
Vehicle routing problems with

three-dimensional loading

constraints and backhauls

Schriftliche Promotionsleistung

zur Erlangung des akademischen Grades

Doctor rerum politicarum

vorgelegt und angenommen

an der Fakultät für Wirtschaftswissenschaft

Otto-von-Guericke-Universität Magdeburg

Verfasserin: Henriette Koch, M.Sc.

Geburtsdatum und -ort: 19.03.1991, Sangerhausen

Arbeit eingereicht am: 13.04.2018

Gutachter der schriftlichen Promotionsleistung:

apl. Prof. Dr. Andreas Bortfeldt

Prof. Dr. Jan Fabian Ehmke

Datum der Disputation: 13.06.2018

Contents

List of figures IV

List of tables VI

List of algorithms XIII

List of abbreviations XIV

List of symbols XVII

1 Introduction 1

2 Problem description and formulation 5

2.1 Problem description . 5

2.1.1 Vehicle routing problems with three-dimensional loading

constraints, backhauls and time windows 5

2.1.2 Variants of the 3L-VRPBTW 20

2.1.2.1 The 3L-VRP with time windows 21

2.1.2.2 The 3L-VRP with clustered backhauls and time win-

dows . 23

2.1.2.3 The 3L-VRP with mixed backhauls and time windows 25

2.1.2.4 The 3L-VRP with simultaneous delivery and pickup

and time windows 29

2.1.2.5 Overview of the considered problem variants 30

2.2 Mathematical model . 31

2.2.1 The 3L-VRP with time windows 31

2.2.2 The 3L-VRP with clustered backhauls and time windows . . . 60

2.2.3 The 3L-VRP with mixed backhauls and time windows 70

2.2.4 The 3L-VRP with simultaneous delivery and pickup and time

windows . 74

3 Literature review 85

3.1 Vehicle routing problems . 85

3.1.1 Vehicle routing problems with time windows 85

I

CONTENTS

3.1.2 Vehicle routing problems with backhauls 86

3.1.3 Vehicle routing problems with backhauls and time windows . . 92

3.2 Packing problems . 97

3.3 Vehicle routing problems with multi-dimensional loading constraints . 100

4 Hybrid solution approach 106

4.1 Packing heuristics . 106

4.1.1 Definitions . 107

4.1.2 Construction heuristics . 107

4.1.2.1 Deepest-bottom-left-fill heuristics 108

4.1.2.2 Touching area heuristics 114

4.1.2.3 Open space heuristic 115

4.1.3 Local search framework . 117

4.1.4 Adaption to the CLP . 119

4.1.5 Implementation of the loading approaches 120

4.1.6 Implementation of the packing constraints 124

4.2 Routing heuristics . 139

4.2.1 Savings heuristic . 139

4.2.2 Adaptive large neighbourhood search 142

4.2.2.1 Removal heuristics 143

4.2.2.2 Insertion heuristics 156

4.2.2.3 Integration of the packing procedure 159

4.2.2.4 Acceptance . 163

4.2.2.5 Heuristic selection and weight adjustment 165

4.2.2.6 Termination criteria 166

5 Numerical experiments 168

5.1 Set-up of numerical experiments . 168

5.2 Instances . 169

5.2.1 VRPBTW instances . 169

5.2.2 3L-VRPBTW instances . 171

5.2.2.1 Generation of basic instances 172

5.2.2.2 Instance types . 176

5.2.3 CLP instances . 179

II

CONTENTS

5.3 Parameter settings and configurations of the hybrid algorithm 179

5.4 Results for VRPBTW instances . 181

5.5 Results for 3L-VRPBTW and CLP instances 182

5.5.1 Evaluation of packing heuristics 183

5.5.1.1 Randomly generated routes 183

5.5.1.2 Hybrid savings heuristic 185

5.5.1.3 Container loading instances 187

5.5.2 Hybrid algorithm . 188

5.5.2.1 Results for 3L-VRPBTW variants 190

5.5.2.2 Influence of selected instance characteristics 203

5.5.2.3 Comparison of backhaul variants 215

5.5.2.4 Influence of time windows 218

5.5.2.5 Influence of three-dimensional loading 220

5.5.3 Consideration of additional packing constraints 222

5.5.3.1 Randomly generated routes 223

5.5.3.2 Hybrid algorithm . 226

6 Summary, conclusions and outlook 230

6.1 Contributions to research . 231

6.2 Managerial insights . 234

6.3 Outlook for future research . 236

Bibliography XXIV

Appendix XLV

A Removal heuristics XLVI

B Detailed results for VRPBTW instances XLVIII

C Detailed results 3L-VRPBTW instances LIV

III

List of figures

2.1 Example arrangement of items in a loading space 7

2.2 Example 3L-VRPBTW instance with possible routes 7

2.3 Corner points describing the placement of an item with a chosen

orientation . 8

2.4 Exemplary packing plan along a route 9

2.5 Permitted and prohibited item placements concerning the geometrical

constraints . 11

2.6 Permitted and prohibited item rotations 12

2.7 Illustration of a supported area . 12

2.8 Permitted and prohibited item constellations with respect to the

fragility constraint . 13

2.9 Item arrangement violating the LIFO constraint 14

2.10 An item placed in front of another item depending on the loading

approach . 15

2.11 Arrangement of reachable and non-reachable items 16

2.12 Item constellations to be considered for reachability 16

2.13 Item stack with an unsupported centre of mass 17

2.14 Item stack with direct and indirect support for a reference item . . . 18

2.15 Pickup and delivery problems . 21

2.16 Loading approaches for the 3L-VRPTW 22

2.17 Instance with possible solutions for different VRPs with backhauls . . 25

2.18 Development of the total weight in the vehicle for different vehicle

routing problems with backhauls (example) 26

2.19 Infeasible placements of simultaneously transported linehaul (LH)

and backhaul (BH) items . 27

2.20 Illustration of the loading space partition approach 28

2.21 Partial VRP solution with variables 33

2.22 Optimal solution for a CVRP instance 38

2.23 CVRP solutions excluding constraints (2.33) and (2.34), respectively . 38

2.24 Illustration of occupied points . 42

2.25 Illustration of occupied points and search regions 43

IV

LIST OF FIGURES

2.26 Relations of coordinates for determining whether an item is placed

below another . 45

2.27 Determination of support areas provided for vertical stability 46

2.28 Item arrangement and operator position δ11 for an item I11 51

2.29 Item arrangement with relevant variables for the evaluation of reach-

ability . 53

2.30 Illustration of the robust stability constraint 54

2.31 Occupied and supported points . 55

2.32 Load transmission according to Ratcliff and Bischoff (1998) 56

2.33 Load transmission of overhanging items 58

2.34 Complete load transmission . 59

3.1 Heuristic approaches for solving the CLP 99

4.1 Comparison between BL and BLF approach 108

4.2 Illustration of DBLF+ . 112

4.3 Example for the determination of touching areas 114

4.4 Example 3L-VRPMBTW route . 121

4.5 Separate packing patterns for linehaul and backhaul items 122

4.6 Item arrangement in a side loaded vehicle at a given stage of a route . 123

4.7 Side loading with different implementations of the DBLF heuristic . . 124

4.8 Illustration of the placement space for determining reachability 129

4.9 Relevant coordinates for shifting an item to obtain reachability 131

4.10 Determination of planes for robust stability 133

4.11 Relevant items for determining bearing loads based on a reference item134

4.12 Example arrangement of items and numbering of unit areas for de-

termining the bearing load . 137

4.13 Exemplary call sequence for determining the bearing loads 138

4.14 Exemplary call sequence for determining the bearing loads (continued)139

4.15 Example for a cluster removal . 149

4.16 Examples for overlapping and non-overlapping routes 151

4.17 Example for an inner route removal 153

4.18 Example for an intersection removal 154

4.19 Example a for node neighbourhood removal 156

4.20 Structure of an exemplary cache . 163

V

List of tables

2.1 Overview of the sets of packing constraints 20

2.2 Overview of the extended problem variants 31

2.3 Sets and constants for the mathematical model 32

3.1 Literature overview VRPB . 89

3.2 Literature overview VRPBTW . 93

3.3 VRP instances . 94

3.4 Literature overview 3L-VRP . 103

3.5 3L-VRPBTW and CLP instance sets 105

4.1 Implemented packing heuristics . 119

4.2 Overview of removal heuristics . 144

5.1 Testing instances for the VRPBTW 170

5.2 Instance characteristics . 176

5.3 Overview of instance types . 178

5.4 Parameter settings for the hybrid solution approach 179

5.5 Average deviations of TTDs provided by the ALNS from TTDs of

benchmark solutions, numbers of new best solutions and average com-

puting times per instance for VRPBTW instance sets 181

5.6 Comparison of packing construction heuristics; shares of feasibly packed

random routes . 184

5.7 Comparison of packing heuristics (DBLF, LS DBLF, LS OS); shares

of feasibly packed random routes . 185

5.8 Comparison of savings heuristics combined with different packing

heuristics; average deviations of benchmark (Sav×DBLF) TTDs and

average computing times . 186

5.9 Comparison of packing heuristics; average volume utilizations and

computing times for CLP instances of Bischoff and Ratcliff (1995)

and Davies and Bischoff (1999) . 188

VI

LIST OF TABLES

5.10 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations; separated by loading approach 190

5.11 Comparison of loading approaches; extended problem variants (3L-

VRPTW, RL/SL, C1); average TTDs, deviations from benchmark,

numbers of used vehicles; separated by item size, aggregated over the

variants of the hybrid algorithm . 192

5.12 Comparison of hybrid ALNS algorithms with different packing heuris-

tics, extended problem variants (3L-VRPCB(TW), RL/SL, C1); av-

erage TTDs, deviations from benchmark, computing times, numbers

of iterations; separated by loading approach 193

5.13 Comparison of hybrid ALNS algorithms with different packing heuris-

tics, extended problem variants (3L-VRPMB(TW), LSP/SL, C1); av-

erage TTDs, deviations from benchmark, computing times, numbers

of iterations; separated by loading approach 194

5.14 Comparison of loading approaches; extended problem variants (3L-

VRPMB(TW), LSP/SL, C1); average TTDs, deviations from bench-

mark, numbers of used vehicles; separated by item size and in total,

aggregated over the variants of the hybrid algorithm 196

5.15 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);

average TTDs, deviations from benchmark, computing times, num-

bers of iterations; separated by loading approach 197

5.16 Comparison of loading approaches; extended problem variants (3L-

VRPSDP(TW), LSP/SL, C1); average TTDs, deviations from bench-

mark, numbers of used vehicles; separated by item size and in total,

aggregated over the variants of the hybrid algorithm 199

5.17 Comparison of packing heuristics for different 3L-VRPBTW variants

and loading approaches; average TTDs, deviations from benchmark,

computing times, numbers of iterations, share of runs terminated by

time limit; separated by problem variant and loading approach 201

VII

LIST OF TABLES

5.18 Comparison of hybrid algorithms with different packing heuristics and

for different problem variants; average computing times; separated

by applied variant of the hybrid algorithm, limited to m = 200 and

aggregated over the corresponding loading approaches 202

5.19 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations, proportions of prematurely aborted runs; separated by item

size, restricted to n ∈ {60, 100} and aggregated over both loading

approaches . 204

5.20 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations, proportions of prematurely aborted runs; separated by item

size and total number of items m, restricted to n ∈ {60, 100} and

aggregated over both loading approaches 207

5.21 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations, proportions of prematurely aborted runs; separated by item

size and number of customers n, and aggregated over both loading

approaches . 208

5.22 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations, proportions of prematurely aborted runs; separated by time

window width and aggregated for both loading approaches 211

5.23 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark, computing times, numbers of it-

erations, proportions of prematurely aborted runs; separated by the

number of item types and aggregated for both loading approaches . . 212

VIII

LIST OF TABLES

5.24 Comparison of loading approaches; extended problem variants (3L-

VRPMB(TW), LSP/SL, C1) and (3L-VRPSDP(TW), LSP/SL, C1);

average TTDs, deviations from benchmark, numbers of used vehicles;

separated by problem variant and linehaul share, aggregated over the

variants of the hybrid algorithm . 214

5.25 Shares of routes with both linehaul and backhaul customers in solu-

tions of the extended problem variants (3L-VRPMB(TW), LSP/SL,C1);

separated by linehaul share and aggregated over the variants of the

hybrid algorithm . 215

5.26 Comparison of backhaul problem variants; extended problem vari-

ants (3L-VRPCB(TW), RL/SL, C1), (3L-VRPMB(TW), LSP/SL,

C1) and (separate, RL/SL, C1); average TTDs and deviations from

benchmarks; separated by item size and limited to m = 200 217

5.27 Average shares of linehaul or all customers of a route visited be-

fore the first backhaul customer and proportion of routes with both

linehaul and backhaul customers; extended problem variants (3L-

VRPCB(TW), RL/SL, C1) and (3L-VRPMB(TW), LSP/SL, C1);

separated by item size, limited to m = 200, aggregated over all vari-

ants of the hybrid algorithm and loading approaches 218

5.28 Comparison of results obtained with and without consideration of

time windows; extended problem variants (3L-VRPCB(TW), RL/SL,

C1), (3L-VRPMB(TW), LSP/SL, C1), (3L-VRPSDP(TW), LSP/SL,

C1); average TTDs, deviations from benchmarks, numbers of used

vehicles, computing times; separated by time window width and ag-

gregated over the problem variants 219

5.29 Comparison of VRP solutions without loading constraints (1D) and

with 3D loading constraints; extended problem variants (3L-VRPTW/3L-

VRPCB(TW), RL/SL, C1), (3L-VRPMB(TW)/3L-VRPSDP(TW),

LSP/SL, C1); average TTDs and computing times, average devia-

tions from benchmarks (1D); separated by item sizes and restricted

to n ∈ {60, 100} . 221

5.30 Overview of the sets of packing constraints 223

5.31 Comparison of constraint sets; shares of feasibly packed random routes

and average computing times obtained by DBLF and LS DBLF . . . 224

IX

LIST OF TABLES

5.32 Shares [%] of feasible packing plans (C1) that are feasible w.r.t. the

additional packing constraints; separated by volume utilization inter-

val and packing heuristic . 225

5.33 Comparison of constraints sets by application of the hybrid algo-

rithms ALNS×DBLF and ALNS×LS DBLF; extended problem vari-

ants (3L-VRPTW/3L-VRPCB(TW), RL/SL, C1/C2/C3/C4/C5), (3L-

VRPMB(TW)/3L-VRPSDP(TW), LSP/SL, C1/C2/C3/C4/C5); av-

erage TTDs, deviations from benchmark, deviations between TTDs,

computing times, numbers of iterations; separated by packing heuris-

tic and limited to instances with large items 227

5.34 Comparison of constraints sets for different loading approaches by ap-

plication of ALNS×DBLF; extended problem variants (3L-VRPTW/3L-

VRPCB(TW), RL/SL, C1/C2/C3/C4/C5), (3L-VRPMB(TW)/3L-

VRPSDP(TW), LSP/SL, C1/C2/C3/C4/ C5); average TTDs, devi-

ations from benchmark; restricted to instances with large items . . . 229

A.1 Explanation of tested sets of removal heuristics XLVI

A.2 Comparison of sets of removal heuristics; average deviation from best

known solutions and number of best solutions (50 test instances) . XLVII

B.1 Reference abbreviations . XLVIII

B.2 ALNS results for VRPBTW instances XLIX

C.1 Number of feasibly solved instances per loading approach and for all

loading approaches (instances with C1 only) LIV

C.2 Add caption . LV

C.3 Abbreviations and symbols used in the tables in Appendix C LV

C.4 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPTW, RL/SL, C1); average

TTDs, deviations from benchmark and computing times; separated

by instance classes, loading approaches and variants of the hybrid

algorithm . LVII

X

LIST OF TABLES

C.5 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); av-

erage TTDs, deviations from benchmark and computing times; sep-

arated by instance classes, loading approaches and variants of the

hybrid algorithm . LX

C.6 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1); av-

erage TTDs, deviations from benchmark and computing times; sep-

arated by instance classes, loading approaches and variants of the

hybrid algorithm . LXIX

C.7 Comparison of hybrid ALNS algorithms with different packing heuris-

tics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);

average TTDs, deviations from benchmark and computing times; sep-

arated by instance classes, loading approaches and variants of the

hybrid algorithm . LXXIV

C.8 Comparison of loading approaches; extended problem variants (3L-

VRPTW, RL/SL, C1); average TTDs provided by rear loading (bench-

mark), average deviations of TTDs provided by side loading from

benchmarks; separated by instance classes and variants of the hybrid

algorithm . LXXIX

C.9 Comparison of loading approaches; extended problem variants (3L-

VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading

(benchmark), average deviations of TTDs provided by side loading

from benchmarks; separated by instance classes and variants of the

hybrid algorithm . LXXX

C.10 Comparison of loading approaches; extended problem variants (3L-

VRPMB(TW), LSP/SL, C1); average TTDs provided by loading

space partition (benchmark), average deviations of TTDs provided

by side loading from benchmarks; separated by instance classes and

variants of the hybrid algorithm LXXXV

XI

LIST OF TABLES

C.11 Comparison of loading approaches; extended problem variants (3L-

VRPSDP(TW), LSP/SL, C1); average TTDs provided by loading

space partition (benchmark), average deviations of TTDs provided

by side loading from benchmarks; separated by instance classes and

variants of the hybrid algorithm LXXXVIII

XII

List of algorithms

4.1 DBLF heuristic for the OPP . 109

4.2 Shifting an item to a final placement as part of the DBLF heuristic . 111

4.3 DBLF-Comb heuristic for the OPP 113

4.4 TA heuristic for the OPP . 115

4.5 Open space packing heuristic . 116

4.6 LS packing heuristic . 118

4.7 Testing for vertical stability . 126

4.8 Testing for compliance with the fragility constraint 127

4.9 Testing for compliance with the LIFO constraint 128

4.10 Testing for reachability (rear loading) 130

4.11 Testing for reachability with shifting (rear loading) 131

4.12 Testing for robust stability . 132

4.13 Testing for compliance with the load bearing strength constraint . . . 135

4.14 Transmitting a load to lower items 135

4.15 Calculation of the transmitted load 136

4.16 Savings heuristic for a (3L-)VRPBTW 141

4.17 Connecting two customers in the course of the savings heuristic . . . 141

4.18 Adaptive large neighbourhood search for a (3L-)VRPBTW 143

4.19 ALNS: Shaw removal heuristic . 146

4.20 ALNS: random removal heuristic . 147

4.21 ALNS: worst removal heuristic . 147

4.22 ALNS: cluster removal heuristic . 148

4.23 ALNS: neighbour graph removal heuristic 149

4.24 ALNS: overlap removal heuristic . 150

4.25 ALNS: inner route removal heuristic 152

4.26 ALNS: intersection removal heuristic 153

4.27 ALNS: greedy insertion heuristic . 157

4.28 ALNS: detailed insertion procedure 160

4.29 ALNS: selection of the best insertion of a customer into a route . . . 162

4.30 ALNS: roulette wheel selection . 165

XIII

List of abbreviations

1D One-dimensional

2D Two-dimensional

2L-CVRP Capacitated vehicle routing problem with two-dimensional

loading constraints

2L-VRP Vehicle routing problem with two-dimensional loading

constraints

2L-VRPCB 2L-VRP with clustered backhauls

2L-VRPMB 2L-VRP with mixed backhauls

2L-VRPSDP 2L-VRP with simultaneous delivery and pickup

3D Three-dimensional

3D-SLOPP Three-dimensional single large object placement problem

3D-SKP Three-dimensional single knapsack problem

3L-CVRP Capacitated vehicle routing problem with three-dimensional

loading constraints

3L-PDP Pickup and delivery problem with three-dimensional loading

constraints

3L-VRP Vehicle routing problem with three-dimensional loading

constraints

3L-VRPBTW 3L-VRP with backhauls and time windows

3L-VRPCB 3L-VRP with clustered backhauls

3L-VRPCBTW 3L-VRP with clustered backhauls and time windows

3L-VRPCB(TW) 3L-VRPCB and 3L-VRPCBTW

3L-VRPDDP 3L-VRP with divisible delivery and pickup

3L-VRPDDPTW 3L-VRP with divisible delivery and pickup and time windows

3L-VRPHF 3L-VRP with a heterogeneous fleet

3L-VRPMB 3L-VRP with mixed backhauls

3L-VRPMBTW 3L-VRP with mixed backhauls and time windows

3L-VRPMB(TW) 3L-VRPMB and 3L-VRPMBTW

3L-VRPSDP 3L-VRP with simultaneous delivery and pickup

XIV

LIST OF ABBREVIATIONS

3L-VRPSDPTW 3L-VRP with simultaneous delivery and pickup and time

windows

3L-VRPSDP(TW) 3L-VRPSDP and 3L-VRPSDPTW

3L-VRPTW 3L-VRP with time windows

ACO Ant colony optimization

ALNS Adaptive large neighbourhood search

ALNS×DBLF Hybrid algorithm combining ALNS and DBLF

ALNS×DBLFSL Hybrid algorithm combining ALNS and DBLFSL

ALNS×LS DBLF Hybrid algorithm combining ALNS and LS DBLF

ALNS×LS DBLFSL Hybrid algorithm combining ALNS and LS DBLFSL

ALNS×LS OS Hybrid algorithm combining ALNS and LS OS

B&B Branch-and-bound

B&P Branch-and-price

BKS Best known solution

BL Bottom-left

BLF Bottom-left-fill

C&P Cutting and packing

CLP Container loading problem

CVRP Capacitated vehicle routing problem

DBLF Deepest-bottom-left-fill

DBLF+ Extension of the DBLF heuristic

DBLF-Comb Combination of DBLF and DBLF+

DBLFSL DBLF heuristic modified for the side loading approach

DU Distance unit

GA Genetic algorithm

GLS Guided local search

GRASP Greedy randomized adaptive search procedure

KPI Key performance indicator

LNS Large neighbourhood search

LIFO Last in first out

LS Local search

LS DBLF DBLF packing heuristic integrated into a LS framework

LS DBLFSL DBLFSL packing heuristic integrated into a LS framework

LSP Loading space partition

XV

LIST OF ABBREVIATIONS

LU Length unit

MILP Mixed integer linear programming

OPP Orthogonal packing problem

OS Open space

PPVRPTW Pallet-packing vehicle routing problem with time windows

PSO Particle swarm optimization

RL Rear loading

RTS Reactive tabu search

SA Simulated annealing

Sav×DBLF Hybrid algorithm combining savings and DBLF heuristic

Sav×LS DBLF Hybrid algorithm combining savings and LS DBLF heuristic

Sav×LS OS Hybrid algorithm combining savings and LS OS heuristic

SL Side loading

TA Touching area

TS Tabu search

TSP Travelling salesman problem

TTD Total travel distance

VND Variable neighbourhood descent

VNS Variable neighbourhood search

VU Volume unit

VRP Vehicle routing problem

VRPB Vehicle routing problem with backhauls

VRPBTW Vehicle routing problem with backhauls and time windows

VRPCB Vehicle routing problem with clustered backhauls

VRPCBTW VRPCB with time windows

VRPMB Vehicle routing problem with mixed backhauls

VRPMBTW VRPMB with time windows

VRPPD Vehicle routing problem with pickup and delivery

VRPSDP Vehicle routing problem with simultaneous delivery and

pickup

VRPSDPTW VRPSDP with time windows

VRPTW Vehicle routing problem with time windows

WU Weight unit

XVI

List of symbols

I Indices

i Customer index

j Customer index

k Item index

p Position in a route

q Item index

t Stage index

u Stage index

v Vehicle/ tour index

ψ Index for removal and insertion heuristics

II Instance and model-specific symbols

II.a Graph and sets

E Set of directed edges

G Weighted graph

N Node set containing the depot and customers (Nc = N \ {0})
Nc Node set containing the customers

NB Node set of backhaul customers

N L Node set of linehaul customers

V Vehicle set

A Set of coordinates along the length axis

A′ Set of coordinates along the length axis without considering rotations

A0 Set of coordinates along the length axis excluding α = L

B Set of coordinates along the width axis

B ′ Set of coordinates along the width axis without considering rotations

B0 Set of coordinates along the width axis excluding β = W

Γ Set of coordinates along the height axis

Γ ′ Set of coordinates along the height axis without considering rotations

Γ0 Set of coordinates along the height axis excluding γ = H

XVII

LIST OF SYMBOLS

II.b Customer-related symbols

cij Cost of directed edge (i, j) ∈ E
DDi Due date of customer i

Ji Set of items demanded by customer i

JBi Set of backhaul items supplied by customer i

JLi Set of linehaul items demanded by customer i

mi Number of items demanded by customer i

mB
i Number of backhaul items supplied by customer i

mL
i Number of linehaul items demanded by customer i

RTi Ready time of customer i

STi Service time of customer i

II.c Item-related symbols

aik Base area of item Iik that is directly supported by any other item

dik Weight of item Iik

d̂ik Weight of item Iik including the weight transmitted to it from above

fik Fragility flag of item Iik

hik Height of item Iik

Iik Item k demanded by customer i

Ii Item i (alternative notation)1

lik Length of item Iik

l̂ik Length of the edge of a packed item Iik that is parallel to the length

axis of the loading space

l̃ikjq Length of the support area of item Ijq for item Iik

pik Load bearing strength of item Iik

suppikjq Base area of item Iik that is supported by item Ijq

t0ik First stage including a placement of item Iik in a loading space

t1ik Last stage including a placement of item Iik in a loading space

wik Width of item Iik

ŵik Length of the edge of a packed item Iik that is parallel to the width

axis of the loading space

w̃ikjq Width of the support area of item Ijq for item Iik

1 For the sake of brevity, this shorted notation is occasionally used. That is, all symbols defined
here for item Iik can also be used with just one index for an item Ii.

XVIII

LIST OF SYMBOLS

Aik Subset of A referring to item Iik

A′ik Subset of A′ referring to item Iik

αik α-coordinate of the back-left-bottom corner of item Iik

αoik α-coordinate of the front-right-top corner of item Iik

Bik Subset of B referring to item Iik

B ′ik Subset of B ′ referring to item Iik

βik β-coordinate of the back-left-bottom corner of item Iik

βoik β-coordinate of the front-right-top corner of item Iik

Γik Subset of Γ referring to item Iik

Γ ′ik Subset of Γ ′ referring to item Iik

γik γ-coordinate of the back-left-bottom corner of item Iik

γoik γ-coordinate of the front-right-top corner of item Iik

δik Closest possible position of an operator when (un-)loading item Iik

Πik Placement of item Iik consisting of its coordinates, orientation and

stage interval of the item being loaded

II.d Vehicle-related symbols

D Vehicle weight capacity

H Vehicle loading space height

L Vehicle loading space length

PPv Packing plan of vehicle v

nv Number of customers in route v

Rv Route of vehicle v as a sorted subset of customers

W Vehicle loading space width

II.e Other instance- and problem-related symbols

cmax Maximum cost of any directed edge (i, j) ∈ E
M1,M2 “Big-M”

M3,M4 “Big-M”

n Number of customers

nB Number of backhaul customers

nL Number of linehaul customers

s Solution

XIX

LIST OF SYMBOLS

startiv Time at which vehicle v begins service at customer location i

V SP Vertical stability parameter

vmax Number of available vehicles

vused Number of used vehicles

z(s) Objective function value/ total routing cost of solution s

α Coordinate value on the length axis

β Coordinate value on the width axis

γ Coordinate value on the height axis

λ Maximum reach

σvαβγ Binary support variable for point (α, β, γ) in vehicle v

σvBαβγ Binary support variable for point (α, β, γ) in vehicle v considering

only backhaul items

σvLαβγ Binary support variable for point (α, β, γ) in vehicle v considering

only linehaul items

ϕikvαβγ Binary occupation variable for item Iik, point (α, β, γ) in vehicle v

II.f Decision variables

oik Orientation decision variable of item Iik

xtvij Binary routing decision variable for nodes i and j, vehicle v, stage t

πiktvαβγ Binary placement decision variable for item Iik, stage t, vehicle v,

point (α, β, γ)

III Symbols used in algorithms

III.a Packing

Sets

IS Sorted item sequence (input for packing procedure)

Jdsupp Set containing all Jdsuppik

Jdsuppik Set of items directly supporting item Iik

JLBSik Set of items to be considered when determining bearing loads based

on a reference item Iik

Jsuppik Set of items supporting item Iik

K Set of already placed items

XX

LIST OF SYMBOLS

P Set of possible placement positions

Parameters

cs Cache size (maximum number of columns in the cache matrix)

max enum Maximum number of items for which a full enumeration of an item

sequence is tested for packing feasibility if necessary

Other variables

hmin Shortest height of any item

lmin Shortest horizontal edge (length/width) of any item

loadunitik (ua) Load carried by unit area ua of item Iik

lpu Load per transmitted per unit area

MaxShift Auxiliary variable for shifting an item in order to obtain reachability

ps Percentage support

sp Space (open space heuristic)

Π′ik Placement of item Iik consisting of its coordinates and orientation

III.b Routing

Sets and graphs

ENG Edge set in the neighbour graph NG

MC Set of missing customers

NNG Node set in the neighbour graph NG

NG Neighbour graph

R′v Route of vehicle v as a sorted subset of customers excluding the depot

Rem Set of customers to be removed from a solution

savList Sorted list of all savings

Ψ Set of heuristics

Parameters

itermax Termination criterion (number of iterations)

iterimpr Termination criterion (number of iterations without improvement)

rct Reaction parameter

seg Segment length

XXI

LIST OF SYMBOLS

tmax Termination criterion (computation time limit)

η Noise parameter

θ Start temperature control parameter

κ Cooling rate

ρ Determinism parameter

φ1, φ2, φ3 Score adjustment parameters

ω1, ω2, ω3, ω4 Shaw weights

Other variables

arrivali Arrival time at customer location i

cNGij Cost of edge (i, j) ∈ ENG
c∗ij Normalized cost of edge (i, j) ∈ E (in the range [0,1])

c̄v Average distance of route v

c̄v\i Average distance of route v without customer i

cntψ Counter of heuristic ψ

cost(p) Insertion cost for position p

cost(insipv) Cost for inserting customer i into position p in route v

cost′(p) Modified insertion cost for position p

cxi Coordinate (abscissa) of the position of customer i

cyi Coordinate (ordinate) of the position of customer i

dLi Total weight of all linehaul items of customer i

dBi Total weight of all backhaul items of customer i

dLv Total weight of all linehaul items in route v

dBv Total weight of all backhaul items in route v

DCi Number of connections of customer i with the depot

insiv Best feasible insertion of customer i into route v

insivp Insertion of customer i into route v at position p

nmc Number of missing customers

nrem Number of customers to be removed in an ALNS iteration

netvoli Net demand volume of customer i

netvolmax Maximum net demand volume of all customers

netvolmin Minimum net demand volume of all customers

netvol∗i Normalized net demand volume of customer i (in the range [0,1])

XXII

LIST OF SYMBOLS

nomax Upper bound of interval for number of removed customers

nomin Lower bound of interval for number of removed customers

penmc Penalty term for missing customers

penv Penalty term for violation of the tour number restriction

RT ∗i Normalized ready time of customer i (in the range [0,1])

regreti Regret value of customer i

relate(i, j) Relatedness measure between customers i and j

scrψ Score of heuristic ψ

sbest Best found solution

scurr Current solution

sinit Initial solution

snext Neighbour of solcurr

savij Savings of connecting customers i and j

Temp Temperature (simulated annealing)

vnoi Vehicle number to which customer i is assigned

volLi Total volume of all linehaul items of customer i

volBi Total volume of all backhaul items of customer i

volLv Total volume of all linehaul items in route v

volBv Total volume of all backhaul items in route v

y Random number

z′(s) Total cost of solution s including penalty terms

εij Binary variable: = 1, if customers i and j are in the same tour

Ωψ Weight of heuristic ψ

XXIII

Chapter 1

Introduction

The transportation of goods is a major logistical challenge that many companies

face. Customers expect inexpensive and fast deliveries. In order to ensure this,

supplying companies strive for organizing their transportations as efficiently as pos-

sible. In particular, they want to avoid driving over long distances and utilizing

more vehicles than necessary. Inefficiencies can be caused, for example, by long

empty runs, i.e. vehicles driving without having loaded any goods. In 2016, empty

vehicle runs amounted to approximately 20.2 % of the total vehicle-kilometres in

the European Union (eurostat, 2017). Realizing return transportations with deliv-

ery trucks, i.e. using them for picking up goods in the course of their delivery tours,

can be an effective measure for reducing empty runs. Consequently, reductions in

travelled distances, in the number of required vehicles, in fuel consumption and in

CO2 emission can be achieved.

Return transportation is called backhauling and it is particularly interesting in prac-

tice for returning empty packaging material. For example, food is delivered in cooling

boxes to supermarkets or clothes are transported in cardboard boxes to the shops.

Both types of boxes need to be returned to the warehouse. In the automotive sector,

components are delivered by suppliers in transportation containers that are usually

exchanged one-to-one with empty containers at the delivery location (Klug, 2010).

Instead of collecting empty containers, components can also be exchanged by fin-

ished products in one route. Another example concerns the delivery of furniture or

kitchen appliances to customers, and the collection of old or damaged goods from

them (Gendreau et al., 2006). For instance, an old washing machine is picked up

when a new one is delivered. The returned goods can have volumes (or weights)

similar to the delivered goods and require the full utilization of the vehicle loading

spaces. The pickup volume can also be considerable lower than the delivery volume,

which applies, in particular, if the returned boxes are foldable.

In the scientific literature, delivery problems are generally known as vehicle routing

problems (VRPs). Due to their great relevance in practice, VRPs are some of the

most widely studied combinatorial optimization problems. In the basic version of

the problem, the capacitated VRP (CVRP), goods must be delivered from a central

1

1 Introduction

depot to a set of customers. A solution to the problem requires the assignment of

customers to routes and the determination of routing sequences (e.g. Irnich et al.,

2014b). Furthermore, backhaul transportations have gained increasing interest in

research. General pickup and delivery problems comprise all VRPs with transporta-

tions from and to customers (Parragh et al., 2008). Such problems can either deal

with the transportation of goods between the customer locations, or between the cus-

tomers and a depot. The latter are denoted as VRPs with backhauls (VRPBs) and

they are in the focus of this thesis. Three particular problems are considered: the

VRP with clustered backhauls (VRPCB), the VRP with mixed backhauls (VRPMB)

and the VRP with simultaneous delivery and pickup (VRPSDP). The VRPCB and

the VRPMB are characterized by the division of customers into linehaul (delivery)

and backhaul (pickup) customers. Applications can be found, for example, in the

grocery sector. Groceries are delivered to supermarkets and picked up from sup-

pliers (Irnich et al., 2014a). Within one route, all linehaul customers are visited

before the backhaul customers in the case of the VRPCB. Linehaul and backhaul

customers can be visited in the route in arbitrary sequence if a VRPMB is consid-

ered. The third variant is the VRPSDP. Here, it is assumed that all customers have

both linehaul and backhaul demands. Each customer must be visited exactly once

so that the vehicle delivering the linehaul goods simultaneously picks up the back-

haul goods. The examples mentioned above (deliveries for supermarket, automotive

manufacturers etc.) can constitute applications for the VRPSDP.

In classical VRP formulations, the demands for the transported goods (and, ac-

cordingly, vehicle capacities) are specified in one-dimensional units, representing,

for example, their weights, volumes or quantities. However, often bulky goods are

transported. In this case, the spatial dimensions of the goods must be taken into ac-

count when loading a vehicle, and utilizing the complete volume of the loading space

is usually not possible. That is, considering only the volume (or weight) capacity

of a vehicle in the planning process can result in routes that cannot be executed.

Instead of (exclusively) taking capacity restrictions into account, packing plans are

required for all vehicles. Therefore, the goods are explicitly assumed to be three-

dimensional (3D) cuboid items in this thesis in order to provide a more realistic

modelling of practically relevant problems. The resulting problems belong to the

group of vehicle routing problems with three-dimensional loading constraints (3L-

VRPs).

2

1 Introduction

The CVRP with three-dimensional loading constraints (3L-CVRP) consists in de-

livering 3D items from a central depot to a set of customers. It was first presented

by Gendreau et al. (2006). The authors introduce a set of packing constraints con-

sidering vertical stability, fragility, item orientation and loading sequence. This set

is adopted by the majority of the researchers, who have tackled the problem sub-

sequently. In this thesis, additional constraints regarding the robust stability of

item stacks, the reachability and the load bearing strength of items are presented,

modelled and implemented into heuristics for solving the packing problem.

Unlike the 3L-CVRP, the 3L-VRP with mixed backhauls (3L-VRPMB) and the

3L-VRP with simultaneous delivery and pickup (3L-VRPSDP) have been studied

very rarely in the literature before. Those problems are particularly challenging as

they require the simultaneous transport of linehaul and backhaul items. Several al-

ternative loading approaches are suggested in the following for meeting the different

transportation requirements.

Furthermore, time windows are of great importance in practice as (un-)loading op-

erations might not be possible at any time. Therefore, time windows are also consid-

ered in this thesis and constitute one component of the handled integrated routing

and packing problems.

A hybrid solution approach is proposed that allows for dealing with different variants

of the 3L-VRP considering backhauls and time windows. The routing subproblem

is tackled by means of an adaptive large neighbourhood search (ALNS) based on

the approach presented by Ropke and Pisinger (2006a). A number of new opera-

tors and further modifications are proposed for improving the algorithm. A packing

procedure is integrated into the ALNS in order to ensure the feasibility of the ob-

tained solutions with respect to the packing subproblem. For this purpose, different

(alternative) packing heuristics are available including rather simple construction

heuristics and more sophisticated local search-based heuristics.

Extensive numerical experiments are conducted in order to evaluate the packing

heuristics, the ALNS, the hybrid algorithm, different loading approaches and the

impact and suitability of additional packing constraints.

This thesis is organized as follows:

In Chapter 2, all considered problem variants are described in detail. This includes

the formulation of constraints regarding the respective routing problems as well

as the definition of various packing constraints. The loading approaches applied to

3

1 Introduction

each problem are presented. Moreover, the problems are formulated as mathematical

optimization models.

An overview of the relevant literature is given in Chapter 3. The literature review

focuses mainly on the VRP with time windows and with backhauls, loading problems

and VRPs with loading constraints.

The hybrid solution approach is described in Chapter 4. First, several packing

heuristics are described. In particular, the implementation of the packing constraints

is outlined. Subsequently, the ALNS for solving the routing subproblem and the

integration of the packing procedure into the routing procedure are presented.

Chapter 5 is devoted to the numerical experiments. Initially, the set-up of the

numerical experiments and used instances are described, followed by the presentation

and analysis of the results.

The thesis is summarized in Chapter 6. In addition, insights for research and practice

are provided based on the previously presented results and an outlook to further

research is given.

4

Chapter 2

Problem description and formulation

In this chapter, a detailed description of the problems regarded in this thesis is

provided. The problem descriptions are based on the description introduced by

Gendreau et al. (2006) for the 3L-CVRP. In addition, further practically relevant

packing constraints, which have not been considered by Gendreau et al. (2006), are

addressed.

Different combined routing and packing problems are studied. These problems in-

clude the 3L-VRP with time windows (3L-VRPTW), and 3L-VRPs with backhaul

deliveries, particularly, the 3L-VRP with clustered backhauls (3L-VRPCB), the 3L-

VRP with mixed backhauls (3L-VRPMB) and the 3L-VRP with simultaneous de-

livery and pickup (3L-VRPSDP). Time windows represent a component of all of

these problems. Their characteristics are explained in greater detail in Chapter 2.1.

Hereinafter, the regarded problems are collectively referred to as 3L-VRPs with

backhauls and time windows (3L-VRPBTWs). In Chapter 2.2, mathematical opti-

mization models for the considered variants of the 3L-VRPBTW are presented.

2.1 Problem description

In this section, the problem variants considered in this thesis are described. For this

purpose, Chapter 2.1.1 provides a general description of 3L-VRPBTWs including

the introduction of sets, constants and constraints regarding solutions, routes and

packing plans. Based on this template, the specific problem variants can be described

in a compact manner (Chapter 2.1.2).

2.1.1 Vehicle routing problems with three-dimensional loading

constraints, backhauls and time windows

In a (general) 3L-VRPBTW, goods have to be transported between a central depot

and a given set of customers under consideration of time windows. The customer

demands can be linehaul (delivered from the depot to the customers) or backhaul

demands (picked up from the customers and brought to the depot). They are

represented as sets of three-dimensional, cuboid items that are transported between

5

2 Problem description and formulation

the depot and the customers by means of a fleet of homogeneous vehicles. Each

customer must be assigned to a vehicle, and a route (i.e. the visiting sequence of

the customers) and a packing plan must be provided for each vehicle. The objective

is to minimize the total travel distance (TTD).

The problem can be described using a graph-theoretic model where the nodes rep-

resent the locations of the customers and the depot. Directed edges2 describe the

road network between them. Thus, let G = (N,E) be a weighted, directed graph

consisting of the node set N = {0, 1, . . . , n}, where node 0 represents the depot and

the nodes 1, . . . , n represent the n customers, and the edge set E = {(i, j)|i, j ∈ N }.
Nc denotes the set of customers, i.e. Nc = N \ {0}. Furthermore, let cij be the non-

negative cost corresponding to edge (i, j) ∈ E . The cost cij represents the distance

between the two nodes i and j (i, j ∈ N). It is assumed that all vehicles travel with

a speed of one distance unit per time unit. If time windows are considered, the costs

cij refer to the travel time between two locations i and j. It is further assumed that

the costs satisfy the triangle inequality.

V = {1, . . . , vmax} denotes the set of vmax available homogeneous vehicles that have

a given weight capacity D and a three-dimensional cuboid loading space of length

L, width W and height H. L, W and H are assumed to be integer. A vehicle’s

loading space is embedded in the first octant of a 3D Cartesian coordinate system,

where length, width and height of the loading space are parallel to the α-, β- and

γ-axis, respectively. Thus, the rear is the W×H-plane at (L, 0, 0).

Each customer i ∈ Nc demands a set Ji = {1, . . . ,mi} of mi cuboid items (boxes).

An item Iik (i ∈ Nc, k ∈ Ji) has a length lik, width wik, height hik and a weight dik.

All item lengths, widths and heights are assumed to be integer. Depending on the

problem variant, the customer and item sets can be subdivided into linehaul and

backhaul sets (see below). A loading space and an example arrangement of items is

shown in Figure 2.1.

Moreover, each location i ∈ N can have a hard time window that has to be adhered

to, i.e. an earliest possible start time of service RTi (“ready time”) and a latest

possible start time DDi (“due date”). Furthermore, STi represents the service time

that is needed to load or unload all items at location i ∈ N . A location must not

be approached after its due date. If a vehicle arrives before the ready time, it has

2 In accordance with (for example) Diestel (2000), the term “directed edges” is used. An
equivalent term employed in the literature is “arcs” (cf. e.g. Domschke et al., 2015).

6

2 Problem description and formulation

to wait and cannot start service until the ready time.

I11

I21

I22

I31

I32

I12

β

γ

α

top

bottom

driver’s cabin

rear

left right

L

W

H

Figure 2.1: Example arrangement of items in a loading space

Let vused be the number of used vehicles in a given solution consisting of vused routes

and vused packing plans. It is assumed that each used vehicle performs exactly one

route. A route Rv (v = 1, . . . , vused) is defined as a sorted sequence of locations

(0, i1, . . . , inv , 0) including nv (nv ≥ 1) customer locations. Moreover, each route

Rv must be provided with a packing plan PPv that contains information about the

position and orientation of each included item. Let t be the stage of a route in which

a vehicle travels from one location to the next in the route. A route Rv containing

nv customer locations consists of nv + 1 stages. The depot is left at the beginning

of stage t = 0 and the vehicle returns to the depot at the end of stage t = nv.

Figure 2.2 illustrates a small instance with n = 5, and delivery and pickup demands

at each customer location. A possible solution consisting of two routes and the

respective stages are shown.

0

1

2

3 4

5

sta
ge
t =

0stage t =
1

sta
ge
t =

2 stage t =
3 sta

ge
t =

0

stage
t
=

1

stage t =
2

route 1 route 2

I11 I12

I21 I22

I31
I32 I41 I42 I43

I51 I52
I53

I13 I14

I23 I24 I25

I33 I34 I44

I54 I55

depot
customer
selected directed edges

linehaul:

linehaul:

linehaul: linehaul:

linehaul:

backhaul:

backhaul:

backhaul: backhaul:

backhaul:

Figure 2.2: Example 3L-VRPBTW instance with possible routes

7

2 Problem description and formulation

Let the point (αik, βik, γik) be the point where item Iik (i ∈ Nc, k ∈ Ji) is placed

with its back-left-bottom corner.3 This is the corner point of an item, that is closest

to the origin of the coordinate system representing the loading space. (αoik, β
o
ik, γ

o
ik)

refers to the opposite corner point, i.e. the front-right-top corner point of Iik, which

depends on the chosen orientation of the item. The corner points of an item with a

given placement and orientation are illustrated in Figure 2.3.

(αik, βik, γik)

(αoik, β
o
ik, γ

o
ik)

(0, 0, 0)

Iik

β

α

γ

Figure 2.3: Corner points describing the placement of an item with a chosen orientation

Furthermore, let
[
tstartik , tendik

]
be the interval of stages in which item Iik is within the

loading space
(
tstartik ≤ tendik

)
. That is, tstartik = 0 if Iik is delivered from the depot to

customer i (linehaul). tendik refers to the stage in which customer i is visited and Iik

is unloaded. If item Iik is picked up from i and delivered to the depot (backhaul),

tstartik is the stage in which i is left, i.e. after Iik is loaded. The item remains in

the loading space until tendik = nv which is the stage when the vehicle returns to the

depot. Two items Iik and Ijq are simultaneously in one loading space if customers

i and j are serviced in the same route (of course, also items of the same customer

can be regarded), and if:

max(tstartik , tstartjq) ≤ min(tendik , tendjq). (2.1)

Consequently, a packing plan contains information about the position and orienta-

tion of a placed item as well as about the stages of a route in which the item is part

of the load. The packing information of item Iik can be formulated as an 8-tuple:

Πik =
(
αik, βik, γik, α

o
ik, β

o
ik, γ

o
ik, t

start
ik , tendik

)
. (2.2)

It is assumed that any reloading during the route is forbidden. Hence, each item

3 See Figure 2.1 for the definition of “back”, “left” and “bottom”.

8

2 Problem description and formulation

is assigned exactly one position in the corresponding packing plan. A packing plan

PPv contains information about all items transported in route Rv:

PPv = {Πik|i ∈ Rv \ {0}, k ∈ Ji}. (2.3)

An exemplary packing plan with the consecutive item arrangements in the loading

space is depicted in Figure 2.4.4 It corresponds to route 1 of the example solution

from Figure 2.2. For example, the linehaul item I31 is loaded in the vehicle from

tstart31 = 0 to tend31 = 2. The backhaul item I13 is loaded from tstart13 = 1 to tend13 = 3.

Thus, both are simultaneously in the loading space from t = max(tstart13 , tstart31) = 1

to t = min(tend13 , t
end
31) = 2.

0 01 2 3
t = 0 t = 1 t = 2 t = 3

I31

I13

Figure 2.4: Exemplary packing plan along a route

The objective of a 3L-VRPBTW is to minimize the TTD. That is, one has to deter-

mine a feasible solution with minimum total costs of all travelled edges. Definitions

of the feasibility of solutions, routes and packing plans are given below.

A solution consisting of vused routes and packing plans is feasible if

(S1) all routes Rv and packing plans PPv (v = 1, . . . , vused) are feasible (see

below),

(S2) each packing plan PPv contains all items of all customers i serviced in

the corresponding route (i ∈ Rv), and no other,

(S3) each customer i ∈ Nc is included in exactly one route,

(S4) the number of used vehicles does not exceed the number of available

vehicles vmax.

4 The depicted packing plan might not satisfy all of the packing constraints listed below.

9

2 Problem description and formulation

A route Rv is feasible if

(R1) it contains at least one customer location, and starts and ends at the

depot,

(R2) each customer i ∈ Rv \ {0} is included in Rv exactly once,

(R3) the sum of weights of all simultaneously transported items does not ex-

ceed the vehicle weight capacity D,

(R4) no location i ∈ Rv is visited after its due date DDi (if time windows are

considered).

Below, the constraints are specified more detailed and adapted to the considered

problem variants if necessary (Chapter 2.1.2).

Furthermore, a feasible packing plan PPv must contain at least one item and in-

formation about the placement for each included item. It is assumed that any

reloading during the route is forbidden, i.e. each item is assigned exactly one place-

ment position. The packing subproblem constitutes a three-dimensional orthogonal

packing problem (OPP). An OPP is a satisfiability problem with the objective of

determining whether or not a given set of items can be placed in a given container

(loading space) under consideration of certain constraints.5 Wäscher et al. (2007)

provide a detailed typology of packing optimization problems. Leaving aside the

fact that the OPP does not contain an optimization criterion, it can be classified

as a three-dimensional single large object placement problem (3D-SLOPP), given

that the items to be packed are weakly heterogeneous, or a three-dimensional single

knapsack problem (3D-SKP), given that the items are strongly heterogeneous.

In the following, different packing constraints are presented. In this thesis, different

combinations of packing constraints are considered, i.e. not necessarily all of the

constraints must be satisfied. The regarded combinations are introduced below.

Geometrical constraints

The two most basic geometrical constraints (Bortfeldt and Wäscher, 2013) demand

that

5 See e.g. Fekete et al. (2007), the OPP is addressed further in the literature review (Chap-
ter 3.2).

10

2 Problem description and formulation

(P1) all items assigned to a vehicle must be positioned entirely within the

vehicle’s loading space, and

(P2) any two items that are simultaneously in one vehicle must not overlap.

Furthermore, it is assumed that

(P3) only orthogonal placements are permitted, i.e. the edges of the items

must lie parallel to the loading space edges.

A feasible item arrangement with respect to (P1)-(P3) as well as violations of these

constraints are illustrated in Figure 2.5.

allowed not allowed

Figure 2.5: Permitted and prohibited item placements concerning the geometrical con-
straints

Introducing the 3L-CVRP, Gendreau et al. (2006) have applied the following four

packing constraints in addition to the geometrical constraints: fixed vertical orien-

tation, vertical stability, fragility and LIFO (loading sequence).

Fixed vertical orientation

Due to (P3), six different spatial orientations are possible for an item. Each dimen-

sion can serve as the height dimension, leading to two options for the remaining

dimensions to be the length or width dimension, respectively. In practice, often

“This way up!” labels can be found, for example on boxes with fragile items, and

only two of the six possible orientations are permitted (see Figure 2.6).

Therefore, items have fixed vertical orientations in the packing problem considered

here, i.e.

(P4) the height dimension of any item Iik (i ∈ Nc, k ∈ Ji) is fixed. The items

can be rotated by 90◦ on the horizontal plane.

11

2 Problem description and formulation

Iik

allowed not allowed

lik

h
ik

w ik

Figure 2.6: Permitted and prohibited item rotations

Vertical stability

Several aspects have to be considered when items are stacked above other items. One

of these aspects is stability. A distinction can be drawn between vertical (or static)

stability and horizontal (or dynamic) stability. The former refers to the capability of

the items to withstand the gravity force acceleration over them, i.e. to avoid items

from falling down. Dynamic stability, on the other hand, refers to moving trucks. It

aims at avoiding a shift of the cargo along the length and width axes of the loading

space during the transport (Junqueira et al., 2012b).

In order to achieve vertical stability,

(P5) a given threshold percentage V SP (“vertical stability parameter”, 0 <

V SP ≤ 1) of the bottom face of any item Iik (i ∈ Nc, k ∈ Ji) must be

supported either by the container floor or by the top faces of other items

on which Iik is placed.

Usually, a value V SP ≥ 0.5 is assumed in order to guarantee stability.

The area that is supported by items placed beneath a reference item is illustrated

in Figure 2.7.

area supported by the lower items

Figure 2.7: Illustration of a supported area

12

2 Problem description and formulation

Horizontal stability is provided if the items are either adjacent to the side walls

of the container or to other items. In the following, only vertical stability will be

considered.

Fragility

A fragility flag fik is assigned to each item Iik (i ∈ Nc, k ∈ Ji), where

fik =

1, if item Iik is fragile,

0, otherwise.

(2.4)

The fragility constraint states that

(P6) a non-fragile item must not be placed on top of any fragile item.

As illustrated in Figure 2.8, fragile items can be stacked above each other and above

non-fragile items.

non-fragile non-fragile

non-fragile non-fragilefragile

fragile

fragile

fragile

not allowedallowed

Figure 2.8: Permitted and prohibited item constellations with respect to the fragility
constraint

LIFO

As mentioned above, any reloading during the route is forbidden. In particular, it

must be possible to unload each item by straight movements towards the (un)loading

side without moving other items. Thus, the following (general) LIFO (last in first

out) constraint has to be satisfied:

(P7) The loading or unloading of any item must not be obstructed by any

other item placed above or in front of it.

Below, the constraint is defined more detailed for the individual problem variants

taking linehaul and backhaul items into account. The name LIFO refers to the

loading sequence, which should represent the reverse unloading sequence.

13

2 Problem description and formulation

Although it is assumed that items are loaded and unloaded by straight movements

towards the unloading side (i.e. in horizontal direction), no item must be placed

above another item that is delivered earlier. One reason is that the vertical stability

of the item placed above should not be impaired when the item beneath is removed.

Furthermore, it is assumed that items might be loaded and unloaded using forklifts.

Therefore, they may need to be lifted in order to be moved (Ceschia et al., 2013).

In Figure 2.9 a possible arrangement of five items is illustrated. It is assumed that

they have to be delivered in the sequence (I11, I21, I31, I41, I51). Thus, no item

must be placed above item I11, i.e. in the shaded area. As can be seen, items I21

and I31 violate this constraint. Item I31 must not be placed directly on top of item

I11 because it would have to be moved when item I11 is unloaded. As it might be

necessary to elevate an item when it is unloaded, no item may be placed anywhere

above item I11 either (i.e. without touching its top face), like item I21 does.

I11
I41

I51

I21

I31

β

γ

Figure 2.9: Item arrangement violating the LIFO constraint

In the following, the expression that an item Iik is placed in front of another item

Ijq refers to a placement of Iik between item Ijq and the (un)loading side, which

can either be the rear side or a long side (see below). Analogously, an item Iik is

behind item Ijq if item Ijq is placed between item Iik and the (un)loading side. These

aspects are illustrated in Figure 2.10 where the relative position of an item Iik is

in front of an item Ijq in both cases although its absolute positions are different.

The (un)loading side, which is highlighted in the figure, must be considered. In

Figure 2.10a, the vehicle is loaded from the rear side. In Figure 2.10b, it is loaded

from a long side.

14

2 Problem description and formulation

un
loa

din
g d

ire
cti
on

Iik

Ijq

L

W

H

β

γ

α

(a) rear loading

unloading direction

Iik
Ijq

L

W

H

β

γ

α

(b) side loading

Figure 2.10: An item placed in front of another item depending on the loading approach

The above-mentioned constraints are the packing constraints introduced by Gen-

dreau et al. (2006) for the 3L-CVRP. Some additional constraints are considered

since they help to better depict real-world problems.

Reachability

This constraint considers the reachability of the items, i.e. a human operator or

a forklift must be able to reach an item without having to step onto other items

(Junqueira et al., 2012a; Ceschia et al., 2013):

(P8) The horizontal distance between any item Iik (i ∈ Nc, k ∈ Ji) and the op-

erator must not exceed a given maximum reach λ (0 ≤ λ ≤ L), provided

that the operator stands as close as possible to the item.

λ can, for example, be the arm’s length of the worker. The reachability constraint is

illustrated in Figure 2.11. Suppose all items belong to different customers, who are

serviced in the sequence (1, 2, 3, 4, 5). When delivering item I11 the operator has the

illustrated position. His maximum reach is illustrated by the shaded area. Thus,

item I11 can be unloaded since it is close enough to the operator. The distance to

item I21, however, is too large as the operator position is restricted by the front side

of item I31. This arrangement would, thus, violate the reachability constraint.

In order to determine the reachability of an item Iik, only those (other) items are

considered that are either unloaded later than Iik in the route or at the same lo-

cation as it. Naturally, items that are unloaded earlier than Iik do not impair the

reachability of Iik. With respect to other items of the same customer i, only those

15

2 Problem description and formulation

items that are placed beneath Iik are taken into account as they cannot be unloaded

before Iik. These remarks apply to linehaul items. In the case of backhauls, items

picked up before the reference item are considered.

α

γ λ

I11

I21

I31

I41

I51

Figure 2.11: Arrangement of reachable and non-reachable items

Examples are illustrated in Figure 2.12. Items of the same customer i that can be

unloaded without moving the reference item Ii1, such as item Ii2 in Figure 2.12a, do

not impact the reachability of item Ii1. They can be removed beforehand. Item Ii2

in Figure 2.12b, which is placed below the reference item must be regarded, though,

as it cannot be unloaded before item Ii1.

Ii1

Ii2

Ij1

(a) Item Ii2 does not impair the reach-
ability of Ii1.

Ii1

Ii2

Ij1

(b) Item Ii1 cannot be reached due to
Ii2.

Figure 2.12: Item constellations to be considered for reachability

Robust stability

The robust stability constraint is an extension of the vertical stability constraint

(Ceschia et al., 2013). Although each individual item might be supported sufficiently,

unstable stacks can result from considering only direct support. An example is

depicted in Figure 2.13. All items are supported at least 75 % by the respective

items underneath, which is sufficient to support the centres of mass of the individual

16

2 Problem description and formulation

items. However, in order to be actually stable, the centre of mass of the whole stack

must be supported (e.g. cf. Böge and Böge, 2017, p. 190ff.).

I11 I81

I21

I31

I61

I51

I71

I41

item length width height weight
Iik ∈ Jm

Iik l̂ik ŵik hik dik
I11 3.75 1.00 1.50 5.00
I21 5.00 1.00 1.00 4.00
I31 3.00 1.00 1.50 4.00
I41 2.60 1.00 1.50 15.00
I51 7.40 1.00 1.20 15.00
I61 4.00 1.00 1.50 6.00
I71 4.50 1.00 2.00 20.00
I81 3.00 1.00 1.00 5.00

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

0 α

γ

items in the considered item stack (Jm)

items excluded from the considered item stack (Jm)

(αm, βm, γm): centre of mass of the item stack

(αm71, β
m
71, γ

m
71): centre of mass of I71

Figure 2.13: Item stack with an unsupported centre of mass

This is not the case in the shown example. Let (αm, βm, γm) be the coordinates of

the centre of mass of the current item stack and Jm be the set of items considered

in the stack. Furthermore, (αmik, β
m
ik , γ

m
ik) denotes the coordinates of the centre of

mass of item Iik. It is assumed that all items have the same density at every point.

Hence, the mass centre of an item is at its geometrical centre, i.e. where its space

diagonals intersect (exemplarily illustrated for I71 in Figure 2.13). The centre of

mass of the stack is determined as follows:

αm =

∑
Iik∈Jm dik · αmik∑

Iik∈Jm dik
, (2.5)

βm =

∑
Iik∈Jm dik · βmik∑

Iik∈Jm dik
, (2.6)

γm =

∑
Iik∈Jm dik · γmik∑

Iik∈Jm dik
. (2.7)

In the example in Figure 2.13, the relevant stack consists of: Jm = {I21, I31, I41, I51,

I61, I71}. Items I11 and I81 are not regarded because I11 supports the stack and

I81 does not support any other item. The stack would tilt over the edge of I11 at

α = 3.75 as its centre of mass exceeds it (αm = 4.27).

In order to prevent such situations, the robust stability constraint is formulated as

follows:

(P9) A given threshold percentage V SP of the bottom face of any item Iik (i ∈

17

2 Problem description and formulation

Nc, k ∈ Ji) must be supported either by the container floor or – continu-

ously until the container floor, i.e. at any height – by items below Iik in

the respective item stack.

The parameter value can also be assumed to be V SP ≥ 0.5 in order to ensure robust

stability.

If (P9) is satisfied, the centre of mass of an item stack is always supported. For the

evaluation of the robust stability of a reference item, all items are considered whose

parallel projections to the α-β-plane of the loading space (subsequently called α-β-

projections) overlap with the α-β-projection of the reference item and that (directly

or indirectly) support it.

In the following, it is to be distinguished whether an item is directly or indirectly

supported by another item. An item Ijq supports another item Iik directly if the

bottom face of item Iik touches the top face of item Ijq. An item Ijq supports another

item Iik indirectly, if it directly supports any item that directly supports item Iik.

Moreover, if an item Ijq directly supports any item that indirectly supports item

Iik, Ijq also supports Iik indirectly.

In the example in Figure 2.13, item I71 is directly supported by item I51, and indi-

rectly supported by the items I11, I21, I31 and I41. However, only the items I21, I41

and I51 need to be considered for the robust stability as they are actually beneath

I71, i.e. their α-β-projections are overlapping. The supporting areas provided by

I21, I41 and I51 are illustrated in Figure 2.14.

I11

I21

I31

I61
I71

I81

I51

I41

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

0 α

γ

supporting area for I71 provided by. . .

. . . I51

. . . I41

. . . I21

Figure 2.14: Item stack with direct and indirect support for a reference item

Assuming that V SP = 0.75, I51 offers sufficient support, whereas items I21 and I41

18

2 Problem description and formulation

do not. Hence, the robust stability constraint is violated in this example. Item I81

is also placed beneath item I71. Yet, it does not offer any support for it and must,

thus, not be considered for the robust stability of I71.

Load bearing strength

If an item is stacked on top of another item, the above-mentioned fragility of these

items can be considered in order to assure their integrity. Additionally (or alter-

natively), the load bearing strength of an item can be taken into account, i.e. the

weight an item can bear per area unit without being damaged. Hereafter, let pik be

the load bearing strength of item Iik. Thus,

(P10) the maximal admissible pressure pik that may be applied anywhere on

the top face of any item Iik must not be exceeded by the items placed

above item Iik (i ∈ Nc, k ∈ Ji).

pik is given in weight units per area unit. It is assumed that the weight is evenly

distributed over the bottom area of an item and that there is no distinction between

the load bearing strength of the centre and the edges of an item (Bischoff, 2006;

Junqueira et al., 2012b).

The load bearing strength constraint can be modelled and implemented in different

ways. A prominent assumption is that the weight of an item is transmitted (only)

straight downwards (Ratcliff and Bischoff, 1998). However, considering the actual

physical circumstances, the weight is rather spread and distributed over all items

that support – directly or indirectly – a given item (cf. e.g. Böge and Böge, 2017, p.

406ff.). Both approaches are considered in this thesis and are explained in greater

detail in Chapter 2.2.1.

This quantitative restriction can also replace the qualitative fragility restriction that

was introduced earlier. In this case, instead of having a fragility flag, fragile items

are assigned a load bearing strength of zero or a very low load bearing strength,

respectively.

In this thesis, different sets of packing constraints are regarded. They are presented

in Table 2.1. First, the set of constraints as it is utilized by Gendreau et al. (2006)

is applied (C1). Furthermore, the additional constraints reachability, robust stability

and load bearing strength are considered individually in addition to set C1 (C2-

19

2 Problem description and formulation

C4). In the course of this, the robust stability (P9) replaces the vertical stability

constraint (P5) and the fragility constraint (P6) is replaced by the load bearing

strength constraint (P10). Finally, all of the additional constraints are taken into

account, replacing former constraints if necessary (C5).

Table 2.1: Overview of the sets of packing constraints

packing constraints
set GC VO VS FR LIFO R RS LB

(P1)-(P3) (P4) (P5) (P6) (P7) (P8) (P9) (P10)

C1

C2
C3
C4

C5

FR: fragility, GC: geometrical constraints, LB: load bearing strength, R: reachability,
RS: robust stability, VO: vertical orientation, VS: vertical stability

2.1.2 Variants of the 3L-VRPBTW

The general problem description presented in Chapter 2.1.1 is used as a basis for

describing the specific variants of the 3L-VRPBTW in a compact manner.

First, the 3L-VRP with time windows (3L-VRPTW) is presented. The VRP with

time windows (VRPTW) is one of the most important and most frequently studied

variants of the VRP. Furthermore, the 3L-VRPTW is a good starting point for

the model as well as for the solution algorithm. In addition, problem variants with

backhauls are examined. General pickup and delivery problems contain VRPs that

include both delivery and pickup operations. In the past decades, different variants

of them have been studied and modelled, which can be classified as depicted in

Figure 2.15 (Parragh et al., 2008). On the one hand, a VRP with backhauls (VRPB)

deals with the transportation of goods between a depot and the customers. On the

other hand, a vehicle routing problem with pickup and delivery (VRPPD) regards

the transportation of goods between customer locations, i.e. after leaving the depot,

a vehicle collects the goods at pickup locations and transports them to delivery

locations. While these problem types have been studied frequently in the literature

regarding (one-dimensional) VRPs, there is only very little research so far for the

class of 3L-VRPs (see Chapter 3).

In this thesis, the focus is on the transportation between the depot and the cus-

20

2 Problem description and formulation

tomers. In particular, three variants are to be considered, namely the 3L-VRPCB,

3L-VRPMB and 3L-VRPSDP. An additional variant would be the 3L-VRP with

divisible delivery and pickup (3L-VRPDDP), where customers have both linehaul

and backhaul request and – as opposed to the 3L-VRPSDP – can be visited up to

two times in order to conduct the delivery and pickup separately. This problem is

not considered in this thesis as it is of lower relevance in practice.

General pickup and
delivery problems

Transportation from/to
a depot: VRP with
backhauls (VRPB)

VRP with
clustered
backhauls
(VRPCB)

VRP with
mixed

backhauls
(VRPMB)

VRP with
simultaneous

delivery
and pickup
(VRPSDP)

VRP with
divisible
delivery

and pickup
(VRPDDP)

Transportation between cus-
tomers: VRP with pickup
and delivery (VRPPD)

Paired

Dial-a-ride
problem
(DARP)

Classical
pickup and
delivery
problem
(PDP)

Unpaired

Pickup and
delivery
VRP

(PDVRP)

Figure 2.15: Pickup and delivery problems (Adopted from Parragh et al., 2008, p. 23)

In the following subchapters, the regarded variants are described in detail. The

notations introduced in Chapter 2.1.1 are applied, too. Additional constants and

sets are introduced if necessary.

In the following, the problem variants with backhauls are studied with and without

time windows. The variants without time windows are denoted as 3L-VRPCB,

3L-VRPMB and 3L-VRPSDP. The variants with time windows are referred to as

3L-VRPCBTW, 3L-VRPMBTW and 3L-VRPSDPTW. For the sake of brevity,

the denotations 3L-VRPCB(TW), 3L-VRPMB(TW), and 3L-VRPSDP(TW) will

be utilized in order to refer to both variants with and without time windows. All

problems are summarized in the class of the 3L-VRPBTW.

2.1.2.1 The 3L-VRP with time windows

The 3L-VRPTW is a generalization of the VRPTW, which deals with the delivery

of goods to customers ensuring the arrival at the customer locations within given

time windows (e.g. Moura and Oliveira, 2009). Thus, the 3L-VRPTW does not

consider any backhaul transportations and consists in (exclusively) transporting

three-dimensional items from the depot to the customers under consideration of time

21

2 Problem description and formulation

windows.6 Due to the lack of backhauls, the 3L-VRPTW contains a comparatively

simple packing subproblem as only linehaul items have to be taken into account.

The optimization criterion, the solution and routing constraints ((S1)-(S4), (R1)-

(R4)) can be adopted from the general 3L-VRPBTW. The packing constraints

(P1)-(P6), (P8)-(P10) are also applied unchanged to the 3L-VRPTW. The LIFO

constraint (P7) is formulated more precisely as only linehaul items need to be con-

sidered:

(P7a) If customer j (j ∈ Nc) is visited later than customer i (i ∈ Nc) in the

same route, no item Ijq (q ∈ Jj) of customer j may be placed in front

of or above any item Iik (k ∈ Ji) of customer i.

Two different loading approaches are taken into account for the 3L-VRPTW. They

are depicted in Figure 2.16 where the arrows indicate the unloading direction.

driver’s cabin

(a) rear loading

d
ri
ve
r’
s
ca
b
in

(b) side loading

Figure 2.16: Loading approaches for the 3L-VRPTW

First, loading the vehicle from the rear is considered (Figure 2.16a). This is the

standard loading approach considered in the 3L-VRP literature. Apart from rear

loading vehicles, so-called tautliners are also commonly used vehicle types in prac-

tice. They are loaded from a long side which facilitates the loading and unloading

processes (Figure 2.16b). This approach (in the following referred to as side loading)

is applied here with the limitation of (un)loading the vehicles only from one long

side.

The packing constraints are applied equally to the two approaches. With respect

to the LIFO and reachability constraints the unloading direction must be regarded

(cf. Figure 2.10).

6 The problem variant without time windows, i.e. the 3L-CVRP, is not regarded in this thesis.

22

2 Problem description and formulation

A compact problem formulation could read as follows: Three-dimensional items

need to be delivered from a central depot to a set of customers using a given fleet

of vmax homogeneous vehicles. A solution contains vused tuples (Rv, PPv). A tuple

(Rv, PPv) contains a route Rv for each used vehicle v (v = 1, . . . , vused) and the

corresponding packing plan PPv. In order to be feasible, a solution must fulfil (S1)-

(S4) and each route must adhere to (R1)-(R4). The packing plans must satisfy

the constraints (P1)-(P4) and (P7a), and the remaining relevant constraints of the

respective constraint sets (cf. Table 2.1). A feasible solution is to be determined

that minimizes the TTD.

The following variants are regarded: The problem is considered with time windows,

with the constraint sets C1-C5 and the loading approaches rear and side loading.

2.1.2.2 The 3L-VRP with clustered backhauls and time windows

The 3L-VRP with clustered backhauls (and time windows; 3L-VRPCB(TW)) con-

stitutes a generalization of the VRP with clustered backhauls. In this problem, each

customer is either a linehaul or a backhaul customer and within a route, the linehaul

customers are visited before the backhaul customers (e.g. cf. Bortfeldt et al., 2015).

Thus, within a route of a solution for a 3L-VRPCB(TW), three-dimensional items

have to be transported from the depot to linehaul customers. Subsequently, (other)

items are picked up from backhaul customers and brought to the depot.7 The set

of customers Nc is, therefore, divided into two subsets of customers: Let nL of all n

customers be the number of linehaul customers. The set N L = {1, . . . , nL} denotes

the set of linehaul customers and the set NB = {nL + 1, . . . , n} denotes the set of

backhaul customers. As before, a fleet of vmax homogeneous vehicles is available for

realizing the transportations.

The optimization criterion, the solution and routing constraints ((S1)-(S4), (R1)-

(R4)) are equally valid for the 3L-VRPCB(TW). Moreover, the following constraint

applies to this problem:

(R5) Within one route, all linehaul customers must be visited before the first

backhaul customer can be visited.

Due to constraint (R5), linehaul and backhaul items are never transported simulta-

neously by the individual vehicles as all linehaul items are delivered before the first

7 A route may also contain only linehaul customers or only backhaul customers.

23

2 Problem description and formulation

backhaul item can be picked up. Thus, it is impossible that backhaul items block

the unloading of linehaul items and the packing constraints can be applied sepa-

rately to linehaul and backhaul items. The constraints (P1)-(P6), (P8)-(P10) are

equally valid for both linehaul and backhaul items in the way they are formulated

above. Moreover, (P7a) is applicable to the linehaul items in the packing plans.

The following constraint is formulated for the backhaul items:

(P7b) If backhaul customer j (j ∈ NB) is visited earlier than backhaul cus-

tomer i (i ∈ NB) in the same route, no item Ijq (q ∈ Jj) of customer j

may be placed in front of (cf. Figure 2.10) or above any item Iik (k ∈ Ji)

of customer i.

This way, backhaul items can be loaded by straight shifts in negative α-direction

(Bortfeldt et al., 2015).

As linehaul and backhaul items are transported separately, the loading approaches

rear and side loading (as explained for the 3L-VRPTW) can also be applied to the

3L-VRPCB(TW).

A compact problem formulation could read as follows: Three-dimensional items

need to be delivered from a central depot to a set of linehaul customers, and picked

up from a set of backhaul customers and brought to the depot using a given fleet

of vmax homogeneous vehicles. Within each route, all linehaul customers must be

visited before the first backhaul customer is approached (R5). A solution contains

vused tuples (Rv, PPv). A tuple (Rv, PPv) contains a route Rv for each used vehicle

v (v = 1, . . . , vused) and the corresponding packing plan PPv.

In order to be feasible, a solution must fulfil (S1)-(S4) and each route must adhere

to (R1)-(R3), (R5) and, optionally, (R4) (time windows). The packing plans must

satisfy (P1)-(P4), the LIFO constraint and the remaining relevant constraints of the

respective constraint sets (cf. Table 2.1). The LIFO constraint (P7a) is applied

to linehaul items and the LIFO constraint (P7b) is applied to backhaul items. A

feasible solution is to be determined that minimizes the TTD.

The following variants are regarded: The problem is considered with and without

time windows, with the constraint sets C1-C5 and the loading approaches rear and

side loading.

24

2 Problem description and formulation

2.1.2.3 The 3L-VRP with mixed backhauls and time windows

The 3L-VRP with mixed backhauls (and time windows; 3L-VRPMB(TW)) is a gen-

eralization of the VRP with mixed backhauls (VRPMB). Similarly to the VRPCB,

each customer is either a linehaul or a backhaul customer. Yet, linehaul and back-

haul customers can be visited in mixed sequences (e.g. Parragh et al., 2008). Hence,

the customers can also be divided into the two subsets N L and NB. Allowing mixed

customer sequences complicates the loading problem within the 3L-VRPMB(TW),

as linehaul and backhaul items can be in the vehicle at the same time. Thus,

constraints, such as the weight constraint or non-overlapping constraint, must be

regarded not only for linehaul and backhaul items separately. They have to be

considered for every stage of a route for both linehaul and backhaul items together

in order to guarantee that backhaul items loaded along the way do not violate the

restrictions.

In Figure 2.17, an example instance is illustrated with four linehaul and four back-

haul customers within one route. The total weight of each customer demand is given

in square brackets. A VRPCB solution (Figure 2.17a) as well as a VRPMB solution

(Figure 2.17b) is depicted for this instance. Let the weight capacity of the vehicle

be 30 weight units.

[7]

[5]

[6]

[5]

[5]

[9]

[3] [10]

(a) VRPCB

[7]

[5]

[6]

[5]

[5]

[9]

[3] [10]

depot
linehaul
backhaul

[] demand/ supply

(b) VRPMB

Figure 2.17: Instance with possible solutions for different VRPs with backhauls

Figure 2.18 shows the development of the weight of the items, that are inside the

vehicle during the execution of the routes depicted in Figure 2.17. In the case

of the VRPCB (Figure 2.18a), the cargo weight within the vehicle is constantly

decreasing until all linehaul customers are served and then constantly increasing

until all backhaul supplies are picked up. Hence, it is sufficient to check for the

25

2 Problem description and formulation

adherence to the weight constraint at the beginning and at the end of the route.

Similarly, if the non-overlapping constraint is satisfied at the beginning and the end

of the route, it is also satisfied along the route due to the fact that any repositioning

of the items is forbidden. In contrast, the cargo weight is fluctuating in the VRPMB

route (Figure 2.18b) since goods can be loaded or unloaded at every stop. This

aspect must be taken into account for the weight constraint (R3), which states that

all simultaneously transported items must not exceed the permitted weight limit.

Analogously, the simultaneous transport of linehaul and backhaul items needs to be

regarded for the non-overlapping constraint (P2).

0

10

20

30

0 1 2 3 4 5 6 7 8
stage t

to
ta
l
w
ei
gh

t
in
si
d
e
th
e
ve
h
ic
le

(a) VRPCB

0

10

20

30

0 1 2 3 4 5 6 7 8
stage t

to
ta
l
w
ei
gh

t
in
si
d
e
th
e
ve
h
ic
le

(b) VRPMB

Figure 2.18: Development of the total weight in the vehicle for different vehicle routing
problems with backhauls (example)

The LIFO constraint has to be considered among linehaul items only (P7a) and

among backhauls items only (P7b) as before, but also regarding the positioning of

linehaul items in relation to backhaul items. In this case, those items that are in

the vehicle at the same time have to be taken into account. The adapted LIFO

constraint can be formulated as follows:

(P7c) If a backhaul customer j (j ∈ NB) is visited before a linehaul customer

i (i ∈ NL) in the same route, no item Ijq (q ∈ Jj) of customer j may

be placed in front of, above, behind, or under any item Iik (k ∈ Ji) of

customer i.

The different relative positions are illustrated in Figure 2.19. If a backhaul item is

collected before a linehaul item is delivered, it must not block the unloading of the

linehaul item. Therefore, it must not be placed in front of (Figure 2.19a) or above

26

2 Problem description and formulation

(Figure 2.19b) it. In addition, a backhaul item must not be placed behind (Fig-

ure 2.19c) or under (Figure 2.19d) a linehaul item because, otherwise, the linehaul

item would need to be moved when the backhaul item is loaded.

un
loa

din
g

dir
ect

ion

BH

LH

(a)

BH

LH

(b)

BHLH

LH

(c)

BHLH

LH

(d)

Figure 2.19: Infeasible placements of simultaneously transported linehaul (LH) and back-
haul (BH) items

The remaining packing constraints (P1)-(P6), (P8)-(P10) can be applied unchanged.

The LIFO constraint for the 3L-VRPMB(TW) facilitates the formulation of the

problem to the effect that these constraints can be regarded for linehaul and backhaul

items separately. For example, the fragility constraint does not have to be considered

for a mixture of linehaul and backhaul items because they cannot be placed above

one another due to (P7c).

The solution constraints (S1)-(S4) and the routing constraints (R1)-(R4) can be

adopted from the general problem formulation.

Rear loaded vehicles (as presented above) are not used for the 3L-VRPMB(TW)

as they make it difficult to arrange linehaul and backhaul items in a way that

they do not block each other. Thus, in order to realize the simultaneous transport

of linehaul and backhaul items, two alternative loading approaches are applied.

The first approach consists in separating the loading space horizontally. For the

sake of simplicity, it is assumed that the loading space is divided into two equal

sections. Vehicles that are equipped with the possibility of separating the loading

space horizontally are called double-decker vehicles. The separate sections can be

used for the different item types (linehaul and backhaul) and the LIFO constraint

27

2 Problem description and formulation

(P7c) does not need to be considered with respect to a mixture of the types. The

approach is illustrated in Figure 2.20. The drawback of the loading space partition

(LSP) approach is that the full volume of the loading space cannot be utilized

throughout the whole route. The vehicles always leave and return to the depot with

an (at least) half empty loading space.

I11
I22

I21

I31

I41

I52 I51

unloading direction

loading direction

Figure 2.20: Illustration of the loading space partition approach

The side loading approach introduced for the 3L-VRPTW and 3L-VRPCB(TW)

is also applied to the 3L-VRPMB(TW) allowing the full volume utilization. In

contrast to the rear loading approach, the longer unloading side facilitates placing

linehaul and backhaul items next to each other in a way that loading and unloading

operations are not obstructed. As linehaul and backhaul items are placed in the

same loading space, LIFO constraint (P7c) must be regarded.

A compact problem formulation could read as follows: Three-dimensional items need

to be delivered from a central depot to a set of linehaul customers and picked up

from a set of backhaul customers and brought to the depot using a given fleet of

vmax homogeneous vehicles. Linehaul and backhaul customers can be visited in any

sequence. A solution contains vused tuples (Rv, PPv). A tuple (Rv, PPv) contains a

route Rv for each used vehicle v (v = 1, . . . , vused) and the corresponding packing

plan PPv.

In order to be feasible, a solution must fulfil (S1)-(S4) and each route must adhere

to (R1)-(R3) and, optionally, (R4) (time windows). The packing plans must satisfy

(P1)-(P4), the LIFO constraint and the remaining relevant constraints of the respec-

tive constraint sets (cf. Table 2.1). The LIFO constraint (P7a) is applied to linehaul

28

2 Problem description and formulation

items and (P7b) is applied to backhaul items. If linehaul and backhaul items are

placed in the same loading space (i.e. not in separate sections), LIFO constraint

(P7c) needs to be considered preventing, for example, backhaul items from blocking

the unloading of linehaul items that are yet to be delivered. A feasible solution is

to be determined that minimizes the TTD.

The following variants are regarded: The problem is considered with and without

time windows, with the constraint sets C1-C5 and the loading approaches LSP and

side loading.

2.1.2.4 The 3L-VRP with simultaneous delivery and pickup and time

windows

The 3L-VRP with simultaneous delivery and pickup (and time windows; 3L-VRP-

SDP(TW)) represents a generalization of the VRP with simultaneous delivery and

pickup (VRPSDP), where each customer has both linehaul demands and backhaul

supplies, and must be visited exactly once. That is, the delivery and pickup of items

happens simultaneously. In contrast to the 3L-VRPCB(TW) and 3L-VRPMB(TW),

not the set of customers is divided into two subsets but the respective item set of each

customer. Let mL
i be the number of linehaul items demanded by customer i ∈ Nc

and mB
i the number of backhaul items supplied by customer i, i.e. mi = mL

i +mB
i .

The resulting subsets of Ji are the set of linehaul items JL
i = {1, . . . ,mL

i } and the

set of backhaul items JB
i = {mL

i + 1, . . . ,mi}.
Similarly to the 3L-VRPMB(TW), linehaul and backhaul items can be in the vehicle

at the same time. Therefore, the same considerations as above also apply here,

i.e. all constraints have to be satisfied along each route and the majority of the

packing constraints can be formulated for linehaul and backhaul items separately.

The general LIFO constraint (P7) is adapted to the 3L-VRPSDP(TW):

(P7d) If customer j (j ∈ Nc) is visited after customer i (i ∈ Nc) in the same

route,

(1) no linehaul item Ijq (q ∈ JL
j) of customer j may be placed in front

of or above any linehaul item Iik (k ∈ JL
i) of customer i,

(2) no backhaul item Ijq (q ∈ JB
j) of customer j may be placed behind

or under any backhaul item Iik (k ∈ JB
i) of customer i.

29

2 Problem description and formulation

(3) no backhaul item Iik (k ∈ JB
i) of customer i may be placed in

front of, above, behind or under any linehaul item Ijq (q ∈ JL
j) of

customer j.

The routing constraints (R1)-(R4) and solutions constraints (S1)-(S4) can be adopt-

ed.

As linehaul and backhaul items are transported simultaneously, the loading ap-

proaches applied to 3L-VRPMB(TW) – side loading and loading space partition –

are applied to the 3L-VRPSDP(TW), too.

A compact problem formulation could read as follows: Three-dimensional items need

to be delivered from a central depot to a set of customers and, at the same time, items

have to be picked up from the customers using a given fleet of vmax homogeneous

vehicles. A solution contains vused tuples (Rv, PPv). A tuple (Rv, PPv) contains a

route Rv for each used vehicle v (v = 1, . . . , vused) and the corresponding packing

plan PPv.

In order to be feasible, a solution must fulfil (S1)-(S4) and each route must adhere

to (R1)-(R3) and, optionally, (R4) (time windows). The packing plans must sat-

isfy (P1)-(P4), the LIFO constraint and the remaining relevant constraints of the

respective constraint sets (cf. Table 2.1). The LIFO constraint (P7d) represents

the general LIFO constraint (P7). If the LSP approach is applied, constraint (3)

of (P7d) is automatically observed. A feasible solution is to be determined that

minimizes the TTD.

The following variants are regarded: The problem is considered with and without

time windows, with the constraint sets C1-C5 and the loading approaches LSP and

side loading.

2.1.2.5 Overview of the considered problem variants

In the following, a problem variant of the 3L-VRPBTW is defined by the routing

problem with respect to the backhauls and time windows. That is, the seven problem

variants 3L-VRPTW, 3L-VRPCB, 3L-VRPCBTW, 3L-VRPMB, 3L-VRPMBTW,

3L-VRPSDP and 3L-VRPSDPTW are considered.

Furthermore, let an extended problem variant be additionally defined by its loading

approach and constraint set. All considered extended variants are listed in Table 2.2.

In total, 70 different combinations are taken into account. For example, the 3L-

30

2 Problem description and formulation

VRPTW is exclusively regarded with time windows. Two loading approaches (rear

and side loading) and five constraint sets are considered, adding up to ten different

variants (1 · 2 · 5).

Table 2.2: Overview of the extended problem variants

time windows loading approaches constraint sets
problem variant without with RL LSP SL C1 C2 C3 C4 C5

3L-VRPTW
3L-VRPCB(TW)
3L-VRPMB(TW)
3L-VRPSDP(TW)

LSP: loading space partition, RL: rear loading, SL: side loading, C1-C5: see Table 2.1

In the following, an extended problem variant is denoted by a triple containing the

problem variant, the loading approach and the constraint set, e.g. (3L-VRPTW,

RL, C1). In this context, the loading approaches are abbreviated as RL (rear load-

ing) and SL (side loading), and (as usual in the text) LSP (loading space partition).

If two extended problem variants share a given feature, they can also be merged in

one triple. For example, (3L-VRPMB, LSP/SL, C1) refers to the extended prob-

lem variant of the 3L-VRPMB with C1 and with either the LSP approach or side

loading.

2.2 Mathematical model

In the following, mathematical models for the problems described above are pre-

sented. First, the model for the 3L-VRPTW is presented in detail (Chapter 2.2.1).

It serves as the basis for the models with backhauls, which are introduced in Chap-

ters 2.2.2 to 2.2.4.

2.2.1 The 3L-VRP with time windows

The following models are based on the model introduced by Junqueira et al. (2013)

for the 3L-CVRP. In this model, a time-dependent formulation is deployed, which

is proposed by Fox et al. (1980) for the travelling salesman problem (TSP). The

advantage of a time-dependent formulation is to have decision variables available

that provide information about the sequence of customers within a route. This is,

for example, helpful for formulating the LIFO constraint, which requires information

about the loading and unloading sequence of the items. Moreover, the modelling of

31

2 Problem description and formulation

the packing subproblem is based on formulations for the container loading problem

(CLP) previously proposed by Junqueira et al. (2012a,b).

