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Zusammenfassung

In dieser Dissertation präsentieren wir neue theoretische Ergebnisse im Gebiet der
statistischen minimax Hypothesentests in sehr unterschiedlichen Situationen. Spe-
ziell leiten wir nicht-asymptotische minimax “separation rates” (Abstandsraten) für
Testprobleme her, bei denen beide Hypothesen zusammengesetzt sind.

Im einführenden Kapitel beschreiben wir die allgemeine Situation und Idee für
minimax Tests und besprechen relevante Literatur. Zudem werden für das Thema
typische Ideen und Phänomene anhand eines speziellen “signal-detection”-Problems
illustriert.

Danach gehen wir auf drei verschiedene Szenarien mit zusammengesetzten Hypothe-
sen ein:
Zunächst wird das Testproblem untersucht, ob der Erwartungsvektor eines d-dimen-
sionalen Gauss’schen Vektors in einer konvexen Menge C ⊆ Rd liegt. Dieses Prob-
lem im minimax-Sinne mit kleinen Typ-I- und Typ-II-Fehler-Wahrscheinlichkeiten
zu lösen, erfordert im Allgemeinen einen positiven Abstand zwischen der Null- und
Alternativhypothese und wir sind am kleinsten Euklidischen Abstand interessiert,
sodass ein Test mit der gewünschten Leistung existiert. Im Laufe des Kapitels en-
twickeln wir einen Einblick darüber, inwiefern der minimax-optimale Abstand von
der Form von C abhängt.
Danach beschäftigen wir uns mit dem Testproblem, ob zwei zufällige Graphen auf der
gleichen Verteilung beruhen. Speziell beobachten wir uiv Realisierungen zweier (un-
terschiedlicher) inhomogener Erdős-Renyi-Graphen mit Parametermatrizen P und
Q auf einer gemeinsamen Knotenmenge und sind am kleinsten Abstand zwischen P
und Q interessiert, sodass ein Test die Verteilungen mit kleinen Fehlerwahrschein-
lichkeiten unterscheiden kann. Wir zeigen, dass die minimax-optimale Abstandsrate
– und sogar die grundsätzliche Lösbarkeit des Problems – stark vom gewählten Ab-
standsmaß zwischen P und Q abhängt.
Das letzte Kapitel beschäftigt sich damit, den Grad der Regularität (im Sobolev -
Sinne) einer Funktion f basierend auf einer verrauschten Beobachtung von f zu
testen. Speziell nehmen wir an, dass f ∈ Bt(R) (ein Sobolev-Ball mit Regularität
t > 0 und Radius R > 0) gilt und testen, ob sogar f ∈ Bs(R) für ein s > t gilt. Nun
untersuchen wir den kleinsten Abstand im L2-Sinne zwischen Bs(R) und f , sodass
ein Test diesen mit kleinen Fehlerwahrscheinlichkeiten erkennen kann. Überraschen-
derweise hängt die minimax-optimale Abstandsrate nicht von s ab.



Abstract

In this thesis we present new theoretical results on statistical minimax hypothesis
testing in very different settings. More precisely, we derive non-asymptotic minimax
separation rates for composite-composite testing problems.

In the introductory chapter, we describe the general setting and idea of minimax
testing and provide a literature review on the subject. Furthermore, we illustrate
typical ideas and phenomena in the field through a detailed discussion of a specific
signal-detection problem.

After that, we elaborate on three different composite-composite scenarios:
Firstly, the problem of testing if the mean of a d−dimensional Gaussian vector
belongs to a convex set C ⊆ Rd is considered. Solving this problem in a mini-
max sense with small type-I and type-II error probabilities generally requires some
positive separation between the null and alternative hypotheses and we aim at find-
ing the smallest separation in a Euclidean sense such that a test with the required
performance exists. During this chapter we gain much insight into how the minimax-
optimal separation rate depends on the shape of C.
After that, we study the problem of testing if two random graphs have the same
underlying distribution. More precisely, based on iid samples from two (different)
Erdős-Renyi-graph distributions on a common vertex set with parameter matrices
P and Q, respectively, we are interested in the smallest separation between P and
Q such that a test can distinguish the distributions with small error probabilities.
It turns out that the corresponding minimax-optimal separation rate – and even
the feasibility of the problem – depends heavily on the chosen measure of distance
between P and Q.
The last chapter deals with testing the degree of smoothness (in a Sobolev sense) of
a function f based on a noisy observation of f . To be more precise, we assume that
f ∈ Bt(R) (Sobolev-ball with smoothness t > 0 and radius R > 0) and consider
testing if indeed f ∈ Bs(R) for some s > t. Now, we examine the smallest separation
in an L2-sense between Bs(R) and f such that a test can detect it with small error
probabilities. Surprisingly, it turns out that the corresponding minimax-optimal
separation rate does not depend on s.
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Chapter 1

Preface

1.1 Minimax Statistical Hypothesis Test-
ing

Basic Concepts
Let (S,F) be a measure space and (Pθ)θ∈Θ a family of probability measures on
(S,F), where the set Θ of parameters need not be finite-dimensional. Suppose that
X is an S-valued random element according to the statistical model

(S,F , (Pθ)θ∈Θ) .

In this very general setting, any statistical testing problem is determined by two
disjoint sets Θ0,Θ

′ ⊆ Θ and has the form

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ′, (1.1)

where we call the statement H0 the null hypothesis and H1 the alternative hy-
pothesis.

Let E = 2{0,1}. Now, any (F , E)-measurable function

ϕ : S → {0, 1}

is a statistical test for the problem (1.1). The test ϕ has the role of a decision
function which should take the value 1 if the observation X is at odds with the as-
sumption H0 and the value 0 otherwise. That leads to the concept of type-I-errors
and type-II-errors as well as their (worst case) probabilities:

meaning
worst case
probability

type-I-error ϕ = 1 yet H0 holds PH0(ϕ = 1) := sup
θ∈Θ0

Pθ(ϕ = 1)

type-II-error ϕ = 0 yet H1 holds PH1(ϕ = 0) := sup
θ∈Θ′

Pθ(ϕ = 0)

Depending on the respective setting and if there is no risk of confusion we may
drop the index θ of Pθ or write another index, for instance in the context of lower
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CHAPTER 1. PREFACE

bounds (see section 1.4.1). Similarly, although PH0 and PH1 are generally no prob-
ability measures (if Θ0 or Θ′ is no singleton), for the sake of simplicity we will call
PH0(ϕ = 1) and PH1(ϕ = 0) error probabilities on occasion.
Furthermore, expectation and variance with respect to the measure Pθ are denoted
as Eθ and Varθ, respectively.

In general, we wish to guarantee that both error probabilities are small and for
fixed η ∈ (0, 1), we formalise this statement as

sup
θ∈Θ0

Pθ(ϕ = 1) + sup
θ∈Θ′

Pθ(ϕ = 0) ≤ η. (1.2)

Clearly, in order to fulfil this requirement, we usually need to construct a capable
test. However, that typically does not suffice as the testing problem also exhibits
an intrinsic difficulty: Indeed, if for instance Θ′ = Θ\Θ0, we often find that no test
ϕ can meet the condition (1.2) – essentially every result in this thesis provides an
example for that phenomenon. This leads to the idea of introducing a type of gap
between the hypotheses: We define a function

distΘ0 : Θ→ [0,∞) ∪ {∞}

which measures the distance between θ ∈ Θ and Θ0 in a way that is suitable for the
respective setting. Then, for fixed ρ > 0, we consider the alternative hypothesis

Θ′ = Θρ := {θ ∈ Θ ; distΘ0(θ) > ρ}

and write the testing problem simply as

H0 : θ ∈ Θ0 vs. H1 : distΘ0(θ) > ρ. (1.3)

The refined requirement

sup
θ∈Θ0

Pθ(ϕ = 1) + sup
θ∈Θρ

Pθ(ϕ = 0) ≤ η (1.4)

may then be fulfilled for large enough ρ. In this framework, we aim at finding the
smallest value for ρ enabling the existence of a test ϕ with the property (1.4); that
is,

ρ∗(η) := inf

{
ρ > 0 ; ∃ test ϕ : sup

θ∈Θ0

Pθ(ϕ = 1) + sup
θ∈Θρ

Pθ(ϕ = 0) ≤ η

}
.

This quantity, the minimax separation distance, can be interpreted as the in-
trinsic difficulty of the testing problem

H0 : θ ∈ Θ0 vs. H1 : θ ∈ Θ\Θ0

with respect to distΘ0 and given the total error bound η. A corresponding
minimax-optimal test is a test ϕ = ϕ∗ which fulfils (1.4) for the choice ρ = ρ∗(η).

Generic Tactics and Goals
In order to describe ρ∗(η), we typically take two steps which are very different in
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nature and reflect the short discussion after (1.2):
The perhaps more natural first step is constructing a test ϕ which has type-I-error
probability at most η

2
. In an attempt to ensure the same bound for the type-II-error

probability, ρ will have to be chosen large enough. By definition, the resulting value
clearly is an upper bound on ρ∗(η).
The second step amounts to finding a small enough value for ρ such that no test
can perform well in the above sense, i.e. every test violates (1.4). Such a value
clearly is a lower bound on ρ∗(η). In order to derive this kind of statement we need
some more theoretical machinery based on statistical distance measures. This will
be presented in section 1.4.1.
Obviously, we would like these lower and upper bounds to be as close as possible.
More specifically, we aim at deriving lower and upper bounds that match with re-
spect to the central ingredients of the testing problem – depending on the respective
setting, this could be for instance the dimension of S or Θ. That is to say, multi-
plicative constants in η (and possibly other fixed quantities) will be secondary and
we are particularly interested in the minimax separation rates, where such con-
stants are suppressed. See our first result, Theorem 1.1, for a typical example of
what this means.

Literature Review
Statistical hypothesis testing is clearly a classical topic in mathematical statistics.
For instance, the famous Neyman-Pearson-Lemma (see [NP33]) is concerned with
the case where both Θ0 and Θ′ are singletons and provides the test with smallest
type-II-error probability among all tests with a prescribed type-I-error probability.
The Karlin-Rubin-theorem extends this theory under certain conditions to the case
of composite hypotheses if Θ ⊆ R, see for instance [CB02]. Our framework, mini-
max testing in its general form, however, is younger and not covered by this classical
theory as we typically consider multi-dimensional parameters θ and composite hy-
potheses.
One may broadly divide the literature on minimax testing into two major groups:
Works that consider signal-detection and works that consider composite-composite
testing.

Signal-Detection
We speak of a signal-detection problem if Θ0 is a singleton. A very early article on
the subject by Yuri Ingster, who is considered as the topic’s founding father, would
be [Ing82] with Gaussian white noise; related to section 1.2 below. Ingster and his
coauthors have been very productive, for instance the series of papers [Ing93] is
considered to be a landmark on non-parametric signal-detection, i.e. the case of an
infinite-dimensional alternative parameter space Θ′. Many articles in that direction
consider cases where Θ′ is determined by an ellipsoid, see e.g. [Erm91], or more gen-
erally Sobolev- or Besov balls, e.g. [Ing98], [Spo96] and [LS99] and such cases are
therefore well understood. All these references have in common that they study the
asymptotic regime; non-asymptotic rates – which we focus on – are rather scarce, an
important reference in that direction is [Bar02]. There are also more recent works
that tackle signal-detection problems, for instance [Ver12] and [CCT17] which con-
sider the parameter’s sparsity.
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Composite-Composite Testing
However, much less literature is available on cases where the null hypothesis is more
complex and the present thesis makes a contribution to this theory in very different
settings.
There have been some developments with regards to testing certain properties of a
function f in regression and white noise settings – for instance, if f is monotonous
or belongs to some functional Besov ball. Relevant articles, with both asymptotic
and non-asymptotic results, include [JN02, CD13, Car15, BHL05]. Such questions
usually have a direct translation as discrete regression/ Gaussian sequence problems
(very explicitly e.g. in [BHL05]). In chapter 4 we extend this theory and we also
address its relation to the task of constructing functional confidence sets which is
done for instance in [BN13].
One may view answering the question, in what way the complexity of the null hy-
pothesis should affect the minimax separation rate, as the central task in composite-
composite testing and – consequently, we tackle it throughout this thesis. A very
interesting piece of work in that direction would be [GP05] due to the generality
of the approach taken there: It turns out that, in a discrete Gaussian regression
setting, combining signal-detection with covering the null hypothesis works well as
long as the null hypothesis is small in terms of entropy (see section 2.1 below for
details); however, for instance in 2.2 we see that even in a case with infinite entropy,
testing can be almost trivial. Similarly, as observed in [Car15] and chapter 4, the
rate might even be the same as in signal-detection, independent of the size of the
composite null hypothesis.

Further Aspects Relevant in Both Cases
Some articles that consider testing problems raise the question in how far solv-
ing these problems is related to finding optimal estimators (for the quantity to be
tested), or they explicitly use testing considerations to solve the estimation problem
or vice versa, see for instance [CL11], [CCT17] and [CV19] in composite-composite
settings. These considerations are often based on results about estimating function-
als of the mean of Gaussian vectors (such as specific norms of the mean). Further
relevant literature (also for the signal-detection case) in that direction would be
[CL05, CCT18, DN90]. The connection between testing and estimation is clearly
not trivial, as is observed e.g. in the article [LNS99] concerned with estimation of
a function’s Lr-norm: the compatibility of the two questions strongly depends on
the choice of r. In chapters 2 and 3 (sections 2.2 and 3.3), we exhibit such effects
through very explicit examples.
Another important direction in modern testing theory is multiple testing, i.e. the sit-
uation where multiple null hypotheses are tested in a joint procedure. In this field, a
typical goal would be controlling the so-called false discovery rate FDR and true dis-
covery proportion TDP, that is, the proportion of wrongly rejected null hypotheses
and the proportion of correctly rejected null hypotheses (or correctly detected alter-
native hypotheses), respectively. Clearly, these quantities can be seen as analogues
of the type-I-error probability and testing power (i.e. 1 minus type-II-error proba-
bility), respectively. We mention just a few important and interesting references for
multiple testing: The FDR was firstly introduced in [BH95] and since then the topic
has been further developed for instance in [BY01, FDR07, RVDW09, ACC17b]. As
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we do not study such objects in this thesis we cannot claim to make a contribution
here. However, note that occasionally seemingly unrelated problems naturally have
a multiple testing formulation, e.g. in [CDRV18, CV19]. Also in this thesis, the
tests we propose for Theorems 1.5 and 4.1 have a multiple testing flavour.

The introduction to each of the following chapters contains further relevant lit-
erature for the specific situation considered there.

1.2 Instructive Example: Signal-
Detection in lq-norm

We now devote a major part of this preface to studying a specific non-trivial signal-
detection problem as it is suitable to point out some typical phenomena and technical
tools in the field of minimax testing.

For fixed d ∈ N\{0} and σ > 0, let Θ = Rd, Θ0 = {Od} (null vector Od ∈ Rd)
and

Pθ = N (θ, σId) for θ ∈ Θ,

where N (θ, σId) is the d-dimensional Gaussian distribution with expectation θ and
covariance matrix σId (Id being the d× d identity matrix). That is, the coordinates
i ∈ {1, 2, . . . , d} of

X
L
= θ + σε

are independent with σεi ∼ N (0, σ2). For q > 0, we choose the distance measure

distΘ0(θ) = dist(θ) = ‖θ‖q =

(
d∑
i=1

|θi|q
) 1

q

, (1.5)

which is actually only a metric if q ≥ 1. The associated testing problem in the sense
of (1.3) now reads

H0 : θ = Od vs. H1 : ‖θ‖q > ρ (1.6)

for fixed ρ > 0 and we are going to study ρ∗(η) = ρ∗q(η), η ∈ (0, 1), for this problem.

Note that the dependence of ρ∗q(η) on d has been exposed in [IS02, Section 3.3.6]
in the asymptotic regime for d → ∞ and without constants in η or q, but we are
not aware of a non-asymptotic treatment of the problem with explicit constants and
provide it here.

The case q ≤ 2
The case q = 2 is relatively easy to solve which can be attributed to the fact that
the random variable ‖X‖2

2 is convenient to study as it is well-behaved and well-
understood. This special case has already been solved in [Bar02, Propositions 1 and
2], but we provide an own analysis here since it constitutes a useful preparation for
other considerations in this thesis.

7
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Theorem 1.1. Consider the problem (1.6) with q = 2 and let η ∈ (0, 1). Then we
have

σ · d1/4 · 4

√
1

2
ln(1 + 4(1− η)2) ≤ ρ∗q(η) ≤ σ · d1/4 · 6

√
ln

(
2

η

)
,

that is
ρ∗q ∼ σ · d1/4. (1.7)

/

All proofs are postponed to the last section of this chapter.

Remark 1.2. As indicated earlier, we focus on the central parameters (here d and
σ) and suppress constants depending on the (typically) arbitrary total error bound
η and possibly other fixed parameters (here q). This step is indicated by the symbol
∼ for equivalence up to constants in (1.7) . The symbols . and & will be used in
an analogous way. /

Due to the geometry of the lq-balls in Rd, it turns out that the test and lower bound
construction used for Theorem 1.1 is already sufficient to establish the minimax
separation rate for 0 < q ≤ 2:

Corollary 1.3. Consider the problem (1.6) with 0 < q ≤ 2 and let η ∈ (0, 1). Then
we have

σ · d
1
q
− 1

4 · 4

√
1

2
ln(1 + 4(1− η)2) ≤ ρ∗q(η) ≤ σ · d

1
q
− 1

4 · 6

√
ln

(
2

η

)
,

that is
ρ∗q ∼ σ · d

1
q
− 1

4 .

/

The case q > 2
The upper bound for Theorem 1.1 is not difficult to obtain since, as already indi-
cated, for any θ ∈ Rd there are strong explicit concentration statements for ‖X‖2

2

available and, in particular, its expectation is known and simple.
This is no longer the case for q > 2: Though there are analytical formulae for
Eθ[‖X‖qq] and Varθ[‖X‖qq], they are not useful for our purposes as the dependence
on d and q is too implicit, see [Win12]. As a consequence, the same holds for concen-
tration inequalities on ‖X‖qq. Therefore, we treat the case in a more basic, explicit
manner by employing Chebyshev’s and Bernstein’s inequalities, where the necessary
bounds on expectation and variance are given in the following auxiliary result. It is
based on [IS02, Lemma 3.2] but more general. In the proof (section 1.4.4), we also
fill in details and above all, provide explicit constants.

Lemma 1.4. Let q > 2, σ > 0, θ ∈ R and Y ∼ N (0, 1). For b ∈ (0,∞) ∪ {∞}, we
define the event ξb = {|Y | ≤ b} and write

Eb,r := E[|Y |r | ξb] for r > 0

as well as

lb,1 :=
q(q − 1)Eb,q−2

8P(ξb)
, lb,2 = min

(
1

8
,
q(q − 1)Eb,q−2

8P(ξb)
(4Eb,q)

(2−q)/q
)
. (1.8)

8



CHAPTER 1. PREFACE

Then

E[|θ + σY |q | ξb] ≥ σqEb,q + lb,1σ
q−2θ2 + lb,2|θ|q,

Var[|θ + σY |q | ξb] ≤ q222q−3
(
σ2qEb,2q + σ2|θ|2q−2Eb,2

)
.

/

We state and prove two different upper bounds on ρ∗q(η) in order to highlight another
typical phenomenon in our field of work.

Theorem 1.5. Consider the problem (1.6) with q > 2 and let η ∈ (0, 1). Then
there are C1

q , C
2
q > 0 such that

ρ∗q(η) ≤


C1
q · σ · d

1
2q ·
√

2
η
,

C2
q · σ · d

1
2q ·
√

ln
(

5
η

)
·
√

2 ln
(

10d
η

)
, if d ≥

⌈
ln
(

10d
η

)q⌉
.

In particular, the first bound yields

ρ∗q . σ · d
1
2q .

/

While the second bound displays a better dependence on the error rate η, it contains
an additional ln-factor in d which renders it suboptimal for our purposes. Intuitively,
in the setting of Theorem 1.5, one can interpret the bounds as two ways of paying
the price for the lack of knowledge about the distribution of ‖X‖qq: We must either

weaken the constant with respect to η ( 2
η
rather than ln

(
2
η

)
as in Theorem 1.1) or

pay additional ln(d)-factors.
Throughout this thesis, we prove different bounds with either

√
·- or ln(·)-dependence

on η. A very interesting result in that respect is Theorem 3.8 as we eliminate “un-
wanted” ln(d)-factors there through a so-called chaining approach.

It turns out that deriving a lower bound for the case q > 2 also requires new
ideas: The prior we constructed for q = 2 under H1 is powerful as it fully exploits
the dimension d and is set precisely at l2-distance ρ from Od. It also conveniently
extends to q < 2 since its support minimises the l2-distance (and with it statistical
distance) to Od among all points θ ∈ Rd with ‖θ‖q = ρ. The latter effect is reversed
for q > 2 and it becomes more difficult to exploit the dimension while keeping
the l2-distance small. We solve this problem by introducing a mixed prior where
‖θ‖q ≤ ρ is possible even under H1; this leads to the desired rate d

1
2q , but as a sort

of post-processing step we must exclude the case ‖θ‖q ≤ ρ, which requires a price
in terms of the ranges of η and d:

Theorem 1.6. Consider the problem (1.6) with q > 2, d ≥ 36 and let η ∈ (0, 1
3
).

Then we have

σ · d
1
2q ·

√
1
2

ln
(
1 + ln

(
(1 + 4(1

3
− η)2

)
)
)

51/q
≤ ρ∗q(η),

9
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that is, in conjunction with Theorem 1.5,

ρ∗q ∼ σ · d
1
2q .

/

We need an analogous strategy with mixed priors again later on for proving Theorem
2.6.

1.3 Outline

In the following chapters we present new results on minimax testing problems in
three very different settings, where both Θ0 and Θρ are composite in each case.
The chapters build upon this preface to some extent, but otherwise they are self-
contained.
Firstly, chaper 2 is concerned with what can be seen as a considerable generalisation
of Theorem 1.1 as we consider Θ0 = C for convex sets C ⊆ Rd. The chapter presents
the results of the article [BCG18].
After that, in chapter 3 we study the problem of testing if two random graphs
(inhomogeneous Erdős-Renyi model) have the same underlying distribution, where
various notions of distance between the null and alternative hypotheses are consid-
ered. This chapter is closely related to the papers [GGCvL17a] and [GGCvL17b].
Finally, chapter 4 deals with testing the regularity of a function f : [0, 1] → R in
the sense of Sobolev-norms based on a perturbed version of f , the noise being a
Brownian motion. The results on this non-parametric problem are based on the
article [Gut19].
Proofs are given at the end of each chapter.

1.4 Proofs

1.4.1 General Method for Obtaining Lower
Bounds

The following reasoning, explained for instance in [Bar02, section 7.1], will be used
throughout the thesis in order to derive lower bounds on ρ∗(η).

Remember the general definitions from section 1.1.
Now, let ν0 be a distribution with S0 := supp(ν0) ⊆ Θ0 and νρ be a distribution with
Sρ := supp(νρ) ⊆ Θρ (priors). Furthermore, let Pθ∼ν0 and Pθ∼νρ be the resulting
probability measures when θ ∼ ν0 and θ ∼ νρ respectively. Then we see that for any

10
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test ϕ = 1A, A ∈ F , with the total variation distance ‖ · ‖TV (see also [GN16]),

sup
θ∈Θ0

Pθ(ϕ = 1) + sup
θ∈Θρ

Pθ(ϕ = 0) ≥ Pθ∼ν0(ϕ = 1) + Pθ∼νρ(ϕ = 0)

= 1−
(
Pθ∼νρ(A)− Pθ∼ν0(A)

)
≥ 1− sup

A∈F

∣∣Pθ∼νρ(A)− Pθ∼ν0(A)
∣∣

= 1− 1

2
‖Pθ∼νρ − Pθ∼ν0‖TV.

≥ 1− 1

2

(∫ (
dPθ∼νρ
dPθ∼ν0

)2

dPθ∼ν0 − 1

) 1
2

,

where the last bound follows from Jensen’s inequality together with a representation
of the total variation distance given in [Bar02] whenever Pθ∼νρ � Pθ∼ν0 .

These observations justify the following general argument:
Let η ∈ (0, 1). For any ρ > 0 such that either the total variation distance fulfils

1

2
‖Pθ∼νρ − Pθ∼ν0‖TV < 1− η (1.9)

or the χ2-divergence fulfils

divχ2(Pθ∼ν0 ,Pθ∼νρ) :=

∫ (
dPθ∼νρ
dPθ∼ν0

)2

dPθ∼ν0 < 1 + 4(1− η)2, (1.10)

it holds for any test ϕ that

sup
θ∈Θ

Pθ(ϕ = 1) + sup
θ∈Θρ

Pθ(ϕ = 0) > η.

