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Summary

The aim of this thesis is to derive optimal designs for linear paired comparison models
with second- or third-order interactions in an analysis of variance setup where the
attributes are qualitative with the same number of levels each.

After the first introductory chapter on the problem and the literature some basic
concepts are presented in the Chapter 2 about paired comparison experiments in the
linear model setup, and particular emphasis is laid on the special case of the part-worth
model in which the influence of the attributes is additive and consists only of main
effects without interactions. The fundamentals and general descriptions of optimal
designs as well as some commonly used optimality criteria are presented in Chapter 3.
In Chapters 4 and 5 results are presented on optimal designs for the part-worth model
and a model with first-order interactions, respectively, which have been known from the
literature and where components of a single attribute are used as building blocks for
the holistic approach. A powerful tool for characterizing the optimal designs in these
models is given by the concept of invariance.

These concepts are extended to linear paired comparison models with second-order
interactions in Chapters 6 and 7 for binary attributes and for attributes with a general
common number of levels, respectively. A general statement on the maximal number of
types of pairs can be formulated for optimal designs, where orbits are specified by the
number of attributes in which the two alternatives differ. While for part-worth (main
effects) models optimal designs consist of those alternatives which differ in all attributes
and for first-order interactions they consist of those pairs of alternatives which differ
in about half of the attributes, respectively, there seems to be no clear general rule in
models with second-order interactions. For models with small profile strengths analytic
results can be obtained for optimal designs while for larger profile strengths optimal
designs have to be determined numerically. Moreover, for binary attributes optimal
designs require two types of pairs in which either all attributes have distinct levels or
approximately half of the attributes are distinct and the other half of the attributes
coincide. For larger number of levels mostly one type of pairs is sufficient. In some
exceptional cases two types of pairs are needed, and only for the full interaction case
all types are required.

In Chapters 8 and 9 these results are extended to paired comparison models with
third-order interactions. For binary attributes two types of pairs have to be considered
for which the numbers of distinct attributes are symmetric with respect to about half of
the profile strength. For larger number of levels again only one type of pair is sufficient
in nearly all cases.

The thesis is concluded with a brief discussion and an outlook on future research.
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Zusammenfassung

Das Ziel dieser Arbeit ist die Herleitung optimaler experimenteller Designs für Paarver-
gleichsmodelle unter Zugrundelegung von Linearen Modellen der Varianzanalyse mit
Wechselwirkungen zweiter bzw. dritter Ordnung. Dabei setzen sich die Alternativen
aus mehreren, die Entscheidungen beeinflussenden Attributen zusammen, die jeweils
auf eine feste Anzahl von Ausprägungen (Stufen) eingestellt werden können.

Nach einem einleitenden Kapitel in die Problemstellung und die Literatur werden
im zweiten Kapitel die grundlegenden Konzepte für Paarvergleiche im Linearen Modell
eingeführt. Dabei wird der klassische Spezialfall des Teilwertmodells, in dem nur
Haupteffekte der Attribute und keine Wechselwirkungen auftreten, gesondert behandelt.
Darauf folgen im drtitten Kapitel grundlegende Erläuterungen zu optimalen Designs
sowie zu üblicherweise verwendeten Optimalitätskriterien.

Die Interaktionsmodelle zweiter und dritter Ordnung, welche das Teilwertmodell
mit Komponenten eines einzelnen Attributs als Bausteine für die Resultate benutzen,
sowie die Interaktionsmodelle erster Ordnung, werden in Kapitel 4 und 5 beschrieben.
Von besonderer Relevanz ist dabei das Konzept der Invarianz.

In den Kapiteln 6 und 7 werden diese Konzepte auf lineare Paarvergleichsmodelle
mit Interaktionen zweiter Ordnung und binären Attributen, sowie Attributen von
identischer Stufenanzahl, erweitert. Hierbei kann ein allgemeingültiges Resultat über die
maximale Anzahl benötigter Typen von Paaren für optimale Designs formuliert werden,
wobei die verschiedenen Typen von Paaren durch die Anzahl von unterschiedlichen
Attributen der Alternativen spezifiziert werden. Dabei bestehen optimale Designs
für Teilwertmodelle aus den Alternativen, in denen sich alle Attribute unterscheiden,
während Interaktionsmodelle erster Ordnung aus Alternativen bestehen, die sich in
ungefähr der Hälfte der Attribute unterscheiden. Im Fall der Interaktionsmodelle
zweiter Ordnung scheint es keine derart allgemeingültige Regel zu geben. Für Modelle
von kleinen Profilstärken können analytische Lösungen für optimale Designs gefunden
werden, während größere Profilstärken numerische Methoden erfordern. Zudem bedürfen
optimale Designs im Fall von binären Attributen zweier Typen von Paaren, in denen
entweder alle Attribute unterschiedliche Stufen haben oder ungefähr jeweils die Hälfte
der Attribute identisch und unterschiedlich sind. Für eine größere Anzahl von Stufen
genügt in der Regel ein Typ von Paaren. In Ausnahmefällen bedarf es zweier Typen von
Paaren, und nur für den Fall vollständiger Interaktion werden alle Typen von Paaren
benötigt.

In den Kapiteln 8 und 9 werden die zuvor beschriebenen Resultate auf Paarvergle-
ichsmodelle mit Interaktionen der dritten Ordnung erweitert. Für binäre Attribute
müssen wieder zwei Typen von Paaren verwendet werden, für die die Anzahl der
verschiedenen Attribute symmetrisch zur Hälfte der Profilstärke ist. Für größere Stufe-
nanzahlen genügt es in der Regel erneut, nur einen Typ von Paaren zu betrachten.

Die Arbeit schließt mit einer kurzen Diskussion und einem Ausblick in zukünftige
Forschungsfragen.
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1 Introduction

Paired comparisons are closely related to experiments with choice sets of size two (sets
of two competing alternatives or options), which are presented to respondents in a form
of a questionnaire for them to indicate the most preferred alternative by trading off
one alternative against the other. Modes of presentation are usually a paper and pencil
task that is either self-administered or presented through an interviever, a full-blown
multimedia event or administered by mail or through the internet. The method of
paired comparison experiments was early introduced in psychophysics by Fechner (1860)
to measure the perceived heaviness of vessels. Moreover, over the last few years paired
comparison experiments have also received considerable attention in many other fields of
applications like statistics, health economics, transport, multidimensional scaling, sports
competition, marketing, and many others (Davidson and Farquhar, 1976) for learning
consumer preferences towards new products or services. For example, taste testing
experiments are often designed as paired comparison experiments (Scheffé, 1952).

The roots of paired comparisons can also be traced back to the work by Thurstone
(1927) and Bradley and Terry (1952), who developed models under the various assump-
tion that the probability for one of the only two possible outcomes (preference for one
or the other alternative in so-called choice sets of size two) of each comparison follow a
cumulative distribution function of a normal or logistic distribution, respectively.

As was already pointed out by Train (2003) the easiest and most widely used choice
model is the multinomial logit model (MNL model), which was originally derived by Luce
(1959). An appealing feature of the MNL model is that after a suitable parameterization
it reduces to the aforementioned Bradley-Terry model for the important particular case
of paired comparisons (e.g., see Großmann, Holling, and Schwabe, 2002). Also, the MNL
choice probabilities which has been derived by McFadden (1974) take a closed form,
which means that the traditional maximum-likelihood procedures can be applied to
obtain model parameters without using simulation methods, and is easily interpretable
(Bunch and Batsell, 1989; Train, 2003).

While the MNL model embody the property of independence from irrelevant alterna-
tives (IIA), which means that the ratio of the choice probability for any two alternatives
in a choice set is not affected by addition or deletion of other alternatives in the set.
The consequence of this property is that the MNL model is consistent with utility
maximization (Marschak, 1960).

To relax the property of IIA, and as an extension of the MNL model, more flexible
choice models such as the generalized extreme value (GEV) and the mixed logit model
have been developed (Train, 2003, p. 54). However, there have been few implemantations
or applications of these flexible models in choice experiments (see Carson et al., 1994;
Train, 2003). The MNL model continues to play a key role in choice experiments, and
it performs well for other models (Burgess, Street, and Wasi, 2011; Bush, 2014). A
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comprehensive introduction to the general area of choice experiments can be found in
the literature (Louviere, Hensher, and Swait, 2000; Train, 2003; Louviere, Street, and
Burgess, 2004; Großmann and Schwabe, 2015).

Another prominent technique of measuring paired comparisons which is a variant of
the choice experiments is known as conjoint analysis, which originated from conjoint
measurement in psychology (Luce and Tukey, 1964), and was first applied in marketing
by Green and Rao (1971). Reviews of theory, methods and applications of conjoint
analysis are provided (Green and Srinivasan, 1990). The main difference of conjoint
analysis from choice experiments is the response formats used in the survey and the
statistical models used for analyzing data. While for conjoint analysis responses are
usually assessed on a rating scale (or generally respondents assign a score representing the
degree of preferences) and the general linear model is used, discrete choice experiments
which is non-linear draws on the aforementioned MNL model (see Großmann, Holling,
and Schwabe, 2002). Some early useful contributions to these areas can be found in
(Scheffé, 1952; Quenouille and John, 1971; Green, 1974; Green and Srinivasan, 1978).

The problem of optimal design constructions for paired comparison studies has been
early considered in the literature (El-Helbawy and Bradley, 1978; Offen and Littell, 1987;
van Berkum, 1987b). For instance, when there are three attributes each at two-levels
some optimal design results incorporating main-effects and all interactions have been
derived for a general mixed factorial model under the assumption that model parameters
are equal (El-Helbawy and Bradley, 1978). These results have been extended to the
case when there are more than three attributes (El-Helbawy and Ahmed, 1984) and
to general asymetrical factorial paired comparison experiments (El-Helbawy, Ahmed,
and Alharbey, 1994). Corresponding results on optimal designs for symmetric and
asymmetric factorial experiments have also been obtained by El-Helbawy, Ahmed, and
Alharbey (1994). Offen and Littell (1987) derived optimal paired comparison designs
for the Bradley-Terry model without ties. Moreover, optimal paired comparison designs
for main-effects and two-attribute interactions under the assumption of no treatment
differences have been derived (van Berkum, 1987a; van Berkum, 1987b; van Berkum,
1989), and some optimal design results when there is prior information about model
parameter values have also been obtained (Huber and Zwerina, 1996; Sandor and Wedel,
2001). Some results about generating locally optimal designs for the MNL model can
also be found (Huber and Zwerina, 1996).

In what follows, it is worthwhile mentioning that the linear difference model consid-
ered here can be realized as a linearization of the binary response model by Bradley and
Terry (1952) under the assumption that the parameter vector β = 0 (e.g., see Großmann,
Holling, and Schwabe, 2002). Specifically, under this indifference assumption of equal
choice probabilities, the Bradley-Terry type choice experiments as in the work of Street
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and Burgess (2007), amongst others can be derived by considering the linear paired
comparison model. In particular, this assumption simplifies the information matrix of
the binary logit model because of its non-linearity and the dependence of the model
parameters on the information matrix. As a consequence, and in particular for the
present work optimal designs for the binary logit model can be derived by considering
the linear paired comparison model, which is the approach adopted in many scientific
works (Street, Bunch, and Moore, 2001; Street and Burgess, 2004; Street, Burgess, and
Louviere, 2005; Graßhoff et al., 2003; Graßhoff et al., 2004; Großmann and Schwabe,
2015).

Typical with paired comparisons, respondents usually evaluate pairs of competing
options (alternatives) in a hypothetical (occasionally real) setting which are generated
by an experimental design as already mentioned, and are characterized by a number of
attribute levels. The preferences of respondents are analyzed with a statistical model
like the binary logit model or the linear paired comparison model to provide quantitative
measures or utility estimates of the relative importance of each attribute. However,
in applications (such as marketing), situations may arise in which practitioners may
be interested in special comparison among the attributes (interactions). For example,
Bradley and El-Helbawy (1976) considered a taste preference experiment on coffee
with three attributes; brew strength, roast color and coffee brand, each at two levels,
and up to three-attribute interactions. The various assumptions about comparison
among these three attributes involving main-effects, two-attribute and three-attribute
interactions are well summarized in their Tables 3 and 4 of their paper. Similar results
involving three-attribute interactions can also be found in Example 3 of El-Helbawy
and Bradley (1978). Elrod, Louviere, and Davey (1992) also considered a study about
student preferences for rental apartments involving main-effects, two-attribute, three-
attribute and four-attribute interactions, which is well summarized in Table 2 of their
paper. Another strand of work for the case of direct observation that incorporates
three-attribute interactions using real data in a randomized clinical trial of high-risk
mother-baby dyads can also be found (Shiao, Ahn, and Akazawa, 2007). Although
not much attention has been given to higher-order interactions in the literature, the
aforementioned works serve as a motivation for the present work when three or four of
the attributes interact.

As frequently observed, in applications the choice task imposes cognitive burden
when the alternatives presented are specified by too many attributes. As such the choice
sets are answered anyhow which can destroy the quality of the data. In that situation,
a way to simplify the choice task is to specify only a few components (attributes) of the
alternatives so-called profile strength (see Großmann and Schwabe, 2015). Experiments
that embody this method are known as partial profile experiments (e.g., see Green,
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1974; Chrzan, 2010; Graßhoff et al., 2003). In the present setting the work or result on
partial profiles is motivated by a recent study (e.g., see Großmann, 2018) in the health
sector which is focused on the construction of partial profile choice design for pairs with
eleven attributes, each at two levels, and where only four attributes are to be shown to
respondents simultanously.

The main contribution of this thesis lies in the introduction of an appropriate
model for the situation of full and partial profiles and to derive optimal designs in the
presence of interactions. We consider the case when the components of the alternatives
are specified by two-level and common number general-level attributes. Work on
determining the structure of the optimal designs by the two-level situation has been
carried out (van Berkum, 1987a; van Berkum, 1987b; Street, Bunch, and Moore, 2001)
in the case of full profiles in a main-effects and first-order interactions setup, and by
Schwabe et al. (2003) for partial profiles. Corresponding results when the common
number of the attribute levels is larger than two have been obtained by Graßhoff et al.
(2003) in a first-order interactions setup for both full and partial profiles. Here we treat
the case of both second-order and third-order interactions.

This thesis is organized as follows. In Chapter 2 general linear models are intro-
duced for paired comparisons. The fundamentals of the statistical theory of optimal
experimental designs are presented in Chapter 3. Optimal design for the linear paired
comparison model with emphasis on the part-worth model as well as the standard
parameterization with a single attribute are briefly considered in Chapter 4, and a brief
summary of optimal designs in the presence of the first-order interaction models as a
motivation for the present work are presented in Chapter 5. The main part of this work
on determination of optimal designs in the presence of the second-order interaction
models for the case of two-level attributes with full and partial profiles are presented
in Chapter 6. These results are extended to the case of common number general-level
attributes in Chapter 7. In addition, optimal designs in the presence of the third-order
interaction models for the case of two-level attributes with full and partial profiles are
presented in Chapter 8, and the corresponding results for common number general-level
attributes are presented in Chapter 9. The final Chapter 10 offers a discussion of the
results and an outlook on future research.
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2 Paired Comparison Models

For paired comparison models the works by van Berkum (1987b), Bradley and Terry
(1952), El-Helbawy and Bradley (1978) and Großmann and Schwabe (2015) amongst
others build a good introduction. The problem of paired comparison experiments in
the linear paired comparisons model is well discussed in the literature (see van Berkum,
1987b; Quenouille and John, 1971; Graßhoff et al., 2003; Großmann, 2003; Graßhoff
et al., 2004; Großmann and Schwabe, 2015, amongst others). The aforementioned
publications serve as a motivation for the present work.

In the underlying sections we provide some basic concepts about paired comparison
experiments in the linear paired comparisons model. A special case becomes the part-
worth model (see Green and Srinivasan, 1978, p. 105). These models will serve as a
building block to construct paired comparison designs with interactions later on after
Chapter 4.

2.1 General Linear Model for Paired Comparisons

In paired comparisons the outcome of the experiment depends on some factors (at-
tributes), say, K of influence. In this setting the dependence can be described by a
functional relationship f̃ of dimension p which quantifies the effect of the alternative i
of the K attributes of influence. Thus, for every k = 1, . . . , K the set of all possible
realizations of the ik level of the k-th attribute can be identified with a finite set Ik ⊆ R.
Hence, each alternative can be represented as i = (i1, . . . , iK) which are elements from
the set I = I1 × · · · × IK . Any observation (utility) Ỹna(i) of a single alternative
i = (i1, . . . , iK) within a pair of block alternatives (a = 1, 2) is subject to a random
error ε̃na, which is assumed to be uncorrelated with constant variance and zero mean.
Hence, we formalize the experimental situation by a general linear model

Ỹna(i) = µn + f̃(i)>β + ε̃na, (2.1)

with i ∈ I where the index n denotes the n-th presentation for which i is chosen from
the set I of possible realizations for the alternative, n = 1, . . . , N , and N is defined as
the fixed sample size. If we assume that the corresponding mean response (function)
E(Ỹna(i)) = µn + f̃(i)>β can be parameterized in a linear way, then E(Ỹna(i)) is known
to be a linear combination of some p known regression functions fi : I → R, i = 1, . . . , p.
For notational convenience we summarize the regression functions into one regression
function f̃ : I → Rp with f̃(i) = (f1(i), . . . , fp(i))> for every i ∈ I. Hence, the response
function E(Ỹna(i)) is determined up to the unkown parameter vector β ∈ Rp.

5



By denoting Ỹa = (Ỹ1a(i1), . . . , ỸNa(iN))> as the vector of observations, ε̃a =

(ε̃1a, . . . , ε̃Na)
> as the vector of errors and F̃ = (̃f(i1), . . . , f̃(iN))> as the matrix of

dimension N , then model (2.1) can be reformulated in a vector notation as

Ỹa = F̃β + ε̃a. (2.2)

We now consider paired comparison experiments. In paired comparison experiments
the utilities for the alternatives are not directly measurable. Only preferences can be
observed for comparing pairs of alternatives (i, j) = ((i1, . . . , iK), (j1, . . . , jK)) ∈ I × I.
Hence, we assume that the preference is quantified as the difference between utilities
Yn(i, j) = Ỹn1(i) − Ỹn2(j). In this case the utilities for the alternatives are properly
described by the linear paired comparison model

Yn(i, j) = (̃f(i)− f̃(j))>β + εn, (2.3)

with (i, j) ∈ I×I. Here if we impose the concept of linear parametrization as described in
(2.1) on the corresponding mean response E(Yn(i, j)) = (̃f(i)− f̃(j))>β for f̃ : I×I → Rp

then f̃(i)− f̃(j) is the derived regression function and the random error εn = ε̃n1 − ε̃n2
associated with the pairs (i, j) ∈ I × I is assumed to be uncorrelated with constant
variance and zero mean.

By letting Y = (Ỹn1(in) − Ỹn2(jn), . . . , ỸN1(iN) − ỸN2(jN))> or Y = Ỹ1 − Ỹ2 and
ε = (ε̃n1− ε̃n2, . . . , ε̃N1− ε̃N2)

> or ε = ε̃1− ε̃2 be the vectors of observations and errors
of dimension N , respectively, and F = (̃f(in)− f̃(jn), . . . , f̃(iN)− f̃(jN))> be the matrix
of dimension N × p, the model (2.3) can be reformulated in a vector notation as

Y = Fβ + ε. (2.4)
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2.2 Part-Worth Model

In paired comparison every attribute is usually assigned with some small number of
levels. For this situation the utility of every attribute-levels is equal to its part, and
the overall utility of every alternative constitutes the sum of its parts (sum of so-called
part-worth utilities). Among the preference models, and for the particular case of
generic attributes the part-worth model approach has received wide acceptance because
it is readily interpretable (Green and Srinivasan, 1978).

With this model, of course, only a finite number of levels for the K attributes will be
considered for the paired comparison experiments. Thus the k-th attribute at vk levels
in the paired comparison experiments can be represented by the set Ik = {1, . . . , vk}
for k = 1, . . . , K. As pointed out by Green and Srinivasan (1978), modeling the full
range of the attributes is essential to enhance the validity of part-worth values. Hence,
for the multiple-attributes k = 1, . . . , K the mean response E(Ỹna(i)) of the alternative
i = (i1, . . . , iK) from the set I = I1 × · · · × IK can be formulated as

E(Ỹna(i)) = µn +
K∑
k=1

α
(k)
ik
, (2.5)

where the parameter α(k)
ik

is the part-worth of a particular level ik of the attribute k as
will be explored for the particular case of just a single-attribute in Section 4.2. Hence,
from (2.1) the mean response E(Ỹna(i)) for every i ∈ I can be defined by the vector of
regression functions

f̃(i) = (f1(i)>, . . . , fK(i)>)>

with ik ∈ Ik where for k = 1, . . . , K each at levels ik = 1, . . . , vk − 1 the vector of
regression functions are given by

fk(i) = eik for ik = 1, . . . , vk − 1, and fk(i) = 1vk−1, (2.6)

where ei denotes the i-th unit vector of length vk − 1 and 1m the m-dimensional vector
with all entries equal to 1. The corresponding part-worth (reduced) parameter vector is
given by

β = (α
(1)
1 , . . . , α

(1)
v1−1, . . . , α

(K)
1 , . . . , α

(K)
vK−1)

>, (2.7)

which satisfies the usual identifiability condition
∑vk

ik=1 α
(k)
ik

= 0 for k = 1, . . . , K. As a
consequence, from (2.4) the mean response E(Yn(i, j)), n = 1, . . . , N for all (i, j) ∈ I×I
can be reformulated by the matrix of regression functions F defined in (2.4).
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3 Optimal Experimental Designs

The statistical theory of optimal experimental design is concerned with the allocation of
treatments (combinatons of a finite number of levels of attributes) to respondents, and
the choice of those values of the attributes in a linear (or non-linear) model at which
observations should be taken (Smith, 1918; Atkinson, 2011). Usually, best experimental
designs are assertained by a certain criteria. The modern statistical theory of optimal
experimental designs can be found in a series of papers by Kiefer (see Atkinson, 2011).
A comprehensive introduction to the theory of optimal experimental designs is well
established in the literature (e.g., see Pázman, 1986; Pukelsheim, 1993; Schwabe, 1996;
Fedorov and Hackl, 1997; Cox and Reid, 2000; Atkinson, Donev, and Tobias, 2007). A
general introduction to the applications of optimal experimental designs in the area of
paired comparisons (conjoint and choice experiments) can be found in the works by
Kuhfeld, Tobias, and Garratt (1994), Louviere and Woodworth (1983), Louviere, Street,
and Burgess (2004), Huber and Zwerina (1996) and Großmann (2003), amongst others.
For more recent applications of optimal experimental designs (see e.g. Verelst et al., 2018;
Luyten et al., 2015; Großmann, 2017; Großmann, 2018). The subsequent chapters draw
on the concepts about optimal experimental designs in the aforementioned publications.

3.1 Preliminaries

In design of experiments several attributes may involve. For instance, in a chemical
experiment possible attributes of influence on the response may be the time of reaction,
pressure, temperature and the catalyst used. In psychology career preferences the
possible attributes of influence may be academic, industrial, educational and clinical. It
is up to the experimenter (investigator) to then select the treatments under study in
order to obtain good estimates of responses. In this case, we make use of the general
linear model as a function of qualitative independent K attributes. Suppose xk is the
levels of the k-th component (attribute) selected from the set Ik, k = 1, . . . , K. Then
the experimental setting x = (x1, . . . , xK) is a K-tuple from the experimental region X .
The general linear model is then formalized by

Yn(x) = f(x)>β + εn, (3.1)

where as before Yn(x) denotes the n-th observation on the response at setting x,
f = (f1, . . . , fp)

> : X → Rp is a vector of p known regression functions, β ∈ Rp denotes
the unkown parameter vector, the experimental region X is assumed to be a compact
set with image X ⊂ Rp. The observational errors εn are assumed to be uncorrelated
with constant variance σ2.
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In the vector notation the general linear model (3.1) can be reformulated as

Y = Fβ + ε, (3.2)

where as before Y = (Y1(x1), . . . , YN(xN))> is the vector of N observations, F =

(f(x1), . . . , f(xN))> denotes the design matrix and ε = (ε1, . . . , εN)
> is the vector of N

observational errors. We assume that the design matrix F has full column rank p, ε is
uncorrelated have zero mean and constant variance σ2. With these assumptions the
method of least squares or the Gauss-Markov theorem is usually used to obtain the
model parameters β.

By letting β̂ be the estimate of β, the best linear unbiased estimator for β is given
by the Gauss-Markov estimator

β̂ = (F>F)−1F>Y, (3.3)

where the covariance matrix of β̂ is given by

Cov(β̂) = σ2(F>F)−1. (3.4)

As the theory of optimal experimental designs is focused on minimizing functions
of the variances and covariances in order to obtain good parameter estimates, an
experimenter has to select the experimental settings x1, . . . ,xN in a suitable sense.

For convenience in notation, we point out that how the situation of paired comparison
fits into the corresponding experimental setting x (the standard experimental situation)
will be briefly introduced/discussed at the beginning of Chapter 4, because in paired
comparison experiments one is interested in differences between alternatives (van
Berkum, 1987b). This will further lead to a discussion in Section 4.1 about the minimal
reparameterization of the corresponding models, in particular the parth-worth model
(2.5).
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3.2 Designs and Information

In this section we give the description of a design, which is a collection of experimental
settings x1, . . . ,xN (usually under the control of an experimenter) from the experimental
region X that specifies the range of values of the experimental attributes, and optimal
for the estimation of the unknown parameter β in the general linear model (3.1). The
quality of the design may be measured by means of the covariance matrix (3.4).

An exact experimental design ξ̃ of size N of possible level combinations from the
experimental region X is a vector (x1, . . . ,xN) of experimental setting xn ∈ X , n =

1, . . . , N , which need not necessarily be distinct. Here, if we assume that the experimen-
tal settings are the same as characterized in (3.2) then the exact experimental design
ξ̃ of size N from X has corresponding design matrix F defined in (3.2). Hence, the
normalized information matrix M(ξ̃) of the exact design ξ̃ of size N from X is defined
by

M(ξ̃) =
1

N
F>F

which can be obtained from the inverse of the covariance matrix (3.4) of the best linear
unbiased estimator β̂ when we get rid of the constant term σ2. The design matrix F as
defined in (3.2) has full column rank.

The exact experimental design ξ̃ of size N from X may be alternatively represented
by its M distinct settings (different level combinations) defined by x1, . . . ,xM and the
corresponding numbers N1, . . . , NM of replications with

∑M
m=1Nm = N as

ξ̃ =

(
x1 . . . xM
N1 . . . NM

)
. (3.5)

The exact experimental design ξ̃ of size N from X can be identified with a discrete
probability (design) measure

ξ =
M∑
m=1

wmε{xm} (3.6)

where wm = Nm

N
is the proportion of observations at the setting xm, m = 1, . . . ,M ;

however, the assumption of integer values for the numbers N1, . . . , NM of replications
is dropped and only the conditions wm ≥ 0 and

∑M
m=1wm = 1 have to be satisfied,

and ε{xm} denotes the one-point measure on xm (see Schwabe, 1996). The information
matrix M(ξ) of the generalized design ξ is defined by

M(ξ) =
M∑
m=1

wmf(xm)f(xm)>.
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Hence, by letting ε{x} denotes the one-point measure on x as similarly specified in (3.6)
the information matrix can be alternatively written as an integral with respect to the
design measure ξ as

M(ξ) =

∫
X
f(x)f(x)>ξ(dx).

For the exact experimental design ξ̃ the (normalized) variance of the mean response
N
σ2 Var(f(x)>β̂)) is defined by

V (x, ξ̃) = f(x)>M(ξ̃)−1f(x),

which is a function of both ξ̃ and the experimental setting x. Moreover, for the
generalized design ξ the corresponding variance function is defined by

V (x, ξ) = f(x)>M(ξ)−1f(x). (3.7)

The departure from the exact experimental design ξ̃ of size N from X to the
probability measure ξ is stimulated by the fact that it is usually convenient to apply
optimization techniques to treat experimental designs incorporating probability measures
instead of exact experimental designs. This concept of transition is discussed in the
literature (see Kiefer, 1959; Schwabe, 1996; Atkinson and Donev, 1992, amongst others).

For technical ease, we follow Schwabe (1996, p. 7) and give a formal definition of a
(generalized) experimental design ξ as a probability measure on (the experimental or
design region) X . We note that for the generalized experimental design ξ the information
matrix M(ξ̃) = M(ξ) =

∫
X f(x)f(x)

>ξ(dx) is identical to the information matrix (which
is positive-semidefinite) of the corresponding exact experimental design ξ̃ of size N
from X .

