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3. Prof. Dr. André Scherag, FSU Jena

Datum der Verteidigung: 18.04.2019

I





Eidesstattliche Erklärung / Declaration under Oath 
 
 
Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, 
keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den 
benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich 
gemacht habe. 
I declare under penalty of perjury that this thesis is my own work entirely and has been 
written without any help from other people. I used only the sources mentioned and included 
all the citations correctly both in word or content. 
 
 
 
 
__________________________  ____________________________________________ 
Datum / Date     Unterschrift des Antragstellers / Signature of the applicant 
 
 
 

III





This thesis is a cumulative thesis, including five research articles that have previously been
published in peer-reviewed international journals. In the following these publications are listed,
whereby the first authors are underlined and my name (Trutschel) is marked in bold.

1. Trutschel, Diana and Schmidt, Stephan and Grosse, Ivo and Neumann, Steffen, ”Ex-
periment design beyond gut feeling: statistical tests and power to detect differential
metabolites in mass spectrometry data”, Metabolomics, 2015, available at: https://

link.springer.com/content/pdf/10.1007/s11306-014-0742-y.pdf

2. Trutschel, Diana and Schmidt, Stephan and Grosse, Ivo and Neumann, Steffen, ”Joint
analysis of dependent features within compound spectra can improve detection of differ-
ential features”, Frontiers in Bioengineering and Biotechnology, 2015, available at: https:
//www.frontiersin.org/articles/10.3389/fbioe.2015.00129/full

3. Mönchgesang, Susann and Strehmel, Nadine and Trutschel, Diana and Westphal, Lore
and Neumann, Steffen and Scheel, Dierk, ”Plant-to-Plant Variability in Root Metabo-
lite Profiles of 19 Arabidopsis thaliana Accessions Is Substance-Class-Dependent”, In-
ternational Journal of Molecular Sciences, 2016, available at: http://www.mdpi.com/
1422-0067/17/9/1565

4. Trutschel, Diana and Palm, Rebecca and Holle, Bernhard and Simon, Michael, ”Method-
ological approaches in analysing observational data: a practical example on how to ad-
dress clustering and selection bias”, International Journal of Nursing Studies, 2017, avail-
able at: http://www.sciencedirect.com/science/article/pii/S0020748917301426?
via%3Dihub

5. Palm, Rebecca and Trutschel, Diana and Simon, Michael and Bartholomeyczik, Sabine
and Holle, Bernhard, ”Differences in Case Conferences in Dementia Specific vs Tradi-
tional Care Units in German Nursing Homes: Results from a Cross-Sectional Study”,
Journal of the American Medical Directors Association, 2016, available at: https://
www.jamda.com/article/S1525-8610(15)00557-5/fulltext

I hereby declare that the copyright of the content of the articles Trutschel et al., 2015b
(2), Mönchgesang et al., 2016 (3) and Trutschel et al., 2017 (4) is by the authors (under
Creative Commons License).

I hereby declare that the copyright of the content of the article Trutschel et al., 2015a (1)
is by c©Springer Science+Business Media New York 2015.

I hereby declare that the copyright of the content of the article Palm et al., 2016 (5) is by
c©2016 AMDA – The Society for Post-Acute and Long-Term Care Medicine.

V

https://link.springer.com/content/pdf/10.1007/s11306-014-0742-y.pdf
https://link.springer.com/content/pdf/10.1007/s11306-014-0742-y.pdf
https://www.frontiersin.org/articles/10.3389/fbioe.2015.00129/full
https://www.frontiersin.org/articles/10.3389/fbioe.2015.00129/full
http://www.mdpi.com/1422-0067/17/9/1565
http://www.mdpi.com/1422-0067/17/9/1565
http://www.sciencedirect.com/science/article/pii/S0020748917301426?via%3Dihub
http://www.sciencedirect.com/science/article/pii/S0020748917301426?via%3Dihub
https://www.jamda.com/article/S1525-8610(15)00557-5/fulltext
https://www.jamda.com/article/S1525-8610(15)00557-5/fulltext




Zusammenfassung

Angwandte Lebenswissenschaften sind interdisziplinäre Forschungsbereiche, die umfangreiche
statistische und computergestützte Methoden benötigen um gesammelte Daten zu organ-
isieren, visualisieren und analysieren, insbesondere seitdem die Komplexizität der Daten in
diesen Forschungsfeldern selbst immer mehr zunimmt.

Für die Datenanalyse ist es wiederum wichtig, Studien durchdacht zu konzipieren und
geeignete Methoden für die Analyse zu wählen, um valide Ergebnisse für wissenschaftliche
Entscheidungen zu erhalten. Um dieses Ziel zu erreichen, wird Wissen über die Daten-
struktur und -eigenschaften benötigt, unabhängig in welchem wissenschaftlichen Bereich gear-
beitet wird. Benutzerfreundliche Programme, die komplizierte mathematische und comput-
ergestützte Methoden aufbereiten und für den praktischen Anwender zugänglich machen, sind
dabei ebenfalls unverzichtbar geworden.

Der Fokus dieser Dissertation liegt auf der methodologischen Erarbeitung solcher Verfahren
ebenso wie auf deren Anwendung bei der Analyse von Daten in realen Studien. Die Heraus-
forderungen bei der Datenanalyse kommen durch die verschiedenen Dateneigenschaften zu-
stande und werden hier am Beispiel von zwei Lebenswissenschaften aufgezeigt: Metabolomik
und Gesundheitsversorgung. Während meiner Arbeit in beiden Bereichen hat sich gezeigt,
dass obwohl beide Wissenschaften verschiedene Fragestellungen zu beantworten versuchen,
die methodische Vorgehensweise ebenso wie die mathematischen Lösungsansätze ähnlich sind.

Metabolomik ist eine Schlüsseldisziplin in der Systembiologie. Das komplette Set an kleinen
Molekülen in einem Organismus, das Metabolom, wird hier untersucht. Zur Identifizierung und
Quantifizierung dieser kleinen Moleküle (Metabolite) in solchen komplexen Gemischen werden
oft Methoden der Massenspektrometrie genutzt. Die Metabolomforschung beschäftigt sich mit
metabolischen und regulatorischen Mechanismen, die das Wachstum, die Entwicklung und die
Stressantwort von Organismen beeinflussen. Einen großen Teil nehmen dabei Experimente
mit analytischem Character ein um diese Informationen zu erhalten. Die Daten aus solchen
Experimenten müssen jedoch mit geeigneten Methoden ausgewertet werden können.

Ein Teilbereich der Gesundheitsversorgung ist die Pflegewissenschaft. Sie hat unter anderem
zum Ziel, die Pflegepraxis anzuleiten und die Pflege und Lebensqualität der Patienten zu
verbessern. Durch die Überalterung der Gesellschaft liegt heutzutage ein vermehrtes Interesse
auf der Reduktion der Gesundheitsversorgungskosten und der Erhaltung der Lebensqualität
von Erkrankten mit neurokognitive Störungen (Demenz), ebenso wie auf der Erleichterung der
Pflege und dem Schutz vor extremer Arbeitsbelastung der Pflegenden. Um sich dieser Fragen
anzunehmen werden zum Teil sehr komplexe Systeme untersucht, so dass der Vorgang für das
Sammeln und die Analyse der Daten nach keinen festen Muster ablaufen kann, sondern eher,
je nach Fragestellung in Bezug auf die Pflege von Personen mit Demenz, flexible Antworten
benötigt werden.

In beiden wissenschaftlichen Gebieten werden spezifische wissenschaftliche Fragen gestellt.
Die Eigenschaften der Daten, die zur Beantwortung der Fragen gewonnen werden, können sich
zwischen den zwei Gebieten sehr unterscheiden oder auch ähneln. Aber unabhängig davon,
wie sehr sich beide Wissenschaftsgebiete unterscheiden, in den meisten Fällen findet man
in den Daten Abhängigkeiten und Korrelationen zwischen verschiedenen Variablen, die mit
multivariate Methoden analysiert werden. Diese Arbeit beinhaltet drei methodische Artikel,
die verschiedene multivariate Methoden untersuchen, und zwei Artikel, die die Analyse einer
realen Studie unter Anwendung dieser Methoden präsentieren.
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Summary

Applied life sciences are interdisciplinary fields, which require profound statistical and com-
putational methods to organize, visualize and analyse the obtained data, especially, since the
complexity of data has grown.

For data analysis carefully designed studies and appropriate methods are important to
make conclusions on the basis of valid results. This needs knowledge about data structure
and characteristics, whatever in which scientific field. Furthermore, user-friendly applications
to make difficult mathematical and computational methods available for practitioners are
essential for these applied sciences.

In this thesis the focus is on a methodological point of view as well as showing the application
of provided methods in analysing data of real studies. The challenges on data analysis depend-
ing on several data characteristics are shown within two applied life sciences: metabolomics
and health care. During my work in both fields, it has been shown, that the possible solutions
and mathematical approaches are similar although both sciences have different issues.

Metabolomics - a key discipline in system biology - investigates the metabolome, which is
a complete set of small molecules in an organism. For the identification and quantification
of such molecules, the metabolites, in complex mixtures mass spectrometry based methods
are often used. Metabolomic research helps to get insights into the metabolic and molecular
regulatory mechanisms contoling the growth, development and stress responses of organism.
A major part therefore takes the conduction of experiments with analytical character, which
have to be analysed with appropriate methods to receive these insights.

Nursing science is one part of health care, where clinical nursing service research has the
aim to guide nursing practice and to improve care and quality of life of patients. Related to
the population ageing, nowadays, there is a special interest within nursing service research
on neurocognitive disorders, popularly known as dementia, to reduce health care costs and
maintain life quality of affected people, both patients and their caregivers. Complex systems
are under investigation and thus, the proceeding how to obtain and analyse data is not a
restrictive approach, but rather there is a need of flexible answers according to several scientific
questions in terms of care of persons with dementia.

Both scientific fields have their own research questions with different aims. The character-
istics of the data, obtained to answer these questions, between the two fields have differences
as well as similarities. But no matter how different the research question and apparent data
characteristics are, patterns reoccur. For example in most data dependencies and correlations
between several variables are present and hence requires multivariate methods for the data
analysis. Within this thesis three methodological articles, which investigate several multivari-
ate methods, and two articles presenting real life study analysis, which shows the usage of
such methods, are included.
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1. Introduction

1.1. Background

Applied life sciences cover interdisciplinary research fields on living organisms. This comprises,
among others, metabolomics (a part of biochemistry) and nursing service research (a special
topic in health care).

Mass spectrometry-based methods play an important role in the metabolomics field (Gowda
and Djukovic, 2014), studying the complete set of small molecules in organisms, so-called
metabolites. Because mass spectrometry is a method, which is able to measure the molecule
masses very precise, it is used to identify as well as to quantify the amount of metabolites
occurring in organisms.

In contrast, nursing research generates knowledge with an impact for nurses. This could be
for example knowledge that affects the delivery of nursing care (Burns and Grove, 2009) or
that have an impact on patient care decisions.

Both, mass spectrometry methods and nursing research, are part of different areas of life
sciences, but usually deal with multidimensional and complex data sets . There is a demand
for suitable methods to obtain valid information from these complex data sets (Belle et al.,
2015; Tugizimana et al., 2016). Hence, despite different research questions asked, different
data at first glance, but repeating characteristics (bias, dependency etc.) require profound
statistical and bioinformatical methods (Boccard and Rudaz, 2014; Beisken, Eiden, and Salek,
2015).

Bioinformatics is a scientific field, where methods for storing, retrieving, organizing, visual-
izing and analysing biological data are developed (Chicurel, 2002). The advances in compu-
tational power allow to use complex statistical methods (Dı́az-Emparanza, 2000; Scott, 2015;
Gentle, Härdle, and Mori, 2012). The rapid introduction of new biological measurement tech-
nologies and the increasing relation to many disciplines raise the need for carefully designed,
conducted and analysed studies. This helps to make research reproducible and with regard
to assessing research critically relevant to their clinical practice (Ioannidis et al., 2014). Here,
the aim of computer scientists is to provide methods for user friendly application (Chicurel,
2002) of difficult mathematical as well as computational algorithms to practitioners.

The aim of this work is to make statistical methods available for researchers in two scientific
fields with large datasets: metabolomics and health care research. On the one hand there
is a need to specify the problems/issues of the data within each field and on the other to
give recommendations to acquire data with most powerful experiment designs and analyse the
data with appropriate methods. Thereby, the overall aim remains analysing data to answer a
particular scientific question.

Figure 1.1 illustrates the scope of this thesis, that although the two scientific fields have
different questions and also data with different characteristics, the overall analytical reflec-
tions remain the same. It describes the different aspects which have to be considered when
conducting a real study (green box) and is explained with more detail in 1.2.1. This thesis
has the focus to elaborate on these aspects from a methodological point of view (yellow box),
which are discussed more comprehensive in 1.2.2. Some advice which have to be considered
before a study is conducted and during data analysis are also given. Figure 1.1 is an overview
of the context of this methodological consideration and the articles in this thesis are related
to a specific position in this figure.
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Figure 1.1.: To answer a scientific question appropriately, the data characteristics have to
be known. The characteristics, e.g. the type of measurement method or the type of the
outcome variable, which is strongly related to the scientific question and context, directly
determines the experimental design and the statistical method to analyse the collected data.
Methodological investigations about these data characteristics can help to find the best suitable
experiment design for data collection or analysis method within a real study. A pilot study is
one possibility to obtain insights into data characteristics.

1.2. Research design to study causal effects

Often, the primary aim of applied life science is to detect relationships or even causal effects
between independent and dependent variables. A cause can be defined as any condition tending
to increase the probability of the effect (Glymour, 2012). Figure 1.2 illustrates the simplest
model of a study design type analysing the relationship between variables. The causal variable,
often called exposition, is the independent variable and influences the objective criterion as

2



dependent variable. Other associated causal variables, which are related to the exposure
(direct causal effects) as well as to the objective criterion, are possible. They are known
as confounder and responsible for bias because the two effects cannot be separated. Some
examples for such relationships of exposition and objective can be given: in metabolic studies
the genetic manipulation to change the metabolic state of organisms or in health care studies
the use of an intervention to change the quality of life of people with dementia.

Figure 1.2.: The model of a study design illustrates that the direct causal variable(s) and
possible associated causal variable(s) can influence the objective criterion (criteria).

To address a particular a problem and find a solution with confidence, careful consideration
how to conduct the study is required. It is called the study design, also known as experimental
or research design (Polit and Beck, 2004), and plays an important role in quality and inter-
pretation of results related to a scientific question (Thiese, 2014; Tugizimana et al., 2016).
This includes the design type of the study as well as data collection, statistical analysis and
interpretation of the results (Knight, 2010). However, poor design choices can reduce the
generalization of the study results (Ioannidis et al., 2014) and thus, should be avoided.

Types of studies designs. Figure 1.3 shows that different study design types are possible
for translating the conceptual hypothesis into an operational one. They can be defined by
different criteria: 1) the temporal nature (time), 2) the role of the investigator (objective) or
3) the investigated purpose (manipulation) of the study (Thiese, 2014).

Categorised by time, prospective versus retrospective study designs are possible. In a
prospective study, at the beginning of the study the exposition (dark blue ellipse in Figure 1.2)
is identified and thus, the defined population is followed for effect detection (forward-oriented).
A retrospective study begins with the outcome (white ellipse in Figure 1.2) for a defined pop-
ulation (dependent variable) and looks back in time to identify the exposure factors or the
cause (backward-oriented) (Polit, Beck, and Hungler, 2004).

If the study types differ by the objective of the study, descriptive or analytic study designs
were distinguished. A descriptive study gathers ideas about relationships and identifies ques-
tions, so that hypotheses can be generated. In contrast, an analytic study attempts to validate
hypotheses established by descriptive studies. The effect of a cause has to be identified as well
as the effect size estimated.

3



Figure 1.3.: Different design types of studies for translating the conceptual hypothesis into
an operational can be categorised by different criteria, here shown for type of objective, time
and manipulation. Classified by the objective, hypothesis-generating (descriptive) or -verifying
(analytic) studies are distinguished. Depending on the degree of manipulation, study types
are possible from observational to experimental (with increasing manipulation of the inde-
pendent variable). Time separate studies in prospective (forward-oriented) and retrospective
(backward-oriented) ones.

Observational on the one hand and experimental study types on the other hand are possi-
ble, if a researcher makes decisions about the manipulation of the independent variable. In
the first case no manipulation is needed, whereas in the second manipulation is done. In
observational studies the cause-effect relationship has to be found, described and assessed or
summarized the status of a phenomena. Hence, observational studies can provide insights into
how an intervention works in a representative population (Ho, Peterson, and Masoudi, 2008).
In contrast, in experimental studies the effect of planned and actively applied exposition is
analysed in a prior planned manner. Hence, experimental studies should be randomized.

In Table 1.1 the four special cases of study design types, shown in Figure 1.3, are described
in detail, ordered from the lowest grade of evidence to the highest (top down), referring to
the strength and weakness of the designs (Ho, Peterson, and Masoudi, 2008). Hence, each
scientific question requires its own study design strongly related to the scientific context and
aim of the research question. In metabolomics Case-Control studies can often be found to
understand such relationships between genotypes and the presence of a metabolic substance.
In contrast, several types of study designs like cross-sectional, cohort or randomized studies
can be found in the field of nursing research. For example, in this thesis a cross-sectional
(health care) and a case-control study (metabolomics) was conducted.

1.2.1. Data analysis in studies

Figure 1.1 illustrates that data analysis in studies (shown by the green box) implies three
steps: 1) the data collection, 2) the analysis of the data and 3) the interpretation of the
results. The first step is data generation, whereby data can be collected with or without prior
knowledge about their characteristics. The kind of how the data are generated in turn depends

4



Type Main characteristics

C
ro

ss
-s

ec
. Def. exposures and disease status at a single point in time

Cat. descriptive, observational
App. often findings are basis for other studies, can prove and/or disprove assumptions
+ cost and time efficient
− no temporality demonstrated

C
a
se

-c
o
n
tr

o
l

Def. compare a sample group, where each member has an outcome of interest (condition),
with another sample group, where each member has not
determine relationship between outcome and interested risk factor (exposition)

Cat. retrospective, analytical, observational
App. instrumental to understand relationships (Ho, Peterson, and Masoudi, 2008)
+ cost and time efficient
− no temporality demonstrated

C
o
h

or
t

Def. samples are separated by the exposition of interest
involves data collection over two or more time points

Cat. retrospective and prospective possible, analytical, observational
special cases: Follow-up, longitudinal and intervention studies
(Hilgers, Bauer, and Scheiber, 2007)

App. examine long-term effects of a specific expositions
+ prospective cohort studies best suited for suggesting causation (Thiese, 2014)
+ temporality demonstrated
− in retrospective cohort studies randomized allocation not given

and causal conclusions cannot be made
− expensive, time consuming

R
an

d
om

iz
ed

Def. all member are randomly allocated to receive one of the several interventions
Cat. prospective, analytical, experimental
App. determine any effects of the exposition
+ provide most suitable equating groups on all possible characteristics

(Polit and Beck, 2004)
+ avoid bias
− expensive, time consuming, sometimes not practical
− an intervention may result in hidden events

Table 1.1.: Definition (Def.) of different study design types, ordered from the lowest grade
of evidence to the highest (top down), are explained by their categories (Cat.), application
(App.), advantages (+) and disadvantages (-).

on the context of the scientific question. However, an appropriate experimental study design
(left grey ellipse Figure 1.1) is essential to obtain sufficient information. R.A. Fisher already
stated that statistical procedure and experimental design are only two different aspects of the
same issue (Fisher, 1966). Thus, a suitable statistical method (right gray ellipse Figure 1.1)
using the correct assumptions related to the data characteristics is required and should be pre-
specified before data collection or at least before starting the analysis. Hence, analysing data
of an applied life science study should answer the scientific question with a) valid methods and
b) the most powerful experiment design. Finally, the goal of statistical data analysis through
a study is to extract the maximum information from the data and results that are as accurate
and as useful as possible (Scott, 2015; Boccard and Rudaz, 2014; Tugizimana et al., 2016)
and avoid bias from all stages of research(Sackett, 1979). In other words, it reveals valid and

5



reproducible knowledge about a practical issue by using models to make inference concerning
the process (Gentle, Härdle, and Mori, 2012). Hence, the aim of successful experiments is
make conclusions to causal relations, which could only be realised by randomised studies.

Data analysis, the second step, and causal effect estimation are closely connected to statis-
tical interference. Statistical inference is a method to investigate the characteristics of causes
and includes two related principles: estimation of population parameters and testing of hy-
potheses (Bortz, 2005). The best possible causal relation estimation is one of the principal
aims of statistical analysis (Glymour, 2012), whereby causal relations describe how variables
influence each other. Statistical hypothesis testing theory is a widely-used method for statis-
tical inference. The statistical hypothesis is a statement about the characteristics of random
variables, e.g. a parameter or a distribution of a population, and represents a scientific hy-
pothesis. Data analysis uses the information gained from a sample of individuals in order to
make inference about the relevant population (Ilakovac, 2009). Hence, statistical hypothesis
testing is a procedure that is based on parameter estimation from a sample, a subset of the
whole population, for which the statistical hypothesis should be evaluated.

The appropriate study design choice is related to statistical hypothesis testing as it is related
to effect size, sample size and power (see for more detail Appendix A.1). Hence, before the
study is conducted, considerations about the appropriate design should be made.

In this thesis, after methodological considerations of (Trutschel et al., 2015a, Section 6.1)
and (Trutschel et al., 2017, Section 6.4), two examples of data analysis within a study and
how to interpret the results are given: (Mönchgesang et al., 2016, Section 6.2) within the field
of plant metabolomics and (Palm et al., 2016, Section 6.5) within nursing service research.

1.2.2. Methodology to explore data characteristics

Figure 1.1 also illustrates the methodological investigations before a study is done (yellow
box): first, scientists have to gather prior knowledge about data characteristics, second, they
have to find the best experiment design and the appropriate statistical method and finally, to
analyse data of a real study.

It is important to understand the data characteristics before realising a possibly expensive
study to answer a scientific question, because they limit the possibilities for experimental de-
sign and analysis method. Hence, pilot studies (green jigsaw in Figure 1.1) and computational
simulations can help to get deeper insights on data characteristics and find a powerful experi-
ment design before the procedure of a real study is defined, shown in (Trutschel et al., 2015a,
section 6.1).

While knowing the data characteristics is essential, simulation studies can be performed to
evaluate and compare experimental designs or analysis methods (Gentle, Härdle, and Mori,
2012) (see Figure 1.1). Hence, computational inference is a viable and useful alternative
to traditional statistics inference. Simulation as a numerical technique, often use compute
intensive procedures, can help to answer questions that could not have been answered on
real data alone (Burton et al., 2006). Two types of simulations are classified by the type
of input data: they are derived from 1) measured data of a real system or 2) via sampling
from probability distributions using random numbers (Balci, 1990), known as Monte Carlo
simulation. The aim is to test particular hypotheses and assess the performance of a variety
of statistical methods in relation to a known truth. Thereby, several scenarios should reflect
common circumstances. Then methods can be tested and compared referring to a) accuracy
of estimation method or b) the quality of hypothesis testing approaches (For more details
about simulation studies and their performance see Appendix A.1). In this dissertation a
computational simulation study is used to find the appropriate statistical model to analyse
data applied in (Trutschel et al., 2015b, section 6.3).

Many key issues are related to the data characteristics and each single choice is important
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for the analysis as it determines the experiment design and requires the appropriate analysis
method (see section before, gray ellipses in Figure 1.1). For example according to the scien-
tific field and question several type of measurement methods to obtain data are possible and
determine the data characteristics. In metabolomics often mass spectrometry based methods
are used, whereby in nursing research questionnaires are common instruments. Furthermore,
different types of outcome variables can be found, e.g. nominal, ordinal or continuous out-
comes. The type of study design additionally determines data characteristics. For example
several number of groups can be compared or several replicates of a measurement unit can be
obtained.

One key issue of data characteristics is that various types of dependencies have to be taken
into consideration. In the past, statisticians like Laplace were already faced with dependent
observations, for example calculating probabilities associated with the game of chance. In
the present-day data analysis the consideration of dependencies still plays a central role. De-
pendencies are possible in many ways, for example due to a) the study design, b) the type of
manipulation or c) the measurement method.

Dependencies due to a) study design occur, when a hierarchical structure is given. Here,
repeated measurements of a unit, which are then dependent, are observed. Sometimes, this is
called nested structure in time or space and is discussed in (Trutschel et al., 2015a, section 6.1)
and (Mönchgesang et al., 2016, section 6.2).

When dependencies are present due to b) type of manipulation, this may be observed as
selection bias. Then, observational independence of allocation to treatment and control is not
guaranteed and so dependencies due to the lack of randomization are possible. In observa-
tional studies it is possible that covariates permit an assignment of observations to a specific
group, where in the opposite case in randomized studies the assignment is independent of the
covariates. An example is discussed in (Trutschel et al., 2017, section 6.4).

The kind of outcome is also influenced by c) the measurement method. Hence, dependencies
or correlations between several outcomes may be occur corresponding to the method, e.g.
using mass spectrometry methods it is possible to obtain a number of dependent signals for a
single metabolite. The consequence of this kind of dependencies on model choice is discussed
in (Trutschel et al., 2015b, section 6.3).

Dependencies within data of applied life science must be taken into account and often re-
quire, in addition to the complexity of the obtained data, multivariate statistics for data
analysis (with more detail in next subsection). This is now widely performed using computa-
tional power. Disregarding dependencies may lead to statistical errors and false conclusions.
Hence, available results of acquired data have to be interpreted in a correct manner.

1.3. Multivariate statistics

Analysing multi-dimensional data often requires multivariate approaches, because multivariate
analysis takes all variables simultaneously into consideration (Beisken, Eiden, and Salek, 2015).
Such data sets contain an amount of variables, generated by observations. A n×p data matrix
contains measurements xij of p variables on n objects, shown in Table 1.2.

For example, in nursing science research on n individuals p variables, e.g. different charac-
teristics like age and sex or interested outcomes like quality of life and challenging behaviour,
can be measured, where the measurement method is often questionnaires. Another example
is in the metabolomics field the measurement of p features resulting from q (≤ p) metabolites
from n plants using mass spectrometry methods.

In Table 1.2 each row corresponds to an object (e.g. individual) and each column to a
variable (e.g. characteristic). This matrix can be analysed in two alternative ways: column-
wise examining the relationship between different variables and row-wise between different
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Object Variable 1 Variable 2 · · · Variable p

1 x11 x12 · · · x1p

2 x21 x22 · · · x2p
...

...
...

...
n xn1 xn2 · · · xnp

Table 1.2.: Data matrix containing measurements xij of p variables on n objects.

objects (Mardia, Kent, and Bibby, 2003).

Formula Summary statistic

xj = 1
n

n∑
i=1

xij sample mean of variable j

sj = 1
n−1

n∑
i=1

(xij − xj)2 sample variances of variable j

sjj̃ = 1
n−1

n∑
i=1

(xij − xj)
(
xij̃ − xj̃

)
sample covariances between two variables j and j̃

Table 1.3.: Summary statistics of multivariate data.

Summary statistics of this kind of data, listed in Table 1.3, are similar to univariate sum-
maries. The sample mean vector x = (x1, . . . , xp)

T (vectors are represented in bold letters) is
an estimate of the true mean vector µ, where xj is the sample mean of variable j.

The key characteristic using multivariate methods is the sample covariance matrix S, an
estimate of the true covariance matrix Σ. It includes variances sj of each variable j as diagonal
matrix elements and sample covariances sjj̃ between two variables j and j̃ as off-diagonal ma-
trix elements (Table 1.3). Hence, the variance-covariance matrix has the following symmetric
form:

Σ =


s1 s12 · · · s1p

s12 s2
. . .

...
...

. . .
. . . sp−1p

s1p · · · sp−1p sp

 . (1.1)

For a special experiment design (nested structures) the form of the variance-covariance matrix
of possible multivariate-normal distributions is derived in Appendix A.2.

Graphical visualisation of multivariate data is often used to get an impression of the data
characteristics and discover the unexpected. It represents an explorative data analysis without
an underlying parametric model. Although the non-parametric world is much more complex
and more flexible than its counterpart, parametric methods, although they have key assump-
tions, are often used because they are the most powerful (Scott, 2015).

In this dissertation parametric tests are used and the distribution of the observations are
assumed known. If it is assumed that the variables are conjointly distributed due to the de-
pendencies within the data, it requires a multivariate parametric analysis. This is different to
the univariate analysis, where each variable is analysed independently. While the distribution
of one single random variable is univariate, the joint distribution of p variables is called a
multivariate distribution (DeGroot, 2004). Inductive analysis that are interested on a multi-
variate distributed p-dimensional vector x often use the multivariate normal density (Scott,
2015) (Equation 1.2), which is a multidimensional generalisation of the normal distribution.
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The multivariate normal density is defined by:

f (x) =
1√
2πΣ

exp−1

2
(x− µ)T Σ−1 (x− µ) , (1.2)

where x is a vector of observations on p variables (for example one row of Table 1.2), µ the
p-dimensional vector of means and Σ−1 the inverse of the p×p-dimensional variance-covariance
matrix (Eq. 1.1). For illustration: different design types of a study (cross-over or case-control
e.g.) determine different mean vectors and different structured data due to dependencies spec-
ify different variance-covariance matrices of the multivariate-normal distribution (examples
how to sample such distributed data are given iby the provided samplingDataCRT 1).

Hence, multivariate approaches are used to analyse more than one dependent or indepen-
dent variable (Rasch et al., 2010). Techniques used on this kind of data are sometimes just
a generalization of the univariate ones. For example the multivariate analysis of variance
(MANOVA) is the extension of the univariate analysis of variance (ANOVA) for more than
one dependent variable as the variables are analysed simultaneously. The different statistical
inference methods that exist, for example: classical frequentist approach, likelihood-based or
even Bayesian inference, can also be used in a multivariate manner.

