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Zusammenfassung 

Die numerische Strömungsmechanik wird in technischen Anwendungen als 

potentielles Werkzeug zur Vorhersage von Strömungen, Umsetzungsraten und Effizienz in 

vielen Geräten eingesetzt. Euler/Lagrange ist einer der verfügbaren Ansätze zur Darstellung 

von Mehrphasensystemen, beispielsweise Blasensäulen. Bei diesem Ansatz werden die 

flüssige Phase als Kontinuum und die Blasen als diskrete "Punktpartikel" behandelt. Um die 

Blasenbewegung so gut wie möglich vorhersagen zu können, müssen bei der Berechnung alle 

relevanten wirkenden Kräfte berücksichtigt werden, und zwar Schwerkraft/Auftrieb, 

Widerstand, virtuelle Masse, transversaler Auftrieb, Flüssigkeitsträgheit, Wand- und Basset-

Kraft (Geschichte-Term). Im Gegensatz zu festen Partikeln zeigen Blasen während ihres 

Aufstiegs eine kontinuierliche Formschwingung, gekoppelt mit einer Taumelbewegung. 

Ungeachtet der Verwendung der Punktpartikel-Näherung wurde in dieser Arbeit die 

Blasendynamik in das Modell einbezogen, indem zunächst eine momentane 

Blasenexzentrizität angenommen und in den Kräften berücksichtigt wurde. Anschließend 

wird die Taumelbewegung vom Modell induziert, indem die Richtung der Blasenbewegung 

von einem geraden Pfad aus geändert wird. Um Rechenzeit zu sparen, wird die lokale 

Berechnung der Blasenexzentrizität und des Bewegungswinkels stochastisch durchgeführt, 

jedoch zeitlich korreliert, wobei experimentelle Beobachtungen hinsichtlich der 

Schwingungsfrequenzen und -amplituden verwendet werden. Dieser Prozess stellt effizient 

die Blasendynamik durch eine Ein-Schritt-Langevin-Gleichung dar, sodass auch die 

Simplizität des Modells erhalten bleibt. Darüber hinaus wird eine Bewertung des 

Kräftewettbewerbs in einer Laborblasensäule in Bezug auf den Durchmesser der 

Blasenäquivalente und die räumlichen Koordinaten, und zwar radiale und axiale Positionen, 

durchgeführt. Schließlich zeigte die Modellierung von Form- und Pfadschwingungen eine 

größere Wichtigkeit der virtuellen Massen- und Basset-Kräfte als bei dem Basismodell. Es 

wurde auch festgestellt, dass der Geschichte-Term als Widerstand gegen die 

Bewegungsänderung wirkt, da die Schwankungen der Blasengeschwindigkeit schwächer 

werden. Nichtsdestotrotz verstärkt diese Kraft die gesamte Dispersion der Blasen. Schließlich 

wird die Formulierung für Fälle mit Stoffübertragung erweitert, bei denen eine dynamische 

Sherwood-Zahl mit dem Blasendynamikmodell kombiniert wird. Zusammenfassend ist das 

hier implementierte CFD-Modell (Plattform OpenFOAM) dafür geeignet, Strömungen und 

Stoffübertragung in Blasensäulen vorherzusagen und die Blasendynamik im Rahmen des 

Euler/Lagrange Ansatzes zu berücksichtigen. 





 

Abstract 

Computational Fluid Dynamics have been widely used in engineering applications as a 

potential tool for prediction of flows, conversion rates and efficiency in many apparatuses. 

The Euler/Lagrange is one of the available approaches for representing multiphase systems, 

for example bubble columns. With this approach the liquid phase is treated as a continuum 

and the bubbles as discrete “point-particles”. In order to predict the bubble motion as well as 

possible, all relevant acting forces need to be taken into account in the calculations, namely 

gravity/buoyancy, drag, added (virtual) mass, transversal lift, fluid inertia, wall-lubrication 

and Basset (history term) forces. Contrastively to solid particles, bubbles present a constant 

shape oscillation during their rise, coupled with a tumbling motion. In this work, despite use 

of “point-particle” approximation, such dynamics was included in the model by first assuming 

an instantaneous bubble eccentricity and considering it in the forces. Subsequently, the 

tumbling motion is induced by changing the direction of bubble motion from a straight path. 

In order to save computational time, the local prediction of bubble eccentricity and motion 

angle is performed stochastically, yet correlated in time making use of experimental 

observations with regard to oscillations frequencies and amplitudes. This process mimics the 

bubble dynamics efficiently through a single-step Langevin equation, maintaining also certain 

simplicity on the model. Moreover, an evaluation of forces competition in a laboratory bubble 

column is realized in terms of bubble equivalent diameter and spatial coordinates, namely, 

radial and axial positions. After all, the modelling of shape and trajectories oscillations 

revealed a greater importance of added mass and Basset forces than observed with the base 

model. It was also noticed, that the history term acts as a resistance to the motion change, 

inasmuch as the bubble velocity fluctuations are weakened. Nonetheless, this force enhances 

an overall bubble lateral dispersion. Finally, the formulation is extended for cases with mass 

transfer, in which a dynamic Sherwood number is combined with the bubble dynamics model. 

Conclusively, the CFD model implemented here (platform OpenFOAM) is suitable for 

predicting flows and mass transfer in bubble columns and accounts for bubble dynamics in 

the frame of Euler/Lagrange approach. 
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1 Introduction 

Bubble columns are often used as chemical reactors, where large contact area between 

gas and liquid phases has to be achieved. Either in the oil refineries, chemical or 

pharmaceutical industries, high efficiency in terms of mass or heat transfer is desired. 

Computational Fluid Dynamics (CFD) can be a very useful tool to predict the flow and 

transfer rates in such apparatus. However, its modelling is still a challenge, since the flow 

structure is highly influenced by the bubbles. During their ascension, bubbles are constantly 

changing their size, due to mass transfer, or even to difference in hydrostatic pressure, not 

mentioning shape and motion oscillations. These complex phenomena demand sophisticated 

mathematical models, in order to be well represented. 

The Euler/Lagrange approach for numerical calculations of dispersed multiphase 

flows is a powerful method for analysing and optimising industrial scale processes. The main 

reasons for that are the easy consideration of particle size distributions and the descriptive 

modelling of transport phenomena occurring on the scale of the particles [1]. This method has 

been applied very often for bubble columns [2,3,4,5]. Hence, although the particles are 

considered as point-masses their discrete nature is maintained in the simulations in contrary to 

an Euler/Euler modelling, where the particle phase properties appear only as averages in a 

control volume used for numerically discretizing the apparatus. Here not only the liquid phase 

is treated as a continuum, but also the dispersed phase [6,7]. 

In both of these approaches, the interaction between the phases is modelled accounting 

for the relevant interfacial and field forces. Lucas et al. [8] and Rzehak et al. [9] describe the 

importance of the interfacial forces to be considered for the two-fluid approach (Euler/Euler), 

and proposed the developed model as a baseline for simulations of bubbly flows. Naturally, 

force correlations used in simulations have empiric precedence, in which the correspondent 
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coefficients are commonly elaborated with characteristic dimensionless numbers. At last, the 

most important role in the estimation of these forces is played by the bubble size. This 

property can be handled in the Euler/Lagrange approach without additional numerical 

complexity, though, even when mass transfer, bubble breakage and coalescence phenomena 

are involved [10,11,12,13]. 

Once the gas and liquid phases are directly coupled, the proper solving of the liquid 

flow and turbulence in bubble columns is also essential. In Euler/Lagrange applications for 

dispersed bubbly flows, the most preferred method is the Large Eddy Simulation (LES). This 

method has some advantage over Reynold-Average Navier-Stokes (RANS) by resolving 

directly large structures in the core of bubble columns, which carry most the flow energy [14]. 

The smaller and weaker eddies, on the other hand, can be modelled using a sub-grid-scale 

(SGS) turbulence model, e.g., the well-known Smagorinsky [15]. Furthermore, the presence 

and motion of bubbles can promote and dissipate turbulence in the liquid phase, the so-called 

Bubble-Induced Turbulence (BIT). The BIT modelling is frequently discussed in the literature 

and various models are available [16,17,18]. Lain et al. [3] introduced a consistent turbulence 

model in the frame of k-epsilon turbulence model by using the bubble interface velocity in 

deriving the k-equation source term. Later, this model was adapted for LES applications [19] 

by a considering an additional contribution to the SGS viscosity. 

In order to calculate the particle motion, especially if they are larger and hence their 

Reynolds number is well above unity, resistance coefficients are needed for all relevant forces 

[20]. Depending on the density ratio (i.e. material components and particle to fluid density) 

and their size a number of forces are important as presented by Maxey and Riley [21] for 

Stokes flow. These are for example the drag force, gravity and buoyancy, fluid inertia (part of 

the pressure term), added mass (also called as virtual mass) and Basset term. 

The drag coefficient of single bubbles has been extensively studied in the literature, 

consider for example the works from Ishii and Zuber [22], Mei et al. [23], Tomiyama et al. 

[24] and Yan et al. [25]. Based on the bubble equivalent diameter and fluid properties, these 

models are suitable for a large range of Reynolds and Eötvös dimensionless numbers. 

Nevertheless, some correlations which account for bubble eccentricity are also available in the 

literature, e.g., works from Moore [26] and Rastello et al. [27]. This last one was evaluated 

recently by Aoyama et al. [28] for various Morton numbers and agreed very well with 

experimental data. 

In most simulations of bubbles found in the literature, the virtual mass coefficient is 

assumed to be 0.5, which corresponds to a sphere. However, since the added mass is related to 
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the volume of fluid displaced by the particle, Lamb [29] provided an analytical solution for an 

unbounded oblate-ellipsoid as function of its eccentricity, showing that the coefficient can be 

much different to the solution for a sphere. Direct Numerical Simulations performed by 

Simcik et al. [30] are in agreement with the results obtained analytically by Lamb [29] and the 

authors extended the correlation for a bounded situation, namely in the vicinity of parallel and 

perpendicular walls. 

In addition the transverse lift force is of immense importance in bubbly flows. In most 

numerical calculations of bubbly flows the well-established correlation for the lift coefficient 

proposed by Tomiyama et al. [31] is applied. Recent studies highlighted that this correlation is 

strictly speaking only valid for systems with higher viscosity [32,33]. In the low bubble 

Reynolds number regime, the lift coefficient may be described with the correlation proposed 

by Legendre and Magnaudet [34] for spherical particles. For higher bubble Reynolds 

numbers, the lift coefficient changes its sign from positive (towards the wall) to negative 

(towards the core). This point was defined as the critical Reynolds number. According to 

Aoyama et al. [33], this value is highly dependent on the Morton number and a correlation for 

it was proposed. When applied for water-air systems, the resulting critical Reynolds number is 

completely different than the one predicted by Tomiyama et al. [31]. Ziegenhein et al. [35] 

proposed recently a new experimental method for evaluating the lift coefficient in low 

viscosity systems, in which a linear shear is produced by a bubble plume instead of rotating 

belts. The resulting new findings also reveal a sooner reversal of lift coefficient, but invalidate 

an extrapolation of Aoyama’s correlation to water-system. According to them, the reasonable 

choice is so far to use a correlation based on the modified Eötvös number, depending on the 

major axis of the bubble instead on the volume equivalent diameter. In this manner, the 

bubble eccentricity is included in the formulation, either. 

Not only the added mass, but also the drag and transversal lift forces can be influenced 

by the presence of a wall. Such effects have been evaluated by Takemura and Magnaudet [36] 

for low and moderate bubble Reynolds numbers. In their approach, a correlation for 

modelling wall effects is provided by modifying drag and lift coefficients directly. A different 

approach is applied by Antal et al. [37] and Tomiyama et al. [38], where an extra force is used 

to account for such effects, while drag and lift correlations remain unchanged. Later, 

Hosokawa et al. [39] improved their model not only by considering two regimes, one 

correlated by Reynolds and the other by Eötvös numbers, but also by reducing the number of 

resistance coefficients. In the recent past, Jeong and Park [40] conducted experiments with 

deformable bubbles with high Reynolds number. As expected, the bubbles presented strong 
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path oscillations, but due to this fact they could not quantify directly the wall effect, 

unfortunately. However, it was observed that the bubble velocity and oscillations frequencies 

were significantly influenced in a bounded flow. 

Irrespective of particle size and particle Stokes number (i.e. defined as the particle 

response time scale with respect to the relevant fluid time scale) the Basset term is mostly 

neglected with the argument that this integral force (or history force) to be determined along 

the entire particle trajectory is numerically very expensive. This assumption is probably not 

valid when considering bubbly flows as for example found in industrial bubble column 

reactors (see also Sommerfeld et al. [20]). According to Takemura and Magnaudet [36], the 

frequency of bubble motion oscillations is too high, so that the bubble wake cannot be always 

perfectly aligned with its velocity. In this manner, considerable values of the Basset force 

were obtained in their experimental work and this term should not be neglected in any 

Lagrangian computation of bubble motion. In order to reduce the numerical effort in 

evaluating the Basset term, approximations of the history term are available in the literature, 

e.g., works from Michaelides [41] and Hinsberg et al. [42]. In the last one, an exponential 

function is applied to approximate the tail of the force kernel. The method is second order in 

time and reduces the computational effort by more than one order of magnitude. Furthermore, 

Michaelides and Roig [43] suggested a reinterpretation of the data provided by Odar and 

Hamilton [44] and subsequently an improved correlation for the Basset coefficient, needed for 

higher particle Reynolds numbers. 

From experimental observations it is known that bubbles perform oscillations during 

their ascent, coupled with a tumbling motion [45,46,47,48,49,50,51]. Such dynamics cannot 

be attained by only assuming a stationary drag coefficient, as the ones mentioned above. 

Recently, Sommerfeld et al. [52] included in Euler/Lagrange simulations the bubble 

eccentricity and an oscillation model, in order to mimic bubble dynamics. The stochastic 

generation of eccentricity and motion angle improved substantially the velocity fluctuations in 

bubbly flows. The Basset force was by then neglected, and bubble eccentricity was considered 

only in the lift force. 

Although plenty of numerical studies on bubble columns have been conducted with 

“point-mass” approximations, the effect of bubble dynamics and oscillation has been rarely 

considered. The influence of bubble eccentricity is mostly only accounted in the lift force, 

making use of a modified Eötvös number [31]. Even with the two-fluid approach, Leon-

Becerril et al. [53] demonstrate that the stability of a bubble column is largely influenced by 

accounting bubble eccentricity on drag and added mass forces. Mohd Akbar et al. [54] use a 
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fictitious lateral force acting on bubbles for predicting lateral oscillations, in which 

frequencies and amplitudes are input parameters for the model. In this same paper, the authors 

provide an extensive experimental and numerical evaluation in a rectangular bubble column. 

However, the results shown for only one cross-section, were focused mostly on the liquid 

phase and no information about bubble fluctuations is available. A physical based bubble 

dynamics model was introduced by Bourloutski and Sommerfeld [55], making use of 

experimental information about oscillation frequencies and eccentricity in dependence of 

bubble size. 

Sommerfeld and Bröder [56] conducted several experiments in a laboratory bubble 

column, varying gas flow rate and bubble size distribution. In their work, velocities and 

fluctuations of both liquid as well as gas phase were measured along the whole column, 

giving full support for the validation of CFD models. Additionally, information about bubble 

eccentricity, orientation and motion angle are also available. To the best of the authors 

knowledge such detailed experimental data from bubble swarms is not found anywhere else. 

Due to this fact, this experimental work was the greatest motivation of the present thesis. 

1.1 Objectives of the Thesis 

The main goal of the present work is to highlight the importance of modelling bubble 

dynamics on motion and mass transfer within the frame of Euler/Lagrange point-particle 

approach. In order to do so, several particular steps were required, which will be described in 

the following. 

From the numerical point of view, the CFD model developed here should be able to 

predict the flow and mass transfer in bubble columns, taking into account effects of bubble 

dynamics, such as shape oscillations and tumbling motion. The solution of conservation and 

governing equations are performed in the open-source platform OpenFOAM (v4.1). Apart 

from being non-commercial, other advantage in using this code is the possibility of 

modifications and new implementations by the user. Additionally, the OpenFOAM has a large 

community worldwide, which is constantly growing and contributing to new libraries and 

solvers. However, at the beginning of this doctoral study, all the standard solvers in 

OpenFOAM with Euler/Lagrange approach were designed for parcels heavier than the 

Eulerian phase, such as solid particles or droplets, but not for bubbles. The only force already 

implemented which is related to bubbles was the well-known Tomiyama et al. [31] lift 

correlation. In this manner, some implementation tasks in OpenFOAM 4.1 were established in 

the present work: 
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 to adapt the standard Lagrangian tracking for buoyant parcels (bubbles); 

 state of art of relevant forces acting on bubbles; 

 an improved SGS turbulent dispersion model through Langevin equation; 

 to include BIT modelling on SGS turbulence; 

 hybrid solution of the Euler/Lagrange approach with Volume of Fluid (VoF) 

for resolving the free surface at the column top (bubbles remain discrete); 

 mapping function of parcels variables to the numerical mesh for proper 

statistical assessment of the discrete phase (avg. velocities, fluctuations, 

diameter, volume fraction); 

 stochastic prediction of bubble eccentricity and tumbling motion (bubble 

dynamics); 

 improved bubble tracking accounting for relevant time-scales, such as 

response-time, oscillation period, SGS turbulence integral time; 

 equation of state (ideal gas) for dynamic modification of bubble density and 

equivalent diameter; 

 dynamic mass transfer model which accounts for oscillation amplitude. 

Although all the aspects described above were not available in OpenFOAM, the 

platform satisfied all the requisites for a basic structure of CFD coding. 

From the validation point of view, different study cases were chosen for support a 

solid comparison with experimental data. Since the CFD model consists of many peculiarities, 

the validation process must be conducted step-by-step with growing complexity, as follows: 

 verify the uncoupled solution from a single rising bubble using a very basic 

model, considering only drag and added mass forces; 

 verify the coupling between liquid and dispersed phases; 

 extend the solution for bubble swarms; 

 include all relevant forces; 

 first comparison with experimental data; 

 further model development by including bubble dynamics; 

 validate the model for different geometries, superficial velocities and bubble 

size distributions by comparison with other experimental data; 

 extend the model for mass transfer for one or more chemical species; 
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 validate the mass transfer model for single bubbles by comparison with 

experimental data; 

 validate the mass transfer model for bubble swarms.  

In the end, the actual interest of developing CFD models for bubble columns is the 

capability of predicting chemical reactions, conversion rates and product selectivity. 

However, before reaching this goal, the proper solution of motion and mass transfer is 

fundamental. Bubble dynamics, the main focus of the present work, is of a great importance 

but rarely considered in bubble column simulations. Although the model developed here ends 

at mass transfer, it may be used as a basis for future implementations with chemical reactions. 





 

2 Mathematical Modelling 

The following CFD model was developed and implemented in the open source 

platform OpenFOAM®. Designed for simulation of discrete bubbles rising in a continuous 

liquid phase, this model was based on the Euler/Lagrange approach. Besides “point-mass” 

approximations for the dispersed phase, a model extension which accounts for bubble 

dynamics is suggested. 

2.1 Continuous phase 

In the present work the Large Eddy Simulation (LES) approach was used for solving 

the flow field and modelling SGS turbulence of the continuous phase. A Volume of Fluid 

(VoF) model is used in the calculations, in order to solve a second continuous phase (air) 

above the water level. Thus, an additional equation for the volume fraction is required and a 

simple compression method for the free surface was applied, i.e., a surface reconstruction is 

not performed. The governing equations are showed in the Table 2-1. 
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Table 2-1: Continuous phase governing equations. 

Continuity 
 (    )
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in which,    is the effective mixture density of for the entire system including the column part 

and the free space above the liquid surface,     is the volume fraction of the gas above the 

surface (this property is needed since the interface will be resolved only over several grid 

cells),    and     are both the liquid volume fractions corresponding also to the volume 

fraction of the carrier phase within liquid column due to the presence of bubbles with the 

volume fraction   . The relevant densities are the continuous phase density     either being 

the liquid density    within the column, or the gas density above the interface   , and the 

bubble internal density    The velocity vector of the carrier phase is   , the shear stress is    , 

the pressure   and   is the gravitational field. The surface tension force resulting from the 

free surface is   , which follows from: 

             (2-5) 
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in which  is the surface tension,   the surface curvature term obtained from the normal 

vector n, and a delta of Dirac function   , which acts only at the surface  . The cell-based 

momentum source-term     
̅̅ ̅̅ ̅ regarding to the phases interactions is expressed by the Equation 

(2-8), by summing over all traversing parcels k and the number of Lagrangian time steps n as 

follows: 
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in which,     is the cell volume,     and     are the Eulerian and Lagrangian time-steps, 

respectively and    is the mass of an individual bubble.    is the number of real bubbles in 

the parcel k, which was fixed to one real bubble in all the present cases.   
  and   

    are 

the bubble velocities at the beginning and the end of a Lagrangian time step,    and    are the 

density of the liquid and gas phase, respectively. More details about the coupling will be 

described further in this work. 