Hence, for the testing problem (1.3), we have

ρ∗(η) ≥ ρ.

1.4.2 Proof of Theorem 1.1

Lower Bound
Let ν0 = δOd (Dirac-δ) and νρ be the uniform distribution on

Ph := h · {−1, 1}d with h =
ρ√
d
.

11
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The definition of h guarantees Ph ⊆ Θρ. For x ∈ Rd, the resulting densities of Pθ∼ν0
and Pθ∼νρ read

dPθ∼ν0(x) =

(
1

2πσ2

)d/2 d∏
i=1

exp

(
− 1

2σ2
x2
i

)
;

dPθ∼νρ(x) =
1

2d

(
1

2πσ2

) d
2 ∑
v1,...,vd∈{−1,1}

d∏
i=1

exp

(
− 1

2σ2
(xi − h · vi)2

)

=
1

2d

(
1

2πσ2

) d
2

d∏
i=1

exp

(
− 1

2σ2
x2
i −

1

2σ2
h2

)
2 cosh

(
1

σ2
hxi

)

=

(
1

2πσ2

) d
2

exp

(
− d

2σ2
h2

) d∏
i=1

exp

(
− 1

2σ2
x2
i

)
cosh

(
1

σ2
hxi

)
,

so that

(dPθ∼νρ)
2(x) =

(
1

2πσ2

)d
exp

(
− d

σ2
h2

) d∏
i=1

exp

(
− 1

σ2
x2
i

)
cosh2

(
1

σ2
hxi

)
.

Using the fact that E[cosh(aY )2] = exp(a2σ2) cosh(a2σ2) for Y ∼ N (0, σ2) and
Fubini’s theorem we can evaluate the left hand side of (1.10):∫

Rd

(dPθ∼νρ)
2

dPθ∼ν0
(x) = exp

(
− d

σ2
h2

)(∫
R

cosh2

(
1

σ2
hxi

)
1√

2πσ2
exp

(
− 1

2σ2
x2
i

))d
= exp

(
− d

σ2
h2

)
exp

(
−dh

2

σ2

)
cosh

(
h2

σ2

)d
= cosh

(
h2

σ2

)d
≤ exp

(
d
h4

2σ4

)
,

where the last inequality is based on the known bound cosh(x) ≤ exp(x2/2) (com-
pare the Taylor series). By direct elementary computation and plugging in the
definition of h we now see that (1.10) is fulfilled if

ρ < σ · d1/4 · 4
√

ln(1 + 4(1− η)2),

so we obtain the sufficiently small bound

ρ ≤ σ · d1/4 · 4

√
1

2
ln(1 + 4(1− η)2)

claimed in Theorem 1.1.

Upper Bound
Type-I-error: finding rejection threshold

12
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We analyse the test based on the natural test statistic for the problem at hand:

ϕ(X) = 1{‖X‖2>τη/2}

for a suitable choice of rejection threshold τη/2. It can be chosen directly based on
the following Lemma:

Lemma 1.7. For k ∈ N\{0}, σ > 0 and λ ≥ 0, let Y ∼ N (0, σ2) and Z ∼ χ2(k, λ)
(that is, a χ2-distribution with k degrees of freedom and non-centrality parameter
λ). Then for any δ ∈ (0, 1), we have

(I) P
(
N ≥ σ

√
2 ln

(
1
δ

))
≤ δ

(II) P
(
Z ≥ d+ λ+ 2

√
(d+ 2λ) ln

(
1
δ

)
+ 2 ln

(
1
δ

))
≤ δ,

(III) P
(
Z ≤ d+ λ− 2

√
(d+ 2λ) ln

(
1
δ

))
≤ δ,

(1.11)

/

(Statement (I) is the classical bound based on the Chernoff strategy and proofs of
(II) and (III) can be found in [Bir01].)
Since under H0, 1

σ2‖X‖2
2 ∼ χ2(d, 0), we can choose the rejection threshold

τη/2 := σ

√√√√d+ 2

√
d ln

(
2

η

)
+ 2 ln

(
2

η

)
by (II) in (1.11).

Type-II-error: finding a lower confidence bound exceeding the rejection
threshold
On the other hand, under H1 we aim at finding a large enough value for ρ such that
‖θ‖2 ≥ ρ implies

Pθ(ϕ = 0) = Pθ

(
‖X‖2

2 ≤ σ2

(
d+ 2

√
d ln

(
2

η

)
+ 2 ln

(
2

η

)))
≤ η

2
.

As 1
σ2‖X‖2

2 ∼ χ2
(
d, 1

σ2‖θ‖2
2

)
, equation (III) of (1.11) yields the sufficient condition

d+ 2

√
d ln

(
2

η

)
+ 2 ln

(
2

η

)
≤ d+

‖θ‖2
2

σ2
− 2

√(
d+ 2

‖θ‖2
2

σ2

)
ln

(
2

η

)
.

By direct computation, this is fulfilled if

‖θ‖2 ≥ σ


√√√√4

√
d ln

(
2

η

)
+ 4 · ln

(
2

η

)
+

√
2 · ln

(
2

η

) ,

or, very much simplified,

‖θ‖2 ≥ ρ = σ · d1/4 · 6

√
ln

(
2

η

)
.

as claimed in Theorem 1.1.
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1.4.3 Proof of Corollary 1.3
Lower Bound
We use the construction from the case q = 2, i.e. section 1.4.2, and arrive at

divχ2(Pθ∼ν0 ,Pθ∼νρ) ≤ exp

(
d
h4

2σ4

)
,

but in this more general context, h = ρ · d−1/q, so that

divχ2(Pθ∼ν0 ,Pθ∼νρ) ≤ exp

(
d1−4/q ρ

4

2σ4

)
,

and hence, by direct computation, (1.10) is fulfilled if

ρ < σ · d
1
q
− 1

4 4
√

ln(1 + 4(1− η)2)

or e.g. as claimed in Corollary 1.3,

ρ ≤ σ · d
1
q
− 1

4
4

√
1

2
ln(1 + 4(1− η)2)

Upper Bound
The test ϕ from section 1.4.2 performs as desired for the testing problem

H0 : θ = Od vs. H1 : ‖θ‖2 > σ · d1/4 · 6

√
ln

(
2

η

)
.

Now, with the general equivalence property of the q-norms we have

‖θ‖q ≤ d
1
q
− 1

2‖θ‖2

and hence

‖θ‖q ≥ σ · d
1
q
− 1

4 · 6

√
ln

(
2

η

)
=⇒ ‖θ‖2 ≥ σ · d

1
4 · 6

√
ln

(
2

η

)
,

so that ϕ also solves the testing problem

H0 : θ = Od vs. H1 : ‖θ‖p > σ · d
1
q
− 1

4 · 6

√
ln

(
2

η

)
,

which concludes the argument.

1.4.4 Proof of Lemma 1.4
Bound on the expectation
We prove two lower bounds on E[|θ + σY |q | ξb] independently and then combine
them.
Firstly, a simple observation is

E[|θ + σY |q | ξb] ≥ |θ|qP(θY > 0 | ξb) =
1

2
|θ|q. (1.12)

14
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Secondly, in a more involved step, we derive a lower bound on E[|θ + σY |q | ξb] in
terms of Eb,q and Eb,q−2. In preparation, for fixed y 6= 0, through Taylor expansion
at θ0 = 0 we obtain that, if θ 6= 0, for some θ′ ∈ (−|θ|, |θ|)\{0},

|θ + σy|q = |σy|q + q|σy|q−1sign(y) +
q(q − 1)

2
|θ′ + σy|q−2θ2. (1.13)

Observing

E[|θ′ + σY |q−2 | ξb] ≥
1

P(ξb)

∫ b

−b
|σy|q−21{θ′y>0}

exp(−y2/2)√
2π

dy =
σq−2

2P(ξb)
Eb,q−2,

taking the expectation in (1.13) yields

E[|θ + σY |q | ξb] ≥ σqEb,q +
q(q − 1)Eb,q−2

4P(ξb)
σq−2θ2. (1.14)

Clearly, (1.12) and (1.14) are also valid in the case θ = 0. Now, as indicated above,
it remains to properly combine them: If on the one hand, |θ|q ≥ 4σqEb,q, (1.12) tells
us that

E[|θ + σY |q | ξb]− σqEb,q ≥
|θ|q

4
,

which, together with (1.14), yields

E[|θ + σY |q | ξb] ≥ σqEb,q +
q(q − 1)Eb,q−2

8P(ξb)
σq−2θ2 +

|θ|q

8
. (1.15)

If on the other hand, |θ|q < 4σqEb,q, we have

q(q − 1)Eb,q−2

8P(ξb)
σq−2θ2 =

q(q − 1)Eb,q−2

8P(ξb)
σq−2|θ|q|θ|2−q

>
q(q − 1)Eb,q−2

8P(ξb)
σq−2|θ|q(4σqEb,q)(2−q)/q

=
q(q − 1)Eb,q−2

8P(ξb)
(4Eb,q)

(2−q)/q|θ|q

and therefore, based on (1.14),

E[|θ + σY |q | ξb] ≥ σqEb,q +
q(q − 1)Eb,q−2

8P(ξb)
σq−2θ2 +

q(q − 1)Eb,q−2

8P(ξb)
(4Eb,q)

(2−q)/q|θ|q.

(1.16)
Finally, remembering (1.8), (1.15) and (1.16) yield the desired bound.

Bound on the variance
Observe that with the classical bounds

(|x|+ |y|)q ≤ 2q−1(|x|q + |x|q),

||x+ y|q − |y|q| ≤ q2q−2|x|(|x|q−1 + |y|q−1)
(1.17)
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for x, y ∈ R (see [IS02, Lemma 3.2]), we have

Var [|θ + σY |q | ξδ] = min
x∈R

E
[
(|θ + σY |q − x)2 | ξδ

]
≤ E

[
(|θ + σY |q − |θ|q)2 | ξδ

]
≤ E

[
q222q−4|σY |2(|σY |q−1 + |θ|q−1)2 | ξδ

]
≤ E

[
q222q−3|σY |2(|σY |2q−2 + |θ|2q−2) | ξδ

]
= q222q−3

(
σ2qEb,2q + σ2|θ|2q−2Eb,2

)
.

1.4.5 Proof of Theorem 1.5
First Bound
Type-I-error: finding a suitable rejection threshold
Applying Chebyshev’s inequality with the results of Lemma 1.4 for the case b =∞
(i.e. ξb is trivial), we obtain

PH0

(
d∑
i=1

|Xi|q ≥ dσqE∞,q +
√
dσq
√

2
η
q222q−3E∞,2q

)
≤ η

2
.

This motivates the introduction of the test ϕ(X) := 1
{∑d

i=1 |Xi|q > τ η
2

}
with re-

jection threshold

τ η
2

:= dσqE∞,q +
√
dσq
√

2
η
q222q−3E∞,2q.

Type-II-error: finding a lower confidence bound exceeding the rejection
threshold
On the other hand, we must now attempt to find a large enough ρ such that there is
an appropriate U η

2
= U η

2
(θ) ≥ τ η

2
with Pθ(ϕ = 0) ≤ Pθ

(∑d
i=1 |Xi|q ≤ U η

2

)
≤ η

2
for

any θ ∈ Θρ. Applying Chebyshev’s inequality with Lemma 1.4 again in that case
suggests

U η
2

= dσqE∞,q + l∞,1σ
q−2‖θ‖2

2 + l∞,2‖θ‖qq −
√
dσq
√

2
η
q222q−3E∞,2q

− σ
√

2
η
q222q−3E∞,q‖θ‖q−1

2q−2,

so that the remaining requirement U η
2
≥ τ η

2
reads

l∞,1σ
q−2‖θ‖2

2+l∞,2‖θ‖qq ≥ 2
√
dσq
√

2
η
q222q−3E∞,2q+σ

√
2
η
q222q−3E∞,q‖θ‖q−1

2q−2. (1.18)

We know choose the ansatz ‖θ‖q = C η
2
σd

1
2q . Then, since the r-norms decrease in r,

due to 2q − 2 > q and q−1
2q
≤ 1

2
,

σ‖θ‖q−1
2q−2 ≤ σ‖θ‖q−1

q ≤ σCq−1
η
2
σq−1d

q−1
2q ≤ Cq−1

η
2
σq
√
d.
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Then direct comparison shows that l∞,2‖θ‖qq exceeds the right hand side of (1.18)
whenever

C η
2
≥ c η

2
: = max

((√
2

η
· 4

l∞,2
·
√
q222q−3E∞,2q

)1/q

,

√
2

η
· 2

l∞,2

√
q222q−3E∞,q

)

∼
√

2

η
.

Second Bound
The second bound is based on a Bernstein-type inequality rather than Chebyshev’s
inequality (see for instance [Mas07, Prop. 2.9]). More specifically, we employ the
following classical formulation: Let Y1, . . . , Yd be centered independent random vari-
ables bounded in absolute value by M > 0. Then, for δ ∈ (0, 1), we have

P

 d∑
i=1

Yi ≥

√√√√2 ln

(
1

δ

) d∑
i=1

Var[Yi] +
2

3
M ln

(
1

δ

) ≤ δ. (1.19)

Now, for δ ∈ (0, 1) specified later on, we introduce the event

ξbδ = {∀i ∈ {1, 2, . . . , d} : |εi| ≤ bδ} , bδ :=

√
2 ln

(
2d

δ

)
.

Applying a union bound to part (I) of (1.11) yields P(ξbδ) ≥ 1− δ.

Boundedness required in Bernstein’s inequality
We now study the variables |Xi|q, i ∈ {1, 2, . . . , d}, more closely: Under H0, we
clearly have

||Xi|q − E [|Xi|q | ξbδ ]| ≤ σqbqδ.

On the other hand, for arbitrary θi ∈ R, using (1.17) we see

|Xi|q ≤ 2q−1(|θi|q + |σεi|q),

so that

||Xi|q − E [|Xi|q | ξbδ ]| ≤ 2q−1(|θi|q + σqbqδ) ≤ 2q−1(‖θ‖q∞ + σqbqδ).

Type-I-error: finding a suitable rejection threshold
Now (1.19) yields the following statements, where we use Lemma 1.4. Firstly, under
the null hypothesis, we see that for δ ∈ (0, 1),

PH0

(
d∑
i=1

|Xi|q ≥ dσqEbδ,q +
√
dσq
√

2 ln
(

1
δ

)
q222q−3Eb,2q +

2

3
σqbqδ ln

(
1
δ

)
| ξbδ

)
≤ δ.

This motivates the introduction of a preliminary test ψ(X) := 1
{∑d

i=1 |Xi|q > τδ

}
with rejection threshold

τδ := dσqEbδ,q +
√
dσq
√

2 ln
(

1
δ

)
q222q−3Eb,2q +

2

3
σqbqδ ln

(
1
δ

)
. (1.20)

17



CHAPTER 1. PREFACE

The reason why ψ is not yet the final test ϕ will occur in (1.22). Moreover, the
appropriate relation between δ and η will be more clear later on.

Type-II-error: finding a lower confidence bound exceeding the rejection
threshold
Similar as above, we must now tune ρ in order to find Uδ = Uδ(θ) ≥ τδ such that
Pθ(ψ = 0 | ξbδ) ≤ Pθ

(∑d
i=1 |Xi|q ≤ Uδ | ξbδ

)
≤ δ for θ ∈ Θρ. Applying (1.19) with

Lemma 1.4 in that case suggests

Uδ = dσqEbδ,q + lbδ,1σ
q−2‖θ‖2

2 + lbδ,2‖θ‖qq −
√
dσq
√

2 ln
(

1
δ

)
q222q−3Ebδ,2q

− σ
√

2 ln
(

1
δ

)
q222q−3Ebδ,q‖θ‖

q−1
2q−2.

− 2q

3
ln
(

1
δ

)
‖θ‖q∞ −

2q

3
ln
(

1
δ

)
σqbqδ,

so that the remaining requirement Uδ ≥ τδ reads

lbδ,1σ
q−2‖θ‖2

2 + lbδ,2‖θ‖qq ≥ 2 ·
√
dσq
√

2 ln
(

1
δ

)
q222q−3Ebδ,2q (1.21)

+ σ
√

2 ln
(

1
δ

)
q222q−3Ebδ,q‖θ‖

q−1
2q−2

+
2 + 2q

3
ln
(

1
δ

)
σqbqδ

+
2q

3
ln
(

1
δ

)
‖θ‖q∞. (1.22)

We know choose the ansatz ‖θ‖q = Cδ,dσd
1
2q . Then again due to monotonicity,

2q − 2 > q and q−1
2q
≤ 1

2
,

σ‖θ‖q−1
2q−2 ≤ σ‖θ‖q−1

q ≤ σCq−1
δ,d σ

q−1d
q−1
2q ≤ Cq−1

δ,d σ
q
√
d.

Coping with ‖θ‖q∞
The term in (1.22) requires additional steps as it cannot generally be compensated
by either term on the left hand side of (1.21): We define the event

Ξδ =

{
∃i ∈ {1, 2, . . . , d} : |Xi| > σ

√
2 ln

(
2d

δ

)}
. (1.23)

and the assumption

Aδ : ‖θ‖∞ ≤ 2σ

√
2 ln

(
2d

δ

)
, (1.24)

Now, whenever Aδ holds we can upper bound (1.22) as

2q

3
ln

(
1

δ

)
‖θ‖q∞ ≤ σq ln

(
2d

δ

)q/2
2q/24q

3
ln

(
1

δ

)
.
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Then direct comparison shows that, as desired, lbδ,2‖θ‖qq exceeds the sum on the
right hand side of (1.21) through (1.22) if

Cδ,d ≥ cδ,d : =

(
3

lbδ,2

(
4
√

2 ln
(

1
δ

)
q222q−3Ebδ,2q + 2

2 + 2q

3
ln
(

1
δ

)
bqδ

))1/q

(1.25)

+ 4
√

2

(
ln(1

δ
)

lbδ,2

)1/q√
ln(2d/δ)

d1/q
(1.26)

+
3

lbδ,2

√
2 ln

(
1
δ

)
q222q−3Ebδ,q, (1.27)

where we impose the restriction

d ≥ d0 = d0(δ, q) := dln(2d/δ)qe. (1.28)

(It allows to control the summand (1.26)).
In summary, under the assumption (1.24) and with the restriction (1.28), whenever
‖θ‖q ≥ Cδ,dσd

1
2q , we indeed have

Pθ

(
d∑
i=1

|Xi|q ≤ Uδ | ξbδ

)
≤ δ.

Definition of the test and conclusion
Given η ∈ (0, 1), let δ = η

5
and take d ≥ dln(2d/δ)qe. Let T =

∑d
i=1 |Xi|q and

consider the test

ϕ(X) = 1 {T > τδ} ∨ 1 {Ξδ}

with τδ from (1.20) and Ξδ from (1.23). Firstly, under the null hypothesis, our
preparation tells us that

PH0(ϕ = 1) ≤ PH0(T > τδ) + PH0(Ξδ)

≤ PH0(T > τδ | ξbδ)P(ξbδ) + PH0(T > τδ | ξCbδ)P(ξCbδ) + PH0(Ξδ)

≤ δ · 1 + 1 · δ + δ = 3δ.

On the other hand, assume that H1 holds, i.e. ‖θ‖q ≥ cδ,dσd
1
2q with cδ,d from (1.25)

through (1.27). We distinguish two cases: Firstly, if assumption Aδ from (1.24)
holds, we know that

Pθ(ϕ = 0) ≤ Pθ(T < τδ)

= Pθ(T < τδ | ξbδ)P(ξδ) + Pθ(T < τδ | ξCδ )P(ξCbδ)

≤ δ · 1 + 1 · δ = 2δ.
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Secondly, ifAδ is false, there is some i∗ ∈ {1, 2, . . . , d} such that |θi∗| > 2σ
√

2 ln
(

2d
δ

)
.

Using this index, we observe

Pθ(ϕ = 0) ≤ Pθ(ΞC
δ )

≤ Pθ

(
|Xi∗| < σ

√
2 ln

(
2d

δ

))

≤ Pθ

(
|θi∗| − |σεi∗| < σ

√
2 ln

(
2d

δ

))

≤ P

(
|σεi∗| > σ

√
2 ln

(
2d

δ

))

≤ δ

d
< δ

with (I) from (1.11). Therefore, as desired, with ρ := cη/5,dσd
1
2q and d ≥ dln(10d/η)qe,

we have

PH0(ϕ = 1) + sup
θ∈Rd: ‖θ‖q>ρ

Pθ(ϕ = 0) = PH0(ϕ = 1) + PH1(ϕ = 0) ≤ η.

Discussion
We now study cδ,d in order to understand the magnitude of ρ := cη/5,dσd

1
2q .

Observe that Eb,p is increasing in b > 0: Let g be the density of N (0, 1). Then
clearly

d

db
Eb,q =

d

db

(∫ b
0
|x|qg(x) dx∫ b
0
g(x) dx

)
=
|b|qf(b)

∫ b
0
g(x) dx− f(b)

∫ b
0
|x|qg(x) dx(∫ b

0
g(x) dx

)2

exists and is positive. Since η/5 ≤ 1/5, we know that bη/5 ≥
√

2 ln(10d) ≥
√

2 ln(10)
and hence Ebη/5,q−2 ≥ E√

2 ln(10),q−2
. On the other hand, Ebη/5,q ≤ E∞,q. Using these

bounds in (1.8) leads to the absolute bound

1

lbη/5,q
≤ 8 max

(
1,

4(q−2)/q

q(q − 1)
· E

(q−2)/q
∞,q

E√
ln(10),q−2

)
.

Taking a look at the dominating factors and summands of cδ,d and keeping (1.28) in
mind, we see that, indeed, there is a constant C2

q such that

ρ = cη/5,dσd
1
2q ≤ C2

q · σ ·

√
ln

(
5

η

)
·

√
2 ln

(
10d

η

)
· d

1
2q .

1.4.6 Proof of Theorem 1.6
For the null hypothesis, with θ = Od, X clearly has the density function

dPθ∼ν0(x) =

(
1√

2πσ2

)d d∏
i=1

exp

(
− x2

i

2σ2

)
, x ∈ Rd.
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On the other hand, for the alternative hypothesis, we choose an ansatz of the form

θ1, . . . , θd
iid∼ (1− h)δ0 + hδz,

where the parameters h, z > 0 will be specified later in a way that ensures sufficient
separation, i.e. ‖θ‖q of sufficient magnitude. The resulting density function for
x ∈ Rd is given by

dPθ∼νρ(x) =

(
1√

2πσ2

)d d∏
i=1

(
(1− h) exp

(
− x2

i

2σ2

)
+ h exp

(
−(xi − z)2

2σ2

))
.

Statistical distance
We now have

divχ2(Pθ∼ν0 ,Pθ∼νρ) =

∫
Rd

(dPθ∼νρ)
2

dPθ∼ν0
(x) dx

=

 1√
2πσ2

∫
R

(
(1− h) exp

(
− x2

2σ2

)
+ h exp

(
− (x−z)2

2σ2

))2

exp
(
− x2

2σ2

) dx


d

=

(
1√

2πσ2

∫
R
(1− h)2 exp

(
− x2

2σ2

)
dx

+
1√

2πσ2

∫
R

2h(1− h) exp

(
−(x− z)2

2σ2

)
dx

+
1√

2πσ2

∫
R
h2 exp

(
−(x− z)2

σ2
+

x2

2σ2

)
dx

)d
=
(
(1− h)2 + 2h(1− h) + h2 exp

(
(z/σ)2

))d
=
(
1 + h2

(
exp((z/σ)2)− 1

))d
Let η′ ∈ [2

3
, 1). Now, with ln(1 + x) ≤ x for x > −1 we see that

divχ2(Pθ∼ν0 ,Pθ∼νρ) < 1 + 4(1− η′)2

is fulfilled if

h <
1√
d

√
ln(1 + 4(1− η′)2)

exp((z/σ)2)− 1︸ ︷︷ ︸
=:g

.

Specification of z, h, η
Motivated by the latter observation, we set z = aσ with a = a(η′) chosen such that
g < 1, e.g.

a(η′) =

√
1

2
ln (1 + ln ((1 + 4(1− η′)2))),

which justifies the choice h = 1√
d
.