The model proposed by Junqueira et al. (2013) is extended by several constraints,

which have not been considered in it. These constraints concern the time windows,

the robust stability (as an extension of the proposed formulation for the vertical

stability constraint), and reachability. Moreover, the fragility, load bearing strength

and LIFO constraints are newly formulated since they have been approached differ-

ently in the work of Junqueira et al. (2013). Finally, also the possibility of rotating

an item horizontally is implemented in the model.

Sets and constants

In the following, the constants and sets introduced in Chapter 2.1 are utilized. They

are summarized in Table 2.3.

Table 2.3: Sets and constants for the mathematical model

group symbol definition
sets E edge set (E = {(i, j)|i, j ∈ N })

Ji set of items demanded by customer i ∈ Nc (Ji = {1, . . . ,mi})
N node set (N = {0, 1, . . . , n})
Nc set of customers (Nc = {1, 2, . . . , n})
V vehicle set (V = {1, . . . , vmax})

constants n number of customers
(instance) vmax number of available vehicles

V SP vertical stability parameter
λ maximum reach

constants cij cost of edge (i, j) ∈ E
(customers) DDi due date of location i ∈ N

mi number of items demanded by customer i ∈ Nc

RTi ready time of location i ∈ N
STi service time of location i ∈ N

constants dik weight of item Iik (i ∈ Nc, k ∈ Ji)
(items) fik fragility flag of item Iik (i ∈ Nc, k ∈ Ji)

hik height of item Iik (i ∈ Nc, k ∈ Ji)
lik length of item Iik (i ∈ Nc, k ∈ Ji)
pik load bearing strength of item Iik (i ∈ Nc, k ∈ Ji)
wik width of item Iik (i ∈ Nc, k ∈ Ji)

constants D vehicle weight capacity
(vehicles) H vehicle loading space height

L vehicle loading space length
W vehicle loading space width

32

2 Problem description and formulation

Decision variables

The model contains three kinds of decision variables: routing variables, packing

variables and orientation variables. The binary routing decision variables xtvij (i, j, t ∈
N , v ∈ V) are defined as

xtvij =

1, if vehicle v goes directly from node i to node j in stage t,

0, otherwise.

(2.8)

A stage refers to the section of the route in which node i is left and node j is

approached. In stage t = 0, the depot is left and the first customer in a route is

visited. The variables are illustrated for one route in Figure 2.21.

1

2

3

4

5

6
7

8

9

10

depot
customer
route 1

t = 0

t = 1

t = 2

t = 3

x01
05 = 1

x11
51 = 1

x21
12 = 1

x31
20 = 1

Figure 2.21: Partial VRP solution with variables

Secondly, binary placement decision variables represent the coordinates where an

item is placed within the loading space with its back-left-bottom corner point. As

mentioned above, the loading space can be embedded in a three-dimensional Carte-

sian coordinate system (see Figure 2.1). Thus, the back-left-bottom corner point of

an item is defined as the point that is closest to the origin of the coordinate system.

Let A′, B′ and Γ ′ be the sets of possible positions for the corner points along the

α-, β- and γ-axes without considering rotations:

A′ =

{
0, 1, 2, . . . , L− min

i∈Nc,k∈Ji
lik

}
, (2.9)

B′ =

{
0, 1, 2, . . . ,W − min

i∈Nc,k∈Ji
wik

}
and (2.10)

Γ ′ =

{
0, 1, 2, . . . , H − min

i∈Nc,k∈Ji
hik

}
. (2.11)

33

2 Problem description and formulation

These sets can be restricted in the shown way since all the points that are, e.g., above

the height H−mini∈Nc,k∈Ji hik cannot be the corner points of any item. Being placed

there, the items would overlap with the container walls. Moreover, the potential

placement coordinates are exclusively assumed to be integer since all item dimensions

are also assumed to be integer.

Furthermore, let

A′ik = {α ∈ A|0 ≤ α ≤ L− lik} , (2.12)

B′ik = {β ∈ B|0 ≤ β ≤ W − wik} and (2.13)

Γ ′ik = {γ ∈ Γ |0 ≤ γ ≤ H − hik} , (2.14)

be subsets of A′, B′ and Γ ′ referring to the individual items Iik (i ∈ Nc, k ∈ Ji).

Restricting the sets of coordinates for the placement in the shown way would ensure

that each item is placed completely inside the loading space if rotation was not

allowed.

Considering the possible rotation of items on the horizontal plane, the possible

coordinate sets for the corner points are the following:

A =

{
0, 1, 2, . . . , L−min

(
min

i∈Nc,k∈Ji
lik, min

i∈Nc,k∈Ji
wik

)}
, (2.15)

B =

{
0, 1, 2, . . . ,W −min

(
min

i∈Nc,k∈Ji
lik, min

i∈Nc,k∈Ji
wik

)}
and (2.16)

Γ =

{
0, 1, 2, . . . , H − min

i∈Nc,k∈Ji
hik

}
; (2.17)

and the subsets for the individual items Iik (i ∈ Nc, k ∈ Ji) can be formulated as:

Aik = {α ∈ A|0 ≤ α ≤ L−min(lik, wik)} , (2.18)

Bik = {β ∈ B|0 ≤ β ≤ W −min(lik, wik)} and (2.19)

Γik = {γ ∈ Γ |0 ≤ γ ≤ H − hik} . (2.20)

Hence, if rotation is permitted, further restrictions need to be formulated in order

to ensure the complete placement within the vehicle. They are presented below.

The placement decision variables

πiktvαβγ, ∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α ∈ Aik, β ∈ Bik, γ ∈ Γik,

34

2 Problem description and formulation

are defined as

πiktvαβγ =

1, if item Iik of customer i who is visited in stage t

by vehicle v is placed with its back-left-bottom

corner at position (α, β, γ),

0, otherwise.

(2.21)

Note that this variable is neither defined for i = 0 since the depot does not have

any demands, nor for t = n. If a route would include all n customers, the nth stage

would be the trip back to the depot. Thus, for t = n the variable πiktvαβγ would refer

to i = 0.

With the help of these binary variables, the back-left-bottom corner point (αik, βik, γik)

of item Iik within the loading space can be determined as:

αik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik
α · πiktvαβγ, (2.22)

βik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik
β · πiktvαβγ, (2.23)

γik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik
γ · πiktvαβγ. (2.24)

The third kind of decision variables describes the chosen spatial orientation of an

item. For each item Iik (i ∈ Nc, k ∈ Ji), the orientation is represented by the binary

variable oik, where

oik =

1, if the length lik of item Iik is parallel to the α-axis,

0, otherwise.

(2.25)

Moreover, in order to achieve more clarity in the model, the variables l̂ik and ŵik

represent the dimensions of an item Iik (i ∈ Nc, k ∈ Ji) with respect to the chosen

orientation. l̂ik refers to the dimension of item Iik that is parallel to the α-axis, i.e.

l̂ik = oik · lik + (1− oik) · wik. (2.26)

35

2 Problem description and formulation

Analogously, ŵik represents the dimension of Iik that is parallel to the β-axis, i.e.

ŵik = (1− oik) · lik + oik · wik. (2.27)

Model

With the defined decision variables and the data introduced above, the mathematical

model for the 3L-VRPTW is formulated. The objective function consists of the

minimization of the total routing cost, i.e. the total travel distance (TTD):

min z =
∑

i∈N

∑

j∈N

∑

t∈N

∑

v∈V
cij · xtvij (2.28)

Routing constraints

The following routing constraints have to be satisfied:

∑

j∈N

∑

t∈N

∑

v∈V
xtvij = 1 ∀ i ∈ Nc, (2.29)

∑

j∈Nc
x0v

0j ≤ 1 ∀ v ∈ V, (2.30)

xtv0j = 0 ∀ j ∈ Nc, t ∈ N \ {0}, v ∈ V, (2.31)

xtvii = 0 ∀ i ∈ N, t ∈ N, v ∈ V, (2.32)
∑

j∈N

∑

t∈Nc

∑

v∈V
t · xtvij −

∑

j∈N

∑

t∈N

∑

v∈V
t · xtvji = 1 ∀ i ∈ Nc, (2.33)

∑

j∈N
x

(t+1)v
ij −

∑

j∈N
xtvji = 0 ∀ i ∈ Nc, t ∈ N \ {n}, v ∈ V. (2.34)

Constraint (2.29)8 guarantees that each customer is left exactly once. In connection

with later constraints, it also ensures that each customer is only approached once.

The depot can be left more than once, though, since it is left by up to vmax vehicles.

Therefore, it is excluded in this constraint.

Constraint (2.30) ensures that each vehicle leaves the depot at most once in stage

0. Moreover, it is assumed that the vehicles leave the depot in stage 0 and not

later (2.31). This constraint is also important for the validity of the constraints that

follow.

8 Technically, (2.29) represents multiple constraints of the optimization model. Nonetheless,
it is referred to in the text as one constraint (in the singular). This format will also be
maintained in the remainder of this thesis.

36

2 Problem description and formulation

Constraint (2.32) guarantees that no vehicle approaches the same node directly after

having left it, i.e. travelling the directed edge (i, i) ∀ i ∈ N . In doing so, (2.32) also

prevents the creation of routes without any customer locations as xtv00 = 1 (t ∈ N, v ∈
V) is forbidden. Using this formulation, it can be assumed that cii ∈ R+

0 (i ∈ N).

Constraint (2.33) ensures the connectivity of routes. It guarantees that each cus-

tomer i ∈ Nc is left exactly one stage after being visited. In doing so, the constraint

also ensures that the depot is included in each route and that all routes are circular.

In other words, it prevents the building of subroutes not containing the depot. Note

that the vehicle that visits and leaves a customer is neglected here as a customer

being visited and left by the same vehicle is ensured by (2.34) (see below).9

Let, for example, a route be Rv = (1, 2, 3, 4, 1), thus, without the depot. Vehicle v

travels from customer 1 to customer 2 in stage 0.10 Then – resulting from (2.34) –

customer 3 must be visited in stage t = 1, customer 4 in stage t = 2, and customer

1 again in stage t = 3, i.e. x0v
12 = x1v

23 = x2v
34 = x3v

41 = 1. However, constraint (2.33)

would lead to a contradiction for i = 1 (Fox et al., 1980):

∑

j∈N

∑

t∈Nc

∑

v∈V
t · xtv1j −

∑

j∈N

∑

t∈N

∑

v∈V
t · xtvj1 = 0 · x0v

12 − 3 · x3v
41 = −3 6= 1.

Since node 0 is the only node that does not need to fulfil constraint (2.33), all routes

must include the depot.

In another example, let R1 = (1, 2, 3, 4, 0) and R2 = (0, 1, 2, 3, 4). The routes include

the depot but are not circular. In R1, customer 1 is left in t = 0. As this customer

is not visited by any vehicle beforehand, this route violates (2.33). The term on the

left-hand side would equal 0. In R2, the depot is left in t = 0 (due to (2.31)). Thus,

customer 4 is visited in t = 3. As it is never left, the left-hand side of (2.33) would

equal 3 for i = 4 violating the constraint.

Constraint (2.34) represents the so-called flow conservation constraint, i.e. if vehicle

v travels to customer i in stage t, then vehicle v must leave customer i in stage

t+ 1. Although constraints (2.33) and (2.34) might seem similar at first sight, they

are both vital to the model, which should be illustrated in the following example:

Figure 2.22 shows the routes of three different vehicles in the optimal solution for a

9 Reformulating (2.33) so that it is defined not only for a specific user i ∈ Nc but also for a
specific vehicle v ∈ V would not work. The constraint would be violated for every vehicle that
does not contain i in its route as the left-hand side would equal 0.

10 Being left later would violate (2.34).

37

2 Problem description and formulation

CVRP with ten customers.11

depot
customer
route 1
route 2
route 3

Figure 2.22: Optimal solution for a CVRP instance

Figure 2.23 shows optimal solutions for the same instance. However, here constraint

(2.33) (in Figure 2.23a) and constraint (2.34) (in Figure 2.23b), respectively, are

excluded from the model.

(a) without connectivity constraint (2.33) (b) without flow conservation constraint (2.34)

Figure 2.23: CVRP solutions excluding constraints (2.33) and (2.34), respectively

As can be seen from Figure 2.23a, without the connectivity constraint (2.33) un-

connected routes are formed that do not start and end at the depot. In that case,

(2.34) is still fulfilled, as each customer visited by a certain vehicle in a stage t ≥ 0

is left by that vehicle in a stage t+ 1. The locations at the beginning of a route, i.e.

those that are left in stage t = 0, are excluded. Since they are left in t = 0, they

would need to be approached in stage t = −1 for which the constraint is not defined.

Thus, unconnected routes can occur because the flow conservation constraint (2.34)

11 A small CVRP instance with ten customers was generated and solved using CPLEX. As it
serves only the purpose of illustration, providing the detailed instance data is omitted here.

38

2 Problem description and formulation

alone does not guarantee that each customer who is left in stage t is visited in stage

t− 1. This is done by (2.33).

Without the flow conservation constraint (Figure 2.23b), each customer is visited in

a stage and left in the next stage; however, not by the same vehicle.

Furthermore, the capacity constraints of the one-dimensional CVRP can be formu-

lated as weight (2.35) and volume constraints (2.36) for the 3L-VRPTW:

∑

i∈Nc

∑

k∈Ji

∑

j∈N

∑

t∈Nc
dik · xtvij ≤ D ∀ v ∈ V, (2.35)

∑

i∈Nc

∑

k∈Ji

∑

j∈N

∑

t∈Nc
lik · wik · hik · xtvij ≤ L ·W ·H ∀ v ∈ V. (2.36)

On the left-hand sides of the constraints, the weights or volumes of all items trans-

ported in a route v are summed. The development of the transported weights and

volumes in the course of the route does not need to be considered as the loaded

weights and volumes constantly decrease during the route. Thus, all items placed

in the loading space at the beginning of the route must not violate the capacity

constraints. As the remaining routing constraints ensure that each customer is left

exactly once, each customer is caputured in (2.35) and (2.36).

Constraint (2.37) ensures that the routing variables are bound to the packing vari-

ables, i.e. if vehicle v visits customer i in stage t, vehicle v has to transport all items

of customer i and unload them in stage t:

∑

k∈Ji

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik
πiktvαβγ = mi ·

∑

j∈N
xtvji ∀ i ∈ Nc, t ∈ N \ {n}, v ∈ V. (2.37)

Finally, constraint (2.38) ensures that every item is packed exactly once:

∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik
πiktvαβγ = 1 ∀ i ∈ Nc, k ∈ Ji. (2.38)

As any reloading during the execution of a route is forbidden, each item is assigned

exactly one placement. Thus, for each item Iik (i ∈ Nc, k ∈ Ji), exactly one variable

πiktvαβγ (t ∈ N \ {n}, v ∈ V, α ∈ Aik, β ∈ Bik, γ ∈ Γik) must assume the value 1.

The following restrictions ensure the adherence of the time windows. For this pur-

pose, the formulations proposed by Moura and Oliveira (2009) are extended to the

time-dependent formulation. Hereby, let startiv be the time at which vehicle v

39

2 Problem description and formulation

begins serving customer i, and M1 a sufficiently large number (“Big-M ”):

c0i − startiv ≤M1 · (1− x0v
0i) ∀ i ∈ Nc, v ∈ V, (2.39)

startiv + STi + cij − startjv ≤M1 · (1− xtvij) (2.40)

∀ i ∈ Nc, j ∈ N , v ∈ V, t ∈ Nc,

startiv ≥ RTi ∀ i ∈ N , v ∈ V, (2.41)

startiv ≤ DDi ∀ i ∈ N , v ∈ V. (2.42)

It is assumed that every route starts at time zero. Constraint (2.39) refers to the

arrival at the customer locations that are visited in stage t = 0, i.e. if customer

i is visited in the 0th stage (directly at the beginning of the route), then x0v
0i = 1.

Hence, the arrival time at customer i equals the travel time between customer i

and the depot (c0i). In addition, (2.39) ensures that the service at customer i does

not start before the arrival at the location because x0v
0i = 1 results in c0i ≤ startiv.

In connection with (2.41), it is guaranteed that the service does not start before

the customer’s ready time RTi. Thus, the formulations allow the consideration of

waiting times between arrival and start of service.

Similarly, constraint (2.40) guarantees that the services at locations that are visited

later than stage t = 0 do not start before the arrivals at the locations. Let customer

j be visited directly after customer i by vehicle v. In this case, the arrival time at

customer j depends on the start of service at customer i (startiv), the service time

at i (STi) and the travel time between i and j (cij). It must, thus, be fulfilled that

startjv ≥ startiv + STiv + cij. (2.43)

As start0v refers to the arrival time at the depot at the end of each route, constraint

(2.40) cannot be formulated for t = 0, which is why (2.39) needs to be formulated

separately.

If customer i is not visited by vehicle v, the formulations allow startiv to accept any

value due to the usage of the Big-M. In order to be large enough and to secure the

worst case, the following magnitude should be chosen for M1:

M1 ≥ max
i∈N

DDi + max
i∈N

STi + max
(i,j)∈E

cij −min
i∈N

RTi. (2.44)

40

2 Problem description and formulation

The adherence of the time windows at every location is ensured by (2.41) and (2.42).

Set V contains vmax vehicles. Thus, the tour number restriction constraint (S4)

is always satisfied due to the definitions of the routing constraints for all vehicles

v ∈ V.

Packing constraints

In addition to a routing plan, a feasible packing plan must exist for each route

satisfying the constraints described in Chapter 2.1.

Although other loading approaches, like side loading or separation of the loading

space, are also considered in this thesis, the following constraints are only formulated

for the standard rear loading approach. They can be adapted easily to the other

approaches, though.

Geometrical constraints (P1)-(P3)

One aspect of the geometrical constraints is to ensure that all items are placed

completely within the loading space and can be stated as:

∑
{
α∈Aik|α>L−l̂ik

}
∑

β∈Bik

πiktvαβγ +
∑

α∈Aik

∑
{
β∈Bik|β>W−ŵik

} π
iktv
αβγ = 0 (2.45)

∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, γ ∈ Γik.

The first summand on the left-hand side sums the values of the placement decision

variables referring to item Iik and α > L − l̂ik. The second summand sums the

values of the placement decision variables referring to item Iik and β > W − ŵik.
That is, the corner point coordinate αik of item Iik (i ∈ Nc, k ∈ Ji) cannot take

any value greater than L − l̂ik anywhere along the width and height axes, neither

can the coordinate βik take any value greater than W − ŵik anywhere along the

length and height axes. As mentioned before, this constraint is not necessary if

items cannot be rotated. In this case, the placement inside the vehicle is guaranteed

by the restricted coordinate sets A′ik and B ′ik. Since the height dimension of an item

is fixed, the restricted definition of Γik (which is equal to Γ ′ik) is sufficient to ensure

that an item is not placed above a feasible height level.

The second kind of geometrical constraints ensures the non-overlapping of the items.

More precisely, it is guaranteed that every point (α′, β′, γ′) in the loading space is

41

2 Problem description and formulation

occupied by not more than one item. Item Iik having the back-left-bottom corner

point (α, β, γ) occupies the point (α′, β′, γ′) if the following is true:

α ≤ α′ ≤ α + l̂ik − 1 < L, (2.46)

β ≤ β′ ≤ β + ŵik − 1 < W and (2.47)

γ ≤ γ′ ≤ γ + hik − 1 < H. (2.48)

That is, if item Iik has its back-left-bottom corner point at (α, β, γ), the points it

occupies have α-coordinates from α to α + l̂ik − 1 (analogously for the β- and γ-

coordinates). Thus, the points at the front, right and top face of an item do not

count as occupied by that item.

Figure 2.24 shows the β-γ-projection of three arranged items and the points that

are occupied by the respective items. As can be seen, the points at the right side

of item I11 (at β = 5) are not occupied by I11, but by the adjacent item I31. The

same accounts for its top face (γ = 5).

0 1 2 3 4 5 6 7 8 9 10 β

γ

0

1

2

3

4

5

6

7

8

I11

I21

I31

points occupied by. . .

item I11
item I12
item I13

Figure 2.24: Illustration of occupied points

The other way around, it can be stated that a point (α′, β′, γ′) is occupied by item

Iik with its back-left-bottom corner point at (αik, βik, γik), if

α′ − l̂ik + 1 ≤ αik ≤ α′, (2.49)

β′ − ŵik + 1 ≤ βik ≤ β′ and (2.50)

γ′ − hik + 1 ≤ γik ≤ γ′. (2.51)

Figure 2.25 illustrates how to determine whether a point (α′, β′, γ′) is occupied by

an item. The figure shows a two-dimensional (2D) projection of two items. It is

42

2 Problem description and formulation

assumed that both items have the same height h and stand on the container floor.

The point (α′, β′, γ′) is at (4, 4, γ′) with 0 ≤ γ′ < h. The “search regions” include the

points where the back-left-bottom corner points of the respective item would need

to be so that the item occupies (α′, β′, γ′). Since the item dimensions and placement

coordinates are assumed to be integer, the search regions consist of finite sets of

points. As can be seen, the corner point of item I21 is within the search region for

I21, i.e. the point (α′, β′, γ′) is occupied by item I21.

0 1 2 3 4 5 6 α

β

0

1

2

3

4

5

6

7

I11

I21

search region for I11
search region for I21
reference point (α′,β′)

corner points

Figure 2.25: Illustration of occupied points and search regions

As described above, the front, right and top faces of an item are not considered to

be occupied by the respective item. Therefore, these faces of the loading space do

not need to be considered for the non-overlapping constraint either.

Let A0 = {0, 1, ..., L − 1}, B0 = {0, 1, ...,W − 1} and Γ0 = {0, 1, ..., H − 1}. The

non-overlapping constraint can, thus, be stated as:

∑

i∈Nc

∑

k∈Ji

∑

t∈N\{n}
∑

{α∈Aik|α′−l̂ik+1≤α≤α′}
∑

{β∈Bik|β′−ŵik+1≤β≤β′}
∑

{γ∈Γik|γ′−hik+1≤γ≤γ′}
πiktvαβγ ≤ 1

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

(2.52)

That is, the sum of items occupying a given point (α′, β′, γ′) in vehicle v must not

43

2 Problem description and formulation

exceed 1. The relations (2.49)-(2.51) are applied for the summation indices on the

left-hand side.

Alternatively, new variables can be introduced describing whether a given point

is occupied by a certain item. Although the non-overlapping constraint can be

formulated without these variables, they can (i) make the constraint clearer and (ii)

are needed later for the formulation of other constraints. Thus, let

ϕikvαβγ =

1, if the point (α, β, γ) is occupied by item Iik in vehicle v,

0, otherwise.

(2.53)

Applying (2.49)-(2.51), the occupation variables can be determined as:

ϕikvαβγ =
∑

t∈N\{n}

∑
{
α′∈Aik

∣∣α−l̂ik+1≤α′≤α
}

∑
{
β′∈Bik

∣∣β−ŵik+1≤β′≤β
}

∑
{
γ′∈Γik

∣∣γ−hik+1≤γ′≤γ
} π

iktv
α′β′γ′

(2.54)

∀ i ∈ Nc, k ∈ Ji, v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0.

Using these variables, (2.52) can be reformulated as:

∑

i∈Nc

∑

k∈Ji
ϕikvαβγ ≤ 1 ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0. (2.55)

The orthogonal packing of each item Iik is ensured by the definition of the decision

variables πiktvαβγ (i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V).

Fixed vertical orientation (P4)

The fixed vertical orientation of each item Iik is ensured by the definition of the

decision variables oik (i ∈ Nc, k ∈ Ji).

Vertical stability (P5)

In the following, the vertical stability constraint as it is applied by Gendreau et al.

(2006) is presented. Below, it is extended to the robust stability constraint as it is

defined by Ceschia et al. (2013).

The constraint demands a given threshold percentage V SP of an item’s bottom face

to be supported either by the container floor or by the top faces of other items. A

44

2 Problem description and formulation

mathematical formulation must be able to identify the items that support another

item. In addition, it must identify the area of the bottom side that is supported.

Let Iik and Ijq be two items in the same vehicle with their back-left-bottom corner

points at (αik, βik, γik) and (αjq, βjq, γjq), respectively (see (2.22)-(2.24)). In order

that item Ijq directly supports (see p. 18) item Iik, several conditions must hold.

First of all, the top face of Ijq must be at the same height as the bottom face of Iik:

γik = γjq + hjq. (2.56)

Moreover, the α-β-projections of both items must overlap. Regarding the length

dimension it must be fulfilled that:

αik − l̂jq + 1 ≤ αjq ≤ αik + l̂ik − 1, (2.57)

which is visualized in Figure 2.26. The reference corner point (marked by the dots)

of item Ijq would be outside of this range if Ijq was in the left-most (1) or in the

right-most position (3), whereas the corner point would be within the range if Ijq

was in the middle position (2). Thus, Ijq would support Iik if Ijq was in position (2).

Analogously, such relations can be applied to the width dimension. In conclusion,

Ijq supports Iik (at least partially) if (2.56), (2.57) and

βik − ŵjq + 1 ≤ βjq ≤ βik + ŵik − 1 (2.58)

are fulfilled.

α

γ

(1) (2) (3)

Iik

Ijq IjqIjq

αik − l̂jq αik αik + l̂ik

l̂jq l̂ik

Figure 2.26: Relations of coordinates for determining whether an item is placed below
another

Based on the remarks presented above, the vertical stability constraint can be stated

as:

45

2 Problem description and formulation

∑

j∈Nc

∑

q∈Jj

∑

{u∈N |t≤u<n}
∑

{α∈Ajq |α′−l̂jq+1≤α≤α′+l̂ik−1}
∑

{β∈Bjq |β′−ŵjq+1≤β≤β′+ŵik−1}
l̃ikjq · w̃ikjq · πjquvαβ(γ′−hjq)

≥ V SP · lik · wik · πiktvα′β′γ′

(2.59)

where

l̃ikjq = min(α + l̂jq, α
′ + l̂ik)−max(α, α′) and (2.60)

w̃ikjq = min(β + ŵjq, β
′ + ŵik)−max(β, β′) (2.61)

∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik \ {0}.

l̃ikjq · w̃ikjq is the area, that an item Ijq provides to support item Iik. Figure 2.27

illustrates a 2D projection on the α-β-plane and shows the support area provided

by two different items. Item I11 is placed on top of the items I21 and I31, i.e.

γ11 = γ21 + h21 and γ11 = γ31 + h31. The respective areas they support are marked

by the striped areas.

α21 α′ α21+l21,
α31

α′+l11 α31+l31

β21

β′

β21+w21,
β31+w31

β′+w11

l̃1121 l̃1131

w̃1121 w̃1131

I11

I21 I31

α

β

area supported by I21

area supported by I31

bottom area of I11

Figure 2.27: Determination of support areas provided for vertical stability

The right-hand side of (2.59) equals V SP · lik · wik if item Iik is placed in vehicle v

with its back-left-bottom corner point in (α′, β′, γ′) and is delivered in stage t. This

46

2 Problem description and formulation

is the area of its bottom face that must at least be supported by other items. The

constraint is not formulated for γ′ = 0, i.e. items that are placed on the loading

space floor do not need to satisfy a vertical stability constraint.

On the left-hand side of (2.59), the supporting area provided by items placed directly

below the reference item Iik is added up. In order to determine those items, the

relations (2.57) and (2.58) are employed for the summation indices of α and β.

Note that only those constellations of items are considered, where the supporting

item is delivered at the same stage or later than the item on top. This aspect is

not strictly necessary in formulation (2.59). The fact that an item is exclusively

supported (directly or indirectly) by items that are unloaded later or at the same

stage is ensured by the LIFO constraint (2.70) (see below). Thus, its consideration

in (2.59) merely serves to reduce the summations.

The previous formulation is adopted from Junqueira et al. (2012a,b). In the follow-

ing, a modified formulation is presented, which requires the introduction of some

new variables.12 The vertical stability constraint can also be formulated using the

occupation variables ϕikvαβγ introduced above (see (2.54)):

∑

j∈Nc

∑

q∈Jj

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}ϕ

jqv
αβ(γ′−1)

≥ V SP · lik · wik · πiktvα′β′γ′

(2.62)

∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik \ {0}.

That is, the number of occupied points directly below the base area of item Iik is

summed on the left-hand side (at height level γ′−1 if Iik is placed at γ′). The number

of occupied points must be greater than or equal to the minimum supporting area

V SP · lik ·wik. This formulation is applicable as all item dimensions and placement

positions are assumed to be integer (see above).

Furthermore, let suppikjq be the base area of item Iik that is directly supported by

another item Ijq. In Figure 2.27, it would refer to the individual striped areas. It

can be determined as follows:

12 As before, this might not be necessary at this point yet, but the variables will be required
later and could then be used to propose a reformulation of the constraints presented here. In
order to avoid “jumping” back to this part, the variables and the reformulated constraints are
presented here.

47

2 Problem description and formulation

suppikjq =
∑

v∈V

∑

α′∈Aik

∑

β′∈Bik

∑

γ′∈Γik

∑

t∈N\{n}
πiktvα′β′γ′

·
∑

{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}ϕ

jqv
αβ(γ′−1)

(2.63)

∀ i, j ∈ Nc, k ∈ Ji, q ∈ Jj.

Pairs of items transported by the same vehicle are considered. The formula adds

up all the points that are occupied by Ijq in the rectangular area given by the

points (α′, β′, γ′ − 1) and (α′ + l̂ik − 1, β′ + ŵik − 1, γ′ − 1) if Iik is placed with its

back-left-bottom corner point at (α′, β′, γ′). Alternatively, it can be calculated as:

suppikjq =
∑

t∈N\{n}

∑

v∈V

∑

α′∈Aik

∑

β′∈Bik

∑

γ′∈Γik

πiktvα′β′γ′

·
∑

{u∈N |t≤u<n}

∑

{α∈Ajq |α′−l̂jq+1≤α≤α′+l̂ik−1}
∑

{β∈Bjq |β′−ŵjq+1≤β≤β′+ŵik−1}
l̃ikjq · w̃ikjq · πjquvαβ(γ′−hjq)

(2.64)

where

l̃ikjq = min(α + l̂jq, α
′ + l̂ik)−max(α, α′) and (2.65)

w̃ikjq = min(β + ŵjq, β
′ + ŵik)−max(β, β′) (2.66)

∀ i, j ∈ Nc, k ∈ Ji, q ∈ Jj.

As before, only those items Ijq are considered that are delivered at the same stage

as Iik or at a later stage than Iik.

Moreover, let aik be the supported base area of item Iik:

aik = lik · wik ·
∑

α∈Aik

∑

β∈Bik

∑

t∈N\{n}

∑

v∈V
πiktvαβ0 +

∑

j∈Nc

∑

q∈Jj
suppikjq (2.67)

∀ i ∈ Nc, k ∈ Ji.

If Iik is placed on the loading space floor, the summation in the first summand

48

2 Problem description and formulation

on the right-hand side equals 1 and, consequently, aik equals the total base area

of Iik. Otherwise, aik equals the supporting area provided by the item(s) directly

supporting Iik (second summand).

With the help of these variables, the vertical stability constraint (2.59) can be re-

formulated as:

aik ≥ V SP · lik · wik ∀ i ∈ Nc, k ∈ Ji. (2.68)

For constraints formulated below it is important that aik > 0, which is ensured by

(2.68) and V SP > 0 (see p. 12.)

Fragility (P6)

The (qualitative) fragility constraint requires that no non-fragile item (fik = 0) is

placed on top of a fragile item (fik = 1), but fragile items can be stacked above each

other. The constraint can be formulated as:

∑

j∈Nc

∑

q∈Jj

∑

{u∈N |t≤u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

} fjq · πjquvαβ(γ′−hjq)

≤
(
1− (1− fik) · πiktvα′β′γ′

)
·M2

(2.69)

∀ i ∈ Nc, k ∈ Ii, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β′ ∈ Bik, γ
′ ∈ Γik \ {0}.

If the reference item Iik is placed with its corner point at (α′, β′, γ′), the number

of fragile items placed directly beneath the reference item Iik, i.e. the items whose

top faces touch the bottom face of Iik, is summed on the left-hand side of (2.69). If

Iik is fragile, the right-hand side of the inequality equals M2, which is a sufficiently

large number (e.g. M2 ≥
∑

i∈Ncmi). Thus, any item can be placed beneath it. If

Iik is not fragile, the right-hand side equals zero. In order to fulfil the inequality, no

fragile item can be placed directly below Iik.

LIFO (P7a)

The LIFO constraint – stating that no item must be placed above or in front of

49

2 Problem description and formulation

another item that is delivered earlier – can be formulated as follows:

∑

j∈Nc

∑

q∈Jj

∑

{u∈N |t<u<n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+hik
}πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

(2.70)

∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik,

and ∑

j∈Nc

∑

q∈Jj

∑

{u∈N |t<u<n}

∑
{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+hik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

(2.71)

∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik.

The first formulation (2.70) refers to the LIFO constraint along the γ-axis, i.e.

preventing items from being placed above items that are delivered earlier. The

right-hand side equals zero if the point (α′, β′, γ′) in vehicle v is the back-left-bottom

corner point of an item Iik delivered in stage t. Otherwise, it assumes a sufficiently

large value M3 (e.g. M3 ≥
∑

i∈Ncmi). On the left-hand side of the constraint, the

number of items that are placed above item Iik and are delivered at a later stage

(u > t) is summed. That is, if item Iik is placed at (α′, β′, γ′) in vehicle v and

delivered in stage t, the number of items placed above it and delivered at any stage

u > t must equal zero. Note that not only those items that are stacked directly on

top of each other are considered, but all items that are somewhere above item Iik

must be taken into account (see Chapter 2.1.1).

Analogously, (2.71) refers to the LIFO constraint along the α-axis, i.e. preventing

items from being placed in front of items that are delivered earlier.

Reachability (P8)

In order to enable the operator (e.g. human worker or forklift) to unload the items

without further rearrangement or having to step onto other items, it must be ensured

50

2 Problem description and formulation

that an item is reachable. For this purpose, the parameter λ is used, which represents

the operator’s maximum horizontal reach along the α-axis. Let δik (i ∈ Nc, k ∈ Ji)

be the closest possible position along the α-axis of the operator when unloading item

Iik. αik + l̂ik represents the α-coordinate of the front side (towards the unloading

side) of item Iik. The reachability constraint can be stated as:

δik − (αik + l̂ik) ≤ λ ∀ i ∈ Nc, k ∈ Ji. (2.72)

The position δik is determined as the maximum of the α-coordinate of the front side

of item Iik (αik + l̂ik) and the α-coordinates of the front sides of all other relevant

items. The relevant items to be considered are those items that are transported in

the same vehicle and would block the unloading of Iik. This includes items that are

either delivered at a later stage in the route or at the same stage, and are placed

below item Iik (cf. Figure 2.12). Figure 2.28 illustrates items that do not need to

be considered. The top view of three items, which are placed next to each other, is

shown. The customers are visited in the sequence (1, 2). Although the items I21 and

I22 are longer than item I11, they do not block the way to it. Thus, the operator

can step up until item I11.

α

β

I11

I21

I22

δ11

Figure 2.28: Item arrangement and operator position δ11 for an item I11

In conclusion, position δik equals the maximum of

• the front edge of item Iik,

• the maximum front edge of the items Ijq (j 6= i) that are unloaded after Iik

and are placed so that βik − ŵjq + 1 ≤ βjq ≤ βik + ŵik − 1,

• the maximum front edge of the remaining items of customer i that are placed

below Iik.

51

2 Problem description and formulation

The position δik can be determined as:

δik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik

π

iktv
αβγ ·max

α + l̂ik,

max
j∈Nc\{i},
q∈Jj

∑

{u∈N |t<u<n}

∑
{
α′∈Ajq

∣∣α′≥α+l̂ik−l̂jq+1

}

∑
{
β′∈Bik

∣∣β−ŵjq+1≤β′≤β+ŵik−1

}
∑

{
γ′∈Γjq

∣∣γ′≤γ−hjq
} πjquvα′β′γ′ ·

(
α′ + l̂jq

)

 ,

max
q∈Ji\{k}

∑
{
α′∈Aiq

∣∣α+l̂ik−l̂iq+1≤α′≤α+l̂ik−1

}
∑

{
β′∈Biq

∣∣β−ŵiq+1≤β′≤β+ŵik−1

}

∑
{
γ′∈Γiq

∣∣γ′≤γ−hiq
} πiqtvα′β′γ′ ·

(
α′ + l̂iq

)

 .

(2.73)

The outer summations fix the stage and vehicle indices t and v so that only those

other items are considered that are also transported by vehicle v and are delivered

later than the reference item Iik (if they are of different customers). By means

of the following three summations, the respective position of Iik is fixed for the

next bracket. Thus, the point (α, β, γ) is the position of the back-left-bottom corner

point of Iik in the expressions that follow. The first term in the outer max-expression

(α + l̂ik) corresponds to the front edge of Iik. The second term refers to the front

edges of the items of other customers that are visited after customer i. Only those

items are considered, whose front edges are at larger α-coordinates than the front

edge of Iik. The front edge of item Ijq with its back edge at αjq is at a larger

α-coordinate than the front edge of Iik with its back at αik if:

αjq ≥ αik + l̂ik − l̂jq + 1. (2.74)

In addition, the term considers only those items that overlap with Iik on the β-

axis (see above) and are placed below Iik. The latter is also ensured by the LIFO

52

2 Problem description and formulation

constraint and serves to reduce the summation. Finally, the third term corresponds

to the maximum front edge of other items of customer i that are placed below Iik.

The constraint is illustrated in Figure 2.29. The customers corresponding to the six

depicted items are visited in the sequence (1, 2, 3, 4, 5, 6). When unloading the

items I11 and I21, the operator has the illustrated position δ11 = δ21. Thus, item I11

is reachable and can be unloaded since its distance to the operator (δ11− (α11 + l̂11))

is shorter than λ (shaded area). Item I21, however, is too far away. The same applies

to item I41. When this item is unloaded, the operator can step up to item I61 (δ41),

as the items I11, I21 and I31 have already been unloaded. However, the distance to

I41 (δ41 − (α41 + l̂41)) is still too large.

α

γ

λ λ

I11I21

I31

I41

I51

I61

δ11 − (α11 + l̂11)

δ21 − (α21 + l̂21)δ41 − (α41 + l̂41)

δ41
δ51
δ61

δ11
δ21
δ31

Figure 2.29: Item arrangement with relevant variables for the evaluation of reachability

If there is no item that would block the way to unload an item Iik, the position δik

equals the position of the front side of item Iik. In Figure 2.29, this would be the

case for the items I31 and I61.

Robust stability (P9)

The vertical stability constraint presented above is extended in order to ensure

robust stability, i.e. the required supporting area must not only be provided by the

items that are directly supporting the reference item, but by all items placed below

it.

An arrangement is illustrated in Figure 2.30. It is assumed that all items have

the same width and their corner points have the same β-coordinates. Thus, the

53

2 Problem description and formulation

supporting areas depend only on the lengths of the items. l̃ikjq represents the length

of the part of the bottom area of item Iik that is supported by item Ijq, i.e.

l̃ikjq = min
(
αik + l̂ik, αjq + l̂jq

)
−max

(
αik, αjq

)
. (2.75)

In the example (Figure 2.30), l̃2131 is assumed to be sufficient to support item I21,

whereas l̃2141 + l̃2151 as well as l̃2161 are too short. Note, that item I71 must not be

considered here. Although item I21 is placed above item I71, I71 does not offer any

support for I21.

I11 I21

I31

I41 I51

I61 I71

l̃2161

l̃2141 l̃2151

l̃2131

α

γ

Figure 2.30: Illustration of the robust stability constraint (Adapted from Ceschia et al.,
2013)

In order to formulate the robust stability constraint, new variables are introduced:

The variables σvαβγ (v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0) describe whether a point (α, β, γ)

in vehicle v is fully supported, i.e. whether all points below it are occupied by any

item:

σvαβγ =

1, if
∑

i∈Nc
∑

k∈Ji
∑
{γ′∈Γik|γ′<γ} ϕ

ikv
αβγ′ = γ, or γ = 0,

0, otherwise.

(2.76)

The application of these variables is illustrated in Figure 2.31 where the grey item is

the reference item that should be tested for robust stability. The points it occupies

on its bottom face are depicted by the black and white dots. The black ones are

fully supported, i.e. all points below them are occupied (green dots). However,

the white ones are not (fully) supported as some points below them are unoccupied

54

2 Problem description and formulation

(crosses). Hence, twelve of the 21 points on the bottom face are fully supported,

which corresponds to a robust stability factor of about 57 %.

fully supported points (occupied
by reference item)

not fully supported points (occu-
pied by reference item)

points occupied by any
item (incomplete)

non-occupied points (incomplete)

Figure 2.31: Occupied and supported points

Using the variables defined above, the robust stability constraint can be formulated

as:

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}σ

v
αβγ′ ≥ V SP · lik · wik ·

∑

t∈N\{n}
πiktvα′β′γ′

(2.77)

∀ i ∈ Nc, k ∈ Ji, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik \ {0}.

If item Iik is placed in vehicle v with its back-left-bottom corner point at (α′, β′, γ′)

(with γ′ > 0), the term on the right-hand side equals the minimum number of

points on the bottom face of Iik that need to be fully supported in order to satisfy

the constraint. Otherwise, it equals 0. On the left-hand side, the number of fully

supported points in the rectangular area given by the points (α′, β′, γ′) and (α′ +

l̂ik − 1, β′ + ŵik − 1, γ′) is summed.

This formulation does not contain any information about the stage in which the

items are unloaded. As mentioned above, this aspect is not strictly necessary as the

LIFO constraint ensures that the supporting items are not delivered earlier than the

reference item.

Load bearing strength (P10)

Every item Iik has a weight dik and is assigned a load bearing strength pik, which

55

2 Problem description and formulation

is the maximum weight (pressure) it can bear on any unit area of its top face and

which must not be exceeded by the weights of the items stacked on top of Iik.

In order to model the load bearing strength constraint, some assumptions have to

be made. If this kind of restriction is considered in the CLP and 3L-VRP literature,

the assumptions proposed by Ratcliff and Bischoff (1998) are usually applied:

“It is assumed that the weight of an item is spread in direct propor-

tion to the contact areas with the boxes on which it rests - and that it

acts straight downwards rather than being distributed over the whole of

a supporting face.” (Ratcliff and Bischoff, 1998, p. 66)

Moreover, Ratcliff and Bischoff (1998) assume that an item’s load bearing strength

is equal for all unit areas of its top face (although a box might be able to bear a

greater weight along its edges than in the centre of the face) and all items are fully

supported.

The transmission of the weight of stacked items according to Ratcliff and Bischoff

(1998) is illustrated in Figure 2.32. The arrows represent the directions of weight

transmissions. The weight of item I11 (blue) is only loaded on the areas directly

beneath it. Item I21 (yellow), for example, bears the weight of I11 only on one

fourth of its top face, and it only transmits the (partial) weight of I11 onto the top

face areas of other items that are beneath I11 (overlapping α-β-projection). Hence,

although the lower left item (I41) carries I21, no weight of item I11 is transmitted to

it.

I11
I21 I31

I41 I42 I43

d11
3

d11
3

d11
3

d11/3 d11/3 d11/3
d31/4 d31/4

d31
4

d31
4

d21
4

d21
4

d21
4 d21/4

Figure 2.32: Load transmission according to Ratcliff and Bischoff (1998)

Under the presented assumptions, the formulation of the load bearing strength con-

straint for the CLP proposed by (Junqueira et al., 2012b) can be adapted to the

56

2 Problem description and formulation

3L-VRPTW as follows:

∑

j∈Nc

∑

q∈Jj

∑

u∈N\{n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}

∑
{
γ∈Γjq

∣∣γ′+1≤γ≤H−hjq
}
(

djq
ljq · wjq

)
· πjquvαβγ

≤
∑

i∈Nc

∑

k∈Ji

∑

t∈N\{n}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−hik+1≤γ≤γ′
} pik · πiktvαβγ

(2.78)

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

That is, if point (α′, β′, γ′) in vehicle v is occupied, the right-hand side of (2.78)

equals the load bearing strength pik of the item Iik that occupies the point. On the

left-hand side, the proportional weights of all items occupying the points (α′, β′, γ)

with γ > γ′ and whose bottom area is at γ > γ′, is added up. An item Ijq loads a

weight of
djq

ljq ·wjq on each point (or unit area) below it. The fact that the bottom face

of the upper items must be at γ > γ′ ensures that the lower item (whose load bearing

strength is determined on the right-hand side) is not loaded by its own weight as the

items regarded on the left-hand side must have their bottom face above γ′. Although

the lower item can occupy further points above (α′, β′, γ′), its bottom face is at a

height level γ ≤ γ′.

The approach of Ratcliff and Bischoff (1998) is a simplification of the actual physical

settings. In the following, a more realistic formulation is attempted. The assumption

is still made that the load bearing strength is equal over the whole top face of an item.

Furthermore, the formulation should also allow the consideration of overhanging

items due to V SP < 1. The weight transmitted via one unit area of the bottom

face of an item is, therefore, not based on the whole base area of that item, but

on the base area that is actually supported by other items (cf. e.g. Christensen

and Rousøe, 2009). In the example depicted in Figure 2.33, each unit area of the

top face of the lower item bears one third of the upper item’s weight, because only

three of four unit areas of its base area are supported. Thus, a formulation of the

load bearing strength is required that distributes the whole weight of an item over

its actually supported bottom area. The formulation (2.78) does not ensure that.

57

2 Problem description and formulation

According to it, one fourth of the weight would be transmitted per base unit area

as it does not take less-than-full support into account.

I11

d11
3

d11
3

d11
3

Figure 2.33: Load transmission of overhanging items

For the formulation of the load bearing strength constraint, the supporting variables

ajq and suppjqik (i, j ∈ Nc, k ∈ Ji, q ∈ Jj) are used in the following. suppjqik denotes

the base area of Ijq that is supported by Iik (see (2.63), (2.64)). ajq refers to the

base area of Ijq that is supported by any item or the container floor (see (2.67)).

Thus, the (own) weight transmitted by an item Ijq to any item below it corresponds

to
djq
ajq

.

Furthermore, let d̂ik (i ∈ Nc, k ∈ Ji) be the weight of item Iik including the weight

transmitted to it from above:

d̂ik = dik +
∑

j∈Nc

∑

q∈Jj

(
suppjqik
ajq

· d̂jq
)
. (2.79)

suppjqik
ajq

is the proportion of the supported base area of Ijq that is supported by Iik.

The reference item Iik bears
suppjqik
ajq

· 100 % of the weight of any item Ijq that is

placed directly on top of it.

If all items can be seen as rigid bodies, i.e. they are inelastic, it can be assumed that

the transmitted weight is spread evenly over the (supported) base area of an item.

That is, on each unit area of its bottom face, an item transmits the same weight

downwards, regardless of whether another item (whose weight is also transmitted)

is placed above the respective unit area or not. Figure 2.34 shows the same arrange-

ment as in Figure 2.32, but with the load transmission according to the mentioned

assumptions. Item I21 spreads its own weight (yellow arrows) and the weight it

transmits from item I11 (blue arrows) evenly to all top faces of the other items it is

directly placed above. The same accounts for item I31.

58

2 Problem description and formulation

I11
I21

d̂21 = d21 +
1
3
d11

I31
d̂31 = d31 +

2
3
d11

I41 I42 I43

d11
3

d11
3

d11
3

d̂31
4

d̂31
4

d̂31
4

d̂31
4

d̂21
4

d̂21
4

d̂21
4

d̂21
4

Figure 2.34: Complete load transmission

For the mathematical model, the load bearing strength constraint can be stated as:

∑

j∈Nc

∑

q∈Jj

∑

{u∈N |t≤u<n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}
d̂jq
ajq
· πjquvαβ(γ′+hik)

≤
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} pik · πiktvαβγ′

+

1−

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} πiktvαβγ′

 ·M4

(2.80)

∀ i ∈ Nc, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

The right-hand side equals pik if (α′, β′, γ′) in vehicle v is occupied by item Iik

that is delivered in stage t, and if the γ-coordinate of its corner point is at height

γ′. Otherwise, the right-hand side equals a sufficiently large value M4 (e.g. M4 ≥
∑

i∈Nc
∑

k∈Ji dik weight units per unit area). That is, any pressure can be applied to

the corresponding unit area. This is a further addition to (2.78). The left-hand side

corresponds to the weight transmitted by the item placed directly on top of Iik (γ-

coordinate of its corner point is at γ′+hik) and occupying the point (α′, β′, γ′+hik).

Variable domain constraints

(2.81) to (2.83) represent the domain constraints of the decision variables:

xtvij ∈ {0, 1} ∀ i, j, t ∈ N , v ∈ V. (2.81)

πiktvαβγ ∈ {0, 1} ∀ i ∈ Nc, k ∈ Ji, t ∈ N \ {n}, v ∈ V, (2.82)

α ∈ Aik, β ∈ Bik, γ ∈ Γik,

59

2 Problem description and formulation

oik ∈ {0, 1} ∀ i ∈ Nc, k ∈ Ji, (2.83)

(2.84) to (2.93) represent the domain constraints of the variables depending on the

decision variables. Here, the defining restrictions or equations usually determine the

respective domains.

l̂ik, ŵik ∈ {lik, wik} ∀ i ∈ Nc, k ∈ Ji, (2.84)

αik ∈ Aik ∀ i ∈ Nc, k ∈ Ji, (2.85)

βik ∈ Bik ∀ i ∈ Nc, k ∈ Ji, (2.86)

γik ∈ Γik ∀ i ∈ Nc, k ∈ Ji, (2.87)

startiv ∈ R+
0 ∀ i ∈ N , v ∈ V, (2.88)

ϕikvαβγ ∈ {0, 1} ∀ i ∈ Nc, k ∈ Ji, v ∈ V, (2.89)

α ∈ A0, β ∈ B0, γ ∈ Γ0,

suppikjq ∈ Z+
0 ∀ i, j ∈ Nc, k ∈ Ji, q ∈ Jj, (2.90)

aik ∈ [0, lik · wik] ∩ Z+
0 ∀ i ∈ Nc, k ∈ Ji, (2.91)

d̂ik ∈ R+ ∀ i ∈ Nc, k ∈ Ji, (2.92)

δik ∈ [0, L] ∀ i ∈ Nc, k ∈ Ji, (2.93)

σvαβγ ∈ {0, 1} ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0. (2.94)

2.2.2 The 3L-VRP with clustered backhauls and time windows

Sets, constants and decision variables

The same sets and constants as before can be applied here (see Table 2.3). In

addition, nL (nB) denotes the number of linehaul (backhaul) customers contained

in the set NL (NB). The same decision variables as in the previously presented

model are utilized.

Model

In the following, the mathematical model for the 3L-VRPCB(TW) is presented.

The explanations will not be as detailed as in the previous chapter, they will rather

focus on the distinctions from the formulations in Chapter 2.2.1.

60

2 Problem description and formulation

The objective function for the 3L-VRPCB(TW) is identical to the objective function

(2.28) for the 3L-VRPTW.

Routing constraints

The routing constraints (2.29)-(2.34), (2.37) and (2.38), as well as the time window

constraint (2.39)-(2.42) from the 3L-VRPTW can be applied unaltered to the 3L-

VRPCB(TW).

In contrast to the 3L-VRPTW, each customer is either a linehaul or a backhaul cus-

tomer in the 3L-VRPCB(TW). The particular characteristic of the problem is that

in each route, all linehaul customers must be visited before the backhaul customers

(R5). This is ensured by the following constraint:

xtvij = 0 ∀ i ∈ NB, j ∈ N L, t ∈ N , v ∈ V. (2.95)

It prevents that a vehicle goes from a backhaul to a linehaul customer, i.e. once a

backhaul customer is visited, the vehicle cannot approach any linehaul customers

anymore. This formulation also allows tours consisting of backhaul customers only.

Some formulations of the VRPCB demand that each tour must contain at least one

linehaul customer. However, as this restriction is often omitted for the VRPCBTW

(e.g. Ropke and Pisinger, 2006a), it is not considered here either.

As described in Chapter 2.1.2.2, the separation of linehaul and backhaul customers

within a route allows for creating two separate packing patterns. Thus, most con-

straints can be formulated separately for linehauls and backhauls, and the formula-

tions differ only slightly from those presented in Chapter 2.2.1.

The weight (2.35) and volume capacity constraints (2.36) can be re-formulated as:

(1) linehaul

∑

i∈NL

∑

k∈Ji

∑

j∈N

∑

t∈Nc
dik · xtvij ≤ D ∀ v ∈ V, (2.96)

∑

i∈NL

∑

k∈Ji

∑

j∈N

∑

t∈Nc
lik · wik · hik · xtvij ≤ L ·W ·H ∀ v ∈ V; (2.97)

(2) backhaul

∑

i∈NB

∑

k∈Ji

∑

j∈NB∪{0}

∑

t∈Nc
dik · xtvij ≤ D ∀ v ∈ V, (2.98)

61

2 Problem description and formulation

∑

i∈NB

∑

k∈Ji

∑

j∈NB∪{0}

∑

t∈Nc
lik · wik · hik · xtvij ≤ L ·W ·H ∀ v ∈ V. (2.99)

In the case of linehauls ((2.96) and (2.97)), the total weight and volume of the items

in the vehicle are constantly decreasing until all items are delivered. In the case of

backhauls ((2.98) and (2.99)), the total weight and volume are constantly increasing

until all items are collected. That is, neither all linehaul items nor all backhaul

items transported in the same tour must exceed the weight and volume capacity.

Packing constraints

Geometrical constraints (P1)-(P3)

The non-overlapping constraint (cf. (2.52)) must be stated separately for linehaul

and backhaul customers, too, because otherwise a backhaul item could not take a

linehaul item’s place:

(1) linehaul:
∑

i∈NL

∑

k∈Ji

∑

t∈N\{n}
∑

{α∈Aik|α′−l̂ik+1≤α≤α′}
∑

{β∈Bik|β′−ŵik+1≤β≤β′}
∑

{γ∈Γik|γ′−hik+1≤γ≤γ′}
πiktvαβγ ≤ 1

∀ α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0, v ∈ V;

(2.100)

(2) backhaul:
∑

i∈NB

∑

k∈Ji

∑

t∈N\{n}
∑

{α∈Aik|α′−l̂ik+1≤α≤α′}
∑

{β∈Bik|β′−ŵik+1≤β≤β′}
∑

{γ∈Γik|γ′−hik+1≤γ≤γ′}
πiktvαβγ ≤ 1

∀ α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0, v ∈ V.

(2.101)

62

2 Problem description and formulation

Alternatively, they can be formulated using the occupation variables ϕikvαβγ:

(1) linehaul:
∑

i∈NL

∑

k∈Ji
ϕikvαβγ ≤ 1 ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0; (2.102)

(2) backhaul:
∑

i∈NB

∑

k∈Ji
ϕikvαβγ ≤ 1 ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0. (2.103)

The other geometrical constraint (2.45) – stating that an item must be placed com-

pletely within the loading space – can be applied unchanged.

Vertical stability (P5)

Considering the support variables, the vertical stability constraint can be stated as:

aik ≥ V SP · lik · wik ∀ i ∈ Nc, k ∈ Ji, (2.104)

where

(1) linehaul:

aik = lik · wik ·
∑

α∈Aik

∑

β∈Bik

∑

t∈N\{n}

∑

v∈V
πiktvαβ0 +

∑

j∈NL

∑

q∈Jj
suppikjq (2.105)

∀ i ∈ NL, k ∈ Ji;

(2) backhaul:

aik = lik · wik ·
∑

α∈Aik

∑

β∈Bik

∑

t∈N\{n}

∑

v∈V
πiktvαβ0 +

∑

j∈NB

∑

q∈Jj
suppikjq (2.106)

∀ i ∈ NB, k ∈ Ji.

For the linehaul items, suppikjq (i, j ∈ NL, k ∈ Ji, q ∈ Jj) can be determined as

in (2.63) or (2.64). For the backhaul items, (2.63) can also be applied in order to

determine suppikjq (i, j ∈ NB, k ∈ Ji, q ∈ Jj). The alternative formulation (2.64)

is modified by adjusting the domain for the stage index u of Ijq. Only those items

need to be considered for the support that are collected earlier than Iik (due to the

LIFO constraint):

63

2 Problem description and formulation

suppikjq =
∑

t∈N\{n}

∑

v∈V

∑

α′∈Aik

∑

β′∈Bik

∑

γ′∈Γik

πiktvα′β′γ′

·
∑

{u∈N |u≤t}

∑

{α∈Ajq |α′−l̂jq+1≤α≤α′+l̂ik−1}
∑

{β∈Bjq |β′−ŵjq+1≤β≤β′+ŵik−1}
l̃ikjq · w̃ikjq · πjquvαβ(γ′−hjq)

 .

(2.107)

Alternatively, the formulation (2.59) based on Junqueira et al. (2012a,b) can be

applied by substituting the domains for the customers i and j with NL or NB,

respectively, and by substituting the domains for the considered stages on the left-

hand side of the inequations with {u ∈ N |u ≤ t} in the case of backhaul customers.

Fragility (P6)

The fragility constraint for the 3L-VRPCB(TW) can be formulated as follows:

(1) linehaul:
∑

j∈NL

∑

q∈Jj

∑

{u∈N |t≤u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

} fjq · πjquvαβ(γ′−hjq)

≤
(
1− (1− fik) · πiktvα′β′γ′

)
·M2

(2.108)

∀ i ∈ NL, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β′ ∈ Bik, γ
′ ∈ Γik \ {0};

(2) backhaul:
∑

j∈NB

∑

q∈Jj

∑

{u∈N |u≤t}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

} fjq · πjquvαβ(γ′−hjq)

≤
(
1− (1− fik) · πiktvα′β′γ′

)
·M2

(2.109)

∀ i ∈ NB, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β′ ∈ Bik, γ
′ ∈ Γik \ {0}.

Detailed explanations of the terms on the left- and right-hand side of the formu-

64

2 Problem description and formulation

lations are provided in Chapter 2.2.1 for the 3L-VRPTW. They apply here analo-

gously. In (2.108), those items are considered on the left-hand side that are delivered

at the same stage as or after the reference item Iik (as in (2.69)), whereas those items

are considered that are collected at the same stage as or before the reference item

in (2.109).

LIFO (P7a), (P7b)

The LIFO constraint for the linehaul items is analogue to the constraint of the 3L-

VRPTW, whereas items collected earlier than the reference item must be considered

in the case of backhaul customers:

(1) linehaul:

∑

j∈NL

∑

q∈Jj

∑

{u∈N |t<u<n}
(2.110)

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+hik
}πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

∀ i ∈ N L, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik,

∑

j∈NL

∑

q∈Jj

∑

{u∈N |t<u<n}
(2.111)

∑
{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+hik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

∀ i ∈ N L, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik;

(2) backhaul:

∑

j∈NB

∑

q∈Jj

∑

{u∈N |u<t}
(2.112)

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+hik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

∀ i ∈ NB, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik,

65

2 Problem description and formulation

∑

j∈NB

∑

q∈Jj

∑

{u∈N |u<t}
(2.113)

∑
{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+hik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3

∀ i ∈ NB, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik.

(2.110) and (2.112) refer to the LIFO constraint along the γ-axis (analogue to (2.70))

and (2.111) and (2.113) refer to the LIFO constraint along the α-axis (analogue to

(2.71)).

Reachability (P8)

The reachability constraint (2.72) can be adopted unchanged for both linehaul and

backhaul customers. The determination of δik needs to be adjusted:

(1) linehaul:

δik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik

π

iktv
αβγ ·max

α + l̂ik,

max
j∈NL\{i},

q∈Jj

∑

{u∈N |t<u<n}

∑
{
α∈Ajq

∣∣α≥α+l̂ik−l̂jq+1

}

∑
{
β∈Bik

∣∣β−ŵjq+1≤β≤β+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≤γ−hjq
}πjquvαβγ ·

(
α + l̂jq

)

 ,

max
q∈Ji\{k}

∑
{
α∈Aiq

∣∣α+l̂ik−l̂iq+1≤αiq≤α+l̂ik−1

}
∑

{
β∈Biq

∣∣β−ŵiq+1≤βiq≤β+ŵik−1

}

∑
{
γ∈Γiq

∣∣γ≤γ−hiq
} πiqtvαβγ ·

(
α + l̂iq

)

(2.114)

∀ i ∈ N L, k ∈ Ji;

66

2 Problem description and formulation

(2) backhaul:

δik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik

π

iktv
αβγ ·max

α + l̂ik,

max
j∈NB\{i},

q∈Jj

∑

{u∈N |u<t}

∑
{
α∈Ajq

∣∣α≥α+l̂ik−l̂jq+1

}

∑
{
β∈Bik

∣∣β−ŵjq+1≤β≤β+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≤γ−hjq
} πjquvαβγ ·

(
α + l̂jq

)

 ,

max
q∈Ji\{k}

∑
{
α∈Aiq

∣∣α+l̂ik−l̂iq+1≤αiq≤α+l̂ik−1

}
∑

{
β∈Biq

∣∣β−ŵiq+1≤βiq≤β+ŵik−1

}

∑
{
γ∈Γiq

∣∣γ≤γ−hiq
}πiqtvαβγ ·

(
α + l̂iq

)

(2.115)

∀ i ∈ NB, k ∈ Ji.

Whereas the determination of δik is similar to (2.73) in the case of linehaul cus-

tomers (only the domain sets for the customer indices are adapted), the equation

for backhaul customers is also changed with respect to the domains of the stage

indices. Here, items need to be considered that are picked up before the reference

item (u < t). A detailed explanation of the composition of δik is presented in

Chapter 2.2.1.

Robust stability (P9)

Similarly to the vertical stability constraint, only minor changes have to be made for

the robust stability constraint. In particular, the domains of the customer indices

need to be adapted to the customer sets NL and NB:

(1) linehaul:

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}σ

vL
αβγ′ ≥ V SP · lik · wik · πiktvα′β′γ′ (2.116)

67

2 Problem description and formulation

∀ i ∈ NL, k ∈ Ji, t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik \ {0},

where the binary support variable σvLαβγ exclusively considers linehaul items:

σvLαβγ =

1, if
∑

i∈NL

∑
k∈Ji

∑
{γ′∈Γik|γ′<γ} ϕ

ikv
αβγ = γ, or γ = 0

0, otherwise

(2.117)

∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0;

(2) backhaul:

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}σ

vB
αβγ′ ≥ V SP · lik · wik ·

∑

t∈N\{n}
πiktvα′β′γ′

(2.118)

∀ i ∈ NB, k ∈ Ji, v ∈ V, α′ ∈ Aik, β
′ ∈ Bik, γ

′ ∈ Γik \ {0},

where the binary support variable σvBαβγ exclusively considers backhaul items:

σvBαβγ =

1, if
∑

i∈NB

∑
k∈Ji

∑
{γ′∈Γik|γ′<γ} ϕ

ikv
αβγ = γ, or γ = 0

0, otherwise

(2.119)

∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0.

Load bearing strength (P10)

Applying the load bearing strength constraint (2.78) (based on the assumptions of

Ratcliff and Bischoff, 1998) to items of the linehaul customers, only other items of

linehaul customers are considered:

(1) linehaul:

∑

j∈NL

∑

q∈Jj

∑

u∈N\{n}
(2.120)

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}

∑
{
γ∈Γjq

∣∣γ′+1≤γ≤H−hjq
}
(

djq
ljq · wjq

)
· πjquvαβγ

≤
∑

i∈NL

∑

k∈Ji

∑

t∈N\{n}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−hik+1≤γ≤γ′
} pik · πiktvαβγ

68

2 Problem description and formulation

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0;

Similarly, only other items of backhaul customers are considered if the constraint is

applied to items of backhaul customers:

(2) backhaul:

∑

j∈NB

∑

q∈Jj

∑

u∈N\{n}
(2.121)

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}

∑
{
γ∈Γjq

∣∣γ′+1≤γ≤H−hjq
}
(

djq
ljq · wjq

)
· πjquvαβγ

≤
∑

i∈NB

∑

k∈Ji

∑

t∈N\{n}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−hik+1≤γ≤γ′
} pik · πiktvαβγ

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

Analogously, the extended variant of the load bearing strength constraint is formu-

lated as follows:

(1) linehaul:

∑

j∈NL

∑

q∈Jj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}
d̂jq
ajq
· πjquvαβ(γ′+hik)

≤
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} pik · πiktvαβγ′ (2.122)

+

1−

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}πiktvαβγ′

 ·M4

∀ i ∈ NL, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0,

where

d̂ik = dik +
∑

j∈NL

∑

q∈Jj

(
suppjqik
ajq

· d̂jq
)

∀ i ∈ NL, k ∈ Ji; (2.123)

69

2 Problem description and formulation

(2) backhaul:

∑

j∈NB

∑

q∈Jj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}
d̂jq
ajq
· πjquvαβ(γ′+hik)

≤
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} pik · πiktvαβγ′ (2.124)

+

1−

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}πiktvαβγ′

 ·M4

∀ i ∈ NB, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0,

where

d̂ik = dik +
∑

j∈NB

∑

q∈Jj

(
suppjqik
ajq

· d̂jq
)

∀ i ∈ NB, k ∈ Ji. (2.125)

suppikjq (i, j ∈ NL, k ∈ Ji, q ∈ Jj) can be determined as in (2.63) or (2.64), and

aik (i ∈ NL, k ∈ Ji) as in (2.105). suppikjq (i, j ∈ NB, k ∈ Ji, q ∈ Jj) can be

determined as in (2.63) or (2.107), and aik (i ∈ NB, k ∈ Ji) as in (2.106). The

formulations for linehaul and backhaul customers differ only in the usage of the

customer sets.

Variable domain constraints

The variable domain constraints (2.81)-(2.93) can be adopted unaltered from the

model for the 3L-VRPTW. Analogue to σvαβγ (see (2.94)), σvLαβγ and σvBαβγ are also

binary variables:

σvLαβγ ∈ {0, 1} ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0, (2.126)

σvBαβγ ∈ {0, 1} ∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0. (2.127)

2.2.3 The 3L-VRP with mixed backhauls and time windows

While the constraints presented for the 3L-VRPTW can be applied rather easily

to the 3L-VRPCB(TW), the formulations for the 3L-VRPMB(TW) (and also for

the 3L-VRPSDP(TW)) are more complex. In these problem variants, linehaul and

70

2 Problem description and formulation

backhaul items can be in the vehicle at the same time and items can be removed

and/or added at every stage of a route. Therefore, linehaul and backhaul items

must be considered simultaneously for the formulations of some constraints.

Sets, constants and decision variables

The same sets, constants and decision variables as in the 3L-VRPCB(TW) model

are applied.

Model

The objective function contains the minimization of the total routing cost and is

adopted from the 3L-VRPTW (2.28).

Routing constraints

The routing constraints (2.29)-(2.34), (2.37), and (2.38), as well as the time window

constraints (2.39)-(2.42) from the 3L-VRPTW can be applied equally to the 3L-

VRPMB(TW). The weight and volume constraints, however, have to be formulated

for every stage of a route, as explained in Chapter 2.1.2.3. The weight constraint

can be stated as:

∑

i∈NL

∑

k∈Ji

∑

j∈Nc

∑

{u∈N |u>t}
dik · xuvij +

∑

i∈NB

∑

k∈Ji

∑

j∈Nc

∑

{u∈N |0<u≤t}
dik · xuvij ≤ D (2.128)

∀ v ∈ V, t ∈ N .

That is, for t = 0 the constraint ensures that all linehaul items do not exceed the

vehicle weight capacities. For every stage t that follows, (2.128) guarantees that

the capacities are observed for all linehaul items that are delivered after stage t and

all backhaul items that are collected before and in stage t. In the last stage of the

route, all backhaul items must not exceed the vehicle capacity. Analogously, the

volume constraint can be formulated as:

∑

i∈NL

∑

k∈Ji

∑

j∈Nc

∑

{u∈N |u>t}
lik · wik · hik · xuvij

+
∑

i∈NB

∑

k∈Ji

∑

j∈Nc

∑

{j∈N |0<u≤t}
lik · wik · hik · xuvij ≤ L ·W ·H (2.129)

∀ v ∈ V, t ∈ N .

71

2 Problem description and formulation

Packing constraints

Geometrical constraints (P1)-(P3)

Constraint (2.45) – guaranteeing that all items are placed completely inside the

loading space – from the 3L-VRPTW can also be applied for the 3L-VRPMB(TW).

The non-overlapping constraint has to be satisfied at every stage of a route. It can

be formulated as:

∑

i∈NL

∑

k∈Ji

∑

{u∈N |t≤u<n}
(2.130)

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−h′ik+1≤γ≤γ′
}πikuvαβγ

+
∑

i∈NB

∑

k∈Ji

∑

{u∈N |u<t}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−h′ik+1≤γ≤γ′
}πikuvαβγ ≤ 1

∀ v ∈ V, t ∈ N , α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

For a certain stage t, those linehaul items must be considered, that are delivered in

stage t or later, and those backhaul items, that are collected earlier than in stage t.

LIFO (P7a), (P7b), (P7c)

The formulations of the LIFO constraint presented for the 3L-VRPCB(TW) are also

used for the 3L-VRPMB(TW). This includes (2.110) and (2.111), which consider

only linehaul items, and (2.112) and (2.113), which consider only backhaul items.

However, the LIFO constraint must also regard linehaul and backhaul items that

are in the vehicle at the same time.

Firstly, linehaul and backhaul items must not be placed above each other, i.e. a

linehaul item Iik delivered in stage t must not be placed under a backhaul item Ijq

that is collected before Iik is delivered (in stage u < t):

72

2 Problem description and formulation

∑

j∈NB

∑

q∈Jj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+h′ik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.131)

∀ i ∈ N L, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β
′ ∈ Bik, γ ∈ Γik.

Vice versa, a backhaul item Iik must not be placed under a linehaul item Ijq that is

delivered after Iik is collected:

∑

j∈NL

∑

q∈Jj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+h′ik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.132)

∀ i ∈ NB, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β
′ ∈ Bik, γ ∈ Γik.

For the placement along the α-axis it can be stated analogously that a linehaul item

Iik must not be placed behind a backhaul item Ijq that is collected before Iik is

delivered:

∑

j∈NB

∑

q∈Jj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+h′ik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.133)

∀ i ∈ N L, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β
′ ∈ Bik, γ ∈ Γik,

and that a backhaul item Iik must not be placed behind a linehaul item Ijq that is

delivered after Iik is collected:

73

2 Problem description and formulation

∑

j∈NL

∑

q∈Jj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+h′ik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.134)

∀ i ∈ NB, k ∈ Ji, v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β
′ ∈ Bik, γ ∈ Γik.

Other packing constraints

Since linehaul and backhaul items, that are in the vehicle at the same time, cannot

be placed above or in front of each other, the formulations from the 3L-VRPCB(TW)

for the vertical stability constraint (2.104)-(2.107), the fragility constraint (2.108)

and (2.109), the reachability constraint (2.72) with (2.114) and (2.115), the robust

stability constraint (2.116)-(2.119), and the load bearing strength constraint (2.120)-

(2.125) are applied to the 3L-VRPMB(TW), too.

Variable domain constraints

The variable domain constraints (2.81)-(2.93) and (2.126)-(2.127) can be adopted

unaltered from the models for the 3L-VRPTW and 3L-VRPCB(TW).

2.2.4 The 3L-VRP with simultaneous delivery and pickup and time win-

dows

Sets, constants and decision variables

Mostly the same constants and sets as before are applied (see Table 2.3). Addition-

ally, mL
i and mB

i denote the numbers of linehaul items demanded by customer i and

the numbers of backhaul items supplied by customer i. The respective items are

contained in the sets JLi and JBi . The decision variables introduced above are used.

Model

The previously introduced objective function (2.28) is applied. The further model

for the 3L-VRPSDP(TW) is similar to the model for the 3L-VRPMB(TW). The

difference is that the sets of items are divided into sets of linehaul items and sets of

backhaul items instead of dividing the customers.

74

2 Problem description and formulation

Routing constraints

The routing constraints (2.29)-(2.34), (2.37), and (2.38), and the time window con-

straints (2.39)-(2.42) are applied unchanged to the 3L-VRPSDP(TW).

The weight constraint is adapted:

∑

i∈Nc

∑

k∈JLi

∑

j∈N

∑

{u∈N |u>t}
dik · xuvij (2.135)

+
∑

i∈Nc

∑

k∈JBi

∑

j∈N

∑

{u∈N |0<u≤t}
dik · xuvij ≤ D

∀ v ∈ V, t ∈ N.

That is, at every stage t the total weight of all linehaul items delivered after stage t

and all backhaul items collected at stage t and earlier are considered. Likewise, the

volume constraint can be stated as:

∑

i∈Nc

∑

k∈JLi

∑

j∈N

∑

{u∈N |u>t}
lik · wik · hik · xuvij (2.136)

+
∑

i∈Nc

∑

k∈JBi

∑

j∈N

∑

{u∈N |0<u≤t}
lik · wik · hik · xuvij ≤ L ·W ·H

∀ v ∈ V, t ∈ N.

Packing constraints

The packing constraints formulated for the 3L-VRPSDP(TW) are based on the for-

mulations proposed for the 3L-VRPCB(TW) and the 3L-VRPMB(TW). As in case

of the 3L-VRPMB(TW), the constraints regarding the stacking of items (fragility,

stability, load bearing) and the reachability constraint can still be formulated sepa-

rately for linehaul and backhaul items as the different types cannot be placed above

or in front of each other. Merely, the customer and item sets need to be adjusted.

Geometrical constraints (P1)-(P3)

The previously formulated constraint regarding the complete placement inside the

loading space (2.45) can be used equally for the 3L-VRPSDP(TW). The non-over-

lapping constraint can be formulated similarly to the respective constraint for the

3L-VRPMB(TW) (2.130) by exchanging the domains for the customer (i) and the

75

2 Problem description and formulation

item (k) indices:

∑

i∈Nc

∑

k∈JLi

∑

{u∈N |t≤u<n}
(2.137)

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−h′ik+1≤γ≤γ′
} πikuvαβγ

+
∑

i∈Nc

∑

k∈JBi

∑

{u∈N |u<t}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−h′ik+1≤γ≤γ′
} πikuvαβγ ≤ 1

∀ α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0, v ∈ V, t ∈ N .

Vertical stability (P5)

Similarly to (2.104)-(2.106), the vertical stability constraint can be formulated as:

aik ≥ V SP · lik · wik ∀ i ∈ Nc, k ∈ Ii. (2.138)

The determination of the supported area of an item is adjusted to the item sets:

(1) linehaul:

aik = lik · wik ·
∑

α∈Aik

∑

β∈Bik

∑

t∈N\{n}

∑

v∈V
πiktvαβ0 +

∑

j∈Nc

∑

q∈JLj

suppikjq (2.139)

∀ i ∈ Nc, k ∈ JL
i ;

(2) backhaul:

aik = lik · wik ·
∑

α∈Aik

∑

β∈Bik

∑

t∈N\{n}

∑

v∈V
πiktvαβ0 +

∑

j∈Nc

∑

q∈JBj

suppikjq (2.140)

∀ i ∈ Nc, k ∈ JB
i .

For the linehaul items, suppikjq (i, j ∈ Nc, k ∈ JLi , q ∈ JLj) can be determined

analogously to (2.63) or (2.64). For the backhaul items, suppikjq (i, j ∈ Nc, k ∈
JBi , q ∈ JBj) can be determined analogously to (2.63) or (2.107).

76

2 Problem description and formulation

Fragility (P6)

The fragility constraint can be stated as:

(1) linehaul:
∑

j∈Nc

∑

q∈JLj

∑

{u∈N |t≤u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

} fjq · πjquvαβ(γ′−hjq)

≤
(
1− (1− fik) · πiktvα′β′γ′

)
·M2 (2.141)

∀ i ∈ Nc, k ∈ JLi , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β′ ∈ Bik, γ
′ ∈ Γik \ {0};

(2) backhaul:
∑

j∈Nc

∑

q∈JBj

∑

{u∈N |u≤t}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

} fjq · πjquvαβ(γ′−hjq)

≤
(
1− (1− fik) · πiktvα′β′γ′

)
·M2 (2.142)

∀ i ∈ Nc, k ∈ JBi , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β′ ∈ Bik, γ
′ ∈ Γik \ {0}.

LIFO (P7d)

First of all, the formulations of the LIFO constraint (2.110)-(2.113) from the 3L-

VRPCB(TW) and 3L-VRPMB(TW) can be applied and adjusted. They ensure

that a linehaul item is not placed above or in front of another linehaul item that is

delivered earlier, and that a backhaul item is not placed above or in front of another

backhaul item that is collected later:

77

2 Problem description and formulation

(1) linehaul:

∑

j∈Nc

∑

q∈JLj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+hik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.143)

∀ i ∈ Nc, k ∈ JL
i , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik,

∑

j∈Nc

∑

q∈JLj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+hik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.144)

∀ i ∈ Nc, k ∈ JL
i , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik;

(2) backhaul:

∑

j∈Nc

∑

q∈JBj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+hik
}πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.145)

∀ i ∈ Nc, k ∈ JB
i , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik,

∑

j∈Nc

∑

q∈JBj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+hik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.146)

78

2 Problem description and formulation

∀ i ∈ Nc, k ∈ JB
i , t ∈ N \ {n}, v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik.

In order to prevent linehaul and backhaul items from being placed above or in front

of each other, the LIFO constraint is formulated similarly to (2.131)-(2.134) from

the 3L-VRPMB(TW) model.

(2.147) ensures that no linehaul item is placed under a backhaul item that is collected

before the linehaul item is delivered:

∑

j∈Nc

∑

q∈JBj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+h′ik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.147)

∀ i ∈ Nc, k ∈ JL
i , v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β

′ ∈ Bik, γ ∈ Γik.

(2.148) ensures that no backhaul item is placed under a linehaul item that is delivered

after the backhaul item is collected:

∑

j∈Nc

∑

q∈JLj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′+l̂ik−1

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≥γ′+h′ik
} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.148)

∀ i ∈ Nc, k ∈ JB
i , v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β

′ ∈ Bik, γ ∈ Γik.

(2.149) ensures that no linehaul item is placed behind a backhaul item that is col-

lected before the linehaul item is delivered:

∑

j∈Nc

∑

q∈JBj

∑

{u∈N |u<t}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+h′ik−1

} πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.149)

79

2 Problem description and formulation

∀ i ∈ Nc, k ∈ JL
i , v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β

′ ∈ Bik, γ ∈ Γik.

(2.148) ensures that no backhaul item is placed behind a linehaul item that is de-

livered after the backhaul item is collected:

∑

j∈Nc

∑

q∈JLj

∑

{u∈N |t<u<n}
∑

{
α∈Ajq

∣∣α≥α′+l̂ik

}
∑

{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ′−hjq+1≤γ≤γ′+h′ik−1

}πjquvαβγ

≤
(
1− πiktvα′β′γ′

)
·M3 (2.150)

∀ i ∈ Nc, k ∈ JB
i , v ∈ V, t ∈ N \ {n}, α′ ∈ Aik, β

′ ∈ Bik, γ ∈ Γik.

Reachability (P8)

The reachability constraint (2.72) is applied to the 3L-VRPSDP(TW). In addition,

the positions δik (i ∈ Nc, k ∈ Ji) for linehaul and backhaul items are determined

similarly to those introduced for the 3L-VRPCB(TW) (Chapter 2.2.2):

(1) linehaul:

δik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik

π

iktv
αβγ ·max

α + l̂ik,

max
j∈Nc\{i},
q∈JLj

∑

{u∈N |t<u<n}

∑
{
α∈Ajq

∣∣α≥α−l̂jq+1

}

∑
{
β∈Bik

∣∣β−ŵjq+1≤β≤β+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≤γ−hjq
} πjquvαβγ ·

(
α + l̂jq

)

 ,

max
q∈JL

i \{k}

∑
{
α∈Aiq

∣∣α−l̂iq+1≤αiq≤α+l̂ik−1

}
∑

{
β∈Biq

∣∣β−ŵiq+1≤βiq≤β+ŵik−1

}

∑
{
γ∈Γiq

∣∣γ≤γ−hiq
} πiqtvαβγ ·

(
α + l̂iq

)

(2.151)

80

2 Problem description and formulation

∀ i ∈ Nc, k ∈ JL
i ;

(2) backhaul:

δik =
∑

t∈N\{n}

∑

v∈V

∑

α∈Aik

∑

β∈Bik

∑

γ∈Γik

π

iktv
αβγ ·max

α + l̂ik,

max
j∈Nc\{i},
q∈JBj

∑

{u∈N |u<t}

∑
{
α∈Ajq

∣∣α≥α−l̂jq+1

}

∑
{
β∈Bik

∣∣β−ŵjq+1≤β≤β+ŵik−1

}
∑

{
γ∈Γjq

∣∣γ≤γ−hjq
}πjquvαβγ ·

(
α + l̂jq

)

 ,

max
q∈JB

i \{k}

∑
{
α∈Aiq

∣∣α−l̂iq+1≤αiq≤α+l̂ik−1

}
∑

{
β∈Biq

∣∣β−ŵiq+1≤βiq≤β+ŵik−1

}

∑
{
γ∈Γiq

∣∣γ≤γ−hiq
} πiqtvαβγ ·

(
α + l̂iq

)

(2.152)

∀ i ∈ Nc, k ∈ JB
i .

A detailed explanation of the composition of δik is presented in connection with the

model for the 3L-VRPTW (Chapter 2.2.1).

Robust stability (P9)

The robust stability constraint is as follows:

(1) linehaul:

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}σ

vL
αβγ′ ≥ V SP · lik · wik ·

∑

t∈N\{n}
πiktvα′β′γ′

(2.153)

∀ i ∈ Nc, k ∈ JL
i , v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik \ {0},

81

2 Problem description and formulation

where

σvLαβγ = max

∑

i∈Nc

∑

k∈JLi

∑

{γ′∈Γik|γ′<γ}
ϕikvαβγ − γ + 1, 0

 (2.154)

∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0;

(2) backhaul:

∑
{
α∈A0

∣∣α′≤α≤α′+l̂ik−1
}

∑
{
β∈B0

∣∣β′≤β≤β′+ŵik−1
}σ

vB
αβγ′ ≥ V SP · lik · wik ·

∑

t∈N\{n}
πiktvα′β′γ′

(2.155)

∀ i ∈ Nc, k ∈ JB
i , v ∈ V, α′ ∈ Aik, β

′ ∈ Bik, γ
′ ∈ Γik \ {0},

where

σvBαβγ = max

∑

i∈Nc

∑

k∈JBi

∑

{γ′∈Γik|γ′<γ}
ϕikvαβγ − γ + 1, 0

 (2.156)

∀ v ∈ V, α ∈ A0, β ∈ B0, γ ∈ Γ0.

Load bearing strength (P10)

The load bearing strength constraint based on Ratcliff and Bischoff (1998) needs to

be formulated for linehaul and backhaul items separately (similarly to the constraint

for the 3L-VRPMB(TW)):

(1) linehaul:

∑

j∈Nc

∑

q∈JLj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}

∑
{
γ∈Γjq

∣∣γ′+1≤γ≤H−hjq
}
(

djq
ljq · wjq

)
· πjquvαβγ

≤
∑

i∈Nc

∑

k∈JLi

∑

t∈N\{n}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−hik+1≤γ≤γ′
} pik · πiktvαβγ (2.157)

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0;

82

2 Problem description and formulation

(2) backhaul:

∑

j∈Nc

∑

q∈JBj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}

∑
{
γ∈Γjq

∣∣γ′+1≤γ≤H−hjq
}
(

djq
ljq · wjq

)
· πjquvαβγ

≤
∑

i∈Nc

∑

k∈JBi

∑

t∈N\{n}
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
}

∑
{
γ∈Γik

∣∣γ′−hik+1≤γ≤γ′
} pik · πiktvαβγ (2.158)

∀ v ∈ V, α′ ∈ A0, β
′ ∈ B0, γ

′ ∈ Γ0.

The following formulations consider the alternative, extended load bearing strength

constraint:

(1) linehaul:

∑

j∈Nc

∑

q∈JLj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}
d̂jq
ajq
· πjquvαβ(γ′+hik)

≤
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} pik · πiktvαβγ′

+

1−

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} πiktvαβγ′

 ·M4 (2.159)

∀ i ∈ Nc, k ∈ JL
i , v ∈ V, t ∈ N \ {n}, α′ ∈ A0, β

′ ∈ B0, γ
′ ∈ Γ0,

where

d̂ik = dik +
∑

j∈Nc

∑

q∈JLj

(
suppjqik
ajq

· d̂jq
)

∀ i ∈ Nc, k ∈ JL
i ; (2.160)

83

2 Problem description and formulation

(2) backhaul:

∑

j∈Nc

∑

q∈JBj

∑

u∈N\{n}

∑
{
α∈Ajq

∣∣α′−l̂jq+1≤α≤α′
}

∑
{
β∈Bjq

∣∣β′−ŵjq+1≤β≤β′
}
d̂jq
ajq
· πjquvαβ(γ′+hik)

≤
∑

{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} pik · πiktvαβγ′

+

1−

∑
{
α∈Aik

∣∣α′−l̂ik+1≤α≤α′
}

∑
{
β∈Bik

∣∣β′−ŵik+1≤β≤β′
} πiktvαβγ′

 ·M4 (2.161)

∀ i ∈ Nc, k ∈ JB
i , v ∈ V, t ∈ N \ {n}, α′ ∈ A0, β

′ ∈ B0, γ
′ ∈ Γ0,

where

d̂ik = dik +
∑

j∈Nc

∑

q∈JBj

(
suppjqik
ajq

· d̂jq
)

∀ i ∈ Nc, k ∈ JB
i . (2.162)

For the linehaul items, suppikjq (i, j ∈ Nc, k ∈ JLi , q ∈ JLj) can be determined

analogously to (2.63) or (2.64), and aik (i ∈ Nc, k ∈ JL
i) as in (2.139). For the

backhaul items, suppikjq (i, j ∈ Nc, k ∈ JBi , q ∈ JBj) can be determined analogously

to (2.63) or (2.107), and aik (i ∈ Nc, k ∈ JB
i) as in (2.140). The formulations for

linehaul and backhaul items differ only in the usage of the item sets.

