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A B S T R A C T

Cerebral aneurysms are weak vessel areas that can bulge out and balloon, caused by a pathologically
altered structure of the vascular wall. They bear the risk of rupture, leading to internal bleeding
causing high risks of mortality. Although most aneurysms will never rupture, the potential risk of
bleeding makes the detection and risk-assessment of aneurysms a critical issue. Imaging methods are
used for the detection and localization of aneurysms. The decision as to whether or not aneurysms
should be treated must be carefully considered, as there is a risk of fatal outcome during surgery.

Their initiation and progression depend strongly on the interplay of vascular morphology and
hemodynamics. Unfortunately, the processes causing aneurysm growth and rupture are not well
understood. Blood flow simulations can obtain information about the patient-specific hemodynamics.
It is also the basis for the development for new, low-risk treatment options since treatment success
depends on blood flow characteristics.

In clinical routine, risk assessment and treatment planning are just based on morphological charac-
teristics of an aneurysm and its surrounding vasculature. However, this information allows no reliable
evaluation of the aneurysm state. To improve decision-making, medical and biomedical researchers
analyze simulated flow data, which are multi-attribute data with high spatial and temporal complexity.
The data exploration is performed quantitatively and qualitatively, where the former focuses on
the evaluation of specific scalar values such as pressure or wall thickness and the latter focuses
on the analysis of flow patterns such as vortices. Correlations between qualitative and quantitative
characteristics can be revealed and formed into hypotheses that can lead to a better understanding of
the internal aneurysm procedures. However, the visual exploration of flow data is a time-consuming
process, which is affected by visual clutter and occlusions.

The goal of our work is to develop computer-aided methods that support the quantitative and
qualitative visual exploration of morphological and hemodynamic characteristics in cerebral aneurysm
data sets. Since this is an interdisciplinary process involving both physicians and fluid mechanics
experts, redundancy-free management of aneurysm data sets is required to enable efficient analysis
of the information. We developed a consistent structure to document aneurysm data sets, where
users can search for specific cohorts, and individual cases can be analyzed more detailed to assess
the aneurysm state as well as to weigh different treatment scenarios. The prerequisite for the visual
exploration is the extraction of the ostium, which is a curved surface that separates the parent vessel
from an aneurysm. We provide an automatic determination of the ostium. Based on this several other
morphological descriptors are computed automatically. Besides an analysis of morphological aspects,
the aneurysm data exploration comprises four more parts: a simultaneous evaluation of wall- and
flow-related characteristics, a simultaneous analysis of multiple scalar information on the aneurysm
wall, the analysis of mechanical wall processes as well as a qualitative characterization of the internal
flow behavior. We provide methods for each of these parts: occlusion-free depictions of the vessel
morphology and internal blood flow, interactive 2D and 3D visualizations to explore multi-attribute
correlations, comparative glyph-based visualizations to explore mechanical wall forces and automatic
classification of qualitative flow patterns. Our methods were designed and evaluated in collaboration
with domain experts who confirmed their usefulness and clinical necessity.



Z U S A M M E N F A S S U N G

Zerebrale Aneurysmen sind lokale Ausbeulungen der Gefäßwand, verursacht durch eine pathologisch
veränderte Struktur dieser. Die Hauptgefahr für den Patienten besteht in einer Ruptur, was zu
einer inneren Blutung führt und mit einer hohen Mortalität verbunden ist. Obwohl die meisten
Aneurysmen nie rupturieren werden, macht das potenzielle Risiko einer Blutung die Erkennung und
Risikobewertung von Aneurysmen zu einem wichtigen Thema. Bildgebende Verfahren werden zur
Erkennung und Lokalisierung von Aneurysmen eingesetzt. Die Entscheidung, ob ein Aneurysma
behandelt werden sollte oder nicht, muss sorgfältig abgewägt werden, da bei Eingriffen die Gefahr
eines tödlichen Verlaufs besteht.

Ihre Entstehung und ihr Voranschreiten hängen stark vom Zusammenspiel der Gefäßmorphologie
und Hämodynamik ab. Leider sind die Prozesse, die das Wachstum und die Ruptur des Aneurysmas
verursachen, bisher nicht gut verstanden. Informationen über die patientenspezifische Hämodynamik
können mit Hilfe von Blutflusssimulationen gewonnen werden. Diese sind auch die Grundlage für
die Entwicklung neuer, risikoarmer Behandlungsmöglichkeiten, da der Behandlungserfolg von den
Eigenschaften des Blutflusses abhängt.

In der klinischen Routine basieren die Risikobewertung und die Behandlungsplanung nur auf
morphologischen Eigenschaften des Aneurysmas und seinem umgebenden Gefäßbaum. Diese
Informationen erlauben jedoch keine zuverlässige Beurteilung des Aneurysmas. Um die Entschei-
dungsfindung zu verbessern, analysieren medizinische und biomedizinische Forscher simulierte
Strömungsdaten. Dies sind Informationen mit hoher räumlicher und zeitlicher Komplexität, die eine
Vielzahl an Attributen umfassen. Die Datenexploration wird quantitativ und qualitativ durchgeführt,
wobei sich erstere auf die Bewertung spezifischer skalarer Werte wie Druck oder Wanddicke und
letztere auf die Analyse von Flussmustern wie Wirbel konzentriert. Zusammenhänge zwischen
qualitativen und quantitativen Merkmalen können aufgedeckt und zu Hypothesen geformt werden,
die zu einem besseren Verständnis der Entwicklung und des Wachstums von Aneurysmen führen
können. Die visuelle Exploration von Strömungsdaten ist jedoch ein zeitaufwendiger Prozess, der
durch visuelle Verdeckung beeinflusst wird.

Ziel unserer Arbeit ist es, computergestützte Methoden zu entwickeln, die die quantitative und
qualitative Exploration morphologischer und hämodynamischer Eigenschaften in zerebralen Aneurys-
men unterstützen. Da es sich hierbei um einen interdisziplinären Prozess handelt, an dem sowohl
Ärzte als auch Strömungsexperten beteiligt sind, ist eine redundanzfreie Verwaltung von Aneurysma-
Datensätzen erforderlich, um eine effiziente Analyse der Informationen zu ermöglichen. Wir haben
eine einheitliche Struktur zur Dokumentation von Aneurysma-Datensätzen entwickelt, in der Benutzer
nach bestimmten Kohorten suchen können und einzelne Fälle detaillierter analysiert werden können,
um den Zustand des Aneurysmas zu beurteilen und um verschiedene Behandlungsszenarien abzuwä-
gen. Voraussetzung für die visuelle Exploration ist die Extraktion des Ostiums, das eine gebogene
Fläche ist, die das Trägergefäß vom Aneurysma trennt. Wir haben eine automatische Extraktion des
Ostiums entwickelt. Basierend darauf werden mehrere weitere morphologische Deskriptoren automa-
tisch berechnet. Neben der Analyse morphologischer Aspekte umfasst die Datenexploration vier
weitere Komponenten: eine gleichzeitige Analyse wand- und strömungsbezogener Merkmale, eine
gleichzeitige Analyse mehrerer skalarer Informationen auf der Aneurysmawand, die Analyse mecha-
nischer Wandprozesse sowie eine qualitative Charakterisierung des internen Strömungsverhaltens.
Wir stellen Methoden für jede dieser Komponenten zur Verfügung: okklusionsfreie Darstellungen
der Gefäßmorphologie und des inneren Blutflusses, interaktive 2D und 3D Visualisierungen zur
Exploration von Korrelationen zwischen mehreren Attributen, vergleichende Glyphen-basierte Vi-
sualisierungen zur Exploration mechanischer Wandkräfte und eine automatische Klassifizierung
qualitativer Strömungsmuster. Unsere Methoden wurden in Zusammenarbeit mit Experten entwickelt
und bewertet, die ihren Nutzen und ihre klinische Notwendigkeit bestätigt haben.
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Introduction





1I N T R O D U C T I O N

Cardiovascular diseases (CVDs) are a group of pathological changes that involve the heart and the
vascular system. They include, for example, stroke, myocardial infarction, valvular heart disease,
vascular constriction (stenosis), or vascular dilatation (an aneurysm), which can lead to fatal con-
sequences for the patient such as cognitive and motor disabilities up to death. In recent years, the
number of deaths from such a disease has risen continuously, from 12.3 million (25.8 %) in 1990 to
17.9 million deaths (32.1 %) in 2015. Thus, Cardiovascular diseases (CVDs) are currently the leading
cause of death globally [249]. This percentage is expected to increase further in the coming years.

Aneurysms are among the most common CVDs, the two most important groups being cerebral
aneurysms, occurring on the brain-supplying vessels, and aortic aneurysms. Their rupture leads to a
subarachnoid hemorrhage (SAH), which is associated with a high mortality and morbidity rate [279].
Frequently, aneurysms are discovered by chance due to the increased use of imaging procedures
for assessing the patient’s state in case of widespread symptoms, e.g., persistent headaches. Most
aneurysms are asymptomatic and will never rupture [404]. However, the detection of a cerebral
aneurysm represents a severe dilemma - it has to be communicated to the patient and leads to anxiety.
Treatment is often possible, but with a considerable risk of severe complications, which can exceed
the danger of a natural rupture in everyday life [69]. A typical treatment is stenting, where a metal
implant (stent) is inserted into the supporting vessel of an aneurysm. Especially cerebral aneurysms
are difficult to treat, due to the long and convoluted way the doctor has to navigate the stent into
the parent vessel. Thus, it is highly desirable to understand the individual risk better and to restrict
treatment to high-risk patients.

Aneurysm initiation, evolution, and rupture are caused by several factors, such as genetics, vessel
morphology, inflammation, hemodynamics and epidemiological factors such as gender and age.
However, the interplay and correlations between these factors are not well understood. In clinical
routine, aneurysm treatment is based on medical guidelines that consider only morphological features
such as aneurysm location, size, and shape for risk assessment and treatment planning [35, 203, 353].
However, these attributes allow no reliable estimation of individual risk. Quantitative hemodynamic
characteristics such as wall shear stress (WSS) or pressure as well as qualitative features, e.g., vortices
seem to influence the aneurysm state including wall stability and thrombus formation [65, 69].
Therefore, information on patient-specific hemodynamics is used.

In larger arteries, e.g., the aorta, such data can be non-invasively acquired by 4D phase-contrast
magnetic resonance imaging (PC-MRI) [91]. In the smaller intracranial arteries, computational
fluid dynamics (CFD) simulations and fluid-structure interaction (FSI) enable the investigation of
the patient-specific internal wall mechanics and hemodynamics [164]. Both methods result in
time-dependent flow data, representing one cardiac cycle. In recent years, the investigation of
hemodynamic information has become increasingly important due to improved image modalities and
higher computer performance, which results in more accurate modeling of blood flow behavior.

Based on this information, biomedical researchers can investigate how hemodynamic information
influence the aneurysm initiation and progression as well as to evaluate different treatment options.
They are interested in whether there are correlations between hemodynamic attributes that are associ-
ated with an increased risk of rupture and high-risk wall regions. Morphological and hemodynamic
data are compared between ruptured and non-ruptured cases as well as between different stent con-
figurations to assess the rupture risk and to find an optimal treatment. For treatment planning, CFD

simulation tools enable the virtual use of certain stents in a patient-specific vessel geometry. Although
the knowledge gained is not yet incorporated into the clinical routine, their integration into clinical
research becomes relevant as measured and simulated flow data are increasingly available in clinical
workstations. Therefore, in recent years physicians such as neuroradiologists have been increasingly
involved in the investigation of hemodynamic data.

5
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1.1 M OT I VAT I O N O F T H I S T H E S I S

Patient-specific data evaluation is needed to improve aneurysm risk evaluation and treatment planning.
This includes a comparison to other ruptured and non-ruptured cases as well as an assessment of
different treatment options. However, the visual exploration of aneurysm data is time-consuming and
challenging due to several problems, which are rarely addressed by current visualization techniques.

Measured and simulated blood flow data are highly complex information comprising scalar,
vectorial and tensor-based information whose visualization is often affected by visual clutter and
occlusions. The vascular morphology is usually represented by a 3D surface mesh, where a series of
manual rotations is necessary to gain a complete overview due to the complexity of the vasculature. On
the surface, scalar quantities can be explored, where only one attribute can be displayed simultaneously
using standard visualization techniques. During rotation and zooming, the experts switch scalar
quantities such that different interesting regions are found. Thus, the experts have to memorize the
areas and analyze them regarding other quantities, which makes the detection of critical attribute
correlations very time-consuming. For more complex vascular branches, the number of regions of
interest (ROIs) and occlusion problems increases such that a full analysis of various scalar values
becomes quite challenging. The time-dependent behavior of the data additionally complicated the
analysis, where animations are used to show changes in scalar attributes during the cardiac cycle.
This procedure further enhances the manual exploration effort, because it is almost impossible to
find critical regions during an animation since the rotation process itself needs a certain amount
of time. The usage of side-by-side views only slightly improve data exploration, since they only
allow to analyze few time steps and attributes and it is exhaustive to put these multiple images
together mentally. Besides, the analysis of qualitative flow features is manually performed, which
is a subjective and error-prone process with high inter-observer variability. Small structures can be
easily overlooked, and the results are not reproducible, which impaired their interpretation. Finally,
performing large medical studies with different domain experts is challenging, since different software
solutions with inconsistent data formats are used. Thus, a collaborative analysis is challenging and
time is wasted to augment acquired data with meta information manually.

1.2 S T RU C T U R E A N D C O N T R I B U T I O N S O F T H I S T H E S I S

The work presented in this thesis aims to support medical and CFD experts in evaluating the aneurysm
rupture risk and treatment decision. The established methods were integrated into the developed
software prototype named Aneulysis. Design decisions and developments are based on extensive
discussions with domain experts comprising two neuroradiologists and two CFD engineers about their
goals and tasks regarding aneurysm research as well as problems that arise with currently used visual
exploration techniques. Accordingly, the solutions are tailored to the requirements and capabilities of
the domain experts.

The background part of the thesis is structured as follows:

• Chapter 2 presents relevant medical background information about cerebral aneurysms includ-
ing possible treatment options.

• Chapter 3 summarizes the flow data generation according to simulated data. It gives an overview
of pertinent image and data processing steps as well as important hemodynamic attributes.

• Chapter 4 provides an overview of existing techniques to visualize blood flow data, where the
approaches are classified according to a task taxonomy.

Based on the limitations of current visual exploration techniques for medical flow data, we made
the following main contributions:

• Consistent Data Management and Guided Exploration: Until now, measured and simulated
flow data are primarily used for research purpose. A significant reason is the lack of a consistent
data management between domain experts with a different professional background as well
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as standardized and easy-to-use exploration software with guided workflows and automatic
techniques to classify interesting features.

The research prototype Aneulysis [433] was developed in collaboration with our domain experts.
The general workflow, as well as the structure to manage the data, is presented in Chapter 5.
Besides a general concept to administrate aneurysm data, Aneulysis provides five modules for
visualizing the data. The first module focuses on an automatic extraction and visualization
of morphological aneurysm descriptors, which is also introduced in Chapter 5. This includes
the automatic detection of the ostium surface separating the aneurysm from the healthy parent
vessel from which other essential descriptors are derived. Providing automatic measurement
methods leads to reproducible and less error-prone results compared to manually performed
measurements, where measurement deviations can significantly influence treatment decisions.

• Surface-Based Data Exploration: One interest of clinical and CFD experts is to find corre-
lations between morphological and hemodynamic attributes that promote aneurysm growth
and rupture. For this purpose, different wall- and flow-related scalar fields are mapped to the
vertices of the triangular mesh representing the vessel wall. Wall-related attributes are, e.g., the
thickness and deformation of the wall, whereas flow-related attributes comprise, e.g., pressure
and WSS. The visual exploration of this time-dependent information using standard visualiza-
tion techniques such as a 3D surface representation is quite challenging and time-consuming.
Only, one attribute can be displayed simultaneously, where suspicious regions can be easily
overlooked.

Several novel methods for a simultaneous exploration of wall-related and flow-related attributes
during the cardiac cycle are presented in Chapter 6. The techniques are integrated into three
further visualization modules. The first module focuses on a combined visual exploration
of wall thickness and wall deformation together with the internal blood flow. The second
module allows a simultaneous analysis of multiple scalar fields on the vessel surface, where
both modules use a combination of several linked views showing the aneurysm data in different
abstraction levels. Besides scalar and vectorial information, tensor-based data can be defined
on the vessel wall describing mechanical shear forces. The third module focuses on the analysis
of these stress tensors by providing different comparative glyph-based visualization techniques
according to specific exploration tasks.

• Flow-Based Data Exploration: Besides quantitative flow attributes, qualitative flow features,
e.g., specific flow patterns such as vortex flow seem to influence the aneurysm state as well
as treatment success. Medical studies classify flow patterns according to their complexity and
temporal stability to evaluate their influence, where differences were found between ruptured
and non-ruptured as well as pre- and post-treated data sets. However, manual classifications
based on standard flow visualization techniques are time-consuming, error-prone and not
reproducible. Extensive and meaningful studies have to be carried out that generate reproducible
results to integrate findings of flow patterns into clinical discussions.

Chapter 7 presents the fifth visualization module of Aneulysis that allows a detailed analysis
of intra-aneurysmal flow patterns. It starts with an automatic clustering of integral lines to
get groups of lines with similar flow behavior that represent the flow patterns. The grouping
directly incorporates the temporal component of flow-representing path lines, leading to spatio-
temporally compact clusters. Moreover, our clustering method can handle flow patterns
that decay and reoccur during the cardiac cycle. The chapter proceeds with the automatic
classification of the clustered flow patterns. Each cluster is assigned to one of six pre-defined
flow types that can be easily extended to handle anatomical diversity. The classification provides
reliable and reproducible results, where different visualization techniques support a detailed
analysis of flow patterns and corresponding attributes such as their velocity and distance to the
vessel wall.
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2M E D I C A L B A C K G R O U N D

Stroke is the third most frequent cause of death, with about 270.000 people suffering from it every
year in Germany and about 90.000 patients dying within one year. In 10-15 % a stroke is caused
by a SAH, which describes bleeding into the area between the brain and covering tissues, called
subarachnoid space. Such bleeding is associated with severe consequences for the patient such as
neurological deficits, depression or even death. Most SAHs are caused by rupture of intracranial
aneurysms (IAs). At the moment, the pathophysiological mechanisms responsible for their formation
and rupture are not sufficiently well understood. However, current imaging techniques allow clinicians
to accurately characterize their morphology and relationship to the adjacent vascular system. Based
on this, enormous progress has been made in the last decades in the field of minimally invasive
endovascular surgery, whereby the respective interventions are aimed at separating the aneurysm
from the healthy circulation with the aid of different medical implants. Clinical studies have shown
that current methods often lead to successful treatment, as the inflow into an aneurysm is prevented.
However, surgical interventions are associated with various risks for the patient. Aneurysms can
rupture during surgery, or complete suppression of the inflow cannot be achieved. Besides, post-
operative complications, such as slippage of the implants, can also occur after a long period, making
it necessary to reattach the implants. Due to the possible treatment risks, the handling of accidentally
discovered, asymptomatic aneurysms is discussed controversially, where a prophylactic treatment is
not appropriate. Thus, there is an excellent interest in identifying factors that influence the growth
and rupture of aneurysms and enable an assessment of the risk.

This chapter provides an overview of IAs from a medical point of view. It starts with a more
detailed definition and classification of IAs based on the anatomy of healthy arteries, see Section 2.1
- Section 2.3. Moreover, a more detailed overview of rupture risk factors is given in Section 2.4.
Then, medical imaging modalities for aneurysm diagnostic and treatment are presented in Section 2.5,
followed by currently used treatment options, see Section 2.6.

2.1 A N E U RY S M E P I D E M I O L O G Y

IAs (also called cerebral or brain aneurysms) are abnormal local dilatations of intracranial arteries,
resulting from a pathological weakness in the vessel wall, see Figure 1a. A generally accepted
definition is a permanent dilatation of the vessel diameter above a factor of 1.5. Smaller dilatations
are called ectasia.

The annual prevalence of IAs is around 5 % in the general population and affects about 1.5 and
6 million people respectively in Germany and the USA [197, 350]. But maybe higher for certain
cohorts, such as patients older than 50 years, especially women, patients with kidney disease or
aneurysm occurrence in family history [172, 391]. Multiple cerebral aneurysms develop in 15 %
to 34 % of affected persons, which increases the likelihood of a possible rupture [309, 316]. The
mean annual incidence of aneurysm rupture in Western Europe and the USA is 10 cases per 100.000
persons [160, 285]. In patients with SAH, several aneurysms are diagnosed in up to 45 % of all
cases [316]. The consequences of a ruptured aneurysm are devastating, with approximately 50 % of
patients dying within 30 days [74, 411]. Furthermore, 25 % of the surviving patients have a severe
disability, where the remaining patients have an increased risk of serious complications such as stroke
or recurrent bleedings. However, 80 % to 85 % of all IAs will never rupture [350].

13
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(a) (b)

Figure 1: Scheme of an IA (a) and the Circulus Willisi with most common locations of IAs (b). (Image (a) from
National Institutes of Health / public domain, image (b) from [200] © Lippincott Williams 2005.)

2.2 A N E U RY S M PAT H O G E N E S I S

Arteries are tubular tissue structures that transport the blood in the human or animal body. The wall
of a healthy intracranial artery consists of three layers that enclose a cavity, the so-called lumen.
The innermost layer, the tunica intima consists of flat endothelial cells, which lie on an elastic inner
connective tissue layer and form the contact with the blood. The middle layer, the tunica media,
consists of ring-shaped muscle cells, which distribute the load evenly over the circumference of the
vessel. Between the muscle cells, collagen fibers as well as the fiber protein elastin are arranged, which
are essential for the wall stability. The outermost layer, the tunica adventitia, forms the transition to
the surrounding tissue. The arrangement of its fibers counteracts the longitudinal expansion of the
vessel [400]. In contrast to systemic arteries, intracranial arteries have significantly less elastin in the
media, which is assumed to make them more susceptible to aneurysm formation.

There are two types of aneurysms, the aneurysm verum (a real aneurysm) and the aneurysm
spurium (a false aneurysm). In a real aneurysm, all three vascular layers are affected by the expansion.
The false aneurysm is not really an aneurysm. It is caused by an injury of the vessel wall, where the
surrounding connective tissue retains the escaping blood. Thus, the aneurysm is not surrounded by a
vascular wall but by a layer of connective tissue. All of the following concepts are based on real IAs.

The underlying assumption is that aneurysm formation is the result of vascular remodeling, whereby
the body tries to restore homeostasis (stability) according to altered hemodynamic and biological
conditions [145]. The endothelial cells of the tunica intima play an essential role here. These cells,
which are slightly oriented in the direction of flow, react particularly to shear forces that occur on the
vessel wall through the blood flow. One of the most crucial stress measures is the WSS, the frictional
force induced by the tangential blood flow at the vessel wall [250]. This attribute is often related
to aneurysm growth and rupture because of its effect on the endothelial cells. WSS is described as a
mechanical trigger for the release of biological signal substances by endothelial cells, which regulate
vascular remodeling with the aim of homeostasis. Accordingly, local WSS leads to activation of
endothelial cells, which then change the arterial properties. Depending on the constellation, the wall
is reinforced or weakened to adapt it to the hemodynamic conditions.

The WSS provoked a lot of controversial discussions. There are two theories regarding critical WSS

values. The first one is that high WSS causes a faulty remodeling of endothelial cells, which leads to
destructive processes such as the degradation of muscle cells in the media. This, in turn, favors growth
and rupture probability since the structurally weakened wall can no longer sufficiently counteract
blood pressure. The second one assumes that low WSS results from the stagnation of blood flow inside
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an aneurysm. This causes inflammation in the wall, which promotes aneurysm formation and growth.
Furthermore, specific anatomical configurations such as bifurcations with acute branching angles
favor the occurrence of high and low WSS. In this way, the inflow is focused on a locally limited area,
which leads to destructive remodeling of the wall due to the increased physical stress.

Histological investigations of non-ruptured aneurysms have shown that they have no endothelial
layer, a disturbed inner elastic lamina, a diluted media with degenerated muscle cells and inflammatory
cells. During the formation and growth of an aneurysm, the wall may stabilize. However, a permanent
effect of inflammatory processes and hemodynamic load can cause destabilization of the wall. If the
intraluminal pressure exceeds the tensile strength of the aneurysm wall, rupture occurs.

2.3 A N E U RY S M C L A S S I F I C AT I O N

In clinical routine, IAs are classified according to their etiology, morphology, and location, where
different morphological descriptors are distinguished. Based on this, clinicians assess the patient-
specific rupture risk and have to decide if an aneurysm should be treated or not. In the case of
treatment, an optimal treatment must be selected.

2.3.1 Etiology

The formation of an aneurysm can be caused by several factors [186, 269]. A distinction can be made
between systemic and developmental causes. Systemic causes include external or internal stresses
leading to a weakening of the vessel wall and aneurysm growth. Typical factors of this category are
an unhealthy diet, high blood pressure, high cholesterol, excessive alcohol consumption, and tobacco
consumption. These aspects probably promote the formation of inflammation and atherosclerotic
deposits, which in turn can lead to destabilization of the wall and promote the formation of aneurysms.
Furthermore, genetically induced vascular instabilities are among the systemic factors [197, 335].
Direct relatives of aneurysm patients have a higher risk of developing an aneurysm themselves.
However, this can also be traced back to similarly unhealthy lifestyles within a family.

In contrast, developmental causes increase the likelihood of aneurysm formation with advancing
age [315]. Due to structural changes in proteins, the elasticity of vessels decreases with age, which
favors the development of aneurysms. The increased incidence of IAs in older women at a rate
of 3:1 to men can be attributed to the loss of collagen as a result of postmenopausal estrogen
deficiency [229, 391]. There are other rare causes of aneurysms. Infections of the arterial wall cause
mycotic aneurysms. Moreover, tumors and trauma can also cause aneurysms to form.

2.3.2 Localization

IAs often occur at arterial branches around the brain base. There they may be located directly on the
Circulus Willisi, a localized arterial vascular ring, or adjacent branches and arteries, see Figure 1b.
Aneurysms occurring at branchings comprising two arteries are called bifurcation aneurysms. In
contrast, aneurysms that occur on the wall of one artery are called side-wall aneurysms. Medical
studies [391, 403] have shown that aneurysms occur with different likelihood at certain sections of the
Circulus Willisi, where different probabilities of occurrence could be derived. Aneurysms, therefore,
occur most frequently in the anterior circulation at the anterior communicating artery (30 %), at the
junction of the internal carotid artery and the posterior communicating artery (25 %), at the middle
cerebral artery bifurcation (20 %) and the carotid artery bifurcation (7.5 %). In contrast, aneurysms
in the posterior circulation occur at 7 % in the bifurcation of the basilar artery and 3 % in the origin
of the posterior inferior cerebellar artery [47].
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2.3.3 Morphology

In addition to the location of cerebral aneurysms, their morphology plays an essential role in the
assessment of the aneurysm state. Basic morphological descriptors are the aneurysm shape and size.
Besides, further landmarks and quantitative descriptors were defined that allow a classification of the
aneurysm morphology.

Shape Classification

The shape of IAs is classified into two types: saccular and fusiform aneurysms [113], see Figure 2.
In the majority of cases (80 - 90 %), an aneurysm has a saccular shape, which is characterized by a
more or less spherical bulge on one side of the affected vessel. In contrast, fusiform aneurysms are an
inhomogeneous dilatation over a certain length of the vessel. They very rarely emerge in cerebral
arteries with an annual incidence of less than 0.1 % [14]. Either they occur acutely due to damage
of the internal elastic lamina, which leads to intramural bleeding, or as chronic fusiform aneurysms,
which presumably arise from atherosclerotic degeneration of the aneurysm wall [267].

(a) Saccular aneurysm. (b) Fusiform aneurysm.

Figure 2: Shapes of IAs classified into saccular (a) and fusiform aneurysms (b). (Images from [432] © IEEE
2019.)

Saccular aneurysms are additionally divided into two anatomical areas: the aneurysm neck and
aneurysm body (also called sac), see Figure 3. The neck describes the area where an aneurysm exits
the parent vessel. In contrast, the aneurysm body represents the actual bulge in the vessel with a
rounded dome. Due to the widening of the vessel wall, the sac may have thinner wall areas than the
parent vessel, at which an increased rupture risk is assumed. Besides, further small bulges, called
blebs or satellites, can form on the body. Such structures indicate remodeling due to inflammatory
processes within the vessel wall probably leading to lower stability and increased rupture risk. The
area at the transition between the parent vessel and the aneurysm neck is called ostium. It can be seen
as an imaginary surface, where the border is called ostium contour.

The extraction of morphological features is expressed as a surface decomposition task [276]. The
primary decomposition into an aneurysm (diseased) and parent vessel (healthy) can be further refined
by differentiating between affected (near) and non-affected (far) sections of the parent vessel, see
Figure 3. Given such a decomposition, clinically relevant morphological descriptors describing
aneurysm size, shape, and spatial relations to the parent vessel can be derived.

Morphological Descriptors

Based on the ostium and dome area, medical studies derive several morphological descriptors, which
allow a more differentiated classification of the aneurysm morphology concerning risk evaluation and
decision-making [68, 84, 159, 232, 311, 402]. Here, a distinction between 1D and 2D descriptors is
made, where some groups use in-house tools to compute the descriptors semi-automatically [84, 212].
The most frequently used 1D descriptors are:
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Figure 3: Morphological features of a saccular basilar tip aneurysm and subdivision of the vascular domain
(contours). (Image from [430] © John Wiley and Sons 2018.)

• Aneurysm height: From the center of the ostium surface, the point on the aneurysm with the
maximum Euclidean distance to the center is determined, where the distance between these two
points defines the height (aneurysm size), and the point on the aneurysm is called dome point.
A distinction is made between small (< 15mm), large (15 - 25mm), giant (25 - 50mm) and
super giant aneurysms (> 50mm).

• Aneurysm width: Along the height vector, the largest extent of the aneurysm body perpendic-
ular to the height vector is defined as width.

• Maximum diameter: The maximum diameter is measured as the maximum width of the
aneurysm body.

• Neck diameter: The diameter of the neck is measured as the greatest extent of the ostium
contour. Here, aneurysms with a narrow and wide neck are distinguished. Wide-neck aneurysms
exhibit a neck diameter of at least 4mm, or at least half as wide as high [398].

• Bulge height: The bulge height represents the part of the aneurysm height, where the maximum
width along the height occurs.

• Aneurysm volume: The aneurysm volume is measured as the volume of a whole aneurysm
consisting of neck and body area, which is very difficult to determine manually.

• Aneurysm angle: The aneurysm angle reflects the inclination of an aneurysm to the ostium.
It is measured as the angle between the ostium plane and the line representing the aneurysm
height. A rupture was observed more frequently in strongly inclined aneurysms. Due to the
inclination of an aneurysm, the blood probably hits the aneurysm wall at a higher speed, which
leads to increased stress on the aneurysm wall [84].

• Vessel angle: This descriptor is measured as the angle between the centerline of the parent
artery and the ostium plane. The aneurysm- and vessel angle are dependent on the view
direction. Thus, for measuring both angles, it has to be ensured that the ostium plane is
perpendicular to the viewing plane [84].

• Parent artery diameter: This diameter is measured as the maximum extent of the parent
artery, from which an aneurysm has evolved.

Based on this, several 2D descriptors are derived, which indicate whether an aneurysm is more
spherical or ellipsoidal:

• Aspect ratio: The aspect ratio describes the relationship between the aneurysm height and
neck width. Aneurysms with a large aspect ratio are considered as more likely to rupture [402].

• Height-width ratio: This factor describes the ratio between the aneurysm height and width.
An increased risk was found for aneurysms higher than wide and vice versa [159].
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• Bottleneck factor: The bottleneck factor describes the ratio between aneurysm width and neck
width. Similar to the height-width ratio, this descriptor was also significantly associated with
rupture [159].

• Bulge location: The bulge location is the ratio between the aneurysm height and bulge height.

• Aneurysm/parent artery ratio: This descriptor integrates information about the parent vessel
by measuring the ratio between the aneurysm size and diameter of the parent artery.

• Undulation index: This index describes the smoothness of the aneurysm wall concerning
blebs. The ratio is formed from the volume of an aneurysm and the volume of the convex
envelope of an aneurysm. It is assumed that very irregular shaped aneurysm have an increased
risk of rupture [68].

• Ellipticity index: This index characterizes how elongated an aneurysm is by using the ratio
between the volume of the convex aneurysm hull and the surface area of the convex hull.

• Non-sphericity index: This index is quite similar to the ellipticity index by using the ratio
between the aneurysm volume and the surface area of an aneurysm. However, possible
surface undulations would artificially increase the surface area leading to erroneous values
and interpretations of the aneurysm shape. For the calculation of all three indices, computer
assistance is needed.

Besides these descriptors, some other morphological features were used to investigate aneurysm
rupture. This includes, e.g., different definitions for the width and height of an aneurysm [159].
However, these descriptors seem to have a similar influence on aneurysm rupture risk as the given
definitions of height and width of an aneurysm.

2.4 A N E U RY S M RU P T U R E

The aneurysm growth and rupture relies on the biomechanical behavior of the aneurysm wall, which in
turn depends on the cellular organization and strength of the wall layers. Since the pathophysiological
processes have not yet been sufficiently understood, in clinical routine, aneurysms are classified
according to more objectively determinable factors to assess the risk of rupture and the associated
need for treatment. These factors essentially include the aneurysm location and morphology, recall
Section 2.3.2 and Section 2.3.3.

According to this, higher rupture rates were observed for certain vascular segments. Ruptures
were observed more frequently for aneurysms of the basilar artery and middle cerebral artery [403].
Besides the localization, the aneurysm size is the most critical clinical descriptor for the assessment
of the rupture risk. Based on clinical studies [182, 285, 408], asymptomatic aneurysms smaller than
7mm are assumed to have a low risk of rupture. Therefore, IAs with a size of more than 7mm are
usually treated. However, often small, inconspicuous aneurysms are affected by rupture [84], known
as the aneurysm size paradox [248]. Yasui et al. [417] investigated clinical features of 25 ruptured
aneurysms. In 16 cases (64 %), the aneurysm was smaller than 5mm. Similar observations were
made by Juvela et al. [173], who investigated 142 patients with 181 aneurysms for a mean period of
13.9 years with an aneurysmal size of less than 4mm. A rupture occurred in 27 patients, resulting in
a rupture rate of 19 %.

As 1D descriptors allow no reliable risk estimation, clinical studies evaluated 2D descriptors for
rupture risk assessment [68, 84, 159, 232, 311, 402]. Statistically significant differences between
ruptured and non-ruptured aneurysms were detected according to the aspect ratio, undulation index,
non-sphericity index, and aneurysm/parent artery ratio. However, until now there are no 2D descriptors
that combine patient-specific meta information such as age, gender and aneurysm location. Moreover,
existing 2D descriptors allow also no reliable risk estimation of asymptomatic aneurysms. Niemann et
al. [278] extracted 22 1D and 2D morphological descriptors based on 100 IAs to investigate the potential
of these measures for status classification of the rupture risk. Based on multiple commonly used
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learning algorithms, several prediction models were trained, where the best classifier only achieves
an accuracy of ~69 %. This suggests that other factors may also influence the aneurysm state.

For aneurysms with additional blebs, an increased risk of rupture is assumed [70, 143]. Blood
flow simulations have shown that increased and irregular stress values occur in bleb regions. It
is likely that these regions undergo an active transformation process, whereby the mechanical
functionality decreases and ultimately the wall can no longer withstand the physiological loads [236,
311]. Furthermore, the experience of neurosurgeons suggests that there is probably a correlation
between wall thickness and rupture risk. However, this relationship is currently challenging to analyze
because there is no in vivo technique available in clinical routine to measure aneurysm wall thickness.
There are some studies [112, 174] that investigated wall thickness conditions of treated aneurysms.
Histological examinations and evaluation of intra-operative images showed that the wall thickness of
an aneurysm is very variable (with a thickness of 16 to 400 µm) containing areas of thick, intermediate
and super-thin translucent tissue [174]. An increased rupture rate was observed for super-thin and
heterogeneous aneurysm walls [112].

2.5 VA S C U L A R I M AG I N G F O R I N T R AC R A N I A L A N E U RY S M S

In clinical practice, imaging systems play a central role in the diagnosis and therapy of IAs. Angio-
graphic modalities enable the extraction of vascular morphology, which is essential as input for CFD

simulations and computer-aided analysis. In contrast, intravascular modalities provide more detailed
information about the internal structure of the wall.

2.5.1 Angiographic Imaging

Medical imaging procedures to identify an aneurysm or to provide information about a possible SAH

and its severity include magnetic resonance imaging (MRI), computed tomography (CT), 2D digital
subtraction angiography (DSA), and 3D rotational angiography (RA) [47, 196]. During CT and MRI,
contrast agents are injected intravenously to enhance vessels in the image data yielding computed
tomography angiography (CTA) and magnetic resonance angiography (MRA). Time-of-flight (ToF)
magnetic resonance (MR) sequences use the different magnetization of the blood flow in contrast to
the stationary surrounding tissue to create high vessel-to-tissue contrast. Thus, no contrast agents are
needed. However, MR signals can be extracted, especially in large aneurysms, resulting in reduced
vascular imaging. Current clinical images have a size of 512 × 512 × 256 voxels in the x-, y-, and
z-direction with a spatial resolution of 0.35× 0.35× 0.5mm3 for CTA and 0.7× 0.5× 0.9mm3 for
MRA using a field strength of 1.5 or 3 T . For research purposes, MRI scanner of up to 7 T with a spatial
resolution of 0.11 × 0.11 × 0.11mm3 are utilized, where local thickenings of larger intracranial
arteries become visible [376]. The sensitivity and the specificity of CTA for the diagnosis of the
aneurysms depend on the aneurysm size, location and the experience of the performing radiologist.
The sensitivity of CTA in the detection of aneurysms smaller than 4mm is 92.3 %, whereas for
greater aneurysms it is close to 100 % [245]. Similar sensitivity values can be reached by using
MRA images [266]. However, CTA is not suitable for allergy sufferers or patients with impaired renal
functions due to the large bolus of contrast agent, whereas MR acquisition takes considerably longer
which is problematic in critically ill patients [47]. Thus, MR is mostly used for follow-up examinations
of patients after endovascular treatment and in the case of pregnant patients.

A contrast agent is injected through a hollow plastic tube (catheter) into the intracranial arteries
to acquire DSA and 3D RA data. They are therefore more invasive than either CT or MRI, but can
be combined with subsequent endovascular treatment. The acquisition of DSA data is based on
moveable C-Arm (the X-ray source and detector) that rotates around the patient resulting in one or
more 2D X-ray projections. Here, a pre-contrast image (the so-called mask) and a contrast-enhanced
image are acquired. Subtracting the mask from the contrast-enhanced image results in a DSA image,
where only the vessels are visible. In the last years, DSA was considered as the gold standard in
cerebral aneurysm imaging since it can be performed in real time by exhibiting a high spatial and
temporal resolution [196]. However, different image artifacts can occur due to the 2D projection
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of 3D vessel structures, which could lead to wrong diagnosis [138]. 3D RA imaging overcomes
these limitations by generating rotational projections using the C-Arm. From these multiple DSA

images, a 3D volume is reconstructed, see Figure 6. Typically, 512 × 512 × 256 voxels in the x-,
y-, and z-direction are generated with a size of 0.5 × 0.5 × 0.5mm3. However, imaging artifacts
may arise due to incomplete flushing of contrast agents, which reduces the quantitative analysis of
morphological descriptors such as aneurysm size [336]. Thus, DSA continues to play an essential
role in determining the optimal management strategy [369]. However, in a computer-aided analysis
including hemodynamic simulations, a 3D data set is mandatory for the extraction of an aneurysm
surface model. A comparison of DSA and 3D RA identifies 3D RA as more suitable for the detection of
small (6 3mm) aneurysms [383].

2.5.2 Intravascular Imaging

Angiographic methods usually provide limited information about the development of vascular patholo-
gies, as it is not possible to assess the layers of the vascular walls. However, this is of great interest to
improve prevention and therapy of such diseases. Catheter-assisted intravascular ultrasound (IVUS)
and optical coherence tomography (OCT) are currently the only methods for assessing the condition of
walls. They allow measuring the wall thickness, which is an essential factor for rupture risk analysis
and treatment planning.

IVUS is a minimally invasive procedure, where a catheter with a miniaturized ultrasound probe is
inserted into the artery. The probe transmits high-frequency waves at 20-40MHz, which are reflected
by the surrounding tissue. A transducer receives a part of the reflected sound waves and transforms it
into electrical pulses. Each pulse is converted to a gray value depending on its transit time, depth
and strength. These gray values form a 2D slice image with white as strong and black as zero pulses.
Due to fast data processing, real-time observation is possible, and the movement can also be detected
using the Doppler effect. In general, IVUS transducers exhibit an axial resolution of 70 to 200 µm
with a penetration depth of 4 to 8mm [264, 314]. More recently, higher-frequency IVUS catheters
have been developed using frequencies up to 60MHz and achieving axial resolution of 40 µm [45].
Therefore, with IVUS the dimensions of the lumen, the size of sediments on the wall, called plaque,
and the extent of positive remodeling can be measured.

OCT is also a minimally invasive image modality, which works similar to IVUS. Instead of ultrasound
waves, it uses light waves in the near-infrared or infrared range. It is suitable also for the examination
of the lumen dimensions. But it also has a better spatial resolution of less than 15 µm with a limited
penetration depth of around 2mm and less noise than imaging by IVUS [314]. Moreover, image
acquisition can be performed around three times fast than with IVUS. However, an additional contrast
agent is used to image the vessel wall, which cannot be used for all patients. Currently, OCT is not
used in clinical routine to examine cerebral arteries since the size and flexibility of the catheter does
not allow safe application in these relatively small vessels.

However, medical studies comprising animal studies and ex vivo studies have successfully used OCT

for the investigation of the larger carotid arteries [244, 418]. Moreover, Glaßer et al. [130, 131, 132]
performed ex vivo experiments. IVUS and OCT were applied for imaging the cerebral aneurysm wall,
see Figure 4. Recently, OCT was successfully applied to silicone phantoms of cerebral side-wall
aneurysms [158], where structural information such as differences in wall thickness or plaque could
be identified. Problems occurred for larger aneurysms ( > 4mm) or aneurysms with a steep rising
wall, which leads to signal losses and incorrect imaging of the aneurysm geometry. Moreover, in
vivo conditions such as the presence of blood in aneurysms were neglected within this study, but
would probably further complicate the application of OCT. However, due to its ability to characterize
pathological vascular wall changes and its high spatial resolution, OCT imaging of the cerebral arteries
is expected to be used and approved for clinical use soon.
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Figure 4: Left: 2D IVUS slice view of an artificially generated aneurysm. The IVUS data allow for segmenting
intima (inner vessel wall) and adventitia (outer wall) and thus, for computing the wall thickness.
Right: 3D rendering of intima and adventitia. (Images from [430] © John Wiley and Sons 2018.)

2.6 A N E U RY S M T R E AT M E N T P RO C E D U R E S

IAs can be detected by chance or by suspected SAH, which is usually characterized by symptoms such
as severe headaches, limitation of vision or loss of consciousness. Currently, there are two ways to
treat an IA: surgical clipping and endovascular embolization [413]. Both methods aim to reconstruct
the primary bloodstream by separating the aneurysm from the vascular system. This prevents the
inflow into aneurysm sac and leads to the formation of a thrombus (so-called embolization). However,
both methods are associated with a considerable risk of severe complications. Therefore, rupture and
treatment risk must be carefully weighed against each other [390]. This is further complicated in the
case of multiple aneurysms, where the physician has to decide which of them should be treated first.
In clinical routine, decision-making depends on the following factors [280]:

• aneurysm size and shape,

• aneurysm location and its anatomical reachability,

• ruptured versus non-ruptured,

• the general condition of the patient (age and vital functions), and

• medical history of the patient.

In the following, the basic principle of both treatment techniques is explained.

2.6.1 Surgical Clipping

Surgical clipping has been the standard treatment for cerebral aneurysms for many decades. This is an
invasive procedure, where the surgeon needs free access to an aneurysm, which requires an opening
in the patient’s skull (called craniotomy). Then, a metal clip (e.g., made of titanium) is placed on
the neck of an aneurysm using microsurgical techniques to separate it from the vascular system. In
addition to the open surgical area, there is a risk to clamp off smaller vessels close to the aneurysm
neck and thus preventing blood flow into healthy brain regions. This would lead to ischemia (loss of
blood circulation) and damaging of the affected areas. Besides, clipping cannot be performed in the
case of wide-neck aneurysms or the aneurysm location cannot be reached surgically [89]. Besides
this, surgical clipping is very stressful for the patient and involves longer operating times, lying times
and recovery times.
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2.6.2 Endovascular Embolization

Endovascular embolization is a minimally invasive alternative to clipping. The surgeon navigates
a catheter through the body to the aneurysm location. For this purpose, just a small opening in the
femoral artery has to be made. Then, detachable coils (spirals of platinum wire), a stent (metal
implant), or small latex balloons can be used to separate an aneurysm from the supplying vessel,
which are transported through the catheter. Navigating the catheter into an aneurysm and subsequent
insertion of devices is done under angiography control to monitor the catheter position continually.

The coils fill the lumen of an aneurysm and thus stagnate the blood flow in an aneurysm, forming a
thrombus. The amount of coils used depends on the size of an aneurysm, where enough coils have to
be used to avoid the reflow of the aneurysm lumen. For wide-neck aneurysms, there is a risk of coils
from an aneurysm entering the supplying vessel, which could lead to a vascular occlusion. Therefore,
an additional stent can be inserted into the vessel to stabilize the coils [299]. Besides a stent, a latex
balloon can be used to support coiling, which is placed under an aneurysm via a microcatheter. Then,
the balloon is pumped up to achieve a better compression of the coils and to increase the stagnation
of blood. Since the balloon closes the parent vessel, it has to be removed after a short time. In many
cases, coiling in combination with a stent or balloon leads to successful treatment, which involves
fewer risks for the patient compared to surgical clipping. However, quite large aneurysms often
cannot be filled with coils. Therefore, new stent devices were developed such as flow-diverter [11],
which are close-meshed stents that reduce the blood flow into an aneurysm and lead to a thrombus
formation without bringing additional material into an aneurysm. Furthermore, the treatment of
wide-neck bifurcation aneurysms is difficult based on stent-assisted or balloon-assisted coiling. For
a few years, Woven EndoBridge (WEB) devices are used to treat such aneurysms. WEB devices are
particular stents, which are placed inside the aneurysm sac to interrupt the intra-aneurysmal flow and,
subsequently, to create a thrombosis [298]. The size of the device depends on the diameter of an
aneurysm, where too small devices lead to incomplete flow disruption.

Endovascular methods have become increasingly established in recent years and often enable
successful treatment of cerebral aneurysms. Compared to surgical clipping, they exhibit a lower
risk of an unfavorable therapeutic outcome [257]. However, surgical therapy cannot yet be replaced
entirely, as specific morphological configurations, such as aneurysms of highly branched vessels,
prevent the use of endovascular techniques [378]. Furthermore, navigating the catheter and inserting
coils and stents is a difficult task, and the success of treatment depends strongly on the skills and
experience of the performing physician. Thus, overfilling the aneurysm with coils can lead to injury
of the vessel wall, which can trigger a rupture [225]. Moreover, the insertion of a stent could probably
lead to an increased rupture risk due to increased pressure values [58]. Besides, medical studies
showed post-operative complications of stenting, such as late rupture or in-stent-stenosis [58, 337].

2.7 S U M M A RY A N D C O N C L U S I O N

IAs are pathological dilatations of cerebral arteries. Their rupture leads to a SAH and is associated with
a high mortality and morbidity rate. IAs are increasingly being discovered by chance, where most of
them are asymptomatic and do not lead to complications (mean annual rupture rate of non-ruptured
aneurysms 6 0.05%). In case of a rupture, therapy is essential. In asymptomatic cases, treatment
options have to be evaluated compared to the rupture risk because treatment may also cause a rupture.

According to the management of non-ruptured aneurysms, medical guidelines recommend several
factors as an indication of a necessary treatment namely, large aneurysmal size (larger than 7mm),
symptomatic lesions, evidence of growth, multiple lesions, posterior circulation location, and history
of SAH [350, 353]. However, all of these factors were mainly observed in the case of poor surgical
outcome [182, 351, 412]. In contrast, small asymptomatic aneurysms located in the anterior circu-
lation are traditionally thought to be less rupture-prone [182, 285, 408]. However, even such small,
inconspicuous aneurysms can rupture. Besides, treatment of these aneurysms showed the most excel-
lent chance of a positive outcome. These contradictions show that the rupture risk of an individual
aneurysm cannot be described sufficiently based on currently used descriptors, and no information
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about future changes of the aneurysm morphology or the rupture risk can be derived [65, 135]. One
reason for this is probably the strong correlation between the shape of an aneurysm and the internal
dynamic flow processes. The aneurysm shape is influenced by the flow behavior and vice versa.
Thus, also hemodynamic aspects should be considered for the evaluation of the aneurysm state to
understand the individual risk of an aneurysm better and to restrict treatment to high-risk patients.





�is chapter is partly based on:

 

Steffen Oeltze-Jafra, Monique Meuschke, Matthias Neugebauer, Sylvia Saalfeld,

Kai Lawonn, Gabor Jániga, Hans-Christian Hege, Stefan Zachow and Bernhard Preim,

Generation and Visual Exploration of Medical Flow Data: Survey, Research 

Trends and Future Challenges;

Computer Graphics Forum, 2018.

Hemo- 

dynamic

Background





3H E M O D Y N A M I C B A C K G R O U N D

Several works indicate that the interplay of intra-aneurysmal hemodynamics and degenerative changes
of the arterial wall plays a significant role in the development, growth, and rupture of aneurysms.
Due to the small diameter and wall thickness of cerebral arteries together with the limited resolution
of today’s scanning devices, neither the hemodynamics nor the wall can directly be measured at a
sufficiently high resolution. CFD simulations combined with FSI is a promising method to investigate
intra-aneurysmal flow and internal wall mechanics based on the patient-specific vascular geometry
extracted from medical images. From the simulation results, hemodynamic characteristics can
be derived that are related to aneurysm rupture. Moreover, CFD simulations facilitate therapeutic
decision-making. In virtual stenting/coiling, a geometric model of the coils/stent is integrated into the
simulation, and hemodynamic characteristics are compared before and after treatment.

CFD simulations form the data basis for the classification and visualization techniques developed
within the scope of this thesis. This chapter explains the pipeline to model intra-aneurysmal hemo-
dynamics, which is illustrated in Figure 5. Based on medical image data, the aneurysm and parent
vessel part are segmented, where a surface is reconstructed from the segmentation mask. Then,
a surface enhancement step (not shown here) is included to correct possible segmentation errors.
Next, geometric features such as the vessel centerline are extracted that support the quantitative and
qualitative exploration of aneurysm data. Afterward, the enhanced surface mesh is transformed into a
volume mesh as input for the CFD simulation. Specific steps (not shown here) are necessary for virtual
stenting/coiling for integrating stent/coil geometry into the mesh. Based on particular boundary
conditions and an approximated fluid model, CFD simulations are subsequently performed. Finally,
hemodynamic and wall-related attributes can be derived. In the remainder of this chapter, each step of
the pipeline is described in more detail. Efficient implementations of hemodynamic data generation
pipelines are presented for the reliable, reproducible, and robust generation of CFD models in the
context of cerebral aneurysm hemodynamics. A more compact overview of the flow data generation
pipeline is given by Urick et al. [371].

Figure 5: Flow data generation pipeline of cerebral aneurysm hemodynamics. Note that the surface enhance-
ment following the surface reconstruction step (image 3) and the CFD simulation following the
volume mesh generation (image 5) are not pictured. Furthermore, the equations represent only a
subset of the relevant characteristics (image 6). (Image from [430] © John Wiley and Sons 2018.)

3.1 I M AG E S E G M E N TAT I O N

The patient-specific simulation of cerebral aneurysm hemodynamics requires a high-resolution
anatomy acquisition. In general, it is sufficient to simulate blood flow only in a local environment
around an aneurysm. The aim of segmentation is therefore not to detect the entire intracranial vascular
tree, but to enable a detailed representation of the lumen in the area of an aneurysm. Angiography is
a suitable method to image the lumen of blood vessels and aneurysms, recall Section 2.5. Note that
clinical image modalities captures only the lumen not the wall and provide merely a snapshot of the

27
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current condition. Wall properties must be determined separately, and pulsatile vessel motion must be
subsequently modeled as part of the FSI simulation since the pulsation of intracranial arteries is too
small to be represented by current image modalities.

A variety of segmentation techniques have been proposed for segmenting the vessel lumen [223].
Intensity-based approaches such as thresholding and region growing are frequently used to segment
the lumen of cerebral aneurysms and surrounding vasculature due to the high vessel-to-tissue contrast.
They are fast and easy to implement, see Figure 6. The result is a binary voxel mask, where a
following surface reconstruction method such as Marching Cubes [230] has to be applied to get a
vessel surface mesh. However, there are two fundamental problems with intensity-based procedures.
First, the results are strongly dependent on the choice of the threshold. Consequently, an unfavorably
selected threshold leads to an over- or under segmentation. Second, these methods are highly sensitive
to image artifacts, such as an inhomogeneous contrast or blending of an aneurysm and near-by vessels
due to the partial volume effect. Alternatively, Marching Cubes [230] has been used to directly
reconstruct the aneurysm surface based on intensity values and an isovalue [59, 128]. However, the
challenge remains to set an appropriate threshold, and non-contrasting areas cannot be segmented.

Deformable model approaches such as active contours or level set segmentation can be used to
handle areas with insufficient contrast enhancements. They integrate model assumptions about the
shape of an aneurysm to compensate for missing image information. The basic principle is to deform
an initial 2D contour or 3D surface concerning external forces derived from the image data, e.g.,
gradient information, and internal forces controlling the degree of deformation, e.g., curvature. Here,
results of intensity-based segmentations can be used for initialization [62]. Deformable models are
less sensitive to image artifacts such as blending and inhomogeneous signal intensity distributions
within the lumen. Moreover, they avoid the step of surface reconstruction and create a segmentation at
the sub-voxel level. However, they are computationally more expensive, and their parametrization is
challenging. Alternatively, interactive segmentation approaches [17, 387] can be applied to segment
cerebral aneurysms [169]. Here, the user is asked to place seed-points to start and connect contours
from there [17] or to mark for-and background parts in the image data [387]. Furthermore, the
segmentation step can be combined with an automatic aneurysm detection, e.g., based on the analysis
of the cerebral vessels medial axes [213], a rule-based system comprising several low-level and
high-level features [154], or dedicated blobness and vesselness filters [169].

Figure 6: Direct volume rendering (DVR) view of an intracranial aneurysm acquired with 3D RA (left) and a
representative 2D slice (right). Due to contrast-enhanced vessels, a threshold-based segmentation
allows for extraction of the vessel tree (bottom right). (Images from [430] © John Wiley and Sons
2018.)
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3.2 S U R F AC E M O D E L R E C O N S T RU C T I O N A N D E N H A N C E M E N T

Based on the segmentation result, the surface model can be reconstructed. The reconstruction either
aims explicitly at generating a smooth surface or is followed by a mesh smoothing step. The CFD

simulation of hemodynamics demands a very high volume mesh quality, which again is dependent on
the quality of the surface mesh. Hence, surface enhancement methods are employed to improve the
triangle aspect ratio and achieve the lowest possible amount of triangles.

Due to the substantial local variations of cerebral vasculature and pathological aneurysms, as well
as artifacts caused by contrast agent administration, e.g., blending artifacts or pseudo-stenoses, the
reconstructed surface meshes are often locally corrected [128, 169, 389].