At this point, the random number Z = ‖θ‖0 has the distribution Bin(d, 1√
d
) and in
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particular the event {Z = 0} has positive probability so that we have yet to ensure
positive separation ρ between the priors.
To that end, we consider the event ξ = {Z ≥ 1

5
E[Z]} = {Z ≥ 1

5

√
d}. Writing Z as

a sum
∑d

i=1 Bi of iid variables B1, . . . , Bd ∼ Ber( 1√
d
) and assuming that d ≥ 36, we

see
−1 ≤ E[B1]−B1 ≤

1

6

and therefore Hoeffding’s inequality (see [Hoe63]) yields

P

(
√
d−

d∑
i=1

Bi >
4

5

√
d

)
≤ exp

−2

(
4
5

√
d
)2

d ·
(
1 + 1

6

)2

 ≤ 0.4

and hence

P(ξ) = 1− P

(
√
d−

d∑
i=1

Bi >
4

5

√
d

)
≥ 0.6.

Based on that, consider the conditional alternative prior distribution νρ|ξ and assume
that for some test ϕ and η′ > 0 the relation

Pθ∼ν0(ϕ = 1) + Pθ∼νρ(ϕ = 0) > η′

holds. Then we can conclude

Pθ∼ν0(ϕ = 1) + Pθ∼νρ|ξ(ϕ = 0) = Pθ∼ν0(ϕ = 1) + 1−
Pθ∼νρ({ϕ = 0} ∩ ξ)

P(ξ)

≥ Pθ∼ν0(ϕ = 1) + 1− 5

3
Pθ∼νρ(ϕ = 0)

≥ Pθ∼ν0(ϕ = 1) +
5

3
Pθ∼νρ(ϕ = 0)− 2

3

≥ Pθ∼ν0(ϕ = 1) + Pθ∼νρ(ϕ = 0)− 2

3

> η′ − 2

3
.

Therefore, if d ≥ 36, the above construction with h = 1√
d
and z = a(η+ 2

3
) · σ yields

a total error probability exceeding η ∈ (0, 1
3
) while the lq-separation between the

hypotheses (based on θ under ξ) fulfils

ρ ≥ ‖θ‖q ≥
(

1

5

√
d · (a(η + 2

3
)σ)q

)1/q

=
a(η + 2

3
)

51/q
· σ · d

1
2q .

This corresponds to the lower bound claimed in the theorem.
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Chapter 2

Testing Convex Hypotheses on
Gaussian Means

We consider composite-composite testing problems for the expectation in
the Gaussian sequence model where the null hypothesis corresponds to a
closed convex subset C of Rd. We adopt a minimax point of view and our
primary objective is to describe the smallest Euclidean distance between
the null and alternative hypotheses such that there is a test with small
total error probability. In particular, we focus on the dependence of this
distance on the dimension d and variance 1

n
giving rise to the minimax

separation rate. We provide lower and upper bounds on this rate for
different smooth and non-smooth choices for C.
This chapter is based on the article [BCG18].

2.1 Introduction
Let d, n ∈ N\{0}. Similarly as in section 1.2 we consider the d-dimensional random
vector

X = θ +
1√
n
ε,

where ε is a standard Gaussian vector. Note that by construction, the variance
scaling parameter n may also be interpreted as sample size since the distribution of
X is precisely the distribution of the mean of n iid observations from N (θ, Id).

Now, let Θ0 = C ( Rd be closed, nonempty and convex. For θ ∈ Θ = Rd we
write

distC(θ) := inf
c∈C
‖θ − c‖,

where ‖ · ‖ := ‖ · ‖2 denotes Euclidean (l2) norm, see (1.5). A corresponding open
Euclidean ball with center z ∈ Rk and radius r > 0 is denoted Bk(z, r). Moreover,
we indicate vector concatenation by [·, ·], so that, for instance, [z, 1] ∈ Rd if z ∈ Rd−1.

Testing Problem
Given ρ > 0, we are interested in the testing problem

H0 : θ ∈ C vs. H1 : distC(θ) > ρ. (2.1)
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Hence, in the framework of chapter 1, the problem is given by

Θ = Rd,

Pθ = N
(
θ, 1

n
Id
)

for θ ∈ Θ,

Θ0 = C,

Θρ = {θ ∈ Θ ; distC(θ) > ρ}.

Thus, for η ∈ (0, 1), we now aim at describing

ρ∗(η) = ρ∗C(η) = inf

{
ρ > 0 ; ∃ test ϕ : sup

θ∈C
Pθ(ϕ = 1) + sup

θ∈Θρ

Pθ(ϕ = 0) ≤ η

}
.

In particular, similar as in section 1.2, we focus on the dependence of ρ∗C(η) on the
dimension d and variance scaling parameter n.

Related Questions and Literature
An instance of this problem that we have already covered is signal-detection, i.e.
the case where C is a singleton. We can deduce from Theorem 1.1 (setting σ = 1√

n
)

that
d1/4

√
n
.

In its general form however, this problem is a composite-composite testing problem
(i.e. neither C nor Θρ is only a singleton). A versatile way of solving such test-
ing problems was introduced in [GP05], where the authors combine signal-detection
ideas with a covering of the null hypothesis, for deriving minimax optimal testing
procedures for composite-composite testing problems, provided that the null hypoth-
esis is not too large (i.e. that its entropy number is not too large, see Assumption
(A3) in [GP05]). In this case, the authors prove that the minimax-optimal test-
ing separation rate is the same as the signal-detection separation rate, namely d1/4√

n
.

This idea can be generalised also to the case where the null hypothesis is “too large”
(when Assumption (A3) in [GP05] is not satisfied); the approach then implies that
an upper bound on the minimax rate of separation is the sum of the signal-detection
rate and the optimal estimation rate in the null hypothesis C – see [BN13] for an
illustration of this for a specific convex shape. Using this technique, one finds that
the smaller the entropy of C, the smaller the separation rate.
This idea has the advantage of generality, but is nevertheless sub-optimal in many
simple cases. For instance, if C is a half-space, the minimax-optimal separation rate
is 1√

n
, which is much smaller than the minimax-opimal signal-detection rate, even

though a half-space has a much larger entropy (it is even infinite) and larger dimen-
sion than a single point. See Section 2.2 for an extended discussion on this case.
This highlights the fact that for such a testing problem, it is in many cases not the
entropy, or size, of the null hypothesis that drives the rate, but rather some other
properties of the shape of C.
In order to overcome the limitations of this approach, some other ideas were pro-
posed. A first line of work can be found in [BHL05], where the authors consider
our testing problem for separation in ‖.‖∞-norm rather than ‖.‖2-norm. Since any
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convex set can be written as a intersection of half-spaces, they rewrite the problem
as a multiple testing problem. This approach is quite fruitful, but the ‖.‖∞-norm
results translate in a non-optimal way to ‖.‖2-norm in terms of the dependence on
the dimension d, particularly for large d. A second main direction that was inves-
tigated was to consider testing for some specific convex shapes, as e.g. the cone of
positive, monotone, or convex functions, see e.g. [JN02], or also balls for some met-
rics [LNS99, Car15]. These papers exhibit the minimax-optimal separation distance
– or near optimal distance, in some cases of [JN02] and [LNS99] – for the specific
convex shapes that are considered, namely cones and smoothness balls. The models
considered in these works are different from our model as they consider functional
estimation; also, they do not provide results for more general choices of the null hy-
pothesis. In Sections 2.2 and 2.4, we derive results for our model and shapes related
to those of these papers - namely the positive orthant and the Euclidian ball - in
order to relate our work with these earlier results. Finally, a last type of results that
are related to our problem is the case where the null hypothesis can be parametrised,
see e.g. [CD13] where the authors consider shapes that can be parametrised by a
quadratic functional. This approach and their results suggest that the smoothness
of the shape of C has an impact on the testing rate.
In this chapter, we want to take a more general approach toward the testing problem
(2.1). In section 2.2, we expose the range of possible separation rates by demon-
strating that, without any further assumptions on C, the statement

1√
n

. ρ∗C .

√
d√
n

(2.2)

is sharp up to ln(d)-factors. After that, in Sections 2.3 and 2.4, we investigate
the potential of a geometric smoothness property of the boundary of C. Despite
its simplicity, this property takes us quite far: In particular, given any separation
rate satisfying (2.2), it allows for constructing a set C exhibiting this rate up to
ln(d)-factors.

2.2 A General Guarantee and Extreme
Cases

The quantity ρ∗C clearly depends on C.
Let us firstly examine a simple, essentially one-dimensional case, namely a half-
space.

Theorem 2.1. Let C = CHS := Rd−1 × (−∞, 0] (if d = 1, CHS = (−∞, 0]). Then, in
the testing problem (2.1), we have√

1

2n
ln(1 + 4(1− η)2) ≤ ρ∗CHS

(η) ≤

√
8

n
ln

(
1

η

)
and therefore

ρ∗CHS
∼ 1√

n
.

/

25



CHAPTER 2. TESTING CONVEX HYPOTHESES ON GAUSSIAN MEANS

Remark 2.2. As can be seen in the proof (section 2.5.2), this testing problem is
essentially equivalent to the problem θ = 0 vs. θ = ρ in dimension d = 1, so that,
alternatively, the rate 1√

n
can be obtained by analysing the optimal test in the sense

of Neyman-Pearson. Furthermore, and in fact closely related to that, note that the
lower bound in the previous theorem is valid for any choice of closed convex set C
such that C and Rd\C are non-empty:

1√
n
. ρ∗C.

Indeed, we find this rate by considering a fixed pair of points (θ0, θ1) ∈ C ×Θρ that
minimises the distance between C and Θρ, i.e. ‖θ0 − θ1‖ = ρ. That seems to have
firstly been discussed in [Bur79]; other related (classical) literature would be for
instance [Che52] and [Ing00]. /

Now, on the other hand, making no additional assumptions about C, a natural choice
ϕ for solving (2.1) is a plug-in test based on confidence balls. This gives rise to the
following general upper bound:

Theorem 2.3. Let C be an arbitrary closed convex subset of Rd such that C and
Rd \ C are non-empty. Then, in the testing problem (2.1), we have

ρ∗C(η) ≤ 2

√√√√d

n
+

2

n

√
d ln

(
2

η

)
+

2

n
ln

(
2

η

)
and therefore

ρ∗C .

√
d√
n
.

/

Remark 2.4. Note that this upper bound is the rate of estimation of θ in l2 norm
in the model (2.1), see (1.11)). /

Remark 2.5. From Remark 2.2 and Theorem 2.3 it is clear that

1√
n
. ρ∗C .

√
d√
n

whenever C is a closed convex subset of Rd such that C and Rd\C are non-empty. /

Given this observation, it is natural to ask if the upper bound in Theorem 2.3 is
also sharp in the sense that there is a choice of C that requires the separation rate√
d√
n
, at least up to logarithmic factors. It turns out that the answer is yes when C is

taken to be an orthant:

Theorem 2.6. Let C = CO := (−∞, 0]d, d ≥ 42, η ∈ (0, 8
9
) and

Mη := max

(
32,

⌈
2

1− ln(2)
ln(d) + 1 +

2

1− ln(2)
ln

(
1.8

8
9
− η

)⌉)
.

Then, for the testing problem (2.1), we have

ρ∗CO(η) ≥ 1

28

1

M
3/2
η

√
d√
n
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and therefore, if d is large enough in the sense that Mη ≤ C ln(d) for some C > 0,
√
d

ln(d)3/2
√
n

. ρ∗CO .

√
d√
n
.

/

This result heavily relies on tailoring the priors such that they have a certain number
of moments in common. A related application of this approach can be found in the
proof of Theorem 1 in [JN02], see also for instance [CL11].
Furthermore, in the proof of Theorem 2.6 (section 2.5.4) we face a similar situation as
in the proof of Theorem 1.6 (section 1.6)) as the preliminary prior for the alternative
hypothesis has positive support inside CO. This is handled through a similar post-
processing step.

2.3 A Simple Smoothness-Type Property
Clearly, the two extreme cases CHS and CO differ significantly with respect to smooth-
ness of their boundaries. Based on this observation, in order to be able to handle
ρ∗C more flexibly, we propose to describe convex sets by their boundaries’ degree of
smoothness, where the boundary of a set S ∈ Rd is denoted by ∂S and its closure by
S = S ∪ ∂S. To begin with, we examine the potential of the following very simple
and purely geometric smoothness concept:

Definition 2.7. Let R ≥ 0 and S ⊆ Rd with non-empty interior. S is called
R-rounded if

∀x ∈ ∂S ∃z ∈ S : x ∈ Bd(z, R) ⊆ S.

/

Remark 2.8. Note that R-rounding is a stronger requirement the higher the value
of R, i.e. intuitively the degree of the boundary’s smoothness grows with R. In
particular, a half space CHS is∞-rounded, a ball Bd(z, R) (with z ∈ Rd, R ∈ (0,∞))
is R-rounded and the orthant CO is 0−rounded. The definition of R−rounding is
closely related to the so-called R-rolling condition employed in [ACC17a]. In fact,
R-rounding of S is equivalent to saying that Rd\S fulfils the R-rolling condition.
Another related concept worth mentioning is the radius of curvature, though the
connection is more subtle: The radius of curvature at a point x ∈ ∂S would be
the radius r of the ball B that best fits ∂S in the sense of a common tangential
hyperplane of ∂S and B at x and common analytical curvature, see for instance
[Cas96]. Hence, it is possible that the infimum R of these radii r with respect to
x ∈ ∂S corresponds to the parameter R in our previous definition. However, we can
then still not easily guarantee that the resulting balls B of the form Bd(z,R) fulfil
Bd(z,R) ⊆ S as required in Definition 2.7. /

Since smoothness is usually defined as a local property of a function, we provide
a suggestion for how to cast the above concept in that context for a closed convex
set C: Given any x ∈ ∂C, without loss of generality (w.l.o.g.) apply a rotation
and translation G such that x′ = G(x) = Od and C ′ := G(C) ⊆ Rd−1 × [0,∞).
Now, assume that there is an r ∈ (0, R] and a function f : B → [0,∞), where
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B = Bd−1(Od−1, r), such that its graph is contained in ∂C ′ and C ′ ∩ (B × [0,∞))
is contained in the epigraph of f – see the figure below for an illustration. The
following lemma states sufficient conditions for R-rounding locally at x ∈ C ′, i.e. at
G−1(x) ∈ ∂C:
Lemma 2.9. In the situation described in the latter paragraph, if f is twice differ-
entiable on B (i.e. the gradient∇f(·) and Hessian matrix Hf(·) exist), the following
conditions are sufficient in order that the graph of f remains below Bd([Od−1, R], R),
i.e. C ′ is locally R-rounded at Od.

∇f(Od−1) = Od−1,

∀x ∈ B\{Od−1} : 0 ≤ λmin(Hf(x)), λmax(Hf(x)) ≤ 1

R
,

where λmin(·) and λmax(·) are the lowest and highest eigenvalues of a real sym-
metric matrix, respectively.

/

Figure 2.1: In this example C is only 0-rounded in the sense of Definition 2.7, but in the local
sense of Lemma 2.9, there are points x ∈ ∂C with 0-rounding, ∞-rounding and “non-degenerate”
rounding such as Od, where, however, the maximum admissible radius r of B is strictly smaller
than R.
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Now, let us examine how the additional assumption of R−rounding may affect the
general upper bound of Theorem 2.3:

Theorem 2.10. If C is R−rounded for some R ∈ (0,∞), for the testing problem
(2.1), we have

ρ∗C(η) ≤

√
2

n
ln

(
8

η

)
+

d

2nR
+

2

nR

√
d ln

(
4

η

)
+

1

nR
ln

(
4

η

)
+

√
2

n
ln

(
2

η

)
and therefore, taking Theorem 2.3 into account,

ρ∗C . max

(
1√
n
,min

(√
d√
n
,
d

nR

))
.

/

The following result confirms that this upper bound can be sharp up to ln(d) factors,
namely in the case where C is taken as an R-inflated orthant:

Theorem 2.11. Let d ≥ 43, η ∈ (0, 8
9
) and

C = CIO = CO +B(Od, R) =
⋃
z∈CO

B(z,R),

where CO = (−∞, 0]d is the orthant from Theorem 2.6. Furthermore, let

Mη := max

(
32,

⌈
2

1− ln(2)
ln(d− 1) + 1 +

2

1− ln(2)
ln

(
1.8

8
9
− η

)⌉)
.

Then, in the testing problem (2.1), we have with s =
√

3
28

1

M
3/2
η
√
n

ρ∗CIO(η) ≥ 1

12
min

(
(d− 1)s2

R
,
√

3
√
d− 1 s

)
and therefore, if d is large enough in the sense thatMη ≤ C ln(d−1) for some C > 0,

ρ∗CIO & max

(
1√
n
,min

(
1

ln(d)3
· d
nR

,
1

ln(d)3/2
·
√
d√
n

))
.

/

2.4 Discussion
The concept of R-rounding allows for the construction of hypotheses C with any
separation rate 1√

n
. ρ∗C .

√
d√
n
, up to ln(d)-factors. On the other hand, we must

acknowledge that R−rounding is too weak a concept to fully describe the difficulty
of testing an arbitrary C; an examination of the natural R-rounded set, namely
a ball of radius R, provides clear evidence of this drawback. The result is a direct
generalisation of the known rate ρ∗C ∼ d

1
4√
n
in the signal-detection setting, see [Bar02].
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Theorem 2.12. Let η ∈ (0, 1) and d ≥ ln(2/η). If C = CB = Bd(z,R), z ∈ Rd and
R > 0, for the testing problem (2.1), we have for s :=

√
d−1
n

√
ln(1 + 4(1− η)2)

ρ∗CB(η) ≥ s

2
√
s+R2

& min

(
d

1
4

√
n
,

√
d

nR

)
and also

ρ∗CB(η) ≤ min

2
√

2
d

1
4

n
1
2

,
2
√
d

nR + 2

√
n ln

(
2
η

)

√

ln

(
2

η

)
+ 3

√
2

n
ln

(
2

η

)

. max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))
.

Therefore,

ρ∗CB ∼ max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))
.

/

Clearly, Theorem 2.11 does not capture this case. As a consequence, future work
will be concerned with finding a stronger concept, possibly a localised version of
R−rounding, that ideally allows for describing ρ∗C for any choice of C. However, we
suspect this to be quite an ambitious goal.

2.5 Proofs
2.5.1 Frequently used Bounds for Expressions

Containing Square Roots
We will employ the following bounds on several occasions which makes it convenient
to mention them here.
Lemma. For any a > 0, b ∈ R, we have

a

2
√
a+ b2

≤
√
a+ b2 − b ≤ a

2b
(2.3)

and for any b > 0, a ≤ b2 we have

b−
√
b2 − a ≥ a

2b
. (2.4)

Proof. Firstly, through Taylor expansion of
√
a+ b2 − b as a function in a, we see

that there is a ξ ∈ (0, a) such that
√
a+ b2 − b =

a

2
√
ξ + b2

.
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Now, with ξ ≥ 0 and ξ ≤ a we obtain the upper and lower bounds in (2.3), respec-
tively. Secondly, explicit calculation tells us that

b−
√
b2 − a ≥ a

2b
⇔ a2

4b2
≥ 0,

which concludes the proof. 2

2.5.2 Proof of Theorem 2.1
We prove independently that the order of ρ∗CHS

is lower and upper bounded by 1√
n
.

Lower Bound
In accordance with the framework in section 1.4.1, we verify that the bound holds
in the special case ν0 = δOd and νρ = δρ·ed , where ed is the last standard basis
vector ed = [Od−1, 1]. Since both the null and alternative hypotheses are simple, the
corresponding density functions dPθ∼ν0(x) and dPθ∼νρ(x) are readily given and we
obtain∫

Rd

dP2
θ∼νρ

dPθ∼ν0
(x) dx =

√
n

2π

d ∫
Rd

exp
(
−n(xd − ρ)2 +

n

2
x2
d −

n

2
(‖x‖2 − x2

d)
)

dx

=

√
n

2π

∫
R

exp
(
−n(xd − ρ)2 +

n

2
x2
d

)
dxd

=

√
n

2π
exp(nρ2)

∫
R

exp
(
−n

2
(xd − 2ρ)2

)
dxd

= exp(nρ2).

Therefore inequality (1.10) is satisfied for

ρ <

√
1

n
ln(1 + 4(1− η)2)

and hence particularly for

ρ ≤
√

1

2n
ln(1 + 4(1− η)2).

This yields the claim.

Upper Bound
Let τ η

2
=

√
2
n

ln
(

2
η

)
and define the test

ϕ(X) = 1{Xd>τ η
2
}.

Then for any θ ∈ C, we have with (I) of (1.11)

Pθ(ϕ = 1) ≤ P
(

1√
n
εd ≥ τ η

2

)
≤ η

2
.
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On the other hand, let now ρ = 2τ η
2
. Then for any θ ∈ Θρ, we similarly have

Pθ(ϕ = 0) ≤ P
(

2τ η
2

+ 1√
n
εd ≤ τ η

2

)
≤ P

(
1√
n
εd ≤ −τ η

2

)
≤ η

2
.

This concludes the proof and clearly ρ ∼ 1√
n
.

2.5.3 Proof of Theorem 2.3

Let τ η
2

= d
n

+ 2
n

√
d ln

(
2
η

)
+ 2

n
ln
(

2
η

)
and define the test

ϕ(X) = 1{distC(X)>
√
τ η
2
}.

Then for any θ ∈ C, we have with (II) in (1.11)

Pθ(ϕ = 1) ≤ Pθ
(
‖X − θ‖ >√τ η

2

)
≤ P

(
1
n
‖ε‖2 ≥ τ η

2

)
≤ η

2
.

On the other hand, let now ρ = 2
√
τδ and θ ∈ Θρ arbitrary. Then similarly

distC(X) ≤√τ η
2
⇒ ‖X − θ‖ ≥√τ η

2

and hence
Pθ(ϕ = 0) ≤ η

2
.

This concludes the proof and we see √τ η
2
∼
√

d
n
.

2.5.4 Proof of Theorem 2.6
The arguments of this proof are related to the ones used in [JN02] and [CL11]. We
decompose the proof into several steps.

Choice of priors
We make use of the following lemma used and explained in [JN02] :
Lemma. For any M ∈ N and b > 0, there are distributions ν̃0 and ν̃1 with the
following properties:

(I) supp(ν̃0) ⊆ [−b, 0], supp(ν̃1) ⊆ [−b, 0] ∪
{

b
4M2

}
,

(II) ν̃1

({
b

4M2

})
≥ 1

2
,

(III) ∀k ∈ {0, 1, . . . ,M} :
∫
zk ν̃0(dz) =

∫
zk ν̃1(dz).

(2.5)

For now, let ν̃i be such distributions and νi = ν̃⊗di , i ∈ {0, 1}; M, b and ρ will be
specified later. Furthermore, writing σ2 = 1

n
, let

Pθ∼νi =
(
ν̃i ∗ N (0, σ2)

)⊗d
, i ∈ {0, 1},

where ∗ denotes convolution. Clearly, the corresponding density function can be
written as

dPθ∼νi(x) =
d∏
j=1

(
Eθj∼ν̃i [φ(xj; θj, σ

2)]
)
, i ∈ {0, 1},
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where φ(x; θ, σ2) is the density of N (θ, σ2). It will be convenient to examine the
case d = 1, denoted by P̃θ∼νi .

Controlling the total variation distance
Based on our construction, we have for i ∈ {0, 1} and fixed x ∈ R

Eθ∼ν̃i [φ(x; θ, σ2)] = φ(x; 0, σ2)

∫
exp

(
2xθ − θ2

2σ2

)
ν̃i(dθ)

= φ(x; 0, σ2)

∫ ∞∑
k=0

1

k!

(
2xθ − θ2

2σ2

)k
ν̃i(dθ)

= φ(x; 0, σ2)

∫ ∞∑
k=0

1

k!(2σ2)k
(2xθ − θ2)k ν̃i(dθ). (2.6)

Let now

Dk(x) :=

∫
(2xθ − θ2)k ν̃1(dθ)−

∫
(2xθ − θ2)k ν̃0(dθ).

