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1. General introduction

1.1 The roles of agriculture and plant breeding 

Agriculture is an inherent activity of the human nature. Domestication of plant 

and animal species, along with the active modification of local ecosystems and the 

manipulation of biotic communities facilitated the transition from hunter-gathering to 

a sedentary agriculture-based society during the Neolithic period. In cereal species, for 

instance, the transition from wild to domesticated forms, in which seeds are firmly 

held together in ears or panicles, prevented seeds from falling to the ground, thus 

facilitating their harvest (Doebley et al. 2006; Salamini et al. 2002; Zeder 2011). 

Agriculture allowed the development of a dense human population in the Fertile 

Crescent (Salamini et al. 2002), and still plays this role in a continuously growing 

world population nowadays (Borlaug 1968; Hall and Richards 2013; Saitone and 

Sexton 2017; Ray et al. 2012). Briefly, world’s crops production arises from the 

combination of the harvested area and the production per soil area unit. While the 

expansion of harvested area played the major role during the first half of the 20th 

century, the production per soil area unit gained importance and became the main 

driving factor of global supply during the following decades (Slafer et al. 1996); an 

observation that nowadays still persists (FAO 2017a). Retrospectively, improvements 

in the production per soil area unit have been achieved due to the almost inseparable 

interaction between plant breeding and technological advances in agronomical 

practices (Austin et al. 1980; Borlaug 1968; Laidig et al. 2014). Nonetheless, plant 

breeding is mostly recognized as the driving force of these improvements. Plant 

breeding is the science, technique, business and art of genetic modification of plants 

for human benefits (Becker 2011; Bernardo 2010). 

1.2 The importance of cereal crops and the multiple-trait problem 

Cereal crops of economic significance encompass gramineous plant species 

(Poaceae or Gramineae botanic family) like barley (Hordeum vulgare L.), maize (Zea 

mays L.), pearl millet [Pennisetum glaucum (L.) R. Br.], oat (Avena sativa L.), rice 

(Oryza sativa L.), rye (Secale cerale L.), sorghum [Sorghum bicolor (L.) Moench], 

triticale (× Triticosecale Wittm.), bread wheat (Triticum aestivum L.), and durum 

wheat (T. turgidum L. var. durum). Grains of cereals consist of an embryo, which 

contains the genetic material for a new plant, and a starch-rich endosperm, which 

provides the necessary energy reserves for the process of germination (McKevith 
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2004; Wrigley et al. 2017). The storability of cereal grains was perhaps the main 

reason why ancient civilizations were initially interested in cereals as food source, 

because food surpluses could be stored for their use during less favorable crop 

production periods (Salamini et al. 2002; Wrigley et al. 2017). This importance is still 

reflected nowadays, because cereals are the most produced commodity, with an 

average annual world production of 2.3 billion tons for the period 1994/2014 (FAO 

2017a). Maize, rice and wheat correspond to the most produced cereals worldwide. In 

this sense, it is predicted that 40.6%, 28.7%, and 19.4% of the 2.6 billion tons of cereal 

production forecasted for the 2017/2018 period would correspond to maize, wheat and 

rice, respectively (FAO 2017b). Cereal grains are an important source of energy, 

carbohydrate, protein and fiber, while they also provide some micronutrients like 

vitamin E, vitamin B, magnesium and zinc (McKevith 2004; Wrigley et al. 2017). 

Cereal end-uses can be roughly divided in food, animal feed and other purposes. For 

instance, 43.4%, 35.3%, and 21.3% of the world cereal utilization during the period 

2015/2016 corresponded to food, feed and other uses, respectively (FAO 2017b). 

Therefore, the main contribution of cereals to humans is as food and animal feed 

sources. Alternative uses of the cereal production include the obtainment of starch, 

alcoholic beverages and bioethanol (Wrigley et al. 2017). 

The ideal grain characteristics would vary according to each end-use and, in 

most cases, would be also related to local preferences and/or legal restrictions (Sissons 

2008; Wrigley et al. 2017). In addition, the distinct stages of the grain production 

chain, which goes from plant breeding, through crop production, storage and 

transportation, to processing and final consumption, would also have different needs 

(Borlaug 1968; Wrigley et al. 2017). The different crop production environments and 

the consequences of climate change make this picture even more complicated (Hall 

and Richards 2013; Ray et al. 2012). Moreover, human biology, psychology and their 

interactions, make human needs continuously evolve (Maslow 1943). For instance, 

some final consumers of food products demand nowadays healthy and nutritious 

products with new tastes, textures, colors, sizes and shapes, while also expecting that 

growers and the industry use social and environmentally friendly production methods 

(Bandara et al. 2016; Saitone and Sexton 2017). For sure, the final characteristics of 

end, as well as intermediate, products of the grain production chain would also depend 

on factors other than genetics (see for example the pasta production chain as reviewed 

by Sissons 2008). But plant breeding gives crop plant varieties the genetic potential to 
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achieve a particularly desired performance level (Becker 2011; Bernardo 2010). In this 

sense, plant breeders spend their life adapting plants and combining different traits in a 

single variety that could potentially meet certain needs according to the crop 

production context, end-use, market niche, among other considerations. This 

simultaneous selection of several traits is termed as multiple-trait selection (Falconer 

and Mackay 1996). The difficulty of combining different trait levels would be a 

function of trait correlations and breeding goals. As illustration, high grain yield is 

important for all production purposes in rye, while grain protein content requirements 

depend on the end-use of this crop (Miedaner et al. 2012). For example, since rye for 

feeding purposes must be commercially competitive with alternative crops like wheat, 

a sufficient protein content level would be required for this particular end-use. In 

contrast, protein content must be minimized for baking purposes. Thus, a negative 

correlation between grain yield and protein content would make the breeding of rye 

cultivars for animal feeding more difficult, while this correlation would be beneficial 

in the breeding for baking purposes. 

1.3 The genetic basis of trait correlations 

Trait correlations can be defined either phenotypically or genetically. In 

principle, a phenotypic correlation corresponds to the correlation among phenotypic 

values of different traits, whereas a genetic correlation is the correlation between 

genetic values or breeding values of different traits. In this sense, phenotypic 

correlations are the result of environmental and genetic variances and covariances 

(Mode and Robinson 1959). Whereas environmental correlations between traits are 

due to shared environmental influences on them (Almasy et al. 1997), genetic 

correlations are basically a function of pleiotropy and close-linkage (Chen and 

Lübberstedt 2010; Gianola et al. 2015; Hodgkin 1998; Jiang and Zeng 1995; Paaby 

and Rockman 2013; Solovieff et al. 2013; Stearns 2010). 

1.4 The many definitions of pleiotropy 

According to Stearns (2010), the term “Pleiotropie” was originally coined by 

the german geneticist Ludwig Plate in a compendium of scientific texts to praise 

Richard Hertwigs on his 60th birthday in 1910. Brüel (1912) reviewed the original text 

of Plate (1910) and mentioned “Pleiotrop heißt dabei eine Einheit, von der mehrere 

Merkmale abhängen”, which translates to “A (genetic) unit, on which many traits rely, 

is called pleiotropic“. This definition corresponds to the classical concept of 
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pleiotropy mentioned in quantitative genetics and breeding textbooks (e.g., Bernardo 

2010; Falconer and Mackay 1996). Various authors (Paaby and Rockman 2013; 

Pavlicev and Wagner 2012; Stearns 2010) mainly attributed the hypothesis of 

“universal pleiotropy” to the works of Fisher (1930) and Wright (1968). According to 

this hypothesis, most genes, if not all, are capable of simultaneously influencing 

several, if not all, traits of an organism. Biological evidence points out to a “modular 

pleiotropy”, in which a set of genes tends to have pleiotropic effects on the same set of 

functionally and/or developmentally related traits (modules) but few and weaker 

effects on traits belonging to other module(s) (Wagner et al. 2007; Wang et al. 2010). 

Furthermore, evidence in organisms like yeast (Saccharomyces cerevisiae), nematode 

(Caenorhabditis elegans) and house mouse (Mus musculus) indicates that the 

frequency distributions of the number of traits influenced by a single locus are L-

shaped (Wang et al. 2010). In other words, most loci tend to influence a small group of 

traits, while only a few of them tend to influence several traits simultaneously. In 

addition, advances in molecular genetics have shown that the ways in which one single 

locus can influence several traits simultaneously are quite diverse and complex, 

resulting in several, sometimes overlapping or even confounded definitions or 

subtypes of pleiotropy (e.g., Allison et al. 1998; Chen and Lübberstedt 2010; Hodgkin 

1998; Paaby and Rockman 2013; Solovieff et al. 2013; Stearns 2010; Stephens 2013). 

