation was done using the conformer 

generation module of OMEGA in OpenEye Scientific Software [118]. A maximum of twenty 

conformers for each ligand molecule were generated.  
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Preparation of protein structures 

Structures of respective proteins were obtained either by downloading them from the PDB website 

(RSCB PBD; www.rcsb.org) [104] or from homology modeling approach. The structures were 

resolved in an active state displaying a DFG-in conformation either as an apo-form, or a holo-form. 

Preparation module in MOE (Chemical Computing Group Inc., Montreal, QC, Canada) or Protein 

Preparation Wizard (Schrödinger, LLC, New York, NY) were used for preparing the kinase 

domains. The process consisted of 3D protonation, followed by energy minimization using either 

Amber10: Extended Huckel Theory (EHT) force field implemented in MOE [119, 120] with a 

tethering of 0.5 Å and a gradient of 0.1 Kcal.mol-1. Å-2 for all the atoms during the minimization. 

Meanwhile, the integrated Optimized Potentials for Liquid Simulations (OPLS_2005) force field 

[117] with a tethering of 0.3 Å using protein preparation wizard in Maestro (Schrödinger, LLC, 

New York, NY) was used for the protein preparation.   

The prepared ligands were docked into the respective protein structures using GOLD v5.2 [105] 

and Glide (Schrödinger, LLC, New York, NY) [91-93]. The co-crystallized ligands of the holo-

form structures were defined as a center of the binding site. Meanwhile a residue of the hinge region 

was used to define the center of the binding site in the apo-form structures. In addition, the diameter 

of the box was enlarged from the default setting to cover the whole binding pocket. At least one 

hydrogen bond with the hinge region residue was used as a constraint. Several docking scores, 

which were supplied in Glide and GOLD, were applied for docking the ligands. A Linux-based 

cluster was used in docking.  Generally, several poses were generated for each docked ligand. Other 

docking options were kept as default.  

2.4. Molecular Dynamics (MD) simulations  

Molecular dynamics (MD) simulations were performed to study the conformational stability of the 

generated docking complexes and to calculate the binding free energy. MD simulations were carried 

out using AMBER 12 [121] and employing AMBER03 force field for the protein residues [122-

124]. Antechamber module was used to generate parameters for atom types and atomic charges 

(AM1-BCC [125]) for each ligand, in general AMBER force field GAFF was adopted [126]. The 

preparation of the protein-ligand complexes was performed using LEaP module in AMBER, 

leading to the generation of parameter/topology files and coordinate files for the protein-ligand 

complexes. Counter ions were then added to neutralize the system followed by solvation of the 

system. The TIP3BOX water model was used to solvate the system (protein-ligand complex and 

ions) in a truncated octahedron box with edges of 10 Å [127]. Several steps were performed to 

prepare the system for MD simulations; starting with two consecutive steps of energy minimization. 

The first minimization was carried out for water and ion molecules while keeping the ligand-protein 

complex restrained to their initial coordinates with a force constant of 500 Kcal.mol-1. Å-2. The 
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procedure helped to reduce unreal van der Waals interactions with the surrounding solvent 

molecules and rearrangement of the inserted water and ions molecules. In this step, 2000 iterations 

(beginning with 1000 steepest descent and followed by 1000 conjugate gradient) were applied. The 

second minimization step was applied for the whole system through 10000 iterations (first 5000 

steepest descent and then 5000 conjugate gradients) without any restraint. After the energy 

minimization of the system, the next step was heating. In this process, the temperature was gradually 

elevated for 100 ps from 0 to 300 K and over a timescale 2 fs to avoid problems with the hot solvent 

cold solute. Langevin dynamics was set for temperature control using a collision frequency of 1 ps-

1 during the temperature equilibration [128]. The cutoff force constant of the restrained system was 

set at 10 Kcal.mol-1. Å-2. The output coordinates after the heating were inserted in pressure 

equilibration routine, in a third step is called density, which was used to set the constant pressure 

periodic boundary. The constant pressure periodic boundary was converted from 1 bar to 2 bar 

during 100 ps with a timescale of 2 fs at 300 K and applying the same cutoff force constant at 10 

Kcal.mol-1. Å-2. The density step was followed by either a 100 ps or 100 ns MD simulation 

depending on the purpose of the MD step. A cutoff of 10 Å for non-bonded atoms was applied 

using Particle Mesh Ewald methods [129].All simulation were ran using SHAKE to constrain 

hydrogen bonds [130].  

2.5. BFE calculations  

The binding free energy calculations were performed for re-scoring docking solutions. 

AMBERTools12 [121] and MOE (Chemical Computing Group Inc., Montreal, QC, Canada) were 

used to calculate the binding free energies. The calculation was initially carried out using one 

snapshot after a short energy minimization of the whole system in explicit water. Later, ten 

snapshots (frames) of ligand-protein complexes from the MD simulation were considered for 

averaging the binding free energy. Different solvation theories were applied using either 

Generalized Born (GB) [131, 132] or Poisson Boltzmann models (PB) [133]. The molecular 

mechanics (MM) and quantum mechanics/molecular mechanics (QM/MM) hybrid were considered 

too [134, 135]. Consequently, the binding free energy calculations of the models MM-PB(GB)/SA 

and MM/QM-GB/SA were computed using MMPBSA.py [136] module in AMBERTools12[137-

142]. In addition, the model MM-GB/SA, implemented in MOE, was used to estimate the binding 

free energy. 

The affinity of a ligand for a protein can be calculated by differences between the free energy of 

the complex and the sum of free energies of the ligand and the protein separately, eq. (1) [143]: 

∆Gbinding = Gprotein/ligand – (Gprotein + Gligand)                   (1) 
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The absolute free energy for each part can be estimated as a sum of the potential free energy or the 

so-called gas-phase free energy EMM, the changing of the free energy due to the solvation ∆Gsolvation, 

and the entropic contribution T∆S, where T is the absolute temperature and S the entropy of the 

molecule, eq. (2) [144] : 

Gmolecule = EMM + ∆Gsolvation – T∆S                              (2) 

EMM: Potential free energy or gas-phase free energy, which is represented by the empirical forefield, 

can be computed by molecular mechanics, as seen in eq. (3, 4) [143, 144]: 

EMM = Eint+ Evdw + Eelec                      (3) 

Eint = Ebond + Eangle + Etors                       (4) 

Where Eint represents the internal free energy and counts the free energies of the bond stretching 

(Ebond), angle bending (Eangle) bond torsions/dihedrals (Etors). The second term is van der Waals 

energy (Evdw), which is used to consider the short and long ranged interactions between the atoms. 

Meanwhile, Eelec refers to the electrostatic energy, which counts the Coulomb interactions as a result 

of partial atomic charge interactions. SANDER module of AMBERTools12 [121] was used to 

estimate the values of the previously mentioned energy units. The solvation energy ∆Gsolvation counts 

the impacts of the solvent on the molecules. The solvation energy consists of two terms; the 

electrostatic solvation energy (polar contribution, ∆GPB/GB) and the non-electrostatic solvation 

energy (non-polar contribution, ∆GSA) [145]. Equation (5) is used to compute the solvation energy. 