Concerning simulating hemodynamics, the mesh quality must be improved. Local methods swap
and remove triangle edges if the resulting triangles are more equilateral [63]. However, due to the
local nature, this cannot ensure minimum quality for the overall mesh, which is crucial for simulation
convergence. Global remeshing methods involve additional geometric descriptors to optimize the
mesh for specific fields of application [9]. Aneurysms can be seen as strong local curvature deviations.
To reflect those while still gaining mostly equilateral triangles, areas of high curvature should be
represented by smaller triangles with a smooth transition of size. This can be achieved by advancing
fronts methods that start from pre-defined feature edges and generate triangles along a shifting front
concerning the underlying curvature [338], see Figure 7. Further information about the optimization
of vascular surface models for CFD simulation can be found in the overview by Mönch et al. [258].

(a) (b)

Figure 7: Improved mesh quality of a Marching Cubes mesh (a) after advancing fronts remeshing (b). (Images
from [430] © John Wiley and Sons 2018.)

3.3 E X T R AC T I O N O F G E O M E T R I C A N D M O R P H O L O G I C A L F E AT U R E S

Geometric and morphological features are extracted mainly to assist in focusing the flow exploration
on certain parts of the anatomy. A typical feature of the former class is the vessel centerline,
while the aneurysm sac is comprising a balloon-like body, a narrow opening neck, and a rounded
dome, see Figure 3, are typical morphological features. They are used directly as seeding geometry
for integral curves or for generating cut/slicing planes perpendicular to the flow direction. In the
following, approaches to extract morphological aneurysm descriptors such as the centerline or ostium
are described. Computing the centerline also plays an essential role in the investigation of aortic
hemodynamics. There, the centerline is the only frequently extracted feature despite work on, e.g.,
aortic aneurysm segmentation [243] and coarctation detection [273].
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To obtain the centerline of blood vessels thinning methods, distance transformations or Voronoi
diagrams can be used [392]. A general approach is a method by Antiga et al. [16]. First, a Voronoi
diagram of the vessel structure is built. Afterward, the Eikonal equation is solved over the whole
diagram, and the maximum descent of the solution provides the centerline. Tagliasacchi et al. [360]
give an overview of general centerline extraction methods.

The ostium surface is handy for analyzing and visualizing the blood exchange between vessel
and aneurysm, e.g., as seeding geometry for streamlines [122]. Karmonik et al. [178] presented an
image-based approach that extracts the ostium through fitting circles into the vessel’s cross-section
and analyzing the lumen diameter along the circle. Wong et al. [415] used cylindrical surface
models to reconstruct the normal vasculature starting from the centerline branches. Ford et al. [107]
digitally restored the former healthy vessel surface and defined the ostium as the difference between
restored and given vessel geometry. These vessel-side approaches assume regular, circular vessel
cross-sections.

Aneurysm-side approaches extract the ostium plane starting from an aneurysm and require an
initial identification of the aneurysm body. Piccinelli et al. [297] applied the method of Ford et al. to
identify the aneurysm body and computed the medial aneurysm axis through the 3D Voronoi diagram.
A planar ostium plane is aligned and positioned concerning this axis. Cardenes et al. [56] computed
a distance field on the aneurysm body surface, concerning the splitting point of the parent vessel
centerline below an aneurysm. The ostium contour is represented by the shortest closed path on this
distance field. In contrast to the approach of Piccinelli et al., this leads to a curved ostium contour
that reflects the underlying anatomy more precisely. Other works [146, 211, 256] used deformable
contour models to extract the ostium.

Neugebauer et al. [270] employed a surface distance field concerning the parent vessel centerline
to identify the aneurysm dome point. From there, control points are shifted towards the vessel,
whereas the distance change rate is used to determine the transition from an aneurysm to vessel. The
curved ostium contour is defined by four control points within the transition zone. Using a bilinear
interpolation scheme, a smooth triangular ostium surface is created from the contour [277]. Jerman
et al. [169] introduced a ray-casting approach, where rays are emitted from the aneurysm center
towards the vessel wall. Based on the intersection distance, ostium points are detected. Finally, a
closed-curve is fitted to these points to obtain the neck curve. These methods fail for aneurysms
with small arteries around the ostium or for wide-neck aneurysms, as the cross-section of the ostium
exceeds the aneurysm width [55]. Recently, Saalfeld et al. [326] presented a semi-automatic ostium
extraction that is based on the method by Neugebauer et al. [270] and slightly improves this approach.
They also employed the vessel centerline to detect four landmarks on the 3D aneurysm surface that are
used to define the ostium contour. However, their method depends strongly on the quality of an initial
point on the aneurysm specified by the user from which the dome point is determined. Moreover,
multiple parameters determine the output of their extraction, which can be controlled by the user. If a
setting is changed, usually large parts of the reconstruction have to be recalculated, which prevents an
interactive correction of the result.

To support a differentiated flow analysis in the parent vessel, Cebral et al. [66] introduced the
separation into near- and far-vessel segments. They defined the near-vessel part to be within a certain
distance to the ostium (< 1 cm). Neugebauer et al. [276] applied a more general, geometric definition:
far-vessel segments exhibit ellipsoid cross-sections with small changes in diameter, whereas the
near-vessel section strongly deviates concerning cross-sectional shape and diameter.

3.4 VO L U M E M E S H G E N E R AT I O N

For numerical simulations like CFD, the whole computational domain has to be discretized, i.e.,
a volumetric mesh has to be built based on the optimized surface mesh (recall Section 3.2). The
generation of volumetric meshes is a very extensive research area. In the following, fundamental
aspects of this process which are essential for the understanding of this work are explained, whereby
more technical explanations are given for example in the following references [1, 92, 226].



3.4 VO L U M E M E S H G E N E R AT I O N 31

While the volumetric mesh might in principle be of any type (structured/unstructured/mixed,
regular/irregular/hybrid), depending on the situation, typically several of the following requirements
have to be met:

1. the type of the mesh should fit the numerical procedure applied (finite difference methods
require structured meshes, while finite volume and finite element methods allow irregular
meshes) and the simulation software used,

2. faces in the volume mesh should accurately represent complex geometric shapes of individual
anatomical structures and internal interfaces,

3. if computer-aided design (CAD) models, like, e.g., stents, need to be integrated, it should be
possible to include geometries defined by parametrized curves and surfaces,

4. if fine geometric details have to be modeled, locally varying element sizes should be possible,

5. if the solution of the partial differential equation (PDE) to be solved exhibits isotropies, the
mesh should well capture these,

6. if adaptive numerical methods are to be applied, local mesh refinement/coarsening should be
possible (without changing the type of the mesh),

7. if hierarchical numerical methods are to be applied requiring geometric levels of detail, hierar-
chical meshes should be used, and

8. if parallel simulation methods are to be implemented, a block decomposed mesh might be
necessary.

Figure 8: Example of an aneurysm volume mesh consisting of tetrahedral volume cells and a prism layer at
the wall (inset). For virtual stenting, a flow-diverter stent geometry (yellow) was positioned below
the aneurysm. The stent surface was first deployed to the vessel and then, converted into a volume
mesh which was finally, merged with the aneurysm mesh. (Image from [430] © John Wiley and
Sons 2018.)

Many of these requirements can be met by using unstructured tetrahedral meshes, see Figure 8.
They are particularly suitable for complex geometries and can be generated efficiently and robustly.
Moreover, they can be adaptively refined, using a user- or algorithmically defined sizing field [204].
ANSYS IcemCFD [15] is a commercial tool to robustly generate unstructured meshes composed of
tetrahedral cells using the Octree method. It can be considered as a top-down approach. Because of
its robustness, it is also used to create a closed surface mesh. Further methods, such as Delaunay [123,
228, 290, 313] or Advancing Layers [328] algorithms, require a sealed surface for the representation
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of the individual anatomical objects to create a volume mesh. These bottom-up methods produce
smoother transitions between regions of different volume element sizes.

In the case of flow simulations, requirement (5) becomes particularly important. To match the
anisotropy of the flow, often stretched elements are used. It turns out that in near-wall regions and in
boundary layers, where large gradients in the velocity field appear, extended hexahedrons typically
perform better than stretched tetrahedra. Recent methods use quaternionic mesh representations [116]
or multi-block grid-based approaches [37] to create mixed meshes composed of tetrahedral and
hexagonal elements. Prismatic cells are also often used to resolve areas of the volume grid more
finely, see Figure 8. For near-wall regions of an aneurysm, one to three prism layers are typically used.
Thus a resolution of approximately 20 µm can be achieved in the direction of the surface normal.
Recently, Botella et al. [43] introduce an indirect algorithm to create mixed meshes of tetrahedral,
prismatic and hexagonal cells by first generating a tetrahedral mesh whose tetrahedra are then merged
into other primitives (hexahedrons, prisms, and pyramids).

Various criteria guide the selection of the applied mesh resolution A compromise is usually needed
between the computational effort and the accuracy of a given computation. The size of the smallest
mesh elements is determined by the smallest considered features of the given geometry and the minor
features of the solution of the PDE, e.g., the smallest eddies in the flow. The discretization error – one
possible source of error during simulation – is caused by the finite mesh resolution. To reduce the
effect of the discretization, typically several simulations with different resolutions are considered to
know when a so-called mesh-independent solution has been achieved.

Besides, intravascular implants can also be included in the simulation. For this purpose, un-
structured grids are required for the integration of a flow-diverter stent geometry into the volume
mesh in the course of virtual stenting [163, 165] and also for integrating meshes of coils in virtual
coiling [260]. The finest geometry detail often determines the mesh resolution. For instance, as a wire
of a flow-diverter stent is typically around 30 µm, the direct resolution requires a much finer mesh as
an untreated case. For the numerical simulations of intracranial aneurysms, usually, a few million
cells are applied for a finite volume computation. However, virtually treated cases with flow-diverter
or coils can only be discretized with a finer mesh using up to around 5-10 million cells [163].

3.5 C O M P U TAT I O N A L F L U I D DY N A M I C S S I M U L AT I O N

The final step of the data acquisition pipeline is the simulation of the intra-aneurysmal blood flow.
CFD is an established numerical method to approximate hemodynamics in IAs. Unlike experimental
blood flow measurements, no elaborate test set-ups are necessary and 3D aneurysm representations
from clinical imaging procedures can be used as input data. Furthermore, flow and wall attributes
can be derived directly from the simulation results, as they do not contain any signal noise. Another
advantage is the ability to vary the aneurysm geometry and flow parameters to model possible future
changes in blood flow, allowing a possible future rupture to be estimated. To obtain meaningful results,
it must be ensured that the simulation model reproduces reality sufficiently accurately by defining
boundary conditions. However, the more physical effects are integrated, the more the complexity of
the model increases, which can lead to calculation times of up to several days.

The following sections provide an overview of CFD-based blood flow simulations, which comprise
the following steps:

• writing the mathematical equations governing the motion of a fluid (set of PDEs),

• discretization of these PDEs,

• division of the domain into small grids or elements and

• solving the discretized PDEs by using specific boundary conditions.

Besides, the integration of wall mechanics based on FSI simulations and the simulation of treatment
scenarios such as stenting will be discussed. Like mesh generation, CFD is a broad field in its own.
This is true even for the subfield dealing with biofluid dynamics, where more detailed information on
these topics are given in the textbooks [137, 187, 424].
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3.5.1 Governing Equations

CFD simulations enable a computer-aided mapping of the dynamic behavior of fluids. For this purpose,
the properties of the liquid must be described by a mathematical model. The motion of fluid within
some spatial volume is defined by the following conservation laws [19, 317]:

• conservation of mass (continuity equation),

• conservation of momentum (Navier-Stokes equations (NSE)), and

• conservation of energy (energy equation).

The first law states that mass cannot be produced or destroyed. The starting point for the conservation
of momentum is Newton’s Second Law. Thus, the rate of change of momentum corresponds to the
sum of the forces acting on a fluid particle. The third law represents the first law of thermodynamics,
which states that the energy of a closed system is constant. Thus, the rate of change of energy is equal
to the rate of change of heat input and work on a fluid particle. The motion of a fluid is considered as
a continuum if macroscopic aspects only influence it and molecular effects can be ignored. A fluid
element thus represents the physical behavior of a sufficiently large number of molecules at a point in
the domain at a certain point in time. At the level of the continuum, the fluid element is the unit to
which the conservation of mass, momentum, and energy refers [206].

Some simplifications are assumed for the CFD simulation to reduce the calculation effort. First,
blood is expected to be an incompressible, isothermal fluid. These are valid assumptions for liquids
under normal pressure and with low-temperature fluctuations, including blood. Conservation of mass
for an incompressible fluid is defined as zero divergence of the flow velocity vector v:

∇ · v = 0. (1)

This implies that an equal amount of mass that enters the system also has to leave it.
Although blood is a non-Newtonian fluid, is assumed to be a Newtonian fluid, i.e., a fluid with

constant density and viscosity. Then, for a fluid element, the rate of change of momentum can be
expressed by:

ρ

(
∂v
∂t

+ v · ∇v
)

, (2)

where ρ is the density of the fluid and t the time. The rate of change of momentum compensates the
forces acting on a fluid element. These forces can be divided into body and surface forces. Body
surfaces are, e.g., gravity, centrifugal and Coriolis and electromagnetic forces, which are included
through a source term S. Surface forces include pressure and viscous forces, which are expressed by a
stress tensor σ. For a Newtonian fluid that exhibits a constant viscosity, the stress tensor is described
as the sum of pressure and viscous forces:

σ = −∇p+ µ∇2v, (3)

where p is the pressure and µ the viscosity of the fluid. Based on the body and surface forces, which
balances the rate of change of momentum [19], the NSE is defined by:

ρ

(
∂v
∂t

+ v · ∇v
)

= −∇p+ µ∇2v + S. (4)

The left-hand side of Equation 4 represents the inertia per fluid element composed by the unsteady
and convective acceleration ∂v

∂t and v · ∇v, respectively. The convective acceleration describes the
change in velocity over the position, e.g., by a constriction in a pipe, rather than over time t. The
right-hand side of Equation 4 defines a pressure gradient, a viscosity term, and a source term uniting
the body forces. Together with Equation 1, and appropriate initial and boundary conditions, the NSE

allow adequate description of a fluid’s velocity v(x, t) and pressure field p(x, t).
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Non-Newtonian components of blood such as solids and liquids can lead to a change in viscosity.
In most cases, non-Newtonian effects seem to be negligible, at least in arteries with a diameter larger
than 1mm and shear rates above 100 s-1. In these cases, a density of 1055kg/m3 and a viscosity of
0.004Pa · s [333] is defined. But, for pathological changes, such as aneurysms, it may be relevant to
include non-Newtonian properties due to low local shear rates [343]. Conventional approaches to
model the non-linear relationship between viscosity and shear rates that characterize a non-Newtonian
fluid are the Power-law, Casson, and the Carreau-Yashuda model [125].

3.5.2 Flow Properties

Flows can be classified according to their temporal and spatial behavior. Regarding time, steady and
unsteady flow is distinguished. Steady flow represents a flow description independent from time. In
contrast, unsteady flow is known as time-dependent flow, where flow properties can change over time.
In most cases, first, steady simulations are performed, because such simulations are useful for spatial
convergence tests and significant aspects of aneurysmal hemodynamics can be inferred from a steady
flow. Moreover, steady simulations are more straightforward to compute, and their exploration is
easier. Mantha et al. [238] showed that significant flow patterns, especially for smaller aneurysms,
are very similar to those found under pulsatile conditions. However, to analyze time-dependent flow
patterns resulting from the pumping motion of the heart, unsteady simulations are needed.

Within the second category, laminar and turbulent flow is distinguished. An important parameter
to estimate whether turbulence occurs is the so-called Reynolds number, which represents the ratio
of inertial and viscous forces: Re = ρUL

µ , where U is the mean velocity and L the length of the
blood vessel. If the Reynolds number is low, the resulting flow is laminar. If the Reynolds number is
high, the flow becomes turbulent, i.e., inherently time-dependent and chaotic, and the computing time
explodes. Since in case of turbulence, not all details of the flow are interesting, but only the influence
of turbulence on the averaged flow, the NSE is replaced by the:

• Reynolds-averaged Navier-Stokes (RaNS) equations and the

• turbulence equations.

The equations can be written in a generalized form (Equation 5) applicable for each mass-related
and transported quantity Φ (e.g., velocity v, enthalpy h, turbulent kinetic energy k, the rate of
turbulent dissipation/vorticity ε/ω), where SΦ is a production term, and ΓΦ describes the diffusion
coefficient of the respective quantity that is to be considered:

∂

∂t
(ρΦ) + vj

∂

∂xj
(ρΦ) = ΓΦ

∂2Φ

∂x2j
+ SΦ. (5)

The shear-stress-transport (SST) turbulence model [140] can be used, considering both, the transport
of turbulent kinetic energy k as well as the rate of turbulent dissipation ε, respectively, vorticityω.
The SST turbulence model combines the k/ε and the k/ω turbulence models [410] via a blending
function, which is 1 near the boundaries (activating the k/ε model) and 0 for free shear flows
(choosing the k/ω model). Thus, the near-wall performance of the k/ω model can be utilized
without the flaws potentially arising from its free stream sensitivity. The SST turbulence model also
yields a modification of the definition of the eddy viscosity [251], which is required to capture the
onset of separation under pressure gradients accurately.

Empirical studies have determined a threshold of 2300 for the Reynolds number as a transition
between laminar and turbulent flow [302]. Commonly, the flow in intracranial arteries is assumed
to be laminar with Reynolds numbers well below this threshold. But there are also isolated studies
showing that turbulence is possible and could play an essential role in the assessment of IA [372, 373].
In the context of IAs, a mixture of laminar and turbulent flow was observed, called transitional flow,
where turbulence occurred more in the center of the aneurysm sac, and laminar flow near vessel wall.
However, turbulence probably plays only a role in large aneurysms, where high speeds occur (inlet
boundary condition) and a sharp segmentation kernel was used.
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3.5.3 Boundary Conditions

To be able to solve the NSE for a specific problem, boundary conditions have to be specified for the
domain boundaries, which are usually represented by inlets, outlets, and walls. The difficulty lies in
choosing the right number of conditions since the boundary conditions influence convergence and
physical plausibility of the solution.

On the orthogonal inlets, often a time-dependent mass flow rate or velocity profile is defined. For a
patient-specific flow simulation, measured velocity profiles should be used that can be acquired by
Doppler ultrasound or PC-MRI measurements [31]. On the outlets, a general boundary condition is to
apply pressure. Since the NSE describes only the gradient of the pressure, the absolute pressure value
within the model has to be defined. For this purpose, usually, a zero pressure condition is applied,
which creates a relative dependence of the pressure within the model from the pressure on the outlets.

A commonly used boundary condition for vessel walls is the no-slip boundary, i.e., zero velocity
at the wall. The vessel wall can be considered to be rigid, have a pre-defined motion, or deform as a
consequence of the fluid pressure [206]. Moreover, conditions regarding smoothness or roughness
can be applied to the walls to model irregularities of the wall. Besides, the wall can be assumed to
be permeable to study mass transfer from the blood flow into the wall layers. In this way, Lantz et
al. [207] showed a correlation of flow features and the accumulation of lipoproteins in the aneurysm
wall that promotes the development of atherosclerosis and a destabilization of the wall.

3.5.4 Solution Methods

The NSE bring the velocity, pressure, density and dynamic viscosity of the fluid into relation, or
– regarding forces – the inertial, pressure, viscous, and the external forces. Based on the defined
boundary conditions, a solution for this set of coupled nonlinear PDEs can be determined and, the
time-dependent fluid velocity and pressure can be predicted. An analytical solution of the governing
equations can only be found for very simple configurations neglecting various effects. However,
to solve them for particular aneurysm configurations, numerical approximation methods are used.
For this purpose, the partial derivatives of the NSE are formulated and solved as finite differential
equations for discrete sections of the flow field.

There are various approaches of discretization: Lattice Boltzmann method (LBM) [356] and finite
differences method (FDM), finite volumes method (FVM) or finite elements method (FEM) [73]. FDM

and FEM are typically applied on body-fitted or unstructured volume meshes. LBM and FDM are often
considered meshless approaches. Although a no body-fitted mesh is required for their application, a
regular Cartesian grid is applied in the background. Therefore, a direct use is not straightforward for
complex geometries in medicine, such as patient-specific aneurysms. The combination with, e.g.,
an immersed boundary method (IBM) can alleviate this problem without the necessity of volume
mesh generation [2]. LBM has gained popularity since it offers good parallel scalability due to its
local nature and thus, can be efficiently computed on the GPU. Finally, the discretized equations
can be written in a linear algebraic matrix equation either for a steady state or for pulsatile inflow
conditions, except LBM which is an unsteady approach. The process is iterative and delivers the
requested variables, such as the flow velocity or pressure for each cell. For this purpose, the solutions
are determined for all cells until the result difference between two iterations is below a predetermined
value, the so-called residue. If this is the case, the simulation is converged. In unsteady simulations,
each subsequent time step is initialized with the flow field of the previous time step, in addition to
the correspondingly adapted boundary conditions. The CFD simulation of a cardiac cycle is typically
conducted with a temporal resolution in the range of 0.0025-0.005 s yielding a 3D velocity vector
field at each of the 200-400 time steps [118]. A computational rupture challenge for intracranial
aneurysms is documented in [31], summarizing almost 30 computational groups worldwide with their
CFD methods and setup.
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3.5.5 Hemodynamic Characteristics

Several hemodynamic characteristics can be derived from the CFD simulation results. They can be
classified into local attributes and non-local characteristics. While the former are computed per
vertex, volume element, voxel or region of the domain, the latter represent structures and properties of
the blood flow patterns and are often derived in a visual inspection using general flow visualizations
techniques such as integral curves, colored cut planes, and line integral convolution (LIC) [53].
Alternatively, they are explicitly extracted as geometries, using feature extraction techniques [303].
The exact meaning and relevance of the different attributes and characteristics are subjects of ongoing
research. In the following, the most commonly used features are explained. A more in-depth
discussion of all characteristics according to cerebral aneurysm hemodynamics is given in [65, 66].

Local Attributes

The most important local attributes are:

• Velocity encodes flow direction and speed per grid point and time step by a vector v. All other
local characteristics are derived from v. SI unit: cm/s orm/s.

• Fluid pressure p constitutes the scalar kinetic energy per unit volume of a fluid particle. It is
computed per grid point and time step. SI unit: Pascal (Pa).

• Wall shear stress encodes the force tangential to the vessel wall exerted by the blood flowing
past. It is computed for each time step at grid points along the wall as the scalar magnitude of
the corresponding WSS vector ~τWSS. SI unit: Pascal (Pa).

• Volumetric flow rate Q represents the scalar amount of blood volume passing through a
pre-defined surface region per unit time. SI unit: cm3/s orm3/s.

• Oscillatory shear index (OSI) indicates flow disruption by the time average strength of tempo-
ral deflection of ~τWSS from the time-averaged WSS vector. Dimensionless scalar per grid point
along the wall.

• Turnover time (ToT) encodes the average elapsed time of a blood flow particle from entering
to leaving a particular vessel region. SI unit: s.

An imbalance of pressure and WSS is among the factors may have an impact on aneurysm growth
and rupture [66]. Both, abnormally high and low shear stresses of the cerebral aneurysm wall have
been related to an increased risk of rupture [250]. The volumetric flow rate of the ostium surface is
determined before and after virtual stenting to predict the therapy success [166]. High values of OSI

seem to promote aneurysm initiation [21].

Non-Local Characteristics

Essential non-local characteristics are:

• Vortices represent regions of flow swirling around a straight or curved axis line which is
also referred to as vortex core line. The visual inspection of vortices is often supported by
emphasizing flow with high vorticity, i.e., a high magnitude of the vorticity vector describing
the curl of the flow velocity: ~ω = ∇×~v.

• Recirculating zones occur when a forward stream of blood reverses and flows back into an
area, where the flow was divided into different directions (separation zone).

• Flow complexity and stability are related to the number of vortices and recirculating zones in
the flow and their persistence over the cardiac cycle. A flow is supposed to be simple if only
one vortex or recirculating zone exists. It is said to be stable if this vortex or recirculating zone
neither moves nor collapses and reappears over time.
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• Flow type can be laminar or turbulent. In laminar flow, particles run mostly parallel or in
a swirling motion along a common axis (vortices) while in turbulent flow, chaotic property
changes are observed. The Reynolds number indicates the flow type with very high numbers (>
2300) correspond to turbulent flow.

• Inflow jet and impingement zone refer to the structure of rapid, parallel inflow into an
aneurysm and the associated wall region of the first impact.

Vortices have received considerable attention in IAs. They were related to cerebral aneurysm rupture.
A simple and stable flow was more frequently seen in non-ruptured aneurysms while complex and
unstable flow was mostly observed in ruptured aneurysms [52, 65]. Recirculating zones have been
investigated in the context of cerebral aneurysm growth and rupture [347, 362]. Blood flow in the
cerebral arteries exhibits rather small Reynolds numbers (200-700) and is commonly assumed to be
laminar [118]. In a large-scale study, ruptured aneurysms showed a more compact inflow jet and a
rather small impingement zone as compared to non-ruptured aneurysms [65].

3.5.6 Fluid Structure Interaction

Due to the complexity of the patient-specific blood flow behavior, where specific individual properties
are unknown, e.g., cerebral flow rates and vital parameters under activity, several simplifications of
the simulation model are made to apply CFD. The most common simplification is the assumption of a
rigid, inflexible wall with infinite resistance since the segmentation results based on contrast-enhanced
image data that contain no information about the wall structure. However, a study by Frosen et
al. [112] demonstrated the heterogeneity of cerebral vessels, especially when diseases occur. Since
the surrounding arteries and the aneurysm itself deform under blood pressure and shear forces, the
vessel wall behavior is strongly correlated to rupture, assuming that rupture is caused by wall tension
that exceeds wall strength. Kadasi et al. [174] reported on a relation of wall thickness and aneurysm
rupture risk. Cebral et al. [61] demonstrated that wall thickness could be measured ex vivo and related
to simulated hemodynamics based on 3D printouts of a patient-specific aneurysm model and a resected
aneurysm sac overlayed on the 3D model. Recently, Voß et al. [394, 395] compared hemodynamic-
and wall stress attributes based on multiple FSI simulations. They defined different wall thickness
models generated from OCT data comprising minimum, mean, maximum, and diameter-dependent
thicknesses. A strong variability of the analyzed characteristics was reported depending on the wall
thickness models, which highlights the importance of integrating patient-specific wall thickness
distributions. So far, no non-invasive in vivo imaging technique is available in the clinical routine
that adequately visualizes the aneurysm wall. Therefore, to consider mechanical exchanges between
blood flow and the surrounding vessel tissue, FSI simulations are carried out.

Addressing the FSI simulation, the whole simulation domain Ω is divided into two subdomains:
the fluid ΩF domain with the boundary ΓF and the solid domain ΩS with the boundary ΓS. The
intersecting surface of the fluid and the solid domain is called interface ΓFS. The way in which
both domains interact with each other depends on the coupling at the interface. There are two types
of linkage: a strong and weak coupling. In a strong coupling, both the fluid and solid equations
are solved in a single matrix. Although this approach offers advantages according to stability and
convergence, it is difficult to implement and to validate. In a weak coupling, both domains are solved
separately, where forces and displacements are iteratively passed between two solvers through the
interface. The information from the other subdomain is used as updated boundary conditions in the
next calculation step. The exchange of information can be one-way or two-way, where the former
means that data is transferred just in one direction from one solver to the other, while in the latter data
is transferred in both directions between the solvers in a loop. An example of a one-way exchange
is the transfer of fluid forces to the solid domain to calculate strain and stresses, but the resultant
deformation is not transferred back to the fluid domain as it is assumed that the deformation is too
small to influence fluid forces significantly. In a two-way exchange, the resultant deformation would
be transferred back to the fluid domain, where the fluid domain would be deformed, and the resulting
forces would again be transferred to the solid domain.
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Inside the fluid domain, CFD is used to calculate the hemodynamics. For the solid domain, the
governing equation can be described by the equation of motion:

ρS
∂2dS
∂t2

= ∇ ·σS + fS, (6)

where ρS is the wall density, dS is the displacement vector, σS is the Cauchy stress tensor, and fS
represents an external body force vector. The wall thickness is artificially generated by extruding the
wall along the normal vector about 0.2 to 0.6mm [77, 375]. Moreover, boundary conditions have to
be defined at the interface to realize the interaction of both domains, which can be formulated as:

vS = vF, (7)

σS · nS = σF · nF, (8)

where v are velocities, σ are stress tensors, and n are surface normals. The first condition states
that the velocities of the fluid and solid must be compatible along the interface, where the second
condition states that the traction is balanced along the interface. Together with a specification that
relates the mechanical stress to the mechanical strain, the equation system can be solved locally for
each finite element, based on the conservation of momentum. The most simple relationship between
strain and stress is defined by the Hooke’s Law that relates the stress to the strain times a material
constant, called the Young’s Modulus. In summary, the following wall properties can be determined:

• Wall thickness encodes the thickness of the vessel wall per vertex by a scalar. SI unit: mm.

• Deformation is represented by a vector per vertex, which yields the direction and the length of
the deformation. SI unit: mm.

• Stress tensor S describes the stress state of a tiny element, which is represented by a symmetric
3× 3 matrix per vertex resulting in six independent components.
SI unit: Pa= Nm−2.

Rotating S leads to zero shear stress and maximum normal stress components, which are obtained by
the eigenvectors. Regarding aneurysms, stress inside the wall is caused by the hemodynamic pressure
and leads mainly to tension in the circumferential direction. Accordingly, the first two eigenvectors
are expected to be tangential and the third to be normal to the wall, respectively. Due to the loading
condition and the thin aneurysm wall, some studies, e.g., [333] calculated the wall stress based on
shells instead of solid elements. As a consequence, some effects in the normal direction of the wall
which are less dominant are neglected.

3.5.7 Virtual Aneurysm Treatment

In the last decades, numerous advances have been made in the treatment of cerebral aneurysms.
Minimally invasive techniques such as coiling and stenting show promising results and have several
advantages over a surgical clipping, e.g., a decreased treatment risk and shorter hospital stay, recall
Section 2.6. However, there are several intra-and post-operative complications [58, 225, 337], where
the outcome of the procedures regarding aneurysm embolization and altered hemodynamics is less
predictable. Several approaches were developed dealing with pre-treatment simulations of coiling
and stenting [30, 81] to support patient-specific decision-making.

Virtual Coiling

During a coiling intervention, the radiologist has to decide how many coils of what size have to be
inserted into an aneurysm to trigger thrombus formation by altering intra-aneurysmal hemodynamics.
This can be a challenging task, where 15 % - 25 % of coiled aneurysms show a reflow of blood
into the aneurysm sac. This can be caused by either coil compaction or aneurysm regrowth due to
hemodynamic forces. In these cases, a re-intervention is necessary. Medical studies propose some
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quantitative parameters to predict coiling success. One of these parameters is the packing density, the
percentage of aneurysm volume occupied by coils, where a high density should be aimed for. Another
clinical parameter is the aneurysm occlusion rate, which indicates the strength of the aneurysm
obliteration due to the coils. However, none of these parameters allows reliable predictions about
the success of coiling, or consider the post-operative hemodynamics. One main reason for this is
probably that the result depends strongly on the experience and ability of the performing physician.

Geometric models of different coils can be placed in patient-specific vascular representations using
virtual coiling, which can help to understand their intra-aneurysmal behavior. Several computational
techniques were developed to simulate endovascular coiling and its effect on local hemodynamics,
which can be distinguished into explicit and implicit methods [260]. The first group explicitly model
the coils by using a geometric representation of individual coils. Then, CFD is employed to calculate
the flow behavior after coiling. An important fact for the simulation of coil deployment is the accurate
modeling of contacts that occur between the coils themselves and between the coils and the aneurysm
wall [81, 255]. Implicit methods adapt the governing equations of the fluid domain in the coiled
region using a porous medium to model the influence of the coils. Compared to explicit methods,
implicit approaches are faster to compute, but the definition of necessary assumptions according to
the homogeneity or permeability of the medium complicates the simulation.

Current explicit methods enable interactive virtual coiling, where high packing densities are reached
for multiple aneurysm shapes [81]. Virtually coiled aneurysms show a similar distribution of coils
compared to real coiled aneurysms [401]. Moreover, hemodynamic changes could be identified. The
virtual coils lead to decreased WSS and velocity values within aneurysms, which was also observed in
coiled aneurysm phantoms.

Virtual Stenting

At the moment, several stent designs exist, which differ in length, diameter, and porosity. Furthermore,
aneurysms have a high anatomical diversity, which differs in location, shape, orientation and parent
artery morphology. Thus, selecting a stent configuration comprising the number of used stents,
the stent designs and their positions that lead to the desired embolization by re-establishing the
physiological blood flow can be a challenging task. A geometric representation of different stents can
be placed in patient-specific vascular configurations using virtual stenting to analyze which option is
most appropriate. An endovascular device must be modeled very precisely to simulate its deployment
as realistically as possible. This includes the resolving of individual stent cells and the interaction
between the stent and the vessel wall.

Virtual stenting approaches can be divided into explicit and implicit methods. The first group is
based on a direct description of the stent properties such as the size of the stent cells, whereas implicit
methods do not directly model the stent properties. Here, the stent is approximated by a cylinder
made of porous material. The main disadvantage of implicit methods is that specific values such as
the permeability and inertial resistance have to be approximated, which can be challenging.

Explicit methods can be divided into two groups: finite element analysis (FEA) and fast virtual
stenting (FVS) techniques [30]. FEA approaches, such as the method by Ma et al. [233], allow a very
detailed modeling and simulation of the mechanical stent deployment including stent crimping, fitting
into a microcatheter, delivery, and expansion. Compared to other virtual stenting techniques, FEA

approaches lead to the highest accuracy. However, several simplifications have to be made to simulate
these complex models. According to this, a rigid wall is assumed, vessel straightening due to the stent
deployment is not considered, and pulsatile blood flow effects are neglected.

Furthermore, FEA approaches exhibit long computational times of up to 100h per virtual stent
deployment, which reduces the usability concerning the testing of many stent configurations. FVS

methods were developed that focus on the most relevant stent properties such as the length, angle,
and pattern of the struts as well as the radius of the deployed stent to reduce the computational
effort [210]. The stent geometry can be mapped to a cylinder, which is then deformed according to
the surrounding vessel geometry [64, 166]. To avoid non-linear distortions of individual stent cells,
deformable simplex models can be used [210, 291]. FVS methods enable a realistic stent deployment
within seconds on a standard personal computer. Figure 9 shows the deployment of a flow-diverter
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according to the method by Janiga et al. [166]. Based on imported geometrical representations of the
vessel and stent geometry as well as several defined parameters, the flow-diverter is automatically
placed. Compared to real stents released in silicone phantoms FVS approaches lead to impressive
qualitative and quantitative results according to hemodynamic conditions [210]. Quantitative studies
have shown that the performance of flow-diverter strongly depends on the size and shape of the stent
struts [58, 184, 265, 365]. Even at a relatively high porosity of about 80 %, the intra-aneurysmal
flow and WSS at the wall are significantly reduced, where the WSS on the stent is increased. However,
flow-diverter can also cause a rupture due to increased pressure values within an aneurysm [58],
where the precise effects are still not well understood.

(a) (b) (c)

(d) (e) (f)

Figure 9: Workflow of the FVS approach by Janiga et al. [166] to deploy a flow-diverter in a cerebral aneurysm.
First, geometrical representations of an aneurysm (a), the stent (b), and the vessel centerline (c) are
loaded. Then, different parameters such as the radial position of the stent are adjusted (d). Based on
this, the flow-diverter is placed automatically (e-f). (Images from [30] © Elsevier Ltd. 2017.)

3.6 VA L I DAT I O N O F B L O O D F L O W S I M U L AT I O N S

CFD simulations offer the possibility to model the patient-specific blood flow behavior. This raises an
important question, namely to what extent the simulation reflects reality. Verification and validation
methods have to be used to prove the reliability of CFD simulations. Until now, CFD models have
rarely been verified, e.g., by comparing numerical and analytical solutions [366]. Most of the work
concentrates on validating CFD results by comparing them with in vitro and in vivo measurements
to check the correctness of certain model assumptions. However, this area has also not yet been
sufficiently discussed and analyzed. The main problem is the lack of ground truth about real intra-
vascular flow conditions, as the currently available flow measurement modalities are not able to
capture them. Nevertheless, it is assumed that the flow measurements represent the real conditions
with sufficient accuracy [366]. For this purpose, mostly in vitro experiments in the form of flow
measurements from aneurysm phantoms are carried out. In vivo validation is difficult since it shows a
lower spatio-temporal resolution and poorer signal quality or is even not possible at all.
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Particle image velocimetry (PIV) is a imaging method for the in vitro investigation of flow
fields [310]. The basic idea is to observe the behavior of illuminated markers within a flow by
recording the scattered light with suitable cameras. With the help of double pulse lasers, two consecu-
tive images are taken with a short time interval to each other. From these images, velocities of particle
ensembles can be derived by applying correlation techniques. Roloff et al. [320, 321] demonstrated
that PIV is feasible to record flow information of complex geometries and flow conditions, e.g., in IAs.

Ford et al. [109] generated virtual angiographic images based on a CFD model of a giant aneurysm
located at the internal carotid-posterior communicating artery. They compared these images to clinical
3D RA images, where the images show an excellent agreement. Besides, they constructed silicone
models of carotid and cerebral aneurysms and compared velocity profiles of CFD simulations and
PIV measurements [108]. Apart from some local discrepancies, a good match of the velocity vector
fields between the two data sources was observed. Also, a large vortex could be identified in the
measured and simulated flow data. Similar results were obtained by Raschi et al. [312], where a
consistent representation of the main intra-aneurysmal flow structures was observed in CFD and
PIV vector fields. Differences were found mainly in the near wall region. Gasteiger et al. [119]
investigated the agreement between CFD simulation and in vitro 4D PC-MRI measuring (7 T ) of flow
in a cerebral aneurysm model. They performed a qualitative analysis concerning flow patterns
and quantitative analysis concerning the average volumetric flow rate and flow speed. There were
moderate to strong correlations regarding the pulsative development of flow quantities between the
measured and simulated blood flow data. However, the further away from the inflow area and the
narrower the vessel sections, the higher the deviation between the 4D PC-MRI data and the CFD data
regarding local flow characteristics and flow quantities.

Besides these in vitro investigations, some in vivo validations are performed by comparing CFD

and PC-MRI data. Boussel et al. [46] reported a strong agreement on flow patterns in measured 4D

PC-MRI (1.5 T ) and CFD results in IAs. For quantitative values such as the absolute values of WSS and
flow velocity larger discrepancies were observed, e.g., significantly larger WSS in the measured data,
but locations of high and low values were similar. Isoda et al. [162] and Cebral et al. [57, 67] came
to similar conclusions by comparing CFD, 4D PC-MRI, and DSA data, respectively. The location of
the inflow jet and the main vortex structures showed good agreement. In general, with decreasing
diameter of the vessel, the deviations between CFD and PC-MRI measurements increase. This is
probably due to the limited resolution of PC-MRI sequences, in which smaller vessels are not well
represented due to the small number of voxels and the partial volume effect, leading to error-prone
results. This problem can be reduced by using an MR scanner with higher field strengths. Berg et
al. [33] compared CFD simulations and 4D PC-MRI (7 T ) data of a healthy Circle of Willisi and of two
IAs. Non-local flow characteristics showed an excellent agreement and also local features such as the
flow velocity exhibit significantly smaller discrepancies compared to MR-based measurements with
lower field strengths. However, using higher field strengths extends the scanning time and the size of
the measurable volume is reduced.

According to the validation of virtual treatment techniques, two phases can be distinguished. First,
the geometrical properties of a deployed device, i.e., of a stent [166, 234] or coils [22, 82], can
be compared with in vivo or in vitro deployments. For both treatment methods, good qualitative
agreements could be observed. The position and overall geometry of the virtually deployed devices
largely coincide with in vivo or in vitro data. However, there are some problems with the validation of
virtual treatments. Due to their small size, a high-resolution CT scanner is needed to acquire data from
cerebral devices in vivo. Furthermore, in most cases, an additional registration has to be applied since
the virtual treatment is modeled in a different coordinate system. Besides, a quantitative comparison
is quite challenging due to the limited resolution, measuring artifacts and the complex structure of
deployed devices [30]. The second phase of validation analyzes the effects on blood flow from the
deployment of a device. Similar to the validation of non-treated cases, PIV or PC-MRI can be used to
measure flow velocities in stented [64] or coiled [3] phantoms. Here, problems may arise due to the
reduced optical accessibility of devices. Moreover, devices can lead to image artifacts in MRI-based
velocity measurements. Nevertheless, in vivo or in vitro experiments can be used to investigate the
influence of endovascular treatment options and to find an optimal treatment [30, 64].
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3.7 S U M M A RY A N D C O N C L U S I O N

CFD simulations can generate patient-specific flow data on discretized volume grids, where NSE

describes hemodynamics inside the lumen. By integrating FSI simulations also the mechanical wall
behavior can be modeled. For solving the resulting system of PDEs numerically, different methods
were developed in the past. To ensure that the simulation converges and the simulation results
achieve a sufficient accuracy, the volume mesh must be of high quality. Typically, a combination of
tetrahedral and prismatic elements is used to generate the volume mesh. For the simulation itself,
different boundary conditions and flow specifications have to be defined making the simulation model
arbitrarily complex. This can be further extended by modeling specific treatment options, e.g., by
integrating a flow-diverter or coils. To increase the accuracy of simulation results by using more
complex assumptions, these must be parametrized correctly. However, it is not always possible to
obtain the necessary information from underlying clinical and biomedical data.

The accuracy of the results concerning real patient-specific flow conditions can only be evaluated
to a limited extent. Established validation methods perform optical flow measurements in aneurysm
phantom models. By comparing the measurements with the results of the CFD simulation, the
correctness of certain model assumptions can be verified. Even if this provides indications for the
general applicability of the simulation, it is not sure that the flow conditions in the aneurysm phantom
correspond to those in the patient. This can be improved by comparing simulation results with results
from in vivo measurement, e.g., via PC-MRI. However, to measure blood flow in the small cerebral
arteries high field strengths of the MR modality are necessary, where the current resolution and signal
quality reduce the meaningfulness of the data. Nevertheless, the coupling of measured and simulated
flow data represents a trend-setting possibility to gain additional boundary conditions for a more
precise simulation and to compare these results to in vivo conditions to a certain extent.
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In recent years, the measurement and simulation of blood flow inside the human circulatory system
play an increasingly important role in personalized medicine for the prevention, diagnosis, and
treatment of CVDs. The motivation behind this is the increasing evidence that quantitative and
qualitative changes of the blood flow behavior influence the pathogenesis of several CVDs. An
investigation of the complex and often dynamic simulation and measurement data requires the
coupling of sophisticated visualization, interaction, and data analysis techniques.

Flow information is complex, with multivariate data usually available for each point in the sim-
ulation grid. This includes scalar fields such as pressure, vector information such as velocity and
tensor-based information such as stress tensors. In the case of unsteady flow data, this information
also changes over time. Based on this, flow information can describe complex flow patterns (e.g.,
vortices) with variable orientation, characteristics and behavior over time. The distribution and
characteristics of areas of similar flow behavior can also be relevant.

Due to the spatial and temporal complexity of the flow fields, it is not possible to display all charac-
teristics with a single visualization method. A multitude of visualization techniques was developed,
which mostly focus on the representation of a particular aspect of the flow data. Existing techniques
can be divided into four categories, distinguished by the degree of abstraction in the representation
of the flow field: direct, texture-based, geometric and feature-based methods [148]. Direct methods
represent the flow data on a low abstraction level. The representation of the information takes
place without a complex conversion of the data or complex calculation of specific characteristics.
This allows an immediate investigation of the flow data. Texture-based methods distort a random
texture according to the underlying vector field [208]. This allows the flow direction to be displayed
locally, for example, to display structures such as to detect turbulence. Geometry-based methods use
integral lines to reflect characteristic flows of a vector field, which are calculated from defined seed
points [247]. This enables qualitative analysis of flow information. Feature-based methods aim at
the extraction and visualization of specific structures such as critical points, shock waves or vortices
within a vector field [209, 303]. Thus, the information content of the visualization can be increased,
and the viewer can focus more on interesting structures. For feature extraction, either the topology of
the underlying vector field is used, or methods are applied to simplify the vector field by combining
areas of similar flow.

In addition to this abstraction-based classification of flow visualization techniques, existing methods
can also be classified according to specific exploration and analysis tasks that they support. This is
particularly true for the visualization of blood flow data, where specific tasks of medical or engineering
experts need to be encouraged to improve risk assessment and treatment planning. Therefore, Oeltze-
Jafra et al. [430] proposed a task taxonomy and categorized relevant works in the field of medical flow
visualization that contribute significantly to the solution of at least one of the tasks. They focused
on three application areas: CFD simulations of blood flow in cerebral aneurysms, CFD simulations of
nasal airflow and 4D PC-MRI of aortic hemodynamics. The categorization further considers the spatial
scope of the visual exploration, i.e., whether the investigation is restricted to the vessel lumen/cavity
or the vessel/mucous wall or whether it addresses both.

In the following, the task taxonomy and corresponding visualization techniques are summarized,
where the author of the thesis was involved in defining the tasks and writing the corresponding
sections of the state-of-the-art report. Within the next sections, the main focus is on techniques to
visualize intra-aneurysmal hemodynamics, which are most relevant for this thesis. Furthermore, some
suitable methods for visualizing aortic hemodynamics are explained.
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Oeltze-Jafra et al. [430] extended the surveys by Vilanova et al. [388] and Köhler et al. [188] by an
updated, more fine-granular task taxonomy for the visual exploration of medical flow data. Depending
on the targeted application, related literature is categorized according to supported visual exploration
task(s) and addressed the spatial scope of exploration. Instead of mapping the literature to an existing
low-level [10, 346], or high-level [149] task taxonomy, the tasks are directly derived from the papers
as well as from literature focusing on medicine, CFD, and flow imaging. This procedure provides an
overview of the assistance required for the examination of medical flow data as well as which tasks
are lacking support and where further development would be useful. According to blood flow data,
the surveyed literature addresses the following spatial scopes of visual exploration:

• Vessel lumen,

• Vessel wall,

• Vessel lumen+vessel wall.

Note that the first two scopes require entirely different visualization approaches since the former is
defined by a volume grid and the latter by a surface mesh. Even more complex methods are required
for their joint exploration.

The following visual exploration tasks in investigating blood flow data were derived from the
literature:

• Spatial overview,

• Interactive probing,

• Feature filtering,

• Temporal analysis,

• Comparison,

• Context visualization,

• Uncertainty analysis.

Another task is the validation of simulated and measured flow data. This topic was already described
in Section 3.6, where currently more general flow visualization methods (e.g., color-coded scalar
fields depicted in side-by-side views) are used.

Spatial overview. The examination of a medical flow data set often begins with an overview of the
hemodynamics and the wall properties over the entire domain. This is crucial for the assessment of
the overall flow structure, the spatial distribution of wall property values and the correlation between
several flow attributes and wall properties. The main challenges for visual exploration approaches are
an uncluttered depiction of several data attributes and the reduction of occlusion problems in 3D.

Interactive probing. Once an overview has been obtained, the investigation often focuses on some
spatial areas such as the neck of a cerebral aneurysm. The flow in these regions can be more relevant
for answering a specific research question than flow in the aneurysm sac. Therefore, visual exploration
approaches must include an interactive way of probing the flow at the desired locations.

Feature filtering. Besides the targeted exploration of specific regions, the extraction of physically
meaningful patterns is a frequently used method of flow analysis, whereby the visualization is limited
to these so-called features. Features can be extracted either by explicitly describing them or by
filtering uninteresting flow parts until only the features are preserved. The filtering depending on
specific features supports, e.g., the investigation of the flow complexity and stability, which are
characterized in particular by features such as vortices and the detection of suspicious vessel wall
regions with high WSS and low thickness. Visual exploration approaches must include filtering and/or
feature extraction techniques and their coupling with a visualization of physical space.
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Temporal analysis. To assess the complexity and stability of the flow, flow properties must be
investigated over the entire cardiac cycle. There are indications that unstable flow, i.e., collapse and
the recurrence of flow characteristics, especially of vortices, predicts a worse outcome for the patient.
Approaches to visually explore blood flow data should present interesting features and their temporal
development to enable a detailed investigation of these features.

Comparison. The comparison of several instances of medical flow data is essential, e.g., to assess the
effects of virtual treatment procedures such as stenting or coiling and different treatment scenarios, to
investigate the variability between patients or to validate CFD simulations by measurements. Visual
exploration approaches must provide an integrated representation of multiple data instances to allow
comparison by highlighting differences between instances and providing interaction capabilities to
examine these differences at different levels of detail.

Contextualization. The vascular anatomy provides relevant contextual information for the visual flow
exploration. The representation of the vessel supports spatial orientation and facilitates the correlation
of flow and morphology, which contributes to understanding the development and progression of
pathology. Through the depiction of the anatomical context, visual exploration approaches should
help to relate the local flow with the morphology and vice versa. Thus, flow in the vicinity of
aneurysm blebs, could be investigated.

Uncertainty analysis. Through the flow data generation pipeline, there are several sources of
uncertainty, e.g., image modalities, yielding data that suffers from noise, calibration errors, non-
linearities, and partial volume effects, as well as manual parameter adjustments through the grid
generation. Simplifying assumptions of the simulation model and numerical inaccuracies contribute
to the aggregated uncertainty during simulation. It is essential to investigate the influence of these
sources on the interpretation of flow data to integrate them into clinical discussions. Visual exploration
approaches should assist the user to understand the potential variability of flow characteristics and
wall properties based on multiple data sets generated with different parameter settings.

4.2 T E C H N I Q U E S F O R TA S K - B A S E D V I S UA L B L O O D F L O W E X P L O R AT I O N

Several tasks have been identified for the exploration of blood flow data which are essential for the
understanding of morphological and hemodynamic relationships. In the following sections, related
publications dealing with blood flow visualization are presented depending on the supporting tasks.
The focus is on papers, where the introduced method offers support beyond that of general flow
visualization methods. Excellent overviews of general flow visualization methods such as straight-
forward side-by-side views to compare data sets or path lines, particles as well as animating 3D feature
extraction over time with the emphasis on application to blood flow data are provided in the doctoral
theses of Gasteiger [118] and Neugebauer [269].

4.2.1 Spatial Overview

Biomedically oriented literature comprising CFD or flow imaging methods aims to gain an overview
of the vector flow field through its dense visual sampling using integral curves [69, 361], arrow
glyphs [50] or particles [416]. The resulting depictions are affected by occlusion and visual clutter.
Visual clutter is often reduced by using a lower sampling density or by filtering the primitives. 3D

surface representations of the vessel anatomy are commonly used to depict wall-related attributes
such as WSS, which are color-coded on the surface, and only the currently visible surface parts can be
explored [18, 69, 88]. An occlusion-free overview even of a single scalar attribute over the lumen and
a simultaneous display of multiple attributes (and the vector flow field) are not supported.

In the following, advanced visualization approaches for obtaining a spatial overview are explained.
Due to the complexity of medical flow data, it is impossible to provide an overview of the entire
simulation domain [346]. However, advanced approaches produce a less cluttered overview of the
vector field, an occlusion-free projection view of wall-related attributes and near-wall flow or an
integrated visualization of several aspects for the current view of the scene.
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Vessel Lumen

Flow partitioning techniques can be applied to get an overview of the flow within the vessel lumen.
With this, the flow is decomposed into regions of common structure [331]. Graphical representatives
of the flow regions can be computed and aggregated in a visual summary giving an overview of the
flow. This has been exploited for the investigation of cerebral aneurysms and aortic hemodynamics
in multiple ways. Van Pelt et al. [381] proposed a spatio-temporal hierarchical clustering of the
vector field applied to 4D PC-MRI data of the aorta. For each cluster, a representative path arrow is
computed that can be animated over time. Their coarse hierarchical approach strongly reduces the
computational complexity based on merging multiple clusters instead of a single pair per iteration.
The final flow decomposition for a selected hierarchy level is visualized using a representative path
arrow per cluster. Most approaches decompose the flow field based on integral curves since, in
contrast to local vectorial information, they represent continuous flow patterns traced over the domain.
Kuhn et al. [199] hierarchically partitioned a vector field according to curvature-based characteristics.
At first, a scalar field is calculated, which reflects the curvature behavior of streamlines. Afterward,
an implicit clustering is performed on the scalar field that is caused by semantic dependencies. Thus,
an initialization of the clustering as it is necessary with many explicit methods, e.g., by specifying
the number of centroids, which strongly influences the result of the clustering, is avoided. For the
implicit grouping, a density function is defined whose minima separate the individual clusters. For
the visualization, an enveloping semi-transparent surface per cluster is calculated. This is colored
depending on the cluster’s flow behavior, whereby clusters with laminar, swirling and turbulent flow
are distinguished. Oeltze et al. [283] compared three state-of-the-art approaches to cluster a dense set
of streamlines in the context of aneurysm hemodynamics. Streamline similarities were computed
based on line geometry [76] or flow field attributes. They conducted a quantitative evaluation of
k-means, an agglomerative hierarchical clustering (AHC) with four linking criteria, and spectral
clustering (SC). Based on cluster validity measures, spectral clustering and AHC with average link
and Ward’s method performed best. A visual summary of the flow is generated, containing one
representative streamline per cluster visualized as stream tube to reduce visual clutter. The user can
select individual representatives triggering a display of the corresponding streamline set.

Visual overview representations can also be generated by using 2D depictions. Angelelli et al. [13]
presented a standardized method to straighten surface representations of the aorta and inner flow. This
illustration facilitates the analysis of any abnormalities in vessel diameter or blood flow. Besides,
side-by-side views are used to compare a large number of representations. Orientation cues along the
straightened structure facilitate the mental integration of corresponding aortic regions. An overview
of aortic flow could be given, e.g., by juxtaposing a straightened visual flow summary [283], flow
feature extraction result [189], and volume renderings of multiple hemodynamic attributes. Saalfeld
et al. [324] provided a simplified occlusion-free 2D view of the anatomy, the approximated flow, the
pathology, and the stent or coils to support patient education before an endovascular intervention.

Vessel Wall

Several works parametrize the vessel wall to generate more abstract representations. Neugebauer et
al. [271] employed a multi-perspective 2D projection map for a combined exploration of the aneurysm
morphology and hemodynamic data. A scalar field can be color-coded to decode the information on
the surface and the 2D map. Moreover, the map is linked to a 3D view of the aneurysm to establish a
spatial relation between both views. Goubergrits et al. [135] transformed the aneurysm surface to a
uniform spherical shape to analyze statistical WSS distributions. The vertices of the aneurysm surface
are transformed towards its center of mass, where they ensured that the distance to the center is equal
for all vertices. The sphere is then mapped to a disc using an azimuthal equidistant projection. Tao et
al. [363] presented the VesselMap, a 2D visualization of a IA and parent vasculature, see Figure 10.
The view-dependent mapping is formulated as a 2D graph layout optimization problem. Small spatial
partitions of the vasculature in 3D are considered as nodes that must not overlap in 2D while at the
same time spatial relations must be preserved. The result exhibits rather strong local distortions, but
the overall vascular topology is maintained.
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Concerning the wall thickness as an important rupture risk factor of aneurysms, Glaßer et al. [132]
presented a framework for the visual exploration of vessels with wall thickness. They visualized
the wall thickness combined with WSS by using an overview depiction for their joint analysis for
the current viewing direction. A semi-transparent surface rendering of the outer wall is augmented
by surface ribbons whose color encodes the distance to the embedded inner surface. The latter can
be colored concerning WSS of the inner wall, wall thickness or a combined risk score. It is visually
subdivided into homogeneous regions based on the same attribute and a region merging approach to
support an assessment of the attribute value distribution further. More recently, Rocha et al. [318] used
decal-maps to visualize multivariate data. Decals are a set of images directly mapped to 3D surfaces
that allow the depiction of different attributes. They transformed the flower glyphs, introduced by
van Pelt et al. [442] to a decal representation to give an overview of pressure distributions on the
aneurysm surface.