For instance, Solovieff et al. (2013) used the terms biological and mediated pleiotropy 

to distinguish two types of genetic causalities. In biological pleiotropy a genetic factor 

has a direct and simultaneous influence on two traits, whereas a genetic factor has a 

direct effect on an intermediary phenotype and this phenotype, in turn, influences an 

outcome phenotype by means of mediated pleiotropy. Similar concepts were presented 

by other authors (e.g., Allison et al. 1998; Chen and Lübberstedt 2010; Hodgkin 1998; 

Paaby and Rockman 2013; Stearns 2010; Stephens 2013). Nonetheless, in the present 

work and following the original concept of Plate (1910), the term “pleiotropy” refers 

to one single locus whose variation is directly or indirectly associated with more than 

one trait simultaneously. 

1.5 Trait correlations in gramineous species: a molecular perspective 

Different transcripts and/or proteins can be produced from a single locus by 

alternative splicing, alternate start/stop codons, among others mechanisms (Chen and 

Lübberstedt 2010; Hodgkin 1998; Solovieff et al. 2013; Stearns 2010). As illustration, 

rice plants with mutated LAGGING GROWTH AND DEVELOPMENT 1 (lgd1) locus 
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showed slower growth, reduced number of tillers, semi-dwarfism, altered panicle 

architecture and reduced grain yield in comparison to wild-types. The LGD1 locus 

encoded at least six transcripts variants which originated from different transcription 

start sites. These transcripts were predicted to encode at least four different protein 

isoforms. Moreover, LGD1 transcripts displayed distinct spatiotemporal expression 

patterns. For instance, in a spatial sense, the LGD1.2 transcript were only highly 

expressed in the panicle and spikelet branches, while LGD1.4 was expressed in several 

plant tissues but not in root or leaf blade. In a temporal sense, LGD1.4 was expressed 

at many developmental stages, while LGD1.2 was only expressed during tillering. 

Furthermore, complementing lgd1 mutants with complementary deoxyribonucleic acid 

(cDNA) of LGB1.1 produced only partially complementary phenotypes, which implies 

that other LGB1 transcripts are required to perform the diverse functions associated to 

LGB1 during rice growth and development (Thangasamy et al. 2012). 

Metabolomic pathways or biochemical processes would be antagonistic to each 

other if they rely on the same limited metabolite(s)/protein(s) (Chen and Lübberstedt 

2010; Paaby and Rockman 2013). For example, the cyclization of lycopene splits the 

biosynthesis of plant carotenoids into 𝛽, 𝛽 and 𝛽, 𝜀 branches. 𝛽-carotene and other 

compounds are produced by the 𝛽, 𝛽 branch, whereas the 𝛽, 𝜀 branch leads to 𝛼-

carotene and its derivatives. The enzyme lycopene 𝛽-cyclase (βLCY) catalyzes the 

formation of 𝛽-carotene, whereas the co-action of enzymes βLCY and lycopene 𝜀-

cyclase (𝜀LCY) produces 𝛼-carotene (Howitt and Pogson 2006). The LCYE locus 

codifies for 𝜀LCY in maize and its genetic variation influences the ratio of 𝛼 to 𝛽 

branch carotenoids in grains. This last finding opened the door to the breeding of 

maize with enhanced provitamin A content by selecting LCYE alleles which are 

associated with decreased 𝛼 to 𝛽 branch carotenoids ratios (Harjes et al. 2008). 

A genetic factor can have a direct influence on an intermediary phenotype and 

this last one, in turn, affects an outcome phenotype which has no direct association 

with the former causal genetic factor (e.g., Allison et al. 1998; Chen and Lübberstedt 

2010; Hodgkin 1998; Paaby and Rockman 2013; Solovieff et al. 2013; Stearns 2010; 

Stephens 2013). For instance, traits like grains per spike, grain weight, spikes per 

plant, among others, are intermediary phenotypes of the more complex outcome 

phenotype grain yield in cereal species (Slafer et al. 1996). This is also reflected in that 

some quantitative trait loci (QTL) influencing maize grain yield could be predicted by 

the multiplicative interactions among QTL of component traits (Balestre et al. 2012). 

10



The same gene product acting in different tissues can also produce correlated 

phenotypes (Chen and Lübberstedt 2010; Hodgkin 1998; Paaby and Rockman 2013; 

Solovieff et al. 2013; Stearns 2010). The first step of carotenoid synthesis is the 

condensation of two geranylgeranyl pyrophosphate molecules, which is catalyzed by 

the enzyme phytoene synthase (PSY). Carotenoids play tissue-specific roles in plants. 

For instance, carotenoids are essential components of the light harvesting system and 

also protect membranes from excess light damage in photosynthetic tissue. In parallel, 

carotenoids are important for abscisic acid production and dormancy in seeds, while 

they also play a role in limiting free radical-induced membrane deterioration and aging 

of seeds (Howitt and Pogson 2006). In maize, the yellow endosperm phenotype has 

been a strong target of selection since the 1930s because of its former association with 

increased nutritional value due to an enhanced carotenoid content (Fu et al. 2010). The 

paralog PSY1 enzyme is codified by the Y1 locus in maize (Buckner et al. 1996) and a 

guanine nucleotide insertion at 377 base pairs downstream of the ATG initiator codon 

produces a new stop codon in the mutant y1-8549, which leads to a null PSY1 allele 

(Li et al. 2008). This may explain why y1-8549 mutants are characterized by a white 

endosperm along with pale green seedlings and mature plants when grown at high 

temperatures compared to wild-type plants (Li et al. 2008; Robertson and Anderson 

1961). 

In gene expression QTL (eQTL) analyses, transcript levels of genes are 

considered as intermediary molecular phenotypes, and statistical associations between 

genetic polymorphisms and them are investigated (Gilad et al. 2008; Paaby and 

Rockman 2013; Solovieff et al. 2013). Genomic regions with a high number of distal 

eQTL might contain so-called “master regulators” that influence the expression of 

many genes (Gilad et al. 2008). In this sense, trait correlations could also arise from 

interactions of epistatic nature (Chen and Lübberstedt 2010; Hodgkin 1998; Paaby and 

Rockman 2013; Pavlicev and Wagner 2012; Solovieff et al. 2013; Stearns 2010). For 

instance, a significant eQTL hotspot was detected on chromosome 6D of wheat. This 

hotspot influenced the expression of 54 genes related to three different interconnected 

modules in the mature wheat embryo (Munkvold et al. 2013). 

Adaptive modifications of a character are associated with deleterious 

pleiotropic effects on other characters; an evolutionary process also known as the cost 

of adaptation or fitness tradeoff (Fisher 1930; Paaby and Rockman 2013; Pavlicev and 

Wagner 2012; Stearns 2010; Todesco et al. 2010). The fitness penalty due to 
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pleiotropic effects of some types of weed herbicide resistance is a good illustration of 

this (Délye 2005; Vila-Aiub et al. 2009). For instance, herbicides inhibiting the 

activity of the homomeric chloroplastic enzyme acetyl-CoA carboxylase (ACCase) 

can selectively control grass weed species by blocking the first step in the synthesis of 

fatty acids. Nonetheless, due to the high effective-control capability of this type of 

herbicides, their overuse led to the rapid selection of resistant weed plants (Délye 

2005). In vitro assays of ACCase activity of monocot species like Alopecurus 

myosuroides (Huds.) (Délye et al. 2005) and Lolium rigidum (Yu et al. 2007) have 

shown that different mutations producing specific amino acid substitutions in the 

enzyme can decrease the enzyme sensitivity to some ACCase-inhibiting herbicides; 

thus, these mutations confer herbicide resistance. Interestingly, in the absence of 

herbicide, some of these mutations conferring resistant presented ACCase in vitro 

activity levels inferior to those achieved by susceptible plants, which suggests the 

existence of  fitness cost due to the acquired resistance (Délye et al. 2005; Yu et al. 

2007). One explanation for this could be that some amino acid substitutions conferring 

herbicide resistance may also impair enzyme activity and/or reduce substrate affinity 

(Vila-Aiub et al. 2009). For example, two amino acid substitutions conferring 

resistance with fitness cost in Alopecurus myosuroides (Huds.) may be involved in 

carboxyl-transferase activity of ACCase, because they are located in the polar area at 

the bottom of the carboxyl-transferase active-site cavity (Délye et al. 2005). 

