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Abstract

In the present thesis, the electronic properties of three types of quasiparticles are in-

vestigated in topological non-trivial materials: Weyl fermions, triple point fermions and

Dirac fermions. Theoretical calculations of electronic band structures for these systems

are performed by means of ab-initio methods and in the framework of Density functional

theory. The related topological invariants are calculated based on Berry curvature con-

cept within the basis of maximum localized Wannier functions. The electronic transport

properties of the Weyl metals, such as the intrinsic anomalous Hall effect (AHE) and

spin Hall effect, are analyzed and calculated using Kubo formula. To investigate the

surface states originating from these quasiparticles, both a half-infinite surface model

and a slab model are utilized and give consistent results. The prior model is performed

using a Green’s function technique and the latter via the ab-initio methods. Some of

our predictions have been observed experimentally, such as the AHE in Mn3Ge and the

quantum oscillations in PtSe2, while others still require experimental verification.

ix





Chapter 1

Introduction

1.1 Topological materials

Topology is a fundamental branch of mathematics. It is used to study the qualitative

properties of certain objects by abstracting those properties that are invariant under a

certain kind of continuous transformation. For a long time, these concepts evaded the

attention of most physicists, even though some topological effects, such as the quantum

Hall effect (QHE), were uncovered in the 1980s[1–3]. It was only in the past few years

that researchers begin to realize that topology can be a key attribute of condensed-matter

and that it might be responsible for a variety of novel effects.

In the mathematical field of geometric topology, geometric quantities, such as angle,

length and curvature, vary under continuously adiabatic transformations, whereas quan-

tities such as the number of holes of an object, will not change. From this aspect, an

orange and a spoon are topologically the same because the shape of the orange can be

smoothly deformed into the shape of the spoon without creating a hole. In this sense, a

cup with a handle has a hole and is therefore topologically different from the one without

a handle.

1
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In solid-state physics, the electron is described by the wavefunction which encodes infor-

mation of the particle’s spin, charge, and momentum. Counterintuitively, if the variables

of a wavefunction in the parameter space trace back to itself on a closed parameter space

loop, the wavefunction will not necessarily be the same as the initial state — namely,

the wavefunction can be multivalued. The use of a gauge transformation shows that the

multivalued wavefunction along this loop is equivalent to a single-valued wavefunction

along a closed loop enclosing a charged particle. This particle gives rise to a constant

flux of a pseudovector[4]. The flux, which is nothing but the Berry phase, is indepen-

dent of the path, allowing us to claim that it is topological in nature [5]. In the field of

solid states physics, materials with occupied electron wavefunctions that consist of the

previously mentioned properties are termed topological materials [6, 7].

Topological materials have emerged as one of the most significant frontiers in condensed-

matter physics in the last two decades. It is of strong interests because many of the non-

trivial topological states are intimately linked with a verity of phenomena, such as the

novel topological surface states, suppressed backscattering, peculiar transport properties,

and low-energy excited quasiparticles which are analogues of particle physics.

The first observation of topological effect, namely the quantum Hall effect, was in a

two-dimensional (2D) insulating system [1]. Until the mid-2000s, the QHE has been

seen only in the presence of a strong magnetic field, which breaks the time-reversal

symmetry. However, several groups have realized that the internal interaction between

the electrons and the atomic nuclei could provide the effective magnetic field and thus

realize this topological state, that gives rise to the quantum spin Hall effect (QSHE) [8–

10]. Unlike the QHE, the time-reversal symmetry in QSHE is not broken. Moreover,

instead of one helix edge state in the QHE system, the QSHE system has two helix edge

states, in which the up and down spins propagate in opposite directions. Soon after

that, the QSHE in 2D materials was generalized to three-dimensional (3D) materials,

leading to the emergent area of “topological insulators” (TIs) [6, 7, 11–13]. One of the
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most striking phenomena in TIs is the time-reversal symmetry protected surface states

which host the 2D Dirac points.

Furthermore, the recent research progress verifies that not only in insulating systems

but also in metal/semimetal materials, new types of topological states can exist. These

topological states are related to the band crossings of the band structure and can give rise

to fundamentally new physical phenomena. This has stimulated tremendous research

interests in topological semimetals/metals (TSM), such as Weyl, Triple points, Dirac [14,

15] and nodal line semimetal/metal [16–21], as a new frontier of condensed matter

physics after the discovery of TIs.

Among those discoveries, the point type topological band crossings form the quasipar-

ticles in condensed matter and are of particular interests. Some of them have the same

Hamiltonian as particles in high-energy physics such as Dirac points and Weyl points,

making the corresponding TSMs ideal platforms for studying high-energy particles. Al-

though the triple point has no analogue of the standard model in particle physics, it

is topologically important since it acts as the charged particle enclosed by the loop as

previously mentioned. Moreover, these three types of quasiparticles give special sur-

face states, the so-called Fermi arcs, which are related to the special performance of

TSMs under electric and magnetic fields. Due to their peculiar properties, the TSMs

are proposed as promising candidates for various applications in spintronics.

In the present thesis, each of the quasiparticles is investigated by theoretical calcula-

tions. Firstly, as a complement to the previous studies of the Weyl semimetal/metal

family, we proposed the possibility of finding Weyl points in the non-collinear antiferro-

magnetic system and studied their transport properties. Secondly, for the triple points,

we showed that they can stably exist in the cubic structure system, which is in short

of experimental verification. Due to the highly symmetric cubic system, more triple

points will be projected to the surface without breaking the C3v symmetry and it will

be experimentally feasible to observe, compared with the previous hexagonal system.
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Finally, in combination with quantum oscillation experiments, we validated the band

structure calculation and the existence of Dirac points in PtSe2.

1.2 Outline of the Thesis

The present work reports the selected ab − initio investigations of the quasiparticles

in topological materials, including the Weyl fermion, the triple point fermion and the

Dirac fermion. This thesis is structured as follows. The second chapter details a brief

primer on density functional theory (Sec. 2.1) and the method of Green’s functions

(Sec. 2.2), which is followed by an introduction to the basic concepts of Berry curvature

in Chapter 3. This chapter aims to provide the most fundamental description of the

origin (Sec. 3.1) and symmetry (Sec. 3.2) of Berry curvature, as well as its correction

to electronic velocity (Sec. 3.3). Lastly, we introduce the recent research progress and

properties of the Weyl fermion (Sec. 4.1), Triple point fermion (Sec. 4.3) and Dirac

fermion (Sec. 4.2) in crystalline materials in Chapter 4.

The results of this thesis are given in form of four publications Paper I-IV (Chapter 5),

which appeared in peer-reviewed journals. Each of them addresses one of the three

quasiparticles of interest and can be classified according to the symmetry of the materi-

als. If either the time reversal or the inversion symmetry is broken, Weyl fermion may

exist. We demonstrate that the chiral antiferromagnetic (AFM) ordered compounds

Mn3Ge and Mn3Sn are Weyl metals in Paper I, and that they have non-zero intrinsic

anomalous Hall conductivity (AHC) and spin Hall conductivity (SHC) in Paper II.

Crystalline symmetries can also play an important role in forming topological quasi-

particles. In Paper III we propose the possibility of finding triple point fermions in

cubic half-Heusler compounds, which host four C3 axes, and indeed we found several

candidates which call for verification from experiments.

Preserving both time reversal and inversion symmetries, PtSe2 is predicted to hold

type-II Dirac nodes. In Paper IV, the electronic structure and Fermi surface of PtSe2
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are calculated theoretically and studied experimentally by quantum oscillations. The

excellent agreement between the calculations and the experiments confirm the existence

of Dirac fermions in the transition-metal dichalcogenides (TMD) materials.



Chapter 2

Numerical methods

2.1 Ab-initio calculations based on density functional the-

ory

Schrödinger equation is the basic equation for describing the microscopic physical system

and calculating the physical properties of materials. It has the form:

ĤΨ(R, r, t) = i~
∂

∂t
Ψ(R, r, t), (2.1)

where r represents the set of all the electronic coordinations {ri}, R represents the set of

all nuclear coordinations {Rj}. The Hamiltonian Ĥ is the sum of kinetic and potential

energy operators of all the particles in the system, in which the potential energy includes

the internal interactions and the external field.

6
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In the absence of external potential, the Hamiltonian can be expressed as:

Ĥ = T̂N + T̂e + V̂NN + V̂ee + V̂Ne

=−
∑

I

~2

2MI
∇2
I −

∑

i

~2

2Mi
∇2
i +

e2

2

∑

I

∑

J 6=I

ZIZJ
|RI −RJ |

+
e2

2

∑

i

∑

j 6=i

1

|ri − rj |
− e2

∑

I

∑

j

ZI
|RI − rj |

.

(2.2)

Here the first and the second terms are the kinetic energy of nuclei and electrons, respec-

tively. The rest of the terms account for nuclear-nuclear interactions, electron-electron

interactions and electron-nuclear interactions, respectively. This is a many-body prob-

lem which requires the solution of an equation with 3N spatial degrees of freedom and

time.

In the case of a time-independent Hamiltonian Ĥ, the static wavefunction satisfies the

following stationary Schrödinger equation:

ĤΨ(R, r, t) = EΨ(R, r). (2.3)

However, the stationary Schrödinger equation still has 3N spatial degrees of freedom. In

real-world system, the computational complexity can be huge, which makes the exact

solution unreachable. In practice, to solve for the ground state, one has to use the Bohn-

Oppenheimer (BO) approximation which first solves a conditional electronic Schrödinger

equation:

ĤBOΦR (r) = EBO(R)ΦR (r) , (2.4)

where ĤBO = Ĥ − T̂N . Here EBO(R) is called the ground BO potential energy surface

and is a function of nuclear coordinations. Therefore, the ground state of the electronic

wavefunction can be calculated by minimizing EBO(R). Then the total wavefunction

can be expressed as:

Ψ (R, r) = Θ (R)ΦR (r) , (2.5)
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where Θ (R) is called the nuclear wavefunction and satisfies the nuclear dynamic equa-

tion. [
T̂N + EBO(R)Θ (R)

]
= EΘ (R) . (2.6)

Since the nuclear mass is much larger than the electronic mass, in most cases, the

dynamic equation of the nuclei can be treated classically and only the electronic equation

needs to be considered. Despite this simplification, when the system becomes a bit more

complicated, the computational cost is formidable.

2.1.1 Hohenberg-Kohn theorem

Density-functional theory (DFT) has achieved great progress in computational science,

making the calculation of complex system possible. Instead of using the wavefunction,

the ground-state electron density is used as the basic variable in DFT. Thus, the degree

of freedom of the system decreases from 3N to 3, making DFT the most widely used

method for electronic structure calculations. Although this theory was originated from

the Thomas-Fermi model, it was first justified by Pierre Hohenberg and Walter Kohn

in the framework of the two Hohenberg-Kohn theorems (HK theorems)[22]:

HK theorem 1: There exists one to one mapping between the external potential and

the electron density.

HK theorem 2: The ground state energy and density in a given external potential can

be simply determined by the minimization of a universal energy functional of density.

Based on these two theorems, the energy functional of a system is:

E[n] =

∫
v(r)n(r)dr +

1

2

∫∫
n(r)n(r′)

|r − r′| drdr
′ +G[n], (2.7)
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where v(r) is the external potential from the nuclei, G[n] is a universal function of the

density. The correct density function n(r) will minimize the energy functional and gives

the ground state.

2.1.2 Kohn-Sham equation

The HK theorems provide the proof and approach to calculate the ground state of a

system. However, it has no guidance to construct the density functionals. Kohn and

Sham (KS) [23] proposed a scheme of separating the energy functional as the sum of

the kinetic energy of a non-interacting electron (Ts[n]), the classical static Coulomb

repulsion energy of the density, and the exchange and correlation (xc) energy of the

interacting system (Exc[n]).

E[n] =

∫
v(r)n(r)dr +

1

2

∫∫
drdr′

n(r)n(r′)

|r − r′| + Ts[n] + Exc[n]. (2.8)

Since the kinetic energy of the non-interaction system is not the exact kinetic energy

of the system of interest, the difference is merged into the xc term. Exc[n] is very

complicated in principle, but if the density is sufficiently slowly varying, the Exc[n] can

be simplified to:

Exc[n] =

∫
n(r)εxcdr, (2.9)

where εxc is the xc energy density of a uniform electron gas. Higher order corrections

to εxc can be added if necessary. After applying the stationary condition
∫
δn(r)dr = 0

and performing the variation, we arrive at the famous Kohn-Sham equation:

{−1

2
∇2 + [v(r) +

∫
n(r′)

|r − r′|dr
′ + uxc(n(r))]}ψi(r) = εiψi(r). (2.10)
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Here uxc = d(n(r)εxc)/dn is the xc potential of a uniform gas with density n(r). ψi and

εi are called the Kohn-Sham orbital and orbital energy, respectively. For a system with

N electrons the density is calculated via:

n(r) =

N∑

i

|ψi(r)|2. (2.11)

2.1.3 Exchange-correlation interaction

As we can see, until now, not many approximations are used. The solution of the Kohn-

Sham equation is exact if we could find the correct xc potential. Unfortunately, the

exact form of the xc potential is still unknown, and approximations are needed. The

homogeneous electron gas can be described as one limit of solids. In this limit, the local

density approximations (LDA)[22] are suitable approximations.

The LDA assume that the xc energy density εxc is only related to the value of charge den-

sity in space and neglects the fluctuation of charge density. Under these approximations,

the xc energy density of the system of interest is replaced by that of the homogenous

electron gas:

ELDAxc [n] =

∫
n(r)εhomxc dr. (2.12)

In LDA, the xc energy density can be separated into the exchange and correlation parts:

εxc = εx + εc. (2.13)

If the spin polarization is considered in the system, the local spin density approxima-

tions (LSDA) are straightforwardly generalized by neglecting the exchange interaction

between the electrons with the opposite spin. Under this assumption, the exchange part

of xc energy is expressed as:

ELSDAx [n↑, n↓] =
∑

σ=↑,↓

∫
εx(nσ)nσ(r)dr. (2.14)
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In particular, the exchange energy density is given by

εx(nσ) = −3

2

(
3

4π

) 1
3

n
1
3
σ (r). (2.15)

And the correlation part can be calculated from homogenous electron gas using Monte-

Carlo approach. Although LDA (LSDA) look very simple, they can sometimes give very

good results, especially in predicting the crystal structure and mechanical properties of

materials. But for the system where the charge density is very localized, these approx-

imations can result in a large deviation. To reduce the deviation of LDA (LSDA), the

generalized gradient approximations (GGA) were developed, in which the gradient of

charge density was introduced. The xc energy of GGA is expressed as:

EGGA
xc =

∫
n(r)εxc[n(r)]dr +

∫
Fxc[n(r),∇n(r)]dr, (2.16)

where the functional Fxc[n(r),∇n(r)] accounts for the contribution from the gradient

of charge density. Because of this improvement, the GGA approach has a better per-

formance in the description of energy calculation and is one of the most widely used

approximations in DFT.

2.1.4 Spin-orbit interaction

The Schrödinger equation is the basic equation that describes a physic system in which

the quantum effects are significate. However, since The Schrödinger equation does not

consider the relativistic effect, it can make errors in certain cases. For example, in some

heavy metals, where the valence electrons move fast around the nuclei and have the

characteristic of spin, the relativistic effect should be taken into consideration. The

equation describing relativistic particle is called the Dirac equation, given by:

ĤDΨ = EΨ ĤD = cα · p̂+ βmc2 + V, (2.17)
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where V is the potential the particle experienced, β andα are matrices:

β =


I 0

0 −I


 αi =


 0 σi

σi 0


 .

Let Ψ =


 ψ1

ψ2


 in compact notation, both ψ1 and ψ2 have two components. This yields:

(E′ − V )ψ1 − cσ · pψ2 = 0 with E′ = E −mc2. (2.18)

Substituting ψ2 by ψ1 in Eqn. 2.17 and expanding the power series in (mc)−2 to the

first order in the non-relativistic limit, we obtain:

[
p2

2m
+ V − p4

8m3c2
+

~
4im2c2

(∇V · p) +
~

4m2c2
(∇V × p) · σ]ψ1 = E′ψ1. (2.19)

Here the condition E′ − V ≈ p2

2m in non-relativistic limit is applied. The first two terms

constitute the simple non-spin non-relativistic Hamiltonian. The third term gives the

first-order relativistic correction and can be neglected. The fourth term is a similar

relativistic correction to the potential energy and doesn’t have a simple classical analog.

The fourth term gives a small contribution to the energy of states whose eigenfunctions

are nonzero at singularities of V and can also be neglected [24]. Finally, we obtain the

Schrödinger form of Dirac equation:

[
p2

2m
+ V +

~
4m2c2

(∇V × p) · σ]ψ1 = Ekψ1. (2.20)

Comparing with the Schrödinger equation, an additional term which couples the mo-

mentum of the electron with its spin appears. This term is the result of spin-orbit

interaction (SOI) and can be a key cause of some phenomena in quantum physics, like
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the fine structure of atomic energy levels, magnetocrystalline anisotropy and the spin

Hall effect.

2.2 Green’s functions

2.2.1 Introduction of the method of Green’s functions

There is a wide range of topics in solving the linear partial differential equations (PDEs)

because of its frequent usages in modern science, such as sound, heat, electrostatics, elec-

trodynamics, fluid dynamics, elasticity, or quantum mechanics. The method of Green’s

function is one of the most powerful methods for solving PDEs. Considering the equation

to be solved:

L̂xu(x) = f(x), (2.21)

we can define a Green’s function which satisfies:

L̂xG(x, y) = δ(x− y), (2.22)

Here δ(x− y) is the Dirac delta function and L̂x is the linear differential operator acting

on x. Combining the properties of delta function with Eqn.2.21 and Eqn.2.22, we obtain:

L̂xu(x) = f(x)

=

∫
δ(x− y)f(y)dy

=

∫
L̂xG(x, y)f(y)dy.

(2.23)

Since L̂x is linear and acts on x, it can be taken out of the integral on the left side,

yielding:

L̂xu(x) = L̂x

∫
G(x, y)f(y)dy. (2.24)
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Finally we get:

u(x) =

∫
G(x, y)f(y)dy + φ(x). (2.25)

Where φ(x) is an arbitrary function which satisfies L̂xφ(x) = 0. It is defined by the

boundary condition of the system of interest and can be eliminated by an appropriate

choice of G(x, y). Therefore, the method of Green’s functions transfers the linear PDE

to an integral as shown in Eqn.2.24. The problem now boils down to finding a Green’s

function which satisfies Eqn.2.22. Green’s functions for some common PDEs are known

already. Although sometimes obtaining an appropriate Green’s function can be very

difficult, it provides a theoretically exact result.

2.2.2 Green’s functions for Schrödinger equation

After the brief introduction of the method of Green’s functions, in this section, we

will discuss the applications of Green’s functions in quantum mechanics. Here we only

concern the static single-particle Schrödinger equation which can be written as:

Ĥψ = Eψ; Ĥ =
p̂2

2m
+ V = − ~2

2m
∇2 + V, (2.26)

or equivalently,

[E − Ĥ]ψ = 0. (2.27)

Where Ĥ is the Hamiltonian operator, E denotes the discrete eigenvalue of the system.

The wavefunction of the Hamiltonian with eigenvalue En can be expanded to a complete
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set of orthonormal eigenfunctions φn(r), given by:





Ĥψn(r) = Enψn(r)

ψn(r) =
∑

i

φi(r)

∫
φ∗n(r)φm(r)dr = δnm

∑

n

φ∗n(r)φn(r′) = δ(r, r′)

. (2.28)

Now we can define the Green’s function in real space representation for the Schrödinger

equation as:

[E − Ĥ]G(r, r′;E) = δ(r, r′). (2.29)

If E 6= En, the Green’s function G(r, r′;E) can be calculated by:

G(r, r′;E) =
δ(r, r′)

E − Ĥ
=
∑

n

φ∗n(r)φn(r′)

E − En
. (2.30)

Whereas, at E = En, the Green’s function is infinite and corresponds to the discrete

eigenvalue of H. In order to define the Green’s function here, the limiting procedure

with a positive infinitesimal ε can be applied. With this method, the retarded Green’s

function (G−(r, r′;E)) and advanced Green’s function (G+(r, r′;E)) are introduced as:

G∓(r, r′;E) = lim
ε→0+

G(r, r′;E ± iε)

=
δ(r, r′)

E ± iε− Ĥ
=
∑

n

φ∗n(r)φn(r′)

E ± iε− En
,

(2.31)

or equivalently,

Ĝ∓(z) =
1

z − Ĥ
∑

n

|n〉 〈n| =
∑

n

|n〉 〈n|
z − En

(z − Ĥ)Ĝ∓(z) = I

, (2.32)
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under Dirac notation. Here z = E ± iε, |n〉 and 〈n| are the states corresponding to

φn and φ∗n, respectively. It is interesting and meaningful to discuss the physical meaning

of Green’s functions defined here. We start with the trace of the imaginary part of

retarded Green’s function in real-space representation:

2Tr[ImG−(r, r′, E)] = Tr[ImG−(r, r′; z)− ImG+(r, r′; z)]

= Im lim
ε→0+

∑

n

[
1

E − En + iε
− 1

E − En − iε
]

= Im lim
ε→0+

∑

n

[
−2iε

(E − En)2 + ε2
]

= −2π
∑

n

δ(E − En) = −2πD(E).

(2.33)

In the following parts, we will omit the superscript and the position variable of retarded

Green’s function G−(r, r′; z), if not otherwise specified. Therefore, the relation between

retarded Green’s function and local density of states (LDOS) is:

D(E) = − 1

π
Tr[ImG(E)]. (2.34)

This equation can be generalized to the surface state calculations in the following sec-

tions.

2.2.3 Green’s functions for surface states

In the above sections, we have theoretically introduced the approach of analyzing the

condensed-matter by ab− initio calculations. In practical simulations, to perform these

calculations, we always have to apply the periodic boundary conditions and choose a

unit cell, which in fact represents a 3D (2D for slab or one-dimensional for wire) infinite

system. In condensed-matter field, the surface state is one of the most important topics,

based on the fact that all materials in nature are finite. The surface state exists because

the surface of a materials changes the atoms of the surface from bulk to vacuum, which
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Figure 2.1: The schematic figure of a half-infinite surface. Each
box represents a layer which consists of several unitcells. Hn−1,n,
Hn,n−1 and Hn,n are the matrix representation of the interactions
between the layers of the superscripts, layer 0 is the terminal layer.

weakens the potential at the surface and produces new electronic states. In some systems,

like the topological materials, the surface states have special characteristic and are always

regarded as important evidence of topological structure.

The slab approach, which models a surface structure with several atomic layers, is the

standard method for surface state calculations in first principle simulations. Whereas,

in reality, a physical surface is a half-infinite system, interfacing with the vacuum. As

a consequence, the electronic structure of surface atoms is altered by the quantum size

effect if the slab is not thick enough. To overcome this drawback, the surface Green’s

function (SGF) has been proposed to calculate the surface states of the half-infinite

system [25–29].

Within the nearest approximation, the matrix representation of Hamiltonian of the half-

infinite surface is:

H =




H0,0 H0,1 0 · · · 0 · · ·
H1,0 H1,1 H1,2 · · · 0 · · ·

0 H2,1 H2,2 . . . 0 · · ·
...

...
. . .

. . . Hn−1,n · · ·

0 0 0 Hn,n−1 Hn,n . . .

...
...

...
...

. . .
. . .




.
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Where the superscripts represent the label of the layers as shown in Fig. 2.1, Hn−1,n,

Hn,n−1 and Hn,n are the matrix representation of the interactions between the labeled

layers. By definition, H0,0 = εs, H i,i = ε0, H0,1 = Hn−1,n = α0, H1,0 = Hn,n−1 = β0.

they can be calculated from the bulk Hamiltonian. Similarly, the Green’s function can

be written as:

G =




G0,0 G0,1 G0,2 · · · G0,n · · ·
G1,0 G1,1 G1,2 · · · G1,n · · ·

G2,0 G2,1 G2,2 . . .
... · · ·

...
...

. . .
. . . Gn−1,n · · ·

Gn,0 Gn,1 · · · Gn,n−1 Gn,n
. . .

...
...

