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General Introduction 

 

Coevolution  

 

The evolution of ecological interactions has fascinated scientists for generations. The idea that 

ecologically closely interacting taxa might reciprocally influence each other’s evolution is as old as 

Darwin’s ground-breaking ‘On the origin of species’, where he acknowledged species interactions as 

major driver of adaptive evolution and diversification (Darwin, 1859): ‘ I can understand how a flower 

and a bee might slowly become, either simultaneously or one after the other, modified and adapted in 

the most perfect manner to each other, by continued preservation of individuals presenting mutual and 

slightly favourable deviations of structure.’ Later on, Darwin pointed out the first potential example 

for a coevolutionary interaction, when he hypothesised that the long-spurred Malagasy star orchid 

Angraecum sesquipedale must be pollinated by a hawk-moth with an exceptionally long tongue 

(Darwin, 1862; Fig. 1). This pollinator species (Xanthopan morganii praedicta) was unknown to 

Darwin and only first described in 1903 (Rothschild & Jordan, 1903). Nevertheless, subsequent 

studies proposed that a pollinator shift model (Grant & Grant, 1965; Stebbins, 1970), where the plant 

has ‘shifted’ to the moth as new pollinator and adapted to its pre-existing long tongue, rather than 

reciprocal coevolution might be more likely to drive long spurs in A. sesquipedale (Wasserthal, 1997; 

Whittall & Hodges, 2007). The first ecological study to explicitly study coevolution was carried out by 

Ehrlich & Raven (1964), who investigated the interactions between butterfly herbivores and their host 

plants and hypothesised that the evolution of plant defences followed by counter-adaptations in its 

herbivores (i.e. coevolution) might result in adaptive radiation (escape-and-radiate-hypothesis). An 

increasing interest in the topic and increasing misuse of the term ‘coevolution’ necessitated a formal 

definition; Janzen (1980) defined 'coevolution' as an evolutionary change in a trait of the individuals in 

one population in response to a trait of the individuals of a second population, followed by an 

evolutionary response by the second population to the change(s) in the first. One of the first and most 

frequently cited books on coevolution by Futuyma & Slatkin (1983) appeared only a few years later 

and laid out the fundaments for the concept of ‘coevolution’ by, firstly, providing a theoretical 

framework and, secondly, analysing coevolution ‘in action’ in various systems. 

 

Thompson’s hypothesis of a geographic mosaic of coevolution (Thompson, 1994, 2005) further 

revolutionized the field of coevolution research. According to Thompson (1994, 2005), interacting 

populations are connected to each other in a network called the geographic mosaic, which varies in 

space and time. At a specific point in time, some populations within the mosaic may be involved in a 

close interaction with reciprocal adaptations, so-called coevolutionary ‘hot spots’, while others may 

not—coevolutionary ‘cold spots’ (Thompson, 1994, 2005). Interaction outcomes are thus not only 
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influenced by processes that act within populations (selection, drift, local extinction etc.), but also by 

processes occurring between populations (dispersal, migration), whereby traits in a hot spot may 

spread to populations with different selection regimes through trait remixing (Thompson 2005). 

Following Thomson (2005), there is no reason to expect that all populations of the interacting species 

must obey strict coevolution as defined by Janzen (1980), even though substantial reciprocal evolution 

might happen across the entire geographic range of interconnected metapopulations. Furthermore, 

more recent studies highlighted the importance of investigating coevolution in a community network 

approach as species might even coevolve via indirect interaction effects (Guimarães, Pires, Jordano, 

Bascompte, & Thompson, 2017). 

 

Systems in which species reciprocally influence each other’s evolution, i.e., coevolve, might 

encompass interactions between hosts and their associated parasites (Hughes et al., 2007), predators 

and their prey (Brodie et al., 2005), and also mutualistic relationships between hosts and their 

endosymbionts (McFrederick & Taylor, 2013) or plants and their pollinators (Cruaud et al., 2012). 

While coevolution between hosts and their associated parasites (e.g. Hamerlinck, Hulbert, Hood, 

Smith, & Forbes, 2016; Lauron et al., 2015) or symbionts (e.g. Kaltenpoth et al., 2014; Urban & 

Cryan, 2012) has been explored in much detail, less attention has been paid to plant-pollinator 

coevolution.  

 

 

Fig. 1 The first photographical documentation (Wasserthal, 1997) of the pollination of the Malagasy 
star orchid Angraecum sesquipedale by the hawk moth Xanthopan morganii praedicta, which was 
considered as classic example for coevolution between a pollinator (proboscis) and its host plant 
(spurs).  
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Ecological adaptation in pollinators and potential coevolution with their host plants 

 

Ecological interactions between different species may lead to specific adaptations within the 

interaction partners, which are termed co-adaptations when they are due to coevolution (Wade, 2007). 

Since interactions between plants and their pollinators might have considerable fitness consequences 

for each partner, adaptations to increase pollination efficiency (plant perspective) or exploitation of 

floral reward (pollinator perspective) are frequently found (Amrad et al., 2016; Boberg et al., 2014; 

Cosacov, Cocucci, & Sérsic, 2014; Newman, Manning, & Anderson, 2015; Pauw et al., 2017;  

Stankowski, Sobel, & Streisfeld, 2017). Pollinator-driven adaptation might even result in bizarre plant 

morphologies. Elongated spurs, such as in Platanthera orchids or in Calceolaria polyrhiza herbs, may 

be due to adaptation to the pre-existing proboscis length of the local pollinator fauna, i.e. pollinator 

shifst (Boberg et al., 2014; Cosacov et al., 2014), similar to that which has been suggested for the 

Malagasy star orchid Angraecum sesquipedale (Wasserthal, 1997; Whittall & Hodges, 2007). 

Alternatively, coevolutionary interactions may lead to exaggerated traits such as long spurs in flowers 

and long tongues in pollinators, described as ‘Darwin’s race’ (Johnson, 2009), where in each 

generation plants with longer spurs are favoured, which in turn favours insects with even longer 

tongues. Theoretically, this could lead to infinite trait exaggeration but lengthening is halted due to 

selective constraints associated with extreme morphologies, e.g. increased energetic costs or flight 

constraints in the insect (Johnson & Anderson, 2010).  

