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Abstract

Many problems occurring in nature or technical applications can be formulated as optimi-

sation problems with multiple, conflicting goals that need to be optimised simultaneously.

Solving such problems requires a search for the optimal input parameters to the problem,

called decision variables. This kind of problems is often solved with metaheuristic ap-

proaches such as evolutionary algorithms. In this field of multi-objective optimisation,

the topic of solving large-scale problems has become increasingly popular in recent years.

Large-scale optimisation in general deals with the optimisation of problems that contain

large numbers of decision variables, objective functions or both. The performance of

classical algorithms in the optimisation area often deteriorates when faced with large-scale

problems. The topic of this thesis is the optimisation of such large-scale problems, with

a focus on high-dimensional search spaces, i.e. problems that contain multiple hundreds

or thousands of decision variables.

Several approaches have been proposed in the literature which use different strategies, in

many cases to reduce the dimensionality of the problem and thus make traditional algo-

rithms applicable to such high-dimensional problems. These approaches are theoretically

analysed and compared, and a classification scheme is proposed based on the different

techniques used in the related literature. Moreover, many of the related mechanisms

require the division of variables into groups. Several mechanisms to do so are described in

this thesis, and these are formally categorised based on three proposed classes of grouping

methods.

The algorithmic contributions of this thesis include three proposed optimisation techniques

for large-scale multi-objective optimisation. Each of these three methods is designed to be

used with arbitrary metaheuristics from the literature, and to enable existing algorithms

to search efficiently in high-dimensional decision spaces. The proposed mechanisms are

theoretically described and analysed. They are further compared to each other and

categories based on the proposed classification scheme.

Finally, this thesis provides an extensive experimental evaluation, including the proposed

approaches as well as various methods from the literature. Several interesting advantages

and disadvantages of the tested algorithms are described and compared, including the

dependency on variable groups, and the performances in terms of convergence behaviour

and final solution quality. The results show that the proposed approaches are able to

heavily increase the performance of existing algorithms for large-scale problems, and that

they are competitive and in many cases superior to the state-of-the-art approaches in

this field.





Zusammenfassung

Viele Probleme in realen Anwendungen lassen sich mathematisch als Optimierungsprob-

leme mit mehreren, in Konflikt stehenden Zielen formulieren. Die Lösung solcher Probleme

erfordert die Suche nach den optimalen Kombinationen der Designparameter des Prob-

lems, sogenannte Entscheidungsvariablen. Neben exakten Methoden werden hierfür in

der Praxis oft sogenannte Metaheuristiken wie etwa evolutionäre Algorithmen angewen-

det. In diesem Forschungsfeld der mehrkriteriellen Optimierung hat das Lösen von

hochdimensionalen, sogenannten “large-scale” Optimierungsproblemen in den letzten

Jahren immer mehr an Bedeutung gewonnen. Large-scale Optimierung befasst sich

mit der Optimierung von Problemen mit mehreren Zielfunktionen und hunderten bis

tausenden von Entscheidungsvariablen. Klassische Algorithmen aus dem Bereich der

mehrkriteriellen Optimierung sind oft ungeeignet für die Optimierung in solch hochdi-

mensionalen Suchräumen. Die vorliegende Dissertation befasst sich mit der Optimierung

von solch hochdimensionalen Problemen. Existierende Methoden werden in der Arbeit

theoretisch untersucht, neue Methoden vorgestellt, und eine experimentelle Evaluation

durchgeführt.

Verschiedene Ansätze sind in der Literatur zu diesem Thema publiziert worden, oftmals

mit dem Ziel durch verschiedene Techniken den Suchraum zu verkleinern, um so klas-

sische Algorithmen anwendbar zu machen. Die Methoden werden theoretisch analysiert

und verglichen, und basierend auf den Eigenschaften der Algorithmen aus der Literatur

wird ein Klassifizierungsschema vorgestellt. Viele der verwandten Methoden verwenden

außerdem einen Mechanismus, um die Variablen in Gruppen einzuteilen. Verschiedene

dieser Techniken werden in dieser Arbeit beschrieben und in drei vorgeschlagene Kate-

gorien eingeordnet. Die algorithmischen Beiträge dieser Arbeit umfassen drei vom Autor

entwickelte Optimierungstechniken für hochdimensionale mehrkriterielle Probleme. Jede

dieser drei Methoden ist so gestaltet, dass beliebige existierende Algorithmen in die

Lage versetzt werden, hochdimensionale Suchräume effizient zu durchsuchen. Die drei

entwickelten Methoden werden analysiert, verglichen und schließlich in die vorgestellten

Klassen von Algorithmen eingeordnet. Die experimentelle Evaluation dieser Arbeit

umfasst die entwickelten Algorithmen sowie verschiedene der verwandten Methoden aus

der Literatur. In der Analyse werden verschiedene Vor- und Nachteile der Algorithmen

beschrieben und verglichen, wie beispielsweise die Abhängigkeit von Variablengruppen

und die Leistung in Bezug auf Konvergenzgeschwindigkeit und finale Lösungsqualität.

Die Ergebnisse zeigen, dass die entwickelten Methoden in der Lage sind, die Leistung

existierender Algorithmen für hochdimensionale Probleme stark zu verbessern. Weiterhin

zeigen die vorgestellten Techniken eine vergleichbare und in vielen Fällen überlegene

Lösungsqualität im Vergleich mit anderen aktuellen large-scale Methoden.
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1
Introduction

In the field of multi-objective optimisation, the topic of solving of large-scale problems

has become increasingly popular in the recent years. Large-scale Optimisation (LSO) in

general deals with the optimisation of problems that contain large numbers of decision

variables, objective functions or both. Using classic metaheuristic algorithms for such

problems often leads to a decreased performance when the dimensionality of the problem

increases. When large numbers of variables are involved, algorithms are faced with very

high-dimensional search spaces that are difficult to explore with limited computational

resources [1]. This dissertation thesis deals with such kind of problems and specifically

with problems that contain large amounts of decision variables. The thesis introduces

basic knowledge in this area and present recent advances and proposed approaches in

solving multi-objective large-scale optimisation problems.

1.1 Motivation

Many problems in the real world can be formulated and solved as optimisation problems.

This includes classical logistic or combinatorial problems like the Travelling Salesman

Problem or optimal resource allocation in a factory setting. For many of these prob-

lems, analytical descriptions of the underlying goal are hard or impossible to obtain.

Therefore, classical optimisation techniques that make use of gradient information are

often not applicable. Moreover, complex problems like the aforementioned Travelling

Salesman Problem are NP-hard, which means a deterministic and optimal solution to

these combinatorial problems is bound to an expected large computational budget.

To overcome these issues, research has come up with a variety of metaheuristic algorithms,

which are often based on natural inspiration from biology or physics. While some local

search mechanisms like Simulated Annealing are based on the laws of physics, most

metaheuristic methods for global optimisation have their source in biological systems, the

most prominent ones being swarm behaviour and the theory of evolution. From these,

many algorithms in the area of Particle Swarm Optimisation (PSO) and Evolutionary

11



12 CHAPTER 1. INTRODUCTION

Algorithms (EA) have been developed over the years and turned out to be useful when

solving optimisation problems.

A challenge in real world applications is that the processes to optimise can have multiple

goals that need to be reached simultaneously, and may potentially be in conflict. A

simple textbook example is the construction of a car which can be designed to be fast,

but at a higher price, or cheap, which might decrease its maximum speed. Speed and

price can therefore be regarded as conflicting objectives of this optimisation problem.

A car’s design can in such a case be represented as a set of chosen parameters, such as

the configuration of the engine, the materials used, the shape of the car, and so forth.

Constructing a car - or more precisely: finding a parameter configuration to be used

in the construction process - that fulfils both of the mentioned objectives as well as

possible is a task covered by the area of Multi-objective Optimisation (MOO). Since

the beginning of the century, the research in this area has increased, and with increased

computational power researchers and engineers are able to optimise problems with

higher complexity. However, research showed that established multi-objective algorithms

become less effective for high-dimensional problems. As a consequence, an increased

dimensionality and complexity of the problem not only requires additional computational

resources, but also specialised algorithms.

The core challenge of the present thesis is to examine and propose optimisation strategies

for multi-objective problems that contain large amounts of design parameters. A basic

example for such a problem is, for instance, the shape optimisation of objects like

aircrafts, trains or cars. A prominent example of this kind of problem is the new

Shinkansen high-speed train in Japan, where the front of the train was optimised using

evolutionary computation [2]. These problems contain multiple objectives like the costs

or the aerodynamic properties, and are often modelled by a mesh grid of the shape to

optimise. Depending on how fine or coarse this grid is modelled, the problem might

allow more or less detailed changes in the objective functions, on the cost of increasing

the dimensionality of the search space (as each control point of the grid needs to have

“optimal” coordinates).

Regarding the scope of this thesis, the large-scale optimisation area can roughly be divided

into those challenges associated with large numbers of objective functions and those

with large numbers of decision variables. While the former, the so-called many-objective

optimisation, has drawn increased attention over the last decade, it must be noted here

that the main focus of this thesis lies on large search spaces. The definition of “large”

in this context varies in the literature, as is discussed in later chapters, but is usually

associated with multiple hundreds to multiple thousands of variables. Challenges and

related methods on many-objective optimisation are of influence in different parts of this

thesis, but the proposed methods and considerations are primarily focused on problems

with large numbers of decision variables.
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The area of single-objective large-scale optimisation has been the subject of many research

activities in the recent years, while, in contrast, the area of multi-objective problems

with large numbers of variables has received less attention in the scientific community

so far. Up until the year 2013, to the best of the author’s knowledge, no dedicated

large-scale multi-objective metaheuristic algorithm existed in the scientific community.

The methods developed in the last years, the theoretic backgrounds and challenges and

the optimisation techniques proposed by the author in the process are the topics of this

dissertation thesis.

1.2 Research Goals and Contributions

The aim of this thesis is the proposal and examination of several ways to optimise

large-scale multi-objective optimisation methods, containing large numbers of decision

variables, and the challenges and properties of such kind of problems. To reach these

goals, the thesis pursues to answer four research objectives which are listed and explained

in further detail below.

The contributions of this thesis to the scientific field of large-scale multi-objective

optimisation include several proposed methods, the classification of existing and proposed

large-scale algorithms and grouping mechanisms, and an extensive experimental evaluation.

Some of these contributions and their detailed descriptions are based on the respective

publications made by the author in the last years, which is highlighted in each respective

section where applicable. Further contributions include a detailed comparison of related

literature and a summary and comparison of the respective method’s properties.

Objective 1: Analysis and Classification of the State-of-the-Art

To tackle the challenges of large-scale optimisation it is necessary to understand its

underlying theory. Concepts like exploration and exploitation that are well understood

in metaheuristic optimisation might form a new challenge when the dimension of the

search space is large. In addition, the single-objective literature as well as the recent

advances in multi-objective large-scale optimisation has concentrated on a variety of

different mechanisms that turned out to be helpful in the exploration of high-dimensional

spaces like coevolution, grouping mechanisms or problem transformation.