(a) (b)

Figure 10: Mapping from the 3D volume space to a 2D VesselMap representation. In (a) the mesh structure of
the VesselMap is shown. In (b) a streamline visualization with a semi-transparent vessel structure is
depicted. (Images from [363] © Elsevier Ltd. 2016.)

Lumen+Wall

Less work is currently being done on an integrated visualization of the vessel lumen and wall. Lawonn
et al. [217] aimed at an integrated, occlusion-free visualization of wall thickness and near-wall flow,
see Figure 11. Wall thickness is color-coded on the outer wall surface, the inner wall surface is
superimposed using illuminated contours, and the near-wall flow is displayed over time by arrowhead
glyphs in dynamic cutaway views.

4.2.2 Interactive Probing

Standard probing techniques to explore blood flow data in biomedical research comprise cut planes to
color-code an attribute [26], isosurfaces of an attribute [66], and integral curves seeded at a subdomain
of the volume mesh or a cut plane [409]. Interactive analysis is not intended or at least not discussed.

Advanced probing approaches support interactive exploration of vectorial flow information, of
hemodynamic attributes, or wall properties at interesting locations in space. For a joint investigation
of flow and wall, it is necessary to support the interactive probing of the flow of interesting wall
regions or the probing of the wall in the vicinity of interesting flow structures. The provision of a
flexible probing geometry that can be drawn through the spatial domain allows a detailed analysis of
conspicuous regions. Additional views are often used to display details of the probing results.
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Figure 11: Animated path line segments represented by arrow glyphs illustrate the flow inside an IA and its
parent vessel at three subsequent time steps. Dynamic cutaway-views reveal the internal flow.
Wall thickness is color-coded on the outer wall using a discretized scale (bright regions indicate a
thin wall). The inner vessel wall is superimposed using illuminated contours. (Images from [217]
© IEEE 2016.)

Vessel Lumen

To investigate intra-aneurysmal flow, Neugebauer et al. [274] employed the ostium surface illustrated
in Figure 3 as probing geometry. Moreover, different interactive widgets are provided to explore
the parent vessel and the aneurysm. Within the vessel, a cut plane can be dragged along the vessel
centerline, which fulfills several functions. It can be used as a seeding geometry for streamlines or to
color-code a hemodynamic attribute. Furthermore, an additional height field shows the local velocity
profile and a LIC [53] visualization reveals flow features. Within an aneurysm, multiple cut planes can
be defined orthogonal to each other and jointly dragged and rotated along the central aneurysm axis.
Arrow glyphs encode flow close to the planes.

Arranging cross-sectional cut planes within the aorta is much easier due to its simple shape
and can be realized by a one-click interaction. Hennemuth et al. [151] and Köhler et al. [193]
require segmentation of the aorta and its centerline for this purpose. Both construct cross-sections
perpendicular to the centerline, but Köhler et al. refine the orientation for more accurate quantifications
of heart function parameters. Van Pelt et al. [379, 380] and Krishnan et al. [198] introduced probing
approaches to facilitate a visual data exploration on the spot, where no vessel segmentation is needed.
Van Pelt et al. [380] enable an interactive translation of 2D vessel cross-sections determined by a
sequence of image processing steps. This is later extended by an interactive virtual probing using a
3D virtual truncated cone, which is oriented along the underlying flow field [379]. The cone can be
dragged along this orientation, and the base and top radius can be adjusted. It serves as a seeding
geometry, and the flow behavior is depicted using illustrative techniques like speed lines and particle
animations based on elliptical glyphs. For the probing by Krishnan et al. [198], the user is asked to
place a seeding geometry in the form of a planar circular inside the vessel. Based on this, stream- or
path lines are integrated, where the integration is automatically restricted to the vessel lumen using
the finite-time Lyapunov exponent (FTLE) measuring the separation of flow.

The probing can be further supported by combining 3D and 2D representations of the probed region.
This facilitates the interpretation of the obliquely oriented probe, and additional information can be
displayed. Van Pelt et al. [380] integrated an exploded view of cut planes at cross-section positions
into the 3D vessel visualization. Hennemuth et al. [151] provided multiple views to show the original
image data aligned with and perpendicular to the cut plane based on multiplanar reformations (MPRs),
where flow information can be superimposed. Diagrams are displayed for quantitative analysis of
flow velocity and through-flow of the plane. Angelleli et al. [13] augmented their straightened aortic
depictions with histograms and line graphs of flow magnitude for user-defined cut planes. Englund
et al. [98] presented an interactive probing to explore flow patterns of measured aortic data, see
Figure 12. Starting from a moving plane, path lines are integrated, which are clustered and for each
cluster, a representative is displayed. Pie charts and map views provide additional information.

In contrast to the methods presented so far, the probing approach by Saalfeld et al. [324, 325] does
not employ a probing geometry. They developed a prototype for the patient and medical education,
where the user can sketch vascular pathologies. Based on this, a strongly simplified model is used to
approximate the blood flow, where the user can inject a virtual dye or blood cell shaped particles.



4.2 T E C H N I Q U E S F O R TA S K - B A S E D V I S UA L B L O O D F L O W E X P L O R AT I O N 51

Figure 12: Interactive probing within measured aortic flow data. Starting from a moving plane, path lines are
integrated, which are clustered. For each cluster, a representative is displayed. Individual clusters
can be added or removed using map views. Pie charts encode cluster size in terms of path line
count. (Images from [98] © Eurographics Association 2013-2019.)

Vessel Wall

For the investigation of wall thickness, Glaßer et al. [132] provided a slice widget that can be dragged
through the vessel and is oriented perpendicular to the vessel centerline. To facilitate the inspection
of local wall thickness variations, an additional 2D view is presented showing the contour of the inner
and the outer wall within the cross-section.

Lumen+Wall

For the simultaneous analysis of the lumen and vessel wall, Gasteiger et al. [121] introduced the
FlowLens – an interactive focus-and-context approach for the simultaneous exploration of anatomical
and hemodynamic information. With the help of a flexible lens that can be dragged across the scene
in image space, correlations between a focus attribute (outside lens) and a context attribute (inside
the lens) can be analyzed. For instance, pressure can be related to the underlying flow based on an
opaque vessel surface rendering outside the lens and a transparent rendering inside the lens. Outside,
the pressure is mapped to color while inside, streamlines are shown to reveal the underlying flow field.
Inside the lens, further probing employing cut planes is supported. Lawonn et al. [217] integrated
the slice-based wall thickness probing method of Glaßer et al. [132]. Combined with their additional
visualization of the underlying flow field it allows for correlating wall thickness and near wall-flow at
the probe location. Markl et al. [241] proposed cross-sectional cut planes at pre-defined positions
within the aorta to explore WSS and OSI in correlation with aortic plaques. They used plot-based
depictions linked to the cross sections, where each plot is divided into 12 segments representing the
aortic circumference. Each segment is color-coded to the averaged WSS and OSI, and numerical plaque
thickness values. Recently, Rocha et al. [319] presented decal-lenses - an interaction technique that
extends the concept of magic lenses, which was also used for the FlowLens concept by Gasteiger
et al. [121]. Similar to the decal-maps [318], the decal-lenses are directly mapped on the surface
representation following its geometry, which avoids problems of existing lens approaches related
to placement and orientation [121]. Within the lens, the user can easily switch between different
attributes allowing, for example, an exploration of curvature and pressure on the aneurysm surface as
well as the flow velocity.
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4.2.3 Feature Filtering

In the medical or flow-related literature, filtering is rarely explicitly addressed. Often manually
pre-filtered flow visualizations are shown to illustrate the characteristics, e.g., a subset of traced
integral curves [68] or a colored area representation limited to a specific value range [117]. Sometimes
characteristics are derived from a precise visual inspection of full-fledged integral curve represen-
tations [242]. In CFD literature, isosurfaces of a vortex criterion or a vortex core line extraction
algorithm are often used, followed by manual fine-tuning of an integral curve tracing seeded at the
core line to achieve a less cluttered visualization of vortex flow [51, 52].

In the following, advanced approaches for focusing the visualization of medical flow data on
features of the flow field, the wall or both are examined. Exemplary features are user-defined regions
with specific attribute values, near-wall flow in areas with high surface curvature, vortices and critical
points. The presented approaches limit the visualization to features or emphasize them in a focus-
and-context style. They offer interactive filtering mechanisms such as dynamic queries or linking and
brushing for feature definition or integrate state-of-the-art feature extraction algorithms. Some filter
mechanisms take into account the current viewing direction and zoom level, e.g., when filtering out
attribute values that are connected to currently invisible wall parts.

Vessel Lumen

Manual filtering. Neugebauer et al. [274] presented a qualitative visual analysis of flow features in
cerebral aneurysms. They provided streamline filtering to separate aneurysm inflow and outflow as
well as slow and fast flow based on a transfer function that considers the dynamic flow direction and
velocity. These flow properties can be investigated separately to gain a better understanding of the
overall aneurysm flow. Köhler et al. [427] have coupled their 2D plot visualization of vortical flow
with slider-based filtering of the underlying λ2-vortex criterion.

View-dependent filtering. To reduce visual clutter of streamline-based flow representations, Günther
et al. [141] presented a global line selection approach that reveals user-defined features, e.g., vortices.
Based on the curvature of streamlines, an importance measure is calculated, which is used as
input for a view-dependent opacity-modulation to filter out less essential streamlines. While they
maintain as much context information as possible, Lawonn et al. [218] introduced a streamline
selection method, that reduces distracting context to improve understanding of critical areas. For
this purpose, they proposed a view-dependent attenuation of streamlines using a suggestive contour
measure [80]. The opacity of streamlines is controlled by user-defined thresholds, where the vortical
flow is emphasized. The major disadvantage of such global opacity optimization techniques is the
high memory consumption in the case of large and dense sets of lines. To improve this, Kanzler et
al. [175] combined several local approaches that reveal user-defined features, e.g., vortices. Based on
an importance measure using streamline curvature and balanced line hierarchies to adapt line density
depending on the view direction, less important streamlines are filtered out.

Line predicates. Salzbrunn et al. [330, 332] introduced line predicates for stream- and path lines,
which are Boolean functions that decide if integral curves fulfill properties of interest. They can be
used to extract specific flow features such as vortices. For this purpose, several scalar criteria are
computed for each point of an integral line that are used as filtering criteria. Born et al. [42] utilized
line predicates to identify relevant flow features such as jets, vortices, and blood with high residence
times in cardiac 4D PC-MRI data sets. Later they proposed the low-cluttered, illustrative visualization
of the extracted line bundles, based on ribbon-shaped representatives derived for each bundle from
its skeleton [41]. They also defined a predicate for filtering vortices and used tubular structures with
a hatched texture for the representation. Köhler et al. [189] presented a semi-automatic approach
to filter vortex-representing path lines. They compared different local vortex criteria used as line
predicates, where the λ2-criterion was determined as most suitable. Recently, Köhler et al. [191]
improved their vortex extraction by using an intravascular, relative pressure calculation. In contrast to
the λ2-criterion, the results suffer significantly less from noise. Jankowai et al. [167] used path line
predicates to filter the flow in 4D PC-MRI data of the whole heart. In addition to some basic predicates
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such as length and velocity, they used a region of interest predicate to query path lines that run through
a particular area, e.g., the pulmonary artery or the right ventricle. These queries are based on an
image mask that contains unique identifiers for the various heart vessels/ventricles.

Space partitioning. Furthermore, space partitioning methods are used to extract and clearly illustrate
flow features. Krishnan et al. [198] coupled their interactive probing approach with a feature-based
seeding of integral surfaces. First, a flow map [352] is computed for the probing plane. Depending on
the seed points of the particles it encodes their destination after advection. Afterward, the flow map
is segmented, and from the outline of each segment, an integral surface is propagated. Englund et
al. [98] employed a partitioning approach for the exploration of aortic hemodynamics. They used
FTLE to measure the separation of path lines and derived coherent areas, see Figure 12. Thus, flow
patterns are extracted, which allows more detailed exploration of these features and their influence
on specific diseases, e.g., aneurysms. Oeltze-Jafra et al. [284] proposed an automatic extraction of
embedded vortices, i.e., a small vortex enveloped by a larger one swirling in the opposite direction,
forming around a saddle-node bifurcation, see Figure 13. Their method comprises a vortex core
line extraction, a saddle-node detection, a streamline seeding along the core line, and a tailor-made
streamline clustering approach. A smart-visibility approach supports the visual exploration of flow
exhibiting multiple vortices. To facilitate a detailed exploration of a single vortex, vortices not
considered by the user are attenuated. While the user zooms in on a vortex, more information such as
associated critical points are displayed.

Köhler et al. [192] presented a time-dependent extraction of flow jets within cardiac flow data. For
this purpose, equidistant measurement planes are automatically placed orthogonally along the vessel’s
centerline. Then, for each plane over time, the position of the flow jet and the region with the highest
velocities are extracted automatically. The main flow jet is visualized as an animated tube, where
a net around it represents high-velocity areas. Moreover, a plot-based depiction is provided for a
selected plane that visually summarizes qualitative and quantitative flow jet characteristics. Recently,
Kanzler et al. [176] presented an interactive approach to exploring flow features of time-independent
vector fields and applied their method to cerebral aneurysm data. They employed a clustering of
flow-representing streamlines, where for each cluster a consistency measure and a hull geometry was
calculated. In the case of multiple depicted hull geometries, the user can brush on the geometries,
where the consistency measure of the clusters is used to control their shown line density. With this,
only the most interesting parts of the depicted clusters are shown, which reduces occlusion problems.

Figure 13: Aneurysm flow with a major center swirl. Vortex core lines are rendered magenta in (a-f). Neither
streamlines seeded at the aneurysm inlet (a) or inside (b) nor the cluster representatives (d-e)
clearly convey the swirl. Grouping streamlines seeded at vortex core lines (c) and display of
custom representatives (f) reveal an embedded vortex (g), i.e., a small vortex enveloped by a larger
one swirling in the opposite direction, forming around a saddle-node bifurcation (h). In (g-i)
arrows indicate local flow direction, and the core line of the major swirl is rendered gray. (Images
from [284] © IEEE 2016.)
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Vortex classification. Besides an extraction of vortical flow, medical studies manually classify
vortices according to specific properties such as their orientation or shape. This requires a precise
definition of spatio-temporal vortex entities, which is also performed manually. This task is time-
consuming for more extensive studies and error-prone due to inter-observer variability. Van Pelt et
al. [294] introduced an automatic vortex classification based on pattern matching. They proposed a set
of helical and vortical patterns that can be parametrized by a single variable. The classification results
are visualized using color-coded path lines, where the color scheme indicates the vortex shape and
orientation. A significant disadvantage of this method is that the number of distinguishable patterns
depends on the number of used template flow patterns. Therefore, we provided a semi-automatic
vortex classification that calculates the vortex characteristics based on geometrical properties and
relations of vortex-representing path lines and the vessel surface [434]. This vortex classification
requires a precise definition of spatio-temporal vortex entities. For this purpose, our previous
work on vortex clustering [435] is used, where an efficient calculation of a dissimilarity measure
was introduced that groups spatio-temporally adjacent vortices and combined it with widespread
clustering techniques. Finally, the classification results are presented by a 2D and 3D visualization
technique, see Figure 14. The 2D depiction in the form of a circular plot shows the spatio-temporal
vortex behavior, where the 3D representation displays the size as well as the orientation by using a
color-coding and arrow glyphs.

Miscellaneous. Broos et al. [49] extracted specific flow characteristics such as high-speed vortices
based on a feature-based seeding. They used an interactive generation of transfer functions to define
ranges of values that are used to seed path lines in interesting areas. Köhler et al. [190] adapted
the ambient occlusion (AO) technique for lines (LineAO), which was introduced by Eichelbaum et
al. [94], to animations of path lines extracted from measured cardiac blood flow data. They presented
a line alignment factor to reduce the AO-induced darkening if closely spaced lines exhibit a similar
flow direction. The perception of homogeneous flow is further enhanced by using depth-dependent
halos. While the full flow context is preserved, their method facilitates the user to identify prominent
flow structures while showing the full flow context. Kwon et al. [201] presented adapted the opacity
of streamlines representing aortic flow according to their similarity to the centerline. Lines that
are similar to the centerline are rendered transparently, while the different ones are shown more
opaquely. Thus, abnormal flow patterns such as vortices were highlighted. Recently, Engelke et
al. [97] presented a flexible particle system, where the density of the particles is automatically
adapted based on local importance measures to emphasize interesting flow features such as vortices.
These measures include geometric features such as particle distances, flow-related attributes, e.g.,
λ2-criterion, and aspects of the particle history, e.g., local curvature along the particle’s path. The user
can interactively combine these measures as well as adjust the system’s sensitivity to them. Using this,
a probability is calculated that controls the multiplication or death of particles. Moreover, Engelke
and Hotz [96] introduced an evolutionary algorithm to highlight the most interesting flow features
without an initial sampling of the whole domain. In an iterative process, appropriate streamlines are
selected based on a user-defined fitness function. They applied their method to a time-independent
aneurysm data set, where complex flow patterns in the aneurysm sac could be detected.

Vessel Wall

Glaßer et al. [132] generated a global scatter diagram of WSS and wall thickness, where brushed areas
in the scatter plot are emphasized on the aneurysm wall. This is extended by a "local" scatter plot
that shows only attribute values of currently visible wall parts. Goubergrits et al. [135] calculated
averaged WSS vector fields for different groups of patients. Then, streamlines are integrated within
each field to extract critical points that together characterize the group.

Lumen+Wall

To improve the understanding of human physiology in healthy and diseased vessels, a combined
analysis of wall characteristics and hemodynamic features inside the lumen is essential. The FlowLens
by Gasteiger et al. [119] is coupled with a filtering mechanism. The hemodynamic attribute displayed
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Figure 14: Semi-automatic classification of aortic vortex flow of a patient with an aortic dilation. Starting
from the path lines, two clusters are generated that are visualized by a 2D plot and a 3D glyph-based
depiction. (Image from [434] © John Wiley and Sons 2016.)

within the lens area (focus) can be filtered interactively, e.g., the isovalue range of pressure surfaces or
surface contour lines for WSS depiction. Lawonn et al. [217] provided filtering techniques to explore
the internal flow behavior at suspicious surface regions. Based on the wall thickness color-coded on
the aneurysm surface, the user can adjust the opacity at thin wall regions to uncover the internal blood
flow. Besides, the expert can set two thresholds that control the visualization of near- and far-wall
flow via color-coded path line glyphs. Van Pelt et al. [442] used glyph depictions for view-dependent
filtering of lumen and wall features. Zooming closer to the wall initiates a shifting of the scope of
interest from the lumen to the wall. On zoom levels more distant to the wall, glyphs encoding the
internal flow are visualized, which are attenuated by zooming in while at the same time, the visibility
and detail of surface glyphs encoding wall-related hemodynamic attributes are increased.

Gambaruto et al. [115] introduced a qualitative and quantitative analysis of flow features that are
potentially related to cerebral aneurysm rupture. They extracted WSS critical points, vortices and
surface shear lines, which are visualized using standard techniques such as spherical glyphs, vortex-
isosurfaces, colored inner wall surface, and surface lines with arrowheads. Moreover, other qualitative
information such as the inflow jet, the size of the impingement zone and near-wall flow patterns play a
significant role in the investigation of the risk of rupture and the resulting treatment options. Gasteiger
et al. [120] presented an automatic detection and visualization of the inflow jet and its impingement
zone. First, an inflow jet seeding curve is extracted by utilizing local streamline properties. Based
on this, a boundary contour of the inflow jet is integrated, which is used to identify its impingement
zone on the aneurysm wall. Finally, the inflow jet is visualized using a boundary surface or an arrow
glyph, whereas an isocontour depicts the impingement zone. Neugebauer et al. [275] developed a
qualitative exploration of near-wall hemodynamics in cerebral aneurysms. Several 2D widgets are
used to simplify the flow representing streamlines at different positions on the surface. They were
particularly interested in near-wall flow at regions of high surface curvature potentially representing
prospective rupture sites. Each widget shows the near-wall flow using unrolled and hence, occlusion-
free streamlines. Behrendt et al. [27] used information visualization techniques to filter flow patterns.
Scatter plots and parallel coordinates are equipped with brushing facilities and linked to a 3D view
showing the path line selection in a focus-and-context style. Furthermore, regions on the surface,
where a scalar attribute is color-coded can be selected. Based on this, only flow close to the selection
is shown. Petz et al. [295] and Pöthkow et al. [304] presented the extraction of vortex cores and
critical points from uncertain time-varying flow fields and WSS vector fields. They applied their
approach to an ensemble simulation of a cerebral aneurysm data set. The spatio-temporal development
and stability of critical points probabilities provide information that domain experts considered as
essential to assess the rupture risk.
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4.2.4 Temporal Analysis

More general works dealing with the visualization of time-dependent data [5, 7, 263] categorized
existing visualization techniques according to the characteristics:

• of the time axis,

• of the data itself,

• and their representation.

For the former, time points and time intervals, as well as linear, cyclic and branching time axis, are
distinguished. Regarding the data itself, abstract and spatial data. as well as the number of variables
(univariate vs. multivariate), are distinguished. Here, also the level of abstraction, e.g., by calculating
aggregated data is considered. For the latter, static and dynamic representations, as well as their
dimension (2D vs. 3D), are distinguished.

Related to this taxonomy, blood flow data are spatial multivariate data with a cyclic behavior,
simulated at a specific point in time, where usually multiple cycles are simulated, but only the last
one will be post-processed. For their representation, both, static and dynamic, as well as 2D and 3D

depictions, are used, where also more abstract visualizations such as plot-based techniques are used. In
medically, CFD, or flow imaging focused literature; side-by-side views are commonly used to support
a temporal analysis mostly by visualizing consecutive time steps of the cardiac cycle [102, 414].
Mentally combining these multiple images is a tedious and time-consuming task, which complicates
the interpretation. Advanced approaches use animations, where important spatio-temporal features
are highlighted over time or generate an integrated static visualization of multiple time steps showing
the evolution, e.g., of flow features, in particular, vortices.

Vessel Lumen

Van Pelt et al. [380] introduced a framework for the interactive exploration of 4D PC-MRI data. Instead
of path line animations, they used specular highlights on path lines and illustrative renderings like
arrow-trails to illustrate time-dependent blood flow dynamics. This avoids a shortening of the path
lines due to a decrease in the blood flow velocity over time, which could be wrongly interpreted as
a reversal of the flow direction. Moreover, van Pelt et al. [379] used elliptical glyphs for particle
animation, see Figure 15. A high speed leads to elongated ellipsoids. Furthermore, speed lines
indicate the particle trajectory for a limited time, whereby the velocity is mapped to the line width.
Visually aligned speed lines indicate that the particle is entirely within the flow field; otherwise,
the particle remains near the tissue boundary. Angelelli et al. [13] demonstrated the usefulness of
their straightened representation of the aorta using temporal flow analysis. They juxtaposed up to
13 streamline visualizations showing consecutive time steps of the cardiac cycle to illustrate the
temporal evolution of the flow pattern. Lawonn et al. [216] presented a visualization of animated path
lines within cerebral and cardiac vessels, where a shading technique was employed that highlights
near-by surface regions. A graphical user interface is available for the visual exploration of path lines,
which contains standard media player functions for controlling the animation. Besides, the user can
jump to a specific keyframe, which allows an intuitive and fast exploration of the animation. Coppin
et al. [75] applied different illustrative rendering styles to simulated blood flow data of cerebral
aneurysms for highlighting the most interesting flow features. Side-by-side views are used to show
the spatio-temporal evolution of these features.

Köhler et al. [427] projected vortex-representing path lines to a 2D circular plot that shows the
spatio-temporal behavior of present vortex flow in the aorta at one glance. The temporal component
of each path line point is mapped to the plot’s angle. For this purpose, the plot area is divided into T
equally large sectors, where T is the number of time steps. Thus, a clock metaphor is used, where
the first time step is located at 12 o’clock; the direction is clockwise. The plot’s radius encodes
the spatial aortic position of the occurring vortex flow. Thus, the plot center corresponds to the
approximate aortic valve location, and an increasing radius encodes positions in the aortic arch and
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descending aorta. For each plot segment, the mean λ2-value according to the corresponding path
lines is calculated, which is color-coded within each segment. We extended this plot to depict the
spatio-temporal behavior of path line clusters representing vortices [434]. For this purpose, also the
plot’s radius is discretized representing four anatomical aortic regions. Afterward, for each cluster,
the corresponding segments are determined and dyed according to the cluster color, see Figure 14.
Köhler et al. [194] introduced a feature-driven approach to generate videos, that slows down the
animation time if interesting features such as vortical flow are visible. In contrast, the animation time
for frames that represent an uninteresting flow is accelerated. For this purpose, a feature visibility
function is evaluated for each frame, and the result is used to adapt the animation speed.

Figure 15: Illustrative particle visualization using elliptical glyphs seeded from a virtual probe. Speed lines
indicate the particle trajectory for a limited time. (Images from [379] © IEEE 2011.)

Vessel Wall

Concerning the vessel wall, Van Pelt et al. [442] designed surface glyphs, called flower glyphs,
showing the temporal development of WSS for different stent configurations over the cardiac cycle
in a static view. For each stent, circles for a user-defined sub-sampling of the time domain are
drawn, whose areas are scaled concerning a regional WSS mean. Furthermore, the circles are
connected with time variation strips to encode the entire domain. Glaßer et al. [129] compared
three visualization techniques to depict WSS in cerebral aneurysms over the cardiac cycle. They
used statistical visualizations of time-varying WSS values as well as animated and static color-coded
depictions at peak-systole. They recommended employing statistical or animated visualizations for
the detection of elevated time-dependent WSS.

Lumen+Wall

Simultaneous analysis of interesting wall and flow features during the cardiac cycle is a challenging
task due to the visual complexity and occlusion problems. Lawonn et al. [217] presented a framework
for an occlusion-free blood flow visualization combined with wall thickness information. For this
purpose, they introduced dynamic cutaway-views, where animated path lines of near-wall flow
become visible over time, and wall thickness in relation to near-wall flow can be investigated. Another
possibility to support the analysis of time-dependent data is a capable camera control including an
adequate viewpoint selection. Neugebauer et al. [275] augmented their 2D display of suspicious
near-wall flow by standard media player features to iterate over time. Besides, they integrated an
automatic animation consisting of appropriate viewpoints in 3D+t to accelerate the inspection of
suspicious regions and their flow patterns.
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4.2.5 Comparison

Literature, focusing more on medicine, CFD, or flow imaging, supports the comparison task solely
by arranging two visualizations in a side-by-side view [12, 117, 210]. Its interpretation is tedious
and time-consuming. Advanced visualization approaches are based on an integrated comparative
visualization or use more abstract representations of the spatial domain. They aim at comparing
medical flow data before and after a virtual treatment procedure, among different treatment scenarios,
across patients, and originating from CFD simulation and medical imaging.

Vessel Lumen

Oeltze et al. [283] proposed linked side-by-side views of flow field partitioning results generated
before and after the virtual stenting of a cerebral aneurysm and for different stent locations. Linking is
achieved by coupling the camera parameters of the different views. Goubergrits et al. [136] analyzed
the effect of coiling in an aneurysm model. An integrated bicolored streamline visualization of the
flow before and after coiling was generated as well as of different coil packing densities. De Hoon et
al. [79] proposed glyph-based depictions to visually compare measured and simulated aortic flow.
Measured vectors are represented by gray vector glyphs, while the simulated vectors are colored
according to the vector difference concerning the orientation angle. Moreover, path lines extracted
from the measured data are depicted in gray while those traced in the simulated data are color-coded
according to the Hausdorff distance between the path line sets. Saalfeld et al. [324, 325] used an
approximate blood flow model for their sketching approach of vascular pathologies and treatment
options. Their method supports the comparison, e.g., of different stent lengths or coil packaging
densities since the simplified model allows to update blood flow with interactive frame rates if the
sketch was modified. Angelelli et al. [13] generated a standardized straightened representation of the
aorta which would simplify the comparison of flow across multiple patients in a cohort study.

The comparison task can be simplified by using abstract 2D representations of the interesting spatial
domain, which are created by employing a standardized anatomy-driven subdivision scheme. Köhler
et al. [427] designed an abstract 2D plot of the spatial aortic domain. They employed it to compare the
temporal development as well as vortex strength across patients using side-by-side views of multiple
plots. Since the criterion has no fixed minimum, the user has to define a minimum λ2-value. Based
on this, the λ2-value is scaled and clamped to [0,1], which is color-coded in the 2D plot. The closer
the selected minimum is to 0, the more sensitive the visualization is towards vortex flow.

Vessel Wall or Lumen+Wall

Goubergrits et al. [135] compared cohorts with ruptured and non-ruptured aneurysms based on a
flattening of the wall and group-specific characteristics derived from WSS vector fields.

To support the analysis of wall and flow data, van Pelt et al. [442] developed a comparative
visualization of inflow jet, impingement zone, and WSS for the simultaneous investigation of an
untreated aneurysm and up to four virtual stenting scenarios, see Figure 16. For the extraction of
inflow jets and the impingement zones, the automatic approach by Gasteiger et al. [120] is used.
They are visualized by arrow glyphs and surface contours, respectively and their color encodes the
configuration ID. Flower glyphs are employed to jointly encode the WSS of the untreated case and the
stenting configurations. The flower glyphs are drawn at evenly distributed locations on the vessel
surface. Depending on the zoom level, the glyph density, as well as their level of detail, are adapted.

4.2.6 Context Visualization

In the scope of medical flow visualization, the depiction of the surrounding vascular system equals
an embedded surface visualization problem. As internal flow is strongly influenced by enclosing
structures (e.g., vessel or an aneurysm) it is often necessary to represent both simultaneously to support
the spatial orientation and to facilitate the correlation of flow and morphology, which contributes
to understanding the initiation and progression of pathology. To avoid visual clutter and occlusion,
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(a) (b)

Figure 16: In (a) a comparative visualization of four stent configurations with corresponding glyphs, depicting
WSS (disks), inflow jets (arrow glyphs), and impingement zones (contours) is shown. With an
increasing zoom level, the glyphs’ density and level of detail are increased (b). (Images from [442]
© John Wiley and Sons 2014.)

the enclosing structure needs to be visually de-emphasized. This is often made possible by the
use of transparency. In psychology, the perception of transparency has been studied for decades.
Metelli et al. [252] presented one of the first physical models to describe the visual perception of
transparency, which is similar to the "‘blending"’ function used in computer graphics. Thus, literature
focused on medical, CFD or flow imaging shows mainly an embedding of the flow in a semitransparent
surface visualization of the vascular system [12, 115], see Figure 17a. The semitransparent depiction,
however, hinders the interpretation of shape, the perception of depth, and suffers from visual clutter
through various anatomical parts whose projections overlap in the image. Fleming and Bülthoff [105]
identified several factors like shadow, lighting, contrast, and color as critical visual cues to reveal
transparency. Gerbino et al. [124] showed that luminance is an essential channel in conveying
transparency information. Singh and Anderson [349] extended this theory by integrating contrast to
evaluate the transparency of layers in images. To enhance transparency, visual hints are frequently
used that emphasize the luminance profile of the image. For example, the combination of lighting
and color [396] can be used to achieve clear luminance and contrast with transparent structures.

Based on these more general findings of transparency perception, three classes of advanced
approaches dealing with the problem of embedded surface visualization have emerged:

• front face removal,

• adapted/augmented transparency, and

• contour rendering.

Flow in the vicinity and inside a cerebral aneurysm is commonly integrated into a representation of
the near-vessel wall. This visualization can, in turn, be embedded in a contextual representation of
the entire cerebral tree (near- and far-context). A depiction of aortic hemodynamics is embedded in a
contextual representation of the aorta and references to the outgoing arteries (near-context) or the
ventricles and coronaries (near- and far-context).

Near-Context

Gasteiger et al. [122] combined several rendering styles to show the influence of the surrounding vas-
cular and aneurysm shape on the internal blood flow. Depending on the view-angle, the transparency
of the front faces is adapted to provide an occlusion-free depiction of internal blood flow-representing
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streamlines, where visual shape hints about the enclosing surface are maintained. To facilitate depth
perception, local shadows and atmospheric attenuation are applied to the visual representations of
the vasculature and internal flow. Van Pelt et al. [381] coupled these techniques with a comic style
rendering of the back faces [380] for an investigation of the flow in the great heart vessels. Saalfeld
et al. [325] combined a physically-based shading based on the idea of energy conservation with a
view-dependent transparency adaption of the vasculature to increase visual realism and subsequently
support depth perception. Inspired by the suggestive contour measure [80], Lawonn et al. [216] pre-
sented an illustrative surface visualization, see Figure 17b. Based on the local curvature of the surface,
the transparency is adapted, which visually emphasizes convex and concave regions. Furthermore,
they used shadows and blurring effects to improve the perception of depth and spatial relations to
distant branches. Similar to the suggestive contour measure [80], Jankowai et al. [167] employed
illustrative techniques to improve the spatial perception of the heart anatomy by visually emphasizing
silhouettes and contours of the heart vessels and chambers.

(a) (b)

Figure 17: Near-context visualizations of a cerebral aneurysm: blood flow-representing streamlines are
embedded in a semi-transparent representation of the vessel wall (a). Using illustrative techniques
improves the perception of surface depth and shape while the internal flow is still visible (b).
(Images from [216] © John Wiley and Sons 2014.)

If the goal is to show specific flow structures, the embedding problem can be solved by removing
the front faces of the enclosing vascular system. De Hoon et al. [79] applied a toon shading to aortic
surface representations, where the front-faces culling was applied to make the internal flow visible.
Köhler et al. [427] linked their 2D plot-based visualization of vortical flow to a path line rendering
of the corresponding vortex embedded in a 3D surface depiction of the aorta with culled front faces.
Behrendt et al. [29] transferred the effect of front face culling to direct volume visualization of
vascular structures. While for indirect volume visualizations, the relation between the normal of the
polygonal surfaces and the view direction is employed to remove front faces, whole parts of the vessel
volume must be removed to achieve a similar effect for direct volume visualizations. For this purpose,
they proposed an automated ray-sampling algorithm, where the points of entering and leaving the
vessel are tracked along each casted ray.

Instead of using line renderings, surface representations or direct volume renderings of the internal
flow can be used to depict flow-specific properties. Since this visualization style fills the entire vessel
lumen, the shape of the vessel is already implicitly depicted. Thus, an additional highlighting of the
silhouettes is sufficient to represent the anatomical context. Kuhn et al. [199] clustered 3D steady flow
fields into areas of similar behavior. For each cluster an enclosing surface is constructed, where these
surfaces fill great portions of the lumen, depending on the applied similarity measure. Thus, a simple
rendering of the outer vessel contour is used to convey the course of the vessel where no clusters are
drawn. Schumann et al. [340] employed an adapted maximum intensity projection (MIP) approach to
depicting pressure fields within the cerebral and cardiac arteries with the aim of visually perceive
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areas of low and high pressure. Similar to Kuhn et al. [199], only outer-contours are emphasized to
depict the vessel shape, as the entire vessel lumen is visually filled. Lawonn et al. [215] extended the
outer-contour rendering by a curvature-based streamline depiction to improve the shape perception of
the vascular context. Moreover, streamlines are seeded on the vessel surface, where a maximum or a
minimum of a calculated curvature field occur to generate local hatching. More recently, Behrendt
et al. [28] combined the commonly used Pseudo Chromadepth rendering with a discretized color
scale to visualize a hemodynamic attribute such as WSS on the aneurysm surface. It is based on a
Fresnel-inspired blending mask, where depth hints given by the Pseudo Chromadepth are maintained.

Near- and Far-Context

Near-context visualizations focus on representing functional relationships between focus and context
objects. In contrast, the addition of a distant context is intended to indicate how the structure of interest
is positioned in the body or linked to surrounding systems. Thus, the depiction of the far-context
concentrates on the representation of the overall shape and orientation instead of local surface features.
Since adding more context also reinforces the embedded visualization problem, cutting, filtering,
visual and dimensional reduction are typical approaches to avoid visual clutter and occlusion.

Hastreiter et al. [147] presented a DVR approach of cerebral aneurysms together with the cerebral
arterial system for a fast localization and classification of an aneurysm, which supports diagnosis and
intervention planning. Volumetric rendering of the skull provides further hints about location and
orientation, where axis-aligned clipping planes avoid occlusions of an aneurysm. Van Pelt et al. [379]
used a temporal MIP as input for a volume rendering of the morphology of cardiovascular tissue. This
provides a clean, filtered representation of the vessel context and reduces visual distraction. Within
the vessel lumen, a virtual probe is placed to track the internal blood flow. To avoid occlusions from
the vascular context, it is clipped along the parallel plane of the probe.

Another possibility to avoid visual clutter and occlusion within volume renderings of the vascular
far-context is filtering. The filtering should be mostly automatic to ensure an efficient generation
of far-context visualizations. Neugebauer et al. [272] filtered larger cerebral arteries automatically
based on common assumptions about their location within the skull to generate volumetric far-context
visualizations for cerebral aneurysms. Besides, distance-based filtering is applied to depict smaller
structures in the vicinity of an aneurysm. Kersten-Oertel et al. [181] evaluated different methods to
improve the depth perception of filtered volumetric vessel data, where the most promising results were
delivered by fog, local shadows, and color-coding the distance to the viewer. For a better perception
of small vessels, vesselness filters can be applied. Joshi et al. [170] presented an adapted filter that
exhibits an improved detection of small vessels compared to a Hessian vesselness filter. As their
approach deviates from a pure detection of cylindrical structures, also the branching regions of small
vessels are depicted.

During the volume rendering also transfer functions can be applied to filter the data, instead of
direct filtering. Standard transfer functions are not able to visually differentiate between the vessel
and bone tissue since contrast-enhanced vessel regions exhibit similar intensity values than bones.
Thus, far-context regions of a cerebral aneurysm are occluded by using intensity-based transfer
functions. To overcome this limitation, Higuera et al. [155] designed a 2D transfer function that
includes gradient magnitudes, which allows a depiction of an aneurysm far-context regions if an
aneurysm is located close to the skull base. But the definition of such a 2D transfer function also
adds complexity by introducing another degree of freedom (DOF) when generating the far-context
visualization. Thus, in [156] an automatic approach for designing 2D transfer functions is presented.
They mapped manually defined transfer functions to the intensity/gradient profiles of new data sets
employing elastic deformation.

Besides DVR, surface visualizations are commonly used to depict far-context. Due to the explicit
description of local surface properties, e.g., direction and curvature, a wide range of rendering styles
can be used. A typical approach is to reduce saturation and transparency to avoid visual distraction
from the focus visualization. Hennemuth et al. [151] combined a transparent, shaded surface with
contour rendering to depict vessels close to the aortic arch. To avoid occlusions of the internal path
lines, the arch itself is rendered with low contrast. Van Pelt et al. [380] used toon shading together
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with different illustrative techniques to render contours, which allows a visual differentiation between
vessels and occluded vessel regions. Born et al. [41, 42] augmented a half-toning shading with
silhouette-rendering to communicate shape of cardiac far-context vessels. Moreover, shaded, gray
backfaces are added to emphasize the near-context and provide a sufficiently contrasting background
for the bright-colored streamlines.

Another way to display far-context efficiently is dimension reduction, where 2D slices of the 3D

morphology are shown to provide context information. Broos et al [49] aligned a 2D slice concerning
the long axis of the heart ventricle, which supports the detection of the left ventricle. For applications
that do not focus on a single structure of interest, the slice placement can be interactive. In the work
by Hennemuth et al.[151] up to three slices can be added. Their location and orientation are linked
with three 2D viewers (axial, sagittal, coronal) that are part of the visualization system. Venkataraman
et al. [386] also used three slice renderings concerning the main axes of the original data set. To avoid
visual overlap with the central visualization of aortic flow, the slices are arranged in the background,
using a cube layout.

4.2.7 Uncertainty Analysis

The visualization of uncertainties in the context of vector/flow data is an active field of research [38,
48]. However, quantification and presentation of the uncertainty of medical flow data have been widely
neglected so far. This section describes approaches to visualize and analyze the uncertainty introduced
by the generation and processing of medical flow data. The methods either take into account the flow
field and use ensembles of simulations or focus on the wall and compare segmentation results based
on different imaging modalities or an adjustment of the image parameters, or integrate flow and wall.

Vessel Lumen

Due to the susceptibility of measured flow data against image artifacts, integral lines may represent
wrong paths. Friman et al. [111] introduced an uncertainty quantification of the integration in 4D

PC-MRI data. Streamlines and path lines are generated using a probabilistic approach that employs a
sequential Monte Carlo sampling. The resulting trajectories are visualized with standard techniques
such as color-coded integral lines and flow maps. Schwenke et al. [341] computed blood flow
trajectories as minimal paths in PC-MRI images based on an anisotropic Fast Marching method.
Uncertainty in the estimated blood flow vectors is modeled as a tensor, which is used as metric for
the Fast Marching. Besides the Fast Marching, a distribution of the flow connectivity is calculated,
which is used to identify the most likely flow trajectories. Similar to Friman et al. [111], conventional
visualization techniques are employed to depict the resulting uncertainty. Köhler et al. [193] evaluated
uncertainties in the context of quantifying the net flow volume (NFV) that describes the volume of
pumped blood per heartbeat. Medical experts determine the NFV by measuring the flow that passes
through a manually placed plane above the aortic or pulmonary valve. However, the calculations
are highly sensitive towards the plane’s angulation since the orthogonally passing flow is considered.
Köhler et al. [193] determined vortex flow as a main cause for quantification uncertainties. They
suggested a systematic evaluation of measuring planes with slightly different angulations. This yields
a distribution of NFVs, which are illustrated using a box plot-based graph.

Vessel Wall

Glaßer et al. [127] quantified the influence of different reconstruction kernels in RA on generating
3D geometric aneurysm models for CFD simulations. They compared sharp, normal and smooth
reconstructions, where substantial differences occurred regarding branching vessels and vessel
diameters. Moreover, the size of the ostium area varied between the reconstructions and shrinking as
well as the expansion of small vessels could be observed. To visualize detected differences, standard
techniques are used such as semi-transparent surface meshes and statistical depictions that represent
calculated error measures.
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Lumen+Wall

According to the combined analysis of the vessel wall and lumen, Petz et al. [295] presented a feature-
based visualization of uncertain time-varying vector fields. The fields are modeled as Gaussian
fields, and probabilities for the presence of local features are computed by Monte Carlo integration.
This enables a calculation of the spatial distributions of local features, which can be used to display
essential structures of the data. Pöthkow et al. [304] extended the approach by Petz et al. [295] from
Gaussian fields to more flexible non-parametric models. Both works use nested semi-transparent
isosurfaces and surface LIC for generating a quasi-temporal visualization of flow feature probabilities,
see Figure 18. In this example, they applied their approach to a cerebral aneurysm data set. Uncertain
flow features are depicted over a full heart cycle, where critical point probabilities are depicted in the
left image and probabilities for swirling motion cores in the right image.

(a) (b)

Figure 18: Uncertain flow features of a cerebral aneurysm obtained from an ensemble simulation. In (a)
critical point probabilities of the uncertain WSS vector field are shown. In (b) swirling motion core
probabilities over a full cardiac cycle are depicted. (Images from [295] © John Wiley and Sons
2012.)

4.3 C O N C L U S I O N

This section concludes with an interpretation of the task taxonomy concerning how well visualization
techniques in the spatial scopes support a task. In the cerebral domain, all spatial ranges are addressed
while the approaches in the cardiac domain are restricted to the vessel lumen. An apparent reason is
that WSS can easily be derived from CFD while flow imaging in the cardiac domain cannot resolve WSS

at a high enough spatial resolution. Moreover, aneurysm wall properties were recently determined
using experimental intravascular imaging and FSI simulations. Regarding the tasks, the best-supported
task is the feature filtering. A likely reason is that medical and CFD research results are linking
features such as vortices to the initiation, progression, and severity of pathology. The second best-
supported task is the contextualization task. This underpins the importance of relating hemodynamics
to morphology. About half of the approaches also provide a rendering of the far-context indicating
that an additional spatial reference is often useful. The interactive probing and temporal analysis
task are equally often supported. The spatial overview and comparison task have received a little
less overall attention. The spatial overview task was more often addressed in the context of cerebral
aneurysm hemodynamics. Most of the corresponding approaches incorporate wall-related properties,
both of which being harder or impossible to derive from measured 4D PC-MRI data. In the cerebral
domain, the comparison task is mostly accomplished to determine the optimal outcome of a virtual
intervention while in the cardiac domain, measured and experimental simulated data, patients or time
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steps are compared. The uncertainty analysis task is the least supported. To quantify uncertainty,
ensemble simulations must be carried out, or image data must be acquired and pre-processed.

Despite promising works in the field of aneurysm blood flow visualization, more carefully designed
focus-and-context views are needed since people tend to perceive local details and global context.
Current approaches [121, 319] limit the data exploration to a small area on the surface defined
by a lens, where a lot of interaction is needed to get a complete overview of the data. Moreover,
qualitative and quantitative exploration needs to be supported. When CFD engineers and physicians
gain more experience with the analysis of flow data, quantitative information and related statistics,
e.g., flow volumes, flow rates, and turnover times in an aneurysm, get more important. To investigate
the local distribution of such numbers along with depicting the corresponding regions of the flow
may support decisions more directly. Besides, flow features, e.g., vortices, recirculation zones, and
inflow jets, seem to be related to the emergence and progression of pathology. In the context of
cerebral aneurysms, such features are often manually extracted or the extraction depends on manually
defined inputs such as the aneurysm ostium. To avoid errors resulting from these dependencies, their
(semi)-automatic identification and quantification should be more supported. Moreover, methods
are needed that focus on their monitoring over the cardiac cycle to support the assessment of flow
complexity and stability. Flow visualizations should be coupled with feature extraction, flow filtering,
and flow partitioning methods to reduce their visual complexity. Showing only specific features or
representatives of homogeneous regions helps in comprehending the flow structure. Furthermore,
approaches are needed that generate more abstract 2D representations of the 3D anatomy and combine
them with a depiction of wall- and flow-related attributes. Thus, a quick occlusion-free overview of
flow attributes and their correlations would be given. Moreover, they can simplify the comparison
of groups of subjects and facilitate a cohort analysis. In the following chapters, we address the
limitations of current visualization and exploration techniques for cerebral aneurysms and suggest
multiple solutions to improve aneurysm rupture risk assessment and treatment planning.
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Decision-making to treat a non-ruptured aneurysm can be a challenging task that involves a patient-
specific risk analysis. A lot of different aspects seem to influence the aneurysm initiation and
progression comprising patient-specific meta information, morphological descriptors, and intra-
aneurysmal flow information, recall Section 2.3 and Section 3.5.5. Biomedical researchers try to
identify risky configurations of this information to enable more reliable decision-making. However,
there are two principal problems of analyzing aneurysm data:

1. Essential features such as morphological descriptors or flow patterns are manually extracted
from clinical images and simulation results, which is an error-prone process.

2. Performing large medical studies with different domain experts is challenging since different
tools with inconsistent data formats are used.

Thus, time is wasted to augment acquired data with meta information manually. This highlights the
need for standardized and guided techniques to analyze these highly complex data. Equally important
are software solutions that integrate such methods into easy-to-use workflows.

To address the first problem, methods for the computer-aided extraction of morphological descrip-
tors of aneurysms were developed, recall Section 3.3. However, these methods fail for more complex
aneurysm shapes such as wide-neck aneurysms. Besides, some research groups use in-house tools to
compute the aneurysm size or diameter automatically [84, 212]. However, these tools need manually
extracted input data, e.g., the centerline.

To address the second problem, some method focus on structured documentation systems of
clinical data. In clinical practice, reports describe the patient’s state, diagnosis, and treatment
recommendations, and serve for communication between referring clinicians. Due to their free-
text form, they generally lack structure and readability, which complicates the data analysis and
interpretation. To improve this, structured reports were developed. The basic idea of such systems is
to provide pre-defined data entries. Karim et al. [177] offered clinical information using a web-based
application to generate structured reports for aortic aneurysms. For this purpose, different graphical
widgets, e.g., drop-down menus, diagrams or pre-defined images are used. Wibmer et al. [407]
presented a standardized diagnostic certainty lexicon for reporting the likelihood of prostate cancer,
which prevents miscommunication and supports clinical decision-making. With this, the number of
expressions used by radiologists to indicate their levels of diagnostic certainty was reduced. Pankau et
al. [292] developed a 3D documentation system that allows a standardized reporting for head and neck
cancer including the tumor staging. The role of visual elements, e.g., standardized and individualized
screenshots, was emphasized by the physicians.

More advanced methods support the collaborative analysis of medical data sets by using visual
analytics techniques. To manage large volume segmentations in neuroscience, Ai-Awami et al. [4]
presented a web-based system in which users have different permissions to edit and verify results.
Bannach et al. [24] combined medical image analysis and radiomics with visual analytics to build, fil-
ter, analyze, and evaluate patient cohorts. With radiomics, quantitative image features are determined,
which are complemented with additional metadata like the patient’s age and gender. For several years
there is a growing interest in radiomics. Radiologists try to define image markers in a similar way like
genomics and proteomics add to diagnosis and disease understanding. Filter masks are provided to
determine cohorts that should be statistically analyzed. The main disadvantage of existing systems is
that they are concentrated on the analysis and structured management of clinical image data. However,
to investigate cerebral aneurysms, simulated data or geometry data has to be included.

Therefore, the software Aneulysis was developed. It was designed to improve the aneurysm risk
assessment and treatment planning. For this purpose, we discussed the current research workflow to
analyze aneurysm data with neuroradiologists and CFD experts. Based on the summarized limitations
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of existing visualization techniques, recall Section 4.3 and occurring difficulties during the analysis,
requirements are derived that should be fulfilled to improve aneurysm data evaluation, see Section 5.1.
Before the general structure of Aneulysis is introduced in Section 5.3, Section 5.2 describes the
necessary pre-processing steps according to the simulation and measurement of flow data, which are
not part of Aneulysis. Besides, an overview of used data sets within this thesis is given. Section 5.4
describes the workflow of Aneulysis, which comprises creating, editing and searching of cases, as well
as more advanced analysis and visualization techniques such as automatic extraction of morphological
descriptors (Section 5.5). To assess the general suitability of Aneulysis, we performed different
evaluations, where the results are presented in Section 5.6. Finally, current limitations and future
improvements are discussed in Section 5.7 and Section 5.8.

5.1 TA S K - B A S E D R E Q U I R E M E N T S O F A N E U RY S M DATA E X P L O R AT I O N

We closely cooperated with two neuroradiologists (16 and 25 years of work experience), who regularly
treat cerebral aneurysms, and two engineers working on CFD simulations for cerebral aneurysms
(five and eight years of work experience). The goal of the neuroradiologists is to assess the rupture
risk, which requires a better understanding of risk factors. This also includes a comparison of
ruptured and non-ruptured cases. In contrast, for the CFD engineers, it is important to validate the
physical plausibility of the simulation results. For this purpose, they analyze fluid-wall interactions
by exploring scalar quantities on the vessel wall and try to find spots of interesting combinations.
This verification process also includes a determination of the most dominant flow patterns based on
different boundary conditions for simulation. Furthermore, we asked them about the importance of
analyzing flow patterns over the cardiac cycle. The CFD experts stated that in most cases, first, steady
simulations are performed, because such simulations are useful for spatial convergence tests and
significant aspects of aneurysmal hemodynamics can be inferred from a steady flow. Unsteady data
can provide additional information, which is likely to be more important in larger aneurysms where
optimal treatment needs to be found. However, the experts stated that it is not clearly known at which
point in the cardiac cycle the rupture risk is maximum and thus, exploring only a single time step is
not sufficient.

Both types of experts use similar concepts and techniques to manage and analyze aneurysm data.
For each aneurysm data set, different kind of information for different points in time, i.e., pre- and
post-operative data, are available. The data is stored on a File Transfer Protocol (FTP)-server, where
quantitative information such as morphological descriptors are stored in Microsoft Excel tables.
Morphological descriptors are determined manually from 2D image slices using clinical software,
or from 3D surfaces using the open-source software ParaView. Both procedures are described as
time-consuming by the experts. Paraview is also used to manually extract the aneurysm ostium, which
requires a tedious placement of cut planes and to analyze simulation results. Scalar measurements,
e.g., WSS or pressure, are color-coded on the 3D vessel surface to examine the aneurysm state.
Additional blebs are of particular interest, recall Section 2.3.3. However, the experts consider the
sole presentation of a 3D model as not sufficient since important information can be occluded. Due to
the complexity of the surface, a series of manual rotations is necessary to gain a complete overview.
The time-dependent behavior of the data further enhances the manual exploration effort, because it is
almost impossible to find critical regions during animation since the rotation process itself needs a
certain amount of time. Besides scalar quantities mapped to the vessel wall, the blood flow is depicted
either by streamlines or by path lines as an animation over the cardiac cycle. Based on such standard
flow visualizations, experts manually classify flow patterns according to pre-defined types such as
in the study by Cebral et al. [60], which allows for a more detailed analysis of the flow behavior.
However, this is a time-consuming process with high inter-observer variability. Visual clutter makes
the classification error-prone. Since the surface morphology and flow behavior influence each other,
the experts stated that an integrated view of both characteristics is needed. At the moment, the
aneurysm surface is depicted semi-transparently and animated path lines represent the internal blood
flow. However, this makes it challenging to identify relationships between surface characteristics and
internal flow patterns.
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Besides the individual exploration of aneurysm data by one expert, our domain experts stated that
a collaborative analysis is essential to improve the exchange of information. However, to analyze
the data collaboratively is challenging, because no consistent storage structure exists. Moreover,
searching for specific cohorts is cumbersome, e.g., female patients with a ruptured aneurysm larger
than 7mm. However, this is relevant for medical studies to investigate risk factors.

In Section 4.2 a comprehensive overview of current visualization techniques according to seven
pre-defined tasks is given. Besides, Section 4.3 summarizes the limitations of existing methods
concerning supporting these tasks. Regarding the visualization of aneurysm data, the spatial overview,
the feature filtering, the temporal analysis, the comparison, and the contextualization task should
be stronger supported. Based on this and the discussions with our domain experts, we summarize
significant requirements as follows:

Req. 1 A C O N S I S T E N T A N D E F F I C I E N T DATA M A N AG E M E N T. A consistent structure for
data management is needed that allows fast integration of new data sets, including different meta
information and data files. It should be flexible to incorporate new data types if necessary. Moreover,
information about existing data sets should be easily editable, and filter techniques are needed to
select cohorts according to specific criteria.

Req. 2 AU T O M AT I C F E AT U R E E X T R AC T I O N . The feature filtering task should be supported
by automatic methods to compute morphological descriptors as well as to extract and classify
qualitative flow features, which ensures comparability and reproducibility of the results.

Req. 3 A C O M PA R I S O N O F DATA S E T S . The comparison task must be supported more strongly
by enabling comparison of ruptured and non-ruptured data sets as well as pre- and post-treated data
including different stent scenarios to improve risk assessment and decision-making.

Req. 4 S I M P L I F I E D V I S UA L I Z AT I O N S . To better support the spatial overview task, simplified
depictions of the aneurysm morphology, and internal flow information are needed that reduce the
complexity of 3D time-dependent aneurysm data.

