
On Vibration Analysis and Reduction for

Damped Linear Systems

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von M. Sc. Jonas Denißen

geb. am 30.12.1983 in Berlin

genehmigt durch die Fakultät für Mathematik
der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. rer. nat. habil. Peter Benner

Prof. Dr. rer. nat. habil. Ludwig Kohaupt

Prof. Ph. D. Zoran Tomljanović
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1
Introduction

1.1 Motivation

A repetitive motion of a time-varying process is called oscillation. A mechanical os-
cillation is called vibration. The study of vibrations has been of human interest since
musical instruments, such as whistles and drums, originated. Ever since, the vibration
and its relation to sound have been subject to analytical examination. Even though
the art of music was characterized by well-defined guidelines, those cannot be called
scientific. The Greek mathematician and philosopher Pythagoras (582–507 B.C.) was
probably the first to research the scientific grounds of musical sounds. He experimented
with vibrating strings, working with the so-called monochord. Pythagoras discovered
that if the same tension is applied to two strings, which have the same characteris-
tics but different lengths, the shorter string generates a higher note. Especially, if
the length of the longer string is exactly twice as long as the shorter string, then the
shorter string generates a note which is an octave above the other. Although by the
time of Pythagoras the notion of pitch was established, the correlation of pitch and
frequency was not. The latter was not comprehended until the time of Galileo Galilei
(1564–1642) and Marin Mersenne (1588–1648) [Rao07].

The phenomenon of vibration involves an alternating interchange of potential energy
to kinetic energy and kinetic energy to potential energy. Hence, any vibrating system
must have a component that stores potential energy and a component that stores
kinetic energy. The components storing potential and kinetic energies are called a
spring or an elastic element and a mass or an inertia element, respectively. The elastic
element stores potential energy and supplies it to the inertia element as kinetic energy,
and vice versa, in each cycle of motion.

Applications can be found in fields such as stability of mechanical structures, electrical
network systems or quantum mechanical systems and vibrational examples include the
displacement in strings, bars, shafts, beams, plates or membranes. Examples of vibra-
tions are the periodic swinging motion of a simple pendulum, the sinusoidal vibration
of an electric oscillator, or the random motion of a building due to gusts of wind. Fa-
mous examples of nonlinear problems are e.g. the van der Pol oscillator [Pol20] and
the Duffing equation [Duf18].

We purposely restrict ourselves to a basic model leaving aside gyroscopic effects (i.e. we
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Chapter 1 Introduction

do not take Coriolis inertia forces into account), free rigid body motion, singular mass
matrices and nonlinearity. Studying each of these effects has its own right and leads
to various phenomena such that the spectrum contains purely imaginary eigenvalues,
a rotating reference frame or hidden additional algebraic constraints, respectively. In
this thesis we consider linear damped oscillations. Our ultimate objective is to describe
the time behavior of a damped linear system. The general solution of a damped linear
system and therefore its time behavior can be described by the underlying spectral
theory e.g. in [Lan02; TM01]. But there are some limitations of this approach, namely
non-differentiability (in the classical sense) of the spectral abscissa and numerical com-
putations effect the spectrum and the perturbations may destroy the stability of the
system.

1.2 Structure of this Thesis

This thesis is structured as follows. In Chapter 2 we introduce the basic theory this
work is based on. In particular, this includes an overview of spectral theory, specif-
ically the theory of linear and quadratic eigenproblems and a short introduction to
ordinary differential equations, which are essential for defining the general solution of
a damped linear system. Furthermore, we review some approximation and interpola-
tion properties of functions and classify basic optimization problems as needed in this
thesis.
In Chapter 3 we study vibrations and relate them to certain norms. To analyze the time
behavior of a vibrational system completely, all its components have to be considered
individually. For large-scale systems such a detailed analysis is often not applicable,
hence, all system components are combined to a single quantity — a norm. By this
simplification a rough measure of the vibration behavior of the system is obtained.
Local regularity for the norm of the solution can be shown but unfortunately classic
differentiability is in general lost. By considering the time behavior of a vibrational
system in certain norms, we obtain properties such as decoupling, filtering and mono-
tonicity. Here, these norms are obtained by solving an algebraic Lyapunov equation or
by considering the algebraic Lyapunov eigenvalue problem.
In Chapter 4 we relate the time behavior of a damped linear system to the solution’s
trace of an algebraic Lyapunov equation which represents the averaged system’s en-
ergy. Since a vibration is an alternating interchange of potential energy to kinetic
energy and vice versa, it is obvious that vibrations are reduced if the system’s energy
is minimized. In order to damp the system and reduce its energy, we consider exter-
nal viscous dampers at fixed positions. Minimizing the averaged system’s energy is
classified as a Nonlinear Program (NLP) subject to a structured algebraic Lyapunov
equation. Numerical methods, such as steepest descent and Newton’s method, can
be applied to solve the NLP to local optimality since it is sufficiently smooth. A
minimum then fulfills the Karush-Kuhn-Tucker [Kar39; KT51] conditions. We show
that the structure of the algebraic Lyapunov equation can be kept throughout a sign
function iteration and hence, we derive the so-called structure exploiting sign function
method. Furthermore, we derive an iterative eigenvalue algorithm based on the so-
called Ehrlich-Aberth iteration, which takes the low rank of the viscous damping into
account and hence, we can reduce the computational complexity significantly. The
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1.2 Structure of this Thesis

results concerning the structure exploiting sign function method of this chapter have
appeared in

P. Benner and J. Denißen. Numerical solution to low rank perturbed
Lyapunov equations by the sign function method. Proc. Appl. Math.
Mech., 16(1):723–724, 2016.

The iterative eigenvalue algorithm is described in

P. Benner and J. Denißen. Ehrlich-Aberth iteration for vibrational
systems. Proceedings of ICoEV 2015, pages 1540–1548, 2015.

While in Chapter 4 the positions of the viscous dampers were fixed, in Chapter 5 the
problem of finding the optimal positions and their viscosities is considered. We show
that the optimal positions can be computed in O(n2) for sufficiently small viscosi-
ties, but unfortunately this result cannot be generalized to arbitrary viscosities. We
present a new Mixed Integer Nonlinear Programming (MINLP) formulation of finding
the optimal positions and their viscosities. This approach cannot be generalized to
large-scale computations and hence, we discuss linearization strategies based on Mc-
Cormick envelopes and piecewise linear functions. Moreover, we present a heuristic
to find good damping positions. The heuristic is based on regulating sparsity of the
viscosities by adding an `1-penalty term to the objective. Once, the damping positions
are determined, the viscosities can be optimized by solving the Nonlinear Program-
ming formulation of Chapter 4 with the help of the structure exploiting sign function
method.
In Chapter 6 we study vibrations and their time behavior as a solution of time-periodic
linear systems. We relate time-periodic linear systems to linear systems by the Floquet-
Lyapunov transformation and therefore, results on the solution, such as two-sided rig-
orous bounds, decoupling, filtering and monotonicity in a newly defined norm can be
generalized from linear systems. Moreover, the time behavior can be characterized
by two-sided bounds for the Manhattan norm, the Euclidean norm and the maximum
norm. Here, we use two different ideas in order to derive the two-sided bounds. While
in the first method we approximate the solution of the time-periodic linear system by
trigonometric splines and establish two-sided bounds on the quality of the approxi-
mation, the second method approximates the time-periodic linear system, which then
turns out to be analytic. Hence, its solution can be represented as an infinite series.
Depending on the smoothness of the time-periodic system, we formulate two-sided
bounds, which incorporate the approximation error of the linear time-periodic system
and the truncation error of the series representation. We show the order of convergence
of the two-sided bounds to the solution of a linear time-periodic system depending on
the smoothness of the linear time-periodic system. As a further result, the computa-
tional complexity of both methods has been derived. The results of this chapter have
to some extent appeared in

P. Benner, J. Denißen, and L. Kohaupt. Trigonometric spline and
spectral bounds for the solution of linear time-periodic systems. J.
Appl. Math. Comput., 54(1):127–157, 2017.
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Chapter 1 Introduction

Finally, in Chapter 7 we summarize the results of this thesis and discuss possible future
research directions.

1.3 System Setup

In this thesis we perform a number of numerical experiments. These tests have been
performed on an Ubuntu machine with Intel R© Core

TM
2 Duo CPU with 2.50GHz and 4

GB RAM. The algorithms have been implemented and tested in MATLAB R© and Mixed
Integer Nonlinear Programs (MINLPs) and Mixed Integer Linear Programs (MILPs)
have been formulated in AMPL [FGK89]. The following software libraries and programs
have been used:

• MATLAB version 8.3.0.532 (R2014a);

• AMPL version 20170207 [FGK89];

• BARON version 17.1.2 [TS05];

• MINOTAUR BNB 0.2 [Mah+11];

• IBM R© ILOG R© CPLEX R© 12.7.0 [Ibm].
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2
Mathematical Preliminaries

In this chapter we introduce the main concepts this thesis is based on. First, we
discuss general spectral theory and in particular the theory of linear and quadratic
eigenproblems. Then we turn to classical differentiation and to function classes as
they are needed for Chebyshev approximation and trigonometric spline interpolation.
Moreover, we introduce ordinary differential equations, which are connected to damped
linear systems. Furthermore, we review and classify some basic optimization problems
as needed in this thesis.

2.1 Matrices and Eigenproblems

2.1.1 Linear Eigenproblems

Here we introduce some fundamentals for matrix pencils (E,A), i.e., first order matrix
polynomials, with E,A ∈ Cn×n.

Definition 2.1.1. The standard eigenvalue problem for a matrix A ∈ Cn×n is the
problem of finding a vector v ∈ Cn \ {0} and a scalar λ ∈ C that obey

Av = λv. (2.1)

Definition 2.1.2. The generalized eigenvalue problem for matrix pencils (E,A) is the
problem of finding a vector v ∈ Cn \ {0} and a scalar λ ∈ C that obey

Av = λEv, (2.2)

where E,A ∈ Cn×n.

If E ∈ Gln(C), then the standard eigenvalue problem (2.1) can be obtained by multi-
plying (2.2) by E−1. However, in most situations it is preferable not to perform the
inversion, since structural properties of E and A are lost and numerical errors are intro-
duced. Obviously, the numerical errors depend on the condition of E. In general, it is
better to solve the generalized eigenvalue problem as stated originally. If E is singular,
then the pencil (E,A) is said to have one or more eigenvalues at infinity. The standard
eigenvalue problem (2.1) is a specialization of the generalized eigenvalue problem (2.2).
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Chapter 2 Mathematical Preliminaries

We therefore introduce the basic theory for matrix pencils and implicitly capture the
matrix case as well.

Definition 2.1.3. We denote by

p(E,A)(λ) = det(A− λE). (2.3)

the characteristic polynomial of the pencil (E,A).

By definition we obtain, that λ is an eigenvalue of the matrix pencil (E,A) if and only
if it is a root of the characteristic polynomial p(E,A)(λ) and v is an eigenvector of the
matrix pencil (E,A) if and only if it is in the kernel of A−λE. Obviously, v is not unique
since any multiple of v is an eigenvector as well. By the fundamental theorem of algebra
it follows that the pencil (E,A) has exactly n eigenvalues (counting multiplicities). We
define the algebraic multiplicity of an eigenvalue λ ∈ Λ(E,A) as the number of times it
occurs as a zero in p(E,A)(·). We denote by the geometric multiplicity of an eigenvalue
λ ∈ Λ(E,A) the dimension of the corresponding eigenspace, i.e., dim(ker(A−λiE)) > 0.
We recall that the geometric multiplicity is at most the algebraic multiplicity of the
same eigenvalue λ ∈ Λ(E,A).

The eigenvalues are an important tool for decomposing a matrix. Here, we do not
consider a matrix pencil but a single matrix. We cite in this context the famous
Jordan Normal Form (JNF). Any matrix can be decomposed into its Jordan Normal
Form. The decomposition is unique up to the ordering of the respective Jordan blocks.

Theorem 2.1.4 (Jordan Normal Form, e.g. [HJ85]). Let r = |Λ(A)|. There exists
U ∈ Gln(C) such that

UAU−1 = J = blockdiag(J1, . . . , Jm),

where r ≤ m ≤ n. The Jordan blocks Ji for i = 1, . . . ,m take the form

Ji = Ji(λki) =


λki 1 0

λki
. . .
. . . 1

0 λki

 ∈ Cni×ni , (2.4)

with corresponding λki ∈ Λ(A), where
∑m

i=1 ni = n.

Remark 2.1.5.

1. A is called diagonalizable if it is similar to a diagonal matrix, i.e., if there exists
S ∈ Gln(C) such that S−1AS is a diagonal matrix.

2. A is diagonalizable or non-defective if and only if the algebraic and geometric
multiplicity coincide for all eigenvalues λ ∈ Λ(A). Otherwise, the matrix A is
called defective.
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3. Ji = Ji(λki) = λkiI +N with

N =


0 1 0

. . . . . .

1
0 0

 ∈ Rni×ni , (2.5)

where the matrix N is nilpotent, i.e., Nni−1 6= 0 and Nni = 0.

For a defective matrix A a generalized eigenvector v w.r.t. a defective eigenvalue λ can
be defined. v is a nonzero vector satisfying

(A− λI)sv = 0,

where s is the algebraic multiplicity. The set of all generalized eigenvectors for a given
eigenvalue λ form the generalized eigenspace for λ. In particular, for a given eigenvalue
λ, eigenvectors and generalized eigenvectors v1, v2, . . . , vs can be chosen such that they
are linearly independent and satisfy

(A− λI)vk = αk,1v1 + . . .+ αk,k−1vk−1

for some coefficients αk,1, . . . , αk,k−1 for k = 1, . . . , s. We can choose the first vectors
vk to be eigenvectors for k = 1, . . . , dim(ker(A − λI)) and the remaining vectors vk
for k = dim(ker(A − λI)) + 1, . . . , s as generalized eigenvectors. A particular choice
of coefficients, which we use in Section 3.3, is αk,1 = . . . = αk,k−2 = 0 and αk,k−1 = 1,
thus

Avk = λvk + vk−1 , k = 1, . . . , µ(λ),

where v0 = 0.
We conclude this section by a theorem on the simultaneous diagonalization of two
matrices A ∈ Gln(R) and B ∈ Rn×n. In general we cannot expect that A and B are
simultaneously diagonalized by a similarity transformation, since this would yield that
two arbitrary matrices A and B commute, i.e., AB = BA. Hence, we consider in the
following theorem a congruence transformation.

Theorem 2.1.6 (Simultaneous diagonalization e.g. [HJ85]). Let A ∈ Gln(R) and
B ∈ Rn×n be symmetric matrices and A−1B be diagonalizable. Then there exists a
S ∈ Rn×n such that STAS and STBS are diagonal.

Remark 2.1.7. In Theorem 2.1.6 the matrices A and B can be interchanged, it is
especially sufficient if either one of them is nonsingular, which e.g. can be guaranteed
by positive definiteness of A or B.

2.1.2 Quadratic Eigenproblems

So far we have considered the linear eigenproblem (standard eigenvalue and general-
ized eigenvalue problem) which is the simplest case of the more general polynomial
eigenproblem. And here, we focus on the quadratic eigenproblem which often appears
in mechanical and vibrating systems.
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Definition 2.1.8. The quadratic eigenvalue problem is the problem of finding a vector
v ∈ Cn \ {0} and a scalar λ ∈ C that obey

Q(λ)v = (Aλ2 +Bλ+ C)v = 0, (2.6)

where A,B,C ∈ Cn×n.

In order to find eigenvalues and eigenvectors of Q(λ)v, one can transform the quadratic
eigenproblem into an equivalent linear eigenproblem. Hence, the transformation is also
called linearization.

Definition 2.1.9. The generalized eigenvalue problem[
0 N
−C −B

] [
v
λv

]
− λ

[
N 0
0 A

] [
v
λv

]
= 0, (2.7)

where N ∈ Gln(C), is called a linearization of Q(λ)v.

A linearization is not unique. If it is possible, it is important to choose a linearization
that respects structural properties of the quadratic eigenproblem 2.1.8.

2.2 Normed Vector Spaces

Definition 2.2.1. Given a vector space V over a field C, a norm on V is a function
‖·‖ : V → R+, x 7→ ‖x‖ that satisfies the following three axioms for all vectors x, y ∈ V
and all scalars α ∈ C

‖αx‖ = |α| ‖x‖ (absolute homogeneity),
‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality),
‖x‖ ≥ 0 and ‖x‖ = 0⇒ x = 0 (positive definiteness).

(2.8)

Definition 2.2.2. Given a vector space V over a field C, a scalar product or inner
product is a map 〈·, ·〉 : V × V → C that satisfies the following three axioms for all
vectors x, y, z ∈ V and all scalars α ∈ C

〈x, y〉 = 〈y, x〉 (conjugate symmetry),
〈αx, y〉 = α 〈x, y〉, 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 (linearity),
〈x, x〉 ≥ 0 and 〈x, x〉 = 0⇒ x = 0 (positive-definiteness).

(2.9)

Example 2.2.3. Let x ∈ Cn.

1. Let p ≥ 1 be a real number. We call

‖x‖p :=

( n∑
i=1

|xi|p
)1/p

(2.10)

a p-norm which fulfills the axioms of a norm.
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2. For p = 1, 2, we obtain the Manhattan norm and the Euclidean norm, respectively,

‖x‖1 =
n∑
i=1

|xi| , (2.11)

‖x‖2 =

√√√√ n∑
i=1

|xi|. (2.12)

For p =∞ we define the maximum norm as

‖x‖∞ :=
n

max
i=1
|xi| . (2.13)

Let us derive the so-called energy norm. Inner product spaces have a naturally defined
norm based upon the inner product of the space itself,

‖x‖ =
√
〈x, x〉.

Let B ∈ Cn×n be a positive definite Hermitian matrix, i.e., B > 0 and x, y ∈ Cn. Then
a B scalar product can be defined as

〈x, y〉B := 〈x,By〉 = yHBx

and the respective B energy norm is defined as

‖x‖B =
√
〈x, x〉B =

√
〈x,Bx〉 =

√
xHBx. (2.14)

Definition 2.2.4. A matrix norm ‖ · ‖ is called sub-multiplicative if

‖AB‖ ≤ ‖A‖‖B‖

for all matrices A,B ∈ Cn×n.

Definition 2.2.5. A matrix norm ‖ · ‖b on Cn×n is called compatible with a vector
norm ‖ · ‖a on Cn if

‖Ax‖a ≤ ‖A‖b‖x‖a
for all A ∈ Cn×n, x ∈ Cn.

Definition 2.2.6. The operator norm or induced norm w.r.t. the vector norm ‖ · ‖ is
defined as

‖A‖ = max{‖Ax‖ : x ∈ Cn with ‖x‖ = 1}

= sup

{‖Ax‖
‖x‖ : x ∈ Cn with x 6= 0

}
.

Remark 2.2.7. Induced norms are compatible by definition.
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Example 2.2.8. Let A ∈ Cm×n. The operator norm corresponding to the p-norm for
vectors is defined as

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

.

In the case of p = 1 and p =∞, the norms are

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij|,

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij|,

which are the maximum absolute column and maximum absolute row sums, respectively.

Definition 2.2.9. Two norms ‖ · ‖ and |||·||| of a vector space V are called equivalent
if there exists c, C > 0 such that

c|||x||| ≤ ‖x‖ ≤ C|||x|||

is fulfilled for all x ∈ V .

2.3 Differentiation and Function Classes

First, we start with the differentiability of a real valued function f . Consider the limit
of a linear approximation of f at x0:

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h

If this limit exists, f is said to be differentiable at x0 and this limit is defined to be the
derivative of the function f at x0, i.e., f ′(x0) = limh→0

f(x0+h)−f(x0)
h

.

Definition 2.3.1. A function f is said to be of class Ck, i.e., f ∈ Ck, if the derivatives
f ′, f ′′, . . . , f (k) exist and are continuous.

Definition 2.3.2. A function f : R → R is said to be Lipschitz continuous, if there
exists a constant L > 0, such that

|f(x1)− f(x2)| ≤ L|x1 − x2|

for all x1, x2 ∈ R.

Definition 2.3.3. A function f defined on [a, b] is said to be of class AC[a, b], i.e.,
f ∈ AC[a, b], if it is absolutely continuous in [a, b], i.e., for any ε, there exists δ > 0 such
that for all n and all a ≤ t1 ≤ t1 ≤ t2 ≤ t2 ≤ . . . ≤ tn ≤ tn ≤ b with

∑n
i=1 |ti − ti| < δ:

n∑
i=1

∣∣f(ti)− f(ti)
∣∣ < ε.
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Definition 2.3.4. A function f is said to be of class ACk, i.e., f ∈ ACk, if the
derivatives f ′, f ′′, . . . , f (k) exist and are absolutely continuous.

Definition 2.3.5. A function f : [a, b] → R is said to be of bounded variation, i.e.,
f ∈ BV [a, b], if

V := sup
p∈P

np−1∑
i=0

|f(xi+1)− f(xi)| <∞,

where P =
{
p = {x0, . . . , xnp} : p is a partition of [a, b]

}
.

Remark 2.3.6.

• The continuity or absolute continuity of f, f ′, . . . , f (k−1) is implied by differentia-
bility for f ∈ Ck or f ∈ ACk, respectively.

• C = C0 is the class of continuous functions.

• AC = AC0 is the class of absolutely continuous functions.

• Obviously, any absolutely continuous function is continuous as well. Hence, f ∈
ACk ⇒ f ∈ Ck.

• Any absolute continuous function is of bounded variation, i.e., f ∈ AC[a, b] ⇒
f ∈ BV [a, b], see e.g. [Roy88].

• The classes of functions are nested as follows:

f ∈ C1[a, b]⇒ f is Lipschitz continuous in [a, b]⇒ f ∈ AC[a, b]
⇒ f is of bounded variation in [a, b]⇒ f ∈ C[a, b],

see e.g. [Roy88].

Definition 2.3.7. A function f defined on [a, b] is in the Lebesgue space Lp[a, b], i.e.,
f ∈ Lp[a, b], where 1 ≤ p ≤ ∞,

Lp[a, b] = {f : f is measurable on [a, b] and ‖f‖p <∞} ,

where

‖f‖Lp[a,b] = ‖f‖p =

(∫ b

a

|f(x)|p dx

)1/p

, for 1 ≤ p <∞,

and
‖f‖L∞[a,b] = ‖f‖∞ = ess sup

x∈[a,b]

|f(x)|, for p =∞.

We define a certain subspace of the Lebesgue space Lp such that the functions posses
k − 1 smooth derivatives,

Lkp[a, b] =
{
f : Dk−1f ∈ AC[a, b] and Dkf ∈ Lp[a, b]

}
(2.15)

with norm

‖f‖Lkp [a,b] =
k∑
j=0

‖Djf‖Lp[a,b].
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Remark 2.3.8.

• Lp[a, b] and Lkp[a, b] are normed linear spaces, in fact they are Banach spaces.

• Lkp[a, b] is a Sobolev space.

• The classes of smooth functions are nested as follows:

Ck[a, b] ⊆ Lk∞[a, b] ⊆ Lkp[a, b] ⊆ Lk1[a, b] ⊆ Ck−1[a, b]

for all 1 ≤ p ≤ ∞ and k ∈ N , see e.g. [Roy88; Sch81].

After defining the above function classes, let us now define Green’s function gm(x; y):

gm(x, y) :=

{
(x−y)m−1

(m−1)!
, x ≥ y,

0, x < y,
(2.16)

where m ∈ N. Green’s function is associated with the Taylor series expansion in
Theorem 2.3.9, in fact it is its kernel.

Theorem 2.3.9 (Taylor Series, e.g. in [Sch81]). Let f ∈ Lm1 [a, b]. Then for all x ∈ [a, b]

f(x) =
m−1∑
j=0

Djf(a)(x− a)j

j!
+

∫ b

a

gm(x; y)Dmf(y)dy. (2.17)

Moreover, there exists ξx ∈ [a, b]:

f(x) =
m−1∑
j=0

Djf(a)(x− a)j

j!
+
Dmf(ξx)(x− a)m

m!
.

We obtain from the Taylor series 2.3.9 the following corollary, which is given e.g. in
[For10].

Corollary 2.3.10. Let f ∈ Lm1 [a, b]. Then for all x ∈ [a, b]:

f (x) =
m−1∑
j=0

Djf(a)(x− a)j

j!
+ o ((x− a)m) .

Definition 2.3.11. A function f : D → R is said to be real analytic in D, i.e.,
f ∈ Cω(D), where D is an open set in R, if f ∈ C∞(D) and for any x0 ∈ D the Taylor
series ∞∑

j=0

f j(x0)(x− x0)j

j!

converges to f(x) for x in a neighborhood of x0 pointwise.

By definition, it holds: Cω ⊆ C∞.
We conclude the topic Taylor series with two examples which will be used in Section
6.2.
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Example 2.3.12. The Taylor series of the trigonometric functions sin and cos are
given as

sin(x) =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

6
+

x5

120
− · · ·

cos(x) =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2
+
x4

24
− · · ·

for any x ∈ R.

Definition 2.3.13. A function f : C → C is said to be entire, if it is holomorphic
(analytic) in the whole complex plane C, i.e., it can be represented by a power series,

f(z) =
∞∑
n=0

anz
n

for any z ∈ C.

Remark 2.3.14. Examples of analytic (entire) functions are: polynomials, the expo-
nential function and trigonometric functions such as sine and cosine (its Taylor series
are given in Example 2.3.12). The logarithmic function log : C \ {0} → C is analytic
as well.

2.4 Approximation and Interpolation

Let V be a normed vector space over R, U ⊂ V a finite-dimensional subspace and
f ∈ V . We consider the best approximation of f in U :

u ∈ U : ‖u− f‖ ≤ ‖v − f‖ ∀v ∈ U. (2.18)

It is well known that a solution to the best approximation problem exists as shown in
the next theorem.

Theorem 2.4.1 (e.g. [Sch71]). For every f ∈ V there exists a solution u ∈ U that
satisfies the best approximation (2.18).

The proof of Theorem 2.4.1 is nonconstructive and in general the solution is not nec-
essarily unique as it can be seen by the following example.

Example 2.4.2. Let V = R2, ‖ · ‖ = ‖ · ‖∞, U = {v = (v1, v2) ∈ R2 : v2 = 0} and
f = (f1, f2). Then every u = (u1, 0) ∈ U with u1 ∈ [f1 − |f2|, f1 + |f2|] is a solution to
the best approximation, since

‖u− f‖∞ = max {|u1 − f1|, |f2|} = |f2| = min
v∈U
‖v − f‖∞ ∀u1 ∈ [f1 − |f2|, f1 + |f2|].

In Subsection 2.4.1 we consider the polynomial best approximation problem in the
‖·‖∞-norm. In Subsection 2.4.2 we relax the problem and it is not necessary to find the
best solution but a “good” solution is sufficient. Hence, we consider the interpolation
problem, where we focus on an interpolation with trigonometric splines.
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2.4.1 Approximation by Chebyshev Polynomials

Let Pm be the vector space of real polynomials with degree at most m, i.e.

Pm =

{
m∑
i=0

aix
i, a0, . . . , am, x ∈ R

}
.

Clearly, Pm[a, b] is an m+1-dimensional subspace of C[a, b]. Obviously, the monomials
{1, t, t2, . . . , tm} are a basis of Pm. Linear independence of the monomials can be
checked by e.g. the Wronskian in Remark 2.5.5. Every p ∈ Pm can be expressed as
p(t) =

∑m
i=0 aiti, where ai ∈ R. Even though the monomials are linear independent,

the Wronskian is often ill-conditioned. Hence, approximating a function by monomials
may cause large numerical errors. We therefore consider a different basis, namely the
Chebyshev basis, which we introduce in the following. We follow the presentation of
Chebyshev projections based on [Tre13]. Any approximation can be used to replace the
original function, but our focus is on Chebyshev polynomials due to Example 2.4.6.
We consider the best approximation and choose as spaces V = C[a, b] and U = Pm in
(2.18). Therefore,

p ∈Pm : ‖p− f‖ ≤ ‖q − f‖ ∀q ∈Pm (2.19)

for a given f ∈ C[a, b]. Due to Theorem 2.4.1, a solution to (2.19) exists and it is
unique, see e.g. [HH91].

First, let us introduce the Chebyshev polynomials of the first kind defined by the three
term recurrence relation

Tk+1(t) = 2tTk(t)− Tk−1(t),

where T0(t) = 1, T1(t) = t for k = 1, 2, 3, . . .

Chebyshev polynomials are orthogonal over the interval [−1, 1]:

〈Ti, Tj〉ω :=

∫ 1

−1

Ti(t)Tj(t)ω(t)dt =


0 for i 6= j,

π for i = j = 0,
π
2

for i = j 6= 0,

(2.20)

with the weight function ω(t) = 1√
1−t2 . In the following, we state results only for

the interval [−1, 1], but Chebyshev polynomials can be mapped to any interval by an
affine variable transformation. A Lipschitz continuous f has a unique representation
as a Chebyshev series [Tre13],

f(t) =
∞∑
k=0

ckTk(t),

which is absolutely and uniformly convergent. The coefficients ck are given by the
orthogonality relationship (2.20),

c0 =
1

π
〈f, T0〉ω and for k > 0 : ck =

2

π
〈f, Tk〉ω. (2.21)
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The m-truncated Chebyshev series is defined as

fm(t) := (Pmf)(t) :=
m∑
k=0

ckTk(t). (2.22)

Clearly, the Chebyshev polynomials Tk, k = 0, 1, . . . ,m, are a basis of Pm. Pm :
C[−1, 1] → Pm defined by (2.22) is a linear operator and it is also called Chebyshev
projection since Pmp = p for any p ∈Pm and PmTk = 0 for k > m.
We recall the following two theorems given in [Tre08; Tre13] which are essential for the
derivation of our spectral bounds in Section 6.3.

Theorem 2.4.3. If f and its derivatives through f (k−1) are absolutely continuous on
[−1, 1] and if the k-th derivative f (k) is of bounded variation V for some k ≥ 1, then
for any m > k, the Chebyshev projection satisfies

‖f − fm‖∞ ≤
2V

πk(m− k)k
.

We conclude this section with a theorem when the function f and its derivatives are
not only absolutely continuous and of bounded variation but if they are analytic. We
therefore use the notion of a Bernstein ellipse Eρ.

Definition 2.4.4. For ρ > 1 the Bernstein ellipse Eρ is defined as

Eρ :=

{
reiθ + r−1e−iθ

2
∈ C : −π ≤ θ ≤ π, 0 ≤ r ≤ ρ

}
.

Since reiθ + r−1e−iθ = (ρ + ρ−1) cos(θ) + (ρ − ρ−1)i sin(θ) for −π ≤ θ ≤ π, the
boundary of the Bernstein ellipse ∂Eρ can be written in parametric form as ∂Eρ ={
z ∈ C : Re(z)2

a2ρ
+ Im(z)2

b2ρ
= 1
}

, where its semi-axes are ρ+ρ−1

2
and ρ−ρ−1

2
with foci at ±1.

Figure 2.1 shows Bernstein ellipses in the complex plane for ρ = 1.1, 1.2, . . . , 1.5 as in
[Tre13].

Re

Im

Figure 2.1: Bernstein ellipses ∂Eρ for ρ = 1.1, 1.2, . . . , 1.5.
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Theorem 2.4.5. If f is analytic in [−1, 1] and analytically continuable to the open
Bernstein ellipse Eρ, where it satisfies |f(t)| ≤ M for some M , then for each m ≥ 0
its Chebyshev projection satisfies

‖f − fm‖∞ ≤
2Mρ−m

ρ− 1
.

2.4.2 Interpolation by Trigonometric Splines

Let f ∈ C[a, b] be fixed. In this section we do not consider the best possible approxi-
mation of f as in Section 2.4.1, but a sufficiently good one. Therefore, we consider the
interpolation problem:

ur ∈ Ur : ur(ti) = f(ti) ∀i = 0, . . . , r, (2.23)

where Ur ⊂ C[a, b] for r = 1, 2, . . . are subspaces of ansatz functions. Nodes

Ωr = {t0, . . . , tr : a ≤ t0 < t1 < · · · < tr ≤ b} (2.24)

have to be chosen suitably. The choice of the nodes is very important since the inter-
polation error can be arbitrarily large as it can be seen by the next example.

Example 2.4.6 (Runge phenomenon, e.g. [Tre13]). Interpolating the Runge function
f(x) = 1

1+25x2
at equidistant points ti between −1 and 1 such that: ti = 2i

m
− 1 for

i ∈ {0, 1, . . . ,m} with a polynomial of degree at most m, i.e., pm(x) ∈ Pm[−1, 1],
yields

lim
m→∞

(
max
−1≤x≤1

|f(x)− pm(x)|
)

= +∞.

Interpolating the Runge function f(x) = 1
1+25x2

between −1 and 1 with a polynomial of
degree at most m, i.e., pm(x) ∈ Pm[−1, 1], at the Chebyshev nodes ti, which are the
roots of Tm (Chebyshev polynomial of the first kind), yields

lim
m→∞

(
max
−1≤x≤1

|f(x)− pm(x)|
)

= 0.

By the Runge phenomenon we have seen that interpolation at equidistant points can
be arbitrarily bad, but it even holds for any sequence of nodes (2.24), that there exists
an f ∈ C[a, b] such that lim inf

m→∞
‖f − pm‖ =∞ [Fab14].

Instead of polynomial interpolation, we consider trigonometric interpolation, and hence
Ur in (2.23) is chosen to be the space of trigonometric functions, i.e.,

Ur = {1, cos(jt), sin(jt), j = 1, . . . , r} .

Trigonometric functions are periodic, which is a sought property for the derivation of
bounds for time-periodic systems in Section 6.2. Due to the linear independence of the
trigonometric function 1, cos(t), sin(t), . . . , cos(rt), sin(rt), we obtain a unique solution
ur ∈ Ur to the interpolation problem (2.23) for any f ∈ C[a, b], e.g. in [DH08]. But in
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order to avoid Runge type phenomena we want to consider piecewise ansatz functions,
which in the interpolation setting are called splines. Here, we consider trigonometric
splines. By (2.23) the spline is not uniquely determined, but we have some freedom
to choose the spline, which is used by adding more regularity to the spline w.r.t. the
nodes Ωr in (2.24). Hence, we further demand that the spline fulfills

ur ∈ Ur : u(j)
r (ti) = f (j)(ti) ∀i = 0, . . . , r, j = 1, . . . , k, (2.25)

where k is the order of the spline.

For brevity we choose in the following r + 1 equidistant nodes in Ωr defined in (2.24).
Therefore, the nodes ti are given as ti = ih for i = 0, 1, . . . , r with h = T

r
in the interval

[0, T ]. Trigonometric splines have to fulfill some restriction on the step length h, which
in the case of quadratic and cubic splines will be stated explicitly in following sections.

A convenient way to express trigonometric splines is to use trigonometric basis splines
(abbreviated as trigonometric B-splines), which will be used in the following. A basis
spline is a spline function that has minimal support, see Figures 2.2 and 2.3. A recursive
definition of trigonometric splines is given in [LW79], but if the order k of the spline
is small, it is easier to use the exact formulas given in equation (2.26) for quadratic
splines and in equation (2.27) for cubic splines.

Quadratic Trigonometric Splines

Quadratic trigonometric splines S2
i (t) are defined by

S2
i (t) = θ2


sin2

(
t−ti

2

)
if t ∈ [ti, ti+1) ,

sin
(
t−ti

2

)
sin
( ti+2−t

2

)
+ sin

( ti+3−t
2

)
sin
( t−ti+1

2

)
if t ∈ [ti+1, ti+2) ,

sin2
( ti+3−t

2

)
if t ∈ [ti+2, ti+3),

0 if t /∈ [ti, ti+3] ,

(2.26)

with θ2 = 1

sin(h) sin(h2 )
, see e.g. [Nik93; Nik04; Sch81]. A quadratic trigonometric spline

Si(t) is shown in Figure 2.2. First, as it can be seen in Figure 2.2, for any inner subin-
terval [ti, ti+1] with 1 < i ≤ r, the spline Si(t) is fully described. For the intervals [t0, t1]
and [t1, t2], artificial intervals [t−2, t−1] and [t−1, t0] have to be included in the definition
of S2

i (t) such that the restriction to the respective subinterval is still a linear combina-
tion of the functions 1, cos(t) and sin(t). If we denote by T 2(Ωr) the space of quadratic
trigonometric splines in [0, T ] w.r.t. the nodes Ωr, then T 2(Ωr) = span {S2

i }
r−1
i=−2. Hence,

every quadratic trigonometric spline can be expressed in the form
∑r−1

i=−2 αiS
2
i (t). For

representing a quadratic trigonometric spline, the summation index i runs from −2
to r − 1, which does not represent the number of nodes, but the number of intervals
[ti, ti+1] for i = −2, . . . , r−1 which includes the aforementioned artificial intervals. The
coefficients αi are unknown and have to be determined. The steplength h has to be
chosen sufficiently small, i.e., h < 2π

3
for quadratic trigonometric splines.
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ti−2 ti−1 ti ti+1 ti+2 ti+3

h h h h h

Figure 2.2: Quadratic trigonometric splines at equidistant nodes.

Cubic Trigonometric Splines

Cubic trigonometric splines S3
i (t) are defined by

S3
i (t) = θ3



sin3
(
t−ti

2

)
if t ∈ [ti, ti+1) ,

sin2
(
t−ti

2

)
sin
( ti+2−t

2

)
+ sin2

( t−ti+1

2

)
sin
( ti+4−t

2

)
+ sin

(
t−ti

2

)
sin
( ti+3−t

2

)
sin
( t−ti+1

2

)
if t ∈ [ti+1, ti+2) ,

sin2
( ti+3−t

2

)
sin
(
t−ti

2

)
+ sin2

( ti+4−t
2

)
sin
( t−ti+2

2

)
+ sin

( ti+4−t
2

)
sin
( t−ti+1

2

)
sin
( ti+3−t

2

)
if t ∈ [ti+2, ti+3) ,

sin3
( ti+4−t

2

)
if t ∈ [ti+3, ti+4] ,

0 otherwise,

(2.27)
where θ3 = 1

sin( 3h
2 ) sin(h) sin(h2 )

, see e.g. in [Sch81]. Artificial intervals [t−3, t−2], [t−2, t−1]

and [t−1, t0] have to be included in the definition of S3
i (t) such that the restriction to

the respective subinterval is still a linear combination of the functions sin
(
t
2

)
, cos

(
t
2

)
,

sin
(

3t
2

)
, cos

(
3t
2

)
as in the previous section. If we denote by T 3(Ωr) the space of

cubic trigonometric splines in [0, T ] w.r.t. the nodes Ωr, then T 3(Ωr) = span {S3
i }

r−1
i=−3.

Hence, every cubic trigonometric spline can be expressed in the form
∑r−1

i=−3 αiS
3
i (t).

