

Master thesis

To obtain a Master of Science Degree in Informatics
and Communication Systems from the Merseburg

University of Applied Sciences

Subject:

Tunisian truck license plate recognition
using an Android Application based on
Machine Learning as a detection tool

 Author:

Achraf Boussaada

Matr.-Nr.: 23542

 Supervisor:

Prof.Dr.-Ing. Rüdiger Klein

Prof.Dr. Uwe Schröter

Table of contents

Chapter 1: Introduction ... 1

1.1 General Introduction: ... 1

1.2 Problem formulation: ... 1

1.3 Objective of Study: .. 4

Chapter 2: Analysis .. 4

2.1 Methodological approaches: .. 4
2.1.1 Actual approach: ... 4
2.1.2 Image Processing with OCR: ... 6
2.1.3 Chosen approach: ... 7

Chapter 3: Artificial Intelligence & Machine Learning ... 8

3.1 Introduction: ... 8

3.2 Types: ... 8
3.2.1 Supervised learning: ... 8
3.2.2 Unsupervised Learning: .. 9
3.2.3 Semi-supervised Learning: .. 10
3.2.4 Reinforcement Learning: .. 10

3.3 Techniques: ... 12
3.3.1 SVM: ... 12
3.3.2 Random Forest: .. 15

3.3.2.1 Decision Tree: ... 15
3.3.2.2 Random Forest: ... 17
3.3.2.3 Feature Importance: ... 18

3.3.3 Deep Learning: .. 19
3.3.3.1 Deep Learning and Neural Networks: ... 20
3.3.3.2 Perceptron: ... 25
3.3.3.3 Feed Forward: ... 25
3.3.3.4 Recurrent Neural Network: .. 25
3.3.3.5 Deep Convolutional Network: .. 26

3.3.4 Convolutional Neural Network: .. 33
3.3.4.1 The Convolution operation: .. 33
3.3.4.2 Motivation: ... 35
3.3.4.3 Pooling: ... 40
3.3.4.4 Normalization: .. 41
3.3.4.5 Random or unsupervised Features: .. 42
3.3.4.6 Regularization: .. 42
3.3.4.7 Probability conversion: ... 43

3.3.5 Transfer Learning: ... 46
3.3.5.1 Applications of Transfer Learning: .. 49

3.4 Recapitulation: ... 51

Chapter 4: Implementation .. 52

4.1 Software & Tools: ... 52

4.2 Object Detection API:.. 54

4.3 Model Training: .. 54

4.4 Mobile implementation: ... 58

4.5 Optimization for mobile usage: .. 62
4.5.1 Minimum Device Requirement: ... 62

4.5.2 Removing training-only nodes: ... 62
4.5.3 Recompiling TensorFlow inference library: .. 64
4.5.4 Retrain with mobile data: ... 65
4.5.5 Reduce model loading time or memory footprint & improve RAM usage: .. 66
4.5.6 Reduce model size: ... 67
4.5.7 Exploring Quantized Calculations: .. 67

4.6 Recapitulation: ... 68

Chapter 5: Summary .. 69

5.1 Discussion: .. 69
5.1.1 Results: ... 69
5.1.2 Future Improvements: .. 72

5.1.2.1 TensorFlow Lite: .. 72
5.1.2.2 Pre-trained models: .. 74
5.1.2.3 Training and serving with Cloud TPUs: ... 74

5.2 Conclusion: ... 75

Statement of authorship: .. 76

References: ... 77

Table of Figures

Figure 1.1 Departure security agent role .. 2

Figure 1.2 Arrival security agent role .. 3

Figure 3.1 Reinforcement Learning Components (Fumo 2017, p.4) 11

Figure 3.2 First classification scenario with SVM (Ray 2017, p.4) ... 13

Figure 3.3 Second classification scenario with SVM (Ray 2017, p.4) 13

Figure 3.4 Third classification scenario with SVM (Ray 2017, p.5) 14

Figure 3.5 Fourth classification scenario with SVM (Ray 2017, p.5) 14

Figure 3.6 Fifth classification scenario with SVM (Ray 2017, p.6-7) 14

Figure 3.7 Titanic decision tree (cited in Gupta 2017a, p.2) .. 16

Figure 3.8 Relationship between AI, ML and DL (Le 2017, p.10) .. 19

Figure 3.9 Illustration of a deep learning model (Goodfellow et al. 2016, p.6) 21

Figure 3.10 NN types chart (Van Veen 2016, p.1) .. 24

Figure 3.11 Visual representation of a perceptron (A. Nielsen 2017, p.3) 25

Figure 3.12 Possible outputs of a perceptron (A. Nielsen 2017, p.4) 25

Figure 3.13 Example of a Loss function (Moawad 2018, p.5) ... 27

Figure 3.14 Sum of squares after changing W (Moawad 2018, p.6) 28

Figure 3.15 Schematic of gradient descent (Moawad 2018, p.9) ... 29

Figure 3.16 Visual representation of 2-D convolution without kernel flipping (Goodfellow et
al. 2016, p.330) ... 35

Figure 3.17 Sparse connectivity viewed from below (Goodfellow et al.2016, p.331) 36

Figure 3.18 Sparse connectivity viewed from above (Goodfellow et al. 2016, p.332) 37

Figure 3.19 Units of a CNN (Goodfellow et al. 2016, p.332) .. 37

Figure 3.20 Graphical depiction of how parameter sharing works (Goodfellow et al. 2016,
p.333) .. 38

Figure 3.21 Efficiency of edge detection (Goodfellow et al. 2016, 334) 39

Figure 3.22 Components of a typical CNN layer (Goodfellow et al. 2016, p.336) 41

Figure 3.23 ReLU visual representation (M. Agarap 2108, p.2) ... 42

Figure 3.24 Output of the scoring function (cited in Rosebrock 2016, p.3) 45

Figure 3.25 Unnormalized probabilities (cited in Rosebrock 2016, p.4) 45

Figure 3.26 Normalized probabilities (cited in Rosebrock 2016, p.4) 46

Figure 3.27 Negative Log Loss (cited in Rosebrock 2016, p.5) .. 46

Figure 3.28 The traditional supervised learning setup in ML (Ruder 2017, p.3) 47

Figure 3.29 The Transfer Learning Setup (Ruder 2017, p.4) ... 48

Figure 3.30 Robot and simulation environments (Ruder 2017, p.12) 50

Figure 3.31 Learning process of a Neural Network (Moawad 2018, p.14) 51

Figure 3.32 Convolutional Neural Network architecture (Mathworks n.d., p.4) 52

Figure 4.1 Annotated picture of a license plate .. 55

Figure 4.2 COCO-trained models (Huang et al. n.d. b) ... 56

Figure 4.3 TotalLoss graph .. 58

Figure 4.4 Inception input module (Warden 2017, p.31) ... 63

Figure 5.1 Detection speed on Huawei P9 Lite phone ... 70

Figure 5.2 License plate detection in challenging conditions .. 71

Figure 5.3 Flow of the TOCO process (TensorFlow n.d. e, p.2) ... 73

Figure 5.4 Floating point model vs 8-bit model (Huang 2018, p.2) .. 74

Figure 5.5 SSD Model evolution (cited in Huang et al. n.d. b) .. 74

Table of abbreviations

Abbreviation Meaning

OpenCV Open Source Computer Vision Library

OCR Optical Character Recognition

APK Android Package Kit

AI Artificial Intelligence

ML Machine Learning

RL Reinforcement Learning

CART Classification And Regression Trees

DL Deep Learning

NN Neural Network

TF TensorFlow

TFLite TensorFlow Lite

SSD Single Shot Multibox Detector

mAP mean Average Precision

COCO Common Objects in Context

TOCO TensorFlow Lite Optimizing Converter

 1

Chapter 1: Introduction

1.1 General Introduction:

Artificial intelligence is a technology that‘s hugely controversial. Despite its

potential, and for a long time, many people expressed their doubts about this

technology and what it holds for us in the future (cited in D‘Onfro 2018 p.1-3; Novet

2018, p.1-3).

But for the past few years AI kept growing exponentially and it‘s been implemented

in numerous fields (cited in Artificial intelligence index, 2017, p.9-36), proving that

it‘s a great asset that can yet open many other doors for a better everyday life (cited

in Jahanzaib and Tarique, 2015, p.5).

By leveraging the easy accessibility to AI documentation and frameworks this master

thesis is continuity to my bachelor thesis with the goal of replacing classical image

processing methods by an AI network that brings improvements to the project.

This paper is divided into five Chapters.

The first one consists of the introduction, which is intended to give an overview of

the work: the problematic and the purpose of this study.

The second section discusses and analyzes the currently used approach and the

possible alternatives.

In the third Chapter, the scientific research behind the chosen approach will be

explained.

The fourth section gives an overview on the implementation of AI and the different

optimizations done in the project.

The fifth and the last Chapter deal with a discussion about the state of the art in AI

and summarize the acquired knowledge and the work that have been done.

1.2 Problem formulation:

The bachelor thesis was done within the Company LEONI Wiring Systems1. The

company has three departments in Tunisia and on a daily basis goods are transported

between those departments. The thesis consisted of developing an android

1 https://www.leoni.com/en/

 2

application along with a web application to supervise the drivers and minimize the

delay that could happen.

The web application is used by the administrator to:

 Add, delete and modify drivers or trucks to the database.

 Add and supervise missions

 Make a complaint to the head of the department in case of a driver came late

The android application is used by two parties which are the security agent from the

departure department and the security agent from the arrival department. Figures 1.1

and 1.2 are a visual representation of what features the application provides and how

it can be used respectively by both departure and arrival security agents.

Figure 1.1 Departure security agent role

As presented in Figure 1.1 the security agent at the departure department is provided

by five functions and they are:

1. The agent must provide the application with his ID and password to be able

to use the application.

2. The agent will take a picture of the truck license plate.

3. Image processing methods are going to be performed to detect the number of

the license plate and the result will be displayed.

 3

 If the result is false the agent can retry until he gets the desired result

 If the result is correct the agent can proceed to the next function

4. The agent will select the most suitable journey from the journey list

depending on the current date, license plate and the driver name.

5. When the security agent at the arrival department confirms the arrival of the

truck the agent at the departure department will receive a notification

containing the actual position of the truck to check if the truck at the right

location at the moment of confirmation. At this point the agent can send

reclamation to the administrator in case of miss use of the application.

Figure 1.2 Arrival security agent role

Figure 1.2 on the other hand describes the flow of the application usage by the

security agent at the arrival department. And it is as the following:

1. The agent must login to use the application.

2. The agent will capture the license plate of the truck.

3. If the result is correct the agent will confirm and changes will be made into

the database, otherwise he can retry until he gets the desired result.

This application works properly and gives valid results most of the time but it has

three major withdraws. The bottleneck resides in:

1. The real-time detection of the license plate using the actual approach can

outputs false results in some scenarios. For instance, bad lighting or dirty

 4

license plate, this confuses the detection tool. Thus, this tool is note robust

against noise.

2. Mobile devices have limited hardware performance, which make them

vulnerable to certain tasks that require a lot of computing power. Some of the

image processing methods applied in this approach can be time consuming in

case of processing large sized images. This will affect the user experience.

3. The transition between the different user interfaces is slow, which is not user

friendly. For instance, when displaying the result of detection to the user or

making changes to the database after detection. This behavior is not only

caused by the image processing methods but also by outdated methods used

in the application that serves to connect to the database or to transition

between interfaces.

1.3 Objective of Study:

The main focus of the master thesis is to improve the license plate scanner feature of

the android mobile application, by implementing an alternative more reliable

solution.

This solution should be able to overcome the difficulties discussed in the previous

section.

Chapter 2: Analysis

2.1 Methodological approaches:

In this section, the disadvantages of the currently used tool and how it functions will

be discussed. Furthermore, the alternative approach will be introduced.

2.1.1 Actual approach:

Text or digits recognition is a popular subject in Computer Vision and there are

several solutions to achieve good results. Since the license plate of Tunisian trucks

have a standard form which is:

Y تونس X

Y refers to the series number which increments when a new series comes out and X

refers to the registration number of the vehicle in the series. Each series can only

 5

have the maximum of 9999 vehicles registered to it. The word ―تونس “ translates to

Tunisia in English.

It is only necessary to detect the digits and ignore the text since it does not affect the

final result. The implemented solution is based on the OCR technology using the

tesseract engine. (Google n.d., p1)

The recognition process consists of 3 main steps and they are as follows:

 Line finding:

The first step is to find the position of the characters in the picture and since

mainly multiple characters will be detected, it helps the recognition process to

find the lines formed by them. This algorithm is able to perform the detection

on skewed images which reduce the manual adjustments. (cited in Smith

2007, p.2)

 Fixed pitch detection and proportional character finding:

In this step of the process the engine will be looking for individual characters

in the detected lines by determining the gaps between them. (cited in Smith

2007, p.2)

 Word recognition:

In some cases characters will be joined together that‘s why the engine will try

to separate them before starting the recognition. After maximizing the

confidence of the result the engine will look in its database for the possible

matches. (cited in Smith 2017, p.3)

Tesseract is mainly developed to detect text in different languages but it also can be

used to recognize digits following the same detection process explained above.

To implement this tool in the android application an external library should be

manually added to the APK which is the final package that must be installed on the

mobile device to run the application. Moreover in order to the detection tool to work

properly a language package should also be added to the APK as a reference.

 6

This approach after its implementation proved to provide decent results but various

challenges has presented themselves:

- Since the detection tool works best with certain fonts on a certain background

it can return false results in this particular use case.

- Under difficult conditions such as bad lighting or dirty license plate the tool

will not be able to detect the numbers correctly.

- The external library and the language file installed along with the APK

increases the size of the package. Furthermore it is difficult to maintain and

update the library since it requires manual changes.

- The detection is only performed after the picture was taken and not in real

time which adds an extra step to the process.

2.1.2 Image Processing with OCR:

 A possible solution to overcome some of the challenges in the current approach is to

perform image processing algorithms on the image taken from the camera preview

before feeding it to the detection tool.

The optimal environment for tesseract to work properly is black characters on a

white background. A popular approach is using the OpenCV library (OpenCV

2018a, p.1) which provides numerous image processing algorithms that serves to

solve this problem.

The currently used approach consists of seven steps and it is as follows:

 Grayscale:

Since the picture is taken directly from the phone camera, the output will be

an RGB image. So, the first step in this process will be to convert it to a

grayscale image. To achieve the wanted result, the following equation will

take place:

RGB[A] to Gray: Y←0.299·R+0.587·G+0.114·B (OpenCV 2015a, p.1)

 Median Blurring:

Blurring the image will help soften the picture (cited in OpenCV 2018b,

p.18), it is highly effective against the ―salt and pepper‖ (cited in Sathua et al.

2017, p.117) effect by reducing effectively the noise.

 7

 Adaptive Threshold:

Threshold is an algorithm used to separate out regions of an image

corresponding to the objects to analyze based on the variation of intensity

between the object pixels and the background pixels (OpenCV 2018c, p.1).

This step helps in this method by distinguishing between the digits and their

background and by using adaptive threshold it is possible to achieve even

better results since the parameters of the threshold can be manipulated (cited

in OpenCV 2018d, p.2).

 Dilation:

After the previous operations, the structure of the numbers will have in some

cases some gaps, which will lead to inaccurate detection if left like that. So,

dilation with combination of the algorithm ―structuring element‖ from

OpenCV will serve to close those gaps to form a continuous shape (OpenCV

2018b, p.13-14).

This approach brings an improvement to the currently implemented solution however

it is not optimal since it poses two major challenges:

- Since OpenCV is an external library like tesseract it must be deployed

with the APK. This will increase the size of the application even more and

it makes it harder to maintain and update.

- Using certain image processing algorithms in real-time such as

―threshold‖ and with a limited hardware resources will result in a bad user

experience since there will be some sort of a delay present.

2.1.3 Chosen approach:

While using image processing algorithms to better detect digits can overcome some

of the current issues the detection process can be in some cases troublesome. That‘s

where it came the idea of fully using AI to detect the numbers on the license plate.