The problems investigated in this dissertation focus on the multivariate representation of the
data and their analysis by inductive multivariate approaches. Three main topics are considered
within the thesis: 1) multivariate hypothesis testing, 2) multiple regression analysis and 3) mul-
tilevel structures in data and can be classified to multivariate analysis approaches (Mardia,
Kent, and Bibby, 2003).

First, multivariate hypothesis testing means a joint hypothesis test on two or more param-
eters, which results in a multidimensional test statistic. This arises for example when more
than one variable of interest (more than one dependent variable) are analysed simultaneously.
The approximate confidence region for the parameter vector is a k-dimensional ellipsoid, where
k is the number of tests (Millar, 2011). Using univariate hypothesis tests for each parameter
individually instead causes the multiple testing problem of increasing Type I error. Hence,
the adjustment by the correlation structure between test statistics within a joint analysis is
then less conservative than ad hoc methods based on a Bonferroni adjustment of the Type I
error rate (Stucke and Kieser, 2012). One example for a joint analysis is given in this thesis
by (Trutschel et al., 2015b, section 6.3).

Second, if a dependent variable is affected by more than one variable, a set of variables
can be used to predict another. This leads to multiple regression analysis, the extension of
the univariate type with only one predictor variable. Observations on n objects are fitted
by a linear combination of all independent variables, e.g. applied in (Trutschel et al., 2017,
section 6.4) and (Palm et al., 2016, section 6.5).

Third, if multilevel structures in data are present, dependent observations due to multiple
measurements on different levels of one object are obtained. Hence, a multivariate repre-
sentation of the data with a covariance structure to adjust for the dependencies between
observations is required. It is the base of the articles (Trutschel et al., 2015a, section 6.1),
(Mönchgesang et al., 2016, section 6.2), (Trutschel et al., 2017, section 6.4) and (Palm et al.,
2016, section 6.5). The R-package samplingDataCRT 1 provides as an easy tool sampling data
sets of cluster randomized studies, which are characterized by such depended structures.

1https://CRAN.R-project.org/package=samplingDataCRT
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2. Research objectives

Statistical inference formalizes the process of learning through observation, whereby the learn-
ing process includes two principal parts: design an experiment and analyse the experimental
data (Berry, 1996). The aim of applied life science studies is with 1) the most powerful exper-
iment design and 2) appropriate methods 3) analysing data to answer the scientific questions
in a correct manner (Figure 1.1). Whereas researchers are confronted with large and complex
data sets, they have to study the data characteristics as well as the meaningful analytical
process (Belle et al., 2015). Thereby, evaluation within pilot studies or by simulations may
help to find the best suitable experiment design and analysis method for analysing data, which
is related to the data characteristics and according to the scientific question.

Scientific field
Mass spectrometry Nursing services

Experiment design Analysis method Analysis method

M
e
th

o
d
o
lo
g
y Experiment design

beyond gut feeling:
statistical tests and

power to detect
differential metabolites
in mass spectrometry

data

Joint Analysis of
Dependent Features
within Compound

Spectra Can Improve
Detection of Differential

Features

Methodological
approaches in analysing

observational data: a
practical example on

how to address
clustering and selection

bias
(Trutschel et al., 2015a) (Trutschel et al., 2015b) (Trutschel et al., 2017)

Section 6.1 Section 6.3 Section 6.4
+ Vignette + Vignette + Vignette

S
tu

d
y

Plant-to-plant
variability in root

metabolite profiles of 19
Arabidopsis thaliana

accessions is substance-
class-dependent

Differences in Case
Conferences in Dementia

Specific vs Traditional
Care Units in German

Nursing Homes: Results
from a Cross-Sectional

Study
(Mönchgesang et al.,

2016)
(Palm et al., 2016)

Section 6.2 Section 6.5

Table 2.1.: Articles included within this thesis.

In this dissertation these aims are addressed within two applied sciences: mass spectrometry
as part of metabolomics and nursing service as part of health care. Table 2.1 gives an overview
of the included articles and their focus on either experimental design and analysis method
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evaluation or practical application within a real study. For an easy orientation of the scope
of each article the same color code as in Figure 1.1 is used in the table. Thus, the yellow
shaded articles have the focus on methodology and the green on a real study analysis applying
evaluated methods or designs to answer a relevant scientific question.

When writing the included articles an additional aim was to provide tools for real (other
researcher’s) problems within data analysis. For all three methodological articles within this
thesis a vignette is provided. Thereby, an overall focus was to make mathematical or informat-
ics methods available for practitioners. For all implementation the free statistical software R (R
Core Team, 2016), which is especially conceptualized for statistical computing and graphics,
was used.

In the following the thesis is partitioned for these two scientific fields, described in chapter 3
and 4. Each chapter includes its own introduction to the field with a special interest to the
methodological challenges followed by a short explanation of the articles. This includes the
topics of the articles and their context within this thesis, which show exemplary one of the
aspects of Figure 1.1 within one of the research field. The Conclusion and Outlook chapter is
then written for both in chapter 5, because this consideration can be made interdisciplinary
as it is done in the Introduction chapter. The complete articles (as they are published) are
given in chapter 6.
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3. Metabolomics - Analyse mass spectrometry data of
plants

3.1. Metabolomics research

Metabolomics is a discipline which globally studies metabolites - small molecules participating
in metabolic reactions in a biological system - and their concentrations, interactions and
dynamics within complex samples (Boccard, Veuthey, and Rudaz, 2010; Beisken, Eiden, and
Salek, 2015). It is a key discipline in system biology (Fiehn, 2002; Weckwerth, 2003).

The complete set of small molecules in an organism is called metabolome. At the metabolite
level the phenotype of cells is represented, influenced by perturbation of gene expression and
the modulation of protein functions, which are caused by the environment or mutations (Saito
and Matsuda, 2010; Beisken, Eiden, and Salek, 2015). The aim of metabolomics is to quantify
all metabolites in order to find answers to biological questions (Koek et al., 2011). Besides
that, untargeted metabolomics analysis starts with unknown structure and the objective is to
measure many metabolites simultaneously and find potential biomarkers (Eliasson et al., 2012;
Yi et al., 2016). Whereby the WHO describes biomarkers as any measurement reflecting an
interaction between a biological system and a potential chemical, physical or biological risk
(safety, 1993). Particularly, untargeted metabolomics aims at the simultaneous measurement
of the full set of metabolites - not knowing the compound nature (structure or annotation).

The field of metabolomics has important applications in areas of life sciences and be-
yond (Gowda and Djukovic, 2014). Plant metabolomics has become a powerful tool to explore
various aspects of plant physiology and biology. Insights into the metabolic and molecu-
lar regulatory mechanisms regulating plant growth, development and stress responses can
be obtained with the help of metabolomic research (Hong et al., 2016). For example, the
aim of case-control studies is to detect metabolites relevant to a specific genotype (Beisken,
Eiden, and Salek, 2015), where the participants are identified based on their outcome (geno-
type/phenotype) and then the presence of the risk factor (exposition), here the metabolic
substance, is compared. So the relationship between both is evaluated (see Section 1.1, Fig-
ure 1.2 and Table 1.1).

3.2. Mass-spectrometry method

Mass spectrometry-based methods are often used for comprehensive identification and accurate
quantification of metabolites in complex mixtures of them (Fiehn, 2002; Weckwerth, 2003).
Because of the sensitivity of the methods, which need less sample material, these methods
play an increasingly dominant role in the metabolomics field (Gowda and Djukovic, 2014) and
show their power in plant metabolomic studies in many common plant species (Hong et al.,
2016).

Due to different analytical conditions (solvents, ionization etc.) different adducts and in-
source fragments are measured by mass spectrometry. Additionally, different isotope patterns
of one molecule can occur and hence, measured. They are the readout of the elemental
composition and their natural distribution. Thus, this measurement method gives rise to a
number of features (Brown et al., 2009), which are related to each other.

Liquid chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrom-
etry (GC-MS) combine chromatographic methods for separation (retention time) and sub-
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sequent mass spectrometry for detection of metabolites (Beisken, Eiden, and Salek, 2015).
Hence, this method provides two-dimensional signals, called features (Tautenhahn, Böttcher,
and Neumann, 2008), with information about retention times and mass-to-charge (Werner et
al., 2008). Three-dimensional signals are obtained when the intensity of this features are also
considered. GC-MS has been one of the most popular metabolomics techniques to determine
the levels of primary metabolites (amino acids, organic acids, and sugars), while LC-MS is a
method for the profiling of secondary metabolites (for example phenylpropanoids and alka-
loids) of plants (Saito and Matsuda, 2010). Both are the scope of scientific investigations (Hong
et al., 2016).

3.3. Methodological challenges of mass spectrometry data analysis
in metabolomics studies

Measuring complex metabolomics samples containing hundreds to a few thousands metabolites
using GC- or LC-MS leads to high dimensional data sets with many features. It results in a two-
dimensional data matrix of n×m feature intensities, where n is the number of features (here
variables correspond to the number of rows), including information such as retention times and
mass-to-charges, and m the number of measurements within the experiment (here observations
correspond to the number of columns). For the intensities or at least the logarithmic intensities
of features obtained by GC/LC-MS a normal distribution can be assumed, so for data analysis
all parametric tests with the assumption of normal-distributed observations are available. In
the past, basic statistical tests like the univariate Student’s t-test has found applications to
identify metabolite differences between groups of, for example, different genotype.

Measuring many variables simultaneously requires sophisticated and powerful methods to
analyse the data and turn it into biological knowledge (Steuer et al., 2007). However, re-
searchers tend to use methods that are common and easy to apply (Moseley, 2013). Then,
the challenge is to find the appropriate way for data analysis in metabolomics studies (Beisken,
Eiden, and Salek, 2015; Yi et al., 2016). This depends, in mass spectrometry (as well as in
other research fields) on data characteristics such as the type of study design or data processing
method (instrument used and data collection) (Broadhurst and Kell, 2006).

Mass spectrometry data has some key characteristics, like dependencies between observa-
tions - between columns of the MS-data matrix - due to study design (e.g. technical replicates)
or dependencies between different features - between rows of the MS-data matrix - (e.g. differ-
ent species of one metabolite after ionisation). Thus, answering biological questions requires
sophisticated statistical methods, which take such dependencies into account. Furthermore, a
lack of statistical power due to a poor design is an example for obtaining interpretative bias
and should be avoided (Moseley, 2013).

In this thesis both objectives, finding a suitable experiment design and evaluating statistical
methods to answer biological questions are addressed for mass spectrometry data. (It should
be noted that pre-processing of the data, such as treatment of missing values or normalisation
techniques, will not be the objective.) Therefore, three articles are included: two methodologi-
cal and one example for a real study analysis (See Table 2.1 and Figure 1.1).Their specific aims
are explained below. Although the example data sets are obtained by measuring leaves, shoots
or roots of plants, the methods are also usable for other tissues as well as other organisms and
other measurement methods like GC-MS. R-codes are provided within each article for an easy
use of the discussed methods or to adapt the analysis process in other contexts.

13



3.4. Publications

3.4.1. Experiment design beyond gut feeling: statistical tests and power to
detect differential metabolites in mass spectrometry data.

The topic of the first article (section 6.1) is the identification and quantification of possible
sources of variances in mass spectrometry experiments. Therefore, statistical methods are
used to take dependencies between observations due to nested designs into consideration, that
means dependencies between the columns of the two-dimensional data matrix of obtained mass
spectrometry data sets. Additionally, it is focused on investigations of key data characteristics,
possible dependencies due to the design, to find the appropriate and powerful experiment
design (Figure 1.1) for metabolomics studies.

Introduction Depending on the experimental design, several sources of variance are present in
metabolomics data and influences the type and result of hypothesis tests. This article presents
a detailed analysis of known variance levels. Therefore, a pilot study with a hierarchical
experiment design is performed. Due to this design, the different replicated observations on
several levels are not independent any more. Such dependent observations follow a multivariate
normal distribution (shown in appendix A.2). Thus, to obtain exact and unbiased estimates
of individual variances at different levels, it requires the usage of a nested linear regression
model using random effects for the different levels (also known as linear mixed models) (Davis,
2002).

In studies with the aim of detecting metabolite differences, technical replicates made on
biological samples are often averaged to avoid the occurrence of dependent observations. The
article describes how these dependencies can be handled even with the commonly used t-
test statistics by a hierarchical t-test, and also for the more general case the (hierarchical)
ANOVA, which correctly includes both biological and technical replicates without distor-
ting the results. The derivation for estimates is given and shows that estimates obtained
by ANOVA-based methods in special cases are equal to those obtained by likelihood based
methods (appendix A.2).

These new insights into data characteristics can contribute to find cost effective experiment
designs to answer relevant biological questions. Therefore, the impact of the respective number
of replicates of each level on the statistical power of the test is considered. The aim is to find
a compromise between expenses, associated with costs related to different levels of replication,
and the quality of inference possible in a particular experiment.

Materials and Methods A pilot study for a typical Arabidopsis thaliana (A. thaliana)
metabolomics experiment (Figure 3.1) was performed to the quantify variation at different
levels of the experiment. Three sources of variation in MS experiments have been considered:
(i) instrumental variation, (ii) preparation variation and (iii) biological variation The total
variation is then the sum of all three variations. A hierarchical set of samples at different
levels of variation was prepared.

Only the overall variance σ2
tot - the sum of technical and biological variances - can be esti-

mated directly from the dataset. To obtain an unbiased estimation at individual hierarchical
levels (Figure 3.1), the instrumental σ2

instr, preparation σ2
prep and biological variances σ2

biol

were modelled as random effects with a three-level linear regression model for each detected
feature:

Ynei = µ+ βn + γne + δnei (3.1)

where Ynei is the observed measurement of injection i of extraction e of plant n, µ the overall
population mean, βn the independent random biological effect on plant n, γne the indepen-
dent random preparation effect on preparation e in plant n and δnei the independent random
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instrumental effect on injection i in preparation e in plant n. The random effects βn, γne,
δnei are mutually independent. The unbiased estimator can then be estimated (for formula

see Section B.1, Figure B.1). The proportion of biological variance to total variance
σ2
biol

σ2
tot

is

known as intra-class correlation (ICC).

Figure 3.1.: Hierarchical experiment design. At all levels of variation replicates were
prepared: To extract biological variation several plants were grown. From each plant, several
extractions were performed, to assess the preparation variation. To identify the instrumental
variation each extract was measured several times. The number of LC-MS datasets is the
product of the number of plants N , extracts E per plant and injections I per extract.

For multilevel observations the hierarchical version of ANOVA and of the Student’s t-test
can also used (see subsection B.1.2) to find differences in means of observed intensities be-
tween groups. Then technical replicates are implicitly averaged and thus, multiple levels with
biological and technical replicates within an experiment can be used. Both are special cases of
linear mixed models (Raudenbush and Bryk, 2002) like the ANOVA is a special case of linear
models.

If, though hypothesis testing, in non-hierarchical experiments four of the five parameters
(i) power 1−β, where β is the probability of error type II, (ii) number of samples N , (iii) effect δ
between two groups, (iv) variance σ2, and (v) α defined as the maximum allowed probability of
Type I errors are given, the missing parameter can be calculated (Broadhurst and Kell, 2006).
Since in multilevel models the interest is on the influence of different sources of variation,
replication strategies and sample sizes on the statistical power (Snijders, 2005), here, the
missing parameter can be calculated, if six of the seven parameters (i)1 − β, (ii.a)number of
biological replicates N and (ii.b) number of technical replicates M , (iii) δ, (iv.a) biological
variance σ2

biol and (iv.b) technical variance σ2
tech, and (v) α are given.

Results and Discussions Figure 3.2 (left) shows the estimated variances for all obtained
S = 642 features. The mean values of all feature variances are σ2

instr = 0.043, σ2
prep = 0.076,

σ2
biol = 0.172, hence they increases from technical to biological variation σ2

instr < σ2
prep < σ2

biol

and the mean total variance σ2
tot = 0.291 is the sum of these individual contributions. On

average across all features the instrumental variance is 16.7%, the preparation variance is
29.1%, and the plant variance is 54.2% of the total. Figure 3.2 (right) shows the distribution
of ICCi, the proportion of each variance source on total variance (Sampson et al., 2013b), of
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the individual features and illustrates that half of the features have an ICC above 0.58.

Figure 3.2.: The distribution of estimated variances of all measured features in leaf
samples. Left: From left to right the estimated variances of all measured features S = 642
in leaf samples for σ2

instr, σ
2
prep, σ

2
biol, and σ2

tot are plotted. Each dot represents the estimated
variance of one feature in the sample. The mean of all estimated feature variances for each
variance level is given below and shown as black bar. Right: The cumulative distribution of
ICCi for all features i. E.g. 80% of the features have an ICC above 0.31, half of the features
have an ICC above 0.58, and even 20% are above 0.8. The higher the proportion of features
with a large ICC, the more important is a hierarchical experiment.

The experimentalists will have to decide whether the increased quality of the test justifies
the added costs and the experimental effort when using more replicates. For this, a two step
decision has been made: 1) find all possible combinations of biological and technical replicates
in a two-level hierarchical experiment design using power calculation approach, 2) choose the
combination which has the lowest costs, given a ratio of the costs between biological and
technical replicates. This comparison of costs can help to choose an efficient experimental
design. For example, given a fixed cost ratio of 9:1 (biological vs. technical), for a real
effect of δ = 1.5 or below and the given mean varaince estimates, technical replicates and the
hierarchical t-test are superior (i.e. cheaper) than a normal t-test without technical replication.

Conclusion In mass spectrometry-based metabolomics there are several sources of variance.
Based on a pilot study, it is shown that the hierarchical variance analysis is a method to
quantify and separate these additive sources of variances. Such a pilot study is also a tool to
determine the different sources of variance relative to the overall observed variance in a MS
experiment and should be performed for each analytical setup and each organism or tissue type.
In this setup it was found that the biological variance is larger than both the instrumental
and preparation variance combined.

The statistical power depends on 1) the observed variance, and 2) the number of biological
replicates and 3) the real effect that is relevant for the biological question and which is desired
to be statistically significant. To decrease the influence of non-biological variance, technical
replicates can be acquired and analysed with a hierarchical type of Student’s t-test, or having
more than two classes with nested ANOVA, or in general with multilevel mixed models.

For large studies following the prior conducted pilot experiment, an optimal experiment
design is highly requested to save costs and effort, while maintaining statistical power.
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3.4.2. Plant-to-Plant Variability in Root Metabolite Profiles of 19 Arabidopsis
thaliana Accessions Is Substance-Class-Dependent.

The second article (section 6.2) benefits from the methodological investigations of the first
article (Trutschel et al., 2015a, section 6.1) and used the proposed method to answer a
metabolomic related question. Here, a real study (blue box Figure 1.1) with a hierarchi-
cal experimental design was conducted on the problem of plant-to-plant variability in root
metabolite profiles of 19 A. thaliana accessions.

Introduction In plant science A. thaliana is a model species to investigate secondary metabolic
pathways, whereby plant-to-plant variability has neither been investigated in root metabolism
nor have previous studies incorporated more than two A. thaliana accessions into a compre-
hensive root metabolic profiling analysis.

In general, especially in roots, material of several plants is pooled before sample preparation,
because of biomass is very little. The previous article (Trutschel et al., 2015a, chapter 6.1)
shows a solution for how to incorporate different kinds of replicates into a powerful experi-
mental design without the need for sample pooling. Instead, a hierarchical experiment design
was used to be able to decompose the total observed variance of root metabolite profiles in
the general physiological state into the components attributable to natural variation between
accessions, experimental batch and individual variability between plants. Furthermore, the
relative biological variability of three important substance classes was investigated: glucosi-
nolates (GSLs), flavonoids, and phenylpropanoids including oligolignols, the latter playing a
vital role in root metabolism.

Materials and Methods Seeds of 19 A. thaliana accessions were analysed by LC-MS and GC-
MS. The used hierarchical experimental setup of the study is shown in Figure 3.3 (compare
to the similar setup of the previous article, Figure 3.1).

Figure 3.3.: Nested experimental design with three levels. Each variance level had multiple
replicates to assess natural variation, 19 accessions of A. thaliana were grown. Three indepen-
dent biological experiments were performed to estimate non-biological variance derived from
the experimental batch. To assess individual variability, four plants were harvested in each
biological experiment for each accession. Single-plant root extracts were subjected to LC-MS
and GC-MS analysis.

The method of linear mixed models (lmm), which is more widely applicable compared to
using the ANOVA-based variance estimation method (of the previous article), was used to
dissect the total observed variance and quantify the amount of different sources of variation.
With the obtained log-transformed metabolite abundances the variance contribution at each
experimental level - accession, batch and plant - were estimated. Furthermore, lmms with
only batch and plant as random effects were applied separately to each accession to examine
accession-specific variances. Intraclass correlations (ICCs) were also calculated as the ratio of
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plant variance σ2
plant and total variance σ2

total according to (Sampson et al., 2013a) for each
feature and additionally for known metabolites.

Results For non-targeted metabolic profiles of primary metabolites the estimated mean
between-plant variance σ2

plant = 0.50 is larger than the between-accession variance σ2
accession

= 0.37, whereby the estimated mean between-experiment variation σ2
batch = 0.19 is less than

σ2
plant. It indicates, that for root metabolic natural variation, plant-to-plant variability seems

to be larger than between-accession variance.
In addition, three sets of annotatable compounds were quantified (Figure 3.4): GSLs,

flavonoids, and phenylpropanoids. Figure 3.4(a) separates the feature variance estimates ac-
cording to the substance classes and Figure 3.4(b) interprets plant-to-plant variability in the
context of total variance using ICC estimates. GSLs and phenylpropanoids show a large range
of ICCs, where for flavonoid metabolites, the ICCs are rather high but similar for all analysed
members of the substance class.

Figure 3.4.: Biological variability of annotated secondary metabolites. (a) Variances for
plant, batch and accession were estimated with a linear mixed model (lmm), dot: variance
of one metabolite; (b) ICCs for glucosinolates (GSLs), flavonoids, and phenylpropanoids, dot:
ICC of one metabolite, bar: the mean ICC for a substance class.

Discussion Measuring single plant extracts prevented the irreversible information loss result-
ing from pooling plant material and allows to distinguish between accessions and still analyse
plant-to-plant variability. If a broad range of metabolites are of interest, it is important to
know the biological variability that is exhibited by most metabolites. For example, calcula-
tions with the mean ICCs will provide sufficient power for analyses of flavonoids, but not for
all metabolites of the classes GSLs and phenylpropanoids due to the high variability.

Conclusion The provided knowledge within this article about the variances of different sub-
stances classes can be exploited to appropriately design an experiment prior, because it may
differ between a non-targeted screen and the analysis of specific substance classes. To exploit
the full potential of a non-targeted metabolite profiling, single-plant measurements should
be acquired and correctly integrated into the analysis. Hence, different substance classes of
interest might require a specific experimental set-up guided by obtained variance values.
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3.4.3. Joint analysis of dependent features within compound spectra can
improve detection of differential features.

The third article (section 6.3) has the aim to find statistical methods to jointly analyse de-
pendent features (adducts, fragments, isotopic peaks of one metabolite). Here, dependencies
between rows of a two-dimensional data matrix obtained by mass spectrometry data sets are
taken into consideration. The focus lies on data characteristics, which determine the analysis
method (Figure 1.1). In addition, the problem of multiple hypothesis tests is addressed.

Introduction A typical research question in the field of metabolomics is biomarker discovery.
Therefore, univariate hypothesis tests like Student’s t-test (Student, 1908) and Analysis of
Variances (ANOVA) can be used to detect differences between two or more sample classes, but
one of the underlying assumptions is the independence between individual metabolic features.
However, it is known that in mass spectrometry a single metabolite usually gives a rise of mass
spectral features, e.g. isotopes, adducts or fragments (Brown et al., 2009), which are observed
together and show a common behaviour across samples. Thus, methods for a joint analysis of
such features are required instead of multiple univariate tests.

Multivariate methods like MANOVA are global approaches to analyse all features together
taking correlations between all features into account. Nevertheless, in metabolomics the num-
ber of samples is usually much smaller than the number of features to be analysed. Therefore,
correlation and covariance structures are difficult to estimate for all given features, and require
an initial variable selection step. An alternative way to this joint analysis of all features is
treating only related features together. This means to group those which originate from the
same metabolite referred to as ”compound spectra” in the following for a subsequent analysis.
Then a multivariate analysis on the level of compound spectra instead of a global multivariate
approach can be applied to determine differential metabolites.

Materials and Methods For the analysis, two metabolomics data sets from A. thaliana were
used. The first is a dataset, where 26 independent plant profiles and a simulated effect were
used to evaluate the proposed methods. The methods are then demonstrated on a second
dataset including A. thaliana wildtype and a mutant line. Therefore, several multivariate
methods to jointly analyse compound spectra representing metabolites are proposed.

The univariate Student’s t-test (Student, 1908) assumes normal-distributed observations of
independent features. The difference of the intensity mean between the two classes is estimated
for each feature. The confidence interval (CI) of the estimated mean difference determines the
accuracy of this estimation, and the CI size depends on the number of observations and
the standard error (SE) of the estimated difference between means. Figure 3.5 shows that
if independent univariate tests for two features in a compound spectrum are combined, the
confidence interval becomes a rectangular confidence region or in general for groups with p
features a p-dimensional hypercube. Even if multiple testing correction is done the confidence
region holds a hypercube.

The multivariate extension, here Hotelling’s T2 (Hotellings, 1931), compare the differ-
ence of p-dimensional mean intensity vectors in relation to their p × p covariance matrices.
Observations of features in a compound spectrum are then assumed to be multidimensional
normal-distributed. Figure 3.5 illustrates for this multivariate analysis (of two depended fea-
tures), the confidence region has an ellipsoid shape and hence, is not so conservative as usage
multiple univariate tests. Using the multivariate tests, this statistic requires at least

(
p+1

2

)
replicates (samples), where p is the number of features per metabolite group, to estimate the
unknown entries of each covariance matrix. Additionally, a variant of the multivariate meth-
ods is proposed, named diagonal Hotelling’s T2. Therefore, only the diagonal entries of the
covariance matrix are estimated, with the rest fixed to zero. This simplification ignores the
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correlation between features, but makes the covariance estimation more robust in the case
where a compound spectrum consists of more features than samples are available to modify
the idea of spectra-wise analysis on small data sets. In comparison to a full covariance matrix
estimation, the main axes of the ellipsoid confidence region in Figure 3.5 are then parallel to
the coordinate axes.

Figure 3.5.: Different decisions from univariate and multivariate test to detect differential
features or compound spectra. Each gray rectangles marks the confidence interval of one test
dimension, so the intersection of two rectangles marks the combined confidence region. The
blue ellipse is the confidence region for a multivariate test. There are six different possibilities
(six different coloured spaces) for the position of the origin corresponding to the null hypotheses
marked by a red ’+’.

Results and Discussions The performance of the three statistical analysis – univariate, and
multivariate with both Hotellings-T2 and the diagonal Hotellings-T2 – was compared on two
sample classes dataset of metabolite profiles from A. thaliana. Therefore, the negative set
(effect 0.0) with 686 features in 153 compound spectra was combined with a positive set
consisting of the same 686 features but with an added effect. For each effect between 0.0 and
1.4 the final ground truth dataset thus contained 306 compound spectra with a total of 1372
features.

Figure 3.6 demonstrates the behaviour of the proposed methods for all different effects.
Therefore, the area under the curve (AUC) was used as a summary metric of the performance.
For the feature detection (Figure 3.6, top) it is shown that the multivariate T2 as well as the
diagonal T2 method has a better AUC compared to the univariate approach for all effects
of 0.2, 0.3, . . . , 1.4, 1.5. Especially for smaller effects, the benefit of the multivariate approach
is visible and also that the simplified diagonal T2 approximates to the original T2 for larger
effects. Between the different compound spectra level (or grouping) approaches (Figure 3.6,
bottom) no particular differences are shown. Thus the main benefit results from a joint analysis
of compound spectra, while less differences are observed between the joint analysis methods.
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Figure 3.6.: Top: Results of univariate and multivariate methods in feature detection are
compared at the feature level. Bottom: At the compound spectra level the results of different
grouping analysis approaches are shown. For each simulation step, several added effects of
0.2, 0.3, ..., 1.4, 1.5 on the ’mutant’ class, the mean and SE of the evaluated AUCs (results
from 100 repetitions) are plotted.

Conclusion In mass spectrometry-based metabolomics data will usually give a rise of multiple
spectral features. In recent years, methods were developed to group these related features
into compound spectra. However, the statistical analysis was still based in either individual
univariate tests, or global multivariate analysis. Within this article the feature-wise univariate
statistic tests to a compound spectra-wise analysis has been extended .

At the feature level the resulting AUCs for the multivariate analysis of compound spectra
were better than in the univariate case. Hence, for biomarker discovery in mass spectrometry
metabolomics data the analysis of data compound spectra-wise can now be recommended. At
the compound spectra level the advantage of T2 over the other spectra-wise approaches is
most prominent for noisy data and/or if very small effects should be detectable.

The proposed joint analysis of features of a metabolite group as a spectra-wise analysis is
the key idea and bridges an important gap between hypotheses tests on individual features on
the one hand, and global multivariate methods which might be more difficult to interpret.
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4. Health care - Analyse data of people with dementia
in clinical nursing services research

4.1. Nursing services research

Nursing science develops systematically knowledge with impact for nurses. Clinical nursing
science has the aim to guide nursing practice and to improve care and quality of life of pa-
tients (Polit, Beck, and Hungler, 2004). The aim is to validate, refine and generate knowledge,
for example from empirical studies, that directly and indirectly affects the delivery of nursing
care (Burns and Grove, 2009). Results of clinical research have also an impact on patient
care decisions and recommendations for cost reduction of health care. This means an evalu-
ation of the efficiency of cost reduced, but quality maintained health care services (Polit and
Beck, 2008). The so called evidence-based practice is the use of the current best available
evidence in patient care decision-making (Sackett et al., 1996; Murray et al., 2013; American
Association of Colleges of Nursing, 2015). Hence, high reliability of results require research
methods to derive unbiased effect estimates of an intervention in a certain population in real
world settings and means in particular the need of randomization (Institut für Qualität und
Wirtschaftlichkeit im Gesundheitswesen, 2017; Adams et al., 2018).