For representing a cubic trigonometric spline, the summation index i runs from −3
to r − 1 which does not represent the number of nodes, but the number of intervals
[ti, ti+1] for i = −3, . . . , r−1 which includes the aforementioned artificial intervals. The
coefficients αi are unknown and have to be determined. The steplength h has to be
chosen sufficiently small, i.e., h < π

2
for cubic trigonometric splines.
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ti−3 ti−2 ti−1 ti ti+1 ti+2 ti+3 ti+4

h h h h h h h

Figure 2.3: Cubic trigonometric splines at equidistant nodes.

2.5 Ordinary Differential Equations

Ordinary differential equations (ODEs) are well-established to describe scientific pro-
cesses such as the motion of a particle, displacements in strings, bars, shafts, beams,
plates or membranes. Here, we only give a very short introduction to them and cite
only the most important results, which will be used throughout this thesis. For many
more classes of ODEs and their theory we refer to [Wal90; CC97]. A very practical
introduction to ODEs and their occurrence is given in [Col90].

Let f : Ω ⊂ R×R× . . .×R→ R be a function, which depends on the state x and its
derivatives x′, x′′, . . . , x(k−1). Then an equation of the form

x(k) = f(t, x, x′, . . . , x(k−1)), (2.28)

is called an explicit ordinary differential equation (ODE). The highest derivative oc-
curring in (2.28) is called the order of the ODE, i.e, the ODE (2.28) is of order k. We
classify this ODE depending on the function f . If f can be written as a linear com-
bination of the derivatives of x, then the ODE (2.28) is said to be a linear ODE and
otherwise it is a nonlinear ODE. A function x : [a, b] ⊆ R → R is called a solution of
(2.28), if x is k-times differentiable on I, and fulfills x(k) = f(t, x, x′, . . . , x(k−1)) for any
t ∈ I. In the following we show existence and uniqueness of a solution, the solution or
the solution’s structure, respectively, when it is possible. Any ODE of order k in (2.28)
can be reduced to a coupled system of k ODEs of first order [Col90]. Reducing the
order of an ODE has a practical and theoretical impact. Firstly, solutions to higher
order ODEs can be found with the order reduction, e.g. in Chapter 4 a quadratic
system of ODEs is linearized to a first order system. Secondly, higher order ODEs can
theoretically be analyzed since they can be rewritten as a system of first order ODEs,
as e.g. in Section 2.5.2. In the following we restrict the theoretical analysis to first
order ODEs since by the above considerations corresponding results for higher order
ODEs can be drawn.
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2.5.1 Nonlinear Ordinary Differential Equations

Any ordinary differential equation of the form (2.28) with arbitrary order can be re-
duced to a first order system of ODEs [Col90]. Hence, in this section we state existence
and uniqueness of a solution to a first order system of ODEs

x′ = f(t, x), (2.29)

where f : Ω ⊂ R × Rn → Cn and Ω is an open set in R × Rn. The ODE (2.29) with
some initial condition x(t0) = x0 ∈ Cn is called initial value problem (IVP) or Cauchy
problem.

Theorem 2.5.1 (local Picard-Lindelöf e.g. in [CL55]). Let the initial value problem
(IVP) be given as

x′ = f(t, x), x(t0) = x0.

Suppose f(t, x) is Lipschitz-continuous in x and continuous in t. Then, for a suffi-
ciently small ε > 0 there exists a unique solution x(t) to the initial value problem on
[t0 − ε, t0 + ε].

Gronwall’s lemma [Gro19] can be used to prove uniqueness of a solution to an initial
value problem in the Picard-Lindelöf Theorem 2.5.1. Here, we cite an integral version
of Gronwall’s lemma by R. Bellman [Bel43], which is given e.g. in [Wal70].

Lemma 2.5.2 (Gronwall’s lemma, integral version e.g. in [Wal70]). Let g : [a, b] 7→ R
and β : [a, b] 7→ R be continuous, α : [a, b] 7→ R be integrable on [a, b] and β(t) ≥ 0.
Assume g satisfies

g(t) ≤ α(t) +

∫ t

a

β(s)g(s)ds, t ∈ [a, b].

Then

g(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds, ∀t ∈ [a, b].

Furthermore, if α is non-decreasing and β > 0 is constant, then

g(t) ≤ α(t)eβ(t−a), ∀t ∈ [a, b].

We will use Lemma 2.5.2 to derive bounds on the solution of time-periodic systems in
Section 6.3.

2.5.2 Linear Ordinary Differential Equations

In this section we consider linear ODEs, i.e., the function f : Ω ⊂ R×R× . . .×R→ C
in (2.28) can be written as a linear combination of x and its derivatives. Hence, the
ODE (2.28) can be written as

Lkx = g, (2.30)
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2.5 Ordinary Differential Equations

where Lk is a linear differential operator of order k, i.e.,

Lkx =
dkx

dtk
+ ak−1(t)

dk−1x

dtk−1
+ · · ·+ a1(t)

dx

dt
+ a0(t)x

=
dkx

dtk
+

k−1∑
j=0

aj(t)
djx

dtj
. (2.31)

The coefficients a0, . . . , ak−1 are allowed to depend on t, but they should be continuous,
i.e., we assume that aj ∈ C[a, b] for j = 0, . . . , k − 1. First, we introduce some basic
notation for linear homogeneous differential equations (2.30). If g = 0 in (2.30), then
the linear differential equation is called homogeneous and otherwise inhomogeneous.
One of the main differences between linear and nonlinear homogeneous ODEs is that
the solutions of a linear ODE form a vector space, see e.g. in [CC97].

Definition 2.5.3 (Null space of linear differential operator). The null space of a linear
differential operator Lk is defined as

NLk :=
{
x ∈ Lk1[a, b] : Lkx(t) = 0 , t ∈ [a, b]

}
,

where the Sobolev space Lk1[a, b] is defined in (2.15).

Definition 2.5.4 (Fundamental solution). A set of k linear independent functions
{x1(t), . . . , xk(t)} ∈ Lk−1

1 [a, b] that are solutions to the homogeneous linear differential
equation Lkx = 0 for t ∈ [a, b] is called a fundamental solution.

A fundamental solution spans the null space NLk of the linear differential operator Lk.
Linear independence of functions can be checked e.g. by the Wronskian in Remark
2.5.5

Remark 2.5.5. Let x1(t), . . . , xk(t) ∈ Ck−1[a, b]. Then the Wronskian is defined as

W (x1, . . . , xk)(t) =

∣∣∣∣∣∣∣∣∣
x1(t) x2(t) · · · xk(t)
x′1(t) x′2(t) · · · x′k(t)

...
...

. . .
...

x
(k−1)
1 (t) x

(k−1)
2 (t) · · · x

(k−1)
k (x)

∣∣∣∣∣∣∣∣∣ , t ∈ [a, b]. (2.32)

x1(t), . . . , xk(t) are linear independent if and only if W (x1, . . . , xk)(t) 6≡ 0.

We have introduced a linear differential operator L, its null space NL and a fundamen-
tal solution of L. Now we can cite basic results for trigonometric splines in Lemma
2.5.6 and Remark 2.5.7, which are needed in the derivation of two-sided bounds by
trigonometric splines in Chapter 6.

Lemma 2.5.6 (e.g. [Sch81]). Trigonometric splines are L-splines, where the L corre-
sponds to a certain linear differential operator.

Remark 2.5.7.

• Trigonometric splines are functions in Cn−1[a, b] so that the restriction of them in
every subinterval [ti, ti+1] is a linear combination of functions of the null space NL
(see Definition 2.5.3) of the corresponding linear differential operator L, [Sch81].
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• L-splines and hence, trigonometric splines by Lemma 2.5.6, fulfill an extended
Taylor formula [Sch81].

We conclude this introduction to linear (homogeneous) differential equations by two
examples which are used for trigonometric splines in Section 2.4.2 and 6.2.

Example 2.5.8. Quadratic trigonometric splines defined in (2.26) are L-splines by
Lemma 2.5.6, where the linear differential operator is given as L3· = d3

dt3
·+ d

dt
·. x1(t) =

1, x2(t) = cos(t) and x3(t) = sin(t) are solutions to L3x = 0. {x1(t), x2(t), x3(t)} is a
fundamental solution to L3x = 0, since

W (x1, x2, x3)(t) =

∣∣∣∣∣∣
1 cos(t) sin(t)
0 − sin(t) cos(t)
0 − cos(t) − sin(t)

∣∣∣∣∣∣ = sin2(t) + cos2(t) = 1 6≡ 0.

Example 2.5.9. Cubic trigonometric splines defined in (2.27) are L-splines by Lemma
2.5.6, where the linear differential operator is given as L4· = d4

dt4
·+5

2
d2

dt2
·+ 9

16
·. x1(t) =

sin
(
t
2

)
, x2(t) = cos

(
t
2

)
, x3(t) = sin

(
3t
2

)
and x4(t) = cos

(
3t
2

)
are solutions to L4x = 0

for t ∈ [0, T ]. {x1(t), x2(t), x3(t), x4(t)} is a fundamental solution, since there exists
t ∈ [0, T ] such that the Wronskian is nonzero, e.g.

W (x1, x2, x3, x4)(0) =

∣∣∣∣∣∣∣∣
0 1 0 1

0.5 0 1.5 0
0 −0.25 0 −2.25

−0.125 0 −3.375 0

∣∣∣∣∣∣∣∣ = 3 6= 0.

More on splines can be found in [DB01], on trigonometric splines in [Sch81], on inter-
polation with trigonometric splines in [Sch64].

The linear ordinary differential equation (2.30) can be transformed into a first order
system of ODEs

x′ = A(t)x+ b(t), (2.33)

where

A(t) =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0(t) −a1(t) −a2(t) · · · −ak−1(t)

 , b(t) =


0
0
...
0
g(t)

 .

First, we want to cite the solution’s structure for (2.33), which is given, e.g., [CC97].
Suppose xp is a particular solution to the non-homogeneous first order ODE system
(2.33) and xh is the general solution to the homogeneous first order ODE system
x′ = A(t)x for t ∈ I. Then x(t) = xh(t) + xp(t) is the general solution to the non-
homogeneous first order ODE system (2.33). Hence, it is worth to investigate homo-
geneous first order ODE systems, which is being done in the following section. For
finding a particular solution to a non-homogeneous first order ODE systems we refer
to e.g. [CL55; CC97].
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2.5.3 First Order System of Ordinary Differential Equations

In this section we consider a homogeneous first order system of ODEs, which is also
known as a homogeneous linear system of ordinary differential equations,

x′ = A(t)x, for t ∈ I, (2.34)

where A : I ⊂ R → Cn×n, I = [t0, tend] and an initial condition (IC) x(t0) = x0 are
given. The question of existence and uniqueness of a solution to nonlinear ordinary
differential equations has already been answered by Theorem 2.5.1, where f(t, x) has
to be Lipschitz-continuous in x and continuous in t. For a homogeneous linear ODE
of first order, the function f(t, x) in (2.29) can be expressed as f(t, x) = A(t)x. If the
function A : I ⊂ R→ Cn×n is continuous, then obviously f(t, x) = A(t)x is Lipschitz-
continuous in x. Hence, we summarize in Theorem 2.5.10 the conditions of existence
and uniqueness of a solution to a linear ordinary differential equation. Theorem 2.5.10
turns out to be a global existence and uniqueness result, see e.g. [CC97].

Theorem 2.5.10 ([CC97]). Let A : I ⊂ R → Cn×n be continuous. For any initial
condition x(t0) = x0 there exists a unique solution x(t) of the ODE (2.34).

We introduce the fundamental matrix for the first order ODE system (2.34), which will
be used for definition of the solution to the ODE (2.34) and later on in this section for
the solution’s structure for time-periodic matrix functions A : I ⊂ R→ Cn×n.

Definition 2.5.11 (Fundamental matrix). Let {x1, . . . , xn} a fundamental solution to
(2.34). Then

Φ(t) :=
[
x1(t), · · · , xn(t)

]
∈ Cn×n

is called a fundamental matrix of the first order ODE system (2.34).

Φ(t) is called principal fundamental matrix if Φ(t) is a fundamental matrix and Φ(t0) =
I. A principal fundamental matrix can be constructed from a fundamental matrix Φ(t)
by Φ(t)Φ−1(t0). Therefore, from now on when we use the term fundamental matrix,
we mean in general its principal fundamental matrix. We summarize the following
properties of a fundamental matrix in the following remark, which is given e.g. in
[MS76]:

Remark 2.5.12.

• The solution to the first order ODE system (2.34) with x(t0) = x0 is given as

x(t) = Φ(t)x0. (2.35)

• The fundamental matrix Φ(t) solves the matrix-valued first order system

Φ′(t) = A(t)Φ(t). (2.36)

• A fundamental matrix fulfills

Φ(t2) = Φ(t2)Φ(t1) (2.37)

for t1, t2 ≥ t0.
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• Liouville’s formula:

det Φ(t) = exp

∫ t

t0

tr(A(τ))dτ, (2.38)

where det Φ(t) is called Wronskian, see Remark 2.5.5.

In (2.35) we have defined the solution to the ODE (2.34). Now, we want to know the
conditions when a solution is analytic. The answer is given by the following theorem.

Theorem 2.5.13 (e.g. in [CC97]). Let A : R → Cn×n be analytic at τ ∈ R, where
ρ > 0 is its radius of convergence, i.e.,

A(t) =
∞∑
k=0

Ak(t− τ)k,

where |t− τ | < ρ and Ak ∈ Cn×n for k = 0, 1, . . .. Given any x0, there exist an analytic
solution x of (2.34) with the same convergence radius ρ > 0 satisfying x(τ) = x0, i.e.,
x has a power series representation

x(t) =
∞∑
k=0

ck(t− τ)k,

where |t− τ | < ρ and ck ∈ Cn for k = 0, 1, . . ..

We give some remarks for the power series representation of the analytic solution x of
(2.34).

Remark 2.5.14.

• The matrix function A : R → Cn×n is continuous since it is analytic and hence,
by Theorem 2.5.10 the first order ODE system (2.34) has a solution, which is
unique.

• We have c0 = x0 and ck ∈ Cn can be determined uniquely in terms of c0 by
substituting the series into the first order ODE system (2.34).

We want to conclude the investigation on a general time-variant matrix by the following
assumption. If the matrix function A : R→ Cn×n commutes for all times, i.e.,

A(t1)A(t2) = A(t2)A(t1)

for any t1, t2 ≥ t0. Then the solution x(t) of the first order ODE system (2.34) with
the initial condition x(t0) = x0 is given as

x(t) = e
∫ t
t0
A(s) ds

x0.

In the following we distinguish two different cases for the matrix function A : R →
Cn×n:

1. A is time-invariant, i.e., it is constant over time: A ≡ const and
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2. A is time-periodic, i.e., it has some periodicity tp > 0 such that A(t) = A(t+ tp)
for any t ≥ t0,

We show in the following the solution or the solution’s structure for first order ODE
system (2.34), where A is time-invariant and time-periodic, respectively.

Time-Invariant

We start the investigation on the first order ODE system (2.34), where the matrix
function A : R→ Cn×n is time-invariant, i.e., A := A(t) ≡ const,

x′ = Ax, for t ∈ I, (2.39)

where A ∈ Cn×n and x(t0) = x0 ∈ Cn. We follow the presentation of a flow operator,
e.g. given in [BD08].

Theorem 2.5.15 ([BD08]). The flow operator Φt of (2.39) is given by

Φ(t) = e(t−t0)A. (2.40)

The series

etA :=
∞∑
k=0

1

k!
(tA)k (2.41)

converges uniformly on finite time intervals [a, b] and the solution of the IVP (2.39) is
given by

x(t) = Φ(t)x0 = e(t−t0)Ax0, (2.42)

e.g. in [Wal90; CC97].

Remark 2.5.16. The matrix exponential (2.41) has the following properties:

(i) et(TAT
−1) = TetAT−1 , ∀T ∈ Gln(C),

(ii) et(A+B) = etAetB , ∀B ∈ Cn×n with AB = BA,

(iii) A = blockdiag(A1, . . . , Am)⇒ etA = blockdiag(etA1 , . . . , etAm),

(iv) eαI = eαI , α ∈ C.

By Theorem 2.1.4, we can decompose the matrix A in Jordan Normal Form, i.e.,
UAU−1 = J , where J consists of the Jordan blocks. By using the property (i) of
Remark 2.5.16 for the matrix exponential, we obtain UeAtU−1 = eJt and obtain the
following stability result which e.g. is given in [CC97].

Remark 2.5.17. Let Λ(A) denote the spectrum of A.

• If Re(λ) < 0 for all λ ∈ Λ(A), then the solution x(t) of (2.39) is called asymp-
totically stable, i.e., ‖x(t)‖ → 0 as t→∞ for any x0 ∈ Cn.

• If Re(λ) ≤ 0 for all λ ∈ Λ(A) and the algebraic multiplicity and geometric
multiplicity of the eigenvalue λ coincide for all λ ∈ Λ(A) with Re(λ) = 0, then
the solution x(t) of (2.39) is called stable, i.e., for x0 ∈ Cn there exists C > 0
such that ‖x(t)‖ ≤ C as t→∞.
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• If Re(λi) > 0 for any i = 1, . . . , n, then the solution x(t) of (2.39) is called
unstable, i.e., there exists x0 ∈ Cn such that ‖x(t)‖ → ∞ as t→∞.

Time-Periodic

Now, we assume that the matrix function A : R → Cn×n is time-periodic, i.e., there
exists some tp > 0 such that A(t) = A(t + tp) for any t ∈ R. The time-periodic linear
initial value problem (IVP) is then given as

x′ = A(t)x, for t ∈ I,
A(t) = A(t+ tp), for t ∈ R,
x(t0) = x0,

(2.43)

where x(t0) = x0 ∈ Cn denotes the initial condition (IC) and the matrix function
A : R→ Cn×n is periodic with periodicity tp > 0, i.e., A(t) = A(t+ tp) for any t ∈ R.
The following theorem was initially given for a single time-periodic ordinary differential
equation in [Flo83], here we cite the matrix version from e.g. [MS76].

Theorem 2.5.18 (Floquet’s Theorem [Flo83]). Let Φ(t) be a fundamental matrix of
(2.43). Then for all t ∈ R:

Φ(t+ tp) = Φ(t)C, (2.44)

where C = Φ(t0 + tp) ∈ Gln(C) is a constant nonsingular matrix. In addition, for a
matrix L such that

eLtp = Φ(t0 + tp), (2.45)

there is a periodic matrix function t 7→ Z(t) such that

Φ(t) = Z(t)eL(t−t0), ∀t ≥ t0. (2.46)

We give some remarks about Floquet’s theory.

Remark 2.5.19.

• L is in general not unique. It can be given by as L = 1
tp

ln Φ(t0 + tp), where

Φ(t0 + tp) is the monodromy matrix.

• The eigenvalues of eLtp are called the characteristic multipliers of the system
(2.43).

• µ ∈ C is called Floquet exponent if eµtp is a characteristic multiplier of the system
(2.43). Floquet exponents are not unique, since eµtp+2πik is a Floquet exponent as
well for k ∈ Z.

• Let µ ∈ C be a Floquet exponent. Then its real part, i.e., Re(µ), is called Lya-
punov exponent.

• The solution of the IVP (2.43) can be given in terms of Floquet’s Theorem 2.5.18
as

x(t) = Φ(t)x0 = Z(t)eL(t−t0)x0.
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• Z(t) has full rank for all t ≥ t0, i.e., Z(t) ∈ Gln(C) for all t ≥ t0 since equation
(2.46) yields Z(t) = Φ(t)e−L(t−t0), where the columns of the fundamental matrix
Φ(t) are per definition linearly independent and therefore Φ(t) has full rank.

• Z(t) gives a coordinate transformation x(t) = Z(t)y(t), the so-called Floquet-
Lyapunov transformation, which transforms (2.43) into a constant linear system
ẏ = Ly and initial condition y(t0) = x0. The solution to ẏ = Ly has been given
in Section 2.5.2 as y(t) = eL(t−t0)x0.

• If all Lyapunov exponents are negative, then the solution x(t) is asymptotically
stable. This result is obtained by the coordinate transformation and Remark
2.5.17.

• Knowledge of Φ(t) for all t ∈ [t0, t0 + tp] is sufficient for the knowledge of Φ(t)
for any t ∈ R, due to the semigroup property of the solution:

1. determine L as L = 1
tp

ln Φ(t0 + tp) by the first remark,

2. determine Z(t) in [t0, t0 + tp] by equation (2.46),

3. Z(t) is known for any t ∈ R since it is periodic.

2.5.4 Second Order System of Ordinary Differential Equations

Now, we consider a second order system of ordinary differential equations, where the
coefficient matrices are time-invariant, i.e., we consider the initial value problem (IVP)

A
d2x

dt2
+B

dx

dt
+ Cx = g(t), (2.47)

where A,B,C ∈ Cn×n and an initial condition (IC) x(t0) = x0 and x′(t0) = x′0 is given.

A first order linear system of dimension 2n can be obtained from (2.47) by

d

dt

[
N 0
0 A

] [
x(t)
x′(t)

]
=

[
0 N
−C −B

] [
x(t)
x′(t)

]
, (2.48)

for any N ∈ Gln(C).

Remark 2.5.20. With the separation hypothesis x(t) = eλtv in (2.47) we obtain the
corresponding quadratic eigenproblem 2.1.8. With the ansatz x(t) = eλtv in (2.48) we
obtain the linearization 2.1.9 of the quadratic eigenproblem.

By Remark 2.5.20 there is a close connection between a quadratic ordinary differential
equation and a corresponding quadratic eigenproblem. (2.48) is in fact a first order
linear system of ODEs with time-invariant coefficients which is treated in Section 2.5.2.
Its solution is given by the flow operator in Theorem 2.5.15 with the solution (2.42):

x(t) = Φ(t)

[
x0

x′0

]
= e(t−t0)L

[
x0

x′0

]
,
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where L is given as

L =

[
N−1 0

0 A−1

] [
0 N
−C −B

]
=

[
0 I

−A−1C −A−1B

]
,

and N ∈ Gln(R). By Theorem 2.1.4 the matrix L can be decomposed into Jordan
normal form and with the properties of the matrix exponential (2.5.16), we obtain
that the general solution of the quadratic ordinary differential equation (2.47) can be
expressed by Jordan pairs or more precisely as

x(t) = V eJtc, (2.49)

where (V, J) is a Jordan pair [GLR09; LT85] and c ∈ C2n is a vector of constants.
Here, the Jordan pair consist of the Jordan matrix J of size 2n × 2n that contains
the eigenvalues and their multiplicities such that J = diag(J1, . . . , Jm), where each
Ji ∈ Cni×ni is a Jordan block and

∑m
i=1 ni = 2n. The matrix V = [v1, . . . , v2n] is of

size n × 2n and contains the corresponding Jordan chains vi for i = 1, . . . , 2n. If the
eigenvalues are semi-simple, then the set of Jordan chains and the set of eigenvectors
span the same space. The vector of constants c can be determined by a given initial
conditions x(t0) = x0 and x′(t0) = x′0 for the quadratic ordinary differential equation
(2.47).

2.6 Optimization Problems

In this section we introduce the most basic optimization framework, which is needed
throughout this thesis. We do not give any kind of introduction here but only classify
problems, namely linear and nonlinear with continuous and discrete variables. For more
on the theory we list some books and survey papers but this list is not at all exhaustive.
For the theory of linear and integer programming we refer to [BT97; Sch86] and for
more details on linear and nonlinear programming to [LY15]. [Bel+13] is a good survey
on nonlinear integer programming and a comparison of the respective solvers can be
found in [BV10]. In this context the pioneering work of [Coo71; Kar72] on complexity
classes and their reduction should be mentioned. But now let us start defining some
optimization problems that are used in this thesis.

A Nonlinear Program (NLP) is defined as follows,

min f(x)
s.t. gi(x) ≤ 0 ∀i ∈ I,

x ∈ X,
(2.50)

where at least the objective function (cost function) f(·) or some constraint functions
gi(x) are nonlinear for some i ∈ I, where I is some given index set and x ∈ X ⊆ Rnx

are continuous variables for a bounded polyhedral set X.

If some of the variables have to fulfill some integer constraints, then we refer to a Mixed
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Integer Nonlinear Program (MINLP),

min f(x, y)
s.t. gi(x, y) ≤ 0 ∀i ∈ I,

x ∈ X,
y ∈ Zny ,

(2.51)

where X ⊆ Rnx is a bounded polyhedral set. Here, we specify that the variables
y ∈ Zny are integers. This class includes Binary Nonlinear Programs, where the integer
variables are binaries, i.e., y ∈ {0, 1}ny . Problem (2.51) is an NP-hard combinatorial
problem, since it includes a Mixed Integer Linear Program (MILP), see e.g. [KM78].
It is even worse, non-convex integer optimization problems are in general undecidable
[Jer73]. An example of a quadratically constrained integer program is shown in [Jer73]
such that no computing device can compute the optimum for all problems in this class.
In the remainder of this thesis, we concentrate on the case where (2.51) is decidable,
which we can achieve either by ensuring that the set X is compact or by assuming that
the problem functions are convex.
If the objective and all constraint functions of (2.50) are linear, then we refer to a
Linear Program (LP),

min cTx
s.t. aix ≤ bi ∀i ∈ I,

x ∈ X,
(2.52)

where I is some given index set and X ⊆ Rnx . Linear Programs can be solved efficiently
(in polynomial time) e.g. by the ellipsoidal method or interior point methods [BT97].
As above, if some of the variables have to fulfill some integer constraints, then we refer
to a Mixed Integer Linear Program (MILP),

min cT1 x+ cT2 y
s.t. aTi x+ bTi y ≤ di ∀i ∈ I,

x ∈ X,
y ∈ Zny ,

(2.53)

where X ⊆ Rnx and I is some given index set. The variables y ∈ Zny in (2.53) are
specified as integers. Integer programming is in general NP-hard, e.g. in [Sch86].
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3
Vibrations and Norms

For a time-varying process, a repetitive motion of some measure about a central value
(e.g. an equilibrium point) or between two or more different states is called oscillation.
For a mechanical oscillation we use instead the term vibration, i.e., a vibration underlies
a mechanical system. Vibrations occur in many systems and familiar examples of
vibration include a swinging pendulum or the random motion of a building due to gusts
of wind. Further examples are given in Chapter 1. Vibrations are often an unwanted
behavior for the underlying system since they may produce friction and heat, which
results in material stress and fatigue. Hence, it is important to measure and reduce
vibrations.

First, we introduce the notion of a vibration in Section 3.1. In Section 3.2 we investigate
the differentiability of a general time-varying function in certain norms. We apply
these results to vibrations in Section 3.3 and connect them to the algebraic Lyapunov
equation in order to obtain a norm in which the vibration behaves monotonic. Finally,
in Section 3.4 we introduce the vibration reduction problems for viscous dampers,
which we will consider in this thesis. Overall, this chapter provides a basis for vibration
reduction by viscous dampers in Chapter 4 and 5 and for the time behavior of vibrations
in certain norms, which are generalized in Chapter 6.

3.1 Vibrations

Let us start this section with the definition of a vibrational system.

Definition 3.1.1. Let M,C,K ∈ Rn×n be symmetric and real n × n matrices. Fur-
thermore, let M,K be positive definite, i.e., M,K > 0, the pencil (M,K) be regular
and C be positive semidefinite, i.e., C ≥ 0. Then the second order ordinary differential
equation

Mx′′ + Cx′ +Kx = g(t) (3.1)

is called a vibrational system. Here, M,C and K are called mass, damping and stiffness
matrix, respectively, and g(t) is a time-dependent external force vector.

As described in Section 2.5.4, the homogeneous vibrational system (3.1), where g = 0,
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corresponds to a quadratic eigenproblem (QEP),

Q(λ)v =
(
Mλ2 + Cλ+K

)
v = 0 (3.2)

for eigenvalues λ and eigenvectors v. Let (λk, vk) for k = 1, . . . , 2n be eigenpairs of the
QEP (3.2). In the following we assume for notational simplicity that the eigenvalues
λk for k = 1, . . . , 2n are non-defective. The case for defective eigenvalues is considered
in Section 2.5.4. In general λk and vk of the QEP (3.2) are complex, i.e., λk = dk +
iωk, where dk, ωk ∈ R. Then {x1(t), . . . , x2n(t)} is a fundamental solution to the
homogeneous vibrating system Mx′′ + Cx′ +Kx = 0, where

xk(t) = eλkt = edkt (cos(tωk) Re(vk)− sin(tωk) Im(vk)) (3.3)

is a basic solution to the vibrational system for k = 1, . . . , 2n. xk(t) describes how
the system vibrates between the two configurations given as Re(vk) and Im(vk). Fur-
thermore, it shows that dk and ωk correspond to damping and circular frequency,
respectively. Since the solutions of linear homogeneous differential equations form a
vector space, the general solution to Mx′′ + Cx′ +Kx = 0 is obtained as

x(t) =
2n∑
k=1

cke
λkt =

2n∑
k=1

cke
dkt (cos(tωk) Re(vk)− sin(tωk) Im(vk)) , (3.4)

where ck ∈ R for k = 1, . . . , 2n. If there exists ωk 6= 0, where k = 1, . . . , 2n, the
vibrational system has one or more frequencies that it vibrates at once it has been
disturbed. When the forcing frequency of g(t) is close to a frequency ωk, where k =
1, . . . , 2n, the amplitude of the vibration may get extremely high. This phenomenon is
called resonance and often it is an unwanted and very harmful behavior since it leads
to material stress.

0 2π 4π 6π 8π

−1

0

1

TIME t

S
O
L
U
T
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x1(t)

x2(t)

x3(t)

x4(t)

Figure 3.1: Solutions for a Jeffcott rotor on an anisotropic shaft for t ∈ [0, 10π].

A basic solution xk in (3.3) is called asymptotically stable if xk(t)→ 0 as t→∞. xk(t)

– 32 –– 32 –



3.1 Vibrations

is asymptotically stable if and only if dk < 0, i.e., λk ∈ C−, compare Remark 2.5.17.
A basic solution xk in (3.3) is called stable if there exists C > 0 such that |x(t)| ≤ C
for any t ∈ R. x(t) is stable and not asymptotically stable if and only if dk = 0, i.e.,
λk = iωk is purely imaginary, compare Remark 2.5.17. Then the basic solution xk is
given as

xk(t) = cos(tωk) Re(vk)− sin(tωk) Im(vk), (3.5)

which has no damping part and theoretically oscillates forever. Obviously, asymptotic
stability implies stability, i.e., if xk(t) is asymptotically stable then it is stable as
well. A general solution x(t) is called (asymptotically) stable if and only if xk(t)
for k = 1, . . . , 2n is (asymptotically) stable. In Figure 3.1 the solutions xk(t) for
k = 1, . . . , 4 of a Jeffcott rotor on an anisotropic shaft are shown. The Jeffcott rotor
is investigated in more detail in [All09] and it serves as an example in Chapter 6.
In this thesis we do not investigate a single vibration as given in equation (3.3), but
all vibrations at once, i.e., we investigate the time behavior and how all vibrations
can be reduced at once for x(t), where x(t) is given in equation (2.49) and (3.4) for
defective and non-defective eigenvalues, respectively, as the solution to a vibrational
system (3.1). Therefore, we consider x(t) in a norm, i.e., ‖x(t)‖ and investigate its
transient behavior by two-sided bounds, i.e., f`(t) ≤ ‖x(t)‖ ≤ fu(t) for all t ≥ t0 in
Chapter 6. The most well-known upper bound depends on the spectral abscissa α, see
e.g. [Koh02], where the spectral abscissa is defined as the maximal real part of the
eigenvalues of the QEP (3.2),

α = max {Reλ : λ ∈ Λ} . (3.6)

The spectral abscissa gives the asymptotic rate of the vibrational system (3.1). Then
the upper bound based on the spectral abscissa can be defined as fu(t) = Ceαt [Koh02],
where an optimal constant C > 0 can be determined by the differential calculus of
norms, which is introduced in the following section, i.e., we investigate ‖f(t)‖, where
f : R→ Cn is a general time-varying function in various norms ‖ · ‖. In general ‖f(t)‖
cannot be classically differentiated as it can be seen by the following simple example.

Example 3.1.2. The absolute value of the linear function t is obviously not classically
differentiable at t = 0. The absolute value coincides with the maximum norm and the
Manhattan norm for n = 1.

By the above example, we see that not every norm can be classically differentiated
everywhere. But at the exceptional point t = 0, the absolute value function has a
left derivative, D−|t| = −1 and a right derivative, D+|t| = +1, which do not coincide.
Obviously, if x(t) is asymptotically stable, then the solution and the upper bound
fu(t) converges to zero, i.e., ‖x(t)‖, fu(t) → 0 as t → ∞. Here, we want to classify
this behavior more precisely. Vibrations x(t) behave different in different norms and
as a motivating example we return to the time behavior of the Jeffcott rotor on an
anisotropic shaft and show the solution x(t) in various norms in Figure 3.2. We are
interested in choosing a norm such that it fulfills certain properties such as monotonic
convergence, decoupling and filtering which will be defined later on in this chapter. We

analyze the behavior of x(t) in various p-norms, where ‖x(t)‖p := (
∑n

i=1 |xi(t)|p)
1
p for

p ∈ [1,∞) has been introduced in (2.10). ‖x‖p for 0 < p < 1 is often called a norm
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Figure 3.2: Time behavior for a Jeffcott rotor on an anisotropic shaft for t ∈ [0, 10π].

but actually it is not since it is not subadditive. In Figure 3.3 unit “circles” of ‖ · ‖p
for p = 1

2
, 1, 2,∞ are visualized.

1

−1

1−1

‖ · ‖0.5 = 1 ‖ · ‖1 = 1 ‖ · ‖2 = 1 ‖ · ‖∞ = 1

Figure 3.3: Unit “circles” of ‖ · ‖p for p = 1
2
, 1, 2,∞.

3.2 Differential Calculus of Norms

In this section, we investigate the differentiability of the norms ‖f(t)‖p for p ∈ [1,∞]
w.r.t. a complex-valued vector function f : R → Cn. ‖f(t)‖p cannot be classically
differentiated everywhere as seen in Example 3.1.2. A further example for non-classic
differentiability is ‖x(t)‖1 and ‖x(t)‖∞ in Figure 3.2. Obviously, if a function can be
differentiated, then the left and right derivative coincide with the usual derivative. In
the latter, the results we obtain should be carried over to vibrational systems (3.1) that
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evolve in time, hence we restrict ourselves to right derivatives and derive expressions
for right derivatives of ‖ · ‖p for p ∈ [1,∞]. First, we are interested how ‖f(t)‖p
behaves locally and therefore, we cite a regularity lemma from [Koh02]. We consider
the mapping t 7→ ‖f(t)‖p for a sufficiently smooth vector function f .

Lemma 3.2.1 ([Koh02]). Let f : R→ Cn be an n-dimensional complex-valued vector
function that is m times continuously differentiable, i.e., f ∈ Cm(R,Cn), and p ∈
[1,∞). For every t0 ∈ R there exists a number δ > 0 and a function f̃ : t 7→ f̃(t), which

is real and m times continuously differentiable on [t0, t0 +δ], i.e., f̃ ∈ Cm([t0, t0 +δ],R),
such that

f̃(t) = ‖f(t)‖p
for every t ∈ [t0, t0 + δ].

Lemma 3.2.2 ([Koh02]). Let f : R→ Cn be an n-dimensional complex-valued vector
function that is m times continuously differentiable, i.e., f ∈ Cm(R,Cn). Assume
that each two components of f are either identical or they intersect each other at
most finitely often near t0. Then there exists a number δ > 0 and a function f̃ :
t 7→ f̃(t), which is real and m times continuously differentiable on [t0, t0 + δ], i.e.,

f̃ ∈ Cm([t0, t0 + δ],R), such that

f̃(t) = ‖f(t)‖∞

for every t ∈ [t0, t0 + δ].

Let f ∈ Cm(R,Cn), then all right derivatives Dk
+‖f(t)‖p for k ≤ m exist for p ∈ [1,∞)

due to Lemma 3.2.1. For p =∞ we have to further assume that any two components of
f are either identical or their intersection is finite (see Lemma 3.2.2). This assumption
may be difficult to prove, but if f is analytic for t ≥ t0 or in a neighborhood of t0,
then this assumption is fulfilled for the solution x(t) of the linear first order ordinary
differential equation x′ = Ax [Koh02]. By Lemma 3.2.1 and 3.2.2 formulae for the right
derivatives can be derived and are stated for k = 1, 2 and p = 1, 2,∞. In the following
let us assume that f is at least twice continuously differentiable, i.e., f ∈ Cm(R,Cn),
where m ≥ 2. By the Taylor series in Theorem 2.3.9 and Corollary 2.3.10 it follows
that

f(t) = f(t0) +Df(t0)(t− t0) +D2f(t0)
(t− t0)2

2!
+ o((t− t0)2),

where t ≥ t0. We start with the general case where p ∈ [1,∞) and in the latter we state
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expressions for p = 1, 2,∞. First, we define the following functionals for i ∈ {1, . . . , n}:

S
(0)
i := |fi(t0)| ,

S
(1)
i :=

{
Re(fi(t0)) Re(Dfi(t0))+Im(fi(t0)) Im(Dfi(t0))

|fi(t0)| , fi(t0) 6= 0,

|Dfi(t0)| , fi(t0) = 0,

S
(2)
i :=


|Dfi(t0)|2+Re(fi(t0)) Re(D2fi(t0))+Im(fi(t0)) Im(D2fi(t0))

|fi(t0)|
− [Re(fi(t0)) Re(Dfi(t0))+Im(fi(t0))+Im(fi(t0))]2

|fi(t0)|3 , fi(t0) 6= 0,
Re(Dfi(t0)) Re(D2fi(t0))+Im(Dfi(t0)) Im(D2fi(t0))

|Dfi(t0)| , fi(t0) = 0, Dfi(t0) 6= 0,

|D2fi(t0)| , fi(t0) = 0, Dfi(t0) = 0.

We start with the case p =∞ and define the following index sets recursively,

I−1 := {1, . . . , n} ,

I0 :=

{
i0 ∈ I−1 : S

(0)
i0

= max
i∈I−1

S
(0)
i

}
,

I1 :=

{
i1 ∈ I0 : S

(1)
i1

= max
i∈I0

S
(1)
i

}
,

and with this we cite the following theorem from [Koh02].

Theorem 3.2.3 ([Koh02]). Let f : R → Cn be an n-dimensional vector function
that is twice continuously differentiable, i.e., f ∈ C2(R,Cn) and let t0 ∈ R. Suppose
additionally that each two components of f are either identical or they intersect each
other at most finitely often near t0. Then,

‖f(t0)‖∞ = max
i∈I−1

S
(0)
i ,

D1
+‖f(t0)‖∞ = max

i∈I0
S

(1)
i ,

D2
+‖f(t0)‖∞ = max

i∈I1
S

(2)
i .
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For the more general case p ∈ [1,∞) we define the following functionals:

S(0,p) :=

(
n∑
i=1

(
S

(0)
i

)p)1/p

,

S(1,p) :=


∑n
i=1

(
S
(0)
i

)p−1
S
(1)
i

(S(0,p))
p−1 , S(0,p) 6= 0,(∑n

i=1

(
S

(1)
i

)p)1/p

, S(0,p) = 0,

S(2,p) :=



∑n
i=1

(
S
(0)
i

)p−1
S
(2)
i +(p−1)

∑n
i=1

(
S
(0)
i

)p−2(
S
(1)
i

)2

(S(0,p))
p−1

+
(1−p)

(∑n
i=1

(
S
(0)
i

)p−1
S
(1)
i

)2

(S(0,p))
2p−1 , S(0,p) 6= 0,

∑n
i=1

(
S
(1)
i

)p−1
S
(2)
i

(S(1,p))
p−1 , S(0,p) = 0, S(1,p) 6= 0,(∑n

i=1

(
S

(2)
i

)p)1/p

, S(0,p) = S(1,p) = 0.