Req. 5 I N T E G R AT E D F L O W V I S UA L I Z AT I O N S . Aneurysm flow data comprise scalar, vecto-
rial and tensor information. To better support the contextualization task, this information should be
visualized in an integrated manner to allow a detailed analysis of possible rupture-prone configura-
tions.

Req. 6 A N I M AT I O N S F O R DATA E X P L O R AT I O N . To improve the temporal analysis, the
exploration of the time-dependent aneurysm data should be supported by animations. An automatic
camera movement passing interesting vessel regions should be provided.

Req. 7 C O L L A B O R AT I O N T O O L S . For collaboration purposes, it should be possible to set
landmarks in different animation steps. An external researcher should be able to analyze the regions
around the landmarks and discuss them with other colleagues.

5.2 DATA AC Q U I S I T I O N A N D P R E - P RO C E S S I N G

In this thesis, 26 aneurysm data sets were used. In the Chapters 5 - 7 describing the visualization
concepts of Aneulysis, a subset of these data sets is used since not all data sets were available from
the beginning of the development. The respective data sets are referenced in every chapter based on
Figure 19. A total of 24 cerebral aneurysm data sets (C3 - C26) were available, where one aneurysm
has a fusiform shape, and the remaining aneurysms have a saccular shape. Moreover, two cases with
a fusiform aortic aneurysm (C1 - C2) are considered in Chapter 6 to show the applicability of a novel
parametrization approach. Table 1 summarizes relevant information about the aneurysm data sets
such as their location, shape, rupture status, type of flow data and if virtual stenting was performed.
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In the following, the data acquisition and pre-processing steps to simulate the flow within cerebral
aneurysms are described. Moreover, the measuring of cardiac flow data is shortly recapped due to the
used fusiform aortic aneurysms. However, we just used the surface mesh since fusiform aneurysms
are usually treated surgically due to occurring symptoms. So, in the past, the assessment and analysis
of blood flow data played a minor role.

5.2.1 Simulated Flow Data

The principle pipeline to simulate cerebral blood flow was described in Chapter 3 comprising the
image acquisition, the surface reconstruction, the calculation of flow data and the virtual stenting. For
all cerebral data sets, CFD simulations are performed. Besides, for some non-stented data sets, we
performed FSI simulations. In the following paragraphs, details about the used methods for each of
these steps are given.

Image acquisition. First, clinical image data comprising CTA, MRA, and DSA of the aneurysm
morphology are acquired. The clinical images have a size of 512 × 512 × 256 voxels in the x-, y-,
and z-direction with a spatial resolution of 0.35 × 0.35 × 0.9mm3.

Surface reconstruction. Based on the image data, the vessel surface is reconstructed using the
pipeline by Mönch et al. [258]. Due to the used contrast agents or special sequences, the images
exhibit high vessel-to-tissue contrast. This facilitates the usage of a threshold-based segmentation
followed by a connected component analysis to separate an aneurysm and its parent vessel from
the surrounding tissue. The 3D vessel surface is extracted via Marching Cubes [230], applied to the
segmented image data. To prepare a geometric model as input for the flow simulation, it is necessary
to manually correct artifacts (details can be found in [258]). For our cerebral data sets, the resulting
mesh resolution for the entire vessel surface varies between 19.261 and 45.827 triangles, and the
resolution of the aneurysm surface part varies between 2.096 and 8.582 triangles. Moreover, the mesh
quality was optimized by a combination of metric and topological changes such as edge collapses
and edge flips [338]. The results are evaluated by one of the neuroradiologists to ensure anatomical
plausibility. Based on the optimized mesh, a hybrid volume mesh was generated as input for the
simulation.

Virtual stenting. To simulate different treatment scenarios, a fast virtual stent deployment approach
was chosen [30]. This explicit methodology allows for the consideration of each stent strut and is
superior compared to other approaches, e.g., based on a porous medium that represents the stent. Due
to the usage of geometric deformation, this method can be applied within seconds without being
computationally expensive. Due to the absence of simulation results after neurosurgical clipping, the
integrated visualization methods of Aneulysis aim at supporting endovascular treatments.

CFD simulation. The pre- and post-treated mesh configurations were spatially discretized using a
combination of tetrahedral and prismatic cells as input for the CFD simulation. An appropriate grid size
was chosen to obtain simulation results that would not be significantly changed by an improvement
in resolution (mesh-independent results) [163]. The number of cells of the volume meshes ranged
from 1.11 - 2.01 million and 5.2 - 8.3 million for the pre- and post-stented cases, respectively. Based
on the FVM, the conservation of mass and momentum is solved locally within each time step. For
this purpose, blood is assumed as an incompressible Newtonian fluid with a density of 1055 kg/m3

and a dynamic viscosity of 0.004Pa · s [333]. Flow measurements of a healthy volunteer are used as
inlet boundary conditions [33] due to the absence of patient-specific data. Zero pressure boundary
conditions were applied at each outlet cross-section. Moreover, a rigid wall is assumed for the vessel
and the stent. In every case, three cardiac cycles with a time step size of ∆t = 0.001 s are calculated.
To avoid inaccuracies from initialization, only the last cycle was used for analysis. Hemodynamic
simulations were carried out using the solver STAR-CCM+ 11. All calculations are performed on
a standard workstation (using four Intel Xeon E3 cores with 3.3GHz and 32GB random-access
memory (RAM)) and lasted between 2 and 8h, depending on their complexity.

FSI simulation. Addressing the FSI simulation, every aneurysm is divided into two subdomains:
the fluid and solid domain. Hemodynamic aspects inside the fluid domain are numerically solved
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using CFD. Furthermore, structural simulations are performed to include the vessel wall behavior.
For this purpose, the deformable wall is considered as homogeneous, isotropic and linear elastic.
The Young’s modulus (1mPa) and Poisson’s ratio (0.45) are taken from [375]. Wall thickness is
set in the range of 0.2 to 0.6mm obtained by normal extrusion of the wall [375], because such data
cannot be extracted yet from radiologic image data. To prevent rigid body motion, the vessel in- and
outlet cross-sectional planes are fixed. Other domain parts have no movement restrictions. Using the
FEM, the relation of deformation, mechanical strain, and mechanical stress is solved locally for each
finite element, based on the conservation of momentum. The deformation of the solid domain reacts
on the fluid domain and therefore on the flow characteristics, inducing a complex coupling of both
domains. This coupling is located at the interface, the intersecting surface of fluid and solid. Thus,
FSI is implemented as data transfer at the interface, exchanging fluid pressure as well as WSS and wall
displacement, respectively as updated boundary conditions at defined time steps.

Post-processing. This includes the mapping of cell-based variables to the vertices of the surface mesh.
Moreover, path lines are integrated with an adaptive fifth order Runge-Kutta method on the ostium to
assess the aneurysm inflow. The integration is performed every 0.01 s. This is necessary since a path
line usually does not exist during the whole cardiac cycle due to the high velocities (up to 1.51m/s)
and the small spatial domain size (5 - 15mm in the x, y, z-direction). For seeding, the centers of
the ostium triangles are used resulting in a homogeneously distributed number of vertices [274].
The integration terminates if the current line leaves the spatio-temporal domain. Finally, the ostium
surface is used to remove path line parts outside an aneurysm that are not relevant for the upcoming
classification and visualization methods.

5.2.2 Measured Flow Data

Blood flow data of the aorta are acquired by performing 4D PC-MRI using a 3 T Siemens Magnetom
Verio MR scanner with a maximum expected velocity of 1.5m/s per dimension. For each direction
(x, y, and z), time-resolved flow and magnitude images are determined to describe the direction and
strength of the flow, respectively. For the spatial domain, 15 to 23 slices are acquired with a grid
size of 132 × 192 voxels covering 1.77 × 1.77 × 3.5mm3. Between two of the 14 to 21 time
steps, a distance of 50ms exists. Artifacts in the flow images, considering Phase wraps [85] and
velocity offsets [205] are corrected using the magnitude images. Then, a temporal maximum intensity
projection (tMIP) is calculated as the basis for a binary segmentation. For each voxel, the flow velocity
is considered, and the maximum is taken from all time steps. This leads to a good contrast everywhere
where fast flow over time occurs. This reduces the 4D image to a high-contrast 3D image. From this 3D

image, the vessel surface is extracted via Marching Cubes [230]. For our aortic data sets, the resulting
mesh resolution for the entire vessel surface varies between 11.350 and 13.592 triangles, and the
resolution of the aneurysm surface part varies between 5.102 and 6.571 triangles. For a more specific
and in-depth introduction to the data generation pipeline, data quality insurance, and quantitative
analysis methods of measured cardiac flow data, we refer to the survey of Köhler et al. [188].

Table 1: Summarizing information about the used data sets.
Case (C) Location Shape Ruptured Flow Data Virtually Stented
1-2 aortic fusiform non-ruptured measured non-stented
3 cerebral fusiform non-ruptured - -
4-13 cerebral saccular non-ruptured simulated non-stented
14-22 cerebral saccular ruptured simulated non-stented
23-25 cerebral saccular non-ruptured simulated stented
26 cerebral saccular ruptured simulated stented
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(a) C1 (b) C2 (c) C3 (d) C4 (e) C5 (f) C6

(g) C7 (h) C8 (i) C9 (j) C10 (k) C11

(l) C12 (m) C13 (n) C14 (o) C15 (p) C16

(q) C17 (r) C18 (s) C19 (t) C20 (u) C21

(v) C22 (w) C23 (x) C24 (y) C25 (z) C26

Figure 19: Overview of all used data sets in this thesis. In (a-b) two fusiform aortic aneurysms and in (c) a
fusiform cerebral aneurysm is depicted. In (d-z) saccular cerebral aneurysms are presented.
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Figure 20: Basic structure of Aneulysis comprising three main components: a database, an FTP-server and
a visualization component. Acquired raw data of the loaded data items are stored on the FTP-
server. In the database, meta information is stored. The visualization component depicts the stored
information. Bidirectional connections between the components allow a data transfer.

5.3 G E N E R A L S T RU C T U R E

Aneulysis is a Windows Forms application, which is a toolkit of the Microsoft .NET Framework to
design graphical user interfaces (GUIs) and written in C#. Basically, it consists of three components:
a database, an FTP-server and a visualization component, see Figure 20. For the database, a Microsoft
SQL Server is used, where the Microsoft .NET Framework provides extensive functionality to built
up a connection between the FTP-server, the database and GUI of Aneulysis. For rendering, the open
toolkit library (OpenTK) is used, a C# graphics library that provides access to graphics tools contained
in the open graphics library (OpenGL). Moreover, OpenTK provides multiple helpful data types such as
3D vectors, 4D vectors, and matrices with specialized functionality for specific dimensions, such as
cross-product for 3D.

The acquired raw data and data representations derived from it are stored on the FTP-server using a
consistent structure that avoids redundancy shown in Figure 21. For each patient, a new case is created
on the server, with pre- and post-treated data that is organized in studies. Each study comprises four
information elements: scanner data comprises different image modalities such as CTA and MRA data.
Geometric information is stored in reconstruction data, e.g., the ostium and centerline. Moreover,
flow simulations are stored, for either single (steady) or multiple (unsteady) time steps. Different
formats such as Ensight or OpenFoam are distinguished. Here, also integration results in the form of
stream or path lines are stored. Media data contains characteristic images or videos, e.g., showing
wall regions with higher risk.

Furthermore, metadata is stored for the cases, studies and corresponding data items in the database.
This includes, e.g., the study type (patient or proband), gender and age. Besides, more detailed
information about the pathology, e.g., the location of an aneurysm, the number of existing aneurysms
or information about rupture and treatment are collected in the database.

There are three types of data for a selected data set: a surface representation showing the vessel
morphology, wall-related information comprising scalar, vectorial and tensor data defined on the
vessel surface and flow-related information specified within the vessel lumen describing the internal
blood flow. These three types of data are used as input for the visualization component, where from
the surface representation morphological descriptors can be derived. The visualization component
consists of different visualization modules, which allow a detailed visual analysis of the three types
of data. Moreover, each visualization module communicates with the database and the FTP-server to
store results such as images or landmarks from the interactive exploration.
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Figure 21: The data structure on the FTP-server. Each case conforms to a patient or proband. Data items
acquired at different times are coordinated into studies. (Image from [433] © IEEE 2018.)

5.4 W O R K F L O W

This section summarizes the principle workflow of Aneulysis. A primary concern during its develop-
ment was to provide a guided workflow, where domain experts with different professional background
are able to analyze data sets collaboratively. The guidance aspect was realized on the main screen,
where different processing screens are successively enabled depending on the previous action of the
expert. The collaboration aspect was realized by the redundancy-free management of data sets, and
previously detected findings can be displayed during data exploration using the visualization modules.

If Aneulysis is started, the user has to enter login information comprising a username and password.
When a new user needs access, first an account has to be created containing a name and email address
as well as entering a master password to protect the system from unauthorized access. Afterward, the
user gets access to the main screen, see Figure 22. Here, an overview of existing cases using a tabular
representation is given. Besides basic information, a preview picture on the aneurysm is shown,
generated with our method to calculate appropriate viewpoints (see Section 6.4.2). At this point of
the analysis workflow, the user has three options to proceed. Firstly, a new case or study can be added
by clicking the Add button in the bottom left corner of the main screen. Secondly, the user can select
a specific instance from the tabular overview, which activates the Edit button in the bottom left corner.
Thirdly, we provide configurable filtering masks to search for particular cohorts. Figure 22 shows two
masks, where users can select study information (top, left) and aneurysm descriptors (bottom, left).
Data sets that do not satisfy the selected criteria are removed from the tabular overview. Based on the
filtering result, an entry from the summary can be selected for further editing.

5.4.1 Adding a Case

Pressing the Add button activates a new widget to include new cases and studies, see Figure 23. For
a new instance, the hospital of data acquisition has to be selected, and optional tags can be added.
Besides, a new study can be added for an existing case, e.g., to manage pre- and post-treated data of a
patient. For this purpose, various meta information such as the study type as well as age and gender
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Figure 22: Data sets are shown in a tabular representation. On the left, filtering masks are provided to search
for cohorts. (Image from [433] © IEEE 2018.)

of a person have to be provided. After adding a new study, the lower part of the widget becomes
active, see Figure 23b. Here, the user can add specific information about existing pathologies. In this
example, the female patient has two aneurysms. For each aneurysm, different data can be defined
such as location, height and rupture status. To enter the characteristics of pathology for the current
study the left part of the lower pathology widget is used. Already defined pathologies for the present
study are summarized in the right part of the widget. Pressing the Upload pathologies button (bottom,
right) sends all information to the database, where it is stored.

5.4.2 Editing a Case

Besides adding new cases and studies, selected cases from the overview can be edited. Pressing
the Edit button, see Figure 22 (bottom, right), displays a summary of meta information and existing
pathologies, see Figure 24a. Moreover, four tables summarize existing data on the FTP-server
depending on the data category. Metadata can be edited, or new information can be added, i.e., further
aneurysm descriptors. For this purpose, the user has to select the type of information and the data
files as well as additional attributes depending on the chosen type. Within the edit widget, the user
has three options for further action:

1. Existing data files can be downloaded from the FTP-server to a local storage medium by pressing
the Download button. Here, either the checkboxes next to the tables can be selected to download
all existing data files within the corresponding data category or single entries of a table can be
chosen to download a specific subset of data files.

2. New data files can be uploaded to the FTP-server by pressing the Upload button, which opens
an upload widget, see Figure 24b. Here, the data type of the new files has to be defined as well
as some further meta information and the data themselves have to be selected. After closing
this widget, the summarizing tables in the first edit widget are updated to show the previously
uploaded data items.

3. Users can activate the visualization component, which is described in more detail in the
following section.
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(a) (b)

Figure 23: Widget to add new cases and studies as well as the corresponding meta information (a). For a study,
pathology-specific meta information can be added (b).

(a) (b)

Figure 24: The user interface to manage and explore aneurysm data. Existing data is summarized, can be
edited (a) and uploaded on the FTP-server (b). (Images from [433] © IEEE 2018.)

5.4.3 Visualizing a Case

Pressing the Visualize button activates the visualization component. Aneulysis provides five visualiza-
tion modules. Per default, the morphological aneurysm visualization (MorAVis) module is enabled,
which represents the current clinical workflow to evaluate aneurysm treatment necessity. It allows an
interactive exploration of the vessel morphology including automatically calculated morphological
descriptors, see Section 5.5. Besides this, three visualization modules are provided that support
the visual analysis of wall- and flow-related information based on a surface representation of the
vasculature, see Chapter 6. For the visual exploration of intra-aneurysmal flow patterns, the visual
flow exploration (ViFlEx) module was developed, see Chapter 7. For this purpose, the internal blood
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flow is represented by integral lines. These lines must be clustered to get groups of lines with similar
flow behavior that represent flow patterns, see Section 7.1. Afterward, the flow patterns are classified
according to pre-defined types, see Section 7.2. Besides, multiple techniques are provided to visualize
the detected flow patterns as well as their interplay with the vessel wall.

5.5 M O R AV I S - M O R P H O L O G I C A L A N E U RY S M V I S UA L I Z AT I O N M O D U L E

This section describes the MorAVis module, which allows an automatic extraction and interactive
exploration of morphological descriptors, including the ostium based on a 3D surface representation
of the vasculature. An automatic calculation of these features based on 2D clinical image data would
require automatic detection of aneurysms. However, recent approaches [72, 152, 153] have still
problems with false detections as well as missed detections, and a reliable 2D ostium extraction is
also challenging [178].

5.5.1 Extraction of the Aneurysm Ostium

To identify correlations between morphological descriptors and rupture, many data sets have to be
analyzed, which requires a fast descriptor extraction. An important descriptor is the aneurysm ostium.
Due to the lack of a unified definition, the ostium extraction is challenging. The ostium can be seen
as an imaginary surface that separates the aneurysm sac from the non-pathological parent vessel.
Thus, the vessel structure without an aneurysm needs to be predicted. Most detection algorithms
require a priori knowledge, e.g., the centerline of the parent vessel or user interaction [270, 326], such
as selecting the dome point, see Figure 25. To avoid such dependencies on precomputed data, we
developed an efficient extraction algorithm. Our method automatically calculates an initial surface
representing the ostium. This can be interactively corrected if necessary since manually defined
ostium contours by medical experts exhibit a certain degree of variation among themselves since they
interpret the ostium differently depending on personal experience [326].

P1

P4
P3 P2

Dome point

Figure 25: Four landmarks P1 to P4 are connected by a curve to extract the ostium surface. (Image from [433]
© IEEE 2018.)

For extraction, a more geometric definition of the ostium is needed. We used the description of
Neugebauer et al. [270], who defined the ostium as a contour comprising four landmarks, P1 to P4,
see Figure 25. The first two points, P1 and P2 are located on the transition between an aneurysm
and the parent vessel. The other two landmarks control the bending of the ostium around the parent
vessel. The goal is to identify these four points. Our algorithm consists of six steps, as described in
the following.
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1. Skeleton extraction: Before we can compute the precise positions of P1 to P4, we have to estimate
which vessel part represents an aneurysm. For this purpose, we used the skeleton of an aneurysm
and parent vessel geometry, which is determined using the method by Au et al. [20]. This method
performs automatically and thus; no a priori knowledge is needed as input data. Iterative implicit
Laplacian smoothing is applied to generate a zero-volume skeletal shape, see Figure 26. Global
positional constraints are defined to preserve the connectivity, which yields in curves that represent
the vessel skeleton. Afterward, each skeleton vertex corresponds to faces (and vertices) of the surface.

Figure 26: The vessel skeleton is calculated using the method by Au et al. [20], wherein the surface mesh is
iteratively shrunk. (Images from [433] © IEEE 2018.)

2. Aneurysm identification: In the second step, we use the skeleton to identify the aneurysm
vessel part. The nodes of the vessel skeleton can be characterized according to their number of
outgoing edges: end nodes (one edge), intermediate nodes or non-junction nodes (two edges) and
junction nodes (more than two edges). Junction nodes occur at bifurcations of the original surface.
We determine all end nodes, and for each, the nearest junction node is searched by traversing the
skeleton, see Figure 27. We have to decide if the path from the end node to the junction node (over
intermediate nodes) represents a section of the parent vessel or an aneurysm. These paths inherit a
corresponding amount of vertices on the original surface. For these vertices, we compute the shape
index Si = 1

2 −
1
π atan

(
κ1+κ2
κ1−κ2

)
and average them, with κ1 > κ2 being the principal curvatures.

Since aneurysms are usually spherical structures, skeleton sections representing the aneurysm exhibit
a higher Si than segments representing the elongated parent vessel. Based on this, we determine the
junction PAJ (green) and end node PAE (red), representing the aneurysm, see Figure 27b. With this,
inaccuracies due to small arteries around the ostium are avoided. In case the highest Si does not
represent an aneurysm (did not occur in our cases), the user can correct the detection by selecting the
correct end node PAE.

(a) Path representing parent vessel. (b) Path representing aneurysm. (c) Path representing parent vessel.

Figure 27: Identification of the aneurysm vessel part. For each end node (red spheres), the nearest junction
node is searched (green spheres). Based on the shape index, we determine the junction PAJ and
end node PAE, representing the aneurysm (b).

3. Extraction of P1 and P2 : Based on the detected aneurysm vessel part, we identify the first two
landmarks P1 and P2 by generating a curve on the vessel over an aneurysm, see Figure 28a. Inspired
by Neugebauer et al. [270], who project the centerline on the surface along the vector pointing from
the centerline to the aneurysm’s dome, we determine another curve on the surface that gives us P1,P2.
This is achieved by first determining the path from the junction node to the remaining end nodes
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(except the end node, corresponding to an aneurysm). If more than two paths exist, we determine
the first tangent vector of each path by subtracting the coordinates of the first neighbor node of the
junction node and the junction node itself. For each of these vectors, we calculate the enclosing angle
with PAE − PAJ. The two paths, which are closest to 90◦ are used for further consideration as these
paths represent the parent vessel and paths representing further in- or outgoing vessels are excluded
in additional computations. Then, the Euclidean distances between the surface points, belonging to
the current node of the skeleton path and the point PAE are determined. This is performed for all
skeleton nodes, where the vertices representing the minimal distance are connected using the Dijkstra
algorithm concerning neighbored nodes of the skeleton. This yields a path f on the aneurysm surface,
see Figure 28a. Afterward, f is split into two paths f1 and f2 at the global minima, which represents
the aneurysm’s dome position. For f1 and f2, we determine the positions where the distance to the
junction node is minimal, which yields the landmarks P1 and P2. For aneurysms with more than
two outgoing vessels, more ostium points are detected, where we take the two with the maximum
occurring distance for P1 and P2.

4. Extraction of P3 and P4 : To define a contour that represents the correct bending of an aneurysm,
two more landmarks P3 and P4 are needed, where all landmarks should be evenly distributed
throughout the ostium contour. For this, P1 and P2 are connected using the Dijkstra algorithm,
where the cost function of this algorithm considers the edge length of the triangle edges and tries
to minimize their sum. On this path, P3 is determined so that it has the same distance to P1 and
P2. These three points define a plane E. Then, we calculate two geodesic distance fields d1 and
d2 [78]. The first distance field starts at P1 and the second begins at P2. Based on d1 and d2, we
compute a third distance field d3 = d21 − d

2
2, which is color-coded on the surface in Figure 28b. To

get P4, we determine the isoline I representing d3 = 0 that lies between P1 and P2, and compute the
intersection points between I and E. From these points, we take the intersection point S3 that has the
larger distance to P3 to fulfill the condition of evenly distributed landmarks. From S3, we go along I
in the direction of the smaller distance from PAJ. This minimum represents P4, see Figure 28b.

(a) (b) (c)

Figure 28: Ostium extraction based on the vessel skeleton. The skeleton is projected on the aneurysm and two
points P1 and P2 are determined (a), which are used to compute a distance field d3, color-coded
on the surface. Based on the isoline d3 = 0, P3 and P4 are determined (b). Finally, P1 to P4 are
connected to a curve to extract the ostium surface (c). (Images from [433] © IEEE 2018.)

5. Ostium extraction: Then, P1 to P4 are connected to a curve Costium using the method by

Surazhsky [359], determining the shortest geodesic path between points on a triangular mesh. Finally,
the enclosing area, representing the ostium surface is triangulated by determining the mean point p̄,
where adjacent points on Costium form a triangle with p̄, see Figure 28c.

6. Ostium correction: Due to the anatomical diversity, P1 to P4 are not always optimal. Therefore,
the user can select other positions on the mesh to correct Costium. Figure 29a shows the automati-
cally calculated ostium surface, where P1 to P4 are rendered as yellow spheres. For selecting a new
point Pnew, we determine which of P1 to P4 has the smallest geodesic distance to Pnew. Then,
Pnew replaces this ostium point, the corresponding contour parts are recalculated, and a new triangu-
lation of the ostium surface is generated, while the old ostium point is depicted semi-transparently,
see Figure 29b. The recalculation takes less than 1 s.
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(a) Ostium without correction. (b) Ostium correction.

Figure 29: In (a) the ostium before the manual correction is shown. By selecting new points on the mesh, the
ostium is adjusted, where the old location is depicted semi-transparently (b). (Images from [433]
© IEEE 2018.)

5.5.2 Calculation of Morphological Descriptors

Inspired by the study of Hoh et al. [159], we compute seven 1D and five 2D descriptors based on
the extracted ostium and the dome point. These can be used for a more in-depth assessment of
the aneurysm state. The 1D criteria are aneurysm height (H), maximum width (Wmax), diameter
(Dmax), neck width (Wneck), bulge height (Hbulge), parent artery diameter (Dparent), and the
angle between parent artery and aneurysm apex (Apa), recall Section 2.3.3. The 2D criteria are aspect
ratio, height-width ratio, bottleneck factor, bulge location, and aneurysm/parent artery ratio.

The length of vector vh = pd − po with dome point pd and ostium center po represents
H = ||vh||. To calculateWmax for each aneurysm vertex vi, we determine the corresponding point

pi on vh: pi = po +
(vh)T (vi−po)
(vh)T (vh)

· (vh). Using pi, a ray r is defined: r = pi + t(pi − vi). Based
on r, all intersection points with the aneurysm surface are calculated and the intersection vj with the
greatest Euclidean distance to pi is used to calculateWmax = ||vj − pi||. The diameter is given by
the two aneurysm points vi and vj with the greatest Euclidean distance. Similarly,Wneck is defined
as the maximum Euclidean distance between two points belonging to the ostium contour. To calculate
the bulge height, we use: Hbulge = ||pi − po||. From the skeletonization, the vessel diameter is
known at each node by considering the minimum diameter of the corresponding vessel cross section.
We assign the median radius to Dparent. To compute Apa, vh and the nearest skeleton node to the
ostium center cpi as well as the tangent t at this point are used. The angle between vh and t is Apa.
When manually correcting the ostium, the descriptors are recalculated and stored in the database.

Visualization of Morphological Descriptors

The descriptors are depicted within the 3D vessel surface, which is depicted semi-transparently, and
Phong shaded to support shape perception. For the 1D descriptors, the defining endpoints are rendered
as spheres. Their connecting line is shaded as tube [354] to improve its perception, see Figure 30.
For this purpose, we constructed view-aligned quads on the GPU [217]. The consecutive start- and
end points pi and pi+1 are used to determine the normalized tangent vector: t = pi+1 − pi.
With the given view direction v, we calculate the extent of the quad by using the normalized cross-
product e = v× t. For every generated quad, we assign a parameter y ∈ [−1, 1] to define its color:
color = ccol · cos(0.5y · π), where ccol is set to a specific RGB color for each criterion, which
results in a shaded cylinder. For the choice of colors, we used the ColorBrewer website [240]. We
selected seven colors, which differ perceptually well since seven 1D descriptors are distinguished.



5.6 E VA L UAT I O N A N D R E S U LT S 83

Figure 30: Visualization and quantitative values of morphological descriptors, showing Wmax (red), H
(blue), Dparent (light green) and Apa (dark green semi-circle) for C13. (Image from [433]
© IEEE 2018.)

For the 2D descriptors, the corresponding 1D structures are depicted. The user can activate individual
descriptors for her exploration. Moreover, the corresponding quantitative values are listed.

5.6 E VA L UAT I O N A N D R E S U LT S

To show the improved accuracy of automatically calculated descriptors, we compared the automatic
results with manually measured descriptors provided by the two neuroradiologists, recall Section 5.1.
Moreover, we compared our ostium extraction with manual expert results and with the results
of an existing approach. Finally, informal interviews with the two CFD engineers and the two
neuroradiologists were performed to evaluate the general workflow of Aneulysis.

5.6.1 Comparison to Expert Results

The experts manually determined the 1D descriptors based on CTA slice images for 10 data sets (C4 -
C8, C14 - C18 in Figure 19). Moreover, the manual measurements were performed on the 3D surface
mesh. For this purpose, they selected points on the surface that define the endpoints of the descriptors.
The angle Apa could not be measured in 2D, because it is challenging to find an appropriate slice. We
compared the manual 2D (2DM) and manual 3D (3DM) measurements to our 3D automatic computations
(3DA), see Table 2. In medical guidelines, an increased rupture risk is assumed for aneurysms larger
than 7mm and therefore, they are usually treated. Moreover, the experts stated that measurement
deviations of more than 0.5mm would be critical since this could influence the treatment decision.
Besides the aneurysm size, the accessibility of an aneurysm within the vascular tree plays a vital role
in routine clinical treatment. Although medical studies [83, 186] argue against the influence of size
on rupture risk, we take size into account as it significantly controls clinical decisions.

Measurement deviations differed for the individual descriptors. For height, the maximum difference
between 2DM and 3DM was 1.3mm and between 2DM and 3DA 1.5mm. However, between 3DM and
3DA the deviation was reduced to 0.4mm. Similar differences occurred for the bulge height that
had a maximum difference of 1.1mm, 1.3mm and 1.3mm for 2DM/3DM, 3DM/3DA and 2DM/3DA.
The aneurysm width and diameter showed larger deviations between 2DM/3DA with 2.2mm and
2.3mm, which are highly critical deviations according to the treatment decision. Also, the median
differences were increased with 1mm for width and 1.2mm for diameter. For 3DM/3DA, a maximum
difference of 0.8mm occurred for both. The neck width showed a maximum difference of 0.8mm
between 2DM/3DM and 3DM/3DA, but between 2DM/3DA a maximum deviation of 1.4mm occurred.
The measurements for Apa exhibited a maximum difference of 15.7 ° between 3DM/3DA. For the
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Table 2: Comparison of our automatically calculated (3DA) descriptors to manually measurements based on 2D
image slices (2DM) and the 3D aneurysm surface (3DM). Maximum occurred deviations are emphasized.

Criteria Measure C4 C5 C6 C7 C8 C14 C15 C16 C17 C18

Height (mm)
2DM 4.5 6.0 5.0 4.1 4.7 3.8 4.6 7.8 4.6 5.3
3DM 4.4 5.3 5.7 4.5 4.6 3.7 4.1 8.4 5.9 5.1
3DA 4.8 5.5 5.7 4.6 4.9 4.1 4.4 8.5 6.1 5.4

Width (mm)
2DM 4.5 5.3 5.4 3.8 4.2 3.4 4.8 4.2 4.5 3.0
3DM 5.3 4.8 6.7 4.7 5.1 3.2 4.7 5.7 6.5 4.3
3DA 5.5 4.9 7.0 4.8 5.2 3.6 5.0 5.8 6.7 5.1

Diameter (mm)
2DM 4.5 6.2 5.5 4.4 5.7 4.4 5.0 9.1 5.5 6.1
3DM 6.5 6.3 7.6 5.0 6.5 4.9 4.8 9.9 6.7 6.3
3DA 6.8 6.4 7.7 5.6 6.9 5.3 5.2 10.7 7.4 7.0

Neck Width (mm)
2DM 4.6 1.4 3.4 2.3 3.3 2.1 2.4 3.6 2.7 2.5
3DM 4.5 2.0 3.6 3.0 4.1 2.3 2.8 3.6 3.5 3.2
3DA 4.9 2.5 4.4 3.0 4.3 2.7 2.8 4.4 4.1 3.4

Bulge Height (mm)
2DM 2.2 3.0 2.9 1.4 1.0 1.5 0.9 7.0 3.0 0.8
3DM 2.6 2.8 4.0 1.6 0.9 1.4 1.3 6.7 2.9 0.8
3DA 1.3 2.9 3.1 1.7 1.1 1.4 2.2 6.4 3.3 1.0

Artery Diameter (mm)
2DM 0.8 0.6 0.7 1.1 0.9 1.0 0.9 1.0 0.9 1.2
3DM 0.9 0.6 0.7 1.0 1.1 1.0 0.7 1.0 0.8 1.2
3DA 0.9 0.7 0.8 1.0 1.1 1.0 0.8 1.2 0.8 1.3

Apex Angle (°)
2DM x x x x x x x x x x
3DM 49.9 55.2 51.4 60.3 77.3 60.7 75.5 50.6 80.6 48.3
3DA 38.1 41.8 59.8 44.6 83.4 54.7 80.1 45.8 89.5 54.4

parent artery diameter, the lowest maximum differences occurred with 0.1mm, 0.2mm and 0.1mm
for 2DM/3DM, 3DM/3DA and 2DM/3DA.

5.6.2 Evaluation of the Ostium Extraction

To assess the quality of our ostium extraction, we compared the results using the Hausdorff distance
Hd to manually defined ostium curves by the neuroradiologists, see Table 3 (first row). The experts
selected points on the 3D surface that were connected by the method of Surazhsky [359].

Our automatic approach and the manual approach lead to similar results. The maximum occurring
Hd is 0.75mm (C18), whereas the best result has a Hd of 0.19mm (C4), both depicted in Figure 31.
The aneurysm of C18 is parallel to the vessel, which leads to a similar distance to the skeleton. Thus,
the applied distance metric returns no optimal positions for P1 and P2. However, the experts stated
that the correction of the ostium is easy to use and allows for a fast adaption.

We also investigated the influence of deviations between the manually and automatically extracted
ostium on morphological descriptors, see Table 3. For C18, the maximum difference is 0.63mm for
the bulge height and for C14, the diameter deviates by 0.54mm. The experts recommend a manual
correction for a deviation of more than 0.5mm. As for the angle differences, they were unsure about
an acceptable variance, because there are no studies that show a significant influence of the angle on
the rupture risk. However, for the distance-based criteria, the comparison indicates that our ostium
extraction leads to appropriate results for the majority of the tested data sets.

We compared our method with the semi-automatic ostium extraction of Neugebauer et al. [270],
which inspired our approach. Figure 32 shows two results of our approach (blue), of the semi-
automatic method (red) and manually generated (green) for wide-neck aneurysms. The semi-automatic
method leads to very different results compared to manual surfaces due to a wrong determination of
P4. Our method is much closer to the manual results, which is reflected in the Hausdorff distances with
5.14mm (a) and 1.67mm (b) for the semi-automatic approach and 0.30mm (a) and 0.40mm (b)
for our technique.
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(a) (b)

Figure 31: Automatic (blue) and manual ostium results (green) for C4 (a) and C18 (b). (Images from [433]
© IEEE 2018.)

Table 3: Hausdorff distance between the automatically and manually generated ostium as well as deviations for
the morphological descriptors calculated based on both ostium surfaces.

Criteria C4 C5 C6 C7 C8 C14 C15 C16 C17 C18
Hausdorff (mm) 0.19 0.31 0.31 0.25 0.39 0.61 0.40 0.35 0.38 0.75

Height (mm) 0.01 0.05 0.35 0.01 0.1 0.23 0.01 0.07 0.12 0.33
Width (mm) 0.02 0.09 0.03 0 0.1 0.23 0.01 0 0.01 0.61

Diameter (mm) 0.23 0.14 0 0 0.03 0.54 0 0 0.22 0.27
Neck Diameter (mm) 0.07 0.08 0.05 0.04 0.05 0.43 0.21 0.14 0.23 0.28
Bulge Height (mm) 0.16 0.24 0.17 0.01 0.01 0.28 0.05 0.07 0.06 0.63

Apex Angle (°) 0.88 0.49 0.46 0.11 0.73 1.01 0.58 0.58 0.19 1.87

5.6.3 Evaluation of the Data Administration

Informal interviews were conducted with the four domain experts to evaluate the general workflow of
Aneulysis regarding data administration. During the evaluation the following tasks were performed:

1. Adding a new case.

2. Adding a new study to an existing case, including information about the pathology.

3. Editing a study by uploading additional files and changing morphological descriptors.

4. Searching for a cohort that fulfills specific descriptors with a specified variance.

First, we described the functionality of Aneulysis. Then, the experts performed the defined tasks,
while we noted their spoken comments.

The adding of new cases and studies was described as simple by all experts (Req. 1). For this
purpose, the adding wizard has to be activated, see Figure 22 (bottom, left). The pre-defined drop-
down menus enable a fast selection of meta information. Short text-based descriptions can be added
to cases and studies, for which experts wished for suggestions of already used descriptions. Besides,
they emphasized the possibility to upload files for selected pathology information, i.e., images of
aneurysm location or reports about rupture. Furthermore, the experts wished for an option to add new
studies to the chosen case in the main view. This would avoid the selection of the corresponding case
from a drop-down list in the adding wizard.

For editing, the experts selected a case from the tabular overview. They were able to edit meta
information and to upload different types of data using the pre-defined structure, see Figure 21. They
liked the overview of already uploaded data which avoids redundancy. Besides, they used the MorAVis

module to explore and edit morphological descriptors. The automatic calculation was considered very
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(a) (b)

Figure 32: Comparison of our method (blue) to the semi-automatic approach [270] (red) and manual results
(green) for C13 (a) and C15 (b). (Images from [433] © IEEE 2018.)

helpful, as it saves time and avoids measurement errors (Req. 2). They wished for a visual summary
for clinical documentation and treatment planning.

Finally, the experts searched for specific cohorts. The pre-defined property lists enable a fast
definition of individual filtering masks. The possibility to define a permitted variance for each
property was emphasized, as it allows a detailed analysis of ruptured and non-ruptured cases. The
experts would like to have a statistical analysis of morphological descriptors within a filtered cohort.

5.7 D I S C U S S I O N A N D L I M I TAT I O N S

The calculated descriptors were compared to manually measured values. Since anatomical accuracy
is ensured during the vessel reconstruction, recall Section 5.2.1, occurring deviations between
manual and calculated descriptors were interpreted as descriptor-dependent measurement errors.
The aneurysm diameter and width show strong variations since the maximum extent is difficult to
find manually in 3D. Considerable slicing and rotation efforts are needed, respectively, in 2D and
3D, where the maximum extent can be missed. Measuring aneurysm angles is almost impossible
in 2D. In contrast, measurements of the parent artery diameter, which is independent of aneurysm
shape, show the lowest deviations. Thus, manual measurements are error-prone and time-consuming.
Processing a data set took between 8-10min, whereas our method needs 1.0-1.9min. In clinical
routine, such measurements are currently the basis for decision-making. Thus, aneurysms are treated,
that could initially be observed based on automatic objective measurements. This is important since
treatment also carries a considerable risk of severe complications. Moreover, medical studies assign
greater importance to curvature-based measures such as the non-sphericity index concerning rupture
estimation [83, 186]. However, these parameters cannot be determined manually, but MorAVis could be
easily extended to calculate such parameters. This aside, manual measurements are not reproducible.
To better understand the rupture risk and to evaluate the aneurysm state over time as well as to find an
optimal treatment, reproducible measurements are needed, as provided by the MorAVis module.

Besides, we compared our automatic ostium extraction with manually generated ostium contours
and with the method by Neugebauer et al. [270]. Our results are very similar to manual expert results,
even in cases with multiple in- and outgoing vessels. Furthermore, our results exhibit significantly
lower Hausdorff distances than the results by Neugebauer et al [270]. Moreover, our method is
independent of pre-defined input data and overcomes limitations of existing approaches handling
wide-neck aneurysms and small arteries around the ostium.

However, our approach is limited to cases with one aneurysm. For multiple aneurysms (about
20 % of all cases), ostium surfaces have to be computed separately. Moreover, problems occur if an
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aneurysm runs parallel to the parent artery, which is uncommon according to the medical experts.
For these cases, we allow for a manual ostium correction. The medical literature provides no unique
ostium definition leading to slightly different ostium contours by different domain experts. Thus, we
calculated the variances of morphological descriptors between our automatic and the manually defined
ostium. Except for two data sets, no significant changes occurred and thus our ostium calculations are
appropriate to analyze the aneurysm morphology.

The informal study showed that all experts were able to use Aneulysis without major problems
efficiently and they stated that they would employ it for exploration and management of aneurysm data.
To the best of our knowledge, no comparable concept focuses on the management of aneurysm data,
comprising images, flows as well as morphological descriptors and patient-specific meta information.
Aneulysis allows for efficient filtering of data sets, which supports the collaboration of different
research groups. In contrast, at the moment, a lot of time is wasted to find and explore data sets,
where each group uses various tools and data structures. Furthermore, the descriptors are visualized
qualitatively and quantitatively, which could also be used for documentation and patient education in
clinical routine. The analysis of cohorts has to be further supported by statistical methods combined
with visual analytics to provide a more detailed investigation of descriptors. This would also require
techniques that allow for a visual comparison of multiple data sets.

5.8 C O N C L U S I O N A N D F U T U R E W O R K

Aneulysis allows a powerful management of aneurysm data. Different visualization modules support
the visual exploration of the complex morphological and flow information. Per default, the MorAVis

module is activated, which allows an objective analysis of morphological descriptors that are as-
sociated to rupture. Based on an automatic ostium extraction, these descriptors are automatically
calculated, which is less time-consuming and error-prone than manual measurements. A consistent
data structure was defined to ensure redundancy-free storage of aneurysm data. Filtering of cohorts
supports domain experts to understand individual risk factors better. Details about the remaining
visualization modules and the corresponding evaluations are given in Chapter 6 and Chapter 7.

In the future, we intend to apply our ostium extraction to a larger amount of data sets to further
evaluate its robustness and to extend it to multiple aneurysms. Therefore, further manual ostium ex-
tractions are required by domain experts. Besides, we want to compute the morphological descriptors
for time-dependent simulation data that consider the vessel deformation during the cardiac cycle. For
this, visualization techniques would be needed that show the behavior of the descriptors over time.
Until now, Aneulysis is a research prototype. A distribution in free or commercial form is planned for
the future. For use in a clinical environment, a connection to the picture archiving and communication
system (PACS) would be required.





�is chapter is partly based on:

 

Monique Meuschke, Samuel Voß, Oliver Beuing, Bernhard Preim and Kai Lawonn,

Combined Visualization of Vessel Deformation and Hemodynamics 

in Cerebral Aneurysms;

IEEE Transactions on Visualization and Computer Graphics, 23(1), pp. 761-770, 2017.

  

Monique Meuschke, Tobias Günther, Philipp Berg, Ralph Wickenhöfer, Bernhard Preim 

and Kai Lawonn,

Visual Analysis of Aneurysm Data using Statistical Graphics;

IEEE Transactions on Visualization and Computer Graphics, 25(1), pp. 997-1007, 2018.

 
Monique Meuschke, Samuel Voß, Oliver Beuing, Bernhard Preim and Kai Lawonn,

Glyph-Based Comparative Stress Tensor Visualization in Cerebral Aneurysms;

Computer Graphics Forum, 36(3), pp. 99-108, 2017.

 
Monique Meuschke, Wito Engelke, Oliver Beuing, Bernhard Preim and Kai Lawonn,

Automatic Viewpoint Selection for Exploration of Time-Dependent Cerebral 

Aneurysm Data;

In Proc. of Bildverarbeitung für die Medizin, pp. 352-357, 2017.

 

Surface-Based

Exploration 

of Aneurysm 

Data
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To improve rupture risk assessment and decision-making, we developed three further visualization
modules. Depending on the underlying data type, i.e., scalar, vectorial or tensor data, the modules
allow interactive exploration of this information by overcoming limitations of currently existing
visualization approaches. The combined wall and flow visualization (CoWaFloVis) module allows an
extended visualization of the vessel morphology by showing the wall thickness and wall deformation
together with a hemodynamic scalar field and a context visualization of the internal blood flow, see
Section 6.1. The multiple scalar field visualization (MuScaVis) module focuses on a simultaneous
exploration of multiple scalar fields on the vessel wall during the cardiac cycle, see Section 6.2. The
comparative tensor visualization (CoTenVis) module enables a comparative depiction of tensor data
between the inner and outer vessel wall, see Section 6.3. For the development of each module, we
derived specific requirements from discussions with medical doctors. Based on these requirements,
user studies and informal interviews are performed to evaluate the suitability of the modules to
improve aneurysm data exploration. Besides an adequate visualization, a capable camera control
including an adequate viewpoint selection is crucial for an efficient analysis of the complex data. To
support the time-dependent data analysis, we introduce techniques to calculate appropriate camera
paths automatically, see Section 6.4. We developed an interactive planning of animations as well
as an automatic calculation on appropriate viewpoints. Both methods can be activated within the
visualization modules, where the results are stored in the database of Aneulysis.

6.1 C O WA F L OV I S - C O M B I N E D WA L L A N D F L O W V I S UA L I Z AT I O N M O D U L E

Experts are interested in whether there are correlations between hemodynamic attributes that are
associated with an increased risk of rupture and high-risk wall regions. However, the simultaneous
visual examination of several characteristics on the vessel wall is currently only supported to a
limited extent, recall Section 4.2.3. Some solutions illustrate two hemodynamic attributes with the
surrounding vessel [121, 318] or depict the wall thickness with one hemodynamic factor [132, 217],
but a combined visualization was not possible so far. The decal-lenses by Rocha et al [319] allow a
visual analysis of more than two attributes, but the exploration over time remains challenging since a
high manual effort is needed to investigate the data on the 3D aneurysm surface. Moreover, existing
approaches rigidly present the aneurysm wall. However, the vessel deformation is an essential
factor to estimate the rupture risk and should, therefore, be visualized [289]. We developed the
CoWaFloVis module, which provides an integrated visualization of the vessel morphology considering
thickness and deformation of the wall as well as hemodynamic attributes and the internal blood flow.
It comprises a 2.5D view linked to a 3D depiction of the aneurysm walls such that two attributes can be
analyzed simultaneously, see Figure 33. The 2.5D view combines existing techniques that build up a
novel, occlusion-free overview visualization of the aneurysm data. The 3D visualization represents
the focus upon which the exploration of the scalar data and blood flow data over time takes place.

6.1.1 Requirement Analysis

The exploration of scalar quantities mapped to the aneurysm wall plays a central role in the research of
rupture risk. Our domain experts stated that they try to identify attribute characteristics and correlations
that might have caused the rupture. Using standard visualization techniques, e.g., integrated into
Paraview, only one attribute can be displayed simultaneously. During rotation and zooming, the
experts switch scalar quantities such that different interesting regions are found. Thus, the experts
have to memorize the areas and analyze them regarding other quantities as well, which makes the
detection of critical attribute correlations very time-consuming. For more complex vascular branches,
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(a) (b) (c)

Figure 33: A depiction of the wall and flow data of C21 using a 3D and 2.5D visualization. In 3D the outer
and inner vessel wall with internal blood flow is displayed (a). On the inner wall, two scalar fields
are depicted. Here, the wall deformation is color-coded, and the WSS is depicted by illustrative
techniques (b). The 2.5D view comprises a 2D map for an occlusion-free visualization of the
aneurysm surface and an optional 3D bar chart to depict an additional attribute (c). In this example,
the wall thickness is shown. (Images from [439] © IEEE 2017.)

the number of ROIs and occlusion problems increases such that a full analysis of various scalar values
becomes quite challenging. Besides, the experts stated that they want to know the distance of the
flow near the wall, because it may lead to further pathological vessel dilation. For this purpose,
they try to visually approximate the distance of the path lines to the vessel wall. However, this is a
very demanding and error-prone task, because considerable rotation effort is needed. They wished
a visualization that enables fast and straightforward evaluation of morphological and mechanical
wall properties as well as hemodynamic attributes and their correlations. In addition to the seven
more general requirements in Section 5.1, we summarize further requirements for a simultaneous
exploration of wall-related and flow-related characteristics:

Req. 8 S I M U LTA N E O U S E X P L O R AT I O N O F AT T R I B U T E S . The experts want to evaluate
whether local changes of hemodynamic attributes occur on morphologically abnormal wall sections
or not. For this purpose, a visualization is needed that enables the simultaneous analysis of at least
two attributes to identify correlations between them.

Req. 9 D E P I C T I O N O F B L O O D F L O W. The blood flow needs to be visible during the whole
animation. Moreover, the experts are interested in the distance of the flow to the vessel wall.

Req. 10 V E S S E L V I E W W I T H WA L L D E F O R M AT I O N A N D T H I C K N E S S . Since wall defor-
mation and thickness are essential characteristics to assess rupture risk, visualization techniques are
needed that highlight strong local changes of these attributes during the cardiac cycle.

6.1.2 General Structure

The CoWaFloVis module consists of two equally-sized linked views. The first view comprises a
novel 2.5D aneurysm depiction, whereas the second view shows a 3D aneurysm visualization, see
Section 6.1.3 and Section 6.1.4. There exists a bidirectional linking between both views to enable
a visual correspondence, discussed in Section 6.1.5. Moreover, collaborative data exploration is
supported, see Section 6.1.6.

The CoWaFloVis module allows a simultaneous exploration of up to three scalar attributes. In
consultations with our domain experts, we distinguish nine hemodynamic and morphological attributes
that can potentially be extended. The attributes can be explored on the aneurysm surface to detect
rupture-prone regions and to uncover high-risk attribute correlations.
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Hemodynamics. Concerning the patient-specific hemodynamics, WSS, OSI, and pressure are three
of the most important quantities to describe the flow field. Furthermore, the tension inside the wall
can be explored describing the load induced by the hemodynamics. For this, the local stress tensor is
converted to a scalar value using the common stress theory of von Mises (like in [375]). This value
describes the norm of the pairwise differences of principal stresses, represented by the eigenvalues of
the tensor, scaled with 0.5. Moreover, the near-wall flow (NWF) can be explored (Req. 9). Therefore,
we determine for each vertex of the surface mesh the nearest path line point using the Euclidean
distance. Finally, we took for each vertex the minimum overall path line points independent of the
time steps to represent the global near-wall flow. This enables a visualization that depicts the trace of
the path lines over time. Figure 34 shows the NWF using a color-coding. Blue regions indicate flow
that comes close to the wall, whereas in the red regions the flow has a greater distance to the wall,
based on the path lines. Regions, where the flow is more distant to the wall, indicate that there are
thickenings of the inner wall due to the formation of a thrombus or inflammation processes stated by
our neuroradiological experts.

(a) (b) (c)

Figure 34: A visualization of the NWF for C11. The inner vessel wall is depicted semi-transparently with
a color-coding of the NWF (a). Blue areas indicate that flow comes close to the wall, whereas
in red regions the path lines have a greater distance to the wall. Due to the global distance
measurement over the cardiac cycle, the path lines follow the blue stripes on the wall that display
NWF regions (b-c). (Images from [439] © IEEE 2017.)

Morphology. The morphological attributes comprise the wall thickness and wall deformation.
Moreover, we identify interesting regions such as blebs based on the curvature measures, similar to
Neugebauer et al. [275]. For this, we employed the shape index as well as the curvedness scalar.
The curvature is calculated with the algorithm of Rusinkiwicz [323]. For every triangle, the shape
operator is estimated by defining the deviation of the normal along every edge. This provides an
equation system which can be numerically solved by the method of least squares. Afterward, the
shape operator is accumulated for every vertex by taking the operator of the incident triangles into
account. The eigenvalues of the shape operator yield the principal curvature values κ1, κ2 of every
point. Given the curvature measures, the shape index is computed as:

s =
1

2
−
1

π
arctan

κ1 + κ2
κ1 − κ2

, (9)

with κ1 > κ2. The shape index ranges from 0 to 1, where 0 stands for a cup-shaped and 1 for a
cap-shaped form. The curvedness is given by:

c =

√
κ21 + κ

2
2

2
(10)

and starts with values of 0 for flat regions.
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6.1.3 2.5D Aneurysm Overview

IA could have irregularly deformed shapes, which complicates the simultaneous exploration of scalar
quantities in 3D. This could slightly be improved by side-by-side views, as they only allow to analyze
few time steps and attributes and it is exhaustive to put these multiple images together mentally.

To improve this, we provide a novel 2.5D visualization as a combination of existing visualization
methods that ensures a fast overview such that the distribution of a chosen scalar quantity can be
explored without any occlusions. Similar to Neugebauer et al. [271], we use a map to display the
information, which is inspired by other medical overview techniques, such as colon [25] and brain
flattening [397] as well as the more abstract bull’s eye plot (BEP) [286] used in cardiology. In contrary,
we did not visualize the map in combination with the 3D render context, but in an additional render
context to avoid visual clutter.

The map generation is based on the 3D aneurysm surface, separated from the parent vessel. To
separate saccular-shaped aneurysms, we employ our automatic ostium detection, recall Section 5.5.1.
The aneurysm surface part is yielded by cutting the 3D surface along the detected ostium, see Figure 35.

Figure 35: For generating the 2D map, points along the ostium are determined using our automatic ostium
detection algorithm. These points are connected to a cut line. The aneurysm surface is unfolded
where the ostium is emphasized in the map. (Image from [441] © Elsevier Ltd. 2018.)

Afterward, the aneurysm surface is parametrized to the 2D domain, where the ostium is color-coded
on the 3D mesh and the map to establish a spatial correlation between both views, see Figure 36.
The map is determined with a parametrization algorithm that maps every point pi ∈ R3 on the
surface mesh to a point p ′i ∈ R2 in the plane. We employed the least squares conformal maps
(LSCM) [224] approach because it is boundary-free and only two points need to be set as constraints
for the parametrization. LSCM employs the conformality condition, which states that the gradients of
the 2D coordinates are perpendicular∇v = (∇u)⊥, where ⊥ denotes the counterclockwise rotation
of 90◦ around the normal n. It is necessary to fix the coordinates of at least two points to have a
well-defined optimization problem. In the CoWaFloVis module, we implemented an interaction scheme
to add the constraint points, where the user is asked to place two landmarks on the mesh that are
mapped to (0,0) and (0,1), see Figure 36. However, different placements would lead to different
results. For a more detailed explanation and an overview of other parametrization techniques, we
refer to the surveys of Floater and Hormann [106] and Sheffer et al. [344].
Bar charts. Based on the discussions with our domain experts, it is helpful to explore the wall
thickness or deformation in combination with two other scalar fields to better understand the role
of wall morphology in the rupture risk assessment. To display a third scalar field, we included a
3D bar chart besides visualizing scalar quantities on the 2D map. By default, the height of the bars
represents the wall thickness, see Figure 36c. However, other attributes can be set as well. To obtain
an appropriate distribution of the bar charts, we sampled the 2D map regularly. Afterward, we take
only grid points into account which lie inside the 2D map. We ensure this by checking if the grid
points lie inside a triangle. Afterward, we calculate the barycentric coordinates of the grid points with
the corresponding triangle and use these coordinates to interpolate the chosen scalar field to the grid
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(a) (b) (c)

Figure 36: 2.5D depiction of C22. For the 2D map generation, the mesh is cut along the ostium, and the user
defines two markers on the dome (one is depicted as a red point) (a). The surface is unfolded where
the dome markers and the ostium were emphasized in the map (b). Moreover, the map is sampled
to calculate bar charts (c). Here, the deformation is mapped to color and height of the bars. (Images
from [439] © IEEE 2017.)

point. To generate the bars, we employ triangle strips on the GPU and construct a cuboid. Adding an
outline for the edges emphasizes the bars and avoids visual clutter. The bar charts immediately show
whether there are local maxima or minima of the chosen scalar field, which could be possible rupture
areas, e.g., thin wall regions. The user can then explore these regions in the 3D view.