4.2. Dementia research

Nowadays, there is a special interest within nursing service research on care of people with
neurocognitive disorders. Although these disorders are categorised by different subtypes (e.g.
Alzheimer’s disease) and different severe stages (mild, moderate and severe), they are popularly
known as dementia. Neurocognitive disorders are defined by a decline of several cognitive
functions, which is related to a decrease of independence in every day activity (APA, 2013).
Related to the population ageing, there is a shift to disease burden at older ages worldwide.
Dementia is one of the major neurological disorders, which is in the list of the top increases
from 1990 to 2010 (Murray et al., 2013; Prince et al., 2015a). The number of people with
dementia worldwide will increase further with an estimation of 131.5 million by 2050 (Prince
et al., 2015b). Currently, this progressive disease cannot be cured, thus, the increase of people
with dementia requires specialized care. Dementia is associated with increasing healthcare
costs in European countries (Wimo et al., 2013) and therefore for society means an increase
of costs. This will have implications to health-services planning, manpower and education,
e.g. (Murray et al., 2013).

4.3. Dementia research with the focus on the quality of care

Although for a high proportion of people with dementia it is possible to live at home (alone)
in Germany, UK and US (Eichler et al., 2016), the behavioural and psychological symptoms
affect the quality of life of people with dementia and also of their carer. This circumstance and
also the absence of cure are the reason why it is necessary to develop interventions to improve
or maintain quality of life (Prince et al., 2015a; Klapwijk et al., 2016). As a consequence,
studies are conducted to evaluate the quality of care and the effectiveness of interventions to
improve or maintain quality of life. For example, one scientific question to answer is, whether
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residents who live in care units which are specialised in care of residents with dementia are
more likely to receive an intervention that is increasing quality of life than residents of other
care units.

4.4. Methodological challenges of analysing data of people with
dementia within nursing services research studies

Data collection within nursing research studies are displayed as a two-dimensional data matrix
of n rows × m columns, where n is the number measurements (e.g. one measurement for each
resident/patient) and m the number of variables obtained from the used questionnaires.

Complex problems are present in this scientific field and the proceeding how to obtain and
analyse data is not a restrictive approach, but rather there is a need of a flexible answer
according to several scientific questions in terms of care of persons with dementia. Neverthe-
less, the specific characteristics of the collected data according to the type of i) study design
ii) manipulation and iii) outcome variable or measurement method (see Figure 1.1) play a
decisive role in choosing analysis methods within this scientific field. The characteristics and
the resulting consequences for analysis of this specific data are described in the following.

In health care research the cohort study design type is often used to identify potential
risk factors for outcomes and study changes or development over time. To follow patients
over a period of time it is necessary to measure interested variables repeatedly during the
study. One example is to decide, if two cohorts differ from frequencies of behaviour occurrence
(incidence) over time. Furthermore, the collection of resident or patient measurements within
clusters, for example nursing homes or hospitals, is common. The reason for that is often
randomised studies could only be realised through cluster randomisation because in order to
avoid contamination of the intervention (exposition). Both, repeated measurements over time
and collection data within clusters, result in dependencies between observations (dependencies
between rows of the data matrix). This violates the assumptions of independent measurements,
which is fundamental to most hypothesis tests. This is one of the main data characteristics
that need to be considered. Then, an adjustment for such dependent observations within
estimation models to obtain unbiased intervention effects are necessary.

While randomized studies are the ”gold standard” and this study design generates the
highest level of evidence to answer questions about effectiveness of different interventions
(treatments), in nursing science various circumstances hinder the conduction of a random-
ized controlled trial (not feasible or practical). Hence, other study types like observational
ones must be considered (Ho, Peterson, and Masoudi, 2008). When data are collected in ob-
servational studies, dependencies due to allocation of individuals to the treatment classes is
possible. Here, randomization is not part of the study design and assignment to treatments
may be associated with the potential outcomes of the treatment (Ridder and Graeve, 2011).
This is a source of selection bias and statistical methods are needed to reduce it.

Within nursing services research very complex systems are under investigation. Within this
complex system very different interaction partner are involved, e.g. persons being cared for,
care giver or social environment. Within a study setting often some variables cannot be fixed
and thus, the existence of different sources of bias is usual. Due to the influence of several
confounders on outcomes, the data are often acquired with a high variability. Within the
statistical model the bias can only be adjusted for, if the confounder are known and measured,
otherwise bias remains hidden.

Furthermore, health care research often deals with so-called complex interventions. Complex
interventions are characterized by having multiple components, which interact with each other.
Thus a single primary outcome may not make best use of the data; a range of measures will
be needed. Hence, if multiple testing problem is present, then a correction of p-values has
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to be considered by researchers. Furthermore, different types of outcome distributions due to
the used questionnaires are possible. Hence, different tests or histograms according to their
respective assumptions (e.g. normality) are required and sometimes transformation of data
(e.g. for binary data) could be necessary.

One of the objectives of this thesis, the usage of appropriate statistical methods to answer
scientific question regarding the specific data characteristics, is addressed in two articles with
the special interest on studies on people with dementia within nursing research. One article is
a methodological one and the other a real study example, which profit from the methodological
insights of the first. The used methods may also be interesting for other parts of health care.
Therefore, R-code is provided within the methodological article for an easy use of the discussed
methods or to adapt the analysis process in other contexts.

4.5. Publications

4.5.1. Analysing observational data: methodological challenges to address
clustering and selection bias, a practical example in health services
research in nursing

This article (section 6.4) focuses on considerations about data characteristics, for example a
special type of outcome, the study type or a specific design, which determine the choice of
methods for the data analysis (Figure 1.1). While data analysis generates results, the analysis
method then directly influences the interpretation of the results. These considerations are
shown on a practical example in health services research.

Introduction Motivated by an observational study in health services research, there was an
interest on a special study type: observational studies in which three main data characteristics
(dichotomous outcome, clustered data, observational study) need to be addressed to find a
suitable analysis method, as illustrated in Figure 4.1.

First, the distribution of the outcome variable, influences the choice of the statistical method.
Here, the use of case conferences as a binary outcome is analysed. Binary variables are
summarised by probabilities, odds and odds ratios (OR) , whereby the interpretation of odds
is more difficult for practitioners (Greenland, 1987; O’Connor, 2013).

Second, in observational studies, the possibility of controlling factors that may influence the
study outcome is limited to observed variables because randomisation is not part of the study
design. Therefore, other options must be applied to reduce selection bias (Ridder and Graeve,
2011), which can contribute to over-/underestimations of the intervention effect (Starks, Diehr,
and Curtis, 2009).

Third, this study example is an evaluation of special care units. Studies about dementia
special care units typically have a multi-stage clustered data structure: residents are clustered
within units, units are clustered within nursing homes, and nursing homes are clustered in
provider systems. If a clustered or nested data structure is most likely present, the error terms
within a cluster are no longer independent (see also Trutschel et al., 2015a, section 6.1). Hence,
this clustering must be considered when choosing the analysis method to avoid overestimating
the significance of the effects.

Materials and Methods From an observational study (Palm et al., 2014) a dataset from
64 care units in 36 nursing homes (n = 835 participants) is provided. The primary question
for this analysis was whether a dementia special care unit (treatment group) more frequently
performs case conferences than traditional care units (control group).
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Figure 4.1.: In a study, the data analysis generates results. The data have their own charac-
teristics, for example, a special outcome type, a unique study type or a specific design. These
characteristics determine the choice between sophisticated methods for data analysis. Hence,
the method directly influences the interpretation of the results and therefore must be carefully
chosen using the skill of the researcher.

Here, two levels of analytical strategies are illustrated: i) different models with different abil-
ities to adjust for dependencies (due to clustered data) to analyse binary data and ii) different
methods to adjust for selection bias .

Different models and their ability to adjust for dependencies.

First, the crude model is a simple contingency table. Table 4.1 (upper part) provides
an initial overview: the distribution of a binary outcome variable, here, the performance of
case conferences. Table 4.1 (bottom part), illustrates also that the (estimated) probability of
’receive a case conference’ p can be calculated as a proportion from the frequencies in each
group, and differences in (estimated) probabilities between the two groups (treatment and
control) can easily be calculated by p1−p2. The odds of each group are then defined as the ratio
of the probabilities p and 1−p ( p

1−p). It compares how much larger one probability is relative to
another in a specific group. The widely used odds ratio is thus the ratio of both odds, namely,
the odds of the treatment group related to the odds of the control group. The crude model
provides almost the same results as the logistic regression model with only one independent
variable for group assignment (treatment versus control). The logistic regression belongs to
the family of generalised linear models (GLMs), which can handle different distributions of
outcome variables (Gelman and Hill, 2007). The generalised linear model adapts the linear
relationship between the probability that an event occurs and the predictor variable (group)
by using the logit function.

Secondly, a generalised linear mixed model is used when observations are not independent,
because of clustering in different nursing homes for example. Generalised linear mixed models
are an extension of the generalised linear models (Hardin and Hilbe, 2012; Stroup, 2012; Li
et al., 2011). They combine two statistical concepts: using linear mixed models to include
random effects and using generalised models to model non-normal distributed data.

Methods for selection bias adjustment.

Two methods for bias reduction that can be used for analysing data (by crude or advanced
mixed model) to achieve balance are used: 1) genetic matching (Pimentel, Yoon, and Keele,
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Group Marginal
Treat (Special care) Control (Traditional care)

O
u

tc
. no n11 (22) n12 (119) n1.=n11+n12 (141)

yes n21 (224) n22 (470) n22=n21+n2. (694)

Marginal n.1=n11+n21 (246) n.2=n12+n22 (589) N=n.1+n.2=n1.+n2. (835)

In
te

rp
r. Probabilities pTreat = n21

n.1
(0.91) pControl = n22

n.2
(0.8) Diff. = pTreat − pControl (0.11)

Odds OddTreat = pTreat
1−pTreat

(10.18) OddControl = pControl
1−pControl

(3.95) OR = OddTreat
OddControl

(2.58)

Table 4.1.: Upper: A contingency table of a two-group comparison for a dichotomous outcome
variable, where ni,j is the absolute amount of outcome i in group j. Lower: Parameters, their
estimates calculated from the contingency table and their interpretation. (p = probability,
OR = Odds ratio)

2015; Rosenbaum, 2002; Rubin, 2006; Stuart, 2010) on samples and 2) adjustment via the
regression model (Cepeda et al., 2003; Gelman and Hill, 2007). Balancing in this context
means that the baseline characteristics in the treatment and control groups are the same
(matching) or that balance differences are taken into account (regression).

The first method, balances the sample independent from the outcome, which means match-
ing of similar individuals in the treatment group with individuals from the control group with
the disadvantage of loosing information, but for balancing observed control variables in both
groups (Baser, 2006). After that the matched sample can be further analysed, but needs
additional adjusting for produced dependencies.

The other adjusts for selection bias by estimating the contribution of each variable to the
outcome within a regression framework by inclusion of independent variables (covariates) into
the model. Thus, the analysis and bias adjustment are not separated and provide a conditional
estimate of the treatment effect (given levels of the covariates).

Results According to the crude model (Table 4.1), 91% of residents in dementia special care
units received a case conference, whereas only 80% in traditional care units received a case
conference. The substantive interpretation would be that a patient is more likely to receive
a case conference in dementia special care units than in traditional care units. The table
shows also an odds ratio of 2.58, which indicates that the odds of receiving a case conference
is more than two and a half times higher in the group of special care units than in the group
of traditional care units; in other words, being in the treatment group (relative to the control
group) raises the odds of receiving a case conference.

In the opposite, through the generalised linear mixed model, the estimated odds ratio is
more than three times higher than the odds ratio in the generalised linear model ignoring
the clustered data (see article). This study example shows, that addressing the dependencies
with a mixed model has an impact on the estimation of odds ratio. Here, this considerable
difference can be explained by the strong clustering effect present in these data.

Discussion and Conclusion Although the different analysis methods present different results,
they at least point in the same direction, indicating that the estimated probability of receiving
a case conference might be higher in the treatment group than in the control group. However,
in this study, when adjustment for bias and dependencies is performed, the null hypothesis of
a difference in the use of condition between the two groups could not be rejected.

Before collecting data for an observational study, two major concerns should be taken into
account: 1) covariates that may obtain selection bias and hence require measurement are
determined and 2) a larger sample size is needed to ensure a sufficient sample size; although

26



there is a loss due to adjustment methods. However, further investigations should be performed
to allow drawing conclusions regarding the minimum required sample size within observational
studies, which has to be adjusted for bias, or, if bias appears, how much of the sample is being
lost via matching.

4.5.2. Differences in Case Conferences in Dementia Specific vs Traditional Care
Units in German Nursing Homes: Results from a Cross-Sectional Study

This article shows the application of the methodological problems due to analysing observa-
tional studies with clustered data, which is discussed in (Trutschel et al., 2017, section 6.4)
on a real study example (see Figure 1.1). Here, a real cross-sectional study was performed
to address the research questions: Are residents who live in dementia special care units with
additional funding more likely to receive case conferences than residents of traditional care
units? This dataset is faced with the problem of selection bias, as well as clustered data.
Hence, this article shows the statistical methods to adjust for these issues to receive unbiased
and reliable estimates.

Introduction A real study example was performed with the aim to evaluate, whether residents
who live in dementia special care units are more likely to receive case conferences, a common
tool used to find a solution to clinically relevant problems, than residents of traditional care
units.

At present, dementia special care units (DSCUs) form one of the most frequently imple-
mented structural care interventions. Although a definition of DSCUs does currently not
exist, there is agreement regarding special structural and residential characteristics of DSCUs
in comparison to traditional care units (TCUs). For example specially designed environ-
ments, higher staff-to-resident ratios, and dementia-oriented therapy programs are provided
to residents with dementia, severe cognitive impairments, and severe challenging behaviours.
However, that means higher costs that are attributed to more intensive resource use. From a
health policy perspective, the extra costs raise questions about the benefits of DSCUs and the
regulations for preventing misuse of the funds.

Case conferences are a common tool that is used in long-term care practice to find a solution
to a clinically relevant problem. In Germany, case conferences are usually not part of the rou-
tine care process but are provided when specific problems occur that require an adaptation of
the care plan (e.g.. enduring refusal of food or drinks). Thus, the provision of multidisciplinary
case conferences is considered to be a feature of DSCUs in Germany.

Methods To address the research questions a cross-sectional study was performed and 1808
residents living in 109 care units in 51 German nursing homes were recruited. Data were
collected at the levels of the nursing home, care units and residents. Due to exclusion criteria
and missings, at the end, a data sets from 888 participants were used for the analysis. The
provision of a case conference (dichotomous) was investigated as the dependent variable to
answer the research question.

Based on the discussion of observational studies, it is assumed that the two samples (TCU,
DSCU) were not equally distributed with regard to subject characteristics. This resulting
selection bias can be adjusted (see investigations of Trutschel et al., 2017, section 6.4) by
creating an new dataset (e.g. via matching) or by adaptation of the estimation model (e.g.
covariate adjustment). For matching, we used criteria similar to those used for admission to
DSCUs (care level, cognitive impairment, diagnosis of dementia, mobility) and relevant socio-
demographic variables (age, sex, place of residence before moving into the nursing home). At
least, the expected values of the outcomes in each group were estimated by model-based odds
and odds ratios using logistic regression models.
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Results From the sample of 888 residents, a matched sample with 264 residents in each group
were drawn, which means a information loss through matching process. It was discovered
that DSCU residents received case conferences more often than TCU residents. Using the
generalized linear mixed model, the odds of receiving a case conference was estimated to be
nearly 10 : 1 in TCUs and 40 : 1 in DSCUs. This resulted in an OR of 4 between the two groups
and means that the chance of receiving a case conference was 4 times higher for residents in
a DSCU than for residents in a TCU. However, this OR was not significant and had a large
95% confidence interval.

Additionally, the results indicates that it was more common for DSCUs to conduct case
conferences as a matter of routine compared with TCUs, although the majority of the case
conferences in both types of units were conducted for specific reasons. In DSCUs, residents,
relatives, head nurses, and physicians took significantly smaller roles in case conferences com-
pared within TCUs, whereas therapeutic, housekeeping, and other care staff took on signifi-
cantly greater roles. The topics of nutrition, falls/risk of falling, cognition, and psychosocial
situations were discussed more often in DSCUs than in TCUs. Challenging behaviours were
discussed more often in TCUs than in DSCUs. Regarding the performance of the case con-
ferences, the only difference between the groups that remained significant was the topic of
challenging behaviours, which was addressed more often in TCUs.

Discussion In this study, after adjusting for differences in the resident sample and the clus-
tered structure of the data, the hypothesis that DSCU residents were not more likely to receive
a case conference could not be rejected. Data from both groups indicate that case conferences
are a common intervention but that they do not occur more often in DSCUs. Only, the per-
formance of these conferences differed in regard to the topic of challenging behaviours, which
was discussed more often in TCUs than in DSCUs.

Case conferences on the management of residents’ behaviours appear to be an important
issue in TCUs. In DSCUs, the staff members are more likely to be faced with challenging
behaviours and may use strategies to manage them more routinely than in TCUs. It is
possible that TCU staff need more support for handling problematic situations and reducing
behaviour-related distress. In addition, TCUs are often not designed with consideration for
dementia-related problems (such as wandering behaviours and orientation problems); thus,
the staff members must find alternative solutions to address these problems.

Conclusion Case conferences including a multidisciplinary exchange are a widespread care
intervention in DSCUs and TCUs. The results of this study indicate that case conferences are
a common care intervention but that they do not occur significantly more often in DSCUs,
when adjustment for clustering and reducing selection bias was included into the model.
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5. Conclusions and outlook

The aim of this thesis was to discuss different methodological challenges of conducting ex-
perimental studies in two scientific fields with large datasets: mass spectrometry and nursing
services research. Within such scientific fields, recommendation to 1) acquire data with most
powerful experiment designs and 2) analyse data with appropriate methods are given. Ad-
ditionally, all used statistical methods are made available for practitioners for application.
Thereby, the overall aim persists 3) analysing data of a study, appropriately, to answer a sci-
entific question. Thus, real study analysis show the application of the methods discussed in
the methodological articles at least. Although, both scientific fields are faced with the same
type of data (two-dimensional large datasets) and also the same aims, the study designs and
required methods differ between them.

Using more complex statistical methods on large datasets requires computational power
and methods. Hence, a key skill lies on programming. In this thesis simulation studies are
implemented in different articles (chapter 6.1 and 6.3). Additionally, for all methodological
articles a vignette was given to make the implementation of these complex methods available
for practitioners. An R-package for sampling multivariate normal-distributed data, the base
of the underlying data within both fields, is also provided.

Similarities between both scientific fields. The primary aim of both fields, detection of
relationships or even causal effects between independent and dependent variables, asks for
valid and reproducible results. Hence, appropriate statistical methods for data analysis to
obtain less biased effect estimates are required to make conclusions about causal relations.
and was discussed in the articles of section 6.3 and 6.4. Different experiment designs, the
basis of following sufficient data analysis, is discussed in the article of section 6.1.

The common ground of all articles is the consideration of dependencies within data. Such
dependencies are the basis of multivariate statistics on two-dimensional data. Two kinds are
discussed in this thesis: dependencies between columns and between rows of two-dimensional
data. The type of a multi-dimensional normal distribution, the basis of the multivariate
statistical method used in the articles within this thesis, is given by its mean vector and its
variance-covariance matrix. This distribution is derived and explained with more detail in the
section A.2 in this thesis.

Differences between both scientific fields. The suitable statistical method using the correct
assumptions is related to the data characteristics and differs between between metabolomics
and nursing science, because of the scientific context and research question. Hence, the different
used study types and outcome distributions require different methods. For example, in mass
spectrometry the distribution of logarithm intensities of obtained features are assumed normal,
where in nursing services research a variety of distributions are possible because of nominal,
ordinal or continuous outcomes due to used data acquisition method. Hence, in this area a
generalization of the commonly used linear models are used. In the examples of real data
analysis within the two fields (section 6.2, 6.5), different models are used. Also the study
designs varies widely: case control studies are usually used for mass spectrometry experiments
(section 6.1, 6.3), while randomized and observational studies are present in nursing services
research (section 6.4). Thus, different analysis methods are required to adjust for possible
sources of bias.
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Possible extensions. With the five included articles the objectives of this thesis have been
implemented. All frequentist approach methods given in this dissertation are transferable to
data analysis of other scientific fields, as long as the assumptions that are made are equal.
Nevertheless, some common statistical methods were not scope of this thesis, but could be
valuable extensions in future.

For example, a Bayesian way of data analysis, which includes a-priori assumptions in the
model to re-allocate the results with given knowledge. The problem of using Bayesian analysis
in relative new sciences is that such a priori knowledge is not known or generated. Often in
publications the necessary information (e.g. estimation of distribution parameters for prior)
is not given due to the fact, that this importance is not known. The aim of future analysis
is to collect knowledge from previously studies in order to weight the results of subsequently
performed studies with them using Bayesian methods.

Another approach, which should be considered more often, is the use of meta-analysis for
a number of comparable single studies. It helps to arrange the results of studies in order
to previously published studies within the same context. Nevertheless, here it is the same
problem, that within articles often not all required information are given or comparable studies
has not yet been conducted.

A future task could also be providing the methods for applied researcher, which are not
familiar with programming. For example, all R-codes given by Vignettes and the sampling
package could be implemented through a web tool, which make the application of the methods
easier, but still requires statistical knowledge and experience.

Conclude. This thesis shows, there is a need for methodological discussion before analysing
data (Moseley, 2013). Therefore, a permanent statistician within research teams or institutes,
who is integrated in each step of answering scientific questions with empirical studies, is
preferable. At the best case, this expert is engaged with the field specific characteristics
of the data and has knowledge about a variety of methods. Furthermore, the appropriate
preparation for practitioners could also help that such suitable methods were used. Hence, a
further recommendation is to train researchers in applied sciences for a good understanding
in statistics and how to interpret the results. Furthermore, a good cooperation of scientists
and statisticians within interdisciplinary fields still remains very necessary.
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Abstract: Univariate hypotheses tests such as Student’s t-test or variance analysis (ANOVA)
can help to answer a variety of questions in metabolomics data analysis. The statistical power
of these tests depends on the setup of the experiment, the experimental design and the ana-
lytical variance of the actual observations.

In this paper, we demonstrate how a well-designed pilot study prior to an experiment with
the aim to find differences between e.g. several genotypes, can help to determine the variance at
multiple levels ranging from biological variance, sample preparation to instrumental variances.
Next, we illustrate how these variances can be used to obtain several parameters (e.g. minimum
statistically significant effect, number of required replicates and error probabilities) which
influence the design of the actual study. In particular, we are going to sketch how technical
replicates can improve the performance of a test, when they are correctly used in the statistical
analysis, e.g. with a hierarchical model. Finally, we demonstrate the process of evaluating
the trade-off between different experimental designs with different replication strategies. The
choice of an experimental design beyond the gut feeling can be influenced by factors such as
costs, sample availability and the accuracy of of the tests.

We use metabolite profiles of the model plant Arabidopsis thaliana measured on an UPLC-
ESI/QqTOF-MS as real-world dataset, but the approach is equally applicable to other sample
types and measurement methods like NMR based metabolomics.
Availability: The R code and vignette for the calculations presented in this article are available
as supplementary material under the GPL license.
Keywords: Metabolomics, statistics, variances, hierarchical experiment design

full article on pages 39-47 is available under
https://link.springer.com/article/10.1007%2Fs11306-014-0742-y
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Abstract: Natural variation of secondary metabolism between different accessions of Arabidopsis
thaliana (A. thaliana) has been studied extensively. In this study, we extended the natural variation
approach by including biological variability (plant-to-plant variability) and analysed root metabolic
patterns as well as their variability between plants and naturally occurring accessions. To screen 19
accessions of A. thaliana, comprehensive non-targeted metabolite profiling of single plant root extracts
was performed using ultra performance liquid chromatography/electrospray ionization quadrupole
time-of-flight mass spectrometry (UPLC/ESI-QTOF-MS) and gas chromatography/electron
ionization quadrupole mass spectrometry (GC/EI-QMS). Linear mixed models were applied to
dissect the total observed variance. All metabolic profiles pointed towards a larger plant-to-plant
variability than natural variation between accessions and variance of experimental batches. Ratios of
plant-to-plant to total variability were high and distinct for certain secondary metabolites. None of the
investigated accessions displayed a specifically high or low biological variability for these substance
classes. This study provides recommendations for future natural variation analyses of glucosinolates,
flavonoids, and phenylpropanoids and also reference data for additional substance classes.

Keywords: LC/MS; GC/MS; Arabidopsis; secondary metabolism; natural variation; individual
variability; metabolite profiling

1. Introduction

Metabolomics is one of the “-omics” disciplines in plant science. With the help of hyphenated
techniques such as gas chromatography coupled to mass spectrometry (GC/MS) or liquid
chromatography-coupled mass spectrometry (LC/MS), a large spectrum of small molecules within
a plant can be analysed. Arabidopsis thaliana (A. thaliana) is a model species to investigate secondary
metabolic pathways. Naturally occurring accessions and their distinct phenotypes have evolved in
different habitats and full genome sequencing revealed a substantial number of single nucleotide
polymorphisms [1]. Compared to seeds and shoots, root metabolism is not as well investigated, but
in plants it is crucial in order to provide the molecular building blocks for physical anchorage in the
ground and to regulate all belowground processes. By root exudation, plants also communicate with
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their surrounding rhizosphere and soil microorganisms. In general, due to the relatively low biomass
of Arabidopsis, especially in roots, material of several plants is pooled before sample preparation.
With increasing sensitivity and decreasing costs of analytical techniques, pooling does not seem to
be technically necessary anymore. Indeed, in some cases it is interesting to focus on individual
variability to investigate which mechanisms determine plant metabolism without stress exposure.
Once the plant material is pooled, the information on individual plants is irreversibly lost. Vice versa,
smart experimental design allows for both—investigating variances on different levels (replicates) and
detecting differences between accessions.

Several metabolomics studies examined the contribution of different variance sources to the total
observed variance [2,3]. For nuclear magnetic resonance (NMR) metabolomics, Lewisetal et al. [2]
found that extraction and instrumental deviations accounted for less than 10% and 1%, respectively,
of the total variance in leaves of the accession Ler-0. The substantial plant-to-plant variability of 52%
in Ler-0 could be reduced by pooling several plants to facilitate the separation of Ler-0 from Col-0
samples. Reducing biological variability by pooling might allow for the fast detection of the effect
of interest but nevertheless, it might miss subtle between-plant effects. Similar trends for extraction
and instrumental variance were observed in comprehensive LC/MS-based metabolomics studies of
Col-0 shoots [3]. Trutschel et al. [3] also provide a solution for how to incorporate different kinds of
replicates into a powerful experimental design without the need for sample pooling.

Previous studies have investigated plant-to-plant variability during leaf development. The area of
leaf six varied substantially between plants of the isogenic accession Col-0 at the same developmental
stage, and this variability seems to converge in mature leaves [4]. Li et al. [5] determined there was
33%–40% plant-to-plant variability between the oil content of Col-0 seeds, and pointed out that this
fact needs to be considered to draw statistically valid conclusions.

Plant-to-plant variability has neither been investigated in root metabolism nor have previous
studies incorporated more than two A. thaliana accessions into a comprehensive root metabolic profiling
analysis. Here, we analysed root metabolic profiles of 19 accessions, which were the founders of the
multiparent advanced generation inter-cross (MAGIC) collection of A. thaliana [1,6], using a single-plant
setup in a hydroponic system.

The aim of this study was to decompose the total variance of root metabolite profiles observed
in untreated plants into the components attributable to (1) natural variation between accessions;
(2) experimental batch; and (3) individual variability between plants. Furthermore, we investigated the
relative biological variability of three important substance classes: glucosinolates (GSLs), flavonoids,
and phenylpropanoids including oligolignols which seem to play a vital role in root (but not shoot)
metabolism. Following the analysis of 19 accessions in their entirety, the variability of each accession
was analysed to identify any particular highly or lowly variable accessions.

2. Results

2.1. Variability between Plants Is a Greater Source of Variance than Natural Variation between Accessions

Many studies on natural variation are primarily interested in differences between the accessions,
and reduce plant-to-plant variability by pooling material to obtain fast results. However, to obtain
a comprehensive picture of variability, the variance at each level of the experimental design should
be incorporated.

The experimental setup of our study, shown in Figure 1, resulted in 222 single-plant LC/MS
measurements in each electrospray ionization (ESI) mode. The alignment of chromatograms and
spectra over 222 samples was performed, deviations in retention time (RT) and mass-to-charge ratio
(m/z) were small across all samples (Figure S1) reflecting a sufficient quality of the measurements to
analyse the effects of accession, experimental batch, and individual plant. Linear mixed models with
all experimental levels as random effects were applied to decompose the total metabolic variance.
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Figure 1. Nested experimental design with three levels. Each variance level had multiple replicates—
to assess natural variation, 19 accessions of Arabidopsis thaliana (A. thaliana) were grown. Three 
independent biological experiments were performed to estimate non-biological variance derived 
from the experimental batch. To assess individual variability, four plants were harvested in each 
biological experiment for each accession. Single-plant root extracts were subjected to liquid 
chromatography-coupled mass spectrometry (LC/MS) and gas chromatography-coupled mass 
spectrometry (GC/MS) analysis. 

The non-targeted metabolic profiles of the 19 accessions indicated that the between-accession 
variance is smaller than the plant-to-plant-variability over all features. The results for ESI(−) are 
shown in Figure 2a and for ESI(+) in Supplementary Figure S2. 

 
Figure 2. Variance decomposition of LC/electrospray ionization (ESI)(−) MS data set. (a) Variances for 
plant, batch and accession were estimated with a linear mixed model (lmm), dot—variance of one 
feature, bar and number—mean variance over 2730 features; (b) cumulative intraclass correlation 
(ICC) distribution for all features (σ2plant/σ2total), dotted lines indicate 25%, 50% and 75% quantiles. 

