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Abstract

In this thesis, we develop efficient numerical methods to solve the viscous-plastic sea ice
model on high resolution grids, with a cell size up to 2 km. This model describes the
dynamical and thermodynamical large-scale processes in sea ice and plays an important
role in climate models. The sea ice component in climate models accounts for more than
20% of the overall computational effort. Thus, the development of efficient numerical
methods is topic of current research.
Sea ice dynamics are modeled by a system of equations coupling a nonlinear momen-

tum equation, and transport processes. Currently, existing methods are based on implicit
discretizations of the nonlinear momentum equation and converge either poorly or not
at all on high resolution grids. Within a finite element framework, we present a new
efficient Newton solver, globalized with a line search method and accelerated, with re-
spect to convergence, by the operator-related damped Jacobian method. Using this novel
approach we significantly improve the robustness of currently applied Newton solvers.
We proove that the Jacobian of the sea ice model is positive definite, which provides
global convergence of the Newton scheme, assuming an optimal damping parameter.
As the used linear solver in the Jacobian-free Newton-Krylov approach is extremely

costly, mainly due to the absence of efficient preconditioners, we introduce the geometric
multigrid method as preconditioner to the linear solver. Analyzing an idealized test
case on a 2 km grid, we find that the multigrid preconditioner is able to reduce the
iteration count of the linear solver by up to 80% compared to an incomplete lower upper
factorization as preconditioner. As the convergence rate of the multigrid method is
robust with increasing mesh resolutions, it is a suitable method for sea ice simulations
at high spatial resolutions.
In the final part of the thesis, we develop a goal oriented error estimator for partitioned

solution approaches, which is applicable to the sea ice model. The error estimator is based
on the dual weighted residual method and derived for a general class of non-stationary
differential equations coupled to a transport process. We observe a highly accurate error
estimator for a system consisting of Burgers equation and a transport process. While
the error estimator is accurate on simple sea ice configurations, efficiency worsens once
stronger spatial structure, such as leads, in the ice appear. Finally, we develop a mesh
refinement strategy that is based on the error estimator and evaluate it for the sea ice
model. Applying adaptive meshes, we reach the same accuracy of a functional of intrest
using 9 times less nodes.
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Zusammenfassung

In der vorliegenden Arbeit entwickeln wir effiziente numerische Methoden zur Lösung
des visko-plastischen Meereismodells auf hochaufgelösten Gittern, mit einer Gitterweite
von bis zu 2 km. Das Meereismodell beschreibt die Dynamik und Thermodynamik
des Meereises und ist ein wichtiger Bestandteil in Klimamodellen. Die Simulation der
Meereisdynamik kann in gekoppelten Klimamodellen mehr als 20% des Gesamtaufwan-
des in Anspruch nehmen, weshalb die Entwicklung effizienter Methoden zur Simulation
der Meereisdynamik Teil der gegenwärtigen Forschung ist.
Die Meereisdynamik wird durch ein System bestehend aus einer nichtlinearen Momen-

tengleichung und Transportgleichungen modelliert. Derzeitige Methoden zur Lösung der
implizit diskretisierten Momentengleichung des Meereismodells konvergieren entweder
langsam oder gar nicht mit zunehmender örtlicher Auflösung. Im Rahmen eines Finite-
Elemente-Ansatzes präsentieren wir ein neues Newton-Verfahren, globalisiert mit dem
Liniensuchverfahren und beschleunigt hinsichtlich der Konvergenz durch die operator-
related damped Jacobian Methode. Die neue Methode erhöht die Robustheit des derzeitig
verwendeten Newton-Lösers signifikant. Wir beweisen, dass die Jacobi-Matrix des Meer-
eismodells positiv definit ist, weshalb das Newton-Verfahren unter der Verwendung eines
optimalen Dämpfungsparameters global konvergiert.
Die gegenwärtig verwendeten linearen Löser im Newton-Verfahren sind numerisch

sehr teuer aufgrund eines fehlenden effizienten Vorkonditionierers. Wir führen das ge-
ometrische Mehrgitterverfahren als Vorkonditionierer des linearen Lösers ein. In einem
idealisierten Test zeigen wir, dass der Mehrgitter-Vorkonditionierer im Vergleich zu
einem ILU-Vorkonditionierer die Anzahl der Iterationen des linearen Lösers um 80%
reduziert. Das Mehrgitterverfahren ist robust hinsichtlich örtlicher Gitterverfeinerung,
daher ist es eine geeignete Methode zur Meereissimulation auf hochaufgelösten Gittern.
Im letzten Teil der Doktorarbeit, entwickeln wir einen zielorientierten Fehlerschätzer

für partitionierte Lösungsansätze, der für das Meereismodell anwendbar ist. Der Fehler-
schätzer basiert auf dem dual gewichteten Fehlerschätzer und ist für ein gekoppeltes
System, bestehend aus instationären partiellen Differentialgleichungen und einem Trans-
portprozess, hergeleitet. Am Beispiel der Burgersgleichung gekoppelt an einen Trans-
portprozess, zeigen wir, dass der Fehlerschätzer akkurat ist. Im Fall des Meereismodells
ist der Fehlerschätzer akkurat für einfache Konfigurationen des Modells. Die Genauigkeit
des Fehlerschätzers nimmt ab, sobald sich starke Strukturen, beispielsweise Risse im
Meereis, entwickeln. Abschließend leiten wir, basierend auf dem Fehlerschätzer, einen
Gitterverfeinerungsalgorithmus her und werten diesen für das Meereismodell aus. Unter
der Verwendung von adaptiven Gittern können wir die gleiche Genauigkeit eines Ziel-
funktionals mit neun mal weniger Knoten erreichen.
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1. Introduction

Since the first satellite measurements have been recorded in 1979, we observe a steadily
decreasing sea ice extent in the Arctic [91]. During a year, the maximal sea ice extent
is observed in March, where the ice extents to approximately 15 × 106 km2 [32]. The
minimal sea ice extent is reached in September, at the end of the summer season. Based
on time series from 1979 to 2018, the lowest record was reached in September 2012,
when sea ice extent reduced to 3.41 × 106 km2 [7]. The September average sea ice
extent decreases by nearly 14% per decade based on a regression through the entire
time series. The mean March sea ice extent reduces by 2.4% per decade from 1979 to
1999 and 3.4% per decade from 2000 onwards [92]. Following Stroeve and Notz [92], the
decreasing sea ice extent in the Arctic is one of the most striking changes in the climate.

The role of sea ice in the climate system Sea ice plays an important role in the Earth’s
climate. The climate system consists of the atmosphere, the oceans, the biosphere and
the cryosphere. As described by Kreyscher et al. [45], sea ice like glaciers belong to
the cryosphere, which contains all types of water in a frozen stadium. Sea ice is a thin
layer between the atmosphere and the ocean. It covers up to 10% of the world ocean
[32]. Snow covered sea ice reflects a significant amount of solar radiation, while open
water absorbs most of it [32]. A shrinking ice layer will reduce the reflectivity and thus,
reinforce the reduction, the so-called ice-albedo feedback [32, 77] Thus, sea ice is very
sensitive to global warming and plays a critical role in the climate system. As described
by Hunke et al. [32], sea ice acts as an insulator between the atmosphere and the ocean.
In the Arctic winter, sea ice isolates the cold atmosphere from the warmer ocean water.
In the Arctic summer, sea ice reflects the solar radiation. Further, the extent of sea
ice and the amount of open water as well as the thickness of the ice layer have a large
impact on the heat and moisture exchange between the atmosphere and the ocean [54].

Sea ice models Modern sea ice models include thermodynamical and dynamical pro-
cesses. In this thesis, we focus on the dynamical part of the sea ice models. Thus, we
give an overview of development of the dynamical core in sea ice models in the last 40
years.
In the 1970s, the observations of the Arctic Ice Dynamics Joint Experiment (AIDJEX)

greatly improved the modeling of the sea ice dynamics [32]. Based on the data of the
AIDJEX, Coon et al. [13] developed an elastic-plastic sea ice model. Here, sea ice is
assumed to be elastic material up to a certain internal stress level. Above this stress
level, sea ice is modeled as a plastic material. In the plastic regime, the ice deforms
irreversibly, whereas in the elastic regime it returns to the principal shape, if the stress
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1. Introduction

is removed [78]. Following Coon et al. [13], the elasticity assumption is numerically
expensive to realize. Therefore in 1979, Hibler [25] replaced the elasticity by a viscosity
assumption. He modeled sea ice as a viscous material at very low internal stresses.
The viscous-plastic sea ice model introduced by Hibler [25] reduces the numerical

costs of a simulation and is easier to couple with atmosphere and ocean models [78].
The model consists of a nonlinear momentum equation and two transport equations.
The nonlinearity of the momentum equation stems from the viscous-plastic material
law. Initially, the model was developed for meshes in range of 100 kilometers. To solve
the momentum equation at this spatial resolution, explicit time stepping schemes would
require a time step of less than 1 second for simulation times ranging from months to
years [34]. Thus, it is recommended by Ip et al. [34] to discretize the momentum equation
with an implicit time stepping scheme. Due to the nonlinear character of the momentum
equation, implicit solvers are needed to solve the viscous-plastic sea ice model in each
time step.
Nowadays, with increasing mesh resolutions of up to 10 km [53], the performance of

these solvers are getting poorer and this leads to an extreme increase of the numerical
cost [32]. Therefore, Hunke and Dukowicz [31] proposed a commonly used variant to
solve the viscous-plastic (VP) sea ice model, the elastic-viscous-plastic (EVP) model.
The authors added an artificial elastic term to the VP material law (rheology), which
allows an explicit discretization at relatively large time steps at high resolutions. The
additional elastic term produces noticeable errors in the sea ice dynamics compared to an
implicit discretization of the VP model [8, 54, 63]. Kimmritz et al. [38] showed that for
a simplified model the EVP solution converges to the VP solution, if a sufficiently large
number of sub-cycling steps are taken. Convergence of models can be accelerated by an
adaptive control of the sub-cycling [39]. Nowadays, nearly all modern sea ice models are
based on a viscous-plastic material assumption and include the EVP formulation, e.g.,
the CICE, LIM3, MITgcm [1, 29, 103].

It has been shown by Kwok et al. [49] that many sea ice simulations significantly
differ from satellite observations. How much of this discrepancy must be attributed to
a modeling error and how much to the numerical approximation error remains an open
question [55]. In 2009, Girard et al. [59] pointed out that the representation of ice drift,
the deformation statistics and the scaling of the VP and the EVP model differ from
satellite observations. In 2011, Girard et al. [21] developed the elasto-brittle material
law. Based on that rheology, Bouillon and Rampal [78] formulated a new dynamical
sea ice model. Spreen et al. [90] could not reproduce the findings of Girard and his
co-authors. In Spreen et al. [90], the best fit of simulations of the VP model to satellite
observation is achieved with an increasing resolution. Here, the study was obtained with
spatial resolutions up to 4.5 km. It is subject to future research to identify which sea
ice rheology is the most appropriate.

Sea ice simulations at high spatial resolutions As the dynamical core of most sea ice
models is based on the viscous-plastic sea ice model developed by Hibler 1979 in [56], we
numerically analyze this model on high spatial resolutions. In this thesis, we focus on
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efficiently simulating sea ice dynamics at 10 km resolutions and under. This includes the
development of efficient and accurate numerical methods as well as the use of adaptive
spatial meshes to increase the efficiency of a simulation.

We begin with outlining the importance of short-term forecasts on high resolutions,
before we present the numerical challenges and the novel numerical methods to simulate
sea ice dynamics at high spatial resolutions.
Following Williams and Tremblay [108] there is an increasing interest in estimating the

sea ice extent in the Arctic, in particular in forecasting the minimum sea ice extent. In
2012, Massonnet et al. [67] predicted an ice-free Arctic summer between 2041 and 2060,
based on a time series from 1979 to 2010. As described by Losch et al. [73], the strong
decrease of the sea ice extent in the Arctic leads to an increase of economic activities
such as tourist cruises and maritime transport. Not only the ice extent is decreasing, the
sea ice is getting thinner and the amount of multi-year ice is reducing [100]. Ships can
travel through leads (“big cracks”) and first year ice more easily, as it is not as “stiff” as
multi-year ice. Due to the increased maritime activities, short-term forecasts of sea ice
deformations on high spatial resolutions become more and more important [73].
In the following, we address the topical numerical challenges in simulating sea ice

dynamics at high resolutions.

• Currently, most applied methods to solve the viscous-plastic (VP) sea ice model
converge either poorly, as the EVP model and the Picard solver (a fixed-point
method), or not at all with increasing spatial resolutions, as the Jacobian-free
Newton-Krylov (JFNK) solver [55, 56]. In practice, usually only few iterations of
the Picard solver or small number of sub-cycles in the EVP model are considered
such that the computed numerical solution contains numerical errors that accumu-
late over time [53]. On the other hand, the convergence of the JFNK solver suffers
if the Jacobian is ill-conditioned or in the absence of good initial conditions. To
improve the robustness of the Newton solver, Lemieux et al. [53] introduced a line
search method and an inexact solving of the linear subproblem as accelerating and
globalization techniques. The linear problem is solved with a generalized minimal
residual method (GMRES) preconditioned with a line successive over-relaxation
method (LSOR) [64]. Solving the linear problems is numerically extremely costly
due to the absence of an efficient preconditioner.

• As outlined above, there have been some numerical studies on the convergence of
sea ice solvers, e.g. [38, 39, 54, 55, 56, 64]. Besides that, there exists one study
that analyzes the temporal convergence of the numerical solution [53], and another
study that investigates the spatial convergence [107]. So far, no analysis includes
both aspects at the same time. Lemieux et al. [53] analyzed the convergence of the
sea ice model in time. The authors applied an approximation of a monotholitic so-
lution approach (IMEX) to solve the sea ice model and compared it to the standard
partitioned solution approach (SIT). They found no superior convergence behav-
ior of the IMEX scheme when a first order discretization in time was applied. A
convergence study in space for a one-dimensional reduction of the VP model was

3



1. Introduction

done in [107]. They showed that the simulated velocity field depends on the spa-
tial resolution and observed that the mean sea ice drift speed increases by 32% by
increasing resolution from 40 km to 5 km.

• So far, unstructured grids for a better representation of irregular coastal geometries
such as the Canadian Arctic Archipelago have been applied in some sea ice models,
e.g., in FESOM, CICE, SLIM [15, 20, 61]. However, unstructured grids have not
been used yet in the context of adaptive mesh refinement strategies. Adaptive
mesh refinement strategies aim to reduce the overall numerical error by refining
the grid in a region where the largest numerical error is measured. In feedback
loops, the mesh refinement strategies are usually based on the evaluation of an
error estimator [6]. So far, error estimators have not been used in the context of
large-scale sea ice models.

• Finally, we want to emphasize that the question of existence and uniqueness of a
solution for the viscous-plastic sea ice model, has not been answered. Some effort
has been made to analyze existence and uniqueness for simplified or modified
models [42, 89]. However, in this thesis we do not investigate this topic.

Novel numerical methods to simulate sea ice dynamics at high spatial resolutions
This thesis provides the following novel numerical methods to simulate sea ice dynamics
based on the viscous-plastic rheology on high resolutions:

• To solve the nonlinear momentum equation, we introduce a Newton solver ac-
celerated with the operator-related damped Jacobian method introduced by Horn,
Ouazzi and Turek [14]. We prove that the Jacobian of viscous-plastic sea ice
model is positive definite such that global convergence is provided by theory for an
optimal damping parameter. Furthermore, we show that the Jacobian can be di-
vided into a positive semidefinite and a negative semidefinite part. The idea of the
operator-related Jacobian method is to adaptively control the negative semidefi-
nite part of the Jacobian. We compare the new solver to the existing Jacobian-free
Newton-Krylov (JFNK) method and observe an increased robustness and faster
convergence with the operator-related Jacobian method on an idealized test case
and on a realistic simulation on a pan-Arctic grid.

• We establish the multigrid method as a preconditioner to the GMRES method,
which is applied to solve the linear problems arising in each Newton iteration. On
an idealized test case, we show that the multigrid preconditioner needs about 80%
less iteration counts than an incomplete lower upper factorization (ILU) as precon-
ditioner to the GMRES method. The convergence of multigrid preconditioner is
robust with increasing resolutions, as the iteration count is only slightly increasing.

• We develop a goal oriented error estimator for partitioned solution approaches,
which is applicable to the sea ice model. The a posteriori error estimator is based
on the dual weighted residual method introduced by Becker and Rannacher [6].

4



The error estimator is derived for a general class of partial differential equations
that are coupled to transport processes. It consists of three parts, the temporal
discretization error, the spatial discretization error and the splitting error, which is
introduced by using a partitioned solution approach. We apply this error estimator
to the sea ice model to quantify the error contribution due to spatial and tempo-
ral discretization. Further, we analyze the effect of using a partitioned solution
approach instead of a monotholitic scheme. On an idealized test cases, the error
estimator shows high accuracy. Based on this estimator, we present an adaptive
mesh refinement algorithm to reduce the numerical costs of sea ice simulations.

The structure of this thesis The thesis can be divided into four parts:

I The viscous-plastic sea ice model

II Discretization of the sea ice model

III An efficient Newton solver for the viscous-plastic sea ice model

IV A goal oriented error estimator for partitioned solution approaches

(I) The viscous-plastic sea ice model of Hibler [25] is introduced in Chapter
2. Here, sea ice dynamics are modeled in a two dimensional framework. The averaged
properties of sea ice are described by the ice concentration, the mean ice thickness and
the horizontal ice velocity. The model consists of a momentum equation that includes a
nonlinear material law, the viscous-plastic rheology. The momentum equation is coupled
to transport equations, which advect the ice concentration and ice thickness in time.
Sea ice dynamics are driven by an atmospheric and an oceanic forcing. We present
the complete systems of equations in a variational formulation and a non-dimensional
framework. Finally, we introduce a model problem which is used for the numerical
evaluation of methods introduced in this thesis.
(II) Discretization of the sea ice model is presented in Chapter 3. The sea

ice model is implemented in the Software library Gascoigne 3D which is based on a
quadrilateral mesh. We introduce a partitioned solution approach to solve the sea ice
model, i.e., we decouple the system in time and compute the numerical solution of
the momentum equation and the transport equations in each time step separately. An
implicit Euler scheme is used to discretize the momentum in time, where as the transport
equations are discretized with an explicit flux-limited Taylor-Galerkin scheme. For the
spatial discretization of the system we apply a finite element framework. As a direct
finite element discretization of transport equations gives rise to instabilities in space,
we analyze in Chapter 4 the effect of different spatial stabilizations on the numerical
solution. First, we evaluate a body rotation problem, then we transfer the result to the
sea ice model.
(III) An efficient Newton solver for the viscous-plastic sea ice model, namely

the operator-related damped Jacobian method is presented in Chapter 5. We prove
that the Jacobian of the sea ice model is positive definite. Based on the analysis of the

5



1. Introduction

Jacobian, we introduce the operator-related damped Jacobian method, which is an accel-
eration method for the Newton solver and compare it to the currently used acceleration
method in the Jacobian-free Newton-Krylov (JFNK) solver. To solve the linear subprob-
lems arising in each Newton iteration, we introduce a multigrid preconditioner to the
GMRES method and compare its performance to the behavior of a GMRES method
preconditioned with an ILU method. In Chapter 6, we analyze the performance of
the operator-related damped Jacobian method in a realistic setting on a pan-Arctic grid.
We implement the method into the software framework of the McGill University and
compare its performance to the performance of the already implemented JFNK solver
in partitioned and monotholitic solving approach on a 10 km mesh, which is the highest
available resolution in this model.
(IV) A goal oriented error estimator for partitioned solution approaches is

derived in Chapter 7. The error estimator is based on the dual weighted residual method
which is presented by Becker and Rannacher [6]. We introduce an approximation of
the error estimator as it includes non-computable quantities, e.g., interpolation errors.
Hereby, we follow the work of Becker and Rannacher [6], Schmich and Vexler [88] and
Richter and Meidner [72]. Finally, we introduce an adaptive refinement strategy which
balances the different contributions of the error estimator. In Chapter 8, we evaluate
the error estimator. First, on a simplified example, namely Burgers equation coupled to
a transport process, and then we analyze it on the sea ice model. In order to apply the
error estimator, we introduce a dG(0)G(0) discretization in time for both examples. In
case of the sea ice model, we evaluate an adaptive refinement strategy and discuss the
possible benefits of adaptive computations.

Published results We want to outline that some of our results have already been pub-
lished by Mehlmann and Richter in [69] and [70]. This is especially true for Chapter 5
and Section 2.6.
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The viscous-plastic sea ice model
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2. The viscous-plastic sea ice model

In this chapter, we describe the viscous-plastic sea ice model which was introduced by
Hibler in 1979 [25] to simulate sea ice dynamics. Sea ice dynamics are mainly modeled
by a momentum equation (Section 2.2), a rheology (Section 2.4), and the balance laws
(Section 2.3). The rheology is a constitutive law that describes the material behavior
of the sea ice and its mechanical deformation. Sea ice dynamics are driven by the wind
and the ocean current. The transportation of ice is modeled by the balance laws.
In Section 2.1, we present the assumptions of Hibler’s viscous-plastic sea ice model.

This is followed by the derivation of the sea ice momentum equation in Section 2.2 and
the presentation of the balance laws in Section 2.3. In Section 2.4, we derive the viscous-
plastic sea ice rheology. In Section 2.5, we present the complete system of equations and
its variational formulation. Finally, we define a model problem for the sea ice model in
Section 2.6. The latter is used to analyze the numerical methods in Chapter 4, Chapter
5 and Chapter 8.

2.1. Model variables
In this Section, we follow the derivation of Harder in [24]. To model sea ice in the
climate system, it is reasonable to choose a large-scale approach that describes the
average properties of sea ice. For example, the impact that a group of ice floes have on
the interaction between the atmosphere and the ocean is considered in this large scale
approach, whereas small-scale details like single ice floes are not taken into account [24].
We begin with introducing the first variable of the sea ice model, the ice concentration

A. Following Hibler [25], the ice concentration A defines the averaged horizontal fraction
of a control area Ar which is covered with ice. It is defined as

A = 1
|Ar|

∫
Ar

I(x, y) dx dy, with I(x, y) =
{

1, if a point is covered with ice
0, else.

We assume that Ar is big enough to contain a meaningful number of small objects (ice
floes), whose size is much smaller than the considered region. There are two thickness
levels thin and thick ice that are described by the model. The fraction of a control
volume covered with thick ice is given by A. The area of thin ice is given by 1−A.

Using the continuums hypothesis, we assume that all model variables are averaged
variables and continuous differentiable functions in space and time [24]. For large-scale
sea ice simulations, the continuum’s hypothesis is a suitable approximation. In the
original work of Hibler, the size of a grid cell is about 100 km2, whereas the size of an ice
floe ranges between square meters and square kilometers. It needs to be investigated if

9



2. The viscous-plastic sea ice model

the continuum’s hypothesis is suitable for simulations at high spatial resolutions up to
1 km.
The mean horizontal properties of sea ice are modeled by three variables, the ice

concentration A which has already been introduced, the mean ice thickness H and the
horizontal ice velocity v. The mean ice thickness H describes the average ice volume per
control area Ar. The horizontal ice velocity v is a two-dimensional vector, which models
the sea ice velocity in x and y direction.

2.2. Sea ice momentum equation
Sea ice dynamics are taking place in a three-dimensional frame. As the vertical sea ice
velocity is smaller than the horizontal ice velocity, the motion of sea ice in a large-scale
model is described in two dimensions. To derive the two dimensional viscous-plastic
sea ice model [25], we begin with presenting the three dimensional sea ice momentum
equation.

ρice(∂tṽ + ṽ · ∇ṽ) = div σ̃σσ + F̃c + F̃H , (2.1)

with the sea ice density ρice, the three-dimensional ice velocity ṽ and three-dimensional
symmetric stress tensor σ̃σσ. The Coriolis force is denoted by F̃c and the ocean tilt by
F̃H , which stems from the changing sea surface height. As the horizontal sea ice velocity
dominates the vertical velocity, we integrate through the ice thickness H and obtain∫ H(x,y)

0
ρice(∂tṽ + ṽ · ṽ) dz =

∫ H(x,y)

0
div σ̃σσ + F̃c + F̃H dz.

The surface boundary conditions τatm and τocean(v) are included by integration through
the stress tensor σ̃σσ. A detailed derivation of the stresses is given in the textbook of
Leppäranta [58].
In two dimensions the motion of sea ice obeys

ρiceH(∂tv + v · v) = divσσσ + Fc+ FH + τatm + τocean(v). (2.2)

We are referring to the horizontal sea ice velocity by v and to the stress tensor by σσσ.
Following Hibler and Zhang [111] the advection term v · ∇v can be neglected due to
scaling properties. The internal ice forces are modeled by divσσσ. All body forces acting
on sea ice are included in F ,

F = Fc + FH + τatm + τocean(v),

where Fc is the Coriolis force, FH the force to the surface height, τatm the atmospheric
stress and the τocean oceanic stress.

Particularly, the Coriolis force is given by

Fc = −ρiceHfeeer × v,
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where eeer is the unit vector normal to the surface and f is the Coriolis parameter. The
force arising from changing sea surface tilt is described by FH = ρiceHg∇Hs, where g
is the acceleration due to gravity and Hs describes the sea surface height. In order to
express the surface height with the Coriolis term, Coon [12] introduced the following
approximation

FH ≈ mfeeer × vocean,

where vocean is the ocean current. In [12] Coon modeled the effect of atmospheric and
oceanic boundary layer on ice dynamics as

τatm = Catmρatm‖vatm‖2Bθatm(vatm),
τocean(v) = Coceanρocean‖vocean − v‖2Bθocean(vocean − v),

where by ‖ · ‖2 we denote the Euclidean norm. Catm and Cocean are the air and water
drag coefficients, ρatm and ρocean are the densities and vatm describes the atmospheric
flow. The air and water stress is turned at an angle θatm with the rotation matrix

Bθ =
(

cos θ sin θ
sin θ cos θ

)
.

The model can be further simplified by assuming zero turning angles such that Bθ =
I [25]. Expressing the terms in equation (2.2) explicitly, the momentum equation reads
as

ρiceH∂tv = divσσσ − ρiceHfeeer × (v− vocean) + τatm + τocean(v). (2.3)

In this two-dimensional framework, sea ice is modeled as a compressible material. The ice
thickness can be interpreted as a material behavior of ice and not as the third dimension
[13].

2.3. Balance laws
In the following, we derive the balance laws, which advect the mean ice thickness H and
the ice concentration A in time. Let V (t) be a two-dimensional domain. The ice mass
is given as

mice =
∫
V (t)

ρiceH.

Assuming only mechanical effects, the sea ice mass should be conserved

Dtmice = 0,

where the total derivative is given by Dt = ∂+v ·∇. As the ice density ρice is constant in
time, the conservation of mass is equivalent to the conservation of the mean ice thickness
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H [58]. Applying Reynolds transport theorem [80] and assuming continuity of H and v,
we get

∂tH + div(Hv) = 0. (2.4)

Following Kuzmin [46, Theorem 3.10], we find that equation (2.4) has a positive solution.
The balance law for ice concentration A is derived simultaneously.

∂tA+ div(Av) = 0, A ≤ 1. (2.5)

The restriction A ≤ 1 is always fulfilled [25] by including thermodynamic growth SH
and SA at the right hand side of equation (2.4) and (2.5). A description of the thermo-
dynamics is given by Hibler in [25]. As this thesis focuses only on sea ice dynamics we
neglect the thermodynamics in our analysis and we set SH = SA = 0.

2.4. Sea ice rheology
The sea ice motion described by equation (2.3) is driven by external forces F and internal
forces divσσσ. We already discussed the external forces in Section 2.2. The internal forces,
described in Section 2.4.1, are modeled by the stress tensor σσσ(ε̇εε), which is a function of
the strain rates ε̇εε. The strain rates, presented in Section 2.4.2, are part of the kinematics,
while the stress tensor is part of the dynamics. The relation between kinematics and
dynamics is given by the sea ice rheology and described in Section 2.4.3. The presentation
of this Section follows Harder [24] and Leppäranta [58].

2.4.1. Internal forces
The simplest sea ice models consider free ice drift and neglect the internal forces, divσσσ =
0. In areas with compact ice cover, the free drift assumption is however not physical [24].
During the Arctic Ice Dynamics Joint Experiment in the 1970s, various measurements
on sea ice dynamics haven taken place. Since then, the internal forces are included in
sea ice models by divσσσ. The two-dimensional symmetrical stress tensor is given as

σσσ =
(
σσσ11 σσσ12
σσσ12 σσσ22

)
.

The stress tensor can be transformed to its principal components, the eigenvalues, by

σ̃σσ =
(
σ̃σσ1 0
0 σ̃σσ2

)
= Q

(
σσσ11 σσσ12
σσσ12 σσσ22

)
QT , (2.6)

with the transformation matrix Q and angle θ.

Q =
(

sin(θ) cos(θ)
− sin(θ) cos(θ)

)
, θ = 1

2 tan−1 ( 2σσσ12
σσσ11 − σσσ22

)
.
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A detailed derivation can be found in [35] and [97]. Finally, we obtain the principal
components as

σ̃σσ1 = σσσ11 + σσσ22
2 +

√(σσσ11 − σσσ22
2

)2
+ σσσ2

12, (2.7)

σ̃σσ2 = σσσ11 + σσσ22
2 −

√(σσσ11 − σσσ22
2

)2
+ σσσ2

12. (2.8)

The eigenvalues contain information about the frame independent properties of the ma-
terial. To analyze the stress tensor, the following two invariants are introduced,

σσσI = 1
2(σ̃σσ1 + σ̃σσ2) = 1

2(σσσ11 + σσσ22),

σσσII = 1
2(−σ̃σσ1 + σ̃σσ2) =

√
(σσσ11 − σσσ22

2 )2 + σσσ2
12 =

√
−detσσσ′,

(2.9)

where σσσI is the average normal stress - also called volume stress - and σσσII describes the
shear stress [84, 97]. A useful relation for analysis is the splitting of the stress tensor in
its trace tr(σσσ) and the trace-free deviatoric part σσσ′.

σσσ = 1
2 tr(σσσ) + σσσ′. (2.10)

We apply this property when deriving the theoretical properties of the sea ice model in
Section 5.1.

2.4.2. Kinematics
The theory of kinematics describes the movement of ice in space and time, relative to a
frame system, without discussing the forces generating this movement. Among others,
a good introduction to continuums mechanics can be found in the textbook of Richter
[80]. The strain rate tensor ε̇εε is given as

ε̇εε =
(
ε̇εε1,1 ε̇εε1,2
ε̇εε2,1 ε̇εε2,2

)
,

with ε̇εεi,j = 1
2{∂xj vi + ∂xivj} and x = (x, y) ∈ Ω ⊂ R2. As ε̇εε is symmetric, we transform

the strain rate tensor into its principal axis, analogous to the transformation of the stress
tensor (2.6),

ε̇εεI = ε̇1 + ε̇2 = ε̇εε1,1 + ε̇εε2,2 = tr(ε̇εε) = div v,

ε̇εεII = ε̇1 − ε̇2 =
√

(ε̇εε1,1 − ε̇εε2,2)2 − 4ε̇εε21,2 = 2
√
− det ε̇εε′.