Throughout the sequel we note that every generalized experimental design ξ on X
in (3.6) will be characterized by distinct design points {x ∈ X : ξ({x})} where the
probabilities ξ({x}) on all the distinct design points are rational numbers. In this case
the probability measure ξ =

∑M
m=1wmε{xm} coincides with every exact experimental

design ξ̃ with least size N characterized in (3.5). However, since in practice all designs
are exact, if the weights wm are not rational, it will not be possible to find an exact
experimental design ξ̃ which is identical with the generalized experimental design ξ (see
Atkinson and Donev, 1992, p. 94).
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3.3 Optimality Criteria

In this section we describe some specific (alphabetic) design criteria of A-, D-, E- and
G-optimality (e.g. see Kiefer, 1959; Atkinson and Donev, 1992; Schwabe, 1996, for
detailed discussion), which have statistical interpretation in terms of the covariance
matrix (3.4) of the Gauss-Markov estimator (3.3) or the information matrix M(ξ̃) of
the exact experimental design ξ̃ of size N and the information matrix M(ξ) of the
generalized experimental design ξ presented in Section 3.2. Thus, if ξ1 and ξ2 are two
experimental designs such that the difference of their informaton matrix M(ξ1)−M(ξ2)

is positive definite, then for the aforementioned alphabetic design criteria, ξ1 will be
better than ξ2. Additionally, if the experimental design ξ1 can be found such that
M(ξ1)−M(ξ2) is at least positive-semidefinite for all ξ2 and positive definite for some
ξ2, then the experimental design ξ1 is considered to be globally optimal (see Atkinson
and Donev, 1992, p. 115). Analogously, if β is identifiable, then in this case for every
linear combination c>β, c ∈ Rp the (variances) for β as well as the covariance matrix
(3.4) is simultanously minimized by ξ1, and additionally, ξ1 will produce the best linear
unbiased estimator β̂ for β in the experimental situation considered in Section 3.1.

Here because of completness we consider the general linear model (3.1) with the
usual assumption that the regression functions f of components f1, . . . , fp are linearly
independent on the experimental region X . In any case the alphabetic optimality
criteria can be described as functions of the information matrix M(ξ) with eigenvalues
λ1, . . . , λp. For instance, A-optimality tr(M(ξ)−1) minimizes the mean variance of the
parameter vector β, D-optimality minimizes the generalized variance (or determinant
det(M(ξ)−1)) of the parameter estimates and E-optimality minimizes the variance of
the least well-estimated any linear combination c>β satisfying the constraint c>c = 1.

In the following, we formalized the (definition) of the aforementioned optimality cri-
teria. An experimental design ξ∗ is (defined) as A-optimal if tr(M(ξ∗)−1) ≤ tr(M(ξ)−1)

holds for every experimental design ξ with (regular) information matrix M(ξ). This
definition is equivalent to considering the exact experimental design ξ̃ with regular
information matrix M(ξ̃) proportional to tr(M(ξ̃)−1). An experimental design ξ∗ is
(defined) as E-optimal if λ∗max(M(ξ∗)−1) ≤ λmax(M(ξ)−1) holds for every experimental
design ξ with regular information matrixM(ξ) where λmax denotes the largest eigenvalue
λ1, . . . , λp of M(ξ). This definition is equivalent to considering the exact experimental
design ξ̃ with regular information matrix M(ξ̃) proportional to λmax(M(ξ̃)−1).

Further we consider the celebrated criterion of D-optimality. An experimental
design ξ∗ is (defined) as D-optimal if det(M(ξ∗)−1) ≤ det(M(ξ)−1) or, equivalently,
det(M(ξ∗)) ≥ det(M(ξ)) holds for every experimental design ξ with regular informa-
tion matrix M(ξ). As a result, if we assume that the observations on Yn(x) at the
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experimental setting x in model (3.1) are independent or uncorrelated, then this can
be motivated by a confidence ellipsoid for the parameter vector β. The volume of the
ellipsoid is inversely proportional to det(M(ξ))1/2, which the D-optimality seeks to
maximizing det(M(ξ)) (see Silvey, 1980, p. 10). In particular, this criterion is convex
and, hence convex optimation can be used. The G-optimality is another important
criterion. We (define) an experimental design ξ∗ to be G-optimal if it minimizes the
maximum over the experimental region X of the variance function V (x, ξ) in (3.7)
satisfying the property

max
x ∈X

V (x, ξ∗) = min
ξ

max
x ∈X

V (x, ξ).

For the particular case of generalized designs, this design measure ξ∗ will also be
D-optimal and V (x, ξ∗) = p, where p is the number of model parameters in the general
linear model (3.1). This equality has only to hold for x in the support of ξ∗, i.e.
for those x with ξ∗({x}) > 0. This concept of equivalence of D- and G-optimality
designs establishes the celebrated Kiefer and Wolfowitz (1960) equivalence theorem (see
Atkinson and Donev, 1992, p. 116).

To compare two competing designs to find out which is better, it is a standard
technique to rely on the normalized information matrix which expresses information on
a per-obsevation basis, and then use the so-called efficiency measure. For D-optimality
criterion which aims at maximizing the determinant of the normalized information
matrix to facilitate the analysis of the design efficiency, we define the efficiency of every
experimental design ξ relative to the D-optimal experimental design ξ∗ by

effD(ξ) = 100×
(

det(M(ξ))

det(M(ξ∗))

)1/p

where p is the number of model parameters in the general linear model (3.1). Often the
D-efficiency can be interpreted as the percentage of observations that can be saved by
using the optimal design ξ∗ instead of ξ to obtain the same precision and the maximum
value of effD(ξ) is 100.
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4 Optimal Designs for Linear Paired Comparison Models

As was already pointed out in the present setting we give a brief discussion about how
the corresponding standard experimental situation considered in Chapter 3 fits into the
paired comparison models introduced in Chapter 2. In that case for the K attributes
where ik = 1, . . . , vK was the levels of the k-th attribute (component) of influence
from the finite set Ik, each alternative was presented as i = (i1, . . . , iK) from the set
I = I1 × · · · × IK as formalized in the general linear model characterized in Section
2.1. Here and, in particular for the situation of paired comparisons, we mention that
the experimental setting x = (x1, . . . , xK) of component xk for the general linear model
described in Section 3.1 consists of ordered pairs x = (i, j) = ((i1, . . . , iK), (j1, . . . , jK)) ∈
X = I × I of K-tuples where the component xk is a pair (ik, jk) ∈ Ik × Ik of levels
of the k-th attribute selected from the experimental (design) region X . For the rest
of the present work we will mainly focus on the corresponding situation in which the
experimental region X consists of ordered pairs (i, j).

4.1 Part-Worth Model

As was already pointed out here we note that the parameter vector β = (α
(1)
1 ,

. . . , α
(1)
v1−1, . . . , α

(K)
1 , . . . , α

(K)
vK−1)

> of the part-worth model described in Section 2.2 is
minimal (reduced) i. e. the model (2.5) is not over-parameterized. As a consequence,
by the usual identifiability condition we obtain

∑v1
i1=1 α

(1)
i1

= · · · =
∑vK

iK=1 α
(K)
iK

= 0 for
levels ik = 1, . . . , vK and attributes k = 1, . . . , K. In what follows, here we note that
instead of considering the individual effects of all the multiple-attributes k = 1, . . . , K,
in the next Section 4.2 we will focus on the standard parameterization of only the effects
of a single-attribute (component) where

∑vk
ik=1 α

(k)
ik

= 0. It is worthwhile mentioning
that the effects of the single-attribute sum up to the effects of the multiple-attributes
where

∑K
k=1 α

(k)
ik

for ik ∈ Ik in model (2.5). Specifically, by using the single-attribute
one can recover the multiple-attributes (e.g., see Graßhoff et al., 2004). It should be
noted that for the case of paired comparison only differences of the effects is of interest.

Often, in applications one may only be interested in the corresponding reduced
parameter vector β. As a consequence, the concepts of optimal experimental designs
discussed in Chapter 3 which embody the definition of the information matrix as well
as the optimality criteria and the Gauss-Markov estimator can therefore, as here, be
convieniently applied to the reduced parameter vector β of the underlying models.

In the following after the representation of the standard parameterization of the
marginal model of the single-attribute becomes first optimal designs for the correspond-
ing single-attribute at general-levels, which is followed by a brief summary of optimal
designs for the first-order interaction models. We then introduce appropriate models for
the second-order interactions, and provide results for the corresponding optimal designs
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for paired comparisons of full profiles (paired alternatives) involving multiple-attributes
each at two-levels. This results will be generalized to the case when the optimal designs
for the paired comparisons of full profiles are characterized by multiple-attributes each at
common number of general-levels. Further the results involving multiple-attributes each
at two-levels and common number of general-levels will be extended to the situation in
which the paired alternatives are characterized by a subset of the multiple-attributes (so
called partial profiles) in order to mitigate cognitive burden as frequently encountered
in practice. Besides, we will also introduce appropriate models for the third-order
interaction model and derive some optimality results for the situation of both full and
partial profiles when each attribute has two-levels. Finally, this results will be extended
to the situation of common number of general-levels.

4.2 Standard Parameterization with Single-Attribute

In the following we consider reparameterization of the part-worth model for the situation
in which the alternatives are characterized by only a single-attribute so-called one-way
layout in the analysis of variance model (e.g., see Scheffé, 1952). This parameterization
will enhance the generation of D-optimal designs, which will then be used in the
subsequent sections as components in the construction of optimal experimental designs
for the situation in which the paired alternatives to be evaluated are characterized by
many attributes (so-called K-way layout in the analysis of variance model) with main
effects as well as interactions.

In the present setting, the effects of each single level i of a single qualitative attribute
(K = 1) as already specified in Section 4.1 can be written in a general form as v levels
where i = 1, . . . , v with corresponding parameters denoted by αi. For illustration of
the concept of paired comparison by the one-way layout at v levels (see Graßhoff et al.,
2004), we adopt the standard parameterization of effects-coding

Ỹna(i) = µn + αi + ε̃na, (4.1)

i ∈ I = {1, . . . , v} where I is the set for the single-attribute, µn denotes the block
effects in the n-th presentation and ε̃na is the random error, which is assumed to be
uncorrelated with constant variance and zero mean. For effects-coding the regression
function f = f1 in equation (2.6) is appropriately given by f1(i) = ei, i = 1, . . . , v−1 and
f1(i) = −1v−1 for i = v, respectively, where ei is the i-th unit vector of length v− 1 and
1m denotes a vector of length m with all entries equal to 1. With this parameterization
we obtain the reduced parameter vector β = (α1, . . . , αv−1)

>, which satisfies the usual
identifiability condition

∑v
i=1 αi = 0 where the effects of the last level v can be obtained
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from the reduced parameter vector αv = −
∑v−1

i=1 αi such that

Ỹna(i) = µn + f1(i)β + ε̃na. (4.2)

Hence, the reduced parameter vector β = (α1, . . . , αv−1)
> will be used in order to avoid

singularity.
For paired comparisons an observation of the effects αi − αj of level i compared to

level j can be characterized by the response

Yn(i, j) = (f1(i)− f1(j))β + εn = αi − αj + εn. (4.3)

where f1(i, j) = ei − ej, f1(i, v) = ei + 1v−1, f1(v, i) = −f1(i, v), for i, j = 1, . . . , v − 1

and f1(v, v) = 0.
Now in the following we restrict our attention to the concepts of invariance (e.g., see

Schwabe, 1996, Chapter 3) and show that the D-optimality is not affected by the par-
ticular choice of the parameterization in the corresponding marginal paired comparison
model for the one-way layout based on symmetric properties of the underlying theorem.
By Schwabe (1996, p. 27) we define G as a group of transformation (permutations) of
the set I = {1, . . . , v} and g a transformation of the set I = {1, . . . , v}. We define the
orbit by (i, j) ∈ X = I × I where X is the corresponding design region for the single-
attribute and f1 is the regression function in (4.3). Moreover, the regression function
f1 : I × I → Rv−1 is defined as linearly equivariant with respect to the transformation
g of the set I = {1, . . . , v} if there exists a transformation matrix Qg ∈ Rv−1, such that

f1(g(i, j)) = Qgf1(i, j), (4.4)

for all i, j = 1 . . . , v. We mention that the corresponding regression function f1 : I×I →
Rv−1 is also linearly equivariant with respect to the group G of transformation of the
set I if f1 is linearly equivariant with respect to the transformation g for every g ∈ G.
Further by Theorem 3.3 and Lemma 3.4 in Schwabe (1996) we denote by ξ an invariant
design which is uniform on the orbits and show that a design ξ∗v,0 which assigns equal
weights 1

v(v−1) to all pairs (i, j) with i 6= j is D-optimal. Analogous results in the
following theorem and corollary can be found (e.g., see Schwabe, 1996; Großmann, 2003;
Graßhoff et al., 2004).

Theorem 4.1. In the one-way layout for paired comparisons the design ξ∗v,0 on the set
{(i, j) ∈ I × I : i 6= j} is D-optimal.

Proof. Let X0 = {(i, j) : i = j} and X1 = {(i, j) : i 6= j} be the two orbits with respect
to G. Then the invariant design ξ is uniform on the two orbit. Because the information
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is zero on the orbit X0, this orbit does not contribute to the information matrix. Hence,
the uniform design on the orbit X1 of all pairs with differing alternatives is optimal.

If ξ∗v,0 on the set {(i, j) ∈ I × I : i 6= j} is invariant with respect to G then

ξ∗v,0 =
1

v(v − 1)

∑
(i,j):i 6=j

ε{(i,j)}.

Here ε{(i,j)} is the one-point measure in (i, j). The uniform design ξ∗v,0 has corresponding
information matrix

M(ξ∗v,0) =
2

v − 1
(Idv−1 + 1v−11>v−1), (4.5)

where Idm denotes the m-dimensional identity matrix.

We note that the uniform design ξ∗v,0 can be realized with a fixed sample size v(v−1)

which can be further reduced to a sample size v(v− 1)/2 by considering experiments to
those comparisons where i < j, which by interchanging the internal order does not affect
the corresponding information matrix M(i, j) = M(j, i). We denote the corresponding
uniform design by ξ∗v,1.

Corollary 4.1. In the one-way layout for paired comparisons the design ξ∗v,1 which is
uniform on the set {(i, j) ∈ I × I : i < j} is D-optimal.

Proof. The information matrix of the uniform design ξ∗v,1 coincides with that of the
D-optimal design ξ∗v,0

M(ξ∗v,1) =
2

v(v − 1)

∑
(i,j):i<j

f1(i, j)f1(i, j)>

=
1

v(v − 1)

∑
(i,j):i 6=j

f1(i, j)f1(i, j)> = M(ξ∗v,0).

Hence, ξ∗v,1 is also D-optimal and has smaller sample size v(v − 1)/2.
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Remark 4.1. The corresponding information matrix M(ξ∗v,0) has an inverse of the
form

M(ξ∗v,0)
−1 =

v − 1

2
(Idv−1 −

1

v
1v−11

>
v−1).

Further we note that by Lemma 2 of Graßhoff et al. (2003) we obtain f1(i)
>M(ξ∗v,0)

−1f1(i) =
(v−1)2

2v
and f1(i)

>M(ξ∗v,0)
−1f1(j) = −v−1

2v
for i 6= j. Hence, for the variance function we

obtain

V ((i, j), ξ∗v,0) = (f1(i)− f1(j))
>M(ξ∗v,0)

−1(f1(i)− f1(j))

= f1(i)
>M(ξ∗v,0)

−1f1(i) + f1(j)
>M−1f1(j)− f1(i)

>M−1f1(j)− f1(j)
>M−1f1(i)

= 2f1(i)
>M(ξ∗v,0)

−1f1(i)− 2f1(i)
>M(ξ∗v,0)

−1f1(j)

= v − 1, (4.6)

for i 6= j, while V ((i, i), ξ∗v,0) = 0, which establishes the D-optimality of the uniform
design ξ∗v,0 in view of the celebrated Kiefer and Wolfowitz (1960) equivalence theorem.
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5 Optimal Designs for First-Order Interactions Models

As a motivation for the present work in this chapter we give a brief summary of some
results in the design of paired comparison experiments for main effects and first-order
interaction models. In particular, Graßhoff et al. (2004) and Graßhoff et al. (2003),
respectively, considered D-optimal designs for paired comparisons in the presence of the
the main effects and the first-order interaction models for the situation when the paired
alternatives are described by analysis of variance model as considered by Scheffé (1952).
They constructed designs for the case when each attribute has common number of
general levels, and for which either full or partial profiles are presented simultaneously.
In the particular case of two-level attributes the corresponding results for which only
partial profiles are presented simultaneously can be found in Schwabe et al. (2003). The
designs found can also be constructed by the method of van Berkum (1987b) for the
case when full profiles are presented simultaneously. These results will be considered in
detail in the subsequent chapters to derive D-optimal designs for paired comparisons in
the presence of both the second and third-order interaction models.

In applications one may be interested in the utility estimates of both the main effects
and interactions between the levels ik = 1, . . . , v of the attributes k = 1, . . . , K. However,
certain level combinations of the attributes may result in higher or lower utilities. In
this setting for alternatives in a choice set of size two where both i = (i1, . . . , iK) and
j = (j1, . . . , jK) denote the first alternative and the second alternative, respectively,
which are both elements of the set I = I1 × · · · × IK = {1, . . . , v}K and where the
alternatives i and j are ordered pairs which are chosen from the design region X = I×I,
Graßhoff et al. (2003) obtained optimal designs in the first-order interactions setup by
considering analogous main effects and first-order interactions model of the form

Ỹna(i) = µn +
K∑
k=1

α
(k)
ik

+
∑
k<`

α
(k`)
iki`

+ ε̃na, (5.1)

with direct response (utility) Ỹna(i) where α
(k)
ik

is the main effects of the k-th attribute
when the corresponding level is ik = 1, . . . , v for k = 1, . . . , K in total and α(k`)

iki`
is the

first-order interaction effects of the k-th and `-th attribute when the corresponding levels
are ik = 1, . . . , v and i` = 1, . . . , v, respectively. Hence, by the common identifiability
conditions of effects-coding the following equalities hold:

21



α
(k)
ik

= β
(k)
ik

for ik = 1, . . . , v − 1 and α(k)
v = −

v−1∑
ik=1

βik ,

α
(k`)
iki`

= β
(k`)
iki`

for ik, i` = 1, . . . , v − 1, α
(k`)
ikv

= −
v−1∑
i`=1

β
(k`)
iki`

, ik = 1, . . . , v − 1,

α
(k`)
vi`

= −
v−1∑
ik=1

β
(k`)
iki`

, i` = 1, . . . , v − 1 and α(k`)
vv =

v−1∑
ik=1

v−1∑
i`=1

β
(k`)
iki`

.

The parameters for the main effects and the first-order interactions, respectively,
can be summarized as follows

βk = (β
(k)
ik

)ik=1,...,v−1 and βk` = (β
(k`)
iki`

)ik=1,...,v−1, i`=1,...,v−1, (5.2)

where e. g. βk describes the main effects of the k-th attribute and βk` describes
the effect of the first-order interaction of the k-th and `-th attribute. Hence, the
vector of parameters of dimension p = K(v − 1) +

(
K
2

)
(v − 1)2 can be written as

β = ((βk)
>
k=1,...,K , (βk`)

>
k<`)

>. Further with the above notation the corresponding model
(5.1) can be reformulated as

Ỹna(i) = µn +
K∑
k=1

f1(ik)>βk +
∑
k<`

(f1(ik)⊗ f1(i`))>βk` + ε̃na, (5.3)

where ⊗ denotes the Kronecker product of vectors or matrices, respectively, which
results in the vector f(i) having corresponding regression functions fk = f1 (see Section
4.2)

f(i) = (f1(i1)>, . . . , f1(iK)>, f1(i1)> ⊗ f1(i2)>, . . . , f1(iK−1)⊗ f1(iK)>)> (5.4)

of dimension p. Here, the first K components f1(i1), . . . , f1(iK) of f(i) are associated
with the main effects and have p1 = K(v − 1) and the remaining components f1(i1)⊗
f1(i2), . . . , f1(iK−1)⊗ f1(iK) of f(i) are associated with the first-order interactions and
have p2 = (1/2)K(K − 1)(v − 1)2.

The corresponding paired comparison model is given by
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Yn(i, j) =
K∑
k=1

(f1(ik)− f1(jk))>βk +
∑
k<`

((f1(ik)⊗ f1(i`))− (f1(jk)⊗ f1(j`)))>βk` + εn.

(5.5)

Due to the cognitive ability or the limited information processing capacity in appli-
cations when the alternatives involve too many attributes respondents get overloaded
by the complexity of the choice task and become wear-out. The choice sets are then
answered anyhow which can destroy the quality of the data as well as the estimated
model parameters because respondents’ decision might seem contradictory with their
actual preferences.

To overcome respondent wear-out or fatigue, only partial-profiles are presented
within a single paired comparison. Specifically, every choice set consists of alternatives
which are described by a predefined maximal number of attributes S (so-called profile
strength) with potentially different levels, while the remaining K − S attributes are not
shown or held constant. Here only those attributes that constitute the profile strength
are shown to responsents within a single paired comparison.

For a partial profile a direct observation may be described by model (5.3) when
summation is taken only over those S attributes contained in the describing subset.
This requires that the profile strength S must be, at least, two in order to capture the
first-order interactions. To facilitate notation we introduce an additional level ik = 0 for
each attribute indicating that the corresponding attribute is not present in the partial
profile, and the corresponding regression functions are given by fk(0) = f1(0) = 0. With
this convention a direct observation can be described by (5.3) even for a partial profile
i from the set

I(S) ={i; ik ∈ {1, . . . , v} for S components and

ik = 0 for K − S components},
(5.6)

of alternatives with profile strength S. In particular, I(K) = I(S) in the case of full
profiles (S = K). For general profile strength S the vector f of regression functions in
(5.4), the paired comparison model (5.5) and the interpretation of the corresponding
parameter vector β remain unchanged. Here we note that the comparison depth d as
in the work of Graßhoff et al. (2003) describes the number of attributes in which the
two alternatives in the choice sets differ satisfying the inequalities 1 ≤ d ≤ S ≤ K.
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Hence, the paired comparison model (5.5) having corresponding design region X is
thus restricted to those paired alternatives for which exactly S attributes are presented

X (S) = {(i, j); ik, jk ∈ {1, . . . , v} for S components and

ik = jk = 0 for exactly K − S components}.
(5.7)

The design region X (S) can be partitioned into disjoint sets such that the pairs in each
set differ only in a fixed number d of the attributes. Specifically, for a comparison depth
d = 0, . . . , S, let

X (S)
d = {(i, j) ∈ X (S) : |{k : ik 6= jk}| = d}, (5.8)

be the set of all pairs of alternatives which differ in exactly d attributes. These sets
constitute the orbits with respect to permutations. The D-criterion is invariant with
respect to those permutations which induce a linear reparameterization. Specifically,
we mention that the regression functions (5.4) extended to the design region X (S) are
still linearly equivariant, which means that relabeling does not affect D-optimality (and
D-optimality of invariant subvectors). Hence, it is sufficient to look for optimality in
the class of invariant designs which are uniform on the orbits of fixed comparison depth
d ≤ S.

Accordingly, for Nd =
(
K
S

)(
S
d

)
vS(v − 1)d total number of different pairs in X (S)

d

which vary in exactly d attributes and the uniform approximate design ξd which assigns
equal weight ξd(i, j) = 1/Nd to each pair in X (S)

d , Graßhoff et al. (2003) obtained
the information matrix of the uniform design ξd on the design region X (S)

d of fixed
comparison depth d of the form

M(ξd) =

(
h1(d)Idp1 ⊗M 0

0 h2(d)Idp2 ⊗M⊗M

)
,

where h1(d) = d
K
, h2(d) = d

2vK(K−1)(2Sv−2S−dv−v+2) andM = 2
v−1(Idv−1+1v−11

>
v−1)

is the information matrix of the corresponding (one-way layout in (4.5)). Moreover, the
information matrix for a general invariant design ξ =

∑S
d=1wdξd has a blocked diagonal

information matrix of the form

M(ξ) =

(
h1(ξ)Idp1 ⊗M 0

0 h2(ξ)Idp2 ⊗M⊗M

)
,

where hq(ξ) =
∑S

d=1wdhq(d), q = 1, 2.
Here it is worthwhile mentioning that a single comparison depth d may be sufficient
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for non-singularity of the corresponding information matrix M(ξd), i.e. for the identifia-
bility of all parameters for both the main effects and the first-order interactions. This
can be easily seen by observing hq(1) > 0, q = 1, 2, for d = 1. But this is not true for
all comparison depths as for example h2(S) = 0.

The corresponding invariant design ξ has a variance function of the form V ((i, j), ξ) =
(f(i)− f(j))>M(ξ)−1(f(i)− f(j)) where the value of the variance function for the invariant
design ξ evaluated at comparison depth d is denoted as V (d, ξ) where V (d, ξ) =

V ((i, j), ξ) on X (S)
d :

V (d, ξ) = d(v − 1)
(

1
h1(ξ)

+ v−1
4vh2(ξ)

(2Sv − 2S − dv − v + 2)
)
.

Accordingly, on a single comparison depth the representation of the variance function
V (d, ξ) simplifies

V (d, ξd′) =
d

d′

(
p1 + p2

2Sv−2S−dv−v+2
2Sv−2S−d′v−v+2

)
.

Note that for d = d′, V (d, ξd) = p1 + p2 = p which shows the D-optimality of ξd on
X (S)
d in view of the Kiefer-Wolfowitz equivalence theorem.
It is worthwhile mentioning that the corresponding results for the first-order in-

teractions can be used in a more general context for both the second and third-order
interactions as will be seen in the underlying chapters.
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6 Optimal Designs for Second-Order Interactions Two Level

Models

In real life situations one may be interested in the utility estimates of both the main
effects and interactions between the levels of the attributes. At this point, we mention
that certain level combinations of the attributes may result in higher or lower utilities. In
this setting optimal designs have been derived (see van Berkum, 1987b; Graßhoff et al.,
2003, amongst others) in the first-order interactions setup as mentioned in Chapter 5.
Here we focused on the second-order interactions.

For what follows, in the following unlike Section 4.2 where only a single-attribute
was considered. Here we take into consideration multiple-attributes k = 1, . . . , K having
levels vk = 2 each that are assumed to derive the preferences for the alternatives in a
paired comparison experiment. In paired comparison experiments the alternatives are
represented by combinations of attribute levels. For alternatives in a choice set of size
two, we denote by i = (i1, . . . , iK) the first alternative where ik is the component of the
k-th attribute and denote the second alternative by j = (j1, . . . , jK) which are both
elements of the set I = I1×· · ·×IK = {1,−1}K where the numbers 1 and −1 represent
effects-coding of the first and second level of each attribute, respectively. Specifically,
the alternatives i and j are ordered pairs which are chosen from the design region
X = I × I. Thus, for each attribute (component) k at levels vk = 2 the corresponding
marginal model coincides with that of the single-attribute with regression functions
fk = f1 corresponding to the (components) of the vector of regression functions f1.

More formally, for the case of direct response (utility) Ỹna(i), we consider the
second-order interaction model

Ỹna(i) = µn +
K∑
k=1

α
(k)
ik

+
∑
k<`

α
(k`)
iki`

+
∑

k<`<m

α
(k`m)
iki`im

+ ε̃na, (6.1)

where α(k)
ik

is the main effects of the k-th attribute when the corresponding level is
ik, α

(k`)
iki`

is the first-order interaction effects of the k-th and `-th attriubute when the
corresponding levels are ik and i`, respectively, and α

(k`m)
iki`im

is the second-order interaction
effects of the k-th, `-th and m-th attribute when the corresponding levels are ik, i` and
im, respectively.

Moreover, by the common identifiability conditions of effects-coding described in
Section 4.2 the following equalities hold:
For the reduced parameter α(k)

1 = β(k) the last component is obtained by α(k)
2 = −β(k)

for the main effects. Similary, for the reduced parameter α(k`)
11 = α

(k`)
22 = β(k`) the last

component is obtained by α(k`)
12 = α

(k`)
21 = −β(k`) for the first-order interactions, and,

finally, for the reduced parameter α(k`m)
111 = α

(k`m)
122 = α

(k`m)
212 = α

(k`m)
221 = β(k`m) the last
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component is obtained by α(k`m)
112 = α

(k`m)
121 = α

(k`m)
211 = α

(k`m)
222 = −β(k`m) for the second-

order interactions where e. g., β(k`m) describes the effect of the second-order interaction
of the k-th, `-th and m-th attribute. The parameters for the main effects, the first-order
interactions and the second-order interactions are given by βk = β(k), βk` = β(k`) and
βk`m = β(k`m), respectively.