As previously mentioned, closely linked loci, each of them influencing a single 

trait, can also induce associations between different traits (Chen and Lübberstedt 2010; 

Gianola et al. 2015; Hodgkin 1998; Jiang and Zeng 1995; Paaby and Rockman 2013; 

Solovieff et al. 2013; Stearns 2010). For example, in the development of near isolines 

or in backcross breeding, closely linked loci associated to other traits different from 

that of interest can be dragged along with the targeted genome region intended to be 

introgressed (Brinkman and Frey 1977). This phenomenon is usually referred as 

linkage drag in the literature (e.g., Chen and Lübberstedt 2010; Häberle 2007; 

Kowalski et al. 2016; McCartney et al. 2007; Kuchel et al. 2007; Tanksley and Nelson 

1996; Voss-Fels et al. 2017). For instance, two adjacent QTL at 137.1 and 143.5 cM 

on chromosome 5B interact epistatically and were associated to variation in root 

biomass in a diverse population of wheat. In addition, a QTL associated to heading 

date was found between these two root biomass QTL. Interestingly, the haplotype 

associated to increased root biomass was exclusively carried by Chinese accessions, 
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while this genomic region in European varieties conformed a haplotype block with 

loci in very strong linkage disequilibrium (Voss-Fels et al. 2017). Since heading date 

plays an important role in the adaptation of wheat as a crop (Worland 1996), these 

observations suggested that the haplotype variant associated to increased root mass 

disappeared from European wheat genotypes as a consequence of linkage drag during 

the selection for adapted plant material and the fixation of the closely linked heading 

date QTL (Voss-Fels et al. 2017). 

1.6 Multiple-trait selection in the pre-genomic Era 

Plant breeders use conscious or unconsciously the metric of selection gain or 

response to selection in order to measure how effective a trait would be improved by 

means of selection. Basically, this metric is the difference in average genetic values 

between the original population before selection and the offspring of the selected 

fraction. Since one generation interval is needed to observe this difference, the 

response to selection is usually predicted without the need of true selection by using 

the “breeders’ equation”: 

𝑅̅ = 𝑖 ∗ ℎ ∗ 𝜎𝐺 ,                                                   (1) 

with 𝑅̅ being the expected or predicted response to selection, 𝑖 denoting the selection 

intensity, while ℎ and 𝜎𝐺 correspond to the square roots of heritability (ℎ2) and genetic

variance (𝜎𝐺2) of a particular trait, respectively. The selection intensity is a function of

the number of individuals selected relative to the phenotypic variation and size of the 

original population, whereas the heritability is the proportion of the phenotypic 

variance which can be attributed to the genetic variance (Bernardo 2010; Falconer and 

Mackay 1996). 

Tandem selection and independent culling levels are basic methods of 

multiple-trait selection. In the tandem method, selection is performed for one trait at a 

time during successive breeding cycles, until each trait of a set of multiple-traits 

reaches a desirable level. In other words and assuming only two traits, the first trait is 

improved during the first breeding cycle(s), while selection is performed for the 

second trait during the following generation(s) but using the fraction selected from the 

first generation(s) as base population. In the independent culling levels approach, 

different thresholds or culling levels are applied to all traits under selection in a single 

generation and only those individuals that pass all thresholds are selected (Bernardo 

2010; Falconer and Mackay 1996). Nonetheless, in certain situations these methods 

would have some disadvantages. First, if two traits are negatively correlated and are 
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thought to be selected in the same direction, selection for the second trait during 

subsequent generation(s) of a tandem selection program could counteract some of the 

progress that was achieved for the first trait. In addition, applying too strict culling 

levels when several traits are under selection, i.e. extremely high selection intensities 

for each trait, could result in no individuals being selected, because even individuals 

being exceptional for all except one trait would be discarded (Bernardo 2010). 

Moreover, some traits contribute more than others to the economic value of a cultivar 

as a whole. This is reflected in the “aggregated breeding value” (𝐻, Hazel 1943; 

Hazel and Lush 1942; Smith 1936), which is basically a linear combination of single 

trait breeding values based on their relative economic importance: 

𝐻𝑖 = 𝑎1 ∗ 𝑔1𝑖 + 𝑎2 ∗ 𝑔2𝑖 +⋯+ 𝑎𝑘 ∗ 𝑔𝑘𝑖,       (2) 

where 𝐻𝑖 is the aggregated breeding value of the 𝑖th individual, 𝑎1 to 𝑎𝑘 are relative 

economic values related to each of the 𝑘 traits under selection, whereas 𝑔1𝑖 to 𝑔𝑘𝑖 are 

the breeding values of the 𝑖th individual for each of the 𝑘 traits. Nevertheless, breeding 

values are in practice unknown; thus, only linear combinations using phenotypic 

values can be performed. The Smith-Hazel or net merit selection index (𝐼, Hazel 1943; 

Hazel and Lush 1942; Smith 1936) was proposed to deal with this limitation: 

𝐼𝑖 = 𝑏1 ∗ 𝑦1𝑖 + 𝑏2 ∗ 𝑦2𝑖 +⋯+ 𝑏𝑘 ∗ 𝑦𝑘𝑖,       (3) 

where 𝐼𝑖 is the net merit of the 𝑖th individual, 𝑏1 to 𝑏𝑘 are index weights related to 

each of the 𝑘 traits that maximize the correlation between 𝑰 and 𝑯, while 𝑦1𝑖 to 𝑦𝑘𝑖 are 

the phenotypic values for each of the 𝑘 traits of the 𝑖th individual. Provided that 𝑰 and 

𝑯 are vectors containing the net merits and aggregated breeding values of all the 

individuals in the population under selection, respectively, the index weights for 𝑘 

traits are obtained by a multiple-regression procedure of 𝑯 on 𝑰. From a single-trait 

point of view and assuming 𝑖 and 𝜎𝐺 in Equation (1) as constants, maximizing ℎ will 

maximize 𝑅̅, i.e. the expected gain of selection (Bernardo 2010; Falconer and Mackay 

1996). Similarly, maximizing the correlation between 𝑰 and 𝑯 will maximize 𝐻̅, i.e. 

the predicted aggregated gain of selection, which is a measure of the efficiency of 

multiple-trait improvement (e.g., Hazel 1943; Hazel and Lush 1942; Kempthorne and 

Nordskog 1959; Smith 1936; Suwantaradon et al. 1975). Moreover, under simplifying 

assumptions and considering high selection intensities, 𝐻̅ is expected to be higher 

using a net merit index than applying independent culling levels and these two 

methods, in turn, would be more efficient than performing tandem selection (Hazel 

and Lush 1942). Briefly, the principle underlying net merit indices is that the 
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excellence of some traits can, to a certain extent, compensate the weaknesses with 

respect to other traits (Elston 1963). In theory, different independent culling levels 

could be selected in such a way that 𝐻̅ is also maximized. Nevertheless, the selection 

of such culling levels can be quite tedious (Hazel and Lush 1942) and the net merit 

index solves this problem in a single step. Furthermore, the Smith-Hazel index will 

result in the maximization of 𝐻̅, regardless of whether or not the means of single-trait 

breeding values in Equation (2) change in a positive or negative direction but, in 

practice, plant breeders may occasionally want to keep some traits at the mean level or 

unchanged while improving others. For this reason, Kempthorne and Nordskog (1959) 

proposed a restricted selection index which allowed the inclusion of such restrictions. 

A few years later Williams (1962) presented a base index in which the index weights 

in Equation (3) are simply replaced by the relative economic values of Equation (2). 

However, economic weights may be difficult to estimate for traits like plant height or 

abiotic stress resistance, because such traits are not directly handled in the market. In 

consequence, others modifications to the Smith-Hazel index which do not rely on 

economic weights like the desired gains index (Pešek and Baker 1969) or the weight-

free multiplicative index (Elston 1963) have been proposed. The selection index 

theory has been used, for instance, for the simultaneous improvement of grain yield, 

kernel weight and grain protein content in wheat (Gebre-Mariam and Larter 1996), for 

the simultaneous selection of grain and straw yields in oat (Eagles and Frey 1974) and 

for the simultaneous breeding of biotic and abiotic stresses resistance along with grain 

yield and other traits in recurrent selection programs of maize (Suwantaradon et al. 

1975). 