(2.11)

The divergence of the ice is described by ε̇εεI and models a compression or expansion of
the ice, as for a fixed point in time,∫

V
div v dx dy =

∫
∂V
n · v.
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2. The viscous-plastic sea ice model

The second strain invariant ε̇εεII is the shear deformation. A rate of the total deformation
is given by |ε̇εε| =

√
ε̇εε2I + ε̇εε2II [24]. Another useful representation of strain tensor is the

decomposition in its trace tr(ε̇εε), and trace-free deviatoric part ε̇εε′,

ε̇εε = ε̇εε′ + 1
2 tr(ε̇εε). (2.12)

This relationship is used by deriving the properties of the sea ice momentum equation
in Section 5.1.

2.4.3. The viscous-plastic rheology
Following Hibler [25], we assume that ice does not have any elastic response. We use a
Reiner-Rivlin fluid model to express the relation of σσσ and ε̇εε

σσσ = αI + βε̇εε+ γε̇εε2,

where α, β, γ depend on state variables and strain rate invariants [58]. Following Hibler
[104], the γ term is neglected and a general constitutive law is assumed

σσσ = ζ tr(ε̇εε)I + 2ηε̇εε′ − P

2 , (2.13)

where P is the ice strength that models the maximum stress due to compression. The
relation of η to ζ is constant. Further, it holds that η

ζ > 1. To achieve the viscous-plastic
constitutive law, it is missing to determine the viscosities η and ζ in (2.13). In the plastic
state the viscosities are modeled by a normal flow rule. The latter relates the strain rates
to the stresses that are prescribed by a yield curve. In the viscous regime the viscosities
are chosen as constant values. A detailed derivation of this relationship is given below.

The yield curve Many sea ice models assume that sea ice follows a plastic rheology
[58]. To illustrate the plastic behavior of a material, we first analyze a one-dimensional
case. In Figure 2.1, we present a one-dimensional stress model. Here, the yield function
consists of two points. One stress state models compression (−σσσ?) and the other stress
state describes tension of ice (σσσ?). There is no change in strain up to the critical stress.
If the strain rates are not zero, the material is in a continual state of yielding. In two
dimensions the yield function consists of a curve. Here, the ice is yielding, e.g., is in a
plastic state if the stress states are lying on the curve. In the principal stress state the
yield function is determined by

F (σσσI ,σσσII) = 0, (2.14)

where σσσI = 1
2(σ̃σσ1 + σ̃σσ2) is the stress due to compression and tension, and σσσII = 1

2(−σ̃σσ1 +
σ̃σσ2) describes the shear stress.

Based on observations the yield curve must fulfill the following requirements [58]. Sea
ice is isotropic, thus the yield curve should be symmetric throughout the axis σ̃σσ1 = σ̃σσ2.
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σσσ

ǫ̇̇ǫ̇ǫ

σσσ∗

−σσσ∗

Figure 2.1.: One dimensional ideal plastic state.

Sea ice has almost no tensile strength, e.g, the yield curve should contain only a few
combinations of (σ̃σσ1, σ̃σσ2) > 0. Generally spoken, the strength describes the limit at
which sea ice is in a plastic flow. The compressive strength in sea ice is higher than the
shear strength, thus the extension of the yield curve should be larger in the direction of
σσσI than in the σσσII -axis.

Hibler [25] assumed that the yield curve has the form of an ellipse with the eccentricity
e = 2. The eccentricity is an empirical value and still a subject of dispute, as well as
the whole form of the yield curve. The ellipse is chosen for mathematical convenience
as it agrees with the observed behavior of sea ice. Some authors suggest using a Mohr-
Coulomb, a teardrop or a modified Coulomb yield curve, [26, 58].
The compressive ice strength

P = P ?H exp(C(1−A))

with constants P ? and C, determines the length of the major axis of the ellipse. The
compressive strength decreases, when the ice thickness H and ice concentration A are
decreasing. In this case, the ellipse gets smaller without changing the eccentricity and
the ratio of the minor axis, compare the blue ellipse to the green ellipse in Figure 2.2.
Considering Figure 2.2, pure shear is modeled in point S, where the gradient is parallel to
the σσσI -axis. The maximal compression with value P is given in point C. Pure divergence
is received in D (in the origin of the graph) as σσσI = σσσII = 0.

Following Hibler [25], the elliptic yield curve is given by

F (σσσI ,σσσII) =
(
σσσI + P

2
)2

+
(
eσσσII

)2
−
(P

2
)2
. (2.15)

Normal flow rule To connect the strain rates to the stress, a normal flow rule is
assumed, which can be motivated as follows: For simplicity, we write σσσ = (σσσI ,σσσII).
Using (2.14), we obtain F (σσσ) = 0. In an ideal plastic state, a change in stress state dσσσ
must generate a stress state which lies again on the yield curve, F (σσσ + dσσσ) = 0. We
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D

C P/2

S

S

σIσIσI

σIIσIIσII

σ̃2σ2σ2

σ̃1σ1σ1

Figure 2.2.: Two-dimensional yield curve in principal stress space. The length of the
major axis is determined by the compressive strength P. Pure divergence
is obtained in D (in the origin of the graph), whereas pure convergence is
modeled in C and pure shear is obtained in S.

expand this expression to

F (σσσ + dσσσ) = F (σσσ) + ∂F

∂σσσ
dσσσ +O(|dσσσ|2).

and obtain, combining all properties,
∂F

∂σσσ
dσσσ = 0.

By Drucker’s postulate for stable inelastic materials, it holds that dσσσdε̇εε ≥ 0 [58]. As we
assume ideal plastic flow dσσσ = 0 if dε̇εε ≥ 0, thus we get dσσσdε̇εε = 0. Therefore, the normal
∂F
∂σσσ to the yield surface and the strain are perpendicular to the surface. This relationship
is shown in Figure 2.3. It is assumed that the stress does not depend on the level of
strain rate, but on the direction of the strain rate. This property is given by the normal
flow rule, which reads as

ε̇εεi = γ∂iF (σσσI ,σσσII), i = I, II,

with a positive parameter γ, the flow rate. Using the flow rule, we derive the yield curve
(2.15) and get

ε̇εεI = γ2(σσσI + P

2 ), ε̇εεII = γ2e2σσσII . (2.16)

To determine γ, we reformulate (2.16) to

σσσI = ε̇εεI
2γ −

P

2 , σσσII = e−2

2γ ε̇
εεII , (2.17)
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ǫ̇̇ǫ̇ǫII

ǫ̇̇ǫ̇ǫI

−P
2

σIσIσI

σIIσIIσII

Figure 2.3.: Two-dimensional yield curve. The change of strain in the plastic state is
only possible in normal direction. The stress increment can only change in
tangential direction.

and insert σσσI , σσσII in the yield curve (2.15),
( ε̇εεI

2γ
)2

+
(e−1ε̇εεII

2γ
)2

=
(P

2
)2
.

Finally, we obtain

γ = ∆(ε̇εε)
P

, ∆(ε̇εε) :=
√
ε̇εε2I + ė−2εεε2II . (2.18)

Using (2.9) and (2.11), we reformulate the constitutive law (2.13) in stress and strain
invariant coordinates to

σσσI = ζε̇εε1 −
P

2 , σσσII = ηε̇εεII . (2.19)

By comparing (2.19) to (2.17), we find that the constitutive law is connected to the yield
curve if the viscosities are chosen as

ζ = 1
2γ , η = e−2

2γ . (2.20)

Doing so, the constitutive law allows exclusive stress states that lie on the yield curve.
Thus, sea ice is modeled as a plastic material.

Viscous regime Assuming that sea ice is in a plastic state we observe that the viscosities
(2.20) are degenerating, η, ζ →∞, if ∆(ε̇εε) (2.18) is going to zero for ε̇εε→ 0. Besides the
numerical problems, the physical assumption that ice tends to display plastic behavior
for arbitrary small deformations is not suitable. Thus, a description is needed for the
limiting case ε̇εε → 0. First, Coon et al. [13] suggested modeling sea ice as an elastic
material for ε̇εε→ 0. As the elasticity assumption is numerically costly, Hibler introduced
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2. The viscous-plastic sea ice model

a viscous closure by assuming that sea ice shows viscous behavior for ε̇εε→ 0 [25]. Doing
so, he limited ∆(ε̇εε) by

∆(ε̇εε) ≥ ∆min := 2 · 10−9s−1. (2.21)
The limitation of ∆(ε̇εε) is related to maximal values for the viscosities η and ζ and avoids
the degeneration for ∆(ε̇εε)→ 0. For ∆(ε̇εε) > ∆min sea ice is modeled as a plastic material,
whereas for ∆(ε̇εε) ≤ ∆min sea ice behaves like a viscous material with constant viscosities.
In the viscous state, the model generates stress states that are lying in the inside of the
ellipse such that F (σσσI ,σσσII) < 0.

The full viscous-plastic rheology reads as

σσσ = P

2
( tr(ε̇εε)I

max(∆(ε̇εε),∆min) + 2e−2 ε̇εε′

max(∆(ε̇εε),∆min) − I
)
. (2.22)

Replacement closure In the limiting case ∆(ε̇εε)→ 0, the internal stresses are not zero
as

lim
ε̇εε→0

σσσI = −P2 .

This is avoided by a so-called replacement closure [45]. The idea of the replacement
closure is to replace the ice strength by an ideal plastic ice strength, Pp

P = rp(∆(ε̇εε))Pp,

with

rp(∆(ε̇εε)) =
{

1, if∆(ε̇εε) ≥ ∆min

0, else.

For a smooth and differentiable transition between plastic and viscous regime, Kreyscher
et al. [45] replaced ∆(ε̇εε) by

rp(∆(ε̇εε)) = ∆(ε̇εε)
∆(ε̇εε) + ∆min

.

To be closer to the original non-smooth proposal of Hibler (2.22), Lemieux and Tremblay
[53] introduced the viscosities as

η = ηmax tanh( Pp
2∆(ε̇εε)ηmax

),

where Pp is chosen similar as in Kreyscher et al. [45]. We use a similar approach as
Kreyscher et al. [45] to smooth the transition from the viscous to the plastic regime and
modify ∆(ε̇εε) by

∆T (ε̇εε) :=
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min, (2.23)

where A : B := ∑
ij AijBij is the inner product of two tensors. However, we do not use

a replacement pressure for the limiting case ∆(εεε)→ 0. For a better readability, we will
write ∆(ε̇εε) instead of ∆T (ε̇εε), if it is not strictly necessary to distinguish between ∆(ε̇εε)
and ∆T (ε̇εε).
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2.5. Complete system of equations
Let Ω ⊂ R2 be the spatial domain and I = [0, T ] ⊂ R be the time interval of interest.
The boundary of the domain is denoted by ∂Ω and the inflow part of the boundary by
Γin := {(x, y) ∈ ∂Ω|n · v < 0}, where n is the outward unit normal vector. We search
v(x, y, t) ∈ R2, A(x, y, t) ∈ [0, 1] and H(x, y, t) ∈ [0,∞) such that

ρiceH (∂tv + fceeer × (v− vocean))− div σσσ − τττocean(v)− τττatm = 0, (2.24)
v = v0 on {0} × Ω, v = 0 on I × ∂Ω. (2.25)

∂tA+ div (vA) = 0, A = A0 on {0} × Ω, A = Ain on I × Γin

∂tH + div (vH) = 0, H = H0 on {0} × Ω, H = H in on I × Γin
(2.26)

with the viscous-plastic rheology

σσσ = 2ηε̇εε′ + ζ tr(ε̇εε)I − P

2 I,
(2.27)

and the viscosities

η = e−2ζ, ζ = P

2∆(ε̇εε) , ∆(ε̇εε) :=
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min. (2.28)

The ice strength is modeled as

P = P ?H exp
(
− C(1−A)

)
.

The forcing from ocean and atmosphere is given as

τocean(v) = Coceanρocean‖vocean − v‖2(vocean − v),
τatm = Catmρatm‖vatm‖2(vatm),

where by ‖ · ‖2 we denote the Euclidean norm. All constants are defined in Table 2.1.

2.5.1. Variational formulation

The presentation of the variational formulation is based on the paper of Mehlmann
and Richter [70]. As we discretize the sea ice model with a finite element approach, a
variational formulation of the set of equations is needed. In the following, we present
the sea ice model in a variational formulation and discuss its similarities to well known
problems.

We denote the usual Sobolev space of L2(Ω)-functions with first weak derivatives in
L2(Ω) and with trace zero on the boundary Γ by H1

0 (Ω). We prescribe homogeneous
Dirichlet conditions v = 0 on the whole boundary Γ := ∂Ω.
Then, the velocity is found in

v(t) ∈ V,
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Parameter Definition Value
ρice sea ice density 900 kg/m3

ρatm air density 1.3 kg/m3

ρocean water density 1026 kg/m3

Catm air drag coefficient 1.2 ·10−3

Cocean water drag coefficient 5.5 ·10−3

fc Coriolis parameter 1.46 ·10−4 s−1

P ? ice strength parameter 27.5 ·103 N/m2

C ice concentration parameter 20
e ellipse ratio 2

Table 2.1.: Physical parameters of the momentum equation.

where V ⊂ H1
0 (Ω)2 is a function space with adequate regularity for the viscous-plastic

rheology. The ice height and the ice concentration are found in

H(t) ∈ VH(t) := {φ ∈ L2(Ω), v(t) · ∇φ ∈ L2(Ω), φ ≥ 0 a.e.}, ∂tH(t) ∈ L2(Ω),
A(t) ∈ VA(t) := {φ ∈ L2(Ω), v(t) · ∇φ ∈ L2(Ω), 0 ≤ φ ≤ 1 a.e.}, ∂tA(t) ∈ L2(Ω).

To derive the variational formulation, we multiply the momentum equation with φφφ ∈ V
and apply partial integration. Further, the balance laws are multiplied with φH , φA ∈
L := L2(Ω) and integrated over Ω.
Finally, for all t ∈ [0, T ] we find v, H and A such that

(ρiceH∂tv,φφφ) + (ρiceHfceeer × (v− vocean),φφφ)− (τττatm,φφφ)
−(τττocean(v),φφφ) + (σσσ(v, H,A),∇φφφ) = 0 ∀φφφ ∈ V,

(∂tH + v · ∇H +H div(v), φH) = 0 ∀φH ∈ L,
(∂tA+ v · ∇A+A div(v), φA) = 0 ∀φA ∈ L,

(2.29)

whereby (·, ·) we denote the L2- inner product on Ω. The constraints H(x, y, t) ≥ 0 and
A(x, y, t) ∈ [0, 1] are embedded in the trial-spaces VA and VH and must be realized by
a projection of the solution.
Note that until now, there are no existence and regularity results on the viscous-

plastic (VP) sea ice model. The viscous-plastic rheology in the variational formulation
has similarities to the regularized p-Laplacian(

µ(∆2
min + |∇u|2)

p−2
2 ∇u,∇φ

)
= (f, φ),

which has a unique solution for p > 1. However, the limit case p → 1 is not covered
by theory [102]. Another similarity to the viscous plastic rheology is found with the
time-dependent minimal surface problem, see [60] and Chapter 6 and Chapter 7 of [2].
Here, for the scalar equation

(∂tu, φ) +
(
(1 + |∇u|2)−

1
2∇u,∇φ

)
= (f, φ)
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the existence of solutions in the space u ∈W 1,1(Ω) is shown. We believe that this result
can be extended to the sea ice momentum equation assuming that A,H are smooth with
A,H > 0, such that the operator does not degenerate. The assumption is motivated
by the numerical treatment of the sea ice model. Here it is common to apply a par-
titioned solution approach e.g., in [25, 30, 53, 96] such that the momentum equation
and the balance laws are decoupled in time and the momentum equation is solved with
smoothed A,H. The major difficulty in proofing existence and uniqueness for the sea
ice momentum equation is to extend this scalar result outlined above to a system of
equations.

2.5.2. Sea ice model in a non-dimensional framework

For a better evaluation of the numerical discretization, we derive a non-dimensional
form of the sea ice model. By L we define a characteristic horizontal length scale, by
G a typical ice thickness scale and by T a characteristic time scale. The length and
the thickness is given in meters, whereas the time is chosen in seconds. We define the
non-dimensional quantities

t̄ := t

T
, x̄ := x

L
, H̄ := H

G
.

It holds that

div(·) = L−1d̄iv(·), ∂t = T−1∂̄t.

Then, the non-dimensional velocity v̄ and the strain rates are given by

v = L

T
v̄, ∂tv = L

T 2∂t̄v̄, ε̇εε = T−1¯̇εεε.

We begin with transforming the sea ice rheology. The nonlinearity

∆T (ε̇εε) :=
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min

transforms to

∆T (ε̇εε) = T−1∆̄T (¯̇εεε), ∆2
min = T−2∆̄2

min, ∆̄T (¯̇εεε) =
√(

2e−2¯̇εεε′ : ¯̇εεε′ + tr(¯̇εεε)2)+ ∆̄2
min.

The ice strength is given as

P (A,H) = P ?H exp(−C(1−A)) = P ?GH̄ exp(−C(1−A)).

Thus, the viscous-plastic sea ice rheology,

σσσ = P

2∆T (ε̇εε)
(

tr(ε̇εε)I + 2e−2ε̇εε′ −∆T (ε̇εε)I
)
,
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2. The viscous-plastic sea ice model

is transformed to

σσσ = P ∗G

2 σ̄σσ,

with

σ̄σσ := 1
∆̄T (¯̇εεε)

H̄ exp(−C(1−A))
(
tr(¯̇εεε)I + e−2¯̇εεε′ −∆T (¯̇εεε)I

)
.

We proceed with transforming the momentum equation and obtain

ρiceH∂tv = ρiceGH̄L

T 2 ∂tv̄, (2.30)

ρiceHfc × (v− vocean) = GH̄L

T
fc × (v̄− v̄ocean), (2.31)

div(σσσ) = P ∗G

2L div σ̄σσ, (2.32)

τττocean(v) = L2

T 2 ρoceanCocean ‖v̄ocean − v̄‖2(v̄ocean − v̄)︸ ︷︷ ︸
=:τ̄ττocean(v̄)

, (2.33)

τττatm = L2

T 2 ρatmCatm ‖v̄atm‖2v̄atm︸ ︷︷ ︸
=:τ̄ττatm

, (2.34)

with v̄ocean = T
Lvocean and v̄atm = T

Lvatm.
By scaling (2.30)-(2.34) with ρiceGL/T 2, we obtain the non-dimensional momentum

equation as

H̄(∂t̄v̄ + Tfc × (v̄− v̄ocean))− Caτ̄ττatm − Coτ̄ττocean(v̄)− Cr div(σ̄σσ) = 0, (2.35)

with the constants

Co := ρoceanCoceanL

ρiceG
, Ca := ρatmCatmL

ρiceG
, Cr := P ?T 2

2ρiceL2 .

Here, Cr describes the ratio between inertia and internal stress, Co and Ca the ratio
between inertia and external forcing. The balance equations are given as

G

T
[∂t̄H̄ + v̄ · ∇̄H̄ + H̄d̄iv(v̄)] = 0,
1
T

[∂t̄Ā+ v̄ · ∇̄Ā+Ad̄iv(v̄)] = 0.

Finally, we choose G = 1 m, L = 106 m and T = 103 s, and obtain, with literature values
for P ?, the densities and the drag coefficients,

Cr ≈ 1.5 · 10−5, Co ≈ 6270, Ca ≈ 1.73.
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2.6. Model problem

Cyclone at t = 0 days Anticyclone at t = 8 days Water stress

Figure 2.4.: Forcing by wind and water. The center of the wind field moves in time. The
water forcing is stationary.

As a typical wind velocity is factor 10 ∼ 100 higher than the ocean velocity, the impact
of the atmospheric and ocean forcing is comparable. Further, note that

∆̄min = T∆min = 2 · 10−6 (2.36)

causes substantial internal stress. We omit the bars ·̄, if it is not strictly necessary to
distinguish between dimensional and non-dimensional quantities. Furthermore, we use
the dimensional form of the equations for better readability.

2.6. Model problem
In this section, we start with introducing a model problem which will be used as a test
case to evaluate the novel numerical methods. We present the numerical solution of
the problem on different spatial resolutions. The presentation of the model problem is
similar to the presentation in our paper [70].
The model problem is designed to have large deformations at the beginning of the

simulation. A time-depending wind forcing avoids stationary solutions. We present a
simple analytical wind and ocean forcing that makes the model problem easy to repro-
duce. Further, we consider the quadratic domain Ω = (0, 500 km)2 and measure the time
t in days. Similar to Hunke [30], we prescribe a circular steady ocean current

vocean = v̄maxocean

(
2y/500 km− 1
1− 2x/500 km

)
, (2.37)

where the maximal ocean velocity is given as

v̄maxocean = 0.01 m s−1.
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2. The viscous-plastic sea ice model

t = 1 days t = 2 days t = 4 days

t = 6 days t = 7 days t = 8 days

Figure 2.5.: Ice velocity vector field (in m s−1) and ice velocity streamlines. Evaluating
the test case at t = 1, 2, 4, 6, 7, 8 days using a step size of k = 0.5 h and a
2 km mesh.

The wind field is diagonally passing from the midpoint to the edge or the edge to the
midpoint of the computational domain,

vatm(t) = v̄maxatm

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x−mx(t)
y −my(t)

)
ω(x, y).

The wind forcing alternates between cyclonic to anticyclonic within a period of 4 days.
The maximum wind velocity (in m s−1) is given by

v̄maxatm (t) = 15 m s−1

− tanh
(

(4−t)(4+t)
2

)
t ∈ [0, 4],

tanh
(

(12−t)(t−4)
2

)
t ∈ [4, 8].

The center of the cyclone is a function of time and reads as

mx(t) = my(t) =
{

250 km + 50t km/day t ∈ [0, 4],
650 km− 50t km/days t ∈ [4, 8].

Divergence and convergence angles of the anticyclone and the cyclone are set to 9◦ and
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2.6. Model problem

mesh size 8 km mesh size 4 km mesh size 2 km

Figure 2.6.: Plot of η in a logarithmic scale to the basis 10. Evaluating the test case at
t = 2 days using a time step size of k = 0.5 h. On a 2 km mesh the viscosities
vary by nearly 10 orders of magnitude on very small spatial scales.

18◦, which correspond to

α =
{

90◦ − 18◦ = 72◦ t ∈ [0, 4],
90◦ − 9◦ = 81◦ t ∈ [4, 8].

To reduce the wind strength away from the center, we choose ω(x, y) as

ω(x, y) = 1
50 exp

(
− r(x, y)

100 km

)
, r(x, y) =

√
(x−mx(t))2 + (y −my(t))2.

Snapshots of the wind and the water forcing are shown in Figure 2.4.
As initial condition, we use zero velocity, a constant ice concentration A(0, x, y) = 1

and a small variation of the ice height at H(0, x, y) = 0.3 m,

v(0, x, y) = v0(x, y) := 0 m/s, A0 := A(0, x, y) = 1,

H(0, x, y) = H0(x, y) := 0.3 m + 0.005 m
(

sin
(

x

2 km

)
+ sin

(
y

2 km

))
.

At the boundary of the domain we apply a no-slip condition for the velocity

v = 0 on ∂Ω.

In Figure 2.5, we show snapshots of the ice velocity field at t = 1, 2, 4, 6, 7, 8 days.

Numerical solution with increasing spatial resolutions In this thesis, we analyze the
model problem at different mesh resolutions,

500km
26 ≈ 7.81 km, 500km

27 ≈ 3.91 km, 500km
28 ≈ 1.95 km.
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2. The viscous-plastic sea ice model

For simplicity, we refer to these meshes as 8 km, 4 km and 2 km. Further, we use time
steps of

k = 4000 sec ≈ 1 h, k = 2000 sec ≈ 0.5 h, k = 1000 sec ≈ 0.25 h.

Figure 2.6 shows the bulk viscosity η in logarithmic scale to the basis 10 under mesh
refinement. The values of η vary over nearly 10 magnitudes. As the mesh is refined,
the values of η change more rapidly. This effect is most visible on the 2 km mesh. The
increasing variation of viscosities on high spatial resolutions cause difficulties for the
nonlinear solvers and makes the momentum equation very hard to solve. In applications,
where these small-scale patterns are of interest, robust solvers are required.
To evaluate the discretization of the model problem we follow Lemieux and Trem-

blay [55] and show the states of stress in the stress-invariant space (σI
P , σII

P ) with

σI = ζε̇εεI −
P

2 , σII = ηε̇εεII ,

ε̇εεI = v1
x + v2

y, ε̇εεII =
√

(v1
x − v2

y)2 + (v1
y + v2

x)2.

Figure 2.7, shows the stress states in the stress-invariant space for different mesh levels.
Details on the ellipse are given in Section 2.4.3. The maximal residual of equation (2.14)
is bounded by 5 ·10−6. While the maximal residual does not increase on fine meshes, the
number of nodes with high residual is slightly enlarged. On a 2 km mesh 1.7% of stress
states, on a 4 km mesh 1.4% of stress states and on a 8 km mesh 0.8% of stress states
lying outside of the elliptical curve. Following Lemieux et al. [57] an approximation is
considered to be a solution of the viscous-plastic sea ice model if the following conditions
are fulfilled:

1 ≤σσσI
P
≤ 0 for at least 99% of the σσσI ,

0 ≤σσσII
P
≤ f(σσσI

P
) + 0.005, with f(σσσI

P
) = 0.25

√
−(2σσσI

P
+ 1)2 + 1.

We fulfill both criteria for every grid point on all mesh levels.

Solution of the nonlinear and linear systems In every time step, we solve the nonlinear
momentum equation until either a global residual condition is fulfilled

‖R(v(l))‖ ≤ tolg, tolg := 10−13,

or until a relative reduction of the residual with respect to the initial residual is obtained

‖R(v(l))‖ ≤ ‖R(v(0))‖ · γnl, γnl := 10−4.

The residual is defined in equation (5.23) in Section 5.2. The linear problems A[v(l−1)]w =
b arising within the Newton iteration are approximated with the tolerance tol := 10−4,

‖b−A[v(l−1)]w‖ ≤ tol‖b‖, tol := 10−4.
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Ellipse
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Figure 2.7.: States of stress in the stress-invariant space. Evaluating the test case at
t = 2 days using a time step size of k = 0.5 h.

We limit the number of nonlinear steps to 200 iterations and the number of linear steps to
50 iterations. The nonlinear system is solved with the operator-related damped Jacobian
method as described in Section 5.2. The solution of the linear system is computed with
a generalized minimal residual method with a multigrid preconditioner, see Section 5.4.
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Part II.

Discretization of the sea ice model
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3. Discretization

Following Lietaer et al. [61], the first finite element sea ice models were proposed after the
AIDJEX (Arctic Ice Dynamics Joint Experiment) expeditions in the 1970s. During the
1980s to the early 2000s finite elements have been applied in many idealized test cases,
as they can be easily used on unstructured meshes and complex geometries [61, 95]. In
the beginning of the 21 century some regional sea ice models based on a finite element
approach have been proposed by Kliem in [43], by Lietaer et al. in [61], and Yakovlev in
[109]. A global finite element sea ice model was published by Danilov and Timmermann
[95] in 2009. It was developed in connection with the Finite Element Sea Ice-Ocean Model
(FESOM) [96] and is based on the viscous-plastic (VP) rheology with an elastic-visco-
plastic (EVP) formulation developed by Hunke [31]. A short description of the EVP
formulation is given in Chapter 5. In FESOM, linear finite elements on an unstructured
triangular mesh are used for the spatial discretization of the ice velocity, ice thickness
and ice concentration. This was the first time that a global sea ice ocean simulation
was done on an unstructured mesh. In [95] the authors apply a Galerkin least squares
stabilization to the balance laws. In a second version Danilov and Timmermann [15] use
a flux-corrected Taylor-Galerkin scheme to discretize the balance laws. Furthermore, in
addition to the EVP formulation the authors implemented an implicit discretization of
the VP rheology in [15].
This chapter is structured as follows. In Section 3.1 we present a partitioned solution

approach to decouple the system consisting of a momentum equation and the balance
laws. Section 3.2 is devoted to spatial and temporal discretization of the momentum
equation. In Section 3.3 we discuss the discretization of the balance laws.

3.1. Partitioned solution approach

To discretize the viscous-plastic sea is model (2.29), we decouple the momentum equation
and the balance laws. This approach is standard to cope with the complex coupled
system and has been used, e.g., in [25, 30, 53, 96]. In [68], we considered a fully coupled
monolithic and implicit solution approach, where both equations are treated as one
unit. However, this procedure significantly increases the computational cost. In order
to enhance the stability of an approximation a time step of less than 9 seconds has been
applied. Therefore, the advantage of an implicit time stepping scheme, which allows
stable discretizations with arbitrary large time steps, is lost. Thus, we recommend to
decouple the system.
Let I = [0, T ] be the time span of interest. We start by introducing a discretization
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3. Discretization

of this period into sub intervals In = [tn−1, tn], where

0 = t0 < t1 < · · · < tN = T.

The time step size is denoted by kn := tn − tn−1. For simplicity, we assume that k ≡ kn
is constant for all steps. At time tn we denote the velocity, the ice concentration and
the thickness by vn, An, Hn. To solve the sea ice model (2.29) we choose the following
partitioned solution approach:

Algorithm 1 (Partitioned Solution Approach). Let v0, A0, H0 be the initial solutions
at time t = 0. Iterate for n = 1, 2, . . . , N :

1. Solve the balance equations based on the velocity vn−1

An−1 7→ An, Hn−1 7→ Hn.

2. Solve the momentum equations based on An and Hn

vn−1 7→ vn.

In contrast to Lemieux et al. [53], we first solve the momentum equations with An−1
and Hn−1 from the previous time step and then update the balance laws. As we con-
sider an explicit Taylor-Galerkin method for the approximation of ice thickness and ice
concentration the presented sequence is more natural. Lemieux et al. [53] observed that
using the ice strength P from the previous time step in the momentum equation can
cause instabilities, if larger time steps (∼ 1h) are applied. This instabilities especially
occur in boundary layers [33]. To avoid this instability, Lemieux et al. [53] developed an
iterated implicit-explicit time stepping scheme, where the update of ice thickness H and
ice concentration A is moved to the inside of the Newton iteration, that is used to solve
the momentum equation. This method is an approximation to a monotholitic solution
approach and is summarized in Algorithm 2:

Algorithm 2 (Iterated Implicit Solution Approach). Let v0, A0, H0 be the initial so-
lution at time t = 0. In each time step n = 1, 2, . . . , N we start the Newton itera-
tion with the initial solution v(0)

n = vn−1, H(0)
n = Hn−1, A(0)

n = An−1 and iterate for
l = 1, 2, · · · , lmax:

1. Update the balance laws based on the velocity v(l−1)
n

An−1 7→ An, Hn−1 7→ Hn.

2. Solve the Newton update of the momentum equation based on H(l)
n , A

(l)
n

v(l−1)
n 7→ v(l)

n .
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3.2. Discretization of the momentum equation

3. Stop, if the residual R(·) of the momentum equation is reduced by a certain toler-
ance γnl

||R(v(l)
n )|| ≤ γnl||R(v(0)

n )||.

In Section 6, we will compare this two algorithms on a pan-Arctic sea ice model. In
Section 7, we estimate the error contribution due to the decoupling in time, as described
in Algorithm 1.

3.2. Discretization of the momentum equation

We discretize the momentum equation using Rothe’s method [50], i.e, we begin by dis-
cretizing the momentum equation in time. After that we discretize the semi-discrete
problem in space.