Using one of the leading architectures in Deep Learning, Convolutional Neural

Network can be used to train a model for object detection.

AI will be fully leveraged as a detection tool and bounding boxes will be drawn on

the camera preview in real time displaying the result of the detection and marking the

 8

position of each detected number. So fully deploying AI for object detection will

decrease dramatically the reoccurrence of some of the challenges mentioned earlier

and overcome the others. The main asset of AI is that the trained models have a

learning curve that makes them able to improve by time, adapt to different situations

and increase accuracy . (cited in Zhao et al. 2017; Tang and Yuan n.d.)

Further information about this technology and the result of its implementation will be

discussed in the next sections of this thesis.

Chapter 3: Artificial Intelligence & Machine Learning

3.1 Introduction:

It is hard to find nowadays someone that didn‘t hear in some way or another about

Artificial Intelligence and doesn‘t have an idea about what it is. So, how it is related

with Machine Learning?

As Bernard (2016, p.1) puts it ―Artificial Intelligence is the broader concept of

machines being able to carry out tasks in a way that it would be considered ―smart‖.

And, Machine Learning is a current application of AI based around the idea that

machines should be able to have access to data and learn for themselves.‖

In this chapter, the concept of Machine Learning, how it actually works, and the

algorithms implemented in this project, will be explained extensively.

3.2 Types:

According to what goal to be achieved by using ML, it can be classified into four

major types as follows:

3.2.1 Supervised learning:

Supervised learning earned its name because data scientists acts as a guide to teach

the algorithm what conclusions it should come up with. It is similar to the way a

student learns basic arithmetic from a teacher. This type of learning requires labeled

data with the correct answers to be expected from the algorithm‘s output. For

classification and regression problems Supervised learning proved itself to be

accurate and fast (cited in Castle 2017, p.1).

- Classification: consists of predicting the categorical output value

where the data can be separated into specific ―classes‖. Classification

 9

has different use cases, such as: determining the weather, if an email

is a spam or not or types of animals after being trained on a properly

labeled dataset of images with the species and some identifying

characteristics (cited in Sanjeevi 2017, p.2).

- Regression: it‘s a type of problem where the prediction of a

continuous-response value such as stock and housing prices is needed

(cited in Sanjeevi 2017, p.3).

So, the way it works is modeling relationships and dependencies between the target

prediction output and the input features such that it is possible to predict the output

values for new data based on those relationships which it learned from the previous

datasets (cited in Fumo 2017, p.2).

3.2.2 Unsupervised Learning:

Conversely, unsupervised learning is more closely aligned with what it is called true

artificial intelligence by some experts – the concept that a machine can learn to

identify complex processes and patterns without supervision from humans. This

approach is particularly useful in cases where the experts doesn‘t know what to look

for in the data and the data itself does not include Targets. Under the many use cases

of unsupervised machine learning it‘s worth mentioning k-means clustering,

principal and independent component analysis, and association rules. (cited in Castle

2017, p.2)

- K-means clustering: it‘s a type of a problem where similar things are

grouped together. It shares the same concept with classification but in

this case, there are no labels provided and the system will understand

from the data itself and cluster it. A use case for this would be

clustering news, articles depending on their genre, content. (cited in

Trevino 2016)

Despite This type of machine learning opens the doors to solving problems that

human normally would not tackle, it‘s not used as widely as the supervised learning

due to its complexity and difficulty to implement. (cited in Castle 2017, p.2)

 10

3.2.3 Semi-supervised Learning:

Until now, the data provided is all labeled with the desired output or not labeled at

all. Semi-supervised machine learning is a combination of the two. In many practical

situations, the cost to label is quite high and in case of large datasets the task become

tedious and very much time consuming. In addition, providing too much labeled

data, can force human biases on the model. Even though the unlabeled data is

unknown for the network, this data brings useful information about the target group

parameters. Which leads to the conclusion, that by including unlabeled data the

accuracy of the model can be improved while also saving time and money building

it. For example, semi-supervised machine learning could be used in webpage

classification, voice recognition or genetic sequencing. In those cases, data scientists

can access large volumes of unlabeled data, and the task of labeling all of it would

take an overwhelming time. (cited in Castle 2018, p.1-2)

Using the information acquired until now a comparison between these three types of

machine learning can be set for the same use case, for example classification:

- Supervised classification: The algorithm will classify the types of the

webpages according to the labels provided from the beginning. (cited

in Castle 2018, p.2)

- Unsupervised clustering: The algorithm will look for patterns and

characteristics that help placing webpages into groups. (cited in Castle

2018, p.2)

- Semi unsupervised classification: The algorithm will identify the

different groups of webpages based on the labeled data and will use

the unlabeled data to define the boundaries of those webpage types

and to look for other types that might not be listed in the labeled data.

(cited in Castle 2018, p.2)

3.2.4 Reinforcement Learning:

Reinforcement Learning is the third main Machine Learning type along with

Supervised and Unsupervised Learning. It consists of five important components

which are: the agent, environment, state, action and reward. The goal of RL is to

 11

maximize the reward and minimize the risk by exploiting its interaction with the

environment. The RL algorithm (called the agent) will periodically improve by

exploring the environment going through the different possible states. To maximize

the performance, the ideal behavior will be automatically determined by the agents.

A feedback (the reward) is what allows the agent to improve its behavior. (cited in

Fumo 2017, p.4)

Figure 3.1 Reinforcement Learning Components (Fumo 2017, p.4)

To obtain agents with good results, reinforcement machine learning goes through

five main steps. Fumo (cited in 2017, p.5) describe them in his article as follows:

- The agent examines constantly the input state.

- The agent performs an action according to the function responsible for

decision making.

- The agent will receive reinforcement (reward) after performing its action.

- Information about the reward state will be stored.

In Reinforcement Learning there are two types of tasks: episodic and continuous:

 Episodic task: The task in this case is defined by a starting and an ending

point or also called a terminal state. This creates an episode: a list of states,

actions, rewards, and new states. Video games are a typical example of this

type of tasks. (cited in Simonini 2018, p.7)

 Continuous task: Opposite to the first type, this one has no terminal state

and as its name indicates, continue forever. In this case the agent has to learn

how to choose the best actions and simultaneously interacts with the

environment. Automated stock trading is a typical use case of this type of

tasks. The agent keeps doing actions and receiving feedback until it‘s decided

 12

to be stopped, since there is no starting point and terminal state. (cited in

Simonini 2018, p.8)

One of the most used algorithms for Reinforcement Learning is Monte Carlo which

is based on collecting the rewards at the end of the episode and then calculating the

maximum expected future reward. A second popular algorithm is Temporal

Difference Learning that uses a different approach from the first one which is

estimating the rewards at each step. (cited in Simonini 2018, p.8)

3.3 Techniques:

Since the beginning of the AI implementation, many techniques were used, and

many others are emerging until this day. In this subchapter, three different techniques

will be discussed and ordered by their introducing date to the public.

3.3.1 SVM:

Support Vector Machine (SVM) is a supervised machine learning technique which

tackles mainly regression and classification challenges. In case of classification, each

data item is plotted as points in n-dimensional space (where n represents the number

of available features) with the value of each feature being the value of a particular

coordinate. Afterwards, by classifying the different classes, a hyper-plane will be

plotted to separate them.

As Ray (2017, p.3) clarify it ―Support Vectors are simply the co-ordinates of

individual observation. Support Vector Machine is a frontier which best segregates

the two classes (hyper-plane/ line).‖

There are several scenarios that can be stumbled on while trying to apply SVM and it

can deal with them perfectly to identify the right hype-plane.

 A, B and C represents three hyper-planes. The one which segregates the two

classes better will be selected. As the figure shows, B is the appropriate

choice. (cited in Ray 2017, p.4)

 13

Figure 3.2 First classification scenario with SVM (Ray 2017, p.4)

 In this case all three hyper-planes are segregating the classes well. To decide

which one from the three is the right one, the distances between the nearest

data point and the hyper-plane should be maximized. This distance is called

Margin. Another reason for choosing the hyper-plane with the higher margin

is robustness, otherwise a misclassification has a high chance to occur when

choosing a hyper-plane with a low margin. (cited in Ray 2017, p.4-5)

Figure 3.3 Second classification scenario with SVM (Ray 2017, p.4)

 In this scenario, applying the same logic as the previous scenario won‘t give a

correct classification since B has the higher margin and as the below figure

demonstrate, A should be the right choice. Here, the SVM technique will be

aware of the situation and won‘t prioritize the margin maximization over

classifying correctly the two classes. (cited in Ray 2017, p.5)

 14

Figure 3.4 Third classification scenario with SVM (Ray 2017, p.5)

 In this case segregating the two classes is not possible since one of star class

lies in the territory of the other class as an outlier. Luckily SVM robustness

will prevent choosing the wrong hyper-plane by ignoring any possible

outliers. (cited in Ray 2017, p.5)

Figure 3.5 Fourth classification scenario with SVM (Ray 2017, p.5)

 Here the two classes can‘t be directly separated with a linear hyper-plane,

that‘s why SVM introduces a new additional feature which is: z = x2 + y2 to

properly separate the two classes. (cited in Ray 2017, p.6)

Figure 3.6 Fifth classification scenario with SVM (Ray 2017, p.6-7)

 15

Having a linear hyper- plane between these two classes is an easy task for SVM. But

should the additional feature be added manually as done in the last scenario to have a

hyper-plane? It is done automatically by an SVM technique called kernel trick. The

kernels are functions that take data which is not linearly separable in a low

dimensional space and transform it in a higher dimensional space where it can be

linearly separable. It is mostly useful in non-linear separation problem. Said

otherwise, based on the labels or defined outputs, it will do some extremely complex

data transformations to figure out the process to separate the data. (cited in Ray 2017,

p.7)

The Scikit-learn developers (2017a, p.1) lists several advantages and disadvantages

of SVM. They are as follows:

 The advantages of support vector machines are:

- Effective in high dimensional spaces.

- Still effective in cases where number of dimensions is greater than the number of

samples.

- Uses a subset of training points in the decision function (called support vectors), so it is

also memory efficient.

- Versatile: different kernel functions can be specified for the decision function. Common

kernels are provided, but it is also possible to specify custom kernels.

 The disadvantages of support vector machines include:

- If the number of features is much greater than the number of samples, avoid over-fitting

in choosing Kernel functions and regularization term is crucial.

- SVMs do not directly provide probability estimates, these are calculated using an

expensive five-fold cross-validation.

3.3.2 Random Forest:

To better understand the Random Forest technique, an explanation of what a decision

tree is needed.

3.3.2.1 Decision Tree:

 ―In decision analysis, a decision tree can be used to visually and explicitly represent

decisions and decision making. As the name goes, it uses a tree-like model of

 16

decisions.‖ (Gupta 2017a, p.1) Random forest is widely used to solve classification

and regression problems in machine learning and it‘s also a commonly used tool in

data mining to achieve a particular goal by deriving strategies (cited in Gupta 2017a,

p.1).

The algorithm is represented as an upside-down drawn tree. In the figure below, the

tree splits every time there is a condition (internal node) which are represented with

the bold text in black. The outputted decision is called a branch (edge). In case a

branch reached its limit and can‘t be divided anymore, it is identified as a decision

(leaf). As shown in the next figure, the leaves are in red and green and represent

whether a passenger from the titanic died or survived. (cited in Gupta 2017a, p.2)

Figure 3.7 Titanic decision tree (cited in Gupta 2017a, p.2)

The main reason why this algorithm is widely used is its simplicity and how the

feature importance and the relations in the tree can be easily represented. The above

figure represents an example of a classification tree since its objective is predicting

and classifying data of the titanic passengers into different classes (died or survived).

When in the other hand, a regression tree predicts an output depending on a

continuous progressing data. Decision Tree is mostly referred to as CART

(Classification And Regression Trees). (cited in Gupta 2017a, p.2)

Finally, Gupta lists in his post (2017a, p.5) the different advantages and

disadvantages of CART:

 Advantages of CART

 17

- Simple to understand, interpret, visualize.

- Decision Trees implicitly perform variable screening or feature selection

- Can handle both numerical and categorical data. Can also handle multioutput

problems.

- It requires relatively little effort from users for data preparation.

- Nonlinear relationships between parameters do not affect tree performance.

 Disadvantages of CART

- Decision-tree learners can create over-complex trees that do not generalize the data

well, which will result in overfitting.

- Decision trees can be unstable because small variations in the data might result in

completely different tree being generated. This is called variance, which needs to be

lowered by methods like bagging and boosting.

- Greedy algorithms cannot guarantee to return the globally optimal decision tree.

This can be mitigated by training multiple trees, where the features and samples are

randomly sampled with replacement.

- Decision tree learners create biased trees if some classes dominate. It is therefore

recommended to balance the data set prior to fitting with the decision tree.

3.3.2.2 Random Forest:

This technique falls under the supervised machine learning category. As the name

indicates, a forest will be created from a group of decision trees and then will be

randomized. Different methods can be used to train the random forest, and the

mostly used one is Bootstrap Aggregation (Bagging) method. (cited in Donges 2018,

p.2)

As Brownlee describes it in his article (2016a, p.3) the Bagging method is a ―very

powerful ensemble method‖ and goes further with his explanation ―an ensemble

method is a technique that combines the predictions from multiple machine learning

algorithms together to make more accurate predictions than any individual model.‖.

As the Random Forest consists of multiple Decision Trees, it‘s used also for the

same purposes: Regression and Classification. Not only that, it shares also almost the

same hyperparameters as a decision tree. Fortunately, a decision tree doesn‘t have to

be combined with a bagging classifier and the ―classifier-class‖ of Random Forest

can be used here. Furthermore, Regression problems can be solved with using

Random Forest regressor.

 18

During the process of training, the Forest randomize the model. It also seeks the best

feature among a random subset of features while creating the nodes of the tree

instead of looking for the most important feature. This behavior will optimize the

model since the randomness will result in a wide diversity.

This randomness can be also added to other aspects of the training, such as

randomizing the thresholds used for each feature. Which oppose to the traditional

decision tree method, where the model will look for the most fitting threshold. (cited

in Donges 2018, p.3)

3.3.2.3 Feature Importance:

Random Forests makes the measurement of the relative importance of each feature

on the prediction very easy (cited in Donges 2018, p.4). By using the methods

provided by the class Sklearn from the machine learning tool scikit-learn (cited in

scikit-learn developers 2017b, p.1), the features importance can be evaluated and

measured to discover any impurity that may exists in the forest. The output of each

feature will be scaled in a way that the sum of all importance is equal to 1. (cited in

Donges 2018, p.4)

Since some features doesn‘t play a role in the prediction process, they can be

dropped and determined by looking through at the feature importance. This step is

almost necessary, since the more features taken under consideration in machine

learning the more likely the model will be overfitted. (cited in Donges 2018, p.4)

Despite that Random Forests are based on Decision Trees, there are some differences

between them:

If a decision tree is provided by a training dataset with features and labels, it will

formulate some set of rules, which will be used to make the predictions.

To better understand the concept, a real-life example such as targeted

advertisements, can facilitate explaining it. By collecting the ads a user clicked on in

a period of time and features that describe his decision, a model can be trained to

predict whether that user will visit a certain advertisement site or not. When the

features and labels are fed to a decision tree, it will generate some rules. Then a

prediction can be made whether the advertisement will be clicked or not. In the other

hand, a model trained with Random Forest will build several decision trees based on

random observations and features.

 19

Not to mention that decision trees are exposed to overfitting, while random forest

mostly avoid this problem by creating random subsets of the features and building

smaller trees using these subsets. Finally, those subtrees will be combined (cited in

Donges 2018, p.5). However, this technique is a double-edged sword, since it slows

down computation in case the forest has a large number of trees. Which leads in

some cases such as real-time prediction to avoid implementing Random Forest and

look for an alternative. (cited in Donges 2018, p.6-7)

As a conclusion, Random Forest are more suitable for use cases that doesn‘t require

big datasets and detection time don‘t play a big role in the application to avoid any

possible complications. For more complex tasks it is preferable to implement another

approach. (cited in Donges 2018, p.7)

3.3.3 Deep Learning:

Since Artificial Intelligence came a while ago, it has a wide range of applications and

it‘s divided into many branches (cited in Le 2017, p.10; Goodfellow et al. 2016, p.1).