Last but not least, a special form of multiple-trait selection corresponds to 

indirect selection. Indirect selection is based on the change in average genetic values 

for a particular trait caused by selection for a correlated trait; a term known as the 

correlated response to selection. Similarly as in Equation (1), this metric can be 

predicted without the need of true selection, in the way: 

𝐶𝑅̅̅ ̅̅ T1 = 𝑖T2 ∗ ℎT2 ∗ 𝑟𝐺 ∗ 𝜎𝐺T1,            (4)

where 𝐶𝑅̅̅ ̅̅ T1 is the expected correlated response to selection for trait T1 when selecting

for trait T2, 𝑖T2 and ℎT2 denote the selection intensity and square root of heritability 

for T2, correspondingly, 𝑟𝐺 represents the genetic correlation between T1 and T2, 

whereas 𝜎𝐺T1 is the square root of the genetic variance for T1. In indirect selection, the

trait indirectly selected (T1) is usually referred as target trait, while the trait being 
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directly selected (T2) is denominated indicator trait. Moreover, from Equations (1) and 

(4) it can be deduced that indirect selection for T1 using T2 as indicator trait would be

more effective than direct selection of T1 when ℎT2 ∗ 𝑟𝐺 > ℎT1. In other words, a 

target trait with low heritability would potentially benefit from indirect selection using 

a genetically correlated indicator trait with higher heritability (Becker 2011; Bernardo 

2010; Falconer and Mackay 1996). For instance, these benefits have been evaluated in 

the indirect selection for grain yield in resource-limited environments by selecting 

yield in high-yielding environments in barley (Ceccarelli et al. 1992) or by using 

physiological indicator traits in maize (Ziyomo and Bernardo 2013), or in the indirect 

selection for grain yield under irrigated conditions by selecting spectral reflectance 

indices in wheat (Babar et al. 2007). Moreover, the concept of indirect selection is 

implicit in the crop ideotype theory (Donald 1968), in which selecting for those traits 

pertaining to the high-yielding plant ideotype may lead to a high-yielding cultivar. 

Nonetheless, this is not the only reason why indirect selection could be beneficial. 

Indicator traits which are easier or less expensive to measure than a target trait are also 

very attractive because of their potential to decrease costs and simplify the 

phenotyping process in applied breeding (Becker 2011; Bernardo 2010; Falconer and 

Mackay 1996). In addition, there are target traits like dry matter and biomass yields in 

rye which are measured by destructive methods. Therefore, if these traits are directly 

measured during the early stages of selection, this could hamper the seed 

multiplication process. In this case, using plant height as non-destructive indicator trait 

has proven to be very effective (Haffke et al. 2014). 

1.7 Selection in the genomics Era 

Plant breeding is a costly labor in terms of time and inputs. For instance, plant 

breeders need in average between five and ten years from the development of the base 

population for selection to the final obtainment of a new crop candidate variety (e.g., 

Becker 2011; Bernardo 2010; Collard and Mackill 2008; Longin et al. 2015). 

Therefore, the plant breeding community is continuously searching for more efficient 

breeding methods that can accelerate breeding programs or reduce their costs. One of 

these methods is the marker-assisted selection (MAS). According to Lande and 

Thompson (1990), MAS can be interpreted as an indirect selection method (Section 

1.6), in which molecular markers are used as indirect traits for the selection of an 

associated target trait. In this sense, molecular markers like those based on DNA 

polymorphisms are less prone to be affected by environmental variation (they are 
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measured with more precision) and can be in some situations even simpler or cheaper 

to measure than the target trait (Collard and Mackill 2008; Kumar 1999). Nonetheless, 

selection purely based on molecular scores would replace phenotypic selection only in 

those cases when the proportion of additive genetic variance of the target trait that is 

associated with marker loci equals the heritability of the target trait. Otherwise, 

selection should be based on a mixed-criteria, either by combining marker and 

phenotypic information into a selection index or by performing early selection based 

on marker profiles followed by phenotypic selection in later stages (a sort of tandem 

selection), among other strategies (Dekkers 2007; Lande and Thompson 1990). In 

cereal crops, MAS has been mainly applied to assist backcross and pyramiding 

breeding (Collard and Mackill 2008; Kumar 1999). A subgroup of markers used in 

MAS is the so-called “functional markers”. Functional markers are derived from 

polymorphic sites within genes that have a biological cause-effect relationship with 

phenotypic variation (Liu et al. 2012). For example, functional markers linked to 

dwarfing loci Rht-B1 and Rht-D1 allow distinguishing between tall and dwarfing 

genotypes of wheat (Ellis et al. 2002). It follows from the above that marker-trait 

associations are the essence of MAS. Basically, the knowledge about these 

associations arises from genetic mapping studies (Collard and Mackill 2008; Kumar 

1999; Lande and Thompson 1990). Among them, linkage and association mapping are 

the most used ones. Both of these mapping methods use the ability of recombination to 

break the genome into fragments that can be subsequently correlated with phenotypic 

variation. However, they mainly differ in the way recombination is being generated. In 

linkage mapping controlled crosses are performed to generate a mapping population, 

which sets up a closed genetic system with known levels of relatedness among 

individuals but few recombination points in genomes. In contrast, association mapping 

uses diverse populations of genotypes, which configures an open system with a high 

number of historical recombination events in genomes but uncontrolled relatedness 

among individuals (Myles et al. 2009). Nonetheless, highly polygenic traits cannot be 

efficiently targeted by MAS, because minor effect loci remain often undetected by 

genetic mapping. On the contrary, genomic prediction uses all markers information to 

predict the breeding values of unobserved traits in selection candidates (Meuwissen et 

al. 2001; Whittaker et al. 2000). Dekkers (2007) extended the MAS theory of Lande 

and Thompson (1990) to the context of genomic predictions. Similarly as in MAS, the 

correlation between predictions and true breeding values would determine if genomic 
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selection should be purely based on genomic predictions or on a mixture of phenotypic 

values and genomic predictions in order to maximize selection gains. Genomic 

prediction of maize testcross grain yield performance under optimal (Endelman et al. 

2014; Ziyomo and Bernardo 2013) and drought conditions (Ziyomo and Bernardo 

2013), of grain yield in barley (Endelman et al. 2014), of Fusarium head blight 

resistance in wheat populations of inbred lines (Mirdita et al. 2015a; Rutkoski et al. 

2012) and hybrids (Mirdita et al. 2015b), of grain yield and other traits in rye (Wang et 

al. 2014), are only a few of several examples that have evaluated the potential of this 

technology in cereal crops. 

1.8 Multiple-trait mapping and genomic prediction methods 

Multiple-trait mixed model approaches were introduced several years ago in 

the pioneering work of Henderson and Quaas (1976). In principle, the multiple-trait 

additive genetic model allows the simultaneous modelling of several traits by using the 

genetic relationships between individuals along with the genetic and residual variances 

and covariances among traits. Simulation and theoretical studies have revealed some 

of the advantages of multiple-trait over single-trait analyses in genetic mapping and 

genomic prediction:  

i) In the context of genetic mapping, multiple-trait methods are expected to

provide more precise estimates of QTL effects, an enhanced power of QTL

detection, a decreased rate of false positive pleiotropic associations and a

formal frame of work to test if the co-location of QTL for more than one

trait is because of pleiotropy or due to closely linked single-trait QTL

(Allison et al. 1998; Almasy et al. 1997; Banerjee et al. 2008; Caliński et al.

2000; Cheng et al. 2013; Da Costa E Silva et al. 2012; Ferreira and Purcell

2009; Jiang and Zeng 1995; Knott and Haley 2000; Mangin et al. 1998;

Thoen et al. 2017; Varona et al. 2004; Williams et al. 1999; Zhou and

Stephens 2014; Stephens 2013).

ii) In genomic prediction, the benefits of incorporating information on

genetically correlated indicator trait(s) within a multiple-trait model are

similar to those of indirect selection (Section 1.6). In this sense,

predictabilities for a low heritable target trait can be improved if a

genetically correlated indicator trait with higher heritability is included

within the genomic prediction model (Calus and Veerkamp 2011; Dahl et
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al. 2016; Guo et al. 2014; Hayashi and Iwata 2013; Jia and Jannink 2012; 

Jiang et al. 2015). 