Theorem 3.2.4 ([Koh02]). Let f : R→ Cn be an n-dimensional vector function that
is twice continuously differentiable, i.e., f ∈ C2(R,Cn) and let t0 ∈ R and p ∈ [1,∞).
Then

‖f(t0)‖p = S(0,p),

D1
+‖f(t0)‖p = S(1,p),

D2
+‖f(t0)‖p = S(2,p).

By Theorem 3.2.4 we have derived expressions for ‖f(t0)‖p and its first two right
derivatives D1

+‖f(t0)‖p and D2
+‖f(t0)‖p for p ∈ [1,∞]. The results that we have

obtained in this section can easily be transferred to vibrations x(t), which are solutions
to a vibrational system (3.1), since x(t) is obviously twice continuously differentiable
or even analytic.

Let us finally state the first derivative of the energy norm and the scalar product, which
will be used in Section 3.3.

Example 3.2.5. Let B ∈ Cn×n be a positive definite Hermitian matrix, i.e., B > 0
and f : R → Cn be differentiable. Then the B energy norm is well-defined in (2.14)
and the first derivative of the B energy norm is given as

d

dt
‖f(t)‖B =

〈f ′(t), f(t)〉B + 〈f(t), f ′(t)〉B
‖f(t)‖B

,

and the first derivative of the B-scalar product is given as

d

dt
‖f(t)‖2

B =
d

dt
〈f(t), f(t)〉B = 〈f ′(t), f(t)〉B + 〈f(t), f ′(t)〉B.
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3.3 Monotonic Time Behavior of Vibrations by
Algebraic Lyapunov Equations

In this section, we investigate the behavior of vibrations x(t) as the solution to first
order system of ODEs,

x′(t) = Ax(t), (3.7)

where A ∈ CN×N . The vibrational system can be rewritten as first order system of
ODEs, see Section 2.5.4. In Section 3.4 we investigate a transformation of this kind
in more detail. Here, we consider the vibrations x(t) in certain norms ‖ · ‖ over time.
Obviously, if A is stable, i.e., Λ(A) ⊂ C−, then the solution to the first order system of
ODEs converges to zero, i.e., ‖x(t)‖ → 0 as t → ∞ in any norm ‖ · ‖. The vibrations
x(t) behave different in different norms and we derive with the help of the so-called
algebraic Lyapunov equation (ALE) for a stable matrix A, a norm such that the norm
convergence is monotonic. So let us start with defining the so-called algebraic Lyapunov
equation (ALE), which will be heavily used in this thesis.

Definition 3.3.1. Let A,W,P ∈ CN×N . Then

AHP + PA = −W (3.8)

is called an algebraic Lyapunov equation (ALE).

The algebraic Lyapunov equation (3.8) can be transformed with the help of the Kro-
necker product and the vectorization operation into(

In ⊗ AH + AT ⊗ In
)

vec(P ) = − vec(W ). (3.9)

By the above transformation, we obtain the existence and uniqueness result in Theorem
3.3.2 of an algebraic Lyapunov equation (3.8), which can be found e.g. in [Ant05].

Theorem 3.3.2. The algebraic Lyapunov equation has a unique solution P for all W
if and only if AH and −AT have no common eigenvalues.

Proof. Based on the above transformation into Kronecker form (3.9). Details are given
e.g. in [Ant05].

For a stable matrix A, the solution to an algebraic Lyapunov equation can be defined
in the following lemma.

Lemma 3.3.3 (e.g. in [Ant05]). Let A,W ∈ CN×N and A be stable, i.e., Λ(A) ⊆ C−.
Then

P =

∫ ∞
0

eA
H tWeAt dt

solves the algebraic Lyapunov equation (3.8).

Theorem 3.3.4. Given any W > 0, there exists a unique P > 0 satisfying the algebraic
Lyapunov equation (3.8) if and only if the first order ODE system (3.7) is globally
asymptotically stable.
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Proof. The proof is based on Lemma 3.3.3 and is given e.g. in [Ant05].

Now, we derive a matrix P ∈ CN×N , which is Hermitian and positive definite, such
that x(t) behaves monotonic in the P -scalar product, i.e., ‖x(t)‖2

P = 〈x(t), x(t)〉P ↘ 0
as t→∞, where the vibrations x(t) are solutions to the first order ODE system (3.7)
for a stable matrix A ∈ CN×N , i.e., Λ(A) ⊂ C−. Let us in the following assume that
A is stable, i.e., Λ(A) ⊂ C−. The derivative of the P -scalar product, i.e., d

dt
‖x(t)‖2

P , is
given in Example 3.2.5, which can be rewritten as

d

dt
‖x(t)‖2

P = 〈x′(t), x(t)〉P + 〈x(t), x′(t)〉P
= 〈Ax(t), x(t)〉P + 〈x(t), Ax(t)〉P
= 〈Ax(t), Px(t)〉+ 〈x(t), PAx(t)〉
= 〈
(
AHP + PA

)
x(t), x(t)〉,

where x(t) is the solution to the first order ODE system (3.7). Let P ∈ CN×N be the
solution to the corresponding algebraic Lyapunov equation AHP + PA = −W for any
W ∈ CN×N , which is Hermitian and positive definite, i.e., W > 0, then P is Hermitian
and positive definite by Theorem 3.3.4. Hence, d

dt
‖x(t)‖2

P is monotonic, since

d

dt
‖x(t)‖2

P = 〈
(
AHP + PA

)
x(t), x(t)〉 = −〈Wx(t), x(t)〉 ≤ 0, (3.10)

for any t ∈ R.

Moreover, any square matrix A ∈ CN×N can be decomposed in its symmetric and
antisymmetric part, i.e.,

A = AS + AA,

where AS and AA denote the symmetric and antisymmetric part of the matrix A, i.e.,

AS = 1
2

(
A+ AH

)
, AA = 1

2

(
A− AH

)
.

In the following we derive conditions for a matrix P such that ‖x(t)‖2
P is monotonic.

We suppose that the symmetric part of the matrix A is negative definite, i.e., AS < 0,
which in many instances is not fulfilled. AS < 0 can be expressed as an algebraic
Lyapunov equation

2AS = A+ AH = AHP + PA = −W,
where W > 0 and P = I is the solution to the algebraic Lyapunov equation. Then
‖x(t)‖2 = 〈x(t), x(t)〉 decreases monotonically along every nonzero trajectory, i.e., in
equation (3.10) the matrix P is chosen as the identity matrix.

The stability of vibrations x(t), where x(t) are solutions to the first order ODE system
(3.7), can be done by transient analysis. But in the following we analyze the stability
of x(t) by defining a matrix R ∈ CN×N such that ‖x(t)‖R ↘ 0 as t→∞. Now, let us
derive the matrix R. We therefore consider the algebraic matrix eigenvalue problem,

Y AH + AY = µY, (3.11)

where all nontrivial µ ∈ C and Y ∈ CN×N satisfying (3.11) are called eigenvalues and
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eigenmatrices, respectively. The matrix eigenvalue problem can be transformed into a
standard eigenvalue problem (SEP) 2.1.1 via (3.9). Hence, it has n2 eigenvalues and
eigenmatrices. Suppose µ = ν + λ, then (3.11) can be transformed into

Y
(
AH − νI

)
+ (A− λI)Y = 0.

An obvious solution is obtained if both terms vanish. Here, we consider A to be non-
defective, i.e., all its eigenvalues are simple or semi-simple. We choose λ to be an
eigenvalue of A and ν as an eigenvalue of AH (or correspondingly ν is an eigenvalue of
A), the columns of Y must then be (right) eigenvectors of A and the rows of Y must
then be left eigenvectors of AH . Therefore, µ and Y can be expressed by the eigenpairs
of the standard eigenproblem (SEP) Avi = λivi, i.e., µij = λi + λj and Ri,j = viv

H
j

for i, j = 1, . . . , n. Since there exist n2 eigenvalues and eigenmatrices of the matrix
eigenvalue problem in (3.11), we have found all of them. The eigenpairs (µij, Ri,j) have
been obtained e.g. in [Ant05; BM60].
We consider the solution x(t) to (3.7) in the energy half norm ‖x(t)‖2

Ri
, where Ri = viv

H
i

is Hermitian and µi = λi + λi < 0, since A is stable. In this norm, convergence is
monotonic, since

d

dt
‖x(t)‖2

Ri
=

d

dt
〈x(t), Rix(t)〉 = 〈Ax(t), Rix(t)〉+ 〈x(t), RiAx(t)〉

= 〈
(
RiA

H + ARi

)
x(t), x(t)〉 = µi〈Rix(t), x(t)〉 = µi‖x(t)‖2

Ri
≤ 0.

The idea for deriving this norm is due to [Koh08], where the adjoint matrix eigenprob-
lem has been considered. We now consider the more general case when A is defective
and follow the presentation in [Koh08]. Let v

(i)
k for k = 1, . . . ,mi be the chain of right

principal vectors of A, i.e.,
Av

(i)
k = λiv

(i)
k + v

(i)
k−1

and v
(i)
0 = 0 for i = 1, . . . ,m, corresponding to an eigenvalue λi of A. Let m be the

number of Jordan blocks and mi the algebraic multiplicity of the eigenvalue λi. Then
we define the following matrices:

R
(k,k)
i := v

(i)
k v

(i)H

k for k = 1, . . . ,mi , i = 1, . . . ,m,

Ri :=
∑mi

k=1R
(k,k)
i ,

R :=
∑m

i=1 Ri.

(3.12)

The matrices Ri are eigenmatrices of the matrix eigenvalue problem (3.11) correspond-
ing to an eigenvalue µ = 2 Re(λi). We recall the following results given in Theorems
3.3.5, 3.3.6 and Lemma 3.3.7 from [Koh08] for a time-invariant system x′ = Ax and a
possibly non-diagonalizable system matrix A.

Theorem 3.3.5 ([Koh08]).

1. R
(k,k)
i = v

(i)
k v

(i)H

k are Hermitian and positive semidefinite for k = 1, . . . ,mi and
i = 1, . . . ,m,

2. Ri =
∑mi

k=1R
(k,k)
i are Hermitian and positive semidefinite for i = 1, . . . ,m and
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3. R =
∑m

i=1Ri is Hermitian and positive definite.

Hence, ‖ · ‖R is a norm defined by ‖v‖2
R = 〈Rv, v〉 for v ∈ Cn and ‖ · ‖Ri is a semi-norm

defined by ‖v‖2
Ri

= 〈Riv, v〉 for v ∈ Cn. In general, ‖·‖Ri does not fulfill the definiteness
property in (2.8). Furthermore, the square of the semi-norm ‖ · ‖2

Ri
has a decoupling

and filter effect shown by the next theorem [Koh08].

Theorem 3.3.6 ([Koh08]). Let x(t) be the solution to the IVP (3.7), x′ = Az , x(t0) =
x0, and

p
(i)
x0,k−1(t) := 〈x0, v

(i)
1

tk−1

(k−1)!
+ . . .+ v

(i)
k−1t+ v

(i)
k 〉, (3.13)

for k = 1, . . . ,mi, i = 1, . . . ,m. Then

‖x(t)‖2

R
(k,k)
i

=
∣∣∣p(i)
x0,k−1(t)

∣∣∣2 e2tReλi for t ∈ R, (3.14)

and

‖x(t)‖2
R =

m∑
i=1

mi∑
k=1

‖z(t)‖2

R
(k,k)
i

=
m∑
i=1

mi∑
k=1

∣∣∣p(i)
x0,k−1(t)

∣∣∣2 e2tReλi for t ∈ R.

The polynomials in p
(i)
x0,k−1(t) of equation (3.13) are due to the Jordan blocks, hence to

the non-diagonalizability of the matrix A, i.e., if the matrix A is diagonalizable, then
all polynomials in (3.13) are constant in time.

Lemma 3.3.7. [Koh08] Let

ψ
(i)
k (t) := p

(i)
x0,k−1(t)etReλi for t ∈ R, (3.15)

ψ(i)(t) = [ψ
(i)
1 , . . . , ψ

(i)
k , . . . ψ

(i)
mi ]

T for i = 1, . . . ,m and k = 1, . . . ,mi and ψ(t) =
[ψ(1)(t)T , . . . , ψ(i)(t)T , . . . , ψ(r)(t)T ]T . Then

‖x(t)‖R = ‖ψ(t)‖2 for t ∈ R. (3.16)

Lemma 3.3.7 shows the connection to the Euclidean norm of the function ψ. By the
equivalence of norms in finite-dimensional vector spaces, a two-sided bound c‖ψ(t)‖p ≤
‖x(t)‖R ≤ C‖ψ(t)‖p for p ∈ [1,∞] can be derived. For p = 2, the constants c and C
can be chosen as unity by Lemma 3.3.7.

3.4 Vibration Reduction by Viscous Dampers

In this section we introduce various vibration reduction problems for viscous dampers
that will be considered in this thesis. This section is structured as follows. First, we
linearize the vibrational system (3.1) in Section 3.4.1. In Section 3.4.2 we investigate
the damping matrix C for viscous dampers in more detail and obtain a structured
linearization of the vibrational problem. In Section 3.4.3 we introduce the optimization
criterion that will be used in this thesis and finally, in Section 3.4.4 we define various
vibration reduction problems for viscous dampers that we will consider in Chapters 4
and 5.
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3.4.1 Linearization

Here, we linearize the vibrational system (3.1), i.e., we transform the vibrational system
to a first order system. There are infinitely many linearizations since any N ∈ Gln(C)
can be chosen in equation (2.48). In this section we want to focus on a linearization
that exploits structural properties of the vibrational system (3.1). Since M and K in
(3.1) are positive definite and real, there exists a Cholesky decomposition (see e.g. in
[HJ85]) of K = L1L

T
1 and M = L2L

T
2 with L1, L2 ∈ Gln(R) being lower triangular

matrices. A linearization of the vibrational system (3.1) can be obtained as

d

dt

[
LT1 x
LT2 x

′

]
=

[
0 LT1L

−T
2

−L−1
2 L1 −L−1

2 CL−T2

] [
LT1 x
LT2 x

′

]
, (3.17)

which we will investigate in the following. By a singular value decomposition (SVD)
e.g. [HJ85, Theorem 7.3.5, p. 414], we obtain

L−1
2 L1 = W2ΩW T

1 , (3.18)

where W1,W2 are real, orthogonal matrices and Ω is a diagonal matrix with its singular
values on the diagonal in decreasing order, i.e.,

Ω = diag(ω1, . . . , ωn), (3.19)

where ω1 ≥ . . . ≥ ωn > 0. The singular values ωi for i = 1, . . . , n are the positive roots
of (L−1

2 L1)(L−1
2 L1)T , i.e., they are the eigenvalues of the generalized eigenproblem,

Kϕ = ω2Mϕ. (3.20)

The generalized eigenproblem (3.20) corresponds to a second order system of ordinary
differential equations,

Mx′′ +Kx = 0, (3.21)

where the solution x is called free vibration and has the form (3.5), where the singular
value ωi is defined above and it is also known as the circular frequency of xi in (3.3)
for i = 1, . . . , 2n. Let us then define Φ as

Φ := L−T2 W2, (3.22)

where ϕi is a column of Φ = [ϕ1, · · · , ϕn] for i = 1, . . . , n, and ϕi is a (right) eigenvector
for the generalized eigenproblem (3.20). ϕi is a left eigenvector of the GEP to the same
eigenvalue ω2

i for i = 1, . . . , n, since M and K are symmetric and positive definite.
Hence, we have found a congruence transformation by Φ in view of Theorem 2.1.6,
which diagonalizes M and K,

ΦTMΦ = W T
2 L
−1
2 L2L

T
2L
−T
2 W2 = I,

ΦTKΦ = W T
2 L
−1
2 L1L

T
1L
−T
2 W2 = W T

2 L
−1
2 W1W

T
1 L1L

T
1L
−T
2 W2

= ΩΩT = Ω2 = diag(ω2
1, . . . , ω

2
n).

(3.23)

Remark 3.4.1. For vibrational modal analysis one considers the vibrational system
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(3.1), where damping is generally ignored, i.e., one exactly considers (3.21). Due to
the structure of M and K, it is often preferably to convert (3.21) by the congruence
transformation Φ into a decoupled second order system of ordinary differential equations
z′′ + Ω2z = 0, where x = Φz.

We introduce the following lemma in order to rewrite the linearization (3.17).

Lemma 3.4.2. The matrices

[
0 Ω
−Ω −ΦTCΦ

]
and

[
0 LT1L

−T
2

−L−1
2 L1 −L−1

2 CL−T2

]
are orthog-

onal equivalent.

Proof. Let W = blockdiag(W1,W2), where W1,W2 are real, orthogonal matrices which
are defined in (3.18). Hence,[

W1

W2

] [
0 Ω
−Ω −ΦTCΦ

] [
W T

1

W T
2

]
=

[
0 W1ΩW T

2

−W2ΩW T
1 −W2Φ

TCΦW T
2

]
=

[
0 W1(W T

2 L
−1
2 L1W1)TW T

2

−W2(W T
2 L
−1
2 L1W1)W T

1 −W2W
T
2 L
−1
2 CL−T2 W2W

T
2

]
=

[
0 LT1L

−T
2

−L−1
2 L1 −L−1

2 CL−T2

]

Let y1 := W T
1 L

T
1 x and y2 := W T

2 L
T
2 x
′, then the linearization (3.17) can be rewritten

by Lemma 3.4.2 as,

d

dt

[
y1

y2

]
= W T

[
0 LT1L

−T
2

−L−1
2 L1 −L−T2 CL−1

2

]
W

[
y1

y2

]
=

[
0 Ω
−Ω −ΦTCΦ

] [
y1

y2

]
. (3.24)

Obviously, (3.24) is a linearization of the vibrational system (3.1) as well. The initial

condition is given as y0 = y(0) =

[
W T

1 L
T
1 x0

W T
2 L

T
2 x
′
0

]
.

3.4.2 Damping

Now, we investigate the damping matrix C of the vibrational system (3.1) in more
detail. We assume that damping consist of internal damping Cint and external damping
Cext, which in our case is passive damping by viscous dampers, i.e.,

C = Cint + Cext. (3.25)

We say that the internal damping matrix Cint satisfies an orthogonality relation w.r.t.
Φ, if

ϕTi Cintϕj = 0, for i 6= j, (3.26)

i.e., the internal damping matrix Cint is diagonalized by the same congruence trans-
formation Φ defined in (3.22). Classical damping models such as Rayleigh damping,
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i.e.,
CRayleigh = αM + βK,

for α, β ≥ 0 and modal damping

Cmodal = 2γM1/2
√
M−1/2KM−1/2M1/2,

for γ ≥ 0 fulfill the orthogonality relation (3.26). For notational simplicity we do not
want to distinguish between diverse internal damping models. Hence, we choose modal
damping as internal damping, i.e., Cint = Cmodal and therefore,

ΦTCintΦ = ΦTCmodalΦ = 2γΩ.

We remark that the theory and algorithms that are derived in this thesis can be applied
as long as the internal damping satisfies the orthogonality relation (3.26).
We distinguish in this thesis two diverse external damping matrices, which are needed
for the definition of vibration reduction problems for viscous dampers in Section 3.4.4.
Both external damping matrices are determined by passive viscous dampers, but the
difference lies in the number of allowed external dampers. While the external damping
matrix consists in the first case of r � n external viscous dampers and in the second
case of n external viscous dampers.

Case 1: The position of r � n external viscous dampers, which are indexed as
non-negative integers ji ∈ {1, . . . , n}, are fixed. Furthermore, the external
damping matrix depends on the viscosities νi ≥ 0 for i = 1, . . . , r,

Cext =
r∑
i=1

νiejie
T
ji
. (3.27)

Hence, rank(Cext) = r and in general we are interested in only a few external
dampers, i.e., r � n. ΦTCextΦ can be rewritten as

ΦTCextΦ = V D(ν)V T , (3.28)

where
V = ΦT

[
ej1 ej2 . . . ejr

]
(3.29)

and D(ν) = diag(ν1, . . . , νr).

Case 2: Here, n external viscous dampers are allowed, which are indexed as non-
negative integers i ∈ {1, . . . , n}. Furthermore, the external damping matrix
depends on the viscosities νi ≥ 0 for i = 1, . . . , n,

Cext =
n∑
i=1

νieie
T
i = D(ν), (3.30)

where D(ν) = diag(ν1, . . . , νn). Even though Cext in (3.30) exists of n
external viscous dampers are realized, only r � n external viscous dampers
are realized. This is guaranteed by additional constraints in the vibration
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reduction problems for viscous dampers in Section 3.4.4. ΦTCextΦ can be
rewritten as

ΦTCextΦ = V D(ν)V T , (3.31)

where
V = ΦT (3.32)

and D(ν) = diag(ν1, . . . , νn).

In the following we derive a different state space representation such that the state
space matrix can be represented by a block diagonal matrix and low-rank matrix.
This representation favors our computation since the state space matrix can easily be
inverted due to the Sherman-Morrison-Woodbury formula. We therefore introduce the
perfect shuffle permutation P , which splits a set into two piles and interleaves them.
More precisely, it is the permutation, which maps

k 7→
{

2k − 1, k ≤ n,

2(k − n), k > n,
(3.33)

for k = 1, . . . , 2n, as in [BTT11]. We then define

z := Py =



y1

yn+1

y2

yn+2
...
yn
y2n


and multiply (3.24) by P and obtain the following first order system of ordinary dif-
ferential equations,

z′ = Az, (3.34)

where A = P

[
0 Ω
−Ω −ΦTCΦ

]
P T depends on the damping matrix C. For simplicity

we have assumed internal damping to be modal damping and hence, ΦTCintΦ = 2γΩ.
Before, we have distinguished two cases for external damping, which in the following
will be handled separately.

Case 1: If external damping Cext is given in (3.27), i.e., Cext =
∑r

i νiejie
T
ji

. We can

rewrite ΦTCΦ as 2γΩ +V D(ν)V T , where V = ΦT
[
ej1 · · · ejr

]
and D(ν) =

diag(ν1, . . . , νr), see (3.28). Therefore, the matrix A can be decomposed
into

A = P

[
0 Ω
−Ω −2γΩ− V D(ν)V T

]
P T

= B(1) ⊕B(2) ⊕ . . .⊕B(n)︸ ︷︷ ︸
=:B

−V̂ D(ν)V̂ T , (3.35)
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where

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, for i = 1, . . . , n,

V̂ = P

[
0
V

]
=



0 0 . . . 0
v11 v12 . . . v1r

0 0 . . . 0
v21 v22 . . . v2r
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnr


∈ R2n×r,

D(ν) = diag(ν1, . . . , νr) ∈ Rr×r

(3.36)

and (V )ij = vij for i = 1, . . . , n and j = 1, . . . , r.

Case 2: If external damping Cext is given in (3.30), i.e., Cext =
∑n

i νieie
T
i = D(ν),

where D(ν) = diag(ν1, . . . , νn), we can rewrite ΦTCΦ as 2γΩ + V D(ν)V T ,
where V = ΦT

[
ej1 · · · ejr

]
and D(ν) = diag(ν1, . . . , νr), see (3.28). There-

fore, the matrix A can be decomposed into

A = P

[
0 Ω
−Ω −2γΩ− V D(ν)V T

]
P T

= B(1) ⊕B(2) ⊕ . . .⊕B(n)︸ ︷︷ ︸
=:B

−V̂ D(ν)V̂ T , (3.37)

where

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, for i = 1, . . . , n,

V̂ = P

[
0
V

]
=



0 0 . . . 0
v11 v12 . . . v1n

0 0 . . . 0
v21 v22 . . . v2n
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnn


∈ R2n×n,

D(ν) = diag(ν1, . . . , νn) ∈ Rn×n

(3.38)

and (V )ij = vij for i = 1, . . . , n and j = 1, . . . , n.

Remark 3.4.3. We want to emphasize that B ∈ R2n×2n is a block diagonal matrix
with 2 × 2-blocks B(i) for i = 1, . . . , n, i.e., B = blockdiag

(
B(1), . . . , B(n)

)
. Hence, B

is cheaply invertible. The matrix B is obtained from vibrational modal analysis (see
Remark 3.4.1) and the corresponding congruence transformation by Φ defined in (3.22).
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Remark 3.4.4. The matrix A in (3.35) and (3.37) is called asymptotically stable if
all its eigenvalues are contained in the open left complex half-plane, i.e., Λ(A) ⊆ C−,
compare Remark 2.5.17. This property is assumed for all parameters ν throughout this
thesis.

3.4.3 Optimization

In this thesis we investigate the vibrational systems (3.1) for a given set of masses and
stiffnesses in order to determine a damping matrix such that optimal evanescence is
ensured. Evanescence can be categorized via various optimization criteria that have
been considered in the literature. The most well-known criteria to judge vibrations
depend on the spectrum of the corresponding quadratic eigenproblem (3.2). In this
context we mention in the following the spectral abscissa and the damping ratio. The
spectral abscissa α is defined in (3.6) as the maximal real part of the eigenvalues of the
quadratic eigenproblem (3.2), i.e., α = max {Reλ : λ ∈ Λ}. We have seen the spectral
abscissa before in the context of an upper bound on ‖x(t)‖ as fu(t) = Ceαt, see e.g.
[Koh02]. The spectral abscissa gives the (asymptotic) behavior such that the energy of
the system vanishes [Cox98], i.e.,

α = min
{
w : ∃κ s.t. E(t) ≤ κE(0)e2wt for all t > 0

}
,

where

E(t) =
1

2
〈x′(t),Mx′(t)〉+

1

2
〈x(t), Kx(t)〉 (3.39)

is the total energy of the system and 〈·, ·〉 denotes the Euclidean inner product. Here,
the spectral abscissa is considered as a criterion in order to judge vibrations and their
decay as e.g. in [Cox98; LF99; MS76]. As the inequality E(t) ≤ κE(0)e2wt indicates,
the energy decays in general faster than at the asymptotic rate. In [LF99] conditions
for constructing a damping matrix such that this inequality is tight for all times and
all initial conditions are derived. Firstly, the QEP then has a single eigenvalue with
multiplicity 2n. In our setting this idea cannot be employed due to the structure of
the damping matrix C which is given as C = Cint + Cext. Secondly, only for the case
n = 2 an exact construction of the damping matrix is given in [LF99].

In the following we consider the damping ratio for complex eigenvalues [MS76]. It is a
measure how fast the system decays after displacement and it is defined as

ζ = −max

{
Reλ

|λ| : λ ∈ Λ

}
. (3.40)

A large damping ratio results not only in a fast decay of its mode in a few periods but
it also guarantees small amplitudes for harmonically excited systems, i.e., the systems
behave well w.r.t. perturbations [MS76].

The spectrum with Re(λ) ∈ [−1500, 0] and the respective spectral abscissa and damp-
ing ratio for the viscously damped beam shown in Figure 4.2 discretized by ten finite
elements are shown in Figure 3.4. The viscously damped beam is further investigated
in Chapters 4 and 5,

In the following we introduce the optimization criterion that we will consider through-
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Figure 3.4: Spectrum with Re(λ) ∈ [−1500, 0] for the viscously damped beam dis-
cretized by 10 finite elements and respective spectral abscissa α and damp-
ing ratio ζ = sinψ.

out this thesis. This criterion has several advantages w.r.t. the above criteria, namely
the spectral abscissa and the damping ratio, which both depend solely on the eigen-
values of the system. As we will see in Chapter 4, the total energy of the system is
twice continuously differentiable and hence, numerical methods such as steepest de-
scent or Newton’s method can be applied. Moreover, the solution of the Lyapunov
equation provides rigorous bounds to the energy decay of a vibrating system [Ves97;
Ves98; Ves03]. The criterion is based on the total energy E(t) defined in (3.39) for a
vibrational system (3.1). We rewrite the energy E(t) w.r.t. the viscosity parameter ν
as E(t; ν),

E(t; ν) =
1

2
〈x′(t; ν),Mx′(t; ν)〉+

1

2
〈x(t; ν), Kx(t; ν)〉,

where x(t; ν) is the solution the vibrational system (3.1) w.r.t. the viscosity parameter
ν. Since the vibrations x(t; ν) can be represented as (3.4), the energy can be represented
by the spectrum of the QEP (3.2). But here we want to follow the presentation in
[Ves90] by employing the minimization of the total energy w.r.t. viscosity,

min
ν≥0

∫ ∞
0

E(t; ν) dt. (3.41)

We have chosen a linearization z′ = Az in (3.34) of the vibrational system such that

E(t; ν) = 1
2
〈z(t; ν), z(t; ν)〉.
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Then we rewrite the optimization criterion by Lemma 3.3.3 as∫ ∞
0

E(t; ν) dt =
1

2

∫ ∞
0

〈z(t; ν), z(t; ν)〉 dt =
1

2

∫ ∞
0

yT0 e
AT teAty0 dt =

1

2
yT0 Xy0,

where

X =

∫ ∞
0

eA
T teAtdt. (3.42)

By Lemma 3.3.3 and Theorem 3.3.4, X is symmetric and positive definite and X is
the solution of the algebraic Lyapunov equation

ATX +XA = −I. (3.43)

We would like to minimize the total energy of the system. As mentioned above, it
is dependent on the initial condition, and to fix this dependence, we normalize the
criterion w.r.t. initial conditions with the same energy. Therefore, we consider the
2n-dimensional unit ball B = {x ∈ R2n : ‖x‖2 ≤ 1} and its surface, which is the 2n−1-
dimensional unit sphere ∂B = {x ∈ R2n : ‖x‖2 = 1}. We consider initial conditions on
∂B,

min
ν≥0

∫
‖y0‖2=1

∫ ∞
0

E(t; ν) dt dσ = min
ν≥0

1

2

∫
‖y0‖2=1

yT0 Xy0 dσ, (3.44)

where σ is a measure on the sphere ∂B. In Example 3.4.5 we see how the integration
on the unit sphere can be performed. We take the initial condition of the optimization
criterion (3.44) into account and consider the map X → 1

2

∫
‖y0‖2=1

yT0 Xy0 dσ, which is

a linear functional on the space of symmetric matrices of size 2n× 2n. In this space a
scalar product is defined by 〈X, Y 〉 = tr(Y TX). By Riesz representation theorem, see
e.g. [Kat95], a unique symmetric matrix Z exists such that

1

2

∫
‖y0‖2=1

yT0 Xy0 dσ = 1
2
〈Z,X〉 = 1

2
tr (XTZ). (3.45)

Let x ∈ R2n be arbitrary and set X = xxT . Then the matrix Z is positive semidefinite,
i.e., Z ≥ 0, since

0 ≤
∫
‖y0‖2=1

1
2
yT0 Xy0 dσ = 1

2
tr (XTZ) = 1

2
xTZx.

In the following example we derive the matrix Z for the Lebesgue measure on ∂B.

Example 3.4.5. Let Eij ∈ R2n×2n denote the matrix with all entries being zero except
for the entry (i, j) that has value 1. Let X = (X)ij ∈ R2n×2n be an arbitrary symmetric
matrix. Then we have

tr (XTZ) = tr (XZ) =
∑
i,j

Xij tr (ZEij) =
∑
i,j

Xij

∫
∂B

xTEijx dσ =
∑
i,j

Xij

∫
∂B

xixj dσ,

hence,

Zij =

∫
∂B

xixj dσ.
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Let the vector field F : U → R2n be defined as

F (x1, . . . , x2n) = (0, . . . , 0, xi, 0, . . . , 0),

where xi is at j-th position and U ⊇ B is an open set in R2n. The divergence of F is
given as

divF (x) =
n∑
k=1

∂Fk
∂xk

= δij.

By the divergence theorem of Gauss, e.g. in [For12],∫
∂B

〈F (x), ν(x)〉 dσ =

∫
B

divF (x) dnx,

where ν(x) is an outer normal of B, we obtain∫
∂B

xixj dσ =

∫
B

δij dnx = Vol(B)δij,

where Vol(B) denotes the volume of the 2n-dimensional unit ball B. Hence, by Zij =∫
∂B
xixj dσ = Vol(B)δij, we obtain Z = Vol(B)I.

By Example 3.4.5 the optimization criterion based on the averaged total energy (3.44)
is given as

minν≥0
Vol(B)

2
tr (X)

s.t. ATX +XA = −I,
(3.46)

where Vol(B)
2

is a scaling of the objective function that does not influence the optimal
viscosity ν ≥ 0 and hence it is omitted in the following. We refer to [Nak02; Nak13]
for further details on matrix Z. The reformulation of the total average energy as the
trace of a solution of a Lyapunov equation has already been presented e.g. in [Ves90;
Bra98; Nak02].

Definition 3.4.6. Let A,B,W,P ∈ CN×N and A = B + UCV H , where B is block
diagonal, i.e., B = blockdiag(B(1), . . . , B(`)) and U, V ∈ CN×r, C ∈ Cr×r. Then we
call

AHP + PA = −W (3.47)

a structured algebraic Lyapunov equation (structured ALE). Moreover, we call UCV H

a low-rank perturbation if r � N .

Remark 3.4.7.

• The algebraic Lyapunov equation ATX+XA = −I (3.43) is a structured algebraic

Lyapunov equation due to the structure of A = B − V̂ D(ν)V̂ T , which is given in
(3.35) and (3.37).

• The structured algebraic Lyapunov equation ATX + XA = −I in (3.43) is a
parameter dependent structured algebraic Lyapunov equation, since the matrix
A = B− V̂ D(ν)V̂ T , which is given in (3.35) and (3.37), depends on the viscosity
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ν, i.e., A : ν 7→ A(ν). Hence, the solution X to (3.43) is parameter dependent as
well, i.e., we can interpret X as a parameter dependent function X : ν 7→ X(ν).

Hence, the solution X(0) to the structured algebraic Lyapunov equation (3.47) is
simply given as

X(0) = X̂1 ⊕ X̂2 ⊕ . . .⊕ X̂N ,

where X̂i = 1
2ωi

[
2γ2+1
γ

1

1 1
γ

]
for i = 1, . . . , N .

• The blocks B(i) are of size Ni ×Ni for i = 1, . . . , `, i.e.,
∑`

i=1 Ni = N .

• The structured algebraic Lyapunov equation (3.47) has already been derived e.g.
in [BTT11].

3.4.4 Vibration Reduction Problems by Viscous Dampers

In this section we introduce three vibration reduction problems for viscous dampers
that will be investigated in Chapters 4 and 5.

First, we make a general assumption on the viscosities. In general a viscosity cannot
attain a negative value and for practical application an upper bound exists, i.e., we
assume that 0 ≤ νi ≤ νmax for i = 1, . . . , n.

Now, let us introduce the first two vibration reduction problems. Here, the positions
ji ∈ {1, . . . , n} for i = 1, . . . , r of the external dampers are fixed, i.e., we consider the
external damping matrix Cext in (3.27), which is given as

Cext =
r∑
i=1

νiejie
T
ji
.

The first problem that we will discuss is to compute the full spectrum for the vibrational
system, i.e, we solve the quadratic eigenproblem (3.2) for fixed viscosities νi for i =
1, . . . , r,

Q(λ)v =

(
Mλ2 +

[
Cmodal +

r∑
i=1

νiejie
T
ji

]
λ+K

)
v = 0. (QEP)

Solving (QEP) can be the basis of optimizing the spectrum of a vibrational system e.g.
w.r.t. the spectral abscissa criterion (3.6) or the damping ratio (3.40).

The second problem is the minimization of the averaged total energy for a vibrational
system (3.1) in (3.41), which has been rewritten in Section 3.4.3 as
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min
ν≥0

tr(X)

s.t. A(ν)TX +XA(ν) = −I,
0 ≤ νi ≤ νmax, i = 1, . . . , r,

where A(ν) = B − V̂ D(ν)V̂ T ,

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, i = 1, . . . , n,

V̂ =



0 0 . . . 0
v11 v12 . . . v1r

0 0 . . . 0
v21 v22 . . . v2r
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnr


∈ R2n×r,

D(ν) = diag(ν1, . . . , νr).

(OPT 1)

By minimizing the averaged total energy of a vibrational system w.r.t. viscosities in
(OPT 1) we directly reduce the vibrations xk in (3.3) for k = 1, . . . , 2n. We remark
that the spectrum of the matrix A(ν) in (OPT 1) with νi ≥ 0 for i = 1, . . . , r is in the
open left complex half-plane, i.e., Λ(A(ν)) ⊆ C−. The associated algebraic Lyapunov
equation A(ν)TX(ν) + X(ν)A(ν) = −I is called stable algebraic Lyapunov equation
and it has by Theorem 3.3.2 a unique solution. The algebraic Lyapunov equation is
structured and parameter dependent, see Remark 3.4.7.

Finally, we come to the third vibration reduction problem, where the averaged total
energy of a vibrational system is minimized. Now, not only the viscosities of the
external dampers, but also the external damping positions have to be determined. If
there are n damping positions, where an external damper can be placed and only r � n
external dampers should be placed (e.g. due to monetary constraints), we then call
this the placement problem for r viscous dampers. Here, the idea is to first allow all
external dampers to be present and then to restrict the number of damper realizations
as described in Section 3.4.2. Hence, the external damping is given as

Cext =
n∑
i=1

νieie
T
i = D(ν),

where D(ν) = diag(ν1, . . . , νn). Even though we have allowed n external dampers in
Cext, we only want to place r viscous dampers. In general we cannot expect the solution
of the optimization problem (OPT 1), where the external damping matrix has been
modified to D(ν), to be sparse. Hence, we would like to find a viscosity ν such that it
has at most r elements that are non-zero. We can write this restriction as a cardinality
function |ν|0 ≤ r, where the cardinality function is defined as |x|0 := | {i : xi 6= 0} |. It is
often called `0-“norm” but actually it is not a norm. It is widely used in the compressed
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sensing community, which in its basic variant tries to find a sparse solution of an
underdetermined linear system Ax = b, where A ∈ Rm×n and m < n. Reconstruction
of a sparse signal x is possible if the matrix A is nearly orthogonal, i.e., it fulfills the
restricted isometry property (RIP) [CRT06b; CRT06a]. But here we do not consider
an underdetermined linear system but a nonlinear function as we will see in Section
4.2. The reconstruction of a sparse signal in the setting of a Nonlinear Program is to
the best of our knowledge not possible. Hence, we have to develop other methods to
solve the problem.