Then (2.6) in conjunction with (2.5.III) tells us that

Eθ∼ν̃1 [φ(x; θ, σ2)]− Eθ∼ν̃0 [φ(x; θ, σ2)]

φ(x; 0, σ2)
=

∞∑
k=bM/2c+1

1

k!(2σ2)k
Dk(x).

and thus

‖P̃θ∼ν1 − P̃θ∼ν0‖TV =

∫ ∣∣Eθ∼ν̃1 [φ(x; θ, σ2)]− Eθ∼ν̃0 [φ(x; θ, σ2)]
∣∣ dx

≤
∞∑

k=bM/2c+1

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ2) dx

∣∣∣∣ . (2.7)

We take a moment to upper bound the individual summands: Since

(2xθ − θ2)k ≤ 4k|x|kbk + 2kb2k

and, by a classical formula for Gaussian absolute moments (see [Win12]),∫
|x|kφ(x, 0, σ2) dx =

σk
√

2
k

√
π

Γ((k + 1)/2) ≤ σk
√

2
k

√
π

⌈
k

2

⌉
!,

we have ∣∣∣∣∫ Dk(x)φ(x; 0, σ2) dx

∣∣∣∣ ≤ 2

(
4kbk

∫
|x|kφ(x; 0, σ2) dx+ 2kb2k

)
≤ 2

(
1√
π

(
4
√

2bσ
)k ⌈k

2

⌉
! + 2kb2k

)
.
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Now through Stirling’s approximation and elementary manipulation, with M ≥ 32
we obtain ⌈

k
2

⌉
!

k!
≤ e√

2π

⌈
k
2

⌉d k2e
kk+ 1

2

⌈
k
2

⌉1/2

ed
k
2e︸ ︷︷ ︸

≤
√

3/k

ek

≤ e
√

3√
2π

(√
k + 1

2k2

)k+1

ek

≤ e
√

3

5
√

2π

(√
17

32

1√
k

)k

≤ 1

2

(√
17

32

1√
k

)k

and

k! ≥
√

2πkk
√
ke−k ≥ 4

√
π

(
k

e

)k
.

That yields

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ2) dx

∣∣∣∣ ≤ 2

(
1

k!
√
π

(
4√
2

b

σ

)k ⌈
k

2

⌉
! +

1

k!

(
b

σ

)2k
)

≤ 2

1

2

(√
17

2

b

σ
√
k

)k

+
1

4
√
π

(
e
b2

σ2k

)k .

At this point, we introduce a more explicit choice of b, namely b = c
√
Mσ with

c = 2
√

2√
17e
≥ 1

4
. This choice guarantees

1

k!(2σ2)k

∣∣∣∣∫ Dk(x)φ(x; 0, σ2) dx

∣∣∣∣ ≤ (1 +
1

2
√
π

)(√
17

2

b

σ
√
k

)k

and moreover, continuing (2.7),

‖P̃θ∼ν1 − P̃θ∼ν0‖TV ≤
(

1 +
1

2
√
π

) ∞∑
k=bM/2c+1

(√
17

2

b

σ
√
k

)k

≤
(

1 +
1

2
√
π

)
2

e− 2

(
2

e

)bM/2c

and hence finally

‖Pθ∼ν1 − Pθ∼ν0‖TV ≤ d

(
1 +

1

2
√
π

)
2

e− 2

(
2

e

)bM/2c

,
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since the total variation distance is subadditive with respect to product measures;
this is used for instance in [MR18].

Now, by direct computation, we see that for any η′ ∈ (0, 1)

1

2
‖Pθ∼ν1 − Pθ∼ν0‖TV < 1− η′ (2.8)

is fulfilled if

M ≥ 2

1− ln(2)
ln(d) + 1 +

2

1− ln(2)
ln

(
1.8

1− η′

)
︸ ︷︷ ︸

=:cη′

,

so we choose

M := max

(
32,

⌈
2

1− ln(2)
ln(d) + cη′

⌉)
.

Application
Note that the bound (2.8) does not formally allow for determining a lower bound
on ρ∗C yet since H0 and H1 are not separated in a Euclidean sense. In a final step,
we will resolve this by a suitable restriction of H1.

Let Y =
∑d

i=1 1{θi=u}, i.e. the number of coordinates of θ taking the value u = b
4M2 .

Obviously, if θ ∼ ν1, we have Y ∼ Bin(d, ν̃1({u})). By property (II) of (2.5) and
Hoeffding’s inequality, this yields that if d ≥ 42,

Pθ∼ν1
(
Y ≥ d

3

)
≥ 9

10
.

Now, let ξ = {Y ≥ d
3
} and

H ′1 : θ ∼ ν1|ξ.

Assuming that for some test ϕ the relation

Pθ∼ν0(ϕ = 1) + Pθ∼ν1(ϕ = 0) > η′

holds, we can conclude

Pθ∼ν0(ϕ = 1) + Pθ∼ν1|ξ(ϕ = 0) = Pθ∼ν0(ϕ = 1) + 1− Pθ∼ν1({ϕ = 1} ∩ ξ)

P(ξ)

≥ Pθ∼ν0(ϕ = 1) + 1− 10

9
Pθ∼ν1(ϕ = 1)

≥ Pθ∼ν0(ϕ = 1) +
10

9
Pθ∼ν1(ϕ = 0)− 1

9

≥ Pθ∼ν0(ϕ = 1) + Pθ∼ν1(ϕ = 0)− 1

9

> η′ − 1

9
.
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Hence, the above construction yields a total error probability exceeding η = η′− 1
9
∈

(0, 8
9
) while the l2-separation between the hypotheses (based on θ under ξ) fulfils

ρ =

√
d√
3

b

4M2
=

1

2e
√

25.5

1

M3/2

√
d√
n
≥ 1

28

1

M3/2

√
d√
n
.

This corresponds to the claimed lower bound.

2.5.5 Proof of Lemma 2.9
We need to ensure that on B, the graph of f remains below B̃ = Bd([Od−1, R], R)

since that corresponds to the fact that B̃ is locally contained in C, as required in
Definition 2.7. This is equivalent to

∀x ∈ B : 0 ≤ f(x) ≤ R−
√
R2 − ‖x‖2.

Applying Taylor’s theorem with Lagrange’s remainder yields

∃s ∈ (0, 1) : f(x) =
1

2
xTHf(sx)x,

since by construction f(Od−1) = 0 and ∇f(Od−1) = Od−1. Clearly, in order that
f ≥ 0 on B, it is sufficient to require λmin(Hf(y)) ≥ 0 for y ∈ B\{Od−1}. On the
other hand, we can use a classical eigenvalue representation to obtain the desired
upper bound: For some s ∈ (0, 1),

f(x) =
1

2
‖x‖2

(
x

‖x‖

)T
Hf(sx)

(
x

‖x‖

)
≤ 1

2
‖x‖2 max

‖y‖=1
yTHf(sx)y

=
1

2
‖x‖2λmax(Hf(sx))

≤ 1

2R
‖x‖2

≤ R−
√
R2 − ‖x‖2

by assumption and (2.4).

2.5.6 Proof of Theorem 2.10
We define the test statistic

T (X) := distC(X),

and a corresponding test of the form ϕ(X) = 1{T (X)>τ}.
Let θ ∈ C. W.l.o.g. assume that θ′ := Od ∈ C ⊆ Rd−1 × [0,∞) and θ′ minimises
the distance between θ and ∂C. Now let z = [Od−1, R] so that by construction
θ′ ∈ Bd(z,R) ⊆ C.
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For τ > 0, we have

distC(X) > τ =⇒ distBd(z,R)(X) > τ

=⇒
∥∥∥ 1√

n
ε− z

∥∥∥−R > τ.

Now, writing ε1:(d−1) := [ε1, ε2, . . . , εd−1] and using (2.3), we obtain∥∥∥ 1√
n
ε− z

∥∥∥−R =

√∥∥∥ 1√
n
ε− z

∥∥∥2

−R

=

√
1
n
‖ε1:(d−1)‖2 +

(
1√
n
εd −R

)2

−R

≤
√

1
n
‖ε1:(d−1)‖2 +

(
R + 1√

n
|εd|
)2

−R

≤ R + 1√
n
|εd|+

‖ε1:(d−1)‖2

2n(R+
1√
n
|εd|)
−R

≤ 1√
n
|εd|+

‖ε1:(d−1)‖2

2nR
,

which tells us
Pθ(T (X) ≥ τ) ≤ P

(
1√
n
|εd|+

‖ε1:(d−1)‖2

2nR
≥ τ

)
.

Clearly, this bound holds generally in the sense

sup
θ∈C

Pθ(ϕ = 1) ≤ P
(

1√
n
|εd|+

‖ε1:(d−1)‖2

2nR
≥ τ

)
.

Based on the general property

P(A ≥ τ1) ≤ η

4
∧ P(B ≥ τ2) ≤ η

4
=⇒ P(A+B ≥ τ1 + τ2) ≤ η

2

for random variables A and B and by using (I) and (II) of (1.11), we finally obtain
the rejection threshold

τ :=

√
2

n
ln

(
8

η

)
+

d

2nR
+

2

nR

√
d ln

(
4

η

)
+

1

nR
ln

(
4

η

)
∼ max

(
1√
n
,
d

nR

)
.

On the other hand, w.l.o.g., choose θ = [Od−1,−ρ]. This is valid since by construc-
tion θ minimises the distance between C and Θρ and Od represents an arbitrary
element of ∂C. We have

distC(X) ≤ τ =⇒ Xd ≥ −τ ⇐⇒ εd ≥
√
n(ρ− τ),

so that it is sufficient to ensure

sup
θ∈Θρ

Pθ(ϕ = 0) ≤ P(εd ≥
√
n(ρ− τ)) ≤ η

2
∈ (0, 1

2
),

which leads to the condition

ρ ≥ τ +

√
2

n
ln

(
2

η

)
∼ τ.

This concludes the proof.
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2.5.7 Proof of Theorem 2.11
This is a variation on the proof of Theorem 2.6. Using the same construction and
notation as previously, and taking d ≥ 3, let now for i ∈ {0, 1}

νi = ν̃⊗d−1
i ⊗ δR.

Since the mutual deterministic coordinate θd = R is irrelevant for the total variation
distance between the resulting distributions Pθ∼ν0 and Pθ∼ν1 , the bounds in Step 2
of the proof of Theorem 2.6 also hold here with d− 1 instead of d.
The most important modification arises when calculating ρ: Now, if at least d−1

3
of

the coordinates take the value u = b
4M2 , computing the Euclidean distance of θ from

C and using (2.3) leads to

ρ ≥
√
R2 +

d− 1

3
u2 −R ≥ (d− 1)u2

6
√
R2 + d−1

3
u2

≥ (d− 1)u2

6R + 6√
3

√
d− 1u

≥ 1

12
min

(
(d− 1)u2

R
,
√

3
√
d− 1u

)

∼ min

(
1

ln(d)3
· d
nR

,
1

ln(d)3/2
·
√
d√
n

)
,

if d is large enough in the sense that Mη ≤ C ln(d − 1) for some C > 0, where Mη

is given in the statement of the theorem. This concludes the proof.

2.5.8 Proof of Theorem 2.12
W.l.o.g., let z = Od.

Lower Bound
Let ν0 = δRed , giving rise to the density function

dPθ∼ν0(x) :=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) d−1∏
i=1

exp
(
−n

2
x2
i

)
.

On the other hand, for a suitable h > 0 specified in a moment, let νρ be the uniform
distribution on

Ph := {[h · v,R] | v ∈ {−1, 1}d−1}.

Since each element of Ph has Euclidean distance
√
R2 + (d− 1)h2−R from C, which

should correspond to ρ, we set h2 = (R+ρ)2−R2

d−1
. This gives rise to the following density
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function:

dPθ∼νρ(x) :=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) 1

2d−1

∑
v1,...,vd−1∈{−1,1}

d−1∏
i=1

exp
(
−n

2
(xi − h · vi)2

)

=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2

) 1

2d−1

d−1∏
i=1

exp
(
−n

2
x2
i −

n

2
h2
)

2 cosh (nhxi)

=
( n

2π

) d
2

exp
(
−n

2
(xd −R)2 − (d− 1)

n

2
h2
) d−1∏
i=1

exp
(
−n

2
x2
i

)
cosh (nhxi) ,

so that

P2
θ∼νρ(x) :=

( n
2π

)d
exp

(
−n(xd −R)2 − (d− 1)nh2

) d−1∏
i=1

exp
(
−nx2

i

)
cosh2 (nhxi) .

Now, from the computation in section 1.4.2 and the definition of h, we can directly
conclude that∫

Rd

dP2
θ∼νρ

dPθ∼ν0
(x) dx = cosh(nh2)d−1

≤ exp

(
(d− 1)

n2h4

2

)
= exp

(
(d− 1)

n2

2

((R + ρ)2 −R2)2

(d− 1)2

)
.

By direct computation, this tells us that (1.10) is fulfilled if

ρ ≤

√√
d− 1

n
s+R2 −R, where s :=

√
ln(1 + 4(1− η)2), (2.9)

It remains to investigate (2.9) a little closer. Application of (2.3) now yields√√
d− 1

n
s+R2 −R ≥

√
d− 1

n
s

2

√√
d− 1

n
s+R2

and distinguishing the cases R2 ≤
√
d−1
n
s and R2 ≥

√
d−1
n
s tells us that√√

d− 1

n
s+R2 −R & min

(
(d− 1)

1
4

n
1
2

,
(d− 1)

1
2

n ·R

)
.
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Upper Bound
We define the test statistic

T (X) := ‖X‖2 −R2

and a corresponding test of the form ϕ(X) = 1{T (X)>τ}.

On the one hand, in order to control the type-I-error probability, take any θ ∈ C, so
that ‖θ‖ ∈ [0, R]. Clearly, n‖X‖2 ∼ χ2

n‖θ‖2(d). Therefore, for τ ′ > 0 and with the
notation Zλ ∼ χ2

λ(d), we can guarantee

Pθ(ϕ = 1) = P(Zn‖θ‖2 > n‖θ‖2 + nτ ′) ≤ η

2

by setting

τ ′ =
d

n
+ 2

√(
d

n2
+

2

n
‖θ‖2

)
ln

(
2

η

)
+

2

n
ln

(
2

η

)
,

where we use (II) from (1.11). Since ‖θ‖ ≤ R, this yields that

sup
θ∈C

Pθ(ϕ = 1) ≤ sup
θ∈C

P(Zn‖θ‖2 > nR2 + nτ) ≤ η

2

for

τ =
d

n
+ 2

√(
d

n2
+

2

n
R2

)
ln

(
2

η

)
+

2

n
ln

(
2

η

)
.

On the other hand, in order to satisfy a prescribed level η
2
for the Type-II-error, take

any θ ∈ Θρ with ‖θ‖ > R + ρ. Then again, n‖X‖2 ∼ χ2
n‖θ‖2(d), so that we need to

ensure

Pθ(ϕ = 0) = P(Z ′ ≤ nR2 + nτ) ≤ η

2
, where Z ′ ∼ χ2

n‖θ‖2(d). (2.10)

In this case, (III) of (1.11) yields the sufficient condition

d+nR2 +2

√
(d+ 2nR2) ln

(
2

η

)
+2 ln

(
2

η

)
≤ d+n‖θ‖2−2

√
(d+ 2n‖θ‖2) ln

(
2

η

)
.

The right hand side is increasing in ‖θ‖ if d ≥ ln(1/η
2
), so that, similar as for the

type-I-error, (2.10) holds uniformly over Θρ if

d+nR2+2

√
(d+ 2nR2) ln

(
2

η

)
+2 ln

(
2

η

)
≤ d+n(R+ρ)2−2

√
(d+ 2n(R + ρ)2) ln

(
2

η

)
.

Using
√
a+ b ≤

√
a+
√
b (for a, b > 0) and (2.3) respectively, we obtain two different

sufficient bounds for ρ:

ρ ≥ 2
√

2
d

1
4

√
n

√
ln

(
2

η

)
+ 3

√
2

n
ln

(
2

η

)
;

ρ ≥ 2
√
d

nR + 2

√
n ln

(
2
η

)
√

ln

(
2

η

)
+ 3

√
2

n
ln

(
2

η

)
.
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Therefore, as claimed, the upper bound

ρ∗C . max

(
1√
n
,min

(
d

1
4

√
n
,

√
d

nR

))
holds. This concludes the proof.
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Chapter 3

Testing the Equality in
Distribution of Two Random
Graphs

In this chapter we study the problem of testing if two random graphs
have the same underlying distribution. More precisely, we observe M iid
samples from two inhomogeneous Erdős-Renyi-graph distributions with
parameter matrices P and Q on a common set of n vertices each and make
no further assumption on the two distributions. Considering a testing
problem of the form

H0 : P = Q vs. H1 : dist(P,Q) > ρ

for some ρ > 0 and an appropriate measure of separation, dist, we ap-
proach the task of identifying the smallest value for ρ, denoted ρ∗, enabling
the existence of a test ϕ with small total error probability in a minimax
sense.
We derive the precise dependence of ρ∗ on n and M for four different nat-
ural choices of dist. In particular, it turns out that this choice is crucial as
the testing problem is only feasible in two of the four cases, namely where
dist(P,Q) is the Frobenius or spectral norm of P − Q. In these cases, if
M ≥ 2, we have

ρ∗ ∼
√
n√
M
.

This chapter is related to the articles [GGCvL17a] and [GGCvL17b], yet
most of the results are independent as they are not proved in the articles
and also no simple corollaries from there.

3.1 Introduction
For n ∈ N\{0, 1}, let Vn = {1, 2, . . . , n} represent a fixed set of n vertices of arbitrary
type – for instance, they may correspond to geographical points, brain cells or
persons. These vertices are now randomly connected by edges as follows: For i, j ∈
Vn, edge (i, j) occurs with probability Pij ∈ [0, 1], where Pii = 0. Moreover, the
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edges are independent and undirected, that is, we do not distinguish between (i, j)
and (j, i)). Clearly, this model is fully described through the matrix

P = (Pij)i,j∈Vn ∈ Gn = {G ∈ [0, 1]n×n ; G = GT ∧ ∀i ∈ Vn : Gii = 0}, (3.1)

where GT is the standard matrix transpose. Now, the observed random object of
interest is the resulting adjacency matrix

A ∈ Sn = {S ∈ {0, 1}n×n ; S = ST ∧ ∀i ∈ Vn : Sii = 0}, (3.2)

where Aij is the indicator for the occurence of edge (i, j). By construction, this
essentially corresponds to observing

d :=

(
n

2

)
independent Bernoulli random variables with respective parameters Pij, i < j.
The type of random graph we just described is also known as an inhomogeneous
Erdős-Renyi-graph ([BJR07]), hence we write

A ∼ IER(P ).

Testing problem
Let P,Q ∈ Gn unkown and fix M ∈ N\{0}. Suppose we observe M independent
realisations from each of the two models, namely

A1, A2, . . . , AM
iid∼ IER(P ),

B1, B2, . . . , BM iid∼ IER(Q).

The resulting probability measure given θ = (P,Q) will be written Pθ = P(P,Q).

Based on these observations, for ρ > 0 we now study the testing problem

H0 : P = Q vs. H1 : dist(θ) = dist(P,Q) > ρ, (3.3)

where dist is an appropriate measure of distance between the two distributions –
we will discuss the Kullback-Leibler-divergence as a distance measure on the level
of distributions, but our main focus will be distance measures on the level of ma-
trices, namely the zero-norm, Frobenius norm and spectral norm of P −Q, see the
respective sections for precise definitions.
Since the null hypothesis remains the same throughout this chapter (except for the
short aside for Theorem 3.7), dist does not need an index Θ0. However, for the sake
of clarity, we take account of the varying distance measure through the index of ρ∗.

In the framework of chapter 1, the testing problem at hand is given by

Θ = G2
n,

Pθ = P(P,Q) = IER(P )⊗M ⊗ IER(Q)⊗M for θ = (P,Q) ∈ Θ,

Θ0 = {(P, P ) ; P ∈ Gn},

Θρ = {(P,Q) ∈ G2
n ; dist(P,Q) > ρ}.
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Now, again, given η ∈ (0, 1), we aim at finding the magnitude in terms of n and
M of the smallest separation distance ρ∗(η) which enables the existence of a test ϕ
with total error bound η in a minimax sense, i.e. of

ρ∗(η) = inf

{
ρ > 0 ; ∃ test ϕ : sup

(P,Q)∈Θ0

P(P,Q)(ϕ = 1) + sup
(P,Q)∈Θρ

P(P,Q)(ϕ = 0) ≤ η

}
.

Related questions and literature
In this chapter we are considering a two-sample testing problem, which constitutes
a significant conceptual difference to the problems discussed in the other chapters.
Note that, however, since the null hypothesis from (3.3) can also be written as

H0 : P −Q = Od×d,

the problem is closely related to signal-detection (yet Θ0 is composite) and indeed,
in order to obtain the results presented below, the basic theoretical machinery intro-
duced in 1.4.1 and used in the previous chapters need not be extended. In particular,
references like [IS02], [Bar02] and [VAC17] remain relevant.

Inference problems on random graphs have been studied extensively in both theo-
retical and applied contexts in the past couple of decades, which signifies the topic’s
relevance. For instance, see [BDER16] for an article on testing for high-dimensional
geometry or [ACV14] and [VAC15] for papers on the popular problem of community
detection; another signal-detection problem in a random matrix context is studied
in [CN15].
However, literature on (two-sample)-testing if random graphs are equal in a certain
sense is still rare. In [GGCvL17a], we consider a more general setting in which the
two graphs need not be defined on a common set of vertices; clearly in that situation
(3.3) is not a proper testing problem and we rather compare the graphs with respect
to network statistics such as triangle counts. The articles [TAS+17a] and [TAS+17b]
are probably the closest to the present considerations in terms of the setting since
they also compare undirected, edge-independent graphs on a common vertex set.
However, the underlying model of a random dot poduct graph is much more specific
than a general IER-graph.
See also [GGCvL17b] for an extensive survey of related literature.

3.2 Indistinguishability Results
In this section, we will show that the testing problem is generally not feasible for
certain choices of distances by providing lower bounds on ρ∗(η) which are equal to
a trivial upper bound on dist(P,Q).

Testing with zero-norm
For any matrix G ∈ Rk×l (with k, l ∈ N\{0}), we denote the number of non-zero
entries of G by ‖G‖0, i.e.

‖G‖0 :=
k∑
i=1

l∑
j=1

1{Gij 6=0}.
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Choosing this distance yields the following extreme case for our testing problem:

Theorem 3.1. Consider the problem (3.3) with

dist(P,Q) = ‖P −Q‖0

and let η ∈ (0, 1). Then we have

ρ∗zero(η) = n(n− 1).

/

We can now describe in what sense the testing problem is not feasible: Since

n(n− 1) = max
P,Q∈Gn

‖P −Q‖0,

the result tells us that no non-trivial separation between the hypotheses can guaran-
tee small error probabilities. In fact, from an intuitive perspective the result is not
surprising since the matrices (and hence distributions) may be arbitrarily close and
yet exhibit the highest possible distance in zero-norm. The proof in section 3.6.1
exploits this fact.

Testing with Kullback-Leibler-divergence
For any two probability distributions ν0 and ν1 on a discrete set S, the Kullback-
Leibler-divergence from ν0 to ν1 is defined as

KL(ν0||ν1) :=
∑
s∈S

ν0({s}) ln

(
ν0({s})
ν1({s})

)
.

Based on that, we declare the symmetrised Kullback-Leibler-divergence to be

SKL(ν0, ν1) := KL(ν0||ν1) + KL(ν1||ν0)

=
∑
s∈S

ν0({s}) ln

(
ν0({s})
ν1({s})

)
+
∑
s∈S

ν1({s}) ln

(
ν1({s})
ν0({s})

)
.

In particular, if either ν0 � ν1 or ν1 � ν0 is false,

SKL(ν0, ν1) =∞.

Remark 3.2. The (un)symmetrised Kullback-Leibler-divergence can also be defined
in more general (particularly non-discrete) contexts through

KL(ν0||ν1) :=

∫
S

ln

(
dν0

dν1

)
dν0.

In fact, it is a popular measure for statistical distance along with the total variation
distance and χ2-divergence and may also be used in order to derive lower bounds as
explained in section 1.4.1; the central relation enabling this is known as Pinsker’s
inequality, see for instance [GN16, Chapter 7]:

‖ν0 − ν1‖TV ≤
√

2KL(ν0||ν1).

Many references (including [GN16]) give a factor 1√
2
rather than

√
2 on the right

hand side; this is due to different conventions for the definition of the total variation
distance. /
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Now, provided that M is small, it turns out that our testing problem with the
symmetrised Kullback-Leibler-divergence is also trivial in the sense of Theorem 3.1:

Theorem 3.3. Consider the problem (3.3) with

dist(P,Q) = SKL(IER(P ), IER(Q))

and let η ∈ (0, 1). Whenever M < ln(1+4(1−η)2)
ln(2)

, we have

ρ∗SKL(η) =∞.

/

From the proof in section 3.6.2, it is clear that the same result holds without sym-
metrisation.

