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Abstract

Planning the course of events and activities constitutes an everyday chal-
lenge in many companies. Complex decisions are to be made regarding the
allocation of a diverse range of resources and the corresponding processing
sequences of tasks. Especially in the manufacturing of highly customized
goods and the operation of cost-intensive logistics systems, e�cient sched-
ules have an enormous e�ect on the long-term success of an enterprise.
Therefore, the ambitious idea of a reliable decision support for human
planners is pursued by researchers in scheduling theory for many decades.
While several classical scheduling problems are well studied, the integra-
tion of real-world constraints and objectives shows a lack of theoretical
understanding. In order to provide a profound study in this research di-
rection, a practically relevant class of job shop scheduling problems is com-
prehensively investigated with regard to the boundaries of exact solvability
by mixed-integer programming techniques, the applicability of well-known
heuristic methods and the advantageousness of hybrid matheuristic ap-
proaches.

The job shop scheduling problem is known as a combinatorial optimization
problem of considerable intricacy, for which even simple variants are proven
to be strongly NP-hard. A set of jobs is required to be handled by a set
of machines, where every job features an individual technological route of
processing. A single processing step of a job is denoted as an operation,
which is de�ned by a designated machine and processing time. In order to
implement real-world conditions, a release date is given for every job and
the recirculation of jobs is allowed. The absence of intermediate bu�ers in
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the planning situation is considered as a special circumstance, for instance,
occurring in the production of huge items, in robotic storage frameworks
and in railbound logistics systems. A schedule is to be determined, which
assigns certain periods of working time of the required machines to the
operations of each job, so that the given restrictions are met. Motivated by
an ever-growing need to generate reliable schedules and increase customer
satisfaction, the minimization of the total tardiness of all jobs is examined
as an optimization criterion of practical relevance.

For the purposes of providing a detailed structural description of the prob-
lem under study, on the one hand, and detecting the current boundaries
of exact solvability, on the other hand, the blocking job shop schedul-
ing problem with total tardiness minimization (BJSPT) is comparatively
modeled by two mathematical formulations. Signi�cantly smaller num-
bers of required variables and constraints in the optimization program can
be reported for one type of sequence-de�ning variables in contrast to the
other. In line with this observation, the computational results obtained by
a state-of-the-art mixed-integer programming solver clearly indicate the
advantages of the usage of binary ordering variables for all pairs of op-
erations of di�erent jobs requiring the same machine. Furthermore, the
experiments show that the capability of exact general-purpose solution
techniques do not meet the practical conditions in solvable problem size,
solution quality and runtime. Additionally, several instance key measures
are proposed in order to characterize the given problems and detect rela-
tionships between speci�c values and required computational e�ort in the
solving process. Based on the results, it can be pointed out that the mean
machine utilization rate and the mean machine slack constitute good in-
dicators for the complicatedness of a BJSPT, even though more complex
�gures are still needed to cover the full range of e�ects.

The thesis mainly contributes to the research in complex job shop schedul-
ing by introducing and applying a permutation-based heuristic to the
BJSPT. First, di�erent classical encodings of a schedule are discussed with
respect to redundancy and feasibility. A procedure to construct a feasi-
ble schedule from any given permutation of all operations is presented.
Subsequently, three di�erent neighborhood structures, which are based on
widely-used operators such as interchanges of adjacent operations on a
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machine and shifts of operations in the permutation, are de�ned. It is ob-
served that interchange-based moves cause signi�cant feasibility issues in
the construction of neighboring schedules. Therefore, an advanced repair
technique is proposed to generate a feasible schedule, which incorporates
the prede�ned move and does not feature a structure arbitrarily di�erent
from the initially given solution. Together with this modi�cation scheme,
all neighborhoods are applicable in metaheuristic methods to solve the
BJSPT, even if the connectivity property cannot be shown due to the
involved real-world conditions. The computational results obtained by a
simulated annealing algorithm provide empirical evidence for the advan-
tageousness of the usage of a permutation-based heuristic method to �nd
good schedules for the BJSPT in reasonable computation time. Further-
more, it is shown that the problem under study features a fairly rugged
search space, a reduction of the set of neighbors is not favorable and the
execution of several independent runs of the heuristic procedure is bene-
�cial. However, the applied heuristic solution technique cannot compete
with the mixed-integer programming solver in solution quality and com-
putation time for small instances. Moreover considering problems of large
size, the heuristically determined feasible schedules improve the results
obtained by solving the mathematical models, but the solution quality is
not yet satisfactory for practical applications. This is why the idea of
combining promising components and bene�cial e�ects of both solution
approaches is pursued.

As a pioneering work in this �eld, a matheuristic technique is proposed
for and tested on the BJSPT. Purely mixed-integer programming-based
construction schemes and neighborhood structures, which involve solving
reduced optimization programs, are integrated into a heuristic framework.
Extensive preliminary experiments are conducted to evaluate the indi-
vidual capability of the most well-known general and scheduling-tailored
methods. The best performing mechanisms are accordingly chosen as
components of a variable neighborhood search. The computational re-
sults clearly highlight matheuristic techniques as a favorable research di-
rection in job shop scheduling. The hybrid solution scheme outperforms
the general-purpose solver and the permutation-based heuristic in solution
quality and computation time on the given benchmark instances.
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Overall, two new solution approaches for the BJSPT are proposed gener-
ating high quality schedules for instances of previously critical size. Com-
prehensive empirical and theoretical studies on the internal structures of
models and techniques reveal reasons for the di�culties in solving the prob-
lem under study and shed light onto the impact of real-world conditions.
Enhancements in research on job shop scheduling are reported and �rst
steps into a promising research direction are made. Altogether, the thesis
gives rise to novel options in the development of advanced decision support
systems for complex planning situations.
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Zusammenfassung

Die Planung verschiedenster Arbeitsabläufe stellt eine tägliche Heraus-
forderung in vielen Unternehmen dar. Komplexe Entscheidungen bezüg-
lich der Verteilung unterschiedlicher Ressourcen und der dazugehörigen
Bearbeitungsreihenfolge von Aufgaben müssen getro�en werden. Insbe-
sondere bei der Herstellung individualisierter Güter und im Betrieb von
Logistiksystemen mit hoher Kapitalbindung spielen e�ziente Ablaufpläne
eine wichtige Rolle für den langfristigen ökonomischen Erfolg eines Un-
ternehmens. Aus diesem Grund verfolgen Forscher im Bereich des Schedu-
ling seit vielen Jahrzehnten das ambitionierte Vorhaben einer verlässlichen
Entscheidungsunterstützung für strategische Planer. Während einige klas-
sische Probleme des Scheduling gut verstanden sind, fehlen wissenschaftli-
che Untersuchungen zur Betrachtung vieler praktischer Bedingungen und
Ziele. Um diesen Forschungsbereich mit einer fundierten Studie zu erwei-
tern, wird eine praxisrelevante Klasse von Job Shop Scheduling Problemen
umfassend in Bezug auf die Grenzen der Lösbarkeit mit exakten Verfahren
der gemischt-ganzzahligen Optimierung, die Anwendbarkeit von bekannten
heuristischen Methoden und die Vorteilhaftigkeit von hybriden matheuri-
stischen Ansätzen untersucht.

Das Job Shop Problem ist als kombinatorisches Optimierungsproblem von
auÿergewöhnlicher Schwierigkeit bekannt, für das selbst einfache Varianten
als NP-schwer klassi�ziert sind. Eine Menge von Aufträgen ist von einer
Menge von Maschinen zu bearbeiten, wobei jeder Auftrag eine individuelle
technologische Reihenfolge des Arbeitsablaufs verlangt. Ein einzelner Bear-
beitungsschritt eines Auftrags wird als Operation bezeichnet, die mit einer
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Bearbeitungszeit und der notwendigen Maschine gegeben ist. Um praxis-
relevante Bedingungen zu integrieren, ist ein Bereitstellungszeitpunkt für
jeden Auftrag de�niert, und die wiederholte Bearbeitung eines Auftrags
auf einer Maschine ist erlaubt. Das Fehlen von Zwischenlagermöglichkei-
ten im Planungssystem wird als spezielle Einschränkung betrachtet, die
beispielsweise bei der Produktion auÿergewöhnlich groÿer Güter sowie in
automatisierten Lagerkonzepten und schienenbasierten Logistiksystemen
zu �nden ist. Ein Ablaufplan muss bestimmt werden, der allen Operatio-
nen der Aufträge die verfügbaren Arbeitszeiten der benötigten Maschinen
zuordnet, so dass die gegebenen Restriktionen erfüllt sind. Motiviert durch
das fortwährende Bestreben nach verlässlichen Ablaufplänen und steigen-
der Kundenzufriedenheit wird die Minimierung der Gesamtverspätungszeit
als praxisorientiertes Optimierungskriterium untersucht.

Um eine detaillierte theoretische Beschreibung des betrachteten Problems
zu geben und anschlieÿend die aktuell bestehenden Grenzen der exakten
Lösbarkeit auszuloten, wird das Job Shop Problem mit Blockierungsbe-
schränkungen und der Minimierung der Gesamtverspätungszeit (BJSPT)
vergleichend mit zwei mathematischen Formulierungen modelliert. Für
einen der beiden Typen von verwendeten, die Reihenfolge de�nierenden
Variablen kann eine erheblich kleinere Anzahl notwendiger Unbekannter
und Nebenbedingungen im Optimierungsmodell festgestellt werden. Über-
einstimmend zeigen auch die mit einem der modernsten Lösungsverfahren
für gemischt-ganzzahlige Probleme erhaltenen Ergebnisse klare Vorteile
der Nutzung von binären Ordnungsvariablen für alle Paare von Operatio-
nen unterschiedlicher Jobs, die die gleiche Maschine verlangen. Auÿerdem
belegen die Experimente, dass die Leistungsfähigkeit von allgemeinen ex-
akten Lösungstechniken die praktischen Anforderungen in der handhabba-
ren Problemgröÿe, der Qualität der Ablaufpläne und der Rechenzeit nicht
erfüllen kann. Des Weiteren werden einige Problemkennzahlen eingeführt,
um die gegebenen Instanzen zu charakterisieren und Verbindungen zwi-
schen bestimmten Ausprägungen und dem erforderlichen Rechenaufwand
im Lösungsprozess herzustellen. Basierend auf den Ergebnissen kann be-
obachtet werden, dass die durchschnittliche Nutzungsrate und die mittlere
Pu�erzeit der Maschinen gute Indikatoren für den Schwierigkeitsgrad eines

viii



Problems darstellen, auch wenn komplexere Kenngröÿen zur vollständigen
Beschreibung aller Interdependenzen notwendig sind.

Der maÿgebliche Beitrag dieser Arbeit zur Forschung an komplexen Job
Shop Problemen besteht in der Einführung eines permutationsbasierten
Näherungsverfahrens und dessen Anwendung auf das BJSPT. Nach der
Diskussion verschiedener klassischer Darstellungsformen von Ablaufplä-
nen, in Bezug auf auftretende Redundanz und Unzulässigkeit, wird ein
Verfahren zur Konstruktion eines zulässigen Plans aus jeder beliebigen
Liste aller Operationen präsentiert. Anschlieÿend werden drei Nachbar-
schaftsstrukturen de�niert, die auf bekannten Operatoren wie dem Aus-
tausch zweier benachbarter Operationen auf einer Maschine und der Ver-
schiebung einer Operation in der Permutation beruhen. Es ist festzustellen,
dass austauschbasierte Übergänge erhebliche Probleme in der Zulässigkeit
der resultierenden Nachbarlösung verursachen. Hierfür wird ein komplexes
Reparaturverfahren konstruiert, das stets einen zulässigen Ablaufplan er-
zeugt, der den gegebenen Austausch enthält und in seinem Aufbau nicht
willkürlich von der Anfangslösung abweicht. Mit dieser Reparaturmetho-
de können alle beschriebenen Nachbarschaften in Metaheuristiken einge-
bettet und auf das BJSPT angewendet werden, auch wenn aufgrund der
praxisrelevanten Bedingungen der theoretische Zusammenhang für keine
der Strukturen gegeben ist. Die mit einem Simulated Annealing erzielten
Rechenergebnisse unterstützen empirisch die Zweckmäÿigkeit der Nutzung
einer permutationsbasierten Heuristik zur Generierung guter Ablaufpläne
für das BJSPT in vertretbarer Laufzeit. Auÿerdem zeigt sich, dass das
betrachtete Problem einen eher zerklüfteten Lösungsraum aufweist, dass
eine Reduktion der Anzahl zu betrachtender Nachbarn nicht vorteilhaft
ist und dass sich die Ausführung mehrerer unabhängiger Durchläufe des
heuristischen Verfahrens positiv auswirkt. Dennoch kann die angewendete
Heuristik besonders für kleine Instanzen nicht mit der erreichten Quali-
tät der Ablaufpläne und der benötigten Rechenzeit des exakten Lösungs-
verfahrens konkurrieren. Bei der Betrachtung groÿer Instanzen weisen die
heuristisch erzielten Pläne zwar bessere Zielfunktionswerte auf als die der
exakten Methode, jedoch genügt die Lösungsqualität den Anforderungen
einer realen Planungssituation noch nicht. Aus diesem Grund scheint die
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Idee der Kombination von vorteilhaften Komponenten und positiven Ef-
fekten der beiden Ansätze erfolgversprechend.

Als erster Vorstoÿ in diesem Forschungsfeld wird ein matheuristisches
Verfahren für das BJSPT konstruiert und getestet. Auf rein gemischt-
ganzzahliger Programmierung basierende Konstruktionsschemata und
Nachbarschaften, die das wiederholte Lösen von reduzierten Optimierungs-
modellen erfordern, werden in eine heuristische Struktur eingebettet. Um-
fangreiche vorgelagerte Experimente erlauben zunächst die Bewertung der
individuellen Leistungsfähigkeit der meist genutzten, allgemeinen und auf
das Scheduling zugeschnittenen Verfahren. Darauf aufbauend werden die
vielversprechendsten Methoden als Komponenten für eine variable Nach-
barschaftssuche gewählt. Die erzielten Rechenergebnisse belegen deutlich,
dass die Anwendung von Matheuristiken eine zukunftsweisende Forschungs-
richtung im Bereich des Job Shop Scheduling ist. Das hybride Lösungsver-
fahren übertri�t sowohl die allgemeine gemischt-ganzzahlige Optimierung
und als auch die permutationsbasierte Metaheuristik in der Qualität der
generierten Ablaufpläne und der notwendigen Rechenzeit für die gegebe-
nen Vergleichsinstanzen.

Insgesamt werden in dieser Arbeit zwei neue Lösungsansätze für das BJSPT
präsentiert, die die Generierung von Ablaufplänen hoher Qualität für In-
stanzen mit vorherig kritischer Problemgröÿe ermöglichen. Umfassende
empirische und theoretische Untersuchungen von Strukturen der Model-
le und Methoden legen Gründe für die Schwierigkeiten in der Lösung der
betrachteten Probleme o�en und geben Aufschluss über die Auswirkun-
gen von praxisrelevanten Bedingungen. Entwicklungen im Bereich des Job
Shop Scheduling sind erzielt und erste Schritte in einer vielversprechenden
Forschungsrichtung sind getan. Die Arbeit bietet damit neue Möglichkeiten
für die Entwicklung verbesserter Systeme zur Entscheidungsunterstützung
für komplexe Planungssituationen.
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ū mean utilization rate of all machines Mk ∈M

xxviii



Mathematical Modeling

M su�ciently large positive constant

T total number of time periods

t time period (t− 1, t]

xri,j order-position variable assigning operation Oi,j to order-
position r

yi,j,i′,j′ precedence variable sequencing operations Oi,j and Oi′,j′

zti,j time-indexed variable indicating the processing of operation
Oi,j at time point t

Heuristics

A set of available operations

F set of �xed precedence relations between pairs of operations

N (s) general neighborhood of a schedule s

NA(s) API neighborhood of a schedule s

NJ(s) TJ neighborhood of a schedule s

NT (s) TAPI neighborhood of a schedule s

T set of tardy jobs

Cand candidate list of operations

H(s, s′) Hamming distance between two solutions s and s′

P acceptance probability

Q queue (list) of operations

T (s) total tardiness of a schedule s

W swap group of operations

α(Oi,j) machine predecessor of operation Oi,j

β(Oi,j) machine successor of operation Oi,j

xxix



bi,j blocking time of operation Oi,j

c cooling factor

const a constant number

δ(s, s′) distance between two solutions s and s′

fi,j �nishing time of operation Oi,j

hi,j,i′,j′ variable indicating a reversed ordering of the operations Oi,j
and Oi′,j′

lidx(Oi,j) list index (position) of operation Oi,j in the operation-based
schedule representation

lidx′(∗) currently considered list index

midx(Oi,j) machine index (order-position) of operation Oi,j on machine
Mk

perm permutation of all operations Oi,j ∈ O
prio(Oi,j) priority of operation Oi,j

sjob job-based representation of a schedule

sop operation-based representation of a schedule (permutation)

sma machine-based representation of a schedule

τ look-ahead parameter

t temperature parameter

tinit initial value of temperature t

tterm terminal value of temperature t

Matheuristic

Nϕ(x) ϕ-th neighborhood of a solution x

T (x) total tardiness of a solution x

ϕmax maximum number of neighborhoods

x̄ initial or current feasible (mixed-integer) solution

xxx



xLP solution of the linear relaxation of an MIP model

xN feasible neighboring solution

xxxi





1 Introduction

`I've always been interested in using mathematics to make

the world work better.' [3]

Alvin E. Roth, Nobel Laureate, 2012

Following this ambitious idea of thousands of scientists working in var-
ious �elds of mathematical optimization, this thesis is intended to shed
light onto a highly constrained combinatorial optimization problem. Since
people are required to make challenging decisions in complex work environ-
ments every day, a theoretical understanding of the underlying problems
is absolutely essential to create a reliable technical decision support and
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e�cient work �ows. For this purpose, mathematical modeling, reasoning
and solution techniques provide a perfect framework to develop new opti-
mization methods and enhance the implementation of business processes.

1.1 Scheduling Research

Our world consists of a variety of complex events and ongoing technical
advancements, which give rise to the occurrence of permanent planning
and coordinating activities. This motivates scheduling research to deal
with the general allocation of resources over time to ful�ll a given set of
tasks, e�ciently, cf. for instance [25], [72] and [102]. As a multifaceted
research �eld, scheduling applies to classical planning problems in manu-
facturing and logistics as well as to technical and non-technical assignment
decisions in IT infrastructures, data analytics, controlling and marketing.
The resources may be represented for instance by machines, work stations,
tracks, databases, manpower, energy and money, while the tasks may re-
fer to jobs, trucks, airplanes, digital requests, client queries and realizable
projects, cf. [72] and [102]. This thesis generally focuses on work envi-
ronments in manufacturing systems, where an available restricted set of
machines is used to operate given jobs. Hence, the following study con-
siders renewable resources, which are repeatedly and entirely applicable to
an in�nite sequence of tasks, cf. [72].

The criteria of e�ciency are as various as the conceivable applications,
whereby most of them are related to resource consumption. For station-
ary resources, such as machines and tracks, a task consumes a period of
working time for its execution and well-known optimization criteria are ac-
cordingly processing time- or �ow time-related. During the last decades,
the consideration of satisfaction and comfort of the people a�ected by the
planning decision has gained more and more importance. Driven by the
practical relevance of scheduling problems and with regard to the economic
purposes of successfully operating enterprises, a tardiness-based objective,
which is highly related to reliability and customer satisfaction, is studied
here.
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1.2 Shop Scheduling Problems

Machine Scheduling involves deterministic scheduling problems, which ap-
pear at the tactical planning level in a manufacturing system. Strategic
decisions, such as how many customers of which type to attract and how
to assemble machines, tools and work stations at the shop �oor, are taken
as given, cf. [102]. Due to this, there exists a variety of di�erent problem
settings, characteristics and restrictions. Detailed explanations on popular
types of machine scheduling problems, their properties, constraints and ob-
jective functions are provided for instance in the books of Blazewicz et al.
[24], Jaehn and Pesch [72] and Pinedo [102]. According to the literature,
the scheduling problems under study are de�ned as follows, cf.[72]:

De�nition 1.1. A machine scheduling problem α | β | γ is described

by the speci�cation of the resources α, prede�ned instance characteristics

and constraints β and an objective function γ that is to be minimized.

Resources may be given as a single machine, α = 1, a set of m parallel
machines, α = Pm or a �nite number of individual dedicated machines.
The latter planning situation is denoted as shop scheduling, where α ∈
{Fm, Jm,Om} indicates a �ow shop problem Fm, a job shop problem

Jm or an open shop problem Om involving m machines, respectively, cf.
[24], [72] and [102]. For all shop scheduling problems, a job consists of a
�nite number of operations, which express the processing of the job by a
required machine, cf. [32]. Depending on the existence and structure of a
prede�ned ordering of these operations, all jobs are to be processed on the
machines according to a unique sequence in a �ow shop, the jobs feature
individual sequences of required machines in a job shop or the operations
of all jobs may be processed in an arbitrary ordering in an open shop
environment. However, the following basic assumptions are taken for all
classical shop scheduling problems, cf. [24], [72] and [102].

Basic Assumptions

H There exists a predetermined and �nite number of jobs and machines.

H Every job can only be processed on one machine at a time.

H Every machine can only process one job at a time.

3
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H The preemption of operations is not allowed.

H There exist in�nite bu�ers for jobs to be stored prior to, in between
and posterior to processing.

The second problem-de�ning parameter β may either be empty or involve
one or more particular job characteristics and constraints of the scheduling
problem. The occurrence of speci�c job properties, such as release dates,
due dates or recirculation, can be considered as well as the exclusion of
basic assumptions due to preemptive tasks or limited bu�ers.

The solution to the shop scheduling problem is expected to assign work-
ing time periods of machines to jobs, so that the general setting and all
restrictions are met, cf. [30]. Since the operations of the jobs compete for
resource consumption, a schedule needs to provide a processing sequence,
cf. [72]. Based on this, the starting times of all operations are determined
as points in time, at which the corresponding preceding operations of the
jobs and the preceding operations on the machines are both �nished. To
uniquely de�ne these starting times, schedules are always considered to
be semi-active in the following. This implies that no operation can be
�nished earlier without changing the processing sequence on any machine
or, in other words, the processing of every operation begins at the earliest
possible starting time, see Pinedo [102] for further explanations.

De�nition 1.2. A feasible schedule is de�ned by the sequences of op-

erations on all machines satisfying the given constraints, which uniquely

determine the earliest possible starting times of all operations.

Among all feasible solutions, a schedule, which features a minimal value of
the objective function given by γ, is denoted as optimal. With regard to
machine scheduling problems, widely-applied objective functions are either
completion time-related, such as the makespan and the total completion
time, or due date-related like the total tardiness and the number of tardy
jobs. Dependent on the considered application, priorities of jobs may be
integrated by job weights into all e�ciency measures.

An important characteristic of the optimization criterion is its regularity.
Given the objective function is non-decreasing in the completion times of
the jobs, it is said to be a regular performance measure, cf. [102]. For each
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shop scheduling problem featuring a regular optimization criterion, it can
be argued that operation starting times, which do not implement a semi-
active schedule, can never improve the objective function value compared
to a schedule, where the processing of all operations starts as early as
possible. Thus, it is su�cient to consider the set of semi-active schedules
as the set of feasible solutions, when searching for an optimal schedule
given a regular performance measure.

1.3 Job Shop Scheduling

The job shop scheduling problem examined in this thesis includes pre-
de�ned individual routes of processing for all jobs, cf. for instance [72]
and [102], and constitutes one of the hardest combinatorial optimization
problems, cf. [13] and [129]. This setting is of high practical relevance,
since the production of customized goods with individual processing re-
quirements plays an important role in the range of many enterprises. Fur-
thermore, railbound and robotic manufacturing and logistics systems form
well-known applications, cf. [36] and [100], as well as the scheduling of
trains in single-track railways networks, cf. [46] and [115].

In the 1970s, several authors have proven the hardness of even simple vari-
ants of the job shop scheduling problem using concepts of complexity the-
ory, see [57] for further reading. According to the literature, the makespan
of a schedule is denoted by Cmax in the following, cf. among others [72]
and [102]. Garey, Johnson and Sethi [58] show by a transformation of
3-Partition that the decision problem on the existence of a schedule for
Jm || Cmax given an upper bound on the objective function value is NP-
complete in the strong sense for m ≥ 2. For reasons of clarity, the ongoing
review of complexity results will focus on the optimization problems and
consequently transfer the �ndings on the NP-completeness of a decision
problem provided in the literature to NP-hardness. Taking the simplifying
assumption of unit processing times for the operations of all jobs, the job
shop problem J3 | p = 1 | Cmax involving three machines is still proven to
be NP-hard in the ordinary sense by the reduction of a knapsack problem
by Lenstra and Rinnooy Kan in [81]. Gonzalez and Sahni [61] investigate
�ow shop and job shop instances with a bounded number of machines and
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Figure 1.1: Complexity hierarchies of shop scheduling problems (in excerpts)

a restricted number ni of operations for each job. The authors show that
J2 | ni ≤ 3 | Cmax as well as J3 | ni ≤ 2 | Cmax are NP-hard in the
ordinary sense for preemptive and non-preemptive schedules adapting a
result from Lenstra, Rinnooy Kan and Brucker [82].

Polynomial time algorithms exist for the problem J2 | ni ≤ 2 | Cmax in-
volving two machines and at most two operations per job given by Jackson
and for Jm | n = 2 | Cmax scheduling exactly two jobs on an arbitrary
number of machines provided by Akers, cf. [72] and [102]. Since this
thesis is intended to approach job shop scheduling instances of practi-
cally relevant size, the number of involved machines and the quantities
of jobs and operations per job will exceed the boundaries of polynomial
solvability. Furthermore, completion time-related criteria are well-studied
for many job shop scheduling problems, while real-world planning situa-
tions demand for customer-oriented optimization. Therefore, this thesis is
focused on a due date-related objective function. According to the com-
plexity hierarchies of shop scheduling problems, which are illustrated in
relevant excerpts in Figure 1.1 according to Pinedo [102] and Blazewicz et
al. [24], the considered job shop problems are expected to be challenging
and of extraordinary intricacy.

In line with the result given by Garey, Johnson and Sethi, part (a) of the
�gure indicates that the job shop setting Jm involves harder problems
than a �ow shop environment Fm, which is in turn expected to be more
complicated than a single machine problem featuring the same parameters
β and γ. Considering characteristics and constraints of practical relevance,
the appearance of release dates ri for all jobs and recirculation (recrc) are
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proven to increase the complexity of the problem, see part (b) of Figure
1.1. On the contrary, for the integration of blocking constraints (block),
which implement the absence of intermediate bu�ers in the scheduling
system, there exists no theoretical result on the expected e�ect of such
restrictions. In part (c) of the �gure, the complexity hierarchy for di�er-
ent objective functions is illustrated. The minimization of the makespan
Cmax constitutes the simplest and a well-studied optimization criterion for
job shop scheduling problems. Involving job due dates and minimizing the
maximum lateness Lmax of the jobs or the total tardiness

∑
Ti compli-

cates the job shop problem, signi�cantly. While a relationship between
the makespan objective and the minimization of the total completion time∑
Ci has not yet been proven, it can be stated that the minimization of to-

tal tardiness is of higher complexity than taking the total completion time
as the objective function. Considering these facts, the following questions
are proposed.

Question 1. What are the boundaries of exact solvability of job shop

problems featuring practically relevant characteristics and constraints?

Question 2. Which instance properties a�ect the solvability of complex

job shop problems?

Since even the basic job shop setting Jm || Cmax is classi�ed as strongly
NP-hard, cf. [58], researchers aim in developing smart heuristic solution
techniques to obtain high quality schedules in reasonable runtime. The
most popular method to approach Jm || Cmax is the shifting bottleneck
heuristic proposed by Adams, Balas and Zawack [2] in 1988. The solution
technique is based on the repeated relaxation of the job shop problem to
single machine problems 1 | ri | Lmax and the stepwise improvement of
the best found solution. Since the relaxed problem 1 | ri | Lmax is proven
to be strongly NP-hard itself and the procedure requires an exact solu-
tion of this subproblem, the computation time of the shifting bottleneck
method might be considerably large especially for real-world instances, cf.
[72]. Unfortunately, this is true for most relaxation-based resolution ap-
proaches of job shop scheduling problems, see for instance [31], so that
neighborhood-based metaheuristics are studied with increasing intensity
during the last decades. Watson et al. [126] and Bierwirth et al. [20] ob-
serve well performing heuristic methods in relation to the characteristics
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of the search space of the basic problem Jm || Cmax arguing that spe-
ci�c search techniques bene�t from the irregularity of the solution space.
Nonetheless, Mattfeld and Bierwirth [92] state in 2004 that the structure
of promising neighborhoods for job shop problems featuring practically rel-
evant due date-based objective functions is not yet known. Additionally,
reliable strategies on how to choose and modify heuristic solution methods
to obtain good results for the job shop problem involving release dates, re-
circulation and blocking constraints do not yet exist. This leads to further
research issues examined in this thesis.

Question 3. Are scheduling-tailored heuristic methods able to produce

high quality schedules for complex job shop scheduling problems?

Question 4. Do well-known permutation-based representation techniques

apply to practically relevant job shop scheduling problems?

Question 5. Can a combination of exact solution methods and scheduling-

tailored heuristics be bene�cial for solving job shop scheduling problems

of practical relevance?

1.4 Methodology and Contribution of this Thesis

The basic job shop scheduling problem Jm || Cmax is a well-understood
and strongly NP-hard combinatorial optimization problem, which can be
solved quite e�ciently by heuristic methods. On the contrary, problem
settings with practically relevant objective functions and properties show
a lack of structured experiments and conclusive remarks on promising so-
lution techniques. To examine a general and complex job shop scheduling
problem, release dates and recirculation are considered as job character-
istics while the absence of intermediate bu�ers is involved as a special
property of the machine environment. Additionally, the minimization of
the total tardiness is chosen as a sparsely-studied customer-oriented opti-
mization criterion. Comprehensive investigations of the complex job shop
scheduling problem Jm | ri, block, recrc |

∑
Ti are performed to analyti-

cally answer the research questions raised in the previous section.

Standard mixed-integer (linear) programming (MIP) software constitutes
a widely-applied tool to accurately solve all types of planning problems
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in practice. Therefore, it is utilized in the following to generate state-of-
the-art benchmark results on the exact resolvability of complex job shop
scheduling problems. Di�erent mathematical formulations for job shop
problems are provided in the literature, whereby advantages and disad-
vantages in structure and obtainable solution quality are not precisely ex-
amined. In this thesis, three well-known models are analyzed and discussed
with regard to the involved sequence-de�ning variables, the required quan-
tities of variables and constraints as well as the performance of a general-
purpose MIP solver. Consequently, the boundaries of exact resolvability
are de�ned based on the best performing mathematical formulation. Fur-
thermore, instance key �gures are proposed for the purpose of relating
the characteristics of the problems to the computational e�ort required to
obtain an exact optimal solution.

A simple but powerful foundation of many heuristic solution approaches
to shop scheduling problems is formed by permutation-based encoding
schemes and operators, which are barely applied to the job shop environ-
ment. Especially the incorporation of blocking constraints yields almost
non-investigated issues. As indicated by the complexity hierarchy in Fig-
ure 1.1, it is not clear to which extend blocking constraints complicate or
simplify a given shop scheduling problem. In the following, occurring re-
dundancy in permutation-based representations of a schedule is discussed
and the problem characteristics causing signi�cant feasibility issues are
detected. It is apparently shown that a job shop problem involving block-
ing constraints is signi�cantly more complex and harder to tackle espe-
cially for construction-based procedures compared to the basic job shop
setting. Nonetheless, the empirically given necessity for smart heuristic
methods is addressed. As the main contribution, this thesis presents a
repairing scheme to construct a feasible schedule from any given permuta-
tion and an even more advanced technique to generate feasible neighboring
solutions de�ned by pairwise interchanges of operations in the schedule.
Correspondingly, three neighborhood structures for the complex job shop
problem under study are proposed. All components are implemented and
tested in metaheuristic frameworks to evaluate the heuristically obtainable
solution quality.
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With regard to the last research question, this thesis pioneers in exam-
ining the advantageousness of a hybrid approach, which integrates MIP
components into a heuristic procedure, for job shop scheduling problems.
To �rst broaden the knowledge on the applicability of di�erent construc-
tion schemes and neighborhoods in the generation of high quality sched-
ules, MIP-based construction mechanisms and neighborhood structures are
tested according to their performance in an iterative improvement scheme
on complex job shop instances. Based on these preliminary experiments,
the most promising techniques are combined in a metaheuristic method
and the performance of the hybrid approach is reported.

1.5 Outline

The conducted research study on solution techniques for the job shop
scheduling problem with blocking constraints and total tardiness mini-
mization is organized as follows:

Chapter 2 motivates the consideration of the problem Jm | ri, block, recrc |∑
Ti by various real-world applications and introduces the essential nota-

tion for the ongoing scienti�c investigation. The job shop scheduling prob-
lem is stepwise explained, starting from the well-studied standard case, im-
plementing several generalizations and extensions. Thereby, the increasing
complexness is examined through �rst observations on occurring feasibility
issues. The set of benchmark instances used in this thesis is set up and
several instance key measures are proposed to quantify properties of the
problems under study.

In Chapter 3, three types of sequence-de�ning variables are discussed with
regard to their applicability in modeling the considered job shop problem.
Due to structural arguments, two promising mathematical formulations
are chosen to be explicitly described and comparatively tested. Before
the performance of a general MIP solver on the models is evaluated, the
relaxation-based lower bounds gain special attention as a key feature of
every MIP technique. Thereafter, extensive computational experiments
are reported and a broad discussion is led concerning the exact solvabil-
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1.5 OUTLINE

ity of complex job shop problems, the performance of the mathematical
formulations and the e�ects of the instance properties.

Driven by an observable necessity to provide scheduling-tailored heuristic
solution approaches, Chapter 4 presents a summary of existing applica-
tions of metaheuristics to job shop scheduling problems as a starting point
for the construction of a permutation-based heuristic. After that, funda-
mental characteristics of list encodings of schedules and necessary modi�-
cations of general ideas are examined in detail. An adapted procedure to
construct a feasible schedule from any given permutation is proposed. To
construct successful heuristic techniques, three neighborhood structures
are set up based on interchanges and shifts of operations in the permuta-
tion. The main appearing di�culty, namely the generation of an extraordi-
nary proportion of infeasible neighboring solutions, is overcome by an ad-
vanced repair technique, which is applied together with the neighborhood
operators from this point on. Several structural properties of the neigh-
borhoods and advantageous e�ects in approaching high quality schedules
are investigated through the implementation in two generic metaheuristics.
Computational results obtained by an iterative improvement scheme and
a simulated annealing procedure are reported and compared. In the evalu-
ation, special emphasize is given to contrasting the results of the heuristics
with the �ndings on the MIP technique as well as to potential bene�ts of
a reduction of the search space led by the objective function.

Following the �ndings on the exact and heuristic solvability of the consid-
ered problem, Chapter 5 addresses a matheuristic solution approach. First,
a literature review on the application of such hybrid techniques in machine
scheduling is provided. Subsequently, a preliminary study is reported to
base the choice of promising components for the proposed method. The
performance of various MIP-based construction schemes and neighbor-
hoods is evaluated through individual numerical experiments. A variable
neighborhood search is used as a framework to combine bene�cial e�ects
of the selected construction and transition mechanisms. Computational
results are discussed with regard to the advantageousness of matheuristic
methods to solve complex job shop problems.
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1 INTRODUCTION

Chapter 6 summarizes the main theoretical and empirical outcomes of the
study. Concluding remarks are given on the scienti�c �ndings and on new
insights gained by the work provided in this thesis.
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2 The Job Shop Scheduling Problem with

Blocking Constraints and Total

Tardiness Minimization

In this chapter, the job shop problem treated in this thesis is theoretically
described by means of di�erent generic concepts, such as the Gantt chart,
disjunctive programming and graph-based representations. At �rst, the
subsequent Section 2.1 indicates the practical relevance of speci�c aspects
of such scheduling tasks. To entirely set up the problem formulation, Sec-
tion 2.2 introduces the general notation of the standard job shop scheduling
problem, while particular features are explained in Section 2.3. An overall
compact description of the key problem Jm | ri, recrc, block |

∑
Ti can

be found in Subsection 2.3.3. Distinct feasibility issues, which are caused
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2 THE BLOCKING JOB SHOP PROBLEM

by the involved blocking restrictions, are highlighted in Section 2.4. To
conclude, Section 2.5 contains the composition of the set of benchmark
instances used in the computational experiments.

2.1 Practical Issues in Production Planning and

Logistics

The job shop scheduling problem shows a wide range of applications in
production planning and logistics. Individual processing requirements of
products refer to the production of highly customized goods in make-to-
order manufacturing systems. In many practical cases, products of this
kind are complex, cost-intensive and huge, such as building components of
vehicles, machines or facilities. Thus, there are economic intentions not to
store intermediate products due to bonded capital and large investments
for providing storage capacity. Additionally, the usage of robotic manufac-
turing and stacking systems as well as concepts like lean production, where
the avoidance of work-in-progress inventory is desired, constitute practi-
cal necessities to study scheduling problems without intermediate bu�ers,
cf. [36], [65] and [89]. The lack of storage capacity causes the blockage
of machines or general processors in the production or transport system.
Real-world examples of job shop scheduling problems without intermediate
bu�ers can be found for instance in steel manufacturing [100], automated
warehousing [64] and aircraft scheduling [45].

Another related �eld, in which the absence of bu�ers occurs, is railbound
logistics. Scheduling trains on track segments of a railway network can be
interpreted as scheduling jobs on machines with prede�ned routes, cf. for
instance [46], [77], [78], [83], [84] and [115]. In this problem setting, there is
no other possibility to let a train leave a track segment after traversal than
entering a consecutive track. Given the case that this next segment is still
occupied by another vehicle, the train will block the current track segment
until it can continue its journey. The idea of solving train scheduling
instances as job shop problems is initially published by Szpigel [115] in
1973 and followed by several other authors, cf. [46], [33], [78], [83], [84]
and [134]. There is a strong need to generate good solutions to this complex
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2.2 THE STANDARD JOB SHOP SCHEDULING PROBLEM

scheduling task, since companies operating in the �eld of railbound logistics
take intensive investments and, thus, are encouraged to run their assets
e�ciently, cf. [83]. Furthermore, there are many people, such as planners
on a tactical level and passengers, a�ected by the planning decisions and
requesting well realizable schedules, [46] and [115]. The concept of job shop
scheduling o�ers a well-structured theoretical basis, which is expendable
by various problem-speci�c aspects, cf. [33].

Both areas mentioned above feature a high degree of customer orientation.
Nowadays, satisfaction and loyalty of customers is a key facet of success-
fully operating a manufacturing or transport business. Considering the
production of goods, there may exist contractually agreed delivery dates,
out-of-stock costs and clients expecting a reliable delivery noti�cation, cf.
[76]. Hence, the consideration of generic �ow time-oriented objective func-
tions does not completely re�ect current economic purposes. With regard
to railbound logistics, passengers expect their trains to arrive and depart
on time and planners look for an accurate execution of existing timetables
so that synchronized events proceed without disruption. Consequently,
meeting given schedules and avoiding delays is of high practical relevance
in aircraft and train scheduling, cf. [45], [46], [99], [110], [111], [115] and
[134]. For these reasons, researchers focus increasingly on approaching
tardiness-based objectives to account for customer satisfaction and relia-
bility in existing optimization problems, cf. [78], [92], [123] and [133].

2.2 Introducing the Standard Job Shop

Scheduling Problem and its Notation

This section describes the basic structure of the considered scheduling
problem theoretically and introduces the main notation applied in this
thesis. The following explanations constitute a compact characterization
of the standard job shop scheduling problem, which is provided similarly
by various authors in the literature. Comprehensive expositions of di�erent
aspects of the general problem are given for instance by Brucker and Knust
[32], Jaehn and Pesch [72] and by Pinedo [102].
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2 THE BLOCKING JOB SHOP PROBLEM

The standard job shop scheduling problem involves a set of n jobs J = {Ji |
i = 1, . . . , n} and a set of m machines M = {Mk | k = 1, . . . ,m}. Every
instance can easily be characterized by its size (n,m). The continuous
processing of a job Ji on a machine Mk de�nes an operation. Thus, the
number of operations of a job expresses the number of required processing
steps, which is indicated by ni for Ji ∈ J . In the standard problem setting,
every job is assumed to require processing on every machine exactly once,
so that ni = m holds for all jobs. The symbol Oi,j indicates the j-th
operation of job Ji with j = 1, . . . , ni. All processing steps of a job are
pooled in a set of operations Oi. The overall set of operations is de�ned
by O =

⋃
Ji∈J O

i, where the total number of operations is stated as |O| =
nop. With regard to the standard problem setting, the total number of
operations can be speci�ed by nop = n ·m.

An important aspect of the characterization of an instance is the techno-
logical route TRi, which is given for every job Ji ∈ J as a sequence of
machines. Thereby, the required machine is de�ned for every operation
Oi,j ∈ Oi and sets Ωk of operations being processed on the same machine
can be set up for all Mk ∈ M. There exist two main quantities related
to the operations in the job shop scheduling problem. First, for every
operation Oi,j ∈ O, a processing time pi,j ∈ Z≥0 is given. It indicates
the number of time units that are required to process the operation. Sec-
ond, starting times si,j , which mark the beginning of the processing of the
corresponding operation Oi,j , are determined for all operations by the con-
struction of a schedule. Since a job cannot be processed by more than one
machine at a time, the starting times of the operations need to be chosen
so that the prede�ned processing sequence Oi,1 → Oi,2 → · · · → Oi,ni can
be realized without overlapping for each job Ji ∈ J .

As an example for the standard job shop scheduling problem, the instance
SJSP is considered involving the set of jobs J = {J1, J2, J3} and the set
of machinesM = {M1,M2,M3}. The technological routes of the jobs and
the processing times of the operations are given as follows:

� TR1: M1 →M2 →M3

� TR2: M3 →M1 →M2

� TR3: M2 →M3 →M1

p1,1 = 2, p1,2 = 1, p1,3 = 3

p2,1 = 1, p2,2 = 3, p2,3 = 2

p3,1 = 2, p3,2 = 4, p3,3 = 1

16



2.2 THE STANDARD JOB SHOP SCHEDULING PROBLEM

O1,1

O1,2

O1,3O2,1

O2,2

O2,3O3,1

O3,2

O3,3

M3

M2

M1

t0 1 2 3 4 5 6 7 8 9

Figure 2.1: Gantt chart representation of a feasible schedule for instance SJSP

Accordingly, the sets of operations requiring the same machine can be
derived as Ω1 = {O1,1, O2,2, O3,3}, Ω2 = {O1,2, O2,3, O3,1} and Ω3 =

{O1,3, O2,1, O3,2}.

Figure 2.1 shows a Gantt chart representation of a feasible schedule for
SJSP. Observing feasibility, the operations are arranged on the machines,
so that the technological routes, the machine requirements and the process-
ing sequences of the jobs are satis�ed. The Gantt chart illustrates the ear-
liest possible starting times for all operations as one possible starting time
assignment referring to the given operation sequences on the machines.
Since the most common optimization criterion for the standard job shop
scheduling problem is regular, namely the minimization of the makespan
Cmax (see Section 1.2), unforced idleness of a machine can never improve
the schedule with regard to this measure. Thus, a schedule is generally and
uniquely described by the operation sequences on the machines, whereby
the starting times of the operations are automatically de�ned as the ear-
liest possible points in time for the processing to begin. The makespan of
the schedule illustrated in Figure 2.1 is determined by

Cmax = max {Ci | Ji ∈ J } = max {C1, C2, C3} = max{9, 7, 7} = 9.

Since the standard job shop scheduling problem involves sequencing de-
cisions for all pairs of operations requiring the same machine, it can be
described through a disjunctive program as shown in [2]. The formulation
is based on the well-known disjunctive graph representation for machine
sequencing problems introduced by Balas [10] in 1969. The following op-
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2 THE BLOCKING JOB SHOP PROBLEM

timization program models the determination of a feasible schedule with
minimal makespan for a standard job shop scheduling instance.

Basic Disjunctive Programming Formulation

Cmax → min!�- to shift objective to the left, (2.1)

subject to

si,j + pi,j ≤ si,j+1 Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J
(2.2)

Cmax ≥ si,ni + pi,ni Ji ∈ J (2.3)

si′,j′ ≥ si,j + pi,j ∨ si,j ≥ si′,j′ + pi′,j′ Oi,j , Oi′,j′ ∈ Ωk,Mk ∈M
(2.4)

si,j ≥ 0 Oi,j ∈ O (2.5)

The minimization of the makespan, indicating the optimization criterion,
is given in (2.1). Inequality (2.2) implements the prede�ned processing
sequences of the operations of the same job Ji. The makespan Cmax is
determined with Inequality (2.3) as the maximum completion time of all
jobs. Constraint (2.4) incorporates a pair of disjunctive inequalities for
every pair of operations Oi,j and Oi′,j′ that requires processing on the
same machine Mk. Either the precedence relation Oi,j → Oi′,j′ holds on
machine Mk and implies si′,j′ ≥ si,j + pi,j or si,j ≥ si′,j′ + pi′,j′ is to be
true implementing the sequencing decision Oi′,j′ → Oi,j . Inequality (2.5)
assures the starting times of the operations to be non-negative. With this,
the standard job shop scheduling problem is well described.

2.3 Generalizing and Extending the Standard Job

Shop Scheduling Problem

Several adaptations of the standard job shop scheduling problem referring
to the practically relevant issues discussed in Section 2.1 are explained in
the following. Section 2.3.1 generalizes the standard problem with regard
to the technological routes and release dates of the jobs. In Section 2.3.2,
the problem is extended by job due dates to implement a tardiness-based
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objective function. The generic assumption of in�nite bu�ers in the system
is dropped and the absence of storage capacity is considered. To illustrate
the properties of the problem, the disjunctive graph representation is used.
For general explanations on the structure of directed and undirected graphs
as well as related concepts such as paths and cycles, the reader is referred to
the books of Diestel [49] and Blazewicz et al. [24]. To summarize, Section
2.3.3 contains a compact description of the problem Jm | ri, recrc, block |∑
Ti considered in this thesis.

2.3.1 Generalizations

In the standard job shop scheduling problem, every job Ji ∈ J is processed
on every machineMk ∈M exactly once. This constitutes a special type of
technological routes, since ni = m holds for all jobs and no two operations
of the same job are processed on the same machine. In the following,
more general technological routes are considered, which di�er from the
standard case in two aspects. First, a job Ji does not necessarily need
to visit all machines Mk ∈ M. Second, a job Ji may be processed more
than once on a particular machine Mk. Thus, the so-called recirculation

of jobs, cf. [32] and [102], is allowed with one exception. Two consecutive
operations Oi,j and Oi,j+1 of the same job Ji shall not be de�ned to require
the same machine Mk, since they can be combined and interpreted as one
single operation in this case. Due to this generalization, the disjunctive
constraint (2.4) in the basic mathematical formulation presented in Section
2.2 requires an additional condition. These types of sequencing constraints
do only need to be set up for operationsOi,j andOi′,j′ belonging to di�erent
jobs Ji and Ji′ , since the ordering of pairs of operations of the same job is
already de�ned by the processing sequence.