In general there are
(
n
r

)
combinations of external dampers where the r external dampers

can be positioned. Hence, we have to face the combinatorial explosion of different
damper combinations. For each of these combinations the viscosities have to be opti-
mized as well, i.e., by solving the optimization problem (OPT 1). This results in an
extremely expensive procedure, which has not been solved satisfactorily yet. The ap-
proach in the literature to solve this problem is essentially based on enumeration, i.e.,
that for each combination of external dampers, a corresponding Nonlinear Program
(OPT 1) has to be solved. For reasonable large examples the damper space can only
heuristically be searched due to the combinatorial explosion of damper configurations.
The damper space is coarsely discretized and whenever a minimum may be obtained
the discretization is refined. Of course this procedure does not guarantee to find a
global minimum. For fixed damper positions the viscosities are optimized by solving
the optimization problem (OPT 1). Local optima of (OPT 1) can be found by gradi-
ent or Newton-based methods as it will be described in Chapter 4. It is advantageous
to compute the averaged total energy as the trace of an algebraic Lyapunov equation
(ALE). Various methods have been considered in this context e.g. Alternating Direction
Implicit (ADI) for an ALE with low-rank rhs [TV09], dimension reduction techniques
with an error bound [BTT11; BTT13] or the structure exploiting sign function method
[BD16], which we will describe in Chapter 4. Here, we want to introduce a different
approach. To compensate the relaxation of allowing n external dampers in the external
damping matrix Cext, we introduce binary decision variables b ∈ {0, 1}n, which model
the existence of external viscous dampers. bi = 1 if and only if at position i an external
damper is present for i = 1, . . . , n. Furthermore, the constraint νi ≤ biνmax controls
the viscosities such that they can only be non-zero if the respective external damper
is present, i.e., bi = 1 for i = 1, . . . , n. Via the additional constraint

∑n
i=1 bi ≤ r it is

guaranteed that at most r external dampers are present. Hence, we end up with the
following optimization problem:
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min
ν

tr(X)

s.t. A(ν)TX +XA(ν) = −I,
0 ≤ νi ≤ νmax, i = 1, . . . , n,

bi ∈ {0, 1} , i = 1, . . . , n,

νi ≤ biνmax, i = 1, . . . , n,
n∑
i=1

bi ≤ r,

where A(ν) = B − V̂ D(ν)V̂ T ,

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, i = 1, . . . , n,

V̂ =



0 0 . . . 0
v11 v12 . . . v1n

0 0 . . . 0
v21 v22 . . . v2n
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnn


∈ R2n×n,

D(ν) = diag(ν1, . . . , νn).

(OPT 2)

The difference between the second and the third optimization problem, namely (OPT 1)
and (OPT 2), is the external damping matrix Cext. While in the second optimiza-
tion problem (OPT 1) the positions for r external dampers are fixed, i.e., Cext =∑r

i=1 νiejie
T
ji

and hence rank(Cext) = rank(D(ν)) = r, the positions for the external
dampers in the third optimization problem (OPT 2) can be varied and the external
damping matrix is relaxed such that all positions are allowed, i.e., Cext =

∑n
i=1 νieie

T
i =

diag(ν). We note that in (OPT 2) the number of external dampers is restricted by the
constraint

∑n
i=1 bi ≤ r and hence, rank(Cext) = rank(D(ν)) ≤ r.
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4
Vibration Reduction by Viscous
Dampers

In this chapter we reduce the vibrations

xk(t) = eλkt = edkt (cos(tωk) Re(vk)− sin(tωk) Im(vk))

given in (3.3) for k = 1, . . . , 2n of the vibrational system (3.1) at once. We consider
r external dampers whose positions are fixed but their viscosities may be varied. As
discussed in Chapter 3, the vibrations are dependent on the viscosities ν, hence, they
can be expressed more explicitly as

xk(t; ν) = eλk(ν)t = edk(ν)t (cos(tωk(ν)) Re(vk(ν))− sin(tωk(ν)) Im(vk(ν)))

We investigate the two problems that were introduced in Section 3.4.4, namely solving
the quadratic eigenproblem (QEP),

Q(λ)v =

(
λ2M + λ

[
Cmodal +

r∑
i=1

νiejie
T
ji

]
+K

)
v = 0
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and the minimization of the total energy (OPT 1),

A(ν)TX(ν) +X(ν)A(ν) = −I,
0 ≤ νi ≤ νmax, i = 1, . . . , r,

where A(ν) = B − V̂ D(ν)V̂ T ,

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, i = 1, . . . , n,

V̂ =



0 0 . . . 0
v11 v12 . . . v1r

0 0 . . . 0
v21 v22 . . . v2r
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnr


∈ R2n×r,

D(ν) = diag(ν1, . . . , νr).

In Section 4.1 we introduce a structure-exploiting variant of the Ehrlich-Aberth itera-
tion in order to compute the spectrum of the vibrational system by solving the above
quadratic eigenproblem. In Section 4.2 we turn to the second problem (OPT 1) and
classify it as a Nonlinear Program (NLP). Furthermore, we show differentiability of
the objective function and the constraints functions of the NLP. In Section 4.3 we
introduce the so-called structure-exploiting sign function method in order to solve the
optimization problem (OPT 1). Finally, in Section 4.4 we show numerical results for
both numerical algorithms – the structure-exploiting Ehrlich-Aberth iteration and the
structure-exploiting sign function method.

4.1 Eigenvalue Algorithm - Ehrlich-Aberth Iteration

We start the investigation of the vibrational problem (3.1) by deriving a method that
computes the eigenvalues of the corresponding quadratic eigenproblem (3.2). Hence,
we solve the first optimization problem (QEP) in Section 3.4.4, namely,

Q(λ)v =

(
λ2M + λ

[
Cmodal +

r∑
i=1

νiejie
T
ji

]
+K

)
v = 0

The algorithm has been presented in [BD15] for any internal damping that fulfills
(3.26), but for notational simplicity we restrict ourselves in the following to modal
damping as internal damping. In absence of the external damping Cext =

∑r
i=1 νiejie

T
ji

,
the vibrational problem (3.1) and the corresponding QEP (3.2) have a lot of nice
properties. Especially, their ability to be simultaneously diagonalized by a congruence
transformation by Φ as in (3.23),

Iz′′ +
(
2γΩ + V D(ν)V T

)
z′ + Ω2z = 0, (4.1)
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where z = Φx and ΦTCext(ν)ΦT = V D(ν)V T with D(ν) = diag(ν1, . . . , νr), compare
(3.28) and (3.29). The corresponding QEP is(

λ2I + λ
(
2γΩ + V D(ν)V T

)
+ Ω2

)
w = 0, (4.2)

where λ are the eigenvalues and w are the corresponding eigenvectors. In the following
we assume that the viscosities νi for i = 1, . . . , r are fixed and for brevity we omit the
viscosity dependence of D, i.e.,

D := diag(ν1, . . . , νr).

The eigenvalues of the QEPs (3.2) and (4.2) coincide if the corresponding viscosities
coincide. Especially, if the external damping Cext(ν) is absent, i.e., ν = 0, the eigenval-

ues of the QEPs are given as λi =
(
−γ ±

√
γ2 − 1

)
ωi, where ωi is defined in (3.23) for

i = 1, . . . , n. The eigenvectors of the QEPs (3.2) and (4.2) have been transformed by
Φ in (3.23), i.e., v = Φw. Our goal is to design an algorithm that computes the eigen-
values of the QEP by taking the external damping into account, but not to increase
the complexity significantly.

Let q(x) be a polynomial of degree 2n. The Ehrlich-Aberth iteration [Abe73; Ehr67]
determines the roots λ1, λ2, . . . , λ2n of q, i.e., q(λk) = 0 for k = 1, . . . , 2n, simultane-

ously and iteratively. Let λ
(i)
1 , . . . , λ

(i)
2n ∈ C be the current approximations of the zeros

of q(x). The Ehrlich-Aberth iteration takes the form

λ
(i+1)
k = λ

(i)
k −

q(λ
(i)
k )

q′(λ
(i)
k )

1− q(λ
(i)
k )

q′(λ
(i)
k )

(∑
j<k

1

λ
(i)
k −λ

(i+1)
j

+
∑

j>k
1

λ
(i)
k −λ

(i)
j

) , (4.3)

for k = 1, . . . , 2n, where each new approximation λ
(i+1)
j is used as soon as it is computed,

i.e., in a Gauß-Seidel fashion. In [BN13] the Ehrlich-Aberth iteration was used for
finding eigenvalues of regular matrix polynomials. In [Tas15] it was used for QEPs
with external low-rank damping. In [BD15] this method has been generalized to QEPs
with external low-rank damping and internal damping. As for any iterative algorithm,
a stopping criteria is needed. In [BN13] it was suggested to stop updating when the
condition number of Q(λi) is sufficiently large or when the associated backward error is
sufficiently small. The first criterion can only be used if the approximated eigenvalues
are semi-simple. Let us first derive the steps that are needed for external low-rank
damping. Let Q(λ) be a second order matrix polynomial, the Ehrlich-Aberth iteration
is then applied to the equation detQ(λ) = q(λ) = 0. The evaluation of q(λ)/q′(λ) is
the crucial part of the update, by using Jacobi’s formula e.g. in [MN99],

d

dλ
detQ(λ) = tr

(
Q(λ)−1Q′(λ)

)
detQ(λ),

and hence,
q′(λ)

q(λ)
= tr

(
Q(λ)−1Q′(λ)

)
.
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If no structure is exploited, each update costs O(n3) flops. We derive in the follow-
ing a formula for tr (Q(λ)−1Q′(λ)) such that the essential step in the Ehrlich-Aberth

iteration, i.e., the computation of q(λ)
q′(λ)

can be computed in O(r2n), where r � n. In
the following deduction the low-rank of the external damping is exploited and matrices
are derived and denoted by Ã, B̃, . . . , G̃, which are then summarized in Algorithm 1.
Let us first start with the diagonalization of the QEP (4.2), i.e., after the congruence
transformation with Φ, then Q(λ) and Q′(λ) are given as

Q(λ) = λ2In + 2λγΩ + λV DV T + Ω2,

Q′(λ) = 2λIn + 2γΩ + V DV T ,

where In,Ω,Ω
2 ∈ Rn×n are diagonal matrices. To compute the trace, first we use the

Sherman-Morrison-Woodbury formula in order to compute the inverse Q(λ)−1 cheaply:

Q(λ)−1 =
(
Ã+ λV DV T

)−1

= Ã−1 − λÃ−1V
(
D−1 + λV T Ã−1V

)−1

V T Ã−1, (4.4)

where Ã = λ2In + 2λγΩ + Ω2. Since Ã and D are diagonal matrices, their inverses are

given as the reciprocal of the diagonal matrix, i.e., Ã−1 = diag
(

1/d̃11, . . . , 1/d̃nn

)
and

D−1 = diag (1/d11, . . . , 1/dnn). Hence,

Q(λ)−1Q′(λ) = 2λÃ−1 + Ã−1(2γΩ + V DV T )

−2λ2Ã−1V
(
D−1 + λV T Ã−1V

)−1

V T Ã−1

−λÃ−1V
(
D−1 + λV T Ã−1V

)−1

V T Ã−1(2γΩ + V DV T )

and with B̃ = Ã−1V , B̃T = V T Ã−1 and C̃ = V T B̃

Q(λ)−1Q′(λ) = 2λÃ−1 + Ã−1(2γΩ + V DV T )− 2λ2B̃
(
D−1 + λC̃

)−1

B̃T

−λB̃
(
D−1 + λC̃

)−1

B̃T (2γΩ + V DV T ).

We apply the properties of the trace, especially its linearity and invariance under cyclic
permutations, i.e., tr(ABC) = tr(BCA) = tr(CAB), to obtain

tr
(
Q(λ)−1Q′(λ)

)
= 2λ tr (Ã−1) + 2γ tr (Ã−1Ω) + tr (DC̃)

−2λ2 tr

((
D−1 + λC̃

)−1

B̃T B̃

)
−2γλ tr

((
D−1 + λC̃

)−1

B̃TΩB̃

)
−λ tr

((
D−1 + λC̃

)−1

C̃TDC̃

)
.

Therefore, we end up with Algorithm 1 for the computation of tr(Q(λ)−1Q′(λ)). The
total flop count is dominated by line 3 and the linear system solves in lines 5 to
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7 of Algorithm 1. The computation of the matrix C̃ can be done in O(r2n) flops

since B̃ and V are of size n × r. The computational complexity of forming matrices
B̃T B̃, B̃TΩB̃, C̃TDC̃ in a naive way is O(r2n) and solving an r × r linear system can
be done in O(r3) flops. Hence, the total flop count of Algorithm 1 is of order O(r2n),
where r � n, instead of order O(n3) without exploiting its structure.

Algorithm 1 Computes tr(Q(λ)−1Q′(λ))

Require: Ω = diag(ω1, . . . , ωn) ∈ Rn×n, V ∈ Rn×r and D ∈ Rr×r and γ ∈ R, λ ∈ C
Ensure: tr(Q(λ)−1Q′(λ))

1: Ã← λ2In + 2γλΩ + Ω2

2: B̃ ← Ã−1V
3: C̃ ← V T B̃
4: D̃ ← D−1 + λC̃
5: Ẽ ← D̃−1(B̃T B̃)

6: F̃ ← D̃−1(B̃TΩB̃)

7: G̃← D̃−1(C̃TDC̃)

8: return 2λ tr (Ã−1) + 2γ tr (Ã−1Ω) + tr (DC̃)− 2λ2 tr (Ẽ)− 2γλ tr (F̃ )− λ tr (G̃).

In line 3 in Algorithm 2 the starting points λ(0) are locked if they are eigenvalues of
the QEP (4.2).

Algorithm 2 Computes all eigenpairs of (4.2) with modal internal damping

Require: Ω, Φ ∈ Rn×n, γ ∈ R, starting points λ(0)

Ensure: (λi, wi) for i = 1, . . . , 2n.
1: Lock starting points λ(0) that are eigenvalues of (4.2):(

λ2In + λ
[
2γΩ + V D(ν)V T

]
+ Ω2

)
w = 0.

2: Compute the eigenvalues λi for i = 1, . . . , 2n of (4.2) by the Ehrlich-Aberth itera-
tion (4.3).

3: Compute the eigenvectors wi for i = 1, . . . , 2n of (4.2) by inverse iteration.
4: return (λi, wi) for i = 1, . . . , 2n.

4.2 Preliminaries

Now, we come to the second optimization problem (OPT 1). Let f : Rr → R be the
objective function of (OPT 1), i.e., it is defined as f(ν) = tr(X(ν)) s. t. A(ν)TX(ν) +
X(ν)A(ν) = −I. By Lemma 3.3.3 the function f can be written as

f : ν 7→ tr

(∫ ∞
0

eA(ν)T teA(ν)tdt

)
, (4.5)

where A(ν) = B − V̂ D(ν)V̂ T is given in (3.35) and V̂ and D(ν) are given in (3.36). f
is well-defined since A(ν) is stable. First, we note that f is invariant under any permu-
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tation due to the cyclic property of the trace. Hence, it is invariant under the perfect
shuffle permutation P defined in (3.33). In the following section we investigate the
smoothness of the function f and the optimization problem (OPT 1) in more detail.
We start by computing the gradient and Hessian of the objective function f defined in
(4.5) by deducing the first and second derivative of the trace of the structured algebraic
Lyapunov equation (3.47). The partial derivative of the trace for the solution of an al-
gebraic Lyapunov equation (3.43) has been derived for an algebraic Lyapunov equation
AY + Y AT = −Z without the perfect shuffle permutation in [Bra98]. We obtain an
equivalent result for the structured algebraic Lyapunov equation 3.4.6. We differentiate
the parameter dependent algebraic Lyapunov equation A(ν)TX(ν) + X(ν)A(ν) = −I
given in (3.43) w.r.t. the viscosity νj and obtain

A(ν)T
∂

∂νj
X(ν) +

∂

∂νj
X(ν)A(ν) = − ∂

∂νj
A(ν)TX(ν)−X(ν)

∂

∂νj
A(ν),

with

∂

∂νj
A(ν)T =

∂

∂νj
A(ν) = −V̂jV̂ T

j = −



0
v1j

0
v2j
...
0
vnj





0
v1j

0
v2j
...
0
vnj



T

where V̂j is the j-th column of V̂ . We obtain the following structured algebraic Lya-
punov equation

A(ν)T
∂

∂νj
X(ν) +

∂

∂νj
X(ν)A(ν) = V̂jV̂

T
j X(ν) +X(ν)V̂jV̂

T
j . (4.6)

Due to the linearity and cyclic property of the trace, the j-th component of the gradient
fulfills

∂f(ν)

∂νj
=

∂ tr (X(ν))

∂νj
= tr

(
∂X

∂νj
(ν)

)
= − tr

(∫ ∞
0

eA(ν)T t
(
V̂jV̂

T
j X(ν) +X(ν)V̂jV̂

T
j

)
eA(ν)tdt

)
= − tr

(
V̂ T
j X(ν)

∫ ∞
0

eA(ν)teA(ν)T tdtV̂j

)
− tr

(
V̂ T
j

∫ ∞
0

eA(ν)teA(ν)T tdtX(ν)V̂j

)
= −V̂ T

j X(ν)Y (ν)V̂j − V̂ T
j Y (ν)X(ν)V̂j, (4.7)

where Y (ν) is the solution of the algebraic Lyapunov equation A(ν)Y (ν)+Y (ν)A(ν)T =
−I. Since JA(ν)TJ = A(ν), where

J = diag(1,−1, 1,−1, . . . , 1,−1),
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it follows that Y (ν) is given as Y (ν) = JX(ν)J and hence, (4.7) simplifies to

∂ tr (X(ν))

∂νj
= −V̂ T

j [X(ν)JX(ν)J + JX(ν)JX(ν)] V̂j

= 2V̂ T
j X(ν)JX(ν)V̂j (4.8)

since JV̂j = −V̂j and J = JT .

We use the same idea in order to derive the Hessian of f . We differentiate (4.6) w.r.t.
νi and obtain the same structured algebraic Lyapunov equation, but with a different
right-hand side:

A(ν)T
∂2X(ν)

∂νi∂νj
+
∂2X(ν)

∂νi∂νj
A(ν) = V̂iV̂

T
i

∂X(ν)

∂νj
+
∂X(ν)

∂νj
V̂iV̂

T
i

+V̂jV̂
T
j

∂X(ν)

∂νi
+
∂X(ν)

∂νi
V̂jV̂

T
j . (4.9)

Due to the linearity and cyclic property of the trace, the Hessian Hij = ∂2f
∂νi∂νj

fulfills

∂2f(ν)

∂νi∂νj
=

∂2 tr (X(ν))

∂νi∂νj
= tr

(
∂2X

∂νi∂νj
(ν)

)
= − tr

(∫ ∞
0

eA(ν)T t

(
V̂iV̂

T
i

∂X(ν)

∂νj
+
∂X(ν)

∂νj
V̂iV̂

T
i

)
eA(ν)tdt

)
− tr

(∫ ∞
0

eA(ν)T t

(
V̂jV̂

T
j

∂X(ν)

∂νi
+
∂X(ν)

∂νi
V̂jV̂

T
j

)
eA(ν)tdt

)
= −V̂ T

i

∫ ∞
0

∂X(ν)

∂νj
eA(ν)teA(ν)T t + eA(ν)teA(ν)T t∂X(ν)

∂νj
dt V̂i

−V̂ T
j

∫ ∞
0

∂X(ν)

∂νi
eA(ν)teA(ν)T t + eA(ν)teA(ν)T t∂X(ν)

∂νi
dt V̂j

= −V̂ T
i

(
∂X(ν)

∂νj
Y (ν) + Y (ν)

∂X(ν)

∂νj

)
V̂i

−V̂ T
j

(
∂X(ν)

∂νi
Y (ν) + Y (ν)

∂X(ν)

∂νi

)
V̂j, (4.10)

where Y (ν) is defined as above, i.e., it is the solution of the structured algebraic Lya-
punov equation A(ν)Y (ν)+Y (ν)AT (ν) = −I, and it is given as Y (ν) = JX(ν)J . With
the above calculations we can state that the objective function f : ν 7→ tr(X(ν)) of
the optimization problem (OPT 1) is twice continuously differentiable, see e.g. [Ves90;
Bra98].

Lemma 4.2.1. The mapping f : Rr → R with

f : ν 7→ tr

(∫ ∞
0

eA(ν)T teA(ν)tdt

)
is twice continuously differentiable, i.e., f ∈ C2.
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Proof. Since the spectrum of the matrix A(ν) for any ν is in the open left complex
half-plane, the mapping is well-defined. The first two derivatives of f are given in (4.8)

and (4.10). Since ∂X(ν)
∂νi

, ∂X(ν)
∂νj

and Y (ν) of (4.10) are continuous, it follows that ∂2f(ν)
∂νi∂νj

is continuous. Hence, f is twice continuously differentiable.

In [Ves90] the mapping f in Lemma 4.2.1 has been analytically derived for a single
damper. It has been shown that this mapping is convex for a single damper. Convexity
cannot be generalized to more than one damper. A counter example for two external
viscous dampers is given in [TV09].

Lemma 4.2.2. The optimization problem (OPT 1) is a Nonlinear Program (NLP).

Proof. For theoretical investigation we use the integral formulation of the solution of the
algebraic Lyapunov equation (3.42) by Lemma 3.3.3, i.e., X(ν) =

∫∞
0
eA(ν)T teA(ν)tdt,

which is obviously nonlinear. Then the optimization problem (OPT 1) can be rewritten
as the following NLP:

minf(ν)

s.t. gi(ν), for i = 1, . . . , 2r,

where

f(ν) :=

∫ ∞
0

tr
(
eA(ν)T teA(ν)t

)
dt

gi(ν) := −νi ≤ 0, for i = 1, . . . , r, (4.11)

gr+i(ν) := νi − νmax ≤ 0, for i = 1, . . . , r. (4.12)

Theorem 4.2.3. The objective function f defined in (4.5) and the constraint functions
gi for i = 1, . . . , n+ 1 defined in (4.11) and (4.12) of the Nonlinear Program (OPT 1)
are twice continuously differentiable.

Proof. Since the constraint functions gi for i = 1, . . . , n + 1 are linear, it is obvious
that they are twice continuously differentiable. The objective function f is smooth
by Lemma 4.2.1 and their first and second partial derivatives are given in (4.8) and
(4.10).

We have shown that the optimization problem (OPT 1) is a Nonlinear Program (NLP)
in Lemma 4.2.2 and that the objective function f : Rn → R and constraint functions
gi : Rn → R for i = 1, . . . , 2n, are twice continuously differentiable in Theorem 4.2.3.
Hence, smooth optimization methods based on gradient and/or Hessian can be applied
in order to find a local minimum of f . The function f has a local minimum at viscosity
ν∗ if ν∗ fulfills the first order necessary conditions, the so-called Karush-Kuhn-Tucker
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(KKT) conditions [Kar39; KT51] given in (4.13)-(4.16), i.e., there exists λ∗ such that

∇f(ν∗) +
2n∑
i=1

λ∗i∇gi(ν∗) = 0, (4.13)

gi(ν
∗) ≤ 0, for i = 1, . . . , 2r, (4.14)

λ∗i ≥ 0, for i = 1, . . . , 2r, (4.15)

λ∗i gi(ν
∗) = 0, for i = 1, . . . , 2r. (4.16)

The first condition (4.13) implies stationarity of the solution. While the inequality
(4.14) guarantees feasibility for the primal, the inequality (4.15) guarantees feasibility
for the dual problem. Equation (4.16) is a complementary slackness condition, i.e.,
that the KKT multiplier λ∗i or the respective constraint gi(ν

∗) is tight. In general the
conditions (4.13)-(4.16) are only necessary but not sufficient conditions for a minimizer.

4.3 Sign Function Method

To efficiently solve the Nonlinear Program (OPT 1), we derive in this section a method
that solves the structured algebraic Lyapunov equation. The method exploits the
structure of the algebraic Lyapunov equation and by the considerations in Section 4.2,
we then can cheaply compute the Jacobian and Hessian of the objective function. Here,
we assume that for each iteration the viscosity ν is fixed. Hence, for brevity we omit
the dependence on ν in this section. This situation occurs e.g. when the NLP (OPT 1)
is solved by a numerical method such as steepest descent or Newton’s method, where
the objective function and its derivatives have to be evaluated in each iteration in order
to update the viscosities. We derive in this section an efficient way of evaluating the
objective function via the so-called structure-exploiting sign function method. The sign
function method has been introduced in [Rob80] for solving algebraic Riccati equations
of the form −XGX+ATX+XA = W , where A,G,Q,W ∈ RN×N , G = GT , W = W T

and X = XT is the unknown solution matrix. In [Rob80] the matrix sign function was
used to solve stable algebraic Lyapunov equations (3.8) as well,

ATX +XA = W,

where A,X,W ∈ RN×N and A is stable, i.e., Λ(A) ⊆ C−. First, let us define the
matrix sign function of Z ∈ RN×N . Let Z have no eigenvalues on the imaginary axis,
i.e., Λ(Z) ∩ ıR = ∅. There are several ways to define the matrix sign function, see
e.g. the survey paper [KL95]. Let Z = UJU−1 be the Jordan decomposition of Z as in
Theorem 2.1.4, where

J =

[
J− 0
0 J+

]
and J− ∈ CM×M and J+ ∈ C(N−M)×(N−M) consist of the Jordan blocks corresponding
to the eigenvalues in the open left and open right half-planes, respectively. Then the
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matrix sign function of Z is defined as

sign(Z) := U

[
−IM 0

0 IN−M

]
U−1.

Note that sign(Z) is unique and independent of the order of the eigenvalues in the
Jordan decomposition of Z.

The sign function can be computed via the Newton iteration for the equation Z2 = I,
where the starting point is chosen as Z, i.e.,

Z0 := Z, Zk+1 :=
Zk + Z−1

k

2
, k = 0, 1, 2, . . . . (4.17)

In [Rob80] it has been shown that this procedure converges to the matrix sign function
of Z, i.e., sign(Z) = limk→∞ Zk. The Newton iteration converges quadratically when
the iterates are being sufficiently close to a root, but the initial convergence may be
slow. Scaling can be introduced in order to accelerate the convergence, i.e., Zk+1 :=
1
2
ckZk+ 1

2
c−1
k Z−1

k . Various scalings have been proposed in the literature, for a summary
see [BD93]. Here, we use the scaling

ck =

√
‖Z−1

k ‖F
‖Zk‖F

,

which is known as Frobenius scaling, see e.g. [KL92]. For a summary of other schemes
to compute the sign function of a matrix see [KL95]. When the sign function method
(SFM) (4.17) is applied to

Z =

[
A 0
W −AT

]
,

where the matrices A,W,AT are from the real and stable algebraic Lyapunov equation
ATX +XA = −W , we obtain the sign function iteration Zk for k = 0, 1, . . . with

lim
k→∞

Zk =

[
−IN 0
2X IN

]
, (4.18)

see e.g. [Ant05; Rob80]. Hence, the solution X of the real and stable algebraic Lya-
punov equation ATX +XA = −W can be read off from (4.18) directly. Applying the
generalized Newton iteration (4.17) to the matrix Z and exploiting the block-triangular
structure of all matrices involved, it is easy to see that (4.17) boils down to

A0 := A, W0 := W,

Ak+1 := 1
2

(
Ak + A−1

k

)
,

for k=0,1,. . . ,
Wk+1 := 1

2

(
Wk + A−Tk WkA

−1
k

)
,

(4.19)

which is summarized in Algorithm 3. The solution of the algebraic Lyapunov equation
is then X = 1

2
limk→∞Wk.
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Algorithm 3 Sign function method for ALE

Require: Matrices A,W ∈ RN×N , tol.
Ensure: Y ∈ RN×N such that Y ≈ X.
1: A0 ← A
2: W0 ← W
3: k = 0
4: while ‖A+ I‖ > tol do

5: ck ←
√
‖A−1

k ‖F
‖Ak‖F

6: Ak+1 ← 1
2

(
ckAk + c−1

k A−1
k

)
7: Wk+1 ← 1

2

(
ckWk + c−1

k A−Tk WkA
−1
k

)
8: k = k + 1
9: end while

10: return Y = 1
2
Wk

4.3.1 Structure Exploiting Sign Function Method

In this section we consider a special case of the stable algebraic Lyapunov equation
(3.8),

ATX +XA = W,

where A,X,W ∈ RN×N and A is stable. Namely, we consider the structured algebraic
Lyapunov equation (3.47), i.e., the matrix A can be expressed as A = B + UCV T ,
where B ∈ RN×N , C ∈ Rr×r, U, V ∈ RN×r and B is a block diagonal matrix, i.e.,
B = blockdiag

(
B(1), . . . , B(`)

)
, which is cheaply invertible and UCV T is a low-rank

perturbation on B with rank r � N .

We later show in Theorem 4.3.1 that the above structure can be kept throughout the
sign function iteration in Algorithm 3. For now, let us assume Ak can be expressed
by a block diagonal matrix and a low-rank factor, i.e., Ak = Bk + UkCkV

T
k , where

Bk ∈ RN×N , Uk, Vk ∈ RN×r, Ck ∈ Rr×r and r � N . Then the inverse of Ak is given as

A−1
k =

(
Bk + UkCkV

T
k

)−1
= B−1

k −B−1
k Uk

(
C−1
k + V T

k B
−1
k Uk

)−1
V T
k B

−1
k (4.20)

by the Sherman-Morrison-Woodbury formula. Let us denote with NB the maximal
block size of the matrix B, i.e., NB = max`i=1Ni. Hence, computing the inverse A−1

k

can be done by inverting the block diagonal matrix Bk in O(`N3
B) and an r× r system

in O(r3). Forming matrix products such as B−1
k Uk is in O(`N3

B) due to the block
diagonal structure of B−1

k . The complexity to compute the inverse of Ak is O(N3)
without exploiting the structure, compared to O(r3 + `N3

B) by using the Sherman-
Morrison-Woodbury formula (4.20). We now initialize U0 := U , V0 := V and C0 := C
and rewrite the sign function method for Ak+1 as

Ak+1 = Bk+1 + Uk+1Ck+1V
T
k+1,
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where

Bk+1 = blockdiag
(
B

(1)
k+1, . . . , B

(`)
k+1

)
∈ RN×N , (4.21)

B
(i)
k+1 = 1

2

(
ckB

(i)
k + c−1

k B
(i)
k

−1
)
∈ RNi×Ni for i = 1, . . . , `, (4.22)

Uk+1 =
[
Uk B−1

k Uk
]
, (4.23)

Vk+1 =
[
Vk B−Tk Vk

]
, (4.24)

Ck+1 = 1
2
blockdiag

(
ckCk,−c−1

k

(
C−1
k + V T

k B
−1
k Uk

)−1
)
, (4.25)

for k = 0, 1, . . .. Hence, we can formulate the following theorem.

Theorem 4.3.1. Let Ak = Bk + UkCkV
T
k , where Bk = blockdiag

(
B

(1)
k , . . . , B

(`)
k

)
∈

RN×N , Uk, Vk ∈ RN×r, Ck ∈ Rr×r and r � n. Then the next sign function iterate Ak+1

can be expressed as
Ak+1 = Bk+1 + Uk+1Ck+1V

T
k+1, (4.26)

where Bk+1 = blockdiag
(
B

(1)
k+1, . . . , B

(`)
k+1

)
∈ RN×N , Uk+1, Vk+1 ∈ RN×2r, Ck+1 ∈

R2r×2r are defined in (4.21)-(4.25).

Proof. Ak+1 = Bk+1 + Uk+1Ck+1V
T
k+1 can be reformulated as

Ak+1 =
1

2

(
ckBk + c−1

k B−1
k + ckUkCkV

T
k − c−1

k B−1
k Uk

(
C−1
k + V T

k B
−1
k Uk

)−1
V T
k B

−1
k

)
with the definitions in (4.21)-(4.25).

Note that the rank of the factors Uk+1, Ck+1, Vk+1 doubles per sign function iteration.
Let r0 denote the initial rank of U0C0V

T
0 . Hence, after k + 1 sign function iterations,

the rank of Uk+1Ck+1V
T
k+1 is rk+1 = 2k+1r0, but the numerical rank, see e.g. [GV96],

may be smaller.

In order to avoid a large workspace and to reduce the computational costs, we therefore
propose to compute a Rank-Revealing QR factorization of Uk+1 ∈ RN×rk+1 and Vk+1 ∈
RN×rk+1 such that Uk+1 = QURU and Vk+1 = QVRV , where QU , QV ∈ RN×rk+1 contain
rk+1 orthonormal columns and RU , RV ∈ Rrk+1×rk+1 are upper triangular matrices.
Hence, Uk+1Ck+1V

T
k+1 can be rewritten as

Uk+1Ck+1V
T
k+1 = QURUCk+1R

T
VQ

T
V ,

where RUCk+1R
T
V has dimension rk+1× rk+1. We compute its singular value decompo-

sition (SVD),
RUCk+1R

T
V = UΣV T ,

where U, V are orthonormal matrices and Σ = diag(σ1, . . . , σrk+1
) is a diagonal matrix.

Now, we truncate the singular values if they are below some predefined tolerance ε and
cut the respective singular vectors as well, i.e.,

RUCk+1R
T
V ≈ ÛΣ̂V̂ T , (4.27)
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where Û , V̂ ∈ Rrk+1×r̂k+1 , Σ̂ = diag(σ1, . . . , σr̂k+1
) ∈ Rr̂k+1×r̂k+1 such that the singular

values σr̂k+2
, . . . , σrk+1

are below the given tolerance ε, i.e., σr̂k+2
, . . . , σrk+1

< ε. Hence,
the numerical rank r̂k+1 is at most rk+1, i.e., r̂k+1 ≤ rk+1, and the new iterates are
given as

Uk+1 := QU Û ,

Vk+1 := QV V̂ ,

Ck+1 := Σ̂,

where Uk+1, Vk+1 ∈ RN×r̂k+1 and Ck+1 ∈ Rr̂k+1×r̂k+1 . The rank of Uk+1Ck+1V
T
k+1 has been

reduced to r̂k+1. By the above considerations we end up with a structure preserving
sign function method defined in Algorithm 4 for the structured algebraic Lyapunov
equation 3.4.6. If Ck+1 = Σ̂, then the computation of the inverse C−1

k+1 for the next
iterate comes for free since it is a diagonal matrix. But even though, reducing the
rank takes additional computational time, therefore, the reduction of the rank is only
worth it if the rank rk+1 is sufficiently large. Hence, the compression in line 16 to 20
of Algorithm 4 is omitted for the first m sign function iterations until the rank rk+1 is
reasonable large.
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Algorithm 4 Structure exploiting sign function method for structured ALE

Require: Matrices B,U,C, V,W, tol, τ,m.

Ensure: Y ∈ RN×N such that Y approx. solves structured ALE.

1: B0 ← B

2: U0 ← U

3: V0 ← V

4: C0 ← C

5: W0 ← W

6: k = 0

7: while ‖Bk + UkCkV
T
k + I‖ > tol do

8: A−1
k ← B−1

k −B−1
k Uk

(
C−1
k + V T

k B
−1
k Uk

)−1
V T
k B

−1
k

9: ck ←
√
‖A−1

k ‖F
‖Ak‖F

10: Wk+1 ← 1
2

(
ckWk + c−1

k A−Tk WkA
−1
k

)
11: Bk+1 ← 1

2

(
ckBk + c−1

k B−1
k

)
12: Uk+1 ←

[
Uk B−1

k Uk

]
13: Vk+1 ←

[
Vk B−Tk Vk

]
14: Ck+1 ← 1

2
blockdiag

(
ckCk,−c−1

k

(
C−1
k + V T

k B
−1
k Uk

)−1
)

15: if k > m then

16: Compute RR-QR: QURU = Uk+1, QVRV = Vk+1.

17: Compute truncated SVD: ÛΣ̂V̂ T ≈ RUCk+1R
T
V w.r.t. threshold τ .

18: Uk+1 ← QU Û

19: Vk+1 ← QV V̂

20: Ck+1 ← Σ̂

21: end if

22: k = k + 1

23: end while

24: return Y = 1
2
Wk

4.3.2 Structure Exploiting Sign Function Method with low-rank rhs

We consider a structured algebraic Lyapunov equation 3.4.6, where the “right-hand
side” W = FF T has low-rank, i.e.,

ATX +XA = FF T , (4.28)

where F ∈ RN×r2 with r2 � n, see [BQO99]. Furthermore, we assume as above that
A can be expressed by a block diagonal matrix B = blockdiag

(
B(1), . . . , B(`)

)
plus

a low-rank perturbation UCV T of B, i.e.,A = B + UCV T , where A,B ∈ RN×N ,
C ∈ Rr1×r1 , U, V ∈ RN×r1 with r1 � n. Since the matrix B is block diagonal, it is
cheaply invertible.
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By the stability assumption on A and Theorem 3.3.2, the Lyapunov equation (4.28)
has a unique solution X. It can be factored as X = Y Y T , where Y is a full-rank factors
of X, i.e., Y ∈ RN×rank(X) is a rectangular matrix. Even though the solution X of the
structured algebraic Lyapunov equation (4.28) may be nonsingular, often its numerical
rank or ε-rank [GV96] is very small [Gra04; Pen00b]. Hence, it can be approximated

by Ŷ ∈ RN×Ny , where Ny is the numerical rank and, so that

‖X − Ŷ Ŷ T‖2

‖X‖2

≤ ε,

whereas the tolerance threshold determines the numerical rank. This observation has
led to various methods to solve Lyapunov equations based on low-rank factorization of
the solution [BQO99; LW02; Pen00a]. We use this methodology and rewrite the sign
function iteration for Wk+1 in (4.19) as full-rank factors,

Fk+1F
T
k+1 = Wk+1 =

1

2

(
ckWk + c−1

k A−Tk WkA
−1
k

)
=

1

2

(
FkF

T
k +

(
A−Tk Fk

) (
A−Tk Fk

)T)
,

where

Fk+1 := 1√
2

[
Fk A−Tk Fk

]
, (4.29)

with F0 := F .

Remark 4.3.2. The workspace of Fk+1 doubles per sign function iteration in (4.29),
since Fk ∈ RN×pk and Fk+1 ∈ RN×2pk .

In order to limit workspace, we compute a full-rank factorization in each iteration step
based on a QR decomposition. This idea with scaling is summarized in Algorithm 5.
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Algorithm 5 Full-rank factor Y of sign function method with low-rank rhs

Require: Matrices B,U,C, V, F, tol, τ1, τ2.

Ensure: Approximation to full-rank factor Y of the solution X.

1: B0 ← B

2: U0 ← U

3: V0 ← V

4: C0 ← C

5: F0 ← F

6: k = 0

7: while ‖Bk + UkCkV
T
k + I‖ > tol do

8: A−1
k ← B−1

k −B−1
k Uk

(
C−1
k + V T

k B
−1
k Uk

)−1
V T
k B

−1
k

9: ck ←
√
‖A−1

k ‖F
‖Ak‖F

10: Fk+1 ← 1√
2

[√
ckFk

1√
ck
A−Tk Fk

]
11: Compress columns of Fk+1 using a RR-QR with threshold τ1.

12: Bk+1 ← 1
2

(
ckBk + c−1

k B−1
k

)
13: Uk+1 ←

[
Uk B−1

k Uk

]
14: Vk+1 ←

[
Vk B−Tk Vk

]
15: Ck+1 ← 1

2
blockdiag

(
ckCk,−c−1

k

(
C−1
k + V T

k B
−1
k Uk

)−1
)

16: Compute RR-QR: QURU = Uk+1, QVRV = Vk+1.