Discretization in time To derive stable and accurate discretizations of the sea ice
deformations an implicit treatment of the momentum equation is recommended, see
Lemieux et al. [57] or Hibler and Zhang [111]. Ip et al. [34] pointed out that a fully
explicit time stepping scheme for the momentum equation with a VP rheology would
require a small time step of less than a second - even on a grid resolution as coarse as
100 km by 100 km. Therefore, they recommend to use an implicit time stepping scheme.
Like Lemieux and Tremblay [56], we use the simple implicit Euler time stepping method.
The implicit Euler scheme is a strongly A-stable method [101]. This property allows a
stable approximation with arbitrary large time steps. We note that due to the strong
nonlinearity of the momentum equation, the time step size of the implicit Euler method
is limited by the convergence of the nonlinear solver. We observe that the convergence
of the modified Newton scheme in Chapter 5 worsens for time steps larger than 1 h.
In Chapter 4, we find that the spatial discretization error is dominating the overall
numerical error, even on highly resolved meshes. Thus, the use of a first order implicit
Euler method is sufficient. It is known by theory that strongly A-stable methods have
a smoothing property [101], i.e., strongly A-stable methods allow for energy estimates
for all time steps sizes. Here, they are suitable to model processes with locally distorted
problem data, e.g., by measurement errors. The coupling of the balance laws and the
atmospheric and the oceanic forcing gives disturbed data in this application. This makes
the use of an implicit Euler method appropriate. The semi-discrete momentum equation
reads as

vn ∈ V : A(vn,φφφ) = F (φφφ), ∀φφφ ∈ V, (3.1)

for n = 1, ..., N with

A(vn,φφφ) :=(ρiceHnvn,φφφv) + k(ρiceHnfceeer × vn,φφφv)
+ k(σσσ(vn, Hn, An),∇φφφ)− k(τττocean(tn,vn),φφφ),

F (φφφ) :=(ρiceHnvn−1,φφφ) + k(τττatm(tn),φφφ) + k(fceeer × vocean,φφφ).
(3.2)
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3. Discretization

Discretization in space The presentation of the following is similar to Mehlmann and
Richter [70], where we first described the Newton-Multigrid framework for sea ice dy-
namics. For spatial discretization we use finite elements on a quadrilateral mesh. The
model is implemented in the software library Gascoigne [5].
We consider a domain with a polygonal boundary. By Ωh we introduce a triangulation

of Ω into open quadrilaterals K ∈ Ωh that fulfills the usual assumptions of structural-
regularity and shape-regularity, i.e., it holds

Ω̄ =
⋃

K∈Ωh

K̄, K ∩K ′ = ∅ ∀K 6= K ′ ∈ Ωh,

and ∂K ∩ ∂K ′ (for K 6= K ′) is either empty, a common vertex, a common edge of both
quadrilaterals or – to include hanging nodes – the edge of one and half of the other’s edge
[19]. For shape-regularity we request that all interior angles are close to 90◦. Further, we
assume bounded aspect-ratios of all elements. All these conditions must hold uniform
in h > 0 [19].

On Ωh we denote the function space of bi-linear (r=1) or bi-quadratic (r=2) continuous
and parametric finite elements.

V
(r)
h := {φ ∈ C(Ω̄), ∀K ∈ Ωh : φ

∣∣
K
◦ TK ∈ Qr}, Qr := span{xiyj , 0 ≤ i, j ≤ r},

where by TK : (0, 1)2 → K we describe the iso-parametric reference element map, i.e.,
TK ∈ [Qr]2 [80]. For the ice velocity we define the space

V v
h := (V ∩ V (r)

h )2, r = 1, 2.

For simplicity, we assume that the finite element meshes and therefore the finite element
spaces are static and do not change in time. However, an extension to changing meshes
is possible. The fully discrete system for n = 1, ..., N reads as

vn,h ∈ V v
h : A(vn,φφφh) = F (φφφh), ∀φφφh ∈ V v

h . (3.3)

To complete the spatial discretization we introduce the nodal basis

V v
h = span{φφφih, i = 1, ..., N},

and rewrite the solution of (3.3) as

vn,h =
N∑
i=1

vinφφφin,h,

where each coefficient vih is a vector in R2. After discretization in space a nonlinear
system of algebraic equations arises. In Section 5, we present the solver that is applied to
the discrete momentum equation. The nonlinearity will be treated by a Newton method
and the resulting linear systems of equations are approximated with the GMRES method
preconditioned by a multigrid method. Details follow in Section 5.

34



3.3. Discretization of the balance laws

3.3. Discretization of the balance laws
In analogy to the discretization of the momentum equation in Section 3.2, we discretize
the balance laws with Rothe’s method. In Section 3.3.1 we discuss the time discretization
of the balance laws and present the implicit Euler scheme, the Crank-Nicolson method
as well as a second order Taylor-Galerkin scheme as possible choices. For spatial dis-
cretization we use linear finite elements. As a direct finite element discretization of the
balance laws gives rise to instabilities, we discuss different stabilization schemes such
as artificial diffusion, a streamline upwind Petrov-Galerkin method and a flux limiter.
These different approaches are presented and discussed in Section 3.3.2. In the follow-
ing, we cover the discretization of the ice concentration, while the ice thickness can be
derived analogously.

3.3.1. Discretization in time and space
θ-scheme We start by introducing the θ-scheme for the temporal discretization of the
ice concentration. Thus, the time-discretized balance law (2.29) reads as

An − θk div(vnAn) = An−1 + (1− θ)k div(vn−1An−1).

The variational formulation is then given by

An ∈ VA :
(
An − θk div(vnAn), φ

)
=
(
An−1 + (1− θ)k div(vn−1An−1), φ

)
∀φ ∈ L.

(3.4)

For θ = 1 we obtain the implicit Euler scheme. The properties of the implicit Eu-
ler scheme have been discussed in Section 3.2. For θ = 1

2 we get the Crank-Nicolson
method. The latter is a second order scheme with no numerical diffusion and it main-
tains the energy of the system. Further, as an A-stable method it allows stable temporal
discretizations for large time step, but due to the missing strong A-stability the Crank-
Nicolson scheme can produce instabilities if the problem data is disturbed, see Turek
[101]. The extension to second order methods with better stability properties like the
stabilized Crank-Nicolson method presented by Luskin and Rannacher [65] or the frac-
tional step theta scheme discussed by Glowinski [22] is possible.

Due to the application of a partitioned solution approach the velocity vn is not at hand.
Thus, we use either the last time step, an extrapolation or we updated the velocity in
each Newton iteration as described in Algorithm 2.

Second order explicit Taylor-Galerkin method The underlying idea of a Taylor-Galerkin
method is to use a Taylor expansion of the quantities of interest and to substitute the
higher-order temporal derivatives with the spatial differential operator. The formal Tay-
lor expansion in time is given as (An = A(tn))

An = An−1 + k∂tAn−1 + k2

2 ∂ttAn−1 +O(k3). (3.5)
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To express the derivatives in (3.5), we insert the balance law given in (2.29).

∂tA = div(vA), ∂ttA = ∂t div(vA) = div (∂tvA+ v∂tA) = div (∂tvA)− div(v(div(vA)).

Using the explicit Euler method the temporal discretized balance law (3.4) is given as

1
k

(An −An−1) + div (vn−1An−1) = 0.

Thus, the ice concentration at time tn is approximated as

An =An−1 − k div (vn−1An−1)− k2

2 ∂t div (vn−1An−1)

=An−1 − k div (vn−1An−1)− k2

2 div (∂tvn−1An−1 + vn−1∂tAn−1)

=An−1 − k div (vn−1An−1)− k2

2 div (∂tvn−1An−1 − vn−1(div(vn−1An−1)))

=An−1 − k div (vn−1An−1)− k2

2 div (∂tvn−1An−1)

+ k2

2 div (vn−1(An−1 div vn−1)) + k2

2 div (vn−1(vn−1 · ∇An−1)) .

(3.6)

The extra term

k2

2 div (vn−1(vn−1 · ∇An−1)),

add stability to the system, since
(

div (vn−1(vn−1 ·∇An−1)), φ
)

=
(
v ·∇A,v ·∇φ

)
. We

follow Danilov and Timmermann [15] and neglect the term div(∂tvA) as the variation in
the velocity is small in time. We conclude with the approximative time stepping scheme

An = An−1 − k div (vn−1An−1) + k2

2 div (vn−1 div(vn−1An−1)).

.

For n = 1, ..., N the variational formulation is given as

An ∈ VA : (An, φ) = (An−1, φ)

− k(div (vn−1An−1), φ)− k2

2 (div(vn−1∇An−1),vn−1 · ∇φ) ∀φ ∈ L.
(3.7)

After every time step, the new solution An is projected onto the set of admissible func-
tions, such that An : Ω→ [0, 1]. The discretization of the balance equations is completely
explicit. For stability reasons, small time steps are required. Therefore, we apply a sub-
cycling procedure, such that every time step In = [tn−1, tn] is further split into

tn−1 = t0n−1 < t1n−1 < · · · < tSn−1 = tn, kS = k

S
,
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3.3. Discretization of the balance laws

where S ∈ N. To reach stability, we usually take S = 20 and get

An−1 = A
(0)
n−1 7→ A

(1)
n−1 7→ · · · 7→ A

(S)
n−1 = An.

Each sub-step is convected with the velocity prediction

v(l)
n−1 = S − l

S
vn−1 + l

S
vexn , l = 1, ..., S, (3.8)

vexn : = 2vn−1 − vn−2. (3.9)

Discretization in space Analogous to the spatial discretization of the ice velocity in
Section 3.2, the finite element spaces of the ice concentration is

V A
h := VA ∩ V (r)

h , r = 1, 2.

The fully discretized balance law is then given as

Anh ∈ V A
h : (An,h, φ) = (An−1,h, φh)− k(div (vn−1,hAn−1,h), φh)

− k2

2 (div(vn−1,hAn−1,h),vn−1,h · ∇φh) ∀φh ∈ Vh.
(3.10)

To complete the spatial discretization, we choose the nodal basis as

V A
h = span{φkA, k = 1, ...,MA}

and rewrite the solution of (3.7) as

An,h =
N∑
k=1

Aknφφφ
k
An,h

,

where Akn is a scalar. The ice thickness is discretized analogously.

3.3.2. Stabilization techniques for the balance laws
In this section, we compare different spatial stabilization techniques for the balance laws
(2.29). As we considered two different types of time discretization in Section 3.3.1,
we present distinct stabilization approaches. The θ-scheme is stabilized with residual
based methods. In particular, we present artificial diffusion and the streamline upwind
Petrov-Galerkin scheme. The Taylor-Galerkin method on the other hand is stabilized
with a flux limiter. A detailed introduction into stabilization methods can be found in
the books of Johnson [37] and Kuzmin [48].

We formulate the balance law discretized with a θ-scheme in time and finite elements
in space as(

An,h, φh
)
− θB(An,h, φh) =

(
An−1,h, φh

)
+ (1− θ)B(An−1,h, φh), (3.11)

with

B(An,h, φh) :=
(
vn,h · ∇An,h +An,h div(vn,h), φh

)
.

The ice thickness is discretized analogously.
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3. Discretization

Artificial diffusion A classical way to stabilize the bilinearform B(Ah, φh) is to add
artificial diffusion. We introduce

B̃(An,h, φh) = B(An,h, φh) + γc|vn,h|
h

2 (∇An,h,∇φh)︸ ︷︷ ︸
:=Sh(An,h,φh)

,

where γc is a positive constant and h the mesh size. This technique is non-consistent.
Due to the presence of the stabilization term, the approximation of the solution is only
first order accurate.

Streamline-upwind Petrov-Galerkin method (SUPG) The idea of the streamline-
upwind Petrov-Galerkin method is to add a diffusive term in direction of the streamlines.
Following Johnson [37], this is done by a modification in the test function

φ̃h = φh + δs(vh · ∇φh).

The stabilized balance law then read as(
An,h, φ̃h

)
− θkB(An,h, φ̃h) =

(
An−1,h, φ̃h

)
+ (1− θ)kB(An−1,h, φ̃h). (3.12)

The streamline-upwind Petrov-Galerkin method is consistent as(
∂tA, φ+ δs(v · ∇φ)

)
+B(A, φ+ δs(v · ∇φ)) = 0, ∀φ ∈ L.

We follow John et al. [36] and choose

δs = δd min
(

h

2θk‖vh‖
,

1
(1 + θk)‖ div(v)A‖

)
, (3.13)

with the time step size k, the mesh size h and θ = 1 for the implicit Euler scheme, and
θ = 1

2 for the Crank-Nicolson method. We simplified (3.13) to

δs = δd

(
k2θ‖vh‖

h
+ (1 + θk)‖div(v)A‖

)−1

, (3.14)

where δd is a positive constant.
Comparing the SUPG stabilization with the Taylor-Galerkin discretization derived

in Section 3.3.1, we find that the stabilizing second order term of the Taylor-Galerkin
discretization,

k2

2 (v · ∇A,v · ∇φ),

corresponds to the stabilizing part of the SUPG approach,

δs(v · ∇A,v · ∇φ), (3.15)

with the difference that the parameter δs of the SUPG method depends on the mesh
size h, whereas the stabilizing term of the Taylor-Galerkin scheme is related to the time
step size k.
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3.3. Discretization of the balance laws

Flux limiter We apply a flux limiter to stabilize the Taylor-Galerkin discretization
introduced in Section 3.3.1. The idea of flux correction is to combine a stable, but
not accurate low-order solution Alow with a possibly unstable, but accurate high-order
solution Ahigh. The low-order solution is computed with row-sum mass lumping. The
diffusive properties of row-sum mass lumping adds additional dissipation close to discon-
tinuities and sharp edges [47]. A detailed introduction into flux-limited Taylor-Galerkin
methods is given in the book of Kuzmin [48].
First, we define the high-order solution as the pure Taylor-Galerkin approximation

of (3.7)
MAhigh

n = MAn−1 + kB(vn−1)An−1, (3.16)

M denotes the mass matrix and B(v) the stiffness matrix

M = (mij)Ni,j=1, B(v) = (bij(v))Ni,j=1,

with

mij = (φjh, φ
i
h), bij(v) = −(div(vφjh), φih)− k

2 (v · ∇φjh + div(v)φjh,v · ∇φ
i
h).

The solution of equation (3.16) also fulfills

MLAhigh
n = MLAn−1 + (ML −M)(Ahigh

n −An−1) + kB(vn−1)An−1, (3.17)

where the lumped version of the mass matrix is given as

ML = diag(mL
i ), mL

i =
N∑
j=1

mij .

Then, we define the low-order solution by means of mass lumping through

MLAlow
n = MAn−1 + kB(vn−1)An−1. (3.18)

This low-order solution is smooth and stable, but suffers from reduced accuracy as the
right hand side is still evaluated with the consistent mass matrix M. The low-order
scheme can be written as

MLAlow
n = MLAn−1 + kB(vn−1)An−1 + (M−ML)An−1. (3.19)

The difference between the high-order (3.17) and the low-order scheme (3.19) is given
by

ML(Ahigh
n −Alow

n ) = (ML −M)Ahigh
n . (3.20)

The high-order solution can be written in terms of the low-order solution as

MLAhigh
n = MLAlow

n + (ML −M)Ahigh
n . (3.21)
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3. Discretization

For ease of notation we denote Ã := Ahigh
n . The anti-diffusive part, ML −M, in the

right hand side can be formulated as

−[(M−ML)Ã]i = −(
∑
j

mijÃj −miÃi) = −(
∑
j 6=i

mij(Ãj − Ãi)) =
∑
j 6=i

mij(Ãi − Ãj).

(3.22)

The idea of flux correction is to regulate the amount of anti-diffusion fi,j = mi,j(Ãi−Ãj)
by a parameter αij which is added to the low-order solution. This limiting is applied
node-wise as

mL
i An,i = mL

i A
low
n,i +

N∑
j=1

αijmij(Ãi − Ãj). (3.23)

For αij = 1, we reconstruct the high-order solution, αij = 0 corresponds to the low-
order solution. The solution constructed with the flux limiter can be seen as a limited
correction of Alow

n towards Ahigh
n . The coefficients αij = αji ∈ R are chosen such that no

new local minima Amin
i and maxima Amax

i in node i are generated. At time step n we
define

Amin
i = min

j∈Si

Alow
j , Amax

i = max
j∈Si

Alow
j ,

where Si = (j 6= i|mij 6= 0) is the stencil of node i.
Based on Zalesak’s multidimensional flux correction algorithm [110] we compute αi,j

from equation (3.23) as given in Algorithm 3. The presentation follows [46].

Algorithm 3 (Zalesak’s multidimensional flux correction algorithm).

1. Compute the sum of positive and negative anti-diffusive fluxes fij = mij(Ãi − Ãj)
that contribute to node i:

P+
i =

∑
i 6=j

max{0, fi,j}, P−i =
∑
i 6=j

min{0, fi,j}.

2. Compute the maximal admissible increment Q+
i and minimal admissible increment

Q−i for node i:

Q+
i = Amax

i −Alow
n,i , Q−i = Amin

i −Alow
n,i .

3. Bound the correction factors to guarantee that there are no new over- and under-
shoots generated at node i:

R+
i =

min{1, Q
+
i

P+
i

}, if P+
i 6= 0,

0, else,

R−i =

min{1, Q
−
i

P−i
}, if P−i 6= 0,

0, else.
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3.3. Discretization of the balance laws

4. Define a suitable limiter by

αij =
{

min{R+
i , R

−
j }, if fi,j ≥ 0,

min{R−i , R+
j }, if fi,j < 0.

Numerical implementation The numerical realization of this limiting approach is very
efficient. We need to solve two problems

MLAlow
n = b1, MAhigh

n = b2,

where b1 and b2 are the right hand side vectors as given by (3.16) and (3.18) respectively.
The low-order solution is simply given by diagonal scaling of the right hand side. For
computing the high-order solution, we employ about 10 to 20 steps of a Conjugate
Gradient method (CG), preconditioned with the lumped mass matrix ML. In the CG
iterations, we set the global tolerance to 10−13 and prescribe a relative residual reduction
of 10−4. It is noted in Danilov et al. [15], that 3 steps of a simple Richardson iteration,
preconditioned with ML, should be also sufficient,

M−1
L MAhigh

n = M−1
L b. (3.24)

Even with intense sub-cycling, e.g. doing 20 sub-steps in each time step, the cost for
approximation of the balance laws is not dominant compared to solving the nonlinear
momentum equation. To enhance the stability of the nonlinear solver we use the low-
order solution of A and H to calculate the velocity field, while the solution of the
balance laws is calculated with the flux correction scheme detailed above. This discretized
partitioned solution approach is summarized in Algorithm 4.

Algorithm 4 (Discretized Partitioned Solution Approach). Let v0, A0, H0 be the initial
solutions at time t = 0. Iterate for n = 1, 2, . . . , N :

1. Solve the balance laws with vexn := 2vn−1 − vn−2 and Algorithm 3

Aflux
n−1 7→ Aflux

n , Hflux
n−1 7→ Hflux

n ,

2. Solve the momentum equation based on the low-order solutions Alow
n , H low

n as cal-
culated in the flux correction framework

vn−1 7→ vn.

Due to the decoupling in Algorithm 4 the new velocity vn is not at hand when solving
the balance laws (2.29). We observed that the nonlinear solver is less stable if we solve
the balance laws with extrapolation of the velocity vex = 2vn−1−vn−2, instead of using
the linear extrapolation vex = vn−1. It has shown to be essential to couple the low-order
solutions Alow

n , H low
n into the momentum equation for obtaining a robust approximation

of the momentum equation. It is a subject to future work to analyze the impact on the
accuracy of the velocity field. In Section 4, we visualize the low-order, high-order and
flux-limited solution of an idealized test case.
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4. Numerical benchmarking of different
transport stabilizations for the balance
laws

In this section, we analyze the convergence and the robustness of different numerical
solutions of the sea ice model (2.29) using the different discretizations of the balance
laws that were introduced in Section 3.3. In Section 4.1, we analyze the convergence
of the numerical solution of a simple linear transport problem. In Section 4.2, we solve
the sea ice model problem that has been introduced in Section 2.6 and analyze the
convergence of the numerical solution.

4.1. A body rotation problem
In this section, we evaluate a body rotation problem, a linear transport problem as de-
scribed by John et al. [36], where a quantity A(t, x, y) ∈ R2 is transported with the
velocity v(t, x, y) ∈ R2. The motion is modeled by

∂tA+ div(vA) = 0, (4.1)

where the stationary velocity field is given as

v(x, y) = 2π
(
−y
x

)
. (4.2)

We consider (4.1) in the domain Ω = {(x, y) ∈ R2 : x2
1 + x2

2 < 1} with Dirichlet zero
conditions on the boundary. As shown in Figure 4.1, the initial condition of A(0, x, y)
consists of three different bodies: a box, a hump and a cone. The bodies are rotated in
a circle with radius r = 1.5. The position of a body is described by its center (x0, y0).
Outside of the bodies the initial condition is zero. The bodies are rotated in counter-
clockwise direction. One full revolution is achieved for T = 1. The distance from the
midpoint to the center of a body is defined as

d(x, y) :=
(
(x− x0)2 + (y − y0)2

) 1
2
.

We start by presenting the initial position of the first body, the box, which is described
by

A(0, x, y) =
{

0.5, if ‖(x, y)− (x0, y0)‖∞ < 0.2,
0, else,
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4. Numerical benchmarking of different transport stabilizations for the balance laws

Figure 4.1.: Initial condition of the rotating body problem

with initial center at (x0, y0) = (−0.4, 0.7).
The second body, the hump, is given by

A(0, x, y) =
{

0.5 + 0.5 cos(πd/0.3) if d(x, y) < 0.3,
0 else,

where the center of the hump is given by (x0, y0) = (0.6, 0.3).
The third body is the cone, which is described by

A(0, x, y) =
{

1.0− d/0.3 if d(x, y) < 0.3,
0 else,

with the initial center at (x0, y0) = (−0.2,−0.5).
The problem is discretized with bi-linear finite elements in space. For the temporal

discretization we apply the implicit Euler scheme, the Crank-Nicolson method and a
second order explicit Tayor-Galerkin method. Depending on the temporal discretization,
we stabilize the discretized balance laws 4.1 with artificial diffusion

Sad(An,h, φn,h) = |vn,h|
h

2
(
∇An,h,∇φh

)
, (4.3)

the streamline-upwind Petrov-Galerkin method

SSUPG(An,h, φn,h) = (δdR−1
(

div(vn,hAn,h),vh · ∇φh
)
, (4.4)

with R = k2θ‖vh‖
h + (1 + θk)‖ div(v)A‖ and a flux correction scheme based on Zalesak’s

limiter [110]. The different discretization and stabilization schemes are introduced in
Chapter 3.3.2.
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4.1. A body rotation problem

Initial condition CN solution without stabilization

CN with artificial diffusion using γc = 0.6 (4.3) CN with SUPG using δd = 0.06 (4.4)

TG TG with flux limiter

Figure 4.2.: The numerical solution of the rotated body problem after one revolution, by
applying different stabilization techniques. We stabilize the system with ar-
tificial diffusion, the streamline-upwind Petrov-Galerkin (SUPG) method
or a flux-corrected transport algorithm. For time discretization we use
a Crank-Nicolson scheme (CN) or a second order explicit Tayor-Galerkin
scheme (TG).
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CN with artificial diffusion using γc = 0.6 CN with SUPG using δd = 0.06

TG without stabilization TG with flux-corrected transport

Figure 4.3.: We calculate the difference of the approximation and the initial condition af-
ter one revolution of the rotated body problem. The system is stabilized with
artificial diffusion, a streamline-upwind Petrov-Galerkin (SUPG) method or
a flux-corrected transport algorithm. For the temporal discretization we use
a Crank-Nicolson scheme (CN) or a second order explicit Tayor-Galerkin
method (TG).
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4.1. A body rotation problem

Stabilization method e2
h

CN with artificial diffusion 0.00444047
CN with SUPG 0.00244914
TG 0.00170643
TG with flux-corrected transport 0.00152172

Table 4.1.: We show the L2-error e2
h of the difference between the initial data and the

approximation of the solution after one revolution of the rotated body prob-
lem. For the temporal discretization, a Crank-Nicolson scheme (CN) or an
explicit second order Taylor-Galerkin scheme (TG) is applied.

We aim to choose a stabilization such that the approximation of the solution after one
revolution is very close to the initial condition. We use a grid with 5185 nodes and a
time step of k = 0.001.
In Figure 4.2, we present the numerical solutions after one revolution using the dif-

ferent stabilizations. In the upper row of Figure 4.2, we show the initial condition of
the rotated body problem and the solution discretized with a Crank-Nicolson scheme
without stabilization. As the Crank-Nicolson shows instabilities in space, we add a sta-
bilization to the balance laws by using either artificial diffusion or the SUPG method.
Considering all three bodies, we observe that artificial diffusion is more damping than
the SUPG stabilization, whereas the approximation with SUPG method still contains
small oscillations.
We compare these two residual based techniques to a second order Taylor-Galerkin

method (with and without flux correction). The temporal discretization with the Taylor-
Galerkin method enables a sharper representation of the box than using a Crank-Nicolson
scheme with spatial stabilization. However, small oscillations still appear. Thus, we add
Zalesak’s flux limiter described in [110] to the Taylor-Galerkin scheme and observe that
the overshoots vanish, the peaks of the cone and the hump are damped by the flux
limiter.
Figure 4.3 shows, the difference between the numerical solution after one revolution

at T = 1 and the initial condition for each stabilization method. We obtain the sharpest
contours for all three bodies with the flux-limited Taylor-Galerkin scheme. Even so, the
peaks of the cone and the hump are damped. The cone and the hump are maintained best
with a Tayler-Galerkin method without flux correction, compare to Figure 4.3 bottom
row. In Table 4.1, we present the square error of the L2-error

e2
h :=

∫
Ω

(
A(1, x, y)−A(0, x, y)

)2
d(x, y).

The smallest L2-error is obtained with a second order explicit Taylor-Galerkin scheme
with a flux-limited transport, followed by a Taylor-Galerkin method without stabiliza-
tion, and the Crank-Nicolson method with a SUPG stabilization. By using artificial
diffusion we observe the largest error. Note that by using the implicit Euler discretiza-
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tion in time, the numerical solution is diffusive such that no additional stabilization is
required.

4.2. Application to the sea ice model
Based on the results from Section 4.1, we analyze the impact of the SUPG stabilization
and the flux correction scheme on the numerical solution of the coupled sea ice model.
Furthermore, we investigate the convergence of the numerical solutions by analyzing two
functionals under spatial and temporal refinement. Finally, we discuss a defect called
terracing that appears in the approximation of the ice thickness and the ice concentration
under the application of the flux limiter.

Numerical solution of the coupled sea ice model with different stabilization methods
We discuss approximation achieved with the implicit Euler scheme, the Crank-Nicolson
scheme stabilized with a SUPG method and a flux-corrected Taylor-Galerkin scheme, as
it is introduced in Section 3.3.2. We analyze the implicit Euler method as it provides
without spatial stabilization a robust but diffusive approximation of the body rotation
problem in Section 4.1.
With the different schemes, we computed the solution of the model problem defined

in Section 2.6. Snapshots of the calculated ice concentration after iteration 172, nearly
T = 4 days of simulation are shown in Figure 4.4. The solution is computed with k = 0.5
h on 8 km, 4 km and 2 km meshes.
Analyzing Figure 4.4, we observe that the approximation with the implicit Euler

scheme is more diffusive than the approximations with the other schemes. The diffusion
can be explained with the damping property of the implicit Euler scheme that is de-
scribed in Section 3.2. Applying an implicit Euler discretization without stabilization,
the nonlinear solver which is applied to compute the velocity field v from the momen-
tum equation failed on a 2 km mesh. Failing means that the nonlinear solver could not
reduce the residual of the momentum equation to the required tolerance. Hence, the sim-
ulation was terminated. Note that the implicit Euler scheme with SUPG stabilization
provides a robust approximation. In comparison to the approximation achieved with
the implicit Euler scheme, we find that the solution computed with the Crank-Nicolson
scheme stabilized with a SUPG method is less diffusive and contains more structure.
On the other hand, we observe that the ice concentration achieved with the stabilized
Crank-Nicolson method strongly differs from the ice concentration calculated with the
flux-limited Taylor-Galerkin scheme. The Crank-Nicolson method combined with the
SUPG stabilization conserves the structure of the initial condition of the ice thickness,
whereas the structure is vanishing with the flux-limited Taylor-Galerkin scheme. How-
ever, the solution computed with the flux-corrected Taylor-Galerkin method contains
more cracks in the ice cover.
In Figure 4.5, we show the ice concentration at T = 8 days of simulation. We observe a

huge difference between the approximation computed with the stabilized Crank-Nicolson
scheme and the solution calculated with the flux-limited Taylor-Galerkin method. Ap-
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4 km IE 8 km IE

2 km CN with SUPG 4 km CN with SUPG 8 km CN with SUPG

2 km flux-corrected TG 4 km flux-corrected TG 8 km flux-corrected TG

Figure 4.4.: We solve the model problem of Section 2.6 and show snapshots of the ice
concentration A at iteration n = 172, after nearly T = 4 days of simula-
tion. The solution is calculated with an explicit second order flux-corrected
Taylor-Galerkin scheme (TG), the Crank-Nicolson scheme (CN) stabilized
with the SUPG method, and the implicit Euler scheme (IE) without sta-
bilization. Using the latter, the nonlinear solver failed on a 2 km mesh.
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2 km flux-corrected TG 2 km CN with SUPG

Figure 4.5.: We solve the model problem of Section 2.6 on a 2 km mesh and show snap-
shots of the ice concentration A at iteration n = 330. The solution is cal-
culated with an explicit second order flux-corrected Taylor-Galerkin scheme
(TG) and with the Crank-Nicolson scheme (CN) stabilized with the SUPG
method.

plying a Crank-Nicolson scheme smaller cracks and lesser open water areas occur in
comparison to a discretization with a flux-limited Taylor Galerkin scheme.
Besides the visual differences in the solution, these two discretization approaches have

a different impact on the performance of the nonlinear solver which is used to solve the
sea ice momentum equation (2.29). Applying the flux-corrected Taylor-Galerkin scheme,
the nonlinear solver failed 6 times in one simulation on a 2 km mesh, whereas no failures
of the nonlinear solver occur with a stabilized Crank-Nicolson method in time. This
might be due to the fact that less structure is developing in the approximation of the
balance laws when a Crank-Nicolson scheme is applied.

Convergence of the numerical solution of the sea ice model In order to analyze
the convergence of the numerical solution of the sea ice model, we evaluate two different
functionals under mesh refinement. Similar to the comparison of satellite data and model
simulations, e.g. in [52, 62], we compare the total sea ice deformation |ε̇εε| and the total
sea ice extent Atotal.

We choose I = [0, 4] days and Ω = (0, 500)×(0, 500) km2. The space and time averaged
total sea ice deformation is given as

|ε̇εε| = Jεεε(ε̇εε) =
∫
I

∫
Ω

(
(ε̇εεI)2 + (ε̇εεII)2

) 1
2
d(x, y) dt.
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h k = 1 h k = 0.5 h k = 0.25 h qk
16 km 0.13829 0.13867 0.13885 1
8 km 0.14120 0.14161 0.14180 1
4 km 0.14392 0.14433 0.14455 2
2 km 0.14815 0.14770 0.14759 2

Table 4.2.: We analyze the space and time averaged total ice deformation |ε̇εε| under re-
finement. By h we denote the mesh size by k the time steps size and by qk
the convergence order in time.

h k = 1h k = 0.5h k = 0.25h qh
16 km 1.01257 1.01235 1.01216 2
8 km 1.00669 1.00645 1.00622 2
4 km 1.00918 1.00888 1.00871 2
2 km 1.00969 1.00943 1.00923 2

Table 4.3.: We analyze the space and time averaged total ice extent Atotal under refine-
ment. By h we denote the number of nodes, by k the time steps size, and by
qh the convergence order in space.

