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Abstract

In this thesis, the spin-orbit driven transport phenomena Edelstein effect and chiral anomaly are
considered within semiclassical Boltzmann transport theory.

The Edelstein effect, which is the generation of a homogeneous spin density by an electric field
in systems with broken inversion symmetry, is discussed for Rashba systems as well as Dresselhaus
systems and topological insulators. It is shown that anisotropies modify the orientation of the
current-induced spin polarization as well as its magnitude. For Rashba systems with broken
time-reversal symmetry an intrinsic Edelstein effect is predicted. Finally, Weyl semimetals are
identified as candidates for providing an enormous Edelstein efficiency, mainly originating from
their topological surface states.

The chiral anomaly is a quantum phenomenon and corresponds to the nonconservation of
chiral charge due to external nonorthogonal magnetic and electric fields. It can be realized in
Weyl semimetals and leads to a negative longitudinal magnetoresistance. In this work, transport
phenomena in the presence of the classical Lorentz force as well as the chiral anomaly are discussed
for anisotropic Weyl systems including energy- and momentum-dependent relaxation times.

In der vorliegenden Arbeit werden der Edelstein-Effekt und die chirale Anomalie untersucht, Trans-
portphänomene, die durch Spin-Bahn-Wechselwirkung zustande kommen.

Der Edelstein-Effekt bezeichnet die Erzeugung einer homogenen Spindichte durch ein externes
elektrisches Feld in Systemen mit Inversionsasymmetrie. Er wird hier für Rashba-Systeme, Dres-
selhaus-Systeme und topologische Isolatoren betrachtet. Es wird gezeigt, dass Anisotropien so-
wohl Richtung als auch Betrag der erzeugten Spindichte maßgeblich beeinflussen. Zudem wird
für Rashba-Systeme mit gebrochener Zeitumkehrsymmetrie ein intrinsischer Edelstein-Effekt
vorausgesagt. Weyl-Semimetalle werden als mögliche Kandidaten für einen sehr effizienten Edel-
stein-Effekt identifiziert.

Die chirale Anomalie ist ein Quantenphänomen und beschreibt die Nichterhaltung der chiralen
Ladung durch externe, zueinander nicht orthogonale magnetische und elektrische Felder. Sie tritt
in Weyl-Semimetallen auf und geht mit einem negativen longitudinalen Magnetwiderstand einher.
In dieser Arbeit werden die Einflüsse der klassischen Lorentzkraft und der chiralen Anomalie auf die
Transporteigenschaften von Weyl-Semimetallen mit anisotroper Bandstruktur untersucht, wobei
ein Fokus auf der Energie- und Impulsabhängigkeit der Relaxationszeit liegt.

3





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Semiclassical transport theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Concepts of Berry phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Electron dynamics in electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Kubo theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Relativistic correction to the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Two-band model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Spin-orbit fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Rashba effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Dresselhaus effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Topological insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Weyl semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 The Edelstein effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Charge-to-spin conversion in a Rashba model . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Intrinsic Edelstein effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Inverse Edelstein effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Experimental observation of the Edelstein effect . . . . . . . . . . . . . . . . . . . . . 44
4.5 Edelstein effect in Rashba systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 Systems with Rashba and Dresselhaus SOC . . . . . . . . . . . . . . . . . . . . . . . . 62
4.7 Topological insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Weyl semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Chiral anomaly in Weyl semimetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1 Quantum anomalies in field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Ultraquantum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Semiclassical limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Experimental evidence of the chiral anomaly . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Chiral anomaly within a Fermi surface harmonics approach . . . . . . . . . . . . . . 90

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

A Scattering at magnetic impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B Fermi lines for a Rashba system with in-plane magnetic field . . . . . . . . . . . . . . . . 106

C Rashba system with Zeeman splitting, B = B(1,0,1) . . . . . . . . . . . . . . . . . . . . . . 107

5



Contents

D Band structure and Fermi lines in systems with Rashba and Dresselhaus SOC . . . . . 108
D.1 (001) surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
D.2 (110) surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

E Fermi surface determination and integration . . . . . . . . . . . . . . . . . . . . . . . . . 112
E.1 Two-dimensional triangular method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
E.2 Three-dimensional tetrahedral method . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Curriculum vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6



1. Introduction

Conventional semiconductor technology is based on transport of electric charge carried by electrons
or holes. The main concept of the rapidly growing field of spintronics, which is short for spin-based
electronics or spin transport electronics [1], is to additionally utilize the spin degree of freedom
for storage, processing and transfer of data. Spintronic devices are expected to exhibit lower
energy consumption, higher integration densities, faster processing and nonvolatility [1]. The
most prominent phenomenon in the field of spintronics is the giant magnetoresistance (GMR)
effect, whose discovery by Fert and Grünberg in 1988 is considered the starting point of spin-
based technology [2, 3] and was awarded with the Nobel Prize in Physics in 2007 [4]. In multilayer
systems of alternating magnetic and nonmagnetic layers, the resistivity of the heterostructure
strongly depends on the orientation of the magnetization in adjacent ferromagnetic layers. If
these are oriented antiparallel, the resistivity is remarkably increased in comparison to the parallel
configuration, which can be explained by spin-dependent scattering.

On the basis of the GMR effect, a novel read head technology was developed by Parkin [5, 6].
Less than 10 years after its discovery, the GMR effect was utilized in spin-valve sensors, which
are extremely sensitive magnetic field sensors, leading to reduced sizes and enhanced storage
capacities of hard disk drives. This GMR-based technology rapidly became the standard in many
electronic devices. Today, the GMR technology has been replaced by read heads using the tunnel
magnetoresistance (TMR) effect, a spintronic effect which is also crucial for the magnetic random
access memory (MRAM) technology.

Although the field of spintronics arose three decades ago, it is still a very active area of research,
proposing and developing new electronic devices, such as the spin field-effect transistor [7] and the
magnetic domain-wall racetrack memory [8].

Since the basic idea of spintronics is to use spin currents and spin-polarized currents instead
of or in addition to purely electrical currents, one aim of research is to identify mechanisms
and methods of efficiently generating and controlling spin(-polarized) currents as well as spin
polarization. Ferromagnets naturally exhibit an imbalance of charge carriers with opposite spin
orientation, thus, spin-polarized currents can be easily generated in these materials. However,
injecting spin-polarized charge carriers from ferromagnets into semiconductors is often hard to
realize and inefficient [1, 9]. Therefore, the focus of research is on creating spin polarization and
spin currents directly in nonmagnetic materials.

The crucial interaction underlying this field of spintronics not based on ferromagnetic materials
is the spin-orbit coupling (SOC), which is a relativistic effect relating the spin degree of freedom
to the electronic structure and the orbital momentum. The emergence of SOC from relativistic
wave equations as well as its influence on the electronic band structures in solids is introduced in
chapter 3 of this thesis. Namely, the Rashba and Dresselhaus effect as well as topological nontrivial
properties in topological insulators and Weyl semimetals are discussed, all strongly associated with
spin-orbit interaction.

Due to SOC, various transport phenomena related to the spin degree of freedom arise. The most
prominent example is the spin Hall effect: A transversal pure spin current (closed circuit geometry)
and a pure spin voltage (open circuit), respectively, come along with a charge current [10–15]. The
spin quantization axis, the direction of spin separation, and the electric charge current are mutually
perpendicular. However, no transversal electric current or voltage occurs. The spin Hall effect
results from asymmetric scattering at impurities and the intrinsic anomalous velocity.

A related phenomenon is the anomalous Hall effect (AHE). Here, in addition to a spin current or
voltage, a transversal charge current/voltage occurs due to the imbalance of charge carriers with
opposite spins resulting from a finite magnetization or broken time-reversal symmetry.

Another actively investigated spin-orbit effect is the Edelstein effect, first discussed in 1989 by
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1. Introduction

(a) Edelstein effect at a surface. A charge current jc

driven through the nonmagnetic sample leads
to a finite homogeneous spin density 〈s〉.

(b) Chiral anomaly in Weyl semimetals. Nonortho-
gonal electric and magnetic fields lead to non-
conservation of chiral charge which becomes
manifest in a negative longitudinal magnetore-
sistance MR∥.

Figure 1.1.: Edelstein effect and chiral anomaly.

Aronov and Lyanda-Geller [16] as well as Edelstein [17]. It is a magnetoelectric phenomenon
providing charge-current-to-spin conversion in systems with broken inversion symmetry. In
nonmagnetic materials, a finite macroscopic spin polarization can be induced purely electrically
by the application of an external electric field, as sketched in Fig. 1.1(a). In a two-dimensional
isotropic Rashba system, which was the original model in the papers by Edelstein [17] as well
as Aronov and Lyanda-Geller [16], the spin density is in-plane and perpendicular to the applied
field. This electrically induced spin polarization can exert a spin-orbit torque on an adjacent
ferromagnetic layer and lead to domain wall motion or magnetization switching [18]. Because
of these promising properties, the Edelstein effect is considered an auspicious phenomenon for
applications in spintronics.

Whereas for isotropic Rashba systems a large spin-orbit splitting is crucial for efficient charge-
to-spin conversion [17], one focus of current research is on finding novel materials beyond con-
ventional Rashba systems providing a large direct or inverse Edelstein effect, for example three-
dimensional (3D) topological insulators [19–27] and oxide interfaces [28–30]. Therefore, this work
aims at theoretically examining materials apart from isotropic Rashba systems in order to identify
materials providing an efficient charge-to-spin conversion as potential candidates for practical
applications of the Edelstein effect. In chapter 4 the Edelstein effect and the underlying physical
mechanisms are introduced within a semiclassical theory. The charge-to-spin conversion is dis-
cussed in detail and calculated for Rashba and Dresselhaus systems with a focus on deviations from
the conventional Edelstein geometry (induced spin density is in-plane and perpendicular to the
electric field). Subsequently, the Edelstein effect is shown to be highly efficient in three-dimensional
topological insulators. In addition, an enormous Edelstein effect is predicted for Weyl semimetals.

These topological semimetals have not been considered as Edelstein materials before. Rather,
they are of interest for the solid state community due to the topologically nontrivial character of
their three-dimensional bulk band structure and their topological surface states. Weyl semimetals
are interpreted as the solid-state realization of Weyl fermions [31–35]. Although Weyl fermions
were already theoretically introduced in 1929 as the solution of the Weyl equation [36], which is
the massless version of the Dirac equation, they have not been observed as elementary particles
in nature. However, in the last decade a novel topological semimetal phase was predicted [31],
whose low-energy states around distinct degeneracy points can be described by the Weyl equation.
Therefore, the corresponding materials were named Weyl semimetals [32].

Due to this interpretation of Weyl semimetals hosting Weyl fermions, concepts which were
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originally developed for chiral Weyl fermions can be transferred to the field of solid states. Thus,
the chiral anomaly, which is the violation of chiral gauge symmetry by an external magnetic field,
initially discussed for fundamental Weyl particles [37, 38], is expected to occur in Weyl semimetals.
The nonconservation of chiral charge due to the chiral anomaly is not experimentally accessible.
However, it is accompanied by an unconventional negative longitudinal magnetoresistance (NLMR),
schematically sketched in Fig. 1.1(b), which is considered a strong observable hint for the existence
of Weyl fermions [39–41].

This atypical influence of an external magnetic field on the longitudinal charge conductivity due
to nontrivial topology motivates chapter 5 of this work. The chiral anomaly is discussed in the
ultraquantum as well as the semiclassical limit. In contrast to common literature, which usually
discusses the chiral anomaly isolated from other charge transport contributions [39, 41], chapter 5
focuses on the interplay of chiral anomaly and classical Lorentz force, thereby providing a complete
theory of magnetotransport in Weyl semimetals, which lacks in previous publications.

In this work, the relevant transport properties for examining the Edelstein effect as well as
the chiral anomaly are calculated within a semiclassical Boltzmann theory, which is presented
in chapter 2. This approach provides a clear, straightforward picture for discussing transport
phenomena. The presented calculations base on effective model Hamiltonians. In comparison
to realistic band structure calculations, this approach is less accurate. However, it provides the
opportunity of gaining deep insights into the physics underlying the transport phenomena due
to its transparent form. Therefore, the results presented in this work should be understood as
qualitative contributions for understanding the Edelstein effect and the chiral anomaly, including
qualitative predictions, rather than exact numerical ones.

9





2. Semiclassical transport theory

In the classical particle picture, transport in solids is caused by the motion of electrons. Under the
influence of external electromagnetic fields, the dynamics of an electron between two scattering
events is described by the classical equations of motion [42],

ṙ = p

m
, ṗ =−e (E+v×B) . (2.1)

Here, r is the real-space coordinate, p is the momentum, m = me is the electron mass, e > 0 is the
elementary charge, E is an electric field, v the velocity and B a magnetic field.

In quantum mechanics, the electronic states contributing to the transport are described by
quantum mechanical wave equations, i.e. the Schrödinger or the Dirac equation. External fields
enter these equations and modify the eigenstates of the system.

However, in solids, the influence of external fields can also be considered classically, whereas
the electronic band structure is discussed quantum mechanically, which is known as semiclas-
sical approach. The electronic states are constructed as wave packets from Bloch waves, which
corresponds to a particle-like picture. Thus, the wave packet is not scattered at the periodic crystal
potential but at impurities breaking the translational invariance. Between collisions, the wave
packet dynamics is described by semiclassical equations of motion, in analogy to the classical
equations of motion (2.1).

This chapter gives an introduction to semiclassical transport theory considering the electro-
magnetic fields classically and the electronic states quantum mechanically. The concepts of Berry
phases are presented, leading to semiclassical equations of motion. Using the latter, the Boltzmann
transport equation is introduced, which is probably the most important equation in this work and
which will be used to calculate transport properties. An alternative way of considering transport is
provided by the Kubo formalism, which is briefly sketched. Finally, the basic concepts of scattering
theory used in this work are presented.

2.1. Concepts of Berry phases

In a seminal paper Berry considered the adiabatic evolution of a quantum state under the influence
of slowly varying parameters [43]. A nondegenerate system performing a closed loop in parameter
space comes back to its initial state but acquires a dynamical phase as well as an additional phase,
which is today known as Berry phase. This new concept, also known as Berryology, has an enormous
impact on different areas of physics. It explains transport phenomena such as the anomalous Hall
effect and the quantum Hall effect and is strongly related to the concept of topological phases in
solid state physics. In this section, the theory of Berry phases is introduced following the work of
Berry [43] recapitulated by Niu [44] and Bernevig [45].

A system described by the Hamiltonian Ĥ(X), which does not depend explicitly on time but on
a set of time-dependent parameters X = X(t), is considered [44]. The eigenstates of Ĥ(X), |n(X)〉,
form an instantaneous orthonormalized basis,

Ĥ(X) |n(X)〉 = En(X) |n(X)〉 (2.2)

with the corresponding eigenvalues En(X). The eigenfunctions |n(X)〉 are defined by Eq. (2.2) up
to an arbitrary phase factor. Here, a gauge is chosen which ensures this phase to be smooth and
single-valued along a path in parameter space.

Now, the adiabatic evolution in time starting at t = 0 is considered, which means that the pa-
rameters X(t) vary slowly in comparison to the energy scale of the system. In accordance with
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2. Semiclassical transport theory

the quantum adiabatic theorem [46], a system starting from the initial state |n(X(0))〉 remains in
the state |n(X(t ))〉 during the adiabatic evolution. The only degree of freedom is the phase θ(t),
resulting in the state ∣∣Ψn(t )

〉= e−iθ(t ) |n(X(t ))〉 . (2.3)

The time evolution of |Ψn(t )〉 is expressed by the Schrödinger equation

Ĥ(X)
∣∣Ψn(t )

〉= iħ d

dt

∣∣Ψn(t )
〉

, (2.4)

with i the imaginary unit and ħ the Planck constant, resulting in

ħ d

dt
θ(t ) = En(X(t ))− iħ

〈
n(X(t ))

∣∣∣∣
d

dt

∣∣∣∣n(X(t ))

〉
. (2.5)

From this differential equation, the phase θ(t ) can be determined,

θ(t ) = 1

ħ

t∫

0

En(X(t ′))dt ′− i

t∫

0

〈
n(X(t ′))

∣∣∣∣
d

dt ′

∣∣∣∣n(X(t ′))

〉
dt ′ . (2.6)

The first term on the right-hand side of Eq. (2.6) is the dynamical phase. The second term,

γn(t ) = i

t∫

0

〈
n(X(t ′))

∣∣∣∣
d

dt ′

∣∣∣∣n(X(t ′))

〉
dt ′ = i

∫

P

〈
n(X)

∣∣∣∣
∂

∂X

∣∣∣∣n(X)

〉
dX =

∫

P
An(X) ·dX , (2.7)

is real valued and gives a phase factor to the wave function. Here, P is a path from X(0) to X(t) in
the parameter space. The vector An(X), defined as

An(X) = i

〈
n(X)

∣∣∣∣
∂

∂X

∣∣∣∣n(X)

〉
, (2.8)

is called Berry connection or Berry vector potential due to its analogy to the electromagnetic vector
potential, as will be pointed out later.

If the eigenstate |n(X(t ))〉 is transformed by a gauge transformation, |n(X)〉 → |n(X)〉eiζ(X), the
Berry connection transforms as An(X) →An(X)− ∂

∂Xζ(X) and the phase as γn − [ζ(X(t ))−ζ(X(0))].
Before Berry’s fundamental work in 1984 [43], no importance was attributed to the phase γn since
it was assumed to be cancelable by an appropriate gauge choice. However, as Berry showed, this
elimination cannot always be realized. For a closed path P in parameter space, X(T ) = X(0). Since
the gauge phase factor eiζ(X) must be single valued, eiζ(X(T )) = eiζ(X(0)), the phase ζ can only change
by an integer multiple of 2π on the closed path, ζ(X(T ))−ζ(X(0)) = 2πm (m ε Z). Thus, the phase
γn cannot be eliminated by a gauge transformation but only be changed by 2πm. For a closed path
P , γn is gauge-invariant (modulo 2π), depending only on the geometric aspects of the path, not on
its specific form. It is called Berry phase or geometric phase.

Using Stokes’ theorem, the Berry phase for a closed path P is expressed as

γn =
∮

P
An(X) ·dX =

∫

S

∂An
k (X)

∂Xi
dXi ∧dXk = 1

2

∫

S

Ωn
i k (X) dXi ∧dXk . (2.9)

Here, i and k refer to the coordinates in parameter space, S is a surface enclosed by the path P and
the Berry curvature tensor reads

Ωn
i k (X) =

∂An
k (X)

∂Xi
−
∂An

i (X)

∂Xk
= i

[〈
∂n(X)

∂Xi

∂n(X)

∂Xk

〉
−

〈
∂n(X)

∂Xk

∂n(X)

∂Xi

〉]
. (2.10)
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2.1. Concepts of Berry phases

The Berry curvature is gauge-invariant. In 3D parameter space, the Berry curvature vector

Ωn(X) = ∂

∂X
×An(X) = i

〈
∂

∂X
n(X)

∣∣∣∣×
∣∣∣∣
∂

∂X
n(X)

〉
(2.11)

is defined and the Berry phase is given by

γn =
∫

S

Ωn(X) ·dS . (2.12)

Due to the structure of Berry connection and Berry curvature resembling the electromagnetic vector
potential and magnetic field, respectively, the Berry connection can formally be interpreted as the
equivalent of the electromagnetic vector potential in parameter space, the Berry curvature as the
equivalent of the magnetic field.

The expressions (2.10) and (2.11) can be transformed to

Ωn
i k (X) =−Im

∑

m 6=n

〈
n(X)

∣∣∣ ∂
∂Xi

Ĥ(X)
∣∣∣m(X)

〉〈
m(X)

∣∣∣ ∂
∂Xk

Ĥ(X)
∣∣∣n(X)

〉
− (i ↔ k)

(En(X)−Em(X))2 ,

Ωn(X) =−Im
∑

m 6=n

〈
n(X)

∣∣∣ ∂
∂X Ĥ(X)

∣∣∣m(X)
〉
×

〈
m(X)

∣∣∣ ∂
∂X Ĥ(X)

∣∣∣n(X)
〉

(En(X)−Em(X))2 ,

(2.13)

which is a gauge-independent way of calculating the Berry curvature and has the advantage that the
gradient of the Hamiltonian, and not the derivatives of the wave functions, have to be calculated.
Thus, the BerryΩn curvature accounts for the influence of all bands m 6= n on a distinct band n
and therefore represents interband transitions in a single-band model.

2.1.1. Berry phase of Bloch states

The Berry phase formalism introduced above is defined for a general Hamiltonian Ĥ(X) which
depends on a set of parameters X. In periodic solids, the states can be described by Bloch waves.
The Berry phase, connection and curvature are conventionally defined within the parameter space
q, which is the canonical crystal momentum in the Brillouin zone.

However, a Hamiltonian describing electronic states initially does not include the crystal momen-
tum q as parameter, but contains the momentum operator p̂. In the approximation of noninteract-
ing electrons, the band structure results from the single-electron Hamiltonian

Ĥ = p̂2

2m
+V (r) . (2.14)

For a periodic potential V (r) =V (r+R), with R a lattice vector, the eigenstates |Ψn
q〉 fulfill the Bloch

theorem, ∣∣∣Ψn
q (r+R)

〉
= eiqR

∣∣∣Ψn
q (r)

〉
(2.15)

leading to ∣∣∣Ψn
q (r)

〉
= eiqr

∣∣∣un
q (r)

〉
(2.16)

with |un
q (r+R)〉 = |un

q (r)〉 being lattice-periodic. Using the Bloch boundary condition (2.15), the

Hamiltonian Ĥ can be transformed by unitary transformation to the crystal momentum represen-
tation,

Ĥ(q) = e−iqrĤeiqr =
(
p̂+ħq

)2

2m
+V (r) . (2.17)
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2. Semiclassical transport theory

The correspondingly transformed eigenstates |un
q (r)〉 = e−iqr |Ψn

q (r)〉 “live” in the Hilbert space of
lattice periodic functions. After this transformation, the Berry connection, curvature and phase
can be defined with respect to the crystal momentum q in the Brillouin zone as parameter space.
However, Berry curvature and connection can be defined with respect to any parameter the Hamil-
tonian depends on. In order to distinguish between the Berry quantities derived from the crystal
momentum and the Berry properties related to other parameters, the latter ones are called mixed
Berry quantities [47], whereas Berry usually means the crystal momentum Berry properties.

2.2. Electron dynamics in electromagnetic fields

For the discussion of electronic transport properties, the influence of external fields on the elec-
tronic system has to be examined. The external fields are considered as perturbations which slowly
vary in space and time and drive the dynamics of the system. They enter the Hamiltonian and can
therefore influence the band structure as well as the eigenstates. However, the basic concept of
the semiclassical transport theory is to describe the impact of external fields classically, i.e. their
influence is expressed like in a classical single-particle system.

To analyze the effect of external fields on the quantum mechanical eigenstates of a Hamiltonian
in the classical picture, the electronic states cannot be considered as free electron-like Bloch states
any more. Rather, wave packets are considered [42, 44, 48],

∣∣Ψn
w(r, t )

〉=
∫

a(q, t )
∣∣∣Ψn

q (r, t )
〉

dqd , (2.18)

which are constructed from Bloch waves (Eq. (2.16)) with the same band index n. Here, a(q, t)
is a prefactor and d is the dimension of the system. A wave packet has a finite width in real and
momentum space with ∆q∆r ≥ 1. The basic presumptions for a semiclassical approach are that
∆q is small in comparison to the Brillouin zone and ∆r is small with respect to the length scale
of the fields as well as the mean free path, but large compared to the lattice constant [48]. In the
semiclassical picture, a well-defined real-space coordinate r and momentum q, corresponding
to the coordinates of the wave packet center, are attributed to the crystal electrons. This model
corresponds to a particle-like picture of electrons, on which the external fields are acting. A crucial
point of the semiclassical model is that the band index n remains constant, thus, no interband
transitions can be induced by external fields.

In order to describe the influence of electric and magnetic fields in a classical way, the wave packet
dynamics is considered in this section. Semiclassical equations of motion will be derived which
form the basis for semiclassical transport theory. Using a time-dependent variational principle [49],
it will be shown that the Berry curvature strongly influences the electron dynamics and the phase-
space volume leading to a modified density of states.

The derivations follow the works of Sundaram and Niu [50] as well as Xiao et al. [44, 51].

2.2.1. Semiclassical equations of motion

In a crystal, the noninteracting electronic states are described by the lattice-periodic Hamilto-
nian (2.14), which is denoted by Ĥ0 = Ĥ0(p̂) in this section. The eigenstates are Bloch states,
described by Eq. (2.16) with the crystal momentum q, the periodic part of the eigenfunction |uq(r)〉
and the energy eigenvalue E0(q). The band index n is omitted here.

External electromagnetic fields couple to the eigenstates of the system, which is respected in the
Hamiltonian by the Peierls substitution [52–54],

Ĥ = Ĥ0
(
p̂+eA(r, t )

)−eΦ(r, t ) . (2.19)

Here, r is the position operator. The electric and magnetic fields are expressed by the electromag-
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2.2. Electron dynamics in electromagnetic fields

netic potentials A(r, t ) andΦ(r, t ),

B(r, t ) = ∂

∂r
×A(r, t ) , E(r, t ) =− ∂

∂r
Φ(r, t )− ∂

∂t
A(r, t ) . (2.20)

In the Bloch basis, Eq. (2.19) reads

Ĥ = Ĥ0

(
q+ e

ħA(r, t )
)
−eΦ(r, t ) . (2.21)

Now, a wave packet |ΨW(rc, t )〉 ≡ |Ψ〉 centered at rc, given by Eq. (2.18), is considered. The per-
turbations due to the external fields are assumed to vary on a length scale which is very large in
comparison to the width of the wave packet. Thus, the Hamiltonian can be linearized around the
wave packet center rc,

Ĥ = Ĥc +∆Ĥ = Ĥ0

(
q+ e

ħA(rc, t )
)
−eΦ(rc, t )+ 1

2

{
(r̂− rc) ,

∂Ĥ

∂rc

}
, (2.22)

with the local Hamiltonian at rc, Ĥc = Ĥ0
(
q+ e

ħA(rc, t )
)−eΦ(rc, t ) and { , } the anticommutator. The

energy expectation value reads

E = 〈
Ψ

∣∣ Ĥc
∣∣Ψ

〉+〈
Ψ

∣∣∆Ĥ
∣∣Ψ

〉= Ec(rc,qc, t )− Im

〈
∂u

∂rc

∣∣∣∣
(Ec − Ĥc

)∣∣∣∣
∂u

∂q

〉

q=qc

. (2.23)

Here, |u〉 ≡ |uq(rc, t )〉, qc is the center of the wave packet in q-space and Ec the eigenvalue of Ĥc.
The Lagrangian L reads [49, 50]

L(rc, ṙc,qc, q̇c, t ) =
〈
Ψ

∣∣∣∣ iħ d

dt
− Ĥ

∣∣∣∣Ψ
〉

=−E +ħ
(

qcṙc + q̇c ·
〈

uc

∣∣∣∣ i
∂uc

∂qc

〉
+ ṙc ·

〈
uc

∣∣∣∣ i
∂uc

∂rc

〉
+

〈
uc

∣∣∣∣ i
∂uc

∂t

〉)
,

(2.24)

with |uc〉 ≡ |uqc (rc, t )〉. Here, a total time derivative term was neglected since it has no influence on
the semiclassical equations of motion.

Replacing the canonical crystal momentum q by the gauge-invariant mechanical crystal momen-
tum k = q+ e

ħA(rc, t ), the above equations can be further simplified. The periodic part of the Bloch
states is now |uk(rc, t )〉 ≡ |u〉. The eigenvalue of the local Hamiltonian reads

Ec(rc,k, t ) = E0(k)−eΦ(rc, t ) , (2.25)

with E0(k) the eigenvalue of Ĥ0(k). The energy correction ∆E = 〈
Ψ

∣∣∆Ĥ
∣∣Ψ

〉
in Eq. (2.23) becomes

∆E =− e

2ħ Im

〈
∂u

∂k

∣∣∣∣×
(E0(k)− Ĥ0(k)

)∣∣∣∣
∂u

∂k

〉

k=kc

·B =−M ·B . (2.26)

Here, M is the orbital magnetic moment of the Bloch states [55]. Thus, the Lagrangian in terms of
the gauge-invariant crystal momentum reads

L(rc, ṙc,kc, k̇c, t ) =−E0(kc)+M ·B+ħṙckc −e ṙc ·A(rc, t )+ħk̇c ·
〈

uc

∣∣∣∣ i
∂uc

∂kc

〉
(2.27)

with |uc〉 ≡ |ukc〉. Solving the Euler-Lagrange equations, the semiclassical equations of motion are
obtained,

k̇c =− e

ħE− e

ħ ṙc ×B , (2.28a)
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2. Semiclassical transport theory

ṙc =
1

ħ
∂E(kc)

∂kc
− k̇c ×Ωkc . (2.28b)

Eq. (2.28a) is Newton’s second axiom for the Lorentz force and Eq. (2.28b) corresponds to the elec-
tron velocity, which consists of the group velocity vk ≡ 1

ħ
∂E(kc)
∂kc

and an additional Berry-curvature-
related anomalous term. In the following, the index “c” is skipped and the coordinates k and
r always refer to the center of the wave packet. Thus, the quantum mechanical wave packet is
considered as a single particle located at rc with momentum kc. However, the group velocity of the
wave packet is derived from the quantum mechanical band structure. Therefore, this approach is
called semiclassical.

Decoupling Eqs. (2.28a) and (2.28b) leads to

k̇ =
(
1+ e

ħB ·Ωk

)−1
[
− e

ħE− e

ħvk ×B− e2

ħ2 (E ·B)Ωk

]
, (2.29a)

ṙ =
(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħE×Ωk +
e

ħ (Ωk ·vk)B
]

. (2.29b)

These semiclassical equations of motion are used for calculations of transport properties in the
semiclassical limit. In the absence of a magnetic field, the anomalous velocity is perpendicular
to the applied electric field. By the anomalous velocity, transport phenomena like the intrinsic
anomalous Hall effect and the chiral anomaly can be explained.

2.2.2. Phase-space correction

In the presence of Berry curvature, the volume element ∆V =∆r∆k in the phase space spanned
by r and k is not conserved in time, leading to a modified density of states due to violation of the
Liouville theorem. If r and k change in time, the evolution of ∆V is [51]

1

∆V

d∆V

dt
= ∂

∂r
ṙ+ ∂

∂k
k̇ . (2.30)

Inserting the semiclassical equations of motion (2.28a) and (2.28b) and integrating over time yields

∆V (r,k) =∆V0

(
1+ e

ħB ·Ωk

)−1
(2.31)

with ∆V0 the initial phase-space volume element. Thus, in a system with vanishing Berry curvature
or zero magnetic field, the phase-space element is constant during evolution in time whereas it is
not conserved for nonzero B andΩk. This violation of the Liouville theorem is a consequence of
the Berry phase leading to noncanonical equations of motion [51]. Importantly, the phase-space
volume element is not mandatory conserved in a stationary system.

In order to consider the physical properties of a system within the semiclassical limit, this
modified phase-space volume has to be compensated. Therefore, a corrected r- and k-dependent
density of states is introduced,

N (r,k) = 1

(2π)d

(
1+ e

ħB ·Ωk

)−1
. (2.32)

The r-dependence enters via the magnetic field, which can in general vary in space. The number of
states in the volume element ∆V (r,k)N (r,k) is constant during time evolution.
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2.3. Boltzmann equation

2.3. Boltzmann equation

The occupation of states in a finite phase-space volume element is described by the distribution
function fk(r, t). Its evolution under the influence of external fields, diffusion, and scattering
processes can be expressed by the semiclassical Boltzmann transport equation,

∂ fk(r, t )

∂t
+

(
∂ fk(r, t )

∂t

)

field
+

(
∂ fk(r, t )

∂t

)

diff
=

(
∂ fk(r, t )

∂t

)

scatt
, (2.33)

with the field term (
∂ fk(r, t )

∂t

)

field
= k̇

∂ fk(r, t )

∂k
, (2.34)

the diffusion term (
∂ fk(r, t )

∂t

)

diff
= ṙ

∂ fk(r, t )

∂r
, (2.35)

and the scattering term

(
∂ fk(r, t )

∂t

)

scatt
=

∑

k′

[
Pk←k′gk′(r, t )−Pk′←kgk(r, t )

]
, (2.36)

where gk(r, t ) = fk(r, t )− f 0
k is the nonequilibrium part of the distribution function and Pk′←k is the

microscopic transition probability rate for scattering from the state |k〉 to the state |k′〉. The first
term on the right-hand side of Eq. (2.36) is the scattering-in term, the second term the scattering-out
term describing the scattering processes into and out of the state |k〉, respectively.

Considering a spatially homogeneous and stationary system, fk(r, t ) = fk, and using the semiclas-
sical equations of motion, Eq. (2.29), the Boltzmann equation reads

− e

ħ
(
1+ e

ħB ·Ωk

)−1 [
E+vk ×B+ e

ħ (E ·B)Ωk

] ∂ fk(r, t )

∂k
=

(
∂ fk(r, t )

∂t

)

scatt
. (2.37)

For fermions, the equilibrium distribution function is the Fermi-Dirac distribution function,

f 0
k =

[
exp

(Ek −µ
kBT

)
+1

]−1

, (2.38)

where µ is the chemical potential, kB the Boltzmann constant and T the temperature. In the
following, zero temperature is considered, hence, µ is equivalent to the Fermi energy EF. For the
nonequilibrium distribution function an ansatz of linear order in E is used,

gk =
∂ f 0

k

∂E eΛk ·E (2.39)

with the mean free pathΛk. Assuming only elastic scattering, Eqs. (2.36), (2.37) and (2.39) yield the
linearized Boltzmann equation,

Λk −
e

ħτk

(
1+ e

ħB ·Ωk

)−1
(
(vk ×B) · ∂

∂k

)
Λk

= τk

{(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħ (Ωk ·vk)B
]
+

∑

k′
Pk←k′Λk′

} (2.40)

with the momentum relaxation time

τk =
(
∑

k′
Pk′←k

)−1

. (2.41)
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2. Semiclassical transport theory

The term ∝
(
(vk ×B) · ∂

∂k

)
Λk represents the Lorentz force, the term ∝ [

vk + e
ħ (Ωk ·vk)B

]
corre-

sponds to the influence of the electric field and the term ∝∑
k′

Pk←k′Λk′ accounts for the scattering-in

processes. The scattering-out term is represented by the momentum relaxation time τk.
For the calculation of transport properties, the integro-differential equation (2.40) has to be

solved. In general, an exact analytical solution cannot be found. In the following section, various
approximations and methods for solving the linearized Boltzmann equation are introduced.

2.3.1. Relaxation time approximation

A simple phenomenological ansatz for solving the Boltzmann equation (2.37) is the relaxation time
approximation (

∂ fk

∂t

)

scatt
=− 1

τR
k

gk , (2.42)

with the relaxation time τR
k , which is not necessarily equivalent to the momentum relaxation time

defined in Eq. (2.41). The relaxation time ansatz yields the Boltzmann equation

Λk −
e

ħτ
R
k

(
1+ e

ħB ·Ωk

)−1
(
(vk ×B)

∂

∂k

)
Λk = τR

k

(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħ (Ωk ·vk)B
]

. (2.43)

For B = 0, the linearized Boltzmann equation in relaxation time approximation simplifies to

Λk = τR
k vk . (2.44)

This ansatz is often interpreted as a shift of the Fermi surface in k-space [56]. Obviously, the
relaxation time approximation does not take into account the full scattering-in term. However,
scattering-in processes from |k′〉 to |k〉 can be projected into the relaxation time τR

k , as in the
transport lifetime discussed below.