6.1.4 3D Aneurysm Visualization

The 3D aneurysm view enables a detailed attribute exploration. Besides a depiction of the wall
thickness, different scalar attributes, and inner blood flow, we incorporate the dynamic vessel motion
during the cardiac cycle (Req. 10). Based on FSI simulations, for each vertex of the surface mesh
a deformation vector is known. This information at each time step is used to displace the vertices
during the animation.
Vessel visualization. The visualization of the vessel wall is divided into the depiction of the outer
and the inner vessel wall. For the display of the outer vessel wall, we apply the technique presented
by Glaßer et al. [132], which was inspired by the ghosted view approach by Gasteiger et al. [122]. For
this, the transparency depends on the shading term α = 1− 〈n, v〉, where n denotes the normal and v
the view direction of the camera, see Figure 33a. In case the camera faces towards the surface, e.g.,
n and v align, the surface is transparent. If v is perpendicular to n, the mesh appears more opaque.
This technique enhances the spatial impression of the surface (see the evaluation by Baer et al. [23]).
On the inner vessel wall, the exploration of scalar attributes takes place. To enable a depiction of the
internal blood flow, the inner wall is visualized semi-transparently. However, the user can adjust the
transparency to his/her needs. In the following section, we describe the depiction of the scalar data.
Scalar field visualization. According to Req. 8, a visualization is needed that enables the simultane-
ous exploration of two scalar fields. We decided to map the first attribute to a discretized cool-to-warm
color scale. Lower values are mapped to a bluish color and higher values to a reddish color. Five colors
are used to represent the chosen attribute. However, the user can adapt the number of discretized
colors to his/her own needs or select a linear color-coding. An isoline representation visualizes the
second attribute. For this, the user selects the second scalar field, and a parameter needs to be set.
This parameter serves as a threshold, such that depending on the type of the scalar field, either lower
or higher values are emphasized. For example, if the domain experts select the wall thickness, they
are interested in values that fall below the threshold, whereas in case of pressure they are interested in
regions that are greater than the threshold. The depiction of the region is done by an image-based
hatching scheme introduced by Lawonn et al. [217]. In contrast, higher (lower) values are emphasized
with a greater number of lines and cross-hatches.
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Figure 37: The wall deformation is color-coded on the aneurysm surface (C19) during the cardiac cycle.
Furthermore, the WSS is depicted by isolines and hatching, where a threshold of 22.3Pa was
selected. Until the peak of the systole (until 0.2 s) the deformation and WSS increase continuously,
while during the systolic end and diastole both attributes decrease. (Image from [439] © IEEE
2017.)

(a) (b)

Figure 38: A domain expert detected a suspicious surface region for C22, where the wall thickness is very thin
and a high WSS exists (a). He created a landmark at this region and assigned an individual label,
represented as purple sphere (b). (Images from [439] © IEEE 2017.)

Thus, the experts can set two attributes, e.g., wall deformation and WSS, to display ROIs with a
high deformation and high WSS values, see Figure 37. Here, the deformation is color-coded for
different time steps, where the diagram below shows the mean deformation changing during the
cardiac cycle and the red bar indicates the current time step. Moreover, the WSS is depicted by an
isoline and hatching. Until the systolic peak (until 0.2 s) the deformation increases, indicated by the
red regions, and also an increased WSS exists. Afterward, both attributes decrease and are always low
during diastole (0.27 - 0.81 s). Figure 38 shows another example of data exploration. Here, the wall
thickness is color-coded, and an isoline represents the WSS. The user depicted a ROI with low wall
thickness and high WSS values. The blue region indicates a thin wall, where high WSS values exist,
which is a high-risk rupture area. Moreover, the scalar data is also visualized in the 2.5D depiction
using color-coding and illustrative techniques, see Figure 33c.
Path line visualization. The path lines are visualized by using an arrow glyph and by color. Inspired
by Everts et al. [101], we constructed a view-aligned quad on the GPU to depict the path lines.
The successive path line points pi and pi+1 are used to determine the normalized tangent vector:
t = pi+1 − pi. With the given view direction v (of the camera), we calculate the extent of the path
lines by using the normalized cross-product e = v× t. Then, we parametrize the path lines with two
parameters. The first parameter is the current animation time of the cardiac cycle and, thus, similar to
the approach by Lawonn et al. [217]. The second parameter is set for the extent and is in the range of
[−1, 1]. Using the parametrization allows to draw arrow glyphs on the path lines. An offset for the
current time is set and gives the range of the current path line part. The start and end points are used
to construct the arrow, see [101, 217]. This approach allows an easy interpretation of the speed. If the
animation pauses, the length of the depicted path line part corresponds to the speed. Furthermore,
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another value, e.g., the pressure can be visualized by a color scheme. For this, we used a dark green
to light yellow color map, see Figure 34.

6.1.5 Linking between 2.5D and 3D View

To facilitate the correlation between the 2.5D and 3D view, we provide a linking between them.
Concerning the direction from 2D to 3D, the user can pick a specific point in the 2D map, and the
camera rotates automatically to the corresponding 3D position in a smooth way. In 3D, this point is
presented as a green sphere at the corresponding position. Thus, interesting regions were presented
to the user without a manual search. Furthermore, we integrate a brushing for the 2D map. Instead
of picking specific points, the user can brush in the map, and the corresponding 3D regions are
emphasized by hatching. The brush radius can be controlled with the mouse wheel. Moreover, regions
on the 3D surface can be highlighted in the 2D map depending on the zoom level. The closer the user
zooms into the 3D scene, the more opaque the corresponding 2D region is depicted. This supports the
perceived spatial correspondence between a 3D region and its related 2D area.

6.1.6 Collaboration Tools

To support the collaboration between domain experts, we allow the user to place landmarks on the
vessel surface (Req. 7). Each landmark gets an individual color, and an individual label can be set,
see Figure 38b. Therefore, a textual description of each landmark is available, e.g., for documentation.
After the placement, a screenshot is taken, and all selected parameters, as well as the camera settings,
are stored. Another expert can see the landmarks on the surface, and they are listed together with
their labels as a preview in the top right corner. Selecting a landmark in the preview loads the
corresponding scene. Landmarks can also be placed, if the automatic animation is active. During
placing and labeling a mark, the animation stops and continues after pressing the enter button.

6.1.7 Evaluation and Results

For the evaluation of the CoWaFloVis module, we conducted a user study with five unpaid participants
(1 female, 4 male; 28-48 years old; median 35 years). Among them were: two physicians (14
and 16 years of experience in radiology) and two CFD engineers involved in the hemodynamic
analysis (five and eight years of professional experience). Furthermore, we added one expert for
medical visualization (six years of work experience). At the beginning of the study, we described the
functionality to the experts and afterward the participants were encouraged to explore the visualization
techniques on their own. During exploration, we noted the experts’ spoken comments and their
interaction with the system. They had to try both views and the bidirectional connection between
them to find suspicious regions. Finally, we asked them to answer a questionnaire.

Questionnaire

The questionnaire comprises mainly aspects of our visualization concept and its medical relevance.
Besides open-ended comments, we asked questions that had to be answered using a five-point Likert
scale (−−, −, ◦, +, ++). The questionnaire comprises the following aspects.

Medical relevance. The first aspect considers the subject’s opinion about the general importance
of wall thickness, wall deformation, and blood flow as well as their combined analysis for the
investigation of cerebral aneurysms. Moreover, we asked about the importance of data exploration
during the entire cardiac cycle.

3D visualization. We asked whether the combination of color and illustrative techniques is appro-
priate to explore two attributes simultaneously. Then, we inquired if the color-coding of the vessel
surface is useful to highlight the near-wall flow. Next, we asked if the transparency of the vessel wall
enables the visual tracking of the inner blood flow.
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2.5D visualization. Here, we asked whether the 2D map provides a fast overview of the time-
dependent data. Then, the participants were questioned if the selection of single map points together
with a camera changing in 3D supports the data exploration in the 3D view. Finally, we asked whether
the color-coding of the ostium contour in 2D assists the orientation in 3D.

Wall thickness visualization. Due to the importance of the wall thickness investigation, we asked
the participants to assess our different wall thickness depictions. First, the participants were asked if
the wall thickness can be estimated using the semi-transparent 3D visualization. Next, we inquired the
suitability of color-coding or illustrative techniques as well as using the bar charts to represent the
wall thickness.

Collaboration aspects. Here, we asked the subjects to comment if the save and load, as well as the
individual labeling of the landmarks, supports the collaboration with other domain experts.

Results

The user study was performed on a standard desktop computer with an Intel Core i5 with 2.8GHz,
16GB RAM, and an NVidia GeForce GTX 1080 Ti. For all presented models we achieve a real-time
performance of approximately 40 frames per second (FPS), except for the initial calculation of the
2D map with a computation time per case between 9 and 14 s, depending on the number of triangles,
recall Section 5.2. This performance test was conducted with a resolution of 1920 × 1080, and both
views (3D and 2.5D view) covered approximately half of this resolution. For the interpretation of our
pre-defined Likert score categories, we provide the number S(·) of experts who chose the individual
classes. The overall result of the empirical evaluation is shown in Figure 39.

Medical relevance. All domain experts confirmed the high importance of analyzing the wall thickness
(S(++) = 4; S(+) = 1) and wall deformation (S(++) = 4; S(+) = 1) for the rupture risk
assessment in cerebral aneurysms. They also stated that the combined evaluation of wall thickness
and deformation together with different hemodynamic attributes is important to identify rupture
risk-related correlations (S(++) = 3; S(+) = 2). Moreover, they emphasized the importance of the
data exploration during the whole cardiac cycle instead of just the systolic part, because it is unknown
if the aneurysm rupture risk is higher at the systole or diastole.

3D visualization. All participants confirmed that the combination of color-coding and illustrative
techniques enables the simultaneous exploration of two scalar attributes on the aneurysm surface
(S(++) = 3; S(+) = 2). Two participants wished to have an additional path line filtering, e.g.,
vortex-representing path lines or path lines with high velocity. This would enable exploration of
specific flow patterns, which are reported to be indicators of high rupture risk. The usefulness of
the color-coding on the surface to highlight the NWF was rated with S(++) = 3 and S(+) = 2.
Moreover, they stated that the surface transparency reveals the qualitative flow behavior (S(++) = 4

and S(+) = 1).

2.5D visualization. All participants found that the 2.5D depiction provides a fast overview about
the data (S(++) = 3; S(+) = 2). Moreover, all experts commented that the shape of the map
together with the color-coding of the ostium establishes a visual correspondence between both views
(S(++) = 4; S(+) = 1). Furthermore, the selection of individual points on the map, followed by
changing the camera in 3D, was described as helpful (S(++) = 2; S(+) = 3).

Wall thickness visualization. The semi-transparent representation of the outer wall was rated as
least suitable by most participants for the assessment of the wall thickness (S(+) = 2; S(◦) = 2;
S(−) = 1). The perceived thickness depends strongly on the perspective to the surface and requires a
lot of manual rotation effort. In contrast, both the color-coding as well as the illustrative rendering
were valued with S(++) = 3 and S(+) = 2. The bar charts were also perceived as very appropriate
to assess the local wall thickness (S(++) = 2; S(+) = 3). Two participants indicated that the bar
charts immediately communicate whether there are local minima or maxima, but the indication of the
corresponding 3D position should be improved, e.g., by using brushing on the bar charts.

Collaboration aspects. All experts appreciated the placement and loading of landmarks (S(++) = 3;
S(+) = 2). Moreover, the possibility to annotate the landmarks was emphasized of being helpful
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for the collaboration with other experts (S(++) = 3; S(+) = 2). One participant wished to have a
temporal summary image of all placed landmarks.

Figure 39: The evaluation results of the CoWaFloVis module with color-encoded Likert scores. Each box
represents the answer of one expert: the two left-most boxes depict the physicians, the middle two
boxes show the CFD experts, and the right-most box represents the medical visualization expert.
(Image from [439] © IEEE 2017.)

6.1.8 Discussion and Limitations

All experts stated that they were able to use our techniques without significant problems and that
they would employ them for simultaneous evaluation of morphological and hemodynamic aneurysm
attributes. After a short explanation of the exploration and navigation features, the participants were
able to find suspicious regions on the surface. Similar to the current exploration process, we provide
a 3D depiction of the aneurysm surface, because the experts are familiar with such visualizations.
Moreover, we choose a 2D mapping of the 3D aneurysm surface to provide an occlusion-free overview
depiction of the data. We restricted the mapping to an aneurysm and neglected outgoing vessels since
the experts are focused on the aneurysm. Therefore, we needed a parametrization of the mapping that
preserves the round shape of an aneurysm. For this, the selected algorithm was suitable. However,
there are distortions of the 2D flattening according to the parametrization, which is angle-preserving
but not area-preserving. During the evaluation, we advised the experts of possible distortions. Due
to the color-coding of the ostium in both views and the fact, that the 2D map serves as an overview
depiction, the experts did not perceive possible distortions as cumbersome to get a first impression of
the data. Using the combination of color-coding and cross-hatching our experts were able to detect
suspicious surface regions. Also, other techniques such as a 2D color scale could be used to decode
two attributes simultaneously. However, previous discussions with domain experts, described by
Preim and Botha [307], showed that they preferred a combination of color and isolines. The 3D bar
chart should provide an overview depiction of a third attribute. To handle possible occlusions by the
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bar chart, the user can optionally turn it off to see just the 2D map or rotate the 2.5D view. Alternative
depictions such as two juxtaposed 2D maps would not lead to occlusions, but then the user would have
to combine three views, which is probably quite challenging mentally. Another possibility would be
the direct visualization of a third attribute in the 2D map using another color scale or iso-heightlines,
but the visual perception of three attributes in one depiction is also complicated.

Improvements. The experts wished to have more interaction in the 3D view. An interactive path
line seeding, e.g., at morphologically conspicuous surface regions, would improve the analysis of
near-wall flow patterns. Moreover, if the user selects a point on the vessel surface, the current active
attribute values should additionally be listed. For the 3D bar charts, quantification of their height using,
for example, labels when the mouse hovers a bar would facilitate the exploration of the presented
scalar field.

Domain applications. Besides the rupture risk and treatment assessment, there are other possible
application scenarios of the CoWaFloVis module. Thus, our module may also be helpful to explore
the predicted blood flow after different treatment options, such as coiling and stenting. Another
important application field is research and education of patients and students. Moreover, CFD and
FSI play an essential role also in other vascular structures, such as the aorta, to better understand
cardiovascular diseases. A common disease of the aorta is an abdominal aortic aneurysm. The amount
of vessel wall deformation is even larger there and the solution presented here would probably be
useful in these applications as well. Unfortunately, we currently do not have similar data for aortic
cases with multiple scalar fields mapped to the vessel wall.

6.1.9 Conclusion and Future Work

We presented techniques for the analysis and exploration of cerebral aneurysms to improve the
rupture risk evaluation. By providing a linked 2.5D and 3D aneurysm depiction, a simultaneous
analysis of the aneurysm morphology such as wall thickness and deformation, hemodynamic and
internal blood flow becomes possible for the first time. The combination of a 2D and 3D aneurysm
visualization provides, on the one hand, a fast overview of the complex data and on the other hand a
detailed exploration and assessment of rupture-prone attributes. The usage of modern visualization
methods such as image-based hatching and brushing facilities enable the detection of suspicious
surface regions without a time-consuming manual search. All these methods put together, we present
essential morphological and hemodynamic elements for the aneurysm rupture risk assessment in an
integrated visualization. Thanks to our GPU implementation we achieve real-time rendering speeds
even on mid-class computers. To evaluate our methods, we conducted a qualitative expert evaluation.
This evaluation indicates that our overall approach is valid and applicable in medical research and
other domains.

Although we got positive feedback from the domain experts, some issues still need to be improved.
First, the depiction of the tension inside the vessel should be improved to enable a more detailed
exploration of the simulation results. At the moment, the stress tensor is reduced to a scalar field.
However, a visualization would be necessary that depicts if the maximum tension occurs on the inner
or outer wall. Furthermore, a depiction of the whole tensor using tensor glyphs would also be a
helpful extension. Moreover, we should compare other mapping strategies that better preserve the
aneurysm shape including adjacent vessels. This would be important for the analysis of different
stent configurations and their influence on the blood flow in adjacent vessels. Besides, scenario-based
evaluations should be performed, where domain experts comment on the whole exploration process
using our visualization methods. This would make it possible to gain a deeper understanding of the
suitability of the provided techniques. Finally, we want to improve the FSI simulation by integrating
real measured wall thickness values that are expected soon, as the vessel wall imaging is an active
research area.
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The CoWaFloVis module, described in the previous section focuses on a simultaneous exploration of up
to three scalar attributes in the context of morphology and flow visualization. In principle, however,
correlations between more than three attributes can influence the risk. But visualizing more than three
attributes together with the internal flow would lead to highly complex and overloaded depictions.
Thus, we provide the MuScaVis module that focuses on a simultaneous exploration of multiple scalar
fields on the vessel wall. Here, also the homogeneity of attributes is investigated. Experts assume that
the thinner the wall and the more inhomogeneous attributes such as WSS or pressure are, the higher
the risk of rupture. Vectorial flow information is not shown to reduce the visual complexity.

Previous attempts used information visualization techniques to uncover correlations between
multiple attributes. An early example is the WEAVE system [139], where cardiac simulation data
is mapped to the heart anatomy and to scatterplots and histograms that are integrated into multiple
coordinated views. Thus, brushing allows to specify features in the attribute space and to link
highlights corresponding locations on the heart surface. A prominent example for this line of research
is the SimVis system [86, 87] that provides linked scatterplots, scatterplot matrices, and parallel
coordinate views to extract features of time-dependent simulations of vehicle dynamics. Moreover, a
feature-based analysis in time-dependent data involves feature tracking over time [180]. This means
that, e.g., regions that fulfill specific conditions are detected over time and visualizations are provided
to explore their temporal behavior, e.g., diagrams showing statistical properties of features over time.

Glyphs are another way to visualize multiple scalar fields. Borgo et al. [40] presented general
guidelines for glyph design and summarized major merits and possible problems of glyph visualiza-
tions. In contrast to typical information visualizations such as parallel coordinates, glyphs are more
suitable to convey spatial relationships encoded in the data. They can be used independently of the
domain density, but an unsuitable sampling can lead to occlusions. Moreover, their design should be
memorable and should allow a rapid semantic interpretation. This can be a challenging task depending
on the complexity of the underlying data. Ropinski et al. [322] presented a taxonomy and guidelines
for glyph-based medical visualizations. Existing glyph-based visualizations are classified to this
taxonomy. Thereby, two applications were selected: glyphs for diffusion tensor imaging (DTI) and
cardiac data to depict functional and structural parameters of the heart. Oeltze et al. [282] introduced
a 3D ring-shaped glyph to represent scalar attributes of cardiac perfusion data in conjunction with their
ventricular anatomical context. Meyer-Spradow et al. [254] presented an interactive placement of 3D

glyphs to visualize parameters of myocardial perfusion data. Rocha et al. [318] applied decal-maps to
the aneurysm surface representing different attributes. However, the temporal behavior of scalar data
cannot be depicted. Therefore, van Pelt et al. [442] used tailor-made glyphs to show the influence of
various stent scenarios on scalar attributes over time. The main drawbacks are the limited number
of depicted time steps and the lack of presenting quantitative information. Tominski et al. [368]
visualized spatio-temporal data on maps by using the sides of pencil and helix icons. However, this
requires manual rotations to perceive correlations between scalar attributes visually.

To overcome limitations of existing methods, the MuScaVis module combines information and
scientific visualization techniques organized in multiple coordinated views. Brushing and linking
techniques aid the user to study risky correlations. We use a GPU-based implementation of statistical
plots to show the temporal behavior of scalar data with interactive frame rates between different
data sets. Thus, a comparison of data sets is enabled. Moreover, the generation of the 2D aneurysm
map is extended to fusiform aneurysms. Besides, we present a novel 2D plot providing a temporal
overview about correlations between multiple scalar attributes instead of depicting just a single
quantity [427, 434]. For a more detailed analysis of attribute correlations on a specific surface region,
we introduce a checkerboard visualization and provide novel glyphs to show the temporal behavior
of scalar data. The checkerboard approach overcomes the reduced ability of a quantitative analysis
using image-based hatching [439]. Compared to the glyphs by Tominski et al. [368], we combine
cylindrical glyphs with disk-shaped glyphs that do not require manual rotations. Moreover, we extend
the clustering by Glaßer et al. [132] to multiple time-dependent attributes to identify heterogeneous
and homogeneous surface regions.
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6.2.1 Requirement Analysis

A relevant aspect of the estimation of the rupture risk is to compare ruptured and non-ruptured cases
according to morphological and hemodynamic characteristics. Based on this, optimal treatment
advice has to be made. Since, it is still unclear, which attributes and correlations between them
promote rupture, the physicians investigate color-coded attributes, e.g., WSS and pressure, on the
aneurysm surface. Of particular interest are blebs. Besides, the homogeneity of attributes within
regions is explored, since strongly varying quantities may indicate endangered regions. To analyze
the data over time, animations are utilized, whereby only one attribute is encoded at a time. Exploring
a single time step is not sufficient because it is not known at which point in the cardiac cycle the
rupture risk is maximum. However, the time-dependent behavior of the data further enhances the
manual exploration effort.

The goal is to tailor a visualization module such that experts can efficiently analyze scalar attributes
over the cardiac cycle. The physicians stated that an overview of existing attributes and their possible
correlations would facilitate in-depth research of specific surface regions. Furthermore, they wished
to have the possibility to explore selected surface regions. With this, vessel wall changes such as
blebs could be investigated in detail to assess the rupture probability in these regions.

Besides this, aneurysm stenting leads to different scalar quantities on the wall. Furthermore,
different stent locations are possible, where the physicians have to decide on the best choice. For this
purpose, techniques are needed that visualize differences of scalar quantities before and after stenting
as well as a comparison of different stent scenarios. Related to this is the visualization of differences
between ruptured and non-ruptured data sets. This is important to identify rupture-prone attribute
thresholds, which might lead to a more reliable risk assessment. In addition to the seven more general
requirements in Section 5.1 and others in Section 6.1.1, we summarize further requirements for a
simultaneous exploration of multiple scalar fields on the aneurysm surface:

Req. 11 A V I S UA L OV E RV I E W S H O W I N G AT T R I B U T E C O R R E L AT I O N S OV E R T I M E .
A simplified representation of existing scalar fields is needed that enables fast analysis of possible
attribute correlations over the cardiac cycle.

Req. 12 A C L U S T E R I N G S H O W I N G H O W H O M O G E N E O U S R E G I O N S A R E . A time-
dependent clustering of scalar attributes should be provided to be able to analyze the homogeneity of
attributes within specific surface regions.

Req. 13 V I S UA L I Z I N G T H E C H A N G E O F AT T R I B U T E S OV E R T H E C A R D I AC C Y C L E .
Quantitative and qualitative visualizations are needed that show the temporal behavior of selected
attributes.

6.2.2 General Structure

The MuScaVis module consists of four equally-sized linked views. The first view comprises a novel 2D

plot that shows existing attributes and their correlations over the cardiac cycle (see Section 6.2.4).
In the remaining views, the aneurysm data is presented animatedly, representing the cardiac cycle,
where the animation time is consistent between the views. The second view shows the scatterplots
and histograms of scalar attributes (see Section 6.2.5). The third view presents a 3D aneurysm
visualization, whereas a 2D aneurysm map is displayed in the fourth view (see Section 6.2.6). On the
map, glyphs can be activated showing the temporal behavior of selected scalar attributes. Separating
the visualizations into different views avoids occlusion problems. Since the simultaneous observation
of three animated views is cognitively demanding, we propose two workflows, one for risk assessment
and one for treatment planning, see Section 6.2.8. These each contain a default order in which the
views should be used. In the following, the individual views and their interactive connection is
described in more detail. First, the calculation of the 2D aneurysm map is explained, since some of
our visualization techniques are based on this representation.
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6.2.3 Calculation of the 2D Aneurysm Map

The previously used LSCM approach [224] to generate the aneurysm map suffers from distortions, and
manual user inputs are needed to define constraints. Therefore, we improve the map generation for
saccular aneurysms in the MuScaVis. Besides, existing approaches can only handle saccular aneurysms,
which occur more frequently in cerebral arteries. In contrast, we integrated a mapping, which can also
handle fusiform aneurysms, which occur more frequently in cardiac arteries. Similar to our previous
approach, the map generation is based on the 3D aneurysm surface part, separated from the parent
vessel. In the following, we describe the mapping for both aneurysm shapes.

Saccular Aneurysm Mapping

First, the aneurysm is isolated from the parent vessel geometry by using our automatic ostium detection
method, recall Section 5.5.1. Instead of using the LSCM approach [224], we employ the spectral
conformal parametrization (SCP) [262], another frequently used angle-preserving parametrization
technique. Similar to LSCM every point pi ∈ R3 on the aneurysm surface part is mapped to a point
ui ∈ R2 in the plane. We need an angle-preserving map, as we want to display a checkerboard
texture on the 2D map to explore two attributes simultaneously and then project this onto the 3D

surface. Using an area-preserving map would result in less length distortion, but the 90 ° condition at
the corners would not be held.

In contrast to the LSCM, SCP parametrizes the mesh without constraints. It tries to optimize the
boundary of the mesh such that the mapping leads to appropriate results. Unfortunately, length
distortions are inevitable. To reduce distortions, we further process the vertices on the 2D domain
according to Zayer et al. [421]. They are iteratively moved such that the length distortion is reduced
by holding the conformal condition. The one-time necessary computation of the map takes between
1.1 and 6.8 s on a standard desktop computer, depending on the number of triangles, recall Section 5.2.

Fusiform Aneurysm Mapping

The principle idea of the fusiform mapping is to determine cylindrical coordinates that represent
the cylindrical aneurysm shape. Our parametrization was inspired by a geodesic parametrization
approach [296] and the straightening approach developed by Angelelli and Hauser [13]. According to
parametrization approaches in the field of colonoscopy [428], two works are related to the flattening of
fusiform aneurysms [142, 144]. These are the only ones that just need the mesh as input. Nevertheless,
for the flattening of the surface mesh the end regions need to be cut open to generate a genus 1 mesh.

In contrast, our algorithm works semi-automatically without additional user-input. Angelelli and
Hauser [13] employed the vessel centerline and created consecutive planes along the centerline.
Vertices on the vessel mesh between these planes need to be identified and the space defined by these
planes is transformed such that the vertices are stacked. Contrarily, we generate the vessel skeleton
with the method by Au et al. [20], where every point on the skeleton corresponds to vertices on the
original mesh. With this, we can easily straighten the skeleton and apply the same transformation to
the corresponding vertices on the mesh, see Figure 40. For this, we define a direction, e.g., (1, 0, 0) as
height direction. Afterward, we start with an endpoint of the skeleton and determine the consecutive
tangent vectors along the skeleton. For every point on the skeleton, we use the previously defined
tangent vector and rotate it such that it coincides with the direction vector. The same transformation
is applied to the corresponding mesh vertices, which results in a straightened vessel. For every vertex
on the straightened vessel, we determine the height and angle, resulting in cylindrical coordinates.
Afterward, the user needs to define the beginning and end of an aneurysm by clicking on the surface.
The part between the selected vertices is extracted by considering only this part, whose height is
between them. Afterward, we roll the part out, see Figure 41. The generation of the fusiform maps
takes between 4.3 and 9.6 s due to the thinning operation. Note that we encountered only fusiform
aneurysms without furcations, which results in just two endpoints. In case of furcations, we could ask
the user first to select the beginning and the ending of an aneurysm to detect the correct part on the
skeleton, which can then be used for the straightening.
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Figure 40: Parametrization of a fusiform aortic aneurysm (C2). On the 3D mesh, a thinning operation is
performed. Then, edges are collapsed resulting in the skeleton. A straightening approach leads to a
cylindrical shape of the aorta, which yields the height and the angle for the parametrization. (Image
from [432] © IEEE 2019.)

Figure 41: Unfolding of a parametrized cerebral fusiform aneurysm (C3). The user selects two points on
the surface defining the aneurysm start and end region, where the height is color-coded by a dark
blue-to-yellow color map. Then, the aneurysm part is unfolded, where here the angle is color-coded.
(Image from [432] © IEEE 2019.)

6.2.4 Multi-Field Correlation Analysis using the Circle Plot

In clinical routine, the BEP [286], is a commonly used 2D plot to visualize quantitative perfusion data
of the left ventricle at a glance. Since clinicians are used to the representation by round plots, we
developed a 2D circle plot presenting possible correlations between scalar attributes over the cardiac
cycle, see Figure 42. The plot presents an analogy to a clock, which is reasonable to depict periodic
time-dependent data. With this, interesting surface regions and time steps according to occurring
scalar values can be detected without an exhausting exploration in 3D using animations.

For this purpose, the plot area is decomposed into T equal parts, where T is the number of acquired
time steps. Based on the design of a clock, the first time step starts at 12 o’clock; the direction is
clockwise. Due to a large number of time steps (up to 93 in simulated data), the user can reduce
the number of presented time steps. In Figure 42, every third time step is used. This is a reasonable
simplification since the scalar changes between two time steps are quite low for such a high temporal
resolution. It would also be possible to use the median or average of three time steps, but such metrics
led only to minor changes in our data sets. Then, each of these sectors is subdivided into S equally
large segments along the radius r, where S is the number of scalar fields in a data set. A legend in the
top left corner shows the order of the scalar fields along the radius, where each quantity is represented
by the first three initial letters.

In the center of the plot, a 2D map is shown, which is subdivided into five colored regions. Each
aneurysm vertex is assigned to one of these regions. Moreover, the expert can manually define a
threshold for each scalar field. If there is an aneurysm vertex, where the current scalar value is greater
than or equal to the threshold, the corresponding temporal plot region is colored to the vertex’s region
color. For example, at T24, within the red region, there is lower stress according to Mises than the
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Figure 42: Circle plot to show attribute correlations. (Image from [432] © IEEE 2019.)

defined threshold (no red area on the inner segment), but the WSS and pressure exceed the selected
thresholds. In case that more than one map region fulfills the threshold conditions, the corresponding
plot segments are further subdivided.

Region Division

As an entry point for exploration, we define an initial region division. For saccular aneurysms, we
divide the map into five regions with a similar surface area, see Figure 43a. One region should
represent the aneurysm dome (red area) since this is a rupture-prone area. Around the dome, we
generate four more regions. First, we need a target area for each region given by 15AAneu, where
AAneu is the total aneurysm area. Second, we extract the vertex with the largest geodesic distance
from the boundary, i.e., the dome point, using the heat method [78]. From the dome point, we look for
a geodesic distance such that the inscribed area approximates the target area. The geodesic distance
can be determined with the golden-section search [183]. The engraved area yields the first region
R1. Then, we use a sweep line from left to right, concerning the coordinates of the 2D map. Again,
the golden-section search yields a position such that the remaining area is divided in half. For each
half, we search for the horizontal line such that both areas approximate the target area. This yields
region R2,R3 for the left part and R4,R5 for the right part. For fusiform aneurysms, six regions are
generated based on the rectangular shape of the 2D map, see Figure 43b. Based on the cylindrical
coordinates, two regions are placed along the angle, and three regions are defined along the height.

Plot Interaction

There are different options to interact with the circle plot. Initially, the thresholds for each scalar field
are set to one-third of the corresponding range. If a threshold is changed, the coloring of the plot
segments is updated in real time. This immediately shows if there is a wall region that fulfills the
selected threshold conditions. Moreover, the user can brush individual regions on the 2D map or the
3D surface, where a ’C’ is rendered in the plot center to indicate the ’Custom’ region brushing. The
aneurysm in Figure 44 exhibits multiple blebs that are brushed. Here, low wall thickness and WSS, as
well as increased pressure, are selected as thresholds. Only the blueish region fulfills all conditions,
which indicates a possible rupture-prone area. To explore this region in more detail, the plot segments
can be selected, where the selected segment is highlighted. Then, the animation time is set to the
selected time step and a contour rendering is activated on the 2D map and the 3D surface to uncover
the chosen scalar field.
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(a) Saccular regions. (b) Fusiform regions.

Figure 43: The region division for saccular (a) and fusiform (b) aneurysms. (Images from [432] © IEEE
2019.)

Figure 44: Brushing of morphologically suspicious regions of C12 used to color the plot. Here, low wall
thickness and WSS, as well as increased pressure, are selected as thresholds, which comply with the
bluish bleb. A contour rendering is activated for a chosen plot segment. (Image from [432] © IEEE
2019.)

6.2.5 Multi-Field Correlation Analysis using Statistical Plots

The second view shows a matrix-based visualization that enables a comparison of data sets (Req. 3).
Each entry of the matrix represents a combination of two scalar fields, see Figure 45 Statistical plots
are shown that give an overview of the distribution of scalar quantities. Thereby, the upper triangle
matrix represents the first case, e.g., a non-ruptured case. In the lower triangle matrix, another case
can be loaded, e.g., a ruptured aneurysm. In the remaining views, only the first case is visualized to
reduce the visual complexity.

The non-diagonal entries of the matrix present scatterplots for each scalar field combination. The
diagonal entries are used for a histogram that shows occurring values of the corresponding scalar
field. To show the histograms for both data sets, the diagonal entries are split and display on top
the histograms of the first case and below the values of the second case. By default, we used five
equally-sized bins for the histogram, where the user can change the number of bins. Besides the
distribution, each plot shows the density of an attribute combination using a yellow-to-blue color
scale. For this, a counter for each plot pixel is increased when the corresponding combination occurs.
Blueish regions indicate often occurring values, whereas yellow areas represent values that occur only
in few regions. To ensure comparability between the two data sets, statistical plots showing the same
combination between the upper and lower matrix, e.g., the top right entry and bottom left entry, are
depicted within the same attribute range. The attribute range depends on the minimum and maximum
values of the respective scalar fields of both data sets. During the animation, the plots are updated to
show the temporal development of the scalar distributions.



6.2 M U S C AV I S - M U LT I P L E S C A L A R F I E L D V I S UA L I Z AT I O N M O D U L E 107

Figure 45: Statistical plots to analyze attributes. For each combination, a density plot and histograms are
drawn, where the upper and lower triangular matrix represent different cases. (Image from [432]
© IEEE 2019.)

Moreover, the user can switch between a global and a local scatterplot. The global plot shows the
scalar distribution independent from the view direction. The local plot shows only the visible data of
the current 3D scene. This allows a local examination of specific surface regions such as blebs.

Comparative scatterplots. Comparing two cases requires to mentally rotate the plots in the lower
triangular matrix around 90 °. To further facilitate such comparisons, the plots in the non-diagonal
entries of the lower matrix can be transposed. Figure 46 shows this for the combination of WSS and
pressure for an aneurysm before (upper matrix) and after treatment (lower matrix). The first image
represents the second entry of the first row in the matrix and the second image represents the bottom
left matrix entry. Activating the transposed view flips the scatterplot orientation of the bottom left
matrix entry, where the axis labels at the matrix sides stay the same. Then, the scatterplots before and
after treatment have the same orientation, which facilitates their comparison. Moreover, a difference
visualization can be activated showing changes between the cases using a gray-to-red color scale, see
Figure 46d. For this purpose, the lower matrix entries are used. High attribute values represented by
red areas do not longer exist after stenting since there is a positive difference. Only smaller values
represented by white-to-gray areas exist after stenting. With this, the expert can immediately see if
attribute values could be reduced by using a specific stent configuration. Deactivating this rendering
reloads the original scatterplots of the second case. In case that more stents were simulated, the user
can select which scenario should be presented in the upper and lower matrix to compare the results.

6.2.6 Multi-Field Analysis on the Aneurysm Surface

The 3D and 2D aneurysm visualizations provide a detailed exploration of high-risk wall regions over
time. To create a spatial correlation between both views, the ostium contour is highlighted. In case
of post-treated data, we provide a depiction of existing stent configurations, see Figure 47. In the
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(a) Without stent (b) With stent (c) Transposed with stent (d) Difference between without and
with stent

Figure 46: Scatterplot-based comparison of WSS and pressure before (a) and after stenting (b). The user has
the possibility to invert the scatterplots of the lower triangular matrix (c) and to activate a difference
visualization that highlights changes after treatment (d). (Images from [432] © IEEE 2019.)

Figure 47: In the case of post-treated data, the stent geometry is visualized within the 3D vessel surface.
(Image from [432] © IEEE 2019.)

following, we explain several techniques to analyze two scalar attributes simultaneously on the 2D

map as well as on the 3D surface to investigate possible rupture-prone correlations.

Attribute Visualization using a Checkerboard Visualization

The hatching approach, described in Section 6.1.4, discretizes the data range into four patterns, which
restricts the quantitative analysis of the scalar field. To avoid this, we developed a checkerboard
visualization that allows a simultaneous exploration of two attributes by generating a linear transition
between them, see Figure 48. For this, we divided the 2D map into a grid of size numx ×numy,
where numx,numy yield the number of cells in x- and y-direction, respectively. As a default, we set
numx = numy = 20, but the user can adjust these values. Additionally, we provide a slider ranging
from γ ∈ [−1, 1], emphasizing the first or the second field, see Figure 48. Setting γ = −1 shows the
first scalar field only, if we set γ = 1 only the second quantity is displayed. The continuous value γ
provides a smooth transition between both states, where γ = 0.0 results in an equal distribution of
both fields. Algorithm 1 presents the pseudo-code for the checkerboard depiction.

Attribute Visualization using Glyphs

As we deal with time-dependent data, the attributes on the aneurysm change during the cardiac cycle.
Using the bar charts, recall Section 6.1.3, a third scalar field could be explored over time. However,
they do not allow to perceive the temporal behavior of two attributes at a glance. The user has to
watch an animation over the cardiac cycle. To improve this, we employ 3D violin surfaces to show
the temporal behavior of up to two attributes, which are inspired by the pencil glyphs [368]. We
create a cylinder with a fixed number of points for the radius and the height, see Figure 49. The first
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Figure 48: Two visualization techniques showing two scalar fields on the 3D mesh and the 2D map. Left,
WSS is represented by hatching and the wall deformation is color-coded. Right, a checkerboard
visualization shows the WSS by a light purple-to-dark purple scale and the wall deformation by a
yellow-to-green color scale. The corresponding γ-values are presented below. (Images from [432]
© IEEE 2019.)

attribute is depicted using a yellow-to-green color scale. For visualizing the second attribute, every
point of the cylinder is shifted along the normal such that the radius corresponds to the specific scalar
value. A disc indicates the current time at the corresponding glyph height. Figure 49 (left) shows an
example, where the WSS is encoded by color and radius, where the right glyph encodes WSS by color
and pressure by the radius. The glyphs are placed on the 2D map at regular grid points using OpenGL

instance rendering. For the sampling rate, we use 10 % of the map’s extent in x- and y-direction.
Additionally, the user can add glyphs at specific regions by clicking on the map to analyze quantities
at different points.

Attribute-Based Clustering

To more easily detect regions of interesting attribute combinations, we provide a clustering scheme
that results in surface regions with similar scalar values. In contrast to Glaßer et al. [132], who defined
a fixed combination of WSS and wall thickness for a single time step, different combinations over time
are possible. In our module, we list the given n attributes, noted here with s1, s2, . . . , sn. To support
the process of combining attributes for clustering, we assist the experts with different facilities. First,
the expert can set individual weights w1,w2, . . . ,wn for each attribute. Initially, we use wi = 1

n .
Based on the selected weights, an overall scalar vector S is determined for every vertex i:

Si =
(√
w1s1(i)

√
w2s2(i) . . .

√
wnsn(i)

)T . (11)

Furthermore, attributes can be normalized to the range [0, 1], which is activated as a default value.
Moreover, some quantities might be more interesting if low values occur instead of high values,
e.g., wall thickness. The expert may rather be interested in a cluster that exhibits high WSS and low
wall thickness, cf. [132]. For this purpose, an attribute si can be inverted, where si is changed to
s ′i = (maxx si(x)) − si.

To identify surface regions with similar scalar values during the cardiac cycle, we incorporate the
temporal component of attributes into the clustering. Based on the surface mesh, composed of vertices,
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Algorithm 1 Pseudo-code for the checkerboard. Input parameters are γ, pos.xy the position of the
fragments, xmax the maximal x value in the map (analogous y andmin), and numx,numy.� �
x:=(pos.x-x_min)/(x_max-x_min)*num_x;
y:=(pos.y-y_min)/(y_max-y_min)*num_y;

f_x:=floor(x); rem_x:=x-floor(x);
f_y:=floor(y); rem_y:=y-floor(y);

if(γ<=0.0 && mod(f_x, 2.0)==0.0)
if(rem_x>1.0+γ/2 || rem_x<-γ/2)

f_x=1.0;
if(γ<=0.0 && mod(f_y, 2.0)==0.0)

if(rem_y>1.0+γ/2 || rem_y<-γ/2)
f_y=1.0;

if(γ>0.0 && mod(f_x, 2.0)==1.0)
if(rem_x>1.0-γ/2 || rem_x<γ/2)

f_x=0.0;
if(γ>0.0 && mod(f_y, 2.0)==0.0)

if(rem_y>1.0-γ/2 || rem_y<γ/2)
f_y=1.0;

if ((mod(f_x, 2.0)==0.0 && mod(f_y, 2.0)==0.0) ||
(mod(f_x, 2.0)==1.0 && mod(f_y, 2.0)==1.0))

show(Scalarfield1);
else
show(Scalarfield2);� �

Figure 49: The glyph-based depiction of time-dependent scalar fields by deforming a cylinder. The gray disc
shows the current time step, where the lower end of the glyph represents t0. Left, the glyph’s color
c and radius r represent the WSS. Right, WSS is color-coded, and r visualizes pressure. (Image
from [432] © IEEE 2019.)

we use a graph structure with edge costs. We follow an approach that resembles region growing-based
segmentation where a seed point is used to initiate a growing process. While in image segmentation
one structure is segmented by accumulating neighboring pixels that fulfill a condition, we apply this
method to different parts of the data, effectively partitioning it like a clustering. As input, a weighted
adjacency matrix is used. Besides region growing, more advanced clustering techniques such as
hierarchical methods [103] or spectral clustering [345] could be used. However, these approaches
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Figure 50: For a start vertex i at time t1 the matrix W is used for region growing. Here, (‖Si(t1) −
Sj(t1)‖) < θ, (‖Si(t1) − Si(t2)‖) < θ, and (‖Si(t1) − Sj(t2)‖) < θ hold, thus, these vertices
are included into the cluster of vertex i at time t1. (Image from [432] © IEEE 2019.)

need a full matrix, containing the pairwise similarity values for all vertices. On average, the aneurysm
surface part in our cases consists of 5000 vertices and up to 93 simulated time steps. The resulting
similarity matrix would have been the size of n · T ×n · T , with n the number of vertices and T the
number of time steps. This would take more than 800GB of memory. Using the region growing, a
sparse matrix can be calculated, comprising 11-13MB. First, we explain how to apply the clustering
on the surface within a fixed point in time t. The adjacency matrix A is constructed by:

Aij =

{
1 if (i, j) ∈ E
0 otherwise .

(12)

Here, E denotes the edges; thus, A is one for adjacent vertices i, j. Using A and a seed point, region
growing is applied. For start point selection, we sort the vertices according to ‖Si(t)‖, where Si is
the overall scalar vector, cf. Equation 11. The vertex i with the lowest ‖Si‖ is used as a seed point.
Then, all vertices j that are adjacent to i are determined using A. If (‖Si(t) − Sj(t)‖) < θ holds, the
vertex j is incorporated into the current cluster, where θ is a pre-defined threshold. This is repeated
until no more adjacent point exists that is below θ. Then, the next point from the sorted list that was
not yet visited is used as a new seed point. For θ, we use the average of ‖Si(t) − Sj(t)‖ for all point
pairs on the surface. Significantly higher values result in tiny clusters, where much lower values result
in quite large clusters with a broad distribution of scalar values within a cluster. However, the user
can adjust θ.

To extend the method to time-varying data, we construct a temporal adjacency matrix W. The
matrixW is of size n · T ×n · T . Then,W is of the form:

W =


A Id

Id A Id
. . . . . . . . .

Id A

 (13)

with repetitive matrices A along the diagonal blocks (T times) given in Equation 12 and the identity
matrix Id (n×n) on the off-diagonal blocks. By constructingW, for a fixed point in time it is simply
the adjacency matrix, but changing the time from ti to ti+1 only identical vertices are connected
for the underlying graph, see Figure 50. With this, the sparse matrix can be generated. Then, if
(‖Si(tk) − Si(tk+1)‖) < θ holds, the vertex i at time tk+1 is incorporated into the current cluster.
The clustering yields non-overlapping regions, where each surface point is assigned to a cluster. It
takes between 3.5 and 15 s, depending on the number of vertices and time steps. Figure 51 shows
exemplary results for three time steps t1, t2, and t3, where the stress of Mises and WSS is clustered
using w1 = w2 = 0.5. To assess the homogeneity of regions, for each cluster ci a risk factor
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Ri =
1

#ci

∑
j∈ci ‖Sj‖ is determined, where #ci is the size of the cluster. Then, Ri is color-coded

using a light yellow-to-red color scale. Inhomogeneous regions show a larger number of clusters
with strongly varying risk values, whereas homogeneous regions exhibit fewer clusters with similar
risk values. For clustering, we averaged the edge weights of every cluster and used this value to
color-code the cluster results. Note that we also weighted the edge weights with their length, but we
could not see any difference.

Figure 51: Clustering results for three time steps t1, t2, and t3. Here, the stress of Mises (top) and WSS
(middle) is clustered with w1 = w2 = 0.5. The resultant risk factor Ri is color-coded for each
cluster (bottom). The black contours show the cluster borders. (Images from [432] © IEEE 2019.)

6.2.7 Brushing and Linking

The analysis of scalar quantities requires brushing and linking facilities that allow the user to
explore the aneurysm morphology in interesting regions. In case the scatterplot shows interesting
combinations, the expert may analyze the morphological attributes in 3D or on the 2D map. Therefore,
the user can brush regions in the scatterplot, which are highlighted immediately on the 3D surface and
2D map, see Figure 52. The brush radius can be controlled with the mouse wheel. The user can also
mark regions on the 3D surface or the 2D map and the corresponding regions in the other views are
highlighted. Thus, linking between the scatterplot, the 2D map, and the surface mesh is simplified.

For more quantitative evaluation, statistical diagrams can be activated, see Figure 53. A diagram is
rendered for each attribute and shows the minimum, maximum as well as mean value of the brushed
points over time. Moreover, the areas of the 25 % and 75 % quantile are highlighted. For scalar values,
the overall mean value per attribute and variance is shown. This quantitative region analysis can also
either be activated for a user-selected cluster, where the clustered attributes are depicted, or a selected
region in 2D or 3D based on the discretized color scale.
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Figure 52: Brushing to detect interesting regions. The expert marked a thin wall region with high pressure in
the scatterplot (light brown area). The corresponding regions are emphasized by a yellow-to-dark
brown color scale on the 3D mesh and the map. (Images from [432] © IEEE 2019.)

6.2.8 Evaluation and Results

The evaluation comprises three parts, where eight experts participated forming three expert groups
(EG). EG1 comprises four doctors P1 to P4 (10, 13, 18, 25 years experience in radiology). Two CFD

engineers, P5 and P6, who deal with flow simulations of IA (five and eight years of experience) form
EG2. EG3 consists of two experts for medical visualizations P7, P8 (four and six years of experience).
First, we presented the interactions and explained definable user values, e.g., the slider and number of
grids using an exemplary data set. Based on this, a case study was carried out with EG1 for different
cases. Then, we asked all EG’s to fill out a questionnaire to assess the suitability of our visualizations.
For this, different exemplary data sets are presented to EG2 and EG3, since they did not participate in
the case study. EG2 was also asked whether the distribution of attributes regarding physical plausibility
can be perceived, as this is an important task of CFD experts, recall Section 5.1. Finally, we compared
our visualizations to related methods dealing with the simultaneous exploration of multiple attributes.

Case Study

Our main goal is to improve risk assessment and treatment decision. To evaluate if the MuScaVis

module fulfills this, a case study was performed focused on saccular aneurysms, see Table 1. Fusiform
aneurysms are usually treated surgically due to occurring symptoms. So, in the past, the assessment
of flow data played a minor role. More recently, medical studies investigated endovascular treatment
options for fusiform aneurysms [253, 259], which could be an alternative to surgical interventions.
However, also more complications occurred, as current stent designs seem not to be optimal for
fusiform aneurysms. Thus, improving treatment is an active research area. Since we have no treated
data of these aneurysms, we asked for the usefulness to be able to handle fusiform aneurysms. The
experts appreciated this since soon simulations of treated cases will be available, where the 2D map
would simplify data analysis.

First, we asked EG1 to assess the rupture risk and treatment necessity based on morphological
features for 13 data sets (C9 - C13 and C19 - C26). They were not aware of the condition (ruptured or
not). Low risk was estimated for two smaller (diameter 6 7mm), morphologically inconspicuous,
non-ruptured aneurysms (C9, C10), see Figure 53 (top row). For C11, the doctors were unsure. Only
considering the diameter (8mm), they advised to treat, but no blebs were existing, so it could also be
observed first. The remaining five non-ruptured cases (C12, C13, C23 - C25) are considerably larger
(about 10mm), where three of them have blebs, so the doctors advised to treat them. They predicted
an increased risk for the ruptured cases C21, C22 and C26 due to blebs. For two cases, they were
again uncertain, as C19 has a similar size and less risky appearing morphology to C11. C20 is even
smaller (5.3mm), see Figure 53 (bottom row), but its morphology seems a bit more conspicuous
than, e.g., C10. But the doctors stated that such cases could also be observed for a while.
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Then, the MuScaVis module was used for exploration, where we observed two workflows, one for
risk analysis and one for treatment assessment. Risk analysis was explained as highly important for
low-risk appearing aneurysms, having a small size or at least no blebs such as C9 - C11 or C19 - C20.
The goal is to find high-risk attribute correlations on the more harmless appearing surface. For this
purpose, the circle plot was used first to identify time steps that show interesting characteristics. The
plot was also described as useful to decide which attributes would be meaningful for the clustering.
Then, the scatterplots and histograms are used to explore scalar distributions, since colored regions
in the plot could represent singular outliers. Moreover, they brushed regions on the map, where
the glyphs show increased WSS and pressure values. Then, they activated the statistical diagrams
to analyze the brushed regions more quantitatively. Also, the checkerboards are used to analyze
attributes. We observed that the experts set γ = 0 and set the number of cells numx = numy = 25.
Here, the spoken comment of P4 was that he first searches for abnormalities of two quantities. Then,
setting γ = 1 and γ = −1 helps to get an impression of the regional behavior of the attribute. With
this, increased pressure values are detected in the dome region, which was the rupture site of C20,
see Figure 53 (bottom row). So a risk analysis based on morphological criteria was not appropriate.
However, C10 has similar WSS at the ostium region, which could also be a rupture-prone area. Similar
areas were found for C11 and C19, so the experts get more certain that these cases are more risky,
where they were able to detect the rupture site of C19. For C9 no similar regions were found, so the
experts maintained their opinion of a smaller risk.

For risky appearing aneurysms, the treatment workflow follows. Here, the experts focused their
analysis on regions, where they already assume a higher risk. These regions are brushed on the
surface, and then the circle plot was used to analyze correlations. They selected regions within the
plot and used the matrix view to investigate attribute distributions before and after treatment. They
assessed how the scalar distributions are changing depending on the selected stent. If there is no clear
changing of, e.g., the pressure, the selected stent or its location is probably not appropriate to prevent
aneurysm inflow. For C26, four different stent configurations were simulated, where the experts
decide for the fourth scenario to be the best, which is explained in the last paragraph of this section.

Figure 53: Two aneurysms with a size of 2.8 mm (top) and 5.3 mm (bottom) that were assessed as less
rupture-prone based on morphological features. The first aneurysm (C10) shows suspicious regions
with an increased WSS. The second aneurysm (C20) ruptured at the dome, where a high pressure
occurs. (Images from [432] © IEEE 2019.)

Expert Feedback

After the case study, the experts were asked to fill out a questionnaire about the visualizations and
their medical relevance. Besides questions about remarks and desired features, there were questions
that could be ranked using a five-point Likert scale (−−,−,◦,+,++). Meanwhile, we noted their
spoken comments, which are summarized in the following. The questionnaire comprises the following
aspects.
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Medical relevance. The first aspect considers the subject’s opinion about the importance of analyzing
different attributes on the aneurysm wall to assess its state. Then, we inquired if changes of specific
attributes before and after stenting influence the stent position. Moreover, we asked if the analysis of
attributes between ruptured and non-ruptured cases is important to better understand the rupture risk.

Circle aneurysm plot. Here, we asked if the initial division of an aneurysm into regions is appropriate
to get an overview of the data. Then, we inquired if the interactive updating of the plot based on
user-selected thresholds supports a fast identification of interesting attribute correlations. In addition,
the participants were questioned if the brushing of own regions allows a focused investigation of
morphologically conspicuous wall regions.

Checkerboard visualization. Here, we inquired the suitability of the checkerboard visualization to
analyze two attributes simultaneously. Moreover, we asked whether the slider and the subsequent
change of the chessboard size is understandable.

Glyph-based visualization. Due to the importance of the time-dependent data exploration, we asked
if the cylindrical glyphs are appropriate to depict the temporal behavior of two selected attributes.
Next, we asked whether the manual adding of glyphs supports the analysis at specific regions.

Brushing facilities. We inquired if the brushing on the map helps to establish a spatial correlation
between the 2D and 3D view and to detect suspicious regions in 3D. Besides, we asked whether the
brushing on the scatterplots allows identification of rupture-prone regions on the 3D surface.

Statistical visualizations. Concerning the statistical visualizations, we asked if the scatterplots
support the exploration of parameter correlations. Then, we inquired if the depiction of the scatterplots
between different data sets helps to assess treatment success and rupture risk. Moreover, we asked
whether the histograms provide an overview of the distribution of attributes.

Attribute-based clustering. Finally, we inquired the suitability of the attribute clustering. Here, we
asked if the clustering supports the exploration of different attributes. Next, we asked whether the
color-coding of the cluster results allows a visual perception of high-risk regions and if it allows
a visual differentiation between regions with low and increased risk. Besides, we inquired if the
clustering allows detecting homogeneous and inhomogeneous regions.

R E S U LT S . The user study was performed on a standard desktop computer with an Intel Core i5
with 2.8GHz, 16GB RAM, and an NVidia GeForce GTX 1080 Ti. For all data sets, we achieve a
real-time performance of approximately 40 FPS, except for the initial calculation of the 2D map. The
attribute clustering takes between 1.5 and 12 s, depending on the number of triangles and time steps,
recall Section 5.2. For the interpretation of our pre-defined Likert score categories, we provide the
number S(·) of experts who chose the individual classes. The overall result of the empirical evaluation
is shown in Figure 54.

Medical relevance. All domain experts, especially the radiologists emphasized the importance of
analyzing different scalar fields on the aneurysm wall to assess the aneurysm’s state (S(++) = 5;
S(+) = 3). Moreover, they stated that changes of specific attributes such as the WSS before and after
stenting would influence the stent position (S(++) = 4; S(+) = 4). Besides, they described the
analysis of attributes between ruptured and non-ruptured data sets as important to better understand
the patient-specific rupture risk (S(++) = 7; S(+) = 1).

Circle aneurysm plot. All participants confirmed that the initial division of an aneurysm into regions
provides a fast overview of the data (S(++) = 3; S(+) = 5). In addition, the interactive updating of
the plot based on user-selected thresholds enables a fast identification of possible attribute correlations
(S(++) = 5; S(+) = 3). Furthermore, all experts commented that the brushing of own regions
allows a focused investigation of morphologically conspicuous wall regions (S(++) = 6; S(+) = 2).