The total ice extent is averaged over a subdomain Ω1 = (375, 500)× (375, 500) km2 and
over a time span of I1 = [3.125, 4] days.

Atotal = JA(A) =
∫
I1

∫
Ω1
χ0.15(A)Ad(x, y)dt, if χ0.15(A) :=

{
1, A(x, y) ≥ 0.15,
0, A(x, y) < 0.15.

We evaluate the functional on mesh resolutions decreasing from 16 km to 2 km and time
steps varying from k = 1 h to k = 0.25 h. To enhance the stability of the solver we
slightly modify the initial condition of the model problem described in Section 2.6, by
removing the oscillations in H and decreasing A to

H0 = 0.3, A0 = 0.8. (4.5)

The convergence order in space is calculated by the following approach:

J(h) = a+ C,

J(h/2) = a+ C

(1
2

)q
,

J(h/4) = a+ C

(1
4

)q
,

(4.6)

where a is the limit, C is a constant, and q is the convergence order. The mesh size is
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denoted by h. By reformulating system (4.6), the convergence order is given as

q =
− ln

(
J(h/2)− J(h/4))
J(h)− J(h/2)

)
ln(2) . (4.7)

Like the convergence order in space, we calculate the convergence order in time.
We present the values for the total ice deformation |ε̇εε| in Table 4.2. On 2 km and

4 km meshes, we observe quadratic convergence in time. On 8 km and 16 km meshes,
the convergence in time is linear. In space, the functional value is increasing on finer
meshes. However, we could not observe a clear convergence order by approach (4.6) at
higher spatial resolutions.
In Table 4.3, we present the total ice extent Atotal in the time span of interest. We

observe convergence as the value of the functional is increasing for smaller time steps. We
do not observe a clear convergence order by (4.7). In space we observe nearly quadratic
convergence. This is expected as we use linear finite elements for spatial discretization.
The impact of the spatial discretization in both functionals dominates the impact of

the temporal discretization. Thus, the spatial refinement has a bigger influence on the
approximation compared to the temporal refinement. We observed the same behavior
in our analysis in [68].

Terracing effects of the flux-limited Taylor-Galerkin method We analyze the test
case presented in [68]. As in the model problem described in Section 2.6, we consider
a stationary circular clockwise ocean current. The wind pushes the ice with a constant
force to the upper right corner of the domain. As shown in Figure 4.6, the ice thickness
decreases behind the island due to the circular ocean current. The wind is the dominant
external force in this example. After about 81 days of simulation, we observe a defect in
the approximation of the ice thickness and the ice concentration, called terracing. Small
terraces in the length of a grid cell appear in the upper right corner of the domain.
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4.2. Application to the sea ice model

Figure 4.6.: We plot the ice thickness H along the green line marked in the upper left
image. In the surrounding three graphs, we present the low-order, the high-
order and the flux-corrected approximation. On the horizontal axis, we
show the grid points in y-direction. On the vertical axis, we present the ice
thickness in meters.
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BA C

High order

Flux corrected

 Low order

D

Figure 4.7.: Illustration of the terracing effect.

For a better visualization of the defect, we plot the ice thickness along the line shown
in the Figure 4.6. In the upper right plot of Figure 4.6, we present the high-order, the
low-order and the flux-corrected solution as described in Section 3.3.2. In the lower right
graph, we observe that the low-order solution does not contain any terraces. In the lower
left graph, we see that the high-order solution based on the flux-corrected approximation
from the previous time step already includes terraces. The flux correction described in
Algorithm 3 in Section 3.3.2 limits the flux fi,j to the local extremum. By doing so
terraces might occur.

Those effect is visualized in Figure 4.7. Here, Algorithm 3 limits the maximal allowed
increment of point A and B by the height of B, which is the local maximum, such that a
terrace is built. The same argumentation holds for points C and D, where D is the local
maximum. Here, a second terrace is occurring. It needs to be investigated if this effect
can be avoided by modifying the limitation in Algorithm 3 in Section 3.3.2. Note that
the high-order solution calculated without flux limiting is oscillating and the low-order
solution is smeared out such that all the structures in the approximation are vanishing.

However, by using Algorithm 3, where we use the intermediate low-order solutions
Alow
n , H low

n to couple into the momentum equation, the negative effect of terraces in
solving the sea ice model is circumvented.
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4.3. Conclusion

4.3. Conclusion
In this section, we have solved the balance laws which are part of the sea ice model (2.29)
using different time discretizations and varying spatial stabilizations. First, we analyzed
the impact that different discretization schemes have on the computed solution of a
body rotation problem. Here, we observed the best performance with the flux-corrected
Taylor-Galerkin discretization scheme and the Crank-Nicolson scheme stabilized with a
SUPG method.

In the case of the sea ice model, the different discretizations show similar behavior as in
the body rotation problem. We analyzed the model problem presented in Section 2.6 and
observed that the implicit Euler scheme is more damping than the other time stepping
schemes. A discretization with the Crank-Nicolson method and the Taylor-Galerkin
scheme produced oscillations in space. Even the approximation with the implicit Euler
method required spatial stabilization. We observed robust approximations with the
implicit Euler method, the Crank-Nicolson scheme stabilized with a SUPG method, and
a flux-limited Taylor-Galerkin discretization.
We find that the approximation of the ice concentration achieved with the stabilized

Crank-Nicolson scheme differs a lot from the approximation conducted with the flux-
limited Taylor-Galerkin method. The latter contains bigger cracks and a greater amount
of open water. It is subject to future work to test this discretization in a more realistic
setting.
Similar to the evaluation of satellite data, we analyze the averaged total ice deforma-

tion |ε̇εε| and the averaged total sea ice extent Atotal under mesh refinement to investigate
the convergence of the numerical solutions of the sea ice model. We solved the model
problem described in Section 2.6 and observed that both functionals converge in space
and time where the impact of the spatial discretization of the functional values is higher
than the impact on the temporal discretization. Thus, we conclude that the spatial
error dominates the temporal error. The approximation of the total sea ice extent is
converging quadratic in space. This is expected as we use linear finite elements in space.
The total ice deformation is converging on high mesh resolutions quadratically in time
as we use a second order Taylor-Galerkin scheme.
By discretizing the balance laws with the Zalesak’s flux limiter, we observed artifacts

in the approximation of the ice concentration and ice thickness, called terracing. It is
subject to future work to develop a modified limiting strategy in the flux correction
scheme to avoid this effect.
It remains an open question, which discretization of the balance laws is optimal. The

effects are manifold as the choice of the balance laws discretization has an influence on
the robustness of the momentum equation, on the accurancy of the coupled simulation,
but also on the global structure of the solution, such as the evolution of cracks in the
ice.
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Part III.

An efficient solver for the sea ice
model
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5. A Newton scheme to solve the
momentum equation

Parts of this chapter have been published in Mehlmann and Richter [69, 70]. Using linear
finite elements in space and an implicit Euler method in time, the sea ice momentum
equation turns into a nonlinear algebraic system which needs to be solved at every time
step. In context of sea ice dynamics there are mainly two schemes discussed in the
literature to solve implicit discretizations of nonlinear momentum equation. First, a
fixed-point method, denoted as Picard solver, and second an inexact Newton method.
The Picard iteration was presented by Zhang and Hibler [111]. The idea of the standard
Picard solver is to repeatedly solve a simple linearized system of equations. Lemieux and
Tremblay [55] showed that the convergence of the Picard solver is slow. Therefore, they
developed a second approach, an inexact Newton method, realized as the Jacobian-free
Newton-Krylov (JFNK) solver [53, 56].

To avoid the implicit methods, currently many sea ice models apply the elastic-viscous-
plastic formulation [40]. Here, an artificial elastic term is added to the viscous-plastic
rheology to use an explicit discretization of the momentum equation, that allows rela-
tively large time steps [30]. However, the EVP model produces large difference in the
numerical solution, compared to the approximations computed with the viscous-plastic
(VP) model [40, 63]. Lemieux et al. [54] modified the EVP solver by adding an inertia
term to the momentum equation to compare the EVP and the VP solutions. Bouillon
et al. [8] formulated the modified EVP solver as an iterative process converging to the
VP solution. Kimmritz et al. [38] revised the convergence analysis of the modified EVP
solver and showed that for a simplified model, the EVP solution converges to the VP
solution, if a sufficiently large number of sub-cycling steps are taken. The convergence
can be accelerated by an adaptive control of the sub-cycling [39].
The EVP and the Picard approach suffer from their poor convergence behavior. Typ-

ically, only a small number of Picard iterations or sub-cycling steps of the EVP model
are considered. Thus the approximated solution still has a large numerical error which
is accumulated over time [53]. This may result in large discrepancies of the simulated
sea ice dynamics [55]. Newton solvers on the other hand tend to have difficulties if the
Jacobian is ill-conditioned, nearly singular or if good initial values are not at hand. The
nonlinearity coming from the viscous-plastic material tensor σσσ(vn) is severe and the ef-
ficient treatment of this term is still under active research [39]. The convergence of sea
ice solvers usually worsens on high spatial resolutions [55, 56, 54]. Lemieux et al. [56]
mentioned that

Nonlinear solvers such as the JFNK method tend to have difficulties when
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5. A Newton scheme to solve the momentum equation

there are such sharp structures in the solution. This lack of robustness of
both solvers is however a debatable problem as it mostly occurs for large
required drops in the residual norm. [...] Globalization approaches for the
JFNK solver, such as the line search method, have not yet proven to be
successful. Further investigation is needed.

We develop a robust modification of a Newton solver that is able to cope with high
spatial resolutions. For the solution of the linear systems at each Newton iteration, it
is recommended using a generalized minimal residual method (GMRES) preconditioned
with a line successive over-relaxation method (LSOR) [57, 86]. The linear problems,
arising in each Newton or Picard iteration, are very stiff and ill-conditioned. Losch
et al. [64] observe that the use of an indirect LSOR preconditioner is computationally
expensive. Especially on fine meshes, the LSOR preconditioner needs to be revised [53].
They suggested testing an incomplete lower upper factorization (ILU) as preconditioner
to reduce computational cost. We introduce a multigrid solver as a preconditioner to
the GMRES method and compare it to an ILU preconditioner.
In this section, we discuss different Newton approaches to solve the discretized sea ice

model. In Section 5.1, we derive the analytical Jacobian of the system and analyze its
properties. In Section 5.2, we present different approaches to globalize and accelerate
the Newton method. These approaches are numerically evaluated in Section 5.3. In
Section 5.4, we present the GMRES method with a multigird preconditioner to solve the
linear subproblems in the Newton scheme. The linear solver is numerically evaluated in
Section 5.5. We conclude in Section 5.6.

5.1. Newton solver
In the following, we write each time step using the abstract notation

A(vn,φφφ) = F (φφφ), (5.1)

where

A(vn,φφφv) :=(ρiceHnvn,φφφv) + k(ρiceHfceeer × vn,φφφv)
+ k(σσσn(An, Hn,vn),∇φφφv)− k(τττocean(tn,vn),φφφv),

F (φφφv) :=(ρiceHnvn−1,φφφv) + k(τττatm(tn),φφφv) + k(fceeer × vocean,φφφv).
(5.2)

Then the Newton scheme to problem (5.1) reads as

w(l)
n ∈ V A′(v(l−1)

n )(w(l)
n ,φφφ) = F (φφφ)−A(v(l−1)

n ,φφφ) ∀φφφ ∈ V,
v(l)
n = v(l−1)

n + w(l)
n , l = 1, 2, . . .

(5.3)

where by v(0)
n we denote an initial guess which is usually taken as v(0)

n = vn−1, the
solution of the last time step. By A′(v)(w,φφφ) we denote the Gâteaux derivative of
A(v,φφφ) in direction w, which is defined as
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5.1. Newton solver

A′(v)(w,φφφ) := d

ds
A(v + sw,φφφ)

∣∣∣
s=0

.

This derivative can be approximated by finite differences [44], by automatic differenti-
ation [27] or analytically. Here, an analytical evaluation of the Jacobian is used for a
better understanding of its structure. It is the first time that the Jacobian is derived an-
alytically. Although the VP model involves strong nonlinearities and a complex viscosity
structure, the resulting Jacobian is a positive definite matrix and is well-structured.

Theorem 1 (Jacobian of the viscous-plastic sea ice model). Let v ∈W 1,∞(Ω)∩H1
0 (Ω),

w ∈ H1
0 (Ω), H ∈ L∞(Ω) and H > 0. Then, it holds that

(i) The derivative A′(v)(w,φφφ) of the implicit Euler discretization of the viscous-plastic

sea ice model (5.2) is given by

A′(v)(w,φφφ) = (ρiceHw,φφφ) + k(ρiceHfceeer ×w,φφφ)
+ kσσσ′1(v)(w,φφφ) + kσσσ′2(v)(w,φφφ)− kτττocean(v)(w,φφφ),

(5.4)

where the derivatives of the stress-tensor σσσ and the derivatives of the ocean forcing τττocean
are given by

σσσ′1(v)(w,φφφ) =
(
2e−2ζε̇εε′(w) + ζ tr

(
ε̇εε(w)

)
I,∇φφφ

)
σσσ′2(v)(w,φφφ) =

(
− ζ

∆2(ε̇εε)
(
2e−2ε̇εε′ : ε̇εε′(w) + tr(ε̇εε) tr

(
ε̇εε(w)

))(
2e−2ε̇εε′ + tr(ε̇εε)I

)
,∇φφφ

)
τττ ′ocean(v)(w,φφφ) =

(
− ρoceanCocean

(
‖vocean − v‖w + (vocean − v) ·w

‖vocean − v‖ (vocean − v)
)
,φφφ
)
.

(5.5)
(ii) Apart from the Coriolis term, the Jacobian is symmetric

A′(v)(w,φφφ) = A′(v)(φφφ,w)− 2k(ρicefceeer ×φφφ,w).

(iii) Furthermore, σσσ′1(v)(w,φφφ), the derivative with respect to the strain rates, as well as

the complete Jacobian are positive definite, while τττ ′ocean(v)(w,φφφ) is positive semidefinite
and σσσ′2(v)(w,φφφ), the derivative with respect to the viscosities, is negative semidefinite.

(iv) It holds that

δf‖w‖2 + cK min
Ω

{
∆2
min

∆2(ε̇εε)

}
‖
√
ζw‖2H1(Ω) ≤ A

′(v)(w,w) ≤ 2δf‖w‖2 + 2‖
√
ζw‖2H1(Ω),

(5.6)
where δf := ρiceH + kρoCo‖v− vocean‖ and the constant cK > 0 depends on the domain
Ω. Further, ‖w‖2H1(Ω) := ‖w‖2 + ‖∇w‖2.
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5. A Newton scheme to solve the momentum equation

Proof. We frequently split the strain rate ε̇εε (2.12) into the deviatoric part ε̇εε′ and the
trace tr(ε̇εε). For better readability, we repeat the important definitions made in Section
2.4.2.

ε̇εε = ε̇εε′ + 1
2 tr(ε̇εε)I, (5.7)

The deviatoric part is given as

ε̇εε′ = ε̇εε− 1
2 tr(ε̇εε)I =

(
1
2(ε̇εε11 − ε̇εε22) ε̇εε12

ε̇εε12
1
2(ε̇εε22 − ε̇εε11)

)
. (5.8)

Thus,

ε̇εε′(φφφ) : I =
∑
i,j

ε̇εε′i,jIi,j = ε̇εε′1,1 + ε̇εε′2,2 = 0, as tr(ε̇εε′) = 0.

We start with proving the first claim of Theorem 1.
(i)Derivatives. The derivative A′(v)(w,φφφ) can be split into two parts.

A′(v)(w,φφφ) = A′1(v)(w,φφφ) +A′2(v)(w,φφφ),
A′1(v)(w,φφφ) := (ρiceHw,φφφ) + k(fceeer ×w,φφφ) + kσσσ′1(v)(w,φφφ)− kτττ ′ocean(v)(w,φφφ),
A′2(v)(w,φφφ) := kσσσ′2(v)(w,φφφ).

(5.9)

We introduce the abbreviations

σσσ′ := σσσ′(v)(w,φφφ), σσσ′i := σσσ′i(v)(w,φφφ), i = 1, 2.

The splitting of the stresses σσσ′ = σσσ′1+σσσ′2 is organized such that σσσ′1 includes the derivatives
with respect to the strain rate ε̇εε while σσσ′2 includes the derivatives with respect to the
viscosities ζ(ε̇εε) and η(ε̇εε). Here, the fundamental expression is the derivative of ∆(ε̇εε)−1.
For a better readability, we recall the formulation of the stress tensor and the definition
of ∆(ε̇εε) and rewrite them using their symmetric structure. Applying the symmetry of
the inner product, we get
(
σσσ,∇φ

)
= 1

2
(
σσσ + σσσT ,∇φ

)
= 1

2
(
σσσ,∇φ+∇φT

)
=
(
σσσ, ε̇εε(φ)

)
, ε̇εε(φ) := 1

2
(
∇φ+∇φT

)
.

(5.10)

Considering the structure of the stress tensor and applying that η = e−2ζ it holds that

(
σσσ,∇φ

)
=
(
σσσ, ε̇εε(φ)

)
=
(
2ηε̇εε′ + ζ tr(ε̇εε)I − P

2 I, ε̇
εε(φ)

)
=
(
ζ(2e−2ε̇εε′ + tr(ε̇εε)I)− P

2 I, ε̇
εε(φ)

)
.

(5.11)

In the following, we replace the strain rate ε̇εε by (5.7) and make frequently use of

εεε′ : tr(ε̇εε)I = 0 and I : I = 2.
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5.1. Newton solver

We proceed with deriving (5.11) to(
σσσ,∇φ

)
= 2

(
ζ(e−2ε̇εε′ + 1

2 tr(ε̇εε)I), ε̇εε′(φ) + 1
2 tr(ε̇εε(φ))I

)
−
(
P, tr(ε̇εε(φ))

)
= 2

(
ζe−2ε̇εε′, ε̇εε′(φ)

)
+ 2

(1
2ζ tr(ε̇εε)I, 1

2 tr(ε̇εε(φ))I
)
−
(
P, tr(ε̇εε(φ))

)
= 2

(
ζ(e−1ε̇εε′ + 1

2 tr(ε̇εε)I︸ ︷︷ ︸
=:τττ(v)

), e−1ε̇εε′(φ) + 1
2 tr(ε̇εε(φ))I︸ ︷︷ ︸

=:τττ(φ)

)
−
(
P, tr(ε̇εε(φ))

)

= 2
(
ζτττ(v), τττ(φ)

)
−
(
P, tr(ε̇εε(φ))

)
, τττ(v) := e−1ε̇εε′ + 1

2 tr(ε̇εε)I.

Using the notation of τττ(v), we reformulate ∆(ε̇εε) to

∆(ε̇εε) =
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min,

=
√

2τ(v) : τ(v) + ∆2
min.

(5.12)

Finally, we receive the following compact representation of the stress tensor,

(
σσσ,∇φ

)
=

 P√
∆2

min + 2τ(v) : τ(v)
τ(v), τ(φ)

− (P, tr(ε̇εε(φ))
)
. (5.13)

Using (5.13), we compute the derivative of the stress tensor with respect to v in direction
w.

σσσ′(v)(w, φ) =

 P√
∆2

min + 2τττ(v) : τττ(v)
τττ(w), τττ(φ)


︸ ︷︷ ︸

:=σσσ′1(v)(w,φφφ)

(5.14)

−

 P√
∆2

min + 2τττ(v) : τττ(v)
3
(
2τττ(v) : τττ(w)

)
τττ(v), τττ(φ)


︸ ︷︷ ︸

:=σσσ′2(v)(w,φφφ)

. (5.15)

We insert τ(v) into the derivative of σσσ′ and obtain the expression proposed in the
Theorem 1.

σσσ′1(v)(w,φφφ) =
(
2ζ(e−1ε̇εε′(w) + 1

2 tr
(
ε̇εε(w)

)
I, e−1ε̇εε′(φφφ) + 1

2 tr
(
ε̇εε(φφφ)

)
I
)

=
(
2e−2ζε̇εε′(w) + ζ tr

(
ε̇εε(w)

)
I, ε̇εε(φφφ)

)
.

(5.16)

For σσσ′2, we get

σσσ′2(v)(w,φφφ) = −
(
P

∆3 [2τ(v) : τ(w)](e−2ε̇εε′ + 1
2 tr(ε̇εε)I), ε̇εε′(φφφ) + 1

2 tr
(
ε̇εε(φφφ)

)
I

)
= −

(
ζ

∆2 [2τ(v) : τ(w)](2e−2ε̇εε′ + tr(ε̇εε)I), ε̇εε′(φφφ) + 1
2 tr

(
ε̇εε(φφφ)

)
I

)
.

(5.17)
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5. A Newton scheme to solve the momentum equation

We insert τττ(v) and τ(w) and get

σσσ′2(v)(w,φφφ) =

−
(
ζ

∆2

[
2e−2ε̇εε′ : ε̇εε′(w) + tr(ε̇εε) tr

(
ε̇εε(w)

)]
,
[
2e−2ε̇εε′ : ε̇εε′(φφφ) + tr(ε̇εε) tr

(
ε̇εε(φφφ)

)])
.

(5.18)
The derivative of the ocean forcing,

(τocean(v),φφφ) =
(
Coceanρocean‖vocean − v‖(vocean − v),φφφ

)
,

is given as

τ ′ocean(v)(w, φ) = −poceanCocean
(
w‖vocean − v‖+ (vocean − v) (vocean − v)

‖vocean − v‖
w,φφφ

)
Finally, we calculate the derivatives of the ice mass term, (ρiceHnvn,φφφv), and the Coriolis
forcing, (ρiceHfceeer × vn,φφφv), as

(ρiceHw,φφφ) + k(fceeer ×w,φφφ).

(ii) Symmetry. Next, we analyze the different terms in the Jacobian A′(v)(w,φφφ) and
check for symmetry. As the triple product (~a×~b)·~c = −(~a×~c)·~b is anti-commutative, the
Coriolis term is non-symmetric. The term stemming from the time derivative (ρiceHw,φφφ)
is clearly symmetric. Using the formulation of the stress tensor (5.14) we see that σσσ′1
is symmetric. The symmetry of σσσ′2 can be observed in representation (5.18). Likewise,
symmetry holds for τττ ′ocean given by (5.5). Finally, all terms except the Coriolis term are
symmetric.

(iii) Definiteness. To show definiteness of the Jacobian we first note that (eeer×w,w) = 0.
Positive definiteness of (ρiceHw,w) is obvious as long as H > 0. The forcing term
−τττ ′ocean(v)(w,w) is positive semidefinite as

−τττ ′ocean(v)(w,w) = ρoceanCocean

(
‖vocean − v‖‖w‖2 + ‖(vocean − v) ·w‖2

‖vocean − v‖

)
.

Next, we prove positive definiteness of σσσ′. With (5.16) and (5.18) we obtain

σσσ′1(v)(w,w) = ‖
√

2e−2ζε̇εε′(w)‖2 + ‖
√
ζ tr

(
ε̇εε(w)

)
‖2,

σσσ′2(v)(w,w) = −‖
√
ζ/∆(ε̇εε)2[2e−2ε̇εε′ : ε̇εε′(w) + tr(ε̇εε) tr

(
ε̇εε′(w)

)]
‖2,

(5.19)

and observe positivity of σσσ′1. To proceed with σσσ′2 we define

A :=
√

2e−2ε̇εε′ + 1√
2

tr(ε̇εε)I : Ω→ R2×2, B :=
√

2e−2ε̇εε′(w) + 1√
2

tr(ε̇εε(w))I : Ω→ R2×2.

(5.20)
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By Cauchy-Schwarz inequality, it holds that
(∑

ij AijBij
)2 ≤∑ij A

2
ij

∑
ij B

2
ij . Using the

notation of ∆(ε̇εε) given in (5.12), we get

1√
ζ/∆2

[
σσσ′2(v)(w) : ∇w

]
= −

[
2e−2ε̇εε′ : ε̇εε′(w) + tr(ε̇εε) tr

(
ε̇εε′(w)

)]2
= −(A : B)2 ≥ −(A : A) · (B : B)

≥ −
[
2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2︸ ︷︷ ︸

=:∆2(ε̇εε)−∆2
min

]
·
[
2e−2ε̇εε′(w) : ε̇εε′(w) + tr

(
ε̇εε(w)

)2]
. (5.21)

The combination of (5.19) and (5.21) gives

σσσ′2(v)(w,w) ≥ −max
Ω

{
∆2(ε̇εε)−∆2

min

∆2(ε̇εε)

}(
‖
√

2e−2ζε̇εε′(w)‖2 + ‖
√
ζ tr

(
ε̇εε(w)

)
‖2
)
,

with a positive constant c > 0. Together with the estimate of σσσ′1 in (5.19), we obtain

σσσ′(v)(w,w
)
≥ min

Ω

{
∆2
min

∆2(ε̇εε)

}(
‖
√

2e−2ζε̇εε′(w)‖2 + ‖
√
ζ tr

(
ε̇εε(w)

)
‖2
)

≥ cK min
Ω

{
∆2
min

∆2(ε̇εε)

}
‖
√
ζw‖2H1(Ω),

where cK > 0 is the constant of Korn’s inequality [11].
(iv) Upper and lower bound of the Jacobian. The upper bound of the σσσ′2 is obtained in
the same manner as the lower bound such that

∣∣σσσ′2(v)(w,w)
∣∣ ≤ max

Ω

{ ∆2(ε̇εε)−∆2
min

∆2(ε̇εε)︸ ︷︷ ︸
≤1

}(
‖
√

2e−2ζε̇εε′(w)‖2 + ‖
√
ζ tr

(
ε̇εε(w)

)
‖2
)
.

We combine σσσ′1 and σσσ′2 and get

cK min
Ω

{
∆2
min

∆2(ε̇εε)

}
‖
√
ζw‖2H1(Ω) ≤ σσσ

′(v)(w,w) ≤ 2‖
√
ζw‖2H1(Ω).

By applying the Cauchy-Schwarz inequality, it holds that

kρoCo‖vocean − v‖‖w‖2 ≤ −τ ′ocean(v)(w,w) ≤ kρoCo2‖vocean − v‖‖w‖2.

Taking into account that (eeer ×w,w) = 0, we achieve the whole inequality

δf‖w‖2 + cK min
Ω

{
∆2
min

∆2(ε̇εε)

}
‖
√
ζw‖2H1(Ω) ≤ A

′(v)(w,w) ≤ 2δf‖w‖2 + 2‖
√
ζw‖2H1(Ω),

(5.22)
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where δf := ρiceH + kρoCo‖v− vocean‖.

The theorem has several implications for the design of numerical methods to approx-
imate the VP sea ice model. Inequality (5.6) shows that all eigenvalues of the Jacobian
are bound from below and above. For ζ > 0, which is the case for H > 0, all eigenval-
ues are positive such that the matrix is positive definite. For functions with a positive
definite and Lipschitz continuous Jacobian, a damped Newton method is globally con-
vergent (see Lemma 3.5 of [16]). We will use a line search method to damp each Newton
iteration, see Section 5.2. The ratio of largest and smallest eigenvalue indicates the con-
dition number of the matrix. This number is important, as it describes the propagation
of errors when solving linear systems. Usually, the convergence rate of iterative solvers
worsens if the condition number is large. The convergence rate of the Newton method
also depends on the smallest eigenvalue. This shows the role of limiting ∆(ε̇εε) ≥ ∆min in
the lower bound of (5.6).
Finally, we showed that the Jacobian is symmetric if we neglect the Coriolis term.

An explicit discretization of this term allows the use the Conjugate Gradient method
as linear solver which is more efficient than GMRES method. In particular, it does not
require additional storage for orthogonalization, see [86].

5.2. Globalization and acceleration methods

Existing solvers for the sea ice momentum equation are not robust with increasing res-
olutions [56]. In this context, the most discussed Newton solver is the Jacobian-free
Newton-Krylov (JFNK) method developed by Lemieux and Tremblay [56]. There are
mainly two acceleration strategies implemented in the framework of the JFNK solver to
improve the numerical convergence. First, an inexact solving of the linear problems in a
Newton iteration and second, a line search approach [53]. Lemieux et al. [64] suggested
testing a combination of the JFNK with a Picard solver to further improve the conver-
gence properties of the solver. A combination of a Newton method and a Picard solver
for multidimensional variably saturated flow problems was carried out in [76]. First, a
Picard solver is used until the iteration converges steadily, and then the Newton method
is applied. While this approach has similarities to the operator-related damped Jacobian
method, the adaptive control is different. A numerical evaluation of the globalization
and the acceleration strategies presented in this Section is given in Section 5.3.

Inexact solving of the linear subproblems

The JFNK solver is based on an inexact Newton method. In the l-th iteration of the
Newton method (5.3), one needs to solve the linear subproblem

A′(v)(w,φφφi)︸ ︷︷ ︸
:=[A′(v)(w)]i

= F (φφφi)−A(v,φφφi)︸ ︷︷ ︸
:=[R(v)]i

, (5.23)
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with the basis function φφφi ∈ V v
h . The idea of the inexact soling approach is to accelerate

the convergence of the Newton solver by a coarse approximation of the linear subproblem
(5.23). This technique has been applied in the first version of the JFNK solver [56] with
an adaptive control of the linear residual. Lemieux and Tremblay [56] found that the
convergence of the nonlinear solver is slow in the beginning and fast at the end of a time
step. Additionally, they observed that in some cases a high initial tolerance criterion
(tol ∼ 0.001) can lead to a non-converging Newton solver due to over-solving. Over-
solving describes the effect that solving the linear subproblem up to small residual can
cause an inaccurate nonlinear correction of the solution [85]. Therefore, Lemieux and
Tremblay suggest choosing the initial tolerance low (tol ∼ 1) and reduce it as one gets
in the area of fast convergence [53]. In the l-th iteration of the Newton method (5.3)
Lemieux et al. [56] require that

‖A′(v(l−1)
n )(w(l)

n )−R(v(l−1)
n )‖ ≤ tol(l)‖R(v(l−1)

n )‖, (5.24)

with the adaptive tolerances tol(l). The tolerances for the linear problems are chosen
similar to Walker and Eisenstat [17] as

tol(l) =


0.99, if ||R(v(l−1)

n )|| ≥ 2
3 ||R(v(0)

n )||,(
||R(v(l−1)

n )||
||R(v(l−2)

n )||

)1.5
else.

Further, if the Newton iteration count exceeds l > 100, the tolerance is taken as tol(l) =
0.99 to improve robustness.

Line search method

In the framework of the JFNK solver a line search method is applied. The general
Newton method with the line search approach for the solution of variational problems
is given as

w(l)
n ∈ V A′(v(l−1)

n )(w(l)
n ,φφφ) = F (φφφ)−A(v(l−1)

n ,φφφ) ∀φφφ ∈ V,
v(l)
n = v(l−1)

n + ωw(l)
n .