1.9 Objectives 

When the present PhD work was started (June 2014), studies directly dealing 

with the multiple-trait selection problematic in cereal crops by using state-of-the-art 

multiple-trait genome-wide association mapping or multiple-trait genomic 

prediction/selection approaches were scarce. Therefore, the main goal of this work was 

to explore the potential and limits of multiple-trait genomic methods to assist the 

improvement of multiple-traits in line and hybrid breeding of cereal crops. The current 

work covers the following specific objectives: 

(1) To dissect the pleiotropic architecture of the bread wheat yield-syndrome into

pleiotropy and close-linkage by means of multiple-trait association mapping in a

diverse population of varieties adapted to European environments (Schulthess et

al. 2017a).

(2) To review the state-of-the-art of genomic prediction in hybrid breeding with an

emphasis on the implementation of genomic selection in model crops wheat and

maize (Schulthess et al. 2017c).

(3) To study the influence of the relatedness between estimation and prediction sets on

the benefits of multiple-trait genomic prediction of the target trait Fusarium head

blight severity using plant height and heading date as indicator traits in a vast

hybrid wheat population (Schulthess et al. 2017b).

(4) To identify an efficient method for genomic prediction of selection indices for the

simultaneous improvement of grain yield and protein content in rye with feeding

purposes using two populations of hybrid rye (Schulthess et al. 2016).
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6. General discussion

6.1 How and when do we profit by using multiple-trait instead of single-trait 

approaches? 

The principle of parsimony is well embodied in the aphorism of George Box 

(1979): “All models are wrong but some are useful”. In this sense, a model with a

small number of parameters is considered parsimonious if this can describe a 

phenomenon as accurate as a more sophisticated model which has more parameters. 

From the theoretical point of view, a parsimonious model may perhaps be far away 

from what we conceive as the true mechanistic model describing a phenomenon. 

Nonetheless, the simplicity and robustness of parsimonious models make them an 

attractive choice compared to unpractical and unnecessarily complicated models which 

may only impose difficulties in model fitting, implementation and interpretability. 

Consequently, the principle of parsimony plays a central role when single- and 

multiple-trait approaches are being compared. In the current section, the main 

advantages of multiple-trait methods presented in Chapter 2 (Schulthess et al. 2017a), 

Chapter 4 (Schulthess et al. 2017b), and Chapter 5 (Schulthess et al. 2016) of the 

present PhD work are highlighted and discussed. 

6.1.1 Genetic mapping: it is not only a matter of QTL detection power 

Many authors in the context of genetic mapping in plants recognize the 

increased power in QTL detection, a decreased rate of false positive pleiotropic 

associations and the possibility to formally test pleiotropy versus close-linkage as the 

main potential advantages of multiple-trait over single-trait approaches (e.g., Caliński

et al. 2000; Cheng et al. 2013; Jaiswal et al. 2016; Lebreton et al. 1998; Malosetti et al. 

2008; Mangin et al. 1998; Schulthess et al. 2017a; Stich et al. 2008; Thoen et al. 

2017). For instance, the pleiotropic architecture of grain yield and correlated traits 

such as plant height, thousand grain weight, grains per ear, among others, was 

investigated by means of multiple-trait genome-wide association mapping in Chapter 

2. This method detected genomic regions which simultaneously influenced grain yield

of wheat and, at least, one trait correlated to it. Moreover, a multiple-trait approach 

implemented in Chapter 2 allowed discerning if pleiotropy per se or, alternatively, two 

closely linked loci were the most likely cause underlying co-located QTL for grain 

yield and correlated traits. Here should be emphasized that while both, multiple- and 
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single-trait methods can detect QTL for one or more traits, only multiple-trait 

approaches provide the proper statistical frame of work to answer the pleiotropy 

versus close-linkage question (Jiang and Zeng 1995). Nonetheless, it was also shown 

in Chapter 2 that decreased allele frequencies and QTL sizes together with increased 

linkage disequilibrium between simulated QTL located at two different loci hinder the 

ability to differentiate true close-linkage from presumed pleiotropy. These and other 

factors limiting or enhancing this ability were already discussed in detail in Chapter 2. 

However, differences in the abilities of single- and multiple-trait approaches to detect 

QTL for multiple-trait complexes were barely covered in Chapter 2. Therefore, this 

topic is extensively discussed in the following paragraphs. 

Provided a null correlation between traits, the evidence favoring the association 

between variation in genetic polymorphisms and correlated-trait complexes found by 

multiple-trait genetic mapping will be approximately the sum of evidences observed 

by separately analyzing each trait using single-trait approaches. On the contrary, when 

traits are correlated, a multiple-trait test statistic may be far different from the sum of 

separate single-trait test statistics (Jiang and Zeng 1995). Since trait distributions are in 

this last case no longer independent, the experiment may be more suited to be studied 

using a multivariate 𝑘-dimensional distribution, with 𝑘 being the number of traits 

under consideration (Lebreton et al. 1998). For example, variation in a particular 

genomic region may have a practically negligible effect on certain trait but a small to 

intermediate effect on a second trait correlated to the first one, and single-trait genetic 

mapping may fail to detect any QTL in this region. However, the joint analysis of 

these two traits may increase the power of detection of the QTL for the second trait. In 

this regard, several theoretical and simulation studies have shown that the joint 

analysis of traits can potentially increase the power in QTL detection (e.g., Allison et 

al. 1998; Almasy et al. 1997; Banerjee et al. 2008; Cheng et al. 2013; Da Costa E Silva 

et al. 2012; Ferreira and Purcell 2009; Jiang and Zeng 1995; Knott and Haley 2000; 

Mangin et al. 1998; Thoen et al. 2017; Zhou and Stephens 2014; Stephens 2013). 

Nonetheless, most of these studies have also shown that this advantage of multiple-

trait approaches is to a major or minor extent influenced by factors such as the 

percentage of trait variance explained by QTL, the population size, the genetic 

distance between markers and QTL, the allele frequencies at a pleiotropic locus, the 

number of traits, as well as the magnitude and sign of genetic and residual trait 

covariances or correlations. For instance, Jiang and Zeng (1995) already showed in 
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their pioneering work that if the residual correlation and the cross product between 

QTL effects for two simulated traits are different in signs, the power of joint analysis 

would be always higher than the overall power of two separated single-trait genetic 

mapping analyses. 

Statistical power is not the only criteria of QTL detection to be considered 

when deciding between single- and multiple-trait approaches for genetic mapping. 

Meta-analyses of several single-trait genetic mapping analyses run in parallel for 

different correlated traits may result in declaring an excessive number of loci with 

significant pleiotropic associations; a type of error which may be better accounted by 

multiple-trait genetic mapping approaches (Allison et al. 1998; Caliński et al. 2000; 

Ferreira and Purcell 2009). However, this last advantage lies on the increased critical 

values due to the additional number of parameters estimated in multiple-trait genetic 

mapping approaches that could, in turn, decrease QTL detection power. Therefore, the 

ability of joint mapping to overall increase QTL detection power relies on the 

inclusion of information on additional traits that can compensate for the more stringent 

critical values of multiple-trait approaches (Allison et al. 1998; Almasy et al. 1997; 

Jiang and Zeng 1995; Mangin et al. 1998). 

Even though no single genetic mapping approach will be the most powerful in 

detecting the many different types of genetic effects underlying multiple-trait 

complexes (for an extensive review refer to Stephens 2013), the overall picture 

suggests that the balance between decreased false pleiotropic associations and 

increased QTL detection power of multiple-trait genetic mapping approaches 

overshadows the losses in power that can result in specific situations where single-trait 

analyses appear more powerful. 

6.1.2 Genomic prediction: improving accuracies by using indicator traits 

Over the last couple of years, the crop plant science community became more 

interested in multiple-trait genomic prediction because of its potential to improve 

prediction accuracies over those achieved by single-trait approaches (Bao et al. 2015; 

He et al. 2016; Hori et al. 2016; Jia and Jannink 2012; Lyra et al. 2017; Marchal et al. 