Variable domain constraints

The variable domain constraints (2.81)-(2.93) and (2.126)-(2.127) can be adopted

unaltered from the models for the 3L-VRPTW and 3L-VRPCB(TW).

84

Chapter 3

Literature review

This chapter provides an overview of the relevant literature. Relevant VRP variants

with backhauls and time windows are regarded (Chapter 3.1). Furthermore, a short

overview of packing problems is provided (Chapter 3.2) as well as an overview of

VRPs with loading constraints (Chapter 3.3).

3.1 Vehicle routing problems

The VRP was first introduced as the so-called “truck dispatching problem” by

Dantzig and Ramser (1959) more than 50 years ago. The problem was presented as

a generalization of the well-known travelling salesman problem. Ever since, the VRP

has been studied intensively and many different variants of the problem have been

identified. According to Irnich et al. (2014b), they can be classified based on their

network characteristics, types of transportation requests, intra- and inter-route con-

straints, fleet characteristics and optimization objectives. Three problem variants,

that are of interest in this thesis, are the VRP with time windows (VRPTW), VRP

with backhauls (VRPB) and VRP with backhauls and time windows (VRPBTW).

3.1.1 Vehicle routing problems with time windows

A frequently investigated variant is the VRPTW. Whereas early works concentrate

on conventional heuristic solution approaches (e.g. Pullen, 1967; Knight and Hofer,

1968; Madsen, 1976), the focus later shifts towards exact (e.g. Christofides et al.,

1981; Kolen et al., 1987) and metaheuristic solution approaches (e.g. Garcia et al.,

1994; Homberger and Gehring, 1999; Bent and van Hentenryck, 2004). Very good

results are also obtained by the adaptive large neighbourhood search (ALNS) pro-

posed by Pisinger and Ropke (2007) and the genetic algorithm (GA) presented by

Vidal et al. (2013).

In the VRPTW literature, the minimization of the number of vehicles is often used

as first objective, whereas distance minimization is usually the primary objective in

other VRPs. According to Duhamel et al. (1997), distance minimization should be

considered if the vehicles are not associated with any fixed, decision-relevant costs.

85

3 Literature review

Focusing on the minimization of the number of tours would reduce the problem to a

bin-packing problem. That is, the optimization would aim at “packing” customers

into routes if the capacity constraint is not violated although they might be located

far away from each other. Hence, this objective appears to be inappropriate for such

VRPs. However,

“ [for] problems with time window constraints (or VRPs with maximal

distance constraints), the bin-packing effect is alleviated. In this case,

minimizing the number of routes looks as a natural objective. The time

issues are addressed in the secondary objective, thus avoiding solutions

with low distance travelled but large waiting times. ” (Duhamel et al.,

1997, p. 50)

Solomon (1987) introduces 56 VRPTW instances with 100 customers each, which

are commonly used as benchmark instances. They are also used as benchmark

instances in the course of this thesis and (partly) as a basis for the generation of 3L-

VRPBTW instances. To date, 55 out of the 56 instances could be solved to proven

optimality (concerning the minimization of the total travel distance). The last 20

instances have been solved rather recently (Jepsen et al., 2008; Desaulniers et al.,

2008; Baldacci et al., 2011), which shows that there is still an interesting evolution

happening in the field of exact solution approaches. Prominent large-scale instances

with up to 1,000 customers are introduced by Gehring and Homberger (1999).

3.1.2 Vehicle routing problems with backhauls

The group of VRPBs contains further popular extensions of the VRP. Since such

problem variants are one of the main aspects of this work, the relevant literature

will be examined in more detail in the following section. Afterwards, an overview is

given about the combination of the VRPTW and the VRPB, i.e. the VRPBTW.

Different variants of the VRPB can be classified. Since this work deals with the

VRP with clustered backhauls (VRPCB), VRP with mixed backhauls (VRPMB)

and VRP with simultaneous delivery and pickup (VRPSDP), the following literature

review will focus on these problems as well.

The VRPB was first mentioned in the 1980s. In particular, the VRPCB (Deif

and Bodin, 1984; Goetschalckx and Jacobs-Blecha, 1989) and the VRPMB (Golden

et al., 1985; Casco et al., 1988) were studied at that time. Goetschalckx and Jacobs-

86

3 Literature review

Blecha (1989) introduce instances with 25 to 100 customers that are widely accepted

as standard instances in the VRPB literature.

Exact methods for the VRPCB are proposed by Toth and Vigo (1997) and Mingozzi

et al. (1999). Both apply branch-and-bound (B&B) algorithms with different lower

bounding procedures that could solve the majority of the instances of Goetschalckx

and Jacobs-Blecha (1989) and Toth and Vigo (1996) with up to 100 customers to

optimality. An exact approach for the VRPSDP is presented by Dell’Amico et al.

(2006) who apply a branch-and-price (B&P) algorithm with an upper bounding

heuristic based on dynamic programming and lower bounding based on state space

relaxation.

Due to the complexity of the problem, the vast majority of researchers apply (con-

ventional) heuristic and metaheuristic approaches for solving the different variants

of the VRPB. Especially the early works focus on conventional heuristics. One of

the first is presented by Deif and Bodin (1984), which is an extension of the savings

algorithm of Clarke and Wright (1964). A penalty term is added to the savings of

the edges connecting a linehaul with a backhaul customer in order to postpone the

formation of mixed routes. The savings algorithm is also applied to the VRPMB

by Golden et al. (1985) and Casco et al. (1988). Both use the heuristic to schedule

the linehaul customers. Subsequently, the backhaul customers are added by means

of different insertion heuristics.

Toth and Vigo (1996, 1999) present a cluster-first-route-second approach for the

VRPCB. Beginning with a solution obtained by Lagrangian relaxation, linehaul

and backhaul clusters are determined and matched. The routes for the clusters

are then obtained by means of a modified farthest-insertion heuristic and improved

by applying intra-route optimization. Further cluster-first-route-second approaches

are, for example, applied by Min (1989) for the VRPSDP or by Halse (1992) for the

VRPMB and VRPSDP. Other heuristic approaches include, but are not limited to,

insertion heuristics (Salhi and Nagy, 1999; Dethloff, 2001), or partitioning heuristics

(Anily, 1996; Mosheiov, 1998).

In later publications, the focus is shifted increasingly towards metaheuristic ap-

proaches. Osman and Wassan (2002) present a reactive tabu search (RTS) algo-

rithm for the VRPCB. It generates initial solutions with saving-insertion and saving-

assignment heuristics improved by 2-opt and 3-opt procedures. The neighbourhood

is explored using interchange operators during the tabu search (TS). A mechanism

87

3 Literature review

detecting recurrent solutions is used for controlling diversification and intensifica-

tion of the search. Further (reactive) TS algorithms are proposed by Crispim and

Brandão (2001), Brandão (2006) and Wassan (2007) for the VRPCB, by Wassan

et al. (2008a) and Nagy et al. (2013) for the VRPMB, and by Tang Montané and

Galvão (2006), Bianchessi and Righini (2007) and Wassan et al. (2008a,b) for the

VRPSDP.

Wade and Salhi (2004) propose an ant colony optimization (ACO) approach for

the VRPMB with special features regarding the selection of candidates, the size of

the candidate list and the local trail update. Similar approaches are presented by

Gajpal and Abad (2009) for the VRPCB, by Wassan et al. (2013) for the VRPMB

and by Çatay (2010) for the VRPSDP. A more recent example of a metaheuristic is

the variable neighbourhood search (VNS) by Polat et al. (2015) for the VRPSDP.

The initial solution for the algorithm is generated using the savings algorithm. For

this purpose, the enhancement of the savings formula of Altınel and Öncan (2005) is

applied that also considers the customer demands. Eight different intra- and inter-

route neighbourhood structures are employed during the search, such as 2- and 3-opt,

swap or shift. Furthermore, a perturbation mechanism is used to escape local optima

and each solution is further improved (if possible) by a variable neighbourhood

descent (VND), which serves as a local search operator.

In addition to the routing constraints regarded in this thesis (see Chapter 2), further

constraints and alternative problem features are considered in the literature. For

example, Deif and Bodin (1984) and Tang Montané and Galvão (2006) restrict the

route lengths. Multiple depots are taken into account by Min et al. (1992), Salhi

and Nagy (1999) and Li et al. (2015), among others. Wade and Salhi (2002) restrict

the mixture of linehaul and backhaul customers, i.e. the first backhaul customer in a

route must not be visited before a certain number of linehaul customers was visited.

In doing so, it should be avoided to visit a backhaul customer too early in a route

which could cause high rearrangement efforts of the loaded goods. Nonetheless, the

advantages of the VRPMB over the VRPCB should be exploited. Mitra (2005)

considers a problem where the linehaul and/or backhaul demand of a customer may

exceed the vehicle capacity. Hence, a customer can be visited more than once.

Table 3.1 provides an overview of the VRPB literature. It contains information

about the considered VRPB variants (column “prob.”) (i.e. the VRPCB (C),

VRPMB (M) or VRPSDP (S)), the nature of the solution approaches (i.e. exact (E),

88

3 Literature review

metaheuristic (Mh) or conventional heuristic (H); “appr.”), the applied algorithms

(“algorithm”) and the benchmark instances used for testing (“instances”).

Table 3.1: Literature overview VRPB

reference prob. appr. algorithm* instances**

Deif and Bodin (1984) CB H Sav DB84

Golden et al. (1985) M H Sav + IH GBAS85

Casco et al. (1988) M H Sav + IH CGW88

Goetschalckx and Jacobs-

Blecha (1989)

C H space-filling curve,

2-opt, 3-opt

GJB89

Min (1989) S H C1R2 Min89

Halse (1992) M, S H C1R2 GBAS85, GJB89,

Min89, Hal92

Min et al. (1992) C H C1R2 Min92

Goetschalckx and Jacobs-

Blecha (1993)

C H general assign-

ment

GJB89

Anily (1996) C H circular partition-

ing

-

Toth and Vigo (1996) C H C1R2 GJB89, TV96

Toth and Vigo (1997) C E B&B GJB89, TV96

Mosheiov (1998) M H tour partitioning Mos98

Mingozzi et al. (1999) C E variable reduction,

LP

GJB89, TV96

Salhi and Nagy (1999) M, S H cluster IH SN99a, SN99b

Toth and Vigo (1999) C H C1R2 GJB89, TV96

Crispim and Brandão

(2001)

C Mh RTS, VNS TPS96

Dethloff (2001) S H IH Min89, SN99b, Det01

Dethloff (2002) M H IH SN99a

Osman and Wassan

(2002)

C Mh RTS GJB89, TV96

Wade and Salhi (2002) M H IH GJB89, TV97

Wade and Salhi (2004) M Mh ACO GJB89

Crispim and Brandão

(2005)

M, S Mh TS×VND SN99a, SN99b

89

3 Literature review

Table 3.1: Literature overview VRPB (continued)

reference prob. appr. algorithm* instances**

Mitra (2005) S E, H MILP, route con-

struction

M05

Nagy and Salhi (2005) M, S H four-phase-

heuristic

SN99a, SN99b

Brandão (2006) C Mh TS GJB89, TV96

Chen and Wu (2006) S Mh IH SN99b, CW06

Dell’Amico et al. (2006) S E B&P DRS06

Ghaziri and Osman (2006) C Mh neural network TV96

Ropke and Pisinger

(2006a)

C,

M, S

Mh LNS GJB89, TV96, SN99a,

Min89, SN99b, Det01

Tang Montané and

Galvão (2006)

S Mh TS Min89, SN99b, Det01,

TMG06

Bianchessi and Righini

(2007)

S Mh LS, TS BR07

Ganesh and Narendran

(2007)

C Mh GA GJB89, TV96

Wassan (2007) C Mh RTS GJB89, TV96

Wassan et al. (2008a) M, S Mh RTS GJB89, TV97, SN99a,

Det01, TG06

Wassan et al. (2008b) S Mh RTS SN99b

Gajpal and Abad (2009) C Mh ACO GJB89, TV97

Tütüncü et al. (2009) C,

M

Mh visual interactive GJB89, TV96

Zachariadis et al. (2009) S Mh TS×GLS SN99b, Det01, TMG06

Çatay (2010) S Mh ACO Min89, Det01, SN99b

Subramanian et al.

(2010a)

S Mh VNS×ILS Det01, SN99b, TMG06

Subramanian et al.

(2010b)

S E B&C Det01, SN99b, TMG06

Zachariadis et al. (2010) S Mh adaptive memory

algorithm

Det01, SN99b, TMG06

Hezer and Kara (2011) S Mh bacterial foraging Det01

Maquera et al. (2012) S Mh SS SN99b, Det01, TMG06

90

3 Literature review

Table 3.1: Literature overview VRPB (continued)

reference prob. appr. algorithm* instances**

Jun and Kim (2012) S Mh perturbation

based algorithm

SN99b

Tasan and Gen (2012) S Mh GA TG12

Zachariadis and Kira-

noudis (2012)

C Mh LS GJB89

Zhang et al. (2012) S Mh SS, GA Det01, ZCZ12

Goksal et al. (2013) S Mh PSO Det01, SN99b

Nagy et al. (2013) M Mh RTS GJB89, TV97, SN99a

Rieck and Zimmermann

(2013)

S E MILP RZ13, M05, CW06,

DRS06, Det01, SN99b

Subramanian et al. (2013) S E BC&P SN99b, Det01, TMG06

Wassan et al. (2013) M Mh ACO GJB89, TV97, SN99a

Palhazi Cuervo et al.

(2014)

C Mh ILS GJB89, TV97

Avci and Topaloglu (2015) M, S Mh adaptive LS Det01, SN99b

Belloso et al. (2015) C Mh randomization

heuristic

GJB89

Garćıa-Nájera et al.

(2015)

C,

M, S

Mh EA GJB89, SN99a, SN99b

Li et al. (2015) S Mh ILS SN99b

Polat et al. (2015) S Mh VNS SN99b, Nagy et al.

(2015), PKKG15

Avci and Topaloglu (2016) S Mh LS×TS AT16

ACO: ant colony optimization, appr.: approach, B&B: branch-and-bound, B&C: branch-and-cut,

BC&P: branch-cut-and-price, B&P: branch-and-price, C: VRPCB, C1R2: cluster-first-route-

second, E: exact, EA: evolutionary algorithm, GA: genetic algorithm, GLS: guided local search,

H: heuristic (conventional), ILS: iterated local search, IH: insertion heuristic, LNS: large neigh-

bourhood search, LP: linear programming, LS: local search, M: VRPMB, Mh: metaheuris-

tic, MILP: mixed integer LP, prob.: problem variant, PSO: particle swarm optimization, S:

VRPSDP, Sav: savings heuristic, SS: scatter search, RTS: reactive TS, TS: tabu search, VND:

variable neighbourhood descent, VNS: variable neighbourhood search; *“. . .×. . . ”: hybrid of

the two mentioned algorithms; **written in bold: first introduction of the instance set (see also

Table 3.3)

91

3 Literature review

3.1.3 Vehicle routing problems with backhauls and time windows

Similarly to the VRPB, there are a few exact and (conventional) heuristic approaches

for the VRPBTW. The majority of solution methods represent metaheuristics. The

problem with clustered backhauls is the variant that is most often considered in con-

nection with time windows. One of the first exact approaches is the B&B algorithm

of Yano et al. (1987) for the VRPCB with time windows (VRPCBTW). The au-

thors present an application for a retail chain and apply the algorithm to instances

with up to 50 stores (linehaul) and 200 suppliers (backhaul). However, the number

of linehaul and backhaul customers is limited to four of each per route. Further-

more, capacity constraints regarding weight and volume, maximum driving times

and maximum time on the road (each truck may be used by more than one driver)

as well as opening and closing times at the destinations are considered. Gélinas et al.

(1995) also present a B&B algorithm for the VRPCBTW and introduce instances

that are often referred to in the subsequent literature on the problem.

Apart from two conventional heuristic approaches (Derigs and Metz, 1992; Thangiah

et al., 1996), various metaheuristics are introduced for the VRPCBTW. One of the

first is the approach of Potvin et al. (1996) who propose a route construction heuristic

combined with a GA. The route construction heuristic is a greedy heuristic that

inserts customers in positions that minimize detours and service delays. The GA is

applied in order to determine the sequence in which the customers are inserted.

Duhamel et al. (1997) propose a TS algorithm with a relatively short tabu list that

stores information from the last five iterations and three different neighbourhoods,

namely 2-opt*, Or-opt and swap. One of them is randomly chosen at each iteration.

In a more recent work, Ong and Suprayogi (2011) investigate the VRPCBTW with

multiple trips, i.e. each vehicle can perform more than one tour during the planning

period. The authors present an ACO algorithm with the initial solution being

generated via sequential insertion.

The more complex problem variants VRPMB with time windows (VRPMBTW)

and VRPSDP with time windows (VRPSDPTW) have not been tackled very of-

ten yet. An exact approach for the VRPSDPTW is presented by Angelelli and

Mansini (2002): a B&P algorithm based on a set covering formulation. The ap-

proach can solve instances with up to 20 customers to optimality. Apart from that,

the VRPMBTW and VRPSDPTW are mainly solved using metaheuristics.

92

3 Literature review

Kontoravdis and Bard (1995) present a greedy randomized adaptive search pro-

cedure (GRASP) for the VRPMBTW. In the initialization phase, customers are

assigned to routes using parallel insertion. The seed customers for the initialization

are selected taking into account both their distance from the depot and their time

window width. Subsequently, the GRASP is applied in order to find and improve

feasible solutions.

Moreover, local search-based approaches are proposed, for example, simulated an-

nealing (SA) (Hasama et al., 1998) or TS (Fan, 2011). Further population-based

metaheuristics are, e.g., ACO (Reimann and Ulrich, 2006) or particle swarm opti-

mization (PSO) (Belmecheri et al., 2013). SA and guided local search (GLS) ap-

proaches for both the VRPCBTW and the VRPMBTW are presented by Hasama

et al. (1998) and by Zhong and Cole (2005), respectively. Furthermore, Ropke and

Pisinger (2006a) develop an ALNS for a variety of problem variants. Of the prob-

lems discussed in this thesis, the VRPCB, VRPMB, VRPSDP, VRPCBTW and

VRPMBTW are covered.

Table 3.2 provides an overview of the literature combing the VRPB and the VRPTW.

In addition to the information given in Table 3.1, Table 3.2 also states the optimiza-

tion objective (column “obj.”).

Table 3.2: Literature overview VRPBTW

reference prob. obj. appr. algorithm* instances**

Yano et al. (1987) C D E B&B Retail case study

Derigs and Metz (1992) C D H matching DM92

Gélinas et al. (1995) C D E B&B GDDS95

Kontoravdis and Bard

(1995)

M VD Mh GRASP KB95

Potvin et al. (1996) C D Mh GA GDDS95

Thangiah et al. (1996) C VD H insertion GDDS95,

TPS96

Duhamel et al. (1997) C D, VD Mh TS GDDS95

Hasama et al. (1998) C, M VD Mh SA TPS96

Angelelli and Mansini

(2002)

S D E B&P AM02

Reimann et al. (2002) C VD Mh ACO GDDS95

Zhong and Cole (2005) C, M VD Mh GLS GDDS95, KB95

93

3 Literature review

Table 3.2: Literature overview VRPBTW (continued)

reference prob. obj. appr. algorithm* instances**

Reimann and Ulrich

(2006)

M VD Mh ACO GDDS95

Ropke and Pisinger

(2006a)

C, M VD Mh ALNS GDDS95,

TPS96, KB95

Fan (2011) S D Mh TS Fan11

Ong and Suprayogi (2011) C VD Mh ACO OS11

Wang and Chen (2012) S VD Mh GA WC12

Belmecheri et al. (2013) M D Mh PSO BPYA13

Zhang et al. (2014) S D Mh ACO×TS ZCZ14

Wang et al. (2015) S VD Mh SA WC12,

WMZS15

ALNS: adaptive large neighbourhood search, appr.: approach, C: VRPCB, D: minimize dis-

tance, E: exact, H: heuristic, M: VRPMB, Mh: metaheuristic, obj.: objective, prob.: problem

variant, S: VRPSDP, SA: simulated annealing, VD: minimize number of used vehicles (first

objective) + minimize distance (second objective); *“. . .×. . . ”: hybrid of the two mentioned

algorithms; **written in bold: first introduction of the instance set (see also Table 3.3). Further

abbreviations of solution approaches are provided in Table 3.1

Hereinafter, let VRPs with and without time windows and backhauls be collectively

referred to as VRPBTWs. Table 3.3 provides an overview of VRPBTW instances

from the literature. Only instances referred to in this thesis are listed. Thus, the

table is without any claim to completeness regarding all available instances. The

respective references and problem variants are listed as well as the characteristics

(e.g. number of customers (n) or ratio of linehaul and backhaul customers) and the

numbers of provided instances (#). Moreover, the table contains information about

previously published instances an instance set is based on (basis), if necessary.

Table 3.3: VRP instances

reference abbrev. problem characteristics # basis

Christofides and

Eilon (1969)

CE69 CVRP n: 50-100 3 -

Christofides et al.

(1979)

CMT79 CVRP n: 50-199 14 -

94

3 Literature review

Table 3.3: VRPBTW instance sets (continued)

reference abbrev. problem characteristics # basis

Deif and Bodin

(1984)

DB84 VRPCB n: 100-300;

%BH: 10-50

n.a. n.a.

Golden et al. (1985) GBAS85 VRPMB n: 50;

%BH: 10

1 CE69

Solomon (1987) Sol87 VRPTW n: 100 56 -

Casco et al. (1988) CGW88 VRPMB n: 61;

%BH: 18

n.a. n.a.

Goetschalckx and

Jacobs-Blecha (1989)

GJB89 VRPCB n: 25-150;

%BH: 20, 33, 50

62 -

Min (1989) Min89 VRPSDP n: 22 1 real world

Derigs and Metz

(1992)

DM92 VRPCBTW n: 28-160 4 real world

Halse (1992) Hal92 VRPSDP n: 22-150 n.a. n.a.

Min et al. (1992) MCS92 VRPCB n: 161 n.a. n.a.

Gélinas et al. (1995) GDDS95 VRPCBTW n: 100;

%BH: 10, 30, 50

15 Sol87

Kontoravdis and

Bard (1995)

KB95 VRPMBTW n: 100;

%BH: 50

27 Sol87

Thangiah et al.

(1996)

TPS96 VRPCBTW n: 250-500;

%BH: 10, 30, 50

24 Sol87

Toth and Vigo (1996) TV96 VRPCB n: 21-100;

%BH: 20, 33, 50

33 TSPLIB

Mosheiov (1998) Mos98 VRPMB n: 50, 100;

%BH: 50

300 -

Gehring and

Homberger (1999)

GH99 VRPTW n: 200-1,000 300 Sol87

Salhi and Nagy

(1999)

SN99a VRPMB n: 50-199;

%BH: 10, 25, 50

42 CMT79

Salhi and Nagy

(1999)

SN99b VRPSDP n: 50-199 28 CMT79

Dethloff (2001) Det01 VRPSDP n: 50 40 -

Angelelli and Mansini

(2002)

AM02 VRPSDPTW n: 20 56 Sol87

95

3 Literature review

Table 3.3: VRPBTW instance sets (continued)

reference abbrev. problem characteristics # basis

Mitra (2005) M05 VRPSDP n: 19 110 -

Dell’Amico et al.

(2006)

DRS06 VRPSDP n: 20, 40 120 Sol87,

TV69, real

world

Chen and Wu (2006) CW06 VRPSDP n: 15, 17, 20 25 Sol87,

GH99

Tang Montané and

Galvão (2006)

TMG06 VRPSDP n: 100-400 18 Sol87,

GH99

Bianchessi and Righ-

ini (2007)

BR07 VRPSDP n: 50, 100;

%BH: 50

300 -

Fan (2011) Fan11 VRPSDPTW n: 10-50 6 -

Ong and Suprayogi

(2011)

OS11 VRPCBTW n: 100;

%BH: 50

6 -

Tasan and Gen

(2012)

TG12 VRPSDP n: 15-44 24 TSPLIB

Wang and Chen

(2012)

WC12 VRPSDPTW n: 10, 25, 50,

100

65 Sol87

Zhang et al. (2012) ZCZ12 VRPSDP n: 200, 400 60 -

Belmecheri et al.

(2013)

BPYA13 VRPMBTW n: 5-100;

%BH: 20

168 Sol87

Rieck and Zimmer-

mann (2013)

RZ13 VRPSDP n: 20-60 100 -

Zhang et al. (2014) ZCZ14 VRPSDPTW n: 100 56 Sol87

Polat et al. (2015) PKKG15 VRPSDP n: 10-40 10 -

Wang et al. (2015) WMZS15 VRPSDPTW n: 200-1,000 30 GH99

Avci and Topaloglu

(2016)

AT16 VRPSDP n: 10-550 28 -

%BH: share of backhaul customers (in the case of VRPCB(TW) and VRPMB(TW)), #: number

of instances, n: number of customers, n.a.: not available, TSPLIB: VRP instances available in

the TSPLIB (cf. Reinelt, 1991)

96

3 Literature review

3.2 Packing problems

Cutting and packing (C&P) problems have gained increasing research interest in

the past decades. Being generally NP-hard, they constitute challenging academic

problems but they are also difficult to solve in practice (Pisinger, 2002). Due to

the large variety of practical applications, numerous problem variants have been

studied that can be categorized, e.g., based on the typology proposed by Wäscher

et al. (2007).

In general, C&P problems can be described as follows: subsets of small items have

to be assigned to one or more large objects (containers) such that they are placed

completely within the large objects and do not overlap (Wäscher et al., 2007). The

items and containers can be one-, two- or three-dimensional, or of even larger (non-

geometric) dimensions. As the focus of this thesis is on the loading of 3D items, only

3D packing problems are regarded in the remainder of this subsection. Furthermore,

an objective function is usually given that is to be optimized. The objective of an

optimization problem can be the minimization of input. This includes, for example,

the minimization of the utilized container length or height (open dimension prob-

lem), or the number of used containers (e.g. bin packing problems). In this case,

a set of items has to be assigned to a set of containers and all items have to be

placed. Furthermore, the objective can consist in maximizing the output, i.e. the

packed value or volume (e.g. knapsack problem). In this case, not all items can be

accommodated by the available container(s) and a selection of the assigned items

is required. For the three-dimensional case, the optimization problems are referred

to as container loading problems (CLPs) (e.g. Wäscher et al., 2007; Bortfeldt and

Wäscher, 2013).

C&P problems can be classified (among others) based on the optimization objective

(see above), the assortment of the items and containers, and the heterogeneity of

the items (Wäscher et al., 2007). Moreover, different practically relevant constraints

are considered in the literature. According to Bortfeldt and Wäscher (2013), those

constraints can refer to the containers (e.g. weight limits or weight distribution con-

straints), the individual items to be packed (e.g. orientation or stacking constraints),

sets of items (e.g. complete-shipment or separation constraints), the relationship

between the containers and the items (e.g. relative positioning or multi-drop con-

straints), or the final load (e.g. stability or complexity constraints).

97

3 Literature review

Solving the CLP to optimality is difficult due to its complexity. Thus, only very

few exact solution methods exist and only few models have been proposed. Chen

et al. (1995) introduce a mixed integer linear programming (MILP) formulation,

which is later extended by Fasano (1999) and Padberg (2000). Fekete et al. (2007)

(see also Fekete and Schepers, 1997, 2004) present an exact two-level tree search

algorithm. At the first level, a higher-dimensional knapsack problem consisting of

the search for a subset of items is solved. In order to determine whether or not a

feasible packing plan exists for the subset, an orthogonal packing problem (OPP)

(see below) is solved at the second level.

Due to the difficulty of the problems, numerous heuristic solution approaches are

proposed for solving the CLP, including conventional heuristics (e.g. construction

and improvement heuristics), metaheuristics and heuristic tree search approaches.

They are usually based on packing approaches that determine geometrical structures

of packing plans (Fanslau and Bortfeldt, 2010). These approaches include, but are

not limited to, wall building, stack building, layer building and block building ap-

proaches (cf. Pisinger, 2002; Fanslau and Bortfeldt, 2010). Wall-building approaches

fill the container with vertical layers of items (parallel to the W×H-plane) along the

length axis. Such approaches are presented, among others, by George and Robinson

(1980), Gehring et al. (1990), Bortfeldt and Gehring (2001) and Pisinger (2002).

Stack building algorithms (e.g. Gilmore and Gomory, 1965; Bischoff and Ratcliff,

1995; Gehring and Bortfeldt, 1997) arrange stacks of items on the container floor.

In the case of horizontal layer building approaches, the container is filled from bot-

tom to top by horizontal layers. The approach is used, e.g., by Bischoff et al. (1995)

and Terno et al. (2000). Block building approaches form blocks containing items

that are usually identical and have the same spatial orientation. Several blocks are

then arranged within the container (e.g. Eley, 2002; Bortfeldt et al., 2003). Recently,

block building approaches have been proposed that do not demand that the items

that form a block are of the same type or have the same spatial orientation (e.g.

Fanslau and Bortfeldt, 2010; Araya and Riff, 2014).

Examples for the mentioned packing approaches are illustrated in Figure 3.1.

In order to obtain solutions of higher quality, the construction heuristics are usually

integrated into more sophisticated search frameworks. For example, Gehring and

Bortfeldt (1997) present a solution approach consisting of a stack-building algorithm

for generating stacks of items and a GA which is responsible for solving the resulting

98

3 Literature review

problem of covering the container floor with the item stacks. In other GAs, e.g.

applied by Hemminki (1994) or Bortfeldt and Gehring (2001), vertical layers are

formed by a wall-buiding procedure and GA operators transfer layers from parent

to offspring solutions. Further variants of GAs are proposed by Gonçalves and

Resende (2012) and Zheng et al. (2015). Other metaheuristic approaches include,

for example, GRASP (Moura and Oliveira, 2005; Parreño et al., 2008), TS (Bortfeldt

et al., 2003; Mack et al., 2004; Allen et al., 2011), or SA (Sixt, 1996; Mack et al.,

2004).

(a) wall building (b) stack building (c) layer building (d) block building

Figure 3.1: Heuristic approaches for solving the CLP

Heuristic tree search approaches are considered by Terno et al. (2000), Eley (2002),

Hifi (2002), Pisinger (2002) and Fanslau and Bortfeldt (2010). Furthermore, Araya

and Riff (2014) present a beam search algorithm, which is a variant of the B&B

approach. However, it does not guarantee optimality. The beam search heuristic

searches a graph by expanding only the most promising nodes at each level.

A recent review and comparison of solution approaches for the CLP is provided by

Zhao et al. (2016).

In contrast to the packing optimization problems, the objective of a packing satis-

fiability (or decision) problem is not to maximize an output or minimize an input,

but to find out whether or not a feasible packing plan exists that accommodates all

given items in a given container. Such a problem is referred to as an orthogonal

packing problem (OPP) (e.g. Fekete and Schepers, 2004).

The focus in the 3D C&P literature lies on the CLP and only very few publications

exist that deal with the OPP in particular. The OPP is – to the best of the author’s

knowledge – first mentioned by George and Robinson (1980) who propose a wall-

building heuristic for solving the problem. It is further considered by Fekete et al.

(2007) (see also Fekete and Schepers, 1997, 2004) as a subproblem in a solution

algorithm for the CLP (see above).

99

3 Literature review

3.3 Vehicle routing problems with multi-dimensional load-

ing constraints

The focus of this section will be on 3L-VRPs. VRPs with two-dimensional loading

constraints (2L-VRPs) will only be mentioned briefly. VRPs with one-dimensional

loading constraints are not regarded.

The 3L-CVRP was introduced first by Gendreau et al. (2006). Regarding the pack-

ing subproblem, the authors apply four constraints (in addition to the standard

geometrical constraints): fixed vertical orientation, fragility, vertical stability and

LIFO policy (see Chapter 2.1.2). These constraints are also used in the majority of

papers on 3L-VRPs, that were published later. Moreover, Gendreau et al. (2006)

present the first benchmark instances for the 3L-CVRP based on well-known CVRP

instances (cf. Table 3.5).

Some authors take different or additional loading constraints into account. Tarantilis

et al. (2009) and Ceschia et al. (2013) consider a variation of the LIFO constraint,

which assumes manual reloading instead of loading and unloading with a forklift,

i.e. the items do not need to be lifted. Hence, an item that is unloaded later in

the route can be placed above (but not directly on top) of an item that is unloaded

earlier. Ceschia et al. (2013) introduce the reachability, load bearing and robust

stability constraints to the 3L-CVRP. Pace et al. (2015) present the transportation

of fibre boards, which can be packed into stacks. Loading the stacks, a balanced

distribution of the load (with respect to the weight) must be guaranteed.

Moura (2008) and Moura and Oliveira (2009) are the first to present the 3L-

VRPTW. The latter also give a mathematical formulation of the combined routing

and packing problem. As it is usual for routing problems with time windows, the

authors also regard the minimization of the vehicle fleet as an objective and Moura

(2008) even considers the maximization of the utilized volume. Furthermore, the

authors regard horizontal stability, i.e. at least three sides of an item have to be

supported by other items or the container side walls.

In combination with the 3L-VRP, only very few variants of pickup and delivery prob-

lems have been considered yet. Bortfeldt et al. (2015) investigate the 3L-VRPCB.

Reil et al. (2017) study different variants of the 3L-VRPBTW, namely the 3L-

VRPTW, 3L-VRPCBTW, 3L-VRPMBTW, 3L-VRPSDPTW and the 3L-VRP with

divisible delivery and pickup and time windows (3L-VRPDDPTW). Whereas only

100

3 Literature review

the rear loading approach is applied to the 3L-VRPTW and 3L-VRPCBTW, the re-

maining problem variants are solved under consideration of rear loading with reload-

ing, side loading and vertical and horizontal loading space partition. The classical

pickup and delivery problem with three-dimensional loading constraints (3L-PDP)

– dealing with the transportation of items from pickup to delivery locations – is

presented by Bartók and Imreh (2011) and Männel and Bortfeldt (2016).

3L-VRPs are complex optimization problems requiring a solution for both a routing

and several packing problems. Junqueira et al. (2013) have attempted to solve a

3L-CVRP by means of standard optimization software. As the instances that could

be solved are very small (3-8 customers and 32 items), this approach is not suitable

for practically relevant instance sizes. The complexity of the integrated routing and

packing problem calls for heuristic solution approaches. The routing problem is often

solved using a metaheuristic approach. For example, Gendreau et al. (2006) apply

a TS algorithm to the routing problem. The neighbourhood is explored by moving

customers between the routes. The affected routes are subsequently re-optimized

using a 4-opt generalized insertion procedure. Further TS procedures are presented

by Wang et al. (2010) and Wisniewski et al. (2011). Miao et al. (2012) present

a GA. Variants of the VNS are utilized by Wei et al. (2014) and Bortfeldt et al.

(2015). In addition, Bortfeldt et al. (2015) consider the ALNS presented by Ropke

and Pisinger (2006a,b) for one-dimensional VRPs as a second, alternative procedure

for the routing problem.

On the contrary, rather simple construction heuristics are usually employed in order

to test whether a feasible packing plan can be found for the items of the customers

assigned to a route. These are mostly variants of the bottom-left heuristic and

the touching area heuristic.13 More advanced packing procedures are, for example,

the local search algorithm of Zhang et al. (2015)14 or the tree search algorithm of

Bortfeldt (2012).

Whereas most solution approaches constitute algorithms that solve the routing and

packing problems in an integrated way, Bortfeldt and Homberger (2013) propose

a different approach: The packing problem is solved first, the routing problem is

solved afterwards. That is, a 3D strip packing problem is solved for each customer

so that a strip of items of height H, width W and with minimum length is provided

13 The heuristics are explained in greater detail in Chapter 4.1.
14 The procedure is described in Chapter 4.1.3

101

3 Literature review

for each customer. Consequently, loading length constraints constitute the capacity

constraints of the resulting routing problem. This approach is further extended by

Reil et al. (2017) for solving 3L-VRPBTWs.

In addition, VRPBs have been studied under consideration of 2D loading constraints.

Dominguez et al. (2015) present a hybrid algorithm combining large neighbour-

hood search (LNS) and biased randomization for a 2L-VRP with clustered back-

hauls (2L-VRPCB). A 2L-VRP with mixed backhauls (2L-VRPMB) is considered

by Pinto et al. (2015), which is solved by means of an insertion heuristic. More-

over, Zachariadis et al. (2016) regard a 2L-VRP with simultaneous delivery and

pickup (2L-VRPSDP). The simultaneous transport of linehaul and backhaul items

is approached with a (vertical) loading space separation. The applied packing heuris-

tic also considers to utilize the backhaul section for linehaul items that are delivered

before the first backhaul item is picked up. Vice versa, the linehaul section can be

used for backhaul items after the last linehaul item was unloaded.

Iori and Martello (2010) and Pollaris et al. (2015) provide detailed overviews of the

literature regarding 2L-VRPs and 3L-VRPs. Moreover, Côté et al. (2017) examine

the value of considering routing and loading problem in an integrated way. Applying

an exact integrated solution algorithm and different non-integrated approaches to

instances for the CVRP with two-dimensional loading constraints (2L-CVRP), the

authors conclude that non-integrated approaches can result in considerable cost

increases of (on average) about 6-9 %. In addition, the number of required vehicles

could be decreased by applying an integrated approach.

An overview of the literature dealing with 3L-VRP is presented in Table 3.4. The

packing constraints considered in the respective papers (columns “WL” to “R”) and

the applied optimization criteria (“RC” to “VU”) are indicated. In the columns

“routing” and “packing”, the solution approaches for the respective subproblem are

shortly listed. The last column contains the used benchmark instances.

Table 3.5 provides an overview of 3L-VRPBTW and CLP instance sets used in the

literature referred to above. Thus, the table is without any claim to completeness

regarding all available instances. The respective references and problem variants are

listed as well as the characteristics (e.g. number of customers (n) or total number of

items (m)) and the numbers of provided instances (#). Moreover, the table contains

information about previously published instances an instance set is based on (basis),

if available.

102

3
L

iteratu
re

rev
iew

Table 3.4: Literature overview 3L-VRP

packing constraints objective solution approach

reference problem WL VS HS LB F HR VR LF R RC V VU routing* packing instances**

Gendreau et al. (2006) 3L-CVRP x x x x x x TS TS with CH (BL + TA) GILM06, RW

Aprile et al. (2007) 3L-CVRP x x SA strip packing approach AEGLP07

Attanasio et al. (2007) 3L-CVRP x x x x x cutting plane TS with CH RW

Moura (2008) 3L-VRPTW x x x x x x x x GA GRASP MO0915

Moura and Oliveira (2009) 3L-VRPTW x x x x x x x CH GRASP MO09

Tarantilis et al. (2009) 3L-CVRP x x x x x x TS×GLS various CH GILM06, TZK09

Fuellerer et al. (2010) 3L-CVRP x x x x x x ACO various CH GILM06

Wang et al. (2010) 3L-CVRP x x x x x x TS LS with DBLF + TA GILM06

Bartók and Imreh (2011) 3L-PDP x x LS block algorithm BI11

Ma et al. (2011) 3L-CVRP x x x x x TS LS GILM06

Wisniewski et al. (2011) 3L-CVRP x x x x x x TS BL GILM06

Bortfeldt (2012) 3L-CVRP x x x x x x TS TrS GILM06, TZK09

Massen et al. (2012) 3L-CVRP x x x x x column generation TrS GILM06

Miao et al. (2012) 3L-CVRP x x x x x x x GA TS GILM06

Zachariadis et al. (2012) PPVRPTW x x x LS CH ZTK12, RW

Zhu et al. (2012) 3L-CVRP x x x x x x TS LS with DBLF + TA GILM06, TZK09

Bortfeldt and Homberger (2013) 3L-VRPTW x x x x x x x x (µ, λ)-ES×TS TS GILM06, MO09, BH13

Ceschia et al. (2013) 3L-CVRP x x x x x x x x SA×LNS various CH GILM06, CSS13

Junqueira et al. (2013) 3L-CVRP x x x x x x exact (GUROBI) JOCM13

Lacomme et al. (2013) 3L-CVRP x x x GRASP×evol. LS 2-stage procedure GILM06, LTD13

Ruan et al. (2013) 3L-CVRP x x x x x BCA various CH GILM06

Wei et al. (2014) 3L-HFVRP x x x x x x AVNS first fit GILM06, TZK09,

WTL14

Bortfeldt et al. (2015) 3L-VRPCB x x x x x x ALNS, VNS TrS BHMM15

15 The instances were first introduced in a working paper in 2007 on which the publication Moura and Oliveira (2009) is based.

103

3
L

iteratu
re

rev
iew

Table 3.4: Literature overview 3L-VRP (continued)

packing constraints objective solution approach

reference problem WL VS HS LB F HR VR LF R RC V VU routing* packing instances**

Pace et al. (2015) 3L-HFVRPTW x x x x ILS, SA specialized heuristic for group-

ing boards and placing stacks

PTMA15

Tao and Wang (2015) 3L-CVRP x x x x x x TS least waste heuristic, TA GILM06, TZK09

Zhang et al. (2015) 3L-CVRP x x x x x evolutionary LS LS with open space heuristic GILM06, TZK09

Escobar-Falcón et al. (2016) 3L-CVRP x x x x x x exact (branch-and-cut) GRASP GILM06

Männel and Bortfeldt (2016) 3L-PDP x x x x x x ALNS TrS MB16

Reil et al. (2017) various x x x x x x x x (µ, λ)-ES×TS TS GILM06, MO09, BH13,

RBM17

Zhang et al. (2017) 3L-CVRP x x x x x x TS×BCA DBLF GILM06, Sol87

3L-VRPHF(TW): 3L-VRP with a heterogeneous fleet (and time windows), ACO: ant colony optimization, (A)LNS: (adaptive) large neighbourhood search, (A)VNS: (adaptive) variable neighbourhood

search, BCA: bee colony approach, BL: bottom-left, CH: construction heuristic, DBLF: deepest-bottom-left-fill, F: fragility, GA: genetic algorithm, GLS: guided local search, HR: horizontal rotation,

HS: horizontal stability, ILS: iterated local search, LB: load-bearing strength, LF: LIFO, LS: Local search, PPVRPTW: pallet-packing VRP with time windows, R: reachability, RC: min. routing

cost, RW: real-world instances (no further specification), SA: simulated annealing, TA: touching area, TrS: tree search, TS: tabu search, V: min. number of vehicles, VR: vertical rotation, VS:

vertical stability, VU: max. volume utilization, WL: weight limit; (µ, λ)-ES: (µ, λ)-evolution strategy, *“. . .×. . . ”: hybrid of the two mentioned algorithms, **written in bold: first introduction of

the instance set (see also Table 3.5)

104

3
L

iteratu
re

rev
iew

Table 3.5: 3L-VRPBTW and CLP instance sets

reference abbrev. problem characteristics # basis

Bischoff and Ratcliff (1995) BR95 CLP 3-100 types 1,400 -
Gendreau et al. (2006) GILM06 3L-CVRP n: 15-100; m: 32-198 27 TSPLIB
Aprile et al. (2007) AEGLP07 3L-CVRP n: 10-100; m: n.a. 50 -
Moura and Oliveira (2009) MO09 3L-VRPTW n: 25; m: 1,050-1,550 46 Sol87, BR95
Tarantilis et al. (2009) TZK09 3L-CVRP n: 50-12; m: 73-379 12 -
Bartók and Imreh (2011) BI11 3L-PDP n: 19; m: 100-5,000 n.a. -
Bortfeldt and Homberger (2013) BH13 3L-VRPTW n: 100-1,000; m: 5,000-50,000 120 Sol87, GH99, BR95
Zachariadis et al. (2012) ZTK12 PPVRPTW n: 50-199; m: 444-2,924 138 CMT79, Sol87
Ceschia et al. (2013) CSS13 3L-CVRP n: 11-129; m: 254-8,060 13 -
Junqueira et al. (2013) JOCM13 3L-CVRP n: 3-8; m: 32 6 -
Lacomme et al. (2013) LTD13 3L-CVRP n: 19-255; m: n.a. 96 French cities
Wei et al. (2014) WTL14 3L-VRPHF n: 20-100; m: 37-212 36 Golden et al. (1984)
Bortfeldt et al. (2015) BHMM15 3L-VRPCB n: 21-150; m: 37-461 95 GJB89, TV96
Pace et al. (2015) PTMA15 3L-VRPHFTW n: 130, 158 2 industry partner

Männel and Bortfeldt (2016) MB16 3L-PDP n: 104-212; m: 104-318 54 -
Reil et al. (2017) RBM17 various 3L-VRPBTWs n: 25-1,000; m: 1,025-50,000 192 MO09, BH13

3L-VRPHF(TW): 3L-VRP with a heterogeneous fleet (and time windows), abbrev.: abbreviation, basis: instances from the literature that serve as basis
for the newly generated instances, n: number of customers per instance, m: total number of items, PPVRP: pallet-packing VRP with time windows,
TSPLIB: VRP instances available in the TSPLIB (cf. Reinelt, 1991), #: number of instances

105

Chapter 4

Hybrid solution approach

The 3L-CVRP is a generalization of the VRP and as such an NP-hard combinato-

rial optimization problem (e.g. Lenstra and Kan, 1981). In addition, the packing

problem included in the 3L-CVRP is a generalization of the bin packing problem,

which is also NP-hard (e.g. Martello et al., 2000). Combining a VRP and a packing

problem is, thus, a challenging optimization problem and difficult to solve (e.g. Iori

and Martello, 2010). Being generalizations of the 3L-CVRP, the 3L-VRPBTWs re-

garded in this thesis are also difficult NP-hard problem. Thus, heuristic approaches

are needed in order to obtain good solutions for instances of practically relevant size

within reasonable computing times. More precisely, hybrid solution approaches are

required for solving the integrated routing and packing problems. Such approaches

for the 3L-VRPBTWs are introduced in the following sections.

4.1 Packing heuristics

If the routing subproblem of a 3L-VRPBTW is solved by means of a metaheuristic,

several thousand iterations are typically performed during the search process and

a vast number of routes must be tested for feasibility with respect to the packing

constraints. An efficient and effective packing algorithm is needed, i.e. one that is

able to find feasible OPP solutions for a huge variety of routes within very short

computing times. Therefore, comparatively simple packing heuristics are employed

for the presented hybrid algorithm.

In Chapter 4.1.1, definitions are given, which are required for the following consid-

erations. Subsequently, two kinds of algorithms are presented. The first group of

packing algorithms consists of simple and fast construction heuristics. The second

group contains more complex algorithms that require longer computing times but

are also able to find solutions to the OPP for routes where the simple heuristics fail.

The different algorithms are presented in Chapter 4.1.2 and Chapter 4.1.3.

The heuristics have been implemented for solving the OPP. They can also be ap-

plied for solving a CLP. The required adjustments are motivated and outlined in

Chapter 4.1.4.

106

4 Hybrid solution approach

The presented packing heuristics are based on heuristics from the literature. They

have been extended substantially in order to cope with different loading approaches

and consider various packing constraints. Depending on the applied loading ap-

proach (cf. Chapter 2.1.2), the packing plans can have different properties. All

of the presented packing heuristics can be utilized for any loading approach. The

necessary adaptations are described in Chapter 4.1.5. In Chapter 4.1.6, the imple-

mentation of each packing constraint is outlined in detail.

4.1.1 Definitions

In the following, the placement Π′ik of an item Iik is defined as a 4-tuple consisting

of the placement coordinates and the chosen orientation:

Π′ik = (αik, βik, γik, oik). (4.1)

It constitutes a shortened form of the placement definition introduced in Chap-

ter 2.1.1 (cf. (2.2)). Instead of the front-top-right corner point (α0
ik, β

o
ik, γ

0
ik), the

orientation oik of an item is taken into account. It has the value 1 if the length lik

of item Iik is parallel to the α-axis, and 0 otherwise (cf. (2.25)). In the following

algorithms, the shortened form can be used as the algorithms allow for neglecting

when an item is loaded and unloaded during a route.

A packing pattern is used synonymously for an OPP solution generated by a packing

heuristic. That is, a packing pattern is the output of solving an OPP for a given

set of items. It contains a collection of Π′ik for all items Iik in the respective set, i.e.

information about the positions and chosen spatial orientations of these items. In

contrast to a packing plan, a packing pattern does not include information regarding

the stages of a route where an item is loaded or unloaded (see Chapter 2.1.1).

Furthermore, the expression “a route (or an item sequence) can be packed feasibly”

is used in order to state that a feasible packing plan for all included items of the

route (or item sequence) exists.

For the sake of brevity, only one index is used (mostly) for the items in this chapter.

4.1.2 Construction heuristics

In the following, the employed construction heuristics are described. For the sake of

simplicity, some figures depict 2D illustrations. In this case, the illustrated dimen-

107

4 Hybrid solution approach

sions of the loading space refer to its width and height. The described heuristics

can be applied to both 2D and 3D problems.

4.1.2.1 Deepest-bottom-left-fill heuristics

Firstly, different variants of the deepest-bottom-left-fill (DBLF) heuristic are pre-

sented. They are based on the bottom-left (BL) heuristic (Baker et al., 1980) and

the bottom-left-fill (BLF) heuristic (Hopper, 2000), which were initially developed

for the two-dimensional CLP, and the DBLF heuristic proposed by Karabulut and

İnceoğlu (2005) for the three-dimensional CLP.

As the name suggests, the general idea of a BL heuristic is to place the items as far

as possible to the bottom (first priority) and to the left (second priority). Applied

to a three-dimensional packing problem, the items are to be placed as far as possible

to the back (first priority), to the bottom (second priority) and to the left (third

priority) of the loading space.

Whereas early implementations of the BL heuristic make use of sliding techniques,

Hopper (2000) applies a different approach that allows the filling of gaps. Therefore,

“fill” is appended to the names of such heuristics in order to distinguish them from

the sliding approaches. Instead of sliding items, potential placement positions are

used and the bottom- and left-most position where an item can be placed feasibly is

chosen. Figure 4.1 illustrates the difference between the BL and the BLF approach.

bottom

le
ft

(a) bottom-left (BL)

3 4

5

1

22′

bottom

le
ft

(b) bottom-left-fill (BLF)

Figure 4.1: Comparison between BL and BLF approach (Adapted from Kopp, 2015)

The sliding technique is shown in Figure 4.1a as it is used, e.g., for the BL heuristic

by Jakobs (1996) or Liu and Teng (1999). In Figure 4.1b, the BLF approach as

implemented by Hopper (2000) is illustrated. Position 2 cannot be reached by

sliding the item. Hence, gaps within the item arrangement can occur with the BL

108

4 Hybrid solution approach

approach, which cannot be filled up any more.

Karabulut and İnceoğlu (2005) have introduced the DBLF heuristic as an exten-

sion of the approach of Hopper (2000) for the three-dimensional CLP. The general

procedure of the DBLF heuristic is outlined in Algorithm 4.1.16

Algorithm 4.1 DBLF heuristic for the OPP

Input: sorted sequence of items IS, current route R, instance data
Output: packing pattern, result

1: procedure Dblf
2: result := true . true: feasible packing pattern was found
3: initialize sorted set of positions P := {(0, 0, 0)} . sorted based on DBL-rule
4: K := ∅ . set of already packed items and their placements
5: for iter := 1 to |IS| do . iter: iterator for IS
6: current item Ii := IS(iter)
7: placed := false . true: feas. placement for the item was found
8: for p := 1 to |P | do
9: for each permitted orientation o do

10: PlacementTest(Ii, P (p), o,K,R)
11: if placement is feasible then
12: placed := true
13: goto Placement
14: end if
15: end for
16: end for
17: Placement:
18: if placed = true then
19: Π′i := (P (p), o) . store position and orientation for Ii
20: ShiftItem(Ii,Π

′
i, K,R) . Algorithm 4.2

21: K := K ∪ {(Ii,Π′i)}
22: update P
23: else
24: result := false
25: break
26: end if
27: end for
28: end procedure

Initially, the items included in a packing pattern are sorted according to a pre-defined

sorting rule. Subsequently, they are placed successively based on the resulting item

sequence, hereinafter referred to as IS. The applied sorting rule is the following:

First and foremost, the packing sequence depends on the sequence in which the

customers are visited in the route. In order to facilitate the fulfilment of the LIFO-

constraint, the linehaul items of the customer that is visited last are packed first

16 In the following codes (i.e. after Algorithm 4.1), the instance data are assumed to be provided
and, for the sake of brevity, not stated explicitly in the input data.

109

4 Hybrid solution approach

(see Chapter 2). Backhaul items that are picked up first are loaded first. Note that

the presented packing procedures allow for generating separate packing patterns for

linehaul and backhaul items (see below). Therefore, the sorting is conducted either

in reverse delivery order or in pickup order. The items of one customer are then

sorted by the following criteria:

• fragility (non-fragile items first), then

• volume (items with larger volume first), then

• length (longer items first), then

• width (wider items first).

Let P be the set of potential placement positions where an item can be placed with

its bottom-left-back corner point. Initially, P contains only the origin of coordinates,

i.e. the bottom-left-back corner of the loading space (0, 0, 0), where the first item of

the sequence is placed. After each placement, P is updated (Algorithm 4.1, line 22).

That is, unusable points are deleted (those that are covered by the placed item)

and new positions are added. The new positions are the top-left-back, bottom-left-

front and bottom-right-back corner of the placed item. They are only added if a

placement is basically possible, i.e. if at least the smallest item can be placed there.

Let lmin and hmin be the shortest length/width and height, respectively, of any item

Iik (i ∈ Nc, k ∈ Ji):

lmin = min
i∈Nc,k∈Ji

min (lik, wik) (4.2)

hmin = min
i∈Nc,k∈Ji

hik (4.3)

Due to the permitted rotations, only the two measures lmin and hmin are necessary.

A point (α, β, γ) can only be included in P if L − α ≥ lmin, W − β ≥ lmin and

H − γ ≥ hmin. The positions in P are sorted lexicographically according to the

DBL-priority rule.

Starting with the first position in P , the positions are successively tested for feasi-

bility when an item is to be placed. These tests ensure a feasible placement of the

items with respect to the packing constraints presented in Chapter 2 and will be

referred to as placement tests in the following. A placement test contains feasibility

checks for all considered packing constraints. The individual tests are presented in

detail below (Chapter 4.1.6).

110

4 Hybrid solution approach

If necessary, both permitted rotations of an item are tested (line 9). First, the

orientation oi = 1 of the current item Ii is tested, i.e. the item is rotated so that its

edge with the measure li (provided in the instance data) is parallel to the α-axis.

Subsequently, oi = 0 is tested (if necessary), i.e. the item is rotated so that its edge

with the measure li is parallel to the β-axis. Considering oi = 0 can be omitted if

li = wi. As soon as a feasible placement (position and orientation) is found for the

current item, no further positions and orientations are tested. The first item in the

sequence IS is always placed at position (0, 0, 0).

A position where no further movement towards the back, bottom and left is possible

is called DBL-stable. Being placed in a position from P might not necessarily result

in a DBL-stable placement. This is caused by the definition of the points added

to P in every iteration. In order to ensure that an item is indeed placed as far as

possible to the back, bottom and left, it is further shifted towards such a position (if

possible) after a successful placement test, i.e. after a feasible (starting) placement

position was identified (see Algorithm 4.1, line 20). This is done by applying the

procedure outlined in Algorithm 4.2.

Algorithm 4.2 Shifting an item to a final placement as part of the DBLF heuristic

Input: current item Ii with placement Π′i, set of already packed items and their
placements K, current route R

Output: final placement Π′i
1: procedure ShiftItem
2: while further movements are possible do
3: if movement towards back is possible then
4: move item as far as possible to the back
5: update αi ∈ Π′i if necessary
6: else if movement towards bottom is possible then
7: move item as far as possible to the bottom
8: update γi ∈ Π′i if necessary
9: else if movement towards left is possible then

10: move item as far as possible to the left
11: update βi ∈ Π′i if necessary
12: end if
13: end while
14: end procedure

Hence, the final placement position of an item is not necessarily the starting position

from P . If necessary, multiple iterations of the shifting procedure are conducted until

a final position is reached. Further movements can either be restricted by the faces

of other items or by the loading space walls, or if the movement would lead to a

111

4 Hybrid solution approach

position that violates another packing constraint. For example, an item cannot be

moved behind an item that is delivered later. For example, position 2′ in Figure 4.1b

is not included in P but is reached by placing the item in position 2 and then shifting

it further towards the left.

The DBLF heuristic terminates as soon as all items are placed or no feasible place-

ment can be found for an item.

Different variants of implementing the DBLF heuristic will be tested. Apart from the

approach described above as it was implemented by Karabulut and İnceoğlu (2005),

an extension of the approach is also regarded, which was introduced by Kopp (2015).

It will be referred to as DBLF+ in the following. In this extension, sliding the item

towards a (D)BL-stable position is already considered during the placement test.

Hereinafter, the corresponding procedure will be referred to as PlacementTest+.

That way, the items could be placed in feasible positions that would not be obtained

by the original approach. An example is illustrated in Figure 4.2.

1

2

3

4

bottom

le
ft

(a) placed items with poten-
tial positions

bottom

le
ft

(b) without consideration of
sliding (DBLF)

bottom

le
ft

(c) with consideration of slid-
ing (DBLF+)

Figure 4.2: Illustration of DBLF+ (Adapted from Kopp, 2015)

Position 1 (see Figure 4.2a) would be the first to be tested for the placement of

the current item, because it is the bottom-most position. This placement would be

infeasible, though, since the item would overlap with other items. Thus, position 2

is tested next. Using the approach of Hopper (2000), this position would lead to an

infeasible placement as well (Figure 4.2b). However, as mentioned above, sliding an

item towards a BL-stable position is already considered during the placement test in

the extension. Sliding the item further to the bottom leads to a feasible placement

here (Figure 4.2c). In contrast to the movement that is conducted after a feasible

position is found (cf. Algorithm 4.1, line 20), the item is slid into only one direction

during the placement test of DBLF+. In doing so, sliding towards the back is tried

112

4 Hybrid solution approach

first, then towards the bottom and then towards the left.

In addition, a combination of both approaches is also considered (DBLF-Comb) in

which the extension DBLF+ is only used if the procedure with the original placement

test cannot find a feasible placement for an item (Kopp, 2015). In that case, all

positions are tested all over again with PlacementTest+ (Algorithm 4.3).

Algorithm 4.3 DBLF-Comb heuristic for the OPP

Input: sorted sequence of items IS, current route R
Output: packing pattern, result

1: procedure Dblf-Comb
2: result := true . true: feasible packing pattern was found
3: initialize sorted set of positions P := {(0, 0, 0)}
4: K := ∅ . set of already packed items and their placements
5: for iter := 1 to |IS| do . iter: iterator for IS
6: current item Ii := IS(iter)
7: placed := false . true: feas. placement for the item was found
8: for p := 1 to |P | do
9: for each permitted orientation o do

10: if PlacementTest(Ii, P (p), o,K,R) is feasible then
11: placed := true
12: goto Placement
13: end if
14: end for
15: end for
16: if placed = false then
17: for p := 1 to |P | do
18: for each permitted orientation o do
19: if PlacementTest+(Ii, P (p), o,K,R) is feasible then
20: placed := true
21: goto Placement
22: end if
23: end for
24: end for
25: end if
26: Placement:
27: if placed = true then
28: Π′i := (P (p), o). store position (with sliding if necessary) and orientation
29: ShiftItem(Ii,Π

′
i, K,R)

30: K := K ∪ {(Ii,Π′i)}
31: update P
32: else
33: result := false
34: break
35: end if
36: end for
37: end procedure

113

4 Hybrid solution approach

4.1.2.2 Touching area heuristics

The second group of construction heuristics are touching area (TA) heuristics. They

are based on the touching perimeter algorithm that was first presented by Lodi et al.

(1999) for a 2D packing problem. The first item is placed in the most bottom-left

corner. All further items are placed in positions that maximize the percentage of the

item perimeter that touches other, previously placed items or the container walls.

Analogously, in the 3D case, the touching area of the item’s surfaces is considered

(cf. e.g. Gendreau et al., 2006). The touching areas of an item in a certain position

are exemplarily illustrated in Figure 4.3. The blue (1) and green areas (2) are

touching areas with items, whereas the orange area (3) is touching the container

wall. The sum of these areas describes the TA value for a certain item in a certain

position. An item is placed in the position with the maximum TA value. As in the

DBLF procedure, the items are pre-sorted based on the above mentioned sorting rule

(p. 110) and placed according to the resulting sequence. The procedure is outlined

in Algorithm 4.4.

container wall

31

2

Figure 4.3: Example for the determination of touching areas

In contrast to the DBLF-algorithm, searching for a position does not stop as soon as

one feasible position is found, but all potential positions and possible orientations

are evaluated. Therefore, it usually entails longer computing times.

Different variants of the TA heuristic are regarded. The first variant, called TA-

Walls, takes both the touching areas with other items as well as the touching areas

with the container walls into account. The second variant – TA-NoWalls – considers

only the touching areas with other items. With respect to the placement tests, the

same extension as for the DBLF approach can be applied (cf. Figure 4.2). That

is, PlacementTest+ is called in the course of the TA heuristic (line 10). The

114

4 Hybrid solution approach

respective heuristics are referred to as TA+-Walls and TA+-NoWalls. Unlike before,

a combination of both approaches is not considered.

Algorithm 4.4 TA heuristic for the OPP

Input: sorted sequence of items IS, current route R
Output: packing pattern, result

1: procedure TouchingArea
2: result := true . true: feasible packing pattern was found
3: initialize sorted set of positions P := {(0, 0, 0)}
4: K := ∅ . set of already packed items and their placements
5: for iter := 1 to |IS| do . iter: iterator for IS
6: current item Ii := IS(iter)
7: ta′ := −1 . maximum TA value
8: for p := 1 to |P | do
9: for each permitted orientation o do

10: PlacementTest(Ii, P (p), o,K,R) . or PlacementTest+

11: if placement is feasible then
12: determine touching area value ta
13: if ta > ta′ then
14: ta′ := ta, p′ := p, o′ := o
15: end if
16: end if
17: end for
18: end for
19: if ta′ > −1 then . a feasible placement was found
20: Π′i := (P (p′), o′) . store position and orientation for Ii
21: ShiftItem(Ii,Π

′
i, K,R)

22: K := K ∪ {(Ii,Π′i)}
23: update P
24: else
25: result := false
26: break
27: end if
28: end for
29: end procedure

4.1.2.3 Open space heuristic

The open space (OS) heuristic is presented by Zhang et al. (2015). Initially, the set

of items to be packed is sorted. Two sorting rules are adapted from Wei et al. (2014).

They are similar to the sorting rule described in Chapter 4.1.2.1. In the first variant,

the items are sorted primarily according to the customer sequence in the route (if

the LIFO constraint is applied). Secondly, they are sorted by fragility; then, by

non-increasing base area, and finally by non-increasing volume. The second sorting

rule is similar. The only difference is that the length of the items is considered as

115

4 Hybrid solution approach

the third sorting criterion instead of the base area.

The packing heuristic works with open spaces representing possible positions for the

items. These are cuboid spaces where one face lies at the rear side. An open space

is described by its coordinates (α, β, γ) of the closest corner to the origin and its

length (l), width (w) and height (h). During the search procedure, the current open

spaces are sorted by ascending α-coordinate, then by ascending β-coordinate, then

by ascending γ-coordinate. Thus, it can be seen as a deepest-left-bottom packing

procedure.

The set spaceList is updated after every placement. That is, the used space sp is

removed; up to three sub-spaces of sp are included, and the spaces that intersect

with the placed item and those that are dominated by other spaces are removed. A

space a is said to be dominated by another space b if they have the same coordinates

and if a is totally contained by b, i.e. the edges (length, width, height) of a are not

longer than the respective edges of b.

Algorithm 4.5 Open space packing heuristic (Adopted from Zhang et al., 2015)

Input: sorted sequence of items IS, current route R
Output: packing pattern K, number of packed items |K|

1: procedure OpenSpaceHeuristic
2: sp.α = 0, sp.β = 0, sp.γ = 0, sp.w = W, sp.l = L, sp.h = H
3: spaceList := {sp}
4: K := ∅ . set of placed items
5: while spaceList 6= ∅ and IS 6= ∅ do
6: Ii = first non-packed item in IS
7: find the first space sp that can accommodate Ii
8: if such space sp is found then
9: place Ii at sp and remove sp from spaceList

10: spaceList := spaceList \ {sp}
11: IS := IS \ {Ii}
12: K := K ∪ {(Ii,Π′i)}
13: update spaceList
14: else
15: break
16: end if
17: end while
18: end procedure

In the course of this thesis, the OS heuristic is not used as a separate construction

heuristic. It is only regarded in connection with the local search (LS) procedure

presented below.

116

4 Hybrid solution approach

4.1.3 Local search framework

In addition to the construction heuristics, a more complex LS-based approach is

tested as well. The procedure is presented by Zhang et al. (2015). In the course of

this thesis, it is extended by integrating different construction heuristics, which can

be selected alternatively. For this purpose, the construction heuristics are adapted

in the way that they return the number of packed items (like the open space heuristic

from Chapter 4.1.2.3).

The packing heuristic consists of two components: A local search is employed in

order to generate different item sequences, and a packing construction heuristic is

used to check whether a certain sequence of items can be packed feasibly. The whole

procedure, called LocalSearchPack, is outlined in Algorithm 4.6.

Two cases are distinguished based on the number of items |IS| in one packing

pattern of a route R. In the first case (lines 4 to 9), where the number of items is

not larger than a pre-defined parameter max enum (Zhang et al., 2015, suggest a

value of 8), a packing construction heuristic (here: a variant of DBLF, TA or OS)

is called on every permutation of the items. The construction heuristic is aborted

as soon as one item cannot be placed feasibly or all items are packed. It returns the

number of items p that could be packed feasibly. If p equals the number of items of

the route |IS|, feasible placements are found for all items of the route.

In the second case (lines 11 to 33), only a part of the permutations of the item

sequence IS is tested by means of a local search procedure. Initially, a sorting rule

is used for generating a sequence of items IS. Multiple sorting rules may be used

in the course of the search, e.g. Zhang et al. (2015) use the two rules presented in

Chapter 4.1.2.3. Then, a packing construction heuristic is called on IS and returns

the number of items p that could be packed. Again, if p equals |IS| the procedure

stops with a feasible packing pattern. Otherwise, it tries to increase p by applying a

random local search to the sequence of items IS. In that case, a new sequence IS∗

is generated by randomly swapping two items in the sequence. This new sequence is

accepted, if it is not worse than the previous one, i.e. if the packing heuristic returns

at least as many packed items as before (lines 21 to 23). If the packing heuristic

returns |IS| packed items for any sequence, LocalSearchPack can be stopped.

A feasible packing pattern is found.

Originally, LocalSearchPack is presented by Zhang et al. (2015) with an inte-

117

4 Hybrid solution approach

grated OS heuristic. Pre-tests have shown that the procedure requires considerably

more computing time than the construction heuristics described in Chapter 4.1.2.

In the hope of obtaining another effective and fast LS-heuristic, the construction

heuristics from Chapter 4.1.2 are implemented into the LS-based approach. They

replace the open space heuristic (that is called in LocalSearchPack (lines 5

and 20)) and the sorting rule from Chapter 4.1.2.1 is applied (cf. p. 110).

Algorithm 4.6 LS packing heuristic (Adapted from Zhang et al., 2015)

Input: set of items to be packed IS, current route R, parameter max enum
Output: packing pattern, result

1: procedure LocalSearchPack
2: result := false . true: feasible packing pattern was found
3: if |IS| ≤ max enum then
4: for each permutation IS∗ of IS do
5: if Packing(IS∗, R) = |IS| then . selected packing construction

heuristic returning the number of packed items
6: result := true . feasible packing pattern was found
7: break
8: end if
9: end for

10: else
11: for each sorting rule do
12: sort IS according to the sorting rule
13: p := Packing(IS,R)
14: if p = |IS| then
15: result := true . feasible packing pattern was found
16: break
17: else
18: for k := 1 to |IS| do
19: generate a new sequence IS∗ by swapping two randomly selected

items in IS
20: p∗ := Packing(IS∗, R)
21: if p∗ ≥ p then
22: IS := IS∗, p := p∗

23: end if
24: if p = |IS| then
25: result := true . feasible packing pattern was found
26: break
27: end if
28: end for
29: end if
30: if result = true then
31: break
32: end if
33: end for
34: end if
35: end procedure

118

4 Hybrid solution approach

In conclusion, the construction heuristics and LS-based heuristics as shown in Ta-

ble 4.1 are utilized. The heuristics in combination with the LS are hereinafter

referred to as LS DBLF, LS TA-Walls, LS OS etc.

Table 4.1: Implemented packing heuristics

group heuristic
individually as
construction

heuristic

in combination
with the LS

(LS *)

DBLF DBLF

DBLF+

DBLF-Comb

TA TA-Walls
TA-NoWalls
TA+-Walls

TA+-NoWalls

OS OS

4.1.4 Adaption to the CLP

As mentioned above, the packing heuristics are implemented in order to solve the

OPP as part of the 3L-VRPBTW. In order to evaluate the suitability of the heuristics

for a combined routing and packing procedure, the heuristics are also applied to CLP

instances from the literature and compared to a state-of-the-art CLP heuristic. (see

below, Chapter 5.5.1.3). In order to apply the heuristics to the CLP, the following

modifications are necessary:

• The heuristics are not aborted as soon as one item cannot be placed. Instead,

the item is skipped and not packed in the final solution.

• Depending on the problem definition, all six orientations can be considered.

They can also be limited for certain items. Let l0, w0, h0 be the original edge

dimensions given in the instance data, and (l, w, h) be the edges used as length,

width and height, respectively, according to the chosen orientation (i.e. the

edges of placed items parallel to the length, width and height axes of the

loading space). The rotations are tested in the following order: (l0, w0, h0),

(w0, l0, h0), (l0, h0, w0), (h0, l0, w0), (h0, w0, l0), (w0, h0, l0).

• Within the LS framework, the packed volume instead of the number of packed

items is maximized as the packed volume is the usual optimization criterion

in the CLP.

119

4 Hybrid solution approach

4.1.5 Implementation of the loading approaches

Different loading approaches are applied to the different problem variants (see Chap-

ter 2.1.2). In the following, aspects considered for their implementation are noted.

The basic loading approach underlying all packing programmes, is the rear loading

approach. Thus, the heuristics need to be adjusted in order to realize the approaches

loading space partition (LSP) and side loading.

In order to apply the rear loading approach to the 3L-VRPTW, only one packing

pattern is required per route as only linehaul items are transported. This pattern

represents the pattern at the beginning of the route. The patterns for the following

stages, result from unloading items. If it is applied to the 3L-VRPCB(TW), two

separate packing patterns are generated for the linehaul (for the beginning of the

route) and backhaul customers (for the end of the route). The only difference in

their generation is the adaptation of the sorting rules for the items. If a packing

pattern is created for linehaul customers, the items are sorted in the reverse delivery

order. In the case of backhaul customers, they are sorted in the order of the pickup.

The LSP is implemented similarly to the rear loading approach with the difference

that the height of the loading space as an input datum for the packing programmes

is halved. If an output of the results is desired, the γ-coordinates of the items of

one type (linehaul or backhaul) must be increased by H/2. Two separate packing

patterns are created for linehaul and backhaul items, which differ in the sorting rule

of the items (see above).

The implementation of the side loading approach depends on the problem vari-

ant. If linehaul and backhaul items are transported separately (3L-VRPTW/3L-

VRPCB(TW)), the approach is realized by swapping the length and width dimen-

sions of the loading space. Consequently, the packing problem can be solved like a

problem with rear loading with separate packing patterns for linehaul and backhaul

items if necessary (3L-VRPCB(TW)).

If linehaul and backhaul items are transported simultaneously (3L-VRPMB(TW)/3L-

VRPSDP(TW)), the side loading approach is implemented in a way that linehaul

and backhaul items are loaded at the opposing sides of the loading space (rear and

front). By unloading the linehaul items in the course of the route, space is created

sequentially for the backhaul items. For this purpose, two separate packing patterns

are created for the linehaul and backhaul items. Both patterns must be feasible and

120

4 Hybrid solution approach

together they define the packing plan for the corresponding route. In order for the

whole packing plan to be feasible, the linehaul and backhaul items must not overlap

at any stage of a route.

The side loading approach is explained using an example instance for the 3L-

VRPMBTW. An exemplary route is illustrated in Figure 4.4.

1

2

3

4

5

6

7

8

depot
linehaul
backhaul

Figure 4.4: Example 3L-VRPMBTW route

As before, the generation of the packing patterns is identical for linehaul and back-

haul items apart from the applied sorting rule. Due to the modus operandi of the

packing heuristics, the items of both types are initially packed at the back of the

loading space (W ×H plane at (0, 0, 0)). Figure 4.5 shows the packing patterns that

are generated for the linehaul (Figure 4.5a) and the backhaul items (Figure 4.5b) in

the example route.

In order to obtain a packing plan where the items are loaded at opposing sides, the

placements of one group of items must be mirrored. Hereinafter, it is assumed that

the linehaul items are loaded at the driver’s cabin (W ×H plane at (0, 0, 0)) and the

backhaul items are loaded at the rear side (W ×H plane at (L, 0, 0)). Let (α′i, β
′
i, γ
′
i)

be the position of the bottom-left-back corner of an item Ii that was determined by

the applied packing heuristic. If this item is a backhaul item, its placement in the

final packing plan is at position (αi, βi, γi) with:

αi = L− α′i − l̂i, (4.4)

βi = β′i, (4.5)

γi = γ′i. (4.6)

As introduced above, l̂i refers to the edge of the item that is parallel to the α-axis

121

4 Hybrid solution approach

of the loading space (l̂i = αi + oi · li + (1 − oi) · wi). If the item is a linehaul item,

its position (αi, βi, γi) equals (α′i, β
′
i, γ
′
i).

I21

I22
I41

I42

I43

I11

I31

un
loa

din
g d

ire
cti
on

β

α

γ
back front

(a) linehaul items

I62

I61

I72

I82

I51

I71

I81

loa
din

g d
ire
cti
on

β

α

γ
back front

(b) backhaul items

Figure 4.5: Separate packing patterns for linehaul and backhaul items

Figure 4.6 shows the items from the presented example that are in the loading space

after customer 6 is visited. That is, the items of the linehaul customers 1, 2 and 3

are still loaded. In addition, the backhaul items of the customers 5 and 6 are already

picked up. The backhaul items are loaded at the front side. In order to guarantee

that the linehaul and backhaul patterns do not overlap at any stage of the route,

the loading lengths of both sets (LLH and LBH) are determined.

Considering the packing patterns as they are provided by a packing heuristic, i.e. as

they are depicted in Figure 4.5, the loading lengths refer to the maximum front faces

of the respective linehaul or backhaul items. Transferred to the packing patterns

with the converted positions (Figure 4.6), the loading length of the linehaul items

is also determined as the maximum front face of the linehaul items. The loading

length of the backhaul items refers to the loading space length minus the minimum

122

4 Hybrid solution approach

back face of the backhaul items in the loading space. The sum of both lengths must

not exceed the loading space length L at any stage of the route.

I62

I61

I31

I51

I21

I22
I11

un
loa

din
g

dir
ect

ion

loa
din

g

dir
ect

ion

LLH LBH
β

α

γ
back front

Figure 4.6: Item arrangement in a side loaded vehicle at a given stage of a route

The LIFO constraint demands that an item that is delivered later (picked up earlier)

must not be placed above items that are delivered earlier (picked up later) in a

route, or between such items and the (un-)loading side. Applied to the side loading

approach, the LIFO constraint must be considered along the width axis of the loading

space, i.e. in (un-)loading direction. In the example in Figure 4.6, the items I21 and

I22 must not be delivered after item I11 as they would block its unloading. In contrast

to the application to the 3L-VRPTW and 3L-VRPCB(TW), the LIFO constraint is

modified: it is also considered along the length axis in the presented implementation.

That way, vertical layers are built and gradually creating space for backhaul items

is facilitated. For example, a linehaul item delivered after item I31 (Figure 4.6) must

not be placed at a greater α-coordinate.

For this purpose, the DBLF-based construction heuristics are adapted. By adjust-

ing the LIFO constraint as explained above (considering it not only towards the

loading side, but also parallel to it), the original DBLF approach results in packing

patterns as depicted in Figure 4.7a. In this example, the customers are visited in the

sequence (4, 3, 2, 1). Due to considering the LIFO constraint from three sides of an

item (top, towards loading side, parallel to loading side), gaps occur frequently. In

Figure 4.7a, no item of the customers 3 and 4 must be placed behind item I22 (from

the view of the loading side) resulting in a gap where no further item can be placed.

That is, the loading space is not utilized efficiently. In addition, if horizontal sta-

bility was considered, the loading pattern would be rather unstable. Therefore, the

123

4 Hybrid solution approach

construction heuristics are modified regarding the sorting of the potential placement

positions. Instead of sorting them according to the DBL rule, the first priority is to

sort them by non-increasing distance from the deepest, left-most edge of the loading

space. The distance of a point (α, β, γ) to the deepest, left-most edge is defined as

the Manhattan distance, i.e.:

distance(α, β, γ) = α + β. (4.7)

Ties are broken according to the DBL rule again. This modification results in

packing patterns where the items of a customer tend to be stacked before they are

placed next to each other. The items from the previous example would be arranged

as illustrated in Figure 4.7b. In the following, this variant of the DBLF heuristic

will be referred to as DBLFSL (and, accordingly, DBLF+,SL and DBLFSL-Comb).

I11 I12

I21

I22

I31

I32

I33

I41

unloading direction

(a) Side loading with DBLF heuristic

deepest, left-most edge

I12

I21
I22

I31

I32

I33

I41

unloading direction

(b) Side loading with modified DBLF heuristic

Figure 4.7: Side loading with different implementations of the DBLF heuristic

4.1.6 Implementation of the packing constraints

In the following, aspects of the implementation of the packing constraints presented

in Chapter 2 are explained. The focus will be on the implementation of the packing

constraints robust stability, load bearing strength and reachability as they have not

been studied as frequently as the other constraints in the literature. All of the

following remarks refer to the generation of a packing pattern in the course of solving

an OPP.

124

4 Hybrid solution approach

Not only the back-left-bottom corner point (αi, βi, γi) of an item Ii is required for

the implementation, but also the opposite point (αoi , β
o
i , γ

o
i), i.e. the point at the

front-right-top corner of item Ii (see Figure 2.3). Using the notation introduced

above in (2.26)-(2.27), its coordinates can be determined as:

αoi = αi + l̂i = αi + oi · li + (1− oi) · wi, (4.8)

βoi = βi + ŵi = βi + (1− oi) · li + oi · wi, (4.9)

γoi = γi + hi. (4.10)

Geometrical constraints (P1)-(P3)

Compliance with the geometrical constraints is ensured by comparing the item co-

ordinates and the loading space dimensions given in the instance data. An item is

placed completely inside the loading space if:

(αi ≥ 0) ∧ (βi ≥ 0) ∧ (γi ≥ 0) ∧ (αoi ≤ L) ∧ (βoi ≤ W) ∧ (γoi ≤ H) . (4.11)

Furthermore, two items Ii and Ij do not overlap if:

(
αi ≥ αoj

)
∨ (αj ≥ αoi) ∨

(
βi ≥ βoj

)
∨ (βj ≥ βoi) ∨

(
γi ≥ γoj

)
∨ (γj ≥ γoi) . (4.12)

When an item Ii is to be placed, the adherence to (4.12) must be tested between

item Ii and all other items that have already been placed. The orthogonal packing

of each item is ensured by the choice of permitted orientations during the execution

of the packing heuristics.

Fixed vertical orientation (P4)

As can be seen, for example, in Algorithm 4.1, only the permitted item rotations

are tested. In the case of the OPPs considered here17, the height dimension is fixed.

Alternatively, all six spatial orientation could be tested if there are no restrictions

(e.g. if a packing problem with the respective property is to be solved).

Vertical stability (P5)

The vertical stability of an item is examined by analogy with the considerations

17 The different constraint sets C1-C5 define different OPPs (see Chapter 2.1.1).

125

4 Hybrid solution approach

made in Chapter 2.2 (p. 44ff.). The procedure is depicted in Algorithm 4.7.18 The

supported base area ai of item Ii is composed of the sum of the individual base areas

suppij that are supported by the items Ij placed directly beneath Ii. An item Ij is

placed directly below Ii, i.e. its top face touches the bottom face of Ii, if

γi = γoj , (4.13)

and if the projections of the items on the α-β-plane overlap, i.e.

(
αi < αoj

)
∧ (αj < αoi) ∧

(
βi < βoj

)
∧ (βj < βoi) . (4.14)

The areas suppij are determined as (cf. (2.63) or (2.64)):

suppij =
(
min

(
αoi , α

o
j

)
−max (αi, αj)

)
·
(
min

(
βoi , β

o
j

)
−max (βi, βj)

)
. (4.15)

If ai is equal to or greater than the required supporting area (V SP · li · wi), the

constraint is satisfied.

Algorithm 4.7 Testing for vertical stability

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas
1: procedure CheckVertStability
2: ai := 0 . supported base area
3: feas :=true . true: placement is feasible w.r.t. the stability constraint
4: if γi > 0 then . no test is necessary if Ii is placed on the floor
5: for each (Ij,Π

′
j) ∈ K do

6: if Ij is directly below Ii then
7: ai := ai + suppij . suppij: base area of Ii that is supported by Ij
8: end if
9: end for

10: if ai < V SP · li · wi then . V SP : vertical stability parameter
11: feas := false
12: end if
13: end if
14: end procedure

18 Note that the pseudocodes presented here in Chapter 4.1.6 depict separate loops. Several
checks are implemented in one joint loop, though. The presentation differs here, in order to
present the various implementations separately.

126

4 Hybrid solution approach

Fragility (P6)

Algorithm 4.8 illustrates how the compliance with the fragility constraint is ensured.

Placing an item Ii, it must be guaranteed that no fragile items are placed directly

(cf. (4.13), (4.14)) below it if Ii is not fragile (fi = 0).

Algorithm 4.8 Testing for compliance with the fragility constraint

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas
1: procedure CheckFragility
2: feas :=true . true: placement is feasible w.r.t. the fragility constraint
3: for each (Ij,Π

′
j) ∈ K do

4: if Ij is directly below Ii then . see (4.13), (4.14)
5: if fj = 1 and fi = 0 then . fragile item below non-fragile item
6: feas := false . constraint is violated
7: break . terminate test
8: end if
9: else if Ii is directly below Ij then

10: if fi = 1 and fj = 0 then
11: feas := false
12: break
13: end if
14: end if
15: end for
16: end procedure

As the newly placed item can also be placed underneath a previously placed item,

compliance with the fragility constraint must not only be tested for items below the

reference item, but also with items placed above it (lines 9ff.). If the constraint is

violated for any two items Ii and Ij, the test is terminated.

LIFO (P7)

The LIFO constraint is violated if a linehaul (backhaul) item is placed in front

of or above another linehaul (backhaul) item that is delivered (picked up) earlier

(later) in the route. The loading approaches applied to the problem variants with

simultaneous transport of linehaul and backhaul items allow for generating two

separate packing patterns (see Chapter 4.1.5). Hence, it must not be considered

in the implementation, for example, that a backhaul item must not be placed in

front of, behind, above or underneath a linehaul item that is delivered after the

backhaul item is picked up. If loading space partition is applied, this constraint is

automatically satisfied due to the separate sections for linehaul and backhaul items.

127

4 Hybrid solution approach

In the case of the side loading approach, this aspect of the LIFO constraints is

satisfied if the loading length of the linehaul and backhaul items do not exceed L.

Testing for compliance with the LIFO constraint is outlined in Algorithm 4.9. In

order to determine whether an item Ij is below (directly or indirectly) another item

Ii, (4.14) can be applied with the addition that

γi ≥ γoj (4.16)

must be fulfilled. That is, the surfaces of the items do not need to touch. Analo-

gously, an item Ij is behind another item Ii if

(
αi ≥ αoj

)
∧
(
βi < βoj

)
∧ (βj < βoi) ∧

(
γi < γoj

)
∧ (γj < γoi) . (4.17)

These relations refer to the rear loading and LSP approach. For the side loading

approach, α and β must be swapped.

Algorithm 4.9 Testing for compliance with the LIFO constraint

Input: current item Ii, Π′i, current route, set of already packed items and place-
ments K

Output: result of the test feas
1: procedure CheckLifo
2: feas :=true . true: placement is feasible w.r.t. the LIFO constraint
3: for each (Ij,Π

′
j) ∈ K do

4: if Ij is below Ii or Ij is behind Ii then
5: if Ij is delivered before Ii or picked up after Ii then
6: feas := false . constraint is violated
7: break . terminate test
8: end if
9: else if Ii is below Ij or Ii is behind Ij then

10: if Ii is delivered before Ii or picked up after Ij then
11: feas := false
12: break
13: end if
14: end if
15: end for
16: end procedure

Reachability (P8)19

The following explanations refer to the rear loading and LSP approach. The reacha-

19 The test algorithms of the following constraints have been developed together with Corinna
Krebs (Krebs (2017)).

128

4 Hybrid solution approach

bility constraint can be realized analogously for the side loading approach by swap-

ping α- and β-coordinates.