(5.25)

By ω ∈ (0, 1] we denote the line search parameter to relax the Newton update w(l)
n . This

parameter is chosen as large as possible (close to one) but small enough such that the
Newton residual decays

ω ∈ {1, (1− γ), (1− γ)2, . . . } : ‖R(v(l−1)
n + ωw(l)

n )‖ < ‖R(v(l−1)
n )‖,

where γ ∈ (0, 1). Lemieux et al. [53] choose γ = 0.5 and perform a maximum of
4 iterations of the line search approach. The line search method strongly increases
the robustness of the JFNK solver [53]. As shown in Theorem 1, the Jacobian of the
sea ice momentum equation is positive definite. For functions with a positive definite
and Lipschitz continuous Jacobian, a damped Newton method is globally convergent.
Therefore, we also apply a line search method as globalization strategy to the modified
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5. A Newton scheme to solve the momentum equation

Newton solver. We choose γ = 0.75 for better robustness and perform a maximum of 10
linear search iterations. Afterwards, we proceed with the next Newton step even if the
residual is still increasing.

Operator-related damped Jacobian method

The operator-related damped Jacobian method was introduced by Horn, Ouazzi and
Turek [28, 75]. A detailed description of the approach can be found in [74]. As presented
in Theorem 1, the Jacobian A′ can be split into a positive definite part A′1 and a negative
semidefinite part A′2,

A′(v)(w,φφφ) = A′1(v)(w,φφφ) +A′2(v)(w,φφφ). (5.26)

We refer to the positive definite part as the good, stabilizing part of the Jacobian

A′1(v)(w,φφφ) = (ρiceHw,φφφ) + k(ρiceHfceeer ×w,φφφ) + kσσσ′1(v)(w,φφφ)− kτττ ′ocean(v)(w,φφφ),

whereas the negative semidefinite part is possibly troublesome

A′2(v)(w,φφφ) = kσσσ′2(v)(w,φφφ).

To improve the robustness of the Newton method, we adaptively control the negative
semidefinite part of the Jacobian. The reason for splitting the Jacobian is twofold. First
the convergence rate of the Newton method depends on the bound of the inverse of
the Jacobian, which is given by the inverse of its lowest eigenvalue. By decreasing the
influence of A′2(v)(w,φφφ), the lowest eigenvalue in (5.22) is increased and the convergence
of the method is improved as detailed in Richter and Mehlmann [81]. A complete analysis
of the operator-related damped Newton method is still subject to future work. Some
first results are given by Richter and Mehlmann in [81]. A second benefit of adaptively
controlling A′2(v)(w) is the reduced condition number of the system matrix as described
in Section 5.1.
The Jacobian of the modified Newton solver is given by

A′δ(v)(w,φφφ) := A′1(v)(w,φφφ) + δA′2(v)(w,φφφ),

where the parameter δ ∈ [0, 1] is adaptively chosen depending on the convergence history.
The idea is to choose δ = 1 if the reduction rate of the Newton method is good. If not, or
only very slow convergence is observed, we reduce δ to get closer to a robust fixed-point
iteration, which is for δ = 0 very similar to typical Picard solvers [56].

The choice of δ is crucial for the convergence rate of the modified Newton solver.
With the residual (5.23) of the Newton scheme, we define the reduction rate in the l-th
iteration of the Newton method as

Ql := ‖R(v(l)
n )‖

‖R(v(l−1)
n )‖

. (5.27)
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Figure 5.1.: Relation of damping parameter δ(l)

δ(l−1) and reduction rate Ql.

Similar to Turek et al. [66], we choose the damping parameter in the l-th step as

δ(l) =

min
{

1, δ(l−1)
(
0.2 + 4

0.7+exp(1.5Ql)

)}
δ(l−1) ≥ 0.2,

1 δ(l−1) < 0.2.
(5.28)

This relation is found by experimental tuning in [66]. Other feedback functions give
similar results without a distinct superiority. Therefore, we adapted the original sug-
gestion. A constant choice of δ does not increase the convergence rate of the modified
Newton solver. In opposition to Turek et al. [66], we start with δ(0) = 1 to achieve rapid
Newton convergence if possible. The damping parameter is reduced if the reduction
rate exceeds Ql > Q̃ ≈ 0.97, see Figure 5.1. Otherwise, we increase δ(l) up to δ(l) = 1,
which corresponds to the standard Newton scheme. To avoid very rapid changes of δ(l),
we modify the parameter relative to the last value. In contrast to the original work of
Turek et al., we reset δ(l) to 1 once δ(l−1) reaches a limit of 0.2, and restart the Newton
iteration with probably better initial values. This is done to avoid a stagnation of the
convergence.
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Figure 5.2.: Inexact Newton method with different globalization and acceleration strate-
gies under mesh refinement. By crude approximation, we are referring to
an inexact solving of the linear subproblems. We solve the test problem of
Section 2.6 and evaluate the number of Newton steps per time step. The
relative nonlinear tolerance is set to tolr = 10−4 and the global tolerance to
tolg = 10−13. The simulation is terminated if the solver cannot reduce the
residual to the desired tolerance in 10 consecutive time steps.
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5.3. Numerical evaluation of the Newton solver
First, we compare the performance of the Newton solver with the different globalization
techniques presented in Section 5.2, namely a line search globalization, a inexact solving
of the linear problems and the operator-related damped Jacobian method. Then, we
give a detailed numerical analysis of the operator-related damped Jacobian method on
different mesh resolutions. By refining, the mesh structures get sharper and solving
the implicit momentum equation becomes increasingly difficult. Linear and nonlinear
tolerances are set as described in Section 2.6.

Comparison of the different globalization and acceleration strategies

In Figure 5.2, we show the performance of the globalization and acceleration methods
that are discussed in Section 5.2. The performance is analyzed on 8 km, 4 km, 2 km
meshes. We run the test case for a period of I = [0, 8] days. In the top of Figure 5.2,
we show the performance of the solver on an 8 km mesh. The inexact Newton method
globalized by a line search approach (with and without exact solving of the linear sub-
problems) fails to reach the desired nonlinear residual after about n = 160 time steps.
However, the operator-related damped Jacobian method with a line search globalization
provides a robust strategy on the 8 km mesh.
On finer meshes, this result becomes even clearer. In the center image of Figure 5.2

we compare all three approaches on a 4 km mesh. The inexact Newton method with a
line search approach fails after two time steps. The inexact Newton method with a line
search approach and an inexact approximation of the linear subproblem is more robust,
but it is not converging after 6 time steps. Using the operator-related damped Jacobian
approach with a line search globalization the solver is robust for all time steps.
In the image at the bottom of Figure 5.2 we compare the performance of the Newton

solver on a 2 km mesh. The inexact Newton method globalized by a line search approach
(with and without inexact solving of the linear subproblems) could not reduce the non-
linear residual to the required tolerance after two time steps. The operator-related
damped Jacobian method with a line search strategy solves the test problem until time
step n = 272 (≈ 6 days), where the desired tolerance could not be reached in the given
200 steps. On the 2 km mesh, small-scale patterns evolve. The term ∆2

min/∆2(ε̇εε) be-
comes small and the lower bound of the Jacobian (5.6) turns towards zero. This could
be one reason for the slower convergence of the Newton solver with the operator-related
damped Jacobian method. If we continue the simulation for the full temporal interval
of I = [0, 8 days], we note only 6 failures out of 350 steps. In comparison, if a failure
occurs using a standard Newton solver globalized with a line search method (with and
without inexact solving of the linear subproblems), the residual cannot be reduced in
the subsequent 10 time steps. Therefore, the simulation was terminated.
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Figure 5.3.: Evaluating the damping parameter δ(l), the reduction rate Ql and the resid-
ual of the operator-related damped Jacobian method at time step n = 160
on an 8 km, 4 km, 2 km mesh. The residual is normalized by the initial
residual.

72



5.3. Numerical evaluation of the Newton solver

relative residuum

reduction rate

δ
(l)

= 1

Newton iteration

mesh size 4 km

200150100500

2

1.5

1

0.5

0

relative residuum

reduction rate

δ
(l)

= 1

Newton iteration

mesh size 2 km

200150100500

3

2.5

2

1.5

1

0.5

0

Figure 5.4.: Convergence of the full Newton scheme at time step n = 160 (δ(l) = 1 fixed).
No convergence is observed on the 4 km mesh (top) and on the 2 km mesh
(bottom). Compare to Figure 5.3 for the operator-related damped Jacobian
method with an adaptive δ(l).
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It is typical to all existing implicit sea ice solvers [56] that the desired residual cannot
be reached in all time steps. Usually, a simulation will not be canceled after one time
step fails, but it will be continued based on a coarse approximation in the “hope” that
the solver will recover within the following steps. As the sea ice problem is mostly
data driven, with forcing from ocean, atmosphere and thermodynamics, this approach
is reasonable.
The operator-related Newton scheme has no computational overhead. As it is able

to accelerate the convergence, it can reduce the required number of Newton iterations
and therefore decrease the overall computational cost. Every change of the damping
parameter δ will call for a new assembly of the Jacobian. This may limit the possible
savings. In Chapter 6, we evaluate the operator-related damped Jacobian method on a
realistic arctic simulation and compare it to the currently applied Jacobian-free Newton-
Krylov (JFNK) solver.

Analysis of the operator-related damped Jacobian method

Figure 5.2 shows that the standard Newton scheme with line search globalization (with
and without inexact solving of the linear systems) fails after n = 160 time steps on an
8km mesh. On finer meshes, these approaches fail even quicker. Therefore, we declare
this time step n = 160 as difficult and analyze the convergence behavior of the operator
related Jacobian method in this single step.

In Figure 5.3, we show the relation between the damping parameter δ(l) and the
reduction rate Ql (5.27) of the operator-related damped Jacobian method for different
mesh resolutions. For large reduction rates close to 1, the damping parameter δ(l) is
decreased. Whenever the Newton convergence is good and the reduction rates are small,
δ(l) is enlarged and chosen close to 1. The operator-related damped Jacobian method is
robust under mesh refinement. We obtain a reduction of the nonlinear residual on all
mesh levels. The damping parameter, δ(l), is not decreased on finer mesh, see Figure 5.3.
Even if δ(l) is close to 1 in all iterations shown in Figure 5.3, an adaptive control of

the Jacobian is necessary to achieve convergence. For comparison, we show the behavior
of the full Newton method in Figure 5.4. Comparing the convergence of the Newton
method without adaptive δ control (Figure 5.4) to the Newton method with adaptive
δ control (lower two graphs of Figure 5.3), we find that adaptive control is necessary.
Without the proper choice of the damping parameter δ(l), no convergence to the required
tolerance is obtained.
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Figure 5.5.: Residual of the operator-related damped Jacobian method at time step n =
280. The parameter δ(l) reaches the limit δ(l) < 0.2 twice and is reset to 1.

Finally in Figure 5.5, we present the damping of the operator-related damped Jacobian
method. As the operator-related damped Jacobian method converges in time step
n = 160 with less than 60 iterations on the 2 km mesh, we analyze time step n = 280,
exemplary for a time step in which the solver needs a lot of iterations to converge.

One problem of Turek’s original damping strategy is that too low values of δ(l) will
limit the possible convergence to that of the simple Picard iteration. This results in
reduction rates so close to 1 that the adaptive strategy (5.28) will never increase δ(l)

again. Therefore, once δ(l−1) reaches the critical value of δ(l−1) < 0.2, we continue the
procedure with δ(l) = 1. The idea is to restart the Newton scheme with a new initial
value. In our test cases, we observed that the operator-related damped Jacobian method
would not converge to the required tolerance within 200 iterations without limiting δ(l).

Figure 5.5 shows a case where δ(l) is reset to 1 twice. Using the operator-related
Jacobian method with adaptive choice of δ(l), we can reduce the residual to a required
tolerance in a limited number of iterations. Initially, δ(l) < 1 must be chosen to obtain
convergence. Finally, transition to fast quadratic convergence is reached.

Note that Lemieux et al. [53] allow maximal 100 nonlinear Newton steps per time
step. It needs to be investigated which nonlinear and linear tolerances are suitable for a
realistic setting and how many Newton steps are appropriate in practice. However, the
operator-related damped Jacobian method provides a tool to calculate highly accurate
solutions faster than the existing solvers.
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5.4. Solving linear systems within the Newton scheme
In [57], the authors recommend calculating the solution of the linear systems at each
iteration with a generalized minimal residual method (GMRES) preconditioned with line
successive over relaxation method (LSOR). In the framework of the sea ice momentum
equation, the GMRES method was first applied by Lemieux et al. [57]. The linear
problems arising in each Newton or Picard iteration are very ill-conditioned. Losch and
Lemieux [64] observe that the use of an indirect LSOR preconditioner is computationally
expensive, in particular on high resolution meshes [53]. The authors propose to test an
incomplete lower upper factorization (ILU) as preconditioner to reduce computational
cost.
In this section, we introduce the geometric multigrid method as preconditioner to

the GMRES method. The linear solver can be used for Newton and Picard solvers.
In Section 5.5, we compare the performance of the multigrid preconditioner with the
performance of an ILU preconditioner.
We have already presented the operator-related damped Jacobian method and the

linearization of the momentum equation in Section 5.2. It remains to describe the
solution of the arising linear systems of equations Ax = b. We denote the coefficient
vector of the two velocity components by x, the (possibly damped) Jacobian by A and
the Newton residual by b, see (5.3). The idea of the multigrid preconditioner is to
enhance the convergence of the GMRES solver by applying an operator PMG ≈ A−1,
which transforms the linear system to

PMGAx = PMGb.

The GMRES method is a Krylov method projects the residual r in the m dimensional
subspace

Km = (r,PMGAr, (PMGA)2r, (PMGA)3r, .., (PMGA)m−1r), r = A− b,

and approximate the solution in Km. We use a Krylov space of dimension m − 1 =
10. and apply a start residual r = −b, with the first guess x0 = 0. The multigrid
preconditioner is applied once for each iteration of the GMRES method. A detailed
description of the GMRES method can be found in Saad [86].

Multigrid solution

Multigrid solvers are well established for the solution of various partial differential equa-
tions [23, 105]. Based on a hierarchical mesh setup, they offer the potential to circumvent
the bad influence of the worsening conditioning on finer meshes. The main numerical
effort consists in residual evaluations, i.e. matrix-vector products, and the smoother, a
usually local operator that approximates the problem on every mesh-level. Depending
on the specific choice of smoother, they are well-suited for parallelization [3, 41].
First, we assume that by

Ωh =: ΩL � ΩL−1 � · · · � Ω0,
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a nested hierarchy of finite element meshes is given. An element K ∈ Ωl stems from
uniform refinement of an elementK ′ ∈ Ωl−1 into four similar elements. This construction
gives a nested hierarchy of finite element spaces

Vh =: VL ⊃ VL−1 ⊃ · · · ⊃ V0.

Modifications for locally refined meshes are described by Becker and Braack [4]. On this
sequence of function spaces, we define a sequence of linear problems

Alxl = bl, l = 0, . . . , L,

where Al is the Jacobian evaluated on the mesh Ωl. Then, the standard multigrid
algorithm in the (i+ 1)-st iteration is given as

x(0)
L = 0, x(i+1)

L =MG(L,x(i)
L ,bL) i = 1, 2, . . . , (5.29)

where each iterationMG(l,xl,bl) is defined as

Algorithm 5 (Multigrid iterationMG(l,xl,bl)).

Coarse mesh if l = 0 x0 = A−1
0 b0

otherwise iterate:

1. Smooth sl = S(xl,bl,Al)
2. Residual dl = bl −Alsl
3. Restrict dl−1 = Rldl
4. Coarse-mesh correction cl−1 =MG(l − 1, 0,dl−1)
5. Prolongate cl = sl + Plcl−1
6. Smooth xl = S(cl,bl,Al)

The multigrid iteration is recursively constructed. This is the V-cycle of multigrid,
as the coarse-mesh solution is approximated by one single call in Step 4. On the coars-
est mesh level l = 0, the linear system is usually solved exactly. In Section 5.5, we
will see that a direct solver is not necessary but can be replaced by a few steps of an
approximative iteration. The restriction Rl : Vl → Vl−1 is defined as the L2-projection

dl−1 := Rldl ∈ Vl−1, (Rldl, φl−1) = (dl−1, φl−1) ∀φl−1 ∈ Vl−1.

The prolongation operator Pl : Vl−1 → Vl is the embedding as long as the meshes are
nested which is always the case in our setting. As dl is the variational residual, it
is possible to compute the restriction by local operations without inverting the mass
matrix [79]. The smoothing operation S(·) is a simple iterative scheme with the purpose
of approximating all those high frequent error contributions, that are visible on mesh
level Ωl, but not anymore representable on the next coarse mesh level Ωl−1.
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Multigrid smoothing

As smoothing operator S(·), we always consider a Richardson iteration, preconditioned
with an ILU decomposition of the system matrix A on the corresponding mesh level.
On level l = 0, . . . , L, we introduce the iteration

s(i)
l = S(s(l−1)

l ,bl,Al) := s(i−1)
l + R̃−1

l L̃−1
l (bl −Als

(i−1)
l ), i = 1, . . . , ν, (5.30)

where Al ≈ L̃lR̃l is the stabilized incomplete decomposition of Al into lower left and
upper right triangular matrices and by ν we denote the number of smoothing steps.
For pre-smoothing and post-smoothing, we apply a small number of steps of this simple
iteration (about νpre = νpost = 4 each).

ILU preconditioner

By ILU preconditioning, we denote the iteration

x(i)
l = x(i−1)

l + R̃−1
l L̃−1

l (bl −Alx
(i−1)
l ), i = 1, . . . , νILU . (5.31)

The same iteration is applied as multigrid smoother (5.30). For a fair comparison of the
results, we choose νILU = νpre + νpost. We use νILU = 8 steps of the ILU decomposition
and therefore νpre = 4 pre- and νpost = 4 post-smoothing steps in the multigrid method,
to have similar computational cost.

5.5. Numerical evaluation of the multigrid preconditioner
In this section, we analyze the performance of the linear solver on the test problem
defined in Section 2.6. We evaluate the performance of the multigrid method as pre-
conditioner within the GMRES method and compare it to the performance of the ILU
preconditioner. As the cost of existing linear solvers increases with increasing resolu-
tion [64], we investigate the behavior of the multigrid preconditioner at high spatial
resolutions.

Comparison of a multigrid method and an ILU decomposition as preconditioner to
GMRES method

For comparison of the ILU preconditioner with the multigrid preconditioner within the
GMRES method, we evaluate the test case of Section 2.6 at time t = 1 day on a 2 km
mesh with k = 0.5 h. We use νILU = 8 steps of the ILU decomposition and νpre =
4 pre-smoothing and νpost = 4 post-smoothing steps in the multigrid method. The
computational cost by handling the full mesh hierarchy in the multigrid method increases
by about 30%.
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Figure 5.6.: Comparison of an ILU and a multigrid preconditioner. Evaluation of the
test case at time t = 1 day on a 2 km mesh. Top: GMRES convergence
of the first two Newton iterations. Middle: GMRES convergence over all
Newton iterations of the time step. Bottom: summed number of GMRES
iterations in every Newton iteration.
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Figure 5.7.: We evaluate the test case of Section 2.6 on 16 km, 8 km, 4 km and 2 km
meshes. The time step is set to k = 0.5 h. We display the average number
of GMRES iterations per Newton iteration at each time step. Top: GM-
RES method preconditioned with the multigrid method. Bottom: GMRES
method preconditioned with the ILU decomposition.
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In Figure 5.6, we present the residual drop of the GMRES method in every Newton
iteration. Using an ILU preconditioner, 26 Newton iterations are required. By applying
a multigrid preconditioner, 25 Newton iterations are needed. No substantial difference
in the nonlinear iteration count is expected as the linear problems are solved with high
demands on the tolerance. In the upper plot of Figure 5.6, we show the GMRES con-
vergence of the first two Newton iterations. The convergence of the GMRES solver
preconditioned with the multigrid method is linear. The convergence of the GMRES
solver with an ILU preconditioner is much slower.
In the middle plot of Figure 5.6, we observe linear convergence for all Newton steps

of one time step. In the lower plot of Figure 5.6, we show the total number of GMRES
iterations per Newton step at t = 1 day. In average, we need 26 GMRES iterations per
Newton step using a multigrid preconditioner and 106 GMRES iterations per Newton
step by applying an ILU preconditioner.
Further, we analyze the behavior of the GMRES method under mesh refinement using

an ILU decomposition and a multigrid method as preconditioner. In Figure 5.7, we
evaluate the first 45 iterations (1 day) of the test case. We measure the average amount
of GMRES iterations per Newton iteration in each time step. We introduce the GMRES-
Newton ratio as the total amount of GMRES steps per time step divided by the total
number of Newton iterations per time step.
In the upper plot of Figure 5.7, we show the performance of the GMRES solver

preconditioned with a multigrid method at different mesh levels. The lower plot of
Figure 5.7 displays the performance of the GMRES method preconditioned with ILU
decomposition on refining meshes. We observe that on fine meshes, the GMRES-Newton
ratio with an ILU preconditioner is up to factor 6 times higher than the GMRES-
Newton ratio with a multigrid preconditioner. The convergence rate of the GMRES
solver preconditioned with a multigrid method is very robust regarding mesh refinement,
and shows only a small increase in the iteration count per Newton step. By using ILU
preconditioning, we observe less robustness.

Coarse mesh solution

The multigrid theory asks for an exact - or at least accurate - approximation of the
coarse mesh problem in Algorithm 5. Here, we test the robustness of the multigrid
method with respect to different kinds of coarse mesh approximation. We solve the test
case of Section 2.6 and choose a 2 km mesh with a time step size of k = 0.5 h.
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Figure 5.8.: Evaluating the test case of Section 2.6 using k = 0.5 h and a 2 km mesh.
We use a multigrid method with a direct solver at 1000 nodes and at 1000
nodes and without directly solving the coarse mesh problem.

We analyze the behavior of the multigrid preconditioner under application of a direct
solver on different coarse mesh levels. In Figure 5.8, we show the GMRES-Newton ratio
under application of a direct solver at 100 nodes, at 1000 nodes and without directly
solving the problem. The solver performance does not change in any case. This shows
that the multigrid method is robust with respect to the coarse mesh problem. It is not
necessary to directly solve the coarse problem. Thus, we recommend using the multigrid
method without directly solving the problem.

Number of pre and post smoothing steps

We study the computational cost of the GMRES iteration. Usually, taking less pre-
smoothing and post-smoothing steps (5.30) of the multigrid method is more efficient,
while a higher iteration number increases the robustness of the solver. Most of the work
is done during the smoothing operation, as it consists of matrix-vector products as well
as the application of the incomplete decomposition.
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Figure 5.9.: We evaluate the test case of Section 2.6 using k = 0.5 h and a 2 km mesh
with different numbers of pre-smoothing and post-smoothing steps in the
multigrid algorithm.

To analyze the computational cost, we compare in Figure 5.9 the total number of
smoothing steps per Newton iteration and the total number of smoothing steps per time
step. The average amount of smoothing steps per Newton iteration increases by increas-
ing the number of smoothing steps. Analogously, the average amount of smoothing steps
per time step increases by increasing the number of smoothing steps. The overall cost
is best when using only one step for pre- and post-smoothing. Our experience shows
best robustness – while still obtaining good performance – if 4 pre-smoothing and 4
post-smoothing steps are taken.
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5. A Newton scheme to solve the momentum equation

5.6. Conclusion

The nonlinearity of the sea ice momentum equation, coming from the viscous-plastic ma-
terial tensor σσσ(vn), is severe and the efficient treatment of this term is still under active
research [39]. Picard or Newton solvers are mainly used to solve implicit discretizations
of the momentum equation. The linear systems resulting from Newton linearization are
very stiff and usually approximated with the GMRES method using different precondi-
tioners like a LSOR method [57].
In this chapter, we have presented and tested a Newton solver, accelerated with the

operator-related damped Jacobian method and globalized with a line search method.
Further, we introduced a multigrid preconditioner to the GMRES method for solving
the linear subproblems. The idea of the operator-related damped Jacobian method is to
combine a Newton solver with a Picard method. The method is based on the analytical
evaluation of the Jacobian. We proved that the Jacobian of the viscous-plastic model is
a positive definite matrix. For a positive definite Jacobian, a damped Newton iteration
will converge globally if a good damping parameter is chosen, see [16]. The matrix is
symmetric apart from the Coriolis term. Given an explicit treatment as used by Zhang
and Hibler [34], this allows for simpler solvers like Conjugate Gradient method [86].
Further, we showed that the Jacobian of the sea ice model can be divided into a positive
definite part and a negative semidefinite matrix, which contains the derivatives of the
viscosities. By an adaptive controlling of the negative semidefinite part in the Jacobian,
we were able to accelerate the convergence of the Newton iteration. In the regime of
quadratic convergence, rapid decline of the residual is reached by a transition to the full
Jacobian.
We compared our globalization strategy to a standard Newton method with a line

search method and a Newton method with an inexact solving of the linear subprob-
lem and a line search damping. The second approach is used in the framework of the
Jacobian-free Newton Krylov ( JFNK) solver [54]. Using the model probelm introduced
in 2.6 we verified that Newton solver accelerated with the operator-related damped Ja-
cobian method gives better robustness. This is particularly true on fine meshes. In
contrast to the latter two approaches, we could solve the test problem on an 8 km mesh
and a 4 km mesh without failures. On a 2 km mesh, the inexact Newton method with
the operator-related damped Jacobian method and line search globalization only fails 6
out of 350 time steps. Here, we emphasize that “failure” just means, we did not reach
the desired tolerance within a fixed number of iterations. On all mesh levels, the other
globalization strategies failed many times in a row without recovery, such that the prob-
lem can no longer be considered as “solved”. By evaluating the model problem, we show
that the operator-related damped Jacobian method is robust under mesh refining as the
damping parameter δ(l) is not chosen to be smaller on fine meshes. In Chapter 6, we will
compare the operator-related damped Jacobian method to the JFNK solver evaluating
a simulation computed on a pan-Arctic.

As the currently used linear solver in the JFNK solver is numerically costly, we in-
troduced a geometric multigrid method as preconditioner to the GMRES method. We
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5.6. Conclusion

showed that the convergence rate of the multigrid method is robust with regard to mesh
refinement. This makes it an appealing method for sea ice simulations at high reso-
lutions. We found that it is not necessary to directly solve the coarse mesh problem
of the multigrid method. In terms of robustness and performance, we recommend 4
pre-smoothing and 4 post-smoothing steps. We compared the residual reduction of the
GMRES method with ILU and multigrid preconditioning. The reduction of the GMRES
with a multigrid preconditioner is linear and much faster than using an ILU precondi-
tioner. With increasing spatial resolution the ILU preconditioner is less robust than
the multigrid preconditioner. Especially on fine meshes, the multigrid preconditioner
reduces the iteration counts of the GMRES method by 80 % in comparison to an ILU
preconditioner.
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6. Performance of the operator-related
damped Jacobian method in a
stand-alone sea ice model

In this section, we describe the implementation of the operator-related damped Jacobian
method into the software framework used by the working group of Prof. Tremblay at
the McGill University. In this framework, the stand-alone sea ice model is applied
to investigate seasonal and sub-seasonal forecasts of sea ice conditions. The model is
implemented in FORTRAN and applies the Jacobian-free Newton-Krylow solver (JFNK)
to compute the solution of the momentum equation. The aim of this section is to show
that the operator-related damped Jacobian method works in a realistic setting, and to
compare its performance to the globalization and acceleration approaches of the JFNK
solver, that are implemented in the McGill sea ice model.

A detailed derivation of the operator-related damped Jacobian method can be found
in Section 5.2. The JFNK solver is a modified Newton method that has been introduced
by Lemieux et al. [56] to solve the viscous-plastic (VP) sea ice momentum equation.
Besides the stand-alone sea ice models [53, 54, 56], the JFNK solver is applied in global
climate models [39, 63, 64]. The McGill sea ice model is based on a finite difference dis-
cretization in space and an implicit Euler approximation in time. To save computational
costs in the Newton scheme, a Jacobian-free approach is applied. Here, the matrix vector
product of the Jacobian and the direction of descent of the Newton scheme are approx-
imated by a differential quotient. The linear problems arising in each Newton iteration
are solved with a flexible generalized minimal residual method (FGMRES) [57] that is
preconditioned with a line successive over-relaxation method (LSOR) [57]. Further, the
Newton method is globalized with a line search approach and accelerated by an inexact
solving of the linear subproblems [53]. A detailed description of the globalization and
acceleration approach is given in Section 5.2. In the standard version of the software,
the balance laws are advanced in time with a first order upwind scheme. Likewise, a
second order backward difference scheme can be applied.

This chapter is structured as follows. In Section 6.1, we briefly recapitulate the idea
of the Jacobian-free Newton approach and explain how the operator-related damped
Jacobian method is realized in this framework. Section 6.2 is devoted to the numerical
evaluation of the JFNK solver accelerated with the operator-related damped Jacobian
method. The chapter closes with a conclusion.
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6.1. The operator-related damped Jacobian method in a
Jacobian-free Newton solver

We begin with a brief introduction to the Jacobian-free Newton solver, before we present
the operator-related damped Jacobian method for this approach. As it is done for the
presentation of the Newton scheme in Section 5.1, we introduce the following abstract
notation of the fully discretized momentum equation

A(vn) = b,

where A : RN → RN contains all terms of the momentum equation that depend on the
velocity v. The right hand side of the momentum equation b includes all terms that are
independent of v. In order to apply Newton’s method, we introduce the residual as

F(vn) = A(vn)− b. (6.1)

Thus, the l-th Newton iteration at time step n reads as

F′(v(l−1)
n )w(l)

n = −F(v(l−1)
n ),

v(l)
n = v(l−1)

n + ωw(l)
n , l = 1, 2, ...

(6.2)

Here, the initial guess for Newton’s method is the solution of the last time step v(0)
n =

vn−1. In (6.2), we denote the Jacobian by F′ and the Newton update by w. Further,
by ω we describe the line search parameter ω ∈ {1, 1

2 ,
1
4 ,

1
8}. The line search parameter

is reduced until ||F(v(l)
n )|| ≤ ||F(v(l−1)

n )|| or ω = 1
8 is reached. Here, by || · || we refer to

the Euclidean norm.
The linear system F′(v(l−1)

n )w(l)
n = −F(v(l−1)

n ) is solved with a flexible generalized
minimal residual method (FGMRES). More details on the solver and the discretization
can be found in the work of Lemieux et al. [57].
The matrix vector multiplication arising in (6.2) is approximated by

F′(v(l−1)
n )w(l)

n ≈
F(v(l−1)

n + γεw(l)
n )− F(v(l−1)

n )
γε

.

We choose γε = 10−7 as it is suggested in Losch et al. [64]. In order to derive the
operator-related damped Jacobian method for the Jacobian-free approach, we recall the
viscous-plastic rheology.

σσσ = 2ηε̇εε′ + ζ tr(ε̇εε)I − P

2 I,

η = ζ

4 , ζ = P

2∆(ε̇εε) , ∆(ε̇εε) :=
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min.
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The idea of the operator-related damped Jacobian method is to split the Jacobian of the
momentum equation (2.24) into two parts

F′ = F′1 + δF′2, (6.3)

where F′2 contains the derivative of the viscosities. Here, F2 is approximated by the
forward differential quotient

F′2(v(l−1)
n )w(l)

n ≈
ζ(v(l−1)

n + γεw(l)
n )− ζ(v(l−1)

n )
γε

tr
(
ε̇εε
(
v(l−1)
n

))
I

+η(v(l−1)
n + γεw(l)

n )− η(v(l−1)
n )

γε
2ε̇εε′
(
v(l−1
n

)
.