The mean between-plant variance σ2plant = 0.50 is 20% larger than the between-accession variance 
σ2accession = 0.37. The estimated mean between-experiment variation σ2batch = 0.19 is less than 40% of 
σ2plant. On average, plant-to-plant variability contributes to approximately half of the total variance 
(σ2plant/σ2total = 0.47). However, this biological variance has to be interpreted in the context of the total 
variance for comparisons across features and platforms, i.e., knowing whether the feature with the 
highest σ2plant also exhibits large σ2total. It may also occur that a feature with high σ2plant has low σ2total, 
which determines the experimental design to include more replicates on the plant level in a potential 
validation study. 

The intraclass correlation (ICC) according to Sampson et al. [7], here σ2plant/σ2total, reflects which 
fraction of total variance is attributable to the single plant and thus, a relative biological variability. 
The mean ICC ≈ 0.5 of a data set could either be representative for the majority of features (narrow 
interquartile range) or only for a few features if the interquartile range is broad. Figure 2b shows the 
cumulative ICC distribution over all features, with the fraction of features (x-axis) in increasing ICC 

Figure 1. Nested experimental design with three levels. Each variance level had multiple replicates—to
assess natural variation, 19 accessions of Arabidopsis thaliana (A. thaliana) were grown. Three
independent biological experiments were performed to estimate non-biological variance derived
from the experimental batch. To assess individual variability, four plants were harvested in
each biological experiment for each accession. Single-plant root extracts were subjected to liquid
chromatography-coupled mass spectrometry (LC/MS) and gas chromatography-coupled mass
spectrometry (GC/MS) analysis.

The non-targeted metabolic profiles of the 19 accessions indicated that the between-accession
variance is smaller than the plant-to-plant-variability over all features. The results for ESI(−) are
shown in Figure 2a and for ESI(+) in Supplementary Figure S2.
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Figure 2. Variance decomposition of LC/electrospray ionization (ESI)(−) MS data set. (a) Variances
for plant, batch and accession were estimated with a linear mixed model (lmm), dot—variance of one
feature, bar and number—mean variance over 2730 features; (b) cumulative intraclass correlation (ICC)
distribution for all features (σ2

plant/σ2
total), dotted lines indicate 25%, 50% and 75% quantiles.
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The mean ICC ≈ 0.5 of a data set could either be representative for the majority of features (narrow
interquartile range) or only for a few features if the interquartile range is broad. Figure 2b shows the
cumulative ICC distribution over all features, with the fraction of features (x-axis) in increasing ICC
(y-axis) order. The distribution revealed that 25%, 50%, and 75% of all these features had an ICC up to
0.36, 0.50, and 0.62. This implies that for half of the features, the plant-to-plant variability contributes
to less than 50% to the total variance, and for the other half this variance level explains more than 50%
of the total variance. In summary, in our non-targeted analysis of root metabolic natural variation,
plant-to-plant variability seems to be larger than between-accession variance. If a broad range of
metabolites are of interest, it is important to know the biological variability that is exhibited by most
metabolites. If only a small subset of the non-targeted analysis is in research focus, it will be sufficient
to deal with the biological variability of a certain substance class.

2.2. Plant-to-Plant Variability in Secondary Metabolism Is Substance-Class-Dependent, but Not
Accession-Specific

A difficulty in non-targeted metabolomics is the assignment of the measured features to
metabolites and their potential role in pathways in a living system. To facilitate the interpretation of
plant-to-plant variability, three sets of annotatable compounds were quantified by integrating peak
areas of the extracted ion chromatograms and analysed for their variances at each level (Table S1).
In Figure 3, GSLs, flavonoids, and phenylpropanoids are indicated by circles, triangles, and squares,
respectively. GSLs were the substance class with the highest plant-to-plant variability (σ2

plant = 3.16,
Figure 3a left, circles) compared to flavonoids and phenylpropanoids. They also showed a large
deviation of the single metabolite plant variance from the mean of the substance class. Similarly,
σ2

total = 5.03 was highest for GSLs in the comparison to flavonoids (σ2
plant = 1.63, σ2

total = 2.60) and
phenylpropanoids (σ2

plant = 1.24, σ2
total = 2.88).
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Figure 3. Biological variability of annotated secondary metabolites. (a) Variances for plant, batch and
accession were estimated with a linear mixed model (lmm), dot—variance of one metabolite; (b) ICCs
for glucosinolates (GSLs), flavonoids, and phenylpropanoids, dot—ICC of one metabolite, bar—mean
ICC for substance class.

With the current experimental setup of four plants in three batches for a total of 12 plants per
accession, the minimal detectable log fold-change to distinguish between two accessions is 3.94,
2.97 and 3.24 for glucosinolates, flavonoids, and phenylpropanoids, respectively, with a power of
0.8 and a significance level of 0.05. However, plant-to-plant variability needs to be interpreted in
the context of total variance to find out at which experimental level the main observation is made.
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If σ2
plant ≈ σ2

total, nearly all of the total variance would be caused by plant-to-plant variability and
a large number of plants would be required to analyse effects beyond this experimental level, i.e.,
between accessions. If σ2

plant/σ2
total ≈ 0, it would be sufficient to use one plant per accession.

Glucosinolates and phenylpropanoids show a large range of ICCs. For flavonoid metabolites, the
ICCs are rather high but similar for all analysed members of the substance class (Figure 3b). Hence,
calculations with the mean ICCs like above will provide sufficient power for analyses of flavonoids,
but not for all metabolites of the classes glucosinolates and phenylpropanoids.

A set of primary metabolites was also analysed for their plant-to-plant variability (Table S2) but,
in comparison to secondary metabolism, the ICC distributions of carbohydrates, organic acids, amino
acids, and phosphates covered a large range (Figure S3). As expected, the primary metabolism is more
stable than secondary metabolism, the latter showing substance-class specific ICC distributions.

Until here, we assumed all accessions to have equal variances at the plant and batch level. In
addition, we analysed if the accessions differ with regard to their plant-to-plant variability. For this
purpose, linear mixed models were applied to estimate the variances of secondary metabolites for each
accession separately. As shown in Figure S4, there are no clear highly and lowly variable accessions
across the measured substance classes. However, Edi-0 showed relatively low ICCs for GSLs and
flavonoids. Hi-0 and Sf-2 showed higher ICCs for all three compound classes.

In our analysis, taking the ICCs of secondary metabolite classes into consideration seems to be
more important than the selection of accessions.

3. Discussion

Our study investigated natural variation and plant-to-plant variability of 19 key accessions
in a comprehensive metabolite profiling approach. Measuring single plant extracts prevented the
irreversible information loss resulting from pooling plant material and allows to distinguish between
accessions and still analyse plant-to-plant variability. Environmental variation was kept to a minimum
by a randomized growth regimen and selecting plants with approximately the same vigor for analyses.
Both non-targeted LC/MS ionization modes indicated a higher plant-to-plant variability than natural
variation between accessions and variance due to experimental batches. Plant-to-plant variability
contributed to 47%–50% of the total variance, which is higher than previously reported for one
particular compound class in seeds of one accession [5]. As our total variance was the sum of plant,
batch and accession variance, the ICCs referring to the sum of plant and batch variance, like in the oil
seed study [5], would have been larger.

Furthermore, we chose a range of secondary and primary metabolite classes for more specific
analyses. Both data sets indicated that the plant-to-plant variability had the greatest contribution
to the total variance of these metabolite classes. For GSLs, flavonoids and phenylpropanoids,
the means of σ2

batch and σ2
accession were in the same order of magnitude, whereas for primary

metabolite sets σ2
accession was less pronounced with values one order of magnitude below σ2

batch.
The minimal detectable effects were quite large and impractical with the given experimental setup
of three experiments with four plants each. Possible combinations of biological and technical
replicates to reliably detect a smaller effect can be calculated with the implementation provided by
Trutschel et al. [3]. All annotated substance classes displayed higher mean ICCs than the non-targeted
data sets they were derived from. The higher the fraction of features with high ICCs, the higher the
number of plants that is required to maintain the power in a statistical analysis. This should be taken
into consideration for future experimental designs. Flavonoid metabolites have similar ICCs within
their substance class and therefore, calculation with mean ICC of the substance class will be sufficient
to obtain reliable results for most metabolites in this class. Contrarily, GSLs and phenylpropanoids
displayed a large ICC spread and require a substance-specific estimation of variance prior to future
analyses. A previous study of root exudates has demonstrated that there are substance-specific
differences in some metabolite classes due to alterations in the biosynthetic pathways [8]. Since some
metabolites are specifically induced during stress response, they might not have been expressed in
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the unperturbed physiological state that was the focus of this study. The analysis of plant-to-plant
variability in each accession revealed that ICC distributions are not distinct for any of the 19 accessions
with the few exceptions of Edi-0, Hi-0, and Sf-2. However, our set of 19 accessions is too small to draw
a general conclusion about accession-specific plant-to-plant variability and more accessions have to be
analysed in future.

There are hints that biological variability converges after development [4] and upon exposure
to stress factors [9,10]. A study of Arabidopsis plants exposed to a biotic stress factor, namely the
endophytic fungus Piriformospora indica, showed substantial metabolic variability in untreated control
samples and only a small spread of co-cultivated samples in principal component analyses. These
samples were no single plant measurements but the batch variances in both sample classes were
identical and thus, the observed deviation is expected to result from plant-to-plant variability [9].
Töpfer et al. [10] found that upon abiotic stress treatment, certain metabolites were robust in their
abundance from plant to plant and displayed low coefficients of variation, whereas other metabolites
showed larger plant-to-plant variability.

For future natural variation studies, it might be worth considering measuring single plants and
make the data available for further analyses answering research questions on a different experimental
level. We have provided estimated variances for selected substances in Supplementary Tables S1 and
S2. Furthermore, we provide exemplary data and the functions in an R script for variance estimation in
the Supplementary Folder S1 as well as data for additional substance classes in the targeted analysis in
MTBLS338 in the MetaboLights repository. This knowledge can be exploited to appropriately design
an experiment prior to its conduction because it may differ between a non-targeted screen and the
analysis of specific substance classes.

4. Materials and Methods

4.1. Plant Cultivation

The A. thaliana accessions Bur-0, Can-0, Col-0, Ct-1, Edi-0, Hi-0, Kn-0, Ler-0, Mt-0, No-0, Oy-0, Po-0,
Rsch-4, Sf-2, Tsu-0, Wil-2, Ws-0, Wu-0, and Zu-0 were obtained as seeds from the European Arabidopsis
Stock Centre (Nottingham, UK) and surface sterilized prior to plant cultivation. All accessions were
cultivated in a hydroponic system under 8 h light and 22 ◦C as described previously [11] and in the
protocol section of MTBLS338 with four plants in each of the three independent biological experiments.
All samples were rotated in the growth chamber to minimize position effects. Primary root length and
root fresh weight are given in MTBLS338. Out of 228 root samples, 210 and 222 from individual plants
could be used for the GC/MS and LC/MS analysis, respectively.

4.2. Liquid Chromatography/Mass Spectrometry (LC/MS)

For LC/MS analysis, 40 mg root material were extracted in 200 µL 80% methanol/water (v/v)
twice according to Böttcher et al. [12] and reconstituted in 30% methanol (v/v) containing 5 µM
2,4-dichlorophenoxyacetic acid as an internal standard. Upon full loop injection into an Acquitiy UPLC
system (Waters, Eschborn/Germany) mounted with a HSS T3 column (100 × 1.0 mm, 1.8 µM particle
size), samples were separated at a flow rate of 150 µL/min with mixtures of A (water/0.1% formic acid)
and B (acetonitrile/0.1% formic acid) with a 20 min gradient: 0–1 min isocratic 95% A, 5% B; 1–16 min
linear 5%–95% B; 16–18 min isocratic 95% B; 18–18.01 min linear 95%–5% B; 18.01–20 min isocratic
5% B. Eluates were ionized using an Apollo II source (Bruker Daltonics, Billerica, MA, USA) into a
MicroTOF-Q I hybrid quadrupole time-of-flight mass analyzer (Bruker Daltonics) in both ionization
modes with a mass range m/z 80–1000. Mass spectrometry settings were applied as previously
described [11] and in the protocol section of MTBLS338.

All LC/MS runs were acquired as centroid spectra and recalibrated with lithium formate cluster
ions for each measurement. Vendor .d file formats were converted into the open standard mzData
with CompassXPort (Bruker Daltonics, Billerica, MA, USA).
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4.3. Gas Chromatography/Mass Spectrometry (GC/MS)

For GC/MS analysis, 40 µL of the root extract were vacuum-evaporated and subjected to a
derivatization with (1) methoxyamine hydrochloride and (2) N,O-bis(trimethylsilyl)-trifluoroacetamide
as previously described [13]. Derivatized samples were injected in a splitless manner into a
split/splitless inlet of an Agilent 6890N GC and a ZB-5 column (30 m × 0.25 mm, 0.25 m 95%
dimethyl/5% diphenyl polysiloxane film, 10 m integrated guard column, Phenomenex, Aschaffenburg,
Germany) at 230 ◦C. An Agilent 5975 Series Mass Selective Detector (Agilent Technologies, Waldbronn,
Germany) was used to detect eluting compounds from m/z 70 to 600. Vendor file format conversion
and baseline correction was performed by MetAlign [14].

4.4. Data Analysis

Statistical analysis was performed using R version 3.2.0 and the Bioconductor environment [15,16].
Functions are available as an R script in the Supplementary Folder S1.

4.4.1. Raw Data Processing

All LC/MS data analysis was performed with the R packages XCMS and CAMERA [17–19].
Features were extracted with centWave (snthr = 10, ppm = 20, peakwidth = c(5,12),
scanrange = c(1,3600)) and grouped (minfrac = 0.75, bw = 5, mzwid = 0.05), corrected for retention
shifts and re-grouped with smaller bandwidth (bw = 2). Missing values were imputed by integration of
raw data (fillPeaks) and with random numbers around the minimal intensity value across the samples.

Baseline-corrected GC/MS tags with intensities above 500 peak height were subsequently
processed with TagFinder [20] and mass spectral features were grouped according to their common
retention time. Clusters with at least 3 correlating tags were extracted and identified according
to matching the Golm Metabolome Database [21]. In GC/MS, 15,539 tags were detected and 98
metabolites were annotated (Table S3).

All data were log-transformed to approximate a normal distribution for further statistics.

4.4.2. Targeted LC/MS Analysis

For the targeted analysis, DataAnalysis 4.2 (Bruker Daltonics, Billerica, MA, USA) was used to
extract ion chromatograms, deconvolute mass spectra and determine the elemental composition. Peak
areas (minimum peak area = 500) of extracted ion chromatograms were integrated with QuantAnalysis
2.0 (Bruker Daltonics, Billerica, MA, USA) to quantify compound abundances with quasi-molecular
ions as listed in Table S4 [11,22]. In the LC/MS measurements, 3305 peaks ESI(+) and 2730 peaks
ESI(−) were detected and all together 139 compounds could be annotated.

4.4.3. Variance Estimation with Linear Mixed Models

A linear mixed model (R package lme4, version 1.1-11, [23]) with accession, batch and plant
as random effects was applied to log-transformed metabolite abundances to estimate variance
contribution of each experimental level assuming equal variances for each accession. Linear mixed
models with batch and plant as random effects were applied separately to each accession to examine
accession-specific variances. Intraclass correlations (ICCs) were calculated as the ratio of σ2

plant and
σ2

total according to Sampson et al. [7] and plotted as a cumulative distribution. Further analysis was
constrained to known metabolites to allow for a better interpretation. The minimal detectable effect
sizes were estimated with the power calculations for multilevel experiments [3].

4.5. Data Availability

All data sets including the targeted analyses are available from the MetaboLights repository under
the accession number MTBLS338 [24].
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5. Conclusions

This study investigated the variability in root metabolite profiles of 19 A. thaliana accessions. It
revealed that plant-to-plant variability can be a substantial component of the overall variability in
a natural variation analysis. Additionally, several selected substance classes were characterized by
differing intraclass correlations. To exploit the full potential of a non-targeted metabolite profiling,
single-plant measurements should be acquired and correctly integrated into the analysis. Hence,
different substance classes of interest might require a customised experimental set-up.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/9/1565/s1.
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Mass spectrometry is an important analytical technology in metabolomics. After the
initial feature detection and alignment steps, the raw data processing results in a high-
dimensional data matrix of mass spectral features, which is then subjected to further
statistical analysis. Univariate tests like Student’s t-test and Analysis of Variances (ANOVA)
are hypothesis tests, which aim to detect differences between two or more sample
classes, e.g., wildtype-mutant or between different doses of treatments. In both cases,
one of the underlying assumptions is the independence between metabolic features.
However, in mass spectrometry, a single metabolite usually gives rise to several mass
spectral features, which are observed together and show a common behavior. This paper
suggests to group the related features of metabolites with CAMERA into compound
spectra, and then to use a multivariate statistical method to test whether a compound
spectrum (and thus the actual metabolite) is differential between two sample classes.
The multivariate method is first demonstrated with an analysis between wild-type and an
over-expression line of the model plant Arabidopsis thaliana. For a quantitative evaluation
data sets with a simulated known effect between two sample classes were analyzed. The
spectra-wise analysis showed better detection results for all simulated effects.

Keywords: metabolomics, statistics, hypothesis tests, multivariate analysis, mass spectrometry

1. Introduction

Mass spectrometry is an important analytical technology in metabolomics. XCMS (Smith et al.,
2006) is one of the available tools for processing mass spectrometry data. After the initial feature
detection and alignment steps, the raw data processing results in a high-dimensional data matrix of
mass spectral features as shown in Table 1, which is then subjected to further (statistical) analysis.

A typical question in metabolomics is biomarker discovery, where e.g., univariate hypothesis
tests like Student’s t-test (Student, 1908) and Analysis of Variances (ANOVA) can be used to detect
differences between two or more sample classes, e.g., wildtype versus mutant or disease versus
control. An example implementation is the diffreport() function in XCMS. Furthermore, some
statistical methods can deal with more complex experimental designs with dependencies between
samples (Davis, 2002; Sampson et al., 2013; Trutschel et al., 2015). But in all cases, one of the
underlying assumptions is the independence between individual metabolic features.
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TABLE 1 | A peak list of features of a two sample class MS experiment with feature group annotation mz is the mass-to-charge ratio, RT is the retention
time in seconds.

mz/RT MU 1 MU 2 . . .. . .. . . MU 6 MU 7 WT 1 WT 2 . . .. . .. . . WT 6 WT 7 p.uni group.anno p.multi



 0.02

590.5/967 14.42 14.61 . . . 14.29 14.2 13.85 13.96 . . . 13.95 14.12 0.02 40
609.5/968 18.31 18.72 . . . 18.32 18.45 18.12 18.7 . . . 18.44 18.48 0.88 40
628.5/968 17.21 17.52 . . . 17.17 17.21 16.95 17.49 . . . 17.18 17.34 0.89 40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 




0.30

413.3/1106 14.92 13.23 . . . 14.72 14.57 14.52 14.92 . . . 14.52 14.27 0.65 82
538.5/1103 12.32 11.76 . . . 11.93 11.8 11.7 11.7 . . . 12.15 12.91 0.23 82
591.5/1101 15.51 15.2 . . . 15.36 15.06 15.72 15.78 . . . 15.07 15.74 0.02 82
592.5/1102 15.15 14.78 . . . 14.78 14.42 14.67 15.03 . . . 14.76 15.33 0.34 82
797.5/1104 18.28 17.96 . . . 17.72 17.58 17.83 18.42 . . . 17.2 17.91 0.15 82

Additionally, listed uni- and multivariate p-values results from univariate and multivariate tests.

However, in mass spectrometry, a single metabolite usually
gives rise to several mass spectral features, e.g., isotopes, adducts,
or fragments (Brown et al., 2009), which observed together and
show a common behavior across samples. Another issue is that
the redundant features aggravate the problem of multiple testing,
and causemore type I errors (Broadhurst andKell, 2006; Hendriks
et al., 2011).

A first step to treat related features together is to group those,
which originate from the samemetabolite into compound spectra.
Several methods for such a grouping have been developed in the
last years (Ipsen et al., 2010; Alonso et al., 2011; Brown et al., 2011;
Scheltema et al., 2011; Varghese et al., 2012; Kenar et al., 2014). In
this paper, the grouping algorithm in the Bioconductor package
CAMERA (Kuhl et al., 2012) is used, which is comprised of several
steps, including compound spectra creation based on retention
time, calculation of known mass differences for isotope pattern
and adduct detection and a peak shape correlation analysis. This
grouping then results in compound spectra, which contain one or
more related features, which originate from the same metabolite.

A typical approach for the statistical analysis in GC/MS is to
select a single quantification ion for each compound (Luedemann
et al., 2008) for univariate tests, ignoring intensity information
for the remaining mass features in a compound spectrum. On
the other hand, multivariate methods like MANOVA are global
approaches and analyze all features together and can take correla-
tions into account. This has already been used in metabolomics
(Steuer et al., 2007; Saccenti et al., 2014). With MANOVA, the
simultaneous analysis of variables results in a better Type I error
correction because of the multidimensional confidence region. In
more detail, the differences in the mathematical theory between
univariate and the multivariaten comparison for more than two
groups (ANOVA versus MANOVA) are described in (Legendre
and Anderson, 1999). The multivariate approach benefits from
small signals, which contribute to the class differences, but would
not be detected univariate because the effect is too small compared
to the variance. However, the interpretation, which metabolites
have changed, remains challenging.

Often, inmetabolomics, the number of samples ismuch smaller
than the number of features to be analyzed. Therefore, correlation
and covariance structure is difficult to estimate, and requires an
initial variable selection step. Often, the complex models used
by global multivariate analysis are prone to the problem of over-
fitting with poor prediction and generalization.

In this paper, we compare the detection of differential features
on the individual- and metabolites on the compound spectra
level. We also introduce a multivariate analysis on the level of
compound spectra instead of a global multivariate approach to
determine differential metabolites, combining the benefits of uni-
and multivariate analysis for biomarker detection. An advanced
version of the XCMS diffreport() function is provided for
users. This paper is structured as follows: in the next section, the
metabolomics data used in this paper is briefly described, followed
by the conceptual details of the statistical method. The method
is applied to data from wild-type and over-expression plants.
Finally, the performance of the proposed methods is compared
to the univariate approach on a data set of known (simulated)
effects. The implementation is provided as an R vignette in the
Supplementary Material under the GPL license.

2. Materials and Methods

For the experiments, twometabolomics data sets fromArabidopsis
thaliana (A. th.) were used. The first is a subset of the study
available as MTBLS74, where 26 independent plant profiles and
a simulated effect were used. The method is then demonstrated
on a dataset of A. th. wildtype and a mutant line, available as
MTBLS169.

2.1. Metabolite Profiling of Arabidopsis thaliana
2.1.1. Plant Growth and Sample Preparation
The model plant Arabidopsis thaliana Col-0 was used as plant
material. For the genotype comparison Col-0 and the 90.32
mutant were used, a transposon-based activation tagged A. th.
line from the TAMARA population (Schneider et al., 2005). This
particular mutant has an over-expression of the AT5G55880 –
AT5G55890 genetic region with unknown function. Plants were
grown on soil in a growth chamber under controlled conditions
as biological replicates. The frozen leaf material of each plant was
ground and weighed using a cryogenics robot1 with a weighing
error ≤5%, and extracted with methanol. Full details are available
in Supplementary Material I, Section 1 and the protocol sections
of the MetaboLights studies.

1http://www.labman.co.uk/portfolio-type/ipb-cryogenic-grinder-and-feeder-
system
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2.1.2. Mass Spectrometry Analysis and Data
Processing
Metabolite intensities were recorded according to (Böttcher et al.,
2009). In brief, the chromatographic separation was performed on
a Waters Acquity UPLC system coupled to a Bruker micrOTOF-
Q mass spectrometer. Mass spectra were recorded in positive
ion centroid mode with a scan rate of 3Hz and a mass range
of 100–1000m/z. Full details are available in Supplementary
Material I, Section 1 and the protocol sections of the Metabo-
Lights studies. This experimental setup is able to routinely detect
semi-polar plant metabolites from major biosynthetic classes
including glucosinolates, indolic compounds, phenylpropanoids,
benzenoids, flavonoids, terpenes, and fatty acid derivatives
(Böttcher et al., 2011). In this paper, no metabolite identification
was performed, resulting in the lowest metabolomics standards
initiative (MSI) identification level (Sumner et al., 2007)MSI level
four (i.e., the features are only characterized by their mass and
retention time).

The measured MS data were converted to mzData with the
Bruker CompassXport software. The mzData are preprocessed
with the centWave feature detection algorithm (Smith et al., 2006;
Tautenhahn et al., 2008) to condense the raw data to feature lists,
and then aligned across samples to produce a matrix of N mass
features observed inM samples. The xcms processing parameters
are detailed in Supplementary Material I, Section 1, in particular,
with minfrac= 1 no NA values were present in theM×N matrix
to avoid any influence of a data imputation step in this evaluation.
An underlying assumption of the original Student’s t-test (and also
ANOVA) is that the mean intensities are normally distributed.
To transform the data toward more normally distributed values,
all intensities were logarithmized. The related features (rows in
the matrix) are grouped into compound spectra with the package
CAMERA. For the remaining analyses, this CAMERA grouping is
assumed to be correct. Furthermore, there is no dependency on a
CAMERA based grouping, and the proposed statistical treatment
can be applied to groupings from equivalent tools as well.

The raw data files, the preprocessed peak matrix, and the
protocol descriptions have been submitted to the MetaboLights
repository (Haug et al., 2013), and are available under the acces-
sion numberMTBLS742. Analogously, the second data set is avail-
able as MTBLS1693. All statistical calculations were performed
in (R Development Core Team, 2014). The complete processing
scripts are provided in the Supplementary Material I, Section 1.

2.2. Detection of Differential Features and
Metabolites
The analysis for differential metabolites requires to detect inten-
sity differences between sample classes. Here, in comparison
to univariate methods to analyze features, we propose several
multivariate methods to analyze compound spectra representing
metabolites. First, we introduce with a graphical illustration of the
different decisions from univariate and multivariate tests, then we
explain the several tests. All formulas of the test are shown in detail
in the Supplementary Material I, Section 3.

2http://www.ebi.ac.uk/metabolights/MTBLS74
3http://www.ebi.ac.uk/metabolights/MTBLS169

2.2.1. Univarate Tests
The univariate Student’s t-test (Student, 1908) assumes normal
distributed observations of independent features. The difference
of the intensity mean between the two classes is estimated for each
feature. While Student’s t-test assumes equal variances of the two
classes, the Welch’s t-test (Welch, 1947) is a variant that allows
different variances between the classes (Table S1 in Supplementary
Material I, Section 3).

The confidence interval (CI) determines the accuracy of this
estimation, and theCI size depends on the number of observations
and the standard error (SE) of the estimated difference between
means. The null hypotheses, Ho, is that no difference in means
exists, the alternative H1corresponds to a difference in means. If
the CI includes the origin (zero), then the difference is considered
not significant and Ho can be accepted.

If independent univariate tests for two features in a compound
spectrum are combined, the confidence interval becomes a rect-
angular confidence region as shown in Figure 1, or in general
for groups with p features a p-dimensional hypercube. Even if
multiple testing correction is done, the confidence region holds
a hypercube.

2.2.2. Multivariate Tests
The multivariate extension of Student’s t-distribution was intro-
duced by (Hotellings, 1931). The two-sample test of unequal
means with unknown and equal variances becomes in multiple
dimensions the Hotelling’s T2 (c.f. Table S1 in Supplementary
Material I, Section 3). For unequal covariancematrices, the exten-
sion of the Welch t-test, is the James test (Table S1 in Supplemen-
tary Material I, Section 3), introduced in James (1954).

These tests compare the difference of p-dimensional mean
intensity vectors in relation to their p× p covariance matri-
ces. Observations of features in a compound spectrum are then
assumed to be multidimensional normal distributed. For this
multivariate analysis, the confidence region has an ellipsoid shape.

Using the multivariate tests, this statistic requires at least
(p+ 1/2) replicates, where p is the number of features permetabo-
lite group, to estimate the unknown entries of each covariance
matrix. For typical experiments, p easily exceeds 20 for some
metabolite groups, but data sets with so many replicates are rare.

In the following, we additionally propose a variant of the multi-
variate methods, where only the diagonal entries of the covariance
matrix are estimated, with the rest fixed to zero. This simplifi-
cation ignores the correlation between features, but makes the
covariance estimation more robust in the case where a compound
spectrum consists of more features than samples are available to
modify the idea of spectra-wise analysis on small data sets. The
main axes of the ellipsoid confidence region are then parallel to
the coordinate axes. The details and comparison of all tests are
given in Table S1 in Supplementary Material I, Section 3.

2.2.3. Comparison of Results from Univariate and
Multivariate Tests
Depending on the univariate or different multivariate test statis-
tics different sets of metabolic compound spectra are detected
as differential. The Ho hypothesis is accepted if the assumed
difference in means of zero between sample classes falls within
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FIGURE 1 | Different decisions from univariate and multivariate
test to detect differential features or compound spectra. Each
gray rectangles marks the confidence interval of one test dimension, so
the intersection of two rectangles marks the combined confidence

region. The blue ellipse is the confidence region for a multivariate test.
There are six different possibilities (six different colored spaces) for the
position of the origin corresponding to the null hypotheses marked by a
red “+.”

the confidence interval or region. Several regions are shown in
Figure 1.

The table also shows the different possible results for com-
pound spectra with two features. In the simplest cases, both
approaches yield the same result: in case of Figure 1A, no fea-
ture is differential using the univariate tests, and the compound
spectrum as a whole is also not detected as differential by the
multivariate test. Similarly, in Figure 1F, all features of the com-
pound spectrum are differential in the univariate tests and the
compound spectrum is assigned as differential by the multivari-
ate test. But there are also cases, where the results completely
differ: In Figure 1C, all features of the compound spectrum are
differential in the univariate case, but the compound spectrum
is not assigned as differential by the multivariate test, while
in Figure 1D, none of the individual features is differential
but the whole compound spectrum is detected as differential
by the multivariate test. Finally, in Figures 1B,E, the two uni-
variate tests for the individual features decide differently, and
only one agrees with the multivariate test on the compound
spectrum.