Momentum relaxation time

A simple but often sufficient approach is using the momentum relaxation time defined by Eq. (2.41)
in the relaxation time approximation, τR

k = τk, for B = 0 leading to

ΛRTA
k = τkvk . (2.45)

In this approach, scattering-in processes are neglected. Mean free path and group velocity are
parallel. In the presence of a finite magnetic field, B 6= 0, the mean free path in relaxation time
approximation is given by Eq. (2.43) with τRTA

k = τk. Here, the mean free path is not mandatory
parallel to the group velocity. Neglecting the Lorentz force in Eq. (2.43) allows direct calculation of
ΛRTA

k ,

ΛRTA
k = τk

(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħ (Ωk ·vk) ·B
]

. (2.46)

Although the Lorentz force term can be in general significant, neglecting this term is reasonable if
transport along B is considered.

Transport lifetime

The concept of transport lifetime includes scattering-out as well as scattering-in processes. Here,
it is discussed only for B = 0. The mean free path is assumed to be in the direction of the group
velocity,

Λtr
k = τtr

k vk , (2.47)

18



2.3. Boltzmann equation

where τtr
k is the transport lifetime including scattering-out as well as scattering-in processes. Using

the ansatz (2.47), the linearized Boltzmann equation (2.40) transforms to

vk =
∑

k′

(
Pk′←kτ

tr
k vk −Pk←k′τtr

k′vk′
)

. (2.48)

For an isotropic one-band system the transport lifetime is isotropic and can be calculated from Eq.
(2.48) via

τtr
k =

(
∑

k′
Pk′←k −Pk←k′

vk′

vk
cos(vk′ ,vk)

)−1

. (2.49)

Here, the scattering-in processes are included by a projection on the direction of the group velocity.
However, in general, τtr

k depends on the wave vector k and the band. In this case, the simplification
(2.49) cannot be made and Eq. (2.48) has to be solved. For isotropic (multi-band) systems, it can be
solved analytically, for more complex systems in general a numerical solution is necessary.

2.3.2. Iterative solution

Solving the linearized Boltzmann equation iteratively provides the opportunity of calculating the
mean free path up to arbitrary accuracy while including the scattering-in processes and the Lorentz
force,

Λ(i )
k = τk

{(
1+ e

ħB ·Ωk

)−1
[(

e

ħ (vk ×B) · ∂
∂k

)
Λ(i−1)

k +vk +
e

ħ (Ωk ·vk)B
]
+

∑

k′
Pk←k′Λ(i−1)

k′

}
,

Λ(0)
k = 0

(2.50)

with i = 1,2,3, . . . . Calculating the k-derivative ofΛk analytically becomes more demanding with
increasing order of iteration. A numerical calculation of this derivative can be challenging sinceΛk

is not known as a closed expression.
For B = 0, the first order iterationΛ(1)

k = τkvk corresponds to the relaxation time approximation

with momentum relaxation time. In the presence of a nonzero magnetic field,Λ(1)
k is equivalent to

the relaxation time approximation neglecting the Lorentz force (Eq. (2.46). All iterations with i ≥ 2
include scattering-in terms allowing nonparallel Λk and vk even for B = 0. These contributions
nonparallel to vk are also called vertex corrections.

2.3.3. Fermi surface harmonics

The method of Fermi surface harmonics (FSH), established in Refs. [57–60], provides a closed
solution of the Boltzmann equation in the presence of magnetic and electric fields. By expanding
the mean free path in terms of the Fermi surface harmonicsΨM (k), its B- and k-dependence are
separated,

Λk(B) =
∑

M
ΛM (B)ΨM (k) . (2.51)

The FSHs are constructed from polynomials of the Cartesian components of the group velocity at
the Fermi surface,

ΨM (k) =Ψnx ,ny ,nz (k) = vnx
x (k)v

ny
y (k)vnz

z (k)ξnFS (k) . (2.52)

The multi-index M = (nx ,ny ,nz ,nFS) includes the integers nx ,ny ,nz ≥ 0 and the Fermi sheet index
nFS = 1. . . NFS, with NFS the number of Fermi sheets. The FSHs are orthonormalized on the Fermi
surface, or, in general, an iso-energy surface,

∑

k
δ(Ek −EF)ΨM (k)ΨM ′(k) = δM M ′

∑

k
δ(Ek −EF) . (2.53)
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The order of the FSH is NFSH = nx +ny +nz . For a multi-sheeted Fermi surface the number of FSHs
is increased likewise, which is expressed by the index nFS. The weighting function ξnFS (k) ensures
orthogonality of the FSHs with different nFS. Conventionally, two different representations are
used [58]: In the disjoint FSH representation, ξnFS provides a nonzero FSH only on one Fermi sheet.
In the symmetric representation, however, each FSH is defined on all Fermi sheets.

Alternatively, using spherical harmonics or polynomials of the Cartesian components of the
wave vector at the Fermi surface as a basis seems to be self-evident. The spherical harmonics
are well-known, providing a complete set of orthonormalized functions. However, they do not
reproduce the lattice-periodicity in reciprocal space and are not orthonormalized on anisotropic
Fermi surfaces [58, 59]. Polynomials of the wave vector components provide cell-periodicity and
orthogonality on the Fermi surface, but their derivatives are not continuous on the zone boundaries
[58, 59]. The Fermi surface harmonics provide cell-periodicity as well as continuous derivatives.
However, their completeness is not proven for general systems [58, 59]. For isotropic systems, all
three sets of functions are equivalent in the first Brillouin zone.

The original FSH formalism introduced in Refs. [58, 59] does not contain Berry curvature effects.
However, these effects can be directly included. Expanding the mean free path in Eq. (2.40) in terms
of the FSHs yields the Boltzmann equation

∑

M

{
ΨM (k)+τk

(
1+ e

ħB ·Ωk

)−1
(
− e

ħvk ×B
∂

∂k
ΨM (k)

)
−τk

∑

k
Pk←k′ΨM (k′)

}
ΛM (B)

= τk

(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħ (Ωk ·vk) ·B
]

.

(2.54)

It can be transformed to ∑

M ′
(BM M ′ +CM M ′)ΛM ′(B) = DM (2.55)

with the field term

BM M ′ =

∑
k
δ (Ek −EF)ΨM (k)τk

(
1+ e

ħB ·Ωk
)−1

(
− e

ħ (vk ×B) ∂
∂kΨM ′(k)

)

∑
k
δ (Ek −EF)

, (2.56)

containing the Lorentz force, the scattering term

CM M ′ = δM M ′ −

∑
k,k′

δ (Ek −EF)ΨM (k)τkPk←k′ΨM ′(k′)

∑
k
δ (Ek −EF)

(2.57)

accounting for scattering-in processes, and the vector

DM =

∑
k
δ (Ek −EF)ΨM (k)τk

{(
1+ e

ħB ·Ωk
)−1 [

vk + e
ħ (Ωk ·vk) ·B

]}

∑
k
δ (Ek −EF)

. (2.58)

Thus, the problem of solving the integro-differential Boltzmann equation reduces to solving the
matrix equation (2.55). Depending on the maximum order NFSH contained in this ansatz, the
Boltzmann equation can be solved with arbitrary accuracy including all terms, especially the Lo-
rentz force term and the scattering-in contributions. From the solution of the mean free path
decomposed in terms of the Fermi velocity, insights into the effects of scattering and external fields
on the electron paths can be gained.

Typically, the number of FSHs used to solve the Boltzmann equation (∼ 101 . . .102) is considerably
smaller than the number of k-points on the Fermi surface used in the calculations (∼ 104 . . .105) by
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several orders of magnitude. Therefore, the dimension of the system of equations in Eq. (2.55) is
remarkably reduced in comparison to Eq. (2.40), lowering the numerical effort.

2.3.4. Calculation of semiclassical transport properties

In the semiclassical limit, a macroscopic property O is calculated as sum of the corresponding
expectation values of all occupied states.

O =
∑

k

〈
Ô

〉
k fk , (2.59)

with
〈

Ô
〉

k = 〈
k

∣∣Ô
∣∣k

〉
the k-dependent expectation value of the operator Ô. The distribution

function fk is obtained by solving the Boltzmann equation. Usually, the electronic states are dense
in k-space, therefore, the transition

∑

k
→V (d)

∫
N (k)dkd (2.60)

is performed. Here, the density of states given by Eq. (2.32) is used, which is independent of r since
the external fields are homogeneous.

2.3.5. Limits of the Boltzmann theory

The semiclassical Boltzmann approach is predicated on various assumptions and approximations,
therefore, its limits are briefly sketched here.

The semiclassical approach, especially the wave packet ansatz, bases on the assumption that the
external fields vary on a large scale in comparison to the lattice constant [42]. Thus, it is valid only
in the limit of slowly varying fields.

Interband contributions enter the Boltzmann equation via the Berry curvature. Further, scat-
tering between different bands is considered. However, the wave packet ansatz does not fully
include interband transitions since a wave packet |Ψn

W(r, t )〉 contains only Bloch states of a single
band n. For regions in the Brillouin zone in which two (or even more) bands are close to each
other or even intersect, these interband transitions can be important and affect the transport
properties remarkably. Interband transition can occur if ħωEM ≥∆E , with ωEM the frequency of the
electromagnetic field and∆E the energy gap between neighboring bands. Further, these transitions
can be induced by large magnitudes of the external fields, i.e. if eE a ≥ ∆E2/EF or ħωc ≥ ∆E2/EF with
a the lattice constant and ωc the cyclotron frequency [42]. As long as the Fermi level is far from
these (nearby) crossings and the fields are comparably small and slowly oscillating, the Boltzmann
approach is applicable.

The importance of interband transitions can be estimated via the lifetime broadening: The finite
lifetime of the electronic states is interpreted as a broadening of the energy bands. When two
broadened bands overlap, the interband contributions cannot be neglected. By comparing this
lifetime broadening Γ∼ ħ/τ to the energy gap ∆E between two neighboring bands, one of which
is occupied, the other unoccupied, the validity of the Boltzmann approach can be estimated. If
Γ≥∆E , interband transitions have a pronounced effect on the transport properties. For Γ¿∆E ,
the interband contributions can be safely neglected. The additional contributions to the transport
properties due to interband transitions [61] can be considered within the Kubo theory introduced
in the next section.
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2.4. Kubo theory

In addition to solving the semiclassical Boltzmann equation, another method of calculating the
linear response to externally applied fields is the Kubo approach [62, 63]. The response of a macro-
scopic observable O with the corresponding operator Ô to an external perturbation is considered.

In equilibrium, the system is described by the Hamiltonian Ĥ0. The equilibrium eigenstate and
expectation value O0 are known. In the presence of an external perturbation switched on at t = t0,
the Hamiltonian is

Ĥ(t ) = Ĥ0 +
∫

F̂(r) ·h(r, t )dr d θ(t − t0) . (2.61)

Here, the vector h(r, t) represents an external force, F̂(r) is the operator coupling the force to the
system, and θ is the Heaviside step function. The change of the observable, δO is given by the Kubo
formula [62],

δO(t ) =
t∫

t0

χ̂OF (r, t ,r′, t ′)h(r′, t ′)dt ′dr d (2.62)

with the response tensor

χOF
i j (r, t ,r′, t ′) =− i

ħθ(t − t ′)
〈[

Ô I
i (r, t ), F̂ I

j (r′, t ′)
]〉

0
. (2.63)

Here, ÔI (r, t ) = e
i
ħ Ĥ0t Ô(r)e−

i
ħ Ĥ0t in the interaction picture and 〈·〉0 is the canonical ensemble aver-

age. For an externally applied electric field, the Kubo formula can be transformed to [64, 65],

δO =− eħ
π

∑

k,n,m

Γ2Re
(〈kn |Ô|km〉〈km |v̂ ·E|kn〉)

[
(EF −En(k))2 +Γ2

][
(EF −Em(k))2 +Γ2

]

−2ħe
∑

k,n 6=m
f n

k

(
1− f m

k

) Im
(〈kn |Ô|km〉〈km |v̂ ·E|kn〉)

(En(k)−Em(k))2 .

(2.64)

Here, v̂ = i/ħ
[
Ĥ0,r

]
is the velocity operator, En are eigenvalues of the unperturbed Hamiltonian Ĥ0,

and Γ is the lifetime broadening (Γ∼ ħ/τ). The first expression on the right-hand side of Eq. (2.64)
represents extrinsic contributions. The terms with n = m are approximately equivalent to the
Boltzmann approach in a constant relaxation time approximation. For Γ ≥ |En(k)−Em(k)| the
interband transitions (n 6= m) become significant and the Boltzmann approach is not sufficient to
describe the transport properties. The second term on the right-hand side of Eq. (2.64) corresponds
to intrinsic contributions and contains only interband transitions. These intrinsic contributions are
independent of the scattering properties of the system. In general, interband transitions can occur
due to the additional energy brought into the system by the external electric field. The extrinsic and
intrinsic contributions in Eq. (2.64) transform oppositely under time reversal.

2.5. Scattering

The scattering term in the Boltzmann equation discussed in section 2.3 accounts for transitions
from one state |k〉 to states |k′〉 due to scattering at impurities breaking the translational symmetry
of the crystal. In absence of impurities, the Hamiltonian is Ĥ0 with the eigenfunctions |Ψ0

k(r)〉.
Whereas in the main part of this work the unperturbed state is usually denoted by |k〉, it is called
|Ψ0

k(r)〉 in this section in order to avoid confusion with the scattered wave function, which is named
|Ψk(r)〉 here.

Now, a space-dependent scattering potential ∆U (r) is included, modifying the Hamiltonian to
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2.5. Scattering

Ĥ0(r)+∆U (r). A Bloch eigenstate of Ĥ0 is scattered at the impurity into the perturbed state |Ψk(r)〉,
which is an eigenstate of Ĥ0(r)+∆U (r). The scattered wave function can be expressed using the
Green’s function formalism [66],

|Ψk(r)〉 =
∣∣Ψ0

k(r)
〉+

∫
G0(r,r′,E)∆U (r′)

∣∣Ψk(r′)
〉

dr ′d

=
∣∣Ψ0

k(r)
〉+

∫
G(r,r′,E)∆U (r′)

∣∣Ψ0
k(r′)

〉
dr ′d .

(2.65)

Here, G0(r,r′,E) is the Green’s function of the unperturbed system satisfying

[E − Ĥ0(r)
]

G0(r,r′,E) = δ(r− r′), (2.66)

and the perturbed system’s Green’s function G(r,r′,E) fulfills

[E − Ĥ0(r)−∆U (r)
]

G(r,r′,E) = δ(r− r′) . (2.67)

The first line of Eq. (2.65) is called Lippmann-Schwinger equation and corresponds to the integral
form of the Schrödinger equation [66]. It can be expanded into a Born series,

|Ψk(r)〉 =
∣∣Ψ0

k(r)
〉+

∫
G0(r,r′,E)∆U (r′)Ψ0

k(r′)dr ′d

+
∫ ∫

G0(r,r′,E)∆U (r′)G0(r′,r′′,E)∆U (r′′)
∣∣Ψ0

k(r′′)
〉

dr ′d dr ′′d + ·· · .
(2.68)

Here, the first term on the right-hand side is the zeroth order Born approximation, simply called
Born approximation, the second term is the first order Born approximation, etc.

The transition matrix Tk′←k for scattering from |Ψ0
k(r)〉 to |Ψk′(r)〉 is

Tk′←k = 〈
Ψ0

k′(r)
∣∣ T̂

∣∣Ψ0
k(r)

〉= 〈
Ψ0

k′(r)
∣∣∆U (r)

∣∣Ψk(r)
〉

(2.69)

with the transition operator T̂ . In dilute limit the scattering potentials Ui of various impurities
located at Ri are considered non-overlapping yielding a total scattering potential

∆U (r) =
∑

i
Ui (r−Ri ) . (2.70)

Assuming only one type of impurities (Ui =U ) and Bloch-like undisturbed states, it is sufficient to
consider scattering at a single impurity located at Ri , expressed by the single transition matrix

T i
k′←k = 〈

Ψ0
k′(r)

∣∣U (r−Ri )
∣∣Ψk(r)

〉= T̃k′←k . (2.71)

The microscopic transition probability for elastic scattering is expressed by Fermi’s golden rule,

Pk′←k = 2π

ħ Natci|T̃k′←k|2δ (Ek′ −Ek) . (2.72)

Here, Nat is the total number of atoms of the system, ci is the atomic impurity concentration and
δ(x) is the Dirac delta function. If the transition matrix elements depend on the impurity positions,
for example in systems with localized surface states, T k′←k, which is the single transition matrix
T i

k′←k averaged over all impurity positions, is inserted instead of T̃k′←k.
In this work the scattered wave |Ψk(r)〉 is approximated by the zeroth order Born approximation,

|Ψk(r)〉 ≈ |Ψ0
k(r)〉. The scattering potentials are assumed δ-shaped,

∆U (r) =
∑

i
U0δ (r−Ri )V (d)

at (2.73)
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2. Semiclassical transport theory

with U0 the scattering strength and V (d)
at the volume per atom in d-dimensional space. In general,

U0 is a matrix and can be k-dependent. However, in this work it is assumed k-independent. U0 is a
scalar for nonmagnetic impurities and a matrix for magnetic impurities.

24



3. Spin-orbit coupling

Besides their electric charge, electrons carry a spin degree of freedom, which affects the electronic
structure via spin-orbit interaction. Spin-orbit coupling (SOC) can split degenerate bands, leading to
unique band structure properties, like Weyl points, topological surface states, and spin-momentum
locking. Thereby, it induces transport phenomena like the spin Hall effect, the Edelstein effect or
the chiral anomaly, from which the latter two will be considered in this work.

In this chapter SOC is introduced as a relativistic correction to the Hamiltonian. Subsequently,
a minimal two-band model is presented which is sufficient to consider most of the phenomena
discussed in this work. The spin-orbit field formalism, which is a useful tool for the analysis of
spin-orbit effects, is introduced. Finally, several effects of SOC on the band structure are discussed:
Rashba splitting, Dresselhaus splitting as well as topological insulators and semimetals.

3.1. Relativistic correction to the Hamiltonian

Spin-orbit interaction is a relativistic phenomenon. However, although it originates from special
relativity, SOC can be included in a non-relativistic Hamiltonian as a correction term. Therefore,
relativistic equations are employed in order to derive the spin-orbit coupling contribution in the
non-relativistic Hamiltonian. The derivation of the SOC term in this section follows the textbook of
Stepanow [67].

In the non-relativistic limit, a free-electron system is described by the Schrödinger equation

iħ ∂

∂t
Ψ(r, t ) = p̂2

2m
Ψ(r, t ) = ĤnrΨ(r, t ) (3.1)

with the electron mass m = me. This equation leads to the non-relativistic relation between energy
and momentum E = p2/2m. Due to the different order of derivatives in time and space, Eq. (3.1) is
not Lorentz invariant. Thus, in order to describe relativistic systems and to obtain a relativistic
energy-momentum relation, the Dirac equation for free particles was introduced [68, 69],

iħ ∂

∂t
Ψ(r, t ) = (

cα̂ · p̂+mc2β̂
)
Ψ(r, t ) = ĤDΨ(r, t ) , (3.2)

which has the structure of a Schrödinger equation with the Hamiltonian ĤD. Here, c is the speed of
light,Ψ(r, t ) is a four-component spinor and the standard representation of the 4×4 matrices α̂i

and β̂ is
α̂i = σ̂x ⊗ σ̂i , β̂= σ̂z ⊗ σ̂0 (3.3)

with the 2×2 Pauli matrices σ̂i (i = x, y, z) and the unity matrix σ̂0 = 12×2 . Eq. (3.2) is Lorentz
invariant and results in the relativistic energy-momentum relation E2 = c2p2 +m2c4. The angular
momentum operator L̂ = r× p̂ does not commute with the Hamiltonian ĤD but the total angular
momentum Ĵ = L̂+ħ/2Σ̂ does. Here, ħ/2Σ̂ is the spin operator with Σ̂= σ̂0 ⊗ σ̂.

In the presence of electromagnetic fields the Dirac equation reads

iħ ∂

∂t
Ψ(r, t ) = (

cα̂
(
p̂+eA

)+mc2β̂−eΦ
)
Ψ(r, t ) (3.4)

with the electromagnetic potentials A andΦ. In the following, the Dirac equation (3.4) is analyzed
in the non-relativistic limit. The electric field is assumed stationary and the magnetic field is zero.

Using the ansatzΨ(r, t ) = e−i E+mc2

ħ tΨ′(r) withΨ′ =
(
Ψ′

1
Ψ′

2

)
, in whichΨ′

1 andΨ′
2 are two-component
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3. Spin-orbit coupling

spinors, the four-component Dirac equation (3.4) is split into two coupled equations,

(E +eΦ)Ψ′
1 = cσ̂ · p̂Ψ′

2(E +eΦ+2mc2)Ψ′
2 = cσ̂ · p̂Ψ′

1 .
(3.5)

Obviously, Ψ′
2 ¿Ψ′

1. These equations are decoupled in order to obtain a wave equation for the
large partΨ′

1. Analyzing the decoupled two-component Dirac equation forΨ′
1 up to terms ∼ 1/c2

and considering only the Hermitian contribution, this equation can be interpreted as a stationary
Schrödinger equation for the two-component wave functionΨ′

1 with the Hamiltonian

Ĥrel =
p̂2

2m
+V −

(
p̂2

)2

8m3c2 + ħ
4m2c2

(
∂V

∂r
× p̂

)
· σ̂+ ħ2

8m2c2

∂2

∂r2 V (3.6)

with V =−eΦ. Here, the term − (p̂2)2

8m3c2 is the relativistic energy correction, ħ2

8m2c2
∂2

∂r2 V is the Darwin
term and

Ĥ SO = ħ
4m2c2

(
∂V

∂r
× p̂

)
· σ̂ (3.7)

is the spin-orbit coupling term leading to various band structure and transport properties. Although
spin-orbit coupling is a relativistic phenomenon, it can be discussed in the non-relativistic limit by
adding the spin-orbit coupling term Ĥ SO to the non-relativistic Hamiltonian, which will be done in
this work.

For a centrosymmetric potential ∂V/∂r = ∂V/∂r êr (e.g. the atomic potential) the SOC Hamiltonian
simplifies to

Ĥ SO = 1

2m2c2r

∂V

∂r
L̂ · Ŝ (3.8)

with Ŝ = ħ/2σ̂. This term represents the coupling of orbital angular momentum and spin, leading
e.g. to the fine structure of the hydrogen orbitals. It is abbreviated as L ·S coupling in the following.

In addition, spin-orbit coupling can arise due to broken symmetries, e.g. structural inversion
asymmetry at interfaces or broken inversion symmetry in the bulk.

3.2. Two-band model

In the presence of spin-orbit coupling the minimum number of bands of an electronic system is
two due to the two spin orientations represented by the 2×2 Pauli matrices in Eq. (3.6). Through-
out most of this work two-band models are used to describe the physical properties of different
systems in a comprehensive approach. Therefore, a general two-band system is introduced with
the corresponding scattering properties.

In a perfect crystal with translational symmetry the eigenstates of the Hamiltonian Ĥ are Bloch
waves and the momentum operator p̂ can be replaced by its eigenvalue, the crystal momentum ħk.
A general two-band Hermitian Hamiltonian can be expressed in the basis of the Pauli matrices,

Ĥ(k) =
3∑

i=0
di (k)σ̂i . (3.9)

Here, di (k) are real functions and i = 1,2,3 corresponds to the coordinates x, y, z, respectively. The
energy dispersion is

En(k) = d0(k)+n
√

d(k) ·d(k) , d(k) = (d1(k), d2(k), d3(k)) (3.10)
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3.3. Spin-orbit fields

with n =±1. The two-component normalized eigenstates read

∣∣kn〉=
(

n(d1(k)−id2(k))
d(k)−nd3(k)

1

)√
d(k)−nd3(k)

2d(k)V (d)
, (3.11)

with, d(k) = |d(k)| and V (d) the volume of the d-dimensional system. The group velocity is given by
the k-gradient of the energy dispersion,

vn
k = 1

ħ
∂En(k)

∂k
= 1

ħ

[
∂d0(k)

∂k
+ n

d(k)

3∑

i=1
di (k)

∂di (k)

∂k

]
. (3.12)

The Berry curvature calculated from Eq. (2.13) reads [70],

Ωn
i (k) = n

4d(k)3 εi j l d(k) ·
(
∂d(k)

∂kl
× ∂d(k)

∂k j

)
= n

4d(k)3 εi j lεuv w du(k)
∂dv (k)

∂kl

∂dw (k)

∂k j
. (3.13)

Here, εi j l is the Levi-Civita symbol and the indices i , j , l ,u, v, w run from 1 to 3.
In general, the Pauli matrices correspond to the pseudospin of the two bands, i.e. conduction

and valence bands. For the special case that they also represent the spin degree of freedom, the
spin expectation values are given by

〈σ〉n
k = 〈

kn
∣∣σ̂

∣∣kn〉= n
d(k)

d(k)
, (3.14)

where the factor ħ/2 was set to 1.
For the scalar δ-shaped scattering potential introduced in Eq. (2.73), the microscopic transition

probabilities are obtained from Fermi’s golden rule (2.72),

P n′←n
k′←k = π|U0|2ci

ħNat

[
1+ nn′

d(k)d(k′)
d(k) ·d(k′)

]
. (3.15)

Thus, when the Pauli matrices correspond to the spin degree of freedom, the angle between the spin
expectation values of the initial and final states determines the scattering probability. Scattering into
the same spin state is preferred whereas scattering with a complete reversal of the spin (spin-flip) is
suppressed (P = 0).

3.3. Spin-orbit fields

The influence of the SOC term in the Hamiltonian can be analyzed using the picture of spin-orbit
fields. By this formalism, the band splitting as well as the spin texture can be evaluated.

In the following a two-band Hamiltonian with the general structure given by Eq. (3.9) is consid-
ered. Now, the Pauli spin matrices represent explicitly the spin degree of freedom. If d(k) = 0, the
states are doubly degenerate. For nonzero d(k), Kramers degeneracy is lifted and the band is split
into two branches with nonzero spin texture. The band gap is closed if d(k) = 0. The spin-orbit term
d(k) can be interpreted as an effective k-dependent field acting like a Zeeman or exchange field on
the electronic states. The energy of states with spin aligned with d(k) is raised, the energy of states
with opposite spin is lowered. Therefore, d(k) is called spin-orbit field. Its orientation represents
the spin texture, its absolute value corresponds to the energy splitting of the two bands.

Especially for systems in which various SOC terms coexist, for example in systems with Rashba
and Dresselhaus SOC (introduced in sections 3.4 and 3.5), the corresponding spin-orbit fields
provide an intuitive way of analyzing the interplay of the different SOC terms, often more compre-
hensible than investigating only the band structure.
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(a) Band structure in arbitrary k-direction. (b) 2D band structure.

Figure 3.1.: Band structure of a 2D free electron gas without (green dashed line) and with (red/blue solid
lines) Rashba SOC for arbitrary direction in k-space (a). The full 2D band structure is obtained
by rotation around the E-axis (b). The arrows represent the spin expectation values along an
in-plane quantization axis perpendicular to k. Fig. (a) is adapted from [J4].

3.4. Rashba effect

At a surface or interface of a crystal, inversion symmetry is naturally broken by the macroscopic
structure. The two sides of the surface or interface are not equivalent. Due to this structural
inversion asymmetry a potential gradient ∂V/∂n̂ occurs with n̂ the local surface normal. In the case
of a planar surface, n̂ is constant and the spin-orbit coupling Hamiltonian reads

Ĥ SO
R = αR

ħ
[
n̂× p̂

] · σ̂ . (3.16)

Here, the Pauli vector σ̂ represents the spin degree of freedom. The Rashba parameter αR is a
measure for the potential gradient and the strength of the SOC [71] and is defined by the SOC
Hamiltonian (3.7),

αR = ħ2

4m2c2

∫
d3r |Φ(n̂)|2 ∂V (n̂)

∂n
(3.17)

withΦ(n̂) the component of the wave function varying in the direction of the surface normal n̂. Due
to the broken inversion symmetry, Kramers spin degeneracy is lifted. At the interfaces or surfaces
of 3D materials, e.g. the Au(111) surface or the Bi/Ag(111) surface alloy, quasi-2D electron gases
exist which are well approximated by a 2D free-electron model with additional Rashba SOC.
αR is material dependent and typically takes values between 0.01 and 3eVÅ [72]. At an interface

of regions with different dopant concentrations, the Rashba interaction can be tuned by varying the
doping asymmetry [72]. Alternatively, αR can be modified by external fields [73]. For an infinite
two-dimensional system with translational symmetry, the momentum operator p̂ is transformed
into (2D) k-space. Thus, the Hamiltonian reads

ĤR = ħ2k2

2m
+αR [n̂×k] · σ̂ , (3.18)

leading to the energy dispersion

En(k) = ħ2k2

2m
+nαRk , n =±1. (3.19)
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3.4. Rashba effect

(a) Spin-orbit field of the Rashba Hamiltonian.

kx

ky

E−
E+

E = 0

(b) Fermi lines in an equilibrium Rashba system.

Figure 3.2.: Spin-orbit field and Fermi lines with spin expectation values of a 2DEG with Rashba SOC. Due to
the spin-orbit field (a), the spin-degenerate band is split, resulting in the band structure shown in
Fig. 3.1. (b): The Fermi level is above the diabolic point (energy region II). Blue and red colors
represent the n =+1 and n =−1 branches, respectively. The spins (arrows) are aligned (n =+1)
and antiparallel (n =−1) with the spin-orbit field. Fig. (b) is adapted from [J4].

with k = |k|. In Fig. 3.1, the band structure of a free two-dimensional electron gas (2DEG) without
and with the Rashba SOC term, respectively, is shown. Here and in the following the Rashba system
is in the x y-plane with the surface normal in z-direction. Due to the Rashba SOC, in each direction
in k-space the formerly twofold degenerate free-electron parabola is split into two parabolas shifted
in k-space and energy. The degeneracy point, here at k = 0, E = 0, is sometimes called Dirac point
due to the linear dispersion in its vicinity [74]. This notation will be omitted here in order to avoid
confusion with the Dirac Hamiltonian describing e.g. the band structure around Dirac points in
topological semimetals. The Rashba system is topologically trivial and here, the degeneracy point
will be called diabolic point, named after the juggling prop diabolo [75].

Two energy regions are distinguished. Between the band edge at Emin =−α2
Rm/2ħ2 and the diabolic

point (region I), only the n = −1 branch is occupied, giving two concentric Fermi circles. The
inner Fermi circle hosts hole-like states, the outer electron-like states. For E > 0 (region II), both
branches are occupied with two concentric electron-like Fermi circle. The density of states is
free-electron-like for energies above the diabolic point and diverges at the band edge,

N (E) = m

ħ2π




αR

√
m

α2
Rm+2Eħ2 , E ≤ 0

1 , E ≥ 0
. (3.20)

The corresponding eigenfunctions are two-component spinors,

∣∣kn〉=
(
Ψn

↑ (k)

Ψn
↓ (k)

)
= 1p

2A

(
1

ineiϕk

)
, (3.21)

with ϕk the azimuth of k, cosϕk = kx/k and A the area of the system. Due to the Rashba spin-orbit
field, sketched in Fig. 3.2(a), spin and momentum are locked with opposite orientation of the spin
expectation values on both branches,

〈σ〉n
k = n

1

k
(n̂×k) , (3.22)
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3. Spin-orbit coupling

which are in-plane and perpendicular to k. Here and in the following, the factor ħ/2 is skipped,
thus, the spin is a dimensionless quantity. Fig. 3.2(b) depicts the Fermi lines with k-dependent spin
expectation values in the energy region II.

The Rashba model was the first system for which the Edelstein effect was predicted [16,17], which
is introduced and discussed in chapter 4.

3.5. Dresselhaus effect

In non-centrosymmetric bulk systems, the inversion symmetry of the crystal structure is broken,
which is called bulk inversion asymmetry. The paradigm system of a non-centrosymmetric three-di-
mensional crystal is the zincblende structure, which consists of an fcc lattice with two nonequivalent
atoms in the basis. The broken inversion symmetry leads to an additional SOC contribution, called
Dresselhaus term [76]. Within a k ·p theory, the zincblende Dresselhaus term up to third order in k is

Ĥ SO
D = γD

∑

i
σ̂i ki

(
k2

i+1 −k2
i+2

)= γD

[
kx

(
k2

y −k2
z

)
σ̂x +ky

(
k2

z −k2
x

)
σ̂y +kz

(
k2

x −k2
y

)
σ̂z

]
, (3.23)

where i = x, y, z cyclic and σ̂ corresponds to the spin degree of freedom. The Dresselhaus effect
leads to a spin splitting of the bulk bands. However, when a two-dimensional system at a surface or
interface is considered, the Dresselhaus term is projected onto the corresponding plane leading to
a surface Dresselhaus SOC term which depends on the surface plane ([001], [110], [111], etc.). At
surfaces and interfaces, the Rashba and Dresselhaus terms coexist. Depending on the point group
of the system and the ratio of Rashba and Dresselhaus SOC, unconventional spin textures show up,
for example systems with a single spin component [77] or showing a persistent spin helix [72].

The Dresselhaus parameter γD is a material-dependent bulk property. For GaAs, which is the
paradigm of a zincblende crystal, values from 6.5 to 30eVÅ3 have been reported [78,79]. Dresselhaus
systems are also expected to host an Edelstein effect, which is considered in section 4.6 for various
surfaces with Rashba and Dresselhaus SOC.

3.6. Topological insulators

Besides the Rashba and Dresselhaus effects introduced in the previous sections, the L ·S spin-orbit
coupling can also give rise to unique band structure properties.

In ordinary insulators and semiconductors, the conduction and valence bands usually differ
by their orbital character: the conduction band is typically s-like, whereas the valence band has
p-like character [80]. In systems with spin-orbit coupling, the relativistic corrections to the Hamil-
tonian (3.6) split and shift the orbital energy levels in comparison to the non-relativistic case, which
can have remarkable effects on the band structure. In case of strong SOC, the orbital ordering of
the conduction and valence bands can be inverted in distinct regions of the Brillouin zone, which
means that the valence band is shifted above the conduction band. However, due to hybridization
of the states, these inverted bands do not cross but open up a band gap. The band inversion with
such an avoided crossing is shown schematically in Fig. 3.3.

The non-inverted and especially the inverted band structures can be characterized by topolog-
ical invariants, which are integer numbers that remain invariant as long as the band gap is not
closed and the symmetries of the system are conserved. A Hamiltonian producing a gapped band
structure is classified by its topological invariant. Common insulators with non-inverted bands
are (topologically) trivial. Hamiltonians with the same topological invariant can be continuously
transformed into one another without closing the band gap. When they differ with respect to their
topological invariant, the band gap has to close to make such a transformation possible [81].

Bringing two materials with different topological invariants into contact (e.g. a topologically
nontrivial insulator and vacuum, which is topologically trivial) gives rise to topological surface
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(a) Trivial bands.
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(b) Band inversion.
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(c) Avoided crossing with spin-
polarized surface states (red).

Figure 3.3.: Topological transition from trivial (a) to topologically nontrivial bands (c). Due to the relativistic
corrections to the Hamiltonian (3.6), the s- and p-bands are shifted and their order is inverted.
A gap opens around the crossing points. The helical edge states (red, c) correspond to a time-
reversal invariant topological insulator. For a Chern insulator, only one linear chiral mode would
exist at each edge.

states at the interface which are protected by symmetry and thus cannot be annihilated by a
symmetry-preserving perturbation. The emergence of topological surface states can be directly
understood from the analysis of the topological invariants, which is known as bulk-boundary
correspondence. In real space, the topological invariant has to change across the interface. However,
this is only possible if the band gap is closed [45, 82]. Therefore, in the interface region between two
topologically different regions the band gap is closed by surface states.

In the following, two- and three-dimensional topological insulators as well as the corresponding
topological invariants and the emergent surface states will be introduced.

3.6.1. Chern insulators

Chern insulators were first predicted by Haldane [83] as systems in which an integer quantum
Hall effect exists even in the absence of a magnetic field. In these two-dimensional insulators
time-reversal symmetry is broken. The characteristic invariant is the integer Chern number for
band n, which is defined as the integral of the Berry curvature over the 2D Brillouin zone (BZ) [81],

Cn = 1

2π

∫

kεBZ

Ωn
z (k) d2k . (3.24)

Here, the 2D Brillouin zone is in the kx ky -plane. The (total) Chern number C for topological
classification is the sum over the Chern numbers of all occupied bands.