The effective viscosity eff = c + t,c for the continuous phase is composed of two 

contributions: the molecular viscosity c and the turbulent viscosity t,c. The turbulent 

viscosity accounts for the contribution of the sub-grid scales and it was described by the 

Smagorinsky model [15]. Additionally, a bubble contribution to the turbulent viscosity     , 

also called as bubble-induced turbulence (BIT), is also considered [3], as follows: 
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Here, the SGS length scale is giving by    based on the volume of the computational cell and 

   is a model constant with a standard value of          used in many simulations. 

Moreover,     
̅̅ ̅̅  is the symmetric deviatory part of strain tensor of the resolved scales. 

In order to improve the solution of LES equations in the vicinity of the wall, a wall 

function was used. This method avoids the integration of model equations, economizing 

computational resources by making use of the universal behaviour of flows near to a wall 

[57]. In this framework, a SGS turbulent viscosity is calculated based on the local turbulent 

kinematic energy. 
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2.2 Discrete phase 

In this work all relevant forces such as drag, gravity/buoyancy, transverse lift, fluid 

inertia, added mass, wall-lubrication and Basset (history-term) were considered. Thus, the 

bubble tracking is described by the Equations (2-13) and (2-14), as follows: 
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(2-14) 

in which,   ,   ,     are the bubble position vector, velocity and mass, respectively,    is 

the drag coefficient,     the added mass coefficient,    the transversal lift coefficient,     

the wall-force coefficient,    the Basset-force coefficient,    the Basset integration kernel, 

 ( ) the derivative of the relative velocity between the bubble and the liquid phase, k and n 

are unit vectors parallel and normal to the wall, respectively, and   is the distance between the 

wall and bubble centre. 

The model still requires a closure for the forces taken into account. The drag 

coefficient was evaluated at first by the well-known Tomiyama et al. model for fluid bubbles 

[24], dependent on bubble Reynolds and Eötvös dimensionless numbers, as follows: 
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This correlation will be referred further in this work as “D1” (drag model 1). Here, the 

drag dependency on bubble size comes from the equivalent diameter. Nevertheless, the range 

of application of Eq. (2-15) extends also for the wobbling regime, where the bubbles are not 
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spherical. This means that an expected bubble eccentricity is somehow considered, but the 

information is implicit in the fitting parameters. 

In order to explicitly account for instantaneous bubble eccentricity   on the drag 

coefficient, the model proposed by Rastello et al. [27] was also evaluated. This model makes 

use of a modified correlation based on Mei et al. [23] and the geometric factors    and    

calculated by Moore [26] and approximated by Loth [58], as follows: 
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where   is the ratio between the bubble major axis and the minor one, i.e.,    . Naturally, 

correlations for the estimation of bubble eccentricity are needed in the simulations. Such 

details will be shown later in this work. 

The Eq. (2-17) was evaluated by Aoyama et al. [28] for various Morton numbers and 

predicted bubble terminal velocities very well when a proper correlation for the eccentricity is 

combined. However, the data presented by Rastello et al. [27] extend until Reynolds numbers 

around        . The drag coefficient for higher values of     using Eq. (2-17) may be 

underestimated and are better represented in the literature in function of Eötvös number. In 

this manner, the same approach from Tomiyama et al. [24] can be used for elaborating a 

function that is valid for the whole range of bubble size, as follows: 

       (              ) (2-19) 

        
 

 
 

  

    
 (2-20) 

In order to take account for fluctuations of drag due to bubble eccentricity also in the 

Eq. (2-20), a modification is proposed assuming a deviation of instantaneous bubble 

eccentricity to the correspondent mean value, making use of the modified bubble Eötvös 

number    , as follows: 
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where    is the bubble major axis. Note that the term inside the parenthesis of Eq. (2-22) is 

null when      
̅̅ ̅, retrieving the Eq. (2-20). Hence, this approach does not affect the 

resulting time-averaged drag coefficient, after all, but accounts for instantaneous 

modifications when the bubble eccentricity is not considered constant. The Eq. (2-21) will be 

referred in this work as “D2” (drag model 2). 

The added mass coefficient was also evaluated with dependency of bubble 

eccentricity, according to analytical solutions of Lamb [29]. Additionally, an increase is 

noticed at the vicinity of a wall [30], as follows: 
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where    is the major axis of the non-spherical bubble,   is the angle between the bubble 

motion direction and the wall, x is the wall distance to the bubble centre (       ), and     

and     are the coefficients with regard to perpendicular and parallel walls, respectively. At 

this point, the model combines the wall influence with the coefficient    in function of bubble 

axis ratio  , i.e. the inverse of the eccentricity  . 
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In the present work the most recent data for the lift coefficient were evaluated. Until 

nowadays, the probably most used lift correlation for bubbles, proposed by Tomiyama et al. 

[31], is considered in many simulations. This model predicts the lift coefficient with 

dependency on Eötvös and Reynolds numbers, as follows: 
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The Eq. (2-31) will be referred in this work as “L1” (lift model 1). 

In order to proper account for fluid viscosity, a different approach needs to be 

considered. In a recent past, Aoyama et al. [33] observed experimentally that for low bubble 

Reynolds numbers, the lift coefficient can be modelled making use of Legendre and 

Magnaudet [34] correlation (Eq. (2-34)) for spherical particles, since the bubbles are small 

enough and behave as particles. The resulting coefficient increases with Re until a certain 

limit around 0.4-0.5. After a certain bubble size, the results reveal a critical Reynolds number, 

where the lift coefficient changes the sign from positive to negative. The authors noticed a 

clear dependency of this value with the Morton number and proposed a correlation for it (Eq. 

(2-36)), as follows: 
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Applying the Eq. (2-36) for air-water systems (            ), a critical Reynolds 

number         is obtained. However, such a system is out of range of their experiments 

(            and        ) and such extrapolation may be unreliable. This lack of data 
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for low viscosity fluids was filled very recently by Ziegenhein et al. [35]. The authors 

proposed a new method to determine the lift coefficient in the oscillating regime, in which a 

bubble plume is used to produce a linear shear inside the column. The results for the transition 

from positive to negative lift coefficients are similar to those predicted by Dijkhuizen et al. 

[59] with Direct Numerical Simulations (DNS), however, a slightly softer slope was obtained, 

as follows: 

                
             (2-38) 

The measured critical Reynolds number for the air/water system was around     

   , which is much higher than the value predicted by Eq. (2-36), i.e., its extrapolation for 

such lower Morton numbers is not valid. According to Ziegenhein et al. [35], the most 

reasonable choice would be a fomulation based on the modified Eötvös number together with 

a proper bubble shape correlation. In this manner, the complete lift model used in the present 

work combines the Eqs. (2-34) and (2-38), as follows: 

       [   (          )      ] (2-39) 

The data provided by Ziegenhein et al. [35] extends up to          and the lift 

coefficient for greater bubbles is so far unknown. Hence, an under limit of          was 

arbitrary chosen. The Eq. (2-39) will be referred in this work as “L2” (lift model 2). 

Finally, a summary of all these lift models is shown in the Figure 2-1. Although the 

most of correlations in evaluation here are function of modified Eötvös number, a conversion 

to Reynolds number was also performed based on the terminal velocity of a single bubble 

with the correspondent equivalent diameter and mean eccentricity. 
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Figure 2-1: Comparison of lift models in function of: a) modified Eötvös number; b) 

Reynolds number; c) bubble major axis. 

It is noticed in the Figure 2-1c that the lift models proposed by Tomiyama et al. [31] 

and Ziegenhein et al. [35] do not differ strongly for bubble horizontal diameters between 4 

and 8 mm. On the other hand, discrepancies more than 50% are found for smaller bubbles 

(     mm), which can impact significantly on further bubble dispersion and local size 

distribution. 

The wall lubrication force coefficient was estimated with the model proposed by 

Hosokawa et al. [39], which is dependent on Reynolds and Eötvös numbers, as follows: 

        ,
 

   
             - (2-40) 
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The Basset coefficient was calculated using the model from Michaelides and Roig 

[43], which is dependent on the Reynolds and Strouhal dimensionless numbers, as follows: 
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in which    is the integral time scale of SGS turbulence. The integral part from the Basset 

force was solved with the method from van Hinsberg et al. [42]. This method separates the 

integral in two parts. The first one is the time-window term       , in which the properties 

necessary to calculate the force, such as    ,   ,    and    are stored in a finite list (history) 

with arbitrary N-size and a time-resolution from    . The second one is the called “tail” 

       , which represents the remaining part from the integral, as follows:  
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         ∫   (   ) ( )  
 

      

 

          ∫      (   ) ( )  
      

  

 

(2-44) 

The Basset Kernels    and       will quantify the importance of each history term. As 

closer to the present time, higher will be its influence, as seen in the Figure 2-2. 

 

Figure 2-2: Illustration from the Basset kernel (solid line), window kernel (dots) and the 

modified Basset kernel (dashed line) for twin = 2. Source: Hinsberg et al. [42]. 
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The authors proposed a method to approximate these integrals in an effective way and 

with low computational efforts. The window term can be approximated with the following 

equation: 
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in which N represents the size of the stored list. In the cases presented in this work a list of 10 

were stored. On the other hand, the tail term is approximated by the authors with a finite sum 

as follows: 
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where m=10 [42] and   ( ) is split into two parts either, a directly and a recursively computed 

ones, as follows: 
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where: 
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         ̃  (2-51) 

 

More details about the derivation of the model and its parameters can be found in the 

reference [42] and will not be discussed here. 

The direct interaction of bubbles with the wall (collisions) was modelled with a 

correlation for the coefficient of restitution ϵ, based on the capillary number Ca and a 

modified Stokes number St* [60], as follows: 
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In order to save computational time without losing temporal resolution, the 

Lagrangian time-step was not assumed as fixed. A first-order Euler integration of equations 

for bubbles position and velocities was used with a time step independently adjusted for each 

tracked bubble. This time step was dynamically adapted with respect to the relevant time-

scales, such as from the drag response-time   , the SGS turbulence time-scale   , and the 

bubble oscillation period     , this one according to Lunde and Perkins [45]. This means that 

a new value is calculated for every Lagrangian time-step choosing the minimum of these 

time-scales and making it one order of magnitude lower, as seen in the Eq. (2-54):  
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2.3 SGS Dispersion Model 

The sub-grid-scale (SGS) fluctuation of the fluid velocity seen by the bubbles was 

modelled through a single-step Langevin equation [19]. The model makes use of a single-step 

Langevin equation [20], dependent on Lagrangian and Eulerian correlation functions adapted 

for LES applications, as follows: 
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in which the superscripts denote the time step and the subscripts the spatial component. ΔtL is 

the aforementioned Lagrangian time step and Δr is the spatial separation between the fluid 

element and the bubble during the time ΔtL. The SGS turbulence may be considered to be 

isotropic so that    represents the rms value of the fluid velocity fluctuation and    denote 

independent Wiener processes with zero mean and unit variance. The correlation functions 

    (      ) have Lagrangian and Eulerian components, as follows: 
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where  (  ) and g(  ) are the longitudinal and transverse two-point correlation functions 

[61] and     the Kronecker Delta. The required integral time    and the turbulent length scale 

of the SGS turbulence    were estimated with the turbulent kinetic energy and the dissipation 

rate, making use of approximations introduced by Lilly [62]: 
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in which the dissipation constant was selected as        [63] and the SGS length scale is 

  (   )
 

 ⁄  based on the volume of the local computational cell. 

2.4 Solution algorithm 

The numerical solution of the equations described above naturally need to be 

performed for both continuous and dispersed phases. The two-way coupling between them is 

given by the correspondent source terms, which can be momentum, SGS turbulence, chemical 

species or other appropriate variables. Once the relevant time-scales from the continuous 

(Eulerian) phase are usually much larger than the dispersed (Lagrangian) phase, the temporal 

solution of each individual phase can be conducted in a semi-unsteady approach [64]. This 

implies that the Eulerian time-step     can be different than the Largrangian one    , 

applying the so-called coupling in key-times, so that a substantial computational effort can be 

spared. In this framework, the solution algorithm is divided in two parts or phases, as 

illustrated in the Figure 2-3. The first part consists of the Eulerian phase, by solving the 

governing equations for one time-step. This resulting flow information is “frozen” and used 

for the Lagrangian phase tracking. In the second part, all the present bubbles advance in time 

individually until they reach the Eulerian time. At this point, the resulting source terms from 

the dispersed phase are transferred back to the Eulerian phase, so that the solution loop starts 

again and the simulation continues, as seen in the Figure 2-3. 

 

Figure 2-3: Schematic illustration from the two-way coupling algorithm. 

The used pressure-velocity coupling method in the Eulerian inner loop was the 

PIMPLE [65], which is a combination from the well-known PISO and the 

SIMPLE/SIMPLEC algorithms. One advantage in using this method is to achieve a more 

stable solution in larger time-steps, when compared to PISO. In the cases presented is this 

work, three iterations of inner loops (PISO part) with non-orthogonal correction for each 

momentum prediction (SIMPLE part) were performed. The volume fraction equation (Eq. 
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(2-2)) was solved in three sub-cycles for each Eulerian time-step, in order to get a stable 

solution. The absolute tolerance for numerical convergence was set as 10
-7

 and achieved 

around nine PIMPLE outer loops. 

2.5 Oscillation Model 

As concluded by Sommerfeld et al. [52], even with the consideration of SGS turbulent 

dispersion and bubble-induced turbulence is not possible to capture the oscillatory motion of 

bubbles with the point-particle Euler/Lagrange approach. In order to do so, an additional 

model which mimics bubble oscillations is required. This model extends the classical 

Lagrangian tracking approach for bubbles in a liquid, considering additional properties for 

bubbles, such as eccentricity and motion angle, and predicting them stochastically over time, 

yet based on experimental observations and statistical results. The objective here is not to 

resolve asymmetric shape deformations from bubble or liquid flow around the bubbles 

boundaries for capturing their oscillatory motion, but to mimic somehow the outcomes from 

these asymmetries through simple models designed for that purpose, avoiding high 

computational efforts. In this framework, a Langevin model is also used describing the 

development of the instantaneous bubble eccentricity through a combination of a correlated 

and a random part: 
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where  ̅ and    are the mean bubble eccentricity and its correspondent RMS value, 

respectively, which require empirical correlations. In this study  ̅ and    were estimated in 

dependence of bubble size from measurements in a bubble column and a loop reactor [56], 

through the following fitting functions: 
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There are many correlations in the Literature for the mean eccentricity (see 

Sommerfeld and Bröder [56], but for the best of the authors knowledge, the correlation for 

standard deviation (Eq. (2-68)) is so far the only one. This equation was validated for mobile 

bubbles in flow with volume fraction up to 1.5%. 

The bubbles were considered to be always oblate. Thus, for mathematical 

consistencies and model stability, an under limit function was applied to the eccentricity, 

making sure that the final value will be always greater than the unity, as follows:  
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  |   |
       
       

 (2-68) 

Furthermore, a stochastic deviation of bubble from its path is also considered, similar 

to the eccentricity, in order to mimic the bubble dynamic motion. The deviation angle   is 

then applied to the instantaneous bubble velocity, as presented in the Figure 2-4 at the 

beginning of each tracking time step. 

 

Figure 2-4: Schematic illustration of parameters and angles used for the bubble dynamics 

model. 
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Since the bubble moves in a three-dimensional way, the bubble motion angle is 

modified for each of the two horizontal Cartesian coordinates with respect to the vertical one, 

as follows:  
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  (2-69) 
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where    is a correlation factor. In this manner, the bubble oscillatory motion would be purely 

random when     , or totally correlated in time when     . A full correlation in time 

(    ) may prescribe the bubble paths too much and constraint the response to the acting 

forces. A pure stochastic modification (    ), as proposed by Sommerfeld et al. [52], 

would overestimate bubble dispersion for long bubble residence times, though. In this 

framework, a successful balance between these two scenarios is achieved considering 

      . 

 





 

3 Results – Bubble motion 

The contents of this section is focused on the hydrodynamics of bubble columns. Here, 

the model validation was then performed step-by-step, starting from single bubbles 

trajectories as basic tests and going further to bubble swarms. In order to explore the range of 

applicability from the proposed CFD model, a comparison with experimental data from the 

literature is conducted in different scenarios, varying bubble size distribution and column 

geometry. 

3.1 Bubble Trajectories 

In the following, with the purpose to verify the need and applicability of the oscillation 

model discussed in the previous section of this work, some test cases will be shown with 

regard to bubble trajectories, velocities and oscillation parameters. 

3.1.1 Test Cases descriptions and setup 

The physical situation consists of a laboratory bubble column, based on experiments 

conducted by Sommerfeld and Bröder [56]. The cylinder is filled to 650 mm with water and 

has a diameter of 140 mm, as seen in the Figure 3-1. The gas is inflated into the column 

within 50 capillaries at 20 mm above the bottom in a volumetric flow rate of 160L/h. The 

resulting mean bubble diameter is 2.55 mm within a range from 0.5 mm up to 5.0 mm.  The 

numerical grid used for this domain consists of 23,040 control volumes in total, in which 

18,944 of them remain under the initial water level, as seen in the Figure 3-1. A set of 9 

individual bubble trajectories were tracked during 3s in the quasi-steady state from the 

resulting flow. In order to emphasize the relevance and the parameters of the oscillation 
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model proposed in this work, four simulation setups were evaluated, whose descriptions are 

given in the Table 3-1. In all these cases, all the relevant forces described before were 

considered as well a two-way coupling, SGS turbulent dispersion model and bubble-induced 

turbulence. 

 

Figure 3-1: Numerical grid used in the simulations. 23,040 volumes in total (18,944 for the 

liquid part), 256 volumes per cross section and 90 along the height. 

Table 3-1: Cases description for bubble trajectories tests. Qg=160 L/h 

 

All 

Forces 

2-way 

coupling 

TDM BIT 
   

[mm] 

  

  ̅̅̅̅
 

Oscillation 

Model 

Test 1 x x x x [2.0, 4.0] [0.24, 0.48]  

Test 2 x x x x [2.0, 4.0] [0.24, 0.48]     .0 

Test 3 x x x x [2.0, 4.0] [0.24, 0.48]        

Test 4 x x x x [2.0, 4.0] [0.24, 0.48]        

The 9 bubbles with equal diameters were tracked in the quasi-steady flow from the 

bottom until they escape the domain by “touching” the free surface (      ). The initial 

vertical bubble velocity was assumed to be 0.01 m/s without any random component. The 

lateral injection velocities were assumed to be zero. Since the bubbles physically start from 

rest at the needle outlet, the Basset force contribution was assumed to be zero upon injection. 

All boundaries were set as non-slip wall condition for the continuous phase and as rebound 
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for the bubbles (Eq. (2-52)), except the top boundary, which is open to the atmospheric 

pressure. The used Eulerian time-step was constant and equal to 5 ms. 

3.1.2 Results and discussion 

The resulting trajectories of each test are shown in the Figure 3-2. Note in the Test 1 

that, even with the consideration of all forces, present effects of SGS turbulent dispersion and 

bubble-induced turbulence, the bubbles trajectories are very smooth. However, it is known 

that such behaviour is not observed experimentally for this range of bubble size, e.g., works 

from Lunde and Perkins [45], Jeong and Park [40] and Sommerfeld et al. [52]. The inclusion 

of oscillation model (Tests 2, 3 and 4), in which a stochastic deviation of bubble motion is 

applied, produced a higher lateral dispersion, notably in the Test 2. However, these 

trajectories do not form a clear “zig-zag” or helical form, since the model is not based in 

sinusoidal functions. Nevertheless, such details are not of a great importance in a bubble 

swarm, and in essence, the input parameters for frequencies and amplitudes are supported by 

experimental data. 
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Figure 3-2: Nine bubble trajectories extracted from the Tests 1 to 4, tracked during 3s after 

500s of simulation; All forces, TDM and BIT models included; Qg=160 L/h, g,mean1.2%. 
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The resulting PDFs of bubble motion angle imposed by the oscillation model in Cases 

2-4 are compared with experimental data in the Figure 3-3a. Note that using any values of the 

correlation constant Kc, the same distribution of   is achieved. However, the average angle 

deviation      resulting from these same cases is correlated with the current motion angle    

in the Figure 3-3b. Note that the uncorrelated form of Eq. (2-69) (Kc=0.0) produce equal 

probabilities of a positive of negative deviation. On the other hand, the full correlated form 

(Kc=1.0) yield a mostly positive deviation when the current motion angle is negative and vice-

versa. Beside this fact, high deviations are predicted for motion angles higher than 45°, 

constraining the bubble trajectories too much. In this framework, a better choice is to use 

Kc=0.5, where the motion deviation remains correlated, but smoother values are achieved. 

 

Figure 3-3: a) Resulting PDF of motion angle from cases 2-4,     2mm.  