 

Some of the best available evidence for the occurrence of ‘Darwin’s race’ stems from systems in 

South Africa (Anderson & Johnson, 2007; Johnson & Anderson, 2010; Pauw, Stofberg, & Waterman, 

2009; Steiner & Whitehead, 1990). For example, some nemestrid and tabanid flies adapt to the nectar-

secreting long tubes of their host plants by developing an extended proboscis in response to an 

extended corolla, which in turn evolved in response to the fly’s proboscis, e.g. Moegistorhynchus 

longirostris flies & Lapeirousia anceps irises (Pauw, Stofberg, & Waterman, 2009) or Prosoeca 

ganglbaueri flies & Zaluzianskya microsiphon host plants (Anderson & Johnson, 2007) were 

suggested to coevolve. However, for other South African pollination systems either it is not clear 

whether coevolution or pollinator shifts account for long plant spurs (Prosoeca longipennis flies-

pollination guilt, Newman, Manning, & Anderson, 2014; Gladiolus longicollis irises-Agrius 

convolvuli hawkmoths, Alexandersson & Johnson, 2002) or the pollinator shift model is favoured 

(Disa draconis-tabanid and nemestrid flies, Johnson & Steiner, 1997; Tritoniopsis revoluta-nemestrid 

flies, Anderson, Ros, Wiese, & Ellis, 2014). Another peculiar system for which the relative importance 

of coevolution and pollinator shifts have not been studied yet are long-legged Rediviva bees and their 

long-spurred Diascia hosts (Steiner and Whitehead 1990, 1991). In general, it seems that pollinator 

shifts have occurred frequently and probably more often than coevolution during the evolutionary 
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history of plant-pollinator interactions (e.g. Boberg et al., 2014; Cosacov, Cocucci, & Sérsic, 2014; 

Machado, Robbins, Gilbert, & Herre, 2005; Michez, Patiny, Rasmont, Timmermann, & Vereecken, 

2008; van der Niet & Johnson, 2012; van der Niet et al., 2014; Whittall & Hodges, 2007), probably 

because most plant-pollinator interactions are rather asymmetrical with specialists interacting with 

generalist species, rather than with other specialists, (Bascompte, Jordano, & Olesen, 2006; Vázquez 

& Aizen, 2004), which reduced the selection pressure to reciprocally adapt and coevolve  (Kiester, 

Lande, & Schemske, 1984).  

 

(Co-) adaptation of the pollinator to its host plant(s) and vice versa may also cause ecological 

speciation. For example, adapations to the host plant may result in strongly divergent selection 

pressures and impede gene flow between populations using different host plants (Nosil, 2012; 

Schluter, 2009). When gene flow among locally adapted populations of a pollinator species is reduced, 

initially a heterogeneous pattern of genomic divergence among neighbouring populations will results, 

with increased genetic differentiation at loci under divergent selection (those underpinning the traits 

related to differences in, say, pollinator morphology), i.e. ‘islands of genomic divergence’, while the 

remainder of the genome will not exhibit strong differentiation (e.g. Nosil, Funk, & Oritz-Barrientos, 

2009; Wu, 2001). Increased genetic differentiation at selected loci might also promote reproductive 

isolation via pleiotropic gene effects or when the selected loci are closely linked to loci affecting 

reproductive isolation, i.e. linkage disequilibrium, (Nosil, Funk, & Oritz-Barrientos, 2009; Rundle & 

Nosil, 2005). Once barriers to gene flow exist between locally adapted populations of a pollinator, 

genome-wide neutral differentiation may increase over time such that genomic islands of divergence 

will increase, creating genomic continents of divergence (Feder, Egan, & Nosil, 2012). Therefore, the 

more adaptively divergent populations become, the less gene flow and thus the more genome-wide 

differentiation will build up, yielding a pattern of isolation by adaptation (IBA, Feder, Egan, & Nosil, 

2012). If finally populations are sufficiently genetically differentiated and are no longer able to 

reproduce with each other, the speciation processes is completed. Hence, host plant adaptation might 

result in ecological speciation of the pollinator and even cause the plant to simultaneous speciate if 

reduced gene flow between pollinator populations also reduces gene flow between their host plants. 

 

Coevolution and cospeciation 

 

Providing convincing support for coevolution between interacting species is challenging since several 

lines of evidence are required (Anderson, 2015). It is not sufficient to show correlated trait change in 

the interacting partners but also that each taxon is exerting selection on the trait of its partner, resulting 

in a fitness benefit and trait change due to the mutual interaction (Anderson, 2015). Testing for 

coevolution becomes even more complicated when there is no strict one-to-one but rather diffuse 
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coevolution, which is usually the case for most pollinator- plant- interactions as they comprise many 

interacting partners and asymmetric specialisations (Bascompte & Jordano, 2007; Vázquez & Aizen, 

2004). Given these difficulties, cophylogenetic studies comparing the phylogenies of interaction 

partners, became a promising approach to study coevolution since cospeciation, i.e. congruent 

speciation events, was hypothesised to indicate coevolution (Page, 2003). However, cospeciation does 

not provide unequivocal support for coevolution since a one-to-one match of speciation events 

(cospeciation) might be also due to simultaneous speciation in response to the same biogeographic 

events (vicariance) experienced by the interaction partners (Janz, 2011; Poisot, 2015; Segraves, 2010) 

or due to phylogenetic tracking, in which one species tracks the speciation events of its interaction 

partner (Althoff, Segraves, & Johnson, 2014; Suchan & Alvarez, 2015; Fig. 2). Furthermore, 

coevolution will only lead to cospeciation when the coevolutionary interaction occurs over a sufficient 

time period and when the coevolutionary interaction also triggers reproductive isolation between 

populations and thus decreases gene flow and finally causes incipient speciation. Hence, coevolution 

might well occur without cospeciation, e.g. when coevolutionary interactions are restricted to short 

evolutionary time periods (Janz, 2011). In addition, coevolution in ‘escape-and-radiate’ interactions, 

such as in the plant-herbivore-system analysed by Ehrlich & Raven (1964), are not expected to lead to 

parallel speciation but rather bursts of speciation events followed by lag phases that alternate in their 

timing between the coevolving lineages (Thompson, Segraves, & Althoff, 2017). Thus, coevolution 

might only result in cospeciation in rare cases and the terms ‘cospeciation’ and ‘coevolution’ should 

therefore not be used synonymously.  

 

These rare instances when coevolution might result in cospeciation include interactions between hosts 

and their vertically transmitted parasites or interactions between hosts plants and their pollinating 

floral parasites (brood pollination mutualisms) that control the movement of host gametes  (Thompson 

et al., 2017). Prominent examples for the latter are yucca (Yucca) & yucca moths (Tegeticula, 

Parategeticula), figs (Ficus) & fig wasps (Agaonidae, Chalcidoidae), leafflower trees (Glochidion) & 

leafflower moths (Epicephala) and woodland stars (Lithophragma) & Greya moths (Hembry et al., 

2014; Segraves, 2010). In these obligate pollinating seed-predation mutualisms the plants have no 

alternative pollinator as do the pollinators have no alternative host for reproduction, suggesting a tight 

evolutionary coupling is highly likely to evolve (Hembry et al., 2014). Although former studies 

(Godsoe, Yoder, Smith, Pellmyr, & Wilbur, 2008; Weiblen & Bush, 2002) suggested a high frequency 

of cospeciation in this putatively coevolving systems, more recent studies support a prevalence of host 

shifts (Kawakita, Takimura, Terachi, Sota, & Kato, 2004; Machado, Robbins, Gilbert, & Herre, 2005) 

or cospeciation due to vicariance (Althoff, Segraves, Smith, Leebens-Mack, & Pellmyr, 2012) for 

these mutualisms. Hence, when even these highly specialised coevolved interactions show little 

evidence for cospeciation driven by coevolution, speciation due to coevolution might indeed be rare in 
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nature and may occur only in concert with other processes (Hembry et al., 2013). Nevertheless, limited 

studies have investigated the relationship between coevolution and diversification (Hembry et al., 

2013) and thus additional studies are required to support the conclusion that cospeciation is 

infrequently the result of coevolution. Hence, cophylogenetic analyses in combination with ecological 

studies showing reciprocal trait change between interacting populations (see above) and reproductive 

isolation due to the coevolutionary interaction are necessary to test if coevolution drives cospeciation.  

