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I 

 

I Abstract 
 

In the recent years, line congestions in the electric transmission networks occur quite fre-

quently due to the power grids were not originally designed for the current amount of 

energy and its strong fluctuation. Furthermore, the increasing utilization of renewable 

distributed energy sources, growth of the network complexity, reduction of the conven-

tional power plant utilization, forecast errors and strong electricity market competition 

frequently bring the power grids to their transmission limits as well. Therefore, the risk 

of congestions has permanently increased, especially in central Europe. 

 

If a line congestion occurs in the electric network, the transmission system operator has 

to apply a suitable remedial action to overcome the problem as fast as possible, e.g by 

utilization of redispatch, which is very common in Germany. However, this measure can 

cause high costs for the transmission network operators. For this reason, the realization 

of an economically efficient and optimal redispatching has become very important issue 

in the power system operation. 

 

The main goal of this work is a consideration and development of various possibilities 

and methods for realization of a technically sound and cost-efficient redispatch in case of 

network congestions. Therefore, different numerical and metaheuristic optimization tech-

niques are implemented, compared with respect to their complexity, efficiency, reliabil-

ity, simulation time etc. and verified through a small test grid and simplified ENTSO-E 

network model. 

 

Furthermore, it is shown which technical and economic aspects of redispatching have a 

major influence on its realization and should always be taken into account or can be ne-

glected while solving the redispatch optimization problem. Here, different approaches of 

the network sensitivity analysis are evaluated and compared as well. 

 

Finally, the transmission network operators can use the knowledge and results of this 

work to improve the current redispatch realization in their power grids, and thus to reduce 

the redispatch costs, which are especially high in Germany. 
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II Kurzfassung 
 

In den letzten Jahren hat die Häufigkeit des Auftretens von Engpässen in den elektrischen 

Übertragungsnetzen stark zugenommen, weil die Stromnetze ursprünglich für die aktu-

elle Energiemenge und deren starke Schwankung nicht ausgelegt sind. Darüber hinaus 

bringen die weiter steigende Nutzung der erneuerbaren dezentralen Energiequellen, die 

zunehmende Netzkomplexität, die Abschaltung konventioneller Kraftwerke, Progno-

sefehler und der starke Wettbewerb auf dem Strommarkt die elektrischen Netze immer 

öfter an ihre Übertragungsgrenzen. Daher ist die Gefahr von Engpässen permanent ge-

stiegen, insbesondere in Mitteleuropa. 

 

Wenn ein Engpass im Stromnetz entstanden ist, sind die Übertragungsnetzbetreiber ver-

pflichtet, eine geeignete Abhilfemaßnahme so schnell wie möglich anzuwenden, um ihn 

zu beseitigen, z. B. durch den deutschlandweit verbreiteten Redispatch. Allerdings kann 

diese Gegenmaßnahme hohe Kosten für die Übertragungsnetzbetreiber verursachen, die 

zum Schluss die Stromverbraucher zahlen müssen. Deswegen ist die Realisierung eines 

kosten- und technisch effizienten Redispatches ein sehr wichtiges Thema des Netzbe-

triebs geworden. 

 

Daher ist das Hauptziel dieser Arbeit, unterschiedliche Möglichkeiten und Ansätze für 

eine kostengünstige Redispatchumsetzung bei Entstehung der Engpässe zu entwickeln. 

Dafür werden verschiedene numerische und metaheuristische Optimierungsmethoden 

hinsichtlich ihrer Komplexität, Effizienz, Verlässlichkeit, Detaillierung und Rechenzeit 

verglichen und durch ein kleines Netzmodell sowie durch ein vereinfachtes ENTSO-E-

Netzmodell verifiziert. 

 

Schließlich werden die Übertragungsnetzbetreiber durch die Erkenntnisse in dieser Arbeit 

in die Lage versetzt, ihre Stromnetze effizienter zu betreiben, in dem der Redispatchpro-

zess verbessert wird. Dabei werden die hohen Redispatchkosten, insbesondere in 

Deutschland, deutlich gesenkt. 
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1 Introduction 
 

1.1 Motivation 

 

Nowadays, the European electric network very often works at its transmission limits be-

cause of a massive growth of the power system operation complexity and transmission 

distances since the end of the nineties, which is caused by the enormous increase of the 

European electricity market. These strong changes in the electricity market have occurred 

because of the market liberalization, installation of a new European cross-border market 

and growing utilization of the renewables. Hence, a limitation of the transmission capac-

ity in the European countries, the permanent increase of the electricity consumption, some 

forecast errors and delays in the network expansion can lead to different emergencies 

such as network congestions. Therefore, in the recent years, line congestions occur quite 

frequently in the European electric transmission network. [1], [2], [3] 

 

In case of a line congestion, the transmission system operators must apply a suitable re-

medial measure as soon as possible. One of the methods to avoid or remedy line conges-

tions is redispatch. It is often used by system operators, especially in central Europe. To-

day, remedial actions of more than several thousand megawatts are a daily routine. Fur-

thermore, there is an increasing risk of complete exhaustion of the redispatch potentials 

leading to emergency situations. Therefore, the realization of an efficient redispatch has 

become an important topic in the system operation. 

 

Redispatching is a market-related remedial measure. Hence, for an optimal redispatch not 

only its technical but also economic aspects, e.g. the power flow equations, network sen-

sitivity analysis, power plant potentials, costs for the redispatch realization, start-up and 

shut-down costs of the power plants, should be considered. 

 

 

 

1.2 Objectives 

 

In this work, different possibilities and approaches of the redispatch optimization are in-

troduced and verified in test network models. For each developed optimization method, 

a suitable formulation of the considered optimization problem is proposed. Here, various 

technical and economic aspects of the redispatch realization are taken into account. It is 

determined, which components have a strong influence on the redispatching and should 

http://dict.leo.org/ende/index_de.html#/search=remedial&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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be considered in the optimization problem. Therefore, the introduced optimization prob-

lem consists of different linear and non-linear equations, which make an implementation 

of the optimization methods complicated. 

 

Furthermore, the simulation results of the developed optimization approaches for an effi-

cient redispatch realization are compared with regard to the complexity, detailing, relia-

bility, efficiency and computation time. 

 

Finally, the knowledge of this work can help the transmission network operators to realize 

the redispatching, resp. to operate their power grids, more efficient. Hence, the costs for 

the redispatch can be significantly reduced, which reduces electricity prices for the end 

customers. 

 

 

 

1.3 Structure of this work 

 

To achieve the above-described objectives, this work is structured as follows. 

 

In chapter 2, processes of congestion management are described in detail. This chapter 

gives an overview of a definition of congestion management, its regulations in the Euro-

pean electricity market and the existing congestion management methods. 

 

In chapter 3, different technical and economic aspects of the redispatch realization are 

described in detail. Moreover, the Power Flow Decomposition and two AC Power Trans-

fer Distribution Factors methods for the calculation of the network sensitivity analysis 

are compared and tested in some standard IEEE and simplified ENTSO-E power grid 

models. 

 

In chapter 4, fundamental knowledge of the optimization methods, linear programming 

and metaheuristic optimization techniques are provided. Furthermore, the optimization 

algorithms, which are used in this work, namely simplex, genetic algorithm, Mean Vari-

ance Mapping Optimization, Particle Swarm Optimization, Ant Colony Optimization, and 

different methods for the constraint handling are described in detail. In addition, the per-

formance of the utilized optimization methodologies is introduced. 
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In chapter 5, the efficiency, accuracy and possible benefits of the previously introduced 

metaheuristic algorithms for solving the non-linear redispatch optimization problem are 

verified by using different electric network models. 

 

Finally, this work ends with a summary and outlook for a possible future improvement of the 

redispatch optimization. 
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2 Congestion management 
 

Since the end of the nineties, there is a drastic growth of the European electricity market 

because of the high intensity of market liberalization, newly installed European cross-

border markets and growing use of the renewables. For this reason, the power system 

operation complexity and transmission distances rapidly increase as well. The annual load 

raise, limitation of the transmission capacity on country borders and general transmission 

capacity of the European countries as well as delays in the power grid expansion can lead 

to emergency situations of network transmission facilities in different places. Conse-

quently, the risk of network congestions is permanently growing [1]. In addition, in the 

future a secure network operation will be more important than a cost reduction for elec-

tricity consumers, because dependence of the industry, public institutions and other con-

sumers on the secure network operation has significantly increased due to the trend to 

automation and computerization [2]. Therefore, the network congestion management has 

become a very important issue for the transmission network operation. 

 

 

 

2.1 Congestions in the power systems 

 

According to the Regulation No 714/2009 of the European Parliament and of the Council 

of 13 July 2009 on conditions for an access to network for cross-border exchanges in 

electricity, a network congestion means „a situation, in which an interconnection linking 

national transmission networks, cannot accommodate all physical flows resulting from 

international trade requested by market participants, because of a lack of capacity of the 

interconnectors and/or the national transmission systems concerned“. Therefore, the 

main reason why congestions occur in the electric networks is a lack of the transmission 

capacity [3]. 

 

Based on the Continental Europe Operation Handbook of the European Network of the 

Transmission System Operators (ENTSO-E), the power system, which consists of n com-

ponents, has to stay stable after a contingency or operational trip of electrical equipment 

even with n-1 components. Furthermore, the thermal limits of power lines, which are 

dependent on the transmission capacity as well as the voltage and frequency limits, must 

not be exceeded. If the (n-1)-criterion is violated, a congestion occurs in an electric net-

work. In this case, the transmission system operators (TSOs) have to apply a suitable 

measure to remedy it fast, secure and cost-efficient. [4], [5], [6] 
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2.2 Definition of congestion management 

 

In accordance with the German Federal Network Agency the congestion manage-

ment (CM) must include all possible actions in the power grids, which can be applied by 

the network operator to avoid or remedy congestions in the power system [7]. 

 

 

 

2.2.1 Regulation of the congestion management in Europa 

 

Based on the Regulation No 714/2009 of the European Parliament and of the Council of 

13 July 2009, the CM must include the following main principles [3], [8]: 

 

 secure operation of the power grids must be kept 

 CM should be economically efficient 

 CM should be based on an open competition 

 CM should be non-discriminatory and transparent for all participants 

 the available transmission capacity should be utilized completely 

 revenues from CM should be used by some rules 

 

 

 

2.2.2 Regulation of the congestion management in Germany 

 

First, according to § 13 EnWG of the Federal Ministry for Economic Affairs and Energy 

in Germany [9], the TSOs should attempt to prevent network congestions in their own 

networks and on the interconnections with the neighboring power grids using network-

related remedial actions (e.g. topological changes). If these non-costly measures did not 

help, in the next step, the operating reserve of the electric network can be used to prevent 

congestions. Additionally, the network operators can conclude agreements with the power 

plant operators and/or electricity consumers for connection or disconnection of the gen-

eration plants or loads. For this, the affected participants get revenues from them. This 

market-related measure can balance the network load without any forced curtailments. 

The remaining transmission capacity must be spread non-discriminatory, market-oriented 

and transparent. The additional revenues from these procedures must be invested in the 

network expansion. 
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Only if this did not help, the access to the electric network can be denied for the power 

plant operators taking into account the priority of the particular power plants (§7 Kraft-

NAV [10]). Moreover, the load curtailment can be forced by the system operators. In 

these emergency cases, the affected participants get no revenues from them. 

 

Figure 2.1 shows a simplified representation of the CM as described above based on [11]. 

 

Network congestion prevention

 network related measures as topological changes 

(non-costly) 

 market-based measures as utilization of the 

power reserve, agreed interruptible loads and 

congestion management (costly)

Emergency procedures

 adjustment of the power 

infeed and consumption

 
Figure 2.1 Simplified representation of the CM [11] 

 

 

 

2.3 Congestion management methods 

 

The most discussed classification of the congestion management methods consists of two 

big groups: 

 

 congestion prevention or remedy (short-term CM) 

 transmission capacity allocation (long-term CM) 

 

Each of these groups includes many different techniques of the CM, which are described 

below in this chapter and summarized in Figure 2.2. 
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prevention or remedy 

(short-term CM)

Transmission capacity 

allocation 

(long-term CM)

Countertrading

Redispatch

Cost-based 

Market-based 

Administrative 

procedures

Power infeed 

auctions

Transmission 

capacity auctions 

Explicit auctions

Implicit auctions

Last accepted 

offer auctions

Pay-as-bid 

auctions 

Market Coupling 

Market Splitting

Lottery 

Priority (first 

come, first serve) 

Pro-rata

 
Figure 2.2 Overview of the congestion management classification [8], [12], [13], [14] 

 

 

 

2.3.1 Congestion prevention or remedy (short-term CM) 

 

The main purpose of the congestion prevention/remedy is to avoid/remedy network con-

gestions, which randomly or temporarily occur in the electric networks in the short term. 

But the most important point here is to keep the power system stability and ensure the 

secure network operation. Therefore, this type of the CM must be realized very quickly 

to change the network state rapidly and, in this way, to avoid the power grid instability, 

resp. a blackout. Due to this reason, the chosen CM methods must be flexible enough to 

relieve the power flow on the congested lines as fast as possible. [12] 

 

There are three methods for network congestion prevention or remedy in the short term: 

redispatch, countertrading and load management. These methods are described in detail 

below. 
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2.3.1.1 Redispatch (power generation management) 

 

Redispatching (shortly redispatch) is an often applied preventive/curative measure to 

avoid/remedy network congestions in the short term. By the redispatch the power gener-

ation is reduced at the long side of the congested line and increased at its short side. The 

TSO, which is responsible for the network area where the congestion occurs in a short 

time or has been occurred recently, must adapt the already applied power plant resource 

scheduling to reduce the power flow over the congested line and, in this way, keep the 

power network stable. Therefore, the redispatch is an administrative procedure, by which 

the TSOs decide which power plants must change their power infeed [15], [16]. 

 

After applying the power plant resource scheduling the current power flow, resp. conges-

tion flow, is exactly determined. If a line congestion occurs shortly, the most suitable 

power plants for a redispatch realization has to be selected by the responsible TSO. Then 

the affected power plants must adjust their active power infeed. The most important point 

here is that the active power balance in the electric network must be kept at any time [17]. 

Consequently, the electricity consumers are not affected by this remedial measure. 

 

First, by redispatching, the pricing on the electricity market does not change because the 

TSO contacts all affected power plants directly. Nevertheless, the redispatch participants 

are expecting a compensation. Therefore, the total costs, which arise thereby, is paid by 

the network utilization fees. [16] 

 

There are two types of the redispatching in terms of the financial implementation: cost-

based and market-based. 

 

A cost-based redispatch is based on the actual cost arising from its realization. Here, the 

power plant operators get a compensation for increasing the power generation during the 

redispatch realization. On the other hand, the operators, whose power plants reduced the 

power generation, must reimburse the saved costs to the TSO because their customers 

paid them for the electricity, which they did not actually provide during this time. In fact, 

this electricity was generated by the power plants, which must increase their active power 

generation during the redispatch. In this way, the TSO reduces the costs for the redispatch 

realization. [12] 

 

A market-based redispatch is a redispatch power auction for avoiding an impending line 

congestion. Based on the power plant resource scheduling, power generation and load 

forecasts, the TSOs can approximately evaluate the network power flow for the next day. 
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If the congestions are foreseeable, the determined redispatch power is tendered on a spe-

cial platform. Here, the power plant operators can offer to increase or reduce their active 

power output. After that the TSOs make a merit order from all offers and take the most 

suitable power plants for the redispatch realization. This method is non-discriminatory 

and transparent for all auction participants. However, there is a risk that the power plant 

operators can get a monopoly over the redispatch power because the redispatch market is 

very small. Furthermore, line congestions usually occur at the same places in the power 

grids, which leads to a utilization of the same power plants and strengthening of the mo-

nopoly on the redispatch market as well. [12] 

 

 

 

2.3.1.2 Countertrading 

 

A countertrading or counter-trade is a preventive/curative measure to avoid/remedy net-

work congestions in the short term and is based on the redispatching. Actually, the coun-

tertrading is a redispatch with own merit order for the power plant selection [16]. It can 

be used not only between different trade areas as by the explicit and implicit auctions but 

also within only one trade and price area [5], [12]. 

 

Here, the power plants in the export area have to reduce their power generation. However, 

they have already sold a certain amount of the active power on the electricity exchange, 

which they do not produce anymore. Therefore, they must buy back this electricity sur-

plus from the TSO for a price, which is smaller than the market price. Furthermore, the 

power plants in the import area need to increase their power generation. For this, the TSO 

pays them more than the market price. Therefore, the TSO bears losses for the realization 

of the countertrading. [18] 

 

In addition, the TSO has no influence on the selection of the participating power plants, 

i.e. power plants are only selected by the costs for the power generation. For this reason, 

the physical effect of the countertrading on the power system is not completely predicta-

ble. 
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2.3.2 Transmission capacity allocation (long-term CM) 

 

The main goal of the transmission capacity allocation is to avoid network congestions, 

which permanently occur in the power grid. In the European Union such congestions have 

become a major problem for a long time, especially on the cross-border interconnec-

tions [12]. 

 

There are three main groups of methods for the transmission capacity allocation: admin-

istrative procedures, market-based and power infeed auctions. These methods are de-

scribed in detail below. 

 

 

 

2.3.2.1 Transmission capacity auctions (market-based) 

 

The biggest and most used group of methods is based on a market model and consists of 

the so-called transmission capacity auctions. These methods are economically efficient, 

non-discriminatory and transparent. In addition, they ensure an open market competition 

in this field. 

 

Here the network transmission capacity is auctioned by the electricity market to guarantee 

the maximum balance between the supply and demand. Therefore, the available transmis-

sion capacity is completely exhausted, which is important to avoid network congestions. 

These transmission capacity auctions include mostly explicit and implicit auctions [12]. 

 

Explicit auctions 

 

Explicit auctions are preventive measures to avoid a network congestion [5]. Here, the 

network transmission capacity is auctioned separately from the electricity market. At the 

beginning of an explicit auction the available transmission capacity is disclosed by its 

owners (TSOs, resp. auction office [19]). Then the interested participants of the auction 

(e.g. power plants, electricity traders etc.) place bids. However, the electricity price is not 

known exactly at that time and cannot be considered in the explicit auction. Therefore, 

the bidders can make their offers based only on own experience and market observation. 

After that the submitted bids are sorted in a descending order and the available network 

transmission capacity is spread between the highest of them until it is exhausted [20]. 
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There are various types of explicit auctions. By the so-called last accepted offer auctions, 

which are very common, all auction participants pay only the amount of the last accepted 

bid [20]. By pay-as-bid auctions every bidder pays the own proposed price. 

 

In addition, the explicit auctions take place within different time ranges such as a year, 

month or day. 

 

The explicit auctions can be easily implemented, which makes them very attractive for 

the network transmission capacity market. However, they cannot guarantee an optimal 

utilization of the congested cross-border interconnections due to separation of the trans-

mission capacity from the electricity market. 

 

Implicit auctions 

 

As well as the explicit auctions, implicit auctions are preventive measures to avoid a net-

work congestion. However, by the implicit auctions the network transmission capacity is 

traded coupled with the electricity market. This means that the transmission capacity can-

not be auctioned decoupled from the electricity trading. The electricity exchange together 

with the TSOs takes care of the coordination between the electricity trading and available 

network transmission capacity [12]. Therefore, the implicit auction participants can focus 

only on the electricity trading market. 

 

Basically, there are two main types of the implicit auctions: Market Coupling and Market 

Splitting. By the Market Coupling several electricity exchanges with many different trade 

areas and price ranges are involved in the coordination between the electricity trading and 

available transmission capacity [12], [16]. By the Market Splitting, on the contrary, only 

one electricity exchange takes care of this coordination. 

 

By the Market Coupling the participants often establish a joint venture, the so-called auc-

tion office, to organize a successful cooperation between them. After closure of trading 

on the day-ahead market all order information as well as the available transmission ca-

pacity are provided to an auction office [21]. Based on the available information, the 

auction office determines the optimal power flow between the market areas and price 

independent buy and sell orders to ensure it [12]. 

 

Because there is only one electricity exchange by the Market Splitting, there is no need 

to establish an auction office. In all other respects, its working concept is very similar to 

the Market Coupling.  
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In opposite to the explicit auctions, the implicit auctions are realized only in the short 

term, resp. on a day-ahead basis, because the actual information about the electricity trad-

ing can be only provided in the short term as well [21]. 

 

Furthermore, the implicit auctions can be combined with the explicit auctions to ensure 

the transmission rights for the auction participants for a longer period of time. First, the 

physical transmission rights are auctioned explicitly in the middle or long term. Then the 

auction office allocates the remaining transmission capacity implicitly on the day-ahead 

basis. Furthermore, the already acquired transmission rights can be restricted by the net-

work instability risk. [12] 

 

An optimal case of the Market Splitting from an economic point of view is Nodal Pricing. 