In order to check whether an item is reachable in a certain placement, i.e. if the

distance between the item and an operator does not exceed λ length units, a place-

ment space is defined. Only those items that are placed within this placement space

must be considered for the reachability of the current item. An item Ij is located

within the placement space of Ii if:

(
αoj > αoi

)
∧ (βoi > βj) ∧

(
βi < βoj

)
. (4.18)

The operator position δi refers to the maximum α-coordinate of the items inside

the placement space of Ii (cf. (2.73)). An example is illustrated in Figure 4.8. The

reference item is I1 (yellow). The items I2, I3 and I6 (green) are located within the

placement space. The closest possible position of an operator when (un-)loading

item I1 is, thus, the front edge of I2 (δ1 = αo2).

I1

I2

I4

I5I3

I6

placement
space

γ

β

α

δ1

βo1

δ1
− α

o
1

Figure 4.8: Illustration of the placement space for determining reachability

Moreover, only those items are relevant for the reachability of Ii that (in case of

linehaul items) are either delivered at the same stage and placed below Ii, or that

are delivered after Ii. In the first case, Ii would need to be unloaded before the lower

items (see e.g. Figure 2.11). If a packing pattern is generated for backhaul items,

items that are either picked up at the same stage and placed below Ii, or picked up

earlier are relevant.

The framework for examining the feasibility of an item arrangement with respect

to the reachability constraint is outlined in Algorithm 4.10. If the distance between

129

4 Hybrid solution approach

the placed item and the operator is too large (line 9), a placement is rejected.

Algorithm 4.10 Testing for reachability (rear loading)

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas
1: procedure CheckReachability
2: feas :=true . true: placement is feasible w.r.t. the reachability constraint
3: δi := αoi . closest possible position of the operator
4: for each (Ij,Π

′
j) ∈ K do

5: if Ij is within the placement space and Ij is relevant then
6: δi := max(δi, α

o
j)

7: end if
8: end for
9: if δi − αoi > λ then . the distance is too large

10: feas := false
11: end if
12: end procedure

In particular, if the differences between the item dimensions parallel to the α-axis

are large, the reachability constraint can be restrictive. Therefore, an alternative

approach is implemented. It is attempted to shift an item as far as possible (if

necessary) towards the (un)loading side. This variant is outlined in Algorithm 4.11.

The variable MaxShift is employed in order to determine how far an item can be

moved. The shift is only conducted in positive α-direction. That is, an item Ii can

only be moved along the top faces of other items that are at the same level as the

bottom face of Ii. MaxShift takes the maximum α-value of the items Ij in the

placement space for which γi = γoj is fulfilled (Algorithm 4.11, line 8). If the item is

not reachable in the original position (line 12) but can be made reachable by shifting

it (line 14), the shift is conducted and the new placement is tested for feasibility.

The item is not necessarily shifted up to the coordinate MaxShift but only as far

as necessary (line 15). In doing so, the principle of placing an item as far as possible

to the back is still observed and more space is left available for further items.

An example is depicted in Figure 4.9. Item I1 cannot be reached unless it is shifted as

the operator cannot step closer towards it than the front edge of I2 (cf. Figure 4.8).

Since items I3 and I6 have the same height, I1 could be shifted until its front edge

is at level with the front edge of I3 (MaxShift). However, it is only shifted until

the distance between its front edge and the operator position (δ1) equals λ.

The implementation variant including the shift is applied in the experiments de-

scribed in Chapter 5 since it proved superior (compared to the approach without

130

4 Hybrid solution approach

the shift) in pre-tests.

Algorithm 4.11 Testing for reachability with shifting (rear loading)

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas, Π′i . position of Ii might change
1: procedure CheckReachabilityShift
2: feas :=true . true: placement is feas. w.r.t. the reachability constraint
3: δi := MaxShift := αoi
4: for each (Ij,Π

′
j) ∈ K do

5: if Ij is within the placement space and Ij is relevant then
6: δi := max(δi, α

o
j)

7: if γi = γoj then
8: MaxShift := max(MaxShift, αoj)
9: end if

10: end if
11: end for
12: if δi − αoi > λ then
13: feas := false
14: if δi −MaxShift ≤ λ then
15: αoi := δi − λ, αi := αoi − l̂i
16: if shifted placement is feasible then
17: feas := true
18: end if
19: end if
20: end if
21: end procedure

I1

I2

I4

I5I3

I6

γ

β

α

αo1

δ1

MaxShift

(a) before shift

I1

I5
I2

I4

I3

I6

γ

β

α

αo1δ1

MaxShift

λ

(b) after shift

Figure 4.9: Relevant coordinates for shifting an item to obtain reachability

Robust stability (P9)

The constraint demanding robust stability constitutes an extension of the vertical

stability constraint. It has to be ensured that an item is sufficiently supported by

131

4 Hybrid solution approach

all items placed in a stack beneath the current item. The procedure for testing the

compliance with the robust stability constraint is outlined in Algorithm 4.12.

Algorithm 4.12 Testing for robust stability

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas
1: procedure CheckRobustStability
2: feas :=true . true: placement is feasible w.r.t. robust stability constraint
3: if γi > 0 then
4: determine Jsuppi . set of all items supporting Ii
5: for each item Ij ∈ Jsuppi do
6: a := suppij . supported bottom area per plane
7: for each item Ik ∈ J supp

i \ {Ij} do
8: if γok ≥ γoj and γk < γoj then . if Ik contributes to the plane of Ij
9: a := a+ suppik

10: end if
11: end for
12: if a < V SP · li · wi then
13: feas := false
14: break
15: end if
16: end for
17: end if
18: end procedure

First, the items (directly or indirectly) supporting the reference item Ii are deter-

mined. They are stored in the set Jsuppi (line 4). An item Ij supports Ii directly if it

is placed directly below it (cf. (4.13), (4.14)). An item Ij supports Ii indirectly, if it

directly supports any item that directly supports Ii. Moreover, if an item Ij directly

supports any item that indirectly supports item Ii, Ij also supports Ii indirectly.

Subsequently, the support a for each plane of the stack below item Ii is calculated

(lines 6 and 9, cf. (4.15)). The planes are defined by the top faces of the items

supporting the reference item. An item Ij contributes to the support in a given

plane at γp if its top face is at the respective γ-coordinate of the plane (γoj = γp) or

if its top face is above the γ-coordinate of the plane and its bottom face is below it,

i.e. γj < γp < γoj . If a is lower than V SP · li · wi (i.e. the minimum area that must

be supported) at any plane, the robust stability constraint is violated and the test

is terminated. The supporting area suppij provided by item Ij for Ij is determined

as above (see (4.15)).

An example is given in Figure 4.10 where the reference item is I4. One supporting

plane is formed by the top faces of I2 and I3 at γo2 = γo3 (Figure 4.10b). Another

132

4 Hybrid solution approach

plane is defined at γo1 , the top face of I1. Further points on this plane and below I4

are occupied by I3 (Figure 4.10c). Thus, I3 offers support for I4 in this plane, too.

Although I5 is also located below I4 and its top face is at the plane at γo1 , it does

not support I4 in any way. Therefore, it is not considered for the robust stability of

I4, i.e. it is not included in Jsupp4 . The supporting areas per plane are marked red

in Figures 4.10b and 4.10c.

I1

I2
I3

I4

I5

(a) item arrangement (b) plane I (c) plane II

Figure 4.10: Determination of planes for robust stability

Load bearing strength (P10)

Placing an item adds load onto all items directly and indirectly supporting it. There-

fore, the bearing loads (see below) per unit area of all of these items must be deter-

mined in order to check the feasibility of an item arrangement with respect to the

load bearing strength constraint.

In the following, the bearing load represents the weight that an item has to carry

from the item(s) placed directly and indirectly above it. The load bearing strength

pi of an item Ii describes the maximum admissible weight it can bear on any unit

area of its top face. The following explanations are based on the variant of the

load bearing strength constraint that considers the static load transmission (see

Chapter 2.2.1, e.g. Figure 2.34, (2.80)). That is, it is assumed that the weight of an

item is not only transmitted directly downwards, but towards all items supporting

the reference item.

Let set Jdsuppj contain all items that are directly supporting item Ij. That is, it

contains all items Ik with γj = γok and whose α-β-projections overlap with those of

Ij (cf. (4.13), (4.14)).

In addition, set JLBSi contains all items that must be taken into consideration when

placing an item Ii. For this purpose, the affected items (which can be more than

the placed items and its supporting items) need to be identified. An example is

illustrated in Figure 4.11. Here, item I10 (blue) is the current item. The relevant

133

4 Hybrid solution approach

items for testing the load bearing strength constraint are shaded in green. The

weight of item I10 is transmitted directly to items I8 and I9, and indirectly to I3, I4

and I6. Although, I3 is not placed below I10 (i.e. with overlapping α-β-projection),

the weight of I10 is transferred to it by I6. Moreover, I10 does not put weight

on item I7. This item must be considered nonetheless. The weight of I7 is also

passed towards the items I3, I4 and I6. Item I7 must, thus, be taken into account

when calculating the bearing load of those items. The remaining items (red) are

not affected by the placement of item I10. Hence, the load transmitted from and

towards them does not have to be (re-)calculated. In conclusion, set JLBSi contains

• the reference item Ii (I10 in the example),

• items that support Ii directly and indirectly (I3, I4, I6, I8, I9 in the example),

• items that are – directly or indirectly – supported by Ii,

• items that are supported by other items in JLBSi (I7 in the example).

I1

I2

I3 I4 I5

I6

I7 I8 I9

I10
reference item

relevant items

non-relevant items

Figure 4.11: Relevant items for determining bearing loads based on a reference item

The general procedure is as follows: Let Ij be any item from JLBSi . First, the weight

of Ij is distributed proportionally to each item Ik directly supporting Ij and added

to the bearing load of the respective unit areas on the top face of Ik. Then, each

item Ik supporting Ij transmits the load it bears (from Ij) towards each item directly

supporting Ik and the bearing loads on their top faces are updated. This procedure

is repeated until the weight of Ij is transferred to the items standing on the container

floor. Then, the weight of the next item in JLBSi is transferred downwards. This

procedure is repeated for all items in JLBSi .

The framework for checking compliance with the load bearing strength constraint is

outlined in Algorithm 4.13. First, the procedure is initialized by determining JLBSi

and Jdsuppj for the all relevant items, and by setting the loads carried by each unit

134

4 Hybrid solution approach

area on the top faces of each item to 0. The sets Jdsuppj of all relevant items are

stored in set Jdsupp.

Algorithm 4.13 Testing for compliance with the load bearing strength constraint

Input: current item Ii with placement Π′i, set of already packed items and their
placements K

Output: result of the test feas
1: procedure CheckLoadBearing
2: determine JLBSi . item set to be considered for this test
3: Jdsupp := ∅ . initialization
4: for each Ij ∈ JLBSi do

5: determine Jdsuppj . items directly supporting Ij

6: Jdsupp := Jdsupp ∪ {Jdsuppj }
7: loadunitj (ua) := 0,∀ unit areas ua on the top face of Ij . global variables
8: end for
9: for each item Ij ∈ JLBSi do

10: feas := CheckLB Item(Ij, J
dsupp, dj, K) . Algorithm 4.14

11: if feas := false then
12: break . violation of the load bearing strength constraint
13: end if
14: end for
15: end procedure

Then, the procedure CheckLB Item, which is outlined in Algorithm 4.14, is called

on each item Ij ∈ JLBSi . It serves to transmit the load, i.e. the weight of Ij, towards

all items directly below Ij. The variable load, which is passed to the procedure,

refers to the weight of Ij if the procedure is called by CheckLoadBearing. Later,

recursive calls of the procedure are conducted. Then, load refers to the (partial)

weight that is transmitted from an item placed above.

Algorithm 4.14 Transmitting a load to lower items

Input: current item Ij, J
dsupp, load, K

Output: result of the test feas
1: procedure CheckLB Item
2: feas := true
3: for each Ik ∈ Jdsuppj do . Jdsuppj is stored in Jdsupp

4: feas := CalcLoad(Ij, Ik, load, Jdsupp, K) . Algorithm 4.15
5: if feas := false then
6: break . violation of the load bearing strength constraint
7: end if
8: end for
9: end procedure

For each item Ik placed directly below the current item Ij, the part of load is

determined that is transferred from Ij to Ik. This is done by calling the procedure

135

4 Hybrid solution approach

CalcLoad (Algorithm 4.15).

Algorithm 4.15 Calculation of the transmitted load

Input: upper item Ij, lower item Ik, load ((additional) bearing load transmitted
from Ij to Ik), J

dsupp, K
Output: result of the test feas, loadunitk (ua) ∀ unit areas ua on the top face of Ik

1: procedure CalcLoad
2: feas := true
3: determine aj . supported base area of Ij
4: determine suppjk . base area of Ij that is supported by Ik
5: ps :=

suppjk
aj

. percentage support

6: loadjk := load · ps . proportional load transmitted from Ij to Ik
7: lpu :=

loadjk
suppjk

. load per unit area

8: if lpu > pk then
9: feas := false

10: goto End
11: end if
12: for each unit area ua of Ik where Ij is supported do
13: loadunitk (ua) := loadunitk (ua) + lpu
14: if loadunitk (ua) > pk then
15: feas := false
16: goto End
17: end if
18: end for
19: feas :=CheckLB Item(Ik,J

dsupp, loadjk, K)
20: End:
21: end procedure

First, suppjk is determined as the base area of Ij that is supported by Ik (cf. (4.15)).

ps refers to the percentage of the supported bottom area of Ij that is supported by

Ik

(
ps =

suppjk
aj

)
and loadjk is the part of load that is transmitted from Ij to Ik

(loadjk = load · ps). Based on this, the load lpu that is transferred on each unit

area of the touching area can be determined
(
lpu =

loadjk
suppjk

)
. If lpu itself exceeds the

load bearing strength of Ik, the constraint is violated and the procedure is aborted.

Otherwise, lpu is added to the current load on each unit area of Ik where Ij and Ik

touch, and it is checked whether the load bearing strength of Ik is exceeded at any

point. Subsequently, the recursive procedure call of CheckLB Item is conducted.

That is, the load that was transferred from Ij to Ik is further transferred to the

items below Ik.

The whole procedure is illustrated by means of an example (Figure 4.12). An item

stack is depicted in Figure 4.12a where the weights and load bearing strengths of

all items are given, and I5 is the newly placed item. Moreover, the numbering of

the unit areas on the top faces of the items below is illustrated in Figures 4.12b

136

4 Hybrid solution approach

and 4.12c. Let the sequence in ILBS5 be: ILBS5 = {I5, I3, I4, I1, I2}.20 That is, the

load transmission from I5 towards the items directly below it, is considered first.

I1 I2

I3 I4

I5

d1 = 4
p1 = 2

d2 = 3
p2 = 1

d3 = 2
p3 = 1

d4 = 2
p4 = 1

d5 = 6
p5 = 3

(a) item arrangement

0 1 2 3 4 5 6 α

β

0

1

2

3

0 1

2 3

0 1

2 3

(b) unit areas at γ = 4

0 1 2 3 4 5 6 α

β

0

1

2

3

0 1 2 3

4 5 6 7

0 1

2 3

(c) unit areas at γ = 2

Figure 4.12: Example arrangement of items and numbering of unit areas for determining
the bearing load

The call sequence of the procedures is illustrated in Figure 4.13 and continued in

Figure 4.14.

First (Figure 4.13), the overall procedure is initialized (cf. Algorithm 4.13, lines 2

to 8) and the weight of item I5 is distributed towards the items directly supporting

it (I3 (arc 2), I4 (arc 8)) and towards the items directly supporting those (I1 (arcs

3ff.), I2 (arcs 9ff.)). The calculated changes in the loads carried by the individual

unit areas of the items are also illustrated (bold, red). Followingly (Figure 4.14), the

weights of I3 (arcs 18ff.) and I4 (arcs 23ff.) are transmitted downwards and added

to the bearing loads determined before. In the end, the procedure CheckLB Item

is also called with Ii = I1 and Ii = I2, respectively, because they are members of set

ILBS5 . However, the procedure would immediately return to CheckLoadBearing

as there are no further items below I1 and I2 (arcs 31ff.).

For example, item I1 bears the (partial) weights of items I3 and I5 on four of its

unit areas ua (ua ∈ {1, 2, 5, 6}, cf. Figure 4.12c). I5 is supported in six out of eight

unit areas. That is, 1
6

of the weight of I5 (d5) is transmitted per supported unit base

area. 1
8

of d5 would be transmitted per unit area if the item was fully supported.

Four unit areas are supported by I3. Thus, I3 carries two thirds of the weight of I5,

which equals 4 weight units (WU). As I3 is completely supported by I1, those 4 WU

are equally spread over its bottom face and transmitted to I1. Thus, the unit areas

ua ∈ {1, 2, 5, 6} each carry 1 WU of the weight of I5. In addition, the weight of I3

20 The order of items in this set is not important for the procedure itself. It is just stated as a
basis for the following remarks.

137

4 Hybrid solution approach

is also transferred to those unit areas, which equals 0.5 WU per unit area. Hence,

the transferred weights from I3 and I5 add up to 1.5 WU per unit area on the top

face of I1. On two of the remaining unit areas ua ∈ {3, 7} of I1, the partial weights

of items I4 and I5 are carried. I4 carries one third of the weight of I5. Those 2 WU

are equally distributed over the bottom face of I4 since it is completely supported,

and the unit areas ua ∈ {3, 7} of I1 each bear 0.5 WU of this load. Finally, I4 also

transmits its own weight towards I1, which leads to a total bearing load on those

unit areas of 1 WU.

CheckLoadBearing

with Ii = I5

• initialize procedure
• JLBS

5 := {I5, I3, I4, I1, I2}

CheckLB_Item
with Ij = I5,

Jdsupp
5 = {I3, I4},

load = d5 = 6

CalcLoad
with Ij = I5, Ik = I3, load = 6

• supp53 := 4
• a5 := 6
• ps := 2

3

• load53 := 4, lpu := 1
• loadunit

3 (ua) := 1,∀ ua ∈
{0, 1, 2, 3}

CheckLB_Item
with Ij = I3,
Jdsupp

3 = {I1},
load = load53 = 4

CalcLoad

with Ij = I3, Ik = I1, load = 4

• supp31 := 4
• a5 := 4
• ps := 1
• load31 := 4, lpu := 1
• loadunit

1 (ua) := 1,∀ ua ∈
{1, 2, 5, 6}

CheckLB_Item
with Ij = I1, Jdsupp

1 = ∅,
load = load31 = 4

CalcLoad

with Ij = I5, Ik = I4, load = 6

• supp54 := 2
• a5 := 6
• ps := 1

3

• load54 := 2, lpu := 1
• loadunit

4 (ua) := 1,∀ ua ∈
{0, 2}

CheckLB_Item
with Ij = I4,

Jdsupp
4 = {I1, I2},

load = load54 = 2

CalcLoad

with Ij = I4, Ik = I1, load = 2

• supp41 := 2
• a4 := 4
• ps := 1

2

• load41 := 1, lpu := 0.5
• loadunit

1 (ua) := 0.5, ∀ ua ∈
{3, 7}

CheckLB_Item
with Ij = I1, Jdsupp

1 = ∅,
load = load41 = 1

CalcLoad

with Ij = I4, Ik = I2, load = 2

• supp42 := 2
• a4 := 4
• ps := 1

2

• load42 := 1, lpu := 0.5
• loadunit

2 (ua) := 0.5,∀ ua ∈
{0, 2}

CheckLB_Item
with Ij = I2, Jdsupp

1 = ∅,
load = load42 = 1

. . .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

1

1

1

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0.5

0.5

0

0

0.5

0.5

Figure 4.13: Exemplary call sequence for determining the bearing loads

138

4 Hybrid solution approach

CheckLoadBearing

with Ii = I5

• JLBS
5 = {I5, I3, I4, I1, I2}

CheckLB_Item
with Ij = I3,
Jdsupp

3 = {I1},
load = d3 = 2

CalcLoad

with Ij = I3, Ik = I1, load = 2

• supp31 := 4
• a3 := 4
• ps := 1
• load31 := 2, lpu := 0.5
• loadunit

1 (ua) := 1.5,
∀ ua ∈ {1, 2, 5, 6}

CheckLB_Item
with Ij = I1, Jdsupp

1 = ∅,
load = load31 = 2

CheckLB_Item
with Ij = I4,

Jdsupp
4 = {I1, I2},

load = d4 = 2

CalcLoad

with Ij = I4, Ik = I1, load = 2

• supp41 := 2
• a4 := 4
• ps := 0.5
• load41 := 1, lpu := 0.5
• loadunit

1 (ua) := 1,
∀ ua ∈ {3, 7}

CheckLB_Item
with Ij = I1, Jdsupp

1 = ∅,
load = load31 = 2

CalcLoad

with Ij = I4, Ik = I2, load = 2

• supp42 := 2
• a4 := 4
• ps := 1

2

• load42 := 1, lpu := 0.5
• loadunit

2 (ua) := 1,
∀ ua ∈ {0, 2}

CheckLB_Item
with Ij = I2, Jdsupp

2 = ∅,
load = load42 = 1

. . . 17

18

19

20

21

22
23

24

25

26

27

28

29

30

CheckLB_Item
with Ij = I1, Jdsupp

1 = ∅,
load = d1 = 4

CheckLB_Item
with Ij = I2, Jdsupp

2 = ∅,
load = d2 = 3

31

32 33

34

1.5

1.5

1.5

1.5

0 0.5

0 0.5

1.5

1.5

1.5

1.5

0 1

0 1

0

0

1

1

Figure 4.14: Exemplary call sequence for determining the bearing loads (continued)

4.2 Routing heuristics

Simple routing construction heuristics can be applied for solving a VRP very quickly

and find reasonable solutions. Alternatively, more sophisticated procedures can be

used in order to obtain routing solutions of higher quality. In this chapter, different

routing heuristics are presented in order to solve a 3L-VRPBTW.

4.2.1 Savings heuristic

The well-known savings heuristic (Clarke and Wright, 1964) is a fast heuristic, is

easy to implement and delivers good results. The basic idea is to realize connec-

tions of two customers that lead to high cost savings. The procedure is outlined in

Algorithm 4.16.

Initially, each customer forms a direct trip, a so-called out-and-back tour.21 For

each arc connecting two customers (i, j) ∈ E (i, j > 0) the respective saving savij

is computed as follows:
savij = ci0 + c0j − cij. (4.19)

21 The terms route and tour can mostly be used interchangeably if the sequence of customers is
unimportant to the remarks given. A route refers to a sorted sequence of customers, whereas
a tour is an unsorted set of all customers visited in a route.

139

4 Hybrid solution approach

As the costs between two customers are assumed to be symmetric (see Chapter 2.1),

only one saving per customer pair is required. The savings are sorted in a non-

increasing order and, beginning with the highest saving, the algorithm tries to con-

nect the respective two customers until no further saving can be realized. Two

customers can be joined if:

(a) they are not already in the same tour,

(b) both customers still have at least one connection to the depot,

(c) capacity, time window and packing constraints (and sequencing constraints in

the case of the 3L-VRPCB(TW)) are not violated in the newly formed route.

Let DCi be a counter of the connections of customer i to the depot, vnoi be the

vehicle (or tour) number, respectively, to which customer i is assigned and R′v be an

ordered set of customers visited by vehicle v.22

The adherence to the capacity and packing constraints needs to be checked according

to the respective problem variant. For the 3L-VRPTW and 3L-VRPCB(TW) it is

sufficient to check them for the beginning of the route for the linehaul customers and

the end of the route for the backhaul customers. For the variants 3L-VRPMB(TW)

and 3L-VRPSDP(TW), however, some constraints need to be checked for every

station of a route (cf. Chapter 2). Due to the capacity, packing and time window

constraints the direction of a route is important and should be considered in the

savings heuristic. That is, if two customers i and j are to be joined and the new

route in which i precedes j violates one of the mentioned constraints, the other

direction should be tested as well (cf. line 22) as it could be feasible. The procedure

of connecting two routes is outlined in Algorithm 4.17.

In order to ensure the sequence constraint (2.95) of the 3L-VRPCB(TW), the ap-

proach of Deif and Bodin (1984) is applied. A counter is assigned to every route

counting the connections of a linehaul to a backhaul customer. This counter must

not exceed a value of 1 for any route and no backhaul customer must precede a line-

haul customer. Apart from that, the procedure as outlined above can be applied.

22 Note that, though every route starts and ends at the depot, it is not included in the sequences
R′

v here (as opposed to Rv introduced in Chapter 2).

140

4 Hybrid solution approach

Algorithm 4.16 Savings heuristic for a (3L-)VRPBTW

Input: instance data
Output: solution for a (3L-)VRPBTW with objective function value z

1: procedure Savings
2: for each customer i ∈ N \ {0} do . initialization
3: DCi := 2, vnoi := i . create a separate route for each customer
4: R′vnoi := {i}
5: end for
6: z := 2 ·∑i∈Nc ci0 . objective function value: total cost of all routes
7: savList := ∅
8: for each arc (i, j) ∈ E (i, j > 0) do
9: savij = ci0 + c0j − cij . calculate savings

10: savList := savList ∪ {(savij, i, j)}
11: end for
12: sort all savings in list savList in a non-increasing order
13: while savList 6= ∅ do
14: sav := savList(1) . highest available saving in savList
15: i, j := customers belonging to sav
16: if DCi > 0 and DCj > 0 and vnoi 6= vnoj then . restrictions (a) and (b)
17: R′′i := R′vnoi with customer i at the end . temporary routes
18: R′′j := R′vnoj with customer j at the beginning
19: R′′ := R′′i ∪R′′j
20: if R′′ satisfies (c) then . see restrictions listed above
21: Connect(R′′, vnok ∀k ∈ R′′, i, j,DCi, DCj, R′vnoi , R′vnoj , savij, z)

. Algorithm 4.17
22: else . try the other direction
23: reverse R′′

24: if R′′ satisfies (c) then
25: Connect(R′′, vnok ∀k ∈ R′′, i, j,DCi, DCj, R′vnoi , R′vnoj , savij, z)
26: end if
27: end if
28: end if
29: savList := savList \ {sav}
30: end while
31: end procedure

Algorithm 4.17 Connecting two customers in the course of the savings heuristic

Input: new route R′′, vehicle numbers vnok∀k ∈ R′′, connected customers i and j,
DCi, DCj, R

′
vnoi

, R′vnoj , savij, current objective function value z
Output: updated solution data and objective function value z

1: procedure Connect
2: R′vnoi := R′′, R′vnoj := ∅ . connect routes vnoi and vnoj
3: for each k ∈ R′vnoi do
4: vnok := vnoi . update tour numbers
5: end for
6: DCi := DCi − 1 . update depot connections
7: DCj := DCj − 1
8: z := z − savij . update objective function value
9: end procedure

141

4 Hybrid solution approach

4.2.2 Adaptive large neighbourhood search

In order to obtain solutions of high quality, a metaheuristic is used for solving the

3L-VRPBTW. Namely, an adaptive large neighbourhood search (ALNS) algorithm

is applied that is based on the ALNS presented by Ropke and Pisinger (2006a,b).

The large neighbourhood search (LNS) was first proposed by Shaw (1997, 1998) and

applied to the CVRP and the VRPTW. In every iteration of the heuristic, customers

are removed from the current solution. For that purpose, a heuristic is employed

determining the customers to be removed. Subsequently, they are reinserted into

the solution. For the reinsertion procedure, a branch-and-bound (B&B) approach

is applied by Shaw (1997, 1998). If the newly generated solution is better than the

starting solution (of the previous iteration) from which it resulted, it is used as the

starting solution for the next iteration. Otherwise, the previous starting solution is

used again.

The ALNS is a further development of the LNS. One main difference is that more

than one heuristic is available for both the removal and the insertion procedures,

while an “expensive” B&B approach is not employed for insertions. Three different

removal heuristics are used by Ropke and Pisinger (2006b) and six by Ropke and

Pisinger (2006a). Further removal heuristic are, e.g., presented by Demir et al.

(2012). Moreover, Ropke and Pisinger (2006a,b) use various rather simple, greedy

insertion heuristics. In the course of this thesis, it is attempted to equip the heuristic

with an even larger number of heuristics. The ones used here are described in detail

in Chapters 4.2.2.1 and 4.2.2.2. Furthermore, the integration of solving a packing

problem within the ALNS is demonstrated in Chapter 4.2.2.3.

Another difference of the approach of Ropke and Pisinger (2006a,b) compared to

the original LNS, is to embed the ALNS into a simulated annealing framework that

controls the acceptance of new solutions. That is, a solution that is worse than the

previous solution can be accepted and be the new starting solution with a certain

probability. The acceptance procedure is explained in Chapter 4.2.2.4.

Furthermore, in every iteration the number of customers to be removed (nrem), the

removal and the insertion heuristics are chosen randomly. nrem is selected from a

given interval. A specific feature of the ALNS is that the probability of choosing a

certain heuristic changes throughout the search and depends on its performance in

previous iterations. (Therefore, the additional term “adaptive” is used.) This aspect

142

4 Hybrid solution approach

is further described in Chapter 4.2.2.5. Finally, the applied termination criteria are

listed in Chapter 4.2.2.6.

The overall ALNS procedure for a (3L-)VRPBTW is outlined in Algorithm 4.18.23

Algorithm 4.18 Adaptive large neighbourhood search for a (3L-)VRPBTW

Input: instance data, parameters
Output: solution for a (3L-)VRPBTW sbest with objective function value z(sbest)

1: procedure ALNS
2: construct initial solution sinit
3: scurr := sbest := sinit
4: while stopping criterion is not met do
5: select number of customers to be removed nrem
6: select removal heuristic rem and insertion heuristic ins
7: determine next solution snext :=ins(rem(scurr, nrem))
8: check acceptance of snext
9: if snext is accepted then

10: scurr := snext
11: if z′(scurr) < z′(sbest) then . z′(s): total cost of solution s (see

Chapter 4.2.2.4)
12: sbest := scurr
13: end if
14: end if
15: if segment end is reached then . i.e. after a certain number of iterations
16: update weights of insertion and removal heuristics
17: end if
18: end while
19: end procedure

4.2.2.1 Removal heuristics

In total, 21 different removal heuristics are implemented and tested, some of which

are based on heuristics proposed in the literature and some have been newly devel-

oped. The heuristics with their corresponding sources are listed in Table 4.2 (new

refers to a newly developed heuristic). In the final hybrid algorithm, nine of the

heuristics are used (cf. Chapter 5.3), which is also indicated in Table 4.2. In the

following, the used heuristics are explained in greater detail. Subsequently, short

descriptions of the omitted heuristics are provided.24

Some heuristics require quite specific solution structures. It may happen that a

solution does not contain those structure (overlapping routes or intersections within

routes). In this case, the respective removal heuristic cannot be applied and another

23 The instance data and parameters are assumed to be provided in the following pseudocodes.
24 For further details, please refer to the respective sources.

143

4 Hybrid solution approach

heuristic is chosen instead.

Table 4.2: Overview of removal heuristics

name source in final ALNS

Shaw removal Shaw (1997)*
random removal Ropke and Pisinger (2006b)
worst removal Ropke and Pisinger (2006b)
cluster removal Ropke and Pisinger (2006a)
neighbour graph removal Ropke and Pisinger (2006a)
overlap removal new
inner route removal new
intersection removal new
route pair removal new
random-route removal Bortfeldt et al. (2015)
least customer-route removal new
average distance-route removal new
largest distance-route removal new
proximity-based Shaw removal Demir et al. (2012)
time-based Shaw removal Demir et al. (2012)
demand-based Shaw removal Demir et al. (2012)
worst distance removal Demir et al. (2012)
worst time removal Demir et al. (2012)
historical knowledge removal Demir et al. (2012)
average distance removal** Demir et al. (2012)
node neighbourhood removal Demir et al. (2012)

*: The heuristic is not adopted unchanged, but is adapted to the (3L-)VRPBTW.
**: In Demir et al. (2012), it is called neighbourhood removal. The operator is renamed
here in order to avoid confusion with other, similarly named heuristics.

Shaw removal

The Shaw removal heuristic is based on the original removal heuristic introduced

by Shaw (1997, 1998). Some components are adopted from Ropke and Pisinger

(2006b), Demir et al. (2012) and Bortfeldt et al. (2015), and the heuristic is adjusted

to the (3L-)VRPBTW. The idea is to remove similar customers from a solution

because it appears to be easier to exchange similar customers. In contrast, removing

very different customers might lead to a next solution that is almost identical to

the current one as the removed customers cannot take new positions (Ropke and

Pisinger, 2006b). The degree of similarity is defined by a relatedness value that

is determined in the following manner: Let netvoli be the net demand volume of

customer i. In the case of the 3L-VRPTW, the net volume of a customer equals the

total demanded volume:

netvoli =

mi∑

k=1

(lik · wik · hik),∀ i ∈ Nc. (4.20)

144

4 Hybrid solution approach

The same applies to the 3L-VRPCB(TW) and 3L-VRPMB(TW). However, backhaul

customers are assumed to have a negative net volume:

netvoli =

∑mi
k=1(lik · wik · hik), ∀ i ∈ NL

−∑mi
k=1(lik · wik · hik), ∀ i ∈ NB.

(4.21)

In the case of the 3L-VRPSDP(TW), the net volume represents the difference be-

tween the delivery and pickup demand volume:

netvoli =

mLi∑

k=1

(lik · wik · hik)−
mi∑

k=mLi +1

(lik · wik · hik),∀ i ∈ Nc. (4.22)

The net volumes are normalized (netvol∗i) in the range [0,1]. That is,

netvol∗i =
netvoli − netvolmin
netvolmax − netvolmin

,∀ i ∈ Nc, (4.23)

where netvolmin and netvolmax refer to the minimum and maximum net demand

volumes among all customers:

netvolmin = min
i∈Nc

netvoli, (4.24)

netvolmax = max
i∈Nc

netvoli. (4.25)

Furthermore, let c∗ij be the normalized cost (in the range [0,1]) of the directed edge

(i, j) ∈ E and RT ∗i be the normalized ready-time (in the range [0,1]) of customer

i (i ∈ Nc). The normalized costs and ready times are determined analogously as the

normalized demand volume (cf. (4.23)).

In addition, a binary variable εij describes whether two customers i and j (i, j ∈ Nc)

are in the same tour (εij = 1) or not (εij = 0). Let ω1, ω2, ω3 and ω4 be predefined

weights for the calculation of the relatedness value.25 The relatedness relate(i, j) of

two customers i and j (i, j ∈ Nc) can then be calculated as:

relate(i, j) = ω1 · c∗ij + ω2 ·
∣∣RT ∗i −RT ∗j

∣∣+ ω3 ·
∣∣netvol∗i − netvol∗j

∣∣+ ω4 · εij. (4.26)

The procedure of the Shaw removal operator is shown in Algorithm 4.19. Initially,

one customer is randomly selected and added to the set of customers that are re-

25 If no time windows are considered, ω2 equals 0.

145

4 Hybrid solution approach

moved in the end (Rem). In every iteration of the operator, i.e. until nrem customers

are added to Rem, one customer from Rem is randomly chosen and another cus-

tomer that is closely related to it is added to the set. In the course of this, not

necessarily the customer with the highest relatedness measure is chosen (lines 13

and 14). Some randomness is introduced to the selection by means of the determin-

ism parameter ρ (ρ ≥ 1) (cf. Ropke and Pisinger, 2006b). A low value of ρ refers to

much randomness, and vice versa.

Algorithm 4.19 ALNS: Shaw removal heuristic (Adapted from Ropke and Pisinger,
2006b)

Input: scurr, nrem
Output: snext

1: procedure ShawRemoval
2: snext := scurr
3: randomly select customer i
4: Rem := {i} . set of customers to be removed
5: while |Rem| < nrem do
6: randomly select a customer i ∈ Rem
7: S := ∅
8: for each customer j ∈ Nc \Rem do
9: calculate relatedness measure relate(i, j)

10: S := S ∪ {j}
11: end for
12: sort S by ascending relate(i, j)
13: choose a random number y ∈ [0, 1)
14: Rem := Rem ∪ {k} with k := S [yρ · |S|]
15: end while
16: remove the customers in Rem from snext
17: end procedure

Random removal

Probably the simplest removal heuristic is the random removal heuristic. As the

name suggests, all removed customers are determined completely randomly. The

procedure is depicted in Algorithm 4.20. The set of planned customers S refers to

the customers that are assigned to a route in the current solution scurr. As some

customers can be unassigned (they are contained in the set of missing customers;

see below) not necessarily all n customers are included in S.

As Ropke and Pisinger (2006b) point out, this operator would be a special case of

the above presented Shaw heuristic with ρ = 1, but it is of course more efficient to

implement the random removal heuristic separately.

146

4 Hybrid solution approach

Algorithm 4.20 ALNS: random removal heuristic
Input: scurr, nrem
Output: snext

1: procedure RandomRemoval
2: snext := scurr
3: S := set of planned customers in scurr
4: Rem := ∅ . set of customers to be removed
5: while |Rem| < nrem do
6: randomly choose a customer i ∈ S
7: Rem := Rem ∪ {i}, S := S \ {i}
8: end while
9: remove the customers in Rem from snext

10: end procedure

Worst removal

Customers are removed that supposedly deteriorate the solution the most. In this

context, the cost of a customer is defined as the difference between the total cost of

the current solution and the total cost of the solution if the customer was completely

removed. In the course of this, only the differences in the resulting routing costs,

i.e. the total travel distances or times (depending on whether time windows are

considered or not; see Chapter 2.1), are regarded. Penalty costs for missing cus-

tomers are not considered (see Chapter 4.2.2.4). The whole procedure is depicted

in Algorithm 4.21. Randomness is introduced into the selection of a customer as

before (lines 6 and 7). Furthermore, unlike in the operators presented above, the

temporary solution snext is updated after every removal, i.e. the costs also need to

be recalculated after every removal.

Algorithm 4.21 ALNS: worst removal heuristic (Adapted from Ropke and Pisinger,
2006b)

Input: scurr, nrem
Output: snext

1: procedure WorstRemoval
2: snext := scurr
3: while nrem > 0 do
4: determine set of planned customers S (in snext)
5: sort the customers in S by descending cost(i, snext)
6: choose a random number y ∈ [0, 1)
7: i := S [yρ · |S|]
8: remove i from snext . snext is updated
9: nrem := nrem − 1

10: end while
11: end procedure

147

4 Hybrid solution approach

Cluster removal

In the cluster removal heuristic, one route is initially selected randomly. This route is

then divided into two clusters by (partly) solving a minimum spanning tree problem

with a modified variant of the algorithm of Kruskal (1956). Originally, in every

iteration of Kruskal’s algorithm the arc that is associated with the lowest cost is

selected. This arc must not have been selected before and must not lead to a circle

with previously selected arcs. The procedure is repeated until the selected arcs form

a spanning tree. In the modified version considered here, the algorithm is run until

two connected clusters (trees) are generated.

Subsequently, one of the generated clusters is chosen randomly and the included

customers are added to Rem, the set of customers to be removed. If more customers

are required for removal, a customer i is picked from Rem and another customer is

determined that is closest to i and is not included in a route that was affected by

the clustering before. The route of this customer is then clustered and the process

described above is continued until (at least) nrem customers have been removed.

The pseudocode for the cluster removal operator is provided in Algorithm 4.22.

Algorithm 4.22 ALNS: cluster removal heuristic
Input: scurr, nrem
Output: snext

1: snext := scurr
2: partition a randomly selected route v into two clusters Cl1 and Cl2 using a

modified Kruskal’s algorithm
3: randomly select one cluster Cl ∈ {Cl1, Cl2}
4: Rem := Cl . set of customers to be removed
5: C := {v} . set of routes affected by clustering
6: while |Rem| < nrem do
7: randomly select a customer i from Rem
8: find a customer that is closest to i from a route v /∈ C
9: C := C ∪ {v}

10: partition route v into two clusters Cl1 and Cl2 . as above
11: randomly select one cluster Cl ∈ {Cl1, Cl2}
12: Rem := Rem ∪ Cl
13: end while
14: remove the customers in Rem from snext

An example where the cluster removal could be useful is depicted in Figure 4.15.

Route 2 is divided into two clusters, which are highlighted in Figure 4.15a. One

cluster (customers 8-11) is removed from route 2. Possible insertions could then be

made into route 1 (Figure 4.15b).

148

4 Hybrid solution approach

1

2
3

4

5
6

7

12

13
14

8
9

10

11

route 1

route 2

(a) before removal

1

2
3

4

5
6

7

12

13
14

8
9

10

11

route 1

route 2

(b) after removal and insertion

Figure 4.15: Example for a cluster removal (Adapted from Ropke and Pisinger, 2006a)

Neighbour graph removal

The neighbour graph removal operator makes use of historical information (Ropke

and Pisinger, 2006a). For this purpose, a neighbour graph NG = (NNG, ENG)

with the node set NNG and the (directed) edge set ENG is employed. The graph is

complete, directed and weighted. Each node in NNG represents one customer and

the cost cNGij of a direct edge (i, j) ∈ ENG represents the cost of the best solution

found so far in which customer i is visited directly before customer j in the same

route. At the beginning of the ALNS, the cNGij of all arcs (i, j) ∈ ENG are initialized

with sufficiently large values.

The detailed procedure is outlined in Algorithm 4.23.

Algorithm 4.23 ALNS: neighbour graph removal heuristic
Input: scurr, nrem, NG
Output: snext

1: procedure NeighbourGraphRemoval
2: snext := scurr
3: S := set of planned customers in scurr
4: Rem := ∅ . set of customers to be removed
5: for each customer j ∈ S do . calculate score
6: scj = cNGij + cNGjk . i, k: j’s predecessor and successor
7: end for
8: sort S by non-increasing scores
9: while |Rem| < nrem do

10: choose a random number y ∈ [0,1)
11: i := S [yρ · |S|]
12: S := S \ {i}, Rem := Rem ∪ {i}
13: end while
14: remove the customers in Rem from snext
15: end procedure

In order to determine the customers to be removed, a score is calculated for each

149

4 Hybrid solution approach

customer j by summing up the costs of the two directed edges in NG that describe

his current position. Let i be the predecessor of j in the current solution and k be

the successor of j. The score assigned to j equals the sum of the cost of the directed

edges (i, j) and (j, k) in NG. A high score indicates an unsuitable placement, i.e.

comparatively bad previous solutions with the constellation (. . . , i, j, k, . . .) in a

route. Thus, customers with high scores are removed. The neighbour graph is

updated every time a new solution is found.

Overlap removal

This operator aims at eliminating intersections between two routes. Two routes

intersect or overlap if at least one travelled arc of one route is crossing a travelled

arc of the other. The heuristic removes customers in the overlapping area. The

procedure is depicted in Algorithm 4.24.

Algorithm 4.24 ALNS: overlap removal heuristic
Input: scurr, nrem
Output: snext

1: procedure OverlapRemoval
2: snext := scurr
3: S := all pairs of overlapping routes
4: if S 6= ∅ then . the heuristic can only be applied if there is at least one pair

of overlapping routes
5: Rem := ∅ . set of customers to be removed
6: while |Rem| < nrem and |S| > 0 do
7: randomly select a route pair rp ∈ S
8: S := S \ {rp}
9: O := set of customers in overlapping area of rp

10: while |Rem| < nrem and |O| > 0 do
11: randomly select a customer i ∈ O
12: O := O \ {i}
13: if i /∈ Rem then
14: Rem := Rem ∪ {i}
15: end if
16: end while
17: end while
18: remove the customers in Rem from snext
19: if |Rem| < nrem then . no more overlapping routes available
20: RandomRemoval(snext, nrem − |Rem|)
21: end if
22: end if
23: end procedure

Let (cxi, cyi) be the coordinate pair representing the position of customer i in a

two-dimensional Cartesian coordinate system. It begins with the determination of

150

4 Hybrid solution approach

all overlapping route pairs (line 3). This is done in the following way: Each route

is represented by a rectangle formed by the minimum and maximum cx- and cy-

coordinates of the locations visited in the route (including the depot). If those

rectangles of two routes overlap, it is checked whether there is any pair of travelled

arcs of the respective routes (one arc per route) that is intersecting.

Examples are depicted in Figure 4.16. The grey-shaded areas represent the overlap

of the rectangular areas formed by the routes (dashed lines). In Figure 4.16a, the

arcs (3,4), (4,5), (5,6), (6,0), (0,7), (7,8), (8,9), (9,10) and (11,0) are checked for

intersections because they are (at least partly) within the overlapping area. As the

arcs (3,4) and (8,9) intersect, the two routes overlap. In Figure 4.16b, the routes also

form overlapping rectangles. However, their are no intersecting arcs of the routes in

this area.

cy

cx

route 1

route 2
4

5

67

8

9

1

2

3
10

11

(a) overlapping

cy

cx

route 1

route 24

6

8

9

1

2

3

7

5

10

11

(b) not overlapping

Figure 4.16: Examples for overlapping and non-overlapping routes

After this procedure, overlapping route pairs are selected randomly and customers

from the overlapping area are removed from the solution (Algorithm 4.24, line 6ff.).

If there are not enough intersecting route pairs, the missing removal customers are

chosen randomly out of all customers that remain in the solution (line 19).

If there are no intersecting route pairs at all in the current solution, another removal

heuristic is chosen. For this purpose, the higher-level function checks whether the

current solution was changed by the removal heuristic.

Inner route removal

The inner route removal heuristic does not only remove customers from a solution,

but it also changes the given structure of routes. It aims at removing short routes

151

4 Hybrid solution approach

that are enclosed in larger ones, and splits up the large routes. The whole procedure

is outlined in Algorithm 4.25.

Algorithm 4.25 ALNS: inner route removal heuristic
Input: scurr, nrem
Output: snext

1: procedure InnerRouteRemoval
2: snext := scurr
3: countrem := 0 . number of removed customers
4: S := all inner route-outer route pairs
5: if S 6= ∅ then
6: set of affected routes AR := ∅
7: while countrem < nrem do
8: randomly select a route pair rp ∈ S
9: vin := index of the inner route of rp

10: nvin := number of customers in route Rvin

11: vout := index of the outer route of rp
12: if vin /∈ AR and vout /∈ AR then
13: AR := AR ∪ {vin, vout}
14: countrem := countrem + nvin
15: remove Rvin from the solution snext
16: split Rvout , update snext
17: end if
18: S := S \ {rp}
19: if countrem < nrem and S = ∅ then . no more route pairs available
20: RandomRemoval(snext, nrem − countrem)
21: countrem := nrem
22: end if
23: end while
24: end if
25: end procedure

An example is shown in Figure 4.17. As in the overlap removal heuristic, rectangles

enclosing the routes are determined (Figure 4.17a). If such a rectangle is completely

covered by another, the corresponding route is called an inner route (e.g. route

(0, 7, 8, 9, 10, 0) in Figure 4.17a), and the route related to the enclosing rectangle

is called the outer route. A selected inner route is removed from the solution.

Moreover, the related outer route is split into two routes (Figure 4.17b). The “cut”

is made after the first dnvout/2e customers in the route, where nvout is the number of

customers in the outer route. Figure 4.17c shows how the solution could look like

after the application of an insertion heuristic.

152

4 Hybrid solution approach

1

2
3

4

5

6

7

8

9

10

(a) before inner route removal

1

2
3

4

5

6

7

8

9

10

(b) after inner route removal

1

2
3

4

5

6

7

8

9

10

(c) after insertion

Figure 4.17: Example for an inner route removal

Intersection removal

This operator also aims at removing intersections. However, unlike the overlap

removal heuristic, it focuses on intersections within individual routes. The heuristic

procedure is depicted in Algorithm 4.26. At the beginning, all crossings within

the routes are determined. Then, customers are removed that form the respective

crossing arcs (excluding the depot).

Algorithm 4.26 ALNS: intersection removal heuristic
Input: scurr, nrem
Output: snext

1: procedure IntersectionRemoval
2: snext := scurr
3: S := all pairs of crossing arcs within each route
4: if S 6= ∅ then
5: Rem := ∅ . set of customers to be removed
6: while |Rem| < nrem and |S| > 0 do
7: randomly select a crossing arc pair cap := ((i1, i2), (i3, i4)), cap ∈ S
8: . ij: customers forming the arcs
9: S := S \ {cap}

10: for j := 1 to 4 do
11: if ij 6= 0 and ij /∈ Rem then
12: Rem := Rem ∪ {ij}
13: end if
14: end for
15: end while
16: remove the customers in Rem from snext
17: if |Rem| < nrem then . no more arc pairs available
18: RandomRemoval(snext, nrem − |Rem|)
19: end if
20: end if
21: end procedure

An example is illustrated in Figure 4.18a. Here, the crossing edges are (2,3) and

(5,6). The respective customers would be removed from the solution. A possible

153

4 Hybrid solution approach

new route that could be built in the insertion process is depicted in Figure 4.18b.

1

4

2

3

6

5

(a) before intersection removal

1

4

2

3

6

5

(b) possible route after reinsertion

Figure 4.18: Example for an intersection removal

Route pair removal

This operator removes two complete routes that are intersecting. The intersecting

routes are determined as in the overlap removal operator. Thus, it could happen

that more than nrem customers are removed if the routes contain more. This case is

accepted, though. On the other hand, if there are less than nrem customers in the

route, the remaining customers are removed randomly.

The following heuristics are also implemented and tested, but not applied in the

final hybrid algorithm:

Shaw removal variants

These variations of the Shaw removal operator focus the calculation of the related-

ness factor on only one aspect. That is, in each case only one weight is effective:

• proximity-based: removes customers that are related with respect to distance

(ω1 = 1, ω2 = ω3 = ω4 = 0),

• time-based: removes customers that are related with respect to time windows

(ω2 = 1, ω1 = ω3 = ω4 = 0),

• demand-based: removes customers that are related with respect to demand

(ω3 = 1, ω1 = ω2 = ω4 = 0).

Route removal variants

These operators remove entire routes from the solution. Similar to the route pair

removal, at least nrem customers are removed. Different variants of the operator are

considered with different criteria for the routes to be removed:

154

4 Hybrid solution approach

• The removed route is chosen randomly out of all routes (random-route re-

moval).

• The route with the least number of customers is removed (least customer-

route removal). The chances are higher to assign all customers of the route to

new routes if a very short route (with respect to the number of customers) is

dissolved.

• The route with the largest total distance is removed (largest distance-route

removal).

• The route with largest average distance (between two succeeding locations

within a route) is removed (average distance-route removal). If the average

distance of a route is large, i.e. the customer locations are on average relatively

far away from each other, the customers might fit better into other routes.

Worst-distance removal

Customers with long distances from their predecessor and successor in the route are

removed.

Worst-time removal

Customers are removed considering the time windows and starts of service. On the

one hand, long waits should be prevented (arrivali � RTi with arrivali being the

arrival time at customer location i). On the other hand, those locations where the

service starts long after the opening of the time window (arrivali � RTi) are also

considered for removal since they might be serviced earlier in the route or in other

routes.

Historical knowledge removal

This operator is taking into account historical information. Unlike the neighbour

graph removal operator, it does not consider entire solutions but merely the best

position found for a customer so far, i.e. the sum of distances to the preceding and

succeeding location. Customers with large deviations from their best positions are

removed. The best positions are updated whenever new best positions are encoun-

tered.

155

4 Hybrid solution approach

Average distance removal

Customers are removed that deteriorate the average distance of a route. The average

distance c̄v of a route v, which can be described by the sorted customer sequence

Rv, is calculated as

c̄v =

∑
(i,j)∈Rv cij

nv
, (4.27)

where nv equals the number of customers in Rv. The cost of a customer i of route

v is determined as follows:

costi = c̄v − c̄v\i, (4.28)

where c̄v\i is the average distance of route v if customer i was not in it (Rv \ {i}).
The operator removes customers with high costs.

Node neighbourhood removal

The node neighbourhood removal heuristic initially removes a random customer and

then removes customers around it in a rectangular zone.26 nrem − 1 customers are

randomly chosen from the customers that are within the zone. If less than nrem− 1

customers are in it, the zone is enlarged by a predefined factor.

An example is illustrated in Figure 4.19 where a part of a solution is depicted. In

this case, customer 3 is the initially removed customer. The customers 1, 7, 8, 11,

and 13 are within the zone and, thus, removed.

1

2

34

5

6

7
8

910

11

12

13
3

1
7

8

13
11

Figure 4.19: Example a for node neighbourhood removal

4.2.2.2 Insertion heuristics

After the application of the removal operator, at least nrem customers are in the set

of missing customers MC (so-called request bank in Ropke and Pisinger, 2006a,b),

26 See Demir et al. (2012) for details about the construction of the zone.

156

4 Hybrid solution approach

i.e., they are not assigned to any route. MC can contain more than nrem customers

if more than nrem customers were removed (e.g. by a route removal) or if some

customers had already been in the set of missing customers of the current solution.

An insertion heuristic is subsequently employed in order to insert the customers

from MC into the solution.

The used insertion heuristics are adopted from Ropke and Pisinger (2006a,b). Three

basic insertions are used, which are described in the following subchapters. In

addition, all three heuristics can be used in combination with a noise factor so that

not necessarily the best insertion is realized. That way, the diversification of the

search should be strengthened.

Greedy insertion

The first heuristic is a greedy insertion heuristic. In every iteration of the procedure,

the customer is chosen for insertion whose best (least cost) insertion into snext is

associated with the least cost among all unplanned customers. The basic procedure

is outlined in Algorithm 4.27.27

Algorithm 4.27 ALNS: greedy insertion heuristic
Input: snext
Output: snext

1: procedure GreedyInsertion
2: MC := set of missing customers in snext
3: while |MC| > 0 do
4: for each customer j ∈MC do
5: determine best feasible insertion position p∗j
6: if j cannot be inserted into any route then
7: MC := MC \ {j}
8: end if
9: end for

10: iins := argminj∈MC cost(p
∗
j) . customer to be inserted

11: update snext: insert iins into his least-cost position p∗iins
12: MC := MC \ {iins}
13: end while
14: end procedure

At the beginning of an iteration, the least-cost position p∗j of each unplanned cus-

tomer j ∈ MC is determined (lines 4 to 9). Let, j be a customer to be inserted

into a position p between the customers i and k. The cost of the insertion into p is

27 This pseudocode simply illustrates the general procedure of the heuristic. The actual imple-
mentation of the heuristic is described below.

157

4 Hybrid solution approach

determined as:

cost(p) = cij + cjk − cik. (4.29)

The insertion of j into p∗j must be feasible regarding the routing and packing con-

straints listed in Chapter 2.

Regret-k insertion

The regret-k insertions (k ≥ 2) aim at being more forward-looking than the my-

opic greedy heuristic. More precisely, they do not only take into account the best

insertion position for an unplanned customer, but the k best insertion positions.

For each customer j ∈MC the best insertion position per route is determined. Let

p1,j, p2,j, ..., pk,j be the first, second, . . . , k-th best insertion of j, where each pi,j is

the best insertion position of a different route. Their costs are determined as in

(4.29). The regret value of j is calculated as:

regretj =
k∑

i=2

(cost(pi,j)− cost(p1,j)) . (4.30)

For example, if k = 2, the regret value represents the difference between the best

and the second best insertion option.

Within the insertion procedure, the customer with the highest regret value is chosen

in each iteration (iins := argmaxj∈MC regretj) and inserted into snext at the best

insertion position of iins, namely p1,iins . If there are one or more customers that

cannot be inserted into at least k different routes, the one that can be inserted into

the fewest number of routes (but at least one) is chosen for insertion, breaking ties

by the insertion cost for the best position.

In this thesis, the regret-2 and regret-3 insertion heuristics are applied. A pseu-

docode is provided in Chapter 4.2.2.3.

Insertion heuristics with noise factor

Taking into account a noise factor for the calculation of the insertion costs, some

randomness is introduced into the choice of the insertion customers. The modified

insertion cost cost′ for a position p is calculated as

cost′(p) = max(0, cost(p) + noise). (4.31)

158

4 Hybrid solution approach

noise is randomly chosen from the interval [−η · cmax, η · cmax], where η is a prede-

fined noise parameter and cmax is the maximum cost of all directed edges (cmax =

max(i,j)∈E cij).

Apart from the change in the cost calculation, the insertion heuristics proceed as

described above. Each of the three mentioned heuristics is also applied with the

noise component. Those heuristics are regarded as independent heuristics, so that

in total six different insertion heuristics are available for the ALNS: greedy, regret-2,

regret-3, greedy with noise, regret-2 with noise and regret-3 with noise.

4.2.2.3 Integration of the packing procedure

In the following, a distinction is made between packing heuristic and packing pro-

cedure. The former refers to the individual heuristics presented in Chapter 4.1. In

contrast, the packing procedure refers to the packing process in general and describes

the procedure, that is called in order to evaluate the feasibility of a route with re-

spect to the packing constraints. Any packing heuristic can be applied within the

packing procedure.

Thus, the packing procedure is applied in order to test whether feasible packing plans

can be found for generated routes. Depending on the considered 3L-VRPBTW vari-

ant and the composition of a route, up to two packing patterns must be generated

per route. In addition, the packing procedure checks whether simultaneously trans-

ported linehaul and backhaul items overlap during the execution of a route if the

side loading approach is applied. The packing part of the hybrid algorithm is usu-

ally computationally very expensive: more than 95 % of the computation time of

the hybrid routing and packing solution approach is needed for packing. Therefore,

calling the packing procedure as rarely as possible is desired.

The packing procedure is required at two points of the hybrid algorithm: within

the insertion procedure and when a new best solution is identified. The latter is

necessary as routes are not tested for packing feasibility in the course of the removal

operators. Removing a customer from a solution can result in a route that cannot

be packed feasibly. Thus, infeasible solutions may occur if no further customer

is inserted into such a route. In order to ensure the feasibility of the best found

solution, the packing procedure is always applied to a new globally best solution and

the solution is only accepted if it is feasible. Compliance of all other non-packing

159

4 Hybrid solution approach

constraints is ensured within the generation of each individual solution.

In the following, the implementation of the insertion heuristics is explained in greater

detail. A general framework is presented in Algorithm 4.28. It can be applied to both

the greedy heuristic (input parameter k = 1) and any regret-k heuristic (k > 1).

Algorithm 4.28 ALNS: detailed insertion procedure

Input: snext, k
Output: snext

1: procedure Insertion
2: MC := set of missing customers in snext
3: U := set of used routes in snext and one empty route if not all vehicles

are used
4: ip := false . true: at least one insertion is possible
5: for each j ∈MC do
6: Insj := ∅ . set of best feasible insertions of customer j
7: for each v ∈ U do
8: {insjv} := SelectIns(j, v, snext) . select the best feas. insertion into v
9: Insj := Insj ∪ {insjv}

10: end for
11: if |Insj| > 0 then . at least one insertion is possible for customer j
12: sort Insj by non-decreasing insertion costs
13: ip := true
14: end if
15: end for
16: while |MC| > 0 and ip = true do
17: if k = 1 then . greedy
18: iins := argminj∈MC cost(Insj(1)) . Insj(1): cheapest insertion in Insj
19: else . regret-k
20: for each j ∈MC do
21: regretj :=

∑k
l=2(cost(Insj(l))− cost(Insj(1))) . calculate regret value

22: end for
23: iins := argmaxj∈MC regretj
24: end if
25: insert iins at its minimum cost position into snext
26: v := route into which iins was inserted
27: MC := MC \ {iins}
28: ip := false
29: for each j ∈MC do . update the best feasible insertion for route v
30: Insj := Insj \ {insjv}
31: {insjv} := SelectIns(j, v, snext)
32: Insj := Insj ∪ {insjv}
33: if |Insj| > 0 then
34: sort Insj by non-decreasing insertion costs
35: ip := true
36: end if
37: end for
38: end while
39: end procedure

160

4 Hybrid solution approach

The set MC contains all missing, i.e. unassigned, customers. Initially, the best

insertion per route is determined for each unassigned customer j ∈ MC (lines 5

to 15). In this context, the used routes are considered as well as an additional

empty route if not all vmax available vehicles are used (line 3). The best insertion

per route is determined by means of the procedure SelectIns, which is described

in greater detail below.28 Within SelectIns, the packing procedure is applied. The

possible insertions of a customer are then sorted by non-decreasing insertion costs.

Subsequently, the actual insertion procedure starts (lines 16 to 38). In each iteration,

i.e. as long as there are unassigned customers left that can be inserted into the

solution, the customer with the lowest insertion cost (greedy heuristic) or highest

regret value (regret-k heuristic), respectively, is inserted into the solution.29 After a

customer was inserted into a route v, the best insertions of the remaining unassigned

customers into route v are updated (line 31). The best insertions into the other

routes remain unchanged. Note that unlike in the general framework depicted before

(Algorithm 4.27), a customer that cannot be inserted into any route is not excluded

from MC since it may be possible to insert that customer into a route after another

customer was inserted. As mentioned before, a route that could be packed feasibly

can become infeasible when a customer is removed from it. Likewise, it may happen

that a customer can be inserted into a route with an additional customer. If the

ALNS is applied to a one-dimensional VRP, though, this aspect does not need to

be considered and the procedure depicted in Algorithm 4.27 can be applied.

The procedure SelectIns(i, v, s), which returns the best feasible insertion of a given

customer i into route v of solution s, is depicted in Algorithm 4.29. Let dLv (dBv) be

the total weight of all linehaul (backhaul) items in route v, and dLi (dBi) be the total

weight of all linehaul (backhaul) items of customer i. Analogously, volLv , vol
B
v , vol

L
i

and volBi refer to the corresponding volumes. If the insertion of customer i into

route v causes a violation of the weight constraints, no feasible insertion can be

returned (line 5). In this regard, only the total weights of the linehaul (backhaul)

items loaded at the beginning (end) of the route are considered. The development of

the weight inside the vehicle during the route cannot be considered until an insertion

position for i is determined. Analogously, the total volumes of the transported and

28 The best insertion is presented here as a set {insjt} because it may happen that a customer
cannot be inserted into a route. In this case, an empty set is returned by SelectIns.

29 The case that a customer could not be inserted into at least k routes (see above) is omitted
here for the sake of simplicity.

161

4 Hybrid solution approach

potentially inserted items are compared to the vehicle volume capacity.

Algorithm 4.29 ALNS: selection of the best insertion of a customer into a route

Input: customer i, route v, solution s
Output: best insertion Ins∗

1: procedure SelectIns
2: Ins := ∅ . set of all insertions into route v
3: Ins∗ := ∅ . set that is returned either with the best insertion

or empty if no insertion is possible
4: if dLv + dLi ≤ D and dBv + dBi ≤ D and
5: volLv + volLi ≤ L ·W ·H and volBv + volBi ≤ L ·W ·H then
6: for p = 0 to nv do
7: cost(insivp) := cost of inserting i into route v at position p
8: Ins := Ins ∪ {insivp}
9: end for

10: sort Ins by non-decreasing cost
11: while |Ins| > 0 and Ins∗ = ∅ do
12: ins := Ins(1) . element of Ins with the least cost
13: R := Rv with i inserted at position p(ins) . Rv: route v of s
14: if R is feasible w.r.t. time windows and capacities at each stop then
15: if R can be packed feasibly then . call of packing procedure
16: Ins∗ := {ins}
17: end if
18: end if
19: Ins := Ins \ {ins}
20: end while
21: end if
22: end procedure

In a next step (lines 6 to 9), the cost of all potential insertions, i.e. for all positions

in the route, are calculated. The costs are determined as mentioned above (4.29).

They are then sorted in non-decreasing order and tested successively until a feasible

insertion is found or all have been tested. As they are computationally less expensive,

feasibility concerning the time window and (weight and volume) capacity constraints

are examined first (line 14). Subsequently, the potential new route is tested for

packing feasibility (line 15). Hence, in the best case, only one insertion per route

must be examined in detail. In the worst case, all potential insertions need to be

examined.

Furthermore, a cache is employed as an additional measure for decreasing the pack-

ing effort within the hybrid algorithm. It is implemented as a two-dimensional

matrix with n rows and up to cs columns where cs represents the maximum cache

size. n represents the number of customers in an instance and cs is a predefined

parameter. Routes beginning with customer i (after the depot) are stored in row i

162

4 Hybrid solution approach

of the cache matrix. Before trying to generate a feasible packing plan, the cache, i.e.

the row with the respective starting customer, is searched. If the route is not stored

there, the packing procedure is applied. In order to facilitate the search within the

cache, the routes (represented as vectors of integers, i.e. customer locations) are

converted into hash values by means of a hash function. The size of the cache is

limited because at some point the search within the cache takes longer than the

application of the packing procedure. If a route is to be added to a row of the cache

that already contains cs elements, the oldest element in the row is removed. More-

over, routes that could be packed feasibly and that could not be packed feasibly

are stored in the cache with the respective information about their feasibility if a

construction packing heuristic is applied (DBLF or TA). If a LS-based heuristic is

applied, only routes for which a feasible packing plan could be found are stored.

Due to the randomness of the local search, it may happen that a route that could

not be packed earlier, can be packed feasibly in another iteration. In order to il-

lustrate the structure of the cache, an example is depicted in Figure 4.20 with the

route vectors (which are not stored but presented here for illustration purposes), the

corresponding hash values and information about packing feasibility of some routes

in the cache.

row col. 1 2 3 . . . cs

1

(1, 2, 3) (1, 6, 73, 20, 51) (1, 19, 3, 91)

...

(1, 36, 21, 25)
4071742284 1089482334 4119203276 129070600

feas = true feas = true feas = true feas = true

2

(2, 42) (2, 5, 92) (2, 86, 99)
2838511570 350135375 3338004356

feas = true feas = false feas = true

3

(3, 38, 2, 14, 5) (3, 35) (3, 21, 20, 5, 98) (3, 65, 77, 15)
1069202073 3986927443 2677519 491672567

feas = false feas = false feas = true feas = false

...
. . .

.
n

Figure 4.20: Structure of an exemplary cache

4.2.2.4 Acceptance

Evaluating whether a solution is accepted or not is based on the total cost of a

solution, which consists of the sum of the costs of all routes and – if necessary –

penalty values. A solution is penalized if more than vmax vehicles are used and/or if

at least one customer is missing, i.e. not assigned to any route. The usage of more

163

4 Hybrid solution approach

than vmax vehicles can occur due to the savings heuristic, which does not contain

any mean for controlling the tour number restriction. Customers can be missing in

a solution if they could not be inserted into any route in the insertion process. If

less than vmax vehicles are used, further tours can be added to a solution in order

to include a customer that cannot be inserted into any route. However, if all vmax

(or more vehicles) are used, no further tour is added and the customer is added to

the set of missing customers. By means of the penalty terms, the search is directed

towards feasible solutions.

The total cost z′ of a solution s is:

z′(s) = z(s) + penv ·max(0, vused − vmax) + penmc · nmc, (4.32)

where vused is the number of vehicles used in s, nmc is the number of missing cus-

tomers, and z is the sum of the travel distances of all vused routes. Furthermore, penv

and penmc are given parameters that penalize the excess number of vehicles and the

number of missing customers, respectively. The adherence to all other constraints

is ensured within the algorithm.

The acceptance check is embedded into a simulated annealing (SA) framework.

In order to leave local optima, the SA approach allows for the deterioration of

the current solution in the course of the search. A cooling process represents the

reduction of the probability of accepting a worse solution (for further details see,

e.g., Talbi, 2009).

After the generation of the initial solution sinit for the ALNS, the starting temper-

ature is determined in a way that a solution s with a total cost that is θ · 100 %

worse than the cost of sinit (z′(s) = (1 + θ) · z′(sinit)) is accepted with a probability

of 50 %. θ (θ > 0) is a predefined starting temperature control parameter. That is,

initially, the current temperature Temp (Temp > 0) is set to:

Temp =
−θ · z′(sinit)

ln(0.5)
. (4.33)

The temperature is “cooling down” in the course of the search causing the probability

of accepting bad solutions to decrease. A cooling rate κ (0 < κ < 1) is predefined

that is applied to the current temperature at the end of each iteration: Temp :=

Temp · κ (Ropke and Pisinger, 2006b).

164

4 Hybrid solution approach

A solution is always accepted if it is at least as good as the current solution from

which it originates (z′(snext) ≤ z′(scurr)). If it is worse than the current solution

(z′(snext) > z′(scurr)), it is accepted to be the new current solution with a probability

of exp
(
−(z′(snext)−z′(scurr))

Temp

)
.

Moreover, if a solution is not accepted due to the above mentioned criteria, it is

accepted anyway if it is feasible (with respect to the number of vehicles and missing

customers) and if the best solution found so far is not feasible. As a feasible solution

is usually also connected with lower total costs since it does not contain any penalty

costs, it is normally accepted due to being better than a current infeasible solution.

It might happen very rarely, though, that an infeasible solution is assigned with

lower costs – including penalties – than a feasible one. (This can, in particular,

be caused by the choice of penalty terms.) In this case, it should be ensured that

the algorithm can return a feasible solution. Therefore, an infeasible solution can

only become a new best solution sbest if the current sbest is also infeasible. On the

other hand, scurr can switch between feasible and infeasible solutions throughout

the search.

4.2.2.5 Heuristic selection and weight adjustment

In each iteration, a removal heuristic rem and an insertion heuristic ins are applied

to the current solution. The respective heuristics are selected based on a roulette

wheel selection principle. Each heuristic ψ is assigned with a weight Ωψ. Thus,

the selection probability of a heuristic depends on its own weight in relation to

the weights of the other heuristics. The procedure is implemented as depicted in

Algorithm 4.30.

Algorithm 4.30 ALNS: roulette wheel selection

Input: ordered set of heuristics Ψ , weights Ωψ ∀ ψ ∈ Ψ
Output: selected heuristic

1: procedure RouletteWheelSelection
2: sow :=

∑
ψ∈Ψ Ωψ . sow: sum of weights

3: r := random number from the interval [0, sow]
4: for ψ := 1 to |Ψ | do
5: r := r − Ωψ

6: if r ≤ 0 then
7: return ψ
8: end if
9: end for

10: end procedure

165

4 Hybrid solution approach

A predefined parameter seg denotes the length of a segment (number of iterations).

At the end of a segment, i.e. after seg iterations, the weights are updated based on

the performances of the heuristics in the previous segment. The performances are

recorded in connection with the acceptance checks. For that purpose, each heuristic

ψ is assigned a score (scrψ) and a counter (cntψ). Both are initialized with the

value 0 at the beginning of the search and at the beginning of each segment. cntψ

is increased by 1 whenever heuristic ψ is applied. As mentioned above, it could

happen that some removal heuristics cannot be applied due the structure of the

current solution. In this case, the counter is increased although another removal

heuristic is subsequently selected.

The scores scorerem and scoreins are increased by

• φ1, if z(snext) < z(sbest) (the operation (rem,ins) led to a new globally best

solution),

• φ2, if z(snext) < z(scurr) (the operation (rem,ins) led to a solution that is

better than the current solution),

• φ3, if z(snext) ≥ z(scurr) but the solution has not been accepted before.

φ1, φ2 and φ3 are given parameters.

The weight Ωψ of heuristic ψ (ψ ∈ Ψ) in the next segment is determined as follows:

Ωψ := Ωψ · (1− rct) + rct · scrψ
cntψ

, (4.34)

where rct (0 ≤ rct ≤ 1) is a reaction parameter controlling the impact of the

performance on the weight in the next segment.

The approach is based on Ropke and Pisinger (2006b), although it differs in some

aspects. In Ropke and Pisinger (2006b), φ2 is only added to the score if the new

solution improved the current solution and has not been accepted before. In con-

trast, improvements of the current solution are always rewarded here. Another

modification is the addition of φ3 for solutions equally good as the current solution.

4.2.2.6 Termination criteria

The following termination criteria are applied to the ALNS:

• total number of iterations, i.e. the ALNS is terminated after itermax iterations,

166

4 Hybrid solution approach

• number of iterations without improvement, i.e. the ALNS can be stopped

before itermax iterations are reached if no further improvement was generated

for iterimpr iterations after the last improvement of sbest,

• time limit, i.e. the ALNS is terminated after a given computing time tmax.

The latter is implemented as some instance characteristics lead to high computa-

tional efforts especially regarding the packing procedures.

In conclusion, the presented ALNS is based on the works of Ropke and Pisinger

(2006a,b). The following aspects of the procedure have been modified and/or ex-

tended:

• a savings heuristic is applied in order to determine an initial solution,

• a larger number of removal heuristics is implemented,

• new removal heuristics are proposed,

• the Shaw removal is adapted to the VRPBTW,

• the weight adjustment procedure is modified.

167

Chapter 5

Numerical experiments

The ALNS, the different packing heuristics and the hybrid approach are evaluated

based on extensive numerical experiments. The set-up of these experiments is out-

lined in Chapter 5.1. Subsequently, the employed instances (Chapter 5.2), the pa-

rameter settings as well as the procedure for determining these values are described

(Chapter 5.3). Chapter 5.4 contains the findings of the experiments on VRPBTW

instances. In Chapter 5.5, the results and analyses regarding 3L-VRPBTW in-

stances are presented including the evaluating of packing heuristics and of hybrid

routing and packing approaches.

5.1 Set-up of numerical experiments

The conducted experiments should serve several purposes. First, the best config-

urations of the ALNS and the hybrid algorithm are determined. Afterwards, the

performance of the ALNS and of the hybrid algorithm are assessed. In the course of

this, the influence of different instance and problem characteristics, and constraint

sets is analysed. In the following, the set-up of the experiments is described shortly.

In Chapter 5.2, the instances used for the experiments are presented. For the

tuning and the evaluation of the ALNS, 201 popular benchmark instances of var-

ious VRPBTW variants are employed. They are presented in detail in Chap-

ter 5.2.1. Furthermore, many instances have been newly generated for the seven con-

sidered problem variants (3L-VRPTW, 3L-VRPCB, 3L-VRPCBTW, 3L-VRPMB,

3L-VRPMBTW, 3L-VRPSDP, 3L-VRPSDPTW) and the respective extended prob-

lem variants. The instances are generated in a three-stage process. They are used

for evaluating the packing heuristics and the hybrid algorithm and are described in

Chapter 5.2.2. Finally, CLP instances are used for comparing the packing heuristics

to a state-of-the-art CLP algorithm. They are presented shortly in Chapter 5.2.3.

The tuning of the ALNS contains the determination of the most suitable set of

parameter values and removal heuristics (Chapter 5.3). A set of 50 test instances of

different VRPBTW problem variants is used for this purpose.

Subsequently, the performance of the ALNS is evaluated using all 201 VRPBTW in-

168

5 Numerical experiments

stances. The results of these experiments are presented and analysed in Chapter 5.4.

The obtained TTDs are compared to the best known solutions and (if available) to

the TTDs obtained by the ALNS of Ropke and Pisinger (2006a).

Chapter 5.5 contains the presentations and analyses of the experiments with the

3L-VRPBTW and CLP instances. First, the best packing construction heuristic of

those described in Chapter 4.1 is determined by applying them to randomly gen-

erated routes and integrating them into a hybrid savings heuristic (Chapter 5.5.1).

Three alternative packing heuristics are employed in the further experiments: the

best construction heuristic, the best construction heuristic integrated into the LS

framework and the LS with the open space heuristic of Zhang et al. (2015).

Following this, the hybrid algorithms combining the ALNS and the three (alterna-

tive) packing heuristics are applied to the 3L-VRPBTW instances (Chapter 5.5.2).

These experiments serve to compare the variants of the hybrid algorithm and the

different loading approaches. Furthermore, the impact of different instance charac-

teristics (e.g. item size) and problem characteristics (e.g. time windows) is analysed.

In the course of these experiments, the constraint set C1 is applied. The constraint

sets C2-C5 are applied in additional experiments (Chapter 5.5.3). As before, pack-

ing heuristics (considering these constraint sets) are applied to randomly generated

routes, and the hybrid savings heuristic and the hybrid ALNS heuristics are em-

ployed for solving 3L-VRPBTW instances. The differences in the performance (with

respect to solution quality and computing time) between the application of C1 and

the sets C2-C5 are analysed.

The algorithms are implemented in C++. The testing of the packing heuristics

(Chapter 5.5.1) were performed on a 3.07 GHz and 4 GB RAM computer and the

remaining computations with the ALNS and the hybrid algorithm were executed on

a Haswell system with Xeon processors with up to 3.2 GHz and 16 GB RAM per

core.30

5.2 Instances

5.2.1 VRPBTW instances

201 well-known benchmark instances are used in order to compare the results of

the ALNS to those from the literature and to evaluate the solution approach. An

30 See https://wasd.urz.uni-magdeburg.de/jschulen/urz_hpc/t100/ for more details.

169

https://wasd.urz.uni-magdeburg.de/jschulen/urz_hpc/t100/

5 Numerical experiments

overview is given in Table 5.1.

Table 5.1: Testing instances for the VRPBTW

reference abbrev. problem characteristics #

Solomon (1987) Sol87 VRPTW n: 100 56
Goetschalckx and Jacobs-
Blecha (1989)

GJB89 VRPCB n: 25-150;
%LH: 80, 67, 50

62

Toth and Vigo (1996) TV96 VRPCB n: 21-100;
%LH: 80, 67, 50

33

Gélinas et al. (1995) GDDS95 VRPCBTW n: 100;
%LH: 90, 70, 50

15

Salhi and Nagy (1999) SN99a VRPMB n: 50-199;
%LH: 90, 75, 50

21

Salhi and Nagy (1999) SN99b VRPSDP n: 50-199;
%LH: see below

14

= number of instances, %LH = share of linehaul customers (in %), abbrev. = abbre-
viation, n = number of customers per instance

The instances introduced by Solomon (1987) (Sol87) are used for the VRPTW. 56

instances are available with 100 customers each and either wide or narrow time win-

dows. The customer locations are arranged randomly, clustered or mixed (partly

clustered, partly random). In the literature regarding the VRPTW, the (first) op-

timization objective is often the minimization of the number of used vehicles (see

Chapter 3.1.3). As the optimization criterion employed in this thesis is the mini-

mization of the TTD, the known minimum TTD solutions of the Sol87 instances

are used as benchmarks. Considering this criterion, optimality has been proven for

55 out of the 56 instances.

One set of instances used for the VRPCB, is the set proposed by Goetschalckx

and Jacobs-Blecha (1989) (GJB89). It consists of 15 test problems with 25 to

150 randomly allocated customer locations, which include 80, 67 or 50 % linehaul

customers. For each problem, the number of vehicles and the vehicle capacity is

varied so that three to six variants are generated for each problem. All in all, 62

instances are available.

A second set of VRPCB instances is presented by Toth and Vigo (1996) (TV96)

consisting of 33 instances that are based on well-known CVRP instances and include

80, 67 or 50 % linehaul customers. VRPCB instances are generated by converting

every fifth, third or second customer, respectively, of the CVRP instance into a

backhaul customer. Optimal solutions for some instances are provided, for example,

by Toth and Vigo (1997). However, in their work and also in some others it is

assumed that all vehicles must be used. Hence, these solutions are not necessarily

170

5 Numerical experiments

optimal for the problem investigated here where a limited number of vehicles can

be used. The results of the ALNS presented in this thesis are exclusively compared

to other solutions where a maximum available number of vehicles is considered.

Furthermore, the VRPCBTW instances of Gélinas et al. (1995) (GDDS95) are uti-

lized. They are based on five instances of Solomon (1987) with randomly allocated

customer locations and narrow time windows. 10, 30 or 50 % of the customers are

randomly chosen to be backhaul customers. Thus, 15 instances are available.

Instances of Salhi and Nagy (1999) are used for the VRPMB (SN99a) and the

VRPSDP (SN99b). They are based on seven popular CVRP instances. The VRPMB

instances from set SN99a are created by converting every second, fourth or tenth

customer into a backhaul customer resulting in 21 VRPMB instances.31

In order to obtain VRPSDP instances, the seven CVRP instances mentioned above

are used and Salhi and Nagy (1999) split each customer’s demand. Let, di be the

demand of customer i, and (cxi, cyi) be the coordinates of the location of i. A ratio

ri is determined for each customer with

ri = min

(
cxi
cyi

,
cyi
cxi

)
. (5.1)

The linehaul demand of a customer i equals ri · di and the backhaul demand equals

(1− ri) ·di. Further seven instances are generated by exchanging the pickup and de-

mand quantities for every second customer. Consequently, 14 instances are available

in the set SN99b.

In the following, the described instances are referred to as (one-dimensional) VRPBTW

instances. Analogously, the corresponding optimization problems are referred to as

(one-dimensional) VRPBTWs.

5.2.2 3L-VRPBTW instances

Since there are no benchmark instances available that cover all of the aspects of the

problems considered here – i.e. three-dimensional loading constraints, time windows,

backhauls – new instances are generated.32 In doing so, some traits of well-known

benchmark instances are adopted.

31 Additional 21 instances contain drop times and maximum distance constraints, but regarding
the customer coordinates and demands they are duplicates of the former instances. These
additional instance are omitted here since the maximum distance constraint is not considered.

32 The 3L-VRPBTW instances of Reil et al. (2017) were published too late to be used for this
thesis.

171

5 Numerical experiments

Obtaining the instances for the extended 3L-VRPBTW variants is a three-stage

process. The aim of this process is to obtain instances that differ significantly

with regard to various characteristics. Yet, they are to be generated in a way that

the instances of different extended problem variants have certain characteristics in

common. That way, analyses are possible that serve to compare the problem features

and their influence on the solutions and on the performance of the hybrid algorithm.

In the course of this process, different instance types are distinguished, which are

explained in greater detail below. Each instance type corresponds to a stage of the

generation process. One of these types are so-called basic instances. The generation

of the characteristics of a basic instance is described in Chapter 5.2.2.1. In Chap-

ter 5.2.2.2, the connection of the basic instances to the remaining instance types is

presented.

5.2.2.1 Generation of basic instances

A basic instance is defined by the following traits: the number of customer locations

and their distribution, time windows, the number of item types and their charac-

teristics, the allocation of items to the customers, the separation of customers and

items into linehauls and backhauls and the loading space dimensions and capacities

of the vehicles.

Number and distribution of customers

Instances are generated with 20, 60 and 100 customers. Their distribution is based

on (a subset of) the instances of Solomon (1987) with a random allocation of the

customer locations. The depot is placed at a central position at the coordinates

(35, 35) and the customers are randomly (uniformly) distributed in a Cartesian

coordinate system from 0 to 70 on the abscissa and 0 to 80 on the ordinate. The

coordinates from the Sol87 set with randomly allocated customer locations is used

for one basic instance for the 3L-VRPBTW. The coordinates for the remaining basic

instances are generated independently.

Generation of time windows

The structures of the time windows resemble those of the instances of Solomon

(1987) and basic instances with either wide or narrow time windows are created.

The depot ready time is set to RT0 = 0 for both narrow and wide time windows,

172

5 Numerical experiments

and the due date to DD0 = 230 for basic instances with narrow time windows

and DD0 = 1000 for basic instances with wide time windows. Not necessarily all

customers are assigned a time window. Each basic instance has a different time

window density defining the proportion of customers with time windows. The time

window density is randomly chosen from the set {25 %, 50 %, 75 %, 100 %}. The

respective customers are determined randomly. If a customer i does not have a time

window, a fictional time window (0, DD0 − ci0 − STi) is created, where STi is the

service time at customer location i and ci0 is the required travel time between i and

the depot. For each basic instance, a service time of 10 time units is assumed for

each customer location and of 0 time units for the depot. If a customer i is assigned

a time window, the centre of the time window is chosen randomly and uniformly

distributed in the interval (RT0 + c0i, DD0 − ci0 − STi). The time window width is

generated as a normally distributed random number with the mean µ and standard

deviation σ listed below (Table 5.2). The values for the parameters µ and σ are

adopted from Homberger (2000).

Generation of item types and allocation of items

As opposed to the instances of Gendreau et al. (2006), no individual items are

generated but different item types in order to assess the impact of various degrees

of heterogeneity. Basic instances are generated with three, ten or 100 different item

types. The dimensions of the item types are generated similarly to the procedure

described by Gendreau et al. (2006).

In the following, let the lengths, weights and volumes be given in length units

(LU), weight units (WU), and volume units (VU), respectively. Gendreau et al.

(2006) generate the length of an item uniformly randomly distributed in the inter-

val [0.2L, 0.6L]. Accordingly, the width and height are chosen from the respective

intervals [0.2W, 0.6W] and [0.2H, 0.6H]. However, since for the 3L-VRPMB(TW)

and 3L-VRPSDP(TW) the loading approach with the separated loading spaces of

height 0.5H is applied, the items must not be higher than 0.5H. Thus, the orig-

inal intervals for the length and width are adopted from Gendreau et al. (2006),

i.e. the length lτ of an item type τ is uniformly randomly chosen from the interval

[0.2L, 0.6L] and its width wτ from the interval [0.2W, 0.6W]. The height hτ is ran-

domly chosen from [0.2H, 0.5H]. The respective items are hereinafter referred to as

large items. Their volumes amount to 0.8 % to 18 % of the loading space volume.

173

5 Numerical experiments

Furthermore, it shall be tested how the performance of the packing heuristics and the

hybrid algorithm is affected by the item size. Therefore, basic instances with small

item types are additionally generated. These item types are randomly assigned

a length (width, height) of [0.1L, 0.3L] ([0.1W, 0.3W], [0.1H, 0.3H]). Thus, their

volumes amount to 0.1 % to 2.7 % of the loading space volume.

Let volτ = lτ · wτ · hτ be the volume of item type τ . The weight dτ of item type

τ is determined randomly and depending on the item volume. It is a uniformly

distributed value from the interval
[
0.001

[
WU
V U

]
· volτ [V U], 0.01

[
WU
V U

]
· volτ [V U]

]
.

20 %, but at least one, of the item types are determined to be fragile. The load

bearing strength of an item type is generated in the following way: Initially, the

minimum and maximum weight per area unit (wpamin, wpamax) of all item types

is determined (wpamin = minτ∈T
dτ

lτ ·wτ , where T is the set of all item types; wpamax

analogously). The minimum value serves to ensure that each item type can be

carried by at least one item type (even if it is the respective type itself). The load

bearing strength pτ of an item type τ is then determined as pτ = r ·wpamax, where r

is a continuous random number that is uniformly randomly chosen from the interval

[1, 4] if fτ = 0 (not fragile) and [0.5, 1] if fτ = 1 (fragile). The load bearing strength

of each item type must be greater than or equal to wpamin.