2016; Montesinos-López et al. 2016; Qiu et al. 2017; Rutkoski et al. 2012, 2016; 

Santos et al. 2016; Schulthess et al. 2016, 2017b; Wang et al. 2016). For instance in 

Chapter 4, the potential of indicator traits plant height and heading date to improve the 

predictability of Fusarium head blight severity in hybrid wheat by means of multiple-

trait genomic prediction was evaluated. As well, the benefits of shifting from single- 
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towards multiple-trait genomic prediction for grain yield and protein content in two 

populations of hybrid rye were investigated in Chapter 5. Both chapters confirmed 

what extensive simulation studies have shown so far: provided an indicator trait is 

genetically correlated to and has higher heritability than a particular target trait, 

including its information within a multiple-trait genomic prediction model can be 

more accurate for the target trait than single-trait prediction (Calus and Veerkamp 

2011; Dahl et al. 2016; Guo et al. 2014; Hayashi and Iwata 2013; Jia and Jannink 

2012; Jiang et al. 2015). Nevertheless, these simulation studies along with Chapter 4 

and Chapter 5 also showed that this niche of advantage for multiple-trait genomic 

prediction may be influenced by several factors other than the gap in heritabilities or 

the genetic correlation between target and indicator traits. For instance, experimental 

results of Chapter 4 showed that even though a genetically correlated indicator trait 

with higher heritability is included in the model, the difference in predictability 

between multiple- and single-trait genomic prediction for the target trait tends towards 

zero as the level of relatedness between estimation and prediction set increases. Thus, 

in those situations where accuracies of single- and multiple-trait approaches are 

comparable and due to the high computational burden of multiple-trait approaches 

(e.g., Allison et al. 1998; Calus and Veerkamp 2011; Da Costa E Silva et al. 2012; 

Hayashi and Iwata 2013; Hori et al. 2016; Malosetti et al. 2008; Zhou and Stephens 

2014), the principle of parsimony will finally promote the use of single-trait methods. 

Nonetheless, it may be anticipated that this current picture would change in the future 

due to advances in breeding informatics. This last topic is discussed in more detail in 

the following section. 

6.2 Confronting the tyranny of numbers in multiple-trait complexes 

Methods that can reduce the computational load but also conserve the 

advantages of multiple-trait analyses are among the “Philosopher’s stones“ of many 

quantitative geneticists and breeding informaticians. In the context of genetic 

mapping, one of the earliest and simplest methods trying to deal with this issue 

consisted in obtaining linear combinations of traits by applying, for instance, principal 

component analysis, followed by or coupled with univariate analyses of each of these 

new generated variables (e.g., Allison et al. 1998; Cheng et al. 2013; Mangin et al. 

1998). A further step in sophistication has been the implementation of multiple-trait 

approaches with reduced number of parameters as compared to other less 

parsimonious multiple-trait models (e.g., Hori et al. 2016; Malosetti et al. 2008; Calus 
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and Veerkamp 2011; Williams et al. 1999). For example, Calus and Veerkamp (2011) 

proposed two Bayesian models for multiple-trait genomic prediction in which marker 

effects on traits were expressed as the product between a vector of marker effect sizes 

and a vector of scaling factors that transform these effects to the scale of each trait. 

This parameterization implies that the number of additional parameters for marker 

effect estimation in multiple-trait over single-trait approaches is, at the model level, 

exactly equal to the number of additional traits included in the multiple-trait model. In 

contrast, in multiple-trait approaches like those considered in Chapter 2, Chapter 4 and 

Chapter 5, this number increases multiplicatively, which makes the computational load 

gap between single- and multiple-trait approaches broader. Moreover, the development 

or implementation of efficient methods for statistical inference has been a continuous 

topic in the contexts of multiple-trait genetic mapping (e.g., Banerjee et al. 2008; 

Caliński et al. 2000; Da Costa E Silva et al. 2012; David et al. 2013; Ferreira and 

Purcell 2009; Jiang and Zeng 1995; Knott and Haley 2000; Lebreton et al. 1998; 

Stephens 2013; Varona et al. 2004; Zhou and Stephens 2014) and genomic prediction 

(e.g., Dahl et al. 2016; Hayashi and Iwata 2013; He et al. 2016; Montesinos-López et 

al. 2016; Wang et al. 2016). For instance, alternative ways to test pleiotropy versus 

close-linkage that are potentially more efficient or simpler to implement than the 

multiple-trait likelihood ratio approach of Jiang and Zeng (1995) have been proposed 

(e.g., Banerjee et al. 2008; Caliński et al. 2000; David et al. 2013; Knott and Haley 

2000; Lebreton et al. 1998; Varona et al. 2004). 

In the future and facilitated by advances in modern and automatized –omics 

technologies besides genomics (e.g., Neumann et al. 2015; Patti et al. 2012; Xiong et 

al. 2017), the number of expression traits like transcripts, proteins, metabolites, or 

phenotypes available in multiple-trait datasets would dramatically increase. In this 

sense, the future bottle neck will not be the generation of expression data anymore but, 

the search for new methods to wisely and optimally use this extremely large amount of 

information. Breeding informatics will play a central role to confront this challenge. 

For instance, Cheng et al. (2013) developed a variable selection algorithm to maximize 

statistical power in QTL detection when the number of traits is too large and the joint 

analysis of all traits becomes unpractical. Moreover, in Chapter 4 and Chapter 5 it was 

shown that when a set of indicator traits is at hand for multiple-trait genomic 

prediction and the goal was to improve the predictability or prediction accuracy of one 

particular target trait, a two-trait model using the best indicator trait available for that 
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target trait would be enough. In contrast, Wang et al. (2016) found that adding more 

traits into a multiple-trait model can further increase the predictability of a particular 

target trait in hybrid rice. In this respect, the development of algorithms analogous to 

the one of Cheng et al. (2013) but considering prediction accuracies instead of QTL 

detection power will help to optimize the number of indicator traits needed in 

multiple-trait genomic prediction applications. 

6.3 Basic considerations for the implementation of a genomic assisted multiple-

trait breeding program 

Given a limited budget, the challenge of implementing genomic selection as a 

tool to assist hybrid plant breeding was dissected in Chapter 3 (Schulthess et al. 

2017c) using basic optimization theory. In this problem, the relative efficiency of 

genomic selection over pure phenotypic selection per unit of time should be 

maximized. Until the date, simulation and experimental plant data studies evaluating 

the optimal allocation of resources between estimation and prediction sets have been 

only assessed from the single-trait point of view (Endelman et al. 2014; Krchov and 

Bernardo 2015; Longin et al. 2015; Lorenz 2013; Riedelsheimer and Melchinger 

2013). Analogously to single-trait cases (as reviewed in Chapter 3), the 𝐻̅ ratio per 

unit of time (see Section 1.6 for a detailed explanation of 𝐻̅) between multiple-trait 

selection assisted by genomics and pure phenotypic multiple-trait selection should be 

the objective function to be maximized (Cerón-Rojas et al 2015). It is anticipated that 

the current section is far away from solving this non-linear multivariate problem and 

future studies on this topic are for sure needed. Nevertheless, some principles that 

should be considered for the implementation of multiple-trait selection assisted by 

genomics, i.e. using multiple-trait MAS and genomic prediction approaches, are 

presented here. 

A theoretical decision tree that may maximize 𝐻̅ by means of genomic tools is 

proposed in Figure 6.1. The root node in Figure 6.1 is the estimation set for marker 

effects on traits, which corresponds to a multivariate box of 𝑘 traits, 𝑛 genotypes and 𝑝 

DNA-based molecular markers. If there is previous knowledge about useful indicator 

traits (for example from the literature or from own breeder’s experience), these should

be included in the estimation set along with those traits directly involved in 𝐻. 

Nonetheless, certain assumptions and clarifications must be first introduced before 

genomic-based breeding strategies for multiple-trait improvement are explained:  
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i) Although it is very likely that different traits have a mixture of genetic

architectures; it is assumed that either only a few major or only several

minor effect loci underlie variation for all traits.

ii) Individuals within the estimation set and selection candidates are

assumed to be inbred lines. Thus, traits are assumed to be under the

control of additive genetic effects and their epistatic interactions.

iii) It was already discussed in Chapter 2 that traits appearing uncorrelated

at the phenotypic level may be correlated at the genetic level and vice

versa. Likewise, it was discussed in Chapter 2 that even if traits have a

null net genetic correlation, they could still have a partially shared

genetic control. Furthermore, it is clear from Section 6.1 that multiple-

trait approaches exploit the information contained in correlated-trait

complexes in a better manner than their single-trait counterparts, either

because trait covariation is of genetic, environmental or phenotypic

nature. Therefore, a scenario in which no befits at all are expected from

using multiple-trait approaches needs the very strong assumption that

there are absolutely no genetic or environmental factors inducing

covariation among traits. However, this case is simply included for

illustration purposes.

iv) 𝑛 and 𝑝 have been already optimized according to certain restrictions

and parameters; although this is not a trivial issue (see Chapter 3). In

this regard, markers are assumed to be in very strong linkage-

disequilibrium with functional loci underlying trait variation, which is

of uppermost relevance for the obtainment of reliable genetic

correlations estimates in the multiple-trait context (Gianola et al. 2015).

v) The 𝑘 × 𝑛 × 𝑝 multidimensional system is assumed to be balanced and

if this is not the case, marker (He et al. 2015) and phenotype imputation

(e.g., Dahl et al. 2016; Hori et al. 2016; Jia and Jannink 2012) strategies

should be considered. In this sense, relying on a balanced instead of an

unbalanced estimation set may, for instance, increase power in QTL

detection (He et al. 2015; Dahl et al. 2016).

vi) In Chapter 4 it was concluded that a low level of relatedness between

estimation and prediction sets is needed to benefit from multiple-trait
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genomic prediction. Therefore, estimation set and predicted selection 

candidates are assumed as not or, at most, barely related. 

vii) Phenotype imputation is the method of choice for multiple-trait

genomic prediction. Thus, indicator traits not only must be measured

within the estimation set but also on selection candidates.