Such studies are particularely interesting in biodiversity hotspots that due to there high diversifity and 

specialisation of biotic interactions posses a great potential for coevolution to occur.   

 

 
Fig. 2 Several processes might result in phylogenetic congruence: (a) vicariance events, (b) 
phylogenetic tracking or (c) cospeciation (modified from Althoff, Segraves, & Johnson, 2014). 
 

 

Pollinator and plant biodiversity in the Cape biodiversity hotspot 

 

The Greater Cape Floristic Region (GCFR) of southern Africa exhibits a plethora of plant and 

pollinator species and a high degree of ecological specialization, leading to peculiar pollination 

syndromes such as long-proboscid flies or oil-collecting bees (Goldblatt & Manning, 2002; Steven 

Johnson, 2010). The GCFR is considered a global biodiversity hotspot (Myers, Mittermeier, 

Mittermeier, da Fonseca, & Kent, 2000) and its richness and endemism of plant species is ranked 
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second-highest in the world (Kier et al., 2009). Worldwide the GCFR and SW Australia are the only 

regions where centres of plant and bee diversity overlap (Kuhlmann 2005; Linder et al. 2010). Within 

the Cape, the winter rainfall area is the region with the highest number of bee species, with nearly half 

of the species being endemic to this area (Kuhlmann, 2009). The characteristic vegetation types of the 

GCFR are Fynbos and Succulent Karoo (Born et al. 2007), the latter being largely congruent with the 

winter rainfall area and comprising the world’s richest succulent flora (Lombard et al. 1999).  

 

Historically, stable climatic conditions during the Miocene might have resulted in low extinction rates 

and thus contributed to radiation of the GCFR flora (Cowling et al., 2009; Neumann & Bamford, 

2015; Schnitzler et al., 2011). In general, Mediterranean-like climates such as those experienced by the 

GCFR (Goldblatt & Manning, 2000) might have been buffered against climate extremes for various 

reasons and thus they exhibit comparably low extinction rates (Cowling et al., 1996; Goldblatt & 

Manning, 2002). Moreover, the GCFR is characterised by steep climatic, topographic and soil 

gradients (Ellis, Anthony Verboom, van der Niet, Johnson, & Peter Linder, 2014; Goldblatt & 

Manning, 2002), generating environmental heterogeneity and potentially driving ecological speciation. 

Pollinator-mediated selection might also be a key component of Cape plant diversity (Johnson & 

Steiner, 2003; Johnson, 2010; Pauw et al., 2009; Valente, Manning, Goldblatt, & Vargas, 2012; van 

der Niet & Johnson, 2009; van der Niet et al., 2014). One mechanism for how pollinators drive plant 

divergence might be via spatial gradients in pollinator availability that select for traits enabling 

exploitation of alternative pollinators, i.e. pollinator shifts (Ellis et al., 2014). Several studies have 

suggested the existence of spatial gradients of pollinator availability and associated divergence in 

floral traits and pollinator use (Johnson, 1997; Johnson & Steiner, 1997; Pauw et al., 2009; Waterman 

et al., 2011). However, the exact drivers of phytodiversity in the GCFR are still controversially 

discussed (Ellis et al., 2014; Schnitzler et al., 2011; Verboom et al., 2009), and pollinator-driven 

diversification of the local flora seem to matter as well as climatic and edaphic factors.  

 

Considering pollinators, their diversification may also be driven by reduced gene flow due to the 

region’s geology and climate (Kahnt, Soro, Kuhlmann, Gerth, & Paxton, 2014; Linder et al., 2010). 

Unfavorable climate (cold, rain, wind) during the peak flowering season strongly reduces the daily 

activity of foraging bees (Kuhlmann, unpublished) and might select for increased foraging and nesting 

efficiency, resulting for example in small body sizes (smaller bees are able to carry more pollen 

relative to their body mass; Linder et al., 2010). A smaller body size in winter-active bees also reduces 

flight distance, which in turn may reduce gene flow between the bees but also between the plants 

whose pollen the bees carry, thus facilitating speciation in both (Linder et al., 2010). Host plant 

adaptation might be another driver of pollinator diversification (Pauw et al., 2009), where plant and 

pollinator evolution in the GCFR might be linked unidirectional, i.e. the pollinator or host plant 
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‘shifts’ and adapts to pre-existing traits of its interaction partner, or bidirectional, i.e. coevolution 

(Johnson & Anderson, 2010). A recent global review suggested that host plant shifts play a major role 

in insect speciation (Forbes et al., 2017). Still, while there is accumulating evidence for pollinator-

driven speciation in Cape plants (van der Niet & Johnson, 2009; van der Niet et al., 2014), there is 

only limited evidence for the reverse, i.e. host plant-driven speciation of Cape pollinators (Ellis et al., 

2014). Thus, further studies are required to address the role of plant-mediated selection for pollinator 

adaptation and speciation and how pollinators might in turn affect the diversification of their plants. 

 

South African Rediviva bees and elongated forelegs 

 

Bees of the South African genus Rediviva (family: Melittidae) are fascinating examples of species 

possessing a bizarre morphology that might result from pollinator-plant coevolution. Rediviva bees are 

solitary, ground nesting (Kuhlmann, 2014) and strictly endemic to South Africa and Lesotho, with the 

majority of species (15 out of 26 described species) occurring in the winter-rainfall area of South 

Africa (Kuhlmann, 2012; Whitehead & Steiner, 2001; Whitehead, Steiner, & Eardley, 2008).  