Remark 3.4. It is possible to obtain a very similar result when using total variation
distance rather than Kullback-Leibler-divergence – see [GGCvL17b, Prop. 3.1]. /

3.3 Testing in Frobenius Norm
In the previous section we have exhibited some distances for problem (3.3) which do
not appear to be appropriate for the task at hand. Recalling the fact that the original
graph distributions are fully descibed by the matrices P and Q, as mentioned earlier,
we now focus specifically on measuring the distance through classical matrix norms.
It turns out that testing is possible with nontrivial separation and performance for
both Frobenius and spectral norm for any M ≥ 2.

Result
For any matrix G ∈ Rk×l (with k, l ∈ N), we denote its Frobenius norm by ‖G‖F,
i.e.

‖G‖F :=

√√√√ k∑
i=1

l∑
j=1

G2
ij.

We can state the result on Frobenius norm right away:

Theorem 3.5. Consider the problem (3.3) with

dist(P,Q) = ‖P −Q‖F,

let η ∈ (0, 1) and take n ≥ 1 + 3
2

ln
(

8
η

)
. Then we have

for M = 1 :
n√
8
≤ ρ∗F(η) ≤ n,

for M ≥ 2 :

√
n√
M

4

√
1

3
ln(1 + 4(1− η)2) ≤ ρ∗F(η) ≤ 35

√
n√
M

√
ln

(
8

η

)
.
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That is,

ρ∗F ∼


n, M = 1,

√
n√
M
, M ≥ 2

.

/

The statement ρ∗ ∼ n in the case M = 1 can be interpreted as a recommendation
not to test for Frobenius norm separation if only one observation per model is
available. Note that the phase transition between the casesM = 1 andM ≥ 2 is not
particularly surprising since a single observation of a Bernoulli vector cannot allow
for meaningful inference about the underlying parameters (except that necessarily
Pij 6= 1− A1

ij).

Proof Strategy
While the lower bound in Theorem 3.5 is essentially a corollary of the proof of
Theorem 3.1 (section 3.6.1), the upper bound is more involved and merits some
explanation here: As in the previous chapters, in order to find an appropriate test
statistic, we would like to use a strong estimator for the target quantity ‖P −Q‖F

or, say, ‖P −Q‖2
F. The naive choice would be

T0 :=
1

M

M∑
m=1

‖Am −Bm‖2
F.

However, T0 is not an unbiased estimator of ‖P −Q‖2
F and can only lead to the very

weak upper bound
ρ∗F . n,

see section 3.6.3 for an analysis.
Luckily, constructing an unbiased estimator here is possible without much more
effort: We define two independent estimators of P −Q by splitting the M samples
into two groups and then multiply the results. More specifically, without loss of
generality let M be even and

P̂ 1 :=
2

M

M/2∑
m=1

Am, P̂ 2 :=
2

M

M∑
m=M/2+1

Am, Q̂1 :=
2

M

M/2∑
m=1

Bm, Q̂2 :=
2

M

M∑
m=M/2+1

Bm.

Then the test statistic

T :=
n∑
i=1

n∑
j=1

(P̂ 1
ij − Q̂1

ij) · (P̂ 2
ij − Q̂2

ij)

has the desired properties and yields the rate-optimal upper bound given in Theo-
rem 3.5.
The central challenge of the theorem’s proof (section 3.6.4) lies in finding strong con-
centration bounds for T . We employ the Chernoff strategy (i.e. applying Markov’s
inequality to exp(λT ) and optimizing with respect to λ > 0) and face the nontrivial
problem of controlling the moment-generating function of a product of sums.
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Remark 3.6. As a corollary of Theorem 3.5 and its proof in section 3.6.4 (through
considering P = On×n), we see that the signal-detection rate for the mean of a
d-dimensional Bernoulli vector is equal to d1/4√

M
. More precisely, let d ∈ N\{0},M ∈

N\{0, 1}, P ∈ [0, 1]d and suppose that we observe independent random variables

Ami ∼ Ber(Pi), i ∈ {1, 2, . . . , d}, m ∈ {1, 2, . . . ,M}.
Then, in the framework of section 1 with

Θ0 = {Od}, Θρ = {P ∈ [0, 1]d | ‖P‖2 > ρ},
we have

ρ∗ ∼ d1/4

√
M
.

Note also the consistency with the signal-detection rate in the Gaussian sequence
model from the previous section. This is essentially due to the sub-Gaussianity of
the Bernoulli distribution. /

Problem-(In)dependent Rate and Weaker Constant
All results presented so far were problem-independent in the sense that they de-
scribed the problem’s difficulty in the situation where no prior information on P or
Q is available. As an example and a short aside, we consider the case where a bound
on ‖P + Q‖F is given. Similarly as in section 1, the upper bound in the following
theorem will be based on Chebyshev’s inequality which, as usual, leads to a weaker
dependence on the total error bound η.
Theorem 3.7. Consider the problem (3.3) with

dist(P,Q) = ‖P −Q‖F

and where the hypotheses are restricted as

Θ0,∆ = {(P, P ) ; P ∈ Gn ∧ ‖P‖F ≤ ∆},

Θρ,∆ = {(P,Q) ∈ G2
n ; dist(P,Q) > ρ ∧ ‖P +Q‖F ≤ 2∆}

for ∆ ∈ (0,
√
n(n− 1)]. Moreover, let η ∈ (0, 1). Then we have

√
∆√
M

4
√

2
√

ln(1 + 4(1− η)2)

2
√

3
≤ ρ∗F,∆(η) ≤

(
4

√
16

η
+

8
√

2
√
η

)√
∆

M
,

that is

ρ∗F,∆ ∼
√

∆√
M
.

/

3.4 Testing in Spectral Norm
The considerations in the previous sections were actually not specific to the matrix
shape of P and Q or Am and Bm – The zero and Frobenius norms may easily be
replaced by the corresponding norms in Rd, which we explicitly do in the proofs in
order to simplify notations. In contrast to that, the last choice of distance measure
we want to consider here is very sensitive to the matrices’ shape, namely spectral
norm.
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Result
For any matrix G ∈ Rk×k (with k ∈ N), we denote its spectral norm by ‖G‖S, i.e.

‖G‖S := max
x∈Rk\{Ok}

‖Gx‖2

‖x‖2

= max
x∈∂Bk(Ok,1)

‖Gx‖2,

where, as in chapter 2, Bk(Ok, 1) is the Euclidean ball in Rk of radius 1. In partic-
ular, if G is symmetric, through the min-max theorem (Courant-Fisher theory, see
[Dym13]) we can also write

‖G‖S = max
x∈∂Bk(Ok,1)

|xTGx|. (3.4)

Theorem 3.8. Consider the problem (3.3) with

dist(P,Q) = ‖P −Q‖S

and let η ∈ (0, 1). Then we have
√
n√
M
·min

(
4
√

ln(1 + 4(1− η)2)

5
,

1

10

)
≤ ρ∗S(η)

and

ρ∗S(η) ≤
√
n√
M

(
2

(
2
√

ln(2) + ln

(
1

4η

))2

+

√
2 ln

(
4

η

))
,

that is
ρ∗S ∼

√
n√
M
.

/

Proof Strategy
From a high level perspective, in order to obtain a strong lower bound we would
like to construct priors ν0 and ν1 on P and Q respectively such that the resulting
statistical distance between (A1, . . . , AM) and (B1, . . . , BM) is small while ‖P −Q‖S

is large. By classical properties of the spectral norm, the latter requirement corre-
sponds to P −Q being of small rank. Such a construction is proposed in the proof in
section 3.6.6. Interestingly, the subsequent computation of the resulting statistical
distance requires a technical trick we already used for proving the upper bound in
Theorem 3.5, namely the successive evaluation of expectations with respect to the
individual random variables involved – see (3.12) and compare with (3.11).

Proving the upper bound also requires new ideas: Motivated by (3.4), we choose the
test statistic

T = max
u∈∂Bn(On,1)

|uTSMu| with SM :=
1

M

M∑
m=1

(Am −Bm).

Through Hoeffding’s inequality it is possible to derive a useful concentration bound
for uTSMu if u is fixed. Now, since we consider the maximum over an uncountable
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set, it cannot be controlled through, for instance, a simple union bound. We can
however cover ∂Bn(On, 1) by finitely many balls with a prescribed radius ρ > 0 and
consider a union bound over this covering; the resulting imprecision shrinks with
decreasing ρ so that we consider a series of radii with ρi ↘ 0 – in fact we employ a
chaining approach.

The curious case M = 1
In contrast to the case of Frobenius norm (Theorem 3.5), there is no phase transition
between the cases M = 1 and M ≥ 2 and the rate for M = 1 is not trivial as
‖P −Q‖S = n− 1 is possible. This is rather surprising given the intuitive idea that
only one observation cannot contain enough meaningful information in this setting.
However, in fact, there is more to that now due to the sensitivity of the spectral
norm to rank mentioned above: In a seemingly simple case where P and Q are far
apart in each entry, the Frobenius norm may well be of order n while the spectral
norm is relatively small due to a high rank of P − Q or A1 − B1. More formally,
remembering the general relations

‖G‖S ≤ ‖G‖F ≤
√

rank(G) · ‖G‖S,

we see for such an extreme case that

‖P −Q‖F & n =⇒ ‖P −Q‖S &
√
n.

3.5 Alternative Settings
Directed Graphs
It is a very natural extension of our setting to consider directed graphs, which
essentially amounts to removing the symmetry assumption from (3.1) and (3.2) and
observing d′ = n(n − 1) rather than d = n(n−1)

2
random variables. Clearly, every

result in this chapter which does not critically rely on the symmetry assumption can
easily be extended to this case. Therefore, the only statement which does not apply
to this case is the upper bound for spectral norm separation, i.e. in Theorem 3.8.

Other Problem Dependent Bounds
For any matrix G ∈ Rk (k ∈ N\{0}), we denote its maximal absolute entry as
‖G‖max, i.e.

‖G‖max := max
i,j∈{1,2,...,k}

|Gij|.

In [GGCvL17b], we study the present testing problem (3.3) in generalised setting
where Gn from (3.1) is replaced by

Gn,δ :=
{
G ∈ [0, 1]n×n ; G = GT ∧ ∀i ∈ Vn : Gii = 0 ∧ ‖G‖max ≤ δ

}
for some fixed δ ∈ [0, 1]. This article provides bounds on the separation rate ρ∗
for essentially the same choices of dist as in the present chapter; these bounds are
problem-dependent in the sense that they explicitly depend on δ, comparable to
Theorem 3.7 above. Clearly, the present setting corresponds to the choice δ = 1
above and based on that, our Theorems 3.1 and 3.3 are corollaries of the corre-
sponding results [GGCvL17b, Propositions 3.2 and 3.3]. However, note that our
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Theorems on Frobenius norm (Theorem 3.5) and spectral norm (Theorem 3.8) can-
not be directly derived from the corresponding results [GGCvL17b, Theorem 4.1,
Proposition 4.4, Theorem 5.1] since they are either based on Chebyshev’s inequality
(rather than Chernoff bounds) or contain additional ln-factors due to different lines
of arguments forced by the introduction of δ.

3.6 Proofs

3.6.1 Proof of Theorem 3.1

We firstly simplify P,Q to vectors P̃ , Q̃ ∈ [0, 1]d by rearranging the relevant entries
with i < j accordingly and keep in mind that

‖P −Q‖0 = 2‖P̃ − Q̃‖0.

Consider the simple prior ν0 that sets each entry of P̃ and Q̃ to 1
2
. Now, we choose νρ

such that P̃ is the same as before, but on the other hand Q̃ consists of independent
entries with distribution

1

2
δ 1

2
−γ +

1

2
δ 1

2
+γ

(Dirac- δ) for some γ ∈ (0, 1
2
]. We may write the resulting distributions formally as

P(P̃ ,Q̃)∼ν0 =

(
Ber

(
1

2

)⊗M
⊗ Ber

(
1

2

)⊗M)⊗d
, (3.5)

P(P̃ ,Q̃)∼νρ =

(
Ber

(
1

2

)⊗M
⊗ Ber

(
1

2
δ 1

2
−γ +

1

2
δ 1

2
+γ

)⊗M)⊗d
,

where we observe that in the second case (for H1), ρ = ‖P̃ − Q̃‖0 = d.

With Ω := {0, 1}M , each of the d entries of these distributions has support Ω2

and a mass function f0(ω1) · f0(ω2) and f0(ω1) · fρ(ω2) respectively for (ω1, ω2) ∈ Ω2.
As a first step, since f0 ≡ 1

2M
note that

divχ2

(
P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ

)
=

(∑
ω1∈Ω

∑
ω2∈Ω

f 2
0 (ω1)f 2

ρ (ω2)

f0(ω1)f0(ω2)

)d

=

(
2M
∑
ω∈Ω

f 2
ρ (ω)

)d

.

(3.6)
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Now, more explicitly, we obtain

∑
ω∈Ω

f 2
ρ (ω) =

M∑
k=0

(
M

k

)[
1

2

(
1

2
− γ
)k (

1

2
+ γ

)M−k
+

1

2

(
1

2
+ γ

)k (
1

2
− γ
)M−k]2

=
1

4

M∑
k=0

(
M

k

)[(
1

2
− γ
)2
]k [(

1

2
+ γ

)2
]M−k

+
1

2

M∑
k=0

(
M

k

)(
1

2
+ γ

)M (
1

2
− γ
)M

+
1

4

M∑
k=0

(
M

k

)[(
1

2
+ γ

)2
]k [(

1

2
− γ
)2
]M−k

=
1

2

[(
1

2
− γ
)2

+

(
1

2
+ γ

)2
]M

+
1

2
2M
(

1

4
− γ2

)M
=

1

2

(
1

2
+ 2γ2

)M
+

1

2
2M
(

1

4
− γ2

)M
. (3.7)

As a result,

divχ2

(
P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ

)
=

(
1

2

(
1 + 4γ2

)M
+

1

2

(
1− 4γ2

)M)d
≤
(

1

2
exp(4Mγ2) +

1

2
exp(−4Mγ2)

)d
= cosh(4Mγ2)d

≤ exp(2dM2γ4), (3.8)

where we use the classical bounds

∀x ∈ R : 1 + x ≤ exp(x), cosh(x) ≤ exp(x2/2)

which can be established through Taylor expansion. We can now evaluate the con-
dition (1.10): The result (3.8) tells us that

divχ2

(
P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ

)
< 1 + 4(1− η)2

whenever

γ <
4

√
1

2dM2
ln(1 + 4(1− η)2), (3.9)

so we may choose

γ =
1

2
4

√
1

2dM2
ln(1 + 4(1− η)2).
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Since for that choice of γ, clearly ‖P − Q‖0 = 2‖P̃ − Q̃‖0 = n(n − 1), the claim
follows.

3.6.2 Proof of Theorem 3.3
Again, we consider the vectors P̃ and Q̃ as in section 3.6.1. As a first step, we
compute the SKL between the resulting distributions

ν0 :=
d⊗
i=1

Ber(P̃i) and ν1 :=
d⊗
i=1

Ber(Q̃i).

We have

KL(ν0||ν1) =
d∑
i=1

1∑
Ai=0

(
d∏

k=1

P̃Ak
k (1− P̃k)1−Ak ·

d∑
l=1

ln

(
P̃Al
l (1− P̃l)1−Al

Q̃Al
l (1− Q̃l)1−Al

))

=
d∑
l=1

d∑
i=1

1∑
Ai=0

(
d∏

k=1

P̃Ak
k (1− P̃k)1−Ak · ln

(
P̃Al
l (1− P̃l)1−Al

Q̃Al
l (1− Q̃l)1−Al

))

=
d∑
l=1

1∑
Al=0

(
P̃Al
l (1− P̃l)1−Al · ln

(
P̃Al
l (1− P̃l)1−Al

Q̃Al
l (1− Q̃l)1−Al

))

=
d∑
l=1

(
(1− P̃l) · ln

(
1− P̃l
1− Q̃l

)
+ P̃l ln

(
P̃l

Q̃l

))
,

where in the second to last step we expand the product and see that for each l, any
summand for i 6= l only translates to a factor 1. This leads to

SKL(ν0, ν1) =
d∑
l=1

(
(P̃l − Q̃l) ln

(
P̃l(1− Q̃l)

Q̃l(1− P̃l)

))
,

Now, our choice of P(P̃ ,Q̃)∼ν0 of P(P̃ ,Q̃)∼νρ is based on the fact that this divergence

is infinite (ρ = ∞) whenever for some l ∈ {1, 2, . . . , d}, Q̃l = 0. Specifically, we
consider

P(P̃ ,Q̃)∼ν0 =

(
Ber

(
1

2

)⊗d
⊗ Ber

(
1

2

)⊗d)⊗M
,

P(P̃ ,Q̃)∼νρ =

(
Ber

(
1

2

)⊗d
⊗

[
d⊗
i=1

Ber (Vi)

])⊗M
,

where V ∈ [0, 1]d is uniformly distributed in

V :=

{
1

2
(1{j 6=1},1{j 6=2}, . . . ,1{j 6=d}) ; j ∈ {1, 2, . . . , d}

}
,

i.e. only one entry of Q̃ is equal to 0 and the others are equal to 1
2
.

For the statistical distance between these distributions, we again use the χ2-divergence.
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With Ω = {0, 1}d, in very close analogy to the computation in (3.6), we have

divχ2

(
P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ

)
=

(
2d
∑
ω∈Ω

f 2
ρ (ω)

)M

with

fρ(ω) = EV

[
d∏
i=1

V ωi
i (1− Vi)1−ωi

]
=

1

d

d∑
i=1

1

2d−1
1{ωi=0},

so that using the combinatorial structure∑
ω∈Ω

f 2
ρ (ω) =

4

d24d

∑
ω∈Ω

(
d∑
i=1

1{ωi=0}

)2

=
4

d24d
·

d∑
k=0

(
d

k

)
k2

=
4

d24d
· d

d∑
k=1

(
d− 1

k − 1

)
k

=
4

d4d
·
d−1∑
k=0

(
d− 1

k

)
(k + 1)

≤ 4

d4d
· d2d−1

=
2

2d

and finally
divχ2(P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ) ≤ 2M

which, plugged in (1.10), yields the claim.

Alternative Derivation
Computing the χ2-divergence for the above construction is a worthwile exercise, but
we would also like to mention another solution based on total variation distance
which is also appealing as it is simpler.
For the null hypothesis, we choose the prior given in (3.5); for the alternative hy-
pothesis, we only change the distribution of the first coordinate to

Ber

(
1

2

)⊗M
⊗ Ber (0)⊗M .

That is, writing Bp := Ber(p), p ∈ [0, 1], we consider

P(P̃ ,Q̃)∼ν0 =
(
B⊗M1/2 ⊗B

⊗M
1/2

)⊗d
,

P(P̃ ,Q̃)∼νρ =
(
B⊗M1/2 ⊗B

⊗M
0

)
⊗
(
B⊗M1/2 ⊗B

⊗M
1/2

)⊗(d−1)

.
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Note that we are still in the regime ρ =∞ as under the prior νρ, Q̃1 = 0 and P̃1 > 0.
Now, due to subadditivity of the total variation distance, we immediately obtain

‖P(P̃ ,Q̃)∼νρ − P(P̃ ,Q̃)∼ν0‖TV ≤ ‖B⊗M0 −B⊗M1/2 ‖TV

= 2 sup
A∈A

∣∣∣B⊗M0 (A)−B⊗M1/2 (A)
∣∣∣ ,

where A is the power set of {0, 1}M . We now upper bound this supremum by distin-
guishing two cases: Firstly, whenever (0, 0, . . . , 0) ∈ A, we haveB⊗M0 (A) = 1 and 1 ≥
B⊗M1/2 (A) ≥ 1

2M
. On the other hand, whenever (0, 0, . . . , 0) /∈ A, we have B⊗M0 (A) = 0

and 0 ≤ B⊗M1/2 (A) ≤ 1− 1
2M

. Therefore, in any case
∣∣∣B⊗M0 (A)−B⊗M1/2 (A)

∣∣∣ ≤ 1− 1
2M

and hence
‖P(P̃ ,Q̃)∼νρ − P(P̃ ,Q̃)∼ν0‖TV ≤ 2

(
1− 1

2M

)
.

Plugging this in (1.9) leads to the condition

M <
ln(1/η)

ln(2)

which may also have been given in Theorem 3.3.

3.6.3 Analysis of the Naive Test Statistic for
Frobenius Norm

Let m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , d}. With the vector notation Ãm, B̃m, P̃ , Q̂
as defined earlier, the test statistic reads

T0 :=
2

M

M∑
m=1

d∑
i=1

(Ãmi − B̃m
i )2.

Using the fact that Ãmi and B̃m
i are Ber(P̃i)- and Ber(Q̃i)-distributed, respectively,

and the independence assumptions, we obtain

E[(Ãmi − B̃m
i )2] = P̃i + Q̃i − 2P̃iQ̃i

and hence
(P̃i − Q̃i)

2 ≤ E[(Ãmi − B̃m
i )2] ≤ 1

2
,

The lower bound is based on P̃i ≥ P̃ 2
i and Q̃i ≥ Q̃2

i , the upper bound can be proved
by analytical maximization of f(x, y) = x + y − 2xy on [0, 1]2. Both bounds are
sharp in the sense that they can be attained for specific P̃i, Q̃i. Furthermore, using
(Ãmi − B̃m

i )4 ≤ (Ãmi − B̃m
i )2, we have

Var[(Ãmi − B̃m
i )2] = E[(Ãmi − B̃m

i )4]− E[(Ãmi − B̃m
i )2]2

≤ E[(Ãmi − B̃m
i )2]

≤ 1

2
.
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These auxiliary computations now yield the following bounds on expectation and
variance of T0: It holds that

‖P −Q‖2
F ≤ E[T0] ≤ d

and
Var[T0] ≤ 2d

M
.

Now, on the one hand, under the null hypothesis Chebyshev’s inequality tells us
that for η ∈ (0, 1),

P(P̃ ,P̃)

(
T0 > d+

√
4d

Mη

)
≤ η

2
,

which suggests the test

ϕ = 1{T0>τ η
2
} with τ η

2
= d+

√
4d

Mη
.

On the other hand, under the alternative hypothesis, we have

P(P̃ ,Q̃)

(
T0 ≤ ‖P −Q‖2

F −

√
4d

Mη

)
≤ η

2
.

The resulting condition for a sufficiently small testing error reads

‖P −Q‖F ≥

√√√√d+ 2

√
4d

Mη
∼
√
d

as claimed.

3.6.4 Proof of Theorem 3.5
Lower Bound
Case M ≥ 2
We use the same construction as in section 3.6.1 until equation (3.9). Given the
distribution P(P̃ ,Q̃)∼νρ , clearly we have

‖P −Q‖2
F = 2‖P̃ − Q̃‖2

2 = 2dγ2,

so that the requirement (3.9) (which comes from (1.10)) now reads

‖P −Q‖F√
2d

<
4

√
1

2dM2
ln(1 + 4(1− η)2)

or

‖P −Q‖F <
4
√
d√
M

4
√

2 ln(1 + 4(1− η)2).

We may express this in terms of n through

4
√
d =

4

√
n(n− 1)

2
≥ 4

√
n2

4
=

√
n√
2
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and obtain the sufficiently small bound

‖P −Q‖F ≤
√
n√
M

4

√
1

3
ln(1 + 4(1− η)2)

given in Theorem 3.5.

Case M = 1
We plug M = 1 into equation (3.7) and obtain∑

ω∈Ω

f 2
ρ (ω) =

1

2
, so that divχ2

(
P(P̃ ,Q̃)∼ν0 ,P(P̃ ,Q̃)∼νρ

)
= 1.

This expression fulfils (1.10) for any η and γ, so that in particular the choice γ = 1
2

yields

‖P −Q‖F =
√

2dγ =

√
d

2
≥ n√

8
.

for the claimed lower bound.

Upper Bound
Case M ≥ 2
The test statistic
Again with our vector notation, we use the test statistic

T :=
8

M2

d∑
i=1

M/2∑
m=1

(Ãmi − B̃m
i )

 M∑
m=M/2+1

(Ãmi − B̃m
i )

 .