...
...

. . .
. . .




.

Based on the relation between the Green’s function and LDOS as shown in Eqn. 2.34,

to calculate the surface state, we only need to know the G0,0 component. Using the first

column of G which should satisfy the (zI −H)G(E) = I equation, we have:





(zI −H0,0)G0,0 −H0,1G1,0 = I

−Hn,n−1Gn−1,0 + (zI −Hn,n)Gn,0 −Hn,n+1Gn+1,0 = 0
. (2.35)

That is: 



(zI − εs0)G0,0 = I +α0G
1,0

(zI − ε0)Gn,0 = β0G
n−1,0 +α0G

n+1,0, (n > 1)
. (2.36)
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Then the Green’s function components originated from the second nearest layers should

satisfy: 



(zI − εs1)G0,0 = I +α1G
2,0

(zI − ε1)Gn,0 = β1G
n−2,0 +α1G

n+2,0, (n > 2)

εs1 = εs0 +α0(zI − ε0)−1β0

ε1 = ε0 +α0(zI − ε0)−1β0 + β0(zI − ε0)−1α0

α1 = α0(zI − ε0)−1α0

β1 = β0(zI − ε0)−1β0.

. (2.37)

Obviously, this process can be performed iteratively, after ith iteration, we can get:





(zI − εsi )G0,0 = I +αiG
2i,0

(zI − εi)Gn,0 = βiG
n−2i,0 +αiG

n+2i,0, (n > 2i)

εsi = εsi−1 +αi−1(zI − εi−1)−1βi−1

εi = εi−1 +αi−1(zI − εi−1)−1βi−1 + βi−1(zI − εi−1)−1αi−1

αi = αi−1(zI − εi−1)−1αi−1

βi = βi−1(zI − εi−1)−1βi−1.

. (2.38)

The parameters shown in Eqn. 2.38 can be calculated using the self-consistent approach.

As they decay in the speed of square, one can expect that after limit numbers of iteration

the αi will converge to zero and the Green’s function yields:

G0,0 = (zI − εsi )−1.

Finally, surface states can be calculated using the Eqn. 2.34.



Chapter 3

Berry curvature

3.1 Basic concepts of Berry curvature

In the last section, we have introduced the method of calculating the ground states

of bulk or half-infinite atomic system based on the stationary Schrödinger equation.

Whereas, a real system is always in the excitation state and evolutes with the changing

of the environment, which makes it even more complicated. However, if the environment

is slowly altered, which is equivalent to a stable H, the adiabatic theorem can be adapted

in this situation. Adiabatic theorem tells us that at any instant a system will be in an

eigenstate of the instantaneous H. If H goes back to its original form, the system will

also return to its original state, except for a phase factor [30].

Let’s consider a Hamiltonian H(R) whose variables R = (R1, R2, R3, ...) are slowly

changed in the parameter space, i.e.,

H = H(R),R = R(t). (3.1)

After t = T , the system traces along a closed path C and goes back to itself. In this

process, the state |ψ(t)〉 of the system evolves according to the Schrödinger’s equation,

20
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H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 . (3.2)

To construct the time-dependent wavefunction |ψ(t)〉, the instantaneous orthonormal

basis |n(R)〉 from the eigenstates of H(R) at each R = R(t) are introduced. The basis

satisfy:

H |n(R)〉 = En(R) |n(R)〉 . (3.3)

According to the adiabatic theorem, if the system is initially in one of the state |n(R(0))〉,
it will evolve with H and stay in the state of |n(R(t))〉, apart from an additional phase,

|ψ(t)〉 = exp

{−i
~

∫ t

0
dt′En(R(t′))

}
exp(iγn(t)) |n(R(t))〉 , (3.4)

where the first exponential is known as the dynamical phase factor. The γn(t) in the

second exponential is unrelated to the detailed path R(t) and is actually not single-

valued, namely, γn(T ) 6= γn(0). Insert the time-dependent wavefunction into Eqn. 3.2,

yielding,

γ̇n(t) |n(R(t))〉 = i |ṅ(R(t))〉 = i∇R |n(R(t))〉 Ṙ. (3.5)

Multiply it from the left by 〈R(t)| and then integral it along the path C in parameter

space, one obtains

γn(t) = i

∫ t

0
〈n(R(t))| ∇R |n(R(t))〉 Ṙdt

= i

∮

C
〈n(R)| ∇R |n(R)〉 dR

=

∮

C
An(R)dR.

(3.6)
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Here, obviously, An(R) is a vector function, which is single-value at each position R.

It is called Berry connection or the Berry vector potential and can be easily proved to

be gauge dependent[31]. But this is beyond the scope of this dissertation. Instead, we

focus more on the curl of the Berry connection, which is actually more fundamental and

is gauge invariant[31]. Since the path we choose is a closed loop, the Stokes’s theorem

here can be applied and the path integral can be transformed to a surface integral,

γn =

∫
∇R ×An(R)dS, (3.7)

where S is the surface expanded by the enclosed path. The integrant, namely the curl

of the Berry connection, is defined as

Ωn(R) = ∇R ×An(R). (3.8)

It should be noticed that the Berry curvature intuitively resemble the magnetic field

in parameters space, where the Berry connection is the analogue of vector potential

that generates this magnetic field. As we will show later, the Berry curvature behaviors

like the virtual magnetic field in the reciprocal space, which is expanded by reciprocal

vectors.

Direct evaluation of Berry curvature needs the differential of wavefunction |n(R)〉, and

thus requires the wavefunction to be locally single-valued. This can be very complicated

because the wavefunction is gauge dependent. To avoid this problem, we rewrite the

Berry curvature in a linear-response form.

In order to derive the linear-response form of Berry curvature, we first apply the ∇R

operation on both sides of Eqn. 3.3 and then left multiply them by 〈m(R)|. This yields

〈m(R)| ∇R |n((R))〉 = 〈m(R)| ∇RH |n(R)〉 /(En − Em), m 6= n, (3.9)
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where Em is the eigenvalue of |m(R)〉. Then we can insert the expression formula

of An(R) and the completeness condition
∑

m |m〉 〈m| = I into Eqn. 3.8. With the

abbreviated notation, we get,

Ωn(R) = i∇× 〈n| ∇ |n〉 = i∇× 〈n|∇n〉

= i 〈∇n| × |∇n〉 = i
∑

m 6=n
〈∇n|m〉 × 〈m|∇n〉

= i
∑

m6=n

〈n| ∇H |m〉 × 〈m| ∇H |n〉
(En − Em)2

.

(3.10)

It is clear that with this transformation, the differential on the wavefunction becomes

the differential on the Hamiltonian, therefore it can be evaluated under any gauge choice.

More specifically, if the parameters are in 3D real or reciprocal space and are expressed

as (Ru,Rv,Rw), Eqn. 3.10 can be further simplified. In this parameter space, the ∇
operator on Hamiltonian can be simply written as ( ∂H∂Ru ,

∂H
∂Rv

, ∂H∂Rw ). Inserting it into

Eqn. 3.10, we get the w component of Berry curvature

Ωn
uv(R) = i

∑

m6=n

〈n| ∂H∂Ru |m〉 〈m|
∂H
∂Rv
|n〉 − (v ↔ u)

(En − Em)2
, (3.11)

where the (v ↔ u) represents the complex conjugate of the first term in the numerator.

Eqn. 3.11 is more practical and useful for the numerical calculations as we will show in

the following parts.
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3.2 Berry curvature correction to the semiclassical equa-

tions of motion

3.2.1 Bloch theorem in crystalline solids

In this section, we would like to introduce the influence of Berry curvature on electronic

transports in crystalline solids. Because of the translation symmetry in crystalline solid,

the eigenstate of each electrons can be written as a Bloch wave, which is also known as

Bloch’s theorem:

ψnq(r) = eiq·runq(r), (3.12)

where the r is the position, ψ(r) is the Bloch wave, q is the crystal wave vector which is

also known as the quantum number of the state, n is the band index, unq(r) is a periodic

function with the same periodic as the crystal,

unq(r) = unq(r + G). (3.13)

Here G is the unit vector of the crystal. Correspondingly, the Schrödinger equation in

the basis of the periodic function can be obtained by inserting Eqn. 3.12 into Eqn. 2.26,





H(q)unq(r) = Enqunq(r)

H(q) = e−iq·r(
p2

2m
+ V )eiq·r

. (3.14)

On the one hand, with the commutation:

[
p2

2m
, eiq·r] =

~q · p
m

eiq·r

= eiq·r
~2q2

2m
+ eiq·r

2~q · p
2m

.

(3.15)
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Then the Hamiltonian H(q) can be transformed to

H(q) =
(p + ~q)2

2m
+ V. (3.16)

On the other hand, with Eqn. 3.14 one can easily get unq+K = e−iK·runq(r). Because

of the periodic condition of unq+K, the wavefunction has to be a periodic function of q,

ψnq(r) = ψnq+K(r), eiK·G = 1. (3.17)

If we define q as the basis of a parameter space, the period of K allows us to transfer

the space from the extended zone scheme to the reduced zone scheme, which is actually

the first Brillouin Zone (BZ).

3.2.2 Intrinsic electronic transports and Berry curvature correction

The dynamic of Bloch electrons in the electric field is one of the most fundamental prob-

lems in condensed-matter physics. In semiclassical theory, the electric field is regarded

as a perturbation and does not appear in the electronic velocity,

ṙ =
∂En(q)

~q
. (3.18)

However, this is true only if the external electric field is sufficiently weak. A better

approach of understanding the influence of the electric field is to add the electric field

in the Hamiltonian and then solve the Schrödinger equation. According to electrody-

namics, the electric field can enter the Hamiltonian either through a time-independent

electrostatic potential φ(r) or through a uniform time-dependent vector potential A(t).

The former looks simple because time is not involved, but it will break the transla-

tion symmetry of crystal and makes the Bloch’s theorem invalid. Therefore, the latter
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method is used, using the Peierls substitution, the Hamiltonian is written as

H(t) =
[p̂ + eA(t)]2

2m
+ V (r).

Following the same way as obtaining H(q) from H, the q-space representation of Hamil-

tonian can be calculated as

H(q, t) =
[p̂ + eA(t) + ~q]2

2m
+ V (r). (3.19)

As mentioned in the last section, if the electric field varies relatively slow and the adi-

abatic approximation is available, the wave function can be expanded in terms of the

instantaneous normalized eigenfunctions unq(r, t). With the first-order approximation

and the abbreviated notation, the wave function is given by[5, 32]:

|ũn〉 = |un〉 − i~
∑

m6=n

|um〉 〈um|∂un/∂t〉
En − Em

. (3.20)

In quantum mechanics, the velocity operator is simply the commutation of the position

operator with the Hamiltonian. In q-space representation, this yields

v̂(q) = ṙ =
i

~
[H(q, t), r]

=
i

~
[
[p̂ + eA(t) + ~q]2

2m
+ V (r), r]

=
eA(t) + ~q + p̂

m
=
∂H(q, t)

∂(~q)
.

(3.21)
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Therefore, the average velocity is

vn(q) = 〈ũn| v̂(q) |ũn〉

≈ 〈un|
∂H(q, t)

∂(~q)
|un〉 − i


∑

m 6=n

〈un| ∂H(q,t)
∂q |um〉 〈um|∂un∂t 〉
En − Em

− c.c.




=
∂En
~∂q

− i


∑

m6=n

〈un| ∂H(q,t)
∂q |um〉 〈um| ∂H(q,t)

∂t |un〉
(En − Em)2

− c.c.


 .

(3.22)

Here, c.c. means complex conjugate, and the second-order series are omitted. The first

term of the velocity formula is the contribution of the band dispersion, similar to that

in the semiclassical theory. Besides that, an additional term appears, which is the berry

curvature Ωqt. In addition, according to Eqn. 3.19, we have

∂H(q, t)

∂t
=
∂H(q, t)

∂(~q)

∂(eA(t))

∂t
= − e

~
∂H(q, t)

∂q
·E, (3.23)

which indicate that Ωqt = − e
~Ωqq · E. It is important to note here that, although

Ωqq has the form of second-order tensor, all the diagonal elements are 0 and only three

independent elements exist. Therefore, the dot product can be simply transferred to

the cross product of a vector and the electric field. Take the component vαn(q) as an

example, we get

vαn(q) =
∂En
~∂qα

+
e

~
(Ωn,αβ(q)Eβ − Ωn,γα(q)Eγ), (3.24)

where,

Ωn,αβ(q) = 2i
∑

m6=n

〈un| ∂H∂qα |um〉 〈um|
∂H
∂qβ
|un〉

(En − Em)2
. (3.25)

If we define the gauge-invariant crystal momentum k = q + e
~A(t), the conclusion can

be directly generalized to k, considering that ∂/∂q = ∂/∂k. Finally, we get the Berry
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curvature corrected motion equation of the electron:

vn(k) =
∂En(k)

~∂k
+
e

~
E×Ωn(k). (3.26)

It is clear that the second term is always transverse to the electric field, which leads to a

Hall current. The Berry curvature language, which was originally proposed by Karplus

and Luttinger in 1954 [33], provides a nice explanation of the anomalous Hall effect

(AHE) in condensed matter.

3.2.3 Anomalous Hall effect and spin Hall effect

Now we discuss the intrinsic electric conductivity which originates from the electronic

structure of the material. Considering the distribution function of all the electronic

states, the current density is

J =
1

V

∑

n

∫
(−e)vn(k)fn(E)dk = − 1

(2π)d

∑

n

∫

BZ
evn(k)fn(E)dk

= − 1

(2π)d

[
e

~
∑

n

∫

Ω
fn(E)

∂En(k)

∂k
dk + E× e2

~
∑

n

∫

BZ
Ωn(k)fn(E)dk

]
.

(3.27)

Here the fn(E) is the Fermi-Dirac distribution function of the n-th band, d is the

dimension of the crystal, and BZ is the first Brillouin zone. Clearly, the first term

origins from the group velocity of all the electrons under electric field and corresponds

to the longitudinal electric conductivity. While the second term is the anomalous Hall

conductivity (AHC) for 3D materials and is perpendicular to the external electric field.

Using J = σE and rewriting the cross product into a dot product of the AHC tensor
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and E, each element of the AHC can be written as

σαβ = −e
2

~
∑

m6=n

∫

BZ
Ωn,αβ(k)

dk

(2π)3

= −2e2~i
∑

m6=n

∫

BZ

[〈un| v̂α |um〉 〈um| v̂β |un〉
(En − Em)2

]
dk

(2π)3
.

(3.28)

Here v̂α = ∂H
~∂kα is the α element of the velocity operator. The formula of AHC above can

be understood in the way of linear response approach, which says the σαβ is the response

of electrons’ charge current in α direction if the external field aligns in β direction.

Similarly, we can derive the spin Hall conductivity (SHC), which is the response of

electrons’ spin current (angular momentum) along α direction when the external field is

in β direction. Replacing the operator −ev̂α in Eqn. 3.28 by the spin current operator

Ĵγα = 1
2{ ∂H

~∂kα , ŝγ} = 1
2 {v̂α, ŝγ}, where ŝγ is the γ component of the spin operator, the

SHC has the form of

σγαβ = 2e~i
∑

m 6=n

∫

BZ

[
〈un| Ĵγα |um〉 〈um| v̂β |un〉

(En − Em)2

]
dk

(2π)3
. (3.29)

From the computational point of view, the AHC is a second-order tensor, while the SHC

is a three-order tensor with three degrees of freedom: spin, electron’s movement and the

electric field. Although the integrant in Eqn. 3.29 has a similar format, it is actually

not the Berry curvature. In order to distinguish them, the former is referred as the spin

Berry curvature (Ωs
n(k)) in this thesis.

3.3 Symmetry analysis of Berry curvature

As the Berry curvature and spin Berry curvature are directly originated from the band

structure, they are fully compatible with the symmetry of the Hamiltonian. Therefore,

the symmetrical analysis can help us understand the properties of the (spin) Berry
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curvature and the shape of AHC (SHC). In this section, we mainly focus on time-

reversal, inversion and mirror-reflection symmetries because they play important roles

in topological materials.

The analysis of Berry curvature could be performed from either the velocity formula

as shown in Eqn. 3.26, or the linear response format of Berry curvature as shown in

Eqn. 3.25. For the first method, since the symmetry of k, vn(k) and E were already

known, we can derive the symmetry of Berry curvature from them.

If the system has time-reversal symmetry T̂ , E maintains its sign under T̂ operation,

and k = −k, vn(k) = −vn(−k), En(k) = En(−k). Then we get

Ωn(k) = −Ωn(−k). (3.30)

If the system has inversion symmetry P̂ , E also changes its sign under P̂ operation.

Thus we have

Ωn(k) = Ωn(−k). (3.31)

The mirror-reflection symmetry m̂ is quite special because it has a different effect on

different components of a vector. For k, E and vn(k), the m̂ will change the signs of

the components perpendicular to the mirror and maintain the signs of the components

parallel with it. As a consequence, the Berry curvature components which perpendicular

to the mirror will maintain its sign, and the component which parallels with the mirror

will change its sign. The effect of these three symmetries on Berry curvature are collected

and shown in Fig. 3.1. As we can see here, apart from the similar effect as the magnetic

field, the Berry curvature is also a pseudovector and has the same symmetry as the

magnetic field.

To analysis the symmetry of the spin Berry curvature, we should start from the Eqn. 3.25,

which is actually more general. For a system preserving time-reversal symmetry T̂ , we
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Figure 3.1: Berry curvature under time-reversal, inversion and
mirror symmetries. The red and black arrows indicate Berry con-
nection and Berry curvature, respectively.

have

〈un|v̂|um〉 = 〈un|T̂−1v̂T̂ |um〉 = 〈K̂un|v̂|K̂um〉 = −〈un|v̂|um〉∗

〈un|{v̂, ŝ}|um〉 = 〈un|(K̂σy)−1{v̂, ŝ}K̂σy|um〉 = 〈un|{v̂, ŝ}|um〉∗
, (3.32)

where K̂ is the complex conjugation. As shown here, Ωn(k) is odd while Ωs
n(k) is even

under T̂ operation. Since the intrinsic AHC is the integration of Ωn(k) in the whole BZ,

it should be zero because Ωn(k) and Ωn(-k) will cancel with each other if the system

has time-reversal symmetry. On the other hand, if the system has inversion symmetry,

which states

〈un|v̂|um〉 = 〈un|P̂−1v̂P̂ |um〉 = 〈un|v̂|um〉

〈un|{v̂, ŝ}|um〉 = 〈un|P̂−1{v̂, ŝ}P̂ |um〉 = 〈un|{v̂, ŝ}|um〉
, (3.33)

both Ωn(k) and Ωs
n(k) is even respect to k. Therefore, the system is able to have

non-zero AHC and SHC.
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Quasiparticles in condensed

materials

4.1 Weyl fermions

4.1.1 Introducation

As is known to us, the Schrödinger equation is one of the most important equations in

condensed matter physics. It is used to describe the states of non-relativistic electrons

and atoms in the microscopic system. On the other hand, in particle physics, where

the relativistic effects can not be neglected, this equation is not appropriate anymore.

Instead, we use the equation which is proposed by Dirac in 1928 [34] and has the covariant

form of

(iγu∂u −m)ψ = 0. (4.1)

Here m and ψ are the mass and the wave function of the particle, respectively. γu

represents four 4× 4 Gamma matrices and satisfies the Dirac algebra:

{γu, γv} = γuγv + γvγu = 2ηuvI, (4.2)

32
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where ηuv is the component of the Minkowski metric and equals to δuv when u = 0 and

−δuv when u = (1, 2, 3). I is the 4 × 4 identity matrix. There are different ways of

choosing Gamma matrices. In Weyl representation, they can be represented using 2× 2

identity and Pauli matrices:

γ0 =


0 I

I 0


 , γi =


 0 σi

−σi 0


 .

Therefore, the Dirac equation actually consists of four coupled partial differential equa-

tions and is not easy to calculate. When Dirac first wrote his paper, no doubt he had

the electron in mind, because he entitled his article “The Quantum Theory of the Elec-

tron”. And we know, the electron has mass and charge. Shortly after Dirac’s paper was

published in 1928, Weyl noticed that for massless fermions m = 0, the Dirac equation

can be simplified as [35]

γu∂uψ = 0 (4.3)

or 
 0 i~∂t − p · σ
i~∂t − p · σ 0




ψA
ψB


 = 0

without any field. The equation is decoupled and effectively equal to two Weyl equations

which can be written in Schrödinger form:

H±ψ = i~
∂

∂t
ψ, H± = ±~k · σ. (4.4)

The particles which satisfy the Weyl equations are called Weyl fermions. In Fig.4.1 We

have shown the energy dispersion and the spin polarization of the free Weyl fermions.

From it one can easily get the conclusion:

1) The Energy dispersion over wave vector (k) is linear in every direction, the spin
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Figure 4.1: Energy dispersions of Weyl equations with the positive
sign (a) and negative sign (b) in kx − ky plane. The red and blue
arrows indicate the direction of the spin directions. (c) The band
structure of Hg3As2 [36]

and momentum of the particle are locked together and tend to align in parallel or anti-

parallel.

2) Since the Hamiltonian has two branches, both of them should be satisfied, indicat-

ing that the Weyl fermions should exist in pairs. Actually, the signs in front of the

Hamiltonian correspond to two different possible chirality.

For a long time, the neutrino was regarded as a type of Weyl fermions. However, it

was found later that neutrino has a very tiny mass. Although the mass can always

be neglected, it is not exactly Weyl fermion. Actually, until now we still couldn’t find

Weyl fermions in nature. But it is interesting that in some solid materials, this kind

of Hamiltonian can be found somewhere in the reciprocal space, as shown in the red

circle enclosed parts in Fig4.1c. In this case, these materials can be ideal platforms for

studying Weyl fermions.

The idea of finding Weyl fermions in solid materials was first proposed by Xiangang

Wan’s group in 2011 [17]. They theoretically investigated pyrochlore iridates (like

Y2Ir2O7) and showed the existence of novel phases because of electron correlations and

strong spin-orbit interactions. These novel phases give rise to interesting surface states
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Figure 4.2: Energy dispersions of two types of Weyl points. (a)
Type-I Weyl point with point-like fermi surface. (b) Type-II Weyl
point with hourglass shape fermi surface. These grey planes corre-
spond to the fermi level. The figures are obtained from [43]

which are discontinuous in momentum space and connect to the so called Weyl points.

The Weyl point is, to some extent, a type of Weyl fermions since it satisfies the Weyl

equations. Wan’s group named these surface states “Fermi arcs” and materials which

host Weyl points “Weyl semimetals” (WSMs). After that, more materials like TaAs,

TaP, NbAs, NbP [37] are reported to be Weyl semimetals and then experimentally

discovered[38–42].

The Weyl points were originally thought to exhibit point-like Fermi surfaces in all di-

rections, as observed in the aforementioned materials. In 2015, Alexey et al. proposed

another type of Weyl points around which the band dispersion is strongly tilted along

certain directions. In order to distinguish, they named the new type of Weyl points as

Type-II Weyl points and the original ones as type-I Weyl points. Because of the differ-

ence in band dispersion, a novel Fermi surface, in which the electron and hole pockets

are connected at a single point (the Weyl points), can be observed in type-II WSMs as

shown in Fig 4.2 (b)[43]. Alexey et al. suggested that the WTe2 can be a host of type-II

Weyl points. Shortly after that, MoTe2, the analogue of WTe2, attracted more inter-

ests and was experimentally verified [44–48]. Topologically, the type-I and type-II Weyl

points are quite similar, both have ±1 topological charges and Fermi arcs. However,

since the Fermi surfaces of type-II WSMs are anisotropic, their physical properties can

be strong anisotropic and different from those of type-I WSMs.
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Figure 4.3: Topological charges of Weyl points. The arrows in-
dicate the direction of Berry curvature. The yellow and red balls
represent the positive and negative Weyl points respectively.

4.1.2 Topological charge

It is known that for a gapped topological system, like the Chern insulator, Z2 topological

insulator or topological crystalline insulator, an invariant can be defined using Berry

phase or Berry curvature in momentum space [49]. Interestingly, though the Weyl

semimetal/metal is a gapless system, a similar topological number can be defined. As

the Weyl point has linear dispersion along all the directions, we can always find a closed

2D surface which encloses the Weyl point but is gapped everywhere in the momentum

space as shown in Fig.4.3. By integrating the Berry curvature flux of occupied bands

on the surface, we will always get either 1 or -1, corresponding to the case of Berry

curvature pointing toward to or back to the Weyl point, respectively.

Actually, the sign of the topological number is determined by the sign of the Hamiltonian

in Weyl equation 4.4 and indicates the chirality of Weyl point. It is analogous to the

“electronic charge” and can be viewed as the charge of Weyl point in momentum space,

where the Berry curvature plays the role of “electric field”. Therefore, the Weyl point

is either the drain or the source of Berry curvature and can be viewed as a “magnetic

monopole” in momentum space [17, 50, 51], as shown in Fig.4.4. On the one hand, the

topological charge requires that the Weyl points should exist in pairs to maintain the

total charge of the system to be zero. On the other hand, because of the topological

charge and chirality, the only way to annihilate Weyl points is to move the opposite
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Figure 4.4: Berry curvature distribution near two opposite Weyl
points. The Weyl point behaviors like a “magnetic monopole” and
the Berry curvature plays the role of magnetic field.

Weyl points to the same point in BZ. Since this Weyls can sit far away from each other

in the BZ, the annihilation requires large changes of Hamiltonian parameters, and thus

WSMs are stable.

4.1.3 Symmetry of Weyl fermions

In condensed-matter, if both time reversal T and spatial inversion symmetry P exist,

the spin up and spin down states will degenerate at every point in reciprocal space.

Under time reversal symmetry, both the wave vector and spin change their signs, the

eigenvalue satisfies:

E(k, ↑) = E(−k, ↓).

While for spatial inversion symmetry, only the wave vector changes its sign:

E(k, ↑) = E(−k, ↑); E(k, ↓) = E(−k, ↓).

Combining together, we have:

E(k, ↑) = E(k, ↓).
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Figure 4.5: Weyl fermions under inversion (a), time-reversal (b)
and mirror-reflection symmetries (c). The yellow and red balls rep-
resent the positive and negative Weyl points, respectively. The black
arrows indicate the direction of Berry curvature. Inversion and mir-
ror reflection symmetry change the chirality of Weyl points, but
time-reversal symmetry doesn’t change the chirality.

The degeneracy of spin up and spin down introduces another topological state: Dirac

semimetal/metal, in which the linear dispersion relation around a gapless point also

holds, but each gapless point is four-fold degenerate in 3D momentum space. Therefore,

to obtain Weyl fermion, either the time reversal T or spatial inversion symmetry P

should be broken.

Generally speaking, there is no symmetrical requirement for the formation of Weyl

points. But the symmetry analysis is still quite necessary and helpful in understanding

the chirality and distribution of Weyl points in reciprocal space. Fig.4.5 shows the

chirality of Weyl points under time-reversal, inversion and mirror-reflection symmetry.

Since the Berry curvature is a pseudovector, similar with spin and magnetic field, it

will change direction under time-reversal symmetry and keep the same under inversion

symmetry, as indicated by the red and black arrows in Fig.4.5(a) and (b). While under

mirror reflection symmetry, the signs of Berry curvature components parallel with the

mirror plane will change and the components perpendicular to the mirror plane will

maintain, as shown in Fig.4.5(c).

Following these rules, one can easily find that the chirality of two Weyl points should be

opposite if they are connected by inversion symmetry and should be identical if they are

connected by time-reversal symmetry. As the Weyl points with opposite chirality should
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exist in pairs, the total number of Weyl points should be the multiple of 2. Moreover, for

a system without inversion symmetry, if time reversal symmetry exist, the total number

of Weyl points should be the multiple of 4. This is obvious because there must be two

negative Weyl points somewhere in the reciprocal space if we have two positive ones

related by the time-reversal symmetry.

4.1.4 Fermi arcs

The existence of Fermi arcs on the surface is another significant consequence of Weyl

points inside the 3D bulk materials. For the topologically trivial phase, once a surface

is cut, closed (or extended to infinite) surface states appear because of dangling bonds

and the dramatic potential changing of terminal atoms. However, for a WSM, besides

these trivial states, some unclosed surface states, which are called Fermi arcs, connecting

the surface projection of opposite Weyl points can be found on the surface as shown in

Fig.4.6(c). It can be understood in the following way:

For a WSM, we can consider a small cylinder enclosing a Weyl point which locates at

k0 = (k0
x, k

0
y, k

0
z) in the 3D reciprocal space. To simplified the analysis, the longitudinal

axis of the cylinder is set to along kz direction. In this case, the cylinder can be defined

by two periodic parameters: (kλ, kz), where kλ=[k0
x + kR ∗ cos(θ), k0

y + kR ∗ sin(θ)] is

the radial wave vector with a period of 2π in kx, ky plane as shown in Fig.4.6(a). The

Chern number of this 2D band structure of the cylinder is given by the Berry curvature

integration through all the cylinder plane:

C =
1

2π

∫

S
Ωdkzdkλ.

According to the Stokes’ theorem, this integration equals to the total “topological

charge” carried by the Weyl points enclosed inside. Therefore, this 2D subsystem is

a quantum Hall insulator with Chern number equals to 1 (or -1) if only one Weyl point
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Figure 4.6: Origin of Fermi arcs in the WSM. (a) The bulk band
dispersion of a two-bands model which hosts a Weyl point. A cylin-
der defined by (kλ, kz) and enclosing the Weyl point is also drawn.
(b) The projected band dispersion along kλ when a surface perpen-
dicular to kz direction is cut. A chiral edge state appears due to
the nonzero Chern number of the cylinder. The chiral edge state
intersects with the Fermi level at a crossing point. (c) The Fermi
arc appears by connecting the crossing points of different cylinder
radius. The arc terminates at another opposite Weyl. Figures are
obatined from [17].

is enclosed. Once a surface perpendicular to kz direction is cut, the cylinder will be pro-

jected to a circle surrounding the projection of the Weyl point, and a chiral edge state

will appear as shown in Fig4.6(b). This chiral state intersects with the Fermi energy

at a point. Then by varying the radius (kR) of this cylinder, a list of points will be

obtained until the opposite Weyl fermion is enclosed, which results in the cancellation of

the Chern number and the disappearance of the chiral edge state. Connecting all these

points, an arc beginning on a Weyl point of one chirality and terminating on a Weyl

point of the opposite chirality will appear as shown in Fig4.6(c)[17, 50, 52]. Since no

specific direction is needed during the deduction, the conclusion can be generalized to

all the crystal surfaces. The topological Fermi arcs have been experimentally observed

by ARPES in the TaAs, TaP, NbAs and NbP family [38–42].
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4.2 Dirac fermions

4.2.1 Dirac fermions in three-dimensional materials

As mentioned in the last section, in 3D materials, the presence of both inversion and

time reversal symmetries excludes the possibility of a two-fold degenerate Weyl node.

Because the topological charge of Weyl fermions is even under time-reversal and odd

under inversion symmetry, requiring the existence of two opposite but energetically

degenerate Weyls at the same crystal momentum. Once two opposite Weyls meet in

momentum space, their topological charge will cancel with each other and a gap can be

opened by any perturbation, like the SOC, impurity and temperature fluctuation.

Nevertheless, these two compensating Weyl fermions can be stabilized by additional

crystallographic space group symmetries [15, 53, 54], this produces a composite point

singularity hosting a fourfold degeneracy which is called Dirac point. The Dirac points

are direct analogues of Dirac electrons in high-energy theories and can be described by

the Dirac equation when they locate close to the Fermi level. The materials that host

Dirac points are called Dirac semimetals/Metals (DSMs). DSMs are of fundamental

interest because they can be driven into various topologically distinct phase by simply

breaking certain symmetries, and thus are perfect platforms for studying the topological

phase transition. Besides that, although the topological charge of a Dirac point is zero,

the DSM phase is topologically nontrivial in the sense that it can also have exotic surface

states on the surfaces [14, 15, 55–58].

The existence of 3D DSMs was predicted, based on the first-principles calculations

and effective model analysis, in β-cristobalite BiO2 [54] and A3Bi (A=Na,K,Rb) sys-

tems [15] in the year 2012. Afterwards,the electronic structures of Na3Bi [14, 55, 59]

and Cd3As2 [56, 60–62] are measured by angular-resolve photoemission spectroscopy

(ARPES), and Dirac points with linear dispersions along all momentum directions are

observed.
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Generally, the DSM can be classified into two classes according to the position and

numbers of Dirac points [63, 64]. Dirac points in the DSM of the first class are created

via band inversion or accidental band crossings. These Dirac points locate away from the

time-reversal invariant momentum(TRIM) points of the high order rotation axes (C3,

C4, C6) and the total number should be even. While for the second class DSM, it has

an odd number of Dirac points at the TRIM points of the rotation axes where the band

crossings are ensured by the lattice symmetry. Moreover, DSMs of these two classes

are topologically different. For the first one, we can always find a non-zero topological

invariant in either the kz=0 or kz=π plane, where kz direction is the direction of the

high order axis. This will introduce 2D surface Dirac cones when a surface is cut parallel

to the kz axis. Therefore the first type of DSM is also called topological DSM. While

for the second one, the system does not have this topological invariant and thus could

not find the 2D surface Dirac cones.

Both the Na3Bi and Cd3As2, which are protected by C6 and C4 symmetries, respectively,

belong to the first class DSM. And the β-cristobalite BiO2 , which has three symmetry-

related Dirac points located at TRIM X points [k=(0.5, 0, 0)], belongs to the second

class. It is important to note that, though topologically different, in both cases, the

3D DSM phases are stable and exhibit many exotic transport properties, such as large

magnetoresistance (MR) [65, 66], negative MR [67, 68], high mobility [65, 69], and chiral

anomaly [70, 71]. In addition, for the topological DSM, an additional quantum anomaly

effect [72] exists because of the non-zero topological invariant.

In addition, similar with the type-II Weyl point, the Dirac point may also tilt strongly

in energy-momentum space, as predicted in MA3 (M=V,Nb,Ta; A=Al,Ga,In)[73] and

PtSe2 [74]. This type of Dirac point is named as type-II Dirac point. Shortly after

the prediction, the APRES experiments that successfully observed the tilted energy

dispersion and conic surface states in PtSe2 were reported [75, 76]. The type-II Dirac

semimetal phase is interesting not only because each type-II Dirac can be split into four

type-II Weyl nodes via symmetry breaking, but also because it is Lorentz-violating and
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has Landau level spectrum which is distinct from the type-I Dirac or Weyl semimetal.

Thus different transport properties can be expected in this type of DSM.

4.2.2 Surface states of Dirac semimetals

It seems somewhat natural to observe Fermi arcs in DSMs, i.e. the “double Fermi arcs”,

in the sense that a Dirac point can be understood as two opposite but energetically

degenerate Weyls, each of them gives rise to a Fermi arc, as shown in Fig. 4.7. However,

in contrast with the Fermi arcs in WSMs, in which the surface states are topologically

protected and robust because of the non-zero topological charges of Weyls, the Dirac

points in DSMs have zero topological charges. Thus a key question is whether the double

Fermi arcs on the DSMs surface robust and topologically protected?

Several works have been focused on this issue [57, 58, 63]. It was claimed by Yang [63]

that, the number of Fermi arcs on the surface of the DSM is determined by the 2D

topological invariant on the kz =0 plane irrespective of the energy dispersion around the

3D Dirac points. Shortly after that, Potter [58] showed that, the Fermi arcs of DSMs

are perturbatively stable to the symmetry-broken potential of the surface, which is the

case for Na3Bi and Ca3As2, unless the surface potential is sufficiently strong [58]. While

Kargarian [57] gave a different answer, based on a simple four-bands model calculation

and rigorous K-theory analysis, he verified that the double Fermi arcs are not topologi-

cally protected and can be continuously deformed into a closed Fermi contour without

any symmetry breaking or bulk phase transition.

Shown in Fig. 4.7 are the (100) surface states of a model of topological DSM, which has

two Dirac points along kz direction. Without any perturbation, the double Fermi arcs

extending from one Dirac node to the other can be observed as shown in Fig. 4.7(b).

But once a perturbation is added, even if it maintains the symmetry of the DSM, the

double Fermi arcs are destroyed as shown in Fig. 4.7 (c-f). Whereas, for the topolog-

ical DSM, the topological invariant at kz=0 is non-zero, making the kz=0 plane a 2D

topological insulator and producing a chiral edge state at kz=0 when (100) surface is
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Figure 4.7: Surface states on the surface of topological DSM which
originates from band inversion or accidental band crossings. (a)
Schematic k-space picture of a DSM which has two Dirac points on
the kz axis. Shown as the light blue squares are the surface BZ,
which host projected bulk Dirac points and double Fermi arcs. The
green square is a 2D BZ slice perpendicular to kz. (b) Double fermi
arcs of the DSM (100) surface without perturbation (c,d) Contin-
uous deformation of double fermi arcs under a symmetry-allowed
mass term. The double fermi arcs are deformed but not removed.
The surface states at kz=0 correspond to the chiral edge states be-
cause of the non-zero topological invariant and are not removable
as shown in all the panels. (e,f) The electron-doped surface state
with the same strength of perturbation as (d). The red dots are the
projected bulk Dirac points, and the red blobs in (e) and (f) are the
projection of bulk state. Adapted from Kargarian et. al. [57]

cut. Therefore, the surface states of topological DSM won’t disappear, but continuously

evolve in reciprocal space.

4.3 Triple point fermions

In previous sections, we have discussed two types of quasiparticles which are analogous

of elementary particles of the quantum field theory: Weyl and Dirac Fermions. While

in condensed-matter systems, where the quasiparticles are less constrained by Poincaré

symmetry, more types of exotic fermionic excitations can be expected [53, 77–81]. In

this section, we will focus on a new type of quasiparticle in condensed matter, which has
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a three-fold degenerate band crossing in k-space and has no analogue to the standard

model in particle physics [82].

4.3.1 Triple point fermions in three-dimensional materials

In a recent work, Bradlyn et al. [77] have reported several new types of free fermionic

excitations in condensed-matter, which can be classified according to their degenera-

cies at and along high-symmetry points, lines and surfaces. These new fermions are

stabilized by non-symmorphic space group symmetries and include three-, six-, or eight-

fold degenerate band crossings. Among them, the three-fold degenerate band crossing,

which is generally named as triple point fermion (TPF), has attracted much attention

[77, 79, 81, 83–86]. The TPF is of fundamental interest, not only because it can be

viewed as a fermionic spin-1 generalization of an ordinary Weyl fermion, but also be-

cause it lies between Dirac and Weyl fermions. The former property could give rise to

some novel phenomena, and the latter makes the TPF an ideal intermediate species to

study the phase transition between Dirac and Weyl fermions.

Bardlyn et al. verified, via symmetry analysis and ab−initio calculations, that the mate-

rials from space group 199, 214 and 220 can host TPFs and proposed three candidates of

TPF metals/semimetals (TPFMs): Pd3Bi2S2, Ag3Se2Au and Ba4Bi3. Nearly the same

time Zhu et al. [84] reported the existence of TPFs in trigonal or hexagonal system,

which are protected by symmorphic symmetry. A bunch of materials are predicted to

be TPFMs, and are generally classified into two types according to the winding numbers

of the nodal lines connecting the TPFs: The ones whose winding numbers are zero, like

ZrTe family of compounds, and the ones which have non-zero winding numbers, like the

CuPt-ordered InAs0.5Sb0.5 and strained HgTe. These were later theoretically confirmed

by Chang et al.[79] and directly observed in MoP by Lv et al. using photoemission

and ARPES measurements [80]. Moreover, Lv et al. also observed pairs of Weyl points

in the bulk electronic structure that coexist with the TPFs. This is reasonable since

both WSMs and TPTMs require that either the time-reversal or inversion symmetry
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should be broken, thus making the TPFM an ideal platform for studying the interplay

of different types of fermions.

As we will show later, in spite of different types, the TPFs are also topologically protected

and can be characterized by the topological invariant. The TPFs are quite similar with

Weyl points in WSMs, apart from that they are conceptually spin-1 quasiparticles. Some

properties of the WSM can be generalized directly to the TPFM, like the chiral anomaly,

Fermi arcs, high mobility and so on[79–81, 84, 85]. Whereas, further investigations are

still required, such as the experimental observation of surface states and other novel

properties in TPTMs.

4.3.2 Topological invariants and surface states

To explicitly reveal the topological invariants in TPFs we should first classify the TPFs

according to the degeneracy of the bands near them. For the first class, which we named

as TPF1 here, the bands are singly degenerate along all the directions away from the

TPF as shown in Fig. 4.8 (b). This reminds us the definition of the topological charge

of a Weyl point, in which a closed 2D manifold which is gaped everywhere is selected

to enclose the Weyl point. By integrating the Berry curvature flux crossing the 2D

manifold, an integer which respects to the topological charge of the particle will be

obtained.

This approach can be generalized to TPF1. The only difference is that a TPF1 consists

of three bands rather than two for a Weyl. It was shown that only two of these three

bands are nontrivial and contribute Berry flux of +2 and -2, respectively [77]. The third

trivial band, which lies between the two non-trivial bands, has zero Berry flux. This

allows the dispersion of the three bands near the degeneracy point to be linear as shown

in Fig 4.8 (b). In this case, the TPF1 is a monopole with the topological charge of 2

and acts as a drain or source of Berry curvature in reciprocal space, similar to that of

Weyl. Due to the topological charge of 2, each TPF of a TPFM will give rise to two
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Figure 4.8: Energy dispersions and topological charges of TPFs.
(a) Quadratic energy dispersion of double-Weyl node (b) Triple
point whose bands are non-degenerate away from the gapless point.
The upmost and lowest bands are non-trivial bands and are sepa-
rated by the trivial band in between. (c) Triple points connected by
nodal lines along high symmetry lines (d) or in high symmetry sur-
faces (e). The topological charges for (a) and (b) are ±2, while for
(c) the similar topological invariant couldn’t be defined. The topo-
logical invariant of (c) can be defined by winding number, which is
0 for (d) and ±1 for (e). The figures are adapted from [78, 79, 84].

fermi arcs. This is distinguished from the Dirac point where the double Fermi arcs are

not topologically protected.

Interestingly, apart from the TPF1 as mentioned before, there is another type of monopole

quasiparticle which has topological charge of 2. It is called double-Weyl node (DWN)

as shown in Fig. 4.8 (a). Comparing with TPF1, the bands around a DWN exhibit

quadratic dispersion behavior [53, 78]. The DWN also needs the protection from point

group symmetry and gives rise to two Fermi arcs. But this is beyond the scope of this

dissertation.

For the second class of TPF, which is named as TPF2 here, two of the three bands
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are degenerate and form several nodal lines either along the high symmetry lines or in

the mirror planes. Each nodal line connects two TPF2 as shown in Fig. 4.8 (d) and

(e). Thus it is impossible to find a closed 2D manifold enclosing a TPF2 but gapped

everywhere. The definition of topological charge for Weyl and TPF1 is not applicable for

TPF2. Instead, the one dimensional (1D) topological invariant of a nodal line [87–89],

namely the Z2 number [90], can be applied to characterize the topology of the TPF2

[39, 79]. For each nodal line of the TPF2, we choose a closed loop l, along which the

Hamiltonian is gapped, to enclose the nodal line. The Z2 number ζ is simply the Berry

phase on the closed loop :

ζ =
1

π

∑

n

∮

l
An(k) · dk mod 2.

Where An(k) is the Berry connection of the occupied bands. The Berry phase accumu-

lated by valence bands is quantized to be either 0 or π, corresponding to Z2 number of

either 0 or 1. Therefore, the TPF2 can be further classified to type TPF2a for ζ = 0

and type TPF2b for ζ = 1 as shown in Fig. 4.8 (d) and Fig. 4.8 (e), respectively.

According to the group theory, to form a TPF, the little group at the TPF point should

contain both one- and two- dimensional double group representations. These symmetry

requirements can be satisfied by the C3v symmetry, which is the case for TPF1 and

TPF2b. While for TPF2a, apart from the C3v symmetry, an additional symmetry,

which is the product of the mirror plane σh orthogonal to the C3 axis and time-reversal

symmetry, is necessary. In this case, although the Z2 number of TPF2a is zero, a mirror

Chern number Cm=±i of σh [91, 92] can be defined in the way:

Cm=±i =
1

2π

∑

n

∫

S
Bn(k) · dS(k) mod 2.

Where the Bn(k) is the berry curvature of the occupied bands, S is the mirror plane.

It has been proved that TPF2a has non-zero mirror Chern number Cm=±i. In a con-

sequence, all types of TPFs are topologically non-trivial and are able to find related
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topological surface states.



Chapter 5

Selected results

5.1 Introduction

In this chapter, selected publications are presented, which provide the main results of the

cumulative thesis. The investigated topics roughly follow the evolution of the degeneracy

of the quasiparticles, beginning with the two-fold degenerate Weyl points, then three-

fold degenerate Triple points, and finally the four-fold degenerate Dirac points. The

degeneracies of these quasiparticles are determined by the symmetry of the systems of

interest. With either time-reversal or inversion symmetry broken, Weyl points are able

to exist. They can derive to Triple points with high order rotation axis or to Dirac

points with the presence of both time-reversal and inversion symmetries.

5.2 Paper I: Topological Weyl semimetals in the chiral an-

tiferromagnetic materials Mn3Ge and Mn3Sn

This work, which was done in collaboration with the group of Binghai Yan and Claudia

Felser from the Max-Planck Institute for Chemical Physics of Solids, was motivated by
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the discovery of large anomalous Hall effect (AHE) in the non-collinear antiferromagnet

Mn3Ir [93]. It was shown that the large AHE arises from the non-zero net Berry curvature

in the first BZ because of the magnetic structure. This reminds us of the possibility of

finding Weyl points in those triangular magnetic ordered materials. Because the Weyl

points are closely related to the Berry curvature and the time-reversal symmetry has

been broken by the non-collinear anti-ferromagnetic structure.

Our deduction was verified by the ab − initio calculations. Multiple pairs of Weyl

points were observed in Mn3Ge and Mn3Sn, most of which are type-II. Among them,

some are connected by visible fermi arcs, while others are mixed with the bulk states.

The positions and topological charges of the Weyl points are in accordance with the

symmetry of the magnetic lattice. Moreover, based on the Wannier functions, the Berry

curvature around the Weyl points is calculated, demonstrating strong anisotropic but

monopole-like distribution. By integrating the Berry curvature in the first BZ, we also

showed that both Mn3Ge and Mn3Sn exhibit large AHE.
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Abstract
Recent experiments revealed thatMn3Sn andMn3Ge exhibit a strong anomalousHall effect at room
temperature, provoking us to explore their electronic structures for topological properties. By abinitio
band structure calculations, we have observed the existence ofmultipleWeyl points in the bulk and
corresponding Fermi arcs on the surface, predicting antiferromagneticWeyl semimetals inMn3Ge
andMn3Sn.Here the chiral antiferromagnetism in theKagome-type lattice structure is essential to
determine the positions and numbers ofWeyl points. Ourwork further reveals a new guiding
principle to search formagneticWeyl semimetals amongmaterials that exhibit a strong anomalous
Hall effect.

1. Introduction

Recent discovery ofWeyl semimetals (WSMs) [1–3] in realisticmaterials has stimulated tremendous research
interest in topological semimetals, such asWSMs,Dirac semimetals, and nodal line semimetals [4–9], as a new
frontier of condensedmatter physics after the discovery of topological insulators [10, 11]. TheWSMs are of
particular interest not only because of their exotic Fermi-arc-type surface states but also because of their
appealing bulk chiralmagneto-transport properties, such as the chiral anomaly effect [12–14], nonlocal
transport [15, 16], largemagnetoresistance, and highmobility [17]. Currently discoveredWSMmaterials can be
classified into two groups. One group breaks crystal inversion symmetry but preserves time-reversal symmetry
(e.g., TaAs-family transition-metal pnictides [18, 19] andWTe2- andMoTe2-family transition-metal
dichalcogenides [20–26]). The other group breaks time-reversal symmetry in ferromagnets with possible tilted
moments (e.g., magneticHeuslerGdPtBi [27, 28] andYbMnBi2 [29]). An antiferromagnetic (AFM)WSM
compound has yet to be found, althoughY2Ir2O7with a noncoplanar AFM structure was theoretically predicted
to be aWSMcandidate [5].

In aWSM, the conduction and valence bands cross each other linearly through nodes calledWeyl points.
Between a pair ofWeyl points with opposite chiralities (sink or source of the Berry curvature) [4], the emerging
Berry flux can lead to the anomalousHall effect (AHE) [30], as observed inGdPtBi [27, 28], and an intrinsic spin
Hall effect (SHE), as predicted in TaAs-typematerials [31], for systemswithout andwith time-reversal
symmetry, respectively. Herein, we raise a simple recipe to search forWSMcandidates amongmaterials that
host strongAHEor SHE.

Recently,Mn3X (where =X Sn, Ge, and Ir), which exhibit noncollinear antiferromagetic (AFM) phases at
room temperature, have been found to show large AHE [32–35] and SHE [36], provoking our interest to
investigate their band structures for possibleWSMs. In this work, we report the existence ofWeyl fermions for
Mn3Ge andMn3Sn compounds and the resultant Fermi arcs on the surface by ab initio calculations, awaiting
experimental verifications. Dozens ofWeyl points exist near the Fermi energy in their band structure, and these
can bewell understoodwith the assistance of lattice symmetry.
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2.Methods

The electronic ground states ofMn3Ge andMn3Snwere calculated by using density-functional theory (DFT)
within the Perdew–Burke–Ernzerhof-type generalized-gradient approximation (GGA) [37] using theVienna
ab initio simulation package (VASP) [38]. The 3d 4s6 1, 4s 4p2 2, and 5s 5p2 2 electronswere considered as valance
electrons forMn,Ge, and Sn atoms, respectively. The primitive cell with experimental crystal parameters
= =a b 5.352 and c=4.312ÅforMn3Ge and = =a b 5.67 and c=4.53ÅforMn3Snwere adopted. Spin-

orbit coupling (SOC)was included in all calculations.
To identify theWeyl points with themonopole feature, we calculated the Berry curvature distribution in

momentum space. The Berry curvature was calculated based on a tight-bindingHamiltonian based on localized
Wannier functions [39] projected from theDFTBlochwave functions. Chosenwere atomic-orbital-like
Wannier functions, which includeMn-spd andGe-sp/Sn-p orbitals, so that the tight-bindingHamiltonian is
consistent with the symmetry of ab initio calculations. From such aHamiltonian, the Berry curvature can be
calculated using theKubo-formula approach [40]

 åW =
á ñá ñ

-
g a b

¹


   

 k
u k v u k u k v u k

E k E k
2i , 1n

m n

n m m n

n m

2
2

( )
( )∣ ˆ ∣ ( ) ( )∣ ˆ ∣ ( )

( ( ) ( ))
( )

where Wg

kn ( ) is the Berry curvature inmomentum space for a given band n,


=a b g

¶
¶ a b g

v H

k,
1

,
ˆ ( )

ˆ

( )
is the velocity

operatorwith a b g = x y z, , , , , and ñ


u kn∣ ( ) and


E kn ( ) are the eigenvector and eigenvalue of theHamiltonian
H kˆ ( ), respectively. The summation of Wg


kn ( ) over all valence bands gives the Berry curvature

vectorW W W W, ,x y z( ).
In addition, the surface states that demonstrate the Fermi arcs were calculated on a semi-infinite surface,

where themomentum-resolved local density of states (LDOS) on the surface layer was evaluated based on the
Green’s functionmethod.Wenote that the current surface band structure corresponds to the bottom surface of
a half-infinite system.

3. Results and discussion

3.1. Symmetry analysis of theAFMstructure
Mn3Ge andMn3Sn share the same layered hexagonal lattice (space group P mmc63 , No. 194). Inside a layer,
Mn atoms form aKagome-type lattice withmixed triangles and hexagons andGe/Sn atoms are located at the
centers of these hexagons. EachMn atom carries amagneticmoment of 3.2μB inMn3Sn and 2.7μB inMn3Ge.
As revealed in a previous study [41], the groundmagnetic state is a noncollinear AFM state, whereMnmoments
align inside the ab plane and form120° angles with neighboringmoment vectors, as shown infigure 1(b). Along
the c axis, stacking two layers leads to the primitive unit cell. Given themagnetic lattice, these two layers can be
transformed into each other by inversion symmetry orwith amirror reflection (My) adding a half-lattice (c 2)
translation, i.e., a nonsymmorphic symmetry t =M c 2y{ ∣ }. In addition, two othermirror reflections (Mx and
Mz) adding time reversal (T), M Tx and M Tz , exist.

Inmomentum space, we can utilize three important symmetries, M Tx , M Tz , andMy, to understand the
electronic structure and locate theWeyl points. Suppose aWeyl point with chiralityχ (+ or−) exists at a generic
position k k kk , ,x y z( ).Mirror reflection reversesχwhile time reversal does not and both of them act on k .
Further,mirror reflection gM preserves the Berry curvature Wg while time reversal reserves it. The
transformation is as follows:

c c
c c

c c

 - -  - W  -W
 - -  - W  -W
 -  - W  +W

M T k k k k k k

M T k k k k k k

M k k k k k k

: , , , , ; ;

: , , , , ; ;

: , , , , ; ; . 2

x x y z x y z
x x

z x y z x y z
z z

y x y z x y z
y y

( ) ( )
( ) ( )
( ) ( ) ( )

Each of the above three operations doubles the number ofWeyl points. Thus, eight nonequivalentWeyl points
can be generated at  + k k k, ,x y z( )with chiralityχ and  - k k k, ,x y z( )with chirality c- (see figure 1(c)).
We note that the p=k 0x or p=k 0z plane can hostWeyl points. However, the p=k 0y plane cannot host
Weyl points, becauseMy simply reverses the chirality and annihilates theWeyl point with itsmirror image if it
exists.

In addition, the symmetry of the 120°AFMstate is slightly broken in thematerials, owing to the existence of
a tiny netmoment (∼0.003 μBper unit cell) [41–43]. Suchweak symmetry breaking seems to induce negligible
effects in the transportmeasurement. However, it gives rise to a perturbation of the band structure, for example,
shifting slightly themirror image of aWeyl point from its position expected, as wewill see in the surface states of
Mn3Ge.

2
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3.2. The anomalousHall effect
The intrinsic anomalousHall conductivity s g =g x y z, ,( ) can be calculated by integrating the Berry curvature
Wg over thewhole Brillouin zone [40, 44]

 òs
p

= - Wg g

  e k
f k k

d

2
. 3

BZ
n

2 3

3( )
( ) ( ) ( )

According to equation (2), Wx and Wz are oddwith respect to M Tx and M Ty , respectively. Thus, corresponding
sx and sz are zero. Since Wy is evenwith respect to theMymirror plane, corresponding sy is nonzero. This is
also consistent with the distribution ofWeyl points in the k-space. As shown in figure 1(c), only ‘+’Weyl points
appear on one side of theMy plane and only ‘–’Weyl points locate on the other side ofMy plane. Then there are
net Berry flux (starting from ‘+’ to ‘–’Weyl points) Wy crossing theMy plane, resulting in the nonzero
anomalousHall conductivity sy. In contrast, an equal number of ‘+’ and ‘–’Weyl points appear on each side of
Mx (Mz) planes. Consequently, the net Berry flux of Wx (Wz) should be zero, giving rise to vanishing sx (sz).
According to recent numerical calculations [36], s = - -330 133 S cmy 1 1( ) forMn3Ge (Mn3Sn).

In themeasurement of AHE, an externalmagnetic field is usually applied to uniformdifferentmagnetic
domains. Further, forMn3Ge andMn3Sn, the triangular spins can be rotated inside the xy plane even by a very
weakmagnetic field due to the residualmagneticmoment [43]. The rotation of an arbitrary angle can break the
My and M Tx symmetry, showing nonzero sy and sx. However, sz is still zero due to the M Tz symmetry. As
observed for both compounds in experiment [34, 35], sx y, are indeed very large and sz is negligible. The in-
plane anomalousHall conductivity is about 500 (100) - -S cm1 1 forMn3Ge (Mn3Sn) at low temperature, which
are in the same order ofmagnitude as the calculations [36].

3.3.Weyl points in the bulk band structure
The bulk band structures are shown along high-symmetry lines in figure 2 forMn3Ge andMn3Sn. It is not
surprising that the twomaterials exhibit similar band dispersions. Atfirst glance, one canfind two seemingly
band degenerate points atZ andK points, which are below the Fermi energy. Because of M Tz and the
nonsymmorphic symmetry { t =M c 2y∣ }, the bands are supposed to be quadruply degenerate at the Brillouin
zone boundaryZ, forming aDirac point protected by the nonsymmorphic space group [45–47]. Given the slight
mirror symmetry breaking by the residual netmagneticmoment, thisDirac point is gapped atZ (as shown in the
enlarged panel) and splits into fourWeyl points, which are very close to each other in k space. A tiny gap also
appears at theK point. Nearby, two additionalWeyl points appear, too. Since theWeyl point separations are too
small near bothZ andK points, theseWeyl pointsmay generate little observable consequence in experiments
such as those for studying Fermi arcs. Therefore, wewill not focus on them in the following investigation.

Figure 1.Crystal andmagnetic structures ofMn3X (where =X Sn orGe) and related symmetry. (a)Crystal structure ofMn3X. Three
mirror planes are shown in purple, corresponding to { t =M c 2y∣ },MxT, andMzT symmetries. (b)Top view along the c axis of the
Mn sublattice. Chiral AFMwith an angle of 120° between neighboringmagneticmoments is formed in eachMn layer. Themirror
planes that correspond toMxT and { t =M c 2y∣ } aremarked by dashed lines. (c) Symmetry inmomentum space,My,MxT, andMzT.
If aWeyl point appears at k k k, ,x y z( ), eightWeyl points in total can be generated at   k k k, ,x y z( ) by the above three symmetry
operations. For convenience, we choose the p=ky plane forMy here.
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Mn3Sn andMn3Ge are actuallymetallic, as seen from the band structures. However, we retain the
terminology ofWeyl semimetal for simplicity and consistency. The valence and conduction bands cross each
many times near the Fermi energy, generatingmultiple pairs ofWeyl points.Wefirst investigate the Sn
compound. Supposing that the total valence electron number isNv, we search for the crossing points between
the Nv

th and +N 1v
th( ) bands.

As shown infigure 3(a), there are six pairs ofWeyl points in the first Brillouin zone; these can be classified
into three groups according to their positions, noted asW1,W2, andW3. TheseWeyl points lie in theMz plane
(withW2 points being only slightly off this plane owing to the residual-moment-induced symmetry breaking)
and slightly above the Fermi energy. Therefore, there are four copies for each of them according to the symmetry
analysis in equation (2). Their representative coordinates and energies are listed in table 1 and also indicated in
figure 3(a). AWeyl point (e.g.,W1 infigures 3(b) and (c)) acts as a source or sink of the Berry curvatureW, clearly
showing themonopole feature with a definite chirality.

In contrast toMn3Sn,Mn3Ge displaysmanymoreWeyl points. As shown in figure 4(a) and listed in table 2,
there are nine groups ofWeyl points. Here W1,2,7,9 lie in theMz planewithW9 on the ky axis,W4 appears in the
Mx plane, and the others are in generic positions. Therefore, there are four copies of W1,2,7,4, two copies ofW9,
and eight copies of otherWeyl points. Although there aremany otherWeyl points in higher energies owing to

Figure 2.Bulk band structures for (a)Mn3Sn and (b)Mn3Ge along high-symmetry lineswith SOC. The bands near theZ andK
(indicated by red circles) are expanded to showdetails in (a). The Fermi energy is set to zero.

Figure 3. Surface states ofMn3Sn. (a)Distribution ofWeyl points inmomentum space. Black andwhite points representWeyl points
with− and+ chirality, respectively. (b) and (c)monopole-like distribution of the Berry curvature near aW1Weyl point. (d) Fermi
surface atEF=86meV crossing theW1Weyl points. The color represents the surface LDOS. Twopairs ofW1 points are shown
enlarged in the upper panels, where clear Fermi arcs exist. (e) Surface band structure along a line connecting a pair ofW1 points with
opposite chirality. (f) Surface band structure along thewhite horizontal line indicated in (d). Here p1 and p2 are the chiral states
corresponding to the Fermi arcs.

4

New J. Phys. 19 (2017) 015008 HYang et al



Table 1.Positions and energies ofWeyl points infirst Brillouin zone forMn3Sn.
The positions (kx, ky, kz) are in units ofπ. Energies are relative to the Fermi energy
EF. Each type ofWeyl point has four copies whose coordinates can be generated
from the symmetry as   =k k k, , 0x y z( ).

Weyl

point kx ky kz Chirality

Energy

(meV)

W1 −0.325 0.405 0.000 − 86

W2 −0.230 0.356 0.003 + 158

W3 −0.107 0.133 0.000 − 493

Figure 4. Surface states ofMn3Ge. (a)Distribution ofWeyl points inmomentum space. Black andwhite points representWeyl points
with− and+ chirality, respectively. Larger points indicate twoWeyl points (kz) projected into this plane. (b) and (c)monopole-like
distribution of the Berry curvature near aW1Weyl point. (d) Fermi surface atEF=55meV crossing theW1Weyl points. The color
represents the surface LDOS. Twopairs ofW1 points are shown enlarged in the upper panels, where clear Fermi arcs exist. (e) Surface
band structure along a line connecting a pair ofW1 points with opposite chirality. (f) Surface band structure along thewhite horizontal
line indicated in (d). Here p1 and p2 are the chiral states corresponding to the Fermi arcs.

Table 2.Positions and energies ofWeyl points in thefirst Brillouin zone for
Mn3Ge. The positions (kx, ky, kz) are in units ofπ. Energies are relative to the
Fermi energy EF. Each of W1,2,7 has four copies whose coordinates can be
generated from the symmetry as   =k k k, , 0x y z( ).W4 has four copies at

»  k k k0, ,x y z( ) andW9has two copies at »  =k k k0, , 0x y z( ). Each of the
otherWeyl points has four copies whose coordinates can be generated from the
symmetry as   k k k, ,x y z( ).

Weyl

point kx ky kz Chirality

Energy

(meV)

W1 −0.333 0.388 −0.000 − 57

W2 0.255 0.378 −0.000 + 111

W3 −0.101 0.405 0.097 − 48

W4 −0.004 0.419 0.131 + 8

W5 −0.048 0.306 0.164 + 77

W6 0.002 0.314 0.171 − 59

W7 −0.081 0.109 0.000 + 479

W8 0.069 −0.128 0.117 + 330

W9 0.004 −0.149 −0.000 + 470
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different band crossings, wemainly focus on the currentWeyl points that are close to the Fermi energy. The
monopole-like distribution of the Berry curvature near theseWeyl points is verified; seeW1 infigure 4 as an
example.Without including SOC,we observed a nodal-ring-like band crossing in the band structures of both
Mn3Sn andMn3Ge. SOC gaps the nodal rings but leaves isolating band-touching points, i.e.,Weyl points. Since
Mn3Sn exhibits stronger SOC thanMn3Ge,manyWeyl points with opposite chiralitymay annihilate each other
by being pushed by the strong SOC inMn3Sn. Thismight bewhyMn3Sn exhibits fewerWeyl points than
Mn3Ge.

3.4. Fermi arcs on the surface
The existence of Fermi arcs on the surface is one of themost significant consequences ofWeyl points inside the
three-dimensional (3D) bulk.Wefirst investigate the surface states ofMn3Sn that have a simple bulk band
structure with fewerWeyl points.When projecting W2,3 Weyl points to the (001) surface, they overlapwith other
bulk bands that overwhelm the surface states. Luckily,W1Weyl points are visible on the Fermi surface.When
the Fermi energy crosses them,W1Weyl points appear as the touching points of neighboring hole and electron
pockets. Therefore, they are typical type-IIWeyl points [20, 48]. Indeed, their energy dispersions demonstrate
strongly tiltedWeyl cones.

The Fermi surface of the surface band structure is shown infigure 3(d) for the Sn compound. In each corner
of the surface Brillouin zone, a pair ofW1Weyl points exists with opposite chirality. Connecting such a pair of
Weyl points, a long Fermi arc appears in both the Fermi surface (figure 3(d) and the band structure (figure 3(e)).
Although the projection of bulk bands exhibit pseudo-symmetry of a hexagonal lattice, the surface Fermi arcs do
not. It is clear that the Fermi arcs originating from twoneighboringWeyl pairs (seefigure 3(d)) do not exhibitMx

reflection, because the chirality ofWeyl points apparently violatesMx symmetry. For a generic kx–kz plane
between each pair ofW1Weyl points, the net Berry flux points in the-ky direction. As a consequence, the Fermi
velocities of both Fermi arcs point in the+kx direction on the bottom surface (seefigure 3(f)). These two right
movers coincide with the nonzero net Berry flux, i.e., Chern number=2.

ForMn3Ge, we also focus on theW1-typeWeyl points at the corners of the hexagonal Brillouin zone. In
contrast toMn3Sn,Mn3Ge exhibits amore complicated Fermi surface. Fermi arcs exist to connect a pair ofW1-
typeWeyl points with opposite chirality, but they are divided into three pieces as shown infigure 4(d). In the
band structures (see figures 4(e) and (f)), these three pieces are indeed connected together as a single surface
state. Crossing a line between two pairs ofW1 points, one canfind two rightmovers in the band structure, which
are indicated as p1 and p2 infigure 4(f). The existence of two chiral surface bands is consistent with a nontrivial
Chern number between these two pairs ofWeyl points.

4. Summary

In summary, we have discovered theWeyl semimetal state in the chiral AFMcompoundsMn3Sn andMn3Ge by
abinitio band structure calculations.MultipleWeyl points were observed in the bulk band structures,most of
which are type II. The positions and chirality ofWeyl points are in accordancewith the symmetry of the
magnetic lattice. For both compounds, Fermi arcswere found on the surface, each of which connects a pair of
Weyl points with opposite chirality, calling for further experimental investigations such as angle-resolved
photoemission spectroscopy. The discovery ofWeyl points verifies the large anomalousHall conductivity
observed recently in titled compounds. Ourwork further reveals a guiding principle to search forWeyl
semimetals amongmaterials that exhibit a strong anomalousHall effect.
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Chapter 5. Selected results 59

5.3 Paper II: Strong anisotropic anomalous Hall effect and

spin Hall effect in the chiral antiferromagnetic com-

pounds Mn3X (X= Ge, Sn, Ga, Ir, Rh, and Pt)

This publication, shortly after the discovery of Weyl points in the chiral antiferromag-

netic ordered materials, systematically studied their intrinsic AHE and SHE. Apart

from the aforementioned hexagonal materials, the cubic structure materials are also cal-

culated, including Mn3Ir, Mn3Pt an Mn3Rh. We found that all the studied materials

show strong anisotropic anomalous Hall conductivity (AHC) and spin Hall conductivity

(SHC). This suggests the possibility of optimization AHC or SHC by choosing appro-

priate crystal planes and by applying field along certain directions.

Moreover, our results also indicate that the SHC and AHC are functions of Fermi level,

which can be tuned by electron or hole doping. This provides another approach of

experimental obtaining higher SHC and AHC. One interesting result we didn’t mention

in the paper is the relation between the Weyl points and AHC. It is natural to think

that the AHC is dominated by the number of Weyl points in a material. However, in

our calculations, we found that the Berry curvature which dominates the main part of

AHC is not from the Weyl points but from the regions which have tiny band gaps. We

think this is partly because Weyl points are singularities of Berry curvature which will

be averaged by integration. Another reason might be that the Berry curvature from

the opposite Weyl points will cancel with each other. Because of these properties, the

intrinsic AHC and SHC are sensitive to the detailed band structure. The way of tuning

band structure can be an effective method of tuning the intrinsic AHC and SHC.
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We have carried out a comprehensive study of the intrinsic anomalous Hall effect and spin Hall effect of
several chiral antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh and Pt) by ab initio band structure
and Berry phase calculations. These studies reveal large and anisotropic values of both the intrinsic anomalous
Hall effect and spin Hall effect. The Mn3X materials exhibit a noncollinear antiferromagnetic order which, to
avoid geometrical frustration, forms planes of Mn moments that are arranged in a Kagome-type lattice. With
respect to these Kagome planes, we find that both the anomalous Hall conductivity (AHC) and the spin Hall
conductivity (SHC) are quite anisotropic for any of these materials. Based on our calculations, we propose how
to maximize AHC and SHC for different materials. The band structures and corresponding electron filling, that
we show are essential to determine the AHC and SHC, are compared for these different compounds. We point
out that Mn3Ga shows a large SHC of about 600 (h̄/e)(� cm)−1. Our work provides insights into the realization
of strong anomalous Hall effects and spin Hall effects in chiral antiferromagnetic materials.

DOI: 10.1103/PhysRevB.95.075128

I. INTRODUCTION

The anomalous Hall effect (AHE) [1] and spin Hall
effect (SHE) [2] are very important members of the family
of Hall effects. The AHE is characterized by a transverse
voltage generated by a longitudinal charge current usually in
a ferromagnetic (FM) metal. The AHE can be generalized to
the case of the SHE in nonmagnetic materials in which Mott
scattering [3] leads to the deflection of spin-up and -down
charge carriers in opposite directions, owing to spin-orbit
coupling (SOC), as illustrated in Fig. 1. Thus, a longitudinal
charge current can generate opposite spin accumulations along
opposing edges in the transverse direction to the current. On
the contrary, a spin current can also induce a transverse voltage
drop, in an effect called the inverse SHE. Both the AHE
and SHE are of particular interest for spintronic applications
[4–6], and references therein] in which spin currents can be
used to manipulate magnetic moments, for example, switching
the state of magnetization of magnetic nanoelements, or for
inducing the very efficient motion of domain walls [7,8].
Thus, the SHE has recently attracted much attention by both
experimentalists and theorists, and there has been widespread
efforts to search for candidate materials that exhibit strong
AHE or SHE.

The AHE and SHE originate from the electronic and
magnetic structures of materials and have both extrinsic and
intrinsic origins. Extrinsic contributions depend sensitively on
impurity scattering while intrinsic effects are derived from
properties of the band structure. It is the intrinsic AHE and SHE
that are the subject of this paper. For the AHE of an ordinary
collinear ferromagnet, it has been established that the Berry
curvature, a quantity closely determined by the band structure,
acts as a fictitious magnetic field in momentum space, that

*yan@cpfs.mpg.de

is derived from the magnetization and SOC, and affects the
charge motion in the same way as a real magnetic field [9]. In a
collinear AFM, it is not surprising that the AHE vanishes due to
the spin-up and -down conduction electron symmetry, or rather
the existence of a symmetry by combining a time-reversal
symmetry operation and a lattice translation. In a chiral
ferromagnet where magnetic moments are tilted in a lattice, it
was recently found that the aforementioned fictitious magnetic
field can also be generated by the scalar spin chirality [10,11],
Si(Sj × Sk) (Si,j,k denote three noncoplanar spins), which
does not necessarily involve SOC. When an electron makes
a loop trajectory in a chiral FM lattice, the electron acquires
a real-space Berry phase due to double exchange interactions
with the chiral lattice spins. The corresponding AHE has been
referred to as a so-called real-space topological Hall effect in
the literature (e.g., Ref. [12]). In a chiral AFM in which the
magnetic moments are coplanar, the topological Hall effect
disappears because of the zero spin chirality. However, an AHE
can still exist due to a nonzero Berry curvature induced by the
SOC [13]. Indeed, a strong AHE was recently observed in the
chiral AFM compounds Mn3Sn and Mn3Ge [13–16]. In prin-
ciple, the SHE exists generically in systems with strong SOC.
It has been studied in nonmagnetic [17–20] as well as antifer-
romagnetic [20–24] metals. Very recently, a strong SHE was
experimentally discovered in another chiral AFM compound
Mn3Ir [25]. Therefore, chiral AFM materials are appealing
candidates for finding significant AHE and SHE. They have
also stimulated the search for Weyl points in the same family
of materials [26] and exotic magneto-optical Kerr effect [27].

In this work, we have performed a comprehensive study of
the intrinsic AHE and SHE of the compounds Mn3X (X = Ge,
Sn, Ga, Ir, Rh, and Pt), using ab initio Berry phase calculations.
These compounds exhibit a chiral AFM order well above room
temperature (see Table I). This paper is organized as follows.
We first introduce the ab initio method and the linear-response
method that we have used to compute the AHE and SHE in

2469-9950/2017/95(7)/075128(9) 075128-1 ©2017 American Physical Society
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FIG. 1. Schematic illustrations of (a) the anomalous Hall effect
and (b) the spin Hall effect from the viewpoint of spin-dependent Mott
scattering. (c) The anomalous Hall effect in collinear FM, collinear
AFM, chiral FM, and chiral AFM systems. ρxy,M, λSOC, and
Si(Sj × Sk) represent the anomalous Hall resistivity, magnetization,
strength of SOC, and the scalar spin chirality, respectively.

Sec. II. We then discuss the relationship of the symmetry of
the crystal lattice and magnetic lattice to the SHC and AHC in
Sec. III. In Sec. IV, we discuss the results of our calculations
with the assistance of symmetry analysis, where the Mn3X

compounds are classified into two groups according to their
crystal and magnetic structures. Finally, we summarize our
results in Sec. V.

II. METHODS

The anomalous Hall conductivity (AHC) and spin Hall
conductivity (SHC) characterize the AHE and SHE, re-
spectively. In addition, the spin lifetime and related spin
manipulation methods are important ingredients for the SHE
device applications, but these aspects are beyond the scope of
the current study. The AHC and SHC have been calculated
using the Berry phase that we have determined from ab initio
band structures. Density-functional theory (DFT) calculations
were performed for the Mn3X bulk crystals with the Vienna
ab-initio simulation package (VASP) [28] within the gener-
alized gradient approximation (GGA) [29]. The SOC was in-
cluded in our calculations. The material-specific Hamiltonians
were established by projecting the DFT Bloch wave functions
onto maximally localized Wannier functions (MLWFs) [30].
Based on these tight-binding Hamiltonians, that include
realistic material parameters, we have calculated the intrinsic
AHC and SHC by using the Kubo formula approach within the

TABLE I. Crystal structure, magnetic structure, and AFM
ordering temperature (TN ) for Mn3X compounds.

Crystal Magnetic
TN (K) space group space group

Mn3Gaa 470 P 63/mmc, no. 194 R3m′

Mn3Geb 365
Mn3Snc 420
Mn3Rhd 853 ± 10 Pm3̄m, no. 221 Am′m′m2
Mn3Ire 960 ± 10
Mn3Ptf 473 ± 10

aRef. [37]; bRef. [45]; cRef. [46]; dRef. [44]; eRef. [43]; fRefs. [42,44].

linear response [1,2,9,31]. The AHC (σαβ) is obtained from

σαβ =−e2

h̄

∑
n

∫
BZ

d3�k
(2π )3

fn(�k)�n(�k),

�n(�k)=2ih̄2
∑
m�=n

〈un(�k)|v̂α|um(�k)〉〈um(�k)|v̂β |un(�k)〉(
En(�k) − Em(�k)

)2 , (1)

where v̂α(β,γ ) = i
h̄

[Ĥ ,r̂α(β,γ )] is the velocity operator with

α,β,γ = x,y,z; r̂α is the position operator. fn(�k) is the Fermi-
Dirac distribution. |un(�k) > and En(�k) are the eigenvector and
eigenvalue of the Hamiltonian Ĥ (�k), respectively. �n(�k) is the
Berry curvature in momentum space, and the corresponding
AHC σαβ can be evaluated by summing the Berry curvature
over the Brillouin zone (BZ) for all the occupied bands. Here
σαβ corresponds to a 3 × 3 matrix and indicates a transverse
Hall current jα generated by a longitudinal electric field Eβ ,
which satisfies Jα = σαβEβ . For the evaluation of the velocity
operator we assume for simplicity that the position operator
is diagonal in the Wannier basis, as is commonly done in
tight-binding calculations.

The intrinsic SHC can be obtained by replacing the velocity
operator with the spin current operator Ĵ

γ
α = 1

2 {v̂α,ŝγ }, where
ŝγ is the spin operator. The SHC then has the form of

σ
γ

αβ = e

h̄

∑
n

∫
BZ

d3�k
(2π )3

fn(�k)�γ

n,αβ(�k),

�
γ

n,αβ (�k) = 2ih̄2
∑
m�=n

〈un(�k)
∣∣Ĵ γ

α

∣∣um(�k)〉〈um(�k)|v̂β |un(�k)〉(
En(�k) − Em(�k)

)2 .

(2)

�
γ

n,αβ (�k) is referred to as the spin Berry curvature in the
following, in order to distinguish it from the Berry curvature
��n(�k). The SHC (σγ

αβ ; α,β,γ = x,y,z) is a third-order tensor
(3 × 3 × 3) and represents the spin current J sγ

α generated by
an electric field �E via J sγ

α = σ
γ

αβEβ , where J sγ
α flows along

the α direction with the spin polarization along the γ direction
and Eβ is the β component of the electric field �E.

For the integrals of Eqs. (1) and (2), the BZ was sampled by
k grids from 50 × 50 × 50 to 200 × 200 × 200. Satisfactory
convergence was achieved for a k grid of size 150 × 150 ×
150. Increasing the grid size to 200 × 200 × 200 varied the
SHC and AHC by no more than 5%. Note that the unit of
SHC differs from that of the AHC by h̄

2e
, where h̄/2 is the spin

angular momentum and e is the electron charge. Thus, the unit
of SHC is (h̄/e)(� cm)−1.

Since AHC and SHC are determined directly by the band
structure, they are fully compatible with the symmetry of
the Hamiltonian. Therefore, we can use symmetry analysis
to simplify the shape of the AHC and SHC tensor matrices, by
forcing certain matrix elements to be zero and constraining
some to be the same. Here, we obtain the shape of the
intrinsic response tensor from the linear-response-symmetry
code [32,33], which analyzes the symmetry operations of the
corresponding crystal and magnetic space groups [34] and then
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TABLE II. Shape of the AHC and SHC tensors obtained from symmetry analysis and numerical calculations for Mn3X (X = Ga, Ge, and
Sn). The calculated SHC tensor elements are set to zero when they are smaller than 12 (h̄/e)(� cm)−1. The coordinates used here are x along
[100], y along [120], and z along [001], as presented in Figs. 1(a) and 1(b). The AHC is given in units of (� cm)−1 and the SHC in units of
(h̄/e)(� cm)−1.

AHC SHC

σ σ x σ y σ z

symmetry-imposed tensor shape

⎛
⎝ 0 0 −σzx

0 0 0
σzx 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 σ x
yz

0 σ x
zy 0

⎞
⎠

⎛
⎝ 0 0 σ y

xz

0 0 0
σ y

zx 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
σ z

yx 0 0
0 0 0

⎞
⎠

Mn3Ga

⎛
⎝ 0 0 −81

0 0 0
81 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −14
0 12 0

⎞
⎠

⎛
⎝ 0 0 15

0 0 0
−7 0 0

⎞
⎠

⎛
⎝ 0 −597 0

626 0 0
0 0 0

⎞
⎠

Mn3Ge

⎛
⎝ 0 0 330

0 0 0
−330 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −21
0 18 0

⎞
⎠

⎛
⎝ 0 0 21

0 0 0
−18 0 0

⎞
⎠

⎛
⎝ 0 112 0

−115 0 0
0 0 0

⎞
⎠

Mn3Sn

⎛
⎝ 0 0 133

0 0 0
−133 0 0

⎞
⎠

⎛
⎝0 0 0

0 0 −36
0 96 0

⎞
⎠

⎛
⎝ 0 0 36

0 0 0
−96 0 0

⎞
⎠

⎛
⎝ 0 64 0

−68 0 0
0 0 0

⎞
⎠

determines the tensor shape by solving the linear equations.
We note that a similar study [35] also recently considered
how the shape of the tensor response varied according to the
magnetic Laue group. The shape of the AHC and SHC tensors
is shown in Table II. These are very helpful in checking the
validity and numerical convergence of our calculations by
comparing the symmetry of the calculated matrices and the
ideal symmetry-imposed matrices. Furthermore, the tensor
shape surely relies on the coordinate system that is specified in
the next section. The AHC and SHC tensors can be expressed in
different coordinate systems, which are physically equivalent,
and can be transformed into each other according to specific
rotation matrices [36].

III. CRYSTALLOGRAPHIC AND
MAGNETIC STRUCTURES

The compounds considered here can be classified into two
groups according to their crystallographic structure. Mn3Ga,
Mn3Ge, and Mn3Sn display a hexagonal lattice with the space
group P 63/mmc (No. 194). The primitive unit cell includes
two Mn3X planes that are stacked along the c axis according
to “–AB–AB–”. Each structure contains a plane of Mn atoms
that constitute a Kagome-type lattice with Ga, Ge, or Sn lying
at the center of a hexagon formed from the Mn atoms. In the
Kagome plane due to magnetogeometrical frustration, the Mn
magnetic moments exhibit a noncollinear AFM order, where
the neighboring moments are aligned at a 120◦ angle [37–39].
The energetically favored AFM configuration was revealed, as
illustrated in Fig. 2(a), in earlier DFT calculations [40]. The
magnetic ordering temperatures are above 365 K for all these
three compounds, as shown in Table I. Additionally, Mn3Ga
and Mn3Ge can also crystallize into a tetragonal phase with a
ferrimagnetic structure [37,38,41], which is not considered in
this work.

Mn3Rh, Mn3Ir, and Mn3Pt crystallize in a face-centered
cubic (FCC) lattice (space group Pm3̄m, No. 221) with Ir
(Rh, Pt) and Mn located at the corner and face-center sites,

respectively, as shown in Fig. 2(b). Within the (111) plane,
the Mn sublattice also forms a Kagome lattice. In contrast
to that of Mn3Ge, the Kagome planes stack in an “–ABC–
ABC–” sequence. The noncollinear AFM structure has also
been observed by neutron diffraction measurements [42–44].
Distinct from Mn3Ge, here the magnetic moments all point
towards or away from the center of the Mn triangles. The
AFM order also persists to well above room temperature
(see Table I).

IV. RESULTS AND DISCUSSIONS

A. Anomalous Hall effect in Mn3Ga, Mn3Ge, and Mn3Sn

The AHC σαβ can be understood by a consideration of the
symmetry of the magnetic structure. As indicated in Fig. 1(a)
there is a mirror plane M̂y that is parallel to the zx plane. By
combining a mirror reflection about this plane and a translation
operation along the c direction τ̂ = (0,0,c/2), the system
is imaged back onto itself with the same crystallographic
and magnetic structures. Therefore, the magnetic structure in
Mn3Ga, Mn3Ge, and Mn3Sn is symmetric with respect to the
{M̂y |τ̂ } symmetry operator. The mirror operation M̂y changes
the signs of �yz(�k) and �xy(�k), but preserves �zx(�k), since
�αβ(�k) is a pseudovector, just like the spin. Accordingly, σyz

and σxy that are parallel to the mirror plane are transformed
to −σyz and −σxy , with respect to the M̂y reflection (the
translation operation does not affect the Berry curvature).
Thus, from symmetry considerations, σyz and σxy must be
zero, and only σzx can be nonzero. We therefore propose that
the preferred experimental setup for maximizing AHC is to
confine the electric field within the zx plane, for example, by
setting the electric current along z and detecting the transverse
voltage along x.

Our calculations are fully consistent with the above symme-
try analysis, as shown in Table II, where only σzx (σxz = −σzx)
is nonzero. The AHC of Mn3Ge is as large as 330 (� cm)−1.
Although Mn3Sn has a stronger SOC than Mn3Ge, its AHC
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FIG. 2. Crystal lattice and magnetic structure for Mn3X (X = Ga,
Ge, Sn, Rh, Ir, and Pt). (a) Mn3X (X = Ga, Ge, and Sn) display
a hexagon lattice with Mn forming a Kagome sublattice stacking
along the c axis. The gray plane indicates the My mirror plane of
the symmetry operation {My |τ = c/2}. The crystallographic a and
c axes align with the x and z directions, respectively, with the b

axis lying inside the xy plane. (b) Top view of the Mn Kagome-type
lattice showing triangular and hexagonal arrangements of the Mn
moments. Arrows represent the Mn magnetic moments, presenting
a noncollinear AFM configuration. The mirror plane position is
indicated by a black line. (c) The crystal structure of Mn3X (X = Rh,
Ir, and Pt) has an FCC lattice. Three mirror planes are shown in gray.
Here a mirror reflection combined with a time-reversal symmetry
operation preserves the magnetic lattice. (d) The Mn sublattice also
forms a Kagome-type configuration in Mn3X (X = Rh, Ir, and Pt),
thereby forming a noncollinear AFM phase, but which is slightly
different from the Mn3Ge family. The projections of three mirror
planes are indicated by black lines. To match the hexagonal lattice
conveniently, the Kagome plane is set as the xy plane and the plane
normal as the z axis. Here x is along the crystallographic [11̄0], y

along [112̄], and z along [111].

is less than half that of Mn3Ge. Mn3Ga exhibits the smallest
AHC and, moreover, the AHC has the opposite sign to those of
the Ge and Sn compounds. This is fully consistent with recent
experiments on the Ge and Sn compounds [15,16], where the
in-plane AHC (σxy) is negligible compared to the out-of-plane
AHC (σzx and σyz), and Mn3Sn displays a smaller AHC in
magnitude than Mn3Ge. We note that σzx and σyz may be both
nonzero if a different coordinate axis is chosen or the chiral
moments are rotated by an external magnetic field.

Since the intrinsic AHE originates from the electronic
band structure, we analyzed the band structure in detail to
understand the differences among these three compounds.
Their calculated band structures are shown in Fig. 3. Since
the valence electrons for Ga and Ge (Sn) are 4s24p1 and
4s24p2 (5s25p2), respectively, the band structure of Mn3Ga
looks very similar to that of Mn3Ge (Mn3Sn). The Fermi level
is shifted up by 0.34 eV (equivalent to adding one electron).
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FIG. 3. Electronic band structure for (a) Mn3Ga, (d) Mn3Ge, and
(g) Mn3Sn. Energy dependent AHC σzx for (b) Mn3Ga, (e) Mn3Ge,
and (h) Mn3Sn. Energy dependent SHC tensor elements of σ z

xy and
σ z

yx for (c) Mn3Ga, (f) Mn3Ge, and (i) Mn3Sn. Mn3Ga would have
the same number of valence electrons as does Mn3Ge and Mn3Sn if
the Fermi level is shifted up to the blue dashed line in (a)–(c).

Correspondingly, the shapes of the energy-dependent AHC
curves for Mn3Ga and Mn3Ge (Mn3Sn) are also very similar.
The value of σzx in Mn3Ga changes sign from negative to
positive after tuning up the Fermi level.

Atomic Ge and Sn have similar valence electron configu-
rations while Sn has a larger atomic radius and stronger SOC
compared to Ge. Although the consequent changes in the band
structures are subtle (see Fig. 3), the effect on the resultant
AHC can be significant. To better understand the AHE in
Mn3Ge and Mn3Sn, we considered the distributions of the
Berry curvature in the reciprocal space. We have projected the
Berry curvature components of �zx onto the k3-k1 (kz-kx) plane
by integrating them along k2, where k1,2,3 are the reciprocal
lattice vectors, and k3 and k1 are aligned with the kz and kx

axes, respectively. The projected Berry curvatures of Mn3Ge
and Mn3Sn with the Fermi level lying at the charge neutral
point are shown in Figs. 4(a) and 4(b), respectively. One can
easily identify the origin of the significant differences of the
Berry curvature between Mn3Ge and Mn3Sn. The large AHC
mainly arises from the positive hot spots located around (0.127,
0.428) (the coordinates are in units of the reciprocal lattice
vectors k1 and k2) and its three partners in the k3-k1 plane,
while these four hot spots are not seen in Mn3Sn. Taking the
hotspot at (0.127, 0.428) as an example, we have checked the
band structure and corresponding Berry curvature evolution
with k2 varying from 0 to 1. From the band structure of
Mn3Ge in Fig. 4(c) we can see that the Fermi level crosses two
small gaps around k2 = 0 and 0.5. According to Eq. (1), the
entanglement between occupied and unoccupied states must be
very strong around these two points and contributes to a large
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FIG. 4. (a),(b) Berry curvature projected onto the k3-k1 plane for
Mn3Ge and Mn3Sn, respectively. The Berry curvature in Mn3Ge is
dominated by the four areas that are highlighted in yellow in (a).
(c) Energy dispersion of Mn3Ge along k2 with (k3, k1) fixed at the
Berry curvature dominated point (0.127, 0.428), identified as the
black dashed circle marked in (a). The band gaps are very small near
k2 = 0.5 and 1, which are noted by the small black dashed circles.
(d) Band structure of Mn3Sn for the same reciprocal space cut as
in (c). The band gaps are much larger in Mn3Sn, as denoted by the
larger black dashed circles. (e) The evolution of the Berry curvature
�y of Mn3Ge corresponding to the band structure given in (c). The
small band gaps around k2 = 0.5 and 1 make larger contributions to
the Berry curvature. (f) The magnitude of Berry curvature along the
same path in Mn3Sn is negligibly small compared to that in Mn3Ge.

Berry curvature, as indicated by the two peaks in Fig. 4(e). This
is fully consistent with previous calculations on Mn3Ge [16].
Mn3Sn has a similar band structure along the same k path,
as can be seen by comparing Figs. 4(c) and 4(d), whereas the
band gaps around k2 = 0 and 0.5 are much larger compared to
that in Mn3Ge. Consequently, the two Berry curvature peaks
disappear in Mn3Sn, as shown in Fig. 4(f). Thus, a tiny change
in band structure can result in significant changes in the Berry
curvature and AHC in this class of compounds.

B. Spin Hall effect in Mn3Ga, Mn3Ge, and Mn3Sn

By adding the spin degree of freedom, the SHC becomes
a third-order tensor. Similar to the AHC, some SHC tensor
elements will be exactly zero or will be identical based on the
corresponding lattice and magnetic symmetries. The magnetic
space group for Mn3X (X = Ga, Ge, and Sn) is identified to be
R3m′, and the corresponding Laue group is m′m′m′ [34]. The

FIG. 5. (a) Angle-dependent spin current J s arising from a charge
current J along the x axis (the crystallographic a lattice vector)
in Mn3Ge. J s rotates inside the yz plane. The largest spin Hall
conductivity is when J s is along the y axis (θ = 0◦). The blue arrows
represent the spin polarization directions of J s. (b) Schematic of J s

and J with respect to the lattice orientation.

calculated shape of the intrinsic SHC tensor and corresponding
numerical results are presented in Table II. Furthermore, the
SHC of Mn3X (X = Ga, Ge and Sn) is strongly anisotropic
with dominant components of σ z

xy and σ z
yx . These results will

provides helpful information for the experimental detection of
the SHE. To illustrate the anisotropy of the SHC, we show
the angle-dependent SHC for Mn3Ge in Fig. 5. When the
charge current J is fixed along the x axis (a direction) and by
considering the spin current J s perpendicular to J and rotating
it, the corresponding magnitude of SHC is maximal for J s||y
while being zero for J s||z. Therefore, to observe large SHC,
one should set the charge current and spin current inside the
Kagome (xy) plane, for example with the electron current set
along x and by measuring the transverse spin current along
y with its spin polarization along z. Therefore, we stress that
for optimizing the efficiency of devices that rely on SHE and
AHE, the direction of the charge current and the resulting spin
current will depend on the respective compound.

As shown in Table II, the largest SHCs σ z
xy and σ z

yx are of the
order of 120 (h̄/e)(� cm)−1 in magnitude for Mn3Ge. With the
relatively small electrical conductivity [about 3300 (� cm)−1],
we would have a spin Hall angle up to 3%. Also the σ z

yx ele-
ments in Mn3Ga is around 600 (h̄/e)(� cm)−1. Additionally, it
is not surprising that σ z

xy and σ z
yx are not equal in magnitude, for

the x and y directions are not equivalent in a Kagome structure.
Since the SHC is strongly related to the location of the

Fermi level, the SHC varies quickly as the Fermi energy is
shifted, especially for the metallic band structures shown in
Fig. 3. The energy-dependent SHC of the most prominent
tensor elements σ z

xy and σ z
yx for the three compounds are shown

in Figs. 3(e), 3(f), and 3(i). Owing to the similar crystal lattice
constant and the same magnetic order, the shapes of the SHC
curves are very similar, if we ignore the fact that Ga has one
electron less than either Ge or Sn. For Mn3Ga, the SHC exhibits
a minimum at the Fermi level, the charge neutral point, and
increases quickly if the Fermi level moves up or down. Hence
an even larger SHC is expected for Mn3Ga with small electron
or hole doping. One can see that the SHC remains relatively
stable with respect to varying the Fermi level in the energy
window of ±0.1 eV for Mn3Ge and Mn3Sn. This indicates
that the SHC in the Ge and Sn compounds is robust.
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FIG. 6. (a),(b) Spin Berry curvature projected onto the k3-k1

plane for Mn3Ge and Mn3Sn, respectively. The two compounds have
similar distributions of the projected spin Berry curvature. (c),(d)
Band structures of Mn3Ge and Mn3Sn, respectively, along k2. The
coordinates of k3 and k1 are fixed at (0.31, 0.15) and (0.29, 0.24)
for Mn3Ge and Mn3Sn, respectively, as noted by the black dashed
circles in (a) and (b). Small band gaps exist around the k2 = 1 point
for both Mn3Ge and Mn3Sn, as marked by the black dashed circles.
(e),(f) Corresponding spin Berry curvature evolutions along k2 for
Mn3Ge and Mn3Sn, respectively. The large spin Berry curvature
mainly originates from the small band gaps in the band structures.

Since the spin Berry curvature is distinct from the Berry
curvature, the SHC and AHC can have dominant contributions
from different electronic bands. Although Mn3Ge and Mn3Sn
display very different AHCs in magnitude, their SHCs are very
close. Therefore, we expect a similar spin Berry curvature
distribution in k space for both compounds. Taking the
components of �z

xy as an example, we compare the spin Berry
curvature distributions for Mn3Ge and Mn3Sn with the Fermi
energy lying at the charge neutral point. Similar to the above
analysis for the AHE, we also project the spin Berry curvature
onto the k3-k1 plane by integrating �z

xy along k2. As shown
in Fig. 6, Mn3Ge and Mn3Sn display similar features in their
respective spin Berry curvature distributions. The shapes of the
dominant areas are very similar in both compounds, with just
a little shift within the k3-k1 plane. The dominant contribution
forms thick arcs with a transition point between positive and
negative amplitudes, where the integrated spin Berry curvature

transfers from positive to negative. Since the size of the positive
dominant area is much larger than that of the negative part, the
integral of the spin Berry curvature in the whole BZ gives a
positive SHC σ z

xy , as is listed in Table II.
The above positive-negative spin Berry curvature distribu-

tion is reminiscent of the similar feature of the SHE around the
Weyl point, where positive and negative spin Berry curvature
appear with the Weyl point as the transition point [26]. In fact
Weyl points also exist in Mn3Ge and Mn3Sn, however, the
spin Berry curvature transition point in Fig. 6 does not exactly
overlap with the Weyl point. A careful inspection of the band
dispersions along k2 through these hot spots reveals tiny band
gaps that contribute to the peaks of the spin Berry curvature,
as shown in Figs. 6(e) and 6(f). Therefore, the intrinsic SHC
mainly arises from the small band gaps lying very close to the
Fermi level.

C. Anomalous Hall effect and spin Hall effect
in Mn3Rh, Mn3Ir, and Mn3Pt

In the cubic lattice of Mn3Rh, Mn3Ir, and Mn3Pt, there are
three mirror planes that intersect the crystallographic [111]
axis and which are related to each other by a threefold rotation.
The mirror reflection M̂ preserves the lattice symmetry but
reverses all spins in the Kagome plane. Since time-reversal
symmetry T̂ can also reverse spins, the combined symmetry of
time-reversal and mirror symmetry, T̂ M̂ is the symmetry of the
system. T̂ M̂ forces the out-of-mirror-plane AHC components
to be zero, since the out-of-plane Berry curvature is odd with
respect to T̂ but even with respect to M̂ . Given the existence of
the three mirror planes, the only nonzero AHC component is
along the co-axis of these three planes, i.e. the [111] axis. For
the convenience of the symmetry analysis, we used coordinates
with z along the [111] direction and x, y within the Kagome
plane (see Fig. 1).

Our numerical calculations are again consistent with the
symmetry analysis. The AHC for Mn3Ir can reach σxy =
312(� cm)−1 with the electric field lying in the (111) plane,
as presented in Table III, which agrees with previous cal-
culations [13]. Compared to Mn3Ir, Mn3Rh exhibits similar
AHC in magnitude while Mn3Pt shows a much smaller
AHC. Mn3Rh and Mn3Ir show very similar trends in the
Fermi-energy-dependent AHC, as shown in Figs. 7(b) and 7(e).
The peak values appear around 50 meV above the charge
neutral point for both Mn3Rh and Mn3Ir. Therefore, in order
to get strong AHE, one simply needs weak electron doping,
and the AHC in the (111) plane can then reach 450 and 500
(� cm)−1 for Mn3Rh and Mn3Ir, respectively. Compared to Rh
and Ir, Pt has one more valence electron. Hence the Mn3Pt can
be viewed as a strongly doped version of Mn3Ir, which shifts
the Fermi level a little further beyond the peak values, leading
to a small AHC of 98 (� cm)−1, as shown in Fig. 7(h).

The magnetic space group for Rh, Ir, and Pt compounds
is Am′m′m2, from which we can obtain the symmetry of
the SHC tensor. As shown in Table III, there are only four
independent nonzero elements. Our numerical calculations fit
the symmetry-imposed tensor shape very well, as shown in
Table III. The largest SHC tensor elements are σx

yz (σy
xz = σx

yz)
and σ

y
xy (σy

xy = σ
y
yx = −σx

xx = σx
yy) for Mn3Rh and Mn3Ir.

Therefore, the optimal experimental arrangement for large
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TABLE III. The intrinsic AHC and SHC tensors obtained from symmetry analysis and numerical calculations for Mn3X (X= Rh, Ir, and Pt).
The calculated SHC tensor elements are set to zero when they are smaller than 5 (h̄/e)(� cm)−1. The coordinate axes correspond to z oriented
in the [111] direction, x along [110], and y along [112]. The AHC is in units of (� cm)−1 and the SHC is in units of (h̄/e)(� cm)−1.

AHC SHC
σ σx σ y σ z

symmetry-imposed tensor shape

⎛
⎝ 0 σxy 0

−σxy 0 0
0 0 0

⎞
⎠

⎛
⎝σ x

xx 0 0
0 −σ x

xx σ x
yz

0 σ x
zy 0

⎞
⎠

⎛
⎝ 0 −σ x

xx −σ x
yz

−σ x
xx 0 0

−σ x
zy 0 0

⎞
⎠

⎛
⎝ 0 σ z

xy 0
−σ z

xy 0 0
0 0 0

⎞
⎠

Mn3Rh

⎛
⎝ 0 −284 0

284 0 0
0 0 0

⎞
⎠

⎛
⎝−276 0 0

0 276 220
0 70 0

⎞
⎠

⎛
⎝ 0 276 −220

276 0 0
−70 0 0

⎞
⎠

⎛
⎝ 0 145 0

−145 0 0
0 0 0

⎞
⎠

Mn3Ir

⎛
⎝ 0 −312 0

312 0 0
0 0 0

⎞
⎠

⎛
⎝−210 0 0

0 210 299
0 −7 0

⎞
⎠

⎛
⎝ 0 210 −299

210 0 0
7 0 0

⎞
⎠

⎛
⎝ 0 163 0

−163 0 0
0 0 0

⎞
⎠

Mn3Pt

⎛
⎝ 0 98 0

−98 0 0
0 0 0

⎞
⎠

⎛
⎝−66 0 0

0 66 108
0 7 0

⎞
⎠

⎛
⎝ 0 66 −108

66 0 0
−7 0 0

⎞
⎠

⎛
⎝ 0 32 0

−32 0 0
0 0 0

⎞
⎠

SHC is to align J s within the xy plane [the (111) Kagome
plane]. It is interesting that J, J s, and the spin polarization of
J s are not necessarily perpendicular to each other and even can
be parallel, as indicated by the nonzero σx

xx . The large value of
σx

xx shows a longitudinal spin current J s induced by a charge
current J along the same direction. Such a longitudinal spin
current is common in FM metals where conduction electrons
are naturally spin polarized. However, it is interesting that these
three AFM compounds can generate a similar spin current,
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FIG. 7. Electronic band structure for (a) Mn3Rh, (d) Mn3Ir, and
(g) Mn3Pt. Energy dependent AHC element of σ z for (b) Mn3Rh,
(e) Mn3Ir, and (h) Mn3Pt. Energy dependent SHC tensor elements
σ x

xx, σ
x
yz, and σ z

xy for (c) Mn3Rh, (f) Mn3Ir, and (i) Mn3Pt. Mn3Pt
would have the same number of valence electrons as Mn3Rh and
Mn3Ir if the Fermi level shifts down to the blue dashed line in (g)–(i).

which may promise novel spintronic applications. In previous
experiments on Mn3Ir [25], the spin current was measured
in two cases where the charge current was fixed along the
[1̄10] crystallographic direction (i.e., x axis of the current
work), J s along the [111] (i.e., z axis) direction and the
[001] direction. The former case was found to exhibit a much
smaller SHE than the latter one. Therefore, we calculate the
angle-dependent SHC by fixing J ||x and rotating J s in the yz

plane for Mn3Ir, as shown in Fig. 8. One clearly sees that the
SHC is only 7 (h̄/e)(� cm)−1 for the former case (θ = 0◦) and
215 (h̄/e)(� cm)−1 for the latter case (θ = 144.7◦).

Similar to the AHC, the peak values of σx
xx and σx

yz also
appear around 50 meV above the charge neutral point for
Mn3Rh and Mn3Ir, while their σ z

xy is quite small. In contrast,
the Fermi-energy-dependent AHC of Mn3Pt shows a similar
shape to that of the Rh and Ir compounds, but the corresponding
Fermi energy should be upshifted by one additional electron,
as shown in Fig. 7(i). Thus, it is not surprising that σ z

xy shows
a large magnitude at the charge neutral point for Mn3Pt.

FIG. 8. (a) Angle-dependent spin Hall conductivity for Mn3Ir.
The charge current J flows along x (i.e., [11̄0]) and the resulting
spin current J s is shown in the yz plane. The SHC is largest when
J s||[001] and smallest when J s||[111]. (b) Schematic of J and J s

within the crystal structure.
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TABLE IV. Summary of the optimal experimental arrangements
to realize large AHE and SHE. The xy plane refers to the Kagome
AFM plane and the z direction is perpendicular to this plane. For
AHE, the preferred plane to set the current and detect the Hall voltage
is specified. For SHE, the charge current J and spin current J s

directions, which are supposed to be orthogonal, are indicated.

AHE SHE

Mn3Ga xz plane xy plane
Mn3Ge
Mn3Sn

Mn3Rh xy plane J s inside the xy plane
Mn3Ir
Mn3Pt

V. SUMMARY

In summary, we have studied the intrinsic AHE and SHE
in the noncollinear AFM compounds Mn3X (X = Ge, Sn,
Ga, Rh, Ir, and Pt) by ab initio calculations. Large AHC
and large SHC are found for these materials, which are also

highly anisotropic and in agreement with recent experimental
measurements. Such an anisotropy is closely related to the
symmetry of the AFM Kagome lattice, which can be helpful in
rationalizing the numerical results. Based on our calculations,
we have proposed the optimal experimental setups to maximize
the AHE and SHE for different systems, as shown in Table IV.
Although the SOC magnitude increases from Rh, to Ir, and
to Pt, the magnitude of the corresponding AHC and SHC do
not follow the same trend. This is also true for the Ga, Ge,
and Sn compounds. This indicates that the electron filling and
the detailed band structures are essential in determining the
magnitude of the AHE and SHE. We point out that the largest
SHC attains a value of around 600 (h̄/e)(� cm)−1 in Mn3Ga.
Our work provides insights in the interpretation and realization
of a strong AHE and SHE in chiral AFM materials.
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5.4 Paper III: Prediction of triple point fermions in simple

half-Heusler topological insulators

This work was motivated by the discovery of triple point topological metals in the

hexagonal materials by Zhu [84] and Bradlyn [77]. When we analyzed the ARPES

measurements of the cubic half-Heusler compound GdPtBi, we noticed several surface

states near its Fermi level featured like Fermi arcs. It was reported that the AFM ordered

GdPtBi has a tiny gap and is a topological insulator [94, 95] under the Neel temperature

(around 9K)[96, 97]. However, at room temperature GdPtBi is paramagnetic and metal-

lic. Those special surface states are not ordinary but indicate the existence of a metallic

topological phase. By analyzing the crystal symmetry, we proposed that GdPtBi could

host the triple points Fermions (TPFs). This was soon verified by our ab − initio and

Kane−Model calculations. Apart from this material, we have searched more than thirty

kinds of Half-Heusler compounds and found six of them to be the candidates holding

the TPFs as shown in TABLE I in Paper III.

Comparing with the hexagonal WC-type material, which has only one C3v rotation axis

to hold the TPFs, the half-Heusler compound has four C3v rotation axes. Moreover,

the natural cleavable surface in the hexagonal structure material is usually a facet that

is perpendicular to the C3v axis. This results in the projection of all the TPFs to the

Γ point of the 2-dimensional BZ and makes it unable to observe Fermi arcs. Shortly

after our work, Lv [80] reported that they observed the TPFs in MoP, but unable to

find topological surface states both in the (001) and (100) surfaces. They speculated

that the surface states in (100) surface are disrupted by the rather disordered surface

atoms. This problem can be overcome here because three of the four C3v axes in the

half-Heusler compound will project linearly on the cleavable surface and separate the

TPFs. Thus the half-Heusler compound can be a better platform to study the surface

states of TPFs.
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We predict the existence of triple point fermions in the band structure of several half-Heusler topological
insulators by ab initio calculations and the Kane model. We find that many half-Heusler compounds exhibit
multiple triple points along four independent C3 axes, through which the doubly degenerate conduction
bands and the nondegenerate valence band cross each other linearly nearby the Fermi energy. When
projected from the bulk to the (111) surface, most of these triple points are located far away from the
surface Γ̄ point, as distinct from previously reported triple point fermion candidates. These isolated triple
points give rise to Fermi arcs on the surface, that can be readily detected by photoemission spectroscopy or
scanning tunneling spectroscopy.

DOI: 10.1103/PhysRevLett.119.136401

The discovery of topological insulators (TIs) [1,2] has
generated much interest in the search for other novel
topological states in condensed matter physics and materials
science. As quasiparticle analogs of elementary particles of
the standardmodel, Dirac fermions [3–6] andWeyl fermions
[7–14] have recently been found in several materials (see
reviews Refs. [15,16]).More recently, several exotic types of
fermions, which do not have elementary particle counter-
parts, have been theoretically predicted as quasiparticle
excitations near certain band crossing points that are pro-
tected by specific space-group symmetries [17,18]. In
particular, triple point (TP) fermions have been predicted
inmanymaterialswith triply degenerate band crossingpoints
[19–25]. These predictions have stimulated intensive exper-
imental studies to search for their signatures, for example,
using angle-resolved photoemission spectroscopy (ARPES)
[26] and transport properties [27].
TPs can be viewed as an intermediate phase between

fourfold degenerate Dirac points and twofold degenerate
Weyl points. They also give rise to Fermi arcs when
projected onto certain specific crystal facets. However,
the detection of TP-induced Fermi arcs remains challenging
from the material point of view. A pair of TPs are protected
by the C3v symmetry group (generated by a C3 rotation and
a σv mirror operation) in certain compounds [19–24], for
example, tensile-strained mercury telluride (HgTe) [19],
molybdenum phosphide (MoP) [20], and antiferromagnetic
(AFM) half-Heusler compounds (e.g., GdPtBi) [24]. Even
presuming that samples can be grown, the natural cleavable
surface is usually the facet that is perpendicular to the C3v
axis. Consequently, two TPs at the unique C3v axis are
projected to the same Γ̄ point of the surface Brillouin zone
(BZ), resulting in the disappearance of Fermi arcs, as
shown in a recent ARPES measurement on MoP [26].
Therefore, TP materials with easily measurable Fermi arcs
are still required for the final experimental verification of
TP fermions.

In this work, we predict the existence of multiple TPs in
several half-Heusler compounds in which the detection of
Fermi arcs by ARPES and other surface sensitive tech-
niques such as scanning tunneling spectroscopy should be
straightforward. The face-centered-cubic lattice of half-
Heusler compounds has four equivalent C3v axes (e.g., the
[111] axis) and, thus, can host four (or multiples of four)
pairs of TPs. When projected onto the (111) surface, an
easily cleavable plane [28,29], TPs at the [111] axes merge
into the surface Γ̄ point while the other three (or a multiple
of three) pairs of TPs appear away from Γ̄, leading to Fermi
arcs that link these individual TPs on the surface.
Combining ab initio band structure calculations and the
k · p Kane model, we predict several TP candidate half-
Heusler materials, including, for example, YPtBi, LuPtBi,
and GdPtBi (the paramagnetic phase). The TPs and
resultant extended Fermi arcs are revealed in our calcu-
lations, and await experimental proof.
Ternary half-Heusler compounds have been extensively

studied in the search for TIs [28–34] and Weyl semimetals
[35–38]. The band structure of Heusler TIs has been
identified as being topologically identical to HgTe [39].
For example, the conduction and valence bands touch each
other at the Γ point, where the wave functions are
comprised mainly of p orbitals and are, therefore, named
Γ8 bands, as shown in Fig. 1(a). The fourfold degeneracy at
the Γ point is protected by time-reversal symmetry (TRS)
and Td group symmetry. The s-type Γ6 bands located below
Γ8, thus give rise to an inverted band structure. Along each
C3v axis (e.g., the [111] direction), Γ8 bands split into one
doubly degenerate band (labeled as Λ6 according to the C3v
symmetry) and two nondegenerate bands (labeled as Λ4;5)
due to the absence of inversion symmetry in the Td group.
The Λ6 bands cross the Λ4;5 bands since Λ6 and Λ4;5 bands
disperse oppositely for large k [see Fig. 1(a)]. As already
pointed out in Ref. [19], TPs exist at the crossing point
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between Λ6 and Λ4 (or Λ5) bands. Unfortunately, the TPs
that are located extremely close to the Γ point (∼0.8% of
the Γ − L distance) [19] cannot be resolved by currently
available techniques. In contrast, TPs in some Heusler
materials can be pushed to very large momenta, because
their Λ6 bands exhibit a peculiar double-valley feature that
is absent in HgTe [e.g., see Fig. 1(b)]. As illustrated in
Fig. 1(b), a pair of TPs may exist near the Γ point along the
C3 axis (Γ − L), where two TPs are related by TRS and
protected by C3 rotational symmetry. Given four C3 axes,
four pairs of TPs form inside the first bulk BZ. When
projected onto the (111) surface, three pairs are isolated
from each other and are far from the surface Γ̄ point, giving
rise to Fermi arcs connecting these six TPs [Fig. 1(h)].
We first construct a phase diagram to reveal the emer-

gence and properties of TPs in half-Heusler compounds
based on the Kane model [40], in order to guide the

material search. The crystal symmetry of Half-Heusler
materials is described by the space group F4̄3m and the
point group Td [41], respectively, and the corresponding
low energy physics can be described by the six-band Kane
model with two Γ6 bands and four Γ8 bands. Along any of
the four C3 axes, two Γ6 bands are still degenerate, labeled
as Λ−

6 bands, according to the irreducible representations of
C3v spin double group, while four Γ8 bands are split into
one doubly degenerate band, denoted as Λþ

6 bands, and two
nondegenerate bands, denoted as Λ4 and Λ5 bands,
respectively. For the momentum close to Γ along the C3

axis, the Λþ
6 bands disperse quadratically while the Λ4;5

bands disperse linearly with opposite velocities for two
branches due to the linear C term in the Kane Hamiltonian.
Thus, the Λþ

6 bands must locate between two Λ4;5 bands for
small momenta. For larger momenta, the Λþ

6 bands bend up
and thus will be always above two Λ4;5 bands that bend
down. Thus, we conclude that at least one pair of TPs due to
the crossing between the Λ6 bands and the upper branch of
Λ4;5 bands must exist. According to energy dispersion
along the C3 axis for the Kane model (see details in
Ref. [42]), we find that 1, 2, or 3 pairs of TPs can exist in
one C3 axis, depending on model parameters. The phase
diagram as a function of the parameter C, which determines
the energy splitting of two Λ4;5 bands, and the gap Δ
between Γ6 and Γ8 states, which influence the effective
mass of Λþ

6 bands, is shown in Fig. 1(g). For a small Δ,
strong hybridization beweenΛþ

6 and Λ−
6 bands can lead to a

positive effective mass for the Λþ
6 band and thus results in 1

pair of TPs between the Λþ
6 bands and the upper branch of

Λ4;5 bands [Fig. 1(a)] in phase I in Fig. 1(g). As Δ
increases, the effective mass for the Λþ

6 bands become
negative, leading to a double-hump structure [Fig. 1(b)].
With Δ increasing to a critical value, the double-hump Λþ

6

bands can touch the lower branch of Λ4;5 bands, giving rise
to one more pair of TPs (TP #2 and 20) at the critical line in
Fig. 1(g). As Δ further increases, the Λþ

6 bands can cross
the lower branch of Λ4;5 twice, resulting in 3 pairs of TPs in
total for the phase I in Fig. 1(g). TPs are connected by nodal
lines and for different phases, we find the connections are
different. For the phase I, four nodal lines, three in three
mirror planes and one along the C3 axis, connects the TP #1
to its time-reversal partner TP 10, passing through the Γ
point, as shown in Fig. 1(e). The Berry phase around each
of three nodal lines in the mirror plane is accumulated to π
and characterizes its topological nature (Type-B TPs
introduced in Ref. [20]). Three pairs of TPs exist the phase
II, with TPs #1 and #2 (10 and 20) connected by nodal lines
and TPs #3 and 30 connected by nodal lines through Γ, as
shown in Fig. 1(f).
In addition, we note that TPs can also exist in the normal

zinc-blende-type band structures without a band inversion,
since Γ6 bands commonly have different mass from Γ4;5. It
provides an alternative way to search for TPs in traditional

FIG. 1. Evolution of band structures with increasing numbers of
triple points (TPs). (a) HgTe-type band structure along the line
L − Γ − L. The Γ8 bands (solids curves) lie above Γ6 (dotted
curves). The Γ8 bands split into doubly degenerate Λ6 (thick solid
blue curve) and nondegenerate Λ4 and Λ5 bands (thin solid black
curves) along the C3 axis (Γ − L). Here Λ6 crosses Λ4;5, forming
TPs (filled red circles) very close to the Γ point, where No. 1 and
No. 10 represent a TP and its time-reversal partner, respectively.
(b) Heusler-type band structure. The Λ6 bands exhibit a double
valley shape, pushing a pair of TPs out from the Γ point. (c),
(d) Heusler-type band structure with two and three pairs of TPs
along one C3v axis, respectively. (e) Corresponding to the band
structures in (a) and (b), three nodal lines (blue curves) inside the
C3v mirror planes connect a pair of TPs (1 and 10) along theC3 axis
by passing the Γ point. (f) Corresponding to the band structure in
(d), the nodal lines connects these three pairs of TPs. (g) Phase
diagram of TPs with respect to the band inversion strength Δ=ϵ0
and the linear splitting term C=C0 of Λ4;5. Within the phase
diagram, (a)–(d) correspond to the band structures of (a)–(d),
respectively. (h) Distribution of TPs in the bulk Brillouin zone and
their projection onto the (111) surface. The surface Fermi arcs that
connect different TPs are illustrated by red dashed lines.
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semiconductors, where the Luttinger model [46] is
applicable.
To search for ideal material candidates, we have per-

formed ab initio band structure calculations for a large
number of half-Heusler compounds using density-func-
tional theory (DFT) with the generalized gradient approxi-
mation. We have identified many candidate materials
exhibiting TPs with a large momentum separation in their
band structure, as listed in Table I. For example, TPs #1 and
#2 of RPtBi (R ¼ Y, Lu), LuAuPb, LuPdBi, and TP #1 of
GdPtBi (paramagnetic phase) lie at large momenta greater
than %10 of the Γ − L length. The TP #3 is located too
close to the Γ point for the observation. We also list the
band inversion strength between the Γ6 and Γ8 bands in
Table I to demonstrate the evolution of the band structure.
Roughly consistent with the above phase diagram, TPs shift
to larger momenta as the band inversion is enhanced. For
comparison, we also show the band structure of LaPtBi in
Fig. 2, where TPs appear very close to the Γ point. For
convenience, we term materials with TPs at large momenta
as long-TP materials, and those with TPs at tiny momenta
as short-TP materials. When the Fermi energy crosses a TP
in GdPtBi and YPtBi, the TP behaves as the touching point
between hole and electron pockets, thereby showing the
same feature as a type-II Weyl semimetal [47,48]. Many
half-Heusler compounds are known to exhibit much larger
band inversions than HgTe. Thus, it is not surprising to find

long-TP materials here. It has been reported that optimized
exchange-correlation functionals in DFT tend to reduce the
band inversion of Heusler compounds [49]. We note that
this functional correction remains of the general order of
the band inversion strength between different Heuslser
materials, where long-TP materials can still be found in the
large band inversion region.
The existence of Fermi arcs on the surface is a hallmark

of TPs for their experimental detection. When projected to
the (111) surface, six TPs (TPs #1 and 10) locate at the
Γ̄ − M̄ line. Because a typical TP is equivalent to two
degenerate Weyl points (WPs) with opposite charities,
typically two Fermi arcs are expected to emerge from a
TP. A natural choice is that these two Fermi arcs end at two
neighboring TPs separately (one possible case is that a
Fermi arc connects those two WPs and disappear as two
WPs merge to be a TP). As a consequence, six Fermi arcs
form a hexagonlike Fermi surface. We first employed a
tight-binding regularization of the Kane model and calcu-
lated the surface states on a half-infinite (111) surface. As
shown in the surface band structure of Fig. 3(a) with only 1
TP along the M̄ − Γ̄ line, a surface band disperses from the
Brillouin zone boundary to the center. Along K̄ − Γ̄, it runs
very close to the Γ̄ point and merges into the bulk
background. From M̄ to Γ̄, however, it ends exactly at
the TP. On the Fermi surface at EF crossing the TP, one can
clearly see that six Fermi arcs connect six TPs, forming a
hexagon shape. Each Fermi arc starts at a TP and ends at the
neighboring TP [Fig. 3(a)-(iii)]. Outside the hexagon of
Fermi arcs, there is a larger Fermi ring due to the same
surface band. When 3 TPs exist along the M̄ − Γ̄ line
[Fig. 3(b)], the original surface band still ends at the TP #1
while a new surface band appears to link TP #2 and TP #3
although it is weak in intensity. On the Fermi surface,
one can observe that six Fermi arcs connect six TPs #1
[Fig. 3(b)-(ii)] and also six TPs #2 [Fig. 3(b)-(iii)]. We note
that the Fermi arc states penetrate deeply into the bulk,
similar to the Fermi arcs of a Weyl semimetal TaAs [50,51],
since they appear close to the bulk pocket boundary on the
Fermi surface. Therefore, we can summarize two important
features of TP surface states. (i) The surface band ends at
the TP #1 position in the energy dispersion along M̄ − Γ̄.

TABLE I. List of triple point (TP) half Heusler materials. The band inversion strength Δ is in units of eV. The number of TPs (#) is
shown in Fig. 1. The distance of a TP to the Γ point (Δk) is specified as a percentage of the Γ − L length. The energy of a TP is given with
respect to the Fermi energy (ϵ) in unit of meV.

Material # Δ Δk ϵ Material # Δ Δk ϵ

LuPtBi 1 −1.52 32.5% −131 YPtBi 1 −1.07 17.1% −38
2 26.7% −144 2 14.3% −27
3 1.3% 154 3 0.4% 50

LuAuPb 1 −1.07 24.2% 105 GdPtBi 1 −1.02 14.1% −22
2 15.9% 142 LuPdBi 1 −0.69 11.9% −8
3 5.0% 201 LaPtBi 1 −0.82 1.3% 8

FIG. 2. Bulk band structures with triply degenerate band
crossings. The long-TP materials (a) GdPtBi with 2 TPs along
the C3 axis and (b) YPtBi with 6 TPs. The band dispersion along
the C3 axis near the Γ point are magnified to show the TPs on the
right panels. (c) The short-TP material LaPtBi are shown for
comparison.
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(ii) Six Fermi arcs interconnect six TPs related by C3 and
TRS when EF crosses the TPs.
Regarding materials we have calculated the surface

states of GdPtBi based on ab initio DFT calculations
within a slab model. The slab model includes 54 atomic
layers of the (111) surface and the band structure is
projected to the top surface that is terminated by Bi atoms.
The projected band structure represents the dispersions of
surface states [Fig. 3(c)], which agrees well with previous
ARPES measurement [28]. There are several trivial surface
states due to Bi dangling bonds in the band structure. We
point out a pair of Rashba-like surface bands [noted R1 and
R2 in Fig. 3(c)], which disperse up from −0.6 eV at M̄ to
above EF at Γ̄. When approaching the TP, R1 does not
disperse up together with R2, as ordinary Rashba bands do.

Instead, R1 crosses R2 at energy E2 ¼ −72 meV and then
ends at the TP at E1 ¼ −22 meV [Fig. 3(c)-(v)], fulfilling
the first feature of Fermi arc states. Here the surface band
structure is a result of the strong hybridization between
Fermi arc states and dangling bond states. We point out that
the same feature that R1 ends at the TP can be found for
another long-TP material YPtBi and even a short-TP
material LaPtBi; see Ref. [42] for more information. For
the Fermi surface corresponding to E2 [Fig. 3(c)-(iii)], there
are two rings forming a flowerlike shape caused by the
R1-R2 crossing. For the Fermi surface corresponding to E1

[Fig. 3(c)-(ii)], there is only one apparent ring due to R2.
Here six TPs locate inside the R2 ring, where Fermi arcs are
expected to exist. However, these Fermi arcs are missing in
the DFT band structure. This is due to the finite size effect
of the slab model simulations. In experiment, correspond-
ing Fermi arcs should appear but possibly with weak
intensity, since they penetrate deeply into the bulk. In
previous ARPES experiments, a flowerlike Fermi surface
similar to Fig. 3(c)-(iii) was observed for LuPtBi, YPtBi,
and GdPtBi [28,29], where R1 starts crossing R2. However,
ARPES did not reach the energy window of TPs, because
these Heusler samples are usually hole doped. To fully
reach the TP region by ARPES, electron-doped samples are
needed to shift EF by ∼50 meV with respect to current
samples.
In summary, we have predicted the existence of TP

fermions in the band structures of several half-Heusler TIs.
By ab initio calculations and the k · pKane model, we have
identified the existence of multiple TPs at large momenta in
the bulk and revealed the existence of Fermi arcs on the
surface. The Fermi arcs states end at the TP position in the
energy dispersion along M̄ − Γ̄ and connect neighboring
TPs at the Fermi surface. To observe TPs and Fermi arcs,
currently available samples may need slightly more elec-
tron doping for ARPES studies. Alternatively, two-photon
photoelectron spectroscopy or scanning tunneling spec-
troscopy, which can measure empty states, will be ideal for
the detection of TP Fermi arcs. The predicted Heusler TP
materials are known to exhibit AFM phase (e.g., GdPtBi)
[41] and superconductivity (e.g., LuPtBi and YPtBi)
[52,53] at low temperatures. They serve as a new platform
to investigate the interplay between TPs and magnetism or
superconductivity.
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(a)

(b)

(c)

FIG. 3. Surface band structures. (a),(b) Band structure calcu-
lated by the tight-binding model on a half-infinite surface with 1
and 3 TPs along Γ̄ − M̄, respectively. Red color stands for low
surface intensity and white for strong surface intensity. The triple
points are marked by blue points. (c) DFT band structure
calculated on a slab model for GdPtBi (paramagnetic phase).
(i) The size of the white circles represents the surface contribution
and, thus, large circles show the surface states. Bulk bands are
indicated by blue curves as a background, where the triple point is
shown as the red point. R1 and R2 are a pair of Rashba-like
surface states. (ii) and (iii), Fermi surfaces corresponding to
energy E1 (crossing the triple point) and E2, respectively. The
flowerlike Fermi surface in (iii) was measured in previous
ARPES experiments. (iv) Magnified inner Fermi ring of
(ii). Fermi arcs (red dotted lines) are artificially added as guides
to the eye, for they are missing in the DFT band structure due to
the finite slab thickness. (v) Expanded view near the triple point.
Red dotted lines highlight R1 and R2 bands. The R1 band crosses
R2 and later ends at the triple point.
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I. General Conditions for Existence of Triple Points

For half-Heusler materials without any external effects like magnetic field or distortion, their space group and point
group are F 4̄3m group and Td group respectively.1,2 Therefore, their physics around Γ point near Fermi level is
commonly described by six-band Kane model3. On the bases |Γ6,

1
2 〉, |Γ6,− 1

2 〉, |Γ8,
3
2 〉, |Γ8,

1
2 〉, |Γ8,− 1

2 〉 and |Γ8,− 3
2 〉,

the standard six-band Kane model is3

HKane(k) =

(
HΓ6(k) V
V † HΓ8(k)

)
, (1)

where

V = P√
6

(
−
√

3k+ 2kz k− 0

0 −k+ 2kz
√

3k−

)

+
B+

8v√
6

(√
3k−kz 2ikxky k+kz 0

0 k−kz 2ikxky
√

3k+kz

)

+
B−

8v

3
√

2

(
0

√
3K2 0 k2

‖ − 2k2
z

−k2
‖ + 2k2

z 0 −
√

3K2 0

)
, (2)

HΓ6
(k) = (Ec + βck

2)12 (3)

with 12 to be the 2× 2 identity matrix,

HΓ8
(k) = H0(k) +HC(k) (4)

with

H0(k) = 4
15 (J2

x + J2
y + J2

z )h0 + 1
3 (2J2

z − J2
x − J2

y )h1

+ 1√
3
(J2
x − J2

y )h2 + 2√
3
Jxyh3 + 2√

3
Jzxh4 + 2√

3
Jyzh5

(5)

and

HC(k) =
2√
3
C(kxVx + kyVy + kzVz). (6)

Here we have h0 = Ev − βcγ1k
2, h1 = βcγ2(2k2

z − k2
‖), h2 =

√
3βcγ2K

2, h3 = 2
√

3βcγ3kxky, h4 = 2
√

3βcγ3kxkz,

and h5 = 2
√

3βcγ3kykz. Ji’s are angular momentum matrices for spin 3/2, Jij = 1
2{Ji, Jj}, Vx = 1

2{Jx, J2
y − J2

z },
Vy = 1

2{Jy, J2
z − J2

x}, Vz = 1
2{Jz, J2

x − J2
y}, βc = ~2/(2m′), m′ is the effective mass of Γ6 bands near Γ point,

k2 = k2
x + k2

y + k2
z , k2

‖ = k2
x + k2

y, K2 = k2
x − k2

y and k± = kx ± iky.

In this work, γ2 6= 0 and γ3 6= 0 are always assumed. Moreover, βc > 0 and Ec < Ev are assumed, which
means Γ6 bands are lower than Γ8 bands for half-Heusler materials with inverted band structure.4–7

For symmorphic triple points(TPs), C∗3v spin double group is typically essential.8 The character table of C∗3v spin
double group is shown in Tab.I.

C∗3v E R C3,C2
3R C2

3 , C3R 3σv 3σvR
Λ1 1 1 1 1 1 1
Λ2 1 1 1 1 -1 -1
Λ3 2 2 -1 -1 0 0
Λ4 1 -1 -1 1 i -i
Λ5 1 -1 -1 1 -i i
Λ6 2 -2 1 -1 0 0

TABLE I. Character Table of Spin Double Group C∗
3v

9

Inside Td group, there are 4 different C3v subgroups with principle axis (axis of C3) along (111),(1̄11),(11̄1) and
(111̄), which can be related by Sz4 operation. That means we only need to consider one C3v group, and the one chosen

to be studied here is C3v with C3 along (111) direction, noted as C
(111)
3v . Mirror planes of C

(111)
3v are (11̄0), (1̄01) and
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(011̄) planes.

For Γ6 and Γ8 bases, the generators of C
(111)
3v are represented as

C3(111)
.
=

(
exp(−iSx+Sy+Sz√

3
2π
3 ) 0

0 exp(−iJx+Jy+Jz√
3

2π
3 )

)

π11̄0
.
=

(
exp(−iSx−Sy√

2
π) 0

0 − exp(−iJx−Jy√
2
π)

)

, where Si = σi/2 and σi’s are Pauli matrices. Based on that, we can group Γ6 and Γ8 bases into those three irreducible
representations. Wave functions for each irreducible representation in bases |Γ6, 1/2〉, |Γ6,−1/2〉, |Γ8, 3/2〉, |Γ8, 1/2〉,
|Γ8,−1/2〉 and |Γ8,−3/2〉 are shown below:

Λ4:

ψΛ4 = N4

(
0, 0,

1− i√
2
,

√
2− i√

3
, i

(
1√
6

+
1√
3

)
−
√

1

6

(
3− 2

√
2
)
, 1

)
(7)

Λ5:

ψΛ5
= N5

(
0, 0,

−1 + i√
2

,−
√

2 + i√
3

, i

√
1

6

(
3− 2

√
2
)
− 1√

3
− 1√

6
, 1

)
(8)

Λ6:

ψΛ6,1 =
1√
6

(
0, 0,−1− i, i

√
3, 0, 1

)
, ψΛ6,2 =

1√
6

(
0, 0, i, 0,

√
3, 1 + i

)
(9)

φΛ6,1 = (1, 0, 0, 0, 0, 0) , φΛ6,2 = (0, 1, 0, 0, 0, 0) (10)

,where N4 and N5 are normalization factors. Eq.9 and Eq.10 list two linearly independent sets of wavefunctions of
the Λ6 irreducible representation, and any linearly combination of wavefunctions in Eqs. 8 and 9 can still give a Λ6

irreducible representation of C∗3v. On bases (ψΛ4
, ψΛ5

, ψΛ6,1, ψΛ6,2, φΛ6,1, φΛ6,2), the HKane(k) along kx = ky = kz = k
direction takes the form,




EΛ4
(k) 0 0 0 0 0

0 EΛ5
(k) 0 0 0 0

0 0 Ev − 3k2βc(γ1 + 2γ3) 0 − 2ik(P−iB+
8vk)√

3

(1+i)k(P−iB+
8vk)√

3

0 0 0 Ev − 3k2βc(γ1 + 2γ3)
(1+i)k(P−iB+

8vk)√
3

2k(P−iB+
8vk)√

3

0 0
2ik(P+iB+

8vk)√
3

(1−i)k(P+iB+
8vk)√

3
3βck

2 + Ec 0

0 0
(1−i)k(P+iB+

8vk)√
3

2k(P+iB+
8vk)√

3
0 3βck

2 + Ec




(11)

, where EΛ4
(k) = Ev − k

(
3kβc(γ1 − 2γ3) + C

√
6
)
, EΛ5

(k) = Ev + k
(√

6C − 3kβc(γ1 − 2γ3)
)
, and the corresponding

energy dispersion along kx = ky = kz = k is,

EΛ4
(k) = Ev − k

(
3kβc(γ1 − 2γ3) + C

√
6
)

EΛ5
(k) = Ev + k

(√
6C − 3kβc(γ1 − 2γ3)

)

EΛ−
6

(k) = 1
2

(
Ec + Ev − 3βck

2(γ1 + 2γ3 − 1)−
√

[Ec − Ev + 3βck2(γ1 + 2γ3 + 1)]
2

+ 8k2(P 2 + (B+
8v)

2k2)

)

EΛ+
6

(k) = 1
2

(
Ec + Ev − 3βck

2(γ1 + 2γ3 − 1) +
√

[Ec − Ev + 3βck2(γ1 + 2γ3 + 1)]
2

+ 8k2(P 2 + (B+
8v)

2k2)

)
(12)

, where EΛ±
6

(k) are both doubly degenerate.

It is convenient to define the following dimensionless quantities, Ẽ ≡ E/ε0, k̃ ≡ ka, C̃ ≡ C/(βc/a), B̃±8v ≡ B±8v/βc
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and P̃ ≡ P/(βc/a), where ε0 ≡ βc

a2 and a is a positive parameters with unit of length.

Since ẼΛ−
6

(0) = Ẽc and ẼΛ+
6

(0) = Ẽv, only ẼΛ+
6

(k) is involved to create TPs. TPs are created by band crossing

between ẼΛ+
6

(k) and ẼΛ4(k̃) or ẼΛ+
6

(k̃) and ẼΛ5(k̃). Since ψΛ4 ∝ ΘψΛ5 , ψΛ6,1 ∝ ΘψΛ6,2 and φΛ6,1 ∝ ΘφΛ6,2, we have

ẼΛ4
(k̃) = ẼΛ5

(−k̃) and ẼΛ±
6

(k̃) = ẼΛ±
6

(−k̃), where Θ is time reversal symmetry operation. That means we only need

to consider the band crossing situation between ẼΛ+
6

(k̃) and ẼΛ4(k̃) and the band crossing condition between ẼΛ+
6

(k̃)

and ẼΛ5
(k̃) can be obtained from time reversal symmetry.

Band crossing condition between ẼΛ+
6

(k̃) and ẼΛ4
(k̃) is

ẼΛ4
(k̃) = ẼΛ+

6
(k̃)⇔ k̃

(
2
√

6C̃ + 3k̃(γ1 − 6γ3 + 1)
)

+Ẽc−Ẽv+
√[

Ẽc − Ẽv + 3k̃2(γ1 + 2γ3 + 1)
]2

+ 8k̃2(P̃ 2 + (B̃+
8v)

2k̃2) = 0

(13)
That is equivalent to

k̃
(

2
√

6C̃ + 3k̃(γ1 − 6γ3 + 1)
)

+ Ẽc − Ẽv ≤ 0 & k̃
(
a0 + a1k̃ + a2k̃

2 + a3k̃
3
)

= 0 (14)

, where a0 =
√

6C̃(Ẽv − Ẽc), a1 = −6C̃2 + 12γ3Ẽc − 12γ3Ẽv + 2P̃ 2, a2 = −3
√

6C̃γ1 + 18
√

6C̃γ3 − 3
√

6C̃ and

a3 = 36γ1γ3 − 72γ2
3 + 36γ3 + 2(B̃+

8v)
2.

Eq.14 gives k̃ = 0 solution, which is the 4-fold degenerate point at Γ point instead of a TP. All other k̃ 6= 0 solutions
are TPs if ẼΛ5

(k̃) does not cross with ẼΛ4
(k̃) at those solution k̃ points.

The band crossing condition between ẼΛ5(k̃) and ẼΛ4(k̃) is

ẼΛ4
(k̃) = ẼΛ5

(k̃)⇔ C̃k̃ = 0 (15)

, which means they only cross at Γ point if C 6= 0. If C̃ = 0, ẼΛ4
(k̃) = ẼΛ5

(k̃) would be always true and there would

be no TPs. TPs will emerge for C̃ 6= 0.
Based on the discussion above, we have a condition for a TP to exist at k̃:

C̃ 6= 0 & b0 + b1k̃ + b2k̃
2 ≤ 0 & a0 + a1k̃ + a2k̃

2 + a3k̃
3 = 0 & k̃ 6= 0 (16)

, where b0 = Ẽc − Ẽv, b1 = 2
√

6C̃ and b2 = 3(γ1 − 6γ3 + 1).
Condition listed in Eq.16 only allows at most three solutions, which means there are at most six TPs along one C3

axis after taking time reversal symmetry.

II. Triple Points in a Chosen Parameter Region

To illustrate the physics, we choose this set of parameters:

Ev

ε0
γ1 γ3

P
βc/a

B+
8v/βc B−8v/βc

0 2 1
2

5
2 0 0

, where ε0 = βc

a2 , a is a positive parameters with unit of length, Ẽcv ≡ Ec−Ev

ε0
∈ [−5,−0.5] and C̃ ≡ C

βc/a
∈

[−0.3,−0.01]. This is the parameter choice for the phase diagram shown in Fig.1g.
In this case,

b0 b1 b2 a0 a1 a2 a3

Ẽcv 2
√

6C̃ 0 −
√

6C̃Ẽcv 12.5− 6C̃2 + 6Ẽcv 0 36

Under these conditions,

b0 + b1k̃ + b2k̃
2 ≤ 0⇔ k̃ ≥ −b0

b1

Now, we will prove that all roots of a0 +a1k̃+a2k̃
2 +a3k̃

3 = 0 lie in [− b0b1 ,+∞) for the parameter region we choose.
Proof:
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Define k̃0 ≡ − b0b1 .

(i)Prove a0 + a1k̃0 + a2k̃
2
0 + a3k̃

3
0 < 0 for the parameter region we choose.

a0 + a1k̃0 + a2k̃
2
0 + a3k̃

3
0 = − Ẽcv

4
√

6C̃3

(
12C̃4 + 25C̃2 + 12C̃2Ẽcv + 3Ẽ2

cv

)

. For the chosen parameter region, − Ẽcv

4
√

6C̃3
< 0 and

(
12C̃4 + 25C̃2 + 12C̃2Ẽcv + 3Ẽ2

cv

)
> 0, therefore

a0 + a1k̃0 + a2k̃
2
0 + a3k̃

3
0 < 0

.

(ii)Prove d
dk̃

(a0 + a1k̃ + a2k̃
2 + a3k̃

3) > 0 for any k̃ < k̃0 and the parameter region we choose.

d

dk̃
(a0 + a1k̃ + a2k̃

2 + a3k̃
3) = −6C̃2 + 6Ẽcv + 108k̃2 +

25

2

, which means the minimum of d
dk̃

(a0 + a1k̃ + a2k̃
2 + a3k̃

3) is at k̃ = 0. Since −6C̃2 + 6Ẽcv + 108k̃2
0 + 25

2 > 0 and

k̃0 < 0 in the chosen parameter region, we have d
dk̃

(a0 + a1k̃ + a2k̃
2 + a3k̃

3) > 0 for any k̃ < k̃0.

In summary, for any parameter choice in the chosen parameter region, since a0 + a1k̃0 + a2k̃
2
0 + a3k̃

3
0 < 0 and

d
dk̃

(a0 + a1k̃ + a2k̃
2 + a3k̃

3) > 0 for any k̃ < k̃0, we have a0 + a1k̃ + a2k̃
2 + a3k̃

3 < 0 for any k̃ < k̃0.

Therefore, all k̃ solutions of a0 + a1k̃ + a2k̃
2 + a3k̃

3 = 0 in the chosen parameter region are larger than k̃0 ≡ − b0b1 .
End Of Proof.

It means the number of TPs is only determined by the number of roots of a0 + a1(ka) + a2(ka)2 + a3(ka)3 = 0 for
our choices of parameters. For convenience, we define following parameters:

η = 18a0a1a2a3 − 4a3
2a0 + a2

2a
2
1 − 4a3a

3
1 − 27a2

3a
2
0

η0 = a2
2 − 3a3a1

(17)

It turns out, in the chosen parameter region,
(i) if η < 0, and there is only one root, which means there are two TPs on one C3 axis;
(ii)if η = 0 and η0 6= 0, there are one single root and one double root, which means there are four TPs on one C3

axist;
(iii)if η > 0 and there are three roots, which means there are six TPs on one C3 axis;
(iv) η = 0 and η0 = 0 doesn’t exist.

Those give the phase diagram shown in Fig.1g.

III. Kane Model Parameter Choices for Surface States

Ec
ε0

Ev
ε0

γ1 γ2 γ3
C

βc/a
P

βc/a
B+

8v/βc B−
8v/βc

−2 0 2 −1 0.5 −0.15 2.5 0 0

TABLE II. Choices of Kane model parameters for Fig.3a with 2 TPs on one C3 axis.

Ec
ε0

Ev
ε0

γ1 γ2 γ3
C

βc/a
P

βc/a
B+

8v/βc B−
8v/βc

−3 0 2 −1 0.5 −0.05 2.5 0 0

TABLE III. Choices of Kane model parameters for Fig.3b with 6 TPs on one C3 axis.
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FIG. S1. Crystal structure of the calculated half-Heusler compounds. (a) unitcell, (b) primitive cell and (c) slab structure.

IV. Crystal structure and bands structure of LuPtBi, LuAuPb and LuPdBi

V. Ab inito calculations of surface states for YPtBi and LaPtBi.

The electronic ground states of these half Heusler compounds were calculated by using density-functional theory
(DFT) within the Perdew-Burke-Ernzerhof-type generalized-gradient approximation (GGA)10 using the Vienna ab
initio Simulation Package (vasp)11. For the bulk materials calculation, primitive cells with experimental crystal
parameters were selected as shown in Fig.S1(b). In order to get an accurate fermi energy, a dense k points with the
mesh grid 21 × 21 × 1 was utilized in each static calculation. To calculate the surface state, a slab, exposing (111)
plane of the FCC structure, with 54 atom layers (around 60 Å) and 20 Å vacuum thickness was used for each material,
as shown in Fig.S1(c). In the slab calculation, a 10 × 10 × 1 k points mesh grid for static calculation and 51 × 51
× 1 k points mesh grid for fermi surface calculation were utilized. While calculating the surface state dispersion and
fermi surface of YPtBi and LaPtBi, the upmost 9 atom layers which are terminated by Bi(Pb) atoms are considered
as surface atoms. Spin-orbit coupling (SOC) was included in all calculations.



7

FIG. S2. Bulk band structures with triply degenerate band crossing. All these three materials are long-TP materials, holding
different numbers of TPs: (a) LuPtBi with 6 TPs along the C3 axis, (b) LuAuPb with 6 TPs, and (c) LaPtBi with 2 TPs. To
make it more clear, the band dispersion along the C3 axis in the red boxes are zoomed-in and shown in corresponding right
panels.
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FIG. S3. The DFT surface band structures calculated on slab models for (a) YPtBi and (b) LaPtBi. The size of white circles
represent the surface contribution and thus large circles indicate the surface states. The bulk bands are indicated by blue curves
as a background, where the triple point is indicated by the red point. (ii) and (iii), Fermi surfaces corresponding to energy E1
(crossing the triple point) and E2(crossing the triple point), respectively. (iv) and (v), The zoom-in of the inner Fermi ring of
(ii) and (iii), respectively. For YPtBi, at each energy level Fermi arcs connect 6 TPs and form a hexagon-like Fermi surface,
consistent with the Kane model. In both cases, the Rashba-like surface states R1 and R2 exists. The R1 bands end at the TPs
after crossing the R2 band along M̄ − Γ̄, similar to that of GdPtBi Fig.3(c).
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5 S. Chadov, X. Qi, J. Kübler, G. H. Fecher, C. Felser, and S. C. Zhang, Nature materials 9, 541 (2010).
6 D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.-Q. Chen, G. M. Stocks, and Z. Zhang, Phys. Rev. Lett. 105, 096404 (2010).
7 W. Al-Sawai, H. Lin, R. S. Markiewicz, L. A. Wray, Y. Xia, S.-Y. Xu, M. Z. Hasan, and A. Bansil, Phys. Rev. B 82, 125208

(2010).
8 Z. Zhu, G. W. Winkler, Q. Wu, J. Li, and A. A. Soluyanov, Phys. Rev. X 6, 031003 (2016).
9 G. Burns, Introduction to group theory with applications: materials science and technology (Academic Press, 2014).

10 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
11 G. Kresse and J. Furthmüller, Comp. Mater. Sci. 6, 15 (1996).



Chapter 5. Selected results 85

5.5 Paper IV: Quantum oscillations in the type-II Dirac

semi-metal candidate PtSe2

The last publication presents the collaboration work with Philip’s group who did the

experimental part. PtSe2 has been proved to host type-II Dirac fermions both by the ab-

initio calculations [74] and the ARPES measurements[75, 76]. Therefore, in our paper,

instead of concentrating on the topological properties of PtSe2, we mainly focus on its

electronic structure near the Fermi level.

We have first calculated the band dispersion and 3D Fermi surfaces of PtSe2. The results

showed that two type-II Dirac fermions exist on the C3v axis with the energy of 1.3 eV

below the Fermi energy as shown in Fig. 1a in Paper IV. Then the quantum oscillation

frequencies, which are proportional to the extreme k-space areas of the Fermi surfaces

along certain directions, are calculated and experimentally measured. The experimental

and calculated values match quite well, confirming the correctness of band structure

calculations and the existence of the Dirac cones.

It is interesting to compare the hexagonal WC-structure materials aforementioned with

the hexagonal PtSe2 here, since both of them have C3v symmetry. However, in distin-

guished with the WC-structure materials whose inversion symmetry is broken, both the

time reversal and the inversion symmetries are present in PtSe2, resulting in the topo-

logical difference between those two types of materials. In principle, the Dirac points in

PtSe2 can split to Weyl points by breaking either the time reversal symmetry or inver-

sion symmetry, or to TPFs when inversion symmetry is broken. Therefore, PtSe2 is a

good candidate for studying the topological phase transition under different conditions

like magnetic doping.
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Abstract
Three-dimensional topological semi-metals carry quasiparticle states thatmimicmassless relativistic
Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid
body, they are not bound to the usual symmetries of space-time and thus new types of fermionic
excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac
fermions.We investigate the electronic spectrumof the transition-metal dichalcogenide PtSe2 by
means of quantumoscillationmeasurements infields up to 65 T. The observed Fermi surfaces agree
well with the expectations fromband structure calculations, that recently predicted a type-II Dirac
node to occur in thismaterial. A hole- and an electron-like Fermi surface dominate the semi-metal at
the Fermi level. The quasiparticlemass is significantly enhanced over the bare bandmass value, likely
by phonon renormalization. Ourwork is consistent with the existence of type-II Dirac nodes in PtSe2,
yet theDirac node is too far below the Fermi level to support freeDirac–fermion excitations.

Introduction

Band structure theory is one of themost successful concepts in condensedmatter physics, classifying solids into
metals and insulators. One of the key ongoing advances in our understanding of electronicmaterials is the
increasing focus on topological aspects of the electronic bands in the solid [1, 2]. Topologicalmetals and semi-
metals are characterized by robust band crossing points near the Fermi energy, leading to linear electronic
dispersions in the vicinity of these crossing points. This linear electronic dispersion can bemapped onto the
Weyl– andDirac–Hamiltonian [3, 4] describingmassless relativistic fermions.While these have never been
observed as elementary particles, in topologicalmaterials low energy quasiparticles emerge andmimic these
elusive relativistic fermions. Their detection as quasiparticles in condensedmatter systems has initiated a fruitful
transfer of ideas between thesefields of physics, with concepts envisioned for high energy physics now appearing
in solids [5, 6]. Recently it was shown that the generalization of theDirac equation to condensedmatter systems
also has solutions that cannot appear in elementary particles as they are forbidden by Lorentz symmetry [7]. In
general, the dispersion relation in a solid arises due to the interaction of the electronswith the atoms in a periodic
crystal, and thereby some of the symmetries of electronic behavior in free space are broken.One example is the
appearance of the quasi-momentumof electrons as the translational invariance of free space is replaced by the
discrete translation symmetry of the crystal lattice. Similarly in the case of quasiparticles following amassless
relativistic dispersion, the rest frame of the crystal lattice defines an absolute frame of reference, and hence
Lorentz-invariance is not a symmetry of the electronic system in the solid. This has intriguing consequences:
some solutions to theDirac equation are inherently non-Lorentz-invariant and thus are not allowed for
elementary particles.Without Lorentz invariance, thesemay appear in the solid and new types of relativistic
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quasiparticles with a positive Fermi velocity in some, but a negative in other crystal directions are predicted.
These are called type-II Dirac nodes that correspond to a singular node at the touching point of an electron- and
a hole-type Fermi surface, in contrast to the usual type-IDirac fermions described by a single definite cone.

The non-degenerate analog, the type-IIWeyl semi-metal [7, 8], has been predicted in transition-metal
dichalcogenides such asMoTe2. Soon after, these predictions were experimentally verified by imaging the
topologically protected Fermi arc surface states via angle-resolved photoemission spectroscopy (ARPES) [9–11].
Recently, a type-II Dirac semi-metal state has been predicted in PtSe2 [12] and successively observed byARPES
studies [13, 14]. Themain aimof the present work is to experimentally investigate its electronic structure at the
Fermi level via quantumoscillations. In addition to its proposed topological character, PtSe2 is a layeredmaterial
that has recently attracted attention for its potential use in electronic applications forwhich a detailed knowledge
of the band structure is essential. It can be synthesized in high quality thin film form [15] or as nanocrystallites
[16, 17], and it has been proposed as a candidatematerial for spintronics [18] or electronic applications due to its
combination of high electronicmobility, sizeable band-gap and strong spin–orbit coupling.

Band structure calculations

In order to have a direct visualization of the Fermi surface, we have performed first principle calculation using
theVienna ab initio simulation package [19]. An 8×8×8 gamma centered grid of k points and a 520 eV
plane-wave energy cutoff are adopted for the self-consistent field calculations. The Perdew–Burke–Ernzerhof
[20] pseudopotentials with the generalized gradient approximation (GGA)was used in our calculation. In all the
calculation, spin orbital coupling are included.Wefirst obtained the band structure of PtSe2 along high
symmetry lines as shown infigure 1(a). Along theΓ–A direction, aDirac-type band crossing is found to reside at
1.30 eVbelow the Fermi energy at theD point (0 0 0.317) ,

c

2p where c is the lattice parameter along z direction.

TheDirac node (pointD) tilts strongly along kz (theΓ–D–A line) but onlyweakly in the kx–ky plane (e.g. the S–D
line). Our result is fully consistent with [12], predicting a type-II Dirac node as shown in the inset of figure 1(a).
As theDirac node is far below the Fermi level, Dirac quasiparticle excitations are not expected to occur and the
transport properties are dominated by non-topological electrons.

To compare these calculations to quantumoscillations arising from these charge carriers at the Fermi level,
we have calculated the three-dimensional Fermi surfaces of bulk PtSe2. The Fermi surface consists of threemain
pockets, one hole-like and two electron-like. The shape of the hole pocket resembles an octahedron, shown in
blue infigure 1. The electron bands exhibit two types of Fermi pockets (colored red infigure 1): an octahedron-
like electron pocket located around theK point and six crescent-like electron pockets located betweenD and S
points. Both the electron pockets and the hole pocket show three-fold rotation symmetry and inversion

Figure 1.Band structure and type-II Dirac fermions. (a)The band structure along high symmetry lines as shown in (c). Two type-II
Dirac points exist at (0 0±0.317)

c

2p with energy of 1.30 eV below the Fermi energy. The inset is the 3Dplot of the tiltedDirac node.

(b)The top and (c) side views of the Fermi surfaces in Brillouin zone. The red and blue pockets correspond to electron and hole
pockets, respectively. The bands have been upshifted by 180 meV according to the comparisonwith the quantumoscillations as
discussed in the text.
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symmetry around theΓ-point, consistent with the symmetry of the crystal structure. SinceGGAusually
underestimates the gap between conduction and valence bands, we should note that we applied an upshift of
0.18 eV for all conduction bands infigure 1. As discussed below, this constant shiftmatches the entire angle
dependence of the quantumoscillation spectrumwell.

Device fabrication
Tomeaningfully analyze quantumoscillations inmetals with non-spherical Fermi surfaces, it is critical to
measure an individual single crystal. Highest quality PtSe2 is grownby chemical vapor transport. Yet the
resulting crystals often suffer from intergrowth of smaller crystallites, rendering the sample effectively
polycrystalline. Thereforewe use focused ion beam (FIB)machining to selectively fabricate transport devices
frompristine regions of the crystal, to access its true single crystal physics.

The startingmaterial for themicrostructure fabrication are conventionally grown single crystals of PtSe2.
Our single crystal growth procedure follows previous successful synthesis attempts by chemical vapor transport
[21] in the systemPt/Sn/(S, Se)2 using iodine as transport agent. The precursormaterial PtSe2was synthesized
in afirst step by direct reaction of the elements platinum (Alfa Aesar 99.95%) and selenium (Alfa Aesar 99.999%)
at 500 °C and 650 °C in evacuated fused silica tubes for 5 d. Starting from thismicrocrystalline powder, PtSe2
crystallized by a chemical transport reaction in a temperature gradient from850 °C (source) to 750 °C (sink),
and a transport agent concentration of 6 mg cm−3 iodine (Alfa Aesar 99,998%). The resulting crystals are thin
platelets, with typical sizes of∼200 μm in-plane and<10 μmperpendicular to the plane. The hexagonal crystal
structure is well reflected in themorphology of the platelets. Selected crystals were characterized by EDXS, x-ray
powder, and x-ray single crystal diffraction.

The crystallites were patterned using FIBmicromachining intomeandering bar shapes that are ideally suited
for precision resistancemeasurements. A typicalmicrostructure is shown infigure 2(a). The crystals were
patterned using aGa-ion beam at incidence energies of 60 keV andwith currents between 1 and 3 nA. Electrical
contacts weremade by evaporating gold electrodes onto the crystal (colored yellow infigure 2(a)). Two crystals
have been patterned into similar shapes and fully characterized, including the quantumoscillation
measurements in highfields, and all results were in quantitative agreement.

This approach has twomain advantages for the present experiment, sample optimization for pulsedfield
experiments and the suppression of artefacts due to crystal defects. The shape of the crystal can be precisely
trimmed to optimize the total device resistance given thematerials natural specific resistivity. Thereby the device
resistance can be set to an optimal value in the 10–100Ω range for pulsedmagneticfieldmeasurements. At lower
resistance, the accordingly smaller signal-to-noise ratio impedes themeasurement of the oscillatory amplitude
of themagnetoresistance. At higher resistance, the larger LRC-time constant of themeasurement circuit would
require to reduce the frequency of the applied ac-current. Yet lowermeasurement frequencies come close to the
typical noise spectrumof a pulsedmagnet which extends into the 10–20 kHz range. By proper design of the
microstructure, these issues can be avoided and high quality data obtained from ametal regardless of its
resistivity. This approach has proven to be a reliablemethod to fabricate crystalline samples for transport
measurements in highmagnetic fields in a large variety of different compounds [22, 23]. In addition, the
microstructuring also allows to specifically probe themost pristine region of the crystal and to exclude damaged
regions from influencing themeasurement. The crystal infigure 2(a) depicts such a scenario: a secondary
crystallite grew in into the bottomhalf of the otherwise perfectly regular hexagonal plate. By using the sub-
micron precision of the FIB cutting, the active device area can be patterned into the pristine face of a crystal thus
completely bypassing the intergrowth regions.

The temperature dependence in zeromagneticfield is shown infigure 2(b). PtSe2 is found to be a reasonably
goodmetal with a resistivity of 130 μΩ cm at room temperature and 25 μΩ cm at 2 K. At lowest temperatures,
we consistently observe a slight upturn of the resistance in all fabricatedmicrostructures. This is directly related
to aweak negativemagnetoresistance at very lowfields before the large positivemagnetoresistance is observed
(inset figure 3(a)). Given the topologically trivial nature of the charge carriers at the Fermi level and the isotropic
behavior upon changing the angle of themagnetic fieldwith respect to the current path, a topological origin
related to the chiral anomaly can be clearly excluded [24]. A likely explanation is weak localization, however no
such behavior was observed in previous studies [17] of the low-temperature resistivity of PtSe2. Thus itmay also
be possible that electronic interactions conspire with the lateral finite size confinement in themicrostructure to
yield positive corrections to the apparent device resistance due to viscous effects in a hydrodynamic picture of
electron transport [25–27]. Clearly future experiments quantifying the resistance variation among samples and
microstructure dimensions are required to address this question.
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Pulsedfieldmagnetoresistance

Angle dependentmagnetoresistancemeasurements were performed at theNationalHighMagnetic Field
Laboratory in LosAlamos, using a 65 T short pulsemagnet. These high-strength copper solenoids deliver
magnetic field pulses with a characteristic time of 8 ms rise time to peak field and a slow fall time frompeak field
to zero of 100 ms. Themagnetoresistance ismeasured by applying an ac-current of 380 μA at 297.5 kHz to the
devices and detecting the voltage response via a lock-in procedure.

Themagnetoresistance of PtSe2 at 500 mK increases by a factor of 20 up to 60 T. The family of transition-
metal dichalcogenides (TMD) exhibits a wide spectrumof behaviors in highmagnetic fields. As in all semi-
metals, themagnetoresistance is determined by the Fermi surface shape as well as the degree of compensation
between electrons and holes [28]. Some tellurides, such asWTe2 [29] orMoTe2 [30], exhibit very large and non-
saturatingmagnetoresistance, indicating an almost ideal electron–hole compensation. The electronic structure
of PtSe2 is clearly dominated by the central hole band, and the comparatively lowermagnetoresistance is
expected in light of the poorer electron–hole compensation. The overallmagnetoresistance is found to be
essentially independent of the angle of themagnetic field to the crystal (figure 3(a)), where 0° corresponds to
fields along the 001[ ] and 90° along the 110[ ]direction, reflecting the three-dimensional nature of the electronic
system.

Fermiology

Themagnetoresistance shows pronounced quantumoscillations containingmultiple beating frequencies and in
general is dominated by two classes of frequencies. Thefirst around 1000 Tdisperses quickly to higher
frequencies upon changing the field angle, indicating a localminimumof the cross-sectional area of this

Figure 2. (a) Single crystalmicrodevice of PtSe2. Themeandered resistance path (purple) is the active region of the device where the
resistivity ismeasured. Thismeander was fabricated in a pristine part of the crystal, avoiding the region of an intergrowth crystal
defect. Gold contacts for a four-probemeasurement were evaporated onto the crystal by sputter deposition. Themeandered path is
3.6 μmwide, 80 μmlong and 2 μmdeep. (b)Temperature-dependence of the in-plane resistivity,measured in the device shown in
(a). The inset shows the low-temperature resistivity and the small upturn observed at lowest temperatures.
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quantumorbit (‘neck-frequency’). The second set of frequencies belongs to aweakly dispersive frequency band
in the 200–300 T range.

Themeasured frequencies can be directly compared to the band structure calculations. Each frequency
corresponds to a separate quantumorbit around the Fermi surface perpendicular to themagnetic field, where
figure 3(d) shows an exemplary orbit on the hole pocket. The frequency F is directly proportional to the
extremal k-space area Sk enclosed in the orbit, given by theOnsager relation as F S2 ,k0

2p= F( ) where
h e20F = is themagnetic flux quantum, e the electron charge and h is the Planck constant.We have calculated

the quantumoscillation frequencies of electron pockets and hole pocket with themagnetic field rotated from
001[ ]direction to [110] direction. Figure 3(c) displayed both the experimental and calculated quantum
oscillation frequencies as a function of the angle betweenmagnetic field and 001[ ]direction. The absence of a
mirror plane symmetry perpendicular to the c-direction in the crystal is directly reflected by the lack of
symmetry of the quantumoscillation frequency around 90°. The comparison to the band structure calculations
allows us to identify the two types of frequencies as orbits on separate Fermi surface sheets. The large frequency
belongs to the orbit around a star-shaped hole pocket centered in the Brillouin zone, while the low frequencies
belong to the comparatively smaller electron-like Fermi surfaces.

Effectivemass enhancement
Quantumoscillations also provide a directmeasurement of the quasiparticle effectivemass [31]. The
temperature dependence of the amplitudes A T( ) due to the thermal broadening of the Fermi–Dirac
distribution is well described by the Lifshitz–Kosevich formula as A T A X Xsinh ,0 =( ) ( ) where

X k T2 .B c
2 p w= Here, the cyclotron frequency c

eB

m*
w = contains only the quasiparticle effectivemassm* as

Figure 3. (a)Magnetoresistance of PtSe2 in pulsedfields up to 60 T at 500 mK, for selected field angles. The angle θ defines a plane of
rotation asH || 001[ ] for θ=0° andH || [110] for θ=90°. (b)Magnetoresistance after subtraction of a smooth polynomial
background, plotted against inversemagnetic field. The typical growth of the quantumoscillations asωcτ increases beyond unity is
clearly visible. (c)Angle dependence of the quantumoscillation frequencies in the rotation plane described in (a). Blue denotes the
large central hole pocket, and red the smaller electron-like orbits. Themeasured frequencies (symbols)matchwell with the band
structure calculations (solid lines). (d)Central hole pocket with a few exemplary extremal orbits colored to depict the path of the
quasiparticles around the Fermi surface in the quantumoscillation experiment.
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an unknown fitting parameter to the data (figure 4). To extract the amplitude from the rawdata, the non-
oscillatory part of themagnetoresistance wasfitted to a 3rd degree polynomial spline and subtracted from the
data, to yield the purely oscillatory component (figure 3(b)). The frequency spectrum infigure 4(a)was obtained
by standard Fourier analysis, and the peak height estimated above the experimental noisefloor. Both pockets
show a similar effectivemass, with 2.0 0.14( )me for the hole and 2.5 0.1( )me for the slightly heavier electron
pocket. Hereme denotes themass of the free electron. This can be directly compared to the effectivemass
calculated from the band structure, m k k v ,band F=( ) which in general is k-dependent. The cyclotron effective
massmeasured in quantumoscillation experiments is the average effectivemass around the quasiparticle orbit,

k km m d ,
Lband
1

band* = ∮ ( ) where Ldenotes the k-space length of the orbit. The cyclotron effectivemass can also

be expressed as the change of the k-space areaA enclosed by the orbit upon changing the energy E around the

Fermi energy, EF, as m .E

A E
band 2

d

d

12

F

* =
p

-( )
∣

The latter can bemore conveniently calculated from the band structure

E(k). For the orbits in the experimental situation of the temperature dependentmeasurements,H || 001 ,[ ] a
cyclotronmass of 0.4me is calculated for the hole band, and 0.35me for the star-shaped electron pocket.

Given the good agreement of the calculated band structure with themeasured Fermi surface topology, the
most likely explanation for such a sizable disagreement ismass renormalization.When electrons in a solid are
coupled to a bosonic fieldwith a strengthλ, the quasiparticle dispersion is renormalized as
m*=(1+λ)m*

band. In absence ofmagnetism in PtSe2, the prime candidate for the origin of the sizablemass
enhancementλ∼5.5 is strong electron–phonon coupling [32]. This picture is further supported by recent
ARPES experiments finding good agreement between band structure calculations and photoemission spectra
over the entire band, thus excluding bandwidth renormalizations due to correlations [13, 14].

Conclusions

The electronic systemof the semi-metal PtSe2 is dominated by a larger hole pocket and two small electron
pockets, and our results experimentally confirm the band structure calculations of [12]. Thereby our quantum
oscillation study provides experimental support for calculated band structures in the TMD that host type-II
Dirac fermions. Yet theDirac node is far below the chemical potential and thus no topological excitations appear
in thematerial. The conductivity andmaterials properties are therefore dominated by non-topological charge
carriers, and promoting the type-II Dirac fermions to the Fermi level is the next important challenge to study
their physics and application prospects. Usualmethods such as charge doping or gating techniques do not
appear as a viable route, given the large energy difference of 1.3 eV between theDirac node and the Fermi level in
PtSe2. Yet itmay be possible tofindmaterials inwhich they reside closer to the Fermi level within the class of
TMD layered conductors. Also, recently type-II Dirac fermions closer to the Fermi energy (200–300 meVbelow
EF)were predicted inHeusler compounds [33]. The observed enhancement of the quasiparticle effectivemass
suggests a strong electron–phonon interaction in PtSe2. The observation ofmass enhancement is consistent with
the appearance of low-temperature superconductivity in thismaterials class, such as in the related tellurides

Figure 4.Effectivemass. (a)Quantumoscillation frequency spectrum as a function of temperature. Upon increasing temperature, the
amplitudes for both orbits decay due to thermal Landau level broadening. (b)Amplitudes for both electron- and hole-like Fermi
surfaces as a function of temperature. Themeasured temperature dependence (symbols) is well described by the Lifshitz–Kosevich
formula (straight line), fromwhich the effectivemass is extracted as afitting parameter.
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WTe2 (Tc∼7 Kunder pressure [34]) andMoTe2 (Tc∼0.1 K at ambient pressure, 8.2 K under pressure [35]).
This appearance of significantmass renormalization in a topologically non-trivial band structure is of particular
interest for the ongoing search for strongly correlated topologicalmaterials.
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Chapter 6

Summary

In the course of this thesis, fundamental topological and electronic properties of topolog-

ical metals/semimetals along with the associated transport properties were theoretically

studied. Three types of quasiparticles which can be distinguished according to the sym-

metry of the host materials are investigated. The wavefunctions and Hamiltonian of

each system were extracted from the ab− initio calculations using the software package

VASP and then projected to the Wannier functions. The topological invariants were

calculated within the framework of the Berry curvature concept and revealed that the

Weyl points and TPFs are topologically nontrivial. The topological properties of these

two quasiparticles have been further verified through the topological surface states cal-

culated using either the half-infinite model or slab model. As for Dirac points in PtSe2,

although the topological invariant has not been found yet, the surface states have been

observed and are robust against the perturbations preserving the symmetry [74]. Being a

cumulative dissertation, this thesis includes results published in peer-reviewed journals.

The first publication showed the possibility to find Weyl points in the chiral AFM ordered

materials Mn3Ge and Mn3Sn. Those Weyl points appear in pairs and are distributed

in accordance with the symmetry of the magnetic lattice. The Weyl points in each pair

are separated by the My mirror plane and have opposite chirality characterized by the
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all-in or all-out Berry curvature texture. For both compounds, Fermi arcs connecting

two opposite Weyl points were found and require further experimental verification.

The second publication is also related to the Weyl points in the sense that it reveals

that the origin of the intrinsic AHC and SHC are not exactly from the Weyl points. For

the six studied materials, all of them showed strong anisotropic AHC and SHC, which

are closely related to the symmetry of the AFM Kagome lattice. It is interesting to note

that the electronic transport properties are not simply proportional to the strength or

the trend of the SOC. Although we didn’t search for the Weyl points in the other four

materials, we have a strong indication from previous works that they can host Weyl

points, due to the congruency of magnetic structures.

In the second study, which corresponds to the third publication, the existence of TPFs

in the cubic structural materials has been examined via ab− initio calculations and the

k ·p Kane model. We searched more than thirty half-Heusler compounds and found six

to be TPTMs and have odd pairs of TPFs, some of which are located at large momenta

positions in first BZ and can be experimentally measured. These TPFs are connected

by nodal lines in the bulk band structures and Fermi arcs in the half-infinite surface

band structures.

Finally, in the last publication, the electronic structure at the Fermi level of Dirac

semimetal PtSe2 was calculated and experimentally measured. The quantum oscillation

experiments and the simulations indicate that both the hole and electron pockets par-

ticipate the transport and specifically they contribute to the magnetoresistance. The

hole pocket, which is located near the Γ point and has Octahedral shape, contributes to

the high-frequency branch. The electron pockets, on the other hand, exhibit two types

of Fermi pockets: an octahedron-like electron pocket located around the K point and

six crescent-like electron pockets located between D and S. All of them contribute to

the low-frequency branches. The mismatch between the calculated and measured mass

of electrons and holes suggests a strong electron-phonon interaction in PtSe2.
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In summary, three types of quasiparticles have been found in the aforementioned ma-

terials and related topological and electronic properties were investigated in this work.

Since the topological materials and the quasiparticles have many practical applications,

a more detailed investigation would be beneficial to further the understanding of this

fundamental research. For example, in our work, there are still several issues to be

solved, such as the experimental observation of topological surface states in the Weyl

metals and TPTMs, the verification of SHE in the Weyl metals, and the tuning of Dirac

points’ energy in PtSe2 for the measurement.
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