Deep Learning is a subset of machine learning, which is in itself a subfield of AI.

The figure below is a visual representation of the relationship between AI, ML and

DL (cited in Le 2017, p.10).

Figure 3.8 Relationship between AI, ML and DL (Le 2017, p.10)

So, what is exactly deep learning and what kind of problems it solves? This question

will be answered in depth in the next section.

 20

3.3.3.1 Deep Learning and Neural Networks:

AI managed since its existence to solve many tasks that meant to be intellectually

challenging for humans, yet, it struggled with problems that seems easy and intuitive

for human beings such as face or speech recognition. The reason behind this, is many

difficult tasks can be translated to mathematical rules which is easy for a computer to

understand. In the other hand, other tasks that seems to be easy are hard to be

described formally. (cited in Goodfellow et al. 2016, p.1)

A good approach to solve these intuitive problems is to give freedom to computers to

learn from previous experiences and understand the world by interacting with it in

terms of a hierarchy of concepts. This way humans won‘t need to specify all the

knowledge to computers anymore. This concept allows the computer to solve

difficult concepts by building them from simpler ones. If this hierarchy is

represented by a graph, it will be formed by many layers and defined by deep. That‘s

why this approach is called deep learning. (cited in Goodfellow et al.2016, p.1-2)

Since no camera have the quality of the human eye or the no computer can correlate

information like the human brain, it became difficult for real-world artificial

intelligence applications to extract high-level, abstract features from raw data

because of the constant variation of the observed data, such as the change of the

angle view in different images and color variation under different circumstances.

Because these factors of variation are only identified by nearly human level

understanding of the data, it seems at first that such a task is impossible by just

representation learning. Here where it comes the role of Deep Learning, since it‘s

based on representing abstract features in terms of other simpler representation. A

practical example of this concept is demonstrated by the figure 3.9 where an image

of a person (complex concept) is detected by looking for different characteristics in a

layer format, such as corners, contours and edges (simple concepts). (cited in

Goodfellow et al. 2016, p.5)

The feedforward deep network or multilayer perceptron is considered as a typical

example of a deep learning model. Goodfellow et al. (2016, p.5) Explain it as ―[...] a

mathematical function mapping some set of input values to output values. The

function is formed by composing many simpler functions. We can think of each

application of a different mathematical function as providing a new representation of

the input.‖

 21

Deep Learning is not only allowing to represent data in the right way, but by adding

the concept of depth in its models, it allows the computer to learn multistep computer

program. Where each layer of the representation can be thought of as the state of the

computer‘s memory after. (cited in Goodfellow et al. 2016, p.5)

Figure 3.9 Illustration of a deep learning model (Goodfellow et al. 2016, p.6)

Images which represent scenes from our reality are interpreted by computers as a

collection of pixel values. The task of identifying an object or mapping its identity

from those values is a difficult task for machines and can be nearly impossible when

trying to learn this mapping directly. (cited in Goodfellow et al. 2016, p.6)

Deep Learning approaches this obstacle by introducing the concept of layers where

each layer represents simple mappings extracted from the global complex mapping

and nested with each other. As shown in the figure, there are two types of layers. The

visible layer, which represents the input that‘s only observed by humans, and the

hidden layers that extracts features from the image. The reason behind calling this

type of layers ―hidden‖ is because their values are not given in the input and must be

determined by the model through figuring out which concepts are useful for

explaining the relationship in the observed data. As shown in Figure 3.9, every

hidden layer visualizes a feature. The first layer is responsible for detection edges,

which will help the second hidden layer to detect more complex features. In this case

 22

corners and contours. With assembling the detected features, the third hidden layer

can figure out connections and detect object parts. As a final step, the final object in

the input image can be detected by comparing the features from the last hidden layer

with the classes provided in the training. (cited in Goodfellow et al. 2016, p.6)

An easier way to understand deep learning globally is with some historical context.

Goodfellow et al. identified in their book (2016, p.12) four key trends of the history

of deep learning:

 Deep learning has had a long and rich history, but has gone by many names, reflecting

different philosophical viewpoints, and has waxed and waned in popularity.

 Deep learning has become more useful as the amount of available training data has increased.

 Deep learning models have grown in size over time as computer infrastructure (both

hardware and software) for deep learning has improved.

 Deep learning has solved increasingly complicated applications with increasing accuracy

over time.

To review, the field of Artificial Intelligence encapsulate numerous subfields, such

as Machine Learning. Deep Learning is a technique for implementing ML that gives

machines a learning curve when provided by data and that‘s possible thanks to its

representation of different features of real data as layers, where each feature defined

in relation to simpler features, and more abstract representations computed in terms

of less abstract ones. (cited in Goodfellow et al. 2016, p.8)

So, what is the connection between deep learning and Neural Networks and what are

they?

Simply put, Deep Learning consists of training multilayer neural networks with large

datasets. Thus, Deep learning is made by neural networks. (cited in Brownlee 2016b,

p.1-4)

Neural networks are one of the most used computing systems in the field of Machine

Learning. They are cable of finding concepts and patterns which are very difficult for

humans to figure out. This powerful ability is due to the way this tool imitates how

human neural system works. (cited in Dormehl 2018, p.2)

Since childhood, humans encounter in daily basis new things in life that shape them

and make them better as they grow despite committing mistakes. The same concept

applies to Neural Networks, as they require data to learn from it. By feeding more

 23

data to the network, it will grow better by repeating the same task and learning from

its previous mistakes. Briefly explained, the data provided for the training process is

typically divided into three sets. A training set to establish the connection between

the nodes in the network by defining the weights, a validation set to improve the

weights and a test set to evaluate the network after the training is complete. (cited in

Dormehl 2018, p.5)

 24

Figure 3.10 NN types chart (Van Veen 2016, p.1)

Since the list of networks in the chart is extensive, only the relative ones to the study

will be explained.

 25

3.3.3.2 Perceptron:

Perceptron is one of the simplest representations of a Neuron. So, how do perceptron

work?

A perceptron is multiple input single output unit. The data type that flow through the

perceptron is binary. (cited in A. Nielsen 2017, p.3)

Figure 3.11 Visual representation of a perceptron (A. Nielsen 2017, p.3)

Frank Rosenblatt who developed the perceptron came up with the concept of weights

to calculate the output. They are numbers w1, w2, …, that represents the importance

of the connection between the input and output. The output has two possible values

either 0 or 1 and it‘s determined by comparing the weighted sum j wjxj with a

threshold. The threshold is also a number and it‘s one of the neuron parameters (cited

in A. Nielsen 2017, p.3-4). This relationship can be arithmetically described by:

Figure 3.12 Possible outputs of a perceptron (A. Nielsen 2017, p.4)

3.3.3.3 Feed Forward:

FF neural networks are one of the oldest models of Neuron—this approach first

appeared in the 50s and it follows the following rules: (cited in Tchircoff 2017, p.4)

 All network nodes are fully connected.

 The flow is activated from the input to the output without back loops.

 The network contains one hidden layer, which lays between the output and

the input layer.

3.3.3.4 Recurrent Neural Network:

Different type of cells was introduced by this NN which are: Recurrent cells. The

main difference between RNN and other networks is that each of the hidden cells

receives its own output with fixed delay for one or more iterations. RNN are used in

a situation where the output depends on the order and context of the data fed to the

 26

model. For instance, text autocompletion is a perfect use case for this type of

networks. (cited in Tchircoff 2017, p.7)

3.3.3.5 Deep Convolutional Network:

Nowadays DCN are the most popular NN. They feature convolution cells (or pooling

layers) and kernels that serves different purposes. Convolution kernels process the

input data while the pooling layers simplify it by mostly using non-linear functions,

reducing unnecessary features. (Tchircoff 2017, p.18-19)

This type of NN is used for image processing tasks and they operate on images with

small resolution and it operates as follows:

The image will be analyzed by sliding a window on it, pixel by pixel. The data then

will be passed to the convolution layers where a funnel will be formed compressing

detected features. From the image recognition perspective, the first layer is

responsible of gradients detection, the second layer detects lines and the third one

detects shapes. This process will continue until particular objects are obtained.

(Tchircoff 2017, p.19)

After going through the different types of Neural Networks, it only makes sense to

explain in depth the process of training and how exactly the imitation of the human

neurons works.

The whole process can be summarized into seven steps and they are the following:

 Model initialization: The starting point is the first step of the learning

process (the initial hypothesis). The training of neural networks can be started

from anywhere. That‘s why it‘s a common practice to randomize the

initialization since through an iterative learning process a pseudo-ideal model

can be reached despite the starting point. (Moawad 2018, p.1)

 Forward propagate: After initializing the model, the next step is to check its

performance. As a beginning, the input will be passed directly through the

network layer to calculate the output of the model. This step is called forward

propagation, since the calculation flow is going forwardly from the input

through the neural network to the output. (cited in Moawad 2018, p.3)

 27

 Loss function: At this stage, there is two useful information in disposal: the

actual output of the randomly initialized neural network and the desired

output that the network should learn. In order to generalize to any problem, a

loss function should be defined. It evaluates the neural network ability of

generating outputs as close as possible to the desired values. (cited in

Moawad 2018, p.3-4)

The most logical loss function would be: loss = (Desired output – actual

output). Nevertheless, this loss function returns positive values when the

network undershoots (prediction < desired output), and negative values when

the network overshoot (prediction > desired output). To avoid this

misinterpretation the loss function should reflect an absolute error. (cited in

Moawad 2018, p.4) To achieve that, as Moawad implied in his article (2018,

p.4), the function should be defined as:

“Loss = Absolute value of (desired - actual).”

However, the same total sum of errors can be achieved in several situations

such as summing up several small errors or few big errors. Since the goal

here is to make the prediction work under any situation, it is more preferable

to have a distribution of lot of small errors, rather than a few big ones.

The neural network can adapt to such situation by defining the loss function

as the sum of squares of the absolute errors. This way, small errors are

counted much less than large errors. So, the machine learning goal becomes

then to minimize the loss function. (cited in Moawad 2018, p.4) The

following figure is an example of how the square error would be:

Figure 3.13 Example of a Loss function (Moawad 2018, p.5)

 28

 Differentiation: Now the machine learning problem should be transformed

to an optimization process that aims to minimize the total loss function. To do

so, any optimization technique that modifies the internal weights of neural

networks can be used. These techniques can have different approaches to

tackle the problem, such as greedy search or brute-force search:

In case of a small model that have few parameters to optimize, it is possible

to find which W possesses the smallest sum of squares of errors over the

dataset. However, in case of image processing where the NN trained with an

array of 600x400 inputs, models with millions of weights to optimize can

easily be reached and brute force won‘t be the right solution, since it

consumes a lot of computational resources. Here comes the role of

differentiation which is a powerful concept in mathematics that can help

optimizing the weights. Basically, it deals with the derivative of the loss

function. In mathematics, the rate or the speed of which a function is

changing its values at a certain point can be deducted by calculating the

derivative at that point. (cited in Moawad 2018, p.6)

By answering the following question its effect can be demonstrated: if the

internal weight of the neural network is changed by a certain small value W,

how the total error will be affected? To simplify the calculations W will be

0.0001. In reality it is much smaller. So, following the previous example and

after changing the weight, the following result is obtained (cited in Moawad

2018, p.6):

Figure 3.14 Sum of squares after changing W (Moawad 2018, p.6)

As displayed in the table above, if W is increased, the sum of squares will

increase. Since the best function that fits this model is y=2.x, increasing the

 29

weights will create a little bit more error. But, what‘s important is the rate of

which the error changes relatively to the changes on the weight. For instance,

the rate in this example is the increase of 0.006 in the total error for each

0.0001 increasing weight, that‘s a rate of 0.006/0.0001 = 60x. So, if the

weights are decreased by 0.0001, the total error should be decreased by 0.006

as well. The advantage of using derivative is that it is much faster and more

precise to calculate. (cited in Moawad 2018, p.7)

If the network is initialized randomly, any random point will be put on this

curve. The concept of the learning process is as follows: (cited in Moawad

2018, p.8)

- The derivative should be checked at first.

- If it‘s positive, the weight should be decreased, since it means if the

weights are increased then the error will increase too.

- If it‘s negative, the weight should be increased, since it means if the

weights are increased the error will decrease.

- If it‘s 0, nothing should be done because a stable point is reached.

This process can be compared with how gravity works. The ball can be

randomly initialized on the error function curve represented by the figure

below, and still manage as the time passes by a force field to be stabilized at

the lowest energy level of ground 0. (cited in Moawad 2018, p.8)

Figure 3.15 Schematic of gradient descent (Moawad 2018, p.9)

 30

 Backpropagation: In the example mentioned before, only one layer has been

used inside the neural network between the inputs and outputs. In most real-

world use cases, the networks are built with more than one layer to get the

wanted result. It is always possible to create one complicated function that

represent the composition over the whole layers of the network. The

downsize of composing the functions for every composition is that the

dedicated derivative of the composition must be calculated. Since this

operation is not scalable it will return in most cases false results. (cited in

Moawad 2018, p.9)

Since the derivative is decomposable, to back propagate it, is a solution for

the previous problem. The loss function will serve in this case as a starting

point of errors and if it is known how to derivate each function from the

composition like the loss function, it is possible to create a chain and back

propagate the errors from the end to start. This principle can be represented

by the following linear example: The input will go through two hidden layers,

where it‘s going to be multiplied at first to be multiplied 3 times and then

again 2 times to finally get the output. (cited in Moawad 2018, p.10)

Input 3.x 2.x output (Moawad 2018, p.10)

 If a 0.001 delta change is applied on the input, it will evolve to a 0.003

change at first and finally to a 0.006 delta change on the output. If both

functions are composed into one, the output will be the same. (cited in

Moawad 2018, p.10)

Input 6.x output (Moawad 2018, p.10)

By the same logic, the error can be backpropagated from the output to the

input passing by the middle layers to give something like this:

Input

 output (cited in Moawad 2018, p.10)

By knowing how to forward-propagate (by directly applying the function)

and how to back-propagate (by knowing the derivative of the function), a

library of differentiable functions or layers can be created to compose any

complex neural network. To create the right backpropagation path of the

errors, a stack of the function calls during the forward pass and their

parameters should be saved and then use their derivatives. This is achievable

by a technique called auto-differentiation. This approach has only one

 31

requirement which is all functions must be provided by the implementation of

their derivatives, so it‘s possible to de-stack them. (cited in Moawad 2018,

p.10)

 Weight update: According to the previous example the model has a rate of

60x. That means a single unit change in weights will leads to 60 units change

in error. And since it is known that the error is currently at 30 units, by

extrapolating the rate, in order to reduce the error to 0, the weights needs to

be reduced by 0.5 units. However, for real-life problems the weights should

not be updated with such big steps. Since there are a lot of non-linearities,

any big change in weights will lead to an unstable behavior. Since the

derivative is only local at the point where the derivative is calculated, a

general rule of weight updates ―the delta rule‖ is in place (cited in Moawad

2018, p.11):

New weight = old weight – derivative rate * learning rate (Moawad 2018, p.11)

There are several methods to update the weight and they are often referred to

as optimizers. The delta rule is one of the simplest ones, but it has several

draw-backs. Since theory is much far away from practice, a network in a real

use case can have millions of entries. Minimizing the error cost function over

the whole dataset as discussed previously has a technical name, it is called

batch learning and might be very slow for large data. As an alternative, the

weights should be updated every batch-size = N of training, providing that

the dataset is shuffled randomly. This is called mini-batch gradient descent.