17: Compute truncated SVD: ÛΣ̂V̂ T ≈ RUCk+1R
T
V w.r.t. threshold τ2.

18: Uk+1 ← QU Û

19: Vk+1 ← QV V̂

20: Ck+1 ← Σ̂

21: k = k + 1

22: end while

23: return Y = Fk

4.3.3 Error Analysis of the structure-exploiting sign function
method

In this section, we derive error bounds for the Algorithms 4 and 5. In the analysis, scal-
ing is not taken into account and we neglect errors introduced by the truncated SVD.
We consider the following basic definitions and general assumptions in analogy to the
sign function method using hierarchical matrices, see e.g. [Gra01; GH07; BB06]. Any
numerical computation underlies numerical errors caused by finite precision of com-
putations involving floating-point or integer values. Hence, let Ãk, W̃k and F̃k denote
the perturbed iterates arising during Algorithm 4 or 5, respectively. Furthermore, we
denote with InvSMW (Ak) the inversion by the Sherman-Morrison-Woodbury formula
in (4.20).
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Definition 4.3.3. By δ we denote the maximal numerical error for using the Sherman-
Morrison-Woodbury formula (4.20),

δ = max
k=0,...,kmax

‖InvSMW (Ãk)− Ã−1
k ‖2, (4.30)

and for the distance of the exact and perturbed iterates we define

ηk := ‖Ãk − Ak‖2 for k = 0, 1, . . . , kmax. (4.31)

Assumption 4.3.4. We assume with

∆ := max
k=0,...,kmax

‖A−1
k ‖2 (4.32)

that
ηk∆ < 1 for k = 0, 1, . . . , kmax.

Lemma 4.3.5. With Definition 4.3.3 and Assumption 4.3.4, we obtain the following
bound on the forward error of the perturbed iterates in line 8 of Algorithm 4 and in
line 8 of Algorithm 5, respectively,

ηk+1 = ‖Ãk+1 − Ak+1‖2 ≤
1

2

(
δ + ηk +

ηk∆
2

1− ηk∆

)
.

Proof. By Assumption 4.3.4, we know
(
I − A−1

k Ãk

)k
→ 0 as k → ∞. Hence, A−1

k Ãk

can be expressed as a von Neumann series, since ηk∆ < 1 for k = 0, 1, . . . , kmax, see
e.g. [GV96] and for the inverse Ã−1

k it holds,

Ã−1
k =

∞∑
i=0

(
A−1
k

(
Ak − Ãk

))i
A−1
k .

Hence,

Ã−1
k − A−1

k =
∞∑
i=1

(
A−1
k

(
Ak − Ãk

))i
A−1
k ,

which can be bounded by using Assumption 4.3.4 on the geometric series,∥∥∥Ã−1
k − A−1

k

∥∥∥
2
≤ ∆

∞∑
i=1

∥∥∥A−1
k

(
Ak − Ãk

)∥∥∥i ≤ ηk∆
2

1− ηk∆
.

Using Definition 4.3.3 yields

‖Ãk+1 − Ak+1‖2 ≤ 1
2

∥∥∥Ãk − Ak∥∥∥
2

+ 1
2

∥∥∥InvSMW

(
Ãk

)
− A−1

k

∥∥∥
2

≤ 1
2

∥∥∥Ãk − Ak∥∥∥
2

+ 1
2

∥∥∥InvSMW

(
Ãk

)
− Ã−1

k

∥∥∥
2

+
1

2

∥∥∥Ã−1
k − A−1

k

∥∥∥
2

≤ 1
2

(
δ + ηk +

ηk∆
2

1− ηk∆

)
.
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Hence, we have obtained the upper bound of the iterates.

Theorem 4.3.6. With the Assumption 4.3.4, the forward error for computing the
approximate solution W̃k in line 10 of Algorithm 4 can be bounded by

‖W̃k+1 −Wk+1‖2 ≤
(

1+∆2

2
+ΘW

k

)
‖W̃k −Wk‖2 +ΘW

k ‖Wk‖2, (4.33)

where

ΘW
k = ∆δ +

δ2

2
+

(∆ + δ) ηk∆
2

1− ηk∆
+

η2
k∆

4

2(1− ηk∆)2
.

Proof. For notational simplicity Inv(A) denotes the inverse of A w.r.t. the Sherman-
Morrison-Woodbury formula in (4.20), i.e., Inv(A) = InvSMW (A). We then reformu-
late,

Inv(ÃTk )W̃kInv(Ãk)− A−TWkA
−1
k

=
(

Inv(ÃTk )− Ã−Tk
)
W̃k

(
Inv(Ãk)− Ã−1

k

)
+ Ã−Tk W̃k

(
Inv(Ãk)− Ã−1

k

)
+
(

Inv(ÃTk )− Ã−Tk
)
W̃kÃ

−1
k + Ã−Tk W̃kÃ

−1
k − A−TWkA

−1
k

=
(

Inv(ÃTk )− Ã−Tk
)
W̃k

(
Inv(Ãk)− Ã−1

k

)
+
(
Ã−Tk − A−Tk

)
W̃k

(
Inv(Ãk)− Ã−1

k

)
+ A−Tk W̃k

(
Inv(Ãk)− Ã−1

k

)
+
(

Inv(ÃTk )− Ã−Tk
)
W̃k

(
Ã−1
k − A−1

k

)
+
(

Inv(ÃTk )− Ã−Tk
)
W̃kA

−1
k +

(
Ã−Tk − A−Tk

)
W̃k

(
Ã−1
k − A−1

k

)
+
(
Ã−Tk − A−Tk

)
W̃kA

−1
k + A−Tk W̃k

(
Ã−1
k − A−1

k

)
+ A−T

(
W̃k −Wk

)
A−1
k .

Hence, we obtain with Assumption 4.3.4,∥∥∥Inv(ÃTk )W̃kInv(Ãk)− A−TWkA
−1
k

∥∥∥
2

≤
(
δ2 + δηk∆2

1−ηk∆2 + ∆δ + δηk∆2

1−ηk∆2 + ∆δ +
η2k∆4

(1−ηk∆2)2
+ 2δηk∆3

1−ηk∆2

)∥∥∥W̃k

∥∥∥
2

+ ∆2
∥∥∥W̃k −Wk

∥∥∥
2
.

Therefore, we obtain,∥∥∥W̃k+1 −Wk+1

∥∥∥
2
≤ 1

2

∥∥∥W̃k −Wk

∥∥∥
2

+ 1
2

∥∥∥Inv(ÃTk )W̃kInv(Ãk)− A−Tk WkA
−1
k

∥∥∥
2

≤ 1
2

(
1 + ∆2

) ∥∥∥W̃k −Wk

∥∥∥
2

+ΘW
k

∥∥∥W̃k

∥∥∥
2
,

from which the bound (4.33) follows.

Corollary 4.3.7. With the Assumption 4.3.4, we obtain the following bound on the
forward error for computing W̃k in line 10 of Algorithm 4

‖W̃k+1 −Wk+1‖2 ≤
k∑
j=0

ΘW
j ‖Wj‖2

k∏
i=j+1

(
1 + ∆2

2
+ΘW

i

)
,
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and for the relative error we obtain

‖W̃k+1 −Wk+1‖2

‖Wk+1‖2

≤
k∑
j=0

ΘW
j

k∏
i=j+1

(
1 + ∆2

2
+ΘW

i

)
,

where

ΘW
k = ∆δ +

δ2

2
+

(∆ + δ) ηk∆
2

1− ηk∆
+

η2
k∆

4

2(1− ηk∆)2
,

for k = 0, . . . , kmax.

Proof. We use that the iterates are bounded,

‖Wk−1‖2 ≤ ‖Wk‖2 ≤ 2σ1, for k = 1, . . . , kmax,

where σ1 is the largest singular value of the solution to the structured algebraic Lya-
punov equation, i.e., X = 1

2
limk→Wk, [GV96].

Theorem 4.3.8. With the Assumption 4.3.4, the forward error for computing the
approximate full-rank factor F̃k in line 10 of Algorithm 5 can be bounded by

‖F̃k+1 − Fk+1‖2 ≤
(

1+∆√
2

+ΘF
k

)
‖F̃k − Fk‖2 +ΘF

k ‖Fk‖2, (4.34)

where ΘF
k = 1√

2

(
δ + ηk∆2

1−ηk∆

)
.

Proof. We prove the bound of the forward error of the approximate full-rank factor F̃k.
As in the proof of Lemma 4.3.5, A−1

k Ãk can be expressed as a von Neumann series, see
e.g. [GV96].

√
2‖F̃k+1 − Fk+1‖2 ≤‖F̃k − Fk‖2 + ‖InvSMW (ÃTk )F̃k − A−Tk Fk‖2

≤‖F̃k − Fk‖2 + ‖InvSMW (ÃTk )F̃k − Ã−Tk F̃k‖2 + ‖Ã−Tk F̃k − A−Tk Fk‖2

≤‖F̃k − Fk‖2 + δ‖F̃k‖2 + ‖Ã−Tk F̃k − A−Tk F̃k‖2 + ‖A−Tk F̃k − A−Tk Fk‖2

≤ (1 + ∆) ‖F̃k − Fk‖2 + δ‖F̃k‖2 + ∆
∞∑
i=1

∥∥∥A−1
k

(
Ak − Ãk

)∥∥∥i
2
‖F̃k‖2

≤ (1 + ∆) ‖F̃k − Fk‖2 +

(
δ +

ηk∆
2

1− ηk∆

)
‖F̃k‖2,

from which (4.34) follows.

Corollary 4.3.9. With the Assumption 4.3.4, we obtain the following bound on the
forward error for computing the approximate full-rank factor F̃k in line 10 of Algorithm
5

‖F̃k+1 − Fk+1‖2 ≤
k∑
j=0

ΘF
j ‖Fj‖2

k∏
i=j+1

(
1 + ∆√

2
+ΘF

i

)
,
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and for the relative error we obtain

‖F̃k+1 − Fk+1‖2

‖Fk+1‖2

≤
k∑
j=0

ΘF
j

k∏
i=j+1

(
1 + ∆√

2
+ΘF

i

)
,

where ΘF
k = 1√

2

(
δ + ηk∆2

1−ηk∆

)
for k = 1, . . . , kmax.

Proof. We use that the iterates are bounded,

‖Fk−1‖2 ≤ ‖Fk‖2 ≤ 2σ1, for k = 1, . . . , kmax,

where σ1 is the largest singular value of the solution to the structured algebraic Lya-
punov equation, i.e., X = 1

2
limk→ FkF T

k , [GV96].

By the above analysis, we expect an increase of the errors in the Wk’s and Fk’s in each
iteration proportional to δ and µk, where µk is again proportional to δ. Hence, it is
sufficient to choose the threshold τ1 for the RR-QR in line 11 of Algorithm 5 of the
same order as δ. The bound for the Sherman-Morrison-Woodbury inversion error of
Algorithm 4 can be controlled by an adaptive rank choice for the SVD w.r.t. threshold
τ . The bound for the Sherman-Morrison-Woodbury inversion error of Algorithm 5 can
be controlled by an adaptive rank choice for the RR-QR and the SVD w.r.t. thresholds
τ1 and τ2, respectively.

4.4 Numerical Results

In this section we show numerical results concerning the eigenpairs of a QEP and the
viscosity optimization w.r.t. the averaged total energy, namely we solve the problems
(QEP) and (OPT 1). The eigenpairs of (QEP) are determined by the Ehrlich-Aberth
iteration in Algorithm 2. The structure exploiting sign function method in Algorithm 4
is used as the basic ingredient to compute the averaged total energy by the structured
algebraic Lyapunov equation of the NLP (OPT 1).

We consider two vibrational systems — a triple chain oscillator and a FEM model of
a viscously damped beam. The first model is a triple chain oscillator from [BTT11],
which is shown in Figure 4.1. The governing equations of motion for the triple-chain
oscillator are given by a quadratic ordinary differential equation defined in Section
2.5.4,

Mx′′ + Cx′ +Kx = 0,

where mass matrix M ∈ R(3d+1)×(3d+1) and stiffness matrix K ∈ R(3d+1)×(3d+1) are

– 74 –– 74 –



4.4 Numerical Results

defined as
M = diag(m1, . . . ,m3d+1),

K =


K11 −k1ed

K22 −k2ed
K33 −k3ed

−k1e
T
d −k2e

T
d −k3e

T
d k1 + k2 + k3 + k4

 ,

Kii = ki


2 −1
−1 2 −1

. . . . . . . . .

−1 2 −1
−1 2

 ,
(4.35)

where ed ∈ Rd is the d-th unit vector and k1, . . . , k4 are given stiffnesses. We consider
two configurations with 1000 and 1500 masses in each chain, i.e, in total 3001 and
4501 masses. Each chain has d + 1 springs, which have the same stiffness. A damper
with viscosity ν is attached in the middle of the first chain, i.e., at mass md/2. After
transforming the quadratic ODE into first order form (see Section 4.2 and linearization
of a QEP in Section 2.1.2), we obtain a first order system dimension of 6002 and
9002, respectively. In both configurations the masses are defined as mi = i for i =
1, . . . , 3d+ 1, and the stiffnesses are defined as k1 = 1, k2 = 50, k3 = 100 and k4 = 200.
The damping matrix is given as the sum of internal and external damping, i.e.,

C = Cint + νed/2e
T
d/2,

where ed/2 ∈ R3d+1 is the d
2
-th unit vector and internal damping is given as modal

damping Cint = 2γM1/2
√
M−1/2KM−1/2M1/2 with γ = 1

200
.

k1 k1 ν k1 k1

k2 k2 k2 k2 k4

k3 k3 k3 k3

m1 md/2 md

md+1 m3d/2 m2d

m2d+1 m5d/2 m3d

m3d+1

Figure 4.1: Oscillator with 3d+ 1 masses, d+ 4 springs and a single viscous damper at
mass md/2.

The second example is a slender beam, which is simply supported at both ends and
viscously damped in the middle. It is shown in Figure 4.2. The example is taken from
[Hig+08], but internal damping is added. The original example is part of the collection
of nonlinear eigenvalue problems [Bet+]. The governing equation of motion for the
transverse displacement u(x, t) are given by the Euler-Bernoulli equation of the beam

ρA
∂2u

∂t2
+ c(ν)

∂u

∂t
+ EI

∂4u

∂x4
= 0,
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where ρA is the mass unit per length, E is Young’s modulus, I is the area moment of
inertia of the cross-section, c(ν) = cint + cext(ν) represents damping which is given as
internal damping cint and external viscous damping cext(ν), where the viscosity fulfills
ν ≥ 0. The boundary conditions are u(0, t) = uxx(0, t) = u(L, t) = uxx(L, t) = 0,
where L is the length of the beam. Making the separation ansatz u(x, t) = X(x)eλt,
we obtain the boundary value problem

λ2ρAX(x) + λc(ν)X(x) + EI ·X(4)(x) = 0, (4.36)

with X(0) = X ′′(0) = X(L) = X ′′(L) = 0. We discretize the boundary value problem
by finite elements using cubic Hermite polynomials as interpolation shape functions,(

λ2M + λC(ν) +K
)
v = 0,

which is a quadratic eigenproblem and which is exactly the first optimization problem
(QEP). As we have discussed in Section 2.5.4, the quadratic eigenproblem can be
transformed with x(t) = V eJtc to a corresponding quadratic ordinary differential

Mx′′ + C(ν)x′ +K = 0,

where (V, J) is a Jordan pair and c ∈ C2n is a vector of arbitrary constants. The
damping matrix C is the sum of internal and external damping,

C = Cint + Cext,

where internal damping is given as modal damping Cint = 2γM1/2
√
M−1/2KM−1/2M1/2

with γ = 1
200

and external damping is given as viscous damping Cext = νen/2e
T
n/2.

We compute the averaged total energy for the geometric and material properties
E = 7 × 1010 N

m2 , I = 0.05×0.0053

12
m4, L = 1m and ρA = 0.674kg as in [Hig+08]. We

used 3000 and 4000 finite elements for the beam, which results in a first order system
x′ = Ax such that the matrix A is of size 6000× 6000 and 8000× 8000, respectively.

Figure 4.2: Viscously damped beam.

4.4.1 Numerical results for (QEP)

We solve the first problem (QEP), i.e., we solve the quadratic eigenproblem of the
vibrational system for fixed viscosities νi for i = 1, . . . , r. Hence, the full spectrum of
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Ehrlich-Aberth iteration eig

0 2 000 4 000 6 000
10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

EIGENPAIRS

E
R
R
O
R

0 2 000 4 000 6 000
10−17

10−16

10−15

10−14

10−13

10−12

10−11

10−10

EIGENPAIRS

Figure 4.3: Backward error for eigenpairs computed by EAI (left) and eig from MAT-
LAB (right) for triple-chain oscillator with 3001 masses.

the vibrational system is computed. In order to judge the quality of the eigenvalues we
compute the eigenvectors and the backward errors of the eigenpairs. The eigenpairs
are once computed on the linearization of the QEP as described in Section 2.5.4 by
the eig function from MATLAB, which implements the QZ algorithm. Here, we used
scaled matrices in the linearization, which have been introduced in [FLVD04]. The
importance of scaling is shown w.r.t. accuracy and stability in [Hig+08].

We compute the eigenvectors in Algorithm 2 by a single inverse iteration for each
eigenvalue since this is often sufficient as the backward errors in Figures 4.3, 4.4, 4.5
and 4.6 for the triple-chain oscillator and the viscously damped beam. The numbering
of the eigenpairs in Figures 4.3, 4.4, 4.5 and 4.6 is artificial, i.e., the numbering of
the backward errors of Algorithm 2 and the eig function from MATLAB do in general
not correspond to the same eigenpair. Hence, in these figures the backward errors
cannot be compared individually. But overall, for Algorithm 2 the backward errors
are sufficiently good and close to machine precision. In most instances they are much
smaller than the backward error for the eig function and in some rare cases they are
worse. The backward errors can still be improved by further employing the inverse
iteration on the eigenvectors. But the most promising feature of Algorithm 2 can be
observed in Table 4.1, the Ehrlich-Aberth iteration with inverse iteration is much faster
then the eig function from MATLAB.

4.4.2 Numerical results for NLP (OPT 1)

We minimize the averaged total energy for a vibrational system by transforming the
above quadratic ODE into first order form (see Section 4.2). Hence, we solve the NLP
(OPT 1), where the rank of the initial perturbation UCV T for the structure-exploiting
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Ehrlich-Aberth iteration eig
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Figure 4.4: Backward error for eigenpairs computed by EAI (left) and eig from MAT-
LAB (right) for triple-chain oscillator with 4501 masses.

Ehrlich-Aberth iteration eig
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Figure 4.5: Backward error for eigenpairs computed by EAI (left) and eig from MAT-
LAB (right) for beam with 3000 finite elements.
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Ehrlich-Aberth iteration eig
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Figure 4.6: Backward error for eigenpairs computed by EAI (left) and eig from MAT-
LAB (right) for beam with 4000 finite elements.

Example EAI eig from MATLAB
oscillator, n = 6002 30.1779 5542.4930
oscillator, n = 9002 65.9200 29809.5515
beam, n = 6000 31.8541 5120.4564
beam, n = 8000 60.4226 17197.5731

Table 4.1: Running times for computation of eigenpairs by EAI incl. single inverse
iteration and eig function from MATLAB for various examples.

sign function method defined in Algorithm 4 is exactly the number of viscous dampers.
Due to the result from [Ves90] the global optimization of the viscosities in (OPT 1)
can be performed by the NLP solver fmincon from MATLAB, which implements an
interior point algorithm. During the iteration of fmincon the solution of the structured
algebraic Lyapunov equation and its gradient ∂ trX(ν)

∂νj
given in (4.8) for j = 1, . . . , r was

provided. We computed the solution of the structured algebraic Lyapunov equation by
the structure-exploiting sign function method defined in Algorithm 4. We chose as a
stopping criterion ‖Ak + I‖F ≤ 10−4 and accelerated the convergence with Frobenius
scaling, i.e., c2

k = ‖A−1
k ‖F/‖Ak‖F for the first 12 sign function iterations. We omitted

the rank compression in line 16 to 20 of Algorithm 4 for all numerical examples for
the first seven iterations of Algorithm 4, i.e., as a parameter m = 7 was chosen. The
results for the structure-exploiting sign function method defined in Algorithm 4 with
ε = 10−4 are shown in Table 4.2.

Obviously, the standard and the structure-exploiting sign function method defined
in Algorithms 3 and 4 do not compute exactly the same results. Hence, the NLP
solver fmincon vary for both methods. Therefore, the corresponding running times
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Example structure-exploiting SFM with ε = 10−4

tot. energy #fmincon-iteration time

oscillator n = 6002 9.99 · 106 10 1.54 · 105

oscillator n = 9002 1.98 · 107 15 1.49 · 106

beam n = 6000 3.10 · 10−1 13 1.52 · 105

beam n = 8000 3.11 · 10−1 20 8.83 · 105

Table 4.2: Global optimal solutions to NLP (5.24) obtained by NLP solver fmincon
from MATLAB with structure-exploiting sign function method defined in
Algorithm 4 with ε = 10−4.

highly depend on the in particular chosen example, especially the number of fmincon-
iterations. Therefore, we investigate in the following the running times for the standard
and the structure-exploiting sign function method defined in Algorithms 3 and 4 for
fixed viscosities.
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Figure 4.7: Running times of structure-exploiting sign function method (Algorithm 4)
w.r.t. truncation tolerance ε.

In Figure 4.7 the running times of the structure-exploiting sign function method w.r.t.
truncation tolerance ε for the SVD are shown. As expected, the running time of the
structure-exploiting SFM increases when the truncation tolerance ε for the SVD is
decreased.
In Figure 4.8 the speedup of the structure-exploiting sign function method (Algo-
rithm 4) vs. the standard sign function method (Algorithm 3) is shown. Based on
the truncation tolerance between 7-56% computational time is saved by applying the
structure-exploiting SFM described in Algorithm 4 instead of the standard SFM de-
fined in Algorithm 3.
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Figure 4.8: Speedup of structure-exploiting sign function method (Algorithm 4) w.r.t.
truncation tolerance ε.
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5
Placement of Viscous Dampers

In this chapter we aim at reducing the vibrations

xk = eλkt = edkt (cos(tωk) Re(vk)− sin(tω) Im(vk))

given in (3.3) for k = 1, . . . , 2n of the vibrational system (3.1) by r viscous dampers at
once. Here, the r external dampers have to be placed and their viscosities have to be
optimized. Hence, we investigate the placement problem for r viscous dampers that
was introduced in Section 3.4.4, namely the minimization of the averaged total energy
w.r.t. the placement of r viscous dampers (OPT 2),

min
ν

tr(X)

s.t. A(ν)TX +XA(ν) = −I,
0 ≤ νi ≤ νmax, i = 1, . . . , n,

bi ∈ {0, 1} , i = 1, . . . , n,

νi ≤ biνmax, i = 1, . . . , n,
n∑
i=1

bi ≤ r,

where A(ν) = B − V̂ D(ν)V̂ T ,

B = blockdiag(B(1), B(2), . . . , B(n)),

B(i) =

[
0 ωi
−ωi −2γωi

]
, i = 1, . . . , n,

V̂ =



0 0 . . . 0
v11 v12 . . . v1n

0 0 . . . 0
v21 v22 . . . v2n
...

...
. . .

...
0 0 . . . 0
vn1 vn2 . . . vnn


∈ R2n×n,

D(ν) = diag(ν1, . . . , νn).
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Chapter 5 Placement of Viscous Dampers

In Chapter 4 we have established the theory to determine the optimal viscosity w.r.t.
the averaged total energy. In this chapter we do not only want to pose the question of
how to damp a vibrational system, but also where a damper should be placed. There-
fore, we consider a set of external damper positions, but the number of realizations is
restricted. Hence, this chapter is an extension to Chapter 4.

This chapter is structured as follows. In Section 5.1 we briefly introduce the basic
concepts for solving Mixed Integer Nonlinear Programs (MINLPs). In Section 5.2 we
introduce and derive properties of the viscous damper placement problem and encode it
as a Mixed Integer Nonlinear Program. Linearization techniques based on McCormick
envelopes and piecewise linear functions are introduced in Section 5.3 and Section
5.4. A novel `1-penalization heuristic for the viscous damper placement problem is
presented in Section 5.5, which is applicable to medium-scale problems. In Section
5.6 we derive an efficient algorithm that determines the optimal damper positions in
O(n2) for sufficiently small viscosities, i.e., in this case we do not need the MINLP
formulation and its linearizations for the viscous damper placement problem. Finally,
we show numerical results in Section 5.7.

5.1 Algorithmic Treatment of Solving MINLPs

We briefly discuss the algorithmic treatment of solving Mixed Integer Nonlinear Pro-
grams (MINLPs) of the form (2.51). We therefore introduce the basic principle for
solving MINLPs: relaxation and constraint enforcement.

Relaxation

Enlarging the feasible set of the MINLP is called a relaxation. We are interested
in relaxations that are substantially easier to solve than the MINLP itself e.g. by
integrality relaxations. Via a relaxation a lower bound on the optimal solution of
(2.51) is computed. Together with an upper bound that can be obtained from any
feasible point, relaxations allow us to terminate the search for a solution whenever the
lower bound is larger than the current upper bound.

Constraint Enforcement

After the feasible set is enlarged by a relaxation, we have to exclude solutions that
are feasible to the relaxation, but not to the original MINLP. This procedure is called
constraint enforcement which can be accomplished by refining or tightening the relax-
ation, often by adding valid inequalities (cuts), or by branching, where the relaxation
is divided into two or more separate problems. (x, y) is called a feasible solution of
the MINLP (2.51) if gi(x, y) ≤ 0 for i ∈ I. If y ∈ Zny , then y is called integral, i.e.,
yi ∈ Z for i = 1, . . . , ny. Via branching we obtain some form of search tree, i.e., if the
solution (x, y) is feasible but y is not integral, i.e., there exists a non-integral variable
e.g. yi /∈ Z and then we branch on it. Branching introduces two new child nodes in the
search tree. The first child has a new upper bound on the branching variable ui = byic
and the second child has a new lower bound li = dyie.
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Remark 5.1.1. Matrix constraints such as the algebraic Lyapunov equation cannot be
solved by general MINLP solvers and the aforementioned methods cannot be applied.
Hence, matrix constraints have to be encoded in terms of the Kronecker product if
possible in order to solve them by a linear system solver, which is a subroutine of any
MINLP/MILP solver.

5.2 Mixed Integer Nonlinear Programming Formulation

In this chapter we discuss the problem to find the optimal set of indices {j1, . . . , jr} and
viscosities {νj1 , . . . , νjr} such that optimal evanescence w.r.t. the averaged total energy
is ensured. While in the optimization problem (OPT 1) the positions of the r external
dampers were fixed, we now consider n viscous dampers in the parameter dependent
structured algebraic Lyapunov equation A(ν)TX + XA(ν) = −I in (OPT 2). Hence,
the objective functions in (OPT 1) and (OPT 2) are different. The objective function
of the optimization problem (OPT 2) can be formulated as f : Rn → R,

f : ν 7→ tr

(∫ ∞
0

eA(ν)T teA(ν)tdt

)
, (5.1)

where A(ν) is defined in (OPT 2).

Lemma 5.2.1. The mapping f : Rn → R as in (5.1) is twice continuously differen-
tiable, i.e., f ∈ C2.

Proof. The proof of Lemma 5.2.1 can be carried out as in Lemma 4.2.1. The first and
second partial derivatives of f are given in (4.8) and (4.10), where A(ν) = B−V̂ D(ν)V̂ T

is now different, since V̂ ∈ R2n×n and D(ν) ∈ Rn×n are now defined in (OPT 2).

The state space matrix A(ν) and therefore, the objective function f has changed w.r.t.
Chapter 4, but their qualitative behavior as a nonlinear function has not changed.
Since we have introduced binary variables bi ∈ {0, 1} for i = 1, . . . , n in (OPT 2), the
optimization problem (OPT 2) is a MINLP.

Corollary 5.2.2. The optimization problem (OPT 2) is a MINLP.

Proof. For theoretical investigation we use the integral formulation of the solution of the
algebraic Lyapunov equation (3.42) by Lemma 3.3.3, i.e., X(ν) =

∫∞
0
eA(ν)T teA(ν)tdt,

which is obviously nonlinear. Since we have binary variables bi ∈ {0, 1} for i = 1, . . . , n,
the optimization problem (OPT 2) is obviously a MINLP:

min

∫ ∞
0

tr
(
eA(ν)T teA(ν)t

)
dt

s.t. − νi ≤ 0, for i = 1, . . . , n,

νi − νmax ≤ 0 for i = 1, . . . , n,

bi ∈ {0, 1} , i = 1, . . . , n,

νi ≤ biνmax, i = 1, . . . , n,
n∑
i=1

bi ≤ r.
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In Section 4.2, the objective function was in general non-convex for more than one
external damper. Now in this chapter we enlarge the number of external dampers, but
the objective function f defined in (5.1) remains non-convex as shown by an example
in [Bra98]. Global optimization e.g. in [Han92; HT96] of f is challenging since f is
non-convex and so many local minima may exist.

By Corollary 5.2.2 the optimization problem (OPT 2) is a MINLP. For theoretical in-
vestigation we have considered the objective function f : Rn → R defined in (5.1),
which was nonlinear. But this representation is not beneficial for numerical compu-
tations and hence, we use its equivalent formulation as the solution of an algebraic
Lyapunov equation as in (OPT 2). Therefore, the type of nonlinearity for the opti-
mization problem (OPT 2) is not obvious, since it is due to the Lyapunov equation
via the product of its solution X and the viscosities ν1, . . . , νn of the system matrix
A(ν). So we have a closer look at the nonlinearity and investigate A(ν), which can be
rewritten as

A(ν) = B − V̂ D(ν)V̂ T = B −
n∑
i=1

νiV̂iV̂
T
i ,

where V̂i is the i-th column of V̂ and V̂ T
i is its transpose. Due to Remark 5.1.1

matrix constraints cannot be solved by a general MINLP solver. A way out is the
reformulation by the Kronecker product. We then transform the structured algebraic
Lyapunov equation A(ν)TX +XA(ν) = −I via the Kronecker product (3.9) into(

I2n ⊗ A(ν)T + A(ν)⊗ I2n

)
vec(X) = vec(I),(

I2n ⊗
(
BT −

n∑
i=1

νiV̂iV̂
T
i

)
+

(
B −

n∑
i=1

νiV̂iV̂
T
i

)
⊗ I2n

)
vec(X) = vec(I),

which can be rewritten as(
A(0) −

n∑
i=1

νiA(i)

)
vec(X) = vec(I), (5.2)

where A(0) = I2n ⊗ BT + B ⊗ I2n and A(i) = I2n ⊗ V̂iV̂ T
i + V̂iV̂

T
i ⊗ I2n for i = 1, . . . , n

and V̂iV̂
T
i ∈ R2n×2n is given as

V̂iV̂
T
i =



0
v1i

0
v2i
...
0
vni





0
v1i

0
v2i
...
0
vni



T

=



0 0 0 0 0 · · · 0 0
0 v2

1i 0 v1iv2i 0 · · · 0 v1ivni
0 0 0 0 0 · · · 0 0
0 v2iv1i 0 v2

2i 0 · · · 0 v2ivni
...

...
...

...
...

. . .
...

...
0 0 0 0 0 · · · 0 0
0 vniv1i 0 vniv2i 0 · · · 0 v2

ni


.
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Hence, A(i) ∈ R4n2×4n2
is given as

A(i) =



V̂iV̂
T
i 0 0 0 0 · · · 0 0

0 v2
1iI2n + V̂iV̂

T
i 0 v1iv2iI2n 0 · · · 0 v1ivniI2n

0 0 V̂iV̂
T
i 0 0 · · · 0 0

0 v2iv1iI2n 0 v2
2iI2n + V̂iV̂

T
i 0 · · · 0 v2ivniI2n

...
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · V̂iV̂
T
i 0

0 vniv1iI2n 0 vniv2iI2n 0 · · · 0 v2
niI2n + V̂iV̂

T
i


,

for i = 1, . . . , n. We considered the structured algebraic Lyapunov equation in (5.2).
An equivalent formulation for an algebraic Lyapunov equation without the perfect
shuffle permutation (3.33) has been derived in [Tru04].
We can rewrite (5.2) as a bilinear map b : Rn × R4n2 → R4n2

,

b(ν, x) := A(0)x−
n∑
i=1

νiA(i)x− vec(I), (5.3)

where x = vec(X) ∈ R4n2
such that b(ν, x) = 0. The bilinearity is given in νiA(i)x for

i = 1, . . . , n. Hence, we obtain the following corollary.

Corollary 5.2.3. A(ν)TX +XA(ν) = −I in (OPT 2) can be rewritten as b(ν, x) = 0,
where b(·, ·) is defined in (5.3). Hence, the optimization problem (OPT 2) is nonlinear
due to the bilinear constraint b(ν, x) = 0.

By Remark 5.1.1, the algebraic Lyapunov equation and the respective bilinear con-
straint b(ν, x) = 0, where b(·, ·) is defined in (5.3), have to be encoded as bilinear
constraints. We then obtain the following 4n2 bilinear constraints which include 4n3

bilinear products, namely νixj,

4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
k=1

a
(i)
kj νixj = δk mod (2n+1),1, (5.4)

where a
(i)
kj =

(
A(i)

)
kj

for i = 0, . . . , n, j, k = 1, . . . , 4n2 and δk mod (2n+1),1 is the Kro-

necker delta.

Remark 5.2.4. Let a
(i)
p denote the p-th column of A(i), where (i, p) ∈ N ×M . Due

to the structure of V̂iV̂
T
i and A(i) for i = 1, . . . , n, it follows that n columns of A(i)

are zero columns, i.e., a
(i)
4n(j−1)+2k−1 = 0, where (j, k) ∈ N × N . Hence, the bilinear

constraint b(ν, x) = 0, where the bilinear map b(·, ·) is defined in (5.3), can be encoded
by 4n2 bilinear constraints given in (5.4), which contain overall 3n3 bilinear products
νi · x4n(j−1)+2k and νi · x4nj+`, where i, j, k = 1, . . . , n and ` = 1, . . . , 2n.

For notational simplicity we omit the observation of Remark 5.2.4 in the MINLP (5.5),
which we derive in the following. In Section 5.1 we have seen that one needs bounds on
the variables for solving MINLPs by a general MINLP solver. Hence, we assume that
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bounds on the solution of the algebraic Lyapunov equations are given, x`j ≤ xj ≤ xuj ,
where j ∈M = {1, . . . , 4n2}. [AMK96] surveys bounds for the solution of an algebraic
Lyapunov equation, but most bounds are not applicable, since a major assumption
is the stability for the symmetric part of the system matrix, which does not hold for
the structured algebraic Lyapunov equation (3.43). A bound which does not need this
assumption can be found e.g. in [PS08].
We mention that the trace of the matrix X in terms of the vectorization operation can
be rewritten as

tr(X) =
2n∑
i=1

x2n(i−1)+i,

where x = vec(X). In order to apply general MINLP solvers to the viscous damper
placement problem (OPT 2), we rewrite it as the following MINLP:

min
ν

2n∑
i=1

x2n(i−1)+i

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj νixj = δk mod (2n+1),1, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
bi ∈ {0, 1} , i ∈ N,
νi ≤ biνmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,
n∑
i=1

bi ≤ r,

where N = {1, . . . , n} and M =
{

1, . . . , 4n2
}
.

(5.5)

We state the main drawback of the MINLP formulation (5.5) in the following remark.

Remark 5.2.5. Let the viscosities ν be fixed. Then a direct solve of equation (5.2) or
(5.4), respectively, by e.g. Gaussian elimination or LU decomposition, has a complexity
of O(n6), since the matrices A(i) are of size 4n2 × 4n2 for i = 0, . . . , n. Therefore,
solving the MINLP (5.5) is very demanding, which is the main drawback of the encoding
in terms of the bilinear map in (5.2). Hence, computation of the solution to the MINLP
(5.5) by a general MINLP solver is limited to small-scale problems.

We compare the computational complexity for computing solutions to the algebraic
Lyapunov equation by various methods. The main drawback of the MINLP formula-
tion (5.5) is its computational complexity given in Remark 5.2.5. For solving algebraic
Lyapunov equations, direct methods such as the Bartels-Stewart method [BS72] and
Hammarling’s method [Ham82] are based on transforming the coefficient matrix into
Schur form. Both methods have cubic computational complexity since the computa-
tional complexity is dominated by transforming the coefficient matrix into Schur form.
Moreover, iterative algorithms for the solution of algebraic Lyapunov equations exist.
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5.3 McCormick Envelopes

In Chapter 4 various iterative methods for algebraic Lyapunov equation were intro-
duced, namely the sign function method in Algorithm 3, the structure exploiting sign
function method in Algorithm 4 and the structure exploiting sign function method
with low-rank rhs in Algorithm 5. A further iterative method is the Alternating Direc-
tion Implicit (ADI) method, which has drawn a lot of attention for solving algebraic
Lyapunov equation and has been investigated in the context of damping optimization
in [TV09].

We conclude this section with an outlook on the following topics which we will discuss
in this chapter. The reformulated objective function f defined in (5.1) is non-convex
as mentioned above and so is the optimization problem (OPT 2) and its reformulation
as a MINLP (5.5). Even when the integer decision variables are relaxed to be con-
tinuous, the feasible region may be non-convex. Non-convex Mixed Integer Nonlinear
Programming is much more challenging since then the continuous relaxation of integer
decision variables is still a global optimization problem [Han92; HT96]. Therefore, an
efficiently solvable convex relaxation for the branch-and-bound framework is needed.
An outer approximation of the feasible set of the MINLP is obtained by McCormick
envelopes in Section 5.3. The outer approximation (relaxation) then turns out to be
convex and polyhedral, i.e., it is a Mixed Integer Linear Program (MILP), which can
be solved efficiently. We test in Section 5.7 if this outer approximation is tight enough
such that it yields further information for positioning external dampers from solving
the resulting MILP.

In Section 5.4 another idea is employed, namely the approximation of the nonlinearity
(5.3). We add artificial functions in order to model the bilinear product νi·xj for i, j, k =
1, . . . , n. These functions are then separable and hence, they can be approximated by
piecewise linear functions such that the resulting approximation is a MILP as well.