Experiments: Sommerfeld and Bröder [56],     0.5~5mm. 

b) Average angle deviation versus current motion angle from cases 2-4,     2mm. 

The effect of the correlation constant is also noticed by applying a Fast-Fourier-

Transform (FFT) in the temporal series from the resulting motion angle, as seen in the Figure 

3-4. Note when Kc=1.0 that although a stochastic prediction of motion deviation, a clear 

oscillation frequency around 13Hz is obtained, which agrees with values observed by Lunde 

and Perkins [45] for the vortex shedding. However, when the correlation constant is below the 

unity, the FFT does not produce anymore a distinct peak, and the values become more random 

as Kc approximates to null. The weak point on using Kc=1.0 is that the strong angle deviations 

are imposed by the model, as seen in the Figure 3-3b. In this manner, in all the following 

simulations from this work, the correlation constant was assumed Kc=0.5, in which a balance 

between correlation and lateral dispersion is achieved. 
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Figure 3-4: FFT of bubble motion angle from test cases 2-4.     2mm. 

Thin line: original FFT. Thick line: smoothed results. 
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3.2 Bubble Swarms – Study Case I 

After testing the model for single bubbles, the experimental results from Sommerfeld 

and Bröder [56] were taken as study case for bubble swarms. Their data offer a good 

opportunity for model validation, not only with regard to bubble and liquid averaged 

velocities but also to their Root Mean Square (RMS) values. Additionally, probability density 

functions (PDF) for bubble motion angle and eccentricity are also available, which fully 

supports the input parameters required in the oscillation model proposed in this work. In the 

following, the setup for the cases and description of geometry, numerical mesh and 

operational conditions will be shown. 

3.2.1 Cases descriptions and setup 

The physical situation consists in the circular bubble column (140mm) used in the 

single bubble cases (Figure 3-1). In their experiments, the same air flow rate (          ) 

was introduced in the system through two different sets of 50 needles, reaching different 

bubble size distributions (namely the cases “A2” and “B1” from the reference). These needles 

for the bubble injection extend for 20 mm above the column bottom and are distributed in an 

area equivalent to a circle with 100mm of diameter. The velocity profiles from the liquid and 

gas phases were measured in five cross-sections along the column height (75, 200, 325, 450 

and 575mm). As well as for the single bubbles, a set of cases with different model 

configurations were conducted, in order to assess step-by-step the effect and influence of each 

consideration. The case descriptions and the bubble size distribution are shown in the Table 

3-2 and in the Figure 3-10, respectively. 
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Table 3-2: Cases description for different simulations. Qg=160 L/h. 

 Ref. 

All 

Forces* 

Drag Lift 

2-way 

coupling 

TDM BIT OM 
  
̅̅̅̅  

[mm] 

  
̅̅̅̅

  ̅̅̅̅
 

      

  ̅̅̅̅
 

Case 1 A2 x D1 L1 x    2.55 0.31 0.54 

Case 2 A2 x D1 L1 x x   2.55 0.31 0.54 

Case 3 A2 x D1 L1 x x x  2.55 0.31 0.54 

Case 4 A2 x D1 L2 x x x  2.55 0.31 0.54 

Case 5 A2 x D2 L1 x x x x 2.55 0.31 0.54 

Case 6 A2 x D2 L2 x x x x 2.55 0.31 0.54 

Case 7 A2 no 

Basset 

D2 L2 x x x x 2.55 0.31 0.54 

Case 8 B1 x D1 L2 x x x  3.31 0.40 0.60 

Case 9 B1 x D2 L2 x x x x 3.31 0.40 0.60 

       – Eq. (2-15);          – Eq. (2-21);       Eq. (2-31) ;       Eq. (2-39) 

  *Drag, lift, added mass, fluid inertia, wall, Basset, gravity and buoyancy. 

 

Figure 3-5: Bubble size distribution from reference cases A2 and B1. 

Source: adapted from Sommerfeld and Bröder [56]. 

Note that, in all cases, the resulting ratio between the mean bubble diameter and 

element length is below the limit proposed by Milleli [66] (    ⁄      ) for LES-

Euler/Lagrange calculations. All boundaries were set as non-slip wall condition for the 

continuous phase and as rebound for the bubbles (Eq. (2-52)), except the top boundary, which 
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is open to the atmospheric pressure. The bubbles escape the domain when they touch the free 

surface at g=0.5. The Eulerian time-step was constant and equal to      5 ms. The air flow 

rate for reference cases A2 and B1 is the same, however, the different size distributions result 

in bubble injection frequencies of 4,352 and 2,180 bubbles per second, respectively. 

 Statistics Sampling 

Since the comparison with the experimental data is made in terms of average and 

RMS values, a proper statistics procedure should be executed. First of all, the simulation is 

conducted for a while for flow stabilization, inasmuch as a pseudo-steady state is achieved. 

After that, statistics is numerically acquired until the average value reaches a stagnant value. 

Since the liquid is a continuum phase, a simple time-averaging can be performed in the proper 

frequency of calculations (                 Hz). For the dispersed/discrete phase, on the 

other hand, the bubble properties need to be mapped and imported to the cell level. Once the 

number of available samples per cell per time-step is not constant in this case, the averaged 

values derive from the total number of accumulated samples in each individual cell during the 

whole time of simulation, e.g.,     ̅̅ ̅̅ ̅̅  ∑       , where m represents the local mesh cell 

and    the number of samples in the cell m. In this case, slower bubbles have a larger 

residence time, producing more samples in a certain evaluation time than the faster ones. In 

order to avoid this issue of sampling bias or self-correlated data, the time-interval between 

two samples should be large enough, guaranteeing that a bubble is not counted twice in a 

same mesh cell. In this manner, the acquisition frequency was arbitrary chosen as        

             Hz.  

For a first analysis, the integral volume fraction of bubbles (gas hold-up) over time is 

showed in the Figure 3-6. Note that close to 17s of simulation, the flow seems to reach a 

quasi-steady state, in which the statistics sampling could be apparently started. 

 

Figure 3-6: Example of integral volume fraction of bubbles over time. 

Case 5 (full model – L1), Qg=160 L/h,   
̅̅ ̅       mm. 
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Nevertheless, local variables, such as instantaneous fluid vertical and horizontal 

velocities, were also sampled over time and in different heights on the central axis of the 

column, as seen in the Figure 3-7a and c. Moreover, the evolution of the average values based 

on these same data is exposed in the Figure 3-7b and d. 

 
 

Figure 3-7: Liquid velocities along time in different heights from the bubble column: 

a) instantaneous in vertical direction; b) evolution of mean value (vertical); 

c) instantaneous in horizontal direction; d) evolution of mean value (horizontal). 

Case 5 (full model – L1), Qg=160 L/h,   
̅̅ ̅       mm. 
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Note in the Figure 3-7c that the horizontal liquid velocity for the axial position 200mm 

reaches a quasi-steady state at 20s, similar to the total gas hold-up. However, the flow at a 

higher position (450mm) in this time is still in development. Based on these results it can be 

assumed, that a stable flow is reached for sure at 60s of simulation and after this time, the 

statistics is reset. Note in the Figure 3-7b and d, that at the beginning of the statistics 

sampling, the average values strongly change due to the low number of samples. As larger 

evaluation times are reached, these averages tend to an almost constant value, since enough 

samples are available. For the axial position and vertical direction (Figure 3-7b), the average 

velocities are expected to be positive (core flow). For the horizontal direction (Figure 3-7d), 

on the other hand, the average velocities tend to a null value (symmetry). 

For a better visualization of this matter, instantaneous colour fields in terms of vertical 

and horizontal velocities are shown in the Figure 3-8. Note that a core flow originated from 

the bubble plume remains stable until 15s. After this point, asymmetries close to the aerator 

start to grow and large flow structures move from the bottom to the top of the column. 

Moreover, changes in the lateral velocity magnitude (Figure 3-8b) in the upper part of the 

column are remarkable up to 40s. This denotes that following only the gas hold-up is not 

trustworthy and local variables should be also highlighted. The thin white line over the core 

flow represent the free surface, where       , thus, the domain above this line is the 

continuous gas phase and has initially a height of 650mm. 

Finally, the statistics sampling is restarted at 60s of simulation, being sure that a 

pseudo-steady state has been reached. Afterwards, the averaged values seem to change until 

reach an almost constant value around 400s, as seen in the Figure 3-7. From this time up to 

600s, the averaged values still present small oscillations, yet not of great importance 

( (    )). Since a very similar behaviour was observed in all the other cases, a standard 

procedure was conducted by sampling statistics from 60 to 500 seconds of simulation. The 

numerical solution for each case was made in parallel (8 cores – 3.0 GHz) and completed in 

less than two days. 



38  3. Results – Bubble motion 

 

 

Figure 3-8: Colour fields of instantaneous continuous phase velocity:  

a) vertical; b) horizontal. Case 5 (full model – L1), Qg=160 L/h,   
̅̅ ̅       mm. 

3.2.2 Results and discussion 

As already mentioned, a set of numerical cases for bubble swarms was conducted with 

different model configurations. To present all this gathered data would be tedious, insomuch 

as some models do not affect the results significantly. Thus, only the relevant outcomes will 

be highlighted in the following. 
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The Cases 2 and 3 account, additionally to the case 1, for turbulent dispersion and 

bubble-induced turbulence on the sub-grid scale, respectively. The resulting bubble and liquid 

velocity profiles from Cases 1 and 3 are shown in the Figure 3-9. Here, average and RMS 

values of velocity in the vertical and horizontal directions are compared with experimental 

data [56]. As seen in the Figure 3-9a, the bubble rise velocity is underestimated for both the 

cases. Another fact is that the bubble velocity fluctuations in the horizontal direction are 

experimentally higher than in the vertical one, which was not captured by the model. 

Moreover, the modelling improvement through consideration of TDM and BIT models (Case 

3) did not reflect a significant change in the bubble velocities profiles.  

With regard to the liquid phase (Figure 3-9b), on the other hand, a considerable 

reduction of the velocity RMS values on the resolved scale from Case 1 to Case 3 is observed. 

This effect may be the outcome from this BIT modelling for the LES method [19,15] used 

here, in which the influence of bubbles is simply modelled through the enhancement of 

effective viscosity. Since the numerical grid is larger than the bubble size, and if this BIT 

model acts only by increasing the SGS viscosity, an enhancement of liquid velocity 

fluctuations on the resolved scales would never be achieved. As a consequence, the diffusion 

term of the momentum equation is higher and fluctuations in the resolved scales are 

smoothened.  

The resulting PDFs of fluctuating liquid velocity seen by the bubble (TDM) and the 

SGS integral time are shown in the Figure 3-10. The Case 2, in which only the TDM is 

considered, predicts isotropic liquid fluctuations up to 0.05m/s and a mean turbulence integral 

time of 139ms. However, the influence of bubble motion on the SGS turbulence (Case 3) 

reveals a different scenario, in which the velocity fluctuations spread to magnitudes around 

0.07 m/s (40% increment), indeed. Moreover, a reduction from the mean integral time to the 

half is observed, as expected from Eq. (2-62). Although the mean value for    in this case is 

69 ms, local values are found down to 10 ms. Such small values are taken into account in the 

bubble tracking, which can limit the size of the Lagrangian time-step (Eq. (2-54)) in relation 

to the Eulerian time-step (in this case,      5ms). 
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Figure 3-9: Comparison of averaged velocities and RMS values of fluctuations (resolved 

scale) with experimental data [56]: a) Bubbles, b) Liquid, Qg=160 L/h,   
̅̅ ̅       mm. 

Case 1: All forces(D1,L1), no TDM, no BIT, Case 3: All forces(D1,L1) + TDM + BIT. 

 

Figure 3-10: Comparison of resulting PDFs for the cases, regard to the SGS integral time and 

fluid fluctuating velocities seen by the bubble.               and        . Qg=160 L/h, 

  
̅̅ ̅       mm. Case 2: All forces(D1,L1) + TDM, Case 3: All forces(D1,L1) + TDM + BIT. 

A preliminary summary of the cases with respect to fluctuating energies of continuous 

is presented in the Figure 3-11. Here, area-averaged values of fluctuating energy     in 

different cross-sections of the column were obtained, based in the assumption that the 

horizontal components of the fluctuating velocity are equal, as described by Sommerfeld and 

Bröder [11]: 
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where   
  and   

  are the RMS values of liquid velocity fluctuations in the horizontal and 

vertical directions, respectively.    is the annular area by rotating the measurement points 180 

degrees around the central column axis.    and    are the inner and outer radii of the annular 

area, respectively. 

 

Figure 3-11: Fluctuating energies of the liquid phase: 

a) Resolved scale; b) Resolved + Sub-grid scale. 

Experiments: Sommerfeld & Bröder [56]. Case 1: All forces(D1,L1),  

Case 2: All forces(D1,L1) + TDM, Case 3: All forces(D1,L1) + TDM + BIT. 

As seen in the Figure 3-11a, the consideration of TDM in the Case 2 revealed a 

reduction of liquid velocity fluctuations. This effect is exclusively caused by the momentum 

coupling between the phases, in which higher bubble dispersion is expected in the Case 2 

compared to the Case 1. The inclusion of BIT (Case 3) reflects a further reduction of 

fluctuations in the resolved scales. However, the turbulence coupling through enhancement of 

SGS viscosity gives the aforementioned counterbalance, in which the total fluctuating energy 

(resolved and unresolved scales) from Cases 2 and 3 are equivalent, as seen in the Figure 

3-11b. 

Unfortunately, even considering all relevant forces (inclusive Basset), SGS turbulent 

dispersion and bubble-induced turbulence, was not possible to capture the lateral velocity 
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fluctuations using “point-mass” approximation. In order to do so, an additional model which 

mimics bubble oscillations was required. According to the Table 3-2, this model setup 

corresponds to the Case 5 and the results obtained for this case are shown in the Figure 3-12.  

 

Figure 3-12: Comparison of averaged velocities and RMS values of fluctuations (resolved 

scale) with experimental data [56]: a) Bubbles; b) Liquid, Qg=160 L/h,   
̅̅ ̅       mm, 

Case 3: No oscillation (D1,L1), Case 5: With oscillation (D2,L1). 

Expectedly, the inclusion of bubble dynamics yielded a significant impact on the 

results. First, a reduction of the average bubble rise velocity is noticed. Additionally, since the 

oscillation model promotes bubble lateral dispersion, as seen before for the cases with single 

bubbles, the velocity fluctuations in the horizontal direction are now greater than in the 

vertical one. Consequently, the velocity peaks at the vicinity of the wall almost disappear, 

inasmuch as the bubbles neither rise straight nor accumulate in this region anymore. Such 

differences in the results are in agreement with the experimental observations, as seen in the 

Figure 3-12a. 

Once the average bubble rise velocity was decreased, the gas volume fraction is 

naturally increased due to longer residence times. Subsequently, as seen in the Figure 3-12b, a 

more intense upflow for the liquid phase in the core region is evidenced, as well as a stronger 

downflow at the wall. Although higher magnitudes of average liquid velocity were revealed in 

the Case 5 (Figure 3-12b), lower RMS values of velocity fluctuations in the resolved scales 

were found. The reason for this may be a better distribution of bubbles in the domain due to 
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the oscillation model. In order to expose this behaviour, instantaneous images with regard to 

the discrete phase from Cases 3 and 5 are shown in the Figure 3-13. 

 

Figure 3-13: Numerical visualization of the discrete phase and vertical velocity of continuous 

phase for: a) Case 3, b) Case 5,    500s, Axial position: 400mm,  

Qg=160 L/h,   
̅̅ ̅       mm, 

Case 3: No oscillation (D1,L1), Case 5: With oscillation (D2,L1). 

Note in the Figure 3-13a (Case 3) that the bubbles are not evenly distributed in the 

column, in which a dense swarm is concentrated in a narrow core region, marked in the figure 

between dashed lines. This condition is reflected in the instantaneous liquid velocity, where a 

similar pattern is found (red-yellow colours). In the Case 5, on the other hand, the bubble 

plume is clearly wider and the core flow is apparently more stable. After all, this stability 

results in lower RMS values of liquid velocity fluctuations. 
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Despite use of “point-particles” approximation in the calculations, the numerical 

visualization in the Figure 3-13 was possible, since the bubbles properties are stored 

individually, e.g., diameter, position, eccentricity, motion angle. Once the drag model used in 

the Case 5 depends on the instantaneous bubble eccentricity (Eq. (2-21)), differently than 

from Case 3, where only the equivalent bubble diameter is considered (Eq. (2-15)), a distinct 

scatter for the drag coefficient is naturally expected. This data are shown in the Figure 3-14, 

as follows: 

 

Figure 3-14: Resulting drag coefficients from Cases 3 and 5 versus:  

a) Reynolds number, b) Eötvös number,  Qg=160 L/h,   
̅̅ ̅       mm. 

Case 3: No oscillation (D1,L1), Case 5: With oscillation (D2,L1). 

In order to produce the graphs in the Figure 3-14, some hundreds of bubble samples 

were taken from various stored times of simulation. Subsequently, the drag coefficients were 

plotted versus the correspondent Reynolds and Eötvös numbers. As seen in the Figure 3-14b, 

the majority of bubbles from the present cases lie in the coefficient range dominated by the 

Eötvös number. As consequence, the resultants drag coefficients from Case 3 follow strictly 

the correlation proposed by Tomiyama et al. [24], since no bubble dynamics is considered 

(D1). As aforementioned, the information of an expected bubble eccentricity is already 

implicit in the fitted correlation, which predicts successfully average values of drag 

coefficients based in a large amount of experimental data. The second drag approach (D2), 

used in the Case 5, on the other hand, proposes deviations around the average value making 

use of the modified Eötvös number, dependent on the major bubble axis. After all, the 

proposed modification “D2” does not predict a different mean value, as seen in the Figure 
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3-14b, yet improves the determination of the drag coefficient according the instantaneous 

bubble eccentricity. 

The computation of bubble eccentricity is performed in this work stochastically. 

However, the use of a proper correlation for its mean value and standard deviation is essential. 

For purpose of model validation with this study case [56], there is no better way than 

comparing the resulting numerical data with the experimental one, which was used to produce 

the correlation (Eqs. (2-66) and (2-67)). In this framework, the resulting PDF of eccentricity 

obtained from Case 5 is compared with experiments in the Figure 3-15. Here, only bubbles 

with equivalent diameter of 2.5 mm (0.1) were sampled from the whole data of Case 5. 

 

Figure 3-15: Comparison of numerical and experimental [56] PDF of bubble eccentricity, 

Qg=160 L/h,   
̅̅ ̅       mm, Case 5: With oscillation model (D2,L1). 

Note that, although the input parameters for mean and RMS values come from the 

experimental observations, the resulting PDF of bubble eccentricity can slightly deviate from 

the measurements. Inasmuch as the Langevin equation will produce a normal distribution, and 

the experiments do not show this exact behaviour, as seen in the Figure 3-15, such differences 

are justifiable. Moreover, the light peak existent at       is derivate from the limit imposed 

in the model (Eq. (2-68)), in order to avoid inconsistencies (     ). In consideration of the 

desired model simplicity, the produced values of bubble eccentricity are satisfactory and 

sufficient for the purpose of the present work. 

Following the old eccentricity correlation suggested by Wellek et al. [67], Ziegenhein 

et al. [35,68] proposed recently new fitting parameters for clean bubbles in the wobbling 

regime in air-water systems. Once the flow conditions of the present study case [56] fit inside 

the range of application from their correlation, a fair comparison is shown in the Figure 3-16. 
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Figure 3-16: Comparison of resulting bubble major axis with experimental data [35,68], 

Qg=160 L/h,   
̅̅ ̅       mm, Case 5: With oscillation model (D2,L1). 

The bubble major axis from Case 5 was obtained from Eq. (2-64), in which the data 

from Sommerfeld and Bröeder [56] was used as input parameters. As seen in the Figure 3-16, 

such results are in good agreement with other data present in the literature, where the same 

system (air-water) was evaluated. 

As aforementioned, the bubble eccentricity plays a role not only in the drag force, but 

also in the other forces, mainly in added mass and transversal lift. While the prediction of 

added mass coefficient is already well established in the literature, the transversal lift present 

complex dependencies with fluid properties, bubble size and shape. Until end of last year, the 

lift coefficient for bubbles in low-viscosity systems, e.g. air-water, was not fully clear, and 

only numerical predictions have been done hitherto. Ziegenhein et al. [35] provided then 

experimental data in these flow conditions, which supported directly the development of the 

present CFD model. In this framework, the results obtained using the recent lift data (“L2”) 

will be shown in the following. According to the Table 3-2, this model setup corresponds to 

the Case 6 and the results obtained for this case are shown in the Figure 3-17. 