Checkerboard visualization. The suitability of the checkerboard to analyze two attributes simul-
taneously was rated more controversially (S(++) = 1; S(+) = 4; S(◦) = 3). Similar to that, the
understandability of the slider and the subsequent change of the chessboard size was rated with
S(++) = 4, S(+) = 2, S(◦) = 2. P2 and P4 argued that the hatching scheme more directly indicates
possible attribute correlations, whereas the experts needed more time to get used to the checkerboard.
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However, they mentioned that it allows a more quantitative comparison of two attributes, which is
less possible with the hatching. The medical experts could also imagine using two juxtaposed maps,
where each shows one attribute, as doctors are used to combining two views mentally. However, the
other experts described the identification of scalar correlations as difficult using two maps.

Glyph-based visualization. The cylindrical glyphs were perceived as very appropriate to depict the
temporal behavior of two selected scalar fields (S(++) = 5; S(+) = 3). Moreover, the possibility to
manually add glyphs on the map supports the analysis at specific regions (S(++) = 5; S(+) = 3). P8
suggested providing possibilities to filter glyphs according to specific attribute ranges, which would
help to focus on high-risk regions.

Brushing facilities. All participants confirmed that brushing on the map helps to establish a spatial
correlation between the 2D and 3D view (S(++) = 6; S(+) = 2) and it helps to detect suspicious
regions in 3D (S(++) = 4; S(+) = 4). Similar to that, the brushing on the scatterplots allows an
identification of rupture-prone regions on the 3D surface (S(++) = 7; S(+) = 1).

Statistical visualizations. Regarding the statistical depictions, the experts stated that the scatterplots
support the exploration of attribute correlations (S(++) = 7; S(+) = 1). Furthermore, all experts
commented that the depiction of the scatterplots before and after treatment or between ruptured and
non-ruptured data sets helps to assess treatment success and rupture risk (S(++) = 5; S(+) = 3).
Moreover, the histograms provide an overview about the distribution of scalar attributes (S(++) = 5;
S(+) = 2; S(◦) = 1).
Attribute-based clustering. The clustering during the cardiac cycle was described as helpful for the
exploration of different attributes (S(++) = 2; S(+) = 4; S(◦) = 2). P5 and P8 mentioned that a
stronger user integration by providing a selection of interesting attribute ranges would strengthen
the clustering. The color-coding of the cluster results allows a visual perception of high-risk regions
(S(++) = 4; S(+) = 4) and a visual differentiation between regions with a low and increased
risk (S(++) = 5; S(+) = 3). Finally, the experts confirmed that the clustering allows to detect
homogeneous and inhomogeneous regions (S(++) = 1; S(+) = 7).

Comparison with Related Approaches

First, we compared the cylinder glyphs to our bar charts that also show two time-dependent attributes,
recall Section 6.1.3. Then, we compared our circular plot to the pencil glyphs by Tominski et al. [368],
which are designed to show multiple attributes over time. Finally, we compared the MuScaVis module
to the system of van Pelt et al. [442], where flower-shaped glyphs are used to compare the influence of
multiple stent configurations. Informal expert interviews are carried out to investigate if our methods
are more suitable to analyze multiple attributes.

We presented different settings of two attributes to all EGs. They preferred the cylinder glyphs
because the bar charts do not allow to perceive the temporal behavior of the attributes at a glance.
Instead, the animation must always be viewed over the entire cycle to find hotspots. Moreover, it is
difficult to locate the corresponding anatomical position on the aneurysm, since the bar charts are
displayed over the 2D map. The cylinder glyphs can be easily located since they are directly placed
on the map. Furthermore, the experts preferred our circular plot compared to the pencil glyphs [368].
The main criticism of the pencil glyphs was that a lot of manual rotation was required to explore
attributes. It is difficult to find an appropriate camera perspective for more than three attributes, which
complicates the exploration of correlations.

The system comparison was performed for C26, which was also used by van Pelt et al. [442]. It
was virtually stented with four stent configurations. Since the MuScaVis module is focused on the
analysis of scalar attributes on the wall, we disabled the exploration of internal flow structures in the
other system. In their evaluation, two CFD experts were asked to identify the stent leading to lowest
WSS at interesting locations such as the ostium and the additional bleb. We also asked our experts
to perform this task, where we noted their spoken comments. For this purpose, we split them into
two groups, comprising two clinicians as well as one CFD and one visualization expert, respectively.
The first group started with the tool by van Pelt et al. [442] and proceeded with our module. For the
second group, this was performed vice versa.
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Figure 54: The results of the evaluation of the MuScaVis module with color-encoded Likert scores. Each box
represents the answer of one expert: the four left-most boxes depict the physicians, the middle
two boxes show the CFD experts, and the two right-most boxes represent the medical visualization
experts. (Image from [432] © IEEE 2019.)

The feedback of both groups was quite similar. Figure 55 shows exemplary results using the
flower glyphs. All experts criticized the high rotation and zooming effort necessary for the flower
glyphs to detect critical regions. Comparing stents at different surface locations is quite challenging
since the varying radii of the disks only provide indirectly quantitative information. Besides, the
clinicians and CFD experts criticized the restriction to five presented time steps as well as that only
one attribute can be explored. With this, hot spots of fluid-wall interaction can be missed. Due to
these limitations, the experts were unsure about the optimal stent, since configuration 1 and 4 seems
to lead to similar WSS distributions. Figure 56 shows exemplary results using the MuScaVis module for
comparing configuration 1 and 4, where the scatterplots in the lower matrix were inverted. Using our
module, the experts described the decision-making process as much easier, as methods are provided to
explore interesting regions efficiently. The experts brushed the ostium and bleb region and analyzed
the corresponding areas within the comparative scatterplots for different stents. Due to the more
quantitative data representation, the experts were able to observe that configuration 4 more strongly
reduces WSS than configuration 1, which was also described as the best option by van Pelt et al.
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Figure 55: Flower glyphs for different zoom levels to explore C26. (Images from [432] © IEEE 2019.)

Figure 56: The MuScaVis module to visually compare configuration 1 and 4 of C26. (Images from [432]
© IEEE 2019.)

6.2.9 Discussion and Limitations

The evaluation indicates that the MuScaVis module improves risk assessment and decision-making.
All experts stated that they were able to use our module without significant problems and that they
would employ it for simultaneous evaluation of morphological and hemodynamic aneurysm attributes.
After a short explanation of the exploration and navigation features, the participants were able to find
suspicious regions on the surface. The combination of the circle plot together with statistical plots as
well as 2D and 3D views allows efficient exploration of attributes. The physicians were able to perform
a more in-depth analysis leading to different or more certain assessments of rupture risk and treatment
options. Moreover, our methods outperform the pencil glyphs [368] as well as the flower glyphs [442]
to explore scalar data. Furthermore, compared to existing techniques [427, 434], our circle plot
can depict more than one attribute. Since the checkerboard was discussed more controversially,
physicians could imagine using two juxtaposed maps, where each shows one attribute, as doctors are
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used to combining two views mentally. However, the other experts described the detection of scalar
correlations as difficult using two maps.

Limitations. According to the matrix view, the display size determines the number of attributes
that can be visualized. We used a display with a resolution of 2560 × 1440 pixels. With this, up
to five attributes can be depicted so that all four views exhibit an appropriate size. Similar to this
is the number of displayed attributes within a cell of the circular plot. By default, a maximum of
six regions are distinguished, which can be well perceived. Theoretically, the user can brush more
than six regions on the surface, which are displayed within the plot. Then, reading becomes probably
more difficult. In most cases, however, experts are only interested in a few interesting regions, such
as blebs, e.g., to assess whether a specific stent configuration can reduce flow attributes in these
areas. Furthermore, the regular grid of the checkerboard draws the user’s attention more to the
regular pattern than to the data itself, which was discussed by Laidlaw et al. [202] for 2D vector field
visualizations. They suggest to slightly pertubate the regular grid, called jittering. In our case, this
would result in deformed grid representation. In order to check whether this draws attention more to
the data, a perception-based user study would need to be conducted.

Improvements. The experts asked for visual hints that encode distortions between the 2D map and the
3D depiction, i.e., showing a grid in both views. For placing glyphs, the experts suggested a feature-
driven sampling such that glyphs appear where the minimum and maximum values occur [355].
Moreover, P8 suggested filtering glyphs by attribute ranges, which would help to focus on high-risk
regions. It may also be helpful to explore aneurysm data after other treatment options, such as coiling.
This would require visualization of the used coils. According to the clustering, one expert asked for
an overview that shows the progress of the cluster over time. This would allow exploring the extent
to which clusters change over time. Moreover, two experts asked for a stronger user integration by
providing interesting attribute ranges.

6.2.10 Conclusion and Future Work

We introduced the MuScaVis module to explore aneurysms regarding the rupture risk and treatment
planning. For this, we came up with a list of requirements that should be fulfilled. Regarding our
evaluation, the module was considered successful concerning the requirements. Decision-making is
supported by linked views to analyze attribute correlations over the cardiac cycle.

It is assumed that rupture is caused by the combination of different attributes, although little
is known about the exact influence of individual quantities. Through the targeted exploration of
suspicious surface areas, our module supports experts in generating hypotheses on the causes of
rupture. This is especially important for smaller aneurysms, which seem to be morphologically less
dangerous. Besides the time-dependent analysis of attributes, our module allows to compare the
results of treatment options and supports physicians in their decision-making process.

For future work, the physicians proposed a workflow using the clustering for a larger aneurysm
study. They want to explore attribute combinations at known rupture sites. Our clustering could be
used to investigate the currently poorly understood influence of attributes on rupture by systematically
changing their weights. If the clusters remain constant, the changed attribute has probably a lesser
impact. The next steps are to brush regions of rupture and to analyze the data distribution.
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Besides morphological and hemodynamic factors, CFD simulations coupled with FSI can calculate
structural stresses in the vessel walls that influence the aneurysm evolution and rupture risk. However,
the obtained data are very complex. At each vertex on the aneurysm wall, a tensor is calculated,
represented as a 3 × 3 symmetric matrix, that describes stresses within the aneurysm wall. Moreover,
the wall is divided into an inner and outer layer, where for each vertex on both walls a tensor is
available.

Visualizing stress tensors is strongly related to the depiction of DTI data since diffusion tensors are
also represented as a 3 × 3 positive-definite symmetric matrix. Ellipsoids are a common technique to
visualize such tensors, where the eigenvalues and eigenvectors of a tensor are mapped to its shape
and orientation [300]. Sigfridsson et al. [348] presented an approach for visualizing tensor data
by combining DVR of a scalar field and glyphs. While DVR serves as a visual overview, they used
ellipsoids and line-based glyphs to get detailed insights into the data. Westin et al. [405] proposed
a glyph combining a sphere, a disk, and a rod to show the linear, planar, and spherical components
directly. However, ellipsoids cause problems of ambiguity. Thus, Kindlmann [185] introduced
superquadric (SQ) glyphs. SQs improve visual perception as confirmed by Jankun-Kelly et al. [168].
Schultz and Kindlmann [339] extended the SQs for general symmetric tensors. Hlawitschka et al. [157]
used a GPU ray-casting technique to render a large number of SQs in interactive frame rates.

To facilitate the analysis of stress tensors on both wall layers, comparative visualizations should be
used. Gleicher et al. [133] proposed a taxonomy with three major comparative designs: juxtaposition,
superposition, and explicit encoding. Juxtaposition shows objects side-by-side. It is useful if the
comparison is performed within an eye span. Kolesár et al. [195] introduced a more general approach
to generate comparative visualizations. Superposition is an overlay of different objects, whereas
explicit encoding displays relationships between objects. Both techniques are more appealing for
the complex aneurysm data. Similar to our work, Zhang et al. [422] used different SQs to visualize
local differences between two diffusion tensors by combining juxtaposition and explicit encoding.
However, their approach is based on normalized tensor data, which is not possible for our data.

In the previous sections, methods are presented that allow a simultaneous depiction of scalar fields
on the aneurysm wall, including wall thickness, wall deformation, and vectorial blood flow. However,
the analysis of structural stresses without a reduction of the tensor data to a scalar field was not
possible so far. Therefore, we developed the CoTenVis module that visualizes stress tensors as well as
scalar and vectorial parameters describing the aneurysm morphology and hemodynamics. For the
tensor depiction, we evaluated four glyph-based techniques, see Figure 57. These methods enable a
comparative visualization of tensor data between the inner and outer vessel wall, which is essential to
localize rupture-prone regions. Moreover, the suitability of the glyphs to perform specific tasks was
evaluated in a user study with 60 participants, see Section 6.3.3. The glyph visualization is based on a
details-on-demand strategy, facilitating the analysis of local stress configurations. The interactive and
simultaneous exploration of these different information takes place on a 3D aneurysm depiction.

6.3.1 Requirement Analysis

The typical workflow for analyzing FSI data is to reduce the tensor data to a scalar field that can be
examined on the vessel surface. However, the CFD experts consider the exploration of scalar stress
values as not sufficient since rupture-relevant tensor data are neglected. Thus, a visualization of
local stress tensors using the common stress theory of von Mises (see [375]) is needed. This is a
challenging task, as it comprises three directions with corresponding stress values that should be
depicted. Moreover, the stress tensors are calculated on the inner and outer vessel wall, and the experts
would prefer a simultaneous depiction of both tensors to compare their components. It would be
possible to calculate differences between the walls for each component, resulting in each three scalar
fields for the stress values and directions, respectively. Each scalar field could be color-coded on the
surface. To correlate differences, the depictions could be juxtaposed. Then, the user would have to
combine multiple views, which is quite challenging mentally. Furthermore, the experts are interested
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(a) (b) (c) (d)

Figure 57: Comparative visualization of aneurysm stress tensors by using four glyph-based techniques for
C11. In (a) superquadrics and in (b) kite-shaped glyphs show the local tensor on the inner (yellow)
and outer wall (blue). In (c), streamlines indicate the tensor main direction for the inner (yellow,
purple) and outer wall (blue, green). Scatterplots (d) show the distribution of the main directions
within a surface region. (Images from [440] © John Wiley and Sons 2017.)

in exploring changes in the tensor directions over time and along the aneurysm geometry. Besides, a
combined visualization of all quantities would allow localizing foci of dangerous activity (e.g., where
is the stress field homogeneous across the wall thickness and where not). This includes the analysis of
the tensor components within a conspicuous region. Regions with a homogeneous stress field exhibit
only slight changes in the tensor components. Our CFD experts assumed that thin wall regions with a
homogeneous tensor field are less rupture-prone than thin wall areas with inhomogeneous tensor data.
Finally, the manual effort for the time-dependent data exploration should be reduced, since this can be
a time-consuming and tedious process depending on the morphological complexity. In addition to the
seven more general requirements in Section 5.1 and others in Section 6.1.1 as well as in Section 6.2.1,
we summarize further requirements for a comparative tensor visualization on the aneurysm surface:

Req. 13 V I S UA L I Z AT I O N O F M A I N D I R E C T I O N S . Display the main directions of the stress
tensors during the animation.

Req. 14 V I S UA L I Z AT I O N O F M A I N S T R E S S VA L U E S . The corresponding stress values along
the main directions should be depicted.

Req. 15 S T R E S S T E N S O R V I S UA L I Z AT I O N F O R B OT H WA L L L AY E R S . A comparative
depiction of local stress tensors on the inner and outer vessel wall is needed.

Req. 16V I S UA L I Z AT I O N O F D I R E C T I O N D I S T R I B U T I O N . A visualization is needed that
shows the distribution of the stress tensor directions within a surface region.

6.3.2 Glyph-Based Tensor Visualization

This section comprises four glyph designs to depict stress tensors that fulfill the previously defined
requirements. Furthermore, we give detailed explanations about the vessel and the blood flow
visualization that can be combined with the glyph depictions (Req. 5).

Glyph Placement

We use the surface vertices as candidates for the glyph placements. The illustration of well-sized
glyphs on all vertex points simultaneously, independent from the zoom level of the camera, would
lead to visual clutter. Thus, we ensure that neighbored glyphs have a minimal distance. During the
interaction with the surface model, the distance may vary depending on the zoom level. This leads to
a details-on-demand approach, such that glyphs are only drawn at certain regions, and whenever the
user zooms into a region, more glyphs appear.
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For this, a hierarchy of regions on the surface is generated. First, we start with an initial vertex
i1 and determine the geodesic distance following the method by Crane et al. [78]. The heat flow is
integrated by solving the heat equation u̇ = ∆u at i1 for a fixed point in time t using an implicit
Euler integration. Then, the normalized gradient of the heat flow u is determined: X = −∇u/|∇u|.
Last, the instance of the Poisson equation ∆ϕ1 = ∇ ·X is solved, which yields the geodesic distance
from i1. Thus, the first level of the hierarchy consists of the vertex i1 and this vertex is assigned to
all the other vertices, which together form a region (in the first level the whole mesh). Afterward, we
search for the vertex i2 with i2 = argmaxi∈V ϕ1(i), where V encompasses all vertices of the mesh.
Then, we determine the geodesic distances ϕ2 starting from vertex i2. A vertex j is assigned to the
vertex i2, if ϕ2(j) < ϕ1(j), thus the regions of both vertices are defined by means of the Voronoi
area. We repeat this algorithm until the last level of the hierarchy consists of all vertices of the mesh.
Note that in step k the following vertex ik is added:

ik = argmax
i∈V

min(ϕ1(i),ϕ2(i), . . . ,ϕk−1(i)).

The user can set the number of vertices N where a glyph appears. As a presetting, we used 100, 120,
140, 160, 180, 200, 250 vertices for different zoom levels. Moreover, we append six levels including
the 250 representatives and each 60th, 40th, 20th, 10th, 3rd and each vertex, respectively. Figure 58
presents the glyph placement for different zoom levels L including the corresponding surface regions.
The glyphs’ size is adapted to the current zoom level as in [442].

Figure 58: Illustration of the region-based glyph placement for different zoom levels. N represents the number
of glyphs per level, where the size of the glyphs is adapted to the level. For lower levels, the glyphs
appear larger, getting smaller for higher levels. (Image from [440] © John Wiley and Sons 2017.)

Glyph Mapping

This section presents different techniques to illustrate a stress tensor. For the remainder of this
section, we use the following notation: A stress tensor T is a real-valued symmetric 3× 3 matrix:
T ∈ Sym(3). The eigenvectors v1, v2, v3 are ordered such that for the corresponding eigenvalues the
property λ1 > λ2 > λ3 holds. Then, the eigenvectors express the principal stress directions (PSDs)
of T and the eigenvalues the corresponding stress values. Note as T is symmetric, the eigenvalues
are real-valued. Furthermore, the eigenvectors are mutually perpendicular. Besides, λ3 points in the
direction of the surface normal, recall Section 3.5.6. In the following, we describe how we visualize
the eigenvectors and the eigenvalues.

3 D S U P E R Q UA D R I C V I S UA L I Z AT I O N . The conventional method to depict tensors is SQs [185].
Therefore, the eigenvalues are transformed into the Westin’s measure [405]:

cl =
λ1 − λ2

λ1 + λ2 + λ3
, cp =

2 · (λ2 − λ3)
λ1 + λ2 + λ3

, cs =
3λ3

λ1 + λ2 + λ3
. (14)
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Afterward, the glyphs are defined by:

qz(θ,φ) =

cosα(θ) sinβ(φ)
sinα(θ) sinβ(φ)

cosβ(φ)

 , qx(θ,φ) =

 cosβ(φ)
− sinα(θ) sinβ(φ)
cosα(θ) sinβ(φ)

 , (15)

Figure 59: SQ glyph with empha-
sized first PSD. (Image
from [440] © John Wi-
ley and Sons 2017.)

with 0 6 θ 6 2π, 0 6 φ 6 π, and xα := sgn(x)|x|α. If cl > cp
then α = (1− cp)

γ, β = (1− cl)
γ and qx is used. Otherwise,

α = (1− cl)
γ, β = (1− cp)

γ and qz is used. We use γ = 3.
Then, the glyph is oriented such that it directs along v1, where v1
and v2 are scaled with λ1 and λ2, respectively. To show tensor
differences between the vessel walls, we visualized the glyphs of
both walls transparent, see Figure 62. Tensors of the inner wall
are depicted in yellow, whereas bluish glyphs show outer wall
tensors. To visualize the PSDs even if the λ1 values are similar, we
colored the ends in dark blue/dark yellow for the outer/inner wall
respectively, see Figure 59.

Implementation. For rendering the SQs, we generated a plane geometry on the CPU. The plane
consists of vertex indices V and triangles F, where 4 ∈ F is written as 4 = (i, j,k) if an edge
mutually connects each of the vertices i, j,k. The 3D position of the vertex i is denoted as pi =
(xi,yi, zi) ∈ R3. Each dimension (xi, yi, zi) of pi is determined by:

xi = 2 · π ·
bd/vc
u− 1

, yi = π ·
mod(d, v)
v− 1

, zi = 0, (16)

wheremod(x,y) denotes the remainder of the Euclidean division of x divided by y, and bxc describes
a downwards rounded operator, and let d ∈ {0, . . . ,u · v− 1}. Note that xi ∈ [0, 2 ·π] and yi ∈ [0,π],
which conforms with Equation 15 and the parameters θ,φ. For our screenshots, we used u = 20 and
v = 10 as this yields smooth results for the glyphs. Then, we constructed the triangles4 with:

4 = (k,k+ 1,k+ v), (17)

4 = (k+ v,k+ 1,k+ v+ 1), (18)

with k = mod(d, v− 1) + d and d ∈ {0, . . . ,u · v− 1}. We transport the plane geometry to the
representative positions by using Vertex Buffer Objects to determine the SQs according to Equation 15.
For rendering them, we use the OpenGL instance rendering, because this effectively generates the
glyphs by reducing the amount of OpenGL draw calls. Using instance rendering allows allocating
memory for one plane instance that is reused to generate the following glyphs.

2 D K I T E V I S UA L I Z AT I O N . Inspired by Schultz et al. [339], we use kite-shaped 2D glyphs to
represent v1 and v2 and their corresponding eigenvalues. At every vertex where a glyph should be
placed, cf. Section 6.3.2, we generate a view-aligned quad oriented with the surface normal. This
quad is equipped with a coordinate system x,y ∈ [−1, 1], whereas the x-axis aligns with the direction
of v1. Note that we scaled the axes with their stress values. Then, two glyphs are drawn on the quad,
see Figure 57b. The first glyph shows the direction and the stress quantities of the inner vessel wall.
Thus, for the first tensor we draw:

ColInner =


(0.94, 0.92, 0.35) if 0 6 xγ + yγ 6 0.9
(0.8, 0.79, 0.07) if 0.9 < xγ + yγ 6 1

discard otherwise.

(19)

We set γ = 0.6. The first condition describes the filled color and the second one the boundary. For
the outer tensor, we use Equation 19, but with the filled color (0.2, 0.3, 0.5) and the boundary color
(0, 0, 0.5). Note that the second glyph is painted over the first tensor. However, to avoid occlusion,
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the boundary of the first tensor is always drawn. Moreover, to show the PSDs even if the zoom level is
quite low, we design a glyph that transforms an arrow glyph to a kite glyph based on the distance
to the glyph itself. For this, we define z ∈ [0, 1] as the zoom level. Based on the coordinate axes
x,y ∈ [−1, 1] of the view-aligned quad, we define an allowed y−range:

yallow =


1
4 if |x| 6 x0(
1−

(
x−x0
x1−x0

)γ)1/γ
if x0 6 |x| 6 x1

0 otherwise.

x0 =
1

2
· (1− z), x1 = 0.9.

(20)

For every fragment, we test if |y| 6 yallow holds. If this is the case the fragment is drawn, otherwise,
it is discarded. Additionally, we draw a border around the glyph and fill the arrow with the color
of the border if |x| > max(12 · (1− z), 0.3). Figure 60 shows the transition of the arrow to the kite
depending on the zoom level.

x0 x1

Figure 60: The transition from the arrow to the kite with increasing zoom level. (Image from [440] © John
Wiley and Sons 2017.)

Implementation. Similar to the SQs, we use the generated plane to construct the glyphs. In contrast
to the superquadrics, we do not transform the plane. First, we align the plane to the normal vector
such that it lies in the tangent space. Then, we use the PSDs as a coordinate system on the plane. This
yields texture coordinates which can be used in the fragment shader to apply Equation 19.

2 D S T R E A M L I N E G LY P H V I S UA L I Z AT I O N . Another approach to visualize the tensor is to de-
termine streamline (SL) glyphs on the surface along the first PSD, see Figure 61.

Figure 61: SL glyph shows the
first and second
main stress value
(yellow, purple) along
the main direction.
(Image from [440]
© John Wiley and
Sons 2017.)

We follow the idea by Lawonn et al. [219], who generated quads
along the streamlines to illustrate information. The streamline
generation is based on the ConFIS method [220], but instead of
using the principal curvature directions, we use v1. For every
generated quad, we assign coordinates which represent its width
(orthogonal to the first PSD) in the range [−1, 1]. The quad is then
visualized with a violin plot. The radius of the outer violin plot
represents λ1 and the radius of the inner violin is determined with
λ2. We enable the possibility to depict streamlines for the inner and
outer vessel wall simultaneously, see Figure 57c. Thereby, yellow
and purple are used to depict the eigenvalues on the inner wall and
blue and green show λ1 and λ2 on the outer wall.

Implementation. The streamlines are computed on the GPU. For every triangle 4 a seed point is
generated at the midpoint p4. At p4, we use the average of the PSDs of the vertices belonging to this
triangle to determine the mean PSD v̄1. Afterward, the point is traced along the mean direction by:

pnew = pold + hv(pold), (21)

with a step size h of half of the mean of all edge lengths on the surface. This yields the Euler
integration, where at the first iteration step pold = p4 and v(p) denotes the barycentric interpolation
of v1 at the triangle vertices at position p. After every step, we check if the point leaves the triangle. If
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this is the case, we update the current triangle to determine the subsequent iteration steps. Additionally
to the position of the streamline points, we store the triangle ID. This enables to determine the current
triangle normal, which is necessary for the generation of the quads on the surface [219]. Moreover,
texture coordinates can be used to employ the violin plot in the fragment shader.

Figure 62: SP glyph shows the dis-
tribution of the PSDs
within a region. (Im-
age from [440] © John
Wiley and Sons 2017.)

2 D S C AT T E R P L OT G LY P H V I S UA L I Z AT I O N . We propose
different glyphs to encode the PSDs. However, the presented meth-
ods indicate the local stress values, but lack of showing the direc-
tion distributions over a region (Req. 16). Thus, we developed a
scatterplot-based glyph to display the PSDs at the representative
ri, see Figure 62. This gives an overview of the stress direction
distribution according to the vertices in that region Ri. The scat-
terplot (SP) glyph is calculated as follows: first, the representative
spans the tangential space, which is given by the normal vector
nri at this vertex ri. Second, the first two PSDs yield an orthogonal
coordinate system on the tangent space. Finally, the PSDs of the
other vertices j ∈ Ri, which correspond to the region Ri are
determined and mapped to the tangent space of ri. Based on the

discussion with the domain experts, we used a simple projection of the PSDs onto the tangent space.
For this, we define the length-preserving projection operator as:

Pn(v) = (Id− n · nT ) v
‖(Id− n · nT )v‖

· ‖v‖, (22)

where Id denotes the identity matrix and ‖ · ‖ the Euclidean length. Pnri
(v) projects the vector v

to the tangent space of the representative ri. This mapping does not preserve perpendicularity of
the two PSDs, but the result is more intuitive for our domain experts as it supports the idea to look
from above onto the region Ri and observe the directions. After the projection, we transformed the
coordinates (x ′,y ′, z ′) 7→ (x,y) to the coordinate system of the representative tangent space. Then,
we draw small circles on the tangent space at the coordinates (x,y) and (−x,−y) as the sign is not
uniquely determined. This could be done for PSDs on the inner and outer vessel wall, see Figure 61.
Additionally, we draw the coordinate axes, which correspond to the PSDs of the representative vertex,
where black is used for the first PSD. Then, equidistant circles are drawn for a better estimation of the
stress values. The background color changes linearly from fully transparent to orange. This yields the
possibility that the user gains insight into the color-coded scalar field on the surface at the current
representative vertex. In the following, we explain the implementation.

Implementation. The SP glyph is constructed as a view-aligned quad. To show the PSDs of the
vertices at the region Ri, we use the OpenGL extension SHADER_IMAGE_LOAD_STORE. As we use
maximal 250 regions, we constructed an image of size (25 · res)× (10 · res). Thus, we divide the
image in 250 regions with a size of res× res. We used res = 200. Every vertex j inherits its PSDs

vj1, vj2, their assigned region Ri, and the representation’s information like its PSDs and the normal.
Every vertex determines first the region in the image by computing:

u = mod(i, 25), v =
⌊ i
10

⌋
.

Afterward, the projection operator Pnri
(v) is applied to vj1, vj2, which yields the projected PSDs. A

coordinate transformation leads to the coordinates (x,y) and (−x,−y) for one eigenvector (so four
coordinates are determined for both PSDs). Finally, the OpenGL function imagestore() is applied to
draw the directions at the corresponding image position. To display the result, the view-aligned quad
of the representative ri loads the fragment’s color at the corresponding image position, which is given
by the region Ri.
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6.3.3 Evaluation and Results

To assess the quality of the tensor glyphs, we conducted two evaluations. The first one was an
informal evaluation with four domain experts, one physician P1 with an experience of 16 years, two
CFD experts P2, and P3 with five and eight years of experience, respectively, and one visualization
expert P4 with a strong focus on cerebral aneurysms, with six years of experience. The evaluation was
performed on a standard desktop computer with an Intel Core i5 with 2.8GHz, 16GB RAM, and an
NVidia GeForce GTX 1080 Ti. For all the presented methods, we achieved a real-time performance of
approximately 35 FPS. The second evaluation was conducted with 60 probands (23 female, 37 male).
Their age ranged from 20 to 48 years. Among them were 44 students from computer science and
medical engineering, 12 researchers with a background in medical visualization, and the four domain
experts. They had to answer a questionnaire that assesses how well certain quantities concerning the
glyph tensors can be estimated. Section 6.3.3 covers the expert evaluation, and Section 6.3.3 deals
with the user study.

Informal Expert Evaluation

The evaluation was conducted in two steps:

1. Introduction to the glyph-based visualizations of the stress tensors.

2. A questionnaire to inquire the importance of aneurysm stress tensors, and the glyph designs.

The first step is necessary for the experts to familiarize themselves with the visualization techniques.
Afterward, the experts answered the questionnaire. All questions were divided into different categories,
which were answered using a five-point Likert scale (−−, −, ◦, +, ++). For the analysis of the
Likert score, we provide the number S(·) of experts who chose the individual scale. The overall result
of the empirical evaluation is shown in Figure 63.
Medical relevance. In this category, we inquired about the importance to estimate the stress tensor,
the combination of stress tensors with scalar and vectorial data, and the visualization of stress tensors
during the cardiac cycle. The first two questions were rated with S(++) = 2 and S(+) = 2. P1 stated
“[...] the estimation is quite important for the analysis of the potential rupture risk.” Only question
three was rated as highly important by all users (S(++) = 4). P2 and P3 stated that vessel regions,
where strong local changes of the PSDs occur during the cardiac cycle could be rupture-prone areas.
Evaluation of the tensor glyphs. This category investigates the tensor glyphs. We asked for all
glyphs (superquadrics = SQs, kites, streamlines = SLs, scatterplots = SPs), which can be used to:

a) estimate the PSDs of the outer wall,

b) estimate the main stress values of the outer wall,

c) estimate the PSDs simultaneously of the outer and inner wall,

d) estimate the main stress values simultaneously of both walls.

For question a), the participants valued the SQs with S(+) = 4 and the kites with S(++) = 2,
S(+) = 2 as most suitable to estimate the PSDs. P3 argued that “[...] the kites give me a clear insight
to the data.” The SLs (S(++) = 3; S(◦) = 1) and the SPs (S(+) = 2; S(◦) = 1; S(−) = 1) are
valued more divergent. For question b), the kites were rated as the best glyphs with S(++) = 2

and S(+) = 2. Also the SQs are suitable to determine the PSDs (S(++) = 2; S(+) = 1; S(◦) = 1).
Similar to question a), the SL (S(+) = 2; S(◦) = 2) and the SPs (S(+) = 3; S(◦) = 1) are evaluated
more different. For question c), the kites and the SLs were the favorable choice that were valued
in the same way with S(++) = 2, S(+) = 1 and S(◦) = 1. The SQs were also perceived as very
appropriate to assess the PSDs (S(+) = 3; S(◦) = 1), whereas the SPs were least suitable for this
task (S(+) = 1; S(◦) = 2; S(−) = 1). For question d), all experts confirmed that the kites are very
appropriate to assess the local main stress values (S(++) = 1; S(+) = 3). Also the SQs are suitable
to determine the local main stress values (S(++) = 1; S(+) = 2; S(◦) = 1). In contrast, the SLs

were perceived as least suitable (S(◦) = 4), whereas the SPs were rated with S(+) = 2 and S(◦) = 2.
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Figure 63: The results of the expert evaluation of the CoTenVis module with color-encoded Likert scores. Each
box represents the answer of one subject: the left-most box depicts the physician, the middle two
boxes show the CFD experts, and the right-most box represents the medical visualization expert.

Evaluation of the Estimation of the Glyph Tensors

The second evaluation analyzed how well the tensor glyphs served to estimate certain quantities. We
prepared an additional questionnaire with screenshots where no framework was involved. The 60
participants were shown different scenes with different glyph types. First, we showed them randomly
ordered scenes where we asked whether the stress value is higher for the outer or for the inner vessel
wall. Then, we analyzed the results to get a first impression which glyph might be better for the
visualization of this task. We did this with four tasks, where the probands should assess:

1. whether the stress is higher for the inner or the outer vessel wall,

2. how much the second stress value takes as a percentage of the first one,

3. what angle difference occurs between the PSDs on both walls,

4. what angle difference occurs between the median main direction and the main direction of the
region representative.

The results of these tasks can be found in Figure 64. For the first task, we compared the SQs with the
kites, where we pretended different levels of difficulty with 10 %, 30 %, 60 % and 80 % difference
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between the inner λ1 and outer λ1 value, see Figure 64a. Here, we excluded the SLs, because of
possible occlusions between lines for the inner and outer wall. For more similar glyphs on both walls
(10 %, 30 %, 60 % size difference), the kites were more suitable to localize the higher stress value.
Compared to the SQs, twice as many answers were correct for the kites. For huge differences in size
(80 %), the results were equally well. The results of the second task are depicted in Figure 64b by
using box plots. These display the deviations of the users’ given values to the correct value. Therefore,
we subtracted the users’ values by the ground truth. The first and third quartiles are depicted in
orange and blue as well as the minimum and maximum. Here, the probands should approximate
the relationship between λ1 and λ2 for the SQs, the kites and the SLs on the inner wall based on
four levels of difficulty. Again the SQs and kites lead to similar good results. If the second value is
comparatively small, (15 %, 30 %) the kites have a slightly lower third quartile in both cases. For
65 %, the kites dominated clearly over the SQs and the SLs in both quartiles. For 87 %, the kites and
the SLs give similar results but were more suitable as the SQs. The third task analyzes the angle
difference between the PSDs of the inner and outer wall, see Figure 64c. Here, the SQs and kites were
compared, wheres the SLs cannot be used similarly to the first task. The kites dominated clearly over
the SQs in all cases. In the fourth task, the SQs and kites are evaluated against the SPs to determine
the angle difference of the median main direction to the main direction of the representative within a
given surface region. Therefore, in all shown pictures a coordinate system within a surface region
was given, where the x-axis represents the main direction of the representative. Here, the SPs were
more suitable compared to the SQs and the kites. The distribution of the angle values is smaller than
for the SQs, and the kites and the third quartile values are close to the exact value, see Figure 64d.

(a) (b)

(c) (d)

Figure 64: Results of the user study (superquadrics = SQ, kites = K, streamlines = SL, scatterplots = SP).
In (a) the results of the first task are shown. In (b) the results of the second task are depicted. In (c),
the results of the third task are presented and (d) shows the results of the fourth task. (Images
from [440] © John Wiley and Sons 2017.)
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6.3.4 Discussion and Limitations

We evaluated four glyph-based techniques to analyze cerebral stress tensor data comparatively.
During the evaluation, it turned out that the glyphs are differently suitable depending on the task.
This was further confirmed in the user study. To get a first overview of the PSDs on both walls, SLs are
very appropriate. The experts were interested in exploring the internal flow together with SLs, see
Figure 65a. They stated that this depiction could be used to find correlations between rupture-relevant
flow patterns such as vortices and suspicious tensor configurations. Moreover, the SLs can be used
to uncover opposite regions on the aneurysm with very different behavior of the PSDs that should
be further explored, see Figure 66. For a more detailed exploration, other techniques such as SQs

and kites are more suitable, because of attending occlusion problems between streamlines for both
walls. We presented the kites in a previous interview to our experts. However, they described the
determination of the PSD as very difficult, if the camera has a greater distance to the surface. We
improved this by including the transition from the arrow glyph to the kite and repeat our expert
evaluation, which leads to the Likert assessments, presented in Section 6.3.3. By using the kites, the
experts were able to detect regions with a strong local change of the PSD immediately as possible
rupture-prone areas, see Figure 65b. For the rotating kites, they used the metaphor of a compass,
which was described as very intuitive to perceive strong directional changes. The suitability of the
kites to represent percentage and angular differences was also confirmed in the user study.

(a) (b)

Figure 65: In (a) path lines are depicted together with the SLs glyphs for C11. This can be used to find
correlations between specific flow patterns and suspicious stress tensors. With the kites (b), the
experts could identify regions with strong local change of the PSDs for C11 easily, which are
assessed as possible rupture-prone. The green boxes show kites with a strong local change of the
PSDs, where the strength of the changes is color-coded on the surface. (Images from [440] © John
Wiley and Sons 2017.)

For the estimation of the stress values, the kites are most suitable, because their shape communicates
the stress magnitudes immediately. In contrast, the experts described this task based on the line width
as more difficult. This was also confirmed in the user study, where the kites, followed by the SQs, led
to the best results. The SPs are also less appropriate for a local approximation of the PSDs. However,
they are most suitable to analyze the tensor data quantitatively within a surface region, whereas the
other techniques allow a qualitative analysis. The SPs allow a quantification of the homogeneity of the
PSDs. Strong inhomogeneous regions paired with suspicious scalar values such as a high WSS could
be a rupture-prone criterion, see Figure 67. In this context, P1 and P2 asked for the possibility to add
landmarks with notes that would facilitate the collaboration between domain experts. Moreover, P3
wished for a drawing feature that annotates various regions with different color and text.
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(a) (b)

Figure 66: SLs are depicted on the surface of C11 together with the stress of von Mises. The experts were able
to find opposite regions, in which the first PSD extend in different directions, and the stress is high.
In (a) the first PSD proceed from the ostium to the dome, whereas in (b) it runs almost orthogonally
that are assessed as suspicious regions. (Images from [440] © John Wiley and Sons 2017.)

(a) (b)

Figure 67: The SPs show the homogeneity of the PSDs within a surface region of C12. In (a) the wall thickness
is color-coded. Within the framed area, the wall is very thin, but the PSDs are homogeneous,
whereas (b) shows a region with high WSS and diffuse distribution of the PSDs. (Images from [440]
© John Wiley and Sons 2017.)

6.3.5 Conclusion and Future Work

We presented the CoTenVis module to analyze IA for a potential rupture risk assessment. For the first
time, we integrated stress tensors in combination with wall thickness and blood flow data for the
analysis. So far, no accepted factor describes the likelihood of a rupture and the wall structure is
not very much discussed clinically. CoTenVis aims to introduce the concept of wall stress into clinical
discussions by providing novel glyph visualizations of the complex tensor data. To avoid open-ended
exploration, we conferred with clinical experts and carried out an extensive evaluation to find out
which requirements had to be met and which visualizations could be used to support the data analysis.

Besides, we identified several aspects that might be improved. First, for the kites and SPs, we would
like to incorporate the decal-maps [318]. Moreover, we want to provide a more detailed analysis of
aneurysm wall layers. Besides the inner and outer wall, there are intermediate layers in the FSI model
with corresponding flow data. To analyze these layers and their characteristics, we want to integrate
interactive cutting planes through the aneurysm geometry. Furthermore, we want to incorporate an
automatic report generation that summarizes all interesting findings such as presented in Figure 65 -
Figure 67. This would reduce the manual exploration effort and would facilitate the collaborative data
analysis. Our long-term goal is to contribute to a comprehensive risk assessment that also includes
inflammatory factors and real measured wall thickness values. Basic research indicates that these
affect the rupture risk, however, in clinical practice, such information cannot be acquired so far.
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6.4 A N I M AT I O N S F O R A N E U RY S M DATA

Besides an adequate visualization of scalar parameters, a capable camera control including a proper
viewpoint selection is crucial for an efficient analysis of the complex data. There are several methods
to determine good views for polygonal [275, 384], volume data [39] and vector fields [222, 235, 364].
They are mainly based on entropy [384], which is a measure to assess the quality of a view with the
aim of maximizing its information content. For polygonal meshes, Vázques et al. used a viewpoint
entropy [384] to measure the relation between visible polygons and visible area and applied it to
image-based rendering [385]. Neugebauer et al. [275] used surface parameters such as the curvedness
to identify ROIs for seeding NWF. For volume data, voxel-based entropy functions were optimized [39],
and for vector fields, the visibility, as well as flow parameters of streamlines, are used [222, 364].
Ma et al. [235] focused on the selection of appropriate viewpoints for an automatic guide to explore
flow features of time-independent vector fields. Moreover, Drucker [90] presented an assortment of
camera primitives that enable an intelligent control of virtual cameras in computer graphics. The
suitability of a view also depends on application-specific characteristics, e.g., familiar and preferred
views in surgery. Mühler et al. [261] integrated geometric aspects to select appropriate viewpoints to
support intervention planning tasks based on medical surface depictions.

Related to the approach by Neugebauer et al. [275], we also derive viewpoints from surface
parameters. We developed two approaches to determine appropriate viewpoints, an interactive
planning method, and an automatic viewpoint calculation. The first approach is based on user-selected
thresholds of surface parameters, which determine the selection of the views. For the second approach,
the user selects the scalar fields that should be considered for the viewpoint calculation. Based on
this, views are calculated automatically that show surface regions of suspicious combinations of the
selected scalar fields. The result of both techniques is a set of appropriate viewpoints on the aneurysm
surface. From this set, an animation is built to support the exploration of aneurysm data. During the
cardiac cycle, the most interesting surface regions are presented to the user.

6.4.1 Interactive Planning of Animations

We implemented interactive planning of animations that present the most interesting regions based
on the input data of the user. Our experts preferred smooth animations over keyframes because they
found them easier to comprehend. For this purpose, the user is asked to set various thresholds for
different scalar fields. Here, the user selects scalar fields s1, s2, . . . , sn that he/she is interested in.
Then, for every scalar field a threshold ti is set. The selection of the scalar fields with the thresholds
leads to a constrained region on the mesh that fulfills every criterion:

P =

n⋂
i=1

{p | si(p) > ti} (23)

Note that we wrote si(p) > ti, but for scalar fields such as the wall thickness or NWF less equal.
The obtained points restrict the camera path. The thresholds can be set independently from each
other, where the surface regions that fulfill all selected threshold conditions were presented using the
cool-to-warm color scheme. Regions that do not comply with the thresholds are depicted in gray.
Figure 68a shows an example of the threshold selection. The user starts by choosing the pressure
scalar field during systole, which is color-coded on the surface 68a’ and regions are interactively
grayed according to the threshold 68a”. Based on the result of the first selection, the user adjusts a
threshold for the deformation, which is now color-coded on the surface 68a”’. Finally, regions that
satisfy both conditions are used to plan the camera path.

To determine positions for the animation, we select candidates that are highly interesting for the
user to explore. Thus, the user selects a focus scalar field sfocus. Then, candidates are determined,
which are first based on the points P (recall Equation 23) and on sfocus. The ordered points Po, i.e.,
sfocus(P

i
o) > sfocus(P

i+1
o ) serve as candidates for the camera path. For every time step, we use

P0o as the ideal candidate. Thus, we need the position of the camera such that it shows the candidate.
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For this, we use the position of the candidate and add the scaled surface normal. We used 1/10 of
the diagonal of the bounding box of the surface mesh as the scalar. Thus, the camera has a constant
distance to the vessel surface. With smaller values, the camera came too close to the surface, and
with greater values, it was too far away. The movement of the camera on given paths with always
similar distance to the object was originally described as orbiting by LaViola et al. [171], which is a
suitable concept to generate smooth animations. The view direction of the camera is set such that it
points in the direction of the candidate. From one point in time to the next, we move the camera to
the candidate such that the animation stops before the next point in time is reached. This enables a
smooth animation between the best candidates at different points in time. In case the domain expert is
interested in various candidates at a specific point in time, e.g., the systole, he/she can start a local
camera path. If the local path is activated, the animation is paused, and the camera moves beginning
from the first candidate to the next ordered points. The candidate is in general highlighted with a circle
around a point that indicates its position. Figure 68 shows an example of animation for three adjacent
time steps. In the first time step, no point fulfills the selected threshold conditions, see Figure 68b. In
the next time step, the camera rotates automatically to the most interesting point, which is highlighted
by a green circle, see Figure 68c. Afterward, the camera rotates to the next candidate (Figure 68f),
while all surface regions were color-coded that fulfill the threshold conditions (Figure 68(d,e)).

t

(a) (b) (c)

(d) (e) (f)

(a’)

(a”’)(a”)

Figure 68: Generation of an automatic animation for C11 to identify regions with high pressure and defor-
mation. To restrict the camera path to these regions, two thresholds have to be selected. Based on
the color-coded pressure field (a’), the user selects a threshold (a”). Then, the deformation field
is color-coded for the second threshold selection (a”’), before the animation starts. In the first
time step, no candidate was found (b). But in the following two time steps, two candidates were
approached, indicated by a green circle (c, f). During the animation (d, e), all surface areas were
color-coded that satisfy the threshold criteria. (Images from [439] © IEEE 2017.)

Mostly, the domain experts are interested in specific regions such as the dome. Therefore, we offer
the possibility to restrict the region through an approach that determines the geodesic distance on the
surface. For this, the user is asked to place a start point on the mesh. Then, we compute the geodesic
distance from the start point by solving standard linear elliptic equations [78]. Afterward, the user
can specify the distance that restricts the region for the camera path.
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6.4.2 Automatic Calculation of Animations

The automatic determination of appropriate viewpoints is modeled as an optimization problem. We
used a GPU-based implementation to find the desired optima. Our approach consists of three major
steps. First, we have to formulate a target function that should be optimized. Second, we have to
select start points for searching appropriate views. Based on these points, the optimization problem
has to be solved. Finally, the resulting viewpoints have to be connected to a camera path. In the
following sections, each of these steps is explained in more detail.

Target Function

To select viewpoints, a target function f : V → R has to be formulated that covers the criteria of an
appropriate view x ∈ V . Selected viewpoints are local maxima of the target function that consists
of two parts. The first one is the size of the visible aneurysm surface area because mostly, domain
experts are interested in regions on the aneurysm. The second part is the significance of a surface area
according to a user-selected parameter combination. For the first criterion, we separate an aneurysm
from the parent vessel using our automatic ostium detection, recall Section 5.5.1. For the second
criterion, the user has to select two scalar attributes s1 and s2 that he/she wants to explore. Moreover,
the user has to define if lower or higher values of the respective parameter should be weighted
stronger. Based on the aneurysm surface, we implemented a GPU-based approach to determine the
target function’s value for a specific viewpoint. We provide the aneurysm surface as well as s1 and s2,
which are normalized in the vertex shader of the whole vessel surface by using vertex buffer objects
and transform the information to the fragment shader with the help of varying variables.

In the following, we explain how the target function f(x) is defined for a viewpoint x. Every
fragment p(x) in the current viewpoint x is assigned a value t(p(x)), see Figure 69a. The sum of
the fragment’s values yields the target function f(x) =

∑
i t(pi(x)). If the fragment p does neither

belong to the aneurysm part nor to the front faces, we assign t(p) = 0. For the fragment counting,
we use the add operation of the OpenGL Atomic Counters. If t(p) is not equal to zero, the two scalar
values per fragment s1, s2 ∈ [0, 1] are multiplied by 10 and truncated to the nearest integer values,
yielding si1, si2 ∈ {0, . . . , 10}. Moreover, si1 and si2 are squared to stronger weight interesting
values. Additionally, we divide the framebuffer in n× n sub images and assign a constant factor
Bij =

(
n−1
i

)
·
(
n−1
j

)
to each sub image (i, j) in the design of a binomial filter, see Figure 69b. We

used n = 5. Then, Bij is added to si1 and si2, depending on the sub image the current fragment
belongs to, which yields the updated values s ′i1 and s ′i2. This leads to a stronger weighting of si1 and
si2, if they occur in the center of the camera view. Lower values of n result in a too strong weighting
of uninteresting surface regions, while higher values lead to an excessive weighting of small areas.
We set t(p) = s ′i1 + s

′
i2, which represents the scalar value for a fragment p. Finally, we determine

the target function f(x) and store the value on an image, which allows a later CPU-based access.
After we used f to find appropriate starting points. The gradient ascent method is applied to each

of them. The goal is to further optimize the two camera angles and the view direction (x,y,z), which
results in five DOFs. Each DOF is changed iteratively, f(x) is evaluated and the gradient of f(x) is
calculated. The new viewpoint xnew is calculated by xnew = xold + s · ∇f(xold), where xold is
the current viewpoint, s is the step size and ∇f(xold) is the gradient of f(xold). The gradient ascent
stops if the gradient magnitude falls below a threshold t with t = 0.001. Moreover, f is evaluated for
different values of s, where the integer values range from 1 to 5.

Starting point selection

The camera path should indicate interesting surface regions during the cardiac cycle. Within a time
step, there are typically several positions where significant attributes arise. To find these local optima,
we select multiple starting points per time step. It would be possible to define an arbitrary number of
points at arbitrary positions around an aneurysm. However, possibly the optimization would require
many iterations to find local optima. Thus, we try to select starting points close to local optima on an
approximated ellipsoid around an aneurysm. The ellipsoid’s axes are the eigenvectors scaled by twice
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(a) (b)

Figure 69: The calculation of the target function. For every fragment p(x) in the current viewpoint x, a value
t(p(x)) is calculated by summing up the squared values of si1 and si2 (a). Then, a binomial filter
is applied to stronger weight si1 and si2, if they occur in the center of the camera view (b).

the eigenvalues of the covariance matrix of all aneurysm vertices. The ellipsoid is sampled by using
polar coordinates θ = 2π/36 · i, i ∈ {0, . . . , 18} and φ = 2π/m · j, with m = 2 · (9− |i− 9|) + 1,
j ∈ {0, . . . ,m}, see Figure 70a. The scaling of the ellipsoid’s eigenvalues ensures that the camera has
an appropriate distance to an aneurysm, yielding the viewpoints xi. For each of these candidates,
the function value f(xi) of the target function is calculated. From this scalar field, we calculate
the 90 % quantile and keep the remaining viewpoints as candidates for possible starting points, see
Figure 70b. To further reduce their number, we cluster the candidates by using the density-based
clustering DBSCAN [99] that does not need a priori selection of the cluster number, because the number
of appropriate views is unknown, see Figure 70c. For each cluster, the averaged position is used as
a starting point. However, for DBSCAN two thresholds must be specified, the minimum number of
objects to form a valid cluster, and a maximum allowed dissimilarity between two objects of a cluster.
In our case, each cluster must contain at least one candidate, and a maximum difference of 20 ° for
both angles, θ and φ, between a candidate and the cluster center is allowed. Smaller values lead to
clusters, where the resulting starting points are very similar. With greater values, the clusters are too
large so that not all belonging candidates lie within the view frustum of the averaged camera position.

(a) (b) (c)

Figure 70: The selection of starting points as input for the gradient ascent approach. First, the enclosing
ellipsoid is sampled regularly (a). This set of points is reduced by evaluating the values of the target
function (b). Applying DBSCAN further reduces the number of start points (c).
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Camera path

For each time step, our approach calculates a set of appropriate viewpoints, see Figure 71. We order
these viewpoints by their φ angle within a time step and connect them to a camera path. Moreover,
the viewpoints are combined between adjacent time steps to generate a global animation during the
cardiac cycle. For this purpose, for each time step, the viewpoint is used first that has the smallest
distance of φ to the last viewpoint in the previous time step. We move the camera from one viewpoint
in time to the next, where the camera position and view direction is interpolated from their known
camera settings in each render pass. For the interpolation factor t, a cubic easing function f is used:

f(t) =

{
4 · t3 if t < .5
(t− 1) · (2 · t− 2) · (2 · t− 2) + 1 otherwise.

(24)

With this, the camera accelerates until halfway between two adjacent viewpoints and decelerates then.
The resulting path enables a smooth animation between two adjacent viewpoints.

Figure 71: Exemplary set of appropriate viewpoints over the cardiac cycle that are connected to an animation.

6.4.3 Evaluation and Results

We evaluated the interactive planning of camera paths as well as the automatic calculation of anima-
tions with two domain experts by conducting informal interviews. For this purpose, five aneurysm
data sets are used. According to the automatic viewpoint selection (recall Section 6.4.2) the computa-
tion time per time step is between 8 and 10 s, depending on the amount of starting points. Our testing
system uses an Intel Core i5 with 2.8GHz, 16GB RAM, and an NVidia GeForce GTX 1080 Ti. The
experts are one neuroradiologist with 16 years of work experience and one CFD engineer working on
blood flow simulations for cerebral aneurysms with five years of work experience. First, they were
asked to manually search for suspicious surface regions depending on the selected parameters s1 and
s2. Then, they explored the data using our animations. The experts should assess if the interactive
planned as well as automatically calculated camera path support the exploration and navigation within
time-dependent data. Moreover, they should state, if one of these methods is more suitable for data
analysis.

Figure 72 shows the appropriate viewpoints for C11 and C12 at the systolic peak. The top row
shows manually selected views of the neuroradiologist. In the bottom row, the appropriate views using
our automatic approach are presented. In the two data sets the WSS and wall thickness are color-coded,
respectively, and the wall deformation and pressure are depicted by hatching, respectively. Reddish,
dense hatched areas indicate suspicious surface regions. The automatically selected views correlated
with the manual results within that time step. However, for the manual searching, a series of rotations
was necessary. Furthermore, the time-dependent behavior of the data increases the manual exploration
effort, because it is difficult to find critical regions during animation.

The experts described the automatic computation as well as the interactive planning of animations
as very helpful for the exploration of the time-dependent data. The interactive planning allows a
stronger integration of expert knowledge by selecting multiple attributes that should be considered for
generating the animation. According to the necessary candidate selection, both experts preferred the
threshold-based selection to the ROI selection. The automatic camera path gives a temporal overview
of two selected scalar fields that indicate possible rupture-prone areas. In this context, they liked
that no further specification of thresholds is necessary for the calculation of the camera path, which
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would be a challenging task if the user has no initial impression of the data distribution. Moreover,
the appropriate viewpoints could be used for documentation, since occlusion problems arising from
the parent vessel geometry are resolved. In contrast, interactive planning should be used for more
focused data exploration. Here, they emphasized the fast computation of the camera path (8 s on
average for all time steps, depending on the number of vertices) compared to a few minutes for the
automatic path calculation. This allows fast analysis of possible correlations between scalar attributes.
However, the CFD expert wished to have a key interaction for the temporal forward and backward
exploration of the candidate points instead of a time bar. Besides, they described that both techniques
are helpful for the navigation in 3D. However, it depends on which part of an aneurysm the users want
to navigate their way around. If the users only want to navigate in a small region such as a bleb, a
manual rotation was preferred. For the time-dependent navigation over the whole aneurysm surface,
an automatic rotation is more suitable.