2.3. Evaluation Data and Performance Measures
The distinction between differential and non-differential can be
described as a classification problem and then the typical perfor-
mance measures can also be used. For the evaluation, a ground
truth data set is required, where for each feature, it is known
whether it is differential or not. Then, the evaluation (Algorithm
1 in the Supplementary Material I) can assess the quality of
biomarker discovery with the different statistical tests by calcu-
lating the confusion matrix and the derived measures specificity
and sensitivity.

The ground truth used here is a real world data set with
simulated (and hence known) effect between two classes. The
data set of 26 A. th. Col-0 wildtype plants was randomly split into

two sample classes, designated as “wildtype” and “mutant,” with
13 samples each.

To simulate differential features, for each compound spectrum
an effect was sampled from a multivariate normal distribution
with a given mean (determined by the desired effect, e.g., 0.5) and
the covariance matrix that was estimated from the actual data in
the 13 observations in the original “mutant class.” These effects
were added to the features in the “mutant class.” This simulation
ensures that effects are sampled for each separate compound
spectrum (i.e., metabolite), rather than adding an effect to each
feature individually. Thus, all compound spectra (and all its
features) should be differential, and are the positive set of the
ground truth. For the negative set of the ground truth, an “effect”
of size zero was used.

For the simulation of the “mutant” class, only a subset of the
available compound spectra can be used, since the sampling of an
effect requires to estimate the covariance matrix of the compound
spectra from 13 samples, which in turn is only possible for those
compound spectra with a maximum of 12 features. For larger
groups, it is impossible to parametrize the normal distribution
used to simulate the fixed effect. Like wise, singletons (i.e., groups
with only one feature) were excluded from this evaluation as the
univariate and multivariate methods would give the same result.

All features are tested individually with the univariate tests,
corrected for multiple-testing with Benjamini–Yekutieli proce-
dure (Benjamini andYekutieli, 2001)within each compound spec-
trum, and all compound spectra are tested with the multivariate
tests.

For the comparison on the feature level, each feature in a com-
pound spectrum that is classified as differential by themultivariate
method is defined as a differential feature.

For different effects and test methods, all features are classified
whether they are differential or not, and a confusion matrix can
be constructed consisting of the number of true positives (TP),
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true negatives (TN), false positives (FP), and false negatives (FN).
These can be combined into sensitivity, specificity, false positive
rate (FPR), and false negative rate (FNR). Repeating the prediction
with different thresholds influence the performance, which can
be visualized as receiver-operator curves (ROC) and summarized
by the area under curve (AUC). The use of ROC curves in
metabolomics is also demonstrated in Broadhurst andKell (2006).

Finally, the evaluation can take place on the level of compound
spectra (or metabolites) instead of the feature level and so com-
pares different spectra-wise analysis approaches. This requires
the definition how to interpret the multiple individual univariate
decisions for a given compound spectrum. Here, all compound
spectra where at least one feature was classified as differential
by the univariate tests were defined as differential compound
spectra. In essence, this is a two-step approach where a test on all
univariate p-values is performed for each compound spectrum. So
on the compound spectra level we can only compare the different
spectra-wise analysis approaches, the two multivariate methods,
which group intrinsically and the two-step approach, which uses
the univariate method as the first step for spectra-wise analysis.

3. Results and Discussion

This section covers first an example for the detection of differences
between a wildtype and mutant genotype experiment. Then, the
analysis of the semi-synthetic ground truth dataset allows an
evaluation of the statistical methods with regard to sensitivity,
specificity, and area under ROC curves for multiple effects.

3.1. Analysis of an Experiment with Wildtype and
Mutant Plants
First, a real dataset is analyzed. One sample class is comprised of
seven A. th. Col-0 wildtype plants and a second class of seven
samples of an A. th. over-expression line, a transposon based
activation tagged A. th, line from the TAMARA population. Here,
the real effect is unknown, and only a few exemplary results are
described.

The data processing of the 14 samples results in a 2110× 14
feature matrix, where CAMERA detected 335 compound spec-
tra. The spectra with just a single feature are excluded from
this comparison since the results are identical for both statistical
analyses. 28% of all compound spectra have only one feature.
The remaining 72% were analyzed with the both univariate and
multivariate methods, except for one group with 126 features
resulting from the injection peak at the beginning of the chro-
matography. Overall, 1891 features in 241 feature groups were
analyzed.

Table 1 shows two selected compound spectra of an extended
diffreport with the two compound spectra no. 40 and no. 82, the
univariate p-value p.uni for each feature and the multivariate
diagonal James p-value p.multi for each compound spectrum.
The diagonal James test is used because of the small samples size
(much smaller than the compound spectra sizes) and the assumed
unequal covariance matrices between the two classes.

As shown in Figure 2 (left), 5 features are reported exclu-
sively by the univariate method, while the multivariate approach
detected 23 features exclusively, both at a significance level of
α = 0.01.

At the compound spectra level, Figure 2 (right) shows that 3
groups are found exclusively by the multivariate approach, which
corresponds to case D in Figure 1. All 3 compound spectra found
only by the multivariate method are compound spectra with only
two or three features.

On the other hand, 4 compound spectra (one of them is a
small group with only 2 features, the others have a size of 15, 17,
and 35) are found that were not differential in the multivariate
test, but where at least one feature was detected by the univariate
approach. This corresponds to either case C where all individual
features were differential, or case B where only some features were
differential. Here, all 4 compound spectra were of type B.

An underlying assumption is the correctness of the CAM-
ERA groupings, where each metabolite corresponds to one com-
pound spectrum. In reality, it can happen that features from
one metabolite are split into two (or more) compound spectra.

FIGURE 2 | Venn diagram of differential features and compound spectra
in the wildtype-mutant experiment for the significance level of ααα=== 0.01.
Left: number of features detected by univariate and multivariate method. Right:

number of compound spectra detected by the multivariate method, compared
to the number of compound spectra where at least one feature was detected
univariately.
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In this case, the multivariate approach looses power, and in the
extreme case where a metabolite is split into many singleton
spectra achieves the same results as the univariate approach. The
opposite case, where two or more metabolites end up in the
same compound spectrum can also have a negative influence.
If, for example, a differential and a non-differential metabolite
are joined, the combined “differentiality” could turn out non-
significant and hide one of them.

In this experiment, the biological truth, i.e., which metabolites
and features are affected by the over-expression construct is not
known. For an objective evaluation, we created a semi-synthetic
dataset with simulated fixed effects.

3.2. Evaluation with Multiple Simulated Fixed
Effects
In this second experiment, the performance of the three statistical
analysis – univariate and multivariate with both Hotellings-T2

and the diagonal Hotellings-T2 – was compared on a dataset of
metabolite profiles from Arabidopsis thaliana. The xcms process-
ing results in a matrix of 1476 features, and the CAMERA group-
ing reveals 282 compound spectra. As explained above, for the
simulation of the “mutant” class, only a subset of 153 compound
spectra with 12 or less features can be used for the ground truth.

We combined the negative set (effect 0.0) with 686 features in
153 compound spectra with the positive set consisting of the same
686 features but with the added effect. For each effect, between
0.0 and 1.4, the final ground truth dataset thus contained 306
compound spectra with a total of 1372 features.

The following exemplifies the results for the fixed effect of
0.5, corresponding to a fold change of ≈1.5 in the original, non-
logarithmic data.

For a significance level of α = 0.05,Table 2 shows the summary
of the confusion matrix for all three approaches. The multivariate
approaches clearly achieve both a better sensitivity and FNR.

The Venn diagram in Figure 3 (left) shows the 242 features are
detected as differential by all three tests, 243 by both the univariate
and the T2 and 258 by both the univariate and the diagonal T2.

The Comparison of the univariate and the original T2 shows that
16 features are found only by the univariate and 328 features
only by the multivariate method. The same for the diagonal T2

shows that only 1 feature is found only by the univariate and
253 features only by the multivariate method. Furthermore, 200
features are found by both multivariate methods. It is shown that
the feature detection has more overlap between the two multi-
variate methods than between one of these with the univariate
approach. Now, we are especially interested in cases where the
multivariate methods identify compound spectra as differential,
while the univariate method detects none of the features in the
spectra, or cases where the univariate method detects features
whose associated compound spectra are missed by the multivari-
ate methods (Figure 3 right). Here, only 7 compound spectra are
detected by both multivariate methods, 29 by the original mul-
tivariate T2 and 25 by the diagonal multivariate method, where
any feature of this spectra is detected by univariate method. In
contrast, 5 compound spectra have at least one feature, which is
detected by the univariate test, but the compound spectra itself
are not identified by the multivariate T2 method and 1 com-
pound spectrum in comparisonwith the diagonalmultivariateT2.
83 groups are detected by all three tests, 84 by univariate and T2,
98 by univariate and diagonal T2 (Figure 3 right).

The ROC curve of the three feature detection approaches for
a specific effect of 0.5 (Figure S6 in Supplementary Material II)
shows the sensitivity and specificity for significance thresholds
other than α = 0.05, and confirms that the multivariate method
has a higher AUC.

TABLE 2 | Comparison of performance of univariate and multivariate tests
for a simulated effect of 0.5 and significance level of ααα=== 0.05.

Method FP (FPR) FN (FNR) TP (sensitivity) TN (specificity)

Univariate 0 (0%) 427 (62.2%) 259 (37.8%) 686 (100%)

T2 36 (5.2%) 151 (22%) 535 (78%) 650 (94.8%)

DiagT2 5 (0.7%) 180 (26.2%) 506 (73.8%) 681 (99.3%)

FIGURE 3 | Venn diagram of differential features and compound spectra
in the simulation experiment for the simulated effect 0.5 and
significance level of ααα===0.05. Left: number of features detected by univariate

and multivariate method. Right: number of compound spectra detected by the
multivariate method, compared to the number of compound spectra where at
least one feature was detected univariately.
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FIGURE 4 | Results of univariate and multivariate methods in feature
detection are compared on the feature level (upper). At the compound
spectra level (lower) the results of different grouping analysis approaches are

shown. For each simulation step, several added effects of 0.2, 0.3, . . ., 1.4, 1.5
on the “mutant” class, the mean and SE of the evaluated AUCs (results from
100 repetitions) are plotted.

The next question was the behavior of the methods for dif-
ferent effects. The AUC was used as a summary metric of the
performance. Figure 4 shows that the multivariate T2 as well
as the diagonal T2 method has a better AUC for the feature
detection compared to the univariate approach for all effects of
0.2, 0.3, . . ., 1.4, 1.5. To improve the generalization, the sampling
of the “mutant” data was repeated 100 times for each effect. Espe-
cially for smaller effects, the benefit of the multivariate approach
is visible and also that the simplified diagonal T2 approximates to
the original T2 for larger effects.

The results Figure 4 (bottom) show no particular differences
between the different compound spectra level (or grouping)
approaches, thus the main benefit results from a joint analy-
sis of compound spectra, while less differences are observed
between the joint analysis methods. In Supplementary Material
I all methods including James and diagonal James are compared
in Figure 2 on the feature level, and Figure 3 on the compound
spectra level. In a repeated sensitivity analysis (Supplementary
Material III) we show that for small effects and large compound
spectra Hotelling’s-T2 has an advantage over the other grouping
approaches.

4. Conclusions

In mass spectrometry-based metabolomics data, metabolites
(which are the objects of biological interest) will usually give
rise to multiple spectral features. In recent years, methods were
developed to group these related features into compound spectra.
However, the statistical analysis was still based in either individual
univariate tests or global multivariate analysis.

We have extended the feature-wise univariate statistic tests to
a compound spectra-wise analysis. Using traditional multivari-
ate hypothesis tests, like the Hotelling’s T2 or James test, the
confidence interval becomes a multidimensional ellipsoid that
resembles the joint probability for metabolites to be differential
more realistically.

On real data of a comparative wildtype-mutant experiment
design, the results of the univariate and multivariate tests have
an overlap, while some features are detected exclusively by the
univariate or multivariate test.

On the synthetic data where the actual effect was known, on
the feature level, the resulting AUCs for the multivariate analysis
of compound spectra were better than in the univariate case,
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we recommend to analyze the data compound spectra-wise for
biomarker discovery in mass spectrometry metabolomics data.
On the compound spectra level the advantage of T2 over the other
spectra-wise approaches is most prominent for noisy data and/or
if very small effects should be detectable.

If the CAMERA grouping erronously splits a metabolite into
several compound spectra the results of all spectra-wise analyses
will approach the multivariate results, and false negatives can
occur if a differential and a non-differential metabolite are joined
by the compound spectra grouping.

While CAMERA was used in this study, the approaches are
readily applicable to any data where individual features from a
metabolite are grouped together. In particular, this should allow
the analysis of GC/MS data, where the established data analysis
typically relies on deconvoluted spectra or mass spectral tags, and
where the selection of quantifier ions would have to be repeated
for each sample matrix or sample type. The presented approach
does not require the selection of representative ions.

The proposed joint analysis of features of a metabolite group as
a spectra-wise analysis is the key idea and bridges an important
gap between hypotheses tests on individual features on the one
hand, and global multivariate methods, which might be more
difficult to interpret on the other.
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A B S T R A C T

Background: Because not every scientific question on effectiveness can be answered with randomised controlled
trials, research methods that minimise bias in observational studies are required. Two major concerns influence
the internal validity of effect estimates: selection bias and clustering. Hence, to reduce the bias of the effect
estimates, more sophisticated statistical methods are needed.
Aim: To introduce statistical approaches such as propensity score matching and mixed models into re-
presentative real-world analysis and to conduct the implementation in statistical software R to reproduce the
results. Additionally, the implementation in R is presented to allow the results to be reproduced.
Method: We perform a two-level analytic strategy to address the problems of bias and clustering: (i) generalised
models with different abilities to adjust for dependencies are used to analyse binary data and (ii) the genetic
matching and covariate adjustment methods are used to adjust for selection bias. Hence, we analyse the data
from two population samples, the sample produced by the matching method and the full sample.
Results: The different analysis methods in this article present different results but still point in the same direc-
tion. In our example, the estimate of the probability of receiving a case conference is higher in the treatment
group than in the control group. Both strategies, genetic matching and covariate adjustment, have their lim-
itations but complement each other to provide the whole picture.
Conclusion: The statistical approaches were feasible for reducing bias but were nevertheless limited by the
sample used. For each study and obtained sample, the pros and cons of the different methods have to be
weighted.

What is already known about the topic?
Data in nursing health services research often is observational and

clustered
Clustering and selection bias can lead to biased results
What this paper adds
The paper introduces common analytical strategies to address se-

lection bias and clustering in observational research
Providing a vignette, researchers can replicate the used analytical

strategies

1. Introduction

Nursing research aims to validate, refine and generate knowledge
from studies that directly and indirectly affect the delivery of nursing

care (Burns and Grove, 2009). Furthermore, evaluating health services,
an aim of nursing research (AACN, 2015), requires research methods
that achieve the highest internal validity possible to derive unbiased
effect estimates of an intervention in a certain population in real-world
settings. When threats to internal validity, such as selection bias or
clustering, are not addressed through the study design, statistical
methods are needed to reduce the bias of the effect estimates. Two
major concerns influence the internal validity of effect estimates: se-
lection bias and clustering. These two factors are the primary focus of
this article.

We are motivated by our own observational study in health services
research, in which three main data characteristics need to be addressed
to find a suitable analysis method. Specifically, illustrated in Fig. 1, a
dichotomous outcome of clustered data in a observational study was
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analysed.
First, the distribution of the outcome variable, which is one char-

acteristic of our example data, influences the choice of the statistical
method. Here, we analyse the use of case conferences as a binary out-
come. Binary variables are summarised by probabilities, odds and odds
ratios. A probability is defined as a relative frequency and can easily be
understood (as a risk), whereas odds are an expression of relative
probabilities – the ratio of the probability of the event occurring to the
probability of no event occurring. Moreover, the odds ratio is the re-
lation of two odds. However, because odds are not a probability, the
interpretation is more difficult for practitioners (Greenland, 1987), and
sometimes, odds are misinterpreted (O’Connor, 2013). Furthermore, if
the model for effect estimation is not simple, then generalisable models
that use link functions other than the identity functions are needed.

The second characteristic is the observational study type, which is
used to collect data. In observational studies, the possibility of con-
trolling factors that may influence the study outcome is limited to ob-
served variables because randomisation is not part of the study design.
Therefore, other options must be applied to reduce selection bias, which
can contribute to over-/underestimations of the intervention effect
(Starks et al., 2009). Hence, estimations of treatment effects through
direct comparisons are prone to selection bias when the assignment to
treatments is associated with the potential outcomes of the treatment
(Ridder and Graeve, 2011).

Our example is an evaluation of special care units. Special care units
serve dedicated patient populations that are in need of special care
because of their health state. Special care units are implemented for
conditions such as stroke, premature birth and dementia. For example,
residents who reside in dementia special care units systematically differ
from other residents because they are selected based on predefined
criteria. Additionally, studies about dementia special care units typi-
cally have a multistage clustered data structure: residents are clustered
within units, units are clustered within nursing homes, and nursing
homes are clustered in provider systems. Selection bias may occur in
every stage: residents in dementia special care units differ from re-
sidents in other care units, and nursing homes with dementia special
care units may differ from nursing homes without dementia special care
units.

Another problem that may arise in studies is the overestimation of
how the significance of effects due to clustering influences the variance
estimation of the effect. If more than one cluster is included in the
study, a clustered or nested data structure is most likely present, and the

error terms within a cluster are no longer independent. When the non-
independence of the data is not accounted for in the statistical model,
the odds for significant results increase. Hence, in our example, re-
sidents are clustered within nursing homes. This clustering must be
considered when choosing the analysis method.

The nursing research literature contains many examples of ob-
servational studies that are necessitated to address selection bias and
clustering. For instance, studies investigating the association of orga-
nisational characteristics, such as the work environment and patient or
nurse outcomes, generally have to address both issues. For example,
Zúñiga et al. (2015) explore the association between the work en-
vironment and care workers’ perception of quality of care in 155 nur-
sing homes in a cross-sectional study. To address selection bias, the
authors employ a multilevel regression model with a range of variables
as control factors (e.g., language region and unit size) and others as
random effects (e.g., unit and hospital site) to address clustering.

In this article, we will introduce statistical approaches to reduce
selection bias and clustering in a real-world data analysis example. We
highlight the strengths and weaknesses of different methods, which are
elucidated and discussed with respect to applying the methods to the
chosen example study data. Additionally, we provide data and source
code as a vignette (supplemental material) to show the practical im-
plementation of the models separately and enable replicating the ana-
lysis with open-source software R (R Core Team, 2015), which might
guide readers in applying the methods to their own studies and con-
ditions.

Our aim here is not to provide a review of the methodological work
within this field. Nevertheless, the following articles and books dis-
cussing propensity score (Austin et al., 2007; Belitser et al., 2011;
Biondi-Zoccai et al., 2011; D’Agostino, 1998; Randolph et al., 2014;
Sekhon, 2011; Stürmer et al., 2006), matching (Pimentel et al., 2015;
Rosenbaum, 2002; Rubin, 2006; Stuart, 2010) and multivariate ad-
justment (Cepeda et al., 2003; Gelman and Hill, 2007) serve as gui-
dance for our work.

The aim of this article is to highlight (1) why different methods
should be used, (2) their application in a statistical software and (3)
how to interpret the results produced by statistical methods.

Fig. 1. In a study, the data analysis generates results.
The data have their own characteristics, for example,
a special outcome type, a unique study type or a
specific design. These characteristics determine the
choice between sophisticated methods for data ana-
lysis. Hence, the method directly influences the in-
terpretation of the results and therefore must be
carefully chosen using the skill of the researcher.
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2. Materials and methods

2.1. Data and research example

The provided dataset is from the observational DemenzMonitor
study (Palm et al., 2014, 2015). Data from 2013 were used for the
analysis. The data consist of a convenience sample of 51 nursing homes,
109 care units and 1808 residents. After residents had been excluded
due to only a two-group comparison being performed and predefined
exclusion criteria, we used a dataset of n= 888 participants from 64
care units in 36 nursing homes (available in the supplemental material).
Additionally, 53 residents with missing values in any of the variables
were excluded. The primary question for this analysis was whether a
dementia special care unit more frequently performs case conferences
than traditional care units. The outcome variable was a binary indicator
for whether the condition (1) was performed or not (0). Because the
study used an observational design, residents in special care units and
traditional units did not necessarily share the same characteristics, thus
requiring an analytical approach to address selection bias. Furthermore,
the clustering of residents in nursing homes leads to non-independent
observations, again requiring an analytical approach that takes this
clustering into account.

2.2. Procedure

Table 1 shows the two levels of analytical strategies for addressing
the problem of unequal distributions of characteristics in the condition
and comparison groups and the problem of clustering: (i) different
models with different abilities to adjust for dependencies to analyse
binary data and (ii) different methods to adjust for selection bias. Here,
both analytical problems are addressed and combined in the analysis.

We distinguish two models for obtaining inference from the binary
data: a crude model and a generalised linear mixed model. In the crude
model, the results are not adjusted for the hierarchical data structure
(clustering) or for differences in baseline characteristics, resulting in a
higher risk of false-positive results. The generalised linear mixed model,
which is a multilevel model without any additional control variables,
addresses the clustering issue but does not address selection bias. We
describe two methods for bias reduction that can be used for analysing
data with dichotomous outcomes (by crude or advance model): (1)
genetic matching on samples and (2) adjustment via the common re-
gression model. All steps of this procedure, which are shown in Table 1,
can be followed and adapted for other data sets using the provided
Vignette (supplemental material), which shows the implementation
with the programming language R (R Core Team, 2015). In this article,
we will first introduce the crude model, then adjust for clustered data
with the generalised linear mixed model, and finally use this model
with all methods for bias reduction (only the shaded areas in Table 1).

2.3. Different models and their ability to adjust for dependencies

In our example, because we analyse a binary outcome variable,
common methods for normally distributed variables and statistical tests
such as Student's t-test and ANOVA cannot be used. Testing the dif-
ferences between groups is similar to testing the differences between
proportions in a contingency table, which refers to the ‘crude model’.
Testing the association between a dependent variable and a group of
independent variables for a binary outcome requires a logistic regres-
sion model. The crude model is identical to a regression model with the
group assignment (condition, control) as an independent variable
without covariate adjustment. When observations are not independent,
e.g., because of clustering in different nursing homes, a generalised
linear mixed model is used.

2.3.1. Crude model
The crude model is a simple contingency table (upper part of

Table 2) that provides an initial overview of the two-dimensional fre-
quency distribution of cross-tabulated data – the distribution of a binary
outcome variable (here, the performance of case conferences). From
this table, probabilities and odds can be calculated (bottom part of
Table 2). Hence, the (estimated) probability of an ‘event will take place’
can be calculated as a proportion from the frequencies in each group
(see the supplemental material for equations), and differences in (es-
timated) probabilities between the two groups can easily be calculated.
The probability of an event in a specific group is also known as risk;
therefore, the risk ratio compares the probability of an event in one
group to that in another (here, for example, the treatment group versus
the control group). Often, the chance that something will occur is de-
scribed as the odds (see the supplemental material for the equation).
Although the interpretation is more difficult for practitioners
(Greenland, 1987) because an odd is not a probability and sometimes is
misinterpreted as a risk (O’Connor, 2013), the provided scale is in-
definite and hence provides possibilities of working with other math-
ematical methods. The odds are the ratio of both probabilities, namely,
the probability of an ‘event will take place’ versus the probability of an
‘event will not take place’ p/(1 − p), and it compares how much larger
one probability is relative to another in a specific group. In our case, the
(estimated) probability that a case conference was conducted in the
control group was 0.8, and the (estimated) probability that a case
conference was not conducted was 0.2. Hence, within the control
group, the (estimated) probability that a case conference was conducted
is four times higher than not, which indicates an odds of 4 (0.8/0.2).
The widely used odds ratio is thus the ratio of both odds, namely, the
odds of the treatment group related to the odds of the control group (see
the supplemental material for equations). The odds ratio compares the
difference in the odds between the two groups. If the odds are equal in
both groups, then the odds ratio is equal to one. In our case, the odds
ratio is 2.58, which means that the odds of receiving a case conference
in the condition are higher than those in the control group.

The crude model provides the same results as the logistic regression
model with only one independent variable for group assignment (case
versus control). The logistic regression belongs to the family of gen-
eralised linear models (GLMs), which can handle different distributions
of outcome variables. Assuming that p= P(Event=yes|X) is the prob-
ability that an event occurs given the predictor variables X and that pi is
this probability for one response i, the generalised linear model adapts
the linear relationship using the logit function (see the supplemental
material for equations). The logistic regression model with a single
dichotomous predictor variable for the assignment to the group
‘Treatment’ for a binary outcome (e.g., whether a case conference was
performed) is a simple example. With the maximum likelihood method,
the parameters of the logistic regression model, β0 and β1 here, can be
estimated, and then, the inverse function of the logit logit−1(x) = ex/
(1 + ex) provides the ability to assess the probability values of [0,1]
(see the supplemental material for equations). In our case, this means

Table 1
Different analytical strategies for selection bias reduction and/or cluster adjustment. The
crude model, generalised linear model (GLM), is not able to adjust for clustered data or
reduce bias in observational studies. A generalised linear mixed model (GLMM) is es-
sential to account for multilevel data. Selection bias can be reduced by (1) including
covariates in the regression model or (2) using a matching algorithm to reach a balance
on the covariates between the investigated groups.

Bias reduction

No Yes

Cluster No Crude GLM + genetic matching
(GLM) GLM + covariate adjustment

Adjustment Yes GLMM GLMM + genetic matching
GLMM + covariate adjustment
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that the estimated log odds and log odds ratios can support the (esti-
mated) probabilities of receiving a case conference for each group.

In Table 3, the expressions of the estimated parameters, i.e., the
estimates of the logarithmic odds and odds ratio, are listed (equations
are explained in supplemental material). The exponentiated expressions
of the model parameters are the odds and the odds ratio. The (esti-
mated) probabilities of success in both groups are also given. For ex-
ample, the parameter β0 of the logistic regression model expresses the
logarithmic odds of the control group, and the exponentiated value eβ0

is the corresponding odds, which indicates the chance that an ‘event
will take place’ versus the opposite chance in the control group. The
probability that an ‘event will take place’ in the control group is cal-
culated using eβ0/(1 + eβ0). Due to the circumstances, the linear func-
tion can also be from a different family of functions; this type of model
specification is the generalised linear model. Furthermore, some sta-
tistical programs provide the converted estimated values from such
generalised models coincidently, but in R, these values must be calcu-
lated manually. Hence, the mathematical link and inverse link function
(as shown in Table 3) must be known to provide the estimates in the
required scale ((estimated) odds or probabilities in this case).

As with all regression models, the logistic regression can adjust for
measured group differences (e.g., age or severity) when a binary out-
come is predicted from a set of variables. Hence, proportions based on a
dichotomous event are analysed using this widely used method (Ostir
and Uchida, 2000).

2.3.2. Generalised linear mixed model
In our case, observations were collected from participants in care

units nested in nursing homes. Therefore, one of the key assumptions of
the logistic regression model – independence of observations – is vio-
lated. Because more than a half of the nursing homes (20 of 36) pro-
vided only one care unit, we use nursing home as only a cluster level
(for more detail, a histogram of the number of participants in each care
unit within the nursing homes is given in Fig. 2, Supplemental I).
Hence, in this situation, the treatment is assigned at the individual
level. In our example, the intra-class correlation coefficient (ICC) is 0.48
[0.2, 0.73], which means that 48% of the variation is explained by the

variation between the nursing homes. Although a range of different
estimators exists (see Wu et al., 2012 for details) [2012], here, we use
the Fleiss-Cuzick estimator given by Zou and Donner (2004) to calcu-
late the intra-class correlation coefficient on the proportional scale (see
the Vignette for calculations; additionally, a model-based estimator is
given).

Violation of this assumption of independence due to clustered data
can lead to committing type I errors, e.g., finding an association where
there is none. A solution to this problem is to apply a generalised linear
mixed model. Generalised linear mixed models are an extension of the
generalised linear models and are well established (see (Hardin and
Hilbe, 2012; Stroup, 2012). They combine two statistical concepts:
using linear mixed models to include random effects and using gen-
eralised models to model non-normal data. Hence, error terms that
correspond to the different sources of variation in the data are added to
the logistic regression model (Gelman and Hill, 2007), and the residual
variance can be separated into components of the different involved
levels (Li et al., 2011). In our example, the individual probability being
statistically dependent on the nursing home where a participant lives is
considered, and the variation between nursing homes and participants
is quantified.

2.4. Methods for selection bias adjustment

In this section, we will introduce two basic approaches to address
selection bias: (1) matching and (2) regression, and provide a very brief
description for why we take this approach. Because both approaches
can use all covariates or the propensity score for adjustment, we pro-
vide the definition of the propensity score first.

2.4.1. Propensity score
The propensity score was introduced by Rosenbaum and Rubin

(1983) and is defined as the conditional probability of being treated
given a set of covariates. The definition of the propensity score for a
single subject i (Eq. (1)) is the conditional probability of assignment to
the treatment group (Zi = 1) given a vector of observed covariates (xi),
where Zi is assumed to be independent. Based on the observed control

Table 2
Upper: a contingency table of a two-group comparison for a dichotomous outcome variable, where nij is the absolute amount of outcome i in group j. Lower: parameters, their estimates
calculated from the contingency table and their interpretation.