Note in the Figure 3-17a and b that the predicted lift coefficient using the approach 

“L1” was almost constant and equal to 0.288 for the whole bubble size spectrum, resulting in 

a narrow PDF. When the second lift approach is considered (“L2”), not only the mean value 

for    is evidently increased, shifting the PDF to the right-hand side of Figure 3-17b, but also 

a direct dependency with bubble eccentricity/major axis is revealed, where the scatter in the 

Figure 3-17a disperses away from the mean correlation line “L2”.  
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Figure 3-17: a) Comparison of resulting lift coefficients CL from Cases 5 and 6 with the 

correlations [31,34], b) resulting PDFs for CL, Qg=160 L/h,   
̅̅ ̅       mm,  

Case 5: With oscillation model (D2,L1), Case 6: With oscillation model (D2,L2). 

In order to evaluate the impact on the velocity profiles and bubble dispersion, the 

results from Case 5 and 6 are compared in the Figure 3-18. Here, the profiles regarding the 

averaged bubble vertical velocity and volume fraction are exposed for two cross-sections in 

the bubble column, namely at 325mm and 450mm above the aerator. As noticed in the Figure 

3-18a and c, either considering the bubble dynamics model or not, both lift models yield 

practically the same bubble rise velocities. However, once the strongest contribution of the lift 

force in bubbly flows lies on the horizontal direction, a significant effect appears in terms of 

bubble volume fraction, as seen in the Figure 3-18b and d. The lift model proposed by 

Tomiyama et al. [31], which was used in the cases Case 3 and 5, may underestimate the 

resistance coefficient for small bubbles (     mm), indeed, as seen in the Figure 3-18a. 

When the second approach for the lift model is considered (Cases 4 and 6), an enhancement 

of bubble dispersion towards the wall is observed. Such differences come into sight around 

325mm of column height and become stronger at longer residence times, as seen in the Figure 

3-18d. Unfortunately, no local measurements of bubble volume fraction was provided by 

Sommerfeld and Bröder [56], which would be a potential validation data. 
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Figure 3-18: Comparison of bubble average profiles: a,c) vertical velocity; b,d) volume 

fraction. Experimental data: Sommerfeld and Bröeder [56], Qg=160 L/h,   
̅̅̅̅ =2.55 mm, 

Case 3: No oscillation model (D1,L1), Case 4: No oscillation model (D1,L2), 

Case 5: With oscillation model (D2,L1), Case 6: With oscillation model (D2,L2). 

The interesting part is, at only 450mm above the aerator the relative difference 

between the cases reaches almost 5%, as seen in the Figure 3-19. This denotes a long term 

effect of lateral forces on bubble motion, which should not be ignored. Further discussion 

about the lift approaches in term of force magnitude will be shown later in the subsection 3.3 

of this work. 
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Figure 3-19: Normalized difference of bubble volume fraction between Cases 5 and 6 using 

different lift models in various axial positions; Qg=160 L/h,   
̅̅̅̅ =2.55 mm, 

Case 5: With oscillation model (D2,L1), Case 6: With oscillation model (D2,L2). 

In order to lay out the influence of the Basset force on the present results, a simulation 

in which the history term is neglected (Case 7) was performed. The bubble volume fraction 

profiles from the Cases 6 and 7 were compared for three cross-sections along the column 

height, as seen in the Figure 3-20.  

 

Figure 3-20: Comparison of Cases 6 and 7: a) influence of Basset force on bubble volume 

fraction; b) relative difference of bubble volume fraction; Qg=160 L/h,   
̅̅̅̅ =2.55 mm, with 

oscillation model; Case 6: D2,L2,with Bassset; Case 7: D2,L2,no Basset. 

Note in the Figure 3-20a, that this force promotes slightly lateral dispersion of 

bubbles. Close to the aerator (75 mm) the effect is not remarkable and the results from case 6 
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and 8 are practically the same. However, 250 mm above, the difference is somewhat notable 

and grows with the ascension distance. In half a meter over the first cross-section, the relative 

error increases up to 3.5%. This only reinforces the importance to consider the Basset force. 

With respect to the bubble average vertical velocities, no significant change is found 

between Cases 6 and 7, though, as seen in the Figure 3-21. From an interesting point of view, 

this force acts as a resistance to the bubble oscillation imposed by model, decreasing the 

resulting RMS values of velocity fluctuation on all directions, as seen in the Figure 3-21a. 

Even though, against our intuition, the Basset force supports somehow the bubble overall 

lateral dispersion. This curious behaviour will be further investigated in the section 3.4. 

Moreover, a slightly reduction of liquid vertical velocity is noticed in the Figure 3-21b. Since 

the bubbles are more distributed in the domain, the core and down flows are smoothened and 

lower velocity gradients are revealed. 

 

Figure 3-21: Comparison of averaged velocities and RMS values from Cases 6 and 7 with 

experimental data [56]: a) Bubbles; b) Liquid; 

Qg=160 L/h,   
̅̅̅̅ =2.55 mm, with oscillation model;  

Case 6: D2,L2,with Bassset; Case 7: D2,L2,no Basset. 

A summary of the cases with respect to fluctuating energies of continuous and 

dispersed phases is presented in the Figure 3-22. In order to avoid showing excessive data, 

only the results from cases 4, 6 and 7 are exposed here, in which the second approach for the 

lift force (“L2”) was used. 
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Figure 3-22: Averaged fluctuating energies of: a) bubbles; b) liquid. 

Experiments by: Sommerfeld & Bröeder [56];           ,                ; 

Case 4: no oscillation, D1,L2,with Bassset;  

Case 6: with oscillation,D2,L2,with Bassset; Case 7: with oscillation,D2,L2,no Basset. 

Note in the Figure 3-22a that when bubble dynamics are neglected (Case 4), the 

averaged fluctuating energy of bubbles is clearly underestimated in almost one order of 

magnitude. Additionally, the decay of energy with the column height in this case is steeper 

than observed experimentally. The inclusion of bubble dynamics in the Cases 6 and 7 implies 

a better agreement with experiments not only qualitatively but also quantitatively. 

Nevertheless, the resulting bubble fluctuations are still not equivalent to the measurements. 

Furthermore, the fact of the Basset force to smooth bubble fluctuations imposed by the 

oscillation model is here reinforced, as seen in the Figure 3-22a. Although better results (in 

this case) are achieved neglecting this force, it would be a non-sense not to consider it. 

The fluctuating energies with regard to the liquid phase in the Figure 3-22b 

comprehend both the resolved and unresolved scales. Here, the opposite scenario is found, in 

which the numerical results reveal higher fluctuations than the experiments. In the Case 4, as 

aforementioned, the bubble rise almost straight and the distribution in the domain may be 

underestimated. Additionally, the overestimation of bubble velocity produce higher liquid 

velocity gradients between core and down flows than expected in the Case 6, as shown in the 

Figure 3-13, and consequently stronger fluctuations. The discrepancy is more notable in the 

lower cross-sections than in the column top, as seen in the Figure 3-22b. In order to expose 

this behaviour, a numerical visualization at the bubble inlet is shown in the Figure 3-23. Once 

the bubble injection is made in fixed positions accordingly to the experiments (see Figure 

3-1), clear line streams of bubbles are notable in the Case 4 even after a height of 75 mm. The 

vicinity of the wall in there is still free of bubbles, thus, there is no resistance to the liquid 
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downstream and no turbulent diffusion induced by bubbles. As consequence, the RMS values 

of liquid velocity fluctuations from Case 4 are greater than from Cases 6 and 7, where bubble 

dynamics is included. In these last two cases, the imposed bubble lateral dispersion by the 

oscillation model implies a more stable and homogeneous liquid flow, as seen in the Figure 

3-23b and d, as follows: 

 

Figure 3-23: Numerical visualization of the discrete phase and RMS of vertical velocity 

fluctuations from the continuous phase for: a and c) Case 4; b and d) Case 6.    500s. Axial 

position: bottom;           ,                ; 

Case 4: no oscillation, D1,L2; Case 6: with oscillation,D2,L2. 

 



3.2. Bubble Swarms – Study Case I  53 

 

Furthermore, these very results were evaluated in terms of anisotropy, in which the 

fluctuating energy ratio        between the horizontal and vertical directions is calculated as 

follows: 
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where   is the RMS values of bubble fluctuating velocity in the correspondent direction. The 

resulting ratios are shown in the Figure 3-24a in terms of absolute value. 

As expected from the profiles of velocity fluctuations provided by Sommerfeld and 

Bröeder [56], the anisotropy is clearly greater than the unity (         ). As seen in the 

Figure 3-24a, the ratio grows with the column height, inasmuch as the bubble injection 

induces substantial recirculation of liquid in that region. At higher cross-sections, the bubbles 

are more dispersed in the domain, and consequently, the vertical fluctuations decrease while 

the horizontal ones remain almost the same. This behaviour was not attended by the model 

setup in Case 4, in which the resulting ratio is far below the unity. The Cases 6 and 7, on the 

other hand, reveal a better qualitative agreement with experimental data, although the 

anisotropy was overestimated in both cases. The cause for such discrepancy lies on the 

vicinity of the wall, namely for wall distances less than 20mm. The experimental observations 

presume a slightly increase of fluctuations in the vertical direction, not predicted in the 

simulations. This error is accentuated when the averaged is based on the correspondent ring-

area. Nevertheless, a merely qualitative comparison is shown in the Figure 3-24b, by 

subtracting the initial ratio    (           ) from the same results. Note that the 

consideration of Basset force yields a better increase of anisotropy along the column. 
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Figure 3-24: Averaged fluctuating energy anisotropy: a) Absolute value; b) Normalized 

anisotropy. Experiments by: Sommerfeld & Bröeder [56]; 

          ,                ; Case 4: no oscillation, D1,L2,with Bassset;  

Case 6: with oscillation,D2,L2,with Bassset; Case 7: with oscillation,D2,L2,no Basset. 

Assuming from the results evaluated so far that the model setup from Case 6 is the 

best choice within the proposals of this work (see Table 3-2) and flow conditions of this study 

case, a simulation was conducted for the reference case “B1” (Sommerfeld and Bröeder [56]), 

where a different bubble size distribution is investigated. Unfortunately in the experiments, 

the increment on bubble size deteriorated somehow the data acquisition for the liquid phase, 

and no fair comparison with experimental results was possible. Nevertheless, the same 

evaluation as before regarding the bubble velocities is realized and shown in the Figure 3-25. 

Note that the consideration of bubble dynamics on the model (Case 9 – solid lines) improves 

significantly the results when compared to Case 8 (without bubble dynamics – dashed lines), 

not only for the average vertical velocity but also the fluctuations. Contrastively to the 

previous reference case (“A2”, see Figure 3-21), the resulting bubble rise velocity is here 

slightly overestimated. Nevertheless, an overall agreement is achieved in both Cases 6 and 8. 
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Figure 3-25: Comparison of numerical bubble averaged velocities and RMS values with 

experimental data [56] in axial positions: a) 200mm; b) 450mm; 

          ,                ; 

Case 8: no oscillation,D1,L2; Case 9: with oscillation,D2,L2. 

Moreover, a reduction of bubble fluctuating energy from the reference case “A2” to 

“B1” was experimentally observed [56]. This evidence was attained by the model, as seen in 

the Figure 3-26, once the oscillations depend directly on bubble size (Eq. (2-56)). In this 

framework, a qualitative agreement with experimental was achieved only when bubble 

dynamics are considered. 

 

Figure 3-26: Summary of averaged fluctuating energies of bubbles. 

Experiments by: Sommerfeld & Bröeder [56].           . 
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Although only an increase of 30% of mean bubble diameter is noticed from the 

reference cases “A2” to “B1”, the same gas flow-rate (          ) is represented by 

around the half number of bubbles. A numerical visualization of this matter is exposed in the 

Figure 3-27 for the axial position 325mm. The interesting part is that different flow conditions 

are expected between the cases, inasmuch as all the forces depend on the bubble size. 

 

Figure 3-27: Numerical visualization of the discrete phase and vertical velocity of continuous 

phase for: a) Case 6; b) Case 9.    500s.           . Axial position: 325mm.  

Case 6: with oscillation,D2,L2,                ;  

Case 9: with oscillation,D2,L2,                . 

Within the scope of forces acting on bubbles, the resulting drag and lift coefficients 

from Cases 6 and 9 are shown in the Figure 3-28. While the drag coefficient increases with 

bubble size (in this range), the opposite behaviour occurs for the lift force. This increase of 
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drag coefficient alone does not mean directly, of course, that a greater bubble will experience 

a lower rise velocity, since all other acting forces change, either. The buoyancy, for example, 

has a cubic dependency with bubble diameter (    
 
), while drag has a quadratic one 

    
 
. Nevertheless, in a bubble swarm, the local flow circumstances perceived by each 

bubble are naturally different than those for isolated bubbles in a quiescent liquid. In order to 

illustrate this matter, the resulting residence times from many bubble samples along the whole 

column were classified by size and shown in the Figure 3-29. 

 

Figure 3-28: Resulting coefficients from Cases 6 and 9 for:  

a) drag force; b) lift force.           ; 

Case 6: with oscillation,D2,L2,                ;  

Case 9: with oscillation,D2,L2,                . 

 

 

Figure 3-29: Resulting bubble residence time for Cases 6 and 9;           ; 

Case 6: with oscillation,D2,L2,                ;  

Case 9: with oscillation,D2,L2,                . 
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Note that the residence time for the same size of bubbles increases from Case 6 to 9, 

namely between diameters 3 and 4 mm where enough statistics are found in both cases. This 

means that bubbles of those sizes are accelerated by the wake from more bubbles in the 

domain. 

Finally, a comparison of Cases 6 and 9 is made with colour fields in terms of average 

bubble and liquid velocities, turbulent kinetic energy and volume fraction is shown in the 

Figure 3-30. Since the resulting fields reveal enough symmetry, only the half of the column is 

exposed, in which the left-hand side from each field is reserved for the Case 6 (Ref. “A2”) 

and the right-hand side for the Case 9 (Ref. “B1”). 

Note in the Figure 3-30a and c, that the averaged liquid and bubbles vertical velocities 

from Cases 6 and 9 present apparently no difference. Nevertheless, at the bottom of the 

column, the influence of bubble injection is evident, inasmuch as the capillaries are 

concentrated in a certain core region and produce a peak of velocity just above. Moreover, 

once the liquid and bubble phases are directly coupled both in resolved momentum and SGS 

turbulence, the BIT contribution on the SGS viscosity is notable in the Figure 3-30b. Here, 

higher values of SGS viscosity in the lower half of column reflect the presence of bubbles 

disturbing the flow more intense than at the column top, where certain lateral dispersion is 

achieved, as seen in the Figure 3-30d. Furthermore, the bubbles emerging at the free surface 

induce also motion in the continuous gas-phase above the water level. In this manner, a higher 

influence from bubbles on SGS viscosity in Case 9 (“B1”) is there exposed due to their 

greater size and volume of fluid dislocated. 

While similar results for the averaged bubble and liquid velocities were found between 

Cases 6 and 9, the RMS values of velocity fluctuations reveal a different behaviour. As seen 

in the Figure 3-31, these results are here shown for both vertical and horizontal directions. 

Note in the Figure 3-31a and b that the vertical liquid fluctuations present their maximum 

where the upstream meets the downstream, mainly at the lower half of the column, where the 

bubbles did not fully distributed in the cross-section. Despite of that, the sparser momentum 

source-terms from bubbles with more inertia on Case 9 produced higher fluctuations on the 

liquid phase than in Case 6, as seen in the Figure 3-31a and b. Regarding the bubble phase, on 

the other hand, the inverse behaviour is noticed, as seen in the Figure 3-31c and d. Here, the 

bubble velocity fluctuations in both directions are reduced from Case 6 to 9, which is 

expected from the model (Eq.(2-56)) and also observed experimentally [56]. 
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Figure 3-30: Colour fields of Cases 6 and 9 with regard to: a) liquid velocity; b) turbulent 

kinetic energy; c) bubble velocity; d) bubble volume fraction. Left-hand side: Case 6 (Ref. 

“A2”); Right-hand side: Case 9 (Ref. “B1”).           . 

Case 6: with oscillation,D2,L2,                ;  

Case 9: with oscillation,D2,L2,                . 
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Figure 3-31: Colour fields of Cases 6 and 9 with regard to RMS values of: a) liquid vertical 

velocity fluctuations; b) liquid horizontal velocity fluctuations; c) bubble vertical velocity 

fluctuations; d) bubble horizontal velocity fluctuations. Left-hand side: Case 6 (Ref. “A2”); 

Right-hand side: Case 9 (Ref. “B1”).           . 

Case 6: with oscillation,D2,L2,                ;  

Case 9: with oscillation,D2,L2,                . 

The interesting part of all this is, that the resulting flow and its characteristics are 

driven originally by a field force (buoyancy) acting on the bubbles, once no inlet/outlet liquid 

flow is imposed in these cases. However, in order to achieve a certain level of detail and rigor 

on the simulations, the proper modelling of the coupled forces is naturally required. As 
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aforementioned, the resistance coefficients of these forces present a complex dependency with 

bubble size, eccentricity and also the flow conditions around the bubbles. Additionally, the 

use of “point-mass” approximation allows storing easily the information of forces values on 

each bubble individually. In this framework, an evaluation of forces competition in this very 

bubble column will be presented in the following. 
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3.3 On the Forces Competition 

The measurement of the forces acting on bubbles and their resistance coefficients is 

made experimentally on special conditions, in order to isolate the effect of a certain force and 

minimize experimental errors. Such measurements would be not possible or too much 

complex to realize in the flow conditions from a bubble swarm, such as the one described in 

the previous section (3.2). On the hand, numerical simulations can give a local estimation of 

these forces separately and statistics can be easily performed on the whole domain of 

evaluation. In this manner, the relevance of each individual force classified in many aspects 

will be shown in the following as a plain numerical study. 

3.3.1 Cases descriptions and setup 

The cases descriptions and the bubble size distribution are shown in the Table 3-3. 

Table 3-3: Cases description for different simulations. Qg=160 L/h. 

 Ref. 
All 

Forces 

Drag 

Model 

Lift 

Model 

TDM/ 

BIT 

Osc.  

Model 

  
̅̅̅̅  

[mm] 

  
̅̅̅̅

  ̅̅̅̅
 

      

  ̅̅̅̅
 

Case 1-1 A2 x D1–Eq.(2-15)  L1–Eq.(2-31) x  2.55           

Case 1-2 A2 x D1–Eq.(2-15) L2–Eq.(2-39)  x  2.55           

Case 1-3 A2 x D2–Eq.(2-21)  L1–Eq.(2-31)  x x 2.55           

Case 1-4 A2 x D2–Eq.(2-21) L2–Eq.(2-39) x x 2.55           

Case 2-4 B1 x D2–Eq.(2-21) L2–Eq.(2-39) x x 3.31    0      

The assessment of forces competition in the bubble column will be shown in the 

following in two ways. At first, the magnitude of each individual force is related to the 

buoyancy as a ratio of importance. The buoyancy force was naturally chosen as reference, 

since it is a field force, independent of flow conditions and the strongest one. All the 

instantaneous and local resulting ratios were then classified in terms of bubble size, Stokes 

number, axial (column height) and radial (wall distance) positions. Subsequently, an 

arithmetic average of the force ratio   ̅ inside each class was obtained according to the 

following equation: 
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 (3-5) 

where N is the total number of samples inside the class,   is the force and   the individual 

sample. Note that the information of force direction is deliberately lost by extracting the 

vector magnitude inside the summation function. In this manner, only the force strength is 

questioned, either accelerating the bubble or acting against its motion. 

The second evaluation was made by extracting the overall force contribution in the 

radial direction. The objective here is to know if the force pushes the bubbles towards the wall 

or away from it. In order to do so, the average force contribution in the radial direction     
̅̅ ̅̅  

can be calculated as follows: 
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where      is a unit vector in the radial direction to the bubble position. Note that a positive 

value of        means a resulting force towards the column wall, and a negative one the 

opposite. In this framework, a radially symmetric force contribution would be obtained when 

    
̅̅ ̅̅   . 

3.3.2 Magnitude ratio 

The resulting forces ratios for cases C1-1 and C1-3 with regard to bubble diameter and 

stokes number are shown in the Figure 3-32. The graphs on both sides present the same data, 

but the scale range was modified for a better visualization of results below 10%. 

In the case without bubble oscillation model (C1-1, dashed lines in the Figure 3-32) 

the drag is clearly the most important force with magnitudes over 90% of buoyancy. 

Expectedly, a minimum peak is observed between bubble sizes of 1 and 2 mm, resulting from 

a lower resistance coefficient predicted by Eq. (2-15). In the second place comes the added 

mass force, which presents values of 10-20% of buoyancy. Since this force is related to the 

displaced volume of fluid due to bubble acceleration, a slightly increase of its magnitude with 

bubble diameter is observed in the Figure 3-32a. Surprisingly, the Basset term is the third 

strongest force in this case. For small bubbles sizes the Basset force reaches up to 7% of 

buoyancy, while transversal lift approaches only 4%. The fluid inertia (part of pressure term) 
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seemed to be independent of bubble size and its magnitude was around 1% of buoyancy. 