All the remaining derivatives of the momentum equation (2.24) are stored in F′1 and
computed as it was done in the original Jacobian-free approach from Lemieux et al. [56].
As described in Section 5.2, we define the control parameter δ in (6.3) in the l-th

Newton iteration as

δ(l) =

min
{

1, δ(l−1)
(
0.2 + 4

0.7+exp(1.5Ql)

)}
δ(l−1) ≥ δmin = 0.55,

1 δ(l−1) < δmin,
(6.4)

where Ql is the reduction rate. In comparison to (5.28) in Section 5.2, we modified δmin
to reduce the computational costs of the nonlinear solver while maintaining its stability.
A detailed analysis of the parameter setting is given in Section 6.2.1.
As in the model problem introduced in Section 2.6, we apply a maximal number of

200 Newton iterations per time step and set the nonlinear tolerance as

F||(v(l)
n )|| ≤ tolnl||F(v(0)

n )||, tolnl = 10−3. (6.5)

Further, we allow a maximum of 100 GMRES iterations per Newton step. The linear
tolerance of the GMRES method is chosen as

||F′(v(l−1)
n )w(l)

n + F(v(l−1)
n )|| ≤ tol||F(v(l−1)

n )||, tol = 0.67. (6.6)

6.2. Numerical analysis of the operator-related damped
Jacobian method in a stand-alone sea ice model

The aim of this analysis is twofold. First, we show that the operator-related damped
Jacobian method works in a realistic setting. Second, we compare its performance to the
globalization and acceleration methods that are implemented in the McGill software. In
particular, we compare it to a line search approach and an inexact solving of the linear
problem, which are introduced in Section 5.2.
Our analysis is based on the pan-Arctic sea ice model provided by the working group of

Prof. Tremblay at McGill University in Montreal. The model includes a viscous-plastic
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tol Newton GMRES failure
0.01 775 22715 0
0.1 701 10665 0
0.25 1364 13827 4
0.67 856 6043 0
0.7 850 5944 0
0.75 870 5502 0

Table 6.1.: For k = 2 h, we analyze the number of Newton and GMRES iterations
achieved with operator-related damped JFNK solver for varying linear toler-
ances tol (6.6). We set the minimal control parameter of the operator-related
damped Jacobian method to δmin = 0.55. The simulation covers one day on
a 10 km mesh, starting at 01.01.2002.

δmin tol Newton GMRES failure
0.7 0.67 31803 248615 5
0.7 0.6 30213 256590 8
0.6 0.67 30126 238178 3
0.6 0.6 28952 249249 7
0.6 0.5 28886 272798 18
0.55 0.67 29657 238032 1
0.5 0.67 29735 238047 2

Table 6.2.: We analyze the number of Newton and GMRES iterations achieved with the
operator-related damped JFNK solver by applying different values for the
minimum control parameter δmin (6.4) and a variation of the linear tolerances
tol (6.6). We cover one month of simulation, starting on 01.01.2002 with
k = 2 h on a 10 km mesh.

sea ice model that is driven by atmospheric data. For our test we set ocean currents
and thermodynamic fluxes to zero. A more detailed description of the model is given
by Lemieux et al. [53]. We simulate the period from 01.01.2002 to 01.02.2002 which
according to the authors shows typical and challenging conditions of the Arctic. Our
analysis is done on a 40 km, 20 km and 10 km mesh, where the 10 km mesh is the highest
available mesh resolution of the model. The tolerances are set as described in (6.5) and
(6.6).

6.2.1. Parameter setting in operator-related damped Jacobian method

In this section, we adjust the parameter setting of the operator-related damped Jacobian
method, in order to apply it in the stand-alone sea ice model. For our analysis, we use
a 10 km mesh and a time step of k = 2 h. We simulate the sea ice dynamics over one
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month, starting on 01.01.2002. First, we evaluate the behavior of the operator-related
damped JFNK solver globalized with a line search approach and varying linear tolerance
tol (6.6). We analyze the number of Newton and GMRES iterations as well as the
number of failures arising in a simulation. We consider the method to fail if the solver
cannot reduce the residual of the momentum equation to the desired tolerance in 200
iterations.
In Table 6.1, we present the number of Newton and GMRES iterations that are com-

puted with the operator-related damped JFNK solver in a T = 1 day simulation. The
solvers show the same robustness for high tolerances ( tol ≈ 0.001) and low tolerances
(about tol ≈ 0.75). However, Lemieux et al. [54] observed a better robustness of the
JFNK solver when using low linear tolerances close to 1 and applying an adaptive con-
trol of the linear tolerances. In Section 5.3, we analyzed the solver robustness of the
operator-related damped Jacobian method on an idealized test case. We observe that
the approach fails on 4 km and 2 km mesh if the linear tolerance is set close to 1. In
this test case, we find that the nonlinear solver is more robust if the linear problem
is solved with high demands on the accuracy, i.e., tol = 0.0001. In contrast to the
JFNK solver, our approach approximates the linear problems with a multigrid method
as preconditioner to the GMRES solver, see Section 5.4. This strongly reduces the com-
putational costs in comparison to an ILU preconditioner. Therefore, we suggest testing
the multigrid method as preconditioner to the GMRES method in the JFNK framework.
Approximating the linear subproblems is the most costly part in solving the momen-

tum equation in the McGill model. In order to use as few linear iterations as possible,
we set the linear tolerance as low as possible (tol ≈ 1) while maintaining stability of the
nonlinear solver. In Table 6.2, we adjust the parameters in the operator-related damped
JFNK solver and evaluate the number of Newton and GMRES iterations with different
linear tolerances and varying values for δmin (6.4). In this test case, the simulation covers
T = 1 month starting on 01.01.2002. We observe the most robust performance of the
JNFK solver combined with the operator-related damped Jacobian method by choosing
δmin = 0.55 and setting the linear tolerance to tol= 0.67, see Table 6.2. Thus, we proceed
with this parameter setting. For our purposes, this straightforward way to implement
the operator-related damped Jacobian method in the McGill model is sufficient.
Note that we do not observe an enhanced robustness or a faster converging behavior

of the JFNK solver by using a combination of operator-related damped Jacobian method,
and an adaptive control of the linear tolerance.
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Figure 6.1.: Top: The velocity field achieved with the orJFNK solver after T = 1 month
of simulation, starting on 01.01.2002. Bottom: The difference of the solu-
tions calculated with the orJFNK and the JFNKac solver. We use k = 2 h
and a 10 km mesh.
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Figure 6.2.: Top: The ice thickness computed with the orJFNK solver after T = 1
month of simulation, starting on 01.01.2002. Bottom: The difference of the
solutions calculated with the orJFNK solver and the JFNKac solver. We
use a time step of k = 2 h and a 10 km mesh. The ice thickness is given in
meter.
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6.2.2. Solver comparison on varying spatial and temporal resolutions
In this section, we analyze the performance of the operator-related damped JFNK solver
with a fixed tolerance for the linear problems (orJFNK). Further, we compare the or-
JFNK solver to a JFNK solver with a fixed linear tolerance (JFNKf) and to a JFNK
solver with an adaptive control of the linear tolerance (JFNKac). The JFNKac solver
is currently applied by Lemieux et al. [56] and Losch et al. [64] to solve the sea ice
momentum equation. A line search globalization is used in all three inexact Newton
methods.
We begin by comparing the velocity field and the ice thickness, computed with the

orJFNK solver and the JFNKac method. In the upper image of Figure 6.1, we show the
velocity field achieved after T = 1 month of simulation. In the lower image, we present
the difference of the velocity field computed with the orJFNK solver and the JFNKac
solver. The difference is taken on 31.01.2002. During the simulation, the orJFNK solver
failed twice and the JFNKac method failed 90 times. We observe a small difference in
the velocity field up to 2cm/s which is around 5% in comparison to the maximum ice
velocity.
In the upper image in Figure 6.2, we present the ice thickness distribution on 31.01.2002,

computed with the orJFNK solver. In the lower image of Figure 6.2, we show the dif-
ferences in the ice thickness field computed with the orJFNK solver and the JFNKac
method. We observe differences locally up to 1 cm which is about 0.1% of the maximum
ice thickness. The differences are based on the failures of the solvers.
Actually, the choice of the solver should not have an impact on the solution. How-

ever, so far, no robust solvers exist to compute an accurate numerical solution of the
viscous-plastic sea ice model such that different implementations produce different ap-
proximations. Further, the different discretizations of the sea ice equations are considered
as different sea ice models.
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Figure 6.3.: We compare the JFNK solver with a fixed linear tolerance (JFNKf) to
an operator-related damped JFNK solver (orJFNK) with fixed linear tol-
erance and to the JFNK solver with adaptive control of the linear tolerance
(JFNKac).
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Figure 6.4.: We compare the JFNK solver with a fixed linear tolerance (JFNKf) to
the operator-related damped JFNK solver (orJFNK) with fixed linear tol-
erance and to the JFNK solver with adaptive control of the linear tolerance
(JFNKac). Here, we plot the residuum reduction per Newton iteration for
one time step in logarithmic scale. A maximal number of 200 Newton iter-
ations is applied. The residual is normalized by the initial residual.
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40 km Newton GMRES CPU [s] failure
JFNKf 7560 25881 524 0

JFNKac 7614 28159 929 0
orJFNK 7689 25612 593 0

20 km
JFNKf 14008 70008 9184 5

JFNKac 16060 56596 7635 4
orJFNK 13229 64787 9160 3

10 km
JFNKf 32572 313581 159590 60 (16%)

JFNKac 57097 210371 98151 90 (24%)
orJFNK 32428 260334 128660 02 (0.5%)

Table 6.3.: We simulate T = 1 month with k = 2 h. A time step is considered as a
failure if the desired residual can not be reached in 200 Newton iterations.

time step solver Newton GMRES failure
2 h JFNKac 57097 210371 90 (24%)

orJFNK 32428 260334 2 (0.5%)
0.5 h JFNKac 117473 490451 29 (1.9%)

orJFNK 70560 519779 5 (0.3 %)
0.16 h JFNKac 183485 822605 84 (1.8%)

orJFNK 134077 838770 39 (0.8%)

Table 6.4.: We use a 10 km mesh and simulate the sea ice dynamics T = 1 month.

time step solver Newton GMRES failure
2 h JFNKac 59100 275183 105 (28%)

or JFNK 34497 340984 13 (3.5 %)
0.5 h JFNKac 181229 684602 19 (1.27%)

orJFNK 67429 498942 6 (0.4 %)
0.16 h JFNKac 180561 800809 50 (1.12%)

orJFNK 134260 850155 26 (%0.5)

Table 6.5.: We use the monotholitic solving approach presented in Algorithm 2 in Section
3.1 to simulate the sea ice dynamics for T = 1 month on a 10 km mesh.
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Solver comparison on increasing spatial resolutions In the following, we analyze the
performance of the JFNK solver accelerated with the operator-related damped Jacobian
method (orJFNK), the JFNK solver accelerated with an adaptive control of the linear
tolerance (JFNKac) and the JFNK solver with a fixed linear tolerance (JFNKf).
In Figure 6.3 we compare the number of Newton steps applied by the different ap-

proaches to solve the sea ice model for T = 1 month on 40 km, 20 km and 10 km meshes.
We observe that the number of Newton iterations increases on higher resolutions and
find that the orJFNK solver needs less Newton iterations than the other two solvers in
nearly all the time steps, see Figure 6.3. We proceed with analyzing the robustness of
the solvers on 40 km, 20 km and 10 km meshes. As shown in Table 6.3, the robustness
of the solver decreases with increasing resolution. On a 10 km mesh, we observe the
biggest difference in terms of solver robustness. The orJFNK solver fails in less than
1% of the iterations, whereas the other two approaches fail in more than 15% of the
iterations, see Table 6.3.
Next, we compare the computational time that the three solvers need to solve the test

case on different mesh levels. In Table 6.3, we present the CPU time of the solvers. On
the 40 km mesh the JFNKac solver is factor 1.7 slower than the other solvers, but on
the other meshes the JFNKac solver is up to 38% faster. This is reflected in the number
of GMRES iterations that are applied by each solver. Even if the JFNKac solver applies
more Newton iterations than the other two solvers, the much smaller number of GMRES
iterations makes a quicker performance possible, see Table 6.3.
In Figure 6.4, we show the relative residuum reduction of the three solvers in one time

step on a 10 km mesh. In the upper graph, we plot the performance in time step n = 61,
a case in which all three solvers converge. To reach the desired tolerance, the JFNKac
solver needs double the amount of Newton iterations, but requires 27% less GMRES
iterations than the other two solvers.
In the lower graph in Figure (6.4), we present time step n = 345, a time step in

which the JFNKac solver and the JFNKf solver fail. In between 200 iterations, only
the orJFNK method reduces the residuum to the desired tolerance. The orJFNK solver
requires 55 Newton steps and 435 GMRES iterations to reach the tolerance at which
the JFNKac solver fails. Here, the JFNKac solver applies 200 Newton steps and 571
GMRES iterations.

Solver comparison with reducing time steps We analyze the robustness of the orJFNK
solver and the JFNKac solver with increasing temporal resolution. In Table 6.4, we
evaluate the number of Newton and GMRES iterations after T = 1 month of simulation.
The robustness of the JFNKac solver increases with smaller time steps. The failure rate
decreases from 24% to 1.8%. Using the orJFNK solver, the failure rate is below 1%
for all considered time steps. With a decreasing time step, the number of GMRES and
Newton iterations are increase by factor 2 to factor 4. For all considered time steps, the
orJFNK is solver is more robust than the JFNKac solver.
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k = 2 h

k = 0.5 h

k = 0.16 h

Figure 6.5.: We simulate the sea ice dynamics for 8 days on a 10 km mesh and plot
the difference of the ice thickness A calculated with the orJFNK solver in a
partitioned and a monotholitic solution approach. A is given in meters.
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6.2.3. Operator-related damped Jacobian method in a partitioned and
monotholitic solution approach

We compare the performance of the operator-related damped JFNK solver in a mono-
tholitic and a partitioned solution approach. In the partitioned solution approach (SIT)
the system of equations is decoupled such that first the momentum equation and then
the balance laws are solved [53]. By decoupling the system, a splitting error is intro-
duced. This error would be avoided by solving the momentum and the balance laws
simultaneously in a monotholitic approach. The IMEX method introduced by Lemieux
et al. [53] and described in Algorithm 2 in Section 3.1, is a monotholitic solution ap-
proach. It aims to reduce the splitting error by iteratively solving the sea ice momentum
equation with updated balance laws in each Newton iteration. We run the system with
the IMEX method and analyze the performance of the operator-related damped Newton
method in the IMEX framework and we compare it to the behavior in the partitioned
solution approach.
By comparing Table 6.4 and Table 6.5, we observe that for k = 2 h the orJFNK

solver and the JFNKac solver are less robust in the monotholitic approach than in the
partitioned solution method. For decreasing time steps, both solvers show the same
robustness in the monotholitic and in the partitioned solution approach. As in the
partitioned solution approach, the orJFNK solver is more robust than the JFNKac
solver.
In Figure 6.5, we show the differences of ice thickness fields calculated with operator-

related damped JFNK solver in the partitioned and in the monotholitic approach. The
difference is taken after T=8 days of simulation. Considering k = 2 h, we find that the
solution differs in larger areas especially on the boundaries and at cracks in the ice. By
decreasing the time step, the difference in the solutions is reduced.
Finally, we compare Figure 6.2 and Figure 6.5 and observe that the difference in the

solution conducted with a partitioned and a monotholitic approach seems to be bigger
than the error of non-converging Newton solver. Here, further investigation is needed to
prove this hypothesis.

6.3. Conclusion

In this section, we described the implementation of the operator-related damped Jaco-
bian method in the JFNK solver and tested it on a pan-Arctic sea ice model. This model
is used by the working group of Prof. Tremblay at the McGill University to investigate
the ice conditions in short-term and seasonal forecasts. In this sea ice model, the main
computational effort in solving the sea ice momentum equation lies in the approximation
of the linear system in every Newton iteration. The linear systems are solved with a
GMRES method preconditioned by a LSOR iteration. To keep the number of linear
iterations as low as possible, we choose the linear tolerance as low (close to 1) as possi-
ble while maintaining stability of the solver. Ìn doing so, we observed the most robust
performance of the operator-related damped JFNK (orJFNK) solver with a fixed linear
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tolerance at tol=0.67 (6.6).
In contrast to Lemieux et al. [56] who applied the JFNK solver with an adaptive

control of the linear tolerance (JFNKac), we do not observe an enhanced robustness
by solving the linear problem in the operator-related damped JFNK (orJFNK) solver,
neither with an adaptive control, nor by using a linear tolerance close to 1. In order to
reduce the overall computational cost, we suggest testing a multigrid preconditioner to
the GMRES method in the JFNK solver as it is done in Section 5.4. Here, especially at
high resolutions, the use of the multigrid preconditioner strongly decreases the iteration
count of the linear solver in comparison to the use of an ILU preconditioner.
We analyzed the robustness the orJFNK solver, the JFNKac approach and the JFNK

solver with a fixed linear tolerance (JFNKf) under mesh refinement. To analyze the
performance, we simulated the ice dynamics over T = 1 month with k = 2 h and
started the simulation on 01.01.2002. We showed that the robustness of the solver is
decreasing with increasing spatial resolutions. In terms of robustness, we noted the
biggest difference on the 10 km mesh. We observed failure rates of 0.5% of the orJFNK
solver and of 24% of the JFNKac solver. We assume that the increase in robustness will
be even higher on finer meshes as it was observed on an idealized test case in Section
5.3.
It needs to be investigated what effect the increased robustness has on the overall

numerical error, e.g, how big the approximation error is due to failures of the solver in
comparison to either the splitting error achieved by decoupling the system of equations
or the discretization error in space and time. We will estimate the splitting error and
the discretization error for the sea ice model in Chapter 8.

By applying a partitioned solution approach (SIT) as introduced by Lemieux et al. [53]
a splitting error is introduced. This error can be avoided by solving the whole system
simultaneously. As Ip et al. [34], we found in [68] that a monotholitic framework is not
suitable for the sea ice equations due to the large computational costs. Lemieux et al.
[53] introduced an IMEX scheme as an iterative solution method to solve the viscous-
plastic sea ice model. This monotholitic approach is described in Algorithm 2 in Section
3.1. We found that the JFNKac solver and the orJFNK method are less stable when
using the IMEX method than solving the system with a partitioned solution approach.
The robustness of both solvers in the IMEX method is increased by decreasing the time
step. In the partitioned approach as well as the monotholitic approach, the orJFNK
solver is more robust than the JFNKac solver.
Finally, we observed that the error introduced by decoupling the system is bigger than

the error that is introduced by a non-converging Newton solver. Further investigation
is needed to prove this hypothesis. Note that the use of the IMEX method with many
advected quantities such as the ice thickness, the ice concentration or the salinity, is very
costly. In order to apply the IMEX method in global climate simulations, the efficiency
of this method needs to be improved. Alternatively, the time step size can be decreased
to reduce the splitting error in the numerical approximation.
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A goal oriented error estimator for
partitioned solution approaches
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7. A posteriori error estimator
The aim of this chapter is to derive an abstract representation of a goal oriented error
estimator for partitioned solution approaches of coupled systems. For some applications
as the sea ice model [52] or the Navier-Stokes flow coupled to a transport process [10], it
is desirable to apply a partitioned solution approach to decouple the system of equations
and solve the different equations separately.
The concept of the error estimator is based on the dual weighted residual method which

goes back to Becker and Rannacher [6]. The error estimator will be derived for a general
class of coupled non-stationary (parabolic) partial differential equations that are solved
with a partitioned solution approach. Particularly in Chapter 8, we evaluate the error
estimator for a coupled system consisting of Burgers equation and a transport process,
before we apply it to the more complex sea ice model. Due to the decoupling of the
system, the error estimator consists of a splitting error in addition to the spatial and
temporal discretization error. We introduce a projection operator to decouple the system
in time. The decoupled system is then discretized with a discontinuous Galerkin method.
Particularly, we present the discontinuous Galerkin method of degree zero. More details
on discontinuous Galerkin methods in time can be found in the books of Eriksson et al.
[18] and Thomée [94].
The chapter is structured as follows. First in Section 7.1, we introduce an abstract

problem formulation and present the Galerkin discretization in space and time. Section
7.2 is devoted to the derivation of the a posteriori error estimator. In Section 7.2.1,
we introduce the adjoint equation and recall the idea of the dual weighted residual
method. We derive the goal oriented error estimator for partitioned solution approaches
in Section 7.2.2. In order to compute the a posteriori error estimator, we present an
approximation of the error estimator in Section 7.3. In Section 7.4, we describe, based
on the error estimator, an adaptive mesh refinement algorithm, that aims to reduce
the computational costs of a coupled simulation. The numerical evaluation of the error
estimator is given in Chapter 8. This chapter closes with a conclusion.

7.1. Notation and problem formulation
We recall the notation of Section 3. Let Ω ∈ Rd be a Lipschitz domain. For a time
interval I = [0, T ], we introduce

X(I) :=
{
v ∈ L2(I;V), ∂tv ∈ L2(I,V∗)

}
,

with a Hilbert space V and its dual space V∗. Usually V = H1
0 (Ω), a Sobolev space

of L2(Ω)-functions with weak first derivative in L2(Ω) and zero trace on the boundary
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∂Ω. In case of H1
0 (Ω), the dual space is given by H−1(Ω). We assume that our coupled

system can be written in the variational space-time framework as

U ∈ X(I) :
∫
I
{
(
g(U(t))∂tU(t),Φ(t)

)
+ a

(
U(t)

)(
Φ(t)

)
}dt =

∫
I

(
f(t),Φ(t)

)
,

∀Φ ∈ X(I),
(7.1)

with f ∈ L2(I,V∗) and g : V → R. The semilinear form which may be nonlinear in the
first argument and which is linear in the second argument is denoted by a : V ×V → R.
For a more detailed analysis, we reformulate equation (7.1) to find (u, v) ∈ X(I) such
that∫

I
{
(
gu(u(t), v(t))∂tu(t), φ(t)

)
+ au

(
u(t), v(t)

)(
φ(t)

)
}dt =

∫
I

(
fu(t), φ(t)

)
dt,∫

I
{
(
gv(u(t), v(t))∂tv(t), ψ(t)

)
+ av

(
u(t), v(t)

)(
ψ(t)

)
}dt =

∫
I

(
fv(t), ψ(t)

)
dt,

∀(φ, ψ) ∈ X(I),

(7.2)

with U = (u, v) and g(U(t)) = gu(u(t), v(t)) + gv(u(t), v(t)). The sesquilinearform and
the right hand side can be written as a(U(t),φφφ(t)) = au(u, v)(φ, ψ)+av(u, v)(φ, ψ), with
φφφ = (φ, ψ) and f(t) = (fu(t), fv(t)).

Galerkin discretization in time We partition the time interval I = [0, T ]

I = {0} ∪ I1 ∪ I2 ∪ ... ∪ IN , (7.3)

into the sub-intervals In = (tn−1, tn] and the corresponding time steps kn = tn − tn−1.
To apply a discontinuous Galerkin method in time, we define the non-conforming space

XI :=
{
v : I × Ω→ R, v|In ∈ X(In)

}
,

which is not necessarily continuous at tn. Also, note that XI 6⊂ X(I), but X(I) ⊂ XI .
For v ∈ XI we introduce

v+
n := v(tn)+ := lim

s→0,s≥0
v(tn + s), v−n := v(tn)− := lim

s→0,s≥0
v(tn − s), [v]n := v+

n − v−n .

(7.4)

On the space XI , we formulate a second variational formulation

U ∈ XI , B(U)(Φ) = F (Φ), ∀Φ ∈ XI , (7.5)

with

B(U)(Φ) :=
N∑
n=1

∫
In

{g(U(t))
(
∂tU(t),Φ(t)

)
+a
(
U(t)

)(
Φ(t)

)
}dt

+
N∑
n=1

(
g(U+

n−1))[U ]n−1, φ
+
n−1

)
,

(7.6)
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U
+

k,n

Uk

t
n−1 tn t

n+1 t
n+2

U
−

k,n

Figure 7.1.: Visualization of the temporal jump of piecewise constant functions at time
point t = tn.

and

F (Φ) : =
N∑
n=1

(f(t),Φ(t))dt. (7.7)

The continuous solution U ∈ X(I) of (7.1) also solves formulation (7.5) as all jumps
in (7.6) are zero.
For time discretization we apply a discontinuous Galerkin discretization of degree

zero (dG(0)dG(0)) with piecewise constant ansatz and test functions. The space of the
piecewise constant functions on In is given as

Xk ⊂ XI , Xk : =
{
v ∈ XI , v|In

∈ P (0)(In,V), n = 1, ..., N v(0) ∈ V
}
.

The space of polynomials with degree zero in time is denoted by P (0)(I,V). For a
better understanding, we visualize the piecewise constant functions in Figure 7.1. The
semi-discrete formulation of problem (7.5) reads as

Uk ∈ Xk : B(Uk)(Φk) = F (Φk), ∀Φk ∈ Xk. (7.8)

Galerkin discretization in space Let Vh ⊂ V be a conforming finite element subspace
as introduced in Section 3. The discrete space is defined as

Xk,h : =
{
v ∈ XI , v|In

∈ P 0(In, Vh), n = 1, ..., N v(0) ∈ Vh
}
. (7.9)

Finally, the discrete formulation of problem (7.5) is given by

Uk,h ∈ Xk,h : B(Uk,h)(Φk,h) = F (Φk,h), ∀Φk,h ∈ Xk,h. (7.10)
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Considering conforming test and ansatz spaces, Galerkin orthogonality holds for the
solutions U ∈ XI of (7.5) and Uk,h ∈ Xk,h of (7.10),

B(U)(Φk,h)−B(Uk,h)(Φk,h) = 0, ∀Φk,h ∈ Xk,h. (7.11)

7.2. Goal oriented error estimator for partitioned solution
approaches

By the application of a partitioned solution approach, the coupled system (7.8) is decou-
pled in time such that the different equations can be solved separately. The numerical
solution of this decoupled system U sk,h does not solve the coupled system (7.10). Further,
using a partitioned solution approach, the discrete solution Uk,h of the coupled system
(7.10) is not at hand such that, besides the discretization error in space and time, an
additional non-conformity error due to the splitting in time is introduced.

To address this, we define a second sesquilinearform Bs(·)(·) that describes the decou-
pling of system (7.8) in time. Based on the dG(0)dG(0) discretization, the splitting is
realized by the projection

S : XI → P (0)(In,V), S(v)|In = v−(tn−1). (7.12)

We formulate the decoupled variational problem based on the notation introduced in
(7.2) as

U s ∈ XI : Bs(U s)(Φ) = F (Φ), ∀Φ ∈ XI , (7.13)

with

Bs(U s)(Φ) :=
N∑
n=1

∫
In

{gu
(
us(t),S(vs(t))

)(
∂tu

s(t), φ(t)
)

+ au
(
us(t),S(vs(t))

)(
φ(t)

)
}dt

+
N∑
n=1

gu
(
us+n−1,S(vs)+

n−1

)(
[us]n−1, φ

+
n−1

)
N∑
n=1

∫
In

{gv
(
us(t), (vs(t))

)(
∂tv

s(t), ψ(t)
)

+ av
(
us(t), vs(t))

)(
ψ(t)

)
}dt

+
N∑
n=1

gv
(
us+n−1, v

s+
n−1)

)(
[vs]n−1, φ

+
n−1

)
.

The splitting error introduced from the decoupling in time is given by

β(U s,Φ) := Bs(U s)(Φ)−B(U s)(Φ). (7.14)

In this section, we derive a goal oriented error estimator for partitioned solution ap-
proaches. The new error estimator will be based on concepts of the dual weighted residual
method introduced by Rannacher and Becker [6]. Before deriving the error estimator for
decoupled systems, we briefly recapitulate the idea of the dual weighted residual method.
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7.2.1. The dual weighted residual method
The derivation follows Becker and Rannacher [6]. Let U and Uk,h be the solution of
(7.5) and of (7.10). The idea of the dual weighted residual method for time-dependent
problems in an interval I = [0, T ] is to estimate the error eu = U − Uk,h in a goal
functional J : XI → R, i.e., J(U)− J(Uk,h). We consider functionals like

J(U) =
∫
I
j(U(t)) dt,

where j : V → R. The estimator is derived by introducing a Lagrange functional
L : X ×X → R and by formally minimizing the goal functional J(U). The constraint
of the minimization problem is the variational problem (7.5). Following Becker and
Rannacher [6], we define the Lagrange functional as

L(U,Z) := J(U) + F (Z)−B(U)(Z). (7.15)

The stationary point of the Lagrange functional L(U,Z) (7.15),

L′(U,Z)(δu, δz) =
(
F (δz)−B(U, δz)

)
+
(
J ′(U)(δu)−B′(U)(Z, δu)

)
= 0, ∀δu, δz ∈ X,

defines the solution U ∈ X of equation (7.5) as well as the adjoint solution Z ∈ X of the
adjoint equation

J ′(U)(δu) = B′(U)(Z, δu), ∀δu ∈ X. (7.16)

Adjoint problem Let Uk be the semi-discrete solution of (7.8). Analogous to the primal
equation, we introduce the semi-discrete adjoint equation as

Zk ∈ Xk : J ′(Uk)(δuk
) = B′(Uk)(Zk, δuk

), ∀δuk
∈ Xk, (7.17)

and the fully discrete problem as

Zk,h ∈ Xk,h : J ′(Uk,h)(δuk,h
) = B′(Uk,h)(Zk,h, δuk,h

), ∀δuk,h
∈ Xk,h. (7.18)

Galerkin orthogonality also holds for the adjoint problem

B′(U)(Z − Zk,h, δuk,h
) = 0, ∀δuh,k

∈ Xk,h. (7.19)

The dual weighted residual method For a better readability, we introduce x = (U,Z),
xk,h = (Uk,h, Zk,h) and e = x− xk,h. Using the Lagrange functional defined in (7.15), it
holds that

J(U)− J(Uk,h) = L(x)− L(xk,h) =
∫ 1

0
L′(xk,h + λe)(e)dλ.

By approximating the integral with the trapezoidal rule, we obtain

J(U)− J(Uk,h) = 1
2
{
L′(x)(e) + L′(xk,h)(e)

}
+R(xk,h, e), (7.20)
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with the remainder

R(xk,h, e) =
∫ 1

0
L
′′′(xk,h + λe)(e, e, e) · λ(1− λ)dλ. (7.21)

Let x and xk,h be the stationary points. By Applying Galerkin orthogonality given in
(7.11) and in (7.18) to equation (7.20), it holds that

J(U)− J(Uk,h) = L(x)− L(xk,h) =1
2
{
L′(x)(x− xk,h)︸ ︷︷ ︸

=0

+L′(xk,h)(x− xk,h)
}

+R(xk,h, e)

=1
2L
′(xk,h)(x− Ik,hx) +R(xk,h, e),

(7.22)
with an interpolation Ik,h : X × X → Xk,h × Xk,h. The exact solution x and the
interpolation Ik,hx is not at hand. Thus, for an evaluation of the dual weighted residual
method, it remains to approximate the interpolation error x − Ik,hx. Here, various
possibilities are discussed in literature, i.e., by Becker and Rannacher [6], by Schmich
and Vexler [88] and by Richter and Meidner [71]. We describe the approximation of the
weight x− Ik,hx in Section 7.3.