And if N=1, it is called full online-learning or stochastic gradient descent,

since the weights are updated after each single input output observed. Any

optimizer can be adjusted to function with the mentioned modes (full online /

mini-batch/ full-batch). (cited in Moawad 2018, p.12)

 Iterate until convergence: Since the weights are updated with a small delta

step at a time, the process of learning will be slow. This process can be

compared to genetic algorithms where small mutations are applied to a

generation after another and the most fit will survive.

In neural network, after each iteration, to achieve a minimal global loss

function, weights updates are forced by the gradient descent. The similarity

 32

manifests in seeing the delta rule as a mutation operator and the loss function

as a fitness function to minimize.

As for the difference, the mutation applied in genetic algorithms is blind.

Some of them are useful and the others are bad, and logically the better

mutations have higher chance to survive. The weight update in NN are

however smarter since they are guided by the decreasing gradient force over

the error. (cited in Moawad 2018, p.12)

To estimate how many iterations to be applied, many factors should be taken

under consideration. Moawad went through some of them (cited in 2018,

p.13):

- As a high learning rate applied to the NN means faster learning, it can

lead to an instable performance afterwards.

- The meta-parameters of the network such as the number of layers and

the complexity of the network will in one hand take longer for the

network to converge if there are a large number of variables but in the

other hand the it will be more precise.

- Since there are different weight updates techniques with different

performances, to apply the correct optimization method will help

figuring out the number of iterations.

- As the neural network will be randomly initialized, it can start with a

weight value of W = 1.99 and it needs only one iteration to achieve

the optimal performance.

- The quality of the training dataset plays an important rule, because the

neural network won‘t be able to learn a random correlation if the input

and the output has no correlation between them.

In this project, the network of choice, that have been used to train a model with, is

DCN (Deep Convolutional Network) or often called CNN (Convolutional Neural

Network). In the following section a more detailed introduction to CNN and how it

operates will be provided.

 33

3.3.4 Convolutional Neural Network:

Goodfellow et al. define CNNs in their book (2016, p.326) as ―[...] a specialized kind

of neural network for processing data that has a known grid-like topology. Examples

include time-series data, which can be thought of as a 1-D grid taking samples at

regular time intervals, and image data, which can be thought of as a 2-D grid of

pixels.‖. This type of network is based on a linear mathematical operation, which is

convolution, hence the name Convolutional Neural Network. The concept here, is to

replace simple matrix multiplication in one or several layers of the network. This

approach proved a huge success in several real-world use cases. (cited in Goodfellow

et al. 2016, p.326)

So, how does convolution work and what is the motivation behind using it in a neural

network?

3.3.4.1 The Convolution operation:

Convolution is a two-operand operation applied on an input and a system function to

figure out the output. To better understand the concept of convolution, the following

section will be based on an example of tracking the location of a spaceship with a

laser sensor to deduct two functions that they may be of use. This sensor returns only

one output x(t) which is the position of the spaceship at a given time t. x and t

represents real values in case the readings from the laser are accessible in any instant.

(cited in Goodfellow et al. 2016, p.327)

In a realistic environment the laser sensor would be noisy. To obtain more accurate

readings, several measurements should be averaged. It‘s natural that the more recent

the measurements are, the more accurate the position. That‘s why the average to be

calculated is going to give more weight to recent measurements. This can be done

with a weighting function w(a), where a is the age of a measurement. If such a

weighted average operation is applied at any possible instant, a new function s

providing a smoothed estimate of the position of the spaceship can be obtained (cited

in Goodfellow et al. 2016, p.327):

 ∫ . (Goodfellow et al. 2016, p.327)

This operation is called convolution. The convolution operation is typically denoted

with an asterisk:

s(t) = (x*w) (t). (Goodfellow et al. 2016, p.327)

 34

Convolution can also be an approach to different problems other than calculating a

weighted average. The different actors in this example have specific terms in the

machine learning field. For instance, the convolution is referred to as the input

(function x). The function w is the kernel (weight) and finally the feature map,

which represent the output. (cited in Goodfellow et al. 2016, p.327)

Assuming in this example that x and w are defined only on integer t, the discrete

convolution can be defined:

 ∑
 (Goodfellow et al. 2016, p.328)

Goodfellow et al. introduces the concept of tensors and explains it as follows ―In

machine learning applications, the input is usually a multidimensional array of data,

and the kernel is usually a multidimensional array of parameters that are adapted by

the learning algorithm. these multidimensional arrays will be referred to as tensors.‖

(2016, p.328). Because each element of the input and kernel must be explicitly stored

separately, it is usually assumed that these functions are zero everywhere but in the

finite set of points for which the values are stored. Goodfellow et al. relate this

assumption to the practice by ―[...] it is possible to implement the infinite summation

as a summation over a finite number of array elements‖ (2016, p.328). Finally, if a

Convolutional Network has for example a two-dimensional image I as an input it

only makes sense to use a two-dimensional kernel K. That‘s why convolution is

often used over more than one axis at a time (cited in Goodfellow et al.2016, p.328):

 ∑ ∑ (Goodfellow et al. 2016,

p.328)

Convolution has the commutativity property, which means it can be written as

follows:

 ∑ ∑ (Goodfellow et al. 2016,

p.328)

The kernel relative to the input was flipped in the above equation, in the sense that as

m increases, the index into the input increases, but the index into the kernel

decreases. This only happened so convolution gain commutativity. Despite this

property‘s usefulness for writing proofs, it doesn‘t have an impact on the training

process of a NN. Cross-correlation is a related function that has the same utility of

convolution but without needing to flip the kernel, and it‘s used in many NN libraries

(cited in Goodfellow et al. 2016, p.329):

 35

 ∑ ∑ (Goodfellow et al. 2016,

p.329)

3.3.4.2 Motivation:

The motivation behind applying convolution in ML is that it can leverage three

concepts that improves efficiency in a NN: sparse connectivity (or sparse weights),

parameter sharing and equivariant. (cited in Goodfellow et al. 2016, p.329)

Figure 3.16 Visual representation of 2-D convolution without kernel flipping
(Goodfellow et al. 2016, p.330)

Every layer in a traditional Neural Network will receive data (input) and transmit it

(output). This action is described by a multiplication between two matrix that have

different parameters that describes the interaction between each input unit and output

unit. In the other hand, thanks to its sparse connectivity, CNN makes the kernel

smaller than the input, which will result in reduction of memory usage and

improvement in accuracy, since fewer parameters are needed to be stored. It also

means that the training going to be faster since computing the output requires fewer

operations. A Convolutional Neural Network is also able to establish complex

connections between many variables from simply building blocks that describes

 36

sparse connectivity, since units from deeper layers can indirectly interact with a

larger portion of the input. (Goodfellow et al. 2016, p.331)

Parameter sharing is a self-explanatory concept, where one set of parameters can

be used by several functions in a model.

Since the kernel is always smaller than the input unit at every layer, its members are

going to be used at every position of the input. This parameter sharing property

means that the network has to learn only one set of parameters rather than

introducing new sets in every location like the traditional Neural Networks do. (cited

in Goodfellow et al. 2016, p.333)

Figure 3.17 Sparse connectivity viewed from below (Goodfellow et al.2016, p.331)

In the figure above, one input unit x3 and the output units in s that are affected by it

are highlighted. When s is formed by convolution with a kernel of width 3 as seen in

the top part of the Figure 3.17, only three outputs are affected by x. On the other

hand, when s is formed by matrix multiplication, connectivity is no longer sparse, so

all the outputs are affected by x3. (cited in Goodfellow et al.2016, p.331)

 37

Figure 3.18 Sparse connectivity viewed from above (Goodfellow et al. 2016, p.332)

As shown in the figure above, one output unit s3 and the input units x that affect this

unit, are highlighted. These units represent the receptive field of s3. As demonstrated

in the top part of the Figure 3.18, only three inputs affect s3 when a convolution with

a kernel of width 3 is applied. In the other hand, the sparse connectivity property

does no longer apply when s is formed by matrix multiplication. (cited in

Goodfellow et al. 2016, p.332)

Figure 3.19 Units of a CNN (Goodfellow et al. 2016, p.332)

 38

The Figure 3.19 is a visual representation on how neurons of deeper layers has a

wider receptive field compared to the neurons in the first layers. This phenomenon

proved to be more present when the network applies architectural features such as

pooling. This result in neurons of the deeper layers to be connected to all or most of

the input image as discussed previously. (Goodfellow et al. 2016, p.332)

Figure 3.20 Graphical depiction of how parameter sharing works (Goodfellow et al.
2016, p.333)

As shown on the top part of Figure 3.20, thanks to parameter sharing, the black

arrow shows how a single parameter of a 3-element kernel is used at all input

locations. While on the bottom part of the figure where the model doesn‘t have the

parameter sharing property, the parameter represented by the black arrow is only

used once and indicates the usage of the central element of the weight matrix in a

fully connected model.

Goodfellow et al. provide a detailed example in their book of how sparse

connectivity and parameter sharing can together enhance the quality of edge

detection.

 39

Figure 3.21 Efficiency of edge detection (Goodfellow et al. 2016, 334)

―The image on the right was formed by taking each pixel in the original image and

subtracting the value of its neighboring pixel on the left. This shows the strength of all the

vertically oriented edges in the input image, which can be a useful operation for object

detection. Both images are 280 pixels tall. The input image is 320 pixels wide, while the

output image is 319 pixels wide. This information can be described by a convolution kernel

containing two elements and requires 319 * 280 * 3 = 267,960 floating-point operations (two

multiplications and one addition per output pixel) to compute using convolution. To describe

the same transformation with a matrix multiplication would take 320 * 280 * 319 * 280, or

over eight billion, entries in the matrix, making convolution four billion times more efficient

for representing this transformation. The straightforward matrix multiplication algorithm

performs over sixteen billion floating point operations, making convolution roughly 60,000

times more efficient computationally. Of course, most of the entries of the matrix would be

zero. If only the nonzero entries of the matrix are stored, then both matrix multiplication and

convolution would require the same number of floating-point operations to compute. The

matrix would still need to contain 2 * 319 * 280 = 178,640 entries. Convolution is an

extremely efficient way of describing transformations that apply the same linear

transformation of a small local region across the entire input.‖ (2016, p.334)

Equivariance: it‘s the last property of convolution which is a result of parameter

sharing. In general, for a function to be called equivariant, the output should change

in the same way as the input changes. This concept can be translated to the following

math equation: f(g(x) = g(f(x))) which can be interpreted as f(x) is equivariant to

g(x). In case of convolution, if the input can be translated by a function g then it can

be established that convolution is equivariant to g. In most cases CNN deals with

image recognition, so the input is going to be an image, where a 2-D feature map

that‘s robust to translation thanks to equivariance going to be created by the

 40

convolution function. To put things into perspective, for instance, a network is going

to be trained to detect a certain animal on images. This network will be able to find

the animal despite the different positions it might be in different images. (cited in

Goodfellow et al. 2016, p.334-335)

3.3.4.3 Pooling:

Generally, data goes through three different stages when it enters a convolutional

network layer as an input. The first stage is where the convolution function is in

parallel performed and transfer the data as linear activations. The second stage is

responsible for adding a nonlinearity aspect to the model. For instance, the rectified

linear function can be used in this stage. Finally, the pooling function is performed in

the last stage to modify the output before handing it to the next layer. (cited in

Goodfellow et al. 2016, p.335)

In case of image recognition, after finding out the feature map, the pooling layer will

eliminate unnecessary information that are not relevant or won‘t affect the end result

of detection. Pooling helps also the model to be more robust against small

translation. This process is referred to as subsampling or down sampling and it‘s

performed mostly by a function called Max-pooling. (cited in Parabhu 2018, p.5;

cited in Goodfellow et al. 2016, 336)

The LISA lab describes how this function works: ―Max-pooling partitions the input

image into a set of non-overlapping rectangles and, for each sub-region, outputs the

maximum value.‖ (LISA lab 2015, p.56)

 41

Figure 3.22 Components of a typical CNN layer (Goodfellow et al. 2016, p.336)

The Figure 3.22 indicates that there are two different used terminology in a CNN.

Goodfellow et al. provide (2016, p.336) the difference between the two as follows:

 ―(Left)In this terminology, the convolutional net is viewed as a small number of relatively

complex layers, with each layer having many ―stages‖. In this terminology, there is a one-to-

one mapping between kernel tensors and network layers. [...] (Right)In this terminology, the

convolutional net is viewed as a larger number of simple layers; every step of processing is

regarded as a layer in its own right. This means that not every ―layer‖ has parameters‖

3.3.4.4 Normalization:

Thus far, only the concept of two stages out of three of a convolutional layer are

illustrated. This section will handle the explanation of the final stage which is the

detector stage where every linear activation is run through a nonlinear activation

function such as ReLU (Rectified Linear Unit).

Thanks to its mathematical foundation, ReLU proved that it enhances the robustness

of NN by introducing nonlinearity to the model. It simply forces the state of negative

values to 0 and outputs a linear function otherwise. (cited in M. Agarap 2018, p.2)

 42

Figure 3.23 ReLU visual representation (M. Agarap 2108, p.2)

ReLU also have another possible implementation at the last layer of the network

where it‘s used as a classification function. (cited in M. Agarap 2018, p.2)

3.3.4.5 Random or unsupervised Features:

The training process of Convolutional Networks consumes large amount of

resources. This due mainly to learning features in in the hidden layers. For instance,

every step when using gradient descent for supervised learning will consume

resources since data needs to go back and forth with forward- and backpropagation

through the entire network. In the other hand, the last layer of the network doesn‘t

require much resources since it will only deal with a small number of features, since

they‘ve been filtered in the hidden layers by the pooling function. (cited in

Goodfellow et al. 2016, p.356-357) Fortunately, it is possible to reduce the training

cost by using features that are trained differently. Goodfellow et al. mention (2016,

p.357) three different strategies to implement this solution.

―One is to simply initialize them randomly. Another is to design them by hand, for example,

by setting each kernel to detect edges at a certain orientation or scale. Finally, one can learn

the kernels with an unsupervised criterion. For example, [...] apply k-means clustering to

small image patches, then use each learned centroid as a convolution kernel.‖

3.3.4.6 Regularization:

Overfitting is one of the important aspects of training a machine learning model

since this phenomenon will result in low accuracy rates if it occurs. This issue is due

 43

to the model trying too hard to detect any kind of noise in the training dataset. By

noise, it is meant the data points that falsely represent the properties of the data. The

model will gain flexibility from learning these data points but this will came with a

price, which is exposing the model to overfitting. There are different methods to

avoid this exposure. One of them is using cross validation, that estimates the error

using a test set to decide what are the parameters that fits the model. (cited in Gupta

2017b, p.1)

Dropout can be mentioned too, which consists of turning neurons on and off

randomly and by doing this, the neural network is forced to learn new representation

of the data, new pathways that the data has to flow through. (cited in Raval 2017)

Another method is batch normalization (Data Whitening), which rescales and

decorrelates data before using it in a neural network. (cited in Raval 2017)

Regularization can also be seen as a form of regression that constrains or shrinks the

coefficient estimates towards zero. Differently put, this technique avoids learning a

more complex or flexible model, so as to avoid letting the model get too fit for the

data. (cited in Gupta 2017b, p.2)

In his article (2017b, p.2) Gupta translates this similarity into a mathematical form:

A simple relation for linear regression looks like this. Here Y represents the learned relation

and represents the coefficient estimates for different variables or predictors (X).

Y 0 + 1X1 + 2X2 + … + pXp

The fitting procedure involves a loss function, known as residual sum of squares or RSS. The

coefficients are chosen, such that they minimize this loss function.

 ∑ (

 ∑

)

To sum up, the RSS function is responsible for the adjustment of the coefficients,

relying on the data provided. Any coefficients that won‘t generalize because of noise

detected in the data will be regularized towards zero. (cited in Gupta 2017b, p.3)

3.3.4.7 Probability conversion:

The output of a Neural Network that has been trained for classification will have

normally an output represented as a vector with values that are not easily interpreted.