Then we have E[T ] = ρ2. We also introduce the shifted version

T ∗ :=
8

M2

d∑
i=1

M/2∑
m=1

[
(Ãmi − B̃m

i )− (P̃i − Q̃i)
]

︸ ︷︷ ︸
=:Si1

 M∑
m=M/2+1

[
(Ãmi − B̃m

i )− (P̃i − Q̃i)
]

︸ ︷︷ ︸
=:Si2

which, by direct expansion, has the decomposition

T ∗ = T + 2
d∑
i=1

(P̃i − Q̃i)
2

︸ ︷︷ ︸
=ρ2

− 4

M

d∑
i=1

(P̃i − Q̃i)
M∑
m=1

(Ãmi − B̃m
i )︸ ︷︷ ︸

=:K

,

so that, noting E[K] = 2ρ2,

T − E[T ] = T ∗ +K − E[K].

The central part of the proof consists in studying the concentration of T ∗ and
K − E[K], which enables us to control the type-I and type-II errors.

An analytical lemma
As a preparation for an explicit concentration bound on T ∗, we need the following
independent lemma:
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Lemma 3.9. For n ∈ N\{0} and z, c ≥ 0, consider the sequence (Tk)k∈{1,2,...,n}
recursively defined through

T1 := z, Tk+1 = Tk + cT 2
k , k ∈ {1, 2, . . . , n− 1}.

Then, if z ≤ 1
4cn

, for each k ∈ {1, 2, . . . , n} we have

Tk ≤
(

1 +
k

n

)
z ≤ 2z

and in particular
n∑
k=1

T 2
k (n− k) ≤ 4z2

n∑
k=1

(n− k) = 4dz2 ≤ 2n2z2.

/

Proof. By induction. The case k = 1 is clear. Now, assume that for some k ∈
{1, 2, . . . , n− 1}, Tk ≤

(
1 + k

n

)
z. Then we have

Tk+1 = Tk(1 + cTk)

≤
(

1 +
k

n

)
z ·
(

1 +
1

4n

(
1 +

k

n

))

=

[
1 +

k

n
+

1

n

((
1

2

)2

+ 2 · 1

2
· k

2n
+

(
k

2n

)2
)]

z

=

[
1 +

k

n
+

1

n

(
1

2
+

k

2n

)2
]
z

≤
(

1 +
k + 1

n

)
z.

2

Concentration of T ∗
Let t > 0. Then we have by the iid property across the d coordinates and the
Chernoff technique

P(T ∗ ≥ t) = P

(
8

M2

d∑
i=1

Si1 · Si2 ≥ t

)
≤ inf

λ>0

E[exp(λ · S1
1 · S1

2)]d

exp
(
M2

8
λt
) . (3.10)

So, we ought to study E[λ · S1
1 · S1

2 ] a little closer: Clearly, S1 = S1
1 and S2 = S1

2 are
iid. Moreover, the variables

Xm := (Ãm1 − B̃m
1 )− (P̃1 − Q̃1)

are independent, centered and bounded in [−2, 2], so that, by Hoeffding’s lemma,
their moment- generating functions (mgf) are bounded by exp(2(•)2). This means
that the mgf of S1 and S2 is less than exp(M(•)2) and as a consequence

E[λ · S1 · S2] = ES1 [ES2 [exp(λ · S1 · S2)]]

≤ ES1

[
exp(Mλ2(S1)2)

]
.
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We now consider

Uk :=
k∑
j=2

Xk

j−1∑
l=1

Xl︸ ︷︷ ︸
=:Dj−1

, k ∈ {2, 3, . . . , M
2
}.

and noting that (S1)2 =
∑M/2

m=1X
2
m+2UM/2 ≤ 2M+2UM/2, we have with z := 2Mλ2

and the notation from Lemma 3.9 with c = 4, n = M
2

E[λ · S1 · S2] ≤ exp(2M2λ2)E
[
exp(2Mλ2UM/2)

]
≤ exp(zM)E

[
exp(zUM/2)

]
= exp(zM)E

[
EXM/2

[
exp

(
T1XM/2DM/2−1

)]
exp(T1UM/2−1)

]
≤ exp(zM)E

[
exp(2T 2

1D
2
M/2−1 + T1UM/2−1)

]
≤ exp(zM) exp

(
8T 2

1

(
M
2
− 1
))
E
[
exp(

(
T1 + 4T 2

1

)
UM/2−1)

]
,

= exp(zM) exp
(
8T 2

1

(
M
2
− 1
))
E
[
exp(T2UM/2−1)

]
,

where we decompose and bound D2
M/2−1 in analogy to (S1)2 above. We continue

this process and obtain by Lemma 3.9 with the restriction z ≤ 1
4cn

, i.e. λ ≤ 1
4M

:

E[λ · S1 · S2] ≤ exp(zM) exp

8

M/2−2∑
k=1

T 2
k

(
M
2
− k
)E[exp(TM/2−1X2X1)]

≤ exp(zM) exp

8

M/2−1∑
k=1

T 2
k

(
M
2
− k
)

≤ exp(2M2λ2) exp
(
8 · 2 · (M/2)2 · 4 ·M2 · λ4

)
≤ exp(3M2λ2).

We are now able to carry on (3.10):

P(T ∗ ≥ t) ≤ inf
λ>0

E[exp(λ · S1
1 · S1

2)]d

exp
(
M2

8
λt
) ≤ inf

0<λ≤ 1
4M

exp(3M2λ2)d

exp
(
M2

8
λt
)

= inf
0<λ≤ 1

4M

exp

(
3λ2 − 1

8d
λt

)M2d

= exp

(
−3

M2

d

t2

482

)
, (3.11)

where the last equality requires t ≤ 12d
M

.
This bound also applies to −T ∗ since the (mgf-)bounds for Xm are also valid for
−Xm. Therefore, in summary:

∀t ∈
[
0, 12d

M

]
: P(|T ∗| ≥ t) ≤ 2 exp

(
−3

M2

d

t2

482

)
.

60



CHAPTER 3. TESTING RANDOM GRAPHS

Concentration of K − E[K]
This term is only relevant under H1, so wie assume ρ > 0. Firstly, write

K − E[K] =
4

M

d∑
i=1

M∑
m=1

(P̃i − Q̃i)[(Ã
m
i − B̃m

i )− (P̃i − Q̃i)]︸ ︷︷ ︸
:=Xm

i

.

Now, we reuse arguments from the previous step: The Xm
i are independent, centered

and bounded in [−2|P̃i−Q̃i|, 2|P̃i−Q̃i|], so that their mgfs are bounded by exp(2(P̃i−
Q̃i)

2(•)2). Now, for t > 0,

P(K − E[K] ≥ t) = P

(
d∑
i=1

M∑
m=1

Xm
i ≥

M

4
t

)

≤ inf
λ>0

∏d
i=1

∏M
m=1 exp(2(P̃i − Q̃i)

2λ2)

exp
(
M
4
λt
)

= inf
λ>0

exp(Mρ2λ2)

exp
(
M
4
λt
)

= inf
λ>0

exp

(
ρ2λ2 − 1

4
λt

)M
= exp

(
−M
ρ2

t2

64

)
.

As above, this bound also holds for −K + E[K].

Computation of the upper bound
Firstly, under H0, T = T ∗, so that a suitable rejection threshold τ η

2
can be obtained

by solving

2 exp

(
−3

M2

d

t2

482

)
≤ η

2
,

keeping in mind the restriction τ η
2
≤ 12d

M
. By direct computation, we get the thresh-

old

τ η
2

= 24
n

M

√
1

3
ln

(
4

η

)
,

being valid if n ≥ 1 + 4

√
1
3

ln
(

4
η

)
. (E.g. for η = 0.1, n ≥ 6).

Secondly, under H1, we assume that ρ2 ≥ τ η
2
. We write

P(|T | ≤ τ η
2
) ≤ P(|T − E[T ]| ≥ ρ2 − τ η

2
)

≤ P(|T ∗|+ |K − E[K]| ≥ ρ2 − τ η
2
)

≤ P(|T ∗| ≥
ρ2 − τ η

2

2
) + P(|K − E[K]| ≥

ρ2 − τ η
2

2
)

≤ 2 exp

(
− 1

64

M2

d
(ρ2 − τ η

2
)2

)
+ 2 exp

(
−M
ρ2

(ρ2 − τ)2

28

)
,
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where we keep the condition
ρ2−τ η

2

2
≤ 12d

M
in mind. Now, we want to find ρ > 0 such

that both terms are at most η
4
for. By direct computation, this yields the sufficient

condition

ρ ≥ max

(√
τ η

2
+
√

8

√
n√
M

√
ln

(
8

η

)
,
√
τ η

2
+

16√
M

√
ln

(
8

η

))
;

simpler (weaker) conditions are

ρ ≥√τ η
2

+ 16

√
n√
M

√
ln

(
8

η

)
or even

ρ ≥ 35

√
n√
M

√
ln

(
8

η

)
,

being valid if n ≥ 1 + 3
2

ln
(

8
η

)
. (E.g. for η = 0.1, n ≥ 8).

Finally, we observe that the right hand side is of the same order as √τ η
2
. Hence, we

have the desired result
ρ∗ .

√
n√
M
.

Case M = 1
Rather than proposing and analysing a test, we just observe that for any P,Q ∈ Gn,
by construction

‖P −Q‖F ≤
√
n(n− 1) ≤ n,

so that the claimed upper bound is in fact a trivial one.

3.6.5 Proof of Theorem 3.7
Lower Bound
Priors (simple for both hypotheses)
Let γ ∈ (0, 1

2
] and M ∈ N with M ≥ 2.

For the null hypothesis, let ν0 take only the value θ0 = (P,Q) such that

P12 = P21 =
γ√
2M

and Pij = 0 otherwise.

Then
ρ = ‖P −Q‖F = 0 and ‖P +Q‖F = 2‖P‖F = 2

γ

M
,

so that the first ∆-restriction translates to γ ≤M∆.

On the other hand, let νρ take only the value θ1 = (P,Q) which differs from θ0

above only through

Q12 = Q21 =

√
2γ

M
.

Then
ρ = ‖P −Q‖F =

γ

M
and ‖P +Q‖F = 3

γ

M
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and have the stronger ∆-restriction γ ≤ 1
3
M∆ and now we specifically choose

γ = 1
3
M∆.

Probabilistic distance
Clearly, by construction, the probabilistic distance between Pθ∼ν0 and Pθ∼νρ solely
lies in entry (1, 2) of the respective matrix Q. More precisely, let α = γ√

2
and

X ∼ Ber(α/M)⊗M , Y ∼ Ber(2α/M)⊗M .

Then

divχ2(Pθ∼ν0 ,Pθ∼νρ) = divχ2(Ber(α/M)⊗M ,Ber(2α/M)⊗M)

=
∑

ω∈{0,1}M

P(Y = ω)2

P(X = ω)

=
M∑
k=0

(
M

k

)[(2α
M

)k (
1− 2α

M

)M−k]2

(
α
M

)k (
1− α

M

)M−k
=

M∑
k=0

(
M

k

)(
4α

M

)k((1− α
M

)2 − 2
(
1− α

M

)
α
M

+ α2

M2

1− α
M

)M−k

=
M∑
k=0

(
M

k

)(
4α

M

)k (
1− α

M
− 2

α

M
+

α2M

M2(M − α)

)M−k

=

(
1 +

α

M
+

α2

M(M − α)

)M
≤
(

1 + 2
α

M − 1
+

α2

(M − 1)2

)M
(with α < 1,M ≥ 2)

=

(
1 +

α

M − 1

)2M

≤
(

1 +
2α

M

)2M

. (with M ≥ 2)

Plugging this into (1.10) tells us that√
α

M
<

1√
M

√
ln(1 + 4(1− η)2)

2

is sufficient for a large enough total error bound. Now, due to our prior construction,
we can write the left hand side as√

α

M
=

√
3

4
√

2

‖P −Q‖F√
∆

,

so that the above condition is fulfilled if e.g.

‖P −Q‖F ≤
√

∆√
M

4
√

2
√

ln(1 + 4(1− η)2)

2
√

3
.
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Upper Bound
Remember

T − E[T ] =
8

M2

d∑
i=1

Si1S
i
2︸ ︷︷ ︸

=:T ∗

+
4

M

d∑
i=1

M∑
m=1

(P̃i − Q̃i)[(Ã
m
i − B̃m

i )− (P̃i − Q̃i)]︸ ︷︷ ︸
=:K−E[K]

,

where

Si1 =

M/2∑
m=1

[
(Ãmi − B̃m

i )− (P̃i − Q̃i)
]
, Si2

iid∼ Si1.

Preparatory Computations
For m ∈ {1, 2, . . . ,M} and i ∈ {1, 2, . . . , d}, let

Xm
i = (Ãmi − B̃m

i )− (P̃i − Q̃i),

Y m
i = (P̃i − Q̃i)[(Ã

m
i − B̃m

i )− (P̃i − Q̃i)].

Then
Var[Xm

i ] = P̃i(1− P̃i) + Q̃i(1− Q̃i) ≤ P̃i + Q̃i

and

Var[Y m
i ] = (P̃i − Q̃i)

2[P̃i(1− P̃i) + Q̃i(1− Q̃i)]

≤ (P̃i − Q̃i)
2(P̃i + Q̃i).

Hence, through independence and centrality

Var

[
d∑
i=1

Si1S
i
2

]
=

d∑
i=1

Var[Si1]2 ≤
d∑
i=1

(
M

2
(P̃i + Q̃i)

)2

=
M2

8
‖P +Q‖2

F

and

Var

[
d∑
i=1

M∑
m=1

Y m
i

]
=

d∑
i=1

E

( M∑
m=1

Y m
i

)2
 =

d∑
i=1

Var

[
M∑
m=1

Y m
i

]

≤
d∑
i=1

M(P̃i − Q̃i)
2(P̃i + Q̃i)

(∗)
≤ M

√√√√ d∑
i=1

(P̃i − Q̃i)4

√√√√ d∑
i=1

(P̃i + Q̃i)2

≤ M

2
√

2
ρ2‖P +Q‖F.

(To see (∗), we compare
∑

(·)4 with ρ4: Writing the latter, ρ2 · ρ2, as a double sum∑
i

∑
j(·)2(·)2, it is clear that

∑
i(·)4 is smaller as it corresponds to the summands

with i = j of the double sum.)
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Concentration Statements
We can now apply Chebyshev’s inequality to T ∗ and K − E[K]: For any ε > 0, we
have

P(|T ∗| ≥ ρ) ≤ 1

ε2
Var[T ∗]

≤ 1

ε2
64

M4
· M

2

8
‖P +Q‖2

F

=
8

ε2
‖P +Q‖2

F

M2

≤ 8

ε2
∆2

M2
,

P(|K − E[K]| ≥ ρ) ≤ 1

ε2
Var[K]

≤ 1

ε2
16

M2
· M

2
√

2
ρ2‖P +Q‖F

=
8√
2ε2
· ρ

2‖P +Q‖F

M
.

≤ 8√
2ε2
· ρ

2∆

M
.

Computation of the Upper Bound
For τ η

2
> 0,

PH0(|T | > τ η
2
) = PH0(|T ∗| > τ η

2
),

so that, by the above concentration statement,

τ η
2

:=
∆

M

√
16

η

is a suitable rejection threshold for the test

ϕ(X) = 1{T>τ η
2
}.

Now, for ρ2 > τ η
2
, observe

PH1(|T | ≤ τ η
2
) ≤ PH1(|T − E[T ]| ≥ ρ2 − τ η

2
)

≤ PH1

(
|T ∗| ≥

ρ2 − τ η
2

2

)
+ P

(
|K − E[K]| ≥

ρ2 − τ η
2

2

)
.

By the above bounds, we see that both these terms are bounded by η
4
if

ρ2 ≥ max

(
τ η

2
+

8
√

2
√
η

∆

M
, τ η

2
+ ρ

8
√
η

√
∆

M

)
,
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which is fulfilled if

ρ ≥√τ η
2

+
8
√

2
√
η

√
∆

M
=

(
4

√
16

η
+

8
√

2
√
η

)√
∆

M
.

3.6.6 Proof of Theorem 3.8
Lower Bound
Construction of the prior distributions
Let In denote the n × n identity matrix and 1n denote the n × n matrix where all
entries are 1. For the null hypothesis, define the simple prior ν0 on θ = (P,Q) that
sets P = Q = 1

2
(1n − In). The prior νρ for the alternative hypothesis also sets

P = 1
2
(1n − In), but now the random matrix Q is constructed as follows:

Let γ ∈ [0, 1
2
], R0 ≡ 1 and R1, R2, . . . , Rn−1

iid∼ U{−1,1}. Consider the column vector

v = γ


R0

R1

...

Rn−1


and build the matrix A = (v,R1v,R2v, . . . , Rn−1v). Finally, define Q := 1

2
1n +A−

(1
2

+ γ)In - this gives rise to a uniform distribution on a family of 2n−1 matrices.

Spectral distance under ν1
The previous construction for the alternative hypothesis yields

ρ := ‖P −Q‖S = ‖A− γIn‖S.

Since A has rank 1, its spectral norm is equal to its Frobenius norm, so that ‖A‖S =√
n2γ2 = nγ, and ‖γIn‖S = γ is clear. Hence, by the forward and inverse triangle

inequalities
(n− 1)γ ≤ ρ ≤ (n+ 1)γ.

Statistical distance between the hypotheses
In this step, we derive a first tangible expression for D := divχ2(Pθ∼ν0 ,Pθ∼νρ). In
order to compute the lower bound, more considerations will be necessary afterwards.
We describe the distribution of M samples based on P or Q essentially as a product
of d binomially distributed random variables and write the corresponding values
as (kij)i,j = (kij)(i,j)∈S, where S = {(i, j) ∈ {0, 1, . . . , n − 1}2 | i < j} and kij ∈
{0, 1, . . . ,M}. The resulting density functions read

dPθ∼ν0((kij)i,j) =
∏

(i,j)∈S

(
M

kij

)
1

2M
,

dPθ∼νρ((kij)i,j) = ER

 ∏
(i,j)∈S

(
M

kij

)(
1

2
+ γRiRj

)kij (1

2
− γRiRj

)M−kij ,
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where R = (R1, R2, . . . , Rn−1). Furthermore, introducing an independent copy R′ of
R, we can write the square of F1 as

dP2
θ∼νρ((kij)i,j) = ER,R′

 ∏
(i,j)∈S

(
M

kij

)2((
1

2
+ γRiRj

)(
1

2
+ γR′iR

′
j

))kij
·

((
1

2
− γRiRj

)(
1

2
− γR′iR′j

))M−kij]
.

Due to the equal components of ν0 and ν1, we now have

D =
∑

(kij)i,j

dP2
θ∼νρ

dPθ∼ν0
((kij)i,j)

= 2NdER,R′

 ∏
(i,j)∈S

M∑
kij=0

(
M

kij

)((
1

2
+ γRiRj

)(
1

2
+ γR′iR

′
j

))kij
·

((
1

2
− γRiRj

)(
1

2
− γR′iR′j

))M−kij]

= 2NdER,R′

 ∏
(i,j)∈S

(
1

2
+ 2γ2RiR

′
iRjR

′
j

)M
= ER

 ∏
(i,j)∈S

(
1 + 4γ2RiRj

)M ,

where in the last step we use the fact that RiR
′
iRjR

′
j = (RiRj)(R

′
iR
′
j) behaves just

as RiRj by construction. The classical bound 1 + x ≤ exp(x) and the abbreviation
z := 4Mγ2 leads to

D ≤ ER

exp

z ∑
(i,j)∈S

RiRj

 ,
We now deal with this expression in the spirit of Lemma 3.9 and Theorem 3.5
(section 3.6.4). Writing

Ul =
l∑

j=1

Rj

j−1∑
i=0

Ri︸ ︷︷ ︸
=:Sj−1

, l ∈ {1, 2, . . . , n− 1}
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and using cosh(x) ≤ exp(x
2

2
) now leads to

D ≤ ER [exp (zUn−1)]

= ER1,...,Rn−2

[
exp (zUn−2)ERn−1 [exp(zRn−1Sn−2)]

]
= ER1,...,Rn−2 [exp (zUn−2) cosh(zSn−2)] .

≤ ER1,...,Rn−2

[
exp (zUn−2) exp

(
z2

2
S2
n−2

)]
.

Since S2
n−2 = 2Un−2 + (n− 1), we obtain

D ≤ exp

(
z2

2
(n− 1)

)
ER1,...,Rn−2

[
exp((z + z2)Un−2)

]
= exp

(
1

2
T 2

1 (n− 1)

)
ER1,...,Rn−2 [exp(T2Un−2)]

with the notation from Lemma 3.9 with c = 1. Under the restriction z ≤ 1
4n
, i.e.

γ ≤ 1
4
√
Mn

,

D ≤ exp

(
1

2

n−2∑
k=1

T 2
k (n− k)

)
ER1 [exp(Tn−1U1)]

≤ exp

(
1

2

n−1∑
k=1

T 2
k (n− k)

)
,

≤ exp(n2z2). (3.12)

Conclusion
Again, we want to ensure (1.10), i.e.

divχ2(Pθ∼ν0 ,Pθ∼νρ) < 1 + 4(1− η)2.

By the previous result and ensuring z ≤ 1
4n
, this is fulfilled if

z <
1

n
·min

(√
ln(1 + 4(1− η)2),

1

4

)
.

Since z = 4Mγ2, this reads

γ <
1

2
√
M
√
n
·min

(
4
√

ln(1 + 4(1− η)2),
1

2

)
.

Finally, with γ ≤ ρ
n−1

and 1
2

√
n ≤ n−1√

n
, a sufficient condition in terms of ρ is

ρ ≤
√
n

5
√
M
·min

(
4
√

ln(1 + 4(1− η)2),
1

2

)
.

providing the desired result

ρ∗ &

√
n√
M
.
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Upper Bound
We still observe n×n adjacency matrices A1, . . . , AM according to P and B1, . . . , BM

according to Q. As a test statistic, we consider

T = ‖SM‖S = max
u∈∂B

|uTSMu|, SM :=
1

M

M∑
m=1

(Am −Bm),

where B is the closed unit Euclidean ball in Rn. Furthermore, let d =
(
n
2

)
.

Preparation: general concentration bound
Our first step towards finding an upper bound on ρ∗ is studying the concentration
of

f(u, v) := uTSMv

with fixed u, v ∈ B. In order to apply Hoeffding’s inequality to this quantity, we
must pay some attention: There are technically M ·d independent random variables
involved; a representation isolating these variables would be

f(u, v) =
1

M

M∑
m=1

n∑
i=1

n∑
j=1

ui (A
m
ij −Bm

ij )︸ ︷︷ ︸
Zmij ∈[−1,1]

vj

=
1

M

M∑
m=1

n−1∑
i=1

n∑
j=i+1

Zm
ij (uivj + ujvi).

Now, the sum of squared ranges of these M · d random variables can be bounded as
follows:
M∑
m=1

n−1∑
i=1

n∑
j=i+1

(2(|uivj|+ |ujvi|))2 ≤ 4M
n∑
i=1

n∑
j=1

(u2
i v

2
j + 2|uiviujvj|+ u2

jv
2
i )

≤ 4M

‖u‖2
2‖v‖2

2 + 2

(
n∑
i=1

|ui| · |vi|

)2

+ ‖u‖2
2‖v‖2

2


≤ 16M‖u‖2

2‖v‖2
2,

using the Cauchy-Schwarz-inequality. In Hoeffding’s inequality, this yields

P(||f(u, v)| − |E[f(u, v)]|| ≥ t) ≤ P(|f(u, v)− E[f(u, v)]| ≥ t) (3.13)

≤ 2 exp

(
− 2(Mt)2

16M‖u‖2
2‖v‖2

2

)
= 2 exp

(
− Mt2

8‖u‖2
2‖v‖2

2

)
,

or, in the form we will actually employ:

P

(
||f(u, v)| − |E[f(u, v)]|| ≥ ‖u‖2‖v‖2

√
8

M
ln

(
2

δ

))
≤ δ, δ ∈ (0, 1). (3.14)
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In particular, if u = v ∈ ∂B, we have

P

(∣∣|uTSMu| − |uT (P −Q)u|
∣∣ ≥√ 8

M
ln

(
2

δ

))
≤ δ, δ ∈ (0, 1). (3.15)

Note that all this also holds without the inner absolute values on the left hand side
due to (3.13).

Type-I-error
We want to employ a chaining-approach, see [GN16]. Informally speaking, the basic
idea is that a u∗ ∈ ∂B maximising

|f(u, u)| = |uTSMu|

admits a representation of the form

u∗ =
∞∑
i=1

(ui − ui−1), u0 = On, ui ∈ B, ‖ui − ui−1‖2 ≤ ri :=
3

22+i
,

where, without making it explicit in the notation, the chain (ui)i∈N0 is “backwards
unique” in the sense that ui−1 depends only on ui.