With the above notation the corresponding model can be reformulated as

Ỹna(i) = µn +
K∑
k=1

βkik +
∑
k<`

βk`iki` +
∑

k<`<m

βk`miki`im + ε̃na, (6.2)

where βk denotes the main effect of the k-th attribute, βk` is the first-order interaction
of the k-th and `-th attribute, and βk`m is the second-order interaction of the k-th, `-th
and m-th attribute. The vectors (βk)1≤k≤K of main effects, (βk`)1≤k<`≤K of first-order
interactions and (βk`m)1≤k<`<m≤K of second-order interactions have dimensions p1 = K,
p2 = K(K − 1)/2 and p3 = K(K − 1)(K − 2)/6, respectively. Hence, the complete
parameter vector β = (β1, . . . , βK , (βk`)

>
k<`, (βk`m)

>
k<`<m)

> has dimension p = p1+p2+p3.
The corresponding p-dimensional vector f of regression functions is given by

f(i) = (i1, . . . , iK , (iki`)
>
k<`, (iki`im)

>
k<`<m)

>. (6.3)

Also here in f(i), the first p1 = K entries i1, . . . , iK are associated with the main effects,
the second set of p2 entries iki`, 1 ≤ k < ` ≤ K, are associated with the first-order
interactions, and the remaining p3 entries iki`im, 1 ≤ k < ` < m ≤ K, are associated
with the second-order interactions.

The corresponding paired comparison model is given by

Yn(i, j) =
K∑
k=1

(ik − jk)βk +
∑
k<`

(iki` − jkj`)βk` +
∑

k<`<m

(iki`im − jkj`jm)βk`m + εn.

(6.4)

6.1 Designs for Full Profiles

In this section we employ the concept of invariance characterized in Section 4.2, and
present D-optimal designs for the second-order interaction paired comparison model
(6.4) with corresponding regression functions f(i) in (6.3). Here we note that the subse-
quent results can be found in Nyarko and Schwabe (2019) and the idea of considering
comparison depths relies on Graßhoff et al. (2003). Define by d the comparison depth
which describes the number of attributes in which the paired alternatives (i, j) differ.
Thus the design region X can be partitioned into disjoint sets such that the pairs in each
set differ only in a fixed number d of the attributes. More precisely, for a comparison
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depth d = 0, . . . , K, let

Xd = {(i, j) ∈ X : |{k : ik 6= jk}| = d} (6.5)

be the set of all pairs of alternatives which differ in exactly d attributes. These sets
constitute the orbits with respect to permutations of both the levels ik = 1,−1 within
the attributes as well as among attributes k = 1, . . . , K, themselves. Here and for
the particular case of effects-coding we mention that the D-criterion is invariant with
respect to those permutations (see Schwabe, 1996, p. 17). As a result, it is sufficient to
look for optimality in the class of invariant designs which are uniform on the orbits of
fixed comparison depth.

In the following Lemmas 6.1 and 6.2 we present the information matrices of the
aforementioned invariant designs by denoting Nd = 2K

(
K
d

)
as the number of different

pairs in Xd which vary in exactly d attributes and by ξd the uniform approximate design
which assigns equal weights ξd(i, j) = 1/Nd to each pair (i, j) in Xd and weight zero to
all remaining pairs in X .

Lemma 6.1. Let d be a fixed comparison depth. The uniform design ξd on the set Xd
of comparison depth d has a diagonal information matrix

M(ξd) =


h1(d)IdK 0 0

0 h2(d)Id(K2 )
0

0 0 h3(d)Id(K3 )

 ,

where

h1(d) =
4d

K
, h2(d) =

8d(K − d)
K(K − 1)

and h3(d) =
4d(3K2 − 6dK + 4d2 − 3K + 2)

K(K − 1)(K − 2)
.

Proof. First we note that for the active levels i, j = −1, 1; i2 = 1, ij = −1 and
(i− j)2 = 4 for i 6= j. Given a fixed comparison depth d we obtain for the regression
functions fk = f1 associated with the k-th main effect∑

(i,j)∈Xd

(ik − jk)2 =
(
K−1
d−1
)
2K+2

because there are
(
K−1
d−1

)
2K pairs in Xd for which ik and jk differ. Since the number Nd

of paired comparisons in Xd equals Nd = (Kd ) 2
K , the corresponding diagonal entries

h1(d) in the information matrix are given by

h1(d) =
1

Nd

∑
(i,j)∈Xd

(ik − jk)2 =
4d

K
. (6.6)
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For first-order interactions, we consider attributes k and `, say, and distinguish
between pairs in which both attributes are distinct and pairs in which only one of these
attributes has distinct levels in the alternatives while the same level is presented in
both alternatives for the other attribute.

In the case ik 6= jk and i` 6= j` we have iki` = jkj`, while for i` = j` we get
iki` = −jkj`. Hence

(iki` − jkj`)2 = 0 for ik 6= jk and i` 6= j` (6.7)

and

(iki` − jkj`)2 = 4 for ik 6= jk and i` = j`, (6.8)

respectively, where (in the latter case) the roles of the attributes k and ` may be
interchanged.

For given attributes k and ` the pairs with distinct levels in both attributes occur(
K−2
d−2
)
2K times in Xd while those which differ only in one attribute occur ( 2

1 )
(
K−2
d−1
)
2K

times. As a result, for the first-order interactions the diagonal elements h2(d) in the
information matrix are given by

h2(d) =
1

Nd

2

(
K − 2

d− 1

)
2K+2 =

8d(K − d)
K(K − 1)

. (6.9)

Accordingly, for second-order interactions, we consider attributes k, ` and m, say,
and distinguish between pairs in which all three attributes are distinct, pairs in which
two of these attributes k and `, say, have distinct levels in the alternatives while the
same level is presented in both alternatives for the remaining attribute and, finally,
pairs in which only one of the attributes, say, k has distinct levels in the alternatives
while the same level is presented in both alternatives for the two remaining attributes.
Then iki`im = −jkj`jm in the first and third case, while iki`im = jkj`jm in the second
case. Hence,

(iki`im − jkj`jm)2 = 4 for ik 6= jk, i` 6= j` and im 6= jm, (6.10)

(iki`im − jkj`jm)2 = 0 for ik 6= jk, i` 6= j` and im = jm (6.11)

and

(iki`im − jkj`jm)2 = 4 for ik 6= jk, i` = j` and im = jm, (6.12)
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respectively, where again the roles of the attributes k, ` and m may be interchanged.
For given attributes k, ` andm the pairs with distinct levels in the three attributes oc-

cur
(
K−3
d−3
)
2K times in Xd while those which differ in two attributes occur ( 3

2 )
(
K−3
d−2
)
2K

times in Xd, and those which differ only in one attribute occur ( 3
1 )
(
K−3
d−1
)
2K times. As

a result, for the second-order interactions the diagonal elements h3(d) in the information
matrix are given by

h3(d) =
1

Nd

((
K − 3

d− 3

)
2K+2 + 3

(
K − 3

d− 1

)
2K+2

)

=
4d((d− 1)(d− 2) + 3(K − d)(K − d− 1))

K(K − 1)(K − 2)

=
4d(3K2 − 6dK + 4d2 − 3K + 2)

K(K − 1)(K − 2)
. (6.13)

Finally, it can be noted that all off-diagonal entries in the information matrix vanish
because the terms in the corresponding sums add up to zero due to the effects-type
coding.

For the particular case of first-order interactions the corresponding results of the
entries h1(d) and h2(d) can be found (e.g., see van Berkum, 1987b; Graßhoff et al.,
2003). It is worthwhile mentioning that for the comparison depth d = 0 we obtain
hq(0) = 0 and, hence M(ξ0) = 0.

Further we mention that general invariant designs ξ can be written as a convex
combination ξ =

∑K
d=1wdξd of uniform designs on the comparison depth d with

corresponding weights wd ≥ 0,
∑K

d=1wd = 1. Hence, also every invariant design
has diagonal information matrix.

Lemma 6.2. Let ξ be an invariant design on X , i. e. ξ =
∑K

d=1wdξd, then ξ has
diagonal information matrix

M(ξ) =


h1(ξ)IdK 0 0

0 h2(ξ)Id(K2 )
0

0 0 h3(ξ)Id(K3 )

 ,

where hq(ξ) =
∑K

d=1wdhq(d), q = 1, 2, 3.

In the following Theorems 6.1, 6.2 and 6.3 we present optimal designs for the main
effects, the first-order interaction and the second-order interaction terms separately
which have corresponding entries h1(d), h2(d) and h3(d), respectively, in the information
matrix. The resulting designs may also optimize every invariant criterion if the full
parameter vector for the main effects, the first-order interaction and the second-order
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interaction is considered, satisfying the aforementioned usual identifiability conditions.
With this in mind we note that also the D-optimality for the corresponding subset of
the parameter vector β = ((βk)

>
1≤k≤K , (βk`)

>
k<`, (βk`m)

>
k<`<m)

> considered separately in
Theorems 6.1, 6.2 and 6.3 is invariant. To start with, we mention that Theorems 6.1
and 6.2 paraphrase theorems given in Graßhoff et al. (2003) for first-order interaction
models and translate them to the present setting of second-order interaction models.

Theorem 6.1. Let d∗1 = K. Then the uniform design ξd∗1 = ξK on the largest possible
comparison depth K is D-optimal for the main effects (βk)>1≤k≤K.

This means that for the main effects only those pairs of alternatives should be used
which differ in all attributes.

Theorem 6.2. Let d∗2 = K/2 for K even and d∗2 = (K − 1)/2 or d∗2 = (K + 1)/2

for K odd, respectively. Then the uniform design ξd∗2 is D-optimal for the first-order
interaction effects (βk`)>k<`.

This means that for the first-order interactions only those pairs of alternatives should
be used which differ in about half of the attributes.

Theorem 6.3. (a) Let d∗3 = 1 or d∗3 = 3 for K = 3. Then the uniform design ξd∗3 is
D-optimal for the second-order interaction effects (βk`m)

>
k<`<m.

(b) Let d∗3 = K for K ≥ 4. Then the uniform design ξd∗3 is D-optimal for the second-
order interaction effects (βk`m)>k<`<m.

This means that also for the second-order interactions only those pairs of alternatives
should be used which differ in all attributes.

Proof. (a) Optimality is achieved when h3 is maximized. For K = 3 we get h3(1) =
h3(3) = 4 and h3(0) = h3(2) = 0 which establishes the result in this case.

(b) For K ≥ 4 note that the function h3 is a cubic polynomial in the comparison
depth d with positive leading coefficient. Extended to a function on the real line h3 is
point symmetric with respect to (K/2, h3(K/2)) and attains its local maximum and local
minimum at d3,max = K/2−

√
9K − 6/6 and d3,min = K/2 +

√
9K − 6/6, respectively.

Now, the numerator of h3(d3,min) is proportional to d23,min(3K − 4d3,min). Inserting the
solution for d3,min into the last factor yields 3K − 4d3,min = K − 2

√
K − 2/3 which is

equal to 0.349 for K = 4 and increasing in K ≥ 3. Hence, h3(d3,min) > 0 for K ≤ 4 and,
by symmetry, h3(d3,max) < h3(K) which proves the result.

In the following Theorem 6.4 and Corollary 6.1 we present the variance function
for the corresponding designs. The variance function is defined as V ((i, j), ξ) = (f(i)−
f(j))>M(ξ)−1(f(i)− f(j)), which plays an important role for the D-criterion. As already
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defined, according to the Kiefer and Wolfowitz (1960) equivalence theorem a design ξ∗

is D-optimal if the associated variance function is bounded by the number of model
parameters, V ((i, j), ξ∗) ≤ p. Now, for the invariant design ξ the variance function
V ((i, j), ξ) is also invariant with respect to permutations of levels and attributes and is,
hence, constant on the orbits Xd of fixed comparison depth d. As a result, the value of
the variance function for the invariant design ξ evaluated at comparison depth d may
be denoted by V (d, ξ), say, where V (d, ξ) = V ((i, j), ξ) on Xd.

Theorem 6.4. For every invariant design ξ the variance function V (d, ξ) is given by

V (d, ξ) = 4d

(
1

h1(ξ)
+
K − d
h2(ξ)

+
3K2 − 6dK + 4d2 − 3K + 2

6h3(ξ)

)
.

Proof. First we note that

M(ξ)−1 =


1

h1(ξ)
IdK 0 0

0 1
h2(ξ)

Id(K2 )
0

0 0 1
h3(ξ)

Id(K3 )

 ,

for the inverse of the information matrix of the design ξ. Hence, we obtain for the
variance function

V ((i, j), ξ) =(f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
1

h1(ξ)

K∑
k=1

(ik − jk)2

+
1

h2(ξ)

∑
k<`

(iki` − jkj`)2

+
1

h3(ξ)

∑
k<`<m

(iki`im − jkj`jm)2. (6.14)

As in the proof of Lemma 6.1 we note first that for the terms associated with the
main effects we have (ik − jk)2 = 4, when ik 6= jk, and (ik − jk)2 = 0 otherwise. For a
pair (i, j) ∈ Xd of comparison depth d there are exactly d attributes for which ik and jk
differ. Hence, the first sum on the right hand side of (6.14) equals 4d.

Second, for the terms associated with the first-order interactions we have (iki` −
jkj`)

2 = 4, if either ik 6= jk and i` = j` or ik = jk and i` 6= j`, and (iki` − jkj`)2 = 0

otherwise. For a pair (i, j) ∈ Xd of comparison depth d there are d(K − d) first-order
interaction terms for which (iki`) and (jkj`) differ in exactly one attribute k or `. Hence,
the second sum on the right hand side of (6.14) equals 4d(K − d).

Finally, for the terms associated with the second-order interactions we have (iki`im−
jkj`jm)

2 = 4, if (iki`im) and (jkj`jm) differ either in all three attributes k, ` and m
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or in exactly one of these attributes, and (iki`im − jkj`jm)2 = 0 otherwise. For a pair
(i, j) ∈ Xd of comparison depth d there are ( d3 ) second-order interaction terms for which
all three associated attributes differ, and there are d (K−d2 ) second-order interaction
terms for which (iki`im) and (jkj`jm) differ in exactly one attribute. Hence, there are

( d3 ) + d (K−d2 ) = d(d− 1)(d− 2)/6 + d(K − d)(S − d− 1)/2

= d(3K2 − 6dK + 4d2 − 3K + 2)/6

non-zero entries in the third sum on the right hand side of (6.14), and this sum equals
4d(3K2 − 6dK + 4d2 − 3K + 2)/6.

By inserting these results into (6.14) for fixed K, we see that the value of the
variance function depends on the pair (i, j) ∈ Xd only through its comparison depth d
and obtain the formula proposed.

It is worthwhile mentioning that for comparison depth d = 0 the corresponding
variance function V (0, ξ) = 0.

If the invariant design ξ is concentrated on a single comparison depth, then the
representation of the variance function V (d, ξ) simplifies.

Corollary 6.1. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

K − d
K − d′

+ p3
3K2 − 6dK + 4d2 − 3K + 2

3K2 − 6d′K + 4d′2 − 3K + 2

)
.

Proof. In view of Theorem 6.4 it is sufficient to note that the representation of the
variance function follows immediately by inserting the values of hq(ξd) from Lemma 6.1
and pq =

(
K
q

)
, q = 1, 2, 3.

Note that for d = d′, we obtain V (d, ξd) = p1 + p2 + p3 = p which shows the
D-optimality of ξd on Xd in view of the Kiefer and Wolfowitz (1960) equivalence
theorem.

It is worth noting that a single comparison depth d may be sufficient for non-
singularity of the information matrix M(ξd), i.e. for the identifiability of all parameters.
This can be easily seen by observing hq(1) > 0, q = 1, 2, 3, for d = 1. But this is
not true for all comparison depths as h2(K) = 0. Moreover, in view of Theorems 6.1,
6.2 and 6.3 no design exists which is simultaneously optimal for the main effects, the
first-order interactions and the second-order interactions. As a consequence, we confine
ourselves to the D-criterion to derive optimal design for the whole parameter vector.
The following result gives an upper bound on the number of comparison depths required
for a D-optimal design.
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Theorem 6.5. In the second-order interactions model the D-optimal design ξ∗ is
supported on, at most, three different comparison depths K, d∗ and d∗ + 1, say, i.e.
ξ∗ = w∗KξK + w∗d∗ξd∗ + (1− w∗K − w∗d∗)ξd∗+1.

Proof. According to a corollary of the Kiefer-Wolfowitz equivalence theorem for the
D-optimal design ξ∗ the variance function V (d, ξ∗) is equal to the number of parameters
p for all d such that ξ∗ =

∑K
d=1w

∗
dξd for w∗d > 0. By Theorem 6.4 the variance function

is a cubic polynomial in the comparison depth d with positive leading coefficient.
According to the fundamental theorem of algebra the variance function V (d, ξ∗) may
thus be equal to p for, at most, three different values d1 < d2 < d3 of d, say. Now,
by the Kiefer-Wolfowitz equivalence theorem itself V (d, ξ∗) ≤ p for all d = 0, 1, . . . , K.
Hence, by the shape of the variance function we obtain that in the case of three different
comparison depths d3 = K and d2 = d1 + 1 must hold. For two comparison depths
either d3 = K or two adjacent comparison depths d1 and d2 = d1 + 1 are included.

Further for K = 3 the D-optimal design can be given explicitly. We note that for
K = 3 the second-order interaction model is a full interaction model. As a consequence,
the result follows from Theorem 4 in Graßhoff et al. (2003). Here we provide an explicit
result.

Theorem 6.6. For K = 3 the design ξ∗ = 3
7
ξ1 +

3
7
ξ2 +

1
7
ξ3 on all pairs with non-zero

comparison depth is D-optimal in the second-order interactions model.

Proof. We may compute the variance function by first computing hq(ξ
∗) = 16/7,

q = 1, 2, 3, and then deriving V (d, ξ∗) = 7d(d2−6d+11)/6 which results in V (d, ξ∗) = 7

for d = 1, 2, 3. Because p = 7 for K = 3 the D-optimality of ξ∗ follows from the
Kiefer-Wolfowitz equivalence theorem.

Hence, for K = 3 all three comparison depths are needed for D-optimality. For
K ≥ 4 numerical computations indicate that only two different comparison depths
K and d∗ are required. In Table 6.1 numerical solutions for the invariant designs
ξ∗ = w∗d∗ξd∗ + (1− w∗d∗)ξK having optimal weights w∗d∗ and w∗K = 1− w∗d∗ are presented
for numbers K of attributes between 4 and 10.

Table 6.1: Optimal Comparison Depths and Optimal Weights for K
Binary Attributes

K 4 5 6 7 8 9 10

w∗K 0.143 0.167 0.268 0.303 0.356 0.423 0.462

d∗ 2 2 3 3 3 4 4

w∗d∗ 0.857 0.833 0.732 0.697 0.644 0.577 0.538
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In the following we provide analytical results for fixed number K of the attributes,
comparison depth d and weights wK by direct maximization of ln(det(M(wKξK + (1−
wK)ξd))) for the corresponding optimal comparison depth d∗ and optimal weights w∗K
and w∗d∗ = 1 − w∗K in Table 6.1. The optimality of these designs has been checked
numerically by virtue of the Kiefer-Wolfowitz equivalence theorem. The corresponding
values of the normalized variance function V (d, ξ∗)/p are recorded in Table 6.2, where
maximal values less or equal to 1 establish optimality.

By Lemma 6.1 it follows that for K = 4 and 6 we consider the optimal intermediate
comparison depth d∗ = K/2. The entries of the information matrix M(ξ) are specified
by

h1(ξ) = wKh1(K) + (1− wK)h1(d∗) =
1 + wK

2
,

h2(ξ) = wKh2(K) + (1− wK)h2(d∗) =
K(1− wK)
8(K − 1)

,

and

h3(ξ) = wKh3(K) + (1− wK)h3(d∗) =
wK + 1

32
.

Now, since the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2 h3(ξ)

p3 , we thus obtain

ln det(M(ξ)) = c+K ln(wK + 1) +
K(K − 1)

2
ln(K −KwK)

+
K(K − 1)(K − 2)

6
ln(wK + 1),

where c is a constant independent of the weight wK . Taking derivatives with respect to
wK we obtain

∂

∂wK
ln det(M(ξ)) =

K

wK + 1
− K(K − 1)

2(1− wK)
+
K(K − 1)(K − 2)

6(wK + 1)

which has root

wK = w∗K =
K2 − 6K + 11

K2 + 5
. It follows that

h1(ξ,w∗K ) =
K2 − 3K + 8

K2 + 5
, h2(ξ,w∗K ) =

3K

4(K2 + 5)
and h3(ξ,w∗K ) =

K2 − 3K + 8

16(K2 + 5)
.

36



Inserting the expressions h1(ξ,w∗K ), h2(ξ,w∗K ) and h3(ξ,w∗K ) into the representation
given by Theorem 6.4 we obtain

V (d∗, ξ∗) =
K(K2 + 5)

6
= p.

Hence, the comparison depth d∗ is an integer solution for the maximum of the variance
function in view of the equivalence theorem by Kiefer and Wolfowitz (1960) when we
consider the reduced design region XK ∪ Xd∗ .

Further for the case, K = 5, 7 and 9 we consider the optimal intermediate comparison
depth d∗ = (K−1)/2. The entries of the information matrixM(ξ) are similarly specified
as

h1(ξ) = wKh1(K) + (1− wK)h1(d∗) =
K +KwK + wK − 1

2K
,

h2(ξ) = wKh2(K) + (1− wK)h2(d∗) =
K −KwK − wK + 1

8K
,

and

h3(ξ) = wKh3(K) + (1− wK)h3(d∗)

=
K2 +K2wK − 2KwK − 3wK − 2K + 3

32K(K − 2)
.

As the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1 h2(ξ)p2

h3(ξ)
p3 , we thus obtain

ln det(M(ξ)) = c+K ln(K +KwK + wK − 1) +
K(K − 1)

2
ln(K −KwK − wK + 1)

+
K(K − 1)(K − 2)

6
ln(K2 +K2wK − 2KwK − 3wK − 2K + 3).

Taking derivatives with respect to wK we obtain

∂

∂w
ln det(M(ξ)) =

K(K + 1)

K +KwK + wK − 1
− K(K − 1)(K + 1)

2(K −KwK − wK + 1)

+
K(K − 1)(K − 2)(K2 − 2K − 3)

6(K2 +K2wK − 2KwK − 3wK − 2K + 3)

which has root

wK = w∗K = 2K3−6K2+7K−K
√
K6−12K5+64K4−198K3+448K2−636K+369 +15
−K4+2K3−2K2+10K+15

.

This root w∗K gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region XK ∪ Xd∗ .
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Moreover, for the case, K = 8 and 10 we consider the optimal intermediate compar-
ison depth d∗ = (K/2)− 1. The entries of the information matrix M(ξ) are

h1(ξ) = wKh1(K) + (1− wK)h1(d∗) =
K +KwK + 2wK − 2

2K
,

h2(ξ) = wKh2(K) + (1− wK)h2(d∗) =
K2 −K2wK + 4wK − 4

8K(K − 1)
,

and

h3(ξ) = wKh3(K) + (1− wK)h3(d∗)

=
K2 +K2wK −KwK −K − 6wK + 6

32K(K − 1)
.

The determinant of the information matrix M(ξ) is proportional to h1(ξ)p1 h2(ξ)p2

h3(ξ)
p3 , we thus obtain

ln det(M(ξ)) = c+K ln(K +KwK + 2wK − 2) +
K(K − 1)

2
ln(K2 −K2wK + 4wK − 4)

+
K(K − 1)(K − 2)

6
ln(K2 +K2wK −KwK −K − 6wK + 6).

Taking derivatives with respect to w we obtain

∂

∂w
ln det(M(ξ)) =

K(K + 2)

K +KwK + 2wK − 2
+

K(K − 1)(−K2 + 4)

2(K2 −K2wK + 4wK − 4)

+
K(K − 1)(K − 2)(K2 −K − 6)

6(K2 +K2wK −KwK −K − 6wK + 6)

which has root

wK = w∗K = K3+5K+(K−K2)
√
K4−10K3+37K2−60K+180 +30

−K4+K3+K2+5K+30
.

This root w∗K gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region XK ∪ Xd∗ .

Again, the comparison depth d∗ is an integer solution for the maximum of the
variance function which establishes the D-optimality of the design ξ∗ in view of the
Kiefer-Wolfowitz equivalence theorem.

Exhibited in Table 6.2 are values of the normalized variance function V (d, ξ∗)/p

and comparison depth d, which show D-optimality of the design ξ∗ in view of the
equivalence theorem by Kiefer and Wolfowitz (1960).
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Table 6.2: Values of the Variance Function of the D-Optimal Design
ξ∗ for K Binary Attributes (Boldface 1 Corresponds to the Optimal

Comparison Depths d∗)

d

K 1 2 3 4 5 6 7 8 9 10

4 0.875 1 0.875 1
5 0.760 1 0.960 0.880 1
6 0.701 0.983 1 0.906 0.855 1
7 0.615 0.917 1 0.956 0.879 0.863 1
8 0.559 0.872 1 1 0.945 0.884 0.882 1
9 0.504 0.811 0.962 1 0.969 0.910 0.868 0.883 1
10 0.462 0.763 0.932 1 0.997 0.956 0.905 0.874 0.896 1

39



6.2 Designs for Partial Profiles

In the following we reformulate the corresponding concept about full profiles when there
is a possibility of too many attributes, K to the situation when only a subset of the
attributes (so-called partial profiles) are to be evaluated by respondents (see Großmann,
2018, for motivation). Analogous to Chapter 5 for a partial profile a direct observation
may be described by model (6.1) when summation is taken only over those S attributes
contained in the describing subset. This requires that the profile strength S must be,
at least, three in order to capture the second-order interactions. To facilitate notation
we introduce an additional level 0 for each attribute indicating that the corresponding
attribute is not present in the partial profile, and the corresponding regression functions
are given by fk(0) = f1(0) = 0. With this convention a direct observation can be
described by (6.1) even for a partial profile i from the set

I(S) ={i; ik ∈ {−1, 1} for S components and

ik = 0 for K − S components},
(6.15)

of alternatives with profile strength S. In particular, I(K) = I(S) in the case of full
profiles (S = K). For general profile strength S the vector f of regression functions in
(6.3), the paired comparison model in (6.4) which is given by

Yn(i, j) =
K∑
k=1

(ik − jk)βk +
∑
k<`

(iki` − jkj`)βk` +
∑

k<`<m

(iki`im − jkj`jm)βk`m + εn,

(6.16)

and the interpretation of the corresponding parameter vector β remain unchanged. Here
we note that the comparison depth d as in the work of Graßhoff et al. (2003) describes
the number of attributes in which the two alternatives in the choice sets differ satisfying
the inequalities 1 ≤ d ≤ S < K. This is the approach taken by Großmann (2018) for
a study in the health sector where only 4 out of a total number of 11 attributes in a
choice set of size two were presented to respondents simultaneously.

Hence, the paired comparison model (6.4) having corresponding design region X in
(6.5) is thus restricted to those paired alternatives for which exactly S attributes are
presented

X (S) = {(i, j); ik, jk ∈ {1,−1} for S components and

ik = jk = 0 for exactly K − S components}.
(6.17)

As already noted the design region X (S) can be also partitioned into disjoint sets such
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that the pairs in each set differ only in a fixed number d of the attributes. Specifically,
for a comparison depth d = 0, . . . , S, let

X (S)
d = {(i, j) ∈ X (S) : |{k : ik 6= jk}| = d}, (6.18)

be the set of all pairs of alternatives which differ in exactly d attributes. These sets also
constitute the orbits with respect to permutations. The D-criterion is also invariant with
respect to those permutations which induce a linear reparameterization. Specifically,
we mention that the regression functions (6.3) extended to the design region X (S) are
still linearly equivariant i. e. that also here relabeling does not affect D-optimality (and
D-optimality of invariant subvectors). Hence, as already specified it is sufficient to
look for optimality in the class of invariant designs which are uniform on the orbits of
fixed comparison depth d ≤ S. These designs can be found in the work of Nyarko and
Schwabe (2019).

Further let Nd = 2S
(
K
S

)(
S
d

)
be the number of different pairs in X (S)

d which vary in
exactly d attributes and denote by ξd the uniform approximate design which assigns
equal weight ξd(i, j) = 1/Nd to each pair in X (S)

d . The corresponding information
matrices for the invariant designs are presented in the following Lemmas 6.3 and 6.4.
We note that results for full profiles can be obtained as special cases by letting S = K.