Currently, there are two postulated theories to calculate the polar energy which are either the (PB) 

or (GB) equations using MMPBSA.py [136] module in AMBERTools12. The second term ∆GSA is 

the effect of solvent on the surface area of the molecules and is estimated depending on the equation 

of solvent-accessible surface area SASA. Generally, it is referred to as molecular Surface Area free 

energy SA (∆GSA) [146], as seen in eq. (6), where  is the parameter of the surface tension and b a 

parameterized value [145]: 

∆Gsolvation = ∆GPB/GB + ∆GSA                  (5) 

∆GSA =  .SASA + b                             (6) 

In the current study, the solvation free energy was calculated by applying different GB models. 

These models are implemented in AMBERTools12 as GBHCT (igb = 1), GBOC1 (igb = 2), GBOC2 

(igb = 5), as the last release model (igb = 8) [119, 147-151].  The radii settings (mbondi 0, 2, and 

3) were adjusted according to the GB model. The radii setting have impact on the polar energy term 

so likewise the total solvation energy term.  
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A change of the entropy refers to the loss of translational, rotational and conformational degrees of 

freedom caused by ligand binding [138, 145, 152]. In most cases, the entropic contribution (– T∆S) 

does not improve the correlation and the accuracy of the binding free energy calculation [138]. 

However, the entropy contribution can be estimated using the normal mode analysis [153], which 

is time-consuming and computationally expensive. Therefore, it was neglected. However, there is 

an approach to approximate the entropy contribution based on the total number of rotatable bonds 

in the ligand (NRot) [135]. This approximation is a useful tool to estimate the total binding free 

energy [154-157], eq. (7): 

T∆SNRot = NRot × 1.0 Kcal/mol                 (7) 

The entropic contribution was considered in some parts of the current study. Nevertheless, in most 

cases only the change of the enthalpy (∆H) was considered to find the correlation with biological 

data and it will indicate to the binding free energy, eq. (8).  

∆H = EMM + ∆Gsolvation                 (8) 

The QM region of the QM/MM hybrid calculations was firstly applied for the ligand only and later 

for the ligand and selected residues from the hinge region, the P-loop, the hydrophobic pocket and 

the DFG-motif, surrounding the ligand. Two QM models were used: Parameterized Model number 

3 (PM3) and Austin Model 1 (AM1) [121]. 

2.6. In vitro testing 

The biological testing in the current work included three kinds of assays, binding, activity, and 

cellular assays. The results from the binding assay were confirmed by the activity and the cellular 

assays. 

Binding assay: Screening was carried out using different fluorescence polarization based binding 

assays (e.g. LanthaScreenTM) with specific concentrations of the target kinase, antibody, and kinase 

tracer. The screening was performed using several concentrations of the compounds. In addition, 

positive and negative (DMSO 1%) controls were used for comparison. Compounds with a tracer 

displacement above a certain percentage were further used to determine the IC50
 and Ki values. 

Activity assay: The inhibitory activities of the hit compounds against kinase were determined using 

various fluorescence polarization based kinase assay e.g. FlashPlatesTM. Similar to the binding 

assay, positive and negative (DMSO 1%) controls were used. Thus, the IC50
 and Ki values were 

determined. 
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Cellular assay: Two kinds of cellular assays (functional cellular assay and cellular growth 

inhibition assay) were conducted in the current work. The functional cellular assay was applied to 

test the inhibitory performance of the identified inhibitors over several series of cancer cell lines 

that were treated for 24h. Then the cells were lysed and the amount of the phosphorylated substrates 

was quantified, isolated and prepared for western blotting using a specific antibody. As a result, the 

correlation between the cellular assays and the data of either the binding or activity assay was 

calculated. On the other hand, cellular growth inhibition assay [158, 159] was carried out to measure 

the growth inhibitory activity at one given concentration of the most promising compounds for 24h. 

Accordingly, the percentage of the growth inhibition at the given screening concentration using the 

sulforhodamine fluorescence assay was determined.    
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RESULTS AND DISCUSSIONS 

This section presents abstracts from nine publications relevant to this project. The full texts of the 

publications are given in the Appendix. The presented manuscripts discuss the structure-based 

design and development of inhibitors for PKMYT1, PRK1, EGFR, IGF-1R, PDGRF-β, and 

VEGFR2. 
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3.1. Regulation of G2/M Transition by Inhibition of WEE1 and PKMYT1 

Kinases 

Schmidt, M., Rohe, A., Platzer, C., Najjar, A., Erdmann, F., & Sippl, W. 

 

Molecules, 22, 2045, 2017.  

https://doi.org/10.3390/molecules22122045 

 

Abstract: In the cell cycle, there are two checkpoint arrests that allow cells to repair damaged DNA 

in order to maintain genomic integrity. Many cancer cells have defective G1 checkpoint 

mechanisms, thus depending on the G2 checkpoint far more than normal cells. G2 checkpoint 

abrogation is therefore a promising concept to preferably damage cancerous cells over normal cells. 

The main factor influencing the decision to enter mitosis is a complex composed of Cdk1 and cyclin 

B. Cdk1/CycB is regulated by various feedback mechanisms, in particular inhibitory 

phosphorylations at Thr14 and Tyr15 of Cdk1. In fact, Cdk1/CycB activity is restricted by the 

balance between WEE family kinases and Cdc25 phosphatases. The WEE kinase family consists 

of three proteins: WEE1, PKMYT1, and the less important WEE1B. WEE1 exclusively mediates 

phosphorylation at Tyr15, whereas PKMYT1 is dual-specific for Tyr15 as well as Thr14. Inhibition 

by a small molecule inhibitor is therefore proposed to be a promising option since WEE kinases 

bind Cdk1, altering equilibria and thus affecting G2/M transition. 
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3.2. Identification of PKMYT1 Inhibitors by Screening the GSK 

Published Protein Kinase Inhibitor Set I and II 

Platzer, C., Najjar, A., Rohe, A., Erdmann, F., Sippl, W., & Schmidt, M. 