Since these results come from a averaging of the whole bubble column, the wall force is 

apparently insignificant and a proper evaluation will be shown later. 

As seen in the Figure 3-32b, where the same results are classified by bubble stokes 

number, the order of forces magnitude is maintained. Drag, added mass and wall forces are 

practically constant for the range of bubble Stokes number, except for values higher than 0.4. 

Since a very small number of samples were obtained in this region, statistics may be not well 

represented. On the other hand, Basset, lift and fluid inertia forces increase with Stokes 

number. 

When the oscillation model is considered (case C1-3, solid lines in the Figure 3-32), a 

different scenario is observed. The drag force, which before was almost equivalent to 

buoyancy, was evidently reduced. This may happened due to continuous change of motion 

direction imposed by the model, reducing locally the slip velocity magnitude. In counterpart, 

this everlasting oscillating motion increase considerably the added mass force, once the 

derivative in time of bubble velocity in Eq. (2-14) becomes always present and substantial. 

This behaviour is sure not observed for bubbles with diameter below 1 mm, where the 

oscillation model has no effect. For bubble diameters a little above the unity, the virtual mass 

force reaches values up to 80% of buoyancy magnitude, even higher than drag. From this size 

up to 5 mm, a loss of added mass importance is revealed in the Figure 3-32a, once the 

frequency of bubble oscillation is also decreasing, as predicted by Eq. (2-56). This very 

behaviour is also noticed for the history term, whose ratio of magnitude was enhanced up to 

50% of buoyancy. This denotes a great importance of considering the Basset force in bubble 

motion calculations, although it is commonly neglected in the literature. 
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Figure 3-32: Average of resulting forces ratio from cases C1-1 and C1-3 related to bubble:  

a) diameter; b) Stokes number. Left-hand side: full scale; Right-hand side: scale until 10%; 

          ,                ; 

Case C1-1: no oscillation,D1,L1; Case C1-3: with oscillation,D2,L1. 

The results for cases C1-1 and C1-3 were also classified spatially and shown in the 

Figure 3-33. Here, the force ratios are related to the column height and to the wall distance. 

Despite weak effects from bubble injection and the free surface, drag, added mass and Basset 

forces are practically constant over the whole column, as seen in the Figure 3-33a. On the 

other hand, the lift force loses its importance with the column height, while the opposite 

occurs with the wall force. This is explained by the dispersion of bubbles towards the wall 

along their ascendance, producing a more uniform flow at the top than at the bottom of 

column and consequently a lower shear stress.  
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Figure 3-33: Average of resulting forces ratio from cases C1-1 and C1-3 related to:  

a) column height; b) wall distance; Left-hand side: full scale;  

Right-hand side: scale until 16%;           ,                ; 

Case C1-1: no oscillation,D1,L1; Case C1-3: with oscillation,D2,L1. 

A fair evaluation of the wall force needs to be realized over the wall distance, though. 

For the range of bubble size present in this case, the wall force starts to act around a distance 

of 20 mm and grows exponentially up to a magnitude of 5% of buoyancy, which is equivalent 

to the lift magnitude in this region, as seen in the Figure 3-33b. Such result is somehow 

expected, once the wall force is a virtual force to represent effects on lift and drag in a 

bounded flow, e.g., the vicinity of a wall. Additionally, the formulation for the added mass 

used in this work predicts also a modification of the resistance coefficient in this region (Eq. 

(2-26)), which is reflected in the results. Furthermore, the drag and Basset forces were 
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influenced by the presence of a wall, either. However, a resulting enhancement or reduction of 

these forces comes merely from the different flow conditions at this region, since the wall 

distance is not included in the correlations. 

In the Figure 3-34 a comparison is made for cases where the same gas flow rate is 

injected in the column, yet through different capillaries thickness, producing larger bubbles. 

As seen in the Figure 3-34a, the resulting drag, added mass and Basset forces from cases C1-4 

and C2-4 are practically equal. Due to distinct bubble size distribution and according to Eq. 

(2-39), the lift coefficient in the case C2-4 is expected to be slightly weaker. On the other 

hand, since the equal volume of gas is there represented by almost the half number of bubbles, 

higher local shear rates are produced, which enhance the lift force for bubbles of same size. 

Consequently, more intense fluid accelerations should be locally observed than in the case 

with smaller bubbles, increasing the fluid inertia force (substantive derivative in Eq. (2-14)), 

as noticed in the Figure 3-34a. 

The spatial evaluation of cases C1-4 and C2-4 is shown in the Figure 3-35. Note that 

full qualitative agreement of forces ratio is carried out from unequal bubble size distributions. 

Nevertheless, as seen in the Figure 3-34a, the magnitudes of forces in these cases are 

equivalent for each individual bubble diameter. Therefore, if the average is performed for the 

whole size spectrum, as did in the Figure 3-35, the quantitative discrepancies founded here are 

merely an issue of statistics. 
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Figure 3-34: Average of resulting forces ratio from cases C1-4 and C2-4 related to bubble:  

a) diameter; b) Stokes number. Left-hand side: full scale;  

Right-hand side: scale until 6%;           ; 

Case C1-4: with oscillation,D2,L2,                ;  

Case C2-4: with oscillation,D2,L2,                ;  
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Figure 3-35: Average of resulting forces ratio from cases C1-4 and C2-4 related to:  

a) column height; b) wall distance. Left-hand side: full scale;  

Right-hand side: scale until 16%;           ; 

Case C1-4: with oscillation,D2,L2,                ;  

Case C2-4: with oscillation,D2,L2,                ;  

3.3.3 Overall radial contribution 

For a further understanding of the results from cases C1-3 and C1-4, the evaluation of 

forces competition will be shown accounting for forces direction. In order to do so, all stored 

samples from each case were first classified into different axial and radial positions. After 

that, the radial components of lift, Basset and wall forces were extracted and averaged 

according to the Eq. (3-6), insomuch as the positive and negative contributions could cancel 
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each other. In this framework, the resulting profiles of these forces in the radial direction are 

seen in the Figure 3-36, in which the left-hand side is correspondent to the case C1-3 (lift 

model 1) and the right-hand side to the case C1-4 (lift model 2). 

 

Figure 3-36: Average of radial contribution from lift, Basset and wall forces:  

a, b, c) Case C1-3;   d, e, f) Case C1-4;              ;                ;  

Case C1-3: with oscillation,D2,L1; 

Case C1-4: with oscillation,D2,L2; 
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As expected from the positive lift coefficients for the bubble size distribution, a 

positive lateral lift force is founded in both cases. Nevertheless, the apex tends to be at the 

vicinity of the column walls, where the highest shear rates are produced, i.e., between the 

upstream and downstream. Further closer to the wall, the radial contribution of the lift force 

reverses its sign, due to the opposite direction of the downstream, although the lift coefficient 

remains positive. Comparing the cases C1-3 and C1-4, a significant increase of this force is 

noticed in the first cross-sections, as seen in the Figure 3-36d. Once the bubbles are more 

dispersed at higher axial positions, the transversal lift loses its initial strength, yet an averaged 

contribution around 0.5% of buoyancy is maintained in all the cross-sections. 

The magnitude of Basset force presented to be around 20% of buoyancy, the strong 

oscillations in the radial direction produce a certain balance and a mean value less than 1% of 

buoyancy in founded, as seen in the Figure 3-36b and e. Although a trend for this force is not 

as clear as for the transversal lift, the overall contribution is mostly positive (towards the 

wall). This means that an enhancement of bubble dispersion due to the history term is 

expected, either, and should not be neglected. In order to further evaluate the effect of the 

Basset force on particles dispersion, a simpler test case is used and will be shown later in the 

present work. 

The resulting contribution of wall force is intuitive and straightforward, since based on 

the model used here [39], this force acts only normal to the wall. Nevertheless, the values at 

the wall vicinity are around 1% of buoyancy magnitude, which is comparable to the lift and 

Basset forces, as seen in the Figure 3-36. In both cases C1-3 and C1-4, a lower magnitude of 

wall force is noticed in the first cross-sections in comparison with higher positions. One 

reason for that may be effect of injection and low residence times, insomuch as the bubble did 

not reach the terminal rise velocity yet. Another reason could be merely statistics, in which 

the bubbles are not fully dispersed in the column and only few bubbles are approaching the 

wall in this region. Jeong and Park [40] noticed that the presence of a wall does affect not 

only the transversal lift and drag forces, but also the behaviour of bubble oscillations. 

Although an extensive evaluation of bubble trajectories in the wobbling regime was 

performed, unfortunately no correlation was provided by the authors, which could be applied 

here. 

In the present work, the forces competition in a laboratory bubble column was shown 

in terms of magnitude and radial component. Although interesting results was founded in the 

radial direction, the analogue evaluation in the tangential direction revealed a complete 



72  3. Results – Bubble motion 

 

symmetry (    
̅̅ ̅̅   ) for all forces in all regions. Thus, the swirl from the bubble swarm did 

not afford a preferential direction under the applicability of the present model. 
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3.4 Basset Force and Dispersion 

In order to expose the effect of the Basset force on particles dispersion, the 

experiments from Calabrese and Middleman [69] were used as study case.  

3.4.1 Cases descriptions and setup 

Their apparatus consists in a developed turbulent pipe flow, in which single droplets 

were injected through a capillary in the centre and traced photographically along a certain 

distance. The pipe has a diameter of 51mm and the measurement section extends through 

400mm from the particle injections. The system was operated downstream with water in a 

Reynolds number of 24,500. Three fluids were used for the droplets, with the purpose to 

obtain situations where the point-particles are heavier than water (carbon tetrachloride – CCl4, 

 =1595 kg/m³), neutrally dense (butyl benzoate – BB,  =1000 kg/m³) and buoyant (n-heptane 

– Hep,  =695 kg/m³). The radial dispersion was evaluated measuring at least 300 droplets in 

each case. 

In this work, simulations were conducted as simple as possible, in order to isolate the 

effect of forces taken into account. In this manner, the axial velocity profile was considered 

constant, as follows: 

     .  
 

 
/
 

 ⁄

 (3-7) 

where    is the maximal velocity in the centre (in this case,   =0.62 m/s),   is the radial 

position and   is the pipe radius. The turbulent kinetic energy and its dissipation rate, required 

for the dispersion model, were calculated using the following equations: 
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where     ̅̅ ̅̅ ̅̅ ,     ̅̅ ̅̅ ̅̅  and     ̅̅ ̅̅ ̅̅ ̅ are the normal Reynold stresses on the vertical and two horizontal 

directions, respectively, and    is the mixing length. The used values for the Reynolds stresses 
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were given by Sommerfeld [70] making use of experimental data from Laufer [71], and the 

mixing length can be calculated according to Schlichting [72], as follows: 
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 (3-11) 

In this framework, the fluid oscillations seen by the particles come only from the 

turbulent dispersion model and it is independent of grid, once all these properties can be 

calculated directly in the particle level. 

The particle tracking was performed numerically for 5000 samples and five cases were 

arbitrary chosen for each situation described above, as seen in the Table 3-4. The used 

droplets sizes for CCl4, BB and Hep were constant and equal to 706, 862 and 809 m, 

respectively. 

Table 3-4: Forces considered in the pipe flow simulations 

 
Gravity/ 

Buoyancy 
Drag 

Added 

Mass 
Basset         

Case D1 x x    

Case D2 x x x   

Case D3 x x x x 10 

Case D4 x x x x 100 

Case D5 x x x x Full history 

According to Calabrese and Middleman [69], the droplets injection in the system 

should be made isokinetically to the fluid flow, although deviations were observed or 

sometimes necessary. In order to include this factor on the simulations, the initial particle 

velocity     was calculated with the following equation: 

     ,      ̅    ̅    ̅̅ ̅- (3-12) 

where   ̅,   ̅ and   ̅̅ ̅ are the RMS values from velocity fluctuations in the vertical and both 

horizontal directions, respectively, and   is a linear random number with null mean value and 

      . 
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3.4.2 Results and discussion 

Since a relative small number of particles were calculated, the simulations for all the 

15 cases were finished in less than 30 minutes (wall-time), inclusive post-processing. At first 

moment, the resulting mean square displacement of particles   ̅̅ ̅ is numerically measured 

along the dispersion time and compared with experimental data [69], as seen in the Figure 

3-37. Comparing the cases D1 and D2, where the added mass force is additionally considered 

to the drag, no significant changes is terms of dispersion was founded in all the scenarios. On 

the other hand, the inclusion of Basset force in the cases D3-D5 revealed a clear enhancement 

of particle dispersion, mainly for the neutrally dense particles, as seen in the Figure 3-37b. A 

deviation between the results in cases with and without the Basset force does not appear after 

some time, but since the beginning of dispersion. From around 0.3s to the end of evaluation 

time, the lateral displacement seems to increase linearly, which agrees with Taylor’s [73] 

theory at large dispersion times. The resulting slopes in this region are very similar to each 

other, either considering Basset force or not, yet delayed in time. This reflects an effect of 

particle initial conditions, sustained by the history term and rapidly “forgotten” when only 

drag and added mass are considered. These results denote a great importance of the Basset 

force in Euler/Lagrange calculations irrespective of density ratio, even for a very simple 

situation. 
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Figure 3-37: Comparison of resulting lateral displacement with experimental data [69] 

considering different forces for cases: a) CCl4; b) BB; c) Hep. 

According to Calabrese and Middleman [69], the sizes of these particles are large 

enough to disturb the flow around them and produce a wake, although they are smaller than 

the Lagrangian integral length scale. In the case of buoyant particles, their terminal velocity is 

lower than the fluid flow, which causes them to be convected into their own wake. Thus, a 

higher dispersion is expected in this case than for particles of same inertia and heavier than 

the fluid. Such “wake effect”, as called by the authors, cannot be attained in the simulations 

presented here, since a one-way coupling was assumed. After all, satisfactory results were 

obtained for all the cases. 

A further investigation of these test cases is realized numerically in terms of average 

and fluctuation velocities. The resulting profiles of both fluid and particles at 300mm after the 

injection are shown for the streamwise and radial directions, as seen in the Figure 3-38 and 

Figure 3-39, respectively. As obviously expected, the resulting particle terminal velocities 

differ from the fluid averaged due to gravity and buoyancy forces. In the first scenario, for 

example, the particles are heavier than the fluid, and consequently, a higher terminal velocity 
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is found. In the third scenario, the opposite behaviour is naturally observed. The interesting 

part is that although different dispersions were obtained by considering (cases D3-D5) and 

neglecting (cases D1 and D2) the Basset force, practically the same particles averaged 

velocities were found in all the cases. 

Unlike the average velocities, the particle fluctuations from cases D1 and D2 are 

clearly smaller than the fluid oscillations. This is explained by the particle inertia, insomuch 

as the particles do not respond to the fluid instantly, also called as relaxation time. 

Additionally, the inclusion of the Basset force in the case D5 reveals a further reduction of 

particle fluctuating velocities, acting as a resistance for the motion change. Such effect is 

more accentuated in the radial direction, as seen in the Figure 3-39. This behaviour is not 

intuitive, once a less turbulent flow, i.e., smaller fluid fluctuations, would produce lower 

particle dispersion. Thus, the explanation for having greater lateral displacement with Basset 

force must lie in the particle initial conditions. An initially non-zero radial component remains 

in the particle history term and is carried during its whole trajectory, affording a mostly 

positive integration of this force towards the pipe wall and consequently, a higher overall 

dispersion. 
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Figure 3-38: Average and fluctuating velocities in the streamwise direction for cases:  

a) CCl4; b) BB; c) Hep. 
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Figure 3-39: Average and fluctuation velocities in the radial direction for cases:  

a) CCl4; b) BB; c) Hep. 
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3.5 Bubble Swarms – Study Case II 

The previous study case [56], presented in the section 3.2, consisted in a laboratory 

circular bubble column filled with distilled water. The superficial gas velocity was  

           m/s, represented by two bubble size distributions with mean diameters of 2.55 

and 3.31 mm. In order to evaluate the model for different geometries and also larger bubble 

sizes, the results of Mohd Akbar et al. [54] were used as study case, as described in the 

following. 

3.5.1 Cases descriptions and setup 

The case [54] consists in a rectangular bubble column (72 x 240 mm²) with an initial 

tap water level of 700 mm. The bubble injection is made through 35 needles distributed in the 

bottom and two different superficial velocities were evaluated (   ,           - m/s). The 

resulting bubble size distributions are shown in the Figure 3-40 and the correspondent mean 

bubble diameters are 4.3 mm and 5.5 mm, respectively. In this manner, the smaller superficial 

gas velocity           m/s is similar to the previous study case, but is expressed by even 

fewer bubbles. Besides, in the second case (          m/s) bubble diameters up to 8 mm 

are found, which can be challenging for the “point-mass” approximations. According to the 

authors, the PDF of bubble size for this very case is broader at     m than at       m, but 

the difference is not significant. Coalescence and break-up phenomena may be there 

occurring, although here they will be neglected and are not within the purposes of this work. 

 

Figure 3-40: Bubble size distribution from different gas superficial velocities.  

  
̅̅̅̅  ,         - mm. Source: adapted from Mohd Akbar et al. [54]. 
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An initial numerical grid consisting of 12,000 volumes in total was used for 

simulations of both cases, in which the cross-section has 150 volumes and the column height 

is subdivided in 80 elements, as seen in the Figure 3-41.  

 

Figure 3-41: Initial numerical grid used in the simulations and bubble injection positions. 

12,000 volumes in total (8,400 for the liquid part), 150 volumes per cross section and 80 

along the height. 

Due to different geometry and bubble size distributions, the flow structure has other 

behaviour than in the cases from Sommerfeld and Bröeder [56]. In this manner, the 

simulations were here performed for 120 seconds for flow stabilization and statistics was 

sampled until 750 or 1000 seconds for reaching the symmetry, depending on the case. For the 

sake of brevity, only the model setups equivalent to Cases 4 and 6 in Table 3-2 (p. 34) will be 

evaluated here. These cases correspond to the model without and with bubble dynamics, 

respectively, and will be called here as “M-” and “M+”, as described in the Table 3-5. The 

Eulerian time-step was set constant for all the cases and equal to      5 ms. 
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Table 3-5: Cases description for different simulations. jg = [0.003; 0.013] m/s. 

 
   

[m/s] 

All 

Forces 
Drag Lift 

2-way 

coupling 
TDM BIT OM 

  
̅̅̅̅  

[mm] 

  
̅̅̅̅

  ̅̅̅̅
 

      

  ̅̅̅̅
 

Case M1- 0.003 x D1 L2 x x x       0.38 0.50 

Case M1+ 0.003 x D2 L2 x x x x      0.38 0.50 

Case M2- 0.013 x D1 L2 x x x       0.47 0.69 

Case M2+ 0.013 x D2 L2 x x x x      0.47 0.69 

     Eq. (2-39) 

Since tap water was used in the experiments, some adaptations in the model were 

required. The first approach of the drag coefficient (“D1” – Eq. (2-15)) was modified for 

contaminated systems [24], as follows: 
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] (3-13) 

For the second approach (“D2” – Eq. (2-21)), on the other hand, the pre-coefficient of 

the drag coefficient dependent on Reynolds number in Eq. (2-17) was changed from 16.0 to 

24.0, as follows: 

 

        
  

   
{
  

 
  

(   )       (     )   

          
  

 *
 

   
 

 

 
(  

         

√   
)+

  

} 

(3-14) 

Furthermore, the bubble eccentricity in contaminated systems can differ from that in 

clean liquids. In this framework, the correlation proposed by Loth [58], making use of a vast 

compilation of data available in the literature, is suitable for the range of application in these 

cases, as follows: 
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Note in the Eq. (3-15) that the hyperbolic-tangential function gives an upper limit to 

the bubble eccentricity for greater Weber numbers. In this manner, the correlation is shown in 

the Figure 3-42, as follows: 

 

Figure 3-42: Eccentricity correlation [58] in function of Weber number for contaminated 

systems; Horizontal point line: upper limit from the correlation; 

Vertical dashed line: max. Weber number expected in the study cases in evaluation. 

Due to the lack of data for the RMS values of bubble eccentricity for contaminated 

systems, the correlation from Sommerfeld and Bröder [56] (Eq. (2-67)) was also used in the 

simulations for this study case. 

3.5.2 Prior results and further model adaptations 

The data provided by Mohd Akbar et al. [54] corresponds to a measurement section at 

a height of 500 mm, in which a symmetry was assumed, showing the results only for one half 

of the bubble column. 

As a prior analysis, the colour fields in terms phase’s velocities and bubble volume 

fraction are shown in the Figure 3-43 for the Case M1+, in which the complete model is 

considered, as follows: 
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Figure 3-43: Colour fields of Case M1+ with regard to average: a) liquid velocity; b) bubble 

velocity; d) bubble volume fraction.          m/s.   
̅̅ ̅       mm.  

Dashed white line: measurement section at 500 mm. 