The total number of items m is a fixed instance parameter. Instances are generated

with either 200 or 400 items. Each customer is assigned a number of items selected

randomly from a predefined interval in a way that the total number of demanded

items adds up to the given total number of items. The intervals are as follows:

• 5 to 15 items per customer for n = 20 and m = 200,

• 10 to 30 items per customer for n = 20 and m = 400,

• 2 to 5 items per customer for n = 60 and m = 200,

• 3 to 10 items per customer for n = 60 and m = 400,

• 1 to 3 items per customer for n = 100 and m = 200,

• 2 to 6 items per customer for n = 100 and m = 400.

Each item of a customer is randomly assigned to an item type and it adopts the

specifications of the respective type.

174

5 Numerical experiments

Linehaul shares

Depending on the problem variant, either the customers or the items must be sub-

divided into linehaul and backhaul customers or items, respectively. As a basic

instance can be transferred to instances for all problem variants, it contains the

division of both customers and items into linehauls and backhauls. The linehaul

share is a prescribed parameter. Basic instances with linehaul shares of 50 % and

80 % are generated. That is, the first 50 % or 80 %, respectively, of the customers

are determined to be linehaul customers. The remaining customers are backhaul

customers. Moreover, 50 % or 80 % of the items of each customer are randomly

determined to be linehaul items. The remaining items are backhaul items.

Generation of the vehicle fleet

The dimensions of the loading space are set to L = 60LU,W = 25LU and H =

30LU and the weight capacity to D = 200WU for all instances. A vertical stability

parameter of V SP = 0.75 and a maximum reach of 5 LU is assumed.

In order to guarantee that at least one feasible solution exists for each instance, it is

ensured that all items of every single customer fit into the loading space by applying

a packing construction heuristic.

Instance classes

The described procedure aims at acquiring classes of basic instances that differ

noticeably from each other. A basic instance class is defined by the number of

customers, the total number of items, the item size, the number of item types,

the linehaul share and the time window width. The settings of these features are

presented in Table 5.2.

No basic instances are generated for n = 20 and large items. Due to the relatively

large number of items per customer, the items of one customer alone would fill

up almost the whole loading space. Hence, no sensible routing problem can be

constructed. Moreover, in the case ofm = 400, every customer is assigned on average

20 items. However, these items would not fit into the loading space unless they

would be rather small, i.e. all dimensions would be close to 0.2 times the respective

dimension of the loading space. This would defeat the purpose of investigating large

items.

Combining the six instance characteristics and settings (with the mentioned ex-

175

5 Numerical experiments

ception), 120 different instance classes are obtained. For each instance class, five

different basic instances are generated, i.e. 600 in total.

Table 5.2: Instance characteristics

instance parameter characteristics and values

number of customers (n) 20, 60, 100

total number of items (m) 200, 400
item size large (intervals for length/width/height: [0.2L, 0.6L]/

[0.2W, 0.6W]/ [0.2H, 0.5H]) (not for n = 20),
small (intervals for length/width/height: [0.1L, 0.3L]/
[0.1W, 0.3W]/ [0.1H, 0.3H])

number of different item types 3, 10, 100

linehaul share 50 %, 80 %
time windows wide (µ = 240, σ = 60),

narrow (µ = 60, σ = 10)

5.2.2.2 Instance types

Basic instances can be used to derive problem instances for the specific extended

problem variants. As mentioned above, this is a three-stage process. On the first

stage, the basic instances are created. Secondly, so-called core instances are gen-

erated. A core instance contains the necessary information for a problem variant

(i.e. backhaul and time window variant). Finally, instances contain all necessary

problem information in order to be solved, i.e. they correspond to a given extended

problem variant.

That is, seven core instances are derived from each basic instance. The number

and distribution of the customers, the item properties and their allocation to the

customers and the vehicle characteristics are adopted from the respective basic in-

stance. Furthermore, if a core instance corresponds to a problem variant with time

windows, the time windows of the basic instance are adopted. Otherwise, they are

disregarded. In addition, the linehaul-backhaul-separation needs to be extracted for

the respective problem variant. That is, in a core instance for the 3L-VRPTW,

both the separation of the customers and of the items is disregarded (all customers

are linehaul customers and demand linehaul items only). Core instances for the

3L-VRPCB(TW) or 3L-VRPMB(TW) adopt the separation of the customers into

linehaul and backhaul customers from the basic instance, but disregard the separa-

tion of items. Analogously, the separation of items is adopted and the separation of

the customers is disregarded if a core instance belongs to the 3L-VRPSDP(TW).

176

5 Numerical experiments

Furthermore, the number of available vehicles is determined on the core instance

level. For this purpose, each core instance is additionally provided with a certain

loading approach and a constraint set. For the 3L-VRPTW and 3L-VRPCB(TW),

the rear loading approach is considered. The LSP approach is taken into account

for the 3L-VRPMB(TW) and 3L-VRPSDP(TW). For all problem variants, the con-

straint set C1 is regarded. The resulting instances are solved using a hybrid sav-

ings algorithm in which TA-Walls is employed as the packing heuristic. Pre-tests

have shown that this heuristic performs relatively poorly compared to other packing

heuristics (see below, Chapter 5.5.1). Therefore, obtaining feasible solutions with

TA-Walls should guarantee that better heuristics are also able to generate feasi-

ble solutions. The numbers of available vehicles are determined by the numbers

of tours formed by this procedure. Core instances with 400 items are neglected for

the variants with mixed backhauls (3L-VRPMB, 3L-VRPMBTW) and simultaneous

delivery and pickup (3L-VRPSDP, 3L-VRPSDPTW) as these problem variants are

more complicated than the other ones (due to the simultaneous transport of linehaul

and backhaul items).

In the final step, instances for the extended problem variants are derived from the

core instances. The instances adopt the number and distribution of the customers,

time windows (if applicable), the item properties and their allocation to the cus-

tomers, the separation of customers or items (if applicable), and the size and char-

acteristics of the vehicle fleet from the core instances. In addition, the loading

approach and constraint set is determined for each instance. Based on the extended

problem variants defined above (see Chapter 2.1, Table 2.2), ten instances are de-

rived from each core instance.

An overview of this procedure is presented in Table 5.3.

177

5
N

u
m

erical
ex

p
erim

en
ts

Table 5.3: Overview of instance types

instance characteristics

instance type problem variant
cust. (no./
distr.)

time
windows

items
LH/BH
(cust.)

LH/BH
(items)

vehicles
(dim./
capa)

vehicles
(no.)

loading
approach

constraint
set

Σ

basic
instance: for
all problem
variants

3L-VRPBTW def. in BI def. in BI def. in BI def. in BI def. in BI def. in BI - - - 600 600

core instance:
for a problem
variant

3L-VRPTW from BI from BI from BI n.a. n.a. from BI def. in CI - - 600

3,000

3L-VRPCB from BI n.a. from BI from BI n.a. from BI def. in CI - - 600
3L-VRPCBTW from BI from BI from BI from BI n.a. from BI def. in CI - - 600
3L-VRPMB from BI n.a. from BI from BI n.a. from BI def. in CI - - 300*
3L-VRPMBTW from BI from BI from BI from BI n.a. from BI def. in CI - - 300*
3L-VRPSDP from BI n.a. from BI n.a. from BI from BI def. in CI - - 300*
3L-VRPSDPTW from BI from BI from BI n.a. from BI from BI def. in CI - - 300*

instance: for
an extended
problem variant
(examples)

(3L-VRPTW,RL,C1) from CI from CI from CI from CI from CI from CI from CI def. in I def. in I 600

30,000

(3L-VRPCB,SL,C2) from CI from CI from CI from CI from CI from CI from CI def. in I def. in I 600
(3L-VRPMBTW,SL,C3) from CI from CI from CI from CI from CI from CI from CI def. in I def. in I 300*
(3L-VRPSDP,LSP,C5) from CI from CI from CI from CI from CI from CI from CI def. in I def. in I 300*
. .

-: not defined, #: quantity, *: reduced number of core instances due to neglecting those with 400 items, BI: basic instance, CI: core instance, cust. (no./ distr.):
number and distribution of customers, def. in ...: defined in ..., I: instance, LH/BH: linehaul/ backhaul separation (with respect to...), n.a.: not applied, vehicles
(dim./ capa.): dimensions and capacity of vehicles, vehicles (no.): number of vehicles, Σ: sum

178

5 Numerical experiments

5.2.3 CLP instances

The CLP instances proposed by Bischoff and Ratcliff (1995) and Davies and Bischoff

(1999) are utilized for testing the packing heuristics. These instances consist of 15

sets with 100 instances each. The sets differ by the heterogeneity of the items,

i.e. they have different numbers of item types ranging from three to 100. An

orientation constraint with respect to height is prescribed, that is, only two or four

spatial orientations are permitted for some items of an instance. Furthermore, it is

assumed that all items must be fully supported (V SP = 1).

5.3 Parameter settings and configurations of the hybrid al-

gorithm

A set of 50 benchmark instances of all VRPBTW variants is used for determining

the best parameter values for the ALNS. Based on the settings of Ropke and Pisinger

(2006b), several values for each parameter are tested by solving each test instance

five times (due to random components) and keeping the remaining parameter values

fixed. The only parameters referring to the packing procedures are max enum and

cs. The value proposed by Zhang et al. (2015) for max enum is adopted. The final

settings are listed in Table 5.4.

Table 5.4: Parameter settings for the hybrid solution approach

parameter description value

itermax maximum number of iterations 25,000
iterimpr maximum number of iterations without improvement 8,000
tmax time limit [min] 15 for n = 20,

60 for n ≥ 60
nomin, nomax interval for number of removed customers 0.04n, 0.4n
φ1, φ2, φ3 weight adjustment parameters 50, 10, 5
ω1, ω2, ω3, ω4 Shaw weights 6, 3, 2, 6
ρ determinism parameter 6
rct reaction factor 0.8
seg segment length 100
η noise parameter 0.025
κ cooling rate 0.99975
θ starting temperature control parameter 5 %
penv penalty term for violation of the tour number restric-

tion (cmax = max(i,j)∈E cij)
10 · cmax

penmc penalty term for missing customers 1 · cmax
max enum maximum number of items in a route up to which all

item sequence permutations are packed
8

cs cache size 500

179

5 Numerical experiments

In addition, the test instances are used for determining the most suitable set of

removal heuristics. Different combinations of the heuristics described in Chap-

ter 4.2.2.1 are tested and the results are compared regarding the obtained average

TTDs and the numbers of best solutions found among all tested sets of removal

heuristics. The detailed results are provided in Appendix A. The TTDs do not

differ noticeably among the various combinations. As a consequence, the set with

the most best solutions is selected. It consists of the removal heuristics of Ropke

and Pisinger (2006a,b):

• Shaw removal,

• random removal,

• worst removal,

• cluster removal,

• neighbour graph removal,

and some of the newly developed ones:

• overlap removal,

• inner route removal,

• intersection removal,

• route pair removal.

This set achieves one of the lowest values of average deviation from the best known

solutions (BKS). Further conclusions of these experiments are that using multiple

removal heuristics is beneficial to the ALNS performance. However, the ALNS is

also “saturated” with a few heuristics. A very large number of heuristics does not

contribute more to the solution quality than a comparatively low number of about

ten heuristics. More heuristics neither contribute significantly to the solution quality

nor deteriorate it.

Moreover, the weight development of the removal heuristics was recorded in pre-

tests. That way, some heuristics could be identified as allegedly good heuristics due

to having high weights throughout and also at the end of the search. Therefore,

one of the heuristic sets contains only these good heuristics (random, worst, neigh-

bourhood graph, historical knowledge, average distance, and intersection removal).

Interestingly, this set of removal heuristics leads to one of the worst results – both

in terms of average deviations from the BKS and number of best solutions found.

One can conclude that the ALNS should be equipped with a well balanced set of

removal heuristics, which is able to react to a variety of instance characteristics.

180

5 Numerical experiments

5.4 Results for VRPBTW instances

In order to evaluate the quality of the routing algorithm, 201 instances of different

VRPBTW variants are used. Each instance is solved five times by the ALNS. The

results are summarized in Table 5.5. It contains the average deviations of the best

(ALNS best) and average (ALNS avg) TTDs obtained by the ALNS from the TTDs

of the best known solutions (∅dev BKS). In addition, average deviations of the

TTDs of the best ALNS solutions from those of the best solutions reported by

Ropke and Pisinger (2006a) (∅dev RP06) are stated if available. The number of

instance for which new best solutions are obtained by the ALNS are given (new

best) as well as the average computing times (∅ct) per instance and run in seconds.

Detailed results for all instance sets are provided in Appendix B.

Here and in the following, deviations from certain benchmarks (here: BKS from the

literature) are presented. The deviation dev(p) of the TTD obtained by a procedure

p from the benchmark BM is determined as:

dev(p) =
TTD(p)− TTD(BM)

TTD(BM)
. (5.2)

Thus, negative values imply improvements compared to the benchmark.

Table 5.5: Average deviations of TTDs provided by the ALNS from TTDs of benchmark
solutions, numbers of new best solutions and average computing times per instance for
VRPBTW instance sets

problem set
∅dev BKS[%] ∅dev RP06[%] new

∅ct[s]ALNS best ALNS avg ALNS best best

VRPTW Sol87 0.50 0.68 − 1 31.90
VRPCB GJB89 0.08 0.27 −0.37 10 26.38
VRPCB TV97 0.76 0.97 0.66 1 9.79
VRPCBTW GDDS95 0.72 0.81 − 6 55.67
VRPMB SN99a 0.14 0.36 0.07 1 65.08
VRPSDP SN99b −0.84 −0.34 −4.40 7 59.85

total 0.30 0.51 −0.47 26 33.75

∅: average, ct: computing time per instance and run, dev BKS: deviation from TTDs of best
known solution, dev RP06: deviation from best TTDs of Ropke and Pisinger (2006a), new
best: number of instances with new best solutions

The results verify the competitiveness of the ALNS. The TTDs of the best solutions

per instance deviate on average only 0.3 % from the TTDs of the BKS. Very

good results are obtained in particular for the instance set SN99b with an average

deviation of the best solutions from the BKS of −0.84 %. In total, 26 new best

181

5 Numerical experiments

solutions are obtained. As mentioned before, in all cases the optimization criterion

is the minimization of the TTD (cf. Chapter 2). For the VRP variants including

time windows, the minimization of the number of vehicles is often targeted in the

literature. The BKS used as references here are the best solutions regarding the

TTD, though. Almost all instances of Solomon (1987) had previously been solved

to optimality. Only one was – to the best of the author’s knowledge – not solved

optimally yet. The ALNS achieved to improve the best known solution for that

instance. For the remaining instances, the ALNS solutions are very close to the

optimal solutions with an average deviation of the TTDs of the best solutions from

the TTDs of the BKS of 0.56 %33.

The results are generated within reasonable computing times. The overall average

computing times amount to about 34 seconds. The computing times depend heavily

on the number of customers. Instances with up to 30 customers can be solved on

average within less than one second and on average less than 30 seconds are needed

for instances with less than 100 customers. The maximum time of about 295 seconds

is required by an instance with 199 customers.

Several components of the original procedure have been modified and, thus, con-

tributed to the improved performance of the ALNS: a larger number of removal

heuristics, construction of the initial solution by means of the savings heuristic,

Shaw removal heuristic adapted to the VRPBTW and the weight adjustment proce-

dure. Moreover, most parameters have been tuned similarly to Ropke and Pisinger

(2006a,b). However, the value chosen for the parameter r (reaction factor) is signif-

icantly higher (here: r = 0.8; Ropke and Pisinger (2006a,b): r = 0.1). That is, the

algorithm reacts stronger to the performances of the individual heuristics.

5.5 Results for 3L-VRPBTW and CLP instances

In this section, packing heuristics, loading approaches and hybrid solution ap-

proaches are evaluated. First, the experiments regarding the packing heuristics

are analysed in Chapter 5.5.1. These experiments serve to identify the most suit-

able packing construction heuristic, which is then used for further experiments and

additionally integrated into the local search-framework. Finally, three alternative

packing procedures are combined with the ALNS: the construction heuristic selected

33 This value is not included in the table.

182

5 Numerical experiments

before, the local search (LS) with the selected construction heuristic and the LS with

the open space heuristic of Zhang et al. (2015). The results of the hybrid approaches

are analysed in Chapter 5.5.2.

5.5.1 Evaluation of packing heuristics

The following packing construction heuristics are evaluated: DBLF, DBLF+, DBLF-

Comb, TA-Walls, TA-NoWalls, TA+-Walls and TA+-NoWalls (see Chapter 4.1.2 for

details). In addition, the LS-based approach of Zhang et al. (2015) and the LS

combined with the best construction heuristic, determined in the course of the ex-

periments, are regarded. First, the heuristics are applied in order to generate packing

plans for randomly generated routes. Furthermore, the packing heuristics are inte-

grated into the savings algorithm and the resulting hybrid approaches are utilized in

order to solve 3L-VRPBTW instances. The obtained solutions are compared with

respect to the TTDs. Based on both experiments, the best packing construction

heuristic is selected.

5.5.1.1 Randomly generated routes

More than 35,000 routes have been generated randomly using the instances of the

extended problem variant (3L-VRPTW, RL, C1)34 presented in Chapter 5.2.2. The

routes differ in the required volume utilization of the transported items (20-90 %

for instances with small items, 10-60 % for instances with large items). Routing

constraints (including time window constraints) are not regarded for the generation

of the routes. The packing constraint set C1 based on Gendreau et al. (2006) and the

rear loading approach are applied. In the following, it is analysed how many routes

could be packed feasibly by the packing heuristics. Table 5.6 shows the results of the

experiments. The table contains the shares of routes that are packed feasibly, i.e.

for which a feasible packing plan is found, by applying the respective construction

heuristics. The best results among the heuristics (the highest shares of feasibly

packed routes) are bold-faced.

For both large and small item instances, the best results are obtained by the DBLF

heuristic (small items: 48.6 % of the routes are feasibly packed, large items: 61.4 %).

TA-Walls also achieves good results for large items (57.9 % of the routes are feasibly

34 See Chapter 2.1.2.5 for the introduction of this notation and the used abbreviations.

183

5 Numerical experiments

packed) and it is even the dominating heuristic for volume utilizations of 20-30 %.

However, all of the TA heuristics perform comparatively poorly for small items

(TA-Walls/ TA+-Walls: 13.8 %, TA-NoWalls/ TA+-NoWalls: 21.7 %). Interest-

ingly, the variants TA-/TA+-Walls, which take into account the container walls,

perform (slightly) better than the variants TA-/TA+-NoWalls in the case of large

items. For small items, though, TA-/TA+-NoWalls lead to considerably better re-

sults. Furthermore, the extension regarding the placement tests (see Chapter 4.1)

does not have any influence on the results of the TA heuristics. For large items,

the performance of DBLF+ and DBLF-Comb is only slightly worse than DBLF. For

small items, however, they perform considerably worse than DBLF, but in any case

better than the TA heuristics.

Table 5.6: Comparison of packing construction heuristics; shares of feasibly packed random
routes

heuristic share of feasibly packed routes [%]
vol [%] 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 total

small items
DBLF 99.8 97.9 78.8 48.8 26.9 10.5 0.8 48.6
DBLF+ 89.3 73.8 50.1 30.9 19.1 6.9 0.4 35.0
DBLF-Comb 89.3 73.8 50.1 30.9 19.1 6.9 0.4 35.0
TA-Walls 50.2 31.6 18.2 9.9 3.5 1.0 0.1 13.8
TA-NoWalls 72.2 49.6 29.0 16.7 6.8 1.5 0.1 21.7
TA+-Walls 50.2 31.6 18.2 9.9 3.5 1.0 0.1 13.8
TA+-NoWalls 72.2 49.6 29.0 16.7 6.8 1.5 0.1 21.7

large items
DBLF 98.6 88.5 66.9 37.6 15.4 61.4
DBLF+ 98.0 85.5 61.5 32.5 14.0 58.3
DBLF-Comb 98.0 85.5 61.5 32.5 14.0 58.3
TA-Walls 98.6 88.8 61.8 28.8 11.3 57.9
TA-NoWalls 97.8 83.3 57.2 28.0 10.3 55.3
TA+-Walls 98.6 88.8 61.8 28.8 11.3 57.9
TA+-NoWalls 97.8 83.3 57.2 28.0 10.3 55.3

vol: volume utilization of the loading space (utilized by transported items).
Maximum shares per column are bold-faced. Empty cells indicate that no routes are consid-
ered for the respective volume utilization interval.

The plain DBLF heuristic performs best in the experiments with randomly generated

routes. Thus, it is selected for further experiments and integrated into the LS

framework. In the following, the latter heuristic will also be referred to as LS DBLF

(and as LS DBLFSL in the case of the modified variant for the side loading approach).

For comparison, the heuristics LS DBLF and LS OS are also applied to the randomly

generated routes. Their results are presented in Table 5.7 (together with the results

184

5 Numerical experiments

obtained by DBLF as comparison). For all levels of utilization and for both large and

small items, the LS OS heuristic achieves the best results (small items: 60.9 %, large

items: 83.9 %) and both LS heuristics clearly outperform the construction heuristic.

The differences are greater when considering large items. Here, the differences in the

shares of feasibly packed routes between DBLF and LS DBLF (LS OS) amount to

16 (22.5) percentage points. In the case of small items, they amount to 10.1 (12.3)

percentage points.

Table 5.7: Comparison of packing heuristics (DBLF, LS DBLF, LS OS); shares of feasibly
packed random routes

heuristic share of feasibly packed routes [%]
vol [%] 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 total

small items
DBLF 99.8 97.9 78.8 48.8 26.9 10.5 0.8 48.6
LS DBLF 99.9 99.9 93.7 68.0 41.1 22.3 3.8 58.7
LS OS 100.0 100.0 98.4 74.0 43.6 23.0 4.0 60.9

large items
DBLF 98.6 88.5 66.9 37.6 15.4 61.4
LS DBLF 100.0 98.5 91.0 64.3 33.2 77.4
LS OS 100.0 99.6 97.6 79.8 42.3 83.9

vol: volume utilization of the loading space by transported items.
Maximum shares per column are bold-faced. Empty cells indicate that no routes are
considered for the respective volume utilization interval.

5.5.1.2 Hybrid savings heuristic

In the following, the results of the experiments of the savings heuristic combined

with different (alternative) packing heuristics are presented and examined. For

this purpose, abbreviations are utilized in order to refer to the different hybrid

approaches. For example, Sav×DBLF refers to the savings heuristic combined with

the DBLF heuristic. The remaining approaches are abbreviated analogously.

For these experiments, the seven 3L-VRPBTW variants presented above are consid-

ered. The variants without backhauls and with clustered backhauls are only solved

using the standard rear loading approach, while the LSP is applied to the problems

with mixed backhauls and simultaneous delivery and pickup. That is, the follow-

ing extended problem variants are considered: (3L-VRPTW/3L-VRPCB(TW), RL,

C1), (3L-VRPMB(TW)/3L-VRPSDP(TW), LSP, C1). Each instance of the consid-

ered extended problem variants is solved once by each variant of the hybrid savings

heuristic.

185

5 Numerical experiments

The results are summarized in Table 5.8. The objective function values obtained by

Sav×DBLF for each problem variant serve as the benchmarks here. In Table 5.8,

the average deviations from the benchmarks are presented (∅dev TTD BM), over

all instances and subdivided by the item sizes. In addition, the average computing

times per instance (in seconds) are given (∅ct).

Among the approaches with the construction heuristics, the best solutions are ob-

tained by Sav×DBLF. Regarding the TA heuristics, the algorithm variants including

TA+-/TA-Walls outperform the algorithm variants with TA+-/TA-NoWalls for large

items and vice versa for small items. The average deviations from the benchmarks

amount to 1.79 % (TA+-/TA-Walls) and 2.37 (TA+-/TA-NoWalls) if the items are

large. If they are small, they amount to 4.87 % (TA+-/TA-Walls) and 1.83 %

(TA+-/TA-NoWalls). Moreover, the best results over all heuristics are achieved

by Sav×LS DBLF (average benchmark deviation of −1.34 %) and Sav×LS OS

(−1.99 %). In particular in the case of large items, the Sav×LS OS heuristic is

clearly dominating.

Table 5.8: Comparison of savings heuristics combined with different packing heuristics;
average deviations of benchmark (Sav×DBLF) TTDs and average computing times

savings heuristic

∅dev TTD BM [%] ∅ct[s]

pack
small large

total
small large

total
items items items items

DBLF 0.00 0.00 0.00 0.03 0.01 0.02
DBLF+ 0.56 1.16 0.70 0.06 0.01 0.05
DBLF-Comb 0.56 1.16 0.70 0.03 0.01 0.02
TA-Walls 4.87 1.79 4.15 0.05 0.01 0.04
TA-NoWalls 1.83 2.37 1.95 0.04 0.01 0.04
TA+-Walls 4.87 1.79 4.15 0.10 0.02 0.08
TA+-NoWalls 1.83 2.37 1.95 0.11 0.02 0.09
LS DBLF −0.55 −3.95 −1.34 0.77 0.04 0.60
LS OS −0.55 −6.72 −1.99 2.12 0.18 1.67

∅: average, ct: computing time per instance, dev TTD BM: deviation
from benchmark TTDs, pack: integrated packing heuristic.
Minimum average deviations per column are bold-faced.

Computing times are also given here and can provide first insights into the com-

putational efforts of the different packing heuristics. They are negligibly small for

the savings heuristic combined with construction heuristics (on average less than

0.1 seconds). It can be observed, though, that the extension of the placement test

leads to an increase in computing times and that the Sav×TA heuristics also require

more time. The latter is explicable as the TA heuristics examine all potential place-

186

5 Numerical experiments

ment positions for an item whereas the DBLF heuristics terminate as soon as one

feasible placement is found. Naturally, Sav×LS DBLF (on average 0.6 seconds) and

Sav×LS OS (1.67 seconds) also require longer computation times. This is partic-

ularly noticeable for small items where Sav×LS DBLF requires on average almost

one second and Sav×LS OS even more than two seconds. The instances with small

items are computationally quite expensive as more items can fit into the loading

space and more placement positions need to be tested.

The results support the insights from the experiments on randomly generated routes.

The DBLF is identified as the best packing construction heuristic (among the ones

presented in Chapters 4.1.2.1 and 4.1.2.2). Therefore, the three packing heuristics

DBLF, LS DBLF and LS OS are employed in the following experiments.

5.5.1.3 Container loading instances

In order to demonstrate why comparatively simple packing heuristics are chosen

for the hybrid solution approach presented in this thesis, the heuristics DBLF,

LS DBLF and LS OS are applied to well-known CLP instances of Bischoff and Rat-

cliff (1995) and Davies and Bischoff (1999). For this purpose, the packing heuristics

are adapted to the optimization problem (maximization of the volume utilization,

see Chapter 4.1.4) and compared to the genetic algorithm presented by Gonçalves

and Resende (2012), which proved to be one of the most effective algorithms to

date.35

The results are listed in Table 5.9. The volume utilizations (∅vol) that are achieved

on average and the average computing times (∅ct) per instance (in seconds) are

given. The last two columns (GR12) contain the results of Gonçalves and Resende

(2012). The best results (with regard to volume utilization) of the packing heuristics

presented in this thesis are bold-faced.

The CLP approach of Gonçalves and Resende (2012) clearly outperforms the simpler

heuristics achieving an average volume utilization of 92.24 %. In contrast to the

previous experiments, LS DBLF dominates LS OS in most problem sets. Average

volume utilizations of approximately 75.6 %, 79.8 %, and 77.0 % are achieved by

the heuristics DBLF, LS DBLF, and LS OS, respectively.

The computing times needed by the packing heuristics are very low: 0.01 s (DBLF),

35 The computer used by Gonçalves and Resende (2012) has the following characteristics: AMD
2.2 GHz Opteron 6-core CPU with Linux (Fedora release 12) operating system.

187

5 Numerical experiments

3.6 s (LS DBLF), and 8.8 s (LS OS). In contrast, the GA of Gonçalves and Resende

(2012) requires on average 232 s. Hence, despite the higher quality of the GA, it is

not suitable to be implemented into a hybrid approach for the 3L-VRPBTW as the

computing times are far too high. Within the ALNS, the packing procedure is called

several tens of thousands of times during the search and, thus, cannot afford to apply

a heuristic that needs more than a few seconds. Even if the computational effort

of the GA was drastically decreased (i.e. by reducing the number of iterations), it

would still be too high for using the GA in an integrated solution approach for a

3L-VRPBTW.

Table 5.9: Comparison of packing heuristics; average volume utilizations and computing
times for CLP instances of Bischoff and Ratcliff (1995) and Davies and Bischoff (1999)

instance
set

no. of
item
types

DBLF LS DBLF LS OS GR12
∅vol ∅ct ∅vol ∅ct ∅vol ∅ct ∅vol ∅ct

[%] [s] [%] [s] [%] [s] [%] [s]

BRD 01 3 79.02 0.02 81.56 14.07 84.02 4.55 94.34 n.a.
BRD 02 5 79.02 0.01 82.61 3.41 83.31 2.43 94.88 n.a.
BRD 03 8 79.62 0.01 83.41 2.89 82.19 4.14 95.05 n.a.
BRD 04 10 79.32 0.01 83.23 2.69 81.26 5.66 94.75 n.a.
BRD 05 12 79.29 0.01 83.30 2.82 80.72 5.89 94.58 n.a.
BRD 06 15 78.07 0.01 82.66 2.67 80.15 6.25 94.39 n.a.
BRD 07 20 77.32 0.01 81.92 2.38 78.90 6.85 93.74 n.a.
BRD 08 30 76.01 0.01 80.77 2.63 77.49 8.49 92.65 n.a.
BRD 09 40 74.60 0.01 79.39 2.56 75.86 8.99 91.90 n.a.
BRD 10 50 73.88 0.01 78.60 2.78 74.38 10.63 91.28 n.a.
BRD 11 60 73.25 0.01 77.73 2.75 73.14 10.93 90.39 n.a.
BRD 12 70 72.42 0.01 76.75 2.99 72.22 13.17 89.81 n.a.
BRD 13 80 71.16 0.01 75.94 3.04 71.50 14.13 89.27 n.a.
BRD 14 90 71.07 0.01 75.18 2.92 70.70 14.52 88.57 n.a.
BRD 15 100 69.67 0.01 74.42 3.24 69.28 15.07 87.96 n.a.

total 75.58 0.01 79.83 3.59 77.01 8.78 92.24 232

∅: average, ct: computing time per instance, n.a.: not available, vol: volume utilization.
The maximum volume utilizations per line among DBLF, LS DBLF and LS OS are bold-faced.

5.5.2 Hybrid algorithm

In the following, seven problem variants (3L-VRPTW, 3L-VRPCB, 3L-VRPCBTW,

3L-VRPMB, 3L-VRPMBTW, 3L-VRPSDP, 3L-VRPSDPTW), each with two dif-

ferent loading approaches (see Chapter 2.1), are considered. In Chapter 5.5.2, only

the constraint set C1 is applied.36 That is, 14 different extended problem variants

are regarded.

36 Therefore, the fact that C1 is applied is not mentioned any further in Chapter 5.5.2.

188

5 Numerical experiments

Three different variants of the hybrid algorithm, i.e. three alternative packing heuris-

tics (DBLF, LS DBLF and LS OS) integrated into the ALNS, are applied to the in-

stances of the mentioned extended problem variants. Hereinafter, the variants of the

hybrid algorithm with the different packing heuristics are denoted as ALNS×DBLF,

ALNS×LS DBLF and ALNS×LS OS.

Each instance of the considered extended problem variants is solved five times by

each variant of the hybrid algorithm (ALNS×DBLF, ALNS×LS DBLF, ALNS×-

LS OS). For each algorithm variant, the solution of an instance (of a certain ex-

tended problem variant) is in the following defined as the solution (obtained by the

respective algorithm variant) that is feasible and that leads to the minimum TTD

among the feasible solutions obtained in the five corresponding runs.

As there are no benchmark solutions available for the newly generated instances, the

following analyses focus mainly on comparisons of the packing heuristics and loading

approaches. In Chapter 5.5.2.1, the results for the different problem variants are pre-

sented and examined. The different instance characteristics influence the solutions

and the performance of the variants of the hybrid algorithm. The corresponding

analyses are provided in Chapter 5.5.2.2. In particular, the item size can have a

huge impact on the performance of the hybrid algorithms. Therefore, the results are

sometimes presented for instances with small and large items separately. In addi-

tion, conclusions will be drawn about different backhaul models (Chapter 5.5.2.3),

the presence of time windows (Chapter 5.5.2.4) and about the application of solution

approaches for VRPs with loading constraints (Chapter 5.5.2.5).

In some cases, the hybrid algorithm is not able to generate a feasible solution. For

each analysis, only those instances are considered that are solved sufficiently, i.e. a

feasible solution could be obtained at least once (in the five conducted runs) by all

problem and procedure settings that are compared. For example, if an analysis aims

at comparing the variants of the hybrid algorithm for a certain extended problem

variant, only those instances are taken into account for which a feasible solution is

provided at least once (in five runs) by each hybrid algorithm. If the performance of

loading approaches is evaluated, instances are considered that are solved at least once

by each hybrid algorithm variant and for each of the compared loading approaches

for the respective problem variant. The corresponding numbers are provided in the

appendix (Table C.1).

Comprehensive results for all problem variants are given in Appendix C.

189

5 Numerical experiments

5.5.2.1 Results for 3L-VRPBTW variants

3L-VRP with time windows

In Table 5.10, the results are presented for the variants of the hybrid algorithm with

different packing heuristics for the 3L-VRPTW and the loading approaches rear and

side loading. For each packing heuristic and loading approach (and summarized for

both approaches), the average TTDs (∅TTD) of the solutions of the instances are

given. In order to evaluate the quality of the algorithms, the solutions provided by

ALNS×DBLF serve as benchmarks. The average deviations (∅dev) of the TTDs

obtained by the variants of the hybrid algorithm from the benchmarks are included in

Table 5.10. Moreover, the average computing times per instance and run in seconds

(∅ct) and the average numbers of iterations (per instance and run) conducted until

the algorithm is terminated (∅iter) are listed. In the following, the tables have the

same general structure. Depending on the relevance for the analyses, further key

performance indicators (KPIs) may be used, e.g. the average number of iterations

per second.

Table 5.10: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations; separated by loading approach

ALNS
pack KPI rear loading side loading total

DBLF ∅TTD*[DU] 1, 230.01 1, 160.65 1, 196.02
∅dev[%] 0.00 0.00 0.00
∅ct[s] 797.57 719.90 759.51
∅iter 14, 129.77 14, 537.16 14, 329.42

LS DBLF ∅TTD[DU] 1, 136.52 1, 086.23 1, 111.88
∅dev[%] −4.63 −4.18 −4.41
∅ct[s] 1, 511.79 1, 459.02 1, 485.93
∅iter 12, 096.06 12, 008.50 12, 053.15

LS OS ∅TTD[DU] 1, 141.92 1, 094.13 1, 118.50
∅dev[%] −4.18 −3.63 −3.91
∅ct[s] 1, 816.31 1, 909.63 1, 862.05
∅iter 10, 745.00 9, 914.98 10, 338.23

∅: average, *: benchmark, ct: computing time per instance and run, dev:
deviation from TTDs of benchmarks, DU: distance units, iter: total num-
ber of iterations, KPI: key performance indicator, pack: integrated packing
heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

In general, the hybrid algorithms with the LS-based packing heuristics outper-

form the hybrid algorithm with the simple DBLF heuristic. The average devi-

190

5 Numerical experiments

ations, i.e. improvements, from the benchmarks amount to −4.41 % (ALNS×-

LS DBLF) and −3.91 % (ALNS×LS OS) over both loading approaches. Further-

more, ALNS×DBLF requires considerably shorter computing times on average (760

seconds) than ALNS×LS DBLF (1,486 seconds) and ALNS×LS OS (1,862 sec-

onds). ALNS×DBLF conducts (on average) more iterations (14,329) than ALNS×-

LS DBLF (12,053) and ALNS×LS OS (10,338).

Thus, the results indicate a better average quality of ALNS×LS DBLF compared

to ALNS×DBLF and ALNS×LS OS. In addition, it be concluded that ALNS×-

LS DBLF requires less computational effort than ALNS×LS OS but noticeably more

than ALNS×DBLF. The latter results from the low complexity of the packing con-

struction heuristic DBLF compared to the LS-based heuristics. The performance

(concerning solution quality and computing time) of the individual hybrid algo-

rithms depends heavily on the instance characteristics, like item size or number of

customers. These findings are analysed below (Chapter 5.5.2.2).

The packing heuristics work equally well for both considered loading approaches and

the computing times for both approaches differ only marginally. It will, thus, be

more interesting to compare the performance of the loading approaches themselves

instead of the performance of the packing heuristics with the individual loading

approaches.

Aggregated results for the 3L-VRPTW are presented in Table 5.11. The base for

this analysis is the following: Pairs of instances are compared that are derived from

the same core instances and differ only in the loading approach. The comparisons

are conducted for each variant of the hybrid algorithm separately. That is, the

solutions obtained by a certain algorithm variant for each instance of a pair are

compared. The solutions of the rear loading instances serve as benchmarks. Per

instance and variant of the hybrid algorithm, the deviation of the respective TTD

from the corresponding benchmark TTD is determined. As the results do not differ

noticeably among the individual packing heuristics, the deviations are averaged over

the variants of the hybrid algorithm in Table 5.11.

The average TTDs (∅TTD), average deviations from the benchmark TTDs (∅dev)

and the average numbers of used vehicles (∅vused) are given. As mentioned above,

the item size impacts the performance of the hybrid algorithms. Therefore, the

results are presented in Table 5.11 for instances with small and large items separately

191

5 Numerical experiments

and together.37 The minimum deviations per item size are bold-faced.

Table 5.11: Comparison of loading approaches; extended problem variants (3L-VRPTW,
RL/SL, C1); average TTDs, deviations from benchmark, numbers of used vehicles; sepa-
rated by item size, aggregated over the variants of the hybrid algorithm

ALNS
load KPI small items large items total

rear loading ∅TTD*[DU] 791.64 1, 741.28 1, 108.19
∅dev[%] 0.00 0.00 0.00
∅vused 6.78 22.58 12.05

side loading ∅TTD[DU] 792.32 1, 733.69 1, 106.11
∅dev[%] 0.16 −0.37 −0.02
∅vused 6.80 22.35 11.98

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks, DU:
distance units, KPI: key performance indicator, load: applied loading approach,
TTD: total travel distance, vused: number of used vehicles.
Minimum average deviations per column are bold-faced.

In total, the differences between the loading approaches are marginal. The TTDs

provided by side loading deviate on average only −0.02 % from the TTDs obtained

by rear loading and the average numbers of used vehicles differ by only 0.07. It

can be observed, though, that the side loading approach is a bit more beneficial for

problems with large items (average deviation from rear loading TTDs: −0.37 %).

An explanation may be that large items can be arranged more easily with a longer

loading side. The rear loading approach leads to slightly better results for the

instances with small items. However, with an average deviation of 0.16 %, the

differences are minor.

3L-VRP with clustered backhauls and with and without time windows

The results for the 3L-VRPCB(TW) and the loading approaches rear and side load-

ing are summarized in Table 5.12. The method of analysis is analogue to the one

presented for Table 5.10. The same performance indicators as above are used and

the solutions provided by ALNS×DBLF serve as benchmarks. The table contains

the results for both problem variants with and without time windows together.

The overall results resemble those of the 3L-VRPTW. For both loading approaches,

the best results are on average obtained by ALNS×LS DBLF. The average devia-

tions from the TTDs provided by ALNS×DBLF amount to −4.31 % for the rear

loading approach and to −3.69 % for the side loading approach, respectively. The

37 This is also done frequently in the remainder of Chapter 5.5.2. Further observations about
the impact of the item size are provided in Chapter 5.5.2.2.

192

5 Numerical experiments

average results of ALNS×LS OS are only slightly worse (rear loading: −3.89 %, side

loading: −3.27 %). Also with respect to the computational efforts, the results are

similar to those of the 3L-VRPTW. On average, ALNS×DBLF requires less comput-

ing time (845 seconds) and conducts more iterations (13,391) than ALNS×LS DBLF

(1,666 seconds; 10,718 iterations) and ALNS×LS OS (1,989 seconds; 9,038 itera-

tions).

Table 5.12: Comparison of hybrid ALNS algorithms with different packing heuristics,
extended problem variants (3L-VRPCB(TW), RL/SL, C1); average TTDs, deviations
from benchmark, computing times, numbers of iterations; separated by loading approach

ALNS
pack KPI rear loading side loading total

DBLF ∅TTD[DU] 1, 104.08 1, 047.00 1, 076.25
∅dev[%] 0.00 0.00 0.00
∅ct[s] 885.51 803.36 845.46
∅iter 13, 228.26 13, 561.62 13, 390.81

LS DBLF ∅TTD[DU] 1, 029.28 988.71 1, 009.50
∅dev[%] −4.31 −3.69 −4.01
∅ct[s] 1, 679.95 1, 651.87 1, 666.26
∅iter 10, 906.07 10, 522.02 10, 718.81

LS OS ∅TTD[DU] 1, 032.61 992.72 1, 013.16
∅dev[%] −3.89 −3.27 −3.59
∅ct[s] 1, 948.01 2, 031.17 1, 988.56
∅iter 9, 498.33 8, 554.04 9, 037.89

∅: average, *: benchmark, ct: computing time per instance and run,
dev: deviation from TTDs of benchmarks, DU: distance units, iter: total
number of iterations, KPI: key performance indicator, pack: integrated
packing heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

As before, no loading approach (rear or side loading) is clearly dominant. Therefore,

a listing and analysis of results is ommited here. Detailed results are provided in

the appendix (Table C.9).

3L-VRP with mixed backhauls and with and without time windows

Table 5.13 contains the results for the 3L-VRPMB(TW) and the loading approaches

LSP and side loading. The previously introduced KPIs are used and the results for

the problem variants with and without time windows are presented jointly again.

The solutions obtained by ALNS×DBLF and ALNS×DBLFSL, respectively, serve

as benchmarks for the individual loading approaches.

In order to realize the simultaneous transport of linehaul and backhaul items,

the loading approaches loading space partition (LSP) and side loading are ap-

193

5 Numerical experiments

plied. In contrast to the side loading approach applied to the 3L-VRPTW and

3L-VRPCB(TW), which is implemented by swapping the loading space dimensions

length and width, the side loading approach described in Chapter 4.1.5 is utilized

for the simultaneous transport. The linehaul and backhaul items are loaded at

opposing sides of the loading space (e.g. linehaul items at the driver’s cabin and

backhaul items at the rear). Additional checks are necessary in order to avoid the

overlapping of linehaul and backhaul items at any stage of the route. The DBLF

heuristic is modified for this loading approach with respect to the sorting of the

possible placement positions (DBLFSL, see Chapter 4.1.2.1).

Table 5.13: Comparison of hybrid ALNS algorithms with different packing heuristics,
extended problem variants (3L-VRPMB(TW), LSP/SL, C1); average TTDs, deviations
from benchmark, computing times, numbers of iterations; separated by loading approach

ALNS
pack KPI LSP side loading total

DBLF** ∅TTD*[DU] 1, 002.33 911.94 951.93
∅dev[%] 0.00 0.00 0.00
∅ct[s] 686.36 1, 114.86 925.30
∅iter 18, 542.98 13, 316.69 15, 628.69

LS DBLF** ∅TTD[DU] 931.92 866.32 895.34
∅dev[%] −4.49 −3.56 −3.97
∅ct[s] 1, 330.52 1, 818.16 1, 602.44
∅iter 12, 379.84 12, 022.68 12, 180.68

LS OS ∅TTD[DU] 928.28 862.65 891.68
∅dev[%] −4.35 −3.97 −4.14
∅ct[s] 1, 971.02 2, 080.03 2, 031.81
∅iter 8, 875.09 10, 236.94 9, 634.48

∅: average, *: benchmark, **: DBLFSL and LS DBLFSL, respectively, are
employed for the side loading approach, ct: computing time per instance and
run, dev: deviation from TTDs of benchmarks, DU: distance units, iter: total
number of iterations, KPI: key performance indicator, LSP: loading space par-
tition, pack: integrated packing heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

For the LSP approach, the best results are obtained by ALNS×LS DBLF (average

deviation from benchmark: −4.49 %), which slightly outperforms ALNS×LS OS

(−4.35 %). The results for the side loading approach differ a bit from the results of

the LSP. The best results are obtained by ALNS×LS OS (average deviation from

benchmark: −3.97 %). With an average deviation from the TTDs of the benchmark

solutions of −3.56 %, the solutions obtained by ALNS×LS DBLFSL are only slightly

worse.

Naturally, ALNS×DBLF (and ALNS×DBLFSL) requires the shortest computing

194

5 Numerical experiments

times. Moreover, noticeably longer computing times are needed for the side loading

approach than for the LSP approach. For example, one run of ALNS×DBLFSL

with the side loading approach takes about seven minutes longer than one run of

ALNS×DBLF with LSP. The generation of two packing patterns (for linehaul and

backhaul items separately, see Chapter 4.1.5) is required by both approaches. In

addition, it must be considered that more items can be packed using the side loading

approach as the whole loading space can be utilized for both linehaul and backhaul

items. In extreme cases, two packing patterns with high volume utilization need

to be produced, whereas the items included in the individual patterns of the LSP

cannot exceed half the loading space volume. More items to be packed increase the

computational efforts for solving the packing subproblems.

As the overall results of ALNS×LS DBLF are often better than those of ALNS×-

LS OS for previously examined loading variants, it can be assumed that the LS OS

heuristic is more suitable (compared to LS DBLFSL) for the side loading approach

as it is implemented here. No modification is incorporated in LS OS for coping with

the applied side loading approach (apart from the consideration of the modified

LIFO constraint). Nevertheless, the results of LS OS show similar deviations from

the benchmark TTDs as in previous experiments. One reason could be that the

change in the item sequence due to the LS-framework is capable of coping with the

specifications of the side loading approach. In order to test whether this is also true

for the other LS-based packing heuristic, ALNS×LS DBLF is also used for the side

loading. That is, the original DBL sorting rule is applied to the DBLF integrated

into the local search. However, the results of ALNS×LS DBLF are clearly worse

than the results of ALNS×LS DBLFSL and ALNS×LS OS. The average deviations

from the TTDs of the benchmark solutions amount to only −1.6 %, which is about

two percentage points less than the deviations of the other LS variants.38

In conclusion, the modification to the DBLF approach is not only beneficial to

the construction heuristic DBLF, which cannot avoid the building of gaps in the

loading plan (see Chapter 4.1.5), but also to the LS-based variant (LS DBLF). As

the best results are obtained by LS OS, a construction heuristic working according to

a deepest-left-bottom procedure (like the OS heuristic; see Chapter 4.1.2.3) appears

to be most suitable for this kind of loading approach.

Subsequently, the quality of the two loading approaches is evaluated. The method of

38 These results are not included in Table 5.13.

195

5 Numerical experiments

analysis is analogue to the method presented for the 3L-VRPTW. The solutions of

the LSP instances serve as benchmarks (for each variant of the hybrid algorithm sep-

arately). In Table 5.14, the corresponding results are summarized for all algorithm

variants.

The average TTDs (∅TTD) are given and the average deviations (∅dev) between

the TTDs of the individual loading approaches from the benchmark TTDs are pre-

sented. In addition, the average numbers of used vehicles (∅vused) for both loading

approaches are listed. The results are separated by the item sizes. The solutions

obtained by ALNS×DBLFSL (ALNS×LS DBLFSL; ALNS×LS OS) for side load-

ing instances are compared to the solutions of ALNS×DBLF (ALNS×LS DBLF;

ALNS×LS OS) for the corresponding LSP instances.

Table 5.14: Comparison of loading approaches; extended problem variants (3L-
VRPMB(TW), LSP/SL, C1); average TTDs, deviations from benchmark, numbers of
used vehicles; separated by item size and in total, aggregated over the variants of the
hybrid algorithm

ALNS
load KPI small items large items total

LSP ∅TTD*[DU] 664.35 1, 785.97 954.18
∅dev[%] 0.00 0.00 0.00
∅vused 5.00 22.86 9.61

SL ∅TTD[DU] 641.43 1, 251.76 799.14
∅dev[%] −3.78 −29.02 −10.31
∅vused 4.32 13.23 6.62

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks, DU:
distance units, KPI: key performance indicator, load: applied loading approach,
LSP: loading space partition, SL: side loading, TTD: total travel distance,
vused: number of used vehicles.
Minimum average deviations per column are bold-faced.

The side loading provides better results in almost all instance classes. The item

size has the most noticeable impact on the differences between the two loading

approaches. Whereas the average deviation of the TTDs provided by side loading

from the TTDs of the LSP solutions amounts to −3.78 % for instances with small

items, an average deviation of −29.02 % is obtained for instances with large items.

That is, the side loading approach is considerably more beneficial (compared to LSP)

if the items are large. Small items are easier to pack into the separated loading space

and they also make up less volume than the large items as the total number of items

remains constant. As the usable loading space is restricted in the case of the LSP

approach, each vehicle leaves the depot with an (at least) half empty loading space

196

5 Numerical experiments

and returns to the depot with an (at least) half empty loading space. In contrast,

the whole loading space can be used when applying the side loading approach.

Accordingly, longer routes can be generated and fewer vehicles are needed with the

side loading approach. On average, about three vehicles can be saved.

3L-VRP with simultaneous delivery and pickup and with and without time windows

The results of the 3L-VRPSDP(TW) resemble those of the experiments with the

3L-VRPMB(TW). They are summarized in Table 5.15 and include both problem

variants with and without time windows. The loading approaches LSP and side load-

ing are regarded and the solutions provided by ALNS×DBLF and ALNS×DBLFSL,

respectively, serve as benchmarks. The key performance indicators introduced above

are used.

Table 5.15: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPSDP(TW), LSP/SL, C1); average TTDs, deviations
from benchmark, computing times, numbers of iterations; separated by loading approach

ALNS

pack KPI LSP side loading total

DBLF** ∅TTD*[DU] 1, 098.10 971.14 1, 033.49
∅dev[%] 0.00 0.00 0.00
∅ct[s] 640.93 1, 120.77 885.14
∅iter 15, 295.37 14, 173.39 14, 724.35

LS DBLF** ∅TTD[DU] 1, 051.41 945.98 997.75
∅dev[%] −3.01 −1.71 −2.35
∅ct[s] 1, 456.40 1, 651.67 1, 555.78
∅iter 12, 096.01 13, 408.19 12, 763.82

LS OS ∅TTD[DU] 1, 047.97 928.90 987.37
∅dev[%] −3.07 −3.73 −3.40
∅ct[s] 2, 417.48 2, 151.35 2, 282.04
∅iter 7, 160.96 10, 133.70 8, 673.90

∅: average, *: benchmark, **: DBLFSL and LS DBLFSL, respectively, are
employed for the side loading approach, ct: computing time per instance
and run, dev: deviation from TTDs of benchmarks, DU: distance units,
iter: total number of iterations, KPI: key performance indicator, LSP:
loading space partition, pack: integrated packing heuristic, TTD: total
travel distance.
Minimum average deviations per column are bold-faced.

Regarding the LSP, both variants of the hybrid algorithm with LS-based packing

heuristics outperform ALNS×DBLF. Here, ALNS×LS OS provides slightly better

results than ALNS×LS DBLF, but the differences are marginal with average devia-

tions from the benchmarks of −3.01 % (ALNS×LS DBLF) and −3.07 % (ALNS×-

LS OS). Applying the side loading approach, the results differ more from the results

197

5 Numerical experiments

of the 3L-VRPMB(TW). As before, the best results are achieved by ALNS×LS OS

(average deviation from benchmarks of −3.73 %). However, in the previous exper-

iments the differences between ALNS×LS DBLFSL and ALNS×LS OS are rather

small. In contrast, the deviations from the benchmarks differ by more than two

percentage points here and ALNS×LS OS is the dominant heuristic in almost all

instance classes.

ALNS×LS DBLF with the original DBL sorting of the positions is also applied

to the 3L-VRPSDP(TW) with side loading. As in the experiments of the 3L-

VRPMB(TW), it leads to worse results than the other LS-based heuristics. Surpris-

ingly, though, it even results in (on average) worse solutions than ALNS×DBLFSL

with an average deviation from the benchmark TTDs of 1.25 %.39 As before, it can

be concluded that either the adapted approach DBLFSL or the open space heuristic

work best for the simultaneous transport of linehaul and backhaul items with side

loading.

Comparing the different loading approaches, the conclusions are not completely iden-

tical to those drawn in the case of the problem variant with mixed backhauls. The

results for the 3L-VRPSDP(TW) are presented in Table 5.16, which is analogous to

Table 5.14. The table contains the average TTDs (∅TTD) of the instance solutions

for both loading approaches and the average deviations (∅dev) of these TTDs from

the TTDs of the benchmarks (solutions obtained for the LSP instances). More-

over, the average numbers of used vehicles (∅vused) are presented. These results are

aggregated over all variants of the hybrid algorithm.

The average deviation of the TTDs of the side loading from the TTDs of the LSP

solutions over all packing heuristics amounts to −0.53 % for instances with small

items and to −18.96 % for instances with large items. Whereas the average num-

bers of used vehicles are similar for instances with small items (LSP: 4.76, side

loading: 4.64), they differ substantially for instances with large items (LSP: 23.27,

side loading: 16.24).

In the case of the 3L-VRPMB(TW), the side loading is almost exclusively dominant

over all instance classes. Here, a slightly different picture is shown. For instances

with small items, no approach is clearly dominant. Small items can be packed more

easily into the separated loading space. Therefore, the LSP is more applicable for

small than for large items. Furthermore, the nature of the problem variant leads

39 These results are not included in Table 5.15.

198

5 Numerical experiments

to different planning restrictions. In the case of the 3L-VRPMB(TW), routes could

be formed containing, for example, a large number of linehaul items and only very

few backhaul items, or even no items of one type. In contrast, items of both types

have to be transported on every route if a 3L-VRPSDP(TW) instance is solved.

The proportions are prescribed by the instance parameters. Thus, in particular in

the case of small items, the LSP approach can be well-suited for the problem and it

can also benefit from the lower requirements in computation times. For large items,

the side loading approach is clearly more suitable as noticeably shorter TTDs are

obtained and less vehicles are required.

Table 5.16: Comparison of loading approaches; extended problem variants (3L-
VRPSDP(TW), LSP/SL, C1); average TTDs, deviations from benchmark, numbers of
used vehicles; separated by item size and in total, aggregated over the variants of the
hybrid algorithm

ALNS
load KPI small items large items total

LSP ∅TTD*[DU] 652.32 1, 752.32 1, 063.62
∅dev[%] 0.00 0.00 0.00
∅vused 4.76 23.27 11.68

SL ∅TTD[DU] 649.89 1, 394.14 928.18
∅dev[%] −0.53 −18.96 −7.42
∅vused 4.64 16.24 8.98

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks,
DU: distance units, KPI: key performance indicator, load: applied load-
ing approach, LSP: loading space partition, SL: side loading, TTD: total
travel distance, vused: number of used vehicles.
Minimum average deviations per column are bold-faced.

Comparisons and analyses across problem variants

Table 5.17 contains the summarized results comparing the variants of hybrid algo-

rithm for all considered 3L-VRPBTW variants and related loading approaches. As

before, the solutions provided by ALNS×DBLF or ALNS×DBLFSL (depending on

the loading approach) serve as benchmark solutions.40 The average TTDs (∅TTD)

provided by the variants of the hybrid algorithm are given for each problem vari-

ant and the corresponding loading approaches. In addition, the average deviations

(∅dev) from the TTDs of the benchmark solutions, the average computing times

40 That is, ALNS×DBLF is considered for the rear loading and LSP instances and the side
loading instances of the problem variants 3L-VRPTW and 3L-VRPCB(TW). ALNS×DBLFSL

is employed for the side loading instances of the problem variants 3L-VRPMB(TW) and 3L-
VRPSDP(TW).

199

5 Numerical experiments

per run and instance (∅ct), the average number of conducted iterations (∅iter) and

the shares of runs terminated by the time limit (abort) are given.

With the LS-based packing heuristics, the hybrid algorithm is able to find consid-

erably better solutions than with the DBLF heuristic. The differences between the

variants of the hybrid algorithm with the LS-based heuristics are marginal. The aver-

age deviations from the benchmark TTDs amount to −3.73 % for ALNS×LS DBLF

and to −3.72 % for ALNS×LS OS over all problem variants and loading approaches.

The results suggest that ALNS×LS DBLF provides better results for the loading

approaches that are implemented as rear loading approaches. These include the

“standard” rear loading approach, the LSP (where the vehicles are also rear loaded),

but also the side loading approach for the 3L-VRPTW and the 3L-VRPCB(TW).

The latter is implemented like the rear loading approach by swapping length and

width of the loading space. On average, ALNS×LS DBLF obtains the best solu-

tions for the instances of these extended problem variants. The only exception is the

problem variant of 3L-VRPSDP(TW) and the LSP approach. However, the average

differences between ALNS×LS DBLF and ALNS×LS OS are marginal for this vari-

ant (average benchmark deviations of ALNS×LS DBLF: −3.01 %, ALNS×LS OS:

−3.07 %). ALNS×LS OS obtains the best solutions for the side loading approach for

the 3L-VRPMB(TW) and 3L-VRPSDP(TW), where the modified LIFO constraint

is taken into account (cf. Chapter 4.1.5). In case of the 3L-VRPSDP(TW), notice-

able differences between ALNS×LS OS and ALNS×LS DBLFSL occur. Whereas

the TTDs provided by ALNS×LS OS deviate on average −3.73 % from the bench-

mark TTDs of ALNS×DBLFSL, the average deviations of the TTDs provided by

ALNS×LS DBLFSL from the benchmark TTDs amount to (only) −1.71 %.

ALNS×DBLF is the fastest approach among the presented ones providing solu-

tions, on average, within approximately 852 seconds. ALNS×LS DBLF (ca. 1,595

seconds) and ALNS×LS OS (ca. 2,034 seconds) require about twice as much com-

puting time. The larger computational requirements of the LS-based approaches

are reflected in the average numbers of conducted iterations and the shares of runs

that are terminated by the time limit. Less runs are aborted by ALNS×DBLF (ca.

14.7 %) than by ALNS×LS DBLF (ca. 40.2 %) or ALNS×LS OS (ca. 55.7 %). Until

the termination, approximately 14,290 (ALNS×DBLF), 11,697 (ALNS×LS DBLF)

and 9,335 iterations (ALNS×LS OS) are conducted on average.

200

5
N

u
m

erical
ex

p
erim

en
ts

Table 5.17: Comparison of packing heuristics for different 3L-VRPBTW variants and loading approaches; average TTDs, deviations from benchmark,
computing times, numbers of iterations, share of runs terminated by time limit; separated by problem variant and loading approach

ALNS
3L-VRPTW 3L-VRPCB(TW) 3L-VRPMB(TW) 3L-VRPSDP(TW)

pack KPI RL SL RL SL LSP SL LSP SL total

DBLF** ∅TTD*[DU] 1, 230.01 1, 160.65 1, 104.08 1, 047.00 1, 002.33 911.94 1, 098.10 971.14 1, 067.05
∅dev[%] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
∅ct[s] 797.57 719.90 885.51 803.36 686.36 1, 114.86 640.93 1, 120.77 852.14
∅iter 14, 129.77 14, 537.16 13, 228.26 13, 561.62 18, 542.98 13, 316.69 15, 295.37 14, 173.39 14, 289.85
abort[%] 15.68 12.82 16.32 13.36 6.89 21.20 6.55 22.14 14.68

LS DBLF** ∅TTD[DU] 1, 136.52 1, 086.23 1, 029.28 988.71 931.92 866.32 1, 051.41 945.98 1, 005.34
∅dev[%] −4.63 −4.18 −4.31 −3.69 −4.49 −3.56 −3.01 −1.71 −3.73
∅ct[s] 1, 511.79 1, 459.02 1, 679.95 1, 651.87 1, 330.52 1, 818.16 1, 456.40 1, 651.67 1, 594.85
∅iter 12, 096.06 12, 008.50 10, 906.07 10, 522.02 12, 379.84 12, 022.68 12, 096.01 13, 408.19 11, 696.63
abort[%] 38.55 38.34 43.22 43.33 37.06 42.73 39.06 33.08 40.20

LS OS ∅TTD[DU] 1, 141.92 1, 094.13 1, 032.61 992.72 928.28 862.65 1, 047.97 928.90 1, 005.22
∅dev[%] −4.18 −3.63 −3.89 −3.27 −4.35 −3.97 −3.07 −3.73 −3.72
∅ct[s] 1, 816.31 1, 909.63 1, 948.01 2, 031.17 1, 971.02 2, 080.03 2, 417.48 2, 151.35 2, 033.59
∅iter 10, 745.00 9, 914.98 9, 498.33 8, 554.04 8, 875.09 10, 236.94 7, 160.96 10, 133.70 9, 334.59
abort[%] 46.90 50.68 53.28 56.77 59.62 53.17 72.24 54.62 55.69

∅: average, *: benchmark, **: (LS)DBLF [for (3L-VRPTW,RL/SL,C1), (3L-VRPCB(TW),RL/SL,C1), (3L-VRPMB(TW)/3L-
VRPSDP(TW),LSP,C1)] or (LS)DBLFSL [for (3L-VRPMB(TW)/3L-VRPSDP(TW), SL, C1)], abort: share of runs aborted by time limit, ct:
computing time per instance and run, dev: deviation from TTDs of benchmarks, DU: distance units, iter: total number of iterations, KPI: key
performance indicator, LSP: loading space partition, RL: rear loading, SL: side loading, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

201

5 Numerical experiments

Furthermore, the problem variants can be compared with respect to the computing

times required for solving them with the hybrid algorithm. The average computing

times per instance and run (in seconds) for the seven problem variants are presented

in summarized form in Table 5.18, subdivided by the packing heuristics employed

in the hybrid algorithm. Only instances with 200 items are considered as those

with 400 items are not regarded for the 3L-VRPMB(TW) and 3L-VRPSDP(TW).

Including them into the analysis would bias the results.

Table 5.18: Comparison of hybrid algorithms with different packing heuristics and for
different problem variants; average computing times; separated by applied variant of the
hybrid algorithm, limited to m = 200 and aggregated over the corresponding loading
approaches

ALNS (m = 200)

DBLF LS DBLF LS OS total
problem ∅ct[s] ∅ct[s] ∅ct[s] ∅ct[s]

without time windows
3L-VRPCB 1, 062.6 2, 290.6 2, 627.0 1, 993.4
3L-VRPMB 1, 406.3 2, 319.2 2, 700.4 2, 142.0
3L-VRPSDP 1, 340.0 2, 245.1 2, 878.0 2, 154.4

with time windows
3L-VRPTW 577.1 1, 276.0 1, 704.8 1, 186.0
3L-VRPCBTW 176.1 557.4 1, 126.6 620.0
3L-VRPMBTW 433.4 869.5 1, 348.2 883.7
3L-VRPSDPTW 428.0 862.9 1, 683.1 991.3

total 771.9 1, 488.4 2, 010.8 1, 423.7

∅ct: average computing times per instance and run

The consideration of time windows reduces the computing times. The time windows

restrict the possible solutions leading to fewer customers (and, thus, fewer items)

per route (see below for further details).

Regarding the different problems, it can be observed that the instances with clus-

tered backhauls (3L-VRPCB(TW)) are solved fastest on average. They contain the

most restrictive routing problem. Thus, there are less potential insertion positions

to be tested for feasibility in the course of the insertion heuristic. In contrast, the

3L-VRPTW and the 3L-VRPSDP(TW) require the longest computing times. Al-

though the 3L-VRPTW is the simplest of the studied problems with respect to its

routing subproblem, it allows for packing plans with many items. As the same basic

instances are used for all problem variants (cf. Chapter 5.2.2), it can be concluded

that the routes contain similar numbers of customers. In case of the 3L-VRPTW,

all items of these customers must be aggregated to one packing pattern, whereas

202

5 Numerical experiments

(up to) two packing patterns are required for the remaining problems. However, less

items need to be packed per pattern as they are split into linehaul and backhaul

items. Generating two packing patterns for a lower number of items can require less

computation time than generating one pattern for a larger number of items. This

reduction of the difficulty of the packing problem reflects in the reduced computing

times when backhauls are considered.

5.5.2.2 Influence of selected instance characteristics

The performance of the individual approaches depends heavily on the instance char-

acteristics and different versions of the hybrid algorithm (with respect to the applied

packing heuristics) are dominant in different problem classes. The influence of the

following characteristics is analysed in detail: item size, total number of items, num-

ber of customers, time window width, number of item types. As their impacts are

similar among all problem variants, the results are mainly analysed based on the

results of the 3L-VRPTW. The conclusions can be transferred to the other problem

variants as well. In addition, the impact of linehaul share on the benefits of different

loading approaches is examined.

Item size

In Table 5.19, the results of the experiments of the hybrid algorithm for the 3L-

VRPTW with rear and side loading are separated by the items sizes and aggregated

for both loading approaches (as the results do not differ considerably). No instances

are available for n = 20 and large items (see Chapter 5.2.2). Therefore, only in-

stances with 60 and 100 customers are included in Table 5.19 in order to exclude the

influence of the varying numbers of customers.41 The solutions provided by ALNS×-

DBLF serve as benchmarks. The average TTDs (∅TTD) of the instance solutions,

the average deviations (∅dev) from the benchmark TTDs, average computing times

(∅ct) and numbers of conducted iterations (∅iter) are listed. In addition, the shares

of runs terminated due to the time limit (abort) are given.

If the items are small, the solution quality of the the hybrid algorithms does not vary

much. Interestingly, ALNS×DBLF outperforms ALNS×LS DBLF and ALNS×-

41 For example, the computing times could not be compared. 60 or 100 customers are considered
in the instances with large items, but 20, 60 and 100 customers are included in the instances
with small items. The instances with 20 customers, which require less computing times, would
bias the results in favour of the instances with small items.

203

5 Numerical experiments

LS OS, which provide solutions whose TTDs deviate on average 0.21 % and 0.79 %,

respectively, from the TTDs obtained by ALNS×DBLF. If the items are large, the

solutions of ALNS×LS DBLF and ALNS×LS OS are clearly better than those of

ALNS×DBLF resulting in average TTD deviations of −11.14 % and −10.67 %, re-

spectively. The computing times required by ALNS×LS DBLF and ALNS×LS OS

for solving instances with small and large items do not differ considerably. Solv-

ing an instance with small items takes on average about 28.8 (34.2) minutes if

ALNS×LS DBLF (ALNS×LS OS) is employed. For instances with large items, ap-

proximately 29.5 (40.6) minutes are needed by ALNS×LS DBLF (ALNS×LS OS).

A different picture is drawn by ALNS×DBLF. Solving an instance with small items

takes about ten times longer (26.1 minutes) than solving an instance with large

items (2.5 minutes).

Table 5.19: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations, proportions of prematurely aborted
runs; separated by item size, restricted to n ∈ {60, 100} and aggregated over both loading
approaches

ALNS (n ∈ {60, 100})
pack KPI small items large items

DBLF ∅TTD[DU] 959.77 1, 944.36
∅dev[%] 0.00 0.00
∅ct[s] 1, 563.53 151.39
∅iter 11, 843.77 21, 039.56
abort[%] 31.71 0.00

LS DBLF ∅TTD[DU] 961.78 1, 709.89
∅dev[%] 0.21 −11.14
∅ct[s] 1, 727.45 1, 767.95
∅iter 9, 711.13 19, 894.71
abort[%] 39.29 26.75

LS OS ∅TTD[DU] 966.79 1, 721.44
∅dev[%] 0.79 −10.67
∅ct[s] 2, 054.14 2, 435.83
∅iter 8, 631.10 16, 595.79
abort[%] 45.67 46.91

∅: average, *: benchmark, abort: share of runs aborted by time limit, ct: computing
time per instance and run, dev: deviation from TTDs of benchmarks, DU: distance
units, iter: total number of iterations, KPI: key performance indicator, pack: integrated
packing heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

Thus, the results suggest that the item sizes have a huge impact on the performance

of the hybrid algorithm. Yet, different tendencies can be observed, like the differ-

ences in the relative solution quality of the algorithm or the fact that ALNS×DBLF

204

5 Numerical experiments

requires noticeably less computing time for instances with large items than for those

with small items. As opposed to this, ALNS×LS DBLF and ALNS×LS DBLF need,

on average, less time for solving instances with small items.

Three factors can be identified that are influenced by the item size. First, gen-

erating one packing pattern using a construction heuristic can be done faster if

the items are large. The reason for this is that normally less items can fit into

the loading space and need to be packed. This can be an explanation for the

considerably shorter computing times for large item instances if ALNS×DBLF is

applied. Moreover, it reflects in the large numbers of iterations that are conducted

by each variant of the hybrid algorithm if the items are large. About twice as many

ALNS iterations are performed on instances with large items than on instances with

small items, although the computing times and shares of aborted runs for large

items are either considerably shorter/lower (ALNS×DBLF) or do not differ much

(ALNS×LS DBLF, ALNS×LS OS). This can be one explanation for the different

deviations from the benchmark TTDs depending on the item size. The smaller

numbers of conducted iterations in the case of small items can result in solutions

of lower quality as the initial solutions could not be improved sufficiently. ALNS×-

DBLF achieves to conduct more iterations and might, therefore, have an advantage

over ALNS×LS DBLF and ALNS×LS OS. In the case of large items, ALNS×DBLF

also performs more iterations. Yet, the numbers of iterations conducted by ALNS×-

LS DBLF and ALNS×LS OS is presumably large enough to obtain solutions of high

quality. In this case, other factors influence the differences in the solution quality

(see below). Furthermore, the lower computational requirements for packing large

items cause that one iteration of the local search packing heuristics can be performed

faster.

The second factor is, though, that small items tend to make the packing problem

easier. That is, it is more probable to find a feasible position for each item. This can

be one reason why the differences in the solution quality between ALNS×DBLF and

ALNS×LS DBLF/ALNS×LS OS is rather small. As the packing problem is easier,

the LS-based approaches do not provide valuable advantages. If the items are large,

the benefits of the local search can be exploited and significantly better solutions

are obtained by ALNS×LS DBLF and ALNS×LS OS compared to ALNS×DBLF.

However, it can lead to larger computational requirements for the LS-based packing

approaches for instances with large items. Although one iteration of the local search

205

5 Numerical experiments

is presumably faster, more iterations may be required for large items as finding a

feasible packing pattern for them is more difficult. Thus, the lower requirements

in computing times for the generation of one packing pattern is offset by needing

more iterations for finding a feasible pattern. In contrast, the DBLF heuristic is

aborted as soon as no feasible placement is found for any item and the difficulty of

the packing problem does not impact the computing time in this way.

The third factor is the influence on the difficulty of the routing problem. With large

items, finding a good and feasible solution is more complicated as it is more difficult

to combine customers and to realize good insertions (with respect to the changes

in the TTD). Thus, more iterations of the ALNS are required for obtaining a high-

quality solution. This reflects in the large numbers of iterations that are conducted

for instances with large items. In contrast, the best found solutions for instances

with small items are reached quickly and the ALNS can be aborted earlier (due to

the termination criterion of iterations without further improvements).

Number of items

The results separated by the total number of items for the 3L-VRPTW and rear and

side loading are presented in Table 5.20 with the same performance indicators as in

Table 5.19. The results are aggregated for the two loading approaches and divided

by the item sizes due to their huge impact on the performance of the solution

approaches. As before, only instances with n = 60 and n = 100 are included.

For small item instances, it can be observed that the relative solution quality of

ALNS×LS DBLF and ALNS×LS OS deteriorates with an increasing number of

items, i.e. the (positive) deviations from the benchmarks increase from 0.05 %

(ALNS×LS DBLF) and 0.91 % (ALNS×LS OS) for m = 200 to 0.47 % and 1.93 %

for m = 400. However, if the items are large, the relative solution quality of ALNS×-

LS DBLF and ALNS×LS OS improves with an increasing number of items, i.e. the

negative deviations increase. For m = 200, they amount to −13.04 % (ALNS×-

LS DBLF) and −13.21 % (ALNS×LS OS). For m = 400, deviations of −18.82 %

and −16.61 % are obtained. For both large and small items and all variants of the

hybrid algorithm, the average computing times are longer, less iterations are con-

ducted and more runs are terminated by the time limit if instances with 400 items

are considered compared to instances with 200 items.

206

5 Numerical experiments

Table 5.20: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations, proportions of prematurely aborted
runs; separated by item size and total number of items m, restricted to n ∈ {60, 100} and
aggregated over both loading approaches

ALNS (n ∈ {60, 100})
small items large items

pack KPI m = 200 m = 400 m = 200 m = 400

DBLF ∅TTD*[DU] 964.64 981.64 1, 630.18 2, 926.37
∅dev[%] 0.00 0.00 0.00 0.00
∅ct[s] 1, 290.27 1, 968.57 111.60 169.39
∅iter 13, 759.02 11, 327.97 21, 025.57 23, 554.92
abort[%] 16.75 47.00 0.00 0.00

LS DBLF ∅TTD[DU] 965.00 986.25 1, 420.32 2, 373.83
∅dev[%] 0.05 0.47 −13.04 −18.82
∅ct[s] 1, 727.22 2, 108.34 1, 485.56 3, 114.40
∅iter 10, 297.91 8, 082.62 22, 423.72 19, 094.14
abort[%] 40.00 50.25 14.00 65.79

LS OS ∅TTD[DU] 972.00 999.09 1, 417.79 2, 436.11
∅dev[%] 0.91 1.93 −13.21 −16.61
∅ct[s] 1, 934.24 2, 927.30 2, 799.04 3, 396.08
∅iter 7, 890.81 6, 460.60 18, 115.74 11, 230.84
abort[%] 50.00 65.75 49.75 85.26

∅: average, *: benchmark, abort: share of runs aborted by time limit, ct: com-
puting time per instance and run, dev: deviation from TTDs of benchmarks, DU:
distance units, iter: total number of iterations, KPI: key performance indicator,
m: number of items, pack: integrated packing heuristic, TTD: total travel dis-
tance.
Minimum average deviations per column are bold-faced.

Increasing the total number of items m makes the optimization problem, in partic-

ular the packing subproblem, more difficult to solve and more time-consuming. As

different tendencies can be observed for the different item sizes, it can be assumed

that an increasing total number of items intensifies the effects described above. On

the one hand, the large computational requirements of instances with small items

lead to a reduction of the total number of iterations conducted by the hybrid algo-

rithms if the number of items is increased. As even less iterations can be performed

within the time limit (which is reached more often), the results of ALNS×LS DBLF

and ALNS×LS OS show larger deteriorations compared to the results of ALNS×-

DBLF. On the other hand, if the items are large, the integrated ALNS is either

finished within the computing time limit, i.e. the routing problem is solved as well

as possible, or at least a sufficiently large of number of iterations can be conducted.

In these cases, the benefits of the more sophisticated packing heuristics are exploited

207

5 Numerical experiments

stronger. Hence, it seems plausible that the (absolute) deviations between the hy-

brid algorithm with DBLF and the hybrid algorithms with the LS heuristics increase

in any case for m = 400 compared to m = 200.

Number of customers

The results separated by the number of customers for the 3L-VRPTW and rear and

side loading are presented in Table 5.21 with the same performance indicators as

in Table 5.19. As before, the results are aggregated for both loading approaches

and the solutions provided by ALNS×DBLF serve as benchmarks. In addition, the

average numbers of iterations conducted per second (∅ips) are listed. The results

are divided by the item sizes in order to include the instances with 20 customers

into the analysis.

Table 5.21: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations, proportions of prematurely aborted
runs; separated by item size and number of customers n, and aggregated over both loading
approaches

ALNS
small items large items

pack KPI n = 20 n = 60 n = 100 n = 60 n = 100

DBLF ∅TTD[DU] 458.70 817.06 1, 102.49 1, 725.08 2, 096.60
∅dev[%] 0.00 0.00 0.00 0.00 0.00
∅ct[s] 134.58 1, 423.80 1, 703.26 40.04 228.70
∅iter 8, 452.67 10, 680.32 13, 007.22 18, 503.24 22, 800.58
∅ips 1, 323.78 192.25 99.24 793.10 185.21
abort[%] 2.50 26.50 36.92 0.00 0.00

LS DBLF ∅TTD[DU] 445.28 816.10 1, 107.47 1, 487.85 1, 864.05
∅dev[%] −2.78 −0.11 0.54 −13.20 −9.72
∅ct[s] 546.94 1, 702.89 1, 752.02 1, 031.49 2, 279.29
∅iter 4, 060.00 7, 837.81 11, 584.44 20, 733.98 19, 311.98
∅ips 890.33 186.92 95.79 185.20 35.66
abort[%] 55.67 39.50 39.08 3.90 42.62

LS OS ∅TTD[DU] 447.17 820.02 1, 113.57 1, 481.93 1, 887.73
∅dev[%] −2.39 0.43 1.16 −13.56 −8.66
∅ct[s] 550.24 1, 964.80 2, 143.48 1, 771.97 2, 896.76
∅iter 3, 636.09 6, 996.42 10, 265.78 19, 351.79 14, 682.24
∅ips 590.48 62.57 35.12 107.91 14.74
abort[%] 57.92 45.00 46.33 23.14 63.41

∅: average, *: benchmark, abort: share of runs aborted by time limit, ct: computing time per
instance and run, dev: deviation from TTDs of benchmarks, DU: distance units, ips: number
of iterations per second, iter: total number of iterations, KPI: key performance indicator, n:
number of customers, pack: integrated packing heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

208

5 Numerical experiments

The relative solution quality of ALNS×LS DBLF and ALNS×LS OS decreases with

an increasing number of customers. For example, the deviations of the TTDs of the

solutions obtained by ALNS×LS DBLF from the TTDs of the benchmarks increase

from −2.78 % (n = 20) to −0.11 % (n = 60) and 0.54 % (n = 100) in the case of

small items. In the case of large item instances, the deviations amount to −13.2 %

for n = 60 and to (only) −9.72 % for n = 100. Similar developments can be observed

for ALNS×LS OS. All three variants of the hybrid algorithm result in longer com-

puting times if the number of customers increases. For example, approximately 9.1

minutes (n = 20), 28.4 minutes (n = 60) and 29.2 minutes (n = 100) are required by

ALNS×LS DBLF if instances with small items are considered. Moreover, the aver-

age numbers of conducted iterations increase with an growing number of customers

if the items are small. This can be noticed for all three hybrid algorithms. In the

case of large items, ALNS×DBLF performs more iterations for instances with 60

customers (18,503) than for instances with 100 customers (22,801). However, the

opposite is true for ALNS×LS DBLF and ALNS×LS OS.

The number of customers affects both the routing and the packing subproblem.

An increasing number of customers makes the underlying routing problem more

difficult and more time-consuming to solve. It is more difficult because there are

more possibilities to combine customers to routes. Therefore, more ALNS iterations

are theoretically required for solving the problem. As noted above, this tendency can

be observed for instances with small items. In this case, the shares of aborted runs do

not vary much42 and it can be assumed that the larger numbers of iterations results

from the increasing difficulty of the routing problem. For large items, ALNS×-

LS DBLF and ALNS×LS OS conduct less iterations for instances with 100 than for

those with 60 customers. However, here the larger computational efforts presumably

reflect in the shares of runs aborted by the time limit, which increase significantly

for ALNS×LS DBLF and ALNS×LS OS with a growing number of customers. It

can be assumed that the lower numbers of iterations for n = 100 are caused by the

comparatively large numbers of aborted runs. Furthermore, a single ALNS iteration

requires more computation time. In particular, the insertion becomes very time-

consuming with an increasing number of customers due to many possible insertions

42 At least among n = 60 and n = 100. The comparatively large share for n = 20 shall be
disregarded here. Note that the algorithms are aborted after 15 minutes if n = 20 and after
60 minutes for larger instances. It can be assumed that more runs are terminated prematurely
due to the shorter time limit.

209

5 Numerical experiments

to be tested. This reflects in the numbers of iterations that can be conducted within

one second. For example, they decrease from about 1,324 for n = 20 to ca. 192

for n = 60 and 99 for n = 100 if ALNS×DBLF and instances with small items are

regarded.

Moreover, decreasing the number of customers leads to an increase in the number

of items per customer as the total number of items is kept constant. An increasing

number of items per customer appears to make the packing problem more difficult.

As noted above, the more complex packing approaches are more beneficial for m =

400 than for m = 200. Similar trends can be observed here. That is, ALNS×-

LS DBLF and ALNS×LS OS are more beneficial (compared to ALNS×DBLF) for

a lower number of customers.

Time window width

In Table 5.22, the results of the hybrid algorithms for the 3L-VRPTW with rear and

side loading are separated by the time window width. The ALNS×DBLF solutions

are the benchmark solutions. The previously introduced KPIs are employed and the

results are aggregated for both loading approaches.

The average deviations from the benchmark TTDs obtained by ALNS×LS DBLF

and ALNS×LS OS do not vary considerably for the different time window widths.

The improvements compared to ALNS×DBLF for instances with narrow time win-

dows are larger (average deviations for ALNS×LS DBLF: −4.61 %, ALNS×LS OS:

−4.58 %) than for instances with wide time windows (ALNS×LS DBLF: −4.22 %,

ALNS×LS OS: −3.24 %). For all three variants of the hybrid algorithm, solving

instances with wide time windows requires significantly more computing time, less

iterations are conducted per second and more runs are terminated by the time limit.

The time window widths restrict the routing problem. Narrow time windows lead

to less possibilities to form routes, which – as a result – are shorter than routes

for instances with wide time windows. Shorter routes contain fewer items to be

packed. Consequently, the computational effort of solving one packing problem is

lower. Furthermore, less possibilities to form routes result in less possible insertions

(during the execution of an insertion heuristic) and, thus, in less calls of the packing

procedures. Therefore, the computing times for the instance classes with narrow

time windows are considerably lower than for instances with wide time windows.

The quality of ALNS×LS DBLF and ALNS×LS OS compared to ALNS×DBLF is

210

5 Numerical experiments

slightly worse for instances with wide time windows than for those with narrow time

windows. This is presumably caused by the increasing computational effort and the

fact that less iterations can be conducted within the time limit. The average total

numbers of conducted iterations are similar for instances with narrow time windows.

For instances with wide time windows, though, significantly fewer iterations are

conducted by ALNS×LS DBLF (8,805) and ALNS×LS OS (6,278) than by ALNS×-

DBLF (13,022). Problem classes for which the best results are obtained by the DBLF

heuristic are almost exclusively classes with wide time windows.

Table 5.22: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations, proportions of prematurely aborted
runs; separated by time window width and aggregated for both loading approaches

ALNS

pack KPI
narrow time

windows
wide time
windows

DBLF ∅TTD*[DU] 1, 284.01 1, 108.34
∅dev[%] 0.00 0.00
∅ct[s] 108.48 1, 408.19
∅iter 15, 641.73 13, 021.84
∅ips 869.25 136.01
abort[%] 0.00 28.50

LS DBLF ∅TTD[DU] 1, 193.42 1, 030.63
∅dev[%] −4.61 −4.22
∅ct[s] 559.71 2, 408.80
∅iter 15, 313.28 8, 804.76
∅ips 549.77 27.24
abort[%] 11.28 65.51

LS OS ∅TTD[DU] 1, 193.14 1, 044.13
∅dev[%] −4.58 −3.24
∅ct[s] 1, 061.53 2, 659.68
∅iter 14, 412.99 6, 278.15
∅ips 309.29 26.40
abort[%] 19.17 78.23

∅: average, *: benchmark, abort: share of runs aborted by time limit, ct: computing
time per instance and run, dev: deviation from TTDs of benchmarks, DU: distance
units, ips: number of iterations per second, iter: total number of iterations, KPI: key
performance indicator, pack: integrated packing heuristic, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

Number of item types

The heterogeneity of the items is defined by the number of different item types.

The respective results for the 3L-VRPTW and rear and side loading are presented in

Table 5.23. As before, the solutions provided by ALNS×DBLF serve as benchmarks.

211

5 Numerical experiments

The same performance indicators as above are used and the results are aggregated

for the two loading approaches.

Table 5.23: Comparison of hybrid ALNS algorithms with different packing heuristics;
extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs, deviations from
benchmark, computing times, numbers of iterations, proportions of prematurely aborted
runs; separated by the number of item types and aggregated for both loading approaches

ALNS
pack KPI 3 types 10 types 100 types

DBLF ∅TTD*[DU] 1, 194.97 1, 176.92 1, 216.51
∅dev[%] 0.00 0.00 0.00
∅ct[s] 672.31 818.78 793.66
∅iter 14, 027.19 14, 244.65 14, 742.09
abort[%] 12.66 16.03 14.25

LS DBLF ∅TTD[DU] 1, 142.19 1, 084.24 1, 107.13
∅dev[%] −2.69 −4.89 −5.79
∅ct[s] 1, 247.17 1, 555.55 1, 673.43
∅iter 12, 404.33 11, 897.63 11, 831.21
abort[%] 28.22 42.09 45.81

LS OS ∅TTD[DU] 1, 143.25 1, 092.01 1, 118.60
∅dev[%] −2.67 −4.29 −4.87
∅ct[s] 1, 354.73 2, 030.14 2, 240.01
∅iter 12, 367.86 9, 637.27 8, 854.94
abort[%] 28.11 55.81 63.91

∅: average, *: benchmark, abort: share of runs aborted by time limit,
ct: computing time per instance and run, dev: deviation from TTDs of
benchmarks, DU: distance units, iter: total number of iterations, KPI:
key performance indicator, pack: integrated packing heuristic, TTD: total
travel distance.
Minimum average deviations per column are bold-faced.