Group

Treat Control Marginal

Outcome No n11 (22) n12 (119) n1. = n11 + n1. (141)

Yes n21 (224) n22 (470) n2. = n21 + n2. (694)
Marginal n.1 = n11 + n21 (246) n.2 = n12 + n22 (589) N = n.1 + n.2 = n1. + n2. (835)

Interpretation Probabilities =p n
nTreat
21
.1

(0.91) =p n
nControl
22
.2

(0.8) (Risk)Diff. = pTreat − pControl (0.11)

Odds =
−

Odd p
pTreat
Treat

1 Treat
(10.18) =

−
Odd p

pControl
Control

1 Control
(3.95) =Odds Ratio OddTreat

OddControl
(2.58)

Table 3
Parameters of generalised linear model with the full sample and their interpretation. Each parameter x ∈ (β0, β1, β0 + β1) of a generalized linear model with the form of
Yi = β0 + β1Xi + ϵi can be extracted and interpreted. The left column shows the estimates of the model and are interpreted as logarithmic odds, the middle column provides a
transformation into (estimated) odds, and the right provides a transformation into probabilities.

Parameter Transformation

No eparameter

+

e
e

parameter

1 parameter

β0 logOddControl = 1.37 OddControl = e1.37 = 3.95
= =

+
p 0.8e

eControl
1.37

1 1.37

β0 + β1 logOddTreat = 2.32 OddTreat = e2.32 = 10.18
= =

+
p 0.91e

eTreat
2.32

1 2.32

β1 logOdds ratio = 0.95 Odds ratio = e0.95 = 2.58
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variables for each subject, a propensity score for membership in the
treatment group is calculated from a logistic regression. Hence, the
propensity score summarises different confounding factors into one
dimension and can thus be used to achieve balance (Biondi-Zoccai
et al., 2011) through adjustment methods, such as matching or re-
gression models (D’Agostino, 1998). Balancing in this context means
that the baseline characteristics in the treatment and control groups are
the same (matching) or that balance differences are taken into account
(regression). Using propensity score methods allows estimation of un-
biased treatment effects if there is no unmeasured confounder
(Williamson et al., 2012). Numerous literature reports that consider the
impact of the selection of the model for propensity score estimation on
the ability to reduce bias through the outcome model and also balance
checks after application of the propensity score are available (Arpino
and Mealli, 2011; Austin et al., 2007; Belitser et al., 2011; Leyrat et al.,
2014; Nguyen et al., 2017; Rosenbaum and Rubin, 1983; Stürmer et al.,
2006; Williamson et al., 2012).

= = = =e x P Z X xPropensity score ( ) ( 1| )i i i i (1)

2.4.2. Genetic matching and hidden bias assessment
The matching of similar individuals in the treatment group with

individuals from the control group, at least theoretically, is a frequently
suggested approach for balancing observed control variables in both
groups (Baser, 2006). The propensity score, confounding covariates or
both can be used to match members of the condition and the control
group to achieve covariate balance in both groups (Sekhon, 2011).
Although this approach is theoretically appealing, in practice, balance
is difficult to obtain, and researchers must repeatedly specify the pro-
pensity score model to approximate covariate balance between groups
(Austin, 2009). Subsequently, several balance measurements for
checking before and after matching have become available (Belitser
et al., 2011).

Guidance on the use of matching is given by Stuart (2010), where
the different available parameters to reduce bias due to covariates by
choosing well-matched samples is explained. For example, matching
can be done with replacement, which means that the controls can be
used as a match multiple times. If the inclusion of multiple matched
control observations because one treated observation matches more
than one control observation is allowed, then ties have to be handled.
Furthermore, whether an exact match is required or a defined distance
between individuals is possible can be specified. For the matching
problem, Sekhon (2011) proposed a genetic matching algorithm that
automatically maximises covariance balance.

After matching, the average treatment effect Θ̂ can then be esti-
mated from the matched sample in an unbiased manner under the as-
sumption of there being no unobserved confounder by the difference in
the means of the outcomes between both groups. Eq. (2) shows that for
our example, the estimated average treatment effect (provided by the R-
package for matching the type of estimand that can be specified) is
equal to the difference in the (estimated) probabilities (or proportions)
of the ‘event’ between the treatment group pTreat and the control group
pControl from the contingency table (Section 2.3.1, Table 2).

Whereas matching can address only the balance of observed vari-
ables, researchers are also interested in what the effect of unobserved
variables (‘unobservables’) might have been. Unobservables are the key
advantage of randomisation in trials because with increasing sample
size, randomisation automatically balances observed and unobserved
covariates. The Rosenbaum bounds are used to test the robustness of
conclusions to hidden biases from unobserved confounders (Rosenbaum
and Rubin, 1983). The value Γ is the odds ratio of its effect on treatment
assignment – i.e., how much an unmeasured confounder would increase
the odds of the measured outcome.

The use of the Rosenbaum bounds requires independent and iden-
tical distributed data. In our example, there is a lack of this in-
dependence assumption. On the one hand, within multilevel data,

observations within a cluster are not independent. On the other hand,
matching with replacement may result in multiple uses of controls for
different match units. Hence, a more modern method is required to
handle such data assessing hidden bias (Zubizarreta and Keele, 2014).
However, the genetic matching approach not only provides the ad-
vantage of reducing selection bias and being able to model the pro-
pensity score without specifying an outcome but also provides a means
to assess ‘hidden bias’ from unobserved confounders.

After applying the genetic matching approach, the matched sample
can then be further analysed, e.g., using generalised linear mixed
models to adjust for clustering. Because of matching, the sample size is
reduced and may reduce the power for the interested effect size esti-
mation. However, with regression analysis, multiple effects are esti-
mated with increasing requirements per degree of freedom. Matching
avoids this problem because only the effect of interest has to be esti-
mated. Nevertheless, matching may produce data with additional ‘non-
independent’ observations, which then should be considered through
analysis.

2.4.3. Covariate adjustment
The most common method for reducing selection bias is likely the

inclusion of independent variables (covariates) in a multiple logistic
regression model for dichotomous outcomes. Hence, analysis and bias
adjustment are not separated. Including covariates within the regres-
sion model subsequently provides a conditional estimate of the treat-
ment effect (given levels of the covariates), which could differ from the
marginal effects. Therefore, the estimated coefficient from the model
should be interpreted with caution.

The researchers are responsible for which covariates are considered
to include into the model. One possibility is to use all suspected cov-
ariates that are relevant, but covariate adjustment methods are often
limited in the possible number of covariates (D’Agostino, 1998), and if
models include too many variables, they may fail to converge. Con-
vergence failure in this context means that the model cannot be esti-
mated computationally. An alternative approach to account for dif-
ferent covariates is to include the propensity score in the regression
equation. This idea follows the same principles as outlined earlier but
without conducting a matching procedure based on the propensity
score. Instead, the propensity score is included as an additional cov-
ariate in the regression model. The new variable can then be included in
the regression model as one covariate rather than as an amount of
covariates to control for bias and to increase the precision of the
treatment effect estimate. Including one or many variables decreases
the sample size for each ‘cell’; thus, models including more variables
have a higher risk of non-convergence. Nevertheless, this method only
adjusts for bias through a regression model (not independent from the
outcome), and no hidden bias assessment is possible.

= − = ∑ − ∑

= −

= = =

− = =

⇔ = −

= =

=

= =

=

μ μ Y Y

p p

Θ̂ ˆ ˆ

P(Event yes|Group Treat)

P(Event yes|Group Control)

Θ̂

N i i N i iTreat Control
1

Treat,
1

Control,

no(Event yes | Group Treat)
no(Group Treat)

no(Event yes | Group Control)
no(Group Control)

Treat Control

Treat Control

(2)

In summary. The two methods to adjust for selection bias introduced
here are matching using the genetic algorithm and adjustment within
the regression model estimation. The first balances the sample in-
dependent from the outcome and provides a means of assessing ‘hidden
bias’ from unobserved confounders. The other method adjusts for se-
lection bias by estimating the contribution of each variable to the
outcome within a regression framework. However, adding more vari-
ables can decrease statistical power in small samples because it in-
creases the variance around the regression estimate by decreasing the
number of degrees of freedom (Starks et al., 2009). Hence, for both
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matching and regression, the propensity score alone or in tandem can
be used to achieve balanced samples. A combination of propensity score
adjustment for a subset of covariates and covariate adjustment for the
other is also possible.

2.5. Estimation of treatment effect

Although the parameter of interest is the average treatment effect
during the analysis of our example study with binary outcomes, it
corresponds here to the odds ratio or risk difference. Austin (2007)
discussed different estimation methods in addition to the crude model
and other propensity score methods being needed to assess the average
treatment effect. These suggested methods have substituted using sev-
eral covariates for using only the propensity score.

2.5.1. After matching
In addition to the marginal odds being calculated directly from the

contingency table of the matched sample (for example, after propensity
score matching), another possible method is model based. A logistic
regression model with only one predictor variable for the assignment to
the treatment group is fitted on the matched sample to estimate the
impact of the treatment on the change in the odds of the outcome. This
is also possible for the mixed model variant. The exponential parameter
eβ1 from this model (Table 3) is therefore an estimate of the marginal
odds ratio.

2.5.2. After covariate adjustment
The logistic regression model, which includes several covariates to

adjust for their imbalance, provides only a conditional estimate of the
treatment effect (by transformation of the coefficients as previously
described), and the interpretation is in terms of adjusted changes in the
corresponding covariates. Hence, the average treatment effect is
available as the odds ratio/risk difference marginalised over the dis-
tribution of the included covariates. Therefore, the predicted prob-
abilities for each individual given the confounders (sample data) are
estimated under the treatment condition and under the control condi-
tion. The calculated mean probabilities ptreat and pcontrol can then be
used to provide an estimate of the marginal odds ratio using

−

−p
p

p
p1

1treat

treat

control

control
and the marginal risk difference by −p ptreat control (see

also in the Vignette). Therefore, we use the logistic regression mixed
model for our multilevel data.

3. Results

3.1. Crude model

According to the crude model (Table 2), 91% (n = 224) of residents
in dementia special care units received a case conference, whereas only
80% (n= 470) in traditional care units received a case conference. The
substantive interpretation would be that a patient is more likely to re-
ceive a case conference in dementia special care units than in tradi-
tional care units. Using the base logistic regression model with one
binary predictor (dementia specific care unit or traditional care unit),
i.e., the estimated model parameters β0 (Intercept) or β1 (dementia
specific care units: treat), indicates that the model specification is not
substantively different from the crude model. Hence, the retransformed
values are equal to the estimates of the crude model. Table 3 shows how
to obtain the transformed estimates of the logistic regression model
estimates of Table 3, which were calculated as explained in Section
2.3.1.

The table shows that with the logistic regression model, the odds of
obtaining the condition, i.e., the (estimated) probability of receiving a
case conference versus not, is 3.95 in the control group and 10.18 in the
treatment group. Hence, this results in an odds ratio of 2.58, which
indicates that the odds of receiving a case conference is more than two

and a half times higher in the treatment group than in the control
group; in other words, being in the treatment group (relative to the
control group) raises the odds of receiving a case conference. Using the
inverse logit function, we can also provide the estimates in terms of
probabilities (right column of Table 3) of receiving a case conference:
91% receive case conferences in the treatment group compared to 80%
in the control group. These values indicate that an additional 11.3%
receive a case conference in dementia special care units than in tradi-
tional care units. Table 1 in supplemental material also shows that the
confidence interval of the odds ratio (corresponding to β1) does not
include 1. Hence, the difference of 11.3% between the two groups is
assumed not to be random. We conclude that dementia special care
units more often provide case conferences than traditional care units.

3.2. Generalised linear mixed model and adjustment methods for bias
reduction

The results of the generalised linear mixed model are presented in
Table 2 in the supplemental material. The odds ratio of 8.23 (see also in
Table 4) is more than three times higher than the odds ratio in the
generalised linear model ignoring the clustered data. However, the
confidence intervals also increase (see the estimated confidence inter-
vals in the Vignette), thereby increasing the p values due to the odds
ratio with a covariance structure reflecting the dependencies of the
observations. Although the precision of the estimates decreases, which
may result from convergence problems with the estimation approach,
adjustment is necessary to ensure that we do not overestimate our re-
sults.

3.2.1. Propensity score estimation
To address selection bias, we estimate the propensity scores for each

observation. We model the group assignment using an additional gen-
eralised linear model that includes all individual related covariates (for
general and health-related characteristics, see (Palm et al., 2014)) as
fixed effects (no interaction terms). Fig. 3 in the supplemental material
shows the unequal distributions of the estimated propensity scores
between both groups and reflects the need for covariate adjustment to
address selection bias.

Additionally, to account for the nested structure of the data and thus
adjust for potential cluster-level unobserved confounders, we estimate
the propensity scores using a generalised linear regression mixed model
that includes the nursing homes as random effects (see the Vignette).
However, this model failed to converge, and these estimates of the
propensity scores could not be applied for further analysis, although
Arpino and Mealli (2011) recommended their use as the matching
variable in such multilevel settings, where the treatment is assigned at
the individual level.

3.2.2. Genetic matching and hidden bias assessment
In this section, we show that either (1) all covariates or (2) only the

propensity score as a summary of the covariates can be used for the
genetic matching approach to balance the two groups. Furthermore, the
matching quality due to hidden bias from unmeasured variables after
matching is examined using the Rosenbaum bounds.

Initially, we used the genetic matching approach to determine the
optimal covariate balance in the matched sample permitting replace-
ments. The choice of the specific variables was based on theoretical
considerations and generating a balanced sample in terms of general
and health-related characteristics (see Palm et al., 2014). The algorithm
samples a subset of 246 observations from each group out of the ori-
ginal sample, which is limited by the number of observations within the
treatment group. For the outcome of interest, the estimated average
treatment effect, the estimated average causal effect, and hence the
(estimated) difference in probabilities between the two groups are 0.13.
This value corresponds to an estimated treatment effect using the crude
model on the subset of the data received from matching. According to a

D. Trutschel et al. International Journal of Nursing Studies 76 (2017) 36–44

4174



simple t-test, this difference in means is assumed to be significant. To
implement a balance check after matching, the Vignette shows a variety
of univariate standardised statistics being employed for each covariate
proposed by Sekhon (2011), and the result shows (Vignette) that for all
given covariates, balance is achieved by matching.

Using the Rosenbaum bounds at this point provides the opportunity
to assess the matching quality due to hidden bias from unmeasured
variables. Unfortunately, the significant p-value upper bound of 0.05
will be exceeded by a hidden variable with a Γ of 1.2. If we allow a p-
value upper bound of 0.1, then it will be exceeded by a hidden variable
with a Γ of only 1.3, indicating that an unobserved covariate that
produces only a 1.2–1.3-fold increase in the odds of the group assign-
ment would change the p-value to non-significance. Therefore, we
would conclude that the matched sample is sensitive to hidden bias.

Nevertheless, we intend to use this matched sample for further
analysis to compare it with the results of the unmatched sample, which
is definitely biased. For the matched sample, we used the same basic
generalised linear mixed model with one binary factor (dementia spe-
cific care unit or traditional care unit) that we used for the unmatched
sample.

Table 4 shows the results interpreted in terms of (estimated) odds
(left columns) and probabilities (middle columns) for the model ad-
justed for the clustered structure and adjusted for selection bias using
the matched sample (third row). The odds ratio of 3.9 is half the odds
ratio estimated with the same model from the unmatched sample
(Table 4). The null hypothesis of no difference in the use of the con-
ditions between the two groups would not be rejected.

Second, we use the genetic matching approach with the propensity
score as the only covariate to determine the optimal propensity score
balance. To check the balance after matching, the overlapping coeffi-
cient of the propensity score proposed by Belitser et al. (2011) is im-
plemented in the provided Vignette, and the results show (supplemental
material, Fig. 4) that matching based on propensity score was suc-
cessful. Using the Rosenbaum bounds to check the matching quality for
unobserved variables results in the significant p-value upper bound of
0.05 (0.1) being exceeded by a hidden variable with a Γ of only 1.8 (2).
The estimates of the odds differ (Table 4), e.g., the odds of receiving a
case conference in the treatment group, which for the propensity score-
adjusted model are more than twice the odds from the covariate-ad-
justed model (46.78 vs. 40.33), and the estimated odds ratios (4.81 vs.
3.9) for both models. However, the null hypothesis of no difference
between the two groups cannot be rejected.

Since Pimentel et al. (2015) and Zubizarreta and Keele (2014), ac-
counting for multilevel structure within the matching process and
balancing checks after matching are possible. These modern methods
should be considered in the future when analysing multilevel data from
observational studies.

3.2.3. Covariate adjustment
Including other relevant covariates as fixed effects instead of using

the propensity score as the single indicator of group assignment within
the effect estimation model to adjust for selection bias is possible.

However, non-convergence occurs when there is too little data for the
number of parameters or when the proposed model is not suitable for
the given data. Hence, the choice of which variables should be included
in the model can be based on the degree of significance in the difference
between the treatment and control groups in the baseline analysis.
Furthermore, variables could be included as fixed or random effects as
long as the model converges. Here, we include three variables as fixed
effects and two as random effects.

Nevertheless, the model needs a considerable amount of computa-
tion time to estimate the parameters and confidence intervals due to the
number of included variables. The results presented in Table 4 (bottom
row) show that the odds ratio of 6.99 between the two groups is not
significant.

Rather than all covariates being used as fixed effects, it is possible to
include only the propensity score, a continuous variable, as the single
indicator of group assignment in the generalised linear mixed model in
order to adjust for selection bias. The results show that the odds ratio of
6.3 between the two groups given a fixed PS value is not significant
(Table 4).

The additionally estimated marginal risk differences of the gen-
eralized linear mixed model including the propensity score (in brackets,
Table 4) are of comparable size to that provided by the basic general-
ised linear mixed model.

4. Discussion and conclusion

4.1. In summary

In this article, we, with the aid of a real study example, illustrate
different methods to analyse data with selection bias and clustering and
with a dichotomous outcome. Additionally, we provide a vignette as the
supplementary material to enable readers to follow a full analysis of this
study example in R and to adapt this method for other studies. For our
study example, Table 4 presents the results for all models and methods
and highlights the marked difference between the applied methods and
the computed estimates. For our example, addressing the dependencies
with a mixed model has a more pronounced impact on the estimation of
odds ratio than adjusting for selection bias. This considerable difference
can be explained by the strong clustering effect present in these data.
Nevertheless, there is a greater difference in the p-values of testing the
null hypothesis between using bias reduction methods or not than ad-
justing for dependent data structures.

Although the different analysis methods present different results,
they at least point in the same direction, indicating that the estimated
probability of receiving a case conference is higher in the treatment
group than in the control group. However, in our study, when adjust-
ment for bias and dependencies is performed, the null hypothesis of a
difference in the use of condition between the two groups could not be
rejected. Although there is a hint that there could be a difference, this
difference could not be detected in this study due to the resulting
sample and the limits of the study design.

Table 4
Estimated probabilities and differences between groups, odds and odds ratios using different models – GLM = generalised linear model or GLMM = generalised linear mixed model, and
GLMM with additional methods for bias reduction, whereby 1 = genetic matching using propensity score, 2 = genetic matching using covariates, 3 = covariate adjustment using
propensity score, 4 = covariate adjustment using several covariates. The table shows the marginal treatment effect, the odds ratio for both groups and the risk difference. The conditional
treatment effects given by the model are also shown in brackets. The p-value is the probability of the Wald test statistic for the null hypothesis of no difference between the two groups.

pControl pTreat Difference OddControl OddTreat Odds ratio p

GLM 0.80 0.91 0.11 3.95 10.18 2.58 < 0.01
GLMM 0.86 0.98 0.12 6.28 51.72 8.23 0.03
1 0.91 0.98 0.07 9.72 46.78 4.81 0.14
2 0.91 0.98 0.06 10.35 40.33 3.90 0.16
3 0.79 (0.83) 0.92 (0.97) 0.12 (0.14) 3.84 (4.98) 11.18 (31.40) 2.91 (6.30) 0.07
4 0.80 (0.73) 0.91 (0.95) 0.12 (0.22) 3.90 (2.72) 10.63 (18.98) 2.72 (6.99) 0.10
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4.2. Model choice for estimation

In Fig. 1, the model choice is determined by the data characteristics,
e.g., outcome type and study type and design. Our example shows that
choosing the model to estimate effects within observational studies is
also closely related to different key issues, such as unobserved vari-
ables, sample size and the study objectives. Here, we adjust for clus-
tered data by using the generalised linear mixed model, where several
methods are available to reduce selection bias: genetic matching and
regression with propensity score or covariates. In our opinion, no single
method for bias adjustment is optimal, and each approach has its own
limitations and is open for discussion.

Propensity score. Since Rosenbaum and Rubin (1983), the propensity
score has become increasingly popular for adjusting selection bias via
matching methods or regression. However, there is a debate regarding
the use of propensity scores to recover causal effects from observational
studies. First, regression adjustment is not a recommended way to use
the propensity score (Austin et al., 2007). Second, the propensity score
is criticized for having the drawback of losing potentially useful in-
formation about predictors of outcomes (Stürmer et al., 2006). How-
ever, using the propensity score as the matching variable can circum-
vent the problem of having too many variables (Cepeda et al., 2003).
Additionally, it has the advantage of balancing on a large number of
covariates in one summarising variable, where finding matches for a
large number of variables is nearly impossible (Starks et al., 2009).

Genetic matching. The genetic matching approach provides the
ability to balance group allocation to imitate randomisation, such as the
bias adjustment being independent from the outcome. Because only a
limited number of covariates for adjustment could be used, traditional
matching is often limited (D’Agostino, 1998). Hence, instead of the
propensity score being used as the summary, it can be used to balance
the covariates in two groups. However, regardless of whether the pro-
pensity score or covariates is employed, using the matching approaches
has the trade-off of losing a large proportion of observations, which
then influences the estimand (Wang, 2009). In our example, this re-
sulted in 246 observations, some of which are sampled more than once
to receive the matched sample. Furthermore, the resulting samples
could be prone to hidden bias in unobserved variables, which is a
general problem for all observational methods. Hence, in our example,
there is a strong assumption of hidden bias after applying the methods.
Ridder and Graeve (2011) stated that if hidden bias is present, then
matching using the propensity score has a comparable bias, but the
precision of the estimates is lower. However, matching provides bal-
ance checks and hidden bias assessment, which is not possible in a
regression framework. Furthermore, after this approach, the sample can
be analysed with small and simple models to estimate the interested
effects. In our examples, this model has only one fixed effect and a
random structure.

Regression. Bias adjustment via regression includes the adjustment
variables within the estimation model; thus, the additional subsequent
step of sample matching is not required. Since the simulation study of
Wang (2009) found that using the propensity score provides biased
effect estimates, the advantage of using the propensity score within
regression to adjust for known confounders was demonstrated in small
datasets by Biondi-Zoccai et al. (2011) and particularly for dichotomous
outcomes (Cepeda et al., 2003). The reason for this result is that adding
more variables can decrease statistical power in small samples and that
using the propensity score instead produces similar estimation results
with limited power (Starks et al., 2009). Using all covariates as fixed
effects in the model instead of the summarised value of propensity score
is also possible. Then, no information is lost, but unfortunately, the
convergence of full models is often not possible or the confidence in-
tervals of the estimates are too large because of the small number of
observations in each case. This was the case in our study example,
where only a subset of all covariates could be included in the regression
model.

4.3. Study design and sample size in observational studies

On the one hand, in the literature, there is a demand for robustly
designed observational studies to avoid as much selection bias as pos-
sible (Ellenberg, 1994), for example, a high participation rate to
achieve a representative sample of the population (Hammer et al.,
2009). On the other hand, if selection bias occurs and one adjustment
method has to be chosen, the goal is to obtain the best method for
removing bias while ensuring optimal estimation results. Therefore, a
very precise estimate is not useful if it is drastically wrong, and thus, an
estimate with a small bias rather than a small variance should be more
convincing (Rubin, 2006). Hence, before collecting data for an ob-
servational study, two major concerns should be taken into account: (1)
covariates that may obtain selection bias and hence require measure-
ment are determined and (2) a larger sample size is needed to ensure a
sufficient sample size; although there is a loss due to adjustment
methods, the former concern has the most important effect. There is a
demand for the ability to calculate the sample size that is needed for a
sufficient estimate quality, although there is also a need to adjust for an
assumed selection bias before the data are collected. Hence, further
investigations should be performed to permit drawing conclusions re-
garding the minimum required sample size within observational stu-
dies, which has to be adjusted for bias, or, if bias appears, how much of
the sample is being lost via matching.

4.4. Limitations

Several limitations of our presented model should be discussed and
explained.

First, although the participants were nested in care units, which in
turn were nested in nursing homes, we decided to use a 2-level instead
of a 3-level mixed model for analysis, whereby the care units could also
explain a part of the variation (for intra-class correlation coefficient
estimates of different levels from the regression model, see the
Vignette). Due to the given data structure – more than half of the
nursing homes provided participants in only one care unit – we chose a
simple model only using nursing homes as random effects, knowing that
more than half of the variability was explained by it.

Second, we could not provide the balance of various characteristics
at the different levels of the data, i.e., not at the care unit level (Leyrat
et al., 2014) or at the nursing home level (Belitser et al., 2011). Due to
our decision to use nursing homes as a level of clustering, an adjustment
at that level has some limits. In our example, we ignore the multilevel
structure in both the propensity score estimation model and the
matching implementation. On the one hand, the most straightforward
idea is to force matching within each cluster, provided that treated and
control cases are available within each cluster. However, this approach
is very difficult to realise when the cluster sizes are small and may yield
a considerable loss of individuals (Arpino and Cannas, 2016). On the
other hand, Arpino and Mealli (2011) proposed including the level of
clustering in the propensity score estimation model if the treatment is
assigned at the individual level in multilevel settings. Then, the ad-
justment via matching is not forced within clusters. However, in our
example, this model for the propensity score estimation did not con-
verge, and we could provide bias adjustment at only the individual
level. In this context, Li et al. (2013) show that accounting for a cluster
structure in at least one stage, e.g., in the propensity score estimation or
within the outcome model, can greatly reduce the bias. Nevertheless,
upcoming studies faced with both existing bias and multilevel data
should consider applying the modern methods of optimal multilevel
matching (Pimentel et al., 2015; Zubizarreta and Keele, 2014), which
can close the gap.

Furthermore, we did not use any procedure for model selection
(e.g., the iterative process of the estimation and balance check) for the
propensity score estimation itself. This decision was pragmatic and was
based on using the individual related characteristics, which were
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obtained in this observational study and assigned in the literature as
being correlated with the circumstance of being a resident of dementia
specific care units or not. Nevertheless, studies with more possible
given covariates and a larger sample size and with the aim of using
propensity scores primarily for bias reduction should be considered
during model selection in combination with balance checks (Belitser
et al., 2011).

We also did not consider the lack of independence assumption, ei-
ther for the regression model after matching or for assessing hidden bias
using Rosenbaum bounds, due to the matching with replacement.
Solutions for this induced problem that use matching methods were
reported by Stuart (2010) and Zubizarreta and Keele (2014).

Finally, for handling the missing data of the 53 participants, a sta-
tistical strategy such as multiple imputation was not conducted, nor
were the results validated using a sensitivity analysis (for more details,
see Carpenter and Kenward, 2013; Little and Rubin, 2002). Such a
complete case analysis reduces statistical power and estimate precision;
additionally, estimates can be biased in some circumstances if the
missing data are not randomly distributed (Bartlett et al., 2015).
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Abstract:

Objectives To investigate differences in the provision and performance of case conferences
for people with dementia between dementia special care units (DSCUs) and traditional care
units (TCUs) in nursing homes. Because DSCUs employ more staff, we expect the likelihood
of the provision of case conferences to be higher in DSCUs.

Design Observational cross-sectional study. Residents from DSCUs and TCUs were com-
pared using genetic propensity score matching over all of the observed potential covariates,
including the characteristics that served as admission criteria for DSCUs. Because of the
multisite structure of the data, clustering was accounted for with a generalized mixed model.

Setting DSCUs are defined as units within nursing homes that offer care exclusively to
residents with dementia and that charge higher rates for the specialized care provided. TCUs
are defined as care units for residents with and without dementia.

Participants A matched sample was drawn out of a convenience sample of 1808 residents
from 51 nursing homes. It consisted of 264 residents from 16 DSCUs and 264 residents from
48 TCUs.

Interventions None.

Measurements Data regarding the provision of case conferences were collected by the nurses
using the Dementia Care Questionnaire. Other collected data included challenging behav-
ior (Neuropsychiatric Inventory Questionnaire), mobility (Physical Self-Maintenance Scale),
cognitive impairment (Dementia Screening Scale), and sociodemographic information.

Results In the DSCU group, case conferences were provided to 91% (n = 224) of the residents;
in the TCU group, 82.5% (n = 203) received a case conference. After adjusting for clustering,
no significant difference between DSCUs and non-DSCUs was found. The topic of challenging
behavior was discussed more often in case conferences in TCUs.

Conclusions Case conferences are a widespread intervention in German nursing homes, in-
cluding both DSCUs and TCUs. The provision of a case conference is not a special feature of
DSCUs.

Keywords: Dementia, dementia special care units, case conferences, nursing homes

full article on pages 80-84 is available under
https://www.jamda.com/article/S1525-8610(15)00557-5/fulltext
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A. Appendix - Methodological details

This appendix includes three parts with more detailed information for a better understanding
of the main body of this dissertation.

The first gives a short overview about the hypothesis testing theory, test quality and the
performance of simulations, which are base methods for extracting information from studies
including in all articles. For more detail a wide literature is published 1234567.

In the second, the multivariate distribution for normal distributed data in nested experi-
ments is derived. Since this is the base distribution of the data used in almost all articles
it is an important key issue of this thesis determining the applicability of tests. This known
multivariate distribution is the base of the provided samplingDataCRT 8 - an easy tool for
sampling data sets with such depended structures. Furthermore, it is shown that different ap-
proaches (traditional frequentists or likelihood ration based) provide similar test statistics for
experiments to find difference between groups using nested data (used in some of the articles)
and additionally their relationship to traditional test statistics for non nested data.

In the last part, for all included articles a selection of the additional informations provided
by their supplemental material is given.