The results in the Figure 3-43 reveal that instead of one typical core flow, two 

preferential flows were formed in this geometry, indicated there by the arrows. However, such 

behaviour was not observed experimentally [54]. Nevertheless, a comparison with 

experimental data was performed, as seen in the Figure 3-44. 
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Figure 3-44: Comparison of numerical and experimental data [54] in axial position 500 mm:  

a) liquid vertical velocity; b) bubble vertical velocity.          m/s,              mm. 

Note in the Figure 3-44a that the liquid velocity is overestimated at the vicinity of the 

column wall and underestimated at the centre. Additionally, the bubble velocity in the Figure 

3-44b is underestimated in both cases through the whole measurement line, as some resistance 

have been applied to the bubbles, whose reason is so far unclear. Moreover, the numerical 

resolution of the continuous phase is poor and high velocity gradients are notable close to the 

wall. 

This study case denotes a challenge for “point-particles” approximation, in which 

large bubbles are confined in a thin geometry (in the y-direction, see Figure 3-41). While a 

coarse mesh is created with purpose to maintain a control volume greater than the bubble size, 

a finer grid is desired for having a better resolution for the continuous phase. The simplest 

solution to avoid numerical divergence in a finer mesh would be neglect the effective density 

in the momentum equations (    ). A second possible solution would be numerically 

limiting the volume of bubbles seen by the continuous phase (e.g.    (  )     ). This 

avoids divergence, indeed, however, some information is still lost on the way and the results 

are not reliable. A third option is proposed by distributing the volume of bubbles not only to 

the owner cell, i.e. the cell including the bubble centroid, but also to its neighbours. In this 

manner, the field of bubble volume fraction is smoothened, but the total account of effective 

density is maintained in its whole. This matter is illustrated in the Figure 3-45. 
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Figure 3-45: Mapping and smoothing of bubble volume fraction field. 

Note in the Figure 3-45b that the mapping function applies the bubble volume to its 

owner cell based on the centroid. When the size of bubbles are relatively large compared to 

the cell size (i.e.     ⁄ ), as in this example, some bubbles overlap also neighbouring cells, 

however, this is not accounted for. With rigor, a radius of influence should be calculated for 

each bubble, in order to distribute properly the volume to more than only the owner cells, 

proportionally to its influence. Then, only if necessary, cells above a certain volume fraction 

could suffer some smoothing, for example, the cells coloured in red in the Figure 3-45b. 

Naturally, such implementation would require a large amount of computational resources, 
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which falls out of the scope of this work. The not perfect, but efficient and sufficient solution 

was to distribute the bubble volume evenly to all neighbouring cells, independent of its exact 

position. In this manner, the mapping of neighbours can be done once per run, instead once 

per Eulerian time-step. Additionally, the level of smoothing can be adapted for each case, 

choosing arbitrary as neighbours three different types: the shared faces (level 1), the shared 

edges (level 2), and the shared points (level 3), as illustrated in the Figure 3-46.  

 

Figure 3-46: Different levels of neighbour cells. 

In order to improve the results of this study case, a finer mesh and the smoothing 

function (level 3) was used in the simulations. The resulting mesh has in total 40,880 

elements, in which each cross-section consists in 584 elements, as seen in the Figure 3-47. As 

consequence, the mean ratios from Table 3-5 changed to   
̅̅̅̅   ̅̅̅̅⁄  ,         - and the 

maximum ratios to         ̅̅̅̅⁄  ,         - for the Cases M1 and M2, respectively. 

 

Figure 3-47: Finer mesh used in the simulations for the Cases M1 and M2. 40,880 volumes in 

total (28,616 for the liquid part), 584 volumes per cross section and 70 along the height. 

While the Eulerian time-step for the Cases M1 was maintained      5 ms without 

any issue, this value needed to be decreased for the Cases M2, in order to avoid divergences, 

inasmuch as higher Courant numbers were produced there. The arbitrary value of  

     2.5 ms was sufficient to maintain a maximum Courant number below 0.3. 
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3.5.3 Final results and discussion 

The colour fields in terms of phase’s velocities and bubble volume fraction are shown 

in the Figure 3-48 for the Case M1+ with the new numerical grid, as follows: 

 

Figure 3-48: Colour fields of Case M1+ with regard to average: a) liquid velocity; b) bubble 

velocity; d) bubble volume fraction; Dashed white line: measurement section at 500 mm. 

Case M1+: with oscillation, D2, L2,          m/s,   
̅̅ ̅       mm. 

As a first visual impression, due to a finer resolution in the mesh, it is now possible to 

note the bubble injection positions in the bottom of the column, reflected by higher velocity 

streams, as seen in the Figure 3-48a, and even better in the Figure 3-48c in terms of bubble 

volume fraction. The interesting part is that the preferential flow is now focused on the centre, 

as one main bubble plume, differently from the results with the coarse mesh (Figure 3-43). 



3.5. Bubble Swarms – Study Case II  89 

 

The comparison of the numerical results from Cases M1- and M1+ with experimental 

data is shown in the Figure 3-49. Note in the Figure 3-49a and b that the Case M1-, where no 

bubble dynamics model is included, produced a flat profile for both phases. When bubble 

oscillations are considered (Case M1+), the enhanced bubble dispersion expected from the 

model occurs surprisingly towards the core. 

 

Figure 3-49: Comparison of numerical and experimental data [54] in axial position 500 mm:  

a) liquid vertical velocity; b) bubble vertical velocity. c) RMS values of liquid velocity 

fluctuations. d) Bubble volume fraction;          m/s,              mm; 

Case M1-: no oscillation, D1, L2;  Case M1+: with oscillation, D2, L2. 

Although this behaviour is against our intuition, the reason lies on the geometry. 

While the column is wide in the x-direction (see Figure 3-41), the size in y-direction is 

relatively thin. Additionally, the bubble injection is well distributed over the whole cross-

sectional area, differently than in the previous study case, which was concentrated in the core. 
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Nevertheless, if bubble dynamics is neglected (Case M1-), bubbles close the wall rise almost 

straight and will not return easily to the core, confined by the lift force, as expected from the 

results in the Figure 3-36. This matter causes a peak of bubble velocity in the profiles, as seen 

in the Figure 3-50, also observed in the previous study case (Figure 3-9). Thus, if bubble 

oscillations are imposed by the model (Case M1+), the dispersion occurs also towards the 

centre, benefiting a core flow. After all, the numerical results for this study case revealed a 

satisfactory agreement with experimental data. 

 

Figure 3-50: Numerical bubble vertical velocity at the axial position 500mm; 

         m/s,              mm; 

Case M1-: no oscillation, D1, L2;  Case M1+: with oscillation, D2, L2. 

The second case evaluated by Mohd Akbar et al. [54] consists in more than four times 

the previous superficial gas velocity for the same geometry. Additionally, because greater 

sizes of bubble are present in the Cases M2, the solution of the free surface and the 

continuous gas phase above it was deactivated due to strong entrainment into the liquid 

domain, since no surface reconstruction is performed. Such entrainment polluted the solution 

of the liquid phase, in which the volume fraction of continuous gas    reached values up to 

10%. Once the free surface was “frozen”, the solution for this case was obtained without 

numerical issues. 

The resulting profiles for the Cases M2- and M2+ are compared with experimental 

measurements in the Figure 3-51. Note in the Figure 3-51a that values for the vertical liquid 

velocity are in concordance with the experiments, as well as for the velocity fluctuations in 

the Figure 3-51c, either considering bubble dynamics or not. Unfortunately, the same cannot 

be concluded for the bubble phase, as seen in the Figure 3-51b. Here, the bubble velocities are 

overestimated in comparison with the measurements. As aforementioned, the authors noticed 
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that the bubble size distribution at the column top was broader than at the injection [54], 

which means that collisions, coalescence and break-up occur, phenomena that are being 

neglected here. This fact can be a reason for the overestimation founded in both cases, but this 

will not be investigated in this work. Nevertheless, the Case M2+ present slightly lower 

bubble rise velocities due to consideration of bubble dynamics. 

 

Figure 3-51: Comparison of Cases M2- and M2+ and experimental data [54]:  

a) liquid vertical velocity; b) bubble vertical velocity.  

c) RMS values of liquid velocity fluctuations. d) Bubble volume fraction.  

         m/s,             mm, axial position 500 mm. 

Case M2-: no oscillation, D1, L2;  Case M2+: with oscillation, D2, L2. 

It is apprehensible that bubble vertical velocity, residence time and volume fraction 

are somehow related to each other. In this framework, based on the profiles from Figure 

3-51b, the underestimation of bubble volume fraction in the Figure 3-51c would be expected. 
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Surprisingly, the numerical and experimental results are in good agreement. The reason for 

that may lie on the way how the averaging is made, i.e., the mean bubble velocities are 

number-based and the volume fraction is time-based. For example, two bubbles with the same 

velocity but with different sizes, in a same time interval, would give different average volume 

fractions. Another example would be, a faster and greater bubble or a slower but smaller 

bubble could give the same volume fraction. Thus, the bubble velocity and volume fraction 

may not be directly related to each other. 

After all, the discrepancies between the Cases M2- and M2+ are not remarkable as 

with the Cases M1 or the previous study case shown in the section 3.2. This can be explained 

by the size distribution. Once the frequency of oscillations tends to decrease with size (see Eq. 

(2-56)), the effect from the bubble dynamics model proposed in this work decrease as well, 

yet it is still present.  

 

   



 

3.6 Conclusions of the chapter 

In this chapter, a comprehensive study concerning the application of point-mass 

approximation for bubble column simulations was conducted. The model validation was made 

by comparing the numerical results with data found in the literature [56]. Several cases 

considering different models supported an extensive evaluation of the phenomena involved 

and their complexity.  

While turbulent dispersion and bubble-induced turbulence have an impact on the 

fluctuations on the liquid phase, oscillations on the dispersed phase were weakly improved. 

Satisfactory results using the Euler/Lagrange approach were only achieved, when a bubble 

dynamics model was considered. Here, a stochastic estimation of bubble eccentricity and 

motion deviation was performed locally, yet based on experimental observations of oscillation 

frequencies and amplitudes. Although shape and trajectory oscillations of bubbles are not 

resolved within “point-mass” approximations, such dynamics imposed by the proposed model 

improved significantly the results with regard to bubble average velocity and fluctuations. 

Moreover, a numerical evaluation of the forces competition in a bubble column was 

performed. The ratio of importance of each force was computed normalizing its magnitude by 

the correspondent buoyancy value and interesting results were obtained. As obviously 

expected, the drag force came out as the most important force in such flows with more than 

80% of buoyancy magnitude. Successively, the added mass showed a high dependency with 

bubble equivalent diameter, insomuch as its values vary from 20% up to 85% of buoyancy. 

This may be related to the bubble oscillation attained by the model, since in the case without 

modelling bubble dynamics the values lie only between 10-20%. The Basset force, commonly 

neglected in bubble columns simulations, resulted in magnitudes from 10% to 50% of 

buoyancy, even higher than the transversal lift with maximum value of 9%. The fluid inertia 

and wall forces remained with minor significances. However, at the wall vicinity (      

mm) the wall effects raise up to 5% of buoyancy magnitude. 

Furthermore, the overall contribution of the lift, Basset and wall forces in the radial 

direction was exposed in the very study case. It was noticed for the present bubble size 

spectrum, that although these forces are apparently weak in comparison to buoyancy, a long-

term effect in the radial direction can yield impact on bubble dispersion. The differences in 

the volume fraction profile seem to grow with the ascending time. However, the averaged 

bubble rise velocity using two lift models remained practically unchanged. 
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The Basset force, which is commonly neglected in simulations, plays an important 

role in bubbly flows, reaching magnitudes even higher than lift force. In the case where this 

force was not considered, a relative error up to 3% with regard to the bubble volume fraction 

profile was found, though. The most impact of the history term was acting as a resistance to 

the motion deviation imposed by the bubble dynamics model, causing a significant reduction 

of RMS values from bubble fluctuating velocity. However, a higher overall lateral dispersion 

was promoted by the Basset force.  

Due to this fact, an investigation on the Basset force was conducted in a pipe flow. In 

this study case [69], a constraint flow condition conceived a better interpretation of particles 

dispersion in terms of lateral displacement and fluctuating velocities. It was concluded that 

the Basset term enhanced the particles dispersion in all the present cases. Surprisingly to this, 

in all the three scenarios (buoyant, inert and heavier particles) a reduction of particle velocity 

fluctuations were found due to the history term, acting as a resistance to motion change. Once 

the resulting slope for longer dispersion times is similar when the Basset force is neglected, 

the reason for a higher lateral displacement lies in the initial conditions. 

Finally, the model is applied in a study case [54] with different geometry and greater 

bubble size distributions than the previous simulations. The last study case of this chapter was 

challenging for simulations with the Euler/Lagrange method, since relative large bubbles are 

confined in a thin geometry. In order to achieve numerical stability using a fine mesh for the 

continuous phase, a smoothing function of the volume fraction field was proposed, by 

distributing the mapped bubble volumes to the neighbour cells. After all, the simulation where 

bubble dynamics is considered shows good agreement with experimental data. In the case 

with lower superficial gas velocity, the trajectory oscillations induced by the model yielded a 

core flow by avoiding the bubbles to stay at the walls. In the case with higher gas flow rate, 

on the other hand, both simulations revealed satisfactory results. The discrepancies by 

considering and neglecting bubble dynamics were here not remarkable, once oscillations 

frequencies for the size distribution are expected to be lower.  

Summarizing, the present model was applied for two study cases, where the 

superficial gas velocities vary from 2.8 to 13.0 mm/s with bubble diameters from 0.5 to 9 mm. 

These conditions resulted in local average bubble volume fractions up to 7%. Besides, two 

different geometries (circular and rectangular) and systems (pure and tap water) were here 

evaluated. Once there is concordance between numerical and experimental data within the 

purposes and limitations of this work, the proposed model can be assumed so far validated 

from the hydrodynamic point of view. In the next chapter, an extension of this development 
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and implementation is proposed for the situations with mass transfer. The following cases will 

be evaluated with a different perspective, focused in mass fractions and bubble volumes. 

Nevertheless, all the hydrodynamic background needed to be first understood and validated. 

 





 

4 On the Mass Transfer 

As aforementioned, the prior commitment of modelling bubble columns is the 

capability to predict precisely chemical reactions and product selectivity in such apparatus. In 

many instances, the desired reactions and the product of interest remain in the liquid phase. 

However, required reagents located in the gas phase must be transported into the liquid in an 

efficient way, in order to promote faster reaction rates or reduce equipment dimensions. 

A considerable effort has been made in order to understand mechanisms of mass and 

heat transfer. As a common practice, the physics is transcript into dimensionless numbers 

which give a way to characterize the phenomena involved. In this manner, both mass and heat 

transfer are practically represented by relating the convective and diffusion rates, resulting in 

the Sherwood and Nusselt numbers, respectively. Boussinesq [74] provided an approximation 

for the Nusselt number around a sphere in potential flow, dependent on Reynolds and Prandtl 

numbers. By analogy, this correlation is commonly applied for mass transfer on spherical 

clean bubbles by substituting the dependency with Prandtl by the Schmidt number, resulting 

in: 

     
 

√ 
        

   
 (4-1) 

     
  

     
 (4-2) 

where     is the diffusivity constant of the specie i in the specie j. 

The influence of bubble oscillations on the mass transfer was theoretically determined 

by Montes et al. [75]. In this work it is emphasized that the mass transport rates of oscillating 
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bubbles can be much higher than for volume equivalent spherical bubbles. The influence of 

the oscillations on the mass transfer is essentially the result of a continuous change of the 

contact surface (bubble surface), the modification of the flow field and the concentration 

fields of the species near the bubbles interface. Based on a perturbation theory in conjunction 

with a theory for hydrodynamic oscillations, a correlation has been developed for the 

Sherwood number which does not include any adjustment parameters and depends on the 

mode and the amplitude of the oscillation. A comparison of the Sherwood number for 

different oscillation amplitudes shows the significant increase with increasing amplitude. 

Furthermore, an approximation of the Sherwood number for the amplitude and the second 

oscillation mode was given, which is easier to handle in a numerical calculation [75]. In later 

publications of this working group the approach of the Sherwood number for oscillating 

bubbles is combined with bubble coalescence and break-up to calculate the mass transfer 

coefficient values for bubble columns [76]. 

Due to its high solubility in water and several interests, the carbon dioxide is very 

attractive and popular among experimental works regarding mass transfer. High speed 

imaging techniques have been applied on single CO2 bubbles by many research groups, in 

order to evaluate mass transfer coefficients with precision. Merker et al. [48], for example, 

measured the decay of volume from CO2 and NO bubbles between 1.5 and 3.0 mm in 

degassed water, showing also the transition from ellipsoidal and oscillating bubbles to a 

sphere. Dissolution of Taylor-bubbles in water and glycerol solutions was also evaluated by 

Hosoda et al. [77,78]. Moreover, the presence of surfactants or contamination at the bubble 

surface can have also effects on the mass transfer and, thus, this is also a point of interest in 

the engineering [79,80]. Beside the individual assessment of mass transfer from single carbon 

dioxide bubbles, many works are also related with bubble swarms and chemical reactions in 

the liquid phase, such as the chemisorption of CO2 in NaOH solutions [81,82,83,84]. 

The chemisorption of CO2 has been used until nowadays as study case for 

development and validation of CFD models with mass transfer in bubble swarms. This is a 

complex case for simulations, once the prediction of bubble and liquid flows, mass transfer 

and chemical reactions are directly coupled with each other, not to mention the thermal 

sensibility of physics properties. Nevertheless, a great development has been already done not 

only in the frame of Euler/Euler [85,86] approach, but also in Euler/Lagrange [5,13,84]. 

However, in all the numerical calculations performed so far, withal the detailed and rigorous 

modelling with respect to thermodynamics and reaction kinetics, one important aspect has 

been neglected, namely the dynamics of the bubbles. 
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In the present work, a CFD model based on the Euler/Lagrange point-particle 

approach is proposed, considering not only bubble dynamics through stochastic generation of 

eccentricity and tumbling motion,  as seen in the Chapter 2, but also its effect on mass 

transfer, making use of a dynamic Sherwood number [75], accounting for the oscillation 

amplitude. 

4.1 Modelling the mass transfer 

As aforementioned, the following description of the numerical approach is an 

extension of the modelling presented in the section 2, with purpose for simulating cases with 

mass transfer. For the sake of brevity, equations which were not modified will not be here 

repeated. 

4.1.1 Continuous phase 

Consistent to the approach for hydrodynamic situations, Large Eddy Simulations 

(LES) were used for solving the flow field and modelling the turbulence of the continuous 

phase. In all the cases from this chapter, the Volume of Fluid (VoF) method is not significant. 

Hence, such extra modelling can be spared. Moreover, in order to solve mass transfer between 

the phases, an additional equation for each participant species is required. In this framework, 

the governing equations are showed in the Table 4-1, as follows: 

Table 4-1: Continuous phase governing equations. 

Continuity 
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Species 
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in which,         is the volume fraction of the carrier phase due to the presence of 

bubbles,    is local density of the liquid phase,      is the mass fraction of the specie i in the 

continuous phase. The cell-based species source-terms       
´ , regarding to the mass transfer 
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between the phases, is expressed by the Equation (4-6), by summing over all traversing 

parcels k and the number of Lagrangian time steps n as follows: 

       
´   

 

      
∑∑,(  
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 (4-6) 

With regard to the species equation, an additional term for the effective diffusion 

coefficient is also taken into account based on the SGS turbulence, as follows: 

                     (4-7) 

        
    

       
  (4-8) 

where       is the Schmidt number of the fine structure in turbulence, considered to be 

constant and equal to 0.7 in all the cases. In the cases present in this work, the SGS term is 

much greater than the molecular diffusion coefficient (           ), so that      could be 

negligible. 

4.1.2 Discrete phase 

The bubble tracking is performed here identically as described by the equations (2-13) 

and (2-14) in the previous chapter. Since mass transfer occurs between the phases, the 

diameter of each bubble must be updated at every Lagrangian time-step.  

In CFD simulations, the initial diameter and density of parcels are usually defined by 

the user as input data. If mass transfer occurs during the tracking, two approaches are 

normally found: either the density is assumed constant and the diameter is updated, or the 

diameter remains constant and the density is changed. Nevertheless, only these two same 

options are available in the platform OpenFOAM 4.1. For the case of rising bubbles, none of 

these assumptions is a good choice, inasmuch as both density and diameter are actually 

changing. One reason for that is the direct loss/gain of mass, and consequently volume, due to 

transfer between phases. If the composition of gases inside the bubbles is different, the 

density must be updated, either. Another reason is the hydrostatic head, inasmuch as the 

bubble will perceive a different pressure at each position along the column height, resulting in 

a different density. The solution for that was to implement an equation of state for the discrete 

phase, namely to assume ideal gas. 
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In this framework, the bubble density and diameter are updated at every Lagrangian 

time-step according the local thermodynamic circumstances and the instantaneous 

composition, as follows: 
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where    is the bubble age in the domain,   is the universal constant of gases,   is the 

temperature,      is the mass fraction of the specie i inside the bubble and    is the molecular 

weight of the specie i.  