With an increasing number of item types, the (absolute) deviations from the bench-

mark TTDs, i.e. the improvements, obtained by ALNS×LS DBLF and ALNS×-

LS OS increase. For ALNS×LS DBLF (ALNS×LS OS), the average deviations

amount to −2.69 % (−2.67 %) for instances with three types, −4.89 % (−4.29 %)

for instances with ten types and −5.79 % (4.87 %) for instances with 100 different

item types. A larger number of item types has the following effects: The average

computing times increase for all variants of the hybrid algorithm. Moreover, the

average total numbers of iterations decrease and the shares of aborted runs increase

in the case of ALNS×LS DBLF and ALNS×LS OS. For ALNS×DBLF, the number

of iterations increases and no clear trend can be observed with respect to the shares

of aborted runs.

Instances with strongly heterogeneous item sets contain more difficult packing prob-

lems than instances with weakly heterogeneous item sets. This assumption is also

212

5 Numerical experiments

supported by the results of the hybrid algorithm. The computing times usually

increase with a larger number of item types. There are exceptions, though, as the

computing times also depend heavily on other instance characteristics. In addition,

the (absolute) deviations between the TTDs of the benchmarks and of the solutions

of ALNS×LS DBLF and ALNS×LS OS increase with an increasing number of item

types. The increasing difficulty of the packing problem can apparently be handled

better by the more complex packing heuristics.

Linehaul share

The linehaul share43 can impact how beneficial different loading approaches are –

in particular for transporting linehaul and backhaul items simultaneously. There-

fore, the focus here will not be on the comparison of hybrid algorithms but on the

comparison of the loading approaches. Moreover, this analysis concentrates on the

3L-VRPMB(TW) and 3L-VRPSDP(TW). These problem variants are affected more

strongly by varying linehaul shares than the 3L-VRPCB(TW) due to the simulta-

neous transport of linehaul and backhaul items.

The results for the comparison of the loading approaches LSP and side loading for

3L-VRPMB(TW) and 3L-VRPSDP(TW) are presented in Table 5.24. The method

of analysis is equivalent to the one used for Tables 5.11, 5.14 and 5.16. That is, pairs

of instances are compared that differ only in the loading approach. The solutions of

the LSP instances are taken as benchmarks for the individual hybrid algorithms. The

results in Table 5.24 are averaged over all regarded variants of the hybrid algorithm.

The average TTDs (∅TTD) of the instances with the different loading approaches,

the resulting average deviations (∅dev) from the benchmark TTDs and the average

numbers of used vehicles (∅vused) are presented. The results are aggregated over

the problem variants with and without time windows.

On average, the side loading approach is more beneficial than the LSP approach,

which was noted above for the individual problem variants. If half of the customers

are linehaul customers in the 3L-VRPMB(TW), the average deviations of the TTDs

of the side loading solutions from the TTDs of the LSP solutions amount to −8.86 %.

They amount to −11.61 % for a linehaul share of 80 %. In the case of the 3L-

VRPSDP(TW), the TTDs of the side loading solutions deviate on average −4.01 %

43 It represents the share of linehaul customers in the case of 3L-VRPCB(TW) and 3L-
VRPMB(TW) and the share of linehaul items of all items of each customers in the case
of the 3L-VRPSDP(TW) (see Chapter 5.2.2).

213

5 Numerical experiments

(linehaul share of 50 %) and −11.03 % (linehaul share of 80 %) from the benchmark

TTDs. Moreover, less vehicles are required if side loading is applied.

Table 5.24: Comparison of loading approaches; extended problem variants (3L-
VRPMB(TW), LSP/SL, C1) and (3L-VRPSDP(TW), LSP/SL, C1); average TTDs, de-
viations from benchmark, numbers of used vehicles; separated by problem variant and
linehaul share, aggregated over the variants of the hybrid algorithm

ALNS
3L-VRPMB(TW) 3L-VRPSDP(TW)

load KPI 50 % LH 80 % LH 50 % LH 80 % LH

LSP ∅TTD*[DU] 877.99 1, 023.05 1, 006.49 1, 124.24
∅dev[%] 0.00 0.00 0.00 0.00
∅vused 7.99 11.08 10.63 12.79

SL ∅TTD[DU] 764.71 830.27 937.87 917.90
∅dev[%] −8.86 −11.61 −4.01 −11.03
∅vused 5.84 7.33 9.06 8.89

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks,
DU: distance units, KPI: key performance indicator, load: applied loading
approach, LSP: loading space partition, SL: side loading, TTD: total travel
distance, vused: number of used vehicles.
Minimum average deviations per column are bold-faced.

It is assumed here that the loading space is separated into two sections of equal

size in the case of the LSP approach. Therefore, this approach is more beneficial for

instances with equal shares of linehaul and backhaul customers or items, respectively.

As a result, the benefits of the side loading approach (over the LSP), i.e. the absolute

deviations from the benchmark TTDs, increase with an increasing linehaul share.

The results further suggest that, compared to a 3L-VRPSDP(TW), the benefits

of the side loading approach (utilization of the whole loading space, simplicity of

arranging items) are exploited stronger if the 3L-VRPMB(TW) is considered. As

mentioned above, this is due to the different problem characteristics. As every route

of a 3L-VRPSDP(TW) solution must contain both linehaul and backhaul items, the

LSP appears to be a reasonable approach for the 3L-VRPSDP(TW) – in particular,

if the shares of linehaul and backhaul items are equal. If 80 % of the customers or

items are linehauls, both the 3L-VRPMB(TW) and the 3L-VRPSDP(TW) solutions

show similar deviations of the TTDs of the side loading solutions from those of the

LSP solutions. In this case, it can be assumed that considerably more linehaul items

than backhaul items are transported on every route. For the 3L-VRPMB(TW) it

is even likely that routes are formed without any customer of one type (linehaul or

backhaul). In Table 5.25, the shares of routes containing both linehaul and backhaul

customers (mix) in the solutions of the 3L-VRPMB(TW) are listed for the linehaul

214

5 Numerical experiments

shares of 50 % and 80 %. The numbers are aggregated over the variants of the

hybrid algorithm. Whereas almost all routes (96.7 % over both loading approaches)

contain both types of customers in the case of a linehaul share of 50 %, this is true

for only 72.9 % (over both loading approaches) if 80 % of the customers are linehaul

customers. If only linehaul customers or only backhaul customers are served in a

route, half of the loading space remains unused. Hence, the LSP appears to be an

inefficient approach in this case. Using the side loading approach, one can react

more flexibly to varying linehaul shares.

Table 5.25: Shares of routes with both linehaul and backhaul customers in solutions of the
extended problem variants (3L-VRPMB(TW), LSP/SL,C1); separated by linehaul share
and aggregated over the variants of the hybrid algorithm

ALNS
load KPI 50 % LH 80 % LH

LSP mix[%] 97.1 67.7
SL mix[%] 96.3 78.1

total mix[%] 96.7 72.9

load: applied loading approach, KPI: key performance indicator, LH:
linehaul, LSP: loading space partition, mix: share of routes contain-
ing both linehaul and backhaul customers, SL: side loading

5.5.2.3 Comparison of backhaul variants

In the following, the benefits of different variants of incorporating backhauls into the

routing problem are compared and evaluated. However, only the backhaul variants

“clustered backhauls” and “mixed backhauls” are considered. The backhaul variant

“simultaneous pickup and delivery” is not regarded, as the different problem char-

acteristics (division of items instead of customers into linehaul and backhaul sets)

do not allow for an obvious comparison.

In order to carry out a fair and meaningful evaluation of the backhaul variants

“clustered backhauls” and “mixed backhauls”, the following procedure is chosen:

(1) All core instances of the problem variants 3L-VRPCB(TW) and 3L-VRPMB-

(TW) are regarded (for a restriction regarding the number of items see below).

A comparable pair of such core instances is given if the related basic instances

are identical, both core instances have the same time window specification (i.e.

time windows are specified or not) and, thus, they differ only in the backhaul

variant.

215

5 Numerical experiments

(2) For each core instance of a comparable pair, both related instances with an

appropriate loading approach (rear and side loading for clustered backhauls,

LSP and side loading for mixed backhauls) and constraint set C1 are con-

sidered. Each of the two instances is solved five times by each of the three

variants of the hybrid algorithm. The best resulting solution (over both in-

stances) with minimum TTD is called the best solution of the core instance.

The best solutions of the corresponding core instances of all comparable pairs

are then compared (i.e. the deviations of the TTDs are calculated) where the

3L-VRPCB(TW) solutions serve as benchmarks.

(3) In addition, the related instances of a core instance of a comparable pair are

also solved by transporting linehaul and backhaul items strictly in separate

routes. This additional problem variant is also considered with and without

time windows and the loading approaches rear and side loading (as imple-

mented for the 3L-VRPTW and 3L-VRPCB(TW)) are applied.

The results are given in Table 5.26. They are presented separately for the different

item sizes and include only instances with 200 items, since those with 400 items are

not considered for the 3L-VRPMB(TW). The additional problem variant of serving

linehaul and backhaul customers in individual tours is denoted as “separate”. The

average TTDs (∅TTD) of the best solutions of the core instances of each consid-

ered problem variant and their deviations (∅dev) from the TTDs of the benchmark

solutions (best solutions of the corresponding 3L-VRPCB(TW) core instances) are

presented. As this analysis focuses on the solution quality, an analysis of the com-

putational efforts is neglected. The results are aggregated for the problem variants

with and without time windows.

If the items are small, the 3L-VRPMB(TW) solutions are clearly better than the 3L-

VRPCB(TW) solutions with an average benchmark deviation of −16.69 %. If the

items are large, however, the solutions of the 3L-VRPCB(TW) are slightly better.

In this case, the TTDs of the 3L-VRPMB(TW) deviate on average 0.21 % from the

benchmark TTDs. In both cases, serving linehaul and backhaul customers strictly

in separate routes leads to considerably worse solutions than integrating backhaul

transportations into delivery tours. The TTDs of the corresponding solutions de-

viate on average 10.78 % (small items) and 27.07 % (large items) from the TTDs

of the 3L-VRPCB(TW) solutions. Considering small items, more customers can be

216

5 Numerical experiments

merged in one route resulting in more solution possibilities. Thus, the drawbacks of

separate tours for linehaul and backhaul customers can partially be compensated by

generating low-cost routes with comparatively large numbers of customers. In con-

trast, the possibilities of adding customers to a route and sequencing them efficiently

are very limited if the transported items are large.

Table 5.26: Comparison of backhaul problem variants; extended problem variants (3L-
VRPCB(TW), RL/SL, C1), (3L-VRPMB(TW), LSP/SL, C1) and (separate, RL/SL, C1);
average TTDs and deviations from benchmarks; separated by item size and limited to
m = 200

ALNS (m = 200)
problem KPI small items large items total

3L-VRPCB(TW) ∅TTD*[DU] 772.17 1, 188.06 938.53
∅dev[%] 0.00 0.00 0.00

3L-VRPMB(TW) ∅TTD[DU] 637.72 1, 186.18 857.11
∅dev[%] −16.69 0.21 −9.93

separate ∅TTD[DU] 840.79 1, 489.08 1, 100.10
∅dev[%] 10.78 27.07 17.30

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks, DU:
distance units, KPI: key performance indicator, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

The results comparing the 3L-VRPCB(TW) to the 3L-VRPMB(TW) are slightly

ambiguous with considerable differences in the benchmark deviations for the dif-

ferent item sizes. A priori, it could have been expected that visiting linehaul and

backhaul customers in arbitrary sequences (3L-VRPMB(TW)) is more beneficial

than clustering linehauls and backhauls (3L-VRPCB(TW)) due to less restrictions

in forming the routes. The experiments on instances with small items confirm these

expectations. However, the instances with large items show an opposite result. The

simultaneous transport of linehaul and backhaul items appears to be crucial for

those deviations. Arranging small items in a way that linehaul and backhaul items

do not block each other, is not as difficult as arranging large items. Thus, the ad-

vantages of the routing with mixed backhauls can be exploited to a greater extent.

In contrast, the solutions of the two problem variants seem similar for large items,

suggesting that the possibilities of mixing linehaul and backhaul customers in the

routing sequence are limited.

In Table 5.27, the average proportions of all customers (custBH) and of the linehaul

customers (LHBH) of a route that are visited before the first backhaul customer is

approached, are presented for instances with small and large items. For this purpose,

217

5 Numerical experiments

only routes containing both linehaul and backhaul customers are considered. More-

over, the average shares of routes with both linehaul and backhaul customers are

listed (mix). These results are summarized for all variants of the hybrid algorithm.

Table 5.27: Average shares of linehaul or all customers of a route visited before
the first backhaul customer and proportion of routes with both linehaul and back-
haul customers; extended problem variants (3L-VRPCB(TW), RL/SL, C1) and (3L-
VRPMB(TW), LSP/SL, C1); separated by item size, limited to m = 200, aggregated
over all variants of the hybrid algorithm and loading approaches

ALNS (m = 200)
problem KPI small items large items total

3L-VRPCB(TW) ∅LHBH [%] 100.0 100.0 100.0
∅custBH [%] 60.6 59.8 60.3
∅mix [%] 79.5 73.1 76.9

3L-VRPMB(TW) ∅LHBH [%] 27.4 60.8 40.8
∅custBH [%] 18.9 37.1 26.2
∅mix [%] 91.9 74.2 84.8

∅: average, custBH: proportion of customers of the route visited before the
first backhaul customer, KPI: key performance indicator, LHBH: proportion of
linehaul customers of the route visited before the first backhaul customer, mix:
proportion of routes containing both linehaul and backhaul customers

On average, about 61 % of the linehaul customers of a route are visited before the

first backhaul customer in the solutions of the 3L-VRPMB(TW) and instances with

large items. Moreover, the first backhaul customer is approached after, on average,

about 37 % of all customers in the respective routes have been visited. Due to the

properties of the problem, the first backhaul customer is approached later in the

3L-VRPCB(TW). Nearly 60 % of the route is executed before the first backhaul

customer is serviced. In contrast, only about 27 % of a route’s linehaul customers

and about 19 % of all customers of a route are visited before the first backhaul

customer if the items are small in the 3L-VRPMB(TW). Furthermore, linehaul and

backhaul customers are serviced in about 92 % of the routes of the 3L-VRPMB(TW)

solutions for instances with small items, whereas only 74 % of the routes in solutions

for instances with large items contain both types of customers. Thus, large items

restrict the possibilities to mix linehaul and backhaul customers in a route. In

this case, clustering the customers like in the 3L-VRPCB(TW) can even be more

beneficial as the items can be arranged more efficiently in the loading space.

5.5.2.4 Influence of time windows

In the following, the impact of having to consider time windows is evaluated. For this

218

5 Numerical experiments

purpose, pairs of core instances are compared that differ exclusively in the presence

or absence of time windows. That is, core instances are matched that refer to the

same backhaul variant (core instances of the 3L-VRPCB are compared to those of

the 3L-VRPCBTW, etc.). All 3L-VRPBTW variants are taken into consideration

apart from the 3L-VRPTW as this problem variant is not considered without time

windows. The results are presented in Table 5.28. As in Chapter 5.5.2.3, the best

solutions of the core instances are subject of the analysis. The best solutions of the

core instances without time windows serve as benchmarks.

In Table 5.28, the average TTDs (∅TTD) of the best solutions, their average de-

viations (∅dev) from the benchmark TTDs, the average numbers of used vehicles

(∅vused) and the average computing times (∅ct) per instance and run are given. The

results are summarized for the considered 3L-VRPBTW variants and presented for

instances with narrow and wide time windows separately and altogether.

Table 5.28: Comparison of results obtained with and without consideration of time win-
dows; extended problem variants (3L-VRPCB(TW), RL/SL, C1), (3L-VRPMB(TW),
LSP/SL, C1), (3L-VRPSDP(TW), LSP/SL, C1); average TTDs, deviations from bench-
marks, numbers of used vehicles, computing times; separated by time window width and
aggregated over the problem variants

ALNS
time narrow time wide time
windows KPI windows windows total

no ∅TTD*[DU] 868.13 859.77 863.95
∅dev[%] 0.00 0.00 0.00
∅vused 7.67 7.53 7.60
∅ct[s] 2,101.94 2,142.20 2,122.07

yes ∅TTD[DU] 1,181.40 985.23 1,083.32
∅dev[%] 43.91 17.44 30.67
∅vused 12.98 8.95 10.96
∅ct[s] 313.07 1,539.26 926.17

∅: average, *: benchmark, ct: computing time per instance and run,
dev: deviation from TTDs of benchmarks, DU: distance units, TTD:
total travel distance, vused: number of used vehicles.
Minimum average deviations per column are bold-faced.

Considering time windows costs an average deterioration of the TTDs of 30.67 %.

As narrow time windows are more restrictive, they lead to larger deviations from

the benchmarks without time windows (43.91 %) compared to instances with wide

time windows (17.44 %). If time windows are neglected, on average 7.6 vehicles are

used. Otherwise, 8.95 vehicles (wide time windows) and 12.98 vehicles (narrow time

windows) are needed on average. Furthermore, the computing times for instances

219

5 Numerical experiments

without time windows (2,122 seconds) are noticeably longer than those for instances

with time windows (926 seconds). Among the latter, it can be observed that longer

computing times are required for solving an instance with wide time windows (1,539

seconds) compared to instances with narrow time windows (313 seconds).

The results suggest that the consideration of time windows becomes more costly

the more restrictive the time windows are. Low-cost routes that may be realized if

time windows are not considered might not be possible if they led to a violation of

the time windows. Furthermore, the more restrictive the time windows are, the less

customers can be merged to routes. As a consequence, more vehicles are needed,

which also reflects in higher routing costs.

Narrow time windows make the routing subproblem more difficult to solve but less

time-consuming, as they allow for fewer possibilities to form routes. Consequently,

there are fewer options to insert customers into existing routes in the course of the

application of an insertion heuristic. The adherence to the time windows is checked

before a route is checked for packing feasibility. Thus, many routes are identified as

infeasible without calling a packing procedure, which leads to lower computational

efforts.

5.5.2.5 Influence of three-dimensional loading

How sensible is it to solve a VRP under consideration of three-dimensional load-

ing constraints? Might it be sufficient to relax the loading constraints and solve

the problem solely by taking (one-dimensional) capacity constraints into account?

In order to answer these questions, the 3L-VRPBTW instances are solved as one-

dimensional instances.44 That is, instead of generating packing plans for the routes,

only the weight and volume restrictions of the vehicles are regarded. All seven

problem variants and the related loading approaches are taken into account. The

results are presented in Table 5.29. If the instances are solved considering 1D ca-

pacity constraints, the minimum TTD solutions among five runs are regarded for

each instance. If 3D loading constraints are considered, the best solutions per in-

stance among all runs, loading approaches and variants of the hybrid algorithm are

regarded. The 1D solutions serve as benchmarks. The average TTDs (∅TTD), their

average deviations (∅dev) from the benchmark TTDs and the average computing

44 Hereinafter, the solutions of the one-dimensional VRPBTWs are also referred to as “1D
solutions”. Analogously, the solutions of 3L-VRPBTWs are called “3D solutions”.

220

5 Numerical experiments

times (∅ct) are given in Table 5.29. As before, the results are presented for instances

with small and large items separately and the impact of the number of customers is

excluded by neglecting instances with 20 customers.

Table 5.29: Comparison of VRP solutions without loading constraints (1D) and with 3D
loading constraints; extended problem variants (3L-VRPTW/3L-VRPCB(TW), RL/SL,
C1), (3L-VRPMB(TW)/3L-VRPSDP(TW), LSP/SL, C1); average TTDs and computing
times, average deviations from benchmarks (1D); separated by item sizes and restricted
to n ∈ {60, 100}

ALNS (n ∈ {60, 100})
constraints KPI small items large items total

1D ∅TTD*[DU] 873.12 1, 228.39 1, 050.76
∅dev[%] 0.00 0.00 0.00
∅ct[s] 15.20 11.94 13.57

3D ∅TTD[DU] 880.76 1, 452.66 1, 166.71
∅dev[%] 1.27 20.82 11.04
∅ct[s] 2, 104.73 1, 340.96 1, 722.84

∅: average, *: benchmark, ct: computing time per instance and run, dev:
deviation from TTDs of benchmarks, DU: distance units, KPI: key performance
indicator, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

The consideration of three-dimensional loading constraints leads to solutions with

TTDs that are on average 11.04 % longer than those obtained by neglecting the

loading constraints. This suggests that the solutions differ considerably and that

the solutions obtained without taking the packing problem into account might not

be feasible if they had to be executed. In addition, the computing times differ

extremely. While solving a (one-dimensional) VRPBTW requires on average only

about 14 seconds, approximately 29 minutes are needed for solving a 3L-VRPBTW.

Those differences indicate that about 99 % of the computing time of the hybrid

algorithm is spent on the packing procedures.

The item sizes have a huge impact on the discrepancies between the 1D and 3D

solutions. As mentioned before, the instances with small items might not be solved

as effectively as possible with respect to the routing subproblem because the hybrid

algorithm is terminated by the computing time limit before reaching a sufficient

number of ALNS iterations. The computing times for solving the 1D problem are

comparatively small and a sufficient number of ALNS iterations can be conducted

in order to obtain high-quality solutions. Hence, it could be assumed a priori that

the 1D solutions differ significantly from the 3D solutions. However, the differences

are low. The average deviations of the TTDs of the 3D solutions from those of

221

5 Numerical experiments

the 1D solutions amount to only 1.27 % for instances with small items. These

minor differences indicate, that the hybrid algorithm for the 3L-VRPBTW variants

succeeds in finding good solutions also for problem instances with small items –

despite their large requirement in computation time.

The differences are significant, though, if large items are considered. The average

deviations from the TTDs of the 1D solutions amount to 20.82 %. Although the

volume (and weight) of a set of items might not exceed the capacity of a loading

space, finding a feasible packing plan is not guaranteed. A set of small items is easier

to pack than a set of large items with the same total volume as more possibilities

of arranging the items exist. Hence, it can be expected that many routes are not

executable if the items to be transported are large and 3D loading constraints are

not considered in the planning process.

As smaller items are easier to pack, it is likely that the solutions obtained with

and without consideration of loading constraints are similar. In conclusion, these

instances (and comparable practical cases) could indeed be relaxed to 1D problems

and solved as such within a few seconds. Slight modifications might be necessary in

order to obtain a feasible solution for the 3D problem. However, solving the prob-

lem as an integrated routing and packing problem has the advantage that a packing

plan, which observes the relevant packing constraints, is automatically provided.

Ensuring these constraints manually can be a very time-consuming and difficult

task. Furthermore, a packing plan might be required if the loading process is con-

ducted automatically. On the other hand, the packing problem should certainly be

considered if the transported items are large in order to ensure feasibility.

5.5.3 Consideration of additional packing constraints

Additional numerical experiments are conducted in order to analyse the influence

of further packing restrictions. The constraints reachability, robust stability and

load bearing strength have been incorporated into the packing construction heuris-

tics (excluding the open space heuristic) as described in Chapter 4.1.6. Different

sets of constraints are regarded, which are listed in Table 5.3045. C1 refers to the

original set of constraints based on Gendreau et al. (2006), which is used in the

previous experiments. The geometrical, vertical orientation and LIFO constraints

are included in all sets. In the sets C2, C3 and C4, each of the new constraints is

45 It resembles Table 2.1 and is placed here for the sake of convenience.

222

5 Numerical experiments

added individually. The vertical stability and fragility constraints are replaced by

the robust stability and load bearing strength constraints, respectively. Therefore,

these original constraints are excluded in the corresponding sets. Finally, set C5

contains all of the additional constraints.

Table 5.30: Overview of the sets of packing constraints

packing constraints

set GC VO LIFO VS FR R RS LB

C1

C2
C3
C4

C5

FR: fragility, GC: geometrical constraints, LB: load bearing strength, R: reachabil-
ity, RS: robust stability, VO: vertical orientation, VS: vertical stability

In the following, only instances with large items are considered because the effects

of the different packing constraints are most visible for these instances.

5.5.3.1 Randomly generated routes

The first experiments with the additional packing constraints consist in finding feasi-

ble packing plans for randomly generated routes in order to assess how restrictive the

constraints are – in particular, in comparison to the original constraint set C1. The

same routes as in previous experiments are used (cf. Chapter 5.5.1.1). About 12,000

routes are available for the instances with large items. The results are summarized

in Table 5.31 and subdivided by intervals of volume utilization of the item sets cor-

responding to the routes. The table contains the average shares of feasibly packed

random routes obtained by the heuristics DBLF and LS DBLF46 with the different

constraint sets. In addition, the average computing times (∅ct) in milliseconds per

route are given. Bold-faced values indicate the constraint set with the largest share

of packed routes per packing heuristic and interval of volume utilization.

The results confirm the assumption that the additional constraints restrict the pack-

ing problem further than the original constraints. Applying DBLF and C1, feasible

packing plans are found for 61.4 % of all routes, while this is the case for only 57.7 %

(C2), 61.0 % (C3), 59.0 % (C4) and 55.6 % (C5) when regarding the new constraint

46 LS OS is not regarded as the construction heuristic is not equipped with the additional con-
straints.

223

5 Numerical experiments

sets. Applying the LS DBLF heuristic and C1, feasible packing plans are found for

77.4 % of all routes. Considering the new constraint sets, 72.4 % (C2), 79.9 % (C3),

76.0 % (C4) and 70.8 % (C5) of the routes can be packed feasibly by LS DBLF.

The set C3 (robust stability) seems to have the lowest impact, as only slightly fewer

routes can be packed by applying C3 than by applying C1. However, the computing

times are more than 60 times higher than the computing times with C1. Solving

the packing problem for single routes only, this does not constitute a big impact as

the computing times are still extremely low (DBLF: ca. 1 ms, LS DBLF: ca. 14

ms). However, tens of thousands of packing problems need to be solved within the

ALNS framework. It can be expected that the comparatively large requirements

in computation times will have a greater effect on the hybrid algorithm. Among

the constraint sets that only add one new constraint (C2-C4), the set C2, i.e. the

application of the reachability constraint, leads to the lowest shares of feasibly packed

routes. Thus, it appears to be the most restrictive constraint. Its application is not

connected with considerable additional computational efforts since the computing

times are marginally longer compared to C1. Combining all of the additional packing

constraints (C5), feasible packing plans could be generated for the lowest number of

routes and the computing times are about 141 (225) times longer than those needed

with C1 when DBLF (LS DBLF) is utilized.

Table 5.31: Comparison of constraint sets; shares of feasibly packed random routes and
average computing times obtained by DBLF and LS DBLF

shares of feasibly packed routes [%]
per utilization interval ∅ct

heuristic set 10-20 20-30 30-40 40-50 50-60 total [ms]

DBLF C1 98.6 88.5 66.9 37.6 15.4 61.4 0.014
C2 98.4 87.2 61.4 31.0 10.7 57.7 0.058
C3 98.6 88.5 66.5 36.6 14.7 61.0 0.904
C4 98.6 88.0 65.1 32.8 10.3 59.0 0.095
C5 98.3 86.4 59.6 26.5 7.1 55.6 2.011

LS DBLF C1 100.0 98.5 91.0 64.3 33.2 77.4 0.175
C2 100.0 98.2 86.5 54.1 23.2 72.4 0.482
C3 100.0 98.7 89.5 64.9 31.4 76.9 14.137
C4 99.9 98.5 91.0 63.3 27.5 76.0 1.317
C5 99.9 98.2 86.0 52.5 17.5 70.8 39.468

∅ct: average computing time per route.
Intervals represent the minimum and maximum volume utilizations of the load-
ing space. Maximum shares per column and heuristic are bold-faced.

For further evaluation whether it is reasonable to integrate extended packing con-

224

5 Numerical experiments

straints, the packing plans that are feasible with respect to C1 are tested for feasi-

bility concerning the additional constraints. The results are presented in Table 5.32,

listing the percentage shares of feasible C1 packing plans that are feasible regard-

ing the reachability (reach), robust stability (rob) and load bearing strength (lbs)

constraints. The results are subdivided by volume utilization intervals (vol) and

packing heuristics.

Table 5.32: Shares [%] of feasible packing plans (C1) that are feasible w.r.t. the additional
packing constraints; separated by volume utilization interval and packing heuristic

shares [%] of feasible C1 packing plans

DBLF LS DBLF total
vol[%] reach rob lbs reach rob lbs reach rob lbs

10-20 74.4 99.6 95.7 74.4 99.6 95.8 74.4 99.6 95.7
20-30 48.3 99.0 86.2 48.1 99.0 86.5 48.2 99.0 86.4
30-40 31.5 98.5 78.4 30.7 98.5 78.4 31.1 98.5 78.4
40-50 19.0 97.1 70.0 16.8 97.2 69.6 17.8 97.2 69.8
50-60 21.6 98.2 50.3 12.9 96.9 60.4 16.2 97.4 56.6

total 41.5 98.6 79.2 37.5 98.3 78.9 39.4 98.4 79.0

lbs: load bearing strength, reach: reachability, rob: robust stability, vol:
volume utilization interval

Considerable differences can be observed between the constraints. The robust sta-

bility requirements are almost always fulfilled. 98.4 % of the packing plans that

are feasible under consideration of C1 satisfy them, whereas the reachability (load

bearing strength) constraint is only satisfied by 39.5 % (79.0 %) of the C1 packing

plans. The shares of feasible packing plans decrease with increasing volume utiliza-

tion. With respect to the robust stability constraint, the reductions are very low.

For both packing heuristics combined, these shares fall from 99.6 % (10-20 % volume

utilization) to 97.4 % (50-60 %). They decrease extremely if the adherence to the

reachability constraint is tested (from 74.4 % to 16.2 %). In accordance with these

findings, the proportions of routes with feasible packing plans considering C1 and

C2 (see Table 5.31) increasingly diverge with increasing volume utilization rates.

The presented results indicate that the reachability and load bearing strength con-

straints should be integrated into a packing heuristic if they are of practical rele-

vance. It is highly likely that otherwise generated packing plans (i.e. without taking

the constraints into account) would violate these constraints. As opposed to this, it

is to be expected that robust stability is provided in most cases by a packing plan

that is generated without explicitly considering the constraint.

225

5 Numerical experiments

5.5.3.2 Hybrid algorithm

Furthermore, the hybrid ALNS algorithm including the packing heuristics DBLF

and LS DBLF is applied five times to the 3L-VRPBTW instances (with large items).

As before, the feasible solution with minimum TTD (among the feasible solutions

obtained in the five runs by a certain variant of the hybrid algorithm) is considered

as the solution of the corresponding instance provided by the algorithm variant.

All seven problem variants, related loading approaches and the five sets of packing

constraints, as described above, are considered. That is, all 70 different extended

problem variants are taken into account.

In the following, solutions of instances that are derived from the same core instances

and that differ exclusively in the applied constraint set are compared. The solutions

of the instances with the constraint set C1 serve as benchmarks. For example,

the solutions of (3L-VRPTW, RL, C2/C3/C4/C5) instances are compared to the

solution of the corresponding (3L-VRPTW, RL, C1) instance. Table 5.33 contains

the average TTDs (∅TTD) and the average and maximum deviations from the

benchmark TTDs (∅dev, max dev) obtained by applying the additional constraint

sets. Moreover, the average deviations between the TTDs from those obtained by

ALNS×DBLF are stated (devDBLF) as well as the average computing times per

instance and run (∅ct) and numbers of conducted iterations (∅iter). The results

are summarized over the instances of all problem variants and loading approaches,

and provided for the approaches ALNS×DBLF and ALNS×LS DBLF.

On average, the TTDs deviate 6.37 % (C2), 7.38 % (C3), 5.25 % (C4) and 11.43 %

(C5) from the benchmark (C1) TTDs. Those deviations affirm that the packing

subproblem becomes more restrictive due to the integration of the additional con-

straints. The integration of all restrictions (C5) causes the largest deviations from

the benchmark solutions as the packing problems are most restrictive in this case.

For individual instances, the TTDs even deviate up to 71.5 % from the benchmarks.

However, not only the restrictiveness of the packing problem leads to large devi-

ations from the benchmarks, but also the increased computational requirements.

Increasing computing times result in the conduction of considerably fewer iterations

within a given time limit. For example, the application of C3 (robust stability) leads

to the second largest deviations from the C1 solutions among the sets C2-C5. Yet,

previous experiments indicate that almost all solutions obtained under consideration

226

5 Numerical experiments

of C1 also satisfy the robust stability constraint. As testing for robust stability is

computationally expensive, noticeably fewer ALNS iterations could be conducted.

Thus, the solutions could not be improved sufficiently. Applying C3, less than half

as many iterations (7,904) could be run on average than when applying C1 (20,521).

Table 5.33: Comparison of constraints sets by application of the hybrid algorithms
ALNS×DBLF and ALNS×LS DBLF; extended problem variants (3L-VRPTW/3L-
VRPCB(TW), RL/SL, C1/C2/C3/C4/C5), (3L-VRPMB(TW)/3L-VRPSDP(TW),
LSP/SL, C1/C2/C3/C4/C5); average TTDs, deviations from benchmark, deviations
between TTDs, computing times, numbers of iterations; separated by packing heuristic
and limited to instances with large items

ALNS (large items)
set KPI DBLF LS DBLF total

C1 ∅TTD*[DU] 1,601.31 1,531.37 1, 562.27
∅dev[%] 0.00 0.00 0.00
max dev[%] 0.00 0.00 0.00
∅devDBLF[%] 0.00 -9.60
∅ct[s] 189.44 1,453.38 894.99
∅iter 20,688.66 20,388.61 20, 521.17

C2 ∅TTD[DU] 1,635.07 1,684.57 1, 662.70
∅dev[%] 2.13 9.73 6.37
max dev[%] 16.03 44.43 44.43
∅devDBLF[%] 0.00 -3.96
∅ct[s] 289.17 1,266.76 834.88
∅iter 20,685.97 18,051.84 19, 215.56

C3 ∅TTD[DU] 1,644.80 1,702.39 1, 676.95
∅dev[%] 2.69 11.10 7.38
max dev[%] 17.37 36.13 36.13
∅devDBLF[%] 0.00 -2.80
∅ct[s] 2,799.22 3,079.93 2, 955.92
∅iter 10,637.68 5,740.13 7, 903.79

C4 ∅TTD[DU] 1,613.44 1,663.42 1, 641.34
∅dev[%] 1.02 8.60 5.25
max dev[%] 63.46 66.41 66.41
∅devDBLF[%] 0.00 -3.41
∅ct[s] 663.38 1,959.92 1, 387.13
∅iter 20,559.46 14,669.95 17, 271.84

C5 ∅TTD[DU] 1,709.24 1,755.95 1, 735.31
∅dev[%] 7.02 14.93 11.43
max dev[%] 70.91 71.50 71.50
∅devDBLF[%] 0.00 -2.96
∅ct[s] 3,075.31 3,230.99 3, 162.21
∅iter 7,904.60 4,265.96 5, 873.45

∅: average, *: benchmark, ct: computing time per instance and run, dev: deviation from
TTDs of benchmarks, devDBLF: deviation of TTDs from those of ALNS×DBLF, DU:
distance units, iter: total number of iterations, KPI: key performance indicator, max:
maximum, TTD: total travel distance.
Minimum average benchmark deviations per column are bold-faced.

227

5 Numerical experiments

Considerable differences can be observed for the applied packing heuristics. Whereas

the TTDs provided by ALNS×DBLF with C2-C5 deviate on average 3.21 % from the

benchmarks, the TTDs obtained by ALNS×LS DBLF deviate on average 11.09 %

from them.47 In addition, the deviations between the TTDs provided by ALNS×-

DBLF and ALNS×LS DBLF decrease significantly if the extended constraints are

taken into account. Considering the ALNS×DBLF solutions as benchmarks, they

amount to ca. −9.6 % for C1, −4.0 % for C2, −2.8 % for C3, −3.4 % for C3, and

−3.0 % for C5. Within LS DBLF, the heuristic DBLF is called multiple times (if

necessary), leading to a larger impact of the increasing computational effort on the

total computing times. Due to the time limit, the number of iterations that can

be conducted in total is reduced stronger in the case of the ALNS×LS DBLF than

in the case of the ALNS×DBLF. The most extreme example is the application of

C5, which is associated with the largest computational efforts. Utilizing the DBLF

heuristic within the hybrid algorithm, the number of iterations is approximately

halved compared to C1. However, only about one quarter of the number of iterations

conducted with C1 could be performed when applying ALNS×LS DBLF.

In some cases, negative deviations from the benchmark TTDs are obtained. That

is, some solutions provided under consideration of the respective constraint sets are

better than the benchmark solutions. In particular, the results of C2-C4 appear to

be very close, if not better than the benchmark results, if ALNS×DBLF and LSP

are applied. The corresponding results for ALNS×DBLF and the different loading

approaches with respect to the solution quality are presented in Table 5.34. Applying

ALNS×LS DBLF, the average deviations between the TTDs of C2-C5 from those of

C1 are exclusively positive. Due to the restricted loading space, the influence of the

new constraints seems to diminish compared to the loading approaches providing

the complete loading space. For example, the LSP does not allow to stack a large

number of items (keep in mind that the item heights range from 20 % to 50 % of the

complete loading space height H). Therefore, the load bearing strength constraint

is less likely to be violated. The constraints can be even less restrictive than the

original ones as, e.g., a comparatively light item classified as non-fragile might be

placeable above a fragile item.

In conclusion, reachability and load bearing strength constraints should be consid-

ered in a 3L-VRPBTW and included in the solution approach if they are of practical

47 These averaged values are not provided in Table 5.33.

228

5 Numerical experiments

relevance. Among the considered additional constraints, they are associated with

the lowest computational efforts. Hence, their integration can be valuable in order

to ensure practically feasible solutions and does not cause extreme prolongations of

the running times of the hybrid algorithm. In contrast, the integration of the robust

stability constraint is – at least with the implementation presented in this thesis –

computationally very expensive. Considerable deteriorations of the solution quality

compared to solutions without consideration of such a constraint can occur because

the ALNS cannot improve solutions sufficiently within a given time limit. However,

the experiments on random routes have shown that the robust stability constraint

is hardly ever violated if a (simple) vertical stability constraint is satisfied. Thus,

the implementation of the robust stability constraint can most likely be neglected.

If it is indispensable, raising the time limit should be considered.

Table 5.34: Comparison of constraints sets for different loading approaches by applica-
tion of ALNS×DBLF; extended problem variants (3L-VRPTW/3L-VRPCB(TW), RL/SL,
C1/C2/C3/C4/C5), (3L-VRPMB(TW)/3L-VRPSDP(TW), LSP/SL, C1/C2/C3/C4/
C5); average TTDs, deviations from benchmark; restricted to instances with large items

ALNS×DBLF (large items)
set KPI RL LSP SL

C1 ∅TTD*[DU] 1, 642.84 1, 862.52 1, 487.01
∅dev[%] 0.00 0.00 0.00
min dev[%] 0.00 0.00 0.00

C2 ∅TTD[DU] 1, 698.56 1, 858.13 1, 522.62
∅dev[%] 3.23 −0.21 2.38
min dev[%] −2.13 −9.46 −2.28

C3 ∅TTD[DU] 1, 682.50 1, 897.25 1, 535.61
∅dev[%] 2.24 1.85 3.22
min dev[%] −2.24 −9.46 −1.89

C4 ∅TTD[DU] 1, 658.96 1, 852.86 1, 504.73
∅dev[%] 1.25 −0.50 1.43
min dev[%] −5.82 −5.75 −6.61

C5 ∅TTD[DU] 1, 781.42 1, 907.88 1, 600.82
∅dev[%] 8.44 2.45 7.88
min dev[%] −1.12 −10.44 −3.52

∅: average, *: benchmark, dev: deviation from TTDs of benchmarks, DU: distance units,
LSP: loading space partition, KPI: key performance indicator, min: minimum, RL: rear load-
ing, SL: side loading, TTD: total travel distance.
Minimum average deviations per column are bold-faced.

229

Chapter 6

Summary, conclusions and outlook

Vehicle routing problems with three-dimensional loading constraints are difficult

combinatorial optimization problems combining two NP-hard subproblems – the

routing and the packing problem. Yet, they are of high practical relevance if the

transported goods are bulky and their spatial dimensions cannot be neglected when

loading them. In addition, incorporating the pickup of goods into the planning of

delivery tours may not only contribute to decreasing the travelled distances, but also

to reducing the number of vehicles required for all transportations and the number

of empty runs. Consequently, substantial cost savings can be realized. In this

thesis, seven variants of VRPs with three-dimensional loading constraints, backhauls

and time windows have been considered: the 3L-VRP with time windows, 3L-VRP

with clustered backhauls (with and without time windows), 3L-VRP with mixed

backhauls (with and without time windows) and the 3L-VRP with simultaneous

delivery and pickup (with and without time windows).

The problem variants with mixed backhauls and simultaneous delivery and pickup

require the simultaneous transport of linehaul and backhaul items. Therefore, they

are particularly challenging and have very rarely been regarded in the literature

before. In order to generate feasible packing plans under consideration of various

constraints, such as the LIFO constraint, and to avoid any reloading during the

route, two different loading approaches – loading space partition (LSP) and side

loading – were proposed. Two alternative loading approaches were also regarded for

the 3L-VRPTW and 3L-VRPCB(TW). The first one is the rear loading approach,

which is also the standard loading approach in the literature. In addition, side

loading was also considered for those problem variants.

Mathematical models were presented for the considered problems. Some packing

constraints have been formulated mathematically for the first time. However, due

to their complexity, solving them exactly is not possible within reasonable computing

times. Therefore, a hybrid heuristic solution approach was presented consisting of

an ALNS for solving the routing subproblem and various (alternatively employed)

heuristics for packing the customer items.

In accordance with the literature, the packing constraints proposed by Gendreau

230

6 Summary, conclusions and outlook

et al. (2006) were applied for the greater part of the numerical experiments. In order

to deal with more realistic and practically relevant problems, further difficult packing

constraints were also considered, namely robust stability, load bearing strength and

reachability. They have been formulated as part of the mathematical optimization

model and implemented into the packing heuristics.

Extensive numerical experiments were conducted in order to evaluate the variations

of the hybrid algorithm. That is, the performance (solution quality, computing time)

of the hybrid algorithms with different packing heuristics was compared for different

problem variants. Furthermore, the influence of different loading approaches, prob-

lem and instance characteristics, and the impact and necessity of additional packing

constraints was analysed.

In the following, the main insights gained for research (Chapter 6.1) and for practice

(Chapter 6.2) are summarized. This thesis concludes with an outlook to further

research (Chapter 6.3).

6.1 Contributions to research

This thesis provides a comprehensive overview of 3L-VRPs with backhauls and time

windows and one of the first systematic presentations of such problems. Seven dif-

ferent problem variants and – taking various loading approaches and sets of packing

constraints into account – 70 extended problem variants are regarded.

A consistent and detailed problem description was provided for various problem

variants. This includes the formulation of routing and packing constraints as well

as constraints concerning entire solutions. Moreover, the concept of a packing plan

with a different packing pattern at every stage of a route was introduced. Ten

different packing constraints were considered including the constraint set proposed

by Gendreau et al. (2006) and reachability, robust stability and load bearing strength

constraints.

Mathematical optimization models were presented for the regarded problem variants.

They are based on 3L-CVRP and CLP models previously proposed in the literature

(in particular by Junqueira et al., 2012a,b, 2013). Those models were adapted to

the studied problem variants. Some packing constraints were reformulated as they

were defined differently in this thesis. New formulations were proposed for some

constraints. For example, load bearing strength constraints previously regarded

231

6 Summary, conclusions and outlook

in the literature usually follow the assumptions proposed by Ratcliff and Bischoff

(1998) that the weight of an item is passed straight downwards. In this thesis, the

constraint was modelled and implemented in a way that the actual physical settings

are taken into account. That is, each item transmits its own weight and the weights

of items placed above it evenly over its bottom face. Hence, the proposed model

can better depict real-world problems. The formulation of this variant of the load

bearing strength in the mathematical model as well as its implementation into the

packing heuristics is non-trivial. Mathematical formulations for the reachability and

robust stability constraint were – to the best of the author’s knowledge – proposed

for the first time.

A unified hybrid solution approach was presented for solving the variants of the 3L-

VRPBTW. An ALNS heuristic was used for solving the routing subproblem. This

approach is based on the works of Ropke and Pisinger (2006a,b) and was extended

by new operators and further modifications. In order to determine the most suitable

packing heuristic for the hybrid approach, numerous packing construction heuristics

(different variants of deepest-bottom-left-fill (DBLF) and touching area heuristics)

were tested. Among the tested heuristics, the DBLF heuristic proved superior.

Three different packing heuristics were subsequently integrated into the ALNS for

the hybrid algorithm: the DBLF heuristic, a local search-based procedure with an

open space packing heuristic (LS OS; cf. Zhang et al., 2015) and the DBLF heuristic

embedded in the LS framework (LS DBLF).

One part of the numerical experiments consisted in applying the ALNS to well-

known (one-dimensional) VRPBTW benchmark instance sets from the literature

in order to evaluate its performance. In the course of this, very good results were

obtained and in multiple cases the best known solutions of the benchmark instances

could even be improved. Thus, it can be assumed that the proposed extensions

and modifications constitute valuable additions to the original approach. The mod-

ifications include a larger number of removal heuristics, construction of the initial

solution by means of the savings heuristic, an adapted Shaw removal heuristic and a

modified weight adjustment procedure. In addition, new removal heuristics were pro-

posed. Experiments suggest that the use of multiple removal heuristics contributes

to a better performance of the ALNS. Choosing a well balanced set of approximately

ten heuristics that are able to react to a variety of instance characteristics is rec-

ommended. A larger number of heuristics does not contribute significantly to the

232

6 Summary, conclusions and outlook

solution quality.

In order to examine the resulting variants of the hybrid algorithm, new benchmark

instances were provided for various 3L-VRPBTWs. They cover a wide range of in-

stance characteristics, like different item sizes, numbers of customers or time window

widths.

In the experiments with the hybrid algorithms, the approaches including the LS-

based packing procedures outperformed the hybrid algorithm with the DBLF heuris-

tic. Over all problem classes, the results provided by ALNS×LS DBLF and ALNS×-

LS OS do not differ much. ALNS×LS DBLF usually obtained the best results when

a rear loading approach was used, i.e. either the standard rear loading, the load-

ing space partition or the side loading implemented as a rear loading approach by

swapping the loading space length and width. In contrast, ALNS×LS OS performed

(on average) best when the side loading approach for the simultaneous transport of

linehaul and backhaul items was applied. This loading approach includes a modi-

fied LIFO constraint. For example, a linehaul item must not be placed in front of,

above or to the right of another linehaul that is delivered earlier. Applying a DBLF

heuristic to a packing problem with such a LIFO constraint, the resulting packing

patterns often contain large gaps and are, thus, inefficient. The results could be

improved by modifying the DBLF heuristics although the solution quality of LS OS

was not reached. Within the open space heuristic, items are placed according to

a deepest-left-bottom priority, which appears to be more suitable for the regarded

side loading approach.

The computational efforts of the hybrid algorithms can be crucial for the solu-

tion quality. The differences between ALNS×DBLF and the approaches with the

LS-based packing heuristics are largest if the instance and problem characteristics

induce comparatively low computing time requirements. Such instance character-

istics are, e.g., large items or narrow time windows. In these cases, enough ALNS

iterations can be conducted within a given time limit in order to improve the initial

solutions sufficiently. Hence, the differences in the solution quality are caused by

the performances of the integrated packing heuristics and the benefits of using more

sophisticated approaches – like an LS-based approach – can be exploited. In con-

trast, solving other instances, e.g. with small items, proved to be computationally

expensive. Subsequently, procedures requiring more time for solving one packing

problem can conduct considerably fewer iterations in total and result in solutions

233

6 Summary, conclusions and outlook

that are in some cases worse than those obtained by ALNS×DBLF.

Comparing the computing times for the hybrid algorithms for 3L-VRPBTWs and

the ALNS for one-dimensional VRPBTWs, it becomes evident that the execution

of the packing heuristics (which are called several tens of thousands of times during

the search) require up to 99 % of the total computing time of the hybrid algorithm.

Thus, the implementation of very fast packing heuristics and an efficient integration

of them into the routing algorithm is vital for obtaining good solutions. It should be

aimed at calling the packing procedure as rarely as possible. Implementing a cache,

which stores routes that have already been packed, can be one mean for reducing

the packing effort.

6.2 Managerial insights

Based on the experiments, several conclusions can be drawn for practice. They

concern the application of a solution approach for the integrated routing and packing

problem, the benefits of considering backhauls in the planning of delivery tours,

recommendations of loading approaches and the consideration of further practically

relevant packing constraints. In the following, these aspects are discussed.

A hybrid solution approach was presented that can be applied for a broad range of

3L-VRPs with backhauls and time windows and can solve the integrated routing and

packing problem within reasonable computing times. Thus, it is realistic that such

an approach can be implemented for the operative planning of routes. In contrast

to solution approaches for (one-dimensional) VRPs, the hybrid algorithm does not

only provide routes but also a packing plan for each route. The experiments have

shown the necessity of regarding the routing and packing problem in an integrated

way. In particular, it is of great significance if the items are large. The solutions

provided by applying the approach to the 3L-VRPBTW instances differ considerably

from solutions obtained by reducing the instances to one-dimensional problems, i.e.

taking only weight and volume capacity constraints into account and disregarding

loading constraints. Thus, it can be assumed that the 1D solutions are most likely

not feasible if the actual item dimensions have to be considered for the loading. As

opposed to this, no greater deviations could be observed in the case of small items.

It can be assumed that the routes obtained by solving a one-dimensional VRPBTW

can often be executed also under consideration of 3D loading constraints as small

234

6 Summary, conclusions and outlook

items are easier to pack. In addition, solving a 3L-VRPBTW with small items is

computationally very expensive. Based on this, solving an integrated routing and

packing problem might not always be justified if the items are small. However,

the benefits of providing solutions quickly must be weighted against automatically

obtaining feasible packing plans. If the items are large, the packing problems are

very difficult and the integrated planning of routing and packing is inevitable in

order to guarantee feasible solutions.

Furthermore, the benefits of making use of backhaul transportations were analysed.

For this purpose, the solutions of 3L-VRPCB(TW) and 3L-VRPMB(TW) instances

were compared. An additional problem variant was regarded exclusively for these

experiments: linehaul and backhaul customers must be visited in separated tours. A

strict separation of deliveries and pickups can cause significant increases in the total

travel distances in comparison to incorporating backhauls into the delivery tours.

Here, they amounted to about 17 % compared to the TTDs of 3L-VRPCB(TW)

solutions. Moreover, allowing mixed visiting sequences of linehaul and backhaul

customers (3L-VRPMB(TW)) is usually more beneficial than clustering them in a

route (3L-VRPCB(TW)). This is particularly true if the transported items are small.

If they are large, however, the benefits diminish considerably as large items are more

difficult to arrange in a way that linehaul and backhaul items do not obstruct each

others loading and unloading. Hence, in this case it can be recommended to impose

the restriction to visit all linehaul customers before the first backhaul customer in

a route in order to facilitate (un)loading and avoid any reloading.

Different loading approaches were implemented and tested for the different problem

variants. If either no backhaul items are present, or linehaul and backhaul items

are transported completely separately (3L-VRPTW, 3L-VRPCB(TW)), no signifi-

cant differences can be observed between the rear and side loading approaches. In

contrast, the side loading approach is very beneficial (in comparison to the LSP ap-

proach) if linehaul and backhaul items are transported simultaneously. This could

be expected as the approach allows for utilizing the whole loading space. The ben-

efits of applying the side loading are particularly large if the transported items are

large and if the ratio of linehaul and backhaul items is uneven.

The impact and necessity of additional packing constraints, which might be relevant

in practice, was evaluated. These experiments have shown that integrating the load

bearing strength and reachability constraints is sensible if they are required. The

235

6 Summary, conclusions and outlook

solutions differ significantly from those obtained without their consideration and ad-

ditional computational efforts are negligible. Therefore, if those constraints need to

be taken into account, it appears to be inevitable to implement them. In contrast,

checking for robust stability leads to considerable increases in computing times al-

though the vast majority of the solutions provided without explicitly considering the

constraint do satisfy it. Hence, implementing the robust stability constraint is not

recommended especially considering that possible smaller changes in the packing

plan can most likely be made manually.

6.3 Outlook for future research

The examined packing constraints constitute only a part of the restrictions to be

considered in practice. In order to increase the planning accuracy, i.e. to guarantee

the feasibility of the solutions with regard to all practically relevant constraints, the

integration and implementation of further constraints could be interesting for future

research, too. This can include the balancing of the weight of the load within the

loading space, the horizontal (dynamic) stability or the consideration of the axle

load distribution, which is usually subject to road traffic laws.

Furthermore, better solutions, higher utilization rates and more flexibility might be

obtained if reloading was allowed during the routes. Here, the LIFO constraints

are very strict and have a huge influence on the packing plans. Two aspects must

be considered when reloading is allowed: (i) the time required for unloading items

that block other items must be accounted for (for example, relative to the weight

or volume of the moved items), and (ii) the reloaded item must be assigned a new

position in the loading space.

Moreover, further loading approaches for realizing the simultaneous transport of

linehaul and backhaul items can be examined. An extension of the loading space

partition approach presented here could consist in considering a flexible separation

of the loading space. Provided that the loading spaces are separated into sections

of equal size, the results of the numerical experiments lead to the assumption that

the LSP approach is particularly impractical if the ratio of linehaul and backhaul

items is uneven. In this case, the possibility of adjusting the separation to the

actual ratio could make this approach more beneficial. Furthermore, it might be

interesting to consider this kind of problems with a heterogeneous vehicle fleet. As

236

6 Summary, conclusions and outlook

the experiments have shown, a large proportion of the routes of 3L-VRPMB(TW)

solutions contain only one type of customers (linehaul or backhaul) if the numbers

of linehaul and backhaul customers differ considerably. Using a heterogeneous fleet,

such a problem could be solved by using a double decker vehicle for routes with a

mixture of linehaul and backhaul customers, and a vehicle without LSP (rear or side

loaded) for routes with only one kind of customers.

The problems considered in this thesis are static and deterministic. Deviating from

that, problem variants with dynamic demands may be considered. That is, further

requests turn up during the execution of a route, e.g. additional goods need to

be picked up. This situation would not only require an adaptation of the route,

but also an incorporation of additional items into the packing plan. An important

prerequisite is an efficient and effective solution approach that generates good, fea-

sible solutions within very short computing times. Stochasticity can be regarded,

for example, concerning the item sizes. In particular, if items are to be picked up,

the information about the item sizes can be incorrect. The edges might be mea-

sured falsely or merely estimated. Thus, designated solutions need to be sufficiently

robust in order to cope with such inaccuracies. Furthermore, the execution of a

route can be influenced by stochastic processes. In particular, the required driving

times cannot always be predicted reliably. In this context, a robust planning aims

at minimizing the probability of violating time windows.

Moreover, rather simple packing heuristics were employed in this thesis because

strong computational requirements prevent the use of more sophisticated CLP ap-

proaches. Nevertheless, technological advances and more elaborated integrations of

routing and packing algorithms may enable using such approaches in the future.

237

Bibliography

Allen, S. D.; Burke, E. K.; Kendall, G. (2011): A hybrid placement strategy for the

three-dimensional strip packing problem. In: European Journal of Operational

Research, 209, 3, pp. 219–227.

Altınel, İ. K.; Öncan, T. (2005): A new enhancement of the Clarke and Wright

savings heuristic for the capacitated vehicle routing problem. In: Journal of the

Operational Research Society , 56, 8, pp. 954–961.

Angelelli, E.; Mansini, R. (2002): The Vehicle Routing Problem with Time Windows

and Simultaneous Pick-up and Delivery. In: A. Klose; M. G. Speranza; L. N. van

Wassenhove, eds., Quantitative Approaches to Distribution Logistics and Supply

Chain Management , pp. 249–267, Springer Berlin Heidelberg, Berlin, Heidelberg.

Anily, S. (1996): The vehicle-routing problem with delivery and back-haul options.

In: Naval Research Logistics , 43, 3, pp. 415–434.

Aprile, D.; Egeblad, J.; Garavelli, A. C.; Lisi, S.; Pisinger, D. (2007): Logistics op-

timization: vehicle routing with loading constraints. In: ICPR-19th International

Conference on Production Research.

Araya, I.; Riff, M.-C. (2014): A beam search approach to the container loading

problem. In: Computers & Operations Research, 43, pp. 100–107.

Attanasio, A.; Fuduli, A.; Ghiani, G.; Triki, C. (2007): Integrated Shipment Dis-

patching and Packing Problems: A Case Study. In: Journal of Mathematical

Modelling and Algorithms , 6, 1, pp. 77–85.

Avci, M.; Topaloglu, S. (2015): An adaptive local search algorithm for vehicle rout-

ing problem with simultaneous and mixed pickups and deliveries. In: Computers

& Industrial Engineering , 83, pp. 15–29.

Avci, M.; Topaloglu, S. (2016): A hybrid metaheuristic algorithm for heterogeneous

vehicle routing problem with simultaneous pickup and delivery. In: Expert Sys-

tems with Applications , 53, pp. 160–171.

Baker, B. S.; Coffman, Jr., E. G.; Rivest, R. L. (1980): Orthogonal Packings in Two

Dimensions. In: SIAM Journal on Computing , 9, 4, pp. 846–855.

XXIV

BIBLIOGRAPHY

Baldacci, R.; Mingozzi, A.; Roberti, R. (2011): New Route Relaxation and Pricing

Strategies for the Vehicle Routing Problem. In: Operations Research, 59, 5, pp.

1269–1283.

Bartók, T.; Imreh, C. (2011): Pickup and Delivery Vehicle Routing with Multidi-

mensional Loading Constraints. In: Acta Cybernetica, 20, 1, pp. 17–33.

Belloso, J.; Juan, A. A.; Faulin, J.; Serrano, A. (2015): Using multi-start biased

randomization of heuristics to solve the vehicle routing problem with clustered

backhauls. In: K. Sheibani; P. Hirsch; T. E. Nordlander; R. Montemanni; S. Sofi-

anopoulou; J. Faulin, eds., Lecture Notes in Management Science, p. 16, Vienna.

Belmecheri, F.; Prins, C.; Yalaoui, F.; Amodeo, L. (2013): Particle swarm opti-

mization algorithm for a vehicle routing problem with heterogeneous fleet, mixed

backhauls, and time windows. In: Journal of Intelligent Manufacturing , 24, 4, pp.

775–789.

Bent, R.; van Hentenryck, P. (2004): A Two-Stage Hybrid Local Search for the

Vehicle Routing Problem with Time Windows. In: Transportation Science, 38, 4,

pp. 515–530.

Bianchessi, N.; Righini, G. (2007): Heuristic algorithms for the vehicle routing

problem with simultaneous pick-up and delivery. In: Computers & Operations

Research, 34, 2, pp. 578–594.

Bischoff, E. E. (2006): Three-dimensional packing of items with limited load bearing

strength. In: European Journal of Operational Research, 168, 3, pp. 952–966.

Bischoff, E. E.; Janetz, F.; Ratcliff, M. (1995): Loading pallets with non-identical

items. In: European Journal of Operational Research, 84, 3, pp. 681–692.

Bischoff, E. E.; Ratcliff, M. (1995): Issues in the development of approaches to

container loading. In: Omega, 23, 4, pp. 377–390.

Böge, A.; Böge, W., eds. (2017): Handbuch Maschinenbau: Grundlagen und

Anwendungen der Maschinenbau-Technik . Springer Vieweg, Wiesbaden, 23.,

überarbeitete auflage edn.

XXV

BIBLIOGRAPHY

Bortfeldt, A. (2012): A hybrid algorithm for the capacitated vehicle routing prob-

lem with three-dimensional loading constraints. In: Computers & Operations Re-

search, 39, 9, pp. 2248–2257.

Bortfeldt, A.; Gehring, H. (2001): A hybrid genetic algorithm for the container

loading problem. In: European Journal of Operational Research, 131, 1, pp. 143–

161.

Bortfeldt, A.; Gehring, H.; Mack, D. (2003): A parallel tabu search algorithm for

solving the container loading problem. In: Parallel Computing , 29, 5, pp. 641–662.

Bortfeldt, A.; Hahn, T.; Männel, D.; Mönch, L. (2015): Hybrid algorithms for the

vehicle routing problem with clustered backhauls and 3D loading constraints. In:

European Journal of Operational Research, 243, 1, pp. 82–96.

Bortfeldt, A.; Homberger, J. (2013): Packing first, routing second—a heuristic for

the vehicle routing and loading problem. In: Computers & Operations Research,

40, 3, pp. 873–885.

Bortfeldt, A.; Wäscher, G. (2013): Constraints in container loading – A state-of-

the-art review. In: European Journal of Operational Research, 229, 1, pp. 1–20.

Brandão, J. (2006): A new tabu search algorithm for the vehicle routing problem

with backhauls. In: European Journal of Operational Research, 173, 2, pp. 540–

555.

Casco, D. O.; Golden, B. L.; Wasil, E. A. (1988): Vehicle routing with backhauls:

Models, algorithms, and case studies. In: B. L. Golden, ed., Vehicle routing , Stud-

ies in management science and systems, pp. 127–147, North-Holland, Amsterdam

u.a.

Çatay, B. (2010): A new saving-based ant algorithm for the Vehicle Routing Problem

with Simultaneous Pickup and Delivery. In: Expert Systems with Applications , 37,

10, pp. 6809–6817.

Ceschia, S.; Schaerf, A.; Stützle, T. (2013): Local search techniques for a routing-

packing problem. In: Computers & Industrial Engineering , 66, 4, pp. 1138–1149.

Chabrier, A. (2006): Vehicle Routing Problem with elementary shortest path based

column generation. In: Computers & Operations Research, 33, 10, pp. 2972–2990.

XXVI

BIBLIOGRAPHY

Chen, C. S.; Lee, S. M.; Shen, Q. S. (1995): An analytical model for the container

loading problem. In: European Journal of Operational Research, 80, 1, pp. 68–76.

Chen, J. F.; Wu, T. H. (2006): Vehicle routing problem with simultaneous deliveries

and pickups. In: Journal of the Operational Research Society , 57, 5, pp. 579–587.

Christensen, S. G.; Rousøe, D. M. (2009): Container loading with multi-drop con-

straints. In: International Transactions in Operational Research, 16, 6, pp. 727–

743.

Christofides, N.; Eilon, S. (1969): An Algorithm for the Vehicle-dispatching Prob-

lem. In: Journal of the Operational Research Society , 20, 3, pp. 309–318.

Christofides, N.; Mingozzi, A.; Toth, P. (1979): The vehicle routing problem. In:

N. Christofides; A. Mingozzi; P. Toth; C. Sandi, eds., Combinatorial optimization,

A Wiley-Interscience publiction, Wiley, Chichester.

Christofides, N.; Mingozzi, A.; Toth, P. (1981): State-space relaxation procedures

for the computation of bounds to routing problems. In: Networks , 11, 2, pp.

145–164.

Clarke, G.; Wright, J. W. (1964): Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points. In: Operations Research, 12, 4, pp. 568–581.

Cook, W.; Rich, J. L. (1999): A parallel cutting-plane algorithm for the vehicle

routing problem with time windows. In: Computational and Applied Mathematics

Department, Rice University, Houston, TX, Technical Report .

Côté, J. F.; Guastaroba, G.; Speranza, M. G. (2017): The value of integrating

loading and routing. In: European Journal of Operational Research, 257, 1, pp.

89–105.

Crispim, J.; Brandão, J. (2001): Reactive tabu search and variable neighbourhood

descent applied to the vehicle routing problem with backhauls. In: MIC’2001–4th

Metaheuristics International Conference, pp. 631–636.

Crispim, J.; Brandão, J. (2005): Metaheuristics Applied to Mixed and Simultaneous

Extensions of Vehicle Routing Problems with Backhauls. In: The Journal of the

Operational Research Society , 56, 11, pp. 1296–1302.

XXVII

BIBLIOGRAPHY

Dantzig, G. B.; Ramser, J. H. (1959): The Truck Dispatching Problem. In: Man-

agement Science, 6, 1, pp. 80–91.

Davies, A.; Bischoff, E. E. (1999): Weight distribution considerations in container

loading. In: European Journal of Operational Research, 114, 3, pp. 509–527.

Deif, I.; Bodin, L. (1984): Extension of the Clarke and Wright algorithm for solving

the vehicle routing problem with backhauling. In: Proceedings of the Babson con-

ference on software uses in transportation and logistics management , pp. 75–96.

Dell’Amico, M.; Righini, G.; Salani, M. (2006): A Branch-and-Price Approach to

the Vehicle Routing Problem with Simultaneous Distribution and Collection. In:

Transportation Science, 40, 2, pp. 235–247.

Demir, E.; Bektaş, T.; Laporte, G. (2012): An adaptive large neighborhood search

heuristic for the Pollution-Routing Problem. In: European Journal of Operational

Research, 223, 2, pp. 346–359.

Derigs, U.; Metz, A. (1992): A matching-based approach for solving a delivery/pick-

up vehicle routing problem with time constraints. In: OR Spektrum, 14, 2, pp.

91–106.

Desaulniers, G.; Lessard, F.; Hadjar, A. (2008): Tabu Search, Partial Elementarity,

and Generalized k -Path Inequalities for the Vehicle Routing Problem with Time

Windows. In: Transportation Science, 42, 3, pp. 387–404.

Dethloff, J. (2001): Vehicle routing and reverse logistics: The vehicle routing prob-

lem with simultaneous delivery and pick-up. In: OR Spektrum, 23, 1, pp. 79–96.

Dethloff, J. (2002): Relation between Vehicle Routing Problems: An Insertion

Heuristic for the Vehicle Routing Problem with Simultaneous Delivery and Pick-

Up Applied to the Vehicle Routing Problem with Backhauls. In: The Journal of

the Operational Research Society , 53, 1, pp. 115–118.

Diestel, R. (2000): Graph theory , vol. 173 of Graduate texts in mathematics .

Springer, New York, NY, 2. ed. edn.

Dominguez, O.; Guimarans, D.; Juan, A. A. (2015): A Hybrid Heuristic for the

2L-VRP with Clustered Backhauls. In: Proceedings of the XVI Conferencia de la

Asociación Española para la Inteligencia Artificial (CAEPIA).

XXVIII

BIBLIOGRAPHY

Domschke, W.; Drexl, A.; Klein, R.; Scholl, A. (2015): Einführung in Operations

Research. Springer Berlin Heidelberg, Berlin, Heidelberg.

Duhamel, C.; Potvin, J.-Y.; Rousseau, J.-M. (1997): A Tabu Search Heuristic for the

Vehicle Routing Problem with Backhauls and Time Windows. In: Transportation

Science, 31, 1, pp. 49–59.

Eley, M. (2002): Solving container loading problems by block arrangement. In:

European Journal of Operational Research, 141, 2, pp. 393–409.

Escobar-Falcón, L. M.; Álvarez-Mart́ınez, D.; Granada-Echeverri, M.; Escobar,

J. W.; Romero-Lázaro, R. A. (2016): A matheuristic algorithm for the three-

dimensional loading capacitated vehicle routing problem (3L-CVRP). In: Revista

Facultad de Ingenieŕıa Universidad de Antioquia, 78, pp. 9–20.

eurostat (2017): Summary of annual road freight transport by type of

operation and type of transport (1 000 t, Mio Tkm, Mio Veh-km),

URL: http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=road_

go_ta_tott&lang=en (Accessed: 13/11/2017).

Fan, J. (2011): The Vehicle Routing Problem with Simultaneous Pickup and Deliv-

ery Based on Customer Satisfaction. In: Procedia Engineering , 15, pp. 5284–5289.

Fanslau, T.; Bortfeldt, A. (2010): A Tree Search Algorithm for Solving the Container

Loading Problem. In: INFORMS Journal on Computing , 22, 2, pp. 222–235.

Fasano, G. (1999): Cargo Analytical Integration in Space Engineering: A Three-

dimensional Packing Model. In: T. A. Ciriani; S. Gliozzi; E. L. Johnson; R. Tadei,

eds., Operational Research in Industry , pp. 232–246, Palgrave Macmillan UK,

London.

Fekete, S. P.; Schepers, J. (1997): A new exact algorithm for general orthogonal d-

dimensional knapsack problems. In: R. Burkard; G. Woeginger, eds., Algorithms -

ESA ’97 , vol. 1284 of Lecture Notes in Computer Science, pp. 144–156, Springer,

Berlin and Heidelberg.

Fekete, S. P.; Schepers, J. (2004): A Combinatorial Characterization of Higher-

Dimensional Orthogonal Packing. In: Mathematics of Operations Research, 29, 2,

pp. 353–368.

XXIX

http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=road_go_ta_tott&lang=en
http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=road_go_ta_tott&lang=en

BIBLIOGRAPHY

Fekete, S. P.; Schepers, J.; van der Veen, J. C. (2007): An Exact Algorithm for

Higher-Dimensional Orthogonal Packing. In: Operations Research, 55, 3, pp. 569–

587.

Fox, K. R.; Gavish, B.; Graves, S. C. (1980): Technical Note—An n-Constraint For-

mulation of the (Time-Dependent) Traveling Salesman Problem. In: Operations

Research, 28, 4, pp. 1018–1021.

Fuellerer, G.; Doerner, K. F.; Hartl, R. F.; Iori, M. (2010): Metaheuristics for

vehicle routing problems with three-dimensional loading constraints. In: European

Journal of Operational Research, 201, 3, pp. 751–759.

Gajpal, Y.; Abad, P. L. (2009): Multi-ant colony system (MACS) for a vehicle

routing problem with backhauls. In: European Journal of Operational Research,

196, 1, pp. 102–117.

Ganesh, K.; Narendran, T. T. (2007): CLOVES: A cluster-and-search heuristic to

solve the vehicle routing problem with delivery and pick-up. In: European Journal

of Operational Research, 178, 3, pp. 699–717.

Garcia, B.-L.; Potvin, J.-Y.; Rousseau, J.-M. (1994): A parallel implementation of

the Tabu search heuristic for vehicle routing problems with time window con-

straints. In: Computers & Operations Research, 21, 9, pp. 1025–1033.

Garćıa-Nájera, A.; Bullinaria, J. A.; Gutiérrez-Andrade, M. A. (2015): An evolu-

tionary approach for multi-objective vehicle routing problems with backhauls. In:

Computers & Industrial Engineering , 81, pp. 90–108.

Gehring, H.; Bortfeldt, A. (1997): A Genetic Algorithm for Solving the Container

Loading Problem. In: International Transactions in Operational Research, 4, 5-6,

pp. 401–418.

Gehring, H.; Homberger, J. (1999): A parallel hybrid evolutionary metaheuristic for

the vehicle routing problem with time windows. In: Proceedings of EUROGEN99 ,

vol. 2, pp. 57–64, Springer, Berlin.

Gehring, H.; Menschner, K.; Meyer, M. (1990): A computer-based heuristic for pack-

ing pooled shipment containers. In: European Journal of Operational Research,

44, 2, pp. 277–288.

XXX

BIBLIOGRAPHY

Gélinas, S.; Desrochers, M.; Desrosiers, J.; Solomon, M. M. (1995): A new branching

strategy for time constrained routing problems with application to backhauling.

In: Annals of Operations Research, 61, 1, pp. 91–109.

Gendreau, M.; Iori, M.; Laporte, G.; Martello, S. (2006): A Tabu Search Algorithm

for a Routing and Container Loading Problem. In: Transportation Science, 40, 3,

pp. 342–350.

George, J. A.; Robinson, D. F. (1980): A heuristic for packing boxes into a container.

In: Computers & Operations Research, 7, 3, pp. 147–156.

Ghaziri, H.; Osman, I. H. (2006): Self-organizing feature maps for the vehicle routing

problem with backhauls. In: Journal of Scheduling , 9, 2, pp. 97–114.

Gilmore, P. C.; Gomory, R. E. (1965): Multistage Cutting Stock Problems of Two

and More Dimensions. In: Operations Research, 13, 1, pp. 94–120.

Goetschalckx, M.; Jacobs-Blecha, C. (1989): The vehicle routing problem with back-

hauls. In: European Journal of Operational Research, 42, 1, pp. 39–51.

Goetschalckx, M.; Jacobs-Blecha, C. (1993): The vehicle routing problem with back-

hauls: Properties and solution algorithms. In: Technical Report MHRC-TR-88-13,

Georgia Institute.

Goksal, F. P.; Karaoglan, I.; Altiparmak, F. (2013): A hybrid discrete particle

swarm optimization for vehicle routing problem with simultaneous pickup and

delivery. In: Computers & Industrial Engineering , 65, 1, pp. 39–53.

Golden, B.; Assad, A.; Levy, L.; Gheysens, F. (1984): The fleet size and mix vehicle

routing problem. In: Computers & Operations Research, 11, 1, pp. 49–66.

Golden, B. L.; Baker, E.; Alfaro, J.; Schaffer, J. (1985): The vehicle routing problem

with backhauling: two approaches. In: Hammesfahr; RD, eds., Proceedings of the

twenty-first annual meeting of the S.E. TIMS, Myrtle Beach, SC, USA.

Gonçalves, J. F.; Resende, M. G. (2012): A parallel multi-population biased random-

key genetic algorithm for a container loading problem. In: Computers & Opera-

tions Research, 39, 2, pp. 179–190.

XXXI

BIBLIOGRAPHY

Halse, K. (1992): Modeling and solving complex vehicle routing problems . Ph.D.

Thesis , Technical University of Denmark, Lyngby.

Hasama, T.; Kokubugata, H.; Kawashima, H. (1998): A heuristic approach based on

the string model to solve vehicle routing problem with backhauls. In: Proceedings

of the 5th World Congress on Intelligent Transport Systems .

Hemminki, J. (1994): Container loading with variable strategies in each layer . Uni-

versity of Turku.

Hezer, S.; Kara, Y. (2011): Solving vehicle routing problem with simultaneous deliv-

ery and pick-up using bacterial foraging optimization algorithm. In: Proceeding of

the 41st International Conference on Computers & Industrial Engineering 2011 ,

Curran, Red Hook, NY.

Hifi, M. (2002): Approximate algorithms for the container loading problem. In:

International Transactions in Operational Research, 9, 6, pp. 747–774.

Homberger, J. (2000): Verteilt-parallele Metaheuristiken zur Tourenplanung:

Lösungsverfahren für das Standardproblem mit Zeitfensterrestriktionen: Zugl.:

Hagen, Fernuniv., Diss., 2000 . Gabler Edition Wissenschaft, Dt. Univ.-Verl.,

Wiesbaden, 1. aufl. edn.

Homberger, J.; Gehring, H. (1999): Two Evolutionary Metaheuristics For The Ve-

hicle Routing Problem With Time Windows. In: INFOR: Information Systems

and Operational Research, 37, 3, pp. 297–318.

Hopper, E. (2000): Two-dimensional packing utilising evolutionary algorithms and

other meta-heuristic methods . Ph.D. thesis, University of Wales. Cardiff.

Iori, M.; Martello, S. (2010): Routing problems with loading constraints. In: TOP ,

18, 1, pp. 4–27.

Irnich, S.; Schneider, M.; Vigo, D. (2014a): Four Variants of the Vehicle Rout-

ing Problem. In: P. Toth; D. Vigo, eds., Vehicle routing , MOS-SIAM series on

optimization, SIAM, Philadelphia, PA.

Irnich, S.; Toth, P.; Vigo, D. (2014b): The Family of Vehicle Routing Problems. In:

P. Toth; D. Vigo, eds., Vehicle routing , MOS-SIAM series on optimization, pp.

1–33, SIAM, Philadelphia, PA.

XXXII

BIBLIOGRAPHY

Irnich, S.; Villeneuve, D. (2006): The Shortest-Path Problem with Resource Con-

straints and k -Cycle Elimination for k≥ 3. In: INFORMS Journal on Computing ,

18, 3, pp. 391–406.

Jakobs, S. (1996): On genetic algorithms for the packing of polygons. In: European

Journal of Operational Research, 88, 1, pp. 165–181.

Jepsen, M.; Petersen, B.; Spoorendonk, S.; Pisinger, D. (2008): Subset-Row Inequal-

ities Applied to the Vehicle-Routing Problem with Time Windows. In: Operations

Research, 56, 2, pp. 497–511.

Jun, Y.; Kim, B.-I. (2012): New best solutions to VRPSPD benchmark problems

by a perturbation based algorithm. In: Expert Systems with Applications , 39, 5,

pp. 5641–5648.

Junqueira, L.; Morabito, R.; Sato Yamashita, D. (2012a): MIP-based approaches

for the container loading problem with multi-drop constraints. In: Annals of Op-

erations Research, 199, 1, pp. 51–75.

Junqueira, L.; Morabito, R.; Sato Yamashita, D. (2012b): Three-dimensional con-

tainer loading models with cargo stability and load bearing constraints. In: Com-

puters & Operations Research, 39, 1, pp. 74–85.

Junqueira, L.; Oliveira, J. F.; Carravilla, M. A.; Morabito, R. (2013): An opti-

mization model for the vehicle routing problem with practical three-dimensional

loading constraints. In: International Transactions in Operational Research, 20,

5, pp. 645–666.

Kallehauge, B.; Larsen, J.; Madsen, O. B. (2000): Lagrangean duality and non-

differentiable optimization applied on routing with time windows-experimental

results. In: Relatório interno IMM-REP-2000-8, Department of Mathematical

Modeling, Technical University of Denmark, Lyngby, Dinamarca.

Karabulut, K.; İnceoğlu, M. M. (2005): A Hybrid Genetic Algorithm for Packing

in 3D with Deepest Bottom Left with Fill Method. In: T. Yakhno, ed., Advances

in Information Systems , vol. 3261 of Lecture Notes in Computer Science, pp.

441–450, Springer-Verlag Berlin/Heidelberg, Berlin, Heidelberg.

XXXIII

BIBLIOGRAPHY

Klug, F. (2010): Logistikmanagement in der Automobilindustrie: Grundlagen der

Logistik im Automobilbau. VDI-Buch, Springer, Berlin.

Knight, K. W.; Hofer, J. P. (1968): Vehicle Scheduling with Timed and Connected

Calls: A Case Study. In: Journal of the Operational Research Society , 19, S3, pp.

299–310.

Kohl, N.; Desrosiers, J.; Madsen, O. B. G.; Solomon, M. M.; Soumis, F. (1999):

2-Path Cuts for the Vehicle Routing Problem with Time Windows. In: Trans-

portation Science, 33, 1, pp. 101–116.

Kolen, A. W. J.; Rinnooy Kan, A. H. G.; Trienekens, H. W. J. M. (1987): Vehicle

Routing with Time Windows. In: Operations Research, 35, 2, pp. 266–273.

Kontoravdis, G.; Bard, J. F. (1995): A GRASP for the Vehicle Routing Problem

with Time Windows. In: ORSA Journal on Computing , 7, 1, pp. 10–23.

Kopp, D. (2015): Ein Packverfahren für das Capacitated-Vehicle-Routing-Problem

mit 3D-Loading-Constraints auf der Basis des Bottom-Left-Fill-Algorithmus mit

Implementierung . Master thesis , Otto-von-Guericke University, Magdeburg.

Krebs, C. (2017): Das Capacitated-Vehicle-Routing-Problem mit komplexen 3D-

Laderestriktionen. Master thesis , Otto-von-Guericke University, Magdeburg.

Kruskal, J. B. (1956): On the Shortest Spanning Subtree of a Graph and the Trav-

eling Salesman Problem. In: Proceedings of the American Mathematical Society ,

7, 1, pp. 48.

Lacomme, P.; Toussaint, H.; Duhamel, C. (2013): A GRASP×ELS for the vehicle

routing problem with basic three-dimensional loading constraints. In: Engineering

Applications of Artificial Intelligence, 26, 8, pp. 1795–1810.

Larsen, J. (1999): Parallelization of the vehicle routing problem with time windows .

Ph.D. thesis, Technical University of Denmark, Department of Informatics and

Mathematical Modeling.

Lenstra, J. K.; Kan, A. H. G. R. (1981): Complexity of vehicle routing and schedul-

ing problems. In: Networks , 11, 2, pp. 221–227.

XXXIV

BIBLIOGRAPHY

Li, J.; Pardalos, P. M.; Sun, H.; Pei, J.; Zhang, Y. (2015): Iterated local search

embedded adaptive neighborhood selection approach for the multi-depot vehicle

routing problem with simultaneous deliveries and pickups. In: Expert Systems

with Applications , 42, 7, pp. 3551–3561.

Liu, D.; Teng, H. (1999): An improved BL-algorithm for genetic algorithm of the

orthogonal packing of rectangles. In: European Journal of Operational Research,

112, 2, pp. 413–420.

Lodi, A.; Martello, S.; Vigo, D. (1999): Heuristic and Metaheuristic Approaches for

a Class of Two-Dimensional Bin Packing Problems. In: INFORMS Journal on

Computing , 11, 4, pp. 345–357.

Ma, H.-w.; Zhu, W.; Xu, S. (2011): Research on the Algorithm for 3L-CVRP with

Considering the Utilization Rate of Vehicles. In: R. Chen, ed., Intelligent Com-

puting and Information Science, vol. 134 of Communications in Computer and

Information Science, pp. 621–629, Springer Berlin Heidelberg, Berlin, Heidelberg.

Mack, D.; Bortfeldt, A.; Gehring, H. (2004): A parallel hybrid local search algorithm

for the container loading problem. In: International Transactions in Operational

Research, 11, 5, pp. 511–533.

Madsen, O. B. (1976): Optimal scheduling of trucks - A routing problem with tight

due times for delivery. In: Optimization applied to transportation systems , pp.

126–136.

Männel, D.; Bortfeldt, A. (2016): A hybrid algorithm for the vehicle routing problem

with pickup and delivery and three-dimensional loading constraints. In: European

Journal of Operational Research, 254, 3, pp. 840–858.

Maquera, G.; Laguna, M.; Gandelman, D. A.; Sant’Anna, A. P. (2012): Scatter

Search Applied to the Vehicle Routing Problem with Simultaneous Delivery and

Pickup. In: P.-Y. Yin, ed., Trends in Developing Metaheuristics, Algorithms, and

Optimization Approaches , pp. 149–168, IGI Global.

Martello, S.; Pisinger, D.; Vigo, D. (2000): The Three-Dimensional Bin Packing

Problem. In: Operations Research, 48, 2, pp. 256–267.

XXXV

BIBLIOGRAPHY

Massen, F.; Deville, Y.; van Hentenryck, P. (2012): Pheromone-Based Heuristic

Column Generation for Vehicle Routing Problems with Black Box Feasibility. In:

N. Beldiceanu; N. Jussien; É. Pinson, eds., Integration of AI and OR techniques

in constraint programming for combinatorial optimization problems , vol. 7298 of

SpringerLink Bücher , pp. 260–274, Springer, Berlin.

Mester, D.; Bräysy, O.; Dullaert, W. (2007): A multi-parametric evolution strategies

algorithm for vehicle routing problems. In: Expert Systems with Applications , 32,

2, pp. 508–517.

Miao, L.; Ruan, Q.; Woghiren, K.; Ruo, Q. (2012): A hybrid genetic algorithm

for the vehicle routing problem with three-dimensional loading constraints. In:

RAIRO - Operations Research, 46, 1, pp. 63–82.

Min, H. (1989): The multiple vehicle routing problem with simultaneous delivery

and pick-up points. In: Transportation Research Part A: General , 23, 5, pp. 377–

386.

Min, H.; Current, J.; Schilling, D. (1992): The multiple depot vehicle routing prob-

lem with backhauling. In: Journal of Business Logistics , 13, 1, pp. 259.

Mingozzi, A.; Giorgi, S.; Baldacci, R. (1999): An Exact Method for the Vehicle

Routing Problem with Backhauls. In: Transportation Science, 33, 3, pp. 315–329.

Mitra, S. (2005): An Algorithm for the Generalized Vehicle Routing Problem With

Backhauling. In: Asia-Pacific Journal of Operational Research, 22, 02, pp. 153–

169.

Mosheiov, G. (1998): Vehicle routing with pick-up and delivery: Tour-partitioning

heuristics. In: Computers & Industrial Engineering , 34, 3, pp. 669–684.

Moura, A. (2008): A Multi-Objective Genetic Algorithm for the Vehicle Rout-

ing with Time Windows and Loading Problem. In: A. Bortfeldt; J. Homberger;

H. Kopfer; G. Pankratz; R. Strangmeier, eds., Intelligent Decision Support , Gabler

Edition Wissenschaft, pp. 187–201, Betriebswirtschaftlicher Verlag Dr. Th. Gabler

/ GWV Fachverlage GmbH Wiesbaden, Wiesbaden.

Moura, A.; Oliveira, J. F. (2005): A GRASP Approach to the Container-Loading

Problem. In: IEEE Intelligent Systems , 20, 4, pp. 50–57.

XXXVI

BIBLIOGRAPHY

Moura, A.; Oliveira, J. F. (2009): An integrated approach to the vehicle routing

and container loading problems. In: OR Spectrum, 31, 4, pp. 775–800.

Nagy, G.; Salhi, S. (2005): Heuristic algorithms for single and multiple depot vehicle

routing problems with pickups and deliveries. In: European Journal of Operational

Research, 162, 1, pp. 126–141.

Nagy, G.; Wassan, N. A.; Salhi, S. (2013): The vehicle routing problem with re-

stricted mixing of deliveries and pickups. In: Journal of Scheduling , 16, 2, pp.

199–213.

Nagy, G.; Wassan, N. A.; Speranza, M. G.; Archetti, C. (2015): The Vehicle Routing

Problem with Divisible Deliveries and Pickups. In: Transportation Science, 49, 2,

pp. 271–294.

Ong, J. O.; Suprayogi (2011): Vehicle Routing Problem with Backhaul, Multiple

Trips and Time Window. In: Jurnal Teknik Industri , 13, 1.

Osman, I. H.; Wassan, N. A. (2002): A reactive tabu search meta-heuristic for the

vehicle routing problem with back-hauls. In: Journal of Scheduling , 5, 4, pp.