For example y = [0.02, 0, 0.005, 0.975]. Using Softmax as an output layer and

 44

training the model with cross-entropy function will replace the old representation of

the output with a percentage value of how much the input matches the different

classes provided at the training process. (cited in Lan 2017, p.2)

In Machine Learning and in particularly Deep Learning, researches can determine

the quality of a classification function by using a loss function. There are different

functions used for this purpose, such as hinge loss and squared loss, but Softmax

classifier and cross-entropy function stays the most used for training Machine

Learning classifiers. The difference between Softmax and hinge loss is they return

probabilities and margin respectively. That‘s the reason why Softmax is more used

than the others since probabilities are much easier to interpret. (cited in Rosebrock

2016, p.1-2)

Rosebrock explains in his article (2016, p.2-3) the concept of Softmax thoroughly

and compare it to hinge loss in a mathematical point of view.

The Softmax classifier is a generalization of the binary form of Logistic Regression. Just like

in hinge loss or squared hinge loss, our mapping function f is defined such that it takes an

input set of data x and maps them to the output class labels via a simple (linear) dot product

of the data x and weight matrix W:

f (xi, W) = Wxi

However, unlike hinge loss, we interpret these scores as unnormalized log probabilities for

each class label – the amounts of swapping out the hinge loss function with cross-entropy

loss:

Li = ∑

[…] To start, our loss function should minimize the negative log likelihood of the correct

class:

Li =

This probability statement can be interpreted as:

P (Y = k| X = xi) = ∑

Where we use our standard scoring function form:

s = f (xi, W)

As a whole, this yields our final loss function for a single data point, just like above:

Li = ∑

 45

[…] The actual exponentiation and normalization via the sum of exponents is the actual

Softmax function. The negative log yields the actual cross-entropy loss.

Just as in hinge loss or squared hinge loss, computing the cross-entropy loss over an entire

dataset is done by taking the average:

L =

 ∑

Rosebrock goes further and strengthen his explanation with an example of cross-

entropy:

Figure 3.24 Output of the scoring function (cited in Rosebrock 2016, p.3)

The goal of this example is to test the Softmax classifier if it can correctly detect the

input image as an airplane. The first step would be to calculate the unnormalized

probabilities by exponentiating the output of the scoring function (cited in Rosebrock

2016, p.3):

Figure 3.25 Unnormalized probabilities (cited in Rosebrock 2016, p.4)

The next step is to calculate the actual probabilities associated with each class label

by using the unormalized probabilities. (cited in Rosebrock 2016, p.4):

 46

Figure 3.26 Normalized probabilities (cited in Rosebrock 2016, p.4)

The final step is to calculate the Negative Log Loss to return the result:

Figure 3.27 Negative Log Loss (cited in Rosebrock 2016, p.5)

As Figure 3.27 demonstrates, the trained model will return ―Airplane‖ since it‘s the

class with the highest percentage (93.15%). (cited in Rosebrock 2016, p.5)

3.3.5 Transfer Learning:

To train a model following the traditional supervised learning approach to perform a

certain task and domain A, it is necessary to provide labeled data that matches the

same task and domain. The Figure 3.28 is a visual representation of how the data

should respect the task to be performed. Briefly explained, a task is the expected

behavior from the model after the training process is done and a domain is simply the

environment where the data was taken. (cited in Ruder 2017, p.3)

 47

Figure 3.28 The traditional supervised learning setup in ML (Ruder 2017, p.3)

After training the model A on its dataset, it will function correctly and as expected

when testing it on data of the same task and domain. In the other hand, and as the

Figure 3.28 illustrates, a new model B should be trained if a new data for a different

task or domain B is provided. (cited in Ruder 2017, p.4)

Since many tasks happen to be similar, it only makes sense to try to reuse data for

similar situations. In case of using traditional supervised learning, a problem arises,

which is deterioration or collapse in performance of the model. For instance, a model

that has been trained to detect pedestrians during the day time can theoretically be

used to train a model to detect pedestrians during the night time. In practice this will

cause inaccuracy since the model is fitted to its dataset and don‘t know how to

generalize to the new domain. This issue is more problematic when trying to train a

model to detect bicyclists, since the existing model can‘t even be reused because of

difference in labels. (cited in Ruder 2017, p.4)

To overcome this problem the concept of Transfer learning can be used by

leveraging the already existing data of some related task or domain. It is possible

then to store this knowledge gained in solving the source task in the source domain

and apply it to the problem of interest as can be seen in Figure 3.29: (cited in Ruder

2017, p.4)

 48

Figure 3.29 The Transfer Learning Setup (Ruder 2017, p.4)

Researches seek often to take advantage of the existing data and trained models as

much as possible to transfer it to a new domain for similar tasks. There are different

aspects that can be of interest and taken under consideration when the transfer

learning is going to be made. For instance, researches can be interested in how

objects are shaped in the data, because they have certain shape that will help define

the new objects, or in case of speech recognition, the context and the voice patterns

are the main focus. (cited in Ruder 2017, p.5)

In the following paragraph the two terms ―domain‖ and ―task‖ will be explained in

depth with an example given by Ruder in his article (2017, p.9)

―Transfer learning involves the concepts of a domain and a task. A domain D consists of a

feature space X and a marginal probability distribution P(X) over the feature space, where X

= x1, …, xn X. For document classification with a bag-of-words representation, X is the

space of all document representations, xi is the i-th term vector corresponding to some

document and X is the sample of documents used for training.

Given a domain, D = {X, P(X)}, a task T consists of a label space Y and a conditional

probability distribution P(Y|X) that is typically learned from the training data consisting of

pairs xi X and yi Y. In this example, Y is the set of all labels, i.e. True, False and yi is

either True or False.

Given a source domain DS, a corresponding source task TS, as well as a target domain DT and

a target task TT, the objective of transfer learning now is to enable researchers to learn the

target conditional probability distribution P(YT|XT) in DT with the information gained from

 49

DS and TS where DS DT or TS TT. In most cases, a limited number of labeled target

examples, which is exponentially smaller than the number of labeled source examples are

assumed to be available.‖

Four different scenarios can be deducted considering the structure of D and T and the

inequalities expressed in the example above. Ruder goes further and explains in

theory these scenarios using the previous use case. (2017, p. 9-10).

―Given source and target domains DS and DT where D = {X, P(X)} and source and target tasks TS

and TT where T = {Y, P(Y|X)} source and target conditions can vary in four ways […]

 XS XT. The feature spaces of the source and target domain are different, e.g. the

documents are written in two different languages. In the context of natural language

processing, this is generally referred to as cross-lingual adaptation.

 P(XS) P(XT). The marginal probability distributions of source and target domain are

different, e.g. the documents discuss different topics. This scenario is generally known

as domain adaptation.

 YS YT. The label spaces between the two tasks are different, e.g. documents need to be

assigned different labels in the target task. In practice, this scenario usually occurs with

scenario 4, as it is extremely rare for two different tasks to have different label spaces,

but exactly the same conditional probability distributions.

 P (YS |XS) P (YT |XT). The conditional probability distributions of the source and

target tasks are different, e.g. source and target documents are unbalanced with regard to

their classes. This scenario is quite common in practice and approaches such as over-

sampling, under-sampling.‖

After discussing the concepts relevant for transfer learning in theory and the

scenarios in which it is applied, the practical side of transfer learning will be covered

in the next section by going through different applications that illustrate some of its

potential.

3.3.5.1 Applications of Transfer Learning:

 Learning from simulations: When considering training a network to

perform a certain task, the most important factor is the dataset. In most cases,

to get good results a large number of data must be provided, but in some

scenarios the number of samples is just enormous. This is due to its critical

need to be as accurate as possible and this can result to incapacity to provide

 50

the needed amount of data because of the tedious work behind it and the

expenses it will cost. That‘s why researches approached this challenge in a

creative way and leveraged transfer learning and simulations to come up with

a solution. The reason behind using simulation is quite simple. Engines can

run seamlessly and without the need of constant human interaction. This

technique can provide a huge amount of data in a short period of time that

can be later on transferred to the desired domain. Once concern may arise

considering this approach, which is using simulations can never be as good as

depending on real-world raw data. Nonetheless, with the advancements of

today technology, this gap is getting smaller. Finally, learning from

simulations is a typical example of the second scenario mentioned in the

previous section. This technique is often used to get data for self-driven cars

and to mimic robotics behavior. Such use cases are much more sensitive to

errors than the others. That‘s why they need as much data as possible. Thus,

using simulations to solve this problem. (cited in Ruder 2017, p.11-12)

Figure 3.30 Robot and simulation environments (Ruder 2017, p.12)

 Transfer learning in Computer Vision: Solving problems in the Computer

Vision field was a complex task since it revolves mainly around detecting

features that represent the data provided. This procedure was done manually

until Deep Learning methods were introduced. Features are now detected

automatically using Deep Learning during the training process. That‘s why

only raw images are needed as an input to train a model. This concept proved

its success and effectiveness in the Computer Vision world in many scenarios

and it changed also the main challenge when solving a problem from figuring

out the features manually to choosing the right architectures that fits the

appropriate task in hand and its data. Finally, Deep Learning introduced the

 51

concept of layers and each layer is responsible for learning certain type of

features. This hierarchical feature representation is the strongest asset of

Deep Learning architectures since it makes them reusable and best suitable

for transfer learning. (cited in Hulstaert 2018, p.7-8)

3.4 Recapitulation:

In summary, the first section of this chapter capsuled a variety of information about

artificial intelligence and machine learning, from the basics such as the connection

between the two and their purposes, to more detailed information such as different

types and techniques used in machine learning.

The second part of this chapter handled deep learning and neural networks, in

particular convolutional neural networks in which this project revolves around. The

following two figures are a visual representation of the most points explained in this

section.

Figure 3.31 Learning process of a Neural Network (Moawad 2018, p.14)

 52

Figure 3.32 Convolutional Neural Network architecture (Mathworks n.d., p.4)

Chapter 4: Implementation

This project is divided into two parts. The first part revolves around training a model

and the scientific research behind the technology used to do it. The second part is

about using the trained model that is supposed to detect the license plate numbers as

objects and implement it in the android application. This chapter then will cover the

different steps followed along the process of realizing this project.

4.1 Software & Tools:

Since this project covers two complementary subjects, but yet different, they were

developed in different platforms.

For Training the model the following Software, Tools and framework were used:

 TensorFlow: Neural Networks have been heavily used the last few years to

solve different and difficult problems. Since then, many frameworks that

facilitate the implementation of these networks have appeared. TensorFlow is

one of them. It is developed by Google and until recently it was only used

internally in the company, than Google made it open source and it includes

now a large and active Community that helps improving it every day. This

framework is built to support every aspect of the process from training

models to deploying them to servers or mobile devices which make it stand

out from other frameworks. (cited in Warden 2017, p.2; cited in TensorFlow

n.d. a)

 53

 Sublime Text: This text editor will serve here as a development environment

to configure the framework and prepare for the training process. (cited in

Sublime HQ n.d.)

 Terminal: the terminal is heavily used to execute different types of

commands through the whole process of training, such as starting the

training, configuring it and compiling the model or libraries that will be used

later on in the android application. (cited in Liljencrantz n.d.)

 Labelimg: Data is essential for machine learning and to train models for

computer vision tasks, the data must be labeled. That what this software is

for. Besides labeling, it generates for the user dataset that could be interpreted

by the framework.(cited in Tzutalin 2015)

 Jupyter Notebook: This tool serves as a test environment to test the model

after training it before deploying it in the project. (cited in Jupyter n.d.)

 Tensorboard: This tool is provided by TensorFlow and used to visualize the

training process with different graphs to help optimize the model in the

future. (cited in TensorFlow n.d. b)

 Bazel: It is an open source build tool and used to build the TensorFlow

framework on the desktop environment. This tool is used in this project only

for test purposes since it can be challenging to set up a cross plateform

compilation, which is the case of this project since the model will be trained

on Linux to target Android devices. Nonetheless, it‘s still the main tool to

build the framework since it exploits its full potential. (cited in Warden 2017,

p.12; cited in Bazel n.d.)

For the android application the following Software was used:

 Android Studio: It is the main IDE (Integrated Development Environment)

for android development by Google. (cited in Android Studio n.d.)

 54

4.2 Object Detection API:

Under the many APIs that comes with TensorFlow, one in particular matches the

project use case. It is the Object Detection API. This API allows new learners, who

are not familiar with machine learning to experiment and test some existing models

provided by the framework, to familiarize with the environment and encourage more

people to tackle such an overwhelming subject. An explanation of how this API was

used to train and deploy a model in this project will follow in the next section. (cited

in Huang et al. n.d. a; cited in sentdex 2017a)

4.3 Model Training:

To train a model, there are several necessary steps that should be done before the

actual training begins.

 Collecting the data: no model can be trained without a data to base its

training on. That‘s why this step is critical. Something to keep in mind is that

not only relative data to the use case should be gathered but also this is a

selective process, since data with bad quality can lead to a false interpretation

and wrong results. In this project, the dataset consists of images of license

plates. It is also important to diversify the data, which means, it is preferable

to have pictures of license plates of different vehicles taken from different

angles in different situations and lighting. In that way the model can be robust

against challenging situations and will be able to learn better. In machine

learning, the more data provided, the better the result will be. Some models

are trained with thousands of samples. Depending on the use case, already

prepared datasets can be found on the internet that is also labeled. But in this

project use case, a dataset had to be created from scratch since no already

labeled dataset was found that matches the project needs. Gathering pictures

and especially thousands or hundreds for this project, can be a tedious task

that take a lot of time. That‘s why, for the majority of pictures, a ―python

script‖ was used to download automatically all images from a Google search,

and then they were filtered and only the useful ones were kept. (cited in

sentdex 2017b)

 55

 Data Labeling: The most suited type of machine learning for the thesis is

―supervised learning‖, since it is based on providing data to the model and the

anticipated result. So, after data collection, the next step will be providing it

with the possible outputs. This step is achieved by data labeling. Basically,

this step consists of going through every picture, selecting the regions of

interest which are the whole digits on the license plate, then annotate them

accordingly. The end result will be something like the following figure:

Figure 4.1 Annotated picture of a license plate

After labeling each picture, an xml file will be generated automatically

containing the coordinates and the label of each annotated object in the

picture. In this step, the objects can be selected only with rectangular shape,

since currently it‘s the only shape supported by the framework, otherwise, the

framework won‘t be able to start the training. (cited in sentdex 2017b)

 Checkpoint & Configuration file: After collecting and labeling the dataset,

the next step is to leverage the flexibility of the framework by using ―transfer

learning‖. Google provided its users with a set of pretrained models along

with the framework. Those pretrained models are trained with large datasets

and have different characteristics that server for a variety of use cases (cited

in sentdex 2017c). The Figure 4.2 is a table that gives an overview of the

currently available models and their benchmarks:

 56

Figure 4.2 COCO-trained models (Huang et al. n.d. b)

From this list it can be determined which model is more suitable to which use

case. For applications that demand a high accuracy, but speed is not its

highest priority, e.g. object detection on images, ―faster_rcnn_nas‖ can be

used since it has the highest mAP. mAP is an evaluation metric for object

detection and it‘s an indicator of accuracy (cited in C Arlen 2018). In the

other hand it takes 1833 ms to process one single image. Since in this project

 57

images are being processed in real-time, speed is a top priority since it will

affect the user experience. Also, accuracy is an important factor, that‘s why

the model chosen for this project, which is ―ssd_mobilenet_v1_coco‖,

compensate between speed and accuracy. SSD is short of Single Shot

Detector and this model along with the others in the list above is trained with

the famous COCO (Common Objects in Context) dataset. The main reason

of selecting a pretrained model is to avoid training the new model from

scratch because that will consume a lot of time. (cited in Huang et al. n.d. b;

cited in sentdex 2017c; cited in Huang 2017)

After selecting the pretrained model, that will play the role of a checkpoint,

we need to get its appropriate configuration file that is also provided by

Google. The configuration file contains information such as number of

classes to be detected in this model and the name of labels. (cited in sentdex

2017c; Huang et al. n.d. c)

 Framework configuration: The last step of this preparation process would

be customizing certain files to my specific use case.

As a start, the dataset should be divided into two, one for the training which

is 90% of the original and one for testing which is the rest 10%. Afterwards,

all xml files must be regrouped into one file for each dataset by converting

them into .tfrecord files (binary files) since TensorFlow supports only this

file format. After organizing the dataset, the configuration file should be

modified by changing several parameters such as number of classes, paths of

dataset and checkpoint. The Last step would be at this point, to create a .pbtx

file (a label map) that contains all the objects to detect and their labels. (cited

in sentdex 2017d)

After those steps, the training can be launched. This process is monitored by

Tensorboard. Using this tool, it was possible to determine whether the model is ready

to be deployed or it needs more training time or any other changes. Thanks to its

graphs such as ―TotalLoss‖, it was possible to visualize the learning curve of the

model (cited in sentdex 2017e). For instance, if the error rate is still high and stable

for a long period of time, either the configuration of the model or the data itself

should be revised and corrected and the training should be stopped.

 58

Figure 4.3 TotalLoss graph

As the curve tends to be closer to zero as the time passes, it will never reach that

point since nothing can be perfect or flawless. In general, a total loss value under 2.5

is considered to give accurate results, but also gives a hint that the model can be

improved by tweaking parameters or by providing a better dataset. (cited in sentdex

2017e)

4.4 Mobile implementation:

After training the model and before using it in the application, the android

environment should be set first and there are a variety of ways to do so. As its first

release, TensorFlow came with support for android and can be run from a

prepackaged binary installation or by compiling it from scratch using Bazel. Bazel

was used in this project mainly to build TensorFlow on the Desktop environment and

was used only for testing purposes in the android application. (cited in Warden 2017,

p.11)

Because android applications need to be written in Java, and core TensorFlow is in

C++, the TensorFlow team provides a JNI (Java Native Interface) library to interface

between the two. Its interface works only to perform inference, so it provides the

ability to load a graph, set up inputs, and run the model to calculate particular

outputs. (cited in Warden 2017, p.15)

 59

Along with the Object Detection API provided by TensorFlow, the API came also

with a demo of its implementation in mobile that covers three use cases and they are

the following:

 TF Classify: This app uses a model called Inception v3 to label the objects

it‘s pointed at through the camera preview with classes from the dataset

ImageNet. There are only 1000 categories in ImageNet and they don‘t

contain all everyday objects and includes many things that unlikely to be

encountered in real life. (cited in Warden 2017, p.14)

 TF Detect: This app uses a multibox model which enables it to detect objects

location by draw bounding boxes around them in the camera. Theses boxes

are also annotated with the confidence for each detection result. This kind of

object detection is still an active research topic, so the results may vary

depending on the conditions and on the objects, the user is trying to detect.

The demo also includes tracking that runs at a much higher frequency than

the TensorFlow inference. This feature can improve the user experience,

since the estimate which boxes refer to the same object between frames,

which is important for counting objects over time. (cited in Warden 2017,

p.14)

 TF Stylize: This app implements a real-time style-transfer algorithm on the

camera feed. The user can select the styles to use and mix between them

using a palette situated at the bottom of the user interface, and also switch out

to resolution of the processing to go higher- or lower-resolution (cited in

Warden 2017, p.14)

Since TF Detect matches the use case of this project, the prototype developed in this

project was based on it. As mentioned before, that this kind of object detection is still

an active research topic, the tracking feature despite the improvement to the user

experience that it may bring, it wasn‘t in this project a much of help, so it was used

only for testing purposes.

 60

After choosing the skeleton to base the project on and adding the needed library, the

next step would be testing the trained model inside the application. There are often

unexpected differences between the training data and what users actually encounter

in the real world and getting a clear picture of the gap as soon as possible improves

the product experience. (cited in Warden 2017, p.19-20)

To integrate the trained model into the project it is important to understand the

different out graphs saved by the framework after training the model. Since

TensorFlow relies on the Protocol Buffer library, known as protobuf, the objects are

mostly defined and serialized as protocol buffers. This library takes definitions of

data structures and produces serialization and access code for them in variety of

languages. Finally, Warden goes in his book (2017, p.26-29) through different

components outputted by the framework and explains them as follows:

 “NodeDef: Defines a single operation in a model. It has a unique name, a list of the

names of other nodes it pulls inputs from, the operation types it implements (for

example, Add or Mul), and any attributes that are needed to control the operation. This

is the basic unit of computation for TensorFlow, and all work is done by iterating

through a network of theses nodes, applying each one in turn. One particular operation

type that‘s worth knowing about is Const, since this type holds information about a

constant. The values for a Const are stored inside the NodeDef.

 Checkpoint: Another way of storing values for a model is by using ―Variable ops‖.

Unlike other operations such as ―Const ops‖, these don‘t store their content as part of the

NodeDef, so they take up very little space within the Graph Def file. Instead, their values

are held in RAM while a computation is running and then saved out to disk as

checkpoint files periodically. This typically happens a neural network is being trained

and weights are updated, so it‘s a time-critical operation and may happen in distributed

fashion across many workers.

 GraphDef: GraphDef has a list of NodeDefs, which together define the computational

graph to execute. During training, some of these nodes will be variables, so if you want

to have a complete graph you can run, including the weights, a restore operation need to

be called to pull those values from checkpoints. Because checkpoint loading has to be

flexible to deal with all of the training requirements, this can be tricky to implement on

mobile and embedded devices. […] This is where the script ―freeze_graph‖ comes in

handy. As mentioned, Const ops store their values as part of the NodeDef, so if all the

Variable weights are converted to Const nodes, then we only need one single GraphDef

file to hold the model architecture and the weights. Freezing the graph handles the

 61

process of loading the checkpoints, and then converts all Consts to Variables. You can

then load the resulting file in a single call, without having to restore variable values from

checkpoints.

 FunctionDefLibrary: […] appears in GraphDef and is effectively a set of subgraphs,

each with information about their input and output nodes. Each subgraph can then be

used as an op in the main graph, allowing easy instantiation of different nodes, in a

similar way to how functions encapsulate code in other languages.

 MetaGraphDef: A plain GraphDef only has information about the network of

computations but doesn‘t have any extra information about the model or how it can be

used. MetaGraphDef contains a GraphDef defining the computation part of the model,

but also includes information like signatures, which are suggestions about which inputs

and outputs the developer may want to call the model with, data on how and where any

checkpoint files are saved, and convenience tags for grouping ops together for ease of

use.

 SavedModel: It‘s common to want to have different versions of a graph that rely on a

common set of variable checkpoints. For example, a GPU and a CPU version of the

same graph might be needed but keep the same weights for both. Some extra files (like

label names) might also be needed as part of the model. The SavedModel format

addresses these needs by letting the developer save multiple versions of the same graph

without duplicating variables and by storing asset files in the same bundle.‖

So now how to obtain a model usable on mobile?

In most situations, training a model with TensorFlow outputs a folder containing a

GraphDef file and a set of checkpoint files. What is needed for mobile or embedded

deployment is a single GraphDef file that‘s been ―frozen‖ or had its variables

converted into inline constants, so everything is in one file. The most recent

checkpoint should be used for this. (cited in Warden 2017, p.29)

After generating the frozen version of the model, the last step would be creating a

text file that contains the name of the labels used to annotate the dataset. Afterwards,

the two files should be added to the android application, under the asset folder which

will be packed with the final version that will be installed on the user device. (cited

in Santos 2018)

 62

4.5 Optimization for mobile usage:

Since the user experience is a crucial factor in mobile applications and especially in

real-time use case scenarios, there are some improvements provided by the

framework that can be made to optimize the trained model. These changes are

available through the Graph Transform Tool. It is a command-line tool that takes an

input GraphDef file, applies the set of rewriting requested rules, and writes out the

result as a GraphDef. (cited in Warden 2017, p.30)

4.5.1 Minimum Device Requirement:

Before going through the possible optimization, it is important to find out the

minimum device requirement for TensorFlow to anticipate the range of targeted

devices and to better improve the user experience. One megabyte of program

memory at least is needed and several megabytes of RAM to run the base

TensorFlow runtime, so it‘s not suitable for DSPs or microcontrollers. Other than

those, the biggest constraint is usually the calculation speed of the device, and if the

needed model for the application can be run with a low enough latency. It is good

idea to use the benchmarking tools provided by the framework to get an idea of how

many FLOPs (Floating Point Operation Per Second) are required for a model, and

then use that to make rule-of-thumb estimates of how fast they will run on different

devices. This model dependence means that it‘s possible to run TensorFlow even on

very old or constrained phones, as long as the network is optimized to fit within the

latency budget, and possibly limited RAM, as well. For memory usage, it is needed

to make sure that the intermediate buffers that TensorFlow creates aren‘t too large,

which can be examined in the benchmark output too. (cited in Warden 2017, p.26)

4.5.2 Removing training-only nodes:

TensorFlow GraphDefs, produced by the training code, contain all the computation

that‘s needed for back-propagation and updates of weights, as well as the queuing

and decoding of inputs and the saving of checkpoints. None of these nodes are

needed during inference, and some of the operations, such as checkpoint saving,

aren‘t even supported on mobile platforms. By using the Graph Transform Tool,

those unneeded operation can be deleted to create a model file that can be loaded on

devices. The trickiest part of this process is figuring out the names of the nodes

wanted to be used as inputs and outputs during inference. These will be needed

 63

anyway once the inference is started, but also here, so the transform can calculate

which nodes are not needed of the inference-only path. These nodes may not be

obvious from the training code because inputs are often fed through queues and

decoding operations, and outputs feed into loss calculations, so they are not the final

op in the graph. Unfortunately, there is no automatic way to discover these, but often

the graph can be visualized or by digging inside the system messages and stack

traces of the mobile application to find them. Typically, mobile applications gather

their data from sensors and have it as arrays in memory, whereas training involves

loading and decoding representations of the data stored on disk. In the case of

Inception v3, for example, there is a ―DecodeJpeg op‖ at the start of the graph that is

designed to take JPEG-encoded data from a file retrieved from disk and turn it into

an arbitrary-sized image. After that there is ―BilinearResize op‖ to scale it to the

expected size, followed by a couple of other ops that convert the byte data into floats

and scales their values to the range that the rest of the graph expects. A typical

mobile app skips most of these steps because it‘s getting its input directly from a live

camera, so the input actually supplied node will be the output of the Mul node in this

case. The following figure shows a diagram of an Inception input module. (cited in

Warden 2017, p30-31)

Figure 4.4 Inception input module (Warden 2017, p.31)

 64

A similar process of inspection is needed to figure out the correct output nodes.

Another way to find out information about the trained model is, after generating a

frozen GraphDef file, the ―summarize_graph‖ tool is used to print out information

about the inputs and outputs from the graph structure. (cited in Warden 2017, p.31)

After getting all the information needed, they can be fed into the graph transform

tool. One thing to look out for is that the size and type of the inputs must be

specified. This is because any values passed as inputs to inference need to be fed to

special Placeholder op nodes, and the transform may need to create them if they

don‘t already exist. In the case of Inception v3, for example, a Placeholder node

replaces the old Mul node that used to output the resized and rescaled image array,

since that processing going to be done manually before TensorFlow is called. It

keeps the original name, though, which is why inputs are fed to Mul when running a

session with a modified Inception graph. After running this process, a graph will be

outputted that only contains the actual nodes needed to run the prediction process.

(cited in Warden 2017, p.32)

4.5.3 Recompiling TensorFlow inference library:

There are many operations available in TensorFlow, and each one has multiple

implementations for different data types. On mobile platforms, the size of the

executable binary that‘s produced after compilation is important, because app

download bundles need to be as small as possible for the best user experience. If all

the ops and data types are compiled into the TensorFlow library, then the total size of

the compiled library can be tens of megabytes—so by default, only a subset of ops

and data types are included. That means if a model file that‘s been trained on a

desktop machine is loaded, the ―No OpKernel was registered to support Op‖ error

may appear when loading it on mobile. The first thing to try is to make sure that any

training-only nodes have been stripped, since the error will occur at load time even if

the op is never executed. If the error still occurs, that means the missing op should be

added to the built library. (cited in Warden 2017, p.33)

Warden puts together in his book (2017, p.33) four factors to determine if certain

operations and types should be included and they are as follows:

 65

 ―Are they only useful in back-propagation, for gradients? Since mobile is focused on

inference, we don‘t include this.

 Are they useful mainly for other training needs, such as checkpoint saving? These we leave

out.

 Do they rely on frameworks that aren‘t always available on mobile, such as libjpeg? To

avoid extra dependencies, we don‘t include ops like DecodeJpeg.

 Are there types that aren‘t commonly used? We don‘t include boolean variants of ops for

example, since we don‘t see much use of them in typical inference graphs.‖

This trimming does go against the vision of TensorFlow being single unified

framework all the way from training to devices though, so it is possible to alter this

default behavior. To do this some build files need to be altered. (cited in Warden

2017, p.33)

Regardless, in case there is no missing ops and the model works as it‘s supposed to

be in the application, it is encouraged to recompile the library with only the

operations that are used in that specific model. That way the library size will be kept

to a minimum with a functional model. It is also worth mentioning that this step does

not affect the end result in any way, it only has one side effect which is, the

TensorFlow library will work only with that exact model, or models that uses the

same operations. The list of operation used by the model can be figured out by using

the Graph Transform Tool, and then the library can be recompiled using that

information. (cited in Jarvis 2017)

4.5.4 Retrain with mobile data:

 The biggest cause of accuracy problems when running models on mobile apps is

unrepresentative training data. For example, there is dataset online that contains only

well framed and centered photos. But photos from mobile devices are often poorly

framed and badly lit. The solution is to expand the training set with data actually

captured from the application. The user can be involved in this process by giving

feedback to the developers. For example, if a user didn‘t obtain the wanted result, he

can send a feedback including the photo used in the app, so it will be added in future

releases in the dataset. This step can involve extra work, since the new photos must

be labeled manually. Improving the training set by doing this and by fixing other

quality issue like duplicates or badly labeled examples is the single best way to

 66

improve accuracy. It is usually a bigger help than altering the model architecture or

using different techniques. (cited in Warden 2017, p.43)

4.5.5 Reduce model loading time or memory footprint & improve RAM usage:

Most operating systems have the possibility to load a file using memory mapping,

rather than going through the usual I/O APIs. Instead of allocating an area of

memory on the heap and then copying bytes from disk into it, the user should simply

tell the operating system to make the entire contents of a file appear directly in

memory. One advantage of this method is the OS knows the whole file will be read

at once and can efficiently plan the loading process, so it is as fast as possible. The

actual loading can also be put off until the memory is first accessed, so it happens

asynchronously with the code initialization. The user can also tell the OS he will

only be reading from the area of memory, and not writing to it. This gives the benefit

that when there is pressure on RAM, instead of writing out that memory to disk as

normal virtualized memory needs to be when swapping happens, it can just be

discarded, since there is already a copy on disk, saving a lot of disk writes. (cited in

Warden 2017, p.43)

Most of the models trained by TensorFlow are bulked in size due to the amount of

parameters and training data packed in the frozen graph. That‘s why it is useful to

speed up the loading time in mobile and embedded applications. In addition to that,

the responsiveness of the model can be also improved by reducing the swap writing

load. It can also be very helpful to reduce RAM usage. Warden state an example in

his book (2017, p.44) backing up this theory ―For example, on IOS the system can

kill apps that use more than 100 MB of RAM, especially on older devices. The RAM

used by memory-mapped files doesn‘t count toward that limit, so it is often a great

choice for models on those devices‖. TensorFlow has support for memory mapping

the weights that form the bulk of most model files. Because of limitations in the

protobuf serialization format, a few changes needs to be made to the model loading

and processing code. The way memory mapping works is that there is a single file in

which the first part is a normal GraphDef serialized into the protocol buffer wire

format, but then the weights are appended in a form that can be directly mapped.