5.3 McCormick Envelopes

We describe the basic idea of McCormick envelopes [McC76] of a bilinear function.
Here, the bilinear function is the product of two variables, namely νi · xj, where i =
1, . . . , n and j = 1, . . . , 4n2. First, we introduce a new and artificial variable, which is
defined as

yij := νixj, (5.6)

where the variables νi and xj have the same bounds as in the previous section, i.e.,
νmin ≤ νi ≤ νmax and x`j ≤ xj ≤ xuj for i = 1, . . . , n and j = 1, . . . , 4n2. The variable
yij is relaxed by the following four inequalities which are known to be McCormick
envelopes [McC76],

yij ≥ νminxj + νix
`
j − νminx

`
j,

yij ≥ νmaxxj + νix
u
j − νmaxx

u
j ,

yij ≤ νminxj + νix
u
j − νminx

u
j ,

yij ≤ νmaxxj + νix
`
j − νmaxx

`
j.
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Since the lower bound on the viscosities in the MINLP (5.5) is zero, i.e., νmin = 0, the
McCormick envelopes in simplify to

yij ≥ νix
`
j, (5.7)

yij ≥ νmaxxj + νix
u
j − νmaxx

u
j , (5.8)

yij ≤ νix
u
j , (5.9)

yij ≤ νmaxxj + νix
`
j − νmaxx

`
j. (5.10)

The inequalities (5.7) and (5.8) are known as convex underestimators and they are
shown in Figure 5.1a and 5.1b. The inequalities (5.9) and (5.10) are known as convex
overestimators and they are shown in Figure 5.1c and 5.1d.

−1
0

1 0

1

−2

0

2

xj
νi

νix
`
j

νixj

(a) Convex underestimator (5.7).
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1 0

1

−2

0

2

xj
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νmaxxj + νix
u
j − νmaxx

`
j

νixj

(b) Convex underestimator (5.8).
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u
j
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(c) Convex overestimator (5.9).

−1
0

1

0

1

−2

0
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xj
νi

νmaxxj + νix
`
j − νmaxx

`
j

νixj

(d) Convex overestimator (5.10).

Figure 5.1: McCormick envelopes
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The MINLP (5.5) is linearized by McCormick envelopes (5.7)-(5.10) and hence, we
obtain the following MILP:

min
ν

2n∑
i=1

x2n(i−1)+i

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj yij = δk mod (2n+1),1, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
bi ∈ {0, 1} , i ∈ N,
νi ≤ biνmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,

νix
`
j ≤ yij ≤ νmaxxj + νix

`
j − νmaxx

`
j, (i, j) ∈ N ×M,

νmaxxj + νix
u
j − νmaxx

u
j ≤ yij ≤ νix

u
j , (i, j) ∈ N ×M,

n∑
i=1

bi ≤ r,

where N = {1, . . . , n} and M =
{

1, . . . , 4n2
}
.

(5.11)

Remark 5.3.1. Linearizing the MINLP (5.5) via McCormick envelopes by (5.6) and
(5.7)-(5.10), yields the Mixed Integer Linear Program (5.11), which has 3n3 additional
variables yij, where (i, j) ∈ N ×M , compared to the MINLP (5.5), see Remark 5.2.4.
Moreover, the MILP (5.11) has 12n3 additional linear constraints compared to the
MINLP (5.5).

5.4 Piecewise Linear Approximation

Piecewise linear approximation of a separable nonlinear function has been investigated
e.g. in [Fou92; FM92]. In this section we describe the basic idea of adding auxiliary
separable functions and then piecewise linearizing of the bilinear product νi ·xj, where
i ∈ N = {1, . . . , n} and j ∈ M = {1, . . . , 4n2}. First, we define separability of a
function f . f is called separable if it can be defined as the sum of functions of scalar
variables. Hence, we mean additive separability of a function in the following definition.

Definition 5.4.1. A function f : Rn → R is said to be separable if it can be represented
as

f(x) =
n∑
j=1

gj(xj),

where x ∈ Rn and gj : R→ R for j = 1, . . . , n.

We introduce two auxiliary variables y
(1)
ij and y

(2)
ij , which are defined as

y
(1)
ij :=

νi+xj
2

and y
(2)
ij :=

νi−xj
2
, (5.12)
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such that
νixj = f ij1

(
y

(1)
ij

)
− f ij2

(
y

(2)
ij

)
, (5.13)

where (i, j) ∈ N ×M and f ij1 (y
(1)
ij ) =

(
y

(1)
ij

)2

and f ij2 (y
(2)
ij ) =

(
y

(2)
ij

)2

. Hence, we have

now obtained quadratic separable functions f ij1 and f ij2 for (i, j) ∈ N ×M . We use

their separability later on, but first we derive bounds on the variables y
(1)
ij and y

(2)
ij . Let

0 ≤ νi ≤ νmax and x`j ≤ xj ≤ xuj denote some bounds on the variables νi and xj for

(i, j) ∈ N ×M . Then lower and upper bounds on the variables y
(1)
ij and y

(2)
ij can be

derived with (5.12),

1
2
x`j ≤ y

(1)
ij ≤ 1

2
(νmax + xuj ),

−1
2
xuj ≤ y

(2)
ij ≤ 1

2
(νmax − x`j),

for (i, j) ∈ N ×M .

y1 y2 y3 y4 y5 y6

f(y)

f(y)

Figure 5.2: Piecewise linear approximation f(y) of the quadratic function f(y) = 1
2
y2.

We approximate the nonlinear, but separable function f(y) = 1
2
y2 by f(y), where

f is piecewise linear. The quadratic function f is plotted by a solid graph and its
piecewise linearizations f by dotted lines in Figure 5.2. Here, the piecewise linear
approximation is shown for s = 6 approximation nodes. Many approaches exist in order
to model a piecewise linear approximation of a nonlinear but separable function, e.g.
the multiple choice model [JL84], the disaggregated convex combination model [Mey76],
the incremental model [MM57] and the convex combination model [Dan60]. The convex
combination model uses binary variables to select the correct piece of the piecewise
linear approximation. Here, we use a variant of the convex combination model, which
uses special ordered sets of variables of type 2 instead of binary variables, but for
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completeness the convex combination model with binary variables is given below. A
special ordered set of type 2 (SOS2) is an ordered set of non-negative variables, of
which at most two can be non-zero, and if two are non-zero these must be consecutive
in their ordering. Special ordered sets of type 2 were introduced in [BT70].

Now, we come to the convex combination model for the piecewise linear approximation
of a function f : R → R, where its argument y has a lower and upper bound, i.e.,
y` ≤ y ≤ yu. First, predefined and fixed approximation nodes y1, . . . , ys have to be
chosen such that the first and last node coincide with the bounds of y, i.e., y1 = y`

and ys = yu. Then non-negative weights λ` ≥ 0 for each approximation node y` are
introduced, i.e., λ` ≥ 0 for ` = 1, . . . , s. Any y ∈ [y`, yu] can be given by a convex
combination of approximation nodes w.r.t. the weights λ` for ` = 1, . . . , s, see (5.15)-
(5.17). Every convex combination of two points lies on the line segment between the
points. Hence, for any y ∈ [y`, yu] the convex combination in (5.15) can be chosen such
that only the two weights of the adjacent nodes can be positive. Assume y ∈ [yk, yk+1],
then choose λ` = 0 for ` 6= k, k+1. Hence, we obtain the piecewise linear approximation
f at y as the convex combination of f(yk) and f(yk+1) w.r.t. the two adjacent weights
λk and λk+1,

f(y) = λkf(yk) + λk+1f(yk+1),

where y ∈ [yk, yk+1]. Since λ` = 0 for ` 6= k, k + 1, we can rewrite f(y) globally as a
convex combination f(y) =

∑s
`=1 λ`f(y`), see (5.14) for any y ∈ [y`, yu]. But we have

to be assure that {λ1, . . . , λs} is a special ordered set of variables of type 2 (SOS2).
Then the convex combination model for the piecewise linear approximation f of f can
be summarized as

s∑
`=1

λ`f(y`) = f(y), (5.14)

where its domain is defined by

s∑
`=1

λ`y` = y, (5.15)

0 ≤ λ` ≤ 1, for ` = 1, . . . , s, (5.16)
s∑
`=1

λ` = 1. (5.17)

Many MILP solver support SOS2 and it is preferably to declare {λ1, . . . , λs} as a
SOS2. If {λ1, . . . , λs} is declared as a SOS2 constraint a different branching strategy is
selected. In an LP relaxed solution where the SOS2 condition is violated by the relaxed
solution, the set {λ1, . . . , λs} is divided into two disjoint subsets S1 and S2 such that
S1 ∪ S2 = {λ1, . . . , λs} and the relaxed solution has a non-zero entry in each of the
subsets. Then branching is done such that each branch corresponds to a subset Si for
i = 1, 2. For example λ = 0 is enforced for all λ ∈ S1 on the first branch. Obviously,
this branching strategy does not exclude any feasible solutions. In addition, the current
relaxed solution, that violates the SOS2 condition, is eliminated from both branches,
enabling the relaxation bound to improve and ensuring that the SOS2 condition will
be satisfied after a finite number of branches. Valid inequalities based on the SOS2
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condition, analogous to the use of valid inequalities for mixed integer programming,
can be derived [KFN06].

If the MILP solver does not support SOS2, we instead use the convex combination
model [Dan60], which is given below for completeness. It fulfills the model (5.14)-
(5.17) but {λ1, . . . , λs} cannot be declared as a SOS2 and hence, it has to be modeled
differently. First, binary variables di for i = 1, . . . , s− 1 are introduced. di = 1 if and
only if x ∈ [xi, xi+1). These binary variables with the following constraints model then
a SOS2

di ∈ {0, 1} , for i = 1, . . . , s− 1, (5.18)
s−1∑
i=1

di = 1, (5.19)

λi + λi+1 ≤ di, for i = 1, . . . , s− 1, (5.20)

x < yi+1 +M(1− di), for i = 1, . . . , s− 1, (5.21)

x ≥ yi −M(1− di), for i = 1, . . . , s− 1, (5.22)

for a suitably large constant M . By (5.19)-(5.22) at most two adjacent weights λi
and λi+1 are greater than zero. If dj = 1, then the constraints (5.21) and (5.22) force
xj ≤ x < xj+1 and are vacuous for all i 6= j (assuming M is correctly chosen).

In the following we linearize the MINLP (5.5) by piecewise linear functions, i.e., by
(5.14)-(5.17). We further assume that special ordered sets of type 2 can be declared
in the MILP solver. Let us assume that each bilinear product νixj is given by two

quadratic separable functions f
(i,j)
1 (y

(1)
ij ) and f

(i,j)
2 (y

(2)
ij ) as in (5.13), where y

(1)
ij =

νi+xj
2

and y
(2)
ij =

νi−xj
2

as in (5.12) for (i, j) ∈ N ×M . The functions f
(i,j)
1 and f

(i,j)
2 are

piecewise linear approximated by f
(i,j)
1 and f

(i,j)
2 with s− 1 pieces for (i, j) ∈ N ×M .

Hence, we obtain the following constraints for the piecewise linear approximation of
f

(i,j)
1 by f

(i,j)
1 ,

s∑
`=1

λ
(ij)
` f(t

(ij)
` ) = f

(ij)

1 (y
(1)
ij ),

s∑
`=1

λ
(ij)
` t

(ij)
` = y

(1)
ij ,

0 ≤ λ
(ij)
` ≤ 1, ` ∈ S,

s∑
`=1

λ
(ij)
` = 1,{

λ
(ij)
1 , . . . , λ(ij)

s

}
is a SOS2,

where (i, j) ∈ N×M . The following constraints for the piecewise linear approximation
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of f
(i,j)
2 by f

(i,j)
2 are obtained

s∑
`=1

κ
(ij)
` f(t

(ij)
` ) = f

(ij)

2 (y
(2)
ij ),

s∑
`=1

κ
(ij)
` t

(ij)
` = y

(2)
ij ,

0 ≤ κ
(ij)
` ≤ 1, ` ∈ S,

s∑
`=1

κ
(ij)
` = 1,{

κ
(ij)
1 , . . . , κ(ij)

s

}
is a SOS2, ,

where (i, j) ∈ N ×M . With the piecewise linear approximation we rewrite the con-

straint
∑4n2

j=1 a
(0)
kj xj −

∑n
i=1

∑4n2

j=1 a
(i)
kj νixj = δk mod (2n+1),1 of the MINLP (5.5) as

4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj (f

(ij)

1 (y
(1)
ij )− f (ij)

2 (y
(2)
ij )) = δk mod (2n+1),1,

where k ∈ M . Therefore, we obtain the MILP (5.23), which is obtained by piecewise
linear approximation of the MINLP (5.5).
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min
ν

2n∑
i=1

x2n(i−1)+i

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj (f

(ij)

1 (y
(1)
ij )− f (ij)

2 (y
(2)
ij )) = δ, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
bi ∈ {0, 1} , i ∈ N,
νi ≤ biνmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,

y
(1)
ij =

νi+xj
2
, j ∈M,

y
(2)
ij =

νi−xj
2
, j ∈M,

s∑
`=1

λ
(ij)
` f(t

(ij)
` ) = f

(ij)

1 (y
(1)
ij ), (i, j) ∈ N ×M,

s∑
`=1

λ
(ij)
` t

(ij)
` = y

(1)
ij , (i, j) ∈ N ×M,

0 ≤ λ
(ij)
` ≤ 1, (i, j, `) ∈ N ×M × S,

s∑
`=1

λ
(ij)
` = 1, (i, j) ∈ N ×M,{

λ
(ij)
1 , . . . , λ(ij)

s

}
is a SOS2, (i, j) ∈ N ×M,

s∑
`=1

κ
(ij)
` f(t

(ij)
` ) = f

(ij)

2 (y
(2)
ij ), (i, j) ∈ N ×M,

s∑
`=1

κ
(ij)
` t

(ij)
` = y

(2)
ij , (i, j) ∈ N ×M,

0 ≤ κ
(ij)
` ≤ 1, (i, j, `) ∈ N ×M × S,

s∑
`=1

κ
(ij)
` = 1, (i, j) ∈ N ×M,{

κ
(ij)
1 , . . . , κ(ij)

s

}
is a SOS2, (i, j) ∈ N ×M,

1
2
x`j ≤ y

(1)
ij ≤ 1

2
(νmax + xuj ), (i, j) ∈ N ×M,

− 1
2
xuj ≤ y

(2)
ij ≤ 1

2
(νmax − x`j), (i, j) ∈ N ×M,

n∑
i=1

bi ≤ r,

where δ = δk mod (2n+1),1, N = {1, . . . , n} ,
M =

{
1, . . . , 4n2

}
, S = {1, . . . , s} .

(5.23)
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Remark 5.4.2. Linearizing the MINLP (5.5) via the piecewise linear approximation
(5.14)-(5.17), yields a Mixed Integer Linear Program (MILP) with 6n3(s+1) additional
variables and 18n3 additional linear constraints, see Remark 5.2.4. (5.16) must not
necessarily be encoded as a linear constraint, since it can be viewed as a bound on the
variables and hence, it is omitted in the count of additional linear constraints.
Either 6n3 special ordered sets of variables of type 2 (SOS2) have to be communicated to
the MILP solver or 6n3(s−1) additional binary variables by (5.18) and 6n3+18n3(s−1)
linear constraints by (5.19)-(5.22) have to be added to the MILP.

5.5 Heuristic Determination of Damper Position by
`1-Penalization

Some real-world applications cannot be solved to global optimality, because the prob-
lems are too large, generate a huge search tree, or must be solved in real time. Encoding
the viscous damper problem as a MINLP (5.5) generates a huge problem due to Remark
5.2.5, which cannot be solved to global optimality using the linearization techniques
described in Sections 5.3 and 5.4. Then it is often more desirable to obtain a good
solution quickly than to wait for an optimal solution. In this section, we propose a
heuristic framework to find good but not necessarily optimal damping positions. Hence,
we reduce the number of damper positions such that we obtain a subset Dµ of good
damper positions w.r.t. a parameter µ ≥ 0, i.e., Dµ ⊆ D0, where D0 are the initial
damper positions. In our case we assume that to each mass an external damper can
be attached, i.e., D0 = {1, . . . , n}. Once, the good damper positions Dµ are identified,
we solve a series of NLPs (OPT 1) in order to determine the best r damper positions
in this subset Dµ with respective viscosities.
First, we return to the mixed integer nonlinear programming formulation in (OPT 2).
If we omit all binary variables of (OPT 2) and the corresponding inequalities where
they occur, we obtain a Nonlinear Program (NLP),

min
ν

2n∑
i=1

x2n(i−1)+i

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj νixj = δk mod (2n+1),1, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,

where N = {1, . . . , n} and M =
{

1, . . . , 4n2
}
.

(5.24)

We cannot expect the solution of the NLP (5.24) to be sparse. If it is sparse it would
not be necessary to consider the MINLP (5.5) in the first place. Our idea is to modify
the NLP (5.24) such that the solution is sparse. There are several ways to induce
sparsity to a solution, e.g., by adding an `p penalty to the objective function. The
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function `p : Rn → R for 0 < p ≤ 1 is defined as

‖x‖p := (|x1|p + |x2|p + · · ·+ |xn|p)
1
p .

By (2.10), ‖x‖p is a regular norm for p ∈ [1,∞]. ‖x‖p for p ∈ (0, 1) is often called
“norm”, even though it is not subadditive. Furthermore, ‖x‖p is not convex for p ∈
(0, 1), which is a disadvantage w.r.t. optimization, since convex functions on an open
set have no more than a single minimum. Penalization with the Manhattan norm ‖ · ‖1

sparsifies the solution of an optimization problem (see Figure 3.3). Therefore, we add
an `1-term to the objective function which is regulated by a parameter µ > 0, namely,

µ‖ν‖1 = µ
n∑
i=1

|νi|.

The viscosities are non-negative, i.e., νi ≥ 0 for i = 1, . . . , n. Hence, we can reformulate
the `1-term as µ

∑n
i=1 νi and we obtain the Nonlinear Program (5.25).

min
ν

2n∑
i=1

x2n(i−1)+i + µ
n∑
i=1

νi

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj νixj = δk mod (2n+1),1, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,

where N = {1, . . . , n} and M =
{

1, . . . , 4n2
}
.

(5.25)

Theorem 5.5.1. The optimization problem (5.25) is a Nonlinear Program (NLP),
where the objective and constraint functions are twice continuously differentiable.

Proof. The only qualitatively newly added function to the relaxed MINLP (OPT 2)
is the `1-term µ

∑n
i=1 νi in the objective function, which in fact is linear and hence,

it is twice continuously differentiable. The remaining proof can be carried over from
Lemma 4.2.1 and 5.2.1.

Let x ∈ Rn be a real vector. x ∈ Rn is called k-sparse if it has k non-zero elements, i.e.,
|x|0 = | {i : xi 6= 0} | = k. Due to numerical computation, a vector is often not exactly
but almost k-sparse. We therefore relax the notion of sparsity w.r.t. a threshold ϑ.
x ∈ Rn is called k-sparse w.r.t. a threshold ϑ > 0 if it has k elements which are
absolutely larger than ϑ, i.e., | {i : xi /∈ [−ϑ, ϑ]} | = k. In the following sparsity is
meant in the sense of a small threshold ϑ > 0, where the threshold ϑ > 0 is in general
problem specific (see Section 5.7).

Remark 5.5.2. Let ν∗µ be the optimal solution of the NLP (5.25). The tradeoff between
sparsity and optimality of ν∗µ can be varied by parameter µ. Optimality of the solution
is meant in the sense of the NLP (OPT 2), i.e., without penalization µ = 0.
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5.6 Optimal Damper Positions for sufficiently small Viscosities

By Remark 5.5.2 we can regulate sparsity and optimality of the solution ν∗µ by varying

the parameter µ, i.e.,
∣∣ν∗µ∣∣0 = 0 as µ → ∞. The non-zero indices of the optimal

viscosities ν∗µ represent the positions of external dampers, i.e., the set of “good” damper
positions Dµ w.r.t. the penalization parameter µ, which is then given as

Dµ =
{
i :
(
ν∗µ
)
i
> ϑ

}
. (5.26)

We solve a series of Nonlinear Programs (NLPs) (5.25), where µ is varied until the
optimal solution ν∗µ is sufficiently sparse. Here, sufficient sparsity is meant in the
sense that the computation of the r optimal damper positions within the set of “good”
damper positions is feasible. Let ν∗µ be k-sparse, then it follows that k!

(k−r)! is sufficiently
small, where r is the predefined number of external dampers that should be placed.
Here, the computation of optimal damper positions can be performed by the methods
described in Chapter 4 or by the MINLP formulation in Section 5.2.

Remark 5.5.3. The set of “good” damper positions Dµ, which is defined in (5.26) and
is computed by solving the NLP (5.25) w.r.t. parameter µ, does not necessarily include
the optimal r damping positions of (OPT 2).

In fact, in Section 5.7 a numerical example is presented, where the set of “good”
damper positions Dµ does not include the optimal damper position. Hence, we obtain
the following corollary.

Corollary 5.5.4. The framework of identifying “good” damper positions Dµ by solving
the NLP (5.25) w.r.t. parameter µ and then computing the optimal damper position
within the set Dµ is a heuristic.

5.6 Optimal Damper Positions for sufficiently small
Viscosities

In this section we derive an algorithm, which determines the optimal damper positions
w.r.t. the averaged total energy for sufficiently small viscosities, i.e., for sufficiently
small viscosities it is not necessary to consider the MINLP formulation (5.5). The
algorithm is based on a linear approximation of the function f : Rn → R defined
in (5.1), where ν 7→ tr (X(ν)). Here f is the reformulated objective function of the
MINLP (5.5) as in Lemma 5.2.1. f is smooth by Lemma 5.2.1 and hence, it can
be expressed by a multivariate Taylor series (its single variable equivalent is given in
Theorem 2.3.9). Here, we use a linear approximation of the averaged total energy

tr (X(ν)) = f(ν) = f(0) + νT∇f(0) + . . . , (5.27)

where∇f is the gradient of f . The partial derivative ∂f
∂νj

(ν) for the structured algebraic

Lyapunov equation is defined in (4.8). Hence,

∂f

∂νj
(0) = 2V̂ T

j X(0)JX(0)V̂j.
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X(0) is given in Remark 3.4.7 as X(0) = X̂1⊕X̂2⊕. . .⊕X̂n, where X̂i = 1
2ωi

[
2γ2+1
γ

1

1 1
γ

]
for i = 1, . . . , n and hence,

X̂i · diag(1,−1) · X̂i = 1
4ω2
i

[
2γ2+1
γ

1

1 1
γ

][
1 0
0 −1

][2γ2+1
γ

1

1 1
γ

]

= 1
4ω2
i

[
(2γ2+1)2

γ2
− 1 2γ2+1

γ
− 1

γ
2γ2+1
γ
− 1

γ
1− 1

γ2

]
.

Since V̂ = P

[
0
V

]
in (3.38), where P is the perfect shuffle permutation (3.33), we obtain

∂f

∂νj
(0) = 1

2

(
1− 1

γ2

)
V T
j Ω−2Vj, (5.28)

where Ω is defined in (3.19) and Vj is the j-th column of V , which is defined in
(3.32). The formula (5.28) is the partial derivative of the averaged total energy w.r.t.
the viscosity νj. Since Ω−2 = diag(ω−2

1 , . . . , ω−2
n ) is a diagonal matrix, (5.28) can be

rewritten as
∂f

∂νj
(0) = 1

2

(
1− 1

γ2

) n∑
i=1

1
ω2
i
v2
ij, (5.29)

where vij = (V )ij. Since 0 < γ � 1 and ωi > 0 for i = 1, . . . , n, it follows that
∂f
∂νj

(0) < 0. Hence, (5.29) shows the descent of the averaged total energy w.r.t. viscosity

νj. The steepest descent gives us the optimal damping position for sufficiently small
viscosities. Therefore, we denote with dj the j-th descent which is given as ∂f

∂νj
(0) for

j = 1, . . . , n. We sort them in ascending order and the smallest r descents are then
the best positions to place r external dampers for sufficiently small viscosities. This
procedure is summarized in Algorithm 6. For larger viscosities higher order terms in
the approximation (5.27) may dominate and hence, the restriction on the viscosities is
due to the linear approximation in (5.27).

Algorithm 6 Optimal damper positions for sufficiently small viscosities

Require: Matrix Ω ∈ Rn×n, Vi ∈ Rn for i = 1, . . . , n and 0 < γ � 1.
Ensure: Ordered damper positions j1, . . . , jn ∈ {1, . . . , n}.
1: for j = 1, . . . , n do

2: dj ← 1
2

(
1− 1

γ2

)∑n
i=1

1
ω2
i
v2
ij

3: end for
4: Sort dj for j = 1, . . . , n in ascending order, i.e., dj1 ≤ dj2 ≤ . . . ≤ djn .
5: return j1, . . . , jn

Theorem 5.6.1. The optimal damper positions for sufficiently small viscosities can be
computed in O(n2).

Proof. A single execution of line 2 of Algorithm 6 can be done in O(n). Hence, the
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computational complexity is O(n2) for n times executing line 2. Sorting in line 4 of
Algorithm 6 can be done in O(n log(n)) e.g. by quick sort.

5.7 Numerical Results

In this section we show numerical results for the optimization problem (OPT 2). As
an example we consider the viscously damped beam shown in Figure 4.2, which is
discretized by finite elements as in Section 4.4. In Chapter 4 the position of the viscous
damper is fixed in the middle of the beam at L

2
and hence, we considered in Chapter

4 the corresponding NLP (OPT 1). But now the position of the viscous damper is
not necessarily in the middle of the beam anymore, but rather we want to determine
the best viscous damper positions w.r.t. the averaged total energy of the beam. The
dampers have to be attached to the beam, i.e., their positions have to be in [0, L]. The
boundary value problem (4.36) is discretized by finite elements and the same space for
external dampers is used, i.e., a viscous damper can be attached to any finite element.
We used ten cubic Hermite polynomials as interpolation shape functions and assume
that a viscous damper can be attached to any finite element. The internal damping is
given as modal damping, i.e., Cint = 2γM1/2

√
M−1/2KM−1/2M1/2, where γ = 1

100
.

We encoded the viscous damper placement problem for the viscously damped beam as
the non-convex MINLP (5.5) in AMPL. We considered two variants of the non-convex
MINLP (5.5), namely determination of the damper positions and viscosities for one and
two viscous dampers. The lower and upper bounds on x and ν are given by the results
of Chapter 4, i.e., x` ≤ xj ≤ xu for j = 1, . . . , 4n2 and 0 ≤ νi ≤ νmax for i = 1, . . . , n.
Obviously, other bounds can be used as well. A survey on bounds for the solution of
an algebraic Lyapunov equation is given in [AMK96]. A bound on the solution for an
algebraic Lyapunov equation is given in [PS08], where the assumption of stability for
the symmetric part of the system matrix can be dropped, which would be necessary
for the structured algebraic Lyapunov equation (3.43) given in the MINLP (5.5).

#dampers 1st damper 2nd damper tot. energy time in s
position position

r = 1 i1 = 1 — 0.1418 197665.75
r = 1 i1 = 10 — 0.1418 197665.75
r = 2 i1 = 3 i2 = 5 0.0951 5543529.21
r = 2 i1 = 7 i2 = 9 0.0951 5543529.21

Table 5.1: Solving MINLP (5.5) with BARON to determine positions of r = 1, 2 exter-
nal dampers, averaged total energy and running time.

The running tests for solving the MINLP (5.5) were performed with the non-convex
MINLP solver BARON. In Table 5.1 the results are summarized, where we denote
with ij the optimal position for j-th external viscous damper for j = 1, . . . , r. We
found two optimal sets for the damper positions for one and two external dampers
(i.e. r = 1 and r = 2), namely the sets of positions {1} and {10} for a single external
damper and the sets of positions {3, 5} and {7, 9} for two external dampers. Solving
the non-convex MINLP to global optimality is very demanding as it can bee seen at
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the running times — even for the small-scale example that we used (compare Remark
5.2.5). In order to apply the optimization problem (OPT 2) to examples with a larger
scale, we test in the following methods that do not guarantee global optimality, but
have a reduced complexity. These methods can be classified into the following three
categories: linearization of the nonlinearity, successive selection of damper positions
and heuristics. We start the discussion with the linearization of the non-convex MINLP
(5.5) by McCormick envelopes.

5.7.1 Linearization

Linearization by McCormick Envelopes

We first want to analyze the sensitivity of the linearization of the non-convex MINLP
(5.5) by McCormick envelopes. Hence, we analyze the MILP (5.11). In order to
analyze the structure of the linearization we repeatedly solve the optimization problems
(5.5) and (5.11) for each damper combination, i.e., we fix bi for i = 1, . . . , n before
we solve the optimization problem (5.5) and (5.11), which then turn out to be an
NLP and LP, respectively, since no integer variables occur. We encoded the resulting
NLPs and LPs in AMPL and solved these by the build-in NLP and LP solver from
CPLEX. For clarification we denote with fMINLP and fMcCormick the objective values
of the optimization problems (5.5) and (5.11) even though the optimization problems
are NLPs and LPs as we have fixed the integer variables in advance. We compute the
relative linearization error by McCormick envelopes as

errMcCormick =
|fMINLP − fMcCormick|

|fMINLP|
. (5.30)

In Figures 5.3 and 5.4 we show the relative linearization error by McCormick envelopes
for one and two external viscous dampers, respectively. The relative linearization error
by McCormick envelopes is very sensitive w.r.t. the position of the dampers, since it
varies between 0.2 and 2.2 as shown in Figures 5.3 and 5.4.
Furthermore, we encoded the MILP (5.11) in AMPL and solved it with CPLEX. The
results are shown in Table 5.2. Here, we show the approximated total energy of the
MILP (5.11) the positions of the external dampers and the computation time for one
and two external viscous dampers. The averaged total energy of the MINLP (5.5) is
not approximated well with a negative value of −0.2137199306 by the MILP (5.11) and
the approximated value does not decrease for an increased number of external dampers
(see Table 5.2).

#dampers approx. tot. energy Position time

r = 1 -0.2137199306 9 1.35608
r = 2 -0.2137199306 9,10 0.992061

Table 5.2: Results for MILP (5.11) for viscously damped beam discretized by ten finite
elements.

Due to the sensitivity of the McCormick linearization error w.r.t. the positions of the
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Figure 5.3: Optimum and relative linearization error by McCormick envelopes defined
in (5.30) for the viscously damped beam w.r.t. the position of a single
damper.
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Figure 5.4: Contour plot of the relative linearization error by McCormick envelopes
defined in (5.30) of the viscously damped beam for two external dampers.

external dampers and since increasing the number of external dampers, does not neces-
sarily decrease the approximated total energy, we conclude that the MILP (5.11) does
not yield a sufficiently good approximation of the MINLP (5.5) in order to determine
good damper positions for this particular example.
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Linearization by piecewise linear function

In this section we show results for the linearization by piecewise linear function for
the nonlinearity of the MINLP (5.5). Hence, we consider the MILP (5.23), which was
encoded in AMPL and solved by CPLEX. Unfortunately, solving the MILPs (5.23) is
very demanding and for most test cases neither the lower bound could be improved
nor an integer solution was found during the branch-&-bound algorithm. Hence, the
MILP (5.23) obtained by an approximation of the quadratic functions by s = 3, 4, 8, 16
piecewise linear functions and r = 1, 2 external dampers could not be solved since
CPLEX ran out of memory.
In order to examine the MILP (5.23) further, we considered a smaller example, namely,
the viscously damped beam discretized by two finite elements. We denote with i1 the
position of the first external viscous damper. Since the viscously damped beam is
discretized by two finite elements the position of the first external viscous damper is
i1 ∈ {1, 2}. Furthermore, we denote with fpwl the objective value of the MILP (5.23).
We compute the relative linearization error by piecewise linear functions,

errpwl =
|fMINLP − fpwl|
|fMINLP|

. (5.31)

In Table 5.3 we show the approximated averaged total energy fpwl, the relative piecewise
linearization error errpwl and the CPLEX running time for one external damper at the
positions i1 = 1 and i1 = 2, where the nonlinearity of the MINLP (5.5) is approximated
by s = 3, 4, 8, 16 piecewise linear functions.

#pw. linear damper at i1 = 1 damper at i1 = 2
functions fpwl errpwl time fpwl errpwl time

s = 3 infeasible — 1135.1 0.05690374 0.1973 17.6
s = 4 infeasible — 10978.8 0.05740511 0.2079 386.2
s = 8 0.06049407 0.2729 2114.6 0.05824296 0.2255 1325.0
s = 16 0.05947558 0.2514 25982.9 0.05846105 0.2301 24777.9

Table 5.3: Results for piecewise linear approximation of the viscously damped beam
discretized by two finite elements.

First, we want to analyze the CPLEX method and its computation time. CPLEX
could not obtain an integer feasible solution for the damper at position i1 = 1 and
s = 3, 4 piecewise linear functions. In the remaining cases CPLEX computed an
optimal solution. Increasing the number of pieces for the approximation, yields in
most cases a larger solving time (excluding if the problem has been integer infeasible
before), since for a minimization problem an integer solution solution serves as an upper
bound and nodes of the branch-&-bound tree are pruned if its lower bound is larger
than an existing upper bound. If a problem is integer infeasible, no upper bound exists
and all nodes of the branch-&-bound tree have to be visited. Then the branch-&-bound
method amounts to brute-force enumeration. This results in a very large computation
time as for a damper at position i1 = 1 and s = 3, 4 piecewise linear functions in
Table 5.3. If the number of external dampers was increased to two, CPLEX ran out of
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memory as well.

Secondly, we analyze the relative piecewise linearization errors errpwl. The relative er-
rors errpwl increase as the number of piecewise linear function increases for the damper
at position i1 = 2 as shown in Table 5.3. Hence, improving the piecewise linear ap-
proximation of the MINLP (5.5), does not necessarily approximate the averaged total
energy fMINLP better. The relative error of the piecewise linearization is much less than
the relative McCormick error, which is given for this example by errMcCormick = 0.6486
for i1 = 1 and errMcCormick = 1.1504 for i1 = 2. We conclude that the approxima-
tion of the nonlinearity in (5.5) by piecewise linear function is favorable compared to
McCormick envelopes if a solution to the MILP (5.23) can be computed.

In summary, the MILP (5.23) could not be solved efficiently for this particular example.
Solving it is very memory demanding even for this particular small-scale example and
a small number of nodes for approximation with piecewise linear functions.

5.7.2 Successive selection of damper positions

In this section we describe a method that successively selects positions for external
dampers, i.e., we do not consider the MINLP (5.5), but we replace it with a series
optimization problems. We will later specify the nature of the optimization problems.
As before, we assume that r is the number of external dampers. In this context r is then
the number of positions for external viscous dampers. The general idea is that each
of these optimization problems determines a single position for an external damper.
Hence, the number of damper combinations is reduced from n!

(n−r)! for the MINLP

(5.5) to (2n−r)r
2

for the series of optimization problems, since the selection process is
sequential. We outline the idea of successive selection of damper positions in Algorithm
7.

Algorithm 7 Successive selection of damper positions

Require: Set of possible damper positions Ppossible = {1, . . . , n}.
Ensure: Set of selected damper positions Pselected = {i1, . . . , ir}.
1: Pselected ← ∅
2: for j = 1, . . . , r do
3: Select damper position ij ∈ Ppossible

4: Ppossible ← Ppossible \ {ij}
5: Pselected ← Pselected ∪ {ij}
6: end for
7: return Pselected

The selection of the position for the external viscous damper in line 3 of Algorithm 7
has not been specified yet and in the following we will discuss two ideas. But every
selection strategy cannot guarantee to find the optimal damper positions of the MINLP
(5.5).
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Successive selection of local optimal damper positions

We denote with fPselected
the averaged total energy w.r.t. the set of selected positions

for external viscous dampers Pselected. The strategy that we want to introduce here
selects an optimal damper positions ij in line 3 of Algorithm 7, i.e.,

fPselected∪{ij} ≤ fPselected∪{i} (5.32)

for all i ∈ Ppossible. The selection of a damper positions is locally optimal due to (5.32)
and it can be described by the following MINLP:

min
ν

2n∑
i=1

x2n(i−1)+i

s.t.
4n2∑
j=1

a
(0)
kj xj −

n∑
i=1

4n2∑
j=1

a
(i)
kj νixj = δk mod (2n+1),1, k ∈M,

0 ≤ νi ≤ νmax, i ∈ N,
bi ∈ {0, 1} , i ∈ Ppossible,

νi ≤ biνmax, i ∈ N,
x`j ≤ xj ≤ xuj , j ∈M,

where N = {1, . . . , n} and M =
{

1, . . . , 4n2
}
.

(5.33)

We conclude this section with the observation that the optimal position for a sin-
gle external damper is not included in the set of optimal positions for two external
dampers, see Table 5.1 and Figure 5.5. We conclude that for this particular example it
is computationally too expensive to employ the strategy to select local optimal damper
positions (compare Table 5.1), since the local optimal choice of damper positions ij for
j = 1, . . . , r does in general not yield global optimality of Pselected and the series of
MINLPs (5.33) cannot be solved efficiently.

Successive selection of damper positions w.r.t. steepest descent

The strategy that we want to introduce here selects a damper positions ij in line 3 of
Algorithm 7 that has the steepest descent. We therefore have to compute the gradient,
which can be done by Algorithm 6. We have shown in Section 5.6 that the damping
positions determined by Algorithm 6 are optimal if the perturbation is sufficiently
small. Hence, for sufficiently small viscosities, the strategies to select damper positions
w.r.t. local optimality and steepest descent coincide. Moreover, both strategies yield
global optimality of Pselected if the corresponding viscosities are sufficiently small.
We computed the gradient (5.29) for the viscously damped beam by Algorithm 6
implemented in MATLAB. The results are shown in Figure 5.6. The running time for
computing the gradient by Algorithm 6 is 0.00282s. The best damper positions for a
sufficiently small viscosity were determined, which in fact were the positions i1 = 1 and
i1 = 10, where the steepest descent of the gradient is attained with 45.70971. These
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Figure 5.5: Contour plot of the averaged total energy for viscously damped beam with
two viscous dampers.

positions are the optimal positions for placing external viscous dampers (see Table 5.1
and Figure 5.5), but finding the optimal damper’s positions is not a general property
of Algorithm 6, since it does not guarantee to find the optimal positions for arbitrary
viscosities as mentioned in Section 5.6.
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Figure 5.6: Gradient of the damped beam with ten finite elements.

We conclude that the selected damper positions were good for this particular example
and it is computationally cheap to employ the strategy to select damper positions w.r.t.
the steepest descent of the gradient by Algorithm 6.
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5.7.3 Heuristics

Damper positions by `1-Penalization

In this section we show results for the viscously damped beam discretized by ten finite
elements described by the NLP (5.25). We used the global search strategy with the NLP
solver fmincon from MATLAB to solve the NLP (5.25). We varied the `1-penalization
parameter µ of the NLP (5.25), i.e., µ ∈ {0, 10−4, 10−3, 10−2, 10−1, 1} and for each
penalization parameter, the corresponding optimal viscosities are shown in Figure 5.7.
The optimal viscosities ν∗ of the NLP (5.25) without a penalization, i.e., µ = 0, are in
general non-sparse, see Figure 5.7. But as we increased the penalization parameter µ,
we increased the sparsity of the optimal solution ν∗µ of the NLP (5.25). “Good” damper
positions in terms of (5.26) can be deduced for µ ∈ {10−4, 10−3, 10−2, 10−1}, since the
optimal viscosities ν∗µ at some positions are five times larger in magnitude than the
remaining ones, as shown in Figure 5.7. Hence, for ϑ = 10−3 we obtain the “good”
damper positions Dµ = {1, 10} which are actually the optimal damper positions for
placing a single external damper (see Table 5.1).
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Figure 5.7: Optimal viscosities of NLP (5.25) for the viscously damped beam for various
`1-penalizations µ.

