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Chapter 1: Introduction 

 

1.1 General Introduction: 

Artificial intelligence is a technology that‘s hugely controversial. Despite its 

potential, and for a long time, many people expressed their doubts about this 

technology and what it holds for us in the future (cited in D‘Onfro 2018 p.1-3; Novet 

2018, p.1-3). 

But for the past few years AI kept growing exponentially and it‘s been implemented 

in numerous fields (cited in Artificial intelligence index, 2017, p.9-36), proving that 

it‘s a great asset that can yet open many other doors for a better everyday life (cited 

in Jahanzaib and Tarique, 2015, p.5).  

By leveraging the easy accessibility to AI documentation and frameworks this master 

thesis is continuity to my bachelor thesis with the goal of replacing classical image 

processing methods by an AI network that brings improvements to the project. 

 

This paper is divided into five Chapters.  

The first one consists of the introduction, which is intended to give an overview of 

the work: the problematic and the purpose of this study. 

The second section discusses and analyzes the currently used approach and the 

possible alternatives. 

In the third Chapter, the scientific research behind the chosen approach will be 

explained. 

The fourth section gives an overview on the implementation of AI and the different 

optimizations done in the project. 

The fifth and the last Chapter deal with a discussion about the state of the art in AI 

and summarize the acquired knowledge and the work that have been done.  

 

1.2 Problem formulation: 

The bachelor thesis was done within the Company LEONI Wiring Systems1. The 

company has three departments in Tunisia and on a daily basis goods are transported 

between those departments. The thesis consisted of developing an android 

                                                       
1 https://www.leoni.com/en/ 
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application along with a web application to supervise the drivers and minimize the 

delay that could happen. 

The web application is used by the administrator to:  

 Add, delete and modify drivers or trucks to the database. 

 Add and supervise missions 

 Make a complaint to the head of the department in case of a driver came late 

 

The android application is used by two parties which are the security agent from the 

departure department and the security agent from the arrival department. Figures 1.1 

and 1.2 are a visual representation of what features the application provides and how 

it can be used respectively by both departure and arrival security agents. 

 

 

Figure 1.1 Departure security agent role 

 
As presented in Figure 1.1 the security agent at the departure department is provided 

by five functions and they are: 

1. The agent must provide the application with his ID and password to be able 

to use the application. 

2. The agent will take a picture of the truck license plate. 

3. Image processing methods are going to be performed to detect the number of 

the license plate and the result will be displayed. 
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 If the result is false the agent can retry until he gets the desired result 

 If the result is correct the agent can proceed to the next function 

4. The agent will select the most suitable journey from the journey list 

depending on the current date, license plate and the driver name. 

5. When the security agent at the arrival department confirms the arrival of the 

truck the agent at the departure department will receive a notification 

containing the actual position of the truck to check if the truck at the right 

location at the moment of confirmation. At this point the agent can send 

reclamation to the administrator in case of miss use of the application. 

 

 

Figure 1.2 Arrival security agent role 

 

 

Figure 1.2 on the other hand describes the flow of the application usage by the 

security agent at the arrival department. And it is as the following: 

1. The agent must login to use the application. 

2. The agent will capture the license plate of the truck. 

3. If the result is correct the agent will confirm and changes will be made into 

the database, otherwise he can retry until he gets the desired result. 

 

This application works properly and gives valid results most of the time but it has 

three major withdraws. The bottleneck resides in: 

 

1. The real-time detection of the license plate using the actual approach can 

outputs false results in some scenarios. For instance, bad lighting or dirty 
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license plate, this confuses the detection tool. Thus, this tool is note robust 

against noise. 

2. Mobile devices have limited hardware performance, which make them 

vulnerable to certain tasks that require a lot of computing power. Some of the 

image processing methods applied in this approach can be time consuming in 

case of processing large sized images. This will affect the user experience. 

 

3. The transition between the different user interfaces is slow, which is not user 

friendly. For instance, when displaying the result of detection to the user or 

making changes to the database after detection. This behavior is not only 

caused by the image processing methods but also by outdated methods used 

in the application that serves to connect to the database or to transition 

between interfaces.  

 

1.3 Objective of Study: 

The main focus of the master thesis is to improve the license plate scanner feature of 

the android mobile application, by implementing an alternative more reliable 

solution. 

This solution should be able to overcome the difficulties discussed in the previous 

section. 

Chapter 2: Analysis 

2.1 Methodological approaches: 

In this section, the disadvantages of the currently used tool and how it functions will 

be discussed. Furthermore, the alternative approach will be introduced. 

 

2.1.1 Actual approach: 

Text or digits recognition is a popular subject in Computer Vision and there are 

several solutions to achieve good results. Since the license plate of Tunisian trucks 

have a standard form which is: 

Y تونس X 

Y refers to the series number which increments when a new series comes out and X 

refers to the registration number of the vehicle in the series. Each series can only 
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have the maximum of 9999 vehicles registered to it. The word ―تونس “ translates to 

Tunisia in English. 

 

It is only necessary to detect the digits and ignore the text since it does not affect the 

final result. The implemented solution is based on the OCR technology using the 

tesseract engine. (Google n.d., p1) 

The recognition process consists of 3 main steps and they are as follows:  

 

 Line finding: 

The first step is to find the position of the characters in the picture and since 

mainly multiple characters will be detected, it helps the recognition process to 

find the lines formed by them. This algorithm is able to perform the detection 

on skewed images which reduce the manual adjustments. (cited in Smith 

2007, p.2) 

 

 Fixed pitch detection and proportional character finding: 

In this step of the process the engine will be looking for individual characters 

in the detected lines by determining the gaps between them. (cited in Smith 

2007, p.2) 

 

 Word recognition: 

In some cases characters will be joined together that‘s why the engine will try 

to separate them before starting the recognition. After maximizing the 

confidence of the result the engine will look in its database for the possible 

matches. (cited in Smith 2017, p.3) 

 

Tesseract is mainly developed to detect text in different languages but it also can be 

used to recognize digits following the same detection process explained above.  

To implement this tool in the android application an external library should be 

manually added to the APK which is the final package that must be installed on the 

mobile device to run the application. Moreover in order to the detection tool to work 

properly a language package should also be added to the APK as a reference. 

 



 6 

This approach after its implementation proved to provide decent results but various 

challenges has presented themselves: 

- Since the detection tool works best with certain fonts on a certain background 

it can return false results in this particular use case. 

- Under difficult conditions such as bad lighting or dirty license plate the tool 

will not be able to detect the numbers correctly. 

- The external library and the language file installed along with the APK 

increases the size of the package. Furthermore it is difficult to maintain and 

update the library since it requires manual changes. 

- The detection is only performed after the picture was taken and not in real 

time which adds an extra step to the process.  

 

2.1.2 Image Processing with OCR:  

 A possible solution to overcome some of the challenges in the current approach is to 

perform image processing algorithms on the image taken from the camera preview 

before feeding it to the detection tool.  

The optimal environment for tesseract to work properly is black characters on a 

white background. A popular approach is using the OpenCV library (OpenCV 

2018a, p.1) which provides numerous image processing algorithms that serves to 

solve this problem. 

 

The currently used approach consists of seven steps and it is as follows: 

 Grayscale:  

Since the picture is taken directly from the phone camera, the output will be 

an RGB image. So, the first step in this process will be to convert it to a 

grayscale image. To achieve the wanted result, the following equation will 

take place: 

RGB[A] to Gray: Y←0.299·R+0.587·G+0.114·B (OpenCV 2015a, p.1) 
 

 Median Blurring: 

Blurring the image will help soften the picture (cited in OpenCV 2018b, 

p.18), it is highly effective against the ―salt and pepper‖ (cited in Sathua et al. 

2017, p.117) effect by reducing effectively the noise. 
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 Adaptive Threshold:   

Threshold is an algorithm used to separate out regions of an image 

corresponding to the objects to analyze based on the variation of intensity 

between the object pixels and the background pixels (OpenCV 2018c, p.1). 

This step helps in this method by distinguishing between the digits and their 

background and by using adaptive threshold it is possible to achieve even 

better results since the parameters of the threshold can be manipulated (cited 

in OpenCV 2018d, p.2).  

 

 Dilation:  

After the previous operations, the structure of the numbers will have in some 

cases some gaps, which will lead to inaccurate detection if left like that. So, 

dilation with combination of the algorithm ―structuring element‖ from 

OpenCV will serve to close those gaps to form a continuous shape (OpenCV 

2018b, p.13-14). 

 

This approach brings an improvement to the currently implemented solution however 

it is not optimal since it poses two major challenges:  

- Since OpenCV is an external library like tesseract it must be deployed 

with the APK. This will increase the size of the application even more and 

it makes it harder to maintain and update. 

- Using certain image processing algorithms in real-time such as 

―threshold‖ and with a limited hardware resources will result in a bad user 

experience since there will be some sort of a delay present. 

 

2.1.3 Chosen approach:   

While using image processing algorithms to better detect digits can overcome some 

of the current issues the detection process can be in some cases troublesome. That‘s 

where it came the idea of fully using AI to detect the numbers on the license plate. 

Using one of the leading architectures in Deep Learning, Convolutional Neural 

Network can be used to train a model for object detection. 

AI will be fully leveraged as a detection tool and bounding boxes will be drawn on 

the camera preview in real time displaying the result of the detection and marking the 
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position of each detected number. So fully deploying AI for object detection will 

decrease dramatically the reoccurrence of some of the challenges mentioned earlier 

and overcome the others. The main asset of AI is that the trained models have a 

learning curve that makes them able to improve by time, adapt to different situations 

and increase accuracy . (cited in Zhao et al. 2017; Tang and Yuan n.d.) 

Further information about this technology and the result of its implementation will be 

discussed in the next sections of this thesis. 

Chapter 3: Artificial Intelligence & Machine Learning 

3.1 Introduction: 

It is hard to find nowadays someone that didn‘t hear in some way or another about 

Artificial Intelligence and doesn‘t have an idea about what it is. So, how it is related 

with Machine Learning? 

As Bernard (2016, p.1) puts it ―Artificial Intelligence is the broader concept of 

machines being able to carry out tasks in a way that it would be considered ―smart‖. 

And, Machine Learning is a current application of AI based around the idea that 

machines should be able to have access to data and learn for themselves.‖ 

In this chapter, the concept of Machine Learning, how it actually works, and the 

algorithms implemented in this project, will be explained extensively. 

  

3.2 Types:  

According to what goal to be achieved by using ML, it can be classified into four 

major types as follows:  

3.2.1 Supervised learning: 

Supervised learning earned its name because data scientists acts as a guide to teach 

the algorithm what conclusions it should come up with. It is similar to the way a 

student learns basic arithmetic from a teacher. This type of learning requires labeled 

data with the correct answers to be expected from the algorithm‘s output. For 

classification and regression problems Supervised learning proved itself to be 

accurate and fast (cited in Castle 2017, p.1). 

 

- Classification: consists of predicting the categorical output value 

where the data can be separated into specific ―classes‖. Classification 
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has different use cases, such as: determining the weather, if an email 

is a spam or not or types of animals after being trained on a properly 

labeled dataset of images with the species and some identifying 

characteristics (cited in Sanjeevi 2017, p.2). 

- Regression: it‘s a type of problem where the prediction of a 

continuous-response value such as stock and housing prices is needed 

(cited in Sanjeevi 2017, p.3). 

 

So, the way it works is modeling relationships and dependencies between the target 

prediction output and the input features such that it is possible to predict the output 

values for new data based on those relationships which it learned from the previous 

datasets (cited in Fumo 2017, p.2).  

 

3.2.2 Unsupervised Learning: 

Conversely, unsupervised learning is more closely aligned with what it is called true 

artificial intelligence by some experts – the concept that a machine can learn to 

identify complex processes and patterns without supervision from humans. This 

approach is particularly useful in cases where the experts doesn‘t know what to look 

for in the data and the data itself does not include Targets. Under the many use cases 

of unsupervised machine learning it‘s worth mentioning k-means clustering, 

principal and independent component analysis, and association rules. (cited in Castle 

2017, p.2) 

- K-means clustering: it‘s a type of a problem where similar things are 

grouped together. It shares the same concept with classification but in 

this case, there are no labels provided and the system will understand 

from the data itself and cluster it. A use case for this would be 

clustering news, articles depending on their genre, content. (cited in 

Trevino 2016) 

 

Despite This type of machine learning opens the doors to solving problems that 

human normally would not tackle, it‘s not used as widely as the supervised learning 

due to its complexity and difficulty to implement. (cited in Castle 2017, p.2) 
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3.2.3 Semi-supervised Learning: 

Until now, the data provided is all labeled with the desired output or not labeled at 

all. Semi-supervised machine learning is a combination of the two. In many practical 

situations, the cost to label is quite high and in case of large datasets the task become 

tedious and very much time consuming. In addition, providing too much labeled 

data, can force human biases on the model. Even though the unlabeled data is 

unknown for the network, this data brings useful information about the target group 

parameters. Which leads to the conclusion, that by including unlabeled data the 

accuracy of the model can be improved while also saving time and money building 

it. For example, semi-supervised machine learning could be used in webpage 

classification, voice recognition or genetic sequencing. In those cases, data scientists 

can access large volumes of unlabeled data, and the task of labeling all of it would 

take an overwhelming time. (cited in Castle 2018, p.1-2) 

 

Using the information acquired until now a comparison between these three types of 

machine learning can be set for the same use case, for example classification:  

 

- Supervised classification: The algorithm will classify the types of the 

webpages according to the labels provided from the beginning. (cited 

in Castle 2018, p.2) 

- Unsupervised clustering: The algorithm will look for patterns and 

characteristics that help placing webpages into groups. (cited in Castle 

2018, p.2) 

- Semi unsupervised classification: The algorithm will identify the 

different groups of webpages based on the labeled data and will use 

the unlabeled data to define the boundaries of those webpage types 

and to look for other types that might not be listed in the labeled data. 