Note that in the bubble injection     and        are still defined by the user and the 

correspondent     and     are calculated in function of them. During the Lagrangian 

tracking, on the other hand,    and      are first updated by the mass transfer model, and then 

   and    are calculated according the new composition. In this manner, the mass flow rate 

of the gas phase entering in the system is totally dependent of the proper estimation of    and 

 , even if the volumetric flow rate is identical to the measurements. 

4.1.3 Mass transfer model 

In order to simplify the modelling of mass transfer from bubble to the liquid, it is 

common and reasonable to consider that resistance for this transport remains only on the 

liquid side [12,15,40,59,60]. Hence, the mass transfer rate  ̇  dependent on the coefficient    

and the ellipsoidal bubble interfacial area    can be defined as follows: 

  ̇  
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where     is the Sherwood number.        represents the bulk mass fraction of specie i and 

       at the bubble surface, both in the liquid side. In some situations, the chemical reactions 

can have an influence in the mass transfer. Such influence is normally modelled through 

addition of a so-called enhancement factor E, in which a proper correlation is required for 

each case. Concerning to the chemical absorption of carbon dioxide in basic (alkaline) 

solutions, for example, the enhancement factor is highly increased for large pH values. 

However, in this study case the pH-value is neutral and there is no influence from the 

chemical reaction on the mass transfer. Hence, the enhancement E was set constant and equal 

to the unity. 

Since the active species are dilute in the continuous liquid phase, a relation between 

the mass fractions at both sides of bubble interface can be assumed, making use of Henry’s 

constant     : 

                

  

  
 (4-14) 

Analogically to the liquid velocity seen by the bubble, it can be also assumed that 

       consists in two contributions, the mean mass fraction of the active specie interpolated to 

the bubble position       
̅̅ ̅̅ ̅̅ ̅ and a SGS variation (standard deviation)  ́     , as follows: 
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where      is the local RMS cell value for the mass fraction of specie i in comparison with the 

neighbouring cells nb (level 1), interpolated to the bubble position. 



4.1. Modelling the mass transfer  103 

 

Sherwood number correlations for bubbles are commonly found in the literature with 

dependency on Reynolds and Schmidt dimensionless numbers. In order to take into account 

relevant effects of bubble shape oscillations on the mass transfer, Montes et al. [75] proposed 

a correlation based on analytical shape oscillations from Tsamopoulos and Brown [87], 

including the oscillation amplitude A and the Weber number We. The authors elaborated the 

model integrating and averaging a local Sherwood number at the bubble surface during a 

whole oscillation period, yielding the following equation: 
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where     and     are integrals constants dependent on the amplitude [31].   ,    and    are 

Peclet number, Schmidt number and oscillation frequency of the bubble, respectively. These 

integrals can be solved a priori for the range of amplitudes in use (     ) and fitted in a 

polynomial function of third order, as seen in the Figure 4-1. The resulting parameters are 

shown in the Table 4-2 for the second mode of oscillation, with          and the form 

  ( )            
     

 . 

 

Figure 4-1: a) Amplitude dependency with bubble eccentricity; b) Solved integrals and fitting. 
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Table 4-2: Fitting parameters for the integral constants     and    . 

         

   1 0.7053824476 

   0.0518939191 0.0487541958 

   0.3438189502 0.2202937063 

   0.2944385138 0.2208741259 

Note that when the amplitude reaches a null value (   ), the terms inside the 

brackets in the Equation (4-18) become the unity. At this point the correlation recovers the 

form introduced by Boussinesq [74] for oscillating sphere. 

Among the two correlations for the Sherwood number showed here, other correlations 

are found in the literature [88,89], some also in function of bubble eccentricity, e.g., Lochiel 

and Calderbank [90]. Nevertheless, in this work only the correlations of Montes et al. [75] and 

Boussinesq [74] will be evaluated. Although a fitting function was proposed here for sparing 

of computational resources, the preference for Montes et al. [75] correlation is for being based 

on first principles and accounting for bubble oscillations. 

4.1.4 Thermodynamic properties 

The solubility of the species in the liquid phase plays also an important role in the 

prediction of mass transfer, as well as the diffusivity. The proper estimation of these 

thermodynamics properties will determine the equilibrium between the phases and how fast 

the equilibrium is reached, according to each of the participant species. Both the Henry’s 

constant and the diffusivity of gases in water are highly dependent on the temperature, 

inasmuch as a difference of only 5°C can impact significantly on the results. 

In this framework, the dimensionless Henry’s constant was calculated with the general 

equation (4-21), in which the required parameters are available in the literature [91], as 

described in the Table 4-3, as follows: 
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Table 4-3: Parameters for the Henry’s constants. Source: Sander [91]. 

   
  [mol m

-3
 Pa

-1
]    [K] 

    3.3 x 10
−4

 2400 

   1.2 x 10
−5

 1700 

   6.4 x 10
−6

 1600 

   1.4 x 10
−5

 1700 

where the pre-exponential factor   
  is the dimensional Henry’s constant at    25°C and    

is the temperature dependence constant. Note that the solubility of these gases increases when 

the temperature decreases. 

The diffusion coefficients for gases in water (   25°C) are available in the literature 

[92], as described in the Table 4-4, as follows: 

Table 4-4: Diffusion coefficients for gases in water. Source: Cussler [92]. 

        [m
2
 s

-1
] 

    1.92 x 10
−9

 

   2.1 x 10
−9

 

   1.88 x 10
−9

 

   2.0 x 10
−9

 

Once the diffusivity is known for a certain temperature, it can be approximated for 

other temperatures using the Stokes-Einstein equation from the kinetic theory, as follows: 

              

  
  

   

   
 (4-22) 

For the case of carbon dioxide, a more precise correlation than the Eq. (4-22) is 

proposed by Versteeg and van Swaalj [93]: 
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Note that the diffusion coefficient increases with the temperature, differently than the 

solubility.  

Once the modelling for the mass transfer is finally closed, study cases for the model 

validation will be presented in the next sections. 

 





 

5 Results – Mass Transfer 

This following section is focused on the results considering mass transfer. The model 

validation was conducted in a similar manner as before, in which two study cases were 

evaluated. The first one consists of single bubbles rising in a quiescent liquid and the other 

one of bubble swarm with co-current flow. 

5.1 Single Bubbles 

Analogue to the cases without mass transfer in the chapter 3, the model was first tested 

for isolated bubbles. In order to do so, the experimental data from Merker et al. [48] was used 

for comparison and model validation. 

5.1.1 Case descriptions and setup 

The experiments conducted by Merker et al. [48] considered single CO2 bubbles rising 

in a column filled with water. With the purpose to improve the evaluation of mass transfer in 

the experiments, the distilled water suffered a degassing process by boiling it for 60 minutes 

before the experiments. Afterwards, the water was rapidly cooled and stored under an 

atmosphere of argon. The column was described as circular, with a diameter of 75 mm and a 

height of 2 m. Three rising bubbles with different initial sizes (    ,          - mm³, 

       mm) were evaluated in time in respect of their volume during 3 s, making use of a 

high speed camera which follows the bubble with a traverse system. In order to simulate this 

case, a numerical structured O-grid with 51,939 volumes in total (261 per cross-section and 

199 in the height) was used. The resulting ratio between the bubble size     and the mean 

grid length    was      ⁄       . Since only single bubble simulations are performed, the 
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mesh has no significant influence on the results. All boundaries were set as non-slip wall 

condition for the liquid and as rebound for the bubbles. The used Henry’s dimensionless 

constant for       was                [70], the diffusivity coefficient was set to 

                   m²/s and the Eulerian time-step was set 5 ms. 

 

Figure 5-1: Numerical grid used in the single bubble simulations.  

51,939 volumes in total, 261 per cross-section and 199 in the height. 

With the purpose of verification and better understanding during the implementation 

process in this work, different modelling complexities were considered in the simulations for 

this case. Although single bubble experiments can sound simple, many details should be 

precisely respected when mass transfer phenomena are present, as will be described in the 

following. In this framework, a summary from the simulations setup is shown in the Table 

5-1. 
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Table 5-1: Cases description for different simulations. 

 Bubble composition Liquid composition OM 
Mass 

transfer 
General description 

       
      

             
      

          

Case 0 1.0 0.0 0.0 0.0 0.0 0.0 x BL 
Pure CO2, 

bubble osc. 

Case 1 0.95 0.05 0.0 0.0 0.0 0.0 x BL 
Commercial CO2, 

bubble osc. 

Case 2 0.95 0.05 0.0 0.0 0.0      
     B↔L 

Commercial CO2, 

no osc., back diffusion 

Case 3 0.95 0.05 0.0 0.0 0.0      
    x B↔L 

Commercial CO2, 

bub. osc., back diff. 

5.1.2 Results and discussion 

The simulations using the present model were conducted for the three bubble initial 

sizes described in the reference [48], considering at first hypothetically pure CO2 bubbles 

(Case 0). The transient bubble volumes are compared with the experimental data in the Figure 

5-2. According to the experiments, after the 3s, bubbles were still present in the system, 

surprisingly. In the calculations for Case 0, on the other hand, all the three bubbles disappear 

before 2.5 seconds. This situation is explained by a possible presence of an unknown second 

component in the system. To consider pure CO2 bubbles in such case, i.e., to neglect the 

possibility of a back-diffusion of another species from the liquid to the bubble, or even that 

the purity of the CO2 used is not 100%, results in a total dissolution of these bubbles. In this 

manner, the Case 1 assumes commercial CO2 bubbles, where 95% purity is guaranteed, and 

the other 5% consists in other gases, mostly N2. Note in the Figure 5-2 that after 3 seconds the 

bubbles from Case 1 are still present in the domain. However, the volumes are still 

underestimated. The interesting part is that an impurity of only 5% of nitrogen can influence 

significantly the mass transfer. This happens due to the jump condition at the bubble interface 

(Eq. (4-14)), in which the mass fraction of CO2 is not anymore constant and equal to the 

unity. Since the mass transfer rate is different for each component, in this case faster for the 

CO2, its mass fraction inside the bubble will decrease over time and consequently, the driving 

gradient at the liquid side. After all, the remainder volume at 3 seconds consists practically 

from nitrogen, in which the resulting mass fractions of N2 were 90%, 95% and 97%, from the 
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smallest to the biggest bubble, respectively. Since the Case 1 assumes no presence of these 

species in the liquid, it is expected that in a longer and enough time these bubbles would 

completely dissolve as well. 

 

Figure 5-2: Decay of bubble volume in time. Experiments by: Merker et al. [48].  

Case0: Pure CO2, bubble oscillations; Case1: CO2 + N2, bubble oscillations. 

Boiling the water for 60 min and store it under argon atmosphere can provide enough 

degassing from non-desired species dissolved in the liquid. However, the diffusion of argon 

into the water cannot be avoided. In this framework, the subsequent simulations (Case 2 and 

3) were performed considering an initial concentration of argon in the water. Once this 

information is not available, the saturation was assumed. 

The Case 2 neglects bubble dynamics, i.e., the bubbles are assumed to be spherical 

and no trajectory oscillation is imposed by the model. The Case 3, on the other hand, 

considers the complete model, i.e., effects of bubble dynamics are taken into account not only 

on their motion, but also on shape and mass transfer, in which the bubble eccentricity 

increases contact area and the dynamic Sherwood number is based on the oscillation 

amplitude. The resulting decay of volume from these cases is compared with the experimental 

data in the Figure 5-3, as follows: 
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Figure 5-3: Decay of bubble volume in time. CO2 + N2, back-diffusion (Ar). 

Case2: no oscillation; Case3: with oscillations. Experiments by: Merker et al. [48]. 

Note that the final bubble volume achieved in both cases is in concordance with the 

experimental data. Nevertheless, the difference between the cases lies during the process. 

When bubble dynamics is neglected (Case 2), the mass transfer rate may be underestimated, 

mainly for larger bubbles, where shape and motion oscillations are more accentuated. This 

discrepancy is corrected when the bubbles are assumed ellipsoids and the dynamic Sherwood 

number is considered (Case 3). The difference between these cases can be apparently 

insignificant in the situation of a single bubble. However, thinking in a bubble swarm, the 

effect on the mass transferred to the fluid or vice-versa would be proportional to the number 

of bubbles injected, whatever how minimal it is. 

After all, the consideration of additional species improved significantly the results 

with respect to final bubble volume. This behaviour can be better understood comparing the 

mass fraction of CO2 at the bubble surface, estimated by the Henry’s law, as seen in the 

Figure 5-4. As aforementioned, when a pure CO2 bubble is considered (Case 0), the mass 

fraction inside the bubble is constant and equal to the unity. In this manner, a nearly constant 

mass concentration at the surface comes out, with a light slope resulting from hydrostatic 

pressure effects on the bubble density during its ascendance in the column. Here, the driving 

gradient is totally overestimated, resulting in high mass transfer rates. On the other hand, the 

presence of other species on the bubbles from Case 3 produces a transient decay of CO2 mass 

fraction according to their instantaneous composition. Since a “point-mass” approximation is 



112  5. Results – Mass Transfer 

 

being used, such level of modelling can be handled practically without additional 

computational costs. Thus, this information is calculated and stored individually for each 

bubble and updated in each Lagrangian time-step. 

 

Figure 5-4: CO2 mass fraction at bubble surface on the liquid side comparing Case0 with 

Case3 for the three initial bubble volumes VB0. 

The bubbles from these cases present oscillations in the shape and motion, which were 

considered using the bubble dynamics model proposed [33]. Such behaviour produced direct 

effects on mass transfer, where the ellipsoidal bubble surface area is greater than a volume 

equivalent sphere, beside the increase of Sherwood number described by Montes et al. [31]. 

The stochastic variation of bubble surface area in time due to its eccentricity is shown in the 

Figure 5-5. 

 

Figure 5-5: Evolution of surface area ratio (i.e. surface area of ellipsoidal bubble over that of a 

volume equivalent sphere) plotted versus the bubble volume equivalent diameter considering 

Case3 for the three different initial bubble volumes VB0. 

Note that in these cases the ellipsoidal bubbles present an increase of superficial area 

up to 20% for sizes over 1.5 mm. From this size down to 1 mm the bubble oscillation become 
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weaker and eventually bubbles remain spherical. Below 1 mm the bubble is spherical and the 

eccentricity RMS value becomes null (Eqs. (2-66) and (2-67)).  

The tumbling motion of bubbles produced by the oscillation model is also reflected on 

the Reynolds and, consequently, the Sherwood numbers. The instantaneous bubble Reynolds 

number calculated with the volume equivalent sphere diameter in dependence of the bubble 

diameter is shown in the Figure 5-6. 

 

Figure 5-6: Evolution of Reynolds and Sherwood number in function of bubble diameter 

considering Case3 for the three different initial bubble volumes VB0. 

A comparison of the dynamic Sherwood number obtained numerically with the 

Boussinesq [74] correlation is shown in the Figure 5-7.  

 

Figure 5-7: Comparison of Sherwood number with experimental observations considering 

Case3 for the three different initial bubble volumes VB0. 

Here, the numerical results are represented with solid lines show the effect of 

oscillation amplitude, in which an increase on the Sherwood number afforded by the terms 



114  5. Results – Mass Transfer 

 

inside the brackets (i.e. resulting from bubble dynamics) is noticed. The dashed line is the 

Boussinesq correlation for spherical particles in an oscillating flow. Note that the smallest 

bubble in evaluation (B-1) reaches a size with lower oscillations, in which the two 

correlations become equivalent (A0). 

Once the model is here assumed validated for mass transfer of single bubbles, the next 

step is to extend its application for bubble swarms, as presented in the next section. 
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5.2 Bubble Swarms 

In this last section the present model will be applied on a scenario, where the mass 

transfer is evaluated for bubble swarms. The purpose of validation here is to use interesting 

experimental data, which can verify the model capability and potentiality, as a step closer to 

further development in the direction of chemical reactions. In this framework, the 

experimental data from Deckwer et al. [94] showed to be suitable for this objective. 

5.2.1 Case description and setup 

The experiments conducted by Deckwer et al. [94] consist in two bubble columns 

where co-current and counter-current liquid flows were evaluated in different operational 

conditions. One case from the several runs performed by the authors was here arbitrary 

chosen. The column of this case is 4.4 m height with 150 mm of diameter and is operated with 

tap water as co-current flow with the bubbles. A mixture of carbon dioxide and air is injected 

through a glass sintered plate at the column bottom in a superficial velocity     0.0275 m/s. 

The water inlet occurs around the gas sparger in a superficial velocity     0.0472 m/s. The 

numerical grid used in the simulations has 47,740 elements in total, in which 217 elements 

form a cross-section, as seen in the Figure 5-8. The bottom boundary is divided in two regions 

correspondent to the bubbles and liquid inlets. The determination of bubble inlet position is 

made randomly over the whole inner region shown in the Figure 5-8. 

 

Figure 5-8: Numerical grid used in the bubble swarm simulations. 47,740 volumes in total, 

217 per cross-section and 220 in the height. Outer region: liquid inlet; inner region: gas inlet. 

The experiment was performed in a temperature of 14 ºC, i.e., the solubility of the 

evaluated gases in the water are higher than from the previous study case, while the 
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diffusivity is lower. According to the authors, the molar fraction of CO2 was measured in 

several positions along the column, in which gas samples were taken from side flanges and 

quantified with gas chromatography. Moreover, since the bubble column is relatively tall, not 

only absorption of CO2 in the liquid is expected, but due to hydrostatic head effects 

desorption of the same specie was observed experimentally. The evaluation of gas hold-up 

was performed making use of many pressure sensors in different heights. 

The bubble average size is given at the height of 2 m and is equal to   
̅̅ ̅       mm, 

however, due to lack of data a normal distribution was assumed at the column bottom with a 

mean diameter   
̅̅ ̅      mm and standard deviation of     0.2 mm. With respect to the gas 

superficial velocity, the resulting number of bubbles injected per second is     38,055 s
-1

. In 

order to spare computational time without losing significant resolution of the bubble phase, 

the number of real bubbles per parcel in this case was set to    . 

Since the liquid used in the experiments was tap water, model adaptations for a 

contaminated system are needed, as described before in the section 3.5.1. In the case of mass 

transfer, additional modifications are required. In this manner, the dependency of the 

Sherwood number on Schmidt number turns from the power of 1/2 to 1/3 [95], as follows: 

           
      

   
 (5-1) 

The account for bubble oscillation can be made analogue to clean bubbles, similarly as 

performed by Aoki et al. [79], transforming the Eq. (5-2) into: 

           
      

   [       

 

  
 
     ] (5-2) 

Finally, the description of different simulations conducted in this work is shown in the 

Table 5-2. The Case D0 considers hypothetically a clean system and bubble dynamics. The 

Cases D- and D+, on the other hand, consider a contaminated system, but compare the models 

with and without bubble dynamics. 
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Table 5-2: Cases description for different simulations. 

 Bubble composition Liquid composition OM General description 

       
              

          

Case D0 0.8886 0.1114 3.286e-7 2.36e-5 x Clean, with osc. 

Case D- 0.8886 0.1114 3.286e-7 2.36e-5  Contaminated, no osc. 

Case D+ 0.8886 0.1114 3.286e-7 2.36e-5 x Contaminated, with osc. 

5.2.2 Results and discussion 

Inasmuch as the bubble column operates in concurrent flow, a pseudo-steady state is 

achieved. Using the operational conditions of the liquid phase described in the Table 5-2 also 

as initial conditions, the pseudo-steady state was reached around 120~160 s of simulation. 

After this point, the mean concentrations of the species in both liquid and gas phases are 

nearly constant as well the total gas hold-up. This same behaviour was observed in all the 

cases with some deviations from each other. Statistics were sampled for 50 seconds for a 

satisfactory averaging. 

With the objective of comparison with experimental data, the average molar fraction 

of CO2 from the dispersed phase over the column height was calculated for many cross-

sections and shown in the Figure 5-9. 

 

Figure 5-9: Resulting molar fraction of CO2 over the column height. Experiments: Deckwer et 

al. [94]; Two-fluid simulations: Rzehak and Krepper [96]. 
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Note in the Figure 5-9 that the gas phase reaches the equilibrium with the liquid phase 

around the half of the column height, came after a steep decay of CO2 molar fraction at the 

column bottom. In this region, a great driving concentration gradient is combined with large 

contact area between the phases, resulting in high mass transfer rates. When bubble dynamics 

are considered, this behaviour is well captured in the simulations. Moreover, since the column 

is tall enough, effects of the hydrostatic head becomes notable, i.e., during their ascendance 

the bubbles expand slowly by perceiving lower pressure from the liquid, which decreases 

their density. Consequently, the concentration of CO2 at the bubble surface (liquid side) will 

become lower than in the bulk of the liquid (      

         
), shifting the equilibrium. At this 

point, the dissolved carbon dioxide in the liquid is transferred back to the bubbles, which 

causes the light increase of molar fraction seen in the Figure 5-9. 