Here, every power plant or a big load is a node, a small submarket, with an own trade 

area and price [16]. However, due to many nodes in the real electric networks such as the 

European power grid, it is very complicated to utilize the Nodal Pricing method practi-

cally. 

 

 

 

2.3.2.2 Administrative procedures 

 

Administrative procedures used to be very important for the transmission capacity allo-

cation on the power grid interconnectors in Europe before 01 July 2004, till the regulation 

on the cross-border trade for the European electricity market came into force [20]. The 

TSOs used to be completely responsible for the capacity allocation on the interconnectors 

and had plenty of scope compared to the market-based capacity allocation model. 

 

There are three most important methods of the administrative procedures: so-called lot-

tery, priority and pro-rata methods [12]. 

 

By the lottery method the available transmission capacity is randomly allocated between 

the participants of the electricity market. This method is non-discriminatory and transpar-

ent. However, it is not an economically optimal solution. 

 

By the priority method (first come, first serve) the transmission capacity is allocated in 

order of the received requests from the electricity market participants until the available 

capacity is completely exhausted [13]. This method is easy to realize, but it can be dis-

criminatory for the participants and is not always economically efficient. 
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By the pro-rata method the available transmission capacity is allocated proportional be-

tween all interested electricity market participants [13]. Moreover, the number of the re-

quests, which are received from one participant, is also considered and affects the ratio 

of the allocated capacity. This method is non-discriminatory and easy to realize, however, 

not always economically optimal. 

 

Therefore, all administrative procedures can be easily and quickly realized. However, 

they can be more discriminatory, not transparent and not economically efficient enough 

compared to the market-based methods. 

 

 

 

2.3.2.3 Power infeed auctions 

 

In this approach, the power plants are allowed to feed the active power in a congested 

network area only if they have bought the infeed rights at the explicit auction in advance. 

By the power infeed auctions only a limited number of the infeed rights can be auctioned 

to ensure the secure network operation. 

 

Basically, this concept is easy to implement for the network areas with permanent con-

gestions. However, the electricity price in these areas rises extremely due to the limitation 

of the infeed rights. Consequently, the power infeed auctions are not currently used in the 

European area. 
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3 Technical and economic aspects of redispatch 
 

To remedy network congestions in the electric networks, redispatching is frequently uti-

lized by the transmission system operators. As already described in chapter 2, the redis-

patch is a market-related remedial measure and means a controlled change of the active 

power plant generation capacity in order to remedy line congestions. To realize an effi-

cient redispatch, it is important to consider different kinds of its technical and economic 

aspects. 

 

 

 

3.1 Technical aspects of redispatch 

 

First of all, for a redispatch realization the suitable power plants, which have a high im-

pact on the power flow through the congested line, need to be found. For this reason, 

network sensitivity analysis has to be done. [4], [17], [15], [22] 

 

 

 

3.1.1 Redispatch principle 

 

If a power line in the electric network is congested, the power generation on its long side 

must be reduced, i.e. this is a power surplus area. At the same time, the power generation 

on the short side of this line must be increased by the same amount, i.e. this is a power 

deficit area. This process of the redispatching is shown in Figure 3.1. 
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Figure 3.1 Redispatch principle 

 

Therefore, the active power system balance must be kept at any time. Hence, the amount 

of the power generation reduction Pred on the long side of the congested line must be 

equivalent to the amount of the power increase Pincr on the other side of this power 

line [4], [17], [15], [22]: 

 

red incr 0P P   (3.1) 

 

To realize an effective redispatch the most suitable power plants must be chosen. There-

fore, the transmission network operators usually use different methods for the network 

sensitivity analysis. 

 

The amount of the nodal power changes of the chosen power plants can be determined 

using the active power amount Pcong, to which the active power on the line should be 

reduced in order to remedy the line congestion, and the sensitivity matrix coeffi-

cients σ [4], [17], [15], [23]: 

 

red red incr incr congP P P    (3.2) 

 

Power surplus area 

Power deficit area 

Congested line 

Pred 

Pincr 
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where σred, σincr are the sensitivity matrix coefficients, which describe the nodes with the 

strongest impact on the congested line. In addition, the sign of these coefficients shows a 

relieving or burdening effect of the nodal active power change. σincr for the power increase 

must be a positive value and σred for the power reduction – a negative. 

 

Therefore, based on equations (3.1) and (3.2), the relationship between the nodal active 

power changes of one generator pair, sensitivity matrix coefficients and needed active 

power change on the congested line can be formulated as follows: 

 

redred incr cong

incr1 1 0

P P

P

      
    

    
 (3.3) 

 

with 

 

incr redP P   (3.4) 

 

Based on equation (3.3) and (3.4), the needed nodal active power injection for the remedy 

of the line congestion can be easily found as shown in (3.5): 

 

cong

incr

incr red

P
P

 



 (3.5) 

 

 

 

3.1.2 Sensitivity analysis 

 

The sensitivity of a nodal active power injection for a power flow change on a line de-

pends on several major effects, e.g. switching states, load and active power generation 

pattern, but is influenced as well by transformer tapping, nodal reactive powers, shunt 

elements, etc. The Power Flow Decomposition method (PFD) is the only technical sound 

method, which is able to consider all of the mentioned effects. This approach allows to 

linearize the quadratic power flow equations, in such way that the system keeps its origi-

nal operation point. Furthermore, it does not need any special slack bus treatment. [17] 

 

Based on the power flow calculation, the nodal currents iK can be found as shown below: 

 

  K  KK  Ki Y u  (3.6) 
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where YKK is the bus admittance matrix and uK is the nodal voltage vector. 

 

On the other hand, the nodal currents iK can be represented as a sum of the load iK,L and 

generator iK,G currents [15], [24], [25], [26], [27]: 

 

  K  KK  K

  K.L   K,G  K,L  K   K,G

           

                   or



  

i Y u

i i Y u i

 (3.7) 

 

where YK.L is the nodal admittance matrix for the loads. 

 

Based on equation (3.7), the generator currents iK,G can be determined as follows: 

 

 KK  K,L  K   K,G( ) Y Y u i  (3.8) 

 

Therefore, the new nodal admittance matrix YKK,L, which is based on the generator cur-

rents, can be calculated by: 

 

 KK,L  KK  K,L Y Y Y  (3.9) 

 

In addition, the nodal apparent power flow sK can be established by: 

 
* * *

 K K  K K KK K3 3 s U i U Y u  (3.10) 

 

Due to the fact that the nodal admittance matrix is constant and the power changes are 

only depending on derivations of the node voltage vector, the changes in the active ΔpK,G 

and reactive ΔqK,G powers can be calculated by the nodal Jacobian matrix JKK,L, which is 

based on the generator currents, using the Taylor series expansion as follows [2.3]: 

 

K,G K

KK,L

K,G K

    
      

p δ
J

q u
 (3.11) 

 

Therefore, the changes of the node voltages ΔuK and voltage angles ΔδK can be deter-

mined by multiplying equation (3.11) with the inverse nodal Jacobian matrix as shown 

below: 
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K,GK 1

KK,L

K,GK


   

       

pδ
J

qu
 (3.12) 

 

Due to the fact that the nodal Jacobian matrix JKK is singular, the main challenge of the 

determination of the sensitivity analysis is to invert this matrix. For this reason, the PFD 

uses the based on the generator currents Jacobian matrix JKK,L, which is invertible. 

 

The changes in the terminal active and reactive powers ΔpT and ΔqT depending on the 

terminal voltage ΔuT and voltage angle ΔδT changes can be calculated by: 

 

T T

T T

T TT T T

T

T T TT T

T T

T T

  
         
                
   

p p

δ up δ δ
J

q u uq q

δ u

 (3.13) 

 

where JT is the terminal Jacobian matrix. 

 

On the other hand, the terminal currents iT can be found using the transposed topological 

matrix 𝑲KT
T  as shown below: 

 
T

  T  T  T  T KT  K i Y u Y K u  (3.14) 

 

Taking into account equation (3.13) the terminal voltage changes in equation (3.12) can 

be replaced by the node voltage ΔuK and voltage angle ΔδK changes using the transposed 

topological matrix. Finally, the node voltage changes can be expressed by the active ΔpK,G 

and reactive ΔqK,G power changes, which are based on the generator currents, as follows: 

 

K,GT KT T 1

T KT T KT KK,L

K,GT K


      

             

pp δ
J K J K J

qq u
 (3.15) 

 

Nevertheless, there are some more methods for the network sensitivity analysis. An often-

used method is the so-called AC Power Transfer Distribution Factors approach (AC-

PTDF). It identifies the terminal apparent power changes, which result from the nodal 

active or reactive power change, as well as the PFD method. Therefore, the non-linear 

load flow equations can be linearized. [17] 
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The AC-PTDF calculation is based on equation (3.15) as well as the PFD. However, here 

all nodal currents, which consist of the load and generator currents, are considered. There-

fore, the Jacobian matrix JKK in the AC-PTDF is calculated by the full nodal admittance 

matrix YKK. To invert the Jacobian matrix JKK, an additional slack node, which automat-

ically balances every imbalance of the active and reactive powers, is defined in the AC-

PTDF. Hence, the equation number is reduced. Nevertheless, such balancing node does 

not exist in the real electric networks. [17] 

 

The sensitivity coefficient matrix σ which describes the node impacts on power lines can 

be calculated as follows: 

 
1

L KK,L

 J Jσ  (3.16) 

 

with 

 

L L

T T

K KL K K

L

L K KL L

T T

K K

  
         
                
   

p p

δ up δ δ
J

q u uq q

δ u

 (3.17) 

 

where JL is the Jacobian matrix of power lines, ΔpL and ΔqL are the active and reactive 

power changes on power lines. 

 

There are several often-used methods to define the slack node, which are described 

in [27]. To compare the PFD and AC-PTDF methods, two AC-PTDF approaches are uti-

lized in this work [28], [29], [30]. 

 

The first approach allows to define one of the two in the redispatch participating genera-

tion nodes as a slack node (AC-PTDF method 1). If the input power of the second gener-

ator changes, the slack node balances the resulting active and reactive power mismatch. 

Hence, the interaction between both nodes can be interpreted as a redispatch action. To 

calculate the sensitivity coefficients, it is necessary to define every generation node as a 

slack bus iteratively. Therefore, the calculation time increases especially in the large elec-

tric networks. [17] 

 

The second methodology is to define a random slack node (AC-PTDF method 2). In this 

approach, the calculated sensitivities are relative to this slack node. Therefore, it is im-
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portant that the defined slack node has only a minor effect on the considered region. Fur-

thermore, the total power generation and consumption must be balanced to reduce the 

influence of the slack node on the load flow situation. In this approach the calculation of 

sensitivity coefficients is based on a superposition, i.e. they are calculated by the effects 

from both generators related to the slack node. Due to the reduction of the randomly de-

fined slack node, it is not possible to calculate the sensitivities of this node by this ap-

proach and the sensitivities on lines near the slack node are calculated too high. [17] 

 

 

 

3.1.3 Comparison 

 

The functionality and effectiveness of the introduced approaches for the sensitivity anal-

ysis are tested using standard electric network models in MATLAB (‘5 Bus’, ‘9 Bus’ and 

‘30 Bus’ power flow test cases [31], [32]). For testing the method’s accuracy, a redispatch 

of the active power for different power lines in the utilized power grid models is done to 

observe the dependency of the current change on the active power change on these lines, 

as well as different line congestions are created. 

 

 

 

3.1.3.1 ‘5 Bus’ IEEE power grid model 

 

The ‘5 Bus’ IEEE power grid model, which is used in this work to compare the methods 

for the sensitivity analysis, includes [31] and is shown in Figure 3.2: 

 

 5 bus bars (‘N4’ is a slack node) 

 3 power plants 

 6 lines 

 3 loads 
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Figure 3.2 ‘5 Bus’ IEEE power grid model 

 

All six power lines in the ‘5 Bus’ IEEE power grid model are studied. To observe the 

dependency of the current change on the active power change on line ‘L1’, the power 

plants connected to bus bars ‘N1’ and ‘N3’ are selected for the redispatching because they 

have the biggest influence on the considered line based on the sensitivity analysis.  

 

Figure 3.3 represents the dependency of the current change on the active power change 

on the considered line. The blue curve shows the I-P characteristic for the non-linear load 

flow function, the red one – a load flow approximation using the PFD method, the orange 

one – an approximation using the AC-PTDF method 1 and the purple one – an approxi-

mation with the AC-PTDF method 2. 
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Figure 3.3 I-P characteristics for the line ‘L1’ in the ‘5 Bus’ IEEE test network model 

 

Based on the I-P characteristics for the line ‘L1’, all sensitivity analysis methods have 

small deviations from the power flow function so that all curves are close to each other. 

Therefore, their zoomed representation to show which method is more accurate is given 

in Figure 3.4. 

 

 
 

Figure 3.4 I-P characteristics for the line ‘L1’ in the ‘5 Bus’ IEEE test network model 

(zoomed representation) 
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Obviously, the PFD approximates the non-linear load flow function most accurately in 

this test case. However, the AC-PTDF methods 1 and 2 provide accurate results as well. 

 

Furthermore, to observe the dependency of the current change on the active power change 

on line ‘L3’, the power plants with the biggest influence on the considered line, which 

are connected to bus bars ‘N1’ and ‘N5’, are selected for the redispatch realization. Figure 

3.5 represents the dependency of the current change on the active power change on line 

‘L3’. 

 

 
 

Figure 3.5 I-P characteristics for the line ‘L3’ in the ‘5 Bus’ IEEE test network model 

 

Here, the approaches provide small deviations as well as by the approximations in the 

previous case. For this reason, a zoomed representation of the I-P characteristics for the 

line ‘L3’ is given on Figure 3.6. 
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Figure 3.6 I-P characteristics for the line ‘L3’ in the ‘5 Bus’ IEEE test network model 

(zoomed representation) 

 

In this case, the PFD method provides the most accurate results again. But the AC-PTDF 

approaches have only small deviations too. 

 

 

 

3.1.3.2 Simplified grid model of the ENTSO-E area 

 

The simplified grid model of the ENTSO-E area, which is described in detail in chap-

ter 5.1.2 and shown in Figure 5.3, is also utilized to compare the introduced methods for 

the sensitivity analysis. 

 

To observe the dependency of the current change on the active power change on the dou-

ble power line between bus bars ‘1’ and ‘2’, the power plants with the biggest influence 

on the considered line, which are connected to bus bars ‘1’ and ‘2’, are selected for the 

redispatching. Figure 3.7 represents the dependency of the current change on the active 

power change on this power line. 
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Figure 3.7 I-P characteristics for the line power line between bus bars ‘1’ and ‘2’ 

 

Here, the PFD provides a very accurate approximation, while the AC-PTDF methods 1 

and 2 approximate the non-linear load flow function with large deviations. 

 

In addition, to observe the dependency of the current change on the active power change 

on the double power line between bus bars ‘11’ and ‘19’, the power plants with the biggest 

influence on the considered line, which are connected to bus bars ‘11’ and ‘19’, are se-

lected for the redispatch realization. Figure 3.8 represents the dependency of the current 

change on the active power change on this power line. 
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Figure 3.8 I-P characteristics for the line power line between bus bars ‘11’ and ‘19’ 

 

Obviously, the sensitivity analysis methods provide similar results as well as in the pre-

vious case. 

 

 

 

3.1.3.3 Conclusions 

 

Based on the simulation results for the standard IEEE test power grid models and simpli-

fied ENTSO-E grid model, the PFD approach provides the most accurate approximations 

of the non-linear load flow function in all test models. Its maximum deviation is around 

9% in case of a high load in the simplified grid model of the ENTSO-E area. However, 

the AC-PTDF methods 1 and 2 can have extremely large approximation deviations up to 

100% and more in the utilized power grid models. Therefore, in this work, the calculation 

of the network sensitivity analysis is done by the PFD method. 
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3.2 Economic aspects of redispatch 

 

Since redispatching is a very often used remedial action by the TSOs and can cause enor-

mous costs, it should be realized cost-efficiently to avoid high expenses. In this respect, 

some economic aspects, e.g. electricity generation costs, start-up and shut-down costs of 

the power plants, which participate in the redispatch, should be considered. [4] 

 

 

3.2.1 Levelized costs of electricity 

 

For the redispatch realization it is important to consider the so-called levelized costs of 

electricity (LCOE) cLCOE. These costs need to be spent on an energy conversion from any 

form of energy to electricity [33]. They are usually given in euros per kWh and consist 

of: 

 

 initial investment 

 costs of capital 

 operating cost 

 costs of fuel 

 maintenance cost 

 

The total LCOE for different conventional power plant types are provided in Table 

3.1  [34], [35]. 

 

Table 3.1  LCOE for different conventional power plant types [34] 

Power plant LCOE in €/MWh 

\Power plant types 
average min max 

Lignite-fired power plants 63 46 80 

Hard coal-fired power plants 81 63 99 

Combined cycle gas turbine power plants 89 78 100 

Gas turbine power plants 165 110 219 

 

 

 

3.2.2 Power plant cycling costs 

 

Furthermore, the power plant cycling costs (PPCC) can be also taken into account by the 

redispatch realization. Cycling of a power plant is its operation depending on different 
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load levels. Here, the power plants are permanently switched on and off, which can cause 

an equipment damage because of large pressure and thermal stresses during these pro-

cesses. The PPCC can be classified in general in five groups [36], [37]: 

 

 fuel, auxiliary services and CO2 emission costs related to the start-up, also called 

direct start-up costs 

 equipment replacement and maintenance costs related to the start-up, also called 

indirect start-up costs 

 equipment replacement and maintenance costs related to the load following, also 

called ramping costs 

 forced outage costs related to the start-up i.e. opportunity costs for the power gen-

eration during a power plant outage 

 heat rate effects related to the power plant cycling 

 

Therefore, the total PPCC csu,i can be calculated as shown below:  

 

su, su_dir, su_indir, ramp, fo, hr_incr,i i i i i ic c c c c c      (3.18) 

 

where csu_dir,i is the direct start-up costs, csu_indir,i is the indirect start-up costs, cramp,i is the 

ramping costs, cfo,i is the forced outage costs, chr_incr,i is the costs due to the heat rate 

increase. 

 

Furthermore, the indirect start-up costs are depending on the time, during which the power 

plant was offline: the longer it was offline, the higher the indirect start-up costs. There 

are three types of the power plant start-up regarding the offline time [38]: 

 

 hot start if the power plant was offline less than 24 hours before the start-up process 

 warm start if the power plant was offline between 25-119 hours before the start-up 

process 

 cold start if the power plant was offline for 120 hours or more before the start-up 

process 

 

The indirect start-up costs are an exponential function based on the start-up loss depend-

ency from the offline time t of the power plant time [39], [40] and can be determined as 

follows [41], [42]: 

 

su_indir, su_indir,max, (1 e )i t

i ic c
 

    (3.19) 
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where csu_indir,max,i is the maximum of the indirect start-up costs for the power plant i and 

λi is the heat-loss coefficient which is defined between 0 and 1. 

 

Figure 3.9 shows the dependency of the indirect start-up costs from the time during which 

the power plant was offline (the green curve). The orange lines are average values of the 

indirect start-up costs for three types of the power plant start-up. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Indirect start-up cost function [41] 

 

The total PPCC for different conventional power plant types are provided in Table 3.2. 

These costs were originally calculated in US dollars for the United States in 2011 [36]. 

However, for this work, they are converted into euros regarding the average dollar ex-

change rate in 2011. 

 

Table 3.2  Cycling costs for different conventional power plant types [36] 

Power plant cycling cost types Direct Indirect Ramping 

Costs in €/MW 

\Power plant types 

hot 

start 

warm 

start 

cold 

start 

ave- 

rage 
min max 

ave- 

rage 
min max 

Coal-fired power plant (small 

subcritical) 

7 9 12 96 67 143 10 7 11 

Coal-fired power plant (large 

subcritical) 

9 13 17 55 38 65 11 6 13 

Coal-fired power plant (super 

critical) 

11 19 23 53 40 65 8 5 10 

Time hot warm cold 

Cost 

cstart-up_indir,max 

average indirect start-up costs for warm start 
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Power plant cycling cost types Direct Indirect Ramping 

Gas-based combined cycle 

power plant 

- - - 41 25 60 1.5 0.7 1.6 

Gas-fired power plant 1 1 1 63 19 74 3.5 2 6 

Power plant with aero-deriva-

tive gas turbine 

3 3 3 18 9 44 0.5 0.4 1.2 

Gas-fired steam power plant 6 10 15 41 28 52 6 3.4 7 

 

Power plant cycling cost types Forced outage 

Costs in €/MW 

\Power plant types 

hot 

start 

warm 

start 

cold 

start 

Coal-fired power plant (small 

subcritical) 

1 2 3.4 

Coal-fired power plant (large 

subcritical) 

0.4 0.5 1.4 

Coal-fired power plant (super 

critical) 

0.3 0.6 0.9 

Gas-based combined cycle 

power plant 

0.3 0.6 0.6 

Gas-fired power plant 0.5 1.7 1 

Power plant with aero-deriva-

tive gas turbine 

0.8 0.8 0.9 

Gas-fired steam power plant 0.2 0.5 0.8 

 

Due to the heat rate increase, the costs can be are neglected because they are very small 

compared to other cost types [36]. 

 

The indirect PPCC for different conventional power plant types are provided in detail in 

Table 3.3. These costs are converted into euros as well. 

 

Table 3.3  Indirect cycling costs for different conventional power plant types [36] 

Power plant start-up types Hot start Warm start Cold start 

Indirect cycling costs in €/MW 

\Power plant types 

ave- 

rage 
min max 

ave- 

rage 
min max 

ave- 

rage 
min max 

Coal-fired power plant (small 

subcritical) 

68 57 94 113 80 130 106 63 205 

Coal-fired power plant (large 

subcritical) 

42 28 49 47 40 56 75 45 89 

Coal-fired power plant (super 

critical) 

39 28 45 46 39 64 75 52 86 

Gas-based combined cycle 

power plant 

25 20 40 40 23 67 57 33 73 

Gas-fired power plant 23 16 34 91 19 104 74 22 85 
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Power plant start-up types Hot start Warm start Cold start 

Power plant with aero-deriva-

tive gas turbine 

14 9 44 17 9 44 23 9 44 

Gas-fired steam power plant 26 18 30 42 26 63 54 39 64 

 

Due to difficulty of the PPCC calculation, the total PPCC are rarely involved in making 

decisions of the unit commitment by the system operators. Therefore, only the direct start-

up costs are usually considered even though they can be a small part of the total 

PPCC.  [37] 

 

 

 

3.2.3 Shut-down costs 

 

In addition, the power plant shut-down costs (PPSDC) csd for different conventional 

power plant types can be considered by the redispatch realization as well. However, in 

contrast to the power plant cycling costs, they are considerably lower.  [43], [44], [45] 

 

The total PPSDC for different power plant types are provided in Table 3.4 [45]. 

 

Table 3.4  PPSDC for different conventional power plant types [45] 

Power plant shut-down costs in €/MW 

\Power plant types 
average 

Coal-fired steam power plants 1.6 

Combined-cycle gas turbines 2.2 
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4 Optimization methods 
 

First of all, to solve an optimization problem, a suitable optimization method must be 

chosen. The selected technique should provide sufficiently accurate solutions in a short 

time. The choice of the optimization algorithm strongly depends on the formulation of 

the optimization problem, resp. of its objective function and constraints. 

 

There is a wide range of optimization methods for solving different optimization prob-

lems. Therefore, the big challenge in this field is to extract a suitable optimization tech-

nique from the many existing methods. Furthermore, some optimization algorithms are 

specifically developed for a certain kind of optimization task, e.g.  the linear program-

ming for problems with a linear criteria and linear constraints. In addition, various opti-

mization methods can usually be used to solve one specific problem. 

 

The optimization techniques, which are suitable for the redispatch optimization, are in-

troduced in this chapter. 

 

 

 

4.1 Linear programming 

 

The Linear Programming (LP) is a very common optimization technique to solve opti-

mization problems, which include only a linear objective function (4.1) and linear con-

straints (4.2). It is used in different areas, e.g. industry, medicine, economy, engineering, 

computer science etc. The main objective of the LP is to maximize or minimize the linear 

function over a polyhedron. [46], [47], [48], [49], [50] 
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subject to: 
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where f(xj) is the linear function, xj – the searched variables, aij, bi, cj – the real numbers, 

n – the number of function variables, m – the number of constraints. 

 

Based on equations (4.1) and (4.2), the LP problem with the objective function c can be 

formulated in the following standard matrix form [46], [47], [48], [49], [50]: 

 

 Tmin
x

c x  (4.3) 

 

subject to: 

 

Aх b  (4.4) 

 

where the linear constraints are expressed by the vector of the searched variables x, matrix 

of the constraint system A and vector of the constraint restrictions b. 

 

 

 

4.1.1 Simplex algorithm 

 

The simplex method or simplex algorithm is a frequently used algorithm for solving opti-

mization problems of the LP developed by George Danzig in 1947 [46], [47]. This method 

finds an exact solution of an optimization problem after a finite number of iteration steps 

or determines its infeasibility. 
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4.1.1.1 General approach 

 

The simplex algorithm solves optimization problems with the objective function c and 

constraints in the form described by equations (4.3) and (4.4). It consists of two main 

steps. [46], [47]: 

 

1. determination of a starting solution, which must fulfil the constraints (usually not 

the optimal solution) or infeasibility of the optimization problem. 

2. iterative improvement of the current solution of the optimization problem until an 

optimal solution is found, i.e. an improvement of the objective function is not 

possible anymore. 

 

At each iteration step the so-called simplex tableau T is calculated anew to find the most 

suitable edge of the polyhedron, resp. the optimal solution [4], [15]: 

 

T 0 f

 
  

 

A I b
T

c
 (4.5) 

 

with the identity matrix I and value of the cost function f, which is determined as shown 

in equation (4.3). 

 

For every iteration the pivot element in the simplex tableau must be found. Here, the pivot 

column is the column with the smallest negative coefficient of cT and the pivot row is the 

row with the smallest nonnegative quotient of b and the pivot column of A. Then the pivot 

column is transformed to a unit vector regarding the pivot element. These calculation 

steps are equivalent to the Gaussian elimination, resp. to the steps by solving a linear 

system of equations. They lead to a new optimization problem solution, resp. to a new 

edge of the polyhedron with more optimal objective function value. 

 

 

 

4.1.1.2 Performance 

 

Nowadays, the simplex algorithm is widely and constantly utilized in various fields 

around the world to solve linear programming problems. This is the greatest proof of its 

high performance. There are several main advantages, which make the simplex extremely 

popular [46], [47]: 
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 It is based on a simple calculation method and is easily understandable. 

 It is easy to implement. 

 It has a low computation time, especially by small linear programming problems. 

 It considers different factors and restrictions of the optimization problem by every 

iteration step instead of guessing the optimal solution. 

 

Nevertheless, there are some disadvantages of the simplex algorithm, which should be 

considered by choosing an optimization method: 

 

 It can only be utilized for certain linear programming tasks, which requires an ad-

aptation of the optimization problem. 

 It is not the fastest analytical optimization method. 

 During solving the optimization problem an infinite loop can occur by a careless 

choice of the pivot elements. 

 

 

 

4.1.2 Linear redispatch optimization 

 

4.1.2.1 Objective function of the redispatch optimization problem 

 

Here, the costs c for the realization of the redispatch, which should be minimized as 

shown in equation (4.3), is used as the objective function for the considered optimization 

problem and is formulated as follows [4], [15], [17], [46], [47]: 

 

1 1

           ij ij

G G

i j

c P c
 

   (4.6) 

 

with 

 

incr, red,ij i jP P P    (4.7) 

 

incr, red,ii jjc c c   (4.8) 
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where ΔPij is the amount of the power generation change for every possible power plant 

pair during the redispatching, Pincr,i, Pred,j are the amount of the power generation in-

crease/reduction for each power plant, Δcij is the costs in €/MWh, which must be spent 

for the power generation change by every possible power plant pair, cincr,i, credj are the 

cost, which must be spent/saved for the increasing/reducing of the power generation for 

each power plant and G is the number of the power plants in the power grid. 

 

 

 

4.1.2.2 Constraints of the redispatch optimization problem 

 

The main constraint for the introduced redispatch optimization problem is considering 

the electric network state, i.e. power flow, and node impact on the congested line. The 

easiest and most efficient way to formulate this constraint is a linearization of the non-

linear power flow equations using the network sensitivity analysis: 

 

1

cong

1

G G

j

ij ij

i

P P
 

    (4.9) 

with 

 

incr, red,ii jj     (4.10) 

 

where Δσij is the difference between the sensitivity coefficients for every possible power 

plant pair during the redispatching, Δσincr,i, Δσred,j are the sensitivity coefficients for each 

power plant. 

 

In this work, the PFD, which is introduced in chapter 3.1.2, is used to calculate the net-

work sensitivities, resp. to formulate the first constraint in equation (4.9) of the considered 

redispatch optimization problem. 

 

The further important constraints for the optimization problem are the consideration of 

the power plant redispatch potentials, which can be utilized during the redispatch realiza-

tion. These constraints consider the maximum and minimum active powers, which can be 

generated by the power plants. 
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RP+,

1 1

G G

ij ji i

j j

P P P
 

      (4.11) 

 

RP-,

1 1

G G

ji ij i

j j

P P P
 

      (4.12) 

 

where PRP+,i and PRP-,i are the positive and negative redispatch potentials of the power 

plant i. 

 

 

 

4.1.3 Sequential simplex 

 

4.1.3.1 General approach 

 

The sequential simplex (SS) is an extension of the standard simplex algorithm and was 

proposed by W. Spendley, G.R. Hext and F.R. Himsworth in 1962. This technique utilizes 

the simplex sequentially, i.e. each subsequent simplex run starts with the last working 

point of the previous run, resp. they both always have one common edge. Therefore, cal-

culation errors can be completely remedied in this way. [51], [52] 

 

The SS was further developed by J. A. Nelder and R. Meadf in 1965. In this approach, 

the objective function with n variables is minimized compressing the function values at 

n+1 vertices, resp. positions p of the standard simplex. Thereby, the highest vertex ph with 

the maximum value must be replaced by another working point. Therefore, the SS adjusts 

itself to the local minimum to finally find the global minimum. 

 

Firstly, the initial vertex p1 is randomly chosen. Then the remaining vertices pi need to be 

scaled by [52] [53]: 

 
( 1)

1 u   i

i ip p  (4.13) 

 

where i=2,…,n+1, λ i – the positive constants and u – the unit vector. 

 

Furthermore, the so-called centroid of the simplex pc should be calculated without con-

sideration of the highest vertex as follows [52]: 
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1

c

2





 
n

i

i

p p  (4.14) 

 

The reflection pr, which is the main operation of the SS, is determined by: 

 

r c 1 c h( )  p p p p  (4.15) 

 

where α1 is the reflection coefficient, which is greater than 0 and is calculated as follow-

ing [52]: 

 

r c
1

h c







p p

p p
 (4.16) 

 

If the function value fr of the reflection pr is smaller than the function value fl of the lowest 

vertex pl, the so-called expansion must be done: 

 

e c 2 r c( )  p p p p  (4.17) 

 

with 

 

e c
2

r c







p p

p p
 (4.18) 

 

If the function value fe of the expansion pe is smaller than the function value fl of the 

lowest vertex pl, the highest vertex ph is replaced by the expansion. Here, the reflection 

pr must be recalculated taking into account the new expansion value. 

 

If the function value fe is greater than the function value fl, the highest vertex ph is replaced 

by the reflection. Then the reflection pr must be recalculated as well. 

 

However, if the function value fr of the reflection pr is greater than the function value fl of 

the lowest vertex pl, the highest vertex ph is immediately replaced by the reflection pr. 

 

After that the so-called contraction pcontr is calculated as follows: 

 

c 3 h c( )  contrp p p p  (4.19) 
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where α3 is the contraction coefficient, which is determined by: 

 

contr c
3

h c







p p

p p
 (4.20) 

 

with 

 

30 1   (4.21) 

 

If the function value fcontr of the contraction is smaller than the minimum value of the 

function values fh and fr, the highest vertex ph is replaced by the contraction pcontr. Here, 

the reflection pr must be recalculated again. 

 

Finally, if the fcontr is greater than the minimum value of the fh and fr, all positions pi should 

be replaced using: 

 

l

2


 i

i

p p
p  (4.22) 

 

Then the reflection must be recalculated. 

 

If the global minimum is reached, the iterative process is stopped. 

 

 

 

4.1.3.2 Algorithm adaptation for the non-linear redispatch optimization problem 

 

To avoid deviations in the congestion power calculation, which are caused by the utiliza-

tion of the sensitivity analysis, the SS is used in this work as well. 

 

The optimization begins from a run of the standard simplex taking into account the linear 

redispatch optimization, which is described in detail in chapter 4.1.2. Here, the found 

power changes of power plants for the redispatch realization are used to create a new 

working point of the power grid. Then the power flow of this new working point is deter-

mined using the non-linear load flow equations. 
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If there is deviation in the congestion power calculation, this deviation is utilized as the 

congestion power on the congested line in equation (4.9) for the next run of the simplex. 

Furthermore, before the next run, the network sensitivity analysis for the new working 

point are calculated again. Therefore, the new sensitivity coefficients are taken for the 

redispatch optimization using equation (4.9). In addition, the power plant redispatch po-

tentials are recalculated as well. This procedure repeats until the network congestion is 

completely remedied. 

 

 

 

4.2 Genetic algorithm 

 

The genetic algorithm (GA) is a stochastic evolutionary optimization method, which is 

based on principles of Darwin's theory of biological evolution such as genetic inheritance 

and natural selection. It was developed by Prof. John Holland and his students at the Uni-

versity of Michigan in the early 1970s. The GA is very well suited for solving highly 

nonlinear optimization problems and is able to find the global optimal solution in a com-

plex search space. It is utilized in a variety of areas, e.g. engineering, robot technology, 

bioinformatics, computer science, economy, chemistry, transport etc. [54], [55], [56], 

[57], [58], [59], [60], [61] 

 

 

 

4.2.1 Evolutionary optimization algorithms 

 

The Evolutionary algorithms (EA) are a subset of stochastic optimization methods, which 

are based on evolutionary mechanisms such as a selection, mutation, recombination and 

reproduction. The EAs cannot usually find the best solution but a well approximating one 

for every optimization problem type. Furthermore, they are easily implementable. This 

all makes them applicable in a broad range of fields. [55], [56] 

 

The recombination and mutation operators of the EAs can extend the search space. But it 

does not provide any guarantee that the current problem solution will be improved. How-

ever, the search procedure always moves to a global optimum by means of the selec-

tion. [57] 

 

https://en.wikipedia.org/wiki/Mutation
https://en.wikipedia.org/wiki/Genetic_recombination
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There are plenty of evolutionary algorithm types and variations. The evolutionary algo-

rithms differ mainly in the genetic representation, genetic operators and objective func-

tion of the optimization problem. 

 

In this work, the genetic algorithm and its variation are introduced and evaluated. The 

basic principles of these optimization methods are described in this chapter  

 

 

 

4.2.2 General approach 

 

In contrast to the simplex algorithm, the GA can solve optimization problems with the 

fitness function c and constraints which can be formulated by linear, non-linear, discrete 

or discontinues equations [4], [15], [54], [57]: 

 

  max
x

f x  (4.23) 

 

Assumed: 

 

  A х b  (4.24) 

 

As well as all evolutionary algorithms, the GA is an iterative process, which begins with 

the generation of an initial population. This start population consists of chromosomes 

which are randomly created. Furthermore, before the population initialization, the objec-

tive function, constraints of the optimization problem and GA parameters must be de-

fined. Then the recombination of the best chromosomes is realized, resp. the strongest 

individuals produce an offspring. In the next step, a new generation is created based on 

the best individuals and their offspring. After that the new generation mutates and the 

strongest individuals of this generation are chosen for the next iteration step. The above 

process repeats until break conditions, e.g. finding an acceptable solution or exhaustion 

of the iteration steps, are fulfilled. A flowchart of the described iterative process is given 

in Figure 4.1 [4], [54], [55], [59] 
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Figure 4.1 Flowchart of the genetic algorithm 

 

 

 

4.2.2.1 Recombination 

 

There are various methods for mating the best individuals/chromosomes in the GAs. But 

the simplest and in many cases well working mating approach is choosing one crossover 

point in the two parent chromosomes cm and cf [54]. 

 



4 Optimization methods 43 

 

m m1 m2 m m
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c

c
 (4.25) 

 

where cm1, cm2,…cmn are the variables of the ‘mother’ chromosome, cf1, cf2,…cfn – the 

variables of the ‘father’ chromosome, n – the number of the chromosome variables and 

cmcrp, cfcrp – the crossover point, i.e. the chromosome variables are randomly exchanged 

in the crossover point. Therefore, two new offspring chromosomes coffspr1 and cfoffspr2 are 

produced: 

 

offspr1 m1 m2 f f

offspr2 f1 f2 m m

[ , ,..., ,..., ]

[ , ,..., ,..., ]

crp n

crp n

c c c c

c c c c





c

c
 (4.26) 

 

However, the big disadvantage of this approach that there is no new genetic material in 

the offspring at all: the offspring is only a new combination of the parents. Consequently, 

a new genetic material can only appear by a mutation. 

 

To solve this problem an extrapolation can be used in the introduced crossover method, 

i.e. new variable values cnew1 and cnew2, which are based on different combinations of the 

parent variable values, are integrated in the offspring [54]. 

 

 

 

new1 m m f

new2 f m f

crp crp crp

crp crp crp

c c c c

c c c c





  

  
 (4.27) 

 

where β is the random number between 0 and 1. 

 

Then these calculated values are integrated into equation (4.25) instead of the crossover 

point as given by 

 

offspr1 m1 m2 new1 f

offspr2 f1 f2 new2 m

[ , ,..., ,..., ]

[ , ,..., ,..., ]

n

n

c c c c

c c c c





c

c
 (4.28) 

 

If the crossover point is the first chromosome variables, the remaining variables of the 

parent chromosomes to the right are exchanged. If the crossover point is the last chromo-

some variables, the remaining variables of the parent chromosomes to the left are ex-

changed. [54] 
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After the recombination a new generation, which can consist of the parent and offspring 

chromosomes are created. 

 

 

 

4.2.2.2 Mutation 

 

With the help of the recombination the GA can find a global minimum very fast. How-

ever, such approximate solutions are not enough to fulfill the task in many cases: a local 

minimum must be found as well. For this reason, a mutation operator is utilized in the 

GAs. It introduces a new genetic material in a new generation to expand the search 

area. [54], [55], [57] 

 

In the first place, a mutation rate must be chosen. In general, the mutation is a quite rare 

phenomenon in the biology. Consequently, the mutation rate should be a small value. 

However, it is not possible to find one optimal value of the mutation rate for all optimi-

zation problems. Therefore, the set value should be often adapted to the considered task. 

 

The most utilized approach to find the new mutated chromosome variable cmut uses a 

normal/Gaussian distribution function and is given by [54]: 

 

 mut old 0,1c c N   (4.29) 

 

where cold is the selected chromosome variable for the mutation, σ – the standard deviation 

of the Gaussian distribution function, N(0,1) – the standard Gaussian distribution with the 

mean 0 and variance 1. 

 

 

 

4.2.2.3 Selection 

 

At the end of each iteration, after the mutation, the strongest individuals of the population 

are chosen, resp. a new generation is created again. This generation is used for the recom-

bination during the next iteration. The iterative process repeats until the break conditions 

are fulfilled. 
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4.2.3 Constraint handling 

 

The bulk of optimization problems not only consist of the objective function, but also of 

many different linear, non-linear etc. constraints. Therefore, constraint handling, i.e. han-

dling of constraint equations in the optimization method, should be integrated in the GAs. 

However, there is no universal constraint handling approach, which could be used in 

every optimization technique. The constraint handling method should be chosen based 

on the optimization method type and considered optimization prob-

lem. [62], [63], [64], [65] 

 

There are various constraint handling , which can be used for the GAs. They can be clas-

sified in the following groups [62], [65]: 

 

 utilization of penalty functions 

 search of feasible solutions 

 distinction between feasible and infeasible solutions 

 hybrid methods 

 

The constraint handling methods, which are based on the penalty functions, are mostly 

used in the GAs because they are quite simple, easily implementable and well-working 

for many optimization problems. They convert a constrained optimization problem to an 

unconstrained problem by penalizing unfeasible solutions [62], [63], [64], [65]. 
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where penalty(x) is the penalty parameters and F – the feasible area. If the considered 

optimization problem is a minimization problem and there is no violation of the con-

straints, penalty(x) is 0. Otherwise, it is a positive value. 

 

In this chapter, the most common constraint handling approaches are introduced. 
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4.2.3.1 Death penalty 

 

The death penalty method is the simplest and mostly used approach for handling con-

straint optimization problems. It sorts out every unfeasible solution from the generation 

by penalizing the unfeasible solutions in such a way, that this generation can only consist 

of the feasible solutions. This method works especially well if the feasible area belongs 

to the sensible search space. However, if the optimization problem is highly constrained, 

the death penalty approach has a high computation time and the proposed best solution 

might not be accurate enough. [62] 

 

 

 

4.2.3.2 Static penalty 

 

The static penalty method is also a quite simple approach for handling the constraint op-

timization problem. It penalizes the unfeasible solutions as well as the death penalty 

method. However, in this approach some levels of the constraint violation with own pen-

alty coefficient must be chosen. The more constraints are violated by the unfeasible solu-

tion, the higher the penalty value for this solution. [62], [65] 
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where Cij is the penalty coefficient, i – the current violation level, j – the current con-

straint, l – the level number and m – the constraint number. 

 

However, in this approach a high number of parameters, resp. m(2l+1) parameters, must 

be selected and applied. This makes the utilization of the static penalty method quite dif-

ficult. Furthermore, the accuracy of the solutions strongly depends on the chosen values 

of these parameters. [65] 
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4.2.3.3 Dynamic Penalty 

 

As opposed to the previous approach, in the dynamic penalty method the penalties change 

over the time, resp. in every iteration step i. The penalizing of the unfeasible solutions is 

given by: 
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where C and α are the user-defined constants with the recommended values: C = 0.5 and 

α = 1 or 2.  [62], [65] 

 

The accuracy of the solutions strongly depends on the chosen values of the parameters α 

and β. Furthermore, this approach quite often cannot find any feasible solution or finds a 

solution, which is not accurate enough.  [62], [65] 

 

There are many other methods for the constraint handling. But they are not described in 

this chapter because they are not considered in this work. 

 

 

 

4.2.4 Performance 

 

The genetic algorithm is widely used for solving different optimization problems in var-

ious fields, e.g. engineering, robotics, databases, neural networks, chemistry, bioinfor-

matics, transport, investment and game strategies etc., because it has the following ad-

vantages [54]- [58] 

 

 It is easily implementable. 

 It can be easily adapted for the considered optimization problem. 

 It can work with a large number of variables. 

 It works with continuous and discrete variables. 

 It is very stable. 
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Nevertheless, it has some disadvantages, which should be considered by choosing the 

optimization method: 

 

 It is computational intense. 

 It can find an optimal solution, which is not accurate enough. 

 It has many parameters, which must be selected by the user. 

 

 

 

4.2.5 Non-linear redispatch optimization problem for the GA 

 

Firstly, the linear fitness function c of the redispatch optimization problem for the GA 

should be minimized by the utilization of equation (4.6) as well as for the simplex algo-

rithm. 

 

The main constraint is taking into account the electric network state and node impact on 

the congested line. However, the electric network state can be described by the non-linear 

power flow equations, which are not linearized in comparison to the formulation of the 

redispatch optimization problem for the simplex algorithm. 

 

The power plant potentials, which can be used for the redispatch realization, are consid-

ered with the help of equations (4.11) and (4.12) as well. 

 

Furthermore, in the first place, the lowest-cost power plants are used in an ascending 

order of their total costs to cover the load consumption. This process is called a merit 

order. However, the merit order data can sometimes include errors, in which the more 

expensive power plants are used instead of cheaper one. In this case, a profit could be 

theoretically made by the utilization of the redispatch, which is not possible in the prac-

tice. Hence, based on equation (4.8), the redispatch total costs for each power plant pair 

must be positive: 

 

incr, red, 0i jc c   (4.33) 

 

Moreover, the cost objective function c must be equal or greater to 0: 

 

0c   (4.34) 

 



4 Optimization methods 49 

 

In addition, the start-up and shut-down of power plants can be taken into account by an 

implementation of the so-called integer variables into the redispatch optimization prob-

lem. Here, the integer variables can take only binary values 0 or 1. 

 

In this case, the costs c for the realization of redispatch considering the PPCC and PPSDC, 

which might be minimized, is utilized as the non- linear fitness function for the considered 

optimization problem and is formulated as follows [4], [15], [17], [40]-[42], [44], [66], 

[67], [68]: 

 

su sd
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1 1 1 1
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       (4.35) 

 

where Gsu, Gsd are the number of the power plants, which need to be started-up and shut 

down, sui and sdi are the binary variables, which are 1 if the power plants are started-up 

and shut down, otherwise they are equal to 0. 

 

If the power plant, which participates in the redispatch, should be started-up, its total 

generated active power Pi must be equal or less to its maximum active power Pmax,i and, 

at the same time, equal or greater to its minimum active power Pmin,i, which are multiplied 

with the binary status variable su. [66] 

 

max, ii iP P su  (4.36) 

 

min, ii iP P su  (4.37) 

 

Finally, the PPSDC are neglected in this work because they are very small compared to 

other cost types (see Table 3.4). 

 

 

 

4.2.6 Algorithm adaptation for the non-linear redispatch optimization 

problem 

 

First of all, the GA is developed and adapted for the described redispatch optimization 

problem to compare its results with results of the remaining optimization techniques, 

which are utilized in this work. Furthermore, the GA is tested in a small network model 
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and simplified network model of the ENTSO-e power grid, which are described in detail 

in chapter 5.1. 

 

There are various ways to implement the GA However, the choice of the genetic algo-

rithm type primarily depends on the formulation of the considered optimization problem. 

The previously introduced non-linear optimization problem for the redispatch realization 

consists of continuous variables. Therefore, in this work, the so-called continuous genetic 

algorithm, which is described in detail in chapter 4.2.2 and shown by the flowchart in 

Figure 4.1, is implemented to solve this task. 

 

In the developed GA, a randomly created initial population consists of the chromosomes, 

which include the possible power generation changes for all power plant combinations of 

the considered network models. Here, the positive and negative redispatch potentials of 

each power plant pair must be taken into account. Furthermore, the population individuals 

include binary values for the start-up and shut-down status of the power plants. Hovewer, 

these binary combinations are not random values. They are generated according to the 

chosen power plant pairs. 

 

To produce new offspring chromosomes, the approach of the one crossover point of two 

parent chromosomes is used based on equations (4.25) and (4.26). Furthermore, to include 

a new genetic material in the offspring, new values, which are based on different combi-

nations of the parent variable values, are integrated in the offspring by equation (4.27). 

Therefore, these new values replace the crossover point as shown in equation (4.28). In 

every iteration step a new generation is built based on the parent and offspring chromo-

somes. 

 

The mutation is implemented in the GA to find a local minimum in the search space using 

equation (4.29). Here, the mutation rate is adaptive and depends on the optimization prob-

lem, i.e. on the power plant number and population size. 

 

After the mutation, the strongest population individuals are chosen to create a new gen-

eration for the next iteration step. This iterative process repeats until the break conditions 

are fulfilled. 

 

As already mentioned, the parameters of the evolutionary algorithms usually need to be 

adopted for the considered optimization problem. The developed GA for the introduced 

non-linear redispatch optimization problem with the consideration of the power flow 

equations and PPCC is parameterized as follows: 
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 The population consists of 200 individuals: 100 strongest parent chromosomes and 

their 100 offspring. 

 The mutation rate is 0.4 by reference to the power plant pair number 64 and popu-

lation size 200. 

 The standard deviation of the Gaussian distribution function σ is 0.05. 

 The iteration number is 10000. However, if the best solution cannot be improved 

during many iterations, the iterative process is stopped. 

 The static penalty for the constraint handling is 1000000. 

 

 

 

4.3 Mean Variance Mapping Optimization 

 

The Mean Variance Mapping Optimization (MVMO) is a new stochastic optimization 

method which is based on the GA. But a novelty in this optimization technique is the 

utilization of the so-called mapping function (MF) for the mutation process. The MF is 

based on mean and variance of some best solutions, which are saved in a continually 

updated archive. The MVMO was developed by István Erlich in 2010 motivated by the 

continually increasing complexity of the power system. Nevertheless, the MVMO has a 

big potential to be used for solving optimization problems in different ar-

eas. [4], [69], [70], [71], [72], [73], [74], [75], [76] 

 

 

 

4.3.1 General approach 

 

The MVMO solves optimization problems with the same objective function and con-

straints as well as the GA, which are already described in equations (4.13) and (4.14). 

 

However, as opposed to the GA, in the MVMO the offspring mutation is based on the 

MP, resp. on the mean and variance of the best individuals of the population, which are 

stored in an archive. The MF is usually defined in a range between 0 and 1. Hence, the 

optimization variables must be scaled correspondingly to this range. In addition, during 

the iteration process the shape of the MF is constantly modified according to the progress 

of the best solution search. [4], [69]-[76] 

 

http://www.uni-due.de/mvmo/background
http://www.uni-due.de/mvmo/background
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Therefore, the initial individuals xi are transformed into the new mutated generation xnew,i 

using the MF. This transformation, resp. generation mutation, takes place according to 

the following equation (4.38) and is shown in Figure 4.2  [4], [69]: 

 

 new, 1 0 01i x ix h h h x h      (4.38) 

 

xnew,i

xi = rand 1
0

1

 
Figure 4.2  Mapping function example [69] 

 

Where the h-function hx is determined by: 

 

      21 1
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     (4.39) 

 

The parameters h1 and h0 are calculated by xi=1 and xi=0 using equation (4.39). 

 

The mean of the variables �̅�𝑖 is established based on the archive with the n best solutions 

as shown below: 
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   (4.40) 

 

http://www.uni-due.de/mvmo/background
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where xi is the best solution, which are stored in the archive. 

 

The shape variables si are determined using the variance of the variables 𝑣𝑖: 

 

 lni i ss v f   (4.41) 

 

where fs is the factor for changing the shape of the MF and calculated by: 

 

 * 1s sf f rand   (4.42) 

 

with the smallest value fs
* of the shape factor fs and the random value rand which is 

between 0 and 1. 

 

The variance of the variables 𝑣𝑖 is determined based on the archive with the n best solu-

tions xi as well the mean of the variables: 
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   (4.43) 

 

The shape factor fs is greater than 1 if the calculation accuracy must be increased and it is 

less than 1 if the search of the solution shall be more global. 

 

If the accurancy of the MVMO should be increased, the factor fs
* can be calculated as 

follows: 
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 (4.44) 

 

where fstart
* is the smallest value of the factor fs

* and can be chosen between 0.9 and 1, 

fmax
* is its largest value and can be defined between 1 and 3, i is the current iteration and 

imax is the maximum number of the iterations. 

 

The shape variables si1 and si2 can be found using the algorithm, which is shown in Figure 

4.3. 

 



4 Optimization methods 54 

 

si1 =si2=si

si > 0

si > di

di=di·Δd

yes

yes

di=di/Δd

no

rand ≥ 0,5

si1=si

si2=si

yes

si1=di

si2=si

no

end

no

Δd=(1+Δd0)+2·Δd0·(rand-0,5)

 
Figure 4.3  Algorithm for the determination of the shape variables 

 

The start value of the variables di must be set before the iterative process starts and should 

be defined between 1 and 1.5 based on the simulation experience [69]. The parameter di 

is used instead of si1 to smooth the h-function. 

 

Basically, if si is greater than 0, di is continually scaled with the factor Δd. If si is greater 

than di, the factor di is scaled up with Δd, i.e. di becomes larger than at the beginning. 

Here, the factor di remains close to the value of si. Otherwise, the factor di is scaled down 

with Δd, i.e. di becomes smaller because Δd is always greater than 1. 

 

In addition, the factor Δd oscillates around the value (1+Δd0) with decreasing amplitude 

Δd0 as shown below: 
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 (4.45) 

 

where Δd0,start is the smallest value of the factor Δd0 and Δd0,max is its largest value. 

 

The factor Δd0 should be defined between 0.01 and 0.4 based on the simulation 

experience [69]. 

 

The size of the archive for the MVMO should be small and usually varies between 2 and 

5 of the currently best individuals. The utilization of a larger archive can lead to a too 

strong influence of the best solutions on the orientation of the search. 

 

 

 

4.3.2 Performance 

 

The MVMO is a quite new optimization method, which is not yet widely used. In the 

main, it is successfully utilized for different optimization problems in the power systems. 

Basically, it has the same advantages and disadvantages as the GA because the MVMO 

is based on the GA. The only difference is that the MVMO uses the MP for the mutation 

process. Its most important advantage is the searching for a global solution with the con-

sideration of the best individuals, which makes this optimization method more efficient. 

Nevertheless, a complicate mathematical description of the mutation process leads to a 

longer computation time, resp. use of more computer resources. [69] 

 

 

 

4.3.3 Non-linear redispatch optimization problem for the MVMO 

 

In this work, the fitness function c of the redispatch optimization problem for the MVMO 

should be minimized by the utilization of linear and non-linear equations (4.6) and (4.35) 

in the same way as for the GA. 

 

The main constraint of the redispatch optimization problem is taking into account the 

electric network state and node impact on the congested line using the network sensitivity 

analysis by equation (4.9) or the non-linear power flow equations as well as by the GA. 

 

http://www.uni-due.de/mvmo/background
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The remaining constraints for the developed MVMO are already formulated by equa-

tions (4.11), (4.12), (4.33)-(4.37). 

 

 

 

4.3.4 Algorithm adaptation for the non-linear redispatch optimization 

problem 

 

The MVMO algorithm is developed and adapted for the described redispatch optimiza-

tion problem to compare its results with the results of the remaining optimization tech-

niques, which are utilized in this work as well as the GA. Furthermore, it is also tested in 

the already mentioned small network model and simplified network model of the EN-

TSO-e power grid (see chapter 5.1). 

 

Due to the MVMO is a variation of the GA, producing the chromosomes and their 

offspring is made in the same way as in the GA (see chapter 4.2.2). The so-called mapping 

function , which is described in detail in chapter 4.3.1, is used during the mutation. There-

fore, the population individuals are transformed into a new mutated generation utilising 

the MF in equation (4.38). To calculate the MF, the h-function, which is based on the 

mean and variance of in the archive stored best solutions, must be dermenated using equa-

tions (4.39)-(4.45). 

 

After the mutation the strongest population individuals are chosen to create a new gener-

ation for the next iteration step. This iterative process repeats until the break conditions 

are fulfilled. 

 

The developed MVMO for the introduced non-linear redispatch optimization problem is 

parameterized as follows: 

 

 The population consists of 200 individuals: 100 strongest parent chromosomes and 

their 100 offspring. 

 The mutation rate is 0.4 by reference to the power plant pair number 64 and popu-

lation size 200. 

 The archive size is 4. 

 The smallest value of the factor fs
* is 0.9 and its greatest value is 1.5. 

 The smallest value of the factor Δd0 is 0.01 and its greatest value is 0.4. 

 The iteration number is 10000. However, if the best solution cannot be improved 

during many iterations, the iterative process is stopped 

http://www.uni-due.de/mvmo/background
http://www.uni-due.de/mvmo/background
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 The static penalty for the constraint handling is 1000000. 

 

 

 

4.4 Particle Swarm Optimization 

 

The Particle Swarm Optimization (PSO) is a heuristic global optimization technique and 

belongs to the family of the metaheuristic algorithms as well as the GA. This method is 

based on population principles, resp. on the behavior of swarm individuals, which are 

moving in the search-space according to a mathematical description of their position and 

velocity. It was developed by J. Kennedy and R. Eberhart in 1995 inspired by the social 

behavior of a flock of birds. It is used in a variety of areas, e.g. engineering, telecommu-

nications, bioinformatics, computer science, economy, signal processing, fuzzy logic 

etc. [4], [77], [78], [79], [80], [81], [82], [83], [84] 

 

 

 

4.4.1 General approach 

 

The PSO algorithm solves optimization problems with the same objective function and 

constraints as well as the GA, which are already mathematically formulated in (4.23) and 

(4.24). 

 

However, in contrast to the GA, in the PSO the population, resp. swarm, consists of so-

called particles, resp. potential solutions of the optimization problem. Each of these par-

ticles follows the current best particle, resp. ‘flys’ through the search space following the 

current best solution. Thereby, the PSO continuously determines the new position of each 

particle with in the solution space and own speed of the movement. [4] 

 

The position p and velocity  of the particles are updated in each iteration step according 

to the following equations and are shown in Figure 4.4: 

 

   1 1 1 lb, 2 2 gb,i i i i i i iv v c r p p c r p p       (4.46) 

 

1 1i i ip p v    (4.47) 

 

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.J.%20Kennedy.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.R.%20Eberhart.QT.&newsearch=true
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where i is the inertia weight factor, which can be defined between 0 and 1, c1, c2 are the 

acceleration coefficients, r1, r2 are random numbers between 0 and 1, plb, pgb are the best 

positions of the respective particle and the entire group until the current iteration step i 

and pi is the current position of the particle in the current iteration i.  [4], [77]-[84] 

 

pi

pi+1

vi+1

plb,i

pgb,i

vi

 
Figure 4.4 Particle movement 

 

At the beginning, before the PSO starts to optimize, an initial population, resp. initial 

swarm, must be created. The individuals, resp. particles of this swarm, are randomly dis-

tributed in the solution space, i.e. their initial position and velocity are randomly set. 

Moreover, before the population initialization, the objective function, constraints of opti-

mization problem and PSO parameters must be defined. After that the objective function 

for each individual must be evaluated. Then the best position for each particle and global 

best position must be updated. Therefore, a new population is formed. The above process 

repeats until the break conditions, e.g. finding acceptable solution or exhaustion of the 

iteration steps, are fulfilled. A flowchart of the described iterative process is given in 

Figure 4.5.  [77]-[84] 
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Initial smarm with random 

position and velocity

Objective function, 

constraints and PSO 

parameters

Break 

conditions

Best solution

Objective function 

evaluation for each particle

Update of individual and 

global best positions

 
Figure 4.5 Flowchart of particle swarm optimization 

 

 

 

4.4.1.1 Inertia weight factor 

 

The inertia weight is an important factor for a balance between the exploration and ex-

ploitation abilities, which determines the rate between the previous and current velocities 

of a particle. There are various methods to calculate the inertia weight factor: from simple 

one, where this factor is a constant value, to complex techniques such as methods of Ack-

ley or Rastrigin [85]. 
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In this work, only the so-called linear decreasing method for calculation of the inertia 

weight factor is used for the optimization of the redispatch realization with the PSO. 

Therefore, it is introduced in this chapter below. 

 

In the linear decreasing method, the inertia weight factor i is calculated in each iteration 

step i according to the following equation [85], [86]: 

 

   max min max

min

max

i

i i

i

 
 

 
   (4.48) 

 

where max and min are the maximum and minimum values of the inertia weight factor 

and imax is the maximum number of iterations. 

 

Therefore, in this method, the inertia weight factor increases linearly during the simula-

tion. Thereby, its small values are more suitable for the local search and its large values 

– for the global search. 

 

 

 

4.4.1.2 Recommended parameter values 

 

Before the iterative simulation all parameters of the PSO algorithm must be set. The val-

ues of these parameters have a strong influence on the PSO algorithm accuracy. Hence, 

they must be carefully chosen. Nevertheless, this is not a trivial task because these values 

vary very strongly. However, there are some recommended parameter values, which gen-

erally provide good results for different optimization problems. Therefore, the maximum 

value of the inertia weight factor max is usually 0.9 and its minimum value min is 0.4, 

and the values of the acceleration coefficients c1, c2 are 2. [77]-[86] 

 

 

 

4.4.2 Performance 

 

Nowadays, the PSO is used in various fields to solve different optimization problems. 

There are several main advantages, which make the PSO extremely attractive for the us-

ers [87]: 
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 It is based on a simple calculation method and is easily understandable. 

 It is easy to implement. 

 It has a low computation time. 

 It is very flexible. 

 

Nevertheless, the PSO has some disadvantages, which should be also considered by 

choosing the optimization method: 

 

 Its convergence cannot be ensured by a finite number of the particles. Hence, the 

calculation of the objective function must be realized several times. 

 Focus on the best particle can lead to breaking the PSO if a satisfying solution is 

found instead of the global optimum. 

 

 

 

4.4.3 Non-linear redispatch optimization problem for the PSO 

 

The fitness function c of the redispatch optimization problem for the PSO should be min-

imized by the utilization of linear and non-linear equations (4.6) and (4.35) in the same 

way as for the already described metaheuristic optimization methodologies. 

 

The constraints, which are used in the redispatch optimization problem are already de-

scribed in chapter 4.2.5. 

 

 

 

4.4.4 Algorithm adaptation for the non-linear redispatch optimization 

problem 

 

The PSO is developed and adapted for the described redispatch optimization problem to 

compare its results with the results of the remaining optimization techniques, which are 

used in this work. Furthermore, it is also tested in the already mentioned small network 

model and simplified network model of the ENTSO-e power grid (see chapter 5.1). 

 

The particles of the PSO include the possible power generation changes for all power 

plant combinations of the considered network model and binary values for the start-up 

and shut-down status of the power plants. Here, the positive and negative redispatch po-

tentials of each power plant pair must be considered as well as by using the GA or 
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MVMO. The position and velocity of the particles are updated in each iteration step ac-

cording to equations (4.46)-(4.48). This iterative process repeats until the break condi-

tions are fulfilled. The developed PSO is described in detail in chapter 4.4.1. 

 

The developed PSO for the introduced linear and non-linear redispatch optimization prob-

lem is parameterized as follows: 

 

 The swarm consists of 200 individuals. 

 The acceleration coefficients c1=c2 are 2. 

 The maximum and minimum values of the inertia weight factor max and min are 

0.9 and 0.4. 

 The iteration number is 3000. However, if the best solution cannot be improved 

during many iterations, the iterative process is stopped. 

 The maximum number of runs is 10. 

 The static penalty for the constraint handling is 1000000. 

 

 

 

4.5 Ant Colony Optimization 

 

The Ant Colony Optimization (ACO) is a heuristic optimization technique and belongs to 

the family of the metaheuristic algorithms as well as the GA. This method is based on the 

so-called swarm intelligence of fishes, birds, insects etc. as well as the PSO. The ACO 

was developed by M. Dorigo in the early 1990’s inspired by the foraging behavior of a 

real ant colony. It is utilized in a variety of areas, e.g. engineering, telecommunications, 

computer science, economy, deployment planning, for multicriteria optimization prob-

lems etc. [88], [89], [90], [91], [92], [93], [94], [95] 

 

 

 

4.5.1 General approach 

 

The ACO solves optimization problems with the same objective function and constraints 

as well as the GAs, which are already described in equations (4.23) and (4.24). 

 

In the ACO the population, resp. a colony, consists of ants, resp. potential solutions of the 

optimization problem. The ant colony searches a shortest way between its nest and a food 

source. During searching every ant leaves a trail on the ground by means of chemical 
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pheromones. The pheromones serve for guiding other ants to the food source. The 

stronger the pheromone concentration on the way, the higher the probability, that the ants 

will choose this way. This behavior of the ant colony is shown in Figure 4.6 [88]- [90], 

[92]: 

 

Nest Food

Nest Food

Nest Food

 
 

Figure 4.6 Food searching of an ant colony [88], [89], [92] 

 

In Figure 4.6 the ants are searching for a food source. Initially, one half of the colony 

(black ants) chooses the shortest way to the food and the other half (white ants) – the 

longest one. Therefore, the black ants reached the destination earlier than the white ones. 

Consequently, the probability that they take the shortest route to come back to their nest 

is much higher. Over time, the pheromone concentration on the shortest way gets much 

stronger than on the longest one till the whole ant colony chooses only the shortest route. 

 

The already mentioned probability pk,ij(t) in the iteration step t can be calculated as 

follows [88], [89], [93], [94]: 
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where the ant k, which is currently on the node i, considers all neighboring nodes j as 

potential routes. τij(t) are the pheromone trails, which an ant leaves on the ground. 

 

ηij are the heuristic values or optional weighting function, which can be determined as 

given [93]: 

 

1
ij

ijd
   (4.50) 

 

where dij is the distance between the nodes i and j. 

 

α and β are the constant values, which reflect the relation between the pheromone trails 

and heuristic values. If α approaches zero, the nearest j node is chosen. If β approaches 

zero, the selection of the neighboring node is based only on the pheromone trails, i.e. the 

distances between the node i and nodes j are not completely taken into account. [88], [89]  

 

Jk,i is the feasible solutions, resp. neighboring nodes of the node i for the ant k, i.e. the 

neighboring nodes l, which were not yet visited by the ant k [93]. 

 

The pheromone quantity Δτk,ij(t), which is secreted on the distance between the nodes i 

and j by the ant k, is determined by [93]: 
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where Lk(t) is the length of the route Rk(t), which is traveled by the ant k in the iteration t, 

Q is the optional weighting of the length of the optimal route. 

 

Taking into account the pheromone evaporation ρ the pheromone trails can be calculated 

as given by [93]: 
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where n is the number of the ants in the colony. 

 

The pheromone evaporation ρ is defined between 0 and 1. Its initial value must be very 

small and positive. [93] 

 

Based on the simulation experience [88], the constant α and β should be set to 1 and 5, 

the pheromone evaporation ρ – to 0.5. 

 

The ACO was originally developed for discrete optimization problems such as the famous 

traveling salesman problem (TSP). In the TSP a salesman must visit a certain number of 

cities only once and at the same time the traveling distance must be minimal. 

Nevertheless, there are some modifications of the ACO to solve optimization problems 

in continuous domains. [88], [89], [95] 

 

 

 

4.5.1.1 Ant Colony Optimization algorithm for continuous domain 

 

As already mentioned, there is a large quantity of optimization problems, which are con-

sidered in the continuous domain i.e. the solution variables are continuous. Therefore, 

different modifications of the ACO for the continuos domain, such as a continuous ant 

colony optimization, continuous interacting ant colony, pachycondyla apicalis ant opti-

mization etc., were developed in the resent years. However, many of these methods do 

not follow the original conditions of the ACO. [91] 

 

Nevertheless, there is an often-used optimization technique, the so-called ACOR algo-

rithm, which is very close to the original ACO. To handle the continuous optimization 

problem, the ACOR uses a solution archive to save the search process history. For the 

probability distribution of the solutions the so-called probability density functions (PDF) 

is utilized by this optimization method. 

 

An often-applied PDF is a normal distribution or Gaussian distribution function. How-

ever, a single Gaussian function has only one maximum. Therefore, it cannot be used for 

the search space with various areas. To handle this problem an extended Gaussian kernel, 

PDF Gi(s) with i dimensions can be applied, which is defined as a sum of the single 

Gaussian functions gil(s) [91], [92]: 
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where ωl is the weighting vector, μil – the mean vector, σl – the variance vector, l is the 

solution index and k is the number of the solutions. 

 

At each iteration step the ants choose the solution values based on the Gaussian kernel 

PDF, which are derived from solutions stored in the archive. In this way, the initial solu-

tions are improved during the simulation. This approach replaces the calculation of the 

pheromone trails of the discreet ACO. 

 

The weighting vector ωl for the solutions sl is calculated as follows [91]: 
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where q is the parameter of the solution selection and defined between 0 and 1. Here, the 

smallest value of the parameter q (~ 0) must be assigned to the best-sorted solution. 

 

The selection probability is determined as shown below [91]: 
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(4.56) 

 

The variance or standard deviation σi of the Gaussian functions for the i dimension is 

calculated by [91], [95]: 
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where ξ is the factor, which is similar to the pheromone evaporation ρ of the discrete ACO 

and greater than 0. The lower the value of the factor ξ, the higher the convergence speed 

of the ACOR. sbest,i is the best solution for the i dimension. 
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4.5.1.2 Ant Colony Optimization algorithm with the Prospect Theory for continu-

ous domain 

 

Another often used modification of the ACO for the continuous domain is the so-called 

Ant Colony Optimization with the Prospect Theory (ACOR-PT). In contrast to the ACOR, 

the search of the optimal solution by the ACOR-PT is based on the prospect theory (PT) 

instead of the Gaussian distribution function. The PT describes making human decisions 

in high-risk situations such as lotteries. This theory was introduced by D. Kahneman and 

A. Tversky in 1979. [96] 

 

In the ACOR-PT, the solutions are chosen not only based on the probability weighting 

function, but also on an objective function of the optimization problem. For this purpose, 

the mean of the objective function of all solutions stored in the archive, the so-called 

reference point, is determined using equation (4.40). It determines whether the established 

solutions for the objective function belong to gains or losses. Based on this reference 

point, a value function for the gains or losses can be built as shown in Figure 4.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Value function [92] 
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If the calculated solution is greater than the reference point, it is in the gain area. If the 

solution is less than the reference point, it is in the loss area. 

 

The value function v(sl) of the PT is determined as shown in equation (4.58): 
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where α, β, λ are the constant parameters, which are greater than 0 and must be defined 

dependent on the optimization problem. The general recommendation for the parameter 

values in the literature [92], [97] is α=β=0.88 and λ=2.25. 

 

In the ACOR-PT the best solution is determined using the probability weighting function 

ω(pl), which is calculated according to the following equation: 
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 (4.59) 

 

where γ is the weighting parameter, which is defined between 0.61 and 0.69 [97]. 

 

The probability pl is calculated utilizing equation (4.56) but with the only difference that 

k is the number of the solutions, which are stored in the archive. In addition, the weighting 

vector ωl is determined using equation (4.55).  

 

Based on the value function v(sl) and probability weighting function ω(pl), the so-called 

probabilistic prospect V(sl) for choosing the solution sl is established by: 

 

( ) ( ) ( )l l lV s v s p  (4.60) 

 

In the ACOR-PT the best solution must have the greatest prospect value. This best solu-

tion is used to create a new ant colony in each iteration step as follows: 

 

 best 0,1l ls s N   (4.61) 

 

where Nl(0,1) is the standard Gaussian distribution with the mean 0 and variance 1. 
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4.5.2 Performance 

 

The ACO is a quite new optimization technique, which was developed in the early 1990’s. 

Nevertheless, it is already utilized in many different fields for solving optimization prob-

lems. There are some main advantages, which make the ACO attractive for the us-

ers [92], [94]: 

 

 It finds an effective solution in a very large solution space. 

 It is very flexible also by dynamic and complex optimization problems. 

 It can be used for broad applications. 

 It usually has a low computation time. 

 

Nevertheless, the ACO has some disadvantages, which should be considered by choosing 

an optimization method: 

 

 Its result is strongly dependent on the choice of its parameter values. 

 Its convergence is ensured. However, the computation time sometimes can be long. 

 It sometimes needs additional methods to find a local minimum. 

 

 

 

4.5.3 Non-linear redispatch optimization problem for the ACO 

 

The fitness function and constraints of the redispatch optimization problem for the ACO 

are already described in detail in chapter 4.2.5. 

 

 

 

4.5.4 Algorithm adaptation for the non-linear redispatch optimization 

problem 

 

The ACO is developed and adapted for the introduced redispatch optimization problem 

to compare its results with the results of the remaining optimization techniques, which 

are utilized in this work. In addition, it is also tested in the small network model and 

simplified network model of the ENTSO-E power grid (see chapter 5.1). 
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The ants of the ACO consist of possible power generation changes for all power plant 

combinations and binary status values for the start-up and shut-down. Furthermore, the 

positive and negative redispatch potentials of each power plant pair must be considered 

as well as by using the GA, MVMO or PSO. 

 

To solve the previously introduced optimization problem for the redispatch realization 

the ACOR-PT is chosen in this work. 

 

At the beginning of the simulation, the initial colony is randomly created. Then the 

weighting vector, selection probability and probability weighting function are calculated 

using equations (4.55), (4.56) and (4.59). After that the reference point, which is the mean 

of the objective function, is determined by equation (4.40). It is utilized to calculate the 

value function and probabilistic prospect by equations (4.58) and (4.60). The best solution 

has the greatest probabilistic prospect value. It is used to calculate the standard deviation 

of the Gaussian functions and create a new ant colony in each iteration step resp. by equa-

tions (4.56) and (4.61). This iterative process repeats until the break conditions are ful-

filled. The developed ACOR-PT is described in detail in chapter 4.5.1.2. 

 

The developed ACOR-PT for the considered redispatch optimization problem is param-

eterized as follows: 

 

 The ant colony consists of 400 individuals, which include 150 additional active 

ants. 

 The parameter of the solution selection q is 0.5. 

 The weighting parameter γ is 0.68. 

 The constant parameters α=β and λ resp. are equal to 0.88 and 2.0. 

 The factor ξ is 0.875. 

 The iteration number is 1000. However, if the best solution cannot be improved 

many iterations, the iterative process is stopped. 

 The maximum number of runs is 10. 

 The static penalty for the constraint handling is 1000000. 
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5 Case study 
 

The optimization techniques for the redispatch optimization problem, which are intro-

duced in chapter 4, are programmed in the MATLAB computing environment. The de-

veloped algorithms are able to find the optimal solutions for the cost objective functions 

by equation (4.6) and (4.35) taking into account the previously formulated linear and non-

linear constraints for redispatch realization by equation (4.9), (4.11), (4.12), (4.33), 

(4.34), (4.36), (4.37). 

 

 

 

5.1 Test network models 

 

The MATLAB routines are tested with the help of a simple small network model and 

simplified network model of the ENTSO-E power grid. 

 

 

 

5.1.1 Small network model 

 

The small test network model, which is utilized to verify the introduced optimization 

methods, is shown in Figure 5.1 and consists of the following elements: 

 

 8 bus bars 

 8 power plants 

 10 power lines 

 load on bus bar ‘N6’ 

 

All power lines have the same parameters to simplify the verification of the simulation 

results. 

 

Therefore, this test grid model allows to easily understand and manually verify the opti-

mal solutions of the cost optimization problems, which are suggested by the considered 

optimization techniques. 
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Figure 5.1 Small test network model 

 

To analyze the effectiveness of the developed optimization algorithms, an average cost 

scenario for the power plant cycling costs and levelized costs of electricity, which is based 

on the data from Table 3.1, Table 3.2 and Table 3.3, and the congestions on line ‘L5’ and 

‘L7’ in the small test network model are chosen for this work. The costs for realization of 

the active power changes and sensitivity coefficients of lines ‘L5’ and ‘L7’ are introduced 

in Table 5.1. 

 

Table 5.1 Average cost scenario and sensitivity coefficients of lines ‘L2’ and ‘L5’ 

Power plant bus bar N1 N2 N3 N4 N5 N6 N7 N8 

Costs in €/MWh 50 80 50 100 220 190 120 50 

Sensitivity coefficients 

of the line ‘L5’ 
0.588 0.66 0.5017 0.445 -0.055 0.017 0.16 0.088 

Sensitivity coefficients 

of the line ‘L7’ 
0.653 0.663 0.635 0.611 0.721 -0.054 0.527 0.245 

 

 

 

5.1.2 Simplified ENTSO-E network model 

 

As already mentioned, a simplified grid model of the ENTSO-E area is used to verify the 

developed optimization methodologies. This model is based on the results of the 

‘DynaGridCenter‘ research project funded by the Federal Ministry for Economic Affairs 

and Energy in Germany  [98]. In this project, the developed test network model represents 

the entire ENTSO-E transmission system. Furthermore, it is based on a cluster model, 

which is generated within the EU e-Highway2050 project [99]. Here, EU areas with sim-

ilar characteristics such as the population or installed wind power are combined in clus-

ters (Figure 5.2). 
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Figure 5.2 Cluster model of the e-Highway2050 project [99] 

 

Due to the strong integration of the renewable energy sources (RES) in Germany and its 

central location, the German transmission network is modeled more detailed in the 

‘DynaGridCenter‘ project. Therefore, each cluster in Germany is represented by 3 bus 

bars, i.e. the German transmission system consists of 21 bus bars. Other countries or areas 

are modeled by only one bus bar. 

 

Hence, the developed network model includes in total 34 bus bars: 21 bus bars for Ger-

many and 13 for the remaining ENTSO-E areas. These bus bars are connected by 168 

transmission lines of the 380 kV voltage level. A network topology of the grid model is 

shown in Figure 5.3. 
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Figure 5.3 Simplified ENTSO-E network model [98] 

 

Furthermore, the conventional power plant, RES, which are modeled by a positive load, 

and consumption are connected to each bus bar in the power grid model (Figure 5.4). 

 

G

RES

 

 
Figure 5.4 Bus bar model [98] 
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5.2 Redispatch optimization without considering the power 

plant cycling costs 

 

First of all, the optimization methodologies are verified in the previously introduced small 

network model and simplified network model of the ENTSO-E power grid. Here, the 

simplex solves the linear redispatch optimization problem without taking into account the 

PPCC, which is described in detail in chapter 4.1.2. The metaheuristic methods solve the 

same optimization problem, however, with the non-linear power flow equations, which 

is described in chapter 4.2.5. 

 

 

 

5.2.1 Simulation results in the small network model 

 

Firstly, all optimization techniques developed in this work are tested in the simple small 

network model, which is described in detail in chapter 5.1.1 and shown on Figure 5.1. 

 

 

 

5.2.1.1 Single network line congestion 

 

In the small network model there are a load of 2500 MW at bus bar ‘N6’ and a power 

plant at each bus bar with a rated active power of 500 MW. All power plants can be 

completely shut down, i.e. the power generation in this case is equal to 0. 

 

According to the merit order the power plants at bus bars ‘N1’, ‘N2’, ‘N3’, ‘N4’ and ‘N8’ 

are working with their rated power to cover the load consumption. Hence, there is still a 

redispatch potential of maximum 1500 MW in the network model. 

 

Furthermore, in this work, different cost scenarios are created based on the data from Ta-

ble 3.1. Here, a variety of the LCOE for real conventional power plant types, from small-

est to greatest values, are used. 

 

To analyze the effectiveness of the developed optimization algorithms for the redispatch 

optimization without considering the PPCC, an average cost scenario and the single con-

gestion of 346.5 MW on line ‘L5’ are chosen (see Table 5.1). 
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If the constraints for the considered optimization problem include the sensitivity coeffi-

cients of line ‘L5’, rated active powers of all power plants and their positive and negative 

redispatch potentials, this optimization problem is becoming linear. Therefore, it can be 

solved by the simplex algorithm, which could be faster than the metaheuristic methods. 

 

Table 5.2 represents the simulation results of the developed optimization methods for the 

already mentioned single congestion of 346.5 MW on line ‘L5’ taking into account only 

the linear constraints without considering the PPCC. Moreover, the simulation time is 

mean value, which is based on the computation time from twenty simulations for each 

optimization method. 

 

Table 5.2 Simulation results for the single congestion of 346.5 MW on line ‘L5’ taking into 

account only the linear constraints 

Simulation results 
Optimization methods 

Simplex GA MVMO PSO ACO 

Simulation time in s 0.011 2.59 10.386 3.392 3.24 

Congestion power deviation 

on line ‘L5’ in MW 
4.2 4.2 4.2 4.2 4.2 

Power plants (start-up) 6 and 7 6 and 7 6 and 7 6 and 7 6 and 7 

Power plants (drive down) 2 and 4 2 and 4 2 and 4 2 and 4 2 and 4 

Active power changes 

in MW for start-up 

208.37 and 

500 

208.37 and 

500 

208.37 and 

500 

208.37 and 

500 

208.37 and 

500 

Active power changes 

in MW for driving down 

500 and 

208.37 

500 and 

208.37 

500 and 

208.37 

500 and 

208.37 

500 and 

208.37 

Total costs in €/h 38753.39 38753.39 38753.39 38753.39 38753.39 

 

In this case, all considered optimization algorithms provide identical results. As expected, 

the simulation time of the simplex is the shortest one in comparison to the introduced 

metaheuristic methods. Furthermore, the MVMO needs significantly more computation 

time. Nevertheless, based on the simulation results, the GA, PSO and ACO solve the 

redispatch optimization problem fast enough. 

 

In this scenario, only the power plants at bus bars ‘N5’, ‘N6’ and ‘N7’ can be started-up. 

Furthermore, the power plants at bus bars ‘N1’, ‘N2’, ‘N3’, ‘N4’ and ‘N8’ can be driven 

down. Here, the best optimal solution is the utilization of the power plants at bus bars 

‘N2’, ‘N4’, ‘N6’ and ‘N7’ due to their high sensitivity coefficients and the less total costs 

for the redispatch realization. Firstly, the capacity of the power plants at bus bars ‘N2‘ 

and ‘N7’ is completely exhausted. However, the power plants at bus bars ‘N4’ and ‘N6’ 

need to be utilized as well because the capacity of the first power plant pair is not enough 

to remedy the occurred line congestion. 
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However, the linearization of the power flow function can lead to some deviations in the 

line congestion calculations, especially in the highly loaded power grids. In this scenario, 

there is a deviation of the congestion power calculation of 4.2 MW. Therefore, in the next 

step, the SS, which is described in detail in chapter 4.1.3, is used to remedy this conges-

tion deviation. Based on the simulation results, the deviation of 4.2 MW is completely 

remedied and an average simulation time of the SS is only 0.324 s. 

 

In addition, the non-linear power flow equations are included into the previously intro-

duced linear optimization problem instead of the network sensitivity analysis. 

 

Table 5.3 represents the simulation result for the same congestion on line ‘L5’ but using 

the non-linear load flow function for the redispatch problem constraints. 

 

Table 5.3 Simulation results for the single congestion of 346.5 MW on line ‘L5’ taking into 

account the non-linear load flow function 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 391.48 442.38 378.41 338.43 

Power plants (start-up) 6 and 7 6 and 7 6 and 7 6 and 7 

Power plants (drive down) 2 and 4 2 and 4 2 and 4 2 and 4 

Active power changes 

in MW for start-up 

199.17 and 

500 

199.17 and 

500 

199.17 and 

500 

199.17 and 

500 

Active power changes 

in MW for driving down 

500 and 

199.17 

500 and 

199.17 

500 and 

199.17 

500 and 

199.17 

Total costs in €/h 37925.30 38753.30 38753.30 38753.30 

 

Here, all introduced metaheuristic methodologies have a large computation time. The op-

timal solution is using the same power plants as well. However, the needed power gener-

ation changes, resp. the total costs, are less than in the first scenario. Hence, in the previ-

ous test case there is a deviation of 2.18% or 828.09€/h from the optimal total costs of 

37925.30 €/h. 

 

 

 

5.2.1.2 Multiple network line congestion 

 

Furthermore, the developed optimization algorithms are verified through the simulation 

of multiple network line congestions in the small grid model. The initial conditions of this 

test network model are described in chapter 5.2.1.1. In addition, an average cost scenario, 
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which is already used in chapter 5.2.1.1, and the multiple congestion of 346.5 MW and 

300 MW on lines ‘L5’ and ‘L7’ are considered (see Table 5.1). 

 

Table 5.4 represents the simulation results of the developed optimization methods for the 

multiple line congestion taking into account only the linear constraints for the redispatch-

ing. 

 

Table 5.4 Simulation results for the multiple congestion on lines ‘L5’ and ‘L7’ taking into 

account only the linear constraints 

Simulation results 
Optimization methods 

Simplex GA MVMO PSO ACO 

Simulation time in s 0.018 4.09 9.46 3.70 3.11 

Congestion power deviation 

on line ‘L5’ in MW 
6.3 6.3 6.3 6.3 6.3 

Congestion power deviation 

on line ‘L7’ in MW 
18 18 18 18 18 

Power plants (start-up) 6 and 7 6 and 7 6 and 7 6 and 7 6 and 7 

Power plants (drive down) 2 and 4 2 and 4 2 and 4 2 and 4 2 and 4 

Active power changes 

in MW for start-up 

378.20 and 

402.38 

378.20 and 

402.38 

378.20 and 

402.38 

378.20 and 

402.38 

378.20 and 

402.38 

Active power changes 

in MW for driving down 

280.58 and 

500 

280.58 and 

500 

280.58 and 

500 

280.58 and 

500 

280.58 and 

500 

Total costs in €/h 47697.58 47697.58 47697.58 47697.58 47697.58 

 

In this scenario, all optimization methods provide identical results as well as in the previ-

ous test case. As expected, the simplex has the shortest computation time. 

 

Here, the best optimal solution is the utilization of the power plants at bus bars ‘N2’, ‘N4’, 

‘N6’ and ‘N7’ due to their high sensitivity coefficients and the less total costs for the 

redispatch realization. 

 

Furthermore, there are deviations of the congestion power calculation of 6 MW and 

18 MW on lines ‘L5’ and ‘L7’. Therefore, the non-linear power flow function is included 

into the linear optimization problem instead of the network sensitivity analysis. 

 

Table 5.5 represents the simulation results for the multiple line congestion using the non-

linear power flow equations for the constraints of the redispatch problem. 
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Table 5.5 Simulation results for the multiple congestion on lines ‘L5’ and ‘L7’ taking into 

account the non-linear load flow function 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 457.56 517.09 394.87 363.58 

Power plants (start-up) 6 and 7 6 and 7 6 and 7 6 and 7 

Power plants (drive down) 2 and 4 2 and 4 2 and 4 2 and 4 

Active power changes 

in MW for start-up 

416.15 and 

339.97 

416.15 and 

339.97 

416.15 and 

339.97 

416.15 and 

339.97 

Active power changes 

in MW for driving down 

256.21 and 

500 

256.21 and 

500 

256.21 and 

500 

256.21 and 

500 

Total costs in €/h 49378.91 49378.91 49378.91 49378.91 

 

In this scenario, the metaheuristic methods have again a large computation time. The op-

timal solution is using the same power plants as well as in the linear redispatch optimiza-

tion problem. However, to remedy the multiple line congestion completely, the power 

generation changes, resp. the total costs, must be greater than it is calculated in the previ-

ous test case. Moreover, there is a deviation of 3.4% or 1681.33€/h from the optimal 

solution with the total costs of 49378.91€/h. 

 

 

 

5.2.2 Simulation results in the simplified ENTSO-E network model 

 

The considered optimization methodologies are also verified through simulations of mul-

tiple network line congestions in the network model of the ENTSO-E area as well, which 

is described in detail in chapter 5.1.2 and shown on Figure 5.3. 

 

 

 

5.2.2.1 Multiple network line congestion 

 

In this case study, the redispatch can be realized by the utilization of the power plants in 

the entire ENTSO-E area. This area is represented by 34 bus bars. There is a power plant 

on each node. Furthermore, there is a power transit of 6 GW from north to south of Ger-

many. According to the merit order the power plants at bus bars ‘1’, ‘2’, ‘4’, ‘5’, ‘7’, ‘9’, 

‘11’, ‘12’, ‘13’, ‘14’, ‘15’, ‘17’, ‘18’, ‘20’ and ‘21’ (see Figure 5.3) are working with their 

rated power to cover the load consumption in Germany. These power plants can be com-

pletely shut down, i.e. their power generation is equal to 0. 
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The positive and negative redispatch potentials of the power plants in Germany, which 

are used in this scenario, are shown in Table 5.6. The remaining power plants in other 

countries have the positive redispatch potentials of 2000 MW and costs for the redispatch 

realization of 110 €/MWh each. 

 

Table 5.6  Positive and negative redispatch potentials in Germany 

Power plant bus bar 1 2 3 4 5 6 7 8 9 10 

Positive redispatch 

potential in GW 
0 0 1.2 0 0 1.2 0 2 0 0.5 

Negative redispatch 

potential in GW 
2.8 2.8 0 3 3 0 5.3 0 1 1 

 

Power plant bus bar 12 13 14 15 16 17 18 19 20 21 

Positive redispatch 

potential in GW 
0 0 0 0 0.4 0 0 0.8 0 0 

Negative redispatch 

potential in GW 
1 1 1 1 0 1 1 0 1.8 1.8 

 

In this work, different cost scenarios are created based on the data from Table 3.1. Here, 

a variety of the levelized costs of electricity for real conventional power plant types, from 

minimum to maximum value, are used. To analyze the effectiveness of the developed 

optimization techniques, the average cost scenario, which is shown in Table 5.7, and the 

multiple congestion of 104 MW, 118 MW and 63 MW resp. on the double power lines 

between bus bars ‘1’ and ‘2’, ‘1’ and ‘3’, ‘11’ and ‘19’ are chosen. Therefore, the con-

straints for the linear redispatch optimization problem include the sensitivity coefficients 

of these three power lines (Table 7.1), rated active powers of all power plants and their 

positive and negative redispatch potentials (Table 5.6). 

 

Table 5.7 Average cost scenario 

Power plant bus bar 1 2 3 4 5 6 7 

Costs in €/MWh 50 55 110 50 60 120 50 
 

Power plant bus bar 8 9 10 11 12 13 14 

Costs in €/MWh 140 50 110 80 70 60 50 
 

Power plant bus bar 15 16 17 18 19 20 21 

Costs in €/MWh 45 130 90 65 155 85 60 

 

Table 5.8 represents the simulation results of the developed optimization techniques for 

the already described multiple line congestion taking into account only the linear con-

straints without considering the PPCC. 
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Table 5.8 Simulation results for the multiple congestion on line between bus bars ‘1’ and ‘2’, 

‘1’ and ‘3’, ‘11’ and ‘19’ taking into account only the linear constraints 

Simulation results 
Optimization methods 

Simplex GA MVMO PSO ACO 

Simulation time in s 0.047 102.42 178.57 157.24 105.75 

Congestion power deviation on 

line between ‘1’ and ‘2’in MW 
3.1 3.1 3.1 3.1 3.1 

Congestion power deviation on 

line between ‘1’ and ‘3’in MW 

6.4 6.4 6.4 6.4 6.4 

Congestion power deviation on 

line between ‘11’ and ‘19’ 

4.5 4.5 4.5 4.5 4.5 

Power plants (start-up) 
3, 16 and 

19 

3, 16 and 

19 

3, 16 and 

19 

3, 16 and 

19 

3, 16 and 

19 

Power plants (drive down) 1 1 1 1 1 

Active power changes 

in MW for start-up 

178.74, 

292.03 and 

133.93 

178.74, 

292.03 and 

133.93 

178.74, 

292.03 and 

133.93 

178.74, 

292.03 and 

133.93 

178.74, 

292.03 and 

133.93 

Active power changes 

in MW for driving down 
604.69 604.69 604.69 604.69 604.69 

Total costs in €/h 48148.89 48148.89 48148.89 48148.89 48148.89 

 

The optimization methodologies provide identical results as well as in the previous sce-

narios. The simplex method also has the shortest computation time compare to the me-

taheuristic techniques. 

 

In this test case, the best optimal solution is the utilization of the power plants at bus bars 

‘1’, ‚3‘, ‘16’ and ‘19’ due to their high sensitivity coefficients and less total costs for the 

redispatch realization. 

 

In addition, there are deviations of the congestion power calculation of 3.1 MW, 6.4 MW 

and 4.5 MW on lines between bus bars ‘1’ and ‘2’, ‘1’ and ‘3’, ‘11’ and ‘19’. Therefore, 

in the next step, the non-linear power flow equations are included into the previously 

introduced linear optimization problem instead of the network sensitivity analysis as well. 

 

Table 5.9 represents the simulation result for the mentioned multiple line congestion but 

using the non-linear load flow function for the constraints. 
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Table 5.9 Simulation results for the multiple congestion between bus bars ‘1’ and ‘2’, ‘1’ and 

‘3’, ‘11’ and ‘19’ taking into account non-linear load flow function 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 1317.26 1687.47 1372.44 1098.12 

Power plants (start-up) 3, 16 and 3, 16 and 3, 16 and 3, 16 and 

Power plants (drive down) 19 19 19 19 

Active power changes 

in MW for start-up 

176.59, 

291.74 and 

118.86 

176.59, 

291.74 and 

118.86 

176.59, 

291.74 and 

118.86 

176.59, 

291.74 and 

118.86 

Active power changes 

in MW for driving down 
587.19 587.19 587.19 587.19 

Total costs in €/h 46414.90 46414.90 46414.90 46414.90 

 

In this scenario, the metaheuristic methods have a large computation time as well. The 

optimal solution is using the same power plants as in the previous case. However, the 

needed power generation changes, resp. the total costs, are less than before. Hence, there 

is a deviation of 3.73% or 1733.99€/h from the optimal total costs of 46414.90€/h. 

 

 

 

5.3 Redispatch optimization considering the power plant cy-

cling costs 

 

Furthermore, the developed optimization techniques are adapted for the non-linear redis-

patch optimization problem to consider the PPCC. They are tested in the previously de-

scribed small network model and simplified network model of the ENTSO-E power grid 

as well as in chapter 5.2. To verify the optimization algorithms different line congestions 

are simulated in the considered network models. Moreover, many scenarios with a variety 

of the power plant generation and start-up cost combinations are analyzed for different 

congested lines. 

 

 

 

5.3.1 Simulation results in the small network model 

 

The developed optimization techniques for solving the redispatch optimization problem 

considering the PPCC are tested in the simple small network model. 
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Due to the significant low costs, which need to be spent for the power plant start-up, in 

comparison with the costs for the power plant generation changes, the start-up costs can 

only have a sufficient influence on the total costs in some rare cases. For example, if the 

generation changes to remedy a congestion are low or the power plants have similar im-

pact on the line power flow due to similar generation prices etc. Only in these cases, the 

start-up costs might make a rather large part of the total costs spending for the redispatch 

realization. 

 

Furthermore, in the introduced redispatch optimization problem the costs for the power 

plant generation changes are considered in euros per megawatt hour. Hence, these calcu-

lated total costs are spent only for an hour of the redispatching. However, most of con-

gestions take many hours. At the same time, the start-up of power plants is realized only 

once during a redispatch, i.e. the start-up costs must be spent only once for each power 

plant. 

 

Therefore, a special test case is considered to verify the developed optimization algo-

rithms with the binary variables for taking into account the PPCC. The initial conditions 

of the test grid model are taken from chapter 5.2.1.1. There is the single congestion of 

30 MW on line ‘L5’. Furthermore, another cost scenario, which is based on the data 

from Table 3.1, is created for testing. The merit order remains the same power plants as 

well as in the test case from chapter 5.2.1.1. All chosen LCOE refer to the coal-fired 

power plant type. This power plant type is selected because the total PPCC, resp. the start-

up costs, are highest for the coal-fired power plants (see Table 3.2 and Table 3.3). In 

addition, it is assumed that the considered line congestion is remedied for one hour. 

 

Furthermore, the power plant shut-down costs are neglected for the simulations because 

they are very small compare to another cost types (see Table 3.4). 

 

The costs for the realization of the start-up and active power changes are introduced in Ta-

ble 5.10. 

 

Table 5.10 Special cost scenario of the LCOE and PPCC 

Power plant bus bars N1 N2 N3 N4 N5 N6 N7 N8 

LCOE in €/MWh 50 60 50 70 90 85 100 50 

PPCC in € - - - - 45 250 70 - 

 

Firstly, the redispatch optimization problem includes the sensitivity analysis, rated active 

powers of all power plants, their positive and negative redispatch potentials and PPCC. 

Here, the binary variables of the PPCC makes the optimization problem non-linear. 
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Therefore, the simplex is incapable of solving it. However, the metaheuristic methodolo-

gies can be utilized for this task. 

 

Table 5.11 represents the simulation results of the optimization methods for the already 

mentioned single congestion on line ‘L5’ considering the sensitivity analysis and PPCC. 

 

Table 5.11 Simulation results for the single congestion of 30 MW on line ‘L5’ taking into ac-

count the sensitivity analysis and PPCC 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 11.36 15.82 10.30 9.11 

Congestion power deviation 

on line ‘L5’ in MW 
0.9 0.9 0.9 0.9 

Power plants (start-up) 5 5 5 5 

Power plants (drive down) 4 4 4 4 

Active power changes in MW 60 60 60 60 

Total costs in €/h 1245 1245 1245 1245 

 

The optimization methods taking into account the PPCC provide identical results. The 

ACO has the shortest simulation time and the MVMO – the longest one. 

 

If the PPCC were not considered in this scenario, the optimal solution for the linear re-

dispatch optimization problem were the selection of the power plants at bus bars ‘N4’ and 

‘N6’. Furthermore, the total costs for the redispatch realization were 1051.40 €/h. 

 

However, if the PPCC are considered, the optimal solution is the selection of the power 

plants at bus bars ‘N4’ and ‘N5’. Here, the total costs for the redispatching are 1245 €/h. 

If the optimal solution were still the selection of the power plants at bus bars ‘N4’ and 

‘N6’, the total costs for the redispatch realization were 1301.40 €/h. Therefore, there is a 

deviation of 4.53% or 56.40€/h from the optimal total costs. 

 

In the next step, the non-linear power flow equations are included into the redispatch 

optimization problem instead of the network sensitivity analysis. 

 

Table 5.12 represents the simulation results of the developed metaheuristic optimization 

methods for the single congestion on line ‘L5’ taking into account the non-linear power 

flow function and PPCC. 
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Table 5.12 Simulation results for the single congestion of 30 MW on line ‘L5’ taking into ac-

count the non-linear power flow equations and PPCC 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 609.94 773.71 634.12 534.08 

Power plants (start-up) 5 5 5 5 

Power plants (drive down) 4 4 4 4 

Active power changes in MW 58.15 58.15 58.15 58.15 

Total costs in €/h 1208.06 1208.06 1208.06 1208.06 

 

In this simple test case, all introduced optimization algorithms provide identical results 

and have a large computation time. Here, the computation time of the ACO is the shortest 

one in comparison to other considered metaheuristic methods. 

 

If the PPCC were not considered, the optimal solution were the selection of the power 

plants at bus bars ‘N4’ and ‘N6’ as well as in the previous case. Moreover, the total costs 

for the redispatch realization were only 969.18 €/h. 

 

However, if the PPCC are considered in the optimization problem, the optimal solution 

for the redispatch realization is the selection of the power plants at bus bars ‘N4’ and 

‘N5’. In addition, the total costs are 1208.06€/h. If the optimal solution were still the 

selection of the power plants at bus bars ‘N4’ and ‘N6’, the total costs for the redispatch 

realization were 1219.18 €/h. Therefore, there is a deviation of 0.92% or 11.12€/h from 

the optimal solution. 

 

Moreover, the needed power generation changes to remedy the congestion, resp. the total 

costs, are less than in the case with the consideration of the sensitivity analysis. Therefore, 

there is a deviation of 3.06% or 36.94€/h from the optimal total costs of 1208.06 €/h. 

 

 

 

5.3.2 Simulation results in the simplified ENTSO-E network model 

 

The optimization methods for solving the non-linear redispatch optimization problem 

considering the PPCC are tested in the simplified network model of the ENTSO-E area 

as well. 

 

As already mentioned above, the start-up costs are significantly low than the costs for the 

power plant generation changes. Therefore, in most cases they have no influence on the 
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total costs for the redispatch realization and can be neglected. Nevertheless, there are 

some rare cases when they can play a major role. 

 

In this work, such seldom case is considered to verify the developed optimization algo-

rithms. The initial conditions of the test grid model are taken from chapter 5.2.2. Further-

more, there is the single congestion only of 20 MW on the double power line between 

bus bars ‘1’ and ‘2’. The sensitivity coefficients of this congested power line are given in 

Table 7.1. In addition, the cost scenario from chapter 5.2.2 is utilized here as well. How-

ever, the LCOE of the power plant at bus bar ‘8’ are changed to 110 €/MWh. 

 

The chosen LCOE refer to the coal-fired power plant type because its start-up costs are 

highest compared to other power plant types (Table 3.2 and Table 3.3). Moreover, it is 

assumed that the considered line congestion is remedied for one hour. 

 

In addition, the PPSDC are neglected for the simulations as well as in chapter 5.3.1. 

 

The costs for the realization of the power plant start-up are introduced in Table 5.13. 

 

Table 5.13 Start-up costs for the scenario in the simplified ENTSO-E network model 

Power plant bus bar 1 2 3 4 5 6 7 

PPCC in € - - 50 - - 95 - 
 

Power plant bus bar 8 9 10 11 12 13 14 

Costs in €/MWh 250 0 80 0 0 0 0 
 

Power plant bus bar 15 16 17 18 19 20 21 

Costs in €/MWh 0 75 0 0 105 0 0 

 

In this case, the redispatch optimization problem includes the non-linear power flow func-

tion, rated active powers of all power plants, their positive and negative redispatch poten-

tials and PPCC. 

 

Table 5.14 represents the simulation results of the metaheuristic optimization methods for 

the single congestion of 20 MW on the double power line between the bus bars ‘1’ and 

‘2’ taking into account the non-linear optimization problem. 
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Table 5.14 Simulation results for the single congestion of 20 MW on the power line between 

the bus bars ‘1’ and ‘2’ taking into account the non-linear power flow equations and PPCC 

Simulation results 
Optimization methods 

GA MVMO PSO ACO 

Simulation time in s 2120.85 2715.46 1962.6 1443.61 

Power plants (start-up) 3 3 3 3 

Power plants (drive down) 1 1 1 1 

Active power changes in MW 132.04 132.04 132.04 132.04 

Total costs in €/h 710.22 710.22 710.22 710.22 

 

The metaheuristic optimization algorithms provide identical results and have a large com-

putation time. Here, the computation time of the ACO is shortest one in comparison to 

other considered metaheuristic methods. Moreover, the MVMO is the slowest algorithm 

from the introduced methods. 

 

If the PPCC were not considered in this scenario, the optimal solution were the selection 

of the power plants at bus bars ‘1’ and ‘8’. Moreover, the total costs for the redispatch 

realization were 505.06 €/h. 

 

However, if the PPCC are considered, the optimal solution is the selection of the power 

plants at bus bars ‘1’ and ‘3’. Here, the total costs for the redispatch are 710.22 €/h. If the 

optimal solution were still the selection of the power plants at bus bars ‘1’ and ‘8’, the 

total costs were 755.06 €/h. Therefore, there is a deviation of 6.31% or 44.84€/h from the 

optimal total costs. 

 

In addition, the optimal solution for the non-linear redispatch optimization problem is 

exactly the same as for the optimization problem with the network sensitivity analysis 

due to the linearization of the power flow equations for the double power line between 

the bus bars ‘1’ and ‘2’ in the simplified network model of the ENTSO-E area has no 

deviation at the utilized working point. 

 

 

 

5.3.3 Conclusions 

 

Obviously, the simplex algorithm is the fastest introduced optimization method and pro-

vides very accurate results. Nevertheless, it cannot solve the redispatch optimization 

problem with the non-linear power flow equations. However, in the case of the redispatch 

optimization problem a linearization of the load flow function can lead to large deviations 
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in the calculation of the line congestion amounts, especially in the highly loaded electric 

networks. 

 

In most cases, the previously introduced metaheuristic algorithms provide the same re-

sults as well as the simplex method if the optimization problem is linear. However, the 

metaheuristic optimization methodologies need significantly more computation time. 

Moreover, sometimes they are not able to find the global optimum of the optimization 

function. In addition, these methods should be adopted and parameterized for the consid-

ered optimization problem, which is not a trivial issue and can take a lot of time. Never-

theless, the utilization of the non-linear power flow equations increases the accuracy of 

the redispatch optimization problem definition and, consequently, improves the optimal 

solutions in comparison to the standard simplex. However, the sequential simplex, which 

is also very fast, can be utilized to remedy congestion calculation deviations. Therefore, 

it delivers the same results as the stochastic optimization methods taking into account the 

load flow function. 

 

Furthermore, the consideration of the PPCC can also improve the optimal solutions. But 

the PPCC can only have a sufficient influence on the total costs in some rare cases. For 

example, if the generation changes to remedy a congestion are low, or the power plants 

have similar impact on the line power flow due to similar generation prices. But low line 

congestions are usually not relevant in the transmission power grids. Therefore, the PPCC 

can be neglected in the redispatch optimization if it is done only for one time step. How-

ever, if the redispatching is considered in the time series, the PPCC and PPSDC can have 

significantly more influence on the total costs because the power plants might be started-

up and shut down many times, which strongly increases the total costs. 

 

Finally, the long computation time of the stochastic optimization methods for the non-

linear redispatch optimization problem makes it difficult to use them in the online net-

work operation. Therefore, they are more suitable for an academic research. 
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6 Summary and Outlook 
 

Today, the frequency of the redispatch utilization to remedy line congestions in the power 

grids, especially in central Europe, has extremely raised because of the high increase of 

the European electricity market. Unfortunately, this process causes high costs for the 

transmission network operators, resp. for the end customers. Therefore, an efficient re-

dispatch optimization has become a very important issue for the TSOs. 

 

In this work, different optimization methodologies, which are used for the redispatch op-

timization including the technical and economic aspects, are introduced, implemented, 

compared and verified in a simple small network model and simplified network model of 

the ENTSO-E power grid. 

 

Obviously, the simplex algorithm is the fastest optimization method and used here to 

solve the linear redispatch optimization problem with a linearization of the power flow 

function, resp. the network sensitivity analysis, and without taking into account the power 

plant cycling costs (PPCC). However, this linearization can lead to strong deviations in 

the line congestion calculations, especially in the highly loaded electric networks. Con-

sequently, this might significantly reduce the accuracy of the optimal solutions. Here, the 

sequential simplex can be used to remedy the deviations of the standard simplex. But both 

simplex algorithms are not able to consider the PPCC. 

 

Therefore, the introduced metaheuristic optimization methodologies (the genetic algo-

rithm, Mean Variance Mapping Optimization, Particle Swarm Optimization and Ant Col-

ony Optimization) are utilized to solve the redispatch optimization problem with the non-

linear load flow equations and PPCC. Based on the simulation results, they all provide 

accurate solutions for the redispatch optimization with the linear and non-linear con-

straints (see chapters 5.2 and 5.3). However, the metaheuristic approaches have a big 

disadvantage, resp. a long computation time, especially in case of the consideration of the 

non-linear power flow function. Furthermore, sometimes they are not able to find the 

global optimum of the optimization problem. Moreover, the mentioned stochastic opti-

mization methods should be adopted and parameterized for the considered optimization 

problem, which is not a trivial task and can take a long time. Therefore, they are not really 

appropriate to use them in the online network operation. Nevertheless, they are well suit-

able for an offline study and academic research. 

 

In addition, consideration of the PPCC can also improve the accuracy of the optimal so-

lutions. However, in case of single time step consideration the start-up costs can have a 
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relevant influence on the total costs only if the generation changes to remedy a congestion 

are low or the power plants have similar impact on the line power flow due to similar 

generation prices. Furthermore, low line congestions are usually not relevant in the trans-

mission electric networks. Hence, the PPCC can be neglected in the redispatch optimiza-

tion if it is done only for a snapshot of the power grid state. However, if the redispatch is 

considered in the time series, the PPCC and PPSDC could have significantly more influ-

ence on the total costs because power plants may be started-up and shut down many times. 

 

Finally, different approaches (the Power Flow Decomposition and two AC Power Trans-

fer Distribution Factors methods) for the calculation of the sensitivity analysis are intro-

duced, implemented, compared and verified in several standard IEEE test power grid 

models and the already mentioned simplified network model of the ENTSO-E area. Based 

on the simulation results, the PFD methodology provides the most accurate approxima-

tions of the non-linear power flow equations in all test cases. Moreover, its maximum 

deviation is around 9% in case of an extremely high load in the simplified ENTSO-E grid 

model. In case of normal load in this network model, there is no deviation from the load 

flow function at the utilized working point at all (see the results from chapter 5.3). There-

fore, the PFD method is chosen for the calculation of the network sensitivity analysis in 

the test networks models. 

 

In future works, the economic aspects of the redispatch realization could be considered 

in the time series. In this case, the PPCC and PPSDC may be larger share of the total costs 

because the power plants could be started-up and shut down many times during the redis-

patching. Furthermore, different RES might be included in this process as well. 

 

 

 

 

 

 

 

 

 

 

 



 91 

 

7 List of references 
 

[1]  B. Haller, Versorgungssicherheit in Deutschland, Stuttgart, Germany: Energie 

Speicher Symposium, 2013.  

[2]  C. O. Heyde, Dynamic Voltage Security Assessment for On-Line Control Room 

Application, Ph.D. dissertation, Magdeburg, Germany: Otto-von-Guericke 

University, 2010.  

[3]  M. Wolter, Agent based Energy Management Systems, Ph.D. dissertation, Aachen, 

Germany: Shaker Verlag, 2012.  

[4]  "REGULATION (EC) No 714/2009 OF THE EUROPEAN PARLIAMENT AND 

OF THE COUNCIL of 13 July 2009," Official Journal of the European Union, 

August 2009. 

[5]  I. Chychykina, C. Klabunde and M. Wolter, "Comparison of different redispatch 

optimization strategies," in 2017 IEEE Manchester PowerTech, Manchester, 

England, 18-22 June 2017.  

[6]  J. E. Blank, "Engpassmanagement an grenzüberschreitenden Netzkuppelstellen," 

Kaiserslautern, Germany, 2015.  

[7]  ENTSO-E, "Continental Europe Operation Handbook. Operational Security," 2004. 

[8]  "www.bundesnetzagentur.de," [Online]. [Accessed 3 September 2015]. 

[9]  I. Androcec and I. Wangensteen, "Different Methods for Congestion Management 

and Risk Management," in 9th International Conference on Probabilistic Methods 

Applied to Power Systems, Stockholm, Sweden, June 11-15, 2006.  

[10]  Federal Ministry for Economic Affairs and Energy in Germany oder 

Bundesministerium der Justiz und für Verbraucherschutz in Deutschland, Gesetz 

über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz - EnWG). 

[11]  Federal Ministry of Justice and Consumer Protection in Germany oder 

Bundesministerium der Justiz und für Verbraucherschutz in Deutschland, 

Verordnung zur Regelung des Netzanschlusses von Anlagen zur Erzeugung von 

elektrischer Energie, (Kraftwerks-Netzanschlussverordnung - KraftNAV), § 7 

Netzzugang bei Engpässen, 26.06.2007. 

[12]  Federal Ministry for Economic Affairs and Energy in Germany oder 

Bundesministerium der Justiz und für Verbraucherschutz in Deutschland, Gesetz 

über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz - EnWG). 



List of references 92 

 

[13]  C. König, Engpassmanagement in der deutschen und europäischen 

Elektrizitätsversorgung, Baden-Baden, Germany: Nomos Verlagsgesellschaft, 

2013.  

[14]  "Analysis of cross-border congestion management methods for the EU internal 

electricity market," Final report, Study commissioned by the European Commission 

Directorate-General Energy and Transport, June 2004. 

[15]  P. Trojan, M. Wolter and P. Komarnicki, "Agent based power system management 

- Concept of congestion management," in IEEE 18th International Scientific 

Conference on Electric Power Engineering (EPE), Ostrava, Czech Republic, 03 Juli 

2017.  

[16]  T. Wawer, "Konzepte für ein nationales Engpassmanagement im deutschen 

Übertragungsnetz," Zeitschrift für Energiewirtschaft (ZfE), 2007.  

[17]  I. Chychykina, C. Klabunde and M. Wolter, "Redispatch with power flow 

decomposition and power transfer distribution factors methods," in 2016 51st 

International Universities Power Engineering Conference (UPEC), Coimbra, 

Portugal, 6-9 September 2016.  

[18]  B. Dieckmann, Engpassmanagement im Europäischen Strommarkt, Ph.D. 

dissertation, Münster, Germany: Wilhelms-University Münster, November 2008.  

[19]  J. Kühling, Die neuen Engpass- Leitlinien der Kommission im grenzüberstehenden 

Stromhandel – Freie Fahrt für das Open Market Coupling in Deutschland?, Recht 

der Energiewirtschaft: RdE 2006, pp. 173-174, 2006.  

[20]  ERGEG, Draft Framework Guidelines on Capacity Allocation and Congestion 

Management for Electricity, pp. 45, September 2010.  

[21]  E. Böttcher, Market Coupling in Europa, emw, 2009.  

[22]  A. R. Bergen and V. Vittal, Power System Analysis, New Jersey, USA: 2nd ed., 

Prentice Hall, pp. 13-14, 2000.  

[23]  M. Wolter and B. Huehnerbein, "Identification of cross-border power flows in 

integrated networks based on the principle of superposition," in IEEE International 

Power and Energy Conference, Johor Bahru, Malaysia, 2008.  

[24]  M. Wolter, "About the impact of burdening and relieving partial power flows 

caused by Loop Flows in interconnected networks on ITC amount," in 2009 IEEE 

Power & Energy Society General Meeting, Calgary, Canada, 26-30 July 2009.  

[25]  M. Wolter and B. R. Oswald, "Congestion management and determination of 

optimal grid expansion and retreat strategies using a modified Boundary Load Flow 

Method," in 2008 40th North American Power Symposium, Calgary, Canada, 

September 2008.  



List of references 93 

 

[26]  M. Wolter and L. Hofmann, "Allocation of responsibility for congestions in 

transmission systems based on power flow decomposition," in IASTED AsiaPES 

2010, Phuket, Thailand, November 2010.  

[27]  T. Leveringhaus and L. Hofmann, "Comparison of methods for state prediction: 

Power Flow Decomposition (PFD), AC Power Transfer Distribution factors (AC-

PTDFs), and Power Transfer Distribution factors (PTDFs)," in 2014 IEEE PES 

Asia-Pacific Power and Energy Engineering Conference (APPEEC), Hong Kong, 

China, December 2014.  

[28]  J. Kumar and A. Kumar, "ACPTDF for Multi-transactions and ATC Determination 

in Deregulated Markets," International Journal of Electrical and Computer 

Engineering (IJECE), vol. 1, pp. 71-84, September 2011.  

[29]  Saloni and M. Dhakla, "ATC Determination for Different Transactions Using 

ACPTDF," International Journal of Modern Engineering Research (IJMER), vol. 

3, pp. 431-435, January 2013.  

[30]  P. Venkatesh, B. Manikandan, S. C. Raja and A. Srinivasan, Power Systems – 

Analysis, Security and Deregulation, New Delhi, India: PHI Learning Private 

Limited, 2012.  

[31]  "http://www.pserc.cornell.edu/matpower/," [Online]. [Accessed 11 Februar 2019]. 

[32]  "http://www.ee.washington.edu/research/pstca/," [Online]. [Accessed 3 September 

2015]. 

[33]  Levelized Cost and Levelized Avoided Cost of New Generation Resources in the 

Annual Energy Outlook 2018, Tech. Rep., Washington, USA: U.S. Energy 

Information Administration, March 2018.  

[34]  C. Kost and T. Schlegl, Levelized Cost of Electricity - Renewable Energy 

Technologies, Tech. Rep., Freiburg, Germany: Fraunhofer Institute for Solar 

Energy Systems ISE, March 2018.  

[35]  U. Nestle and C. Kunz, Studienvergleich: Stromgestehungskosten verschiedener 

Erzeugungstechnologien, Tech. Rep., Berlin, Germany: Agentur für Erneuerbare 

Energien, 2014.  

[36]  N. Kumar, P. Besuner, S. Lefton, D. Agan and D. Hilleman, Power plant cycling 

costs, Tech Rep., Sunnyvale, California, USA: Intertek APTECH, NREL Technical 

Monitor, July 2012.  

[37]  K. d. Bergh and E. Delarue, Energy Conversion and Management, vol. 97, Elsevier 

Ltd, pp. 70-77, April 2015.  



List of references 94 

 

[38]  Assessment of startup period at coal-fired electric generating units – Revised, U.S. 

Environmental Protection Agency, Office of Air and Radiation, Tech Rep., 

November 2014.  

[39]  H. Spliethoff, Power generation from solid fuels, Berlin, Germany: Springer Berlin 

Heidelberg, 2010.  

[40]  A. J. Wood, B. F. Wollenberg and G. B. Sheblé, Power generation, operation, and 

control, New Jersey, USA: John Wiley & Sons, 2014.  

[41]  M. Silbernagl, M. Huber and R. Brandenberg, "Improving Accuracy and Efficiency 

of Start-Up Cost Formulations in MIP Unit Commitment by Modeling Power Plant 

Temperatures," IEEE Transactions on Power Systems, vol. 31, pp. 2578-2586, July 

2016.  

[42]  M. Huber and M. Silbernagl, "Modeling Start-Up Times in Unit Commitment by 

Limiting Temperature Increase and Heating," in 12th International Conference on 

the European Energy Market (EEM), Lisbon, Portugal, May 2015.  

[43]  W. Jiekang, L. Jun, W. Jixiang and C. Yuanrui, "Stochastic models for optimal 

generation production in electricity markets," in International Conference on Power 

System Technology, Kunming, China, October 2002.  

[44]  S. Abbasi and A. Jamehbozorg, "A comprehensive economic optimization plan for 

microgrids considering grid interconnection and line congestion," in Technology 

2015 IEEE Green Energy and Systems Conference (IGESC), Long Beach, USA, 

November 2015.  

[45]  A. Nogales, E. Centeno and S. Wogrin, Including start-up and shut down 

constraints into generation capacity expansion models for liberalized electricity 

markets, Vienna, Austria: unpublished, presented at the second international 

AAEE/YEEES PhD Day, March 2013.  

[46]  A. Antoniou and W.-S. Lu, Practical Optimization. Algorithms and Engineering 

Applications, New York, USA: Springer, pp. 321-323, 2007.  

[47]  H. Karloff, Linear Programming, Boston, USA: Springer, pp. 23-48, 1991.  

[48]  J. Vaidya, "A secure revised simplex algorithm for privacy-preserving linear 

programming," in IEEE International Conference on Advanced Information 

Networking and Applications (AINA), Bradford, United Kingdom, pp. 347-354, 

May 26-29 2009.  

[49]  D. K. Nadar, "Some Applications of Simplex Method," International Journal of 

Engineering Research and Reviews, pp. 60-63, January 2016.  



List of references 95 

 

[50]  D. Spielman and S.-H. Teng, "Smoothed Analysis of Algorithms: Why the Simplex 

Algorithm Usually Takes Polynomial Time," Journal of the ACM, pp. 385-463, 

May 2004.  

[51]  W. Spendley, G. R. Hext and F. R. Himsworth, "Sequential Application of Simplex 

Designs in Optimisation and Evolutionary Operation," Technometrics, pp. 441-461, 

April 2012.  

[52]  V. S. Vassiliadis and R. Conejeros, Sequential Simplex Method, Boston, USA: 

Springer, 2008.  

[53]  J. A. Nelder and R. Mead, "A Simplex Method for Function Minimization," The 

Computer Journal, vol. 7, pp. 308–313, January 1965.  

[54]  R. Haupt and S. E. Haupt, Practical Genetic Algorithms, New Jersey, USA: Wiley, 

pp. 27-65, 2004.  

[55]  D. Simon, Evolutionary Optimization Algorithms, New Jersey, USA: Wiley, pp. 

44-59, 2013.  

[56]  K. Weicker, Evolutionäre Algorithmen, Wiesbaden, Germany: Springer Vieweg, 

2015.  

[57]  M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization, New 

Jork, USA: Wiley, pp. 6-9, 2000.  

[58]  D. Dasgupta and D. R. McGregor, "Short Term Unit Commitment Using Genetic 

Algorithms," in International Conference on Tools with Artificial Intelligence, 

Boston, Massachusetts, USA, 1993.  

[59]  A. Popov, Genetic Algorithms for Optimization. Programs for MATLAB, User 

Manual, Version 1.0, Hamburg, Germany, 2005.  

[60]  O. Roeva, "A Modified Genetic Algorithm for a Parameter Identification of 

Fermentation Processes," Biotechnology & Biotechnological Equipment, 2006.  

[61]  M.-C. Popescu, N. E. Mastorakis and L. Popescu-Perescu, "Application of Genetic 

Algorithm in Electrical Engineering," International Journal of Pure and Applied 

Mathematics, vol. 114, pp. 35-43, May 2017.  

[62]  Ö. Yeniay, "Penalty Function Methods for Constrained Optimization with Genetic 

Algorithms," Mathematical and Computa-tional Applications, vol. 10, pp. 45-56, 

2005.  

[63]  V. Petridis, S. Kazarlis and A. Bakirtzis, "Varying Fitness Functions in Genetic 

Algorithm Constrained Optimization: The Cutting Stock and Unit Commitment 

Problems," IEEE Transactions on Systems, Man, and Cybernetics, Part B 

(Cybernetics), vol. 28, pp. 629- 640, October 1998.  



List of references 96 

 

[64]  V. Petridis, S. Kazarlis and A. Bakirtzis, "Penalty Function Methods for 

Constrained Optimization with Genetic Algorithms: A Statistical Analysis," in 

Mexican International Conference on Artificial Intelligence, Yucatan, Mexico, pp 

108-117, May 2002..  

[65]  Z. Michalewicz und M. Schoenauer, „Evolutionary Algorithms for Constrained 

Parameter Optimization Problems,“ Evolutionary Computation, Bd. 4, pp. 1- 32, 

March 1996.  

[66]  S. C. Müller, Techno-economic analysis of congestion management in the European 

transmission system under consideration of flexibility and uncertainty, Ph.D. 

dissertation, Dortmund, Germany: Sierke Verlag, November 2015.  

[67]  D. Mende, D. S. Stock, T. Hennig, L. Löwer and L. Hofmann, "Multiobjective 

Optimization in Congestion Management Considering Technical and Economic 

Aspects," in IEEE PES Asia-Pacific Power and Energy Engineering Conference 

(APPEEC), Xian, China, October 2016.  

[68]  J. Abrell, F. Kunz and H. Weigt, "https://mpra.ub.uni-

muenchen.de/65661/1/wp_em_28_Abrell_Kunz_Weigt_Startup.pdf," [Online]. 

[Accessed 14 Februar 2019]. 

[69]  I. Erlich, G. K. Venayagamoorthy and W. Nakawiro, "A mean-vareance 

optimization algorithm," in IEEE Congress on Evolu-tionary Computation, 

Barcelona, Spain, pp.1-6, July 2010..  

[70]  J. L. Rueda, W. H. Guamán, J. C. Cepeda, I. Erlich and A. Vargas, "Hybrid 

approach for power system operational planning with smart grid and small-signal 

stability enhancement considerations," IEEE Transactions on Smart Grid, vol. 4, 

pp. 530-539, March 2013.  

[71]  I. Erlich, J. L. Rueda, S. Wildenhues and F. Shewarega, "Evaluating the mean-

vareance mapping optimization on the IEEE-CEC 2014 test suite," in 2014 IEEE 

Congress on Evolutionary Computation (CEC), Beijing, China, July 2014.  

[72]  I. Erlich, J. L. Rueda, S. Wildenhues and F. Shewarega, "Solving the IEEE-CEC 

2014 expensive optimization test problems by using single-particle MVMO," in 

2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, July 

2014..  

[73]  J. L. Rueda and I. Erlich, "MVMO for bound constrained single-objective 

computationally expensive numerical optimization," in 2015 IEEE Congress on 

Evolutionary Computation (CEC), Sendai, Japan, May 2015.  

[74]  J. L. Rueda and F. Gonzalez-Longatt, "Application of swarm mean-vareance 

mapping optimization on location and tuning damp-ing controllers," in 2015 IEEE 



List of references 97 

 

Innovative Smart Grid Technologies - Asia (ISGT ASIA), Bangkok, Thailand, 

January 2016.  

[75]  C. J. López-Salgado, O. Añó and D. M. Ojeda-Esteybar, "Joint optimization of 

energy and reserve in deregulated power markets: alternative approach using Mean 

Vareance Mapping Optimization," in 2016 Power Systems Computation 

Conference (PSCC), Genoa, Italy, June 2016.  

[76]  J. Rueda, A. M. Theologi, M. Ndreko, I. Erlich and P. Palensky, "Metaheuristic 

approach for online optimal reactive power management in near-shore wind power 

plants," in 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin 

America (ISGT Latin America), Quito, Ecuador, September 2017.  

[77]  J. Kennedy and R. Eberhart, "Particle swarm optimization," in IEEE International 

Conference on Neural Networks, Perth, Australia, December 1995.  

[78]  K. Y. Lee and J.-B. Park, "Application of Particle Swarm Optimization to Economic 

Dispatch Problem: Advantages and Disad-vantages," in 2006 IEEE PES Power 

Systems Conference and Exposition, Atlanta, USA, November 2006.  

[79]  H. Huang, H. Qin, Z. Hao and A. Lim, "Example-based learning particle swarm 

optimization for continuous optimization," In-formation Sciences, Nature-Inspired 

Collective Intelligence in Theory and Practice, vol. 182, pp. 125-138, January 2012.  

[80]  V. Karthikeyan, S. Senthilkumar and V. J. Vijayalakshmi, "A New Approach to the 

Solution of Economic Dispatch Using Particle Swarm Optimization with Simulated 

Annealing," International Journal on Computational Sciences & Applications 

(IJCSA), vol. 3, pp. 37-49, June 2013.  

[81]  X. Wang and X. Qiu, "Application of particle swarm optimization for enhanced 

cyclic steam stimulation in an offshore heavy oil reservoir," International Journal 

of Information Technology, Modeling and Computing (IJITMC), vol. 1, pp. 37-47, 

May 2013.  

[82]  Y.-S. Cheng, M.-T. Chuang, Y.-H. Liu, S.-C. Wang und Z.-Z. Yang, „A particle 

swarm optimization based power dispatch algorithm with roulette wheel re-

distribution mechanism for equality constraint,“ Renewable Energy, Bd. 88, pp. 58-

72, April 2016.  

[83]  S. Huang and V. Dinavahi, "Multi-group particle swarm optimisation for 

transmission expansion planning solution based on LU decomposition," IET 

Generation, Transmission & Distribution, vol. 11, May 2017.  

[84]  P. R. Sujin, T. R. Deva-Prakash and M. M. Linda, "Particle Swarm Optimization 

Based Reactive Power Optimization," Journal of Computing, vol. 2, January 2010.  



List of references 98 

 

[85]  J. C. Bansal, P. K. Singh and M. Saraswat, "Inertia Weight strategies in Particle 

Swarm Optimization," in 2011 Third World Congress on Nature and Biologically 

Inspired Computing, Salamanca, Spain, October 2011.  

[86]  J. Xin, G. Chen and Y. Hai, "A Particle Swarm Optimizer with Multi-stage 

Linearly-Decreasing Inertia Weight," in 2009 International Joint Conference on 

Computational Sciences and Optimization, Sanya, Hainan, China, April 2009.  

[87]  M. A. Abido, "Optimal design of power-system stabilizers using particle swarm 

optimization," IEEE Transactions on Energy Con-version, vol. 17, pp. 406 – 413, 

November 2002.  

[88]  M. Dorigo and T. Stützle, Ant Colony Optimization, Cambridge, Massachusetts, 

USA: MIT Press, 2004.  

[89]  C. Blum, "Ant colony optimization: Introduction and recent trends," Physics of Life 

Reviews, pp. 353–373, December 2005.  

[90]  M. D. Toksari, "Ant colony optimization for finding the global minimum," Applied 

Mathematics and Computation, vol. 176, pp. 308–316, May 2006.  

[91]  C. Blum and C. Socha, "An ant colony optimization algorithm for continuous 

optimization: application to feed-forward neural network training," Neural 

Computing and Applications, vol. 16, pp. 335–347, March 2007.  

[92]  C. J. Riadi, Cognitive Ant Colony Optimization: A New Framework in Swarm 

Intelligence, Ph.D. dissertation, University of Salford, Manchester, UK, 2014.  

[93]  M. Dorigo and G. D. Caro, "Ant Colony Optimization: A New Meta-Heuristic," in 

1999 IEEE Congress on Evolutionary Computation-CEC99, Washington, USA, 

July 1999.  

[94]  A. Ahuja and A. Pahwa, "Using ant colony optimization for loss minimization in 

distribution networks," in the 37th Annual North American Power Symposium, 

Ames, USA, October 2005.  

[95]  P. López-Matencio, "An ACOR-Based Multi-Objective WSN Deployment 

Example for Lunar Surveying," Sensors, February 2016.  

[96]  D. Kahneman and A. Tversky, "Prospect Theory: An Analysis of Decision under 

Risk," Econometrica, vol. 47, pp. 263-291, March 1979.  

[97]  A. Tversky and D. Kahneman, "Advances in prospect theory: Cumulative 

representation of uncertainty," Journal of Risk and Uncertainty, vol. 5, pp. 297–

323, October 1992.  

[98]  DynaGridCenter, Tech. Rep., Nürnberg, Germany, February 2019.  

[99]  eHighway2050, Country and Cluster installed Capacities, Tech. Rep., 31 March 

2015.  



 99 

 

A Title Annex A 
 

Table 7.1 Sensitivity coefficients of power lines between bus bars ‘1’ and ‘3’, ‘11’ and ‘19’ 

Power plant bus bar 1 2 3 4 5 6 7 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘2’ 
0.198 -0.046 0.047 0.106 0.081 0.071 -0.005 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘3’ 
0.212 0.057 -0.025 0.104 0.071 0.055 0.034 

Sensitivity coefficients of line be-

tween bus bars ‘11’ and ‘19’ 
0.084 0.072 0.09 0.142 0.172 0.164 0.053 

 

Power plant bus bar 8 9 10 11 12 13 14 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘2’ 
0 -0.003 0.07 0.035 0.05 0.01 0.011 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘3’ 
0.034 0.036 0.06 0.038 0.047 0.028 0.03 

Sensitivity coefficients of line be-

tween bus bars ‘11’ and ‘19’ 
0.04 0.044 0.178 0.236 0.208 0.044 -0.009 

 

Power plant bus bar 15 16 17 18 19 20 21 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘2’ 
0.005 0.011 0.018 0.018 0.03 0.025 0.027 

Sensitivity coefficients of line be-

tween bus bars ‘1’ and ‘3’ 
0.034 0.034 0.038 0.038 0.035 0.04 0.038 

Sensitivity coefficients of line be-

tween bus bars ‘11’ and ‘19’ 
0.021 0.003 0.003 0.003 -0.218 -0.007 -0.024 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Published MaFo Books 100 

 

Published MaFo Books 
 

[1] A. Orths: Multikriterielle, optimale Planung von Verteilungsnetzen im 

liberalisierten Energiemarkt unter Verwendung von Spieltheoretischen Verfahren, 

2003. ISBN: 3-929757-57-5 

[2] M. Purmann: Optimierung des Betriebsverhaltens von PEM-Brennstoffzellen unter 

Berücksichtigung von elektrischem und Gesamtwirkungsgrad bei unterschiedlichen 

Lastanforderungen und Betriebsparametern, 2003. ISBN: 3-929757-63-X 

[3] M. Al-Hamid: Extraktion von höheren Moden TEM-Wellenleitern, 2004. 

 ISBN: 3 929757-64-8 

[4] H. Haase, J. Nitsch, T. Steinmetz: Transmission-Line Super Theory – A new 

Approach to an Effective Calculation of Electromagnetic Interference, 2004. 

 ISBN: 3 929757-67-2 

[5] A. Bachry: Power Quality Studies in Distribution Systems Involving Spectral 

Decomposition, 2004. ISBN: 3-929757-68-0 

[6] Z. Styczynski (Editor): Power Network and Renewables – A Scientific Report- (5 

Years Research), 2004. ISBN: 3-929757-69-9 

[7] E. Blume: Numerische Analyse der Kopplung linearer Antennen innerhalb eines 

Resonators, 2004. ISBN: 3-929757-71-1 

[8] E. Handschin, Z. Styczynski (Editors): Power System Application of the Modern 

Battery Storage, 2004. ISBN: 3-929757-75-3 

[9] H. Haase: Full-Wave Field Interactions of Nonuniform Transmission Lines, 2005. 

ISBN: 3-929757-78-8 

[10] D. Nitsch: Die Wirkung eingekoppelter ultrabreitbandiger elektromagnetischer 

Impuls auf komplexe elektronische System, 2005. ISBN: 3-929757-79-6 

[11] B. Hadzi-Kostova: Protection Concepts in Distribution Networks with 

Decentralised Energy Resources, 2005. ISBN: 3-929757-84-2 

[12] T. Steinmetz: Ungleichförmige und zufällig geführte Mehrfachleitungen in 

komplexen, technischen Systemen, 2006. ISBN: 3-929757-98-2 

[13] Z. Styczynski, J. Haubrock (Editors): Influence of Distributed and Renewable 

Generation on Power System Security, 2006. ISBN: 3-929757-99-0 

[14] G. Heideck: Ein autonomes Brennstoffzellensystem: Optimierungsansätze, 2006. 

ISBN: 3-929757-94-X 

[15] Z. Styczynski, H. D. Musikowski (Editors): Dresdener Kreis Elektroenergie-

versorgung 7, 2006. ISBN: 3-929757-85-0 



Published MaFo Books 101 

 

[16] F. Gronwald: Antenna Theory in Resonating Systems derived from Fundamental 

Electromagnetism, 2006. ISBN: 3-929757-93-1 

[17] G. Krauthäuser: Grundlagen und Anwendungen von Modenverwirbelungs-

kammern, 2007. ISBN: 978-3-929757-43-9 

[18] C. Dzienis: Ersatzmodelle nichtlinearer Lasten in elektrischen Verteilungs-netzen, 

2007. ISBN: 978-3-929757-07-1 

[19] Z. Styczynski, J. Haubrock (Editors): Renewable and Dispersed Power Generation 

in Power Systems, 2008. ISBN: 978-3-929757-44-6 

[20] J. Haubrock: Parametrierung elektrischer Äquivalentschaltbilder von PEM 

Brennstoffzellen, 2008. ISBN: 978-3-940961-02-0 

[21] N. Angelov: Rechnergestütztes Lernen im Bereich der Regenerativen Energien 

(Ausgewählte Aspekte), 2008. ISBN: 978-3-940961-03-7 

[22] P. Komarnicki: Anwendung hochgenauer, synchroner Messungen zur 

Verbesserung des Betriebs von Verteilungsnetzen, 2008. ISBN 978-3-940961-04-4 

[23] C. Roggatz: Trainingssimulator für die Führung von elektrischen Systemen mit 

dezentralen Energieeinspeisungen - Trainingsszenarien und Umsetzung, 2008. 

ISBN: 978-3-940961-05-1 

[24] K. Rudion: Aggregated Modelling of Wind Farms, 2008. 

 ISBN: 978-3-940961-14-3 

[25] M. R. Ganjavi: Protection System Coordination Using Expert System, 2008. 

 ISBN: 978-3-940961-15-0 

[26] S. Bofinger: Energieversorgungsnetze mit einem hohen Anteil an photovoltaischer 

Solarenergie: Standortbestimmung, Solarstromprognose, Netzintegration, 2008. 

 ISBN: 978-3-940961-25-9 

[27] Z. Styczynski, P. Komarnicki (Editorial Board): Distributed and Renewable Power 

Generation, 2008. ISBN: 978-3-940961-26-6 

[28] S. Kochetov: Time- and frequency-domain modeling of passive interconnection 

structures in field and circuit analysis, 2008. ISBN: 978-3-940961-27-3 

[29] M. Magdowski: Entwicklung und Validierung eines Werkzeugs zur Berechnung der 

elektromagnetischen Einkopplung von stochastischen Feldern in Leitungs-

strukturen, 2008. ISBN: 978-940961-28-0 

[30] F. Sonnemann: Elektromagnetische Effekte an elektrischen Zündmitteln (EED) mit 

angeschlossener Zündkreiselektronik (ZKE) bei impulsförmiger, breit-bandiger 

Bestrahlung, 2009. ISBN: 978-3-940961-32-7 

[31] T. Smieja: Multikriterielle Planung interregionaler Elektrizitätsnetze im 

liberalisierten Energiemarkt, 2009. ISBN: 978-3-940961-35-8 



Published MaFo Books 102 

 

[32] C. O. Heyde: Dynamic Voltage Security Assessment for On-Line Control Room 

Application, 2010. ISBN: 978-3-940961-40-2 

[33] Z. A. Styczynski, N. I. Voropai (Editors): Renewable Energy Systems 

Fundamentals, Technologies, Techniques and Economics, 2010. 

 ISBN: 978-3-940961-42-6 

[34] Z. A. Styczynski, N. I. Voropai (Editors): Renewable Energy Systems 

Fundamentals, Technologies, Techniques and Economics, 2010 (Russian Version). 

ISBN: 978-3-940961-44-0 

[35] Z. A. Styczynski, A. Lindemann (Editors): Integration of Renewable Energies into 

the Grid/ Proc. of the Power&Energy Student Summit 2010, 2010. 

 ISBN: 978-3-940961-47-1 

[36] Z. A. Styczynski, H.-D. Musikowski (Editors): Dresdener Kreis 

Elektroenergieversorgung 11, 2010. ISBN: 978-3-940961-51-8 

[37] M. A. Gurbiel: Definition and Testing of a Digital Interface of a Power Substation, 

2011. ISBN: 978-3-940961-54-9 

[38] P. Lombardi: Multi criteria optimization of an autonomous virtual power plant, 

2011. ISBN:978-3-940961-55-6 

[39] M. Powalko: Beobachtbarkeit eines elektrischen Verteilungsnetzes. Ein Beitrag 

zum Smart Grid, 2011. ISBN:978-3-940961-62-4 

[40] Z. A. Styczynski, K. Rudion, C. Nguyen-Mau (Editorial Board): Power System 

Dynamic Security Assessment, 2011. ISBN: 978-3-940961-61-7 

[41] M. Käbisch: Optimale Dimensionierung und Betriebsführung einer 

brennstoffzellenbasierten Auxiliary Power Unit im Fahrzeug, 2011. 

 ISBN 978-3-940961-67-9 

[42] Z. A. Styczynski, N. I. Voropai (Editors): Special issue Grant 220 Russian 

Federation “Smart Grid for Efficient Energy Power System for the Future”, 

Proceedings Volume I, 2012. ISBN: 978-3-940961-74-7 

[43] Z. A. Styczynski, P. Komarnicki, A. Naumann (Editors): Abschlussbericht 

Harz.ErneuerbareEnergien-mobility, 2012. ISBN: 978-3-940961-71-6 

[44] M. Heuer: Diagnosetool für stationär betriebene PEM-Brennstoffzellensysteme, 

2012. ISBN: 978-3-940961-77-8 

[45] M. Stötzer: Demand Side Integration in elektrischen Verteilnetzen – 

Potenzialanalyse und Bewertung, 2012. ISBN: 978-3-940961-78-5 

[46] M. Magdowski: Vergleich der Einkopplung deterministischer und statistischer 

elektromagnetischer Felder in Leitungen, 2012. ISBN: 978-3-940961-75-4 

[47] A. Naumann: Leitwarte im Smart Grid, 2012. ISBN: 978-3-940961-81-5 



Published MaFo Books 103 

 

[48] K. Rudion: Offshore Power System Planning – Selected Aspects, 2012. 

 ISBN: 978-3-940961-82-2 

[49] C. Nguyen Mau: Electric Power System Stability Enhancement by Voltage Source 

Converter based High Votage Direct Current Technology, 2012. 

 ISBN: 978-3-940961-84-6, 2012 

[50] H. Guo: Measurement-based Load Modeling for Smart Grid Planning, 2012. 

 ISBN: 978-3-940961-86-0 

[51] Z. A. Styczynski: Proceedings No 2 in the scope of Mega Grant Baikal, 2013. 

ISBN: 978-3-940961-95-2 

[52] Z. A. Styczynski: Proceedings No 3 in the scope of Mega Grant Baikal, 2013. 

 ISBN: 978-3-940961-98-3 

[53] C. Wenge: Optimaler Betrieb von mobilen Speichern im Smart Grid. -

Mobilitätsleitwarte-, 2013. ISBN: 978-3-944722-01-6 

[54] C. Röhrig: Smart Distribution Planung unter Berücksichtigung von residualen 

Lasten, 2014. ISBN: 978-3-944722-06-1 

[55] F. Middelstädt: Research of SEM Poles of Complex Wire Structures, 2014.

 ISBN: 978- 3-944722-07-8 

[56] Z. A. Styczynski (Editor): Power Network and Renewables -A    Scientific Report- 

15 Years Research, 2014. ISBN: 978-3-944722-08-5 

[57] N. N. Solonina, V. S. Stepanov, K. V. Suslov: Information technology in intelligent 

power networks, 2014. ISBN: 978-3-944722-13-9 

[58] R. Krebs: Fundamentals of Power System Protection, 2014.  

 ISBN: 978-3-944722-15-3 

[59] N. Moskalenko: Optimal Dynamic Energy Management System in Smart Homes, 

2014. ISBN: 978-3-944722-16-0 

[60] I. Hauer : Optimale Last- und Erzeugungsanpassung bei kritischen Netzzuständen 

-Algorithmen und deren Bewertung-, 2014. ISBN: 978-3-944722-18-4 

[61] M. Richter: Dresdner Kreis Elektroenergieversorgung 15, Begleitband zum 

Workshop 2014, 2014. ISBN: 978-3-944722-21-4 

[62] Z. A. Styczynski, A. Richter, P. Kühne: Second ELECON Workshop, Begleitband 

zum Workshop 2014, 2014. ISBN: 978-3-944722-23-8 

[63] P. Bernstein: Modellgestützte optimale Betriebsführung von PEM-Brennstoffzellen 

für autonome Anlagen, 2015. ISBN: 978-3-944722-24-5 

[64] S. Rabe: Betrieb einer Zweipunkt-Offshore-HGÜ-Verbindung – 

Modelluntersuchungen, 2015. ISBN: 978-3-944722-31-3 



Published MaFo Books 104 

 

[65] B. Arendarski: Reliability Assessment of Smart Grids, 2015. 

 ISBN: 978-3-944722-32-0 

[66] X. Pan: Numerisches EMV-Simulationsverfahren zur Berechnung der 

 Störaussendung elektrischer Antriebssysteme in Hybridfahrzeugen, 2016. 

 ISBN: 978-3-944722-34-4 

[67] M. Richter: PMU-basierte Zustandsabschätzung in Smart Distribution, 2016. 

 ISBN 978-3-944722-43-6 

[68] I. Bielchev: Adaptiver Distanzschutz im Standard IEC 61850, 2016. 

 ISBN 978-3-944722-45-0 

[69] A. Hassan: Modeling of Single and  Double-Shielded Cables for EMC Applications, 

2016. ISBN: 978-944722-41-2 

[70] X. Liu: Control of Voltage Source Converter Based High  Voltage Direct Current 

Transmission Systems for Grid Code Compliance, 2016. 

 ISBN: 978-3-944722-46-7 

[71] M. Kaiser: Fusion of Interventional Ultrasound & X-ray, 2016. 

 ISBN: 978-3-944722-51-1 

[72] F. Grieger: Ein Beitrag zur Bestimmung der Zuverlässigkeit von 

Leistungshalbleiterbauelementen unter Berücksichtigung der Anwendung, 2016. 

ISBN: 978-3-944722-52-8 

[73] M. Li: Toward a Robust Electromagnetic Tracking System for Use in Medical 

Applications, 2018. ISBN: 978-3-944722-66-5 

[74] C. Klabunde, J. Dancker, N. Gast, T. Schröter, F. Schulz, J. Rossberg, A. Richter: 

Intelligentes Multi-Energie-System (SmartMES), 2018. ISBN: 978-3-944722-69-6 

[75] T. Schröter: Dresdner Kreis 2018, 2018. SBN 978-3-944722-79-5. 

[76] C. Klabunde, J. Dancker, N. Gast, T. Schröter, F. Schulz, J. Rossberg: Intelligentes 

Multi-Energie-System (SmartMES) – Statusbericht der Otto-von-Guericke-

Universität Magdeburg zum Verbundprojekt, 2. Statusseminar 04. April 2019 in 

Magdeburg, 2019. ISBN 987-3-944722-80-1 

[77] S. Helm, J. Dancker, M. Fritsch, T. Schröter: Power and Energy Student Summit 

2019, 09.–11. Juli, 2019. ISBN 978-3-944722-84-9 

 

 