Consequently, this additional phenotyping cost should be considered in

the implementation problem.

The first node of the tree in Figure 6.1 corresponds to the phenotypic analyses, 

in which first and second degree statistics such as trait correlations and heritabilities 

are studied. Information generated at this stage will be useful to evaluate, for example, 

the potential of benefits from indirect selection (See Section 1.6 for more details). The 

second level of nodes is marked by genome-wide association mapping within the 

estimation set, which may reveal if major effect loci underlie trait variation. In the case 

that traits are uncorrelated and major effect loci are detected, haplotype effects will be 

calculated using estimated single-trait marker effects of major loci and marker profiles 

of selection candidates. If traits have a truly polygenic architecture and traits are 

uncorrelated, 𝐻 predictions of selection candidates by obtained by means of a direct 

genomic prediction approach (Chapter 5). 

When traits are correlated, multiple-trait genome-wide association and 

prediction approaches will have a central role. In this case, if multiple-trait genetic 

mapping reveals no major effect loci, multiple-trait genomic prediction can be applied 

to obtain more accurate predictions for traits with low heritability by using information 

on indicator traits of selection candidates. Afterwards, 𝐻 of selection candidates may 

be predicted using a reverse genomic prediction approach (Chapter 5) or other 

alternative methods (Cerón-Rojas et al. 2008, 2015; Dekkers 2007). In case some 

detected QTL with major effects on different traits co-locate, differentiating true 

pleiotropy from close-linkage will define different breeding strategies depending on 

the sign of the locus-induced covariation and the multiple-trait breeding goals 

(Chapter 2). In this regard, trait covariation which fits perfectly to multiple-trait 

breeding goals is termed as desired trait covariation while covariation which does not, 

is considered undesired. Thus, when a test of pleiotropy versus close-linkage cannot 

discard pleiotropy in the estimation set, performing MAS using pleiotropic loci that 

induce desired trait covariation may be a very efficient way to simultaneously improve 

multiple-traits (pleiotropic multiple-trait-MAS  in  Figure 6.1). However, if co-located 
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Figure 6.1. Decision tree in a multiple-trait (MT) breeding program assisted by genomics for 

the maximization of the aggregated gain of selection (𝐻̅). The estimation set is represented by 

a three-dimensional system involving phenotypic values (𝑦) for 𝑘 traits of 𝑛 individuals 

genotyped with p DNA-based molecular markers. Depending on the strategy, single-trait (ST) 

and MT genome-wide association analyses (-GWAS) as well as ST and MT genomic 

prediction (-GP) models are considered. In the absence of major effect loci, selection index 

(SI) prediction methods are contemplated. When major loci are present, the type of trait 

covariation induced by loci, i.e. undesired (UC) or desired covariation (DC) is taken into 

account for marker-assisted selection (MAS). A dashed line separates the tree into two halves, 

with each of them involving those tasks related to the estimation set or to the group of 

selection candidates, respectively. See text for a more detailed description. 
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QTL induce undesired trait covariation, it should be evaluated which of the traits 

controlled by a pleiotropic locus will be improved relying on that particular locus, 

while effects on the rest of the traits are assumed as “improvement costs” and should

be complemented using other major effect loci detected by multiple-trait genetic 

mapping (complementary multiple-trait-MAS in Figure 6.1). From an evolutionary 

perspective, this last case may basically correspond to a selection-pleiotropy-

compensation model (Pavlicev and Wagner 2012). Nonetheless, the cost-benefit 

evaluation of such multiple-trait haplotypes is not a trivial issue and further applied 

breeding studies are needed on this topic. The amount of trait variation explained by 

QTL as well as the economic relevance of traits should be among the basic factors 

considered by these future studies. 

In case traits are correlated and the co-location of some detected QTL with 

major effects on different traits is due to closely linked loci, strategies of multiple-trait 

MAS will basically depend on the frequency of multiple-trait haplotypes within the 

group of selection candidates (Chen and Lübberstedt 2010). If alleles in line with 

breeding goals are in coupling phase in some selection candidates, their selection is 

straight forward and would lead to haplotype fixation (a decrease in local 

recombination) for the selected material (Bernardo 2010). When alleles that fit to 

breeding goals are in repulsion phase in all selection candidates, strategies to increase 

recombination rate along with genetic variation must be evaluated. For instance, one 

strategy would be to cross suboptimal selection candidates, which already have desired 

haplotypes at all other major loci, with individuals less related to them. Subsequently 

new inbred line populations could be developed from these crosses. In this sense, less 

related individuals could be, for example, lines in the estimation set that already carry 

the desired haplotypes for those region(s) with undesired linkage phases among 

selection candidates. Alternatively, breeders could rely on the decreased linkage 

disequilibrium and increased genetic variation existent in unadapted material to 

increase the local recombination rate at genomic region(s) targeted by multiple-trait 

MAS (Chen and Lübberstedt 2010; Longin and Reif 2014; Tanksley and Nelson 

1996). In this regard, coupling backcross breeding (Tanksley and Nelson 1996) and 

doubled haploid techniques (Melchinger et al. 2013) may accelerate the development 

of new selection candidates with desired multiple-trait haplotypes. Other strategies to 

increase the frequency of rare events of recombination in multiple-trait MAS were 

mentioned by Chen and Lübberstedt (2010). Nonetheless, since recombination rates 
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are not evenly distributed in genomes, these strategies may be not effective in all 

cases. The most common observation is that in many species like human (Homo 

sapiens), rat (Rattus norvegicus), house mouse (Jensen-Seaman et al. 2004), and 

Arabidopsis thaliana (Fernandes et al. 2017) the recombination rate tends to increase 

towards telomeric regions of chromosomes, whereas this rate is reduced near 

centromeres. As illustration in cereals, this may explain why the haplotype structure of 

the laxatum-a locus of barley, which is located in the pericentromere area of 

chromosome 5HL, is significantly less diverse than that of the uniculme4 locus (Jost et 

al. 2016), which maps to the distal end of chromosome 3HL (Tavakol et al. 2015). 

Moreover, a recent study in Arabidopsis thaliana revealed that combined effects of 

mutated figl1, recq4, and fancm loci can increase the recombination rate up to 7.8-fold 

(genome-wide average) as compared to recombination in wild-type plants (Fernandes 

et al. 2017). Nevertheless, no significant changes in recombination rate were observed 

between these mutants and wild-type plants for intervals encompassing or immediately 

flanking centromeres. Further studies are needed to evaluate the prospects and limits 

to enhance recombination rate relying on homologues of these loci in cereal species. 

However, here should be emphasized that a limited recombination rate and genetic 

variation among selection candidates is not exclusively problematic when the 

undesired trait covariation is caused by closely linked loci (Figure 6.1). Actually, these 

features are also limited in all traditional breeding programs that rely on elite plant 

material (e.g., Becker 2011; Longin and Reif 2014; Tanksley and Nelson 1996). Thus, 

these and further strategies to overcome these problems [see for instance the strategy 

to exploit genetic resources for the improvement of quantitative traits in Longin and 

Reif (2014)] should be evaluated in a case-by-case fashion and are beyond the scope 

of this PhD thesis. 

In summary, the decision tree (Figure 6.1) would lead to the maximization of 

𝐻̅, either by selecting those individuals with desired multiple-trait haplotypes when all 

traits are under the control of major loci or by choosing those selection candidates that 

maximize genomically predicted 𝐻 values when all traits are influenced by minor loci. 