Lemma 6.3. Let d ∈ {0, . . . , S}. The uniform design ξd on the set X (S)
d of comparison

depth d has a diagonal information matrix

M(ξd) =


h1(d)IdK 0 0

0 h2(d)Id(K2 )
0

0 0 h3(d)Id(K3 )

 ,

where h1(d) = 4d
K
, h2(d) =

8d(S−d)
K(K−1) and h3(d) =

4d(3S2−6dS+4d2−3S+2)
K(K−1)(K−2) .

Proof. From Lemma 6.1 the regression functions fk = f1 associated with the k-th main
effects are given by ∑

(i,j)∈X (S)
d

(ik − jk)2 =
(
K−1
S−1

) (
S−1
d−1
)
2S
∑
ik 6=jk

(ik − jk)2

=
(
K−1
S−1

) (
S−1
d−1
)
2S+2,

as there are
(
K−1
S−1

)(
S−1
d−1

)
2S pairs in X (S)

d for which ik and jk differ.
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The number Nd of paired comparisons in X (S)
d with comparison depth d equals

Nd = (KS ) (
S
d ) 2

S. Hence the corresponding diagonal elements h1(d) are given by

h1(d) =
1

Nd

∑
(i,j)∈X (S)

d

(ik − jk))2 =
1

Nd

(
K−1
S−1

) (
S−1
d−1
)
2S+2 =

4d

K
(6.19)

in the information matrix.
Further for the first-order interactions and the given attributes k and ` the pairs

with distinct levels in both attributes occur
(
K−2
S−2

) (
S−2
d−2
)
2S times in X (S)

d , while those
which differ only in one attribute occur ( 2

1 )
(
K−2
S−2

) (
S−2
d−1
)
2S times. As a result, from

(6.7)–(6.8) the diagonal elements h2(d) in the corresponding information matrix are
given by

h2(d) =
1

Nd

(
K − 2

S − 2

)(
S − 2

d− 1

)
2S+3 =

8d(S − d)
K(K − 1)

. (6.20)

Accordingly, for the second-order interactions, and for the given attributes k, ` and
m the pairs with distinct levels in the three attributes occur

(
K−3
S−3

) (
S−3
d−3
)
2S times in

X (S)
d , while those which differ in the two attributes occur ( 3

2 )
(
K−3
S−3

) (
S−3
d−2
)
2S times in

X (S)
d , and those which differ only in the one attribute occur ( 3

1 )
(
K−3
S−3

) (
S−3
d−1
)
2S times

in X (S)
d . Hence, from (6.10)–(6.12) the diagonal elements h3(d) are given by

h3(d) =
1

Nd

(
K − 3

S − 3

)((
S − 3

d− 3

)
2S+2 + 3

(
S − 3

d− 1

)
2S+2

)

=
4d(d− 1)(d− 2)

K(K − 1)(K − 2)
+

12(S − d)(S − d− 1)d

K(K − 1)(K − 2)

=
4d

K(K − 1)(K − 2)

(
(d− 1)(d− 2) + 3(S − d)(S − d− 1)

)
=

4d

K(K − 1)(K − 2)
(d2 − 3d+ 2 + 3S2 − 6Sd− 3S + 3d2 + 3d)

=
4d

K(K − 1)(K − 2)
(3S2 − 6Sd+ 4d2 − 3S + 2). (6.21)

The off-diagonal elements all vanish because the terms in the corresponding entries sum
up to zero due to the effects-type coding.

For the particular case of first-order interactions the corresponding results of the
entries h1(d) and h2(d) can be found (e.g., see Schwabe et al., 2003; Graßhoff et al.,
2003). It is worth mentioning that the corresponding functions hq(0) = 0 for q = 1, 2, 3.

General invariant designs ξ as already pointed out can be written as a convex
combination ξ =

∑S
d=1wdξd of the corresponding uniform designs on the comparison
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depth d with corresponding weights wd ≥ 0,
∑S

d=1wd = 1. Hence, also every invariant
design has diagonal information matrix.

Lemma 6.4. Let ξ be an invariant design on X (S), i. e. ξ =
∑S

d=1wdξd, then ξ has
diagonal information matrix

M(ξ) =


h1(ξ)IdK 0 0

0 h2(ξ)Id(K2 )
0

0 0 h3(ξ)Id(K3 )

 ,

where hq(ξ) =
∑S

d=1wdhq(d), q = 1, 2, 3.

In the following we consider optimal designs for the main effects, the first-order
interaction and the second-order interaction terms having corresponding entries h1(d),
h2(d) and h3(d), respectively, in the information matrix M(ξd) of Lemma 6.3. To start
with, we mention that the following Theorems 6.7 and 6.8 paraphrase theorems given
in Schwabe et al. (2003) and Graßhoff et al. (2003) for first-order interaction models
and translate them to the present setting of second-order interaction models.

Theorem 6.7. Let d∗1 = S. Then the uniform design ξd∗1 = ξS on the largest possible
comparison depth S is D-optimal for the main effects (βk)>1≤k≤K.

This means that for the main effects only those pairs of alternatives should be used
which differ in all attributes subject to the profile strength S.

Theorem 6.8. Let d∗2 = S/2 for S even and d∗2 = (S − 1)/2 or d∗2 = (S + 1)/2 for S
odd, respectively. Then the uniform design ξd∗2 on X (S)

d is D-optimal for the first-order
interaction effects (βk`)>k<`.

This means that for the first-order interactions only those pairs of alternatives should
be used which differ in about half of the attributes subject to the profile strength S.

Theorem 6.9. Let d∗3 = 1 or d∗3 = 3 for S = 3 and d∗3 = S for S ≥ 4, respectively.
Then the uniform design ξd∗3 on X (S)

d is D-optimal for the second-order interaction
effects (βk`m)>k<`<m.

This means that also for the second-order interactions it is sufficient to use those
pairs of alternatives that differ in all the profile strength S.

Proof. We first note that optimality is achieved when h3 is maximized. Hence, for
S = 3 we get h3(1) = h3(3) = 4 and h3(2) = h3(0) = 0 which proves the result in
this case. Moreover, for the proof of S ≥ 4 it follows directly from Theorem 6.3 that
h3 attains its local maximum and local minimum at d3,max = S/2 −

√
9S − 6/6 and

d3,min = S/2 +
√
9S − 6/6, respectively.
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As already defined in connection with Theorem 6.4 here the variance function
V ((i, j), ξ) = (f(i)−f(j))>M(ξ)−1(f(i)−f(j)) is also invariant with respect to permutation
of levels and attributes and, also constant on the orbits X (S)

d of fixed comparison depth
d. We define by V (d, ξ), V (d, ξ) = V ((i, j), ξ) on X (S)

d the value of the variance function
for the corresponding invariant design evaluated at comparison depth d. Hence we
obtain the following results.

Theorem 6.10. For every invariant design ξ the variance function V (d, ξ) on X (S)
d is

given by

V (d, ξ) = 4d

(
1

h1(ξ)
+
S − d
h2(ξ)

+
3S2 − 6dS + 4d2 − 3S + 2

6h3(ξ)

)
.

Proof. First we note that for the design ξ on X (S)
d the inverse of the corresponding

information matrix M(ξ) is given by

M(ξ)−1 =


1

h1(ξ)
IdK 0 0

0 1
h2(ξ)

Id(K2 )
0

0 0 1
h3(ξ)

Id(K3 )

 .

Hence, we obtain for the variance function

V ((i, j), ξ) =(f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
1

h1(ξ)

K∑
k=1

(ik − jk)2

+
1

h2(ξ)

∑
k<`

(iki` − jkj`)2

+
1

h3(ξ)

∑
k<`<m

(iki`im − jkj`jm)2. (6.22)

In view of Theorem 6.4 and Lemma 6.3 it is sufficient to note that
For a pair (i, j) ∈ X (S)

d of comparison depth d there are exactly d attributes of the
main effects for which ik and jk differ. Hence, the first sum on the right hand side of
(6.22) equals 4d.

Again, for a pair (i, j) ∈ X (S)
d of comparison depth d there are d(S − d) first-order

interaction terms for which (iki`) and (jkj`) differ in exactly one attribute k or `. Hence,
the second sum on the right hand side of (6.22) equals 4d(S − d).

Finally, for a pair (i, j) ∈ X (S)
d of comparison depth d there are ( d3 ) second-order

interaction terms for which (iki`im) and (jkj`jm) of all the associated three attributes
k, ` and m differ, and there are d ( S−d2 ) second-order interaction terms for which (iki`im)
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and (jkj`jm) differ in exactly one attribute. Hence, there are

( d3 ) + d ( S−d2 ) = d(d− 1)(d− 2)/6 + d(S − d)(S − d− 1)/2

= d(3S2 − 6dS + 4d2 − 3S + 2)/6

non-zero entries in the third sum on the right hand side of (6.22), and this sum equals
4d(3S2 − 6dS + 4d2 − 3S + 2)/6.

By inserting these results into (6.22) for fixed S we see that the value of the variance
function depends on the pair (i, j) ∈ X (S)

d only through its comparison depth d which
proofs the representation of the variance function.

As was already pointed out here we similarly note that for comparison depth d = 0

the corresponding variance function V (0, ξ) = 0.
The corresponding variance function simplifies if the invariant design ξ is concen-

trated on a single comparison depth.

Corollary 6.2. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

S − d
S − d′

+ p3
3S2 − 6dS + 4d2 − 3S + 2

3S2 − 6d′S + 4d′2 − 3S + 2

)
.

Proof. In view of Theorem 6.10 it is sufficient to note that the representation of the
variance function follows immediately by inserting the values of hq(ξd) from Lemma 6.3
and pq =

(
K
q

)
, q = 1, 2, 3.

We note that if d = d′ then the varaince V (d, ξd) = p1 + p2 + p3 = p, which shows
the D-optimality of ξd on X (S)

d in view of the Kiefer and Wolfowitz (1960) equivalence
theorem.

Obviously, no optimal design exists for the whole parameter vector of Theorems
6.7, 6.8 and 6.9. Hence, in view of Kiefer and Wolfowitz (1960) equivalence theorem
we similarly focus on the D-criterion to derive optimal design for the whole parameter
vector of the following theorems.

Theorem 6.11. In the second-order interactions model the D-optimal design ξ∗ is
supported on at most, three different comparison depths S, d∗ and d∗ + 1.

Proof. According to the Kiefer-Wolfowitz equivalence theorem for an invariant D-
optimal design ξ∗ with weights w∗d on the comparison depths d the variance function
V (d, ξ∗) is equal to the number of parameters p for all d such that ξ∗ =

∑S
d=1w

∗
dξd for

w∗d > 0. By Theorem 6.10 the variance function is a cubic polynomial in the comparison
depth d with positive leading coefficient. According to the fundamental theorem of
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algebra the variance function V (d, ξ∗) may thus be equal to p for, at most, three different
values of d. Now, by the Kiefer-Wolfowitz equivalence theorem itself V (d, ξ∗) ≤ p for all
d = 0, 1, . . . , S. Hence, by the shape of the variance function we obtain that V (d, ξ∗) = p

may occur only at the maximal comparison depth d = S allowed or at, at most, two
adjacent comparison depths d∗ and d∗ + 1, say, in the interior.

Also for the case S = 3 < K the corresponding D-optimal design ξ∗ can be given in
a more intuitive manner.

Theorem 6.12. (a) If S = 3 and K = 4, then the design ξ∗ = 9
10
ξ1+

1
10
ξ3 is D-optimal

in the second-order interactions model.
(b) If S = 3 and K > 4, then the design ξ∗ = ξ1 is D-optimal in the second-order
interactions model.

Proof. (a) For the design ξ∗ we obtain h1(ξ∗) = h2(ξ
∗) = 6/5 and h3(ξ∗) = 1. Inserting

this into the variance function of Theorem 6.10 yields V (d, ξ∗) = 2d(4d2 − 23d+ 40)/3

which results in V (1, ξ∗) = V (3, ξ∗) = 14 and V (2, ξ∗) = 40/3 < 14. Hence, the
variance function is bounded by the number of parameters p = 14 which establishes the
D-optimality of ξ∗ in view of the Kiefer-Wolfowitz equivalence theorem.

(b) From Corollary 6.2 we derive the variance function

V (d, ξ1) = dp1 + dp2(3− d)/2 + dp3(2d
2 − 9d+ 10)/3

which results in V (1, ξ∗) = p1 + p2 + p3 = p, V (2, ξ∗) = 2p1 + p2 and V (3, ξ∗) = 3p1 + p3.
Because p1 = K ≤ K(K−1)(K−2)/6 = p3 forK ≥ 5 and 2p1 = 2K ≤ K(K−1)/2 = p2

for K ≥ 5 the variance function is bounded by the number of parameters p, and the
D-optimality of ξ∗ follows from the Kiefer-Wolfowitz equivalence theorem.

Hence, for S = 3 and K = 4 two comparison depths are needed for D-optimality
while for S = 3 and K > 4 one comparison depth is sufficient. Moreover, for S ≥ 4

numerical computations indicate that only two different comparison depths S and d∗

are required for D-optimality. Exhibited in Table 6.3 are numerical solutions for the
invariant designs ξ∗ = w∗d∗ξd∗ + (1 − w∗d∗)ξS having optimal weights w∗d∗ and optimal
comparison depth d∗ with entries of the form (d∗, w∗d∗) for various choices of profile
strengths S and attributes K between 3 and 10. It is worthwhile mentioning that the
results for full profiles presented in Table 6.1 can be recovered in Table 6.3 for the (row)
entries when S = K.
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Table 6.3: Optimal Designs with Intermediate Comparison Depths
d∗ and Optimal Weights w∗d∗ of the form (d∗, w∗d∗) for S ≤ K Binary

Attributes

S

K 3 4 5 6 7 8 9 10
4 (1, 0.900) (2, 0.857)
5 (1,1) (2, 0.800) (2, 0.833)
6 (1,1) (2, 0.732) (2, 0.802) (3, 0.732)
7 (1,1) (1, 0.836) (2, 0.756) (2, 0.728) (3, 0.697)
8 (1,1) (1, 0.832) (2, 0.707) (2, 0.687) (3, 0.643) (3, 0.644)
9 (1,1) (1, 0.819) (2, 0.659) (2, 0.645) (3, 0.594) (3, 0.598) (4, 0.577)
10 (1,1) (1, 0.800) (2, 0.615) (2, 0.604) (3, 0.551) (3, 0.556) (4, 0.533) (4, 0.538)

For fixed number S ≤ K of attributes and intermediate comparison depth d the
optimal weights w∗S and w∗d∗ = 1 − w∗S have been determined analytically by direct
maximization of ln(det(M(wξS+(1−wS)ξd))). In particular, by Lemma 6.3 the optimal
weights w∗S can be obtained analytically:

First we note that for the case where S = 3 and K = 4 we consider the optimal
intermediate comparison depth d∗ = (S − 1)/2 and corresponding optimal weight
w∗S = 2S−K−1

KS−K+S−1 . Hence, the entries of the information matrix M(ξ) are specified as

h1(ξ,w∗S) =
S

2K + 2
, h2(ξ,w∗S) =

KS − S
(K + 1)(S − 1)

and h3(ξ,w∗S) =
1

64
.

Inserting the expressions h1(ξ,w∗S), h2(ξ,w∗S) and h3(ξ,w∗S) into the representation of the
variance function in Theorem 6.10 we obtain

V (d∗, ξ∗) =
2K + 2

S
+

3(K + 1)(S − 1)2

(K − 1)S
+ 2S2 − 6S + 4

=
2K2 + 3K + 2KS3 − 3KS2 − 2KS − 2S3 + 9S2 − 10S + 1

KS − S
= p.

Hence, the comparison depth d∗ is an integer solution for the maximum of the variance
function in view of the equivalence theorem by Kiefer and Wolfowitz (1960). Moreover,
for the case where S = 5, 7 or 9, and K ≥ S the entries of the information matrix M(ξ)

are specified as

h1(ξ) = wh1(S) + (1− w)h1(d∗) =
S + Sw + w − 1

2K
,

h2(ξ) = wh2(S) + (1− w)h2(d∗) =
S2 − S2w + w − 1

8K(K − 1)
,
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and

h3(ξ) = wh3(S) + (1− w)h3(d∗)

=
S3 + S3w − 3S2w − 3S2 − Sw + 5S + 3w − 3

32K(K − 1)(K − 2)
.

Now as the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2h3(ξ)

p3 , we obtain

ln det(M(ξ)) = c+ p1 ln(S + Sw + w − 1) + p2 ln(S
2 − S2w + w − 1)

+ p3 ln(S
3 + S3w − 3S2w − 3S2 − Sw + 5S + 3w − 3),

where c is a constant independent of the weight w. Taking derivatives with respect to
w we obtain

∂

∂w
ln det(M(ξ)) =

p1(S + 1)

S + Sw + w − 1
+

p2(−S2 + 1)

S2 − S2w + w − 1

+
p3(S

3 − 3S2 − S + 3)

S3 + S3w − 3S2w − 3S2 − Sw + 5S + 3w − 3

which has root

w = w∗S =
K2S − 3KS2 − 3K2 + 6KS + 3S2 +

√
λ− 7S − 15

K2S2 − 2K2S − 3K2 + 5S2 − 10S − 15

where

λ = K4S4 − 6K4S3 − 6K3S4 + 9K4S2 + 30K3S3 + 25K2S4 − 36K3S2 − 114K2S3

− 48KS4 + 126K2S2 + 258KS3 + 64S4 − 324KS2 − 312S3 + 369S2.

This root w∗S gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

S ∪ X (S)
d∗ .

Further for the case where S = 4, 6, 8 or 10, and K ≥ S we consider the optimal
intermediate comparison depth d∗ = (S/2)− 1. The entries of the information matrix
M(ξ) are specified as

h1(ξ) = wh1(S) + (1− w)h1(d∗) =
S + Sw + 2w − 2

2K
,

h2(ξ) = wh2(S) + (1− w)h2(d∗) =
S2 − S2w + 4w − 4

8K(K − 1)
,
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and

h3(ξ) = wh3(S) + (1− w)h3(d∗)

=
S3 + S3w − 3S2 − 3S2w + 8S − 4Sw + 12w − 12

32K(K − 1)(K − 2)
.

Now the determinant of the information matrix M(ξ) is given by

ln det(M(ξ∗)) = c+ p1 ln(S + Sw + 2w − 2) + p2 ln(S
2 − S2w + 4w − 4)

+ p3 ln(S
3 + S3w − 3S2 − 3S2w + 8S − 4Sw + 12w − 12).

Taking derivatives with respect to w we obtain

∂

∂w
ln det(M(ξ)) =

p1(S + 2)

S + Sw + 2w − 2
+

p2(−S2 + 4)

S2 − S2w + 4w − 4

+
p3(S

3 − 3S2 − 4S + 12)

S3 + S3w − 3S2 − 3S2w + 8S − 4Sw + 12w − 12

which has root

w = w∗S =
2K2S − 3KS2 − 6K2 + 3KS + 3S2 +

√
λ− 5S − 30

K2S2 −K2S − 6K2 + 5S2 − 5S − 30

where

λ = K4S4 − 6K4S3 − 6K3S4 + 9K4S2 + 24K3S3 + 25K2S4 − 18K3S2 − 78K2S3

− 48KS4 + 45K2S2 + 228KS3 + 64S4 − 180KS2 − 240S3 + 180S2.

Finally, for the case where S = 4 for K = 5 or 6 we consider the optimal intermediate
comparison depth d∗ = S/2. The entries of the information matrix M(ξ) are specified
as

h1(ξ) = wh1(S) + (1− w)h1(d∗) =
S + Sw

2K
,

h2(ξ) = wh2(S) + (1− w)h2(d∗) =
S2 − S2w

8K(K − 1)
,

and

h3(ξ) = wh3(S) + (1− w)h3(d∗) =
S3 − 3S2 + 2S + S3w − 3S2w + 2Sw

32K(K − 1)(K − 2)
.
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The determinant of the information matrix M(ξ) is given by

ln det(M(ξ)) = c+ p1 ln(S + Sw) + p2 ln(S
2 − S2w)

+ p3 ln(S
3 − 3S2 + 2S + S3w − 3S2w + 2Sw).

Taking derivatives with respect to w we obtain

∂

∂w
ln det(M(ξ)) =

p1S

S + Sw
+

p2(−S2)

S2 − S2w
+

p3(S
3 − 3S2 + 2S)

S3 − 3S2 + 2S + S3w − 3S2w + 2Sw

which has root

w = w∗S =
K2S3 − 6KS3 − 3K2S2 + 11S3 + 18KS2 + 2K2S − 33S2 − 12KS + 22S

K2S3 − 3K2S2 + 5S3 + 2K2S − 15S2 + 10S
.

This root w∗S gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

S ∪ X (S)
d∗ .

Again, the comparison depth d∗ is an integer solution for the maximum of the
variance function which proofs the D-optimality of the design ξ∗ in view of the Kiefer
and Wolfowitz (1960) equivalence theorem.

Values of the normalized variance function V (d, ξ∗)/p, which show D-optimality of
the design ξ∗ in view of the equivalence theorem by Kiefer and Wolfowitz (1960) are
presented in the following Table 6.4.

Table 6.4: Values of the Variance Function of the D-Optimal Design ξ∗

for S = K−1 Binary Attributes (Boldface 1 Corresponds to the Optimal
Comparison Depths d∗)

d

K S 1 2 3 4 5 6 7 8 9

4 3 1 0.952 1
5 4 0.958 1 0.792 1
6 5 0.791 1 0.913 0.817 1
7 6 0.701 1 1 0.915 0.858 1
8 7 0.626 0.926 1 0.946 0.862 0.847 1
9 8 0.565 0.877 1 0.998 0.933 0.869 0.870 1
10 9 0.508 0.815 0.964 1 0.965 0.904 0.860 0.878 1
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7 Optimal Designs for Second-Order Interactions General Level

Models

For the present setting of common number general-level attributes results for main effects
and first-order interactions have been derived by Graßhoff et al. (2003) as pointed out in
Chapter 5. Here we focus on second-order interactions where the attributes k = 1, . . . , K

having levels ik = 1, . . . , v each are assumed to derive the preferences for the alternatives
in a paired comparison experiment. For alternatives in a choice set of size two, as
before we denote by i = (i1, . . . , iK) the first alternative and the second alternative by
j = (j1, . . . , jK) which are both elements of the set I = I1 × · · · × IK = {1, . . . , v}K

where the numbers 1 and v represent the first and last level of each attribute. The
alternatives i and j are ordered pairs which are chosen from the design region X = I×I.
For each attribute (component) k the corresponding marginal model coincides with
that of the one-way layout with regression functions fk = f1 defined in Section 4.2.

Now the second-order interaction model (6.1) can be similarly formulated as

Ỹna(i) = µn +
K∑
k=1

α
(k)
ik

+
∑
k<`

α
(k`)
iki`

+
∑

k<`<m

α
(k`m)
iki`im

+ ε̃na, (7.1)

with direct response (utility) Ỹna(i) where α
(k)
ik

is the main effects of the k-th attribute
when the corresponding level is ik = 1, . . . , v for k = 1, . . . , K in total, α(k`)

iki`
is the

first-order interaction effects of the k-th and `-th attribute when the corresponding
levels are ik = 1, . . . , v and i` = 1, . . . , v, respectively, and α(k`m)

iki`im
is the second-order

interaction effects of the k-th, `-th and m-th attribute when the corresponding levels are
ik = 1, . . . , v, i` = 1, . . . , v and im = 1, . . . , v, respectively. As a result, by the common
identifiability conditions of effects-coding, in particular for the second-order interactions
effects α(k`m)

iki`im
= β

(k`m)
iki`im

for ik, i`, im = 1, . . . , v − 1 the following equalities hold:

α
(k`m)
iki`v

= −
v−1∑
im=1

β
(k`m)
iki`im

, ik, i` = 1, . . . , v − 1, α
(k`m)
ikvim

= −
v−1∑
i`=1

β
(k`m)
iki`im

, ik, im = 1, . . . , v − 1,

α
(k`m)
vi`im

= −
v−1∑
ik=1

β
(k`m)
iki`im

, i`, im = 1, . . . , v − 1, α
(k`m)
ikvv

=
v−1∑
i`=1

v−1∑
im=1

β
(k`m)
iki`im

, ik = 1, . . . , v − 1,

α
(k`m)
vi`v

=
v−1∑
ik=1

v−1∑
im=1

β
(k`m)
iki`im

, i` = 1, . . . , v − 1, α
(k`m)
vvim

=
v−1∑
ik=1

v−1∑
i`=1

β
(k`m)
iki`im

, im = 1, . . . , v − 1, and

α(k`m)
vvv = −

v−1∑
ik=1

v−1∑
i`=1

v−1∑
im=1

β
(k`m)
iki`im

.
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The parameters for the main effects, the first-order interactions and the second-order
interactions, respectively, can be summarized as follows

βk = (β
(k)
ik

)ik=1,...,v−1, βk` = (β
(k`)
iki`

)ik=1,...,v−1, i`=1,...,v−1 and

βk`m = (β
(k`m)
iki`im

)ik=1,...,v−1, i`=1,...,v−1, im=1,...,v−1,

where e. g. βk`m describes the effect of the second-order interaction of the k-th, `-th and
m-th attribute. Then the vector of parameters of dimension p = K(v − 1) +

(
K
2

)
(v −

1)2 +
(
K
3

)
(v − 1)3 is given by

β = ((βk)
>
k=1,...,K , (βk`)

>
k<`, (βk`m)

>
k<`<m)

>. (7.2)

With the above notation the model (6.2) can be rewritten as

Ỹna(i) = µn +
K∑
k=1

f1(ik)>βk +
∑
k<`

(f1(ik)⊗ f1(i`))>βk`

+
∑

k<`<m

(f1(ik)⊗ f1(i`)⊗ f1(im))>βk`m + ε̃na, (7.3)

which results in the vector

f(i) = (f1(i1)>, . . . , f1(iK)>, f1(i1)> ⊗ f1(i2)>, . . . , f1(iK−1)⊗ f1(iK)>,

f1(i1)> ⊗ f1(i2)> ⊗ f1(i3)>, . . . , f1(iK−2)> ⊗ f1(iK−1)> ⊗ f1(iK)>)> (7.4)

of dimension p. Here the first K components f1(i1), . . . , f1(iK) of f(i) are associated
with the main effects and have p1 = K(v − 1), the second components f1(i1) ⊗
f1(i2), . . . , f1(iK−1)⊗ f1(iK) of f(i) are associated with the first-order interactions and
have p2 = (1/2)K(K − 1)(v − 1)2, and the remaining components f1(i1) ⊗ f1(i2) ⊗
f3(i3), . . . , f1(iK−2) ⊗ f1(iK−1) ⊗ f1(iK) of f(i) are associated with the second-order
interactions and have p3 = (1/6)K(K − 1)(K − 2)(v − 1)3.

The corresponding paired comparison model is given by

Yn(i, j) =
K∑
k=1

(f1(ik)− f1(jk))>βk +
∑
k<`

((f1(ik)⊗ f1(i`))− (f1(jk)⊗ f1(j`)))>βk`

+
∑

k<`<m

((f1(ik)⊗ f1(i`)⊗ f1(im))− (f1(jk)⊗ f1(j`)⊗ f1(jm)))>βk`m + εn.

(7.5)

52



7.1 Designs for Full Profiles

In the following we consider the second-order interaction paired comparison model (7.5)
with corresponding regression functions f(i) in (7.4), and present some optimality results
in the class of invariant designs which are uniform on their orbits of fixed comparison
depth d.

For paired alternatives i = (i1, . . . , iK) and j = (j1, . . . , jK) the design region X is
defined as

X = {(i, j); ik, jk ∈ {1, . . . , v} for k = 1, . . . , K attributes}, (7.6)

which can be partitioned into disjoint sets such that the pairs in each set differ only in
a specified number of the attributes. As already noted these sets constitute the orbits
with respect to permutations of both the levels ik, jk = 1, . . . , v within the attributes as
well as among attributes k = 1, . . . , K, themselves. Hence for the comparison depth
d = 0, . . . , K, we similarly formulate the set Xd in (6.5) as

Xd = {(i, j) ∈ X : |{k : ik 6= jk}| = d} (7.7)

with a total number of Nd = (Kd ) v
K(v−1)d pairs which vary in exactly d attributes and

denote by ξd the uniform approximate design which assigns equal weight ξd(i, j) = 1/Nd

to each pair in Xd and weight zero to all remaining pairs in X .

We next derive the information matrices for the aforementioned invariant designs.
To begin with, we note that M = 2

v−1(Idv−1 + 1v−11>v−1) is the information matrix of
the corresponding one-way layout in (4.5).

Lemma 7.1. Let d be a fixed comparison depth. The uniform design ξd on the set Xd
of comparison depth d has block diagonal information matrix

M(ξd) =

h1(d)Idp1 ⊗M 0 0

0 h2(d)Idp2 ⊗M⊗M 0

0 0 h3(d)Idp3 ⊗M⊗M⊗M

 ,

where

h1(d) =
d

K
, h2(d) =

d

2vK(K − 1)
(2Kv − 2K − dv − v + 2) and

h3(d) =
d

4v2K(K − 1)(K − 2)
(3K2 + 3K2v2 − 6K2v − 3Kdv2 + 3Kdv − 6Kv2 + 15Kv

− 9K + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6).
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We note that the results for v = 2 in Lemma 6.1 can be obtained as a special case
by replacing hq(d) for q = 1, 2, 3 by 4qhq(d) because M = 4.

Proof. In view of Lemma 1 of Graßhoff et al. (2003) it follows that
∑v

i=1 f1(i)f1(i)
> =

v−1
2
M and

∑
i 6=j f1(i)f1(j)

> = −v−1
2
M. Hence∑

i 6=j

(f1(i)− f1(j))(f1(i)− f1(j))>

=
v∑
i=1

v∑
j=1,j 6=i

(f1(i)f1(i)> + f1(j)f1(j)> − f1(i)f1(j)> − f1(j)f1(i)>)

= (v − 1)(v − 1)M+ (v − 1)M

= v(v − 1)M.

For the regression functions fk = f1 associated with the k-th main effect we have∑
(i,j)∈Xd

(fk(ik)− fk(jk))(fk(ik)− fk(jk))>

=
(
K−1
d−1
)
vK−1(v − 1)d−1

∑
ik 6=jk

(f1(ik)− f1(jk))(f1(ik)− f1(jk))>

=
(
K−1
d−1
)
vK(v − 1)dM,

because there are
(
K−1
d−1

)
vK−1(v − 1)d−1 pairs in Xd for which ik and jk differ.

Now as the number Nd of paired comparisons in Xd with comparison depth d equals
Nd = (Kd ) v

K(v − 1)d for every attribute k, the corresponding diagonal elements h1(d)
are given by

h1(d) =
1

Nd

∑
(i,j)∈Xd

(fk(ik)− fk(jk))(fk(ik)− fk(jk))>

=
1

Nd

(
K−1
d−1
)
vK(v − 1)dM =

d

K
M (7.8)

in the information matrix.
For first-order interactions, we similarly consider attributes k and `, say, and

distinguish between pairs in which both attributes are distinct and pairs in which only
one of these attributes has distinct levels in the alternatives while the same level is

54



presented in both alternatives for the other attribute:∑
ik 6=jk

∑
i` 6=j`

(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> + f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> − f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)>)

= 2(v − 1)2
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)>

=
1

2
v(v − 1)2(v − 2)M⊗M (7.9)

and∑
ik 6=jk

∑
i`=j`

(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j`=i`

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> + f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> − f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)>)

= 2(v − 1)
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> − 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i`=j`

f1(i`)f1(j`)>

=
1

2
v(v − 1)2M⊗M, (7.10)

respectively.
For given attributes k and ` the pairs with distinct levels in both attributes occur(

K−2
d−2
)
vK−2(v − 1)d−2 times in Xd, while those which differ only in one attribute occur

( 2
1 )
(
K−2
d−1
)
vK−2(v − 1)d−1 times in Xd. As a result, for the first-order interactions the
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diagonal elements h2(d) in the information matrix are given by

h2(d) =
1

Nd

(
1

2

(
K − 2

d− 2

)
v(v − 1)2(v − 2)vK−2(v − 1)d−2M⊗M

+

(
K − 2

d− 1

)
v(v − 1)2vK−2(v − 1)d−1M⊗M

)
=
(

d(d−1)
2vK(K−1)(v − 2) + d(K−d)

vK(K−1)(v − 1)
)
M⊗M

=
d

2vK(K − 1)

(
(v − 2)(d− 1) + 2(K − d)(v − 1)

)
M⊗M

=
d

2vK(K − 1)
(2Kv − 2K − dv − v + 2)M⊗M. (7.11)

Further for the second-order interactions, we similarly consider attributes k, ` and
m, say, and distinguish between pairs in which all three attributes are distinct, pairs in
which two of these attributes k and `, say, have distinct levels in the alternatives while
the same level is presented in both alternatives for the remaining attribute and, finally,
pairs in which only one of the attributes, say, k has distinct levels in the alternatives
while the same level is presented in both alternatives for the two remaining attributes:∑

ik 6=jk

∑
i` 6=j`

∑
im 6=jm

(f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))

· (f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

v∑
im=1

∑
jm 6=im

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)>)

= 2(v − 1)3
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)> ⊗
∑
im 6=jm

f1(im)f1(jm)>

=
1

4
v(v − 1)3(v2 − 3v + 3)M⊗M⊗M, (7.12)
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also ∑
ik 6=jk

∑
i` 6=j`

∑
im=jm

(f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))

· (f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

v∑
im=1

∑
jm=im

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)>)

= 2(v − 1)2
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)> ⊗
∑
im=jm

f1(im)f1(jm)>

=
1

4
v(v − 1)3(v − 2)M⊗M⊗M, (7.13)

and ∑
ik 6=jk

∑
i`=j`

∑
im=jm

(f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ g(jm))

· (f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j`=i`

v∑
im=1

∑
jm=im

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)>)

= 2(v − 1)
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i`=j`

f1(i`)f1(j`)> ⊗
∑
im=jm

f1(im)f1(jm)>

=
1

4
v(v − 1)3M⊗M⊗M, (7.14)

respectively.
For given attributes k, ` and m the pairs with distinct levels in the three attributes

occur
(
K−3
d−3
)
vK−3(v − 1)d−3 times in Xd, while those which differ in two attributes

occur ( 3
2 )
(
K−3
d−2
)
vK−3(v − 1)d−2 times in Xd and, finally, those which differ only in one
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attribute occur ( 3
1 )
(
K−3
d−1
)
vK−3(v− 1)d−1 times in Xd. As a result, for the second-order

interactions the diagonal elements h3(d) in the information matrix are given by

h3(d) =
1

Nd

(
1

4

(
K − 3

d− 3

)
v(v − 1)3(v2 − 3v + 3)vK−3(v − 1)d−3M⊗M⊗M

+
3

4

(
K − 3

d− 2

)
v(v − 1)3(v − 2)vK−3(v − 1)d−2M⊗M⊗M

+
3

4

(
K − 3

d− 1

)
v(v − 1)3vK−3(v − 1)d−1M⊗M⊗M

)

=

(
d(d− 1)(d− 2)

4v2K(K − 1)(K − 2)
(v2 − 3v + 3) +

3(K − d)d(d− 1)

4v2K(K − 1)(K − 2)
(v − 1)(v − 2)

+
3(K − d)(K − d− 1)d

4v2K(K − 1)(K − 2)
(v − 1)2

)
M⊗M⊗M

=
d

4v2K(K − 1)(K − 2)
(3K2 + 3K2v2 − 6K2v − 3Kdv2 + 3Kdv − 6Kv2

+ 15Kv − 9K + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6)M⊗M⊗M.

(7.15)

Finally, it can be noted that all off-diagonal entries in the information matrix vanish
because the terms in the corresponding sums add up to zero due to the effects-type
coding.

Here we similarly note that the corresponding functions hq(0) = 0 for q = 1, 2, 3.
Further we mention that for the situation of first-order interactions the corresponding
results of h1(d) and h2(d) can be found in Chapter 5.

In the following we give the information matrix for a general invariant design ξ.
As already mentioned the invariant design ξ can be written as convex combination
ξ =

∑K
d=1wdξd of uniform designs on the comparison depth d with corresponding

weights wd ≥ 0,
∑K

d=1wd = 1.

Lemma 7.2. Let ξ be an invariant design on X , i. e. ξ =
∑K

d=1wdξd, then ξ has block
diagonal information matrix

M(ξ) =

h1(ξ)Idp1 ⊗M 0 0

0 h2(ξ)Idp2 ⊗M⊗M 0

0 0 h3(ξ)Idp3 ⊗M⊗M⊗M

 ,

where hq(ξ) =
∑K

d=1wdhq(d), q = 1, 2, 3.
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Now in the following Theorem 7.1, Theorem 7.2 and Remark 7.1 we consider optimal
designs for the main effects, the first-order interaction and the second-order interaction
terms having corresponding entries h1(d), h2(d) and h3(d), respectively, in the infor-
mation matrix M(ξd) in Lemma 7.1. As already mentioned the resulting designs may
optimize every design criterion which is invariant with respect to both permutations
of the levels and permutations of the attributes subject to the full parameter vector,
satisfying the corresponding identifiabity conditions. As a consequence, the reduced pa-
rameter vector β = ((βk)

>
1≤k≤K , (βk`)

>
k<`, (βk`m)

>
k<`<m)

> in (7.2) considered separately
in the underlying theorems are also invariant with respect to the D-criterion. Here
we mention that Theorems 7.1 and 7.2 paraphrase theorems given in Graßhoff et al.
(2003) for first-order interaction models and translate them to the present setting of
second-order interaction models.

Theorem 7.1. Let d∗1 = K for v ≥ 2. Then the uniform design ξd∗1 = ξK on the largest
possible comparison depth K is D-optimal for the main effects (βk)>1≤k≤K.

This means that for the main effects it is sufficient to use only those pairs of
alternatives which differ in all attributes.

Moreover, for the first-order interactions attributes with distinct levels does not
provide enough information. Hence, we consider the intermediate comparison depth
d∗ = K − 1−

[
K−2
v

]
where [u] denotes the integer part of the decimal expansion for u

satisfying [u] ≤ u < [u] + 1.

Theorem 7.2. Let d∗2 = K − 1 −
[
K−2
v

]
for v ≥ 2. Then the uniform design ξd∗2 is

D-optimal for the first-order interaction effects (βk`)
>
k<`.

This means that for the first-order interactions it is sufficient to use only those pairs
of alternatives which differ in approximately half of the attributes.

Remark 7.1. There exists a single comparison depth d∗3 such that the uniform design
ξd∗3 is D-optimal for the second-order interaction effects (βk`m)

>
k<`<m.

In the following Table 7.1 we note that the corresponding values of d∗3 were obtained
by first calculating the values of h3(d) and determining the maximum. It is worthwhile
mentioning that generally for moderate values of v the optimal comparison depth
d∗3 = K but this is not true for K = 3. Moreover, the optimal comparison depth
d∗3 = K − 2 for sufficiently large values of v.
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Table 7.1: Values of the Optimal Comparison Depths d∗3 of the D-
Optimal Uniform Designs ξd∗3 for the Second-Order Interactions with K

Attributes and v-Levels

v

K 2 3 4 5 6 7 8 9 10 20

3 1 1 1 1 1 1 1 1 1 1

4 4 1 2 2 2 2 2 2 2 2

5 5 2 2 3 3 3 3 3 3 3

6 6 6 3 3 3 4 4 4 4 4

7 7 7 7 4 4 4 4 5 5 5

8 8 8 8 5 5 5 5 5 6 6

9 9 9 9 9 6 6 6 6 6 7

10 10 10 10 10 6 7 7 7 7 8

In the following Theorem 7.3 and Corollary 7.1 we present the variance function for
the corresponding invariant designs. We define the variance function for the invariant
designs ξ as V ((i, j), ξ) = (f(i)−f(j))>M(ξ)−1(f(i)−f(j)), which as similarly characterized
in Theorem 6.4 is also invariant with respect to permutation of levels and attributes
and, hence, constant on the orbits Xd of fixed comparison depth d. The value of the
variance function for the invariant design ξ evaluated at comparison depth d can also
be denoted as V (d, ξ) where V (d, ξ) = V ((i, j), ξ) on Xd.

Theorem 7.3. For every invariant design ξ the variance function V (d, ξ) is given by

V (d, ξ) = d(v − 1)

(
1

h1(ξ)
+

v − 1

4vh2(ξ)
(2Kv − 2K − dv − v + 2) +

(v − 1)2

24v2h3(ξ)
λ(d)

)
,

where

λ(d) = 3K2 + 3K2v2 − 6K2v − 3Kdv2 + 3Kdv − 6Kv2 + 15Kv

− 9K + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6.

It should be noted that the results for v = 2 in Theorem 6.4 can be obtained as a
special case.
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Proof. In view of Remark 4.1 it is sufficient to note that for the k-th main effects the
variance function is given by

(f1(ik)− f1(jk))>M−1(f1(ik)− f1(jk))

= f1(ik)>M−1f1(ik) + f1(jk)>M−1f1(jk)− f1(ik)>M−1f1(jk)− f1(jk)>M−1f1(ik)

=
(v − 1)2

v
+

(v − 1)

v

= v − 1. (7.16)

Further for the regression function associated with the first-order interactions of the
attributes k and `, say, we obtain

(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))>M−1 ⊗M−1(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))

= f1(ik)>M−1f1(ik) · f1(i`)>M−1f1(i`) + f1(jk)>M−1f1(jk) · f1(j`)>M−1f1(j`)

− f1(ik)>M−1f1(jk) · f1(i`)>M−1f1(j`)− f1(jk)>M−1f1(ik) · f1(j`)>M−1f1(i`)

=


(v − 1)2(v − 2)

2v
for ik 6= jk, i` 6= j`

(v − 1)3

2v
for ik 6= jk, i` = j` or ik = jk, i` 6= j`.

(7.17)

Accordingly, for the regression function associated with the interaction of the attributes
k, ` and m, say, we obtain

(f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))>M−1 ⊗M−1 ⊗M−1

· (f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))

= f1(ik)>M−1f1(ik) · f1(i`)>M−1f1(i`) · f1(im)>M−1f1(im)

+ f1(jk)>M−1f1(jk) · f1(j`)>M−1f1(j`) · f1(jm)>M−1f1(jm)

− f1(ik)>M−1f1(jk) · f1(i`)>M−1f1(j`) · f1(im)>M−1f1(jm)

− f1(jk)>M−1g(ik) · f1(j`)>M−1f1(i`) · f1(jm)>M−1f1(im)

=



(v − 1)3(v2 − 3v + 3)

4v2
for ik 6= jk, i` 6= j`, im 6= jm

(v − 1)4(v − 2)

4v2
for ik 6= jk, i` 6= j`, im = jm

(v − 1)5

4v2
for ik 6= jk, i` = j`, im = jm.

(7.18)

Now for a pair of alternatives (i, j) ∈ Xd of comparison depth d: there are exactly d
attributes of the main effects for which ik and jk differ, there are 1

2
d(d− 1) first-order

interaction terms for which (iki`) and (jkj`) differ in all two attributes k and `, there
are d(K − d) first-order interaction terms for which (iki`) and (jkj`) differ in exactly
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one attribute k or `, there are 1
6
d(d− 1)(d− 2) second-order interaction terms for which

(iki`im) and (jkj`jm) differ in all three attributes k, ` and m, there are 1
2
(K − d)d(d− 1)

second-order interaction terms for which (iki`im) and (jkj`jm) differ in exactly two of
the associated three attributes and finally, there are 1

2
(K − d)(K − d− 1)d second-order

interaction terms for which (iki`im) and (jkj`jm) differ in exactly one of the associated
three attributes. Hence from (7.16)–(7.18) and Lemma 7.2 we obtain

V (d, ξ) = (f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
d(v − 1)

h1(ξ)
+
d(d− 1)

2

(v − 1)2(v − 2)

2vh2(ξ)
+ d(K − d)(v − 1)3

2vh2(ξ)

+
d(d− 1)(d− 2)

6

(v − 1)3(v2 − 3v + 3)

4v2h3(ξ)
+

(K − d)d(d− 1)

2

(v − 1)4(v − 2)

4v2h3(ξ)

+
(K − d)(K − d− 1)d

2

(v − 1)5

4v2h3(ξ)

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)

(
(d− 1)(v − 2) + 2(K − d)(v − 1)

)
+
d(v − 1)3

24v2h3(ξ)

(
(d− 1)(d− 2)(v2 − 3v + 3) + 3(K − d)(d− 1)(v − 1)(v − 2)

+ 3(K − d)(K − d− 1)(v − 1)2
)

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)
(2Kv − 2K − dv − v + 2)

+
d(v − 1)3

24v2h3(ξ)

(
3K2v2 − 6K2v − 6Kv2 + 3K2 − 3Kdv2 + 3Kdv

+ 3dv2 + 15Kv − 9K + d2v2 − 6dv + 2v2 − 6v + 6
)
,

for (i, j) ∈ Xd which proofs the proposed formula.

We note that for comparison depth d = 0 the corresponding variance function
V (0, ξ) = 0.

Accordingly, if the general invariant design ξ is concentrated on a single comparison
depth, then the representation of the variance function V (d, ξ) simplifies

Corollary 7.1. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

2Kv−2K−dv−v+2
2Kv−2K−d′v−v+2

+ p3
λ(d)
λ(d′)

)
,

where

λ(d) = 3K2 + 3K2v2 − 6K2v − 3Kdv2 + 3Kdv − 6Kv2 + 15Kv

− 9K + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6.
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Proof. In view of Theorem 7.3 it is sufficient to note that the representation of the
variance function follows immediately by inserting the values of hq(ξd) from Lemma 7.1
and pq =

(
K
q

)
(v − 1)q, q = 1, 2, 3.

Note that for d = d′, V (d, ξd) = p1 + p2 + p3 = p which shows the D-optimality of
ξd on Xd in view of the Kiefer-Wolfowitz equivalence theorem.

In view of Theorems 7.1, 7.2 and 7.1 we similarly note that no design exists which is
simultaneously optimal for the main effects, the first-order interactions and the second-
order interactions. As a consequence, we confine ourselves to the D-criterion to derive
optimal design for the whole parameter vector. As before we mention that generally
a single comparison depth d may be sufficient for non-singularity of the information
matrix M(ξd), i. e. for the identifiability of all model parameters. The following theorem
gives an upper bound on the number of comparison depths required for a D-optimal
design.

Theorem 7.4. In the second-order interactions model the D-optimal design ξ∗ is
supported on, at most, three different comparison depths K, d∗ and d∗ + 1, say, i.e.
ξ∗ = w∗KξK + w∗d∗ξd∗ + (1− w∗K − w∗d∗)ξd∗+1.

Proof. The proof follows directly from Theorem 7.3 by using similar arguments in
Theorem 6.5.

For fixed number K of the attributes at v levels, intermediate comparison depth
d and weights wK the numerical results were obtained by direct maximization of
ln(det(M(wKξK + (1− wK)ξd))) for the corresponding optimal comparison depth d∗

and optimal weights w∗K where w∗d∗ = 1− w∗K in Table 7.2. In particular, the numerical
computations indicate that at most two different comparison depths K and d∗ may
be required as presented in Table 7.2 for fixed K attributes between 4 and 10 and
levels v = 2, . . . , 8. Here entries of the form (d∗, w∗d∗) indicate that invariant designs
ξ∗ = w∗d∗ξd∗ + (1−w∗d∗)ξK have to be considered, while for single entries d∗ the optimal
design ξ∗ = ξd∗ has to be considered which is uniform on the optimal comparison depth
d∗ (in boldface).
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Table 7.2: Optimal Designs with Intermediate Comparison Depths
d∗ in Boldface and Optimal Weights w∗d∗ of the form (d∗, w∗d∗) for K

Attributes and v-Levels

v

K 2 3 4 5 6 7 8

4 (2, 0.857) 2 2 2 2 2 2
5 (2, 0.833) (2, 0.667) 3 3 3 3 3
6 (3, 0.732) (3, 0.789) 3 4 4 4 4
7 (3, 0.697) (4, 0.322) 4 4 4 5 5
8 (3, 0.644) 4 (5, 0.425) 5 5 5 5
9 (4, 0.577) 5 5 6 6 6 6
10 (4, 0.538) 5 6 6 7 7 7

In the corresponding Table 7.2 it is worth noting that for the particular case K = 3

and v = 2 one can recover the corresponding result in Theorem 6.6 where the design ξ∗

is uniform on all pairs with non-zero comparison depth. Accordingly, a similar result
also holds for arbitrary v (see Graßhoff et al., 2003). For K = 9, 10 and v = 3, 4, the
corresponding intermediate comparison depths are candidates to obtain optimal designs.

Accordingly, in the following Table 7.3 we present the values of the normalized
variance function V (d, ξ∗)/p, which shows D-optimality of the design ξ∗ in view of
the equivalence theorem by Kiefer and Wolfowitz (1960) for attributes K = 4, . . . , 10

and levels v = 2, . . . , 8. We note that for the corresponding particular case K = 3

and v = 2 the values of the normalized variance function V (d, ξ∗)/p indicate that all
three comparison depths are needed for D-optimality, and that one can obtain the
corresponding results in Theorem 6.6. In this case similar result also holds for arbitrary
v (see Graßhoff et al., 2003). Moreover, for K = 4, . . . , 10 and v = 2 the corresponding
results in Table 6.1 can also be recovered.
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Table 7.3: Values of the Variance Function of the D-Optimal Design ξ∗

for K Attributes and v-Levels (Boldface 1 Corresponds to the Optimal
Comparison Depths d∗)

d

K v 1 2 3 4 5 6 7 8 9 10

4 2 0.875 1 0.875 1
3 0.813 1 0.938 1

4 0.793 1 0.953 0.983

5 0.783 1 0.962 0.980

6 0.777 1 0.968 0.980

7 0.773 1 0.973 0.981

8 0.770 1 0.976 0.982

5 2 0.760 1 0.960 0.880 1
3 0.723 1 1 0.954 1
4 0.689 0.967 1 0.952 0.987

5 0.666 0.951 1 0.961 0.981

6 0.653 0.941 1 0.968 0.980

7 0.644 0.934 1 0.972 0.981

8 0.638 0.929 1 0.976 0.982

6 2 0.701 0.983 1 0.906 0.855 1
3 0.624 0.921 1 0.968 0.932 1
4 0.591 0.895 1 0.993 0.963 0.997

5 0.576 0.882 0.997 1 0.972 0.992

6 0.560 0.865 0.987 1 0.976 0.989

7 0.550 0.854 0.981 1 0.979 0.988

8 0.543 0.846 0.977 1 0.982 0.988

7 2 0.615 0.917 1 0.956 0.879 0.863 1
3 0.553 0.860 0.988 1 0.963 0.941 1
4 0.519 0.822 0.965 1 0.981 0.962 0.997

5 0.498 0.800 0.952 1 0.992 0.974 0.993

6 0.487 0.787 0.944 1 0.999 0.983 0.995

7 0.479 0.777 0.937 0.997 1 0.985 0.994

8 0.471 0.768 0.929 0.994 1 0.987 0.993

8 2 0.559 0.872 1 1 0.945 0.884 0.884 1
3 0.490 0.792 0.948 1 0.990 0.958 0.948 1

4 0.462 0.759 0.924 0.993 1 0.980 0.969 1
5 0.442 0.732 0.902 0.981 1 0.988 0.977 0.995

6 0.429 0.716 0.889 0.974 1 0.994 0.982 0.994

7 0.421 0.706 0.880 0.970 1 0.997 0.987 0.995

8 0.415 0.698 0.874 0.960 1 1 0.991 0.996
(To be continued)
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Table 7.3 (continued)
d

K v 1 2 3 4 5 6 7 8 9 10

9 2 0.504 0.811 0.962 1 0.969 0.910 0.868 0.883 1
3 0.437 0.726 0.894 0.972 1 0.969 0.946 0.946 1

4 0.414 0.696 0.872 0.965 1 0.994 0.977 0.971 1

5 0.397 0.674 0.853 0.953 0.995 1 0.989 0.981 1

6 0.384 0.657 0.836 0.940 0.989 1 0.992 0.985 0.996

7 0.376 0.645 0.825 0.932 0.985 1 0.995 0.988 0.995

8 0.370 0.637 0.817 0.927 0.982 1 0.997 0.990 0.996

10 2 0.462 0.763 0.932 1 0.997 0.956 0.905 0.874 0.896 1
3 0.395 0.669 0.843 0.938 1 0.972 0.953 0.938 0.947 1

4 0.374 0.642 0.822 0.929 0.981 1 0.987 0.974 0.972 1

5 0.359 0.622 0.803 0.917 0.977 1 1 0.989 0.985 1

6 0.348 0.606 0.786 0.903 0.968 0.996 1 0.993 0.988 0.998

7 0.340 0.594 0.774 0.892 0.961 0.993 1 0.995 0.990 0.997

8 0.335 0.586 0.765 0.885 0.956 0.990 1 0.996 0.991 0.996
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7.2 Designs for Partial Profiles

In this section we generalize the results of full profiles presented in Section 7.1 to partial
profiles, which is also a generalization of the corresponding results of partial profiles
for the case of two-level attributes in Section 6.2 to common number of general levels
ik = 1, . . . , v for each attribute k = 1, . . . , K.

As similarly noted for partial profiles a direct observation (utility) may be described
by model (7.3) when summation is taken only over those S attributes contained in
the describing subset. This requires that a profile strength S ≥ 3 must be considered
to ensure identifiability of the second-order interactions. To facilitate notation we
similarly introduce an additional level 0 as before for each attribute indicating that the
corresponding k-th attribute having level ik = 0 is not present in the partial profile,
and the corresponding regression functions are given by fk(0) = f1(0) = 0. With this
convention a direct observation can be described by (7.3) even for a partial profile i
from the set

I(S) ={i; ik ∈ {1, . . . , v} for S components and

ik = 0 for K − S components},
(7.19)

of alternatives with profile strength S. It should be noted that for general profile
strength S the vector f of regression functions in (7.4) which is similarly given by

f(i) = (f1(i1)>, . . . , f1(iK)>, f1(i1)> ⊗ f1(i2)>, . . . , f1(iK−1)⊗ f1(iK)>,

f1(i1)> ⊗ f1(i2)> ⊗ f1(i3)>, . . . , f1(iK−2)> ⊗ f1(iK−1)> ⊗ f1(iK)>)>, (7.20)

of dimension p, the paired comparison model in (7.5) given by

Yn(i, j) =
K∑
k=1

(f1(ik)− f1(jk))>βk +
∑
k<`

((f1(ik)⊗ f1(i`))− (f1(jk)⊗ f1(j`)))>βk`

+
∑

k<`<m

((f1(ik)⊗ f1(i`)⊗ f1(im))− (f1(jk)⊗ f1(j`)⊗ f1(jm)))>βk`m + εn,

(7.21)

and the interpretation of the corresponding parameter vector β in (7.2) given by

β = ((βk)
>
k=1,...,K , (βk`)

>
k<`, (βk`m)

>
k<`<m)

>, (7.22)

remain unchanged. Also, it should be noted that the comparison depth d describes
the number of attributes in which the two alternatives in the choice sets differ satisfying
the inequalities 1 ≤ d ≤ S < K (e.g. see Großmann, 2017, p. 239).
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Hence, the paired comparison model (7.21) is thus restricted to those paired alter-
natives for which exactly S attributes are presented

X (S) = {(i, j); ik, jk ∈ {1, . . . , v} for S components and

ik = jk = 0 for exactly K − S components}.
(7.23)

As already noted the design region X (S) can be partitioned into disjoint sets such that
the pairs in each set differ only in a fixed number d of the attributes. Specifically, for a
comparison depth d = 0, . . . , S, let

X (S)
d = {(i, j) ∈ X (S) : |{k : ik 6= jk}| = d}, (7.24)

be the set of all pairs of alternatives which differ in exactly d attributes. These sets also
constitute the orbits with respect to permutations. The D-criterion is also invariant
with respect to those permutations. In particular, the regression functions f in (7.20)
extended to the design region X (S) are still linearly equivariant i. e. also here relabeling
does not affect D-optimality as well as D-optimality of invariant subvectors β in (7.22).
Hence, it is sufficient to look for optimality in the class of invariant designs which are
uniform on the orbits of fixed comparison depth d ≤ S.

Further let Nd =
(
K
S

)(
S
d

)
vS(v − 1)d be the number of different pairs in X (S)

d which
vary in exactly d attributes and denote by ξd the uniform approximate design which
assigns equal weight ξd(i, j) = 1/Nd to each pair in X (S)

d and weight zero to all remaining
pairs in X (S). The corresponding information matrices for the invariant designs are
presented in the following Lemma 7.3 and Lemma 7.4. It is worthwhile mentioning that
the results for full profiles presented in Section 7.1 can be obtained as special cases by
letting S = K.

Lemma 7.3. Let d be a fixed comparison depth. The uniform design ξd on the set X (S)
d

of comparison depth d has block diagonal information matrix

M(ξd) =

h1(d)Idp1 ⊗M 0 0

0 h2(d)Idp2 ⊗M⊗M 0

0 0 h3(d)Idp3 ⊗M⊗M⊗M

 ,

where

h1(d) =
d

K
, h2(d) =

d

2vK(K − 1)
(2Sv − 2S − dv − v + 2) and

h3(d) =
d

4v2K(K − 1)(K − 2)
(3S2 + 3S2v2 − 6S2v − 3Sdv2 + 3Sdv − 6Sv2 + 15Sv

− 9S + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6).
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It should be noted that the results for v = 2 in Lemma 6.3 can be obtained as a
special case by replacing hq(d) for q = 1, 2, 3 by 4qhq(d) because M = 4.

Proof. In view of Lemma 7.1 and for the regression functions fk = f1 associated with
the k-th main effects we obtain∑

(i,j)∈X (S)
d

(fk(ik)− fk(jk))(fk(ik)− fk(jk))>

=
(
K−1
S−1

) (
S−1
d−1
)
vS−1(v − 1)d−1

∑
ik 6=jk

(f1(ik)− f1(jk))(f1(ik)− f1(jk))>

=
(
K−1
S−1

) (
S−1
d−1
)
vS(v − 1)dM,

because there are
(
K−1
S−1

) (
S−1
d−1
)
vS−1(v − 1)d−1 pairs in X (S)

d for which ik and jk differ.
As the number Nd of paired comparisons in X (S)

d with comparison depth d equals
Nd = (KS ) (

S
d ) v

S(v− 1)d, the corresponding diagonal elements h1(d) in the information
matrix are given by

h1(d) =
1

Nd

∑
(i,j)∈X (S)

d

(fk(ik)− fk(jk))(fk(ik)− fk(jk))>

=
d

K
M.

Now for the given attributes k and ` the pairs with distinct levels in both attributes
occur

(
K−2
S−2

) (
S−2
d−2
)
vS−2(v − 1)d−2 times in X (S)

d , while those which differ only in one
attribute occur ( 2

1 )
(
K−2
S−2

) (
S−2
d−1
)
vS−2(v− 1)d−1 times in X (S)

d . Hence, from (7.9)–(7.10)
the diagonal elements h2(d) for the first-order interactions are given by

h2(d) =
1

Nd

(
1

2

(
K − 2

S − 2

)(
S − 2

d− 2

)
v(v − 1)2(v − 2)vS−2(v − 1)d−2M⊗M

+

(
K − 2

S − 2

)(
S − 2

d− 1

)
v(v − 1)2vS−2(v − 1)d−1M⊗M

)
=
(

d(d−1)
2vK(K−1)(v − 2) + d(S−d)

vK(K−1)(v − 1)
)
M⊗M

=
d

2vK(K − 1)

(
(v − 2)(d− 1) + 2(S − d)(v − 1)

)
M⊗M

=
d

2vK(K − 1)
(2Sv − 2S − dv − v + 2)M⊗M.

Futher for the given attributes k, ` and m the pairs with distinct levels in the three
attributes occur

(
K−3
S−3

) (
S−3
d−3
)
vS−3(v − 1)d−3 times in X (S)

d , while those which differ
in two attributes occur ( 3

2 )
(
K−3
S−3

) (
S−3
d−2
)
vS−3(v − 1)d−2 times in X (S)

d . Finally, those
which differ only in one attribute occur ( 3

1 )
(
K−3
S−3

) (
S−3
d−1
)
vS−3(v − 1)d−1 times in X (S)

d .
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Hence, from (9.8)–(9.10) the diagonal elements h3(d) for the second-order interactions
are given by

h3(d) =
1

Nd

(
1

4

(
K − 3

S − 3

)(
S − 3

d− 3

)
v(v − 1)3(v2 − 3v + 3)vS−3(v − 1)d−3M⊗M⊗M

+
3

4

(
K − 3

S − 3

)(
S − 3

d− 2

)
v(v − 1)3(v − 2)vS−3(v − 1)d−2M⊗M⊗M

+
3

4

(
K − 3

S − 3

)(
S − 3

d− 1

)
v(v − 1)3vS−3(v − 1)d−1M⊗M⊗M

)

=

(
d(d− 1)(d− 2)

4v2K(K − 1)(K − 2)
(v2 − 3v + 3) +

3(S − d)d(d− 1)

4v2K(K − 1)(K − 2)
(v − 1)(v − 2)

+
3(S − d)(S − d− 1)d

4v2K(K − 1)(K − 2)
(v − 1)2

)
M⊗M⊗M

=
d

4v2K(K − 1)(K − 2)
(3S2 + 3S2v2 − 6S2v − 3Sdv2 + 3Sdv − 6Sv2 + 15Sv

− 9S + d2v2 + 3dv2 − 6dv + 2v2 − 6v + 6)M⊗M⊗M,

in the information matrix.
It should be noted that the off-diagonal elements all vanish because the terms in

the corresponding entries sum up to zero due to the effects-type coding.

We note that for comparison depth d = 0 the corresponding functions hq(0) = 0 for
q = 1, 2, 3.

The information matrix for the general invariant design ξ which result from convex
combinations of uniform designs on the comparison depth d with weight wd, ξ =∑S

d=1wdξd, wd ≥ 0,
∑S

d=1wd = 1 also has block diagonal information matrix:

Lemma 7.4. Let ξ be an invariant design on X (S) then ξ has block diagonal information
matrix

M(ξ) =

h1(ξ)Idp1 ⊗M 0 0

0 h2(ξ)Idp2 ⊗M⊗M 0

0 0 h3(ξ)Idp3 ⊗M⊗M⊗M

 ,

where hq(ξ) =
∑S

d=1wdhq(d), q = 1, 2, 3.

In the following Theorems and remark we consider optimal designs for the main
effects, the first-order interaction and the second-order interaction terms separately
having entries hq(d) for q = 1, 2, 3 in the corresponding information matrix M(ξd).
Analogously, the resulting designs may optimize every design criterion which is invariant
with respect to both permutations of the levels and permutations of the attributes if one
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considers the full parameter vector, satisfying the aforementioned identifiabity conditions.
Hence, the reduced parameter vector β = ((βk)

>
k=1,...,K , (βk`)

>
k<`, (βk`m)

>
k<`<m)

> in (7.22)
considered separately in the underlying Theorems 7.5, 7.6 and 7.2 are also invariant in
particular, with the D-criterion.

Theorem 7.5. Let d∗1 = S. Then the uniform design ξd∗1 = ξS on the largest possible
comparison depth S is D-optimal for the main effects (βk)>1≤k≤K.

This means that for the main effects it is sufficient to use only those pairs of
alternatives which differ in all the profile strength.

For the first-order interactions the number of the attributes subject to the profile
strength with distinct levels does not provide enough information. Hence, only those
pairs of alternatives should be used which differ in approximately half of the profile
strength S. In particular, and as before one has to consider the intermediate comparison
depth d∗ = S − 1−

[
S−2
v

]
where [u] denotes the integer part of the decimal expansion

for u, satisfying [u] ≤ u < [u] + 1.

Theorem 7.6. Let d∗2 = S − 1−
[
S−2
v

]
. Then the uniform design ξd∗2 is D-optimal for

the first-order interaction effects (βk`)>k<`.

It is worthwhile mentioning that the corresponding Theorems 7.5 and 7.6 paraphrase
theorems given in Graßhoff et al. (2003) for first-order interaction models and translate
them to the present setting of second-order interaction models.

Remark 7.2. There exists a single comparison depth d∗3 subject to the profile strength
S such that the uniform design ξd∗3 is D-optimal for the second-order interaction effects
(βk`m)

>
k<`<m.

In the following Table 7.4 we note that the corresponding values of d∗3 were obtained
by first calculating the values of h3(d) and determining the maximum. It is worthwhile
mentioning that generally for moderate values of v the optimal comparison depth
d∗3 = S but this is not true for the case when S = 3 and K = 4. Moreover, the optimal
comparison depth d∗3 = S − 2 for sufficiently large values of v. We further note that for
the situation of full profiles (S = K) the corresponding results presented in Table 7.1
can also be recovered.
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Table 7.4: Values of the Optimal Comparison Depths d∗3 of the D-
Optimal Uniform Designs ξd∗3 for the Second-Order Interactions with

S = K − 1 Attributes and v-Levels

v

K S 2 3 4 5 6 7 8 9 10 20

4 3 1 1 1 1 1 1 1 1 1 1

5 4 4 1 2 2 2 2 2 2 2 2

6 5 5 2 2 3 3 3 3 3 3 3

7 6 6 6 3 3 3 4 4 4 4 4

8 7 7 7 7 4 4 4 4 5 5 5

9 8 8 8 8 5 5 5 5 5 6 6

10 9 9 9 9 9 6 6 6 6 6 7

As before we mention that the value of the variance function for the corresponding
invariant ξ evaluated at comparison depth d is given by V (d, ξ) where V (d, ξ) =

V ((i, j), ξ) = (f(i) − f(j))>M(ξ)−1(f(i) − f(j)) for the pair (i, j) on the orbits X (S)
d of

fixed comparison depth d. The variance function V (d, ξ) for the invariant design ξ is
given in the following Theorem 7.7.

Theorem 7.7. For every invariant design ξ the variance function V (d, ξ) is given by

V (d, ξ) = d(v − 1)

(
1

h1(ξ)
+

v − 1

4vh2(ξ)

(
2Sv − 2S − dv − v + 2

)
+

(v − 1)2

24v2h3(ξ)
λ(d)

)
,

where

λ(d) = 3S2 + 3S2v2 − 6S2v − 3Sdv2 + 3Sdv − 6Sv2 + 15Sv − 9S + d2v2 + 3dv2

− 6dv + 2v2 − 6v + 6.

Proof. First we note that

M(ξ)−1 =


1

h1(ξ)
Idp1 ⊗M 0 0

0 1
h2(ξ)

Idp2 ⊗M⊗M 0

0 0 1
h3(ξ)

Idp3 ⊗M⊗M⊗M

 ,
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for the inverse of the information matrix of the design ξ. Hence, we obtain for the
variance function

V ((i, j), ξ) =(f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
1

h1(ξ)

K∑
k=1

(f1(ik)− f1(jk))(f1(ik)− f1(jk))
>

+
1

h2(ξ)

∑
k<`

(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))(f1(ik)⊗ f1(i`)− f1(jk)⊗ f1(j`))
>

+
1

h3(ξ)

∑
k<`<m

(f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))

· (f1(ik)⊗ f1(i`)⊗ f1(im)− f1(jk)⊗ f1(j`)⊗ f1(jm))
>.

(7.25)

Now we note that for a pair of alternatives (i, j) ∈ X (S)
d of comparison depth d, there

are exactly d attributes of the main effects for which ik and jk differ, there are 1
2
d(d− 1)

first-order interaction terms for which (iki`) and (jkj`) differ in all two attributes k
and `, there are d(S − d) first-order interaction terms for which (iki`) and (jkj`) differ
in exactly one attribute k or `, there are 1

6
d(d − 1)(d − 2) second-order interaction

terms for which (iki`im) and (jkj`jm) differ in all three attributes k, ` and m, there are
1
2
(S− d)d(d− 1) second-order interaction terms for which (iki`im) and (jkj`jm) differ in

exactly two of the associated three attributes and finally, there are 1
2
(S− d)(S− d− 1)d

second-order interaction terms for which (iki`im) and (jkj`jm) differ in exactly one of
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the associated three attributes. Hence from (7.16)–(7.18) and (7.25) we obtain

V (d, ξ) = (f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
d(v − 1)

h1(ξ)
+
d(d− 1)

2

(v − 1)2(v − 2)

2vh2(ξ)
+ d(S − d)(v − 1)3

2vh2(ξ)

+
d(d− 1)(d− 2)

6

(v − 1)3(v2 − 3v + 3)

4v2h3(ξ)
+

(S − d)d(d− 1)

2

(v − 1)4(v − 2)

4v2h3(ξ)

+
(S − d)(S − d− 1)d

2

(v − 1)5

4v2h3(ξ)

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)

(
(d− 1)(v − 2) + 2(S − d)(v − 1)

)
+
d(v − 1)3

24v2h3(ξ)

(
(d− 1)(d− 2)(v2 − 3v + 3) + 3(S − d)(d− 1)(v − 1)(v − 2)

+ 3(S − d)(S − d− 1)(v − 1)2
)

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)

(
2Sv − 2S − dv − v + 2

)
+
d(v − 1)3

24v2h3(ξ)

(
3S2v2 − 6S2v − 6Sv2 + 3S2 − 3Sdv2 + 3Sdv

+ 3dv2 + 15Sv − 9S + d2v2 − 6dv + 2v2 − 6v + 6
)
,

for (i, j) ∈ X (S)
d .

It is worthwhile mentioning that for the case when the comparison depth d = 0 the
corresponding variance function V (0, ξ) = 0.

Further we mention that the corresponding representation of the variance function
V (d, ξ) in Theorem 7.7 simplifies if the general invariant design ξ is concentrated on a
single comparison depth d′:

Corollary 7.2. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

2Sv−2S−dv−v+2
2Sv−2S−d′v−v+2

+ p3
λ(d)
λ(d′)

)
,

where

λ(d) = 3S2 + 3S2v2 − 6S2v − 3Sdv2 + 3Sdv − 6Sv2 + 15Sv − 9S + d2v2 + 3dv2

− 6dv + 2v2 − 6v + 6.

Proof. In view of Theorem 7.7 it is sufficient to note that the representation of the
variance function follows immediately by inserting the values of hq(ξd) from Lemma 7.3
and pq =

(
K
q

)
(v − 1)q, q = 1, 2, 3.
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For d = d′ we obtain V (d, ξd) = p1 + p2 + p3 = p which shows the D-optimality of
ξd on X (S)

d in view of the Kiefer-Wolfowitz equivalence theorem.
In the following theorem we employ the D-criterion to derive optimal design which

incorporates the main effects, the first-order interactions and the second-order inter-
actions since no design exists which is simultaneously optimal for the corresponding
Theorem 7.5, Theorem 7.6 and Remark 7.2. As already mentioned a single comparison
depth d may be sufficient for non-singularity of the information matrix M(ξd), i. e. for
the identifiability of all model parameters. The following theorem gives an upper bound
on the number of comparison depths required for a D-optimal design subject to the
profile strength S.

Theorem 7.8. In the second-order interactions model the D-optimal design ξ∗ is
supported on, at most, three different comparison depths S, d∗ and d∗ + 1, say, i.e.
ξ∗ = w∗SξS + w∗d∗ξd∗ + (1− w∗S − w∗d∗)ξd∗+1.

Proof. By Theorem 7.7 the proof follows directly by using analogous arguments in
Theorem 6.11.

The following Table 7.5 shows the corresponding optimal designs with their optimal
comparison depths d∗ in boldface and their corresponding weights w∗d∗ for various choices
of attributes K between 4 and 10, profile strength S and levels v = 2, . . . , 8. Entries of
the form (d∗, w∗d∗) indicate that invariant designs ξ∗ = w∗d∗ξd∗ + (1− w∗d∗)ξS have to be
considered, while for single entries d∗ the optimal design ξ∗ = ξd∗ has to be considered
which is uniform on the optimal comparison depth d∗ (in boldface). In particular, the
numerical results presented in Table 7.5 indicate that at most two different comparison
depths S and d∗ may be required for D-optimality. It is worthwhile mentioning that the
results for full profiles presented in Table 7.2 can be recovered in Table 7.5 for the (row)
entries when S = K. Moreover, in Table 7.5 we note that for the particular case S = 3,
K ≥ 4 and v = 2 one can recover the corresponding results in Theorem 6.12 where the
design ξ∗ is uniform on two different comparison depths d∗ = 1 and S = 3. Further
the corresponding values of the normalized variance function V (d, ξ∗)/p which shows
D-optimality of the design ξ∗ in view of the Kiefer and Wolfowitz (1960) equivalence
theorem is exhibited in Table 7.6. We note that for the situation when S = K − 1,
K = 4, . . . , 10 and v = 2 the corresponding results in Table 6.4 can be obtained.
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Table 7.5: Optimal Designs with Intermediate Comparison Depths d∗

in Boldface and Optimal Weights w∗d∗ of the form (d∗, w∗d∗) for S ≤ K
Attributes and v-Levels

v

K S 2 3 4 5 6 7 8

4 3 (1, 0.900) (1, 0.937) 1 1 1 1 1
4 (2, 0.857) 2 2 2 2 2 2

5 3 1 1 1 1 1 1 1
4 (2, 0.800) 2 2 2 2 2 2
5 (2, 0.833) (2, 0.667) 3 3 3 3 3

6 3 1 1 1 1 1 1 1
4 (2, 0.732) 2 2 2 2 2 2
5 (2, 0.802) (2, 0.832) 3 3 3 3 3
6 (3, 0.732) (3, 0.789) 3 4 4 4 4

7 3 1 1 1 1 1 1 1
4 (1, 0.836) 2 2 2 2 2 2
5 (2, 0.756) (2, 0.952) 3 3 3 3 3
6 (2, 0.728) (3, 0.755) 3 3 4 4 4
7 (3, 0.697) (4, 0.322) 4 4 4 5 5

8 3 1 1 1 1 1 1 1
4 (1, 0.832) 2 2 2 2 2 2
5 (2, 0.707) 2 3 3 3 3 3
6 (2, 0.687) (3, 0.675) 3 3 4 4 4
7 (3, 0.643) (4, 0.105) 4 4 4 5 5
8 (3, 0.644) 4 (5, 0.425) 5 5 5 5

9 3 1 1 1 1 1 1 1
4 (1, 0.819) 2 2 2 2 2 2
5 (2, 0.659) 2 (2, 0.999) 3 3 3 3
6 (2, 0.645) (3, 0.559) 3 3 4 4 4
7 (3, 0.594) 4 4 4 4 5 5
8 (3, 0.598) 4 (5, 0.113) 5 5 5 5
9 (4, 0.577) 5 5 6 6 6 6

10 3 1 1 1 1 1 1 1
4 (1, 0.800) 2 2 2 2 2 2
5 (2, 0.615) 2 (2, 0.997) 3 3 3 3
6 (2, 0.604) (3, 0.418) 3 3 4 4 4
7 (3, 0.551) 4 4 4 4 (4, 0.996) 5
8 (3, 0.556) 4 5 5 5 5 5
9 (4, 0.533) 5 5 6 6 6 6
10 (4, 0.538) 5 6 6 7 7 7
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Table 7.6: Values of the Variance Function of the D-Optimal Design ξ∗

for S = K − 1 Attributes and v-Levels (Boldface 1 Corresponds to the
Optimal Comparison Depths d∗)

d

K S v 1 2 3 4 5 6 7 8 9

4 3 2 1 0.952 1
3 1 0.952 1
4 1 0.966 1

5 1 0.967 0.989

6 1 0.970 0.985

7 1 0.973 0.984

8 1 0.975 0.983

5 4 2 0.958 1 0.792 1
3 0.859 1 0.885 0.974

4 0.822 1 0.917 0.958

5 0.804 1 0.935 0.958

6 0.794 1 0.947 0.962

7 0.787 1 0.955 0.965

8 0.781 1 0.961 0.968

6 5 2 0.791 1 0.913 0.817 1
3 0.738 1 0.993 0.924 1
4 0.707 0.981 1 0.942 0.985

5 0.679 0.960 1 0.954 0.978

6 0.663 0.948 1 0.962 0.977

7 0.652 0.940 1 0.967 0.978

8 0.644 0.934 1 0.972 0.979

7 6 2 0.714 1 1 0.915 0.858 1
3 0.637 0.932 1 0.957 0.919 1
4 0.599 0.902 1 0.986 0.953 0.992

5 0.580 0.887 1 1 0.973 0.995

6 0.566 0.871 0.991 1 0.974 0.989

7 0.555 0.859 0.984 1 0.978 0.988

8 0.546 0.850 0.979 1 0.980 0.988
(To be continued)
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Table 7.6 (continued)
d

K S v 1 2 3 4 5 6 7 8 9

8 7 2 0.626 0.926 1 0.946 0.862 0.847 1
3 0.559 0.867 0.992 1 0.959 0.937 1
4 0.524 0.828 0.969 1 0.978 0.958 0.996

5 0.502 0.804 0.954 1 0.989 0.971 0.991

6 0.489 0.790 0.946 1 0.997 0.980 0.993

7 0.481 0.781 0.939 0.999 1 0.985 0.994

8 0.474 0.771 0.932 0.995 1 0.986 0.993

9 8 2 0.565 0.877 1 0.998 0.933 0.869 0.870 1
3 0.492 0.793 0.945 1 0.980 0.947 0.940 1

4 0.467 0.764 0.929 0.997 1 0.981 0.970 1
5 0.444 0.736 0.905 0.983 1 0.987 0.975 0.995

6 0.431 0.719 0.891 0.975 1 0.993 0.981 0.993

7 0.423 0.708 0.882 0.970 1 0.996 0.986 0.994

8 0.417 0.700 0.875 0.967 1 0.999 0.990 0.996

10 9 2 0.509 0.816 0.965 1 0.966 0.905 0.861 0.878 1
3 0.439 0.727 0.893 0.968 1 0.960 0.937 0.941 1

4 0.415 0.699 0.874 0.965 1 0.992 0.975 0.969 1

5 0.399 0.677 0.855 0.954 0.996 1 0.988 0.981 0.999

6 0.386 0.659 0.838 0.942 0.990 1 0.992 0.984 0.996

7 0.377 0.647 0.826 0.933 0.985 1 0.995 0.987 0.995

8 0.371 0.639 0.818 0.927 0.982 1 0.997 0.990 0.996
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8 Optimal Designs for Third-Order Interactions Two Level

Models

In this chapter we consider the case where the paired comparisons are characterized by
both full and partial profiles. For this situation we introduce an appropriate model and
derive optimal designs in the presence of third-order interactions when all the attributes
k = 1, . . . , K have two-levels each i. e. ik = 1,−1.

For the direct observation (utility) Ỹna(i) and in the present setting of third-order
interactions, we introduce additional 4-th attribute of influence, and reformulate model
(6.2) as

Ỹna(i) = µn +
K∑
k=1

βkik +
∑
k<`

βk`iki` +
∑

k<`<m

βk`miki`im +
∑

k<`<m<r

βk,`,m,riki`imir + ε̃na,

(8.1)

where as before βk denotes the main effect of the k-th attribute, βk` is the first-order
interaction of the k-th and `-th attribute, βk`m is the second-order interaction of the k-th,
`-th and m-th attribute and βk`mr is the third-order interaction of the k-th, `-th, m-th
and r-th attribute. The vectors (βk)1≤k≤K of main effects, (βk`)1≤k<`≤K of first-order
interactions, (βk`m)1≤k<`<m≤K of second-order interactions and (βk`mr)1≤k<`<m<r≤K of
third-order interactions have dimensions p1 = K, p2 = K(K − 1)/2, p3 = K(K −
1)(K − 2)/6 and p4 = (1/24)K(K − 1)(K − 2)(K − 3), respectively. Hence the
reduced parameter vector β = (β1, . . . , βK , (βk`)

>
k<`, (βk`m)

>
k<`<m, (βk`mr)

>
k<`<m<r)

> has
dimension p = p1 + p2 + p3 + p4. The corresponding p-dimensional vector f of regression
functions is given by

f(i) = (i1, . . . , iK , (iki`)
>
k<`, (iki`im)

>
k<`<m, (iki`imir)

>
k<`<m<r)

>. (8.2)

As already defined here in f(i), the first p1 = K components i1, . . . , iK are associated
with the main effects, the second set of p2 components iki`, 1 ≤ k < ` ≤ K, are
associated with the first-order interactions, the third set of p3 components iki`im,
1 ≤ k < ` < m ≤ K, are associated with the second-order interactions, and the
remaining p4 components iki`imir, 1 ≤ k < ` < m < r ≤ K, are associated with the
third-order interactions.

The corresponding paired comparison model is given by

Yn(i, j) =
K∑
k=1

(ik − jk)βk +
∑
k<`

(iki` − jkj`)βk` +
∑

k<`<m

(iki`im − jkj`jm)βk`m

+
∑

k<`<m<r

(iki`imir − jkj`jmjr)βk`mr + εn. (8.3)
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We similarly note that the comparison depth d describes the number of attributes
in which the two alternatives in the choice sets differ satisfying the inequalities 1 ≤
d ≤ S ≤ K. Hence, the paired comparison model (8.3) is restricted to those paired
alternatives for which exactly S = K attributes are presented

X (S) = {(i, j); ik, jk ∈ {1,−1} for S components and

ik = jk = 0 for exactly K − S components}.
(8.4)

Analogously, the design region X (S) can be also partitioned into disjoint sets such that
the pairs in each set differ only in a fixed number d of the attributes. Specifically, for a
comparison depth d = 0, . . . , S, let

X (S)
d = {(i, j) ∈ X (S) : |{k : ik 6= jk}| = d}, (8.5)

be the set of all pairs of alternatives which differ in exactly d attributes. As before these
sets also constitute the orbits with respect to permutations. The D-criterion is also
invariant with respect to those permutations, and that the corresponding regression
functions (8.2) extended to the design region X (S) are still linearly equivariant. Hence,
one can consider optimality for the full parameter vector (and D-optimality of invariant
subvectors). As a consequence, it is sufficient to look for optimality in the class of
invariant designs which are uniform on the orbits of fixed comparison depth. In what
follows, we denote by Nd = 2S

(
K
S

)(
S
d

)
the number of different pairs in X (S)

d which vary
in exactly d attributes and let ξd denotes the uniform approximate design which assigns
equal weight ξd(i, j) = 1/Nd to each pair in X (S)

d . In the following Lemma 8.1 and 8.2
we present the information matrices for the corresponding invariant designs.

Lemma 8.1. Let d ∈ {1, . . . , S}. The uniform design ξd on the set X (S)
d has block

diagonal information matrix

M(ξd) =


h1(d)IdK 0 0 0

0 h2(d)Id(K2 )
0 0

0 0 h3(d)Id(K3 )
0

0 0 0 h4(d)Id(K4 )

 ,

where h1(d) =
4d

K
, h2(d) =

8d(S − d)
K(K − 1)

, h3(d) =
4d(3S2 − 6Sd+ 4d2 − 3S + 2)

K(K − 1)(K − 2)
and

h4(d) =
16d(S − d)(2d2 − 2Sd+ S2 − 3S + 4)

K(K − 1)(K − 2)(K − 3)
.

Proof. We first note that the entries hq(d), q = 1, 2, 3 are the same as in Lemma 6.3 for
the second-order interaction models. Now for the third-order interactions we similarly
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consider attributes k, `, m and r, say, and distinguish between pairs in which all four
attributes are distinct, pairs in which three of these attributes k, ` and m, say, have
distinct levels in the alternatives while the same level is presented in both alternatives
for the remaining attribute, pairs in which two of these attributes k, `, say, have distinct
levels in the alternatives while the same level is presented in both alternatives for the
remaining attribute two attributes and, finally, pairs in which only one of the attributes,
say, k has distinct levels in the alternatives while the same level is presented in both
alternatives for the three remaining attributes. Then iki`imir = jkj`jmjr in the first
and third case, while iki`imir = −jkj`jmjr in the second and last case. Hence,

(iki`imir − jkj`jmjr)2 = 0 for ik 6= jk, i` 6= j`, im 6= jm and ir 6= jr, (8.6)

(iki`imir − jkj`jmjr)2 = 4 for ik 6= jk, i` 6= j`, im 6= jm and ir = jr, (8.7)

(iki`imir − jkj`jmjr)2 = 0 for ik 6= jk, i` 6= j`, im = jm and ir = jr, (8.8)

and

(iki`imir − jkj`jmjr)2 = 4 for ik 6= jk, i` = j`, im = jm and ir = jr, (8.9)

respectively, where the roles of the attributes k, `, m and r may be interchanged.
For given attributes k, `, m and r the pairs with distinct levels in the four attributes

occur (
K−4
S−4

) (
S−4
d−4
)
2S

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−4
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

d(d− 1)(d− 2)(d− 3)
2S,

while those which differ in the three attributes occur

( 4
3 )
(
K−4
S−4

) (
S−4
d−3
)
2S

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−3
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)d(d− 1)(d− 2)
2S,

while those which differ in the two attributes occur

( 4
2 )
(
K−4
S−4

) (
S−4
d−2
)
2S
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times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−2
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)(S − d− 1)d(d− 1)
2S,

and, finally, those which differ only in one attribute occur

( 4
1 )
(
K−4
S−4

) (
S−4
d−1
)
2S

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−1
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)(S − d− 1)(S − d− 2)d
2S.

Hence, the diagonal elements h4(d) are given by

h4(d) =
1

Nd

(
K−4
S−4

) ( (
S−4
d−3
)
2S+4 +

(
S−4
d−1
)
2S+4

)
=

16(S − d)d(d− 1)(d− 2)

K(K − 1)(K − 2)(K − 3)
+

16(S − d)(S − d− 1)(S − d− 2)d

K(K − 1)(K − 2)(K − 3)

=
16d(S − d)(2d2 − 2Sd+ S2 − 3S + 4)

K(K − 1)(K − 2)(K − 3)
. (8.10)

We note that for comparison depth d = 0 the corresponding function h4(0) = 0.
As general invariant designs ξ result from convex combinations of uniform designs

on the comparison depth d with weight wd, ξ =
∑S

d=1wdξd, wd ≥ 0,
∑S

d=1wd = 1, then
also the invariant designs ξ have block diagonal information matrix:

Lemma 8.2. Every invariant design ξ =
∑S

d=1wdξd on the set X (S) has block diagonal
information matrix

M(ξ) =


h1(ξ)IdK 0 0 0

0 h2(ξ)Id(K2 )
0 0

0 0 h3(ξ)Id(K3 )
0

0 0 0 h4(ξ)Id(K4 )

 ,

where hq(ξ) =
∑S

d=1wdhq(d), q = 1, 2, 3, 4.

It is worthwhile mentioning that the corresponding Theorems 6.1, 6.2 and 6.3 also
remain optimal for main effects and lower order interactions in the present third-order
interaction model.
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The following Remark 8.1 and the numerical results presented in Table 8.1 show the
optimality of the corresponding third-order interaction term h4(d) presented in Lemma
8.1. We note that h4 is symmetric with respect to S/2. Therefore there are, at least
two maxima d∗ and S − d∗ symmetric with respect to S/2.

Remark 8.1. There exists a single comparison depth d∗ subject to the profile strength
S such that the uniform design ξd∗ is D-optimal for the third-order interaction effects
(βk`mr)

>
k<`<m<r.

We note that the corresponding values of d∗ presented in Table 8.1 were obtained
by first calculating the values of h4(d) and determining the maximum.

Table 8.1: Values of the Optimal Comparison Depths d∗ of the D-
Optimal Uniform Designs ξd∗ for the Third-Order Interactions with

S ≤ K Binary Attributes

S 4 5 6 7 8 9 10 11 12

d∗ 1 1 1 1 2 2 2 3 3

We mention that the corresponding invariant design ξ has a variance function of
the form V ((i, j), ξ) = (f(i)− f(j))>M(ξ)−1(f(i)− f(j)), which as before is also invariant
with respect to permutation of levels and attributes and, hence, constant on the orbits
X (S)
d of fixed comparison depth d. The value of the variance function for the invariant

design ξ evaluated at comparison depth d is denoted as V (d, ξ), V (d, ξ) = V ((i, j), ξ)
for all (i, j) on X (S)

d .

Theorem 8.1. For every invariant design ξ the variance function V (d, ξ) on X (S)
d is

given by

V (d, ξ) = 4d
(

1
h1(ξ)

+ S−d
h2(ξ)

+ 3S2−6dS+4d2−3S+2
6h3(ξ)

+ (S−d)(2d2−2Sd+S2−3S+4)
6h4(ξ)

)
.

Proof. From Lemma 8.2 the inverse of the corresponding information matrix M(ξ) is
given by

M(ξ)−1 =


1

h1(ξ)
IdK 0 0 0

0 1
h2(ξ)

Id(K2 )
0 0

0 0 1
h3(ξ)

Id(K3 )
0

0 0 0 1
h4(ξ)

Id(K4 )

 .
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Hence, we obtain for the variance function

V ((i, j), ξ) =(f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
1

h1(ξ)

K∑
k=1

(ik − jk)2

+
1

h2(ξ)

∑
k<`

(iki` − jkj`)2

+
1

h3(ξ)

∑
k<`<m

(iki`im − jkj`jm)2

+
1

h4(ξ)

∑
k<`<m<r

(iki`imir − jkj`jmjr)2. (8.11)

For a pair (i, j) ∈ X (S)
d of comparison depth d there are (S − d) ( d3 ) third-order

interaction terms for which (iki`imir) and (jkj`jmjr) of the associated four attributes
k, `,m and r differ in exactly three of the attributes, and there are d ( S−d3 ) third-order
interaction terms for which (iki`imir) and (jkj`jmjr) differ in exactly one attribute. As
a result, there are

(S − d) ( d3 ) + d ( S−d3 ) = (S − d)d(d− 1)(d− 2)/6 + d(S − d)(S − d− 1)(S − d− 2)/6

= d((S − d)(2d2 − 2Sd+ S2 − 3S + 4))/6

non-zero entries in the fourth sum on the right hand side of (8.11), and this sum equals
4d((S − d)(2d2 − 2Sd+ S2 − 3S + 4))/6.

Now by substituting the corresponding results into (8.11) for fixed S we see that
the value of the variance function depends on the pair (i, j) ∈ X (S)

d only through its
comparison depth d and obtain the representation of the variance function.

We mention that for comparison depth d = 0 the corresponding variance function
V (0, ξ) = 0.

The variance function V (d, ξ) simplifies if the invariant design ξ is concentrated on
a single comparison depth.

Corollary 8.1. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

S−d
S−d′ + p3

3S2−6dS+4d2−3S+2
3S2−6d′S+4d′2−3S+2

+ p4
(S−d)(2d2−2Sd+S2−3S+4)
(S−d′)(2d′2−2Sd′+S2−3S+4)

)
.

Proof. In view of Theorem 8.1 it is sufficient to note that the representation of the
variance function follows immediately by inserting the values of hq(ξd) from Lemma 8.1
and pq =

(
K
q

)
, q = 1, 2, 3, 4.
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We note that for d = d′ the varaince V (d, ξd) = p1 + p2 + p3 + p4 = p, which shows
the D-optimality of ξd by the Kiefer and Wolfowitz (1960) equivalence theorem.

In the following theorem we employ the D-criterion to derive optimal design for
the main effects, the first-order interactions, the second-order interactions and the
third-order interactions. We similarly note that a single comparison depth d may be
sufficient for the identifiability of all model parameters. Theorem 8.2 gives an upper
bound on the number of comparison depths required for a D-optimal design.

Theorem 8.2. In the third-order interactions model the D-optimal design is supported
on at most four orbits d∗, d∗1, d∗ + 1 and d∗1 + 1.

Proof. Let ξ∗ be an invariant D-optimal design with weights w∗d on the comparison
depths d for which the variance function V (d, ξ∗) is equal to the number of parameters
p for all d such that w∗d > 0. By Theorem 8.1 the variance function is a polynomial of
degree 4 in the comparison depth d with negative leading coefficient. For integer d the
variance function V (d, ξ∗) may thus be equal to p for, at most, four different values of
d. Now, by the Kiefer and Wolfowitz (1960) equivalence theorem itself V (d, ξ∗) ≤ p

for all d = 0, 1, . . . , S. Hence, by the shape of the variance function we obtain that
V (d, ξ∗) = p may occur only at, at most two adjacent pairs d∗, d∗ + 1 and d∗1, d∗1 + 1,
say.

Further for the case S = K = 4 of full profiles the D-optimal design can be given
explicitly. It is worth mentioning that this situation of S = K = 4 of full profiles can
also be regarded as complete interactions. Analogous result can be found in Theorem 4

of Graßhoff et al. (2003). Here we show that the corresponding result can be obtained
explicitly.

Theorem 8.3. If S = K = 4 then the design ξ∗ = 4
15
ξ1 +

2
5
ξ2 +

4
15
ξ3 +

1
15
ξ4 which is

uniform on all pairs with non-zero comparison depth is D-optimal in the third-order
interactions model.

Proof. For the design ξ∗ we obtain h1(ξ
∗) = 8/15, h2(ξ∗) = 2/15, h3(ξ∗) = 1/30

and h4(ξ∗) = 1/120. Inserting this into the variance function of Theorem 8.1 yields
V (d, ξ∗) = 5d(−1/2d3 + 5d2 − 35/2d + 25)/4 which results in V (1, ξ∗) = V (2, ξ∗) =

V (3, ξ∗) = V (4, ξ∗) = 15. Hence, the variance function is bounded by the number of
parameters p = 15 which establishes the D-optimality of ξ∗ by virtue of the Kiefer-
Wolfowitz equivalence theorem.

It should be noted that in this case d∗ = 1 and d∗1 = 3 in Theorem 8.2. We further
note that for S = K = 4 all four comparison depths are needed for D-optimality.

Moreover, for full profiles S = K between 5 and 12, intermediate comparison depths
d, d1 and weights wd, wd1 the numerical results presented in Table 8.2 were obtained by
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direct maximization of ln(det(M(wdξd + (1− wd)ξd1))) for the corresponding optimal
comparison depth d∗ and optimal weights w∗d∗ where 1 − w∗d∗ = w∗d∗1 . In particular,
by considering the invariant designs ξ∗ = w∗d∗ξd∗ + (1− w∗d∗)ξd∗1 the numerical results
show that two different comparison depths d∗ and d∗1 may be needed for D-optimality,
which is verified by the Kiefer and Wolfowitz (1960) equivalence theorem in Table
8.3. Specifically, for the various choices of profile strengths S between 5 and 12 the
corresponding optimal comparison depths d∗ = (S − 1)/2 for S = 5, d∗ = (S − 2)/2 for
S = 6, 8, d∗ = (S − 3)/2 for S = 7, 9, 11 and d∗ = (S − 4)/2 for S = 10, 12.

Table 8.2: Optimal Designs with Intermediate Comparison Depths d∗

and Optimal Weights w∗d∗ for S = K Binary Attributes

S

5 6 7 8 9 10 11 12

d∗ 2 2 2 3 3 3 4 4

w∗d∗ 0.667 0.714 0.750 0.667 0.700 0.727 0.667 0.692

d∗1 4 5 6 6 7 8 8 9

w∗d∗1 0.333 0.286 0.250 0.333 0.300 0.273 0.333 0.308

It is worthwhile mentioning that generally for the situation when S = K the optimal
comparison depths d∗ and d∗1, and the corresponding optimal weights w∗d∗ satisfy the
condition w∗d∗ = d∗1/(d

∗+ d∗1) for d∗ = [(K +1)/3] and d∗+ d∗1 = K +1. We further note
that the particular case when S = K = 4 can be found in the corresponding Theorem
8.3 where the design ξ∗ is uniform on all four comparison depth.

We now show that by direct maximization of ln(det(M(wdξd+(1−wd)ξd1))) for the
corresponding optimal comparison depth d∗ and optimal weights w∗d∗ where 1−w∗d∗ = w∗d∗1 ,
the corresponding numerical values of the optimal weights w∗d∗ in Table 8.2 can be
determined analytically as follows.

For the case, when S = 5 we consider the intermediate comparison depth d∗ = (S−1)/2

as a candidate for beign optimal. Now by Lemma 8.1 the entries of the information
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matrix M(ξ) are specified as

h1(ξ) = wh1(d
∗) + (1− w)h1(d∗1)

=
2S − 8w + 6

K
,

h2(ξ) = wh2(d
∗) + (1− w)h2(d∗1)

=
2S2 + 16w − 18

K(K − 1)
,

h3(ξ) = wh3(d
∗) + (1− w)h3(d∗1)

=
2S3 − 6S2 + 24Sw − 14S − 72w + 66

K(K − 1)(K − 2)
, and

h4(ξ) = wh4(d
∗) + (1− w)h4(d∗1)

=
2S3 − 6S2 − 2S − 96w + 102

K(K − 1)(K − 2)(K − 3)
.

Now as the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2h3(ξ)

p3h4(ξ)
p4 , we obtain

ln det(M(ξ)) = c+ p1 ln(2S − 8w + 6) + p2 ln(2S
2 + 16w − 18)

+ p3 ln(2S
3 − 6S2 + 24Sw − 14S − 72w + 66)

+ p4 ln(2S
3 − 6S2 − 2S − 96w + 102),

where c is a constant independent of the weight w. Taking derivatives with respect to
w we obtain

∂

∂w
ln det(M(ξ)) = − 8p1

2S − 8w + 6
+

16p2
2S2 + 16w − 18

+
p3(24S − 72)

2S3 − 6S2 + 24Sw − 14S − 72w + 66

− 96p4
2S3 − 6S2 − 2S − 96w + 102

,

which has root
w = w∗d∗ =

S + 3

2S + 2
.

This root w∗d∗ gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

d∗ ∪ X
(S)
d∗1

.
Further for the case when S = 6 and 8 we consider the intermediate comparison

depth d∗ = (S − 2)/2 as a candidate for beign optimal. Similarly, the entries of the
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information matrix M(ξ) are specified as

h1(ξ) = wh1(d
∗) + (1− w)h1(d∗1)

=
2S − 12w + 8

K
,

h2(ξ) = wh2(d
∗) + (1− w)h2(d∗1)

=
2S2 + 24w − 32

K(K − 1)
,

h3(ξ) = wh3(d
∗) + (1− w)h3(d∗1)

=
2S3 − 6S2 + 36Sw − 20S − 168w + 144

K(K − 1)(K − 2)
, and

h4(ξ) = wh4(d
∗) + (1− w)h4(d∗1)

=
2S4 − 12S3 + 16S2 − 144Sw + 192S + 672w − 768

K(K − 1)(K − 2)(K − 3)
.

Now as the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2h3(ξ)

p3h4(ξ)
p4 , we obtain

ln det(M(ξ)) = c+ p1 ln(2S − 12w + 8) + p2 ln(2S
2 + 24w − 32)

+ p3 ln(2S
3 − 6S2 + 36Sw − 20S − 168w + 144)

+ p4 ln(2S
4 − 12S3 + 16S2 − 144Sw + 192S + 672w − 768),

where c is a constant independent of the weight w. Taking derivatives with respect to
w we obtain

∂

∂w
ln det(M(ξ)) = − 12p1

2S − 12w + 8
+

24p2
2S2 + 24w − 32

+
p3(36S − 168)

2S3 − 6S2 + 36Sw − 20S − 168w + 144

+
p4(−144S + 672)

2S4 − 12S3 + 16S2 − 144Sw + 192S + 672w − 768
,

which has root
w = w∗d∗ =

S + 4

2S + 2

This root w∗d∗ gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

d∗ ∪ X
(S)
d∗1

.
Also for the case when S = 7, 9 and 11 we consider the intermediate comparison

depth d∗ = (S− 3)/2 as a candidate for beign optimal. The entries of the corresponding
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information matrix M(ξ) are specified as

h1(ξ) = wh1(d
∗) + (1− w)h1(d∗1)

=
2S − 16w + 10

K
,

h2(ξ) = wh2(d
∗) + (1− w)h2(d∗1)

=
2S2 + 32w − 50

K(K − 1)
,

h3(ξ) = wh3(d
∗) + (1− w)h3(d∗1)

=
2S3 − 6S2 + 48Sw − 26S − 336w + 270

K(K − 1)(K − 2)
, and

h4(ξ) = wh4(d
∗) + (1− w)h4(d∗1)

=
2S4 − 12S3 + 16S2 − 192Sw + 300S + 1344w − 1650

K(K − 1)(K − 2)(K − 3)
.

Now as the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2h3(ξ)

p3h4(ξ)
p4 , we obtain

ln det(M(ξ)) = c+ p1 ln(2S − 16w + 10) + p2 ln(2S
2 + 32w − 50)

+ p3 ln(2S
3 − 6S2 + 48Sw − 26S − 336w + 270)

+ p4 ln(2S
4 − 12S3 + 16S2 − 192Sw + 300S + 1344w − 1650),

where c is a constant independent of the weight w. Taking derivatives with respect to
w we obtain

∂

∂w
ln det(M(ξ)) = − 16p1

2S − 16w + 10
+

32p2
2S2 + 32w − 50

+
p3(48S − 336)

2S3 − 6S2 + 48Sw − 26S − 336w + 270

+
p4(−192S + 1344)

2S4 − 12S3 + 16S2 − 192Sw + 300S + 1344w − 1650
,

which has root
w = w∗d∗ =

S + 5

2S + 2

This root w∗d∗ gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

d∗ ∪ X
(S)
d∗1

.
Finally, for the case when S = 10 and 12 we consider the intermediate comparison

depth d∗ = (S− 4)/2 as a candidate for beign optimal. The entries of the corresponding
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information matrix M(ξ) are specified as

h1(ξ) = wh1(d
∗) + (1− w)h1(d∗1)

=
2S − 20w + 12

K
,

h2(ξ) = wh2(d
∗) + (1− w)h2(d∗1)

=
2S2 + 40w − 72

K(K − 1)
,

h3(ξ) = wh3(d
∗) + (1− w)h3(d∗1)

=
2S3 − 6S2 + 60Sw − 32S − 600w + 456

K(K − 1)(K − 2)
, and

h4(ξ) = wh4(d
∗) + (1− w)h4(d∗1)

=
2S4 − 12S3 + 16S2 − 240Sw + 432S + 2400w − 3168

K(K − 1)(K − 2)(K − 3)
.

Now as the determinant of the information matrix M(ξ) is proportional to h1(ξ)p1

h2(ξ)
p2h3(ξ)

p3h4(ξ)
p4 , we obtain

ln det(M(ξ)) = c+ p1 ln(2S − 20w + 12) + p2 ln(2S
2 + 40w − 72)

+ p3 ln(2S
3 − 6S2 + 60Sw − 32S − 600w + 456)

+ p4 ln(2S
4 − 12S3 + 16S2 − 240Sw + 432S + 2400w − 3168),

where c is a constant independent of the weight w. Taking derivatives with respect to
w we obtain

∂

∂w
ln det(M(ξ)) = − 20p1

2S − 20w + 12
+

40p2
2S2 + 40w − 72

+
p3(60S − 600)

2S3 − 6S2 + 60Sw − 32S − 600w + 456

+
p4(−240S + 2400)

2S4 − 12S3 + 16S2 − 240Sw + 432S + 2400w − 3168
,

which has root
w = w∗d∗ =

S + 6

2S + 2

This root w∗d∗ gives a maximum for the determinant. The design ξ∗ is thus D-optimal
when we consider the reduced design region X (S)

d∗ ∪ X
(S)
d∗1

.
Again, the comparison depth d∗ is an integer solution for the maximum of the

variance function which proofs the D-optimality of the design ξ∗ by virtue of the Kiefer
and Wolfowitz (1960) equivalence theorem.

In the following Table 8.3 we present values of the normalized variance function
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V (d, ξ∗)/p, which shows D-optimality of the corresponding design ξ∗ in Table 8.2 by
virtue of the equivalence theorem by Kiefer and Wolfowitz (1960).

Table 8.3: Values of the Variance Function of the D-Optimal Design
ξ∗ for S = K Binary Attributes (Boldface 1 Corresponds to the Optimal

Comparison Depths d∗ and d∗1)

d

K 1 2 3 4 5 6 7 8 9 10 11 12

5 0.938 1 0.938 1 0.938

6 0.850 1 0.950 0.950 1 0.850

7 0.792 1 0.982 0.952 0.982 1 0.792

8 0.759 0.998 1 0.954 0.954 1 0.998 0.759

9 0.693 0.958 1 0.966 0.945 0.966 1 0.958 0.693

10 0.644 0.925 1 0.985 0.958 0.958 0.985 1 0.925 0.644

11 0.609 0.901 0.999 1 0.973 0.960 0.973 1 0.999 0.901 0.609

12 0.566 0.860 0.979 1 0.982 0.963 0.963 0.982 1 0.979 0.860 0.566

Remark 8.2. In Table 8.4 the values of the normalized variance function V (d, ξ∗)/p
show that at most two comparison depths d∗ and d∗1 may be needed for D-optimality. In
particular, for the case when S = 4 and K = 5, one has to consider the corresponding
invariant design ξ∗ = w∗d∗ξd∗ + (1− w∗d∗)ξd∗1 with d∗ = 1 and d∗1 = 3 and corresponding
weights w∗d∗ = 0.936 and w∗d∗1 = 0.064, respectively. Accordingly, for the case when S = 4

and K > 5 the D-optimal design ξ∗ = ξd∗ has to be considered which is uniform on the
optimal comparison depth d∗ (in boldface).

Table 8.4: Values of the Variance Function of the D-Optimal Design
ξ∗ for S < K Binary Attributes (Boldface 1 Corresponds to the Optimal

Comparison Depths d∗ and d∗1)

d

K S 1 2 3 4

5 4 1 0.972 1 0.994

6 4 1 0.810 0.976 0.905

7 4 1 0.667 0.905 0.762

8 4 1 0.560 0.868 0.658

9 4 1 0.478 0.851 0.580

10 4 1 0.416 0.844 0.519

11 4 1 0.366 0.843 0.471

12 4 1 0.326 0.845 0.430
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9 Optimal Designs for Third-Order Interactions General Level

Models

This chapter is a generalization of the results in Chapter 8 for the case of two-level
attributes to the case of common number of general levels ik = 1, . . . , v for each attribute
k = 1, . . . , K. For this situation we introduce an appropriate model and derive optimal
designs in the presence of third-order interactions.

In the present setting of direct response (utility) Ỹna(i), model (8.1) can be reformu-
lated as

Ỹna(i) = µn +
K∑
k=1

α
(k)
ik

+
∑
k<`

α
(k`)
iki`

+
∑

k<`<m

α
(k`m)
iki`im

+
∑

k<`<m<r

α
(k`mr)
iki`imir

+ ε̃na, (9.1)

where α(k)
ik

, α(k`)
iki`

, α(k`m)
iki`im

are defined in (8.1), and α(k`mr)
iki`imr

is the third-order interaction
effect of the k-th, `-th, m-th and r-th attribute when the correpsonding levels are
ik = 1, . . . , v, i` = 1, . . . , v, im = 1, . . . , v and ir = 1, . . . , v. Then by the common
identifiability conditions of effects-coding the following equalities, in particular for the
third-order interactions effects α(k`mr)

iki`imir
= β

(k`mr)
iki`imir

for ik, i`, im, ir = 1, . . . , v − 1 hold:

α
(k`mr)
iki`imv

= −
v−1∑
ir=1

β
(k`mr)
iki`imir

, α
(k`mr)
iki`vir

= −
v−1∑
im=1

β
(k`mr)
iki`imir

, α
(k`mr)
ikvimir

= −
v−1∑
i`=1

β
(k`mr)
iki`imir

,

α
(k`mr)
vi`imir

= −
v−1∑
ik=1

β
(k`mr)
iki`imir

, α
(k`mr)
iki`vv

=
v−1∑
im=1

v−1∑
ir=1

β
(k`mr)
iki`imir

, α
(k`mr)
ikvvir

=
v−1∑
i`=1

v−1∑
im=1

β
(k`mr)
iki`imir

,

α
(k`mr)
vvimir

=
v−1∑
ik=1

v−1∑
i`=1

β
(k`mr)
iki`imir

, α
(k`mr)
vi`vir

=
v−1∑
ik=1

v−1∑
im=1

β
(k`mr)
iki`imir

, α
(k`mr)
ikvimv

=
v−1∑
i`=1

v−1∑
ir=1

β
(k`mr)
iki`imir

,

α
(k`mr)
vi`imv

=
v−1∑
ik=1

v−1∑
ir=1

β
(k`mr)
iki`imir

, α
(k`mr)
ikvvv

= −
v−1∑
i`=1

v−1∑
im=1

v−1∑
ir=1

β
(k`mr)
iki`imir

,

α
(k`mr)
vi`vv

= −
v−1∑
ik=1

v−1∑
im=1

v−1∑
ir=1

β
(k`mr)
iki`imir

, α
(k`mr)
vvimv

= −
v−1∑
ik=1

v−1∑
i`=1

v−1∑
ir=1

β
(k`mr)
iki`imir

,

α
(k`mr)
vvvir

= −
v−1∑
ik=1

v−1∑
i`=1

v−1∑
im=1

β
(k`mr)
iki`imir

and α(k`mr)
vvvv =

v−1∑
ik=1

v−1∑
i`=1

v−1∑
im=1

v−1∑
ir=1

β
(k`mr)
iki`imir

.

The parameters for the main effects, the first-order interactions, the second-order
interactions presented in (7.2) and the third-order interactions, respectively, can be
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summarized as follows

βk = (β
(k)
ik

)ik=1,...,v−1,

βk` = (β
(k`)
iki`

)ik=1,...,v−1, i`=1,...,v−1,

βk`m = (β
(k`m)
iki`im

)ik=1,...,v−1, i`=1,...,v−1, im=1,...,v−1 and

βk`mr = (β
(k`mr)
iki`imir

)ik=1,...,v−1, i`=1,...,v−1, im=1,...,v−1,ir=1,...,v−1,

where e. g. βk`mr describes the effect of the third-order interaction of the k-th,
`-th, m-th and r-th attribute. As a consequence, the minimal vector of parameters of
dimension p = K(v − 1) +

(
K
2

)
(v − 1)2 +

(
K
3

)
(v − 1)3 +

(
K
4

)
(v − 1)4 is given by

β = ((βk)
>
k=1,...,K , (βk`)

>
k<`, (βk`m)

>
k<`<m(βk`mr)

>
k<`<m<r)

>. (9.2)

With the above notation the model (9.1) can be reformulated as

Ỹna(i) = µn +
K∑
k=1

f1(ik)>βk +
∑
k<`

(f1(ik)⊗ f1(i`))>βk`

+
∑

k<`<m

(f1(ik)⊗ f1(i`)⊗ f1(im))>βk`m

+
∑

k<`<m<r

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir))>βk`mr + ε̃na, (9.3)

where ⊗ denotes the Kronecke product of vectors or matrices, respectively, which results
in the p dimensional vector

f(i) = (f1(i1)>, . . . , f1(iK)>, f1(i1)> ⊗ f1(i2)>, . . . , f1(iK−1)⊗ f1(iK)>,

f1(i1)> ⊗ f1(i2)> ⊗ f1(i3)>, . . . , f1(iK−2)> ⊗ f1(iK−1)> ⊗ f1(iK)>,

f1(i1)⊗ f1(i2)⊗ f1(i3)⊗ f1(i4), . . . , f1(iK−3)⊗ f1(iK−2)⊗ f1(iK−1)⊗ f1(iK)>),>

(9.4)

where the first components f1(i1), . . . , f1(iK), the second components f1(i1)⊗ f1(i2), . . . ,
f1(iK−1)⊗ f1(iK), the third components f1(i1)⊗ f1(i2)⊗ f1(i3), . . . , f1(iK−2)⊗ f1(iK−1)⊗
f1(iK) of f(i) are defined in (7.4), and the remaining components f1(i1)⊗ f1(i2)⊗ f1(i3)⊗
f1(i4), . . . , f1(iK−3)⊗ f1(iK−2)⊗ f1(iK−1)⊗ f1(iK) of f(i) are associated with the third-
order interactions and have p4 = (1/24)K(K − 1)(K − 2)(K − 3)(v − 1)4 parameter
vector (βk`mr)1≤k<`<m<r≤K .

The corresponding paired comparison model is given by
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Yn(i, j) =
K∑
k=1

(f1(ik)− f1(jk))>βk +
∑
k<`

((f1(ik)⊗ f1(i`))− (f1(jk)⊗ f1(j`)))>βk`

+
∑

k<`<m

((f1(ik)⊗ f1(i`)⊗ f1(im))− (f1(jk)⊗ f1(j`)⊗ f1(jm)))>βk`m

+
∑

k<`<m<r

((f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir))

− (f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr)))>βk`mr + εn. (9.5)

In the present setting we similarly point out that for the case of partial profiles
the k-th attribute that is not shown has corresponding level ik = 0, and that the
corresponding regression functions are given by fk(0) = f1(0) = 0. Hence, the paired
comparison model (9.5) is thus restricted to those paired alternatives for which exactly
S attributes are presented (as similarly defined in (7.23))

X (S) = {(i, j); ik, jk ∈ {1, . . . , v} for S components and

ik = jk = 0 for exactly K − S components}.
(9.6)

We similarly note that the design region X (S) = X (K) (in the case of full profiles S = K)
can be partitioned into disjoint sets such that the pairs in each set differ only in a fixed
number d of the attributes. Specifically, for a comparison depth d = 0, . . . , S, let

X (S)
d = {(i, j) ∈ X (S) : |{k : ik 6= jk}| = d}, (9.7)

be the set of all pairs of alternatives which differ in exactly d attributes. These sets
also constitute the orbits with respect to permutations. Here we similarly note that
the regression functions f in (9.4) extended to the design region X (S) are still linearly
equivariant i. e. also here relabeling does not affect D-optimality as well as D-optimality
of invariant subvectors β presented in (9.2). As a result, it is sufficient to look for
optimality in the class of invariant designs which are uniform on the orbits of fixed
comparison depth d.

In what follows, let Nd =
(
K
S

)(
S
d

)
vS(v − 1)d be the number of different pairs in X (S)

d

which vary in exactly d attributes and denote by ξd the uniform approximate design
which assigns equal weight ξd(i, j) = 1/Nd to each pair in X (S)

d and weight zero to all
remaining pairs in X (S). In the following we derive the information matrices for the
aforementioned invariant designs.
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Lemma 9.1. Let d be a fixed comparison depth. The uniform design ξd on the set X (S)
d

of comparison depth d has block diagonal information matrix

M(ξd) = diag(hq(d)Idpq ⊗M⊗q)q=1,...,4,

where M⊗q denotes the q-fold Kronecker product of M and

h1(d) =
d

K
, h2(d) =

d((d− 1)(v − 2) + 2(S − d)(v − 1))

2vK(K − 1)
,

h3(d) =
dλ1(d)

4v2K(K − 1)(K − 2)
, h4(d) =

dλ2(d)

8v3K(K − 1)(K − 2)(K − 3)
,

λ1(d) = (d− 1)(d− 2)(v2 − 3v + 3) + 3(S − d)(d− 1)(v − 1)(v − 2) + 3(S − d)(S − d− 1)(v − 1)2,

λ2(d) = (d− 1)(d− 2)(d− 3)(v3 − 4v2 + 6v − 4) + 4(S − d)(d− 1)(d− 2)(v2 − 3v + 3)(v − 1)

+ 6(S − d)(S − d− 1)(d− 1)(v − 1)2(v − 2) + 4(S − d)(S − d− 1)(S − d− 2)(v − 1)3.

Proof. Note that the corresponding functions hq(d), q = 1, 2, 3 can be found in Lemma
7.3 for the second-order interaction models. Analogously, for the third-order interactions
we consider attributes k, `, m and r, say, and distinguish between pairs in which all four
attributes are distinct, pairs in which three of these attributes k, ` and m, say, have
distinct levels in the alternatives while the same level is presented in both alternatives
for the remaining attribute, pairs in which two of these attributes k, `, say, have distinct
levels in the alternatives while the same level is presented in both alternatives for the
remaining attribute two attributes and, finally, pairs in which only one of the attributes,
say, k has distinct levels in the alternatives while the same level is presented in both
alternatives for the three remaining attributes:
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∑
ik 6=jk

∑
i` 6=j`

∑
im 6=jm

∑
ir 6=jr

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))

· (f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

v∑
im=1

∑
jm 6=im

v∑
ir=1

∑
jr 6=ir

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)> ⊗ f1(ir)f1(ir)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)> ⊗ f1(jr)f1(jr)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)> ⊗ f1(ir)f1(jr)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)> ⊗ f1(jr)f1(ir)>)

= 2(v − 1)4
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)> ⊗
v∑

im=1

f1(ir)f1(ir)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)> ⊗
∑
im 6=jm

f1(im)f1(jm)> ⊗
∑
ir 6=jr

f1(ir)f1(jr)>

=
1

8
v(v − 1)4(v3 − 4v2 + 6v − 4)M⊗M⊗M⊗M, (9.8)

also∑
ik 6=jk

∑
i` 6=j`

∑
im 6=jm

∑
ir=jr

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))

· (f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

v∑
im=1

∑
jm 6=im

v∑
ir=1

∑
jr=ir

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)> ⊗ f1(ir)f1(ir)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)> ⊗ f1(jr)f1(jr)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)> ⊗ f1(ir)f1(jr)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)> ⊗ f1(jr)f1(ir)>)

= 2(v − 1)3
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)> ⊗
v∑

im=1

f1(ir)f1(ir)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)> ⊗
∑
im 6=jm

f1(im)f1(jm)> ⊗
∑
ir=jr

f1(ir)f1(jr)>

=
1

8
v(v − 1)4(v2 − 3v + 3)M⊗M⊗M⊗M, (9.9)
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further∑
ik 6=jk

∑
i` 6=j`

∑
im=jm

∑
ir=jr

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))

· (f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j` 6=i`

v∑
im=1

∑
jm=im

v∑
ir=1

∑
jr=ir

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)> ⊗ f1(ir)f1(ir)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)> ⊗ f1(jr)f1(jr)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)> ⊗ f1(ir)f1(jr)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)> ⊗ f1(jr)f1(ir)>)

= 2(v − 1)2
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

f1(im)f1(im)> ⊗
v∑

im=1

f1(ir)f1(ir)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i` 6=j`

f1(i`)f1(j`)> ⊗
∑
im=jm

f1(im)f1(jm)> ⊗
∑
ir=jr

f1(ir)f1(jr)>

=
1

8
v(v − 1)4(v − 2)M⊗M⊗M⊗M, (9.10)

and∑
ik 6=jk

∑
i`=j`

∑
im=jm

∑
ir=jr

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))

· (f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))>

=
v∑

ik=1

∑
jk 6=ik

v∑
i`=1

∑
j`=i`

v∑
im=1

∑
jm=im

v∑
ir=1

∑
jr=ir

(f1(ik)f1(ik)> ⊗ f1(i`)f1(i`)> ⊗ f1(im)f1(im)> ⊗ f1(ir)f1(ir)>

+ f1(jk)f1(jk)> ⊗ f1(j`)f1(j`)> ⊗ f1(jm)f1(jm)> ⊗ f1(jr)f1(jr)>

− f1(ik)f1(jk)> ⊗ f1(i`)f1(j`)> ⊗ f1(im)f1(jm)> ⊗ f1(ir)f1(jr)>

− f1(jk)f1(ik)> ⊗ f1(j`)f1(i`)> ⊗ f1(jm)f1(im)> ⊗ f1(jr)f1(ir)>)

= 2(v − 1)
v∑

ik=1

f1(ik)f1(ik)> ⊗
v∑

i`=1

f1(i`)f1(i`)> ⊗
v∑

im=1

g(im)f1(im)> ⊗
v∑

im=1

f1(ir)f1(ir)>

− 2
∑
ik 6=jk

f1(ik)f1(jk)> ⊗
∑
i`=j`

f1(i`)f1(j`)> ⊗
∑
im=jm

f1(im)f1(jm)> ⊗
∑
ir=jr

f1(ir)f1(jr)>

=
1

8
v(v − 1)4M⊗M⊗M⊗M, (9.11)

respectively.
For given attributes k, `, m and r the pairs with distinct levels in the four attributes

occur (
K−4
S−4

) (
S−4
d−4
)
vS−4(v − 1)d−4
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times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−4
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

d(d− 1)(d− 2)(d− 3)
vS(v − 1)d,

while those which differ in the three attributes occur

( 4
3 )
(
K−4
S−4

) (
S−4
d−3
)
vS−4(v − 1)d−3

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−3
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)d(d− 1)(d− 2)
vS(v − 1)d,

while those which differ in the two attributes occur

( 4
2 )
(
K−4
S−4

) (
S−4
d−2
)
vS−4(v − 1)d−2

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−2
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)(S − d− 1)d(d− 1)
vS(v − 1)d,

and, finally, those which differ only in the one attribute occur

( 4
1 )
(
K−4
S−4

) (
S−4
d−1
)
vS−4(v − 1)d−1

times in X (S)
d with corresponding number of paired comparisons

Nd =
(
K−4
S−4

) (
S−4
d−1
) K(K − 1)(K − 2)(K − 3)

S(S − 1)(S − 2)(S − 3)

S(S − 1)(S − 2)(S − 3)

(S − d)(S − d− 1)(S − d− 2)d
vS(v−1)d.
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Hence, for the third-order interactions the diagonal elements h4(d) in the information
matrix are given by

h4(d) =
1

Nd

(
K − 4

S − 4

)(
1

8

(
S−4
d−4

)
v(v − 1)4(v3 − 4v2 + 6v − 4)vS−4(v − 1)d−4M⊗M⊗M⊗M

+
1

2

(
S−4
d−3

)
v(v − 1)4(v2 − 3v + 3)vS−4(v − 1)d−3M⊗M⊗M⊗M

+
3

4

(
S−4
d−2

)
v(v − 1)4(v − 2)vS−4(v − 1)d−2M⊗M⊗M⊗M

+
1

2

(
S−4
d−1

)
v(v − 1)4vS−4(v − 1)d−1M⊗M⊗M⊗M

)
=

d

8v3K(K − 1)(K − 2)(K − 3)
((d− 1)(d− 2)(d− 3)(v3 − 4v2 + 6v − 4)

+ 4(S − d)(d− 1)(d− 2)(v2 − 3v + 3)(v − 1)

+ 6(S − d)(S − d− 1)(d− 1)(v − 1)2(v − 2)

+ 4(S − d)(S − d− 1)(S − d− 2)(v − 1)3)M⊗M⊗M⊗M.

(9.12)

Finally, it can be noted that all off-diagonal entries in the information matrix vanish
because the terms in the corresponding sums add up to zero due to the effects-type
coding.

It is worthwhile mentioning that the corresponding function h4(0) = 0 for d = 0.
General invariant designs ξ which can be written as convex combination ξ =∑S
d=1wdξd of the corresponding uniform designs on the comparison depth d with

weights wd ≥ 0,
∑S

d=1wd = 1 have information matrix of the form:

Lemma 9.2. Let ξ =
∑S

d=1wdξd be an invariant design on X (S), then ξ has block
diagonal information matrix

M(ξ) = diag(hq(ξ)Idpq ⊗M⊗q)q=1,...,4,

where M⊗q denotes the q-fold Kronecker product of M and hq(ξ) =
∑S

d=1wdhq(d),
q = 1, 2, 3, 4.

In the following Remark 9.1 we consider optimal designs for the third-order interac-
tion term having entry h4(d) in the corresponding information matrix. As before the
resulting designs may optimize every design criterion which is invariant with respect
to both permutations of the levels and permutations of the attributes if one considers
the full parameter vector, satisfying the aforementioned identifiabity conditions. Hence,
the reduced parameter vector β = ((βk)

>
k=1,...,K , (βk`)

>
k<`, (βk`m)

>
k<`<m(βk`mr)

>
k<`<m<r)

>

presented in (9.2) is also invariant in particular, with the D-criterion. We note that
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corresponding results for main effects, first and second-order interactions can be found
in Section 7.2.

Remark 9.1. There exists a single comparison depth d∗ subject to the profile strength
S such that the uniform design ξd∗ is D-optimal for the third-order interaction effects
(βk`mr)

>
k<`<m<r.

Accordingly, the corresponding values of d∗ presented in Table 9.1 were obtained by
first calculating the values of h4(d) and determining the maximum. It is worthwhile
mentioning that the optimal comparison depth d∗ = K− 3 or d∗ = K− 4 for sufficiently
large values of v. We further note that for the situation of full profiles (S = K) the
corresponding results presented in Table 8.1 can be recovered.

Table 9.1: Values of the Optimal Comparison Depths d∗ of the D-
Optimal Uniform Designs ξd∗ for the Third-Order Interactions with

S ≤ K Attributes and v-Levels

v

S 2 3 4 5 6 7 8 9 10 20

4 1 1 1 1 1 1 1 1 1 1

5 1 1 1 2 2 2 2 2 2 2

6 1 2 2 2 2 3 3 3 3 3

7 1 2 3 3 3 3 3 4 4 4

8 2 3 3 4 4 4 4 4 4 5

9 2 3 4 4 5 5 5 5 5 6

10 2 4 4 5 5 6 6 6 6 7

11 3 4 5 6 6 6 7 7 7 8

12 3 5 6 6 7 7 7 7 8 8

The corresponding invariant design ξ has a variance function of the form V ((i, j), ξ) =
(f(i)− f(j))>M(ξ)−1(f(i)− f(j)). As already noted the variance function is invariant with
respect to permutations of levels i = 1, . . . , v as well as to permutations of attributes
k = 1, . . . , K. Now the value of the variance function for the invariant design ξ evaluated
at comparison depth d is denoted as V (d, ξ) where V (d, ξ) = V ((i, j), ξ) on the orbits
X (S)
d of fixed comparison depth d.
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Theorem 9.1. For every invariant design ξ on the orbits X (S)
d the variance function

V (d, ξ) is given by

V (d, ξ) = d(v − 1)

(
1

h1(ξ)
+

v − 1

4vh2(ξ)

(
(d− 1)(v − 2) + 2(S − d)(v − 1)

)
+

(v − 1)2

24v2h3(ξ)

(
(d− 1)(d− 2)(v2 − 3v + 3)

+ 3(S − d)(d− 1)(v − 1)(v − 2)

+ 3(S − d)(S − d− 1)(v − 1)2
)

+
(v − 1)4

192v3h4(ξ)

(
(d− 1)(d− 2)(d− 3)(v3 − 4v2 + 6v − 4)

+ 4(S − d)(d− 1)(d− 2)(v2 − 3v + 3)(v − 1)

+ 6(S − d)(S − d− 1)(d− 1)(v − 1)2(v − 2)

+ 4(S − d)(S − d− 1)(S − d− 2)(v − 1)3
))

.

Proof. In view of Theorem 7.3, it follows that for the regression function associated
with the interaction of the attributes k, `, m and r, say, we obtain

(f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))>M−1 ⊗M−1 ⊗M−1 ⊗M−1

· f1(ik)⊗ f1(i`)⊗ f1(im)⊗ f1(ir)− f1(jk)⊗ f1(j`)⊗ f1(jm)⊗ f1(jr))

= f1(ik)>M−1f1(ik) · f1(i`)>M−1f1(i`) · f1(im)>M−1f1(im) · f1(ir)>M−1f1(ir)

+ f1(jk)>M−1f1(jk) · f1(j`)>M−1f1(j`) · f1(jm)>M−1f1(jm) · f1(jr)>M−1f1(jr)

− f1(ik)>M−1f1(jk) · f1(i`)>M−1f1(j`) · f1(im)>M−1f1(jm) · f1(ir)>M−1f1(jr)

− f1(jk)>M−1f1(ik) · f1(j`)>M−1f1(i`) · f1(jm)>M−1f1(im) · f1(jr)>M−1f1(ir)

=



1

8v3
(v − 1)4(v3 − 4v2 + 6v − 4) for ik 6= jk, i` 6= j`, im 6= jm, ir 6= jr

1

8v3
(v − 1)5(v2 − 3v + 3) for ik 6= jk, i` 6= j`, im 6= jm, ir = jr

1

8v3
(v − 1)6(v − 2) for ik 6= jk, i` 6= j`, im = jm, ir = jr

1

8v3
(v − 1)7 for ik 6= jk, i` = j`, im = jm, ir = jr.

(9.13)

Now for a pair of alternatives (i, j) ∈ X (S)
d of comparison depth d: there are

d(d− 1)(d− 2)(d− 3) third-order interaction terms for which (iki`imir) and (jkj`jmjr)

differ in all four attributes k, `, m and r, there are (1/6)(S − d)d(d− 1)(d− 2) third-
order interaction terms for which (iki`imir) and (jkj`jmjr) differ in exactly three of the
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associated four attributes, there are (1/4)(S−d)(S−d−1)d(d−1) third-order interaction
terms for which (iki`imir) and (jkj`jmjr) differ in exactly two of the associated four
attributes and finally there are (1/6)(S−d)(S−d−1)(S−d−2)d third-order interaction
terms for which (iki`imir) and (jkj`jmjr) differ in exactly one of the associated four
attributes. Hence from (7.16), (7.17) and (7.18) and by taking the inverse of the
corresponding information matrix M(ξ) in Lemma 9.2 we obtain

V (d, ξ) = (f(i)− f(j))>M(ξ)−1(f(i)− f(j))

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)

(
(d− 1)(v − 2) + 2(S − d)(v − 1)

)
+
d(v − 1)3

24v2h3(ξ)

(
(d− 1)(d− 2)(v2 − 3v + 3) + 3(S − d)(d− 1)(v − 1)(v − 2)

+ 3(S − d)(S − d− 1)(v − 1)2
)

+ d(d− 1)(d− 2)(d− 3)
(v − 1)4(v3 − 4v2 + 6v − 4)

8v3h4(ξ)

+
4(S − d)d(d− 1)(d− 2)

24

(v − 1)5(v2 − 3v + 3)

8v3h4(ξ)

+
6(S − d)(S − d− 1)d(d− 1)

24

(v − 1)6(v − 2)

8v3h4(ξ)

+
4(S − d)(S − d− 1)(S − d− 2)d

24

(v − 1)7

8v3h4(ξ)

=
d(v − 1)

h1(ξ)
+
d(v − 1)2

4vh2(ξ)

(
(d− 1)(v − 2) + 2(S − d)(v − 1)

)
+
d(v − 1)3

24v2h3(ξ)

(
(d− 1)(d− 2)(v2 − 3v + 3) + 3(S − d)(d− 1)(v − 1)(v − 2)

+ 3(S − d)(S − d− 1)(v − 1)2
)

+
d(v − 1)4

192v3h4(ξ)

(
(d− 1)(d− 2)(d− 3)(v3 − 4v2 + 6v − 4)

+ 4(S − d)(d− 1)(d− 2)(v2 − 3v + 3)(v − 1)

+ 6(S − d)(S − d− 1)(d− 1)(v − 1)2(v − 2)

+ 4(S − d)(S − d− 1)(S − d− 2)(v − 1)3
)
,

for (i, j) ∈ X (S)
d which proofs the proposed formula.

Note that the corresponding variance function V (0, ξ) = 0 for comparison depth
d = 0.

The representation of the corresponding variance function V (d, ξ) simplifies if the
general invariant design ξ is concentrated on a single comparison depth d:

103



Corollary 9.1. For a uniform design ξd′ on a single comparison depth d′ the variance
function is given by

V (d, ξd′) =
d

d′

(
p1 + p2

(d−1)(v−2)+2(S−d)(v−1)
(d′−1)(v−2)+2(S−d′)(v−1) + p3

λ1(d)
λ1(d′)

+ p4
λ2(d)
λ2(d′)

)
,

where

λ1(d) = (d− 1)(d− 2)(v2 − 3v + 3) + 3(S − d)(d− 1)(v − 1)(v − 2) + 3(S − d)(S − d− 1)(v − 1)2,

λ2(d) = (d− 1)(d− 2)(d− 3)(v3 − 4v2 + 6v − 4) + 4(S − d)(d− 1)(d− 2)(v2 − 3v + 3)(v − 1)

+ 6(S − d)(S − d− 1)(d− 1)(v − 1)2(v − 2) + 4(S − d)(S − d− 1)(S − d− 2)(v − 1)3.

Proof. This representation of the variance function follows immediately by inserting the
values of hq(ξd) from Lemma 9.1 and pq =

(
K
q

)
(v − 1)q, q = 1, 2, 3, 4 into the formula of

Theorem 9.1.

Note that for d = d′, we obtain V (d, ξd) = p1 + p2 + p3 + p4 = p for p1 = K(v − 1),
p2 =

(
K
2

)
(v− 1)2, p3 =

(
K
3

)
(v− 1)3 and p4 =

(
K
4

)
(v− 1)4 which shows the D-optimality

of ξd on X (S)
d .

The following Theorem 9.2 gives an upper bound on the number of comparison
depths required for a D-optimal design. In other words for the identifiability of all
model parameters for the main effects, the first-order interactions, the second-order
interactions and the third-order interactions simultaneously.

Theorem 9.2. In the third-order interactions model (9.5) the D-optimal design is
supported on at most four orbits d∗, d∗1, d∗ + 1 and d∗1 + 1.

Proof. The proof follows from Theorem 9.1 and by using analogous arguments in
Theorem 8.2.

Now for fixed number of profile strengths S each at general levels v, intermediate
comparison depths d, d1 and weights wd, wd1 the numerical results presented in Table
9.2 were obtained by direct maximization of ln(det(M(wdξd + (1 − wd)ξd1))) for the
corresponding optimal comparison depth d∗, d∗1 and optimal weights w∗d∗ where 1−w∗d∗ =
w∗d∗1 . In particular, for various choices of the profile strengths S between 5 and 12 and
levels v = 2, . . . , 8 the entries of the form (d∗, d∗1, w

∗
d∗) in Table 9.2 indicate that invariant

designs ξ∗ = w∗d∗ξd∗+(1−w∗d∗)ξd∗1 have to be considered, while for single entries d∗ the D-
optimal design ξ∗ = ξd∗ has to be considered which is uniform on the optimal comparison
depth d∗ (in boldface). Accordingly, the corresponding values of the normalized variance
function V (d, ξ∗)/p which shows D-optimality of the design ξ∗ in view of the Kiefer
and Wolfowitz (1960) equivalence theorem is presented in Table 9.3. It is worthwhile
mentioning that the results for the particular case S = 4 and v = 2 presented in Table
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9.2 correspond to the results in Theorem 8.3 for complete interactions. We further note
that in Table 8.2 the corresponding results for v = 2 (binary attributes) presented in
Table 9.2 can also be found.

Table 9.2: Optimal Designs with Intermediate Comparison Depths d∗

in Boldface and Optimal Weights w∗d∗ of the form (d∗, d∗1, w
∗
d∗) for S = K

Attributes and v-Levels

v

K 2 3 4 5 6 7 8

5 (2,4, 0.667) 2 2 2 2 2 2
6 (2,5, 0.714) (2,5, 0.878) 3 3 3 3 3
7 (2,6, 0.750) 3 3 3 3 4 4
8 (3,6, 0.667) 3 4 4 4 4 4
9 (3,7, 0.700) 4 4 5 5 5 5
10 (3,8, 0.727) 4 5 5 6 6 6
11 (4,8, 0.667) 5 5 6 6 7 7
12 (4,9, 0.692) 5 6 7 7 7 8

Exhibited in Table 9.3 are the values of the normalized variance function V (d, ξ∗)/p

which shows D-optimality of the corresponding design ξ∗ in view of the equivalence
theorem by Kiefer and Wolfowitz (1960). It should be noted that for the case S =

K = 4 and v = 2, . . . , 8 all possible comparison depth d proves to be optimal and the
corresponding Theorem 4 of Graßhoff et al. (2003) applies.
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Table 9.3: Values of the Variance Function of the D-Optimal Design
ξ∗ for S = K Attributes and v-Levels (Boldface 1 Corresponds to the

Optimal Comparison Depths d∗ and d∗1)

d

K v 1 2 3 4 5 6 7 8 9 10

5 2 0.938 1 0.938 1 0.938

3 0.881 1 0.961 1 0.987

4 0.858 1 0.965 0.985 0.981

5 0.845 1 0.970 0.982 0.980

6 0.837 1 0.974 0.982 0.981

7 0.832 1 0.977 0.983 0.982

8 0.828 1 0.980 0.984 0.983

6 2 0.850 1 0.950 0.950 1 0.850

3 0.793 1 0.988 0.970 1 0.977

4 0.777 0.999 1 0.977 0.995 0.987

5 0.570 0.984 1 0.979 0.990 0.986

6 0.734 0.975 1 0.982 0.989 0.987

7 0.723 0.969 1 0.984 0.989 0.988

8 0.715 0.964 1 0.985 0.989 0.988

7 2 0.792 1 0.982 0.952 0.982 1 0.792

3 0.723 0.973 1 0.972 0.971 0.997 0.965

4 0.679 0.945 1 0.984 0.976 0.990 0.980

5 0.657 0.930 1 0.993 0.983 0.992 0.987

6 0.643 0.921 1 0.999 0.989 0.995 0.993

7 0.634 0.914 0.998 1 0.991 0.995 0.994

8 0.625 0.906 0.994 1 0.991 0.995 0.994

8 2 0.759 0.998 1 0.954 0.954 1 0.998 0.759

3 0.650 0.928 1 0.990 0.973 0.981 0.998 0.964

4 0.612 0.898 0.993 1 0.986 0.984 0.995 0.984

5 0.585 0.873 0.982 1 0.990 0.986 0.993 0.988

6 0.567 0.858 0.974 1 0.994 0.989 0.994 0.991

7 0.559 0.848 0.969 1 0.997 0.992 0.995 0.994

8 0.552 0.841 0.965 1 0.999 0.994 0.996 0.996
(To be continued)
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Table 9.3 (continued)
d

K v 1 2 3 4 5 6 7 8 9

9 2 0.693 0.958 1 0.966 0.945 0.966 1 0.958 0.693

3 0.596 0.885 0.989 1 0.983 0.976 0.987 0.997 0.960

4 0.550 0.841 0.967 1 0.995 0.986 0.987 0.995 0.984

5 0.528 0.819 0.954 0.998 1 0.992 0.991 0.996 0.992

6 0.512 0.801 0.941 0.993 1 0.994 0.992 0.996 0.993

7 0.501 0.789 0.932 0.989 1 0.996 0.993 0.996 0.995

8 0.493 0.780 0.927 0.986 1 0.997 0.994 0.996 0.996

10 2 0.644 0.925 1 0.985 0.958 0.958 0.985 1 0.925 0.644

3 0.544 0.8360 0.965 1 0.994 0.982 0.981 0.991 0.996 0.960

4 0.501 0.791 0.936 0.991 1 0.993 0.987 0.990 0.996 0.985

5 0.478 0.764 0.916 0.982 1 0.997 0.992 0.993 0.996 0.992

6 0.464 0.748 0.904 0.976 0.999 1 0.996 0.995 0.998 0.995

7 0.453 0.735 0.893 0.969 0.997 1 0.996 0.995 0.997 0.996

8 0.446 0.726 0.885 0.965 0.995 1 0.997 0.996 0.996 0.997

Remark 9.2. We first note that for the case when v = 2, S = 4 and K = 5 corre-
sponding results can be found in Remark 8.2. Moreover, for the case when v > 2, S = 4

and K ≥ 5 the optimal design ξ∗ = ξd∗ has to be considered which is D-optimal on the
single comparison depth d∗.
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10 Discussion and Future Research

The main purpose of this thesis was to develop D-optimal designs for paired comparison
second-order and third-order interaction models.

By considering the part-worth model, and in particular for the situation when the
alternatives to be evaluated are described by only a single attribute as in the one-way
analysis of variance model, it has been shown that D-optimal designs can be obtained
by assigning equal weights to the set of all distinct ordered pairs. This result was
further used as a building block to obtain optimal designs for the situation when the
alternatives to be evaluated by respondents are specified by many attributes in the
presence of both the second-order interaction model and the third-order interaction
model.

In particular, for the second-order interaction model, optimal designs in the case of
binary attributes require that both types of pairs (alternatives in the choice sets) should
be used in which either all attributes have distinct levels or approximately one half of
the attributes are distinct and one half of the attributes coincide to obtain a D-optimal
design for the whole parameter vector. For larger number of levels only one type of pairs
may be required besides some exceptional cases. In the case that the number of levels
get large the optimal pairs seem to be those which are distinct in all but two attributes
shown. The resulting optimal designs for the particular situation of two level attributes
as considered in Nyarko and Schwabe (2019) and larger common number of levels for
each attribute depend both on the profile strength (for example in so-called partial
profiles when a subset out of a large number of attributes are presented simultaneously)
and on the total number of attributes (for example in so-called full profiles when all
out of a large number of attributes are presented simultaneously) available.

On the other hand, for the third-order interaction model, optimal designs in the
case of binary attributes require that two types of pairs of alternatives should be used
in which certain numbers of attributes are distinct, and these numbers are close to
and symmetric with respect to approximately half of the profile strength to obtain
a D-optimal design for the whole parameter vector. Similarly to the second-order
interaction models also here only one type of pairs may be required for larger number
of levels besides one exceptional case. When the number of levels gets large the optimal
pairs seem to be those which are distinct in all but three attributes shown.

For future work, we mention that the invariance considerations presented in this
thesis have been formulated for continuous or approximate designs which are very useful
in proving theorems concerning the optimality of designs, may serve as a benchmark to
judge the efficiency of competing designs as well as a starting point to construct (exact)
designs or fractions which share the property of optimality and can be realized with a
reasonable number of comparisons. This approach has been adopted by Graßhoff et al.
(2004) for main effects model in the two-level situation with both full and partial profiles
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and by van Berkum (1987b) for main effects and first-order interactions model in the
two-level situation with full profiles. Corresponding results for methods to construct
exact designs for the main effects and first-order interactions model in the two-level
situation with both full and partial profiles can also be found (see e.g. Großmann and
Schwabe, 2015; Großmann, 2017). Corresponding results of exact designs for the second-
and the third-order interaction models remain an open problem.

In addition, optimal approximate as well as exact designs having paired comparisons
partitioned into moderate blocks of sizes not varying much and not necessarily equal
for the corresponding main effects, first-oder, second-order and third-order models
incorporating fixed block effects for the case of both full and partial profiles remain
an open problem, which is worth consideration. We mention that several different
methods of constructing exact (block) designs for the corresponding main effects model,
in particular for the case of direct observations in the two-level situation with full
profiles are known (Jacroux, Wong, and Masaro, 1983; Cheng, 1978; Mukerjee, Dey,
and Chatterjee, 2002; Jacroux and Kealy-Dichone, 2017; Jacroux and Jacroux, 2016;
SahaRay and Dutta, 2018, amongst others). This problem will be further investigated
for the case of paired comparisons, because when choosing the design as well as modeling
data from paired comparisons, practitioners or reserachers often fail to take into account
that the respondents are asked multiple questions and that the resulting answers may
therefore be correlated.

Also, higher order interactions may be of interest for further investigation.
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