In the standard job shop scheduling problem, moreover, all jobs Ji ∈ J
are available at the beginning of the planning horizon. This refers to given
release times ri = 0 for all Ji ∈ J . In the following, the problem is gen-
eralized by considering arbitrary release dates ri ∈ Z≥0. To integrate this
generalization into the disjunctive programming formulation given in Sec-
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2 THE BLOCKING JOB SHOP PROBLEM

tion 2.2, inequalities of the following type is added to the set of constraints.

si,1 ≥ ri Ji ∈ J (2.6)

The restriction requires that the �rst operation of every job Oi,1 is not
allowed to start earlier than the release date of the job. Since the release
times of the jobs are assumed to be non-negative and the processing times
of all operations are de�ned to be positive, the non-negativity constraint
of the starting times of all operation given in (2.5) becomes redundant and
can be excluded. To correctly implement the given generalizations, the
following assumptions are taken.

Additional Assumptions

H The release dates ri are deterministic and given in advance as non-
negative integers for all Ji ∈ J .

H The processing times pi,j are deterministic and given in advance as
strictly positive integers for all Oi,j ∈ O.

H No two consecutive operations Oi,j and Oi,j+1 require the same ma-
chine.

In accordance with the disjunctive programming formulation, the job shop
problem can be illustrated by the well-known disjunctive graph model, cf.
for instance [2], [10], [32], [102]. Applying the notation given by Brucker
and Knust in [32], a disjunctive graph G = (V,E,A) is de�ned as a mixed
graph with

• a set V that is composed of nop+2 nodes representing all operations
Oi,j ∈ O, an arti�cial source 0 and an arti�cial sink ∗,

• a set E that consists of (undirected) edges representing all pairs of
operations Oi,j and Oi′,j′ with i 6= i′ requiring the same machine
Mk ∈M and

• a set A that involves (directed) arcs expressing prede�ned precedence
relations between all pairs of operations Oi,j and Oi,j+1 of the same
job as well as between the source node 0 and all �rst operations
Oi,1 and between the sink node ∗ and all last operations Oi,ni for all
Ji ∈ J .
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0 ∗

Oi,1 Oi,2 Oi,3

Oi′,1 Oi′,2 Oi′,3

Figure 2.2: Disjunctive graph representation of the instance GJSP1

As an example, consider the general instance GJSP1 with two jobs Ji and
Ji′ consisting of three operations each and four machines Mk1 ,Mk2 ,Mk3

and Mk4 . The corresponding disjunctive graph G = (V,E,A) is given in
Figure 2.2. The node set V includes eight nodes and the gray arcs illustrate
the set of arcs A. There exist two directed 0 − ∗−paths in the graph G
representing the processing sequences of Ji and Ji′ , respectively. The edge
set E consists of the two edges {Oi,2, Oi′,2} and {Oi,1, Oi′,3}, which indicate
that the two arbitrarily chosen pairs of operations Oi,2 and Oi′,2 as well
as Oi,1 and Oi′,3 require the same machines. Assume that the operations
Oi,2 and Oi′,2 need to be processed on machine Mk1 , while the operations
Oi,1 and Oi′,3 require machine Mk2 . Further, let the operation Oi′,1 be
processed on machine Mk3 and the operation Oi,3 on machine Mk4 .

The existence of edges in the disjunctive graph shows the existence of
pairs of operations that require an ordering decision. Thus, a complete
schedule, for which the operation sequences on the machines are properly
determined, refers to a disjunctive graph, where the set of edges is empty
and the initial set of arcs is extended by one sequence-de�ning arc for each
pair of operations requiring the same machine. In particular, the disjunc-
tive graph represents a feasible schedule for a job shop scheduling problem
if and only if it corresponds to an acyclic directed graph, cf. [32] and [102].
This implies that in the determination of a feasible schedule, every edge
needs to be replaced by exactly one arc, so that the resulting graph is
acyclic. Figure 2.3 sketches a feasible schedule for GJSP1 assuming equal
processing times for all operations. The operation sequences Oi,2 → Oi′,2
and Oi,1 → Oi′,3 are implemented on the machines Mk1 and Mk2 , respec-
tively. The corresponding acyclic graph is shown in Figure 2.4. In contrast
to the disjunctive graph representation of the problem in Figure 2.2, the
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Oi,1

Oi,2

Oi,3

Oi′,1

Oi′,2

Oi′,3

Mk4

Mk3

Mk2

Mk1

t

Figure 2.3: Gantt chart representation of a feasible schedule for the instance

GJSP1

0 ∗

Oi,1 Oi,2 Oi,3

Oi′,1 Oi′,2 Oi′,3

Figure 2.4: Disjunctive graph representation of the feasible schedule for the

instance GJSP1

set of edges E is empty and the set of arcs A does additionally include the
arcs (Oi,2, Oi′,2) and (Oi,1, Oi′,3).

For practical applications of job shop scheduling algorithms, an e�cient
implementation of the underlying graph structure is of high importance.
However, since this is not the main focus of this thesis, the reader is referred
to [26] for further information.

The generalized job shop scheduling instance GJSP2 is introduced in the
following. It di�ers from the standard instance SJSP given in Section
2.2 and the general instance GJSP1 in the occurrence of recirculation,
di�erent numbers of operations of the jobs and non-zero release dates.
GJSP2 involves �ve jobs J1, . . . , J5 and three machines M1,M2,M3 and
will repeatedly be used throughout this study for di�erent explanations.
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Generalized Job Shop Scheduling Instance GJSP2

set of jobs J = {Ji | i = 1, . . . , 5}
set of machines M = {Mk | k = 1, 2, 3}

Job Ji Technological route TRi ni ri pi,j for all Oi,j ∈ Oi

� J1
� J2
� J3
� J4
� J5

M1 →M3

M2 →M3

M1 →M2 →M3

M2 →M1 →M2

M3 →M2

2

2

3

3

2

2

0

2

3

0

p1,1 = 3, p1,2 = 1

p2,1 = 1, p2,2 = 2

p3,1 = 2, p3,2 = 4, p3,3 = 1

p4,1 = 1, p4,2 = 2, p4,3 = 3

p5,1 = 2, p5,2 = 2

The instance incorporates three jobs J1, J2 and J5 that do not require
processing on each machine of the machine set. Furthermore, the job J4

needs to be processed twice on machineM2, so that its technological route
involves a recirculation. The release dates of the jobs J1, J3 and J4 are
strictly greater than zero, so that the processing of these jobs is not allowed
to start at the beginning of the planning horizon t = 0.

Figure 2.5 shows the disjunctive graph G = (V,E,A) representing instance
GJSP2. The set of nodes V consists of 14 nodes, which indicate all oper-
ations Oi,j ∈ O as well as the source 0 and the sink ∗. The set of arcs A
is formed by the gray-colored arcs implementing the processing sequences
of the jobs. Consequently, every job Ji ∈ J is illustrated by a directed
0 − ∗−path in the mixed graph G, whereby these paths are pairwise dis-
joint. The set of edges E contains 18 elements depicting the sequencing
decisions to be made on the machines. There exists one pair of operations
O4,1 and O4,3 that requires the same machine but is not connected by an
edge, since these operations belong to the same job and their ordering is
prede�ned. To improve the perceivability of Figure 2.5, the sets of opera-
tions Ωk and their corresponding edges are highlighted in green and with
dotted lines for machine M1, in blue and with solid lines for machine M2

and in red and with dashed lines for machine M3.

A feasible schedule for the given job shop scheduling problem is illustrated
in a Gantt chart in Figure 2.6. The release dates of the jobs are indicated
by black triangles on top of the diagram. Since the operation sequences
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O5,1
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O4,2

O3,3

O5,2

O4,3

� M1 � M2 � M3

Figure 2.5: Disjunctive graph representation of the instance GJSP2

O1,1O3,1 O4,2

O4,1 O3,2O2,1 O5,2O4,3

O1,2O3,3O5,1O2,2M3

M2

M1
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H
r2, r5

H
r1, r3

H
r4

Figure 2.6: Gantt chart of a feasible schedule for GJSP2
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0 ∗
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O5,1

O2,2

O4,2
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O5,2

O4,3

M1 M2 M3

Figure 2.7: Disjunctive graph representation of the feasible schedule of GJSP2

O3,1 → O4,2 → O1,1 on machine M1, O2,1 → O4,1 → O3,2 → O4,2 → O5,2

on machine M2 and O2,2 → O5,1 → O3,3 → O1,2 on machine M3 satisfy
the processing sequences and technological routes, the earliest starting
time schedule can be set up with regard to these release dates. Due to the
ordering requirements, there are idle times on all three machines occurring
and in accordance to the assumption stated in Section 1.2 the jobs J4 and
J5 are stored in an in�nite bu�er from t = 6 to t = 8 and from t = 5 to t =

11, respectively. Transferring the feasible schedule to the disjunctive graph,
all edges of the set E are replaced by arcs following the operation sequences
on the machines given above. The resulting acyclic directed graph is shown
in Figure 2.7, where the arcs referring to precedence relations on the same
machine are again marked by dotted, solid and dashed lines.

2.3.2 Extensions

In the standard job shop scheduling problem, the most common optimiza-
tion criterion is the minimization of the makespan Cmax. With regard
to practically relevant aspects like customer satisfaction and contractually
agreed delivery dates, see Section 2.1, it is reasonable to extend the prob-
lem by prede�ned due dates and to consider a tardiness-based objective
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Ci

Ti

di

Figure 2.8: The tardiness of a job as a regular performance measure

function. Therefore, a due date di ∈ Z≥0 is additionally given for each job
Ji ∈ J and the minimization of the total tardiness is considered as the
optimization criterion in this thesis. The following assumption regarding
the due dates of the jobs is added to the description of the problem.

Additional Assumption

H The due dates di are deterministic and given in advance as non-
negative integers for all Ji ∈ J .

The total tardiness is determined as the summation of the tardiness Ti of
all jobs Ji ∈ J , where

Ti = max{Ci − di, 0}.

This implies that a job Ji will only be considered to be tardy, if its comple-
tion time Ci, which refers to the end of the processing of its last operation
Oi,ni , is strictly greater than its due date di. The relationship between
the completion time, the due date and the tardiness of a job is graphically
shown in Figure 2.8, cf. [72] and [102]. It can be observed that the tardiness
Ti is a monotonically non-decreasing function in the completion time Ci for
every Ji ∈ J . Thus, the total tardiness is monotonically non-decreasing in
the total completion time of all jobs. This reasons the statement, shortly
given in Section 1.2, that the minimization of total tardiness constitutes
a regular performance measure, cf. [32], [72] and [102]. Consequently, the
operation sequences on the machines and the earliest starting times of the
operations can substitutively be used as unique descriptions of a schedule
for the job shop scheduling problem with total tardiness minimization.
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The considered extension is implemented in the disjunctive programming
formulation of the job shop scheduling problem in the following way.

Extended Disjunctive Programming Formulation

∑
Ji∈J

Ti → min!�� to shift objective to the left, f (2.7)

subject to

Ti ≥ Ci − di Ji ∈ J (2.8)

Ti ≥ 0 Ji ∈ J (2.9)

Ci = si,ni + pi,ni Ji ∈ J (2.10)

si,1 ≥ ri Ji ∈ J (2.11)

si,j + pi,j ≤ si,j+1 Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J
(2.12)

si′,j′ ≥ si,j + pi,j ∨ si,j ≥ si′,j′ + pi′,j′ Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

Mk ∈M (2.13)

The minimization of the total tardiness is stated as the optimization crite-
rion in (2.7). The Inequalities (2.8) and (2.9) depict a linear formulation of
the maximum operator in the determination of the tardiness Ti for Ji ∈ J .
Equation (2.10) speci�es the completion times Ci for all jobs Ji ∈ J and
the integration of the general release dates ri ∈ Z≥0 is given by Inequal-
ity (2.11). The constraints (2.12) and (2.13) implement the processing
sequences of the jobs and the disjunctive starting time relations for pairs
of operations of di�erent jobs requiring the same machine, respectively.
Recalling the arguments given in Section 2.3.1, an explicit formulation of
the non-negativity constraint on the starting times si,j for all operations
Oi,j ∈ O is not required due to (2.11) and (2.12).

The instance GJSP2 presented in Section 2.3.1 is extended by the following
due dates:

d1 = 7, d2 = 4, d3 = 11, d4 = 11, d5 = 5.

Evaluating the feasible schedule for GJSP2 illustrated in Figure 2.6, the
completion times of the jobs are determined with

C1 = 10, C2 = 3, C3 = 9, C4 = 11, C5 = 13.
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Figure 2.9: Illustration of the total tardiness of a feasible schedule for GJSP2

Figure 2.9 shows the Gantt chart of this feasible schedule, whereby the
due dates are additionally indicated by black triangles below the graph.
Furthermore, the processing times of the jobs are represented row-wise by
colored line segments at the bottom of the �gure. Dashed segments express
a processing of the job prior to its due date, while solid segments visualize
processing periods taking place when the job is already tardy. Thus, if the
processing of a job Ji is indicated by an entire dashed line, the job will be
completed before or exactly at its due date and Ci − di ≤ 0 holds. This is
true for the jobs J2, J3 and J4 in the given schedule. Consequently, these
jobs are completed on time with T2 = T3 = T4 = 0. The processing of
the jobs J1 and J5 is started prior to their due dates, but they are not
completed by then. Job J1 is tardy by three units of time, T1 = 3, since
its completion time is C1 = 10, while its due date d1 = 7 is given. For
job J5, the tardiness is equally determined with T5 = 8. Here, the total
tardiness of all jobs can graphically be interpreted as the summation of
all solid line segments in the diagram. The objective function value of the
given schedule is de�ned as follows.

∑
Ji∈J

Ti = T1 + T2 + T3 + T4 + T5 = 3 + 0 + 0 + 0 + 8 = 11
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Figure 2.10: Illustration of a job Ji blocking a machine Mk

For a graphical integration of the total tardiness calculation into the dis-
junctive graph representation, the reader is referred to Kuhpfahl and Bier-
wirth [76] and Pinedo [102] among others.

Another important practical aspect, which leads to an extension of the job
shop scheduling problem, is the absence of intermediate storage capacity
in the considered system, see Section 2.1. Since the existence of in�nite
bu�ers constitutes a basic assumption in machine scheduling, cf. Section
1.2, this aspect induces additional restrictions. The basic assumption is
excluded and replaced by the following statement.

Replaced Assumption

H There exist no intermediate bu�ers for jobs to be stored in between
their processing sequence.

Thus, the considered job shop scheduling problem is extended by so-called
blocking constraints, cf. [32] and [102]. If the processing of an operation
Oi,j is completed on Mk but the consecutively required machine Mk′ is
occupied, the job Ji will block the current machineMk until the succeeding
operation Oi,j+1 can be processed on machine Mk′ . Consequently, the
processing of the machine successor of operation Oi,j cannot start earlier on
machineMk than the processing of its job successor Oi,j+1 on machineMk′ .
Figure 2.10 illustrates the described generic situation of a blocking job shop
scheduling problem. The job Ji, drawn in blue, blocks the machineMk for
two units of time, since the processing of operation Oi,j is completed at
t = t̄, but the consecutively required machineMk′ is occupied by operation
Oi′,j′ until the point t̄+ 2. The blocking period is indicated by a hatched
area in the Gantt chart. As a consequence, the starting time of operation
Oi′′,j′′ on machineMk needs to be equal to or greater than the starting time
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2 THE BLOCKING JOB SHOP PROBLEM

of operation Oi,j+1 on machine Mk′ . This induced starting time relation
between two operations of di�erent jobs on di�erent machines constitutes
the actual blocking constraint. According to the unchanged structure of
the sequencing problem, starting time relations of this type are added
as disjunctions to the set of constraints in the disjunctive programming
formulation for each pair of operations of di�erent jobs requiring the same
machine. If one of the considered operations constitutes the last operation
of its job, it will depend on the chosen ordering whether a true starting
time relation will be introduced. The resulting inequalities are set up as
two classes of disjunctive constraints in the following way.

si′,j′ ≥ si,j+1 ∨ si,j ≥ si′,j′+1 Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

j 6= ni, j
′ 6= ni′ ,Mk ∈M (2.14)

si′,j′ ≥ 0 ∨ si,ni ≥ si′,j′+1 Oi,ni , Oi′,j′ ∈ Ωk with i 6= i′,

j′ 6= ni′ ,Mk ∈M (2.15)

Since these blocking restrictions extend the constraint set of the considered
problem, the schedule of instance GJSP2 presented in the Figures 2.6
and 2.9 is not necessarily feasible for the blocking job shop scheduling
problem. As observed in Section 2.3.1, the jobs J4 and J5 are stored in an
intermediate bu�er for di�erent periods of time. According to the replaced
assumption, this bu�er does not exist for the blocking job shop case and
the schedule is infeasible with regard to the blocking constraints.

Considering the �rst storing necessity, the jobs J1, J3 and J4 on the ma-
chines M1 and M2 are involved. The operation O4,2 is completed at t = 6

on machineM1. The successor operation O4,3 requires machineM2, which
is still occupied by operation O3,2. Thus, job J4 will block machine M1

until the processing of operation O3,2 is �nished at t = 8 and the starting
time of operation O1,1 needs to be shifted to this time. Here, the given
operation sequences on the machines are feasible with regard to blocking
constraints, but an adaption of the earliest starting times of the operations
is required. A partial schedule exclusively including the jobs J1, J3 and J4

and indicating the blocking time on machine M1 is shown in Figure 2.11.
The completion time of job J1 increases by two units of time to C1 = 12.
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Figure 2.11: Partial schedule for GJSP2 with blocking constraints

Regarding the second storing necessity of the schedule in Figure 2.9, the
jobs J3, J4 and J5 are to be observed on the machines M2 and M3. Op-
eration O5,1 is completed on machine M3 at t = 5 and the consecutively
required machine M2 is occupied by operation O3,2. Due to the given
operation sequence O3,2 → O4,3 → O5,2 on machine M2, job J5 cannot
directly follow operation O3,2 but needs to wait further for operation O4,3

to be processed. However, the processing of operation O4,3 on machineM2

can only be started, when the processing of operation O3,3 is started on
machine M3, which is still blocked by job J5. In this case, an adaption of
the earliest starting times of the operations is not su�cient to construct a
feasible schedule for the blocking job shop scheduling problem. The partial
operation sequences O5,1 → O3,3 on machine M3 and O3,2 → O4,3 → O5,2

on machine M2 are infeasible with regard to blocking constraints. More
precisely, they imply the following cyclic and intransitive starting time
relations.

(s3,3 ≥ s5,2 ≥ s4,3 + p4,3) ∧ (s4,3 ≥ s3,3)

This structural feasibility issue is explained in detail in Section 2.4 and
an algorithmic procedure to obtain feasible schedules for the blocking job
shop scheduling problem is developed throughout this thesis. Nonetheless,
it is clear at this point that a change in the operation sequences on the
machines is required to construct a feasible schedule for instance GJSP2.
Here, the adaptation of the operation sequence on machine M3 to O2,2 →
O3,3 → O5,1 → O1,2 is su�cient. The resulting feasible schedule is shown
in Figure 2.12. The completion time of job J1 increases compared to the
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Figure 2.12: A feasible schedule for the instance GJSP2 with blocking con-

straints

problem formulation without blocking constraints, while the completion
times of the other jobs remain unchanged. The total tardiness of the
feasible schedule for GJSP2 with blocking constraints is determined as
follows. ∑

Ji∈J
Ti = T1 + T2 + T3 + T4 + T5 = 5 + 0 + 0 + 0 + 8 = 13

To graphically implement the structural interdependencies induced by
blocking constraints in the job shop scheduling problem, the generic dis-
junctive graph representation requires adaptations. While the basic dis-
junctive constraints given in (2.13) only include the starting and processing
times of the considered operations Oi,j and Oi′,j′ , the disjunctive block-
ing constraints stated in (2.14) and (2.15) involve the starting times of at
most four operations Oi,j , Oi,j+1, Oi′,j′ and Oi′,j′+1. Thus, the represen-
tation of disjunctive blocking constraints through edges between pairs of
operations, as it is shown for the basic disjunctive constraints in Figure
2.2, is not possible. Masics and Pacciarelli �rstly introduce an alternative

graph representation for the blocking job shop scheduling problem in [87],
which is used for graph-based explanations in the following, cf. also [32].
The alternative graph G = (V,A) is directed, since all kinds of disjunctive
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0 ∗
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Figure 2.13: Arc-based disjunctive graph representation of the instance GJSP1

constraints are not illustrated by edges but by pairs of arcs. Depicting
disjunctive constraints with anti-parallel arcs is generally presented by
Pinedo [102] for the job shop scheduling problem without blocking con-
straints. Considering the general instance GJSP1 introduced in Section
2.3.1, the basic disjunctive constraints involving the pairs of operations
Oi,2 and Oi′,2 as well as Oi,1 and Oi′,3 are expressed by pairs of so-called
disjunctive arcs, cf. [32] and [102], as shown in Figure 2.13. Additionally,
the following blocking constraints are introduced.

si,2 ≥ si′,3 ∧ si′,2 ≥ si,3 for Oi,2 and Oi′,2 on Mk1 with i 6= i′

si′,3 ≥ si,2 ∧ si,1 ≥ 0 for Oi,1 and Oi′,3 on Mk2 with i 6= i′

Figure 2.14 depicts the arc-based disjunctive graph for GJSP1, where all
pairs of disjunctive constraints implementing starting time relations are
included. With regard to the operations Oi,2 and Oi′,2 both requiring
machine Mk1 , it can be observed that the basic disjunctive starting time
relation indicated by solid arcs becomes redundant through the insertion
of the disjunctive blocking constraint marked by the dotted arcs. Thus,
the basic disjunctive constraint can be replaced by the disjunctive block-
ing constraint, cf. [32] and [87]. Considering the operations Oi,1 and Oi′,3
processed on machineMk2 , there is only one starting time relation induced
by the blocking constraint and given as a dashed arc, since operation Oi′,3
constitutes the last operation of job Ji′ . Hence, the solid arc (Oi,1, Oi′,3)

becomes redundant due to the dashed blocking constraint arc, while the
other solid arc (Oi′,3, Oi,1) remains active. Altogether, there exists exactly
one pair of arcs, named alternative arcs, cf. [32] and [87], for each pair of
operations requiring the same machine. The resulting alternative graph for
the general instance GJSP1 is shown in Figure 2.15. The potential sequenc-
ing decisions concerning the operations Oi,2 and Oi′,2 requiring machine
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Figure 2.14: Illustration of all pairs of disjunctive arcs for GJSP1

0 ∗

Oi,1 Oi,2 Oi,3

Oi′,1 Oi′,2 Oi′,3

Oi,2 and Oi′,2 on Mk1

Oi,1 and Oi′,3 on Mk2

Figure 2.15: Alternative graph representation of the general instance GJSP1

Mk1 are drawn as dotted arcs, while the potential orderings induced by the
operations Oi,1 and Oi′,3 requiring machineMk2 are plotted as dashed arcs.
Similarly to the disjunctive graph representation, a schedule is de�ned by
a selection of exactly one arc out of every pair of alternative arcs, cf. [32]
and [87]. Speci�c properties of selections de�ning feasible schedules are
discussed in the subsequent section on aspects of feasibility.

Figure 2.16 shows the alternative graph G = (V,A) of the instance GJSP2
of the blocking job shop scheduling problem introduced in Section 2.3.1.
Equivalent to the disjunctive graph depicted in Figure 2.5, the set V of
the alternative graph contains 14 nodes. The set of arcs A of the alter-
native graph involves 17 arcs implementing the processing sequences and
36 alternative arcs. A similar graph-based representation for the blocking
job shop scheduling problem additionally incorporating set-up and transfer
times can be found in [34], [36] and [64].
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Figure 2.16: Alternative graph representation of the instance GJSP2

2.3.3 The Considered Blocking Job Shop Scheduling

Problem with Total Tardiness Minimization

Combining all aspects explained in the foregoing Sections 2.2, 2.3.1 and
2.3.2, the optimization problem treated in this thesis is the blocking job

shop scheduling problem with total tardiness minimization (BJSPT), where
release dates are given for all jobs and recirculation is allowed. Applying
the well-known three �eld notation introduced by Graham et al. in [62],
the problem is characterized by

Jm | ri, recrc, block |
∑

Ti.

The BJSPT involves sequencing decisions, which induce starting time re-
strictions for all pairs of operations of di�erent jobs requiring the same
machine. These constraints are of a disjunctive structure, so that the opti-
mization program is described by a disjunctive programming formulation.

Disjunctive Programming Formulation of the BJSPT

∑
Ji∈J

Ti → min!to shift objective to the left (2.16)
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2 THE BLOCKING JOB SHOP PROBLEM

subject to

Ti ≥ Ci − di Ji ∈ J (2.17)

Ti ≥ 0 Ji ∈ J (2.18)

Ci = si,ni + pi,ni Ji ∈ J (2.19)

si,1 ≥ ri Ji ∈ J (2.20)

si,j + pi,j ≤ si,j+1 Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J
(2.21)

si′,j′ ≥ si,j + pi,j ∨ si,j ≥ si′,j′ + pi′,j′ Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

Mk ∈M (2.22)

si′,j′ ≥ si,j+1 ∨ si,j ≥ si′,j′+1 Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

j 6= ni, j
′ 6= ni′ ,Mk ∈M

(2.23)

si′,j′ ≥ 0 ∨ si,ni ≥ si′,j′+1 Oi,ni , Oi′,j′ ∈ Ωk with i 6= i′,

j′ 6= ni′ ,Mk ∈M (2.24)

The optimization criterion, namely the minimization of the total tardi-
ness, is given in (2.16). The tardiness Ti is determined by the Inequalities
(2.17) and (2.18) for every job Ji ∈ J , while the required completion time
Ci of each job is de�ned in (2.19). Inequality (2.20) assures the start of
the processing of a job Ji not to be earlier than its release date ri. The
processing sequence of every job is implemented by the Inequality (2.21)
for all Ji ∈ J . The �rst set of disjunctive constraints, given in (2.22),
incorporates the starting time relations for each pair of operations of dif-
ferent jobs requiring the same machine, when one of the potential orderings
Oi,j → Oi′,j′ and Oi′,j′ → Oi,j is realized. The blocking constraints are
similarly stated by disjunctive inequalities in (2.23) and (2.24). Constraint
(2.23) declares that the processing of an operation cannot start earlier on
a machine than the beginning of the processing of the job successor of its
machine predecessor, provided that the job successor exists. In case that
one operation of the pairing constitutes the last operation of its job, there
is only one actual starting time relation de�ned, as shown in (2.24). Since
the release dates ri and the processing times pi,j are assumed to be given
as non-negative and strictly positive integers for all Oi,j ∈ O, Ji ∈ J , re-
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spectively, an explicit non-negativity constraint on the variables involved
is not required.

The presented BJSPT is discussed and solved throughout this thesis taking
the following assumptions.

Assumptions for the BJSPT

1. There exist �nite numbers of jobs n and machines m.

2. Every job Ji ∈ J can only be processed on one machine at a time.

3. Every machine Mk ∈M can only process one job at a time.

4. Every job Ji ∈ J has a prede�ned processing sequence and techno-
logical route.

5. The preemption of operations is not allowed.

6. The release dates ri and the due dates di are deterministic and given
in advance as non-negative integers for all Ji ∈ J .

7. The processing times pi,j are deterministic and given in advance as
strictly positive integers for all Oi,j ∈ O.

8. No two consecutive operations Oi,j and Oi,j+1 belonging to the same
job Ji require the same machine.

9. There exist no intermediate bu�ers for jobs to be stored in between
their processing sequence.

2.4 Aspects of Feasibility

The occurrence of blocking constraints in job shop scheduling necessitates
a detailed consideration of the properties that de�ne a schedule to be
feasible. While for job shop problems without blocking constraints the
requirement of an acyclic disjunctive graph representation is su�cient to
determine a feasible schedule, this is not directly applicable for the BJSPT.
Consider the feasible schedule given in Figure 2.17 for the general instance
GJSP1 introduced in Section 2.3.1. This schedule is feasible for the job
shop problem without blocking constraints, since the corresponding dis-
junctive graph shown in Figure 2.18 does not contain any cycle. Consid-
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Figure 2.17: Gantt chart of a feasible schedule for the instance GJSP1 including

a swap
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Figure 2.18: Disjunctive graph representation of a feasible schedule for the in-

stance GJSP1 including a swap

ering the problem as a BJSPT, the following blocking constraints need to
be ful�lled simultaneously by the starting times of the operations.

si,2 ≥ si′,3 related to Oi′,2 → Oi,2 on machine Mk1

si′,3 ≥ si,2 related to Oi,1 → Oi′,3 on machine Mk2

These restrictions can only be met by the equality si,2 = si′,3 as indicated
in the Gantt chart at point t = t̄ (Figure 2.17). This means that the
processing of the operations Oi,2 and Oi′,3 starts at the same point in
time and the jobs Ji and Ji′ simultaneously change the machines. Such
a situation is called a swap of operations or jobs on machines, cf. among
others [32], [83], [88] and [98]. Depending on the underlying practical or
theoretical context, swaps are de�ned to be feasible or infeasible for the
considered optimization problem. While the simultaneous movement of
jobs is often regarded as feasible in production planning scenarios and in a
theoretic point of view, cf. for instance [29], [34], [64] and [98], swaps may
refer to collisions and are strictly infeasible in train scheduling or transport
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Figure 2.19: Alternative graph representation of a feasible schedule for the in-

stance GJSP1 including a swap

applications, cf. for instance [46], [83], [84] and [99]. When being treated
as infeasible, swaps are also called deadlocks or con�icts, which need to be
resolved, cf. [46], [83], [84], [89], [99] and [119].

In this thesis, swaps are de�ned to be feasible for the BJSPT. Thus, the
situation given in Figure 2.17 is considered realizable and the alternative
graph shown in Figure 2.19 depicts a feasible selection of alternative arcs,
even if this graph is not acyclic. Evidently, the equivalence of the feasibility
of the schedule and the non-existence of cycles in the corresponding graph
representation does not hold for the alternative graph and the BJSPT. In
particular, the following example shows that there may simultaneously ex-
ist feasible and infeasible cycles in an alternative graph, which correspond
to swaps and actual infeasibilities. Therefore, an additional property is re-
quired to conclude from an alternative graph representation that a schedule
is feasible for the BJSPT.

Consider the feasible schedule for the general instance GJSP2 introduced
in Section 2.3.1 and shown in Figure 2.20, which is already classi�ed to be
infeasible with regard to blocking constraints in Section 2.3.2. Assuming
that the given operation sequences on the machines constitute a schedule
for the BJSPT, the selected alternative arcs are depicted in Figure 2.21.
As an example, regard the operation sequence O3,1 → O4,2 → O1,1 on
machine M1 indicated by the dotted arcs. The decision on the processing
of the operation O3,1 prior to the operations O4,2 and O1,1 induces the
blocking constraints s3,2 ≥ s4,2 and s3,2 ≥ s1,1, which are implemented by
the arcs (O3,2, O4,2) and (O3,2, O1,1) in the alternative graph. Equivalently,
the arc (O4,3, O1,1) determines the ordering O4,2 → O1,1 on this machine.

Observing the set of selected arcs in more detail, there exist three cycles
in the alternative graph in Figure 2.21. Two of these cycles consist of two
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Figure 2.20: Gantt chart of the feasible schedule for the instance GJSP2 with-

out blocking constraints
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Figure 2.21: Alternative graph representation of a schedule for the instance

GJSP2 of the BJSPT
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arcs, while the third cycle involves three arcs. Figure 2.22 illustrates the
cycles between the operations O3,2 and O4,2 as well as the operations O3,3

and O5,2 in part (a) on the left as feasible cycles, since they correspond
to swaps of the jobs J3 and J4 on the machines M1 and M2 as well as
the jobs J3 and J5 on the machines M2 and M3. Note that each of the
arcs involved in the same cycle displays a di�erent pattern, which refers
to the fact that each operation involved in a swap requires an individual
machine. The swap of the jobs J3 and J4 on the machines M1 and M2

can be observed at point t = 4 in the Gantt chart in Figure 2.20, while
the other swap of the jobs J3 and J5 is not implemented. This is due
to the fact that the operations O3,3 and O5,2 are also involved in a cycle
of length three highlighted in part (b) on the right of Figure 2.22. This
cycle corresponds to the infeasible operation sequences O5,1 → O3,3 on
machine M2 and O3,2 → O4,3 → O5,2 on machine M3, see Section 2.3.2. It
contains two solid arcs indicating two operations O4,3 and O5,2 requiring
the same machine, which are supposed to ful�ll the precedence relations
O4,3 → O5,2 and O5,2 → O4,3, simultaneously. Since this can never be
realized by any pair of starting times, an observable criterion conditioning
the feasibility of a schedule for the BJSPT can be derived. Note that
the following Proposition 2.1 constitutes a reformulation of the de�nition
of feasible schedules given in [32] and [87], which is based on a weighted
alternative graph involving the processing times of the operations as arc
weights.

Proposition 2.1. A schedule is feasible for the BJSPT if and only if the

corresponding alternative graph does not contain a cycle that involves

operations requiring the same machine.

Proof. First, let a feasible schedule be given by particular operation se-
quences for all machines Mk ∈ M, where the earliest starting times of all
operations Oi,j ∈ O ful�ll the following restrictions based on the process-
ing sequences, Inequality (2.21), the consecutive processing on a machine,
Inequality (2.22), and blocking, Inequalities (2.23) and (2.24).

(1) Processing sequence implementation: si,j+1 ≥ si,j + pi,j for Oi,j and
Oi,j+1 on di�erent machines
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(2) Disjunctive processing constraints: si′,j′ ≥ si,j + pi,j for Oi,j → Oi′,j′

on machine Mk

(3) Blocking constraints: si′,j′ ≥ si,j+1 for Oi,j → Oi′,j′ on machine Mk

Since the processing times of all operations Oi,j ∈ O are assumed to be
strictly positive, see assumption 7 in Section 2.3.3, si,j+1 > si,j holds for
all pairs of consecutive operations of the same job Ji in (1), and (2) can be
reformulated to si′,j′ > si,j for Oi,j → Oi′,j′ on machineMk. Consequently,
the alternative graph incorporates arcs (Oi,j , Oi,j+1) and (Oi,j , Oi′,j′) for
all pairs of operations, for which a strict inequality relation of the start-
ing times holds. These arcs can never create cycles in the graph, since
there exist non-negative integers as starting times in the feasible schedule
ful�lling the strict inequalities.

In contrast, the blocking constraints given in (3) might be set up in a
cyclic structure, which is satis�ed by equal starting times si,j+1 = si′,j′

of all involved operations in the feasible schedule. This constitutes the
only possibility of the occurrence of cycles in the alternative graph. Since
assumption 8 given in Section 2.3.3 holds and blocking constraints are
implemented by arcs of the type (Oi,j+1, Oi′,j′) for a pair of operations
Oi,j → Oi′,j′ on machine Mk, these arcs do exclusively connect operations
requiring di�erent machines. Thus, cycles involving operations requiring
the same machine can never occur in the alternative graph representing a
feasible schedule.

Second, let the schedule-representing alternative graph contain no cycles
that involve operations requiring the same machine. The starting time
relations of all operations are de�ned by the incorporated arcs of the fol-
lowing three types:

(1) (Oi,j , Oi,j+1) connecting two consecutive operations of the same job
on di�erent machines (see assumption 8 in Section 2.3.3),

(2) (Oi,j , Oi′,j′) connecting two operations of di�erent jobs on the same
machine and

(3) (Oi,j , Oi′,j′) connecting two operations of di�erent jobs requiring dif-
ferent machines.
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The arcs given in (1) represent the processing sequence of a job and do
only include operations of the same job with strictly increasing index j.
Thus, these arcs are translated to the schedule as starting times of con-
secutive operations of the same job ful�lling si,j+1 ≥ si,j + pi,j . The arcs
described in (2) are transformed into starting times of the operation Oi,j
and Oi′,j′ ful�lling the restriction of consecutive processing on a given ma-
chine si′,j′ ≥ si,j + pi,j . Regarding arcs of type (3), two situations need
to be observed. If an arc of this type is not involved in a cycle, it can
implemented as a starting time relation si′,j′ ≥ si,j , which characterizes a
feasible solution of the BJSPT for Oi,j−1 preceding Oi′,j′ on a particular
machine. Considering the case where a cycle exclusively formed by arcs
described in (3) exists, the resulting inequalities restricting the starting
times of the involved operations can be ful�lled simultaneously by setting
si′,j′ = si,j for all operations. This corresponds to a feasible swap, since
every operation is processed on a di�erent machine.

The only remaining potential property of the schedule-representing alter-
native graph is a cycle jointly formed by arcs of type (1) and (3). Such
a cycle cannot exist due to the de�nition of the basic components of the
graph. An arc of type (3) can only be incorporated as a choice out of
a pair of alternative arcs representing a disjunctive blocking constraint.
Thus, the existence of the arc (Oi,j , Oi′,j′) in the graph indicates that the
predecessor of operation Oi,j is processed prior to the operation Oi′,j′ on a
particular machine. By implication, a cycle jointly including arcs of type
(1) and type (3) incorporates at a speci�c point an arc of type (1) like
(Oi,j−1, Oi,j) followed by an arc of type (3) such as (Oi,j , Oi′,j′), which
corresponds to involving two operations Oi,j−1 and Oi′,j′ requiring the
same machine.

Infeasible cycles like the one given in Figure 2.22 (b) do only occur through
the combination of arcs implementing di�erent types of constraints. While
the arcs (O5,2, O3,3) and (O3,3, O4,3) connect operations of di�erent ma-
chines and induce the blocking constraints s5,2 ≥ s3,3 and s3,3 ≥ s4,3, the
arc (O4,3, O5,2) represents a partial operation sequence on machine M2

requiring s5,2 ≥ s4,3 + p4,3. Since the processing times of all operations
are assumed to be positive, s5,2 > s4,3 needs to be true. For this reason,
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2 THE BLOCKING JOB SHOP PROBLEM

the red cycle in Figure 2.22 does not refer to a feasible swap implying
equal starting times for all involved operations. Precisely considering the
illustration, it is easy to observe potential resolutions. In order to obtain
a feasible schedule for the BJSPT, one of three involved arcs needs to
be reversed or substituted by its alternative opponent so that the cycle
containing two operations requiring the same machine is destructed. In
Section 2.3.2, a feasible schedule is derived by setting the operation se-
quence on machine M3 to O2,2 → O3,3 → O5,1 → O1,2. While all other
arcs remain unchanged, the arc (O5,2, O3,3) is excluded and replaced by its
opponent of the pair of alternative arcs (O3,3, O5,1), as graphed in Figure
2.16. Another potential resolution strategy is the replacement of the arc
(O3,3, O4,3) by its alternative arc opponent, which is the arc (O4,3, O3,2).
Unfortunately, this change destructs the infeasible cycle given in Figure
2.22 (b) but constructs another infeasible cycle containing the operations
O3,2, O4,3 and O4,2. Thus, replacing the arc (O3,3, O4,3) does not represent
the most e�cient resolution strategy, since it may require further signi�-
cant changes in the operation sequences. A third potential resolution of
the given infeasibility is the reversal of the arc (O4,3, O5,2) also induced
by the pair of alternative arcs. This corresponds to a change in the oper-
ation sequence on machine M2, which does not create an infeasible cycle
including other operations. The feasible schedule implementing the result-
ing operation sequence O2,1 → O4,1 → O3,2 → O5,2 → O4,3 on machine
M2 is shown in Figure 2.23. Note that this schedule features both swaps
indicated by the cycles given in Figure 2.22 (a) at points t = 4 and t = 8.

2.5 Instances of the Blocking Job Shop Scheduling

Problem with Total Tardiness Minimization

The following section introduces the instances of the BJSPT modeled and
solved in this thesis. As indicated in Section 2.1, there exist two main areas
from which the motivation of considering job shop problems with blocking
constraints arises. Besides, the generalizations and extensions of the con-
sidered problem explained in the Sections 2.3.1 and 2.3.2 induce speci�c
structures and properties, whose impact shall be discussed in modeling and
solving the BJSPT. Therefore, the intention is to create a set of instances
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Figure 2.22: Analyzing cycles in the alternative graph representing a schedule

for the instance GJSP2 of the BJSPT
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Figure 2.23: Gantt chart of the resolved feasible schedule for the instance

GJSP2 of the BJSPT

45



2 THE BLOCKING JOB SHOP PROBLEM

that represents a production planning as well as a train scheduling environ-
ment. It shall incorporate highly and sparsely structured instances with
more and less randomness. Section 2.5.1 describes benchmark instances
of standard job shop scheduling problems given in the literature together
with their properties and necessary adaptations. Regarding train schedul-
ing problems, there exist no established benchmark instances to the best
of the author's knowledge. Therefore, a set of 15 instances is generated
based on train scheduling structures, cf. [77] and [78], and introduced in
Section 2.5.2. The complete set of instances discussed throughout this
thesis is precisely characterized by evaluating di�erent property measures
in Section 2.5.3.

2.5.1 Introducing and Adapting Established Job Shop

Scheduling Instances from the Literature

A key element of the comparison of di�erent solution methods proposed by
individual researchers for a particular optimization problem is the applica-
tion of the techniques to the same set of benchmark instances, cf. Taillard
[117]. The generation and establishment of such instances covers several
issues. The problems are supposed to be challenging but approachable and
of a certain practical relevance, cf. [117]. Instances shall be diverse in their
properties but easy to describe and to reproduce. Regarding the standard
job shop scheduling problem J || Cmax with ni = m for all Ji ∈ J , which is
described in Section 2.2, there exist �ve well-established sets of benchmark
instances mainly accessible in Beasleys OR Library [14].

Fisher and Thompson [55] introduce the �rst set of benchmark instances in
1963. Three of these instances are available in the library, among them is
the famous (10, 10)-instance that remained unsolved for decades. Lawrence
[80] proposes a set of forty instances classi�able by size in groups of �ve
including 5 to 15 machines and 10 to 30 jobs. In [2], Adams, Balas and
Zawack test their solution method on some of the aforementioned instances
and nine newly generated ones with 10 to 15 machines and 10 to 40 jobs
featuring di�erent ranges of processing times. For all of these instance
sets, the technological routes of the jobs as well as the processing times
of the operations are randomly generated based on uniform distributions.
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In contrast, Applegate and Cook [7] provide ten (10, 10)-instances, where
the technological routes are created by humans following the intention to
construct problems that are hard to solve.

These four sets of benchmark instances are widely used by researches to
compare solution approaches for the standard job shop scheduling prob-
lem, cf. for instance [1], [25], [27], [96], [97], [105], [118], [120] and [122].
Consequently, the optimal or satisfactory solutions are known for most of
these instances as reported by Taillard in [117]. For this reason, the au-
thor proposes 80 larger instances involving 15 to 20 machines and 15 to 100
jobs, which are evaluated to be hardest among hundreds of randomly gen-
erated problems. This constitutes the �fth set of established benchmark
instances for the standard job shop scheduling problem, cf. [13].

Considering the BJSPT, there are no speci�cally tailored benchmark in-
stances existing in the literature, cf. [88]. Since the integration of blocking
constraints and the evaluation of the total tardiness do not require a spe-
ci�c structure of the input data, the benchmark instances designed for the
standard job shop problem are commonly extended and used in testing so-
lution methods for job shop scheduling problems with blocking constraints,
cf. [29], [34], [64], [88], [98] and [103], as well as for job shop scheduling
problems with tardiness-based objectives, cf. [34] and [76]. In this thesis,
the instances proposed by Lawrence in [80] are mathematically described
and solved. This instance set provides a variety of di�erent problem sizes
and structures. With regard to the minimization of the makespan, some
instances are reported to be easy to solve while others require more com-
putational e�ort, cf. [7] and [120]. The entire set of instances is available
in Beasleys OR Library [14]. Table 2.1 summarizes the eight groups of
instances with the corresponding instance size (n,m), whereby the labels
are applied in accordance to the literature. Since the instances are created
while implementing the standard variant of the job shop problem, the total
number of operation is determined by nop = n ·m for all instances.

As indicated above, some extensions in the input data are necessary to
treat the problems given by Lawrence as instances for the BJSPT. While
blocking constraints can be integrated without any changes, the calculation
of the total tardiness requires prede�ned due dates di for all jobs Ji ∈ J .
Furthermore, release dates ri ∈ Z≥0 are considered here as a more general
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Table 2.1: Summary of the size of the considered instances by Lawrence [80]

Instance la01 - la05 la06 - la10 la11 - la15 la16 - la20

size (n,m) (10, 5) (15, 5) (20, 5) (10, 10)

Instance la21 - la25 la26 - la30 la31 - la35 la36 - la40

size (n,m) (15, 10) (20, 10) (30, 10) (15, 15)

problem setting. To force jobs to overlap during their processing, the
release dates ri are randomly chosen from the following interval.

ri ∈

0 , 2 · min
Ji∈J


ni∑
j=1

pij


 for all Ji ∈ J (2.25)

Based on these release times, the due dates di are determined such that
the allowance di − ri constitutes a linear multiple of the total processing
time of the considered job Ji.

di =

ri +

1.2 ·
ni∑
j=1

pij

 for all Ji ∈ J (2.26)

The due date factor is de�ned to be 1.2, which leads to the generation of
tight due dates, cf. [34], [76] and [92]. Thus, the adapted instances are
expected to be computationally challenging.

2.5.2 Generating Train Scheduling-Inspired Instances for

the BJSPT

As described in the previous section, the benchmark instances used for the
BJSPT have properties, which are true for the standard job shop problem,
but do not originally incorporate features like general technological routes,
release dates and due dates of jobs. Furthermore, the given technological
routes and processing times are randomly determined from uniform distri-
butions. Regarding a real-world production plant, it is certainly the case,
and for train scheduling problems, it is obvious, that this dimension of
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Figure 2.24: De�nition and interpretation of a single-track railway network

randomness does not picture production sequences and processing times
or train routes and travel times occurring in practice. It can be assumed
that there exists a certain amount of structure within the planning situa-
tion, so that completely arbitrary technological routes and processing times
are not realistic. Moreover, there are indications given in the literature to
expect that standard job shop problems with completely random techno-
logical routes are easier to solve than instances featuring structured ones,
cf. [55] and [114]. Therefore, a set of train scheduling-inspired instances
is generated in addition to the extended Lawrence instances explained in
Section 2.5.1.

The test instances are set up based on the graph structure given in part
(a) at the top of Figure 2.24, cf. [77] and [78]. The illustrated railway
network consists of eight bidirectional single tracks, a station C with two
parallel tracks and a siding. Trains can only enter and leave the network
at the bounding nodes A, B, D and E. Furthermore, they are only allowed
to pass and overtake in parallel track sections, namely the station C and
the siding. There exist di�erent methods of interpreting the given single-
track network as a set of machines. In this thesis, the Parallel-Machine

Approach is applied, where every single track, either individually or as a
part of parallel tracks, constitutes one machine, cf. [77] and [78]. Figure
2.24 (b) shows the transformation of the given railway network into a set
of eleven machines.

49



2 THE BLOCKING JOB SHOP PROBLEM

C
A

B

D

E

passenger
train

4

4
12

2 2 2

4

C
A

B

D

E

freight
train

8
8

4
4

4

4

8

C
A

B

D

E

express
train

4
1 1 1

2

2

Figure 2.25: Three exemplary train routes and travel times in the single-track

railway network

Since the trains are treated as jobs in the resulting job shop scheduling
problem, the routes of the trains in the railway network de�ne the tech-
nological routes of the jobs in the shop. This means that an operation
is described by a train traveling through a track section resembling a job
being processed on a machine. It is assumed that the origin and the des-
tination of a train in the network are di�erent from each other and taken
from the set of bounding nodes {A, B, D, E}. Thus, there exist twelve
distinct origin-destination pairs, one of which is chosen randomly for each
train. The speci�c train route is generated correspondingly either by a
shortest path route or by a recirculating route, where the station C acts as
a terminus. In Figure 2.25, three origin-destination pairs are exemplarily
shown. The green route between B and D as well as the blue route between
D and A constitute shortest path routes, whereas the red D-E-route incor-
porates a revisit of the train at di�erent tracks. Thus, the route between
D and E results in a processing sequence of a job involving recirculation.

As the train routes de�ne the technological routes of the jobs, the pro-
cessing times of the operations are intended to re�ect the travel times
of trains in a railway network. Three characteristic train types are in-
troduced, namely passenger train, express train and freight train, with
corresponding travel times in the di�erent parts of the network. The main
di�erences, such as speed and expected passenger transfer time in stations,
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Table 2.2: Summary of the labels and the size of the generated train scheduling-

inspired instances

Instance ts01 - ts05 ts06 - ts10 ts11 - ts15

size (n,m) (10, 11) (15, 11) (20, 11)

are thereby considered. In Figure 2.25, the green route illustrated at the
top is traveled by a passenger train, the blue route in the middle belongs
to a freight train and an express train operates on the red recirculation
route given at the bottom. The corresponding travel times are indicated
by the colored numbers next to the track segments. A train type is ran-
domly chosen for each train and the processing times of the operations of
the represented job are determined accordingly. It is assured that every
train type appears at least once in every instance. Based on the processing
times of the operations, the release dates and the due dates of the jobs are
generated following the rules given in (2.25) and (2.26) in Section 2.5.1.
As mentioned above, this induces a temporal overlapping of the trains
traveling through the network and creates tight desired arrival times.

For an appropriate testing of the modeling and solution approaches in-
troduced in the remainder of this thesis, 15 train scheduling-inspired in-
stances involving 10, 15 and 20 trains, respectively, are constructed. Table
2.2 presents the labels, by which the instances are marked, and the corre-
sponding sizes (n,m).

As an example, the input data of the instance ts01 is summarized below.
The �rst two columns state the train type and the corresponding origin-
destination pair. The subsequent columns give the job shop scheduling
interpretation including the job Ji, its release date ri, due date di and the
resulting technological route TRi.

Instance ts01
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Train type Route Job ri di Technological route TRi

Express Tr. D → E J1 13 30 M10 →M9 →M8 →M6 →M5 →
M6 →M8 →M9 →M11

Passenger Tr. A → E J2 2 38 M1 →M3 →M4 →M6 →M8 →
M9 →M11

Passenger Tr. A → B J3 8 37 M1 →M3 →M4 →M3 →M2

Passenger Tr. A → E J4 5 41 M1 →M3 →M4 →M6 →M8 →
M9 →M11

Passenger Tr. E → B J5 4 40 M11 →M9 →M7 →M6 →M4 →
M3 →M2

Passenger Tr. D → A J6 6 41 M10 →M9 →M7 →M6 →M5 →
M3 →M1

Passenger Tr. E → B J7 11 47 M11 →M9 →M7 →M6 →M4 →
M3 →M2

Passenger Tr. E → B J8 2 38 M11 →M9 →M7 →M6 →M4 →
M3 →M2

Express Tr. B → D J9 8 26 M2 →M3 →M5 →M6 →M8 →
M9 →M10

Freight Tr. E → A J10 5 53 M11 →M9 →M8 →M6 →M4 →
M3 →M1

2.5.3 Properties of the Blocking Job Shop Scheduling

Instances

In the literature, there are various resolution methods for job shop schedul-
ing problems with and without blocking constraints featuring di�erent
objective functions. Nonetheless, the reasons for solution approaches to
succeed or fail on particular instances of the same problem are barely un-
derstood, cf. [20], [91], [109] and [126]. Most attempts to experimentally
answer this question rely on a search space analysis, which is a general
approach but signi�cantly based on the applied heuristic, cf. [20], [91],
[109] and [126].

In this thesis, a more generic and property-focused evaluation of the in-
stances is done to discuss a potential relationship between instance char-
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acteristics and required computational e�ort. Such observations might be
useful in designing decision support systems that incorporate the choice
of the most promising algorithm. In [108], Smith-Miles et al. study the
relationship between problem characteristics, such as the number of jobs,
the mean processing time, the tardiness factor (here: due date factor) and
the due date range, and the performance of two priority rules for a single-
machine early/tardy scheduling problem. It is stated that the tardiness
factor and the due date range correlate with the heuristic performance.
Furthermore, the authors argue that the choice of the considered proper-
ties is a signi�cant task, since they need to be of moderate computational
e�ort but high di�erentiation power according to the applied algorithms.
Mattfeld and Bierwirth [92] use instance properties, namely the mean al-
lowance rate of the jobs (here: due date factor), the machine utilization
rate and the standard deviation of the machine utilization, to demonstrate
the heterogeneity of the instance set of the considered job shop problem
without blocking constraints. Unfortunately, the authors do not discuss
the computational results in view of these characteristics. The following
basic properties are used to characterize the problems tackled in this thesis.

• the number of jobs n

• the number of machines m

• the job-machine-ratio n
m

• the number of operations nop

Additionally, the concepts proposed in [92] are modi�ed to be suitable for
the problem under study. In order to display unbalanced workload and
predict potential bottleneck issues, the focus of the instance key �gures is
changed from regarding job data exclusively to a machine-based perspec-
tive. First, an operation release time ri,j and an operation due time di,j
are de�ned for every operation Oi,j ∈ O as follows:

ri,1 = ri for Ji ∈ J (2.27)

ri,j = ri +

j−1∑
j′=1

pi,j′ for Oi,j ∈ Oi \ {Oi,1}, Ji ∈ J (2.28)

di,ni = di for Ji ∈ J (2.29)
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di,j = di −
ni∑

j′=j+1

pi,j′ for Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J (2.30)

This corresponds to the earliest possible starting time of an operation as
well as the latest possible completion time of an operation for the job to
be completed without tardiness. Thereafter, the inter-arrival time λk of
the operations on each machine Mk ∈M is introduced by

λk =
max

{
ri,j | Oi,j ∈ Ωk

}
−min

{
ri,j | Oi,j ∈ Ωk

}
| Ωk |

. (2.31)

Accordingly, a machine utilization rate uk is proposed and de�ned for each
Mk ∈M as

uk =

∑
Oi,j∈Ωk pi,j

|Ωk|

λk
=
p̄k
λk
. (2.32)

The mean processing time p̄k of operations on the considered machine Mk

is divided by the inter-arrival time λk. Thus, the machine usage rate will
increase if either the mean processing time of the operations increases or
the inter-arrival time of the operations decreases, while the corresponding
other quantity is held constant.

Since the due dates are generated by applying a constant due date factor
of 1.2 for all instances, the declaration of this multiplier as an instance
property, like it is done in [92] and [108], is meaningless. However, due
dates are expected to a�ect the di�culty of an instance and the observa-
tion of a due date-related characteristic seems reasonable. Therefore, the
concept of slack time, cf. [8] and [123], is modi�ed to a machine-based
variant as well. The machine slack lk is introduced as follows:

lk =
max

{
di,j | Oi,j ∈ Ωk

}
−min

{
ri,j | Oi,j ∈ Ωk

}∑
Oi,j∈Ωk pi,j

(2.33)

An instance is expected to be challenging if the utilization rate of the
machines is generally high, if the slack of the machines is generally low
and if the workload is signi�cantly unbalanced between the machines. As
to observe and discuss potential e�ects, the following instance properties
are evaluated.
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Table 2.3: Instance properties of the train scheduling-inspired instances ts01 -

ts15

Inst. n m n
m nop ū std(uk) l̄ std(lk)

ts01 10 11 0.909 70 1.534 1.389 1.552 0.649

ts02 10 11 0.909 68 1.291 1.532 2.039 1.194

ts03 10 11 0.909 70 1.619 2.492 2.061 1.213

ts04 10 11 0.909 72 1.123 0.771 1.825 0.805

ts05 10 11 0.909 68 1.220 0.920 1.908 1.191

ts06 15 11 1.364 105 0.873 0.400 2.023 1.049

ts07 15 11 1.364 107 1.282 0.737 1.517 0.815

ts08 15 11 1.364 105 1.193 0.590 1.601 0.996

ts09 15 11 1.364 107 1.080 0.561 1.654 0.786

ts10 15 11 1.364 103 0.931 0.441 1.839 0.955

ts11 20 11 1.818 138 1.366 0.684 1.226 0.556

ts12 20 11 1.818 140 1.447 0.857 1.278 0.643

ts13 20 11 1.818 142 1.457 0.797 1.300 0.852

ts14 20 11 1.818 140 1.463 0.793 1.178 0.576

ts15 20 11 1.818 142 1.567 1.020 1.242 0.638

• the mean machine utilization rate ū

• the standard deviation of the machine utilization rate std(uk)

• the mean machine slack l̄

• the standard deviation of the machine slack std(lk)

The Tables 2.3 and 2.4 display the eight characteristics mentioned above
for all considered instances ts01 - ts15, introduced in Section 2.5.2, and
la01 - la40, explained in Section 2.5.1. The Lawrence instances are initially
designed for the standard job shop scheduling problem, so that nop = n ·m
holds for all problems. In contrast, the choice of train routes in a network
yields nop < n·m for all train scheduling-inspired instances, since the num-
ber of operations per job does never reach or exceed the number of ma-
chines here. As expected, it can be observed that the Lawrence instances
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are more balanced with regard to the workload of the machines than the
train scheduling instances. The standard deviation of the utilization rate
std(uk) and the standard deviation of the machine slack std(lk) are higher
on average for the ts-instances. This indicates the existence of bottleneck
machines, which show a signi�cantly higher utilization rate uk and ma-
chine slack lk than others. Comparing problems of the same size (n,m),
the instances la21 to la25 seem to be a rather heterogeneous group with
respect to their varying mean utilization rate ū and mean machine slack l̄.
Furthermore, the instance la17 appears to have a considerably high mean
machine slack l̄ combined with a high standard deviation std(lk) compared
to the other (10, 10)-instances.

Table 2.4: Instance properties of the Lawrence instances la01 - la40

Inst. n m n
m nop ū std(uk) l̄ std(lk)

la01 10 5 2.0 50 0.811 0.141 1.487 0.202

la02 10 5 2.0 50 0.644 0.072 1.823 0.207

la03 10 5 2.0 50 0.690 0.168 1.786 0.389

la04 10 5 2.0 50 1.082 0.410 1.227 0.251

la05 10 5 2.0 50 0.719 0.211 1.746 0.553

la06 15 5 3.0 75 1.134 0.246 1.083 0.225

la07 15 5 3.0 75 0.957 0.213 1.235 0.192

la08 15 5 3.0 75 0.994 0.090 1.139 0.110

la09 15 5 3.0 75 1.125 0.220 1.061 0.211

la10 15 5 3.0 75 0.955 0.180 1.219 0.218

la11 20 5 4.0 100 1.271 0.155 0.877 0.097

la12 20 5 4.0 100 1.261 0.227 0.924 0.182

la13 20 5 4.0 100 1.513 0.469 0.834 0.227

la14 20 5 4.0 100 1.242 0.177 0.902 0.122

la15 20 5 4.0 100 1.355 0.175 0.847 0.098

la16 10 10 1.0 100 0.414 0.059 2.841 0.374

la17 10 10 1.0 100 0.374 0.104 3.227 1.026

la18 10 10 1.0 100 0.412 0.103 2.910 0.739

continued on the next page
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Inst. n m n
m nop ū std(uk) l̄ std(lk)

la19 10 10 1.0 100 0.425 0.075 2.743 0.517

la20 10 10 1.0 100 0.423 0.081 2.717 0.470

la21 15 10 1.5 150 0.650 0.114 1.772 0.313

la22 15 10 1.5 150 0.601 0.090 1.877 0.293

la23 15 10 1.5 150 0.878 0.174 1.403 0.263

la24 15 10 1.5 150 0.514 0.056 2.175 0.251

la25 15 10 1.5 150 0.519 0.062 2.154 0.226

la26 20 10 2.0 200 0.902 0.210 1.323 0.252

la27 20 10 2.0 200 0.768 0.074 1.473 0.140

la28 20 10 2.0 200 0.617 0.061 1.789 0.181

la29 20 10 2.0 200 0.664 0.058 1.679 0.138

la30 20 10 2.0 200 0.778 0.116 1.490 0.181

la31 30 10 3.0 300 0.900 0.089 1.227 0.114

la32 30 10 3.0 300 1.014 0.102 1.110 0.107

la33 30 10 3.0 300 0.949 0.097 1.161 0.110

la34 30 10 3.0 300 0.979 0.105 1.141 0.131

la35 30 10 3.0 300 0.994 0.160 1.148 0.153

la36 15 15 1.0 225 0.415 0.075 2.720 0.429

la37 15 15 1.0 225 0.470 0.080 2.450 0.381

la38 15 15 1.0 225 0.424 0.074 2.728 0.539

la39 15 15 1.0 225 0.506 0.073 2.253 0.351

la40 15 15 1.0 225 0.440 0.081 2.594 0.486
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3 Mathematical Formulations for Blocking

Job Shop Scheduling Problems

This chapter focuses on the exact solvability of di�erent mathematical for-
mulations for the BJSPT when applying standard MIP techniques. Some
of the main aspects discussed in the following sections are initially pub-
lished in [77] and in [78] as a joint work with Frank Werner. At �rst,
Section 3.1 describes three well-known types of sequence-de�ning variables
and their characteristics. It is shown that two of these types of unknowns
are based on the disjunctive graph model, while the third variable type
corresponds to a �ow representation of a schedule. Consequently, the dis-
junctive graph-based variables are chosen for the extensive study regarding
the potential in�uence of the optimization model on the required computa-
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3 MATHEMATICAL FORMULATIONS

tional e�ort of an exact solution method. The corresponding mathematical
programming formulations of the BJSPT are presented in Sections 3.2 and
3.3. For more general descriptions on mathematical programs for generic
job shop scheduling problems, the reader is referred to [23], [101] and
[102] among others. As a structural aspect of the considered models that
plays an important role for exact MIP techniques, the de�nition of lower
bounds on the objective function value is reviewed in Section 3.4. Finally,
comprehensive computational experiments, which include the results of a
state-of-the-art MIP solver when applying both mathematical formulations
on the set of benchmark instances, are performed and analyzed in Section
3.5.

3.1 Types and Characteristics of

Sequence-De�ning Variables

In 1997, Pan [101] summarized di�erent types of sequence-de�ning vari-
ables appropriate for job shop scheduling problems, their properties and
resulting mathematical formulations. However, it is not obvious, whether
these kinds of variables are suitable for modeling and solving the blocking
job shop scheduling problem by means of exact mathematical program-
ming. In Section 3.1.1, three well-known types of binary variables applica-
ble to implement logical implications in integer or mixed-integer programs
are described, namely precedence variables, order-position variables and
time-indexed variables, cf. [23], [78], [101] and [102]. For the purpose of
indicating the size of the resulting mathematical formulations, the subse-
quent Section 3.1.2 contains approximations of the maximum number of
unknowns required to entirely model the BJSPT. With regard to the im-
plementation of sequencing decisions in the mathematical program, some
important structural di�erences between the sequence-de�ning variables
are highlighted in Section 3.1.3. Arguments are given for the choice of the
variables included in the computational study.
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3.1 TYPES AND CHARACTERISTICS OF SEQUENCE-DEFINING VARIABLES

3.1.1 Introducing Sequence-De�ning Variables

Precedence variables of the form yi,i′ are �rst applied by Manne [86]
in modeling a job shop scheduling problem as a mixed-integer program.
These binary variables indicate with yi,i′ = 1 that a job Ji is processed prior
to a job Ji′ . The reverse ordering is implemented by yi,i′ = 0. Variables ex-
pressing logical implications in this pattern are called indicator variables,
cf. [27]. The processing sequence of all jobs is given semi-implicitly and
can easily be derived from the pairwise precedence relations. Considering
the recirculation of jobs, a precedence relation Ji → Ji′ given by yi,i′ = 1

does not necessarily de�ne an entire and unique sequence of all appearances
of Ji and Ji′ . Therefore, precedence variables are de�ned operation-based
to be applied in modeling the BJSPT.

yi,j,i′,j′ =

{
1 if Oi,j is processed prior to Oi′,j′ ,

0 if Oi′,j′ is processed prior to Oi,j .

With regard to the overall goal of solving mixed-integer programs to op-
timality, it is bene�cial to avoid meaningless variables in the formulation.
The sequencing decision described above only needs to be made for oper-
ations belonging to di�erent jobs that are processed on the same machine.
Thus, introducing precedence variables yi,j,i′,j′ for all non-equivalent pairs
of operations Oi,j , Oi′,j′ ∈ O is not reasonable. The indicator variables are
only set up as follows:

yi,j,i′,j′ ∈ {0, 1} for all Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,Mk ∈M.

Order-position variables of the form xki,r are introduced by Wagner [124]
implementing the assignment of order-positions r to jobs in �ow shop and
job shop problems. If a job Ji is processed as the r-th job on machine Mk,
the binary variable xki,r will take the value of 1 and will equal 0 otherwise.
Thus, the sequencing of the jobs is done explicitly by assigning an order-
position r to each job. Since recirculation is involved, the order-position
variables are introduced operation-based as xki,j,r.

By the de�nition of the job shop problem, every operation Oi,j ∈ O is to be
processed on a prede�ned machine Mk. Thus, there is exactly one order-
position to be assigned to the considered operation Oi,j that automatically
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3 MATHEMATICAL FORMULATIONS

refers to this machine. The machine index k of the variables xki,j,r can be
dropped and the order-position index is restricted to r = 1, . . . , Rk, where
Rk denotes the total number of operations on machine Mk. To model the
BJSPT with explicit sequencing, binary variables are introduced for each
Oi,j ∈ O as follows:

xri,j =

{
1 if Oi,j is processed at order-position r,

0 if Oi,j is not processed at order-position r.

Time-indexed variables of the form zi,k,t are �rst used in a binary optimiza-
tion program for job shop and �ow shop scheduling problems by Bowman
[28]. A variable zi,k,t will be set to 1, if job Ji is processed on machine Mk

in time period t = (t− 1, t], and will equal 0 otherwise. Thus, the process-
ing sequence of the jobs is de�ned implicitly by these variables. To assure
a unique sequencing in case of recirculating jobs, the time-indexed un-
knowns are de�ned operation-based in mathematical formulations for the
BJSPT. In line with the explanation given above, the machine index k can
be dropped, since the required machine is �xed for every operation. Time-
indexed variables implementing the processing of all operations Oi,j ∈ O
are de�ned as follows:

zti,j =

{
1 if Oi,j is processed in time period t,

0 if Oi,j is not processed in time period t.

3.1.2 On the Number of Sequence-De�ning Variables

Required in Mathematical Formulations for the

BJSPT

Through binary values, each class of variables implements a speci�c num-
ber of order-oriented decisions that concern operations, machines and time.
It is intended to set up mathematical formulations for a BJSPT with n

jobs and m machines, where each job Ji consists of ni operations and
each machine Mk needs to process a set of operations Ωk. The number
of variables, the resulting optimization programs are composed of, depend
on the chosen type of unknowns as well as on the instance input data.
As one measure of the size of a formulation, this quantity indicates the
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3.1 TYPES AND CHARACTERISTICS OF SEQUENCE-DEFINING VARIABLES

expected theoretical and computational e�ort of solving the correspond-
ing optimization problem. Since the presence of blocking constraints does
not e�ect the number of required variables, the following arguments are
equivalently true for generic job shop scheduling problems, cf. [101].

Regarding precedence variables, there are two unknowns introduced for
every pairwise ordering of operations of di�erent jobs on the same ma-
chine. Thus, the actual number of precedence variables #var(yi,j,i′,j′) can
be approximated by the quantity of pairs of operations requiring the same
machine.

#var(yi,j,i′,j′) ≤
∑

Mk∈M

[
| Ωk | ·

(
| Ωk | −1

)]
=

∑
Mk∈M

[(
| Ωk |

)2
− | Ωk |

]
=

∑
Mk∈M

(
| Ωk |

)2
−
∑

Mk∈M
| Ωk | =

∑
Mk∈M

(
| Ωk |

)2
− nop.

Remark. The maximum number of precedence variables can be reduced to∑
Mk∈M

1
2

[
| Ωk | ·

(
| Ωk | −1

)]
by de�ning only one unknown yi,j,i′,j′ for

each pair of operations of di�erent jobs requiring the same machine and us-
ing the equation yi′,j′,i,j = 1−yi,j,i′,′j as a substitute for the corresponding
other variable. Computational experiments give evidence for the equiv-
alence of both modeling approaches with regard to computational e�ort.
State-of-the-art solvers seem to easily detect this pairwise connection of
indicator variables.

Order-position variables are set up for each operation Oi,j ∈ O and every
existing position on the required machine. Since an operation is a unique
processing of a speci�c job on a speci�c machine, O =

⋃
Mk∈MΩk holds.

By de�nition, the number of order-positions Rk of a machine Mk is equal
to the number of operations being processed on this machine, Rk = |Ωk|.
Thus, the number of order-position variables #var(xri,j) composing a math-
ematical formulation of the BJSPT results in

#var(xri,j) =
∑

Mk∈M

(
| Ωk | ·Rk

)
=

∑
Mk∈M

(
| Ωk |

)2
.

In contrast to the �rst two types of unknowns, time-indexed variables do
additionally refer to time periods. Let the number of time units necessary
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3 MATHEMATICAL FORMULATIONS

to complete all operations be denoted by T . A time-indexed variable is
introduced for each operation Oi,j ∈ O and each time period t = 1, . . . , T .
The feasibility of the resulting optimization program depends on an appro-
priate a priori choice of T , so that a robust estimation is required. Since
T ≤ maxJi∈J {ri}+

∑
Oi,j∈O pi,j constitutes an upper bound for every fea-

sible schedule,cf. [102], the number of time-indexed variables involved in
a mathematical formulation can adequately be estimated by

#var(zti,j) = nop · T ≤ nop ·

max
Ji∈J
{ri}+

∑
Oi,j∈O

pi,j

 .

The distribution of the operations on the machines may heavily vary even
for instances with equivalent numbers of jobs and machines. Thus, a gen-
eral evaluation dependent on the subsets of operations Ωk (Mk ∈ M)

cannot give a robust impression on the quantity of sequence-de�ning vari-
ables needed to model a generic job shop instance. A detailed examination
of the input data of the given problem is substantial.

For a special type of job shop scheduling problems, the given estimates
can be generalized based on the numbers of involved jobs and machines.
Consider the standard (n,m) job shop problem introduced in Section 2.2,
where every job Ji ∈ J is processed on every machine Mk ∈ M exactly
once and all jobs are available at the beginning of the planning period
(ri = 0, Ji ∈ J ). It follows that the number of operations is equivalent for
all jobs and equals the number of machines, ni = m, Ji ∈ J . Furthermore,
the number of operations on each machine |Ωk| is equal to the number of
jobs n and the total number of operations is given by nop = n ·m. In this
case, the maximum quantities of precedence and order-position variables
necessary to set up the mathematical formulation for the BJSPT result in

#var(yi,j,i′,j′) ≤
∑

Mk∈M

[
| Ωk | ·

(
| Ωk | −1

)]
=

∑
Mk∈M

[n · (n− 1)]

≤
[
n2 − n

]
·m,

#var(xri,j) =
∑

Mk∈M

(
| Ωk |

)2
=

∑
Mk∈M

n2 = n2 ·m.

While applying the term given above as an estimate of the number of time-
indexed variables, the sum of the processing times of all operations can be
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3.1 TYPES AND CHARACTERISTICS OF SEQUENCE-DEFINING VARIABLES

substituted by its lower bound as follows. Since the number of operations
equals n ·m and pi,j ≥ 1 holds for all Oi,j ∈ O by assumption, it follows
that

∑
Oi,j∈O pi,j ≥ n · m. The sum of the release times is equal to 0

in the considered standard case. Thus, the minimum number of required
time-indexed variables in a mathematical formulation for a standard job
shop problem can be estimated by

#var(zti,j) = nop ·
∑

Oi,j∈O
pi,j ≥ n2 ·m2.

In general, it can be stated that the number of sequence-de�ning variables
required to compose an optimization program for the BJSPT is polyno-
mially bounded in the input data, particularly in the number of opera-
tions per machine |Ωk| (Mk ∈ M) and in the maximum total number of
time periods maxJi∈J {ri}+

∑
Oi,j∈O pi,j , or for the standard problem, in

the number of jobs n and the number of machines m. Contrasting the
presented types of variables, the implementation of precedence variables
yields a lower quantity of unknowns in the formulation compared to order-
position variables. This e�ect will become even more remarkable with
introducing only one precedence variable per pair of operations of di�er-
ent jobs on the same machine, cf. [86]. Assuming pi,j ≥ 1 for Oi,j ∈ O, the
application of time-indexed variables leads to a considerably larger number
of sequence-de�ning variables compared to the other two types.

3.1.3 Characteristics of di�erent Implementations of

Sequencing Decisions

The semi-implicit and explicit implementations of sequencing decisions by
precedence and order-position variables refer to the orientation of edges in
the alternative graph representation of the BJSPT. Since without loss of
generality the arguments given in the following hold for job shop problems
with and without blocking constraints, the basic instance GJSP2 is used as
an example for reasons of simplicity. Consider the three operations O1,1,
O3,1 and O4,2 of the jobs J1, J3 and J4 that require the same machine
M1. Figure 3.1 shows the relevant subsets of nodes and edges of the corre-
sponding disjunctive graph G = (V,E,A), which represent the sequencing
decisions associated with these three operations. As given in Figure 2.5,
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O1,1

O3,1

O4,2

Figure 3.1: Subgraph of the disjunctive graph representation of instance GJSP2

including three operations

y1,1,4,2 = 1

O1,1

O3,1

O4,2

y1,1,4,2 = 0

O1,1

O3,1

O4,2

x1
1,1 = 1

O1,1

O3,1

O4,2

x1
1,1 = 0

O1,1

O3,1

O4,2

Figure 3.2: Characterizing precedence and order-position variables based on the

disjunctive graph

the gray arcs indicate the processing sequences by relating the operations
to their predecessor and successor operation of the same job.

Initially, there exist three undirected edges connecting the pairs of oper-
ations on machine M1. During the scheduling process, the sequence of
operations on the machine is determined and the edges are replaced by
directed arcs. In Figure 3.2, the e�ect of �xing a sequence-de�ning vari-
able to either 0 or 1 is exemplarily illustrated for the precedence variable
y1,1,4,2 on the left and for the order-position variable x1

1,1 on the right. The
resulting partial sequences on machine M1 are represented by bold-faced
arcs.

The two subgraphs on the left of Figure 3.2 show that the determina-
tion of a binary value for a precedence variable implies the orientation of
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one edge in the graph. If y1,1,4,2 = 1 holds, operation O1,1 will precede
operation O4,2 on machine M1 and the edge {O1,1, O4,2} is replaced by
the arc (O1,1, O4,2) in the subgraph. In contrast, if y1,1,4,2 = 0 is true,
the equality y4,2,1,1 = 1 follows from the pairwise association of the in-
dicator variables and operation O4,2 is processed prior to operation O1,1.
The edge {O1,1, O4,2} is substituted by the arc (O4,2, O1,1). Thus, �xing
a precedence variable ensures an extension of the partial solution and the
e�ectiveness of the corresponding starting time dependencies.

The subgraphs on the right illustrate two cases of edge orientation deter-
mined by the binary value of an order-position variable. Setting x1

1,1 = 1

implies that operation O1,1 is processed on machine M1 at order-position
r = 1. This establishes precedence relations between operation O1,1 and
all other operations on the considered machine, here operations O3,1 and
O4,2. Thus, the edges {O1,1, O3,1} and {O1,1, O4,2} are replaced by the
directed arcs (O1,1, O3,1) and (O1,1, O4,2) based on the de�nition of only
one speci�ed value. In contrast, the opposite statement x1

1,1 = 0 implies
no precedence relation between operation O1,1 and any other operation.
Since there is no pairwise association induced by the de�nition of these
variables, many �xings of unknowns do not result in a precise sequenc-
ing decision. Thus, it is not clear to which extent the determination of
an order-position variable expands a partial solution and speci�es starting
time relations.

With regard to the disjunctive programming interpretation of the BJSPT,
the semi-implicit implementation of sequencing decisions seems to be more
e�ective compared to the explicit one, since the determination of ev-
ery precedence variable narrows the set of potential starting times of
the operations. Considering the order-position variables for all positions
r ∈ Rk \{1}, there is always a set of variable �xings required to implement
a sequencing decision. Detailed mathematical formulations for the BJSPT
involving both types of variables and a comparison of the performance of
a generic MIP solution method on these models are presented in Sections
3.2, 3.3 and 3.5, respectively.

In contrast to the two types of unknowns discussed above, time-indexed
variables cannot be interpreted based on the disjunctive programming con-
cept. The overall representation of a schedule does not result in the di-
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rected graph itself, but in the determination of a �ow in a network, cf. [44]
and [102]. A time-expanded graph, as exemplarily given in Figure 3.3 for
an instance with three machines, is needed to illustrate the meaning of the
time-indexed variables zti,j .

For each machine and each time period t = 1, . . . , T , there are two nodes
introduced to mark the start and the end of the discrete unit of time. In
Figure 3.3, three time periods t, t + 1 and t + 2 are generally indicated.
The continuity of time is represented by horizontal arcs connecting points
in time on the same machine. The occupancy of a machine by an oper-
ation while processing or blocking is implemented as a positive �ow on
the dashed horizontal arcs of the required machine. Sequencing decisions
and possible machine changes of jobs, can only be realized between two
consecutive time periods and are represented by black solid arcs. With
setting appropriate capacities and weights for all nodes and arcs in the
network, a schedule is determined by a �ow between the arti�cial nodes
'source' and 'sink' that are connected to all time-indicating nodes, cf. [44]
and [102]. The resulting �ow consists of n disjunctive source-sink-paths in
the graph that separately represent the time-based processing sequence of
every job. The implication of simultaneously �xing zt1,1 = 1 and zt+1

3,1 = 1

is shown using bold-faced arcs in Figure 3.4. Since both operations require
machineM1, there is �ow occurring on the arcs, which express the passing
of the time periods t and t + 1 on this machine. To ful�ll conservation
constraints, the �ow is completed starting at the source node and ending
at the sink node.

More detailed descriptions of the transformation of sequencing decisions
into a network �ow are given in [68] and [93]. The authors apply this
modeling and solution approach to single-track train scheduling problems,
even if the number of variables is expected to be considerably larger and
the required graph-theoretic structure is more complicated compared to
other sequence-de�ning variables. The foregoing general consideration
clearly shows that a mathematical formulation involving time-indexed vari-
ables signi�cantly di�ers from models constituted by precedence or order-
position variables. Since this work is intended to be focused on schedul-
ing problems in the light of disjunctive programming and to do a fair
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M1
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source

sink

. . .
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t t+ 1 t+ 2

Figure 3.3: Partial time-expanded graph representation of the instance GJSP2

M1
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source

sink

. . .
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. . .
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t t+ 1 t+ 2

O1,1 O3,1

Figure 3.4: Illustration of a partial schedule in the time-expanded graph of in-

stance GJSP2
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comparison, time-indexed variables will not be included in the subsequent
computational experiments.

3.2 A Mathematical Formulation for the BJSPT

based on Precedence Variables

The BJSPT can be modeled by a mixed-integer linear optimization pro-
gram based on the precedence variables yi,j,i′,j′ introduced in Subsection
3.1.1 as follows, cf. [78].

Mixed-Integer Linear Programming Formulation 1

∑
Ji∈J

Ti → min!to shift objective to the le (3.1)

subject to

Ti ≥ Ci − di Ji ∈ J (3.2)

Ti ≥ 0 Ji ∈ J (3.3)

ri ≤ si,1 Ji ∈ J (3.4)

si,j + pi,j ≤ si,j+1 Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J (3.5)

si,ni + pi,ni = Ci Ji ∈ J (3.6)

yi,j,i′,j′ + yi′,j′,i,j = 1 Oi,j , Oi′,j′ ∈ Ωk with i < i′,

Mk ∈M (3.7)

si′,j′ +M(1− yi,j,i′,j′) ≥ si,j + pi,j Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

Mk ∈M (3.8)

si′,j′ +M(1− yi,j,i′,j′) ≥ si,j+1 Oi,j , Oi′,j′ ∈ Ωk with i 6= i′, j 6= ni,

Mk ∈M (3.9)

yi,j,i′,j′ ∈ {0, 1} Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

Mk ∈M (3.10)

M � 0 (3.11)
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Mixed-Integer Linear Programming Formulation 1 (MF1) begins with the
implementation of the optimization criterion in (3.1). The objective func-
tion is constituted by the sum of the tardiness values Ti of all jobs Ji ∈ J .
The constraints in Inequalities (3.2) and (3.3) ensure the correct deter-
mination of the tardiness of all jobs Ji as the maximum of the di�erence
between completion time and due date (Ci−di) and the lower bound of 0.
The Inequalities (3.4) restrict the starting times of the �rst operations of
the jobs not to be earlier than the given release dates. In accordance with
assumption 4 in Section 2.3.3, the processing sequence of all operations of
a particular job is assured by the constraints (3.5) for all jobs Ji ∈ J . In
Equation (3.6), the completion time Ci of each job is de�ned as the end of
the processing time of its last operation Oi,ni .

The following set of constraints (3.7), (3.8) and (3.9) is related to the
sequencing decisions that are implemented by the precedence variables.
Equation (3.7) assures the uniqueness, completeness and exclusiveness of
the indicator variables by the de�nition of the pairwise connection of vari-
ables, both corresponding to the operations Oi,j and Oi′,j′ . Thereby, an
exact ordering is determined for each pair of operations of di�erent jobs
that requires the same machine. According to these sequencing decisions,
the starting time relations of the operations are set to be e�ective or re-
dundant. Inequality (3.8) determines the starting time of the succeeding
operation Oi′,j′ to be greater than or equal to the sum of the starting time
and the processing time of the preceding operation Oi,j , if yi,j,i′,j′ = 1

holds. Otherwise, the su�ciently large positive constant M appears as a
summand on the left-hand side of these so-called indicator or Big-M con-
straints, cf. [16] and [27], and allows si′,j′ to take an arbitrary value. This
formulation constitutes a well-known linearization of the basic disjunction
given in (2.22), cf. for instance [16], [27] and [32]. The blocking constraints
are modeled by Inequality (3.9) applying the same linearization. The start-
ing time of a succeeding operation Oi′,j′ is restricted to be greater than or
equal to the starting time of the job successor of the preceding operation
Oi,j , if the ordering Oi,j → Oi′,j′ is de�ned on a particular machine. Thus,
it is guaranteed that the preceding operation has left the machine or is
leaving the machine at the starting time of the succeeding operation.
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Table 3.1: Number of constraints in Mathematical Formulation 1 based on

precedence variables

Type Number of Constraints

(3.2) Calculation of delay n

(3.3) Non-negativity of tar-
diness

n

(3.4) Release date ful�ll-
ment

n

(3.5) Processing sequences nop − n
(3.6) Completion time cal-
culation

n

(3.7) Pairwise relation of
precedence variables

∑
Mk∈M

[
1

2
· | Ωk | ·

(
| Ωk | − 1

)]

(3.8) Disjunctive starting
time constraints

∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]

(3.9) Blocking Constraints

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]− n

The indicator variables are set to be binary in constraint (3.10) and the
positive constant M is described as required by constraint (3.11). For the
remaining variables, in particular the starting times si,j of the operations
as well as the completion times Ci and the tardiness times Ti of the jobs
Ji ∈ J , there is no necessity to introduced non-negativity or integrality
restrictions. Both characteristics automatically result from the structure
of the model, namely the restrictions (3.2) to (3.6) and the optimization
criterion, and the input data given as non-negative and strictly positive
integers, respectively, (assumptions 6 and 7 in Section 2.3.3).
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Besides the number of variables involved in a mathematical formulation,
the number of constraints is an indicator to the required amount of compu-
tational e�ort for solving an instance. Table 3.1 summarizes the quantities
of constraints in terms of general problem size measures. Consequently,
the maximum total number of restrictive constraints involved in MF1 for
BJSPT can be determined as the summation of the given expressions.

#con(MF1) = 2 · n+ nop +
∑

Mk∈M

[
1

2
· | Ωk | ·

(
| Ωk | − 1

)]
+

2 ·
∑

Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]
= 2 · n+ nop +

5

2
·
∑

Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]

As a special case, consider the standard job shop scheduling problem with
blocking constraints, where every job needs to be processed on every ma-
chine exactly once. The maximum quantity of restrictive constraints can
be expressed in polynomial terms of the number of jobs n and the number
of machines m.

#con(MF1) = 2 · n+ n ·m+
5

2
·m · n · (n− 1)

=
5

2
· n2 ·m− 3

2
· n ·m+ 2 · n

= O(n2 ·m)

Note that these terms represent an upper bound on the total number of
restrictive constraints in the mathematical formulation, since the disjunc-
tive starting time constraints given in (3.8) and the blocking constraints
set up by (3.9) constitute redundant constraints when operations Oi,j with
j 6= ni, Ji ∈ J are involved, see the explanations on the redundancy of
arcs in the disjunctive and the alternative graph in Section 2.3.2.
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3.3 A Mathematical Formulation for the BJSPT

based on Order-Position Variables

The BJSPT can alternatively be modeled as a mixed-integer linear opti-
mization program based on the order-position variables xri,j introduced in
Subsection 3.1.1, cf. [78].

Mixed-Integer Linear Programming Formulation 2

∑
Ji∈J

Ti → min!to shift objective t (3.12)

subject to

Ti ≥ Ci − di Ji ∈ J (3.13)

Ti ≥ 0 Ji ∈ J (3.14)

ri ≤ si,1 Ji ∈ J (3.15)

si,j + pi,j ≤ si,j+1 Oi,j ∈ Oi \ {Oi,ni}, Ji ∈ J
(3.16)

si,ni + pi,ni = Ci Ji ∈ J (3.17)∑
r∈Rk

xri,j = 1 Oi,j ∈ Ωk,Mk ∈M (3.18)

∑
Oi,j∈Ωk

xri,j ≤ 1 r ∈ Rk,Mk ∈M (3.19)

si′,j′ +M(2− xri,j − xr+1
i′,j′ ) ≥ si,j + pi,j Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,

r ∈ Rk \ {Rk},Mk ∈M
(3.20)

si′,j′ +M(2− xri,j − xr+1
i′,j′ ) ≥ si,j+1 Oi,j , Oi′,j′ ∈ Ωk, with i 6= i′,

j 6= ni, r ∈ Rk \ {Rk},Mk ∈M
(3.21)

xri,j ∈ {0, 1} Oi,j ∈ Ωk, r ∈ Rk,Mk ∈M
(3.22)

M � 0 (3.23)
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In Mixed-Integer Linear Programming Formulation 2 (MF2), the optimiza-
tion criterion (3.12) as well as the constraints (3.13) to (3.17) are equiva-
lent to those presented in MF1 in the previous section. Completion time
and tardiness time calculations, release time ful�llment and the processing
sequences are implemented identically.

The relations given in (3.18) to (3.21) model the sequencing decisions by
applying order-position variables. Equality (3.18) assures that every op-
eration that requires a particular machine Mk is assigned to exactly one
order-position r ∈ Rk. Reversely, Inequality (3.19) imposes the occupancy
of every available order-position by at most one operation. Considering
the fact that Rk = |Ωk| holds for every machine Mk ∈ M, the second
set of assignment constraints is ful�lled with equality by any feasible so-
lution. Starting time restrictions of operations consecutively processed on
the same machine are set up by Inequality (3.20). Similar to MF1, the
disjunctive constraints are linearized applying a Big-M formulation. If an
operation Oi,j is assigned to an order-position r directly prior to an op-
eration Oi′,j′ at order-position r + 1, the starting time of the succeeding
operation Oi′,j′ is determined not to be earlier than the end of processing
of the preceding operation Oi,j . An inequality of this type will only be ac-
tive for the starting times si′,j′ and si,j , when both considered operations
are assigned to the regarded pair of adjacent order-positions. In all other
cases, the large positive constant M will appear with coe�cient 1 or 2 as
a summand on the left-hand side of this Big-M constraint and, thus, it
will be redundant. Following the same linearized structure, the blocking
constraints are given by Inequality (3.21). Let a pair of operations Oi,j
and Oi′,j′ be assigned to the order-positions r and r + 1, respectively, the
processing of the succeeding operation Oi′j′ is allowed to begin simulta-
neously to or after operation Oi,j+1 of job Ji being processed on another
machine.

Constraint (3.22) de�nes the order-position variables to be binary and
constraint (3.23) states the requirement for the constant parameter M .
As explained in Section 3.2, the non-negativity and the integrality of the
remaining variables is automatically implied by the formulation.

The resulting quantities of constraints that are included in the optimization
program are summarized in Table 3.2. The maximum total number of
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Table 3.2: Number of constraints in Mathematical Formulation 2 based on

order-position variables

Type Number of Constraints

(3.13) Calculation of delay n

(3.14) Non-negativity of tardi-
ness

n

(3.15) Release date ful�llment n

(3.16) Processing sequences nop − n
(3.17) Completion time calcu-
lation

n

(3.18) Order-position assign-
ment

nop

(3.19) Operation assignment
∑

Mk∈M
Rk =

∑
Mk∈M

| Ωk | = nop

(3.20) Disjunctive starting
time constraints ∑

Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)] ·
 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 2

)]

(3.21) Blocking constraints

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]− n
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restrictive constraints involved in MF2 for the BJSPT can be estimated
by the summation of these terms as follows:

#con(MF2)

= 2 · n+ 3 · nop + ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)] ·
 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)
− | Ωk |

]
+

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]
= 2 · n+ 3 · nop +

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]2

−

nop ·

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]+

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]
= 2 · n+ 3 · nop +

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]2

+

(1− nop) ·

 ∑
Mk∈M

[
| Ωk | ·

(
| Ωk | − 1

)]
With regard to the standard variant of a job shop scheduling problem with
blocking constraints, the maximum total number of restrictive constraints
occurring in MF2 can be expressed in polynomial dependence on n, the
number of jobs, and m, the number of machines.

#con(MF2) = 2 · n+ 3 · nop +
[
m ·

(
n2 − n

)]2
+ (1− nop) ·m ·

(
n2 − n

)
= n4 ·m2 − 2 · n3 ·m2 + n2 ·m2 + (1− n ·m) · (n2 − n) +

3 · n ·m+ 2n

= n4 ·m2 − 2 · n3 ·m2 + n2 ·m2 − n3 ·m+ n2 ·m +

3 · n ·m+ n2 + n

= O(n4 ·m2)
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Note again that these terms state upper bounds on the quantity of restric-
tive constraints in the model, since the redundancy of disjunctive starting
time constraints (3.20) and blocking constraints (3.21) equivalently ap-
pears in MF2.

3.4 Lower Bounds as a Key Feature of the Exact

Solution Approach

The Branch & Bound procedure constitutes the best known and widely
utilized exact algorithm to solve job shop scheduling problems and their
applications based on mathematical formulations, cf. for instance [46], [31]
and [134]. A key feature of this method is the de�nition of a lower bound
on the objective function value of any completion of a partial schedule to
reason the continuation or termination of the considered branch, cf. for
instance [25] and [102]. The most popular de�nition of lower bounds for the
mixed-integer programs under study is based on the linear relaxation of the
binary constraints, cf. for instance [102]. With regard to the mathematical
formulations for the BJSPT given in Sections 3.2 and 3.3, this implies
replacing the binary restrictions in (3.10) and (3.22) by

0 ≤ yi,j,i′,j′ ≤ 1 Oi,j , Oi′,j′ ∈ Ωk with i 6= i′,Mk ∈M (3.24)

and
0 ≤ xri,j ≤ 1 Oi,j ∈ Ωk, r ∈ Rk,Mk ∈M, (3.25)

respectively. The objective function value obtained by solving the resulting
linear program constitutes a lower bound on the objective function value
of the underlying BJSPT. Unfortunately, it is well-known that indicator
and Big-M constraints lead to weak linear relaxations and accordingly
unsatisfactory lower bounds, cf. [16] and [27].

To observe this issue in more detail, consider the instance GJSP1 repre-
sented by the disjunctive graph in Figure 2.2 in Section 2.3.1 as an example.
The problem consists of two jobs Ji and Ji′ , where two pairs of operations
Oi,2 and Oi′,2 as well as Oi,1 and Oi′,3 require the same machines Mk1 and
Mk2 , respectively. Without loss of generality, ri = ri′ = 0 and pi,j = 1 for
Oi,j ∈ O is assumed. Furthermore, di = di′ = 0 is considered as a special
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case of the problem under study and consequently Ci + Ci′ is minimized.
Since the processing times are constant and prede�ned, the minimization
of the completion time Ci = si,3 + pi,3 of a job Ji corresponds to the min-
imization of the starting time of its last operation. Thus, the objective
function can be reformulated as si,3 + si′,3 for the instance GJSP1 here.

To set up the concrete optimization program, the parameter M , which is
used to impose or exclude constraints, needs to be de�ned as a su�ciently
large constant. A commonly applied estimate in the literature is the largest
possible appearing opponent of the Big-M terms in the set of constraints,
cf. [27]. This can be implemented by the upper bound on the makespan
for the BJSPT and de�nes M = maxJi∈J {ri}+

∑
Oi,j∈O pi,j which equals

6 for the considered instance. The following model constitutes the relaxed
formulation of MF1 applying precedence variables for GJSP1.