7.2.2. Derivation of the goal oriented error estimator for partitioned
solution approaches

In this section, we derive a goal oriented error estimator for partitioned solution ap-
proaches of coupled systems. As the numerical solution U sk,h of the decoupled system

U sk,h ∈ Xk,h : Bs(Uk,h)(Φk,h) = F (Φk,h), ∀Φk,h ∈ Xk,h, (7.23)
does not solve the coupled system (7.10), a splitting error is introduced in addition to
the temporal and spatial discretization error. The a posteriori error estimator is given
as follows.

Theorem 2. Let U ∈ X be the primal solution to (7.5) and Z be the dual solution
to (7.16). Further, U sk ∈ Xk is the time discrete solution achieved with a partitioned
solution approach

U sk ∈ Xk : F (Φk) = Bs(U sk)(Φk), ∀Φk ∈ Xk, (7.24)
and Zsk the corresponding adjoint solution

Zsk ∈ Xk : J ′(U sk)(Ψk) = Bs′(U sk)(Zsk,Ψk), ∀Ψk ∈ Xk. (7.25)
Let U sk,h and Zsk,h be the fully discrete solutions to equations (7.24) and (7.25). Then, it
holds that

J(U)− J(U sk,h) =1
2
{
ρ(U sk)(Z − IkZ) + ρ∗(U sk , Zsk)(U − IkU)

}
+Rk

+ 1
2
{
ρ(U sk,h)(Zsk − IhZsk) + ρ∗(U sk,h, Zsk,h)(U sk − IhU sk)

}
+Rh

+ 1
2
{
β(U sk)(Z + Zsk) + β∗(U sk)(Zsk, U − U sk)

}
,
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with the primal and dual residuals

ρ(U)(Φ) := F (Φ)−Bs(U)(Φ), ρ∗(U)(Z) := J ′(U)(Z,Ψ)−Bs′(U)(Z,Ψ), (7.26)

as well as the primal and dual splitting errors

β(U)(Φ) := Bs(U)(Φ)−B(U)(Φ), β∗(U)(Z) := Bs′(U)(Z,Ψ)−B′(U)(Z,Ψ). (7.27)

The remainders Rk := Rk(xk, x − xk) and Rh := Rh(xk,h, xk − xk,h) have the same
structure as in (7.21). By Ik and Ih we denote pointwise nodal interpolations in time
and space.

Proof. Similar to the Lagrange functional (7.15) defined in Section 7.2, we introduce
a Lagrange functional for coupled systems that are solved with a partitioned solution
approach

Ls : Xk ×Xk → R : Ls(U sk , Zsk) := J(U sk) + F (Zsk)−Bs(U sk)(Zsk). (7.28)

We begin with splitting the error into the temporal and spatial contribution. As U and
Z are the solutions to (7.5) and (7.16), and U sk,h and Zsk,h are the discrete solutions to
(7.24) and (7.25), we obtain

J(U)− J(U sk,h) =J(U)± J(U sk)− J(U sk,h) = L(U,Z)± Ls(U sk , Zsk)− Ls(U sk,h, Zsk,h)
=L(U,Z)− L(U sk , Zsk)︸ ︷︷ ︸

(I)

+L(U sk , Zsk)− Ls(U sk , Zsk)︸ ︷︷ ︸
(II)

+ Ls(U sk , Zsk)− Ls(U sk,h, Zsk,h)︸ ︷︷ ︸
(III)

.

The splitting error is estimated by the second term (II). Given that U sk is the solution
to (7.24) and applying the notation of (7.14), the second term (II) reduces to

(II) = J(U sk)− J(U sk)︸ ︷︷ ︸
=0

+F (Zsk)−B(U sk)(Zsk) + F (Zsk)−Bs(U sk)(Zsk)︸ ︷︷ ︸
=0

= β(U sk)(Zsk).

Using the trapezoidal rule, the first term (I) is given as

L(U,Z)− L(U sk , Zsk) = 1
2
{
L′(U sk , Zsk)(U − U sk , Z − Zsk)︸ ︷︷ ︸

(∗)

}
+Rk(xk, x− xk),

where the remainder is of third order (7.21). We proceed with expanding (∗) to

L′(U sk , Zsk)(U − U sk , Z − Zsk) =[L′ − Ls′ ](U sk , Zsk)(U − U sk , Z − Zsk)
+ Ls

′(U sk , Zsk)(U − IkU,Z − IkZ)
=β(U sk)(Z − Zsk) + β∗(U sk)(Zsk, U − U sk)

+ ρ(U sk)(Z − IkZ) + ρ∗(U sk)(Zsk, U − IkU).

(7.29)
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The third term (III) is treated with the usual concept of the dual weighted residual
method as described in Section 7.2.1. Thus, we obtain

Ls(U sk , Zsk)− Ls(U sk,h, Zsk,h) =1
2
{
Ls
′(U sk,h, Zsk,h)(U sk − IhU sk , Zsk − IhZsk)

}
+Rh(xk,h, x− xk,h)

=1
2
{
ρ(U sk,h)(Zsk − IhZsk) + ρ∗(U sk,h, Zsk,h)(U sk − IhU sk)

}
+Rh(xk,h, x− xk,h).

7.3. Approximation of the error estimator
By neglecting the remainders, the error estimator derived in Theorem 2 can be approx-
imated as

J(U)− J(U sk,h) ≈1
2
{
ρ(U sk)(Z − IkZ) + ρ∗(U sk)(Zsk, U − IkU)

}
+ 1

2
{
ρ(U sk,h)(Zsk − IhZsk) + ρ∗(U sk,h)(Zsk,h, U sk − IhU sk)

}
+ 1

2
{
β(U sk)(Z + Zsk) + β∗(U sk)(Zsk, U − U sk)

}
.

(7.30)

In the following, we again use the short notation x = (U,Z). As we only compute
the discrete solution of the decoupled system, U sk,h and Zsk.h, the remaining quantities
in (7.30) need to be reconstructed. In particular, in order to achieve a computable
error estimator based on formulation (7.30), it remains to describe the evaluation of the
temporal interpolation error x − Ikx and spatial interpolation error xsk − Ihxsk as well
as the weights of the primal and dual splitting error, Z + Zsk and U − U sk . We refer by
weights to the second argument of the sesquilinearform.

We start with approximating the primal and dual residual error in time and space.
Then, we continue with the approximation of the splitting error.

Approximation of residual error We begin with prescribing the approximation of the
weights of the temporal and spatial residuals, x − Ikx and xsk − Ihxsk. As we apply a
partitioned solution approach, our approximation is based on the discrete solution of the
decoupled system xsk,h. Thus, we express x− Ikx by the interpolation errors xs − Ikxs
of the partitioned solution approach by inserting ±xs − Ikxs.

x− Ikx = xs − Ikxs + x− xs − Ik
(
x− xs

)
= xs − Ikxs + (id− Ik)(x− xs︸ ︷︷ ︸

=O(k2)

≈ xs − Ikxs,
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Ωh Ω2h

Figure 7.2.: Two dimensional patch-wise organized mesh Ωh and the corresponding
coarse mesh Ω2h.

where we assume that ‖x− xs‖ = O(k).
To approximate the interpolation error xs − Ikxs, we introduce a higher order recon-

struction in space, Πh, and a high-order reconstruction in time, Πk.

U s − IkU s ≈ΠkU
s
k , Zs − IkZs ≈ ΠkZ

s
k,

U sk − IhU sk ≈ΠhU
s
k,h, Zsk − IhZsk ≈ ΠhZ

s
k,h.

(7.31)

We proceed with defining the high-order reconstructions Πk and Πh. For a better
readability, we recall the definition of the finite element space. We assume that Ωh is
structured in a patch-wise manner such that we obtain Ωh as a refinement from Ω2h. It
means, we can always combine four cells of Ωh and receive one cell of Ω2h. In Figure 7.2,
we show the patch-wise structure. In Section 3.2, we introduced Vh(Ωh) as the bi-linear
continuous finite element space with the nodal basis {φ1, ..., φn}. In order to define the
high-order reconstruction of U sk,h and Zsk,h in space we make use of the bi-quadratic
finite element space V (2)

2h with the basis {φ(2)
1 , ..., φ

(2)
n }. By i(2)

2h : Vh → V
(2)

2h , we define
the nodal interpolation from the bi-linear finite elements to bi-quadratic finite elements
on Ω2h. The interpolation is visualized in Figure 7.3.
Based on this interpolation, the spatial interpolation error is approximated as

ΠhU
s
k,h : = i

(2)
2hU

s
k,h − U sk,h, ΠhZ

s
k,h := i

(2)
2hZ

s
k,h − Zsk,h.

Next, we describe the approximation of the temporal interpolation error. Based on
the dG(0)dG(0) discretization in time, we define

ΠkU
s
k := i

(1)
k U sk − U sk , ΠkZ

s
k := i

(1)
k Zsk − Zsk, (7.32)

where i(1)
k U sk and i

(1)
k Zsk, are piecewise linear reconstructions of U sk and Zsk in time.

As in Besier and Rannacher [87], we introduce on each interval In = [tn−1, tn) the
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h

Uk,h

i
(2)
2h Uk,h

hP = 2h

h

Figure 7.3.: Spatial interpolation of linear finite elements into the space of quadratic
finite elements on every patch of the mesh.

reconstruction as

i
(1)
k U sk |In := t− tn−1

tn − tn−1
U s−k (tn) + t− tn

tn−1 − tn
U s−k (tn−1), (7.33)

and respectively

i
(1)
k Zsk|In := t− tn−1

tn − tn−1
Zs−k (tn) + t− tn

tn−1 − tn
Zs−k (tn−1). (7.34)

This piecewise linear interpolation is visualizes in Figure 7.4.
It is left to approximate the semi-discrete solutions U sk and Zsk in time. For the

reconstruction, we make use of the high-order interpolation in space and approximate

U sk ≈ i
(2)
2hU

s
k,h, Zsk ≈ i

(2)
2hZ

s
k,h. (7.35)

In Section 8.1.2, we compare alternative methods for an approximation of the temporal
interpolation error (7.32).
Finally, it remains to outline the evaluation of the temporal integrals in the error

estimator. Among others a good introduction into quadrature rules is provided by
the textbook of Richter and Wick [83]. All time-dependent integrals without linear
reconstruction i

(1)
k are approximated with the first order box rule. This ensures an

exact evaluation of the integrals as we use a dG(0)dG(0) discretization in time. Further,
all temporal integrals that involve a high-order reconstruction i

(1)
k are evaluated with

the second order trapezoidal rule. This ensures an exact evaluation of these temporal
integrals as i(1)

k is a first order interpolation time.
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i
(1)
k

Uk

Uk

t
n−1 tn t

n+1 t
n+2

Figure 7.4.: Piecewise linear interpolation of piecewise constant functions in time.

Approximation of the splitting error In order to evaluate the splitting error, we intro-
duce the following abbreviation

Π̃kZ
s
k,2h := i

(1)
k Zsk,2h + Zsk,2h.

Based on the interpolations (7.32), (7.33) and the approximation in (7.35), we evaluate
the splitting error as

β(U sk)(Z + Zsk) + β∗(U sk)(Zsk, U − U sk) ≈β(i(2)
2hU

s
k,h)(Π̃ki

(2)
2hZ

s
k,h)

+ β∗(i(2)
2hU

s
k,h)(i(2)

2hZ
s
k,h,Πki

(2)
2hU

s
k,h),

where i(2)
2h describes the nodal interpolation from the bi-linear finite elements to bi-

quadratic finite elements. To summarize, we compute the error estimator as

J(U)− J(U sk,h) ≈ ηρk
+ ηρh

+ ηβ,

with

ηρk
:=1

2
{
ρ(i(2)

2hU
s
k,h)(Πki

(2)
2hZ

s
k,h) + ρ∗(i(2)

2hU
s
k,h)(i(2)

2hZ
s
k,h,Πki

(2)
2hU

s
k,h)

}
,

ηρh
:=1

2
{
ρ(U sk,h)(ΠhZ

s
k,h) + ρ∗(U sk,h)(Zsk,h,ΠhU

s
k,h)

}
,

ηβ :=1
2
{
β(i(2)

2hU
s
k,h)(Π̃ki

(2)
2hZ

s
k,h) + β∗(i(2)

2hU
s
k,h)(i(2)

2hZ
s
k,h,Πki

(2)
2hU

s
k,h)

}
.

(7.36)

7.4. Adaptive refinement strategy
In this section, we describe an adaptive refinement algorithm which is based on the ap-
proximation of the a posteriori error estimator given in (7.36). The aim of the algorithm
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is to efficiently increase the accuracy of the numerical solution by reducing the time step
size and by automatically refining the mesh where large errors occur.
In each iteration of the refinement algorithm, we compute the error estimator which

consists of the splitting error ηβ as well as the temporal and spatial residual error, ηρk

and ηρh
. If temporal errors dominate the spatial error, we reduce the time step until the

error is balanced. In case of a dominating spatial error, we calculate which cells Ki ∈ Ωh

need to be refined. Doing so, we localize the information of the error estimator η by
splitting it into cell wise quantities ηi. A detailed description of the localization is given
by Braack et al. [9]. A study on different error localizations is presented by Richter and
Wick in [82]. Our adaptive mesh algorithm refines those cells Ki which provide an error
contribution that is larger than the average mean value of η.

η̄ = 1
M
|η|1. (7.37)

Here, we denote the number of cells by M and the l1-norm by | · |1. Further refinement
strategies are presented by Becker and Braack in [4].

Algorithm 6. Let Ω0 be the initial mesh and k0 > 0 the initial time step size. For
l = 0, .., nr iterate

1. Compute the solution U skl,hl
of the primal system (7.24).

2. Compute the solution Zskl,hl
of the dual system (7.25).

3. Compute the goal function J(U skl,hl
).

4. Evaluate the error estimator ηl according to (7.36).

5. Localize the error estimator ηl,i with i = 1, ..,Ml as described in Braack et al. [9].

6. Refine all cells Ki with ηl,i ≥ η̄l and proceed with the refined mesh Ωl+1.

7. If ηρk
+ ηβ ≥ ηρh

, set kl+1 = 1
2kl.

7.5. Conclusion
In this chapter, we introduced an abstract representation of a goal oriented error es-
timator that is applicable to the sea ice model. The error estimator is derived for a
general class of coupled non-stationary partial differential equations that are solved with
a partitioned solution approach, as it is done for the sea ice model.
The new error estimator is based on the concept of the dual weighted residual method

that has been introduced by Becker and Rannacher [6]. The error estimator consists
mainly of two parts, the primal and dual residual error that arise in the framework of
the dual weighted residual method, and an additional splitting error which stems from
the application of the partitioned solution approach. In the following chapter, we present
numerical studies on the performance of the error estimator. Here, we also discuss the
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application to the sea ice model. Before applying the concept to the sea ice model, we
will test the error estimator on a simplified problem, namely Burgers equation coupled
to a transport process.

We decoupled the system by using an operator projection and discretized the system
with a dG(0)dG(0) method in time. Here, an extension to higher order schemes is possi-
ble. The extension will only effect the approximation of the error estimator described in
Section 7.3, where the primal and dual high-order reconstructions need to be adjusted.
As the derived error estimator consists of an interpolation error as well as the contin-

uous and semi-discrete solutions of primal and dual systems, we introduced approxima-
tions to make the error estimator computable. The approximation is based on spatial
and temporal interpolations of the discrete primal and dual solution of the decoupled
system, U sk,h and Zsk,h.

Finally, we presented an adaptive mesh refinement algorithm which is based on the
new a posteriori error estimator (7.36). The aim of the refinement strategy is to de-
crease the numerical cost of coupled simulations. By balancing the temporal and spatial
error contributions, we efficiently increased the accuracy of the numerical solution. The
temporal error is reduced by uniform refinement of the time steps, whereas the spatial
error is decreased by an adaptive mesh refinement algorithm. An extension to temporal
adaptivity is possible.
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8. Numerical evaluation of the error
estimator on two test cases

In this chapter, we evaluate the goal oriented error estimator for partitioned solution
approaches by considering two test cases, the complex sea ice model and a simplified
example, namely Burgers equation coupled to a transport process. Both models involve
a nonlinear momentum equation. For these two examples, we analyze the different
contributions of the error estimator, the temporal and spatial residual error, ηρk

and ηρh
,

as well as the splitting error ηβ. Furthermore, for the sea ice model, we evaluate the
adaptive mesh refinement strategy presented in Algorithm 6 in Section 7.4.
This chapter is structured as follows. Section 8.1 is devoted to the analysis of Burgers

equation coupled to a transport process. In Section 8.1.1, we introduce a partitioned
solution approach to solve this coupled system. The decoupled system is discretized with
a dG(0)dG(0) scheme in time. In Section 8.1.2, we give details on the numerical evalu-
ation of the error estimator. Section 8.2 is devoted to the sea ice model. In particular,
in Section 8.2.1, we introduce a partitioned solution approach for the decoupled sea ice
model and discretize it with a dG(0)dG(0) scheme in time. In Section 8.2.2, we present
the numerical evaluation of the error estimator and the adaptive mesh refinement strat-
egy. In Section 8.2.3, we discuss the practical relevance of adaptive meshes in large-scale
sea ice simulations. Finally, we conclude in Section 8.3.

8.1. Burgers equation coupled to a transport process
We consider the following coupled problem

∂tv(1 + 20h) + ε∆v + (v · ∇) v = f , v(0) = v0,

∂th+ div(hv) + εt∆h = g, h(0) = h0,
(8.1)

on Ω = (−1, 1)2, with ε = 0.01 and εt = 0.1. The initial conditions are given as

v(0, x, y) = v0(x, y) := 0, h(0, x, y) = h0(x, y) := 0.1 exp
(
− (x+ 0.0125)2 − (y − 0.0125)2

)
.
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t = 0.75 t = 0.875 t = 1.

Figure 8.1.: In the top row, we show the numerical solution of Burgers equation |vk,h|.
In the second row, we present the adjoint solution |zk,h|. In the third row,
we plot the numerical solution of the transport process hk,h. In the bottom
row, we show the corresponding adjoint solution qk,h.
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As right hand side, we choose

f(x, y, t) = ω(t)
(

exp(−2x̃)− exp(−2ỹ)
exp(−2ỹ)− exp(−2x̃)

)
,

with

ω(t) =
{

cos(2πt), t ≤ 0.5,
0, t > 0.5,

and
x̃ =

(
(x+ 0.5)2 + (y − 0.2)2

)
,

ỹ =
(
(x− 0.5)2 + (y + 0.2)2

)
,

and g = 0. At the boundaries, we set Dirichlet zero data for the velocity v. We present
snapshots of the primal and adjoint numerical solution of system (8.1) in Figure 8.1.

Variational formulation The variational formulation of problem (8.1) reads as

(v, h) ∈ X(I) :
∫
I

(
∂tv(1 + 20h),φφφ

)
+ ε
(
∇v,∇φφφ

)
+
(

(v · ∇) v,φφφ
)
dt

+
(
v(0)− v0, φ(0)

)
=
∫
I
(f ,φφφ)dt,∫

I

(
(∂th, ψ

)
+ εt

(
∇h,∇ψ

)
+
(

div(vh), ψ
)
dt+

(
h(0)− h0, ψ(0)

)
= 0,

∀(φφφ, ψ) ∈ X(I).
(8.2)

For the definition of the function space X(I) we refer to Section 7.1. Using the space XI

of piece wise continuous functions defined in Section 7.1, we formulate problem (8.2) as

(v, h) ∈ XI :
N∑
n=1

∫
In

(
∂tv(1 + 20h),φφφ

)
+ ε
(
∇v,∇φφφ

)
+
(
(v · ∇)v,φφφ

)
dt

+
N∑
n=2

(
(1 + 20h+

n−1)[v]n−1,φφφ
+
n−1

)
+
(
(1 + 20h+

0 )(v+
0 − v0),φφφ+

0

)
=
∫
In

(f ,φφφ)dt

N∑
n=1

∫
In

(
∂th, ψ

)
+
(

div(vh), ψ
)

+ εt
(
∇h,∇ψ

)
dt

+
N∑
n=2

(
[h]n−1, ψ

+
n−1

)
+
(
h+

0 − h
0, ψ+

0

)
= 0,

∀(φφφ, ψ) ∈ XI .

8.1.1. Partitioned solution approach and dG(0)dG(0) scheme in time
To solve the primal and adjoint system, we decouple it in time. This is realized by a
projection operator (7.12) introduced in Section 7.2.

S : X → Xk, S(v)|In = v−(tn−1),

where the space Xk is defined in Section 7.1. Doing so, the decoupled system is given as
follows:
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Algorithm 7 (Partitioned solution approach for the primal system). Let v0 and h0 be
the initial solutions at time t = 0. We iterate for n = 1, ..., N :

1. First, we solve Burgers equation,∫
In

(∂tv(1 + 20S(h)),φφφ) + ε(∇v,∇φφφ) + ((v · ∇)v,φφφ)dt

+((1 + 20S(h)+
n−1)[v]n−1,φφφ

+
n−1) =

∫
In

(f ,φφφ)dt,
(8.3)

with [v]0 := v+
0 − v0.

2. After that, we compute the solution of the transport equation,∫
In

(∂th, ψ) + εt
(
∇h,∇ψ

)
+ (div(vh), ψ)dt

+([h]n−1, ψ
+
n−1) = 0,

(8.4)

with [h]0 := h+
0 − h0.

Based on the decoupling of the primal equation, we derive the decoupled dual problem.
We differentiate the semilinear form (8.3) with respect to v and h in direction of Φ and
Ψ. Analogously, we differentiate the variational formulation (8.4) with respect to φφφ and
ψ in direction z and q. Doing so, the order, in which the equations are solved, changes.
The dual decoupled system reads as follows:

Algorithm 8 (Partitioned solution approach for the dual system). Let vn and qn be the
discrete solution of the primal problem at t = tn. We iterate for n = N, ..., 1:

1. First, we solve the dual transport equation,∫
In

(∂tΨ, q) + (div(vΨ), q) + εt
(
∇Ψ,∇h

)
+ (∂tv20S(Ψ), z)dt

+
(
20S(Ψ)+

n−1[v]n−1, z+
n−1

)
+
(
[Ψ]n−1, q

+
n−1

)
= J(Ψ),

(8.5)

with (
S(Ψ)+

0 [v]0, z+
0

)
:=
(
S(Ψ)+

0 v+
0 , z

+
0

)
and (

[Ψ]0, q+
n−1

)
:=
(
Ψ+

0 , q
+
0

)
,

where J(·) is the output functional.

2. Next, we compute the numerical solution of the adjoint Burgers equation,∫
In

(∂tΦ(1 + 20S(h)), z) + ε((∇Φ,∇z) + ((Φ · ∇)v, z) + ((v · ∇)Φ, z)

+(div(Φh), q)dt+
(
(1 + 20S(h)+

n−1)[Φ]n−1, z+
n−1

)
= 0,

(8.6)

with (
(1 + 20S(h)+

n−1)[Φ]0, z+
0

)
:=
(
(1 + 20S(h)+

n−1)Φ+
0 , z

+
0

)
.
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Formulation as a time stepping scheme The system is discretized with a dG(0)dG(0)
method in time. Therefore, the time derivatives in (8.3), (8.4), (8.5) and (8.6) vanish, and
based on the definition of the discontinuous functions (7.4) in Section 7.1, the temporal
jump terms are given by(

[v]n−1(1 + 20S(h)+
n−1), φ+

n−1

)
=
(
(vn − vn−1)(1 + 20hn−1),φφφn

)
,(

[h]n−1, ψ
+
n−1

)
=
(
hn − hn−1, ψn

)
,(

(1 + 20S(h)+
n−1)[Φ]n, z+

n−1

)
=
(
1 + 20hn−1(Φn − Φn−1), zn

)
,(

20S(Ψ)+
n−1[v]n−1, z+

n−1

)
=
(
20Ψn−1(vn − vn−1), zn

)
,(

[Ψ]n−1, q
+
n−1

)
=
(
Ψn −Ψn−1, qn

)
.

(8.7)

The temporal integrals in (8.3), (8.4), (8.5) and (8.6) are approximated with the first
order box rule, which is exact for a dG(0)dG(0) time approximation if the problem
parameters do not explicitly depend on time. The evaluation of the time-dependent
right hand side ∫

In

(f(t), φn) dt,

with the box rule would correspond to an approximation with the implicit Euler scheme
in time. However, we choose the second order midpoint rule to evaluate the right hand
side. Thus, we ensure that the error contribution due to the evaluation of the temporal
integral is not dominant.
Next, we formulate the dG(0)dG(0) discretization as a time stepping scheme.

Algorithm 9 (Discretization scheme of the forward problem). Given the time step
kn = tn− tn−1 and the initial solutions h0 and v0 at t = 0, we compute for n = 1, ..., N :

• the numerical solution of Burgers equation

knε
(
∇vn,∇φφφn

)
+ kn

(
(vn · ∇)vn,φφφn

)
+
(
(1 + 20hn−1)vn,φφφn

)
=
(
(1 + 20hn−1)vn−1,φφφn

)
+
∫
In

(f ,φφφn) dt,

with v0 := v0 and h0 := h0,

• and the approximation of the transport process

εt
(
∇hn,∇ψn

)
+ kn

(
div(vnhn), ψn

)
+
(
hn, ψn

)
=
(
hn−1, ψn

)
,

with h0 := h0.
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We continue with reformulating the dual equations (8.5) and (8.6) to a time stepping
scheme. The adjoint Burgers equation discretized with a dG(0)dG(0) scheme is given by
N∑
n=1

kn
(
ε(∇Φn,∇zn

)
+
(
(Φn · ∇)vn, zn

)
+
(
(vn · ∇)Φn, zn

)
+
(

div(Φnhn), qn
))

+
N∑
n=2

((
1 + 20hn−1

)(
Φn − Φn−1

)
, zn

)
+
(
(1 + 20h0)Φ1, z1

)
= 0,

(8.8)
whereas the adjoint transport equation reads as

N∑
n=1

kn
(
εt(∇Ψn,∇qn) + div(vnΨn), qn

)
+

N∑
n=2

(
20Ψn−1(vn − vn−1), zn

)

+
N∑
n=2

((
Ψn −Ψn−1

)
, qn
)

+
(
Ψ1, q1

)
= J(Ψn).

(8.9)
In order to formulate the adjoint system as time stepping scheme, we sort the formu-
lations (8.8) and (8.9) by the test functions. Then, the discretization scheme reads as
follows:

Algorithm 10 (Discretization scheme of the backward problem). Let vn and hn be the
discrete solution of the primal system. Given a time step kn = tn − tn−1, we compute:

1. For n = N

• the approximation of the adjoint transport equations

kN
(
εt(∇ΨN ,∇qN

)
+ (div(vNΨN ), qN )

)
+
(
ΨN , qN

)
= J(ΨN )

• and the solution of the adjoint Burgers equation

kN
(
ε
(
∇ΦN ,∇zN

)
+
(
(ΦN · ∇)vN , zN

)
+
(
(vN · ∇)ΦN , zN

)
+
(

div(ΦNhN ), qN
))

+
(
1 + 20hN−1)

(
ΦN , zN

)
= 0.

2. For n = N − 1, ..., 1
• the solution of the adjoint transport equations

kn
(
εt(∇ψn, qn) +

(
div(vnΨn), qn

))
+
(
Ψn, qn

)
=
(
Ψn, qn+1

)
+ J(Ψn)

−
(
20Ψn([v]n), zn+1

)
,

• and the approximation of the adjoint Burgers equation

kn
(
ε
(
∇Φn,∇zn

)
+
(
(Φn · ∇)vn, zn

)
+
(
(vn · ∇)Φn, zn

)
+
(

div(Φnhn), qn
))

+
(
Φn, (1 + 20hn−1)zn

)
=
(
Φn, (1 + 20hn), zn+1

)
,

with h0 := h0.
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8.1. Burgers equation coupled to a transport process

8.1.2. Numerical evaluation of the error estimator
The aim of this section is to evaluate the accuracy of the new error estimator and
to analyze under which conditions the splitting error dominates the overall numerical
error. The error estimator, derived in Theorem 2 in Section 7.2.2, can be divided into
two error contributions, the splitting error ηβ due to the application of a partitioned
solution approach, and the residual error ηρ, due to the approximation of the primal
and the dual residual. The latter can be split into the spatial residual error, ηρh

and
the temporal residual error ηρk

. The different parts of the error estimator are defined in
(7.36).
In the following, we evaluate the error estimator for Burgers equation coupled to

transport process (8.1). We set U = (v, h). As functional of interest, we consider the
time averaged functional

J(U) =
∫
I

∫
Ω
h(x, y, t) exp(−10x̄2 − 10ȳ2)dx dy dt, x̄ = x− 0.75, ȳ = y − 0.25,

(8.10)

which measures the solution h, averaged in space and time, with a weight on the upper
right part of the domain. For the evaluation of the error estimator, we use the reference
value

J̃ = 0.319180± 10−5,

received on very high temporal and spatial resolutions. We analyze the error estimator by
using different time steps k, and by varying spatial resolutions, which are characterized
by the number of nodes N . To analyze the effectivity of the error estimator, we introduce
the effectivity index

eff :=
J̃ − J(U sk,h)

η
. (8.11)

For an accurate error estimator the index should be converging to 1.