 

Bioorganic & Medicinal Chemistry, 2018  

https://doi.org/10.1016/j.bmc.2018.06.027 

 

Abstract: As a member of the Wee-kinase family protein kinase PKMYT1 is involved in G2/M 

checkpoint regulation of the cell cycle. Recently, a peptide microarray approach led to the 

identification of a small peptide; EFS247-259 as substrate of PKMYT1, which allowed for 

subsequent development of an activity assay. The developed activity assay was used to characterize 

the PKMYT1 catalyzed phosphorylation of EFS247-259. For the first time kinetic parameters for 

PKMYT1, namely Km, Km, ATP and vmax were determined. The optimized assay was used to 

screen the published protein kinase inhibitor sets (PKIS I and II), two sets of small molecule ATP-

competitive kinase inhibitors reported by GlaxoSmithKline. We identified ten inhibitors, providing 

different scaffolds. The inhibitors were further characterized by using binding assay, activity and 

functional assay. In addition, docking studies were carried out in order to rationalize the observed 

biological activities. The derived results provide the basis for further chemical optimization of 

PKMYT1 inhibitors and for further analysis of PKMYT1 as target for anti-cancer therapy. 
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3.3. Computer-aided Design, Synthesis and Biological Characterization 

of Novel Inhibitors for PKMYT1 Kinase 

Najjar, A., Platzer, C., Luft, A., Assmann, C., ElGhazawy, N., Erdmann, F., Sippl, W., & 

Schmidt, M. 

 

European Journal of Medicinal Chemistry, 2019 

https://doi.org/10.1016/j.ejmech.2018.10.050 

 

Abstract: In the current work, we applied computational methods to analyze the membrane-

associated inhibitory kinase PKMYT1 and small molecule inhibitors. PKMYT1 regulates the cell 

cycle at G2/M transition and phosphorylates Thr14 and Tyr15 in the Cdk1-cyclin B complex. A 

combination of in silico and in vitro screening was applied to identify novel PKMYT1 inhibitors. 

The computational approach combined structural analysis, molecular docking, binding free energy 

calculations, and quantitative structure–activity relationship (QSAR) models. In addition, a 

computational fragment growing approach was applied to a set of previously identified 

diaminopyrimidines. Based on the derived computational models several derivatives were 

synthesized and tested in vitro on PKMYT1. Novel inhibitors active in the sub-micro molar range 

were identified which provide the basis for further characterization of PKMYT1 as putative target 

for cancer therapy. 
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3.4. Identification of Highly Potent Protein KinaseC-Related Kinase1 

Inhibitors by Virtual Screening, Binding Free Energy Rescoring, and 

invitro Testing 

Slynko, I., Schmidtkunz, K., Rumpf, T., Klaeger, S., Heinzlmeir, S., Najjar, A., Metzger, 

E., Kuester, B., Schuele, R., Jung, M., Sippl, W. 

 

ChemMedChem, 11(18), 2084-2094, 2016.  

https://doi.org/10.1002/cmdc.201600284 

 
 
Abstract: Despite the considerable interest in protein kinase C-related kinase 1 (PRK1) as a target 

in cancer research, there is still a lack of PRK1 inhibitors with suitable selectivity profiles and 

physicochemical properties. To identify new PRK1 inhibitors we applied a virtual screening 

approach, which combines ensemble docking, minimization of the protein–ligand complex, binding 

free energy calculations, and application of quantitative structure–activity relationship (QSAR) 

models for predicting in vitro activity. The developed approach was then applied in a prospective 

manner to screen available libraries of kinase inhibitors from Selleck and GlaxoSmithKline (GSK). 

Compounds that showed favorable prediction were then tested in vitro for PRK1 inhibition. Some 

of the hits were found to inhibit PRK1 in the low-nanomolar range. Three in vitro hits were 

additionally tested in a mass-spectrometry-based cellular kinase profiling assay to examine 

selectivity. Our findings show that nanomolar and drug-like inhibitors can be identified by the 

virtual screening approach presented herein. The identified inhibitors are valuable tools for gaining 

a better understanding of PRK1 inhibition, and the identified hits can serve as starting points for 

further chemical optimization. 
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3.5. Application of Computer Modeling to Drug Discovery: Case Study of 

PRK1 Kinase Inhibitors as Potential Drugs in Prostate Cancer Treatment 

Najjar, A., Ntie-Kang, F., & Sippl, W. 

 

In Unique Aspects of Anti-cancer Drug Development, INTECHOPEN, 2017.  

https://doi.org/10.5772/intechopen.68910 

 

Abstract: Computer modeling of natural products (NPs) and NP scaffolds is increasingly gaining 

importance in drug discovery, particularly in hit/lead discovery programs and at the lead 

optimization stage. Even though industry had lost interest in the implication of NPs in hit/lead 

searches, recent reports still show that computer modeling could be a useful assert for the 

identification of starting scaffolds from nature, which could be further exploited by synthetic 

modifications. In this chapter, the focus is on some useful tools for computer modeling aimed at the 

discovery of anticancer drugs from NP scaffolds. We also focus on some recent developments 

toward the identification of potential anticancer agents by the application of computer modeling. 

The chapter will lay emphasis on natural sources of anticancer compounds, present some useful 

databases and computational tools for anticancer drug discovery, and show some recent case studies 

of the application of computational modeling in anticancer drug discovery, as well as some success 

stories in virtual screening applications in anticancer drug discovery, highlighting some useful 

results on the application of on lead discovery (including promising NP scaffolds) against an 

interesting anticancer drug target, the protein kinase C-related kinase (PRK1). 
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3.6. Discovery of Dually Acting Small-molecule Inhibitors of Cancer-

Resistance Relevant Receptor Tyrosine Kinases EGFR and IGF-1R 

Hempel, C., Najjar, A., Totzke, F., Schaechtele, C., Sippl, W., Ritter, C., & Hilgeroth, A.  

 

MedChemComm, 7(11), 2159-2166, 2016.  

https://doi.org/10.1039/c6md00329j 

 

Abstract: Novel benzo-anellated furo- and pyrroloĳ2,3-b]pyridines with a 4-benzylamine 

substitution have been evaluated as inhibitors of the epidermal growth factor receptor (EGFR). 

Substituent effects on the determined protein kinase affinity have been discussed based on varied 

benzylamine residues at the differently substituted molecular scaffolds. Docking studies were 

carried out in order to explore the potential binding modes of the novel inhibitors. The observed 

activity data encouraged the measurement of the inhibition of the insulin-like growth factor receptor 

(IGF-1R), which is known to play an important role in the cancer resistance development against 

EGFR inhibitors via receptor heterodimerization with IGF-1R. We identified novel dual inhibitors 

of both kinases and report their first cancer cell growth inhibition data. 
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3.7. Discovery of Novel Dual Inhibitors of Receptor Tyrosine Kinases 

EGFR and IGF-1R 

Hempel, C., Totzke, F., Schaechtele, C., Najjar, A., Sippl, W., Ritter, C., & Hilgeroth, A. 

 

J. Enzyme Inhib. Med. Chem, 32(1), 271-276, 2017.  

https://doi.org/10.1080/14756366.2016.1247062 

 

Abstract: Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized 

with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at 

the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as 

epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for 

our novel compounds. As receptor heterodimerization gained certain interest as mechanism of 

cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured 

the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such 

heterodimerization with EGFR. Structure–activity relationships are discussed for both kinase 

inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of 

both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance 

developments in cancer treatment. 
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3.8. Discovery of novel substituted benzo-anellated 4-benzylamino 

pyrrolopyrimidines as dual EGFR and VEGFR2 inhibitors  

Fischer, T., Krueger, T., Najjar, A., Totzke, F., Schaechtele, C., Sippl, W., Ritter, C., 

Hilgeroth, A. 