Linear Relaxation of MF1 applying Precedence Variables for

GJSP1

si,3 + si′,3 → min! (3.26)

subject to

0 ≤ si,1 (3.27)

0 ≤ si′,1 (3.28)

si,1 + 1 ≤ si,2 (3.29)

si,2 + 1 ≤ si,3 (3.30)

si′,1 + 1 ≤ si′,2 (3.31)

si′,2 + 1 ≤ si′,3 (3.32)

yi,2,i′,2 + yi′,2,i,2 = 1 (3.33)

yi,1,i′,3 + yi′,3,i,1 = 1 (3.34)

si′,2 + 6 · (1− yi,2,i′,2) ≥ si,2 + 1 (3.35)

si,2 + 6 · (1− yi′,2,i,2) ≥ si′,2 + 1 (3.36)

si′,3 + 6 · (1− yi,1,i′,3) ≥ si,1 + 1 (3.37)

si,1 + 6 · (1− yi′,3,i,1) ≥ si′,3 + 1 (3.38)
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si′,2 + 6 · (1− yi,2,i′,2) ≥ si,3 (3.39)

si,2 + 6 · (1− yi′,2,i,2) ≥ si′,3 (3.40)

si′,3 + 6 · (1− yi,1,i′,3) ≥ si,2 (3.41)

yi,2,i′,2, yi′,2,i,2, yi,1,i′,3, yi′,3,i,1 ≥ 0 (3.42)

yi,2,i′,2, yi′,2,i,2, yi,1,i′,3, yi′,3,i,1 ≤ 1 (3.43)

The relaxed formulation incorporates release date and processing sequence
restrictions in (3.27) to (3.32), interdependencies of the precedence vari-
ables in (3.33) and (3.34), disjunctive constraints implementing the con-
secutive processing of operations on machines in (3.35) to (3.38), blocking
constraints in (3.39) to (3.41) and the linear relaxation of the binary con-
straints in (3.42) and (3.43). Note that the model does only include three
explicit blocking constraints, since the operation Oi′,3 involved in one of
the sequencing decisions constitutes the last operation of job Ji′ and the
opponent restriction of inequality (3.41) determines si,1 ≥ 0 already given
in (3.27). The relaxed model of GJSP1 can easily be solved by setting all
indicator variables as follows:

yi,2,i′,2 = 0.5, yi′,2,i,2 = 0.5, yi,1,i′,3 = 0.5, yi′,3,i,1 = 0.5.

These values satisfy the pairwise summation to 1 as well as the relaxed
binary constraints. Furthermore, a constant summand of 3 appears on the
left-hand-side of each Big-M inequality. This enables the starting times of
all operations to take their minimum values as to minimize the objective
function. Accounting for the release dates and processing sequences of the
jobs in (3.27) to (3.32), the following starting times complete the solution
of the linear relaxation of the model.

si,1 = 0, si,2 = 1, si,3 = 2, and si′,1 = 0, si′,2 = 1, si′,3 = 2

Since these values determine the smallest possible objective function value
si,3+si′,3 = 2+2 = 4 for the given input data, the solution is optimal for the
relaxed model of the BJSPT. Figure 3.5 illustrates the resulting schedule
in a Gantt chart. Both jobs Ji and Ji′ are processed from the beginning of
the planning horizon t = 0 and completed after their total processing time
at t = 3 without any waiting times. Thus, Ci+Ci′ = 3+3 = 6 constitutes
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Oi,1

Oi,2

Oi,3

Oi′,1

Oi′,2

Oi′,3

Mk4

Mk3

Mk2

Mk1

t0 1 2 3

Figure 3.5: Gantt chart representation of the schedule resulting from the linear

relaxation of the mathematical formulation for the instance GJSP1

a lower bound on the total completion time of the initial GJSP1. In
the relaxed solution, the indicator variables yi,2,i′,2 = yi′,2,i,2 = 0.5 allow
the simultaneous processing of the operations Oi,2 and Oi′,2 on machine
Mk1 . Since this is strictly contradicting a basic assumption in machine
scheduling, see Section 1.2, a total completion time equal to this lower
bound can never be realized by any feasible schedule for the instance.

Generally, the example shows that the lower bound on the total completion
time of every job Ji will always approximate ri +

∑
Oi,j∈Oi pi,j . Regarding

the optimization criterion considered in this thesis, the lower bound on the
tardiness of each job Ji ∈ J is consequently determined by Ti = 0, since
di > ri +

∑
Oi,j∈Oi pi,j holds by the de�nition of practically relevant the

due date factors. Instances of the BJSPT with an actual optimal objec-
tive function value of

∑
Ji∈J Ti = 0 are not likely to appear, especially,

with increasing job-machine-ratio n
m and tight due dates. Thus, the lin-

ear relaxation of MF1 provides a fairly unsatisfactory and constant lower
bound for the considered optimization criterion, where the main reason is
constituted by the Big-M constraints, cf. [27].

Considering the alternative formulation of the BJSPT using order-position
variables and taking the assumptions given above, the linear relaxation of
the optimization program for the instance GJSP1 can be stated as follows:
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Linear Relaxation of MF2 applying Order-Position Variables for

GJSP1

si,3 + si′,3 → min! (3.44)

subject to

0 ≤ si,1 (3.45)

0 ≤ si′,1 (3.46)

si,1 + 1 ≤ si,2 (3.47)

si,j + 1 ≤ si,3 (3.48)

si′,1 + 1 ≤ si′,2 (3.49)

si′,j′ + 1 ≤ si′,3 (3.50)

x1
i,3 = 1 (3.51)

x1
i′,1 = 1 (3.52)

x1
i,1 + x2

i,1 = 1 (3.53)

x1
i′,3 + x2

i′,3 = 1 (3.54)

x1
i,2 + x2

i,2 = 1 (3.55)

x1
i′,2 + x2

i′,2 = 1 (3.56)

x1
i,3 ≤ 1 (3.57)

x1
i′,1 ≤ 1 (3.58)

x1
i,1 + x1

i′,3 ≤ 1 (3.59)

x2
i,1 + x2

i′,3 ≤ 1 (3.60)

x1
i,2 + x1

i′,2 ≤ 1 (3.61)

x2
i,2 + x2

i′,2 ≤ 1 (3.62)

si′,3 + 6 · (2− x1
i,1 − x2

i′,3) ≥ si,1 + 1 (3.63)

si,1 + 6 · (2− x1
i′,3 − x2

i,1) ≥ si′,3 + 1 (3.64)

si′,2 + 6 · (2− x1
i,2 − x2

i′,2) ≥ si,2 + 1 (3.65)

si,2 + 6 · (2− x1
i′,2 − x2

i,2) ≥ si′,2 + 1 (3.66)

si′,3 + 6 · (2− x1
i,1 − x2

i′,3) ≥ si,2 (3.67)

si′,2 + 6 · (2− x1
i,2 − x2

i′,2) ≥ si,3 (3.68)
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si,2 + 6 · (2− x1
i′,2 − x2

i,2) ≥ si′,3 (3.69)

x1
i,1, x

2
i,1, x

1
i,2, x

2
i,2, x

1
i,3,x

1
i′,1, x

1
i′,2, x

2
i′,2, x

1
i′,3, x

2
i′,3 ≥ 0 (3.70)

x1
i,1, x

2
i,1, x

1
i,2, x

2
i,2, x

1
i,3,x

1
i′,1, x

1
i′,2, x

2
i′,2, x

1
i′,3, x

2
i′,3 ≤ 1 (3.71)

The model consists of a set of release date and processing sequence con-
straints (3.45) to (3.50), restrictions assuring the order-position assignment
for each operation in (3.51) to (3.56) and the operation assignment for each
order-position in (3.57) to (3.62), linearized disjunctive constraints imple-
menting the consecutive processing of the operations on the machines by
(3.63) to (3.66) and blocking by (3.67) to (3.69) as well as the relaxed
binary constraints (3.70) and (3.71) next to the optimization criterion
(3.44). With regard to the solution of this relaxed program, the set of
order-variables is divided into two subsets. First, there exist variables in-
dicating the order-position of operations, which are solely processed on a
particular machine, here x1

i′,1 and x1
i,3. Such variables are directly deter-

mined by the assignment constraints with x1
i′,1 = x1

i,3 = 1 in any feasible
solution. The remaining variables implement actual sequencing decisions
and similar to the solution derived for the linear relaxation of MF1, the
following values satisfy the given set of constraints.

x1
i,1 = x2

i,1 = x1
i,2 = x2

i,2 = x1
i′,2 = x2

i′,2 = x1
i′,3 = x2

i′,3 = 0.5

The starting times of all operations are equivalently driven to take smallest
possible values in accounting for release dates and processing sequences.
Accordingly,

si,1 = 0, si,2 = 1, si,3 = 2, and si′,1 = 0, si′,2 = 1, si′,3 = 2

determine the optimal solution given in Figure 3.5 from the linear relax-
ation of MF2 for the BJSPT. As a consequence, the mathematical formu-
lation based on order-position variables is expected to produce the same
unsatisfactory lower bound on the total tardiness for the BJSPT.

The idea of de�ning tighter lower bounds for di�erent types of job shop
scheduling problems is pursued by many researchers, whereby the stan-
dard job shop problem with makespan minimization constitutes the most
intensively studied issue. The best known approach introduced by Carlier
in 1982 relies on the capacity relaxation of all machines except one, which
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leads to the separate optimization of the sequences on the single machines
while considering operation release times and due times. These so-called
heads and remaining tails of operations are derived from the disjunctive
graph representation of a partial schedule as longest paths. The maxi-
mal completion time determined over all machines facilitates as the lower
bound on the overall makespan of the problem. An enhanced version of
this method is presented for instance by Carlier and Pinson in [38]. Even
if the computation of the single-machine bound itself is NP-hard, it can be
done e�ciently for makespan minimization and the method is widely used
and adapted, cf. [120]. Masics and Pacciarelli [88], applied the idea based
on the alternative graph to a blocking job shop problem with makespan
minimization. Furthermore, an extended version of the capacity relax-
ation method is derived by Carballo et al. to solve di�erent variants of
multiprocessor job shop problems, cf. [37].

As an alternative approach, Taillard [117] presents lower bounds on the
makespan of �ow shop and job shop scheduling problems, where heads
and tails are determined machine-based and added to the total processing
time of all operations on the considered machine. The maximum value
of the resulting makespan estimates is stated as the lower bound on the
objective function value of the problem. This bound is not expected to
outperform the lower bound de�ned by single-machine optimization but
there is less computational e�ort required. Brucker and Jurisch [31] test
the resolution of the two-job relaxation of a given job shop problem for
the purpose of determining good lower bounds on the makespan. Experi-
mental evidence shows that even a job shop scheduling problem involving
two jobs demands for a considerable amount of computational e�ort and
the bounds obtained do not signi�cantly improve compared to the single-
machine relaxation. Applegate and Cook [7] apply the idea of Balas [11]
in adding valid inequalities, so-called cutting planes, to the problem to
reduce the search space and steadily improve the lower bounds during the
execution of a Branch & Bound procedure. This technique is not exclu-
sively applied to job shop scheduling, but constitutes a main module in
general MIP solvers up to the present.

Nonetheless, the achieved results remain unsatisfactory compared to what
can be obtained for other NP-hard combinatorial problems, cf. [120], and
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the general Branch & Bound mechanism is not expected to e�ciently solve
job shop instances of sizes relevant in practice. Recently, Bonami et al.
[27] derive a nonlinear reformulation of optimization programs with log-
ical implications to overcome the weak relaxations discussed above. The
authors show that the computationally challenging construction of the re-
formulation is possible for particular classes of disjunctive optimization
problems, among them the standard job shop scheduling problem with
makespan minimization. Unfortunately, the achieved improvement in the
lower bounds, which is reported for a large set of benchmark instances,
is not signi�cant enough to believe in general-purpose solvers becoming
competitive against scheduling-tailored methods, cf. [27]. Fischetti and
Monaci [54] indicate the applicability of MIP solvers when combined with
�tted preprocessing techniques. A real-world train rescheduling problem
with total delay minimization is solved by determining an upper bound on
the objective function value through a structured trial and error method
prior to the actual resolution. The authors emphasize the important role of
this bound for the following variable tightening and �xing mechanisms in-
corporated in the Branch & Bound method. Zhou and Zhong [134] present
a commonly known Lagrangian relaxation dual bound, which requires con-
siderable computational e�ort. In addition, they de�ne lower bounds for
partial schedules in the considered train timetabling problem with total
travel time minimization based on delay estimates for single con�ict res-
olutions. The in�uence of this simple bounding technique increases with
the size of the existing partial schedule, so that it needs to be combined
with another more general method, which is applied in the early stages of
the solving process.

Overall, there exist various attempts to obtain lower bounds on the make-
span for the job shop scheduling problem as well as more or less tailored
MIP techniques. However, none of these approaches can easily be adapted
to compute satisfactory lower bounds on the total tardiness for a considered
scheduling problem. Thus, it can be expected that even a state-of-the-art
MIP solver will not be able to compute optimal solutions for all benchmark
instances given in Section 2.5 in reasonable runtime. Accordingly, the com-
putational study presented in the following section is intended to indicate
the boundaries of resolvability of the BJSPT by a general exact method
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and to provide benchmark results for the heuristic methods derived later
in this thesis.

3.5 Analysis of Solving the BJSPT as a

Mixed-Integer Program

In the following, the key features of the MIP formulations, which are set
up in Sections 3.2 and 3.3, are summarized referring to the benchmark
instances introduced in Section 2.5. The quantities of involved variables
and constraints are compared and the resolvability of the BJSPT modeled
by MF1 and MF2, respectively, is tested with the use of a well-known gen-
eral optimization software. The instance properties, which are presented
in Section 2.5.3, are additionally discussed in relation to the performance
of the state-of-the-art MIP solver. ZIMPL, the open source modeling lan-
guage introduced by Thorsten Koch [73] at Zuse Institute Berlin, is chosen
to implement the mathematical formulations. Applying a highly sophis-
ticated Branch & Bound procedure, the computational experiments are
performed by IBM ILOG CPLEX 12.8.0 (simply referred to as CPLEX
in the following) on a notebook operating an Intel Dual Core i5 processor
(2.20 GHz) with 8 GB RAM.

The Tables 3.3 and 3.4 depict the descriptive �gures of the mathematical
formulations and three quantities characterizing the computational results
for the train scheduling-inspired instances modeled by MF1 and MF2,
respectively. The �rst two columns display the instance label and its size
(n,m). The columns #var(MF) and #con(MF) contain the number of
variables and the number of constraints of the mathematical formulation
of the given instance. Furthermore, the last three columns indicate the best
found total tardiness value

∑
Ti, the percentage gap between the objective

function value of the best found feasible solution and the lower bound as
well as the runtime of the solution procedure in seconds. A time limit of
two hours is set to the execution of the optimization software. Solutions
with proven optimality are denoted by an asterisk (∗). Considering the last
three columns, the entry 'none' as the total tardiness value expresses that
there is no integer feasible solution found for the given instance and the gap

86



3.5 SOLVING THE BJSPT AS A MIXED-INTEGER PROGRAM

is denoted by in�nity (inf) accordingly. Furthermore, the percentage gap
is stated with a maximum value of 100.00%, which is shown for di�erences
greater than or equal to this measure. In the same way, the computational
results are summarized for the Lawrence instances modeled by MF1 with
precedence variables in Table 3.5 and stated by MF2 with order-position
variables in Table 3.6.

Comparison of the quantities of variables and constraints in the mathemat-

ical formulations. Due to the structural variation of the train scheduling-
inspired instances, where most of the train routes do not visit all of the
tracks, compared to the Lawrence instances, which are created as standard
job shop problems with ni = m for all Ji ∈ J , a di�erence appears in the
descriptive measures of the models. Each of the 15 ts-instances features a
distinct quantity of variables and constraints involved, whereas these mea-
sures are equal for all Lawrence instances of the same size (n,m). Nonethe-
less, the numbers of variables and constraints do naturally increase for all
benchmark problems and formulations with an increasing size of the cor-
responding instance. Comparing the amounts of variables and constraints
involved in di�erent formulations of the same instance, the models set up
by MF1 with precedence variables include less unknowns and signi�cantly
less constraints than the programs created by MF2 with order-position
variables. This e�ect can be observed for both train scheduling-inspired
and Lawrence instances. In particular, it is remarkable that the number
of constraints increases over-proportionally in MF2 when the number of
considered jobs and machines increases, while in MF1, the ratio between
the number of variables and the number of constraints is almost constant
for all benchmark problems. These observations empirically support the
theoretical �ndings of the Sections 3.1.2, 3.2 and 3.3.

On the resolvability of the BJSPT by applying MF1 versus MF2. With
regard to the train scheduling-inspired instances, Table 3.3 shows that
nine of the 15 problems given as optimization programs with precedence
variables are solved to optimality within the time limit of two hours. In
contrast, no feasible solution is found by CPLEX for the instances when
implementing the train scheduling problems with order-position variables,
see Table 3.4. A similar behavior can be observed for the Lawrence in-
stances. As indicated in Table 3.5, 16 out of the 40 benchmark instances
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are solved to optimality while being described by MF1. In comparison,
Table 3.6 displays that there is no optimal solution found by CPLEX for
the instances given by MF2. These results signalize that a mathematical
formulation using precedence variables should clearly be preferred against
a model based on order-position variables for the purpose of solving the
BJSPT by a general optimization software. Evidently, the structural is-
sues of implementing sequencing decisions discussed in Section 3.1.3 seem
to e�ect the performance of a MIP solver.

Aspects of solving the BJSPT by MIP techniques. In Section 3.4, di�cul-
ties in the de�nition of good lower bounds for the BJSPT are highlighted
and explained. The numerical results obtained by CPLEX on the entire
set of benchmark instances demonstrate the appearance and signi�cance
of this issue. Consider the results for the Lawrence instances implemented
by MF2 in Table 3.6, there exists a feasible solution for each of the 40
instances, but for 38 of them, the percentage gap is given with 100.00 %.
This implies that the lower bound on the total tardiness of these problems
is estimated by 0 although a feasible solution is known and the Branch &
Bound procedure has been run for two hours. Considering the mathemat-
ical formulation based on precedence variables, the results are generally
improved compared to order-position variables but there are still remark-
ably large percentage gaps remaining. Based on the results in Tables 3.3
and 3.5, it is not clear whether the best found feasible solutions of the
instances are actually far from the optimal schedules or whether it is just
a matter of proving optimality. ts09 gives evidence to the latter idea, since
the total tardiness of 153 can be proven to be optimal after two more hours
of computation time. Thus, an enhancement in lower bounds for math-
ematical formulations of scheduling problems is expected to improve the
performance of Branch & Bound methods on these types of instances. In
addition, general MIP solvers use the solution of the linear relaxation of a
model to obtain a feasible solution for the initial mixed-integer problem.
Table 3.4 shows that for the structured ts-instances implemented based
on order-position variables, CPLEX does not succeed in �nding any feasi-
ble solution. A similar behavior is also reported by Fischetti and Monaci
[54] while solving real-world train rescheduling problems. This gives rise
to the conjecture that the linear relaxation incorporates an exceptionally
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Table 3.3: Computational results of MF1 for the train scheduling-inspired in-

stances solved by CPLEX 12.8.0

Inst. (n,m) #var(MF1) #con(MF1)
∑
Ti Gap Time

ts01 (10, 11) 530 1146 138∗ 0 5

ts02 (10, 11) 498 1072 90∗ 0 1

ts03 (10, 11) 518 1120 72∗ 0 1

ts04 (10, 11) 558 1215 41∗ 0 1

ts05 (10, 11) 490 1052 71∗ 0 2

ts06 (15, 11) 1145 2564 88∗ 0 390

ts07 (15, 11) 1199 2689 172∗ 0 4865

ts08 (15, 11) 1149 2565 163∗ 0 5514

ts09 (15, 11) 1189 2668 153 34.90 7200

ts10 (15, 11) 1115 2488 97∗ 0 435

ts11 (20, 11) 1994 4532 366 74.57 7200

ts12 (20, 11) 2038 4643 419 75.26 7200

ts13 (20, 11) 2106 4802 452 76.72 7200

ts14 (20, 11) 2036 4628 459 78.67 7200

ts15 (20, 11) 2084 4755 418 57.65 7200
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Table 3.4: Computational results of MF2 for the train scheduling-inspired in-

stances solved by CPLEX 12.8.0

Inst. (n,m) #var(MF2) #con(MF2)
∑
Ti Gap Time

ts01 (10, 11) 608 7014 none inf 7200

ts02 (10, 11) 568 6283 none inf 7200

ts03 (10, 11) 596 6730 none inf 7200

ts04 (10, 11) 644 7868 none inf 7200

ts05 (10, 11) 568 6235 none inf 7200

ts06 (15, 11) 1266 23505 none inf 7200

ts07 (15, 11) 1328 25652 none inf 7200

ts08 (15, 11) 1270 23552 none inf 7200

ts09 (15, 11) 1318 25292 none inf 7200

ts10 (15, 11) 1228 22455 none inf 7200

ts11 (20, 11) 2142 55316 none inf 7200

ts12 (20, 11) 2186 57140 none inf 7200

ts13 (20, 11) 2262 60674 none inf 7200

ts14 (20, 11) 2200 57400 none inf 7200

ts15 (20, 11) 2256 60252 none inf 7200
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Table 3.5: Computational results of MF1 for the Lawrence instances solved by

CPLEX 12.8.0

Inst. (n,m) #var(MF1) #con(MF1)
∑
Ti Gap Time

la01 (10, 5) 520 1005 762∗ 0 5

la02 (10, 5) 520 1005 266∗ 0 1

la03 (10, 5) 520 1005 357∗ 0 1

la04 (10, 5) 520 1005 1165∗ 0 33

la05 (10, 5) 520 1005 557∗ 0 2

la06 (15, 5) 1155 2520 2516 23.68 7200

la07 (15, 5) 1155 2520 1677∗ 0 2886

la08 (15, 5) 1155 2520 1829∗ 0 4622

la09 (15, 5) 1155 2520 2851 32.20 7200

la10 (15, 5) 1155 2520 1841∗ 0 4213

la11 (20, 5) 2040 4510 6534 80.89 7200

la12 (20, 5) 2040 4510 5286 81.85 7200

la13 (20, 5) 2040 4510 7737 85.59 7200

la14 (20, 5) 2040 4510 6038 81.08 7200

la15 (20, 5) 2040 4510 7082 83.69 7200

la16 (10, 10) 1020 2280 330∗ 0 4

la17 (10, 10) 1020 2280 118∗ 0 1

la18 (10, 10) 1020 2280 159∗ 0 3

la19 (10, 10) 1020 2280 243∗ 0 2

la20 (10, 10) 1020 2280 42∗ 0 1

la21 (15, 10) 2280 5220 1956 67.64 7200

la22 (15, 10) 2280 5220 1455 58.68 7200

la23 (15, 10) 2280 5220 3436 90.24 7200

la24 (15, 10) 2280 5220 560∗ 0 155

la25 (15, 10) 2280 5220 1002 34.79 7200

continued on the next page
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Inst. (n,m) #var(MF1) #con(MF1)
∑
Ti Gap Time

la26 (20, 10) 4040 9360 7961 96.30 7200

la27 (20, 10) 4040 9360 8915 96.49 7200

la28 (20, 10) 4040 9360 2226 78.58 7200

la29 (20, 10) 4040 9360 2018 86.97 7200

la30 (20, 10) 4040 9360 6655 94.94 7200

la31 (30, 10) 9060 21240 20957 99.16 7200

la32 (30, 10) 9060 21240 23150 98.92 7200

la33 (30, 10) 9060 21240 none inf 7200

la34 (30, 10) 9060 21240 none inf 7200

la35 (30, 10) 9060 21240 none inf 7200

la36 (15, 15) 3405 7920 675 42.19 7200

la37 (15, 15) 3405 7920 1070 82.52 7200

la38 (15, 15) 3405 7920 489∗ 0 467

la39 (15, 15) 3405 7920 754 72.24 7200

la40 (15, 15) 3405 7920 407∗ 0 1082
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Table 3.6: Computational results of MF2 for the Lawrence instances solved by

CPLEX 12.8.0

Inst. (n,m) #var(MF2) #con(MF2)
∑
Ti Gap Time

la01 (10, 5) 570 7910 2109 94.40 7200

la02 (10, 5) 570 7910 3862 100.00 7200

la03 (10, 5) 570 7910 4494 100.00 7200

la04 (10, 5) 570 7910 3750 100.00 7200

la05 (10, 5) 570 7910 1558 82.35 7200

la06 (15, 5) 1230 27765 9796 100.00 7200

la07 (15, 5) 1230 27765 8068 100.00 7200

la08 (15, 5) 1230 27765 9204 100.00 7200

la09 (15, 5) 1230 27765 11403 100.00 7200

la10 (15, 5) 1230 27765 11931 100.00 7200

la11 (20, 5) 2140 67220 24443 100.00 7200

la12 (20, 5) 2140 67220 23608 100.00 7200

la13 (20, 5) 2140 67220 20978 100.00 7200

la14 (20, 5) 2140 67220 24133 100.00 7200

la15 (20, 5) 2140 67220 29618 100.00 7200

la16 (10, 10) 1120 16610 3314 100.00 7200

la17 (10, 10) 1120 16610 7170 100.00 7200

la18 (10, 10) 1120 16610 6039 100.00 7200

la19 (10, 10) 1120 16610 3397 100.00 7200

la20 (10, 10) 1120 16610 7266 100.00 7200

la21 (15, 10) 2430 58440 8928 100.00 7200

la22 (15, 10) 2430 58440 18522 100.00 7200

la23 (15, 10) 2430 58440 19444 100.00 7200

la24 (15, 10) 2430 58440 16911 100.00 7200

la25 (15, 10) 2430 58440 20807 100.00 7200

continued on the next page
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Inst. (n,m) #var(MF1) #con(MF1)
∑
Ti Gap Time

la26 (20, 10) 4240 141620 44186 100.00 7200

la27 (20, 10) 4240 141620 59038 100.00 7200

la28 (20, 10) 4240 141620 50300 100.00 7200

la29 (20, 10) 4240 141620 50545 100.00 7200

la30 (20, 10) 4240 141620 62194 100.00 7200

la31 (30, 10) 9360 489030 140756 100.00 7200

la32 (30, 10) 9360 489030 169308 100.00 7200

la33 (30, 10) 9360 489030 168525 100.00 7200

la34 (30, 10) 9360 489030 187311 100.00 7200

la35 (30, 10) 9360 489030 144064 100.00 7200

la36 (15, 15) 3630 89115 34571 100.00 7200

la37 (15, 15) 3630 89115 37565 100.00 7200

la38 (15, 15) 3630 89115 36463 100.00 7200

la39 (15, 15) 3630 89115 29359 100.00 7200

la40 (15, 15) 3630 89115 35286 100.00 7200
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low amount of restrictiveness on the sequence-de�ning variables as to let-
ting MIP-based techniques fail to construct a feasible solution from the
continuous values.

On the general resolvability of the BJSPT. In general, the computational
results obtained by the state-of-the-art MIP solver emphasize that the job
shop scheduling problem remains one of the hardest combinatorial opti-
mization problems. Equivalently testing on instances involving structured
patterns against pure randomness, the BJSPT can be expected to be hard
to solve when incorporating more than 150 operations, nop ≥ 150, or in-
cluding signi�cantly more jobs than machines, n

m ≥ 3. Certainly, a guar-
anteed statement on the resolvability of a problem cannot be given based
on these trivial properties. Nonetheless, the ts-instances and the Lawrence
instances, both show their boundaries of resolvability with instance sizes
of (15, 11) as well as (15, 5), (15, 10) and (15, 15), respectively. This obser-
vation implies that blocking constraints and total tardiness minimization
complicate the problem under study, since the transition between easy
and hard instances occurs at higher job-machine-ratios for the standard
job shop scheduling problem, cf. [118]. Considering real-world instances of
the BJSPT, it can be expected that more jobs and machines are involved
while less computation time is demanded compared to the presented ex-
periments. Thus, the computational results give evidence to the fact that
even a state-of-the-art general-purpose optimization software is not a rea-
sonable choice to tackle occurring instances of the BJSPT in practice.
Therefore, a heuristic approach, which is tailored to the structure of the
considered scheduling problem, is introduced and tested in the subsequent
chapter of this thesis.

Relating instance properties and computational results. To properly dis-
cuss the computational experiments with regard to the instance properties
presented in Section 2.5.3, the results obtained by CPLEX solving MF1
are considered exclusively, see Tables 3.3 and 3.5. Among the ts-instances
of size (15, 11), two instances, namely ts06 and ts10, are solved with a
remarkably less amount of computation time compared to the others. It
can be seen in Table 2.3, that these instances feature the smallest mean
machine utilization rate ū combined with the highest mean machine slack
l̄. In line with this observation, the instance la28 and la29 show the lowest
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percentage gaps after two hours of computation as against the other prob-
lems involving ten machines and 20 jobs. Furthermore, the resolvability
of la24 and the relatively small percentage gap shown by la25 could have
been expected according to low mean machine utilization rates and high
mean machine slacks. Supporting the same observation with a reverse
behavior, the instance la04 requires more computational e�ort than the
other Lawrence instances of the same size while showing the highest mean
utilization rate and the lowest mean machine slack. The same holds for
the problems la06 and la09 in comparison to the other instances with �ve
machines and 15 jobs as well as for problem la23 among the instances of
size (15, 10). Moreover, the Lawrence instances of size (15, 10) seem to be
rather diverse with regard to the ranges of their mean machine utilization
rates and mean machine slacks. This is re�ected by the computational re-
sults, since la24 is solved to optimality in less than three minutes, whereas
la23 shows a percentage gap of more than 90 % after two hours of compu-
tation. Thus, the interdependency of the two averaged instance properties
seems to constitute an indicator for blocking job shop instances to be rel-
atively easy or hard to solve by MIP methods.

According to these observations, it is to be mentioned that blocking con-
straints and the considered objective function seem to shift the relative
di�culty of problems. The instances la21, la27, la29 and la38 are reported
to be exceptionally challenging as standard job shop scheduling problems
with makespan minimization, cf. [7], [13] and [120], while they do not
show any indication for this property here. On the contrary, la38 consti-
tutes one of the two instances, which are optimally solved within minutes
among the �ve (15, 15)-instances.

Nonetheless, there are some drawbacks of the proposed relation between
the instance properties and the computational results to be taken into
account. Since the magnitude of the measures of utilization and slack is
dependent on the job-machine-ratio n

m , an indication can only be derived
comparing instances of the same size (n,m). Additionally, the considered
properties do only take e�ect at the boundary of resolvability. Regarding
the instances of size (10, 10) in Table 3.5, the problem la17 features the
lowest mean machine utilization rate ū together with the highest mean
machine slack l̄. However, these properties do not project to the compu-
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tational results, since the (10, 10)-instances are easily solvable in general.
Furthermore, the correlation between ū and l̄ does not form a compre-
hensively reliable reference for all benchmark instances tested here. The
resolvability of la38 and la40 among the (15, 15)-instances and the com-
plexity of ts09 cannot be explained by these measures.

A conclusion, which can be drawn from the reported experiments, is that
the numbers of variables and constraints do not apply as a sensitive indi-
cator of resolvability. Comparing these generic quantities for the instances
la06 to la10 and la16 to la20, it can observed that the formulations are
of the same magnitude while the computational results are signi�cantly
di�erent. It seems that a more complex property measure is required
to cover occurring interdependencies and compensating e�ects. Observ-
ing the instance ts15 as an example, this problem shows a signi�cantly
smaller percentage gap compared to the other ts-instances involving 20
trains. In contrast to the arguments given above, ts15 features the highest
mean machine utilization rate and a medium mean machine slack among
all (20, 11)-instances. Here, the standard deviation of the machine utiliza-
tion rate std(uk) can be observed to be remarkably high compared to the
other problems and, thus, there might occur certain bottleneck machines,
which are recognized and structurally used by the MIP technique.

Overall, the instance properties presented in Section 2.5.3 can be used as an
indication for the expected performance of a general resolution method.
However, precise conclusions on characteristics, which lead to instances
that are easy or hard to be solved by mixed-integer programming, cannot
be drawn based on the given results. Further studies are required to de-
rive and test more complex property measures combined with additional
observations on the performance variability of MIP solvers on blocking job
shop problems, cf. [85], which is not considered here.
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4 Heuristic Methods for the Blocking Job

Shop Problem with Total Tardiness

Minimization

Since many real-world planning situations demand for the development of
good solutions in reasonable runtime, the computational experiments re-
ported in the previous chapter indicate the necessity of applying scheduling-
tailored methods to solve BJSPT instances in practice. Therefore, the
main purpose of the following sections is the introduction, the theoretical
analysis and the empirical testing of heuristic techniques for the problem
under study. Initial results obtained by applying a simulated annealing
metaheuristic, which is addressed here in detail, are published as a joint
work with Frank Werner in [79].
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At �rst, Section 4.1 reviews existing metaheuristic methods applied to
blocking job shop instances and related problems. Section 4.2 describes
distinct representations of a schedule by permutations of operations, cf.
[79], since these lists constitute the basis of the heuristic approaches de-
rived in this thesis. A distance between two schedules is de�ned in Section
4.3 as an important independent measure for the ongoing analysis. Occur-
ring issues of feasibility and redundancy of permutations are discussed in
Section 4.4. A procedure, which constructs a feasible schedule from any
given permutation in polynomial time, is presented in Section 4.5, cf. [79].
Based on this, solution techniques of di�erent complexity are discussed
and tested on the BJSPT. Section 4.6 contains the description of various
popular priority rules, which constitute a basic module of the proposed
heuristic procedures. Three neighborhood structures are introduced and
analyzed in Section 4.7, where an emphasis is given to signi�cant feasibility
issues occurring in the generation of neighboring solutions, the connectiv-
ity and further empirically observable properties. Sections 4.8 and 4.9
combine and apply the presented priority rules and neighborhoods in a
Local Neighborhood Search (LS) and a Simulated Annealing (SA) frame-
work, respectively. The computational results obtained by both methods
are compared to the outcome of the state-of-the-art MIP solver presented
in Section 3.5.

4.1 Existing Heuristic Methods for Job Shop

Problems with Blocking Constraints and

Tardiness-Based Objectives

This section is meant to summarize the most popular metaheuristic ap-
proaches tackling job shop scheduling problems for the purpose of indicat-
ing applications and highlighting heuristic techniques, which are related to
the key issues discussed in this thesis. For comprehensive reviews of the
literature presenting heuristic methods on job shop scheduling problems
in general, the reader is for instance referred to Anderson, Glass and Potts
[5], Blazewicz, Domschke and Pesch [22] and Blazewicz et al. [25]. The
metaheuristics involved in the following survey are
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• Priority Rules (also called dispatching rules),

• Local Neighborhood Search (LS) (meaning local descent or iterative
improvement schemes in a strict sense),

• Simulated Annealing (SA),

• Tabu Search and

• Evolutionary Algorithms (including genetic algorithms as a speci�c
type).

General explanations on how to apply these procedures to scheduling prob-
lems are given for example by Pinedo [102]. Most of the existing methods
are not proposed for the BJSPT, but approach a more or less extended
version of the standard job shop problem introduced in Section 2.2. In
the following, special emphasis is given to the incorporation of blocking
constraints and the consideration of tardiness-based objectives to classify
the metaheuristics. Further characteristics of the job shop problem un-
der study, such as the general technological routes including recirculation
and the tolerance of swaps, are additionally mentioned to highlight the
contribution of the study conducted here.

Priority rules are set up to guide the decision on which operation to be
scheduled next on a speci�c machine in the shop. Most of the dispatching
rules proposed in the literature are created to control dynamic job shop en-
vironments, where jobs appear dynamically throughout the planning hori-
zon. Gere [59] applies and compares several slack-based priority rules for
the static and dynamic job shop problem with total tardiness minimization.
The experimental results show that the enhancement of basic dispatching
rules by additional mechanisms, which suspend the general regulation in
urgent situations, improves the performance. Baker and Kanet [9] in-
troduce a priority rule based on modi�ed operation due dates and report
promising results on dynamic job shop scheduling instances involving recir-
culation and tardiness-based objectives. A priority rule tailored to handle
weighted tardiness costs is presented by Vepsalainen and Morton [123] for
a dynamic job shop problem facing di�erent utilization levels and due date
factors. Anderson and Nyirenda [6] show that two rules perform well on
dynamic job shop problems with recirculation and tardiness-based objec-
tives, while combining existing priority measures. Supporting this idea,
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further studies are conducted, which highlight positive e�ects obtained by
linking priority rules to bene�t from di�erent properties, cf. [70], [71] and
[104]. However, many authors point out that the performance of a cer-
tain priority rule is not robust but depends on the workload in the shop,
the due date tightness and the considered objective function, cf. for in-
stance [6], [71] and [123]. These �ndings imply that di�erent dispatching
rules should be comparatively applied and more complex procedures are
required to appropriately tackle complicated settings like the BJSPT.

In contrast to the methods summarized above, the following metaheuristics
require an initial solution, from which neighboring solutions are derived
and the search space is explored. In various implementations, priority
rules are used to set up the initial feasible schedule, cf. for instance [4], [13]
and [64]. Thereafter, the guidance of the search is a key issue in almost
every heuristic method. Special attention is paid to the combination of
intensi�cation to exploit locally optimal solutions and diversi�cation, so
that an early entrapment in a local optimum is avoided, cf. for instance
[13], [67] and [97].

With regard to local neighborhood search techniques, an observation iden-
tical to the statement on priority rules can be made. Most of the methods
do not only include a simple local descent scheme but apply certain en-
hancements to tackle the more complex problem structure. Balas and
Vazacopoulos [13] present a guided local search procedure for the stan-
dard job shop problem, where neighboring solutions are constructed based
on interchanges of operations in the critical path in the disjunctive graph.
To diversify the search, the graph-based neighborhood is combined with
a shifting bottleneck-based scheme. Additionally, the search is guided by
a neighborhood tree, in which considered solutions are stored and linked.
The procedure obtains good solutions to all known benchmark instances
in reasonable time. Similarly, Rego and Duarte [105] apply a �lter and fan
algorithm to the standard job shop problem likewise incorporating a local
descent scheme and a diversi�cation technique.

Considering the blocking job shop scheduling problem, Oddi et al. [98] ap-
ply an iterative improvement algorithm, which incorporates a constraint-
based search procedure with relaxation and reconstruction steps. A sched-
ule with minimal makespan is to be found, while swaps are allowed in fea-
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sible solutions. Pranzo and Pacciarelli [103] introduce an iterated greedy
algorithm based on the alternative graph representation for the same prob-
lem setting. The authors show that the proposed method, which loops a
destruction and a construction phase, is well applicable to instances with
and without swaps. Both heuristics are tested on the Lawrence instances
without recirculation. The results imply that an operator forcing neigh-
boring solutions to be more diverse is favorable to solve job shop problems
with blocking constraints.

Simulated annealing constitutes a basic metaheuristic involving the accep-
tance of deteriorated solutions to overcome the entrapment in local optima.
The most popular application of an SA to a standard job shop schedul-
ing problem with makespan minimization is published by van Laarhoven,
Aarts and Lenstra [122]. The authors introduce the reversion of a critical
arc in the longest path in the disjunctive graph of an existing schedule as
the transition scheme and this represents a basic makespan-tailored neigh-
borhood structure to the present. Matsuo, Suh and Sullivan [90] show
that this neighborhood can be reduced by pairs of operations, for which
the predecessor of the �rst and the successor of the second operation in
the corresponding processing sequences do also belong to the critical path.
Steinhöfel, Albrecht and Wong [112] extend the transition scheme through
permitting the reversion of more than one arc and apply it in an SA with
two di�erent cooling schemes to the standard job shop problem. In addi-
tion, the authors implement the original neighborhood of van Laarhoven,
Aarts and Lenstra in a parallelized version of an SA algorithm, cf. [113].
Kolonko [74] shows that the SA as a stochastic process does not feature
the convergence property when applied to job shop scheduling problems.
Therefore, the execution of multiple runs starting from di�erent initial
solutions is reasonable when the performance of the algorithm or its com-
ponents is evaluated.

Minimizing the total tardiness of standard job shop instances, Wang and
Wu [125] indicate that a generic neighborhood interchanging a pair of
adjacent operations on a machine leads to better results compared to a
critical path-based transition scheme when applied in an SA. However,
Zhang and Wu [133] implement the idea of combining intensi�cation and
diversi�cation by operating the neighborhood of van Laarhoven, Aarts
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and Lenstra together with a block reversion operator working on the dual
maximum �ow problem. The authors emphasize that the combination
of the neighborhoods is bene�cial against the application of one separate
operator when minimizing the total weighted tardiness. Kuhpfahl and
Bierwirth [76] use a local descent scheme and an SA algorithm as basic
frameworks to compare di�erent neighborhood structures for a job shop
scheduling problem with release dates and total weighted tardiness mini-
mization. The experimental results show that transition schemes vary in
their performance when implemented in di�erent metaheuristics and with
di�erent initial solutions. In line with the observation in [133], more com-
plex neighborhood structures with critical path-based components yield
convincing results with regard to solution quality and computational ef-
fort.

Indicated as the most promising metaheuristic for job shop scheduling
problems, cf. [5] and [120], tabu search is widely applied in the literature.
Taillard [118] implements the transition scheme of van Laarhoven, Aarts
and Lenstra mentioned above in a sequential and a parallel tabu search
algorithm. Nowicki and Smutnicki [96] introduce a second critical path-
based neighborhood for the standard job shop problem, which is reduced to
interchanges of adjacent pairs of operations on the same machine at speci�c
positions in critical blocks. The presented tabu search algorithm addition-
ally includes a procedure to collect and restore elite schedules when the
search is trapped in a local optimum. The authors provide a signi�cantly
enhanced version of their method in [97], which further bene�ts from a
fast a priori makespan evaluation of neighboring solutions and a stronger
focus on the set of elite schedules.

Incorporating blocking constraints in the job shop problem causes consid-
erable feasibility issues, as brie�y outlined in Section 2.4. This aspect
becomes even more challenging during the construction of neighboring
solutions when relying on generic operators. Occurring issues and their
resolutions are comprehensively discussed in Sections 4.4, 4.5 and 4.7.
Mati, Rezg and Xie applied the transition scheme given in [122] and a job
insertion-based rescheduling procedure to create feasible neighbors. The
authors operate their tabu search approach to minimize the makespan of
blocking job shop problems without swaps and recirculation based on the
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alternative graph. Grö�in and Klinkert [64] present a connected neigh-
borhood, which is set up by interchanges of adjacent operations and job
reinsertion, for the blocking job shop problem with makespan minimiza-
tion while involving setup and transfer times. In this study, a critical
path-dependent and accordingly reduced neighborhood is applied in a
tabu search algorithm additionally including a list of elite solutions to
be restored after a certain amount of non-improving iterations. Bürgy
[34] provides computational experiments on a tabu search approach to the
blocking job shop problem with regular objective functions including total
tardiness. Swaps are allowed in the schedule and neighboring solutions
are obtained by a job reinsertion technique initially proposed in [63]. The
metaheuristic is applied to benchmark instances without release dates and
with a moderate due date factor of 1.8.

The most popular class of evolutionary algorithms is constituted by genetic
algorithms. Comprehensive descriptions of components and operators as
well as their application to di�erent kinds of shop scheduling problems are
given by Werner in [128]. A more speci�c survey on hybrid genetic search
strategies for job shop scheduling problems can be found in [41]. Consid-
ering the standard job shop problem, Yamada and Nakano [131] propose a
genetic algorithm where the completion times of the operations represent
a solution and the crossover operator is based on the well-known construc-
tion scheme by Gi�er and Thompson [60]. Contrastingly, Della Croce,
Tadei and Volta [48] apply a machine-based preference list representation
of a schedule together with a general crossover. Their genetic algorithm is
extended by a lookahead evaluation scheme and an updating mechanism
to reduce redundancy in the population. Both heuristic techniques are
tested on benchmark instances showing good results. Dorndorf and Pesch
[50] used the genetic algorithm framework to obtain the most e�ective
construction scheme with �exible priority rule application as well as to
identify a bene�cial machine ordering for a shifting bottleneck procedure
introduced in [2]. It turns out that the shifting bottleneck-based genetic
algorithm produces promising results for standard job shop scheduling in-
stances with general technological routes.

Tackling a job shop problem, which involves recirculation and release dates
while minimizing tardiness-based objective functions, Mattfeld and Bier-
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wirth [92] apply a hybrid genetic algorithm with a permutation-based en-
coding. The list representation is interpreted as priority relations to decide
about the ordering of con�icting operations. The procedure is enhanced
by a �exible encoding scheme and a decomposition approach to reduce
computation time. Nonetheless, the results do not signi�cantly support
genetic algorithms as a favorable solution method. Considering blocking
constraints, tolerating swaps in a feasible schedule and minimizing the
makespan, Brizuela, Shao and Sannomiya [29] propose a genetic algorithm
with a permutation-based encoding, which actually acts as a scheduling
order of the operations. The authors derive a procedure to construct a
feasible schedule from any given permutation and test their method on
benchmark instances of standard job shop problems. Regarding the same
problem but following another evolutionary approach, AitZai and Boudhar
[4] apply a parallel particle swarm optimization, which turns out not to be
competitive to the methods proposed in [64] and [103]. All these results in-
dicate that evolutionary techniques are basically applicable to the BJSPT,
but the e�ort required to adapt the encoding and the transition operators
to the scheduling problem is not pro�table against solution quality and
runtime.

In line with this observation, scheduling-tailored heuristics accounting for
the speci�c structure of the problems are developed. The most popular and
successfully applied solution technique for job shop scheduling problems is
the shifting bottleneck procedure initially proposed by Adams, Balas and
Zawack [2]. The main idea incorporates the sequential resolution of single
machine problems and the repeated adaptation of the operation sequences
on the machines. As mentioned above, this method is used in several hy-
bridized metaheuristics. Solving a practical job shop problem with release
dates and due dates, the shifting bottleneck strategy is applied by Balas et
al. [12] as a modi�ed variant of the guided local search heuristic given in
[13]. Another scheduling-speci�c procedure based on the sequential inser-
tion of jobs in the schedule is proposed by Werner and Winkler [129]. This
work constitutes the fundamental module of job reinsertion techniques im-
plemented in some metaheuristics given above and a job insertion-based
neighborhood applied in [34], [63] and [64]. Such heuristic methods yield
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promising results in reasonable runtime while being integrated in a meta-
heuristic framework.

Analyzing the advantages of scheduling-tailored structures in lean heuris-
tic mechanisms, this thesis is intended to shed light upon the applicability
of permutation-based representations of schedules, basic list scheduling
techniques and generic transition schemes in the construction of neigh-
borhoods for blocking job shop schedules. In contrast to the work by
Oddi et al. [98] and Pranzo and Pacciarelli [103], simple ordering-based
operators are observed for the blocking job shop problem, so that the mag-
nitude of destruction is more precisely controllable and a moderate run-
time for the transition can be expected. The remarkable results obtained
by van Laarhoven, Aarts and Lenstra [122], Nowicki and Smutnicki [96]
and Bürgy [34] give evidence for focusing on the development of a sophis-
ticated neighborhood instead of creating complex resolution procedures.
The studies presented by Grö�in and Klinkert [64], Brizuela, Shao and
Sannomiya [29] as well as Mati, Rezg and Xie [89] motivate the following
work on a broader discussion and evaluation of permutations and generic
interchange operators in metaheuristics while optimizing a practice-driven
objective function. Furthermore, the popular idea of reducing the number
of considered neighbors by speci�c characteristics, as applied for makespan
minimization, cf. [96] and [122], is observed with regard to its e�ectiveness
for the minimization of total tardiness.

4.2 Permutation-Based Representations of a

Schedule

There exist various structures to represent a schedule in the job shop
scheduling framework, cf. for instance [5], [40] and [128]. Since it consti-
tutes one of the key components of every heuristic method, the encoding
is supposed to be as simple as possible, while containing all information
required for the solution process. The representation by a permutation
or list of operations is a well-known strategy in scheduling research, cf.
[5] and [128], which is applied in the following. This is straightforward,
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since a permutation is technically easy to handle and the schedule-de�ning
operation sequences on the machines can directly be derived.

The two basic representations of a schedule, which are used in the on-
going study, cf. [79], are de�ned as follows: The operation-based repre-

sentation sop = [. . .] states the schedule as a permutation (a single list)
of all operations Oi,j ∈ O. Likewise, the machine-based representation

sma = [[. . .], [. . .], . . .] displays the schedule as the sequences of opera-
tions on the machines (a nested list) starting from M1 up to Mm. The
machine-based representation and the starting times of the operations can
be derived from the operation-based representation by applying a simple
list scheduling technique to the permutation, which is illustrated in detail
in Section 4.4.1. Hence, every operation-based representation uniquely
de�nes a machine-based representation. Since a machine-based schedule
only incorporates precedence relations between operations requiring the
same machine, this implication does not hold in the opposite direction, cf.
[5]. The encoding sma does not specify the ordering of operations in the
permutation, which are processed on di�erent machines.

Figure 4.1 shows three di�erent representations of the schedule for the
instance GJSP2 of the BJSPT constructed in Section 2.4. Based on the
permutation sop given in part (b) of the �gure, the Gantt chart can be
set up by consecutively assigning the starting times to the operations from
the �rst, here operation O2,1, to the last, namely operation O1,2. In the
same way, the machine-based representation sma outlined in part (c) at the
bottom of Figure 4.1 can be derived from the permutation. Contrarily, the
representation sma can be transformed into several di�erent but redundant
operation-based representations. This issue is discussed in more detail in
the subsequent Section 4.4.1.

In order to examine and describe modi�cations of a schedule in a formal
way, two quantities are de�ned, which specify the positions of the opera-
tions in the permutation-based representations. A list index lidx(Oi,j) ∈
{1, 2, . . . , nop} is assigned to every operation Oi,j in the operation-based
representation. More precisely, the list indices lidx(Oi,j) for Oi,j ∈ O are
denoted as the positions of the operations in the permutation. Similarly,
a machine index midx(Oi,j) ∈ {1, 2, . . . , Rk} is determined for every op-
eration Oi,j in the machine-based representation, where Rk de�nes the
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O1,1O3,1 O4,2

O4,1 O3,2O2,1 O5,2 O4,3

O1,2O3,3O5,1O2,2M3

M2

M1

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

H
r2, r5

H
r1, r3

H
r4

(a) Gantt-chart representation

sop = [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

(b) Operation-based representation

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3], [O2,2, O5,1, O3,3, O1,2]]

(c) Machine-based representation

Figure 4.1: Di�erent representations of a schedule for the instance GJSP2 of

the BJSPT

number of operations requiring machine Mk. These indices refer to the
order-positions of the operations on the corresponding machines. Regard-
ing the schedule depicted in Figure 4.1, the list indices and machine indices
are de�ned as follows:

sop = [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, . . .

lidx(Oi,j) 1 2 3 4 5 6 7 . . .

O4,3, O1,1, O1,2]

10 11 12

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3],

midx(Oi,j) 1 2 3 1 2 3 4 5

[O2,2, . . . ]]

1 . . .
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4.3 Measuring the Distance of Schedules

When characterizing the set of solutions to a scheduling problem or the
neighborhood structure, the distances between the incorporated schedules
act as a well-known �gure, cf. for instance [20] and [107]. Generally, the
distance δ(s, s′) of two solutions s and s′ is de�ned by the minimal number
of basic operators required to construct one schedule from the other, cf.
[107] and [127]. A popular operator, which is used in this thesis, is the
interchange of a pair of adjacent operations in the operation sequence
of a machine. Here, this transition is denoted as an adjacent pairwise

interchange (API), while it is also referred to as a swap or a transpose in
the literature, cf. for instance [5], [91], [107], [127] and [132]. Accordingly,
the distance determination is related to the machine-based representations
of the considered solutions. To count the number of required APIs, a
binary indicator variable is introduced referring to two schedules s and s′

as follows:

hi,j,i′,j′ =


1 if an ordering Oi,j → Oi′,j′ or Oi′,j′ → Oi,j in s

is reverse in s′,

0 otherwise.

(4.1)

These variables are de�ned for pairs of operations Oi,j and Oi′,j′ requiring
the same machine, for which i < i′ holds. This condition assures that there
is only one indicator introduced for each pair of operations of di�erent jobs
belonging to the same set Ωk. Thus, every API is counted exactly once.
The distance of two schedules s and s′ is determined by

δ(s, s′) =
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

hi,j,i′,j′ . (4.2)

Note that the maximum distance of two schedules equals the total num-
ber of possible adjacent pairwise interchanges in the operation sequences
on all machines Mk ∈ M. Thus, the distance δ(s, s′) is bounded by∑

Mk∈M
(|Ωk|

2

)
.

With regard to the optimization program MF1 presented in Section 3.2,
the statements Oi,j → Oi′,j′ in s and Oi′,j′ → Oi,j in s′ can be expressed
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by means of the precedence variables with ysi,j,i′,j′ = 1 and ysi′,j′,i,j = 0 as

well as ys
′
i,j,i′,j′ = 0 and ys

′
i′,j′,i,j = 1. Based on this, the distance δ(s, s′) can

be related to the well-known Hamming distance, which is de�ned for bi-
nary bit strings in [66]. The Hamming distance H(s, s′) of two solutions s
and s′ corresponds to the number of list entries, here the number of prece-
dence variables, showing di�erent values in the compared permutations.
Dependent on the implementation of MF1, two cases are to be observed.

• Case 1. If the solution vector consists of binary variables yi,j,i′,j′ for
all operations Oi,j , Oi′,j′ ∈ Ωk with i 6= i′ and all machinesMk ∈M,
every API refers to two precedence variables changing their values.
Thus,

H(s, s′) =
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i 6=i′

| ysi,j,i′,j′ − ys
′
i,j,i′,j′ |

=
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

(
| ysi,j,i′,j′ − ys

′
i,j,i′,j′ |

)

+
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

(
| ysi′,j′,i,j − ys

′
i′,j′,i,j |

)

=
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

2 · hi,j,i′,j′

= 2 ·
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

hi,j,i′,j′ = 2 · δ(s, s′).

• Case 2. If the solution vector consists of binary variables yi,j,i′,j′ for
all operations Oi,j , Oi′,j′ ∈ Ωk with i < i′ and all machinesMk ∈M,
every API refers to one precedence variable changing its value, cf.
[91] and [107]. Thus,

H(s, s′) =
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

| ysi,j,i′,j′ − ys
′
i,j,i′,j′ |

=
∑

Mk∈M

∑
Oi,j ,Oi′,j′∈ Ωk

with i<i′

hi,j,i′,j′ = δ(s, s′).
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4.4 Feasibility and Redundancy of

Permutation-Based Schedules

In the following, redundancy and feasibility issues are addressed, which
occur when working with permutations as solutions to combinatorial op-
timization problems. Particularly, it is shown that the feasibility of a
schedule s for the BJSPT can only be checked on its operation-based rep-
resentation sop in Section 4.4.2, while the uniqueness can only be assured
by its machine-based representation sma, see Section 4.4.1. Thus, both
types of encoding are of equal importance to a permutation-based heuris-
tic method and a reliable transformation scheme, as proposed in Section
4.4.1, needs to be applied.

4.4.1 The Redundancy of Permutations Representing Job

Shop Schedules

As indicated in Section 4.2, a schedule uniquely given by a machine-based
representation or by a Gantt chart with earliest operation starting times
si,j for all Oi,j ∈ O may result from several redundant permutations sop.
Every two adjacent operations in the permutation, which ful�ll the fol-
lowing conditions, can be interchanged without e�ecting the represented
schedule.

(a) The operations belong to di�erent jobs.

(b) The operations require di�erent machines.

(c) The operations are not connected by a blocking constraint.

(d) None of the operations is involved in a swap.

Recall the operation-based representation of the schedule shown in Figure
4.1.

sop = sop1

= [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

The adjacent pairs of operations O2,1 and O3,1, O3,1 and O2,2 as well as O4,1

and O5,1 feature the given properties and their interchanges can be applied
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separately as well as simultaneously to construct di�erent redundant per-
mutations. Furthermore, the lists obtained from these interchanges need
to be checked for newly appearing swappable pairs, since some redundan-
cies are not visible in the initially considered permutation. Altogether, the
schedule given in Figure 4.1 is redundantly expressible by ten permuta-
tions.

sop2 = [O3,1, O2,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop3 = [O3,1, O2,1, O2,2, O5,1, O4,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop4 = [O2,1, O2,2, O3,1, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop5 = [O2,1, O2,2, O4,1, O3,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop6 = [O2,1, O2,2, O4,1, O5,1, O3,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop7 = [O2,1, O2,2, O3,1, O5,1, O4,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop8 = [O2,1, O2,2, O5,1, O3,1, O4,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop9 = [O2,1, O2,2, O5,1, O4,1, O3,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop10 = [O2,1, O3,1, O2,2, O5,1, O4,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

With regard to computation time, any heuristic method should be set up
so that redundant permutations are not classi�ed as individual solutions to
a scheduling problem. Therefore, schedules are exclusively distinguished
by their machine-based representations in the solution approaches pro-
posed in this thesis. Nonetheless, since the discussion of blocking-related
feasibility issues requires the operation-based representation of a schedule,
there exists a necessity to transform one encoding into the other. Without
loss of generality, it can be assumed that both, the given operation-based
as well as the machine-based representation, depict feasible schedules with
regard to the processing sequences and the technological routes of the jobs
Ji ∈ J , see details in the following Section 4.4.2.

Case 1: sop → sma. Starting from a permutation sop, the machine-based
representation sma can be derived by applying a list scheduling procedure,
cf. [32]. The operations in the permutation sop are considered with in-
creasing list index and added to the operation sequences on the machines
successively. Figure 4.2 illustrates the transformation process of the per-
mutation sop1 given above into the corresponding machine-based represen-
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tation sma of the schedule, whereby the gray numbers indicate the ordering
of the construction steps.

sop1 = [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3], [O2,2, O5,1, O3,3, O1,2]]

1
2

34

5 . . . 12

Figure 4.2: Transforming the operation-based representation into the machine-

based representation of a schedule

Since the number of operations is �nitely de�ned by nop and every op-
eration is read from the permutation and assigned to the machine-based
encoding exactly once, this transformation can be operated in O(nop) it-
erations.

Case 2: sma → sop. On the contrary, transforming a uniquely de�ned
machine-based representation sma into a permutation sop leads to de-
cisions, with which di�erent but redundant lists of operations can be
created for the same schedule, cf. [5]. When considering the machine-
based encoding of the schedule given in Case 1, every operation Oi,j with
midx(Oi,j) = 1 that has no predecessor in the processing sequence of its job
quali�es for being at the �rst position in the permutation, here the opera-
tions O3,1 and O2,1. For general purposes, the decision on which operation
to place �rst can be made arbitrarily, since the underlying schedules are
equivalent. However, the application of a structured solving method aims
at restoring equal permutations and constructing neighboring solutions
without incorporating unnecessary changes. Therefore, a transformation
scheme based on list index priorities is implemented.

Priority-Guided Transformation Scheme sma → sop

Let sop be the operation-based representation of a schedule s with list
indices lidx(Oi,j) and let sma

′
be the machine-based encoding of a sched-

ule s′ with machine-indices midx′(Oi,j) for all operations Oi,j ∈ O. Both
schedules s and s′ are assumed to be feasible with regard to the processing
sequences and technological routes of all jobs. A permutation sop

′
repre-

senting the schedule s′ with list indices lidx′(Oi,j) is to be derived, so that
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as all entries of the list sop, which do not de�ne the di�erence between the
schedule s and s′, keep their absolute and relative positions when being
transferred to sop

′
. Therefore, the construction of the permutation sop

′

is guided by dynamic priorities prio(Oi,j) that are based on the a priori
list indexes lidx(Oi,j) of all operations Oi,j ∈ O. In case that several op-
erations can redundantly be assigned to the currently considered position
lidx′(∗) in the new permutation sop

′
, the decision is made in favor of the op-

eration featuring the maximum priority among the candidate operations,
whereby

prio(Oi,j) =


1

lidx(Oi,j)−lidx′(∗) if lidx′(∗) < lidx(Oi,j),

2 if lidx′(∗) = lidx(Oi,j),

lidx′(∗)− lidx(Oi,j) + 2 if lidx(Oi,j) < lidx′(∗).
(4.3)

Algorithm 1 describes the priority-guided transformation scheme. Techni-
cally, all operations Oi,j ∈ O are taken from the machine-based represen-
tation sma

′
and inserted in the permutation sop

′
, correspondingly. The a

priori list indices of the operations in permutation sop are managed in a
dictionary LI, while the machine indices midx′(Oi,j) de�ning the sched-
ule s′ are stored in the MI dictionary. Every iteration of the while-loop
creates a list Cand of candidate operations from the machine-based en-
coding sma

′
. An operation Oi,j constitutes a candidate of being assigned

to the currently considered list index lidx′(∗), if it is �rst on its machine,
midx′(Oi,j) = 1, and its predecessor Oi,j−1 does not exist or is already
part of the permutation sop

′
. Subsequently, the function Priority(. . .)

called within the for-loop in the lines 12 to 14 determines and stores the
value prio(Oi,j) as de�ned in (4.3) for every operation in the candidate
list. Based on this, the operation with maximal priority is added to the
permutation sop

′
and deleted from the machine-based representation sma

′

in lines 16 and 17. The currently regarded list index lidx′(∗) and the ma-
chine index dictionary are adapted in the lines 18 and 19. Finally, the
candidate list is cleared in line 20 and the procedure continues until all
operations are transferred to the permutation sop

′
, which is returned.

Since the machine-based representation sma
′
is feasible with regard to pro-

cessing sequences and technological routes, it is guaranteed that exactly
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Algorithm 1 Priority-Guided Transformation Scheme from sma to sop

Input: (feasible) permutation sop, (feasible) machine-based representation sma′

Output: (feasible) operation-based representation sop
′

1: initialize LI as list index dictionary with lidx(Oi,j) for Oi,j ∈ O from sop

2: initializeMI as machine index dictionary withmidx′(Oi,j) for Oi,j ∈ O from

sma′

3: sop
′ ← empty list

4: lidx′(∗)← 1

5: Cand← empty list

6: while sma′
is not empty do

7: for Oi,j with midx
′(Oi,j) == 1 do

8: if Oi,j−1 does not exist or Oi,j−1 ∈ sop
′
then

9: add Oi,j to Cand

10: end if

11: end for

12: for Oi,j ∈ Cand do
13: Priority(Oi,j , LI, lidx

′(∗))
14: end for

15: O∗ ← Oi,j ∈ Cand with maximum priority

16: add O∗ to sop
′

17: delete O∗ from sma

18: lidx′(∗)← lidx′(∗) + 1

19: update MI

20: clear Cand

21: end while

22: return sop
′
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one operation is transferred from sma
′
to sop

′
in every execution of the

while-loop. Thus, the number of operations in the machine-based encod-
ing decreases by one in every iteration and Algorithm 1 terminates due to
the �nite number of operations in the problem. With regard to the runtime
of the transformation scheme, it is assumed that basic operations like read-
ing and writing an element from or to a list or a dictionary, checking the
existence of a speci�c element in a list or a dictionary as well as assigning
a value to a variable can be done in constant time. The initialization, lines
1 and 2, is executed in O(nop) steps. For correctly implemented processing
sequences in the list sma

′
, the while-loop in the lines 6 to 21 is operated

exactly nop times. The function Priority(. . .) in line 13 only involves
dictionary calls and basic mathematical operations. Thus, the for-loops
require O(m) steps each, since there may be at most m operations added
to the candidate list. Overall, this leads to a polynomial runtime of the
priority-guided transformation scheme. Algorithm 1 constructs a permu-
tation sop

′
from a given permutation sop and a machine-based encoding

sma
′
in O(nop ·m) time.

4.4.2 The Infeasibility of Permutations Representing Job

Shop Schedules

When using permutation-based representations of solutions in constrained
optimization, the feasibility of the encoded solution is not intrinsically
given but requires special attention, cf. [19]. The BJSPT constitutes a
highly constrained scheduling problem, for which feasibility issues of per-
mutations arise from the processing sequences of the jobs, the technological
routes of the jobs and the blocking constraints.

The simplest form of infeasibility, which occurs in operation-based as well
as in machine-based representations of the schedule, violates the process-
ing sequences and the technological routes of the jobs. For many other
scheduling problems like certain single machine, �ow shop and open shop
problems, every permutation consisting of all operations or jobs involved
encodes a feasible schedule. Considering the instance GJSP2 of the BJSPT
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introduced in Section 2.3.2, a random sequence of all operations Oi,j ∈ O
may result in

sop = [O2,2, O3,3, O4,2, O3,2, O3,1, O4,1, O5,1, O2,1, O1,2, O5,2, O4,3, O1,1],

where the corresponding machine-based representation is determined by

sma = [[O4,2, O3,1, O1,1], [O3,2, O4,1, O2,1, O5,2, O4,3], [O2,2, O3,3, O5,1, O1,2].

Obviously, the permutation sop does not encode a feasible schedule, since
several processing sequences are violated by for instance O2,2 → O2,1 con-
cerning job J2 and O3,3 → O3,2 for job J3. Furthermore, the earliest
starting times of the operations cannot be determined from the machine-
based solution sma, since the technological routes of the jobs forbid the
operations O4,2, O3,2 and O2,2 to be processed �rst on the machines M1,
M2 and M3, respectively. Due to the prede�ned technological route TR4:
M2 → M1 → M2, the processing of job J4 on machine M1 can only be
performed as the second production step of this job after its processing on
machine M2. Consequently, the machine-based encoding depicts a sched-
ule that is infeasible with regard to the technological routes of the jobs.
Bierwirth [18] proposed a simple adaptation scheme for permutation-based
representations to generate lists, which satisfy processing sequences and
technological routes, as follows: The given operation-based representation
is generalized to a job-based permutation

sjob = [J2, J3, J4, J3, J3, J4, J5, J2, J1, J5, J4, J1],

from which a feasible permutation of operations is derived by assigning the
processing steps of the jobs according to the jobs appearances in the list.
The adapted operation-based representation results in

sop = [O2,1, O3,1, O4,1, O3,2, O3,3, O4,2, O5,1, O2,2, O1,1, O5,2, O4,3, O1,2]

together with the corresponding machine-based representation

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3], [O3,3, O5,1, O2,2, O1,2].

Since both encodings ful�ll the restrictions on the processing sequences
and the technological routes of all jobs, the depicted schedule is guaranteed
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Figure 4.3: A schedule for the instance GJSP2 of the BJSPT violating blocking

constraints

feasible for the job shop scheduling problem without blocking constraints.
The foregoing explanations show that due to the structure of the job shop
problem, a large set of permutations, which express feasible solutions to
other scheduling instances such as single machine, �ow shop and open shop
problems, are infeasible even with regard to basic constraints here, cf. [19].

Figure 4.3 illustrates the implementation of the schedule given above by
the machine-based encoding sma. From the Gantt chart, it can be seen that
this schedule is not feasible with regard to blocking constraints, since the
jobs J1, J2 and J4 require intermediate storage. Here, a drawback of such
simple permutation-based representations is revealed, cf. [19]. The con-
clusion on the feasibility of the expressed schedule for the BJSPT cannot
be drawn based on the machine-based encoding, but requires the calcula-
tion of the starting times of the operations. In order to tackle this issue,
a formal analysis of the corresponding operation-based representation is
bene�cial.

Every permutation sop constitutes a total ordering of all operations Oi,j ∈
O and speci�es the corresponding decisions on the disjunctive constraints.
Thus, the permutation implies particular starting time relations of pairs of
operations resulting from blocking constraints, which need to be re�ected
by the list indices of the operations. Consequently, the feasibility of a
schedule with regard to blocking constraints can be checked by consider-
ing an iteratively growing partial permutation of sop that initially consists
of the �rst two operations. For every two operations occurring in the
permutation, the resulting blocking constraints are set up in accordance
to the given ordering and their implementation in the posterior list in-
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dices is examined. Checking the feasibility of the schedule given above,
the consideration starts with the partial permutation sop = [O2,1, O3,1] of
the operation-based encoding. Since the operations O2,1 and O3,1 require
di�erent machines, the ordering O2,1 → O3,1 does not imply a blocking
constraint. In the next iteration, the permutation is extended by the sub-
sequent operation to sop = [O2,1, O3,1, O4,1] and the orderings O2,1 → O4,1

as well as O3,1 → O4,1 need to be investigated. Regarding the former pair,
the operations O2,1 and O4,1 are processed on the same machine M2 and
the sequence implies the blocking constraint s2,2 ≤ s4,1. In order to ful�ll
this starting time relation, the list indices of the involved operations are re-
stricted to lidx(O2,2) < lidx(O4,1). Since lidx(O2,2) = 8 > 3 = lidx(O4,1)

holds for the given permutation sop, it is classi�ed as infeasible with re-
gard to blocking constraints. Applying this procedure, the feasibility of an
encoded schedule for the BJSPT can be checked by means of its operation-
based representation.

Furthermore, the observation indicates a possible change in the permuta-
tion to obtain a feasible partial schedule. With implementing lidx(O2,2) <

lidx(O4,1) in the permutation, the blocking constraint can be satis�ed.
Therefore, the operation O2,2 is taken out of the list and reinserted at
the position between O3,1 and O4,1. The resulting partial permutation
sop = [O2,1, O3,1, O2,2, O4,1] is feasible for the BJSPT, since the intermedi-
ate storage of job J2 illustrated in Figure 4.3 is avoided. As a consequence,
the machine-based representation needs to be modi�ed and operation O2,2

is shifted to order-position r = 1 with midx(O2,2) = 1 on machine M3.
The examples in Sections 2.3.2 and 2.4 indicate that there may exist sev-
eral di�erent adaptations, which resolve an infeasible permutation. For the
purpose of displaying all operations available to be set at position three fol-
lowing operation O3,1 in the given permutation sop, the alternative graph
representation of the problem is considered.

Extending the operation-based representation sop by the arti�cial source
node 0 at the beginning and by the sink node ∗ at the end, it can be inter-
preted as a Hamiltonian path in a complete directed graph that involves
all operations Oi,j ∈ O together with the source and the sink in the set of
nodes. Implementing the total ordering given in sop step by step, a set of
operations that are feasible to be added next can be determined for every
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Figure 4.4: Alternative graph representation of the instance GJSP2

partial permutation. Figure 4.4 recalls the alternative graph representa-
tion of the instance GJSP2 of the BJSPT introduced in Section 2.3.2. This
graph constitutes a subgraph of the complete directed graph with the same
set of nodes. For reasons of clarity, the complete graph is not plotted in
the �gure so that the Hamiltonian path given by the permutation

sop = [O2,1, O3,1, O4,1, O3,2, O3,3, O4,2, O5,1, O2,2, O1,1, O5,2, O4,3, O1,2]

constructed above might use invisible arcs.

The permutation is implemented in the graph operation-wise and indicated
by a complete 0−∗−path, if the encoded schedule is feasible for the BJSPT.
The infeasibility of the given ordering is detected by the appearance of an
operation Oi,j at the subsequently considered position in the list, which
does not belong to the set A of operations available to be visited by the
path in the next iteration. If the path visits a node Oi,j , all undecided
disjunctive precedence relations referring to this operation are determined
by one of the following cases.

Case 1. If the operation Oi,j constitutes the tail of an alternative arc
(Oi,j , Oi′,j′) with Oi′,j′ ∈ O\{Oi,j}, this arc is �xed as the partial ordering
Oi,j → Oi′,j′ in the schedule and its disjunctive substitute arc is deleted
from the graph.
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Case 2. If the operation Oi,j constitutes the head of an alternative arc
(Oi′,j′ , Oi,j) with Oi′,j′ ∈ O\{Oi,j}, this arc is deleted from the graph and
its disjunctive substitute is �xed as a partial ordering in the schedule.

Consequently, a node Oi,j can be visited by the path in the subsequent
iteration, Oi,j ∈ A, if the following conditions are ful�lled, cf. [87].

(a) The operation Oi,j is the �rst operation of its job Ji or its predecessor
Oi,j−1 is already part of the path.

(b) The operation Oi,j does not constitute the head of a �xed ordering
indicated by an arc (Oi′,j′ , Oi,j) with Oi′,j′ ∈ O \ {Oi,j} except the
operation Oi′,j′ is already part of the path or the arc is an element
of a �xed feasible cycle.

According to the conditions (a) and (b), an empty permutation sop = [ ]

can initially be extended by the corresponding �rst operations of the jobs
Ji ∈ J , here A = {O1,1, O2,1, O3,1, O4,1, O5,1}. Figure 4.5 depicts the
implementation of the partial permutation sop = [O2,1] as Iteration 1 in
the alternative graph. The �rst arc of the Hamiltonian path (0, O2,1),
indicated in red, mirrors a processing sequence arc of job J2. Since the
operation O2,1 requires machineM2, four pairs of solid alternative arcs are
e�ected by the sequencing decision lidx(O2,1) = 1. Operation O2,1 does
not constitute the tail of any alternative arc, so that Case 1 is not applied.
Following Case 2, the alternative arcs (O4,3, O2,1), (O3,3, O2,1), (O5,2, O2,1)

and (O4,2, O2,1) are deleted and the disjunctive substitutes (O2,2, O4,3),
(O2,2, O5,2), (O2,2, O3,2) and (O2,2, O4,1) are �xed, respectively. The de-
termined precedence relations are indicated by blue arcs in the graph.
According to the conditions (a) and (b), the set of available operations
is adapted to A = {O1,1, O2,2, O3,1, O5,1}. Following the permutation sop,
the Hamiltonian path is extended by the arc (O2,1, O3,1).

The second iteration with the extended sequence sop = [O2,1, O3,1] is shown
in Figure 4.6. The operation O3,1 does not constitute the tail of any
alternative arc, so that only Case 2 is applied to two pairs of dotted arcs
referring to machineM1. Accordingly, the arcs (O1,2, O3,1) and (O4,3, O3,1)

are deleted and their disjunctive substitutes (O3,2, O1,1) and (O3,2, O4,2)

are �xed. The set of determined precedence relations is extended and
A = {O2,2, O5,1} appears. Consequently, these are the only two operations
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Figure 4.5: Implementing a permutation for the instance GJSP2 of the BJSPT

in the alternative graph - Iteration 1

Iteration 2: sop = [O2,1, O3,1]
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Figure 4.6: Implementing a permutation for the instance GJSP2 of the BJSPT

in the alternative graph - Iteration 2
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that may pursue the operations O2,1 and O3,1 at list index three in a
feasible permutation. Evidently, the operation being indicated as required
due to the blocking constraint, here lidx(O2,2) < lidx(O4,1), will always
be part of the set of available operations. Therefore, the choice of an
operation from A can be guided by the blocking constraint to stay close
to the initially given permutation.

Successively applying the procedure to the entire permutation, a feasible
schedule is determined by

sop = [O2,1, O3,1, O2,2, O4,1, O4,2, O3,2, O3,3, O5,1, O4,3, O1,1, O5,2, O1,2],

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O4,3, O5,2], [O2,2, O3,3, O5,1, O1,2]].

Besides the shift of operation O2,2, the operations O4,2 and O4,3 are rein-
serted at an earlier position in the list. As a consequence, the operation
sequences on the machines M2 and M3 are changed during the reorder-
ing process. Figure 4.7 shows the Gantt chart and the alternative graph
representation of the resulting schedule for the BJSPT. The feasible to-
tal ordering given in sop is indicated as the red Hamiltonian 0 − ∗−path
in the graph at the bottom of the �gure. The corresponding selection of
alternative arcs is generally plotted in black, where the arcs (O2,2, O4,1),
(O4,2, O3,2), (O4,3, O1,1), (O3,3, O5,1) and (O5,2, O1,2) are overlaid by the
red path. The schedule can additionally be classi�ed as feasible for the
BJSPT based on the criterion mentioned earlier, since there exists no
cycle involving operations requiring di�erent machines among the �xed
precedence relations.

Mascis and Pacciarelli [87] observe the expandability of a feasible partial
schedule for job shop problems with blocking constraints in a similar way.
Based on a weighted alternative graph, the authors show that any feasible
partial permutation is expendable. Since the procedure described above
starts from an empty permutation and assures feasibility in every iteration,
this implies that the set of operations available to be assigned to the next
list index can never be empty. Thus, by following the arguments given
above, a feasible solution for the BJSPT can always be found based on
any permutation.

To summarize, the feasibility of operation-based and machine-based en-
codings with regard to processing sequences and technological routes of
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(b) Alternative graph representation with the Hamiltonian path

Figure 4.7: A repaired schedule for the instance GJSP2 of the BJSPT
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the jobs can easily be assured. On the contrary, both permutation-based
representations may depict a schedule, which is infeasible with regard to
blocking constraints. The operation-based encoding is required to detect
the infeasibility of a schedule for the BJSPT.

Obviously, the incorporation of blocking constraints in a job shop problem
leads to even more infeasible permutations that appear during a heuristic
search process. There exist four main strategies on how to deal with infea-
sible solutions, namely exclusion, penalization, repair and translation, cf.
[5]. Since initial computational experiments have shown that the majority
of generated permutations comes out to be infeasible with regard to at
least one class of constraints and in line with the existing literature, cf.
[29], [89] and [64], a repair strategy is implemented in this thesis. There-
fore, the arguments outlined above form an excellent foundation of the
repair procedure derived in the subsequent section.

4.5 The Basic Repair Technique

The proposed repairing strategy relies on the stepwise consideration of an
arbitrary permutation of all operations Oi,j ∈ O, which represents a fea-
sible schedule for the job shop problem without blocking constraints. The
method constructs the operation-based representation of a feasible sched-
ule for the BJSPT while treating the given sequence as a template. The
starting times si,j of the operations Oi,j ∈ O are directly determined with
the operation sequences on the machines, so that the resulting schedule
can easily be evaluated according to any objective function. In resolving
the BJSPT by a simple SA metaheuristic, a brief description of this re-
pairing strategy is given in [79]. In the following, the initially existing
infeasible permutation is denoted by perm, where the �nally determined
feasible encoding is labeled by sop. The entire method proposed here to
construct the representation of a feasible schedule from any given permu-
tation, which accounts for processing sequences and technological routes
of all jobs Ji ∈ J , is denoted as the Basic Repair Technique (BRT). A
schematic outline of the BRT is presented in Figure 4.8.
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Figure 4.8: Schematic outline of the Basic Repair Technique (BRT)
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The process is initialized by a total ordering in perm with the list in-
dices lidx(Oi,j) for all operations Oi,j ∈ O and a blank list sop, where the
currently considered list index for an operation to be added is denoted as
lidx′(∗) starting with the �rst position. While the permutation perm is not
empty, the operation Oi,j featuring the �rst list index with lidx(Oi,j) = 1

is chosen to be assigned to the currently considered list index lidx′(∗) in
the feasible encoding sop. If the required machine is idle, there is no un-
satis�ed blocking constraint related to operation Oi,j and the operation
can be added to the feasible sequence at position lidx′(∗). The function
ScheduleOp schedules the operation Oi,j , whereby this subroutine in-
volves

• the expansion of the list sop by operation Oi,j ,

• the increase of the currently considered list index
lidx′(∗)← lidx′(∗) + 1

• the deletion of operation Oi,j from the permutation perm,

• the determination and storing of the starting time si,j of operation
Oi,j and

• the branding of the required machine as blocked, provided that a job
successor Oi,j+1 exists.

In case that the required machine is not idle, there exists an unsatis�ed
blocking constraint related to the currently treated operation Oi,j . As a
general example, let the machine be blocked by an operation Oi′,j′−1 and
let the permutation determine the ordering Oi′,j′−1 → Oi,j to be imple-
mented. This causes the starting time relation si′,j′ ≤ si,j for the operation
Oi′,j′ , which is so far assigned to a posterior position in the permutation
perm. Since it is not clear, whether the operations Oi,j and Oi′,j′ are in-
volved in a swap, the required list index relation is generally introduced by
lidx(Oi′,j′) ≤ lidx(Oi,j) and the operation Oi,j cannot be scheduled before
operation Oi′,j′ is scheduled. The function AddToQueue adds Oi,j to
the queue Q and Oi′,j′ constitutes the blocking operation. At this point,
the procedure may continue according to one out of three possible cases,
which are indicated in Figure 4.8 by a green, an orange and a blue arrow,
respectively.
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Case 1. If operation Oi′,j′ /∈ Q and its required machine is idle, the current
blocking operation Oi′,j′ and all operations in the queue are scheduled by
the subroutine ScheduleOp according to a last in �rst out strategy.

Case 2. If operation Oi′,j′ /∈ Q and its required machine is not idle,
there exists an unsatis�ed blocking constraint lidx(Oi′′,j′′) ≤ lidx(Oi′,j′)

related to the considered operation Oi′,j′ and another operation Oi′′,j′′

at a posterior position in perm. The queue Q is expanded by operation
Oi′,j′ by the function AddToQueue and operation Oi′′,j′′ is set to be the
blocking operation. This loop is repeatedly executed until Case 1 or Case
3 come to pass. Note that the queue Q can include at most m operations,
since every newly detected blocking operation Oi′′,j′′ needs to require a
machine di�erent from the machines of the other operations in the queue
for the procedure to expand the list Q. Once there appears a blocking
operation Oi′′,j′′ requiring the same machine as an operation in the queue
Q, Oi′′,j′′ ∈ Q is implied and the procedure continues according to Case 3.

Case 3. If operation Oi′,j′ ∈ Q, a cycle is detected, which is implemented
as a swap in the schedule. The function ScheduleCycle determines all
operations involved in the swap and forms a swap group W ⊆ Q. The op-
erations in the swap groupW are pairwise connected by list index relations
such as lidx(Oi′,j′) ≤ lidx(Oi,j), which can only be ful�lled simultaneously
by introducing a shared list index in sop. Thus, the operations in W are
scheduled as performed by ScheduleOp featuring equal starting times
and lidx′(∗) as a common list index. If W ⊂ Q holds and the queue Q
involves operations, which do not take part in the swap, these operations
remain in the permutation perm keeping their initial ordering.

Figure 4.9 illustrates the three cases by small general examples involv-
ing two or three jobs Ji, Ji′ and, if necessary, Ji′′ in J and two to three
machines Mk, Mk′ (and Mk′′) in M. According to the infeasible permu-
tations perm1, perm2 and perm3, the operation Oi′,j′−1 of the blue job
Ji′ blocks the machine Mk, when the orange operation Oi,j is considered
to be scheduled next. Thus, in all three cases the blue operation Oi′,j′

constitutes the �rst blocking operation with lidx′(Oi′,j′) ≤ lidx′(Oi,j) and
requires to be added to the feasible operation-based representation prior
to operation Oi,j .

129



4 HEURISTIC METHODS
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Figure 4.9: Exemplary resolutions of an infeasible permutation for the BJSPT
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In part (a) of Figure 4.9, the machineMk′ , on which the blocking operation
Oi′,j′ is to be processed, is idle. Hence, the blocking operation can directly
be scheduled at lidx′(∗) = 2 in the list sop1 according to Case 1 and the
operation Oi,j stored in queue Q1 is assigned to the subsequent list index.
Considering part (b) of Figure 4.9, the machineMk′ is blocked by operation
Oi′′,j′′ of the green job Ji′′ . Thus, operation Oi′,j′ is following operation
Oi,j in the queue Q2 and operation Oi′′,j′′+1 is set to be the blocking
operation during the execution of the loop described by Case 2. Since the
machine Mk′′ , on which the new blocking operation Oi′′,j′′+1 is supposed
to be processed, is idle, the function ScheduleOp can be called according
to Case 1. The operations Oi′′,j′′+1, Oi′,j′ and Oi,j are scheduled in the
feasible ordering sop2 starting from the one considered last. Part (c) of
Figure 4.9 depicts the execution of Case 3. The operation Oi,j is stored
in the queue Q3, while the machine Mk′ is blocked by the green operation
Oi′′,j′′−1. Therefore, operation Oi′,j′ is likewise assigned to the queue Q3

and the green operationOi′′,j′′ requiring machineM ′k as well constitutes the
new blocking operation. After one more operation of the Case 2 loop, the
next blocking operation is determined by Oi′,j′ , which is already contained
in the queue Q3. Thus, a swap group W = {Oi′,j′ , Oi′′,j′′} is detected
by the function ScheduleCycle and both operations are assigned to the
currently considered list index lidx′(∗) = 3 in the feasible permutation sop3 .
Since W ⊂ Q holds, the remaining operation Oi,j is scheduled posterior to
the swap group during the following iteration of the procedure.

These steps are repeatedly executed until there is no operation left in the
permutation perm and all operations are consequently sequenced to build
an operation-based representation sop of a feasible schedule for the BJSPT.
Algorithm 2 technically describes the strategies explained above. The exe-
cution of the while-loop in the lines 4 to 26 of the algorithm characterizes
one iteration of the BRT. The correctness and the termination of the BRT
are shown by the following proposition.

Proposition 4.1. The BRT terminates and returns a permutation sop en-

coding a feasible schedule for the BJSPT.
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Algorithm 2 Basic Repair Technique (BRT)

Input: permutation (list) of operations perm

[feasible with regard to processing sequences and

technological routes of Ji ∈ J ]
Output: operation-based representation sop of a feasible schedule

[feasible for the BJSPT]

1: initialize sop, Q and W as empty lists, ST as an empty starting times dic-

tionary

2: initialize MaS as a dictionary including the status of all machines Mk ∈M
(= idle)

3: lidx′(∗)← 1

4: while perm is not empty do

5: Oi,j ← operation with lidx(Oi,j) = 1 in perm

6: if Machine(Oi,j) is idle then

7: ScheduleOp(Oi,j , perm, sop, ST, lidx′(∗), MaS)

8: else

9: AddToQueue(Q, Oi,j)

10: Oi′,j′ ← blocking operation requiring lidx′(Oi′,j′) ≤ lidx′(Oi,j)

11: while Oi′,j′ /∈ Q do

12: if Machine(Oi′,j′) is not idle then

13: AddToQueue(Q, Oi′,j′) [Case 2]

14: Oi′,j′ ← blocking operation Oi′′,j′′ requiring

lidx′(Oi′′,j′′) ≤ lidx′(Oi′,j′)

15: else

16: ScheduleOp(Oi′,j′ , perm, sop, ST, lidx′(∗), MaS) [Case 1]

17: for Oi,j ∈ Q do

18: ScheduleOp(Oi,j , perm, sop, ST, lidx′(∗), MaS)

19: end for

20: break

21: end if

22: end while

23: end if

24: if Q is not empty then

25: ScheduleCycle(Q, perm, sop, ST, lidx′(∗), MaS) [Case 3]

26: end if

27: end while

28: return sop (return ST)
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4.5 BASIC REPAIR TECHNIQUE

Proof. It has to be shown that

(1) the resulting permutation sop is feasible with regard to the processing
sequences and the technological routes of all jobs Ji ∈ J ,

(2) the resulting permutation sop is feasible with regard to blocking con-
straints and

(3) every operation Oi,j ∈ O is assigned to a position in the feasible
permutation sop exactly once.

The BRT takes an arbitrary permutation perm with the list indices lidx(Oi,j)

for all Oi,j ∈ O, which is feasible with regard to the processing sequences
and the technological routes of all jobs Ji ∈ J , as its input. Let the
ordering lidx(Oi′,j′−1) < lidx(Oi,j) < lidx(Oi′,j′), where both operations
Oi′,j′−1 and Oi,j are processed on the same machineMk, cause the blocking
constraint si′,j′ ≤ si,j requiring lidx(Oi′,j′) ≤ lidx(Oi,j). This unsatis�ed
blocking constraint is detected while operation Oi′,j′−1 is already sched-
uled in the feasible partial permutation sop and lidx′(∗) = lidx(Oi,j) holds
for the currently considered list index for the next operation to be assigned
to. Thus, the BRT shifts required operation(s), here only operation Oi′,j′ ,
to the position lidx′(∗) = lidx(Oi,j) > lidx(Oi′,j′−1) and will never a�ect
list indices prior or equal to lidx′(Oi′,j′−1). Hence, a given feasible or-
dering accounting for processing sequences and technological routes, such
as lidx(Oi′,j′−1) < lidx(Oi′,j′), can never be violated by changes in the
operation sequences made to ful�ll blocking constraints. (1) is true.

The permutation sop is constructed by the stepwise expansion of an empty
list. Every time an operation Oi,j is assigned to the currently regarded list
index lidx′(∗), unsatis�ed blocking constraints that require lidx′(Oi′,j′) ≤
lidx′(Oi,j) for an arbitrary operation Oi′,j′ placed at a posterior position in
the permutation perm, are detected and ful�lled. Accordingly assigning
the operation Oi′,j′ to the list index lidx′(∗) in sop prior to its initially
given index lidx(Oi′,j′) in perm may implement a change in the operation
sequence on the concerned machine. This may only cause new blocking
constraints referring to the positions of the job successor Oi′,j′+1 and the
machine successor of operation Oi′,j′ . Due to feasible processing sequences
and technological route orderings, both a�ected operations cannot be part
of the current partial permutation sop and unsatis�ed blocking constraints
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do only arise in the remainder of the permutation perm. Since this is still
to be considered by the BRT, it is always assured that the existing partial
permutation sop is feasible with regard to blocking constraints in every
iteration. Resulting from the stepwise construction pattern of sop, (2) is
shown.

In every iteration of the BRT, the permutation sop is expanded by at least
one operation Oi,j ∈ O, where O is a �nite set with |O| = nop. The
adding of operations to the feasible permutation sop follows the ordering
given in the initial list perm starting from the �rst position. Since the
assignment of an operation Oi,j to the list index lidx′(∗) in sop may only
a�ect constraints that relate succeeding operations at posterior positions in
the initial list perm, the necessity of a repeated considering of an operation
can never occur, once it is added to the feasible ordering sop. Therefore,
(3) is true.

Remark. In order to specify the number of iterations of the BRT required
to obtain the operation-based representation sop of a feasible schedule for
the BJSPT, the transformation of the initially given permutation perm,
especially its length, is observed. In every iteration, the operation Oi,j with
lidx(Oi,j) = 1 in perm is added to the feasible ordering sop and deleted
from the list perm. If the machine required by operation Oi,j is not idle,
there will be further operations assigned to positions in the permutation
sop. The number of operations being added to sop can be determined by

• |Q|+ 1 = 2 with |Q| = 1 according to Case 1,

• |Q|+ 1 > 2 with |Q| > 1 according to Case 2 followed by Case 1 and

• |Q| ≥ 2 with W ⊆ Q and |W | ≥ 2 according to Case 2 followed by
Case 3.

Thus, the length of the list perm decreases by at least one element in every
iteration of the BRT. If the given ordering in perm by chance constitutes a
feasible schedule for the BJSPT, the condition in line 6 of Algorithm 2 will
be true in every execution of the while-loop and the BRT will terminate
after exactly nop iterations with sop = perm. If the given ordering in perm
encodes an infeasible schedule for the BJSPT, the number of iterations
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of the BRT will be strictly less than nop, whereby the amount of steps
executed within the iterations will increase, signi�cantly.

Proposition 4.1 shows that the BRT terminates after a �nite number of
iterations. In the following, the runtime of the BRT according to the
implementation of Algorithm 2 in Python 3 is examined in detail. First,
the execution time of the subroutines ScheduleOp, AddToQueue and
ScheduleCycle is determined based on the instance input parameters.
For the entire runtime observation, it is assumed that Python 3 built-in
operators on lists and dictionaries, such as detecting elements by their
indices or keys, inserting and removing elements, appending a list as well
as returning the list index of an element, can be executed in constant time
O(const).

• The tasks involved in the function ScheduleOp(Oi,j , perm, sop, ST,
lidx′(∗), MaS) are listed above. Expanding the list sop, redeclaring
the variable lidx′(∗) and deleting an element from list perm can
be done in constant time by assumption. The determination of the
starting time of the scheduled operation involves the detection of two
earliest possible starting times from two lists and their comparison.
The change of the status of a machine incorporates a dictionary
request to check the existence of a job successor and the renewal of
a list entry. Thus, the entire function ScheduleOp takes O(const)

operations.

• AddToQueue(Q, Oi,j) is a small subroutine, which expands the
list Q by an element. This is done in O(const) steps by assumption.

• The function ScheduleCycle(Q, perm, sop, ST, lidx′(∗), MaS)
involves the detection of the cycle in the queue Q, its transformation
into the swap group W and the call of the function ScheduleOp

for all operations in the list W . The list Q may involve at most m
operations, for each of which a decision about its incorporation in
the swap group W is made in constant time. As a result, |W | ≤ m

holds. A common starting time for all elements in the swap group
W is determined by �rst executing a dictionary request for each of
the involved operations and second applying a built-in maximum
operator. According to the resulting starting time, the operations
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in the list W are scheduled one after another using the function
ScheduleOp. Thus, the subroutine ScheduleCycle operates in
O(m) time.

The initialization of the BRT, see the lines 1 and 2 of Algorithm 2, is
executed in O(m). Thereafter, the while-loop involving the lines 4 to 26
is repeated at most nop times. If the idleness condition in line 6, which
relies on a dictionary request Machine(Oi,j), is true, the operation Oi,j
will be scheduled by the function ScheduleOp. Thus, the lines 6 to 22
are operated in O(const) and the function in line 24 is not called, since
Q constitutes an empty list. If the machine is not idle and the condition
in line 6 is false, the queue Q is expanded and a blocking operation is
detected by a dictionary request in constant time (see the lines 9 and 10).
Subsequently, the while-loop in the lines 11 to 21 operates in O(m). The
condition in line 12 may be true for at most m consecutive blocking oper-
ations, resulting in a repeated execution of the while-loop. Alternatively,
the else condition may come to pass, with which at most m operations
are scheduled sequentially and the while-loop is immediately stopped. In
the worst case, m−1 operations are put into the list Q by AddToQueue
in line 13, the m-th blocking operation Oi′,j′ features an idle required
machine and, consequently, m operations are scheduled by ScheduleOp
during the execution of else. Considering the case of the while-loop in
line 11 being left due to Oi′,j′ ∈ Q, the condition in line 23 is automatically
true and the function ScheduleCycle is executed in O(m).

Taking the assumption that m ≤ nop holds, the BRT is operated in poly-
nomial time

O(m+ nop · (m+m)) = O(nop ·m).

4.6 Priority Rules as Techniques to Generate

Initial Solutions

Priority rules constitute well-known generic solution techniques for all
types of scheduling problems. In line with the literature mentioned in Sec-
tion 4.1, a set of such decision support mechanisms is applied to quickly
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generate schedules as the starting points for metaheuristic search proce-
dures. Since several studies indicate a dependence of the performance of
priority rules on the speci�c optimization criterion and the shop load level,
cf. for instance [92] and [106], there are �ve basic rules chosen for parallel
implementation together with a random list scheduling mechanism (RAN-
DOM) in this thesis. All of these dispatching rules are proposed for or
at least tested on job shop scheduling problems with tardiness-based ob-
jective functions and show promising features, cf. [9], [59], [92], [106] and
[123].

By applying a priority rule, decisions about which operation to insert next
into the schedule are made repeatedly. Since the job shop scheduling prob-
lem constitutes a constraint optimization problem, the priority rule oper-
ates on a steadily updated set of available operations A, where availability
is de�ned by satis�ed processing sequences and technological routes of the
jobs. This process refers to the determination of an ordering of the opera-
tions involved in the problem similar to the operation-based representation
of a schedule described above. Therefore, the feasibility issues of permuta-
tions caused by the incorporation of blocking constraints need to be taken
into account while solving the BJSPT by a priority rule. Since the ex-
isting dispatching techniques do not account for blocking constraints and
accordingly generate infeasible permutations with a high probability, the
BRT proposed in Section 4.5 is applied subsequently. Figure 4.10 illus-
trates the priority rule-based procedure to generate a feasible schedule for
the BJSPT. The set of rules highlighted in blue in the left upper corner of
the �gure is speci�ed in the following. Note that according to all of these
dispatching rules except ATC, the operation Oi,j ∈ A with the minimal

priority measure is chosen to be inserted next. Let t denote the point in
time, at which the processing of operation Oi,j can be started earliest.

The probably most popular priority rule is the Shortest Processing Time

Rule (SPT), which schedules jobs or operations according to increasing
processing times, cf. among others [69], [92] and [104]. This strategy is
motivated by the idea of reducing the queue of unscheduled operations as
fast as possible.

SPT: prio(Oi,j) = pi,j
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Figure 4.10: The application of priority rules to generate a feasible schedule for

the BJSPT

The Slack Rule (SL) gives priority to operations of jobs, which are most
urgent according to their remaining slack time, cf. among others [69] and
[59].

SL: prio(Oi,j) = di − t−
ni∑

q=j+1

pi,q.

Following the Slack per Operation Rule (S/OPN), the remaining slack
time of the corresponding job Ji is equally split among all processing steps
succeeding operation Oi,j , cf. among others [59], [69] and [92]. Priority
is given to the operation featuring the minimal remaining slack time per
successor operation.

S/OPN: prio(Oi,j) =
di − t−

∑ni
q=j+1 pi,q

ni − j

The Modi�ed Operation Due Date Rule (MOD) is proposed in [9] and
also denoted by ODD in later publications, cf. [8] and [69]. Prior to the
application of the priority rule, operation due dates di,j are determined
based on a desired equal allocation of the allowance di − ri of job Ji over
all ni operations.

MOD: prio(Oi,j) = max{di,j , t+ pi,j}.

Accounting for more complex aspects of the problem, the Apparent Tar-

diness Cost Rule (ATC) is introduced in [123] and proves to be robust
against the choice of the objective function and the shop load level. Since
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the priority rules are intended to generate an initial solution for a consec-
utively applied metaheuristic procedure, the ATC is slightly simpli�ed by
setting the involved waiting time estimates of the operations to zero. Let
the considered operation Oi,j ∈ A require machine Mk and let τ = 3 as
the look-ahead parameter according to the �ndings in [123]. p̄k denotes
the average processing time of the operations pending to be processed on
machine Mk. The operation with the maximal measure is chosen to be
inserted into the schedule based on the following priorities.

ATC: prio(Oi,j) =
1

pi,j
· exp

(
−max

{
di − t−

∑ni
q=j pi,q

τ · p̄k
, 0

})

Since these priority rules have not been tested comparatively on job shop
instances with blocking constraints, the permutation generating mecha-
nisms are implemented in parallel. Furthermore, all of the presented rules
still incorporate a randomized component. In case that several operations
Oi,j ∈ A feature the same minimal (or maximal) value prio(Oi,j), the
choice of an operation is done arbitrarily among them.

4.7 Neighborhood Structures and their

Characteristics

Three neighborhoods are proposed for the BJSPT and discussed with re-
gard to occurring feasibility issues, connectivity and further characteristics.
To highlight the foundation and the motivation of the choice of the pro-
posed transition schemes, existing neighborhood structures for generic job
shop scheduling problems with and without blocking constraints are brie�y
summarized in the subsequent Section 4.7.1. The herein applied basic op-
erators and their implementation in di�erent representations of a schedule
are described in Section 4.7.2. In order to overcome occurring feasibil-
ity issues, it is shown in Section 4.7.3 that the BRT proposed in Section
4.5 requires an extensive adaptation to be applicable in the construction
of feasible neighboring schedules. In Section 4.7.4, the Adjacent Pairwise
Interchange (API) neighborhood, which operates on the machine-based
representation of the schedule and is strictly controllable by the chosen
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pair of adjacent operations on a certain machine, is de�ned together with
the Tardy Adjacent Pairwise Interchange (TAPI) neighborhood, which is
derived for the purpose of operating on a reduced search space. Both
API-based neighborhoods and the proposed procedure to regain feasibil-
ity can be found brie�y described in [79]. In order to add a randomized
component to the search method, which features a signi�cantly di�erent
structure compared to the API, the Tardy Job (TJ) neighborhood is intro-
duced in Section 4.7.5. As one of the main characteristics, the connectivity
of the neighborhoods is examined in Section 4.7.6. Finally, further prop-
erties of the transition structures are empirically analyzed in Section 4.7.7
to shed light onto the complexion of the underlying search space for the
metaheuristics and give evidence for the e�ectiveness of speci�c parts of
the construction schemes.

4.7.1 Permutation-Based Neighborhoods for Job Shop

Scheduling Problems

Since the job shop scheduling problem constitutes a special type of se-
quencing problems, there exist four generic operators applicable to its
permutation-based solutions, cf. for instance [5] and [127]. Considering an
arbitrary permutation of operations

perm1 = [O1,1, O3,1, O4,2, O2,3, O5,4],

the following four neighboring sequences can exemplarily be determined.

• perm2 = [O1,1, O4,2, O3,1, O2,3, O5,4] is constructed by applying a
swap of the two adjacent operations O3,1 and O4,2 to the list, while
the positions of the remaining operations are kept and there appears
exactly one change in the total ordering. This transition scheme is
denoted as an adjacent pairwise interchange (API) in this thesis, cf.
[128].

• perm3 = [O1,1, O2,3, O4,2, O3,1, O5,4] features a general interchange
of the two operations O3,1 and O2,3, where the positions and the
orderings of the remaining operations among each other are kept.
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• perm4 = [O1,1, O5,4, O3,1, O4,2, O2,3] is obtained by shifting opera-
tion O5,4 by three positions to the left, while the orderings of the
remaining operations among each other are kept.

• perm5 = [O4,2, O2,3, O1,1, O3,1, O5,4] results from performing a block

shift of the block of operations (O1,1, O3,1) by two positions to the
right, whereby the orderings of the remaining operations among each
other are kept.

With regard to the BJSPT, each transition can generally be applied to
the operation-based as well as to the machine-based representation of a
schedule. Due to the redundancy of permutations of operations sop, which
is discussed in Section 4.4.1, it is reasonable to operate a neighborhood
on machine-based representations. Furthermore, the previously described
feasibility issues tend to increase with the amount of change caused by the
transition. Therefore, two of the three proposed neighborhoods mainly rely
on the API, which constitutes the smallest move by means of the distance
measure introduced in Section 4.3. To add a diversifying component to
the search, a third shift-based neighborhood is applied to the operation-
based representation of the schedule causing a higher distance between
neighboring solutions.

Considering the standard J || Cmax, a well-known neighborhood is pro-
posed by van Laarhoven, Aarts and Lenstra [122]. Neighboring solutions
are derived by reversing a given ordering on the critical path in the dis-
junctive graph representation of the initial schedule. This corresponds to
the implementation of an API of a pair of speci�c operations on a certain
machine, where the choice of the machine and the operations is guided by
the optimization criterion. Since this neighborhood is successfully applied
to the standard job shop problem, it is tested in a basic and several ad-
vanced versions on the problem J | ri |

∑
wiTi in [76]. This study gives

evidence to the fact that the modi�cation of the neighborhood according
to the considered optimization criterion might be similarly bene�cial for
tardiness-based objective functions, since the search space is reduced while
promising solutions are pursued. Moreover, this idea of reducing the num-
ber of neighbors with regard to the optimization criterion is successfully
applied to the blocking job shop problem with makespan minimization, cf.
[64], [98] and [103]. Therefore, a tardiness- and API-based neighborhood is
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proposed and tested on the blocking job shop problem in comparison to a
generic API transition scheme in this thesis. Computational experiments
are used to evaluate whether positive e�ects of a reduced search space on
runtime and solution quality shown in the literature are compensated or
intensi�ed by the simultaneous incorporation of both, blocking constraints
and the minimization of total tardiness.

Furthermore, a job insertion-based neighborhood embedded in a tabu
search is proposed by Bürgy in [34] for blocking job shop problems with
regular optimization criteria. The transition scheme is guided by the con-
sideration of certain precedence relations, which determine the objective
function value of the current schedule. In order to improve the schedule,
one of the involved jobs is chosen, excluded and reinserted, whereby the
corresponding precedence relation is reverted. Motivated by the promis-
ing �ndings, the idea of objective-guided job reinsertion is applied in a
tardiness-based and randomized neighborhood that shifts all operations
of a job in the operation-based representation of a schedule. This transi-
tion scheme leads to potentially improving neighboring solutions with an
arbitrarily large distance from the initial solution. The advantageousness
of this property in tackling the BJSPT is additionally examined in the
computational study.

4.7.2 Adjacent Pairwise Interchange-Based Moves and

their Transfer

In order to properly describe the API-based transition scheme in the fol-
lowing, the �nishing time fi,j of an operation Oi,j is introduced with
fi,j = si,j + pi,j + bi,j , where bi,j denotes the length of the time period
during which operation Oi,j blocks the required machine Mk. Note that
fi,j = si,j+1 holds for all operations Oi,j ∈ Oi, Ji ∈ J with j 6= ni and
for all operations Oi,ni ∈ Oi, Ji ∈ J , fi,ni = si,ni + pi,ni is true, since an
operation Oi,ni+1 does not exist and bi,ni = 0.

De�nition 4.1. An API move denotes the interchange of two adjacent

operations Oi,j and Oi′,j′ of di�erent jobs requiring the same machineMk ∈
M in the machine-based representation of the schedule. Here, adjacency

is de�ned in a strict sense. A pair of operations Oi,j and Oi′,j′ is called ad-
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(a) Intermediate idle time of a machine caused by a sequence of starting time relations
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(b) Intermediate idle time of a machine caused by the release date of a job

Figure 4.11: API moves and the intermediate idle time of a machine

jacent if fi,j = si′,j′ holds for an ordering Oi,j → Oi′,j′ on machine Mk in

schedule s.

The exclusive consideration of the API moves of pairs of operations with-
out intermediate idle time on the required machine does not limit the set of
constructible bene�cial schedules. As illustrated in Figure 4.11, an inter-
mediate idle time of a machine is caused either by a sequence of restrictive
starting time relations of operations, see part (a), or by the release date
of a job, see part (b). Considering the former case, in the machine-based
representation of the schedule, there exist two pairs of generally adjacent
operations, namely the operations Oi′,j′ and Oi,j+1 on machine Mk and
the operations Oi′,j′+1 and Oi,j on machine Mk′ . According to De�nition
4.1, an API move can only be applied to the operations Oi′,j′+1 and Oi,j
on machine Mk′ . Since there exists the sequence of starting time relations
si′,j′ < si′,j′+1 < si,j < si,j+1, a direct interchange of the operations Oi′,j′

and Oi,j+1 featuring an intermediate idle time on machine Mk creates a
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Figure 4.12: Illustration of the set of API moves applicable to a given schedule

of the instance GJSP2

cyclic ordering that violates processing sequence constraints. Nonetheless,
schedules involving the precedence relation Oi,j+1 → Oi′,j′ on machineMk

can be constructed by applying two consecutive API moves as indicated
in Figure 4.11. Part (b) of the �gure shows the release date ri′ of a job
Ji′ causing an intermediate idle time on machine Mk. In this case, there
is no API move performable in the schedule. Thus, there exist schedules
involving orderings such as Oi′,1 → Oi,j+1 on machine Mk that are not
constructible by applying API moves to the given representation. How-
ever, this reduces the search space in an advantageous way. Starting from
the existing intermediate idle time, an ordering of operations of the green
job Ji posterior to the operations of the blue job Ji′ can never improve
the tardiness-based objective. Implementing De�nition 4.1, the seven API
moves which are applicable to the given schedule for the instance GJSP2
are indicated with bidirectional arrows in Figure 4.12.

By applying an API move to the machine-based representation of a sched-
ule s, a new schedule s′, which is di�erent from s, is derived. Since a
change exclusively made in the machine-based representation of the sched-
ule s might lead to an infeasible schedule s′, the operation-based represen-
tation sop

′
involving the given API move is required. The priority-based

transformation scheme proposed in Section 4.4.1 can be used to gener-
ate the permutation sop

′
of the new schedule, which only di�ers from the

permutation sop of the initial schedule s in the API move. Consider the
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schedule s given for GJSP2 in Figure 4.12 with its operation-based and
machine-based representations

sop = [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2],

sma = [[O3,1, O4,2, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3], [O2,2, O5,1, O3,3, O1,2]].

As an example, the API move of the operations O3,1 and O4,2, which is
indicated in red in Figure 4.12, is applied. Thus, a potentially infeasible
machine-based representation of the new schedule s′ results in

sma
′

= [[O4,2, O3,1, O1,1], [O2,1, O4,1, O3,2, O5,2, O4,3], [O2,2, O5,1, O3,3, O1,2]].

Since the transformation scheme aims in keeping the ordering of the re-
maining operations, the API move is transferred to the permutation sop

′

as a shift of one of the interchanged operations O3,1 or O4,2. For a general
operation-based representation of a schedule, it is not guaranteed that the
pair of operations features adjacent positions in the permutation. For the
considered example, lidx(O3,1) = 2 holds, while lidx(O4,2) = 6 is true.
Consequently, there exist two possibilities to implement the API move,
namely shifting operation O3,1 to the right or alternatively shifting oper-
ation O4,2 to the left, cf. [13]. Executing the transformation scheme with
sop and sma

′
as given in Algorithm 1, a left shift transformation is realized

and yields

sop
′

l = [O2,1, O4,1, O4,2, O3,1, O2,2, O5,1, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2].

Since the transformation scheme accounts for the processing sequences
of all jobs, the precedence relation O4,1 → O4,2 is automatically kept.
Algorithm 1 can easily be adapted to operate reversely from the last to
the �rst operation of a permutation. This leads to the implementation of
a right shift transformation and the algorithm returns the operation-based
representation

sop
′

r = [O2,1, O2,2, O4,1, O5,1, O4,2, O3,1, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2].

Both encodings might be infeasible with regard to blocking constraints and
can be transferred to feasible sequences by the BRT proposed in Section
4.5.
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Figure 4.13: API neighbor s′ resulting from the API move O3,1 ←→ O4,2 in

schedule s for the instance GJSP2

As a result,

sop
′

l = [O2,1, O2,2, O4,1, O4,2, O4,3, O3,1, O5,1, O3,2, O5,2, O3,3, O1,1, O1,2],

sop
′

r = [O2,1, O2,2, O4,1, O5,1, O4,2, O4,3, O3,1, O3,2, O5,2, O3,3, O1,1, O1,2].

By chance, these two permutations constitute redundant representations
of the same schedule s′, which is illustrated in Figure 4.13. Since the
equivalence of the resulting permutations does not always appear, two dif-
ferent neighboring schedules might be derived from an initial schedule s
by applying one API move followed by right shift and left shift transfor-
mation, respectively. Therefore, the neighbors of a schedule are de�ned
accordingly.

De�nition 4.2. An API-R neighbor s′ of a schedule s is determined by

performing an API move in s together with a right shift transformation to

obtain the permutation sop
′
and regain feasibility if necessary. Analogously,

an API-L neighbor s′ of a schedule s is determined by performing an

API move in s together with a left shift transformation to obtain the

permutation sop
′
and regain feasibility if necessary. If the API-R and the

API-L neighbor appear to be equivalent, the schedule s′ is denoted as the

API neighbor of schedule s.

As indicated in the previous section, the idea of reducing the search space
by exclusively considering promising transitions with regard to the objec-
tive function is successfully applied in the literature. In line with this, the
concept of API-based transitions is specialized as follows:
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Figure 4.14: Illustration of the set of TAPI moves applicable to a given schedule

of the instance GJSP2

De�nition 4.3. A TAPI move denotes an interchange of two adjacent

operations Oi,j and Oi′,j′ of di�erent jobs requiring the same machine

Mk ∈ M with Oi,j → Oi′,j′ in the machine-based representation of the

schedule, where fi,j = si′,j′ holds and the job Ji′ belongs to the set of

tardy jobs T .

The set of applicable TAPI moves constitutes a subset of the set of ap-
plicable API moves. De�nition 4.3 involves the additional condition of a
tardiness value Ti′ > 0 for the job Ji′ to which the leftward interchanged
operation Oi′,j′ belongs. Figure 4.14 shows the �ve performable TAPI
moves for the schedule s of the instance GJSP2 considered above. Since
the job J3 is completed at t = 9 prior to its due date d3 = 11, the API
moves interchanging the operations O4,1 and O3,2 on machine M2 as well
as O5,1 and O3,3 on machine M3 do not belong to the set of TAPI moves.
Consequently, API- and tardiness-based neighbors of a schedule are de�ned
as follows:

De�nition 4.4. A TAPI-R neighbor s′ of a schedule s is determined by

performing a TAPI move in s together with a right shift transformation to

obtain the permutation sop
′
and regain feasibility if necessary. Analogously,

a TAPI-L neighbor s′ of a schedule s is determined by performing a

TAPI move in s together with a left shift transformation to obtain the

permutation sop
′
and regain feasibility if necessary. If the TAPI-R and the

TAPI-L neighbor appear to be equivalent, the schedule s′ is denoted as

the TAPI neighbor of schedule s.
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4.7.3 The Advanced Repair Technique

As it is described in the previous section, the operation-based representa-
tion sop

′
derived by applying an API or a TAPI move to a given schedule

s might encode an infeasible schedule s′. Since the BRT proposed in Sec-
tion 4.5 mainly relies on leftward shifts of required operations, it appears
that the repairing scheme reverts the performed move and the resulting
neighboring schedule s′ actually constitutes the initially given schedule s.
Consider as an example the schedule of the instance GJSP2 shown in Fig-
ure 4.12 and the API move interchanging the operations O4,2 and O1,1

on machine M1. By applying the right shift and left shift transformation
schemes, the following infeasible permutations are constructed from the
machine-based representation sma

′
.

sma
′

= [[O3,1, O1,1, O4,2], [O2,1, O4,1, O3,2, O5,2, O4,3], [O2,2, O5,1, O3,3, O1,2]]

sop
′

l = [O2,1, O3,1, O2,2, O4,1, O5,1, O1,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,2]

sop
′

r = [O2,1, O3,1, O2,2, O4,1, O5,1, O3,2, O3,3, O5,2, O1,1, O4,2, O4,3, O1,2]

By using the BRT to generate feasible schedules from sop
′

l and sop
′

r , re-
spectively, the swap groups W = {O3,2, O4,2} and W = {O5,2, O3,3} are
subsequently detected and both swaps are implemented prior to the begin-
ning of the processing of operation O1,1. The redundant, here even equal,
permutations encoding the feasible schedule s′ = s result in

sop
′

l = sop
′

r

= [O2,1, O3,1, O2,2, O4,1, O5,1, (O4,2, O3,2), (O5,2, O3,3), O4,3, O1,1, O1,2]

and the given ordering O1,1 → O4,2 is reversed. Evidently, swaps con-
stitute very robust structures, which are predetermined by positions of
operations prior to the actual swap and the implemented API. Here, the
appearances of the operations O4,1, O3,1 and O5,1 with list indices less
than lidx(O1,1) require both swaps to take place before the processing of
operation O1,1 is allowed to begin. This implies that further changes in
the sequences of the operations on the machines are necessary to realize
the ordering of the API move in the neighboring solution s′. Similar ob-
servations are made in the literature and as a consequence, the authors
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apply destruction operators to a large proportion of the schedule to ensure
e�ective changes and neighboring solutions di�erent from the initial sched-
ules, cf. [98] and [103]. In this thesis, a structured and permutation-based
method is proposed to construct a feasible permutation sop

′
from an initial

schedule s given by its encodings sop and sma, a given API or TAPI move
and a machine-based representation sma

′
derived from sma by implement-

ing the desired interchange. This method uses the BRT as its basis and is
therefore denoted as the Advanced Repair Technique (ART). Figure 4.15
schematically illustrates the involved strategies and their interaction.

The ART incorporates the mechanisms of the BRT with its subroutines
ScheduleOp, AddToQueue and ScheduleCycle as well as a signi�-
cant extension, which is indicated by the green dashed box on the right-
hand side of Figure 4.15. Let Oi′,j′ be a blocking operation determined by
the procedure and let its involvement in a swap group be ruled out, the
ART checks whether a precedence relation Oa,b → Oi′,j′ is �xed for the
considered operation. Such a sequencing may exist due to a given API-
based move or due to a previously required adaptation of the permutation
perm. The operation Oa,b is denoted as the associated operation of Oi′,j′ .

If there exists no �xation or the associated operation is already involved
in the feasible partial schedule sop, the scheme continues according to the
BRT steps. On the contrary, if there exists an associated operation, which
is not positioned at a lower list index in the permutation sop, the assign-
ment of the currently treated operation Oi′,j′ to the currently regarded list
index lidx′(∗) in sop will reverse the given precedence relation. Thus, the
ART enters the green extension area, which implements the basic strategy
of interchanging the associated operation Oa,b further to the left in the
operation sequence on its required machine, so that Oa,b → Oi′,j′ might
be realizable in the subsequent run of the ART. More precisely, the sub-
routine AdaptPerm modi�es the given permutation perm according to
one out of three possible forms of the repositioning strategy and the entire
repairing process is started again.

In order to observe the four situations, which might appear when a �xed
blocking operation Oi′,j′ is required to be shifted prior to its associated op-
eration Oa,b, let Oi,j be the currently regarded operation with lidx(Oi,j) =

1 in the permutation perm and let Oi′,j′−1 → Oi,j be the ordering to be
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implemented on machine Mk, whereby operation Oi′,j′−1 is already part
of the feasible partial schedule sop. Furthermore, let the set F incorpo-
rate the �xed precedence relations as ordered pairs of operations indicating
the irreversible orderings of two operations of di�erent jobs requiring the
same machine, such as (Oa,b, Oi′,j′). The initially given list perm generally
involves the following sequence

perm = [. . . , Oi′,j′−1, . . . , Oi,j , . . . , Oa,b, . . . , Oi′,j′ , . . .],

with lidx(Oi′,j′−1) < lidx(Oi,j) < lidx(Oa,b) < lidx(Oi′,j′), where the
operations Oi′,j′−1 and Oi,j are directly following each other on machine
Mk. Moreover, Oa,b and Oi′,j′ are directly processed after another on a
di�erent machine Mk′ . According to the strategy mentioned above, an
ordered machine predecessor list consisting of all operations which

• precede the associated operation Oa,b on machine Mk′ ,

• do not belong to the same job Ja and

• feature a position prior to the currently considered index lidx′(∗) in
sop

is set up. Thereby, α(Oa,b) denotes the last operation in the predecessor
list, which represents the last scheduled operation preceding Oa,b on Mk′ .
The ART proceeds according to one of the four following cases, which are
indicated in green, yellow, orange and blue in Figure 4.15, respectively.

Case 1. If the machine predecessor list is not empty and a machine
predecessor α(Oa,b) exists, AdaptPerm shifts the operation Oa,b left-
ward so that midx(Oa,b) = midx(α(Oa,b)) − 1 holds on machine Mk′ .
Note that, if α(Oa,b) constitutes the direct machine predecessor of opera-
tion Oa,b, AdaptPerm performs exactly one API on the machine. Since
lidx(α(Oa,b)) < lidx(Oi,j) holds for the operations in the current list perm
and a left shift transformation is applied, the list index of operation Oa,b in
the modi�ed permutation will be lower than its current index lidx(Oa,b).
The described modi�cation of the permutation perm is illustrated in part
(a) of Figure 4.16. The red arrow indicates the irreversible precedence
relation and the implemented leftward shift of operation Oa,b is marked
in the diagram as well as in the permutation with a black arrow. Fi-
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nally, AdaptPerm extends the set of irreversible orderings F by the pair
(Oa,b, α(Oa,b)).

Case 2. If the machine predecessor list is empty and (Oa,b, Oi′,j′) describes
the only pair involving operation Oi′,j′ as a �xed successor, it might appear
that Oi,j = Oa,b′ with b′ < b holds and the currently considered operation
Oi,j constitutes a predecessor of the associated operation Oa,b with regard
to the processing sequence of job Ja. In this case, AdaptPerm performs
an API move and a left shift transformation interchanging operation Oa,b′

to the left on its machine. As shown in part (b) of Figure 4.16, this leads
to a synchronization of the operation sequences on the machines.

Case 3. Assume that the machine predecessor list is empty, (Oa,b, Oi′,j′)

constitutes the only pair in the set F involving operation Oi′,j′ as a succes-
sor and the associated operation Oa,b and the currently considered opera-
tion Oi,j belong to di�erent jobs. Then, the subroutine AdaptPerm shifts
the associated operation Oa,b to the left in the permutation perm, so that
lidx(Oa,b) < lidx(Oi,j) is satis�ed and the operation Oa,b is forced to enter
the feasible partial schedule sop prior to operation Oi,j in the subsequent
run of the ART. Part (c) of Figure 4.16 illustrates this mechanism.

Case 4. This case describes the most complex situation, since it is caused
by a recirculating job Ja and may only appear after several repeated runs
of the ART on a given permutation. Therefore, the example illustrated in
part (d) of Figure 4.16 constitutes an extension of the situation given
in Case 2 (part(b)). Assume that due to a given precedence relation
(Oa,b, Oi′,j′) on machine Mk′ , the ART has operated two times accord-
ing to Case 2 shifting the operations Oa,b′ and Oa,b′′ with b′ < b′′ < b

to the left on machine Mk and creating the �xed orderings (Oa,b′ , Oi′,j′−1)

and (Oa,b′′ , Oi′,j′−1). With regard to the current run of the ART, where the
operation Oi,j requires the blocking operation Oi′,j′−1, there exists more
than one operation associated with this �xed operation. Since the set F
is checked according to the entrance ordering of the pairs, the operation
Oa,b′ , which does not have a machine predecessor, is �rst detected as the
associated operation of Oi′,j′−1. Consequently, if the machine predeces-
sor list is empty and the blocking operation appears more than once as
a successor in a �xed precedence relation, another associated operation is
determined, here operation Oa,b′′ . Dependent on whether there exists a
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perm = [. . . , Oi′,j′−1, . . . , α(Oa,b), . . . , Oi,j , . . . , Oa,b, . . . , Oi′,j′ , . . .]

Mk

Mk′ α(Oa,b) . . . Oi′,j′Oa,b

Oi′,j′−1 Oi,j

(a) Case 1: Shifting the associated operation Oa,b in the operation sequence on its

machine

perm = [. . . , Oi′,j′−1, . . . , Oi,j = Oa,b′ , . . . , Oa,b, . . . , Oi′,j′ , . . .] (b′ < b)

Mk

Mk′ Oi′,j′Oa,b. . .

Oi′,j′−1 Oa,b′

(b) Case 2: Shifting the currently considered operation Oi,j = Oa,b′ in the opera-

tion sequence on its machine

perm = [. . . , Oi′,j′−1, . . . , Oi,j , . . . , Oa,b, . . . , Oi′,j′ , . . .]

Mk

Mk′ Oi′,j′Oa,b. . .

Oi′,j′−1 Oi,j

(c) Case 3: Shifting the associated operation Oa,b in the permutation perm

perm = [. . . , Oi′,j′−2, . . . , Oa,b′ , . . . , Oi,j , . . . , Oa,b′′ , . . . , Oi′,j′−1, . . . ,

Oa,b, . . . , Oi′,j′ , . . .] to shift formula to the left fur

Mk′′

Mk

Mk′ Oi′,j′Oa,b

Oa,b′ . . . α(Oa,b′′) . . . Oa,b′′ Oi′,j′−1

Oi′,j′−2 Oi,j

(d) Case 4: Detecting and shifting further associated operations like operation

Oa,b′′ of the �xed blocking operation Oi′,j′−1

Figure 4.16: Adapting the permutation perm due to a �xed blocking operation

in the ART

153



4 HEURISTIC METHODS

machine predecessor α(Oa,b′′), the operation Oa,b′′ is shifted by the ART
according to Case 1 or Case 3.

After determining an operation to be interchanged or shifted together with
its newly required position in the permutation, the subroutine Adapt-
Perm recalls the latest version of the list perm and implements the modi-
�cation. Independent of whether Case 1, Case 2 or Case 3 is to be realized,
AdaptPerm directly shifts the operation in the operation-based represen-
tation by using built-in list operators. Thus, based on the assumptions on
the technical implementation given in the foregoing, the shift of an oper-
ation is executed in constant time. Since the ART requires to operate on
a permutation perm, which is feasible with regard to the processing se-
quences and the technological routes of all jobs, these restrictions need to
be assured during the modi�cation. Thus, for every shift of an operation
Oa,b implemented by AdaptPerm, it is checked whether the operation is
inserted prior to one of its predecessors. If this situation appears, the pre-
decessor Oa,b′ (b′ < b) is additionally shifted either prior to a machine pre-
decessor α(Oa,b′) that features a position with lidx(α(Oa,b′)) < lidx(Oa,b)

or to the shifted operation Oa,b. In the most extreme case, the initially
shifted associated operation Oa,b constitutes the last operation of the job
Ja and the position it is shifted to features a lower list index than Oa,1.
Consequently, all operations of the job Ja require a shift in the permutation
and the maximum number of necessary computation steps of AdaptPerm
is of order O (max {ni | Ji ∈ J }), correspondingly.

Algorithm 3 describes the ART technically. The method takes a list perm
of all operations Oi,j ∈ O, which is feasible with regard to the process-
ing sequences and the technological routes of all jobs Ji ∈ J , and an
irreversible ordering Oa,b → Oc,d of two operations of di�erent jobs on a
speci�c machine Mk as its input. The ART returns the operation-based
representation sop of a feasible schedule for the BJSPT involving the given
partial sequence Oa,b → Oc,d. It can be observed that the underlying basic
structure of the BRT is still visible in the lines 5 to 16 and 39 to 54 of
Algorithm 3, but there exists one signi�cant di�erence between the two
methods. While the BRT generates a feasible permutation after one ini-
tialization phase and a �nite number of repetitions of the while-loop, the
ART might require repeated restarts of the while command in line 6 with
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Algorithm 3 Advanced Repair Technique (ART)
Input: permutation (list) of operations perm, one irreversible API ordering Oa,b → Oc,d

Output: operation-based representation sop of a feasible schedule involving the ordering

Oa,b → Oc,d

1: initialize sop, Q and W as empty lists, ST as an empty starting times dictionary

2: initialize MaS as a dictionary including the status of all machines Mk ∈M (= idle)

3: initialize F = {(Oa,b, Oc,d)}, PL as an empty machine predecessor list

4: Oirr ← Oa,b

5: lidx′(∗)← 1

6: while perm is not empty do

7: if Oirr ∈ sop then

8: clear F
9: end if

10: Oi,j ← operation with lidx(Oi,j) = 1 in perm

11: if Machine(Oi,j) is idle then

12: ScheduleOp(Oi,j , perm, sop, ST, lidx′(∗), MaS)

13: else

14: AddToQueue(Q, Oi,j)

15: Oi′,j′ ← blocking operation with lidx′(Oi′,j′ ) ≤ lidx′(Oi,j)

16: while Oi′,j′ /∈ Q do

17: if Oi′,j′ ∈ F as a successor then

18: if ∃ unscheduled associated operation Oa,b′ of Oi′,j′ then

19: PL ← machine predecessor list of Oa,b′

20: while PL is empty AND ∃ further unscheduled assoc. op. of Oi′,j′ do

21: Oa,b′ ← next unscheduled assoc. op. of Oi′,j′ [Case 4]

22: PL ← machine predecessor list of Oa,b′

23: end while

24: if PL is empty then

25: if Ji == Ja then [Case 2]

26: AdaptPerm(perm, Oi,j = Oa,b′ , lidx(α(Oi,j)), F)
27: reinitialize (repeat lines 1 and 2)

28: lidx′(∗)← 1

29: else [Case 3]

30: AdaptPerm(perm, Oa,b′ , lidx(Oi,j), F)
31: reinitialize (repeat lines 1 and 2)

32: lidx′(∗)← 1

33: end if

34: else [Case 1]

35: AdaptPerm(perm, Oa,b′ , lidx(α(Oa,b′ )), F)
36: reinitialize (repeat lines 1 and 2)

37: lidx′(∗)← 1

38: end if

39: end if

40: break
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41: else

42: if Machine(Oi′,j′ ) is not idle then

43: AddToQueue(Q, Oi′,j′ )

44: Oi′,j′ ← blocking operation Oi′′,j′′ with lidx
′(Oi′′,j′′ ) ≤ lidx′(Oi′,j′ )

45: else

46: ScheduleOp(Oi′,j′ , perm, sop, ST, lidx′(∗), MaS)

47: for Oi,j ∈ Q do ScheduleOp(Oi,j , perm, sop, ST, lidx′(∗), MaS)

48: end for

49: break

50: end if

51: end if

52: end while

53: if Q is not empty then

54: ScheduleCycle(Q, perm, sop, ST, lidx′(∗), MaS)

55: end if

56: end if

57: end while

58: return sop (return ST)

modi�ed permutations perm, see lines 27, 30 and 34. This results from the
fact that a given ordering, even if it only involves two operations, consti-
tutes a partial schedule requiring to be completed. Basically, it is obvious
that a feasible schedule s′ for the BJSPT involving a distinct ordering of
two operations of di�erent jobs does always exist. However, its construc-
tion as a neighboring solution of an initially given schedule s cannot be
performed trivially. When the ART is applied, the schedule is set up step-
wise like in the BRT, so that more and more precedence relations given at
the beginning of the permutation perm are realized in the feasible partial
schedule sop. If the prede�ned ordering Oa,b → Oc,d is implemented at a
posterior position in the list perm, one of the changes in the ordering of
the unscheduled operations, which is required during the extension of the
feasible permutation sop, may be forbidden. Thus, the if condition in line
17 will be true. In this case, the feasible sequencing given by the beginning
of the permutation perm contradicts the irreversible ordering Oa,b → Oc,d
and the completion of the schedule is impossible. Note that in contrast
to the BRT, the ART detects and realizes required changes in the feasible
partial schedule to adapt the beginning of the permutation to the given
irreversible sequence.
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Observations

(I) Once the preceding operation of the prede�ned ordering Oa,b is in-
corporated in the feasible partial schedule sop and a reversion of the
given sequence Oa,b → Oc,d is not possible anymore, the if condi-
tion in line 7 of Algorithm 3 is true, the set of irreversible orderings
F is cleared and the ART runs as the BRT without entering the if
statement in line 17.

(II) All operations Oa,b′ ∈ Oa that are shifted or interchanged by the
subroutine AdaptPerm belong to the same job Ja ∈ J , which is
de�ned by the predecessor of the initially given ordering Oa,b → Oc,d.
More precisely, if the ART enters the modi�cation scheme in the lines
17 to 36 of Algorithm 3, either the �rstly given preceding operation
Oa,b or one of its predecessors Oa,b′ with b′ < b will be assigned to a
new position in the list perm independent of the implementation of
Case 1, Case 2 or Case 3.

Proposition 4.2. The ART terminates and returns a permutation sop en-

coding a feasible schedule for the BJSPT involving a prede�ned ordering

Oa,b → Oc,d of two operations of di�erent jobs requiring a speci�c machine

Mk.

Proof. The ART mirrors the BRT as long as there is no blocking operation
Oi′,j′ involved as a successor in an irreversible ordering, see Observation
I. Recall that, according to Proposition 4.1 in Section 4.5, it is given that
the BRT terminates and returns a feasible encoding sop of a schedule for
the BJSPT from an arbitrary permutation perm, which is feasible with
regard to the processing sequences and the technological routes of all jobs
Ji ∈ J . Furthermore, a change made in the list perm by the subroutine
AdaptPerm following Case 1, Case 2 or Case 3 given above is denoted
as a modi�cation of the permutation.

Consequently, it has to be shown that

(1) a modi�cation does not violate processing sequence or technological
route restrictions,

(2) a modi�cation can never be reversed,

(3) the number of possible modi�cations is �nite and
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(4) there exists a sequence of modi�cations leading to a feasible schedule
for the BJSPT including the prede�ned ordering Oa,b → Oc,d.

The initially given list perm is feasible with regard to the processing se-
quences and the technological routes of all jobs Ji ∈ J . When the subrou-
tine AdaptPerm is executed, an operation Oa,b′ is shifted to a position
with a lower list index in the permutation. This may only violate the pro-
cessing sequence or the technological route of the corresponding job Ja, if
the operation is shifted prior to one or more of its predecessors Oa,b′′ with
b′′ < b′. The occurrence of this situation is checked during the operation
of AdaptPerm and the a�ected predecessors are additionally shifted, so
that lidx(Oa,b′′) < lidx(Oa,b′) is ful�lled again by the list perm. Thus, (1)
is true.

The set of irreversible orderings F is extended by a pair of operations in
every execution of AdaptPerm, forcing the currently shifted operation
Oa,b′ to be scheduled prior to its newly de�ned list successor in all remain-
ing iterations of the ART. Thus, the incorporated BRT mechanisms can
never reverse a modi�cation. Every consecutively required execution of
AdaptPerm results from a blocking operation Oi′,j′ involved in an order-
ing (Oa,b′ , Oi′,j′) ∈ F . Hence, the currently regarded operation Oi,j fea-
tures a list index between lidx(Oi′,j′−1) and lidx(Oa,b′), since lidx(Oa,b′) =

lidx(Oi′,j′)− 1 holds. This means that a consecutively required modi�ca-
tion does always appear at a position prior to the previous modi�cation
causing the considered pair (Oa,b′ , Oi′,j′) and as a consequence, the oper-
ation Oa,b′ or one of its predecessors Oa,b′′ with b′′ < b′ is shifted further
to a list index smaller than lidx(Oi,j) < lidx(Oa,b′) < lidx(Oi′,j′) in the
list perm, see Observation II. Thus, an implemented modi�cation such as
Oa,b′ → Oi′,j′ can never be reversed by an ART mechanism. (2) is true.

Since the list perm contains a �nite number of elements, the set of shifted
operations is restricted to at most all operations of a given job Ja ∈ J , see
Observation II, and an implemented modi�cation can never be reversed,
the number of possible modi�cation is �nite. (3) holds.

Following from Observation II and the proven statements (1) and (2), the
strategy of the ART can be summarized as shifting the operations Oa,b′ of
a job Ja determined by the initially given ordering Oa,b → Oc,d, (b′ < b),
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stepwise to smaller list indices in the permutation perm until the prede-
�ned partial sequence is realized in a feasible schedule for the BJSPT,
which is constructed by the incorporated BRT mechanisms only. This
strategy succeeds, since the initially given operation Oa,b and, if necessary,
its predecessors Oa,b′ are shifted to the left in the operation sequences on
the machines and correspondingly in the permutation perm, while the op-
eration Oc,d can never be moved to a position prior to Oa,b. Considering
the arguments given to show (3), the �nal consequence will be a permuta-
tion

perm = [Oa,1, Oa,2, . . . , Oa,b, . . . , β(Oa,1), . . . , β(Oa,2), . . . , β(Oa,b), . . .],

where β(Oi,j) denotes the machine successor of an operation Oi,j and either
β(Oa,b) = Oc,d or lidx(Oc,d) > lidx(β(Oa,b)) holds. Thus, in the extreme
case, the job Ja involving operation Oa,b is scheduled prior to all other jobs
involved in the problem and Oa,b → Oc,d is guaranteed. (4) is shown.

Another important aspect is the runtime in which a feasible operation-
based permutation sop can be constructed by the ART. The initialization
steps in the lines 1 to 3 in Algorithm 3 are performed in O(m) time.
As a basis for the following observations, the number of elements in the
permutation sop and the maximum number of operations requiring the
same machine max

{
|Ωk| |Mk ∈M

}
are estimated by O(nop).

At �rst, the mechanisms operating inside the while-loop starting in line
6 of Algorithm 3 are considered. The if condition checking for the imple-
mentation of the given ordering by Oirr ∈ sop in the lines 7 to 9 is operated
in O(nop). The subsequent steps are equivalent to the BRT in Algorithm
2 up to the conditional statement regarding the �xation of a blocking op-
eration in line 17. Checking whether Oi′,j′ ∈ F as a successor requires a
simple dictionary request with O(const), whereby the determination of an
unscheduled associated operation Oa,b′ and the setup of a machine prede-
cessor list PL take O(nop) each. The following while-loop in the lines 20
to 23 may be iterated at most max {ni | Ji ∈ J } times, involving the setup
of a machine predecessor list in each run. Thus, since ni ≤ nop holds for
all Ji ∈ J , the while-loop takes O

(
(nop)

2
)
steps. Considering the lines 24

to 35 of the ART, independent of the satis�ed conditions, the procedure
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runs the function AdaptPerm with O (max {ni | Ji ∈ J }) = O(nop) and
reinitializes the input data with O(m). Consequently, when if is true in
line 17, there are O

(
2 · nop + (nop)

2 + nop +m
)

= O
(
(nop)

2
)
steps to be

executed before while is left in line 37. On the contrary, when else is true
in line 38, the steps to be implemented are equivalent to the lines 12 to
20 in Algorithm 2 of the BRT and operated in O(m). The surrounding
while-loop in the lines 16 to 49 may be operated either by running if singly
in O

(
(nop)

2
)
or by running else singly in O(m) or by running the else

lines 39 to 41 in O(m) followed by if with O
(
(nop)

2
)
. Since m < (nop)

2

holds, the while-loop in the lines 16 to 49 is operated in O
(
(nop)

2
)
. The

following lines 50 to 52 do also constitute a BRT mechanism realizable in
O(m) steps.

Considering the overall procedure, the while-loop, namely the lines 6 to
54, is iterated with repeated reinitialization until the irreversible ordering
Oa,b → Oc,d can be implemented in the schedule sop and the last itera-
tion runs without entering the if condition in line 17. One iteration of
the while-loop with reinitialization is operated in O

(
nop + (nop)

2 +m
)

=

O
(
(nop)

2
)
. The maximum number of possible modi�cations of the list

perm will be reached, if all operations of a speci�c job are shifted step-
wise from the last to the �rst positions in the permutation. Thus, the
maximum number of reinitializations is restricted by the product of the
number of operations na of the job Ja, to which the initially given pre-
decessor Oa,b belongs, and the number of operations in the permutation
nop. As a consequence, the while-loop in the lines 6 to 54 involves at
most O

(
(nop)

2 · (nop)2
)

= O
(
(nop)

4
)
steps. Since m < (nop)

4, the run-
time of the initialization can be disregarded. Overall, the ART determines
the operation-based representation of a feasible schedule involving a given
irreversible ordering in polynomial time

O
(
(nop)

4
)
.

In the following, the ART is applied to construct feasible neighboring so-
lutions s′ from given schedules s and chosen API or TAPI moves. Thus,
the feasibility of the API-based neighbors and the TAPI-based neighbors
described in the De�nitions 4.2 and 4.4, respectively, is assured by the
technique proposed above. Consider the example of an API move inter-
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changing the operation O4,2 and O1,1 in a schedule s of the instance GJSP2
shown at the beginning of this section. The following permutations do not
yield neighboring solutions s′ that are di�erent from the initially given
schedule s when the BRT is applied to construct feasible schedules for the
BJSPT.

sop
′

l = perml

= [O2,1, O3,1, O2,2, O4,1, O5,1, O1,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,2]

sop
′

r = permr

= [O2,1, O3,1, O2,2, O4,1, O5,1, O3,2, O3,3, O5,2, O1,1, O4,2, O4,3, O1,2]

On the contrary, the ART operates on the operation-based representations
sop
′

l and sop
′

r while taking the irreversible API O1,1 → O4,2 into account.
The algorithm detects the �xed blocking operation O4,2 and the a required
modi�cation during the consideration of the underlined operations O1,1 in
perml and O3,2 in permr, respectively. In both executions of the ART, the
machine predecessor list is determined with PL = [O3,1] and the associ-
ated operation O1,1 is shifted according to Case 1 to the second position in
the permutation, so that lidx(O3,1)− 1 = lidx(O1,1) is ful�lled. Since op-
eration O1,1 constitutes the �rst operation of job J1, there is no additional
shift of preceding operations required and the ART is reinitialized with
the extended set of irreversible orderings F = {(O1,1, O4,2), (O1,1, O3,1)}.
After the �rst two operations of the modi�ed permutations, namely the
operations O2,1 and O1,1, have been considered and added to the feasi-
ble partial schedules sop

′

l and sop
′

r , respectively, the set F is cleared and
the procedure constructs complete feasible schedules based on the BRT
mechanisms. Due to the simplicity of the given example, the resulting
permutations are equivalent and do equally encode the neighboring sched-
ule s′ illustrated in Figure 4.17.

sop
′

l = sop
′

r

= [O2,1, O1,1, O1,2, O3,1, O2,2, O4,1, O5,1, (O4,2, O3,2), (O3,3, O5,2), O4,3]
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Figure 4.17: API neighbor s′ resulting from the API move O4,2 ←→ O1,1 in

schedule s for the instance GJSP2

Note that the distance (see Section 4.3) of the initially given schedule s
and its API neighbor s′, which is constructed based on one single API
move, results in

δ(s, s′) = (h1,1,3,1 + h1,1,4,2 + h3,1,4,2)

+ (h2,1,3,2 + h2,1,4,1 + h2,1,4,3 + h2,1,5,2 + h3,2,4,1 + h3,2,4,3 +

h3,2,5,2 + h4,1,5,2 + h4,3,5,2)

+ (h1,2,2,2 + h1,2,3,3 + h1,2,5,1 + h2,2,3,3 + h2,2,5,1 + h3,3,5,1)

= (1 + 1 + 0) + (0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0) +

(1 + 1 + 1 + 0 + 0 + 0)

= 5.

Since the incorporation of blocking constraints in the job shop problem
leads to additionally required changes in the permutations of neighboring
solutions in many cases, it can be expected that the distances of API-
based neighbors are signi�cantly higher for the BJSPT than for other less
constrained job shop problems. This conclusion is drawn in line with the
literature, cf. [19], and this property of the BJSPT is empirically observed
in Section 4.7.7.

4.7.4 Adjacent Pairwise Interchange-Based Neighborhoods

Considering the API-based neighbors introduced by the De�nitions 4.2
and 4.4 in Section 4.7.2 and applying the ART proposed in Section 4.7.3,
the following two neighborhoods for the BJSPT are de�ned.
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De�nition 4.5. The API neighborhood NA(s) of a schedule s is de�ned

as the set of schedules s′, where s′ is a feasible API-R or a feasible API-L

neighbor of s.

De�nition 4.6. The TAPI neighborhood NT (s) of a schedule s is de-

�ned as the set of schedules s′, where s′ is a feasible TAPI-L or a feasible

TAPI-R neighbor of s.

Observations

(III) The API neighborhood of a schedule s is empty, if the release dates
of the jobs are given so that the jobs are processed after another
without any overlapping, see Figure 4.11.

(IV) The TAPI neighborhood of a schedule s is empty, if either the API
neighborhood of the schedule is empty or the total tardiness of the
schedule is equal to zero.

(V) δ(s, s′) ∈
[
1,
∑

Mk∈M
(|Ωk|

2

)]
holds for the distance of an initial sched-

ule s and any API-based neighbor s′ .

4.7.5 A Randomized Shift-Based Neighborhood

The API-based neighborhoods proposed in the previous section are derived
from a basic and nicely controllable transition scheme, which is intended
to intensify the search in the direction of local optima. Since the BJSPT
constitutes a highly constrained problem and the search space is supposed
to be rugged, a randomized component shall be incorporated in the ap-
plication of the metaheuristics. To diversify the search, a Tardy Job (TJ)

Neighborhood is introduced, which relies on random shifts of all operations
of a randomly chosen tardy job in the operation-based representation of a
schedule.

De�nition 4.7. A random leftward shift denotes the shift of an opera-

tion Oi,j ∈ O featuring the current list index lidx(Oi,j) in the operation-

based representation of a schedule s to a randomly determined new list

index lidx′(Oi,j) with

lidx′(Oi,j) ∈ [1, 2, . . . , lidx(Oi,j)− 1] for j = 1, Ji ∈ J ,
lidx′(Oi,j) ∈ [lidx′(Oi,j−1) + 1, . . . , lidx(Oi,j)] for j = 2, . . . , ni, Ji ∈ J .
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To construct a neighboring solution s′ of a given schedule s, the set of tardy
jobs, which involves all jobs Ji ∈ J with Ti > 0, is determined. A neighbor-
de�ning job Ji′ is randomly chosen from this set and the random leftward
shift is applied to all operations Oi′,j′ ∈ Oi

′
according to increasing j′ =

1, . . . , ni′ . This construction of the operation-based representation sop
′
of

the neighboring schedule s′ generally takes O(n+ max{ni | Ji ∈ J }) steps
with regard to the assumptions on the technical implementation given in
the foregoing. Consider as an example the schedule s of the instance GJSP2
shown in Figure 4.14 with the given due dates d1, . . . , d5. The tardiness
values of the jobs are determined by T1 = 7, T2 = T3 = 0, T4 = 2, T5 = 5

and the set of tardy jobs consists of J1, J4 and J5, accordingly. Let the job
J5 be chosen to determine a neighboring schedule s′. The application of
the random leftward shift to the operations O5,1 and O5,2 may be executed
as follows:

sop = [O2,1, O3,1, O2,2, O4,1, O5,1, O4,2, O3,2, O3,3, O5,2, O4,3, O1,1, O1,2]

sop
′

= [O2,1, O3,1, O5,1, O2,2, O4,1, O5,2, O4,2, O3,2, O3,3, O4,3, O1,1, O1,2]

The resulting permutation sop
′
is feasible with regard to the processing

sequences and the technological routes of all jobs by de�nition, but may
be infeasible with regard to blocking constraints. Therefore, the BRT is
operated to construct a feasible schedule s′ for the BJSPT. The procedure
returns

sop
′

= [O2,1, O3,1, O5,1, (O2,2, O5,2), O4,1, (O4,2, O3,2), O3,3, O4,3, O1,1, O1,2]

encoding the neighboring schedule illustrated in Figure 4.18.

De�nition 4.8. A TJ neighbor s′ of a schedule s is determined by ap-

plying random leftward shifts to all operations of a tardy job Ji′ starting

from Oi′,1 to Oi′,ni′
and regain feasibility, if necessary.

Note that the application of the ART is not possible here, since there are
ni′ > 1 irreversible orderings de�ned in the construction of the neighboring
solution, which do not necessarily correspond to a feasible and expendable
partial schedule. Therefore, the BRT constitutes the only applicable re-
pairing scheme and consequently, a feasible TJ neighbor s′ may result to
be equivalent to the initially given schedule s.
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Figure 4.18: TJ neighbor s′ resulting from random leftward shifts of all opera-

tions of job J5 in schedule s of the instance GJSP2

De�nition 4.9. The TJ neighborhood NJ(s) of a schedule s is de�ned

as the set of schedules s′, where s′ is a feasible TJ neighbor of s.

Observations

(VI) The TJ neighborhood of a schedule s is empty, if the total tardiness
of the solution is equal to zero.

(VII) The distance δ(s, s′) of the initial schedule s and a TJ neighbor s′

may be an arbitrary integer from the interval
[
0,
∑

Mk∈M
(|Ωk|

2

)]
.

4.7.6 On the Connectivity of the Neighborhoods

The connectivity of the neighborhood is a fundamental characteristic,
which implies that every existing solution can be transformed into every
other existing solution by the (repeated) application of the given neighbor-
de�ning operator, cf. [32] and [64]. This property guarantees that an op-
erating metaheuristic is capable to obtain the optimal solution of a given
problem. However, a theoretical �nding on the connectivity of a neigh-
borhood can only give an implication on the expected performance of the
transition structure on test instances. Thus, the following proposition con-
stitutes a �rst step in evaluating the applicability and advantageousness
of the given neighborhoods for the BJSPT.

Proposition 4.3. The proposed neighborhoods for the BJSPT, namely the

API neighborhood, the TAPI neighborhood and the TJ neighborhood, are

not connected.
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Proof. Refer to the Observations III, IV and VI given in the Sections 4.7.4
and 4.7.5, respectively. Based on the general properties of the problem,
such as release dates, technological routes and processing times, there may
exist isolated solutions in all of the three neighborhoods, for which no
neighboring solution is de�ned even if it exists. Thus, none of the neigh-
borhoods is connected.

Considering the �nding on the API and the TAPI neighborhoods, it can
be observed that the main aspect breaking the connectivity is the general
release dates ri ≥ 0 for Ji ∈ J . However, the existence of isolated sched-
ules, for which the API-based neighborhoods are empty, does only appear,
when the release dates are given so that the jobs can be processed one af-
ter another without overlapping in time. This constitutes an extreme case
of a scheduling problem, for which the application of a heuristic search
procedure is actually not required. Thus, it can be assumed that, if prac-
tically relevant BJSPT instances are considered, where jobs are competing
for processing on the machines, isolated solutions do not exist in the API-
based neighborhoods and their application may still be successful.

For the TJ neighborhood, the emptiness of the neighborhood of a schedule
is caused by the fact that the tardiness value Ti = 0 for all Ji ∈ J . Thus,
every isolated schedule constitutes an optimal solution for the BJSPT.
Since the application of a metaheuristic does not mainly aim at determin-
ing all optimal solutions of a given problem and the randomized transition
scheme is incorporated to diversify the search process, the TJ neighbor-
hood may still form a bene�cial component.

4.7.7 Characteristics of the API-Based Neighboring

Solutions and the Corresponding Neighborhoods

In this section, several properties of the neighboring schedules de�ned in
the previous sections and the proposed neighborhoods are examined. Es-
pecially, some characteristics arising from the required construction and
repairing schemes are considered. The underlying data is collected from
all neighboring solutions that are generated during the application of the
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SA metaheuristic presented in Section 4.9. The empirical study involves
the following aspects:

• the proportion of API and TAPI neighbors (equivalently resulting
from right shift and left shift transformation) among all API-based
neighboring solutions,

• the performance of non-equivalent API-based neighbors resulting
from right shift and left shift transformation with regard to the total
tardiness,

• the mean distance of neighboring schedules in the API-based neigh-
borhoods,

• the distribution of the distance measure among all API-based neigh-
bors and

• potential di�erences in the distance distributions of API-based neigh-
bors generated by applying left shift and right shift transformation.

On the proportion of equivalent solutions resulting from right shift and

left shift transformation following the same API or TAPI move. The Fig-
ures 4.19 and 4.20 are based on all neighboring schedules s′, which are
constructed by one speci�c API or TAPI move applied to a given schedule
s. The �rst illustrated aspects are the proportion of equivalent permuta-
tions after transformation (EQ) shown in gray and the proportion of API
or TAPI moves leading to di�erent schedules s′ indicated by the sum of
the corresponding blue stacks (LS, RS). Considering the train scheduling-
inspired instances, more than 75% of the API and TAPI moves construct
exactly one neighboring solution, for which the choice of the transforma-
tion scheme is irrelevant, see Figure 4.19. On the contrary, this statement
is only true for the Lawrence instances la01 to la15 in Figure 4.20, while the
proportion of equivalent permutations generally decreases with increasing
problem size. Note that for the instances featuring similar quantities of
jobs and machines, namely the instances ts01 to ts15 and la16 to la30, the
Lawrence instances show a signi�cantly smaller proportion of equivalent
neighboring solutions. This may be reasoned by the amount of structure
and randomness involved in the underlying problems. While the train
scheduling inspired-instances are based on a prede�ned railway network
and jobs are processed according to a �nite number of technological routes
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Figure 4.19: Proportion of equivalent solutions and performance of right shift

and left shift transformation among all API-based neighbors for

the train scheduling-inspired instances of the BJSPT

including recirculation, the technological routes are determined randomly
and without recirculation for the jobs in the Lawrence instances. Thus, it
can be well argued that internal structures restrict the repairing mecha-
nisms and lead to a higher amount of equivalent feasible permutations for
given API or TAPI moves.

The performance of non-equivalent API-L/TAPI-L against API-R/TAPI-

R neighbors with regard to the total tardiness of the resulting feasible

schedules. This constitutes another aspect, which is represented in the
Figures 4.19 and 4.20. The proportion of transitions, for which the left
shift transformation (LS) leads to a neighboring solution with smaller to-
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Figure 4.20: Proportion of equivalent solutions and performance of right shift and left shift transformation among all

API-based neighbors for the Lawrence instances of the BJSPT1
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tal tardiness compared to the schedule resulting from right shift transfor-
mation (RS), is indicated in light blue. Similarly, the dark blue stacks
depict the proportion of moves, for which the right shift transformation
creates the better schedule with regard to the objective function. Over
all benchmark instances, it can be observed that the right shift transfor-
mation leads to a signi�cantly higher proportion of superior neighboring
solutions as against the left shift transformation. Considering Figure 4.20
more precisely, this behavior strengthens with increasing problem size. As
a consequence, it might be reasonable to exclusively apply the right shift
transformation for the purpose of shorter computation time. The propor-
tion of API and TAPI moves, for which an inferior neighboring schedule is
constructed when following this idea, is less than 13% for all benchmark
instances.

On the mean distance of API-based neighboring solutions. The Figure 4.21
and 4.22 depict the mean distance of all considered API-based neighbors
for the train scheduling-inspired and the Lawrence instances, respectively.
It can be observed that, even if an API or a TAPI move initially imple-
ments δ(s, s′) = 1 for a given schedule s and the neighboring permutation
s′, the mean distance between feasible solutions features δ(s, s′) > 5 for
all benchmark instances. In line with observations in the literature, this
implies that the required repairing procedure for the BJSPT as a highly
constrained optimization problem causes a signi�cant increase in the dis-
tances between feasible neighboring schedules, cf. [91]. In Figure 4.22, the
Lawrence instances are visually grouped and indicated by green shadings
for m = 5, blue colors for m = 10 and purple for m = 15. Evaluating
these categories of instances, the increase in the mean distance for a grow-
ing number of jobs is considerably more distinct for the Lawrence instances
involving ten machines (blue) compared to the problems featuring m = 5

(green). Thus, both properties, the number of machinesm and the number
of jobs n, empirically show a multiplicative e�ect on the mean distance of
feasible neighboring schedules.

The distribution of the distance measures in API-based neighborhoods. By
means of boxplots, the distribution of the distance of API-based neighbors
is visualized in Figure 4.23 for the train scheduling-inspired instances and
in Figure 4.24 for the Lawrence instances. As commonly de�ned, the box
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represents the interquartile range of the distances, in which 50% of the
measures can be found, and the horizontal line inside the box indicates
the median. The whiskers depict the minimum and maximum measure
that is not more than one and a half interquartile ranges far from the
box. Over all benchmark instances, it can be observed that the occurring
range of distances signi�cantly increases with growing problem size, while
the median is not highly a�ected. Considering the groups of Lawrence
instances with di�erent quantities of machines (green, blue and purple) in
Figure 4.24, the dependence of the distance distribution on the number
of jobs n and the number of machine m and the multiplying e�ect can
clearly be seen. In comparing the boxplots for the instances ts01 to ts15
and la16 to la30 of similar problem size and equal coloring, it is remarkable
that the distribution of the distance of the Lawrence instances seems to
be more variable for instances featuring the same number of jobs and
machines. This implies that the internal structure of the train scheduling-
inspired instances leads to a similar neighborhood pattern for problems
of the same size. This aspect may be bene�cial when creating heuristic
solution methods with a desired robust performance.

On the distance distribution of non-equivalent API-based neighbors gener-

ated by left shift and right shift transformation. Figure 4.25 comparatively
depicts the distributions of the distances of non-equivalent API-L and API-
R neighbors for the train scheduling-inspired instances. Similarly, boxplots
on the distances of non-equivalent TAPI-L and TAPI-R neighbors for the
Lawrence instances are shown in the Figures 4.26 and 4.27. Since the fol-
lowing aspect is equivalently observable for both neighborhoods on both
classes of problems, the corresponding complementary graphs will not be
given explicitly here. It can be noted that, for all benchmark instances
and both neighborhoods, the distances of neighbors generated by right
shift transformation and repair are signi�cantly smaller compared to the
feasible neighbors constructed by left shift transformation. This may be
caused by a higher number of required additional changes in the opera-
tion sequences on the machines when applying the ART to an infeasible
permutation involving a left shifted operation. Since the API-based neigh-
borhoods are intended to intensify the search around local optima in less
distant steps and in favor of a structured and controllable search process,
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Figure 4.21: Mean distance of all API-based neighbors for the train scheduling-

inspired instances of the BJSPT
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Figure 4.23: Boxplots representing the distribution of the distance measure in

the API-based neighborhoods for the train scheduling-inspired in-

stances of the BJSPT
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Figure 4.25: Boxplots representing the distribution of the distance measure

among neighbors based on API-moves for the train scheduling-

inspired instances of the BJSPT
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4.8 LOCAL NEIGHBORHOOD SEARCH

the application of right shift transformation is to be preferred to imple-
ment an API or a TAPI move in the operation-based representation of a
neighboring schedule.

4.8 Local Neighborhood Search

One of the most generic metaheuristic methods, namely the local descent
or iterative improvement scheme, cf. for instance [32], is described and
implemented in this section. It is intended to test the API and the TAPI
neighborhood for the BJSPT and to generate initial experimental results
on their performance. In the subsequent section 4.8.1, the iterative im-
provement scheme and its implementation are technically explained. The
computational results obtained by the LS for all benchmark instances of
the BJSPT are presented and discussed in Section 4.8.2.

4.8.1 The Iterative Improvement Scheme

Algorithm 4 describes the basic structure of the applied neighborhood
search method, cf. [32], where N (s) denotes a general neighborhood and
T (s) speci�es the total tardiness of a given schedule s. The initial solution
is determined as the best out of ten randomly generated schedules in line
2. The condition of the while-loop starting in line 4 incorporates the three
termination criteria that are implemented next to the direct return of the
locally optimal solution when no better or equivalent neighbor s̃ is found
in N (s), see line 18. The iterative improvement scheme will be stopped, if

• a runtime limit of two hours is reached,

• the total number of generated neighbors (NumNb) exceeds 65000 or

• more than ten iterations without improvement (EqCount) are oper-
ated.

As given in the lines 5 to 10 of Algorithm 4, the procedure implements a
best �t strategy, where the entire neighborhood of the current schedule s
is set up and evaluated. Consequently depending on the total tardiness,
the best neighbor s̃ is chosen to be the new incumbent solution s or the
iterative improvement scheme terminates.
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4 HEURISTIC METHODS

Algorithm 4 Iterative Improvement Scheme

Input: instance input data

Output: locally optimal solution s∗

1: s∗ ← ∅, NumNb ← 0, EqCount ← 0

2: s← best of 10 generated solutions with priority rule RANDOM

3: determine T (s)

4: while timelimit < 7200s AND NumNb ≤ 65000 AND EqCount ≤ 10 do

5: set up N (s)

6: for s′ ∈ N (s) do

7: determine T (s′) and store

8: NumNb ← NumNb +1

9: end for

10: s̃← solution with T (s̃) = min{T (s′) | s′ ∈ N (s)}
11: if T (s̃) < T (s) then

12: s← s̃

13: else if T (s̃) = T (s) then

14: s← s̃

15: EqCount ← EqCount +1

16: else

17: s∗ ← s

18: return s∗

19: end if

20: end while

21: s∗ ← s

22: return s∗

4.8.2 Computational Results

The benchmark instances introduced in Section 2.5 are solved by applying
the iterative improvement scheme implemented according to Algorithm 4
in Python 3 and running on a notebook, which operates an Intel Dual
Core i5 processor (2.20 GHz) with 8 GB RAM. For each run of the LS, the
general neighborhood N (s) is speci�ed by either the API neighborhood
NA(s) or the TAPI neighborhood NT (s) described in Section 4.7.4. In
detail, an API or TAPI move is performed on the incumbent schedule s
and both neighboring solutions resulting from the right shift and the left
shift transformation are set up. In case that the corresponding feasible
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4.8 LOCAL NEIGHBORHOOD SEARCH

permutations are not equivalent, the schedule featuring the least total
tardiness determines the neighbor s′ ∈ N (s). This preselection can be
done without loss of generality, since an inferior solution will never be
chosen as the best neighbor s̃ ∈ N (s).

Tables 4.1 and 4.2 as well as 4.3 and 4.4 show the results for �ve indepen-
dent runs for each neighborhood and each class of instances, respectively.
The �rst two columns indicate the considered instance and the best ob-
jective function value obtained by solving the MIP formulation. As in
Section 3.5, proven optimal solutions are denoted by an asterisk. Besides,
the group of four columns presents the mean total tardiness

∑
Ti and the

minimum total tardiness min(
∑
Ti) reached by the LS applying the cor-

responding neighborhood structure, the mean number of iterations #(It.)
and the mean runtime in seconds.

An iteration of the iterative improvement scheme is de�ned by a single
execution of the while-loop (lines 5 to 19) of Algorithm 4. In the com-
putational results, it can be observed that the mean number of iterations
seems to be solely dependent on the size of the instance and independent
of the chosen neighborhood. Similarly, the runtime of the LS features a
stronger dependence on the number of iterations than on the underlying
transition scheme. Thus, the advantageousness of one or the other API-
based neighborhood for the BJSPT can be evaluated exclusively based on
the mean and minimum objective function values reached. Comparing on
the one hand the averaged total tardiness values for the train scheduling-
inspired instances shown in Tables 4.1 and 4.2, the best �t strategy on the
API neighborhood leads to better results for most of the problems. Con-
sidering on the other hand the Lawrence instances in Tables 4.3 and 4.4,
none of the neighborhoods can be stated as favorable against the other by
means of the averaged objective function values. Consequently, a bene�-
cial reduction of the search space by means of total tardiness cannot be
observed in the application of LS.

Nonetheless, especially the results obtained for the smallest instances ts01
to ts05 reason the application of API-based neighborhoods for the BJSPT,
since there are medium quality schedules obtained in short computation
time. Observing the remarkable di�erences between the mean and the
minimum total tardiness values reached by LS gives empirical evidence for
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4 HEURISTIC METHODS

Table 4.1: Computational results of the Iterative Improvement Scheme with

API neighborhood applied to the train scheduling-inspired instances

of the BJSPT

Inst. MIP
API neighborhood∑

Ti min(
∑
Ti) #(It.) Time

ts01 138∗ 167.8 146 14.2 3.72

ts02 90∗ 124.0 103 16.0 2.60

ts03 72∗ 102.2 83 17.6 3.28

ts04 41∗ 65.8 41∗ 13.8 3.19

ts05 71∗ 89.4 72 14.0 1.71

ts06 88∗ 242.8 219 18.0 6.93

ts07 172∗ 335.6 290 21.4 9.51

ts08 163∗ 292.6 256 18.2 7.46

ts09 153∗ 266.6 226 21.6 8.81

ts10 97∗ 294.8 238 17.0 6.89

ts11 366 683.0 581 21.2 17.88

ts12 419 793.4 678 21.6 18.65

ts13 452 752.4 702 21.6 21.56

ts14 459 715.6 636 18.6 18.30

ts15 418 611.8 525 22.4 21.99
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Table 4.2: Computational results of the Iterative Improvement Scheme with

TAPI neighborhood applied to the train scheduling-inspired in-

stances of the BJSPT

Inst. MIP
TAPI neighborhood∑

Ti min(
∑
Ti) #(It.) Time

ts01 138∗ 170.4 138∗ 14.4 2.01

ts02 90∗ 131.6 113 10.4 1.45

ts03 72∗ 108.0 76 12.2 1.70

ts04 41∗ 78.0 42 11.6 1.92

ts05 71∗ 129.2 85 10.4 1.70

ts06 88∗ 220.8 178 19.2 7.06

ts07 172∗ 405.8 345 16.0 8.42

ts08 163∗ 338.4 284 17.2 8.02

ts09 153∗ 326.2 233 11.8 4.71

ts10 97∗ 302.2 237 19.0 8.26

ts11 366 699.4 559 18.2 15.18

ts12 419 640.2 587 21.4 18.48

ts13 452 807.2 625 20.2 19.39

ts14 459 813.0 595 17.4 15.73

ts15 418 629.0 583 21.0 20.18
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Table 4.3: Computational results of the Iterative Improvement Scheme with

API neighborhood applied to the Lawrence instances of the BJSPT

Inst. MIP
API neighborhood∑

Ti min(
∑
Ti) #(It.) Time

la01 762∗ 2221.6 1401 10.8 0.58

la02 266∗ 951.8 488 13.6 0.72

la03 357∗ 1967.4 1263 11.0 0.60

la04 1165∗ 2066.0 1605 8.6 0.62

la05 557∗ 1145.6 1000 11.0 0.63

la06 2516 5791.4 5187 10.4 1.89

la07 1677∗ 4554.2 3671 16.4 2.86

la08 1829∗ 5473.2 3253 11.4 1.89

la09 2851 6118.6 4722 11.4 2.12

la10 1841∗ 5288.4 3350 9.8 1.89

la11 6534 11745.8 10630 16.6 5.56

la12 5286 12035.0 9810 18.8 6.93

la13 7737 13613.8 12030 14.2 5.20

la14 6038 11208.0 9289 16.4 5.81

la15 7082 11955.2 9738 18.6 6.18

la16 330∗ 1527.2 1043 32.2 8.11

la17 118∗ 1505.6 475 32.6 7.84

la18 159∗ 2788.2 835 21.4 6.56

la19 243∗ 3349.4 1704 15.4 4.89

la20 42∗ 2755.4 389 23.8 6.68

la21 1956 7489.4 7015 25.2 23.16

la22 1455 6262.4 4364 35.2 27.43

la23 3436 9190.4 6956 17.6 15.98

la24 560∗ 7504.8 5781 25.6 19.56

la25 1002 6118.8 3795 35.6 27.02

continued on the next page
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Inst. MIP
API neighborhood∑

Ti min(
∑
Ti) #(It.) Time

la26 7961 16417.2 13580 25.4 50.75

la27 8915 15886.8 13745 32.6 61.50

la28 2226 11907.4 8298 44.6 75.89

la29 2018 15525.6 10055 41.0 71.25

la30 6655 15151.8 11644 46.2 84.08

la31 20957 45865.6 40261 39.8 248.28

la32 23150 43811.6 35292 43.4 268.85

la33 none 34336.2 29355 45.0 275.03

la34 none 38602.0 36792 49.6 277.48

la35 none 37849.8 32164 51.0 317.49

la36 675 9321.2 6839 46.4 110.19

la37 1070 11648.0 7479 36.6 100.85

la38 489∗ 10054.6 6078 35.4 89.74

la39 754 10006.0 6769 36.6 104.21

la40 407∗ 8257.0 6822 45.4 116.57
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Table 4.4: Computational results of the Iterative Improvement Scheme with

TAPI neighborhood applied to the Lawrence instances of the BJSPT

Inst. MIP
TAPI neighborhood∑

Ti min(
∑
Ti) #(It.) Time

la01 762∗ 1912.4 1472 7.6 0.48

la02 266∗ 1558.8 810 9.8 0.53

la03 357∗ 890.0 405 15.0 0.87

la04 1165∗ 2436.4 1672 6.0 0.39

la05 557∗ 1465.0 1068 9.2 0.50

la06 2516 5268.8 4222 12.8 2.13

la07 1677∗ 5157.8 2910 12.8 2.15

la08 1829∗ 4733.2 3767 17.8 2.60

la09 2851 6323.2 4347 13.0 2.04

la10 1841∗ 5035.0 4467 15.8 2.45

la11 6534 12341.0 10549 17.0 5.52

la12 5286 10729.0 8325 15.4 5.22

la13 7737 11206.8 9284 15.4 5.59

la14 6038 11246.0 9150 14.2 5.01

la15 7082 11876.8 10584 12.8 4.83

la16 330∗ 1734.2 744 26.0 5.52

la17 118∗ 965.8 627 28.6 5.49

la18 159∗ 1445.6 882 25.0 5.97

la19 243∗ 2889.0 1558 16.0 4.62

la20 42∗ 1044.4 498 28.2 5.63

la21 1956 8201.2 6100 25.4 22.11

la22 1455 6863.6 5382 28.4 22.04

la23 3436 9222.8 7490 17.4 16.76

la24 560∗ 6786.4 4441 31.0 23.24

la25 1002 7631.8 3162 28.8 20.75

continued on the next page
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Inst. MIP
TAPI neighborhood∑

Ti min(
∑
Ti) #(It.) Time

la26 7961 17470.2 15116 22.4 44.73

la27 8915 15630.4 13698 32.0 57.06

la28 2226 15673.0 9880 37.6 61.65

la29 2018 12886.0 10960 46.0 72.36

la30 6655 14670.2 13678 38.8 63.79

la31 20957 44430.6 33391 40.6 231.94

la32 23150 42909.2 36749 37.6 234.63

la33 none 36551.8 29299 47.8 274.25

la34 none 40365.2 34186 42.8 260.78

la35 none 45085.2 36731 37.2 224.79

la36 675 9779.4 5962 45.2 115.74

la37 1070 9756.8 6741 44.4 113.15

la38 489∗ 8438.2 6656 36.6 96.35

la39 754 8849.0 6938 35.4 90.56

la40 407∗ 10099.0 7037 36.4 93.01
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the ruggedness of the search space of the BJSPT and emphasizes bene�cial
e�ects of several independent runs of any heuristic procedure. Generally,
the results are not satisfactory with regard to solution quality, so that the
necessity of an advanced heuristic method is implied.

4.9 Simulated Annealing

To improve the results obtained by the iterative improvement scheme for
the benchmark instances of the BJSPT, an SA metaheuristic is described
and applied in this section, cf. [79]. This method similarly belongs to
the class of local search algorithms, cf. for instance [32] and [102], since
it is equivalently based on the implementation of bene�cial moves in the
neighborhood of a given schedule. Indeed, SA constitutes a generalization
of the generic iterative improvement scheme through the incorporation of
additional control parameters, cf. [122]. The acceptance of non-improving
transitions and the simultaneous incorporation of di�erent neighborhoods
expand the search capabilities and play a central role in avoiding the early
entrapment of the method in local optima, cf. [13]. Nonetheless, the
SA procedure is simple enough to act as a framework in evaluating the
performance of neighborhood structures, cf. [76]. The technical outline of
the SA and the implemented parameter settings are given in the subsequent
Section 4.9.1. The results obtained by SA with di�erent combinations of
the proposed neighborhoods are presented and discussed in Section 4.9.2.

4.9.1 The Simulated Annealing Algorithm

SA constitutes a well-known generic metaheuristic, for which various de-
scriptions and experimental analyses are provided in the literature, see for
instance [17], [32], [102], [121] and [122]. The algorithm involves a tem-
perature t as the main control feature, which ranges between an initial
value tinit and a terminal value tterm. The temperature evolves during the
search process according to a prede�ned cooling scheme. Based on the tem-
perature t, the probability P of the acceptance of the currently regarded
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neighbor s′ of a schedule s as the new incumbent solution is determined
by

P = min

{
1, e−

T (s′)−T (s)
t

}
.

The structure of the SA implemented for the BJSPT in this thesis is
technically described in Algorithm 5. Three temperature-related control
parameters [tinit, tterm, c] are required as input. Preliminary compu-
tational experiments have shown that the total tardiness behaves quite
divers among neighboring solutions and that consequently, the application
of a distribution-based cooling scheme as shown in [122] leads to a non-
bene�cial enormous slowdown of the temperature decrease. Thus, a simple
geometric cooling scheme t′ = c · t with c ∈ (0, 1) is applied to determine a
subsequent temperature level t′ from the current temperature t. Since the
choice of adequate initial and terminal temperatures strongly depends on
the magnitude of the objective function value of the considered instance,
di�erent settings are preliminarily tested for the benchmark problems. The
following values of the control parameters turn out to be most e�cient and
the corresponding usage for certain groups of instances is given with the
results in Tables 4.5 to 4.12.

Setting 1: [20, 0.5, 0.9925],

Setting 2: [20, 10, 0.999],

Setting 3: [200, 50, 0.995],

Setting 4: [1000, 100, 0.99].

Starting the SA, the initial solution s is generated by the use of the pri-
ority rules described in Section 4.6, see the lines 2 to 5 of Algorithm 5.
Using this schedule, the best found solution s∗ is �rstly updated in line
7. As long as the stopping criterion t ≤ tterm is not ful�lled and the
total runtime does not exceed two hours, a sequence of iterations is per-
formed for each temperature level. This can be interpreted as a Markov
process reasoning the asymptotic convergence of SA for an in�nite num-
ber of such iterations, cf. [122]. The while-loop in the lines 9 to 20 is
repeated nop − m times, which corresponds to the maximum number of
choosable API moves provided that all of them exist. In each iteration, a
neighborhood is chosen according to a given probability distribution, see
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Algorithm 5 Simulated Annealing Algorithm

Input: instance input data, control parameters [tinit, tterm, c], neighborhood

choice probability distribution

Output: locally optimal solution s∗

1: s∗ ← ∅, t← tinit
2: for PrioRule ∈ {SPT, SL, S/OPN, MOD, ATC, RANDOM} do

3: generate and store 10 solutions acc. to PrioRule

4: end for

5: s← best generated schedule [initial solution]

6: determine T (s)

7: while t > tterm AND timelimit < 7200s do

8: chain ← 0

9: while chain ≤ nop −m do [Markov chain per temperature level]

10: choose neighborhood N (s) acc. to probability distribution

11: s′ ← arbitrary element of N (s)

12: determine T (s′)

13: determine P

14: u← random real number in (0, 1)

15: if u < P then

16: s← s′, T (s)← T (s′)

17: end if

18: if T (s) < T (s∗) then

19: s∗ ← s, T (s∗)← T (s)

20: end if

21: chain ← chain +1

22: end while

23: t← c · t [geometric cooling scheme]

24: end while

25: return s∗
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line 10. For all runs of the SA performed in this computational study,
an API-based neighborhood is applied with a probability of 0.9, while the
randomized TJ neighborhood is chosen with a probability of 0.1. This
slight incorporation of randomness turned out to be most e�ective during
some preliminary tests on di�erent probability distributions. To compare
the performance of the API and the TAPI neighborhood for the BJSPT,
these neighborhoods are always exclusively applied either as an API-TJ
combination or as a TAPI-TJ pairing. Following the neighborhood choice,
an arbitrary feasible neighbor s′ ∈ N (s) is de�ned for consideration in
line 11. Based on the total tardiness measure T (s′) and the corresponding
acceptance probability P , the neighboring schedule s′ is either set to be
the new incumbent solution s or the current incumbent schedule is kept,
see lines 12 to 18. At this point, inferior schedules might probably be ac-
cepted while improving solutions are always chosen. If the total tardiness
of the new incumbent solution is less than the objective function value of
the best found schedule s∗, this schedule is updated in the lines 19 to 21.
Consequently, the performed iteration increases the number of considered
neighbors (chain) at the given temperature level. In case that the maxi-
mum length of the Markov chain is reached, the temperature is decreased
according to the geometric cooling scheme in line 21 and a new sequence of
iterations is started. Once a terminal condition is satis�ed, the best found
schedule s∗ is returned.

4.9.2 Computational Results

The SA is implemented in Python 3 according to the outline in Algorithm
5. Computational tests are run for all benchmark instances introduced
in Section 2.5 on a notebook operating an Intel Dual Core i5 processor
(2.20 GHz) with 8 GB RAM. For each instance, one or two appropriate
settings are determined and both API-based neighborhoods are separately
implemented as described in the previous section. Tables 4.5 to 4.12 dis-
play the computational results for �ve independent runs operated for each
instance, setting and neighborhood. The �rst three columns of each table
consist of the instance index, the best objective function value provided
by MIP in Section 3.5 and the total number of iterations performed by the
SA. Further, the average total tardiness

∑
Ti, the minimal total tardiness
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min(
∑
Ti) and the mean runtime of the �ve runs are shown for each in-

stance for the corresponding neighborhood. As before, objective function
values with proven optimality are denoted by an asterisk. To evaluate
the performance of the API-based neighborhoods against each other, the
smaller mean total tardiness measure is highlighted by boldface printing.

Tables 4.5 and 4.6 as well as 4.7 and 4.8 present the computational results
for the train scheduling-inspired instances obtained by the SA in the set-
tings 1 and 2, respectively. Compared to Setting 1, the cooling scheme
in Setting 2 focuses more on lower temperatures resulting in more critical
acceptance probabilities and leads to a higher total number of iterations.
Considering the average total tardiness values achieved with both selec-
tions of control parameters, the SA in Setting 2 performs slightly better
than the SA in Setting 1 in 12 out of 15 instances for both neighborhoods.
Since the results do not show a signi�cant di�erence, especially when re-
garding the minimum total tardiness values, the advantage of Setting 2
simply seems to be based on the higher amount of iterations and runtime.
However, it can be observed that the choice of the setting and the choice of
the neighborhood show an interdependence. By means of the average total
tardiness, the API neighborhood outperforms the TAPI neighborhood in
10 out of 15 instances operated in Setting 1 (Tables 4.5 and 4.6), while
the TAPI neighborhood obtains better average objective function values
for 10 out of 15 instances with Setting 2 (Tables 4.7 and 4.8). This gives
empirical evidence for the proposition that the TAPI neighborhood inter-
acts bene�cially with lower temperature levels while the API neighborhood
does with less critical ones. Generally, the results obtained for the train
scheduling-inspired instances support the application of API-based neigh-
borhood structures embedded in an SA to generate high quality schedules
for the BJSPT. The proven optimal solution is simultaneously determined
for seven out of nine instances and the best feasible solution found by MIP
is improved for four out of six problems. Finally, note that the given av-
erage runtime depicts the computation time for the entire SA procedure,
whereby the best schedule is generated at an earlier stage in the search
process for most of the instances. Thus, a time limit of a few minutes
might be su�cient to obtain schedules of good quality.
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The computational results for the Lawrence instances solved by SA in
Setting 3 are shown in Tables 4.9 and 4.10. It can be observed that the
comparative measures for these randomness-based instances are less con-
clusive than the results obtained for the structure-related problems. When
evaluating the mean total tardiness values, the SA operating with a TAPI
neighborhood generates superior schedules for 22 out of 40 instances, while
the implementation using the API neighborhood acts advantageous for 16
problems. Especially for the instances of larger size, the di�erence between
the mean total tardiness measures becomes quite small compared to the
magnitude of the objective function values, so that the advantageousness
of one or the other neighborhood structure may mainly be related to the
random components of the search method. Thus, both neighborhoods are
well employable to tackle instances of the BJSPT and these results show
the successful application of a heuristic method of easy structure to com-
binatorially hard scheduling problems. Considering the instances la11 to
la15 of size (20, 5), la26 to la30 of size (20, 10) and la31 to la35 of size
(30, 10) especially, SA improves the best found feasible solutions of the
MIP solver for 13 out of these 15 problems in considerably less compu-
tation time. Note that the di�erence between the mean total tardiness
measures and the minimal obtained objective function values can equiva-
lently be observed here. Thus, repeated independent runs of the heuristic
procedure seem to be advantageous.

As an addition, Tables 4.11 and 4.12 depict the computational results
of SA applied with Setting 4 to the instances la31 to la35. Since the
magnitude of the total tardiness measures of these problems is signi�cantly
higher compared to the other Lawrence instances, the adaptation of the
control parameters e�ects the computation time even more bene�cially
while schedules of similar quality are obtained. Nonetheless, for some
instances of smaller size, SA is not able to meet the MIP results in solution
quality and runtime. Thus, this gives rise to the idea of enhancing a
heuristic search method with MIP technology and combining the favorable
features of both solution approaches.
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Table 4.5: Computational results of the SA with API neighborhood in Setting

1 applied to the train scheduling-inspired instances of the BJSPT

Inst. MIP #(It.)
API neighborhood∑

Ti min(
∑
Ti) Time

ts01 138∗ 23568 140.0 138∗ 294.54

ts02 90∗ 22586 95.0 91 271.68

ts03 72∗ 23568 78.8 72∗ 268.12

ts04 41∗ 24550 41.4 41∗ 334.42

ts05 71∗ 22586 71.2 71∗ 253.84

ts06 88∗ 40753 125.0 108 642.30

ts07 172∗ 41735 196.0 184 694.96

ts08 163∗ 40753 185.6 163∗ 599.42

ts09 153 41735 174.0 160 632.11

ts10 97∗ 39771 116.6 107 541.47

ts11 366 56956 409.4 387 1068.83

ts12 419 57938 429.2 412 980.05

ts13 452 58920 492.2 472 1039.72

ts14 459 57938 500.6 473 1062.64

ts15 418 58920 433.2 413 1088.04
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Table 4.6: Computational results of the SA with TAPI neighborhood in Setting

1 applied to the train scheduling-inspired instances of the BJSPT

Inst. MIP #(It.)
TAPI neighborhood∑
Ti min(

∑
Ti) Time

ts01 138∗ 23568 142.6 138∗ 402.59

ts02 90∗ 22586 96.6 90∗ 262.61

ts03 72∗ 23568 84.8 76 349.55

ts04 41∗ 24550 41.2 41∗ 334.02

ts05 71∗ 22586 71.6 71∗ 261.58

ts06 88∗ 40753 119.4 109 610.09

ts07 172∗ 41735 201.0 192 638.76

ts08 163∗ 40753 185.6 181 591.97

ts09 153 41735 175.2 161 652.84

ts10 97∗ 39771 112.6 108 557.61

ts11 366 56956 411.8 392 996.59

ts12 419 57938 442.4 419 964.35

ts13 452 58920 478.2 445 1047.28

ts14 459 57938 508.8 492 1081.69

ts15 418 58920 428.2 387 1014.65
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Table 4.7: Computational results of the SA with API neighborhood in Setting

2 applied to the train scheduling-inspired instances of the BJSPT

Inst. MIP #(It.)
API neighborhood∑

Ti min(
∑
Ti) Time

ts01 138∗ 33264 140.2 138∗ 384.99

ts02 90∗ 31878 94.6 91 394.39

ts03 72∗ 33264 74.2 72∗ 396.98

ts04 41∗ 34650 41.8 41∗ 437.78

ts05 71∗ 31878 71.4 71∗ 404.85

ts06 88∗ 57519 121.6 107 883.49

ts07 172∗ 58905 195.4 189 880.14

ts08 163∗ 57519 184.2 179 820.17

ts09 153 58905 178.8 168 921.90

ts10 97∗ 56133 114.8 97∗ 767.11

ts11 366 80388 406.4 390 1430.03

ts12 419 81774 428.2 412 1360.35

ts13 452 83160 462.6 448 1497.99

ts14 459 81774 462.8 418 1398.62

ts15 418 83160 419.4 401 1390.91
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Table 4.8: Computational results of the SA with TAPI neighborhood in Setting

2 applied to the train scheduling-inspired instances of the BJSPT

Inst. MIP #(It.)
TAPI neighborhood∑
Ti min(

∑
Ti) Time

ts01 138∗ 33264 140.0 138∗ 367.36

ts02 90∗ 31878 95.2 91 420.21

ts03 72∗ 33264 74.4 72∗ 377.38

ts04 41∗ 34650 41.0∗ 41∗ 385.66

ts05 71∗ 31878 71.0∗ 71∗ 362.21

ts06 88∗ 57519 119.8 111 859.53

ts07 172∗ 58905 192.8 185 897.89

ts08 163∗ 57519 185.0 181 888.25

ts09 153 58905 177.4 174 858.67

ts10 97∗ 56133 112.0 105 774.23

ts11 366 80388 401.6 387 1292.55

ts12 419 81774 424.6 405 1340.96

ts13 452 83160 460.6 447 1543.25

ts14 459 81774 495.0 466 1400.34

ts15 418 83160 435.0 414 1393.00
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Table 4.9: Computational results of the SA with API neighborhood in Setting

3 applied to the Lawrence instances of the BJSPT

Inst. MIP #(It.)
API neighborhood∑
Ti min(

∑
Ti) Time

la01 762∗ 11080 787.4 773 147.22

la02 266∗ 11080 283.4 266∗ 354.58

la03 357∗ 11080 357.0∗ 357∗ 118.16

la04 1165∗ 11080 1217.2 1165∗ 205.85

la05 557∗ 11080 557.0∗ 557∗ 138.57

la06 2516 18005 2790.0 2616 239.06

la07 1677∗ 18005 1942.2 1869 259.52

la08 1829∗ 18005 2335.0 1905 204.66

la09 2851 18005 3275.2 3161 202.80

la10 1841∗ 18005 2178.2 2069 203.90

la11 6534 24930 6186.2 5704 349.30

la12 5286 24930 5070.0 4859 400.51

la13 7737 24930 7850.6 7614 329.37

la14 6038 24930 6616.8 5714 379.36

la15 7082 24930 7088.6 5626 331.12

la16 330∗ 22160 395.8 335 428.88

la17 118∗ 22160 144.2 120 341.19

la18 159∗ 22160 229.4 159∗ 331.01

la19 243∗ 22160 306.6 243∗ 302.85

la20 42∗ 22160 55.6 42∗ 330.91

la21 1956 36010 2847.2 2101 675.21

la22 1455 36010 2052.8 1773 670.79

la23 3436 36010 3692.6 3506 650.58

la24 560∗ 36010 966.8 761 669.17

la25 1002 36010 1557.4 1289 667.03

continued on the next page
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Inst. MIP #(It.)
API neighborhood∑
Ti min(

∑
Ti) Time

la26 7961 49860 9275.8 8475 1383.19

la27 8915 49860 7588.0 6596 1304.75

la28 2226 49860 3430.8 2876 1253.97

la29 2018 49860 2948.0 2432 1273.96

la30 6655 49860 7621.6 6775 1328.15

la31 20957 77560 18921.8 17984 4174.65

la32 23150 77560 21991.4 20401 4779.26

la33 none 77560 22494.2 19750 4432.09

la34 none 77560 20282.8 18633 4770.32

la35 none 77560 21895.0 18778 4789.15

la36 675 54015 1856.0 1711 2403.28

la37 1070 54015 1774.2 1621 2154.29

la38 489∗ 54015 760.4 645 2298.98

la39 754 54015 1573.0 1391 2110.06

la40 407∗ 54015 1008.6 613 2163.05
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Table 4.10: Computational results of the SA with TAPI neighborhood in Set-

ting 3 applied to the Lawrence instances of the BJSPT

Inst. MIP #(It.)
TAPI neighborhood∑
Ti min(

∑
Ti) Time

la01 762∗ 11080 783.8 773 140.23

la02 266∗ 11080 277.6 266∗ 164.69

la03 357∗ 11080 357.0∗ 357∗ 141.91

la04 1165∗ 11080 1284.2 1165∗ 118.56

la05 557∗ 11080 557.0∗ 557∗ 106.27

la06 2516 18005 2912.4 2847 246.24

la07 1677∗ 18005 1904.2 1677∗ 228.02

la08 1829∗ 18005 2129.6 1829∗ 190.77

la09 2851 18005 3226.6 3131 223.26

la10 1841∗ 18005 2119.4 2046 266.12

la11 6534 24930 5846.4 5253 338.76

la12 5286 24930 4997.8 4809 365.42

la13 7737 24930 7611.8 7342 350.23

la14 6038 24930 6872.4 6459 362.70

la15 7082 24930 7153.6 6330 330.66

la16 330∗ 22160 360.8 335 349.97

la17 118∗ 22160 118.8 118∗ 359.02

la18 159∗ 22160 264.0 235 643.07

la19 243∗ 22160 301.0 243∗ 321.86

la20 42∗ 22160 42.0∗ 42∗ 298.16

la21 1956 36010 2961.8 2680 757.18

la22 1455 36010 2123.0 1988 667.06

la23 3436 36010 3746.8 3424 692.07

la24 560∗ 36010 724.0 644 781.59

la25 1002 36010 1583.0 1390 701.11

continued on the next page
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Inst. MIP #(It.)
TAPI neighborhood∑
Ti min(

∑
Ti) Time

la26 7961 49860 8600.8 7858 1458.37

la27 8915 49860 7641.8 6457 1382.26

la28 2226 49860 3367.6 2849 1259.37

la29 2018 49860 3099.0 2626 1296.92

la30 6655 49860 7372.8 6395 1321.03

la31 20957 77560 18409.6 17751 4217.92

la32 23150 77560 21632.2 20546 4688.54

la33 none 77560 22913.2 20553 4756.87

la34 none 77560 21911.8 19577 4669.14

la35 none 77560 21384.4 20537 4724.02

la36 675 54015 1839.0 1599 2318.08

la37 1070 54015 1835.8 1594 2226.63

la38 489∗ 54015 745.4 676 2118.74

la39 754 54015 1850.2 1551 1889.38

la40 407∗ 54015 1187.6 912 1928.19
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Table 4.11: Computational results of the SA with API neighborhood in Setting

4 applied to selected Lawrence instances of the BJSPT

Inst. MIP #(It.)
API neighborhood∑
Ti min(

∑
Ti) Time

la31 20957 64400 20198.4 17090 3486.60

la32 23150 64400 22024.8 21092 3532.15

la33 none 64400 23007.2 20135 3454.80

la34 none 64400 20079.0 18810 3558.23

la35 none 64400 21203.0 19709 3475.94

Table 4.12: Computational results of the SA with TAPI neighborhood in Set-

ting 4 applied to selected Lawrence instances of the BJSPT

Inst. MIP #(It.)
TAPI neighborhood∑
Ti min(

∑
Ti) Time

la31 20957 64400 18512.6 15692 3376.26

la32 23150 64400 20698.4 19303 3315.97

la33 none 64400 21874.8 18949 3319.12

la34 none 64400 20682.8 19734 3249.74

la35 none 64400 22578.4 21314 3278.52



5 Matheuristic Solution Approach for the

Blocking Job Shop Problem with Total

Tardiness Minimization

The results shown in the previous chapters reveal advantages and disad-
vantages of the application of pure MIP and permutation-based heuristic
solution methods to the BJSPT. While the MIP techniques presented in
Chapter 3 are able to obtain optimal solutions in short computation time
for small instances, they fail in providing even good feasible solutions for
problems of large size. On the contrary, the heuristic methods provided
and tested in Chapter 4 will obtain medium quality schedules to arbitrarily
large instances, but are not capable of �nding the optimal or near-optimal
solutions when problem size increases. This chapter presents a hybrid

203



5 MATHEURISTIC APPROACH

matheuristic approach to solving the BJSPT, which is developed in a joint
project with Dr. Reinhard Bürgy from University of Fribourg, Switzer-
land. First, existing matheuristic methods to solve machine scheduling
problems are reviewed in the subsequent Section 5.1. In line with the
idea by Balas and Vazacopoulos [13] of combining di�erent resolution ap-
proaches to multiply bene�cial e�ects, general and scheduling-tailored con-
struction schemes and neighborhoods, which rely on the mathematical for-
mulation of the BJSPT, are described and evaluated in Section 5.2. Finally,
a Variable Neighborhood Search (VNS) is performed on the benchmark in-
stances involving promising MIP-based techniques. The setting and the
computational results are reported in Section 5.3.

5.1 Existing Matheuristic Approaches to Machine

Scheduling Problems

A matheuristic is a hybrid approach, which combines MIP and heuristic
techniques most commonly in a master and slave pattern, cf. [39]. Thus,
the important decisions to be made in designing a matheuristic method are
on which construction schemes, search procedures and neighborhood struc-
tures to apply in which hierarchy. It is desired that the implemented tech-
niques feature orthogonal e�ects to smartly guide the procedure through
diverse but promising areas of the search space, cf. [47]. The following
examples indicate di�erent realizations of this idea in the �eld of machine
scheduling.

Single and parallel batch machine scheduling problems are tackled with a
matheuristic approach by Mönch and Roob in [94]. Such problems natu-
rally consist of two planning levels, which refer to the assignment of batches
to and the sequencing of batches on machines in the �rst stage and the for-
mation of the batches in the second stage. Considering the minimization
of the number of tardy jobs, the authors apply a genetic algorithm to ob-
tain good assignments and sequences and consecutively optimize the batch
formation based on a mathematical formulation. An unrelated parallel
machine scheduling problem with additional resource allocation is treated
by Fanjul-Peyro, Perea and Ruiz in [51]. This problem similarly incor-
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porates a two-stage decision process, in which the assignment of jobs to
machines and the allocation of the limited resource need to be determined.
Three matheuristic strategies are tested using two di�erent mathematical
formulations with makespan minimization. Compared to the subsequent
machine assignment and resource allocation on the one hand and a heuris-
tic reduction of the set of possible assignments before applying an exact
solution method on the other hand, a greedy procedure, which sequen-
tially solves the entire problem for subsets of jobs and performs promising
�xings, yields the most satisfactory results.

Considering job assignment and sequencing in heterogeneous parallel facto-
ries, Behnamian [15] proposes a hybrid heuristic approach, which is guided
by the relaxed solution of the mathematical formulation. The master pat-
tern of the solution method consecutively operates an electromagnetism-
like local search algorithm and a variable neighborhood search involving
seven neighborhood structures. Here, the choice of the applied neighbor-
hood is made based on the result of the linear programming relaxation of
the problem. An order scheduling problem on parallel machines, which
simultaneously features characteristics of a permutation �ow shop and a
job shop setting, is treated by Framinan, Perez and Gonzalez [56]. For
the purpose of minimizing the total tardiness of all orders, a matheuristic
procedure, which iteratively reoptimizes the schedule given a job position
oscillation with a �xed maximum position change of an arbitrarily chosen
job in the permutation, is applied.

With regard to shop scheduling problems, the �ow shop environment con-
stitutes the only class of problems on which matheuristic approaches are
tested. Kononova and Kochetov [75] solve the practical application of
F2 || Cmax with limited bu�ers and passive prefetching by a variable neigh-
borhood search technique involving an MIP-based neighborhood structure.
The problem F2 ||

∑
Ci is approached by a two-stage matheuristic method

by Della Croce et al. [47]. The master pattern consists of a recovering
beam search based on job reinsertion, whereby parts of the permutation,
called job windows, are repeatedly reoptimized using a mathematical for-
mulation and MIP methods in a subroutine. Furthermore, Ta et al. [116]
compare several matheuristic approaches for a permutation �ow shop prob-
lem Fm | perm |

∑
Ti. The applied techniques rely in di�erent proportion
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on MIP-based job position oscillation and job window reoptimization and
prove to be competitive to a pure genetic algorithm.

To the best of the authors' knowledge, there exists no reported implemen-
tation of a matheuristic method for a job shop scheduling problem. Thus,
pioneering work is required in evaluating the applicability of di�erent gen-
eral and scheduling-tailored MIP techniques to design a succeeding hybrid
approach. While job position oscillation and sequential scheduling and �x-
ing of subsets of jobs seem to be promising and adaptable ideas from the
literature, the exact resolution of separable subproblems and job window
reoptimization are not expected to be usable due to the large degree of
restrictedness and appearing infeasible solutions of the BJSPT.

5.2 Preliminary Evaluation of MIP-Based

Construction Schemes and Neighborhoods

As the overall pattern of the proposed matheuristic for the BJSPT, the
VNS is chosen, since it involves a large variety of possibilities to inte-
grate and combine di�erent procedures, see [67]. Generally, the search
technique requires an initial solution, for which neighboring solutions are
sequentially constructed based on a set of possible transition schemes and
evaluated. In this study, all components operated by the VNS are intended
to rely on the mathematical formulation MF1 presented with satisfactory
results in Chapter 3. Thus, at least one MIP-based construction scheme
of feasible solutions needs to be implemented to obtain an initial schedule
and a diverse set of promising MIP-based neighborhood structures is sup-
posed to be used. In the following Section 5.2.1, various general-purpose
and scheduling-tailored construction schemes of feasible schedules from re-
laxed linear programming results are described and initial evaluations are
reported. Similarly, di�erent MIP-based neighborhoods partially based
on scheduling characteristics are discussed with regard to the expected
bene�ts of their incorporation in the VNS in Section 5.2.2.

Preliminary Remark. The Linear Programming (LP) Relaxation of the
considered mixed-integer problem formulation constitutes a common ba-
sis of most of the mathematical model-related construction schemes and
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neighborhood structures, see Section 3.4 and Pinedo [102] for basic expla-
nations. Due to the weak LP relaxation of the mathematical models of
the BJSPT outlined in Section 3.4, it can be expected that procedures
operating with relaxed solutions have di�culties in yielding satisfactory
results. In the following, x is used to indicate the solution vector of the
precedence variables obtained by LP or MIP techniques. Accordingly, x̄
denotes the initial or the incumbent feasible solution, which corresponds
to a feasible schedule for the BJSPT, and xLP describes the solution of the
LP relaxation of a considered mathematical formulation, which encodes an
infeasible schedule in most of the cases. Regarding the transition schemes,
the vector xN indicates a feasible neighboring solution.

5.2.1 Constructive Generation of Schedules

In this thesis, construction schemes particularly refer to stepwise proce-
dures that generate a feasible schedule x̄ for the BJSPT from an infeasible,
mainly relaxed solution xLP or from an empty schedule. In order to repre-
sent the variety of existing approaches and detect promising components
for the VNS, general-purpose techniques applied to obtain feasible solu-
tions in Branch & Bound procedures are compared to scheduling-tailored
methods, which use the involved structures such as jobs and machines.
The considered generic MIP-based techniques include

• the Feasibility Pump (FP),

• Fix and Dive (FD) and

• Fix and Solve (FS),

while the scheduling-related methods cover

• Sequential Job Insertion (SJI),

• Sequential Machine Scheduling (SMS) and

• Fix one Machine and Solve (FMS).

These procedures are brie�y explained in the following and their individual
performance on the benchmark instances of the BJSPT is summarized.
All techniques are implemented in Java and applied in �ve independent
runs to each problem using MF1 with precedence variables yi,j,i′,j′ for
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Oi,j , Oi′,j′ ∈ Ωk,Mk ∈M featuring i < i′. The experiments are performed
with a time limit of 30 minutes each on a notebook operating an Intel
Dual Core i5 processor (2.20 GHz) with 8 GB RAM. As the MIP Solver,
Gurobi Optimizer 7.5.2 is used due to coding reasons. Initial tests have
shown that similar results are to be expected when running IBM ILOG
CPLEX 12.8.0.

Fischetti, Glover and Lodi [52] proposed the Feasibility Pump (FP) to ap-
proach the NP-hard problem of �nding a feasible solution to an integer or
mixed-integer mathematical model with linear constraints and objective
function. The key idea is the combination of two solution vectors, which
feature infeasibility with regard to di�erent aspects. A solution xLP is
obtained satisfying the linear constraints but discarding integrality. Based
on this, a solution x̃ is derived from xLP by generic rounding satisfying
integrality but most often violating the linear constraints. In every pump-
ing cycle, a new fractional solution xLP with minimal distance (L1-norm)
to the current integer solution x̃ is computed by solving a linear program
and the incumbent x̃ is updated by rounding the new xLP . These steps
are repeated until a pair x̃ and xLP with a minimal distance of zero is
found and the current integer solution x̃ constitutes a feasible schedule for
the BJSPT.

Applied to the benchmark instances, FP obtains feasible solutions after
executing two pumping cycles for each problem. The constructed feasible
solution vectors are of unsatisfactory quality, since they constitute per-
mutation schedules, which involve all the jobs consecutively inserted in
reverse index ordering. Evidently, the result of the LP relaxation found by
the MIP solver is so close to the permutation schedule, that this is the only
feasible solution ever immediately determined. Short computation times
can be named as an advantage of this method.

Fix and Dive (FD) constitutes one of the standard techniques implemented
in state-of-the-art commercial solvers to �nd feasible solutions to mixed-
integer programs within a Branch & Bound solution method, see Bixby
et al. [21]. Considering the relaxed solution xLP of the blocking job
shop problem formulation, the involved precedence variables are sorted
according to increasing di�erence from binarity. A �xed portion α of frac-
tional variables with smallest di�erences is set to their nearest binary value.
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Given these �xed integers, the linear relaxation is solved again, and sorting
and value determination are repeatedly applied. The procedure iterates
until a feasible schedule is found or the infeasibility of the partially �xed
solution is detected.

The experiments are performed on the benchmark instances comparing
di�erent portions α ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}. While the number
of iterations decreases as expected with increasing values of α, the solutions
are not a�ected by the measure of the portion. Equivalently to FP above,
FD constructs permutations schedules for all considered instances of the
BJSPT in all �ve runs.

Fix and Solve (FS) is a simple strategy applied in a convergent heuristic
for mixed-integer programs proposed by Wilbaut and Hana� [130]. A fea-
sible solution x̄ is constructed based on the solution of the LP relaxation
by �xing all variables in xLP , which have turned out to be binary spon-
taneously, and running an exact MIP solution approach on the reduced
mixed-integer model.

The method is applied to the BJSPT instances and the evaluation shows
two main aspects. On the one hand, FS performs well for problems of
small and medium size, especially for instances featuring an inner struc-
ture like the train scheduling-inspired ones, since the procedure obtains
feasible schedules with less than 50% gap compared to the best objective
function values found by exact MIP solving, see Section 3.5, in short com-
putation time. On the other hand, FS is not favorable for medium and
large problems involving randomized structures, since it is not clear which
proportion of variables will be �xed in the �rst step and the resulting
mixed-integer program might still be to complex to be solved by the exact
method. Accordingly, FS does not obtain any feasible solution within 30
minutes of computation time for half of the Lawrence instances.

The �rst tested scheduling-tailored construction scheme is the Sequential
Job Insertion (SJI), which is based on a combinatorial job insertion method
for the no-wait job shop problem introduced by Bürgy and Grö�in [35], the
generic insertion technique proposed by Werner and Winkler [129] and gen-
eral idea of the NEH heuristic for the permutation �ow shop problem, cf.
[95]. Starting from an entire LP relaxation of the model for the BJSPT,
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which is interpreted as an empty schedule, the integrality of subsets of
precedence variables is stepwise reintroduced and relaxed mixed-integer
programs are repeatedly solved. According to a randomly generated inser-
tion ordering, the sequence-de�ning variables related to x chosen jobs are
set to be binary and an optimal partial schedule is determined and �xed
in every iteration. Thus, the schedule is expanded by single or groups of
jobs until a feasible solution x̄ for the BJSPT is found.

Since the exact solution of a highly constrained job shop problem might
require long computation time even if there are only two or three jobs
involved, cf. [31], the method is implemented with x ∈ {1, 2, 3}. This is
referred to as SJIx in the following. All three variants of the SJI generate
medium quality schedules for all benchmark instances in less than �ve
minutes, while the computation time slightly increases with growing x.
Especially for instances of larger size, it cannot clearly be observed that
a higher number x of simultaneously inserted jobs improves the solution
quality. Hence, the choice of an advantageous insertion sequence seems to
have a signi�cant impact, so that several independent runs of SJI featuring
a small value of x are favorable against one time consuming run of SJI with
a larger x measure.

As an adaption of the idea of the shifting bottleneck procedure proposed
by Adams, Balas and Zawack [2], Sequential Machine Scheduling (SMS) is
applied to construct feasible schedules. Similar to SJI, the LP relaxation
of the mathematical formulation of the BJSPT is taken as the starting
point. According to a randomly generated machine sequence, the prece-
dence variables related to the currently considered machine are set to be
binary in every iteration and the partial schedule obtained by solving the
relaxed mixed-integer program is �xed. Consequently, the schedule is step-
wise constructed until a feasible solution x̄ for the BJSPT is found or a
contradiction in the �xed operation sequences on the machines is detected.

Since the problem under study is highly constrained, SMS terminates with
contradicting operation sequences and without a feasible schedule for a vast
majority of the benchmark instances. Especially for the train scheduling-
inspired problems featuring internal structures, the method is only able
to detect a feasible solution for one out of the 15 instances. Furthermore,
the initial single machine scheduling problem 1 | ri |

∑
Ti constitutes a
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challenging optimization problem itself, so that an exact MIP approach re-
quires a considerable amount of computation time to even �x the operation
sequence on the �rst machine for large instances.

Fix one Machine and Solve (FMS) is introduced here as a scheduling-
tailored counterpart of FS with the intention to overcome the issue of
contradicting operation sequences. Equivalently to SMS, the procedure
starts by solving a relaxed mixed-integer program for 1 | ri |

∑
Ti, where

only the precedence variables related to a particular, randomly chosen
machine are required to by binary. Considering the resulting operation
sequence as �xed, the entire reduced BJSPT is solved by an exact MIP
approach to obtain a feasible schedule x̄.

The results obtained by FMS are of high quality especially for the train
scheduling-inspired instances featuring structured patterns. For half of the
considered benchmark problems, FMS generates the best feasible schedule
among all construction schemes, but it features a signi�cant disadvan-
tage. Regarding the majority of the runs, FMS is terminated due to the
time limit of 30 minutes. Thus, the considerable amount of computation
time seems to reason the solution quality rather than the method itself.
Furthermore, there exist four of the Lawrence instances, where neither a
solution for the initial single machine problem could be obtained nor a
feasible schedule for the BJSPT.

To summarize, the generic methods FD and FP captivate due to construct-
ing feasible schedules for all benchmark instances in impressively short
computation times, but have a disadvantage in solely generating a job
index-based permutation schedule with low solution quality. Thus, these
schemes can easily be substituted by a combinatorial technique, which
returns arbitrary sequences of the jobs and correspondingly di�erent per-
mutation schedules. FS may be a bene�cial construction procedure for
small instances featuring internal structures, while the required computa-
tion times of 10 to 30 minutes might not be reasonable for the determi-
nation of an initial feasible solution of a superior heuristic method. SJIx
turns out to be the most promising construction scheme in the preliminary
experiments. All three variants yield feasible schedules for all benchmark
instances of convincing solution quality in short computation time. De-
pendent on the overall solution method, the trade-o� between objective
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function value and runtime can be controlled by an appropriate choice of
the parameter x and multiple independent runs of the SJI. On the con-
trary, SMS constitutes the worst performing construction schemes for the
BJSPT due to signi�cant feasibility issues. FMS, similar to FS, seems to
be favorable for small and medium size instances, if 30 minutes of compu-
tation time are acceptable within the aggregated solution method.

5.2.2 Neighborhood Structures

In the following, six di�erent MIP-based transition schemes are explained
and their advantageousness in �nding optimal or near-optimal schedules
for the BJSPT is brie�y discussed. On the one hand, two neighborhoods
are generically set up to �nd good feasible solutions to a mixed-integer
program and purely rely on the mathematical formulation of the problems,
namely

• Local Branching (LBR) and

• the Relaxation Induced Neighborhood Search (RINS).

On the other hand, four neighborhood structures utilize given character-
istics such as jobs and machines. They include

• Job Insertion (JI),

• Job Insertion with Flexibility (JIF),

• Local Position Changes (LPC) and

• Machine Fixing (MF).

All these neighborhoods are individually tested in a simple iterative im-
provement scheme as described in Section 4.8.1. Dependent on the par-
ticular determination of neighboring solutions, either the best neighbor is
directly generated by optimally solving a relaxed or reduced mixed-integer
program or all possible neighboring solutions are explicitly constructed by
an MIP technique and the best neighbor is chosen by comparison. For ev-
ery benchmark instance, six initial feasible solutions are provided, which
involve three di�erent permutation schedules of low quality and another
three schedules with medium solution quality constructed by SJI1, SJI2
and SJI3, respectively. Five independent runs are performed for each prob-

212



5.2 CONSTRUCTION SCHEMES AND NEIGHBORHOODS

lem and initial solution taking a time limit of ten minutes. The neighbor-
hood structures are implemented in Java and the experiments are con-
ducted using a notebook featuring an Intel Dual Core i5 processor (2.20
GHz) and 8 GB RAM.

The �rst generic neighborhood structure Local Branching (LBR) is pro-
posed by Fischetti and Lodi in [53]. It involves a feasible incumbent so-
lution x̄ and a distance parameter γ ∈ Z>0, which can be interpreted
as the neighborhood radius, cf. [43]. For every feasible schedule x̄, a γ-
neighborhood is de�ned by the set of feasible neighboring solutions xN

that satisfy the local branching constraint δ(x̄,xN ) ≤ γ, see Section 4.3
for explanations on the distance measure. By solving the MIP model of the
BJSPT and taking the given inequality into account, the best neighboring
schedule in the γ-neighborhood is determined in every iteration. Note that
this corresponds to �nding the best neighbor xN , which does not require
more than γ APIs to be obtained from x̄.

For the purpose of investigating the trade-o� between neighborhood size
and computation time, the neighborhood structure is tested with γ ∈
{5, 10, 15}, referred to as LBR5, LBR10 and LBR15, respectively. The
runtime of the procedure increases with growing values of the distance pa-
rameter γ and is additionally a�ected by the size of the considered instance
and the quality of the incumbent feasible solution. For small instances, it
can clearly be observed that the objective function values of the locally
optimal schedules improve with increasing distance γ. For medium and
large instances, contrarily, the solution quality is almost equally spread
among the variants of LBR. Thus, randomized components seem to gain
an impact as well as the fact that LBR5 may outperform LBR15 due to
shorter computation time of single iterations and a correspondingly higher
number of conducted iterations within the time limit. Generally, LBRγ
yields satisfactory results and improves almost all initially given schedules
for the benchmark instances.

The Relaxation Induced Neighborhood Search (RINS) constitutes the sec-
ond general neighborhood scheme, which combines an incumbent feasible
solution x̄ and the solution vector xLP of the LP relaxation of the mathe-
matical formulation. Danna, Rothberg and Le Pape present promising re-
sults of this technique for a job shop problem without blocking constraints
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and recirculation in [42] and introduce RINS generally in [43]. During ev-
ery iteration of the search, the feasible schedule x̄ and the relaxed solution
xLP are compared and variables, which take equivalent values, are �xed.
Subsequently, a reduced mixed-integer program of the BJSPT is exactly
solved to determine a new feasible solution xN . If the resulting schedule
xN is superior to the incumbent feasible solution, x̄ is replaced by the
neighboring schedule and the comparison to xLP is repeatedly performed.

The preliminary experiments show that RINS features higher potential
with initial solutions of lower quality, here the permutation schedules.
Comparing LBR and RINS in operating on feasible schedules generated
by SJIx, the resulting solution quality is similar while RINS is terminated
more often by the time limit and does not obtain an improved schedule for
some of the large Lawrence instances. Considering the results of the iter-
ative improvement scheme initialized with permutations schedules, RINS
outperforms LBR in solution quality, but requires the full computation
time of ten minutes for all medium and large size instances.

As the �rst proposed scheduling-tailored neighborhood, Job Insertion (JI)

modi�es and applies the idea of the SJIx construction scheme. Given an
initial feasible schedule x̄, a neighboring solution xN is determined by ex-
tracting and optimally reinserting x jobs. Thus, all variables related to
the arbitrarily chosen jobs are set to be unknown, while the values of the
remaining variables and the ordering of the remaining jobs and operations
are correspondingly preserved. A reduced mixed-integer program is solved
in the construction of every neighboring schedule so that the optimal po-
sitions for reinsertion are determined. The neighborhood is implemented
in a standard best �t strategy. Thus, the complete JIx-neighborhood of
the incumbent feasible schedule x̄ is determined by reinserting all possi-
ble subsets of x jobs from the job set and the best neighbor replaces the
incumbent schedule, if the objective function value is improved.

In accordance to the preliminary observations on the hardness of the re-
duced mixed-integer programs, the JI neighborhood is applied with x ∈
{1, 2, 3}, referred to as JI1, JI2 and JI3, respectively. The neighborhood
structure performs very well on all benchmark instances with both classes
of initial solutions. For the medium quality starting schedules, the ob-
tained objective function values improve with increasing number of jobs
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x to be reinserted. While JI1 shows a similar performance as the generic
methods LBRγ and RINS, JI2 and JI3 clearly outperform these techniques.
With regard to the initial permutation schedules, this behavior can only
be observed for small instances. Especially for the Lawrence instances of
medium and large size, JI1 generates the best locally optimal schedules
among the insertion-based neighborhoods. This might again be reasoned
by the fact that the computation time for the construction of a single
neighbor is short with x = 1, and a higher number of iterations can be
conducted until the time limit is reached. Generally, the computation time
of JIx increases with growing measure of x, with a higher number of jobs
and machines involved in the instance and with lower quality of the initial
solution. JI3 shows a similar runtime behavior as LBRγ, while JI1 and
JI2 require signi�cantly less computation time compared to the generic
neighborhood structures.

Job Insertion with Flexibility (JIF) extends the JIx neighborhood by one
aspect regarding the �xed partial sequences of the una�ected jobs. On
each involved machine, a corridor of three positions prior and posterior
to the extraction position of a job is de�ned. Therein, the operations of
the remaining schedule are allowed to be moved to smoothly merge the
preserved parts and improve the objective function value of the neigh-
boring schedule xN . The JIFx-neighborhood is equivalently implemented
following a best �t strategy.

Unsurprisingly, the required computational e�ort of the construction of a
neighboring solution xN increases with the admission of �exibility. Thus,
JIFx is tested on all benchmark instances with x = 1 and x = 2. While
JIF1 returns a locally optimal schedule for all settings in less than ten
minutes, JIF2 is terminated due to the time limit for some of the large
Lawrence instances. The procedures provide optimal and near-optimal so-
lutions to several problems, where it can be observed that JIF2 succeeds
on instances of small and medium size and JIF1 is favorable for large
instances. Furthermore, a bene�cial e�ect of the �exibility is not obvi-
ously indicated by the results, since JIFx is outperformed by one of the
JIx neighborhoods for almost half of the benchmark instances. Especially
when operating the iterative improvement scheme with an initial permu-
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tation schedule on large Lawrence instances, JI1 and JIF1 obtain exactly
the same average results.

The Local Position Changes (LPC) neighborhood applies the idea of a
bounded Hamming distance of two neighboring schedules given by LBRγ
in a scheduling-tailored and operation-based way. Starting from a feasi-
ble incumbent solution x̄, the best neighboring solution xN is determined
among all schedules, for which the di�erence in the order-position r of
every operation Oi,j ∈ O on its required machine Mk ∈ M is not greater
than the distance parameter γ ∈ Z>0. The maximum Hamming distance
per operation is implemented by adding constraints to the mixed-integer
program of the BJSPT, which is solved by an MIP technique in every
iteration.

The iterative improvement scheme operates LPC with the distance param-
eters γ = 3 and γ = 5, referred to as LPC3 and LPC5, respectively. Small
instances are solved to near-optimal solutions in less than one minute with
both transition schemes and initial schedules of di�erent quality. Compar-
ing LPC3 and LPC5 for medium and large problems, it can be observed
that the computation time increases with a higher value of the distance
parameter γ, while both procedures are terminated by the time limit in
many cases. Similar to the behavior of previously described structures, the
expected advantage of a higher number of feasible solutions in the neigh-
borhood with γ = 5 is reportable for small and medium size instances but
goes into reverse for large problems. While LPC3 and LPC5 both outper-
form the generic neighborhoods especially when starting with permutation
schedules, they cannot improve the results obtained by insertion-based
neighborhoods with regard to solution quality. As an exception, LPC5
generates the best schedules for the group of Lawrence instances of size
(30, 10) among all neighborhoods when a permutation schedule is initially
given.

Machine Fixing (MF) constitutes the neighborhood equivalent of the FMS
construction scheme. Regarding an incumbent feasible schedule x̄, the op-
eration sequence of an arbitrarily chosen machine is taken as given and
the remaining schedule is reoptimized. Accordingly, the variables related
to the preserved operation sequence are �xed, while the other precedence
variables are set to be unknown and the reduced mixed-integer formula-
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tion of the BJSPT is solved. By �xing the operation sequences on all
machines Mk ∈M individually and determining the corresponding neigh-
boring schedules xN , the entire MF-neighborhood of the incumbent so-
lution x̄ is set up and evaluated in every iteration. Following a best �t
strategy, the neighbor featuring the minimal total tardiness replaces the
incumbent feasible schedule, if an improvement in the objective function
value is achieved.

MF shows considerably good results for small instances, since optimal
schedules are constructed in less than 30 seconds. This refers to the small-
est amount of computation time among the procedures obtaining a similar
solution quality. With regard to instances of medium and large size, the
computation time required by MF increases signi�cantly. The neighbor-
hood structure is competitive to other scheduling-tailored schemes for the
train scheduling-inspired instances, but does not generate schedules of sat-
isfactory quality for randomized instances of increasing size.

Overall, the generic neighborhood structures LBRγ and RINS are clearly
outperformed by the scheduling-tailored schemes in computation time and
solution quality for both classes of initial schedules. Comparing the job
insertion-based neighborhoods JIx and JIFx, the integration of �exibility
does not obviously constitute an advantage in the generation of good neigh-
boring schedules. The required computation time increases with higher
numbers of x and additional �exibility, so that JI1 and JI2 seem to be most
favorable especially for large size instances. The LPCγ-neighborhoods
show convincing results of satisfactory quality with short runtimes for
problems of small and medium size. For large instances, the quality of the
obtained schedules is still competitive to other scheduling-tailored schemes
but the computation time increases signi�cantly. A similar behavior can be
observed for the MF transition scheme. Especially for problems featuring
internal structures, the iterative improvement procedure generates opti-
mal and near-optimal schedules in considerably short computation times
by applying this neighborhood, while the results become unsatisfactory for
large randomized instances.

217



5 MATHEURISTIC APPROACH

5.3 MIP-Based Variable Neighborhood Search

In the following, explanations on the applied matheuristic approach, which
combines advantages of MIP solution techniques and heuristic methods,
to tackle the BJSPT are given. Section 5.3.1 describes the choice of a
construction scheme and di�erent neighborhoods together with their em-
bedding in the VNS framework. Subsequently, computational results are
reported and discussed in Section 5.3.2.

5.3.1 Components and Setting

VNS constitutes a generic search method, which o�ers a variety of possibil-
ities to form hybrid techniques of heuristic and non-heuristic components.
Hansen, Mladenovic and Perez [67] provide detailed explanations on well-
known VNS structures and a comprehensive overview of existing hybrid
approaches and applications. In this thesis, a reduced variant of VNS is
proposed for the BJSPT, where the number of considered neighbors and
the runtime are restricted for each transition scheme. A technical descrip-
tion of the implemented procedure is given in Algorithm 6.

Based on the preliminary experiments reported in Section 5.2.1, the Se-
quential Job Insertion (SJI) is chosen as the construction scheme. Since
a promising combination of short computation time and satisfactory so-
lution quality can be observed, it is integrated in the subroutine in line
2 of Algorithm 6. With regard to the neighborhood structures, bene�-
cial trade-o�s between runtime and potential improvement are shown by
the Job Insertion-based neighborhoods JIx and JIFx as well as the Lo-
cal Position Changes LPCγ, see Section 5.2.2. Consequently, there are
only scheduling-tailored schemes involved in the VNS, since they exceed
the general-purpose methods with a reliably good performance over all
instances. The number of neighborhoods ϕmax = 5 is de�ned and the
following sequence of neighborhoods is implemented in the VNS.

N1(x̄) = JI1, N2(x̄) = JI2, N3(x̄) = JIF2,

N4(x̄) = LPC3, N5(x̄) = LPC5
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Algorithm 6 Reduced Variable Neighborhood Search

Input: instance input data, number of neighborhoods ϕmax

Output: best found solution x̄

1: x̄← ∅
2: xinit ← solution generated by ConstructionScheme

3: x̄← xinit

4: while overall terminal condition(s) is (are) not ful�lled do

5: ϕ← 1

6: while ϕ ≤ ϕmax do

7: while terminal condition(s) for Nϕ(x̄) is (are) not ful�lled do

8: generate and evaluate xN ∈ Nϕ(x̄) according to T (xN )

9: if T (xN ) < T (x̄) then

10: x̄← xN

11: restart line 4

12: end if

13: end while

14: ϕ← ϕ+ 1

15: end while

16: adapt neighborhood terminal condition(s)

17: end while

18: return x̄

The selected schemes JI1, JI2 and LPC3 realize improvements especially
for medium and large benchmark instances, while requiring only a limited
amount of computation time. Contrarily, moves in JIF2 and LPC5 yield
a remarkable solution quality for problems of small size. The sequentially
operated neighborhoods are treated as one structure, which is examined
in a �rst improvement scheme. This means that, if the objective function
value of the incumbent solution is improved by a neighbor xN (line 9) and
x̄ is updated in line 10, the search procedure is restarted beginning with
neighborhood JI1 (see line 11).

To assure a balanced search process, there are one or more terminal con-
ditions de�ned for every transition scheme Nϕ(x̄). In the neighborhoods
JI1, JI2 and JIF2, neighboring solutions can explicitly be constructed and
a maximum number of evaluated neighbors per iteration is de�ned. Ad-
ditionally, a time limit is set for the examination of every single neighbor-
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hood, namely the execution of the while-loop in lines 7 to 13 of Algorithm
6. This is of special importance for the moves in LPC3 and LPC5, where
the generation and evaluation of a neighboring solution in line 8 corre-
sponds to the determination of the best neighbor by solving a reduced
mixed-integer program. Thus, these neighborhoods are not investigated
by several discrete calculations but by one single computational process.
Since the terminal conditions checked in line 7 restrict the method to a
partial observation of each schemeNϕ(x̄), there may exist improving neigh-
bors of an incumbent solution x̄, which are not evaluated in the current
iteration. Therefore, the VNS does not terminate after an iteration with-
out improvement in the sequence of all �ve neighborhoods. Contrarily,
the terminal conditions are adapted (line 16), so that the search steps are
intensi�ed, and the procedure continues with examining neighbors in JI1
again until the overall time limit is reached.

Figure 5.1 graphically represents the execution of the reduced VNS and de-
picts the speci�cation of the di�erent parameters and terminal conditions.
After an initial solution is set as the best solution of three runs of SJI, the
incumbent feasible schedule x̄ is updated. Subsequently, the �rst neigh-
borhood structure JI1 is operated until a neighbor xN with T (xN ) < T (x̄)

is found or one of the neighborhood-speci�c terminal conditions is reached.
To avoid an overproportional use of a speci�c transition scheme, the num-
ber of considered neighbors is bounded by ten and an initial time limit of
10 seconds is set for the examination of every neighborhood. If no improve-
ment is reached, the VNS continues by investigating the next neighborhood
structure, here JI2. This mechanism is equivalently executed for all neigh-
borhoods in the sequence. In case that an improving neighbor is found,
the incumbent solution x̄ is updated and the VNS continues with exam-
ining JI1. If there is no solution featuring T (xN ) < T (x̄) obtained in all
�ve transition schemes, the neighborhood time limit is doubled to intensify
the search process. There is an upper bound of 300 s de�ned, which is
automatically taken as the time limit, in case the new value exceeds this
measure. Furthermore, the neighborhood time limit is replaced by the
remaining overall time, if this period is shorter than the current runtime
bound of the transition scheme. The VNS operates iteratively and returns
the current best solution x̄ when the overall time limit is reached.
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Figure 5.1: Illustration of the Reduced Variable Neighborhood Search applied

to the BJSPT
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5.3.2 Computational Experiments

Equivalent to the preliminary tests, the computational experiments are
conducted with the VNS given in Algorithm 6 implemented in Java and
applying Gurobi 7.5.2. Since the initial �ndings indicate that an overall
time limit of 30 minutes is su�cient to obtain schedules of good quality
and short runtimes are a desirable feature of every solution approach, the
procedure is restricted to this time period as the overall terminal condition.
The results for the benchmark instances are obtained in �ve independent
runs for each problem using a notebook operating an Intel Dual Core i5
processor (2.20 GHz) with 8 GB RAM.

Tables 5.1 and 5.2 present an overview of the numerical experiments per-
formed on the train scheduling-inspired instances and the Lawrence in-
stances, respectively. The �rst two columns contain the instance index
and the objective function value of the best schedule found by the MIP
solver, see Section 3.5. As before, solutions with proven optimality are
marked by an asterisk. The next two columns show the mean total tar-
diness

∑
Ti and the minimum total tardiness min(

∑
Ti) obtained by �ve

independent runs of SA in Setting 2 applying the API-neighborhood to fa-
cilitate a direct comparison of the exact, the heuristic and the matheuristic
solution method. Finally, the last three columns of the tables equivalently
depict the mean total tardiness and minimum total tardiness reached by
the VNS together with the mean time required to obtain the best schedule
in seconds.

Considering the objective function values of both classes of benchmark
instances, it can be stated that the VNS successfully combines the advan-
tages of the exact and the heuristic solution method. For all instances, for
which an optimal solution is found by the MIP solver, the best possible
schedule is equivalently determined by the matheuristic. Note that the hy-
brid approach additionally bene�ts from its MIP components in reliably
generating these optimal solutions in all �ve runs. Furthermore, the pro-
cedure features a considerable enhancement in computation time by only
involving the exact solution of reduced optimization programs. Positive
e�ects of the heuristic search framework can be observed especially for in-
stances of large size. Minimal total tardiness values, which are exclusively
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Table 5.1: Computational results of the VNS applied to the train scheduling-

inspired instances of the BJSPT

Inst. MIP
SA-API VNS∑

Ti min(
∑
Ti)

∑
Ti min(

∑
Ti) Time

ts01 138∗ 140.2 138∗ 138.0∗ 138∗ 8.0

ts02 90∗ 94.6 91 90.0∗ 90∗ 4.2

ts03 72∗ 74.2 72∗ 72.0∗ 72∗ 1.6

ts04 41∗ 41.8 41∗ 41.0∗ 41∗ 3.8

ts05 71∗ 71.4 71∗ 71.0∗ 71∗ 2.6

ts06 88∗ 121.6 107 92.8 88∗ 52.2

ts07 172∗ 195.4 189 182.2 172∗ 130.4

ts08 163∗ 184.2 179 165.0 163∗ 365.4

ts09 153 178.8 168 158.8 156 457.6

ts10 97∗ 114.8 97∗ 97.0∗ 97∗ 37.6

ts11 366 406.4 390 368.6 359 674.8

ts12 419 428.2 412 416.0 398 556.8

ts13 452 462.6 448 450.8 416 611.8

ts14 459 462.8 418 460.4 447 781.0

ts15 418 419.4 401 377.0 355 495.2

obtained by the matheuristic, are highlighted by boldface printing in Ta-
bles 5.1 and 5.2. Due to the heuristic guidance of the VNS in allocating
restricted search capacities and the involvement of neighborhoods of di�er-
ent structure, the overall best schedule is found for four of the largest train
scheduling-inspired instances and 19 Lawrence instances of sizes (20, 5),
(15, 10), (20, 10), (30, 10) and (15, 15). Thus, a hybridization of exact
and heuristic solution methods is particularly favorable against a separate
application with regard to the size problems for which near-optimal so-
lutions can be determined. This observation gives a strong emphasis on
matheuristic solution techniques as a promising research direction to solve
practically relevant job shop scheduling problems.
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Table 5.2: Computational results of the VNS applied to the Lawrence instances

of the BJSPT

Inst. MIP
SA-API VNS∑
Ti min(

∑
Ti)

∑
Ti min(

∑
Ti) Time

la01 762∗ 787.4 773 762.0∗ 762∗ 12.0

la02 266∗ 283.4 266∗ 266.0∗ 266∗ 0.2

la03 357∗ 357.0∗ 357∗ 357.0∗ 357∗ 0.8

la04 1165∗ 1217.2 1165∗ 1165.0∗ 1165∗ 54.8

la05 557∗ 557.0∗ 557∗ 557.0∗ 557∗ 1.4

la06 2516 2790.0 2616 2548.0 2516 445.6

la07 1677∗ 1942.2 1869 1769.6 1677∗ 423.6

la08 1829∗ 2335.0 1905 1829.0∗ 1829∗ 71.6

la09 2851 3275.2 3161 2864.6 2854 286.6

la10 1841∗ 2178.2 2069 1841.0∗ 1841∗ 112.2

la11 6534 6186.2 5704 5436.0 4973 1288.8

la12 5286 5070.0 4859 4746.2 4389 718.4

la13 7737 7850.6 7614 6760.2 6542 1454.4

la14 6038 6616.8 5714 5812.2 5558 849.6

la15 7082 7088.6 5626 6352.6 5923 1046.6

la16 330∗ 395.8 335 330.0∗ 330∗ 9.6

la17 118∗ 144.2 120 118.0∗ 118∗ 3.6

la18 159∗ 229.4 159∗ 159.0∗ 159∗ 6.8

la19 243∗ 306.6 243∗ 243.0∗ 243∗ 4.2

la20 42∗ 55.6 42∗ 42.0∗ 42∗ 1.8

la21 1956 2847.2 2101 2045.4 1834 935.8

la22 1455 2052.8 1773 1413.4 1308 808.2

la23 3436 3692.6 3506 3408.4 3013 636.0

la24 560∗ 966.8 761 560.0∗ 560∗ 28.6

la25 1002 1557.4 1289 1021.4 990 218.4

continued on the next page

224



Inst. MIP
SA-API VNS∑
Ti min(

∑
Ti)

∑
Ti min(

∑
Ti) Time

la26 7961 9275.8 8475 6646.0 6284 787.4

la27 8915 7588.0 6596 6186.8 5779 743.8

la28 2226 3430.8 2876 2408.4 2189 984.4

la29 2018 2948.0 2432 1926.6 1707 1124.0

la30 6655 7621.6 6775 5551.8 4860 1092.2

la31 20957 18921.8 17984 16374.4 15665 1154.6

la32 23150 21991.4 20401 17500.2 16924 1199.2

la33 none 22494.2 19750 17732.6 15610 1249.4

la34 none 20282.8 18633 17535.0 16256 1323.4

la35 none 21895.0 18778 19152.8 17932 1420.6

la36 675 1856.0 1711 981.0 678 809.6

la37 1070 1774.2 1621 952.8 861 478.8

la38 489∗ 760.4 645 489.0∗ 489∗ 313.6

la39 754 1573.0 1391 903.4 751 792.4

la40 407∗ 1008.6 613 407.0∗ 407∗ 240.6





6 Concluding Remarks

In this thesis, di�erent research questions concerning the job shop schedul-
ing problem with characteristics, constraints and an optimization criterion
of practical relevance are addressed. Since the literature shows a lack of
comprehensive empirical and theoretical results, with which statements on
the exact and heuristic resolvability of complex job shop problems can be
reasoned, solution techniques for the blocking job shop problem with total
tardiness minimization are presented, tested and discussed.

With the intention to investigate the performance of general-purpose MIP
solvers on the problem under study, two well-known mathematical formu-
lations applying ordering variables are compared. In line with the ob-
servation of a signi�cantly lower number of variables and constraints in
the model, the computational experiments, representatively performed by
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IBM ILOG CPLEX 12.8.0, show that the implementation of the BJSPT
by precedence variables, which indicate the pairwise orderings of opera-
tions requiring the same machine, is most advantageous with respect to
solution quality and computation time. Among the diverse benchmark
instances involving strong routing patterns as well as purely randomized
structures, the state-of-the-art MIP software obtains an optimal solution
of small instances of sizes like (10, 5) and (10, 11) within seconds, while it
is not able to return satisfactory feasible schedule for problems including
10 to 15 machines and 15 to 30 jobs after two hours of runtime. Thus, the
boundaries of exact resolvability of complex job shop scheduling problems
by general MIP techniques do not meet the appearing practical neces-
sities in instance size and computation time. Here, enhancements in the
relaxation-based lower bounds of the mathematical formulations especially
for indicator constraints and tardiness-based objectives can be named as
an important research issue.

Considering the relation of particular instance properties and the expected
computational e�ort to obtain an optimal schedule, the experiments indi-
cate that complex characteristic measures are required to precisely cover
all involved e�ects. Nonetheless, the proposed instance key �gures, namely
the mean machine utilization rate ū and the mean machine slack l̄, seem to
constitute good references in comparing problems of the same size (n,m).
They represent the internal amount of competition of jobs for machine
working time as a highly in�uential aspect. In line with this, further re-
search is required to design a reliable combined measure, which includes
simple instance properties like the number of jobs and the number of ma-
chines as well as indicators of the amounts of involved structure and ran-
domness and of the individual workload of the machines.

Three proposed scheduling-tailored neighborhood structures are operated
by an iterative improvement scheme and an SA metaheuristic on the bench-
mark instances. The computational results clearly show that a heuristic
method is able to construct high quality schedules for the BJSPT. Espe-
cially when allowing several independent runs of the procedure to balance
the impact of randomized components, the permutation-based SA involv-
ing the interchange-focused transition scheme produces optimal and near-
optimal schedules for instances of small and medium size, easily. For large
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problems, the method does still outperform the general MIP technique in
constructing feasible solutions, but the growing quantity of possible in-
terchanges and the fast increasing amount of computation time needed
to actually obtain a feasible neighbor with a given interchange cut down
bene�cial e�ects. This issue can be observed in various applications of
heuristic methods to the blocking job shop problem, so that the creation
of a simple feasibility checking procedure is highlighted as a key issue of
future research.

The utilization of single and nested permutations as representations of
a schedule features the advantages of simplicity and applicability of basic
transition operators but involves redundancy and requires a list scheduling
algorithm to detect the potential infeasibility of the solution. Incorporating
blocking constraints and recirculation causes the enormous indispensable
complexness of the algorithmic repair procedure to generate neighboring
solutions based on an incumbent schedule and a given adjacent pairwise
interchange. Permutation-based representation techniques are adaptable
and applicable in solving complex job shop scheduling problems, but there
is further research needed to state whether or not they are favorable against
graph-based methods.

The advantageousness of matheuristic methods to solve complex job shop
scheduling problems is investigated by applying a VNS scheme, which
consists of MIP-based components. Preliminary experiments show that
scheduling-tailored mechanisms outperform general-purpose techniques in
�nding and improving feasible solutions for the BJSPT. The results ob-
tained by the combination of �ve selected promising methods featuring
di�erent computational structures clearly highlight the remarkable capa-
bility of hybrid solution approaches in job shop scheduling. The advantage
of the exact MIP technique, namely returning optimal solutions for small
optimization programs in extremely short runtime, is used and enhanced
by the guidance of the heuristic search procedure. Thus, the proposed VNS
matheuristic constitutes a successful �rst step in a new research direction.

Altogether, comprehensive theoretical advances and computational studies
shed light onto the complicatedness and the exact and heuristic solvability
of job shop scheduling problems with practical relevance. The analysis of
the behavior of permutation-based schedule encodings creates an insight
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into structural e�ects of real-world constraints, and two new techniques
to heuristically solve the problem under study is presented. Overall, this
thesis expands the understanding and the resolvability of complex job shop
scheduling problems and gives rise to complementary further research is-
sues.
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