The corresponding surface states in the 2D bulk energy gap are 1D chiral edge states propagating
into one direction along the edge and counterpropagating at opposite edges, giving rise to the
quantum Hall effect. The Fermi surface is a single k-point at each edge. Thus, the edge states are
insensitive to disorder since they cannot be scattered [82].

The simplest model Hamiltonian for a Chern insulator is a 2D massive two-band Dirac Hamilto-
nian,

Ĥ(k) =ħv0
(
kxσ̂x +ky σ̂y

)+mσ̂z , (3.25)

yielding the gapped bulk band structure E(k) =±
√

ħv0k2 +m2. The topological character of the
system depends on the mass term m. For m = 0 the bands gap is closed; this gap closing marks
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3. Spin-orbit coupling

the topological transition point between two different topological phases with m < 0 and m > 0,
respectively.

In order to demonstrate the emergence of topological surface states at the boundary between two
topologically different regions, the translational symmetry of the system is broken in y-direction by
assuming m = m(y) =−m0sgn(y). Thus, at the boundary y = 0 the surface states closing the bulk
band gap decay exponentially into the bulk,

Ψs(r) = 1p
2

(
1
1

)
eikx x+λ(y)y , (3.26)

with λ(y) = −sgn(y)
p

m2
0+ħv2

0 k2
x−E2/ħv0. These 1D chiral edge states disperse linearly in energy at

the edge in x-direction, E = sgn(m0)ħv0kx . However, the integral (3.24) C̃ = −1/2sgn(m0 y) is not
an integer and therefore not a Chern number. This apparent inconsistency comes from the fact
that the model Hamiltonian (3.25) is not a lattice Hamiltonian but describes the low-energy states
around the Γ-point. Thus, modifying the gapped Dirac Hamiltonian (3.25) to a lattice-periodic
form, an integer Chern number is obtained. In any case, the difference of C̃ obtained from Eq. (3.24)
between the two regions y < 0 and y > 0 is integer, which is crucial for the emergence of chiral
topological edge states.

3.6.2. Time-reversal symmetric topological insulators

In time-reversal invariant systems the Chern number cannot be used for topological classification,
since it vanishes for symmetry reasons. The corresponding topological invariant is a Z2 number
which is either 0 (trivial) or 1 (nontrivial) [84]. A 2D time-reversal invariant topological insulator
can be interpreted as two copies of a Chern insulator which are related by time reversal.

The Z2 invariant for time-reversal symmetric topological insulators was first defined by Kane
and Mele [84] in terms of eigenfunctions. The probably most intuitive way of calculating the Z2

invariant is strongly related to the definition of the Chern number (3.24). The set of eigenstates of
the time-reversal invariant system is decomposed into two subspaces (I/II) which are related by
time-reversal and have the Chern numbers CI and CII, respectively. The Z2 invariant ν is then given
by [85]

ν= 1

2
(CI −CII) mod 2 . (3.27)

The topological surface states are two counterpropagating helical modes with opposite spin polar-
ization, as shown in Fig. 3.3(c). They give rise to the quantum spin Hall effect. Although the Fermi
surface consists of two k-points, the surface states ΨI and ΨII are also robust against backscat-
tering since they are related by time-reversal and therefore orthogonal:

〈
ΨI

∣∣ΨII
〉= 〈

ΨI
∣∣ T̂ ΨI

〉=〈T̂ 2 ΨI
∣∣ T̂ ΨI

〉=−〈
ΨI

∣∣ T̂ ΨI
〉= 0. Here, T̂ is the time-reversal operator with T̂ 2 =−1 for spin-1/2

particles [86]. The first theoretically predicted and experimentally realized topological insulator
was a HgTe quantum well [87, 88]. Here, the Hg s-band is shifted below the Te p-band giving an
inverted band structure, if the well is thicker than a critical thickness. Bringing HgTe in contact with
CdTe, whose band structure is not inverted due to weaker spin-orbit coupling, topological surface
states occur at the boundaries.

Topological insulators exist also in three dimensions. Here, Z2 invariants are defined for distinct
time-reversal invariant 2D planes in the 3D Brillouin zone [89]. The corresponding surface states
are 2D helical states with a cone-like dispersion and helical spin-momentum locking. They are
sometimes called Dirac cones since their band structure resembles 2D Dirac fermions. In these 2D
helical states scattering can occur since the Fermi surface is a circle and for each state |k〉 various
scattering paths with nonzero transition probability are present.

The existence of topological surface states of a 3D topological insulator is demonstrated em-
ploying a minimal model Hamiltonian based on the Dirac Hamiltonian [90, 91]. In [90] the model
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3.6. Topological insulators

Figure 3.4.: Bulk (green) and surface states (blue/red) of a 3D topological insulator described by the effective
Hamiltonian (3.28). The 3D bulk spectrum is projected to the (kz = 0)-plane. The black coordinate
system corresponds to the band structure. The bulk spectrum is gapped whereas the surfaces
host topological helical surface states with spin-momentum locking. Here, the sample is assumed
finite only in z-direction (the real-space coordinates are indicated by the gray coordinate axes),
but in general surface states can occur on any surface in this model.

was introduced to describe the low-energy states around the Γ-point of the 3D topological in-
sulators Bi2Se3, Bi2Te3 and Sb2Te3 including the four low-energy orbitals which form the basis(∣∣p1+

z ,↑〉
∣∣p1+

z ,↓〉
∣∣p2−

z ,↑〉 ,
∣∣p2−

z ,↓〉),

Ĥ = E0(k)+M(k)σ̂0 ⊗ τ̂z + σ̂x ⊗
∑

i
v0p̂i τ̂i . (3.28)

Here, the Pauli matrices σ̂i and τ̂i (i = x, y, z) correspond to the spin and orbital degrees of freedom,
respectively. The term E0(k) does not affect the topological properties of the system and is set to
E0(k) = 0. Thus, the model Hamiltonian (3.28) is a Dirac Hamiltonian with a k-dependent mass
term M(k) = M0 −

∑
i

Bk2
i inducing a band gap in the 3D bulk bands. It can be shown that the bulk

bands have a topological nontrivial character if M0B > 0 and are trivial otherwise. Therefore, in the
following M0B > 0 is assumed.

Now, the system is assumed infinite in x- and y-direction and confined to the half space z < 0.
Therefore, ħkx/y , the eigenvalues of p̂x/y , are good quantum numbers. In order to obtain the
eigenstates of Eq. (3.28), two independent zero-energy solutions for kx = ky = 0 and open boundary
conditions at z = 0 are found,

∣∣∣Ψ↑
0(z)

〉
= 1p

N




i
sgn(B)

0
0




(
eλ+z −eλ−z

)
,

∣∣∣Ψ↓
0(z)

〉
= 1p

N




0
0
−i

sgn(B)




(
eλ+z −eλ−z

)
. (3.29)

Here, 1/
p

N is a normalization factor and λ± = 1/(2|B |ħ)

(
v0 ±

√
v2

0 −4M0B
)
. These zero energy solu-

tions are used as basis of the surface states. They correspond to the ↑ and ↓ states, respectively.
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3. Spin-orbit coupling

Projecting the Hamiltonian (3.28) into this new basis yields

Ĥ surf
eff =ħsgn(B)vF

(
kxσ̂y −kxσ̂x

)=χħvF
(
kxσ̂y −kxσ̂x

)
. (3.30)

The Pauli matrices σ̂x/y correspond to the spin degree of freedom in the surface basis
(∣∣∣Ψ↑

0

〉
,
∣∣∣Ψ↓

0

〉)

and χ = sgn(B) is the chirality of the surface states. Thus, Eq. (3.30) describes two-dimensional
surface states which are linearly dispersing with a cone-like band structure. Spin and momentum
are locked perpendicularly. Here, chirality corresponds to the sense of rotation of the spin expec-
tation values and does not refer to chiral edge states of Chern insulators. At the opposite surface
(topological insulator for z > 0, vacuum for z < 0) the sense of rotation of the spin expectation values
along the Fermi line is opposite, corresponding to an opposite chirality. Fig. 3.4 schematically shows
the gapped bulk and the helical surface band structure of a 3D topological insulator described by
Eq. (3.28).

The band structure of the surface states resembles the Rashba model near the diabolic point. Due
to the spin-momentum locking, they are expected to provide an efficient charge-to-spin conversion,
which is discussed in section 4.7.

3.7. Weyl semimetals

Besides the above introduced topological insulators, metals and semimetals can also exhibit a
topologically nontrivial character. In contrast to topological insulators, the bulk states of topological
(semi)metals are not gapped at the Fermi level and provide a finite density of states in the whole
energy range of interest (except of singular points). Due to the topological character of the gapless
bulk band structure, unique topological surface states exist.

One type of topological semimetals are Weyl semimetals [31–35], that exhibit characteristic 3D
bulk band structure properties. In a Weyl semimetal, at least one of time-reversal or inversion sym-
metry is broken, which lifts the Kramers degeneracy and leads to nondegenerate bands. At special
singular twofold degenerate points kχW in the bulk spectrum, called Weyl points, the conduction
and valence bands touch with a cone-like band structure linearly dispersing in all three directions
in k-space. The density of states vanishes at the Weyl point energy and is finite otherwise. The
states around these points are described by the Weyl Hamiltonian

Ĥχ

W(k) =χħv0(k−kχW) · σ̂ , (3.31)

yielding the energy dispersion

En = nħv0|k−kχW| , n =±1 . (3.32)

Here, χ is the chirality of the Weyl fermion, which is ±1 for first-order Weyl semimetals, σ̂ represents
in general the pseudospin of conduction and valence bands and v0 characterizes the group velocity.
The low-energy states near the Weyl points are interpreted as the solid-state realization of relativistic
Weyl fermions, which are the solutions of the massless Dirac equation, called Weyl equation [36].
Although Weyl fermions have been discussed since the 1920s, Weyl semimetals were the first and
up to now only known materials hosting Weyl fermions. Weyl points always occur in pairs of
opposite chirality, which is stated by the Nielsen-Ninomiya no-go theorem [92–94]. The bulk energy
dispersion of a pair of Weyl cones is shown schematically in Fig. 3.5(a). Due to the Weyl points, the
band structure features a topological nontrivial character. Corresponding to Eq. (2.13), the Berry
curvature around the Weyl points is

Ω
χ,n
k =−nχ

1

2|k−kχW|3
(
k−kχW

)
. (3.33)
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3.7. Weyl semimetals

(a) Band structure of bulk (green) and surface
states (red/blue) of a Weyl point pair. The signs
+ and − represent the chiralities of the Weyl
points, the arrows correspond to the spin polar-
ization along the Fermi arcs.

(b) Topological surface states with Fermi arcs
(red/blue lines). The 3D Brillouin zone is de-
composed into 2D planes with trivial (C=0) and
nontrivial (C=1) Chern number. Inverted colors
of the 2D band structures represent the band
inversion.

Figure 3.5.: Schematic bulk and surface bands of a Weyl semimetal. (a): bulk and surface states and their
occurrence in real space. (b): Emergence of topological surface states in the reciprocal space.
The coordinates are rotated with respect to (a).

Depending on the chirality, a Weyl point is either a monopole or an antimonopole of the Berry
curvature field of each band. Integration over a closed surface Sk around a Weyl point yields

−nχ= 1

2π

∮

χ

Ω
χ,n
k ·dSk . (3.34)

This integer-valued integral is independent of the specific shape of Sk and only depends on the
chirality of the enclosed Weyl point. Therefore, the chirality χ corresponds to a topological charge,
which is defined as integral of the Berry curvature in the valence band. The topological charge is
inherent of the specific band structure as long as a Weyl point exists. Integrating over a surface
which encloses two Weyl points of opposite chirality would give zero topological charge. Due to
this topological property, a Weyl point can only be “destroyed” (which means the a gap is opened) if
it annihilates with a Weyl point with opposite chirality.

The existence of Weyl points gives rise to topological surface states that connect the surface
projections of the Weyl points. The corresponding Fermi lines in the two-dimensional Brillouin
zone are open contours, called Fermi arcs [32]. The occurrence of these topological surface states
can be understood by interpreting the 3D Brillouin zone of a Weyl semimetal as a stack of (insulating)
slices in 2D k-space [33], as sketched in Fig. 3.5(b). For each slice not intersecting the Weyl points,
the band structure is gapped and a Chern number is defined. In the planes including the Weyl
points the band gap is closed and the Chern number changes by χ. Thus, when the 2D system is
trivial in the outer parts of the Brillouin zone, it is nontrivial in between the Weyl points leading to
the existence of in-gap surface states [33, 82]. These surface states exist in the whole k-region in
which the 2D bands exhibit nontrivial character, giving rise to the topological Fermi arcs connecting
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3. Spin-orbit coupling

the Weyl points’ projections [32, 33].
The chirality of a Weyl point is invariant under time reversal and is reversed under spatial in-

version. Therefore, a system with inversion symmetry hosts at least two Weyl points. When
time-reversal symmetry is present, the band structure contains at least four Weyl points.

Due to their topological properties, Weyl semimetals provide various promising transport phe-
nomena, such as a large anomalous Hall effect [32, 95, 96], a current-induced spin polarization [J4],
and the chiral anomaly [37–39], the latter two effects are discussed in section 4.8 and chapter 5 of
this work.

3.7.1. Model Hamiltonian

In realistic systems, the Weyl points are embedded in the bulk band structure and connected at
higher energies. Therefore, a minimal model Hamiltonian for simulating realistic band structure
properties has to produce at least two Weyl points. In this work the Hamiltonian proposed by
Okugawa and Murakami [97, 98] is slightly modified to describe a Weyl pair in the vicinity of the
point k0

p ,

Ĥ p
W(k) = %p γW(k2

p,x −mW)σ̂y +ħ(vz kp,zσ̂z − vy kp,y σ̂x ) , (3.35)

where σ̂ corresponds to the spin degree of freedom and γW, mW, and vx,y,z are model parameters.
p is the pseudospin index of a Weyl point pair, %p =±1 determines the orientation of the Weyl pair
in k-space (Weyl dipole [99]) and kp = k−k0

p . In contrast to the original model [97,98], in which σ̂ is
a pseudospin generating a two-band system, in Eq. (3.35) a real spin degree of freedom is explicitly
imposed in order to simulate realistic spin textures that have been calculated [100] and observed
in experiments [101]. For a system of four Weyl points two copies of the Hamiltonian (3.35) are
required with %1/2 =±1 and k0

1 =−k0
2.

In this reinterpreted model, the Weyl pairs around different points k0
p (e.g. k0

1 and −k0
1) are not

coupled. Therefore, the Hamiltonians (3.35) for different indices p can be considered separately.
The bulk band structure reads

En
p (k) = n

√
γ2

W(k2
p,x −mW)2 +ħ2(v2

y k2
p,y + v2

z k2
p,z ) , n =±1 . (3.36)

By the parameter mW the material properties can be tuned from insulating (mW < 0) to Weyl semi-
metal (mW > 0). At the topological phase transition point mW = 0, Weyl points of opposite chirality
χ are created (or annihilated) at k0

p .

In the Weyl semimetal phase the Weyl points are located at kχW,p = k0
p + (%pχ

p
m0,0,0) with

m = m0 > 0. The bulk band structure of a pair of Weyl points around k0 as well as the corresponding
surfaces of constant energy are shown in Fig. 3.6. In the vicinity of the Weyl points the band structure
is conical. At the saddle points at E±

S =±γWm0 the two Weyl cones are connected and the system
goes through a Lifshitz transition.

The bulk eigenstates of the model Hamiltonian (3.35) are

|kbk
p 〉 =



−ħvy kp,y−i%pγW

(
k2

p,x−m0

)

En
p (k)−ħvz kp,z

1


 1√

Mp,k
, Mp,k =

2En
p (k)

En
p (k)−ħvz kp,z

V , (3.37)

with the k-dependent spin expectation values

〈σ〉bk
p,k =

(
−ħvy kp,y

En
p (k) ,

%pγW

(
k2

p,x−m0

)

En
p (k) ,

ħvz kp,z

En
p (k)

)
. (3.38)

For the calculation of the surface states, the system is assumed infinite in x- and y-direction but
finite in z-direction with the thickness Lz . The (z = 0)-plane is labeled as top (T), the (z = −Lz )-
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3.7. Weyl semimetals

Figure 3.6.: Band structure and constant energy surfaces of the Hamiltonian (3.35) around k0. The bulk states
are drawn green, the top (bottom) surface states red (blue), respectively. The chirality of the Weyl
points is marked by + and −. The figure is adapted from [J5].

plane as bottom surface (B). To simulate the surface properties, mW is assumed z-dependent,

mW(z) =





m1 < 0, z <−Lz

m0 > 0, −Lz ≤ z ≤ 0

m1 < 0, z > 0

(3.39)

with |m1|À m0. The wave functions and energy dispersions of the surface states at the top surfaces
of the Weyl semimetal (−Lz ≤ z ≤ 0 ) are

∣∣∣kT
p

〉
=

(
%p

1

)
e
− γW

vzħ
(
k2

p,x−m0

)
z 1√

Np,k
, ET

p =−%p vyħkp,y (3.40)

and at the bottom surface

∣∣∣kB
p

〉
=

(−%p

1

)
e
γW
vzħ

(
k2

p,x−m0

)
(z+Lz ) 1√

Np,k
, EB

p = %p vyħkp,y . (3.41)

The normalization factor reads

Np,k = Lx Lyħvz

γW
(
m0 −k2

p,x
)


1−exp

2γW

(
k2

p,x −m0

)
Lz

ħvz


 . (3.42)

The surface states exist in between two Weyl nodes, that is −pm0 ≤ kp,x ≤p
m0. In real space

they decay exponentially from the surface to the bulk with a kp,x -dependent decay length λz =
vzħ

γW(m0−k2
p,x )

. At the ends of the arcs, kp,x =±pm0, the surface states are equivalent to the bulk states.

The surface states at the center of the arc, kp,x = 0, have the shortest decay length. Since |m1|À m0,
the wave functions decrease rapidly in the vacuum regions outside the Weyl semimetal (z > 0 and
z <−Lz ) and are excluded from further considerations.

The k-dependent surface spin expectation values are constant on each Fermi arc, point along the
arc and are (mutually) oppositely aligned on the top and bottom surface,

〈σ〉T
p,k = (

%p , 0, 0
)

, 〈σ〉B
p,k = (−%p , 0, 0

)
. (3.43)

In Fig. 3.6 in addition to the bulk bands, the surface band structure of the Hamiltonian (3.35) is
shown. The surface band dispersion is linear and touches the bulk bands tangentially. In addition,
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constant-energy surfaces are depicted for the bulk states (center); on the right-hand side constant-
energy cuts show both surface states and the projection of the bulk states onto the z-surface.

The paradigm Weyl semimetals with broken inversion symmetry are NbP, TaP, NbAs and TaAs
[102, 103], which belong to a non-centrosymmetric space group.

The model Hamiltonian (3.35) will be used in sections 4.8.2 and 5.5 to approximate the band
structure of the Weyl semimetal TaAs in order to calculate the Edelstein effect as well as the chiral
anomaly.

Besides the above introduced type-I Weyl semimetals, which provide point-like Fermi surfaces
and a vanishing density of states at the Weyl point energy, a second class of Weyl semimetals, called
type-II, exists [104]. In these materials, the Weyl cones are tilted in k-space and the corresponding
Fermi surfaces at the energy of the Weyl points are electron and hole pockets with a nonzero density
of states. Like type-I Weyl points, type-II Weyl points are monopoles of the Berry curvature field of
each band and give rise to topological surface states. Candidates for type-II Weyl semimetals are for
example MoTe2 and WTe2 [104, 105]. However, the focus of this work is on type-I Weyl semimetals.
Thus, when Weyl semimetals are discussed, this usually refers to type-I.

In systems with time-reversal and inversion symmetry, the bands are twofold degenerate. Here,
similar band structure features as Weyl points can arise, described by the massless Dirac Hamil-
tonian, which is interpreted as two copies of the Weyl Hamiltonian. The band crossing points
are therefore called Dirac points and the materials are Dirac semimetals. The band structure is
cone-like around the Dirac points, but the Berry curvature vanishes. However, Z2 invariants can be
defined and topological surface states also exist. By applying a magnetic field to a Dirac semimetal,
the time-reversal symmetry is lifted and two Weyl points are created from one Dirac point.
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4. The Edelstein effect

The Edelstein effect, also known as Rashba-Edelstein effect [106], inverse spin-galvanic effect
[107], Aronov-Lyanda-Geller-Edelstein (ALGE) effect [J4] or, less specific, as current-induced
spin polarization, provides the opportunity of purely electrically inducing a spin polarization in
nonmagnetic materials. At surfaces or interfaces hosting Rashba states or topological surface states,
or in bulk Dresselhaus systems, the spin degeneracy of the electronic states is lifted by spin-orbit
coupling (SOC) [108–110]. Due to the broken inversion symmetry and the spin polarization of
the states, the application of an external electric field induces a macroscopic spin polarization.
Thus, the Edelstein effect is promising for spintronic applications since it allows for generating
and controlling a spin polarization electrically, which can be used to exert a spin-orbit torque on a
ferromagnetic layer and thereby move domain walls and even switch magnetization. It has been
subject of various theoretical [16, 17, 107, 111–116] as well as experimental [25, 106, 117–123] papers.

In this chapter, the Edelstein effect is introduced within a straightforward picture using the
semiclassical Boltzmann transport theory. An isotropic Rashba system is used as a paradigm model,
like in the original papers [16, 17]. In addition, the inverse Edelstein effect, which is the generation
of a charge current from a nonequilibrium spin density, is introduced. Further, a magnetoelectric
effect coupling electric field and spin polarization, which can be classified as intrinsic Edelstein
effect, is discussed within Kubo theory. A short overview of the experimental effort and progress
on detecting the Edelstein effect is given. Further, the current-induced spin polarization is calcu-
lated and discussed for Rashba systems with anisotropies and nonmagnetic as well as magnetic
impurities, Dresselhaus systems, Rashba systems with a Zeeman field, topological insulators and
Weyl semimetals. Materials providing an efficient charge-to-spin conversion are identified. It is
demonstrated that the current-induced spin polarization is not mandatory perpendicular to the
applied electric field. Parts of this chapter were published in [J4, J5].

4.1. Charge-to-spin conversion in a Rashba model

The isotropic Rashba system, introduced in section 3.4, is the paradigm model system for the
theoretical discussion of the Edelstein effect [16, 17, 108–110]. Due to its free-electron-like band
structure, it is employed here to give a coherent and intuitive explanation for the current-induced
spin density. Originally, the Edelstein effect was discussed for energies above the diabolic point
(region II, defined in section 3.4), in which both branches (n = ±1) are occupied, whereas it is
calculated in the entire energy region in this work [J4].

The total spin polarization of the system is calculated by summing the spin expectation values of
all occupied states,

〈s〉 =
∑

k,n
f n

k 〈σ〉n
k . (4.1)

This macroscopic spin expectation value corresponds to a magnetic moment of m =−µB 〈s〉, with
µB the Bohr magneton. In equilibrium 〈s〉 vanishes because of time-reversal symmetry. Within
semiclassical Boltzmann transport theory (section 2.3), the influence of an external electric field E
can be interpreted as a shift of the Fermi lines in k-space, as shown in Fig. 4.1. In this nonequilibrium
configuration, a nonzero total spin expectation value results,

〈s〉 =−
∑

k,n
e
(
Λn

k ·E
)
δ

(En
k −EF

)〈σ〉n
k =−

∑

k,n
eτR,n

k

(
vn

k ·E
)
δ

(En
k −EF

)〈σ〉n
k , (4.2)

in which the mean free path Λk was approximated by τR
k vk (relaxation time approximation), as

discussed in section 2.3.1. Here, either the momentum relaxation time τk defined by Eq. (2.41) or
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kx

ky E

(a) E < 0 (region I): only the n = −1 branch is oc-
cupied. The inner Fermi circle is hole-like, the
outer electron-like.

kx

ky E

(b) E > 0 (region II): both branches are occu-
pied with opposite spin polarization. Adapted
from [J4].

Figure 4.1.: Fermi lines and spin expectation values (arrows) of a 2DEG with Rashba SOC in the presence of
an external electric field E. The influence of the electric field is interpreted as a “shift” of the
Fermi lines with the direction of the shift depending on the electron/hole character of the states.
The grays lines correspond to the equilibrium. The colors blue and red represent the n =+1 and
n =−1 branches, respectively. In both energy regions I and II the spin density contributions of
the two Fermi lines partially compensate and a nonzero spin polarization pointing in y-direction
shows up.

the transport lifetime τtr
k given by Eq. (2.48) can be used.

For a scalar scattering potential U0, the transition probability P n′←n
k′←k calculated from Eqs. (2.72)

and (3.15), respectively, depends only on the scattering angle between k and k′,

P n′←n
k′←k = ci|U0|2π

ħNat

[
1+nn′ cos(ϕk′ −ϕk)

]
δ

(
En

k −En′
k′

)
, (4.3)

with ϕk the azimuth of k. In the isotropic model system, both momentum relaxation time τk as
well as transport lifetime τtr

k are isotropic and can be calculated analytically,

τn
k = τ0(E) = 1

ci|U0|2 Aatm

{ħ4v(E)
αR

, E ≤ 0

ħ3 , E ≥ 0
(4.4a)

τtr,n
k = τtr,n

0 (E) = 1

ci|U0|2 Aatm2

{ħ6v(E)kn (E)
αR

, E ≤ 0
ħ4kn (E)

v(E) , E ≥ 0 .
(4.4b)

Here, the band index is n = ±1 for E > 0 referring to the two energy branches and n = (−1,e/h)
for E < 0 labeling the electron- and hole-like states, respectively. Aat = A/Nat is the average area

per atom, vk(E) the group velocity, whose absolute value, v(E) =
(
α2

R
ħ2 + 2E

m

)1/2
is constant on an

iso-energy line. Both τk and τtr
k are continuous at E = 0. The momentum relaxation time τk, which

includes only scattering-out processes, has the same value on both iso-energy circles, whereas
the transport lifetime τtr

k , which also takes account of the scattering-in processes, has different
values. Thus, the choice of the relaxation time can influence the results of the transport properties
drastically.

In this chapter, the transport lifetime τtr
k is used in the majority of cases because it provides a

more accurate way of discussing the scattering properties of the system. Within this approach, the
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4.1. Charge-to-spin conversion in a Rashba model
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(a) Branch-resolved spin density for the transport
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k . Adapted from [J4].
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(b) Constant relaxation time τ0 and momentum
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Figure 4.2.: Energy-dependent spin density for an isotropic Rashba system in the presence of an electric
field E ∥ x. The contributions from the n =±1 branches are shown in blue and red, respectively.
Using the momentum relaxation time instead of the transport lifetime influences the value of
the spin density by a factor of 1/2: 〈s〉1 = 〈s〉0/2. The constant relaxation time approach (assuming
τ0 = τk(E > 0)) modifies the energy dependence qualitatively in region I.

spin density, which is defined as total spin expectation value per two-dimensional unit cell, reads

〈s〉 = 〈s〉
u.c.

= eNu.c.

πci|U0|2
[ez ×E]





0, EF ≤ Emin(
αR + 2ħ2

αRmEF

)
, 0 ≥ EF ≥ Emin (region I)

αR , EF ≥ 0 (region II)

, (4.5)

as shown in Fig. 4.2(a). Here, Nu.c. is the number of atoms in the unit cell. Shifting the Fermi level
can be achieved experimentally by applying a gate voltage or doping the Rashba system. However,
the dopants would also affect the scattering properties.

The qualitative energy dependence of 〈s〉 can be directly explained from the band structure and
the Fermi lines of the system (Figs. 3.1 and 4.1). ForEmin ≤ EF ≤ 0, only the branch n =−1 is occupied.
The spin textures on the two Fermi circles have the same orientation. Due to the opposite character
of charge carriers (electrons/holes), their contributions to the total spin partially compensate. With
increasing Fermi energy the difference in radii is enlarged, reducing the compensation and thus
enhancing the net spin density of the system. In addition, the transport lifetime also exhibits an
energy dependence leading to the linear increase of 〈s〉y . Above the diabolic point (E > 0), both
branches n =±1 are occupied. Due to the opposite spin orientation and electron-like character of
both bands, their contributions also partially compensate. Here, the difference in radii of the Fermi
lines does not change with EF giving a spin density constant in energy.

For comparison, Fig. 4.2(b) shows the energy-dependent induced spin density for a constant,
energy-independent relaxation time τ0 and the momentum relaxation time τk, given by Eq. (4.4a),
respectively. Whereas all three τ-approaches provide a constant total spin expectation value above
the diabolic point (region II), the results differ with respect to the absolute values as well as the
contributions of the bands. Using the momentum relaxation time results in a spin density reduced
by a factor of 1/2 in comparison to the transport lifetime approach. The constant τ0 approach leads
to a modified energy dependence in region I representing the difference of the two Fermi circles’
radii.

At the opposite surface of the material, the current-induced spin density would point in the
opposite direction since the sign of the Rashba parameter would change.

Analogously to the charge conductivity defined by Ohm’s law, the Edelstein tensor κ̂ is defined,
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4. The Edelstein effect

linearly connecting the spin density and the electric field,

〈s〉i = κi j E j , (4.6)

with i = x, y, z and j = x, y . For the isotropic Rashba system κ̂ is

κy x =−κx y =
eNu.c.

πci|U0|2





0, EF ≤ Emin(
αR + 2ħ2

αRmEF

)
, 0 ≥ EF ≥ Emin

αR , EF ≥ 0 .

(4.7)

All other tensor elements vanish because of symmetry.
Alternatively to the E-dependent formulation, the spin density can also be expressed in terms of

the charge current jc. Using the Mott two-current model [124], the charge current in the Rashba
system is

jc = e2

4π
v(EF)

∑
n

kn(EF)τtrn(EF)E . (4.8)

The spin density induced by the same electric field E is represented as a function of the charge
current,

〈s〉 = αRmħA0

e
(
α2

Rm +ħ2EF
)
[
ez × jc] , (4.9)

A0 is the area of the unit cell. In Ref. [107], the expression 〈s〉/A ≈ αRm/eħEF

[
ez × jc

]
is derived which

corresponds to Eq. (4.9) in the limit ħ2EF À 2|Emin|. Expressing the current-induced spin density
in terms of the charge current instead of the electric field has the advantage that the result does
not depend on details of the scattering properties. The scattering potential U0 and the impurity
concentration ci enter the transport properties as parameters via the relaxation time. The values of
U0 and ci can vary between different samples of the same material and are often not known. When
the nonequilibrium spin density is calculated as a function of the electric field, these parameters
are set to arbitrary values. Expressing the spin density as a function of the charge current density,
the influence of U0 and ci is eliminated. Here, also an Ohm’s law-like relation can be defined,

〈s〉i = ζi j j c
j (4.10)

with the tensor ζ̂ for an isotropic Rashba system ,

ζy x =−ζx y =
αRmħA0

e
(
α2

Rm +ħ2EF
) . (4.11)

Expressing the induced spin as a function of the charge current is not appropriate for systems with
metallic bulk states. Here, applying an electric field to the sample induces a spin density as well
as a charge current at the surface or interface, but in addition also a charge current in the bulk.
Therefore, the total current in the sample is larger than the charge current originating from the
surface states. Consequently, the current-to-spin efficiency is overestimated by Eq. (4.11).

The general expression Eq. (4.2) for calculating the spin density induced by an external electric
field is not restricted to isotropic Rashba systems, but can be in general used for 2D and even 3D
systems. In the following sections, it will be applied to more complex systems.

4.2. Intrinsic Edelstein effect

The Edelstein effect introduced in the previous section within semiclassical Boltzmann transport
theory includes only extrinsic transport effects due to scattering. However, within Kubo theory [62],
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4.3. Inverse Edelstein effect

intrinsic effects can also give rise to a nonzero spin density induced by an external electric field.
Using the Kubo formula for intrinsic interband contributions [64, 65] given by Eq. (2.64), the
expectation value of the intrinsic spin density is

〈s〉i =−2ħeNu.c.

Nat

∑

k,n 6=m
f n

k

(
1− f m

k

) Im(〈kn |σ̂|km〉〈km |v̂ ·E|kn〉)
(En

k −Em
k

)2 , (4.12)

where n and m are band indices and v̂ = −i/ħ
[
Ĥ , r̂

]
is the velocity operator. In a time-reversal

invariant system, the imaginary parts of 〈kn |σ̂|km〉 and 〈kn |v̂|km〉 transform odd under time reversal
whereas the real parts transform even. In a pure Rashba system, the term 〈kn |σ̂|km〉〈km |v̂ ·E|kn〉 is
real for all k. Thus, in systems with TRS, the intrinsic interband contributions to the Edelstein effect
vanish for symmetry reasons.

In systems with broken TRS, however, an intrinsic Edelstein effect may exist. In magnetic ma-
terials, the current-induced spin density is usually not called Edelstein effect but magnetoelectric
effect. Since the physical origin of the magnetoelectric coupling is similar to the Edelstein effect, it
is discussed within this work for Rashba systems with Zeeman coupling (section 4.5.4) and will also
be called Edelstein effect for reasons of consistency.

4.3. Inverse Edelstein effect

Besides the direct Edelstein effect, its Onsager reciprocal [114], which is generation of a charge
current by an injected nonequilibrium spin density, exists. This inverse Edelstein effect has been
experimentally observed in various materials [25, 28, 30, 106].

The mechanism of the inverse Edelstein effect is understood by the same physical picture as the
direct Edelstein effect. In equilibrium, the total spin of the system as well as the charge current
vanishes, as depicted in Fig. 3.2(b). Injecting a nonequilibrium spin density can be interpreted
as a shift of the Fermi lines, similar to Fig. 4.1, but with the two Fermi circles shifted in opposite
directions. A nonequilibrium spin polarization in y-direction corresponds to a higher occupation
of states with negative kx -value leading to a charge current in x-direction.

A more elaborate explanation is given by Shen et al. [114]. A nonequilibrium spin density injected
at an arbitrary momentum into a Rashba system gains an additional spin component by the
Rashba spin-orbit field. Due to the inverse spin Hall effect, this spin current is converted into a
perpendicular charge current [125] which manifests itself as the inverse Edelstein signal.

Further, Ref. [114] shows the connection between direct and inverse Edelstein effect using Kubo
theory. The direct Edelstein effect is the spin density response to an external electric field, Eq.
(4.6), while the inverse Edelstein effect is defined as the charge current response to a linearly
time-dependent magnetic field B injecting a nonequilibrium spin density,

j c,2D
i =σIEE

i j
gµB

A
Ḃ j (4.13)

with g ≈ 2 the Landé g -factor. Kubo theory leads to κi j = A0σ
IEE
j i [114] because in the time-reversal

invariant systems discussed here, κi j and σIEE
j i are Onsager reciprocals.

In experiments, a 3D spin current js,3D is injected into the 2D system (e.g. Rashba system) by
spin pumping using ferromagnetic resonance (FMR) [25, 106]. The Edelstein system cannot be
considered isolated but is covered by layers of other materials, i.e. a ferromagnetic layer for the
FMR. The nonequilibrium spin density injected as 3D spin current is converted into a 2D charge
current jc,2D due to the inverse Edelstein effect. The spin-to-charge current conversion efficiency is
characterized by the tensor

λIEE
i j =

j c,2D
i

j s,3D
j

. (4.14)
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4. The Edelstein effect

Here, the spin current has the same unit as a charge current. Thus, λIEE
i j has the dimension of a

length. The spin-to-current conversion tensor λ̂IEE is approximately proportional to the transposed
Edelstein tensor κ̂T. However, for calculating λ̂IEE in a spin-pumping setup, the system cannot be
considered purely two-dimensional. Rather, scattering and transport through the adjacent layers
has to be considered, as discussed in Refs. [126, 127].

4.4. Experimental observation of the Edelstein effect

Since the first theoretical prediction of the Edelstein effect in 1989, experimental effort was put into
detecting the current-induced spin density using various techniques. Here, the most promising and
established techniques and the corresponding systems providing an Edelstein effect are introduced.

Optical methods

For the detection of magnetoelectric effects, optical methods are self-evident. Exploiting the Faraday
effect, which is the rotation of the polarization plane when linearly polarized light penetrates a
medium magnetized in the direction of light propagation, the bulk magnetization of a 3D material
can be measured. Kato et al. detected the current-induced spin polarization in a strained n-
GaAs/In0.07Ga0.93 heterostructure using static and time-resolved Faraday rotation [117,118]. Due to
the zincblende structure of GaAs, its bulk inversion symmetry is broken, which gives rise to a bulk
Dresselhaus SOC term introduced in section 3.5. In addition, anisotropic strain leads to Rashba-like
spin-orbit coupling of the bulk bands.

The magneto-optic Kerr effect (MOKE) is used to detect the surface spin polarization and can
provide even spatially resolved signals. Polarized light reflected at a magnetic surface changes
its polarization plane as well as ellipticity and intensity. Different geometries are distinguished
which are sensitive to different magnetization orientations. In the polar geometry (PMOKE), an
out-of-plane magnetization can be detected. An in-plane surface magnetization can be detected in
the longitudinal geometry (LMOKE) with a signal which is typically smaller by approximately one
order of magnitude in comparison to PMOKE. Due to the different amplitudes of the signals, the
out-of-plane magnetization is experimentally better accessible than the in-plane magnetization.

Sih et al. used PMOKE to detect signatures of the spin Hall effect as well as a current-induced
spin polarization in a 2DEG confined in (110) AlGaAs quantum wells [119]. They observed spatially
resolved images of the out-of-plane magnetization in the presence of an in-plane electric field.
The homogeneous contribution is explained as current-induced spin polarization due to the
Dresselhaus SOC. Further, the in-plane Edelstein component was also detected.

Resistivity measurements

A nonzero spin polarization due to the Edelstein effect or due to a finite magnetization in a ferro-
magnetic material corresponds to an imbalance of charge carriers with opposite spin orientations.
The spin-dependent conductivities depend on the magnetization direction, which allows to detect
the spin polarization induced in a 2DEG brought into contact with a ferromagnet. By switching
the magnetization of either the ferromagnet or the 2DEG, the resistivity of the heterostructure
changes and the current-induced spin polarization can be determined [128]. The method was used
by Hammar and Johnson to inverstigate the Rashba spin splitting of an InAs quantum well [129].

In a similar way, the spin polarization can be detected nonlocally by a ferromagnetic tunnel
contact. This method has been employed to detect the current-induced spin polarization in the
surface states of topological insulators, e.g. Bi1.5Sb0.5Te1.7Se1.3 [22], Bi2Se3 [23] and Bi2Te2Se [24].
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4.5. Edelstein effect in Rashba systems

m αR EF κy x ζy x

System (me) (eVÅ) (eV) (10−9mV−1) (10−8mA−1) Ref.
Au(111) sf 0.27 0.33 0.475 1.05 7.22 [134,135]
Ag(111) sf 0.37 0.03 0.178 0.10 2.43 [135,136]
InGaAs/InAlAs (001) hs 0.05 0.07 0.092 0.46 3.53 [73]
Bi/Ag(111) sfal −0.35 3.05 −0.180 29.13 205.50 [121,137]

Table 4.1.: Field-to-spin conversion efficiency κy x and charge-to-spin conversion efficiency ζy x for isotropic
Rashba systems, sf=surface state, hs=heterostructure, sfal=surface alloy. The parameters m, αR

and EF are taken from the cited references. Here and in the following the scattering potential is set
to U0 = 1eV with an impurity concentration of ci = 1%. Similar data was published in [J4].

Ferromagnetic resonance

Spin pumping by ferromagnetic resonance (FMR) is an established method for studying the inverse
Edelstein effect. In comparison to the direct Edelstein effect, its inverse provides the advantage
that the signal is a charge current, which can directly be detected. The first experimental evidence
of the inverse Edelstein effect was given by Rojas Sánchez et al. at an Ag/Bi interface [106]. The
Ag/Bi heterostructure (Bi covered by Ag) is covered by a magnetic NiFe layer. By ferromagnetic
resonance, a 3D spin current density is injected from the magnetic NiFe layer into the Ag layer [130]
and penetrates through the Ag layer into the Ag/Bi interface. Here, the injected nonequilibrium
spin density induces a charge current density in the two-dimensional Ag/Bi layer via the inverse
Edelstein effect which can be detected electrically.

Further, Rojas Sánchez et al. measured the inverse Edelstein effect in the surface states of the
topological insulatorα-Sn [25]. The experimental method has also been used to observe the inverse
Edelstein effect in the Rashba-like spin-split 2DEG between SrTiO3 and LaAlO3 [28, 30].

Similarly, the direct Edelstein effect can be detected using spin torque ferromagnetic resonance
(ST-FMR) [131]. Here, the spin density created by the Edelstein effect in the 2DEG (e.g. Rashba
system) diffuses as a spin current into the ferromagnetic layer and exerts a torque on the magneti-
zation, which manifests in a change of the FMR signal [131, 132]. This method was used to detect
the charge-to-spin current conversion in the topological insulator (Bi1−x Sbx )2Te3 [132].

4.5. Edelstein effect in Rashba systems

The theory developed in section 4.1 is used to calculate the Edelstein effect in paradigm Rashba
systems which can be approximated by the isotropic Rashba Hamiltonian (3.18). Further, the
model is extended by introducing anisotropies in order to better simulate systems with C2v and C3v

symmetry. Subsequently, the Edelstein effect is calculated for systems with magnetic impurities.
The results are presented in two different ways, (I) as a response to the external electric field E and
(II) to the charge current jc through the 2DEG. The anisotropic Fermi lines are calculated within an
adaptive triangular method, which is briefly sketched in appendix E.1.

4.5.1. Isotropic Rashba systems

The analytical expressions derived in section 4.1 are used to calculate the field- or current- induced
spin density for the Au(111) and Ag(111) surface states, the InGaAs/InAlAs(001) heterostructure
and the ordered (

p
3×

p
3)R30° Bi/Ag(111) surface alloy. These systems provide spin-split surface

states which are approximated by an isotropic Rashba Hamiltonian here. The microscopic origin of
the surface states’ band splitting is discussed in more detail in Ref. [133].

The tensor components κy x and ζy x are shown in Table 4.1, relating the induced spin density
in y-direction to the electric field and the charge current in x-direction, respectively. The Au(111)
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4. The Edelstein effect

surface is often discussed as paradigm of a Rashba system [134, 138]. The surface states provide a
comparably large Rashba splitting leading to an efficient spin generation factor κy x . In contrast,
the Edelstein effect is less pronounced in the Ag(111) surface states as well as in the InGaAs/InAlAs
heterostructure due to the smaller SOC expressed by a reduced Rashba parameter.

The Bi/Ag(111) surface alloy provides a “giant” Rashba SOC enhanced particularly by the ad-
ditional in-plane potential gradient that comes with the ordered alloy [137]. However, since the
Fermi level is outside the band with the large Rashba SOC [137], the system in its pristine form is
not appropriate for calculating the Edelstein effect within the Boltzmann approach. Therefore, the
Fermi level is shifted artificially into the strongly spin-split band and a very high efficiency of spin
generation is obtained.

As discussed above, the current-to-spin conversion factor ζy x does not give much information
about the relation between induced spin density and the charge current in the whole sample but
relates only the spin density to the charge current in the 2D Rashba system. Nevertheless, calculating
both κy x and ζy x illustrates that an apparently high charge-to-spin conversion efficiency can be
obtained by normalizing the spin density with respect to the charge current, even if the spin splitting
is not very pronounced. As long as the charge current is low, the factor ζy x is comparably large even
for a small Rashba SOC. As an example, the Au(111) and Ag(111) surfaces are compared. Although
the Rashba parameter of the Ag(111) surface is remarkably smaller than αR of Au(111) and so is the
tensor element κy x , the difference of the current-to-spin conversion factors ζy x is less pronounced
due to the low charge conductivity in Ag(111).

In general, κ̂ connects the electric field E as origin of the nonequilibrium distribution, and the
response 〈s〉. It represents the ability of the system to create a nonzero spin density as a response to
an electric field and should therefore be chosen as the quantity in order to evaluate the magnitude
of the Edelstein effect.

4.5.2. Anisotropic Rashba systems

More realistic systems are not isotropic but exhibit anisotropies due to the crystal structure. There-
fore, using a k ·p approach [139], the isotropic Rashba model is modified. Two examples of ani-
sotropic Rashba systems will be discussed here, systems with C2v and C3v symmetry, respectively.
In the first case, the parameters m and αR are anisotropic. In the latter case, a contribution to the
Rashba Hamiltonian is added in order to account for the reduced symmetry. The surface normal is
always assumed in z-direction.

C2v symmetry

Rashba systems with C2v symmetry can be found e.g. at the (110) surface of fcc crystals. In order
to express the nonequivalence of the two symmetry axes (x and y , respectively), an anisotropy of
the Rashba parameters, αRx 6=αRy , and the effective masses, mx 6= my , is introduced. The Rashba
Hamiltonian becomes [71, 139]

ĤC2v
R = ħ2k2

x

2mx
+
ħ2k2

y

2my
+αRx kxσ̂y −αRy ky σ̂x (4.15)

with the energy eigenvalues

En(k) = ħ2k2
x

2mx
+
ħ2k2

y

2my
+n

√
α2

Rx k2
x +α2

Ry k2
y . (4.16)

Here, the anisotropic Rashba parameters αRx and αRy can be decomposed into an isotropic con-
tribution originating from the surface gradient, which is constant with respect to the in-plane
direction [Eq. (3.17)], and an additional anisotropic contribution originating from the admixture of

46



4.5. Edelstein effect in Rashba systems

Figure 4.3.: Band structure and iso-energy lines of a Rashba system with C2v symmetry. The model parameters
read mx = 0.5my , αRx =αRy . Adapted from [J4].

px,y bulk states [71].
In Fig. 4.3 the band structure and iso-energy lines for a model with (mx = 0.5my , αRx = αRy )

are shown. Due to the C2v symmetry, the position of the band edge and the band curvature are
anisotropic. Figs. 4.3(c)-(f) display the contours of constant energy with the k-dependent spin
polarization for selected energy values. The spin is not tangential to the Fermi lines due to the
anisotropy of the system.

In the band structure, the density of states [Fig. 4.4(a)] as well as the energy-dependent Edelstein
effect [Fig. 4.4(b)], three energy regions can be identified. Above the diabolic point (region II), both
branches n =±1 are occupied. Here, the total spin density is nearly constant in energy, as in the
isotropic Rashba system. For EF < 0 (regions Ia and Ib), only the branch n = −1 is occupied. At
ES =− 1

2ħ2 min(α2
Rx mx ,α2

Ry my ) the band edge is reached in the direction of one of the symmetry
axes (here: kx ). Here, the band structure exhibits a saddle point, the lines of constant energy
intersect, depicted in Fig. 4.3(d). As shown by the evolution of the constant-energy lines in Figs
4.3(c)-(e), a Lifshitz transition occurs, leading to a van Hove singularity in the density of states [140],
shown in Fig. 4.4(a). The iso-energy line changes its topology from two concentric closed contours
(energy region Ib) to two separated closed lines (energy region Ia).

Around the energy of the Lifshitz transition, the spin density is reduced down to 0 at ES, shown in
Fig. 4.4(b). This drastic reduction is explained by the behavior of the mean free path on the Fermi
line,Λk = vkτ

tr
k . At the intersection points [saddle points, Fig. 4.3(d)], the group velocity and also

the mean free path are zero. Solving the linearized Boltzmann equation (2.48) leads to τtr
k = 0 for all

other points on the Fermi line, also resulting inΛk = 0. In Fig. 4.4(b) the spin density is not exactly
zero for numerical reasons.

At Emin =− 1
2ħ2 max(α2

Rx mx ,α2
Ry my ) the global band minimum is reached which corresponds to

two single points in k-space (here: on the ky -axis). Within the regions Ia and Ib the induced spin
density exhibits a nearly linear energy dependence, as for the isotropic Rashba system. However,
the slope of the curve differs between the both regions due to the different Fermi line topology. The
shape of the Fermi line in energy range Ib is similar to the isotropic system, but distorted. In energy
region Ia, not all directions in k-space are occupied which leads to a smaller slope than in region Ib.

Although the Edelstein tensor elements κx y and κy x exhibit a qualitatively similar energy-de-
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(a) Density of states with van Hove singularity at
ES.
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(b) Spin density as response to an electric field. A
similar figure was published in [J4].

Figure 4.4.: Density of states and field-induced spin density as a function of the energy for a system with
the model parameters (mx = 0.5my , αRx = αRy ). At ES a Lifshitz transition occurs leading to a
logarithmic van Hove singularity in the density of states and a reduction of the spin density to 0.
The letters (c)-(f) correspond to the selected energies in Fig. 4.3.

mx my αRx αRy EF κx y κy x ζx y ζy x

(me) (me) (eVÅ) (eVÅ) (eV) (10−9m/V) (10−9m/V) (10−8m/A) (10−8m/A)
0.11 0.32 0.80 0.17 0.370 −0.72 1.72 −12.14 10.01

Table 4.2.: Current-induced spin density of Au(110) surface states. The model parameters are taken from
Ref. [71]. The spin per surface unit cell is shown as a function of an electric field (κ̂) as well as
as function of the charge current (ζ̂) induced by the electric field. Similar results were published
in [J4].

pendence, they differ with respect to their absolute values due to the anisotropy of the system. As
a consequence, the induced spin polarization is not always perpendicular to the direction of the
applied electric field but includes an angle θ with the field,

cosθ(〈s〉,E) =
(
κx y +κy x

)
cosφsinφ

√
κ2

x y sin2φ+κ2
y x cos2φ

, (4.17)

with φ the angle of the electric field with respect to the x-direction. Thus, when E is aligned with the
symmetry axes, spin density and electric field are perpendicular whereas the angle can deviate for
different orientations of E and κx y 6= −κy x . Further, the absolute value of the induced spin density
also oscillates with the angle φ,

|〈s〉| =
√
κ2

x y sin2φ+κ2
y x cos2φ |E| . (4.18)

As an example of a system approximated by the C2v Rashba Hamiltonian (4.15), the Au(110)
surface states are discussed. Here, the directions x and y in the model Hamiltonian (4.15) corre-
spond to the crystallographic axes [001] and [110], respectively [71]. The model parameters taken
from Ref. [71] as well as the tensors κ̂ and ζ̂ are presented in Table 4.2. Obviously, κx y 6= −κy x and
ζx y 6= −ζy x due to the nonequivalence of the axes [001] and [110]. Thus, by an appropriate choice of
the direction of the applied electric field, the magnitude of the Edelstein effect can be influenced
remarkably. For the Au(110) surface, an electric field E ∥ [001] induces a spin density which is
enhanced by more than 100% in comparison to the spin density resulting from E ∥ [110].

Further, Table 4.2 demonstrates that the occurrence of a “large” Edelstein effect also depends on
the choice of quantity that is used to characterize the effect. Although the response to an electric
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Figure 4.5.: Angle θ between the induced spin density and the applied electric field and absolute value of
the spin density for the Au(110) surface states. The electric field is rotated in-plane including the
angle φ with the [001]-direction.

field is larger for E ∥ [001] (|κy x | > |κx y |), the induced spin density as a function of the charge
current seems to be larger for E ∥ [

110
]

(|ζx y | > |ζy x |) because the Fermi surface properties lead to
an enhanced spin as well as charge current density, as discussed below.

In Fig. 4.5 the angle between the induced spin density and the electric field is shown as a function
of the orientation of the electric field in the (110) surface plane, calculated using Eq. (4.17) and
the values κx y and κy x shown in Table 4.2. Due to the strong anisotropy of the Fermi surface, the
angle θ included by 〈s〉 and E considerably oscillates when E is rotated in-plane. For E not aligned
with the symmetry axes, the deviation from orthogonality can become as large as π/8. As expected
from the anisotropy of the system, the absolute value of the E-induced spin density also strongly
oscillates when E is rotated in-plane, as also displayed in Fig. 4.5.

For possible applications of the Edelstein effect, a high efficiency of spin generation is preferable.
Therefore, some general remarks on the most efficient direction of E in a C2v system are of interest.
For a more illustrative understanding, the influence of anisotropies of m and αR are examined
separately here. For αRx =αRy and mx 6= my , as in the paradigm system whose band structure and
Fermi lines are shown in Fig. 4.3, the anisotropy of effective masses results in anisotropic Fermi
lines, which are elongated in the direction of the axis with the larger effective mass, for Au(110) this
is the [110]-direction. The spin-orbit field is not modified by the mass anisotropy and identical to
the isotropic Rashba spin-orbit field depicted in Fig. 3.2(a).

An electric field applied in the direction of elongation shifts the Fermi lines in such a way that
mostly the states at the less extended side of the Fermi line contribute to the Edelstein effect, which
is comparably small, shown in Fig. 4.6(a). If the field is applied in the direction of the axis with
the smaller effective mass, for Au(110) this is [001], the main contribution to the Edelstein effect
originates from the states at the elongated sides of the Fermi line, the spin density is comparably
large, illustrated in Fig. 4.6(b).

Thus, in general an enhanced spin density is expected if the electric field is in the direction of
the smaller effective mass. By the same Fermi surface geometry properties the magnitude of the
charge conductivity is similarly influenced. However, the anisotropy of charge conductivity is even
more pronounced because here the contributions from both Fermi lines do not cancel but add
up. Therefore, applying a charge current in the direction of the smaller effective mass (x ∥ [001] for
Au(110)) reduces the corresponding tensor element of ζ̂ (here: ζy x ) giving the impression of a less
efficient charge-to-spin conversion.

The influence of the Rashba parameter anisotropy is examined assuming mx = my andαRx 6=αRy .
Due to this asymmetry the Fermi lines also become anisotropic with the elongated side in the
direction of the smaller Rashba parameter for the n =+1 branch (for Au(110) this is [110]) and in
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(b) E in the direction of smaller
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large induced spin density.

0

0

k
y
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(c) Spin-orbit field for αRx = 0.5αRy .
The field vectors are tilted in the
direction of smaller αR (here: y).

Figure 4.6.: (a), (b): Fermi lines of a system with anisotropic effective masses in equilibrium (dashed lines)
and in the presence of an electric field E (solid lines). The direction of the electric field influences
the magnitude of the Edelstein effect. (c): Spin-orbit field of a system with anisotropic Rashba
parameters.

the direction of the larger Rashba parameter for the n =−1 branch (for Au(110): [001]), respectively.
Further, the k-dependent spin expectation values are tilted in the direction of the smaller Rashba
parameter, illustrated by the spin-orbit field shown in Fig. 4.6(c) for the model system αRx = 0.5αRy :
The spin-orbit field vectors have in general a larger component in the y-direction.

If the electric field is applied in the direction of the larger Rashba parameter (for Au(110): [001]-
direction), the states contributing to the Edelstein effect have a comparably large spin component
perpendicular to that field and provide an effective charge-to-spin conversion. On the other hand,
an electric field applied in the direction of smaller αR induces a smaller spin density because the
contributing states carry a lower spin component perpendicular to the field. Further, the Fermi
surface geometry also enhances the effect if E is applied in the direction of larger Rashba parameter,
similar to the case mx 6= my discussed above.

By these considerations, the enormous enhancement of the Edelstein effect in Au(110) when E
is tilted from the [001] to the [110]-direction can be explained. In general, the rule that applying
the field in the direction of the smaller m and the lager αR enhances the Edelstein effect can be
formulated.

Besides the Au(110) surface, not many Rashba systems with C2v symmetry have been identified
until now. However, recently a highly anisotropic Rashba spin splitting at the Bi/InAs(110)-(2×1)
surface has been reported [141]. For this system, the surface states exhibit a quasi-one-dimensional
character. The Fermi lines are elongated in the [001]-direction and open in the first Brillouin zone.
The band structure in the [110]-direction can be approximated by a one-dimensional Rashba model
with αR ≈ 5.5eVÅ, which is even larger than in the Bi/Ag(111) surface alloy. Thus, a very efficient
charge-to-spin conversion can be expected for this system. However, due to the strong anisotropy
with open Fermi lines, this system cannot be described by the model Hamiltonian (4.15) and is
therefore not discussed further here.

C3v symmetry

The (111) surfaces of fcc crystals and ordered (111) surface alloys, which were presented as examples
of isotropic Rashba systems, are only approximately isotropic and possess C3v symmetry. Ast et
al. [137] and Premper et al. [142] have shown that a large in-plane potential gradient, as in the
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kxky

E(k)

Emin

0

0

E+E−

(a) Energy dispersion in the direction of a mirror plane
(ky ) and perpendicular to a mirror plane (kx ). Due
to the k3-dependence, the warping term mainly
affects the band structure of the n =−1 branch at
higher k-values.

(b) Upper panel: Spin-orbit field. Lower
panel: Iso-energy lines with spin expec-
tation values. The arrows indicate the in-
plane field/spin polarization, the color is
the out-of-plane component.

Figure 4.7.: Energy dispersion, spin-orbit field and Fermi surface with spin polarization of a system with C3v

symmetry (schematic). One mirror plane is in ky -direction.

Bi/Ag(
p

3×
p

3)R30◦ surface alloy, leads to an enhanced spin splitting which results in a large Edel-
stein effect, as discussed above. Thus, these systems are of special interest for possible applications
due to their efficient charge-to-spin conversion. Considering a more detailed model Hamiltonian
for these systems provides the opportunity to make more reliable statements about the magnitude
of the Edelstein effect.

In order to take account of the broken isotropy, the Hamiltonian is extended by a C3v symmetric
term [143],

ĤC3v
R = ħ2k2

2m
+αR

(
kxσ̂y −ky σ̂x

)+ λw

2

(
k3
++k3

−
)
σ̂z . (4.19)

Here, the kx -direction corresponds to the ΓK -direction ([110]-direction) in the (111) surface Bril-
louin zone and the ky -direction corresponds to the ΓM-direction ([112]). Thus, the y-direction is
chosen to be aligned with one of the mirror planes. The parameter λw characterizes the strength of
the in-plane gradient, and k± ≡ kx ± iky . The energy spectrum has a sixfold rotational symmetry,

En(k) = ħ2k2

2m
+n

√
α2

Rk2 +λ2
wk6 cos2(3ϕk). (4.20)

In the direction of the three mirror planes (e.g. ky -direction), the spin expectation value is com-
pletely in-plane and the band structure corresponds to the isotropic model. The additional third-
order Hamiltonian proportional to Ĥ3 = λw

2

(
k3
++k3

−
)
σ̂z , called warping term, is maximum in the

directions perpendicular to the mirror planes (e.g. kx -direction) [144] and modifies the band struc-
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Figure 4.8.: Influence of the warping parameter λw on the tensor elements of κ̂. The model parameters
read m = −0.29me, αR = 0.85eVÅ, EF = −0.215eV, corresponding to the Bi/Cu(111) surface
alloy [144–146].

m αR λw EF κx y κy x κzx ζx y ζy x ζzx

system (me) (eVÅ) (eVÅ3) (meV) (10−9mV−1) (10−8mA−1)

Bi/Cu −0.29 0.85
0

12
−215

−8.12
−6.97

8.12
7.25

0.00
−0.11

−93.06
−84.51

93.06
83.69

0.00
−1.27

Bi/Ag −0.32 2.95
0

18
−180

−28.17
−12.95

28.17
17.43

0.00
−2.46

−202.30
−191.20

202.30
146.65

0.00
−20.71

Table 4.3.: Charge-to-spin conversion factors κ̂ and ζ̂ for Bi/Cu(111) and Bi/Ag(111) (
p

3×
p

3)R30° surface
alloys. The conversion factors are calculated without (λw = 0) and with (λw 6= 0) the warping term.
As in Table 4.1, the Fermi energy of the Bi/Ag surface alloy was assumed within the band with
strong Rashba SOC. The model parameters are taken from Refs. [144–146] (Bi/Cu) and [121, 137,
144, 145, 147] (Bi/Ag), respectively.

ture in these directions, as shown in Fig. 4.7(a). Due to the k3-dependence of Ĥ3, its influence is
more pronounced on the n =−1 branch because of the larger k-values. The Fermi line of the n =−1
branch has a hexagonal shape, the n = 1 Fermi line is nearly circular, as shown in Fig. 4.7(b).

Due to the in-plane potential gradient, the k-dependent spin expectation values have an out-of-
plane component, which is shown by the spin-orbit field and the Fermi line with spin expectation
values in Fig. 4.7(b). Although the energy spectrum has sixfold rotation symmetry, the spin texture
reveals the C3v symmetry of the system.

Because of the reduced symmetry, the tensor elements κx y , κy x and κzx are nonzero, and in
general κx y 6= −κy x . Fig. 4.8 shows the dependence of these tensor elements on the warping
parameter λw for a model system whose parameters resemble the Bi/Cu(111) surface alloy. In
general, the additional warping term in the Hamiltonian reduces the magnitude of the in-plane
spin expectation values and therefore also diminishes the in-plane induced spin density (κx y and
κy x ). The enhanced out-of-plane spin expectation values gives rise to a finite out-of-plane spin
density (κzx ) if the electric field is applied in x-direction. Further, the modified shape of the Fermi
lines leads to a reduced absolute value of the current-induced spin density.

Thus, the orientation of E with respect to the crystallographic axes can affect the direction and
absolute value of the induced spin density, although this angular dependence is typically not as
pronounced as for systems with C2v symmetry.

In Table 4.3 the nonzero elements of κ̂ and ζ̂ of the the Bi/Cu(111) and Bi/Ag(111) (
p

3×
p

3)R30°
surface alloys are shown. In order to examine the influence of the warping term, the results are
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4.5. Edelstein effect in Rashba systems

(a) For B = 0, τtr
k is constant on

each Fermi circle.
(b) B ∥ [1,1,0] induces aniso-

tropies of τtr
k .

(c) B ∥ z changes the absolute
value of τtr

k isotropically.

Figure 4.9.: Transport lifetime of an isotropic Rashba system with nonmagnetic and magnetic impurities,
respectively. Panels (b) and (c) show the deviation from the case B = 0 (panel (a)).

calculated without (λw = 0) and with (λw 6= 0) warping, respectively. Especially κy x describing
the spin polarization as a function of the applied electric field is decreased by the warping term
whereas ζy x , the charge-to-spin conversion factor, is only weakly influenced because the charge
conductivity is affected by the warping term in a similar way as the spin polarization due to the
modified Fermi lines.

4.5.3. Magnetic impurities

Until now, the scattering potentials used in Eq. (2.73) were assumed to be scalar, corresponding
to nonmagnetic impurities. However, an impurity with a finite magnetic moment induces a local
magnetic field, the single-impurity scattering strength is expressed as

U0 = u0 +
gµB

2
σ̂ ·Bimp . (4.21)

Here, u0 is the scalar potential, g is the g -factor, µB the Bohr magneton and Bimp is the local
magnetic field induced by the magnetic moment of an impurity. By applying a small external
magnetic field, the magnetic moments of the impurities can be aligned.

The microscopic transition probabilities Pk′←k do not only depend on the scattering angle be-
tween k and k′, but are influenced also by the angle between Bimp and k as well as k′, respectively,

P n′←n
k′←k = ciπ

ħNat

{
u2

0

[
1+nn′ cos(ϕ̃′− ϕ̃)

]+
g 2µ2

B

4

[
B 2

x

(
1−nn′ cos(ϕ̃′+ ϕ̃)

)

+B 2
y

(
1+nn′ cos(ϕ̃′+ ϕ̃)

) +B 2
z

(
1−nn′ cos(ϕ̃′− ϕ̃)

)−2nn′Bx By sin(ϕ̃′+ ϕ̃)

]

+gµB

2

[−2n′Bx u0(sinϕ̃′+nn′ sinϕ̃)+2n′By u0(cosϕ̃′+nn′ cosϕ̃)
]
}

,

(4.22)

where B = Bimp. In the presence of a scalar scattering potential, Pk′←k corresponds to the overlap
of the wave functions |k〉 and |k′〉. The magnetic moment of the impurity modifies this overlap,
therefore, the electrons can now scatter between originally orthogonal states. As an example, the
microscopic transition probability for magnetic impurities with B ∥ [1,1,0] is shown for different
values of k in the appendix A. The phase space for scattering is enhanced for initial states which are
spin-polarized parallel to B and reduced for initial states with opposite spin polarization leading to
a reduced and respectively enhanced momentum relaxation time as well as transport life time.

Due to the in-plane spin polarization of the Rashba states, the in-plane component of the
magnetic field B causes anisotropies of τtr

k , whereas the out-of-plane component acts on all states
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Figure 4.10.: Spin density induced by an electric field in a Rashba system with magnetic impurities. Here,
gµB|B |

2 = 0.3|u0| is chosen. The small external magnetic field that orients the magnetic moments
of the impurities is rotated in the x y-plane, thus, the local magnetic field at the impurity
positions is also rotated. The angle between B and the x-axis is denoted by φ(B). The tensor
components κxx and κy x as well as (|κx |), which corresponds to the absolute spin density
induced by an electric field in x-direction, are shown. For comparison, the spin density in
a system with nonmagnetic impurities represented by κ0

y x is marked. In the upper row, the
directions of 〈s〉 for E ∥ x and B rotated in-plane are shown.

|k〉 similarly and accounts only for a global change of the transport lifetime. Consequently, if B
has a finite in-plane component, τtr

k is anisotropic and B-dependent even for an isotropic Rashba
system because the magnetic moments of the impurities break both time-reversal symmetry and
in-plane rotation symmetry.

As an example, the transport lifetime on the Fermi line of an isotropic Rashba system is shown in
Fig. 4.9 for a system with nonmagnetic impurities [Fig. 4.9(a)], as well as for magnetic impurities
with B ∥ [110] [Fig. 4.9(b)] and with B ∥ z [Fig. 4.9(c)]. Due to the Rashba SOC and the in-plane spin
polarization of the states, the transport lifetime is maximum for states with the spin polarization
antiparallel to the magnetic field of the impurities. For the example shown in Fig. 4.9(b), the state
with maximum τtr

k is at in [1,−1,0]-direction in k-space with a spin polarization in [−1,−1,0]-
direction.

Because of the broken time-reversal symmetry leading to an anisotropic transport lifetime, an
anisotropy of the spin density induced by an external electric field is expected. In Fig. 4.10 the
components of the Edelstein tensor κxx and κy x in a Rashba system are shown as a function of
the orientation of the local magnetic field B of the impurities. For comparison, κy x in an isotropic
system with nonmagnetic impurities is shown.

In the presence of in-plane magnetic moments of the impurities, the induced spin density is
not always perpendicular to the applied electric field but can have a nonzero component parallel
to E, depending on the angle φ(B,E) between B and E. Both parallel (κxx ) and perpendicular
(κy x ) components are oscillating with the period π and a mutual phase shift of π/4. The absolute
value of the spin density is dominated by the spin component perpendicular to E, but the parallel
component can lead to an in-plane tilt of 〈s〉.

As discussed above, the transport lifetime has its maximum in the direction perpendicular to the
magnetic field. The spin polarization of the corresponding state is opposite to the orientation of B.
Thus, the magnetic field leads to an additional k-dependent weighting factor via τtr

k , allowing a spin
polarization not perpendicular to E.

As can be seen in Eq. (4.2), the projection vk ·E also enters the total spin density as a weighting
factor. Therefore, the total spin density is not always tilted in the direction of −B. The periodicity of
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4.5. Edelstein effect in Rashba systems

π results from the superposition of the periodicities of 〈σ〉k and vk ·E which oscillate both with 2π
with respect to the azimuth on the Fermi line.

4.5.4. Rashba system with Zeeman splitting

An external magnetic field B breaks the time-reversal symmetry of the Rashba system and therefore
modifies the eigenfunctions as well as the band structure. For strong external magnetic fields,
Landau quantization occurs and the semiclassical transport theory becomes invalid. The influence
of a small magnetic field B is expressed by an additional Zeeman term in the Hamiltonian,

Ĥ Z
R = ħ2k2

2m
+αR(kxσ̂y −ky σ̂x )+µBB · σ̂ , (4.23)

resulting in the energy spectrum

En(k) = ħ2k2

2m
+n

√
µ2

BB 2 +α2
Rk2 +2µBαR

(
By kx −Bx ky

)= ħ2k2

2m
+ndk , n =±1 (4.24)

with dk =
√
µ2

BB 2 +α2
Rk2 +2µBαR

(
By kx −Bx ky

)
. The impact of an external out-of-plane and in-

plane magnetic field on the Rashba band structure is shown in Figs. 4.11(a)(I) and 4.11(b)(I),
respectively. However, the influence of external magnetic fields on the band structure is typically
small.

A magnetic field perpendicular to the Rashba 2DEG lifts the degeneracy at the diabolic point and
opens a local band gap. For small magnetic fields, |B | < α2

Rm/ħ2µB, the band structure is Rashba-like
with a gap around the diabolic point, as shown in Fig. 4.11(a)(I). For larger fields (|B | > α2

Rm/ħ2µB), the
Zeeman term is dominant, the bands are parabola-like and separated in energy with their global
minima at k = 0, not shown in Fig. 4.11.

A field of 1T induces an energy gap of ∆E = 2µB|B | ≈ 0.12meV. In order to discuss the effects of
the Zeeman term qualitatively, the energy splitting in Fig. 4.11(a) is chosen as ∆E = 40meV, which
corresponds to an unrealistically large external magnetic field of |B | ≈ 345T. An energy splitting
of this magnitude can be realized in systems with a finite magnetization due to ferromagnetic
order, magnetic impurities or an adjacent ferromagnetic layer. Here, the exchange interaction
yields a Zeeman-like Hamiltonian Ĥex =−JexM̂ · σ̂ with M̂ the direction of the magnetization and
Jex the exchange coupling strength between the electron spins and the magnetization [148]. The
exchange interaction typically induces an energy splitting of a few 100meV [149]. However, in the
following B is used as a parameter to characterize the Zeeman as well as the exchange splitting,
thus, JexM̂ →−µBB.

A coexistence of Rashba and exchange splitting is realized in three-dimensional multiferroic
Rashba semiconductors (e.g. Ge1−x Mnx Te), which are ferroelectric materials with magnetic do-
pants. The finite ferroelectric polarization breaks the structural inversion symmetry and leads
to a Rashba SOC, whereas the magnetic moments of the dopants induce magnetic exchange
coupling [149–151].

An in-plane magnetic field or magnetization shifts the diabolic point in the k-direction perpen-
dicular to the field as well as in energy, as shown in Fig. 4.11(b)(I). The degeneracy is not lifted. A
saddle point E−

S exists in the band structure and a Lifshitz transition occurs between a single Fermi
line (E < E−

S ) and two Fermi lines (E > E−
S ). The corresponding iso-energy lines are depicted in

appendix B. If the magnetic field has in-plane as well as out-of-plane components, the diabolic
point is shifted in k-space and the degeneracy is lifted, as shown in appendix C.

The modified band structure leads to an altered density of states, depicted in Figs. 4.11(a)(II) and
4.11(b)(II). For B ∥ z, the DOS is similar to an ordinary Rashba system with additional finite steps at
the local band gap. The in-plane magnetic field induces a qualitative change of the DOS. Due to the
asymmetry of the band structure [Fig. 4.11(b)(I)], the band edge E−

min is a single point leading to a
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Figure 4.11.: Band structure, density of states and Edelstein effect in a Rashba system with out-of-plane (left
column) and in-plane (right column) magnetic field, respectively. The model parameters are
αR = 1eVÅ, m = me and ∆E = 2µB|B | = 40meV. Experimentally, such a strong splitting could
only be achieved by an intrinsic magnetization, not by an external magnetic field.
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4.5. Edelstein effect in Rashba systems

finite step of the DOS, whereas the saddle point E−
S induces a logarithmic van Hove singularity.

The k-dependent spin expectation values achieve additional components in the direction of B,

〈σ〉n
k = n

( −αRky+µBBx

dk
,

αRkx+µBBy

dk
, µBBz

dk

)
. (4.25)

Thus, even in equilibrium, the system has a non-vanishing spin density due to the magnetic field.
An electric field can induce an additional nonzero contribution to the total spin expectation value.
Due to the broken time-reversal and inversion symmetries, intrinsic as well as extrinsic effects exist.

A symmetry analysis shows which tensor elements of κ̂ are in general nonzero. If B ∥ z, the system
is invariant with respect to rotations around the z-axis, but no mirror symmetry in the kx ky -plane
exists. Thus, nonzero tensor elements κxx , κx y , κy x , κy y are allowed. If B ∥ x, in-plane rotational
symmetry is broken, but a mirror plane in ky -direction exists. Therefore, the tensor elements κx y ,
κy x and κzx can be nonzero. If B has in-plane as well as out-of-plane components, in general all of
these tensor elements may be finite.

Extrinsic Edelstein effect

The external magnetic field enters the Boltzmann equation (2.40) via the Lorentz force term, which
is neglected here. If the magnetic field has an out-of-plane component, the Rashba system achieves
a Berry curvature,

Ωn
z (k) =−n

α2
RµBBz

2d(k)3 , (4.26)

which enters the Boltzmann equation via the phase-space correction factor
(
1+ e

ħB ·Ωk
)
. However,

this term can be neglected because e
ħB ·Ωk ¿ 1 in the k- and E-range considered here. Therefore

the extrinsic contribution to the Edelstein effect is calculated as in the previous sections following
Eq. (4.2).

Figs. 4.11(a)(III) and 4.11(b)(III) display the spin induced extrinsically by an external electric
field in Rashba systems with out-of-plane and in-plane magnetic field, respectively. The extrinsic
Edelstein contribution is in-plane. For an out-of-plane magnetic field (Fig. 4.11(a)(III)) the energy-
dependent spin density is similar to the isotropic Rashba case: It increases approximately linearly
from the band edge and reaches a constant value when both bands are occupied. However, at the
edges of the local band gap region (E−

max and E+
min), the tensor element κy x exhibits a finite step

because of Lifshitz transitions between the two Fermi lines (outside the gap region) and one Fermi
line (between E−

max and E+
min). For symmetry reasons, κx y =−κy x , hence, the extrinsically induced

spin density is perpendicular to the applied electric field.
If the magnetic field is in-plane (Fig. 4.11(b) (III)), the energy-dependent κy x resembles the result

for the C2v symmetric Rashba system discussed in section 4.5.2. Although the band structures of
both systems are quite different (the in-plane magnetic field breaks C2v symmetry), both systems
exhibit a characteristic saddle point with a Lifshitz transition, which reduces the spin density down
to zero. Due to the in-plane symmetry breaking, κx y 6= −κy x (not shown in Fig. 4.11(b)(III)). Hence,
the extrinsically induced spin density is not mandatory perpendicular to the electric field.

In a ferromagnetic system, the current-induced spin polarization exerts a torque on the magneti-
zation [107, 148]. Thus, the Edelstein effect could be used to electrically manipulate the magnetiza-
tion of ferromagnetic systems.

Intrinsic Edelstein effect

Due to the time-reversal breaking magnetic field, additional intrinsic contributions to the Edelstein
effect occur, which are forbidden by time-reversal symmetry in conventional Rashba systems. These
interband terms can be interpreted as additional contributions to the transport properties due to
transitions between the bands induced by the external electric field.
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For a two-band model, the Kubo formula (4.12) can be split into two contributions,

〈s〉i =−2eħNu.c.

Nat

∑

k

f −
k

(
1− f +

k

)
(E−

k −E+
k

)2 [Im〈−|σ̂ |+〉Re〈+| v̂ |−〉 ·E+Re〈−|σ̂ |+〉 Im〈+| v̂ |−〉 ·E] , (4.27)

in which |±〉 is short for |k±〉. The terms 〈−|σ̂ |+〉 and 〈+| v̂ |−〉 are denoted as interband spin
expectation value and velocity, respectively;

〈−|σ̂ |+〉 = 1

d
√

d 2
x +d 2

y

(
dx dz − idy d , dy dz + idx d , −d 2

x −d 2
y

)
(4.28a)

〈+| v̂ |−〉 = αR

ħd
√

d 2
x +d 2

y

(
dy dz − idx d , −dx dz − idy d

)
(4.28b)

Here, d is the spin-orbit field, whose k-dependence is not explicitly written. The real and imaginary
parts of the interband spin polarization as well as the spin-orbit field are mutually perpendicular.
Eq. (4.28a), is valid for general two-band models whereas Eq. (4.28b) is obtained using the Rashba-
Zeeman Hamiltonian with d = (−αRky +µBBx , αRkx +µBBy , µBBz

)
. Thus, the following analysis

of the intrinsic Edelstein effect is valid only for Rashba systems with Zeeman splitting.
The intrinsic Edelstein tensor reads

κi
xx = κi

y y =
eNu.c.

αRNat

∑

k
Ω−

z (k)θ
(EF −E−

k

)
θ

(E+
k −EF

)
, (4.29a)

κi
zx = eαRNu.c.

2Nat

∑

k

θ
(EF −E−

k

)
θ

(E+
k −EF

)

d 3
k

(
αRky −µBBx

)
, (4.29b)

κi
z y =−eαRNu.c.

2Nat

∑

k

θ
(EF −E−

k

)
θ

(E+
k −EF

)

d 3
k

(
αRkx +µBBy

)
. (4.29c)

Here, θ(x) is the Heaviside step function. Thus, an in-plane electric field can generate a spin polar-
ization in the direction of the electric field if Bz 6= 0, whereas an in-plane B allows the generation
of an out-of-plane spin polarization even if Bz = 0. These are exactly the elements of κ̂ which are
allowed by symmetry but not provided by the extrinsic Edelstein effect.

This non-intuitive phenomenon – for instance an out-of-plane spin is created although no
state has an out-of-plane spin expectation value – is explained by a closer analysis of the intrinsic
Edelstein effect.

For the following phenomenological discussion the electric field is assumed in x-direction. Thus,
each state contributes to the transport corresponding to the negative projection of its interband
velocity onto the external electric field, which is [−〈+| v̂x |−〉].

Both contributions in Eq. (4.27) are analyzed separately. First, the magnetic field is assumed
to be out-of-plane. Fig. 4.12(a) visualizes the term [−Im〈−|σ̂ |+〉Re〈+| v̂x |−〉/∆E2], in which
∆E = E+

k −E−
k . The blue/red color scale represents the real part of the (negative) interband velocity

divided by ∆E2. In order to show which states contribute, only the occupied states of the lower
(n =−1) band are shown. The real part of the interband velocity is parallel to the group velocity, but
differs with respect to the absolute value. The imaginary part of the interband spin (black arrows) is
completely in-plane and perpendicular to the spin-orbit field (gray arrows). Thus, the interband
spin expectation value can be interpreted as an in-plane torque acting on the electron spins.

A close inspection of Fig. 4.12(a) shows that the k-points with kx > 0 (kx < 0) contribute negatively
(positively) with an additional spin component in −x (+x)-direction, respectively. Thus, a finite
spin density in (+x)-direction remains, the Zeeman field in z-direction leads to a nonzero κi

xx -
component of the Edelstein tensor.

In Fig. 4.12(b) the second term of Eq. (4.27) , [−Re〈−|σ̂ |+〉 Im〈+| v̂x |−〉/∆E2], is shown. The
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4.5. Edelstein effect in Rashba systems

(a) −Im〈−|σ̂ |+〉Re〈+| v̂x |−〉/∆E2 (b) −Re〈−|σ̂ |+〉 Im〈+| v̂x |−〉/∆E2.

Figure 4.12.: Visualization of the intrinsic Edelstein contributions provided by each k for B ∥ z, E ∥ x. The
blue/red color plot shows the x-component of the interband velocity (divided by∆E2), the black
arrows correspond to the in-plane interband spin expectation values and the yellow/orange dots
to the out-of-plane interband spin components. The in-plane spin-orbit field is represented by
gray arrows; it does not directly contribute to the intrinsic Edelstein effect.

imaginary part of the interband velocity is perpendicular to the group velocity. The real part of
the interband spin polarization (in-plane component: black arrows, out-of-plane component: yel-
low/orange dots) is also perpendicular to the spin-orbit field with a finite out-of-plane component.
Thus, the real part of the interband spin polarization can be interpreted as a torque with an out-of-
plane component acting on the electron spins. For B ∥ z, the k-points with ky > 0 (ky < 0) contribute
negatively (positively) with an additional spin component in (−1,0,−1) ((1,0,−1))-direction. The
z-contributions compensate each other for symmetry reasons and also a nonzero spin density ∥ x
remains.

Now, a Rashba system with B ∥ x is considered. Re〈+| v̂ |−〉 vanishes, thus, the first term of
Eq. (4.27) does not contribute to the intrinsic Edelstein effect. Fig. 4.13 visualizes the second term
of Eq. (4.27). The imaginary interband velocity is asymmetric with respect to the ky -direction
due to the broken C2v symmetry. The interband spin polarization is completely out-of-plane and
constant for all k-points. Thus, nearly all occupied states contribute with a spin component in the
(−z)-direction, and a spin expectation value in (−z)-direction is induced intrinsically, represented
by a finite tensor element κi

zx although in equilibrium none of the states has an out-of-plane spin
component.

In simple words, the intrinsic Edelstein effect can be attributed to an intrinsic torque acting on
the electron spins. In the presence of an external electric field, an imbalance of states is created
giving rise to a finite spin density.

In all discussed examples, it was assumed that only the lower band (n = −1) is occupied and
the second band (n =+1) is unoccupied for all k-values. For k-points and energies at which both
bands are occupied, the previously discussed contributions are completely compensated. Thus,
only k-points at which only one band is occupied contribute to the intrinsic Edelstein effect.

In Figs. 4.11(a)(IV) and 4.11(b)(IV) on page 56 the intrinsically induced spin density is shown as a
function of the Fermi level for out-of-plane and in-plane magnetic fields, respectively. In addition,
the equilibrium spin density of these magnetic systems is depicted. For B ∥ z, an intrinsic spin
density parallel to the electric field, κi

xx = κi
y y , is induced with a maximum value in the gap energy
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4. The Edelstein effect

Figure 4.13.: Visualization of the term [−Re〈−|σ̂ |+〉 Im〈+| v̂x |−〉] in Eq. (4.27) for B ∥ x, E ∥ x. The spin-
orbit field is sketched by gray arrows, the imaginary part of the interband velocity (divided
by ∆E2) is shown by the blue/red color scale and the real part of the out-of-plane interband
spin polarization is represented by orange dots. The in-plane real part of the interband spin
polarization is zero.

region. Here only one (n =−1) band is occupied, thus, no compensation occurs, as discussed above.
The (negative) equilibrium spin expectation value increases with EF and obtains a constant value
when both bands are occupied.

If the magnetic field is in-plane, an out-of-plane spin density is induced intrinsically (κi
zx in

Fig. 4.11(b)(IV)). Its energy dependence is more complex than for B ∥ z because of the strongly
anisotropic Fermi lines. It provides a (negative) maximum near the saddle point and even changes
its sign when both branches are occupied. A small plateau exists around the diabolic point because
of the approximately linear band dispersion. The (negative) in-plane equilibrium spin density
increases with EF and takes a constant value above the saddle point.

To conclude the previous findings, three components of the spin density in a Rashba system in an
external magnetic field or with a finite magnetization can be determined: (I) the equilibrium spin
density in the (opposite) direction of the magnetic field, (II) the spin density due to the extrinsic
Edelstein effect, which is in-plane and approximately perpendicular to the electric field, and (III)
the intrinsically induced spin polarization perpendicular to the magnetic field.

The nonequilibrium contributions scale linearly with the electric field whereas the equilibrium
spin expectation value is independent of E. Thus, the ratio of the contributions can be modified by
the field strength. However, as Figs. 4.11(a) and 4.11(b) illustrate, the magnitudes of the contribu-
tions differ strongly. By applying an electric field of 105Vm−1, the extrinsic Edelstein contribution
would be of the same magnitude as the equilibrium contribution. Alternatively, the extrinsic con-
tribution could be increased by modifying the scattering parameters, e.g. lowering the impurity
potential. For the results shown in Figs. 4.11(a)(III) and 4.11(b)(III) the scattering potential is set to
U0 = 1eV which is comparably large. Assuming a smaller scattering potential of U0 = 0.1eV would
increase the charge-to-spin efficiency by a factor of 100. Further, applying a weaker magnetic field
would reduce the equilibrium contribution. Hence, extrinsic contributions of the same order as the
equilibrium spin density are in general realizable.

The intrinsic contribution shown in Fig. 4.11 is reduced by nearly three orders of magnitudes in
comparison to the extrinsic contribution. It cannot be influenced by manipulating the scattering
properties. Like the equilibrium contribution, it exists only in the presence of a magnetic field. In
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Figure 4.14.: Ratio of intrinsic Edelstein effect and equilibrium spin density for B ∥ z. The model parameters
are m = me, EF = 0.
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Figure 4.15.: Energy-dependent intrinsic Edelstein effect (B ∥ z) for various parameters αR and B . The band
structure is dominated by the Zeeman term (a) and the Rashba term (b), respectively.

order to identify systems in which the intrinsic Edelstein effect could be experimentally observable,
the ratio κi

xx /sz is systematically analyzed for EF = 0 and various parameters αR and B ∥ z, shown
in Fig. 4.14. In general, the ratio κi

xx /sz strongly decreases with B . For fixed B , the ratio has a
maximum at αmax

R , slightly below αtr
R =

p
µBBħ2/m, which marks the transition point between the

Zeeman-dominated (large B) and Rashba-dominated band structure. At αtr
R the curves in Fig. 4.14

have a slight step due to this transition.
The intrinsic Edelstein effect could be of similar strength as the equilibrium spin polarization for

low magnetic fields B < 5T, electric fields of ≈ 104Vm−1 and Rashba parameters of αR ≈ 10−2eVÅ.
Fig. 4.15 shows the tensor element κi

xx as a function of the Fermi level for various parameter com-
binations of αR and B . In Fig. 4.15(a) the Rashba parameter αmax

R was chosen, which corresponds
to the maximum ratio κi

xx /sz and is below the transition value αtr
R . Therefore, the band structure is

dominated by the Zeeman term and consists of two parabola-like bands with their minima at k = 0.
The Edelstein tensor element κi

xx has a peak with its maximum at the band edge energy of the
n =+1 band. The height of the peak decreases with B whereas its width increases, corresponding
to the energy gap at k = 0.

Fig. 4.15(b) shows similar results for systems with a Rashba-dominated band structure. Here, the
signal is maximum in the gap region. As in Fig. 4.15(a), the peak height decreases with B , but the
width increases. For small fields B , the intrinsic Edelstein signal is large enough for experimental
observation. However, this large signal could be observed only in a very narrow energy range. Thus,
the experimental detection remains a challenging task.
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4. The Edelstein effect

Anomalous Hall effect

Since the Zeeman term breaks time-reversal symmetry, a finite intrinsic anomalous Hall effect
(AHE) can exist in Rashba systems with Zeeman splitting. Here, a transversal charge current or
voltage is generated in the absence of an external magnetic field, which corresponds to nonzero
transversal tensor elements σx y and σy x of the conductivity tensor. Using the Kubo formula, the
anomalous Hall conductivity reads

σAHE
x y =−σAHE

y x = 2ħe2

A

∑

k
f −

k

(
1− f +

k

) Im
(〈−| v̂x |+〉

〈+
∣∣ v̂y

∣∣−〉)
(E+

k −E−
k

)2

=− e2

Aħ
∑

k
Ω−

z (k)θ
(EF −E−

k

)
θ(E+

k −EF) =−eαRNu.c.

ħANat
κi

xx .

(4.30)

The same formula is obtained by calculating the intrinsic contribution to the charge conductivity
via the Boltzmann equation,

jAHE
c =− e

A

∑

k,n
f 0

k,n ṙk,n , σAHE
x y =− e2

Aħ
∑

k,n
f 0

k,nΩ
n
z (k) , (4.31)

in which only the anomalous velocity contributes to the charge current for symmetry reasons. The
qualitative energy dependence of the anomalous Hall conductivity is equivalent to κi

xx , which is
shown in Fig. 4.11(a)(IV) on page 56.

4.6. Systems with Rashba and Dresselhaus SOC

As discussed in section 3.5, at surfaces or interfaces of crystals with broken bulk inversion symmetry,
Rashba and Dresselhaus SOC terms coexist. Due to this symmetry breaking, a current-induced spin
polarization is expected [152, 153] even in the absence of Rashba SOC.

In the following, different surfaces of a zincblende crystal are considered. In the surface-pro-
jected Hamiltonian, Dresselhaus terms which scale linearly and cubically with k, respectively,
are distinguished. The interplay of Rashba and Dresselhaus terms is visualized by the individual
spin-orbit fields which are superposed. The influence of a Dresselhaus SOC term in addition to
the Rashba SOC is considered by calculating the Edelstein effect for a GaAs system, which has a
comparably small Rashba parameter.

By group theoretical systematical symmetry considerations, Cartoixà et al. have shown that
additional higher-order terms can exist in systems with structural and/or bulk inversion asymmetry
which are not covered by the conventional Rashba and Dresselhaus Hamiltonians [154]. These
additional terms are not considered here in order to demonstrate clearly the influence of the
Dresselhaus term. However, they could be easily included in the calculations using the general
two-band formalism presented in section 3.2.

4.6.1. (001) surface

Projecting the Dresselhaus Hamiltonian onto the (001) surface, the averaged kz -component van-
ishes and k2

z averages to a finite value,
〈

k2
z

〉= π2/d 2 [72]. The Dresselhaus Hamiltonian simplifies
to [107, 154–156]

Ĥ SO
D = Ĥ (1)

D + Ĥ (3)
D =βD

(
ky σ̂y −kxσ̂x

)+γD

(
kx k2

y σ̂x −ky k2
xσ̂y

)
(4.32)

with βD = γD
〈

k2
z

〉
. Here, x ∥ [100], y ∥ [010] and z ∥ [001]. Eq. (4.32) contains a linear (Ĥ (1)

D ) and

a cubic (Ĥ (3)
D ) term and is C2v symmetric because of the bulk inversion asymmetry. The linear
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Figure 4.16.: Spin-orbit fields of the linear and the cubic (001) Dresselhaus term.

Dresselhaus coupling can be tuned by the sample thickness d . In realistic samples with a thickness
of a few nm, βD is typically of the same order of magnitude as the Rashba parameter αR [72].

In Fig. 4.16 the spin-orbit fields of the linear and the cubic Dresselhaus term, respectively, are
shown. Although the structure of Ĥ (1)

D resembles the isotropic Rashba Hamiltonian, its spin-orbit
field is remarkably different: rotational symmetry is broken. The spin texture is not perpendicular
to k, the angle between k and the spin-orbit field strongly depends on the direction in k-space. The
cubic Dresselhaus term is pronounced for large k-values and can be neglected near the Γ-point.
The spin-orbit field is perpendicular to k, its sign as well as the amplitude also strongly depend on
the direction in k-space.

For the discussion of a surface with Dresselhaus SOC, the Rashba SOC also has to be taken into
account which is approximately isotropic [107]. The effective spin-orbit field is a superposition of
the Rashba and Dresselhaus spin-orbit fields.

In a first approximation, the cubic Dresselhaus term is neglected. The corresponding band struc-

ture, En(k) = ħ2k2

2m +n
√(

α2
R +β2

D

)
k2 +4αRβDkx ky resembles the band structure of a C2v symmetric

Rashba system (discussed in section 4.5.2) with a characteristic Lifshitz transition at the saddle
point. The band structure and iso-energy lines for various ratios βD/αR are schematically shown in
appendix D.1. However, since the Dresselhaus spin-orbit field is not perpendicular to k, the spin
texture differs from that of a pure Rashba system.. The energy dependence of the current-induced
spin density is similar to a C2v symmetric Rashba system (Fig. 4.4(b)) and not explicitly discussed
here.

Fig. 4.17(a) shows the Edelstein efficiency tensor κ̂ of a (001) surface including Rashba as well as
linear Dresselhaus SOC. The model parameters were chosen to approximate the AlGaAs surface
experimentally examined in Ref. [119]; the linear Dresselhaus parameter is varied. Such a variation
of βD could be achieved by considering samples of different thicknesses.

The induced spin density is not always perpendicular to the electric field but strongly depends
on the parameter configuration as well as the direction of E. In the presence of a nonzero linear
Dresselhaus SOC term, diagonal tensor elementsκxx andκy y exist which are forbidden by symmetry
in a pure Rashba system.

The Edelstein tensor elements possess the symmetries κxx =−κy y and κx y =−κy x . Assuming
the E-field rotated in the plane by an angle φ with respect to the x ∥ [100]-axis, the angle θ between
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Figure 4.17.: Current-induced spin density in the presence of Rashba and Dresselhaus SOC at the (001)
interface. The model parameters are m = 0.074me, αR = 0.018eVÅ, EF = 100meV and γD = 0 [(a)
and (c)], γD = 10eVÅ3 [(b) and (d)]. Panels (a) and (b) show the Edelstein tensor elements as a
function of the linear Dresselhaus parameter βD, panels (c) and (d) depict the orientation of the
induced spin density with respect to the electric field for different ratios βD/αR.

the current-induced spin polarization and the electric field reads

cosθ(〈s〉 ,E) = κxx
(
cos2φ− sin2φ

)
√
κ2

xx +κ2
y x +4κxxκx y cosφsinφ

. (4.33)

For |αR| > |βD|, the Rashba SOC is dominant and θ ≈ π/2: the spin density is approximately per-
pendicular to E since |κy x | > |κxx |. This is illustrated in Fig. 4.17(c) for βD/αR = 0.11. However, if
|βD| > |αR|, the Dresselhaus SOC is more pronounced and |κxx | > |κy x |. Due to the anisotropic spin
texture shown in Fig. 4.16(a), the orientation of the spin density with respect to the field can be
modified from nearly (anti)parallel (E ∥ [100] or ∥ [010]) to perpendicular (E ∥ [110] or ∥ [110]) by
rotating E in-plane, as depicted in Fig. 4.17(c) for βD/αR = 2.22.

A special parameter configuration is |βD| = |αR|. The corresponding Fermi lines are two circles
intersecting at two twofold degenerate points, shown in Fig. D.1(d) on page 108. All spin expec-
tation values at the Fermi level are oriented parallel or antiparallel to the [110]-direction. This
configuration corresponds to a persistent spin helix in real space [157]. In such a system, SU(2)
symmetry is present despite of the SOC. Consequently, the spin polarization is conserved with an
infinite spin lifetime [157]. Exciting the system at a characteristic wave length, a persistent spin
helix can be induced [72]. The field-induced spin density is zero in this configuration because the
spin expectation values on the Fermi lines are parallel but point in opposite directions within one
energy branch [107]. Therefore, all contributions to the Edelstein effect completely compensate.
Thus, although the persistent spin helix provides a real-space-dependent spin polarization, the net
spin density of the system vanishes for any electric field.
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(b) Cubic Dresselhaus term.

Figure 4.18.: Spin-orbit fields of the linear and the cubic (110) Dresselhaus term. The color scale corresponds
to the out-of-plane SO field.

In Fig. 4.17(b) the influence of the cubic Dresselhaus term with γD = 10eVÅ3 is illustrated. The
cubic term slightly modifies the band structure, as shown in appendix D.1 on page 108. The most
significant effect of the cubic term is a shift of theβD-value at which no net spin density is induced to
βD = sgn(αRβD)αR+mEFγD/ħ2. For this parameter combination, a persistent spin helix can occur [72].
As discussed above for γD = 0, the Fermi lines are two intersecting circles with opposite spin texture,
thus, the Edelstein effect vanishes.

The additional cubic Dresselhaus contribution increases the longitudinal tensor elements of κ̂
and therefore leads to larger deviations from orthogonality of 〈s〉 and E, especially for a small ratio
βD/αR, as shown in Fig. 4.17(d).

4.6.2. (110) surface/interface

At the (110) surface the projected Dresselhaus term reads [77, 107, 154–156]

Ĥ SO
D = kxσ̂z

[
λD + γD

2

(
2k2

y −k2
x

)]
. (4.34)

Here, x ∥ [
110

]
, y ∥ [001], z ∥ [110] and λD = γD〈k2

z〉/2 [77,107,154,158]. The corresponding spin-orbit
field is completely out of plane and shown in Fig. 4.18. The cubic Dresselhaus term resembles the
Rashba warping term [Eq. (4.19)], but is not equivalent. Both terms correspond to different surfaces
(the Rashba warping term was derived for the (111) surface) and have different physical origins,
namely bulk inversion asymmetry and structural asymmetry, respectively. The Rashba Hamiltonian
for the (110) surface has the C2v symmetric form introduced in section 4.5.2. The band structure
of the superposed Hamiltonian which contains Rashba as well as Dresselhaus SOC is shown for
various parameter combinations in appendix D.2 on page 110.

The current-induced spin polarization as well as the spin Hall effect in a (110) AlGaAs quantum
well have been experimentally observed using Kerr microscopy [119]. Due to the out-of-plane
spin-orbit field, a nonzero out-of-plane spin polarization is induced by an electric field which
provides usually a larger MOKE signal than an in-plane spin polarization.

In Fig. 4.19 the calculated spin density induced by an external electric field at the (110) surface
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Figure 4.19.: Current-induced spin density at the (110) surface with Rashba and Dresselhaus SOC. The model
parameters are as in Fig. 4.17. Panels (a) and (b) show the tensor elements of κ̂ as a function
of the linear Dresselhaus parameter λD without (a) and with (b) a cubic Dresselhaus term
(γD = 10eVÅ3). Panels (c) and (d) depict in-plane and out-of-plane components of the spin
density with respect to the direction of E for λD = 0.016eVÅ with and without the cubic term,
respectively. Specific directions of E examined in [119] are marked.

of a zincblende structure is shown without [panels (a) and (c)] and with [panels (b) and (d)] the
cubic Dresselhaus term, respectively. Here, the same model parameters as above were chosen to
approximate the AlGaAs structure experimentally examined in Ref. [119]. Although already the
Rashba term exhibits anisotropies at the (110) surface, the corresponding parameters are assumed
isotropic, mx = my and αRx =αRy , in order to clearly demonstrate the anisotropy effects induced
by the Dresselhaus terms.

The Dresselhaus terms lead to a nonzero out-of-plane spin density when the applied electric
field has a nonzero x ∥ [001]-component. The corresponding tensor element κzx increases with λD

[Figs. 4.19(a) and 4.19(b)]. If E points in y ∥ [001]-direction, no out-of-plane spin density is induced
(κz y = 0), as also observed in Ref. [119]. The individual in-plane spin expectation values

〈
σ∥

〉
k

are reduced in the presence of the Dresselhaus term. However, the Dresselhaus SOC also affects
the shape of the Fermi lines and induces additional anisotropies. Therefore, the tensor elements
κx y and κy x exhibit a qualitatively different λD-dependence. Due to the nonequivalence of κx y

and −κy x , the spin density is not always perpendicular to E, as discussed in section 4.5.2 for a C2v

symmetric Rashba system.
In Ref. [119] the out-of-plane component of the induced spin density has been detected for

various in-plane orientations of the applied electric field: E ∥ [110], [111], [001] and [112]. The
MOKE signal was found to differ with respect to amplitude as well as sign. Figs. 4.19(c) and 4.19(d)
depict the in-plane and out-of-plane components of the calculated spin density without and with
the cubic term, respectively, for various in-plane orientations of E. The parameter λD was set
to 0.016eVÅ, corresponding to γD = 10eVÅ3 and a slab thickness d = 9.6nm [119]. Although the
calculated out-of-plane signal changes sign and amplitude, the numerical results are not completely
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Figure 4.20.: Spin-orbit fields of the linear and the cubic (111) Dresselhaus term. The arrows represent the
in-plane SO field, the color scale corresponds to the out-of-plane component.

consistent with the data measured in [119]: For an field applied in [110]-direction an opposite
sign than in experiment was calculated. In Figs. 4.19(c) and 4.19(d) the results mainly reflect the
symmetry of the linear Dresselhaus term whereas in the experimental results the out-of-plane spin
density seems to be dominated by the cubic Dresselhaus term. Thus, the magnitude of the linear
Dresselhaus term might be overestimated in the calculations. Further, anisotropies of the Rashba
Hamiltonian, which are not considered here, can influence the results.

4.6.3. (111) surface/interface

The Dresselhaus term at the (111) surface resembles the Rashba term [107, 154–156],

ĤD = δD
(
ky σ̂x −kxσ̂y

)+ γD

2
p

3

[(
−k2

x ky −k3
y

)
σ̂x +

(
k3

x +kx k2
y

)
σ̂y +

p
2kx

(
3k2

y −k2
x

)
σ̂z

]
. (4.35)

Here, x ∥ [
110

]
, y ∥ [

112
]
, z ∥ [111] and δD = 2γD〈k2

z〉/p3. The influence of the linear Dresselhaus
term can be considered by using an effective Rashba parameter, α′ =α−δD in the Rashba Hamilto-
nian (3.18). Similarly, the cubic Dresselhaus term ∼ σ̂z is equivalent to the hexagonal warping term
discussed in section 4.5.2 and can be included by an effective warping parameter λ′

w =λw −γD/
p

6.
However, the cubic Dresselhaus term contains an additional in-plane spin-orbit field perpendicular
to k, whose amplitude scales with k3 and which points oppositely to the linear Dresselhaus field.
Thus, this in-plane component of the cubic Dresselhaus term diminishes the influence of the linear
Dresselhaus term.

4.7. Topological insulators

The surface states of three-dimensional topological insulators, introduced in section 3.6, often
provide a cone-like band structure with spin-momentum locking [82, 84, 87], similar to Rashba
systems. However, whereas in Rashba systems the Fermi lines consist of two curves whose con-
tributions to the Edelstein effect compensate partially, the surface states of topological insulators
provide a single Fermi line. Due to the lack of partial compensation, the charge-to-spin conversion
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4. The Edelstein effect

efficiency is expected to be comparably large in topological insulators [19–21]. The Edelstein effect
in the surface states of topological insulators was predicted theoretically and detected in various
experiments [22–25, 27].

The surface states of 3D topological insulators are approximated by the Hamiltonian (3.30) with
linearly dispersing bands,

En(k) = nħvFk . (4.36)

Here, vF is the Fermi velocity and n =±1 corresponds to the branches above and below the diabolic
point (E = 0), which is the only degenerate point in this model band structure.

The Edelstein conversion tensor reads

κy x =−κx y =− χe A0

4πħ2vF
τtr

F |EF| = −χeħvFNu.c.

πci|U0|2
, τtr

F = 4ħ2vF

AatkFci|U0|2
(4.37)

with kF = |EF|/ħvF. The chirality χ = ±1 determines the sense of rotation of the spin expectation
values along the Fermi circle. At opposite surfaces, χ changes sign. The total spin density is constant
within the whole energy range, except for the diabolic point at which the Boltzmann model is not
applicable, as discussed in section 2.3.5. By measuring the sign of the spin density generated by the
Edelstein effect the chirality χ of the surface states can be determined directly.

Eq. (4.37) differs from the expression for isotropic Rashba systems with EF > 0 [Eq. (4.7)] only by
the chirality determining the sign of the effect and a factor of ħvF instead of αR. This seems to be
inconsistent with the above mentioned enhancement of the effect due to the lack of compensation
from a second Fermi circle, which has also been the motivation of examining the Edelstein effect in
the surface states of topological insulators. However, the simple picture of reduced compensation
usually approximates the relaxation time as a parameter and does not take into account its explicit
dependence on the system’s properties.

The Fermi velocity vF is typically in the order of 105ms−1. Thus, the product ħvF is in the range of
a few eVÅ. In Rashba systems the Rashba parameter is typically below 1eVÅ and takes values of a few
eVÅ for special systems with extraordinary large Rashba splitting, as for example the Bi/Ag surface
alloy. Therefore, the Edelstein effect calculated for the surface states of topological insulators
is in general large in comparison to that in Rashba systems. By this comparison between the
analytical expressions for Rashba systems and topological insulators, it seems that the enhanced
Edelstein effect is caused mainly by the large factor of ħvF in comparison to αR. However, the
models discussed here describe qualitatively different physical systems. For a comparison of
Rashba systems and topological insulators a more detailed consideration is needed.

For small k the Rashba Hamiltonian (3.18) is approximated in first order in k by the topological
insulator surface Hamiltonian (3.30). Within this approximation, the Fermi circle of a topological
insulator corresponds to the inner Fermi circle of a Rashba system. Though, the current-induced
spin density in a topological insulator is not equivalent to the contribution of the inner Fermi circle
of a Rashba system, since in topological insulators only scattering events within the only Fermi
circle contribute to the transport lifetime whereas in Rashba systems also inter-circle scattering
takes place. Therefore, the spin density in topological insulators does not depend on the Fermi
energy while the Edelstein contribution of the inner Fermi line of Rashba systems does. Hence, the
similarity of the analytical expressions (4.7) and (4.37) is rather by chance than of physical origin.

The bulk states of 3D topological insulators exhibit a band gap in which the topological surface
states exist. Thus, for Fermi energies in the bulk band gap, an electric charge current driven through
the sample is carried only by the surface states and not by the bulk states. Therefore, calculating the
current-induced spin density as a response to the electric charge current is more reasonable here
than for the surface states of bulk metals. The electric charge current density is

jc =
e2τtr

F |EF|
4πħ2 E . (4.38)
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4.8. Weyl semimetals

vF λw EF κy x ζy x

system ( 105m
s ) (eVÅ3) (eV) (10−9mV−1) (10−8mA−1) Ref.

α-Sn 6.0 0 0.03 −12.57 −142.41 [25]
Bi2Se3 6.2 0 −0.01 −13.00 −74.71 [90]
Bi2Se3, Cu-doped 2.9 140 0.45 −6.11 −16.66 [144]
Bi2Te3, Sn-doped 3.9 250 0.28 −8.33 −59.72 [143]

Table 4.4.: Charge-to-spin conversion factors κ̂ and ζ̂ for the surface states of selected topological insulators.
Here, results for isotropic systems and for systems with hexagonal warping are presented. Similar
results were published in [J4].

Thus, the tensor ζ̂ is

ζy x =−ζx y =−χ A0

evF
. (4.39)

Although the spin density increases with vF for a fixed applied electric field, it scales with v−1
F

when the current is kept constant. Interestingly, also for this definition of charge-current-to-spin
conversion efficiency, the effect is constant in energy. Since the surface states of topological
insulators provide an approximately constant and comparably large spin density independent
of the Fermi energy they seem to be a promising class of materials for possible applications of
the Edelstein effect, e.g. for inducing spin-orbit torque in a ferromagnetic material adjacent to
the surface. The charge-to-spin-current conversion efficiency was examined experimentally in
(Bi1−x Sbx )2Te3 as a function of the Fermi level [132]. The induced spin polarization was found to
be approximately constant with respect to the Fermi level except for a small region around the
diabolic point, and its sign was constant in the whole energy region, which fits well with the theory
presented here.

Like in Rashba systems, the isotropic model Hamiltonian can be extended by higher-order terms
respecting the symmetry of the surface. At a topological insulator surface with C3v symmetry, Fermi
surfaces with a hexagonal snowflake-like shape were observed in angle-resolved photoemission
spectroscopy (ARPES) experiments [143]. A corresponding additional contribution to the Hamilto-
nian was derived by Fu using a perturbative k ·p approach [143]. It is equivalent to the third-order
warping term introduced in Eq. (4.19), Ĥ (3) = λw

2

(
k3
++k3

−
)
σ̂z .

In Table 4.4 the spin density generated by an electric field and 2D charge current, respectively, in
the surface states of selected topological insulators is expressed by the tensors κ̂ and ζ̂. The α-Sn
and Bi2Se3 surface states are approximated within the isotropic model, for the surface states of
Cu-doped Bi2Se3 and Sn-doped Bi2Te3 the warping term of the Hamiltonian is included. In general,
the absolute values of the spin density are larger than for most of the isotropic Rashba systems
presented in Table 4.1, except of the Bi/Ag surface alloy. For the topological insulators considered
here the product ħvF is in the range from 1.91 to 4.08eVÅ, which is large in comparison to the
Rashba parameter αR of the Rashba systems in Table 4.1. The additional warping term reduces
the effect, as discussed above for Rashba systems, due to the out-of-plane component of the spin
expectation values on the Fermi line. However, the influence of the warping term is less pronounced
here: The in-plane anisotropy κx y 6= −κy x and the out-of-plane element κzx can be neglected.

4.8. Weyl semimetals

For experimental observations and potential technical applications of the Edelstein effect, a large
spin density induced by an electric field is preferable. The identification of materials with large
efficiency of “converting” the electric current into spin polarization is therefore highly desirable. In
the previous sections, several system properties favoring an efficient charge-to-spin conversion
were identified. In section 4.5.2 it was shown that elongated Fermi contours give rise to an enhanced

69



4. The Edelstein effect

Edelstein effect if the electric field is perpendicular to that elongated region. A strong uniform spin
polarization of the states also enhances the effect. Further, in section 4.7 it was discussed that a
large Edelstein effect is expected in systems with a single Fermi line in which no contributions from
Fermi lines with opposite spin polarization occur, compensating the effect.

These desirable properties are provided by the topological surface states of Weyl semimetals,
introduced in section 3.7. They disperse roughly linearly giving rise to Fermi arcs with an elongated
linear shape. They are strongly spin polarized and usually occur as single Fermi lines. Therefore, in
the following the current-induced spin polarization in type-I Weyl semimetals with broken inversion
symmetry is considered, particularly the contribution provided by the surface states. The focus lies
on TaAs for which the layer-resolved spin density induced by a uniform electric field is calculated.
In contrast to the previously discussed purely two-dimensional model systems (2DEGs with Rashba
SOC and surface states of topological insulators), the Weyl semimetals’ bulk as well as surface
states will be discussed since Weyl semimetals provide also a finite bulk density of states. Due to
their topologically nontrivial character and the closed band gap, the Weyl semimetal bulk states’
influence on the transport properties cannot be neglected. The bulk bands are nondegenerate,
except of the Weyl points, and also spin polarized. Therefore, in the presence of an external electric
field, a nonzero total spin polarization originating from the bulk states is also expected and needs
to be discussed.

As for the two-dimensional systems discussed above, the transport properties are considered
within the semiclassical Boltzmann transport theory [159]. However, the general expression for
the Edelstein effect, Eq. (4.2), contains now three-dimensional k and Λk. By contrast to the
previous sections 4.5-4.7, the mean free path is approximated by the relaxation time approximation
Λk = τkvk, with τk the momentum relaxation time including only scattering-out processes. By
using the transport lifetime instead of the momentum relaxation time, the results would gain more
accuracy. However, the order of magnitude of the transport properties would not be changed
remarkably. Since the models used in this section are quite simple, the predictive power of the
results for the Edelstein effect is limited to statements on the order of magnitude. Therefore,
including the transport lifetime could slightly modify the quantitative results but would not change
the main messages of this section. The main part of this section was published in [J5].

4.8.1. Edelstein effect from the Fermi arcs

A sample finite in z-direction but infinite in x- and in y-direction (slab geometry) is considered,
whose band structure contains a pair of Weyl points of opposite chirality separated in k-space by
∆kW. At the top (T) and bottom (B) surfaces, Fermi arcs connect the surface projections of the Weyl
points [32]. In the simplest case the Fermi arcs can be approximated as straight lines. For a rough
estimation of the current-induced total spin expectation value provided by these surface states
it is assumed that the Fermi velocity, the spin expectation value, and the momentum relaxation
time are constant along the Fermi arcs: vT

F =−vB
F ≡ v0, 〈σ〉T

k =−〈σ〉B
k ≡ 〈σ0〉, and τB

k = τT
k ≡ τ0. Using

Eq. (4.2), the current-induced spin density at both surfaces reads

〈s〉T

A
= 〈s〉B

A
=− |e|

4π2ħv0
τ0 〈σ〉0 (v0 ·E)∆kW , (4.40)

where A is the area of the surface and ∆kW = |∆kW|. The surface spin polarization is maximum if
E ∥ v0 (which means E is perpendicular to the Fermi arcs) and vanishes for E ⊥ v0. It has the same
sign on both surfaces, whereas it points in opposite directions at opposing surfaces of a system
with Rashba surface states. Thus, the total system would not be invariant under a rotation of π
around the current axis, which is reasonable because of the broken rotation symmetry of the Weyl
semimetal. The additional spin polarization from the bulk states will be discussed for the type-I
Weyl semimetal TaAs in the next section.
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louin zone of As-terminated TaAs.

Figure 4.21.: Bulk Brillouin zone of TaAs and its projection onto the (001) surface. The 24 Weyl points near
the Fermi level [102] are separated into 8 Weyl points of type W1 and 16 Weyl points of type W2;
the latter are surface-projected onto 8 W2 points of chirality χ=±2. (a): The positions of the 24
Weyl points in the bulk and 16 Weyl points in the surface Brillouin zone are marked by red and
blue symbols, respectively. (b): The 16 projected Weyl points (green) are connected by Fermi
arcs (red). Arrows indicate the k-dependent spin polarization. The “shift” of the Fermi surface
due to an external electric field E is sketched as gray lines. Both figures were published in [J5]
[(a) was slightly modified].

4.8.2. Current-induced spin polarization in the type-I Weyl semimetal TaAs

Using Eq. (4.2) and the Hamiltonian (3.35), the macroscopic spin polarization of a type-I Weyl
semimetal is estimated. The minimal number of Weyl points is two in systems with inversion
symmetry and four in time-reversal symmetric systems that are considered here. In a system with a
larger number of Weyl points which can be approximated by this Hamiltonian as well, more bulk
and surface states contribute to the total spin polarization. However, considering elastic scattering,
the consequently increased number of scattering events reduces the momentum relaxation time.
Thus, the total spin polarization is not affected by the larger number of Weyl points.

As an application of the above theory, the Weyl semimetal TaAs [103, 160, 161] is considered
which has a body-centered tetragonal crystal structure with lattice constants a = 3.437Å and
c = 11.656Å [103]. Each primitive unit cell contains 2 Ta and 2 As atoms; inversion symmetry
is broken [103].

The band structure exhibits 24 Weyl points near the Fermi level. A sketch of the three-dimensional
Brillouin zone with the Weyl points is shown in Fig. 4.21(a). Two different types of Weyl points
exist in TaAs: 8 points called W1, located in the (kz = 0)-plane, and 16 points called W2 located
in the planes kz =±0.6 2π

c . They differ with respect to their position in energy and k, their Fermi
velocity vF, and the saddle point energies ±ES. The details of the band structure, given in Ref. [162],
were used to fit the bulk band structure near the W1 and W2 Weyl points by the Hamiltonian (3.35).
Numbers are given in Table 4.5. The k-points at the Fermi level are determined using an adaptive
tetrahedral method, introduced in section E.2 in the appendix.

In what follows, the As-terminated (001) surface of TaAs [100] is considered. In the projection
onto the two-dimensional Brillouin zone, two W2 nodes of the same chirality are projected onto
each other; thus, the 16 W2 nodes are mapped onto 8 nodes of chirality χ=±2 [103,160,161], which
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4. The Edelstein effect

number EFW ES ∆kW vx vy vz m0 γW

(meV) (meV) (Å−1) (105ms−1) (10−4Å−2) (eVÅ2)
W1 8 22.1 22.5 0.026 5.2 2.2 0.2 1.73 130
W2 16 8.9 47.9 0.068 4.3 2.6 3.1 11.4 42

Table 4.5.: Properties of the TaAs bulk band structure around the W1 and W2 Weyl points. EFW is the energy
distance between EF and the Weyl points, ES is the saddle point energy with respect to the Weyl
points, vx is the group velocity in the direction ∆kW at the Weyl point energy. The values for EFW,
∆kW, vx , vy , and vz are taken from Ref. [162] and were used to determine the parameters m0 and
γW that enter the Hamiltonian (3.35). The data was published in [J5].
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Figure 4.22.: Momentum relaxation time along the Fermi arc between the W1 Weyl points for δ-shaped
impurities with U0 = 1eV and ci = 1%. The states are maximally localized at the surface at
kp,x = 0 and continuously evolve into bulk states for kp,x = ±pm0, which is the connecting
point with the bulk states. The figure is adapted from [J5].

is sketched in Fig. 4.21(b). The Weyl points are not exactly at the Fermi energy. The Fermi arcs
connect the projections of the Weyl cones, the number of Fermi arcs terminating at a projected
Weyl cone corresponds to the (modulus of the) chirality of the respective projected Weyl point [102].
However, since the model Hamiltonian (3.35) describes only projected Weyl points with χ=±1, it
does not reproduce properly the Fermi arcs connecting the W2 nodes.

Experiments [35, 101, 160, 163] and calculations [100, 102, 103] have shown that the Fermi arcs
between two W2 nodes of opposite chirality are two crescent-shaped lines with opposite spin
polarization but same sign of the Fermi velocity on each surface. The Fermi arcs with the spin
polarization are also sketched in Fig. 4.21(b). Roughly estimating the total spin density provided by
the surface states of the W2 nodes by Eq. (4.2), these states do not contribute considerably to the
total spin polarization of the system because their contributions compensate nearly completely.

The W1 surface states provide single-line Fermi arcs between the W1 nodes which can be approx-
imated as straight lines with constant spin polarization along the arc, which is consistent with the
Hamiltonian (3.35) [100, 103]. Therefore, only the contribution of the bulk states of all 24 nodes and
the W1 surface states are considered here. However, the W2 surface states are taken into account
in the scattering probabilities.

The impurities are assumed δ-shaped with a scattering potential of U0 = 1eV, whose concentra-
tion is set to ci = 1%. For bulk-bulk scattering processes, the single-impurity transition matrices
T i

k′←k are independent of the impurity position. However, if at least one of the involved states
is a surface state, the transition matrix depends on the coordinates of the impurity due to the
z-dependence of the surface-state wave functions given by Eqs. (3.40) and (3.41). In the calculation
of the momentum relaxation time the transition matrix elements are averaged over all z-positions
of the impurity across the sample, as discussed in section 2.5.
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Figure 4.23.: Layer-resolved current-induced spin density in TaAs calculated within the Boltzmann approach
and proposal of an experiment for detecting the surface spin density.

In Fig. 4.22 the momentum relaxation time τk of the W1 bulk states as well as surface states
along the Fermi arc is shown. The bulk momentum relaxation time is constant at the Fermi surface
because of time-reversal symmetry. It is comparably large due to the low bulk density of states
near the Weyl points which reduces the phase space for scattering. The relaxation time is even
enhanced for the surface states because of their localization. The surface states in the centers of the
Fermi arcs are maximally localized at the surface and are scattered preferably at impurities near the
surface. In contrast, the surface states near the ends of the Fermi arcs, which are attached to the
bulk states, are extended across the sample; in other words, they exhibit bulk-like scattering. Due
to their spatial extension, bulk states have more scattering possibilities than surface states; thus,
the bulk relaxation time τbulk is in general smaller than the surface relaxation times. Therefore, τk

shown in Fig. 4.22 has its maximum at the center of the Fermi arc and decreases to τbulk at the ends.
In Fig. 4.23(a) the current-induced total spin per bulk unit cell is shown as a function of the

layer index in z-direction. The size of the sample is taken as 1µm×1µm×1.164µm, the latter
corresponding to 100 layers in z-direction. An electric field of 103 V/m is applied in x-direction,
which is a voltage of 10−3 V across the sample. The current-induced spin polarization is in-plane
and perpendicular to the electric field. The bulk states give rise to a spin density constant in z, since
they are Bloch-like and spread over the whole sample. The localized top (bottom) surface states
produce a spin polarization with a maximum at the corresponding surface which decreases toward
the interior of the sample.

The main contribution to the total spin expectation value stems from the surface states due to
their large momentum relaxation time and the uniform spin polarization along the Fermi arcs. A
Fermi arc contributes most if the electric field is applied perpendicular to the arc, that is parallel to
the Fermi velocity. Due to the opposite spin polarizations and opposite group velocities of the top
and bottom surface states, the spin polarization points in the same direction at both surfaces. This
is a major difference in comparison to the Edelstein effect in Rashba systems and in topological
insulators for which the spin polarization points in opposite directions at opposite surfaces.

Due to the maximum spin polarization at the surfaces, surface-sensitive experimental methods,
i.e. MOKE measurements, could be used to detect the Edelstein effect. Since the spin polarization
is in-plane, the MOKE experiment would have to be performed in longitudinal geometry (LMOKE),
sketched in Fig. 4.23(b). The light beam enters the sample e.g. at the top surface and is attenuated on
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System αR (eVÅ) vF (105ms−1) τ (ps) κy x (10−9/Vm)
Au(111) 0.33 – 0.26 1.1

Bi/Ag(111) 3.05 – 0.31 29.1
α-Sn(001) – 6.00 0.39 −12.6

TaAs – 3.00 3. . .165 −290

Table 4.6.: Edelstein tensor κy x , model parameters and momentum relaxation time for the Rashba systems
Au(111) and Bi/Ag(111)( taken from Table 4.1), for the (001) surface of the topological insulator
α-Sn (taken from Table 4.4), and the Weyl semimetal TaAs. The data was published in [J5].

its way through the sample. The MOKE signal originates from the magnetization at the surface but
also from the subjacent bulk layers, depending on the penetration depth of the incident light. Due
to the magnetization profile – decreasing from the surface toward the bulk – a MOKE measurement
is similar to experiments at thin magnetic layers.

To estimate the strength of the MOKE signal of a TaAs sample, the light is assumed s-polarized
with a wavelength of λ= 650nm. The complex refraction index of TaAs is nR = 1.98+6.07i [164].
The contribution of the magnetization at a position zi to the complex Kerr signal is multiplied by a
factor of exp(−4πinRzi /λ) [165–167]. By integrating over the attenuated Kerr signal of all layers a
Kerr rotation signal which corresponds to a current-induced magnetic moment of 2.9 ·10−4µB per
surface unit cell is obtained, equivalent to an Edelstein tensor of κy x =−2.9 ·10−7.

Comparison to Rashba systems and topological insulators

To demonstrate the relevance of the above results, the current-induced spin density in TaAs is
compared to the previous results for Rashba systems and topological insulators [J4] discussed
in sections 4.5.1 and 4.7. In Table 4.6 the Rashba constants and Fermi velocities, respectively,
relaxation times, and Edelstein tensor elements κy x are given for the paradigmatic Rashba systems
Au(111) and Bi/Ag(111) as well as the topological insulator α-Sn. Assuming the same impurity
concentration, scattering potential, and electric-field strength as for TaAs (see the previous section),
the results for the current-induced spin expectation value are considerably smaller; more precisely,
the TaAs result is increased by several orders of magnitude.

To understand these results, the general formula (4.2) for the field-induced spin polarization
and the analytical expressions (4.7), (4.37), and (4.40) are recalled. The total spin polarization
can be approximated as product of average momentum relaxation time τ and DOS at the Fermi
level weighted with the k-dependent spin expectation value 〈σ〉k and Fermi velocity vF. The
latter two quantities are of the same order of magnitude for all systems compared here. Thus,
the enhanced Edelstein effect in TaAs must result from an extraordinary large product N (E)×τ.
Usually, this product is approximately constant in energy, since a low DOS means a reduced phase
space available for each state to scatter into and an increased relaxation time. This argument holds
for Rashba systems, the surface states of topological insulators and for the bulk states of Weyl
semimetals.

However, the situation is different for the TaAs system. In TaAs the Fermi energy is close to
the energy of the Weyl points, the bulk DOS at the Fermi level is low (semimetal). The DOS of
the W1 and W2 Weyl points reduce to zero at the corresponding Weyl point energies, but since
the Weyl points are located at different energies, the total DOS is always nonzero, as shown in
Fig. 4.24(a). Here, only the energy region between the Lifshitz transitions, where the band structure
is approximated sufficiently by the model Hamiltonian (3.35), is considered. Further, the surface
state DOS does not vanish at the Weyl point energies; in the model used here it is constant in energy.
Both bulk and surface states can scatter into bulk as well as surface states. Thus, the scattering rate
from bulk/surface to surface states is not affected by changes in energy, whereas approaching one
of the Weyl point energies considerably reduces the phase space for scattering from bulk/surface to
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Figure 4.24.: Density of states and momentum relaxation time versus energy. (a): The W1 and W2 bulk
DOS vanishes at the corresponding Weyl point energies (vertical dotted lines). The kinks are
attributed to the van Hove-singularities at the Lifshitz transition. The surface states DOS is
constant in energy and not shown here, but is included in the total DOS; the latter is never zero.
(b): The maximum of τ is located at the energy at which the total DOS reaches its minimum.
Both figures are adapted from [J5].

bulk states. Therefore, the relaxation time of the bulk states as well as the surface states is enhanced
for energies near the Weyl points, as shown in Fig. 4.24(b). For the bulk states, the enhancement of
τ is compensated by the reduced DOS, but for the surface states the product of DOS and τ is large
for energies near the Weyl points, which leads to the enormous Edelstein effect. Hence, one can
expect an even larger Edelstein effect if the Weyl points were closer to the Fermi energy, as shown in
Fig. 4.25(a).

Limits of the Boltzmann approach

As discussed in section 2.3.5, the Boltzmann approach is not appropriate when the Fermi surface
contains k-values near small band gaps, which means energies close to the Weyl point energies.
Around the Weyl points, the interband transitions strongly affect the transport properties and
cannot be neglected. The intrinsic contribution of the Kubo formula, Eq. (4.12), vanishes for the
TaAs system because of time-reversal symmetry. A detailed discussion of the extrinsic contributions
to the charge conductivity for the model Hamiltonian (3.35) using Kubo linear response theory
is given in Ref. [168]. Although elastic interband scattering is considered in the semiclassical
Boltzmann theory, inelastic transitions are neglected, which leads to an overestimated relaxation
time. Further, interband transitions would give additional contributions to Eq. (4.2), as discussed
in Ref. [61], which are comprised in the constant Γ approach [64, 65],

〈σ〉ext =−eħ
π

∑

k,n,m

Γ2Re(〈kn |σ̂|km〉〈km |v̂ ·E|kn〉)[
(EF −En(k))2 +Γ2

][
(EF −Em(k))2 +Γ2

] , (4.41)

where Γ is the lifetime broadening (Γ = ħ
τ ). The terms n = m are approximately equivalent to a

Boltzmann approach with constant relaxation time. If Γ¿|Em −En |, the influence of the interband
transitions is insignificant.

In Fig. 4.25(b) the ratio of the bulk interband energy difference ∆E = |E+ − E−| and lifetime
broadening Γ = Γ++Γ− is shown for energies near the Fermi level. For the scattering potential
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Figure 4.25.: Energy dependence of the Edelstein effect (a) and estimate of regions in which the Boltzmann
approach is not applicable (b).

U0 = 1eV and the impurity concentration ci = 1% used in the previous calculations, Γ¿∆E holds at
the Fermi level and nearly within the entire energy range. For 5Γ<∆E the interband contributions
can safely be neglected. Only energies close to the Weyl points, W1/2 ±1meV are critical: there,
interband transitions have to be included. The momentum relaxation time strongly depends on
the scattering potential and the impurity concentration, τ∝U−2

0 c−1
i . Thus, Γ∝U 2

0 ci. For larger U0

and ci (U0 = 3eV in the figure), Γ> |E+−E−| holds in a wider energy range. For very large scattering
potentials (U0 = 10eV in the figure), Γ & ∆E in the whole energy region, and the semiclassical
Boltzmann approach is not sufficient and should be used only for weak scatterers.
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5. Chiral anomaly in Weyl semimetals

Since Weyl semimetals host low-energy states which are described by the Weyl equation [36],
they are considered as solid-state equivalent of Weyl fermions. Therefore, quantum anomalies
originally introduced in the framework of fundamental Weyl particles can also be discussed in
solid states. Especially the Adler-Bell-Jackiw anomaly [37–39], also known as chiral anomaly, is
of interest because it is related to anomalous transport signatures which can actually be detected
experimentally. In the presence of nonorthogonal electric and magnetic fields, the number of
particles of a distinct chirality is not conserved. This nonconservation of the chiral charge violates
the chiral gauge symmetry of the system [169], thus, it is called an anomaly.

In Weyl semimetals, chiral Weyl fermions exist in the vicinity of Weyl points with a distinct
chirality χ. Whereas the chirality of a Weyl point is defined by the Weyl Hamiltonian (3.31), the
number of states carrying this chirality is related to the occupation of states around the Weyl point.
In Weyl semimetals, each Weyl point has its counterpart with the opposite chirality −χ. The total
chirality vanishes according to the Nielsen-Ninomiya no-go theorem [92]. Therefore, the chiral
anomaly can be interpreted as transfer of states from one chirality (e.g. −χ) to the other (χ) in the
presence of nonorthogonal magnetic and electric fields. However, no electric charge is created or
annihilated when the chiral character of a state is reversed. Therefore, the total electric charge and
the related charge current are conserved and can be described by a continuity equation.

The chiral charge of a Weyl semimetal and nonconservation of chiral charge are not experimen-
tally accessible quantities. However, the chiral anomaly remarkably affects the transport properties
of the system by increasing the longitudinal charge conductivity in the direction of the magnetic
field, leading to a negative longitudinal magnetoresistance (NLMR). This unconventional magnetic
field dependence – usually, the longitudinal charge conductivity parallel to the magnetic field is
reduced since the electrons are forced to move on orbits perpendicular to the magnetic field by the
Lorentz force – has been detected in various Weyl and Dirac semimetals [26, 170–172].

Although the detection of a NLMR is a strong hint for the existence of Weyl points near the Fermi
level, the chiral anomaly is not the only phenomenon causing a NLMR [26]. Thus, when a NLMR
signal is detected experimentally, origins different from the chiral anomaly have to be eliminated in
order to clearly identify the chiral anomaly.

The chiral anomaly and the resulting anomalous transport properties can be discussed in the
ultraquantum limit, which implies large magnetic fields and Fermi energies close to the Weyl point
energies, as well as in the semiclassical limit, which is appropriate for weak magnetic fields and
Fermi energies not too close to the Weyl point energies. Although both approaches can explain the
phenomenon qualitatively, they differ with respect to the magnetic field dependence of the charge
conductivity.

In this chapter, a short introduction of the underlying concept of anomalies in field theory is
given. Subsequently, the phenomenon of the chiral anomaly and the resulting transport properties
are derived in the ultraquantum as well as the semiclassical limit. A short overview on the present
experimental observations of the chiral-anomaly-related transport signatures in various Weyl and
Dirac semimetals is given. Finally, the transport properties in model systems of two (broken time-
reversal symmetry) and four (broken inversion symmetry) Weyl points as well as the realistic Weyl
semimetal TaAs are calculated using the semiclassical Fermi surface harmonics method introduced
in section 2.3.3 and with a focus on energy-dependent and transversal transport properties.

5.1. Quantum anomalies in field theory

In this section the concept of quantum field anomalies will be briefly introduced following the
works of Jackiw [169] and Adler [173]. The Noether theorem [174] states that each continuous
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5. Chiral anomaly in Weyl semimetals

symmetry is connected to a conservation law. Prominent examples from classical physics are
time invariance leading to energy conservation, translational invariance related to momentum
conservation and rotational invariance which leads to conservation of angular momentum. Each
of these conservation laws can be expressed by an associated continuity equation.

Anomalies in quantum field theory correspond to breaking classical symmetries and the related
conservation laws by quantum effects. Symmetries which exist for unquantized and commuting
variables can be broken as soon as the dynamics of the system is quantized with noncommuting
variables [169].

The basic concept of a quantum anomaly will be demonstrated for a massless four-component
Dirac-Fermi fieldΨ(x) described by the massless Dirac equation

iħγ̂µ ∂

∂xµ
Ψ(x) = 0 . (5.1)

Here µ= 0,1,2,3 with x0 = ct , whereas the other components of x are the spatial components x, y , z.
The explicit form of the set of 4×4 matrices γ̂µ can be freely chosen as long as they satisfy the Clifford
algebra γ̂µγ̂ν+ γ̂νγ̂µ = 2gµν14×4 with the Lorentz signature ĝ = diag(1,−1,−1,−1). First, Ψ(x) is
assumed a classical unquantized field. Eq. (5.1) is invariant under the global gauge transformation

Ψ(x) → eiθΨ(x) , (5.2)

with constant θ. The Noether theorem states that this gauge symmetry leads to a conservation law,
namely the conservation of the charge Q associated with the fieldΨ(x), which is defined as

Q ≡
∫
Ψ(x)†Ψ(x)d3r , r = (x, y, z) . (5.3)

The charge conservation can also be expressed by the corresponding continuity equation

∂

∂xµ
Jµ(x) = 0 (5.4)

with the charge current 4-vector
Jµ(x) ≡Ψ†(x)γ̂0γ̂µΨ(x) . (5.5)

Applying the chiral projection operator P̂χ = 1
2

(
14×4 +χγ̂5

)
with γ̂5 = iγ̂0γ̂1γ̂2γ̂3 and the chirality

χ=±1 toΨ(x), its chiral components are projected, which are eigenfunctions of γ̂5,

Ψχ(x) ≡ P̂χΨ(x) , γ̂5Ψχ(x) =χΨχ(x) . (5.6)

The chiral componentsΨχ(x) separately fulfill Eq. (5.1) which is invariant under the global gauge
transformation

Ψ(x) → eiγ̂5θΨ(x) , Ψχ(x) → eiχθΨχ(x) . (5.7)

Due to this symmetry, the corresponding charges Q+ and Q−, defined according to Eq. (5.3), are
conserved and the charge currents Jµ+(x) and Jµ−(x), constructed analogously to Eq. (5.5), satisfy
separate continuity equations. Consequently, the chiral charge Q5 ≡

∫
d3rΨ†(x)γ̂5Ψ(x) =Q+−Q−

is also constant and the chiral charge current Jµ5 (x) ≡Ψ†(x)γ̂0γ̂µγ̂5Ψ(x) = Jµ+(x)− Jµ−(x) satisfies the
continuity equation

∂

∂xµ
Jµ5 (x) = 0 . (5.8)

Now, a vector gauge field Aµ(x) is coupled to the Dirac field and Eq. (5.1) is transformed to

iγ̂µ
(
∂

∂xµ
+ iAµ(x)

)
Ψ(x) = 0 , (5.9a)
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5.2. Ultraquantum limit

iγ̂µ
(
∂

∂xµ
+ iAµ(x)

)
Ψχ(x) = 0 . (5.9b)

The global gauge transformations given by Eqs. (5.2) and (5.7) can be generalized to a local gauge
with θ = θ(x). To preserve gauge invariance of Eq. (5.9), the field Aµ(x) has to transform like
Aµ(x) → Aµ(x)− ∂

∂xµ θ(x) [to fulfill Eq. (5.9a)] and Aµ(x) → Aµ(x)−χ ∂
∂xµ θ(x) [to fulfill the chiral

Eq. (5.9b)], respectively. This gauge symmetry leads to (chiral) charge conservation, as discussed
above.

From these considerations one could conclude that the charge as well as the chiral charge remain
conserved quantities and the corresponding charge currents fulfill continuity equations. This holds
as long asΨ(x) is a classical field. However, ifΨ(x) is a quantum field operator, the (chiral) charge
and the (chiral) charge current are not well defined by Eqs. (5.3), (5.5) (and their chiral counterparts)
because the fundamental quantization condition

Ψ†
m(t ,r)Ψn(t ,r′)+Ψn(t ,r′)Ψ†

m(t ,r) = δmnδ(r− r′) , (5.10)

in which m and n are the components of the field, yields singularities in the above definitions.
Therefore, regularization and renormalization is necessary in order to provide a definition of the
(chiral) charges and currents [169]. However, in the presence of a nonzero vector gauge field Aµ(x),
no renormalization can be found that preserves both gauge symmetries (5.2) and (5.7). It is possible
to find a renormalization that conserves either the charge or the chiral charge, but not both. Thus,
assuming charge conservation, under quantization, the chiral charge Q5 is not conserved in the
presence of a vector gauge field Aµ(x), which is called a chiral anomaly.

5.2. Ultraquantum limit

The Landau quantization of Weyl fermions and the resulting chiral anomaly is derived, the main
steps following the work of Nielsen and Ninomiya [39]. They performed the transition from the
chiral anomaly in high energy physics to quasiparticles in solids.

In the following, the states in the vicinity of a pair of Weyl points with chirality χ=±1 centered
around kχW are considered, described by the Weyl Hamiltonian (3.31). Now, an external magnetic
field, here pointing in z-direction, B = (0,0,B), is applied (here B ≥ 0). The magnetic field couples to
the electronic states via the magnetic vector potential, which is expressed using the Landau gauge,
A(x) = (0,B x,0). Thus, the Hamiltonian reads

Ĥ =χv0
(
p̂−ħkχW +exBey

) · σ̂ . (5.11)

Here, the vector potential breaks translational invariance in x-direction and kx is not a good
quantum number. The eigenfunctionΨχ with the eigenvalue Eχ fulfills the eigenequation

χv0

(
p̂ · σ̂−ħkχW · σ̂+exBσ̂y −χ

Eχ
v0

)
Ψχ = 0 . (5.12)

To solve the eigenequation, the auxiliary functionΦχ is introduced,

Ψχ =
(

p̂ · σ̂−ħkχW · σ̂+exBσ̂y +χ
Eχ
v0

)
Φχ . (5.13)

Φχ satisfies
(

(Eχ)2

ħ2v2
0

−
(
−i

∂

∂x
−kχW

)2

−
(
ky −kχWy +

eB x

ħ

)2

− (
kz −kχWz

)2 − eB

ħ σ̂z

)
Φχ = 0 . (5.14)
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5. Chiral anomaly in Weyl semimetals

Here ħky,z , the eigenvalues of p̂y,z , are good quantum numbers and were inserted. kz can be
interpreted as the crystal momentum in z-direction, but ky is only a good quantum number
because of the chosen Landau gauge of the vector potential. Thus, ky should not be interpreted as
the crystal momentum. The k-space is not well defined for three dimensions but is reduced to the
kz -direction, which is parallel to the magnetic field.

Eq. (5.14) is similar to the harmonic oscillator equation. The energy eigenvalues are

Eχ,α
n,sz

=α
√

(2n +1+ sz )eBħv2
0 + v2

0ħ2(kz −kχWz )2 (5.15)

with α = ±1, n = 0,1,2, . . . and sz = ±1. The eigenfunctions Φχ can be found from the harmonic
oscillator solutions,

Φ
χ
n,sz

(r) = eiky y+ikz z+i kχWx x e−x̃2/2Hn(x̃)Υ(sz ) (5.16)

with x̃ =
√

eB
ħ

(
x + (ky−kχWy )ħ

eB

)
, Hn is the nth Hermite polynomial and Υ(sz ) is a two-component

spinor eigenfunctions of σ̂z with the eigenvalue sz . Using Eq. (5.13), the eigenfunctions of the Weyl
Hamiltonian (5.11) read

Ψ
χ,α
n,sz=1(r) = eiky y+ikz z+ikχWx x e−x̃2/2




(
Eχ,α

n,1

ħv0χ
+ (kz −kχWz )

)
Hn(x̃)

i
√

eB
ħ Hn+1(x̃)




1√
Nχ,α

n,sz=1

,

Ψ
χ,α
n,sz=−1(r) = eiky y+ikz z+ikχWx x e−x̃2/2




−2inHn−1(x̃)
√

eB
ħ(

Eχ,α
n,−1

ħv0χ
− (kz −kχWz )

)
Hn(x̃)




1√
Nχ,α

n,s=−1

,

(5.17)

with

Nχ,α
n,sz=1 =

√
ħπ
eB

2n+1n!Eχ,α
n,1

ħ2v2
0

(
Eχ,α

n,1 +χ(kz −kχWz )ħv0

)
,

Nχ,α
n,sz=−1 =

√
ħπ
eB

2n+1n!Eχ,α
n,−1

ħ2v2
0

(
Eχ,α

n,−1 −χ(kz −kχWz )ħv0

)
.

(5.18)

SinceΨχ,α
n,sz=1 =Ψ

χ,α
n+1,sz=−1, only the solutionsΨχα

n,sz=−1 are considered. For (n = 0, sz =−1) only the

energy branch Eχ,α=−χ
0,−1 =−χħv0(kz −kχWz ) exists because Eχ,α=χ

0,−1 =χħv0(kz −kχWz ) gives a vanishing
wave function. Thus, each Weyl point provides a linearly dispersing chiral Landau level with the
slope −χħv0.

In Fig. 5.1 the Landau levels of a pair of Weyl fermions in the presence of a magnetic field pointing
in z-direction are shown. Only the chiral Landau levels intersect the former Weyl point energy E = 0.
The higher Landau levels (n 6= 0) provide separated electron and hole bands with an approximately
linear dispersion for large kz . The lowest (electronic) Landau level besides the chiral one (n = 1) has

its minimum at Emin
n=1 =

√
2eBħv2

0 . Thus, for Fermi energies in the energy range −Emin
n=1 < EF < Emin

n=1,
in which only the chiral Landau levels intersect the Fermi level, the transport properties have to be
discussed within the ultraquantum limit.

Similarly to the Landau quantization for a free electron gas discussed in standard textbooks [48],
the density of states of Landau quantized Weyl fermions is

N (E) = eB

4π2ħ2v0

(
1+2|E |

nmax∑
n=1

(E2 −2ħv2
0neB

)− 1
2

)
. (5.19)

Here, the first term stems from the chiral mode and the second term corresponds to the other levels
up to the highest occupied Landau level nmax = bE2/2eBħv2

0c with b·c is the floor function. The density
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Figure 5.1.: Landau quantization of Weyl fermions with chirality χ=±1, B ∥ z. The band structure (a,b) as
well as the density of states (c) is shown. In addition, the number of occupied Landau levels is
presented. Here, no occupied Landau levels means that only the chiral level is occupied.

of states and the number of occupied Landau levels are illustrated in Fig. 5.1(c). At the band edge
of each Landau level, the DOS diverges, as in the Landau quantized free electron gas. Differently
from a pure one-dimensional Weyl fermion, the “background” DOS underlying the divergences is
not constant in E but increases with E because of the more complex band structure of the Landau
levels with n > 0.

If an electric field E = (0,0,E) is applied parallel to B, the number of states with the chirality χ is
changed by [39]

Ṅχ =
∑

n,α,kz

ḟ χ,α,n(kz )

V
=

∑

n,α,kz

∂ f χ,α,n

∂E
∂Eχ,α

n (kz )

∂kz

k̇z

V
= e2B

4π2ħ2

∑

n,α,kz=kF

vχ,α,n
z (kz )

|vχ,α,n
z (kz )|

E (5.20)

in which the last equation was derived using the classical equation of motion k̇z = −e/ħEz . The
contributions from the two Fermi points of the n > 0 levels compensate. Therefore, only the chiral
Landau level contributes to Ṅχ,

Ṅχ =−χ e2BE

4π2ħ2 . (5.21)

Thus, in a system of two Weyl points of opposite chirality, the chiral charge Q5 ∝ Nχ=1 −Nχ=−1

is not conserved in the presence of nonorthogonal fields B and E whereas the total charge (here:
number of states) Q ∝ Nχ=1 +Nχ=−1 is conserved. Hence, Eq. (5.21) expresses the chiral anomaly
for a pair of Weyl points.

The electric charge current density generated by the electric field in the presence of a nonorthog-
onal magnetic field is

j c
z = e2

V

∑

χ,n,α,kz

(
vχ,α,n

z (kz )
)2
τ
χ,α,n
kz

δ
(Eχ,α

n (kz )−EF
)

Ez

= e3B v0

2π2ħ2

(
τn=0

kz
+ 2

EF

nmax∑
n=1

τn
kz

√
E2

F −2neBħv2
0

)
Ez .

(5.22)

This expression can be derived using Boltzmann transport theory, as done by Nielsen and Ninomiya,
[39], or via the time derivative of the expectation value of the electric polarization operator [99, 175].
In [39] the charge current is calculated for systems in which only the chiral mode is occupied.
Eq. (5.22) is equivalent to the result given in [39] but also includes contributions from all other
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Figure 5.2.: Longitudinal charge conductivity, density of states and number of occupied Landau levels of a
system of two Weyl points as a function of the magnetic field. Here EF = 8meV, v0 = 105ms−1 and
τ0 = 1ps. For comparison, the conductivity in the semiclassical limit is shown.

occupied Landau levels.
In the following, only the diagonal elementσq

zz of the conductivity tensor, which is in the direction
of the magnetic field and therefore called longitudinal charge conductivity, will be discussed since
this component is remarkably changed by the presence of the magnetic field B = (0,0,B) and is
considered an experimentally observable signature of the chiral anomaly. The index “q” stands for
“quantum limit”. The magnetic field and energy dependence of the longitudinal charge conductivity
can be discussed assuming a constant momentum relaxation time, τχ,α,n

kz
= τ0 or as a (χ,α,n,kz )-

dependent quantity according to the formalism introduced in section 2.5. The results for both
approaches will be presented in the following.

5.2.1. Constant relaxation time

The chiral anomaly is often discussed within a constant relaxation time approximation. Although
the intra- and inter-cone momentum relaxation times are considered different, both enter the
expressions for the conductivity as parameters [39]. In this section, the longitudinal charge conduc-
tivity is calculated assuming a single momentum relaxation time τ for both intra- and inter-cone
scattering.

In Fig. 5.2(a) the B-dependent longitudinal charge conductivity σq
zz is shown for a system of two

Weyl cones. For comparison, σsc
zz calculated in the semiclassical limit (discussed in section 5.3,

Eq. (5.34)) is presented. In addition, the number of occupied Landau levels is depicted.
For low magnetic fields, the Landau levels are close to each other, many bands are occupied

and the longitudinal charge conductivity is well approximated by σsc
zz , which scales ∝ B 2. If the

magnetic field is increased, the distance between neighboring Landau levels gets larger. Less bands
intersect the Fermi level and contribute to the transport. When the band edge of a Landau level
passes the Fermi energy, the density of states, which is shown in Fig. 5.2(b), has a singularity. The
conductivity is sharply reduced due to the low electron velocity near the band edges. When the
band edge of the nth level has passed the Fermi level, the conductivity is enhanced due to the filling

factor of the remaining bands, g = eBLx Ly

2πħ increasing linearly with B . Thus, the oscillations of the
charge conductivity shown in Fig. 5.2 are explained by the varying number of levels intersecting
the Fermi energy, the B-dependent electron dynamics, i.e. the group velocity, as well as the filling
factor. The amplitude of these oscillations scales approximately with B 2, which is consistent with

the semiclassical limit. For magnetic fields B > B min
1 = E2

F
2eħv0

the n = 1 Landau level is raised above
the Fermi level and only the chiral modes are occupied and contribute to the charge conductivity
which increases linearly with B .
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5.2. Ultraquantum limit
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Figure 5.3.: Charge conductivity of a Weyl cone pair in the presence of a magnetic field B = 10T, v0 = 105ms−1

and τ0 = 1ps. The right panel shows the difference to the classical charge conductivity without a
magnetic field.

In Fig. 5.3 the longitudinal charge conductivity is shown as a function of the Fermi level for
constant B . As displayed in the inset of Fig. 5.3(a), for low Fermi energies only the chiral Landau
level is occupied and the charge conductivity is constant in energy. With increasing Fermi level
more Landau levels are occupied, leading to a stepwise increase of the charge conductivity. The
energy dependence becomes smoother at higher energies since the Landau level separation is
reduced.

For large Fermi energies the system can also be described in the semiclassical limit, as discussed
in section 5.3. Here, the charge conductivity exhibits a dependence ∝ E2

F , as for a pair of Weyl cones

without any magnetic field, σcl
zz (B = 0) = e2τE2

F
3π2ħ3v0

, because the conventional charge conductivity,
which is the charge conductivity not originating from the chiral anomaly, dominates here.

In order to demonstrate the influence of the magnetic field, the additional chiral-anomaly-related
contribution σCA

zz =σq
zz (B)−σcl

zz (B = 0), called chiral conductivity, which is the difference between
the charge conductivity from Eq. (5.22) and the classical charge conductivity for B = 0, is shown
in in Fig. 5.3(b). The oscillations due to the discretely increasing number of Landau levels are
clearly visible. The amplitude of the oscillations decreases with the Fermi energy, as expected in the
semiclassical limit. For comparison, the chiral conductivity in the semiclassical limit is sketched
which scales with ∝ E−2

F and approximates the conductivity in the Landau quantized system well
for high energies.

For low energies at which only the n = 0 level is occupied, the chiral conductivity decreases
with E although the total charge conductivity is constant with respect to E . The reason for this
counterintuitive energy dependence is the classical zero-field conductivity σcl

zz (B = 0) scaling with
∝ E2

F and therefore σCA
zz decreasing with ∝−E 2

F.
In Fig. 5.4(a) the chiral conductivity is shown as a function of B and EF. If the Fermi energy is

below the n = 1 Landau level, EF < Emin
1 =

√
2eBħv2

0 , the system is in the ultraquantum limit. Only
the chiral mode is occupied and contributes to the transport. The chiral conductivity increases
linearly with B and decreases with EF, as discussed above.

For large Fermi energies and low magnetic fields, many Landau levels are occupied and the system
can be considered semiclassically. In general, the conductivity increases with B and decreases with
EF, what is not clearly visible in Fig. 5.4(a) because of the large conductivity scale.

In this intermediate regime with a medium number of occupied Landau levels, the longitudinal
charge conductivity is not always enhanced due to the magnetic field, but changes sign due to the
oscillations induced by the discrete number of occupied Landau levels.

Usually, when the chiral anomaly is discussed, not the longitudinal charge conductivity but the
longitudinal magnetoresistance MR∥ is considered and examined experimentally. Here, longitu-
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5. Chiral anomaly in Weyl semimetals

(a) Chiral charge conductivity. (b) Longitudinal magnetoresistance.

Figure 5.4.: Chiral charge conductivity and longitudinal magnetoresistance as a function of EF and B . The
model parameters are the same as above.
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(b) MR∥ as a function of EF, B = 10T.

Figure 5.5.: Longitudinal magnetoresistance MR∥ calculated in the quantum limit (red) as well as the semi-
classical limit (scl., blue). In addition, the number of occupied Landau levels (LL) is shown. The
model parameters are the same as above for the discussion of the charge conductivity.

dinal refers to the magnetoresistance with respect to the direction of the magnetic field. In the
quasi-one-dimensional Landau system, it reads

MR∥ =
ρzz (B)−ρzz (B = 0)

ρzz (B = 0)
= σcl

zz (0)−σq
zz (B)

σ
q
zz (B)

=−σ
CA
zz (B)

σ
q
zz (B)

. (5.23)

Its discussion has the advantage that MR∥ is independent of specific material parameters which
enter σCA

zz (B) and σq
zz (B) the same way, e.g. the momentum relaxation time.

In Fig. 5.4(b) the longitudinal magnetoresistance is shown as a function of B and EF. As for the
chiral conductivity shown in Fig. 5.4(a), different regions corresponding to the ultraquantum and
semiclassical limit as well as an intermediate region can be identified.

Fig. 5.5 depicts the longitudinal magnetoresistance as a function of the magnetic field and the
Fermi level, respectively. In the limit of low magnetic field and large Fermi level, the amplitudes of
the oscillating curves are well approximated by MR∥ calculated in the semiclassical limit (discussed
in section 5.3). In the ultraquantum limit, the magnetoresistance is clearly negative yielding the
NLMR as significant property of a Weyl semimetal. However, when a larger finite number of Landau
levels is occupied, the longitudinal magnetoresistance is not in general negative but oscillates and
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5.2. Ultraquantum limit

kz

E(k)

χ=−1 χ= 1
|EF| < Emin

n=1

|EF| > Emin
n=1

k

k

k initial state
scattering forbidden
scattering allowed

Figure 5.6.: Allowed and forbidden elastic scattering processes within a pair of Landau quantized Weyl cones
for two exemplarily chosen initial state, which are shown as yellow circles at different energies.
The impurity potential is assumed δ-shaped. Scattering is allowed only between Landau levels
with the same index n. Further, no scattering occurs between states with χ′ =−χ∧∆k ′

z =∆kz .
The possible scattering processes for both energies are sketched. If |EF| < Emin

n=1 , only the chiral
modes (n = 0) are occupied and scattering is allowed between the states with different chirality,
the approach of δ-shaped impurities is reasonable here. For |EF| ≥ Emin

n=1 , only a very limited
number of scattering events is allowed due to the δ-shape of the impurity potentials.

changes its sign, similarly to the chiral charge conductivity.

5.2.2. E-, B- and k-dependent momentum relaxation time

In the previous section, the momentum relaxation time was assumed independent of the crystal
momentum, the energy and the magnetic field. However, a k-dependent momentum relaxation
time can remarkably affect the macroscopic transport properties. Therefore, the momentum
relaxation time of Landau quantized Weyl cones is calculated using the scattering theory introduced
in section 2.5, which includes k-, E- and B-dependencies.

Since the eigenstates given by Eq. (5.17) are no Bloch waves and the chosen Landau gauge leads
to a specific spatial dependence of the eigenstates, the transition matrix T i

k′←k, corresponding to
an impurity located at ri , also sustains a dependence on the impurity’s real-space coordinates.
Therefore, an averaged T k′←k is calculated, including all impurity positions.

Assuming δ-shaped impurity potentials, using the averaged transition matrices T k′←k, and Fer-
mi’s golden rule (2.72), the microscopic transition probabilities read

P n′←n
k ′

z←kz
= 2πciU 2

0

ħNat
δnn′δ(Eχn (kz )−Eχ

′

n′ (k ′
z ))





1 , χ′ =χ ∧ ∆k ′
z =∆kz

2neBħv2
0

E2 , χ′ =χ ∧ ∆k ′
z =−∆kz

0 , χ′ =−χ ∧ ∆k ′
z =∆kz

∆k2
zħ2v2

0

E2 , χ′ =−χ′ ∧ ∆k ′
z =−∆kz

(5.24)

with∆kz = kz −kχWz . Thus, only scattering processes between Landau levels with identical quantum
number n provide a nonzero transition probability, (Fig. 5.6) because the wave functions are
Hermitian polynomials and therefore orthogonal if n′ 6= n. Further, scattering is also suppressed
between states with χ=−χ′∧∆k ′

z =∆kz since these states are also orthogonal. The momentum
relaxation time reads

τn(E ,B) =
ħ3πv0

√
E2 −2neBħv2

0

eBV0ci|U0|2|E |
. (5.25)

For |EF| < Emin
n=1 =

√
2eBħv2

0 , only the n = 0 level is occupied, scattering processes can occur only
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5. Chiral anomaly in Weyl semimetals

between the linear modes of opposite chirality, the δ-impurity approximation is a reasonable
approach. Here, τ∝ B−1. The longitudinal charge conductivity parallel to the magnetic field is

σzz =
e2v2

0ħ
4πV0ci|U0|2

, |EF| < Emin
n=1 . (5.26)

Thus, in the limit of low energies, the charge conductivity is independent of the magnetic field. This
finding agrees with that of Nielsen and Ninomiya [39], although in their work the impurities are
approximated as screened Coulomb potentials. The B-dependence of the momentum relaxation
time is often not considered in the discussion of the chiral anomaly in the ultraquantum limit. The
often discussed linear B-dependence of the charge conductivity is valid only in the limit of constant
momentum relaxation time, which was considered in the previous section.

If |EF| ≥ Emin
n=1 , the number of allowed scattering processes is strongly limited due to the δ-impurity

potentials suppressing scattering between Landau levels with different quantum number n. This
behavior does not approach the semiclassical limit, in which elastic scattering processes can occur
between nearly all states on an iso-energy surface. For extended scattering potentials, e.g. the
screened Coulomb potential considered in the work of Nielsen and Ninomiya [39], or higher-order
Born approximation, more transitions would be allowed and the transition probabilities would
approach the semiclassical limit. However, the focus of this section is on the ultraquantum limit in
which only the chiral modes are occupied. Here, the δ-impurity approximation is applicable and
predicts a B-independent charge conductivity, which was also observed experimentally in Na3Bi in
the limit of high magnetic fields [170].

5.3. Semiclassical limit

In the limit of small magnetic fields and relatively large Fermi energies, the Landau levels are dense
in energy. The system can be considered semiclassically, which was done first by Son and Spivak for
a pair of isotropic Weyl cones [41, 176] described by two copies of the Weyl Hamiltonian (3.31). The
following derivation of the chiral anomaly is not restricted to the isotropic Weyl Hamiltonian but
holds for any Hamiltonian for one or more pairs of Weyl points.

In the semiclassical approach, the influence of the magnetic field on the electronic ground states
is neglected, the band structure and related properties are unaffected by B. Using the semiclassical
equations of motion (2.29a) and (2.29b) in the Boltzmann equation (2.33) yields

∂ fk(r, t )

∂t
+

(
1+ e

ħB ·Ωk

)−1
[

1

ħ

(
−eE−evk ×B+ e2

ħ (E ·B)Ωk

)
∂ fk(r, t )

∂k

+
(
vk +

e

ħE×Ωk +
e

ħ (Ωk ·vk)B
) ∂ fk(r, t )

∂r

]
=

(
∂ fk(r, t )

∂t

)

scatt
.

(5.27)

In order to calculate the cone-dependent distribution function, which does not depend on k but on
the energy and the chirality of the Weyl cone, Eq. (5.27) is averaged on an iso-energy surface of a
Weyl cone with chirality χ,

∂ f χ(E)

∂t
+ 1

N (E)

(
e2χ (E ·B)

4π2ħ2

∂ f (E)

∂E + ∂jχ(E)

∂r

)
=

(
∂ fk(E)

∂t

)

scatt
. (5.28)

Here, ∂ fk(r,t )
∂k =ħvk

∂ f (E)
∂E was approximated neglecting the k-dependence of the distribution function

in each cone. The particle current density jχ(E) of states with chirality χ is

jχ(E) = 1

V

∑

kεχ

(
1+ e

ħB ·Ωk

)−1 (
vk +

e

ħE×Ωk +
e

ħ (Ωk ·vk)B
)

fk(r, t ) δ (Ek −E) . (5.29)
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5.3. Semiclassical limit

(a) Transfer of states from χ= 1 to χ=−1. (b) Increase/decrease of the Fermi spheres due to
the chiral anomaly.

Figure 5.7.: Chiral anomaly in the semiclassical limit. The number of states in each Weyl cone is not con-
served, states are transferred from one cone to the other (a). Thus, the chiral charge of the system
is not conserved. In addition, scattering occurs between the Weyl cones. The chiral anomaly
can be interpreted as a cone-dependent shift of the Fermi level or a change of size of the Fermi
spheres (b).

Integrating over the energy and using a relaxation time approximation yields the continuity equation

∂Nχ

∂t
+ ∂jχ

∂r
=−χ e2

4π2ħ2 (E ·B)− δNχ

τinter
. (5.30)

Here, Nχ is the particle density in the Weyl cone χ. The scattering term δN (i )

τinter includes scattering

processes between the Weyl cones, τinter is the averaged inter-cone scattering time. For χ 6= 0 and
nonorthogonal electric and magnetic fields, the continuity equation contains an additional source
term −χ e2

4π2ħ2 (E ·B), thus Eq. (5.30) expresses the chiral anomaly in the semiclassical limit and
is equivalent to Eq. (5.21) in the quantum limit. By summation over all Weyl cones the source
term vanishes. The total charge of the system is conserved but the chiral charge is not. Fig. 5.7(a)
visualizes the transfer of states from one chirality to the other due to the chiral anomaly.

For the calculation of the experimentally accessible additional contribution to the longitudinal
charge conductivity, the linearized Boltzmann equation (2.40) is solved. In a first approximation,
the Lorentz force term is neglected and a relaxation time approximation with the momentum
relaxation time is used. Neglecting the Lorentz term and the scattering-in terms, which is usually
done when the chiral anomaly is discussed in the semiclassical Boltzmann theory [41, 176–179], is
sufficient as long as only the longitudinal charge conductivity is calculated. For the calculation of
transversal transport properties, including the Lorentz force is crucial, which will be demonstrated
in section 5.5. Within this approximation, the Boltzmann equation can be solved analytically and
the distribution function reads

fk = f 0
k +

∂ f 0
k

∂E eΛk ·E = f 0
k +

∂ f 0
k

∂E eτk

(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħ (Ωk ·vk)B
]
·E . (5.31)

The term ∝ vk on the right-hand side can be interpreted as a shift of the Fermi surfaces in k-space,
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5. Chiral anomaly in Weyl semimetals

the term ∝ (Ωk ·vk)B is interpreted as an increase (χ = −1) or a decrease (χ = +1) of the Fermi
spheres, as visualized in Fig. 5.7(b). The electric charge current density is

jc =− e

V

∑

k
ṙk fk

=− e

V

∑

k

[
vk + e

ħE×Ωk + e
ħ (Ωk ·vk)B

]
(
1+ e

ħB ·Ωk
)

{
f 0

k −eτk

[
vk ·E+ e

ħ (Ωk ·vk)B ·E
]

(
1+ e

ħB ·Ωk
) δ (Ek −EF)

}
.

(5.32)

This expression is split into several contributions,

jc
eq =− e

V

∑

k

(
1+ e

ħB ·Ωk

)−1
vk f 0

k , (5.33a)

jc
AHE =− e2

ħV

∑

k

(
1+ e

ħB ·Ωk

)−1
E×Ωk f 0

k , (5.33b)

jc
CME =− e2

ħV

∑

k

(
1+ e

ħB ·Ωk

)−1
(Ωk ·vk)B f 0

k , (5.33c)

jc
cl =

e2

V

∑

k

(
1+ e

ħB ·Ωk

)−2
τkvk (vk ·E) δ(Ek −EF) , (5.33d)

jc
linI =

e3

ħV

∑

k

(
1+ e

ħB ·Ωk

)−2
τkvk (Ωk ·vk) (B ·E) δ(Ek −EF) , (5.33e)

jc
2nda =

e3

ħV

∑

k

(
1+ e

ħB ·Ωk

)−2
τk (E×Ωk) (vk ·E) δ(Ek −EF) , (5.33f)

jc
linII =

e3

ħV

∑

k

(
1+ e

ħB ·Ωk

)−2
τk (Ωk ·vk) (vk ·E)B δ(Ek −EF) , (5.33g)

jc
2ndb = e4

ħ2V

∑

k

(
1+ e

ħB ·Ωk

)−2
τk (E×Ωk) (Ωk ·vk) (E ·B) δ(Ek −EF) , (5.33h)

jc
CA = e4

ħ2V

∑

k

(
1+ e

ħB ·Ωk

)−2
τk (Ωk ·vk)2 (E ·B)B δ(Ek −EF) . (5.33i)

Eq. (5.33a) is an equilibrium contribution and vanishes for symmetry reasons. Eq. (5.33b) corre-
sponds to the anomalous Hall effect. It vanishes for systems with time-reversal symmetry and
for the isotropic model Hamiltonian. The third term, Eq. (5.33c), corresponds to a charge current
parallel to a magnetic field which exists even in the absence of an electric field, called equilibrium
chiral magnetic effect. It vanishes in systems with inversion or time-reversal symmetry but could
formally exist when both symmetries are broken. The existence of this equilibrium current is
controversially discussed [96, 180–183], although it has been shown that it is forbidden by gauge
symmetry [184,185] . The conventional charge current is expressed by Eq. (5.33d), called classical in
the following. Eqs. (5.33e) and (5.33g) scale approximately linearly with B and exist only in systems
with nonzero Berry curvature. They have also been discussed in Refs. [177–179] for systems with
broken time-reversal symmetry. They seem to vanish for time-reversal invariant systems and the
isotropic model Hamiltonian, but due to the phase-space correction factor, a finite contribution is
possible also in time-reversal symmetric systems as well as the isotropic system. Eqs. (5.33f) and
(5.33h) are of second order in E and will not be discussed in this linear approach. The term usually
related to as the chiral anomaly contribution to the charge current is Eq. (5.33i). It scales with B 2,
in contrast to the ultraquantum limit, in which the additional charge conductivity increases with B .
SinceΩk ·vk enters Eq. (5.33i) quadratically, even systems with χ= 0 at the Fermi surface could give
a finite contribution, as long as they provide a nonzero Berry curvature.

Approximating
(
1+ e

ħB ·Ωk
)≈ 1 and assuming B ∥ z, the charge conductivity for a pair of isotropic
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5.4. Experimental evidence of the chiral anomaly

Weyl cones with χ=±1 is

σsc
i j =σcl

i j +σsc,CA
i j =

e2τ0(EF)E2
F

3π2ħ3v0
δi j +

e4v3
0B 2τ0(EF)

4π2ħE2
F

δi jδi z . (5.34)

The momentum relaxation time τ0 is isotropic but energy dependent, (2.73),

τ0(E) = πħ4v3
0

|U |2ci V0E2 . (5.35)

Thus, within the isotropic Weyl model, the longitudinal classical charge conductivity is constant in
energy. The reduced DOS near the Weyl points is compensated by an enhanced momentum relax-
ation time due to the reduced phase space for scattering. The chiral-anomaly-related contribution
scales with E−4

F , in contrast to the E−2
F -dependence usually discussed in literature [26, 41] due to the

energy dependence of τ0. Including the phase-space correction factor would induce anisotropies
of the momentum relaxation time and therefore modify the results for σcl

i i and σCA
zz as well as allow

nonzero terms σ̂linI and σ̂linII.
In the isotropic model, the direction of the magnetic field with respect to the Weyl point separation

direction in k-space is not relevant. The diagonal element of the charge conductivity tensor parallel
to the direction of B is constant when B is rotated.

The Lorentz force, which was neglected in the previous discussion, forces the electrons to move
on cyclotron orbits on the Fermi surface [186]. Therefore, including the Lorentz force term would
drastically influence the transversal elements of the conductivity tensor and diagonal elements
corresponding to a charge current not aligned with B. In addition, it also can influence the com-
ponents in the direction of the magnetic field (σzz ) because the longitudinal mean free path of
the electrons is reduced by the transversal Lorentz force. It turns out that for the isotropic model
Hamiltonian, the influence of the Lorentz force on the longitudinal charge conductivity component
σzz is negligible for symmetry reasons.

The longitudinal magnetoresistance resulting from the additional contribution to the charge
conductivity in Eq. (5.34) reads

MR∥ =− 3e2v4
0ħ2B 2

4E4
F +3e2v4

0B 2ħ2
. (5.36)

Although the energy dependence of the charge conductivity is strongly influenced by the E-depen-
dent momentum relaxation time, the longitudinal magnetoresistance is independent of τ since in
the isotropic model the classical as well as chiral conductivity are affected equally by τ. Therefore,
MR∥ is an appropriate quantity for comparing the results of different approximations as well as
experimental data. The longitudinal magnetoresistance as a function of the magnetic field and the
Fermi level is shown in Fig. 5.5 on page 84. In the semiclassical limit, it is always negative with its
absolute value strongly increasing with B and decreasing E .

5.4. Experimental evidence of the chiral anomaly

Although the chiral anomaly itself is not directly observable, its influence on the transport properties,
which becomes manifest as a negative longitudinal magnetoresistance, is very promising, especially
from an experimental point of view, since it provides the opportunity of identifying Weyl semimetal
candidates by resistivity measurements. NLMR signals were detected in various Weyl and Dirac
semimetal materials.

The first experimental observation of a NLMR related to the chiral anomaly was reported by
Kim et al. [187] for Bi1−x Sbx near the topological phase transition between topological and band
insulator. At the transition, Dirac points exist which are split into two Weyl points of opposite
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5. Chiral anomaly in Weyl semimetals

chirality by an external magnetic field. Subsequently, evidence of a NLMR in the Dirac semimetals
Cd3As2 [171,188,189], Na3Bi [170] and ZrTe5 [190,191] was found. The external magnetic field breaks
time-reversal symmetry and splits a twofold degenerate Dirac cone into two Weyl cones. Further,
a NLMR was detected in the Weyl semimetal TaAs [26] as well as in the half-Heusler compound
GdPtBi [192]. In the latter system the equilibrium band structure contains twofold degenerate
touching quadratic bands. A magnetic field creates four Weyl points around this crossing by lifting
the spin degeneracy .

A challenging experimental task is to clearly prove that the NLMR signal is a signature of the chiral
anomaly and does not originate from different phenomena [26, 172]. Other reasons for detecting
a NLMR can be magnetism [193], effects related to the size or geometry of the sample, like the
current-jetting effect [194,195] or anisotropies [196]. In the ultraquantum limit, even materials with
topologically trivial character can exhibit a NLMR [195, 197].

The experiments were performed and interpreted in the semiclassical [26, 170, 171, 187, 189, 190,
192] as well as the quantum regime [170–172, 188, 192]. For low magnetic fields (semiclassical limit)
often an initial positive longitudinal magnetoresistance (PLMR) was observed before the signal
merges to a NLMR. This feature is attributed to weak antilocalization effects [26, 187, 190, 198] and
the Zeeman splitting due to the magnetic field [170], respectively.

5.5. Chiral anomaly within a Fermi surface harmonics approach

In this section, the transport properties of Weyl semimetals are considered more elaborately by
calculating the full conductivity tensor and discussing in particular the influence of external mag-
netic fields. Including the Lorentz term in the Boltzmann equation (2.40) is essential because
it considerably affects the transversal as well as those diagonal charge conductivity tensor ele-
ments corresponding to charge transport perpendicular to the magnetic field. In addition, the
scattering term includes scattering-out as well as scattering-in terms. Thus, the mean free pathΛk

is not mandatory aligned with the semiclassical velocity [Eq. (2.29b)] but can sustain additional
components due to the Lorentz force as well as scattering-out processes.

In order to solve the more complex Boltzmann equation, the method of Fermi surface har-
monics [58–60], introduced in particular for systems with nontrivial topology in section 2.3.3, is
employed, using the disjoint representation [58]. It provides an efficient way of solving the lin-
earized Boltzmann equation and is at the same time comprehensible, allowing a straight analysis of
the results. The main part of this section is from [J6].

5.5.1. Transport properties

As derived in section 2.3.3, the solution of the linearized Boltzmann equation (2.54) in the Fermi-
surface-Harmonics approach is

Λk(B) =
∑

M ,M ′

[
(B+C)−1]

M M ′ DM ′ΨM (k) =
∑

M ,M ′

[
(B+C)−1]

M M ′
(
DI

M ′ +DII
M ′

)
ΨM (k) . (5.37)

The matrices B and C correspond to the Lorentz force term and the scattering term, respectively,
and are defined in Eqs. (2.56) and (2.57). The vector D is defined in Eq. (2.58) and decomposed into
two components,

DI
M =N (EF)−1

∑

k
δ (Ek −EF)ΨM (k)τk

(
1+ e

ħB ·Ωk

)−1
vk , (5.38a)

DII
M =N (EF)−1

∑

k
δ (Ek −EF)ΨM (k)τk

(
1+ e

ħB ·Ωk

)−1 e

ħ (Ωk ·vk) ·B . (5.38b)
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Hence, the mean free path is also formally split into two parts,Λk(B) =ΛI
k(B)+ΛII

k (B), which are
defined by Eq. (5.37), in which DM ′ is replaced by DI

M ′ and DII
M ′ , respectively.

Combining Eqs. (2.29) and (5.37), the electric charge current density reads

jc =− e

V

∑

k

(
1+ e

ħB ·Ωk

)−1 [
vk +

e

ħE×Ωk +
e

ħ (Ωk ·vk)B
](

f0 +
∂ f 0

∂E eΛk(B) ·E
)

. (5.39)

The splitting ofΛk allows to distinguish nine individual contributions to the charge current and to
clearly identify the terms related to the chiral anomaly, as in section 5.3:

jc
eq =− e

V

∑

k

(
1+ e

ħB ·Ωk

)−1
vk f 0

k , (5.40a)

jc
AHE =− e2

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
E×Ωk f 0

k , (5.40b)

jc
CME =− e2

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
(Ωk ·vk)B f 0

k , (5.40c)

jc
cl =−e2

V

∑

k

(
1+ e

ħB ·Ωk

)−1
vk
∂ f0

∂E
[
ΛI

k(B) ·E
]

, (5.40d)

jc
linI =− e3

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
(Ωk ·vk)B

∂ f0

∂E
[
ΛI

k(B) ·E
]

, (5.40e)

jc
2nda =− e3

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
(E×Ωk)

∂ f0

∂E
[
ΛI

k(B) ·E
]

, (5.40f)

jc
linII =−e2

V

∑

k

(
1+ e

ħB ·Ωk

)−1
vk
∂ f0

∂E
[
ΛII

k (B) ·E
]

, (5.40g)

jc
2ndb =− e3

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
(E×Ωk)

∂ f0

∂E
[
ΛII

k (B) ·E
]

, (5.40h)

jc
CA =− e3

V ħ
∑

k

(
1+ e

ħB ·Ωk

)−1
(Ωk ·vk)B

∂ f0

∂E
[
ΛII

k (B) ·E
]

. (5.40i)

These terms correspond to the expressions (5.33a)–(5.33i). Indeed, the equilibrium terms (a)–(c)
of Eqs. (5.33) and (5.40) are identical. As above, the second-order terms (5.40f) and (5.40h) are not
considered in this linear approach. In the following, the terms (5.40d), (5.40e), (5.40g) and (5.40i)
are discussed. Berry-curvature-related effects enter all terms via the phase-space correction factor(
1+ e

ħB ·Ωk
)

in B+C. However, the direct influence of the factor
(
1+ e

ħB ·Ωk
)−1 in Eq. (5.40) is

compensated by the modified density of states when the integration in k-space is performed.
Further,ΛII

k , which is part of jc
linII and jc

CA, is Berry-curvature-related. Finally, the Berry curvature
directly enters the expressions for jc

linI and jc
CA. Thus, the transport properties of a topologically

nontrivial material are expected to differ from those of a topologically trivial material.
The Lorentz force as well as the scattering-in terms enter all nonequilibrium charge current

expressions via B+C. Therefore, qualitative differences between Eqs. (5.33) and (5.40) are expected,
especially for the transversal tensor elements of the charge conductivity and the diagonal elements
not aligned with the magnetic field. Due to the inclusion of the Lorentz force, the planar Hall effect,
which is large in Weyl semimetals due to the chiral anomaly [199, 200], is also contained in jc

CA.
In this section, the charge conductivity tensors related to the nonequilibrium charge current

contributions jc
cl, jc

linI, jc
linII, and jc

CA are considered for various Weyl systems. In their seminal paper
on the chiral anomaly in the semiclassical limit [41], Son and Spivak considered a pair of Weyl
points modeled by two copies of the isotropic Weyl Hamiltonian (3.31). In this section, the Weyl
pairs are described by the anisotropic Hamiltonian (3.35) which provides a more realistic band
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structure connecting the two Weyl cones at energies above the Weyl points and therefore containing
anisotropies. This intrinsic anisotropy gives rise to additional contributions to the charge current,
jlinI and jlinII, which do not exist for the isotropic Weyl Hamiltonian (if the phase-space correction
is neglected). These additional contributions can modify the longitudinal magnetoresistance
quantitatively as well as qualitatively; they even allow for a sign change [177–179].

In addition, the scattering properties are calculated energy- and k-dependently, including scatter-
ing-out as well as scattering-in terms which strongly affects the energy dependence of the transport
coefficients, as already shown above for the isotropic Weyl Hamiltonian (Eqs. (5.34) and (5.35)).

Whereas the chiral anomaly is often discussed for systems of two or four Weyl points [41,176–179],
here the number of Weyl points is systematically increased considering systems of two, four and 24
Weyl points, respectively, the latter system simulating the realistic Weyl semimetal TaAs. Thus, the
influence of inversion and time-reversal symmetry, respectively, as well as the effect of an increased
number of Weyl points on the transport properties can be analyzed.

Experiments often show a positive longitudinal magnetoresistance (PLMR) for small magnetic
fields [26, 170, 171, 187, 190], which is usually attributed to weak antilocalization effects [198]. At
medium scale magnetic fields, a negative LMR signal is observed, which is in good agreement
with the semiclassical theory. These findings call to find other reasons leading to a PLMR in
the semiclassical limit. Therefore, this section also aims at identifying such mechanisms. More
precisely, in anisotropic systems with broken time-reversal symmetry additional contributions ∝ B
to the charge conductivity (Refs. [177–179]), which appear in addition to the conventional terms
∝ B 2 (Ref. [41]), can change the sign of the LMR. Further, considering transport transversal to the
magnetic field can also modify the LMR. In particular, slightly misaligned magnetic fields with
respect to the symmetry axes of the crystal give rise to qualitative deviations from the LMR that has
been discussed in Ref. [41]; furthermore, such misalignment may even result in a sign change.

Very recently, a paper considering the influence of Lorentz force and chiral anomaly on isotropic
Weyl systems using a Fourier harmonics approach for solving the Boltzmann equation was pub-
lished [201]. However, this work provides additional insights since here the momentum relaxation
time is calculated k- and E-dependently, scattering-in processes as well as anisotropies of the
system are included and with TaAs a realistic Weyl semimetal is considered.

5.5.2. Inversion symmetric system: two Weyl points

The minimal number of Weyl points in a system with inversion symmetry and broken time-reversal
symmetry is two. Here, a system of two Weyl points described by the model Hamiltonian (3.35)
is considered in order to demonstrate general and inversion-symmetry-related features of the
transport properties.

The chosen model parameters (γW = 130eVÅ2, m0 = 1.73 · 10−4 Å−2, vy = vz = 2.2 · 105 m/s)
correspond approximately to those of a W1 point in TaAs (introduced in section 4.8.2 and discussed
below). The Weyl cones and Fermi surfaces are symmetric with respect to the ky - and kz -direction,
but asymmetries occur along kx , that is the direction of Weyl points separation. The Fermi energy is
set to EF = 20meV, which is approximately the Fermi level of the TaAs W1 points, and lies below ES.

For the calculation of the momentum relaxation time, the scattering potential is set constant
to an arbitrary value of U = 1eV, the impurity concentration is assumed 1 at%, and the volume of
the unit cell is set to 6×6×11Å3. These parameters enter the results as constant factors and are
therefore qualitatively irrelevant for the results. The k-points on the Fermi surface are calculated
using an adaptive tetrahedral method, which is briefly sketched in appendix E.2. It turned out
that only Fermi surface harmonics up to N = 3 are sufficient for solving the linearized Boltzmann
equation since contributions from higher order FSHs are negligibly small.
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Figure 5.8.: Classical charge conductivity for a system of two Weyl points versus magnetic field applied in
x-direction, which is the direction of the Weyl dipole orientation (sketched by the green Fermi
sheets). The figures are adapted from [J6].

Classical charge conductivity

Fig. 5.8 shows the classical charge conductivity σ̂cl (defined by Eq. (5.40d)) for an external magnetic
field B = (Bx ,0,0) pointing in the direction of anisotropies in k-space. For Bx = 0, the conductiv-
ity tensor is diagonal. The tensor elements σcl

y y = σcl
zz are not equivalent to σcl

xx because of the
anisotropic Fermi surface. With increasing Bx , the influence of the Lorentz force becomes pro-
nounced. As expected from analytical model calculations [186], the conductivity components
not aligned with B, that are σcl

y y and σcl
zz decrease with −B 2

x for small fields because in this region
scattering is dominant. For higher fields forcing the electrons to move on cyclotron orbits, these
tensor elements decrease with B−2

x .
The xx-component (green curve, only visible in Fig. 5.8(a)) provides an unconventional asym-

metry with respect to Bx . For the highly symmetric system discussed here, it is expected constant
in Bx . However, the asymmetry of the phase-space correction factor

(
1+ e

ħB ·Ωk
)

with respect to
B ↔−B for systems with broken time-reversal symmetry makes the momentum relaxation time
also asymmetric in B. Inversion symmetry dictates that τk(B) = τ(k2

x ,E ,Bx ). Although the magnetic
field does not break this symmetry, it influences the momentum relaxation time by coupling to
the Berry curvature. Its influence on τk is asymmetric with respect to B ↔ −B which leads to
asymmetries in the transport properties. A more detailed discussion of the momentum relaxation
time is given in section 5.5.5.

The transversal (off-diagonal) components σcl
y z = −σcl

z y represent the Hall effect. As expected

from analytics [186], σcl
y z ∼ Bx for small fields (scattering is dominant), and σcl

y z ∼ B−1
x for larger

fields (electrons move on cyclotron orbits).

Berry-curvature-related charge conductivity

For the considered pair of Weyl points, the contributions σ̂linI, σ̂linII, and σ̂CA to the charge con-
ductivity that are related to the Berry curvature (defined in section 5.5.1) have only nonzero xx-
components (depicted in Fig. 5.9(a)).

The contributions σlinI
xx and σlinII

xx are identical for B = (Bx ,0,0). For this system with broken time-
reversal symmetry and the considered Bx range (|Bx | ≤ 5T ), they can be of the same order as σCA

xx ,
which scales with B 2

x . From Fig. 5.9(a) it seems that σlinI
xx and σlinII

xx depend approximately linearly
on the magnetic field. However, they also have a small symmetric contribution (approximately 3%
of the antisymmetric one) due to the phase-space correction.

Eqs (5.39) and (5.40) tell that the contributions σ̂linI, σ̂linII, and σ̂CA are not a direct consequence
of the nonzero chirality but result from the non-vanishing Berry curvature of the states at the
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Figure 5.9.: Longitudinal transport properties for a system of two Weyl points separated in kx -direction for
magnetic field applied in x-direction. The figures are adapted from [J6].

Fermi level. Therefore, these terms contribute also in energy regions in which the Weyl points’
Fermi surfaces are connected (there: χ= 0). However, these are comparably small since the Berry
curvature scales approximately with E−2.

The energy-dependent charge conductivity for an anisotropic system of two Weyl points is shown
in Fig. 5.10. As in the isotropic Weyl model discussed in section 5.3, σcl

xx is approximately constant
with respect to E . The increase near the Weyl points originates from the enhanced phase-space
correction factor. The Berry-curvature-related contributionσCA

xx scales with≈ E−4, as in the isotropic
model.

Longitudinal magnetoresistance

To demonstrate the influence of σ̂linI and σ̂linII, the LMR is decomposed as shown in Fig. 5.9(b).
First, only the classical charge conductivity is considered (green curve). Because of the phase-space
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Figure 5.10.: Longitudinal charge conductivity versus energy for systems with two and four Weyl points,
respectively. The Weyl point energy is at E = 0, the magnetic field reads B = (1T,0,0). The figures
are adapted from [J6].
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Figure 5.11.: Longitudinal transport properties of a system with four Weyl points (see sketch of the Fermi
surfaces), as Fig. 5.9. The figures are adapted from [J6].

correction factor
(
1+ e

ħB ·Ωk
)
, the MR is not symmetric with respect to Bx , as discussed above. The

second (blue) curve represents the LMR for which σcl
xx as well as σCA

xx are taken into account. The
LMR is dominated by σCA

xx which increases with B 2
x and leads to a NLMR, as discussed in literature

[41]. The third (red) curve includes all contributions. Due to the nearly linear Bx -dependences of
σlinI

xx and σlinII
xx , the LMR is asymmetric with respect to Bx . The additional contributions σlinI

xx and
σlinII

xx can induce a sign change. However, for fields larger than those considered in Fig. 5.9, the
quadratic contribution σCA

xx dominates and the LMR becomes negative.
By exchanging the positions of the Weyl points in k-space, that is a reversal of the Weyl dipole

moment, the sign of the Berry curvature is reversed at each k. Since the magnetic field couples to
the Berry curvature, this exchange has the same effect on the longitudinal transport properties as a
reversal of the magnetic field.

5.5.3. Four anisotropic Weyl points

A minimal time-reversal symmetric system of four Weyl points is discussed in this section with the
same model parameters as before. The classical charge conductivity (not shown here) exhibits the
same qualitative Bx -dependence as for two Weyl points. The only difference is that for four Weyl
points the longitudinal charge conductivity σcl

xx is symmetric with respect to B ↔−B and increases
slightly with |Bx |. As before, this Bx -dependence originates from the phase-space correction which
is now invariant under (B ↔−B)∧ (k ↔−k).

The Bx -dependence of the longitudinal charge conductivity is shown in Fig. 5.11(a). The slight
increase with |Bx | of the classical contribution is insignificant, σCA

xx scales with B 2
x . Without the

phase-space correction factor, σlinI
xx and σlinII

xx would vanish because of time-reversal symmetry.
However, since the applied magnetic field breaks this symmetry and couples to the Berry curvature,
these terms can be nonzero. This feature is illustrated by means of the k-dependent momentum
relaxation time in section 5.5.5. For B = 0, the momentum relaxation time is constant on an
iso-energy surface. If time-reversal symmetry is broken by the magnetic field, the momentum
relaxation time becomes anisotropic, τk 6= τ−k, which allows finite contributions σlinI

xx and σlinII
xx . For

the chosen parameters these contributions are negative, and scale approximately as −B 2
x . Their

absolute value is up to 20% of σCA
xx . Thus, they compensate partially the (positive) contribution σCA

xx

but do not induce a sign change of the LMR. In general σlinI
xx and σlinII

xx can be positive, depending
on the specific model parameters.

As a result, the LMR is negative, as shown in Fig. 5.11(b), and its Bx -dependence agrees with that
derived in Ref. [41]. It is thus evident that the additional terms modify the magnitude of the NLMR
but do not change its qualitative Bx -dependence.

The energy dependencies of the conductivity contributions σcl
xx and σCA

xx are identical to those of
the two Weyl points system, shown in Fig. 5.10. Further, even the numerical values for the system of
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Figure 5.12.: Energy dependence of the charge conductivity in TaAs. The positions of W1 and W2 as well as
the associated saddle point E (1)

S are indicated. E (2)
S is not within the depicted energy range.

two and four Weyl points are close to each other. Although a larger number of states (phase space)
contributes to the transport properties in the system with four Weyl points, this is compensated by
a smaller momentum relaxation time due to the enhanced phase space for scattering.

5.5.4. TaAs (24 Weyl points)

The theory, until now applied to systems with two or four Weyl points, is extended to a more
realistic system: the type-I time-reversal symmetric Weyl semimetal TaAs [100–103,160–163], which
hosts 24 Weyl points near the Fermi level, (see section 4.8.2). The band structure in the vicinity of
these points is approximated by the model Hamiltonian (3.35) using the parameters derived from
Ref. [162] and shown in Table 4.5.

The Weyl points, separated into 8 Weyl points labeled W1 and 16 Weyl points labeled W2, are
arranged in groups of eight in three planes parallel to the (kz = 0)-plane in the first Brillouin zone,
as shown in Fig. 4.21(a). One of these planes is sketched in the inset of Fig. 5.12(a). The Cartesian
axes x, y , and z are parallel to the [100], the [010], and the [001]-directions, respectively. The Fermi
surface is invariant with respect to fourfold rotations about the z-axis.

Energy dependence of the charge conductivity

Since the Bx -dependence of the contributions to the charge conductivity is qualitatively equivalent
to those for four Weyl points, it is not shown explicitly here. Thus, the focus is on the energy
dependence of the transport coefficients. Due to the more complicated arrangement of Weyl points
in energy, this dependence is not as simple as for the examples of two or four Weyl points.

Fig. 5.12(a) depicts the longitudinal charge conductivity (σxx andσy y ) without and with magnetic
field, respectively, as a function of energy. For B = 0, σxx and σy y are equivalent for symmetry
reasons. They are almost constant because the energy dependencies of the DOS and the momentum
relaxation time approximately compensate, as discussed in section 5.3 for the isotropic model. Due
to the Lifshitz transition, at E (1)

S (saddle point of W1) a discontinuity occurs.
The presence of a magnetic field in x-direction (Bx = 2T) leads to a decrease of σy y because of

the Lorentz force. The amount of reduction depends strongly on the energy. At energies near the
Weyl points, the scattering rates are low, the electrons move along the iso-energy orbits almost
unperturbed by scattering. Thus, the influence of the Lorentz force is pronounced (limit of strong
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magnetic fields). At higher energies, scattering is dominant and the influence of the magnetic field
on the electrons is less distinct (limit of weak magnetic fields).

The most noticeable effect of the magnetic field is the strong increase of the longitudinal charge
conductivity σxx due to the chiral anomaly. The additional contributions are maximum around the
W1 and W2 points.

The energy dependence of the Berry-curvature-related σCA
xx is examined in more detail by a

double logarithmic representation for energies above the W2 energy, shown in Fig. 5.12(b). In
general, the data points follow an E−3-dependence. Closer to the Weyl points, an E−2-dependence
seems as well reasonable, which would support the data observed by Zhang et al. [26] for TaAs
samples with different Fermi levels. The E−4-dependence calculated for Weyl points at a single
energy (Fig. 5.10(b)) is not reproduced for the TaAs system because the different energies of the
W1 and W2 points result in a complicated scattering behavior. A similar energy dependence is
found for energies below W1 (not shown here). In between the energies of W1 and W2, the Berry-
curvature-related charge conductivity σCA

xx is nearly constant because of the overlap of the Weyl
cones in energy.

The energy dependence of the terms σlinI
xx and σlinII

xx (not shown here) reminds to that of σCA
xx . At

EF, the contributions σlinI
xx and σlinII

xx are ≈ 4.5% of σCA
xx . Here, the large number of Weyl points and

the fourfold rotational symmetry of the Fermi surface reduce these anisotropy-related terms, as
discussed in section 5.5.5.

The semiclassical approach is not appropriate for energies closer to the Weyl points than about
1meV because of interband contributions and lifetime broadening which are not taken into account.
Within this narrow energy region, a Kubo approach is appropriate. In addition, the phase-space
correction term diverges at the Weyl points, thereby increasing numerical errors. The energy range
around the Weyl points in which the semiclassical Boltzmann method cannot be safely applied
is estimated to ±1meV for W1 and ±2.5meV for W2, respectively. Within this energy range, the
phase-space correction factor is < 100 for magnetic fields of up to 10T.

Angular dependence of the LMR

The Fermi level in TaAs given in Ref. [162] and used in this work (Table 4.5) is not very close to the
Weyl points. Therefore, the chiral-anomaly-related charge conductivity, which was shown to scale
with ≈ E−3 (Fig. 5.12(b)), is not extraordinary large. However, due to the B 2-dependence of this
term, a clear NLMR signal is calculated at the Fermi level.

Fig. 5.13(a) shows the longitudinal magnetoresistance in TaAs for various directions of B. Here,
longitudinal always means the resistance related to a charge current parallel to the magnetic field.
For B in the direction of one of the Cartesian axes of the system, the LMR is negative because the
chiral-anomaly terms dominate the B-dependence of the charge conductivity. Different amplitudes
of the LMR are caused by the nonequivalence of the x- and z-directions. However, if B is tilted off
the x-axis by 1◦ (θ = 89◦), a PLMR is observed for fields less than 2T. This B-dependence resembles
the data measured in various experiments [26, 170, 171, 187, 190] for which the PLMR at small fields
is usually explained by weak antilocalization [198]. Interestingly, the PLMR calculated here occurs
only if B is nearly parallel to the x-axis, but not if B is slightly tilted off the z-axis.

In order to understand the PLMR for misaligned B, the magnetoresistance corresponding to a
current parallel to the crystal axes — MRxx , MRy y , and MRzz — is examined as a function of the
B-direction, shown in Fig. 5.13(b). The magnetic field is set to B = 1.5T and is rotated within the
xz-plane. Here, θ is the angle between B and the z-axis, as shown in the inset of Fig. 5.13(a). In the
following discussion, the labels longitudinal and transversal refer to the orientation of the charge
current with respect to the (tilted) magnetic field.

MRy y is always transversal and positive, the latter explained by the fact that only the classical
charge conductivity contributes, which is strongly influenced by the Lorentz force, and the chiral-
anomaly-related terms vanish. The oscillations with θ originate from the anisotropy of the Fermi
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5. Chiral anomaly in Weyl semimetals
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Figure 5.13.: Magnetoresistance (MR) in TaAs for various configurations of magnetic field and charge current
for detecting the magnetoresistance. The figures are adapted from [J6].

surfaces.
MRxx and MRzz have both longitudinal as well as transversal components, depending on the

direction of B. If B ∥ z, both terms are equivalent for symmetry reasons, MRxx = MRy y . For Bx 6= 0,
the chiral anomaly produces a negative contribution to MRxx . If θ near π/2, the contributions
from the chiral anomaly dominate the classical term, and MRxx becomes negative. For the same
reason, MRzz is negative for θ near 0 and positive around θ =π/2. However, the amplitude of MRzz

is larger than those of MRxx and MRy y because of the anisotropy of the Fermi surfaces. The latter
are elongated in the x- and y-directions, but are clinched in z-direction which leads to a small σzz ,
a large resistivity, and a large magnetoresistance. For the same reason of anisotropy the angular
region with MRzz < 0 is larger than the region with MRxx < 0.

The LMR, which is associated with the direction of the magnetic field, is the projection of the
magnetoresistivity onto the direction of B and therefore contains components of MRxx as well as
MRzz ,

MR∥(B) = MRxx (B)ρ0
xx sin2θ+MRzz (B)ρ0

zz cos2θ+2ρxz (B)sinθcosθ

ρ0
xx sin2θ+ρ0

zz cos2θ
, (5.41)

with ρxx and ρzz are diagonal elements of the resistivity tensor ρ̂. The superscript 0 refers to
ρ̂(B = 0). The influence of the nondiagonal elements of ρ(B) is less important here and will be
neglected in the qualitative discussion.

For B approximately in ±z-direction (θ ≈ 0 or ≈ π), the negative contribution from MRzz orig-
inating from the chiral anomaly dominates the classical positive contribution from MRxx in a
wide angular range. Thus, even if the magnetic field is tilted by 10◦ from the z-direction, the LMR
would be negative for B = 1.5T. Around θ = π/2 or 3π/2, (B approximately in ±x-direction) the
positive MRzz -component dominates over the negative MRxx -component already for a tilt angle of
1◦, leading to a PLMR. Only if B is perfectly aligned in x-direction, the negative contribution due to
the CA is dominant. For a larger magnetic field or Fermi levels closer to the Weyl point energies, the
tilt angle under which the PLMR passes into a NLMR is reduced because the negative CA-related
MRxx increases stronger than the positive classical MRzz , as discussed above in terms of the charge
conductivity.

In other words, due to the Lorentz force, the charge current is not aligned with the electric field.
Since the current direction is fixed to be parallel to B per definition of the longitudinal MR, E and
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5.5. Chiral anomaly within a Fermi surface harmonics approach

B are not parallel, which reduces the transfer of states between the Weyl cones and consequently
also the chiral-anomaly-related charge conductivity. Thus, the classical PLMR contribution can
dominate the total LMR for small magnetic fields, whereas for larger fields the chiral anomaly
contribution is sufficiently large to induce a total negative LMR signal. Hence, the PLMR for
small tilt angles is a consequence of including the Lorentz force term in the Boltzmann equation.
Revealing this feature is one of the main advantages of using the Fermi surface harmonics approach.

In Ref. [26], Zhang et al. report measurements of the LMR of five different TaAs samples with
various Fermi levels. The magnetic field is applied in x- and z-direction, respectively, and the LMR
is detected via a charge current parallel to the magnetic field. For both experimental geometries
(B ∥ x and B ∥ z), the characteristic curves show a PLMR for small fields and a NLMR for larger fields
attributed to weak antilocalization and the chiral anomaly, respectively.

A slight tilt of the magnetic field and the charge current off the crystal symmetry axes could also
give rise to LMR curves similar to the characteristic signals measured in Ref. [26]. However, as the
previous calculations show, these features occur in the TaAs system only if B is slightly tilted off the
x-direction, but not if B is almost parallel to z. Further, all transport properties depend strongly
on the Fermi level since the DOS of a Weyl pair vanishes at the Weyl point energy, leading to a
diverging momentum relaxation time. The Fermi levels observed for the samples of Ref. [26] are
almost all closer than 5meV to the W2 points. For these energies, the model calculations do not
show a pronounced PLMR for tilt angles up to 5◦. Therefore, it is concluded that a slight tilt of
the sample cannot be the origin of the observed PLMR, what supports the argument of the weak
antilocalization.

5.5.5. Momentum relaxation time in the presence of a magnetic field

Due to the modified phase-space volume, the magnetic field influences the momentum relaxation
time. In a pristine time-reversal invariant system, the magnetic field breaks time-reversal symmetry,
which leads to τk 6= τ−k. As a consequence, the additional contributions to the charge conductivity,
σ̂linI and σ̂linII, which are forbidden by time-reversal symmetry, do not vanish. This section demon-
strates the influence of the magnetic field on the momentum relaxation time for systems with two
Weyl points (broken time-reversal symmetry), four Weyl points (broken inversion symmetry) and
24 Weyl points (TaAs, broken inversion symmetry), respectively.

The momentum relaxation time τk is calculated from Eq. (2.41) within the scattering theory
introduced in section 2.5. Its values on the Fermi surfaces are depicted in Fig. 5.14 for systems
hosting two and four Weyl points as well as TaAs (24 Weyl points). In general, the relaxation time
decreases with increasing number of Weyl points due to the enhanced phase space for scattering.

For B = 0 the momentum relaxation time is isotropic for time-reversal symmetric systems, which
are the four Weyl points system (e) and TaAs (h), according to the symmetries of the Hamiltonian
and its eigenstates. When time-reversal symmetry is broken, as for a system of two Weyl points (b),
anisotropies along the kx -direction show up, that is along the direction of the Weyl point separation,
which is the direction of the Weyl pair dipole moment.

The magnetic field enters the momentum relaxation time via the phase-space correction factor
when the integration in k-space is performed, as shown in Eq. (2.32). Therefore, the momentum
relaxation time becomes B-dependent. Symmetry dictates that only the component of the magnetic
field in the direction of the Weyl point separation (Weyl dipole direction) has influence on the
momentum relaxation time. Further, τk varies only in the Weyl dipole direction and is constant on
planes perpendicular to this direction. This finding is a special property of the model Hamiltonian.

In the inversion symmetric system of two Weyl points, the momentum relaxation time is slightly
changed by the magnetic field (top row of Fig. 5.14). If the magnetic field is pointing in the direction
of the Weyl dipole [pointing from χ=−1 to χ= 1, (a)], the anisotropy of the momentum relaxation
time is in general less pronounced, whereas it is more distinct when B is antiparallel to the Weyl
dipole moment (c). This asymmetry of the momentum relaxation time with respect to Bx explains
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5. Chiral anomaly in Weyl semimetals

Figure 5.14.: Momentum relaxation time (color scale) for a system of two Weyl points [(a)–(c)], four Weyl
points [(d)–(f)] and TaAs [(g)–(i)]. The relaxation time is calculated on the iso-energy surfaces
and projected onto the kx ky -plane. Therefore, for TaAs 16 of the 24 Weyl points are visible. The
magnetic field of ±2T is assumed in ±x-direction, respectively. The color scale differs for each
row but rows share a common color scale. Adapted from [J6].

the asymmetric behavior of the transport properties discussed in section 5.5.2.
In the systems with four Weyl points (center row) and in TaAs (bottom row), the time-reversal

symmetry is broken by the magnetic field. Therefore, τk 6= τ−k. This symmetry breaking is the
reason for nonzero additional contributions σlinI

xx and σlinII
xx to the charge conductivity, which vanish

in the presence of time-reversal symmetry. The influence of the magnetic field on τk depends on
the orientation of B with respect to each Weyl pair’s dipole moment, as shown in (d), (f), (g), and (i),
respectively.

For TaAs, whose 24 Weyl points are arranged symmetrically with respect to the x and y axes, it
becomes evident [(g) and (i)] that the magnetic field affects only the momentum relaxation time
of the Weyl point pairs separated in the direction of the magnetic field (x). The influence of the
magnetic field becomes less pronounced here because of the fourfold rotational symmetry of the
Fermi surface. The phase space for scattering and the number of scattering processes that are
not affected by the phase-space correction are enhanced. Thus, the anisotropy-related charge
conductivity contributions σ̂linI and σ̂linII are reduced.

100



6. Conclusion

In this thesis, the Edelstein effect and the chiral anomaly, which are transport effects driven by
spin-orbit coupling, are discussed within a semiclassical Boltzmann approach. Both effects are
associated with the interconversion of electric and magnetic properties and provide the opportu-
nity of unconventionally manipulating a macroscopic observable: Due to the Edelstein effect, a
spin density or magnetic moment can be induced purely electrically, whereas the chiral anomaly
corresponds to a transfer of chiral electronic states in the presence of magnetic and electric fields,
accompanied by an enhancement of charge conductivity.

The Edelstein effect is the generation of a homogeneous spin density by an external electric
field and originates from broken inversion symmetry leading to Rashba spin splitting and spin-
momentum locking. It can be utilized to create spin polarization in pristine nonmagnetic materials,
as well as to induce a spin-orbit torque in ferromagnetic materials and thereby manipulate their
magnetization.

In this work, a complete semiclassical framework for treating the Edelstein effect in two- as well
as three-dimensional model systems is presented, solving the Boltzmann equation with a relaxation
time ansatz including an energy- and momentum-dependent transport lifetime. The paradigm
system providing the Edelstein effect is the isotropic Rashba model with its Fermi level above
the degeneracy point. In this system, the magnitude of the current-induced spin density scales
linearly with the Rashba parameter, which is a measure of the spin-orbit coupling strength, and is
constant with respect to the Fermi level. Considering the energy region in between the band edge
and the degeneracy point reveals a linear energy dependence of the charge-to-spin conversion
efficiency. The highest Edelstein efficiency is calculated for the ordered Bi/Ag (111) surface alloy,
which provides a giant Rashba splitting.

In addition to the conventionally examined isotropic Rashba system, this thesis covers the
Edelstein effect in a large variety of materials including anisotropic Rashba and Dresselhaus systems,
ferromagnetic Rashba systems, topological insulators and Weyl semimetals.

The Edelstein effect is commonly defined as current-induced in-plane spin polarization perpen-
dicular to the electric field. However, deviations occur in Rashba systems with reduced symmetry,
such as the (110) and (111) surfaces of fcc lattices, in the presence of magnetic impurities and due
to additional Dresselhaus SOC accounting for a broken bulk inversion symmetry. Depending on
the direction of the applied electric field, the induced spin density is not mandatory perpendicular
to this field and can contain even an out-of-plane component. Further, in highly anisotropic
systems, also the magnitude of the Edelstein effect strongly depends on the orientation of the field,
which allows a geometry-based optimization of the effect. At the Au(110) surface, the induced
spin density is modified by a factor of more than 2 by an in-plane rotation of the electric field. In
these anisotropic systems, saddle points occur in the energy dispersion, corresponding to Lifshitz
transitions and accompanied by vanishing spin densities.

External magnetic fields as well as a finite intrinsic magnetization break time-reversal symmetry
of a Rashba system and thereby lead to intrinsic Edelstein contributions, calculated using a Kubo
formula. These intrinsic contributions are perpendicular to the extrinsic as well as the equilibrium
spin polarization and are comparably small. However, the intrinsic Edelstein effect brings about
promising transport properties such as a spin-polarized current with spin moments aligned in the
current direction.

The surface states of 3D topological insulators exhibit a comparably large Edelstein effect since
they host a single Fermi circle. Thus, no compensation from Fermi lines with opposite spin
texture occurs. The chirality of the surface states determines the sign of the current-induced spin
density and can therefore be directly measured via the Edelstein effect. Topological insulators are a
promising material class for a potential technological application of the Edelstein effect, because
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6. Conclusion

not only the surface states themselves are protected against symmetry-preserving perturbations,
but also the Edelstein response is constant with respect to energy.

Combining the findings on the enhancement of the Edelstein effect by geometry and lack of
compensation for single Fermi lines, a notably efficient charge-to-spin conversion is expected in
systems with strongly spin-polarized surface states whose Fermi contours are elongated single
lines. These features are provided by the topological surface states of Weyl semimetals, which are
identified as promising materials for an efficient charge-to spin conversion. The calculated Edel-
stein efficiency in the type-I Weyl semimetal TaAs is enhanced by at least one order of magnitude
in comparison to Rashba systems and topological insulators. This enormous enlargement mainly
originates from the large momentum relaxation times of the surface states due to their localization
and the low, but nonzero, bulk density of states, in addition to the favorable Fermi surface geometry
and the lack of compensation. Weyl semimetals provide a strongly energy-dependent Edelstein
effect due to the bulk density of states varying in energy.

In addition to the extraordinarily large Edelstein effect, Weyl semimetals exhibit the chiral anom-
aly, originally established in the field of high energy physics, and the related observable transport
signatures. In the presence of nonorthogonal electric and magnetic fields, the number of particles
of a distinct chirality is not conserved, which leads to a negative longitudinal magnetoresistance.

In this work, the chiral anomaly and the associated transport properties, in particular the charge
conductivity and the magnetoresistance, are discussed in the ultraquantum limit, in which only one
chiral Landau level intersects the Fermi level, as well as the case of many Landau levels at the Fermi
energy. However, the focus of the presented results is on the semiclassical limit, neglecting Landau
quantization. Using a Fermi surface harmonics formalism extended for systems with non-vanishing
Berry curvature, the Boltzmann equation is solved in an comprehensible way, including the Lorentz
force, scattering-in terms, and phase-space corrections. In contrast to the common literature on
the chiral anomaly, which discusses only the charge current parallel to the magnetic field, in this
work the full conductivity tensor is calculated which allows the discussion of the magnetic field’s
influence on longitudinal as well as transversal transport properties.

In the semiclassical limit, the chiral-anomaly-related charge conductivity typically increases
quadratically with the magnetic field, attended by a negative longitudinal magnetoresistance.
However, in anisotropic Weyl systems, additional contributions scaling linearly with the magnetic
field can occur and even change the sign of the longitudinal magnetoresistance in systems with
broken time-reversal symmetry, as demonstrated in this work.

Analyzing the transport properties of TaAs, it is found that a slight tilt of the magnetic field
with respect to the crystal axes can lead to a positive longitudinal magnetoresistance. Due to
anisotropies of the Fermi surface, the reduction of conductivity by the Lorentz force dominates the
chiral-anomaly induced positive contributions and determines the sign of the magnetoresistance
for small magnetic fields.

Calculating the momentum relaxation time as a function of energy modifies the energy-depen-
dence of the chiral-anomaly-related charge conductivity qualitatively from E−2 to E−4 in isotropic
systems, whereas this dependence is less pronounced for the considered TaAs hosting Weyl points
at various energies.

Although the presented Boltzmann approach based on model Hamiltonians is less accurate in
comparison to ab initio methods, does not fully include inter-band transitions and is therefore not
applicable for small-gap systems, it is a transparent and insightful method for calculating diverse
transport properties. The results presented in this thesis provide deeper understanding of the
Edelstein effect and the origin of the negative as well as the positive magnetoresistance in Weyl
semimetals. Additional insights, especially in the energy regions in which the Boltzmann equation
is not applicable, could be obtained from a Kubo approach.

In particular the Fermi surface harmonics formalism is a promising method for efficiently solving
the Boltzmann equation in an intelligible and comprehensive way. The method can be applied
to various systems and physical problems, notably to systems with nontrivial topology. In future
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works, the Fermi surface harmonics formalism could be useful especially for phenomena which
cannot be described in the relaxation time approximation, e.g. the extrinsic spin Hall effect in
time-reversal invariant systems. One possible further project is a generalization of the approach in
order to describe bulk as well as surface states. Considering more realistic scattering potentials as
well as the influence of finite temperatures could improve the accuracy and reveal further insights.
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A. Scattering at magnetic impurities

(a) B = 0 (b) B = (B ,B ,0) (c) B = (B ,B ,0)

(d) B = (B ,B ,0) (e) B = (B ,B ,0) (f) B = (B ,B ,0)

(g) B = (B ,B ,0) (h) B = (B ,B ,0) (i) B = (B ,B ,0)

Figure A.1.: Microscopic transition probabilities of an isotropic Rashba system, EF > 0, with magnetic impuri-
ties. The initial state k is on the outer Fermi circle and marked by a red and black dot, respectively.
The color scale corresponds to the microscopic transition probability for elastic scattering from
the initial state to another state on the Fermi circle. In panel (a) the transition probability is
shown for nonmagnetic impurities. Here, Pk′←k depends only on the angle between initial and
final state. The momentum relaxation time and transport lifetime are isotropic. Magnetic impu-
rities break time-reversal symmetry. Panels (b)-(i) shows the microscopic transition probability
for impurities inducing a local magnetic field B = (B ,B ,0) for different directions of the initial
state. The local magnetic field modifies the overlap of final and initial states. Therefore, the
phase space for scattering out of the state k ∥ (−1,1,0) on the outer circle (panel (e)) is in general
enhanced since the spin of this state is parallel to B. Consequently, the momentum relaxation
time is reduced in comparison to a system with nonmagnetic impurities. The state k ∥ (1,−1,0)
on the outer circle (panel (i)) has a spin polarization antiparallel to the magnetic field. Thus,
the phase space for scattering is reduced leading to an enhanced momentum relaxation and
transport lifetime, as shown in Fig. 4.9(b).
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B. Fermi lines for a Rashba system with in-plane
magnetic field

Figure B.1.: Lines of constant energy for a Rashba system with magnetic field in x-direction. The arrows
indicate the in-plane spin expectation values. At E−

S the system goes through a Lifshitz transition.
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C. Rashba system with Zeeman splitting,
B = B(1,0,1)
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Figure C.1.: Band structure, density of states and Edelstein effect in a Rashba system with Zeeman splitting
from a magnetic field applied in (1,0,1)-direction. Here, features from the cases B ∥ z and B ∥ x,
discussed in the main text (section 4.5.4) arise. The degeneracy at the diabolic point is lifted and
the spectrum is asymmetric with respect to the ky -direction.
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D. Band structure and Fermi lines in systems
with Rashba and Dresselhaus SOC

D.1. (001) surface

(a) βD = 0.2αR
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(b) βD = 0.2αR

(c) βD =αR
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(d) βD =αR

(e) βD = 2.8αR
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(f) βD = 2.8αR

Figure D.1.: Band structure and Fermi lines with spin texture for a (001) zincblende surface with Rashba and
linear Dresselhaus SOC for various ratios βD/αR.
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D.1. (001) surface

(a) βD = 0.2αR
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(g) βD = 2.8αR
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(h) βD = 2.8αR

Figure D.2.: Band structure and Fermi lines with spin texture for a (001) zincblende surface with Rashba,
linear and cubic Dresselhaus SOC for γD = 0.1Å2

αR and various ratios βD/αR. 109



D. Band structure and Fermi lines in systems with Rashba and Dresselhaus SOC

D.2. (110) surface

(a) λD = 0.4αR
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(c) λD =αR
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(e) λD = 2.8αR
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(f) λD = 2.8αR

Figure D.3.: Band structure and Fermi lines with spin texture for a (110) zincblende surface with Rashba and
linear Dresselhaus SOC for various ratios λD/αR. The arrows correspond to the in-plane spin
expectation values, the color scale represents the out-of-plane component.
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D.2. (110) surface

(a) λD = 0.4αR
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(b) λD = 0.4αR

(c) λD =αR
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(d) λD =αR

(e) λD = 2.8αR
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(f) λD = 2.8αR

Figure D.4.: Band structure and Fermi lines with spin texture for a (110) zincblende surface with Rashba,
linear and cubic Dresselhaus SOC for γD = 0.1Å2

αR and various ratios λD/αR. The arrows
correspond to the in-plane spin expectation values, the color scale represents the out-of-plane
component.
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E. Fermi surface determination and integration

In anisotropic systems whose Fermi surfaces cannot be approximated as spheres, circles or ellip-
soids, an analytical integration over the Fermi surface is usually not possible. Therefore, numerical
methods are used for determining the k-points at the Fermi surface, for which the Boltzmann
equation is solved in order to calculate transport properties by a Fermi surface integration.

To determine the Fermi surfaces of two- and three-dimensional systems, an adaptive triangular
and tetrahedral method, respectively, is used [202, 203]. Basically, both procedures are similar
and differ mainly with respect to the dimension of the considered system. In the following the
two-dimensional triangular as well as the three-dimensional tetrahedral method are sketched.

E.1. Two-dimensional triangular method

A

B

C
D

kx

ky

0

0

Fermi line
mesh points
mesh lines

Figure E.1.: Adaptive triangle method for the determination of the Fermi lines (red) in 2D k-space. Left panel:
The k-space is divided by a rectangular mesh (gray dots). The grid points are connected in such a
way that triangles are generated (blue lines). Right panel: Detail (boxed region in the left panel).
The triangles A and B are not intersected by the Fermi line, therefore they are excluded from
further consideration. The Fermi line passes through the triangles C and D, they are divided
iteratively into smaller triangles until the required precision is attained. Adapted from [J6].

In order to identify states which are approximately at the Fermi line, the 2D k-space is sectioned by
a rectangular grid, sketched in Fig. E.1. Each rectangle is divided into four triangles by straight lines,
as depicted. Thus, the mesh points as well as the center of four mesh points form the triangular
points. The energy value En

k of the corresponding band is calculated at each triangular point. If
the function En

k −EF changes sign in between two triangular points, then the Fermi line passes in
between these points.

Provided that the starting grid was chosen appropriately, triangles whose edges are not intersected
by the Fermi line do not have to be considered further. For closed Fermi contours, a triangle lying
at the Fermi line is intersected exactly twice. It is divided into four smaller triangles with the centers
of the edges as new corners, as shown in the right panel of Fig. E.1. This procedure is repeated
until the desired precision is reached. The “final” k-points of the Fermi line are calculated by linear
interpolation. This adaptive method requires a dense mesh only in the regions near the Fermi lines
whereas the initial sampling is less precise.

The integration of a function F (k) along the Fermi line is performed according to the trapezoidal
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E.2. Three-dimensional tetrahedral method

(a) Cuboid with princi-
pal diagonal (red).

(b) Tetrahedron with
intersecting triangle
(blue).

(c) Tetrahedron with
intersecting
quadrangle (blue).

(d) Tetrahedron with
corners and edge
centers (green).

Figure E.2.: Tetrahedral method: The 3D k-space is divided into cuboids. Each cuboid is divided into eight
edge-sharing tetrahedra

rule, ∫

Ek=EF

F (k)dk∥ ≈
Nk∑

j=1

1

2

[
F (k j )+F (k j+1)

] |k j −k j+1| , (E.1)

where Nk is the number of k-points which approximate the Fermi line.

E.2. Three-dimensional tetrahedral method

The procedure for finding Fermi surfaces in 3D k-space is similar to the 2D method. The 3D
Brillouin zone is divided by a 3D grid into cuboids, of which one is shown in Fig. E.2(a). Each
cuboid is then fragmented into six tetrahedra of equal volume, which share one common principal
diagonal, as proposed in [203]. In Fig. E.2(a), the shared edge is the BF line and the tetrahedra
are (BFCD), (BFCG), (BFAD), (BFAE), (BFHG), (BFHE). For each tetrahedron, the number of edges
intersecting the Fermi surface is determined, as described above for the triangular method. The
number of intersection points of a tetrahedron with the Fermi surface can be 0 (tetrahedron is
discarded), 3 (approximately triangular intersection with the Fermi surface), or 4 (approximately
quadrangular intersection). If the required accuracy of Fermi surface points is not reached yet, the
tetrahedron is divided into eight smaller tetrahedra built from the original tetrahedron corners and
the centers of the edges (points a-j in Fig. E.2(d)) and the procedure is repeated iteratively until
the desired precision is attained. The final intersecting triangles and quadrangles are then used
as k-points of the Fermi surface. In order to build the whole Fermi surface out of triangles, the
quadrangles are divided into four triangles, as shown in Fig. E.2(b). To avoid systematic errors,
the whole procedure is repeated three times starting with the other principal diagonals for the
initial segmentation of the cuboid (Fig. E.2(a)). The integration over the Fermi surface is performed
according to ∫

Ek=EF

F (k)d2k∥ ≈
Nk∑

j=1
F (kc

j )A j , (E.2)

with kc
j the center of the triangle, slightly corrected by linear interpolation, and A j the area of the

triangle.
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