 

Bioorganic & Med. Chem. Lett, 27(12), 2708-2712, 2017. 

https://doi.org/10.1016/j.bmcl.2017.04.053 

 

Abstract: The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance 

developments against those inhibitors enforced the search for novel structural lead compounds. We 

developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution 

patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-

dependent affinities towards EGFR are discussed and first nanomolar derivatives have been 

identified. Docking studies were carried out for EGFR in order to explore the potential binding 

mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing 

interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we 

determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting 

EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data 

indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR 

inhibition. 
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3.9. Discovery of Novel Dual Inhibitors of Receptor Tyrosine Kinases 

EGFR and PDGFR-beta Related to Anticancer Drug Resistance  

Fischer, T., Najjar, A., Totzke, F., Schaechtele, C., Sippl, W., Ritter, C., & Hilgeroth, A. 

 

J Enzyme Inhib Med Chem, 33(1), 1-8, 2018. 

https://doi.org/10.1080/14756366.2017.1370583 

 

Abstract: With ongoing resistance problems against the marketed EGFR inhibitors having a 

quinazoline core scaffold there is a need for the development of novel inhibitors having a modified 

scaffold and, thus, expected lower EGFR resistance problems. An additional problem concerning 

EGFR inhibitor resistance is an observed heterodimerization of EGFR with PDGFR-b that 

neutralises the sole inhibitor activity towards EGFR. We developed novel pyrimido[4,5-b]indoles 

with varied substitution patterns at the 4-anilino residue to evaluate their EGFR and PDGFR-b 

inhibiting properties. We identified dual inhibitors of both EGFR and PDGFR-b in the nanomolar 

range which have been initially screened in cancer cell lines to prove a benefit of both EGFR and 

PDGFR-b inhibition. 
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SUMMARY 

Kinases represent important drug targets of the current century as Philp Cohen titled his paper 

“Protein kinases - the major drug targets of the twenty-first century?” [160]. Kinases play key 

regulatory roles in most aspects of cell biology. The dysregulation of protein kinases occurs in a 

variety of diseases including cancer, diabetes, autoimmune, cardiovascular, inflammatory, and 

neurological disorders. Protein kinases represent one of the most important classes of drug targets. 

In recent times, efforts have been paid in academia and industry to determine the physiological and 

pathological functions of different kinases. Concomitantly, the discovery of kinase inhibitors as 

drugs has significantly accelerated within the last decade, leading to ~ 40 small molecule kinase 

inhibitors approved by the FDA. Rational drug design has succeeded in 2002 to design the first 

approved kinase inhibitor (imatinib) for the treatment of chronic myelogenous leukemia.  

In the present work, we contributed to the kinase drug discovery by targeting several kinase 

members. We were able to use computational approaches in combination with medicinal chemistry 

to identify novel kinase inhibitors which inhibit the active form of the studied kinases. Interestingly, 

the identified inhibitors have been observed to inhibit the cell growth in some cancer cell lines. The 

following subsections provide summaries as well as highlights of the main achievements from these 

studies. 

4.1. Structural analysis of WEE family kinase  

PKMYT1 and WEE1 are members of the WEE family kinases and play critical roles in DNA-

damage recovery. In the present work, a comparison of the WEE family kinase members was 

performed to recognize the structural diversity, to establish the structural basis of different 

inhibitiors and to present biological assays used to identify WEE family kinase inhibitors. For 

structural analysis, the deposited crystal structures of PKMYT1 and WEE1 in PDB were retrieved 

and analyzed. The deposited X-ray structures of WEE1 are co-crystallized with series of 

pyrrolocarbazoles and pyrroloindoles derivatives whereas PKMYT1 was resolved in complex with 

known kinase inhibitors e.g. dasatinib, saracatinib, and MK-1775. The ATP-binding pocket reveals 

high similarity (sequence similarity: 76.2%, sequence identity: 61.9%, RMSD deviation of the 

backbone atoms between Wee1 and PKMYT1: 0.88 Å). Notably, a bulky gatekeeper residue in 

WEE1 (Asn376) was found to restrict the back pocket. In contrast, PKMYT1 has a small gatekeeper 

residue (Thr178), which allows an access to the back hydrophobic-pocket (Figure 9). The amino 

acids at the top of the P-loop (WEE1: Phe310, PKMYT1: Tyr121) can adopt different 

conformations based on the activation state of the kinase. The conserved cysteine of the hinge 

region (WEE1: Cys379, PKMYT1: Cys190) plays an important role in stabilizing the ATP and the 

inhibitors via the formation of hydrogen bonds (Figure 9).  
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Figure 9. Superposition of the ATP-bindings pocket of WEE1 (PDB ID: 1X8B, violet residues and 

blue label) and PKMYT1 (PDB ID: 3P1A, white residues and black label). The co-crystallized 

inhibitor PD0407824 of WEE1 is shown in yellow. Green dashed lines refer to hydrogen bonds. 

Thus, the observed structural similarity and diversity of PKMYT1 and WEE1 might explain its 

substrate specificity to phosphorylate either Tyr15 of CDK1 by WEE1 or Tyr15 and Thr14 of 

CDK1 by PKMYT1. The structural analysis of PKMYT1 and WEE1 facilitated also the design of 

selective inhibitors in order to assess their potential for cancer treatment (Publication 1). 

4.2. Hit identification and lead optimization for PKMYT1 

In order to identify novel inhibitors for PKMYT1, focused libraries were screened. The kinase 

inhibitor data sets I and II from GSK (in total 800 known kinase inhibitors) were biologically 

screened using a fluorescence polarization based assay. Figure 10 summarizes the working process 

of the study. An initial screening using a binding assay at 20 µM was first performed to identify the 

hits, which showed a displacement percentage above a specific threshold. Then, the Ki and IC50 

values were determined. This was followed by an activity assay as a means to measure the inhibitory 

activity of the identified hits by measuring Ki and IC50 values. Additionally, a cell line was used to 

validate the activity of the identified hits in a cellular assay. Hence, several hits were identified as 

nanomolar inhibitors, thus, providing new scaffolds, which were used to develop novel selective 

PKMYT1 inhibitors (Figure 10). In order to rationalize the binding mode of the identified 

inhibitors, cross-docking to all currently reported crystal structures of PKMYT1 was performed. 

The aim of this cross-docking procedure was to validate different docking algorithms (GOLD and 
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Glide), and to assess which protein structure is the best for further docking studies. The results 

revealed that docking in the X-ray structure of PKYMT1 cocrystallized with pelitinib (PDB ID: 

5VCW) could successfully reproduce the binding mode of native as well as non-native ligands. 