For ϑ = 10−3 and placing two dampers, we obtain the same set of “good” damper
positions Dµ = {1, 10} for µ ∈ {10−4, 10−3, 10−2, 10−1}, while the optimal positions are
at (3, 5) and (7, 9) (see Table 5.1 and Figure 5.5). The NLP (5.25) can efficiently been
solved and the position of the external damper w.r.t. the penalization parameter µ are
good solutions.

Non-convex MINLP solver

We encoded the viscous damper placement problem for the damped beam as the non-
convex MINLP (5.5) in AMPL. In this section we used the convex MINLP solver
MINOTAUR to solve the non-convex MINLP (5.5). Obviously, global optimality of
the solution to the non-convex MINLP (5.5) cannot be guaranteed, but the running
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time of the convex solver is much less since for the relaxation convexity is assumed
and hence, no outer-approximation of the feasible set is needed, compare the results in
Tables 5.1 and 5.4.

#dampers 1st damper 2nd damper tot. energy time in s
position position

r = 1 i1 = 10 — 0.1418 14.95
r = 2 i1 = 1 i2 = 10 0.0986 11.84

Table 5.4: Solving MINLP (5.5) with non-convex MINLP solver MINOTAUR to de-
termine positions of r = 1, 2 external dampers, averaged total energy and
running time.

5.7.4 Summary of numerical results

We have reduced the complexity of the non-convex MINLP (5.5) by various ideas,
namely, linearization of the nonlinearity by McCormick envelopes and piecewise lin-
ear functions, strategies of successive selection of damper positions and heuristics to
determine good damper positions by `1-Penalization in the NLP (5.25) and using a
non-convex MINLP solver. We have tested the above methods on various examples
and presented here results for the viscously damped beam.
Unfortunately, the results on linearization by McCormick envelopes and by piecewise
linear functions described in Section 5.7.1 were not promising, since due to the lineariza-
tion, the approximation of the objective function was too weak or even the linearization
was too complex and no efficiency increase was gained by solving the approximated
problem. The strategy of successive selection of local optimal damper positions de-
scribed in Section 5.7.2 was too expensive, since the computational costs were too high
for obtaining a non-optimal global set of damper positions.
We give an outlook on the prospective methods that can be applied to examples of
a larger scale. From our experiments the strategy of successive selection of damper
positions by steepest descent described in Section 5.7.2 is promising due to the very
efficient calculation of the gradient and the optimality of the resulting set of damper
positions for sufficiently small viscosities. Furthermore, the heuristic computation of
damper positions by `1-Penalization and a non-convex MINLP solver described in Sec-
tion 5.7.3 are from our point of view also promising methods due to the quality of the
resulting damper positions and the running times of the corresponding solvers.
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6
Two-Sided Bounds on the Solution of
Time-Periodic Systems

Linear time-periodic systems arise in many fields of application, e.g. in parametrically
excited systems and anisotropic rotor-bearing systems. Often they are obtained by
linearizing a nonlinear system about a periodic trajectory. Knowledge of the systems
components is necessary to understand its transient behavior completely, which may
not be applicable for very complex and large-scale systems. Understanding system
characteristics such as its transient behavior in a certain norm, stability or robustness
may often be sufficient. A general time-periodic system is given in (2.43) as

ẋ = A(t)x , for t ∈ I,
A(t) = A(t+ tp) , for t ≥ 0,
x(0) = x0,

(6.1)

where for notational simplicity the initial condition is at t0 = 0, i.e., x(0) = x0. In
this chapter we investigate the transient behavior of its solution ‖x(t)‖ as t → ∞
by two-sided bounds, i.e., f`(t) ≤ ‖x(t)‖ ≤ fu(t) for all t ≥ 0. The structure of a
solution for a linear time-periodic system is known (Floquet’s Theorem 2.5.18). But
nevertheless, it has to be approximated since in general it cannot be given in closed
form. Important physical properties such as stability and robustness can be lost due
to (numerical) approximations. In order to guarantee such properties for the original
solution and not only for the approximation, one can derive analytic results on the
solution or the approximation error has to be incorporated in the analysis. This is the
key idea of this chapter: bounds that solely depend on the solution structure or bounds
that incorporate the approximation error. Firstly, we were able to generalize results
from the linear time-invariant to time-periodic setting. The time-invariant setting
was discussed in Section 3.3. For the time-periodic setting we were able to derive a
time-varying norm that captures important properties such as decoupling, filtering and
monotonicity. Secondly, we used two different methodologies where the approximation
error is incorporated in the two-sided bound. In the first one, an approximated solution
is obtained due to time discretization and a trigonometric spline approximation. The
upper bound depends on the discretization grid of the trigonometric spline solution
and converges to the original solution. The derived two-sided bound is an extension
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to work on the solution of ODEs by trigonometric splines [Nik93; Nik04; NS05]. In
the second case we used a general framework — the linear time-periodic system is
approximated by Chebyshev projections e.g. in [Tre13]. We generalized results from
[SW91; SB96] w.r.t. convergence and convergence rates and most importantly we
could incorporate the two approximation errors of the Chebyshev projections into the
rigorous two-sided bound. While the first approximation error is due to the polynomial
approximation of the linear time-periodic system, the second error is due to solving
the approximated system. The polynomial approximation of the linear time-periodic
system yields properties of the solution such that its solution can be represented by an
infinite series. Truncation of this series yields the second error. A series representation
of the solution is not necessarily possible for the original system.
In summary, the bounds converge to the original solution of the linear time-periodic
system as the number of splines or the degree of the Chebyshev projections is in-
creased. For a smooth time-periodic system, the spectral bound in general superiors
the trigonometric spline bound due to its faster convergence. In all cases the bounds
converge to the norm of the solution if and only if the approximation converges to the
solution. The computational complexity and convergence rate for the trigonometric
spline bound and the spectral bound are stated. The applicability of all bounds and
stability analysis of linear time-periodic systems is demonstrated by means of various
examples which include a Jeffcott rotor and a parametrically excited Cantilever beam.
While in [BDK13; BDK17] rigorous upper bounds on quadratic trigonometric spline
interpolation and in [BD14; BDK17] rigorous upper bounds on Chebyshev projections
were presented, we now generalize these bounds twofold. Firstly, the order of the
spline interpolant is increased, i.e., now cubic trigonometric splines can be considered
and convergence results are derived. Secondly, the rigorous bounds have been extended
such that they are now two-sided, i.e., an additional lower bound on the solution norm
has been derived which e.g. can be used as a certificate to prove instability for the
transient behavior of the solution of a time-periodic system.

6.1 Time-Periodic Bounds

This section is based on the Floquet-Lyapunov transformation in Remark 2.5.19, which
transforms the time-periodic system (6.1) into a constant linear system

ż = Lz , for t ∈ I,
z(0) = x0.

(6.2)

The solution to the time-periodic system (6.1) is given by Theorem 2.5.18 as x(t) =
Z(t)eL(t−t0)x0 and the solution to (6.2) has been given in Section 2.5.2 as z(t) = eLtx0.
We remark that for notational simplicity the initial condition is at t0 = 0 and in this
section we denote with Φ(t) a fundamental matrix with initial condition at t0 = 0, i.e.,
Φ(t) := Φ(t, 0).

Let us start this investigation by defining a time-dependent matrix function R̃ : R →
Rn×n as

R̃(t) = Z−H(t)RZ−1(t),

for t ∈ R, where R ∈ Rn×n and Z is the time-periodic matrix function Z : R → Rn×n
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from the general solution x(t) = Z(t)eL(t−t0)x0 in Theorem 2.5.18. By Remark 2.5.19
Z(t) has full rank for any t ∈ R, i.e., Z(t) ∈ Gln(R) for any t ∈ R. First, we show that

the matrix R̃(t) is Hermitian, positive definite and bounded for any t ∈ R under the
proper assumptions on the matrices R and Z.

Lemma 6.1.1. Let R be Hermitian and positive definite and R̃(t) = Z−H(t)RZ−1(t),
where Z(t) is defined by Floquet’s normal form in (2.46). Then

1. R̃(t) is positive definite for all t ∈ R,

2. R̃(t) is Hermitian for all t ∈ R,

3. R̃(t) is tp-periodic, i.e., R̃(t) = R̃(t+ tp), for all t ∈ R and

4. R̃(t) is bounded, i.e. there exist c, C > 0 : c ≤ ‖R̃(t)‖ ≤ C for all t ∈ R.

Proof.

1. Choose u and t arbitrarily but fixed and let ũ = Z−1(t)u, then

uHR̃(t)u = uHZ−H(t)RZ−1(t)u = ũHRũ ≥ 0,

for all ũ ∈ Cn since R is positive definite. Now,

ũHRũ = 0⇔ ũ = 0⇔ ũ = Z−1(t)u = 0⇔ u = 0,

since Z(t) has full rank and is invertible for all t.

2. R̃(t) is Hermitian, since R is Hermitian.

3. R̃(t) is tp-periodic, since Z(t) is tp-periodic.

4. Z−1(t) = eLtΦ−1(t) and Z−H(t) = Φ−H(t)eL
H t are continuous and periodic with

periodicity tp. Note, that Φ(t) is a fundamental matrix (see Definition 2.5.11),

Φ−1(t) = Φ(−t) holds, see e.g. [MS76]. R̃(t) is continuous and periodic, hence,

the function p : t 7→ ‖R̃(t)‖ is continuous and periodic as well. Due to the
extreme value theorem e.g. in [For11], p attains its minimum c and maximum C
in tc ∈ [0, tp] and tC ∈ [0, tp], respectively. Since p is periodic, it can be bounded

globally: c ≤ ‖R̃(t)‖ ≤ C. Since R̃(t) has full rank for all t ∈ R, R̃(tc) has full

rank and hence, R̃(tc) 6= 0 and therefore c > 0, i.e.,

∃c, C > 0 : c ≤ ‖R̃(t)‖ ≤ C ∀t ∈ R.

Let R be be Hermitian and positive definite, then ‖ · ‖R is a norm, see (2.14). We call
‖ · ‖R a global norm and then we define a local (time-dependent) norm ‖ · ‖R̃(t), see e.g.

[SM85], which is defined as

‖u‖R̃(t) := 〈Z−H(t)RZ−1(t)u, u〉 12 .
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By Lemma 6.1.1, ‖·‖R̃(t) is well-defined and fulfills the axioms of a norm. Furthermore,

‖x(t)‖R̃(t) = 〈Z−H(t)RZ−1(t)x(t), x(t)〉 12

= 〈RZ−1(t)x(t), Z−1(t)x(t)〉 12
= ‖Z−1(t)x(t)‖R = ‖z(t)‖R = ‖eLtx0‖R, (6.3)

for any t ∈ R holds. Now, we choose R to be given with the help of the matrix
eigenvalue problem Y LH + LY = µY ,

R
(k,k)
i := v

(i)
k v

(i)H

k for k = 1, . . . ,mi , i = 1, . . . ,m,

Ri :=

mi∑
k=1

R
(k,k)
i ,

R :=
m∑
i=1

Ri,

where v
(i)
k is the chain of right principal vectors of L, i.e., Lv

(i)
k = λiv

(i)
k + v

(i)
k−1 for

k = 1, . . . ,mi and Ri is an eigenmatrix of the matrix eigenvalue problem corresponding
to an eigenvalue µ = 2 Re(λi), see (3.11). In the following we generalize results from
Section 3.3 to the time-periodic setting with the help of the norm ‖ · ‖R̃(t).

Theorem 6.1.2 (Decoupling and filter effect of the norm ‖ · ‖R̃(t)). Let L be a complex

matrix such that it fulfills (2.45) and z be the solution to the IVP (6.2), ż = Lz , z(0) =
x0. Then

‖x(t)‖2
R̃(t)

= ‖z(t)‖2
R =

m∑
i=1

mi∑
k=1

∣∣∣p(i)
x0,k−1(t)

∣∣∣2 e2tReλi for t ∈ R, (6.4)

where p
(i)
x0,k−1(t) for k = 1, . . . ,mi and i = 1, . . . ,m are defined in (3.13).

Proof. The relation ‖x(t)‖2
R̃(t)

= ‖z(t)‖2
R for all t ∈ R is given in (6.3) and

‖z(t)‖2
R =

m∑
i=1

mi∑
k=1

∣∣∣p(i)
x0,k−1(t)

∣∣∣2 e2tReλi

for t ∈ R is given by Theorem 3.3.6.

Theorem 3.3.6 has shown a decoupling and filter effect on the semi-norms ‖ · ‖2

R
(k,k)
i

for k = 1, . . . ,mi and i = 1, . . . ,m, which carries over to the norm ‖ · ‖2
R by Theorem

3.3.6 and to ‖ · ‖2
R̃(t)

by Theorem 6.1.2. Decoupling and filtering are meant in the sense

that we obtain a system of decoupled differential equations, where only the real part
of the eigenvalues is passed and the imaginary parts are suppressed. By the following
corollary the semi-norms suppress vibrations in the sense of decoupling and filtering
given by Theorem 6.1.2.

Corollary 6.1.3 (Vibration-suppression property of ‖x(t)‖R̃(t)).
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• If L is diagonalizable, then

‖x(t)‖2
R̃(t)

=
n∑
i=1

‖x0‖2
Ri
e2tReλi for t ∈ R.

• If L is defective, i.e., it is non-diagonalizable, then

‖x(t)‖2
R̃(t)

=
m∑
i=1

mi∑
k=1

∣∣∣p(i)
x0,k−1(t)

∣∣∣2 e2tReλi for t ∈ R.

The monotonic behavior for linear systems was discussed in [Koh13], which we extend to
the time-periodic case. If the spectral abscissa ν[L] = maxi=1,...,m Reλi is negative, i.e.

ν[L] < 0, and d = maxi=1,...,m maxk=1,...,mi degree(p
(i)
x0,k−1(t)), then ‖x(t)‖R̃(t) behaves

essentially in a way similar to tde−t, i.e., there exist t1 > 0 such that ‖x(t)‖R̃(t) ↘ 0

(monotonic decrease) for t ≥ t1 as t → ∞. If the matrix L is diagonalizable and the
spectral abscissa is nonzero, then we can conclude a monotonic behavior in ‖ · ‖R̃(t)

since no Jordan block occurs.
Corollary 6.1.3 does not state, that in the linear time-periodic system (6.1) the vi-

brations are suppressed, but in the R̃(t)-norm of its solution due to the decoupling
and filtering effect of the norm. We would like to mention the following two cases of
monotonic behavior:

1. If the spectral abscissa ν[L] = maxni=1 Reλi < 0 for a diagonalizable matrix L,
then ‖x(t)‖R̃(t) tends monotonically to zero, i.e., ‖x(t)‖R̃(t) ↘ 0 as t→∞.

2. If all eigenvalue have positive real part, i.e., Reλi > 0 for i = 1, . . . , r, then
‖x(t)‖R̃(t) tends monotonically to infinity, i.e., ‖x(t)‖R̃(t) ↗ ∞ as t → ∞. If

‖x(t)‖R̃(t) ↗∞ as t→∞, then the physical system is vibrating with an increas-
ing amplitude and it will eventually collapse.

The monotonic behavior of ‖x(t)‖R̃(t) can be used to derive upper bounds on the

amplitude of ‖x(t)‖∞.

6.2 Trigonometric Spline Bounds

In [LT67] a method of spline approximation is introduced in order to solve ODEs
numerically. This idea was further developed by e.g. [Nik93; Nik04; NS05]. Here,
trigonometric B-splines of second and third order are used to solve a nonlinear ODE.
We use a modified approach in order to apply it to a linear system of ODEs and
further equip the computation with rigorous bounds. The unknown quantities are
the coefficients of the trigonometric splines. While in the nonlinear approach one has
to solve a series of nonlinear systems, this simplifies to a series of structured linear
systems. Hence, a decrease of computational complexity and an effective speed-up is
achieved. For further details on trigonometric splines we refer the interested reader to
[Sch64; Sch81].
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First, we need some mathematical basics. (Rn, ‖ · ‖∞) is a normed vector space and
let L∞([0, tp],Rn) be the space of measurable and essentially bounded functions from
[0, tp] to Rn. For a function f ∈ L∞([0, tp],Rn), its essential supremum serves as
an appropriate norm, which we denote in this section by ‖f‖∞ = ‖f‖L∞[0,tp] as in
Definition 2.3.7.

The key idea of this section is to approximate the solution x(t) to the time-periodic
system (6.1) by splines. Due to the periodicity of the time-periodic system (6.1),
trigonometric splines are chosen which mimic the behavior of the time-periodic matrix
function A : R → Rn×n with A(t) = A(t + tp) for all t ∈ R. Every quadratic trigono-
metric spline can be expressed as

∑r
i=−1 αiSi(t) and every cubic trigonometric spline as∑r

i=−2 αiSi(t). For representing a quadratic or cubic spline, the summation index i is
from −1 or −2, respectively to r which does not represent the number of nodes, but the
number of intervals [ti, ti+1] for i = −1, . . . , r or i = −2, . . . , r, see Section 2.4.2. The
coefficients αi of the spline are unknown and have to be determined. In the following
we describe a method how to compute the coefficients αi. First, let us generalize the
1-dimensional quadratic trigonometric B-splines s2(t) defined in (2.26) and the cubic
trigonometric B-splines s3(t) defined in (2.27) to a vector of n dimensions:

s2(t) =
r∑

i=−2

α(i)S2
i (t),

s3(t) =
r∑

i=−3

α(i)S3
i (t),

where t ∈ [0, tp], α
(i) ∈ Rn for i = −2, . . . , r and i = −3, . . . , r, respectively. The

subscript of s(t) denotes the order of the trigonometric spline. The idea is to approxi-
mate x(t) by s(t), i.e., x(t) ≈ s(t) for t ∈ [0, tp], where the unknown coefficients of the
trigonometric B-splines are given by the coefficient vectors α(i) ∈ Rn. The approxima-
tion is performed by demanding that the spline s fulfills the ODE of the time-periodic
system (6.1) at the node ti, i.e., ṡ(ti) = A(ti)s(ti) for i = 0, . . . , r. Depending on
the spline-order, i.e., quadratic or cubic, we obtain two different schemes, which are
investigated in the following.

6.2.1 Quadratic Trigonometric Splines

By demanding
s2(t0) = x0,
ṡ2(ti) = A(ti)s2(ti),

(6.5)

for i = −2, . . . , r, we obtain a sequence of r + 2 linear systems

A(i)α(i) = b(i), (6.6)
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for the coefficient vector α(i). It is a sequence since the coefficient matrix A(i) and the
right-hand side b(i) change w.r.t. node ti,

A(i) = In − tan
(
h
2

)
A(ti), for i = −1, . . . , r,

b(i) =
(
In + tan

(
h
2

)
A(ti)

)
α(i−1), for i = −1, . . . , r,

where In is the n-dimensional identity matrix and the initial condition s(t0) = x0 yields
α(−2) = cos

(
h
2

)
x0− sin

(
h
2

)
A(t0)x0. In [Nik93] this procedure has been investigated for

nonlinear systems, where one does not solve a sequence of linear systems but a sequence
of nonlinear systems by an iterative method such as the Newton method. Trigonometric
splines are L-splines by Lemma 2.5.6, where the L corresponds to a certain linear
differential operator, which in the case of quadratic splines is L3x := x′′′ + x′, where x
is the solution to the time-periodic system (6.1). The convergence result from nonlinear
systems carries over to the linear case and is stated in Theorem 6.2.1.

Theorem 6.2.1 ([Nik93]). For A ∈ C2([0, tp],Rn×n), the quadratic trigonometric spline
converges quadratically to the solution, more precisely ‖x− s2‖∞ = O(‖L3x‖∞r−2).

Theorem 6.2.1 is proven in [Nik93]. The Theorem 6.2.1 was extended by an upper
bound on ‖x(t)‖ for the maximum norm, i.e., ‖x(t)‖∞, in [BDK17]. The upper bounds
on the errors at the node ti in (6.16), (6.17) and (6.18) and the general upper bound
given in (6.21) for any t ∈ [0, tp] are given in [BDK17] and yield a new result in terms
of the following theorem, which generalizes the upper bound from [BDK17] twofold.
Firstly, a two sided bound is derived, i.e., a rigorous lower bound on ‖x(t)‖ is given
as well. Secondly, the rigorous bound is valid for any norm ‖ · ‖ and not only the
maximum norm ‖ · ‖∞.

Theorem 6.2.2. Let A ∈ C2([0, tp],Rn×n). Then, L3x ∈ L∞([0, tp],Rn) and

‖s2(t)‖ − ‖L3x‖∞Θ(2)(t) ≤ ‖x(t)‖ ≤ ‖s2(t)‖+ ‖L3x‖∞Θ(2)(t), (6.7)

where

Θ(2)(t) = Θ
(2)
1 Θ

(2)
2 (t) + Θ

(2)
3 (t) + Θ

(2)
4 (t), (6.8)

Θ
(2)
1 =

∣∣2 tan
(
h
2

)
− h
∣∣

L| sin(h)|+ L
∣∣tan

(
h
2

)∣∣
( 1 + L |sin(h)|

1− L
∣∣tan

(
h
2

)∣∣
)i

− 1

 , (6.9)

Θ
(2)
2 (t) = 1 + L| sin(t− ti)|+ L

∣∣∣∣1− cos(t− ti)
sin(h)

∣∣∣∣ (|cos(h)|+ |2 tan (h2 )−h|
1−L|tan (h2 )|

)
, (6.10)

Θ
(2)
3 (t) = L

∣∣2 tan
(
h
2

)
− h
∣∣

1− L
∣∣tan

(
h
2

)∣∣
∣∣∣∣1− cos(t− ti)

sin(h)

∣∣∣∣ , (6.11)

Θ
(2)
4 (t) =

∣∣tan
(
h
2

)
(1− cos(t− ti))

∣∣+ |t− ti − sin(t− ti)|, (6.12)

for t ∈ (ti, ti+1] and h is sufficiently small, i.e., L| tan
(
h
2

)
| < 1 for L being the Lipschitz

constant for the ODE of the time-periodic system (6.1), and L3x = x′′′ + x′.

Proof. Since A ∈ C2([0, tp],Rn×n) and x ∈ C3([0, tp],Rn), L3x ∈ L∞([0, tp],Rn) is
obvious. We split the remaining proof in two parts. We define the error of the quadratic
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spline as
e2(t) := x(t)− s2(t),

where t ∈ [0, tp]. First, we prove an upper bound on the error e2(t) = x(t) − s2(t) ∈
Rn at the node t = ti between the solution x(t) and its spline approximation s2(t).
Secondly, we derive an upper bound on the error for any t ∈ [0, tp]. The null space (see

Definition 2.5.3) for the linear differential operator L3 = d
dt

+ d3

dt3
is given as

NL3 =
{
x ∈ L3

1[0, tp] : L3x(t) = 0, t ∈ [0, tp]
}
,

where the Sobolev space L3
1[0, tp] is defined in (2.15). Any set of three functions span-

ning the null space NL3 form a fundamental solution of L3. By Example 2.5.8 a funda-
mental solution is given by NL3 = {1, cos(t), sin(t)}. The associated Green’s function
for L3 is

GL3(t, ξ) =

{
0 for t ≤ ξ,

2 sin2
(
t−ξ

2

)
for t > ξ.

Green’s function is given in (2.16) and can be found e.g. in [Sch81]. L-splines fulfill an
extended Taylor formula by Remark 2.5.7, which in the case of L3 for t ∈ [ti, ti+1] is
given as

x(t) = ux(t) +

∫ t

ti

GL3(t, ξ)L3x(ξ)dξ , with

ux(t) = x(ti) + ẋ(ti) sin(t− ti) + ẍ(ti)(1− cos(t− ti)). (6.13)

ux(t) is the unique element in NL3 such that ux(ti) = x(ti), u̇x(ti) = ẋ(ti) and üx(ti) =
ẍ(ti), see e.g. [Sch81]. The derivative of the extended Taylor formula for t ∈ [ti, ti+1] is

ẋ(t) = u̇x(t) +

∫ t

ti

sin (t− ξ)L3x(ξ)dξ , with

u̇x(t) = ẋ(ti) cos(t− ti) + ẍ(ti) sin(t− ti). (6.14)

1. First, we want to bound the error ‖e2(ti)‖ = ‖x(ti)− s2(ti)‖. Therefore, we
bound the error for t = t1 first and then derive a recursive formula for the i-th
error. We can use the extended Taylor formula (6.13) since trigonometric splines
are L-splines,

x(t1) = x(t0) + ẍ(t0) + ẋ(t0) sin(h)− ẍ(t0) cos(h) +

∫ t1

t0

GL3(t1, ξ)L3x(ξ)dξ.

The spline s2 fulfills the extended Taylor formula as well, but since L3s2(t) = 0,
it holds

s2(t1) = s2(t0) + s̈2(t0) + ṡ2(t0) sin(h)− s̈2(t0) cos(h).
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Hence,

e2(t1) = (ẍ(t0)− s̈2(t0))− (ẍ(t0)− s̈2(t0)) cos(h)−
∫ t1

t0

GL3(t1, ξ)L3x(ξ)dξ

= 2(ẍ(t0)− s̈2(t0)) sin2
(
h
2

)
−
∫ t1

t0

GL3(t1, ξ)L3x(ξ)dξ.

We can apply (6.14) for the derivatives ẋ and ṡ2,

ẋ(t1) = ẋ(t0) cos(h) + ẍ(t0) sin(h) +

∫ t1

t0

sin(t1 − ξ)L3x(ξ)dξ,

ṡ2(t1) = ṡ2(t0) cos(h) + s̈2(t0) sin(h),

and subtraction yields

ẍ(t0)− s̈2(t0) =
ẋ(t1)− ṡ2(t1)

sin(h)
+

∫ t1

t0

sin(t1 − ξ)
sin(h)

L3x(ξ)dξ. (6.15)

Hence,

‖e2(t1)‖ =

∥∥∥∥2(ẍ(t0)− s̈2(t0)) sin2
(
h
2

)
−
∫ t1

t0

GL3(t1, ξ)L3x(ξ)dξ

∥∥∥∥
and substituting (6.15) yields

‖e2(t1)‖ ≤
∥∥(ẋ(t1)− ṡ2(t1)) tan

(
h
2

)∥∥
+

∥∥∥∥∫ t1

t0

[
tan
(
h
2

)
sin(t1 − ξ)−GL3(t1, ξ)

]
L3x(ξ)dξ

∥∥∥∥
≤ L ‖e2(t1)‖

∣∣tan
(
h
2

)∣∣+ ‖L3x‖∞
∣∣2 tan

(
h
2

)
− h
∣∣ ,

where L is the Lipschitz constant of the ODE of the time-periodic system (6.1),
i.e., it fulfills the Lipschitz condition ‖ẋ(t)− ṡ2(t)‖ = ‖A(t)(x(t)− s2(t))‖ ≤
L ‖x(t)− s2(t)‖, since A ∈ C([0, tp],Rn×n) and by periodicity of the matrix func-
tion A : R → Rn×n by A(t) = A(t + tp) for any t ∈ R, the matrix function is
bounded by ‖A‖∞ ≤ L. For L

∣∣tan
(
h
2

)∣∣ < 1, it follows

‖e2(t1)‖ ≤ ‖L3x‖∞
∣∣2 tan

(
h
2

)
− h
∣∣

1− L
∣∣tan

(
h
2

)∣∣ . (6.16)

The right-hand side of (6.16) tends to zero, especially
|2 tan (h2 )−h|
1−L|tan (h2 )| → 0 as h→ 0.

With the same analysis, the i-th discrete error can be bounded by

‖e2(ti)‖ = ‖x(ti)− s2(ti)‖ ≤ ‖e2(ti−1)‖ 1+L|sin (h)|
1−L|tan (h2 )| + ‖L3x‖∞

|2 tan (h2 )−h|
1−L|tan (h2 )| .(6.17)

The bound of the error at the i-th node consists of the error at the previous
node ‖e2(ti−1)‖ with the factor 1+L|sin (h)|

1−L|tan (h2 )| and a cubic order term O(‖L3x‖∞ h3).
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Additionally, we obtain an explicit upper bound for the i-th discrete error by
recursively expanding the series:

‖e2(ti)‖ ≤ ‖e2(ti−1)‖ 1+L|sin (h)|
1−L|tan (h2 )| + ‖L3x‖∞

|2 tan (h2 )−h|
1−L|tan (h2 )|

≤ ‖e2(ti−2)‖
(

1+L|sin (h)|
1−L|tan (h2 )|

)2

+ ‖L3x‖∞
|2 tan (h2 )−h|
1−L|tan (h2 )|

[
1 + 1+L|sin (h)|

1−L|tan (h2 )|

]
≤ ‖e2(t1)‖

(
1+L|sin (h)|

1−L|tan (h2 )|

)i−1

+ ‖L3x‖∞
|2 tan (h2 )−h|
1−L|tan (h2 )|

i−2∑
j=0

(
1+L|sin(h)|

1−L|tan(h2 )|

)j
and with (6.16), it follows

‖e2(ti)‖ ≤ ‖L3x‖∞
∣∣2 tan

(
h
2

)
− h
∣∣

1− L
∣∣tan

(
h
2

)∣∣ i−1∑
j=0

(
1 + L |sin(h)|

1− L
∣∣tan

(
h
2

)∣∣
)j

.

Since 1+L|sin(h)|
1−L|tan(h2 )| 6= 1, the (i − 1)-st partial sum of the (finite) geometric series

can be simplified to

i−1∑
j=0

(
1 + L |sin(h)|

1− L
∣∣tan

(
h
2

)∣∣
)j

=

(
1+L|sin(h)|

1−L|tan(h2 )|

)i
− 1

1+L|sin(h)|
1−L|tan(h2 )| − 1

=

(
1+L|sin(h)|

1−L|tan(h2 )|

)i
− 1

L
| sin(h)|+|tan (h2 )|

1−L|tan (h2 )|

and hence,
‖e2(ti)‖ ≤ ‖L3x‖∞Θ

(2)
1 , (6.18)

where Θ
(2)
1 =

|2 tan (h2 )−h|
L| sin(h)|+L|tan (h2 )|

[(
1+L|sin(h)|

1−L|tan(h2 )|

)i
− 1

]
. The right-hand side of

(6.18) tends to zero as the number of nodes r tends to infinity, i.e., the error
|e2(ti)| for any i = 0, . . . , r tends to zero as well for r →∞ (Theorem 6.2.1).

2. Now we want to bound the error e2(t) = x(t)−s2(t) for any t ∈ [0, tp]. Therefore,
let t ∈ [0, tp] be fixed and choose i such that t ∈ (ti, ti+1] and apply the extended
Taylor formula (6.13) to the solution and the spline:

x(t) = x(ti) + ẋ(ti) sin(t− ti) + ẍ(ti)(1− cos(t− ti)) +

∫ t

ti

GL3(t, ξ)L3x(ξ)dξ,

s2(t) = s2(ti) + ṡ2(ti) sin(t− ti) + s̈2(ti)(1− cos(t− ti)).

The mean value theorem for integrals e.g. in [For11] yields, that there exists
γi ∈ (ti, t) such that

x(t) = x(ti)+ ẋ(ti) sin(t−ti)+ ẍ(ti)(1−cos(t−ti))+L3x(γi) (t− ti − sin(t− ti)) .
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Then, for the error, it follows

e2(t) = e2(ti)+ė2(ti) sin(t−ti)+ë2(ti)(1−cos(t−ti))+L3x(γi) (t− ti − sin(t− ti)) .
(6.19)

Differentiation leads to

ė2(t) = ẋ(t)− ṡ2(t) = ė2(ti) cos(t− ti)+ ë2(ti) sin(t− ti)+L3x(γi) (1− cos(t− ti))

and evaluation at t = ti+1

ė2(ti+1) = ė2(ti) cos(h) + ë2(ti) sin(h) + L3x(γi) (1− cos(h))

⇔ ë2(ti) = −ė2(ti)
cos(h)

sin(h)
+
ė2(ti+1)

sin(h)
− L3x(γi) tan

(
h
2

)
.

The spline s2 and the solution x fulfill the ODE (6.1) at the time-points ti for
i = 0, 1, . . . , r, and as mentioned above, both are Lipschitz-continuous, hence

‖ė2(ti)‖ = ‖ẋ(ti)− ṡ2(ti)‖ ≤ ‖A‖∞ ‖x(ti)− s2(ti)‖ = L ‖e2(ti)‖ . (6.20)

Hence,

‖ë2(ti)‖ ≤ L ‖e2(ti)‖ |cot(h)|+ L ‖e2(ti+1)‖ 1
| sin(h)| + ‖L3x‖∞

∣∣tan
(
h
2

)∣∣
and by equation (6.19), (6.20) and the triangle inequality, we obtain the following
upper bound on the error

‖e2(t)‖ ≤‖e2(ti)‖+ ‖ė2(ti)‖ |sin(t− ti)|+ ‖ë2(ti)‖ |1− cos(t− ti)|
+ ‖L3x‖∞ |t− ti − sin(t− ti)|
≤ ‖e2(ti)‖+ L ‖e2(ti)‖ |sin(t− ti)|+ |1− cos(t− ti)|
·
(
L ‖e2(ti)‖ |cot(h)|+ L ‖e2(ti+1)‖ 1

| sin(h)| + ‖L3x‖∞
∣∣tan

(
h
2

)∣∣)
+ ‖L3x‖∞ |t− ti − sin(t− ti)|

Using the recursive bound on the error at ti+1, i.e., inequality (6.17),

‖e2(ti+1)‖ ≤ ‖e2(ti)‖
1 + L |sin (h)|
1− L

∣∣tan
(
h
2

)∣∣ + ‖L3x‖∞
∣∣2 tan

(
h
2

)
− h
∣∣

1− L
∣∣tan

(
h
2

)∣∣ ,
yields

‖e2(t)‖ ≤ ‖e2(ti)‖Θ
(2)
2 + ‖L3x‖∞Θ

(2)
3 + ‖L3x‖∞Θ

(2)
4 .

By the upper bound on the i-th discrete error in (6.18), we obtain a general upper
bound on the error

‖e2(t)‖ ≤ ‖L3x‖∞Θ(2)(t)., (6.21)

where Θ(2),Θ
(2)
1 ,Θ

(2)
2 ,Θ

(2)
3 and Θ

(2)
4 are defined in (6.8)-(6.12). Applying the

triangle inequality to ‖e2(t)‖, we obtain ‖x(t)‖ − ‖s2(t)‖ ≤ ‖x(t) − s2(t)‖ and
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‖s2(t)‖ − ‖x(t)‖ ≤ ‖x(t)− s2(t)‖. Therefore,

‖x(t)‖ − ‖s2(t)‖ ≤ ‖x(t)− s2(t)‖ ≤ ‖L3x‖∞Θ(2)(t),

‖s2(t)‖ − ‖x(t)‖ ≤ ‖x(t)− s2(t)‖ ≤ ‖L3x‖∞Θ(2)(t),

which concludes the proof.

The spline and the upper bound converge to the solution resp., to the norm of the
solution by Theorem 6.2.1 resp. Theorem 6.2.2 as h→ 0.

6.2.2 Cubic Trigonometric Splines

In this section we derive two-sided bounds with cubic trigonometric splines. Compared
to quadratic splines, an additional degree of freedom can be used for cubic splines, which
is used for smoothness of the solution. We demand further regularity of the spline
solution at the nodes. Hence, in addition to (6.5), we demand s̈3(ti) = Ȧ(ti)s3(ti) +
A(ti)ṡ3(ti) for i = 0, . . . , r. Overall, we obtain

s3(t0) = x0,
ṡ3(ti) = A(ti)s3(ti),

s̈3(ti) = Ȧ(ti)s3(ti) + A(ti)ṡ3(ti),
(6.22)

for i = 0, . . . , r. We obtain a sequence of r + 1 linear systems of dimension 2n× 2n,

A(i)

[
α(i−2)

α(i−1)

]
= b(i) (6.23)

for the coefficient vector

[
α(i−2)

α(i−1)

]
, where i = 0, . . . , r. It is a sequence since the coeffi-

cient matrix A(i) and the right-hand side b(i) change w.r.t. the i-th node ti,

A(i) =

[
0n

3
2

cos(h
2
) sin(h

2
)In

−3 cos(h
2
)In

3
8
(3 cos(h) + 1)In

]
−
[
2 sin(h

2
) sin(h)A(ti) sin2(h

2
)A(ti)

0n
3
4

sin(h)A(ti)

]
−
[

0n 0n
2 sin(h

2
) sin(h) sin2(h

2
)A′(ti)

]
,

b(i) =

[
3
2

sin(h
2
) cos(h

2
)In + sin2(h

2
)A(ti)

−3
8
(3 cos(h) + 1)In − 3

2
sin(h

2
) cos(h

2
)A(ti) + sin2(h

2
)A′(ti)

]
α(i−3),

for i = 0, . . . , r, where In is the n-dimensional identity matrix and 0n is the n-
dimensional zero matrix. The coefficient vectors α(−3), α(−2), α(−1) can be determined
by the initial condition s3(t0) = x0 and the additional linear system (6.23) for i = 0,
i.e., at t = t0. Hence in order to determine the coefficients α(−3), α(−2), α(−1), we end
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up solving the following 3n× 3n linear system Ax = b, where

A =

 sin2(h
2
)In 2 sin(h

2
) sin(h)In sin2(h

2
)In

−3
4

sin(h)In 0n
3
4

sin(h)In
3
8
(3 cos(h) + 1)In −3 cos3(h

2
)In

3
8
(3 cos(h) + 1)In

 ,
x =

α(−3)

α(−2)

α(−1)

 ,
b = sin(h) sin(3h

2
)

 x0

A(t0)x0

A′(t0)x0 + A(t0)2x0

 .
Trigonometric splines are L-splines by Lemma 2.5.6, where the L corresponds to a
certain linear differential operator, which in the case of cubic trigonometric splines is

L4x := x(4) +
5

2
x′′ +

9

16
x.

The following rigorous two-sided bound is an extension to Theorem 6.2.2 w.r.t. the
order of the trigonometric spline.

Theorem 6.2.3. Let A ∈ C3([0, tp],Rn×n). Then, L4x ∈ L∞([0, tp],Rn) and

‖s3(t)‖ −Θ(3)(t) ≤ ‖x(t)‖ ≤ ‖s3(t)‖+ Θ(3)(t), (6.24)

where

Θ(3)(t) =4L
3

∣∣sin3
(
h
2

)∣∣ (Θ
(3)
1

)i−1

Θ
(3)
2 (t) + ‖L4x‖∞

(
Θ

(3)
2 (t)Θ

(3)
3

i−1∑
k=0

(
Θ

(3)
1

)k
+ Θ

(3)
4 (t)

)
,

(6.25)

Θ
(3)
1 =1

4
(5− cos (h))

∣∣cos
(
h
2

)∣∣+ L
6

(13− cos (h))
∣∣sin (h

2

)∣∣+ L
∣∣sin (h

2

)
sin (h)

∣∣
+ 4L

3

∣∣sin3
(
h
2

)∣∣ , (6.26)

Θ
(3)
2 (t) =1

4
(5− cos (t− ti))

∣∣cos
(
t−ti

2

)∣∣+ L
6

(13− cos (t− ti))
∣∣sin ( t−ti

2

)∣∣
+ L

∣∣sin ( t−ti
2

)
sin (t− ti)

∣∣+ 4L
3

∣∣sin3
(
t−ti

2

)∣∣ , (6.27)

Θ
(3)
3 =

64+32 cos

(
h
2

)

9

∣∣sin4
(
h
4

)∣∣ , (6.28)

Θ
(3)
4 (t) =

64+32 cos
( t−ti

2

)

9

∣∣sin4
(
t−ti

4

)∣∣ , (6.29)

for t ∈ (ti, ti+1], i = −1, . . . , r − 1, L,L, L being the Lipschitz-type constants for the
ODE of the time-periodic system (6.1) defined in (6.32)-(6.34), and L4x = x(4) + 5

2
x′′+

9
16
x.