Let us for now restrict the max to the first entry of f , that is consider only

max
‖u‖2=1

|f(u, v)|, v ∈ ∂B fixed.

The idea mentioned above is now used for a technique of successive finite coverings
of B: For i ∈ N, there is a set Bi ⊆ B of cardinality at most Ni := b( 3

ri
)nc that

provides an ri-covering of B. Now, write

max
‖u‖2=1

|f(u, v)| = max
‖u‖2=1, u1∈B1,
‖u−u1‖2≤ρ1

|f(u1, v) + f(u− u1, v)|

≤ max
u1∈B1

|f(u1, v)|+ max
‖u‖2=1, u1∈B1,
‖u−u1‖2≤ρ1

|f(u− u1, v)|

≤ max
u1∈B1

|f(u1, v)|+ max
u2∈B2

|f(u2 − u1, v)|

+ max
‖u‖2=1, u2∈B2,
‖u−u2‖2≤ρ2

|f(u− u2, v)|

...

≤
∞∑
i=1

max
ui∈Bi

|f(ui − ui−1, v)|.

The second entry, v, is now dealt with in the same manner, leading to what can be
seen as double-chaining:

max
‖u‖2

f(u, u) ≤ max
‖u‖=‖v‖=1

f(u, v) ≤
∞∑
i=1

∞∑
j=1

max
ui∈Bi,vj∈Bj

|f(ui − ui−1, vj − vj−1)|.
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For fixed i, j ∈ N, using the standard union bound with (3.14) and plugging in
P = Q and the quantities

δij =
η/2

2i+j
, rij = rirj, Nij = NiNj,

we obtain

P

(
max

ui∈Bi,vj∈Bj
|f(ui − ui−1, vj − vj−1)| ≥ 9

24+i+j

√
8

M
ln

(
2(4+i+j)(n+1)

8(η/2)

))
≤ δij.

(3.16)
For the next step, we mention a small lemma.

Lemma 3.10. For x, y ≥ exp(2), we have

ln(xy) ≤ ln(x) ln(y).

/

Proof. By direct computation, we see that for x, y > 0, the bound is equivalent to

(ln(x)− 1)(ln(y)− 1) ≥ 1.

The claim is obvious now. 2

This allows a useful bound in (3.16): We write

2(4+i+j)(n+1)

8(η/2)
=

(
22+i

(8(η/2))1/(2(n+1))
· 22+j

(8(η/2))1/(2(n+1))

)n+1

.

Clearly, as long as (η/2) ≤ 1
8
, the two factors above are at least 8 > exp(2), so we

can apply the lemma.
We are now ready for the central calculation.
∞∑
i=1

∞∑
j=1

9

24+i+j

√
8

M
ln

(
2(4+i+j)(n+1)

8(η/2)

)
=

9
√

8

16
√
M

∞∑
i=1

∞∑
j=1

1

2i
1

2j

√
(n+ 1) ln

(
24+i+j

(8(η/2))1/(n+1)

)

≤ 9
√

8

16

√
n+ 1√
M

(
∞∑
i=1

1

2i

√
ln

(
22+i

(8(η/2))1/(2(n+1))

))2

As an auxiliary computation, using
∑∞

i=1

√
2 + i2−i ≤ 2, we have

∞∑
i=1

1

2i

√
ln

(
22+i

(8(η/2))1/(2(n+1))

)
≤

∞∑
i=1

√
2 + i

2i

√
ln(2) +

∞∑
i=1

1

2i
ln

(
1

4η

)

≤ 2
√

ln(2) + ln

(
1

4η

)
.

This discussion particularly applies under the null hypothesis as the expectation in
(3.14) vanishes. Therefore, a suitable rejection threshold for our test is given by

τ η
2

=

√
n+ 1√
M

9
√

8

16

(
2
√

ln(2) + ln

(
1

4η

))2
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with

PH0

(
T > τ η

2

)
≤

∞∑
i=1

∞∑
j=1

δij =
η

2
.

Type-II-error
We assume that ρ := ‖P−Q‖S ≥ τ η

2
. By definition, for some deterministic u∗ ∈ ∂B,

ρ = |uT∗ (P −Q)u∗| = |E[uT∗ SMu∗]|.

Using this, we note that

T ≤ τ η
2
⇐⇒ max

u∈B
fSM (u) ≤ τ η

2

=⇒ |uT∗ SMu∗| ≤ τ η
2

=⇒ |uT∗ SMu∗ − E[uT∗ SMu∗]| ≥ |E[uT∗ SMu∗]| − τ η2 = ρ− τ η
2
≥ 0.

Hence,
P(T ≤ τ η

2
) ≤ P(|uT∗ SMu∗ − E[uT∗ SMu∗]| ≥ ρ− τ η

2
),

which, using (3.15), yields the sufficient separation distance

ρ ≥ τ η
2

+

√
8

M
ln

(
4

η

)
,

which may be upper bounded by

√
n√
M

(
2

(
2
√

ln(2) + ln

(
1

4η

))2

+

√
2 ln

(
4

η

))
.
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Chapter 4

Testing the Sobolev-Type
Regularity of a Function

In this chapter we study the problem of testing if an L2−function f be-
longing to a certain l2-Sobolev-ball Bt(R) of radius R > 0 with smoothness
level t > 0 indeed exhibits a higher smoothness level s > t, that is, be-
longs to Bs(R). We assume that only a perturbed version of f is available,
where the noise is governed by a standard Brownian motion scaled by 1√

n
.

More precisely, considering a testing problem of the form

H0 : f ∈ Bs(R) vs. H1 : f ∈ Bt(R), inf
h∈Bs
‖f − h‖L2 > ρ

for some ρ > 0, we approach the task of identifying the smallest value for ρ,
denoted ρ∗, enabling the existence of a test ϕ with small error probability
in a minimax sense. By deriving lower and upper bounds on ρ∗, we expose
its precise dependence on n:

ρ∗ ∼ n−
t

2t+1/2 .

As a remarkable aspect of this composite-composite testing problem, it
turns out that the rate does not depend on s and is equal to the rate in
signal-detection, i.e. the case of a simple null hypothesis.

4.1 Introduction
Let n ∈ N∗ = N\{0}, f a fixed unknown element of

L2 := L2([0, 1]) =

{
g : [0, 1]→ R ;

∫ 1

0

g(x)2 dλ(x) <∞
}

and (B(x))x∈[0,1] a standard Brownian motion. Suppose we observe the Gaussian
process (Y (x))x∈[0,1] determined by the stochastic differential equation

dY (x) = f(x)dx+
1√
n

dB(x), x ∈ [0, 1]. (4.1)

The resulting probability measure given f will be written Pf .
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Testing problem
We now fix s > t > 0 and R, ρ > 0. For any r > 0, we denote by Br(R) the l2-
Sobolev-ball of radius R of functions on [0, 1] with regularity at least r – see section
4.2 for a precise definition. Based on that, let

B̃s,t(R, ρ) :=

{
g ∈ Bt(R) ; inf

h∈Bs(R)
‖g − h‖L2 > ρ

}
.

Hence, if we interpret s and t as degrees of smoothness, B̃s,t(R, ρ) is the set of
functions with smoothness level at least t which are separated from the class Bs(R)
with stronger smoothness s by ρ in L2-sense. Now, the testing problem of interest
is

H0 : f ∈ Bs(R) vs. H1 : f ∈ B̃s,t(R, ρ). (4.2)
More specifically, given η ∈ (0, 1), we aim at finding the magnitude in terms of n of
the smallest separation distance ρ∗(η) = ρ∗(n, s, t, η) which enables the existence of
a test ϕ of level η in a minimax sense, i.e. of

ρ∗(η) = inf

{
ρ > 0 ; ∃ test ϕ : sup

f∈Bs(R)

Pf (ϕ = 1) + sup
f∈B̃s,t(R,ρ)

Pf (ϕ = 0) ≤ η

}
.

(4.3)
In the framework of chapter 1, the problem reads

Θ = Bt(R),

Pθ = L
(
(Y (x))x∈[0,1] | θ

)
, i.e. the law of Y given θ = f ∈ Θ,

Θ0 = Bs(R),

Θρ = B̃s,t(R, ρ),

with
distΘ0(θ) = distBs(R)(f) = inf

h∈Bs(R)
‖f − h‖L2 , θ = f ∈ Θ.

Related questions and literature
There are in essence two lines of work with questions or ideas closely related to the
present chapter.
Firstly, considering the simpler null hypothesis H0 : f ≡ 0 puts us in the so-called
signal-detection setting which has already been studied, see for instance the series
of seminal papers [Ing93] as well as [IS02] or [CD13] for a more recent treatment.
In that context, the order of ρ∗ with respect to n is shown to be

n−
t

2t+1/2 .

Secondly, another closely related task is the construction of (adaptive and hon-
est) confidence regions for f . In [BN13], the authors study such sets in terms of
L2-separation, but rather than the observation (Y (x))x∈[0,1] they use a Gaussian se-
quence model. However, due to the equivalence of these models in the sense of Le
Cam (see [LC12]), it is possible to derive from their arguments that for our problem
(4.2),

n−
t

2t+1/2 . ρ∗(η) . max
(
n−

s
2s+1 , n−

t
2t+1/2

)
. (4.4)
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While the resulting gap in the case s < 2t is not essential in the confidence region
setting (see also [CL06] and [JLL03]), it is quite important from a testing perspective
as it raises the question how the complexity of the null hypothesis influences the
separation rate.
Now, the article [Car15] is by far the closest previous work to the present chapter.
Indeed, the author studies the same problem with another choice of Sobolev-ball,
namely the (r,∞)-Sobolev-balls Br,∞(R). In this context, ρ∗(η) is proved to be of
magnitude

n−
t

2t+1/2 .

Note that this quantity is equal to the rate in the signal-detection case and hence
in particular does not depend on s. This makes the issue of the gap in (4.4) even
more interesting and, from a technical perspective, it is rather striking given that
moving from a simple to the composite null hypothesis is a significant step. On top
of that, there are settings where the separation rate strongly depends on the shape
of the null hypothesis, see e.g. [BCG18] and [JN02] or also [CL11].
To the best of our knowledge, the case of [Car15] is the only one for which the
minimax L2-separation rate is known and our main contribution is to extend that
result to the (r.2)-Sobolev-space. While our lower bound (Theorem 4.2 in section
4.3) is essentially a corollary of the corresponding result [Car15, Theorem 3.2], the
upper bound (Theorem 4.1 in section 4.3) cannot be established through a simple
application of [Car15, Theorem 3.1]. As Br(R) ⊆ Br,∞(R), this might be surprising
at first sight: Indeed, the test from [Car15] would perform well in the present setting
in terms of type-I-error. However, ensuring sufficient power is significantly more
difficult when considering l2-Sobolev-balls.

4.2 Setting
In this section, we describe how the relevant Sobolev balls and the observed Gaussian
process will be represented throughout the chapter.

Wavelet transform and associated Sobolev ball
Throughout the chapter, we make heavy use of a wavelet decomposition of f . As is
well-known, we can define a scalar product and associated norm on L2 by

< g, h >:=

∫ 1

0

g(x)h(x) dλ(x) with ‖g‖L2 :=
√
< g, g >, g, h ∈ L2.

There are many orthogonal wavelet bases of L2 with respect to < ·, · >. A suitable
choice for our purposes is a basis developed in [CDV93] that can be written as

W =
∞⋃
j=2

{ψj,k : k ∈ {1, 2, . . . , 2j}},

i.e. it is tailored such that there are exactly 2j basis functions at resolution j ≥ 2.
Clearly, the coefficients of g ∈ L2 with respect to W are given by

< g, ψj,k >=

∫ 1

0

g(x)ψj,k(x) dx, j ≥ 2, k ∈ {1, 2, . . . , 2j}.
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and yield the representation

g =
∞∑
j=2

2j∑
k=1

< g, ψj,k > ψj,k.

Let r > 0. By virtue of isometry properties discussed for instance in [Tri92] and
[GN16], we may now define a functional (r, 2)-Sobolev-ball of radius R solely through
the wavelet coefficients of its elements:

Br(R) :=

g ∈ L2 ;
∞∑
j=2

4jr
2j∑
k=1

< g, ψj,k >
2 ≤ R2

 (4.5)

with associated (r, 2)-Sobolev-norm

‖g‖Br :=

√√√√ ∞∑
j=2

4jr
2j∑
k=1

< g, ψj,k >2, g ∈ L2

or also, as mentioned at the end of the previous section,

Br,∞(R) :=

g ∈ L2 ; sup
j≥2

4jr
2j∑
k=1

< g, ψj,k >
2 ≤ R2

 .

Discrete observation scheme based on the wavelet ba-
sis
Let

I = {(j, k) ∈ N2 | j ≥ 2, k ≤ 2j}.

Motivated by (4.5), for each (j, k) ∈ I we consider

aj,k :=< f, ψj,k >

so that

f =
∞∑
j=2

2j∑
k=1

aj,kψj,k.

The natural corresponding estimators read

âj,k :=< dY, ψj,k >, f̂ =
∞∑
j=2

2j∑
k=1

âj,kψj,k. (4.6)

By construction and due to the orthonormality of W , we know that the family
(âi,j)(j,k)∈I is independent with

âj,k ∼ N
(
aj,k,

1
n

)
.

Clearly, observing this family is equivalent to observing the original process (Y (x))x∈[0,1].
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4.3 Main results
In this section, we state and discuss our main results, that is upper and lower bounds
on ρ∗(η). We also provide a high-level description of the strategy and ideas included
in the upper bound proof, which is our main contribution.

4.3.1 Upper Bound
The test
Note that f̂ from (4.6) is not a useful estimator as it exhibits infinite variance.
Therefore, we need to carefully impose a restriction of the form j ≤ J for some fixed
J ∈ N, J ≥ 2. More specifically, section 4.5 is primarily concerned with obtaining
an upper bound on ρ∗J(η) for the reduced, finite-dimensional problem

H ′0 :

∥∥∥∥∥∥
J∑
j=2

2j∑
k=1

aj,kψj,k

∥∥∥∥∥∥
Bs︸ ︷︷ ︸

:=SJ

≤ R vs. H ′1 : inf
h∈Bs(R)

∥∥∥∥∥∥
J∑
j=2

2j∑
k=1

aj,kψj,k − h

∥∥∥∥∥∥
L2

> ρJ ,

where ρJ and ρ∗J(η) are analogous in definition and relation to their counterparts in
(4.2) and (4.3).
Finding a sufficient separation distance ρJ ≥ ρ∗J(η) here is the central and most
involved part of the chapter. Indeed, it turns out that a test based on estimating
S2
J only cannot perform well enough under the targeted separation distance of order
n−t/(2t+1/2). Rather than that, our test estimates S2

2 , S
2
3 , . . . , S

2
J through test statis-

tics T2, T3, . . . , TJ and, under the alternative H ′1, relies on the smallest level j∗ such
that S2

j∗ significantly exceeds R2 (Lemmas 4.3 and 4.5 below). It essentially takes
the form

ϕ = 1−
J∏
j=2

1{Tj≤τj}

of a multi-level test with suitable thresholds τj (equation (4.24) below).
Finally, J must be chosen such that an appropriate trade-off between ρ∗J(η) and the
error incurred by ignoring the resolutions beyond J is reached.
In terms of technical ingredients, these considerations are remarkable in that they
solely rely on elementary computations based on the Sobolev-balls’ geometry and
classical properties of the χ2−distribution. The explicit result reads as follows:

Theorem 4.1. Let η ∈ (0, 1). Whenever

ρ ≥
(

1346
√
η

+
R

1− 2−t

)
n−

t
2t+1/2 ,

there is a test ϕ such that

sup
f∈Bs(R)

Pf (ϕ = 1) + sup
f∈B̃s,t(R,ρ)

Pf (ϕ = 0) ≤ η.

Hence,

ρ∗(η) ≤
(

1346
√
η

+
R

1− 2−t

)
n−

t
2t+1/2 , i.e. ρ∗(η) . n−

t
2t+1/2 .

/
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4.3.2 Lower Bound
Using the same choice for J as indicated above, a lower bound on ρ∗(η) of the
same order can be derived through studying the statistical distance between specific
distributions agreeing with H0 and H1 respectively.

Theorem 4.2. Let η ∈ (0, 1). There are Cη > 0 and Nη ∈ N such that whenever
n ≥ Nη and

ρ ≤ Cηn
− t

2t+1/2 ,

for any test ϕ it holds that

sup
f∈Bs(R)

Pf (ϕ = 1) + sup
f∈B̃s,t(R,ρ)

Pf (ϕ = 0) > η.

Hence,
ρ∗(η) ≥ Cηn

− t
2t+1/2 , i.e. ρ∗(η) & n−

t
2t+1/2 .

In particular, one may choose

Cη :=
R

2
min

{
1,

√
ln(1 + 4(1− η)2)

2t16R

}
, Nη :=

⌈(
R

2s−t

Cη

) 2t+1/2
s−t

⌉
.

/

Note that, as mentioned in the introduction, Theorems 4.1 and 4.2 in conjunction
reveal the minimax separation rate to be of order

ρ∗(η) ∼ n−
t

2t+1/2 ,

which does not depend on the size of the null hypothesis and is equal to the signal-
detection rate. Indeed, in order to obtain the lower bound of Theorem 4.2, the fact
that H0 is a composite hypothesis need not be used.

4.4 Alternative settings
Before presenting the proofs of our main results, we briefly discuss their possible
application in two alternative settings which might also be of interest, see also
[Car15, Section 3.3] and references therein.

Heteroscedastic noise
As a generalisation of (4.1), consider the model

dY (x) = f(x)dx+
σ(x)√
n

dB(x), x ∈ [0, 1], (4.7)

where σ ∈ L2 is unknown. The proof of Theorem 4.1 relies heavily on unbiased
estimators of a2

j,k, (j, k) ∈ I, and hence on knowledge of the noise coefficient, so
that in this generalised version we cannot directly apply our result. However, there
is a relatively simple solution under certain conditions: Suppose we have access to
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two independent realisations (Y (1)(x))x∈[0,1] and (Y (2)(x))x∈[0,1] with noise coefficient,
say, σ(x)√

n/2
. Then we can still consider the estimates

â
(i)
j,k = < dY (i), ψj,k > ∼ N

(
aj,k, 2

‖σ · ψj,k‖2
L2

n

)
, i ∈ {1, 2}

and define a new unbiased estimator for a2
j,k based on the simple observation

E[â
(1)
j,k · â

(2)
j,k ] = a2

j,k.

If in addition we know an upper bound on ‖σ‖L2 , it turns out that we can state an
analogous concentration result as the one for the homoscedastic model (see Lemma
4.4 below) and obtain essentially the same result.

Regression
Another possible observation scheme for testing the smoothness of f would be col-
lecting n iid samples (Xi, Yi)i∈{1,2,...,n} according to the model

Y = f(X) +
σ(X)√
n
ε

for ε ∼ N (0, 1) and X uniformly distributed on [0, 1]. This situation is particularly
interesting since, as mentioned above, it is equivalent to (4.7) in the sense of Le Cam
([LC12]) We could then arrive at the same situation as in the previous setting by
considering

â
(1)
j,k =

2

n

n/2∑
i=1

Yiψj,k(Xi), â
(2)
j,k =

2

n

n∑
i=n/2+1

Yiψj,k(Xi).

Note that if X is not uniformly distributed, E[â
(i)
j,k] = aj,k is generally not true and

it becomes crucial to guarantee a certain spread of the design points (Xi)i∈{1,2,...,n}
over [0, 1].

4.5 Proof of Theorem 4.1
4.5.1 General preparations
Reduction of the range of resolutions
Let us make this more clear at this point already: For j1, j2 ∈ N ∪ {∞} with
2 ≤ j1 ≤ j2 and g ∈ L2, define the projections

P j2
j1
g =

j2∑
j=j1

2j∑
k=1

< g, ψj,k > ψj,k, Pj1 := P j1
j1
.

Now observe that since f ∈ Bt(R), for each j ∈ N, j ≥ 2, we have

‖Pjf‖L2 =
‖Pjf‖Bt

2jt
≤ R

2jt
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and hence
∞∑

j=J+1

‖Pjf‖L2 ≤ R
∞∑

j=J+1

(2−t)j = 2−tJ
2−tR

1− 2−t
.

Using the triangle inequality, this tells us that under the alternative hypothesis

ρ < inf
h∈Bs(R)

‖f − h‖L2

≤ inf
h∈Bs(R)

‖P J
2 f − h‖L2 + ‖P∞J+1f‖L2

≤ inf
h∈Bs(R)

‖P J
2 f − h‖L2 +

∞∑
j=J+1

‖Pjf‖L2 ,

≤ inf
h∈Bs(R)

‖P J
2 f − h‖L2 + 2−tJ

2−tR

1− 2−t
.

Accordingly, under H1 we consider the assumption

ρ− 2−tJ
2−tR

1− 2−t
=: ρJ < inf

h∈Bs(R)
‖P J

2 f − h‖L2

and firstly solve (4.3) for ρJ in terms of the reduced range j ∈ {2, 3, . . . , J}, that is,
subsequently, we will primarily study the testing problem

H ′0 : ‖P J
2 f‖Bs ≤ R vs. H ′1 : inf

h∈Bs(R)
‖P J

2 f − h‖L2 > ρJ .

Finally, ρ will be determined by choosing J such that a reasonable trade-off between
the two summands,

ρ = ρJ + 2−tJ
2−tR

1− 2−t
, (4.8)

is realised.

Now, more specifically, with a = 1346, for j∗ ∈ {2, 3, . . . , J} =: J , let

ρ1 := 0; ρj∗ = a
2(3j∗+2J)/20

√
n

.

Under the assumption H ′1 it will be technically useful to detect the level j∗ ∈ J
at which inf

h∈Bs(R)
‖P j∗

2 f − h‖Bs firstly exceeds ρj∗ in the sense of Lemma 4.3 below.

That leads to a multiple test across the set J finally given in (4.27).

Decomposition of H ′1
Lemma 4.3. Under the assumption H ′1, we have

∃j∗ ∈ J :


inf

h∈Bs(R)
‖P j∗−1

2 f − h‖L2 ≤ ρj∗−1,

inf
h∈Bs(R)

‖P j∗

2 f − h‖L2 > ρj∗ .
(4.9)

/
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Proof. By contradiction: Assume that (4.9) is false, i.e.

∀j∗ ∈ J : inf
h∈Bs(R)

‖P j∗−1
2 f − h‖L2 > ρj∗−1︸ ︷︷ ︸

Ej∗

∨ inf
h∈Bs(R)

‖P j∗

2 f − h‖L2 ≤ ρj∗︸ ︷︷ ︸
Fj∗

.

Then clearly FJ is false, so that EJ is true. Equivalently, FJ−1 is false and in turn
EJ−1 must be true. Continued application of this argument leads to the contradic-
tion

inf
h∈Bs(R)

‖P 1
2 f − h‖L2 = 0 > ρ1.

2

Concentration of ‖P j∗

2 f̂‖2Bs

Lemma 4.4. Let j∗ ∈ J . Then, with

Aj∗ :=
1

n

j∗∑
j=2

(2 · 4s)j, Bj∗ :=
2

n2

j∗∑
j=2

(2 · 42s)j, Vj∗ =
4

n

j∗∑
j=2

42js‖Pjf‖2
L2
,

it holds that

∀δ ∈ (0, 1) : P

(∣∣∣‖P j∗

2 f̂‖2
Bs − Aj∗ − ‖P

j∗

2 f‖2
Bs

∣∣∣ ≥√1

δ
(Bj∗ + Vj∗)

)
≤ δ. (4.10)

/

Proof. For j ∈ J , let

λj := n
2j∑
k=1

a2
j,k = n‖Pjf‖2

L2
.

Then, by construction, we know that

n‖Pj f̂‖2
L2

=
2j∑
k=1

(
√
n âj,k)

2 ∼ χ2(2j, λj),

i.e. a χ2−distribution with 2j degrees of freedom and non-centrality parameter λj.
Classical properties of this distribution now tell us

E
[
‖Pj f̂‖2

L2

]
=

2j

n
+ ‖Pjf‖2

L2
; Var

[
‖Pj f̂‖2

L2

]
= 2

(
2j

n2
+

2

n
‖Pjf‖2

L2

)
. (4.11)

Since

‖P j∗

2 f‖2
Bs =

j∗∑
j=2

4js‖Pj f̂‖2
L2
,
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independence in conjunction with (4.11) yields

E[‖P j∗

2 f̂‖2
Bs ] =

j∗∑
j=2

4js
(

2j

n
+ ‖Pjf‖2

L2

)

=
1

n

j∗∑
j=2

(2 · 4s)j + ‖P j∗

2 f‖2
Bs

= Aj∗ + ‖P j∗

2 f‖2
Bs ;

Var[‖P j∗

2 f̂‖2
Bs ] =

j∗∑
j=2

42js

(
2

(
2j

n2
+

2

n
‖Pjf‖2

L2

))

=
2

n2

j∗∑
j=2

(2 · 42s)j +
4

n

j∗∑
j=2

42js‖Pjf‖2
L2

= Bj∗ + Vj∗ .