Thus, it was used to predict the binding mode of the new hits. The predicted binding modes were 

further validated by comparing the generated poses to those of available PDB-structures with 

similar co-crystallized derivatives. Despite the chemical diversity of the new hits, they all form a 

hydrogen bond with the backbone of conserved hinge region residue Csy190 similar to the ATP 

(Figure 11). Additional interactions such as aromatic interactions (π-π) with the side chain of 

Phe240, targeting the hydrophobic back-pocket by a substituted phenyl or small chemical group, 

interactions with the front-pocket residues e.g. Leu116, Pro191 and Gln196, and polar interactions 

with Asp251 and Tyr121 were observed in most of the PKMYT1 inhibitors. The results obtained, 

offered an opportunity for structure-activity relationship study and guided further optimization of 

the identified hits, Thereby, paving the way for the design of novel and selective PKMYT1 

inhibitors (Publication 2).  

 

Figure 10. Scheme of the process to identify PKMYT1 inhibitors. 

Structure-based optimization of a series of hits containing a diaminopyrimidine scaffold was carried 

out to improve the potency and selectivity against PKMYT1. Therefore, a computational model 

able to predict the affinity of the novel leads was developed. The current study confirmed the ability 

of the docking algorithm to predict the binding mode of the small molecules. However, the docking 

algorithm failed to rightly predict the affinity of the ligands, where a weak correlation was obtained 

between the computed and experimental data. We were able to show that binding free energy 

calculation (BFE), here using the MM-PB/SA solvation model, was better able to predict the affinity 
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of the ligands. Moreover, including 2D molecular descriptors based on the partial charges of the 

ligands improved the quality of the prediction slightly.  

A QSAR model was derived by combining the calculated binding free energy and the molecular 

descriptors in order to predict the activities of the novel compounds. Regression-based QSAR 

modeling was not able to discriminate between the active and inactives. However, it was able to 

predict the improvement of the potency for the lead optimization. Fragment growing approach is 

an efficient method to achieve additional interactions within the binding pocket. Other factors 

should be considered during the growing process e.g. ligand flexibility, conformational changing, 

and steric hindrance. Our approach guided the design and synthesis of the first set of 

diaminopyrimidine derivatives, some of which showed potency in the sub-micromolar range (e.g. 

compound 5k). As a consequence, we were able to generate several lead compounds and to assess 

the structure-activity relationship of the diaminopyrimidine derivatives. The derived results provide 

the basis for further chemical modifications of the diaminopyrimidine derivatives to design more 

potent PKMYT1 inhibitors. This allows further analysis of PKMYT1 as target for cancer therapy 

(Publication 3).    

 

Figure 11. Determined binding modes of the identified PKMYT1 inhibitors. A) Putative binding 

modes of aminoquinoline compounds; B): Putative binding modes of diaminopyrimidine series. 
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Figure 12. Predicted binding mode of compound 5k (green) within the PKMYT1 binding pocket 

(white). Molecular surface (green) display the filled volume of the PKMYT1 pocket by compound 

5k. 

4.3. Virtual screening of commercial data sets on PRK1 

Protein kinase C-related kinase 1 (PRK1) is a serine/threonine enzyme, which is a regulator of the 

androgen receptors. In this work, a successful virtual screening of GSK and Selleckchem libraries 

was performed, leading to the identification of highly potent and novel PRK1 inhibitors. The 

identified hits are ATP-competitive and bind to the active form of PRK1. While all of them show 

the conserved interactions with the hinge region residues, the most potent PRK1 inhibitors either 

form additional hydrogen bonds to polar residues in the ATP-sugar binding region or interact with 

the hydrophobic back-pocket behind the gatekeeper residue (Met701). The PRK1 inhibitors 

identified in the current work as well as their predicted binding modes can be further used to guide 

structure-based optimization. In addition, the obtained results reveal that the combination of 

molecular docking with post-processing using BFE calculation might help to compensate the 

disadvantages of each individual method and to improve the screening success. Application of this 

combined method was able to identify novel nanomolar PRK1 inhibitors. This combined method 

was also effectively used to prioritize PRK1 hits for further testing. However, the presence of false 

positives among the selected hits could be due to the ability of the protein to accommodate bigger 

ligands during the minimization step, or the introduction of larger errors when the energy of the 

receptor is taken into account. Nevertheless, the rescoring of docking poses using the BFE-based 

QSAR model performed better than docking scores. For example, only one weakly active 

compound was found among the ten top-ranked by GlideSP score. Interestingly, the generated 

QSAR model was able to rank two highly potent inhibitors (with IC50 less than 100 nM) among the 

top-six GSK compounds according to predicted pIC50 values. Since the focused databases are 
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composed of kinase inhibitors, this may explain the good hit rates of the virtual screenings (100% 

for Selleckchem and 32% for GSK kinase inhibitor set). It was also remarkable that, despite the 

structural diversity of the GSK kinase inhibitor set, most of the compounds identified as highly-

potent PRK1 inhibitors contain an aminofurazan scaffold (Figure 13 and 14) which were initially 

developed as potent inhibitors of AKT and GSK-3 kinases. A number of the identified compounds 

are also known to target other members of the AGC kinase family. For example, the pan-Akt 

inhibitor GSK-690693 (CHEMBL494089) is also inhibits PKA, PRK or PKC isozymes. 

Analysis of the later released crystal structures of PRK1 in complex some identified inhibitors 

revealed that the generated homology models could be successfully used to re-predict the binding 

modes of most known ligand, nevertheless, deviations between the predicted and experimental 

binding modes of some ligands could be observed. Several factors can have impact on the molecular 

docking performance, e.g. model quality, absence/presence of water, receptor and ligand flexibility. 

The comparison of PRK1 homology models with the crystal structures and the analysis of inhibitor 

binding modes highlighted the important role of kinase domain flexibility, which should be 

considered for the design and optimization of novel PRK1 inhibitors (Publication 4 and 5).  

 

Figure 13. Identified PRK1-inhbitors from GSK PKIS set. 
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Figure 14. Predicted binding mode for three of the most active PRK1 inhibitors from the GSK 

kinase set. A) R-isomer GSK-943949A (green carbons) and the corresponding S-isomer, GSK-

938890A (magenta carbons); B) GSK-614526A (yellow carbons).  

4.4. Discovery of novel growth factors receptors inhibitors 

Expansion and progression of cancer cells depend on the activation of transmembrane receptors 

harboring kinase activity such as EGFR, IGF-1R, VEGFR2, and PDGFR-β by a variety of growth 

factors. Thus, inhibition of the receptors of the growth factors offers opportunities for cancer 

therapy.  