(cited in Warden 2017, p.44)

 67

One thing to notice after doing these changes is that automatic optimizations are also

being disabled, since in some cases these will fold constant subtrees, which will

create copies of tensor values that are not wanted and use up more RAM. (cited in

Warden 2017, p.45)

4.5.6 Reduce model size:

As hinted in the previous section, models have a large binary size and they could

affect not only the user experience but also the storage of the device. Since the model

should be included in the application while deploying in the store, any user can avoid

downloading the application due to its size. So the developers should plan for how

large the model will be. A good place to start is by looking at the size disk of the

GraphDef file. (cited in Warden 2017, p.35)

The important part for the current purposes is the number of const parameters. In

most models, theses will be stored as 32-bit floats to start. When multiplying the

number of const parameters by four, the result is close to the size of the file on disk.

Often only eight bits per parameter will cause only too little loss of accuracy in the

final result; so, if the file is too large, the Graph Transform Tool can be used to

transform the parameters down. Usually the resulting file size is about a quarter of

the original. There is a variation on this that can sometimes be particularly useful for

mobile development, which takes advantage of the fact that app bundles are

compressed before they are downloaded by consumers. Normal floating-point

numbers don‘t compress well with standard algorithms, because the bit patterns of

even very similar numbers can be very different. As a result, models typically don‘t

compress at all. (cited in Warden 2017, p.35-36)

4.5.7 Exploring Quantized Calculations:

The calculations done in trained networks have the 32-bit floating point format, since

it is the most convenient one. But thanks to the models resilience to noise, the

inference can be run with 8 bits or fewer. Despite a minimal dropage of precision

following this approach, the detection quality stays pretty much the same. The

method is currently one of the most interesting research areas. In more technical

terms, the 8-bit buffers are expanded up to 32-bit floats before they are used for

calculations, so it is a fairly minimal change to the network. All the other operations

 68

just see floating point inputs as normal. Following the same logic and taking

advantage of the hardware advancements of nowadays devices, it is possible to try

performing as many calculations as possible using 8-bit representation. For instance,

many CPUs have SIMD instructions (like NEON or AVX2) that can do more 8-bit

calculations per cycle than they can float. It also means that specialized hardware,

like Qualcomm‘s HVX DSP or Google‘s Tensor Processing Unit, which may not

support floating point operations well, can accelerate neural network calculations. In

theory, there is no reason fewer than eight bits too couldn‘t be used, and indeed in a

lot of experiments the TensorFlow team have seen seven or even five bits as usable

without too much loss. However, at the moment there is not much hardware that can

efficiently use these odd sizes. (cited in Warden 2017, p.46)

Many challenges can arise while trying to implement this technique. Warden goes in

details explaining one of those challenges (2017, p.47) ―The biggest challenge with

this sort of quantized approach is that neural networks require fairly arbitrary ranges

of numbers that aren‘t known ahead of time, so fitting them into eight bits can be

tough. It‘s also tricky to create arithmetic operations to use these representations,

since we have to reimplement a lot of the utilities we get for free when using floating

point, such as range checking. Consequently, the resulting code looks quite different

from the equivalent float versions. There are also problems introduced by the fact the

inputs will not be known ahead of time, so the ranges of intermediate calculations

can be hard to estimate.‖

4.6 Recapitulation:

In this chapter, we went through the different steps of creating this project and how it

is divided into two major parts which are training a model and integrating it into an

android application.

In addition, we saw how there is several Deep Learning architectures (models), that

uses different methods internally, to perform the same task. Each model depends on

a base classifier, which greatly affects the final accuracy and model size. Moreover,

the choice of the object detector can heavily influence computational complexity and

final accuracy.

Finally, since the mobile environment has its limitations, some improvements are

necessary to be done on the trained model to achieve better results and improve the

 69

user experience but unfortunately not all the techniques are applicable to all the

models, which was the case in this project.

Chapter 5: Summary

Since machine learning is an active field of research, it is always evolving, and

thanks to the technology advancement existing nowadays especially in hardware, the

artificial intelligence and all its descendent fields saw a significant progress in the

past few years. (cited in Gage 2018)

Because AI was mostly implemented by companies using their own frameworks,

there was some sort of limitation on this technology despite the constant progress.

That‘s why some companies started opening their frameworks to the public, knowing

of course the benefits they will get in return from this decision. (cited in Parikh 2017;

cited in J. Garbade 2018)

For instance, Google after open sourcing their machine learning framework

TensorFlow in 2015, the framework came along way with help of its community and

the amount of innovation and improvements they brought with them to the

framework. The best example that reflects this advancement, is the last conference

held by Google (Google I/O 2018), that announced many new features centered on

AI in many of their platforms, for example, Google Duplex in the new operating

system Android P. (cited in Singh 2018; cited in El-Arifi 2018)

In the next section, the recent changes in this framework, that concerns this project in

particular, will be discussed more in depth and what may be changing in the future.

5.1 Discussion:

This part of the thesis is a recapitulation of the results from implementing Machine

Learning and an introduction to the possible improvements to be made in the future.

5.1.1 Results:

Before going through how the developed solution could be improved in the future,

the results of its implementation should first be specified and if it served its purpose.

 70

After training the model and improving it by applying some of the techniques

mentioned in the last chapter to make suitable for mobile usage, the developed

prototype overcame the actual implemented approach in the following points:

Figure 5.1 Detection speed on Huawei P9 Lite phone

 The detection and processing time when using Machine Learning is distinctly

faster, since the application have only one external file as a reference while

the actual approach must have one or two external libraries installed with the

application which make the detection slower. It should be mentioned that

different phones have different inference time. Phones with higher hardware

specifications will detect documents faster than the others

 71

Figure 5.2 License plate detection in challenging conditions

 Since the model is trained to be robust against noises, the quality of detection

has been improved. The developed tool won‘t give a false detection in

difficult situations such as bad lighting as much as the actual tool.

 The recognition process is now being done in real-time which improve the

user experience and reduce the number of image taken before having a valid

result.

 Several methods have been upgraded to improve the transition between the

different user interfaces in the application. Network connection methods are

in example of what have been improved. The connection between the

database and the application was done manually and now is replaced with an

automated process.

 72

5.1.2 Future Improvements:

There are two main changes worth mentioning that involves improving the model

training process and mobile integration. Further information is provided in the next

section.

5.1.2.1 TensorFlow Lite:

Since TensorFlow supports multiple platforms, it is only logical to provide a library

for each one of it. In this project TensorFlow (the main framework) and TensorFlow

mobile were used respectively for Desktop and mobile environments. (cited in

TensorFlow n.d. c)

Machine Learning is changing the computing paradigm, and an emerging trend of

new use cases on mobile and embedded devices were noticed by Google. In addition

to consumer expectations are trending toward natural, human-like interactions with

their devices, driven by the camera and voice interactions models, Google also

believes that the next wave of machine learning applications will have significant

processing on mobile and embedded devices, that‘s why they felt the need to release

an improved version of their earlier library ―TensorFlow mobile‖ which is

―TensorFlow Lite‖. (cited in TensorFlow n.d. d, p.2)

The TensorFlow team mentioned in the framework documentation (TensorFlow n.d.

d, p.2) some other factors that drive the interest in this domain:

 ―Innovation at the silicon layer is enabling new possibilities for hardware acceleration,

and frameworks such as the Android Neural Networks API make it easy to leverage

these.

 Recent advances in real-time computer-vision and spoken language understanding have

led to mobile-optimized benchmark models being open sourced (e.g. MobileNets,

SqueezeNet).

 Interest in stronger user data privacy paradigms where user data does not need to leave

the mobile device.‖

So, how exactly this library an improvement and what does it contain?

TensorFlow Lite is a leight version of TensorFlow and its targets are embedded and

mobile devices. With this version of the framework, trained models consumes less

resources and need less saving space. Thus, less inference time is needed for

 73

detection. This performance was achievable thanks to techniques such as pre-fused

activations and quantized kernels. In addition to the new techniques introduced in

TFLite, the framework defines also a new model file format, based on FlatBuffers

open source parsing library. It is similar to the format used by TensorFlow Protocol

Buffer but it is improved to access data faster and more efficiently by skipping the

parsing/unpacking step. Finally, TFLite uses a new custom interpreter that avoids

any unnecessary memory allocation or initialization to improve the execution time.

(cited in TensorFlow n.d. d, p.1)

To use TFLite there is no need to retrain the model used with TensorFlow mobile

since the user should only convert the current model with a tool called TOCO to

obtain finally a TensorFlow Lite FlatBuffer file. After deploying the new file, it will

be handled by the TensorFlow Lite interpreter. The flow of this process is

represented by the Figure 5.4 (cited in TensorFlow n.d. e, p.2):

Figure 5.3 Flow of the TOCO process (TensorFlow n.d. e, p.2)

In this project, this library was used only for test purposes since it‘s still in developer

preview at the time of writing this thesis and not ready for production. The results

obtained were not as promising as expected, but it will be a big improvement for my

current work when it becomes more stable.

 74

5.1.2.2 Pre-trained models:

Along with the new library, Google worked on improving its existing pre-trained

models and launched new versions of some of them leveraging the new techniques

implemented in TensorFlow Lite, such as the capability of running quantized

models. (cited in Huang 2018)

Figure 5.4 Floating point model vs 8-bit model (Huang 2018, p.2)

As demonstrated in Figure 5.4, the quantized detection models are faster and smaller

with minimal loss in detection accuracy compared to the full floating-point model.

Figure 5.5 SSD Model evolution (cited in Huang et al. n.d. b)

5.1.2.3 Training and serving with Cloud TPUs:

Users spend a great deal of time on optimizing hyperparameters and retraining object

detection models, therefore having fast turnaround times on experiments is critical.

That‘s why Google launched recently a paid service to accelerate training via Cloud

TPUs. (cited in TensorFlow 2018)

―Tensor Processing Units (TPUs) are Google‘s custom-developed application-

specific integrated circuits (ASICs) used to accelerate machine learning workloads.

Cloud TPU resources accelerate the performance of linear algebra computation,

which is used heavily in machine learning applications. TPUs minimize the time-to-

 75

accuracy when large complex neural network models are trained. Models that

normally take days or weeks to train on other hardware platforms can converge in

hours on TPUs.‖ (Google Cloud n.d., p.1)

5.2 Conclusion:

One of the features of the mobile application developed for my bachelor thesis is

trucks license plate recognition by detecting its numbers. The purpose of this thesis

was to optimize this feature and two solutions were possible:

 Adding OpenCV which is an external library to perform image processing

algorithms on images before feeding them to the recognition tool. This extra

step will presumably optimize the detection results.

 Fully implementing machine learning to detect digits on the license plate with

the Object Detection API provided by the Framework TensorFlow from

Google.

After outlining the advantages, disadvantages and the differences of the above-

mentioned methodological approaches, the scientific research behind machine

learning and deep learning in particular was thoroughly explained along with its

different architectures such as the Convolutional Neural Network, which was

implemented in this thesis.

The rest of this thesis consists of going through the process of training a model to

detect numbers on the license plate, and the important improvements applied to the

model to increase its performance.

Naturally, there are more improvements to be made since this is an open field of

study and is always improving.

 76

Statement of authorship:

Hiermit erkläre ich, dass ich die vorliegende Masterarbeit selbständig und ohne
fremde Hilfe verfasst und keine anderen Hilfsmittel als angegeben verwendet habe.
Insbesondere versichere ich, dass ich alle wörtlichen und sinngemäßen
Übernahmen aus anderen Werken als solche kenntlich gemacht habe.

Ort: …………………………………….

Datum: ……………………………………. Unterschrift: …………………………………….

 77

References:

A. Nielsen Michael (2017): Neural Networks and Deep Learning, Determination

Press, [online] http://neuralnetworksanddeeplearning.com/

Android Studio n.d. [online] https://developer.android.com/studio/ [06.09.2018]

Artificial intelligence index (2017): 2017 Annual Report,

[online] http://cdn.aiindex.org/2017-report.pdf [01.07.2018]

Bazel n.d. [online] https://bazel.build/ [06.09.2018]

Bernard Marr (2016): What Is The Difference Between Artificial Intelligence And

Machine Learning, [online]

https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-

between-artificial-intelligence-and-machine-learning/#39dc258c2742 [13.07.2018]

Brownlee Jason (2016a): Bagging and Random Forest Ensemble Algorithms for

Machine Learning [online] https://machinelearningmastery.com/bagging-and-

random-forest-ensemble-algorithms-for-machine-learning/ [03.08.2018]

Brownlee Jason (2016b): What is Deep Learning? [online]

https://machinelearningmastery.com/what-is-deep-learning/ [06.08.2018]

Castle Nikki (2017): Supervised vs. Unsupervised Machine Learning, [online]

https://www.datascience.com/blog/supervised-and-unsupervised-machine-learning-

algorithms [16.07.2018]

Castle Nikki (2018): What is Semi-Supervised Learning?, [online]

https://www.datascience.com/blog/what-is-semi-supervised-learning [27.07.2018]

D‘Onfro, Jillian (2018) ‗Google promises not to use A.I. for weapons or surveillance,

for the most part‘, CNBC, 7 June, page.1-3. [online]

https://www.cnbc.com/2018/06/07/google-ai-ethical-principles.html [05.07.2018]

http://neuralnetworksanddeeplearning.com/
https://developer.android.com/studio/
http://cdn.aiindex.org/2017-report.pdf
https://bazel.build/
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#39dc258c2742
https://www.forbes.com/sites/bernardmarr/2016/12/06/what-is-the-difference-between-artificial-intelligence-and-machine-learning/#39dc258c2742
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://machinelearningmastery.com/bagging-and-random-forest-ensemble-algorithms-for-machine-learning/
https://machinelearningmastery.com/what-is-deep-learning/
https://www.datascience.com/blog/supervised-and-unsupervised-machine-learning-algorithms
https://www.datascience.com/blog/supervised-and-unsupervised-machine-learning-algorithms
https://www.datascience.com/blog/what-is-semi-supervised-learning
https://www.cnbc.com/2018/06/07/google-ai-ethical-principles.html

 78

David Fumo (2017): Types of Machine Learning Algorithms You Should Know,

[online] https://towardsdatascience.com/types-of-machine-learning-algorithms-you-

should-know-953a08248861 [16.07.2018]

Donges Niklas (2018): The Random Forest Algorithm [online]

https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd

[02.08.2018]

Dormehl Luke (2018): What is an artificial neural network? Here‘s everything you

need to know [online] https://www.digitaltrends.com/cool-tech/what-is-an-artificial-

neural-network/ [08.08.2018]

El-Arifi Naji (2018): Google I/O 2018 – it‘s all about Artificial Intelligence [online]

https://www.salmon.com/en/what-we-think/blogs/google-io-2018-its-all-about-ai/

[20.09.2018]

Gage Justin (2018): Hardware for Machine Learning [online]

https://blog.algorithmia.com/hardware-for-machine-learning/ [18.09.2018]

Goodfellow et al. (2016): Deep Learning, MIT Press, [online]

http://www.deeplearningbook.org

Google Cloud n.d.: Cloud Tensor Processing Units (TPUs) [online]

https://cloud.google.com/tpu/docs/tpus [21.09.2018]

Google n.d.: Tesseract OCR [online]

https://opensource.google.com/projects/tesseract [14.12.2018]

Gupta Prashant (2017a): Decision Trees in Machine Learning [online]

https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

[01.08.2018]

https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
https://towardsdatascience.com/the-random-forest-algorithm-d457d499ffcd
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.digitaltrends.com/cool-tech/what-is-an-artificial-neural-network/
https://www.salmon.com/en/what-we-think/blogs/google-io-2018-its-all-about-ai/
https://blog.algorithmia.com/hardware-for-machine-learning/
http://www.deeplearningbook.org/
https://cloud.google.com/tpu/docs/tpus
https://opensource.google.com/projects/tesseract
https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052

 79

Gupta Parashant (2017b): Regularization in Machine Learning [online]

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a

[23.08.2018]