A.1. Hypothesis testing theory, test quality and performance of
simulation studies

Hypothesis testing Statistical hypothesis testing theory is a widely used method for sta-
tistical inference. Thereby statistical hypothesis is a statement about the characteristics of
random variables, a parameter or distribution of a population e.g., and represents a scientific
hypothesis. Data analysis use the information gained from a sample of individuals in order to
make inference about the relevant population 9. Hence, statistical hypothesis testing is a pro-
cedure that based on parameters estimation out of a sample, a subset of the whole population,
on which the statistical hypothesis should be evaluated.

The interested hypothesis can normally not confirmed directly. Hence,the opposite hypoth-
esis, called null hypothesis, is tried to refute. Table A.1 (upper part) shows the decision
situation within hypothesis testing problems. Making a decision for or against the null hy-
pothesis most of the statistical tests use a test statistics T , a random variable calculated as a
function out of the data sample or samples.

The test statistic has also a specific distribution, under null hypothesis (H0) as well as un-
der alternative hypothesis (H1). Hence, a probability under distribution of the null hypothesis
for the test statistic value or a even higher value can be calculated. Figure A.1 illustrates
graphically the formulas of conditional probabilities, which are equal to the areas under the
distribution curves for given regions. As the significance level determines the critical region

1Sachs, Lothar and Hedderich, Jürgen, ”Angewandte Statistik”, Springer, 2009
2Fahrmeir et al., ”Statistik”, Springer, 2010
3Hilgers, Ralf-Dieter et al., ”Einführung in die Medizinische Statistik”, Springer, 2007
4Rasch et al., ”Quantitative Methoden 1 + 2”, Springer, 2010
5Bortz, Jürgen, ”Statistik für Human- und Sozialwissenschaftler”, Springer, 2005
6DeGroot, Morris H., ”Optimal Statistical Decisions”, Wiley, 2004
7Jones et al., ”Introduction to Scientific Programming and Simulation Using R”, Springer, 2014
8https://CRAN.R-project.org/package=samplingDataCRT
9Ilakovac, Vesna, ”Statistical hypothesis testing and some pitfalls”, Biochem Med, 2009
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Population follows
H0 H1

Decisions out H0 correct decision error type II
of sample H1 error type I correct decision

Cond. 1 − α = P (T /∈ CRα|H0) β = P (T ∈ CRα|H1)
Probabilities α = P (T ∈ CRα|H0) 1 − β = P (T /∈ CRα|H1)

Table A.1.: Upper: Errors within testing decisions problems occur, if null hypothesis will
be rejected even though it is true (α is error type I) or the null hypothesis will not rejected
given the alternative hypothesis is true (β is error type II). Lower: Decisions are made using
a given critical region CRα, determined from the distribution of the test statistic under null
hypothesis. Given the distributions under both hypothesis, the probabilities of errors and
correct decisions can be calculated.

CRα of the test statistic under the null hypothesis distribution, Table A.1 (lower part) shows
the probability calculation of correct and error decisions corresponding to decision table (Ta-
ble A.1, upper part) using the distributions illustrated in Figure A.1.
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Figure A.1.: Probabilities of errors and correct decisions can be calculated as the areas un-
der the distribution curves for given regions. The probability of the error type I α describes
a conditional probability. In the opposite β is the conditional probability, that the null hy-
pothesis will not rejected given the alternative hypothesis is true. It is known as error type
II probability. The complement 1 − β, the probability that the the null hypothesis will be
rejected given the alternative hypothesis is true, is called power.

These probabilities can also be determined empirically using a binary classification problem
simulate the decision problem. Imagine n independent experiments are performed to test the
same null hypothesis H0, the confusion matrix summarizes the outcomes of this n statistical
tests, shown in Table A.2. The matrix reports the number of correct and error decisions with
four numbers expressed in simple counts: false positives are equivalents to type I error, false
negatives are equivalents to type II error, true positives and true negatives are equivalent to
correct decisions. Divide these numbers by n, the total number of tests, the confusion matrix
may be expressed in relative terms 10, the joint probabilities of population and decision.

10Powers, David M. W., ”Evaluation: From Precision, Recall and F-Factor to ROC, Informedness, Markedness
& Correlation”, School of Informatics and Engineering, Flinders University, 2007
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While the confusion matrix ( Table A.2, top) has a more descriptive role11, the classification
performance of the test ( Table A.2, bottom) can then determined by dividing these numbers by
the column marginals. This measured proportions are estimates of the conditional probabilities
of correct and error decisions. They are known with several synonyms under different contexts
(Table A.3 and hence, Table A.1 and Table A.2 can be connected.

Truth about hypothesis
H0 is true H0 is false

Predicted
accept H0 TN FN

A
b
s.

n
u
m
.

reject H0 FP TP
Marginal nN nP n

TNR = TN
nN

FNR = FN
nP

E
st
.

p
ro

b
.

FPR = FP
nN

TPR = TP
nP

ACC = TP+TN
n

Table A.2.: Confusion matrix of binary classification problem. The columns represents the
instance of truth of the hypothesis, the rows the instances of the prediction. TP = True
positives, TN = True negatives, FP = False positives, TN = True negatives, TPR = True
positive rate, TNR = true negative rate, FPR =False positive rate, FNR = False negative
rate, ACC = Accuracy.

The most interested measures to quantifying the discrimination ability of the test are sen-
sitivity and specificity, because the aim is to perform a test with a minimal number of false
decisions. On the one hand sensitivity or empirical power is the proportion of true positives
that are correctly identified by the test and on the other specificity is the proportion of true
negatives that are correctly identified 12. Hence, 1-power is the type II error or false negative
rate. A a test with a high sensitivity has a low type II error rate and test with a high specificity
has a low type I error rate. Determine the performance measures using a binary classification
problem is a common used method to evaluating statistical tests.

Furthermore, a alternative way to visualize this performance measures has been established.
The receiver operating characteristic (ROC) graph is a technique for visualizing, organizing
and selecting classifiers 13. The graph combines the sensitivity (TPR) and 1-specificity (FPR)
of every observed data value 14. The first is plotted on y-axis, the second on x-axis and so
offers the opportunity select the relative trade-offs between benefits and costs. The area under
this ROC curve (AUC) as a global assessment of the performance of a test 14is equivalent to
the probability that the classifier will rank a randomly chosen positive instance higher than
a randomly chosen negative instance 13. The more close the AUC is to one, the better is the
classifier.

The appropriate study design choice is related to statistical hypothesis testing as it is related
to effect size, sample size and power. Hence, design calculations before the study is conducted,
should be done.

Simulation studies As data characteristics are related to the suitable experimental design
and analysis method, they should be understood before realize a real study to answer a sci-

11Stehman, Stephen V., ”Selecting and interpreting measures of thematic classification accuracy”, Remote
Sensing of Environment, 1997

12Altman, D. G. and Bland, J. M., ”Statistics Notes: Diagnostic tests 1: sensitivity and specificity”, BMJ,
1994

13Fawcett, Tom, ”An Introduction to ROC Analysis”, Pattern Recogn. Lett., 2006
14Altman, D. G. and Bland, J. M., ”Statistics Notes: Diagnostic tests 3: receiver operating characteristic

plots”, BMJ, 1994
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Measure (Synonym) Formula Estimate

True negative rate P(accept|H0 true) = P (accept,H0true)
P (H0true) = TN

nN
1− α

Specificity

False positive rate P(reject|H0 true) = P (reject,H0true)
P (H0true) = FP

nN
α

Type I error rate
Fallout
Significance

False negative rate P(accept|H0 false) = P (accep,H0false)
P (H0false) = FN

nP
β

Type II error rate
Miss-rate

True positive rate P(reject|H0 false) = P (reject,H0false)
P (H0false) = TP

nP
1− β

Sensitivity
Power
Recall

Accuracy P (reject, H0false) + P (accept, H0true) = TP+TN
n

Error rate 1−Accuracy = FP+FN
n

Table A.3.: Connection of measurement and estimate of probability due to the descision
problems.

entific question. Hence, pilot studies and computational simulations can be helpful to get
deeper insights of data characteristics and find a powerful experiment design (used in article
of section 6.1). Whereby knowing the data characteristics is essential, validation using com-
putational simulation studies can be used to find the sufficient statistical model to analyse
the data (used in article of section 6.3). Hence, computational inference is a viable and use-
ful alternative to inference in traditional statistics. Simulation studies can be performed to
evaluate and compare experimental designs or analysis methods 15. The role of simulation as
a numerical technique is to perform experiments using computer intensive procedures, which
answer questions cannot be achieved with studies on real data alone 16. Two types were clas-
sified by the type of input data: they are derived from 1) measured data of a real system or
2) via sampling from probability distribution using random numbers 17, which is known as
Monte Carlo simulation. The aim is to test particular hypotheses and asses the performance
of a variety of statistical methods in relation to a known truth. Several scenario should reflect
the most common circumstances. Then methods can be tested and compared referring to
a) accuracy of estimation method or b) the quality of hypothesis testing approaches.

The performance of methods and scenarios related to the estimation method can be eval-
uated with different criteria (Table A.4). The main interest of a simulation study lies in the
expected estimates. Calculate the averaged estimates of all simulation repeats, then bias is,
due to estimator itself, defined as derivation of the average measured from the true value of
the estimate of interest, and also called systematic error 18. Hence, the smaller the bias is

15Gentle, James E and Härdle, Wolfgang Karl and Mori, Yuichi, ”How to computational statistics became the
backbone of modern data science”, Handbook of computational statistics: concepts and methods, Ch. I, 2012

16Burton, Andrea and Altman, Douglas G. and Royston, Patrick and Holder, Roger L., ”The design of simu-
lation studies in medical statistics”, Statistics in Medicine, 2006

17Balci, Osman, ”Guidelines for Successful Simluation Studies (Tutorial Session)”, Proceedings of the 22Nd
Conference on Winter Simulation, 1990

18Walther, Bruno A. and Moore, Joslin L., ”The concepts of bias, precision and accuracy, and their use in

88



the more accuracy the method. A possible measure of overall accuracy is the mean squared
error (MSE) as it includes both estimation bias and variability 16. Therefore, the empirical
standard error (SE) of the estimates of interests over all simulations of a simulation study
as a measurement of variability. But in principle any measure of variability of the estimates
can be used to quantify precision. Hence, bias, precision (or adverse variability) and accuracy
are qualitative concepts to quantify the performance of estimators 18. In simulation studies
searching for accurate point estimators less bias and most precision is required.

Evaluate performance using the quality of hypothesis tests coverage and empirical power
are measurements to control the Type I and the Type II error rates. The type I error rate for
testing a null hypothesis of no effect can be controlled by the coverage. This is the proportion
of times that the obtained confidence intervals over all simulation repeats contain Θ, the true
value of parameter of interest 16. Thereby, the confidence interval of each repeat i is defined

as follows Θ̂i ± Z1−α/2SE
(

Θ̂i

)
, where SE

(
Θ̂i

)
is the standard error of interested estimate

within each repeat depending on the estimation method and Z1−α/2 is the 1−α/2 quantile of
the standard normal distribution. If two or more measures will be compared, a ROC plot is
particular useful 14. The AUC is then an indicator of the measure with the best discriminate
power.

Characteristic Formula Measure

Mean error (ME)
¯̂
Θ−Θ Bias

Empirical standard error (SE(Θ̂))

√
1

S−1

S∑
i

(
Θ̂i − ¯̂

Θ
)2

Precision

Mean squared error (MSE) (ME)2 + (SE)2 Accuracy

Table A.4.: Performance characteristics related to the estimation method can be measured
within simulation studies: bias measures the derivation of the estimates average

¯̂
Θ from the

true value of the paramter of interest Θ, Empirical standard error as a measurement of vari-
ability over all S number of performed simulation repeats within the study and mean squared
error, which includes bias and variability.

testing the performance of species richness estimators, with a literature review of estimator performance”,
Ecography, 2005
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A.2. N-dimensional distribution of observations in hierarchical
experiments and the derivation of a statistical test

In experiments with nested data (used in articles of this thesis) the data follow a multivariate
normal-distribution, which is shown here. This is the base of the provided samplingDataCRT 8

to sample data for example in cluster randomized studies.

Since the distribution of the data determines the applicability of tests, different possible test
statistics for testing differences between groups are derived here.

A.2.1. Assumption

A hierarchical experiment process produces measurements at different levels. For example an
2-level hierarchical design consists of measurements Xij of N observations (j = 1, ..., N) at
the first level, each with K observations (k = 1, ...,K) at the second level, which are repeated
measurements of the first level observations. The observations at the first level vary around
their mean with a variance σ2

1 and the observations below with another different variance σ2
2.

Hence, it results in total N × K (normal distributed) measurements, each vary around the
class mean with a variance resulting from the sum of the two level variances σ2

total = σ2
1 + σ2

2.

In this section an experiment example of two classes with such hierarchical structured data
are assumed (Figure A.2). The aim is to test the mean of the two classes for equality. One
example could be: within each of two gentotypes (classes) measurements of N plants or in-
dividuals (at level 1: biological replicates), each measured K times (at level 2: technical
replicates) with a mass spectrometer, hence measure the amount of features/metabolites in-
tensities (measurements).

Figure A.2.: Concepts of a hierarchical model within a biological experiment

Whereby, the intensity mean of each class is unknown, two assumptions are possible: 1) the
two classes have the same mean of intensities or 2) have not. The first can be understood as
a reduced model (model 0), the second as a saturated (model 1). Hence, in this biological
example the assumptions on the distribution of the observations Xijk in one class i (wildtype
or mutant) can be summarized as follows:

• observations Xijk are normal distributed Xijk ∼ N(µ, σ2
total) with
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E (Xijk) = µi ∀j, k

V ar (Xijk) = σ2
total ∀i, j, k

• the total variance σ2
total is a sum of:

– between individual or biological variance σ2
1 = σ2

bio

(corresponds to the within class variance)

– within individual or technical variance σ2
2 = σ2

tech

(corresponds to the sum of repeated measurment + error variance)

• different measurements of an individual are dependent, measurements between different
individuals are independent

Cov(Xijk, Xijk̃) = σ2
bio ∀k 6= k̃ Cov(Xijk, Xij̃k̃) = 0 ∀j 6= j̃,

With this assumptions, a test statistic could be perfomed in the following, first, using the
traditional frequentists approach and second, the likelihood ratio approach.

A.2.2. Traditional frequentist approach using the linear mixed model notation

The traditional frequentists approach uses the distribution of the random variable, which
determines the null hypothesis H0. If this distribution is known, the test statisitic has to be
calculated from the given data. Then the null hypothesis could be rejected, if the probability
of the calculated value or a smaller one do not exceed a determined threshold (see A.1 for
explaination of hypothesis tests). With here given formula A.9 the test statistic used in the
analysis of the first article (section 6.1) is derived. It can be found in article’s appendix
(section B.1) in comparison to test statistics used for non-nested data and also tests for more
than two sample classes. For more details of formula derivation in such experiments see 19.

In our biological example, the normal distributed random variables Xijk ∼ N
(
µi, σ

2
b + σ2

t

)
,

(j = 1, ..., N, k = 1, ..,K) of two classes (i = 1, 2) are given. The assumptions, written in the
linear mixed model notation, are the following:

• Xijk = µi + βj|i + εk|ij , E (Xijk) = µi

• βj|i ∼ N
(
0, σ2

b

)
• εk|ij ∼ N

(
0, σ2

t

)
The aim is to make a statement about the equality of the two class means µ1 and µ2 using

the samples means X1.. and X2... Following the the classical approach the distribution of these
means and therefore, their expected values and variances, are needed.

1. Mean of the technical replicates (repeated measurements):

Xij. =
1

K

∑
k

Xijk =
1

K

∑
k

(
µi + βj|i + εk|ij

)
= µi + βj|i +

1

K

∑
k

εk|ij

E (Xij.) = E (µi) + E
(
βj|i
)

+
1

K

∑
k

E
(
εk|ij

)
= µi

V ar (Xij.) = V ar (µi) + V ar
(
βj|i
)

+
1

K2

∑
k

V ar
(
εk|ij

)
= σ2

b +
1

K
σ2
t

19Ahrens, Heinz, ”Varianzanalyse”, Akademie-Verlag Berlin, 1967
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2. Mean of the biological replicates:

Xi.. =
1

J

∑
j

Xij. = µi +
1

J

∑
j

βj|i +
1

J

∑
j

1

K

∑
k

εk|ij

E (Xi..) = E (µi) +
1

J

∑
j

E
(
βj|i
)

+
1

J

∑
j

1

K

∑
k

E
(
εk|ij

)
= µi

V ar (Xij.) = V ar (µi) +
1

J2

∑
j

V ar
(
βj|i
)

+
1

J2

∑
j

1

K2

∑
k

V ar
(
εk|ij

)
=

1

J

(
σ2
b +

1

K
σ2
t

)

The distribution of means of the technical replicates and the biological replicates for each
class i is then given by (A.1), (A.2):

Xij. ∼ N
(
µi, σ

2
b +

1

K
σ2
t

)
Xi.. ∼ N

(
µi,

1

J

(
σ2
b +

1

K
σ2
t

)) (A.1)

(A.2)

To test the equality of the class means a new random variable, the difference of the sample
class means D = X1.. − X2.. (X1.., X2.. independent), and their corresponding distribution
is required. Hence, the expected value and the variance of this difference D is derived, the
distribution of D follows by (A.3):

E
(
D
)

= E (X1..)− E (X2..) = µ1 − µ2

V ar
(
D
)

= V ar (X1..) + V ar (X2..) =
2

J

(
σ2
b +

1

K
σ2
t

)

D = X1.. −X2.. ∼ N
(
µ1 − µ2,

2

J

(
σ2
bio +

1

K
σ2
tech

))
(A.3)

Furthermore, a standardized difference of the sample class means D is received by subtract-
ing the expected value from the difference divided by their standard deviation ( (A.4):

Z̃D :=
D − (µ1 − µ2)√

2
J

(
σ2
b + 1

Kσ
2
t

) ∼ N (0, 1) (A.4)

Now, if the variances are known, the distribution of the test statistic (the standardized
difference of the sample class means) given the null hypothesis is true (H0 : µ1 = µ2 ⇔
µ1 − µ2 = 0) would be known ( A.5):

X1.. −X2..√
2
J

(
σ2
b + 1

Kσ
2
t

) ∼H0 N (0, 1) (A.5)
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If these variances are unknown, then, it is generally valid to divide the standardized variable
by a χ2-distributed variable in order to obtain a t-distributed test statistic, using the estimates
of the unknown variances drawn from the sample. Following Cochran’s theorem20, the dis-
tributions of the sum of the quadratic standardized observations of each class i Vi are known
as χ2-distributed (Equation A.6) and also Ṽi, if the true means are replace by the sample
means (Equation A.7). It follows that the sum of both, the sum of the quadratic standardized
observations of both classes, Ṽ := Ṽ1 + Ṽ2 is also χ2-distributed (A.8).

Vi =

J∑
j=1

Z̃2
ij. :=

J∑
j=1

 Xij. − µ1√
σ2
b + 1

K
σ2
t

2

∼ χ2
J (A.6)

Ṽi =

J∑
j=1

(Xij. −Xi..)2

σ2
b + 1

K
σ2
t

∼ χ2
J−1 (A.7)

Ṽ =

2∑
i=1

J∑
j=1

(Xij. −Xi..)2

σ2
b + 1

K
σ2
t

∼ χ2
I(J−1) (A.8)

Hence, the distribution of the sample means difference is known as t-distributed, if the
standardization is done with the estimation of the variances instead of the variances itself,
derived by dividing the standardized variable by the χ2-distributed variable Ṽ :

Z̃D√
Ṽ

I(J−1)

=

D−(µ1−µ2)√
2
J (σ2

b
+ 1
K
σ2
t )√√√√ 2∑

i=1

J∑
j=1

(Xij.−Xi..)
2

σ2
b
+ 1
K
σ2t

I(J−1)

=

√
J

2

D − (µ1 − µ2)√
1

I(J−1)

2∑
i=1

J∑
j=1

(Xij. −Xi..)2

∼ tI(J−1)

Thus, given the null hypothesis is true, which means that the observation of both classes
are obtained from distributions with the same mean, the test statistic ( A.9) can be used to
test the equality of that means, if the variances are unknown:

t̃ =

√
J

2

X1.. −X2..√
1

I(J−1)

2∑
i=1

J∑
j=1

(Xij. −Xi..)
2

∼H0 tI(J−1) (A.9)

A.2.3. Likelihood-ratio approach

Using the likelihood ratio test include three steps:

1. The likelihood of the data for both models, model 1 P
(
x|Θ1 = µ1, µ2, σ

2
b , σ

2
t

)
and model

0 P
(
x|Θ0 = µ0, σ

2
b , σ

2
t

)
, are needed.

2. Then, an estimator, usually the maximum likelihood estimator (mle), for the unknown
parameter of the models θ̂1, θ̂0 has to be derived for inclusion into the formula of the
likelihood.

3. The likelihood ratio test (A.10), a χ2-distributed test statistic, compares then the max-
imum probability of the data of both models.

20Cochran, W. G., ”The distribution of quadratic forms in a normal system, with applications to the analysis
of covariances”, Mathematical Proceedings of the Cambridge Philosophical Society, 1934
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LRT = 2log
P (x|θ̂1)

P (x|θ̂0)
(A.10)

The null hypothesis of equal means is the same when the data have the same probability
under both models. It could be rejected, if the probability of the calculated value or a smaller
one do not exceed a determined threshold (see A.1 for explanation of hypothesis test).

The following derived LRT (A.29) can then be compared with other test-statistics: 1) F-
statistic of the classical nested ANOVA approach (given in Article 6.1, see Appendix B.1) ,
and 2) t̃-statistic for nested data derived by the frequentist approach.

Using the same example as before (FigureA.2), the random variables Xijk ∼ N
(
µi, σ

2
b + σ2

t

)
(j = 1, ..., N, k = 1, ..,K) of two classes (i = 1, 2) are given as normal distributed. Then, a
hidden variable uij corresponds to the µi +βj|i of the linear mixed model from the traditional
frequentist perspective and the model can be rewritten as:

uij ∼ N(µi, σb) , xijk|uij ∼ N(uij , σt)

The aim is to generate a test of the likelihood ratios of two models, at the one hand a model
of two different means µ1 6= µ2 for the classes i = 1, 2 (model 1) and at the other hand a
model of the same mean µ1 = µ2 = µ0 for both classes (model 0) is assumed. Therefore, the
complete data likelihood (A.11) is required.

1. Complete data likelihood: For calculating the complete data likelihood

P (X|Θ) =
∏
ij

P (xij |Θ), (A.11)

first, the likelihood for one individual with K replicates xij = (xij1, . . . , xijK) is required.

P (xij |Θ) =

∫
P (xij , ui,j |Θ)duij

=

∫
P (xij |uij ,Θ)P (ui,j |Θ)duij

=

∫ (∏
k

P (xijk|uij ,Θ)

)
P (uij |Θ)duij

Therefore, simplify the variables by (A.12), then it holds (A.13)

uij = u→ u ∼ N(µi, σb) , xijk = xk → xk|u ∼ N(u, σt) (A.12)

P (u) =
1√

2πσb
exp

(
−1

2

(u− µi)2

σ2
b

)
, P (xk|u) =

1√
2πσt

exp

(
−1

2

(xk − u)2

σ2
t

)
(A.13)

and the likelihood of one individual in one class can be derived as follows:
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P (x|Θ)
(A.13)

=

∫ (∏
k

(
1√

2πσt
exp

(
−1

2

(xk − u)2

σ2
t

)))
· 1√

2πσb
exp

(
−1

2

(u− µi)2

σ2
b

)
du

V1=

(
1√

2πσt

)K
· 1√

2πσb
= V1 ·

∫
exp

−1

2


∑
k

(xk − u)2

σ2
t

+
(u− µi)2

σ2
b

 du

= V1 ·
∫

exp

−1

2



∑
k

x2
k

σ2
t

+
µ2
i

σ2
b

− 2


∑
k

xk

σ2
t

+
µi
σ2
b


︸ ︷︷ ︸

b

·u+

(
K

σ2
t

+
1

σ2
b

)
︸ ︷︷ ︸

a

·u2


 du

V2=exp


− 1

2



∑
k
x2k

σ2t
+
µ2i
σ2
b






= V1 · V2

∫
exp

(
−1

2

(
a · u2 − 2b · u

))
du

Substitute u by (A.14) and knowing (A.15) the formula can be simplified.

v =
√
au ⇐⇒ u =

v√
a

(A.14)

1√
2πσ

∫
exp

(
−1

2

(x− µ)2

σ2

)
dx = 1 ⇐⇒

∫
exp

(
−1

2

(x− µ)2

σ2

)
dx =

√
2πσ (A.15)

⇔ P (x|Θ)
(A.14)

= V1 · V2 ·
∫

exp

(
−1

2

(
v2 − 2

b√
a
· v
))

dv · 1√
a

= V1 · V2 · 1√
a
· exp

(
b2

2a

)∫
exp

(
−1

2

(
v2 − 2

b√
a
· v +

b2

a

))
dv

= V1 · V2 · 1√
a
· exp

(
b2

2a

)∫
exp

(
−1

2

(
v − b√

a

)2
)
dv︸ ︷︷ ︸

√
2π,ifµ= b√

a
,σ=1

(A.15)
= V1 · V2 ·

√
2π√
a
· exp

(
b2

2a

)

The likelihood of one individual j (with K replicates) in one class i is now known (A.16)
and shows that the observation of one individual with K replicated measurements follows a
K-dimensional normal distribution (Proof see Section A.2.4).

P
(
xi,j |Θ

) V1,V2
=
a,b

2π ·
1

√
2πσb

· exp

(
−

1

2

µ2
i

σ2
b

)
·

1
√√√√2π

(
K
σ2t

+ 1
σ2
b

) · exp




1

2



∑
k
xk

σ2t
+
µi
σ2
b




2

(
K
σ2t

+ 1
σ2
b

)



·
(

1
√

2πσt

)K
· exp


−

1

2

∑
k
x2k

σ2
t




(A.16)

(A.16) is used to obtain the complete data likelihood under model 0 (Eq. A.17) and under
model 1 (Eq.A.18), which are both a description of a N ×K-dimensional normal distribution.

P

(
X|
{

Θ0

Θ1

)
A.16
=

(A.11)

∏
i,j

{
[2π · 1√

2πσb
·

[2π · 1√
2πσb
·
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exp

(
−

1

2

µ2
0

σ2
b

)
·

1
√√√√2π

(
K
σ2t

+ 1
σ2
b

) · exp




1

2



∑
k
xijk

σ2t
+
µ0
σ2
b




2

(
K
σ2t

+ 1
σ2
b

)



·
(

1
√

2πσt

)K
· exp


−

1

2

∑
k
x2ijk

σ2
t





 (A.17)

exp

(
−

1

2

µ2
i

σ2
b

)
·

1
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2. Estimates of the model parameter: For the maximum likelihood estimation of the model
parameters it is appropriate to use the logarithmic likelihood, so for model 0 it is derived by
(Eq. A.19) and equivalent for model 1 (Eq. A.20).
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When the first derivation of these log-likelihoods are set to null, the maximum parameter
of the functions can be obtained, called maximum likelihood estimator (mle). The mle for the
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parameter µ0 within model 0 is equal to the mean of all observations of both classes (Eq. A.21),
and the µi within model 1 to the mean of all observation in one class i (Eq. A.22).
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Additionally, the estimates of the unknown variances within each model are required. Given
the log-likelihood of model 0 (A.17) the maximum likelihood estimator for σb is derived by
Equation A.24 as the mean quadratic deviation of all observations of both classes from the
overall variance and given the model 1 (A.18) by Equation A.25 as the mean quadratic devi-
ation of all observations of both classes from their corresponding class variance.
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Hence, the derivation of complete data likelihood of model 0 for σb is known, the parameter
σb can be derived as follows:
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3. Maximum-Likelihood-Ratio-Test: For both models the maximum log-likelihood of the
complete data is required. Therefore, the mle of the parameters are included into the log-
likelihood of the complete data.
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Then, both functions can be compared by the maximum likelihood ratio:
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With the equations (A.26, A.27) further simplifications are possible:
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b + σ2

t

+

∑
i,j

(xij. − x...)2

K · ˆ
0σ2
b + σ2

t


(A.26)

=
(A.27)

∑
i,j

log

∑
i,j

(xij. − x...)2∑
i,j

(xij. − xi..)2

+K ·

−
∑
i,j

(xij. − xi..)2

K
IJ

∑
i,j

(xij. − xi..)2 +

∑
i,j

(xij. − x...)2

K
IJ

∑
i,j

(xij. − x...)2



= IJ · log


∑
i,j

(xij. − x...)2

∑
i,j

(xij. − xi..)2


The following transition (A.28) holds, which means that the total sum of square can be

decomposed by the sum of squares between and within the groups.

∑
i,j

(xij. − x...)2 =
∑
i

(∑
j

x2
ij. − 2 · J · xi..x... + J · x2

...

)

=
∑
i

(∑
j

x2
ij. − J · x2

i.. + J (xi.. − x...)2

)
=

∑
i,j

(xij. − xi..)2 +
∑
i,j

(xi.. − x...)2 (A.28)

LRT = IJ · log

1 +

∑
i,j

(xi.. − x...)2

∑
i,j

(xij. − xi..)2

 A.28
= IJ · log


(∑
i,j

(xij. − xi..)2 +
∑
i,j

(xi.. − x...)2

)
∑
i,j

(xij. − xi..)2

 (A.29)

The LRT (Eq. A.29)can be rewritten in a form that includes the F-statistic, defined in
Formula A.30 (Eq. A.31 holds). Furthermore, it holds Eq. A.32, because of Eq. A.33 and
analog Eq. A.34. So the LRT can be rewritten in a form that includes the previously derived
t̃-statistic (A.32), so Eq. A.35 holds also.