In this project, the development of a series of pyrrolopyridine derivatives was rationalized by 

carrying out molecular docking of the synthesized derivatives. Thus, first dual inhibitors of EGFR 

and IGF-1R with sub-micromolar and nanomolar activities were identified, which showed a growth 

inhibition in the EGFR-related breast and non-small lung cancer cell lines making them attractive 

compounds for further drug development. Novel furo- and pyrrolopyridines inhibit EGFR and IGF-

1R activities as ATP-competitive inhibitors. Analysis of the ligand binding of these derivatives 

within EGFR and IGF-1R were performed in order to provide a potential rationalization for the 

detected in vitro activity. The benzo-anellated furo[2,3-b]pyridine and benzo-anellated pyrrolo[2,3-

b]pyridine scaffolds mimick the adenine ring of ATP and represent hinge-binding motifs. The 

variation in the gatekeeper size of both kinases (Thr790 in EGFR and Met1079 in IGF-1R) results 

in different orientation of the active derivatives (Figure 15). It is worth mentioning that the diversity 

of the gatekeeper residues and the accessibility to the hydrophobic back-pocket are mainly 

responsible for the observed selectivity of some inhibitors. The resulting selectivity of the active 

compounds were later evaluated against a variety of EGFR-related kinases including HER2 and 

HER4 as well as the related receptor tyrosine kinases JAK2 and 3, and TIE-2 plus other kinase 
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families like VEGFR2 and 3, PDGFR-β and GSK-3β. Interestingly, no the compounds showed no 

inhibition of these related kinases even at concentrations >100 μM (Publication 6). 

 

Figure 15. Putative binding mode of the most potent inhibitor (13b) in EGFR (light grey) and IGF-

1R (violet). 

The results obtained from the previous analysis of ligand binding served as guidance to develop the 

first dual-inhibitors of EGFR and VEGFR2 which showed an inhibitory activityin the nanomolar 

range. This series contains benzo-anellated pyrrolopyrimidines, which showed favorable para- and 

ortho-substitutions of the 4-benzylamino residue (Figure 16: compounds 6m and 6f). The most 

potent VEGFR2 inhibitor showed the best anticancer activity. The result reveals the importance of 

VEGFR2 inhibition for inhibiting cancer cell growth in VEGFR2-relevant tumors. Once again, the 

selectivity of the novel inhibitors was evaluated and no activity found against MARK1, DARK1, 

MEK1, MEK2, c-ABL, MLK4 and others. (Publication 7) 

The third series was found to be dual-inhibitors of the tyrosine kinase receptors EGFR and IGF-1R. 

The novel active compounds are 6-cyano derivatives of the benzylaminopyrrolopyrimidines and 

contain favorable 3-amino and the 4-methly benzamine moieties (Publication 8). Theses novel 

compounds showed activities in the low nanomolar range against EGFR and in the sub-micromolar 

range against IGF-1R (Figure 16: compound 6a). 
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The last series of the 4-anilinopyrimido[4,5-b)indole derivatives were investigated against EGFR 

and PDGFR-β (Figure 16: compound 5k). The molecular docking produced a binding mode that 

mimics the adenine ring of ATP and displays a conserved hydrogen bond with the hinge region 

residue. It was found that attaching large substituents at the para-position of the aniline residue 

enhance the activity against of EGFR and PDGFR-β. These dual-inhibitors with favorable EGFR-

affinities showed an effective anticancer growth inhibition (Publication 9).  

 

Figure 16. Chemical structures of identified dual-inhibitors of the growth factors receptors (Ki, 

nM). 
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CONCLUSIONS 

The current study shows the importance of rational drug design to identify novel inhibitors targeting 

the human kinome. The digitalization of the drug discovery became incredibly widely implemented 

to accelerate the development of drug candidates. Structure-based drug design is considered as an 

efficient method to design selective and highly active kinase inhibitors.  

Structural analysis of the 3D structures of the kinase domains proved to be a very helpful procedure 

for studying kinases and developing kinase inhibitors.  For instance, analyzing the binding pocket 

of the studied kinases offered reasonable explanations of the observed activity of the identified hits. 

Moreover, the analysis of the site map aided to find the relevant residues that interact with the 

ligands, which helped guide hit optimization studies.  

A combination between in silico and in vitro screening was found as an optimal approach to 

accelerate the discovery of novel kinase inhibitors. For instance, VS screening of GSK and 

Selleckchem databases in homology models of PRK1 followed by in vitro testing of the selected 

hits resulted in the identification of nanomolar PRK1 inhibitors. Meanwhile, various computational 

drug discovery tools assisted us to rationalize the lead optimization process so as to improve the 

potency of the obtained PKMYT1 leads. Here, the derived computational results plus the structural 

information of the binding pocket were implemented to chemically modify the lead compounds, to 

enhance the inhibitory potency towards PKMYT1. 

In this study, we could show the ability of the molecular docking to correctly predict the bioactive 

conformation of small molecules, albeit some limitations of the rigid docking approach were also 

encountered. Through this approach, we could successfully predict the binding modes of the 

obtained kinase inhibitors, like PRK1- and PKMYT-inhibitors.  Further, we were able to explain 

the obtained activities and selectivity of developed inhibitors towards different kinase receptors of 

the growth factors. Indeed, molecular docking offered rational insights to develop highly active and 

selective lead compounds, and the derived results provided the basis for further chemical 

modifications of the identified hits to design highly potent kinase inhibitors allowing further 

analysis of kinases as targets for the cancer therapy 

Despite their good performance of the docking software in predicting the binding modes of the 

obtained inhibitors, docking scores failed, as is often the case, to predict the affinity of the ligands, 

resulting in a weak correlation between the computed and experimental affinities.  Hence, the search 

for accurate predicting methods was necessary to guide the lead optimization studies. All things 

considered, we were able to show, as exemplified by our studies on PKMT1- and PRK1-inhbitors, 

the higher ability of the binding free energy calculations to predict the affinity of the ligands as 
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compared to the docking scores. Moreover, including 2D molecular descriptors based on the partial 

charges of the ligands improved the quality of the prediction slightly.  

Generation of several homology models also proved to be a useful tool to generate 3D structures of 

kinases, with no resolved crystal structure, and to consider the flexibility of the kinase domains. 

Here, molecular dynamics (MD) simulations were used to address and evaluate the conformational 

changes upon ligand binding. The highly computational costs of running MD simulations, however, 

restrict its application only for a small set of compounds.  

Finally, computational drug discovery and design for the human kinase showed several advantages 

in guiding the development of novel hits and some limitations. The conserved structure of the kinase 

domain makes it easy to design highly potent kinase inhibitors, for both the resolved and non-

resolved kinase structures. So, structure-based drug design can be performed based on the 

knowledge of the primary sequences for a target kinase and a homologous kinase structure. 

However, a huge caveat is encountered with the issue of selectivity. Generally, to design selective 

ATP-competitive inhibitors, the adjacent pockets of the ATP-binding pocket should be addressed. 