(a) (b)

Figure 72: Exemplary viewpoint selections for C11 and C12 at the systolic peak. The top row shows manually
selected results of our medical expert. In the bottom row, the appropriate views using our automatic
approach are presented. In (a) and (b) WSS and wall thickness are color-coded, respectively, and
wall deformation and pressure are depicted by hatching, respectively. The automatic results are
quite similar to the manually selected views. (Images from [431] © Springer Nature 2017.)

6.4.4 Conclusion and Future Work

We present different methods to generate animations for aneurysm data over the cardiac cycle. Our
domain experts confirmed the importance of camera paths to support the data exploration because
they enable the detection of suspicious regions without a time-consuming manual search. A possible
application of our methods is to get a quick overview of the aneurysm data, where rupture-prone
areas are presented. Furthermore, they could support the clinical report generation and serve as a
summary of a patient’s rupture risk.

In the future, the camera path should be calculated in real time. Besides, a stabilization of the
camera movement could be integrated to avoid larger changes in the camera orientation between two
viewpoints. This could be done by defining a maximum allowed change of the camera’s up vector.
Moreover, we want to integrate information about specific blood flow patterns such as vortices into
the target function of the automatically calculated path. Then, it would be possible to select views
that present the time-dependent vortex behavior. A possible criterion in this context could be the
optimization of the vortex core line visibility. Furthermore, the calculation of optimal viewpoints
should be extended to post-treated data, where the visibility of treatment options such as different
stents should be considered in the target function. Finally, the color-coding could be adjusted in areas
where color and hatching overlap so that hatching does not affect the perception of color.
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7V I F L E X - V I S U A L F L O W E X P L O R AT I O N M O D U L E

Besides, morphological conditions and wall-related attributes, the aneurysm progression and rupture
also seem to depend on qualitative flow characteristics, e.g., specific flow patterns, such as vortices.
Moreover, flow patterns are assumed to be related to the success of treatment, and their distance to
the vessel wall seems to be an important factor for the assessment of the aneurysm’s state [18].

To assess the influence of flow patterns on the risk of rupture, medical studies were conducted with
homogeneous patient groups of ruptured and non-ruptured aneurysms [60, 268]. Therefore, blood
flow data are used that were obtained by CFD simulations. Flow patterns are extracted from simulation
results and manually classified according to their complexity and temporal stability. The results were
compared between ruptured and non-ruptured cases to identify characteristics associated with rupture.
The more complex and unstable types correlated with an increased rupture rate. Such an analysis is
a time-consuming process with high inter-observer variability, where flow patterns more distant to
the wall are easily overlooked due to visual clutter and occlusion. However, to uncover correlations
between flow patterns and the aneurysm state, the classification results of different data sets should be
comparable. This requires an objective classification according to clearly defined criteria.

To improve the analysis of flow patterns on the aneurysm state, we developed the ViFlEx module,
which consists of two major components. First, blood flow-representing path lines have to be grouped
to characterize individual flow patterns. For this purpose, we developed an automatic clustering of
blood flow patterns over the cardiac cycle, presented in Section 7.1. Based on the clustering results,
the flow patterns are classified to assess their temporal stability and complexity. For this purpose, we
developed the cerebral aneurysm vortex classification (CAVOCLA), an automatic method to classify
flow patterns according to pre-defined types, presented in Section 7.2. Thus, the time-consuming and
error-prone manual process to investigate flow patterns can be replaced by a time-saving and robust
automatic process that leads to reproducible results.

7.1 AU T O M AT I C C L U S T E R I N G O F F L O W PAT T E R N S

To classify flow patterns, first, the flow has to be decomposed into areas of common structure. For this
purpose, partitioning techniques can be used that are mainly based on integral curves, since in contrast
to local vectorial flow data, they represent continuous flow patterns. The partitioning is performed
in a user-guided [42, 120, 189] or automatic fashion [98, 227, 246, 283, 435]. Less frequently,
local flow vectors [381] or aneurysm wall properties [115, 275] are employed. Moreover, graphical
representatives of flow regions can be computed to generate a visual summary or a subsequent
visualization can be restricted to regions with specific properties, e.g., vortices.

User-guided techniques partition integral curves based on line predicates [332], which are Boolean
functions that decide if integral curves fulfill properties of interest, c.f. Section 4.2.3. Gasteiger et
al. [120] applied line predicates to CFD data of cerebral aneurysms to extract flow features, e.g., the
inflow jet and the impingement zone, recall Section 3.5.5. Born et al. [42] utilized line predicates to
identify relevant flow features such as jets and vortices in measured cardiac data. Köhler et al. [189]
used different local vortex criteria as line predicates to filter path lines that represent aortic vortices.

Automatic techniques employ a data-driven approach and utilize clustering methods to group
integral curves based on a similarity measure. McLoughlin et al. [246] introduced a streamline
similarity measure by computing geometrical features based on the underlying vector field and used
an AHC with average link for partitioning. Their method was applied to time-dependent data by
extracting the geometrical features from the vector field of the corresponding time step. However, the
temporal component was not directly considered. Two geometrically similar path lines occurring in
non-overlapping time intervals would have a high similarity. Oeltze et al. [283] compared multiple
streamline clustering techniques in the context of aneurysm hemodynamics. Streamline similarities

139
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were computed based on line geometry [76]. Liu et al. [227] measured path line similarities using
an octree. The space is divided into cubes either by equidistant length or by adaptive length that
depends on the features of the underlying vector field. A sequence is assigned to the path lines that
incorporates the passed cubes, where the similarity is based on the longest common sequence. In
a previous work [435], we compared multiple clustering methods of path lines representing aortic
vortex flow. Path line similarities were computed based on the spatio-temporal coordinates of line
endpoints and the line’s average distance to the vessel centerline. AHC with average link performed
best in separating vortices.

To cluster the intra-aneurysmal blood flow, we extended an established similarity measure [76]
for streamlines to path lines. In contrast to the streamline similarity measure by McLoughlin et
al. [246], our method directly incorporates the temporal component. If a flow pattern occurs, decays
and reoccurs during the cardiac cycle, our method results in several clusters. This is required since the
stability of flow patterns is an important criterion in medical studies to predict the rupture risk [60].
Existing methods are not able to represent instable flow patterns by different clusters. Moreover,
compared to existing time-dependent clustering approaches such as the approach by Liu et al. [227] or
our previous method [435], we are not dependent on the centerline or the underlying partitioning of the
space. To explore the behavior of individual flow patterns, we extended the 2D map and 3D depiction
of an aneurysm by a visualization of the internal blood flow. The 2D map enables an occlusion-
free visualization of flow patterns, including their distance to the vessel wall. The 3D visualization
represents the focus upon which the exploration of morphological aneurysm characteristics together
with the blood flow information over the cardiac cycle takes place.

7.1.1 Requirement Analysis

The manual extraction and classification of flow patterns are affected by visual clutter due to the flow
complexity, which makes the classification error-prone. To facilitate the classification of flow patterns,
a computer-based detection is needed. This requires a reliable path line clustering that does not need
a priori selection of the (unknown) cluster number. Therefore, a similarity measure is needed that is
able to group spatio-temporally adjacent patterns. However, due to the large anatomic diversity, the
automatically calculated results will not always be appropriate. Thus, the experts should be able to
explore different cluster numbers if the automatically calculated number is not optimal.

To verify and interpret the clustering results, our domain experts wanted an adequate visualization
of flow patterns. A more abstract depiction of the complex flow and vessel morphology would help the
neuroradiologist comparing ruptured and non-ruptured cases. According to the CFD experts, a more
simplified depiction would support the assessment of the most prominent flow patterns to validate the
simulation results. In addition to the seven more general requirements in Section 5.1 and others in
Chapter 6, we summarize further requirements for the exploration of intra-aneurysmal flow patterns:

Req. 16 N O P R E - D E F I N E D C L U S T E R N U M B E R . The clustering should separate spatio-
temporal flow patterns without a pre-defined cluster number.

Req. 17 I N T E G R AT I O N O F E X P E RT K N O W L E D G E . The experts should be able to correct the
automatically calculated clustering results.

7.1.2 Path Line Similarity

In the following, we give a detailed explanation of our path line similarity measure. We proceed
with a description of the used clustering method that does not need a priori selection of the cluster
number (Req. 16). In the remainder of this section, we use the following notation. A path line
pl consists of vertices V = {1, . . . ,n}, edges E = {(i, i+ 1) | i ∈ {1, . . . ,n− 1}}, and a time set
T = {t1, . . . , tn | ti < ti+1} ∈ Rn. The corresponding 3D coordinates of the vertices are denoted
with pi ∈ R3, i ∈ V . We use pl(ti) = pi with i ∈ V , ti ∈ T to denote the 3D coordinates of the
path line points as a function of time.
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7.1.2.1 Calculation of the Similarity Matrix

Our path line clustering builds upon the mean of closest point distances (MCPD) [76] measure that
was successfully used for streamline clustering [283]:

dM(si, sj) = mean(dm(si, sj),dm(sj, si)) with

dm(si, sj) = mean
pl∈si,

min
pk∈sj

‖pk − pl‖. (25)

This measure determines for every point on the streamline the minimum distance to another streamline
and averages it. However, the temporal component is not encoded. Inspired by the MCPD, our distance
measure incorporates the mean distances of path lines by considering their time component.

Note, that a path line usually does not exist during the whole cardiac cycle due to the high velocities
(up to 1.51m/s) and the small spatial domain size (5-11mm in the x,y,z-direction) [31, 164]. This
further means, that the temporal components of two path lines would not have been synchronized
for integration with a uniform temporal step length instead of the used adaptive step length (recall
Section 5.2.1). Thus, we have to determine corresponding path line points depending on their temporal
component, which is explained in the following.

Given are two path lines plk,pll with time components tk1 , . . . , tkn and tl1, . . . , tlm for which we
like to calculate the mean distances. For this, we distinguish three cases, see also Figure 73:

1. [tk1 , tkn] = [tl1, tlm] means both path lines occur in the same time interval, see Figure 73a.

2. [tk1 , tkn] 6= [tl1, tlm] and [tk1 , tkn]∩ [tl1, tlm] 6= Ø means the path lines share a time interval, see
Figure 73b.

3. [tk1 , tkn]∩ [tl1, tlm] = Ø means the path lines occur in different time intervals, see Figure 73c.

(a) (b) (c)

Figure 73: Our approach computes the mean distance of two path lines at positions where the time coincides.
In case 1 (a), the time interval coincides, in case 2 (b), parts of the path lines share the same time
interval, and in case 3 (c) the path lines occur at different points in time. (Images from [441]
© Elsevier Ltd. 2018.)

Case 1: In this case, the time components of both path lines coincide: [tk1 , tkn] = [tl1, tlm]. To
determine the mean distance, we need points on both path lines such that their timings coincide. In
general, the time components of the points on the first path line vary compared to the points on the
second line, see Figure 74 (top). Therefore, we place new points on both lines such that the time
components coincide, see Figure 74 (bottom). For this, we linearize the time along an edge and
determine the position such that the time at this position corresponds to the desired time component.
This yields two path lines with the same number of points pk1 , . . . , pkM, pl1, . . . , plM and the same
time components tk1 , . . . , tkM, tl1, . . . , tlM. Note, that tk1 = tl1, tk2 = tl2, . . . , tkM = tlM holds by a
construction of the points; thus we will omit the superscript.
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Figure 74: To measure the mean distance of two path lines, the points of the first line with different times are
projected on the other line and vice versa. Then, the mean distances of the rectangular segments
are determined. (Image from [441] © Elsevier Ltd. 2018.)

Finally, we compute theM− 1 mean distances between the path line parts given by the curves:

ck(t) = pki + t(p
k
i+1 − pki ),

cl(t) = pli + t(p
l
i+1 − pli),

t ∈ [0, 1], i ∈ {1, . . . ,M− 1}.

(26)

A sample-based calculation could determine the mean distance of two path lines in the time
interval [ti, ti+1]. However, the resulting mean distance would depend on the number of samples, see
Figure 75. Here, both pairs would have the same mean distance, although their behavior is different.
Generating enough samples would converge to the correct mean distance, but would increases the
computation effort. To avoid such inaccuracies, the mean distance of two path lines in the time
interval [ti, ti+1] is determined by:

D
kl
(ti, ti+1) = lim

N→∞
N∑
i=0

1

N+ 1
‖ck(i/N) − cl(i/N)‖︸ ︷︷ ︸

d(i/N)

= lim
N→∞

N∑
i=0

 i+ 1

N+ 1︸ ︷︷ ︸
ti+1

−
i

N+ 1

 · d(i/N)

=

∫1
0
d(t)dt.

with d(t) = ‖ck(t) − cl(t)‖. Thus, the mean distance of two moving particles is determined by a
novel approach using the integral of the distances. The integral of the mean distance of two curves
given in Equation 26 is of the form:

D
kl
(ti, ti+1) =

∫1
0
d(t)dt =

∫1
0

√
a+ 2bt+ ct2 dt, (27)
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where

a = 〈pki − pli, pki − pli〉,

b = 〈pki − pli, p − pki − pli+1 + pli〉,and

c = 〈pki+1 − pki − pli+1 + pli, p − pki − pli+1 + pli〉.

(28)

This integral can be solved analytically. For this purpose, we determine theM− 1 mean distances
between the path line parts by:

D
kl
(t1, t2),D

kl
(t2, t3), . . . ,D

kl
(tM−1, tM), (29)

which yields the overall mean distance:

Dkl =
1

tM − t1

M−1∑
i=1

(ti+1 − ti) ·D
kl
(ti, ti+1). (30)

Figure 75: Calculation of the mean distance for two path line pairs, where each line has two points. A
sample-based calculation of the mean distance would result in the same distance for both pairs,
although they show a different behavior. Using the integral-based calculation, the left pair has a
higher mean distance than the right pair. (Image from [441] © Elsevier Ltd. 2018.)

Case 2: For case 2, we determine the distance of the overlapping temporal part with Equation 30.
Thus, there exist two disjoint sets that partitioned the time set of the path lines such that:

Tk1 ∪ T
k
2 = [tk1 , tkn],

T l1 ∪ T
l
2 = [tl1, tln].

(31)

Without loss of generality, we assume Tk2 = T l1, see Figure 76. Then, the distance of the set Tk2
is determined based on Equation 30. To consider the missing parts Tk1 and T l2, we calculate the
mean distance with Equation 30, but change the curves given in Equation 26. For Tk1 , we alter cl to
cl = pll(t

l
1) = pl1 (and for Tk1 , we set ck = pkn).

Case 3: In case 3, the time intervals do not overlap. Without loss of generality, we assume tkn < t
l
1.

Again, we determine the mean distance with Equation 30, but change the curves given in Equation 26.
First, we set ck = pkn and determine Dkl (to all line segments on pll). Then, we set cl = pl1,

determine Dkl (to all line segments on plk), and add this to the result.

Jaccard Matrix: So far, we determined the mean distances of two path lines as a basis for the
similarity calculation. Besides this, we want to ensure that two path lines of case 1 are more similar
than path lines of case 3. For this, we compute a Jaccard matrix J, which uses a Jaccard metric. For
two path lines plk,pll with time components Tk = {tk1 , . . . , tkn} and Tl = {tl1, . . . , tlm}, the Jaccard
matrix is given by:

(J)kl = 1−
max(Tk ∩ Tl) − min(Tk ∩ Tl)
max(Tk ∪ Tl) − min(Tk ∪ Tl)

. (32)
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Figure 76: Calculation of path line distances for case 2. Therefore, (at most) three sets, Tk1 , Tk2 , and T l2, are
distinguished, whereas Tk2 = T l1. (Image from [441] © Elsevier Ltd. 2018.)

In case Tk ∩ Tl = ∅, we set max(Tk ∩ Tl) = min(Tk ∩ Tl) = 0. Thus, if (J)kl = 0, both path lines
exist in the same time interval (case 1). If (J)kl = 1, both lines occur at different points in time (case
3). Otherwise, they share a time interval (case 2).

Distance Matrix: Based on the cases 1, 2, and 3 we construct the distance matrix D with (D)ij =

Dij+ Jij ·maxijDij. Note, with the construction of the Jaccard matrix we ensure thatD(case 1) 6
D(case 3). For case 2, we have to split the distance calculation into (at most) three parts, one or two
parts of time intervals that do not overlap. In case 3, we have two components, which are used to
determine the similarity.

7.1.3 Path Line Clustering

The distance matrix is used as input for the path line clustering. Each path line is assigned to
exactly one cluster. Oeltze et al. [283] recommend using AHC or SC to group streamlines in cerebral
aneurysms. We extended their similarity measure for applying it on path lines and used AHC. We also
tested SC, which leads to similar results, see Section 7.1.5. Density-based approaches such as DBSCAN

are also used to cluster integral lines [98, 435]. However, we reject DBSCAN, since two thresholds
have to be defined, which essentially determine the cluster structure and an appropriate threshold
selection can be tedious [435]. Moreover, using AHC allows comparing our similarity measure to
existing techniques [283, 435] that used AHC to cluster blood flow-representing lines.

To reduce the effort for selecting an appropriate cluster number, we aim to make a "good guess"
using the L-method [329]. It is based on finding a knee in a graph that opposes the cluster number and
an evaluation metric, see Figure 77. The evaluation metric uses the values from D leading to a fusion
of two clusters. The position of the knee represents the appropriate cluster number but depends on
the number of clusters involved in creating the graph. Therefore, a complete graph is recommended,
ranging from two clusters to the number of lines. For our data sets, the maximum detected cluster
number is 20. If the automatically calculated number is not appropriate, the expert can incorporate
his expert knowledge by chaining the cluster number (Req. 17).

7.1.4 Visualization of Blood Flow Clusters

The path line clusters are visualized in two juxtaposed render contexts that are linked to each other.
The first one shows the clusters within the 3D aneurysm, whereas the second provides a more abstract
depiction. Here, the clusters are visualized as 2D structures. In the following, we comment on the
design decisions for the different views and their interplay.
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Figure 77: L-method to detect a reasonable cluster number CN. It finds the knee in a graph opposing the
cluster number and an evaluation metric. (Image from [441] © Elsevier Ltd. 2018.)

(a) (b)

Figure 78: Simultaneous exploration of two scalar fields on the aneurysm surface using color-coding (here
WSS is depicted) and an image-based hatching scheme (here pressure is depicted) (a). To reveal
the qualitative flow behavior Fresnel shading is applied to the surface (b). (Images from [441]
© Elsevier Ltd. 2018.)

3D Cluster Visualization

The 3D aneurysm view enables a detailed exploration of possible correlations between individual flow
patterns that are associated with an increased risk of rupture and high-risk wall regions. Therefore, the
aneurysm surface is depicted following our previous approach [439]. This enables the simultaneous
exploration of two user-selected scalar fields, see Figure 78a. The first is depicted using a gray-to-red
color scale and the second one is visualized using an image-based hatching scheme. The blood flow
is represented by lines, and color-coded according to a user-selected property, e.g., the velocity. To
analyze scalar data and the internal flow simultaneously, we applied Fresnel shading as suggested by
Gasteiger et al. [122] to the vessel surface, see Figure 78b.

The simultaneous depiction of all path lines would lead to visual clutter. Therefore, we determined a
representative for each cluster that summarizes the blood flow and enables the perception of inner flow
structures. Similar to Oeltze et al. [283], we used density-based representatives [281] to approximate
the shape of the clusters. The method is based on generating a Cartesian grid around the cluster using
its axis-aligned bounding box. The grid resolution corresponds to the resolution of the image data
that was used to reconstruct the aneurysm morphology. For each voxel of the grid, a density value
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is determined by counting the number of passing lines. Finally, the densities per line are integrated,
and the line with the highest value is used as representative. The representatives are shaded as
tubes to improve their perception from a more distant point of view. The user can select a specific
representative by clicking into the scene, which activates the rendering of the corresponding path
lines of that cluster. This allows a targeted exploration of suspicious flow patterns.

2D Cluster Visualization

A very irregularly deformed aneurysm surface complicates the simultaneous exploration of internal
flow patterns and scalar wall properties. Manual rotations are necessary to perceive the flow behavior
and to detect critical wall regions. The time-dependent behavior of the data further complicates the
exploration. To facilitate the flow pattern analysis, we provide more abstract visualizations where the
aneurysm surface and the clusters are depicted as 2D structures in two ways.

M A P - B A S E D C L U S T E R V I S UA L I Z AT I O N . Similar to the MuScaVis module, we provide the
2D aneurysm map in an additional view to avoid visual clutter. The map ensures an occlusion-free
exploration of a chosen scalar quantity and shows the flow behavior of individual clusters. Therefore,
the path line points of a user-selected cluster are projected onto the map and are visualized as circles
by applying depth-dependent halos [100]. Again, the ostium contour is color-coded in the 2D and 3D

view to establish a spatial correlation between both views, see Figure 79.

(a) (b)

Figure 79: The mapping of the path lines from 3D to the 2D aneurysm map. The path line points are rendered
as circles, which leads to occlusion problems (a). To avoid this, we applied depth-dependent halos
to them (b). (Images from [441] © Elsevier Ltd. 2018.)

The path lines are projected on the generated 2D map. Thus, for each path line point pi the nearest
surface point of the aneurysm part pj is determined based on the Euclidean distance, see Figure 80a.
For this, pi is orthogonally projected into the triangle’s plane defined by its normal. We check if
the projected point lies inside the triangle by computing the barycentric coordinates. If the point
lies inside the triangle, we determine the distance of pi and the projection and store the previously
determined barycentric coordinates of the triangle. In case the projected point lies not inside the
triangle, we compute the nearest point on the triangle’s boundary. For this, the distance of pi and the
three edges is determined. Again, we store the minimum distance and the barycentric coordinates of
the closest point with the triangle. This procedure is repeated with all triangles on the aneurysm part
such that we obtain the minimum distance, the barycentric coordinates of the closest point, and the
associated triangle. Then, all path line points pi are projected on the map yielding p ′i.

To ensure a smooth animation of the points, we generate quads on the GPU for the successive path
line points p ′i and p ′i+1, see Figure 80b. The quads are equipped with a coordinate system that reflects
the extent of the quad. In y-direction we have [−

√
r,
√
r] and in x-direction we have [−

√
r, ‖pi+1 −

pi‖+
√
r]. Here, r is used for the radius of the drawn circle that represents the animated path line point.
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Figure 80: Our approach for mapping path line points on the 2D map. First, the path line points are projected
onto the aneurysm surface (a). The projected points are used for the 2D map, where a quad is
generated around consecutive path line points (b). For every point in time, a circle is generated
between the projected points (c). The contour of the circle is transformed behind the circle itself (d).
This yields non-overlapping contours during the animation (e). (Images from [441] © Elsevier Ltd.
2018.)

Figure 81: Applying depth-
dependent halos to
the circles representing
the mapped path lines.
Pixels of the circle contour
(zcon) get a higher depth
value than pixels of the
inner area of the circle
(zin). (Image from [441]
© Elsevier Ltd. 2018.)

A circle is drawn on the quad if the animation time t is in
[ti, ti+1] (the time interval of the current period), see Fig-
ure 80c. Then, we define X(t) = t−ti

ti+1−ti
· ‖pi+1 − pi‖ and

draw a white filled circle if (x − X(t))2 + y2 6 r2, again
x,y are the coordinates of the quad, see Figure 80d. In case
that (x−X(t))2 +y2 > r2 and (x−X(t))2 +y2 6 (r+ c)2

holds, where c denotes the thickness of the contour, we use
a colored outline and set the depth of these fragments higher
than the (white filled) circle, see Figure 81. This avoids over-
draw between overlapping circles, see Figure 80e. However,
the user can switch between the depth-dependent halos and
the more cluttered image, see Figure 79. The circle contours
can be color-coded according to a user-selected scalar field,
e.g., the distance of the flow to the aneurysm wall, using a
blue-to-yellow color map. Applying the depth-dependent halos
also avoids occlusions between the circles and the color-coded
scalar field on the 2D map, see Figure 79b. This enables simul-
taneous exploration of scalar flow and wall properties to detect
probably rupture-prone wall regions (Req. 4).

P L A N E - B A S E D C L U S T E R V I S UA L I Z AT I O N . To further facilitate the perception of flow
patterns, a second 2D visualization is provided. This shows the contour of the vessel surface and
path lines of a user-selected cluster projected on a plane, see Figure 82. Hand-drawn sketches of
aneurysms by medical experts show the aneurysm sac as the most important feature pointing upwards.
To fulfill this, the aneurysm has to be oriented along the y-axis of the underlying coordinate system,
see Figure 82b. Moreover, an appropriate view should show the maximum extent of a cluster. To
construct a projection plane that fulfills both conditions, we perform a principal component analysis
(PCA) of the ostium positions and determine the eigenvectors eoi with i ∈ 1, 2, 3. By using the ostium
positions instead of all aneurysm vertices, the viewpoint selection is more independent from the
aneurysm shape. We take the eigenvector of the ostium eo3 with the smallest magnitude, which runs
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similar to the y-axis. Moreover, we perform a PCA of the spatial path line point positions of the cluster
and determine the corresponding eigenvectors eci with i ∈ 1, 2, 3. Afterward, we calculate the scalar
product between the eci and eo3. The eigenvector, which is most likely to be parallel to eo3 is used
as the first plane vector. If this vector runs in the opposite direction of eo3, we invert its direction.
From the remaining two eci, we choose the one with the largest eigenvalue as the second plane vector.
If the eigenvalues of both vectors are the same, we take the first one. The remaining eci defines the
view direction of the virtual camera. Finally, we project eo3 into the constructed plane and rotate the
plane that eo3 runs along the y-axis. This guarantees a view, where an aneurysm points upwards. To
calculate the surface contour, we used the approach by Lawonn et al. [214]. The contour results from
the positions at which the surface normal and the view direction are mutually orthogonal.

(a) (b)

Figure 82: Plane-based cluster visualization (b) from the 3D view (a). On the path lines, the distance to the
wall is color-coded using a blue-to-yellow color scale. (Images from [441] © Elsevier Ltd. 2018.)

7.1.5 Evaluation and Results

To assess the quality of our similarity measure, we compared it with other similarity measures.
Moreover, we conducted a qualitative evaluation, where participants ranked different path lines
according to their similarity. We compared the rankings to our calculated similarities to assess
the suitability of our method. Furthermore, we questioned experts to assess the suitability of the
visualizations and their bidirectional connection.

Comparison with other Similarity Measures

We compared our similarity measure with MCPD [76], which is used to calculate streamline similarities
and the approaches by Liu et al. [227] and our previous method [435] to calculate similarities between
path lines. Moreover, we extended the MCPD measure by the temporal component ([76]+t). For this
purpose, we calculated two distance fields d1 and d2, where d1 represents the MCPD measure based
on the 3D spatial components (x,y,z) of a path line point, and d2 represents the MCPD measure based
on the points’ temporal component t. To be independent of spatial/temporal units of the underlying
domain, d1 and d2 are normalized to the range [0, 1], resulting in d1 ′ and d2 ′. The final distance
value between two path lines is computed by adding their corresponding d1 ′ and d2 ′ value. With
this, we evaluated if such a simple integration of the temporal component leads to plausible results.
Figure 83 shows three pairs of path lines, where the temporal component is color-coded. Below, the
corresponding distances and ranges are listed. The higher the distance value, the less similar the lines
are. The path lines in the left image are geometrically quite similar but do not occur in the same
time interval. Therefore, they should receive a high distance. However, using MCPD the path lines
have a low distance since only geometrical properties are considered. With our approach, the highest
distance can be reached, ensuring that these path lines would be grouped into the same cluster only
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Figure 83: Comparison of our similarity measure to MCPD [76] and existing path line similarity measures by
Liu et al. [227] and our previous measure [435]. Moreover, we extended MCPD by the temporal
component ([76]+t). We calculated the distance values for three path line pairs with the correspond-
ing distance ranges in brackets. The first pair is spatially similar, but the path lines occur at different
time intervals and should, therefore, not be in the same cluster (left). The second image shows
two cases. The left case should be more similar than the right one due to the temporal behavior.
(Images from [441] © Elsevier Ltd. 2018.)

for a very low and inappropriate cluster number using AHC. For the remaining three approaches, the
distances are quite similar because of the stronger influence of geometrical properties compared to
the temporal distances. The right image shows two pairs of path lines that are geometrically less
similar to each other. Considering the temporal component, the left case should be more similar
than the right case, which could be reached with our method. In contrast, MCPD results in a lower
distance for the right case. Integrating the temporal component for MCPD ([76]+t) also results into
a lower distance for the left case. However, the distance for the left case is quite similar to the first
case in the left picture, which is not desired due to their different temporal behavior. Based on our
previous approach [435], the distances are quite similar for both cases, since only the lines’ start- and
endpoints are considered for calculation. The distance of the right case using the method by [227] is
also lower than for the left case, which shows the dependence of the underlying spatial partition into
cubes. In contrast to the left pair, the right one shared some cubes.

To further evaluate our similarity measure, we compared our clusters with the results of existing
similarity measures, see Figure 84. The first row shows a cluster that enters and leaves an aneurysm
more distant to the wall, where the temporal component is color-coded on the lines. Using MCPD,
lines with different temporal behavior are clustered together, see Figure 84a. Integrating the temporal
component leads to a cluster were path lines with a laminar and vortical behavior are grouped, see
Figure 84b. A similar result is generated with our previous method [435] (Figure 84d) since the
geometrical behavior of path line points, which are no start- or endpoints is less considered. Our
method leads to a cluster that exhibits only laminar behavior without integrating path lines that occur
at different times, see Figure 84e. A similar result could be generated with the method by [227], see
Figure 84c. However, this cluster contains path lines with different spatial behavior, and the results
were sensitive to the used cube size. Small changes of the cube size led to quite different results. The
second row shows a vortical flow pattern that becomes more and more tight over the cardiac cycle.
Our method results in a cluster that shows a strong vortex at the end of the cycle, see Figure 84e.
Using the other similarity measures, it is not possible to depict the decay of the vortex by individual
clusters. Path lines, occurring more early occlude the inner vortex structure. However, to cluster
instable flow patterns is important, since such patterns are correlated with rupture [60].
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(a) [76] (b) [76]+t (c) [227] (d) [435] (e) Our

Figure 84: Two exemplary clusters for two data sets generated with MCPD [76], MCPD [76] with time in-
tegration, the approach by Liu et al. [227], our previous approach [435], and with our method.
The temporal component is color-coded using a blue-to-yellow color map. (Images from [441]
© Elsevier Ltd. 2018.)

In addition, we artificially generated a vortex using:

Ci(u) =


ri · sin(u)
ri · cos(u)

u

(i− 1) + u

 , i ∈ {1, ..., 100} , u ∈ [0, 10π], (33)

where ri = 1
2cos(

2πi
100 ) · (1+ sgn(cos(2πi100 ))) and

sgn(x) =

{
1 if x > 0

−1 if x < 0.
(34)

The vortex occurs, decays to a line and reoccurs over time, see Figure 85a. Due to its time-dependent
behavior, five clusters are expected to show the vortex occurring and reoccurring, the transition to
laminar flow, and vice versa, as well as the laminar flow itself. MCPD (Figure 85b) and MCPD with
time (Figure 85c) are not able to separate these stages. Similar problems would arise with the method
by McLoughlin et al. [246] since just geometrical features are considered for calculation, which are
quite similar for the phases. The approach by Liu et al. [227] was again sensitive to the cube size and
was not able to separate the laminar flow, see Figure 85d. Our previous method [435] (Figure 85e),
where the laminar stage was used as the centerline, and our measure (see Figure 85f) can distinguish
the individual stages. However, for patterns that are not so perfectly symmetric such as the example
in Figure 84 (C9), our previous measure [435] is not appropriate to cluster instable patterns. These
comparisons show that existing similarity measures are less reliable than our new approach.

Robustness Experiments

To evaluate the robustness of our similarity measure, we added different amounts of noise to the
artificially generated vortex in Figure 85a. Figure 86 shows the clustering results of our measure
for three noise levels. The different levels were generated by adding a random number rn to the
3D spatial components (x,y,z) of a path line point, where rn was selected in the of range of [0, i]
with i ∈ [0.2, 0.6, 1.0]. Adding noise to the spatial position simulates possible occurring artifacts in
measured or simulated data, whereas temporal noise would not occur in measured or simulated data
sets due to the pre-defined time between two successive time steps. Our method can detect the five



7.1 AU T O M AT I C C L U S T E R I N G O F F L O W PAT T E R N S 151

(a) Time-dependent vortex
behavior

(b) [76] (c) [76]+t (d) [227] (e) [435] (f) Our

Figure 85: Clustering results for an artificially generated unstable vortex that decays and reoccurs over time.
We compared our method to MCPD [76], MCPD [76] with time integration, the approach by Liu et
al. [227] and our previous method [435]. Due to the time-dependent vortex behavior, five clusters
are expected to show the vortex occurring and reoccurring, the transition between vortex and
laminar flow and the laminar flow itself. (Images from [441] © Elsevier Ltd. 2018.)

expected clusters of the vortex representing its different stages for the different amounts of noise,
which shows that our similarity measure is robust against noise.

(a) Noise Level 1 (b) Noise Level 2 (c) Noise Level 3

Figure 86: Clustering results for the artificial vortex of Figure 85a. We added different levels of noise to
evaluate the robustness of our similarity measure. Our method can detect the expected clusters.
(Images from [441] © Elsevier Ltd. 2018.)

Besides the robustness analysis of our similarity measure, we perform a qualitative comparison
between AHC with average link and SC as described in Oeltze et al. [283] for the artificially generated
vortex and the aneurysm data set C22. For the artificial vortex, there was no visual difference between
the results of both clustering methods. SC leads to the same clusters as depicted in Figure 85f.
Figure 87 shows exemplary cluster results for C22 based on AHC and SC. We yielded quite similar
results for both methods, which is similar to the findings by the works of [283, 435], who state that
both approaches lead to reasonable results for blood flow clustering. An in-depth comparison of these
techniques based on our similarity measure would be part of future work.
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Figure 87: Exemplary clustering results for C22 using AHC and SC based on our similarity measure. Both
methods lead to qualitatively similar clusters. (Images from [441] © Elsevier Ltd. 2018.)

Participants’ Cluster Comparison

Due to the absence of a clustering ground truth, this evaluation should show if the participants’ sense
of path line similarity is coherent with our similarity measure. For this, the participants ranked
different path line pairs manually according to similarity for ten cases based on five data sets. Each
case contains four pairs, where one path line was the same for all pairs that serves as a reference. The
cases were generated in the following way: a path line was randomly chosen. Then, the other path
lines were ordered according to their similarity. Afterward, the path lines were categorized in four
intervals with approximately the same interval length (based on the similarity measure). For each
interval, a path line was randomly chosen.

This evaluation was conducted with 12 participants with a background in flow visualization ranging
from one to six years of experience. All pairs of a case were shown side-by-side within the 3D

aneurysm surface. If the user rotates one scene, all pairs were rotated synchronously. The participants
were asked to order the path lines according to their similarity to the reference line from the highest
to the lowest value. Therefore, we color-code the time component on the lines. Besides the manual
ranking, we also ranked the pairs according to our calculated similarity values. Finally, we compared
our rankings with the manual user rankings, see Table 4. For this purpose, we evaluated the order of
the path lines with points. If the order of our measure to the participants’ order was the same, we
gave one point (3). In case the ordering of one pair was wrong, half a point (m) was given. In case
two or more orderings were wrong, zero points (7) were given. The last column of Table 4 shows
the total number of points for each participant. A maximum number of ten points could be achieved
in total. The higher the value, the greater the consistency between our similarity measure and the
manual rankings. On average, 8.5 points were reached.

Informal Expert Feedback

The informal evaluation was conducted with four domain experts, one neuroradiologist P1 with 16
years of experience, two CFD experts P2, and P3 with five and eight years of experience, respectively,
and one expert for medical visualization P4 with six years of experience. The informal study was
conducted in two steps:

1. Introduction to the ViFlEx module with the 3D and 2D visualizations of the flow patterns and the
interaction techniques.

2. A questionnaire that inquires the importance of intra-aneurysmal flow analysis and the visual-
ization of the clustering results.
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Table 4: Results of the manual path line comparisons. Each column corresponds to a case. One point was given
for no mistake (3), half a point was given for one mistake (m) and zero points were given for more than
one mistake (7). The last column shows the total number of reached points for each participant.

1 2 3 4 5 6 7 8 9 10 Total
3 3 3 3 3 m m 3 3 3 9.0
3 m 3 3 3 m 3 3 3 3 9.0
3 3 3 3 3 3 m 3 3 3 9.5
m m 3 m 3 m 3 3 3 m 7.5
3 3 3 3 3 3 3 3 3 m 9.5
3 m 3 m 3 3 3 3 3 m 8.5
3 3 3 3 3 3 3 m m 3 9.0
3 7 3 3 3 3 3 3 3 m 8.5
3 m 3 3 3 m 3 m 3 m 8.0
3 3 m m 3 m 3 m m 3 7.5
3 m 3 3 3 m 7 3 3 3 8.0
m m 3 3 3 7 3 3 3 3 8.0

The first step is necessary for the experts to familiarize themselves with the module. Then, the experts
answered the questionnaire using a five-point Likert scale (−−, −, ◦, +, ++). For the analysis of
the Likert scores, we provide the number S(·) of experts who chose the individual scale. The overall
result of the empirical evaluation is shown in Figure 88.

Medical relevance. All domain experts confirmed the importance to analyze quantitative and
qualitative flow properties, respectively for the patient-specific rupture risk assessment (S(++) = 3;
S(+) = 1). The simultaneous investigation of these factors was rated as highly important (S(++) =

4). The CFD experts stated that a combined analysis is necessary to understand the interplay between
specific flow patterns and scalar data such as WSS. Furthermore, we asked about the importance to
investigate the distance of flow patterns to the vessel wall that was rated with S(++) = 4. P2 stated,
“[...] vortical flow patterns coming close to the wall are more associated with rupture than more distant
patterns.” Finally, we ask about the importance to compare flow patterns between data sets, which
is evaluated as very crucial (S(++) = 4). All experts stated that such a comparison would allow
transferring treatment decisions or rupture assessments to new cases.

Flow pattern recognition. The experts evaluated visualization techniques to recognize flow patterns.
One possibility is to show all path lines simultaneously in an animated way. This was considered
inappropriate due to occlusion problems and visual clutter (S(−) = 1; S(−−) = 3). Coloring the
path lines due to their cluster affiliation slightly improves the identification of flow patterns (S(◦) = 1;
S(−) = 3). In contrast, the selection of individual clusters based on the 3D view per mouse click was
assessed as very appropriate (S(+) = 1; S(++) = 3).

3D cluster visualization. All experts confirmed that the 3D visualization of the cluster representatives
allows a reasonable simplification of the complex flow behavior (S(++) = 4). The CFD experts stated
that the cluster representatives support the assessment of the most prominent flow patterns, which is
one of their main tasks, recall Section 5.1. Moreover, they stated that the surface transparency reveals
the qualitative flow behavior (S(++) = 4).

2D cluster visualization. All participants confirmed that the path line projection on the map allows a
fast detection of possible rupture-prone regions (S(++) = 2; S(+) = 2). Besides, the experts stated
that the 2D map reduces the exploration effort (S(++) = 3; S(+) = 1). However, for the assessment
of the most prominent flow patterns, P2 and P3 preferred the 3D cluster representatives. P1 stated
that the map would support the comparison of ruptured and non-ruptured cases due to simplified
visualization of scalar and vectorial data. The suitability of the plane-based visualization to support
the flow analysis was rated more controversially with S(+) = 2 and S(◦) = 2. P1 and P3 argued that
the map in combination with the 3D view is sufficient to understand individual flow patterns.
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Figure 88: The results of the expert evaluation of the path line clustering with color-encoded Likert scores.
Each box represents the answer of one expert: the left-most box depicts the physician, the middle
two boxes show the CFD experts, and the right-most box represents the medical visualization expert.
(Image from [441] © Elsevier Ltd. 2018.)

Finally, we qualitatively evaluated our clustering results with the experts. They visually inspected
clusters and stated that they should be spatially compact and temporally coherent. Figure 89 shows
exemplary results for three data sets C11 - C13. In the first column, the path lines are color-coded
according to their cluster correspondence, and the representatives are shown as a preview. Moreover,
four clusters per data set are depicted, where the temporal component is color-coded. All clusters are
spatio-temporally compact. For example, the purple and blue cluster of C13 are spatially very similar
but exhibit an opposite temporal behavior. Thus, they are not grouped. Reoccurring patterns over
time are grouped into different clusters such as the pink and yellow cluster of C11.

Performance

This section reports on the performance of our clustering approach. We focused on computation times
since memory consumption is not critical. The time depends on the number of path lines (varying
between 1435 and 7999 lines) and their average number of vertices (ranging between 117 and 209
points). While the first varies with the sampling density of the ostium, the latter depends on the line
length and integration step size. We measured the computation time of AHC, where we differentiated
between the computation of the distance matrix and the actual clustering including the determination
of representatives. The calculation of the distance matrix represents the bottleneck (varying between
20.2 and 93.1 min), where the timings for the clustering itself are in the range of seconds (ranging
between 7.1 and 53.4 s). For the visualization, we reach real-time frame rates of 60 FPS.
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Figure 89: Exemplary clustering results for three data sets (C11 - C13). In the first column, the path lines are
color-coded according to their cluster correspondence. As a preview, the cluster representatives are
shown. Column 2-5 show different clusters of the data set, where the path lines in the preview are
color-coded according to their temporal component. (Images from [441] © Elsevier Ltd. 2018.)

7.1.6 Discussion and Limitations

Similarity validation. Due to the absence of ground truth to validate our clustering results, we
evaluated if our similarity measure leads to plausible results. For this purpose, we compared our
calculated similarities with manually prepared similarity rankings. The experts stated that path lines
are similar if they have a low spatial distance and occur at similar time intervals. In contrast, path
lines that occur in different spatial areas or time intervals are classified as less similar. Our results
were consistent with the manual orders in 8.5 points on average. Thus, in most cases, the calculated
similarity values conform to the rankings of the participants. The expert’s rankings of cases, showing
stronger differentiation in their spatial and temporal behavior, e.g., C12, conform to our calculated
ranking, see Figure 90. Deviations occurred for cases with a more complex flow behavior, such as C13,
see Figure 90. They ranked the most similar and the most dissimilar pair correctly for almost all cases
but interchanged the second and third rank. The reason, therefore, were problems to visually estimate
the distances between corresponding points based on the temporal component. The participants stated
that they are less confident with their estimations for these cases and thus, they would prefer to use
our measure. Besides, generating such a ground truth is challenging. Path lines would have to be
labeled manually according to pre-defined types. This would be a time-consuming and subjective
process. The time-dependent behavior of the data would further complicates this task. In contrast to
existing similarity measures, our method allows analysis of flow patterns that are not stable over the
cardiac cycle, since instability is (besides complexity) a major predictor for rupture risk [60]. Vortices
that only occur during a specific time interval may be investigated with our approach. Such patterns
would probably be missed with a static clustering depending on the selected time step for seeding.

Robustness. We could show that our method is robust against noise. However, the measure depends
on the most dissimilar path line to ensure that D(case 1) 6 D(case 3). Thus, our measure might
count the same pair of path lines either as relatively similar or as more dissimilar, depending on
the presence of outliers. In our cases, this does not lead to inappropriate results. To overcome this
limitation, we would have to change the calculation of (D)ij to:

(D)ij = 1−
1

(Dij + 1)
+ Jij or

(D)ij = 1− exp(−(
D
2
ij

σ
)) + Jij,
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Figure 90: Exemplary cases from the manually performed path line comparisons with the calculated distances
by our method below. The most similar (left) and the most dissimilar pair (right) were correctly
ranked by all participants. Deviations occurred for the middle pairs. (Images from [441] © Elsevier
Ltd. 2018.)

where σ is a user-defined variable. However, with these new calculations of (D)ij, the distance values
would not change linearly. This also might lead to inappropriate clustering results.

Uncertainty. The individual pre-processing steps, image reconstruction, segmentation, choice of
inflow boundary condition, and virtual treatment are related to uncertainties [32, 334, 342, 374]. To
reconstruct angiography images as input for the surface extraction, different reconstruction kernels
can be used. Depending on the selected kernel, the vessel diameter and ostium area are influenced,
which further leads to differences in hemodynamic values such as pressure and flow magnitude.
Besides, the shape of the reconstructed surface and CFD results depend on the selected segmentation
method. Finally, the chosen boundary conditions for the CFD simulation influence the resultant vector
fields. Deriving flow rates from known patient-specific flow rates could lead to uncertainties in
the CFD results since flow rates depend on different factors such as sex, body size and normal or
pathological variants of vascular anatomy. However, patient-specific flow rates are rarely available. In
summary, uncertainties arising from the individual pre-processing steps could lead to inaccuracies in
the resultant flow patterns, i.e., flow patterns could be traced that are not existing. However, until now
there is no clear recommendation which methods should be used for preprocessing. A more detailed
analysis of possibly arising uncertainties is beyond the scope of this thesis.

Findings. During the evaluation, it turned out that the 3D and 2D depictions represent a meaningful
combination for efficient exploration of flow patterns. The experts liked the concept of the linked and
juxtaposed 3D and 2D depictions, which avoids switching between the views. The 3D view allows a
detailed analysis of individual flow patterns. Thus, our experts were able to find correlations between
rupture-relevant flow patterns and high-risk wall regions, see Figure 91. Here, for two data sets C11
and C13 the WSS is color-coded, and the pressure is depicted by hatching. The experts analyzed
individual clusters of both cases. In C13 they detected a flow pattern that orthogonally hits the wall
during the whole cardiac cycle and could lead to rupture. Conversely, the flow patterns of C11 run
along the wall and have therefore been assessed as less rupture-prone despite the increased pressure
and WSS values. However, in some cases, the experts were unsure if the current flow pattern is closer
to the anterior or posterior wall of the vessel. Therefore, they wished to have additional clipping
planes or a 2D color map, coding the distance to the respective wall side.

The 2D map gives a fast overview of possible correlations between flow patterns and scalar wall
properties. By depicting the path lines as circles with depth-dependent halos, the color-coded scalar
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Figure 91: Detailed flow pattern exploration by using different cluster visualizations for two data sets C11
and C13. WSS is color-coded and pressure is depicted by hatching. C13 can be assumed to be
more rupture-prone due to the flow pattern that orthogonally hits the wall. C11 was assessed as
less rupture-prone due to flow patterns going along the wall despite the increased pressure and WSS
values. (Images from [441] © Elsevier Ltd. 2018.)

field can be analyzed simultaneously. Existing approaches used cutaway techniques [217] or surface
transparency for this purpose [275]. However, with these methods, the visibility of the displayed
scalar field on the surface is severely restricted, which is avoided with our map-based visualization.

Due to the different assessment of the plane-based cluster depiction, we provide an optional
activation of this view. Moreover, the experts wished to have more interaction techniques on the
map that support the identification of the corresponding path lines in 3D. This could be realized by
selecting a specific circle region on the map, followed by highlighting the corresponding path lines in
3D. Besides, the map-based path line rendering using circles was emphasized positively by all experts,
because it provides a useful simplification of the complex 3D flow.

7.1.7 Conclusion and Future Work

We presented a method for clustering path lines in cerebral aneurysms. Besides the aneurysm
separation, our method performs fully automatically, which allows a faster and more objective
analysis of suspicious flow patterns. Our similarity measure extends the MCPD, a reliable measure
to determine streamline similarities. We achieved convincing results compared to manual similarity
estimations of path lines. For clustering, we used AHC, an established method to group integral lines.
This assures comparability of data sets and reproducibility of the results. In contrast, a manual analysis
of flow patterns is time-consuming. A common advantage of AHC is the possibility to incorporate
expert knowledge. The cluster number can be changed, which allows an investigation of alternative
cluster configurations.

For future work, we want to perform a comparison of our current similarity measure and the
suggested solution in Section 7.1.6 to overcome the global distance calculation. Another interesting
point would be a perception-based user study that evaluates concepts, e.g., color or illustrative
techniques, to encode scalar values on lines such as the distance of path lines to the aneurysm wall.
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7.2 AU T O M AT I C C L A S S I F I C AT I O N O F F L O W PAT T E R N S

Several works aimed at identifying flow patterns that promote aneurysm rupture in order to build a
classification scheme that can be employed in risk assessment and treatment planning [60, 114, 239,
268, 358]. These works are based on a visual inspection of integral curves displayed at peak systole
in ruptured and non-ruptured aneurysms. Castro et al. [239] investigated bifurcation aneurysms
according to inflow jet structure splitting into three classes. They reported associations between
inflow jet structure, peak WSS, and aneurysm rupture. Nakayama et al. [268] manually classified
systolic blood flow in side-wall aneurysms dependent on their rotational position. They distinguished
two types of inflow, the side-type flow pattern, where the flow began from the side of the ostium,
rotated and flowed out from the other side of the ostium. In the split type, the blood flow began from
the center of the ostium, split into two directions, rotated, and flowed out from both sides. Futami
et al. [114] investigated the relationship between aneurysm morphology (size ratio) and inflow jet
pattern and reported four classes. Sunderland et al. [358] quantified the temporal stability of vortices
in side-wall and bifurcation aneurysms during the cardiac cycle. They measured the number of vortex
cores and the size of the vortices compared to a cycle-averaged vortex. No significant differences were
detected between both types, probably due to the small number of data sets (10 aneurysms). Pozo et
al. [305] introduced a complexity index that measures the flow complexity based on streamlines from
aneurysm inlet to aneurysm outlets. The more complex the flow, the lower the ability to distinguish
the outlet position by knowing the inlet position, resulting in a high complexity index. Cebral et
al. [60] proposed the most extensive classification scheme. They considered each aneurysm type, the
entire cardiac cycle, and the complete aneurysmal flow pattern (no restriction to parental artery flow
or inflow jet). They found four classes in both small and large aneurysms, with varying flow pattern
complexity and temporal stability. These classes are composed of combinations of three basic flow
types: flow with an unchanging direction, flow with a changing direction and vortical flow. Moreover,
their classification considers the inflow jet size and the size of the impingement zone. They reported
associations between rupture and flow type two combined with flow type three, narrow jets and small
impingement zones.

For cardiac blood flow, computer-based classifications were introduced. Von Spiczak et al. [393]
classified aortic vortices based on the temporal evolution of vortex cores and of vorticity values
in six cut planes along the aortic course. They reported the observation of differences between
healthy subjects and patients. However, the approach is sensitive to noise, which reduces the resulting
quality. In previous work, we proposed a scheme that classifies aortic vortices according to spatio-
temporal features comprising their shape, temporal occurrence, spatial location, size, and rotation
direction [434], recall Section 4.2.3. However, this method is not able to distinguish more complex
cerebral flow patterns. Other works proposed vector pattern matching approaches to classify aortic
flow patterns [150, 294]. However, these methods consider no morphological information, such as
the distance of the flow to the vessel wall, which seems to be an important criterion in the context of
cerebral aneurysms. Thus, existing techniques cannot be applied to cerebral aneurysms.

Therefore, we present CAVOCLA - an automatic method to classify blood flow in cerebral aneurysms
during the cardiac cycle, which is integrated into the ViFlEx module. As input, the clustered flow
patterns and the corresponding representatives are used, explained in Section 7.1. In contrast to
previous works, we automatically extract flow patterns for a faster, less error-prone, and reproducible
classification. The classification is based on a novel mapping of the aneurysm surface to a hemisphere
by calculating polar-based coordinates that circumvents restrictions of existing techniques in case
of a non-convex aneurysm shape, recall Section 4.2.1. Afterward, the polar-based coordinates are
assigned to the points of the cluster representatives. Using this, each representative is classified
automatically according to a set of pre-defined template types based on the study by Cebral et al. [60],
see Figure 92. Moreover, we refined and extended this set in collaboration with interventional
neuroradiologists. The classification result for an aneurysm is a subset of template patterns, which
constitutes a specific class. All classes reported by Cebral et al. can be automatically detected
using our approach since they represent individual combinations of the derived template types.
Moreover, we can detect further classes due to our refinements and extensions. Besides, we introduce
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an interactive detail-on-demand approach to investigate the classification results. Such level-of-
detail (LOD) visualizations are frequently used for visualizing molecular data [221, 293, 377], which
generate seamless transformations between different abstraction levels for obtaining an understanding
of molecular systems. Inspired by these works, we create a visual transition from the cluster
representative over an enclosing surface to the associated lines to support the spatial perception of
flow patterns. The respective representation of a cluster depends on the zoom level.

Type IV

Type I Type II Type III

Type V Type VI
Hemisphere

Mapping

Aneurysm-based depiction

Figure 92: CAVOCLA is applied to a steady cerebral aneurysm data set. We provide an aneurysm-based and
a hemisphere-based depiction of the classification results. One of six (I-VI) pre-defined types is
assigned to each flow pattern based on a representative streamline. (Image from [436] © IEEE
2019.)

7.2.1 Requirement Analysis

Until now, Cebral et al. [60] introduced the most detailed manual classification of flow patterns.
However, the process is affected by visual clutter leading to error-prone results. Furthermore, the
classification into three flow types is often not sufficient to describe the flow complexity, but a more
detailed visual differentiation is challenging.

To generate comparable and reproducible classification results, a reliable clustering of steady and
unsteady flow patterns without a priori determination of the cluster number is needed. Our automatic
path line clustering already fulfills this, recall Section 7.1. Similar to the clustering, the classification
is required to be performed automatically. However, due to the anatomic diversity, new flow types may
occur that differ from the pre-defined types. Therefore, the classification should be flexible enough
to include new flow types easily. Furthermore, adequate visualizations of the classified patterns are
needed to verify and interpret them. A more abstract depiction of the complex flow and morphology
would help to compare data sets and to assess the most prominent flow patterns. In addition to the
seven more general requirements in Section 5.1 and others in Chapter 6 as well as in Section 7.1.1,
we summarize further requirements for the classification of intra-aneurysmal flow patterns:

Req. 18 AU T O M AT I C C L A S S I F I C AT I O N . The classification determines the most similar flow
type per cluster automatically.

Req. 19 I N T E G R AT I O N O F E X P E RT K N O W L E D G E . The experts should be able to integrate
new flow types.

Req. 20 F L O W PAT T E R N V I S UA L I Z AT I O N . A more abstract visualization is needed that
allows an assessment and comparison of flow patterns.
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Figure 93: The pipeline of CAVOCLA. The aneurysm surface is separated from the parent vessel and integral
lines are seeded at the ostium based on the CFD data. For an aneurysm, polar-based coordinates are
calculated. Integral lines are clustered, and the polar-based coordinates are transformed to them as
input for the classification. For each cluster, the corresponding flow type is determined. (Image
from [436] © IEEE 2019.)

7.2.2 Flow Pattern Classification

In this section, we describe the details of the flow pattern classification. The method consists of the
following steps, see Figure 93:

• Aneurysm separation,

• Clustering of integral lines,

• Determination of polar-based coordinates on the aneurysm,

• Assigning polar-based coordinates to integral lines,

• Definition of template types,

• Assignment of the most similar template type per cluster.

For the remainder of this section, we use the following notation. Let M ⊂ R3 be a triangulated
surface mesh, i.e., a homogeneous simplicial 2-complex. M consists of vertices i ∈ V ⊂N and their
associated 3D position pi ∈ R3. Furthermore,M consists of (oriented) edges E = {(i, j) | i, j ∈ V},
where we denote eij = pj −pi as the edge connecting pi to pj. Finally, we denote the triangles with
T = {(i, j,k) | (i, j), (j,k), (k, i) ∈ E}.

Aneurysm Separation

For the classification of the aneurysm flow, we have to separate it from the parent vessel, see
Figure 93. For this, we use our previous approach [433], which detects the ostium automatically,
recall Section 5.5.1. A closed curve represents the ostium contour, consisting of consecutive points
c1, . . . , cn, cn+1 ∈ V , where c1 = cn+1. We cut the 3D surface mesh along the detected contour.
Finally, the user clicks on a point in the aneurysm region (cyan sphere), which yields the correct part.

Blood Flow Clustering

The classification requires a precise definition of spatio-temporal flow entities. For this purpose, we
cluster blood flow-representing lines. For steady flow, we use the approach by Oeltze et al. [283], who
calculate pairwise streamline similarities based on the MCPD [76] measure. This measure determines
for every streamline point the minimum distance to another streamline and averages it. Several
validity measures quantitatively evaluated the suitability of the similarity measure. Since MCPD does
not encode the temporal component of unsteady flow, we use our approach [441] to measure path line
similarities. We use AHC with average link to cluster integral lines, recall Section 7.1.3. Finally, a
representative per cluster is determined as input for the classification, recall Section 7.1.4.
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Determination of Polar-Based Coordinates

CAVOCLA aims to classify detected clusters according to pre-defined flow types. To avoid influences
of the aneurysm shape, we map the separated aneurysm to a uniform structure. Since aneurysms are
usually spherical structures, the aneurysm is mapped to a hemisphere with a radius of one. For each
vertex, we calculate polar-based coordinates, including a radius r and an angle ϕ that represent a
position on the hemisphere, see Figure 94.

Figure 94: Generating polar-based coordinates. Our parametrization calculates for each vertex on the aneurysm
surface a radius r and an angle ϕ, which represent a position on a hemisphere with a radius of one.
(Image from [436] © IEEE 2019.)

A mapping from the aneurysm mesh to polar-based coordinates is a function f with f : V →
R × [0, 2π). Thus, every vertex i is assigned to a radius ri ∈ R and an angle ϕi ∈ [0, 2π).
Furthermore, we demand a bijective mapping such that f−1 exists to enable linking and brushing
between the aneurysm surface and the resulting hemisphere-based visualization. Note that the vertices
i ∈ V and their corresponding position pi ∈ R3 are equivalent. Thus, the inverse of f−1 of a region
in polar-based coordinates maps to a region on the surface mesh. In the following, the mapping is
split and first the mapping from i 7→ ri is described.

Radial mapping. To obtain the radial mapping, we calculate the geodesic distances between the
path points ci ∈ V and each vertex i ∈ V . For this, we follow the fast approach by Crane et
al. [78]. First, the heat flow is integrated by solving the heat equation for a fixed time t: u̇ = ∆u

using an implicit Euler integration. Then, the vector field X is determined by X = −∇u/|∇u|
describing the normalized gradient of the heat flow u. Finally, the geodesic distances φ are calculated
by solving the instance of the Poisson equation: ∆φ = ∇ · X. We apply this method to all path
points c1, . . . , cn ∈ V . This yields the geodesic distances φc ∈ R|V |. Note that the geodesic
distances are represented as a vector where φc(j) denotes the geodesic distance from the path points
c1, . . . , cn ∈ V to the vertex j, thus φc(ci) = 0 for all i. The final radial mapping r is determined
such that it has the greatest value at the boundary c1, . . . , cn ∈ V:

ri =
maxj∈V (φc(j)) −φc(i)

maxj∈V (φc(j))
. (35)

This yields a mapping i 7→ ri ∈ [0, 1], see Figure 95, where the (horizontal) isolines represent the
radial mapping.

Angular mapping. To find an angular mapping: i 7→ ϕi, we employ the radial mapping and
calculate the angle differences per edge. For every edge (i, j) ∈ E we determine the change of the
angle ϕ(i,j) when going from vertex i to vertex j. We obtain this value by using the law of cosines:

ϕ̃(i,j) = cos−1
(
r2i + r

2
j − |eij|2

2rirj

)
. (36)
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This gives the change of the angle, but no orientation, i.e., ϕ̃(i,j) should be different in sign than
ϕ̃(j,i). Thus, we need an orientation to adapt the change of the angles. For this, we generate a
consistent vector field G on the aneurysm. G is determined by the geodesic distance rd from the
dome point, i.e., the point with the highest geodesic distances from the ostium contour: G = ∇rd,
see Botsch et al. [44] for the calculation of the gradient on meshes. G is defined for every triangle
and points to the direction of highest increase. Then, we define a vector field ot in the tangent
space of the triangle t ∈ T by applying the cross product of the normal vector nt and the vector Gt:
ot = nt ×Gt. This yields the sign of the angular difference:

ϕ(i,j) = sign(〈ot, eij〉) · ϕ̃(i,j), (37)

where (i, j) ∈ t, sign(x) is equal 1 if x > 0 and −1 otherwise, and 〈·, ·〉 denotes the Euclidean dot
product. Essentially, we want to find the angles of the vertices ϕ such that the energy:

e(ϕ) =
∑

(i,j)∈E
wij|ϕ(i,j) − (ϕi −ϕj)|

2 (38)

is minimal, withwij = (cotβij + cotβji)/2 denoting the cotangent weights [237]. Note that ϕ(i,j)
is given, whereas ϕi,ϕj are unknown. Minimizing this functional would lead to erroneous results.
One rotation would lead to a result where the angle of a vertex is close to 2π, and the neighbor would
be around 0. However, the difference would be small. To avoid this, we need to reformulate e(ϕ). We
transform the vertices to 2D coordinates and every vertex i is assigned (xi,yi). With the condition:(

xj
yj

)
=

(
cos(ϕ(ij)) − sin(ϕ(ij))

sin(ϕ(ij)) cos(ϕ(ij))

)
︸ ︷︷ ︸

Rij

(
xi
yi

)
, (39)

we can reformulate the energy to:

e(x) =
∑

(i,j)∈E
wij|(xj,yj)T − Rij(xi,yi)T |2 s.t. xTMx = 1, (40)

where M2i,2i = M2i+1,2i+1 = 1
3

∑
(ijk)∈T Aijk denotes the mass matrix and the vector x ∈

R2|V | describes the coordinates of the vertices x = (x0,y0, x1,y1, . . .)T . The condition xTMx = 1

prevents the solution x = 0 of Equation 40. Finally, Equation 40 can be expressed as the generalized
eigenvalue problem:

min
x∈R2|V |

xTRx s.t. xTMx = 1, (41)

with

R( 2i,2j 2i,2j+1

2i+1,2j 2i+1,2j+1

) =

{
wiiI if i = j

wijRji if i 6= j
, (42)

where I denotes the 2× 2 identity matrix and Rij the rotation matrix as described in Equation 39.
Note that R(: :) is used to describe the matrix position. Equation 41 can be solved by using inverse
iteration. The coordinates are then transformed with i 7→ atan2(xi,yi), which yields the angle in
[0, 2π]. We used 30 iterations, where fewer repetitions would result in erroneous angles, see Figure 95.

Assigning Polar-Based Coordinates to Lines

The next step consists of assigning the polar-based coordinates at every point of an aneurysm to the
integral lines. The integral line k consists of vertices VP(k) and edges EP(k), and the corresponding
3D coordinates of the vertices are denoted with vi ∈ R3, i ∈ VP(k). For every vertex i ∈ VE(k)
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Figure 95: The radial and angular mapping are shown by horizontal and vertical isolines. We used 10, 15, 30
iterations for the inverse iteration. (Images from [436] © IEEE 2019.)

on the line k, the aneurysm vertex j ∈ V with the shortest distance is determined. To quickly find j,
we build a kd-tree of the aneurysm surface. Then, we assign the polar-based coordinates to the line
vertex i: i 7→ (rj,ϕj, zj), zj = |pj − vj|. Note that we scale the distances zj such that for every line
the distance of every point lies in [0, 1].

Definition of Template Types

We generated different template flow types, whose definition is based on the work of Cebral et al. [60]
as they visually classified time-dependent flow patterns. We extended their scheme concerning the
proximity of flow patterns to the wall, because NWF may lead to further pathological vessel dilation
and aneurysm growth. Our experts observed three subtypes of flow with an unchanging direction, see
Figure 92 (type I, IV , VI). Type I corresponds to the unchanging flow behavior by Cebral et al. [60].
Type IV enters an aneurysm more distant to the wall, reaches its dome and flows back along the wall.
Type VI enters and leaves an aneurysm close to the wall, but within an aneurysm the flow has a large
distance to the wall. Type V represents flow with a changing direction, which proceeds close to the
wall and then abruptly changes its direction. Vortical flow is described by type II and III, whereas
we extend the definition by type III, because it has a larger distance to the wall than type II. We use
these six templates, which are rotationally symmetric according to the centerline of the hemisphere,
as a library for the automatic classification (Req. 18).

Assigning Flow Types

To determine the flow type of a cluster, we transform its representative to the hemisphere by using
its polar-based coordinates. Moreover, we design for each flow type a template line based on
the hemisphere, see the previews of Figure 92. Then, we calculate the similarity between the
representative and each template by using the iterative closest point (ICP) algorithm [423]. Mapping
the templates to physical space and utilize ICP there would not be possible, because then they would
no longer be rotationally symmetric. This could lead to wrong classification results.

ICP results in a similarity measure where 0 means a perfect match between the representative and
the tested template. The flow type with the lowest measure is assigned to the cluster. Normally, ICP

determines the best rotation matrix that matches both input data. To avoid similarities if the flow type
is rotated around the, e.g., x-axis or y-axis, we restrict the rotation around the z-axis only. Otherwise,
flow types may be associated that are not entering and leaving the aneurysm, which may happen if,
e.g., type I is rotated with 90 ° around the x/y-axis.

To convey how certain the classification is, we list for each cluster the three most similar flow types
in a tabular view, see Figure 96. Thus, the user can follow if the most similar type dominates clearly
over the others or if another type is very similar. To facilitate the interpretation of the similarity
values, we calculate percentage similarities that are presented to the user. For this, all similarities are
sorted in ascending order, resulting in s1, s2, . . . , sn, where s1 is the smallest and sn is the largest
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Figure 96: A table summarizing information about classified flow patterns. For each cluster, the three most
similar flow types sorted by their similarity are presented. Moreover, additional information about a
user-selected scalar field is shown, and the user can switch between different cluster visualizations.
If all similarities are low, the cluster can be recorded as new flow type.

similarity value with n as the number of similarities. Then, a percentage factor fac is determined
by: fac =

∑n
i=1 1/si. Based on this, for each si the percentage similarity value pi is given by:

pi =
1

fac·si , where pi = 1 means 100 %. Note, in case of s1 = 0, we set p1 = 1.
Due to the anatomic diversity, a cluster could be dissimilar to all pre-defined types or two types

may have similar values. Therefore, new flow types can be recorded (Req. 19). Existing types are
stored as lines in a database. If the user wants to save a new type, a checkbox can be activated for each
cluster in the table, where new types are numbered consecutively. However, to prevent the insertion
of meaningless types, we are looking for the three most similar types within the database. A preview
of these types and the percentage of similarities to the new type are presented to the user. Then,
the user is asked if she/he wants to integrate the new type. Confirming this adds the corresponding
representative to the database, which is then used for upcoming classifications.

7.2.3 Visualization of the Classification Results

The classified flow patterns are visualized in two juxtaposed render contexts that are linked to each
other, see Figure 92. The first one shows the clusters within the 3D aneurysm, whereas the second
provides a more abstract depiction. Here, the representatives are visualized within a hemisphere. In
the following, we comment on the design decisions for the different views and their interplay.

Aneurysm-Based Visualization

The aneurysm-based visualization enables a detailed exploration of correlations between high-risk
wall regions and individual flow patterns. Besides the already described visualization aspects for the
3D aneurysm surface and internal flow in Section 7.1.4, we integrate an additional linked view that
shows the vessel surface fully opaque. Thus, the visual perception of the mapped attributes on the
surface is not negatively influenced by the applied Fresnel shading [122].

During the exploration, the distance to the camera may vary depending on the zoom level. The
simultaneous illustration of clusters in an appropriate size, independent from the zoom level, would
lead to visual clutter. Thus, we provide a details-on-demand approach, such that zooming into the
scene yields a transition between different abstraction levels, progressively revealing more information
about the clusters’ extent and the corresponding flow type, see Figure 97.
Zoom level 1: representative. The first level shows the cluster representatives that summarize the
complex flow and enable a perception of inner flow structures that would be occluded by displaying



7.2 AU T O M AT I C C L A S S I F I C AT I O N O F F L O W PAT T E R N S 165

Figure 97: Zoom-dependent visualization of a flow pattern. Zooming into the scene yields a transition from the
representative to the bounding geometry and the integral lines. Between the levels, the transparency
of the objects is reduced or increased according to the functions in Figure 100. (Image from [436]
© IEEE 2019.)

thousands of path lines. Each representative should indicate the cluster’s flow shape and its path. The
representatives are shaded as tubes to improve their perception from a more distant point of view. For
this, we construct view-aligned quads on the GPU [217]. The successive line points pi and pi+1 are
used to determine the normalized tangent vector: t = pi+1 − pi. With the given view direction v,
we calculate the extent of the representative by using the normalized cross-product e = v× t. For
every quad, we assign a parameter y ∈ [−1, 1] to define its color:

color = ccol · cos(0.5y · π), (43)

where ccol is set to a cluster-specific RGB color. We use the ColorBrewer website [240] to find 20
colors, which perceptually differ as much as possible since a maximum of 20 clusters is distinguished.

Zoom level 2: bounding geometry. Zooming into the scene initiates a transition to a bounding
geometry of each cluster that supports the visual perception of color-coded parameters. For this
purpose, we determine the cluster’s enveloping surface, whereupon scalar values, e.g., WSS can be
depicted using a blue-to-yellow color map. The enveloping surface should approximate the cluster
extent. However, line segments showing a slightly different flow behavior should be neglected. To
determine this surface, alpha shapes [93] could be used. Here, the user parameter alpharadius
controls how tighten or loosen the fit around the points will be created. We tested different values for
this parameter. However, due to the vortical flow behavior, this approach leads to geometries with a
jagged boundary and holes, see Figure 98b. Other works used the cluster’s centerline to calculate
bounding geometries but may fail for vortical curve behavior [95, 434]. Integral surfaces are also
used to calculate bounding geometries around groups of integral lines [198]. However, this is a local
method where errors are accumulated during integration. In contrast, Ferstl et al. [104] computed
bounding geometries of streamline clusters by transforming the lines to a PCA space where they are
clustered. To avoid such a transformation and to be independent of the clustering, we developed a
new calculation of the bounding geometries in the 3D space, which globally minimizes the error of
the surface estimation.

First, we generate a regular 3D grid G around the lines of a cluster. For the distance between
two adjacent grid points, we used 1/100 of the diagonal of the bounding box around an aneurysm.
Greater values lead to irregular shapes, whereas lower values increase the computation time without
significantly better results. Then, for each grid point g ∈ G two distance values gd1 and gd2 are
determined. We identify for each g ∈ G the line vertex i with the shortest Euclidean distance to
g, which yields gd1. The shortest Euclidean distance between each grid point and the respective
point of the cluster representative yields gd2. To increase the performance, we built two kd-trees of
the path line vertices and vertices of the representative. The distance values are stored at the grid
points resulting in two distance fields D1 and D2. Next, a third distance field D3 is generated by:
D3 = t ·D2 + (1− t) ·D1, setting the interpolation factor t = 0.25. Besides linear interpolation,
more advanced techniques such as progressive transformations [110] or radon transforms [370] could
be used. However, the bounding geometry should only allow a more abstract cluster visualization,
which could be reached by linear interpolation. Then, D3 is smoothed by applying a 9× 9 Gaussian
filter to getting smooth surfaces that are extracted via Marching Cubes and an isovalue iso = 0.5, see
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Figure 98c. Figure 99 exemplary shows the results for different values for t and different isovalues.
With a greater isovalue, the resulting geometry is too large, whereas with smaller values many lines
lie outside the surface. However, the user can interactively change the interpolation factor t to explore
the cluster extent within the vessel lumen further.

(a) Path line cluster. (b) Alpha shapes. (c) Our approach.

Figure 98: Comparison of alpha shapes (b) with the default setting of alpharadius = 0 and our approach (c)
to calculate bounding geometries around a path line cluster (a). (Images from [436] © IEEE 2019.)

Zoom level 3: integral lines. Moving in even closer activates the line-based representation using
illuminated streamlines [425] combined with halos [161] to improve the visual line perception.
Similar to the bounding geometry, flow properties can be mapped on the lines. This depiction enables
a detailed exploration of individual clusters. However, the simultaneous depiction of all clusters
could lead to visual clutter. Therefore, we provide a tabular representation of all clusters including an
image of their flow type, a drop-down list to select a specific property that should be color-coded and
additional information such as the maximum value of the selected property, see Figure 96. The user
can select one or more clusters for rendering.
Zoom level transition. We provide a smooth transition between the zoom levels by using trans-
parency, see Figure 100. For this purpose, the Euclidean distance between the center of the cluster and
the camera dcam is calculated. Moreover, four distance values dmin, dmid1, dmid2, and dmax
are defined and set to 75 %, 65 %, 35 % and 25 %, respectively of the ratio of the visible aneurysm
surface to the size of the view plane. To determine the visible aneurysm size, the aneurysm’s bounding
sphere is calculated and the amount of visible sphere pixels is counted in the fragment shader. Using
the bounding sphere avoids inaccuracies of the rendered cluster representation caused by rotating the
scene. Based on dmin, dmid1, dmid2, and dmax, two further distance values d1, d2 are specified:

d1 =

(
dcam − dmid2
dmax − dmid2

)
, d2 =

(
dcam − dmin
dmid1 − dmin

)
. (44)

Then, the opacity of the three cluster representations is defined by:

opacity =



(1− clamp
[0,1]

(d1)) representative

(1− clamp
[0,1]

(d1)) · clamp
[0,1]

(d2) bounding geometry

(1− clamp
[0,1]

(d2)) integral lines

(45)
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Figure 99: Bounding geometries for a cluster (preview in the first row) with different values for the interpola-
tion factor t and different isovalues. (Images from [436] © IEEE 2019.)

With lower or greater values for dmin, dmid1, dmid2, and dmax, the representations appear too
early when the camera is too far away, or too late when the camera is too close. Moreover, the user
can manually switch between the depictions and can select clusters by clicking into the scene.

Hemisphere-Based Visualization

A very irregularly deformed aneurysm surface complicates the exploration of flow patterns including
the recognition of the calculated flow types. Manual rotations of the surface are necessary to perceive
the behavior of individual patterns. To facilitate the flow pattern analysis, we provide a more abstract
visualization where the aneurysm surface is mapped to a hemisphere. Within the hemisphere, the
cluster representatives are depicted, see Figure 92.

For the generation of the hemisphere, we employ the polar-based coordinates (ri,ϕi) for each
vertex i of the aneurysm surface. According to the aneurysm, ri is in the range of [0, 2] and
ϕi ∈ [0, 2π), which leads to the topology of the hemisphere:

isp = [sin(ri) · cos(ϕi); sin(ri) · sin(ϕi); cos(ri)] (46)

with isp being the vertices of the hemisphere. Moreover, rj of the line points of the representatives
are transformed to the range [0, 2]. Otherwise, they would not lie within the hemisphere.
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Figure 100: Opacity adaptation for the three visualizations of a cluster during zooming based on the four
thresholds dmin, dmid1, dmid2 and dmax for the distance between the camera and the scene.
(Image from [436] © IEEE 2019.)

The hemisphere is visualized by using Fresnel shading [122] to enable an investigation of the
internal flow structure. The representatives are also visualized as tubes, where each tube is assigned
the corresponding cluster color. If all representatives are depicted simultaneously, the hemisphere-
based visualization provides a fast overview of existing flow patterns. Moreover, the user can select
individual representatives or groups of them having the same flow type for a more detailed analysis.

To facilitate the spatial correlation between the hemisphere and the 3D depiction, the user can
pick a specific point on the hemisphere, and the camera rotates automatically to the corresponding
3D position in a smooth way. Moreover, the user can define landmarks on the hemisphere that are
rendered as colored small circles on the hemisphere. These landmarks are then visualized on the 3D

aneurysm surface, where the user can define individual labels for each landmark. The landmarks and
their labels can be stored and loaded for collaborative data exploration.

7.2.4 Evaluation and Results

To assess the quality of our aneurysm mapping, we compared it with other mapping strategies and
evaluate the robustness of our approach. Moreover, we conducted an informal evaluation with
five domain experts to assess the quality of the classification results. Among the experts were one
neuroradiologist P1 with 16 years of experience, two CFD experts P2, and P3 with five and eight
years of experience, and two experts for medical visualization P4, and P5 with four and six years of
experience. Firstly, the experts manually classified different patterns. Afterward, the experts were
asked to assess the suitability of CAVOCLA and the corresponding visualizations.

Parametrization of the Aneurysm Surface

Closest to our work, regarding the mapping of an aneurysm to polar-based coordinates, is the approach
by Goubergrits et al. [135]. They transformed the vertices towards the mass center of an aneurysm,
where they ensured that the distance to the center is equal for all vertices. This method produces
reasonable results for convex structures, i.e., the mass center lies inside the surface. If the center
of mass is located outside the surface, such as in Figure 93, this method gives erroneous results as
presented in Figure 101a.

To calculate polar-based coordinates, we need a parametrization that preserves angles instead of
areas. The LSCM technique by Lévy et al. [224] and the SCP algorithm by Mullen et al. [262] are
commonly used techniques to generate a surface parametrization, which reduces angle distortions.
Since our mapping also tends to reduce angular distortions, we compare it to LSCM and SCP. LSCM

needs constraints as input. For this, we choose four vertices on the boundary that approximately differ
in 90 ° and map them to (1, 0), (0, 1), (−1, 0), (0,−1). Then, we set the vertex which is farthest away
from the boundary to the coordinates (0, 0). Setting constraints inside the mesh is not recommended,
as this may lead to overlapping triangles indicated by isolines that do not converge at the top of an
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aneurysm, illustrated in Figure 101b. If we omit this constraint, we obtain a result similar to SCP that
parametrizes the mesh without constraints. Thus, we do not influence on the vertex representing the
origin of the parametrization, see Figure 101c. With our method, the origin lies on the vertex which is
farthest away from the boundary, shown in Figure 101d.

0

2π

(a) [135] (b) [224] (c) [262] (d) Our

Figure 101: Comparison of the approach by Goubergrits et al. [135], Lévy et al. [224], Mullen et al. [262],
and our method. The scalar field shows the angles with isolines. (Images from [436] © IEEE
2019.)

To assess the robustness of our polar-based mapping, we applied different amounts of noise to
an aneurysm model. Thus, random values are generated to disturb the vertex positions. Besides
this, we artificially bend the aneurysm surface. Afterward, we determine the polar-based mapping.
Figure 102 and Figure 103 show the isolines of the radial as well as the angular mapping of the noisy
and deformed meshes. The color map additionally shows the angular mapping. Our mapping yields
reasonable results even in case of very noisy or deformed meshes.

Manual Flow Classification

Our experts classified different flow patterns manually according to the pre-defined types based on
streamline visualizations such as in Figure 98. We compared their results to the results of CAVOCLA.
For each flow type, three examples from seven data sets (C11 - C13 and C19 - C22) were chosen,
resulting in 15 estimations per type (5 participants × 3 examples). We selected clusters whose
percentage similarity for the respective flow type is larger than 80 % to enable a unique assignment.
The experts were allowed to assign only one type per cluster. After completing a task, the experts were
asked to rate their confidence on a five-point Likert confidence scale where 5 means very confident
and 1 very unconfident. For the analysis of the confidence score, we provide the number C(·) of
experts who chose the individual scale.

Flow patterns classified as III by CAVOCLA conformed with the manual classifications of all experts,
see Figure 104a for example. In addition, the experts were quite confident with their assessments
for these cases (C(5) = 3;C(4) = 2). P3 classified an example of type I and type II different from
CAVOCLA. The type I case was classified as type IV and the type II case as type III. However,
depending on the morphological complexity these types appear quite similar within an aneurysm.
This shows that a manual classification is often challenging, which was confirmed by the experts’
reduced confidence (C(3) = 4;C(2) = 1). Similar to that, clusters of type IV were classified as type
I in six cases, see Figure 104b. The experts were also unconfident with their assessments for these
cases (C(3) = 1;C(2) = 4). For the remaining cases of type IV , the experts were more confident
with their assessments (C(5) = 1;C(4) = 3;C(3) = 1), see Figure 104c for an example. The experts
rated the classification of type V patterns as challenging because the visual perception of the changing
flow behavior needs a lot of manual rotation effort. In six cases, the patterns were classified as type V
(Figure 104d), but for the remaining cases, type II or III was estimated with a confidence of C(2) = 3
and C(1) = 2. With regard to type VI, results of CAVOCLA conformed with 13 manual classifications,
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(a) (b) (c) (d) (e)

Figure 102: The results of our polar-based mapping for an aneurysm model where noise was added. Despite
the noise it yields reasonable results. (Images from [436] © IEEE 2019.)

Figure 103: The results of our polar-based mapping for an aneurysm, where the surface was artificially bent.
Left, the original surface is depicted that is deformed in the following images. As a preview, the
triangular surface mesh is shown. Despite the deformation, it yields reasonable results even in the
case of tiny and large triangles within a mesh. (Images from [436] © IEEE 2019.)

where the experts were quite confident (C(5) = 4;C(4) = 1), see Figure 104e. For the remaining
two examples, type IV was assigned by P2, see Figure 104f. The expert was unsure how close the
cluster came to the wall and alternated between type IV and VI.

Besides the comparison of classification results, we applied CAVOCLA to time-dependent flow data.
For this purpose, path lines instead of streamlines were integrated. Figure 105 shows exemplary
classification results for path line representations. Besides the classified type, the temporal path line
component is color-coded in the preview, using a blue-to-yellow color map. Our experts confirmed
that CAVOCLA also leads to appropriate results in the case of time-dependent flow patterns.

Informal Expert Feedback

The study is conducted in two steps:

1. Introducing CAVOCLA with the zoom-dependent visualization of flow patterns and the hemisphere-
based depiction.

2. A questionnaire that inquires the suitability of the visualizations of the classification results.

First, the experts familiarize themselves with CAVOCLA. Then, they answered the questionnaire using
a five-point Likert scale (−−, −, ◦, +, ++). For the analysis of the Likert score, we provide the
number S(·) of experts who chose the individual scale. The overall result of the empirical evaluation
is shown in Figure 106.

Aneurysm-based visualization. All experts confirmed that the combination of the main render
context and additional view that shows the vessel fully opaque enables simultaneous exploration
of the blood flow and scalar data on the wall (S(++) = 4; S(+) = 1). Moreover, the surface
transparency reveals the qualitative flow behavior (S(++) = 5). Furthermore, all experts confirmed
that the details-on-demand approach allows to recognize flow types even if the camera is more
distant (S(++) = 3; S(+) = 2). Related to this, the bounding geometry, including the possibility
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Figure 104: Exemplary results of CAVOCLA for different flow types based on streamline representations. In (a)
a cluster of type III is shown. Subfigures (b-c) present clusters of type IV . In (d) type V is
presented and (e-f) show cluster of type VI. (Images from [436] © IEEE 2019.)

Figure 105: Exemplary results of CAVOCLA for different flow types based on path line representations. In (a) a
cluster of type I is shown. In (b) and (d) clusters of type V and in (c) a type VI cluster is presented.
In (e) and (f), a decaying vortex is shown, which is first classified as type II and later as type III
due to its narrowing behavior.The temporal component of the path lines is color-coded in the
preview. (Images from [436] © IEEE 2019.)

to color-code an attribute on it, was described as a convenient abstraction of the line representation
(S(++) = 4; S(+) = 1). P1 stated that the bounding geometry facilitates the comparison of clusters
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according to color-coded properties because it supports their visual separation. Figure 107 shows
two clusters, where the distance to the surface is color-coded. Using the bounding geometries, it was
easier for our experts to analyze the visualized properties. Besides, we asked if the blending of the
three cluster visualizations during zooming does not lead to confusion, which was confirmed by the
experts (S(++) = 2; S(+) = 3). For the selection of specific clusters, the tabular view was assessed
as very appropriate (S(++) = 2; S(+) = 3). Moreover, the 3D cluster selection per mouse click
was rated with S(++) = 3 and S(+) = 2. P3 argued: “[...] the 3D selection allows a faster cluster
selection than the tabular view. However, the tabular view provides interesting cluster information
such as the maximum occurring flow velocity.”

Hemisphere-based visualization. All participants found that the hemisphere-based visualization
including the mapped scalar fields provides a reasonable simplification of the 3D aneurysm depiction
(S(++) = 3; S(+) = 2). Moreover, they confirmed that the depiction of the representatives within
the hemisphere helps to comprehend the classification results (S(++) = 3; S(+) = 2). P1 stated
that the hemisphere-based visualization would be appropriate for documentation since it provides a
compact and comparable visual summary of the patient-specific flow. However, two experts wished
to have a stronger linking between the two views such as automatic detection of specific landmarks,
e.g., blebs.

Figure 106: The results of the expert evaluation of CAVOCLA with color-encoded Likert scores. Each box
represents the answer of one expert: the left-most box depicts the physician, the middle two
boxes show the CFD experts, and the two right-most boxes represent the two medical visualization
experts. (Image from [436] © IEEE 2019.)

7.2.5 Discussion and Limitations

We compared the results of CAVOCLA with manual classifications of our experts and discussed
occurring deviations with them. Problems to follow the flow behavior within the complex aneurysm
morphology were the main reason for mismatches, which also led to reduced confidence of the experts.
Moreover, the manual classifications adopted as ground truth are subjective assessments. In the future,
further expert assessments have to be recorded, and comparisons with the results of CAVOCLA have to
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(a) (b)

Figure 107: Two clusters are visualized using streamlines (a) and bounding geometries (b), where the distance
to the vessel wall is color-coded. The bounding geometries support the visual separation of the
clusters, which facilitates the visual perception of the color-coded values. (Images from [436]
© IEEE 2019.)

be made. A major advantage of CAVOCLA is the reproducibility of the results, which is essential for
clinical use. Occurring deviations are systematic and thus a reliable assessment is ensured.

In the nine used data sets (C9 - C13, C19 - C22) a total of 80 clusters are identified, with 30 %
type I, 15 % type II, 13 % type III, 8 % type IV , 6 % type V and 28 % type VI. Besides, type IV
and VI had comparable similarities to type I (difference < 0.05) in 15 % and 9 % of the cases. Type
V had a comparable similarity to type II and III in 5 % and 7 % of the cases, respectively. In the
future, a study with more data sets has to be carried out to be able to evaluate the results of CAVOCLA

statistically. Moreover, the results of the used clustering and our classification approach depend on
the used seeding technique. We use a standard seeding technique that was already used by Oeltze
et al. [283] to analyze intra-aneurysmal blood flow. A comparison of different seeding strategies
according to the clustering and classification results would be an interesting point for future work.

Similar to the majority of works about CFD simulations in cerebral arteries, our simulations are
laminar, without turbulence modeling due to the low Reynolds number. But there are also isolated
studies that transition/turbulence is possible and could play an important role [372]. However,
turbulence probably plays only a role in large aneurysms, where high speeds occur, and a sharp
segmentation kernel was used. If we would model turbulence, flow patterns may arise, which are
dissimilar to the six pre-defined types. To handle such cases, the user can to add new flow types.
The detection of flow patterns in turbulent areas depends on the clustering method, where large
uncertainties are likely to occur. Thus, probably multiple smaller clusters would be detected for
lines showing chaotic behavior. AHC enables the expert to change the cluster number, where possible
wrong clustering results can be corrected. Besides turbulent flows, in unsteady data, flow patterns
are observed that decay over the cardiac cycle [60]. Such unstable patterns are also represented by
multiple clusters, such as the vortex in Figure 105e,f. For each cluster, the corresponding flow type is
determined. Here, a significant extension would be the integration of visual hints that support the user
to perceive which clusters represent an unstable flow pattern.

Currently, CAVOCLA is designed for saccular shaped aneurysms, where an ostium can be defined.
To handle fusiform aneurysms, which occur more frequently in cardiac arteries, another mapping
geometry would have to be used that represents their cylindrical shape, e.g., an ellipsoid. This would
probably also require the definition of other flow templates.

During the evaluation, it turned out that the aneurysm-based and hemisphere-based depiction
represent a useful combination for efficient exploration of flow patterns. The aneurysm-based
visualization, including the additional view, allows a detailed analysis of individual flow patterns.
Thus, our experts were able to find correlations between rupture-relevant flow patterns and high-risk
wall regions, see Figure 108. Here, for two data sets C10 and C13 the WSS is color-coded and the
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Figure 108: Detailed flow pattern exploration by using the different cluster visualizations for two steady data
sets C10 (upper row) and C13 (lower row). WSS is color-coded, and pressure is depicted by
hatching. C13 is more rupture-prone due to the flow pattern that orthogonally hits the wall in
combination with the low WSS (the distance to the surface is color-coded by a blue-to-yellow color
map). In C10, flow type I dominates that is assessed as less rupture-prone despite the increased
pressure values. (Images from [436] © IEEE 2019.)

pressure is depicted by hatching. In C10 (upper row), flow type I dominates, while all flow types
are present in C13 (lower row). The experts analyzed individual clusters of both cases. In C13,
they detected a flow pattern that orthogonally hits the wall and could lead to rupture. Conversely,
the flow patterns of C10 run along the wall and have therefore been assessed as less rupture-prone
despite the increased pressure values. However, in some cases, the experts were unsure if the current
flow pattern is closer to the anterior or posterior wall of the vessel. Therefore, they wished to have
additional clipping planes or a 2D color map coding the distance to the respective wall side. The
hemisphere-based visualization gives a fast visual overview of existing flow patterns in a data set.
Moreover, our experts stated that similarities between the aneurysms considering their scalar fields
and flow patterns were easier to perceive on the hemisphere than on the aneurysms themselves.

However, in case of large blebs on the aneurysm, the hemisphere could create visual distortion if
multiple flow patterns are mapped simultaneously. Figure 108 shows an example of this. The first
aneurysm exhibits no further blebs, leading to no visual distortion of the representatives within the
sphere. In contrast, for the second aneurysm, the hemisphere view shows more distortion compared
with the view of the representatives (second column) due to the large bleb. This could be reduced by
using another reference geometry such as an ellipsoid, determined by a PCA of the aneurysm surface.
However, our domain experts stated that this would decrease the comparability of data sets according
to rupture-prone flow information. Compared to a sphere, an ellipsoid would suggest a higher rupture
risk only by its shape, although there may be more suspicious attribute correlations on the sphere.
Moreover, they stated that occurring distortions do not prevent to get a quick overview of existing
flow patterns, which is the main goal of this view.

7.2.6 Conclusion and Future Work

We presented CAVOCLA to classify flow patterns in cerebral aneurysms. Besides the separation of the
aneurysm surface, CAVOCLA performs fully automatically and assigns the most similar flow type to
every pattern chosen from a library of pre-defined types. The classification is based on a mathematical
description of the flow types and their similarity to the flow patterns. This ensures the comparability
of different data sets and reproducible results. In contrast, manual classifications are time-consuming
and not standardized. An advantage of CAVOCLA is the possibility to incorporate expert knowledge.
The cluster number can be changed and new flow types can be easily integrated into the classification
process. Thus, CAVOCLA allows a faster and more objective analysis of suspicious flow patterns in
clinical discussions by providing an automatic classification and efficient exploration techniques.

For future work, we want to integrate an automatic determination of inflow jets and impingement
zones based on the approach by Gasteiger et al. [120] to enable an even better rupture risk analysis.
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In addition, we would like to apply our computation of the bounding geometries to other applications
such as aortic flow patterns or fiber bundles extracted from DTI data to overcome limitations of existing
methods [95, 434] for vortical curve behavior. Moreover, the aneurysm mapping to a hemisphere
allows for a fast comparison between classified data sets and a new data set, where the rupture risk
should be assessed and an optimal treatment must be found. Therefore, the mapped scalar fields
have to be clustered. Then, a comparison of these clusters and detected flow types between existing
data sets and the new case would allow to transfer treatment decisions. This could be extended by a
user-driven specification of rupture-prone wall regions according to suspicious parameters or flow
types. The user could brush regions on the hemisphere that are assigned to a specific parameter range,
e.g., high WSS values. Then, similar data sets containing information about a possible rupture or
treatment could be searched. Therefore, the hemisphere including scalar data and flow types has to be
transformed to a 2D image, which allows an image-based comparison of different cases.
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8C O N C L U S I O N

This chapter summarizes the main contributions of this thesis and suggests ideas for future work.

8.1 S U M M A RY

The interplay of vessel morphology and blood flow is the starting point for a deeper understanding of
the course of IA and the development of optimized intravascular therapies. Usually, flow information is
obtained from CFD simulations based on patient-specific models leading to complex, multidimensional
data. To understand the correlations between the data characteristics and aneurysm evolution, visual
exploration techniques are needed. In this way, qualitative relationships can be identified and
confirmed as relevant or refuted in subsequent quantitative analysis. This thesis gives a comprehensive
overview of CFD simulations, including necessary pre- and post-processing steps, as well as state-of-
the-art in quantitative and qualitative data visualization. This provides future researchers in the field
of medical blood flow visualization with a strong starting point for further progress.

Recently (November 2018), Detmer et al. [83] presented a machine learning-based approach to
determine a factor that describes the likelihood of a rupture based on 1061 data sets containing 1631
aneurysms. Their model considers several morphological and hemodynamic attributes as well as
patient-specific meta information comprising gender, age, aneurysm location, and smoker status.
Based on this, an accuracy of ~86 % according to the rupture status was achieved. Although their
approach leads to meaningful results that help clinicians to assess the risk of rupture, some limitations
require visual analysis of flow data. First, they consider only a temporal snapshot of the patient-
specific conditions. Accordingly, aneurysms that are still small and inconspicuous at present are
assessed as low risk. Over time, however, patient-specific conditions that lead to a change in wall and
flow properties can occur, resulting in aneurysm growth. Here, visual analysis techniques are needed
to observe the aneurysm development. Moreover, their model does not consider the wall structure or
qualitative flow characteristics, although these aspects seem to influence the aneurysm state. Possibly,
there are dependencies between these characteristics and already implemented attributes. However,
this would have to be evaluated extensively. Furthermore, the machine learning approach does not
support treatment planning. For this purpose, interactive visualization is needed. There are several
techniques for aneurysm data visualization that aim to facilitate the exploration of the complex
information. However, these methods have still limitations that we want to overcome with our
contributions to advance the integration of simulation results into clinical discussions.

For the visual exploration process, the knowledge of two highly specific expert domains, fluid
mechanics and neuroradiology are needed. To allow an efficient, collaborative data analysis, consistent
management of the aneurysm information is needed, where experts from both domains have access to
the data. Since current visualization frameworks neglect this, we developed Aneulysis that provides
guided management and exploration of aneurysm data. Based on a redundancy-free structure, the
complex information comprising morphological and hemodynamic aspects are stored. With this,
new data sets can be easily integrated. Moreover, Aneulysis provides five additional visualization
modules that support the visual exploration of different data characteristics. Detected findings during
exploration can be stored and loaded by different domain experts to support the collaborative data
analysis further. Furthermore, optimal views on the aneurysm surface and animations summarizing
the most interesting aspects of the time-dependent data to support the exploration.

The first module, MorAVis enables automatic analysis of the aneurysm morphology. For this purpose,
an automatic ostium extraction was developed, which is not possible with existing techniques.
Based on this, different morphological descriptors are calculated to avoid errors induced by manual
measurements. Occurring deviations are systematic, and thus a reliable assessment of the aneurysm
morphology is ensured. Furthermore, experts can quickly correct possible wrong ostium detections.

181
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In addition to MorAVis, three modules were developed that support a surface-based data exploration.
The CoWaFloVis module provides an integrated visualization of the vessel morphology as well as
hemodynamic attributes and the internal blood flow. In contrast to existing techniques, it focuses on
an extended visualization of morphological attributes comprising wall thickness and wall deformation.
Moreover, it includes a novel 2.5D aneurysm visualization that gives an occlusion-free overview of
the wall- and flow-related attributes over the cardiac cycle. The MuScaVis module focuses on the
visual analysis of multiple scalar attributes and time-dependent correlations between them. Here, a
comparative analysis of data sets is integrated to evaluate treatment options, which is also neglected
in most of the existing techniques. Furthermore, previous methods are restricted to the simultaneous
depiction of two attributes. Thus, finding suspicious attribute combinations is a time-consuming
process. Therefore, we developed several techniques that allow more efficient analysis of attribute
correlations. Moreover, the establishment of a more general risk factor is supported by providing a
novel surface-based clustering of attributes. With the CoTenVis module, a visualization of tensor-based
aneurysm information becomes possible for the first time. Multiple glyph-based techniques allow a
comparative analysis of stress tensors on the inner and outer vessel wall. The glyphs are suitable for
different tasks, where quantitative as well as qualitative comparisons are enabled.

The last module, ViFlEx focuses on the qualitative analysis of intra-aneurysmal flow patterns.
Despite some computer-aided methods to extract the inflow jet and impingement zone [120], a more
extensive classification of time-dependent flow patterns was just done manually before [60]. However,
this is a time-consuming and error-prone process with high inter-observer variability. To improve this,
we developed an automatic classification of aneurysm flow patterns according to pre-defined flow
types based on an automatic clustering of blood flow-representing path lines. Besides 3D morphology-
based representations, more abstract visualizations of flow patterns are integrated that facilitate the
comparison of existing patterns between different data sets.

In summary, Aneulysis together with the five visualization modules supports the research to get a
deeper understanding of aneurysm initiation and development as well as to make optimal treatment
decisions. Due to the absence of simulation results after neurosurgical clipping, the integrated
visualization methods aim at supporting endovascular treatments. To avoid an open-ended visual
exploration, we conferred with clinical and CFD experts to determine requirements for efficient
analysis. We carried out extensive evaluations to verify if our new techniques fulfill the defined
requirements, which was confirmed in all our performed studies.

8.2 F U T U R E W O R K

The field of simulated blood flow data for IA provides a vast amount of potential future topics. Besides,
possible improvements of the visualization modules already described in the corresponding future
work sections, this section elaborates on additional recent research trends and future challenges.

Comparative visualization. To further improve the decision-making process, the comparison task
should receive more attention. Methods are needed that allow a comparison of multiple instances of
dynamic data, which is particularly challenging with existing techniques. The comparison of two
time-dependent vector fields along with the vascular anatomy and different treatment options such as
stents or coils would benefit from detection of corresponding and unique features in both data sets to
focus the comparison on such features. Besides, comparative overview visualizations showing the
k-nearest neighbors for a requested aneurysm would probably allow transferring treatment decisions
of already treated aneurysms to new cases. Besides treatment planning, a fusion of simulated and
measured data strongly demands dedicated comparative visualizations. This would enable validation
of the former and compensation for the limited spatial and temporal resolution of the latter.

Perception-based medical flow visualization. The simultaneous display of complex vessel anatomies
together with partially complex flow features and optional planning information, such as stenting,
poses great challenges to the interpretability of the results [306]. The careful consideration of
perception-based knowledge regarding the development of vessel [219] and flow visualization tech-
niques [399] may guide the refinement of visualization techniques. Flow perception, e.g., the
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importance of long continuous flow lines, depth and shape perception are particularly important. The
ambient occlusion for lines (LineAO) [94] is a promising example of a perceptually-motivated visual-
ization technique that may bring great benefits to medical flow visualization. Originally developed for
a clear depiction of DTI fiber tracts, it may also be useful for streamlines and path lines that represent
the medical flow.

Uncertainty. To quantify the uncertainty associated with blood flow simulations, first ensemble
simulations were performed [295, 304]. At present, it is not clear which parameters need to be
changed and how many different gradations are required for each parameter. A compromise between
a careful analysis of the combined influence of different parameters and a reasonable calculation
effort is necessary. Since the generation of simulated flow data is based on many not-patient-specific
assumptions and parameter choices, they carry a large amount of uncertainty. Uncertainty-aware
techniques for simulated data must, therefore, be developed, where the key challenge is to consider
user needs carefully. Here, too, a compromise must be found between the displayed information
content related to uncertainty and the load on the user. Flow visualizations techniques focused on the
depiction of uncertainty, e.g., Otto et al. [288] and Ferstl et al. [104], may serve as a starting point.

Vector field topology. There are many approaches to extract and visualize topological characteristics
of vector fields in steady and unsteady flow fields [209, 301]. These methods have a great potential to
reduce the complexity of the flow data. However, they have rarely been applied to medical data so far.
The main reason for this is the difficulty in deriving a medical meaning from the extracted structures
such as the topological skeleton or a Morse decomposition. Besides, cerebral flow can be modeled as
turbulent, where Galilean-invariant approaches must be used instead of vector field topology based
on critical points to extract flow features [179, 327].

Wall behavior. The behavior of the aneurysm wall under pulsatile conditions seems to be an important
aspect for the aneurysm state evaluation. To incorporate information about the aneurysm wall into the
generation of blood flow data, approaches were developed analyzing data of intravascular imaging
techniques [132, 217], combining FSI with CFD simulations [394, 395], and ex-vivo measuring of
wall properties based on resection results [61]. A relation between aneurysm wall thickness, inner
wall stresses, and wall deformation and hemodynamics has been reported. Since these relations are
crucial to assess the aneurysm state and to find an optimal treatment, more research in this direction
is expected. We already present an approach for integrated visualization of wall thickness and
deformation [439], which overcomes the limitations of existing techniques [132, 217]. In the future,
visualization approaches that better support the analysis of ensemble simulations in this area would
strengthen the understanding of wall behavior considering rupture and treatment decisions. Here,
also the integration of knowledge from new MRI sequences such as phase-based amplified magnetic
resonance imaging (aMRI) [367] showing the deformation of the brain tissue by the heartbeat could
further improve the definition of simulation models. Thus, it might also be possible to quantify the
influence of surrounding structures on the aneurysm over the cardiac cycle. For example, whether
surrounding tissue presses on the aneurysm wall by the movement of the tissue itself.

Report generation. The exploration of both, measured and simulated flow data, is an interdisciplinary
and collaborative process, where medical and hemodynamic experts want to get insights into the
patient-specific conditions. An important aspect here is the sharing of specific findings with other
researchers or physicians, where current computer-aided methods largely neglect targeted support
of this point. An essential question is how the analyst can be supported to create a report with
measurements, annotated screenshots and video sequences that summarize the essential features of a
data set? We proposed some interactive and automatic techniques to select appropriate viewpoints
of suspicious aneurysm surface regions that can be combined to video sequences as well as an
annotation of essential structures [431, 439]. However, these methods are mainly focused on wall
and flow attributes mapped to the vessel wall. This could be improved by a stronger consideration
of the qualitative flow behavior. Transferring methods from storytelling to the analysis of complex
time-resolved data [419, 420] may help to develop techniques that are standardized to some extent
but also offer flexibility to reflect analysts’ assessments.
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Multiple aneurysm exploration. Multiple aneurysms occur in about one-fifth of aneurysm pa-
tients [309, 316] and require more specific analysis methods than the presence of a single aneurysm,
since they may require several treatment cycles. During treatment planning, the physician has to de-
cide which aneurysm should be treated first and how does treatment affect the remaining aneurysms?
However, the visual analysis and treatment planning of multiple aneurysms is neglected in most
visualization methods. Perception-based studies such as the work by Behrendt et al. [28] could serve
as a starting point to design visualization frameworks for multiple aneurysms.

Besides an adequate visualization of multiple aneurysms, computer-aided methods that support
their morphological and hemodynamic analysis are needed. A first step in this direction was done by
our recent extension of the ostium extraction to multiple aneurysms [429], where the aneurysms were
automatically detected, see Figure 109. For the aneurysm detection, an analytic characterization is
used to generate a list of candidate regions on the 3D triangular vessel tree surface. Afterward, we
reduced the candidate set and thus the number of false positives with an appropriate classifier. For
the aneurysm classification scheme, we identified four suitable features and modeled appropriate
training data. The features comprise the mean shape index of each region as well as the three
Westin’s measures [406], where we achieved an accuracy of 99 % for the aneurysm detection. Finally,
morphological descriptors based on the ostium surfaces are computed, and a report including the
results of the analysis and renderings of the aneurysms is generated.

Figure 109: From a mesh representing the vessel surface, our algorithm automatically segments the aneurysms.
Afterward, a report is generated including meta information on the patient as well as summaries
of characteristics of the aneurysms, e.g., their widths and heights. (Image from [429].)

For future work, qualitative flow structures should be integrated into the analysis of multiple
aneurysms. The treatment of one aneurysm may affect the flow behavior, leading to different flow
patterns in the other aneurysms. One could try to visualize the change such that the physician can
inspect the difference and the effects of the treatment. Moreover, it would be interesting to explore
the detection and segmentation of fusiform shaped aneurysms.

Integration with visual analytics. For a better understanding of risk factors that favor the develop-
ment and progression of aneurysms, a variety of data needs to be analyzed. If flow data is collected on
a larger scale, e.g., in studies with hundreds of data sets, it will be possible to analyze correlations be-
tween measurements derived from the flow and other variables, such as patient age or blood pressure.
This would contribute to a better understanding of the range of normal flow rates depending on age
and gender and can also support research to understand the physiology of normal and pathological
flow better. As a long-term goal one may even aim for a flow atlas that represents the probability of
certain flow characteristics in certain regions of the aorta or cerebral vessels. Besides the acquisition
of a large number of data sets, also the observation and analysis of data sets over a longer period
would be important to evaluate the stability of aneurysms. Since the aneurysm growth seems to
influence the rupture probability, such long-term studies are needed to evaluate which of the initially
non-ruptured aneurysms ruptured over time. This fact was not considered in recent works that aim
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at calculating a rupture probability [83, 278]. Visual analytic techniques combined with concepts
of multivariate and time-oriented data visualization could be a powerful option to give insights into
these high dimensional data. We refer to [6, 71, 357] for an overview of these topics. The work by
Girardi et al. [126] could serve as a starting point to design visual exploration frameworks, where the
knowledge discovery is based on a strong consideration of expert knowledge.

Medical evaluations. The evaluation of medical visualizations is essential to get a better un-
derstanding of how new and existing techniques relate to each other and which use they have in
practice [382, 308]. However, there is a lack of convincing empirical evaluations performed under
realistic settings for many medical visualization applications including the visual analysis of blood
flow data. Currently, assessments of blood flow visualizations are often based on questionnaires
and informal expert feedback that relate to visual coding and the selection of specific algorithms
performed in a controlled lab environment. Although these short qualitative assessments can be
focused on practical tasks, more in-depth evaluations are needed that verify how flow visualiza-
tions changes or improves clinical decisions by considering the high clinical workload. Based on
extensive discussions with medical experts, practical tasks and typical cases, in particular where
diagnosis and treatment planning is stressful, should be prepared for empirical evaluations. Here,
the automatic creation of user studies would save a lot of time. Recently, we presented a system to
quickly generate perceptual task-based user studies for surface visualizations [437]. We applied our
technique to liver vessel trees, but an adaption to cerebral arteries trees would be meaningful. Besides,
the application of methods widely used in information visualization [36], such as eye-tracking and
think-aloud, can improve the understanding of how physicians interact with visualization techniques.
Another important topic is the conduct of long-term case studies to verify the suitability of interactive
visualization techniques. Related to this, is the usage of collaborative visualization technologies
such as the Medical Visualization Table [231], which is a powerful multi-touch system. It would
allow a collaborative diagnosis and treatment planning of aneurysms by, e.g., discussing different
treatment scenarios. Moreover, the usage of more advanced visualization systems based on a virtual
reality (VR) setup [54, 287] should be part of future evaluations to assess how such approaches can
improve aneurysm data exploration and the practice of treatments such as clipping and endovascular
embolization [8, 134]. Similar to this, more quantitative visualizations should be developed and
evaluated that aim to support surgical treatment planning, which is not the case with existing methods.

Clinical adoption. CFD simulations of hemodynamic conditions within the cerebral arteries have so
far only been used in medical and biomedical research. Most clinicians are neither familiar with these
simulations nor with the techniques for visualizing their results or do not trust the simulation results
because of the numerous assumptions and simplifications [34]. This may change if the pipeline from
patient-specific image data to simulation results is mainly automated and simulations are proven to
contribute significantly to predict a reliable risk of rupture. Berg et al. [34] suggested a prototype,
where clinicians were able to generate hemodynamic predictions within several minutes at low spatial
resolution. For the clinical usability, the resolution has to be improved while the computation time
should remain the same. Recently, Detmer et al. [83] developed a promising method for rupture
status prediction using machine learning. However, the underlying pre-processing and extraction of
the considered hemodynamic and morphological properties is still too complex for clinical routine.
The use of CFD simulations in clinical treatment planning is somewhat more advanced. It has been
shown that virtual stenting of cerebral aneurysms supports decision-making within an acceptable
time frame [166]. Clinicians can test different stent types and positions and receive visual feedback
including visualizations of the blood flow pattern and its changes after the virtual procedure.
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Symbols

1D One-dimensional

2D Two-dimensional

2.5D Two and a half dimensional

2DM Manual 2D

3D Three-dimensional

3DA Automatic 3D

3DM Manual 3D

4D Four-dimensional

Terminology

AHC Agglomerative hierarchical clustering

aMRI phase-based amplified magnetic resonance imaging

AO Ambient occlusion

BEP Bull’s eye plot

CAD Computer-aided design

CAVOCLA Cerebral aneurysm vortex classification

CFD Computational fluid dynamics

CoTenVis Comparative tensor visualization

CoWaFloVis Combined wall and flow visualization

CPU Central processing unit

CT Computed tomography

CTA Computed tomography angiography

CVD Cardiovascular disease

DBSCAN Density-based spatial clustering of application with noise

DSA Digital subtraction angiography

DTI Diffusion tensor imaging

DVR Direct volume rendering

DOF Degree of freedom

EG Expert group

FDM Finite differences method
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FEA Finite element analysis

FEM Finite elements method

FPS Frames per second

FSI Fluid-structure interaction

FTLE Finite-time Lyapunov Exponent

FTP File transfer protocol

FVM Finite volumes method

FVS Fast virtual stenting

GPU Graphics processing unit

GUI Graphical user interface

IA Intracranial aneurysm

IBM Immersed boundary method

ICP Iterative closest point

IVUS Intravascular ultrasound

LBM Lattice Boltzmann method

LSCM Least squares conformal map

LIC Line integral convolution

LOD Level-of-detail

LSCM Least squares conformal maps

MCPD Mean of closest point distances

MIP Maximum intensity projection

MorAVis Morphological aneurysm visualization

MPR Multiplanar reformation

MR Magnetic resonance

MRA Magnetic resonance angiography

MRI Magnetic resonance imaging

MuScaVis Multiple scalar field visualization

NFV Net flow volume

NSE Navier-Stokes equations

NWF Near-wall flow

OCT Optical coherence tomography

OpenGL Open graphics library

OpenTK Open toolkit library
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OSI Oscillatory shear index

PACS Picture archiving and communication system

PSD Principal stress direction

PIV Particle image velocimetry

PCA Principal component analysis

PC-MRI Phase-contrast magnetic resonance imaging

PDE Partial differential equation

RA Rotational angiography

RAM Random-access memory

RaNS Reynolds-averaged Navier-Stokes

ROI Region of interest

RGB Red, green, blue

SAH Subarachnoid hemorrhage

SC Spectral clustering

SCP Spectral conformal parametrization

SL Streamline

SP Scatterplot

SQ Superquadric

SST Shear-stress-transport

ToF Time-of-flight

tMIP Temporal maximum intensity projection

ToT Turnover time

ViFlEx Visual flow exploration

VR Virtual reality

WEB Woven EndoBridge

WSS Wall shear stress
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