We obtain the desired result directly through Chebyshev’s inequality: For ε > 0,

P
(∣∣∣‖P j∗

2 f̂‖2
Bs − Aj∗ − ‖P

j∗

2 f‖2
Bs

∣∣∣ ≥ ε
)
≤ Bj∗ + Vj∗

ε2

and hence the claim. 2

More specifically, observe that

Bj∗ =
2

n2

j∗∑
j=2

(2 · 42s)j

=
2

n2
(2 · 42s)2 (2 · 42s)j

∗−1 − 1

2 · 42s − 1

≤ 2

n2

2 · 42s

2 · 42s − 1
(2 · 42s)j

∗

≤ 4

n2
(2 · 42s)j

∗
,

(where we use that for x ≥ 2, x
x−1
≤ 2) and hence for δ ∈ (0, 1)√
Bj∗

δ
≤ 2√

δ
4j
∗s2j

∗/2

n
.

Furthermore,√
Vj∗

δ
=

2√
δ
· 1√

n

√√√√ j∗∑
j=2

42js‖Pjf‖2
L2
≤ 2√

δ
·
√
j∗ − 1√
n

max
2≤j≤j∗

2js‖Pjf‖Bs .

The maximum in the latter computation will play an important role in the sequel.
From now on we use the abbreviation

Mj∗ := max
2≤j≤j∗

2js‖Pjf‖Bs . (4.12)
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Plugging these bounds in (4.10) leads to

P

(∣∣∣‖P j∗

2 f̂‖2
Bs − Aj∗ − ‖P

j∗

2 f‖2
Bs

∣∣∣ ≥ 2√
δ
·
√
j∗ − 1√
n

Mj∗ +
2√
δ

4j
∗s2j

∗/2

n

)
≤ δ (4.13)

for any δ ∈ (0, 1).

4.5.2 Preliminary Bounds on ‖P j∗

2 f‖Bs

As a next step towards controlling the type-I and type-II errors of our test, we study
‖P j∗

2 f‖Bs more closely.
On the one hand, under H ′0, for any j∗ ∈ J we clearly have ‖P j∗

2 f‖Bs ≤ R.
On the other hand, under H ′1, we require a lower bound on ‖P j∗

2 f‖Bs . The following
bound is preliminary in the sense that it requires the knowledge of an index j∗ ∈ J
with the property from (4.9) and the corresponding Mj∗ . The generalisation will be
considered in sections 4.5.3 and 4.5.4.

Lemma 4.5. Let j∗ ∈ J be an index with the property

inf
h∈Bs(R)

‖P j∗−1
2 f − h‖L2 ≤ ρj∗−1, inf

h∈Bs(R)
‖P j∗

2 f − h‖L2 > ρj∗ . (4.14)

Then the following assertion holds for A = 11:

‖P j∗

2 f‖2
Bs ≥ R2 +

1

2 · A2
ρj∗Mj∗ +

1

2 · A2
4j
∗sρ2

j∗ . (4.15)

/

Proof. Before giving the main arguments, we need a technical preparation and a
general (i.e. only depending on j∗) lower bound on ‖P j∗

2 f‖Bs :

1. Proxy minimisation of infh∈Bs(R) ‖P j∗

2 f − h‖L2

For j̃ ∈ J , write Pj 6=j̃ := P j∗

2 − Pj̃. In the case that ‖Pj 6=j̃f‖Bs ≤ R, we can
introduce the function h̃ through the wavelet coefficients

bj,k := aj,k for (j, k) ∈ I, j 6= j̃,

bj̃,k := aj̃,k ·

√
R2 − ‖Pj 6=j̃f‖2

Bs

‖Pj̃f‖Bs
, for k ∈ {1, 2, . . . , 2j̃}.

Then h̃ ∈ Bs(R) holds since

‖h̃‖2
Bs =

j∗∑
j=2

4js
2j∑
k=1

b2
j,k

= ‖Pj 6=j̃f‖
2
Bs +


√
R2 − ‖Pj 6=j̃f‖2

Bs

‖Pj̃f‖Bs

2

‖Pj̃f‖
2
Bs

= R2.
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Hence, by assumption

ρ2
j∗ < inf

h∈Bs(R)
‖P j∗

2 f − h‖2
L2
≤ ‖P j∗

2 f − h̃‖2
L2

=: d2,

where

d2 = ‖P j∗

2 f − h̃‖2
L2

=
2j̃∑
k=1

1−

√
R2 − ‖Pj 6=j̃f‖2

Bs

‖Pj̃f‖Bs

2

a2
j̃,k

=

1−

√
R2 − ‖Pj 6=j̃f‖2

Bs

‖Pj̃f‖Bs

2

‖Pj̃f‖2
Bs

4j̃s

=
(
‖Pj̃f‖Bs −

√
R2 − ‖Pj 6=j̃f‖2

Bs

)2

4−j̃s.

This tells us that if ‖Pj 6=j̃f‖Bs ≤ R,

‖Pj̃f‖Bs = 2j̃sd+
√
R2 − ‖Pj 6=j̃f‖2

Bs ≥ 2j̃sd, (4.16)

‖P j∗

2 f‖2
Bs = R2 + 2 · 2j̃sd

√
R2 − ‖Pj 6=j̃f‖2

Bs + 4j̃sd2. (4.17)

2. Bound in terms of 4j
∗sρ2

j∗

If ‖P j∗−1
2 f‖Bs ≤ R, we can use (4.17) with j̃ = j∗ and d ≥ ρj∗ ≥ 0 and obtain

‖P j∗

2 f‖2
Bs ≥ R2 + 4j

∗sρ2
j∗ .

If ‖P j∗−1
2 f‖Bs > R, observe that by the triangle inequality

inf
h∈Bs(R)

‖P j∗

2 f − h‖L2 ≤ inf
h∈Bs(R)

‖P j∗−1
2 f − h‖L2 + ‖Pj∗f‖L2 ≤ ρj∗−1 + ‖Pj∗f‖L2

and since

ρj∗ − ρj∗−1 ≥ a
2(3j∗+2J)/20

√
n

(1− 2−3/20) ≥ 1

11
ρj∗ =

1

A
ρj∗ ,

we obtain

‖P j∗

2 f‖2
Bs = ‖P j∗−1

2 f‖2
Bs + ‖Pj∗f‖2

Bs

≥ R2 + 4j
∗s(ρj∗ − ρj∗−1)2

≥ R2 +
1

A2
4j
∗sρ2

j∗ .

So, in any case,

‖P j∗

2 f‖2
Bs ≥ R2 +

1

A2
4j
∗sρ2

j∗ . (4.18)
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3. Main arguments
We are now ready to prove (4.15) effectively. To that end, fix an index

j ∈ argmax
j∈J

2js‖Pjf‖Bs .

Case 1: ‖Pj 6=jf‖Bs ≤ R
In that case, we can use (4.16) and (4.17) with j̃ = j in comination with
(4.18) and obtain

‖P j∗

2 f‖2
Bs ≥ R2 + 2jsd

√
R2 − ‖Pj 6=jf‖2

Bs +
1

2
4jsd2 +

1

2 · A2
4j
∗sd2

= R2 + 2jsd
(
‖Pjf‖Bs − 2jsd

)
+

1

2
4jsd2 +

1

2 · A2
4j
∗sd2

= R2 + d · 2js
(
‖Pjf‖Bs −

1

2
2jsd

)
+

1

2 · A2
4j
∗sd2

≥ R2 + ρj∗2
js

(
‖Pjf‖Bs −

1

2
2jsd

)
+

1

2 · A2
4j
∗sρ2

j∗

≥ R2 +
1

2
ρj∗Mj∗ +

1

2 · A2
4j
∗sρ2

j∗ ,

remembering (4.12).
Case 2: ‖Pj 6=jf‖Bs > R

That case can be handled quickly by considering two subcases:
Subcase 1: 4j∗sρ2

j∗ ≥ ρj∗Mj∗

Observe that with (4.18)

‖P j∗

2 f‖2
Bs ≥ R2+

1

2 · A2
4j
∗sρ2

j∗+
1

2 · A2
4j
∗sρ2

j∗ ≥ R2+
1

2 · A2
ρj∗Mj∗+

1

2 · A2
4j
∗sρ2

j∗ .

Subcase 2: 4j∗sρ2
j∗ < ρj∗Mj∗

In that case we have

‖Pjf‖Bs >
4j
∗s

2js
ρj∗ ≥ 2jsρj∗

and thus

‖P j∗

2 f‖2
Bs = ‖Pj 6=j‖2

Bs + ‖Pjf‖2
Bs

> R2 + 2jsρj∗‖Pjf‖Bs

= R2 + ρj∗Mj∗

≥ R2 +
1

2
ρj∗Mj∗ +

1

2
4j
∗sρ2

j∗ .

This concludes the proof since in any case (4.15) holds.

2
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4.5.3 Estimation of Mj∗

As a last major step before directly controlling the type-I and type-II error proba-
bilities, we need to find an appropriate estimator for Mj∗ .

Lemma 4.6. For δ ∈ (0, 1) and j∗ ∈ J , let

Cδ :=

√
2

δ
,

Dj∗,δ :=
4j
∗s

√
n

(√
2Cδ + 2j

∗/4
√
Cδ

)
and define the events

ξ0
j∗,δ :=

{
Mj∗ ≤

√
max

2≤j≤j∗
|Yj|+Dδ,j∗

}
, (4.19)

ξ1
j∗,δ :=

{
Mj∗ ≥

√
max

2≤j≤j∗
|Yj| −Dδ,j∗

}
. (4.20)

Then, for any monotone decreasing sequence (βj)j∈J in (0, 1), the following holds:

P(ξ1
j∗,βj∗

) ≥ 1−
j∗∑
j=2

βj, P(ξ0
j∗,βj∗

) ≥ 1− βj∗ . (4.21)

/

Proof. Remembering (4.11), we know that for j ∈ {2, 3, . . . , j∗}

Zj := 4js‖Pj f̂‖2
Bs = 16js‖Pj f̂‖2

L2

has the properties

E[Zj] = 16js
2j

n
+ 4js‖Pjf‖2

Bs ,

Var[Zj] = 2 · 162js

(
2j

n2
+

2

n
‖Pjf‖2

L2

)
= 16js

(
2 · 16js

2j

n2
+

4

n
4js‖Pjf‖2

Bs

)
.

Now observe that for δ ∈ (0, 1)√
1

δ
Var[Zj] ≤

√
2

δ
2j/2

16js

n
+

2√
δn

4js2js‖Pjf‖Bs

≤ Cδ2
j∗/2 16j

∗s

n
+
√

2Cδ
4j
∗s

√
n
Mj∗

=: vδ,j∗ .

With Yj = Zj − 16js 2j

n
, Chebyshev’s inequality now tells us that

P
(∣∣Yj −m2

j

∣∣ ≥ vδ,j∗
)
≤ δ. (4.22)
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We derive two bounds from this statement by lower bounding the the left hand side
in two different ways:
On the one hand, observe

|Yj −m2
j | ≥ ||Yj| −m2

j | ≥ |Yj| −m2
j ≥ |Yj| −M2

j∗ .

Now, since (βj)j∈J is monotone decreasing, the sequence (vβj ,j∗)j∈J is increasing, so
that via a union bound we obtain

j∗∑
j=2

βj ≥ P
(
∃j ∈ {2, 3, . . . , j∗} : |Yj| ≥M2

j∗ + vβj ,j∗
)

≥ P
(
∃j ∈ {2, 3, . . . , j∗} : |Yj| ≥M2

j∗ + vβj∗ ,j∗
)

= P

(√
max

2≤j≤j∗
|Yj| ≥

√
M2

j∗ + vβj∗ ,j∗

)
.

With √
M2

j∗ + vβj∗ ,j∗ =

√(
Mj∗ +

Cβj∗√
2

4j∗s√
n

)2

−
C2
βj∗

2

16j∗s

n
+ Cβj∗2

j∗/2
16j∗s

n

≤

√(
Mj∗ +

Cβj∗√
2

4j∗s√
n

)2

+
C2
βj∗

2

16j∗s

n
+ Cβj∗2

j∗/2
16j∗s

n

≤Mj∗ +
4j
∗s

√
n

(√
2Cβj∗ + 2j

∗/4
√
Cβj∗

)
,

we have

P

(√
max

2≤j≤j∗
|Yj| ≥Mj∗ +

4j
∗s

√
n

(√
2Cβj∗ + 2j

∗/4
√
Cβj∗

))
≤

j∗∑
j=2

βj

and hence the first claim from (4.21).
On the other hand, observe

|Yj −m2
j | ≥ m2

j − |Yj|

and consider the specific case j = j in (4.22):

βj∗ ≥ P
(
|Yj| ≤M2

j∗ − vβj∗ ,j∗
)

≥ P
(

max
2≤j≤j∗

|Yj| ≤M2
j∗ − vβj∗ ,j∗

)

= P

(
max

2≤j≤j∗
|Yj|+

16j
∗s

n

(
C2
βj∗

2
+ 2j

∗/2Cβj∗

)
≤
(
Mj∗ −

Cβj∗√
2

4j
∗s

√
n

)2
)

≥ P
(√

max
2≤j≤j∗

|Yj|+
4j
∗s

√
n

(√
2Cβj∗ + 2j

∗/4
√
Cβj∗

)
≤Mj∗

)
,

which asserts the second claim from (4.21). 2
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4.5.4 Conclusion

We will now assemble the individual results of the previous sections to obtain the
claim of Theorem 4.1. For j ∈ J we introduce

ρj =
1346
√
η
· 2(3j+2J)/20

√
n

, αj = η
1− 2−1/5

4
2(j−J)/5, βj = η

1− 2−1/2

2
2−j/2, (4.23)

so that in particular

J∑
j=2

αj ≤
η

4
,

J∑
j=2

βj ≤
η

4

and (βj)j∈J is monotone decreasing.

Result for fixed index
For j∗ ∈ J define

Tj∗,αj∗ = ‖P j∗

2 f̂‖2
Bs − Aj∗ −

2
√
αj∗
·
√
j∗ − 1√
n

√
max

2≤j≤j∗
|Yj|.

Then under H ′0∩ξ0
j∗,βj∗

, (4.19) and (4.13) yield that with probability at least 1−αj∗

Tj∗,αj∗ ≤ ‖P
j∗

2 f‖2
Bs +

2
√
αj∗
·
√
j∗ − 1√
n

Mj∗ +
2
√
αj∗

4j
∗s2j

∗/2

n

− 2
√
αj∗
·
√
j∗ − 1√
n

√
max

2≤j≤j∗
|Yj|

≤ R2 +
2
√
αj∗
·
√
j∗ − 1√
n

Dj∗,βj∗ +
2
√
αj∗

4j
∗s2j

∗/2

n

so that with

τj∗,αj∗ = R2 +
2
√
αj∗

(√
j∗ − 1√
n

Dj∗,βj∗ + 4j
∗s2j

∗/2

n

)
, (4.24)

we obtain

PH′0(Tj∗,αj∗ > τj∗,αj∗ | ξ
0
j∗,βj∗

) ≤ αj∗ .
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On the other hand, let j∗ be a transition index with property (4.14). Then under
H ′1 ∩ ξ1

j∗,βj∗
, (4.13) and (4.15) tell us that with probability at least 1− αj∗

Tj∗,αj∗
≥ ‖P j∗

2 f‖2
Bs −

2
√
αj∗
·
√
j∗ − 1√
n

Mj∗ −
2
√
αj∗

4j∗s2j∗/2

n

− 2
√
αj∗
·
√
j∗ − 1√
n

√
max

2≤j≤j∗
|Yj|

≥ R2 +

(
1

2 · A2
ρj∗ −

2
√
αj∗
·
√
j∗ − 1√
n

)
Mj∗ +

1

2 · A2
4j∗sρ2

j∗

− 2
√
αj∗

4j∗s2j∗/2

n
− 2
√
αj∗
·
√
j∗ − 1√
n

√
max

2≤j≤j∗
|Yj|.

Provided that
1

2 · A2
ρj∗ ≥

4
√
αj∗
·
√
j∗ − 1√
n

, (4.25)

using (4.20) this yields

Tj∗,αj∗
≥ R2 +

1

2 · A2
4j∗sρ2

j∗ −
2
√
αj∗
·
√
j∗ − 1√
n

Dj∗,βj∗
− 2
√
αj∗

4j∗s2j∗/2

n
. (4.26)

Now by explicit computation we see that the choices in (4.23) ensure (4.25) as well
as

1

4 · A2
4j∗sρ2

j∗ ≥
4
√
αj∗
·
√
j∗ − 1√
n

Dj∗,βj∗
and

1

4 · A2
4j∗sρ2

j∗ ≥
4
√
αj∗

4j∗s2j∗/2

n
,

so that (4.26) can be continued as

Tj∗,αj∗
≥ R2 +

2
√
αj∗

(√
j∗ − 1√
n

Dj∗,βj∗
+ 4j∗s2j∗/2

n

)
= τj∗,αj∗

and hence, finally,
PH′1(Tj∗,αj∗

≤ τj∗,αj∗
| ξ1

j∗,βj∗
) ≤ αj∗ .

Generalisation to unknown j∗

For our test

ϕ(P J
2 f̂) = 1−

J∏
j∗=2

1{Tj∗,αj∗≤τj∗,αj∗ }
, (4.27)

we can conclude with (4.21) and (4.23) that on the one hand

PH′0 (ϕ = 1) ≤
J∑

j∗=2

(
PH′0

(
Tj∗,αj∗ > τj∗,αj∗ | ξ

0
j∗,βj∗

)
+ (1− P(ξ0

j∗,βj∗
))
)

≤ η

4
+
η

4
=
η

2
(4.28)
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and on the other hand

PH′1 (ϕ = 0) ≤ PH′1 (∀j∗ ∈ J : Tj∗,α ≤ τj∗,α)

≤ PH′1
(
Tj∗,α ≤ τj∗,αj∗

| ξ1
j∗,βj∗

)
+
(

1− P(ξ1
j∗,βj∗

)
)

≤ αj∗ +

j∗∑
j=2

βj

≤ η

4
+
η

4
=
η

2
. (4.29)

Specification of J and conclusion
We are now ready to return to (4.8). Choose

J :=

⌊
1

2t+ 1/2

ln(n)

ln(2)

⌋
, (4.30)

so that
1

2
n

1
2t+1/2 ≤ 2J ≤ n

1
2t+1/2 . (4.31)

That yields
2−Jt ≤ 2tn−

t
2t+1/2 (4.32)

and, on the other hand,

ρJ =
1346
√
η

2J/4√
n
≤ 1346
√
η
· n−

t
2t+1/2 .

Therefore, whenever we choose

ρ ≥
(

1346
√
η

+
R

1− 2−t

)
n−

t
2t+1/2 ,

indeed by (4.28) and (4.29)

sup
f∈Bs(R)

Pf (ϕ = 1) + sup
f∈B̃s,t(R,ρ)

Pf (ϕ = 0) ≤ η

2
+
η

2
= η.

4.6 Proof of Theorem 4.2
Priors
Since the upper bound does not depend on s and we found the index J from (4.30) to
be critical, we choose the following structurally simple priors: Let ν0 be the Dirac-δ
distribution on {0} (i.e. f ≡ 0) and νρ be the uniform distribution on

Aρ,v :=


2J∑
k=1

aJ,kψj,k | aJ,1, aJ,2, . . . , aJ,2J ∈ {v,−v}

 ,
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where v > 0 needs further specification: On the one hand, it is necessary to ensure
that each f ∈ Aρ,v fulfils ‖f‖Bt ≤ R - note that for any such f , ‖f‖L2 = 2J/2v, so
that by construction that condition reads

2J(t+1/2)v ≤ R.

This motivates the choice v := aη · R · 2−J(t+1/2) for some aη ∈ (0, 1] specified later
based on further restrictions. On the other hand, we require

ρ ≤ inf
h∈Bs(R)

‖f − h‖L2 . (4.33)

Since only the level J is involved, this is in fact merely the minimum over the
Euclidean ball with radius R · 2−Js so that

inf
h∈Bs(R)

‖f − h‖L2 = max
(
0, 2J/2v −R · 2−Js

)
.

Now, by explicit computation we see that if

n ≥
(

21+s−t

aη

) 2t+1/2
s−t

,

with our choice of v we have

max
(
0, 2J/2v −R · 2−Js

)
≥ 1

2
2J/2v = aη

R

2
2−Jt,

so that (4.33) holds if

ρ ≤ aη
R

2
2−Jt.

Statistical distance
Again, the central task in this proof is to compute the χ2-divergence between Pf∼ν0
and Pf∼νρ . By construction, Pf∼ν0 corresponds to the 2J -fold product of Gaussian
distributions with mean 0 and variance 1

n
, so that for x ∈ R2J

dPf∼ν0(x) =

√
n

2π

2J 2J∏
k=1

exp
(
−n

2
x2
k

)
.

On the other hand, Pf∼νρ corresponds to a uniform mixture of 22J products of 2J

independent Gaussians with means of the form ±v and variance 1
n
.

Note that, in fact, we have already considered priors of that form in section 1.4.2 and
another derivation here is actually unnecessary. However, we use this opportunity
to present an alternative computation with slightly different flavor.

Let S := {1,−1}2J and R be uniformly distributed on S (i.e. the product of 2J
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Rademacher variables). Then

dPf∼νρ(x) =
1

22J

∑
α∈S

√
n

2π

2J 2J∏
k=1

exp

−n
2

2J∑
k=1

(xk − αkv)2


=

√
n

2π

2J

ER

 2J∏
k=1

exp
(
−n

2
(xk −Rkv)2

)

and furthermore, with an independent copy R′ of R,

(dPf∼νρ(x))2 =
( n

2π

)2J

ER,R′

 2J∏
k=1

exp
(
−n

2

[
(xk −Rkv)2 + (xk −R′kv)2

])
=
( n

2π

)2J

exp
(
−2Jnv2

)
ER,R′

 2J∏
k=1

exp
(
−nx2

k + nvxk(Rk +R′k)
) .

The quotient we need to integrate in (1.10) therefore reads

(dPf∼νρ)
2

dPf∼ν0
(x) =

√
n

2π

2J

exp
(
−2Jnv2

)
ER,R′

 2J∏
k=1

exp
(
−n

2
x2
k + nvxk(Rk +R′k)

)
=

√
n

2π

2J

exp
(
−2Jnv2

)
· ER,R′

 2J∏
k=1

exp
(
−n

2
(xk − v(Rk +R′k))

2
)

exp
(
nv2(1 +RkR

′
k)
)

=

√
n

2π

2J

ER,R′

 2J∏
k=1

exp
(
nv2RkR

′
k

) 2J∏
k=1

exp
(
−n

2
(xk − v(Rk +R′k))

2
) .
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Since the product of independent Rademacher variables is itself a Rademacher vari-
able, we obtain ∫

R2J

(dPf∼νρ)
2

dPf∼ν0
(x) dx = ER,R′

 2J∏
k=1

exp
(
nv2RkR

′
k

)
= ER

 2J∏
k=1

exp
(
nv2Rk

)
=

2J∏
k=1

ERk
[
exp

(
nv2Rk

)]
=
(
cosh(nv2)

)2J

≤ exp

(
2J
n2v4

2

)
.

Conclusion
Now, (1.10) holds if

exp

(
2J
n2v4

2

)
< 1 + 4(1− η)2

which, by explicit computation, is fulfilled if

aη ≤
2J(t+1/4)

√
nR

4
√

ln(1 + 4(1− η)2).

Through (4.31) and (4.32) we find that

2J(t+1/4)

√
n
≥ 2−t

16

and obtain the stronger condition

aη ≤
4
√

ln(1 + 4(1− η)2)

2t16R
.

In summary: Let

aη = min

{
1,

√
ln(1 + 4(1− η)2)

2t16R

}
.

If

n ≥


(

21+s−t

aη

) 2t+1/2
s−t

 ,
the priors ν0 and νρ meet all requirements and the lower bound

ρ∗ ≥ aη
R

2
2−Jt ≥ aη

R

2
n−

t
2t+1/2

is established, where we write Cη := R
2
aη.
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