Rediviva belongs to a small group of oil-collecting bee taxa (Apidae: Centridini, Tetrapedini, 

Ctenoplectrini, Tapinotaspini; Buchmann, 1987; Cocucci, Sersic, & Roig-Alsina, 2000; Houston, 

Lamont, Radford, & Errington, 1993; Steiner & Whitehead, 2002 and Melittidae: Macropis, Rediviva; 

Michez et al. 2008), in which female Rediviva exhibit remarkably long forelegs for accessing oils 

within the elongate floral spurs of their principal host plants (Vogel 1974, 1984; Steiner and 

Whitehead 1990, 1991). Apart from Rediviva, elongated legs for oil-collecting purposes are only 

known in Centris hyptidis (Apidae, Machado, Vogel, & Lopes, 2002) and Tapinotaspis species 

(Apidae, e.g. Cosacov, Nattero, & Cocucci, 2008). The main oil hosts for Rediviva belong to the genus 

Diascia (family: Scrophulariaceae), which comprises around 73 species (Steiner, 2011) and is 

characterised by oil-secreting twin spurred flowers (Steiner, 2011). Annual Diascia species occur 

exclusively in the winter rainfall area while perennial Diascia species are restricted to the summer 

rainfall area of South Africa (Hilliard & Burtt, 1984). Female Rediviva bees collect floral oil by 

inserting the forelegs into the flower spurs, rubbing against the spur walls and absorbing floral oil with 

specialised tarsal pubescence (Vogel 1984; Steiner & Whitehead 1988, Fig. 2). The collected oil is 

used for larvae provision and probably to make the underground nest (brood cells) waterproof 

(Kuhlmann, 2014; Pauw, 2006). During oil-collection, pollen attaches to specific parts of the bee’s 

body (Steiner & Whitehead, 1988) and is transported to the next flower. Rediviva thus significantly 

contributes to Diascia pollination since most Diascia are self-incompatible and mainly pollinated by 

Rediviva (Steiner & Whitehead, 1988). Consequently, Rediviva and Diascia might exert strong 

reciprocal selection on each other as their interaction has major fitness consequences for both. 
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Fig. 3 Rediviva species collecting oil on Diascia. Photo (left): with kind permission of W. Hattingh, 

Drawing (right): Steiner & Whitehead (1990). 

 

Since the oil-secreting hairs (trichome elaiophores) of Diascia spp. are usually concentrated in the 

bottom of the spurs (but see: Hollens, van der Niet, Cozien, & Kuhlmann, 2016), the bees might 

experience strong selection pressure on fitting, i.e. long enough, legs to be able to successfully collect 

oil. For plants, on the other hand, individuals with spurs slightly longer than the forelegs of the 

pollinators might have a fitness advantage compared to congeners with shorter spurs due to increased 

handling times and thus higher likelihood of being successfully pollinated (Steiner & Whitehead, 

1990). Pollinator-mediated selection might drive the evolution of long spurs, which in turn might 

select for even longer legs in the bee (Steiner & Whitehead, 1990). Such reciprocal morphological 

adaptations as well as synchronized phenologies might reinforce plant-pollinator specialisation and 

thus generate the potential for coevolution (Kawakita & Kato, 2017). Indeed, Rediviva shows not only 

interspecific variation in female foreleg length, FLL, (R. albifasciata: 6.5mm to R. emdeorum: 26 mm; 

Whitehead and Steiner 2001) but also intraspecific FLL variation that seems to be significantly 

correlated with the spur length of the Diascia host plants (Hollens et al., 2016; Steiner & Whitehead, 

1990, 1991), indicative of selection for trait matching. Yet demonstrating a correlation between FLL 

and spur length is not sufficient to conclusively show coevolution in Rediviva-Diascia, as such a 

correlation might equally result from pollinator shifting.  

 

Moreover, as most Rediviva are not specialised on a single host but rather use a range of Diascia 

species (Whitehead & Steiner, 2001; Whitehead et al., 2008) or other plant species from the 

Scrophulariaceae, Orchidaceae, Stilbaceae and Iridaceae as sources of oil (Kuhlmann & Hollens, 

2015; Pauw, 2006; Steiner & Whitehead, 1988, 2002; Waterman et al., 2011), FLL evolution might be 

rather driven by the spur length of the local community than by a single host plant (Pauw et al., 2017, 

Hollens-Kuhr et al., unpublished). Consequently, if Rediviva and Diascia are coadapting then 
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coevolution is rather diffuse and likely represents a geographic mosaic, with only some population 

pairs coevolving but not all (Thompson, 2005). This geographic mosaic hypothesis is supported by 

studies on long-tubed flowers and their long-proboscid flies in the GCFR (Anderson & Johnson, 2007, 

2009; Pauw et al., 2009) and by analyses of Rediviva -Diascia communities in the winter rainfall area 

which revealed a trait match, i.e. FLL and spur length, at only some sites (Hollens-Kuhr et al., 

unpublished). 

 

Aims  

 

So far, nothing is known about the evolutionary genetics of the Rediviva- Diascia relationship. In 

order to obtain a better understanding of the evolution of this plant-pollinator interaction it would be 

important to address the evolution and genetic underpinning of one of the key traits involved in this 

relationship: the elongated forelegs in Rediviva. Furthermore, another interesting question in this 

regard is whether and how FLL variation impacts the genetic structure of Rediviva populations and 

diversification processes of the whole genus. If FLL is indeed under substantial selection imposed by 

the host plant, then Rediviva populations might become locally adapted and strongly differ in their 

FLL and show increased genetic differentiation at the loci underlying FLL (‘islands of divergence’). 

Moreover, if the loci underlying FLL have pleiotropic effects or are in linkage disequilibrium with loci 

regulating reproductive behavior, gene flow might not only be locally reduced at the genes controlling 

FLL but genome-wide between populations that vary in FLL. Significant genetic differentiation might 

build up over time, eventually leading to completely reproductively isolated species once populations 

are no longer able to interbreed. Thus, adaptation to different host spur lengths might lead to 

ecological speciation in Rediviva and, vice versa, may drive Diascia (co-)speciation. Alternatively, 

only one partner might speciate in response to the other (pollinator or host shift). Hence, 

cophylogenetic analyses are required to address if diversification between Rediviva and Diascia is 

dominated by cospeciation or shift events.  

 

The overall aim of my thesis is thus to understand the evolution of a bizarre morphological adaptation, 

elongated forelegs, in Rediviva bees and how FLL itself impacts the genetic population structure and 

diversification of Rediviva, which in turn might affect diversification in its main host plant Diascia. 

Each of the following three chapters addresses a specific aspect of FLL evolution and thereby 

contributes to an understanding of the adaptation and evolution of a key pollinator, Rediviva, in the 

Cape biodiversity hotspot. 

 

In Chapter I I explore the evolution of elongated forelegs across the whole genus Rediviva. I first 

reconstructed the phylogeny of the genus based on seven genes to infer the number of origins of 
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elongated forelegs. Moreover, I determined the rate of FLL evolution and tested if the evolution of 

long forelegs is linked with other ecologically relevant traits and increased speciation rates. 

 

Chapter II of my thesis focuses on the mutual evolutionary history of Rediviva and Diascia as 

Rediviva-Diascia interactions might have driven not only mutual adaptation (spur length or FLL) but 

also speciation processes. By using several cophylogenetic approaches to compare the phylogenies of 

Rediviva (from Chapter I) with its Diascia host plant, I investigated if cospeciation or pollinator shifts 

dominate during Rediviva and Diascia evolution and spur diversification processes.  