Proof. Since A ∈ C3([0, tp],Rn×n) and x ∈ C4([0, tp],Rn), L4x ∈ L∞([0, tp],Rn) is
obvious. We proceed as in the proof of Theorem 6.2.2, hence we split the remaining
proof in two parts. Let the error between the solution of the time-periodic system and
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the its cubic spline approximation be defined as

e3(t) := x(t)− s3(t),

where t ∈ [0, tp]. Obviously, e3(t) ∈ Rn. First, we proof an upper bound on e3(t) at
the node t = ti, i.e., e3(ti). Secondly, we derive a two-sided bound on the error for
any t ∈ [0, tp]. By Example 2.5.9 the fundamental system of L4 is spanned by sin

(
t
2

)
,

cos
(
t
2

)
, sin

(
3t
2

)
and cos

(
3t
2

)
. The associated Green’s function for L4 is

GL4(t, ξ) =

{
0 for t ≤ ξ,
4
3

sin3
(
t−ξ

2

)
for t > ξ,

as given in e.g. [Sch81]. By Lemma 2.5.6 trigonometric splines are L-splines and they
fulfill an extended Taylor formula by Remark 2.5.7, which in case for L4 and x ∈
C4([0, tp],Rn) is:

x(t) = ux(t) +

∫ t

ti

GL4(t, ξ)L4x(ξ) dξ, (6.30)

for t ∈ (ti, ti+1] with

ux(t) =x(ti)
9 cos( t−ti2 )−cos

(
3(t−ti)

2

)

8
+ ẋ(ti)

27 sin( t−ti2 )−sin
(

3(t−ti)
2

)

12

+ ẍ(ti)
cos( t−ti2 )−cos

(
3(t−ti)

2

)

2
+

...
x (ti)

3 sin( t−ti2 )−sin
(

3(t−ti)
2

)

3

1. First, we prove a bound on the error e3(t) = x(t)−s3(t) ∈ Rn at the node t = ti+1

between the solution x(t) and the cubic trigonometric spline s3(t).

Applying the extended Taylor formula (6.30) to the solution x(t) and the spline
s3(t), we obtain the i+ 1-st discretization error at t = ti+1:

e3(ti+1) =e3(ti)
5−cos(h)

4
cos
(
h
2

)
+ ė3(ti)

13−cos(h)
6

sin
(
h
2

)
+ ë3(ti) sin

(
h
2

)
sin (h)

+
...
e 3(ti)

4
3

sin3
(
h
2

)
− 64+32 cos(h2 )

9

∫ t

ti

GL4(t, ξ)L4x(ξ) dξ. (6.31)

Since A ∈ C3[0, tp], we differentiate the linear time-periodic system and obtain

ẋ = A(t)x,

ẍ =
[
Ȧ(t) + (A(t))2

]
x,

...
x =

[
Ä(t) + 2Ȧ(t)A(t) + A(t)Ȧ(t) + (A(t))3

]
x,

for t ∈ [0, tp]. The right hand-sides of the derivatives are Lipschitz continuous in
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x since they are linear in x and can be bounded by

‖A(t)‖ ≤ L, (6.32)

‖Ȧ(t) + (A(t))2 ‖ ≤ L, (6.33)

‖Ä(t) + 2Ȧ(t)A(t) + A(t)Ȧ(t) (A(t))3 ‖ ≤ L, (6.34)

for any t ∈ [0, tp], since a continuous function attains its maximum in a compact

set [0, tp] and A ∈ C3[0, tp]. Hence, ‖ẋ‖ ≤ L‖x‖, ‖ẍ‖ ≤ L‖x‖, ‖...x‖ ≤ L‖x‖ and

‖ė3(ti)‖ ≤ L‖e3(ti)‖, ‖ë3(ti)‖ ≤ L‖e3(ti)‖, ‖...e 3(ti)‖ ≤ L‖e3(ti)‖. Using these
upper bounds on the errors ‖ė3(ti)‖, ‖ë3(ti)‖ and ‖...e 3(ti)‖ in (6.31), we obtain

‖e3(ti+1)‖ ≤ ‖e3(ti)‖Θ
(3)
1 + ‖L4x‖∞Θ

(3)
3 , (6.35)

for i = 0, . . . , r − 1. By Example 2.3.12 on the Taylor series, it is obvious that
Θ

(3)
1 ∈ O(1) and Θ

(3)
2 ∈ O(h4). The error between the solution and the spline

and their first two derivatives at node t0 is by construction zero, i.e., e3(t0) =
ė3(t0) = ë3(t0) = 0. We then obtain the following bound on the error at the node
t1:

‖e3(t1)‖ ≤ 4L
3

∣∣sin3
(
h
2

)∣∣+ ‖L4x‖∞Θ
(3)
3 . (6.36)

Via recursively applying (6.35) with (6.36), we obtain the following bound for
the i+ 1-discrete error

‖e3(ti+1)‖ ≤ 4L
3

∣∣sin3
(
h
2

)∣∣ (Θ
(3)
1

)i
+ ‖L4x‖∞Θ

(3)
3

i∑
k=0

(
Θ

(3)
1

)k
(6.37)

Obviously, e3(ti+1) ∈ O(h3).

2. Secondly, we want to bound the error e3(t) = x(t) − s3(t) for any t ∈ [0, tp].
Therefore, let t ∈ [0, tp] be fixed and choose i such that t ∈ (ti, ti+1] and apply
the extended Taylor formula (6.30) to the solution x(t) and the spline s3(t), then
we obtain a bound on the error. Here, we distinguish two cases:

‖e3(t)‖ ≤
{

4
3
L sin3( t−t0

2
) + ‖L4x‖∞Θ

(3)
4 (t), for i = 0,

‖e3(ti)‖Θ(3)
2 (t) + ‖L4x‖∞Θ

(3)
4 (t), for i > 0.

Using the recursive bound on the i-th discrete error (6.37) for i > 0, we obtain

‖e3(t)‖ ≤ 4L
3

∣∣sin3
(
h
2

)∣∣ (Θ
(3)
1

)i−1

Θ
(3)
2 (t)

+‖L4x‖∞
(

Θ
(3)
2 (t)Θ

(3)
3

i−1∑
k=0

(
Θ

(3)
1

)k
+ Θ

(3)
4 (t)

)
= Θ(3)(t).

By applying the triangle inequality to ‖e3(t)‖, we obtain ‖x(t)‖ − ‖s3(t)‖ ≤
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‖x(t)− s3(t)‖ and ‖s3(t)‖ − ‖x(t)‖ ≤ ‖x(t)− s3(t)‖. Hence,

‖x(t)‖ − ‖s3(t)‖ ≤ ‖x(t)− s3(t)‖ ≤ Θ(3)(t),

‖s3(t)‖ − ‖x(t)‖ ≤ ‖x(t)− s3(t)‖ ≤ Θ(3)(t),

which concludes the proof.

The two-sided bound in Theorem 6.2.3 shows cubic convergence of the spline s3 to the
solution x, which we summarize in Corollary 6.2.4.

Corollary 6.2.4. For A ∈ C3([0, tp],Rn×n), the cubic trigonometric spline converges
cubically to the solution, more precisely ‖x− s3‖∞ = O(‖L4x‖∞r−3).

Actually, a false proof of cubic convergence for cubic trigonometric splines to nonlinear
ODEs is given in [NS05].

6.3 Spectral Bounds

The key idea is to replace the system (6.1) by an approximation. We use the spectral
method [GO77; Tre00] in the setting of polynomial approximation of linear ordinary
differential equations [BD14; Fun92]. The solution of the approximated system is entire
and hence, the truncation error of the approximated solution can be given. Here, we
approximate the system matrix by Chebyshev polynomials [Che54] and use results
from approximation theory [Tre13] in order to derive rigorous bounds on the original
solution x(t).
We need some results from approximation theory, here we focus on Chebyshev poly-
nomials introduced in [Che54] and Chebyshev projections in Section 2.4.1. In the fol-
lowing we explain the general idea of the spectral method and how we use the results
from approximation theory in order to derive bounds. The resulting bound depends
heavily on how well the original system is approximated.
We now return to our original problem of a linear time-periodic system (6.1) but instead
of solving it directly, we first approximate it by the following system

ẏ(t) = (PmA)(t)y(t) ∀t ∈ [0, tp],
y(0) = x0,

(6.38)

where (PmA) denotes the component-wise Chebyshev projection of A, see (2.22). If
(PmA)(t1) commutes with (PmA)(t2) for all times t1 and t2, then the solution to the

approximated system (6.38) is given by y(t) = exp
(∫ t

0
(PmA)(τ)dτ

)
x0 as shown in

Section 2.5.2. y(t) = exp
(∫ t

0
(PmA)(τ)dτ

)
x0 is an entire function (see Definition

2.3.13), since polynomials and their exponentials are entire (see Remark 2.3.14). But
in general the commutativity of (PmA)(t) is a rather strong assumption. By Theo-
rem 2.5.13, it follows that the solution y(t) is entire since the function (PmA)(t) is a
polynomial which by definition is entire. If the approximation is exact, i.e. aij(t) is
a polynomial of degree at most m for i, j = 1, . . . , n, then x(t) and y(t) coincide. In
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order to prove rigorous upper bounds on x(t), we use Theorem 2.4.3 and 2.4.5 to bound
the difference between the original function A and its Chebyshev projection. These
bounds depend on the smoothness of the system matrix A.
We assume in this section that ‖ · ‖ is given as the Manhattan norm, the Euclidean
norm or the maximum norm, i.e.,

‖ · ‖ = ‖ · ‖p, for p ∈ {1, 2,∞} (6.39)

see (2.11), (2.12) and (2.13).

Theorem 6.3.1. If aij ∈ ACk−1[0, tp] and the k-th derivative a
(k)
ij is of bounded varia-

tion V for all i, j = 1, . . . , n, then for any m > k > 0:

‖y(t)‖ −ΨBV (t) ≤ ‖x(t)‖ ≤ ‖y(t)‖+ ΨBV (t), (6.40)

where ΨBV (t) = 2nV eLt

πk(m−k)k

∫ t
0
‖y(s)‖ ds and L is the Lipschitz constant for the ODE of

the time-periodic system (6.1).

Theorem 6.3.2. If aij is analytic in [0, tp] and analytically continuable to the open
Bernstein ellipse Eρ, where it satisfies |aij(t)| ≤ M for all i, j = 1, . . . , n for some M ,
then for any m ≥ 0:

‖y(t)‖ −Ψanalytic(t) ≤ ‖x(t)‖ ≤ ‖y(t)‖+ Ψanalytic(t), (6.41)

where Ψanalytic(t) = 2Mnρ−meLt

ρ−1

∫ t
0
‖y(s)‖ ds and L is the Lipschitz constant for the ODE

of the time-periodic system (6.1).

Now, we prove Theorem 6.3.1 and 6.3.2.

Proof. x(t) and y(t) fulfill the integral formulation of the ODE

x(t)− y(t) =

∫ t

0

A(s)x(s)− (PmA)(s)y(s)ds

=

∫ t

0

A(s)x(s)− A(s)y(s) + A(s)y(s)− (PmA)(s)y(s)ds

=

∫ t

0

A(s) [x(s)− y(s)] + [A(s)− (PmA)(s)] y(s)ds

Taking the norm ‖ · ‖ on both sides (see (6.39)) and using the triangle inequality yields

‖x(t)− y(t)‖ ≤
∫ t

0

(‖A(s)‖‖x(s)− y(s)‖+ ‖A(s)− (PmA)(s)‖‖y(s)‖) ds

We remark that ‖A(s)‖ denotes the induced matrix norm w.r.t. ‖ · ‖ (see Definition
2.2.6), which is a compatible matrix norm by Remark 2.2.7. The case of A ≡ 0 and
x = const, is trivial. Otherwise, we define β in Gronwall’s lemma 2.5.2 as the Lipschitz
constant for the ODE of the time-periodic system (6.1), i.e., ‖A‖∞ ≤ L =: β.

1. If the assumptions of Theorem 6.3.1 are fulfilled, then we conclude in the following
‖A(s)− (PmA)(s)‖p ≤ 2nV

πk(m−k)k
, where p ∈ {1, 2,∞}.
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For the Manhattan norm, i.e., ‖ · ‖ = ‖ · ‖1, it follows

‖A(s)− (PmA)(s)‖1 = max
1≤j≤n

n∑
i=1

|aij(s)− (Pmaij)(s)|︸ ︷︷ ︸
≤ 2V

πk(m−k)k

≤ 2nV

πk(m− k)k
.

For the maximum norm, i.e., ‖ · ‖ = ‖ · ‖∞, it follows

‖A(s)− (PmA)(s)‖∞ = max
1≤i≤n

n∑
j=1

|aij(s)− (Pmaij)(s)|︸ ︷︷ ︸
≤ 2V

πk(m−k)k

≤ 2nV

πk(m− k)k
.

By ‖A‖2
2 = λmax(AHA) ≤ ‖AHA‖1 ≤ AH‖1‖A‖1 = ‖A‖∞‖A‖1, we obtain

‖A(s)− (PmA)(s)‖2 ≤
√
‖A(s)− (PmA)(s)‖1‖A(s)− (PmA)(s)‖∞

≤ 2nV

πk(m− k)k
.

Overall, for any norm ‖ · ‖ = ‖ · ‖p, where p ∈ {1, 2,∞} (see (6.39)), it follows

‖A(s)− (PmA)(s)‖ ≤ 2nV

πk(m− k)k
.

Therefore,

‖x(t)− y(t)‖ ≤ β

∫ t

0

‖x(s)− y(s)‖ ds+
2nV

πk(m− k)k

∫ t

0

‖y(s)‖ ds

and applying Gronwall’s lemma 2.5.2 with

g(t) = ‖x(t)− y(t)‖,

α(t) =
2nV

πk(m− k)k

∫ t

0

‖y(s)‖ ds

and β = const > 0 yields

‖x(t)− y(t)‖ ≤ 2nV eLt

πk(m− k)k

∫ t

0

‖y(s)‖ ds. (6.42)

With the reverse triangle inequality the theorem follows.

2. If the assumptions of Theorem 6.3.2 are fulfilled, then

‖A(s)− (PmA)(s)‖∞ = max
1≤i≤n

n∑
j=1

|aij(s)− (Pmaij)(s)|︸ ︷︷ ︸
≤ 2Mρ−m

ρ−1

≤ 2nMρ−m

ρ− 1
.

The remaining proof is analogous to the previous case.
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Remark 6.3.3. In order to apply Theorem 6.3.1 and 6.3.2, the ODE system (6.38)
has to be solved nevertheless. But the solution y to the IVP (6.38) is entire due to
Theorem 2.5.13.

Corollary 6.3.4. Since y is entire by Remark 6.3.3 and Theorem 2.4.5, it follows that

‖y − Pmy‖L∞[0,tp] ≤
2Mρ−m

ρ− 1

in the Bernstein ellipse Eρ, where |yi(t)| ≤M is satisfied for i = 1, . . . , n and some M .

The Chebyshev projections of A and y do not necessarily have the same degree, hence
in the following we distinguish them by their subscripts. The index A refers to the
matrix function A and an index y to the solution of the IVP (6.38).

Corollary 6.3.5. If aij ∈ ACk−1[0, tp] and the k-th derivative a
(k)
ij is of bounded

variation V for all i, j = 1, . . . , n, then Pmyy converges to x at rate k, i.e., ‖x −
Pmyy‖L∞[0,tp] = O(V m−kA ).

Proof. Due to equation (6.42) in the proof of Theorem 6.3.1 and Theorem 2.4.5, we
obtain

‖x− Pmyy‖L∞[0,tp] ≤ ‖x− y‖L∞[0,tp] + ‖y − Pmyy‖L∞[0,tp]

≤ 2nV eLtptp
πk(mA − k)k

‖y‖L∞[0,tp] +
2Myρ

−my
y

ρy − 1
. (6.43)

We choose the same approximation degree, i.e., mA = my. Since ‖y‖L∞[0,tp] is bounded,
the right-hand sides of (6.43) tend to zero as mA,my →∞. Hence, Pmyy converges to
the original solution x at a rate of order k.

Corollary 6.3.6. If aij is analytic in [0, tp] and analytically continuable to the open
Bernstein ellipse Eρ, where it satisfies |aij(t)| ≤MA for all i, j = 1, . . . , n for some M ,
then Pmyy converges to x geometrically, i.e., ‖x− Pmyy‖∞ = O(Mρ−mAA ).

Proof. As previously, due to equation (6.42) in the proof of Theorem 6.3.1 and Theorem
2.4.5, we obtain

‖x− Pmyy‖L∞[0,tp] ≤
2MAnρ

−mA
A eLtptp

ρA − 1
‖y‖L∞[0,tp] +

2Myρ
−my
y

ρy − 1
. (6.44)

We choose the same approximation degree, i.e., mA = my and M = max {MA,My}.
Since ‖y‖L∞[0,tp] is bounded, the right-hand sides of (6.44) tend to zero as mA,my →∞.
Hence, Pmyy converges to the original solution x at a geometric rate.

For a better Chebyshev approximation, i.e., for larger approximation levels mA and
my, one hopes to have sharper bounds indicated by Corollary 6.3.5 and 6.3.6. This
does not necessarily mean that the sharper bound is closer to the norm of the solution
for any t ∈ [0, tp]. Sharper is meant w.r.t. the convergence rate given by Corollary
6.3.5 and 6.3.6.
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Theorem 6.3.7. If aij ∈ ACk−1[0, tp] and the k-th derivative a
(k)
ij is of bounded varia-

tion V for all i, j = 1, . . . , n, then for any mA > k > 0:∥∥(Pmyy)(t)
∥∥− εBV (t) ≤ ‖x(t)‖ ≤

∥∥(Pmyy)(t)
∥∥+ εBV (t), (6.45)

where εBV (t) = 2nV eLt

πk(mA−k)k

∫ t
0

∥∥(Pmyy)(s)
∥∥ ds +

2Myρ
−my
y

ρy−1

(
1 + 2nV eLtt

πk(mA−k)k

)
and L is the

Lipschitz constant for the ODE of the time-periodic system (6.1).

Proof. Due to equation (6.42) in the proof of Theorem 6.3.1 and Theorem 2.4.5, we
obtain

‖x(t)− (Pmyy)(t)‖ ≤ ‖x(t)− y(t)‖+ ‖y(t)− (Pmyy)(t)‖

≤ 2nV eLt

πk(mA − k)k

∫ t

0

‖y(s)‖ds+
2Myρ

−my
y

ρy − 1
. (6.46)

By Corollary 6.3.4, we obtain

‖y(t)‖ ≤ ‖(Pmy)(t)‖+
2Myρ

−m
y

ρy − 1
, for t ∈ [0, tp],

which inserted in (6.46) yields

‖x(t)− (Pmyy)(t)‖ ≤ 2nV eLt

πk(mA−k)k

∫ t

0

∥∥(Pmyy)(s)
∥∥ ds+

2Myρ
−my
y

ρy−1

(
1 + 2nV eLtt

πk(mA−k)k

)
= εBV (t).

Applying the triangle and reverse triangle inequality concludes the proof.

Remark 6.3.8. We note that εBV (t)→ 0 as my,mA →∞ for any t ∈ [0, tp] .

Theorem 6.3.9. If aij is analytic in [0, tp] and analytically continuable to the open
Bernstein ellipse Eρ, where it satisfies |aij(t)| ≤ M for all i, j = 1, . . . , n for some M ,
then for any m ≥ 0:∥∥(Pmyy)(t)

∥∥− εanalytic(t) ≤ ‖x(t)‖ ≤
∥∥(Pmyy)(t)

∥∥+ εanalytic(t), (6.47)

where εanalytic(t) =
2MAnρ

−mA
A eLt

ρA−1

∫ t
0

∥∥(Pmyy)(t)
∥∥ ds +

2Myρ
−my
y

ρy−1

(
1 +

2MAnρ
−mA
A eLtt

ρA−1

)
and

L is the Lipschitz constant for the ODE of the time-periodic system (6.1).

Proof. Due to equation (6.42) in the proof of Theorem 6.3.1 and Theorem 2.4.5, we
obtain

‖x(t)− (Pmyy)(t)‖ ≤ 2MAnρ
−mA
A eLt

ρA − 1

∫ t

0

‖y(s)‖ ds+
2Myρ

−my
y

ρy − 1
. (6.48)

By Corollary 6.3.4, we obtain

‖y(t)‖ ≤ ‖(Pmy)(t)‖+
2Myρ

−m
y

ρy − 1
, for t ∈ [0, tp],
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which inserted in (6.48) yields

‖x(t)− (Pmyy)(t)‖ ≤ 2MAnρ
−mA
A eLt

ρA−1

∫ t

0

∥∥(Pmyy)(t)
∥∥ ds+

2Myρ
−my
y

ρy−1

(
1 +

2MAnρ
−mA
A eLtt

ρA−1

)
= εanalytic(t).

Applying the triangle and reverse triangle inequality concludes the proof.

Remark 6.3.10. We note that εanalytic(t)→ 0 as my,mA →∞ for any t ∈ [0, tp] .

The rigorous two sided bounds in Theorem 6.3.7 and 6.3.9 tend to the norm of the
solution ‖x(t)‖ as mA,my →∞ by Remark 6.3.8 and 6.3.10.
If the matrix function A is analytic, one does not need to replace the original system
by (6.38) since even for the original system the solution is analytic by Theorem 2.5.13.
But for the sake of completeness we also derived bounds in this case and the bounds
are very tight for moderate mA as shown in Section 6.4.
Similar results can be obtained for interpolation instead of Chebyshev projection. In
this context, the main question concerns the interpolation points. If Chebyshev points
are chosen, then the Chebyshev interpolant satisfies Theorem 2.4.3 and 2.4.5 with an
additional factor 2, see e.g. [Tre13]. Hence, one can obtain results in view of Theorem
6.3.1 and 6.3.2 with the same additional factor.

6.4 Numerical Results

While the two-sided bounds on the solution of a time-periodic system in Theorem 6.2.2
and 6.2.3 were established for any norm ‖ · ‖, the two-sided spectral bounds defined
in equations (6.45) and (6.47) were established for a norm ‖ · ‖p, where p ∈ {1, 2,∞}.
Hence, the maximum norm is chosen in order to compare the two-sided bounds for the
transient behavior of the solution to a time-periodic system, i.e., f`(t) ≤ ‖x(t)‖∞ ≤
fu(t). The rigorous two-sided bounds f`(t) and fu(t) are illustrated by two examples
that can be described by a time-periodic system of the form (6.1). The first example
is chosen such that the solution to the time-periodic system can be given analytically
and the second example is a Jeffcott rotor. Both examples are discussed below in more
detail. The two-sided bounds f`(t) and fu(t) are given by Theorem 6.2.2 for quadratic
trigonometric splines, by Theorem 6.2.3 for cubic trigonometric splines and equations
(6.45) and (6.47) by Chebyshev projections. The approximation degree r and mA for
each example is given in Table 6.1. In the following, the parameters r and mA of the
trigonometric spline or the spectral bound, respectively, are chosen such that firstly,
a visible difference between the solution and its respective two-sided bounds can be
seen and secondly, an effect of the parameters can be noticed. In the Figures 6.1 and
6.3 the spectral bound cannot be distinguished from the original solution if the order
of the Chebyshev projection mA is increased slightly This observation does not hold
for the quadratic trigonometric spline bound and cubic trigonometric spline bound
since its convergence is slower, see Table 6.3 and Figure 6.5 compared to Figure 6.6.
But for a larger number of nodes r, the quadratic trigonometric spline bound and the
cubic trigonometric spline bound tend to the solution quadratically and cubically by
Theorem 6.2.1 and 6.2.3, respectively, compare Figures 6.1 and 6.3.
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Example Dim. Trigonometric spline Spectral
quadratic cubic

ẋ = | sin(2πt)|3x n = 1 r = 15, 20 r = 15, 20 mA = 10, 13
Jeffcott rotor n = 4 r = 5000 r = 1000, 3000 mA = 33, 34, 35

Table 6.1: Setting for trigonometric spline bound and spectral bound

Computation of global extrema is not an easy task due to the possibly large number
of local minima and maxima of the objective function, see e.g. [HT96]. We used
MATLAB’s Global Search strategy with fminsearch, which is an NLP solver that uses
the simplex search method [Lag+98], in order to determine L, ‖L3x‖L∞ and ‖L4x‖L∞ .
The computed values for L, ‖L3x‖∞ and ‖L4x‖L∞ are given in Table 6.2. They are
used in the figures mentioned above and also appear in the convergence rates of the
methods in Table 6.3. Note, that the parameters ρA and MA with respect to the
spectral bound are not unique, especially any Bernstein ellipse can be chosen since
the function is entire. Here, we chose ρA with respect to the decay of the Chebyshev
coefficients |ck| given by (2.21) but for the sake of simplicity the derivation is omitted
and for the appropriate examples ρA is given in Table 6.2. MA is determined by the
strategy mentioned above, i.e., by a combination of fminsearch and Global Search.

Example Trigonometric Spline Bound Spectral Bound
(6.47) (6.45)

L ‖L3x‖∞ ‖L4x‖∞ MA ρA V

ẋ = | sin(2πt)|3x 1 3.3 · 102 4.0 · 103 — — 4π3

Jeffcott rotor 1.15 3.7 · 103 1.3 · 104 1.12 2.57 —

Table 6.2: Constants used for trigonometric spline bound and spectral bound

The first example is a one-dimensional IVP ẋ(t) = | sin(2πt)|3x(t) with initial condition
x(0) = 1. The function of the right hand-side A(t) = | sin(2πt)|3 is thrice differentiable
and A(k) is absolutely continuous, i.e., A ∈ AC3[0, tp]. We use this example as here, we
are able to compare our results to the analytical solution, which is

x(t) =

exp
(

cos3(2πt)
6π

− cos(2πt)
2π

)
if t ∈ [0, 0.5),

exp
(
− cos3(2πt)

6π
+ cos(2πt)

2π
+ 2

3π

)
if t ∈ [0.5, 1].

The results of the trigonometric spline bound and the spectral bound are shown in
Figure 6.1. For better approximation levels, the trigonometric spline and spectral
bound are closer to the original solution ‖x(t)‖∞ as indicated by the convergence
results. The convergence rates are quadratic and cubic as shown in Table 6.3.
Figure 6.2 shows the solution of the first example in the Euclidean norm and the
weighted time-dependent norm ‖·‖R̃(t). For the one-dimensional example, the Euclidean

norm and the maximum norm coincide with the absolute value, i.e. | · | = ‖·‖2 = ‖·‖∞.
Furthermore, the weighted R-norm is a scaling, but since the single eigenvector is
normalized, | · | = ‖ · ‖2 = ‖ · ‖∞ = ‖ · ‖R holds. The weighted time-dependent
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Figure 6.1: Solution for A(t) = | sin(2πt)|3 for t ∈ [0, 1].

norm ‖ · ‖R̃(t) suppresses the oscillations and since the spectral abscissa is positive,

ν[L] = 0.424413181578411 > 0, a monotonic increase can be observed, see Corollary
6.1.3.
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‖x(t)‖R̃(t)

Figure 6.2: Solution for A(t) = | sin(2πt)|3 for t ∈ [0, 5].

The second example is a Jeffcott rotor on an anisotropic shaft supported by anisotropic
bearings [All09]. It can be modeled as a linear time-periodic system (6.1) where A(t)
is entire with system dimension n = 4. The same parameter values are chosen as in
[All09]. This is an asymptotically stable system since the maximal Lyapunov exponent
is ν[L] = −0.002000131812440 < 0. The results are illustrated in Figure 6.3. The
quadratic trigonometric spline bound for r = 50, 000 is highly oscillatory such that
some components of its graph in Figure 6.3 cannot be distinguished anymore. But
nevertheless, the upper bound is valid. In order to sharpen this bound we can increase

– 133 –– 133 –



Chapter 6 Two-Sided Bounds on the Solution of Time-Periodic Systems

the number of nodes r or we can increase the order of the trigonometric spline, e.g.,
the cubic trigonometric spline bound is been visualized for r = 1000 and r = 3000.
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r = 5 · 104, quad.
r = 1000, cubic

r = 3000, cubic

mA = 34

mA = 35

‖x(t)‖∞

Figure 6.3: Jeffcott rotor on an anisotropic shaft for t ∈ [0, 2π].

Figure 6.4 shows the solution of the Jeffcott rotor over time in the interval [0, 10π] in
various norms, the Euclidean norm, the maximum norm, the weighted time-invariant
R-norm and the weighted time-dependent R̃(t)-norm. The weighted time-dependent
norm ‖ · ‖R̃(t) suppresses the oscillations and since the matrix L is diagonalizable and

the spectral abscissa is negative, ν[L] < 0, a monotonic decrease can be observed, see
Corollary 6.1.3.
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Figure 6.4: Jeffcott rotor on an anisotropic shaft for t ∈ [0, 10π].

Finally, we discuss the convergence of trigonometric splines and of the spectral method
depending on the smoothness of A indicated by Theorem 6.2.2, 6.2.3, 2.4.3, and 2.4.5.
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Smoothness of A Trigonometric Spline Bound Spectral Bound
quadratic cubic

C2 O(‖L3x‖∞r−2) — O(V m−1
A )

C3 O(‖L3x‖∞r−2) O(‖L4x‖∞r−3) O(V m−2
A )

ACk−1, 1 ≤ k < 3 — — O(V m−kA )
AC2 O(‖L3x‖∞r−2) — O(V m−3

A )
ACk−1, k ≥ 4 O(‖L3x‖∞r−2) O(‖L4x‖∞r−3) O(V m−kA )
analytic O(‖L3x‖∞r−2) O(‖L4x‖∞r−3) O(MAρ

−mA
A )

Table 6.3: Convergence for trigonometric spline and spectral bound

In Table 6.3 the convergence rates for the trigonometric spline bound defined in Theo-
rem 6.2.2 and 6.2.3 and the spectral bounds defined in equations (6.45) and (6.47) are
given for various function classes and they are visualized in Figures 6.5 and 6.6. The
computational complexity for the trigonometric spline bound is dominated by comput-
ing the spline solution. Trigonometric splines with compact support, i.e. trigonometric
B-splines, are chosen due to the local influence of each spline. For general splines, a
linear system of dimension n(r+1)×n(r+1) has to be solved while for B-splines, r+1
systems of dimension n × n have to be solved. Hence, the computational complexity
for trigonometric B-splines is O(n3(r+1)). For the spectral bound, each element of the
system matrix A has to be approximated, which can be done by Fast Fourier Trans-
formations (FFT) in O((m + 1) log(m + 1)). The convergence of the trigonometric
spline bound is local, i.e., a trigonometric spline Si converges on its support to the so-
lution of the time-periodic system. The support of the trigonometric splines is given by
supp(S2

i ) = {t ∈ [0, tp] : S2
i (t) 6= 0} = [ti, ti+3] for quadratic splines visualized in Figure

2.2 and supp(S3
i ) = {t ∈ [0, tp] : S3

i (t) 6= 0} = [ti, ti+4] for cubic splines visualized in
Figure 2.3. The spectral bound converges globally, i.e., on the whole interval [0, tp], to
the solution of the time-periodic system.
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ẋ(t) = | sin(2πt)|3x(t) Jeffcott rotor
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Figure 6.5: Convergence rates for quadratic (left) and cubic (right) trigonometric
splines.

ẋ(t) = | sin(2πt)|3x(t) Jeffcott rotor
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Figure 6.6: Convergence rates for Chebyshev projection method.
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7
Summary and Outlook

In this thesis we have advanced the theory for damped linear systems as well as the
time behavior of its solution. The contributions of this thesis are of both theoretical
and numerical nature.

In Chapter 4 we have related the time behavior of a damped linear system to the
systems energy and to the solution of a structured algebraic Lyapunov equation. Vi-
bration reduction by optimizing passive damping was classified as a Nonlinear Program
(NLP) with a nonlinear objective function, namely the trace of a solution to a alge-
braic Lyapunov equation. We therefore introduced the structure exploiting sign func-
tion method, which can efficiently solve the structured algebraic Lyapunov equation.
We were able to show that the structure of the algebraic Lyapunov equation is kept
throughout the sign function iteration. Moreover, the structure of the algebraic Lya-
punov equation can efficiently been used to compute the gradient and Hessian of the
objective function in order to improve the convergence of the NLP solver. In addition,
the system’s energy can be characterized by its eigenvalues and eigenvectors. We have
derived a structure exploiting variant of the Ehrlich-Aberth iteration, which computes
all eigenvalues simultaneous and iteratively. By an inverse iteration the corresponding
eigenvectors can be determined.

In Chapter 5 the global optimization of passive damping w.r.t. external dampers
positions was firstly considered and it could be encoded as a Mixed Integer Nonlinear
Program. We have shown that the optimal positions can be computed in O(n2) for
sufficiently small viscosities. Linearization strategies based on McCormick envelopes
and piecewise linear functions are given and a heuristic approach to find good damping
positions are given.

Finally, in Chapter 6 we have analyzed vibrations and the time behavior of a solu-
tion to a time-periodic linear system. We could relate time-periodic linear systems
to linear systems by the Floquet-Lyapunov transformation and therefore, we have ob-
tained results on a certain norm of the solution, which guarantees two-sided rigorous
bounds, decoupling, filtering and monotonicity. Moreover, its time behavior can be
characterized by two-sided bounds for the Manhattan norm, the Euclidean norm and
the maximum norm. Here, we have used two different ideas in order to derive two
sided-bounds. While in the first method we have approximated the solution of the
time-periodic linear system by trigonometric splines and then two-sided bounds have
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been established on the quality of the approximation, the second method has approxi-
mated the time-periodic linear system, which then has turned out to be entire. Hence,
its solution can be represented as an infinite series. Depending on the smoothness of the
time-periodic system, we have formulated two-sided bounds which have incorporated
the approximation error of the linear time-periodic system and the truncation error of
the series representation. We have shown the order of convergence of the two-sided
bounds to the solution of a linear time-periodic system depending on the smoothness
of the linear time-periodic system.
Future possible research topics are manifold. For instance, in this thesis we have only
considered linear systems. However, many of the concepts considered here, are also
extendable to matrix pencils. There are infinitely many linearizations of a vibrational
system in the sense of Definition 2.1.9, especially if the mass matrix is ill-conditioned
or even singular, a matrix pencils (E,A) is obtained and the corresponding algebraic
Lyapunov equation is then called generalized algebraic Lyapunov equation, which can
be solved by the sign function method [BQO99]. We strongly believe that this holds
for the generalized structured algebraic Lyapunov equation as well.
The global optimization of passive damping w.r.t. the external damper’s positions in
Chapter 5 has not been solved satisfactorily yet. A promising linearization idea of
MINLP formulation is to discretize the viscosity space for each external damper, i.e.,
the viscosities are not continuous anymore but attain discrete values. It turns out that
this problem can be reformulated as a Mixed Integer Linear Program.
The two-sided bounds on the solution of a time-periodic system in Chapter 6 can be
derived for other norms as well since in a finite-dimensional vector space all norms are
equivalent. A possible future research topic is the extension of two-sided bounds to
nonlinear time-periodic systems. Some advances in this direction have been obtained
for nonlinear systems [Koh07].
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[Nak02] I. Nakić. Optimal damping of vibrational systems. PhD thesis. Fernuniver-
sität Hagen, 2002.

[Nik04] A. Nikolis. Numerical solutions of ordinary differential equations with quadratic
trigonometric splines. eng. Appl. Math. E-Notes 4 (2004), pp. 142–149.

[Nik93] A. Nikolis. Trigonometrische Splines und ihre Anwendung zur numerischen
Behandlung von Integralgleichungen. PhD thesis. Ludwig-Maximilians-Universität
München, 1993.

[NS05] A. Nikolis and I. Seimenis. Solving dynamical systems with cubic trigono-
metric splines. eng. Appl. Math. E-Notes 5 (2005), pp. 116–123.

[Pen00a] T. Penzl. A cyclic low rank Smith method for large sparse Lyapunov equa-
tions. SIAM J. Sci. Comput. 21.4 (2000), pp. 1401–1418.

[Pen00b] T. Penzl. Eigenvalue decay bounds for solutions of Lyapunov equations:
the symmetric case. Systems Control Lett. 40 (2 2000), pp. 139–144.

[Pol20] B. Van der Pol. A theory of the amplitude of free and forced triode vibra-
tion. Radio Review 1 (1920), pp. 701–720.

– 144 –– 144 –

http://wiki.mcs.anl.gov/minotaur


Bibliography

[PS08] I. P. Popchev and S. G. Savov. New Upper Bounds for the CALE. Inter-
national Journal of Control, Automation and Systems 6.2 (2008), pp. 288–
294.

[Rao07] S. S. Rao. Vibration of Continuous Systems. John Wiley & Sons, Ltd, 2007.

[Rob80] J. D. Roberts. Linear Model Reduction and Solution of the Algebraic Ric-
cati Equation by Use of the Sign Function. Internat. J. Control 32 (1980).
(Reprint of Technical Report No. TR-13, CUED/B-Control, Cambridge
University, Engineering Department, 1971), pp. 677–687.

[Roy88] H. L. Royden. Real analysis. third. New York: Macmillan, 1988.

[Sch64] I. Schoenberg. On Trigonometric Spline Interpolation. Indiana Univ. Math.
J. 13 (5 1964), pp. 795–825.

[Sch71] A. Schönhage. Approximationstheorie. De Gruyter Lehrbuch. Walter de
Gruyter GmbH & Co. KG, 1971.

[Sch86] A. Schrijver. Theory of Linear and Integer Programming. New York, NY,
USA: John Wiley & Sons, Ltd, 1986.

[Sch81] L. L. Schumaker. Spline Functions: Basic Theory. John Wiley & Sons, Ltd,
1981.

[SB96] S. C. Sinha and E. A. Butcher. Solution and stability of a set of p-th
order linear differential equations with periodic coefficients via Chebyshev
polynomials. Math. Probl. Eng. 2 (2 1996), pp. 165–190.

[SW91] S. C. Sinha and D.-H. Wu. An efficient computational scheme for the anal-
ysis of periodic systems. J. Sound Vib. 151 (1991), pp. 91–117.
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• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
Weise zu interpretieren,
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Form als Dissertation eingereicht und ist als Ganzes auch noch nicht veröffentlicht.
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