125



8. Numerical evaluation of the error estimator on two test cases
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Figure 8.2.: In the upper graph, we plot the functional error J̃ − J(U sk,h) and the error
estimator η. In the lower graph, we plot the effectivity index eff and a plane
with value 1. The number of nodes varies between N = 81 and N = 263169,
whereas the time step decreases from k = 0.125 to k = 0.0078125.
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Figure 8.3.: We plot the splitting error ηβ and the error of the temporal and spatial
residual ηρ for decreasing k = 0.125 to k = 0.00782125 and increasing nodes
from N = 81 to N = 263169.
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8.1. Burgers equation coupled to a transport process

k N J̃ − J(U sk,h) η ηρ ηβ
0.0625 81 2.12·10−2 2.41·10−2 2.46·10−2 -5.67·10−4

289 5.12·10−3 4.97·10−3 5.20·10−3 -2.34·10−4

1089 1.00·10−3 9.59·10−4 1.17·10−3 -2.14·10−4

4225 -3.38·10−5 -6.39·10−5 1.43·10−4 -2.07·10−4

16641 -2.92·10−4 -3.21·10−4 -1.16·10−4 -2.05·10−4

66049 -3.57·10−4 -3.86·10−4 -1.80·10−4 -2.05·10−4

263169 -3.73·10−4 -4.01·10−4 -1.97·10−4 -2.05·10−4

0.03125 81 2.14·10−2 2.47·10−2 2.49·10−2 -2.64·10−4

289 5.29·10−3 5.18·10−3 5.30·10−3 -1.26·10−4

1089 1.17·10−3 1.15·10−3 1.27·10−3 -1.16·10−4

4225 1.44·10−4 1.23·10−4 2.36·10−4 -1.13·10−4

16641 -1.15·10−4 -1.36·10−4 -2.28·10−5 -1.12·10−4

66049 -1.79·10−4 -2.00·10−4 -8.78·10−5 -1.12·10−4

263169 -1.96·10−4 -2.17·10−4 -1.04·10−4 -1.13·10−4

0.015625 81 2.15·10−2 2.49·10−2 2.50·10−2 -1.21·10−4

289 5.40·10−3 5.30·10−3 5.36·10−3 -6.04·10−4

1089 1.28 ·10−3 1.27·10−3 1.32·10−3 -5.59·10−5

4225 2.42·10−4 2.37·10−4 2.92·10−4 -5.46·10−5

16641 -1.73·10−5 -2.25·10−5 3.18·10−5 -5.43·10−5

66049 -8.21·10−5 -8.74·10−5 -3.32·10−5 -5.42·10−5

263169 -9.83·10−5 -1.04·10−4 -4.94·10−5 -5.42·10−5

0.0078125 81 2.16·10−2 2.50·10−2 2.50·10−2 -5.77·10−5

289 5.45·10−3 5.36·10−3 5.39·10−3 -2.90·10−5

1089 1.33·10−3 1.33·10−3 1.35·10−3 -2.67·10−5

4225 2.93·10−4 2.93·10−4 3.19·10−4 -2.61·10−5

16641 3.28·10−5 3.36·10−5 5.96·10−5 -2.60·10−5

66049 -3.20·10−5 -3.14·10−5 -5.45·10−6 -2.60·10−5

263169 -4.82·10−5 -4.78·10−5 -2.17·10−5 -2.60·10−5

Table 8.1.: We compare the functional error J̃ − J(U sk,h) to the error estimator η, which
can be decomposed in the splitting error ηβ and the primal and dual residual
error ηρ. We denote the time step size by k and the number of nodes by N .
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8. Numerical evaluation of the error estimator on two test cases

In the upper image in Figure 8.2, we plot the functional error J̃ − J(U sk.h) and the
error estimator η for decreasing time steps k and increasing nodes N . We observe a kink
passing diagonally through the graph. The kink is due to a changing sign of the error
functional. The changing sign is also reproduced by the error estimator. The accuracy
of the error estimator suffers close to the kink. This can be seen in the lower image
in Figure 8.2. Here, we plot the effectivity index eff (8.11). On coarse meshes with
N = 289 and N = 1089 nodes, we observe high effectivity indices close to 1. The index
is decreasing when the sign of the error functional is changing. After the change, the
index is again converging to 1.
Analyzing Table 8.1, we observe quadratic convergence of the error functional J̃ −

J(U sk,h) and of the error estimator η as long as the spatial error is dominant. This is
expected as we use bi-linear finite elements in space. Comparing the functional error
J̃ − J(U sk,h) and the error estimator η on high spatial resolutions, we observe linear
convergence for decreasing time steps. Here, the temporal error dominates the spa-
tial discretization error. The linear temporal convergence stems from the use of the
dG(0)dG(0) method.
In Figure 8.3, we compare the residual error ηρ and the splitting error ηβ for varying

temporal and spatial resolution. As shown in Table 8.1, we observe that the splitting
error is converges linear in time due to the first order projection (7.12). Further, it is
constant in space. This is expected, as the splitting error is a pure temporal error.

Different linear high-order reconstructions As the error estimator (7.30) consists of
interpolation errors xs − Ikxs as well as semi-discrete solutions U sk and Zsk, an approx-
imation of these terms is necessary to compute the error estimator. We analyze the
effect of different linear interpolations in time to reconstruct these quantities. In partic-
ular, we compare linear interpolations with different interpolation points, set at the left
boundary, the right boundary and the center of an interval In.

left: i
(1)
k,lU |In : = t− tn−1

tn − tn−1
U−(tn) + t− tn

tn−1 − tn
U−(tn−1),

right: i
(1)
k,rU |In : = t− tn−1

tn − tn−1
U+(tn) + t− tn

tn−1 − tn
U+(tn−1),

center: i
(1)
k,mU |In : = t− tn−1

tn − tn−1

(
U−(tn) + U+(tn)

2

)
+ t− tn
tn−1 − tn

(
U−(tn) + U+(tn)

2

)
.

(8.12)
We visualize the different high-order reconstructions in Figure 8.4.
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8.1. Burgers equation coupled to a transport process
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Figure 8.4.: Piecewise linear interpolations of piecewise continuous function. Using dif-
ferent interpolation points set at the left boundary (i(1)

k,lUk), at the right
boundary (i(1)

k,rUk) and at the midpoint (i(1)
k,mUk) of an interval In.
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Figure 8.5.: We compare the temporal functional error J̄−J(U sk,h) and the error estima-
tor η on a mesh with N = 1089 nodes using different time steps k. The error
estimator is computed with varying high-order reconstructions of U sk,h and
Zsk,h. The reconstructions use different interpolation points: Left refers to
the interpolation point at the left boundary of the temporal interval, right
to the point at the right boundary of the temporal interval and center to
the interval midpoint.
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8. Numerical evaluation of the error estimator on two test cases

To analyze the effect that different high-order reconstructions have on the numerical
approximation, we chose a fixed grid with N = 1089 nodes and identify for this mesh
resolution the reference value of the goal functional (8.10) by choosing the time step k
very small.

J̄ = 0.317800899± 10−6.

In Figure 8.5, we compare the error functional to the error estimator η using the differ-
ent linear interpolations introduced in (8.12). We observe that the chosen interpolation
point has a huge impact on the constant of the error estimator. As shown in Figure 8.5,
only the error estimator using a high-order reconstruction with an interpolation point at
the left boundary of In yields highly accurate results. Hence, we use this construction
for all further test cases.

8.2. Sea ice model
In this section, we evaluate the error estimator derived in Theorem 2 for the viscous-
plastic sea ice model. Further, we analyze the potential of the adaptive refinement
strategy introduced in Algorithm 6 in Section 7.4.
This section is structured as follows. In Section 8.2.1, we introduce the partitioned

solution approach for the sea ice model and derive its primal and adjoint formulation.
For simplicity, we discretize the sea ice momentum equation and the balance laws with
a dG(0)dG(0) formulation in time. Since the implicit Euler scheme is standard in the
sea ice community [53], the extension to cG(1)dG(0) scheme is subject to future work
and could follow the work of Richter and Meidner [79]. In Section 8.2.2, we numerically
evaluate the error estimator and analyze the potential of the adaptive mesh refinement
strategy.
To simplify the notation of the balance laws in the sea ice model, we introduce

h = (H,A). Following the derivation and the notation introduced in Section 7.1, we
reformulate the sea ice model to

N∑
n=1

∫
In

{(ρiceH∂tv,φφφ) + (fcρiceHeeer × (v− vocean),φφφ)− (τττatm,φφφ)

−(τττocean(v),φφφ) + (σσσ(v, H,A),∇φφφ)}dt+
N∑
n=1

(
ρiceH

+
n−1[v]n−1,φφφ

+
n−1

)
= 0,

N∑
n=1

∫
In

{(∂th + div(vh),ψ)}dt+
N∑
n=1

(
[h]n−1,ψ

+
n−1

)
= 0,

(8.13)

where the stress tensor and the ice strength are given as

σσσ(v, H,A) = 2η(ε̇εε)ε̇εε′ + ζ(ε̇εε) tr(ε̇εε)I − P (H,A)
2 I,

P (H,A) = P ?H exp
(
− C(1−A)

)
.

(8.14)
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8.2. Sea ice model

Ocean and atmospheric stress are described as

τocean = Coceanρocean‖vocean − v‖(vocean − v), τatm = Catmρatm‖vatm‖vatm.

8.2.1. A partitioned solution approach for the primal and dual system
To solve the sea ice model in time, we apply an operator splitting approach and use the
projection introduced in (7.12) in Section 7.2,

S : X → Xk, S(v)|In = v−(tn−1),

where the space Xk is defined in Section 7.1. Introducing the projection S(·), the sea
ice momentum equation reads as

N∑
n=1

∫
In

{(ρiceS(H)∂tv,φφφ) + (fcρiceS(H)eeer × (v− vocean),φφφ)− (τττatm,φφφ)

−(τττocean(v),φφφ) + (σσσ(v,S(H),S(A)),∇φφφ)}dt+
N∑
n=1

(
ρiceS(H)+

n−1[v]n−1,φφφ
+
n−1

)
= 0.

(8.15)
The balance laws are given as

N∑
n=1

∫
In

{(∂th + div(vh),ψ)}dt+
N∑
n=1

(
[h]n−1,ψ

+
n−1

)
= 0. (8.16)

To derive the adjoint sea ice model, we differentiate the semilinear forms (8.15) and
(8.16) with respect to v and h in direction Φ and Ψ, with ψ = (ψH , ψA). Analogously,
we differentiate the variational formulation with respect to φφφ and ψ in direction of z and
q. The adjoint momentum equation reads as

N∑
n=1

∫
In

{(ρiceS(H)∂tΦ, z) + (fcρiceS(H)eeer × Φ, z)− τττ ′ocean(v)(Φ, z)

+σσσ′(v,S(H)S(A))(Φ,∇z) + (div(Φh),q)}dt+
N∑
n=1

(
ρiceS(H)+

n−1[Φ]n−1, z+
n−1

)
=0,

(8.17)
whereas the adjoint balance laws are given by

N∑
n=1

∫
In

{(∂tΨ + div(vΨ),q)}dt+
N∑
n=1

(
[Ψ]n−1,q+

n−1

)

+
N∑
n=1

∫
In

{(∂tvρiceS(ΨH), z) + (fcρiceS(ΨH)eeer × (v− vocean), z)

+σσσ′(v,S(H),S(A))(S(ΨH),∇z) + σσσ′(v,S(H),S(A))(S(ΨA),∇z)dt}

+
N∑
n=1

(
ρiceS(ΨH)+

n−1[v], z+
n−1

)
= 0.
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8. Numerical evaluation of the error estimator on two test cases

Note that the derivatives of σσσ′ and τ ′ocean are given in Theorem 1. The partitioned
solution algorithm for the primal system is given by Algorithm 1 in Section 3.1. The
partitioned solution algorithm for the dual sea ice equations is derived analogously to
Algorithm 8 in Section 8.1.1.

8.2.2. Numerical evaluation of the error estimator
In this section, we numerically analyze the error estimator derived in Section 7.2.2 for
the sea ice model. In order to apply the error estimator (7.30), we solve the sea ice
model problem introduced in Section 2.6 without a stabilization of the balance laws. By
neglecting the stabilization an additional consistency error is avoided.
Like in Section 4.2, as functional of interest, we evaluate the sea ice extent measured

in a certain area for a time span of interest IJ .

JA(A) =
∫
IJ

∫
Ω2
A(x, y, t) d(x, y) dt, (8.18)

with Ω2 = (375, 500)× (375, 500). IJ is specified later.

Test cases We analyze the following two modifications of the model problem introduced
in Section 2.6,

A1 As in Section 4.2, we use A0 = 0.8 and H0 = 0.3 as initial conditions for our model
problem to ensure that A,H do not reach the limits 0 < A,H and A < 1. To avoid
failures of the solver, we reduce the simulation time to I = [0, 2] days and the
temporal interval of interest where the functional is evaluated, is set to IJ = [1, 2]
days. The reference value achieved by spatial and temporal extrapolation, is given
as

J̃A1 = 0.942083± 10−4. (8.19)

A2 We modify the initial values of the model problem and use a small variation of the
ice concentration at A = 0.9 to increase the spatial variation in the beginning of
the simulation,

A0(x, y) = 0.9 + 0.005
(

cos
(

x

5km

)
+ cos

(
y

5km

))
.

We simulate the model problem for I = [0, 6] days where temporal interval of in-
terest is set to IJ = [3, 6]. Here, we identify the reference value by an extrapolation
as

J̃A2 = 3.62± 10−2. (8.20)
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8.2. Sea ice model

k h JA1(U sk,h) J̃A1 − JA1(U sk,h) η ηρh
ηρk

ηβ
1 h 8 km 0.94166 4.20·10−4 4.74·10−4 -9.27·10−6 4.73·10−4 9.40·10−6

4 km 0.94164 4.47·10−4 4.78·10−4 -6.29·10−6 4.75·10−4 9.45·10−6

2 km 0.94162 4.61·10−4 4.83·10−4 -4.57·10−6 4.78·10−4 9.27·10−6

0.5 h 8 km 0.94189 1.83·10−4 2.31·10−4 -8.91·10−6 2.37·10−4 2.55·10−4

4 km 0.94187 2.09·10−4 2.35·10−4 -6.01·10−6 2.38·10−4 2.58·10−6

2 km 0.94186 2.23·10−4 2.38·10−4 -4.36·10−6 2.40·10−4 2.50·10−6

0.25 h 8 km 0.94201 6.57·10−5 1.10·10−4 -8.74·10−6 1.19·10−4 7.37·10−7

4 km 0.94199 9.11·10−5 1.14·10−4 -5.87·10−6 1.19·10−4 7.51·10−7

2 km 0.94197 1.04·10−4 1.16·10−4 -4.25·10−6 1.20·10−4 7.19·10−7

Table 8.2.: We compare the functional errors J̃A1 − JA1(U sk,h) to the error estimator η,
which consists of the spatial and temporal residual error, ηρh

and ηρk
, as

well as the splitting error ηβ. The time step size is denoted by k and the
mesh size by h. The reference value J̃A1 is achieved by temporal and spatial
extrapolation.

k h JA2(U sk,h) J̃A2 − JA2(U sk,h) η ηρh
ηρk

ηβ
1 h 8 km 3.5709 4.91·10−2 2.68·10−3 2.53·10−3 -9.12·10−4 1.06·10−3

4 km 3.5908 2.92·10−2 2.01·10−3 1.79·10−3 -6.98·10−4 9.23·10−4

2 km 3.5952 2.48·10−2 -1.21·10−3 2.04·10−4 -9.03·10−5 -1.33·10−3

0.5 h 8 km 3.5702 4.98·10−2 2.12·10−3 2.05·10−3 -4.56·10−4 5.24·10−4

4 km 3.5928 2.71·10−2 1.97·10−3 1.85·10−3 -3.59·10−4 4.81·10−4

. 2 km 3.6037 1.63·10−2 -6.9·10−4 7.24·10−5 8.79·10−5 -8.55·10−4

0.25 h 8 km 3.5697 5.03·10−2 1.82·10−3 1.79·10−3 -2.31·10−4 2.60·10−4

4 km 3.5940 2.60·10−2 2.10·10−3 2.04·10−3 -1.88·10−4 2.46·10−4

2 km 3.6096 1.04·10−2 -5.53·10−4 -1.43·10−4 4.08·10−5 -4.51·10−4

Table 8.3.: We compare the functional errors J̃A2 − JAs(U sk,h) to the error estimator η,
which consists of the spatial and temporal residual error, ηρh

and ηρk
, as

well as the splitting error ηβ. The time step size is denoted by k and the
mesh size by h. The reference value J̃A2 is achieved by temporal and spatial
extrapolation.
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8. Numerical evaluation of the error estimator on two test cases
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Figure 8.6.: We plot the effectivity index eff for test case A1.

We begin by analyzing test case A1. In Table 8.2, we evaluate the functional error
J̃A1− JA1(U sk,h) and the error estimator η. The functional error and the error estimator
converge linear in time and without a specific order in space. Further, analyzing the
different error contributions of the error estimator, we observe that the temporal residual
error dominates the whole error estimator η on all considered mesh levels and for all
time steps. This is unusual for sea ice simulations. In most of our test cases, we observe
a dominating spatial error as discussed in [68] or shown in Table 4.2 and Table 4.3,
in Section 4.2. The dominating temporal residual error might stem from the short
simulation time of T = 2 days and the idealized initial conditions.

In Figure 8.6, we plot the effectivity index eff as defined in (8.11),

eff :=
J̃ − J(U sk,h)

η
,

and observe a highly accurate estimator with increasing spatial and temporal resolutions.
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8.2. Sea ice model

t = 2 days t = 4 days t = 6 days

Figure 8.7.: For test case A2, we show snapshots of the computed ice concentration
and the corresponding adjoint approximation on a 2 km mesh. The adjoint
approximation ranges between 6 and 600. For a better visualization we limit
the scale from 0 to 6.

We proceeding by discussing test case A2. In Figure 8.7, we show snapshots of the
ice concentration and the adjoint approximation. Analyzing Table 8.3, we find that the
functional error J̃A2 − JA2(U sk,h) converges linear in space and time. We observe that
the error estimator η is smaller by a factor 20 compared to the functional error.
The decreased performance might stem from the fact that the limits of 0 ≤ H,A and

A ≤ 1 are reached in the second example but in the first example. We drop the constrains
in the derivation of the dual system. The implementation of the constrains in the error
estimator increases the complexity of the estimator as it requires considering a system of
variational inequalities [93]. The decreased performance might be also explained by the
increased spatial variation of the approximation. The derivation of the error estimator
involves the third order derivative of the semilinear form (7.21). In case of the sea ice
momentum equation the third derivative can scales as ∆−5

min with ∆min = 2 · 10−9 as it
forms part of the viscosities,

ζ = P

2∆(ε̇εε) , ∆(ε̇εε) :=
√(

2e−2ε̇εε′ : ε̇εε′ + tr(ε̇εε)2)+ ∆2
min.
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Figure 8.8.: Comparison of the functional error on locally refined and uniform meshes.
The number of nodes is denoted by N . We evaluate the first test case A1
in the upper graph and the second test case A2 in the lower graph.
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8.2. Sea ice model

64 km 32 km

16 km 8 km

4 km 2 km

Figure 8.9.: We show adaptive spatial meshes for test case A2, achieved by using Algo-
rithm 6 presented in Section 7.4.
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8. Numerical evaluation of the error estimator on two test cases

In the derivation of the error estimator we drop the third order derivative (7.21). In
case of the sea ice model this might be an unsuitable approximation. As it is shown in
Figure 2.6 in Section 2.6, the spatial variability of the viscosity enlarges with increasing
resolution. So far, it is uncertain if it is possible to observe convergence in space as high
resolution meshes of the Arctic and robust solvers are required. In approximation of the
solution of the sea ice problem, one might get similar problems as they exist in simu-
lating turbulence, where meshes of required resolution are not feasible. In addition, the
robustness of nonlinear solvers of the sea ice model decreases at high spatial resolutions,
such that computing a numerical solution becomes more difficult.
We proceed with analyzing the error estimator η and observe that the error estimator

η converges in space and in time, for time steps smaller than k = 1 h without a specific
convergence order. However, analyzing the different error contributions of the error
estimator on coarse meshes, we find that the splitting error ηβ and the temporal residual
error ηρk

converge linear in time. The spatial error dominates the latter two error
contributions, except of the highest spatial resolution. Here the splitting error dominates
the overall error. However, we do not observe explicit spatial convergence of the spatial
residual error ηρh

. This might be due to the fact that the spatial variation of the
numerical solution is increasing.

As the functional error in the first test case is always below 0.1%, the second test case
might be more relevant for practice. Here, the error ranges between 8 % and 1 %, which
is relevant order of magnitude in applications.
To evaluate the adaptive mesh refinement strategy presented in Algorithm 6 in Section

7.4, we keep the time step k fixed and compare the approximation accuracy of the
functional of interest by using uniform and adaptive meshes. On uniform meshes, we
identify the reference value of the goal functional for the first test case A1 as JhA1 =
0.941607 ± 10−5 by an extrapolation in space. As the spatial error is dominant in
the second test case A2, we use J̃A2 as a reference value. Analyzing Figure 8.8, we
observe that using adaptive meshes, we reach the same approximation accuracy of the
goal functional as on uniform meshes with 9 times less nodes. In Figure 8.9, we show
snapshots of the different adaptive meshes used to compute the numerical solution of
the test case A2. The mesh size decreases from 64 km to 2 km.

8.2.3. Practical relevance of adaptive meshes in large-scale sea ice models

Considering numerical methods, the topical focus of the sea ice community lies in effi-
ciently simulating sea ice dynamics [31, 64]. Here, the topics are the development of fast
solvers that are easy to parallelize [64], the investigation in new rheologies that are simple
to solve and reasonably accurate [98], or even whole sea ice model approximations such
as the EVP model [31]. Hereby, only a few researchers address the accuracy of numerical
simulations [40, 55]. In that light, the implementation of a technically challenging error
estimator might not be the prior task.

• Parallelized sea ice models take advantage of regular grid structure, e.g., in setting
up the LSOR preconditioner in the Jacobian-free Newton-Krylov solver [64]. An
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adaptive mesh algorithm changes the structure of the grid. Thus, implementing it
in a parallelized model might require a modification of the parallelization structure.

• Furthermore, when coupling sea ice models to atmospheric and oceanic models, the
complexity of the sea ice model increases. Following Lemieux [51], the coupling of
CICE (sea ice model) to an oceanic and atmospheric model produces instabilities in
the boundary layer when high spatial resolutions are applied. The use of adaptive
meshes in sea ice models might increase the difficulties in coupling them to oceanic
and atmospheric models, as the latter two are solved on uniform meshes with
different resolutions.

• Applying the a posteriori error estimator in coupled sea ice models requires the
derivation of a fully coupled dual model. Meaning, in order to compute the dual
system backwards in time, the ocean and atmosphere models also need to be solved
backwards in time. This will extremely increase the computational cost in applying
adaptive meshes. Possible simplifications to approximate the dual solution need to
be investigated, e.g., using time averaged solutions for the dual system as presented
by Braack et al. [9].

Nevertheless, the error estimator can be used to balance the overall numerical error in
sea ice simulations when measuring a quantity of interest. It provides information about
the different error contributions and thus, it is a useful tool to increase the efficiency in
sea ice simulations by determining and controlling stopping criteria.

8.3. Conclusion

In this chapter, we evaluated an error estimator for strongly nonlinear momentum equa-
tions that are coupled to a transport process and solved with a partitioned solution
approach. In particular, we consider a model consisting of Burgers equation coupled to
a transport process and the sea ice model. For both models, we presented the primal and
dual variational formulation. In case of Burgers equation, we described the dG(0)dG(0)
formulation of the coupled system and formulated it as a time stepping scheme.
The error estimator introduced in Theorem 2 in Section 7.2 is based on the evaluation

of the interpolation error xs −Ixs, where xs = (U s, Zs), and the semi-discrete solution,
U sk and Zsk. To make the error estimator computable, we use a linear interpolation of U sk,h
and Zsk,h. We numerically analyzed the effect of different linear interpolations to calculate
the error estimator and observed that the linear interpolation with the interpolation
point at the left boundary of the temporal interval yields the approximation with the
highest accuracy.
To evaluate the error estimator for Burgers equation coupled with a transport process,

we introduced a space and time averaged goal functional that has a weight on the upper
right region of the domain. We showed high accuracy of the error estimator η as the
effectivity index converges to 1 for increasing spatial and temporal resolutions. For large
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time steps and high spatial resolutions, we found that the splitting error ηβ dominates
the residual error ηρ.

In contrast to Burgers equation, which is coupled to the transport process in the
temporal differential operator, the coupling in the sea ice model is taking place in the
spatial and temporal differential operator. This increases the difficulty of error estima-
tion. In case of the sea ice model, we considered a goal functional that measures the
sea ice extent averaged over a subdomain and time span of interest. We analyzed two
modifications of the model problem introduced in Section 2.6 and observed a highly
accurate error estimator η as long as the temporal residual error ηρk

dominates the error
estimator. This is untypical for sea ice simulations as shown in [68] and might be due
to the short simulation time and the idealized initial conditions. For increased spatial
variation, we observed that the accuracy of the error estimator decreases, meaning the
effectivity index is about 20. Here, we observed that the splitting error dominates the
overall numerical error on a 2 km mesh.
In addition to the error estimator, we apply the adaptive mesh refinement algorithm

to the sea ice problem. We found that the adaptive mesh refinement algorithm yields the
same approximation accuracy of the functional of interest as the uniform mesh approach
but using 9 times less nodes. Assuming solvers of linear complexity, these savings carry
over to the computational time.
As efficiently solving sea ice dynamics on high resolutions is still a big issue, including

adaptive meshes may not be the prior task in sea ice modeling, e.g., including the
error estimator in parallelized models is technically challenging as it might require a
modification of the parallelization structure. Further, the coupling of sea ice, oceanic
and atmospheric models at high resolutions is still under active research as instabilities
are occurring. Introducing adaptive meshes for the sea ice model might further increase
these difficulties. For an evaluation of the goal oriented error estimator in coupled sea
ice models, the oceanic and the atmospheric models need to be calculated backwards in
time. This extremely increases the computational costs of a simulation.
Nevertheless, using adaptive meshes in stand-alone sea ice models to simulate short-

term forecasts with focus on small spatial subdomains might be useful. Further, the
goal oriented error estimator gives us the opportunity to balance the different error
contributions by measuring a quantity of interest. Doing so, the efficiency of sea ice
simulations is increased.
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In this thesis, we presented robust and efficient numerical methods to simulate sea ice
dynamics on high resolution grids, with a cell wise up to 2 km. The simulations are based
on the viscous-plastic sea ice model introduced by Hibler in [25], which is currently
applied in most sea ice models [56]. The model consists of a nonlinear momentum
equation that is coupled with two transport equations. To discretize the sea ice model,
we used a finite element approach in space and applied a partitioned solution approach
in time. Doing so, the momentum and transport equations are solved separately in each
time step.
We found that the approximation of the transport equations are very sensitive to the

applied time stepping method and the used stabilization scheme. In particular, we com-
pared the approximation achieved with the second order flux corrected Taylor-Galerkin
scheme to numerical solution computed with the Crank-Nicolson scheme stabilized with
a SUPG method, and observed large variations between the numerical solutions of the
different schemes. We chose these two discretization schemes as they showed the best
performance in a simplified test case. Using a second order flux corrected Taylor-Galerkin
scheme, we observed artifacts in the approximation of the transport equations, called
terracing. These stem from the use of Zalesak’s flux limiter and might be avoided by
developing a new limiting strategy for the fluxes. By modifying the partitioned solution
approach we were able to circumvent the negative effect of terraces when solving the
sea ice model. In order to obtain a robust approximation of the momentum equation,
it has shown to be essential to couple the intermediate solutions Alow

n , H low
n into the

momentum equation. It is subject to future work to analyze the impact on the accuracy
of the velocity field in this new approach.
To solve the nonlinear momentum equation discretized with an implicit Euler scheme

in each time step, we applied a Newton solver, globalized with a line search method
and accelerated with the operator-related damped Jacobian scheme. We showed that
the Jacobian of the sea ice model is positive definite, thus global convergence of the
Newton method is provided by theory from cited literature assuming an optimal damping
parameter. We proved that the Jacobian of the sea ice model is symmetric apart from the
Coriolis term, and can be divided into a positive definite part and a negative semidefinite
part. The idea of the operator-related damped Jacobian method is to adaptively control
the negative semidefinite part of the Jacobian by evaluating the convergence history of
the Newton solver. This new acceleration method significantly increases the robustness
of the Newton scheme on high spatial resolutions. Analyzing the performance of the
solver on a realistic simulation on a 10 km pan-Arctic grid, we found that the new
Newton approach could reduce the number of failures of the currently applied JFNK
solver from 24% solver to less than 1%. We assume that the increase in robustness will
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be even larger with increasing resolutions.

As the existing linear solver in the JFNK approach is extremely costly due to the ab-
sence of efficient preconditioners, we showed the potential of the multigrid preconditioner
to increase the efficiency of the linear solver. By solving an idealized test case, the multi-
grid preconditioner reduces the iteration count by up to 80% on the highest resolution
in comparison to the use of an incomplete lower upper factorization as a preconditioner.
As the iteration count increases slightly with higher resolutions, we concluded that the
multigrid preconditioner is a suitable method for sea ice simulations on high spatial
resolutions.

In the last part of this thesis, we derived a goal oriented error estimator for partitioned
solution approaches that is applicable to the viscous-plastic sea ice model. The error
estimator is able to approximate the different error contributions that occur in measuring
a functional of interest. It consists of the spatial and temporal discretization error as
well as the splitting error due to the use of a partitioned solution approach. In terms
of the sea ice model, we measured the sea ice extent, which is considered in seasonal
and short-term forecastings. The error estimator is based on the dual weighted residual
method introduced by Becker and Rannacher [6] and is applicable for a general class
of non-stationary differential equations that are coupled to a transport process. Based
on the approximation of the error estimator, we derived an adaptive refinement strategy
that balances the different error contribution to reduce the overall numerical error.

Finally, we evaluated the error estimator on a model consisting of Burgers equation
coupled to a transport process and observed a highly accurate estimator. In case of the
sea ice model, the error estimator is highly accurate as long as the temporal error is
dominating the error estimator. For numerical solutions with larger variations in space,
the performance of the error estimator is decreasing. For both models, we observed a
dominating splitting error on high resolution grids.

Furthermore, using adaptive meshes in sea ice simulations, we where able to reach
the same accuracy in measuring the sea ice extent with 9 times less nodes compared to
uniform meshes. Here, we reduced the error in measuring the sea ice extent from 7% to
2%, which is a magnitude of interest when estimating the minimal sea ice extent in the
Arctic.

As currently, most applied methods to solve the viscous-plastic sea ice model either
converge poorly or are not at all at high spatial resolutions, we conclude by recom-
mending the application of the novel Newton approach with the multigrid method as
a preconditioner to the linear solver in sea ice models. Both methods showed a huge
potential to increase the efficiency of a simulation and they are relatively easy to realize.
Regarding the use of adaptive meshes, it might be technically too complex to integrate
them into coupled sea ice models. Nevertheless, the error estimator gives us informa-
tion on the magnitude of the different error contributions when measuring a quantity of
interest. This can be used to balance the overall numerical error, i.e., select the correct
choice of spatial and temporal resolutions to increase the efficiency in sea ice simulations.
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Outlook We introduced a non-dimensional variational formulation of the sea ice model
for a better evaluation of the numerical discretization. Hereby, we derived three dimen-
sionless quantities that describe the external ocean and atmospheric forcing as well as
the forcing due to internal stresses. It remains to analyze the physical meaning of these
properties and to investigate how they are related to the convergence issues of the nu-
merical solvers at high spatial resolutions.
In fluid mechanics it is common to design benchmark problems that verify the qual-

ity of the discretization and validate the efficiency of new numerical methods. So far,
no benchmark problem exists to validate the numerical methods when solving sea ice
dynamics. The formulation of our model problem may be a first step in developing a
benchmark problem. As we observed a huge variability in the approximation of trans-
port equations a benchmark problem might be helpful to verify discretization methods.
Regarding the discretization of the transport equations, it is left to analyze the effect of
the different discretizations in realistic model simulations.
Before the geometric multigrid preconditioner can be applied in realistic sea ice sim-

ulations, it needs to be investigated how the nested mesh hierarchy can be set up for
complex geometries, e.g., how to approximate regions that contain small islands and
complex structured coastlines. With respect to that, an overview of applications of the
multigrid method on complex geometries using unstructured grids is given by Wesseling
and Oosterlee in [106].
We already outlined that implementation of the goal oriented error estimator for

partitioned solution approaches might be technically too complex to integrate it into
parallelized coupled climate models. It is subject to future work to analyze the potential
of the error estimator in short-term forecasts in stand-alone sea ice models. It needs
to be investigated in which form the error estimator could be approximated in these
models. The use of averaged dual quantities, as is proposed by Braack et al. [9], might
be a good starting point. Nevertheless, we suggest investigating the potential of energy
error estimators in sea ice simulations as they are simpler in derivation and more robust
in application.

As we observed a high accurate error estimator for Burgers equation coupled to trans-
port process, it is subject to future work to evaluate the potential of the goal oriented
error estimator for partitioned solution approach in a cG(1)dG(0) discretization. A pos-
sible test case are the incompressible Navier-Stokes equations coupled to a transport
process.
Finally, we note that the Newton solver accelerated with the operator-related damped

Jacobian method can be applied to sea ice models with other rheologies or different
plastic yield curves such as the Mohr-Coulomb curve [99], as long as the Jacobian has the
same structure. So far, a first analysis has been conducted by Richter and Mehlmann [81]
to theoretically explain the increased robustness of the operator-related damped Jacobian
method. However, it is not fully understood yet and subject to future work.
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