 

Finally, Chapter III of my thesis concentrates on the genetics of FLL variation in a Rediviva species 

with one of the most extreme FLL documented for the genus: Rediviva longimanus. Specifically, I 

generated restriction site-associated DNA sequencing (RAD-seq) data for R. longimanus pools and 

investigated if FLL variation between pools is coupled with reduced gene flow and thus increased 

genetic differentiation. Furthermore, I scanned the R. longimanus pools for signals of selection to 

identify candidate genes associated with FLL variation. 
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Abstract 
 
Despite close ecological interactions between plants and their pollinators, only some highly 
specialised pollinators adapt to a specific host plant trait by evolving a bizarre morphology. Here we 
investigated the evolution of extremely elongated forelegs in females of the South African bee genus 
Rediviva (Hymenoptera: Melittidae), in which long forelegs are hypothesised to be an adaptation for 
collecting oils from the extended spurs of their Diascia host flowers. We first reconstructed the 
phylogeny of the genus Rediviva using seven genes and inferred an origin of Rediviva at around 29 
MYA (95% HPD= 19.2-40.5), concurrent with the origin and radiation of the Succulent Karoo flora. 
The common ancestor of Rediviva was inferred to be a short-legged species that did not visit Diascia. 
Interestingly, all our analyses strongly supported at least two independent origins of long legs within 
Rediviva. Leg length was not correlated with any variable we tested (ecological specialisation, Diascia 
visitation, geographic distribution, pilosity type) but seems to have evolved very rapidly. Overall, our 
results indicate that foreleg length is an evolutionary highly labile, rapidly evolving trait that might 
enable Rediviva bees to respond quickly to changing floral resource availability. 
 
Keywords: molecular phylogenetics, plant-pollinator interaction, ecological adaptation, Greater Cape 
Floristic Region, trait evolution, Melittidae 
 
Molecular Phylogenetics and Evolution, 2017, 115: 95-105, doi: 10.1016/j.ympev.2017.07.025 
(Accepted 26 July 2017) 
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Abstract 

Plant–pollinator interactions are often highly specialised, which may be a consequence of co‐
evolution. Yet when plants and pollinators co‐evolve, it is not clear if this will also result in frequent 
cospeciation. Here, we investigate the mutual evolutionary history of South African oil‐collecting 
Rediviva bees and their Diascia host plants, in which the elongated forelegs of female Rediviva have 
been suggested to coevolve with the oil‐producing spurs of their Diascia hosts. After controlling for 
phylogenetic nonindependence, we found Rediviva foreleg length to be significantly correlated with 
Diascia spur length, suggestive of co‐evolution. However, as trait correlation could also be due to 
pollinator shifts, we tested if cospeciation or pollinator shifts have dominated the evolution of 
Rediviva–Diascia interactions by analysing phylogenies in a cophylogenetic framework. Distance‐
based cophylogenetic analyses (PARAFIT, PACo) indicated significant congruence of the two 
phylogenies under most conditions. Yet, we found that phylogenetic relatedness was correlated with 
ecological similarity (the spectrum of partners that each taxon interacted with) only for Diascia but not 
for Rediviva, suggesting that phylogenetic congruence might be due to phylogenetic tracking by 
Diascia of Rediviva rather than strict (reciprocal) co‐evolution. Furthermore, event‐based 
reconciliation using a parsimony approach (CORE‐PA) on average revealed only 11–13 cospeciation 
events but 58–80 pollinator shifts. Probabilistic cophylogenetic analyses (COALA) supported this 
trend (8–29 cospeciations vs. 40 pollinator shifts). Our study suggests that diversification of Diascia 
has been largely driven by Rediviva (phylogenetic tracking, pollinator shifts) but not vice versa. 
Moreover, our data suggest that, even in co‐evolving mutualisms, cospeciation events might occur 
only infrequently.  
 

Keywords: cophylogenetics, cospeciation, Greater Cape Floristic Region, plant-pollinator 
interactions, pollinator shifts 

Molecular Ecology, 2019, 28: 4181-4133. doi: 0.1111/mec.15154 (Accepted 19 June 2019) 
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Abstract 

Adaptation to local host plants may impact a pollinator’s population genetic structure by reducing 
gene flow and driving population genetic differentiation, representing an early stage of ecological 
speciation. South African Rediviva longimanus bees exhibit elongated forelegs, a bizarre adaptation 
for collecting oil from floral spurs of their Diascia hosts. Furthermore, R. longimanus foreleg length 
(FLL) differs significantly among populations, which has been hypothesised to result from selection 
imposed by inter-population variation in Diascia floral spur length. Here, we used a pooled restriction 
site-associated DNA sequencing (pooled RAD-seq) approach to investigate the population genetic 
structure of R. longimanus and to test if phenotypic differences in FLL translate into increased genetic 
differentiation (i) between R. longimanus populations and (ii) between phenotypes across populations. 
We also inferred the effects of demographic processes on population genetic structure and tested for 
genetic markers underpinning local adaptation. Populations showed marked genetic differentiation 
(average FST = 0.165), though differentiation was not statistically associated with differences between 
populations in FLL. All populations exhibited very low genetic diversity and were inferred to have 
gone through recent bottleneck events, suggesting extremely low effective population sizes. Genetic 
differentiation between samples pooled by leg length (short versus long) rather than by population of 
origin was even higher (FST = 0.260) than between populations, suggesting reduced interbreeding 
between long and short-legged individuals. Signatures of selection were detected in 1,119 (3.8 %) of a 
total of 29,721 SNP markers. Populations of R. longimanus appear to be small, bottlenecked and 
isolated. Though we could not detect the effect of local adaptation (FLL in response to floral spurs of 
host plants) on population genetic differentiation, short and long legged bees appeared to be partially 
differentiated, suggesting incipient ecological speciation. To test this hypothesis, greater resolution 
through the use of individual-based whole-genome analyses is now needed to quantify the degree of 
reproductive isolation between long and short legged bees between and even within populations. 
 
Keywords: Population genomics, Population genetic structure, Pollinators, Pool-Seq, Ecological 
adaptation, South Africa, Selection 
 
BMC Evolutionary Biology, 2018, 18: 196, doi: 10.1186/s12862-018-1313-z (Accepted 28 
November 2018) 
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General discussion 

 

In this thesis I investigated the evolutionary genetics of elongated forelegs and foreleg length (FLL) 

variation in Rediviva bees, which was hypothesised to be under strong selection due to host plant spur 

length and potentially causing Rediviva to coevolve with its main host Diascia. While former studies 

concentrated on investigating the morphology of Rediviva legs (Kuhlmann & Hollens, 2015), 

specifically the ecology of the Rediviva-Diascia interaction and the trait (FLL- spur length) matching 

(Hollens, van der Niet, Cozien, & Kuhlmann, 2016), this thesis expands previous research by studying 

the evolutionary history of Rediviva-Diascia interactions and the genetics and evolution of the key 

trait, FLL, underlying this interactions.  

 

In agreement with the recent literature on the evolution of pollinator-plant interactions (Chacoff, 

Resasco, & Vázquez, 2017; Russo, Miller, Tooker, Bjornstad, & Shea, 2018; Vázquez et al., 2018), 

the results of my study presented in Chapter II suggest that diversification processes of Rediviva and 

Diascia are not reciprocally linked, i.e. there are only few cospeciation events. However, 

diversification processes in the plant seem to be affected by its pollinator Rediviva as I detected a high 

frequency of pollinator shift events in cophylogenetic analyses (Chapter II). This is in accord with the 

presumably high ecological flexibility of Diascia plants, as supported by a lack of phylogenetic signal 

for spur length (data not shown) and suggests that spur length variation is shaped by selection rather 

than drift. Ancestral state reconstructions also rendered several origins of long spurs more likely than a 

single origin (data not shown), and thus enabling Diascia to frequently shift pollinators during their 

evolutionary history. Hence, spur length adaptation to Rediviva pollinators might have had a strong 

impact on Diascia diversification. Studies on other South African plants also support a role for 

pollinators and pollinator shifts in plant speciation (Johnson & Steiner, 2003; Johnson, 2010; Pauw, 

Stofberg, & Waterman, 2009; Valente, Manning, Goldblatt, & Vargas, 2012; van der Niet & Johnson, 

2009; van der Niet, Peakall, & Johnson, 2014). For some Coryciinae orchids pollinated by Rediviva, it 

has also been suggested that host-specific pollinarium attachment sites at the bees’ body prevent 

hybridisation between orchid species and thus shifts in pollinarium attachment sites on Rediviva spp. 

(rather than shifts between pollinator species itself) might have played a role in Coryciinae speciation 

(Waterman et al., 2011).  

 

At the same time, Rediviva diversification might be also affected by interactions with Diascia not via 

cospeciation but via host shifts (i.e. ‘host-shift speciation’, the bee rather than the plant is shifting 

interaction partner and diversifies), which might also occur at a non-negligible rate. This hypothesis is 

supported by my cophylogenetic analyses, which also revealed frequent shifts when the plant was 

treated as host (see Chapter II). In addition, Rediviva is ecologically very flexible since any given 

Rediviva interacts with many Diascia species (mean host number = 5) than vice versa (mean pollinator 
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number = 2) and FLL, the key trait important for interactions with Diascia plants, seems to evolve 

rapidly and thus allows for switching between host plants. Specifically, I inferred at least two origins 

of long forelegs, a high evolutionary rate and no phylogenetic signal for FLL, all hinting to the rapid 

evolution of FLL and thus ecological flexibility (Chapter I). Consequently, although there is only little 

evidence for cospeciation in our cophylogenetic analyses, Rediviva might diversify via shifts in host 

plant visitation, as also hypothesised for other insects (De Vienne et al., 2013; Doña et al., 2017; 

Fordyce, 2010).  

 

Furthermore, biogeographic events as well as past and recent climatic conditions might also play a 

central role for the diversification of Rediviva and Diascia. First, biogeographic reconstructions for 

Rediviva (Chapter I) and Diascia (Cron et al, in prep.) indicated the occurrence of several vicariance 

events that might have driven diversification. Second, the current climate (high seasonal rainfall, often 

inclement weather) in the winter rainfall area has been suggested to drive the microevolution of bees 

(Kahnt, Soro, Kuhlmann, Gerth, & Paxton, 2014; Kuhlmann, 2009), including Rediviva (Chapter III), 

and hence in turn affect Rediviva (and Diascia) diversification. Third, historical climatic and 

geological events were also suggested to have contributed to the flourishing of the biodiversity of the 

entire Cape flora (Cowling et al., 2009; Neumann & Bamford, 2015; Schnitzler et al., 2011).   

 

Although I found little evidence for cospeciation as a major force driving the evolution of the 

Rediviva-Diascia system (Chapter II), this does not preclude coevolution between Rediviva and 

Diascia populations. As mentioned before, coevolution is likely to be restricted not only in space 

(coevolution hotspots in a geographic mosaic of coevolution) but also in time (coevolutionary 

interludes across evolutionary history) and might thus not translate into macroevolutionary effects, i.e. 

cospeciation of interacting species (Janz, 2011). Furthermore, as most Rediviva and Diascia species 

usually have multiple interaction partners across their whole distribution range and a bee’s FLL seems 

to be correlated with the spur length of the whole host plant community rather than an individual host 

species (Hollens et al., unpublished), Rediviva and Diascia might exhibit diffuse rather than pairwise 

coevolution. Hence, there is probably only little potential for close evolutionary coupling, i.e. 

cospeciation, between these two taxa even if they are diffusely coevolving.  

 

The most likely scenario is probably a mixture of pollinator shifts and diffuse coevolution in a 

geographic mosaic, with only some populations coevolving. In order to test if Rediviva and Diascia 

populations show diffuse coevolution and a geographic mosaic of coevolution, future studies should 

investigate Rediviva- Diascia interactions and the key traits involved in theses interactions, FLL and 

spur length, across the whole distribution range of Rediviva and Diascia. Such studies should start by 

testing for a correlation of FLL and spur length across multiple populations for several interacting 

Rediviva and Diascia species and thereafter investigate the fitness consequences of trait matching and 
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mismatching. Trait correlation analyses have already been carried out at the species-level while taking 

into account phylogenetic non-independence (Chapter II; Pauw et al., 2017) and for a few population 

pairs in the winter (Hollens et al., 2016; Hollens et al., unpublished) and summer rainfall area (Steiner 

& Whitehead, 1990, 1991). They all suggested that there is indeed a correlation between FLL and spur 

length. However, none of these studies investigated if Rediviva and Diascia reciprocally exert 

selection on each other’s traits, FLL and spur length. Moreover, it is unknown if trait matching is 

associated with higher fitness in both, Rediviva and Diascia (e.g. amount of oil gained in the case of 

the bee and seed set in the case of the plant) than a trait mismatch. Such knowledge is nonetheless 

essential to support a coevolutionary relationship between Rediviva and Diascia.  

 

Rediviva FLL, the key trait involved in interactions with the host plant, might also affect the micro- 

and macroevolution of Rediviva itself. For FLL to influence Rediviva speciation it requires FLL to be 

under divergent selection and to affect reproduction and reproductive isolation. The results of my 

thesis and other studies (Hollens et al., 2016; Pauw et al., 2017, Hollens et al. unpublished) argue for 

non-negligible selection pressures on FLL, although they do not allow conclusions about the form of 

selection, i.e. divergent or balancing. First, FLL is likely to be under selection as it may have great 

fitness consequences (Hollens et al., 2016; Pauw et al., 2017). Second, the lack of a phylogenetic 

signal for FLL suggests that FLL is not strongly determined by phylogenetic ancestry. In addition, 

models including the effect of selection (Ornstein-Uhlenbeck) better explain FLL variation than pure 

Brownian motion models that only account for drift (Chapter I). Hence, it is unlikely that FLL 

variation is solely driven by drift but rather by strong selection. I thus expected the loci underlying 

FLL to appear as FST outlier in the genome-wide distribution of RAD tags that I used to compare 

populations of Rediviva longimanus in Chapter III. Indeed, I was able to identify some potential 

candidate genes regulating FLL in R. longimanus, including the Hox gene Sex combs reduced (Scr), 

despite a potentially high impact of gene flow (Chapter III).  

 

FLL, like most fitness-relevant traits (Storz, 2005), is probably a quantitative trait and thus controlled 

by many interacting loci. In general, the size of insect body parts is thought to be controlled mainly via 

cell number and, probably to an lesser extent, cell size (Nijhout, 2003). Genetic or environmentally 

induced (plastic) changes in the rate or duration of cell proliferation might be the primary mechanisms 

by which an increase in cell number and thus the evolution of enlarged structures is achieved (Emlen 

& Allen, 2003). Genes known to affect the rate of cell proliferation within imaginal discs of insect 

larvae, which might play a role for FLL regulation as well, are the morphogens wingless (wg) and 

decapentaplegic (dpp), Distal-less (Dll), Notch and Epidermal growth factor (EFG) (Emlen & Allen, 

2003). Specifically, changes in the shape and intensity of morphogen gradients seems to be an 

important mechanism by which Hox genes are able to modulate organ and appendage growth 

(Crickmore & Mann, 2010). For example, altered interactions between dpp with the Hox gene 
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UbdA/Ubx seem to be responsible for exaggerated insect structures, including elongated hindlegs of 

grasshoppers and crickets, exaggerated beetle horns (Lavine, Gotoh, Brent, Dworkin, & Emlen, 2015) 

or wing reduction to halters in dipterans (Crickmore & Mann, 2010). I hypothesise that in Rediviva, 

dpp might also possibly interact with specific Hox genes to regulate leg development and the 

elongation of forelegs.  

 

Genes involved in leg development have been identified in several insects, including honey bees 

(Khila, Abouheif, & Rowe, 2009; Mahfooz, Li, & Popadić, 2004; Mahfooz, Turchyn, Mihajlovic, 

Hrycaj, & Popadić, 2007; Refki et al., 2014; Refki & Khila, 2015; Struhl, 1982; Walldorf et al., 2010). 

These genes include Ultrabithorax (Ubx), Sex combs reduced (Scr) and Antennapedia (Antp), all of 

which belong to the Hox gene family. Among the three Hox genes mentioned, Scr is probably the 

most promising candidate for FLL regulation in Rediviva since it is generally expressed in the first pair 

of legs ( Walldorf et al., 2010; Rogers, Peterson, & Kaufman, 1997; Struhl, 1982), while the other two 

genes are only known to be expressed in the mid- and hind legs (Mahfooz et al., 2004, 2007; Refki et 

al., 2014; Stern, 2003). Indeed, Scr was also among the candidate genes I inferred to be under strong 

selection in R. longimanus (Chapter III). Interestingly, Scr is also known to show sex specific 

differences in expression levels, leading to leg combs in Drosophila males (Barmina & Kopp, 2007). 

Thus, I suggest that Scr may be also a central component in the sex specific expression of extended 

forelegs in Rediviva.  

 

In Drosophila, sex is determined by the ratio of sex chromosomes to autosomes which triggers a 

genetic cascade via the master regulator gene Sex-lethal (Sxl), leading to sexual differentiation and 

dimorphism in e.g. body size (Horabin, 2005). Sxl regulates the splicing of the RNA-binding factor 

transformer (tra) such that only females will have a functional Tra protein, which in turn induces the 

splicing of the doublesex (dsx) transcription factor into a female specific isoform (dsxF) while the 

male isoform (dsxM) is produced by default (Kopp, 2012). The different dsx isoforms then trigger the 

development of sex specific characters and, in the first pair of legs, dsx and Scr enhance each other’s 

expression to produce sex combs in males (Kopp, 2012; Tanaka, Barmina, Sanders, Arbeitman, & 

Kopp, 2011).  

 

Moreover, temporal and spatial modifications of dsx gene expression has been suggested to play a 

major role for the evolution of many sexually dimorphic insect traits and trait exaggerations (Tanaka et 

al., 2011). dsx is known to be important for sex-specific trait growth not only in Drosophila but also in 

other dipterans, various beetle taxa and ants (Klein et al., 2016; Lavine et al., 2015) and acts via 

binding to the cis-regulatory region of downstream targets. For example, in several beetle species dsx 

regulates the expression of exaggerated horns and mandibles in the males (Lavine et al., 2015).  
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In bees, sex is not determined by the ratio of autosomes to sex chromosomes but rather by the zygosity 

of the sex determining locus (complementary sex determination, csd,  locus in Apis and feminizer, fem, 

in many non-Apis bees; Charlesworth & Mank 2010). The bees’ csd locus probably encodes a protein 

(SR) that is homologous to tra and involved in splicing of various mRNAs, including a dsx homolog 

(Cristino, Nascimento, Costa, & Simões, 2006), resulting in four sex specific dsx isoforms in bees 

(Cho, Huang, & Zhang, 2007; Siegal & Baker, 2005). Hence, a pathway similar to Drosophila that 

involves the interaction between dsx and Scr might regulate sexual dimorphism in Rediviva, with 

female bees possessing not only slightly larger body sizes but also massively larger forelegs than their 

male congeners ( Whitehead, & Steiner, 2001; Whitehead, Steiner, & Eardley, 2008).  

 

In addition to genetic factors, environmentally induced phenotypic plasticity and epigenetic regulation 

of gene expression might also be relevant for FLL regulation. Plasticity of FLL could involve (i) 

insulin-triggered growth factors, which control the rate of cell proliferation of entire imaginal disc, or  

(ii) the developmental hormones Juvenile hormone (JH) and Ecdysone, that regulate the duration of 

growth (Emlen & Allen, 2003), or (iii) an interaction of those mechanisms (Mirth et al., 2014). 

However, the insulin-signalling cascade, which is regulated via variation in nutrition, is unlikely to 

explain elongated forelegs in Rediviva as bee larvae developing longer legs are likely not fed with 

more oil than short-legged ones. Hormonal control is thus a more likely alternative for plastic 

responses in FLL. For example, it is known that dsx may sex specifically modulate the sensitivity of 

organs to the hormone JH, resulting in exaggerated mandibles in male stag beetles (Gotoh et al., 

2014). Similarly, plastic responses of FLL in female Rediviva may be possible via the interaction 

between JH and dsx. Furthermore, since most sexually dimorphic traits, including dsx-regulated sexual 

dimorphisms (Tanaka et al., 2011; see above), are due to differences in gene expression (Ellegren & 

Parsch, 2007) genetic elements such as microRNAs or epigenetic regulation via GC-methylation or 

histone acetylation might be involved in regulating the expression of genes determining FLL.  

 

Future studies to address the genetic underpinning of FLL variation in Rediviva should thus sequence 

our most promising candidate gene Scr in individuals of different populations (and species) to confirm 

the fixation of different SNPs in populations with different FLL and thereby better support a role of 

Scr in FLL regulation. Furthermore, since FLL is probably controlled by several genes and I 

investigated only a small proportion of the genome with a reduced genome representation sequencing 

approach (RAD-Seq, Chapter III), I probably have missed important genes involved in FLL regulation 

such as dsx. Hence, whole genome sequencing of populations, pooled or individually barcoded, that 

exhibit marked differences in FLL are required to fully address the genetic architecture of FLL 

regulation. In addition, real-time PCR amplification or transcript abundance estimation from EST 

sequencing of cDNA libraries prepared from imaginal discs of Rediviva larvae from both sexes are 

needed to give critical insights into potential differences in gene expression and the genetic 



 

24 

architecture of FLL. However, given the difficulties of excavating Rediviva nest from the soil and the 

lack of established procedures to rear Rediviva in the lab (Kuhlmann, pers. communication), such 

studies are unlikely to be possible in the near future.  

 

Moreover, in order to substantiate a role of FLL in Rediviva diversification, FLL also needs to be 

linked to reproductive isolation. As pointed out in Chapter III, divergent mate preference due to 

varying FLL is unlikely as males are not usually the choosy sex in bees nor do they vary in FLL, 

excluding the possibility of assortative mating. Reproductive isolation due to habitat/resource 

preference (plants with fitting spur lengths) is possible (see Chapter III). Furthermore, reproductive 

isolation might result from a lower viability of immigrant bees with non-matching FLL. Alternatively, 

post-mating isolation due to intrinsic genetic incompatibilities or (sexually or ecologically dependent) 

selection against hybrid offspring (Nosil, 2012; Rundle & Nosil, 2005) might occur. Although local 

Diascia communities do not always consist of plants with only extreme spur lengths (short or long) 

but they contain a mixture of plants showing intra-and interspecific variation in spur lengths, there 

nevertheless seems to be a significant difference in the mean community spur length between sites 

(Hollens et al. unpublished). Therefore reproductive isolation caused by habitat isolation or a reduced 

fitness of immigrants or hybrids due to non-optimal phenotypes, FLL in particular, might indeed be 

possible. However, the FLL of a female bee does not have to perfectly match spur length in order for it 

to extract oil (Hollens et al. 2016). Moreover, the composition of Diascia communities and spur 

lengths might vary between years (Kuhlmann, pers. communication). Thus, FLL might not be under 

strong directional but rather balancing selection. Hence, none of these mechanisms proposed might be 

strong enough to lead to reproductive isolation, if FLL is indeed under balancing selection.   

 

Independently of the mechanism driving potential reproductive isolation due to FLL, the loci 

regulating FLL need to be coupled with the loci effecting reproductive isolation. Such coupling could 

be due to pleiotropic effects of loci underlying FLL or due to linkage between the loci regulating FLL 

and those causing reproductive isolation (Nosil, Harmon, & Seehausen, 2009). The four-phase-model 

of speciation-with-gene-flow by Feder et al. (2012) assumes that initially (phase 1) only a few loci 

under strong divergent selection are differentiated between populations (Fig. 1). In the following 

phases, differentiation sequentially builds up; first only in the regions surrounding the loci under 

strong selection (divergence hitchhiking, phase 2) but, later on, genome-wide as new mutations 

establish due to selection and drift (genome hitchhiking, phase 3) and the baseline level of divergence 

between populations increases. The final phase (phase 4) is reached when there is no or only low gene 

flow across the genomes of the two taxa. Such a model might also apply to Rediviva populations that 

vary in FLL, if FLL indeed experiences strong divergent selection.  
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Fig. 1 The four-phase-model of speciation-with-gene-flow by Feder et al. (2012). 

Despite FLL being an important ecological adaption with potentially great evolutionary flexibility, my 

studies did not strongly support FLL as a driver of Rediviva microevolution and diversification 

processes. I neither found a correlation between long forelegs and diversification rates across the 

whole genus (Chapter I) nor was genetic differentiation of Rediviva longimanus populations related to 

inter-population (intraspecific) variation in FLL (Chapter III). Nevertheless, the latter results might 

also be due to a lack of statistical power, since I investigated only few populations (N=4). 

Additionally, I detected pronounced genetic differentiation between sequencing pools, pooled 

according to FLL (Chapter III), hinting to a role of FLL in microevolution. Hence, in order to rule out 

a role of FLL in Rediviva microevolution, further studies are needed to investigate gene flow and 

reproductive isolation between multiple populations of (ideally multiple) Rediviva species that show 

pronounced intraspecific and inter-population variation in FLL.  

 

My population genomic analyses of R. longimanus (Chapter III) also suggested that the bees are of 

conservation concern since populations seem to be small, scattered and highly genetically 

differentiated. Furthermore, R. longimanus populations exhibited low genetic diversity and might 

experience population bottlenecks (Chapter III); this is potentially a result of the inclement weather 

during the main flowering season that might markedly reduce activity and gene flow between bee 

populations. Hence, reduced genetic diversity and high population genetic differentiation might be a 

general feature of bees in the winter-rainfall area and thus, many bee species, including Rediviva, 

might actually suffer from an increased extinction risk. If this is indeed the case, Rediviva bees should 

be given conservation priority in the Greater Cape Floristic Region (GCFR) biodiversity hotspot as 

they are endemic to South Africa and Lesotho.  

 

This thesis is the first to provide insights into the evolution of an important pollinator, Rediviva, in the 

GCFR biodiversity hotspot and into the population genomics of one of the most abundant Rediviva 
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species, in relation to the evolution of FLL, the key adaptation to its host plant Diascia. Specifically, 

this thesis investigated if and how the adaptation of Rediviva bees to their Diascia host plants affects 

Rediviva micro- and macroevolution, which in turn may affect Diascia diversification. Overall, my 

results suggest that FLL is a rapidly evolving trait, potentially under strong selection. Although my 

studies suggest that Rediviva pollinator shifts drive Diascia diversification, I did not find strong 

evidence that the interactions with Diascia and FLL adapation affect the micro- and macroevolution of 

Rediviva. Future studies are now required to address the interplay between coevolution and shifts at 

the population level as well as potential reproductive isolation due to FLL and the complete genetic 

architecture of FLL variation. The results of my thesis provide the fundaments for such studies and by 

taking an evolutionary perspective contribute to the understanding and protection of a central 

component of the biodiversity in the GCFR biodiversity hotspot. Since as Dobzhansky (1973) said: 

‘Nothing in biology makes sense except in the light of evolution.’ 
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