Research Objective 1 is meant to examine the challenges of large search spaces and the

approaches developed for multi-objective large-scale optimisation in the recent years.

To fulfil this objective, the thesis first describes the existing approaches and compares

them theoretically. A comparison of their methodologies is carried out and properties,

advantages and disadvantages of the different methods are pointed out. Based on this,

the algorithms are decomposed into a number of building blocks, and the similarities and

differences in terms of building blocks are examined. All algorithms are further categorised

based on a proposed classification scheme, using a set of categories regarding criteria
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such as dimensionality reduction, diversity management, many-objective capabilities, and

more. These contributions can be found as follows: Basic principles and challenges of

large-scale optimisation as well as related methods are described in Chapters 2 and 3.

The classification and overview of the existing state-of-the-art and its components is

proposed in Chapter 4.

Objective 2: Examination and Classification of Grouping Mechanisms

One of the most important building blocks is the separation of the design variables into

groups. Most, but not all of the current large-scale methods require such a mechanism

to divide the variables, although they differ in the way these groups are used in the

optimisation process. Creation of groups can be done in many different ways, from

simple random groups to sophisticated methods that analyse the correlations of variables,

but in exchange often come with a high computational cost. It is, however, not known

how beneficial especially interaction-based groups are for the performance of existing

algorithms, i.e. whether computational overhead in finding “good” interaction-based

groups pays off in terms of solution quality.

Research Objective 2 is hence to examine how existing grouping methods for variables

can work and how important different groups are for the results of the optimisation with

such group-based algorithms. To reach this objective, a description of existing methods

is given in Section 3.3 and a classification into different categories and analysis of their

properties is presented in Section 4.2. An empirical analysis of the influence of groups on

the performance of some current large-scale algorithms is carried out in Section 6.7.

Objective 3: Proposal of new Algorithms

Large-scale optimisation in the single-objective area has gained popularity in the last

decade. However, the efficient approximation of large-scale multi-objective problems

was in large parts unexplored until the year 2013. Partly, this might be attributed to

limited computational resources. Especially the area on many-objective optimisation has

gained popularity and a number of new algorithms have been proposed in the recent

years. On the other hand, research on large search spaces in multi-objective problems

had been, to the best of the author’s knowledge, widely non-existent prior to the year

2013. This changed with the proposal of the CCGDE3 [3], and in the time since an

increasing number of methods have been proposed to tackle these problems.

Research Objective 3 of this thesis is to propose new methods to solve such problems

and to improve the search abilities of current algorithms for large-scale multi-objective

problems. In the course of this thesis’ scientific process, three new search algorithms

have been developed and published. These are

1. The Weigthed Optimisation Framework (WOF) that uses weight variables and

problem transformation for dimensionality reduction.
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2. The incorporation of variable groups into traditional genetic mutation operators.

3. The dimensionality reduction through search in a subspace spanned by linear

combinations of solution candidates.

All of these techniques are described and analysed in detail. Their methodologies,

advantages and drawbacks are examined in Sections 5.1 to 5.3 respectively. These

methods and their building blocks are also classified and analysed based on the proposed

categories and criteria in Chapter 4. An experimental evaluation of the algorithms’

properties and performances is included in Chapter 6.

Objective 4: Experimental Evaluation

Research Objective 4 is to compare the proposed large-scale approaches as well as some

of the existing methods from the literature with each other. The evaluation in Chapter 6

covers the comparison between the algorithms and the analysis of their strengths and

weaknesses regarding different criteria. It is visible in the literature that some methods

favour convergence towards good solutions while others are able to maintain a better

diversity of the solution set. In addition, some methods have a computational overhead

for finding suitable groups of design variables before the optimisation process starts.

Another important factor may be the necessity of “suitable” variable groups. Therefore,

the evaluation will compare methods with different performance measures such as the

final solutions produced by the methods, their convergence speed and their computational

budgets.

To be able to give as best as an overview over the capabilities of the algorithms, a

variety of test functions from the literature is used, which are described briefly in

Section 2.6. These come from different benchmark families and represent a variety of

different properties. Under the assumption that these benchmarks represent properties of

real-world applications, the analysis focusses on the different algorithms and the building

blocks of which they consist. By that, we aim to not only identify which algorithms

perform superior on certain problems, but also which building blocks in general seem to

be favourable for the development of future algorithms in this area.

1.3 Structure of the Thesis

This dissertation thesis is structured in the following way. Chapter 2 introduces the

basic concepts that are needed for the rest of the thesis. It covers the foundations of

multi-objective optimisation, Pareto-optimality and evolutionary algorithms. Chapter 2

further deals with the challenges of large-scale optimisation. It explains some of the

changes that occur when the number of decision variables is increased and briefly covers

basics of many-objective optimisation. The notion of grouping mechanisms is formally

defined in Section 2.4 and the concept of Cooperative Coevolution is explained in detail
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in Section 2.5, as it forms the basis and inspiration for most of the large-scale methods.

Section 2.6 describes the basic concepts of the most common benchmark families and

their properties, which are used for the later evaluation. Finally, Section 2.7 introduces

some of the most common indicators to measure the performance of multi-objective

algorithms.

Chapter 3 deals with related work from the area of multi-objective large-scale optimisation.

Large-scale methods from the literature are introduced and briefly discussed in Section 3.2.

A selection of different grouping mechanisms for variables for single- and multi-objective

optimisation is then presented in Section 3.3.

Chapter 4 compares and classifies the previously described algorithms and grouping

mechanisms. This enables a more general view of large-scale methods and helps to

identify interchangeable components. The existing works are compared based on a variety

of criteria, which include, among others, their methods of dimensionality reduction, the

necessary computational budget or the ability to work in many-objective scenarios. The

classification of large-scale optimisation algorithms and the analysis of their components

form a new contribution in this thesis and has not been published before.

Chapter 5 then describes the new methods for optimising large-scale problems that

are developed in the course of this thesis and its preceding publications. These are

the Weighted Optimisation Framework (WOF) (Section 5.1), the usage of variable

groups in mutation operators (Section 5.2), the dimensionality reduction through linear

combinations (Section 5.3). Each of these methods is analysed in detail, with a deeper

focus on the effects, possibilities and limitations of the problem transformation techniques

in the WOF method. The findings and analyses are based on the contributions of the

author made in [4, 5, 1, 6, 7], but are extended in depth and detail in this dissertation.

In the end of the chapter, the proposed methods are analysed with respect to the

classification criteria used in Chapter 4.

Chapter 6 contains the experimental evaluation of the proposed and related methods

as well as the evaluation of the influence of different variable groups. First, each of the

three proposed search mechanisms is evaluated individually in different configurations in

Sections 6.2 to 6.4. The proposed methods are compared to each other in Section 6.5.

Afterwards, in Section 6.6 the proposed methods and several of the latest large-scale

approaches from the literature are compared in terms of multiple performance criteria on

a variety of benchmark functions. Section 6.7 examines the influence and effectiveness of

interaction-based variable groups on the performance of large-scale algorithms. Finally,

the evaluations are summarised and discussed in Section 6.8.

The dissertation thesis is summarised and concluded in Chapter 7 and an outlook on

future research topics in this area is given.
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2
Basic Principles and Large-scale

Optimisation

In this chapter, basic concepts in the area of multi-objective and large-scale optimisation

are introduced. The following sections describe in detail the general terms of multi-

objective problems (Section 2.1), Evolutionary Algorithms (Section 2.2) and aspects of

large-scale optimisation (Section 2.3). Afterwards, two important concepts generally

used in the process of solving large-scale problems are explained. Section 2.4 gives a

formal definition of variable grouping mechanisms, which is used throughout this thesis

in most of the related and the proposed approaches. The second concept is Cooperative

Coevolution (Section 2.5), which initially motivated the use of variable groups in the

optimisation area. Some of the most common benchmark suites for multi-objective and

large-scale optimisation are introduced briefly in Section 2.6, and evaluation metrics that

are used to measure the performance of algorithms in the experimental evaluation are

described in Section 2.7. The last section of this chapter provides a short summary of

the basic concepts.

2.1 Multi-objective Optimisation

As described above, real-world applications in nature and science often contain multiple

conflicting objectives or goals. Such a problem is called a multi-objective problem (MOP).

Mathematically, it can be formulated as shown in Eq. (2.1).

Z : min ~f(~x) = (f1(~x), f2(~x), ..., fm(~x))T

s.t. ~x ∈ Ω
(2.1)

This kind of MOP maps the decision space, also called search space, Ω of dimension

n to the objective space M of dimension m, as exemplarily depicted in Fig. 2.1. It

consists of m objective functions, sometimes also called fitness functions, which have to

17
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be minimised or maximised simultaneously. In the remainder of this thesis, the terms

objective function and fitness function are used synonymously. Furthermore, we assume

without loss of generality that all objective functions have to be minimised. The decision

space Ω is defined by the encoding of the optimisation task. In the case of a Travelling

Salesman Problem (TSP), the search space might consist of all permutations of cities to

define different orders of visiting them. Many problems are also modelled as integer or

binary problems. In the context of this thesis, it is without loss of generality assumed

that the search space is real and a subspace of the Rn, constrained by a number of

inequalities, i.e. Ω = {~x ∈ Rn|~g(~x) ≤ 0} ⊆ Rn. Moreover, most algorithms designed for

multi-objective optimisation work with simple “box-constraints”, which merely define a

domain for each design variable in the form xi,min ≤ xi ≤ xi,max, ∀i ∈ {1, .., n}. There

are many constraint handling techniques in the literature which can be applied to existing

algorithms to tackle more complex linear and non-linear constraints. These methods of

constraint handling are, however, not the scope of this thesis. The interested reader is

referred to [8, 9] for further information.

Figure 2.1: Exemplary visualisation of decision space and objective space. The solutions
in the decision space (left) are evaluated into points in the objective space of the problem
(right). A hypothetical optimal front is shown in as a grey line in the objective space.

There are a few additional challenges in MOPs in comparison to single-objective problems.

First of all, due to the conflicting objectives, it is no longer possible to determine a single

optimal solution as the algorithm’s output. Instead, so-called Pareto-optimal solutions

need to be found. The term Pareto-optimality in general refers to a situation where for

an allocation of values to a set of variables, one can not improve the value of one of the

variables without making at least one of the others worse. The term originates from the

field of microeconomic theory and is used to describe certain allocations of goods. A

Pareto-optimal allocation of goods to subjects is one where it is not possible to improve

the utility, or wealth, of one subject without making another one worse [10].

This concept from economic theory has since been used in the case of multi-objective

optimisation to induce a partial ordering on the objective function values [8, 11]. This

is achieved by defining a domination criteria among solutions, the so-called Pareto-



2.1. MULTI-OBJECTIVE OPTIMISATION 19

dominance. Each solution in the objective space consists of a value for each of the

objectives to be optimised, i.e. ~f(~x) = (f1(~x), f2(~x), ..., fm(~x))T as denoted in Eq. (2.1).

Based on this, a formal definition of Pareto-dominance and Pareto-optimality is given in

Definitions 2.1 and 2.2, where it is assumed that - without loss of generality - all objective

functions should be minimised.

Definition 2.1 (Pareto-dominance) A solution ~x ∈ Ω dominates another solution

~y ∈ Ω in the Pareto-sense, if and only if the following two conditions hold: (1) for all

objective functions, the image ~f(~x) is at least as good as the image ~f(~y) and (2) there

exists one objective function where ~f(~x) is better than ~f(~y).

~x � ~y ⇔ ∀j | fj(~x) ≤ fj(~y) ∧ ∃j | fj(~x) < fj(~y), j ∈ {1, ..,m} (2.2)

Definition 2.2 (Pareto-optimality) Pareto-optimal solutions are all solutions ~x ∈ Ω,

which can not be dominated by any other solution in the search space.

~x ∈ Ω is pareto-optimal ⇔ @ ~y ∈ Ω | ~y � ~x (2.3)

The optimal solutions in the search space Ω form a so-called Pareto-optimal set, also called

Pareto-set (PS), in which the different solutions of the problem represent different trade-

offs between the objective functions. This is formally defined in Definition 2.3. Solutions

in the PS do not dominate each other, and can not be dominated by any other solutions

in Ω. Between the solutions in this set, no order is defined, as solutions might be better

in terms of one objective, but worse in terms of another. The corresponding solutions in

the objective space M are called the Pareto-front (PF), as defined in Definition 2.4.

Definition 2.3 (Pareto-set) The Pareto-set PS of a multi-objective optimisation prob-

lem is the set of all Pareto-optimal solutions of that problem, i.e. all solutions that can

not be dominated by other solutions.

PS := {~x | ~x is Pareto-optimal} (2.4)

Definition 2.4 (Pareto-front) The Pareto-front PF of a multi-objective optimisation

problem is the image of the Pareto-set of that problem, i.e. the set of all points in the

objective space which are obtained by applying ~f(·) to the solutions in PF .

PF := {~f(~x) | ~x ∈ PS} (2.5)

As a result of this trade-off property of multi-objective problems, decision makers are

likely to be interested in all different kinds of trade-off solutions that can be regarded as

optimal for this problem. This enables them to make an educated choice of which solution
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to their problem is implemented in the real environment. Therefore, most metaheuristic

approaches aim to find a good approximation of the Pareto-optimal set of solutions.

Usually, this set should be as close as possible to true Pareto-optimal solutions, while at

the same time being as distributed as possible along the Pareto-front. In the context of

multi-objective optimisation, these properties are often referred to as convergence and

diversity of a solution set, and are explained in further detail below.

2.2 Population-based Metaheuristics

Even though some optimisation problems can be expressed in analytical form and solved

by mathematical or exact means, this is in general not always possible or practical. Some

problems can be formulated mathematically, but require exponential time to be solved

with exact methods, while other problems might involve complex simulations, which can

not be described analytically. For such problems, metaheuristic optimisation provides a

way to obtain solutions with suitable solution quality and tractable computation time.

Solutions computed with a metaheuristic are not guaranteed to be optimal, but may

require a lot less computational resources.

In the area of metaheuristic optimisation, a variety of methods has been developed over

the years, and some of them have been inspired by biological or physical processes. Some

of the most prominent techniques might be Hill Climbing [12], Simulated Annealing

[12], Ant Colony Optimisation [13, 14, 12], Evolutionary Algorithms [8, 12] and Particle

Swarm Optimisation [15, 16, 12]. While the former two of these are representatives of

local search mechanisms, especially the latter two methods are of interest in this thesis,

as they are more suitable for global optimisation and belong to a group of so-called

population-based metaheuristics. To generate solutions and find better ones, these

techniques retain a set of solutions, called a population. Evolutionary Algorithms (EAs)

are inspired by the biological evolution of species, and utilise adapted versions of natural

selection, recombination and mutation of solutions to optimise problems. Particle Swarm

Optimisation (PSO) algorithms, on the other hand, are inspired by the movement of

swarms in nature, for instance swarms of birds. PSO treats the real-valued solutions ~x

as coordinates of particles which move through the decision space. By utilising concepts

like velocity and inertia of particles as well as attraction to other particles, new solutions

for the problem are generated.

Evolutionary Algorithms approximate the Pareto-optimal set by gradually improving

on the current solutions they maintain in their population. For that, basic principles of

the evolutionary improvement processes in nature are adopted into the algorithm. The

main idea is to construct new solution candidates by altering and recombining existing

solutions, as nature does with species to adapt them to the environment. The key concept

that makes improvement possible is the natural selection mechanism, also often called

“survival of the fittest” based on the theory of evolution, published by Charles Darwin in

1859 [17].
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In a first step of an EA, an initial random population is initialised. The solutions

in this population are evaluated based on fitness function as described in Section 2.1.

After that, a number of operations is carried out in a loop until a termination criterion

is reached (usually referring to a certain solution quality or a computational budget).

The basic function of an EA is outlined in Algorithm 1. To create new solutions, an

Evolutionary Algorithm uses recombination and mutation operators to combine existing

solutions. After these are evaluated, an environmental selection procedure determines

which solutions are taken over into the next generation, i.e. the next iteration of the main

loop of the EA. Since better solutions are favoured, promising parameter combinations in

the solutions are expected to increase within the population over generations. Gradually

the algorithm approaches better solutions until the optimal, or in the case of multiple

objectives, Pareto-optimal solutions are reached.

Algorithm 1 Basic outline of an evolutionary algorithm

Input: Optimisation Problem Z
Output: Solution population P

1: P ← initial random population
2: evaluate(P )
3: while termination criterion not reached do
4: P ′ ← matingSelection(P )
5: Q← recombination(P ′)
6: Q← mutation(Q)
7: evaluate(Q)
8: P ← environmentalSelection(P,Q)
9: end while

10: return P

A requirement for a suitable performance of an EA is the existence of a continuous

fitness landscape. Recombinations (sometimes also referred to as crossover) of solutions

and mutations are based on the assumption that solutions with similar fitness are also

similar in their representation. In other words, two solutions with similar objective

function values should be represented by similar combinations of the underlying decision

variables. As a result, modelling optimisation problems for EAs should be done with this

consideration in mind.

2.3 Large-scale Optimisation

The term large-scale optimisation usually refers to optimisation problems where different

aspects of the optimisation problems are increased in dimensionality. It is used in different

ways sometimes in the literature on metaheuristic optimisation, as an optimisation

problem can have different “large-scale” aspects. Most commonly, the term “large-scale”

refers to a large numbers of decision variables, while the actual number in the literature

varies. Another area that has drawn increasing attention in the last years is the so-called

“many-objective” optimisation. This term usually refers to multi-objective optimisation
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problems with more than 3 objective functions, while bi- and tri-objective problems fall

into the usual category of multi-objective optimisation. In this work, the term large-scale

usually refers to a multi-objective problem with a large number of decision variables if

not stated otherwise. Both kinds of high-dimensional problems are described shortly in

the next two subsections.

2.3.1 Many-variable Optimisation

As mentioned above, the most common type of problem under the term large-scale are

the ones with a large number of variables. In the literature, problems with different

numbers of variables were considered as large-scale. Most often, any problem with more

than around 100 variables can be called large-scale, and numbers between 100 and 5000

have been most common (refer to Section 4.1). In this section some challenges that arise

in this kind of problem are described.

If the number of variables is increased, it becomes much more challenging for metaheuristic

methods to search this high-dimensional space with a limited population size. Starting

with the initialisation of the population, the limited population size only allows an

exploration of a limited area of the search space. With increasing dimensionality, only a

small portion of the search space can be explored by the algorithm. At the same time

one might argue that the influence of genetic operators becomes smaller, especially the

mutation. A standard parameter setting for the mutation rate in many algorithms is

1/n, with n being the number of variables. Thus, only one variable is mutated at a given

time in the expected case. The influence this has on the solution as a whole becomes

smaller if there are, for instance, n = 1000 variables compared to a problem with only

n = 10 variables.

The biggest challenge for large-scale algorithms is to explore the high-dimensional space

with limited computational resources. The amount of solutions, and therefore function

evaluations needed to thoroughly search a decision space, increases exponentially with

the dimension of that space. However, it is not possible to increase the computational

resources available for solving in the same way. Therefore, algorithms for such problems

need to be able to find promising areas of the search space and exploit them with a small

amount of function evaluations. A central aspect of almost all large-scale algorithms is

therefore the reduction of the dimensionality in certain ways.

A concept used widely in single-objective large-scale optimisation is Cooperative Co-

evolution, which divides the search space into multiple independent groups of variables

and retains independent populations for each of them. This concept is explained in

further detail in Section 2.5. An overview of existing multi-objective algorithms in this

many-variable area is given in Chapter 3.
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2.3.2 Many-objective Optimisation

The area of many-objective optimisation has drawn increasing attention in the last years.

When the number of objectives is increased, most classical methods in multi-objective

optimisation do not perform well. Due to the large number of non-dominated solutions

in the population, the concept of Pareto-dominance, which is used in many algorithms,

suffers from the fact that with increasing dimensions, all solutions in the population most

likely are non-dominated to each other from a very early point on in the search process

[18, 19]. Therefore, selection criteria like non-dominated sorting (e.g. in NSGA-II [11])

fail to create selection pressure towards better solutions and make the search less effective.

To overcome this effect, most many-objective algorithms rely on reference directions

and similar concepts which first appeared in the MOEA/D algorithm in the year 2007

[20]. Multiple algorithms build upon this concept, including algorithms like RVEA [21],

MOEA/DD [22] and NSGA-III [23], and the research in the last years has led to a variety

of many-objective optimisation methods. The area of many-objective optimisation which

can perform well with 5, 10 or 15 objective functions simultaneously has been an ongoing

research topic in recent years.

2.3.3 Variable Interaction and Problem Separability

For the reduction of dimensionality of the search space, a common technique is to divide

the variables into groups. One way to perform this division is to use the interaction

between decision variables. Given a MOP as defined in Eq. (2.1), the interaction between

variables according to [24] and [25] is described as follows.

Definition 2.5 (Variable Interaction) For each objective function fk(~x), an interac-

tion between two decision variables xi and xj is assumed if values a1, a2, b1, b2 exist, so

that

fk(~x)|xi=a1,xj=b1 < fk(~x)|xi=a2,xj=b1 (2.6a)

and

fk(~x)|xi=a1,xj=b2 > fk(~x)|xi=a2,xj=b2 (2.6b)

where

fk(~x)|xi=a,xj=b = fk(x1, ..., xi−1, a, xi+1, ..., xj−1, b, xj+1, ..., xn)

This formalises the idea that, for variables that do not interact, the order between two

values fk(~x)|xi=a1 and fk(~x)|xi=a2 is independent of the value of the variable xj [26, 27].

In other words, the influence of the variable xi on the fitness function f does not depend

on the choice for the value of xj . If fk(~x)|xi=a1 is smaller than fk(~x)|xi=a2 for a certain

value of xj = b1 (Eq. (2.6a)), but larger for another value of xj = b2 (Eq. (2.6b)), an
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interaction between these variables exists, meaning that the value xj influences which

values of xi are obtaining smaller (larger) fitness function values.

Objective functions which contain no interacting variables are called “separable” prob-

lems. For such problems, the optimal values for each variable do not depend on any

other variables’ values, making it possible to optimise the problem one variable at a

time to obtain the global optimum. Therefore, instead of solving a (single-objective)

n-dimensional problem, one could solve n 1-dimensional problems, making the task

significantly easier. It can be of advantage to know the variable interactions of an optimi-

sation problem beforehand to include this information when using coevolution or other

variable-group-based methods. In real applications, such information can potentially

be obtained through expert knowledge for a specific application. However, since this

may not always be possible, some methods in the literature aim to identify interacting

variables through a problem analysis step. Some of these are described in Section 3.3.3.

2.3.4 Variable Contribution

In contrast to the interaction of variables, which is a property of each single objective

function, another topic arises when multiple objectives are concerned, which is the

question of the contribution of a variable. As decribed, solutions to a multi-objective

problem should not only be as close to Pareto-optimal solutions, but also cover the whole

Pareto-set as completely and evenly as possible.

In the context of this thesis, the term “variable contribution” refers to the influence of a

decision variable on the convergence and diversity of a solution set. More precisely, the

question is whether the change of a variable value changes the corresponding objective

function vector in a way that the solution moves closer to the Pareto-front, or in a way

that it represent different areas of the Pareto-front.

To explain this concept, consider the following optimisation problem with m = 2 objective

functions and n = 2 variables:

min f1(~x) = x1 + x2

f2(~x) = 1− x1 + x2

s.t. ~x ∈ [0, 1]2

(2.7)

The Pareto-set of this problem consists of all solutions where x2 = 0, as x2 increases

both objective functions simultaneously. Therefore, changing the value of x2 results in a

solution being closer or further away from any Pareto-optimal solution. This situation is

depicted in Fig. 2.2, where it can be seen that a change in x2 results in a decreased or

increased distance to the optimal solutions. In contrast, for a good approximation of the

whole Pareto-set, the values of x1 need to be as diverse as possible throughout a solution

population. We can see in Eq. (2.7) that changing the value of x1 of a solution does

not increase the closeness of this solution to the optimal ones, but rather discovers new
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Figure 2.2: Visualisation of variable contributions. x2 is convergence-related as changing
it, while keeping x1 fixed, results in solutions closer or further away from the true
Pareto-front (shown as a dotted line). Similarly, x1 is diversity-related.

solutions equally far away but representing different trade-offs between the objectives.

This is depicted in Fig. 2.2, where changing the variable x1 results in the created

solutions moving “sideways”, i.e. along the Pareto-optimal front, therefore creating more

diverse solutions. In the case where x2 = 0, changing x1 results in the discovery of new

optimal solutions. In this example, x1 would be considered as a diversity-related variable,

sometimes also called a “position-variable” in the literature. The variable x2 is called a

convergence-related variable, sometimes also called a “distance-variable”, as it mainly

contributes to the closeness to the Pareto-optimal areas of the objective space.

To test the ability of algorithms in terms of achieving good diversity and convergence,

some test problems like, for instance, the WFG benchmark functions [28] provide a

customisable parameter, with which the number of position- and distance-variables in

the problems can be controlled. In large-scale optimisation, this concept of variable

contribution was used in some related algorithms (e.g. MOEA/DVA [24] and LMEA[25])

that exploit these properties of variables in their search mechanic to create variable

groups. These methods and their contribution detection mechanisms are examined in

further detail in Sections 3.2 and 3.3.

2.4 Variable Grouping Mechanisms

A key feature of almost all large-scale algorithms is the division of the variables into

a certain number of so-called groups. Creating variable groups, i.e. splitting the set
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of variables of a problem into several smaller subsets, is most often motivated by the

biological principle of Cooperative Coevolution (Section 2.5). Dividing the variables and

applying optimisation to certain groups of them independently of other variables might

also be seen as a divide-and-conquer approach.

The application of variable groups in optimisation plays an important role in this thesis

and is formally described as follows:

Definition 2.6 (Variable Grouping Mechanism) A Variable Grouping Mechanism

Γ performs a segregation of decision variables x1, .., xn of an optimisation problem Z

into a number γ of groups G1, .., Gγ. Formally, Γ provides a function g that assigns each

variable index i ∈ {1, .., n} to a corresponding group index j ∈ {1, .., γ}.

g : {1, .., n} → {1, .., γ}
i 7→ j

(2.8)

As a result, the groups Gj are defined as follows:

Gj := {i | g(i) = j} ∀j ∈ {1, .., γ} (2.9)

The assignment of the variable indices to group indices can be done by an arbitrary

mechanism, such as randomly, based on an analysis of the variables or based on the

problem’s properties (Section 3.3). This assignment may be associated with computational

effort and involve statistical analysis or the creation of new solution candidates with

corresponding function evaluations. In order to save computational resources, this

computation of groups is usually precomputed and afterwards accessed via the function

g(·) and the sets G1, .., Gγ respectively. Let Ĝ be the set of all created groups: Ĝ :=

{Gj}j=1,..,γ . The following notation is used to calculate the assignment and create the

groups.

{g, Ĝ} = Γ(Z,P ) (2.10)

The grouping mechanism Γ receives an optimisation problem Z and a set of solutions P as

an input and provides the function g and the set of groups Ĝ. Note that in some grouping

mechanisms, such as random grouping, P can be an empty set, since no information

about existing solutions is required.

2.5 Cooperative Coevolution

One of the most popular concepts for large-scale optimisation is Cooperative Coevolution

(CC), which was first introduced into the area of optimisation by Potter and De Jong in
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1994 [29]. Like evolutionary algorithms, CC is a nature-inspired method. Coevolution in

evolutionary biology refers to a situation, where different species of individuals co-exist

together in an environment, and the existence and actions of one species have an influence

on the evolution of the other species. This can be expressed as “the change of a biological

object triggered by the change of a related object” [30].

This principle of Cooperative Coevolution was adapted into the area of optimisation in

the following way. A solution ~x = (x1, ..., xn) is seen as the state of a whole ecological

system, i.e. as a combination of different species’ individuals. Given a segregation of the

variables into suitable groups, it is possible to create independent populations for each

of these variable groups, each containing only values for the variables which belong to

that group. This situation is exemplarily depicted in Fig. 2.3. The different groups of

variables are also sometimes referred to as species or subcomponents, the populations for

the groups sometimes as subpopulations.

Instead of optimising all decision variables using one population of solutions, a CC-

based metaheuristic optimises one independent population for each variable group. The

populations are usually optimised in turns, and genetic operators like crossover and

mutation are only used on the currently optimised population, while the variables in

remaining populations remain unchanged. The advantage of this approach is that the

smaller groups of variables have a smaller search space than the whole problem originally

had, which can be beneficial for the exploration within this group.

However, a solution from one of these populations can not be evaluated on its own, since

the fitness functions of the problem can only be evaluated for complete solutions (i.e.

which contain values for all variables). Therefore, it is necessary to combine the variable

values from different populations to perform the function evaluation in the optimisation

(hence Cooperative Coevolution). This cooperative function evaluation is depicted as an

example in Fig. 2.4. After generating new solutions within the population of the first

variable group, containing the variables x1, x2, x3 and x4, their values are combined with

the values of other solutions from the population of group 2. The resulting solutions for

the problem are evaluated and their objective function values are assigned to the created

solutions in the population of group 1.

The concept of CC was used in a variety of large-scale algorithms, mostly in the single-

objective area [31, 32, 33, 34, 35, 36, 37]. In later chapters of this thesis, we explore several

algorithms which make use of this concept in the area of multi-objective optimisation

(Chapters 3 and 4). A CC-based version of the basic EA from Algorithm 1 looks like

shown in Algorithm 2. The main difference lies in the creation of multiple populations

(Line 2), as well as the cooperative function evaluations in Lines 4 and 11. The different

populations P1 to Pγ , where γ is the number of groups, are optimised in turns, while

the solutions in the respective populations of the other groups are left unchanged. For

each function evaluation, variable values from each of the other γ − 1 groups are taken
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Figure 2.3: Creation of the species and their subpopulations out of the n decision variables
in Cooperative Coevolution. Each of the independent populations contains d solutions,
which only consist of values for the variables of the respective group. Illustration based
on [3].

to form an individual and evaluate its fitness. One further change is that the output of

the algorithm should ideally consist of a population of complete solutions to the problem

instead of multiple smaller populations. This could be achieved either by an archive that

stores the best evaluated solution combinations during the search, or by combining the

subpopulations in a separate step after the optimisation is finished.

Algorithm 2 Basic outline of a Cooperative Coevolution-based evolutionary algorithm.

Input: Optimisation Problem Z
Output: Solution populations for each variable group {P1, .., Pγ}

1: {g, Ĝ} = Γ(Z,∅)
2: {P1, .., Pγ} ← γ initial random populations with variables in Gγ respectively
3: for all Pj , j ∈ {1, .., γ} do
4: evaluate(Pj |P1, .., Pj−1, Pj+1, .., Pγ)
5: end for
6: while termination criterion not reached do
7: for all Pj , j ∈ {1, .., γ} do
8: P ′j ← matingSelection(Pj)
9: Qj ← recombination(P ′j)

10: Qj ← mutation(Qj)
11: evaluate(Qj |P1, .., Pj−1, Pj+1, .., Pγ)
12: Pj ← environmentalSelection(Pj , Qj)
13: end for
14: end while
15: return {P1, .., Pγ}
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Figure 2.4: Principle of Cooperative Coevolutionary fitness evaluation. Graphic taken
from the author’s contribution in [38].

The main challenge that arises is the question on how to find suitable “partners” from the

other populations for the evaluation of a solution. Since the fitness values of an incomplete

solution in one of the populations may vary depending on which values it is combined

with, this choice has an effect on the search process. If a more robust function evaluation

is preferred, a solution could be evaluated multiple times with different partners to obtain

a better understanding of the average fitness of this specific parameter combination in

the current population. However, this results in increased computational effort.

In single-objective optimisation, since there is only one fitness function, it can be promising

to choose the respective best or worst individuals from the other populations. However,

in multi-objective problems, since there is no total order on the solutions, the appropriate

choice of evaluation-partners is more difficult. This is especially visible if we consider

that a multi-objective algorithm aims to achieve high diversity as well. Two different

combinations with variables from groups that contain diversity-related variables might

result in completely different fitness function values for all of the objective functions.

This makes traditional CC harder to apply for multi-objective problems.

2.6 Benchmark Problems for Multi-Objective

Optimisation

This section gives a brief overview of existing multi-objective benchmark problems,

including the ones used in the evaluation of this thesis. Most of these benchmarks have
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been widely used in the multi-objective literature for many years. The problems include a

variety of different characteristics, which allows testing algorithm performance for several

different types of problems. In the literature, a variety of scalable test problems has

been introduced to evaluate the performance of multi-objective metaheuristic algorithms.

Some of these are scalable in terms of the number of variables (like for instance the ZDT

problems [39]) while others like the DTLZ [40] or WFG [28] are scalable both in terms of

the number of variables and objectives [41].

The detailed mathematical description of each problem family is not shown here. Instead

we aim to briefly summarise the different benchmark families in terms of scalability and

other interesting characteristics. The DTLZ, WFG, UF and LSMOP suites are also used

in the evaluation of this thesis (Chapter 6) due to their scalability and complexity. For a

detailed overview and analysis of shortcomings and properties of current benchmarks,

the reader is referred to [42, 28, 43, 44].

Some of the oldest benchmark problems in the multi-objective community are the

ZDT benchmark problems [39], which were proposed in the year 2000. Six different

benchmarks were proposed, each with 2 objective functions and, in their original form, 30

decision variables. While ZDT1-4 and ZDT6 are continuous problems, ZDT5 is a binary

optimisation problem, which is less often used in the literature. The ZDT problems

possess different properties, including convex, concave and disconnected Pareto-fronts.

However, their structure is rather simple compared with current state-of-the-art test

problems. The problems contain one variable whose values decide about the distribution

of solutions along the Pareto-front, while the rest of the variables are used to determine

the closeness to the front. In modern terms, as an analysis in [25] showed, all but one

variable of the ZDT problems are convergence-related variables. A major drawback of the

ZDT functions are also the inability to scale the number of objectives. In recent years,

with the increase of many-objective literature, these problems are not used often any

more, because the development of modern evolutionary algorithms lead to sophisticated

methods, and the complexity of the ZDT functions does not pose a challenge to these

algorithms any more.

One of the most common benchmark families which is still used in a variety of works are

the DTLZ functions [40]. These problems were proposed to overcome certain shortcomings

of the previous ZDT suite. The DTLZ problems, named after the initials of their four

creators, improve on some of the shortcomings of the ZDT problems. They are scalable

in the number of variables and objective functions, and provide more complex structures.

They are still used often in recent studies for multi- and also many-objective algorithm

design. Modifications of the DTLZ functions also serve as the basis for some of the MaF

benchmark problems, which are used in the many-objective competitions of the IEEE

Conference of Evolutionary Computation (CEC) in recent years [45, 46].
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Table 2.1: Properties of the nine LSMOP benchmarks as listed in [44].

Modality Separability

LSMOP 1 Unimodal Fully Separable

LSMOP 2 Mixed Partially Separable

LSMOP 3 Multi-modal Mixed

LSMOP 4 Mixed Mixed

LSMOP 5 Unimodal Fully Separable

LSMOP 6 Mixed Partially Separable

LSMOP 7 Multi-modal Mixed

LSMOP 8 Mixed Mixed

LSMOP 9 Mixed Fully Separable

Huband et al. proposed the Walking Fish Group benchmark suite [28]. The WFG

benchmarks are the first problems to possess a parameter to set how many of the

total variables are related to convergence and how many are related to diversity. This

property has rarely been used in the literature, as they were mostly used in their

standard configuration with a very low number of diversity-related variables. Some

studies, however, made use of this scalability and studied the WFG functions with high

numbers of diversity-related variables [47, 4, 1, 5, 26]. The WFG benchmarks also possess

a variety of features including degenerated fronts in WFG3, disconnected fronts in WFG2,

convex, concave and mixed Pareto-front shapes and others.

The UF problem suite was proposed as part of the competition on multi-objective

optimisation at the IEEE Conference of Evolutionary Computation 2009 [48]. It consists

of 10 problems, were the UF1-7 problems are bi-objective, the WF8-10 are tri-objective

problems. Originally, these problems were specified with 30 decision variables, but are

scalable in the number of variables freely. A recent study in 2018 [47] showed that these

problems are especially hard in terms of achieving a good diversity along the optimal

front.

Distance Minimisation Problems (DMPs) have been introduced in the literature as scalable

test problems which can be easily visualised in the objective space [49, 50, 51, 52, 18, 53].

In a DMP, several predefined objective points are defined in the decision space. Each

one of these points corresponds to one of the objective functions, i.e. the number of

objective points is the same as the number of objectives. The goal is to find the solutions

in the decision space which have the minimum (Euclidean) distances to all the objective

points [41]. Although the problems are relatively simple and all its objective functions

are separable, a big advantage is that these problems can, to a certain degree, be seen as

related to real application in logistics and location planning [54, 55]. DMPs can easily be

visualised even when many-objective instances are used, and were used in many variations

to include multi-modality [56], constraints [57] or dynamics in the problem [41, 58]. Other

work has also focused on changing the complexity through the introduction of Manhattan
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distances, although the Pareto-optimal areas of these problems are no longer easy to

compute [38, 59, 60].

In [61], an optimisation problem based on a real world application was introduced. The

multi-objective version of this problem was used in [62] and [63] with up to 4864 decision

variables. A drawback of this problem is that despite its large number of variables, the

optimal solutions are not known, which makes it difficult to compare the performance

of algorithms with certain indicators. Furthermore, the related work in [62] solved the

problem using derivative information from the objective functions, which is usually not

applicable when using metaheuristic algorithms for black-box problems.

Recently, a set of special problems, called LSMOP (Large-scale many-objective problems),

was introduced [44], which are specifically designed to test the search abilities of algorithms

in large-scale and many-objective optimisation. The LSMOP benchmarks are scalable

both in terms of objective functions and decision variables. The suite further enables to

specify the separation into groups and the interactions between the groups beforehand,

which was not possible in some of the previous benchmark functions [6]. The nine LSMOP

benchmarks proposed in the work are used in many of the recent large-scale publications

in the multi-objective area. Some of its properties are summarised in Table 2.1.

2.7 Evaluation Metrics

Compared to single-objective optimisation, the results of multi-objective algorithms can

not be evaluated by simply comparing the achieved fitness values. The challenge of

multi-objective problems is to find solution sets which propose a trade-off between the

objective functions and lie as close to the Pareto-optimal solutions as possible. Therefore,

the obtained solution sets of algorithms are often compared with certain metrics, also

called performance indicators, which map a set of solutions to a single number that

allows a comparison between algorithms. Different indicators can be used to measure

the diversity and convergence of a solution set. This section briefly describes a selection

of evaluation metrics for multi-objective optimisation algorithms. The focus lies mainly

on the Hypervolume indicator and the IGD indicator, which are both used later in the

experimental evaluation of this thesis (Chapter 6).

An indicator that is able to measure the convergence of a solution set is the Generational

Distance (GD) [64]. The GD requires a reference set, usually assumed to be a sample of

the true Pareto-front. It computes, in the objective space, the average of the shortest

Euclidean distances from each point in the obtained solution set to its closest point in

the Pareto-front sample. In this way, the GD can provide information on how close the

obtained solutions are to the optimal ones, but the GD can not make any statement about

the distribution of the solutions. In the extreme case, all solutions could be concentrated

on a very small part of the PF of the problem, and still achieve GD values close to zero.
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In order to measure the diversity of a solution set, the Inverted Generational Distance

(IGD) indicator is often used in the literature [65]. As for GD, the IGD metric requires a

reference set, i.e. a sample of the true PF. It computes the average of the distances from

each point in this PF sample to the closest obtained solution. This is defined formally in

Definition 2.7.

Definition 2.7 (IGD) Let P be a set of Pareto-optimal points in objective space and S

be a set of solutions obtained by an optimisation algorithm. The IGD indicator of the set

S with respect to P is defined as

IGD(S, P ) =
1

|P |

∑
~p∈P

min
~s∈S

d(~p,~s)q

1/q

(2.11)

where d(~p,~s) is the Euclidean distance between the two points ~p and ~s.

In the remainder of this thesis, the value for q in the IGD definition is set to 1, following

the common setting in the literature [66].

Even though the IGD is intended to serve as a diversity-related indicator, the IGD value

of a set of solutions can provide information about convergence and diversity. In order to

obtain a small IGD value, the solutions need to be distributed along the PF. However, a

well-distributed set of solutions far away from the PF still results in large IGD values.

Therefore, even though small IGD values can result from good convergence or good

diversity, the best IGD values close to zero are only obtainable through a converged and

well-distributed set. For this reason, the literature in the large-scale and many-objective

area has often used the IGD indicator to compare the overall performance of algorithms

[67, 68, 69, 24, 25, 70, 71].

Different extensions to the IGD have been proposed in the literature, for instance

the IGD+ metric [72] or the average Hausdorff distance [73]. Studies on the IGD in

comparison with its variants can, for instance, be found in [66, 74].

The Hypervolume (HV) indicator [75, 76] is one of the most frequently used metrics in

the literature, and has, next to the IGD metric, been used in a variety of large-scale

publications [68, 69, 77, 78, 79, 3, 47]. The HV can measure the diversity as well as

the convergence of a solution set, and does so with respect to a reference point in the

objective space as defined in the following.

Definition 2.8 (Hypervolume) Let S be a set of solutions obtained by an optimisation

algorithm and ~r ∈ Rm be a reference point in the objective space. Let S′ ⊆ S be the set

of solutions which dominate ~r in the Pareto-sense. The Hypervolume (HV) indicator of
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the set S with respect to ~r is defined as

HV (S,~r) :=
⋃
~s∈S′

vol(~s, ~r) (2.12)

where vol(~s, ~r) denotes the volume in the objective space spanned between ~s and ~r.

Assuming that all objectives need to be minimised, the reference point is usually required

to be greater than the found solutions in each dimension of the objective space. The

closer the solutions are to the true PF, the further away they are from the reference point

and thus the HV value increases. The correct choice of the reference point is not trivial,

since a reference point too close to the PF excludes some solutions from contributing

to the HV. On the other hand, a reference point too far away from the PF strongly

emphasises the role of convergence of solutions, since a large HV value can be achieved

by just one single optimal solution. In the literature, reference points are often obtained

by using the worst values in each dimension (nadir point) of a given solution set, for

instance a sample of the true PF or the set of obtained solutions.

An advantage of the HV compared to GD or IGD is that it does not require a sample of

the true PF, and can therefore also be used when such optimal solutions are not available,

for instance in real applications. Due to that property, the HV was also used inside of

optimisation algorithms, so-called indicator-based algorithms. Since the maximisation of

the HV results in solutions close to and distributed along the PF, this indicator can be

used as an objective of the optimisation process to find good solutions. However, the

computational complexity of calculating the exact HV rises with increasing numbers of

objectives.

The scale of the HV indicator depends on the scale of the objective functions and

the choice of the reference point. To solve this issue, some implementations normalise

the objective functions values in each dimension (using the minima and maxima for

each objective) before calculating the HV. In the remainder of this thesis, the term

Hypervolume refers to this normalised HV version. Furthermore, to obtain values which

are easier to compare, some work in the literature uses a relative version of this indicator,

called the relative Hypervolume or the Hypervolume rate. In this version, the computed

HV value is divided by the maximally achievable Hypervolume, given the chosen reference

point.

2.8 Summary

This chapter presents basic principles of multi-objective optimisation and introduces

several concepts that are required in the remainder of this thesis. A brief overview on

multi-objective optimisation and its formal definition, along with Pareto-optimality and

the related concepts, are given. The principles of population-based metaheuristics are

given, and the functionality of evolutionary algorithms is explained.
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The following sections deal with the special properties and challenges of large-scale multi-

objective optimisation. The terminology of large scale and many-objective optimisation

is introduced and the concepts of variable groups and the different roles of variables in

terms of interaction, convergence and diversity are explained. Cooperative Coevolution,

which is commonly used in many large-scale methods, is introduced.

After that, a brief overview is given about the existing benchmark suites which exist in

the literature and which are commonly used in the scientific community for designing

and comparing algorithms. Many of them are scalable in the number of objectives and

variables. Finally, a brief description of different evaluation metrics from the literature

is given, and the used metrics for the later experimental evaluation (HV and IGD) are

formally defined.
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Related Work

In the recent years, large-scale optimisation has drawn increased attention in the scientific

community. While the large-scale single-objective literature has grown in the last decade,

the amount of research and algorithms developed exclusively for multi-objective large-

scale problems remains sparse, with the majority of large-scale algorithms published since

the year 2016.

This chapter gives an overview of the related literature on large-scale multi-objective

optimisation. In the following, Section 3.1 gives an overview of the literature on large-

scale algorithms that have been developed in recent years. In Section 3.2, the related

large-scale multi-objective algorithms, which are the focus of this thesis are used in

subsequent chapters, are explained in detail. Section 3.3 presents a selection of related

grouping mechanisms, which have been developed in the single- and the multi-objective

area. Finally, Section 3.4 provides a short summary of the described algorithms and

grouping mechanisms of this chapter.

3.1 Overview of the State of the Art

The aim of this section is to provide a brief overview of existing methods to solve

large-scale problems, both in single- and in multi-objective optimisation. Even though a

variety of large-scale algorithms for single-objective optimisation have been developed

in recent years, the focus of this thesis lies on the multi-objective area. Therefore,

only a brief summary of single-objective methods is given in this section. Further

information about large-scale optimisation algorithms in the existing single-objective

literature is, for instance, found in [80]. Large-scale optimisation has also drawn interest

in the area of exact methods, like for instance in [81], however, the focus of this thesis

lies on metaheuristic approaches. In the following we give a short review on related

single-objective works (based on the author’s article in [1]) that have been influential

to the multi-objective area, followed by a brief overview of multi-objective large-scale

approaches.

37
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Single-objective Large-scale Optimisation

As described in Section 2.5, the most prominent concept that led to the development of

large-scale algorithms is Cooperative Coevolution. The idea of a division of the decision

space variables in smaller groups of variables, and optimising these independently with

an evolutionary algorithm, was originally proposed by Potter and De Jong in 1994 [29]

for single-objective optimisation. Later work by Potter et al. further studied a method

for dynamically evolving the variable groups needed in the CC framework [31]. The

concept of CC was since used in a variety of large-scale single-objective algorithms

[31, 32, 33, 34, 35, 36, 37].

In 2010, Chen et al. used a separate step prior to the optimisation process to determine

the segregation of the variables into groups for non-separable problems [36]. They took

into account the interaction of variables with a learning mechanism for finding the optimal

distribution of variables to the subcomponents. They reported good results compared to

a naive grouping of the variables, although the additional learning step consumed more

computational resources. A study on this tradeoff and impact of Variable Interaction

Learning on Cooperative Coevolutionary algorithms was later conducted by the same

authors in 2013 [82].

In 2008, Yang et al. [33] proposed a CC method for single-objective problems using two

special features. One was a repeated reassignment of the variables into subcomponents

in every iteration of the algorithm. The second was a weighting scheme to optimise a

so-called “weight” for each subcomponent, i.e. apply a multiplication with a certain

value to every variable in the same group. These “weights” were then evolved with

a metaheuristic for the best, worst and a random member of the population. The

(re-)grouping in this work was done at random, i.e. in each iteration of the algorithm,

new random groups were created [1]. This approach later served as an inspiration for

the development of the Weighted Optimisation Framework [4, 1], which is one of the

proposed methods in this PhD thesis (see Section 5.1).

The same principle of using CC with weights has then been used in other works [34, 83]

for single-objective problems, using benchmark functions of up to 1000 decision variables.

A mechanism for choosing appropriate lower and upper bounds of weights was proposed

in [34]. In a later study, Li et al. stated that using this weighting approach in CC is less

effective than improving the frequent (re-)grouping of variables [37, 1].

In 2014, a mechanism called “Differential Grouping” (DG) was introduced to find improved

distributions of the variables in single-objective CC algorithms [84]. The aim of DG was

to determine variable interactions to base groups not only on random assignments, but

on the information which variables should be optimised together in the same group. A

more detailed description of DG and its successor, DG2, is given later in Section 3.3.

Other concepts and extensions to this approach for variable grouping were proposed

[85, 86, 87].
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A single-objective competitive PSO algorithm [88] was developed in 2015 which showed

good results for large-scale benchmark problems with up to 5000 decision variables [1].

Further, CC was, for instance, applied to a large-scale version of the capacitated arc

routing problem, with a special variable grouping mechanism that made use of the

information of the routes found the algorithm in previous iterations [89].

Multi-objective Large-scale Optimisation

In contrast to single-objective problems, the popularity of research on multi-objective

large-scale optimisation has only increased within the last few years. In the multi-

objective case, the additional challenge of exploring a high-dimensional search space is

even more challenging when multiple areas of the search space need to be found to cover

different parts of the Pareto-optimal front of the problem. A study in 2013, for instance,

showed that the performance of existing algorithms deteriorates when the dimension of

the search space is increased [90].

A first approach to utilise the concept of CC in multiple objectives was performed by

Iorio and Li [32] in 2004. This approach makes use of the NSGA-II algorithm, but was

not developed as a dedicated large-scale optimiser, and as such was not tested on any

high-dimensional search spaces. The algorithm optimises each decision variable on its

own, utilising its own population consisting only out of values for this one variable. The

ZDT test problems (refer to Section 2.6) were used with 2 objectives and only a small

number of up to 30 decision variables. The results showed that their algorithm was able

to compete with the performance of the NSGA-II in most of their experiments.

To the best of the author’s knowledge, the first dedicated multi-objective large-scale

algorithm was proposed in 2013 by Antonio and Coello Coello, called CCGDE3 [3].

Their work used the concept of CC together with the Generalized Differential Evolution

3 algorithm (GDE3 [91]). In their experiments, using some of the 2-objective ZDT

benchmark functions with between 200 and 5000 decision variables, the coevolution-

enhanced version of GDE3 outperformend the traditional GDE3 and NSGA-II algorithms.

However, to achieve good approximations of the PF, the CCGDE3 method still required

a large number of function evaluations, ranging between 150, 000 to 220, 000 for the

1000-variable instances and up to over 5, 700, 000 evaluations for 5000-variable problems.

Furthermore, although the study showed that the concept of CC can be applied to

multiple objectives, it was only tested on the ZDT functions. It remained unclear whether

this concept would work with more complicated benchmark problems like the WFG or

the DTLZ benchmarks.
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3.2 Related Approaches in Large-scale Multi-objective

Optimisation

Following the proposal of CCGDE3, a variety of algorithms was proposed to tackle

large-scale multi-objective optimisation, most of them published since the year 2016. In

this section, the existing algorithms in this area are described in detail. The following list

of methods includes all known large-scale multi-objective algorithms that were published

until the end of March 2019. For each of the methods, the concept is described and its

methodology is visualised using simplified flowcharts. These flowcharts represent abstract

workflows of each method, and are composed of certain building blocks, which the author

identifies for each algorithm and which are used in the next chapter for further analysis

of the state-of-the-art. The algorithms in the following are presented in order based on

similar characteristics. They are further summarised, compared and categorised in detail

in Chapter 4. Further information on the experimental evaluations in the respective

publications is presented in Appendix A.

CCGDE3

The CCGDE3 applied the concept of CC to multi-objective optimisation [3]. The basic

structure of the algorithm is shown in Fig. 3.1. CCGDE3 first divides the variables

randomly into groups and afterwards applies a CC-based optimisation of the large-scale

problems. This is done through maintaining independent populations of solutions for

the different variable groups in the same way described in Section 2.5. This is done

until a termination criterion is met. As described, one major problem when using CC

with multiple objectives is to select the “partners” for each individual of the distinct

populations to perform the function evaluation step. This is not trivial since the notion of

“best” and “worst” individual in the population is not defined as in the single-objective

case. To evaluate an individual in one of the populations in CCGDE3, in the first iteration

of the algorithm, random partners are selected from each of the other population, and

the obtained objective function values are assigned to the individual at hand. In the

subsequent iterations, random individuals from the respective first non-dominated fronts

of each of the populations are used. The groups in CCGDE3 were created randomly and

evenly-sized. A potential disadvantage of the CCGDE3 algorithm is the initial random

creation of variable groups. Since the algorithm does not to change the groups during

runtime, CCGDE3 is potentially vulnerable to problems with high interactions between

variables.

MOEA/D2

Another approach based on CC was released in 2016 and named MOEA/D2 [79]. It follows

mostly the same ideas and structure as the CCGDE3 algorithm, as shown in Fig. 3.2. It

first divides the decision variables randomly into a number of subcomponents / groups

in the same way as CCGDE3. However, the MOEA/D2 does not create completely
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Random groupingStart CCGDE3

Termination
criterion

CC-based optimisation
of large-scale problem

End CCGDE3
yes no

Figure 3.1: Outline of the CCGDE3 algorithm.

independent subpopulation for each of these subsets of variables. Instead, only one

population is maintained, where during the optimisation of each group, the genetic

operators are only applied to the variables in that specific group. This eliminates the

need to find suitable partners for each created solution-part in order to form evaluable

solutions. The technique was incorporated into the MOEA/D [20] algorithm, which

is an evolutionary algorithm with a decomposition technique in objective space. An

external archive of solutions was used based on Pareto-dominance to return the best (i.e.

non-dominated) solutions at the end of the search.

Random groupingStart MOEA/D2

Termination
criterion

CC-based optimisation
of large-scale problem

End MOEA/D2
yes no

Figure 3.2: Outline of the MOEA/D2 algorithm.

CCLSM

In 2018, Li and Wei proposed a CC-based method for large-scale multi-objective optimi-

sation called CCLSM [70]. The work basically applies a CC structure with a grouping

method that takes into account the interaction between decision variables. It therefore

closely resembles CCGDE3 and MOEA/D2, with the difference of applying an interaction-

based grouping strategy from the single-objective literature, as is depicted in Fig. 3.3. For

the selection of variables from the other groups’ populations, a “representative” solution
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is chosen and updated in each population, which values are used to combine solutions in

the evaluation steps.

Interaction-based
groupingStart CCLSM

Termination
criterion

CC-based optimisation
of large-scale problem

End CCLSM
yes no

Figure 3.3: Outline of the CCLSM algorithm.

MOEA/D(s&ns)

An approach called MOEA/D(s&ns) was proposed in [92] in 2018 based on CC and the

MOEA/D-DE algorithm [93]. In MOEA/D(s&ns), a CC-version was used to divide the

population into smaller subpopulations. MOEA/D(s&ns) is included in this list for the

sake of completeness, although it must be noted that due to the article’s scientific quality,

the author of this thesis was not able to fully comprehend the algorithm structure, focus

of the work, nor experimental methodology of this article.

MOEA/DVA

In 2015, a large-scale optimisation algorithm called MOEA/DVA (Multi-objective Evolu-

tionary Algorithm based on Decision Variable Analysis) was proposed by Ma et al. [24].

Its concept was similar to that of CC, mainly dividing the variables into multiple groups

and optimise each of them independently. However, there are some differences to the

classical concept of CC as it was in CCGDE3. MOEA/DVA did not choose mating part-

ners at random any more, but instead kept individuals for the original problem together

during the optimisation. This means, instead of keeping independent subpopulations,

MOEA/DVA uses a variant of CC where only one population exists, and evolutionary

operators are only applied to a certain group of variables at a time. Due to this, the

need to find partners from other populations became unnecessary, as each individual of

the population already contains values for all other variables in other groups (i.e. those

variables currently not under optimisation).

A new concept that was first introduced in MOEA/DVA - and subsequently used in

other methods - was the additional division of variables into groups based on their

contribution to convergence (i.e. distance to the Pareto-front), diversity, or both (see
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Section 2.3.4). The details of the used grouping techniques are described later in more

detail, see Section 3.3.2.

The basic outline of this algorithm is shown in Fig. 3.4. After the algorithm first separates

the variables based on their contribution (contribution-based grouping), MOEA/DVA then

further divides the convergence-related variables into groups based on their interactions

prior to the start of the optimisation (interaction-based grouping). This step is called

Interdependence Analysis and is described in further detail in Section 3.3.3. For variables

which are classified as mainly contributing to the diversity, a uniform initialisation

procedure is used, and their values remain fixed after that, while the convergence-related

variables are optimised. The groups of only convergence-related variables are optimised

in the described CC-inspired way. This is done until a first termination criteria is

reached, which is shown in Fig. 3.4 as “convergence detection”. The algorithm measures

the progress with a utility value, computed from the sum of objective values over the

population. Once it receives a sufficient convergence, a so-called uniformity optimisation

is carried out, which optimises the original, large-scale problem as a whole without using

groups, and also includes the diversity-related variables to obtain a better spread of

solutions along the Pareto-front [6].

Although MOEA/DVA takes into account the special requirements of multi-objective

optimisation, i.e. the different goals of diversity and convergence during the search, it

comes with certain disadvantages. Mainly, the variable interaction analysis to form the

groups requires a major share of the available computational budget. In a study in [1],

MOEA/DVA needed more than 8, 000, 000 function evaluations for computing the groups

of a 1000-variable problem [6]. The necessary evaluations vary depending on the used

parameters, but rise quadratically with increasing numbers of decision variables. Further

details can be found in Sections 3.3.3 and 4.2.

MOEA/D-RDG

A variant of MOEA/DVA was proposed called MOEA/D with Random-based Dynamic

Grouping (MOEA/D-RDG) [67]. The basic structure is outlined in Fig. 3.5. MOEA/D-

RDG uses the same mechanisms as MOEA/DVA to divide the variables based on their

contributions and for the CC-based optimisation of the convergence-related variables.

The difference between MOEA/DVA and MOEA/D-RDG lies only in the used grouping

mechanism to perform the interaction-based grouping, where the newly proposed RDG

strategy replaces the Interdependence Analysis in MOEA/DVA. Further details can be

found in the description of the grouping mechanisms in Section 3.3.3. The big advantage

of RDG compared to the Interdependence Analysis in MOEA/DVA is that no additional

function evaluations are needed, therefore freeing more computational budget for the

actual optimisation process.
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Interaction-based
groupingStart MOEA/DVA

Optimise large-scale
problem

Convergence
detection

Contribution-based
grouping

CC-based optimisation
of convergence-

variables

End MOEA/DVA

Termination
criterion

no

yes

yes

no

Figure 3.4: Outline of the MOEA/DVA algorithm.

Random groupingStart MOEA/D-RDG

Optimise large-scale
problem

Convergence
detection

Contribution-based
grouping

CC-based optimisation
of convergence-

variables

End MOEA/D-RDG

Termination
criterion

yes

no

yes

no

Figure 3.5: Outline of the MOEA/D-RDG algorithm.
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LMEA

Another approach that uses a similar idea as MOEA/DVA is the Large-scale Many-

objective Evolutionary Algorithm (LMEA) [25], published in 2016. As the name suggests,

LMEA aims to solve problems with both, many variables and many objectives by using

techniques from both areas in one algorithm. The structure of LMEA is depicted in

Fig. 3.6. Similar to MOEA/DVA, LMEA works by first performing a contribution-based

grouping, dividing the variables into two distinct groups, named convergence-related and

diversity-related variables. To do so, it relies on a clustering-based approach (for details see

Section 3.3.2). The convergence-related groups are then, similar to MOEA/DVA, divided

further into several groups by taking into account the interaction between variables (for

details see Section 3.3.3). These convergence-related groups are optimised in a CC-inspired

fashion, and in a next step the diversity-related variables are optimised. This is done in

turns until a termination criterion is met, using two different optimisation methods for

the convergence-related groups and the diversity-related variables. An advantage of this

method is that it includes the diversity-related variables during the optimisation more

frequently compared MOEA/DVA, which only considers the diversity-related variables

towards the end of the optimisation. However, similar to MOEA/DVA, LMEA requires a

very large amount of function evaluations to obtain the interaction-based variable groups

[6].

Interaction-based
grouping

Contribution-based
grouping

 Optimise diversity-
variables

CC-based optimisation
of convergence-

variables

Termination
criterion

Start LMEA

End LMEA

no

yes

Figure 3.6: Outline of the LMEA algorithm.

DPCCMOEA

Cao et al. in 2017 proposed the Distributed Parallel Cooperative Coevolutionary Multiob-

jective Evolutionary Algorithm for Large-Scale Optimisation, abbreviated as DPCCMOEA

[68]. This approach makes use of the CC framework and implements it in a distributed
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fashion, so that each subpopulation contains values for all variables, but only those in

the respective group are optimised by each separate process.

The basic flow of the algorithm is depicted in Fig. 3.7. For readability, the functional

components are shown, and the parallel nature of the process is omitted in the flowchart.

An in-depth analysis on the parallelisation of large-scale methods is given in Section 4.1.5.

DPCCMOEA makes use of contribution-based groups, and further applies a single-

objective graph-based version of Differential Grouping (see Section 3.3.3) to find the

interaction-based groups in a preprocessing step, which is implemented in parallel to

save computation time. In order to reduce the communication between processes while

using the CC framework, each process contains a whole population of individuals, i.e.

variable values for all other groups, which are not optimised by the current process, are

present. This is denoted in Fig. 3.7 as “create independent populations”. Each of the

parallel processes optimises one of the convergence-related variable groups, as well as

the diversity-related variables, and information is exchanged between in the processes by

transferring their respective best individuals to other processes, using a neighbourhood

structure. This is repeated until a termination criterion is met.

Create independent
populations

Start DPCCMOEA Interaction-based
grouping

Contribution-based
grouping

 Optimise diversity-
variables

Optimisation of a 
single group of

variables

Termination
criterion End DPCCMOEA

no

yes

Figure 3.7: Outline of the DPCCMOEA algorithm.

S3-CMA-ES

In 2018, an approach called S3-CMA-ES was proposed that makes use of several inde-

pendent subpopulations [77]. The S3-CMA-ES is based on the concept of covariance

matrix adaptation evolutionary strategies (CMA-ES), and is designed with the aim to

use multiple populations to increase the diversity of solutions, where each population is

optimised separately with a focus on one area of the search space.
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The structure of this method is shown in Fig. 3.8. Similar to MOEA/DVA and LMEA,

the variables are first divided into diversity-related and convergence-related variables,

and the convergence-variables are further divided into subcomponents based on the

variable interactions, where a modified version of Differential Grouping 2 is used (see

Section 3.3.3). After that, a number of different populations for the problem are created

randomly, with the special property that the diversity-related variables are identical for

all solutions within one population. Each of the populations is then optimised using

a CC-inspired fashion, i.e. each group of convergence-variables is optimised separately

while keeping the variables in the other groups fixed. This process is done in turns

without any interaction between the populations, until all populations are considered

as converged (measured by a threshold in the improvement of the best solution in the

population). Once all populations are considered as converged for their respective set

of fixed diversity variables, a step is carried out to improve the diversity of solutions

overall through optimising the diversity-related variables. Afterwards, if the termination

criterion of the algorithm is not met, new populations are generated for the next iteration

of the algorithm.

An interesting property of the S3-CMA-ES is that it not only divides the variables into

groups and optimises them separately. By assigning different diversity-variables and

optimising each population until convergence, it also distributes the computational budget

dynamically based on how long it takes to converge in a certain area of the search space.

However, the S3-CMA-ES potentially suffers from the same disadvantage as MOEA/DVA

and LMEA, meaning the dependency on suitable, interaction-based variable groups which

have to be obtained with a large computational budget. In the article, the same grouping

strategies as in MOEA/DVA were used for the contribution-based groups, and a version

of Differential Grouping 2 [87] (see Section 3.3.3) was used for the interaction-based

groups. Therefore, the number of evaluations required for obtaining the groups still rises

quadratically.

PEA

The Parallel Evolutionary Algorithm (PEA) was proposed by Chen et al. in 2018 [71].

Its aim is, as the name suggests, to parallelise the evolutionary optimisation process in a

more efficient way. Specifically, if an EA is parallelised by distributing the creation and

evaluation of solutions to multiple processes, the selection operators (both for reproduction

and environmental) cause the need for frequent communication between processes, as

they usually require knowledge about all created solutions. PEA aims to solve this issue

by introducing independent sub-populations which converge independently and exchange

information through local and global archives. The outline of PEA is shown in Fig. 3.9.

To increase the performance for large-scale problems, PEA utilises the concept of

convergence- and diversity-related variables. Each subpopulation only optimises the

convergence-related variables, keeping the diversity-variables fixed. The diversification
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Figure 3.8: Outline of the S3-CMA-ES algorithm.

is realised through the creating of new subpopulations from a solution archive. Within

a subpopulation, the convergence-related variables are divided further into groups in a

random way. The solution archive is updated after the convergence of a subpopulation is

detected.

It is interesting to mention that like most large-scale approaches, PEA uses a segregation

of the decision variables and applies the evolutionary operators only to a group of

variables at a time. Since the aim of PEA is to build a parallel EA with little necessary

communication between processes, the parallelism is not implemented through the variable

groups, but through complete populations which focus solely on convergence. This is

an interesting property and shows a similar concept as S3-CMA-ES, DLS-MOEA (see

below) and - in parts - also the WOF method which is proposed by the author of this

thesis (Section 5.1). A further analysis of this methodology is given in Section 4.1.

ReMO

In 2017, Qian and Yu proposed a large-scale optimisation method based on random

embedding, called ReMO [78]. This algorithm was designed as an approach for high-

dimensional problems with low effective dimensions, which refers to problems where

not all the variables actually contribute to the objective function values. In ReMO,

the original n-dimensional decision space is embedded in a lower-dimensional space of

dimension v � n. The search process then takes place in the v-dimensional space,

and solutions are mapped to the original decision space for function evaluation using a
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Figure 3.9: Outline of the PEA algorithm.

v × n-matrix as the transformation. The structure of the ReMO method is shown in

Fig. 3.10. The transformation matrix for the embedding is chosen before the start of

the actual optimisation and is not changed afterwards. This step is shown as “problem

transformation” in the flowchart. The actual search process can be done with any

metaheuristic approach in the low-dimensional space (i.e. on the transformed problem)

until a termination criterion is reached. Two algorithms were used in the article, the

NSGA-II and MOEA/D algorithms, resulting in the algorithms Re-NSGA-II and Re-

MOEA/D respectively.

An interesting part of this algorithm is the use of random matrices for the embedding-

step. Instead of applying a mechanism to detect the effective dimensions and base the

embedding on this information, ReMO chooses the elements of the embedding matrix

uniformly at random from a Gaussian distribution. It is further noteworthy that ReMO is

only intended to work for problems where only a few variables contribute to the objective

function values. If all variables contribute evenly to the objective function values, as is

the case for many of the current benchmark functions, the linear transformation using

a random matrix may not be suitable to find these optimal solutions in the original,

high-dimensional space. This is further examined in detail in Section 6.6.1.

Noteworthy is at this point that ReMO is a large-scale algorithm which is not based on

problem decomposition. No variable groups are necessary to use ReMO, and therefore

no computational budget is necessary to form groups. This is a big difference to previous

well-performing methods like MOEA/DVA or LMEA, and raises the concern whether

these large budgets to obtain groups are justified.
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Figure 3.10: Outline of the ReMO algorithm.

DLS-MOEA

The Multi-Objective Evolutionary Algorithm with Dual Local Search (DLS-MOEA) is

a large-scale algorithm proposed in November 2018, with a special focus on problems

where it is difficult to obtain and maintain diversity of solutions [47]. The DLS-MOEA

is an indicator-based approach based on the SMS-EMOA algorithm [94, 95], focused on

a diversification method based on local search.

DLS-MOEA alternates between two different optimisation strategies, as shown in Fig. 3.11.

In the first one, the indicator-based optimisation, solutions are generated via crossover

and mutation, and the selection is based on the Hypervolume indicator. In the second

strategy, the indicator-based local search, solutions are generated via a local search based

on the single-objective SEE method [96]. SEE is an approach that iteratively learns

the probabilities that a mutation in a positive or negative direction (for each variable

separately) leads to an increase or decrease in solution quality. In DLS-MOEA, created

solutions are added to an archive, and the change of quality is measured via an increase

or decrease in Hypervolume.

Using these two mechanisms in turns, the DLS-MOEA aims to produce more diverse

solution sets, especially in problems where diversity is difficult to obtain. Therefore, an

analysis was conducted to divide existing benchmarks into different categories called

convergence-focused problems (which were the ZDT, DTLZ and WFG problems), diversity-

type I problems (which includes the WFG benchmarks with increased numbers of diversity-

related variables) and diversity-type II problems (which were the UF benchmarks).

Like ReMO, DLS-MOEA does not use variable groups, and does therefore not require a

computational budget to obtain information about variable contribution or interactions.

This can be of advantage for application where only a limited budget is available. A

possible disadvantage of the DLS-MOEA might be its dependency on an indicator
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that can measure both convergence and diversity of a solution set. In the article, the

Hypervolume indicator was used (refer to Section 2.7). Since no experiments with more

than 2 objective functions were performed at that time, it is unclear whether the good

performance would transfer to higher-dimensional objective spaces. The reason for this

is that the Hypervolume indicator becomes more costly to calculate with increased

dimensionality. If DLS-MEOA is used to solve problems with more than 3 objectives,

its runtime might dramatically increase due to the very frequent calculation of the

Hypervolume. On the other hand, it is possible to replace the Hypervolume with another

indicator in these scenarios, but the influence on the algorithm’s performance is unknown.

It is further noteworthy that the DLS-MOEA’s good performance was mainly shown for

the UF benchmarks. Therefore, its performance for real optimisation problems is linked

to the question how well current benchmarks mirror the properties of real applications

and which of the UF properties are most beneficial to the performance of DLS-MOEA.

Indicator-based local
searchStart DLS-MOEA Indicator-based

optimisation

Termination
criterionEnd DLS-MOEA

no

yes

Figure 3.11: Outline of the DLS-MOEA algorithm.

LSMOF

In January 2019, the Large-scale Multi-objective Framework (LSMOF) was proposed,

which is based on so-called “problem reformulation” [69]. The main idea of LSMOF is

strongly based of the transformation strategy of the WOF algorithm, which was proposed

by the author of this thesis in 2016 (see Section 5.1). LSMOF utilises a transformation

step, which reduces the dimensionality of the problem through so-called weight-variables.

These weights are associated with linear search directions in the decision space, starting

from certain reference solution candidates. One weight variable is used to change all

decision variables simultaneously, and thus creating new solutions by only altering one

variable. This concept allows to decrease the search space dimensionality. LSMOF

proposes a transformation method that uses two search directions for each reference

solution to increase the chance to find the Pareto-optimal set within the lower-dimensional

search space spanned by the weight variables.

The second technique which is used in LSMOF is similar to the idea used in DLS-

MOEA, namely the usage of single-objective optimisation using a performance indicator
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to optimise the formulated problems. By optimising the low-dimensional transformed

problem only with respect to one fitness value (like for instance the Hypervolume of

the obtained solution set), the large-scale multi-objective problem is transformed into a

low-dimensional single-objective problem.

The basic structure of LSMOF can be seen in Fig. 3.12. It uses two stages of optimisation

in the same way as the WOF method: first, a stage where the weight variables are used

to reformulate the problem (problem transformation), and these transformed problems

are optimised using the mentioned single-objective indicator-based optimisation strategy.

This is done repeatedly to create solutions close to the Pareto-set until a first termination

criterion is reached. In the article, this was set to 50% of the available function evaluations.

The second phase of the algorithms consists of the optimisation of the original problem

to obtain diversity (using the second half of the available function evaluations).

A closer examination of the properties of such weight-variable-based problem transforma-

tion strategies can be found in the following Chapter 4 and Sections 5.1 and 5.4.

Indicator-based
optimisation

Problem
transformation

Optimise transformed
problemStart LSMOF

End LSMOF

Optimise large-scale
problem

Termination
criterion

First
Termination

criterion

no

yes
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Figure 3.12: Outline of the LSMOF algorithm.

3.3 Related Variable Grouping Methods

Many of the existing large-scale methods involve a kind of grouping mechanism to divide

the variables. Formally, this can be described as in Section 2.4, and groups can be based

on the contribution of variables to diversity or convergence, on the interaction of variables,

or on neither of those. Mostly, as far as interaction-based groups are concerned, these
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mechanisms are adapted from single-objective literature. When it comes to contribution-

based groups, there is a need for additional mechanisms in the multi-objective community,

as these properties (i.e. the distinction between diversity and convergence) only exist in

the multi-objective case.

This section takes a look into some common methods from the literature, which were or

can be used in some of the related algorithms above, as well as the proposed methods of

this thesis. In contrast to the above list of related large-scale multi-objective algorithms,

the list of grouping mechanisms is not exhaustive for two reasons. First, the amount of

literature on single-objective grouping methods exceeds the limit of this thesis, and second,

the scope of the present thesis lies on large-scale optimisation in general, with a focus on

the algorithms and their building blocks. A study on the usefulness of interaction-based

groups is carried out in the experiment section of this thesis. A methodology to make

single-objective grouping methods applicable to multi-objective problems was published

in [26].

For real-world applications, it might be intuitive that optimising certain parts of the

problem can be done independently of another part, and thus such independent subprob-

lems should be identified and used in (for instance) techniques like CC. For instance, the

optimisation of a production chain inside a factory might have none or minimal influence

on the optimisation of the delivery logistics that happens when the finished products leave

the production. In the best case, they could be treated as two independent optimisation

problems. In reality, there might be some variables that contribute to both problems,

and recently some research has focused on this kind of Intervowen Systems [97]. Another

area where large-scale problems can be involved is the shape-optimisation of aircrafts or

trains. Also in these cases, variables that contribute to the shape of a wing might be

less likely to interact strongly with variables related to the face of an aircraft. Finding

these interactions, however, is a difficult task, as especially in this example the objective

functions might be complex flow-simulations and there might not exist an analytical form

to analyse. This emphasises the need for automated group detection or segregation in

other ways to improve the optimisation procedure.

In real applications, grouping mechanisms can further be a good way to include expert

knowledge into the search process. In this case, a person familiar with the application

might provide the knowledge which variables should be in the same group. This inclusion

of additional information can even be useful in low-dimensional problems.

In the area of single-objective large-scale optimisation, a variety of grouping strategies

has been proposed so far. An overview of existing grouping methods for single-objective

problems was published in the year 2015 in [80]. A simple random grouping mechanism

was, for instance, used in [33]. Yang et al. [98] proposed a multilevel Cooperative

Coevolutionary method for finding optimal group sizes. The interaction of variables was

taken into account in [36] by a learning mechanism for finding the optimal groups of
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variables [1]. Of special interest are the single-objective methods Differential Grouping

(DG) and its improved version called Differential Grouping 2 (DG2) [84, 87], which were

published in 2014 and 2017 respectively. DG2 tries to overcome the drawback of a large

computational overhead in finding variable interactions that was present in the original

version. Other concepts and extensions [85, 86] to this approach for variable grouping

have also been proposed [1].

In the multi-objective area, Coello and Sierra examined the relative importance of

certain decision variables and divided the search process into multiple steps, assigning

the decision variables to different groups by analysing most promising parts of the

Pareto-front [99]. Although their results were competitive to other algorithms such

as NSGA-II, the three used test problems only contained two decision variables each.

The contribution-based groups are a relatively new phenomenon and have first been

introduced in the MOEA/DVA and LMEA algorithms. Their methods of finding the

contribution of variables were reused in several of the other related works, and it is

worth noting that finding the contribution-based groups is generally less expensive in

terms of function evaluations than the interaction-based grouping. The methods used in

MOEA/DVA and LMEA are described below in further detail. In the literature, a brief

division of grouping methods based on their used information was done in [27], although

contribution-based methods were not included in that study.

The remainder of this section is divided into three main categories of grouping methods

as follows, and a few representative candidates of each category are described. The

descriptions of the simple and the interaction-based approaches are partly based on

the descriptions of the author in previous works [26, 1, 6]. The proposed classification

of grouping methods using the following three categories is further explained below in

Chapter 4.

1. