
	
	
Analysis Techniques to Support the Evolution of Variant-Rich
Software Systems
	
	
	
	
Habilitationsschrift �

zur Erlangung der Venia legendi für das Fach

Informatik

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von: Dr.-Ing. Sandro Schulze

geb. am 04.06.1980 in Osterburg/Altmark

Gutachterinnen/Gutachter:

Prof. Dr. Gunter Saake
Prof. Dr. Sven Apel
Prof. Dr. Thorsten Berger

Magdeburg, den 26.06.2019

University of Magdeburg

School of Computer Science

Habilitation

Analysis Techniques to Support the
Evolution of Variant-Rich Software

Systems

Author:

Dr.-Ing. Sandro Schulze

Day of Submission: March 19, 2019

Schulze, Dr.-Ing. Sandro:
Analysis Techniques to Support the Evolution of Variant-Rich Software Systems
Habilitation, University of Magdeburg, 2019.

Abstract

Software is eating the world is a common saying nowadays, paraphrasing the fact that
software influences almost all parts of industry or our daily life. This makes software
subject to mass production while at the same time, there is an increasing demand for
customization of software systems to adhere to specific requirements of users or envi-
ronments. As a result, a software system is developed in many similar, yet di↵erent
variants, thus, constituting a variant-rich software system. To enable development of
such variant-rich systems, two approaches are commonly used: First, structured reuse
by means of integrated variability allows to specify the di↵erences between variants
on domain and implementation level. Second, adhoc reuse by means of clone-and-own,
which reuses existing variants by copying them and afterwards, apply the required mod-
ifications (e.g., code changes) to achieve the desired variant. While both are commonly
used, they raise challenges to the evolution of variant-rich system for aspects such as
maintainability, testability, extensibility or reliability.

In my research, I have developed techniques that allow to understand the reasons be-
hind evolutionary challenges and how to identify and mitigate them. In this thesis, I
summarize this research, mainly conducted within the last 4 years. In particular, I will
present empirical as well as evolutionary analysis techniques to better understand the
problems that integrated variability cause for developers and system quality. For clone-
and-own systems, I will present reverse engineering techniques for di↵erent artefact
types (models, requirements) that aim to extract the variability information, and thus,
provide developers with a global and unified view of all variants under development.

vi

Zusammenfassung

Software ist auf dem Vormarsch. Ob durch voranschreitende Technologien, eine zuneh-
mende Automatisierung oder die vielbeschworene Digitalisierung; Software beeinflusst
mittlerweile fast alle Bereiche der Industrie oder unseres täglichen Lebens. Dies macht
Software zu einem Gegenstand der Massenproduktion, während gleichzeitig die Nach-
frage nach Anpassungen von Softwaresystemen an spezifische Anforderungen von Be-
nutzern oder Umgebungen zunimmt. Infolgedessen wird ein Softwaresystem in vie-
len ähnlichen, aber unterschiedlichen Varianten entwickelt und bildet somit ein vari-
antenreiches Softwaresystem. Um die Entwicklung derartiger variantenreicher Systeme
zu ermöglichen, werden im Allgemeinen zwei Ansätze verwendet: Erstens ermöglicht
die strukturierte Wiederverwendung mittels integrierter Variabilität, die Unterschiede
zwischen Varianten auf Domänen- und Implementierungsebene zu definieren. Zweit-
ens, Ad-hoc Wiederverwendung mittels clone-and-own, wobei vorhandene Varianten
durch Kopieren wiederverwendet werden und anschließend die erforderlichen Modifika-
tionen (z. B. Codeänderungen) auf der kopierten Variante durchgeführt werden, um
das gewünschte Ergebnis zu erreichen. Obwohl beide häufig verwendet werden, stellen
sie hinsichtlich der Wartbarkeit, Testbarkeit, Erweiterbarkeit oder Zuverlässigkeit die
Entwicklung variantenreicher Systeme vor große Herausforderungen.

In meiner Forschung habe ich Techniken entwickelt, die es ermöglichen, die Gründe für
diese evolutionären Herausforderungen zu verstehen, zu erkennen und zu begrenzen. In
dieser Arbeit fasse ich diese Forschung zusammen, die hauptsächlich in den letzten 4
Jahren durchgeführt wurde. Insbesondere werde ich sowohl empirische als auch evolu-
tionäre Analysetechniken vorstellen, um die Probleme, die die integrierte Variabilität
für Entwickler und die Systemqualität verursacht, besser zu verstehen. Für clone-and-
own Systeme werde ich Reverse Engineering Techniken für verschiedene Artefakttypen
(Modelle, Anforderungen) vorstellen, die darauf abzielen, die Informationen zur Vari-
abilität zu extrahieren, und so Entwicklern eine globale und einheitliche Ansicht aller
in der Entwicklung befindlichen Varianten bieten.

Contents

List of Figures xii

List of Tables xiii

List of Listings xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Outline . 3
1.4 A Note from the Author . 4

2 Background 7
2.1 Structured Reuse with Software Product Line Engineering 7
2.2 Integrated Variability: C Preprocessor and FOP 10
2.3 Adhoc Reuse with Clone-and-Own . 14
2.4 Challenges for Evolving Variant-Rich Systems 16

2.4.1 Challenges of Integrated Variability 16
2.4.2 Challenges of Clone-and-Own 18

3 Analyzing the Impact of Preprocessor Directives on Source Code
Quality 21
3.1 Investigating Variability-Aware Code Smells in-the-wild 21

3.1.1 A Variability Perspective on Code Smells 21
3.1.2 Metric-Based Detection of Variability-Aware Code Smells 26

3.2 How Preprocessor-Based Variability A↵ects Maintenance 31

4 Analysis Techniques for Feature and Variability Extraction 37
4.1 Extracting Variability from Block-Based Models 38
4.2 N-Way Comparison of MATLAB/Simulink Models with Static Con-

nectivity Matrix Analysis . 47
4.3 Reverse Engineering Variability from Natural Language Requirements . 52

5 Conclusion 59

x Contents

A Appendix 61

Bibliography 65

List of Figures

2.1 Overview of Software Product Line Engineering (SPLE) process 9

2.2 Feature model with feature diagram of the GraphPL 10

2.3 Comparing costs for single software system (SSS), SPLE. and clone-
and-own development with respect to the number of products/variants
expected . 14

2.4 Creation and evolution of three variants by means of forking. 15

3.1 Occurrence of variability-aware code smells, as observed by survey par-
ticipants. 25

3.2 Impact of our variability-aware code smells on program comprehension,
maintainability, and evolvability, respectively. 25

3.3 Overview of the (pipe&filter) architecture of Skunk, implementing the
metric-based code smell detection. 28

3.4 Overview of the quantitative results for the evaluation. The overall num-
ber of smells detected for each system is indicated by the value ABpot. 30

4.1 Two variants of a MATLAB/Simulink model with commonalities and
di↵erences. 38

4.2 Overview of the workflow for variability mining of models. 39

4.3 Results regarding performance and accuracy for (a) the DAS models and
(b) the industrial models. 43

4.4 Conceptual steps for tailoring variability mining to an arbitrary block-
based modeling language. 45

4.5 Exemplary ranking for properties of a MATLAB/Simulink block. . . 46

4.6 An exemplary MATLAB/Simulink Model and its graph representation. 48

4.7 Two exemplary MATLAB/Simulink models and their corresponding
CMs . 48

xii List of Figures

4.8 Overall workflow of our static connectivity matrix analysis 49

4.9 Distribution of similarity values for ⇡ 1.1 million CM comparisons. . . 51

4.10 Runtime of Static Connectivity Matrix Analysis (SCMA) relative to the
number of CMs. 52

4.11 Respective workflow of our two proposed techniques for variability ex-
traction from Natural Language Requirements (NLR). 55

4.12 Overview of the process for identifying variation points 57

List of Tables

3.1 Overview of the derived variability-aware code smells (for details, see [17]) 23

3.2 Metrics capturing basic characteristics of the Annotation Bundle
code smell (adapted from [18]) . 27

3.3 E↵ect of Individual Annotation Metrics on Changes (taken from Fenske
et al. [19]) . 33

3.4 Regression Models for answering RQ 3 (taken from Fenske et al. [19]). . 35

4.1 Properties of blocks for computing metric-based similarity 40

4.2 Basic properties of the extracted sub models from the SPES-XT study. 42

xiv List of Tables

List of Listings

2.1 A “Hello world” example for integrated variability with C preprocessor
(cpp) directives. 11

2.2 Excerpt of the GraphPL implementation using FeatureHouse . . . 13

3.1 Annotation Bundle in MySQL . 24

xvi List of Listings

1. Introduction

In this chapter, I provide an overview of this thesis. In particular, I explicate the
motivation for my research of the last five years, summarize the objectives that are
behind this research, and present an outline of the remaining chapters.

1.1 Motivation

Software is eating the world is a a common saying, paraphrasing the observation that
software influences almost all parts of industry or our daily life. To give an intuition
what this means, just think of smartphones that are owned by almost each human
on the planet; looking further, we see the rapid development of smartX technologies
that make software an integral and imperative part of tra�c (e.g., car, infrastructure),
communication, but also of living (e.g., by smart home technology). And, last but
not least, the still increasing success of embedded systems that constitute most of the
software systems in the world and culminate in popular and fast-growing areas such as
cyber-phycial systems (CPS). In short, whole domains are shifting towards a software-
based economy, which leads to a high demand of software systems.

This demand and pervasiveness of software makes it subject to mass production while
at the same time, there is an increasing demand for customization of software systems to
adhere to specific requirements of users or environments. To cope with this customiza-
tion and provide tailor-made software systems that fit exactly the needs of respective
stakeholders, the concept of variant-rich software systems1 has been proposed. The
core idea of this concept is that, instead of only one single software system, a whole
family of software systems is developed with each variant being similar yet di↵erent
from each other [50, 10, 3].

1Other terms commonly used are Software Product Line (SPL), variable software system, and
highly-configurable software system, respectively.

2 1. Introduction

To develop such variant-rich systems, basically two approaches exist: structured &
planned reuse and adhoc reuse.
For structured & planned reuse, the core concept is that multiple variants are
developed simultaneously. To this end, variability is introduced by predefined config-
uration options that enable stakeholders to tailor the artifacts of a variant, such as
code or models, according to the requirements. A common way to achieve this kind of
reuse is SPLE, a development paradigm that enables the development of all artifacts
and for all variants in a structured and preplanned way [9]. To express this variability
on artifact level, di↵erent integrated variability mechanisms exist such as preprocessor
directives, Feature-Oriented Programming (FOP) [53, 4], Delta-Oriented Programming
(DOP) [57], Aspect-Oriented Programming (AOP) [28], but also plugins or frameworks.
More details about how such mechanisms work is provided in Chapter 2. As a result of
integrated variability, both, artifacts that are distinct between variants but also those
who are common across variants are known to developers and other stakeholders, and
thus, this information can be taken into account for evolving such kind of variant-rich
software systems.

For adhoc reuse, no dedicated development paradigm is necessary or even exists.
Instead, the similarity between an existing software system and a new one is employed
by copying all relevant artifacts of the existing system and adapt them to meet the
new requirements [11]. This process is commonly referred to as clone-and-own [14,
55] and while its realization may take place in di↵erent ways, it encompasses basically
three steps. First, a software system that contains a considerable amount of reusable
artifacts must be identified. The more artifacts can be reused for the new system,
the better as this minimizes the e↵ort for adapting the original system. Second, the
artifacts (all or only the reusable parts) of the original system are copied to the new
variant. At this point, the new variant is created and considered to have its own life,
independent of the original software system. Third, the new variant is modified to
address the corresponding requirements, in particular those that are not covered by the
reused artifacts. As a result of this process, the variability is not made explicit, and
thus, di↵erences and commonalities between variants are not known to any stakeholder.
Hence, there is a lack of information about how and where clone-and-own variants di↵er
from each other.

Disregarding their di↵erences, both approaches for developing variant-rich systems share
one common aspect: The developed systems tend to be of certain complexity and long-
living, that is, they are planned to live for years or even decades. Hence, these systems
are subject to ongoing changes on all levels (e.g., architecture, artifacts), which is com-
monly referred to as software evolution [33]. While this evolution is necessary to keep
the systems flexible, extensible and up-to-date with respect to other components or
environments, it is also prone to negatively a↵ect quality attributes of the evolving
software system, known as software aging [51]. Among the attributes defined by the
ISO/IEC 9126 standard [63], maintainability, changeability, testability, or extensibility
but also reliability or functionality are likely to be a↵ected by software evolution. Con-
sequently, future changes are impeded, leading to a devil’s circle resulting into a fragile

1.2. Objectives 3

and unmanageable software system. As an additional challenge to software evolution,
variant-rich systems add another dimension to the problem, that is, the respective reuse
approach that may cause additional challenges to evolve the underlying system while
keeping the quality high. This, in turn, leads to the inevitable need to control the
evolution of variant-rich system and to understand how integrated variability as well as
clone-and-own contribute to the decay of this system during evolution.

1.2 Objectives

In this thesis, I summarize my research of the last five years by detailing selected papers
and their contribution. All of this work contributes to a larger goal that consists of the
following, interrelated two parts:

Understanding the influence of reuse mechanisms on software evolution.
To guide developers or other stakeholders through the evolutionary process of variant-

rich software systems, it is imperative to understand how the reuse mechanism a↵ects
this process. To this end, insights are necessary that go beyond existing wisdom, but
come with resilient data and other information that expose the existing problems. Parts
of my research address this question based on the development history, pattern identi-
fication, or statistical reasoning, but also by means of empirical methods, in particular,
to understand the socio-technical aspects (i.e., developers’ perception of the considered
reuse mechanisms) that results from variant-rich software systems. I argue that without
understanding the impact of reuse mechanisms on software evolution, it is impossible
to find appropriate countermeasures or at least create an awareness of critical parts of
the software system with respect to software quality.

Developing techniques to analyze and counter the impact of reuse mechan-
isms on evolution. To gain a comprehensive understanding, as envisioned above,
it is necessary to analyze variant-rich systems with respect to (A) the reuse mechnism
applied and (B) the (quality) attributes a↵ected by evolution. To this end, the second
part of my research encompasses the development of analysis techniques for variant-rich
software systems. These techniques are tailored to integrated variability and clone-and-
own, respectively and include evolutionary analyses, statistical analyses, static analyses
(e.g., software metrics), but also techniques to extract variability from di↵erent devel-
opment artifacts such as source code or models. As a result, theses techniques leverage
a vast amount of information that allows to reason about how the evolution of variant-
rich software systems takes place, and thus, to understand the challenges that have to
be addresses along with this evolution the ensure the respective quality.

1.3 Outline

The remainder of this thesis is structured as follows.

4 1. Introduction

Chapter 2. In this chapter, I provide foundational information that is necessary to
understand the following chapters. In particular, I introduce SPLE in greater details,
explain selected variability mechanisms, and how clone-and-own is commonly applied.
Finally, I will highlight the challenges of evolving variant-rich software systems.

Chapter 3. In this chapter, I present techniques to analyze the impact of integrated
variability on software evolution and software quality. To this end, I summarize the
following contributions: First, I introduce the notion of variability-aware code smells as
a mean to define in appropriate usage of certain variability implementation mechanisms.
Then, I introduce a technique and its evaluation to detect such smells in a flexible and
scalable way. Finally, I present results of an empirical study that evaluates how sich
smells may a↵ect the maintainability of variant-rich software systems.

Chapter 4. I this chapter, I present techniques to analyze variant-rich systems de-
veloped with clone-and-own, mainly focussing on extraction of variability information.
To this end, I will summarize contributions that comprise two di↵erent artifact types
for the analysis. First, I introduce a model-based technique for variability mining in
block-based models, mainly MATLAB/Simulink models and state charts. Moreover,
I present a more general similarity analysis for MATLAB/Simulink that allows for
an n-way comparison, and thus, is highly e�cient even for large-scale models. Second, I
present techniques that rely on deep learning and natural language processing to extract
variability from natural language requirements.

Chapter 5. In this chapter, I summarize my contributions and their impact on the
field of research. Moreover, I highlight open challenges and how to address them in
future.

Appendix A. In the appendix, I list all papers I summarized in the chapters above
and point out my personal contribution for each of these papers.

1.4 A Note from the Author

Writing a monography, and a thesis in particular, always raises the question which
grammatical person should be used. Clearly, the thesis itself is a single-authored piece
of work, with at most some reviewing and comments by others. Consequently, using “I”
(i. e., first person singular) is the most suitable grammatical person to be used. However,
the research presented in a thesis is usually not conducted in isolation; rather, it is the
result of fruitful collaborations. Hence, this would justify using “we” (i. e., first person
plural) as a grammatical person.

In this thesis, I finally solve this issues as follows: For chapters that are unique to this
thesis such as the introduction (Chapter 1) or the background (Chapter 2), I use the

1.4. A Note from the Author 5

first person singular. This may also apply to the introduction of other chapters, where
I explain aspects that refer to this thesis, and thus, have no relation to any paper.
In contrast, for chapters/content that refer to research conducted with others (i. e.,
Chapter 3, Chapter 4, and parts of Section 2.4), I use the first person plural.

Credit where credit is due.

Sandro Schulze

6 1. Introduction

2. Background

This chapter introduces the basic notions, relevant in this thesis, and highlights the
challenges that I have addressed with my research of the recent years. In particular,
I introduce a methodology for structured reuse, introduce variability implementation
mechanisms, relevant for my research, and provide information about adhoc reuse in
practice. Finally, I explicate challenges that arise from structured and adhoc reuse,
respectively, for evolving variant-rich systems.

2.1 Structured Reuse with Software Product Line
Engineering

As mentioned in Chapter 1, software plays more and more a pivotal role in many
domains, resulting into a software-based economy that is pervasive. As a result, the
amount of software systems required is steadily increasing, thus, giving rise to mass
customization of software [32]. This development also a↵ects the way how software is
developed today. While in earlier years software systems have been developed for a
specific purpose (with a fixed set of requirements), they are now supposed to be used
in changing environments (e.g., di↵erent hardware) or with di↵erent users, and thus,
must adhere to changing requirements over time.

As an example, consider the Linux kernel, which is the foundation for many variants
of the Linux operating system (called distribution).1 There are distributions for a
vast amount of domains such as Desktop PC, mobile devices, mainframe computers,
embedded devices, and so forth. Moreover, the Linux kernel supports a large variety
of platforms by means of processor architectures. A simple search on distrowatch.com
reveals that there are several hundreds of Linux distributions under active develop-
ment, which each of them using the same kernel, but in di↵erent, very tailor-made ways

1https://www.kernel.org/linux.html

distrowatch.com
https://www.kernel.org/linux.html

8 2. Background

(i.e., di↵erent set of functionalities) . Obviously, developing an own linux kernel for
each of these distributions from scratch not only wastes resources such as developers or
time; it also makes it infeasible to react on new requirements on short notice. Hence,
the Linux kernel exhibits mechanisms that allow for tailoring it to its specific purpose,
and thus, essentially forms a software program family [50, 10, 3] (a. k. a., variant-rich
software system).

The core concept to achieve this variability are configuration options that allow to add
or remove parts of the variant-rich software system when creating a particular variant.
For Linux, these configuration options exist on di↵erent levels. In particular, Linux
makes use of the C preprocessor, a configuration mechanisms that comes with the C
programming language [26], for configuration on source-code level. Moreover, Linux
has a dedicated language, Kbuild to allow for configuration on build file level.

While the benefits, such as reduced costs, shorter time to market, or increased relia-
bility, of developing a program family are indisputable, they can not be obtained for
free. Instead, a certain reuse process must be established to manage all these variants
under one umbrella. One development paradigm that has been specifically proposed
for variant-rich software systems is SPLE, which supports the development of “a set of
software-intensive systems sharing a common, managed set of features that satisfy the
specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way” [9]. In other words, SPLE fosters devel-
opment and evolution of artifacts across all variants with only a minimum of manual
e↵ort necessary to create a new variant out of these artifacts.

To this end, SPLE structures the development process in two, orthogonal dimensions
(cf. Figure 2.1). First, Domain Engineering (DE) and Application Engineering (AE)
constitute one dimension, where DE is mainly concerned about the development (pro-
cess) of domain artifacts, that is, artifacts that are reusable across all possible variants of
the software system. In contrast, AE is concerned about the creation of concrete variant
(a. k. a., configuration). This includes the specification of requirements, the selection of
appropriate artifacts, their adaptation (if needed), and finally, their composition into a
deployable software product.

As a second dimension that is orthogonal to the first one, problem and solution space
are introduced by SPLE. The former covers all aspect of managing domain knowledge,
such as defining the scope of a variant-rich software system (called domain analsyis)
while the latter covers application-specific aspects, such as specifying requirements (and
how these are covered on domain level) for a concrete variant.

Beyond the di↵erent dimensions, the notion of a feature is imperative, specifically to
the SPLE process as well as to the development of variant-rich software systems in
general. In this context, a feature is defined as a characteristics or user-visible behavior
of a variant-rich software system ([3], p. 22). As such, it not only allows to reason
about domain-specific aspects, but also to distinguish between variants, that is, there
commonalities and di↵erences in terms of features. As part of the domain analysis, the
scope is defined in terms of features and the relations between them, usually resulting in

2.1. Structured Reuse with Software Product Line Engineering 9

Product derivation

D
om

ai
n

En
gi

ne
er

in
g

Domain
knowledge

Customer
needs

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Mapping

New
requirements

Common
implementation

artifacts

Product

Problem Space Solution Space

Domain analysis Domain implementation
class Graph {
 List<Vertex> vertices;
 List<Egde> edges;

 Edge addEdge(Vertex from,
 Vertex to,
 int weight) {
 Edge e = new Edge(from, to);
 ...
 return e;
 }

 void run(Vertex v) {
 /* to be refined */
 }
}

class Vertex { ... }

class Edge { ... }

class Graph {
 Edge addEdge(Vertex from,
 Vertex to,
 int weight) {
 Edge e = original(to,
 from,
 weight);
 e.setWeight(weight);
 return e;
 }
}

class Edge {
 int weight;
 void setWeight(int weight) {
 ...
 }
}class Graph {

 void run(Vertex v) {
 original(v);
 numberVertex(v);
 }

 void numberVertex(Vertex v) {
 ...
 }
}

class Graph {
 void run(Vertex v) {
 original(v);
 detectCycles(v);
 }

 void detectCycles(Vertex v) {
 ...
 }
}

Feature
selection

Features

Requirements analysis

GraphLibrary

Edges

Directed

Undirected

Weighted

Algorithms

Cycle

Number

Cycle → Directed

Figure 2.1: Overview of SPLE process (based on Apel et al. [3])

a variability model. The most popular form of such a variability model is a feature model
(FM) which come with a graphical representation called feature diagram. In Figure 2.2, I
show an example of such a feature model for the GraphPL product line.2 In a nutshell,
such a model specifies which features should be in every variant (mandatory) or can
be included optionally. Moreover, relations between groups of features are specified,
such as, whether features are mutually exclusive (alternative group) or can be selected
together (OR group).

Given a variability model on domain level, a corresponding mechanism is needed on
implementation level, together with a mapping between features (on domain level) and
any existing implementation artifact [7]. Otherwise, the selection of features, e. g., for
deriving a variant, can not be propagated to the solution space. As a result, these
artifacts are not reusable as it would be impossible to tailor them according to the
requirements in the product derivation process. Thus, to specify variable parts in arti-
facts, variability (implementation) mechanisms have been proposed that allow to map
the features of domain level to the implementation level. Among others, preproces-
sors, FOP, or DOP are mechanisms that are commonly used [3]. I will introduce these
mechanisms in more detail in the next section.

2http://spl2go.cs.ovgu.de/projects/49

10 2. Background

Number CycleDirected Undirected

Algorithms

GraphLibrary

Mandatory  
Optional 
Alternative  
Or 
Abstract 
Concrete

Legend:

Weighted

Edges

Cycle ! Directed

Figure 2.2: Feature model with feature diagram of the GraphPL (based on Apel et
al. [3])

To illustrate how SPLE is applied in practice, let’s go back to the Linux example.
To model variability on domain level, Linux comes with two dedicated languages,
Kconfig and the already mentioned Kbuild. Both allow to specify features and their
relations (e. g., alternatives, exclude, or required relations), but di↵er in the artifact
they are mapped to on implementation level. While Kconfig defines configuration
options that are later used in the source code, Kbuild is mapped to the build level,
that is, it specifies variability among modules. Nevertheless, both tools together have
been commonly used to extract a comprehensive variability model for Linux [8, 61]. On
implementation level, Linux employs the built-in C preprocessor that comes with the C
programming language, which makes use of the configuration options in the Kconfig
files. To create a specific variant, a configuration file is used where for each feature it is
specified whether it should be part of the configuration or not. This configuration file
is then used to select and compose the tailored artifacts for product derivation.

Finally, it is worth to note that the development of variant-rich system with structured
reuse does not always strictly adhere to the introduced SPLE process. Instead, it
may vary by modifying or even omitting parts of the process. For instance, for many
systems, an explicit variability model does not exist, which indicates the absence of
a domain analysis. Nevertheless, these systems come with variability implementation
mechanisms, and thus, allow to derive multiple variants of the system.

2.2 Integrated Variability: C Preprocessor and
Feature-Oriented Programming

As mentioned in the previous section, di↵erent variability implementation mechanisms
are available to realize integrated variability on implementation level. While some of
them are inherently supported of almost all languages, such as parameters or design
patterns (Apel et al. [3], Chapter 4), the focus of this thesis is more on advanced
language-based and tool based variability mechanisms (Apel et al. [3], Chapter 5 &
6). Generally, these mechanisms can be classified into two categories: annotation-based
and composition-based variability [24, 3]. Next, I will introduce two representatives for

2.2. Integrated Variability: C Preprocessor and FOP 11

these categories, The C preprocessor (cpp) and FOP and how to apply them on source
code level. The reason is that I consider on these mechanisms as well as sour code
as development artifact for the research on integrated variability, summarized in this
thesis.

The C Preprocessor

The annotation-based variability mechanism generally follows the annotate-and-remove
paradigm: Initially, parts of the source code are annotated with their corresponding
configuration option (i. e., the feature they belong to). Afterwards, these annotations
can be employed to remove or keep the annotated part for the final derivation of a
variant, depending on the features selected. As a result, all features are implemented
in a single code base and in a non-modular way, thus, constituting a virtual separation
of concerns [24, 3].

1 #include <stdio.h>
2 int main(int argc, char **argv) {
3 #if defined(GUESS_POS) || defined(GUESS_NEG)
4 int x;
5 #endif
6 printf("Hello world!\n");
7 #if defined(GUESS_POS) || defined(GUESS_NEG)
8 printf("What is my favorite number? ");
9 scanf("%d", &x);

10 #ifdef GUESS_POS
11 printf("Yes, %d is my favorite number!\n", x);
12 #else
13 printf("No, %d is my favorite number!\n", x+1);
14 #endif
15 #endif
16 return 0;
17 }

Listing 2.1: A “Hello world” example for integrated variability with C preprocessor
(cpp) directives.

A prominent and widely used tool for annotation-based variability is the C preprocessor
(cpp) that is integrated with the C programming language since its very beginning [26].
As such, the cpp provides lightweight metaprogramming capabilities, in particular, for
macro definition (using #define directives), file inclusion (using #include directives),
and conditional compilation (using preprocessor directives such as #ifdef, #ifndef,
#elif, etc.). Especially the latter, also referred to as preprocessor annotation, is com-
monly used to introduce variability on code level in a fine-grained way, as the cpp
allows to wrap around code elements even on expression or statement level to introduce
conditional compilation.

In Listing 2.1, I show an example for cpp usage by means of a simple HelloWorld
program, encompassing three di↵erent variants. First, configuration options actually

12 2. Background

constitute macros on code level. These macros form a boolean expression that is part
of the preprocessor directive. For instance, in the example on Line 3, an #if directive
introduces a boolean expression with two macros, concatenated with a logical operator:
GUESS_POS and GUESS_NEG. The directive ends on Line 5, and thus, has only an e↵ect
on Line 4. In a nutshell, Line 4 is only part of the final program if either GUESS_POS
or GUESS_NEG are defined (i. e., if at least on of these macros is true). Otherwise,
the statement in Line 4 is removed in a preprocessing step that takes place before
compilation. In the remainder, I will refer to such macros that are part of preprocessor
directives as preprocessor variables.

Besides defining macros, a preprocessor directive can also rely on already defined
macros (cf. Line 10), provide alternatives if a preprocessor directive resolves to false
(cf. Lines 10–14), and even allows for nested preprocessor directives (cf. Line 7 and
Line 10).

The common adoption of preprocessor-based variability (and the cpp in particular) is
rooted by its beneficial properties. First, the concept of preprocessors is well known
to developers, even without knowledge of variability. Moreover, the cpp is indepen-
dent from its host language, and thus, similar mechanisms exist for a variety of lan-
guages (Apel et al. [3], Chapter 5.3.3). Second, the cpp easy and straightforward to use,
because of the annotate-and-remove model, but still provides a considerable expressive-
ness. Most notably, it is very flexible as a developer can annotate even single characters
but also large portions of code; the cpp can deal with all levels of granularity [25].
Finally, the cpp scales up even to large code bases. An example of its scalability is the
Linux kernel, where the cpp is used on millions lines of code to introduce variability
for around 15 000 configuration options.

Feature-Oriented Programming

FOP is a composition-based variability mechanism that extends classical programming
languages by an explicit notion of features. As initially introduced, FOP aims at decom-
posing a system into features, thus, making them first-class entities [53]. To this end,
source code is organized in feature modules, which are orthogonal to (object-oriented)
classes and capture all aspects of a particular feature by following ideas of collaboration-
based design [66, 62]. As a result, FOP not only enables a physical separation of con-
cerns ; it also allows for a straightforward mapping between features (from problem
space) and feature modules as well as an easy composition of such modules. Finally,
due to its inherent modularity, FOP gives rise to modular reasoning.

In Listing 2.2, I show an example for an FOP implementation, of the GraphPL prod-
uct lines using FeatureHouseas a concrete composition technique [4]. This excerpt
comprises four features and each feature comprises one or more classes. As a first fun-
damental di↵erence to common object-oriented programming, a certain class can exist
more than once in the whole program. In fact, a class exist for each role it plays in a
certain feature. For instance, the class Graph has a role in each of the features, and thus,
exists for times. Each feature, in turn, can extend the program in two ways: Either,

2.2. Integrated Variability: C Preprocessor and FOP 13

Feature GraphLibrary

1 class Graph {
2 List<Vertex> vertices;
3 List<Egde> edges;
4
5 Edge addEdge(Vertex from, Vertex to,
6 int weight) {
7 Edge e = new Edge(from, to);
8 ...
9 return e;
10 }
11
12 void run(Vertex v) {
13 /* to be refined by Algorithms */
14 }
15 }

16 class Vertex { ... }

17 class Edge { ... }

Feature Weighted

1 class Graph {
2 Edge addEdge(Vertex from, Vertex to,
3 int weight) {
4 Edge e = original(to, from, weight);
5 e.setWeight(weight);
6 return e;
7 }
8 }

9 class Edge {
10 int weight;
11 void setWeight(int weight) {...}
12 }

(a) (b)

Feature Number

1 class Graph {
2 void run(Vertex v) {
3 original(v);
4 numberVertex(v);
5 }
6
7 void numberVertex(Vertex v) {...}
8 }

(c)

Feature Cycle

1 class Graph {
2 void run(Vertex v) {
3 original(v);
4 detectCycles(v);
5 }
6
7 void detectCycles(Vertex v) {...}
8 }

(d)

Listing 2.2: Excerpt of the GraphPL implementation using FeatureHouse

it introduces new elements (such as methods or fields) or it refines existing ones. In
the example, feature GraphLibrary (Listing 2.2 (a)) constitutes the root feature, and
thus, only introduces elements, such as the methods addEdge(...) and run(...) in
class Graph. The other features rely on these introductions and partially extend them
using the original keyword. For instance features Number (Listing 2.2 (c)) and Cycle
(Listing 2.2 (d)) both refine the method run(...) by adding additional statements to
it, while feature Weighted (Listing 2.2 (b)) extends method addEdge(...) by state-
ments that add weights to edges. Note that the original keyword works similar as the
super keyword with inheritance with the di↵erence that the same class is extended, but
within another feature module. Eventually, when the final program is composed based
on the selected features, all elements across feature modules that belong together (e. g.,
classes, methods, etc.) are composed into one unique unit.

14 2. Background

1 2 3 4 5 6

●

●

●

●

●

●

Number of products

C
um

ul
at

ive
 c

os
t o

f p
ro

du
ct

s
●

Single product development
Product line engineering
Clone & own?

Figure 2.3: Comparing costs for SSS, SPLE. and clone-and-own development with
respect to the number of products/variants expected (based on Clements and
Northrop [9])

2.3 Adhoc Reuse with Clone-and-Own

While SPLE provides a way for structured and planned reuse when creating variant-rich
system, and thus, to ease the evolution of thousand of variants in parallel, it also comes
with high upfront costs (cf. Figure 2.3) [32, 52, 11]. In particular, the domain analysis is
a tedious task and also maintaining a consistent mapping between features and artifacts
comes not for free [9, 42]. Moreover, when starting a new software system from scratch,
it is usually not known whether and how many variants will be needed [30]. Hence,
most of the time, a development project starts with one singe system in mind that is
developed. Later, with increasing demand of specific requirements, also the need for
e�cient creation of multiple variants arise. However, accomplishing the transition from
an originally SSS to integrated variability is also a tedious and risky task [32].

Hence, as an alternative to SPLE, adhoc reuse is often used in practice, mainly by means
of clone-and-own [14, 11, 56, 65]. This adhoc reuse comes with several advantages.

1. No upfront costs incur, making adhoc reuse a quick and cost-e↵ective method to
create variant-rich systems. Moreover, deriving a new system from an existing
one does not a↵ect the stability of the original one [23, 65].

2. Clone-and-own allows to reuse already established and tested code, and thus,
increases the reliability and stability of the newly created variant [31].

2.3. Adhoc Reuse with Clone-and-Own 15

Figure 2.4: Creation and evolution of three variants by means of forking.

3. The concept of clone-and-own is very simple, and thus, can be applied straight-
forward without the need of complex tools or to adhere to formal processes. It is,
in its most simplistic form, just copy-and-paste.

To create a variant with adhoc reuse, basically two ways exist: First, to physically
copy&paste the respective files (or even the whole system) to another place. This
creates an informal fork [65], that is, the newly created variant has no more relation
or traceability link to the original system. Second, the built-in capabilities of modern
Version Control Systems (VCSs), commonly known as forking, can be used to derive a
new variant based on an existing software system. In Figure 2.4, I illustrate the main
steps and characteristics for applying forking by means of three variants and the git
VCS.3

Creating a variant (a. k. a., forking:) As a preliminary, note that with git, you
have always two repositories: A local repository that resides on your local com-
puter; and a remtote repository that resides on a server, and thus, is available for
everybody who has access to this server. Now, creating a fork means that the
remote repository is copied, and thus, creates a clone of the original system on
the server. For instance, on GitHub a dedicated button exists that fulfills this
tasks. As a result, a copy of the forked system will be created under the account
of the user who creates the fork (i. e., presses the button). IN the example in
Figure 2.4, variant-2 is a fork of variant-1 and variant-3 is a fork of variant-2.
This also illustrates that the process of forking can be applied recursively.

Evolving a variant: Now, after the fork has been created the user can clone this
repository to her local machine (using git clone) and change whatever she wants.
Moreover, synchronizing the local repository with the own remote repository can
be done using git push and git pull, respectively. For instance, in the example
variant-2 is evolved by 5 commits, that is, changes that have been stored in the

3https://git-scm.com/

https://git-scm.com/

16 2. Background

local repository (and which can be pushed to the remote one, if wanted). How-
ever, there is one important aspect I want to highlight: Each variant is evolved
independently, that is, changes of one variant are not shared with the other vari-
ants.

Synchronization between variants: One advantage of adhoc reuse with forking is
that, although each variant is evolved independently, it is possible to synchronize
changes between variants. This is of superior importance in case of new features
to be reused across variants or to propagate bug fixes. How this synchronization
takes place depends on the direction, i. e., whether we propagate changes form the
original system to the fork, or vice versa. For the former, consider variant-1 and
variant-2 in our example. The developer of variant-2 wants to take over bug fixes
from variant-2. Since a forking relation exists, this can be simply accomplished
by performain a pull from upstream, that is, by just merging changes from the
original system into the fork. For the other way, the forked variant has usually
no su�cient rights to make changes on the original repository, and thus, can not
simply push changes to the original system (e. g., commit C14 in variant-2 of the
example). However, it is possible to file a pull request, which is kind of a proposal
for a change. This will be checked by developers of the original system and, in
case of acceptance, merged into this system (e. g., commit C15 of variant-1 in the
example).

In summary, compared to simple cpy&paste, adhoc reuse with forking has the advan-
tages that it creates a traceability link between the original system and the new variant.
This link can be used for future synchronization, but requires additional e↵ort, as I will
highlight in the next section.

2.4 Challenges for Evolving Variant-Rich Systems
Reuse is crucial to support the development, maintenance, and evolution of long-living
software systems. This is even more true for variant-rich systems, which comprise a
possibly large number of variants that must adhere to high quality standards at any
stage of their lifecycle. I introduced and explained two di↵erent approaches, structured
and adhoc reuse, that support the construction of variant-rich systems and partially
even their evolution (which is especially true for the former).

However, these approaches are not for free. Especially when realizing these approaches
with concrete techniques (e. g., integrated variability mechanisms or VCS), also dis-
advantages show up that inevitably pose challenges to the evolution of variant-rich
systems with respect to quality aspects such as reliability, extensibility, maintainabil-
ity, or testability. In the following, I will highlight the main challenges for evolution
that arise from both approaches, with a main focus on the implementation level (i. e.,
solution space in the SPLE process).

2.4.1 Challenges of Integrated Variability

For integrated variability, I mainly focus on the preprocessor-based implementation
mechanism with cpp, as it is (A) more commonly used in practice and (B) my research

2.4. Challenges for Evolving Variant-Rich Systems 17

for integrated variability is mainly focussing on this mechanism. However, for the
scattering aspect, I also take FOP into account.

The following integrated variability challenges (IVC) have been identified for the cpp
and are addressed by parts of my research:

IVC 1 Program Comprehension. Since the cpp is part of the source code it is
considered to be intrusive, tangling up with the host language. As a result, the
cpp is criticized to obfuscate the source code of the underlying program [64,
40]. Moreover, developers are confronted with multiple variants at once and they
have to understand and modify this code base on a regular basis. Understanding
and working on a large number of variants simultanuously has been shown to
negatively a↵ect the comprehension of source code [47]. Finally, the intrusiveness
of the cpp makes it inherently hard to follow and understand the data and control
flow of the actual program [64, 15, 13]. In particular, the capability of introducing
variability at any granularity leads to undisciplined annotations [39] that impede
program comprehension considerably [43, 41, 45].

IVC 2 Scattering and Tangling. As features are not modularized with preprocessor-
based variability, they can literally occur everywhere in the source code, thus,
giving rise to feature scattering. This, in turn,makes it hard to understand which
code contributes to a particular feature, as is may be scattered over hundreds
of files [24]. Additionally, a feature rarely occurs in isolation. Instead, it may
be tangled up with other features, such as in complex preprocessor expressions
(cf. Listing 2.1, Line 3) or due to nested preprocessor directives. Both, scatter-
ing and tangling, hinder traceability of a features and modular reasoning [64, 13,
5]. Scattering also exists for FOP, although it supports a separation of concerns.
However, the problem of scattering arises in case of too many refinements, e. g.,
for a particular method In such a case, the method may exist in many variants,
depending on the selected features. As a result, scattering makes it hard to under-
stand which previous refinements have to be taken into account when extending
this methods as part of a new feature.

IVC 3 Error-Proneness. As a consequence of its expressiveness and the possibility
of annotate code even at fine-grain, the cpp is also known to be prone to sub-
tle errors, especially syntax and type errors [13, 44, 46, 49]. This leads to the
occurrence of so-called variability bugs [1], which are hard to detect since there
is only limited tool support to analyze variant-rich systems with preprocessor
annotations.

IVC 4 Maintainability. This challenge is rather a consequence of the challenges men-
tioned above. Obviously, if code is hard to understand, impedes traceability and
is prone to introduce subtle errors, it eventually also impairs the maintainabil-
ity of variant-rich software systems, such as fixing a certain bug, modifying code
according to changed requirements, or even extend it by new features.

18 2. Background

While there are further challenges, such as testing all variants or perform static analyses
on variant-rich systems, they are out of scope of this thesis. In summary, all of the above
mentioned challenges makes it a non-trivial task to evolve a variant-rich software system
properly. To address parts of these challenges, I will introduce respective techniques
and empirical studies in Chapter 3.

2.4.2 Challenges of Clone-and-Own

Di↵erent to integrated variability, clone-and-own does not employ any specific variabil-
ity mechanism. Instead, adhoc reuse is preferred, mainly by means of using the forking
mechanisms of contemporary version control systems such as Git. Next, I highlight
the challenges for evolving variant-rich systems developed with such adhoc reuse. To
this end, I not only rely on previous research, but also make use of information that
we obtained from an empirical study that we conducted on an open-source 3D printer
firmware called Marlin [65]. In this study, we analyzed the repository of Marlin,
how and why forking has been applied, qualitatively analyzed the shortcomings of this
approach and also asked developers about problems arising from clone-and-own. As a
result, the following clone-and-own challenges (COC) have been identified that are the
main driver for my research on extracting variability (cf. Chapter 4):

COC 1 Decentralized (Variability) Information. One of the most intricate prob-
lems of clone-and-own is that information about commonalities and di↵erences is
simply not available. Even with modern VCS, this information is not stored per-
sistently, and thus, makes it hard what is still identical and what has been changed
between di↵erent variants. While this information may be easily obtained for a
pair of variants, it is impossible to recreate this information for hundreds of forks,
as we observed them in Marlin. A a result, reuse of features, implemented in
a certain fork, is almost impossblie just because of this missing knowledge. In
Marlin, we found out that there are more than 300 forks that developed new
features and that some of them basically developed a feature redundantly (i. e.,
the same feature has been developed several times). Hence, the big picture about
which features exists and how they may depend on each other is not available [6],
which hinders their propagation/exchange across variants.

COC 2 Maintenance E↵ort. Similar to code clones [22], adhoc reuse for variant-rich
systems su↵ers form an increased maintenance e↵ort [14]. The reason is that
any changes that are made in a particular fork (i. e., variant), are by default not
visible to all other variants, including the original one. Again, a missing central
knowledge base is the main reason for this issue. Instead, the owner of a fork
must prepare pull request (PR) to the variant the fork has been created from.
This may be a tedious task, as PRs are only accepted if they are robust enough,
e. g., demonstrated by passing test suites. This may be even more complicated
if the original system also evolved, as it may lead to conflicts or inconsistencies
with modified or newly introduced features. Hence, it is common that the same

2.4. Challenges for Evolving Variant-Rich Systems 19

changes are done manually over and over again on di↵erent forks, which binds
resources for a task that could be mostly automated.

COC 3 Change Propagation. This challenge is related to COC 2, but has its own
specialities. In particular, in case of bug fixes, it is of superior interest to propagate
them to all related variants, that is, variants that comprise the same feature. and
thus, su↵er from this bug. However, this does not work consistently in both
directions. First, if a bug is fixed by means of a patch in the original system,
all direct forks just have to synchronize with this repository. However, either
because of missing knowledge (cf. COC 1) or because the sync would require
further adaptions (due to previous evolution of the fork), forks may not take this
patch, and thus, still exhibit the bug. Even worse, by forks created form this
(buggy) fork, this bug may even propagate further. In our study on Marlin,
we found particular bug fixes (preventing the printer form being damaged), that
have been taken by only ⇠ 8% of the forks. Second, forks that fix bugs do not
necessarily push these changes back, for the reasons stated in COC 2, and thus,
do not even provide other forks with the possibility to take this patch.

COC 4 Di�cult to Migrate. Due to the lack of explicit feature and variability in-
formation, it is di�cult to migrate form adhoc reuse to, either to an integrated
variability mechanism or to an intermediate solution such as an integrated plat-
form [2]. Hence, even if variants accumulate and such a migration would be
beneficial, also from an economic point of view, the obstacle is mostly too huge
to overcome it with reasonable e↵ort.

With my research, I aim at overcome one of the root causes for the abovementioned
challenges: I develop techniques that allow to extract information about features and
their variability from multiple variants, developed with clone-and-own (see Chapter 4).
Moreover, these techniques focus on di↵erent development artifacts such as models,
code, or requirements.

20 2. Background

3. Analyzing the Impact of
Preprocessor Directives on
Source Code Quality

In this chapter, I summarize techniques, together with their underlying concepts and
empirical evaluation, to identify patterns of bad use of integrated variability and how
this a↵ects quality aspects such as understandability, maintainability, and evolvability.
The particular contributions include (A) a systematic derivation of variability-aware
code smells (short: variability smells), based on well-established code smells (B) an
empirical evaluation of the existence of such smells and its impact on quality aspects
by means of a survey (C) a scalable and parameterizable technique, and its empirical
evaluation, to detect such variability smells automatically, and (D) a large-scale em-
pirical study and statistical analysis on the e↵ect of preprocessor-based variability on
maintenance e↵ort.

3.1 Investigating Variability-Aware Code Smells in-
the-wild

Relevant Publications: This chapter summarizes the work published in Fenske and
Schulze [17], Fenske et al. [18], and Schulze and Fenske [60], respectively. The former
is covered in Section 3.1.1 and comprises the notion of variability-aware code smells
and its evaluation while the last two are covered in Section 3.1.2 and comprise the
metric-based technique and tool to detect such smells automatically.

3.1.1 A Variability Perspective on Code Smells

Although previous studies investigated aspects of integrated variability such as undis-
ciplined annotations or tangling and scattering, these studies are limited in two ways.

22 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

First, they do not analyze and validate to what extent these aspects have an impact on
source code quality such as maintainability or extensibility. Second, they are usually
analyzed quantitatively (i. e., purely value or metric-based) and in isolation, that is, it
is not considered how the occurrence of multiple of such aspects a↵ect the underlying
source code.

We overcome these limitations by relying on a well-established concept of the domain
of single software systems: code smells have been proposed to indicate higher-level pat-
tern of source code indicating that a system su↵ers from design flaws or code decay [20].
Initially, they have been defined to identify refactoring opportunities, and thus, recreate
the “healthiness” of the system by removing such smells. For our purposes, one charac-
teristic of such smells is of prior importance: While such smells can be even identified by
(quantitative) metrics, it is usually the interaction of certain shortcomings (indicated
by multiple metrics) that resemble constitute a particular code smell. Consequently,
the notion of code smells inherently considers multiple source code properties together
and not each of them in isolation.

Methodology. Since we focus on integrated variability mechanisms, our main idea
is to take variability into account as a first-class concepts for the definition of smells,
resulting into variability-aware code smells (called . To this end, we reviewed common
existing code smells and discussed how variability mechanisms would a↵ect typical
language elements of the original smell definition. For instance, a common and widely
observed code smell is Long Method, indicating that a method is too long, and
thus, suspicious to comprise to much functionality. We asked ourselves “How would
this smell look like if many statements are annotated with #fidefs”? We followed this
methodology for a couple of smells, in particular those that are observed quite commonly
such as Duplicated Code or Long Method, as these are well-understood and also
do not rely on object-oriented programming (which is crucial when considering the C
preprocessor). Moreover, we applied out methodology for both variability mechanisms,
that is, cpp and FOP.

Catalog of Variability Smells. Based on the previously described methodology, we
identified three code smells for which we could derive variability smells. In Table 3.1, we
provide an overview of these variability smells together with a brief description and a
reference to the original code smell. To illustrate the concrete mechanics of such smells,
the smell AnnotationBundle is explained in greater detail in the following.

In Listing 3.1, we show a function form MySQL that exhibits the smell Annotation-
Bundle. Note that this smell not necessarily requires a function to be extraordinary
long, but accumulates a large amount of variability. For instance, the function in the
example only comprises 29 lines of code. However, the majority of the code is vari-
able, that is, annotated with (di↵erent) preprocessor directives, which relates to feature
scattering. Moreover, it contains multiple preprocessor variables and also complex pre-

3.1. Investigating Variability-Aware Code Smells in-the-wild 23

Table 3.1: Overview of the derived variability-aware code smells (for details, see [17])

Original Smell cpp-based Variability Smell FOP-based Variability Smell

Duplicated Code Inter-Feature Code Clones
Code that is duplicated across fea-
tures. For instance, a code fragment
that is duplicated, but annotated
with di↵erent features, respectively.

Code that is duplicated across fea-
tures. For instance, a method that
exists in identical or similar form,
but in di↵erent feature modules.

Long Method AnnotationBundle
A method that contains many vari-
able parts, controlled by a many dif-
ferent features. Indicated by many
cpp directives that are even nested.

Long Refinement Chain
A method with many variable parts
caused by excessive feature refine-
ment.

Long Parameter
List & Specula-
tive Generality

Latently Unused Parameter
A method parameter is introduced
by a feature that does not make
use of it (i. e., it is not used in the
method body). However, this pa-
rameter is used with another fea-
ture, extending this method (a. k. a.,
forward declaration).

Latently Unused Parameter
see cpp-based smell description

processor expressions (cf. Line 6 and Line 22), indicating feature tangling. Finally, there
are also nested preprocessor directives present (Lines 21–27).

As a result, understanding what this function is doing for only some of the features se-
lected is di�cult, which also makes it challenging to extend this function. This example
also shows that our definition of variability smells captures di↵erent characteristics of
preprocessor-based variability, and thus, captures the interaction of these characteristics
rather than considering them in isolation, as done in previous studies.

Evaluation. Although we derived the variability smells with care, they may be sub-
jective and only constitute our point of view. Hence, we can not be sure that our smells
really capture problematic (mis)use of variability in source code. To address this is-
sue, we conducted a survey among expert in the field to answer the following research
questions.

RQ 1 Do our proposed smells exist in the design and implementation of SPLs?

RQ 2 Are our smells problematic with respect to di↵erent aspects of SPL development?

We designed the survey in the following way. First, we collected some meta data such as
age, gender, or current position and responsibilities at work. Second, to ensure that all
participants are eligible to take the survey, we measured their programming experience.
To this end, we employed the programming questionnaire proposed by Feigenspan et

24 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

1 sig_handler process_alarm(int sig __attribute__((unused)))
2 {
3 sigset_t old_mask;
4
5 if (thd_lib_detected == THD_LIB_LT && !pthread_equal(pthread_self(),

alarm_thread)) {
6 #if defined(MAIN) && !defined(__bsdi__)
7 printf("thread_alarm in process_alarm\n");
8 fflush(stdout);
9 #endif

10 #ifdef SIGNAL_HANDLER_RESET_ON_DELIVERY
11 my_sigset(thr_client_alarm, process_alarm);
12 #endif
13 return;
14 }
15
16 #ifndef USE_ALARM_THREAD
17 pthread_sigmask(SIG_SETMASK, &full_signal_set, &old_mask);
18 mysql_mutex_lock(&LOCK_alarm);
19 #endif
20 process_alarm_part2(sig);
21 #ifndef USE_ALARM_THREAD
22 #if !defined(USE_ONE_SIGNAL_HAND) && defined(SIGNAL_HANDLER_RESET_ON_DELIVERY)
23 my_sigset(THR_SERVER_ALARM, process_alarm);
24 #endif
25 mysql_mutex_unlock(&LOCK_alarm);
26 pthread_sigmask(SIG_SETMASK, &old_mask, NULL);
27 #endif
28 return;
29 }

Listing 3.1: Example for the smellAnnotation Bundle, taken fromMySQL, version
5.6.17 (see also [17]).

al. [16]. Third, we asked for prior knowledge about code smells, as this may a↵ect to
what extent participants understand the notion of variability-aware code smells. Finally,
we asked questions about the concrete variability smells, proposed by us. In particular,
for each smell, we asked whether participants have observed them (and where) and
how they would estimate its impact on program comprehension, maintainability, and
evolvability.

Finally, we sent out the survey to participants of the FOSD meeting 20141, two weeks
before the meeting took place. We received 17 answers from which two have been
discarded due to incompleteness.

Results. In Figure 3.1, we show the results for RQ 1, that is, to what extent par-
ticipants of the survey can confirm the occurrence of our proposed variability smells.

1www.fosd.de/meeting2014)

www.fosd.de/meeting2014)

3.1. Investigating Variability-Aware Code Smells in-the-wild 25

of

 a
ns

w
er

s

0

1

2

3

4

5

6

7

8

9

10

11

12

Code Smells
Clones Refinement Bundle Parameter

CPP
FOP

Code Smell observed
Code Smell NOT observed

Figure 3.1: Occurrence of variability-aware code smells, as observed by survey partici-
pants.

As our data reveal, all smells have been observed by the majority of the survey par-
ticipants, disregarding the variability mechanism. In particular, the smells Inter-
Feature Code Clones and AnnotationBundle have been observed by ⇠ 70% of
the participants. We argue that this result confirms that our proposed smells frequently
exist in variant-rich software systems.

For RQ 2, we provide an overview of the results in Figure 3.2. The the charts indicate,
there are di↵erences between the variability smells and their impact on particular qual-
ity aspects. For instance, the smell Inter-Feature Code Clones has almost no
impact on program comprehension, but is considered problematic for maintainability

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

0

2

4

6

8

10

12

14

16

Clones Refinement Bundle Parameter

Very problematic
Rather problematic

Don't know
Rather unproblematic

Unproblematic

(a) Program Comprehension (b) Maintainability (c) Evolvability

Figure 3.2: Impact of our variability-aware code smells on program comprehension,
maintainability, and evolvability, respectively.

26 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

by almost all participants. This result is consistent with the nature of this smell, as
usually a coherent piece of code is duplicated, which does not hinder understandabil-
ity but increases maintenance e↵ort. In contrast, the smell AnnotationBundle is
perceived as (very) problematic with respect to program comprehension by almost all
participants. Overall, with some minor exceptions, all variability smells are considered
at least problematic by the majority participants for all three of the considered quality
aspects. While this result was surprising in its clearness, it indicates that there is a
need for identifying such variability-aware code smells and, if possible, to remove them.

3.1.2 Metric-Based Detection of Variability-Aware Code Smells

While our proposed variability-aware code smells have been confirmed by experts, these
smells still rely on our own observations and are only available in a humn-readable de-
scription. However, to investigate the existence and nature of such clones at large scale,
an automated detection process is needed. This is also necessary to guide developers
and point them to possibly problematic code in large code bases.

Detection Technique. To detect variability smells, it is essential to find a roper
technique or representation that captures the characteristic of such smells on a certain
level of abstraction. As already explicated in Section 2.4.1 and Section 3.1.1, there are
several characteristics that challenge the evolution of variant-rich system. How these
characteristics contribute to a particular code smell and how to capture this interaction
is the key point of providing a successful detection technique.

Eventually, we decided to employ a metric-based approach to detect variability-aware
code smells, as metrics are suitable to capture particular characteristics of integrated
variability [38, 39] and have also been used successful for detecting object-oriented code
smells [12, 48]. Next, I illustrate how our technique works and which metrics we use by
means of the smell AnnotationBundle (Note: corresponding metrics exist for the
other smells as well). To this end, we make use of the code example in Listing 3.1,
introduce the metrics used to describe this smell, and how we put these metrics into
relation.

As already mentioned, the example in Listing 3.1 comprises multiple variable parts,
complex preprocessor expressions, multiple configuration options, as well as nested
preprocessor directives, all of them contributing the an AnnotationBundle. In Ta-
ble 3.2, we provide the metrics that we propose to capture these characteristics together
with a brief description. Except for the LOC metric, which basically counts all lines
of code, all other metrics are specifically designed to address certain properties of cpp
directive. As an example, the LOAC metric counts only the lines of annotated code,
whereas the FL metric captures the number of variable parts (i. e., annotated blocks of
code) within a function.

To put all of these metrics in relation, we propose to aggregate the particular values to
one single metric, ABsmell, that indicates to what extent a function su↵ers from this
smell. We show this metric in (Equation 3.1).

3.1. Investigating Variability-Aware Code Smells in-the-wild 27

Table 3.2: Metrics capturing basic characteristics of the Annotation Bundle code
smell (adapted from [18])

Abbrev. Full Name Description

LOC Lines of code Source lines of code of the function, ignoring blank lines and com-
ments.

LOAC Lines of anno-
tated code

Source lines of code in all feature locations within the function.
Lines that occur in a nested feature location are counted only once.
Again, blank lines and comments are ignored.

CND Cumulative
nesting depth

Nesting depth of annotations, accumulated over all feature loca-
tions within the scope. An #ifdef that is not enclosed by another
#ifdef is called a top-level #ifdef and has a nesting depth of zero;
an #ifdef within a top-level #ifdef has a nesting depth of one,
and so on. Nesting values are accumulated, which means that a
function containing two feature locations with a nesting depth of
one is assigned a CND value of 2.

FCdup Number of fea-
ture constants

Number of feature constants, accumulated over all feature locations
within the scope. Feature constants that occur in multiple feature
locations are counted multiple times.

FL Number of fea-
ture locations

Number of blocks annotated with an #ifdef. An #ifdef contain-
ing a complex expression (e. g., #ifdef A && B) counts as a single
feature location. An #ifdef with an #else/#elif branch counts
as two locations.

NEG Negation The number of negations in the #ifdef directives in a function.
Both #ifndef X and #if !defined(X) increase NEG by 1. #else
branches also increase NEG because #if <expr> ... #else ...
is treated as #if <expr> ... #endif #if !<expr> ...

w1 ·
LOAC

LOC
· FL+ w2 ·

FCdup

FL
+ w3 ·

CND

FL
(3.1)

The equation consists of three terms which capture the following characteristics. The
first term mainly captures the amount of variable code, also taking into account how
many variable parts exist in a function, and thus, accounting for scattering. Next,
the second term addresses the number of preprocessor variables and how they are dis-
tributed over annotated code fragments. As a result, this term provides a way to relate
scattering and tangling and integrate both of them into our smell definition as a proxy
for complexity. As a third term, we also take the nesting depth into account, as this
has been shown to a↵ect the comprehension of the nested code fragments.

Finally, each term is complemented by a weight, which allows to control the influence
that a particular term has on the overall metric. The reason is that for di↵erent develop-
ers or in di↵erent projects, the perception of what makes a function an Annotation-
Bundle is di↵erent. Consequently, introducing weights allows for parameterization
of the actual metric-based definition of a smell. Besides the weights, we also provide
customizable thresholds for each of the atomic metrics in Table 3.2. These thresholds

28 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

Figure 3.3: Overview of the (pipe&filter) architecture of Skunk, implementing the
metric-based code smell detection.

constitute lower boundaries, that is, if the metric is below the threshold, it is not con-
sidered for the computation of the overall metric ABsmell. This way, we aim at reducing
false positives in the result set.

Implementation. We implemented our technique in the tool Skunk2 with a pipe&filter
architecture so that any intermediate results are available for further usage. As shown
in Figure 3.3, the tool consists of two stages: preprocessing and smell detection. In
the preprocessing stage, the source code of the system of interest is analyzed. To this
end, we employ to existing tools: cppstats3 and srcML.4 With cppstats, we extract
most of the variability-related information that we need for our metrics, such as the
location of preprocessor directives or the preprocessor variables involved. However, we
need additional information, such as the location of functions definitions or informa-
tion about function calls. This information we obtain from srcML, which provides
a bootstrapped Abstract Syntax Tree (AST) in XML format. Most notably, srcML
provides this AST with all preprocessor directives included, which is pivotal for any
variability-aware analysis.

Based on the results of this preprocessing stage, Skunk performs the actual code smell
detection. To this end, we initially extract all relevant information and compute our
metrics, relevant for detecting a particular code smell (the Feature Syntax + Metric

2https://github.com/wfenske/Skunk
3http://www.fosd.net/cppstats/
4http://srcml.org/

https://github.com/wfenske/Skunk
http://www.fosd.net/cppstats/
http://srcml.org/

3.1. Investigating Variability-Aware Code Smells in-the-wild 29

part in Figure 3.3). Then, the actual smell detection process starts. To this end, we
provide code smell templates for each of our proposed variability smells. This template
not only specifies the metrics that are relevant for the smell to be detected; it also
allows the user to specify the aforementioned thresholds for each of these metrics. For
instance, a user can define the threshold for the LOAC/LOC ratio to be at least 50%.
As a result, any function that does achieve this threshold is discarded from the further
smell detection. Moreover, in this step the smell metric can be parameterized, that is,
the weights can be adjusted. Finally, the code smell template and variability-related
information is used to compute the smell metric (here: ABsmell) and the value is stored
together with the function name and location. These results can now be investigated
by the user to identify smelly functions and to initiate possible countermeasures.

Evaluation. To evaluate our technique, we conducted a case study on five open-
source systems, among them long-living and popular systems such as vim or emacs.
With this evaluation, we aim at answering the following research questions:

RQ 1 Does our algorithm detect meaningful instances of the AnnotationBundle
smell?

RQ 2 Does the AnnotationBundle smell exhibit recurring, higher-level patterns of
usage?

While RQ 1 is focussed more on the accuracy of our detection technique (quantita-
tive analysis), RQ 2 is more about certain characteristics that contribute to the overall
pattern (qualitative analysis). For the evaluation, we set up Skunk with a parameter-
ized code smell template, based on our experiences with di↵erent variant-rich systems
(cf. [18]). Then, we ran the tool on the five subject systems, all of them with a size of
> 100 KLOC and an amount of variable code between 20% and 70%. As a result, we
obtain a list for each system that contains the function, its location and the computed
ABsmell metric value (in descending order). Since there is no experience or baseline
with variability-aware code smells and because our metric is not normailzed in a fixed
range (e. g., between 0 and 1), it is di�cult to determine, which metric values indicate
a real smell (true positive) and which values can be neglected (false positives).

To overcome this uncertainty, we performed a manual analysis by sampling the results
in the following way: First, for each system, we selected the 10 entries with the highest
ABsmell value. Second, we divided the remaining entries of the result list into 10 equally
distributed segments and then randomly selected one entry per segment. As a result,
we obtain 20 smells for each system, which have been manually analyzed by me and
another author (cf. [18]). To this end, we independently evaluated each smell regarding
its impact on understandability and maintainability on a three point scale ({�1, 0, 1}).
Eventually, we compared our results and, in case of disagreeing for a particular smell,
discussed their ratings to find a consensus.

In Figure 3.4, we show a summary of the quantitative results. Except for the subject
system PHP, our results indicate that our definition for the AnnotationBundle

30 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

Figure 3.4: Overview of the quantitative results for the evaluation. The overall number
of smells detected for each system is indicated by the value ABpot.

smell can be considered appropriate and that our detection technique captures the
characteristic of this small with high accuracy. Especially the top-10 entries of the
result list have been shown to be very good indicators with an accuracy of more than
70%. Hence, we argue for RQ 1 that our technique is capable of detecting meaningful
instances of the smell AnnotationBundle.

For our qualitative analysis, which relies on the manual inspection of the selected code
smells (see above), we made several observations about the characteristics of the smell
as well as for possible reasons why it has been introduced. Among others, we observed
the following (more details about the observations can be round in [18]).

• There is no single reason, and thus, no single metric, that causes the Annota-
tionBundle smell. Rather, it is usually a combination of several characteristics
that contribute to a smell.

• One particular aspect that fosters the occurrence of our smell is the interaction of
preprocessor variability with runtime variability (i. e., conditional statements of
the host language). The reason is that already complex control flow is obfuscated
even more when annotated with preprocessor directives.

• Long functions are more prone to constitute a smell than short functions.
• A form of the Adapter pattern [21] is a recurring pattern that is likely to introduce
the AnnotationBundle smell.

• Some functions constitute Featurized God Functions, a form of the God
Class smell [20]. They are characterized not only by its length, but also by
comprising many diverse features tangled up with each other and scattered across

3.2. How Preprocessor-Based Variability A↵ects Maintenance 31

the whole function. We observed this kind of functions especially in vim and all
su↵ered from the AnnotationBundle smell.

In summary, I conclude that the the smell AnnotationBundle is well captured by
our detection technique and the metrics used; that it occurs quite frequently in systems
from di↵erent domains; and that there are certain structural properties and even pattern
that foster the occurrence of this smell.

3.2 How Preprocessor-Based Variability A↵ects Main-
tenance

Relevant Publication: This section summarizes the content of the paper by Fenske
et al. [19].

With the work summarized above, we introduced the notion of variability and verified
that these smells, in particular the AnnotationBundle frequently occurs in variant-
rich software system. However, although experts in our survey confirmed that these
smells are problematic regarding program comprehension or maintainability, so far no
hard evidence exist that support this opinion. Hence, we conducted an empirical study
to analyze the e↵ect of preprocessor variability on maintainability.

Research Design. First, we need to find a measure for maintainability, that is, the
maintenance e↵ort for a particular function. In previous work, researchers proposed to
use change proneness as a proxy for the maintenance e↵ort and demonstrated the fea-
sibility of this proxy [54, 27]. In particular, two measures are proposed: The frequency
of changes, also known as an indicator for later defects. And the amount of changes
(a. k. a., code churn), know to correlate with the e↵ort of developers for maintenance
tasks. To this end, we introduce two change metrics for each function: the number of
commits that have modified the function and the lines changed/removed, accumulated
over a period of time. Moreover, we also compute a normalized version of these metrics,
that is, dividing it by the length (in LOC) of the function. Since these metrics work on
statement level (as smallest unit of change), we can’t map them directly to our code
smells (e. g., AnnotationBundle, because we aggregate fine-grained information of
statement level up to function level. Hence, using the smell as a predictor for change
proneness will leave us with too many false positives or false negatives. Hence, we de-
cided to use the atomic metrics (cf. Table 3.2) to evaluate whether certain preprocessor
usage has an e↵ect on maintainability.

Next, we have to extract the relevant data for our analysis. While we can reuse our
Skunk infrastructure to extract variability-related information, it is only designed to
do so for one version of a system. Hence, we developed a tool on top of Skunk that not
only computes our variability metrics for multiple versions, but also is capable to extract
fine-grained changes from version control repositories at large scale. In a nutshell, our
data extraction process works as follows:

32 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

1. We identify relevant commits in the repository, that is, commits in which at
least one .c file has changed (compared to the previous commit). Changes to other
files are irrelevant, and thus, ignored.

2. Next, we create snapshots, that is, a logical sequence of commits that are
in a parent-child relationship. We do this, because due to di↵erent branches,
e. g., for development or bug fixes, and merges of them to the main branch, the
chronological order of commits is not necessarily the logical one. Obviously, this
process may lead to snapshots of di↵erent size, which may later (accidentally)
a↵ect the precision of our analysis. Thus, we divide the initially created snapshots
in equally sized ones, each comprising 100 commits. Note that we also compute
our change and variability metrics only once per snapshot (see next step), as
doing this for each and every commit would be computationally too expensive,
especially when considering ⇠ 30 years of development history.

3. Once we created our snapshots, we can process them to collect al necessary in-
formation for our analysis. To this end, for each snapshot, we compute variability
metrics (using Skunk, perform change analysis and compute the change metrics,
and, eventually, combine both sets of metrics. As a result, we obtain for each file
a list of functions together with its variability and change metrics.

4. Finally, we build commit windows. The reason is that the size of a particular
snapshot is too small to identify functions that really undergo heavy changes.
Hence, we group 10 snapshots into one commit window and recompute the change
metrics for each commit window.

Evaluation. For our evaluation, we formulate the following three research questions:

RQ 1 Is feature code harder to maintain than non-feature code?
RQ 2 Does the presence of feature code relate to the size of a piece of code?
RQ 3 Considering all properties of annotation usage and size in context, what is the

independent e↵ect of each property on maintainability?

For each question, we formulate null hypotheses and select appropriate statistical meth-
ods to verify these hypotheses and analyze whether preprocessor usage (by means of our
variability metrics) correlates with maintainability (by means of our change metrics).
Moreover, we selected eight subject systems for our evaluation, based on seven criteria.
Most importantly, each system must have a su�ciently long history, and thus, a large
amount of commits to perform our evolutionary analysis (i. e., change analysis).

For RQ 1, we show the correlation between our variability metrics and the measures
for maintenance e↵ort in the upper part of Table 3.3. For both maintainability mea-
sures (indicated as dependent variables COMMITS and LCHG, respectively), our
data reveal a twofold result. First, the result indicate that the di↵erence in maintain-
ability is significant in the presence of variability5 compared to non-variable code. This

5Given that the variable code fulfills the properties defined by our metrics (i. e., the minimum
thresholds for each variability metric)

3.2. How Preprocessor-Based Variability A↵ects Maintenance 33

Table 3.3: E↵ect of Individual Annotation Metrics on Changes (taken from Fenske et
al. [19])

Independent Dependent Sig.1 Cli↵ ’s Delta Magnitude2

fl>0 COMMITS 8 (0) 0.27±0.11 # # G#
fc>1 COMMITS 8 (0) 0.39±0.12 # G#
nd>0 COMMITS 8 (0) 0.40±0.14 # G#
neg>0 COMMITS 8 (0) 0.32±0.12 # # G#
fl>0 LCHG 8 (0) 0.27±0.11 # # G#
fc>1 LCHG 8 (0) 0.39±0.12 # G#
nd>0 LCHG 8 (0) 0.40±0.14 # G#
neg>0 LCHG 8 (0) 0.32±0.11 # # G#
loc+ COMMITS 8 (0) 0.24±0.05 # # #
loc+ LCHG 8 (0) 0.25±0.05 # # #
fl>0 COMMITS/LOC 7 (1) 0.22±0.07 # # #
fc>1 COMMITS/LOC 8 (0) 0.27±0.09 # # G#
nd>0 COMMITS/LOC 7 (1) 0.29±0.08 # # G#
neg>0 COMMITS/LOC 8 (0) 0.24±0.10 – # G#
fl>0 LCHG/LOC 8 (0) 0.22±0.10 – # #
fc>1 LCHG/LOC 8 (0) 0.31±0.10 # # G#
nd>0 LCHG/LOC 8 (0) 0.32±0.12 # # G#
neg>0 LCHG/LOC 8 (0) 0.27±0.10 # # G#

1 Number of subject where the di↵erence was significant at p<0.01 or not significant (in
parentheses).

2 Magnitude of d (Cli↵’s Delta), for M(d)�SD(d), M(d), and M(d)+SD(d). – : negligible,
: small, G# : medium, : large

is confirmed by all subject systems, i. e., significance has been shown for all of them.
Moreover, this significance exists for all variability metrics. Second, we can observe
di↵erences, regarding the particular variability metrics, in the e↵ect size of the con-
firmed correlation. In particular, we could observe a medium positive correlation for
the metrics FC and CND, whereas the metrics FL and NEG only exhibit a small
positive correlation. Considering all subject systems and both maintainability mea-
sures in summary, the cumulated nesting depth (CND) stands out to have the largest
e↵ect. Overall, the results for RQ 1 let us conclude that functions with variable code
(according to our metrics) are changed more frequently and to a greater extent than
other functions.

For RQ 2, we take the function size (in terms of LOC) into account as well, because
previous studies have shown that the size of the function also a↵ects certain code prop-
erties, and thus, may consitute a confounding factor in our study. Consequently, we
relate our variability metrics also to function size to checker whether a correlation ex-
ists. Indeed, our results indicate a positive correlation between function size and all
variability metrics, that is, functions with more preprocessor annotations also tend to
be longer. This raises the questions whether and to what extent the function size itself

34 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

is a su�cient predictor for maintenance e↵ort. To this end, we analyzed our maintain-
ability metrics with function size as dependent variable (cf. Table 3.3, middle part).
Our data reveal a positive e↵ect of function size on both, change frequency and change
amount of changes. Moreover, although with a small positive e↵ect, all of these results
are significant.

Since we could confirm, based on our evaluation, that function size is a confounding
factor, we were interested strong the correlation of our variability metrics is when mit-
igating the e↵ect of function size. To this end, we normalized both maintainability
measures by function size and repeated the statistical analysis (cf. Table 3.3, lower
part). Our data reveal the following results.

• For change frequency, while still being significant for most subject systems, the
mean e↵ect size for all variability metrics decreases (compared to RQ 1). While
there are notable di↵erences between subject systems (e. g., for glibc, all metrics
but CND showed a negligible e↵ect whereas for OpenVPN, two metrics showed
a medium to large e↵ect), on average we conclude that even with normalized
function size, the e↵ect of variability is still significant, but with a smaller e↵ect
size than without normalization.

• For the amount of changes, in contrast to change frequency, the e↵ects for all
subject systems remain significant (compared to RQ 1). However, even here we
can observe a considerable decrease of the e↵ect size, concluding that there is a
visible e↵ect of function size.

In summary, comparing the results of RQ 1 and RQ 2, we can observe a considerable
di↵erence in the e↵ect size, mainly caused by functions size as a confounding factor. In
particular, our results allow for the conclusion that function size has a major impact
on change proneness. This, in turn, raises the question to what extent our variability
metrics are well-suited as an predictor for maintainability.

We address this issue with RQ 3, where we evaluate the independent e↵ect of each met-
ric when we consider all of them together. To this end, we applied di↵erent regression
models for all independent variables and show the results in Table 3.4. For both main-
tainability metrics, we investigate the independent e↵ect of all our variability metrics
as well as function size and show the results (A) for OpenVPN as a concrete subject
system and (B) on average over all systems. Moreover, we compute di↵erent results for
each regression model, indicated by columns �, z, and p. The coe�cient � indicates
to what extent the dependent variable is expected to increase given that the associated
independent variable vi is increased. For the z-score, the coe�cient � together with the
standard error is taken into account. Hence, high absolute values for z indicate that
the independent variable predicts the dependent variable in a reliable manner.

For change frequency, our regression analysis reveals that for the metrics FL and NEG,
no significant e↵ects could be observed (indicated by the high p-value), and thus, no
correlation with change frequency exists. While all other metrics (incl. function size) are
significant, especially the variability metrics show only a rather small e↵ect (indicated by
the very small coe�cients). For OpenVPN, CND even shows a slightly negative e↵ect,

3.2. How Preprocessor-Based Variability A↵ects Maintenance 35

Table 3.4: Regression Models for answering RQ 3 (taken from Fenske et al. [19]).

vi � z p � z Sig.

OpenLDAP All Systems

C
O
M
M
IT

S
(Intercept) -3.48 -120.5 <0.001 -3.16±0.44 -98.4±37.2 7

FL -0.00 -0.1 0.939 -0.11±0.06 -5.1±01.9 4
FC 0.06 5.7 <0.001 0.20±0.19 7.3±01.5 6
ND -0.06 -7.8 <0.001 -0.07±0.02 -7.0±01.7 3

NEG 0.02 1.9 0.058 -0.00±0.14 -1.1±09.9 3
LOAC/LOC 0.66 13.9 <0.001 0.44±0.25 7.5±04.9 6
log2(LOC) 0.58 104.4 <0.001 0.54±0.05 79.9±29.4 7

L
C
H
G

(Intercept) -2.83 -69.9 <0.001 -2.71±0.43 -59.3±21.4 7
FL 0.00 0.3 0.729 na na 0
FC -0.04 -1.8 0.071 0.23±0.20 3.2±00.3 2
ND -0.04 -2.9 0.003 -0.06±0.02 -3.6±01.0 2

NEG 0.02 1.1 0.268 0.02±0.16 0.6±05.5 2
LOAC/LOC 0.96 10.9 <0.001 0.69±0.30 6.4±03.6 5
log2(LOC) 0.87 101.1 <0.001 0.87±0.04 83.5±29.4 7

� – coe�cient estimate, z – z-value, p – p-value, Sig. – #systems with significant e↵ects

meaning that if the nesting depths increases, the function is less likely to be changed.
In contrast, we have a relatively large e↵ect for the function size. For instance, for
OpenVPN, the log2(LOC) metric has � value of 0.58, which means that if a function
doubles in size, the change frequency increases by 58%. The same tendency is indicated
by the very high z-value of this metric. Hence, for change frequency, we can conclude
that, while there is a small correlation with some variability metrics, function size is by
far the most reliable predictor over all systems.

For the amount of changes, the results are similar yet di↵erent. In particular, the results
di↵er in two ways. First, e↵ect of our variability metrics is even less significant than
for change frequency, and thus, close to be meaningless for predicting the dependent
variable LCHG. Second, the e↵ect of function size is only significant for five subject
systems, but for those systems, the e↵ect size is even greater than for change frequency.

Conclusion. Based on our results for the three research questions, which comprised
established statistical methods, we make the following conclusions:

• Preprocessor annotations have an inconsistent e↵ect on change proneness, that
is, also we found the e↵ect to be significant, the e↵ect was varying with mostly
being small or medium in size.

• Function size, as indicated in previous studies, has a more consistent e↵ect, which
is also significance, regarding the correlation with change proneness.

• Despite the two conclusions above, we argue that it is still a bad idea to create
long functions with lots of variable code, especially because heavily annotated
functions tend to be larger, which in turn increases the change proneness.

36 3. Analyzing the Impact of Preprocessor Directives on Source Code Quality

• Overall, our regression models had only a poor prediction accuracy, which in-
dicates that other important factors are missing that have a more visible and
sustainable impact on change proneness. Hence, in future work, we will investi-
gate further metrics (e. g.., process metrics such as the age of code) to improve
our models.

4. Analysis Techniques for Feature
and Variability Extraction

In this chapter, I summarize techniques and their empirical evaluation that enable the
semi-automated extraction of features and variability (called variability mining) from
di↵erent artifacts that usually accumulate in the software development process. In
particular, we propose

• a model-based technique for variability mining of MATLAB/Simulink models
with an evaluation of real-world models and a developer survey [59]. Moreover,
I briefly report on a generlalization of this technique for arbitrary, block-based
modeling languages [67].

• a static analysis techniques for identifying similarities across multiple MAT-
LAB/Simulink models in an n-way fashion [58]. This technique is also a gen-
eralisation of pure variability mining as the results can also be used for other
purposes.

• two techniques based on natural language processing and machine learning that
allow to extract a feature model and (partially) their dependencies from natural
language requirements [36, 35, 37].

38 4. Analysis Techniques for Feature and Variability Extraction

4.1 Extracting Variability from Block-Based Mod-
els

Model-based languages play an important role in domains, where the inherent complex-
ity and cyber-physical aspects play an important role. For instance, in the automotive
domain, the software for Electronic Control Units (ECUs) is mostly developed using
MATLAB/Simulink models, as it allows for abstract away a certain complexity and
to eventually generate the code out of these models.

In Figure 4.1, I show a pair of such MATLAB/Simulink models. With MAT-
LAB/Simulink being a block-based, behavioral modeling language, the function blocks
(e.g., AND in fig:matlab) are connected via connectors which are used to send signals
between blocks. These signals can be considered as kind of data flow, thus, establishing
dependencies between blocks. Moreover, each block can have in- and out-ports that
constitute the interfaces of a block to send and receive data.

Output

Value

Fix

log.

Value

Fix

Output

Output

Value

Fix

and

AND

Value

Fix

Output

(a) Model Variant A (b) Model Variant B

Figure 4.1: Two variants of a MATLAB/Simulink model with commonalities and
di↵erences.

Moreover, MATLAB/Simulink allows to introduce hierarchies in models. Especially
when dealing with large models with thousands of blocks, this is extremely useful, as it
allows to encompass parts of the model by one single block, thus, reducing the initial
size of the model as details are hidden. In our example, both model variants have such a
hierarchy, indicated by the subsystem block. This subsystem block is used in the highest
modeling level, connected with two in-ports and one out-port. Within this block, there
are sub blocks that constitute the actual functionality and are shifted to the next model
layer. Hence, we could replace the subsystem by its content on the highest level, but
then take into account that our model heavily increases.

4.1. Extracting Variability from Block-Based Models 39

.SLX
.SLX

.SLX
.SLX

.SLX .SLX
Compare Match Merge Family150%

If further iteration, use 150% model and next comparison modelselect one

n-1

Possible

Matches

Created

CEs

Subset

of CEs

Best

Matches

Final

Export

Intermediate

ExportImport

Import

Input for

first

iterationn input

models

comparison models base

model

Affected by comparison technique

Figure 4.2: Overview of the workflow for variability mining of models.

Finally, both of our model variants in Figure 4.1 are very similar as they just di↵er
by one function block in the subsystem. Such similar models are also quite common
in practice. The reason is that, for large models, the e↵ort is simply too high for
creating models always from scratch. Instead, when a new model is needed (e. g., for a
newly created ECU), another model that has a similar functionality is copied and than
adapted according to the new requirements. This not only saves time, otherwise need
to create thousands of blocks, but also increases the reliability, as the copied model has
been already tested and applied in practice. On the other hand, having lots of similar
models also comes with additional maintenance e↵ort, especially if the same change
has to be applied to all of them. Even worse, information about commonalities and
di↵erences between models is usually not documented, and thus, this information is not
explicitly available.

The Family Mining Technique. To address the abovementioned problem and
recreate the information, we proposed a technique variability mining between MAT-
LAB/Simulink models, a. k. a., family mining. An overview of the workflow and
particular processing steps is shown in Figure 4.2 and I will briefly explain each step in
the following.

Initially, we have to define a base model out of our input model variants, for instance,
the largest or smallest models. We then chose a another model from the remaining input
models for the first comparison. Both, the base model and the comparison model, are
then imported which basically mean that we transform then in an internal representa-
tion. To this end, we have defined a metamodel using the Eclipse Modeling Framework
(EMF). Hence, importing models basically constitutes a model-to-model transforma-
tion from the original MATLAB/Simulink model into a model that adheres to our
metamodel. The reason is that we can now perform any further step based on elements
of our metamodel, and thus, are independent of the actual modeling language of the
input models.

Next, in the compare phase, we compare the particular blocks of our to input models.
To this end, we have developed to approaches: the data flow approach (DFA) and, as
an extension, a matching window technique (MWT). DFA employs the fact that for
each model, the elements of one hierarchy level can be divided into stages, according to
the data flow between model blocks. For instance, in Figure 4.1 (a), the initial blocks
Input and FixValue belong to one stage, where as the subsystem is in another stage

40 4. Analysis Techniques for Feature and Variability Extraction

due to the connector (i. e., the data flow separates the stages). Once we identified the
stages in both compare models, we compare elements of one stage with each other. To
logically associate compared blocks (for usage in later steps), we introduce a Compare
Element (CE) in our metamodel. This CE not only references the compared blocks
(in their original model), but also stores a similarity value for the comparison. We
use a metric-based approach for computing the similarity, taking di↵erent properties,
such as name, interfaces, or connected blocks into account. In Table 4.1, we show the
relevant properties and how we compute the respective metric value. Moreover, we
define a weight factor which is changeable and allows to define how much a certain
property contributes ti the overall similarity value. With our family mining technique,
we compare all model elements of one stage in the base models with all model elements
of the corresponding stage of the comparison model and store the result in CEs.

Table 4.1: Properties of MATLAB/Simulink models and corresponding metrics used
to compute the similarity (taken from [59]).

Property Weight Computation

name 5% LD* [34] of the blocks’ names

function 75% sim(fA, fB) =
⇣

1
0
type(A)=type(B)

else

⌘

#inports 5%
P
i2IN

(i) /|IN |

#inport-
functions

5%
P

t2TIN

⇣
#t

max(t)

⌘
/|TIN |

#outports 5%
P

o2OUT
(o) /|OUT |

#outport-
functions

5%
P

t2TOUT

⇣
#t

max(t)

⌘
/|TOUT |

*Levenstein Distance, IN/OUT - set of in-/outports of a model block

TIN/TOUT – set of functions of predecessor (IN)/successor(OUT)

This works reliably if corresponding elements are in the same stage and hierarchy.
However, we observed that this is not always the case, especially, if subsystems are
introduced in one of the models (thus, shifting elements to another hierarchy level,
called vertical dispersion)) or if in one model, additional elements are added (horizontal
dispersion). To overcome this limitation, we propose the MWT, which provides more
flexibility for comparison across stages. In a nutshell, with MWT we loosen the defi-
nition of stages. Instead, we define a window with flexible size that we slide over the
blocks of each model. Now, instead for each stage, we apply DFA for each window,
that is, all blocks that are currently encompassed by the window. If comparisons are
done, we move the window further, until we have considered each block in at least one
comparison. For details about the algorithm of creating window pairs (i. e., one window
for each model) and how to use them for comparison, see Schlie et al. [59].

After we are done with the comparisons, the CE elements are moved to the matching
phase. In this phase, for each model element, we aim at identifying the best match, that

4.1. Extracting Variability from Block-Based Models 41

is, from all CEs containing a particular model element, we search for the one with the
highest similarity value. This is necessary, as the previous stage results into multiple
CEs for each model element, and thus, is ambiguous with respect to identifying related
model elements.

Finally, the best matching CEs are delegated into themerging phase. Here, the idea is to
unify the compared models with explicit information about variation points. Currently,
we devise a simple, metric-based decision process to decide on the variation point of
two blocks. In particular, if the similarity value sim � 0.95, we assume the blocks to be
mandatory. For 0 < sim < 0.95, we declare blocks to be alternative, that is, mutually
exclusive. In case that there is no similarity at all this indicates an optional block,
i. e., this block exists only in one of the compared models. Since this way of merging
also allows model elements in the merged model that exist only in one of the compared
model, we refer to the resulting, merged model as 150% model.

As long as there are more input models, we use this 150% model as base model for
the next iteration of the process with another comparison model. Otherwise, if all
models have been compared, we export the final model, also providing a representation
as family model, which allows for easier understanding of explicit variation points.

Quantitative Evaluation. For evaluating our technique, we use a mixed method ap-
proach. First, we present an empirical study where we apply our technique to real-world
models and measure performance as well as accuracy (quantitative evaluation). Second,
in the next part, we present the results of an interview study among professional model
engineers, mainly aiming at insights about benefits and needs of variability mining in
practice (qualitative evaluation).

For our quantitative evaluation, we apply both proposed techniques, that is, DFA only
and DFA combined with MWT (for simplicity, only referred to as MWT in the remain-
der. The overall goal is to investigate (RQ 1) whether performance is reasonable and
di↵erent when scaling up the size of models and (RQ 2) what level of accuracy (by
means of precision and recall) we can achieve.

As input, we had two set of models. First, we had access to a real-world model of
a driver assistance system (DAS) that has been made publicly available as part of a
BMBF project. Based on the project documentation and domain knowledge of experts,
we managed to decompose the DAS model into five sub models, together with particular
dependencies that have to be considered when compose these sub models. We show
the result of this decomposition in Table 4.2. We used these sub models to compose
19 large-scale models of di↵erent size, encompassing di↵erent combinations of the sub
models and used these composed models within our evaluation.

As second set of models, we where provided with four models from an industrial partner:
A pair of models of an Exterior Light Front (ELF) with 30 000 blocks each. And a
pair of models of a Drive Powertrain (DTM) with 40 000 blocks each. With the help

42 4. Analysis Techniques for Feature and Variability Extraction

Table 4.2: Basic properties of the extracted sub models from the SPES-XT study (taken
from [59]).

Model name & Abbreviation #blocks #BSub DHierarchy

EmergencyBreak ’EB’ 409 43 7
FollowToStop (req. CC) ’FTS’ 699 77 11
SpeedLimiter ’SL’ 497 57 10
CruiseControl ’CC’ 671 74 11
Distronic (.req CC) ’DT’ 728 78 11

BSub – subsystem blocks, DHierarchy – max. hierarchical depth, req. - requires

of domain experts, we could decompose these models in smaller sub models so that it
could be processed by our family mining workflow.

Given the set of models above, we conducted our study as follows, always using a pair
of models as input for our family mining technique(s). For performance (by means of
runtime) we applied our proposed process 10 times to take account for possible runtime
deviations or warm-up e↵ects. Moreover, we measure the overall runtime as well as
how much time is spent in the particular phases. For accuracy, we face the problem
that no ground truth is available for any of the models we used. Hence, we decided
to provide a manual oracle as ground truth for a sample of all models/sub models. In
particular, two experts analyzed 25% of the DAS models before we applied our family
mining technique. Moreover, an expert from our industrial partner analyzed sub models
or the ELF and DTM model, respectively. For all manually analyses, the focus was
whether the assigned relation between blocks was understandable and according to the
perception of variability for the analyst.

We show a summary of our results in Figure 4.3. Note that, for the results of the DAS
models, we show pairs of box plots for each compared set of models with the left box
plot representing results for the plain DAF approach and the right box plot representing
the MWT approach. Moreover, for these models results are ordered from smallest to
larges models (left to right). For performance, our results reveal two main results.
First, both approaches have a quadratic increase of runtime when the size of models
increase. Second, compared to the DAF approach, the MWT approach requires 148%
more time on average for all models. However, even though being much slower, the
MWT approach takes only seconds for the whole process, even for the largest models.
This is also confirmed for the industrial models. Hence, we conclude that our technique
scales well, and thus, is applicable to real-world models.

In Figure 4.3, we also illustrate the results of our manual inspection. Overall, approxi-
mately 70% of our manually analyzed models have also been correctly analyzed by our
MWT technique. Moreover, correctly as well as incorrectly analyzed models are scat-
tered over models of di↵erent size, and thus, do not reveal that the accuracy depends
on the size of the models. A more detailed inspection of these results revealed that
the incorrectly compared models originate in the merge phase, where blocks have not

4.1. Extracting Variability from Block-Based Models 43

0

4

8

12

16

20

0 400 800 1200 1600 2000

ru
nt

im
e

in
 se

co
nd

s

Average size of input models (total block count)

DataFlow

MatchingWindow

Correct

Incorrect

(a) Results for DAS models (b) Result for industrial models

Figure 4.3: Results regarding performance and accuracy for (a) the DAS models and
(b) the industrial models (adopted from [59]).

been stored as expected. We conclude that the accuracy of the variability in compared
models is reasonable, especially as incorrect results are mainly due to incorrect merge
operations, but the other phases work as expected.

Qualitative Evaluation. To get more insights into how models are created and
evolved, but also to qualitatively analyzed our findings above, we performed a survey
and semi-structured interviews with eight domain experts in the area of model-based
development. In particular, we were aiming at more detailed insights of use cases for
variability mining, requirements of experts for such a technique, and also how far our
technique fulfills these requirements.

The results can be divided into three categories. First, the general expectations of
all participants are that our approach would support them in model maintenance and
evolution. In particular, a lack of documentation about how models are related was
mentioned as a specific use case, where our approach would be valuable. Moreover, par-
ticipants acknowledged that a certain manual inspection, complementing our approach,
is usually expected, and thus, minor issues with accuracy can be accepted. Finally, the
capability of our approach to identify common but also variable parts was highlighted
as beneficial, as simple di↵ or clone detection tools do not provide this information.

Second, di↵erent fields of applications have been confirmed by participants. Among
others, using our technique for reengineering activities or to identify reusable artifacts
has been highlighted in this category. Moreover, obtaining an initial family model that
can be fed into a variant management tool (such as pure::variants) was mentioned
as another application scenario. Among all participants, there was a consensus that
especially in future development, when even more models are created, our technique
exhibit huge potential.

44 4. Analysis Techniques for Feature and Variability Extraction

Third, all participants confirmed the usefulness of the results, but were rather pes-
simistic regarding the scalablity of our approach (e. g., for a set of dozen models that
are even larger than those currently analyzed by us). Some participants even appre-
ciated the annotation of variability in the result model (especially for maintenance
activities), whereas others would prefer a more high-level view.

In summary, the qualitative evaluation revealed that our approach meets main require-
ments and challenges of industrial practice and can support practitioners in evolving a
set of similar models.

Generalization. While our family mining approach has received positive feedback
even by practitioners, it has one central limitation: it is specifically tailored to MAT-
LAB/Simulink. However, when experimenting with real-world models from industry,
we observed that usually di↵erent block-based modeling languages are used as part of a
model-driven development process. For instance, in the automotive domain, it is quite
common that on lower hierarchy levels, MATLAB/Simulink function blocks con-
tain state charts that describe the actual function. Hence, to comprehensively support
variability mining for the whole model-driven process, support for other block-based
languages is crucial.

Fortunately, even though di↵erent in detail, block-based modeling languages are gener-
ally similar regarding they underlying concepts and processes. Consequently, the overall
concept and workflow of our family mining technique should also be applicable to other
modeling languages than MATLAB/Simulink. We analyzed properties that are cru-
cial to each language, and thus, must be adapted for di↵erent languages to be applicable
within the family mining approach. As a result, we proposed a generalization that al-
lows to customize our original variability mining technique for MATLAB/Simulink
to any block-based modeling language. Next, I will briefly explain the five conceptual
steps that are required to tailor variability mining to a particular modeling language.
An overview of these steps, which also has been implemented by means of a customiz-
able framework as part of the original work, is shown in Figure 4.4.

Step 1 – Analyze Language. A pivotal element of our family mining approach is the
meta model for the respective language, as all steps (i. e., compare, match, and merge)
are defined on concrete instances of this meta model. Hence, for a new block-based
language to be used with family mining, we initially need a meta model, which can
be obtained in two ways. First, we should search for an existing meta model for the
subject language. In case that we find a suitable meta model, this not only saves time
for the (manual) analysis of the language, but also makes the second step (building a
meta model) superfluous.

If there is no meta model at hand, the language must be analyzed regarding its elements
and all of its properties. This may be a tedious (manual) task that also requires some
domain knowledge and language engineering capabilities. After this analysis, relevant
elements that contribute to a language’s functionality must be selected for the final

4.1. Extracting Variability from Block-Based Models 45

Analyze the
Block-Based

Language

III-A

1
Build a
Meta-
Model

III-B

2 De ne a
Metric

III-C

3
Adapt the
Existing

Algorithms

III-D

4

Figure 3: Required steps to adapt the existing family mining approach for further block-based languages. Gears indicate steps
that can be automated and hands indicate steps that require manual action. Steps with both symbols are semi-automatic.

input models). This basic meta-model can be used as skeleton
to create a common data structure in frameworks realizing
family mining for different languages. Given the basic meta-
model, we use a domain specific language (DSL) for specifying
elements (i.e., nodes, edges, and regions), their properties, as
well as their relations and, thus, automatically generate the
meta-model. We implemented such a DSL, allowing devel-
opers to define their language’s nodes, sub nodes and edges
with corresponding attributes. This meta-model specification
is used to generate the corresponding meta-model, which can
directly be used for family mining. The provided basic meta-
model classes and the DSL might constrain developers during
development, as they define their meta-models in an unfamiliar
way (i.e., they use unknown editors). However, using the DSL
allows developers to define and automatically generate relevant
parts in later phases (cf. Subsection III-C), such as metric
definitions and, thus, considerably reduces the manual effort
for the overall adaption process. Nevertheless, we also allow
for a pure, manual meta-model definition. However, developers
have to keep in mind that manually creating a meta-model
or reusing an existing meta-model prevents generating further
parts in later phases as this requires a specification in our DSL.

Given that developers a) performed a complete analysis of
the new modeling language, b) selected a suitable subset of
relevant model elements, and c) realized a well-formed meta-
model from the previous steps (i.e., all elements and properties
are modeled correctly), this meta-model is able to express se-
mantically correct models from the new modeling language. In
order to adapt family mining in the following steps, developers
have to realize importers and exporters, transferring the native
model representation to their reduced meta-model to make the
data available to the family mining algorithms and to export
the results back to the original representation.

C. Define a Metric

The next step after creating a meta-model is to define a
suitable metric in order to compare different model instances
of this meta-model with each other. During the Compare phase,
this metric assigns different weights to the properties of the
compared meta-model elements and computes the similarity
between them. A good way to start is ranking the importance
of the different model elements regarding their contribution to
the overall functionality of the models as it helps assigning
corresponding weights. Moreover, developers have to choose
a value range for the ranking in order to normalize the
calculated similarities between certain values and, thus, allow
their comparison. In Figure 4, we show our current ranking for
the relevant properties of blocks in MATLAB/Simulink models.
We normalized the scale to values between 0 and 1. We assign
a weight of 0.75 to the block’s function as it contributes most to
the functionality of models and 0.1 to the block’s ports because

Figure 4: Ranking of MATLAB/Simulink block properties.

they have less impact but still contribute to the functionality
as they allow exchanging data. For the ports, we distinguish
between number of ports and the number of connected block
types with a weight of 0.05 each, resulting in a weight of
0.1 for the inports and outports each. Similar to most block-
based languages, the blocks’ names in MATLAB/Simulink do
not contribute to the functionality of the models and do not
have to be unique. However, we still consider these names with
a weight of 0.05 as developers selected them for a certain
reason and the names help identifying the correct mappings
between blocks. For instance, consider comparing the model
in Figure 2a with a variant of the model in Figure 2b that does
not contain the Gain block. In this case, all compared Inport
blocks would have the same similarity when neglecting their
names, as their functions and interfaces are exactly the same.
Thus, considering the blocks’ names is important to solve
such conflicts. During the aforementioned ranking process,
developers have to make sure that all resulting weights are
not higher than the upper limit of their value range.

Depending on the used modeling language, it is necessary
to create rankings for properties of particular elements. For
instance, a part of state chart functionality is defined by
their transitions and developers have to consider them in the
created metric (e.g., by creating separate rankings for states
and transitions). Consequently, the insights gained during the
initial analysis of a modeling language (cf. Subsection III-B)
help developers coming up with such a ranking and, thus,
selecting suitable weights.

The step of defining a concrete metric for a certain mod-
eling language can be automated as it is possible to utilize
inheritance techniques. For instance, our family mining imple-
mentation defines an interface for concrete metrics containing
abstract methods to compare model elements and to assess the
variability of created compare elements. Using this interface,
we can generate concrete classes, implementing the actual met-
ric. To this end, we extended our DSL (cf. Subsection III-B)
with further constructs, allowing developers to assign weights
to the element properties of their language when specifying
the meta-model. The resulting meta-model description allows

Figure 4.4: Conceptual steps for tailoring variability mining to an arbitrary block-based
modeling language (adopted from [67]).

meta model. Put it di↵erently, we consider elements being irrelevant, if they constitute
only “syntactic sugar”, and thus, can be transformed in an equivalent representation by
means of other language elements. For each selected element, all of its properties that
define the elements functionality have to be selected as well As an example, consider
MATLAB/Simulink blocks: Here, properties such as name, interface, and function
type define the functionality, and thus, are relevant, whereas properties such as color
or position can be neglected. Once all relevant elements and its properties have been
selected, we can proceed with the next step.

Step 2 – Build a Meta Model. The selected elements must now be composed to a tailored
meta model that later is the starting point for the tailored family mining. Hence,
besides choosing a suitable (meta) modeling language, developers have to choose the
right relations between elements (modeled as classes) and add properties accordingly (as
attributes). Moreover, a way must be defined to add variability annotations. Otherwise,
it won’t be possible to create the 150% model that results from the merge phase in each
iteration. In any case, if a well-formed meta model has been build, it should be able
to express semantically correct models of the corresponding language. Finally, to make
family mining work for the new meta model, importer and exporter are required that
allow to parse input models but also to export them to an alternative/the original
representation at the end.

Step 3 – Define a Metric. After building a proper meta model, the next crucial step
is to define a suitable similarity metric that can be employed in the compare phase of
the family mining approach. To this end, it is of superior importance to identify to
what extent the di↵erent model elements contribute to the functionality of a model.
Moreover, for each element, weights must be assigned to the properties in order to
specify how important each property is for the uniqueness of this element. In this
context, it is also important to choose a suitable value range for ranking these properties,
as we have to normalize the computed similarities for an objective comparison between
di↵erent values. In Figure 4.5, we show an example for such a ranking by means of
a MATLAB/Simulink block element. As we can see, di↵erent properties are taken
account for the comparison for such blocks, with the bock function being most important
(weight value 0.75). Moreover, while the value range is between 0 and 1, we can see that
all weights sum up to 1, and thus, allows for a normalized similarity values of blocks.
Note that finding suitable weights for certain properties, especially when considered in

46 4. Analysis Techniques for Feature and Variability Extraction

importance

highlow

1.00.5 0.750.250.0

block name (0.05) ports (in: 0.1 / out: 0.1)
port types (0.05)
number of ports (0.05)

block function

Figure 4.5: Exemplary ranking for properties of a MATLAB/Simulink block (taken
from [67]).

concert, is not trivial. However, we argue that the necessary knowledge can be obtained
during the first step (analyzing the modeling language).

Step 4 – Adapting the Algorithms. As a final step, the algorithms used in the particular
phases of our family mining approach must be adapted to the newly introduced modeling
language. For the compare phase, this a↵ects the following algorithms. First, it must be
defined which of the input models serves as a base model. Without further knowledge,
selecting the smallest or largest model has been shown to be a suitable choice, which
can also be set as default for new languages. Second, the traversal algorithm has to be
adapted. In particular, elements that are suitable as starting point for the comparison
have to be specified. This is also important for the subsequent definition of stages,
since they must be aligned between the two compared models. Hence, if the initial
model element is not selected properly, this may lead to the situation that stages are
compared that do not correspond to each other. Third, we have to adapt the algorithm
for dealing with hierarchies in models, as they may be realized di↵erently for each
language. Basically, we have to deal with three scenarios, given two compared models:
No element exhibits a hierarchy, both element exhibit a hierarchy, and only one element
of the compared models exhibits a hierarchy. Each of these scenarios must be properly
handled by a particular algorithm and a suitable compare element must be defined as
part of the meta model.

For the matching phase, we rely on the created compare elements of the previous phase,
and thus, can abstract from concrete model elements. While this allows to use the
same algorithm for all compare elements for a given language, this also means that the
design of this element (and its corresponding class in the meta model) is crucial for
the tailoring process. In particular, any logic that is related to concrete model element
should be avoided. Apart from that, the algorithm for handling of conflicts (i. e., related
compare elements with same similarity) must be considered for this phase, including
an option for manual intervention by a developer or model engineer in case that the
conflict can not be automatically resolved.

Finally, for the merging phase, the merge algorithm is language-specific, as it highly
depends on the concrete model elements and their relations. Most notable, for merging

4.2. N-Way Comparison of MATLAB/Simulink Models with Static Connectivity
Matrix Analysis 47

hierarchies, the corresponding first level elements play a pivotal role. For instance, while
blocks constitute such first-level elements in MATLAB/Simulink, regions constitute
such elements in state charts, and thus, the algorithm has to be adapted according to
the respective syntax and semantics. Moreover, the variation point (i. e., mandatory,
optional, or alternative) is important for the merging algorithm, as it decides which
elements have to be merged. For instance, in case that elements are identified as
mandatory, only one element will be merged in the 150% model. Furthermore, the
similarity thresholds for the particular variation points may be di↵erent for certain
languages, and thus, have to be adjusted.

In our original work, we implemented these conceptual steps in a model-based fashion
and used the resulting framework to successfully adapt our family mining approach to
state charts but also to create an alternative technique for MATLAB/Simulink.

4.2 N-Way Comparison of MATLAB/Simulink Mod-
els with Static Connectivity Matrix Analysis

Although our family mining has been shown to be beneficial, we have seen two main
limitations that may come into e↵ect in certain situations. First, while still acceptable,
our accuracy was at 70%, and thus, leaves room for an increase in e↵ectiveness. Second,
we have shown that the runtime of family mining increases with quadratic complexity.
While this is no problem for a pair of models with reasonable size, it may become a
major issue when comparing dozens of models at even larger scale. In particular, the
fact that only two models are compared at the same time (thus, leading to multiple
iterations) has been identified as bottleneck. For an increased e�ciency, an n-way
algorithm, comparing all models at the same time, is desirable. To this end, we propose
SCMA, a technique for identifying similar structures (e. g., sub models) across multiple
MATLAB/Simulink models while being more e�cient and e↵ective than the original
family mining approach.

Preliminary Considerations. Our proposed technique relies on two fundamental
insights. First, that a MATLAB/Simulink model and its hierarchies can be repre-
sented as a tree-like structure. In such a structure, each sub model constitutes a node
at level �j and as a same time is the root node for its respective subtree. As a result, we
can define the structure of a whole model in a recursive manner as a tree (cf. Figure 4.6).

Second, to allow for an e�cient analysis of all models, we need a compressed repre-
sentation that abstracts away most of the complexity of MATLAB/Simulink models
while still containing the most important information. In other fields, descriptors have
been used for such purposes that describe the most salient information but in a much
simpler representation. In particular, matrices have been used as a common descrip-
tor, as they allow to represent graph structures and exhibit numerical e�ciency, and
thus, enable large-scale analyses. As indicated in Figure 4.6, we can transform a MAT-
LAB/Simulink model into a graph structure (here: a tree), which makes matrices
also applicable as descriptor to our domain.

48 4. Analysis Techniques for Feature and Variability Extraction

0M

1

1
2

4
5 7

2

11 13

3

1

5
2

7
8 10

6

1

8
2

10
1
s

9

1

11
2

13
1

12

root

2

5 6

8 9 10

7

1 4 3

11 12 13

Hi
era

rch
ica

l L
ay
er

�0:

�1:

�2:

Figure 4.6: An exemplary MATLAB/Simulink Model and its graph representation
(taken from [58]).

Static Connectivity Matrix Analysis. We show the overall workflow of SCMA
in Figure 4.8 and briefly explain the particular steps next. As a first step, we have to
transform the models to be compared in our descriptor, which is a connectivity matrix
(CM). With a CM, we employ the fact that each (sub) model in MATLAB/Simulink
is a composition of directly connected blocks with each block having a specific func-
tion. More precisely, for any two sub models, we store in our CM which function
blocks are connected with each other and how often. As an example, we show two
MATLAB/Simulink models in fig:cmBeispiel (a) and their corresponding CMs in
fig:cmBeispiel (b). Both models encompass four blocks, and thus, both matrices are
sized 4x4, as each block needs to be present at the x-axis (constituting the source
function) and y-axis (constituting the y-axis).

1

9
2

10
1

16

1
s

15
M1

Inport Integrator Gain Outport

1

9

2
22
2
23

1

16
M2

1
1

1

Inport

Outport
Gain

Integrator

Inport

Outport

Gain

Integrator

CM1

2
1

Inport

Outport
Gain

Integrator

Inport

Outport

Gain

Integrator

CM2

Source
FunctionTarget

Function

y-axis

x-axis

(a) MATLAB/Simulink Models M1 & M2 (b) Corresponding CMs for M1 & M2

Figure 4.7: Two exemplaryMATLAB/Simulinkmodels and their corresponding CMs
(taken from [58].

In the cells of each matrix, we denote existing connections between blocks, that is,
edges in the model that represent a signal going from the source function to the target

4.2. N-Way Comparison of MATLAB/Simulink Models with Static Connectivity
Matrix Analysis 49

.SLX
.SLX

.SLX .SLX

Compare all
Connectivity

 Matrices

Create
Connectivity

 Matrix

1 3
2 1

0
2
141CM

1 3
2 1

2
1
441CM

1 3
2 1

1
0
341CM

Structure
Matrices in

Trees

Filtering
Procedure

n input
models

one input
model

Connectivity
Matrices

select
one

for every
subsystem

all models
processed

calculated
similarity

value forest

optional

for every
matrix

combination

if present, process next input model interchangable
comparison procedure

represents all similar
structures across all input models

Display
Forest

Figure 4.8: Overall workflow of our static connectivity matrix analysis (taken from [58]).

function. For instance, in model M1, a connection exists from the block Gain to the
block Outport. Consequently, the corresponding CM1 has an entry in the cell that
represents this connection. Moreover, if more than one connection exists between two
blocks, we simply increase the value for the respective cell, as done in our example for
CM2.

To ensure that all CMs have the same dimension, we create a dictionary of all distinct
blocks over all models during matrix instantiation. As a result, all connectivity matrices
are created with dimensions according to the length of the dictionary. For instance, both
CMs in Figure 4.7 contain the block Integrator, although this block is only present in
model M1. Along with the process of creating the dictionary, we also retrieve and
store all connections between any two blocks of the models. Moreover, we maintain
hierarchical dependencies during this process. In particular, if a certain sub model
contains further sub models, than the resulting CMs are also stored in this hierarchical
order by means of a tree structure. This allows us in later phases, two compare sub
models even across hierarchical levels.

For comparing all modells, we now solely rely on the matrix representation and do not
have to take the original models into account anymore. More precisely, we compare
any CM from model Mx with all other CMs of the other models, except those from
Mx. For each CM comparison, we compute a similarity value 0  !  1. The concrete
algorithm for this comparison and similarity computation can be found in [58]. For a
brief illustration, let’s ahve a look at our example in Figure 4.7. Comparing the entries
for the two blocks Gain and Outport would yield a similarity value of 0.5. For both
matrices CM1 and CM2, we yield a similarity value ! = 0.125. The similarity values
of all comparisons are stored in a table, where each cell contains the similarity value
for a certain pair of CMs. In case that more than two models are compared, already
this table allows to identify parts that are identical or similar across all of these models.
However, in this representation, the information about hierarchies is lost.

To preserve this information, be propose forest creation (cf. Figure 4.8) as a further
step, that is, structuring the matrix comparisons in trees. The main idea here is that
we group similar CMs in nodes based on a user-defined threshold omegamin. Moreover,
if CMs of a certain node exhibit a parent-child relationship with CMs of another node,
we connect these nodes, and thus, successively create a tree structure that resembles
the hierarchical structure of the original models. Since the CMs of a particular model
may exhibit a di↵erent similarity with CMs of the other models, this necessarily leads

50 4. Analysis Techniques for Feature and Variability Extraction

to the fact that a pair of CMs, depending on their similarity value ! are either inserted
into an existing node, used to create a new node that is inserted in an existing tree,
or used to create an entirely new tree. Hence, at the end of this step, we end up with
multiple trees, eventually forming a forest.

This forest is now subject to the last step, that is, filtering out nodes (or entries therein)
depending on certain criteria. For instance, a common scenario is to filter out irrelevant
CM comparisons, that is, those who fall below a user-defined threshold. This, in turn,
allows to focus on rather similar or even identical CMs, and thus, identify commonalities
in the original models. Another possibility is to filter out nodes that contain CMs of
models that are currently not of interest. This filtering method allows to focus on a
subset of all compared models and the commonalities and di↵erences between these
models. In general, filtering procedures can be considered as projection and may even
lead to whole trees disappearing.

Evaluation. For evaluating our technique, we used the DAS models, which we already
used and explained in Section 4.1. The di↵erence is that we no only compared pair of
models, but also larger sets up to 19 models at once. With this empirical setup, we
address three aspects of superior interest for demonstrating the applicability of our
technique: RQ 1 Suitability of our chosen descriptor, RQ 2 precision and recall of
SCMA, and RQ 3 performance in terms of runtime and scalability.

For the first RQ, we evaluate the algorithmic complexity for creating our CMs as well
as the correctness of the created CMs (i. e., whether they adhere to their counterpart
in the original model). For RQ 2, we manually investigated 18 comparison (i. e., results
after applying SCMA with combinations and amount of input models), in particular,
the trees that have been created. Finally, for RQ 3, we take algorithmic complexity as
well as the runtime of SCMA and its mandatory phases into account.

For creating all CMs, the need for parsing all models and creating the dictionary is
clearly the most expensive procedure. Hence, we measured the time needed for this
step for all set of models in our evaluation. Our results reveal that eve for the largest
set of models, comprising 19 model variants, the time for creating a total of 1 528
CMs lies in the order of milliseconds. Hence, we argue that our descriptor is easy and
e�cient to extract from MATLAB/Simulink models. For correctness, we focussed on
possible mismatches between original sub models and corresponding CMs. To this end,
we reviewed the distribution of similarity values when comparing all 19 model variants
(cf. Figure 4.9). Our data reveal that essentially two peaks show up: Around 80% of the
comparisons do not yield any similarity (! = 0) wheres 5% of the comparisons indicate
that the respective CMs are identical (! = 1). We selected 2 000 comparisons for each
of these peaks for manual inspection with the result that 100% of comparisons for ! = 0
where correctly and 93% of the comparisons for ! = 1 being correctly (for the remaining
7%, corresponding SMs where not identical). The remaining 15% distribute evenly in
the range 0 < ! < 1 and we manually inspected 400 comparisons that confirmed that
our comparison based on CMs is correct.

4.2. N-Way Comparison of MATLAB/Simulink Models with Static Connectivity
Matrix Analysis 51

Similarity values
for all 1.103.850
performed CM
comparisons

~80% exhibit no
similarity at all

~5% can be
considered idendical

Figure 4.9: Distribution of similarity values for ⇡ 1.1 million CM comparisons (taken
from [58]).

For RQ 2, we manually inspected the generated trees for 18 model comparisons. Since
the amount of trees can explode, even for a small amount of models, we set the similarity
threshold for filtering during forest creation to ! = 1, that is, we only inspected those
trees that contain nodes of identical CMs. The resulting trees manually analyzed ranged
from size one to size thirty (i. e., comprising thirty nodes). For both, precision (i. e.,
nodes have been identical) and recall (i. e., no CM comparison is missing), our inspection
revealed that all trees have been correctly created. Hence, we argue that our technique
is precise and results in a high recall.

Regarding RQ 3, we first evaluated the algorithmic complexity of the three mandatory
phases of our technique, that is, CM creation, CM comparison, and forest creation.
While for the first phase exhibits a linear complexity (wrt. number of blocks), the two
other phases come with quadratic complexity regarding the number of CMs. Hence,
our overall technique has a quadratic complexity. For the runtime, we illustrate in
Figure 4.10 how this changes depending on the number of CMs, which is influenced by
di↵erent similarity thresholds !min. As our results reveal, for the largest set of models
(i. e., 19 model variants) and a threshold of !min = 0 (i. e., all CM comparisons are
considered) we achieve an overall runtime of 47 minutes. However, if we focus on more
similar CMs, which are generally of greater interest, by setting !min = 0.4, we can
reduce the runtime significantly to less than 5 minutes. For even higher thresholds, the
runtime decreases further. Having a closer look, how this runtime distributes over the
three phases, our results reveal the following. Approximately 3.4% of the time is used for
CM creation, whereas CM comparison accounts for 0.8% of the overall runtime. Hence,
the by an order of magnitude largest e↵ort is spent in the phase of forest creation,

52 4. Analysis Techniques for Feature and Variability Extraction

Total Number of Blocks Analyzed by SCMA

R
un

tim
e

in
 M

in
ut

es

CM comparisons with 0.0
CM comparisons with 0.4
CM comparisons with 0.6
Trendline

~ 220.000 CM
comparisons

60.731 CM
comparisons

Figure 4.10: Runtime of SCMA relative to the number of CMs (taken from [58]).

accounting for 95.8%. However, since this is also the phase where filtering takes place,
the similarity threshold can drastically decrease this time, which makes our technique
scalable to some degree.

Conclusion. In conclusion, we argue that our technique is able to compare multiple
MATLAB/Simulink models at once, even at large scale. Moreover, our results show
that our technique is precise and comes with a competitive runtime, mainly due to our
chosen descriptor.

4.3 Reverse Engineering Variability from Natural
Language Requirements

Requirements or Software Requirements Specification (SRS) are usually the very first
artifact that is created when starting a software project. It results from intensive
discussions with customers about all facets of the software system to be developed,
mostly in form of plain text. Hence, if properly done, requirement specifications reflect
on all features of a software system as well as how these features depend on each other.
Consequently, requirements are a valuable source for extracting variability to support
systematic reuse in variant-rich software systems.

In this Section, we propose two techniques for variability mining of SRS, one using
probabilistic relevance and word embedding and another, preliminary technique using
neural networks. Initially, I briefly report on an initial literature survey to evaluate the
current state-of-the-art and to identify gaps therein.

4.3. Reverse Engineering Variability from Natural Language Requirements 53

Preliminary Literature Review. Being aware that already certain techniques exist
to extract features from NLR, we conducted a Structured Literature Review (SLR) to
obtain an overview of the state-of-the-art and to identify gaps and weaknesses of cur-
rently available techniques [36]. In particular, we wanted to know RQ 1 what concrete
techniques have been proposed, RQ 2 how these techniques are supported regarding
tools and automation, and RQ 3 how reliable these techniques are for feature extrac-
tion.

To this end, we conducted an SLR according to the guidelines of Kitchenham [29]. We
gained several insights, form which the following have been of superior interest regarding
the subsequent development of our own techniques.

For RQ 1, we observed that a variety of techniques have been applied, and that most of
them come from the field of Natural Language Processing (NLP). Moreover, our results
indicated that the combination of NLP techniques is likely to increase the quality of
the results. Another important aspect we revealed is that for variability extraction,
it is crucial to not only analyze NLR regarding their syntax, but also to understand
them semantically. Finally, our data revealed that combining the results of NLP with
clustering algorithms is beneficial, as the latter allows to identify relationships between
detected features such as groups or parent-child relations.

For RQ 2, we made two main observations. First, if tools have been provided, they
make a reliable and mature impression. However, for the vast majority of reviewed
approaches, no tool has been provided at all, and thus, mitigating replicability and
reproduceability for the proposed techniques. Second, most of the proposed techniques
come with a high degree of automation, although most of them are not fully automated.
While we agree that some manual intervention is necessary, we nevertheless see some
room for increasing the degree of automation for certain tasks.

Finally, for RQ 3 the following observations have been made. First, the accuracy it
the most critical problem of all approaches available so far. While this still allows for
supporting developers in their manual inspection, the remaining e↵ort is considerable
high due wrong results of the existing techniques. Second, most techniques are only
able to extract partial variability information that not even allows to recreate a feature
model. Most notably, while features could be detected, their relationship is mostly
missing. Finally, in most cases a comprehensive and reliable evaluation is missing,
thus, raising doubts in the trustworthiness of the proposed techniques.

Given these insights, we concluded that especially regarding the accuracy , the tool
support, and the evaluation, there is a huge gap in the applicability and reliability of
current approaches and started to develop a technique on our own.

Automated Feature Extraction with Neural Networks. For our first technique,
we employ NLP techniques as well as deep learning techniques, in particular neural
networks. The rationale was that, while NLP can provide us with several algorithms
to focus on the most important information and extract important semantics, a neural

54 4. Analysis Techniques for Feature and Variability Extraction

network can be trained in order to identify recurrent patterns which then could be used
to identify features and establish relations among them. An overview of the technique
is shown in Figure 4.11 (a) and briefly described in the following.

Initially, we preprocess our requirements to decompose them in single sentences, but
also to remove unimportant or even misleading information. Among other, common
NLP techniques such as stemming or stop word removal are applied in these steps.
Afterwards, the resulting requirements are processed in two ways. First, we apply
Laplacian Eigenmaps, an algorithm for dimensionality reduction, to the requirements
to obtain a low dimensional representation. The reasons are twofold: First, we want to
narrow down the dimensions, representing the properties of our requirements, to those
that contain most of the information needed or the extraction process. Second, we
can convert the resulting, low-dimensional matrix into binary codes, which then can be
easily compared with the output of our neural network during the training phase.

In parallel to the dimensionality reduction we feed our preprocessed requirements into a
Dynamic Convolutional Neural Network (DCNN), which has been especially proposed
for modeling sentences. To this end, we first apply a word embedding model to our
requirements in order to obtain a vector representation for each word of the require-
ments. Subsequently, these word vectors are transformed into a matrix, which is then
fed into the DCNN. Within the DCNN, the matrix is processed by several convolutional
layers and at the end of this process, the result is compared with the binary codes of
the Laplacian Eigenmaps algorithm. This process is repeated several times to learn the
precise characteristics of our requirements.

Once the DCNN has finished, we feed the result into a clustering algorithm (in this
case k-nn). The idea here is to group sentences that exhibit similar characteristics
with the intuition that one group can be interpreted as a feature. We conducted a
preliminary evaluation for a given set of requirements from a Body Comfort System
(BCS) that have been made publicly available. The BCS comprises 95 requirement
with 117 sentences and also comes with a feature model that serves as a ground truth.
However, due to the very small amount of requirements, we observed a high loss in
accuracy which resulted in only few features correctly detected. The main reason we
identified for this loss is the fact, that our technique requires a large amount of data to
learn about the characteristics of requirements, which is not possible with only about
hundred requirements.

Extracting Variability Based on Probabilistic Relevance and Word Embed-
ding. As our first technique is not applicable to the requirements available for us, we
developed an alternative technique, which is shown in Figure 4.11 (b). Given a set of
requirements from di↵erent variants, which are preprocessed as mentioned above, this
technique consists of two parts: A semantic similarity network and a part for feature
& variability extraction.

For the first part, we apply di↵erent techniques to determine the semantic similarity
of requirements. Initially, we apply Word2Vec, a word embedding model to obtain

4.3. Reverse Engineering Variability from Natural Language Requirements 55

(a) Workflow of our proposed deep
learning technique

(b) Workflow of our probabilistic
relevance technique

Figure 4.11: Respective workflow of our two proposed techniques for variability extrac-
tion from NLR (taken from [35, 37]).

56 4. Analysis Techniques for Feature and Variability Extraction

a vector representation of each word. In particular, this model takes the semantic
similarity of words into account, and thus, word vectors of similar words are located close
to each other in the resulting vector space. Within this vector space, we compute cosine
similarity between two word vectors to determine the similarity of the corresponding
words.

Afterwards, we extend this word level similarity by two further characteristics, that is,
distribution of words in each requirement and significance of each word. To this end, we
make use of a probabilistic relevant framework called BM25+. In a nutshell, BM25+
performs term frequency – inverse document frequency (TF-IDF), a weighting technique
that measures how much a word contributes to the relevance of two texts. Since even
BM25+ exhibits certain limitations, we extend this step by topic words and the inverse
document frequency (IDF) to compute weights for each word in the requirements. In
particular, we assign a predefined value for the weight, if the word is in the set of topic
words. Otherwise, we compute the IDF of the word and use the result as weight value
for the word. This way, we can control how much a specific word contributes to the
overall similarity of a pair of requirements Based on the probabilistic relevance and
the additional weights for each word, we compute the final requirement level similarity
(cf. [37] for details).

In the second part of our technique, we make use of the information about requirement
similarity to extract features and variation points (i. e., dependencies between features).
To extract features and create a tree-like feature diagram, we employ Hierarchical Ag-
glomerative Clustering (HAC), which groups similar requirements into the same cluster
and constructs a hierarchy between these clusters, used by us to create the feature
diagram. To this end, we make first use of the similarity between each pair of require-
ments, as explained above, as clustering criterion. Moreover, as a second aspect, we also
consider the dissimiliarity of requirements, computed as pairwise distance, to find the
closest pair of requirements, respectively, and merge them into a single group (i. e., set
of requirements). In further steps, we (A) check for possible wrongly detected hierar-
chies and flatten them using a inconsistency coe�cient and (B) define an inconsistency
threshold to prevent from inaccurate clustering of requirements.

After we obtained the feature diagram, we make use of it to define criteria for extracting
variation points. We show the process of this final step in Figure 4.12. As a pivotal
element of this process, we also employ information from the very beginning of our
process, that is, which requirement originates in which variant. Since requirements are
now also mapped to features we can, eventually, also establish a mapping between the
features and the original variants (the F-V traceability), with the requirements serving
as kind of a proxy.

We propose the following four criteria for variation point detection:

1. We consider a feature to be mandatory, if it is (a) contained in all variants and
(b) the same holds for all of its sub features (i. e., the subtree).

4.3. Reverse Engineering Variability from Natural Language Requirements 57

Figure 4.12: Overview of the process for identifying variation points (adopted from [37]).

2. If at least one of the aforementioned conditions is not fulfilled, we consider a
feature as optional

3. For features forming an OR group, they must have the same parent feature and at
least (n�1) pairs of these sibling features must be contained in the same variant.
Beyond that, we require that (a) all of these pairs of features are unique, (b) the
(n � 1) pairs must from the transitive closure for all features under this (same)
parent features, and (c) these n features have to cover all variants from which the
input requirements have been taken.

4. Finally, to specify a group of features as XOR group, the union of these features
must cover all variants and no two features occur together in a particular variant.

Consider the example in Figure 4.12. Since feature A is part of all input variants and
has no sub features, it is clearly mandatory. Also, features C and D are optional, as they
do not occur in all variants. For feature B, no information exists about corresponding
variants, since it is used mainly for grouping the sub features C and D. However, since
the union of these features also covers all input variants, also feature B is considered to
be mandatory.

To evaluate the applicability of our approach, we conducted an empirical study with
the requirements of the already mentioned BCS. In particular, we where interested in
the accuracy of our technique by means of precision, recall, and f-measure. As BCS
already has a feature model, we can (a) use this as ground truth and (b) create variants
which we use as input. Hence, we selected 19 variants that have been used in previous

58 4. Analysis Techniques for Feature and Variability Extraction

studies by other researchers, and used the corresponding set of requirements from each
variant (a subset of all requirements available) as input to our technique. Moreover,
we used a pre-trained Word2Vec model based on the Google News dataset, which
comprises 100 billion words and set certain parameters for the used algrithms (cf.[37]).

We then applied the above mentioned process, resulting into a feature model with 23
concrete and four abstract features. Moreover, our variation point detection resulted
into eight features being mandatory and 19 being optional, whereas neither OR nor
XOR groups could be identified. We compared this resulting feature model with the
ground truth (i. e., the original feature model of BCS) to evaluate the accuracy.

For precision (i. e., correctly identified features), we achieve 0.70, which measn that the
majority of features has been identified correctly. For the false positives (i. e., features
that are wrongly identified by our technique), we found out that the main reason is that
we created to fine-grained features, and thus, created to many sibling features for two
parent feature, LED and Security, respectively. We argue that these wrongly identified
features still belong to a distinct part of the feature model, and thus, may be easily
merged by manual intervention, which usually takes place in such a process.

For recall, we even achieve 0.79, as we only miss five feature at all. This is mostly the
case, because some of our features are too coarse-grained, that is, we group requirements
to one feature that is separated in two features in the ground truth. Again, this is only
a minor threat, as the features in the ground truth are logically connected (e. g., as
sibling feature), and thus, can be separated in our feature model manually. Setting
precision and recall in relation, we achieve an F-measure of 0.74, which is very good as
it indicates that both values, precision and recall, are relatively high.

Finally, for the variation points, we missed one OR and XOR group, respectively. In-
stead, we marked two features, actually belonging to one of these groups as mandatory,
which results in two more mandatory features in our feature model compared to the
ground truth.

Besides accuracy, we achieve a high degree of automation. Manual intervention is only
necessary at the beginning, when parameters for algorithms such as BM25+ and HAC
have to be set. Nevertheless, to keep control over the whole process and even improve the
result, more intervention, such as integrating additional domain knowledge, is possible.

In summary, we argue that our technique overcomes the limitations that we identified
for other techniques in our SLR. We provide a highly automated technique that auto-
matically generates a feature model and identifies variation points based on heuristics.
Moreover, even with a rather small dataset, we achieve very good results. Nevertheless,
there is still a plenty of improvements possible. First, applying the technique to larger
NLR from di↵erent domains is necessary to demonstrate generalizeability. Second, so-
phisticated NLP techniques can help to suggest more precise feature names. Third,
improving the variation point detection, especially groups and cross-tree constraints is
an important aspect that must be covered in future.

5. Conclusion

In this chapter, I briefly summarize the contributions of this thesis and provide a brief
outlook on future work.

Generally, the contributions of this thesis are all concerned with the challenges of evolv-
ing variant-rich software systems. While both, structured as well as adhoc reuse, pro-
vide several benefits, they also come with disadvantages that impede di↵erent activities
during the evolution of such systems.

For structured reuse, this is mainly caused by the intrusiveness of integrated variability
and the related variability mechanisms. As these mechanisms, mainly the C prepro-
cessor, interact with the host language, they hinder program comprehension, increase
maintenance e↵ort, and may be prone to errors.

To address these challenges, we made three contributions. First, we proposed the no-
tion of variability-aware code smells to better describe high-level pattern of problematic
usage of variability mechanisms, mainly for cpp and . In particular, we derived sev-
eral of these variability smells, based on original code smells, described their pattern
and possible disadvantages. We also conducted a survey, which confirms that these
smells exist and can have a considerable impact on evolutionary activities. Second, we
proposed a metric-based detection technique that enables the automatic detection of
such smells. By means of the smell AnnotationBundle, we introduced metrics that
a↵ect this smell and also presented a parameterizable detection tool. We evaluated our
detection technique with open-source systems, revealing that these smells can be found
frequently in these systems, especially when considering the Top-10 results for the cor-
responding smell metric. Third, we investigated the impact of preprocessor usage on
maintenance e↵ort by means of statistical analysis. To this end, we used the particular
metrics, introduced for the AnnotationBundle smell, and analyzed their correlation
of two maintainability measures, frequency and amount of changes. Our results reveal
only a small to medium e↵ect of how and when the preprocessor is used, whereas the
size of functions turned out to have a greater impact on maintainability.

60 5. Conclusion

For adhoc reuse, the challenges are mainly caused by redundant and concurrent devel-
opment of variants and the missing information about commonalities and di↵erences
between these variants.

To mitigate these reasons, we made two contributions. First, we proposed a model-
based technique, family mining, to identify commonalities and di↵erences among MAT-
LAB/Simulink models. As a result of this technique, we can relate model elements
form di↵erent models with each other, also specifying their variability type. The eval-
uation of our technique confirmed its applicability even to real-world models and also
revealed a reasonable accuracy of 70%. Moreover, we conducted a survey and inter-
views with modeling experts, stating that our technique has great potential especially
for maintaining and evolving model variants to be created in future. Moreover, we
proposed a concept how to customize this technique to other block-based modeling lan-
guages. As this technique also had some limitations, we proposed another technique
that is able to compare multiple models at once, by using a connectivity matrix as an
abstract representation of models. With an evaluation, we could show that this tech-
nique has a high precision and recall, and even for multiple models, provides scalability
towards industry-sized models.

Second, we proposed two techniques for extracting variability from natural language
requirements that rely on natural language processing and machine learning techniques.
While the deep learning technique could not be positively evaluated (mainly due to
missing data), our technique with probabilistic relevance has shown a high precision
and recall (compared to existing approaches) for creating a feature model, and thus,
is applicable at least to smaller sets of requirements. This could considerable improve
the recreation of variability information from requirements and also, due to traceability
links, map this information to other artifacts.

For future work, the idea is to analyze other quality aspects, such as error-proneness
or vulnerabilities, in relation to integrated variability and also to develop analysis tech-
niques that support e�cient regression testing of such systems. For adhoc reuse, the
focus is on combining information from variability mining of di↵erent artifacts, and
thus, to obtain a more comprehensive picture of commonalities and di↵erences. More-
over, techniques to feed this information back into the development process are subject
to future research.

A. Appendix

In the following, I list selected publications that have been summarized within this the-
sis. These publications are listed in chronological order of appearance and a preprint
of each paper (in the same order) is attached to this thesis. Moreover, for each publi-
cation, I summarize my individual contribution to the paper.
NOTE: order of authorship in all papers below is according to extent of contributions.

[65] S.Stănciulescu, S.Schulze, A.W ,asowski. Forked and Integrated Variants in an Open-
Source Firmware Project”. In: Proc. Int’l Conf. on Software Maintenance and Evo-
lution (ICSME). IEEE, 2015, pp. 151–160.
Contribution: Conceptualization (30%), survey/interview creation (20%), Writing:
Introduction/Conclusion (30%), Concept Presentation (40%), Evaluation (30%),
Related Work (15%); Reviewing and Supervision.

[17] W. Fenske and S. Schulze. “Code Smells Revisited: A Variability Perspective”. In:
Proc. Int’l Work. on Variability Modeling of Software-Intensive Systems (VaMoS).
ACM, 2015, pp. 3–10.
Contribution: Conceptualization (50%), Survey Creation (50%), Writing: Introduc-
tion/Conclusion (60%), Concept Presentation (40%), Evaluation (40%), Related
Work (25%); Reviewing and Supervision.

[18] W. Fenske, S. Schulze, D. Meyer, and G. Saake. “When Code Smells Twice as
Much: Metric-Based Detection of Variability-Aware Code Smells”. In: Proc. Int’l
Working Conf. on Source Code Analysis and Manipulation (SCAM). IEEE, 2015,
pp. 171–180.
Contribution: Conceptualization (50%), Design & Implementation (20%), Writing:
Introduction/Conclusion (40%), Concept Presentation(40%), Evaluation (40%),
Related Work (25%); Reviewing and Supervision.

62 Bibliography

[19] W. Fenske, S. Schulze, and G. Saake. “How Preprocessor Annotations (Do Not) Af-
fect Maintainability: A Case Study on Change-Proneness”. In: Proc. Int’l Conf. on
Generative Programming: Concepts Experiences (GPCE). ACM, 2017, pp. 77–90.
Contribution: Conceptualization (50%), Design & Implementation (20%), Writing:
Introduction/Conclusion (40%), Concept Presentation (40%), Evaluation (40%),
Related Work (25%); Reviewing and Supervision.

[59] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer. “Detecting Variabil-
ity in MATLAB/Simulink Models: An Industry-Inspired Technique and Its Eval-
uation”. In: Proceedings of the International Systems and Software Product Line
Conference (SPLC). ACM, 2017, pp. 215–224.
Contribution: Conceptualization (30%), Writing: Introduction/Conclusion (60%),
Concept Presentation (25%), Evaluation (40%), Related Work (20%); Reviewing
and Supervision.

[67] D. Wille, S. Schulze, C. Seidl, and I. Schaefer. “Custom-Tailored Variability Min-
ing for Block-Based Languages”. In: Proceedings of the International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2016, pp.
271–282.
Contribution: Conceptualization (30%), Writing: Introduction/Conclusion (60%),
Concept Presentation (25%), Evaluation (30%), Related Work (10%); Reviewing
and Supervision.

[58] A. Schlie, S. Schulze, and I. Schaefer. “Comparing Multiple MATLAB/Simulink
Models Using Static Connectivity Matrix Analysis”. In: Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, 2018,
pp. 185–196.
Conceptualization (40%), Writing: Introduction/Conclusion (60%), Concept Pre-
sentation (40%), Evaluation (50%), Related Work (30%); Reviewing and Supervi-
sion.

[36] Y. Li, S. Schulze, and G. Saake. “Reverse Engineering Variability from Natural
Language Documents: A Systematic Literature Review”. In: Proceedings of the In-
ternational Systems and Software Product Line Conference (SPLC). ACM, 2017,
pp. 133–142.
Contribution: Conceptualization (70%), Conducting SLR (50%), Writing: Intro-
duction/Conclusion (60%), Concept Presentation (40%), Evaluation (40%), Related
Work (25%); Reviewing and Supervision.

[35] Y. Li, S. Schulze, and G. Saake. “Extracting Features from Requirements: Achiev-
ing Accuracy and Automation with Neural Networks”. In: Proceedings of the Inter-
national Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 2018, pp. 477–481.
Conceptualization (40%), Writing: Introduction/Conclusion (60%), Concept Pre-
sentation (40%), Evaluation (50%), Related Work (30%); Reviewing and Supervi-
sion.

Bibliography 63

[37] Y. Li, S. Schulze, and G. Saake.“Reverse Engineering Variability from Requirement
Documents based on Probabilistic Relevance and Word Embedding”. In: Proceed-
ings of the International Systems and Software Product Line Conference (SPLC).
ACM, 2018, pp. 121–131.
Conceptualization (40%), Supervision of Implementation, Writing: Introduction/-
Conclusion (60%), Concept Presentation (40%), Evaluation (40%), Related Work
(30%); Reviewing and Supervision.

64 Bibliography

Bibliography 65

[1] I. Abal, C. Brabrand, and A. Wasowski. “42 Variability Bugs in the Linux Kernel:
A Qualitative Analysis”. In: Proc. IEEE/ACM Int’l Conf. on Automated Software
Engineering (ASE ’14). ACM, 2014, pp. 421–432.

[2] M. Antkiewicz, W. Ji, T. Berger, K. Czarnecki, T. Schmorleiz, R. Lämmel, Ş.
Stănciulescu, A. W ,asowski, and I. Schaefer. “Flexible Product Line Engineering
with a Virtual Platform”. In: Companion to the Proc. Int’l Conf. on Software
Engineering (ICSE ’14). ACM, 2014, pp. 532–535.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-Oriented Software Product
Lines – Concepts and Implementation. Berlin Heidelberg, Germany: Springer,
2013.

[4] S. Apel, C. Kästner, and C. Lengauer. “Language-Independent and Automated
Software Composition: The FeatureHouse Experience”. In: IEEE Trans. Softw.
Eng. 39.1 (2013), pp. 63–79.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. “Scaling Step-Wise Refinement”.
In: IEEE Trans. Softw. Eng. 30.6 (2004), pp. 355–371.

[6] T. Berger, D. Nair, R. Rublack, J. M. Atlee, K. Czarnecki, and A. W ,asowski.
“Three cases of feature-based variability modeling in industry”. In: Proceedings of
the International Conference on Model Driven Engineering Languages and Sys-
tems (MoDELS). Springer, 2014, pp. 302–319.

[7] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. W ,asowski. “Feature-to-Code
Mapping in Two Large Product Lines”. In: Proceedings of the International Soft-
ware Product Line Conference (SPLC). Springer, 2010, pp. 498–499.

[8] T. Berger, S. She, R. Lotufo, A. W ,asowski, and K. Czarnecki. “Variability Mod-
eling in the Real: A Perspective From the Operating Systems Domain”. In: Proc.
IEEE/ACM Int’l Conf. on Automated Software Engineering (ASE ’10). ACM,
2010, pp. 73–82.

[9] P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Boston, MA, USA: Addison-Wesley, 2001.

[10] K. Czarnecki and U. W. Eisenecker. Generative Programming. Boston, MA, USA:
Addison-Wesley, 2000.

[11] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki.
“An Exploratory Study of Cloning in Industrial Software Product Lines”. In: Proc.
European Conf. on Software Maintenance and Reengineering (CSMR ’13). IEEE,
2013, pp. 25–34.

[12] E. van Emden and L. Moonen. “Java Quality Assurance by Detecting Code
Smells”. In: Proc. Working Conf. on Reverse Engineering (WCRE ’02). IEEE,
2002, pp. 97–106.

[13] M. D. Ernst, G. J. Badros, and D. Notkin. “An Empirical Analysis of C Prepro-
cessor Use”. In: IEEE Trans. Softw. Eng. 28.12 (2002), pp. 1146–1170.

66 Bibliography

[14] D. Faust and C. Verhoef. “Software product line migration and deployment”. In:
Softw.: Pract. Exper. 33.10 (2003), pp. 933–955.

[15] J.-M. Favre. “Understanding-in-the-Large”. In: Proc. Int’l Work. on Program
Comprehension (IWPC ’97). IEEE, 1997, pp. 29–38.

[16] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and S. Hanenberg. “Measuring
Programming Experience”. In: Proc. Int’l Conf. on Program Comprehension
(ICPC ’12). 2012, pp. 73–82.

[17] W. Fenske and S. Schulze. “Code Smells Revisited: A Variability Perspective”.
In: Proc. Int’l Work. on Variability Modeling of Software-Intensive Systems (Va-
MoS ’15). ACM, 2015, pp. 3–10.

[18] W. Fenske, S. Schulze, D. Meyer, and G. Saake. “When Code Smells Twice as
Much: Metric-Based Detection of Variability-Aware Code Smells”. In: Proc. Int’l
Working Conf. on Source Code Analysis and Manipulation (SCAM ’15). IEEE,
2015, pp. 171–180.

[19] W. Fenske, S. Schulze, and G. Saake. “How Preprocessor Annotations (Do Not)
A↵ect Maintainability: A Case Study on Change-Proneness”. In: Proc. Int’l Conf.
on Generative Programming: Concepts & Experiences (GPCE ’17). ACM, 2017,
pp. 77–90.

[20] M. Fowler, K. Beck, J. Brant, and W. Opdyke. Refactoring: Improving the Design
of Existing Code. Boston, MA, USA: Addison-Wesley, 1999.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA, USA: Addison-Wesley, 1995.

[22] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. “Do Code Clones
Matter?” In: Proc. Int’l Conf. on Software Engineering (ICSE ’09). IEEE, 2009,
pp. 485–495.

[23] C. Kapser and M. W. Godfrey. “”Cloning Considered Harmful”Considered Harm-
ful: Patterns of Cloning in Software”. In: Empir. Softw. Eng. 13.6 (2008), pp. 645–
692.

[24] C. Kästner and S. Apel. “Virtual Separation of Concerns – A Second Chance for
Preprocessors”. In: J. Object Technol. 8.6 (2009), pp. 59–78.

[25] C. Kästner, S. Apel, and M. Kuhlemann.“Granularity in Software Product Lines”.
In: Proc. Int’l Conf. on Software Engineering (ICSE ’08). ACM, 2008, pp. 311–
320.

[26] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Upper Saddle
River, NJ, USA: Prentice-Hall, 1978.

[27] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol. “An Exploratory
Study of the Impact of Antipatterns on Class Change- and Fault-Proneness”. In:
Empir. Softw. Eng. 17.3 (2012), pp. 243–275.

Bibliography 67

[28] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin. “Aspect-Oriented Programming”. In: Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). Springer, 1997, pp. 220–
242.

[29] B. Kitchenham. “Guidelines for performing systematic literature reviews in soft-
ware engineering”. In: EBSE Technical Report. 2007.

[30] R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann. “Extending the Reflex-
ion Method For Consolidating Software Variants Into Product Lines”. In: Softw.
Qual. J. 17.4 (2009), pp. 331–366.

[31] J. Krinke. “Is cloned code more stable than non-cloned code?” In: Proceedings
of the Working Conference on Source Code Manipulation and Analysis (SCAM).
IEEE, 2008, pp. 57–66.

[32] C. W. Krueger.“Easing the Transition to Software Mass Customization”. In: Proc.
Int’l Work. on Software Product-Family Engineering (PFE ’01), Revised Papers.
Springer, 2002, pp. 282–293.

[33] M. M. Lehman. “Programs, Life Cycles, and Laws of Software Evolution”. In:
Proceedings of the IEEE 68.9 (1980), pp. 1060–1076.

[34] V. I. Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions, and
Reversals”. In: Soviet Physics Doklady 10.8 (1966), pp. 707–710.

[35] Y. Li, S. Schulze, and G. Saake. “Extracting Features from Requirements: Achiev-
ing Accuracy and Automation with Neural Networks”. In: Proceedings of the
International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 477–481.

[36] Y. Li, S. Schulze, and G. Saake. “Reverse Engineering Variability from Natural
Language Documents: A Systematic Literature Review”. In: Proceedings of the In-
ternational Systems and Software Product Line Conference (SPLC). ACM, 2017,
pp. 133–142.

[37] Y. Li, S. Schulze, and G. Saake. “Reverse Engineering Variability from Require-
ment Documents based on Probabilistic Relevance and Word Embedding”. In:
Proceedings of the International Systems and Software Product Line Conference
(SPLC). ACM, 2018, pp. 121–131. url: http://wwwiti.cs.uni-magdeburg.de/iti
db/publikationen/ps/auto/LiSS+SPLC2018.pdf.

[38] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. “An Analysis of
the Variability in Forty Preprocessor-Based Software Product Lines”. In: Proc.
Int’l Conf. on Software Engineering (ICSE ’10). Cape Town, South Africa: ACM,
2010, pp. 105–114.

[39] J. Liebig, C. Kästner, and S. Apel. “Analyzing the Discipline of Preprocessor
Annotations in 30 Million Lines of C Code”. In: Proc. Int’l Conf. on Aspect-
Oriented Software Development (AOSD ’11). ACM, 2011, pp. 191–202.

http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/LiSS+SPLC2018.pdf
http://wwwiti.cs.uni-magdeburg.de/iti_db/publikationen/ps/auto/LiSS+SPLC2018.pdf

68 Bibliography

[40] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, and W. Schröder-Preikschat.
“A Quantitative Analysis of Aspects in the eCos Kernel”. In: Proc. ACM SIGOP-
S/EuroSys European Conf. on Computer Systems (EUROSYS ’11). ACM, 2006,
pp. 191–204.

[41] R. Malaquias, M. Ribeiro, R. Bonifácio, E. Monteiro, F. Medeiros, A. Garcia, and
R. Gheyi. “The Discipline of Preprocessor-Based Annotations Does #ifdef TAG
n’t #endif Matter”. In: Proc. Int’l Conf. on Program Comprehension (ICPC ’17).
IEEE, 2017, pp. 297–307.

[42] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl. “Initiating Software
Product Lines”. In: IEEE Softw. 19.4 (2002), pp. 24–27.

[43] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. “The Love/Hate
Relationship with the C Preprocessor: An Interview Study”. In: Proc. European
Conf. on Object-Oriented Programming (ECOOP ’15). Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2015, pp. 495–518.

[44] F. Medeiros, M. Ribeiro, and R. Gheyi. “Investigating Preprocessor-Based Syntax
Errors”. In: Proc. Int’l Conf. on Generative Programming: Concepts & Experi-
ences (GPCE ’13). ACM, 2013, pp. 75–84.

[45] F. Medeiros, M. Ribeiro, R. Gheyi, S. Apel, C. Kästner, B. Ferreira, L. Carvalho,
and B. Fonseca. “Discipline Matters: Refactoring of Preprocessor Directives in the
#ifdef Hell”. In: IEEE Trans. Softw. Eng. 44.5 (2018), pp. 453–469.

[46] F. Medeiros, I. Rodrigues, M. Ribeiro, L. Teixeira, and R. Gheyi. “An Empiri-
cal Study on Configuration-Related Issues: Investigating Undeclared and Unused
Identifiers”. In: Proc. Int’l Conf. on Generative Programming: Concepts & Expe-
riences (GPCE ’15). ACM, 2015, pp. 35–44.

[47] J. Melo, C. Brabrand, and A. W ,asowski. “How Does the Degree of Variability
A↵ect Bug Finding?” In: Proc. Int’l Conf. on Software Engineering (ICSE ’16).
ACM, 2016, pp. 679–690.

[48] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur. “DECOR: A Method
for the Specification and Detection of Code and Design Smells”. In: IEEE Trans.
Softw. Eng. 36.1 (2010), pp. 20–36.

[49] R. Muniz, L. Braz, R. Gheyi, W. Andrade, B. Fonseca, and M. Ribeiro. “A
Qualitative Analysis of Variability Weaknesses in Configurable Systems with#
ifdefs”. In: Proceedings of the International Workshop on Variability Modeling in
Software-intensive Systems (VaMoS). ACM, 2018, pp. 51–58.

[50] D. L. Parnas. “On the Design and Development of Program Families”. In: IEEE
Trans. Softw. Eng. 1 (1976), pp. 1–9.

[51] D. L. Parnas. “Software Aging”. In: Proc. Int’l Conf. on Software Engineering
(ICSE ’94). IEEE, 1994, pp. 279–287.

Bibliography 69

[52] K. Pohl, G. Böckle, and F. Van Der Linden. Software Product Line Engineering:
Foundations, Principles, and Techniques. Berlin Heidelberg, Germany: Springer,
2005.

[53] C. Prehofer. “Feature-Oriented Programming: A Fresh Look at Objects”. In: Proc.
European Conf. on Object-Oriented Programming (ECOOP ’97). Springer, 1997,
pp. 419–443.

[54] D. Romano and M. Pinzger.“Using Source Code Metrics to Predict Change-Prone
Java Interfaces”. In: Proc. IEEE Int’l Conf. on Software Maintenance (ICSM ’02).
IEEE, 2011, pp. 303–312.

[55] C. D. Rosso and C. Riva. “Experiences with Software Product Family Evolution”.
In: IEEE, 2003, p. 161. doi: doi.ieeecomputersociety.org/10.1109/IWPSE.2003.
1231223.

[56] J. Rubin and M. Chechik.“A Framework for Managing Cloned Product Variants”.
In: Proc. Int’l Conf. on Software Engineering (ICSE ’13). San Francisco, CA,
USA: IEEE, 2013, pp. 1233–1236.

[57] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella. “Delta-Oriented Program-
ming of Software Product Lines”. In: Proc. Int’l Software Product Line Conf.
(SPLC ’10). Springer, 2010, pp. 77–91.

[58] A. Schlie, S. Schulze, and I. Schaefer. “Comparing Multiple MATLAB/Simulink
Models Using Static Connectivity Matrix Analysis”. In: Proceedings of the In-
ternational Conference on Software Maintenance and Evolution (ICSME). IEEE,
2018, pp. 185–196.

[59] A. Schlie, D. Wille, S. Schulze, L. Cleophas, and I. Schaefer. “Detecting Vari-
ability in MATLAB/Simulink Models: An Industry-Inspired Technique and Its
Evaluation”. In: Proceedings of the International Systems and Software Product
Line Conference (SPLC). ACM, 2017, pp. 215–224.

[60] S. Schulze and W. Fenske. “Analyzing the Evolution of Preprocessor-Based Vari-
ability: A Tale of a Thousand and One Scripts”. In: Proc. Int’l Working Conf. on
Source Code Analysis and Manipulation (SCAM ’18). IEEE, 2018, pp. 50–55.

[61] S. She, R. Lotufo, T. Berger, A. W ,asowski, and K. Czarnecki. “Reverse Engineer-
ing Feature Models”. In: Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 2011, pp. 461–470.

[62] Y. Smaragdakis and D. Batory. “Mixin Layers: An Object-oriented Implemen-
tation Technique for Refinements and Collaboration-based Designs”. In: ACM
Transactions on Software Engineering and Methodology (TOSEM) 11.2 (2002),
pp. 215–255.

[63] Software Engineering - Product Quality, ISO/IEC 9126-1. Tech. rep. International
Organization for Standardization, 2001.

https://doi.org/doi.ieeecomputersociety.org/10.1109/IWPSE.2003.1231223
https://doi.org/doi.ieeecomputersociety.org/10.1109/IWPSE.2003.1231223

70 Bibliography

[64] H. Spencer and G. Collyer. “#ifdef Considered Harmful, or Portability Experi-
ence With C News”. In: Proc. Proc. USENIX Conf. USENIX Association, 1992,
pp. 185–197.

[65] Ş. Stănciulescu, S. Schulze, and A. W ,asowski. “Forked and Integrated Variants in
an Open-Source Firmware Project”. In: Proc. Int’l Conf. on Software Maintenance
and Evolution (ICSME ’15). IEEE, 2015, pp. 151–160.

[66] M. VanHilst and D. Notkin.“Using Role Components in Implement Collaboration-
based Designs”. In: Proceedings of the Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA). ACM, 1996, pp. 359–
369.

[67] D. Wille, S. Schulze, C. Seidl, and I. Schaefer. “Custom-Tailored Variability Min-
ing for Block-Based Languages”. In: Proceedings of the International Confer-
ence on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2016,
pp. 271–282.

Hiermit erkläre ich, dass ich die Habilitationsschrift und die im Verzeichnis meiner
wissenschaftlichen Verö↵entlichungen angegebenenWerke selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Magdeburg, den 19.03.2019

	Deckblatt-UB
	habil-submit-bibo-digital
	Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Outline
	1.4 A Note from the Author

	2 Background
	2.1 Structured Reuse with Software Product Line Engineering
	2.2 Integrated Variability: C Preprocessor and FOP
	2.3 Adhoc Reuse with Clone-and-Own
	2.4 Challenges for Evolving Variant-Rich Systems
	2.4.1 Challenges of Integrated Variability
	2.4.2 Challenges of Clone-and-Own

	3 Analyzing the Impact of Preprocessor Directives on Source Code Quality
	3.1 Investigating Variability-Aware Code Smells in-the-wild
	3.1.1 A Variability Perspective on Code Smells
	3.1.2 Metric-Based Detection of Variability-Aware Code Smells

	3.2 How Preprocessor-Based Variability Affects Maintenance

	4 Analysis Techniques for Feature and Variability Extraction
	4.1 Extracting Variability from Block-Based Models
	4.2 N-Way Comparison of MATLAB/Simulink Models with Static Connectivity Matrix Analysis
	4.3 Reverse Engineering Variability from Natural Language Requirements

	5 Conclusion
	A Appendix
	Bibliography