7. Final outlook

It is clear that more benefits than disadvantages are expected when shifting 

from single- towards multiple-trait genome-wide association and prediction 

approaches. Advances in breeding informatics may further facilitate this shift in the 

future. In addition, the selection index theory for the improvement of multiple-traits 
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was introduced almost eight decades ago and, along with the indirect selection theory, 

have been a theoretical backbone for marker-assisted and genome-wide selection 

approaches. Nonetheless, it results somehow curious that during the genomic era the 

selection index theory has been barely considered by plant molecular breeders for 

what it was originally conceived for: multiple-trait improvement. Thus, we expect that 

the current work can illustrate annual crop breeders on how to embark into the 

improvement of multiple-traits assisted by genomics. 
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8. Summary

Plant breeders spend most of their time and efforts adapting plants and 

combining different traits in a single variety that can potentially meet certain 

production, end-use, and market niche needs. This task is known as multiple-trait 

breeding. In this respect, breeders dealing with multiple-traits can take advantage of 

some trait correlations or in the contrary, they must try to break undesired correlations 

by means of recombination. When this PhD work was started (June 2014), studies 

focused on multiple-trait selection by using multiple-trait genome-wide association 

mapping or multiple-trait genomic prediction/selection approaches were scarce in 

cereal crops. Therefore, the main goal of this work was to explore the potential and 

limits of multiple-trait genomic methods to assist the improvement of multiple-traits in 

line and hybrid breeding of cereal crops. 

Basically, traits are genetically correlated because of the net effect of co-

located quantitative trait loci (QTL) for different traits. A multiple-trait genome-wide 

association mapping study in a population of 372 bread wheat (Triticum aestivum L.) 

varieties adapted to Europe and genotyped with 18,856 polymorphic markers revealed 

that several QTL for grain yield and its components co-locate. In the Era of molecular 

breeding, distinguishing if this QTL co-location is due to pleiotropy or caused by 

closely linked genes, would determine the optimum strategy for multiple-trait 

breeding. In most genomic regions with co-located QTL for grain yield and its 

components there was not enough statistical evidence to strongly rule out pleiotropy as 

the cause of QTL co-location. A simulation study in this wheat population showed that 

the ability to differentiate QTL-colocation due to close-linkage from that caused by 

pleiotropy was potentially limited by low minor allele frequencies, along with small 

QTL sizes and high rates of linkage disequilibrium between QTL. On this respect, 

increasing population size and marker density may improve the ability to dissect the 

pleiotropic architecture of grain yield and correlated traits. 

An extensive literature survey on genomic prediction in hybrid crops showed 

that the relatedness between estimation and prediction sets is a major factor 

influencing genomic predictability. In parallel, past simulation studies revealed that 

provided an indicator trait is genetically correlated to and has higher heritability than a 

particular target trait, including its information within a multiple-trait genomic 

prediction model can be more accurate for the target trait than single-trait prediction. 

Nonetheless, a study on multiple-trait genomic prediction of the target trait Fusarium 
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head blight severity of hybrid wheat showed for the very first time in crop plants that 

the benefits of multiple-trait prediction are also impacted by relatedness. In this sense, 

even though a genetically correlated indicator trait with higher heritability is included 

in the model, the difference in predictability between multiple- and single-trait 

genomic prediction for the target trait tends towards zero as the level of relatedness 

between estimation and prediction set increases. 

Genetic correlations are beneficial in multiple-trait genomic prediction 

regardless of whether or not these correlations complicate multiple-trait improvement. 

Thus, multiple-trait genomic prediction cannot be directly used to break undesirable 

trait correlations. Grain yield and protein content were negatively correlated in two 

testcross populations of rye (Secale cerale L.). Different selection indices potentially 

allow the simultaneous improvement of these traits when rye is used for feeding 

purposes. These selection indices can be accurately and efficiently predicted by single-

trait genomic prediction considering selection indices as if they were single-traits. 
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9. Zusammenfassung

Pflanzenzüchter beschäftigen sich mit der Anpassung von Kulturpflanzen an 

ihre Zielumwelten und der Kombination von verschiedenen Eigenschaften in einer 

einzigen Sorte, um die Bedürfnisse der Pflanzenproduktion, Verbraucher und der 

jeweiligen Marktnische zu erfüllen. Diese Aufgabe wird als Züchtung von mehreren 

Merkmalen bezeichnet. Während der Selektion auf mehrere Merkmale können Züchter 

von Merkmalskorrelationen profitieren oder müssen unerwünschte Assoziationen 

durch genetische Rekombination reduzieren. Zu Beginn dieser Doktorarbeit (Juni 

2014) gab es nur wenige Studien zur Anwendung multivariater Assoziationskartierung 

und genomischer Selektion in Getreiden. Deswegen war es das Hauptziel dieser 

Doktorarbeit, die Chancen und Grenzen multivariater genomischer Methoden für die 

Selektion auf mehrere Merkmale in der Linien- und Hybridzüchtung von 

Getreidearten zu untersuchen.  

Merkmale können aufgrund von überlappenden Quantitative Trait Locus 

(QTL)-Regionen genetisch korreliert sein. In einer Population von 372 europäischen 

Brotweizensorten (Triticum Aestivum L.), die mit 18,856 polymorphen molekularen 

Markers genotypisiert worden sind, wurden durch multivariate Assoziationskartierung 

mehrere überlappende QTL-Regionen für den Kornertrag und verschiedene 

Ertragskomponenten detektiert. In der Ära der molekularen Züchtung sind detaillierte 

Kenntnisse zu solch überlappenden QTL-Regionen entscheidend, um eine optimale 

Selektionsstrategie auf mehrere Merkmale zu wählen. Hauptursachen von 

überlappenden QTL-Regionen sind Pleiotropie oder enge Kopplung zwischen Genen. 

Für die Mehrheit der überlappenden QTL-Regionen konnte Pleiotropie als genetische 

Ursache nicht ausgeschlossen werden. In einer Simulationsstudie basierend auf dieser 

Weizenpopulation konnte gezeigt werden, dass die Möglichkeiten zwischen 

Pleiotropie und enger Kopplung zu unterscheiden von einer niedrigen Frequenz 

seltener Allele, von QTL mit kleinen Effekten und einem hohen 

Kopplungsungleichgewicht zwischen Genen begrenzt werden. In diesem Sinne würde 

eine Erhöhung der Populationsgröße und der Markerdichte die Chancen erhöhen, um 

die pleiotrope genetische Architektur vom Kornertrag und seinen korrelierten 

Merkmale besser zu verstehen. 

Eine umfassende Literaturarbeit über die genomische Vorhersage in 

Hybridkulturarten belegt, dass die Verwandtschaftsbeziehung zwischen den Trainings- 

und Validierungspopulationen einen wesentlich Einfluss auf die Genauigkeit der 
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genomischen Vorhersagen hat. Weiterhin zeigen bisherige Simulationsstudien, dass 

die Merkmalsvorhersage genauer werden kann, wenn man anstatt eines univariaten ein 

multivariates genomisches Vorhersagemodell nutzt. Letzteres ermöglicht es, die 

Informationen von genetisch korrelierten Hilfsmerkmalen zu berücksichtigen. Dies ist 

vorteilhaft sofern die Heritabilität des Hilfsmerkmales höher als die vom Zielmerkmal 

ist. Eine experimentelle Studie über multivariate genomische Vorhersagen der 

Anfälligkeit gegenüber der Ährenfusariose vom Hybridweizen belegt weiterhin, dass 

der Zugewinn an Vorhersagegenauigkeit durch multivariate versus univariate Modelle 

von Verwandtschaftsbeziehung zwischen Trainings- und Validierungspopulationen 

abhängt: je enger der Verwandtschaftsgrad desto geringer ist der 

Genauigkeitsunterschied.  

Genetische Korrelationen sind von Vorteil in der multivariaten genomischen 

Vorhersage unabhängig davon, ob sie die Selektion auf mehreren Merkmale 

komplizierter oder leichter machen. Deswegen können multivariate Vorhersagen nicht 

direkt für das Aufbrechen ungewünschter Merkmalskorrelationen verwendet werden. 

In zwei Testkreuzungspopulationen vom Roggen (Secale cereale L.) waren der 

Kornertrag und der Proteingehalt negativ korreliert. Verschiedene Selektionsindizes 

erlauben die kombinierte Verbesserung beider Merkmale was wichtig ist, wenn 

Roggen als Futtermittel genutzt wird. Die Selektionsindizes können genau und 

effizient durch die Anwendung von univariaten Modellen vorhergesagt werden, indem 

jeder Selektionsindex als ein eigenes Merkmal berücksichtigt wird.
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