263–285.

Pace, S.; Turky, A.; Moser, I.; Aleti, A. (2015): Distributing Fibre Boards: A Prac-

tical Application of the Heterogeneous Fleet Vehicle Routing Problem with Time

Windows and Three-dimensional Loading Constraints. In: Procedia Computer

Science, 51, pp. 2257–2266.

Padberg, M. (2000): Packing small boxes into a big box. In: Mathematical Methods

of Operational Research, 52, 1, pp. 1–21.

Palhazi Cuervo, D.; Goos, P.; Sörensen, K.; Arráiz, E. (2014): An iterated local

search algorithm for the vehicle routing problem with backhauls. In: European

Journal of Operational Research, 237, 2, pp. 454–464.

Parragh, S. N.; Doerner, K. F.; Hartl, R. F. (2008): A survey on pickup and delivery

problems. In: Journal für Betriebswirtschaft , 58, 1, pp. 21–51.

Parreño, F.; Alvarez-Valdes, R.; Tamarit, J. M.; Oliveira, J. F. (2008): A Maximal-

Space Algorithm for the Container Loading Problem. In: INFORMS Journal on

Computing , 20, 3, pp. 412–422.

XXXVII

BIBLIOGRAPHY

Pinto, T.; Alves, C.; De, C.; Moura, A. (2015): An insertion heuristic for the

capacitated vehicle routing problem with loading constraints and mixed linehauls

and backhauls. In: FME Transaction, 43, 4, pp. 311–318.

Pisinger, D. (2002): Heuristics for the container loading problem. In: European

Journal of Operational Research, 141, 2, pp. 382–392.

Pisinger, D.; Ropke, S. (2007): A general heuristic for vehicle routing problems. In:

Computers & Operations Research, 34, 8, pp. 2403–2435.

Polat, O.; Kalayci, C. B.; Kulak, O.; Günther, H.-O. (2015): A perturbation based

variable neighborhood search heuristic for solving the Vehicle Routing Problem

with Simultaneous Pickup and Delivery with Time Limit. In: European Journal

of Operational Research, 242, 2, pp. 369–382.

Pollaris, H.; Braekers, K.; Caris, A.; Janssens, G. K.; Limbourg, S. (2015): Vehicle

routing problems with loading constraints: State-of-the-art and future directions.

In: OR Spectrum, 37, 2, pp. 297–330.

Potvin, J.-Y.; Duhamel, C.; Guertin, F. (1996): A genetic algorithm for vehicle

routing with backhauling. In: Applied Intelligence, 6, 4, pp. 345–355.

Pullen, H. G. M. (1967): A computer application to a transport scheduling problem.

In: The Computer Journal , 10, 1, pp. 10–13.

Ratcliff, M. S. W.; Bischoff, E. E. (1998): Allowing for weight considerations in

container loading. In: OR Spektrum, 20, 1, pp. 65–71.

Reil, S.; Bortfeldt, A.; Mönch, L. (2017): Heuristics for vehicle routing problems

with backhauls, time windows, and 3D loading constraints. In: European Journal

of Operational Research.

Reimann, M.; Doerner, K.; Hartl, R. F. (2002): Insertion Based Ants for Vehicle

Routing Problems with Backhauls and Time Windows. In: M. Dorigo; G. Di Caro;

M. Sampels, eds., Ant Algorithms: Third International Workshop, ANTS 2002

Brussels, Belgium, September 12–14, 2002 Proceedings , pp. 135–148, Springer

Berlin Heidelberg, Berlin, Heidelberg.

XXXVIII

BIBLIOGRAPHY

Reimann, M.; Ulrich, H. (2006): Comparing backhauling strategies in vehicle rout-

ing using Ant Colony Optimization. In: Central European Journal of Operations

Research, 14, 2, pp. 105–123.

Reinelt, G. (1991): TSPLIB—A Traveling Salesman Problem Library. In: ORSA

Journal on Computing , 3, 4, pp. 376–384.

Rieck, J.; Zimmermann, J. (2013): Exact Solutions to the Symmetric and Asym-

metric Vehicle Routing Problem with Simultaneous Delivery and Pick-Up. In:

Business Research, 6, 1, pp. 77–92.

Ropke, S.; Pisinger, D. (2006a): A unified heuristic for a large class of Vehicle

Routing Problems with Backhauls. In: European Journal of Operational Research,

171, 3, pp. 750–775.

Ropke, S.; Pisinger, D. (2006b): An Adaptive Large Neighborhood Search Heuristic

for the Pickup and Delivery Problem with Time Windows. In: Transportation

Science, 40, 4, pp. 455–472.

Ruan, Q.; Zhang, Z.; Miao, L.; Shen, H. (2013): A hybrid approach for the vehicle

routing problem with three-dimensional loading constraints. In: Computers &

Operations Research, 40, 6, pp. 1579–1589.

Salani, M. (2006): Branch-and-price algorithms for vehicle routing problems . PhD

Thesis , Università degli studi di Milano.

Salhi, S.; Nagy, G. (1999): A Cluster Insertion Heuristic for Single and Multiple

Depot Vehicle Routing Problems with Backhauling. In: The Journal of the Oper-

ational Research Society , 50, 10, pp. 1034.

Shaw, P. (1997): A new local search algorithm providing high quality solutions to

vehicle routing problems. In: APES Group, Dept of Computer Science, University

of Strathclyde, Glasgow, Scotland, Working Paper .

Shaw, P. (1998): Using Constraint Programming and Local Search Methods to

Solve Vehicle Routing Problems. In: M. Maher; J.-F. Puget, eds., Principles

and Practice of Constraint Programming — CP98 , vol. 1520 of Lecture Notes in

Computer Science, pp. 417–431, Springer Berlin Heidelberg, Berlin, Heidelberg.

XXXIX

BIBLIOGRAPHY

Sixt, M. (1996): Dreidimensionale Packprobleme: Lösungsverfahren basierend auf

den Meta-Heuristiken Simulated Annealing und Tabu-Suche. Peter Lang, Eu-

ropäischer Verlag der Wissenschaften, Frankfurt am Main.

Solomon, M. M. (1987): Algorithms for the Vehicle Routing and Scheduling Prob-

lems with Time Window Constraints. In: Operations Research, 35, 2, pp. 254–265.

Subramanian, A.; Drummond, L.; Bentes, C.; Ochi, L. S.; Farias, R. (2010a): A

parallel heuristic for the Vehicle Routing Problem with Simultaneous Pickup and

Delivery. In: Computers & Operations Research, 37, 11, pp. 1899–1911.

Subramanian, A.; Uchoa, E.; Ochi, L. S. (2010b): New Lower Bounds for the Ve-

hicle Routing Problem with Simultaneous Pickup and Delivery. In: P. Festa, ed.,

Experimental algorithms , vol. 6049 of Lecture Notes in Computer Science, pp.

276–287, Springer, Berlin.

Subramanian, A.; Uchoa, E.; Pessoa, A. A.; Ochi, L. S. (2013): Branch-cut-and-

price for the vehicle routing problem with simultaneous pickup and delivery. In:

Optimization Letters , 7, 7, pp. 1569–1581.

Talbi, E.-G. (2009): Metaheuristics: From design to implementation, vol. v.74 of

Wiley Series on Parallel and Distributed Computing . John Wiley & Sons, Hobo-

ken, NJ.

Tang Montané, F. A.; Galvão, R. D. (2006): A tabu search algorithm for the vehicle

routing problem with simultaneous pick-up and delivery service. In: Computers

& Operations Research, 33, 3, pp. 595–619.

Tao, Y.; Wang, F. (2015): An effective tabu search approach with improved loading

algorithms for the 3L-CVRP. In: Computers & Operations Research, 55, pp. 127–

140.

Tarantilis, C. D.; Zachariadis, E. E.; Kiranoudis, C. T. (2009): A Hybrid Meta-

heuristic Algorithm for the Integrated Vehicle Routing and Three-Dimensional

Container-Loading Problem. In: IEEE Transactions on Intelligent Transporta-

tion Systems , 10, 2, pp. 255–271.

Tasan, A. S.; Gen, M. (2012): A genetic algorithm based approach to vehicle routing

XL

BIBLIOGRAPHY

problem with simultaneous pick-up and deliveries. In: Computers & Industrial

Engineering , 62, 3, pp. 755–761.

Terno, J.; Scheithauer, G.; Sommerweiß, U.; Riehme, J. (2000): An efficient ap-

proach for the multi-pallet loading problem. In: European Journal of Operational

Research, 123, 2, pp. 372–381.

Thangiah, S. R.; Potvin, J.-Y.; Sun, T. (1996): Heuristic approaches to vehicle

routing with backhauls and time windows. In: Computers & Operations Research,

23, 11, pp. 1043–1057.

Toth, P.; Vigo, D. (1996): A Heuristic Algorithm for the Vehicle Routing Problem

with Backhauls. In: L. Bianco; P. Toth, eds., Advanced Methods in Transportation

Analysis , pp. 585–608, Springer Berlin Heidelberg, Berlin, Heidelberg.

Toth, P.; Vigo, D. (1997): An Exact Algorithm for the Vehicle Routing Problem

with Backhauls. In: Transportation Science, 31, 4, pp. 372–385.

Toth, P.; Vigo, D. (1999): A heuristic algorithm for the symmetric and asymmetric

vehicle routing problems with backhauls. In: European Journal of Operational

Research, 113, 3, pp. 528–543.

Tütüncü, G. Y.; Carreto, C. A. C.; Baker, B. M. (2009): A visual interactive

approach to classical and mixed vehicle routing problems with backhauls. In:

Omega, 37, 1, pp. 138–154.

Vidal, T.; Crainic, T. G.; Gendreau, M.; Prins, C. (2013): A hybrid genetic al-

gorithm with adaptive diversity management for a large class of vehicle routing

problems with time-windows. In: Computers & Operations Research, 40, 1, pp.

475–489.

Wade, A.; Salhi, S. (2004): An Ant System Algorithm for the Mixed Vehicle Routing

Problem with Backhauls. In: Metaheuristics: Computer Decision-Making , pp.

699–719, Springer US, Boston, MA.

Wade, A. C.; Salhi, S. (2002): An investigation into a new class of vehicle routing

problem with backhauls. In: Omega, 30, 6, pp. 479–487.

XLI

BIBLIOGRAPHY

Wang, C.; Mu, D.; Zhao, F.; Sutherland, J. W. (2015): A parallel simulated anneal-

ing method for the vehicle routing problem with simultaneous pickup–delivery

and time windows. In: Computers & Industrial Engineering , 83, pp. 111–122.

Wang, H.-F.; Chen, Y.-Y. (2012): A genetic algorithm for the simultaneous delivery

and pickup problems with time window. In: Computers & Industrial Engineering ,

62, 1, pp. 84–95.

Wang, L.; Guo, S.; Chen, S.; Zhu, W.; Lim, A. (2010): Two Natural Heuristics for

3D Packing with Practical Loading Constraints. In: B.-T. Zhang; M. A. Orgun,

eds., PRICAI 2010: trends in artificial intelligence, vol. 6230 of Lecture notes in

computer science Lecture notes in artificial intelligence, pp. 256–267, Springer,

Berlin.

Wäscher, G.; Haußner, H.; Schumann, H. (2007): An improved typology of cutting

and packing problems. In: European Journal of Operational Research, 183, 3, pp.

1109–1130.

Wassan, N. (2007): Reactive tabu adaptive memory programming search for the

vehicle routing problem with backhauls. In: Journal of the Operational Research

Society , 58, 12, pp. 1630–1641.

Wassan, N. A.; Nagy, G.; Ahmadi, S. (2008a): A heuristic method for the vehicle

routing problem with mixed deliveries and pickups. In: Journal of Scheduling , 11,

2, pp. 149–161.

Wassan, N. A.; Salhi, S.; Nagy, G.; Wassan, N.; Wade, A. C. (2013): Solving the

Mixed Backhauling Vehicle Routing Problem with Ants. In: International Journal

of Energy Optimization and Engineering , 2, 2, pp. 62–77.

Wassan, N. A.; Wassan, A. H.; Nagy, G. (2008b): A reactive tabu search algo-

rithm for the vehicle routing problem with simultaneous pickups and deliveries.

In: Journal of Combinatorial Optimization, 15, 4, pp. 368–386.

Wei, L.; Zhang, Z.; Lim, A. (2014): An Adaptive Variable Neighborhood Search for

a Heterogeneous Fleet Vehicle Routing Problem with Three-Dimensional Loading

Constraints. In: IEEE Computational Intelligence Magazine, 9, 4, pp. 18–30.

XLII

BIBLIOGRAPHY

Wisniewski, M. A.; Ritt, M.; Buriol, L. S. (2011): A tabu search algorithm for the

capacitated vehicle routing problem with three-dimensional loading constraints.

In: XLIII Simposio Brasilero de Pesquisa Operacional .

Yano, C. A.; Chan, T. J.; Richter, L. K.; Cutler, T.; Murty, K. G.; McGettigan, D.

(1987): Vehicle Routing at Quality Stores. In: Interfaces , 17, 2, pp. 52–63.

Zachariadis, E. E.; Kiranoudis, C. T. (2012): An effective local search approach for

the Vehicle Routing Problem with Backhauls. In: Expert Systems with Applica-

tions , 39, 3, pp. 3174–3184.

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2009): A hybrid meta-

heuristic algorithm for the vehicle routing problem with simultaneous delivery

and pick-up service. In: Expert Systems with Applications , 36, 2, pp. 1070–1081.

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2010): An adaptive mem-

ory methodology for the vehicle routing problem with simultaneous pick-ups and

deliveries. In: European Journal of Operational Research, 202, 2, pp. 401–411.

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2012): The Pallet-Packing

Vehicle Routing Problem. In: Transportation Science, 46, 3, pp. 341–358.

Zachariadis, E. E.; Tarantilis, C. D.; Kiranoudis, C. T. (2016): The Vehicle Rout-

ing Problem with Simultaneous Pick-ups and Deliveries and Two-Dimensional

Loading Constraints. In: European Journal of Operational Research, 251, 2, pp.

369–386.

Zhang, D.; Cai, S.; Ye, F.; Si, Y.-W.; Nguyen, T. T. (2017): A hybrid algorithm

for a vehicle routing problem with realistic constraints. In: Information Sciences ,

394-395, pp. 167–182.

Zhang, T.; Chaovalitwongse, W. A.; Zhang, Y. (2012): Scatter search for the

stochastic travel-time vehicle routing problem with simultaneous pick-ups and

deliveries. In: Computers & Operations Research, 39, 10, pp. 2277–2290.

Zhang, T.; Chaovalitwongse, W. A.; Zhang, Y. (2014): Integrated Ant Colony and

Tabu Search approach for time dependent vehicle routing problems with simulta-

neous pickup and delivery. In: Journal of Combinatorial Optimization, 28, 1, pp.

288–309.

XLIII

BIBLIOGRAPHY

Zhang, Z.; Wei, L.; Lim, A. (2015): An evolutionary local search for the capacitated

vehicle routing problem minimizing fuel consumption under three-dimensional

loading constraints. In: Transportation Research Part B: Methodological , 82, pp.

20–35.

Zhao, X.; Bennell, J. A.; Bektaş, T.; Dowsland, K. (2016): A comparative review

of 3D container loading algorithms. In: International Transactions in Operational

Research, 23, 1-2, pp. 287–320.

Zheng, J.-N.; Chien, C.-F.; Gen, M. (2015): Multi-objective multi-population bi-

ased random-key genetic algorithm for the 3-D container loading problem. In:

Computers & Industrial Engineering , 89, pp. 80–87.

Zhong, Y.; Cole, M. H. (2005): A vehicle routing problem with backhauls and time

windows: A guided local search solution. In: Transportation Research Part E:

Logistics and Transportation Review , 41, 2, pp. 131–144.

Zhu, W.; Qin, H.; Lim, A.; Wang, L. (2012): A two-stage tabu search algorithm with

enhanced packing heuristics for the 3L-CVRP and M3L-CVRP. In: Computers &

Operations Research, 39, 9, pp. 2178–2195.

XLIV

Appendix

XLV

Appendix A

Removal heuristics

In order to determine the most suitable set of removal heuristics, 16 different sets

were defined. In Table A.1, the removal heuristics included in each set are listed.

Set 1 contains all removal heuristics considered in this thesis (see Chapter 4.2.2.1).

Set 2 contains those proposed by Ropke and Pisinger (2006a,b). Set 3 contains

allegedly good heuristics with large average weights throughout the ALNS procedure

(recorded in pre-tests) indicating that they produce good solutions. In sets 4 and

5 the route removal heuristics and the newly developed heuristics, respectively, are

excluded. The remaining sets are based on set 2. The new removal heuristics replace

single heuristics of Ropke and Pisinger (2006a,b).

Table A.1: Explanation of tested sets of removal heuristics

removal set

heuristic 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Shaw
random
worst
cluster
neighb. graph
worst dist.
worst time
Shaw proximity
Shaw time
Shaw demand
historical knowl.
avg. dist.
node neighb.
overlap
random-route
least cust.-route
avg. dist.-route
largest dist.-route
inner route
intersect
route pair

avg.: average, cust.: customers, dist.: distance, knowl.: knowledge, neighb.: neighbourhood

The ALNS is applied to 50 test instances of different VRPBTW variants. In Ta-

ble A.2, the results of these experiments are presented. It contains the average

deviations (∅dev) of the TTDs of the obtained solutions from those of the best

XLVI

A Removal heuristics

known solutions from the literature. In addition, numbers of instances are provided

for which the respective heuristic set found the best solution among the considered

sets (#best).

Table A.2: Comparison of sets of removal heuristics; average deviation from best known
solutions and number of best solutions (50 test instances)

set ∅dev[%] #best

1 0.170 37
2 0.210 33
3 0.621 27
4 0.191 34
5 0.171 32
6 0.222 31
7 0.191 37
8 0.377 34
9 0.266 31
10 0.387 32
11 0.250 30
12 0.162 33
13 0.167 31
14 0.446 25
15 0.300 30
16 0.397 26

#best: number of best solutions (among the con-
sidered sets), ∅dev: average deviation from best
known solution.
Minimum deviation and maximum numbers of
best solutions are bold-faced.

XLVII

Appendix B

Detailed results for VRPBTW instances

In this section, the detailed results of applying the ALNS to the 1D instance sets

described in Chapter 5.2.1 are provided. Abbreviations are used for the references.

They are listed in Table B.1.

Table B.1: Reference abbreviations

abbreviation reference

G89 Goetschalckx and Jacobs-Blecha (1989)
G95 Gélinas et al. (1995)
P96 Potvin et al. (1996)
T97 Toth and Vigo (1997)
C99 Cook and Rich (1999)
K99 Kohl et al. (1999)
L99 Larsen (1999)
K00 Kallehauge et al. (2000)
O02 Osman and Wassan (2002)
R02 Reimann et al. (2002)
B06 Brandão (2006)
C06 Chabrier (2006)
I06 Irnich and Villeneuve (2006)
R06 Ropke and Pisinger (2006a)
S06 Salani (2006)
T06 Tang Montané and Galvão (2006)
M07 Mester et al. (2007)
D08 Desaulniers et al. (2008)
J08 Jepsen et al. (2008)
W08 Wassan et al. (2008b)
G09 Gajpal and Abad (2009)
Z09 Zachariadis et al. (2009)
S10 Subramanian et al. (2010a)
Z10 Zachariadis et al. (2010)
B11 Baldacci et al. (2011)
J12 Jun and Kim (2012)
G15 Garćıa-Nájera et al. (2015)

The results for the VRPBTW instances are given in Table B.2. Information is

provided about the instance sets, instance names, problem variants and the numbers

of customers (n). The instance sets refer to those introduced in Chapter 5.2.1 (cf.

Table 5.1). Furthermore, the TTDs per instance of the best known solutions (BKS),

the corresponding references (ref) presenting the BKS for the first time and the best

TTDs provided by the ALNS are given as well as their deviations (dev) from the

BKS.

XLVIII

B Detailed results for VRPBTW instances

Table B.2: ALNS results for VRPBTW instances

BKS ALNS
TTD ref TTD dev

set instance problem n [DU] [DU] [%]

Sol87 C101 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C102 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C103 VRPTW 100 826.3 K99 828.1 0.21
Sol87 C104 VRPTW 100 822.9 K99 824.8 0.23
Sol87 C105 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C106 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C107 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C108 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C109 VRPTW 100 827.3 K99 828.9 0.20
Sol87 C201 VRPTW 100 589.1 C99 591.6 0.42
Sol87 C202 VRPTW 100 589.1 C99 591.6 0.42
Sol87 C203 VRPTW 100 588.7 K00 591.2 0.42
Sol87 C204 VRPTW 100 588.1 I06 590.6 0.42
Sol87 C205 VRPTW 100 586.4 C99 588.9 0.42
Sol87 C206 VRPTW 100 586.0 C99 588.5 0.43
Sol87 C207 VRPTW 100 585.8 C99 588.3 0.42
Sol87 C208 VRPTW 100 585.8 K00 588.3 0.43
Sol87 R101 VRPTW 100 1, 637.7 K99 1, 642.9 0.32
Sol87 R102 VRPTW 100 1, 466.6 K99 1, 473.6 0.48
Sol87 R103 VRPTW 100 1, 208.7 C99,L99 1, 213.6 0.41
Sol87 R104 VRPTW 100 971.5 I06 981.2 1.00
Sol87 R105 VRPTW 100 1, 355.3 K99 1, 360.8 0.40
Sol87 R106 VRPTW 100 1, 234.6 C99 1, 239.4 0.39
Sol87 R107 VRPTW 100 1, 064.6 C99 1, 072.1 0.71
Sol87 R108 VRPTW 100 932.1 J08 938.2 0.65
Sol87 R109 VRPTW 100 1, 146.9 C99 1, 151.8 0.43
Sol87 R110 VRPTW 100 1, 068.0 C99 1, 072.4 0.41
Sol87 R111 VRPTW 100 1, 048.7 C99 1, 053.5 0.46
Sol87 R112 VRPTW 100 948.6 J08 955.7 0.75
Sol87 R201 VRPTW 100 1, 143.2 K00 1, 152.3 0.79
Sol87 R202 VRPTW 100 1, 029.6 J08 1, 038.5 0.87
Sol87 R203 VRPTW 100 870.8 J08 876.3 0.63
Sol87 R204 VRPTW 100 731.3 B11 735.8 0.61
Sol87 R205 VRPTW 100 949.8 D08 954.2 0.46
Sol87 R206 VRPTW 100 875.9 D08 884.8 1.02
Sol87 R207 VRPTW 100 794.0 D08 798.0 0.50
Sol87 R208 VRPTW 100 725.8 M07 706.9 −2.60
Sol87 R209 VRPTW 100 854.8 J08 860.5 0.67
Sol87 R210 VRPTW 100 900.5 D08 912.5 1.33
Sol87 R211 VRPTW 100 746.7 B11 757.6 1.47
Sol87 RC101 VRPTW 100 1, 619.8 K99 1, 627.7 0.49
Sol87 RC102 VRPTW 100 1, 457.4 C99 1, 461.2 0.26
Sol87 RC103 VRPTW 100 1, 258.0 C99 1, 272.0 1.11
Sol87 RC104 VRPTW 100 1, 132.3 I06 1, 135.8 0.31
Sol87 RC105 VRPTW 100 1, 513.7 K99 1, 518.6 0.32
Sol87 RC106 VRPTW 100 1, 372.7 S06 1, 379.6 0.50
Sol87 RC107 VRPTW 100 1, 207.8 I06 1, 212.8 0.42
Sol87 RC108 VRPTW 100 1, 114.2 I06 1, 118.1 0.35

XLIX

B Detailed results for VRPBTW instances

Table B.2: Results ALNS for VRPBTW instances (continued)

BKS ALNS
TTD ref TTD dev

set instance problem n [DU] [DU] [%]

Sol87 RC201 VRPTW 100 1, 261.8 K00 1, 265.6 0.30
Sol87 RC202 VRPTW 100 1, 092.3 I06,C06 1, 098.8 0.60
Sol87 RC203 VRPTW 100 923.7 J08 939.7 1.73
Sol87 RC204 VRPTW 100 783.5 B11 787.5 0.51
Sol87 RC205 VRPTW 100 1, 154.0 I06,C06 1, 157.6 0.31
Sol87 RC206 VRPTW 100 1, 051.1 J08 1, 061.4 0.98
Sol87 RC207 VRPTW 100 962.9 D08 969.6 0.69
Sol87 RC208 VRPTW 100 776.1 B11 791.4 1.97

GJB89 A1 VRPCB 25 229, 886.0 T97 229, 886.0 0.00
GJB89 A2 VRPCB 25 180, 119.0 T97 180, 119.0 0.00
GJB89 A3 VRPCB 25 155, 796.4 G15 155, 796.0 0.00
GJB89 A4 VRPCB 25 155, 796.0 T97 155, 796.0 0.00
GJB89 B1 VRPCB 30 239, 080.0 T97 239, 080.0 0.00
GJB89 B2 VRPCB 30 198, 048.0 T97 198, 048.0 0.00
GJB89 B3 VRPCB 30 169, 372.0 G89 169, 372.0 0.00
GJB89 C1 VRPCB 40 249, 448.0 T97 250, 557.0 0.44
GJB89 C2 VRPCB 40 215, 020.0 T97 215, 020.0 0.00
GJB89 C3 VRPCB 40 195, 366.6 G15 195, 367.0 0.00
GJB89 C4 VRPCB 40 195, 366.0 T97 195, 367.0 0.00
GJB89 D1 VRPCB 38 317, 491.6 G15 316, 709.0 −0.25
GJB89 D2 VRPCB 38 316, 708.9 T97 316, 709.0 0.00
GJB89 D3 VRPCB 38 239, 478.6 T97 239, 479.0 0.00
GJB89 D4 VRPCB 38 205, 831.9 T97 205, 832.0 0.00
GJB89 E1 VRPCB 45 238, 879.6 T97 238, 880.0 0.00
GJB89 E2 VRPCB 45 212, 263.0 T97 212, 263.0 0.00
GJB89 E3 VRPCB 45 206, 659.0 T97 206, 659.0 0.00
GJB89 F1 VRPCB 60 263, 173.0 T97 263, 174.0 0.00
GJB89 F2 VRPCB 60 265, 213.0 T97 263, 174.0 −0.77
GJB89 F3 VRPCB 60 241, 120.0 T97 241, 970.0 0.35
GJB89 F4 VRPCB 60 233, 861.0 T97 233, 862.0 0.00
GJB89 G1 VRPCB 57 306, 305.0 O02 305, 002.0 −0.43
GJB89 G2 VRPCB 57 245, 441.0 T97 245, 441.0 0.00
GJB89 G3 VRPCB 57 229, 507.0 T97 229, 507.0 0.00
GJB89 G4 VRPCB 57 229, 507.5 G15 229, 507.0 0.00
GJB89 G5 VRPCB 57 218, 716.6 G15 218, 485.0 −0.11
GJB89 G6 VRPCB 57 213, 457.0 T97 213, 457.0 0.00
GJB89 H1 VRPCB 68 268, 933.0 T97 268, 933.0 0.00
GJB89 H2 VRPCB 68 253, 365.0 T97 253, 365.0 0.00
GJB89 H3 VRPCB 68 247, 449.0 T97 247, 449.0 0.00
GJB89 H4 VRPCB 68 247, 449.1 G15 247, 449.0 0.00
GJB89 H5 VRPCB 68 246, 121.0 T97 246, 121.0 0.00
GJB89 H6 VRPCB 68 246, 121.3 G15 246, 604.0 0.20
GJB89 I1 VRPCB 90 347, 832.7 G15 347, 833.0 0.00
GJB89 I2 VRPCB 90 309, 943.0 R06 309, 944.0 0.00
GJB89 I3 VRPCB 90 294, 507.0 O02 294, 507.0 0.00
GJB89 I4 VRPCB 90 294, 834.0 G15 294, 507.0 −0.11
GJB89 I5 VRPCB 90 294, 868.3 G15 294, 507.0 −0.12
GJB89 J1 VRPCB 94 335, 006.0 R06 335, 480.0 0.14

L

B Detailed results for VRPBTW instances

Table B.2: Results ALNS for VRPBTW instances (continued)

BKS ALNS
TTD ref TTD dev

set instance problem n [DU] [DU] [%]

GJB89 J2 VRPCB 94 310, 417.0 R06 310, 417.0 0.00
GJB89 J3 VRPCB 94 279, 219.0 O02 279, 219.0 0.00
GJB89 J4 VRPCB 94 296, 533.0 R06 296, 959.0 0.14
GJB89 K1 VRPCB 113 394, 071.2 G09 394, 376.0 0.08
GJB89 K2 VRPCB 113 362, 130.0 R06 362, 130.0 0.00
GJB89 K3 VRPCB 113 364, 086.7 G15 362, 130.0 −0.54
GJB89 K4 VRPCB 113 348, 949.4 R06 348, 949.0 0.00
GJB89 L1 VRPCB 150 417, 896.7 G09 426, 176.0 1.98
GJB89 L2 VRPCB 150 401, 228.0 R06 401, 466.0 0.06
GJB89 L3 VRPCB 150 402, 677.7 R06 401, 466.0 −0.30
GJB89 L4 VRPCB 150 384, 636.3 R06 384, 636.0 0.00
GJB89 L5 VRPCB 150 387, 564.6 R06 384, 636.0 −0.76
GJB89 M1 VRPCB 125 398, 593.0 G09 398, 497.0 −0.02
GJB89 M2 VRPCB 125 396, 917.0 G09 398, 093.0 0.30
GJB89 M3 VRPCB 125 375, 695.4 G09 376, 159.0 0.12
GJB89 M4 VRPCB 125 348, 140.2 G09 348, 533.0 0.11
GJB89 N1 VRPCB 150 408, 100.6 G09 412, 061.0 0.97
GJB89 N2 VRPCB 150 408, 065.4 G09 409, 746.0 0.41
GJB89 N3 VRPCB 150 394, 337.9 R06 397, 603.0 0.83
GJB89 N4 VRPCB 150 394, 788.4 R06 399, 551.0 1.21
GJB89 N5 VRPCB 150 373, 476.3 R06 375, 347.0 0.50
GJB89 N6 VRPCB 150 373, 758.7 R06 375, 871.0 0.57
TV97 eil22 50 VRPCB 21 371.0 T97 372.1 0.30
TV97 eil22 66 VRPCB 21 366.0 T97 367.0 0.28
TV97 eil22 80 VRPCB 21 375.0 T97 376.9 0.51
TV97 eil23 50 VRPCB 22 682.0 T97 682.3 0.05
TV97 eil23 66 VRPCB 22 649.0 T97 648.4 −0.09
TV97 eil23 80 VRPCB 22 623.0 T97 623.6 0.09
TV97 eil30 50 VRPCB 29 501.0 T97 502.8 0.35
TV97 eil30 66 VRPCB 29 537.0 T97 537.7 0.13
TV97 eil30 80 VRPCB 29 514.0 T97 517.8 0.75
TV97 eil33 50 VRPCB 32 738.0 T97 738.8 0.10
TV97 eil33 66 VRPCB 32 750.0 T97 751.1 0.15
TV97 eil33 80 VRPCB 32 736.0 T97 737.4 0.19
TV97 eil51 50 VRPCB 50 559.0 T97 562.8 0.69
TV97 eil51 66 VRPCB 50 548.0 T97 550.9 0.52
TV97 eil51 80 VRPCB 50 565.0 T97 569.5 0.80
TV97 eilA101 50 VRPCB 100 831.0 R06 845.9 1.80
TV97 eilA101 66 VRPCB 100 846.0 T97 858.3 1.46
TV97 eilA101 80 VRPCB 100 857.0 R06 870.6 1.59
TV97 eilA76 50 VRPCB 75 739.0 T97 743.6 0.62
TV97 eilA76 66 VRPCB 75 768.0 T97 771.8 0.50
TV97 eilA76 80 VRPCB 75 781.0 T97 794.2 1.69
TV97 eilB101 50 VRPCB 100 925.0 R06,B06 940.8 1.71
TV97 eilB101 66 VRPCB 100 989.0 R06 1, 008.6 1.98
TV97 eilB101 80 VRPCB 100 1, 008.0 R06,B06 1, 022.2 1.41
TV97 eilB76 50 VRPCB 75 801.0 T97 805.6 0.58
TV97 eilB76 66 VRPCB 75 873.0 T97 875.5 0.29

LI

B Detailed results for VRPBTW instances

Table B.2: Results ALNS for VRPBTW instances (continued)

BKS ALNS
TTD ref TTD dev

set instance problem n [DU] [DU] [%]

TV97 eilB76 80 VRPCB 75 919.0 T97 925.5 0.71
TV97 eilC76 50 VRPCB 75 713.0 T97 718.0 0.71
TV97 eilC76 66 VRPCB 75 734.0 T97 739.7 0.78
TV97 eilC76 80 VRPCB 75 733.0 T97 742.4 1.28
TV97 eilD76 50 VRPCB 75 690.0 T97 695.3 0.77
TV97 eilD76 66 VRPCB 75 715.0 T97 719.9 0.68
TV97 eilD76 80 VRPCB 75 694.0 R06,B06 705.3 1.63

GDDS95 BHR101A VRPCBTW 100 1, 767.9 G95 1, 810.5 2.41
GDDS95 BHR101B VRPCBTW 100 1, 877.6 G95 1, 923.9 2.47
GDDS95 BHR101C VRPCBTW 100 1, 895.1 G95 1, 930.2 1.85
GDDS95 BHR102A VRPCBTW 100 1, 600.5 G95 1, 620.6 1.26
GDDS95 BHR102B VRPCBTW 100 1, 639.2 G95 1, 750.7 6.80
GDDS95 BHR102C VRPCBTW 100 1, 721.3 G95 1, 774.5 3.09
GDDS95 BHR103A VRPCBTW 100 1, 334.7 P96 1, 339.8 0.38
GDDS95 BHR103B VRPCBTW 100 1, 381.6 P96 1, 375.6 −0.44
GDDS95 BHR103C VRPCBTW 100 1, 456.5 R06 1, 455.8 −0.04
GDDS95 BHR104A VRPCBTW 100 1, 084.2 R06 1, 084.2 0.00
GDDS95 BHR104B VRPCBTW 100 1, 128.3 R02 1, 124.1 −0.37
GDDS95 BHR104C VRPCBTW 100 1, 191.4 R06 1, 171.0 −1.71
GDDS95 BHR105A VRPCBTW 100 1, 544.8 R02 1, 500.2 −2.89
GDDS95 BHR105B VRPCBTW 100 1, 583.3 R06 1, 581.8 −0.10
GDDS95 BHR105C VRPCBTW 100 1, 633.0 R02 1, 602.8 −1.85
SN99a CMT01H VRPMB 50 462.0 J12 465.1 0.66
SN99a CMT01Q VRPMB 50 490.0 R06 489.7 −0.05
SN99a CMT01T VRPMB 50 520.0 R06 520.1 0.01
SN99a CMT02H VRPMB 75 661.0 J12 662.6 0.25
SN99a CMT02Q VRPMB 75 732.0 R06 732.8 0.11
SN99a CMT02T VRPMB 75 783.0 R06 782.8 −0.03
SN99a CMT03H VRPMB 100 701.0 R06 700.9 −0.01
SN99a CMT03Q VRPMB 100 747.0 R06 747.2 0.02
SN99a CMT03T VRPMB 100 798.0 R06 803.0 0.63
SN99a CMT04H VRPMB 150 829.0 R06 830.9 0.23
SN99a CMT04Q VRPMB 150 915.0 J12 918.7 0.40
SN99a CMT04T VRPMB 150 993.0 G15 998.6 0.56
SN99a CMT05H VRPMB 199 983.0 R06 988.2 0.53
SN99a CMT05Q VRPMB 199 1, 118.0 R06 1, 113.4 −0.41
SN99a CMT05T VRPMB 199 1, 227.0 R06 1, 227.8 0.06
SN99a CMT11H VRPMB 120 818.0 R06 818.0 0.01
SN99a CMT11Q VRPMB 120 939.0 R06 939.4 0.04
SN99a CMT11T VRPMB 120 999.0 R06 998.8 −0.02
SN99a CMT12H VRPMB 100 629.0 R06 629.4 0.06
SN99a CMT12Q VRPMB 100 729.0 R06 729.2 0.03
SN99a CMT12T VRPMB 100 788.0 R06 787.5 −0.06
SN99b CMT01X VRPSDP 50 466.8 G15 470.5 0.80
SN99b CMT01Y VRPSDP 50 459.0 W08 461.2 0.50
SN99b CMT02X VRPSDP 75 668.8 W08 684.3 2.32
SN99b CMT02Y VRPSDP 75 663.3 W08 659.1 −0.63
SN99b CMT03X VRPSDP 100 715.3 J12 724.4 1.27

LII

B Detailed results for VRPBTW instances

Table B.2: Results ALNS for VRPBTW instances (continued)

BKS ALNS
TTD ref TTD dev

set instance problem n [DU] [DU] [%]

SN99b CMT03Y VRPSDP 100 719.0 T06 716.6 −0.33
SN99b CMT04X VRPSDP 150 852.5 Z09 855.5 0.36
SN99b CMT04Y VRPSDP 150 847.6 J12 827.7 −2.35
SN99b CMT05X VRPSDP 199 1, 029.3 S10 1, 030.5 0.12
SN99b CMT05Y VRPSDP 199 1, 029.3 S10 978.9 −4.89
SN99b CMT11X VRPSDP 120 833.9 S10,Z10 829.8 −0.49
SN99b CMT11Y VRPSDP 120 830.4 W08 778.9 −6.21
SN99b CMT12X VRPSDP 100 644.7 W08 660.8 2.50
SN99b CMT12Y VRPSDP 100 659.5 W08 628.1 −4.76

total 90, 061.7 90, 167.2 0.30

LIII

Appendix C

Detailed results 3L-VRPBTW instances

In this section, the detailed results of applying the hybrid algorithms to the 3L-

VRPBTW instances described in Chapter 5.2.2 are provided. For the analyses

of the results, only those instances are considered for which a feasible solution is

obtained at least once (within the conducted runs) by all problem and procedure

settings that are compared (cf. p. 189). In Table C.1, the numbers of sufficiently

solved instances are listed that are subject to the analyses in Chapter 5.5.2.1 and

Chapter 5.5.2.2. Thus, they concern only instances with the constraint set C1. The

numbers in the columns for the individual loading approaches (“RL”, “LSP”, “SL”)

refer to the instances used for comparing the hybrid algorithms for the individual

loading approaches.

In order to compare loading approaches, instances are compared that are derived

from the same core instances and differ only in the loading approach. That is, a

core instance (or pair of instances) is taken into consideration here if both derived

instances are solved feasibly. The corresponding numbers of core instances are listed

in the column “all load”.

Table C.1: Number of feasibly solved instances per loading approach and for all loading
approaches (instances with C1 only)

no. of sufficiently solved (core) instances total no.
problem RL LSP SL all load of instances

with time windows
3L-VRPTW 565 543 540 600
3L-VRPCBTW 567 534 531 600
3L-VRPMBTW 232 300 232 300
3L-VRPSDPTW 287 299 286 300

without time windows
3L-VRPCB 567 548 545 600
3L-VRPMB 232 300 244 300
3L-VRPSDP 287 299 289 300

LSP: loading space partition, RL: rear loading, SL: side loading

For Chapters 5.5.2.3 to 5.5.2.5, all core instances are regarded as at least one instance

is solved feasibly for each core instance, which is sufficient for these analyses.

In Chapter 5.5.3, instances are compared that are derived from the same core in-

stances and differ only in the constraint set. Per packing heuristic and loading

LIV

C Detailed results 3L-VRPBTW instances

approach, a core instance and its corresponding instances with the same loading

approach are only regarded if all five instances (one per constraint set) are solved

feasibly. The respective numbers are presented in Table C.2.

Table C.2: Add caption

no. of sufficiently solved instances
problem DBLF LS DBLF total no.
variant RL LSP SL RL LSP SL of instances

with time windows
3L-VRPTW 162 156 216 208 240
3L-VRPCBTW 161 145 221 220 240
3L-VRPMBTW 54 117 95 120 120
3L-VRPSDPTW 106 119 118 119

without time windows
3L-VRPCB 170 157 223 222 240
3L-VRPMB 59 118 95 120 120
3L-VRPSDP 110 119 119 119 120

The abbreviations and symbols used in the following tables in this section are pro-

vided in Table C.3.

Table C.3: Abbreviations and symbols used in the tables in Appendix C

abbreviation/ symbol meaning

- no time windows
%LH share of linehaul customers
* benchmark
∅ average
ct computing time
dev deviation from benchmark TTD
DU distance units
it. item size
lrg. large
m total number of items
n number of customers
nrr. narrow
sm. small
TTD total travel distance
TW time window width
typ number of item types
wd. wide

In Tables C.4 to C.7, the comprehensive results concerning the comparison of the

variants of the hybrid algorithm (with respect to the employed packing heuristic)

are presented. For each packing heuristic and loading approach, the average TTDs

of the best solutions per instance (∅TTD), the average deviations of the obtained

TTDs from the benchmarks (∅dev) and the average computing times per instance

LV

C Detailed results 3L-VRPBTW instances

and run (∅ct) are given. As the deviations of the TTDs obtained by the benchmark

procedure (ALNS×DBLF) naturally amount to 0 %, those deviations are omitted

in the tables below. The results are provided for each problem variant separately

and for the instances classes differing in the total number of items (if applicable48),

the number of customers, share of linehaul customers or items (if applicable), time

window width, item size and number of item types. Furthermore, the results are

presented for two loading approaches separately. If the side loading is applied to the

3L-VRPMB(TW) and 3L-VRPSDP(TW), the variants DBLFSL and LS DBLFSL

are taken into account. Only those instances are considered that could be solved

feasibly at least once for the respective loading approach by all alternative versions

of the hybrid algorithm. Therefore, it may happen that some instance classes do not

appear in the tables as no instance of that class was solved feasibly by all variants

of the solution approach.

In Tables C.8 to C.11, the comprehensive results concerning the comparison of the

loading approaches are presented. The best solutions per instance and packing

heuristic obtained by rear loading (loading space partition) serve as benchmarks

if linehaul and backhaul items are transported separately (simultaneously). Only

those instances are considered that could be solved feasibly at least once by each

packing heuristic and with both regarded loading approaches.

48 This criterion is omitted in the case of the 3L-VRPMB(TW) and 3L-VRPSDP(TW) as only
instances with 200 items are regarded for those problem variants.

LVI

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.4: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPTW, RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 20 nrr. sm. 3 439.8 6 438.4 −0.34 53 438.4 −0.34 31 440.7 4 438.6 −0.47 67 438.4 −0.52 10
200 20 nrr. sm. 10 468.2 5 468.2 0.00 5 468.2 0.00 15 468.2 3 468.2 0.00 4 468.2 0.00 24
200 20 nrr. sm. 100 450.1 12 447.7 −0.64 131 447.7 −0.64 294 450.7 10 447.7 −0.81 119 447.7 −0.81 309

200 20 wd. sm. 3 391.5 178 389.6 −0.52 336 389.8 −0.48 301 391.7 124 389.8 −0.52 354 390.4 −0.34 347
200 20 wd. sm. 10 375.6 278 367.6 −2.14 900 368.2 −1.98 900 378.7 234 367.7 −2.85 900 368.4 −2.69 900
200 20 wd. sm. 100 411.2 125 397.1 −3.35 900 400.4 −2.53 900 413.7 118 396.8 −4.04 898 400.9 −3.01 900

200 60 nrr. sm. 3 919.4 28 919.4 0.00 29 919.4 0.00 54 919.4 18 919.4 0.00 19 919.4 0.00 49
200 60 nrr. sm. 10 961.6 32 961.6 0.00 33 961.6 0.00 105 961.6 18 961.6 0.00 18 961.6 0.00 126
200 60 nrr. sm. 100 950.1 36 950.3 0.03 38 950.1 0.00 160 950.1 19 950.3 0.03 20 950.1 0.00 218

200 60 nrr. lrg. 3 1,533.9 22 1,390.9 −8.90 203 1,393.8 −8.64 287 1,497.3 19 1,394.1 −6.80 173 1,395.0 −6.80 470
200 60 nrr. lrg. 10 1,503.8 30 1,272.5 −15.08 566 1,265.9 −15.47 1,199 1,470.5 29 1,253.5 −14.36 608 1,245.4 −14.88 1,533
200 60 nrr. lrg. 100 1,546.7 30 1,267.4 −17.97 695 1,251.2 −19.01 1,660 1,517.8 27 1,265.6 −16.52 660 1,245.9 −17.84 2,116

200 60 wd. sm. 3 656.2 2,176 656.9 0.12 2,429 655.8 −0.06 2,319 657.0 1,722 656.3 −0.10 2,344 656.0 −0.16 2,540
200 60 wd. sm. 10 650.6 2,476 648.2 −0.41 3,034 650.5 −0.02 3,523 650.0 1,818 649.3 −0.10 2,954 651.2 0.23 3,589
200 60 wd. sm. 100 682.1 2,594 682.1 0.03 3,536 691.0 1.36 3,600 684.1 1,829 683.3 −0.19 3,484 695.7 1.63 3,600

200 60 wd. lrg. 3 1,294.4 76 1,189.3 −7.48 1,664 1,182.9 −7.88 1,898 1,279.4 83 1,190.0 −6.72 1,771 1,189.3 −6.74 2,218
200 60 wd. lrg. 10 1,426.3 78 1,225.9 −13.76 1,902 1,225.8 −13.71 2,849 1,416.0 76 1,222.8 −13.39 1,825 1,223.6 −13.23 3,001
200 60 wd. lrg. 100 1,543.6 54 1,283.5 −16.78 1,508 1,263.5 −18.08 3,288 1,526.1 52 1,279.2 −16.14 1,480 1,253.7 −17.75 3,516

200 100 nrr. sm. 3 1,265.4 78 1,265.4 0.00 77 1,265.4 0.00 131 1,265.4 53 1,265.4 0.00 65 1,265.4 0.00 130
200 100 nrr. sm. 10 1,214.1 88 1,213.9 −0.02 93 1,214.2 0.00 269 1,214.1 54 1,214.1 0.00 56 1,214.2 0.00 301

L
V

II

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.4: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs,
deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 100 nrr. sm. 100 1,289.0 89 1,288.8 −0.01 92 1,288.7 −0.02 318 1,289.2 61 1,287.2 −0.16 55 1,288.7 −0.04 378

200 100 nrr. lrg. 3 1,523.5 87 1,470.8 −3.47 566 1,471.5 −3.40 981 1,554.9 78 1,484.0 −4.46 554 1,472.4 −5.20 1,228
200 100 nrr. lrg. 10 1,675.3 116 1,524.1 −8.87 904 1,518.3 −9.21 2,392 1,632.2 113 1,517.7 −6.98 732 1,518.8 −6.87 2,617
200 100 nrr. lrg. 100 1,774.9 92 1,592.6 −10.21 664 1,573.4 −11.29 2,149 1,756.6 75 1,588.1 −9.61 689 1,563.9 −10.98 2,463

200 100 wd. sm. 3 882.9 2,655 882.1 −0.09 2,744 882.0 −0.11 2,338 882.2 2,153 882.5 0.04 2,128 882.1 −0.01 2,662
200 100 wd. sm. 10 876.5 3,466 876.1 −0.04 3,453 880.8 0.51 3,600 877.7 2,886 877.4 −0.03 3,011 881.0 0.34 3,600
200 100 wd. sm. 100 936.2 3,363 939.5 0.41 3,500 955.7 2.22 3,600 936.4 2,330 938.5 0.26 3,094 956.1 2.12 3,600

200 100 wd. lrg. 3 1,314.5 490 1,274.7 −2.97 3,012 1,278.1 −2.68 3,059 1,326.1 358 1,282.7 −3.24 2,683 1,283.8 −3.21 3,209
200 100 wd. lrg. 10 1,522.5 466 1,419.6 −6.42 3,218 1,437.4 −5.43 3,600 1,495.3 411 1,396.2 −6.35 3,258 1,438.4 −3.52 3,600
200 100 wd. lrg. 100 1,696.9 289 1,553.2 −8.46 3,105 1,583.0 −6.66 3,600 1,678.9 274 1,533.1 −8.62 3,083 1,607.8 −4.10 3,600

400 20 nrr. sm. 3 489.5 68 481.8 −1.51 400 481.8 −1.51 309 489.9 53 482.0 −1.70 352 484.0 −1.18 309
400 20 nrr. sm. 10 493.5 47 478.2 −3.10 725 480.2 −2.69 733 499.7 47 476.9 −4.66 722 481.4 −3.74 747
400 20 nrr. sm. 100 530.6 34 504.4 −5.00 819 513.8 −3.09 900 547.3 21 506.4 −7.58 837 509.5 −7.01 900

400 20 wd. sm. 3 454.7 362 446.5 −1.64 486 445.6 −1.87 395 456.7 316 446.3 −2.13 516 445.6 −2.30 384
400 20 wd. sm. 10 470.2 387 449.9 −4.15 900 453.1 −3.59 900 480.9 311 455.3 −5.35 900 452.5 −5.84 900
400 20 wd. sm. 100 502.4 307 470.3 −6.31 900 477.7 −4.84 900 513.3 178 471.7 −7.98 900 480.3 −6.31 900

400 60 nrr. sm. 3 886.1 253 886.0 0.00 257 886.0 0.00 226 886.3 165 886.0 −0.03 182 886.0 −0.03 271
400 60 nrr. sm. 10 953.8 234 953.7 −0.01 258 953.8 −0.01 876 954.9 160 953.9 −0.10 158 953.7 −0.13 1,200
400 60 nrr. sm. 100 941.2 439 938.6 −0.33 874 939.0 −0.27 1,994 943.9 294 938.6 −0.63 792 938.9 −0.59 2,202

400 60 nrr. lrg. 3 2,703.3 10 2,424.3 −10.26 411 2,432.4 −9.90 352 2,505.7 11 2,318.9 −7.39 609 2,306.3 −7.91 690

L
V

III

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.4: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPTW, RL/SL, C1); average TTDs,
deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

400 60 nrr. lrg. 10 2,458.0 29 1,841.8 −24.87 1,684 1,844.5 −24.62 1,996 2,560.8 16 1,889.9 −26.26 981 1,903.9 −25.71 2,128

400 60 wd. sm. 3 739.3 2,844 740.6 0.20 3,027 739.7 0.07 3,118 744.8 2,759 742.6 −0.24 2,984 738.4 −0.87 2,987
400 60 wd. sm. 10 677.7 3,588 680.4 0.54 3,600 695.7 2.80 3,600 685.9 3,594 680.2 −0.68 3,600 697.3 1.73 3,600
400 60 wd. sm. 100 773.4 3,600 771.8 −0.19 3,600 795.2 2.76 3,600 780.2 3,475 775.1 −0.66 3,600 794.3 1.81 3,600

400 60 wd. lrg. 3 2,402.7 16 2,129.9 −10.94 447 2,127.7 −10.96 449 2,136.0 19 1,985.5 −6.69 796 2,000.1 −6.22 651
400 60 wd. lrg. 10 2,423.6 20 1,855.5 −23.40 2,270 1,853.3 −23.49 2,869 2,682.7 28 1,970.7 −26.54 1,187 1,924.8 −28.25 2,470
400 60 wd. lrg. 100 3,004.2 15 2,254.2 −24.98 744 2,242.6 −25.36 1,567

400 100 nrr. sm. 3 1,341.6 328 1,341.6 0.00 316 1,341.6 0.00 418 1,341.6 208 1,341.6 0.00 216 1,341.6 0.00 533
400 100 nrr. sm. 10 1,277.7 454 1,277.0 −0.04 453 1,278.1 0.03 1,400 1,278.0 270 1,277.0 −0.07 296 1,277.2 −0.07 1,742
400 100 nrr. sm. 100 1,272.6 481 1,272.1 −0.04 512 1,272.4 −0.01 2,230 1,272.8 260 1,271.8 −0.09 289 1,273.0 0.01 2,593

400 100 nrr. lrg. 3 2,414.6 183 2,174.9 −8.95 2,139 2,185.5 −8.25 2,072 2,334.7 187 2,167.3 −7.23 2,304 2,174.3 −6.81 2,336
400 100 nrr. lrg. 10 2,885.6 125 2,397.8 −16.90 2,088 2,400.7 −16.74 2,811 2,821.0 145 2,366.9 −16.19 2,237 2,380.2 −15.65 3,299
400 100 nrr. lrg. 100 2,965.9 125 2,396.7 −19.14 2,806 2,393.6 −19.23 3,376 2,962.0 146 2,390.1 −19.31 2,999 2,430.4 −17.93 3,420

400 100 wd. sm. 3 902.1 3,600 917.8 1.76 3,600 916.0 1.54 3,600 903.6 3,600 917.7 1.53 3,600 909.7 0.68 3,600
400 100 wd. sm. 10 1,036.2 3,600 1,058.8 2.24 3,600 1,085.5 4.80 3,600 1,035.3 3,600 1,050.8 1.55 3,600 1,076.7 4.03 3,600
400 100 wd. sm. 100 930.4 3,600 965.1 3.80 3,600 993.4 6.74 3,600 938.8 3,600 957.0 1.93 3,600 986.5 5.02 3,600

400 100 wd. lrg. 3 2,422.1 338 2,219.7 −8.09 2,745 2,220.0 −7.88 3,273 2,326.4 308 2,192.2 −5.27 2,439 2,234.0 −3.45 2,991
400 100 wd. lrg. 10 2,701.8 293 2,370.3 −11.84 2,639 2,423.9 −9.63 3,217 2,528.3 320 2,201.6 −12.03 3,331 2,299.0 −8.10 3,600
400 100 wd. lrg. 100 2,881.7 228 2,370.8 −17.65 3,600 2,479.5 −13.77 3,600 2,877.9 214 2,362.8 −17.85 3,600 2,489.1 −13.39 3,600

total 1,230.0 798 1,136.5 −4.63 1,512 1,141.9 −4.18 1,816 1,160.6 720 1,086.2 −4.18 1,459 1,094.1 −3.63 1,910

L
IX

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 20 50 - sm. 3 382.6 35 382.6 0.00 131 382.6 0.00 153 382.6 22 382.6 0.00 132 382.6 0.00 117
200 20 50 - sm. 10 407.1 36 405.9 −0.30 400 405.7 −0.36 631 407.9 28 405.6 −0.57 460 405.9 −0.50 741
200 20 50 - sm. 100 400.1 19 399.0 −0.27 722 400.6 0.10 837 400.9 14 399.0 −0.47 684 399.5 −0.35 832

200 20 50 nrr. sm. 3 514.6 1 514.6 0.00 2 514.6 0.00 2 514.6 1 514.6 0.00 3 514.6 0.00 1
200 20 50 nrr. sm. 10 545.1 1 545.1 0.00 1 545.1 0.00 2 545.1 1 545.1 0.00 1 545.1 0.00 3
200 20 50 nrr. sm. 100 496.8 1 496.8 0.00 2 496.8 0.00 5 496.9 1 496.8 −0.01 1 496.8 −0.01 7

200 20 50 wd. sm. 3 470.2 4 470.2 0.00 4 470.2 0.00 3 470.2 3 470.2 0.00 3 470.2 0.00 4
200 20 50 wd. sm. 10 483.3 9 483.3 0.00 133 483.3 0.00 402 483.3 6 483.3 0.00 132 483.3 0.00 387
200 20 50 wd. sm. 100 479.4 9 479.4 −0.01 63 479.4 −0.01 437 481.2 5 479.4 −0.38 72 479.4 −0.38 383

200 20 80 - sm. 3 374.8 211 374.1 −0.19 519 373.3 −0.41 376 375.7 187 373.8 −0.54 486 374.1 −0.45 444
200 20 80 - sm. 10 381.6 170 379.8 −0.48 836 382.5 0.23 879 382.5 162 379.0 −0.94 858 381.6 −0.26 900
200 20 80 - sm. 100 387.4 276 373.9 −3.54 900 375.6 −3.07 900 391.7 163 374.0 −4.49 900 376.7 −3.83 900

200 20 80 nrr. sm. 3 475.8 3 475.8 0.00 3 475.8 0.00 3 475.8 2 475.8 0.00 2 475.8 0.00 4
200 20 80 nrr. sm. 10 509.5 3 509.5 0.00 3 509.5 0.00 8 509.5 2 509.5 0.00 2 509.5 0.00 10
200 20 80 nrr. sm. 100 503.5 4 500.3 −0.71 12 500.3 −0.71 66 506.4 4 500.3 −1.35 27 500.3 −1.35 71

200 20 80 wd. sm. 3 418.4 67 417.8 −0.14 404 417.8 −0.12 375 417.8 59 417.8 −0.01 394 417.8 −0.01 411
200 20 80 wd. sm. 10 401.9 164 395.2 −1.66 900 400.2 −0.45 900 403.6 140 395.3 −2.05 900 398.1 −1.42 900
200 20 80 wd. sm. 100 444.3 168 438.9 −1.37 778 438.9 −1.37 900 448.6 40 438.9 −2.43 784 438.9 −2.43 900

200 60 50 - sm. 3 674.9 1,709 673.4 −0.22 2,549 674.0 −0.13 2,457 673.0 995 676.1 0.46 2,266 676.5 0.52 2,505
200 60 50 - sm. 10 683.8 1,357 683.8 0.01 3,203 688.7 0.72 3,407 683.6 927 683.5 −0.01 3,174 689.8 0.92 3,526

L
X

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 60 50 - sm. 100 669.8 1,101 670.0 0.03 3,526 679.0 1.35 3,600 670.8 718 669.0 −0.26 3,474 676.1 0.76 3,600

200 60 50 - lrg. 3 975.4 35 901.0 −7.42 893 907.6 −6.71 710 990.7 39 904.2 −8.33 707 902.7 −8.53 880
200 60 50 - lrg. 10 1,122.8 47 930.4 −16.84 982 928.3 −17.00 1,988 1,113.3 41 925.4 −16.60 973 918.5 −17.21 2,292
200 60 50 - lrg. 100 1,157.0 39 943.4 −18.43 1,095 929.5 −19.61 2,554 1,161.7 42 941.7 −18.78 1,041 920.8 −20.61 3,003

200 60 50 nrr. sm. 3 1,045.7 11 1,045.7 0.00 11 1,045.7 0.00 18 1,045.7 10 1,045.7 0.00 10 1,045.7 0.00 17
200 60 50 nrr. sm. 10 1,119.0 14 1,119.0 0.00 14 1,119.0 0.00 35 1,119.0 10 1,119.0 0.00 10 1,119.0 0.00 40
200 60 50 nrr. sm. 100 1,193.4 12 1,193.5 0.01 12 1,193.4 0.00 36 1,193.4 10 1,193.4 0.00 9 1,193.4 0.00 38

200 60 50 nrr. lrg. 3 1,406.8 9 1,327.0 −5.29 27 1,339.5 −4.42 34 1,415.8 9 1,327.8 −5.94 23 1,326.6 −6.00 38
200 60 50 nrr. lrg. 10 1,301.6 12 1,104.5 −14.72 89 1,102.7 −14.71 206 1,293.6 13 1,111.6 −13.69 86 1,097.3 −14.69 231
200 60 50 nrr. lrg. 100 1,299.5 12 1,112.0 −14.55 128 1,106.8 −14.97 459 1,340.6 14 1,112.5 −17.07 118 1,101.6 −17.90 684

200 60 50 wd. sm. 3 903.9 291 903.9 0.00 805 904.2 0.04 876 903.9 153 904.2 0.04 741 903.9 0.00 859
200 60 50 wd. sm. 10 848.0 430 848.8 0.11 1,068 848.0 0.00 1,864 848.0 284 847.8 −0.02 955 848.6 0.08 1,892
200 60 50 wd. sm. 100 865.3 328 865.8 0.08 1,122 867.5 0.34 2,169 864.9 194 866.7 0.20 820 865.1 0.03 2,512

200 60 50 wd. lrg. 3 1,052.7 23 990.0 −5.46 357 996.9 −4.73 303 1,063.4 25 992.5 −6.41 351 994.6 −6.24 395
200 60 50 wd. lrg. 10 1,222.7 31 1,033.1 −15.25 801 1,032.7 −15.25 1,358 1,209.4 32 1,029.5 −14.50 683 1,026.4 −14.79 1,763
200 60 50 wd. lrg. 100 1,270.3 23 1,062.4 −16.45 520 1,053.4 −17.15 1,313 1,265.6 23 1,070.9 −15.30 482 1,049.4 −17.05 1,987

200 60 80 - sm. 3 626.7 2,795 630.5 0.59 3,051 627.3 0.10 2,813 626.6 2,451 632.0 0.85 3,191 632.6 0.94 2,839
200 60 80 - sm. 10 619.0 2,749 627.8 1.43 3,553 636.0 2.74 3,600 622.6 2,064 628.9 1.01 3,540 632.2 1.56 3,567
200 60 80 - sm. 100 660.9 2,494 676.1 2.29 3,600 683.2 3.36 3,600 663.6 1,526 672.5 1.32 3,600 685.3 3.26 3,600

200 60 80 - lrg. 3 1,269.5 78 1,142.5 −9.59 1,616 1,129.2 −10.59 1,933 1,202.7 74 1,137.5 −5.43 1,499 1,141.5 −5.10 2,216

L
X

I

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 60 80 - lrg. 10 1,204.0 93 1,052.9 −12.39 1,922 1,053.1 −12.29 2,806 1,196.1 80 1,044.4 −12.49 1,926 1,054.7 −11.56 3,062
200 60 80 - lrg. 100 1,274.8 82 1,084.9 −14.88 1,985 1,073.5 −15.78 3,525 1,286.7 74 1,080.7 −15.99 1,834 1,080.2 −16.03 3,569

200 60 80 nrr. sm. 3 1,102.2 20 1,102.2 0.00 20 1,102.2 0.00 29 1,102.2 14 1,102.2 0.00 14 1,102.2 0.00 27
200 60 80 nrr. sm. 10 1,133.3 19 1,133.3 0.00 22 1,133.3 0.00 51 1,133.3 14 1,133.3 0.00 13 1,133.3 0.00 52
200 60 80 nrr. sm. 100 1,025.1 30 1,025.1 0.00 31 1,025.1 0.00 119 1,025.1 17 1,024.0 −0.13 18 1,025.1 0.00 157

200 60 80 nrr. lrg. 3 1,508.0 18 1,354.0 −9.87 140 1,345.4 −10.38 204 1,437.4 16 1,346.5 −6.27 131 1,355.7 −5.64 347
200 60 80 nrr. lrg. 10 1,446.2 21 1,247.3 −13.38 267 1,240.4 −13.85 556 1,298.8 23 1,164.5 −10.28 388 1,155.9 −10.95 1,038
200 60 80 nrr. lrg. 100 1,478.5 23 1,247.8 −15.43 352 1,217.9 −17.44 840 1,489.3 23 1,226.0 −17.63 321 1,225.7 −17.66 1,149

200 60 80 wd. sm. 3 718.2 1,042 718.3 0.01 1,045 718.1 −0.02 774 718.4 798 718.1 −0.06 776 718.1 −0.06 1,244
200 60 80 wd. sm. 10 739.3 1,252 738.6 −0.11 2,549 742.2 0.44 3,528 739.7 714 738.6 −0.16 2,129 740.7 0.16 3,537
200 60 80 wd. sm. 100 836.5 973 835.9 −0.12 1,860 837.7 0.08 3,414 835.8 303 835.1 −0.12 1,438 837.9 0.24 3,559

200 60 80 wd. lrg. 3 1,262.7 60 1,124.8 −10.48 1,410 1,114.5 −11.40 1,867 1,184.9 58 1,134.8 −4.17 1,281 1,136.2 −3.71 1,857
200 60 80 wd. lrg. 10 1,245.7 57 1,096.2 −11.74 1,159 1,089.8 −12.31 1,914 1,254.9 52 1,086.0 −13.31 1,032 1,085.4 −13.33 2,219
200 60 80 wd. lrg. 100 1,354.6 44 1,138.2 −15.90 1,008 1,126.0 −16.86 2,379 1,366.0 39 1,142.5 −16.43 930 1,123.2 −17.82 2,645

200 100 50 - sm. 3 868.6 3,247 876.0 0.86 3,279 874.5 0.68 3,246 869.1 2,895 875.7 0.76 3,290 878.2 1.04 3,285
200 100 50 - sm. 10 869.1 3,045 875.7 0.76 3,593 892.8 2.73 3,600 870.4 2,654 878.0 0.88 3,600 887.1 1.92 3,600
200 100 50 - sm. 100 873.0 2,653 891.0 2.07 3,600 918.4 5.24 3,600 874.2 2,036 885.8 1.32 3,600 920.2 5.26 3,600

200 100 50 - lrg. 3 1,094.4 211 1,030.1 −5.84 2,755 1,035.4 −5.29 2,876 1,107.5 191 1,051.9 −4.80 2,213 1,038.5 −5.91 3,123
200 100 50 - lrg. 10 1,212.6 251 1,086.6 −10.29 3,025 1,086.9 −10.27 3,512 1,200.1 206 1,084.2 −9.45 2,839 1,086.2 −9.29 3,600
200 100 50 - lrg. 100 1,299.0 201 1,147.8 −11.60 2,687 1,143.6 −11.91 3,600 1,286.5 191 1,150.7 −10.51 2,510 1,137.9 −11.51 3,600

L
X

II

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 100 50 nrr. sm. 3 1,612.4 40 1,612.4 0.00 38 1,612.4 0.00 56 1,612.4 35 1,612.4 0.00 34 1,612.4 0.00 55
200 100 50 nrr. sm. 10 1,448.4 42 1,448.5 0.00 41 1,447.9 −0.03 95 1,447.9 35 1,447.9 0.00 34 1,447.9 0.00 100
200 100 50 nrr. sm. 100 1,481.5 45 1,481.5 0.00 44 1,481.5 0.00 108 1,481.5 37 1,481.5 0.00 35 1,481.5 0.00 113

200 100 50 nrr. lrg. 3 1,597.0 45 1,557.1 −2.61 110 1,554.7 −2.80 170 1,612.7 44 1,568.2 −2.90 108 1,560.1 −3.42 281
200 100 50 nrr. lrg. 10 1,709.1 43 1,575.7 −7.76 149 1,582.5 −7.37 431 1,699.3 45 1,579.3 −7.13 138 1,570.5 −7.64 547
200 100 50 nrr. lrg. 100 1,808.5 40 1,682.6 −7.05 127 1,679.2 −7.24 526 1,835.6 46 1,695.9 −7.71 120 1,675.3 −8.81 745

200 100 50 wd. sm. 3 1,092.6 417 1,092.5 −0.01 398 1,092.6 0.00 443 1,093.6 287 1,093.6 0.00 289 1,093.2 −0.03 539
200 100 50 wd. sm. 10 1,209.3 451 1,210.1 0.07 421 1,210.1 0.07 1,868 1,210.0 258 1,210.1 0.01 259 1,210.1 0.01 2,410
200 100 50 wd. sm. 100 1,247.0 519 1,249.5 0.19 619 1,252.0 0.45 2,301 1,249.1 261 1,246.3 −0.20 331 1,249.1 0.00 2,930

200 100 50 wd. lrg. 3 1,200.0 128 1,137.2 −5.24 1,797 1,147.9 −4.35 2,200 1,210.4 117 1,162.5 −3.92 1,421 1,143.8 −5.35 2,530
200 100 50 wd. lrg. 10 1,348.5 149 1,254.9 −6.93 1,800 1,248.2 −7.34 3,101 1,337.3 121 1,247.1 −6.53 1,661 1,246.8 −6.49 3,323
200 100 50 wd. lrg. 100 1,506.0 109 1,370.6 −9.07 1,037 1,351.5 −10.32 3,143 1,502.7 101 1,363.8 −9.18 987 1,350.0 −10.10 3,420

200 100 80 - sm. 3 842.8 3,414 857.5 1.75 3,429 855.5 1.52 3,416 842.2 3,334 855.9 1.64 3,368 855.0 1.54 3,422
200 100 80 - sm. 10 824.6 3,600 846.3 2.64 3,600 860.5 4.33 3,600 824.1 3,600 849.0 3.00 3,600 852.1 3.38 3,600
200 100 80 - sm. 100 830.3 3,597 868.3 4.58 3,600 872.0 5.02 3,600 830.1 3,483 866.1 4.34 3,600 875.8 5.50 3,600

200 100 80 - lrg. 3 1,236.4 338 1,209.8 −2.19 2,076 1,214.1 −1.89 2,556 1,259.3 302 1,216.6 −3.51 2,125 1,216.2 −3.69 2,819
200 100 80 - lrg. 10 1,415.2 337 1,302.4 −7.89 3,076 1,320.5 −6.59 3,600 1,379.7 316 1,291.1 −6.34 2,863 1,321.3 −4.15 3,600
200 100 80 - lrg. 100 1,449.7 370 1,332.0 −8.10 3,447 1,357.8 −6.30 3,600 1,430.3 352 1,322.8 −7.50 3,432 1,382.3 −3.33 3,600

200 100 80 nrr. sm. 3 1,398.7 51 1,398.7 0.00 50 1,398.7 0.00 94 1,398.7 39 1,398.7 0.00 39 1,398.7 0.00 93
200 100 80 nrr. sm. 10 1,401.9 59 1,401.9 0.00 56 1,402.0 0.00 152 1,402.0 41 1,402.0 0.00 41 1,402.0 0.00 151

L
X

III

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

200 100 80 nrr. sm. 100 1,556.8 47 1,556.4 −0.02 50 1,558.1 0.08 164 1,558.1 36 1,558.5 0.02 37 1,558.1 0.00 163

200 100 80 nrr. lrg. 3 1,645.6 58 1,605.3 −2.55 165 1,607.2 −2.38 457 1,658.4 55 1,617.4 −2.35 174 1,600.6 −3.42 582
200 100 80 nrr. lrg. 10 1,620.3 83 1,493.8 −7.76 413 1,488.3 −8.08 2,459 1,589.5 63 1,491.6 −6.13 384 1,484.6 −6.58 2,476
200 100 80 nrr. lrg. 100 1,779.4 68 1,636.3 −7.98 313 1,619.7 −8.95 1,544 1,747.8 58 1,622.8 −7.11 311 1,617.4 −7.42 1,830

200 100 80 wd. sm. 3 1,132.0 994 1,132.0 0.00 1,094 1,132.0 0.00 1,126 1,132.0 677 1,132.1 0.01 685 1,132.0 0.00 1,136
200 100 80 wd. sm. 10 1,000.1 1,845 999.3 −0.06 1,859 1,000.8 0.09 3,305 1,000.6 1,135 998.9 −0.13 1,300 1,001.8 0.13 3,541
200 100 80 wd. sm. 100 1,100.0 1,850 1,100.7 0.07 2,734 1,106.5 0.66 3,600 1,100.2 1,086 1,101.2 0.09 2,442 1,109.2 0.88 3,599

200 100 80 wd. lrg. 3 1,302.2 184 1,270.7 −2.50 1,514 1,269.3 −2.65 1,941 1,318.0 153 1,276.6 −3.16 1,288 1,275.1 −3.29 2,252
200 100 80 wd. lrg. 10 1,556.9 197 1,435.8 −7.73 1,867 1,436.3 −7.69 3,561 1,519.9 182 1,425.4 −6.16 1,936 1,412.2 −6.99 3,600
200 100 80 wd. lrg. 100 1,624.1 187 1,503.6 −7.44 1,901 1,510.4 −6.95 3,383 1,611.3 169 1,495.0 −7.13 1,883 1,503.5 −6.48 3,600

400 20 50 - sm. 3 414.0 99 411.0 −0.65 492 409.9 −0.91 423 416.2 84 410.2 −1.31 461 412.0 −0.89 410
400 20 50 - sm. 10 401.2 65 392.7 −2.02 812 396.2 −1.16 814 401.5 49 392.7 −2.15 813 396.0 −1.39 814
400 20 50 - sm. 100 431.9 79 416.6 −3.47 900 423.9 −1.79 900 437.5 41 416.4 −4.71 900 419.3 −4.07 900

400 20 50 nrr. sm. 3 466.9 9 465.5 −0.33 369 465.5 −0.33 363 467.6 7 465.5 −0.47 364 465.5 −0.47 363
400 20 50 nrr. sm. 10 609.1 1 607.2 −0.35 304 607.2 −0.35 361 609.6 1 607.2 −0.41 316 607.2 −0.41 362
400 20 50 nrr. sm. 100 562.9 2 562.7 −0.05 260 562.7 −0.05 399 580.6 1 562.7 −3.15 245 562.7 −3.15 401

400 20 50 wd. sm. 3 525.6 34 521.6 −0.59 379 521.4 −0.63 366 526.1 25 521.4 −0.70 379 521.4 −0.70 365
400 20 50 wd. sm. 10 487.9 22 481.5 −1.46 765 481.5 −1.46 900 493.0 19 481.5 −2.48 809 481.5 −2.48 817
400 20 50 wd. sm. 100 470.4 26 454.0 −3.46 900 455.3 −3.15 900 479.9 16 454.3 −5.41 900 455.9 −5.08 900

400 20 80 - sm. 3 430.2 269 426.5 −0.85 485 426.7 −0.85 458 432.8 235 428.6 −0.87 561 427.1 −1.25 468

L
X

IV

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

400 20 80 - sm. 10 418.6 430 406.5 −2.80 900 410.7 −1.91 900 422.8 281 407.1 −3.64 900 410.4 −2.93 900
400 20 80 - sm. 100 455.8 327 427.0 −6.25 900 444.8 −2.39 900 470.3 198 432.0 −8.14 900 438.9 −6.66 900

400 20 80 nrr. sm. 3 623.7 4 618.6 −0.78 210 616.1 −1.14 187 623.7 3 618.6 −0.83 264 616.1 −1.19 192
400 20 80 nrr. sm. 10 478.6 32 468.6 −2.11 557 470.0 −1.85 758 486.0 23 467.0 −3.90 715 471.0 −3.03 839
400 20 80 nrr. sm. 100 568.8 25 541.0 −5.38 897 556.2 −2.21 900 581.9 16 544.7 −6.96 870 551.3 −5.64 900

400 20 80 wd. sm. 3 419.2 225 418.3 −0.24 382 417.0 −0.57 369 422.4 131 417.0 −1.31 407 417.0 −1.31 373
400 20 80 wd. sm. 10 467.6 229 451.6 −3.40 900 457.9 −1.93 900 474.2 152 451.7 −4.73 900 453.2 −4.35 900
400 20 80 wd. sm. 100 500.4 122 477.5 −4.63 900 486.5 −2.71 900 508.1 77 477.2 −5.99 900 483.7 −4.64 900

400 60 50 - sm. 3 698.2 2,299 699.1 0.16 2,687 702.1 0.58 2,497 698.5 2,148 702.2 0.56 2,712 697.8 −0.09 2,466
400 60 50 - sm. 10 688.1 2,891 692.2 0.62 3,600 701.7 2.02 3,600 689.8 2,451 693.5 0.59 3,600 700.4 1.60 3,600
400 60 50 - sm. 100 686.0 2,244 688.5 0.34 3,600 701.4 2.27 3,600 689.7 1,354 684.5 −0.75 3,600 701.6 1.71 3,600

400 60 50 - lrg. 3 1,740.4 17 1,508.4 −13.28 609 1,526.1 −12.47 448 1,642.4 21 1,478.3 −10.30 733 1,470.3 −10.77 743
400 60 50 - lrg. 10 1,781.5 24 1,321.7 −25.71 1,360 1,313.1 −26.19 2,269 1,746.5 31 1,272.8 −27.18 1,769 1,258.8 −27.93 3,049
400 60 50 - lrg. 100 2,022.7 17 1,595.3 −21.12 906 1,558.1 −22.96 1,516

400 60 50 nrr. sm. 3 1,087.5 54 1,087.5 0.00 55 1,087.5 0.00 54 1,087.5 37 1,087.5 0.00 40 1,087.5 0.00 55
400 60 50 nrr. sm. 10 1,202.8 34 1,202.8 0.00 30 1,202.8 0.00 111 1,202.8 22 1,202.8 0.00 22 1,202.8 0.00 133
400 60 50 nrr. sm. 100 1,146.6 50 1,146.0 −0.05 54 1,146.0 −0.05 309 1,147.1 35 1,146.6 −0.06 37 1,146.0 −0.11 421

400 60 50 nrr. lrg. 3 1,870.0 11 1,694.7 −9.33 185 1,701.4 −8.95 145 1,868.2 8 1,743.0 −6.72 166 1,732.3 −7.30 197
400 60 50 nrr. lrg. 10 2,002.6 12 1,486.1 −25.44 303 1,484.6 −25.51 744 1,926.2 17 1,483.4 −22.99 718 1,452.6 −24.59 1,294
400 60 50 nrr. lrg. 100 2,137.0 11 1,642.8 −23.12 278 1,596.4 −25.30 505

L
X

V

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

400 60 50 wd. sm. 3 920.7 1,054 919.2 −0.17 1,844 919.4 −0.15 1,788 920.1 683 919.2 −0.10 1,692 920.0 0.00 1,767
400 60 50 wd. sm. 10 776.4 1,473 782.6 0.85 3,514 790.9 1.97 3,600 777.4 1,014 775.6 −0.22 3,102 791.0 1.86 3,600
400 60 50 wd. sm. 100 938.6 994 932.8 −0.60 3,600 949.0 1.10 3,600 942.4 758 931.9 −1.14 3,600 957.5 1.76 3,600

400 60 50 wd. lrg. 3 1,650.3 14 1,468.3 −11.40 451 1,466.0 −11.57 333 1,694.3 15 1,536.4 −9.71 303 1,543.6 −9.38 430
400 60 50 wd. lrg. 10 1,865.9 15 1,485.2 −20.81 785 1,477.1 −21.25 1,319 1,723.4 15 1,278.5 −25.82 1,382 1,259.6 −26.91 3,600
400 60 50 wd. lrg. 100 2,030.8 21 1,677.9 −17.38 747 1,632.4 −19.62 916

400 60 80 - sm. 3 657.7 3,164 660.4 0.47 3,271 660.5 0.47 3,167 664.2 3,122 664.8 0.19 3,451 660.3 −0.49 3,096
400 60 80 - sm. 10 670.0 3,579 684.9 2.28 3,600 685.3 2.29 3,600 672.2 3,514 681.3 1.38 3,600 698.0 3.91 3,600
400 60 80 - sm. 100 682.0 3,599 685.5 0.52 3,600 707.4 3.76 3,600 688.4 3,466 691.8 0.48 3,600 700.4 1.74 3,600

400 60 80 - lrg. 3 2,127.3 17 1,941.8 −8.31 350 1,927.4 −8.79 307 1,961.1 16 1,859.5 −4.68 371 1,867.6 −4.44 594
400 60 80 - lrg. 10 2,042.5 83 1,546.3 −24.12 3,529 1,569.1 −22.92 3,600 2,016.2 28 1,595.8 −20.37 1,984 1,574.0 −21.33 3,600
400 60 80 - lrg. 100 2,407.7 11 1,771.8 −26.30 508 1,775.6 −26.14 989

400 60 80 nrr. sm. 3 975.6 109 975.6 0.00 112 975.6 0.00 143 975.6 74 975.6 0.00 77 975.6 0.00 191
400 60 80 nrr. sm. 10 1,021.2 123 1,021.2 0.00 130 1,021.2 0.00 496 1,021.2 82 1,021.2 0.00 80 1,021.2 0.00 740
400 60 80 nrr. sm. 100 1,001.6 197 1,000.7 −0.11 263 1,000.6 −0.12 1,560 1,002.2 110 1,000.7 −0.17 262 1,000.6 −0.18 1,752

400 60 80 nrr. lrg. 3 2,277.6 12 2,096.8 −8.11 236 2,086.9 −8.42 285 2,126.6 12 2,004.0 −6.09 393 1,986.6 −6.95 666
400 60 80 nrr. lrg. 10 1,918.0 40 1,525.1 −20.48 3,175 1,586.7 −17.27 3,600 2,179.7 9 1,762.5 −19.14 315 1,761.9 −19.17 958

400 60 80 wd. sm. 3 818.2 2,347 821.0 0.42 2,669 820.5 0.40 2,855 819.3 1,939 821.5 0.30 2,881 820.3 0.16 2,722
400 60 80 wd. sm. 10 834.3 2,993 829.9 −0.46 3,600 841.1 0.83 3,600 833.8 2,216 828.9 −0.55 3,600 836.8 0.35 3,600
400 60 80 wd. sm. 100 822.3 2,888 819.4 −0.36 3,600 841.4 2.37 3,600 826.7 2,264 823.8 −0.35 3,600 854.7 3.53 3,600

L
X

V
I

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

400 60 80 wd. lrg. 3 2,095.6 16 1,883.5 −9.21 180 1,878.5 −9.29 166 1,561.5 15 1,539.3 −1.44 30 1,539.3 −1.44 172
400 60 80 wd. lrg. 10 2,094.9 51 1,522.0 −27.35 3,488 1,553.7 −25.84 3,600 2,279.3 18 1,765.0 −22.57 769 1,736.8 −23.80 1,612
400 60 80 wd. lrg. 100 2,523.1 14 1,824.7 −27.68 383 1,801.0 −28.62 1,307

400 100 50 - sm. 3 878.2 3,582 900.3 2.51 3,590 899.5 2.42 3,600 874.9 3,495 906.6 3.62 3,446 900.0 2.87 3,588
400 100 50 - sm. 10 877.8 3,600 914.4 4.17 3,600 914.6 4.18 3,600 881.1 3,476 909.6 3.24 3,600 922.5 4.71 3,600
400 100 50 - sm. 100 897.5 3,597 927.7 3.38 3,600 945.2 5.31 3,600 896.4 3,514 927.5 3.49 3,600 948.9 5.87 3,600

400 100 50 - lrg. 3 1,831.8 181 1,597.0 −12.42 2,445 1,586.1 −12.95 2,825 1,754.1 189 1,593.3 −9.31 2,672 1,597.8 −9.08 2,991
400 100 50 - lrg. 10 1,985.4 152 1,638.3 −17.31 2,683 1,634.4 −17.43 3,476 1,985.4 171 1,569.1 −20.76 2,799 1,577.4 −20.24 3,595
400 100 50 - lrg. 100 2,020.7 153 1,595.7 −20.90 3,409 1,589.7 −21.17 3,600 2,089.7 155 1,599.8 −23.30 3,410 1,596.9 −23.44 3,600

400 100 50 nrr. sm. 3 1,583.3 104 1,583.3 0.00 105 1,583.3 0.00 135 1,583.3 69 1,583.3 0.00 72 1,583.3 0.00 127
400 100 50 nrr. sm. 10 1,499.0 132 1,499.0 0.00 142 1,498.0 −0.06 324 1,497.8 92 1,499.2 0.10 91 1,498.0 0.02 400
400 100 50 nrr. sm. 100 1,447.0 176 1,447.0 0.00 176 1,447.0 0.00 647 1,448.4 115 1,447.7 −0.04 106 1,447.7 −0.04 984

400 100 50 nrr. lrg. 3 2,077.8 56 1,826.4 −11.27 815 1,819.5 −11.60 932 1,981.2 57 1,833.6 −7.43 823 1,821.7 −8.06 1,131
400 100 50 nrr. lrg. 10 2,261.2 68 1,899.9 −15.86 925 1,883.2 −16.61 1,343 2,266.4 61 1,884.7 −16.89 881 1,875.8 −17.38 1,840
400 100 50 nrr. lrg. 100 2,350.2 65 1,948.3 −17.01 692 1,919.9 −18.29 1,723 2,460.3 89 1,971.2 −20.11 681 1,938.3 −21.33 1,211

400 100 50 wd. sm. 3 1,122.9 2,997 1,130.1 0.70 3,024 1,128.7 0.56 2,760 1,123.5 2,306 1,129.1 0.52 2,933 1,133.1 0.93 2,847
400 100 50 wd. sm. 10 1,346.3 2,136 1,351.2 0.36 2,989 1,357.8 0.85 3,463 1,348.3 1,569 1,351.1 0.21 2,930 1,368.0 1.48 3,554
400 100 50 wd. sm. 100 1,207.1 3,391 1,219.3 1.03 3,600 1,247.4 3.36 3,600 1,208.0 2,603 1,218.1 0.80 3,600 1,257.2 4.17 3,600

400 100 50 wd. lrg. 3 1,933.4 125 1,743.4 −10.03 2,268 1,735.0 −10.37 2,725 1,895.5 120 1,737.2 −8.33 2,220 1,745.6 −7.96 2,923
400 100 50 wd. lrg. 10 2,037.9 118 1,703.8 −16.37 2,360 1,699.4 −16.49 3,179 1,959.4 182 1,575.1 −19.21 2,618 1,593.2 −18.20 3,326

L
X

V
II

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.5: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPCB(TW), RL/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm (continued)

ALNS

rear loading side loading
instance parameters DBLF LS DBLF LS OS DBLF LS DBLF LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
m n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

400 100 50 wd. lrg. 100 2,151.3 117 1,744.9 −18.80 2,334 1,720.8 −19.89 3,575 2,273.1 141 1,743.4 −23.29 2,766 1,723.8 −24.13 3,600

400 100 80 - sm. 3 856.1 3,600 882.3 3.09 3,600 877.2 2.49 3,600 853.7 3,600 881.7 3.32 3,600 873.7 2.39 3,600
400 100 80 - sm. 10 856.3 3,600 887.0 3.62 3,600 901.2 5.26 3,600 856.4 3,600 885.1 3.40 3,600 898.3 4.92 3,600
400 100 80 - sm. 100 877.9 3,600 905.0 3.11 3,600 943.7 7.46 3,600 884.0 3,600 917.9 3.83 3,600 936.6 5.92 3,600

400 100 80 - lrg. 3 1,824.8 370 1,698.6 −6.54 2,678 1,721.1 −5.13 2,887 1,781.2 315 1,680.6 −5.61 2,303 1,701.3 −4.25 2,788
400 100 80 - lrg. 10 2,192.8 343 1,908.4 −12.81 2,814 1,953.6 −10.68 3,259 2,276.2 320 1,923.0 −15.07 3,031 1,973.7 −12.57 3,595
400 100 80 - lrg. 100 2,456.1 268 2,035.9 −16.93 3,593 2,102.1 −14.24 3,600 2,427.2 307 2,011.9 −17.03 3,600 2,129.2 −12.16 3,600

400 100 80 nrr. sm. 3 1,548.0 175 1,548.0 0.00 212 1,548.0 0.00 218 1,548.0 131 1,548.0 0.00 120 1,548.0 0.00 297
400 100 80 nrr. sm. 10 1,512.8 238 1,513.1 0.02 226 1,512.8 0.00 655 1,512.3 116 1,512.3 0.00 151 1,512.8 0.03 865
400 100 80 nrr. sm. 100 1,566.4 338 1,565.9 −0.04 275 1,565.3 −0.08 1,277 1,566.4 142 1,565.9 −0.03 196 1,566.0 −0.01 1,493

400 100 80 nrr. lrg. 3 1,981.7 200 1,880.8 −5.16 1,562 1,896.0 −4.23 1,362 2,016.0 161 1,881.6 −6.73 1,463 1,878.9 −6.69 1,413
400 100 80 nrr. lrg. 10 2,402.2 111 1,974.1 −17.65 1,393 1,971.5 −17.74 2,089 2,542.0 99 2,173.4 −14.46 1,123 2,155.3 −15.20 1,518
400 100 80 nrr. lrg. 100 2,560.0 119 2,113.6 −17.35 2,272 2,088.1 −18.36 3,414 2,589.3 162 2,074.9 −19.82 2,993 2,083.7 −19.46 3,600

400 100 80 wd. sm. 3 1,115.5 3,490 1,135.3 1.67 3,600 1,132.8 1.45 3,600 1,121.0 3,402 1,135.6 1.23 3,600 1,127.7 0.57 3,600
400 100 80 wd. sm. 10 1,194.8 3,598 1,207.7 1.17 3,600 1,214.2 1.71 3,600 1,196.2 3,463 1,207.9 1.09 3,600 1,227.9 2.78 3,600
400 100 80 wd. sm. 100 1,091.0 3,570 1,114.4 2.18 3,600 1,150.9 5.66 3,600 1,093.0 3,393 1,118.6 2.46 3,600 1,168.0 6.81 3,600

400 100 80 wd. lrg. 3 1,986.6 255 1,767.4 −10.55 2,796 1,780.9 −9.72 3,293 1,894.0 228 1,736.5 −8.13 2,378 1,759.4 −6.90 2,970
400 100 80 wd. lrg. 10 2,335.9 223 2,011.6 −13.73 2,281 2,060.5 −11.39 2,710 2,129.2 346 1,839.8 −12.74 2,845 1,937.9 −8.08 3,600
400 100 80 wd. lrg. 100 2,517.2 202 2,073.7 −17.48 3,390 2,101.4 −16.35 3,600 2,400.0 186 1,975.3 −17.66 3,540 2,075.1 −13.50 3,600

total 1,104.1 886 1,029.3 −4.31 1,680 1,032.6 −3.89 1,948 1,047.0 803 988.7 −3.69 1,652 992.7 −3.27 2,031

L
X

V
III

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.6: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1); average
TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

20 50 - sm. 3 362.3 40 351.5 −2.88 653 354.4 −2.33 560 322.2 391 320.5 −0.46 557 314.6 −2.21 351
20 50 - sm. 10 376.6 28 366.1 −2.88 879 370.6 −1.83 891 351.3 537 347.4 −1.03 772 341.7 −2.67 851
20 50 - sm. 100 369.2 23 357.6 −3.17 743 366.8 −0.78 848 361.8 769 352.0 −2.59 900 345.9 −4.38 900

20 50 nrr. sm. 3 531.2 2 495.4 −6.18 49 497.7 −5.71 47 438.8 9 438.3 −0.09 9 435.1 −0.83 4
20 50 nrr. sm. 10 487.0 2 477.9 −1.85 1 477.9 −1.85 1 465.9 6 465.9 0.00 6 465.3 −0.19 7
20 50 nrr. sm. 100 472.6 3 466.9 −1.19 4 476.5 1.06 8 440.5 23 440.5 0.00 24 437.4 −0.77 67

20 50 wd. sm. 3 406.2 10 399.1 −1.74 328 399.9 −1.55 363 387.3 132 387.3 0.00 225 387.3 −0.01 163
20 50 wd. sm. 10 412.6 9 392.6 −4.86 581 399.1 −3.33 756 402.1 291 400.0 −0.55 521 393.9 −1.98 576
20 50 wd. sm. 100 436.7 7 417.2 −4.22 490 425.1 −2.46 578 430.5 224 427.9 −0.57 721 422.2 −1.98 893

20 80 - sm. 3 404.8 86 391.5 −3.02 900 393.7 −2.54 900 342.7 527 341.4 −0.38 670 340.3 −0.71 624
20 80 - sm. 10 391.2 79 373.2 −4.60 900 377.7 −3.34 900 343.6 813 334.4 −2.63 900 337.3 −1.71 900
20 80 - sm. 100 404.9 62 378.2 −6.55 900 389.3 −3.95 900 369.6 721 347.9 −5.74 900 361.2 −2.29 900

20 80 nrr. sm. 3 460.7 3 453.5 −1.62 339 448.3 −2.65 302 440.7 11 440.7 0.00 10 439.1 −0.39 5
20 80 nrr. sm. 10 480.4 4 475.0 −1.46 210 477.3 −0.84 355 473.6 9 473.6 0.00 10 473.6 0.00 73
20 80 nrr. sm. 100 477.3 6 464.9 −2.79 555 463.1 −3.08 699 461.5 37 461.2 −0.08 83 460.4 −0.36 312

20 80 wd. sm. 3 439.1 36 417.9 −4.60 875 422.9 −3.50 887 375.6 279 373.2 −0.63 586 370.3 −1.44 501
20 80 wd. sm. 10 401.0 54 383.0 −4.41 900 383.9 −4.17 900 353.1 881 342.0 −3.06 900 344.9 −2.22 900
20 80 wd. sm. 100 414.4 25 398.4 −3.96 900 399.7 −3.64 900 404.6 437 388.8 −4.03 900 392.7 −2.89 900

60 50 - sm. 3 538.3 980 544.3 1.16 2,203 547.1 1.67 2,072 519.4 2,929 519.1 −0.06 3,006 511.0 −1.58 2,427
60 50 - sm. 10 549.5 779 555.2 1.06 2,605 561.8 2.32 2,891 542.8 2,796 544.0 0.22 3,269 531.6 −2.06 3,596

L
X

IX

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.6: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

60 50 - sm. 100 545.3 837 541.2 −0.75 1,989 545.9 0.08 2,851 548.3 2,980 548.3 0.00 3,471 541.3 −1.29 3,600

60 50 - lrg. 3 1,279.8 52 1,112.8 −13.39 466 1,116.5 −13.20 1,441 980.9 242 890.3 −8.43 1,952 893.1 −8.41 1,642
60 50 - lrg. 10 1,508.5 55 1,145.5 −24.07 486 1,097.3 −27.26 1,139 1,135.3 238 972.2 −13.94 2,021 969.1 −14.17 3,293
60 50 - lrg. 100 1,154.2 222 995.0 −13.73 1,957 979.5 −15.02 3,544

60 50 nrr. sm. 3 975.7 24 904.0 −7.15 15 904.3 −7.12 18 892.2 24 892.2 0.00 26 892.2 0.00 40
60 50 nrr. sm. 10 846.9 31 804.9 −4.89 17 803.2 −5.08 32 929.1 34 929.1 0.00 38 929.1 0.00 74
60 50 nrr. sm. 100 1,179.8 23 1,045.2 −11.15 14 1,043.2 −11.32 18 997.6 27 997.6 0.00 30 998.0 0.04 65

60 50 nrr. lrg. 3 1,450.2 22 1,314.5 −9.99 60 1,287.2 −11.82 473 1,346.5 22 1,231.5 −7.25 57 1,229.8 −7.48 71
60 50 nrr. lrg. 10 1,251.7 53 1,100.8 −11.47 304 1,099.7 −11.62 730
60 50 nrr. lrg. 100 1,751.6 30 1,625.4 −7.21 114 1,561.5 −10.85 1,912 1,283.2 55 1,123.7 −12.46 362 1,108.4 −13.69 976

60 50 wd. sm. 3 731.0 226 722.8 −1.13 448 725.4 −0.75 456 719.6 1,012 719.6 0.00 956 716.4 −0.51 724
60 50 wd. sm. 10 697.3 423 700.2 0.53 876 699.8 0.51 1,055 687.8 1,610 688.4 0.10 1,649 682.9 −0.86 2,331
60 50 wd. sm. 100 696.1 334 695.3 −0.05 674 691.7 −0.53 1,019 687.4 1,350 688.2 0.09 1,805 683.6 −0.56 3,428

60 50 wd. lrg. 3 1,245.9 50 1,020.0 −18.13 477 1,005.4 −19.30 561 1,023.0 159 953.9 −6.35 1,352 965.3 −5.19 1,236
60 50 wd. lrg. 10 1,347.7 49 1,159.9 −13.94 381 1,097.4 −18.58 1,286 1,235.8 182 1,065.8 −13.57 1,558 1,049.1 −14.86 3,245
60 50 wd. lrg. 100 1,261.4 152 1,088.6 −13.63 1,150 1,064.0 −15.61 2,703

60 80 - sm. 3 550.0 2,193 545.8 −0.71 3,600 547.9 −0.28 3,586 518.6 3,111 517.8 −0.16 3,400 515.3 −0.60 2,877
60 80 - sm. 10 544.2 1,702 538.6 −1.04 3,600 540.3 −0.73 3,600 522.1 3,371 523.1 0.19 3,600 523.2 0.29 3,600
60 80 - sm. 100 574.4 1,397 562.3 −2.10 3,600 562.4 −2.08 3,600 552.1 3,561 552.4 0.05 3,600 559.6 1.36 3,600

L
X

X

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.6: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

60 80 - lrg. 3 2,164.1 35 2,048.4 −5.49 283 2,046.3 −5.54 2,686 1,319.8 178 1,149.0 −12.04 1,847 1,138.0 −12.79 2,094
60 80 - lrg. 10 1,717.8 50 1,503.7 −12.38 744 1,440.3 −16.12 2,114 1,211.3 239 1,073.4 −11.03 2,092 1,069.0 −11.36 2,807
60 80 - lrg. 100 2,257.4 52 1,797.4 −20.38 408 1,726.7 −23.51 3,600 1,302.5 198 1,119.0 −14.03 2,179 1,095.1 −15.87 3,501

60 80 nrr. sm. 3 951.3 25 946.5 −0.47 24 946.5 −0.47 29 946.5 36 946.5 0.00 37 946.5 0.00 37
60 80 nrr. sm. 10 1,014.5 19 994.1 −1.93 15 994.1 −1.93 31 994.1 26 994.1 0.00 29 994.1 0.00 53
60 80 nrr. sm. 100 903.8 26 902.1 −0.17 23 902.5 −0.12 57 903.7 47 902.9 −0.10 51 902.1 −0.20 120

60 80 nrr. lrg. 3 2,094.0 21 1,949.6 −7.25 66 1,948.4 −7.31 897 1,513.5 42 1,317.5 −12.11 220 1,315.9 −12.04 249
60 80 nrr. lrg. 10 2,021.3 29 1,715.1 −15.15 242 1,676.5 −17.06 1,817 1,426.0 58 1,236.1 −13.14 344 1,224.2 −13.94 656
60 80 nrr. lrg. 100 1,460.6 74 1,252.5 −14.28 472 1,235.7 −15.42 1,059

60 80 wd. sm. 3 607.6 1,044 608.1 0.12 2,740 605.0 −0.42 2,476 595.4 2,467 594.9 −0.10 2,752 594.9 −0.09 1,597
60 80 wd. sm. 10 626.0 652 617.6 −1.48 3,184 622.7 −0.68 3,517 618.4 2,578 619.4 0.17 3,068 615.0 −0.60 3,272
60 80 wd. sm. 100 690.7 664 685.8 −0.84 3,398 688.5 −0.37 3,600 693.5 2,113 693.6 0.00 2,875 687.3 −0.97 3,598

60 80 wd. lrg. 3 2,135.2 33 2,017.5 −5.74 237 2,012.3 −5.97 2,779 1,290.2 167 1,130.3 −11.80 1,791 1,124.5 −12.33 1,841
60 80 wd. lrg. 10 1,490.5 53 1,318.9 −11.51 733 1,240.2 −16.79 1,302 1,236.2 196 1,095.5 −11.11 1,606 1,088.5 −11.58 2,119
60 80 wd. lrg. 100 2,348.7 41 1,830.7 −22.06 253 1,735.4 −26.11 2,140 1,351.2 137 1,163.2 −13.91 1,354 1,150.6 −14.88 2,464

100 50 - sm. 3 680.5 2,788 693.4 1.92 2,548 689.3 1.35 2,218 657.6 3,574 661.8 0.65 3,560 648.5 −1.37 3,219
100 50 - sm. 10 698.5 3,072 716.0 2.50 2,677 730.2 4.53 3,410 678.4 3,600 686.1 1.13 3,600 680.4 0.25 3,600
100 50 - sm. 100 698.9 2,561 710.9 1.77 2,622 722.2 3.36 3,449 691.7 3,600 695.4 0.55 3,600 696.8 0.73 3,600

100 50 - lrg. 3 1,624.7 165 1,420.7 −12.64 1,076 1,382.9 −14.89 3,532 1,075.8 921 1,030.4 −3.94 3,295 1,042.1 −2.78 3,329
100 50 - lrg. 10 1,788.1 161 1,492.8 −16.47 878 1,431.2 −19.99 3,600 1,181.4 872 1,122.0 −4.87 3,430 1,111.6 −5.86 3,600

L
X

X
I

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.6: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

100 50 - lrg. 100 1,866.3 163 1,569.3 −15.81 809 1,517.8 −18.52 3,600 1,278.2 709 1,194.6 −6.44 3,451 1,209.7 −5.26 3,600

100 50 nrr. sm. 3 1,526.3 65 1,345.5 −11.44 43 1,345.5 −11.44 50 1,320.7 67 1,320.7 0.00 75 1,320.7 0.00 135
100 50 nrr. sm. 10 1,381.5 66 1,213.8 −10.89 48 1,213.6 −10.91 70 1,194.9 84 1,194.4 −0.04 88 1,195.1 0.02 188
100 50 nrr. sm. 100 1,385.6 68 1,264.2 −8.32 50 1,264.7 −8.29 68 1,234.5 88 1,232.8 −0.13 99 1,234.5 0.01 212

100 50 nrr. lrg. 3 1,817.6 71 1,580.5 −13.00 182 1,555.0 −14.22 1,434 1,485.2 89 1,435.6 −3.36 244 1,431.7 −3.57 694
100 50 nrr. lrg. 10 2,127.9 70 1,658.8 −21.76 185 1,576.2 −25.66 1,912 1,589.0 92 1,512.7 −4.75 278 1,491.9 −6.13 1,100
100 50 nrr. lrg. 100 2,017.5 65 1,695.9 −15.85 73 1,641.8 −18.54 804 1,650.4 77 1,582.2 −4.24 249 1,567.2 −5.14 1,310

100 50 wd. sm. 3 904.6 521 879.2 −2.73 945 883.0 −2.34 969 848.1 1,982 846.9 −0.12 1,837 845.4 −0.31 1,686
100 50 wd. sm. 10 1,066.0 442 1,000.8 −5.79 189 1,001.8 −5.71 385 958.1 2,285 957.2 −0.08 2,371 957.0 −0.13 3,587
100 50 wd. sm. 100 1,036.0 415 1,012.1 −2.18 214 1,020.8 −1.30 476 971.1 2,122 970.5 −0.05 2,051 968.9 −0.25 3,574

100 50 wd. lrg. 3 1,615.9 164 1,426.8 −11.80 700 1,394.8 −13.62 3,346 1,146.9 691 1,104.6 −3.63 3,289 1,112.2 −2.94 3,236
100 50 wd. lrg. 10 1,903.2 134 1,491.3 −21.68 705 1,425.7 −25.24 3,548 1,284.7 687 1,217.4 −5.04 2,676 1,192.7 −6.84 3,451
100 50 wd. lrg. 100 2,032.3 133 1,654.2 −18.47 526 1,588.0 −21.68 3,600 1,471.2 400 1,378.8 −6.19 2,083 1,353.5 −7.89 3,600

100 80 - sm. 3 672.3 3,288 682.7 1.57 3,554 676.8 0.68 3,572 658.8 3,579 667.7 1.35 3,600 655.0 −0.56 3,485
100 80 - sm. 10 681.3 3,386 680.2 −0.15 3,600 693.8 1.84 3,600 673.7 3,600 685.7 1.78 3,600 684.2 1.55 3,600
100 80 - sm. 100 696.9 2,674 698.6 0.23 3,600 711.7 2.14 3,600 692.5 3,600 703.0 1.49 3,600 699.7 1.02 3,600

100 80 - lrg. 3 1,811.9 157 1,739.9 −4.27 1,644 1,756.5 −3.29 3,019 1,239.6 622 1,200.1 −3.03 2,674 1,197.9 −3.19 2,832
100 80 - lrg. 10 2,135.5 154 1,953.5 −8.48 1,373 1,962.1 −8.05 3,600 1,406.5 579 1,323.2 −5.75 3,260 1,340.8 −4.61 3,600
100 80 - lrg. 100 2,184.9 155 1,953.8 −10.39 1,418 1,982.0 −9.11 3,600 1,454.3 594 1,363.0 −6.24 3,575 1,383.5 −4.84 3,600

L
X

X
II

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.6: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPMB(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

100 80 nrr. sm. 3 1,210.4 80 1,211.0 0.11 59 1,210.5 0.05 103 1,207.9 103 1,207.9 0.00 108 1,207.9 0.00 142
100 80 nrr. sm. 10 1,238.2 80 1,233.6 −0.34 59 1,233.5 −0.36 129 1,232.8 111 1,231.9 −0.08 111 1,231.5 −0.12 198
100 80 nrr. sm. 100 1,346.9 63 1,342.7 −0.29 49 1,342.3 −0.33 110 1,342.3 76 1,342.7 0.04 85 1,342.2 0.00 184

100 80 nrr. lrg. 3 1,940.4 83 1,847.8 −4.67 372 1,834.0 −5.23 3,459 1,545.5 112 1,506.7 −2.62 335 1,503.2 −2.61 756
100 80 nrr. lrg. 10 2,159.6 80 1,935.7 −10.20 412 1,918.2 −11.06 3,096 1,596.2 123 1,480.6 −7.04 551 1,461.5 −8.20 2,329
100 80 nrr. lrg. 100 2,324.5 82 2,030.8 −12.40 337 1,957.7 −15.60 3,047 1,700.7 108 1,592.8 −6.33 455 1,571.7 −7.55 1,701

100 80 wd. sm. 3 914.3 1,363 917.1 0.39 1,322 915.2 0.13 1,290 912.2 2,363 912.6 0.06 2,496 912.6 0.06 2,086
100 80 wd. sm. 10 804.4 2,255 801.5 −0.34 2,633 808.0 0.48 3,527 802.1 3,473 801.3 −0.09 3,518 801.2 −0.12 3,600
100 80 wd. sm. 100 907.7 1,552 905.9 −0.20 2,692 914.3 0.81 3,363 906.9 3,119 908.9 0.24 3,291 911.2 0.48 3,600

100 80 wd. lrg. 3 1,825.0 130 1,746.7 −4.60 1,196 1,745.3 −4.75 2,500 1,283.0 458 1,229.8 −3.88 2,744 1,208.3 −5.62 2,414
100 80 wd. lrg. 10 2,333.4 125 2,078.0 −11.13 890 2,068.9 −11.56 3,600 1,543.7 396 1,447.9 −6.14 2,299 1,432.8 −7.10 3,596
100 80 wd. lrg. 100 2,372.9 129 2,015.7 −14.80 1,010 2,029.2 −14.23 3,600 1,611.9 371 1,515.2 −5.98 2,285 1,509.1 −6.23 3,600

total 1,002.3 686 931.9 −4.49 1,331 928.3 −4.35 1,971 911.9 1,115 866.3 −3.56 1,818 862.6 −3.97 2,080

L
X

X
III

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.7: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

20 50 - sm. 3 348.6 207 338.6 −2.63 900 338.8 −2.65 853 329.1 534 329.1 0.00 562 319.1 −2.68 359
20 50 - sm. 10 368.6 112 353.9 −3.83 884 357.1 −2.97 900 373.7 612 373.7 0.00 650 346.2 −7.15 893
20 50 - sm. 100 360.6 72 346.8 −3.73 900 349.1 −3.20 900 380.6 719 379.3 −0.32 793 362.8 −4.64 900

20 50 nrr. sm. 3 450.2 2 443.0 −1.62 43 442.1 −1.81 40 439.7 11 439.7 0.00 10 432.3 −1.70 2
20 50 nrr. sm. 10 462.8 2 462.8 0.00 2 462.8 0.00 4 465.1 7 465.1 0.00 7 462.8 −0.53 5
20 50 nrr. sm. 100 436.7 4 436.6 −0.01 5 436.6 −0.01 14 445.8 29 445.8 0.00 30 437.0 −2.11 51

20 50 wd. sm. 3 394.6 30 392.1 −0.65 453 392.4 −0.60 395 388.3 138 388.3 0.00 152 386.6 −0.44 77
20 50 wd. sm. 10 394.8 39 389.6 −1.32 900 390.3 −1.14 900 406.5 291 403.4 −0.75 311 390.6 −3.77 590
20 50 wd. sm. 100 416.5 24 413.2 −0.77 271 413.2 −0.77 820 428.8 380 428.8 0.00 363 416.8 −2.74 427

20 80 - sm. 3 403.0 113 393.7 −2.12 900 392.8 −2.29 900 364.8 739 364.4 −0.12 749 345.2 −5.36 582
20 80 - sm. 10 387.3 94 375.3 −2.97 900 377.7 −2.35 900 373.9 789 370.8 −0.81 842 349.3 −6.68 900
20 80 - sm. 100 404.9 71 386.5 −4.57 900 392.8 −3.06 900 396.9 866 383.0 −3.38 900 370.6 −6.51 900

20 80 nrr. sm. 3 450.3 4 443.5 −1.55 336 443.5 −1.55 310 446.1 13 444.0 −0.52 16 439.1 −1.66 5
20 80 nrr. sm. 10 481.1 6 475.9 −1.27 200 475.9 −1.27 233 479.1 42 478.8 −0.07 40 473.6 −1.49 96
20 80 nrr. sm. 100 464.6 7 458.9 −1.51 337 458.9 −1.51 548 467.9 94 462.4 −1.37 160 458.7 −2.40 147

20 80 wd. sm. 3 432.5 46 418.1 −3.02 894 420.2 −2.60 883 389.5 424 386.9 −0.69 418 370.1 −4.80 547
20 80 wd. sm. 10 395.9 72 380.4 −3.90 900 383.4 −3.13 900 384.8 645 373.0 −3.07 874 362.1 −5.96 900
20 80 wd. sm. 100 416.7 23 402.1 −3.50 900 406.1 −2.52 900 416.7 490 404.6 −2.98 643 386.8 −7.18 900

60 50 - sm. 3 537.7 1,242 532.5 −0.96 3,528 532.2 −1.01 3,453 523.7 2,530 523.7 −0.01 2,725 512.5 −2.08 2,537
60 50 - sm. 10 547.6 1,012 545.0 −0.49 3,097 545.8 −0.34 3,496 554.5 3,027 554.2 −0.05 2,936 536.7 −3.15 3,338

L
X

X
IV

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.7: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

60 50 - sm. 100 541.0 803 538.6 −0.44 3,221 538.9 −0.40 3,600 560.4 2,986 559.0 −0.26 3,111 540.5 −3.51 3,593

60 50 - lrg. 3 1,462.8 46 1,402.4 −4.24 596 1,395.4 −4.46 2,554 1,112.5 318 1,092.1 −1.82 860 1,036.9 −7.31 1,800
60 50 - lrg. 10 1,543.1 37 1,423.0 −7.73 569 1,397.1 −9.47 3,536 1,392.3 242 1,337.7 −3.79 904 1,323.9 −4.94 3,371
60 50 - lrg. 100 1,540.0 39 1,380.0 −10.38 550 1,342.4 −12.83 3,600 1,373.7 235 1,321.6 −3.76 927 1,286.3 −6.33 3,586

60 50 nrr. sm. 3 892.2 15 892.2 0.00 15 892.2 0.00 34 892.2 20 892.2 0.00 22 892.2 0.00 36
60 50 nrr. sm. 10 929.1 18 929.1 0.00 19 928.8 −0.04 54 929.1 28 929.1 0.00 31 928.8 −0.04 65
60 50 nrr. sm. 100 997.6 15 997.6 0.00 15 998.0 0.05 43 998.0 22 998.0 0.00 23 998.0 0.00 52

60 50 nrr. lrg. 3 1,583.6 17 1,494.8 −5.81 86 1,481.0 −6.44 1,160 1,243.6 40 1,216.1 −2.05 68 1,159.3 −7.14 160
60 50 nrr. lrg. 10 1,577.4 24 1,460.7 −7.52 244 1,435.6 −9.14 3,024 1,405.7 96 1,352.7 −3.48 264 1,365.4 −2.88 1,517
60 50 nrr. lrg. 100 1,576.2 22 1,396.8 −11.35 202 1,347.3 −14.54 2,827 1,422.4 88 1,361.4 −4.29 270 1,361.1 −4.30 1,846

60 50 wd. sm. 3 718.7 323 718.6 −0.02 1,232 718.7 −0.02 1,232 718.9 688 719.1 0.03 692 716.3 −0.40 710
60 50 wd. sm. 10 687.5 594 684.0 −0.58 1,534 684.2 −0.54 2,041 693.7 1,450 690.6 −0.49 1,672 684.6 −1.44 2,138
60 50 wd. sm. 100 682.7 695 680.8 −0.29 2,362 680.9 −0.28 3,157 690.4 1,311 690.1 −0.03 1,519 682.4 −1.26 3,198

60 50 wd. lrg. 3 1,450.3 39 1,376.1 −4.99 440 1,365.4 −5.49 2,203 1,178.1 242 1,160.2 −1.50 521 1,147.8 −2.33 1,414
60 50 wd. lrg. 10 1,578.0 36 1,427.8 −9.39 476 1,382.8 −12.27 3,498 1,508.4 189 1,443.8 −4.26 686 1,412.2 −6.45 3,245
60 50 wd. lrg. 100 1,607.8 32 1,431.9 −10.91 403 1,385.1 −13.84 3,600 1,454.2 176 1,403.3 −3.36 622 1,353.8 −6.89 3,381

60 80 - sm. 3 548.2 2,066 546.9 −0.11 3,600 543.1 −0.85 3,563 524.3 3,137 523.9 −0.08 3,271 515.9 −1.53 2,613
60 80 - sm. 10 542.6 1,886 533.8 −1.62 3,600 536.0 −1.20 3,600 536.7 3,191 537.8 0.20 3,498 521.0 −2.87 3,600
60 80 - sm. 100 571.6 1,526 564.4 −1.28 3,600 569.6 −0.34 3,600 581.3 3,406 584.0 0.47 3,562 563.1 −3.10 3,600

L
X

X
V

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.7: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

60 80 - lrg. 3 2,088.4 27 1,966.3 −5.85 428 1,917.1 −8.10 3,247 1,399.8 207 1,292.0 −7.22 1,814 1,258.0 −9.10 2,337
60 80 - lrg. 10 1,703.4 40 1,537.0 −9.81 802 1,494.1 −12.28 3,528 1,356.3 277 1,237.0 −8.59 2,031 1,201.6 −11.26 3,208
60 80 - lrg. 100 1,905.1 30 1,710.9 −10.16 618 1,653.1 −13.21 3,600 1,428.0 226 1,299.6 −9.01 1,824 1,239.5 −13.25 3,537

60 80 nrr. sm. 3 946.5 18 946.5 0.00 19 946.5 0.00 32 946.5 29 946.5 0.00 30 946.5 0.00 34
60 80 nrr. sm. 10 994.4 14 994.1 −0.04 16 994.1 −0.04 33 994.1 23 994.1 0.00 24 994.1 0.00 43
60 80 nrr. sm. 100 902.1 23 902.1 0.00 25 902.1 0.00 73 903.6 50 903.2 −0.05 55 902.1 −0.19 107

60 80 nrr. lrg. 3 2,072.9 19 1,902.3 −8.58 197 1,845.5 −11.02 2,386 1,561.5 56 1,431.1 −7.36 269 1,402.4 −8.49 444
60 80 nrr. lrg. 10 1,743.8 23 1,553.0 −10.92 215 1,495.3 −14.23 1,949 1,529.6 63 1,405.8 −8.05 314 1,367.5 −10.83 751
60 80 nrr. lrg. 100 1,881.5 21 1,707.1 −9.23 356 1,624.3 −13.62 3,482 1,513.6 81 1,385.6 −8.45 473 1,314.6 −13.16 1,425

60 80 wd. sm. 3 608.1 1,606 604.2 −0.65 3,019 603.7 −0.75 3,068 597.0 1,959 596.7 −0.05 2,100 594.4 −0.44 1,678
60 80 wd. sm. 10 622.4 748 620.4 −0.34 3,178 620.3 −0.34 3,547 620.0 2,194 619.8 −0.04 2,073 616.7 −0.56 3,453
60 80 wd. sm. 100 689.6 695 685.2 −0.69 3,272 686.5 −0.51 3,600 698.1 1,973 699.2 0.20 2,284 684.2 −2.12 3,582

60 80 wd. lrg. 3 2,113.6 23 2,000.3 −5.19 356 1,946.6 −7.75 3,386 1,443.5 175 1,323.3 −8.12 1,395 1,262.8 −11.94 1,973
60 80 wd. lrg. 10 1,742.6 38 1,568.4 −10.15 633 1,532.4 −12.06 3,016 1,397.4 241 1,284.5 −7.67 1,681 1,228.6 −11.83 2,729
60 80 wd. lrg. 100 1,940.8 24 1,739.4 −10.36 485 1,689.4 −13.01 3,581 1,499.2 162 1,371.6 −8.59 1,142 1,322.8 −11.95 2,723

100 50 - sm. 3 670.1 2,764 670.0 −0.01 3,600 671.3 0.18 3,461 666.0 3,530 667.2 0.17 3,580 654.6 −1.70 3,113
100 50 - sm. 10 678.0 2,884 679.3 0.20 3,600 693.9 2.34 3,600 688.8 3,462 693.2 0.65 3,489 684.7 −0.57 3,600
100 50 - sm. 100 685.3 3,093 687.8 0.37 3,600 706.0 3.01 3,600 707.4 3,600 709.0 0.22 3,600 697.6 −1.39 3,600

100 50 - lrg. 3 1,594.8 190 1,547.3 −3.03 1,688 1,556.1 −2.59 3,557 1,332.7 848 1,320.8 −0.84 2,725 1,299.2 −2.34 3,357
100 50 - lrg. 10 1,677.6 171 1,606.2 −4.24 1,638 1,627.1 −3.16 3,600 1,399.5 872 1,379.7 −1.44 3,028 1,344.1 −4.24 3,600

L
X

X
V

I

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.7: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

100 50 - lrg. 100 1,765.0 165 1,677.6 −4.94 1,522 1,707.2 −3.28 3,600 1,501.2 642 1,467.3 −2.25 2,837 1,468.1 −2.25 3,600

100 50 nrr. sm. 3 1,320.5 50 1,320.5 0.00 54 1,320.5 0.00 110 1,320.7 64 1,320.7 0.00 73 1,320.5 −0.02 128
100 50 nrr. sm. 10 1,194.3 53 1,194.7 0.04 61 1,194.6 0.02 180 1,194.6 86 1,194.0 −0.05 99 1,194.6 0.00 197
100 50 nrr. sm. 100 1,233.7 58 1,232.8 −0.07 63 1,233.7 0.00 182 1,234.5 89 1,232.7 −0.15 102 1,233.7 −0.07 214

100 50 nrr. lrg. 3 1,737.0 66 1,641.1 −5.53 311 1,632.5 −6.00 2,136 1,675.4 109 1,661.3 −0.80 204 1,678.3 0.11 741
100 50 nrr. lrg. 10 1,898.8 62 1,793.7 −5.51 301 1,750.4 −7.77 2,806 1,705.5 122 1,673.0 −1.94 293 1,652.2 −3.31 1,924
100 50 nrr. lrg. 100 1,927.8 57 1,809.8 −6.13 244 1,747.9 −9.30 2,484 1,758.4 102 1,718.7 −2.28 251 1,667.1 −5.24 1,472

100 50 wd. sm. 3 851.3 1,215 850.0 −0.15 2,336 848.1 −0.40 2,251 846.8 2,072 848.4 0.16 2,044 845.2 −0.21 1,543
100 50 wd. sm. 10 956.1 1,122 956.0 −0.02 1,450 956.0 −0.02 3,425 956.6 2,066 954.6 −0.20 2,390 956.4 −0.03 3,583
100 50 wd. sm. 100 970.3 1,108 968.5 −0.17 2,002 969.5 −0.04 3,489 973.1 2,131 971.6 −0.11 2,288 968.8 −0.43 3,600

100 50 wd. lrg. 3 1,619.0 133 1,573.9 −2.80 1,182 1,560.2 −3.83 3,591 1,319.1 601 1,301.5 −1.38 2,591 1,239.1 −5.76 3,185
100 50 wd. lrg. 10 1,621.2 137 1,543.7 −4.78 1,088 1,517.4 −6.49 3,600 1,401.4 654 1,381.9 −1.32 2,099 1,312.4 −6.42 3,513
100 50 wd. lrg. 100 1,842.5 124 1,725.8 −6.33 996 1,727.5 −6.19 3,600 1,611.9 406 1,580.1 −1.93 1,512 1,558.9 −3.19 3,600

100 80 - sm. 3 674.6 3,262 678.7 0.61 3,600 678.1 0.52 3,600 661.0 3,600 673.9 1.94 3,600 657.0 −0.58 3,515
100 80 - sm. 10 682.9 3,266 686.1 0.48 3,600 696.1 1.94 3,600 684.5 3,600 701.0 2.43 3,600 687.7 0.50 3,600
100 80 - sm. 100 699.9 3,225 703.4 0.52 3,600 708.9 1.33 3,600 702.8 3,600 723.0 2.86 3,600 716.3 1.92 3,600

100 80 - lrg. 3 1,961.3 178 1,908.3 −2.90 2,000 1,937.5 −1.46 3,295 1,312.5 821 1,282.5 −2.11 2,776 1,264.3 −3.70 3,329
100 80 - lrg. 10 2,216.8 162 2,078.5 −6.28 1,681 2,128.9 −3.95 3,600 1,521.4 737 1,449.3 −4.67 3,320 1,459.4 −4.24 3,600
100 80 - lrg. 100 2,159.6 157 2,033.5 −5.88 1,772 2,079.0 −3.79 3,600 1,538.3 715 1,471.0 −4.37 3,573 1,490.0 −3.18 3,600

L
X

X
V

II

C
D

etailed
resu

lts
3L

-V
R

P
B

T
W

in
stan

ces

Table C.7: Comparison of hybrid ALNS algorithms with different packing heuristics; extended problem variants (3L-VRPSDP(TW), LSP/SL, C1);
average TTDs, deviations from benchmark and computing times; separated by instance classes, loading approaches and variants of the hybrid algorithm
(continued)

ALNS

loading space partition side loading
instance parameters DBLF LS DBLF LS OS DBLFSL LS DBLFSL LS OS

∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct ∅TTD* ∅ct ∅TTD ∅dev ∅ct ∅TTD ∅dev ∅ct
n %LH TW it. typ [DU] [s] [DU] [%] [s] [DU] [%] [s] [DU] [s] [DU] [%] [s] [DU] [%] [s]

100 80 nrr. sm. 3 1,208.5 55 1,207.5 −0.09 61 1,208.0 −0.05 116 1,208.5 89 1,207.9 −0.06 100 1,208.0 −0.05 126
100 80 nrr. sm. 10 1,231.9 63 1,232.4 0.05 65 1,232.3 0.04 160 1,231.9 109 1,233.1 0.08 108 1,232.3 0.04 201
100 80 nrr. sm. 100 1,342.2 55 1,342.7 0.04 58 1,341.3 −0.07 142 1,343.2 83 1,342.3 −0.07 93 1,341.3 −0.15 181

100 80 nrr. lrg. 3 2,135.8 74 2,060.2 −3.55 476 2,067.1 −3.23 3,600 1,528.7 115 1,498.0 −2.12 372 1,496.1 −2.20 1,119
100 80 nrr. lrg. 10 2,249.4 73 2,096.5 −6.79 537 2,075.8 −7.71 3,342 1,703.0 158 1,611.4 −5.30 664 1,560.9 −8.37 2,781
100 80 nrr. lrg. 100 2,246.6 64 2,059.7 −8.28 381 2,015.8 −10.19 3,301 1,757.3 125 1,660.7 −5.47 435 1,614.3 −8.09 2,339

100 80 wd. sm. 3 912.6 1,659 912.6 0.00 2,159 912.8 0.02 2,206 913.4 2,624 913.8 0.06 2,617 912.6 −0.09 2,174
100 80 wd. sm. 10 802.3 2,449 801.7 −0.09 3,235 802.8 0.04 3,600 802.4 3,566 801.5 −0.11 3,587 801.6 −0.13 3,600
100 80 wd. sm. 100 909.4 1,898 907.1 −0.29 3,208 916.8 0.90 3,600 910.7 3,267 913.1 0.30 3,315 913.2 0.23 3,600

100 80 wd. lrg. 3 1,909.9 127 1,836.6 −4.17 1,379 1,834.8 −4.38 2,625 1,357.0 549 1,311.3 −3.20 2,860 1,269.5 −6.45 2,683
100 80 wd. lrg. 10 2,320.9 108 2,160.5 −6.98 1,022 2,191.8 −5.68 3,600 1,613.9 453 1,524.0 −5.52 2,620 1,509.2 −6.52 3,600
100 80 wd. lrg. 100 2,274.8 113 2,134.5 −6.18 1,096 2,160.3 −5.03 3,600 1,697.4 416 1,605.5 −5.46 2,376 1,590.8 −6.23 3,600

total 1,098.1 641 1,051.4 −3.01 1,456 1,048.0 −3.07 2,417 971.1 1,121 946.0 −1.71 1,652 928.9 −3.73 2,151

L
X

X
V

III

C Detailed results 3L-VRPBTW instances

Table C.8: Comparison of loading approaches; extended problem variants (3L-VRPTW,
RL/SL, C1); average TTDs provided by rear loading (benchmark), average deviations
of TTDs provided by side loading from benchmarks; separated by instance classes and
variants of the hybrid algorithm

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n TW it. typ [DU] [%] [DU] [%] [DU] [%]

200 20 nrr. sm. 3 439.84 0.19 438.40 0.05 438.40 0.00
200 20 nrr. sm. 10 468.17 0.00 468.17 0.00 468.17 0.00
200 20 nrr. sm. 100 450.08 0.17 447.65 0.00 447.65 0.00

200 20 wd. sm. 3 391.54 0.02 389.63 0.03 389.80 0.17
200 20 wd. sm. 10 375.64 0.79 367.65 0.03 368.21 0.04
200 20 wd. sm. 100 411.23 0.67 397.10 −0.08 400.36 0.17

200 60 nrr. sm. 3 919.38 0.00 919.38 0.00 919.38 0.00
200 60 nrr. sm. 10 961.56 0.00 961.56 0.00 961.56 0.00
200 60 nrr. sm. 100 950.08 0.00 950.27 0.01 950.08 0.00

200 60 nrr. lrg. 3 1,533.92 −1.78 1,390.91 0.27 1,393.78 −0.04
200 60 nrr. lrg. 10 1,481.75 −0.83 1,260.71 −0.57 1,255.12 −0.81
200 60 nrr. lrg. 100 1,546.74 −1.77 1,267.41 −0.10 1,251.15 −0.42

200 60 wd. sm. 3 656.17 0.13 656.94 −0.09 655.82 0.02
200 60 wd. sm. 10 650.62 −0.12 648.24 0.20 650.54 0.12
200 60 wd. sm. 100 682.09 0.35 682.10 0.14 691.03 0.62

200 60 wd. lrg. 3 1,294.35 −0.73 1,189.30 0.12 1,182.94 0.51
200 60 wd. lrg. 10 1,426.32 −0.68 1,225.86 −0.25 1,225.77 −0.13
200 60 wd. lrg. 100 1,543.56 −1.08 1,283.45 −0.38 1,263.53 −0.75

200 100 nrr. sm. 3 1,265.39 0.00 1,265.39 0.00 1,265.39 0.00
200 100 nrr. sm. 10 1,214.11 0.00 1,213.87 0.03 1,214.16 0.00
200 100 nrr. sm. 100 1,288.95 0.02 1,288.83 −0.13 1,288.67 0.00

200 100 nrr. lrg. 3 1,523.51 2.16 1,470.77 1.01 1,471.51 0.14
200 100 nrr. lrg. 10 1,675.35 −2.55 1,524.08 −0.51 1,518.31 −0.03
200 100 nrr. lrg. 100 1,774.94 −0.95 1,592.63 −0.29 1,573.40 −0.62

200 100 wd. sm. 3 882.86 −0.08 882.14 0.05 881.99 0.01
200 100 wd. sm. 10 876.50 0.16 876.11 0.16 880.83 −0.01
200 100 wd. sm. 100 936.22 0.04 939.48 −0.10 955.70 −0.04

200 100 wd. lrg. 3 1,314.50 1.06 1,274.66 0.74 1,278.07 0.41
200 100 wd. lrg. 10 1,522.49 −1.79 1,419.60 −1.71 1,437.39 0.19
200 100 wd. lrg. 100 1,696.87 −1.06 1,553.15 −1.27 1,582.98 1.63

400 20 nrr. sm. 3 489.47 0.27 481.78 0.06 481.80 0.60
400 20 nrr. sm. 10 493.46 1.43 478.18 −0.28 480.18 0.26
400 20 nrr. sm. 100 530.62 3.24 504.42 0.46 513.79 −0.93

400 20 wd. sm. 3 454.75 0.45 446.46 −0.05 445.63 0.00
400 20 wd. sm. 10 470.22 2.33 449.87 1.08 453.15 −0.06
400 20 wd. sm. 100 502.38 2.14 470.32 0.31 477.74 0.57

400 60 nrr. sm. 3 886.07 0.03 886.03 0.00 886.03 0.00
400 60 nrr. sm. 10 953.83 0.12 953.74 0.02 953.76 0.00

LXXIX

C Detailed results 3L-VRPBTW instances

Table C.8: Comparison of loading approaches; extended problem variants (3L-VRPTW,
RL/SL, C1); average TTDs provided by rear loading (benchmark), average deviations
of TTDs provided by side loading from benchmarks; separated by instance classes and
variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n TW it. typ [DU] [%] [DU] [%] [DU] [%]

400 60 nrr. sm. 100 941.16 0.30 938.57 0.00 939.00 −0.02

400 60 nrr. lrg. 3 2,536.95 −1.25 2,303.42 0.72 2,304.83 0.01
400 60 nrr. lrg. 10 2,517.90 0.08 1,848.47 −1.64 1,823.20 0.43

400 60 wd. sm. 3 739.34 0.77 740.61 0.31 739.71 −0.19
400 60 wd. sm. 10 677.68 1.18 680.44 −0.04 695.68 0.17
400 60 wd. sm. 100 773.36 0.85 771.84 0.39 795.23 −0.06

400 60 wd. lrg. 3 1,941.01 −2.77 1,763.23 −0.01 1,763.03 0.14

400 100 nrr. sm. 3 1,341.61 0.00 1,341.61 0.00 1,341.61 0.00
400 100 nrr. sm. 10 1,277.65 0.03 1,276.99 0.00 1,278.05 −0.07
400 100 nrr. sm. 100 1,272.61 0.02 1,272.10 −0.03 1,272.41 0.05

400 100 nrr. lrg. 3 2,414.64 −2.23 2,174.86 −0.45 2,185.47 −0.78
400 100 nrr. lrg. 10 2,863.89 −1.33 2,386.36 −0.83 2,392.44 −0.54
400 100 nrr. lrg. 100 2,948.77 0.58 2,396.63 −0.27 2,396.55 1.41

400 100 wd. sm. 3 902.05 0.17 917.81 −0.04 916.02 −0.67
400 100 wd. sm. 10 1,036.20 −0.09 1,058.81 −0.75 1,085.47 −0.81
400 100 wd. sm. 100 930.36 1.00 965.05 −0.82 993.41 −0.63

400 100 wd. lrg. 3 2,422.14 −4.01 2,219.74 −1.13 2,219.95 0.56
400 100 wd. lrg. 10 2,496.78 1.04 2,203.81 −0.11 2,284.59 0.63
400 100 wd. lrg. 100 2,858.09 0.76 2,351.77 0.48 2,465.94 0.95

total 1,156.71 −0.01 1,081.24 −0.07 1,086.60 0.03

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

200 20 50 - sm. 3 382.62 0.00 382.62 0.00 382.62 0.00
200 20 50 - sm. 10 407.08 0.20 405.92 −0.07 405.67 0.06
200 20 50 - sm. 100 400.09 0.20 399.00 0.00 400.58 −0.26

200 20 50 nrr. sm. 3 514.56 0.00 514.56 0.00 514.56 0.00
200 20 50 nrr. sm. 10 545.07 0.00 545.07 0.00 545.07 0.00
200 20 50 nrr. sm. 100 496.81 0.01 496.81 0.00 496.81 0.00

200 20 50 wd. sm. 3 470.23 0.00 470.23 0.00 470.23 0.00
200 20 50 wd. sm. 10 483.35 0.00 483.35 0.00 483.35 0.00

LXXX

C Detailed results 3L-VRPBTW instances

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

200 20 50 wd. sm. 100 479.44 0.37 479.39 0.00 479.39 0.00

200 20 80 - sm. 3 374.82 0.28 374.08 −0.09 373.32 0.22
200 20 80 - sm. 10 381.56 0.25 379.84 −0.22 382.48 −0.25
200 20 80 - sm. 100 387.41 1.03 373.91 0.03 375.59 0.26

200 20 80 nrr. sm. 3 475.82 0.00 475.82 0.00 475.82 0.00
200 20 80 nrr. sm. 10 509.53 0.00 509.53 0.00 509.53 0.00
200 20 80 nrr. sm. 100 503.50 0.66 500.30 0.00 500.30 0.00

200 20 80 wd. sm. 3 418.35 −0.12 417.79 0.00 417.84 −0.01
200 20 80 wd. sm. 10 401.91 0.44 395.19 0.03 400.22 −0.54
200 20 80 wd. sm. 100 444.27 1.14 438.88 0.00 438.88 0.00

200 60 50 - sm. 3 674.89 −0.28 673.39 0.40 674.00 0.37
200 60 50 - sm. 10 683.78 −0.03 683.84 −0.05 688.67 0.17
200 60 50 - sm. 100 669.79 0.15 670.01 −0.14 679.04 −0.43

200 60 50 - lrg. 3 975.42 1.55 901.03 0.38 907.62 −0.56
200 60 50 - lrg. 10 1,122.78 −0.77 930.38 −0.48 928.35 −1.02
200 60 50 - lrg. 100 1,157.02 0.41 943.40 −0.14 929.54 −0.94

200 60 50 nrr. sm. 3 1,045.73 0.00 1,045.73 0.00 1,045.73 0.00
200 60 50 nrr. sm. 10 1,118.96 0.00 1,118.96 0.00 1,118.96 0.00
200 60 50 nrr. sm. 100 1,193.37 0.00 1,193.46 −0.01 1,193.37 0.00

200 60 50 nrr. lrg. 3 1,406.76 0.79 1,327.00 0.06 1,339.48 −0.91
200 60 50 nrr. lrg. 10 1,301.63 −0.68 1,104.50 0.50 1,102.67 −0.65
200 60 50 nrr. lrg. 100 1,304.55 2.69 1,120.90 −0.72 1,115.18 −1.16

200 60 50 wd. sm. 3 903.93 0.00 903.93 0.04 904.23 −0.04
200 60 50 wd. sm. 10 847.99 0.00 848.78 −0.13 847.99 0.08
200 60 50 wd. sm. 100 865.34 −0.02 865.84 0.10 867.48 −0.32

200 60 50 wd. lrg. 3 1,052.72 1.35 990.04 0.26 996.93 −0.31
200 60 50 wd. lrg. 10 1,222.68 −1.12 1,033.14 −0.27 1,032.70 −0.57
200 60 50 wd. lrg. 100 1,270.27 −0.47 1,062.36 0.87 1,053.35 −0.37

200 60 80 - sm. 3 626.71 −0.02 630.55 0.23 627.29 0.81
200 60 80 - sm. 10 619.01 0.58 627.82 0.17 635.96 −0.57
200 60 80 - sm. 100 660.85 0.42 676.12 −0.50 683.17 0.33

200 60 80 - lrg. 3 1,269.53 −4.68 1,142.46 −0.34 1,129.21 1.05
200 60 80 - lrg. 10 1,204.04 −0.62 1,052.92 −0.80 1,053.08 0.15
200 60 80 - lrg. 100 1,274.76 1.06 1,084.90 −0.39 1,073.47 0.65

200 60 80 nrr. sm. 3 1,102.24 0.00 1,102.24 0.00 1,102.24 0.00
200 60 80 nrr. sm. 10 1,133.31 0.00 1,133.31 0.00 1,133.31 0.00
200 60 80 nrr. sm. 100 1,025.09 0.00 1,025.09 −0.13 1,025.09 0.00

200 60 80 nrr. lrg. 3 1,508.03 −4.00 1,354.04 −0.51 1,345.41 0.77

LXXXI

C Detailed results 3L-VRPBTW instances

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

200 60 80 nrr. lrg. 10 1,314.72 −1.20 1,169.41 −0.43 1,161.58 −0.49
200 60 80 nrr. lrg. 100 1,478.55 0.83 1,247.83 −1.79 1,217.89 0.58

200 60 80 wd. sm. 3 718.21 0.03 718.26 −0.03 718.07 0.00
200 60 80 wd. sm. 10 739.34 0.06 738.64 0.01 742.16 −0.21
200 60 80 wd. sm. 100 836.52 −0.08 835.88 −0.07 837.71 0.08

200 60 80 wd. lrg. 3 1,262.66 −5.98 1,124.85 0.83 1,114.51 2.17
200 60 80 wd. lrg. 10 1,245.66 0.84 1,096.18 −0.98 1,089.82 −0.38
200 60 80 wd. lrg. 100 1,354.57 1.13 1,138.21 0.29 1,125.96 −0.22

200 100 50 - sm. 3 868.63 0.06 875.96 −0.02 874.47 0.42
200 100 50 - sm. 10 869.14 0.15 875.74 0.26 892.80 −0.64
200 100 50 - sm. 100 873.00 0.14 891.00 −0.59 918.42 0.19

200 100 50 - lrg. 3 1,094.43 1.11 1,030.11 2.10 1,035.44 0.26
200 100 50 - lrg. 10 1,212.60 −1.10 1,086.58 −0.23 1,086.87 −0.05
200 100 50 - lrg. 100 1,298.97 −0.91 1,147.79 0.28 1,143.64 −0.48

200 100 50 nrr. sm. 3 1,612.43 0.00 1,612.43 0.00 1,612.43 0.00
200 100 50 nrr. sm. 10 1,448.39 −0.03 1,448.45 −0.04 1,447.95 0.00
200 100 50 nrr. sm. 100 1,481.53 0.00 1,481.51 0.00 1,481.53 0.00

200 100 50 nrr. lrg. 3 1,596.99 1.17 1,557.08 0.82 1,554.71 0.43
200 100 50 nrr. lrg. 10 1,709.13 −0.43 1,575.65 0.22 1,582.47 −0.76
200 100 50 nrr. lrg. 100 1,808.49 1.48 1,682.56 0.76 1,679.15 −0.24

200 100 50 wd. sm. 3 1,092.62 0.08 1,092.50 0.09 1,092.62 0.04
200 100 50 wd. sm. 10 1,209.26 0.06 1,210.13 0.00 1,210.09 0.00
200 100 50 wd. sm. 100 1,247.02 0.14 1,249.47 −0.25 1,252.02 −0.30

200 100 50 wd. lrg. 3 1,200.01 0.85 1,137.21 2.20 1,147.86 −0.30
200 100 50 wd. lrg. 10 1,348.53 −0.90 1,254.85 −0.61 1,248.21 −0.12
200 100 50 wd. lrg. 100 1,506.01 −0.28 1,370.59 −0.41 1,351.49 −0.05

200 100 80 - sm. 3 842.76 −0.07 857.47 −0.16 855.48 −0.05
200 100 80 - sm. 10 824.59 −0.05 846.30 0.32 860.49 −0.92
200 100 80 - sm. 100 830.27 −0.01 868.26 −0.24 871.97 0.47

200 100 80 - lrg. 3 1,236.36 2.06 1,209.82 0.65 1,214.11 0.19
200 100 80 - lrg. 10 1,415.16 −2.56 1,302.44 −0.92 1,320.55 0.03
200 100 80 - lrg. 100 1,449.72 −1.32 1,331.99 −0.69 1,357.82 1.80

200 100 80 nrr. sm. 3 1,398.68 0.00 1,398.68 0.00 1,398.68 0.00
200 100 80 nrr. sm. 10 1,401.89 0.00 1,401.89 0.00 1,401.97 0.00
200 100 80 nrr. sm. 100 1,556.79 0.08 1,556.43 0.13 1,558.14 0.00

200 100 80 nrr. lrg. 3 1,645.62 0.77 1,605.30 0.98 1,607.18 −0.29
200 100 80 nrr. lrg. 10 1,620.30 −1.89 1,493.78 −0.16 1,488.34 −0.29
200 100 80 nrr. lrg. 100 1,779.38 −1.79 1,636.31 −0.86 1,619.68 −0.14

LXXXII

C Detailed results 3L-VRPBTW instances

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

200 100 80 wd. sm. 3 1,132.00 0.00 1,132.00 0.01 1,132.00 0.00
200 100 80 wd. sm. 10 1,000.08 0.04 999.34 −0.03 1,000.78 0.08
200 100 80 wd. sm. 100 1,099.98 0.02 1,100.67 0.04 1,106.52 0.24

200 100 80 wd. lrg. 3 1,302.25 1.15 1,270.70 0.48 1,269.25 0.49
200 100 80 wd. lrg. 10 1,556.90 −2.34 1,435.81 −0.71 1,436.34 −1.64
200 100 80 wd. lrg. 100 1,624.07 −0.91 1,503.62 −0.60 1,510.43 −0.46

400 20 50 - sm. 3 414.03 0.48 411.04 −0.19 409.94 0.51
400 20 50 - sm. 10 401.18 0.14 392.74 0.00 396.21 −0.09
400 20 50 - sm. 100 431.91 1.27 416.60 −0.04 423.93 −1.10

400 20 50 nrr. sm. 3 466.88 0.14 465.55 0.00 465.55 0.00
400 20 50 nrr. sm. 10 609.15 0.06 607.17 0.00 607.17 0.00
400 20 50 nrr. sm. 100 562.86 3.32 562.65 0.00 562.65 0.00

400 20 50 wd. sm. 3 525.64 0.08 521.59 −0.03 521.43 −0.01
400 20 50 wd. sm. 10 487.85 1.05 481.50 0.00 481.50 0.00
400 20 50 wd. sm. 100 470.36 2.13 454.03 0.06 455.30 0.09

400 20 80 - sm. 3 430.22 0.52 426.47 0.50 426.70 0.11
400 20 80 - sm. 10 418.60 1.03 406.53 0.15 410.66 −0.03
400 20 80 - sm. 100 455.80 3.26 427.03 1.21 444.76 −1.28

400 20 80 nrr. sm. 3 623.67 0.05 618.60 0.00 616.10 0.00
400 20 80 nrr. sm. 10 478.59 1.52 468.63 −0.41 469.98 0.20
400 20 80 nrr. sm. 100 568.83 2.62 540.97 0.94 556.21 −1.07

400 20 80 wd. sm. 3 419.19 0.76 418.33 −0.33 416.97 0.00
400 20 80 wd. sm. 10 467.58 1.41 451.65 0.01 457.92 −1.09
400 20 80 wd. sm. 100 500.42 1.48 477.52 −0.08 486.51 −0.61

400 60 50 - sm. 3 698.21 0.07 699.07 0.48 702.08 −0.60
400 60 50 - sm. 10 688.05 0.25 692.15 0.22 701.74 −0.16
400 60 50 - sm. 100 686.04 0.55 688.45 −0.55 701.36 0.03

400 60 50 - lrg. 3 1,591.85 −0.33 1,397.98 0.97 1,406.91 −0.37
400 60 50 - lrg. 10 1,722.54 2.13 1,258.06 1.11 1,248.87 0.86
400 60 50 nrr. sm. 3 1,087.51 0.00 1,087.51 0.00 1,087.51 0.00

400 60 50 nrr. sm. 10 1,202.82 0.00 1,202.82 0.00 1,202.82 0.00
400 60 50 nrr. sm. 100 1,146.57 0.06 1,145.98 0.05 1,145.98 0.00
400 60 50 nrr. lrg. 3 1,860.95 0.46 1,727.25 0.95 1,740.86 −0.48

400 60 50 nrr. lrg. 10 2,042.15 −5.68 1,461.02 1.53 1,469.23 −1.13
400 60 50 wd. sm. 3 920.69 −0.07 919.18 0.00 919.36 0.07
400 60 50 wd. sm. 10 776.42 0.12 782.62 −0.90 790.90 0.03

400 60 50 wd. sm. 100 938.63 0.43 932.83 −0.11 949.00 1.10
400 60 50 wd. lrg. 3 1,563.51 −0.78 1,357.69 0.21 1,354.24 0.31

LXXXIII

C Detailed results 3L-VRPBTW instances

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

400 60 50 wd. lrg. 10 1,632.84 5.54 1,258.88 1.56 1,244.88 1.18

400 60 80 - sm. 3 657.69 0.96 660.44 0.65 660.47 −0.02
400 60 80 - sm. 10 669.98 0.32 684.92 −0.54 685.28 1.90
400 60 80 - sm. 100 681.97 0.95 685.50 0.95 707.42 −1.01

400 60 80 - lrg. 3 1,966.44 −0.45 1,865.28 −0.08 1,854.83 0.49
400 60 80 - lrg. 10 2,146.25−15.32 1,564.85 −1.87 1,554.91 −0.89
400 60 80 nrr. sm. 3 975.59 0.00 975.59 0.00 975.59 0.00

400 60 80 nrr. sm. 10 1,021.24 0.00 1,021.24 0.00 1,021.24 0.00
400 60 80 nrr. sm. 100 1,001.59 0.06 1,000.68 0.00 1,000.60 0.00
400 60 80 nrr. lrg. 3 2,117.01 0.58 1,981.50 1.35 1,988.68 −0.13

400 60 80 wd. sm. 3 818.19 0.18 820.99 0.06 820.47 −0.05
400 60 80 wd. sm. 10 834.27 −0.05 829.93 −0.13 841.11 −0.53
400 60 80 wd. sm. 100 822.35 0.58 819.43 0.58 841.37 1.71

400 60 80 wd. lrg. 3 1,576.88 −1.17 1,539.32 0.00 1,543.20 −0.28

400 100 50 - sm. 3 878.18 −0.37 900.34 0.71 899.51 0.09
400 100 50 - sm. 10 877.82 0.38 914.43 −0.53 914.59 0.94
400 100 50 - sm. 100 897.47 −0.12 927.73 0.02 945.22 0.44

400 100 50 - lrg. 3 1,831.84 −3.61 1,597.00 −0.19 1,586.07 0.63
400 100 50 - lrg. 10 1,922.42 3.56 1,583.36 −0.90 1,580.97 −0.18
400 100 50 - lrg. 100 2,020.74 3.59 1,595.67 0.28 1,589.71 0.46

400 100 50 nrr. sm. 3 1,583.31 0.00 1,583.31 0.00 1,583.31 0.00
400 100 50 nrr. sm. 10 1,498.96 −0.08 1,498.96 0.02 1,498.03 0.00
400 100 50 nrr. sm. 100 1,446.99 0.09 1,446.99 0.05 1,446.99 0.05

400 100 50 nrr. lrg. 3 2,077.80 −3.79 1,826.39 0.43 1,819.48 0.10
400 100 50 nrr. lrg. 10 2,288.71 −0.71 1,898.81 −0.69 1,881.55 −0.37
400 100 50 nrr. lrg. 100 2,420.57 2.15 1,969.91 −0.09 1,946.88 −0.26

400 100 50 wd. sm. 3 1,122.85 0.06 1,130.06 −0.11 1,128.74 0.42
400 100 50 wd. sm. 10 1,346.33 0.14 1,351.20 0.00 1,357.76 0.76
400 100 50 wd. sm. 100 1,207.09 0.10 1,219.26 −0.13 1,247.38 0.90

400 100 50 wd. lrg. 3 1,933.40 −2.11 1,743.41 −0.21 1,735.00 0.54
400 100 50 wd. lrg. 10 1,896.58 3.20 1,580.72 −0.32 1,584.72 0.70
400 100 50 wd. lrg. 100 2,151.32 6.00 1,744.93 −0.07 1,720.81 0.22

400 100 80 - sm. 3 856.10 −0.29 882.28 −0.05 877.24 −0.39
400 100 80 - sm. 10 856.25 0.02 886.97 −0.17 901.16 −0.32
400 100 80 - sm. 100 877.93 0.70 905.04 1.43 943.71 −0.75

400 100 80 - lrg. 3 1,824.76 −2.03 1,698.59 −1.19 1,721.12 −1.23
400 100 80 - lrg. 10 2,104.02 3.07 1,832.56 0.61 1,882.99 1.21
400 100 80 - lrg. 100 2,388.79 1.69 2,029.34 −0.87 2,091.24 1.81

LXXXIV

C Detailed results 3L-VRPBTW instances

Table C.9: Comparison of loading approaches; extended problem variants (3L-
VRPCB(TW), RL/SL, C1); average TTDs provided by rear loading (benchmark), aver-
age deviations of TTDs provided by side loading from benchmarks; separated by instance
classes and variants of the hybrid algorithm (continued)

ALNS

DBLF LS DBLF LS OS
instance parameters RL SL RL SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
m n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

400 100 80 nrr. sm. 3 1,547.98 0.00 1,547.98 0.00 1,547.98 0.00
400 100 80 nrr. sm. 10 1,512.81 −0.03 1,513.14 −0.06 1,512.81 0.00
400 100 80 nrr. sm. 100 1,566.38 −0.01 1,565.92 0.00 1,565.32 0.06

400 100 80 nrr. lrg. 3 1,981.70 1.75 1,880.75 −0.11 1,896.00 −1.11
400 100 80 nrr. lrg. 10 2,626.04 −2.95 2,164.23 0.42 2,150.50 0.20
400 100 80 nrr. lrg. 100 2,517.55 3.12 2,078.16 −0.13 2,072.74 0.52

400 100 80 wd. sm. 3 1,115.52 0.45 1,135.32 0.03 1,132.79 −0.42
400 100 80 wd. sm. 10 1,194.81 0.11 1,207.74 0.04 1,214.16 1.16
400 100 80 wd. sm. 100 1,090.98 0.20 1,114.40 0.47 1,150.91 1.33

400 100 80 wd. lrg. 3 1,986.59 −4.02 1,767.42 −1.76 1,780.92 −1.25
400 100 80 wd. lrg. 10 2,069.98 2.68 1,825.95 0.76 1,941.14 −0.17
400 100 80 wd. lrg. 100 2,357.51 1.81 2,007.06 −1.58 2,043.50 1.54

total 1,040.48 0.15 984.00 0.01 987.49 0.00

Table C.10: Comparison of loading approaches; extended problem variants (3L-
VRPMB(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

20 50 - sm. 3 362.29 −10.08 351.52 −7.73 354.45 −9.77
20 50 - sm. 10 376.57 −6.12 366.06 −4.14 370.57 −6.70
20 50 - sm. 100 369.19 −2.02 357.60 −1.37 366.77 −5.46

20 50 nrr. sm. 3 531.21 −17.55 495.40 −11.96 497.68 −12.34
20 50 nrr. sm. 10 486.96 −6.90 477.86 −5.12 477.86 −5.37
20 50 nrr. sm. 100 472.59 −4.96 466.90 −3.77 476.46 −6.33

20 50 wd. sm. 3 406.24 −4.86 399.13 −3.14 399.88 −3.33
20 50 wd. sm. 10 412.64 −2.59 392.57 1.85 399.14 −1.21
20 50 wd. sm. 100 436.73 −1.27 417.17 2.50 425.08 −0.74

20 80 - sm. 3 404.80 −14.33 391.52 −12.13 393.68 −12.83
20 80 - sm. 10 391.22 −12.08 373.19 −10.24 377.74 −10.61
20 80 - sm. 100 404.89 −8.58 378.19 −7.75 389.27 −6.96

20 80 nrr. sm. 3 460.74 −4.20 453.55 −2.61 448.33 −1.96
20 80 nrr. sm. 10 480.39 −1.71 474.98 −0.25 477.27 −0.90
20 80 nrr. sm. 100 477.28 −3.24 464.95 −0.52 463.13 −0.51

LXXXV

C Detailed results 3L-VRPBTW instances

Table C.10: Comparison of loading approaches; extended problem variants (3L-
VRPMB(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm (continued)

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

20 80 wd. sm. 3 439.15 −13.72 417.91 −10.23 422.93 −11.93
20 80 wd. sm. 10 400.99 −11.91 382.98 −10.74 383.93 −10.19
20 80 wd. sm. 100 414.44 −2.41 398.41 −2.29 399.70 −1.53

60 50 - sm. 3 538.32 −3.45 544.27 −4.54 547.12 −6.49
60 50 - sm. 10 549.46 −1.13 555.16 −1.93 561.76 −5.33
60 50 - sm. 100 545.33 0.54 541.18 1.31 545.88 −0.82

60 50 - lrg. 3 1,279.78 −36.23 1,112.77 −30.52 1,116.49 −31.26
60 50 - lrg. 10 1,508.53 −37.51 1,145.46 −28.03 1,097.27 −26.13

60 50 nrr. sm. 3 975.69 −8.32 903.99 −1.27 904.29 −1.31
60 50 nrr. sm. 10 846.88 −5.84 804.87 −1.03 803.25 −0.81
60 50 nrr. sm. 100 1,179.82 −14.04 1,045.16 −3.29 1,043.18 −3.05

60 50 nrr. lrg. 3 1,450.20 −24.12 1,314.48 −18.49 1,287.20 −18.73
60 50 nrr. lrg. 100 1,751.56 −27.07 1,625.35 −33.77 1,561.46 −32.26

60 50 wd. sm. 3 730.96 −1.54 722.82 −0.41 725.44 −1.30
60 50 wd. sm. 10 697.25 −1.36 700.18 −1.77 699.76 −2.67
60 50 wd. sm. 100 696.12 −1.16 695.34 −1.03 691.75 −1.20

60 50 wd. lrg. 3 1,245.89 −34.39 1,020.01 −24.63 1,005.40 −20.87
60 50 wd. lrg. 10 1,347.73 −26.35 1,159.87 −26.94 1,097.35 −23.71

60 80 - sm. 3 549.97 −5.35 545.84 −4.84 547.94 −5.63
60 80 - sm. 10 544.24 −3.95 538.56 −2.76 540.30 −3.00
60 80 - sm. 100 574.42 −3.86 562.29 −1.73 562.42 −0.44

60 80 - lrg. 3 2,164.05 −38.30 2,048.41 −42.96 2,046.32 −42.77
60 80 - lrg. 10 1,717.79 −39.57 1,503.71 −36.10 1,440.30 −33.38
60 80 - lrg. 100 2,257.39 −45.20 1,797.35 −38.07 1,726.69 −36.77

60 80 nrr. sm. 3 951.33 −0.47 946.54 0.00 946.54 0.00
60 80 nrr. sm. 10 1,014.47 −1.93 994.05 0.00 994.05 0.00
60 80 nrr. sm. 100 903.77 0.03 902.13 0.10 902.52 −0.05

60 80 nrr. lrg. 3 2,094.04 −27.74 1,949.57 −30.03 1,948.40 −29.21
60 80 nrr. lrg. 10 2,021.30 −39.77 1,715.13 −37.60 1,676.54 −36.45

60 80 wd. sm. 3 607.60 −1.93 608.08 −2.15 605.04 −1.61
60 80 wd. sm. 10 625.95 −1.35 617.61 0.30 622.74 −1.27
60 80 wd. sm. 100 690.75 0.34 685.80 1.21 688.50 −0.26

60 80 wd. lrg. 3 2,135.18 −42.21 2,017.49 −45.29 2,012.27 −44.13
60 80 wd. lrg. 10 1,490.49 −34.25 1,318.94 −31.52 1,240.20 −27.11
60 80 wd. lrg. 100 2,348.67 −41.65 1,830.65 −32.25 1,735.35 −30.27

100 50 - sm. 3 680.50 −3.31 693.40 −4.50 689.35 −5.90
100 50 - sm. 10 698.50 −2.81 716.00 −3.97 730.17 −6.50
100 50 - sm. 100 698.95 −0.99 710.86 −2.15 722.16 −3.47

LXXXVI

C Detailed results 3L-VRPBTW instances

Table C.10: Comparison of loading approaches; extended problem variants (3L-
VRPMB(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm (continued)

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

100 50 - lrg. 3 1,624.74 −33.97 1,420.66 −27.32 1,382.89 −24.55
100 50 - lrg. 10 1,788.09 −34.50 1,492.80 −25.46 1,431.24 −22.98
100 50 - lrg. 100 1,866.26 −32.11 1,569.31 −24.02 1,517.76 −20.51

100 50 nrr. sm. 3 1,526.31 −13.02 1,345.47 −1.81 1,345.47 −1.81
100 50 nrr. sm. 10 1,381.54 −12.25 1,213.79 −1.57 1,213.58 −1.50
100 50 nrr. sm. 100 1,385.64 −10.49 1,264.21 −2.49 1,264.72 −2.39

100 50 nrr. lrg. 3 1,817.57 −21.91 1,580.52 −13.55 1,555.02 −12.31
100 50 nrr. lrg. 10 2,127.91 −31.63 1,658.81 −16.81 1,576.25 −13.86
100 50 nrr. lrg. 100 2,017.48 −18.01 1,695.93 −5.94 1,641.83 −3.33

100 50 wd. sm. 3 904.60 −6.25 879.21 −3.72 882.96 −4.27
100 50 wd. sm. 10 1,065.99 −9.99 1,000.82 −4.49 1,001.77 −4.62
100 50 wd. sm. 100 1,036.00 −6.10 1,012.14 −4.06 1,020.84 −5.09

100 50 wd. lrg. 3 1,615.94 −28.60 1,426.83 −21.69 1,394.81 −19.40
100 50 wd. lrg. 10 1,903.19 −32.36 1,491.33 −17.99 1,425.72 −15.73
100 50 wd. lrg. 100 2,032.34 −26.61 1,654.17 −15.80 1,588.03 −13.97

100 80 - sm. 3 672.26 −1.98 682.75 −2.19 676.78 −3.20
100 80 - sm. 10 681.29 −1.09 680.25 0.83 693.81 −1.34
100 80 - sm. 100 696.88 −0.62 698.55 0.61 711.74 −1.67

100 80 - lrg. 3 1,811.91 −35.02 1,739.85 −34.35 1,756.55 −35.32
100 80 - lrg. 10 2,135.50 −35.63 1,953.49 −33.51 1,962.10 −33.24
100 80 - lrg. 100 2,184.92 −33.28 1,953.76 −30.18 1,981.99 −30.15

100 80 nrr. sm. 3 1,210.35 −0.19 1,211.04 −0.30 1,210.46 −0.24
100 80 nrr. sm. 10 1,238.18 −0.42 1,233.59 −0.15 1,233.48 −0.18
100 80 nrr. sm. 100 1,346.93 −0.33 1,342.74 0.00 1,342.26 0.00

100 80 nrr. lrg. 3 1,940.43 −27.36 1,847.79 −26.44 1,833.98 −25.10
100 80 nrr. lrg. 10 2,159.59 −27.03 1,935.67 −24.19 1,918.22 −24.39
100 80 nrr. lrg. 100 2,324.52 −26.87 2,030.83 −21.65 1,957.73 −19.79

100 80 wd. sm. 3 914.33 −0.23 917.13 −0.55 915.20 −0.29
100 80 wd. sm. 10 804.38 −0.30 801.54 −0.04 808.02 −0.88
100 80 wd. sm. 100 907.74 −0.11 905.94 0.34 914.33 −0.43

100 80 wd. lrg. 3 1,825.05 −29.05 1,746.70 −28.39 1,745.29 −29.59
100 80 wd. lrg. 10 2,333.37 −34.49 2,077.96 −30.37 2,068.87 −30.87
100 80 wd. lrg. 100 2,372.86 −33.36 2,015.68 −26.36 2,029.19 −26.68

total 1,002.33 −11.77 931.92 −9.35 928.28 −9.80

LXXXVII

C Detailed results 3L-VRPBTW instances

Table C.11: Comparison of loading approaches; extended problem variants (3L-
VRPSDP(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

20 50 - sm. 3 348.64 −5.18 338.60 −2.47 338.85 −5.20
20 50 - sm. 10 368.64 1.66 353.88 5.75 357.09 −2.82
20 50 - sm. 100 360.65 5.58 346.82 9.37 349.06 4.03

20 50 nrr. sm. 3 450.21 −2.34 442.97 −0.66 442.10 −2.23
20 50 nrr. sm. 10 462.75 0.54 462.75 0.54 462.75 0.00
20 50 nrr. sm. 100 436.67 2.32 436.64 2.32 436.64 0.08

20 50 wd. sm. 3 394.63 −1.62 392.14 −1.00 392.35 −1.50
20 50 wd. sm. 10 394.84 2.87 389.62 3.44 390.32 0.05
20 50 wd. sm. 100 416.53 2.92 413.19 3.71 413.19 0.85

20 80 - sm. 3 402.98 −8.59 393.72 −6.78 392.82 −11.48
20 80 - sm. 10 387.25 −3.19 375.34 −1.04 377.70 −7.48
20 80 - sm. 100 404.93 −1.95 386.54 −0.71 392.83 −5.38

20 80 nrr. sm. 3 450.31 −0.83 443.54 0.22 443.54 −0.96
20 80 nrr. sm. 10 481.09 −0.41 475.88 0.83 475.88 −0.65
20 80 nrr. sm. 100 464.63 0.87 458.91 1.04 458.91 −0.06

20 80 wd. sm. 3 432.55 −9.33 418.12 −7.19 420.17 −11.34
20 80 wd. sm. 10 395.94 −2.78 380.38 −1.93 383.39 −5.61
20 80 wd. sm. 100 416.69 −0.03 402.07 0.53 406.07 −4.80

60 50 - sm. 3 537.71 −2.53 532.47 −1.58 532.19 −3.61
60 50 - sm. 10 547.64 1.24 544.95 1.69 545.79 −1.62
60 50 - sm. 100 541.01 3.57 538.62 3.76 538.87 0.31

60 50 - lrg. 3 1,433.96 −20.24 1,376.00 −18.11 1,367.00 −22.45
60 50 - lrg. 10 1,543.12 −10.76 1,422.98 −6.31 1,397.09 −6.34
60 50 - lrg. 100 1,540.01 −10.76 1,379.97 −4.17 1,342.39 −4.08

60 50 nrr. sm. 3 892.22 0.00 892.22 0.00 892.22 0.00
60 50 nrr. sm. 10 929.06 0.00 929.06 0.00 928.78 0.00
60 50 nrr. sm. 100 997.61 0.05 997.61 0.04 998.02 0.00

60 50 nrr. lrg. 3 1,523.39 −16.65 1,447.91 −13.49 1,431.45 −17.73
60 50 nrr. lrg. 10 1,577.40 −16.26 1,460.68 −11.72 1,435.61 −10.94
60 50 nrr. lrg. 100 1,576.23 −9.70 1,396.76 −2.44 1,347.33 1.24

60 50 wd. sm. 3 718.75 0.00 718.65 0.05 718.73 −0.38
60 50 wd. sm. 10 687.47 0.99 683.97 1.08 684.16 0.07
60 50 wd. sm. 100 682.66 1.25 680.81 1.51 680.85 0.25

60 50 wd. lrg. 3 1,450.28 −16.45 1,376.06 −13.39 1,365.38 −13.39
60 50 wd. lrg. 10 1,578.01 −4.04 1,427.85 1.48 1,382.77 2.37
60 50 wd. lrg. 100 1,607.79 −9.63 1,431.91 −1.93 1,385.07 −2.22

60 80 - sm. 3 548.19 −4.05 546.94 −4.04 543.08 −4.68
60 80 - sm. 10 542.60 −1.07 533.82 0.74 536.04 −2.77

LXXXVIII

C Detailed results 3L-VRPBTW instances

Table C.11: Comparison of loading approaches; extended problem variants (3L-
VRPSDP(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm (continued)

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

60 80 - sm. 100 571.63 1.72 564.41 3.54 569.63 −1.08

60 80 - lrg. 3 2,088.36 −33.02 1,966.33 −33.94 1,917.06 −33.66
60 80 - lrg. 10 1,703.41 −28.70 1,537.03 −26.92 1,494.13 −27.86
60 80 - lrg. 100 1,905.06 −25.04 1,710.91 −24.24 1,653.10 −25.56

60 80 nrr. sm. 3 946.54 0.00 946.54 0.00 946.54 0.00
60 80 nrr. sm. 10 994.39 −0.04 994.05 0.00 994.05 0.00
60 80 nrr. sm. 100 902.13 0.19 902.13 0.14 902.13 0.00

60 80 nrr. lrg. 3 2,072.95 −29.31 1,902.29 −25.91 1,845.46 −24.23
60 80 nrr. lrg. 10 1,743.76 −24.52 1,553.04 −21.12 1,495.33 −22.51
60 80 nrr. lrg. 100 1,881.48 −24.20 1,707.14 −23.92 1,624.28 −24.60

60 80 wd. sm. 3 608.08 −1.79 604.25 −1.20 603.66 −1.48
60 80 wd. sm. 10 622.41 −0.46 620.36 −0.16 620.34 −0.68
60 80 wd. sm. 100 689.59 1.28 685.20 2.20 686.47 −0.39

60 80 wd. lrg. 3 2,113.60 −31.89 2,000.28 −33.91 1,946.61 −35.03
60 80 wd. lrg. 10 1,742.56 −27.08 1,568.38 −23.51 1,532.36 −26.83
60 80 wd. lrg. 100 1,940.77 −22.60 1,739.40 −21.28 1,689.38 −21.83

100 50 - sm. 3 670.05 −0.54 669.95 −0.37 671.30 −2.44
100 50 - sm. 10 678.02 1.61 679.28 2.07 693.95 −1.27
100 50 - sm. 100 685.30 3.23 687.84 3.08 706.02 −1.11

100 50 - lrg. 3 1,594.82 −16.33 1,547.33 −14.38 1,556.09 −15.80
100 50 - lrg. 10 1,677.64 −16.40 1,606.22 −13.94 1,627.09 −17.39
100 50 - lrg. 100 1,764.99 −14.82 1,677.65 −12.40 1,707.16 −13.85

100 50 nrr. sm. 3 1,320.49 0.02 1,320.49 0.02 1,320.49 0.00
100 50 nrr. sm. 10 1,194.25 0.02 1,194.73 −0.07 1,194.55 0.00
100 50 nrr. sm. 100 1,233.67 0.07 1,232.81 −0.01 1,233.67 0.00

100 50 nrr. lrg. 3 1,736.99 −3.18 1,641.07 1.86 1,632.53 3.75
100 50 nrr. lrg. 10 1,898.79 −10.27 1,793.70 −6.83 1,750.38 −5.81
100 50 nrr. lrg. 100 1,927.80 −8.81 1,809.75 −5.07 1,747.89 −4.70

100 50 wd. sm. 3 851.32 −0.56 850.02 −0.26 848.10 −0.38
100 50 wd. sm. 10 956.14 0.05 956.01 −0.13 955.98 0.05
100 50 wd. sm. 100 970.25 0.30 968.53 0.36 969.52 −0.09

100 50 wd. lrg. 3 1,619.03 −18.31 1,573.92 −17.09 1,560.19 −19.71
100 50 wd. lrg. 10 1,621.22 −13.43 1,543.72 −10.26 1,517.43 −13.39
100 50 wd. lrg. 100 1,842.45 −12.45 1,725.83 −8.27 1,727.46 −9.55

100 80 - sm. 3 674.59 −1.98 678.67 −0.68 678.11 −3.05
100 80 - sm. 10 682.90 0.23 686.14 2.19 696.11 −1.13
100 80 - sm. 100 699.85 0.46 703.36 2.80 708.94 1.06

100 80 - lrg. 3 1,961.31 −33.63 1,908.29 −33.00 1,937.49 −35.49

LXXXIX

C Detailed results 3L-VRPBTW instances

Table C.11: Comparison of loading approaches; extended problem variants (3L-
VRPSDP(TW), LSP/SL, C1); average TTDs provided by loading space partition (bench-
mark), average deviations of TTDs provided by side loading from benchmarks; separated
by instance classes and variants of the hybrid algorithm (continued)

ALNS

DBLF(SL) LS DBLF(SL) LS OS
instance parameters LSP SL LSP SL RL SL

∅TTD ∅dev ∅TTD ∅dev ∅TTD ∅dev
n %LH TW it. typ [DU] [%] [DU] [%] [DU] [%]

100 80 - lrg. 10 2,216.77 −31.19 2,078.47 −30.01 2,128.93 −31.38
100 80 - lrg. 100 2,159.60 −28.70 2,033.48 −27.52 2,078.97 −28.24

100 80 nrr. sm. 3 1,208.49 0.00 1,207.51 0.04 1,207.96 0.00
100 80 nrr. sm. 10 1,231.87 0.00 1,232.45 0.03 1,232.28 0.00
100 80 nrr. sm. 100 1,342.20 0.08 1,342.71 −0.04 1,341.30 0.00

100 80 nrr. lrg. 3 2,135.80 −30.52 2,060.16 −29.75 2,067.06 −29.67
100 80 nrr. lrg. 10 2,249.42 −24.01 2,096.48 −22.70 2,075.78 −24.52
100 80 nrr. lrg. 100 2,246.55 −21.87 2,059.73 −19.44 2,015.83 −19.94

100 80 wd. sm. 3 912.65 0.09 912.65 0.16 912.81 −0.02
100 80 wd. sm. 10 802.32 0.00 801.67 −0.02 802.77 −0.17
100 80 wd. sm. 100 909.43 0.13 907.14 0.73 916.78 −0.52

100 80 wd. lrg. 3 1,909.89 −28.01 1,836.65 −27.14 1,834.81 −29.57
100 80 wd. lrg. 10 2,320.89 −30.38 2,160.48 −29.23 2,191.80 −30.93
100 80 wd. lrg. 100 2,274.85 −25.31 2,134.53 −24.72 2,160.28 −26.33

total 1,095.75 −7.81 1,049.29 −6.29 1,045.83 −8.16

XC

	Contents
	List of figures
	List of tables
	List of algorithms
	List of abbreviations
	List of symbols
	Introduction
	Problem description and formulation
	Problem description
	Vehicle routing problems with three-dimensional loading constraints, backhauls and time windows
	Variants of the 3L-VRPBTW
	The 3L-VRP with time windows
	The 3L-VRP with clustered backhauls and time windows
	The 3L-VRP with mixed backhauls and time windows
	The 3L-VRP with simultaneous delivery and pickup and time windows
	Overview of the considered problem variants

	Mathematical model
	The 3L-VRP with time windows
	The 3L-VRP with clustered backhauls and time windows
	The 3L-VRP with mixed backhauls and time windows
	The 3L-VRP with simultaneous delivery and pickup and time windows

	Literature review
	Vehicle routing problems
	Vehicle routing problems with time windows
	Vehicle routing problems with backhauls
	Vehicle routing problems with backhauls and time windows

	Packing problems
	Vehicle routing problems with multi-dimensional loading constraints

	Hybrid solution approach
	Packing heuristics
	Definitions
	Construction heuristics
	Deepest-bottom-left-fill heuristics
	Touching area heuristics
	Open space heuristic

	Local search framework
	Adaption to the CLP
	Implementation of the loading approaches
	Implementation of the packing constraints

	Routing heuristics
	Savings heuristic
	Adaptive large neighbourhood search
	Removal heuristics
	Insertion heuristics
	Integration of the packing procedure
	Acceptance
	Heuristic selection and weight adjustment
	Termination criteria

	Numerical experiments
	Set-up of numerical experiments
	Instances
	VRPBTW instances
	3L-VRPBTW instances
	Generation of basic instances
	Instance types

	CLP instances

	Parameter settings and configurations of the hybrid algorithm
	Results for VRPBTW instances
	Results for 3L-VRPBTW and CLP instances
	Evaluation of packing heuristics
	Randomly generated routes
	Hybrid savings heuristic
	Container loading instances

	Hybrid algorithm
	Results for 3L-VRPBTW variants
	Influence of selected instance characteristics
	Comparison of backhaul variants
	Influence of time windows
	Influence of three-dimensional loading

	Consideration of additional packing constraints
	Randomly generated routes
	Hybrid algorithm

	Summary, conclusions and outlook
	Contributions to research
	Managerial insights
	Outlook for future research

	Bibliography
	Appendix
	Removal heuristics
	Detailed results for VRPBTW instances
	Detailed results 3L-VRPBTW instances