Note in the Case D0, where the Sherwood number for clean bubbles is considered (Eq. 

(4-18)), the mass transfer rate is overestimated, resulting in a too fast decay of CO2 molar 

fraction in the gas phase, not observed experimentally. 

On the other hand, when the bubbles are assumed to be contaminated and bubble 

dynamics is neglected (Case D-), the decay of CO2 molar fraction is too slow, inasmuch as the 

trajectory and shape oscillations are not modelled. Expectedly, a better quantitative behaviour 

is achieved in the Case D+, in which the dynamic Sherwood number is considered. This 

behaviour is naturally reflected in the resulting CO2 mass fraction in the liquid phase, as seen 

in the Figure 5-10. Although no experimental data is available for comparison, the amount of 

CO2 transferred to the water in the Case D- is significantly lower than in the Case D+, mainly 

in the first half of the column, where the driving gradient is still substantial. Afterwards, the 

phases are almost in equilibrium and the results are similar. 

The present model is also compared with simulations from a two-fluid model [96]. As 

seen in the Figure 5-9, the average CO2 molar fraction in their case is well overestimated. The 

mass transfer coefficient used in their simulations was constant for the whole column and 

taken from the experimental results provided by Deckwer et al. [94]. The problem is that the 

measurements for the coefficient were performed based on the specific interfacial area at 2 m 

(z/H=0.45), where the bubbles are already much smaller than at the injection. This denotes 

one advantage on using Euler/Lagrange simulations in bubble columns, inasmuch as the 

properties are estimated locally and dynamically according the flow conditions. 
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Figure 5-10: Average mass fraction of CO2 in the liquid phase over the column height. 

Furthermore, the average bubble volume fraction is compared with experimental data 

in the Figure 5-11. Here, the profile is plotted along the centre line of the column (axis). Note 

that in all simulations a relative high value of volume fraction at the bubble injection is 

revealed, reaching magnitudes more than 8%. Analogue to the CO2 molar fraction (Figure 

5-9), the volume fraction decreases rapidly due to absorption of gas in the liquid phase. Such 

behaviour is not found in the experimental data. Nevertheless, as aforementioned, the 

measurements were performed making use of pressure sensors positioned at side flanges 

along the column. Hence, the assessment of bubble volume fraction at the column axis may be 

in this case inappropriate. 

In this framework, the same comparison is shown in the Figure 5-12, but extracting 

the results from cells at the boundary (   74 mm). Note that a better agreement with 

experimental data is observed, not only quantitatively but also qualitatively. This denotes the 

importance of full connection between experiments and simulation, inasmuch as details 

should be taken with fidelity.  

Moreover, the resulting volume fraction from Case D+ (with bubble dynamics) is 

lower at the walls than from Case D-, but higher in the core. A similar behaviour was already 

seen for a case without mass transfer. In order to illustrate the results in the whole domain, 

colour fields from the average values of bubble volume fraction and diameter are shown in the 

Figure 5-13. Since the column is 4.4 m height but only 150 mm wide, the images were 

pressed together in the vertical direction for a better visualization (scale 1:10). Note in the 
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Figure 5-13a that the case without bubble dynamics (Case D-) presents again some gathering 

of bubbles at the wall vicinity. This behaviour was already made clear in the section 3.5.3 and 

will not be discussed here again.  

 

Figure 5-11: Average bubble volume fraction over the column height at the centre line. 

Experiments: Decker et al. [94]; Two-fluid simulations: Rzehak and Krepper [96]. 

 

Figure 5-12: Average bubble volume fraction over the column height at the walls. 

Experiments: Decker et al. [94]; Two-fluid simulations: Rzehak and Krepper [96]. 
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Figure 5-13: Colour fields from Cases D- (no osc.) and D+ (with osc.) in terms of bubble:  

a and b) volume fraction; c and d) diameter.           m/s.           m/s. 

Nevertheless, in the third chapter of this work, bubble columns with initial water 

levels only up to 700mm were evaluated. As seen in the Chapter 3, the bubbles were at 700 

mm still dispersing in the domain, and the flow had still influence from the injection and the 

free surface at the top. In the present study case, on the other hand, the column extends its 

height for 4.4m, which is a substantial difference. The resulting average liquid velocities from 

Cases D- and D+ in vertical and tangential directions are shown in the Figure 5-14. Here, the 

dashed white line in the Figure 5-14a and b represent a cross-section at the height of 700 mm, 

equivalent to the bubble column presented in the section 3.5. Note that when bubble dynamics 

is considered (Case D+) a preferential core flow is maintained along the entire column, 

differently than the Case D- where an almost uniform profile is found. The reason for that is 

the occurring of a swirl due to the water inlet around the aerator, as seen in the Figure 5-14d, 

which is sustained for a longer time only when the bubbles do not “stick” at the walls and are 

brought back to the core by the oscillation model. Although a weak zig-zag or spiral motion is 

observed in the Case D- (Figure 5-14c), no preferential direction from a swirl is established. 

Once the phases are coupled, the same phenomenon is reflected in the bubble velocities, as 

seen in the Figure 5-15, inasmuch as they are qualitatively identical. 
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Figure 5-14: Colour fields from Cases D- (no osc.) and D+ (with osc.) in terms of:  

a and b) liquid vertical velocity; c and d) liquid tangential velocity.  

          m/s.           m/s. Dashed white line: axial position at 700 mm. 

 

Figure 5-15: Colour fields from Cases D- (no osc.) and D+ (with osc.) in terms of:  

a) and b) bubble vertical velocity; c) and d) bubble tangential velocity.  

          m/s.           m/s. 
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This last study case is one more example that shows the importance of modelling 

bubble oscillations on the frame of Euler/Lagrange approach. Since the final use of 

Computational Fluid Dynamics is pointed to industrial applications, all the phenomena should 

be properly included in the modelling. In the case of bubble columns, higher efficiencies and 

product selectivity are definitely the ambition from engineers. Before including reactions in 

the simulations, motion and mass transfer should be accurately represented, otherwise the 

validation process can lead to wrong conclusions.  
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5.3 Conclusions of the chapter 

Finally, the CFD model proposed in the Chapter 2 was here extended for situations 

with mass transfer (Chapter 4) and two study cases were used as model validation. 

In the first study case [48], a transient evaluation of bubble volume was performed. 

The experiments consist of isolated and clean CO2 bubbles rising in water. Simulations were 

conducted considering different possibilities of phenomena involved, such as totally degassed 

water and pure CO2, commercial CO2, and back-diffusion of argon into the liquid. 

Furthermore, when the effects of trajectory oscillation were neglected in the calculations, 

slightly lower mass transfer rates were obtained. The inclusion of trajectory oscillation, 

bubble eccentricity and a dynamic Sherwood number [31] improved the results, indeed. 

However, the effect becomes only notable for larger bubbles, where shape and trajectory 

oscillations are actually present. 

The second study case evaluated in this chapter [94], differently from many 

experimental works in the literature, consists of a relatively tall bubble column. Additionally, 

the liquid used in the experiments is tap water, operating with co-current flow with the gas. In 

this manner, the mass transfer model was adapted for contaminated bubbles. Nevertheless, the 

effect of oscillation amplitude is accounted for. While the discrepancy by considering or not 

bubble dynamics was in the first study case apparently small, a different scenario was 

revealed for bubble swarms, when a more complex interaction between the phases is 

expected. 

 



 

Conclusions and Outlook 

In this doctoral thesis, a CFD model dedicated for bubble columns in the frame of 

Euler/Lagrange approach was successfully implemented in the platform OpenFOAM (v4.1). 

Despite the use of “point-mass” approximations, the model accounts for effects of bubble 

dynamics on motion and mass transfer. Numerical results obtained for four experimental 

study cases [11,54,48,94], which were used for model validation. Each study case supported a 

different aspect of evaluation, by varying bubble size (0.5~9 mm), gas superficial velocity 

(0.0028~0.0275 m/s), geometry (circular and rectangular) and temperature (14~25°C). 

Furthermore, the bubble column from the last study case operates with liquid co-current flow. 

Although the main focus of this work was bubble dynamics, this is only one part 

among many other pieces that compose the whole model. As aforementioned, the standard 

OpenFOAM libraries and the code structure were very useful as a basis for the model 

implementation. However, there was no standard solver for bubbly flows in the frame of 

Euler/Lagrange approach. Due to this very fact, the slow and constant implementation process 

provided the opportunity to understand and perceive the effect of each development on the 

numerical results. 

Aiming on capturing the trajectory oscillations of bubbles, a set of relevant forces 

acting on bubbles were established in the simulations, such as buoyancy/gravity, drag, added 

mass, Basset, transversal lift, fluid inertia and the fictitious wall force. Even though, since the 

resistance coefficients for such forces are from stationary behaviour, path oscillations cannot 

be achieved with the parcel-in-cell (PIC) characteristic of the Euler/Lagrange approach, by 

not resolving the liquid flow at the bubble level. Modelling the contribution of the SGS 

turbulence (TDM) in the velocity seen by the bubbles and perturbation of these in the SGS 

turbulence (BIT), marginally improved the final results for the bubble phase. However, 

significant changes were observed in the liquid phase, once the enhancement of turbulent 

viscosity is performed. It may be relevant to comment here, that in the BIT model 

implemented, only production of SGS turbulence can be promoted by the bubble motion, but 

no dissipation. Such possibility was not considered in this work, but remains as suggestion for 

future works. 

After all, only with the estimation of bubble eccentricity and modification of motion 

angle (bubble dynamics model) was possible to achieve reasonable path oscillations, such as 

those observed experimentally. The prediction of these properties through a single-step 

Langevin equation affords a stochastic variation yet correlated in time. Although parameters 
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from empiric precedence with regard to oscillation frequencies and amplitudes are necessary, 

the numeric calculation can be handled in a simple way. For example, only the actual value of 

eccentricity and motion angle need to be stored for each individual parcel, differently than the 

Basset force, which requires the information of n previous time-steps.  

The consideration of bubble dynamics improved the numerical results with regard to 

horizontal oscillations, indeed. In the lateral direction, the major contribution comes from 

motion deviation imposed by the model. The variation of bubble eccentricity alone could not 

yield the results seen here. However, its main effect comes through the calculation of drag, 

added mass and lift coefficients, combined with the trajectory oscillation. 

In this framework, the forces competition presented in the section 3.3 revealed that 

added mass and Basset forces are much more relevant than observed without bubble 

dynamics. This may be one factor why the Basset force is often neglected in simulations, 

although large attention is given to the lift force, even presenting lower magnitudes than 

Basset. Besides, the enhancement of added mass and the history force is more remarkable for 

bubble sizes in the transition of rectilinear to oscillating behaviour, where higher frequencies 

are expected. For larger bubbles this effect is reduced, when compared to the buoyancy 

increment. 

Moreover, the impact of the Basset force in the average bubble velocities is apparently 

insignificant. The RMS values of velocity fluctuations, on the other hand, were clearly 

affected. Once this force acts against the change of motion, bubble fluctuations imposed by 

the oscillation model were reduced. Following our intuition, weaker velocity fluctuations 

would yield less lateral dispersion. Surprisingly, the average contribution of the Basset force 

in the radial direction revealed to be towards the wall, resulting in a higher lateral dispersion 

of bubbles.  

This very behaviour was also found in a constraint case, in which droplets are let from 

a point source in a turbulent pipe flow. Here, three scenarios were evaluated, where the 

droplets could be buoyant, inert or heavier than the water. In all the cases, the history force 

enhanced the lateral displacement and reduced the velocity fluctuations. Nevertheless, the 

major effect of the Basset force on the lateral dispersion is noticed close to the droplet 

injection, and loses influence at longer times. However, the initial circumstances are reflected 

during the whole droplet trajectory. 

From a merely numerical point of view, the geometry of bubble columns is usually 

simple, inasmuch as one cylinder or one box is sufficient to represent the domain. On the 

other hand, the multiphase peculiarity in such apparatus can difficult the calculations in the 
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frame of LES-Euler/Lagrange approach. Contradictory to the use of LES, since small grid 

sizes are required to resolve all the large turbulent scales, the bubble diameter should be in 

rigor much smaller than the mesh cells. This issue is exposed in the section 3.5, where a thin 

column is combined with a bubble size distribution up to 9 mm. Here, an attempt of 

smoothing the volume fraction field in a finer grid by distributing the volume of bubbles by 

the neighbour cells could avoid numerical divergence and improve the results, when 

compared to results with a coarse mesh. 

In this same case, the hybrid solution by resolving the free surface and the continuous 

gas phase above the water level was also prejudiced. The discrete and large bubbles 

(  >6mm) emerging at the interface promoted the entrainment of the continuous gas into the 

liquid excessively, inasmuch as the simple interface compression method was not sufficient 

anymore to separate the phases properly. Accepting this as limitation, a satisfactory solution 

for this case was obtained by simply deactivating the VoF aspect from the model. 

Nevertheless, influence from this fixed boundary can be present. This problem was not a point 

of interest of the present work, but the implementation of a more sophisticated VoF method, 

e.g., with surface reconstruction, remains as suggestion for future works. 

In the Chapter 4, the hydrodynamic model was further developed by including mass 

transfer. Here, the model complexity does not only grow by having additional equations to be 

solved, but also by having more details to pay attention for. 

Even for the case of a single bubble, as exposed in the section 5, the properties which 

were assumed in the hydrodynamic situation constant, such as diameter, density and mean 

eccentricity, are now changing at each Lagrangian time-step. In this manner, the parametric 

sensibility of the numerical solution is much higher. Additionally, irrespective of mass 

transfer correlations assumed in the model, the proper input of thermodynamic properties is 

essential for the reliability of the results. For example, it is common assumed in the literature 

that the pressure changes due to the hydrostatic head in laboratory columns are negligible and, 

thus, bubble is presumed incompressible. Such affirmation cannot be true. Otherwise, the 

calculation of the initial mass of the species inside the bubble at the column bottom will be 

underestimated. Subsequently, the resulting decay of mass along the rise will produce a faster 

dissolution of the bubble than actually expected. Furthermore, a full connection between 

experiments and simulations is fundamental, inasmuch as the information about the pressure 

and temperature when the experiments were performed should be always available and 

precise. For example, only a difference of 5°C can change the solubility of CO2 in the water 

around 10%. 
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In the study case of single bubbles, simulations were conducted considering up to 

three chemical species involved, in which CO2 and N2 are dissolving into the water and Ar is 

being diffused from the liquid to the bubble. Once three bubble initial sizes were evaluated 

(1.9~3.0mm), the effect of oscillation amplitude on the mass transfer rate could be discerned 

between the bubble sizes, in which a faster decay of volume is related with larger values of 

eccentricity. The enhancement of mass transfer through the consideration of a dynamic 

Sherwood number improved the results, indeed. Nevertheless, just evaluating one single 

bubble, the discrepancy between considering bubble oscillation or not is apparently small. 

However, it is expected than in a bubble swarm the effect is more notable.  

In the last study case evaluated in this work [94], the affirmation above was 

confirmed. Bubbles with initial mean diameters around 2.9mm were injected in co-current 

flow with tap water in a relatively tall bubble column (4.4m). One interesting part from that 

was that a pseudo-steady state is observed, where the equilibrium between bubble and liquid 

phases is reached at the half of the column height. Due to the hydrostatic head effects, a 

“back-diffusion” from the same chemical specie starts to occur after the equilibrium. 

Furthermore, since tap water was used in the experiments, a proper correlation for the 

Sherwood number that represents the mass transfer on contaminated bubbles was required. 

Even though, the effect of bubble oscillation was considered and the difference was 

substantial. 

After all, the application of “point-mass” approximations for modelling the flow and 

mass transfer phenomenon was successfully performed, inasmuch as the numerical results are 

in well agreement with experimental data. Within the purposes of this work, the range of 

bubble size, volume fraction, flow conditions and geometries evaluated here the proposed 

model is assumed validated. Although the objective of highlighting the importance of 

modelling bubbles dynamics in the frame of Euler/Lagrange approach was here succeeded, a 

lot of effort still needs to be done in the future, in order to be able of simulating bubble 

columns with all the phenomena involved. In this thesis, many aspects have been neglected or 

avoided, e.g., bubble collisions, coalescence/break-up, chemical reactions, enhancement of 

mass transfer due to chemical reactions, possible presence of solid particles (three-phase 

flow). All of these phenomena have been constantly studied in the literature, and remain also 

as suggestion for further development of the present model. 

 

 

 



 

Nomenclature 

r  = spatial separation [m] 

t  = time step [s] 

x  = Eulerian grid size [m] 

A, B  = angular coefficients [-] 

Ae  = superficial area of ellipsoid [m²] 

a, b  = linear regression parameters [-] 

a, c  = bubble major and minor axis, respectively [-] 

C  = coefficient, constant [-] 

Ca  = Capilary number [-] 

     = Diffusivity constant of the specie i in the specie j [m² s
-1

] 

d  = diameter [m] 

E  = bubble axis ratio (0 < E ≤ 1) [-] 

Eo  = Eötvös number [-] 

f  = derivative of slip velocity in time [m s
-2

] 

   = gravitational acceleration vector [m s
-2

] 

H  = dimensionless Henry’s constant [-] 

I  = identity matrix [-], Integral constant [-] 

K  = Basset integration kernel [s
-1

] 

k  = unit vector parallel to the wall [-] 

k  = mass transfer coefficient [m s
-1

] 

k  = turbulent kinetic energy [m
2
 s

-2
] 

LE  = length scale of SGS turbulence [m] 

M  = Morton number [-] 

m  = mass [kg] 

N  = number of real bubbles in the parcel [-] 

n  = unit normal vector to the wall [-] 

Pe  = Peclet number [-] 

p  = pressure of continuous phase [kg m
-1

 s
-2

], fitting parameter [-] 

Qg  = volumetric gas flow rate [L h
-1

] 

R  = universal constant of gases [m
3
 Pa kmol

-1
 K

-1
] 

Re  = Reynolds number [-] 

  ,   ,    = correlation functions [-] 



 

Sc  = Schmidt number [-] 

Sh  = Sherwood number [-] 

Sl  = Strouhal number [-] 

Sr  = Shear [s
-1

]  

    
̅̅ ̅̅   = symmetric deviatory part of strain tensor [s

-1
] 

    
̅̅ ̅̅ ̅  = momentum source terms [kg m

-2
 s

-2
] 

      
´   = chemical specie source terms [kg m

-3
 s

-1
] 

      = turbulent kinetic energy source terms [kg m
-1

 s
-3

] 

     = modified Stokes number [-] 

T  = temperature [K] 

TL  = time scale of SGS turbulence [s] 

t  = time [s] 

u  = velocity vector [m s
-1

] 

ú  = fluctuating liquid velocity seen by the bubble [m s
-1

] 

V  = volume [m
3
] 

W  = molecular weight [kg kmol
-1

] 

We  = Weber number [-] 

x  = position [m] 

x  = distance from the wall [m] 

Y  = mass fraction [-] 

 ́  = fluctuating SGS mass fraction [-] 

   = volume fraction [-], initial motion angle [degrees] 

   = bubble orientation angle [degrees] 

   = final motion angle [degrees] 

   = LES delta [m] 

   = motion angle deviation [degrees] 

     = Kronecker-delta [-] 

   = coefficient of restitution [-], dissipation rate of the turbulent kinetic energy 

[m
2
 s

-3
] 

   = absolute viscosity [kg m
-1

 s
-1

] 

   = Gaussian random number [-] 

   = density [kg m
3
] 

   = surface tension, [kg s
-2

] 

    = rms value of liquid velocity fluctuation [m s
-1

] 



 

    = rms value of bubble eccentricity [-] 

    = rms value of bubble motion angle [degrees] 

    = stress tensor [kg m
-1

 s
-2

] 

    = drag response time [s] 

      = bubble oscillation period [s] 

   = Basset integration time [s] 

   = eccentricity (  ≥ 1)  [-] 

 

 

<Subscripts> 

 

AM  = added mass 

B  = bubble, discrete bubble phase, Basset 

BW  = wall 

CV  = control volume 

c  = continuous phase, critical 

D  = drag 

E  = Eulerian 

eff  = effective 

g  = gas phase 

h  = major axis 

i  = component in the i direction, i-th chemical specie 

j  = component in the j direction, j-th chemical specie 

k  = k-th parcel 

L  = Lagrangian, continuous liquid phase, lift 

osc  = oscillation 

pa  = parallel to the wall 

pe  = perpendicular to the wall 

S  = Smagorinsky 

SGS  = sub-grid-scale 

t  = turbulent 

t,p  = turbulent contribution by the bubbles 

   = dissipation 

   = bulk 

 



 

<Superscripts> 

 

n  = number of time step 

sat  = saturation 

T  = transposed 

 

 

<Modifiers> 

̅   = mean value, averaged value 
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