Since the size of the gatekeeper has a big impact on the accessibility to the hydrophobic back-pocket 

and can restrict the size of this pocket, it is therefore logical to be considered during the lead 

optimizations process. The interactions with the P-loop residues can enhance the activity and the 

selectivity, but the P-loop adopts several conformations depending on the size of the bound ligands, 

which may have a big impact on the ATP-binding pocket conformation. Some of the identified 

compounds showed only low or moderate activity. Another issue is of course, the kinase plasticity, 

which reveals several conformations based on the activation state. Protein plasticity still remains a 

significant limitation in the computational methods of drug discovery.  
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APPENDIX 

5.1A. FDA-approved protein kinase inhibitors 

FDA-approved protein kinase inhibitors, its indications and classifications compiled by Robert Roskoski Jr. Updated in 20th of April 2018. 

Drug1 Company Inhibitor 

type2 

Year 

approved 

Known targets Class3 Disease PDB 

Abemaciclib, LY2835219, 

Verzenio 

Lilly I1/2B 2017 CDK4/6 S/T Breast Ca 5L2S 

Acalabrutinib ACP-196 Acerta 

Pharma 

? 2017 Bruton tyrosine kinase NRY Mantle cell 

lymphoma 

 

Afatinib, BIBW 2992, Tovok, 
OWN 

Boehringer 
Ingelheim 

VI 2013 EGFR, ErbB2, ErbB4 RY NSCLC 4G5J 

Alectinib, CH5424802, Alecensa, 

EMH 

Hoffman-

LaRoche 

I1/2B, IIB 2015 ALK and RET RY NSCLC, ALK-

positive 

3AOX 

Axitinib, AG-013736, Inlyta, AXI Pfizer IIA 2012 VEGFR1/2/3, PDGFRβ RY RCC, advanced 4AG8 
Bosutinib, SKI-606, BOSULIF, 

DB8 

Pfizer I, IIB 2012 BCR-Abl, Src, Lyn, and 

Hck 

NRY CML 3UE4 

Brigatinib, AP 26113, Alunbrig Ariad I1/2B, IIB 2017 ALK, ROS1, IGF-1R, 
Flt3, EGFR 

RY NSCLC, ALK-
positive  

5J7H 

Cabozantinib, XL-184, BMS-

907351, Cometriq 

Excelixis IIA 2012 RET, MET, VEGFR1/2/3, 

Kit, TrkB, Flt3, Axl, Tie2 

RY Thyroid cancer, 

metastatic medullary  

 

Ceritinib,  LDK378, Zykadia, 

4MK 

Novartis I 2014 ALK, IGF-1R, InsR, 

ROS1 

RY NSCLC, ALK-

positive after 

crizotinib resistance 

4MKC 

Cobimetinib, GDC-0973, EUI, 
Cotellic 

Genentech III 2015 MEK1/2 T/Y Melanoma with 
BRAF mutations 

together with 

vemurafenib 

4AN2 

Crizotinib, PF 2341066, VGH, 

Xalkori 

Pfizer I, I1/2B 2011 ALK, MET (HGFR), 

ROS1, MST1R 

RY NSCLC, ALK-

positive or ROS1-

positive  

2XB2 

3ZBF 
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2WGJ 

 
Dabrafenib, GSK2118436, 

Tafinlar, P06 

GSK II 2013 B-Raf S/T Melanoma and 

NSCLC with BRAF 

mutations 

5CSW 

Dasatinib, BMS-354825, Sprycel, 

1N1 

Bristol-Myers 

Squibb 

I, I1/2A 2006 BCR-Abl, Src, Lck, Yes, 

Fyn, Kit, EphA2, 

PDGFRβ 

NRY CML 2GQG 

Erlotinib, CP-358774, OSI-774, 
Tarceva, AQ4 

Genentech I, I1/2B 2004 EGFR RY NSCLC; pancreatic 
cancer 

4HJO 
1M17 

Everolimus, RAD001, Afinitor Novartis IV 2009 FKBP12/mTOR S/T Breast cancer, HER2-

negative; PNET; 
RCC; renal 

angiomyolipoma; 

subependymal giant 
cell astrocytoma 

 

Fostamatinib, R788, Tavalisse Rigel ? 2018 Syk, Spleen tyrosine 

kinase 

RY Thrombo-cytopenia  

Gefitinib, ZD1839, Iressa, IRE Astra Zeneca I 2003-
2005, 

2015 

EGFR RY NSCLC 4WKQ 
2ITY 

Ibrutinib, PCI-32765, Imbruvica Pharma-
cyclics and 

J&J 

VI 2013 Bruton tyrosine kinase NRY Mantle cell 
lymphoma; CLL; 

Waldenstrom's 

macroglobulinem-ia; 

marginal zone 
lymphoma; graft vs. 

host disease 

5P9J 

Imatinib, STI571, Gleevec, STI Novartis IIA 2001 BCR-Abl, Kit, and 
PDGFR 

NRY CML and ALL, Ph+; 
aggressive systemic 

mastocytosis; CEL; 

DFSP; HES; GIST; 
MDS/MDP 

2HYY 
1IEP 

Lapatinib, GW572016, Tykerb, 

FMM 

GSK I, I1/2A 2007 EGFR, ErbB2 RY Breast cancer 1XKK 
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Lenvatinib, AK175809, Lenvima, 

LEV 

Easai I1/2A 2015 VEGFR1/2/3, PDGFR, 

FGFR, Kit, RET 

RY Different-iated 

thyroid cancer 

3WZD 

Midostaurin, PKC412, CPG 

41251, Rydapt 

Novartis ? 2017 Flt3, PDGFR, VEGFR2, 

PKC 

RY Acute myeloid 

leukemia, 

mastocytosis, mast 

cell leukemia 

 

Neratinib, HKI-272 Puma ? 2017 ErbB2/HER2 Ry HER+ breast cancer 2JIV 

Nilotinib, AMN107, Tasigna, 

NILK 

Novartis IIA 2007 BCR-Abl, PDGFR, 

DDR1 

NRY CML, Ph+  3CS9 

Nintedanib, BIBF-1120, Vargatef, 

XIN 

Boehringer 

Ingelheim 

IIB 2014 FGFR1/2/3, PDGFRα/β, 

VEGFR1/2/3, Flt3 

RY Pulmonary fibrosis, 

idiopathic 

3C7Q 

Osimertinib, AZD-9292, Tagrisso AstraZeneca ? 2015 EGFR T970M RY NSCLC  
Palbociclib, PD-0332991, 

Ibrance, LQQ 

Park Davis I 2015 CDK4/6 S/T Breast cancer, ER+ 

and HER2+ 

5L2I 

Pazopanib, GW786034, Votrient GSK ? 2009 VEGFR1/2/3,  

PDGFRα/β, FGFR1/3, 
Kit, Lck, Fms, Itk 

RY RCC; soft tissue 

sarcomas 

 