F =
MSbetween
MSwithin

=
FGwithin
FGbetween

SSbetween
SSwithin

=

1
I−1

∑
i,j

(xi.. − x...)2

1
I(J−1)

∑
i,j

(xij. − xi..)2 (A.30)

LRT = IJ · log

1 +

I−1
I−1

∑
i,j

(xi.. − x...)2

I(J−1)
I(J−1)

∑
i,j

(xij. − xi..)2

 = IJ · log

(
1 +

I − 1

I(J − 1)
F

)
(A.31)

2∑
i

(xi.. − x...)2 =
1

2
(x1.. − x2..)2 (A.32)
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(x1.. − x...)2 = x2
1.. − 2x1..x...+ x...2

= x2
1.. − 2x1..

(
1

2
x1.. +

1

2
x2..

)
+

(
1

2
x1.. +

1

2
x2..

)2

= x2
1.. − x2

1.. − x1..x2.. +
1

4
x2

1.. +
1

2
x1..x2.. +

1

4
x2

2..

=
1

4
x2

1.. −
1

2
x1..x2.. +

1

4
x2

2.. =
1

4
(x1.. − x2..)

2 (A.33)

(x2.. − x...)2 =
1

4
(x1.. − x2..)

2 (A.34)

LRT
A.32
= IJ log

1 +
J
2 (x1.. − x2..)

2

I(J−1)
I(J−1)

∑
i,j

(xij. − xi..)2

 A.9
= IJ log

(
1 +

1

I(J − 1)
t̃2
)

(A.35)

In summary, the performed LRT test statistic of this example of nested data (testing the
mean of two classes for equality) is an approximation of the classical F-statistic (Eq. A.31) and
the performed t̃-test statistic for two level hierarchical experiments (Eq. A.35) Furthermore
it is shown, that the t̃-test statistic for two level hierarchical experiments is the same as the
classical test-statistic using the means of technical replicates as observations. All three test
statistics can be used to test if there are differences between groups using a nested experiment
design.

A.2.4. Distribution of an observation with K replicates is K-dimensional

P (−→x |−→µ ,Σp×p) =
1√

(2π)p
√
|Σp×p|

· exp

(
−1

2
(−→x −−→µ )TΣ−1

p×p(
−→x −−→µ )

)
(A.36)

A p-dimensional normal distribution is defined as (Eq. A.36). It is to show that the derived
formula for the distribution of one biological observation j with K technical replicates within
a two-level hierarchical experiment design (ignoring the class correspondence) is equal to the
formula of a K-dimensional normal distribution. Hence, it is to proof that Eq. A.16 = Eq. A.36
(Eq. A.37) holds, whereby, p = K and the formula for the likelihood of the vector of K
observations x = (x1, . . . , xK) (Eq. A.16) can be decomposed by a pre-exponential and an
exponential part (Eq. A.38).

P (−→x |−→µ ,Σ) = P (x|Θ) (A.37)
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P (x|Θ) = 2π · 1√
2πσb

· 1√
2π
(
K
σ2
t

+ 1
σ2
b

) · ( 1√
2πσt

)K
︸ ︷︷ ︸

pre-exponential part

exp

(
−1

2

µ2

σ2
b

)
· exp


1

2

(∑
k
xk

σ2
t

+ µ
σ2
b

)2

(
K
σ2
t

+ 1
σ2
b

)
 · exp

−1

2

∑
k

x2
k

σ2
t


︸ ︷︷ ︸

exponential part

(A.38)

Corresponding to the assumptions of subsection A.2.1:

• the k-th measurement of an individual j is normal distributed Xjk ∼ N(µ, σ2
total)

• the total variance σ2
total is a sum of the betwen individual (or biological) variance σ2

b and
the within individual (or technical) variance σ2

t

• different measurements of one individual are dependent

Cov(Xjk, Xjk̃) = σ2
bio ∀k 6= k̃,

The assumption is, that a ΣK×K dimensional Covariance-variance matrix exists. It is fur-
thermore assumed this matrix has the following form:

Σ =


σ2
b + σ2

t σ2
b ... σ2

b

σ2
b

σ2
b

σ2
b ... σ2

b σ2
b + σ2

t

 (A.39)

Proof

Pre-exponential part The pre-exponential part can be simplify by:

2π · 1√
2πσb

· 1√
2π
(
K
σ2
t

+ 1
σ2
b

) · ( 1√
2πσt

)K
=

1√
(2π)K

· 1

σbσ
K
t

√(
K
σ2
t

+ 1
σ2
b

)
︸ ︷︷ ︸√

|Σ|?

Hence, it is to proof, that the following Equation A.40 holds for the determinant of the
assumed K × K Covariance-Variance-Matrix of Eq. A.39. Whereby, the determinant of the
matrix (A.39) can be derived using the following allowed transformation rules:

• the value of the determinant do not change, if rows/columns are permuted (only sign)

• the value of the determinant do not change, if a multiply of a row/column is added to a
row/column
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√
|ΣK×K | ?

= σbσ
K
t

√(
K

σ2
t

+
1

σ2
b

)
⇔ |ΣK×K | ?

= (σ2
t )
K−1

(
Kσ2

b + σ2
t

)
(A.40)

|Σ| =

∣∣∣∣∣∣∣∣∣∣∣∣

K entries︷ ︸︸ ︷
σ2
b + σ2

t σ2
b σ2

b ... σ2
b

σ2
b σ2

b + σ2
t σ2

b ... σ2
b

σ2
b σ2

b ... σ2
b σ2

b + σ2
t


∣∣∣∣∣∣∣∣∣∣∣∣

1.r-2.r
=

∣∣∣∣∣∣∣∣∣∣∣∣

K entries︷ ︸︸ ︷
σ2
t −σ2

t 0 ... 0
σ2
b σ2

b + σ2
t σ2

b ... σ2
b

σ2
b σ2

b ... σ2
b σ2

b + σ2
t


∣∣∣∣∣∣∣∣∣∣∣∣

2.c+1.c
=

∣∣∣∣∣∣∣∣∣∣∣∣

Kentries︷ ︸︸ ︷
σ2
t 0 0 ... 0
σ2
b 2σ2

b + σ2
t σ2

b ... σ2
b

σ2
b 2σ2

b σ2
b ... σ2

b + σ2
t


∣∣∣∣∣∣∣∣∣∣∣∣

dev. 1.r
= (−1)1+1σ2

t

∣∣∣∣∣∣∣∣∣∣∣

(K−1) entries︷ ︸︸ ︷2σ2
b + σ2

t σ2
b ... σ2

b

2σ2
b σ2

b ... σ2
b + σ2

t


∣∣∣∣∣∣∣∣∣∣∣

repeat
=

(K−3)×

(
σ2
t

)K−2

∣∣∣∣∣∣∣∣∣
K−(K−2)=2 entries︷ ︸︸ ︷(

(K − 1)σ2
b + σ2

t σ2
b

(K − 1)σ2
b σ2

b + σ2
t

)∣∣∣∣∣∣∣∣∣
2-dim.

=
(
σ2
t

)K−2 [(
(K − 1)σ2

b + σ2
t

) (
σ2
b + σ2

t

)
− (K − 1)σ2

bσ
2
b

]
=

(
σ2
t

)K−2 [
(K − 1)σ2

bσ
2
b + σ2

t σ
2
b + (K − 1)σ2

bσ
2
t + σ2

t σ
2
t − (K − 1)σ2

bσ
2
b

]
=

(
σ2
t

)K−1 (
Kσ2

b + σ2
t

)

Hence, it could be shown that the pre-exponential part in both formulas, (A.16) and (A.36),
is the equal, if the Variance-Covariance matrix of Eq. A.39 is assumed.

Exponential part

exp

(
−1

2

µ2

σ2
b

)
· exp

1

2

(∑
k

xk

σ2
t

+ µ
σ2
b

)2

(
K
σ2
t

+ 1
σ2
b

)
 · exp

−1

2

∑
k

x2k

σ2
t

 = exp

−
1

2

µ2

σ2
b

+
1

2

(∑
k

xk

σ2
t

+ µ
σ2
b

)2

(
K
σ2
t

+ 1
σ2
b

) − 1

2

∑
k

x2k

σ2
t︸ ︷︷ ︸

I



Simplify the inner term of the exponential as follows:
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I = −1

2

1

(Kσ2
b + σ2

t )


(
Kσ2

b + σ2
t

)
µ2

σ2
b

−

(
σ2
b

∑
k

xk + σ2
tµ

)2

σ2
t σ

2
b

+

(
Kσ2

b + σ2
t

)∑
k

x2
k

σ2
t︸ ︷︷ ︸

=A


A
= −1

2

1

(Kσ2
b + σ2

t )

(1 + (K − 1)
σ2
b

σ2
t

)∑
k

(xk − µ)2 − 2
σ2
b

σ2
t

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ)


= −1

2

1

(σ2
t )K−1 (Kσ2

b + σ2
t )

(σ2
t )K−2

(σ2
t + (K − 1)σ2

b

)∑
k

(xk − µ)2 − 2σ2
b

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ


( A.40)

= −1

2

 (σ2
t )K−2

|ΣK×K |
(
σ2
t + (K − 1)σ2

b

)
︸ ︷︷ ︸

diagonal entries Σ−1

∑
k

(xk − µ)2 −2
(σ2
t )K−2

|ΣK×K |
σ2
b︸ ︷︷ ︸

non diagonal entries −Σ−1

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ




with A = Kµ2 +
σ2
t

σ2
b

µ2 − σ2
b

σ2
t

(∑
k

xk

)2

− 2µ
∑
k

xk − σ2
t

σ2
b

µ2 +K
σ2
b

σ2
t

∑
k

x2
k +

∑
k

x2
k

=
∑
k

µ2 − 2µ
∑
k

xk +
∑
k

x2
k +

σ2
b

σ2
t

(
−
(∑

k

xk

)2

+K
∑
k

x2
k

)

=
∑
k

(xk − µ)2 +
σ2
b

σ2
t

−
(∑

k

xk

)2

+K
∑
k

x2
k︸ ︷︷ ︸

=B


B
=

∑
k

(xk − µ)2 +
σ2
b

σ2
t

−2

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ)

+ (K − 1)
∑
k

(xk − µ)2



=
∑
k

(xk − µ)2 +
σ2
b

σ2
t

(K − 1)
∑
k

(xk − µ)2 − 2
σ2
b

σ2
t

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ


=

(
1 + (K − 1)

σ2
b

σ2
t

)∑
k

(xk − µ)2 − 2
σ2
b

σ2
t

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ


and B = −

(∑
k

xk

)2

+K
∑
k

x2
k = −

∑
k

x2
k + 2

K−1∑
k=1

K∑
k′=k+1

xkxk′

+K

K∑
k=1

x2
k

= −2

K−1∑
k=1

K∑
k′=k+1

xkxk′ + (K − 1)

K∑
k=1

x2
k

= −2

K−1∑
k=1

K∑
k′=k+1

xkxk′ + (K − 1)

K∑
k=1

(
x2
k − 2xkµ+ µ2 + 2xkµ− µ2)

= −2

K−1∑
k=1

K∑
k′=k+1

xkxk′ + (K − 1)
∑
k

(
(xk − µ)2 + 2xkµ− µ2)

= −2

K−1∑
k=1

K∑
k′=k+1

xkxk′ − (K − 1)
∑
k

xkµ+
K(K − 1)

2
µ2

+ (K − 1)
∑
k

(xk − µ)2

= −2

K−1∑
k=1

K∑
k′=k+1

(xk − µ) (xk′ − µ)

+ (K − 1)
∑
k

(xk − µ)2
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It is to proof, if for the diagonal and non diagonal entries of the inverse of the assumend
Covariance-Variance matrix Σ−1

K×K (Eq. A.39) the Eq. (A.41) and (A.42) are hold.

(
K×KΣ−1

)
ij

=
(σ2
t )
K−2

|ΣK×K |
(
σ2
t + (K − 1)σ2

b

)
, ∀i = j (A.41)

−
(
K×KΣ−1

)
=

(σ2
t )
K−2

|ΣK×K |
σ2
b , ∀i 6= j (A.42)

Using minors of a matrix, for a regular n × n-dimensional matrix A it exists exactly one
inverse matrix A−1, which is constructed as follows:

A−1
n×n =

1

|A|


A11 A21 ... An1

A12 A22 ... An2

A1n A2n ... Ann



whereby, Aij is defined as Aij = (−1)i+jDij and Dij as the (n−1)×(n−1)-dimensional minor
of An×n by excluding row i and column j.

Because the Covariance-Variance matrix ΣK×K (Eq. A.39) is symmetric and have the same
entries in the diagonals or in the non diagonals (and hence, receive the same minors, each),
for the inverse of the assumed matrix ΣK×K Eq. A.43 can be followed.

Σ−1
K×K =

1

|Σ|


(−1)1+1Σ11 (−1)1+2Σ12 ... (−1)1+2Σ12

(−1)1+2Σ12 (−1)1+1Σ11 ... (−1)1+2Σ12

(−1)1+2Σ12 (−1)1+2σ12 ... (−1)1+1Σ11

 (A.43)

Thus, it satisfies to derive Σ11 and Σ12, whereby the determinant for a matrix ΣK×K
(Eq. A.39) is known by (A.40) and for a matrix Σ̃K×K which has the form of Eq. A.44 it can
be shown that the determinant is given by Eq. A.45

Σ̃K×K =


σ2
b σ2

b σ2
b ... σ2

b

σ2
b σ2

b + σ2
t σ2

b ... σ2
b

σ2
b σ2

b

σ2
b

σ2
b σ2

b ... σ2
b σ2

b + σ2
t

 (A.44)

∣∣∣Σ̃K×K

∣∣∣ = σ2
b

(
σ2
t

)K−1
(A.45)

Whereby, the determinante is derived by th following:
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∣∣∣Σ̃K×K∣∣∣ 1.Z. - 2.Z.
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

K entries︷ ︸︸ ︷
0 −σ2

t 0 0 ... 0
σ2
b σ2

b + σ2
t σ2

b σ2
b ... σ2

b

σ2
b σ2

b σ2
b + σ2

t σ2
b ... σ2

b

σ2
b σ2

b σ2
b ... σ2

b σ2
b + σ2

t



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dev. 1.r
=

(
−σ2

t

)
(−1)1+2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(K−1) entries︷ ︸︸ ︷
σ2
b σ2

b σ2
b σ2

b ... σ2
b

σ2
b σ2

b + σ2
t σ2

b σ2
b ... σ2

b

σ2
b σ2

b σ2
b + σ2

t σ2
b ... σ2

b

σ2
b σ2

b σ2
b ... σ2

b σ2
b + σ2

t



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
rep.
=

(
−σ2

t

)K−2
(−1)K−2

∣∣∣∣∣∣∣∣∣
K−(K−2)=2 entries︷ ︸︸ ︷(
σ2
b σ2

b

σ2
b σ2

b + σ2
t

)∣∣∣∣∣∣∣∣∣
Det. 2-dim.

=
(
σ2
t

)K−2 (
σ2
b

(
σ2
b + σ2

t

)
− σ2

bσ
2
b

)
=
(
σ2
t

)K−1
σ2
b

Hence, for the inverse of the Covariance-Variance matrix Σ the diagonal entries are derived
by (Eq. A.46) and analog for the non-diagonal entries by (Eq. A.47).

1

|ΣK×K |
(−1)(1+1) [ΣK×K ]11 =

1

|ΣK×K |
∣∣Σ(K−1)×(K−1)

∣∣ A.40
=

1

|ΣK×K |
(σ2
t )K−2 (σ2

t + (K − 1)σ2
b

)
=

(σ2
t )K−2

|ΣK×K |
(
σ2
t + (K − 1)σ2

b

)
(A.46)

1

|ΣK×K |
(−1)(1+2) [ΣK×K ]12 = − 1

|ΣK×K |
∣∣∣Σ̃(K−1)×(K−1)

∣∣∣ A.45
= − 1

|ΣK×K |
σ2
b

= − (σ2
t )K−2

|ΣK×K |
σ2
b (A.47)

Thus, it could be shown, that Σ−1 has the form (A.48). The diagonal and non diagonal
entries of the inverse of the assumend Covariance-Variance matrix ΣK×K (Eq. A.39) follows
by the Eq. (A.41) and (A.42). Hence, the distribution for a biological individual with K
technical replicates follows a K-dimensional normal distribution, because Eq. A.37 holds. The
complete data of N biological individuals with K technical replicates each for both classes
(mutant, wildtype) follows then a (2×N ×K)-normal distribution.

[ΣK×K ]−1 (A.43)
=

(σ2
t )
K−2

|ΣK×K |


(
σ2
t +Kσ2

b

)
−σ2

b ... −σ2
b

−σ2
b

(
σ2
t +Kσ2

b

)
... −σ2

b

−σ2
b −σ2

b ...
(
σ2
t +Kσ2

b

)
X (A.48)
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B. Appendix - Supplemental material to the
publications

Here, only some detailed information given by the supplemental of each article are selected.
For example mathematical details of used methods, which could help to fully understand the
theories of the articles, but also some additional analysis results to help completing the picture.

B.1. Experiment design beyond gut feeling: statistical tests and
power to detect differential metabolites in mass spectrometry
data

B.1.1. Variance estimation

Only the overall variance, i.e. the sum of technical and biological variances, can be estimated
directly from the dataset. To estimate variances at all hierarchical levels, a linear nested regres-
sion model was used for each detected feature. Each observed feature intensity in each sample
was approximated by modelling the effects of the instrumental, preparation and biological
variances.

Ynei = µ + βn + γne + δnei

Ynei observed measurement of plant n,
extraction e, injection i

µ overall mean of population

βn independent random effect of plants
on level n

γne independent random effect of extraction
on level e in plants on level n

δnei independent random effect of injection
on level i in extraction on level e
in plants on level n

Mean Square Deviation unbiased estimator

MSQtot = σ̂2
tot = MSQtot

1
NEI−1

N∑
n

E∑
e

I∑
i

(ynei − y...)2

MSQbiol = σ̂2
biol =

(MSQbiol−MSQprep)
EI

1
(N−1)

EI
N∑
n

(yn.. − y...)2

MSQprep = σ̂2
prep =

(MSQprep−MSQinstr)
I

1
N(E−1)

I
N∑
n

E∑
e

(yne. − yn..)2

MSQinstr = σ̂2
instr = MSQinstr

1
NE(I−1)

N∑
n

E∑
e

I∑
i

(ynei − yne.)2

Figure B.1.: Linear hierarchical model with 3 levels and deriving unbiased esti-
mation of all variance levels in hierarchical experiment. The random effects βn, γne,
δnei are independent among each other. The mean squared deviation of all observations Ynei
in every level leads to an unbiased estimator for all variance levels. ynei = observation of
injection i of preparation e of plant n. yne. = mean of all observation of preparation e of plant
n, . yn.. = mean of all observation of plant n. y... = overall mean. N = number of plants, E =
number of preparations of each plant, I = number of injection of each plant and preparation.

Using the linear nested regression model (Equation 3.1 in the main article) the mean squared
deviation of observations can be used as an estimator of several variances, but this is biased.
Correcting the mean squared deviation in every level as shown in the table in Fig. B.1 leads to
an unbiased estimator for all variance levels: instrumental variance σ2

instr, preparation variance
σ2
prep, biological variance σ2

biol, and total variance σ2
tot. We used the data of the pilot study

and preprocessing as described in the main article to calculate these values.
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B.1.2. Test statistics and their distribution of hierarchical and non-hierarchical
models

With a setup of normal-distributed data, which can be sampled hierarchical and non hierarchi-
cal, with unknown means µi and unknown, but equal variances σ, we derive the test statistics
to compare the unknown means of the sampled classes, shown in Table B.1. It results from
the assumption of equal means of the different classes in the model of the null hypothesis in
comparison with unequal means in the model of the alternative hypothesis. The test with
non hierarchical data is the Student’s t-test, if only two classes are used and the ANOVA, if
more than two classes are available. Using hierarchical models performs the same test statis-
tics, but the observation of the second level are averaged. In contrast to the non hierarchical
test the distributions of the alternative hypothesis include the second level variance (technical
variance) besides the one level variance (biological variance).

Using derivation of the Maximum Likelihood Ratio of the two models of null and alternative
hypothesis to identify the best fitting model leads to test statistics, which is a logarithmic term
of the shown t, t̃, F, F̃ .

two sample classes (C = 2) more than two sample classes (C > 2)

t =

√
N
C
x1.−x2.√

1
C(N−1)

∑
c,n

(xcn−xc.)2

∼H0 tC(N−1)

∼H1 tC(N−1),
√
N
C
µ1−µ2
σ

F = C(N−1)
N−1

∑
c,n

(xc.−x..)2

∑
c,n

(xcn−xc.)2

∼H0 FN−1,C(N−1)

∼H1 FN−1,C(N−1),

∑
c

(µc−µ)2

σ

t̃ =

√
N
C
x1..−x2..√

1
C(N−1)

∑
c,n

(xcn.−xc..)2


∼H0 tC(N−1)

∼H1 tC(N−1),

√
N
C
µ1−µ2√

σ2
bio

+
σ2
tech
E

F̃ = C(N−1)
N−1

∑
c,n

(xc..−x...)2

∑
c,n

(xcn.−xi..)2


∼H0 FN−1,C(N−1)

∼H1 FN−1,C(N−1),

∑
c

(µc−µ)2

σ2
bio

+
σ2
tech
E

Table B.1.: Test statistic for hypotheses tests and their distributions. If obser-
vations of two or more classes are normal distributed, where equal variances (homoscedas-
ticity) are assumed, standard statistical methods can be used to testing the equality of
means of the several classes with C number of classes, N number of biological replicates
and E number of technical replicates. Upper row describe the test statistics of the non-

hierarchical model with s2 =
√

1
C(N−1)

∑
c,n

(xcn − xc.)2 the adjusted sample variance of the

non-hierarchical model. The lower row describe the test statistics of the hierarchical model
with s2

bio := 1
C(N−1)

∑
c,n

(xcn. − xc..)2 − σ2
tech
E the adjusted biological sample variance and

s2
tech := 1

CN(E−1)

∑
c,n,e

(xcne − xcn.)2 adjusted technical sample variance of the hierarchical

model, using E number of technical replicates of each biological. Normal distributions Nµ,σ2

are determined with parameters of µ (position of the distribution) and σ2 (shape of the dis-
tribution), t-distributions tdf,ncp and χ2-distributions χdf,ncp with the number of degrees of
freedom DoF and noncentrality parameter ncp.
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B.2. Plant-to-Plant Variability in Root Metabolite Profiles of 19
Arabidopsis thaliana Accessions Is Substance-Class-Dependent

Figure B.2.: Biological variability of annotated primary metabolites. (a) Variances for plant,
batch and accession were estimated with a linear mixed model (lmm), dot—variance of one
metabolite; (b) ICCs for carbohydrates, organic acids, amino acids and phosphates, dot—ICC
of one metabolite, bar—mean ICC for substance class. GSL = glucosinolate.
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Figure B.3.: Accession-specific ICCs of secondary metabolites. ICCs were determined as
σ2
plant/σ

2
total from 19 linear mixed models. GSL = glucosinolate.
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B.3. Joint analysis of dependent features within compound spectra
can improve detection of differential features

Feature grouping to com-
pound spectra. The rows
in the matrix are anno-
tated and the grouping of
related features into com-
pound spectra was per-
formed, both with the pack-
age CAMERA Kuhl et al.,
2012. At first the func-
tion xsAnnotate() with all
samples, then for grouping
the function groupFWHM()
was used (see all in Al-
gorithm 1). Figure B.4
shows, that the size of the
identified compound spectra
varies from 1 to 123, al-
though it has been noted
that the compound spectra
of size 123 is an injection
peak and would not be anal-
ysed.
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Figure B.4.: Distribution of size of compound spectra
identified with CAMERA annotation for the wildtype-
mutant experiment.
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Algorithm 1 Simulation of a gold-standard dataset on a real dataset to determine the quality
of univariate and multivariate tests to detect differentiell features or compound spectra for
several numbers effects effi.

INPUT: DS = dataset of MS measurements of plants of one genotype
INPUT: CSA = compound spectra annotation corresponding to the DS
F #number of row of DS (number of features)
N #number of columns of DS (number of samples)
C #number of compound spectra
# split DS into two classes
for DS do

class WT ← DS[,1 : N2 ] # 1 : N2 samples of DS
class MU.ref ← DS[,N2 + 1 : N ] # N

2 + 1 : N samples of DS
for all compound spectra j=1,..,C do

estimate covariance matrix Σj out of MU.ref

for all eff ∈ c(0.2, 0.3, ..., 1.5) do
while iter < 1000 do

for all compound spectrum j ∈ 1, ..., C do
# combine Negative dataset as all samples came from the same genotype
MU(j) ← Mu.ref(j) + X(j),
X(j)∼ N(0, σj) for each compound spectra j, j=1,..,C
class MU←c(MU(1),...,MU(C))
Negatives ← c(WT, MU)
calculate p.Hotellings, p.DiagHottellings
for ∀ feature k ∈ 1, ...,Kc within compound spectrum j do

calculate p.univariate
overtaken p.Hotellings, p.DiagHottellings
if p < 0.05 then

FP
else

TN
# combine Positive dataset as an effect is added in one class
MU(j) ← Mu.ref(j) + X(j),
X(j)∼ N(eff, σj)for each compound spectra j, j=1,..,C
class MU ←c(MU(1),...,MU(C))
Positives ← c(WT, MU)
calculate p.Hotellings, p.DiagHottellings
for ∀ feature k ∈ 1, ...,Kc within compound spectrum j do

calculate p.univariate
overtaken p.Hotellings, p.DiagHottellings
if p < 0.05 then

TP
else

FN
Calculate the number of TP, TN, FP, FN, AUC of all 1000 repeats
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A. univariate multivariate
Student’s t-test Hotelling’s T 2

test

statistic t = x̄1−x̄2

sp
√

1
n1

+ 1
n2

T 2 = n1n2
n1+n2

(
X̄1 − X̄2

)T
S−1
p

(
X̄1 − X̄2

)
,

sp = (n1−1)s1+(n2−1)s2
n1+n2−2 Sp = (n1−1)S1+(n2−1)S2

n1+n2−2

H0 t ≤ tα
2
,n1+n2−2, (n1+n2−p−1)

(n1+n2−2)p T
2 ≤ Fα,p,n1+n2−p−1

B. univariate multivariate
Welch’s t-test James test

test

statistic t = x̄1−x̄2√
s21
n1

+
s22
n2

T 2
u =

(
X̄1 − X̄2

)T
S−1

(
X̄1 − X̄2

)
,

S = S1
n1

+ S2
n2

H0 t ≤ tα
2
,ν , T 2

u ≤ χ2
α,A+Bχ2

1−α,p

ν ≈

(
s21
n1

+
s22
n2

)2

s41
n2

1ν1
+

s42
n2

2ν2

A = 1 + 1
2p

2∑
i=1

tr(S−1Si)
2

ni−1 , tr=trace of matrix

B = 1
p(p+2)

[
1
2

2∑
i=1

tr(S−1Si)
2

ni−1 + 1
2

2∑
i=1

(trS−1Si)
2

ni−1

]
Table B.2.: Formula of the univariate Student’s t test Student, 1908, Welch’s t-test Welch,
1947, the multivariate Hotelling’s T 2 test Mardia, Kent, and Bibby, 2003 in comparison with
the James test James, 1954 for two sample classes, where ni number of observations of sample
class i. The Welch’s t-test is used to compare two univariate samples on difference in means
x̄1, x̄2 with the assumption of unequal variances s2

1, s
2
2, where ν1 are the degrees of freedom

associated with the variance estimate of sample i. The Hotelling’s T 2 test is used compare two
p-dimensional samples on difference in mean vectors X̄1, X̄2 with the assumption of unknown,
but equal covariance matrices S1, S2, so the the pooled covariance matrix Sp is used creating
the test statistic. The multivariate equivalent to the univariate Welch’s t-test is the James
test. Here, unknown and unequal covariance matrices S1, S2 are assumed. The proposed
uncorrelated type of James test uses covariance matrices with only the diagonal entries, the
variances.
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B.4. Analysing observational data: methodological challenges to
address clustering and selection bias, a practical example in
health services research in nursing

Propbilities

RiskControl = pControl = P (Event=yes|Group=Control)

=
no(Event=yes,Group=Control)

no(Group=Control)

=
n22

n.2
RiskTreat = pTreat = P (Event=yes|Event=Treat)

=
no(Event=yes,Group=Treat)

no(Group=Treat)

=
n21

n.1

Risk Ratio
pTreat

pControl
=

n22

n21

n.1
n.2

Propbilities in term of odds ratios

Odd(Group=x) =
px

1− px
=

P (Event=yes|Group=x)

P (Event=no|Group=x)

=
P (Event=yes|Group=x)

1− P (Event=yes|Group=x)

=
RiskGroup

1− RiskGroup

Odds Ratio (OR) =
Odd(Group=Treat)

Odd(Group=Control)

=

P (Event=yes|Group=Treat)
P (Event=no|Group=Treat)

P (Event=yes|Group=Control)
P (Event=no|Group=Control)

=
pTreat

1− pTreat

1− pControl

pControl

Link function for outcomes using a logistic regression model with a dichtomeous predictor
variable

logit(pi) = log

(
pi

1− pi

)
= β0 + β1Treati

⇔ pi = logit−1 (β0 + β1Treati) =
e(β0+β1Treati)

1 + e(β0+β1Treati)
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Parameter of a logistic regression model with a dichtomeous predictor variable

β0 = log

(
P (Event=yes|Group=Control)

1− P (Event=yes|Group=Control)

)
= log Odd(Group=Control)

β1 = log

 P (Event=yes|Group=Treat)
1−P (Event=yes|Group=Treat)

P (Event=yes|Group=Control)
1−P (Event=yes|Group=Control)


= log

(
Odd(Group=Treat)

Odd(Group=Control)

)
= log Odds Ratio (OR)

β0 + β1 = log (Odd(Group=Control)) + log

(
Odd(Group=Treat)

Odd(Group=Control)

)
= log

(
Odd(Group=Control)

(
Odd(Group=Treat)

Odd(Group=Control)

))
= log (Odd(Group=Treat))

Figure B.5.: Balance check by the overlapping coefficient of propensity score before (left)
and after (right) matching on propensity score. The plots show the density of the propensity
score within each group and the dashed lines assign the overlap of both.
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