Huang et al. n.d a: TensorFlow Object Detection API [online]

https://github.com/tensorflow/models/tree/master/research/object_detection

[12.09.2018]

Huang et al. n.d. b: TensorFlow detection model zoo [online]

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/d

etection_model_zoo.md [13.09.2018]

Huang et al. n.d. c [online]

https://github.com/tensorflow/models/tree/master/research/object_detection/samples/

configs [13.09.2018]

Huang Jonathan (2017): Supercharge your Computer Vision models with the

TensorFlow Object Detection API [online]

https://ai.googleblog.com/2017/06/supercharge-your-computer-vision-models.html

[14.09.2018]

Huang Jonathan (2018): Accelerated Training and Inference with the TensorFlow

Object Detection API [online] https://ai.googleblog.com/2018/07/accelerated-

training-and-inference-with.html [17.09.2018]

Hulstaert Lars (2018): Transfer Learning: Leverage Insights from Big Data [online]

https://www.datacamp.com/community/tutorials/transfer-learning [03.09.2018]

J. Garbade Michael (2018): Top 8 open source AI technologies in machine learning

[online] https://opensource.com/article/18/5/top-8-open-source-ai-technologies-

machine-learning [19.09.2018]

https://towardsdatascience.com/regularization-in-machine-learning-76441ddcf99a
https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md
https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs
https://github.com/tensorflow/models/tree/master/research/object_detection/samples/configs
https://ai.googleblog.com/2017/06/supercharge-your-computer-vision-models.html
https://ai.googleblog.com/2018/07/accelerated-training-and-inference-with.html
https://ai.googleblog.com/2018/07/accelerated-training-and-inference-with.html
https://www.datacamp.com/community/tutorials/transfer-learning
https://opensource.com/article/18/5/top-8-open-source-ai-technologies-machine-learning
https://opensource.com/article/18/5/top-8-open-source-ai-technologies-machine-learning

 80

Jarvis Dan 2018: How to shrink the TensorFlow Android libraries [online]

https://medium.com/@daj/how-to-shrink-the-tensorflow-android-inference-library-

cb698facf758 [25.09.2018]

Lan Haihan (2017): The Softmax Function, Neural Net Outputs as Probabilities, and

Ensemble Classifiers [online] https://towardsdatascience.com/the-softmax-function-

neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932

[24.08.2018]

Le James (2017): The 10 Deep Learning Methods AI Practitioners Need to Apply

[online] https://medium.com/cracking-the-data-science-interview/the-10-deep-

learning-methods-ai-practitioners-need-to-apply-885259f402c1 [06.08.2018]

LISA lab (2015): Deep Learning Tutorial, University of Montreal, Release 0.1

[online] http://deeplearning.net/tutorial/deeplearning.pdf

Liljencrantz Axel n.d. [online] https://fishshell.com/ [06.09.2018]

M. Agarap Abien Fred (2018): Deep Learning using Rectified Linear Units (ReLU)

[online] https://arxiv.org/pdf/1803.08375.pdf [22.08.2018]

Madhu Samjeevi (2017): Different types of Machine Learning and their types,

[online] https://medium.com/deep-math-machine-learning-ai/different-types-of-

machine-learning-and-their-types-34760b9128a2 [16.07.2018]

Moawad Assad (2018): Neural networks and back-propagation explained in a simple

way [online] https://medium.com/datathings/neural-networks-and-backpropagation-

explained-in-a-simple-way-f540a3611f5e [09.08.2018]

Novet, Jordan (2018) ‗Microsoft is building out A.I., but here‘s what it thinks could

go wrong‘, CNBC, 3 August, page.1-3. [online]

https://www.cnbc.com/2018/08/03/microsoft-warns-about-risks-related-to-ai-web-

connected-devices.html [04.09.2018]

https://medium.com/@daj/how-to-shrink-the-tensorflow-android-inference-library-cb698facf758
https://medium.com/@daj/how-to-shrink-the-tensorflow-android-inference-library-cb698facf758
https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
https://towardsdatascience.com/the-softmax-function-neural-net-outputs-as-probabilities-and-ensemble-classifiers-9bd94d75932
https://medium.com/cracking-the-data-science-interview/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1
https://medium.com/cracking-the-data-science-interview/the-10-deep-learning-methods-ai-practitioners-need-to-apply-885259f402c1
http://deeplearning.net/tutorial/deeplearning.pdf
https://fishshell.com/
https://arxiv.org/pdf/1803.08375.pdf
https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2
https://medium.com/deep-math-machine-learning-ai/different-types-of-machine-learning-and-their-types-34760b9128a2
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
https://medium.com/datathings/neural-networks-and-backpropagation-explained-in-a-simple-way-f540a3611f5e
https://www.cnbc.com/2018/08/03/microsoft-warns-about-risks-related-to-ai-web-connected-devices.html
https://www.cnbc.com/2018/08/03/microsoft-warns-about-risks-related-to-ai-web-connected-devices.html

 81

OpenCV (2015a): Color conversions, [online]

https://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html [04.07.2018]

OpenCV (2018a): [online] https://opencv.org/ [04.07.2018]

OpenCV (2018b): Image Filtering, [online]

https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=medianbl

ur#medianblur [04.07.2018]

OpenCV (2018c): Basic Thresholding Operations, [online]

https://docs.opencv.org/3.4/db/d8e/tutorial_threshold.html [05.07.2018]

OpenCV (2018d): Image Thresholding, [online]

https://docs.opencv.org/trunk/d7/dd0/tutorial_js_thresholding.html [05.07.2018]

Parikh Kunal (2018): 6 reasons why Google open-sourced TensorFlow [online]

https://hub.packtpub.com/google-opensorced-tensorflow/ [19.09.2018]

Piotr Dollár, C.Lawrence Zitnick (2013): Structured Forests for Fast Edge Detection,

[online] https://www.microsoft.com/en-us/research/wp-

content/uploads/2013/12/DollarICCV13edges.pdf [10.07.2018]

Prabhu (2018): Understanding of Convolutional Neural Network (CNN) – Deep

Learning [online] https://medium.com/@RaghavPrabhu/understanding-of-

convolutional-neural-network-cnn-deep-learning-99760835f148 [10.08.2018]

Project Jupyter n.d. [online] http://jupyter.org/ [06.09.2018]

Raval Siraj (2017): Convolutional Neural Networks – The Math of Intelligence

(Week 4), Youtube, LLC [online] https://www.youtube.com/watch?v=FTr3n7uBIuE

[23.08.2018]

https://docs.opencv.org/3.1.0/de/d25/imgproc_color_conversions.html
https://opencv.org/
https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur
https://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=medianblur#medianblur
https://docs.opencv.org/3.4/db/d8e/tutorial_threshold.html
https://docs.opencv.org/trunk/d7/dd0/tutorial_js_thresholding.html
https://hub.packtpub.com/google-opensorced-tensorflow/
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/12/DollarICCV13edges.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2013/12/DollarICCV13edges.pdf
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-deep-learning-99760835f148
http://jupyter.org/
https://www.youtube.com/watch?v=FTr3n7uBIuE

 82

Rosebrock Adrian (2016): Softmax Classifiers Explained [online]

https://www.pyimagesearch.com/2016/09/12/softmax-classifiers-explained/

[26.08.2018]

Ruder Sebastian (2017): Transfer Learning – Machine Learning‘s Next Frontier

[online] http://ruder.io/transfer-learning/index.html#applicationsoftransferlearning

[03.09.2018]

Santos De Dios Juan 2018: Detecting Pikachu on Android using Tensorflow Object

Detection [online] https://towardsdatascience.com/detecting-pikachu-on-android-

using-tensorflow-object-detection-15464c7a60cd [24.09.2018]

Scikit-learn developers (2017a): Support Vector Machines [online] http://scikit-

learn.org/stable/modules/svm.html [31.07.2018]

Scikit-learn developers (2017b): sklearn.tree.DecisionTreeClassifier [online]

http://scikit-

learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html

[03.08.2018]

Sentdex (2017a): Intro – TensorFlow Object Detection API Tutorial p.1, Youtube,

LLC [online] https://www.youtube.com/watch?v=COlbP62-B-U [10.09.2018]

Sentdex (2017b): Tracking Custom Objects – TensorFlow Object Detection API

Tutorial p.3, Youtube, LLC [online]

https://www.youtube.com/watch?v=K_mFnvzyLvc&index=3&list=PLQVvvaa0QuD

cNK5GeCQnxYnSSaar2tpku [10.09.2018]

Sentdex (2017c): Training Custom Object Detector – TensorFlow Object Detection

API Tutorial p.5 [online]

https://www.youtube.com/watch?v=JR8CmWyh2E8&index=5&list=PLQVvvaa0Qu

DcNK5GeCQnxYnSSaar2tpku [10.09.2018]

https://www.pyimagesearch.com/2016/09/12/softmax-classifiers-explained/
http://ruder.io/transfer-learning/index.html#applicationsoftransferlearning
https://towardsdatascience.com/detecting-pikachu-on-android-using-tensorflow-object-detection-15464c7a60cd
https://towardsdatascience.com/detecting-pikachu-on-android-using-tensorflow-object-detection-15464c7a60cd
http://scikit-learn.org/stable/modules/svm.html
http://scikit-learn.org/stable/modules/svm.html
https://www.youtube.com/watch?v=COlbP62-B-U
https://www.youtube.com/watch?v=K_mFnvzyLvc&index=3&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku
https://www.youtube.com/watch?v=K_mFnvzyLvc&index=3&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku
https://www.youtube.com/watch?v=JR8CmWyh2E8&index=5&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku
https://www.youtube.com/watch?v=JR8CmWyh2E8&index=5&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku

 83

Sentdex (2017d): Creating TFRecords – TensorFlow Object Detection API Tuorial

p.4 [online]

https://www.youtube.com/watch?v=kq2Gjv_pPe8&list=PLQVvvaa0QuDcNK5GeC

QnxYnSSaar2tpku&index=4 [10.09.2018]

Sentdex (2017e): Testing Custom Object Detector – TensorFlow Object Detection

API Tutorial p.6 [online]

https://www.youtube.com/watch?v=srPndLNMMpk&list=PLQVvvaa0QuDcNK5Ge

CQnxYnSSaar2tpku&index=6 [10.09.2018]

Shabbir Jahanzaib, Anwer Tarique (2015) ‗Artificial Intelligence and its Role in

Near Future‘, Journal of Latex Class Files, vol.14, no.8, page.5. [online]

https://arxiv.org/pdf/1804.01396.pdf [02.07.2018]

Shijian Tang, Ye Yuan n.d.: Object Detection based on Convolutional Neural

Network, [online]

http://cs231n.stanford.edu/reports/2015/pdfs/CS231n_final_writeup_sjtang.pdf

[12.07.2018]

Simonini Thomas (2018): An introduction to Reinforcement Learning [online]

https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-

4339519de419 [30.07.2018]

Singh Aishwarya (2018): Top 6 Artificial Intelligence announcements from Google

I/O 2018 [online] https://www.analyticsvidhya.com/blog/2018/05/top-6-ai-

announcements-at-google-io-2018/ [20.09.2018]

Smith Ray (2007): An Overview of the Tesseract OCR Engine [online]

https://ieeexplore.ieee.org/document/4376991 [14.12.2018]

Sublime HQ Pty Ltd n.d. [online] https://www.sublimetext.com/ [06.09.2018]

Sujaya Kumar Sathua et al. (2017): ‗Removal of Salt and Pepper noise from Gray-

Scale and Color Images: An Adaptive Approach‘, in: International Journal of

https://www.youtube.com/watch?v=kq2Gjv_pPe8&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku&index=4
https://www.youtube.com/watch?v=kq2Gjv_pPe8&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku&index=4
https://www.youtube.com/watch?v=srPndLNMMpk&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku&index=6
https://www.youtube.com/watch?v=srPndLNMMpk&list=PLQVvvaa0QuDcNK5GeCQnxYnSSaar2tpku&index=6
https://arxiv.org/pdf/1804.01396.pdf
http://cs231n.stanford.edu/reports/2015/pdfs/CS231n_final_writeup_sjtang.pdf
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419
https://www.analyticsvidhya.com/blog/2018/05/top-6-ai-announcements-at-google-io-2018/
https://www.analyticsvidhya.com/blog/2018/05/top-6-ai-announcements-at-google-io-2018/
https://ieeexplore.ieee.org/document/4376991
https://www.sublimetext.com/

 84

Computer Science Trends and Technology, vol.5, issue.1, Page.117 [online]

https://arxiv.org/pdf/1703.02217.pdf [04.07.2018]

Tchircoff Andrew (2017): The mostly complete chart of Neural Networks, explained

[online] https://towardsdatascience.com/the-mostly-complete-chart-of-neural-

networks-explained-3fb6f2367464 [08.08.2018]

The Mathworks inc n.d.: Convolutional Neural Network 3 things you need to know

[online] https://www.mathworks.com/solutions/deep-learning/convolutional-neural-

network.html [05.09.2018]

TensorFlow 2018: Training and serving a realtime mobile object detector in 30

minutes with Cloud TPUs [online] https://medium.com/tensorflow/training-and-

serving-a-realtime-mobile-object-detector-in-30-minutes-with-cloud-tpus-

b78971cf1193 [27.09.2018]

TensorFlow n.d. a [online] https://www.tensorflow.org/ [06.09.2018]

TensorFlow n.d. b: Tensorboard: Visualizing Learning [online]

https://www.tensorflow.org/guide/summaries_and_tensorboard [06.09.2018]

TensorFlow n.d. c: Introduction to TensorFlow mobile [online]

https://www.tensorflow.org/lite/tfmobile/#introduction_to_tensorflow_mobile

[06.09.2018]

TensorFlow n.d. d: Introduction to TensorFlow Lite [online]

https://www.tensorflow.org/lite/overview [06.09.2018]

Trevino Andrea (2016): Introduction to K-means Clustering, [online]

https://www.datascience.com/learn-data-science/tutorials/introduction-to-k-means-

clustering-algorithm-data-science [16.07.2018]

Tzutalin (2015): Labelimg Git code [online] https://github.com/tzutalin/labelImg

[06.09.2018]

https://arxiv.org/pdf/1703.02217.pdf
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://towardsdatascience.com/the-mostly-complete-chart-of-neural-networks-explained-3fb6f2367464
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://medium.com/tensorflow/training-and-serving-a-realtime-mobile-object-detector-in-30-minutes-with-cloud-tpus-b78971cf1193
https://medium.com/tensorflow/training-and-serving-a-realtime-mobile-object-detector-in-30-minutes-with-cloud-tpus-b78971cf1193
https://medium.com/tensorflow/training-and-serving-a-realtime-mobile-object-detector-in-30-minutes-with-cloud-tpus-b78971cf1193
https://www.tensorflow.org/
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/lite/tfmobile/#introduction_to_tensorflow_mobile
https://www.tensorflow.org/lite/overview
https://www.datascience.com/learn-data-science/tutorials/introduction-to-k-means-clustering-algorithm-data-science
https://www.datascience.com/learn-data-science/tutorials/introduction-to-k-means-clustering-algorithm-data-science
https://github.com/tzutalin/labelImg

 85

Van Veen Fjodor (2016): The Neural Network Zoo [online]

https://www.asimovinstitute.org/neural-network-zoo/ [08.08.2018]

Warden Pete (2017): Building Mobile Applications with TensorFlow, O‘Reilly

Media,Inc., [online] https://www.oreilly.com/data/free/building-mobile-applications-

with-tensorflow.csp

Zhong-Qiu Zhao et al. (2017) ‗Object Detection with Deep Learning: A Review‘,

Journal of Latex Class Files, vol.14, no.8. [online]

https://arxiv.org/pdf/1807.05511.pdf [12.07.2018]

https://www.asimovinstitute.org/neural-network-zoo/
https://www.oreilly.com/data/free/building-mobile-applications-with-tensorflow.csp
https://www.oreilly.com/data/free/building-mobile-applications-with-tensorflow.csp
https://arxiv.org/pdf/1807.05511.pdf