Ponatinib, AP 24534, Iclusig, OLI Ariad I 2012 BCR-Abl, BCR-Abl 

T315I, VEGFR, PDGFR, 
FGFR, EphR, Src family 

kinases, Kit, RET, Tie2, 

Flt3 

NRY CML or ALL, Ph+  4U0I 

3OXZ 
1UWH 

Regorafenib, BAY 73-4506, 

Stivarga 

Bayer IIA 2012 VEGFR1/2/3, BCR-Abl, 

B-Raf, B-Raf (V600E), 

Kit, PDGFRα/β, RET, 

FGFR1/2, Tie2, and 
Eph2A 

RY CRC  

Ribociclib, LEE011, Kisqali Novartis ? 2017 CDK4/6 S/T Breast cancer 5L2T 

Ruxolitinib, INCB-018424, Jakafi, 
RXT 

Incyte I 2011 JAK1/2 NRY Myelofibrosis; 
polycythemia vera 

4U5J 

Sirolimus, Rapamycin Wyeth IV 1999 FKBP/mTOR S/T Renal transplant; 

lymphangio-

leiomyomatosis 
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Sorafenib, BAY 43-9006, 

Nexavar, BAX,  

Onyx IIA 2005 VEGFR1/2/3, B-/C-Raf, 

mutant B-Raf, Kit, Flt3, 
RET, and PDGFRß 

RY Thyroid cancer, 

differentiated; 
hepatocellular 

carcinoma; RCC 

4ASD 

Sunitinib, SU-11248, Sutent, B49 Pfizer I1/2B, IIB 2006 PDGFRα/β, 

VEGFR1/2/3, Kit, Flt3, 
CSF-1R, and RET 

RY RCC; GIST; 

pancreatic 
neuroendocrine 

tumors 

4AGD 

Temsirolimus, CCI-779, Torisel Wyeth IV 2007 FKBP12/mTOR S/T RCC, advanced  
Tofacitinib, CP-690550, 

Tasocitinib, MI1 

Pfizer I 2012 JAK3 NRY Rheumatoid arthritis 3EYG 

3LXK 

Trametinib, Mekinist GSK III 2013 MEK1/2 T/Y Melanoma  
Vandetanib, ZD6474, Zactima, 

ZD6 

Astra-Zeneca I 2011 EGFRs, VEGFRs, RET, 

Brk, Tie2, EphRs, and Src 

family kinases 

RY Thyroid cancer, 

medullary 

2IVU 

Vemurafenib,  PLX-4032, 
Zelboraf, O32 

Genentech I1/2A 2011 A/B/C-Raf and B-Raf 
(V600E) 

S/T Melanoma with the 
BRAFV600E mutation 

4RZV 
3OG7 

ALL, acute lymphoblastic leukemia, CEL, chronic eosinophilic leukemia; CLL, chronic lymphocytic leukemia; CML, chronic myelogenous leukemia; 

CRC, colorectal cancer; DDR1, Discoidin domain receptor family, member 1; DFSP, dermatofibrosarcoma protuberans; GIST, gastrointestinal stromal 

tumor; HES, hypereosinophilic syndrome, HGFR, hepatocyte growth factor recepter; MDS/MPD, myelodisplastic/myeloproliferative diseases; MST1R, 

macrophage-stimulating protein receptor aka RON (Recepteur d'Origine Nantais); NSCLC, non-small cell lung cancer; PNET, progressive 

neuroendocrine tumors of pancreatic origin; Ph+, Philadelphia chromosome positive;  RCC, renal cell carcinoma. 

1All drugs listed are orally effective except for temsirolimus, which is given intravenously. Generic name, code, trade name, PubChem abbreviation, and 

X-ray PDB ID 

2Types I, II, III, IV, V, and VI from Roskoski, Pharmacological Research 103, 26-48 2016 

3NRY, non-receptor protein-tyrosine kinase; RY, receptor protein-tyrosine kinase; S/T, protein-serine/threonine protein kinase; T/Y, dual specificity 

protein kinase 
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5.2A. List of transferases: Phosphorous-containing groups (kinase) (EC 2.7.-.-) 

Retrieved from Wikipedia, blue highlighted section refers to the targeted kinase families by the current work.  

 

2.7.1-2.7.4: 

phosphotransferase 

/ kinase (PO4) 

2.7.1: OH acceptor Hexo-, Gluco-, Fructo-, Hepatic, Galacto-, Phosphofructo-(1, Liver, Muscle, Platelet, 2) 

Riboflavin, Shikimate, Thymidine, ADP-thymidine, NAD+, Glycerol, Pantothenate, 

Mevalonate, Pyruvate, Deoxycytidine, PFP, Diacylglycerol, Phosphoinositide 3,  (Class I 

PI 3, Class II PI 3), Sphingosine, Glucose-1,6-bisphosphate synthase 

2.7.2: COOH acceptor Phosphoglycerate, Aspartate kinase 

2.7.3: N acceptor Creatine 

2.7.4: PO4 acceptor Phosphomevalonate, Adenylate, Nucleoside-diphosphate, Uridylate, Guanylate, 

Thiamine-diphosphate 

2.7.6: 

diphosphotransferase 

Ribose-phosphate diphosphokinase, Thiamine diphosphokinase 

2.7.7: 

nucleotidyltransferase 

(PO4-nucleoside) 

Polymerase DNA 

polymerase 

DNA-directed DNA polymerase: I, II, III, IV, V 

RNA-directed DNA polymerase: Reverse transcriptase (Telomerase) 

DNA nucleotidylexotransferase/Terminal deoxynucleotidyl 

transferase 

RNA 

nucleotidyltransf

erase 

RNA polymerase/DNA-directed RNA polymerase/ RNA polymerase: 

I, II, III, IV, V, Primase, RNA-dependent RNA polymerase 

PNPase 

Phosphorolytic RNase PH, PNPase 
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3' to 5' exoribonuclease 

Nucleotidyltransferase UTP—glucose-1-phosphate uridylyltransferase, Galactose-1-phosphate 

uridylyltransferase 

Guanylyltransferase mRNA capping enzyme 

Other Recombinase (Integrase), Transposase 

2.7.8: miscellaneous Phosphatidyltransferases CDP-diacylglycerol—glycerol-3-phosphate 3-phosphatidyltransferase, CDP-

diacylglycerol—serine O-phosphatidyltransferase, CDP-diacylglycerol—inositol 3-

phosphatidyltransferase, CDP-diacylglycerol—choline O-phosphatidyltransferase 

Glycosyl-1-phosphotransferase N-acetylglucosamine-1-phosphate transferase 

2.7.10-2.7.13: 

protein kinase 

2.7.10: protein-tyrosine tyrosine kinases 

2.7.11: protein-serine/threonine serine/threonine-specific protein kinases 

2.7.12: protein-dual-specificity serine/threonine-specific protein kinases 

2.7.13: protein-histidine Protein-histidine pros-kinase, Protein-histidine tele-kinase, Histidine kinase 
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