(cited in Castle 2018, p.2) 

 

3.2.4 Reinforcement Learning: 

Reinforcement Learning is the third main Machine Learning type along with 

Supervised and Unsupervised Learning. It consists of five important components 

which are: the agent, environment, state, action and reward. The goal of RL is to 
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maximize the reward and minimize the risk by exploiting its interaction with the 

environment. The RL algorithm (called the agent) will periodically improve by 

exploring the environment going through the different possible states. To maximize 

the performance, the ideal behavior will be automatically determined by the agents. 

A feedback (the reward) is what allows the agent to improve its behavior.  (cited in 

Fumo 2017, p.4) 

 

Figure 3.1 Reinforcement Learning Components (Fumo 2017, p.4) 

 
To obtain agents with good results, reinforcement machine learning goes through 

five main steps. Fumo (cited in 2017, p.5) describe them in his article as follows: 

- The agent examines constantly the input state. 

- The agent performs an action according to the function responsible for 

decision making. 

- The agent will receive reinforcement (reward) after performing its action. 

- Information about the reward state will be stored.  

 

In Reinforcement Learning there are two types of tasks: episodic and continuous: 

 

 Episodic task: The task in this case is defined by a starting and an ending 

point or also called a terminal state. This creates an episode: a list of states, 

actions, rewards, and new states. Video games are a typical example of this 

type of tasks. (cited in Simonini 2018, p.7) 

 

 Continuous task: Opposite to the first type, this one has no terminal state 

and as its name indicates, continue forever. In this case the agent has to learn 

how to choose the best actions and simultaneously interacts with the 

environment. Automated stock trading is a typical use case of this type of 

tasks. The agent keeps doing actions and receiving feedback until it‘s decided 
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to be stopped, since there is no starting point and terminal state. (cited in 

Simonini 2018, p.8) 

 

One of the most used algorithms for Reinforcement Learning is Monte Carlo which 

is based on collecting the rewards at the end of the episode and then calculating the 

maximum expected future reward. A second popular algorithm is Temporal 

Difference Learning that uses a different approach from the first one which is 

estimating the rewards at each step. (cited in Simonini 2018, p.8) 

 

3.3 Techniques: 

Since the beginning of the AI implementation, many techniques were used, and 

many others are emerging until this day. In this subchapter, three different techniques 

will be discussed and ordered by their introducing date to the public. 

 

3.3.1 SVM: 

Support Vector Machine (SVM) is a supervised machine learning technique which 

tackles mainly regression and classification challenges. In case of classification, each 

data item is plotted as points in n-dimensional space (where n represents the number 

of available features) with the value of each feature being the value of a particular 

coordinate. Afterwards, by classifying the different classes, a hyper-plane will be 

plotted to separate them. 

As Ray (2017, p.3) clarify it ―Support Vectors are simply the co-ordinates of 

individual observation. Support Vector Machine is a frontier which best segregates 

the two classes (hyper-plane/ line).‖ 

 

There are several scenarios that can be stumbled on while trying to apply SVM and it 

can deal with them perfectly to identify the right hype-plane. 

 A, B and C represents three hyper-planes. The one which segregates the two 

classes better will be selected. As the figure shows, B is the appropriate 

choice. (cited in Ray 2017, p.4) 
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Figure 3.2 First classification scenario with SVM (Ray 2017, p.4) 

 

 In this case all three hyper-planes are segregating the classes well. To decide 

which one from the three is the right one, the distances between the nearest 

data point and the hyper-plane should be maximized. This distance is called 

Margin. Another reason for choosing the hyper-plane with the higher margin 

is robustness, otherwise a misclassification has a high chance to occur when 

choosing a hyper-plane with a low margin. (cited in Ray 2017, p.4-5) 

 

Figure 3.3 Second classification scenario with SVM (Ray 2017, p.4) 

 

 In this scenario, applying the same logic as the previous scenario won‘t give a 

correct classification since B has the higher margin and as the below figure 

demonstrate, A should be the right choice. Here, the SVM technique will be 

aware of the situation and won‘t prioritize the margin maximization over 

classifying correctly the two classes. (cited in Ray 2017, p.5) 
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Figure 3.4 Third classification scenario with SVM (Ray 2017, p.5) 

 

 In this case segregating the two classes is not possible since one of star class 

lies in the territory of the other class as an outlier. Luckily SVM robustness 

will prevent choosing the wrong hyper-plane by ignoring any possible 

outliers. (cited in Ray 2017, p.5) 

 

Figure 3.5 Fourth classification scenario with SVM (Ray 2017, p.5) 

   

 Here the two classes can‘t be directly separated with a linear hyper-plane, 

that‘s why SVM introduces a new additional feature which is: z = x2 + y2 to 

properly separate the two classes. (cited in Ray 2017, p.6) 

 

Figure 3.6 Fifth classification scenario with SVM (Ray 2017, p.6-7) 
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Having a linear hyper- plane between these two classes is an easy task for SVM. But 

should the additional feature be added manually as done in the last scenario to have a 

hyper-plane? It is done automatically by an SVM technique called kernel trick. The 

kernels are functions that take data which is not linearly separable in a low 

dimensional space and transform it in a higher dimensional space where it can be 

linearly separable. It is mostly useful in non-linear separation problem. Said 

otherwise, based on the labels or defined outputs, it will do some extremely complex 

data transformations to figure out the process to separate the data. (cited in Ray 2017, 

p.7) 

 

The Scikit-learn developers (2017a, p.1) lists several advantages and disadvantages 

of SVM. They are as follows: 

 
 The advantages of support vector machines are: 

- Effective in high dimensional spaces. 

- Still effective in cases where number of dimensions is greater than the number of 

samples. 

- Uses a subset of training points in the decision function (called support vectors), so it is 

also memory efficient. 

- Versatile: different kernel functions can be specified for the decision function. Common 

kernels are provided, but it is also possible to specify custom kernels. 

 

 The disadvantages of support vector machines include: 

- If the number of features is much greater than the number of samples, avoid over-fitting 

in choosing Kernel functions and regularization term is crucial. 

- SVMs do not directly provide probability estimates, these are calculated using an 

expensive five-fold cross-validation. 

 

3.3.2 Random Forest: 

To better understand the Random Forest technique, an explanation of what a decision 

tree is needed. 

 

3.3.2.1 Decision Tree: 

 ―In decision analysis, a decision tree can be used to visually and explicitly represent 

decisions and decision making. As the name goes, it uses a tree-like model of 
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decisions.‖ (Gupta 2017a, p.1) Random forest is widely used to solve classification 

and regression problems in machine learning and it‘s also a commonly used tool in 

data mining to achieve a particular goal by deriving strategies (cited in Gupta 2017a, 

p.1). 

The algorithm is represented as an upside-down drawn tree. In the figure below, the 

tree splits every time there is a condition (internal node) which are represented with 

the bold text in black. The outputted decision is called a branch (edge). In case a 

branch reached its limit and can‘t be divided anymore, it is identified as a decision 

(leaf). As shown in the next figure, the leaves are in red and green and represent 

whether a passenger from the titanic died or survived. (cited in Gupta 2017a, p.2) 

 

Figure 3.7 Titanic decision tree (cited in Gupta 2017a, p.2) 

 

The main reason why this algorithm is widely used is its simplicity and how the 

feature importance and the relations in the tree can be easily represented. The above 

figure represents an example of a classification tree since its objective is predicting 

and classifying data of the titanic passengers into different classes (died or survived). 

When in the other hand, a regression tree predicts an output depending on a 

continuous progressing data. Decision Tree is mostly referred to as CART 

(Classification And Regression Trees). (cited in Gupta 2017a, p.2) 

Finally, Gupta lists in his post (2017a, p.5) the different advantages and 

disadvantages of CART: 

 
 Advantages of CART 
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- Simple to understand, interpret, visualize. 

- Decision Trees implicitly perform variable screening or feature selection 

- Can handle both numerical and categorical data. Can also handle multioutput 

problems. 

- It requires relatively little effort from users for data preparation. 

- Nonlinear relationships between parameters do not affect tree performance. 

 

 Disadvantages of CART 

- Decision-tree learners can create over-complex trees that do not generalize the data 

well, which will result in overfitting. 

- Decision trees can be unstable because small variations in the data might result in 

completely different tree being generated. This is called variance, which needs to be 

lowered by methods like bagging and boosting. 

- Greedy algorithms cannot guarantee to return the globally optimal decision tree. 

This can be mitigated by training multiple trees, where the features and samples are 

randomly sampled with replacement. 

- Decision tree learners create biased trees if some classes dominate. It is therefore 

recommended to balance the data set prior to fitting with the decision tree. 

 

3.3.2.2 Random Forest: 

This technique falls under the supervised machine learning category. As the name 

indicates, a forest will be created from a group of decision trees and then will be 

randomized. Different methods can be used to train the random forest, and the 

mostly used one is Bootstrap Aggregation (Bagging) method. (cited in Donges 2018, 

p.2) 

As Brownlee describes it in his article (2016a, p.3) the Bagging method is a ―very 

powerful ensemble method‖ and goes further with his explanation ―an ensemble 

method is a technique that combines the predictions from multiple machine learning 

algorithms together to make more accurate predictions than any individual model.‖. 

As the Random Forest consists of multiple Decision Trees, it‘s used also for the 

same purposes: Regression and Classification. Not only that, it shares also almost the 

same hyperparameters as a decision tree. Fortunately, a decision tree doesn‘t have to 

be combined with a bagging classifier and the ―classifier-class‖ of Random Forest 

can be used here. Furthermore, Regression problems can be solved with using 

Random Forest regressor. 
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During the process of training, the Forest randomize the model. It also seeks the best 

feature among a random subset of features while creating the nodes of the tree 

instead of looking for the most important feature. This behavior will optimize the 

model since the randomness will result in a wide diversity. 

This randomness can be also added to other aspects of the training, such as 

randomizing the thresholds used for each feature. Which oppose to the traditional 

decision tree method, where the model will look for the most fitting threshold. (cited 

in Donges 2018, p.3) 

 

3.3.2.3 Feature Importance: 

Random Forests makes the measurement of the relative importance of each feature 

on the prediction very easy (cited in Donges 2018, p.4). By using the methods 

provided by the class Sklearn from the machine learning tool scikit-learn (cited in 

scikit-learn developers 2017b, p.1), the features importance can be evaluated and 

measured to discover any impurity that may exists in the forest. The output of each 

feature will be scaled in a way that the sum of all importance is equal to 1. (cited in 

Donges 2018, p.4) 

Since some features doesn‘t play a role in the prediction process, they can be 

dropped and determined by looking through at the feature importance. This step is 

almost necessary, since the more features taken under consideration in machine 

learning the more likely the model will be overfitted. (cited in Donges 2018, p.4) 

Despite that Random Forests are based on Decision Trees, there are some differences 

between them: 

If a decision tree is provided by a training dataset with features and labels, it will 

formulate some set of rules, which will be used to make the predictions. 

To better understand the concept, a real-life example such as targeted 

advertisements, can facilitate explaining it. By collecting the ads a user clicked on in 

a period of time and features that describe his decision, a model can be trained to 

predict whether that user will visit a certain advertisement site or not. When the 

features and labels are fed to a decision tree, it will generate some rules. Then a 

prediction can be made whether the advertisement will be clicked or not. In the other 

hand, a model trained with Random Forest will build several decision trees based on 

random observations and features. 
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Not to mention that decision trees are exposed to overfitting, while random forest 

mostly avoid this problem by creating random subsets of the features and building 

smaller trees using these subsets. Finally, those subtrees will be combined (cited in 

Donges 2018, p.5). However, this technique is a double-edged sword, since it slows 

down computation in case the forest has a large number of trees. Which leads in 

some cases such as real-time prediction to avoid implementing Random Forest and 

look for an alternative. (cited in Donges 2018, p.6-7) 

As a conclusion, Random Forest are more suitable for use cases that doesn‘t require 

big datasets and detection time don‘t play a big role in the application to avoid any 

possible complications. For more complex tasks it is preferable to implement another 

approach. (cited in Donges 2018, p.7) 

 

3.3.3 Deep Learning: 

Since Artificial Intelligence came a while ago, it has a wide range of applications and 

it‘s divided into many branches (cited in Le 2017, p.10; Goodfellow et al. 2016, p.1). 

Deep Learning is a subset of machine learning, which is in itself a subfield of AI. 

The figure below is a visual representation of the relationship between AI, ML and 

DL (cited in Le 2017, p.10). 

 

Figure 3.8 Relationship between AI, ML and DL (Le 2017, p.10) 

 

So, what is exactly deep learning and what kind of problems it solves? This question 

will be answered in depth in the next section. 
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3.3.3.1 Deep Learning and Neural Networks: 

AI managed since its existence to solve many tasks that meant to be intellectually 

challenging for humans, yet, it struggled with problems that seems easy and intuitive 

for human beings such as face or speech recognition. The reason behind this, is many 

difficult tasks can be translated to mathematical rules which is easy for a computer to 

understand. In the other hand, other tasks that seems to be easy are hard to be 

described formally. (cited in Goodfellow et al. 2016, p.1) 

A good approach to solve these intuitive problems is to give freedom to computers to 

learn from previous experiences and understand the world by interacting with it in 

terms of a hierarchy of concepts. This way humans won‘t need to specify all the 

knowledge to computers anymore. This concept allows the computer to solve 

difficult concepts by building them from simpler ones. If this hierarchy is 

represented by a graph, it will be formed by many layers and defined by deep. That‘s 

why this approach is called deep learning. (cited in Goodfellow et al.2016, p.1-2) 

Since no camera have the quality of the human eye or the no computer can correlate 

information like the human brain, it became difficult for real-world artificial 

intelligence applications to extract high-level, abstract features from raw data 

because of the constant variation of the observed data, such as the change of the 

angle view in different images and color variation under different circumstances. 

Because these factors of variation are only identified by nearly human level 

understanding of the data, it seems at first that such a task is impossible by just 

representation learning. Here where it comes the role of Deep Learning, since it‘s 

based on representing abstract features in terms of other simpler representation. A 

practical example of this concept is demonstrated by the figure 3.9 where an image 

of a person (complex concept) is detected by looking for different characteristics in a 

layer format, such as corners, contours and edges (simple concepts). (cited in 

Goodfellow et al. 2016, p.5) 

The feedforward deep network or multilayer perceptron is considered as a typical 

example of a deep learning model. Goodfellow et al. (2016, p.5) Explain it as ―[...] a 

mathematical function mapping some set of input values to output values. The 

function is formed by composing many simpler functions. We can think of each 

application of a different mathematical function as providing a new representation of 

the input.‖ 
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Deep Learning is not only allowing to represent data in the right way, but by adding 

the concept of depth in its models, it allows the computer to learn multistep computer 

program. Where each layer of the representation can be thought of as the state of the 

computer‘s memory after. (cited in Goodfellow et al. 2016, p.5) 

 

Figure 3.9 Illustration of a deep learning model (Goodfellow et al. 2016, p.6) 

 
Images which represent scenes from our reality are interpreted by computers as a 

collection of pixel values. The task of identifying an object or mapping its identity 

from those values is a difficult task for machines and can be nearly impossible when 

trying to learn this mapping directly. (cited in Goodfellow et al. 2016, p.6) 

Deep Learning approaches this obstacle by introducing the concept of layers where 

each layer represents simple mappings extracted from the global complex mapping 

and nested with each other. As shown in the figure, there are two types of layers. The 

visible layer, which represents the input that‘s only observed by humans, and the 

hidden layers that extracts features from the image. The reason behind calling this 

type of layers ―hidden‖ is because their values are not given in the input and must be 

determined by the model through figuring out which concepts are useful for 

explaining the relationship in the observed data. As shown in Figure 3.9, every 

hidden layer visualizes a feature. The first layer is responsible for detection edges, 

which will help the second hidden layer to detect more complex features. In this case 



 22 

corners and contours. With assembling the detected features, the third hidden layer 

can figure out connections and detect object parts. As a final step, the final object in 

the input image can be detected by comparing the features from the last hidden layer 

with the classes provided in the training. (cited in Goodfellow et al. 2016, p.6) 

An easier way to understand deep learning globally is with some historical context. 

Goodfellow et al. identified in their book (2016, p.12) four key trends of the history 

of deep learning: 

 
 Deep learning has had a long and rich history, but has gone by many names, reflecting 

different philosophical viewpoints, and has waxed and waned in popularity. 

 Deep learning has become more useful as the amount of available training data has increased. 

 Deep learning models have grown in size over time as computer infrastructure (both 

hardware and software) for deep learning has improved. 

 Deep learning has solved increasingly complicated applications with increasing accuracy 

over time. 

 

To review, the field of Artificial Intelligence encapsulate numerous subfields, such 

as Machine Learning. Deep Learning is a technique for implementing ML that gives 

machines a learning curve when provided by data and that‘s possible thanks to its 

representation of different features of real data as layers, where each feature defined 

in relation to simpler features, and more abstract representations computed in terms 

of less abstract ones. (cited in Goodfellow et al. 2016, p.8) 

 

So, what is the connection between deep learning and Neural Networks and what are 

they? 

Simply put, Deep Learning consists of training multilayer neural networks with large 

datasets. Thus, Deep learning is made by neural networks. (cited in Brownlee 2016b, 

p.1-4) 

Neural networks are one of the most used computing systems in the field of Machine 

Learning. They are cable of finding concepts and patterns which are very difficult for 

humans to figure out. This powerful ability is due to the way this tool imitates how 

human neural system works. (cited in Dormehl 2018, p.2) 

Since childhood, humans encounter in daily basis new things in life that shape them 

and make them better as they grow despite committing mistakes. The same concept 

applies to Neural Networks, as they require data to learn from it. By feeding more 
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data to the network, it will grow better by repeating the same task and learning from 

its previous mistakes. Briefly explained, the data provided for the training process is 

typically divided into three sets. A training set to establish the connection between 

the nodes in the network by defining the weights, a validation set to improve the 

weights and a test set to evaluate the network after the training is complete. (cited in 

Dormehl 2018, p.5) 
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Figure 3.10 NN types chart (Van Veen 2016, p.1) 

Since the list of networks in the chart is extensive, only the relative ones to the study 

will be explained. 
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3.3.3.2 Perceptron:  

Perceptron is one of the simplest representations of a Neuron. So, how do perceptron 

work? 

A perceptron is multiple input single output unit. The data type that flow through the 

perceptron is binary. (cited in A. Nielsen 2017, p.3) 

 

Figure 3.11 Visual representation of a perceptron (A. Nielsen 2017, p.3) 

Frank Rosenblatt who developed the perceptron came up with the concept of weights 

to calculate the output. They are numbers w1, w2, …, that represents the importance 

of the connection between the input and output. The output has two possible values 

either 0 or 1 and it‘s determined by comparing the weighted sum j wjxj with a 

threshold. The threshold is also a number and it‘s one of the neuron parameters (cited 

in A. Nielsen 2017, p.3-4). This relationship can be arithmetically described by: 

 

Figure 3.12 Possible outputs of a perceptron (A. Nielsen 2017, p.4) 

 

3.3.3.3 Feed Forward: 

FF neural networks are one of the oldest models of Neuron—this approach first 

appeared in the 50s and it follows the following rules: (cited in Tchircoff 2017, p.4) 

 All network nodes are fully connected. 

 The flow is activated from the input to the output without back loops. 

 The network contains one hidden layer, which lays between the output and 

the input layer. 

 

3.3.3.4 Recurrent Neural Network: 

Different type of cells was introduced by this NN which are: Recurrent cells. The 

main difference between RNN and other networks is that each of the hidden cells 

receives its own output with fixed delay for one or more iterations. RNN are used in 

a situation where the output depends on the order and context of the data fed to the 
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model. For instance, text autocompletion is a perfect use case for this type of 

networks. (cited in Tchircoff 2017, p.7) 

 

3.3.3.5 Deep Convolutional Network: 

Nowadays DCN are the most popular NN. They feature convolution cells (or pooling 

layers) and kernels that serves different purposes. Convolution kernels process the 

input data while the pooling layers simplify it by mostly using non-linear functions, 

reducing unnecessary features. (Tchircoff 2017, p.18-19) 

This type of NN is used for image processing tasks and they operate on images with 

small resolution and it operates as follows:  

The image will be analyzed by sliding a window on it, pixel by pixel. The data then 

will be passed to the convolution layers where a funnel will be formed compressing 

detected features. From the image recognition perspective, the first layer is 

responsible of gradients detection, the second layer detects lines and the third one 

detects shapes. This process will continue until particular objects are obtained. 

(Tchircoff 2017, p.19) 

 

After going through the different types of Neural Networks, it only makes sense to 

explain in depth the process of training and how exactly the imitation of the human 

neurons works. 

The whole process can be summarized into seven steps and they are the following: 

 

 Model initialization: The starting point is the first step of the learning 

process (the initial hypothesis). The training of neural networks can be started 

from anywhere. That‘s why it‘s a common practice to randomize the 

initialization since through an iterative learning process a pseudo-ideal model 

can be reached despite the starting point. (Moawad 2018, p.1) 

 

 Forward propagate: After initializing the model, the next step is to check its 

performance. As a beginning, the input will be passed directly through the 

network layer to calculate the output of the model. This step is called forward 

propagation, since the calculation flow is going forwardly from the input 

through the neural network to the output. (cited in Moawad 2018, p.3) 
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 Loss function: At this stage, there is two useful information in disposal: the 

actual output of the randomly initialized neural network and the desired 

output that the network should learn. In order to generalize to any problem, a 

loss function should be defined. It evaluates the neural network ability of 

generating outputs as close as possible to the desired values. (cited in 

Moawad 2018, p.3-4) 

 
The most logical loss function would be: loss = (Desired output – actual 

output). Nevertheless, this loss function returns positive values when the 

network undershoots (prediction < desired output), and negative values when 

the network overshoot (prediction > desired output). To avoid this 

misinterpretation the loss function should reflect an absolute error. (cited in 

Moawad 2018, p.4) To achieve that, as Moawad implied in his article (2018, 

p.4), the function should be defined as: 

“Loss = Absolute value of (desired - actual).” 

However, the same total sum of errors can be achieved in several situations 

such as summing up several small errors or few big errors. Since the goal 

here is to make the prediction work under any situation, it is more preferable 

to have a distribution of lot of small errors, rather than a few big ones. 

The neural network can adapt to such situation by defining the loss function 

as the sum of squares of the absolute errors. This way, small errors are 

counted much less than large errors. So, the machine learning goal becomes 

then to minimize the loss function. (cited in Moawad 2018, p.4) The 

following figure is an example of how the square error would be:  

 

Figure 3.13 Example of a Loss function (Moawad 2018, p.5) 
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 Differentiation: Now the machine learning problem should be transformed 

to an optimization process that aims to minimize the total loss function. To do 

so, any optimization technique that modifies the internal weights of neural 

networks can be used. These techniques can have different approaches to 

tackle the problem, such as greedy search or brute-force search: 

In case of a small model that have few parameters to optimize, it is possible 

to find which W possesses the smallest sum of squares of errors over the 

dataset. However, in case of image processing where the NN trained with an 

array of 600x400 inputs, models with millions of weights to optimize can 

easily be reached and brute force won‘t be the right solution, since it 

consumes a lot of computational resources. Here comes the role of 

differentiation which is a powerful concept in mathematics that can help 

optimizing the weights. Basically, it deals with the derivative of the loss 

function. In mathematics, the rate or the speed of which a function is 

changing its values at a certain point can be deducted by calculating the 

derivative at that point. (cited in Moawad 2018, p.6) 

By answering the following question its effect can be demonstrated: if the 

internal weight of the neural network is changed by a certain small value W, 

how the total error will be affected? To simplify the calculations W will be 

0.0001. In reality it is much smaller. So, following the previous example and 

after changing the weight, the following result is obtained (cited in Moawad 

2018, p.6): 

 

Figure 3.14 Sum of squares after changing W (Moawad 2018, p.6) 

 

As displayed in the table above, if W is increased, the sum of squares will 

increase. Since the best function that fits this model is y=2.x, increasing the 
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weights will create a little bit more error. But, what‘s important is the rate of 

which the error changes relatively to the changes on the weight. For instance, 

the rate in this example is the increase of 0.006 in the total error for each 

0.0001 increasing weight, that‘s a rate of 0.006/0.0001 = 60x. So, if the 

weights are decreased by 0.0001, the total error should be decreased by 0.006 

as well. The advantage of using derivative is that it is much faster and more 

precise to calculate.  (cited in Moawad 2018, p.7) 

If the network is initialized randomly, any random point will be put on this 

curve. The concept of the learning process is as follows: (cited in Moawad 

2018, p.8) 

- The derivative should be checked at first. 

- If it‘s positive, the weight should be decreased, since it means if the 

weights are increased then the error will increase too. 

- If it‘s negative, the weight should be increased, since it means if the 

weights are increased the error will decrease. 

- If it‘s 0, nothing should be done because a stable point is reached. 

This process can be compared with how gravity works. The ball can be 

randomly initialized on the error function curve represented by the figure 

below, and still manage as the time passes by a force field to be stabilized at 

the lowest energy level of ground 0. (cited in Moawad 2018, p.8) 

 

Figure 3.15 Schematic of gradient descent (Moawad 2018, p.9) 

 



 30 

 Backpropagation: In the example mentioned before, only one layer has been 

used inside the neural network between the inputs and outputs. In most real-

world use cases, the networks are built with more than one layer to get the 

wanted result. It is always possible to create one complicated function that 

represent the composition over the whole layers of the network. The 

downsize of composing the functions for every composition is that the 

dedicated derivative of the composition must be calculated. Since this 

operation is not scalable it will return in most cases false results. (cited in 

Moawad 2018, p.9) 

Since the derivative is decomposable, to back propagate it, is a solution for 

the previous problem. The loss function will serve in this case as a starting 

point of errors and if it is known how to derivate each function from the 

composition like the loss function, it is possible to create a chain and back 

propagate the errors from the end to start. This principle can be represented 

by the following linear example: The input will go through two hidden layers, 

where it‘s going to be multiplied at first to be multiplied 3 times and then 

again 2 times to finally get the output. (cited in Moawad 2018, p.10) 

Input  3.x  2.x  output (Moawad 2018, p.10) 

 If a 0.001 delta change is applied on the input, it will evolve to a 0.003 

change at first and finally to a 0.006 delta change on the output. If both 

functions are composed into one, the output will be the same. (cited in 

Moawad 2018, p.10) 

Input  6.x  output (Moawad 2018, p.10) 

By the same logic, the error can be backpropagated from the output to the 

input passing by the middle layers to give something like this: 

Input   
 
   

 
  output (cited in Moawad 2018, p.10) 

By knowing how to forward-propagate (by directly applying the function) 

and how to back-propagate (by knowing the derivative of the function), a 

library of differentiable functions or layers can be created to compose any 

complex neural network. To create the right backpropagation path of the 

errors, a stack of the function calls during the forward pass and their 

parameters should be saved and then use their derivatives. This is achievable 

by a technique called auto-differentiation. This approach has only one 
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requirement which is all functions must be provided by the implementation of 

their derivatives, so it‘s possible to de-stack them. (cited in Moawad 2018, 

p.10) 

 

 Weight update: According to the previous example the model has a rate of 

60x. That means a single unit change in weights will leads to 60 units change 

in error. And since it is known that the error is currently at 30 units, by 

extrapolating the rate, in order to reduce the error to 0, the weights needs to 

be reduced by 0.5 units. However, for real-life problems the weights should 

not be updated with such big steps. Since there are a lot of non-linearities, 

any big change in weights will lead to an unstable behavior. Since the 

derivative is only local at the point where the derivative is calculated, a 

general rule of weight updates ―the delta rule‖ is in place (cited in Moawad 

2018, p.11): 

New weight = old weight – derivative rate * learning rate (Moawad 2018, p.11) 

There are several methods to update the weight and they are often referred to 

as optimizers. The delta rule is one of the simplest ones, but it has several 

draw-backs. Since theory is much far away from practice, a network in a real 

use case can have millions of entries. Minimizing the error cost function over 

the whole dataset as discussed previously has a technical name, it is called 

batch learning and might be very slow for large data. As an alternative, the 

weights should be updated every batch-size = N of training, providing that 

the dataset is shuffled randomly. This is called mini-batch gradient descent. 

And if N=1, it is called full online-learning or stochastic gradient descent, 

since the weights are updated after each single input output observed. Any 

optimizer can be adjusted to function with the mentioned modes (full online / 

mini-batch/ full-batch). (cited in Moawad 2018, p.12) 

 

 Iterate until convergence: Since the weights are updated with a small delta 

step at a time, the process of learning will be slow. This process can be 

compared to genetic algorithms where small mutations are applied to a 

generation after another and the most fit will survive. 

In neural network, after each iteration, to achieve a minimal global loss 

function, weights updates are forced by the gradient descent. The similarity 
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manifests in seeing the delta rule as a mutation operator and the loss function 

as a fitness function to minimize. 

As for the difference, the mutation applied in genetic algorithms is blind. 

Some of them are useful and the others are bad, and logically the better 

mutations have higher chance to survive. The weight update in NN are 

however smarter since they are guided by the decreasing gradient force over 

the error. (cited in Moawad 2018, p.12) 

To estimate how many iterations to be applied, many factors should be taken 

under consideration. Moawad went through some of them (cited in 2018, 

p.13): 

- As a high learning rate applied to the NN means faster learning, it can 

lead to an instable performance afterwards. 

- The meta-parameters of the network such as the number of layers and 

the complexity of the network will in one hand take longer for the 

network to converge if there are a large number of variables but in the 

other hand the it will be more precise. 

- Since there are different weight updates techniques with different 

performances, to apply the correct optimization method will help 

figuring out the number of iterations. 

- As the neural network will be randomly initialized, it can start with a 

weight value of W = 1.99 and it needs only one iteration to achieve 

the optimal performance. 

- The quality of the training dataset plays an important rule, because the 

neural network won‘t be able to learn a random correlation if the input 

and the output has no correlation between them. 

  

In this project, the network of choice, that have been used to train a model with, is 

DCN (Deep Convolutional Network) or often called CNN (Convolutional Neural 

Network). In the following section a more detailed introduction to CNN and how it 

operates will be provided. 
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3.3.4 Convolutional Neural Network: 

Goodfellow et al. define CNNs in their book (2016, p.326) as ―[...] a specialized kind 

of neural network for processing data that has a known grid-like topology. Examples 

include time-series data, which can be thought of as a 1-D grid taking samples at 

regular time intervals, and image data, which can be thought of as a 2-D grid of 

pixels.‖. This type of network is based on a linear mathematical operation, which is 

convolution, hence the name Convolutional Neural Network. The concept here, is to 

replace simple matrix multiplication in one or several layers of the network. This 

approach proved a huge success in several real-world use cases. (cited in Goodfellow 

et al. 2016, p.326) 

So, how does convolution work and what is the motivation behind using it in a neural 

network? 

 

3.3.4.1 The Convolution operation: 

Convolution is a two-operand operation applied on an input and a system function to 

figure out the output. To better understand the concept of convolution, the following 

section will be based on an example of tracking the location of a spaceship with a 

laser sensor to deduct two functions that they may be of use. This sensor returns only 

one output x(t) which is the position of the spaceship at a given time t. x and t 

represents real values in case the readings from the laser are accessible in any instant. 

(cited in Goodfellow et al. 2016, p.327) 

In a realistic environment the laser sensor would be noisy. To obtain more accurate 

readings, several measurements should be averaged. It‘s natural that the more recent 

the measurements are, the more accurate the position. That‘s why the average to be 

calculated is going to give more weight to recent measurements. This can be done 

with a weighting function w(a), where a is the age of a measurement. If such a 

weighted average operation is applied at any possible instant, a new function s 

providing a smoothed estimate of the position of the spaceship can be obtained (cited 

in Goodfellow et al. 2016, p.327): 

       ∫             . (Goodfellow et al. 2016, p.327) 

This operation is called convolution. The convolution operation is typically denoted 

with an asterisk: 

s(t) = (x*w) (t). (Goodfellow et al. 2016, p.327) 
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Convolution can also be an approach to different problems other than calculating a 

weighted average. The different actors in this example have specific terms in the 

machine learning field. For instance, the convolution is referred to as the input 

(function x). The function w is the kernel (weight) and finally the feature map, 

which represent the output. (cited in Goodfellow et al. 2016, p.327) 

Assuming in this example that x and w are defined only on integer t, the discrete 

convolution can be defined: 

         ∑             
     (Goodfellow et al. 2016, p.328) 

Goodfellow et al. introduces the concept of tensors and explains it as follows ―In 

machine learning applications, the input is usually a multidimensional array of data, 

and the kernel is usually a multidimensional array of parameters that are adapted by 

the learning algorithm. these multidimensional arrays will be referred to as tensors.‖ 

(2016, p.328). Because each element of the input and kernel must be explicitly stored 

separately, it is usually assumed that these functions are zero everywhere but in the 

finite set of points for which the values are stored. Goodfellow et al. relate this 

assumption to the practice by ―[...] it is possible to implement the infinite summation 

as a summation over a finite number of array elements‖ (2016, p.328). Finally, if a 

Convolutional Network has for example a two-dimensional image I as an input it 

only makes sense to use a two-dimensional kernel K. That‘s why convolution is 

often used over more than one axis at a time (cited in Goodfellow et al.2016, p.328): 

                  ∑ ∑                     (Goodfellow et al. 2016, 

p.328) 

Convolution has the commutativity property, which means it can be written as 

follows: 

                  ∑ ∑                     (Goodfellow et al. 2016, 

p.328) 

The kernel relative to the input was flipped in the above equation, in the sense that as 

m increases, the index into the input increases, but the index into the kernel 

decreases. This only happened so convolution gain commutativity. Despite this 

property‘s usefulness for writing proofs, it doesn‘t have an impact on the training 

process of a NN. Cross-correlation is a related function that has the same utility of 

convolution but without needing to flip the kernel, and it‘s used in many NN libraries 

(cited in Goodfellow et al. 2016, p.329): 
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                  ∑ ∑                     (Goodfellow et al. 2016, 

p.329) 

 

3.3.4.2 Motivation: 

The motivation behind applying convolution in ML is that it can leverage three 

concepts that improves efficiency in a NN: sparse connectivity (or sparse weights), 

parameter sharing and equivariant. (cited in Goodfellow et al. 2016, p.329) 

 

Figure 3.16 Visual representation of 2-D convolution without kernel flipping 
(Goodfellow et al. 2016, p.330) 

 

Every layer in a traditional Neural Network will receive data (input) and transmit it 

(output). This action is described by a multiplication between two matrix that have 

different parameters that describes the interaction between each input unit and output 

unit. In the other hand, thanks to its sparse connectivity, CNN makes the kernel 

smaller than the input, which will result in reduction of memory usage and 

improvement in accuracy, since fewer parameters are needed to be stored. It also 

means that the training going to be faster since computing the output requires fewer 

operations. A Convolutional Neural Network is also able to establish complex 

connections between many variables from simply building blocks that describes 
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sparse connectivity, since units from deeper layers can indirectly interact with a 

larger portion of the input. (Goodfellow et al. 2016, p.331) 

 

Parameter sharing is a self-explanatory concept, where one set of parameters can 

be used by several functions in a model.  

Since the kernel is always smaller than the input unit at every layer, its members are 

going to be used at every position of the input. This parameter sharing property 

means that the network has to learn only one set of parameters rather than 

introducing new sets in every location like the traditional Neural Networks do. (cited 

in Goodfellow et al. 2016, p.333) 

 

 

Figure 3.17 Sparse connectivity viewed from below (Goodfellow et al.2016, p.331) 

 

In the figure above, one input unit x3 and the output units in s that are affected by it 

are highlighted. When s is formed by convolution with a kernel of width 3 as seen in 

the top part of the Figure 3.17, only three outputs are affected by x. On the other 

hand, when s is formed by matrix multiplication, connectivity is no longer sparse, so 

all the outputs are affected by x3. (cited in Goodfellow et al.2016, p.331) 
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Figure 3.18 Sparse connectivity viewed from above (Goodfellow et al. 2016, p.332) 

As shown in the figure above, one output unit s3 and the input units x that affect this 

unit, are highlighted. These units represent the receptive field of s3. As demonstrated 

in the top part of the Figure 3.18, only three inputs affect s3 when a convolution with 

a kernel of width 3 is applied. In the other hand, the sparse connectivity property 

does no longer apply when s is formed by matrix multiplication. (cited in 

Goodfellow et al. 2016, p.332)  

 

 

Figure 3.19 Units of a CNN (Goodfellow et al. 2016, p.332) 
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The Figure 3.19 is a visual representation on how neurons of deeper layers has a 

wider receptive field compared to the neurons in the first layers. This phenomenon 

proved to be more present when the network applies architectural features such as 

pooling. This result in neurons of the deeper layers to be connected to all or most of 

the input image as discussed previously. (Goodfellow et al. 2016, p.332) 

 

 

Figure 3.20 Graphical depiction of how parameter sharing works (Goodfellow et al. 
2016, p.333) 

 

As shown on the top part of Figure 3.20, thanks to parameter sharing, the black 

arrow shows how a single parameter of a 3-element kernel is used at all input 

locations. While on the bottom part of the figure where the model doesn‘t have the 

parameter sharing property, the parameter represented by the black arrow is only 

used once and indicates the usage of the central element of the weight matrix in a 

fully connected model. 

 

Goodfellow et al. provide a detailed example in their book of how sparse 

connectivity and parameter sharing can together enhance the quality of edge 

detection. 
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Figure 3.21 Efficiency of edge detection (Goodfellow et al. 2016, 334) 

 
―The image on the right was formed by taking each pixel in the original image and 

subtracting the value of its neighboring pixel on the left. This shows the strength of all the 

vertically oriented edges in the input image, which can be a useful operation for object 

detection. Both images are 280 pixels tall. The input image is 320 pixels wide, while the 

output image is 319 pixels wide. This information can be described by a convolution kernel 

containing two elements and requires 319 * 280 * 3 = 267,960 floating-point operations (two 

multiplications and one addition per output pixel) to compute using convolution. To describe 

the same transformation with a matrix multiplication would take 320 * 280 * 319 * 280, or 

over eight billion, entries in the matrix, making convolution four billion times more efficient 

for representing this transformation. The straightforward matrix multiplication algorithm 

performs over sixteen billion floating point operations, making convolution roughly 60,000 

times more efficient computationally. Of course, most of the entries of the matrix would be 

zero. If only the nonzero entries of the matrix are stored, then both matrix multiplication and 

convolution would require the same number of floating-point operations to compute. The 

matrix would still need to contain 2 * 319 * 280 = 178,640 entries. Convolution is an 

extremely efficient way of describing transformations that apply the same linear 

transformation of a small local region across the entire input.‖ (2016, p.334) 

 

Equivariance: it‘s the last property of convolution which is a result of parameter 

sharing. In general, for a function to be called equivariant, the output should change 

in the same way as the input changes. This concept can be translated to the following 

math equation: f(g(x) = g(f(x))) which can be interpreted as f(x) is equivariant to 

g(x). In case of convolution, if the input can be translated by a function g then it can 

be established that convolution is equivariant to g. In most cases CNN deals with 

image recognition, so the input is going to be an image, where a 2-D feature map 

that‘s robust to translation thanks to equivariance going to be created by the 
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convolution function. To put things into perspective, for instance, a network is going 

to be trained to detect a certain animal on images. This network will be able to find 

the animal despite the different positions it might be in different images. (cited in 

Goodfellow et al. 2016, p.334-335) 

 

3.3.4.3 Pooling: 

Generally, data goes through three different stages when it enters a convolutional 

network layer as an input. The first stage is where the convolution function is in 

parallel performed and transfer the data as linear activations. The second stage is 

responsible for adding a nonlinearity aspect to the model. For instance, the rectified 

linear function can be used in this stage. Finally, the pooling function is performed in 

the last stage to modify the output before handing it to the next layer. (cited in 

Goodfellow et al. 2016, p.335) 

In case of image recognition, after finding out the feature map, the pooling layer will 

eliminate unnecessary information that are not relevant or won‘t affect the end result 

of detection. Pooling helps also the model to be more robust against small 

translation. This process is referred to as subsampling or down sampling and it‘s 

performed mostly by a function called Max-pooling. (cited in Parabhu 2018, p.5; 

cited in Goodfellow et al. 2016, 336) 

The LISA lab describes how this function works: ―Max-pooling partitions the input 

image into a set of non-overlapping rectangles and, for each sub-region, outputs the 

maximum value.‖ (LISA lab 2015, p.56) 
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Figure 3.22 Components of a typical CNN layer (Goodfellow et al. 2016, p.336) 

 

The Figure 3.22 indicates that there are two different used terminology in a CNN. 

Goodfellow et al. provide (2016, p.336) the difference between the two as follows: 

 
 ―(Left)In this terminology, the convolutional net is viewed as a small number of relatively 

complex layers, with each layer having many ―stages‖. In this terminology, there is a one-to-

one mapping between kernel tensors and network layers. [...] (Right)In this terminology, the 

convolutional net is viewed as a larger number of simple layers; every step of processing is 

regarded as a layer in its own right. This means that not every ―layer‖ has parameters‖ 

 

3.3.4.4 Normalization: 

Thus far, only the concept of two stages out of three of a convolutional layer are 

illustrated. This section will handle the explanation of the final stage which is the 

detector stage where every linear activation is run through a nonlinear activation 

function such as ReLU (Rectified Linear Unit). 

Thanks to its mathematical foundation, ReLU proved that it enhances the robustness 

of NN by introducing nonlinearity to the model. It simply forces the state of negative 

values to 0 and outputs a linear function otherwise. (cited in M. Agarap 2018, p.2) 
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Figure 3.23 ReLU visual representation (M. Agarap 2108, p.2) 

 

ReLU also have another possible implementation at the last layer of the network 

where it‘s used as a classification function. (cited in M. Agarap 2018, p.2) 

 

3.3.4.5 Random or unsupervised Features: 

The training process of Convolutional Networks consumes large amount of 

resources. This due mainly to learning features in in the hidden layers. For instance, 

every step when using gradient descent for supervised learning will consume 

resources since data needs to go back and forth with forward- and backpropagation 

through the entire network. In the other hand, the last layer of the network doesn‘t 

require much resources since it will only deal with a small number of features, since 

they‘ve been filtered in the hidden layers by the pooling function. (cited in 

Goodfellow et al. 2016, p.356-357) Fortunately, it is possible to reduce the training 

cost by using features that are trained differently. Goodfellow et al. mention (2016, 

p.357) three different strategies to implement this solution. 

 
―One is to simply initialize them randomly. Another is to design them by hand, for example, 

by setting each kernel to detect edges at a certain orientation or scale. Finally, one can learn 

the kernels with an unsupervised criterion. For example, [...] apply k-means clustering to 

small image patches, then use each learned centroid as a convolution kernel.‖ 

 

3.3.4.6 Regularization: 

Overfitting is one of the important aspects of training a machine learning model 

since this phenomenon will result in low accuracy rates if it occurs. This issue is due 
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to the model trying too hard to detect any kind of noise in the training dataset. By 

noise, it is meant the data points that falsely represent the properties of the data. The 

model will gain flexibility from learning these data points but this will came with a 

price, which is exposing the model to overfitting. There are different methods to 

avoid this exposure. One of them is using cross validation, that estimates the error 

using a test set to decide what are the parameters that fits the model. (cited in Gupta 

2017b, p.1) 

Dropout can be mentioned too, which consists of turning neurons on and off 

randomly and by doing this, the neural network is forced to learn new representation 

of the data, new pathways that the data has to flow through. (cited in Raval 2017) 

Another method is batch normalization (Data Whitening), which rescales and 

decorrelates data before using it in a neural network. (cited in Raval 2017) 

Regularization can also be seen as a form of regression that constrains or shrinks the 

coefficient estimates towards zero. Differently put, this technique avoids learning a 

more complex or flexible model, so as to avoid letting the model get too fit for the 

data. (cited in Gupta 2017b, p.2)  

In his article (2017b, p.2) Gupta translates this similarity into a mathematical form: 

 
A simple relation for linear regression looks like this. Here Y represents the learned relation 

and   represents the coefficient estimates for different variables or predictors (X). 

Y   0 +  1X1 +  2X2 + … +  pXp   

The fitting procedure involves a loss function, known as residual sum of squares or RSS. The 

coefficients are chosen, such that they minimize this loss function. 

    ∑ (    
 
  ∑  

 
   

 

   
)

  

   

    

 

To sum up, the RSS function is responsible for the adjustment of the coefficients, 

relying on the data provided. Any coefficients that won‘t generalize because of noise 

detected in the data will be regularized towards zero. (cited in Gupta 2017b, p.3) 

 

3.3.4.7 Probability conversion: 

The output of a Neural Network that has been trained for classification will have 

normally an output represented as a vector with values that are not easily interpreted. 

For example y = [0.02, 0, 0.005, 0.975]. Using Softmax as an output layer and 
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training the model with cross-entropy function will replace the old representation of 

the output with a percentage value of how much the input matches the different 

classes provided at the training process. (cited in Lan 2017, p.2) 

In Machine Learning and in particularly Deep Learning, researches can determine 

the quality of a classification function by using a loss function. There are different 

functions used for this purpose, such as hinge loss and squared loss, but Softmax 

classifier and cross-entropy function stays the most used for training Machine 

Learning classifiers. The difference between Softmax and hinge loss is they return 

probabilities and margin respectively. That‘s the reason why Softmax is more used 

than the others since probabilities are much easier to interpret. (cited in Rosebrock 

2016, p.1-2) 

Rosebrock explains in his article (2016, p.2-3) the concept of Softmax thoroughly 

and compare it to hinge loss in a mathematical point of view. 

 
The Softmax classifier is a generalization of the binary form of Logistic Regression. Just like 

in hinge loss or squared hinge loss, our mapping function f is defined such that it takes an 

input set of data x and maps them to the output class labels via a simple (linear) dot product 

of the data x and weight matrix W: 

f (xi, W) = Wxi 

 

However, unlike hinge loss, we interpret these scores as unnormalized log probabilities for 

each class label – the amounts of swapping out the hinge loss function with cross-entropy 

loss: 

Li =           ∑    
     

 

[…] To start, our loss function should minimize the negative log likelihood of the correct 

class: 

Li =                   

 

This probability statement can be interpreted as: 

P (Y = k| X = xi) =      ∑    
  

 

Where we use our standard scoring function form: 

s = f (xi, W) 

 

As a whole, this yields our final loss function for a single data point, just like above: 

Li =           ∑    
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[…] The actual exponentiation and normalization via the sum of exponents is the actual 

Softmax function. The negative log yields the actual cross-entropy loss. 

Just as in hinge loss or squared hinge loss, computing the cross-entropy loss over an entire 

dataset is done by taking the average: 

L =  
 
 ∑   

 
      

 

Rosebrock goes further and strengthen his explanation with an example of cross-

entropy: 

 

Figure 3.24 Output of the scoring function (cited in Rosebrock 2016, p.3) 

 

The goal of this example is to test the Softmax classifier if it can correctly detect the 

input image as an airplane. The first step would be to calculate the unnormalized 

probabilities by exponentiating the output of the scoring function (cited in Rosebrock 

2016, p.3): 

 

Figure 3.25 Unnormalized probabilities (cited in Rosebrock 2016, p.4) 

 
The next step is to calculate the actual probabilities associated with each class label 

by using the unormalized probabilities. (cited in Rosebrock 2016, p.4): 
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Figure 3.26 Normalized probabilities (cited in Rosebrock 2016, p.4) 

 
The final step is to calculate the Negative Log Loss to return the result: 

 

Figure 3.27 Negative Log Loss (cited in Rosebrock 2016, p.5) 

 
As Figure 3.27 demonstrates, the trained model will return ―Airplane‖ since it‘s the 

class with the highest percentage (93.15%). (cited in Rosebrock 2016, p.5) 

 

3.3.5 Transfer Learning: 

To train a model following the traditional supervised learning approach to perform a 

certain task and domain A, it is necessary to provide labeled data that matches the 

same task and domain. The Figure 3.28 is a visual representation of how the data 

should respect the task to be performed. Briefly explained, a task is the expected 

behavior from the model after the training process is done and a domain is simply the 

environment where the data was taken. (cited in Ruder 2017, p.3) 
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Figure 3.28 The traditional supervised learning setup in ML (Ruder 2017, p.3) 

 

After training the model A on its dataset, it will function correctly and as expected 

when testing it on data of the same task and domain. In the other hand, and as the 

Figure 3.28 illustrates, a new model B should be trained if a new data for a different 

task or domain B is provided. (cited in Ruder 2017, p.4) 

Since many tasks happen to be similar, it only makes sense to try to reuse data for 

similar situations. In case of using traditional supervised learning, a problem arises, 

which is deterioration or collapse in performance of the model. For instance, a model 

that has been trained to detect pedestrians during the day time can theoretically be 

used to train a model to detect pedestrians during the night time. In practice this will 

cause inaccuracy since the model is fitted to its dataset and don‘t know how to 

generalize to the new domain. This issue is more problematic when trying to train a 

model to detect bicyclists, since the existing model can‘t even be reused because of 

difference in labels. (cited in Ruder 2017, p.4) 

To overcome this problem the concept of Transfer learning can be used by 

leveraging the already existing data of some related task or domain. It is possible 

then to store this knowledge gained in solving the source task in the source domain 

and apply it to the problem of interest as can be seen in Figure 3.29: (cited in Ruder 

2017, p.4) 
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Figure 3.29 The Transfer Learning Setup (Ruder 2017, p.4) 

 

Researches seek often to take advantage of the existing data and trained models as 

much as possible to transfer it to a new domain for similar tasks. There are different 

aspects that can be of interest and taken under consideration when the transfer 

learning is going to be made. For instance, researches can be interested in how 

objects are shaped in the data, because they have certain shape that will help define 

the new objects, or in case of speech recognition, the context and the voice patterns 

are the main focus. (cited in Ruder 2017, p.5) 

 

In the following paragraph the two terms ―domain‖ and ―task‖ will be explained in 

depth with an example given by Ruder in his article (2017, p.9) 

 
―Transfer learning involves the concepts of a domain and a task. A domain D consists of a 

feature space X and a marginal probability distribution P(X) over the feature space, where X 

= x1, …, xn  X. For document classification with a bag-of-words representation, X is the 

space of all document representations, xi is the i-th term vector corresponding to some 

document and X is the sample of documents used for training. 

Given a domain, D = {X, P(X)}, a task T consists of a label space Y and a conditional 

probability distribution P(Y|X) that is typically learned from the training data consisting of 

pairs xi  X and yi  Y. In this example, Y is the set of all labels, i.e. True, False and yi is 

either True or False. 

Given a source domain DS, a corresponding source task TS, as well as a target domain DT and 

a target task TT, the objective of transfer learning now is to enable researchers to learn the 

target conditional probability distribution P(YT|XT) in DT with the information gained from 
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DS and TS where DS  DT or TS  TT. In most cases, a limited number of labeled target 

examples, which is exponentially smaller than the number of labeled source examples are 

assumed to be available.‖ 

 

Four different scenarios can be deducted considering the structure of D and T and the 

inequalities expressed in the example above. Ruder goes further and explains in 

theory these scenarios using the previous use case. (2017, p. 9-10). 

 
―Given source and target domains DS and DT where D = {X, P(X)} and source and target tasks TS 

and TT where T = {Y, P(Y|X)} source and target conditions can vary in four ways […] 

 XS  XT. The feature spaces of the source and target domain are different, e.g. the 

documents are written in two different languages. In the context of natural language 

processing, this is generally referred to as cross-lingual adaptation. 

 P(XS)  P(XT). The marginal probability distributions of source and target domain are 

different, e.g. the documents discuss different topics. This scenario is generally known 

as domain adaptation. 

 YS  YT. The label spaces between the two tasks are different, e.g. documents need to be 

assigned different labels in the target task. In practice, this scenario usually occurs with 

scenario 4, as it is extremely rare for two different tasks to have different label spaces, 

but exactly the same conditional probability distributions. 

 P (YS |XS)  P (YT |XT). The conditional probability distributions of the source and 

target tasks are different, e.g. source and target documents are unbalanced with regard to 

their classes. This scenario is quite common in practice and approaches such as over-

sampling, under-sampling.‖ 

 

After discussing the concepts relevant for transfer learning in theory and the 

scenarios in which it is applied, the practical side of transfer learning will be covered 

in the next section by going through different applications that illustrate some of its 

potential. 

 

3.3.5.1 Applications of Transfer Learning: 

 Learning from simulations: When considering training a network to 

perform a certain task, the most important factor is the dataset. In most cases, 

to get good results a large number of data must be provided, but in some 

scenarios the number of samples is just enormous. This is due to its critical 

need to be as accurate as possible and this can result to incapacity to provide 
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the needed amount of data because of the tedious work behind it and the 

expenses it will cost. That‘s why researches approached this challenge in a 

creative way and leveraged transfer learning and simulations to come up with 

a solution. The reason behind using simulation is quite simple. Engines can 

run seamlessly and without the need of constant human interaction. This 

technique can provide a huge amount of data in a short period of time that 

can be later on transferred to the desired domain. Once concern may arise 

considering this approach, which is using simulations can never be as good as 

depending on real-world raw data. Nonetheless, with the advancements of 

today technology, this gap is getting smaller. Finally, learning from 

simulations is a typical example of the second scenario mentioned in the 

previous section. This technique is often used to get data for self-driven cars 

and to mimic robotics behavior. Such use cases are much more sensitive to 

errors than the others. That‘s why they need as much data as possible. Thus, 

using simulations to solve this problem. (cited in Ruder 2017, p.11-12) 

 

 

Figure 3.30 Robot and simulation environments (Ruder 2017, p.12) 

 

 Transfer learning in Computer Vision: Solving problems in the Computer 

Vision field was a complex task since it revolves mainly around detecting 

features that represent the data provided. This procedure was done manually 

until Deep Learning methods were introduced. Features are now detected 

automatically using Deep Learning during the training process. That‘s why 

only raw images are needed as an input to train a model. This concept proved 

its success and effectiveness in the Computer Vision world in many scenarios 

and it changed also the main challenge when solving a problem from figuring 

out the features manually to choosing the right architectures that fits the 

appropriate task in hand and its data. Finally, Deep Learning introduced the 
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concept of layers and each layer is responsible for learning certain type of 

features. This hierarchical feature representation is the strongest asset of 

Deep Learning architectures since it makes them reusable and best suitable 

for transfer learning. (cited in Hulstaert 2018, p.7-8) 

 

3.4 Recapitulation: 

In summary, the first section of this chapter capsuled a variety of information about 

artificial intelligence and machine learning, from the basics such as the connection 

between the two and their purposes, to more detailed information such as different 

types and techniques used in machine learning. 

The second part of this chapter handled deep learning and neural networks, in 

particular convolutional neural networks in which this project revolves around. The 

following two figures are a visual representation of the most points explained in this 

section. 

 

 

Figure 3.31 Learning process of a Neural Network (Moawad 2018, p.14) 
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Figure 3.32 Convolutional Neural Network architecture (Mathworks n.d., p.4) 

 

Chapter 4: Implementation 

This project is divided into two parts. The first part revolves around training a model 

and the scientific research behind the technology used to do it. The second part is 

about using the trained model that is supposed to detect the license plate numbers as 

objects and implement it in the android application. This chapter then will cover the 

different steps followed along the process of realizing this project. 

4.1 Software & Tools: 

Since this project covers two complementary subjects, but yet different, they were 

developed in different platforms.  

For Training the model the following Software, Tools and framework were used: 

 

 TensorFlow: Neural Networks have been heavily used the last few years to 

solve different and difficult problems. Since then, many frameworks that 

facilitate the implementation of these networks have appeared. TensorFlow is 

one of them. It is developed by Google and until recently it was only used 

internally in the company, than Google made it open source and it includes 

now a large and active Community that helps improving it every day. This 

framework is built to support every aspect of the process from training 

models to deploying them to servers or mobile devices which make it stand 

out from other frameworks. (cited in Warden 2017, p.2; cited in TensorFlow 

n.d. a) 
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 Sublime Text: This text editor will serve here as a development environment 

to configure the framework and prepare for the training process. (cited in 

Sublime HQ n.d.) 

 Terminal: the terminal is heavily used to execute different types of 

commands through the whole process of training, such as starting the 

training, configuring it and compiling the model or libraries that will be used 

later on in the android application. (cited in Liljencrantz n.d.) 

 

 Labelimg: Data is essential for machine learning and to train models for 

computer vision tasks, the data must be labeled. That what this software is 

for. Besides labeling, it generates for the user dataset that could be interpreted 

by the framework.(cited in Tzutalin 2015) 

 
 

 Jupyter Notebook: This tool serves as a test environment to test the model 

after training it before deploying it in the project. (cited in Jupyter n.d.) 

 

 Tensorboard: This tool is provided by TensorFlow and used to visualize the 

training process with different graphs to help optimize the model in the 

future. (cited in TensorFlow n.d. b) 

 

 Bazel: It is an open source build tool and used to build the TensorFlow 

framework on the desktop environment. This tool is used in this project only 

for test purposes since it can be challenging to set up a cross plateform 

compilation, which is the case of this project since the model will be trained 

on Linux to target Android devices. Nonetheless, it‘s still the main tool to 

build the framework since it exploits its full potential. (cited in Warden 2017, 

p.12; cited in Bazel n.d.) 

 

For the android application the following Software was used: 

 

 Android Studio: It is the main IDE (Integrated Development Environment) 

for android development by Google. (cited in Android Studio n.d.) 
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4.2 Object Detection API: 

Under the many APIs that comes with TensorFlow, one in particular matches the 

project use case. It is the Object Detection API. This API allows new learners, who 

are not familiar with machine learning to experiment and test some existing models 

provided by the framework, to familiarize with the environment and encourage more 

people to tackle such an overwhelming subject. An explanation of how this API was 

used to train and deploy a model in this project will follow in the next section. (cited 

in Huang et al. n.d. a; cited in sentdex 2017a) 

 

4.3 Model Training: 

To train a model, there are several necessary steps that should be done before the 

actual training begins.   

 

 Collecting the data: no model can be trained without a data to base its 

training on. That‘s why this step is critical. Something to keep in mind is that 

not only relative data to the use case should be gathered but also this is a 

selective process, since data with bad quality can lead to a false interpretation 

and wrong results. In this project, the dataset consists of images of license 

plates. It is also important to diversify the data, which means, it is preferable 

to have pictures of license plates of different vehicles taken from different 

angles in different situations and lighting. In that way the model can be robust 

against challenging situations and will be able to learn better. In machine 

learning, the more data provided, the better the result will be. Some models 

are trained with thousands of samples. Depending on the use case, already 

prepared datasets can be found on the internet that is also labeled. But in this 

project use case, a dataset had to be created from scratch since no already 

labeled dataset was found that matches the project needs. Gathering pictures 

and especially thousands or hundreds for this project, can be a tedious task 

that take a lot of time. That‘s why, for the majority of pictures, a ―python 

script‖ was used to download automatically all images from a Google search, 

and then they were filtered and only the useful ones were kept. (cited in 

sentdex 2017b) 
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 Data Labeling: The most suited type of machine learning for the thesis is 

―supervised learning‖, since it is based on providing data to the model and the 

anticipated result. So, after data collection, the next step will be providing it 

with the possible outputs. This step is achieved by data labeling. Basically, 

this step consists of going through every picture, selecting the regions of 

interest which are the whole digits on the license plate, then annotate them 

accordingly. The end result will be something like the following figure: 

 
 

 

Figure 4.1 Annotated picture of a license plate 

 
After labeling each picture, an xml file will be generated automatically 

containing the coordinates and the label of each annotated object in the 

picture. In this step, the objects can be selected only with rectangular shape, 

since currently it‘s the only shape supported by the framework, otherwise, the 

framework won‘t be able to start the training. (cited in sentdex 2017b) 

 

 Checkpoint & Configuration file: After collecting and labeling the dataset, 

the next step is to leverage the flexibility of the framework by using ―transfer 

learning‖. Google provided its users with a set of pretrained models along 

with the framework. Those pretrained models are trained with large datasets 

and have different characteristics that server for a variety of use cases (cited 

in sentdex 2017c). The Figure 4.2 is a table that gives an overview of the 

currently available models and their benchmarks: 
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Figure 4.2 COCO-trained models (Huang et al. n.d. b) 

 

From this list it can be determined which model is more suitable to which use 

case. For applications that demand a high accuracy, but speed is not its 

highest priority, e.g. object detection on images, ―faster_rcnn_nas‖ can be 

used since it has the highest mAP. mAP is an evaluation metric for object 

detection and it‘s an indicator of accuracy (cited in C Arlen 2018). In the 

other hand it takes 1833 ms to process one single image. Since in this project 



 57 

images are being processed in real-time, speed is a top priority since it will 

affect the user experience. Also, accuracy is an important factor, that‘s why 

the model chosen for this project, which is ―ssd_mobilenet_v1_coco‖, 

compensate between speed and accuracy. SSD is short of Single Shot 

Detector and this model along with the others in the list above is trained with 

the famous COCO (Common Objects in Context) dataset. The main reason 

of selecting a pretrained model is to avoid training the new model from 

scratch because that will consume a lot of time. (cited in Huang et al. n.d. b; 

cited in sentdex 2017c; cited in Huang 2017) 

After selecting the pretrained model, that will play the role of a checkpoint, 

we need to get its appropriate configuration file that is also provided by 

Google. The configuration file contains information such as number of 

classes to be detected in this model and the name of labels. (cited in sentdex 

2017c; Huang et al. n.d. c) 

 

 Framework configuration: The last step of this preparation process would 

be customizing certain files to my specific use case. 

As a start, the dataset should be divided into two, one for the training which 

is 90% of the original and one for testing which is the rest 10%. Afterwards, 

all xml files must be regrouped into one file for each dataset by converting 

them into .tfrecord files (binary files) since TensorFlow supports only this 

file format. After organizing the dataset, the configuration file should be 

modified by changing several parameters such as number of classes, paths of 

dataset and checkpoint. The Last step would be at this point, to create a .pbtx 

file (a label map) that contains all the objects to detect and their labels. (cited 

in sentdex 2017d) 

 

After those steps, the training can be launched. This process is monitored by 

Tensorboard. Using this tool, it was possible to determine whether the model is ready 

to be deployed or it needs more training time or any other changes. Thanks to its 

graphs such as ―TotalLoss‖, it was possible to visualize the learning curve of the 

model (cited in sentdex 2017e). For instance, if the error rate is still high and stable 

for a long period of time, either the configuration of the model or the data itself 

should be revised and corrected and the training should be stopped. 
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Figure 4.3 TotalLoss graph 

 

As the curve tends to be closer to zero as the time passes, it will never reach that 

point since nothing can be perfect or flawless. In general, a total loss value under 2.5 

is considered to give accurate results, but also gives a hint that the model can be 

improved by tweaking parameters or by providing a better dataset. (cited in sentdex 

2017e) 

 

4.4 Mobile implementation: 

After training the model and before using it in the application, the android 

environment should be set first and there are a variety of ways to do so. As its first 

release, TensorFlow came with support for android and can be run from a 

prepackaged binary installation or by compiling it from scratch using Bazel. Bazel 

was used in this project mainly to build TensorFlow on the Desktop environment and 

was used only for testing purposes in the android application. (cited in Warden 2017, 

p.11) 

Because android applications need to be written in Java, and core TensorFlow is in 

C++, the TensorFlow team provides a JNI (Java Native Interface) library to interface 

between the two. Its interface works only to perform inference, so it provides the 

ability to load a graph, set up inputs, and run the model to calculate particular 

outputs. (cited in Warden 2017, p.15) 
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Along with the Object Detection API provided by TensorFlow, the API came also 

with a demo of its implementation in mobile that covers three use cases and they are 

the following: 

 

 TF Classify: This app uses a model called Inception v3 to label the objects 

it‘s pointed at through the camera preview with classes from the dataset 

ImageNet. There are only 1000 categories in ImageNet and they don‘t 

contain all everyday objects and includes many things that unlikely to be 

encountered in real life. (cited in Warden 2017, p.14) 

 

 TF Detect: This app uses a multibox model which enables it to detect objects 

location by draw bounding boxes around them in the camera. Theses boxes 

are also annotated with the confidence for each detection result. This kind of 

object detection is still an active research topic, so the results may vary 

depending on the conditions and on the objects, the user is trying to detect. 

The demo also includes tracking that runs at a much higher frequency than 

the TensorFlow inference. This feature can improve the user experience, 

since the estimate which boxes refer to the same object between frames, 

which is important for counting objects over time. (cited in Warden 2017, 

p.14) 

 

 TF Stylize: This app implements a real-time style-transfer algorithm on the 

camera feed. The user can select the styles to use and mix between them 

using a palette situated at the bottom of the user interface, and also switch out 

to resolution of the processing to go higher- or lower-resolution (cited in 

Warden 2017, p.14) 

 
Since TF Detect matches the use case of this project, the prototype developed in this 

project was based on it. As mentioned before, that this kind of object detection is still 

an active research topic, the tracking feature despite the improvement to the user 

experience that it may bring, it wasn‘t in this project a much of help, so it was used 

only for testing purposes. 
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After choosing the skeleton to base the project on and adding the needed library, the 

next step would be testing the trained model inside the application. There are often 

unexpected differences between the training data and what users actually encounter 

in the real world and getting a clear picture of the gap as soon as possible improves 

the product experience. (cited in Warden 2017, p.19-20) 

To integrate the trained model into the project it is important to understand the 

different out graphs saved by the framework after training the model. Since 

TensorFlow relies on the Protocol Buffer library, known as protobuf, the objects are 

mostly defined and serialized as protocol buffers. This library takes definitions of 

data structures and produces serialization and access code for them in variety of 

languages. Finally, Warden goes in his book (2017, p.26-29) through different 

components outputted by the framework and explains them as follows: 

 
 “NodeDef: Defines a single operation in a model. It has a unique name, a list of the 

names of other nodes it pulls inputs from, the operation types it implements (for 

example, Add or Mul), and any attributes that are needed to control the operation. This 

is the basic unit of computation for TensorFlow, and all work is done by iterating 

through a network of theses nodes, applying each one in turn. One particular operation 

type that‘s worth knowing about is Const, since this type holds information about a 

constant. The values for a Const are stored inside the NodeDef. 

 

 Checkpoint: Another way of storing values for a model is by using ―Variable ops‖. 

Unlike other operations such as ―Const ops‖, these don‘t store their content as part of the 

NodeDef, so they take up very little space within the Graph Def file. Instead, their values 

are held in RAM while a computation is running and then saved out to disk as 

checkpoint files periodically. This typically happens a neural network is being trained 

and weights are updated, so it‘s a time-critical operation and may happen in distributed 

fashion across many workers. 

 

 GraphDef: GraphDef has a list of NodeDefs, which together define the computational 

graph to execute. During training, some of these nodes will be variables, so if you want 

to have a complete graph you can run, including the weights, a restore operation need to 

be called to pull those values from checkpoints. Because checkpoint loading has to be 

flexible to deal with all of the training requirements, this can be tricky to implement on 

mobile and embedded devices. […] This is where the script ―freeze_graph‖ comes in 

handy. As mentioned, Const ops store their values as part of the NodeDef, so if all the 

Variable weights are converted to Const nodes, then we only need one single GraphDef 

file to hold the model architecture and the weights. Freezing the graph handles the 
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process of loading the checkpoints, and then converts all Consts to Variables. You can 

then load the resulting file in a single call, without having to restore variable values from 

checkpoints. 

 

 FunctionDefLibrary: […] appears in GraphDef and is effectively a set of subgraphs, 

each with information about their input and output nodes. Each subgraph can then be 

used as an op in the main graph, allowing easy instantiation of different nodes, in a 

similar way to how functions encapsulate code in other languages. 

 

 MetaGraphDef: A plain GraphDef only has information about the network of 

computations but doesn‘t have any extra information about the model or how it can be 

used. MetaGraphDef contains a GraphDef defining the computation part of the model, 

but also includes information like signatures, which are suggestions about which inputs 

and outputs the developer may want to call the model with, data on how and where any 

checkpoint files are saved, and convenience tags for grouping ops together for ease of 

use. 

 

 SavedModel: It‘s common to want to have different versions of a graph that rely on a 

common set of variable checkpoints. For example, a GPU and a CPU version of the 

same graph might be needed but keep the same weights for both. Some extra files (like 

label names) might also be needed as part of the model. The SavedModel format 

addresses these needs by letting the developer save multiple versions of the same graph 

without duplicating variables and by storing asset files in the same bundle.‖ 

 

So now how to obtain a model usable on mobile? 

 

In most situations, training a model with TensorFlow outputs a folder containing a 

GraphDef file and a set of checkpoint files. What is needed for mobile or embedded 

deployment is a single GraphDef file that‘s been ―frozen‖ or had its variables 

converted into inline constants, so everything is in one file. The most recent 

checkpoint should be used for this. (cited in Warden 2017, p.29) 

After generating the frozen version of the model, the last step would be creating a 

text file that contains the name of the labels used to annotate the dataset. Afterwards, 

the two files should be added to the android application, under the asset folder which 

will be packed with the final version that will be installed on the user device. (cited 

in Santos 2018) 
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4.5 Optimization for mobile usage: 

Since the user experience is a crucial factor in mobile applications and especially in 

real-time use case scenarios, there are some improvements provided by the 

framework that can be made to optimize the trained model. These changes are 

available through the Graph Transform Tool. It is a command-line tool that takes an 

input GraphDef file, applies the set of rewriting requested rules, and writes out the 

result as a GraphDef. (cited in Warden 2017, p.30) 

4.5.1 Minimum Device Requirement: 

Before going through the possible optimization, it is important to find out the 

minimum device requirement for TensorFlow to anticipate the range of targeted 

devices and to better improve the user experience. One megabyte of program 

memory at least is needed and several megabytes of RAM to run the base 

TensorFlow runtime, so it‘s not suitable for DSPs or microcontrollers. Other than 

those, the biggest constraint is usually the calculation speed of the device, and if the 

needed model for the application can be run with a low enough latency. It is good 

idea to use the benchmarking tools provided by the framework to get an idea of how 

many FLOPs (Floating Point Operation Per Second) are required for a model, and 

then use that to make rule-of-thumb estimates of how fast they will run on different 

devices. This model dependence means that it‘s possible to run TensorFlow even on 

very old or constrained phones, as long as the network is optimized to fit within the 

latency budget, and possibly limited RAM, as well. For memory usage, it is needed 

to make sure that the intermediate buffers that TensorFlow creates aren‘t too large, 

which can be examined in the benchmark output too. (cited in Warden 2017, p.26) 

 

4.5.2 Removing training-only nodes: 

TensorFlow GraphDefs, produced by the training code, contain all the computation 

that‘s needed for back-propagation and updates of weights, as well as the queuing 

and decoding of inputs and the saving of checkpoints. None of these nodes are 

needed during inference, and some of the operations, such as checkpoint saving, 

aren‘t even supported on mobile platforms. By using the Graph Transform Tool, 

those unneeded operation can be deleted to create a model file that can be loaded on 

devices. The trickiest part of this process is figuring out the names of the nodes 

wanted to be used as inputs and outputs during inference. These will be needed 
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anyway once the inference is started, but also here, so the transform can calculate 

which nodes are not needed of the inference-only path. These nodes may not be 

obvious from the training code because inputs are often fed through queues and 

decoding operations, and outputs feed into loss calculations, so they are not the final 

op in the graph. Unfortunately, there is no automatic way to discover these, but often 

the graph can be visualized or by digging inside the system messages and stack 

traces of the mobile application to find them. Typically, mobile applications gather 

their data from sensors and have it as arrays in memory, whereas training involves 

loading and decoding representations of the data stored on disk. In the case of 

Inception v3, for example, there is a ―DecodeJpeg op‖ at the start of the graph that is 

designed to take JPEG-encoded data from a file retrieved from disk and turn it into 

an arbitrary-sized image. After that there is ―BilinearResize op‖ to scale it to the 

expected size, followed by a couple of other ops that convert the byte data into floats 

and scales their values to the range that the rest of the graph expects. A typical 

mobile app skips most of these steps because it‘s getting its input directly from a live 

camera, so the input actually supplied node will be the output of the Mul node in this 

case. The following figure shows a diagram of an Inception input module. (cited in 

Warden 2017, p30-31) 

 

Figure 4.4 Inception input module (Warden 2017, p.31) 
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A similar process of inspection is needed to figure out the correct output nodes. 

Another way to find out information about the trained model is, after generating a 

frozen GraphDef file, the ―summarize_graph‖ tool is used to print out information 

about the inputs and outputs from the graph structure. (cited in Warden 2017, p.31) 

After getting all the information needed, they can be fed into the graph transform 

tool. One thing to look out for is that the size and type of the inputs must be 

specified. This is because any values passed as inputs to inference need to be fed to 

special Placeholder op nodes, and the transform may need to create them if they 

don‘t already exist. In the case of Inception v3, for example, a Placeholder node 

replaces the old Mul node that used to output the resized and rescaled image array, 

since that processing going to be done manually before TensorFlow is called. It 

keeps the original name, though, which is why inputs are fed to Mul when running a 

session with a modified Inception graph. After running this process, a graph will be 

outputted that only contains the actual nodes needed to run the prediction process. 

(cited in Warden 2017, p.32) 

 

4.5.3 Recompiling TensorFlow inference library: 

There are many operations available in TensorFlow, and each one has multiple 

implementations for different data types. On mobile platforms, the size of the 

executable binary that‘s produced after compilation is important, because app 

download bundles need to be as small as possible for the best user experience. If all 

the ops and data types are compiled into the TensorFlow library, then the total size of 

the compiled library can be tens of megabytes—so by default, only a subset of ops 

and data types are included. That means if a model file that‘s been trained on a 

desktop machine is loaded, the ―No OpKernel was registered to support Op‖ error 

may appear when loading it on mobile. The first thing to try is to make sure that any 

training-only nodes have been stripped, since the error will occur at load time even if 

the op is never executed. If the error still occurs, that means the missing op should be 

added to the built library. (cited in Warden 2017, p.33) 

Warden puts together in his book (2017, p.33) four factors to determine if certain 

operations and types should be included and they are as follows: 
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 ―Are they only useful in back-propagation, for gradients? Since mobile is focused on 

inference, we don‘t include this. 

 Are they useful mainly for other training needs, such as checkpoint saving? These we leave 

out. 

 Do they rely on frameworks that aren‘t always available on mobile, such as libjpeg? To 

avoid extra dependencies, we don‘t include ops like DecodeJpeg. 

  Are there types that aren‘t commonly used? We don‘t include boolean variants of ops for 

example, since we don‘t see much use of them in typical inference graphs.‖ 

 

This trimming does go against the vision of TensorFlow being single unified 

framework all the way from training to devices though, so it is possible to alter this 

default behavior. To do this some build files need to be altered. (cited in Warden 

2017, p.33) 

 

Regardless, in case there is no missing ops and the model works as it‘s supposed to 

be in the application, it is encouraged to recompile the library with only the 

operations that are used in that specific model. That way the library size will be kept 

to a minimum with a functional model. It is also worth mentioning that this step does 

not affect the end result in any way, it only has one side effect which is, the 

TensorFlow library will work only with that exact model, or models that uses the 

same operations. The list of operation used by the model can be figured out by using 

the Graph Transform Tool, and then the library can be recompiled using that 

information. (cited in Jarvis 2017) 

 

4.5.4 Retrain with mobile data: 

 The biggest cause of accuracy problems when running models on mobile apps is 

unrepresentative training data. For example, there is dataset online that contains only 

well framed and centered photos. But photos from mobile devices are often poorly 

framed and badly lit. The solution is to expand the training set with data actually 

captured from the application. The user can be involved in this process by giving 

feedback to the developers. For example, if a user didn‘t obtain the wanted result, he 

can send a feedback including the photo used in the app, so it will be added in future 

releases in the dataset. This step can involve extra work, since the new photos must 

be labeled manually. Improving the training set by doing this and by fixing other 

quality issue like duplicates or badly labeled examples is the single best way to 
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improve accuracy. It is usually a bigger help than altering the model architecture or 

using different techniques. (cited in Warden 2017, p.43) 

 

4.5.5 Reduce model loading time or memory footprint & improve RAM usage: 

Most operating systems have the possibility to load a file using memory mapping, 

rather than going through the usual I/O APIs. Instead of allocating an area of 

memory on the heap and then copying bytes from disk into it, the user should simply 

tell the operating system to make the entire contents of a file appear directly in 

memory. One advantage of this method is the OS knows the whole file will be read 

at once and can efficiently plan the loading process, so it is as fast as possible. The 

actual loading can also be put off until the memory is first accessed, so it happens 

asynchronously with the code initialization. The user can also tell the OS he will 

only be reading from the area of memory, and not writing to it. This gives the benefit 

that when there is pressure on RAM, instead of writing out that memory to disk as 

normal virtualized memory needs to be when swapping happens, it can just be 

discarded, since there is already a copy on disk, saving a lot of disk writes. (cited in 

Warden 2017, p.43) 

Most of the models trained by TensorFlow are bulked in size due to the amount of 

parameters and training data packed in the frozen graph. That‘s why it is useful to 

speed up the loading time in mobile and embedded applications. In addition to that, 

the responsiveness of the model can be also improved by reducing the swap writing 

load. It can also be very helpful to reduce RAM usage. Warden state an example in 

his book (2017, p.44) backing up this theory ―For example, on IOS the system can 

kill apps that use more than 100 MB of RAM, especially on older devices. The RAM 

used by memory-mapped files doesn‘t count toward that limit, so it is often a great 

choice for models on those devices‖. TensorFlow has support for memory mapping 

the weights that form the bulk of most model files. Because of limitations in the 

protobuf serialization format, a few changes needs to be made to the model loading 

and processing code. The way memory mapping works is that there is a single file in 

which the first part is a normal GraphDef serialized into the protocol buffer wire 

format, but then the weights are appended in a form that can be directly mapped. 

(cited in Warden 2017, p.44) 
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One thing to notice after doing these changes is that automatic optimizations are also 

being disabled, since in some cases these will fold constant subtrees, which will 

create copies of tensor values that are not wanted and use up more RAM. (cited in 

Warden 2017, p.45) 

 

4.5.6 Reduce model size: 

As hinted in the previous section, models have a large binary size and they could 

affect not only the user experience but also the storage of the device. Since the model 

should be included in the application while deploying in the store, any user can avoid 

downloading the application due to its size. So the developers should plan for how 

large the model will be. A good place to start is by looking at the size disk of the 

GraphDef file. (cited in Warden 2017, p.35) 

The important part for the current purposes is the number of const parameters. In 

most models, theses will be stored as 32-bit floats to start. When multiplying the 

number of const parameters by four, the result is close to the size of the file on disk. 

Often only eight bits per parameter will cause only too little loss of accuracy in the 

final result; so, if the file is too large, the Graph Transform Tool can be used to 

transform the parameters down. Usually the resulting file size is about a quarter of 

the original. There is a variation on this that can sometimes be particularly useful for 

mobile development, which takes advantage of the fact that app bundles are 

compressed before they are downloaded by consumers. Normal floating-point 

numbers don‘t compress well with standard algorithms, because the bit patterns of 

even very similar numbers can be very different. As a result, models typically don‘t 

compress at all. (cited in Warden 2017, p.35-36) 

 

4.5.7 Exploring Quantized Calculations: 

The calculations done in trained networks have the 32-bit floating point format, since 

it is the most convenient one. But thanks to the models resilience to noise, the 

inference can be run with 8 bits or fewer. Despite a minimal dropage of precision 

following this approach, the detection quality stays pretty much the same. The 

method is currently one of the most interesting research areas. In more technical 

terms, the 8-bit buffers are expanded up to 32-bit floats before they are used for 

calculations, so it is a fairly minimal change to the network. All the other operations 
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just see floating point inputs as normal. Following the same logic and taking 

advantage of the hardware advancements of nowadays devices, it is possible to try 

performing as many calculations as possible using 8-bit representation. For instance, 

many CPUs have SIMD instructions (like NEON or AVX2) that can do more 8-bit 

calculations per cycle than they can float. It also means that specialized hardware, 

like Qualcomm‘s HVX DSP or Google‘s Tensor Processing Unit, which may not 

support floating point operations well, can accelerate neural network calculations. In 

theory, there is no reason fewer than eight bits too couldn‘t be used, and indeed in a 

lot of experiments the TensorFlow team have seen seven or even five bits as usable 

without too much loss. However, at the moment there is not much hardware that can 

efficiently use these odd sizes. (cited in Warden 2017, p.46) 

Many challenges can arise while trying to implement this technique. Warden goes in 

details explaining one of those challenges (2017, p.47) ―The biggest challenge with 

this sort of quantized approach is that neural networks require fairly arbitrary ranges 

of numbers that aren‘t known ahead of time, so fitting them into eight bits can be 

tough. It‘s also tricky to create arithmetic operations to use these representations, 

since we have to reimplement a lot of the utilities we get for free when using floating 

point, such as range checking. Consequently, the resulting code looks quite different 

from the equivalent float versions. There are also problems introduced by the fact the 

inputs will not be known ahead of time, so the ranges of intermediate calculations 

can be hard to estimate.‖ 

 

4.6 Recapitulation: 

In this chapter, we went through the different steps of creating this project and how it 

is divided into two major parts which are training a model and integrating it into an 

android application. 

In addition, we saw how there is several Deep Learning architectures (models), that 

uses different methods internally, to perform the same task. Each model depends on 

a base classifier, which greatly affects the final accuracy and model size. Moreover, 

the choice of the object detector can heavily influence computational complexity and 

final accuracy. 

Finally, since the mobile environment has its limitations, some improvements are 

necessary to be done on the trained model to achieve better results and improve the 
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user experience but unfortunately not all the techniques are applicable to all the 

models, which was the case in this project. 

 

Chapter 5: Summary 

Since machine learning is an active field of research, it is always evolving, and 

thanks to the technology advancement existing nowadays especially in hardware, the 

artificial intelligence and all its descendent fields saw a significant progress in the 

past few years. (cited in Gage 2018) 

Because AI was mostly implemented by companies using their own frameworks, 

there was some sort of limitation on this technology despite the constant progress. 

That‘s why some companies started opening their frameworks to the public, knowing 

of course the benefits they will get in return from this decision. (cited in Parikh 2017; 

cited in J. Garbade 2018) 

For instance, Google after open sourcing their machine learning framework 

TensorFlow in 2015, the framework came along way with help of its community and 

the amount of innovation and improvements they brought with them to the 

framework. The best example that reflects this advancement, is the last conference 

held by Google (Google I/O 2018), that announced many new features centered on 

AI in many of their platforms, for example, Google Duplex in the new operating 

system Android P. (cited in Singh 2018; cited in El-Arifi 2018) 

In the next section, the recent changes in this framework, that concerns this project in 

particular, will be discussed more in depth and what may be changing in the future. 

 

5.1 Discussion: 

This part of the thesis is a recapitulation of the results from implementing Machine 

Learning and an introduction to the possible improvements to be made in the future. 

 

5.1.1 Results: 

Before going through how the developed solution could be improved in the future, 

the results of its implementation should first be specified and if it served its purpose.  



 70 

After training the model and improving it by applying some of the techniques 

mentioned in the last chapter to make suitable for mobile usage, the developed 

prototype overcame the actual implemented approach in the following points: 

 

 

Figure 5.1 Detection speed on Huawei P9 Lite phone 

 

 The detection and processing time when using Machine Learning is distinctly 

faster, since the application have only one external file as a reference while 

the actual approach must have one or two external libraries installed with the 

application which make the detection slower. It should be mentioned that 

different phones have different inference time. Phones with higher hardware 

specifications will detect documents faster than the others 
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Figure 5.2 License plate detection in challenging conditions 

 

 Since the model is trained to be robust against noises, the quality of detection 

has been improved. The developed tool won‘t give a false detection in 

difficult situations such as bad lighting as much as the actual tool. 

 

 The recognition process is now being done in real-time which improve the 

user experience and reduce the number of image taken before having a valid 

result. 

 
 Several methods have been upgraded to improve the transition between the 

different user interfaces in the application. Network connection methods are 

in example of what have been improved. The connection between the 

database and the application was done manually and now is replaced with an 

automated process. 
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5.1.2 Future Improvements: 

There are two main changes worth mentioning that involves improving the model 

training process and mobile integration. Further information is provided in the next 

section. 

  

5.1.2.1 TensorFlow Lite: 

Since TensorFlow supports multiple platforms, it is only logical to provide a library 

for each one of it. In this project TensorFlow (the main framework) and TensorFlow 

mobile were used respectively for Desktop and mobile environments. (cited in 

TensorFlow n.d. c) 

Machine Learning is changing the computing paradigm, and an emerging trend of 

new use cases on mobile and embedded devices were noticed by Google. In addition 

to consumer expectations are trending toward natural, human-like interactions with 

their devices, driven by the camera and voice interactions models, Google also 

believes that the next wave of machine learning applications will have significant 

processing on mobile and embedded devices, that‘s why they felt the need to release 

an improved version of their earlier library ―TensorFlow mobile‖ which is 

―TensorFlow Lite‖. (cited in TensorFlow n.d. d, p.2) 

The TensorFlow team mentioned in the framework documentation (TensorFlow n.d. 

d, p.2) some other factors that drive the interest in this domain: 

 
 ―Innovation at the silicon layer is enabling new possibilities for hardware acceleration, 

and frameworks such as the Android Neural Networks API make it easy to leverage 

these. 

 Recent advances in real-time computer-vision and spoken language understanding have 

led to mobile-optimized benchmark models being open sourced (e.g. MobileNets, 

SqueezeNet). 

 Interest in stronger user data privacy paradigms where user data does not need to leave 

the mobile device.‖ 

 

So, how exactly this library an improvement and what does it contain? 

 

TensorFlow Lite is a leight version of TensorFlow and its targets are embedded and 

mobile devices. With this version of the framework, trained models consumes less 

resources and need less saving space. Thus, less inference time is needed for 
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detection. This performance was achievable thanks to techniques such as pre-fused 

activations and quantized kernels. In addition to the new techniques introduced in 

TFLite, the framework defines also a new model file format, based on FlatBuffers 

open source parsing library. It is similar to the format used by TensorFlow Protocol 

Buffer but it is improved to access data faster and more efficiently by skipping the 

parsing/unpacking step. Finally, TFLite uses a new custom interpreter that avoids 

any unnecessary memory allocation or initialization to improve the execution time. 

(cited in TensorFlow n.d. d, p.1) 

To use TFLite there is no need to retrain the model used with TensorFlow mobile 

since the user should only convert the current model with a tool called TOCO to 

obtain finally a TensorFlow Lite FlatBuffer file. After deploying the new file, it will 

be handled by the TensorFlow Lite interpreter. The flow of this process is 

represented by the Figure 5.4 (cited in TensorFlow n.d. e, p.2): 

 

Figure 5.3 Flow of the TOCO process (TensorFlow n.d. e, p.2) 

 
In this project, this library was used only for test purposes since it‘s still in developer 

preview at the time of writing this thesis and not ready for production. The results 

obtained were not as promising as expected, but it will be a big improvement for my 

current work when it becomes more stable. 
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5.1.2.2 Pre-trained models: 

Along with the new library, Google worked on improving its existing pre-trained 

models and launched new versions of some of them leveraging the new techniques 

implemented in TensorFlow Lite, such as the capability of running quantized 

models. (cited in Huang 2018) 

 

Figure 5.4 Floating point model vs 8-bit model (Huang 2018, p.2) 

 

 

As demonstrated in Figure 5.4, the quantized detection models are faster and smaller 

with minimal loss in detection accuracy compared to the full floating-point model. 

 

 

Figure 5.5 SSD Model evolution (cited in Huang et al. n.d. b) 

 

5.1.2.3 Training and serving with Cloud TPUs: 

Users spend a great deal of time on optimizing hyperparameters and retraining object 

detection models, therefore having fast turnaround times on experiments is critical. 

That‘s why Google launched recently a paid service to accelerate training via Cloud 

TPUs. (cited in TensorFlow 2018) 

―Tensor Processing Units (TPUs) are Google‘s custom-developed application-

specific integrated circuits (ASICs) used to accelerate machine learning workloads. 

Cloud TPU resources accelerate the performance of linear algebra computation, 

which is used heavily in machine learning applications. TPUs minimize the time-to-
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accuracy when large complex neural network models are trained. Models that 

normally take days or weeks to train on other hardware platforms can converge in 

hours on TPUs.‖ (Google Cloud n.d., p.1) 

 

5.2 Conclusion: 

One of the features of the mobile application developed for my bachelor thesis is 

trucks license plate recognition by detecting its numbers. The purpose of this thesis 

was to optimize this feature and two solutions were possible:  

 

 Adding OpenCV which is an external library to perform image processing 

algorithms on images before feeding them to the recognition tool. This extra 

step will presumably optimize the detection results. 

 

 Fully implementing machine learning to detect digits on the license plate with 

the Object Detection API provided by the Framework TensorFlow from 

Google. 

 

After outlining the advantages, disadvantages and the differences of the above-

mentioned methodological approaches, the scientific research behind machine 

learning and deep learning in particular was thoroughly explained along with its 

different architectures such as the Convolutional Neural Network, which was 

implemented in this thesis. 

The rest of this thesis consists of going through the process of training a model to 

detect numbers on the license plate, and the important improvements applied to the 

model to increase its performance. 

Naturally, there are more improvements to be made since this is an open field of 

study and is always improving. 
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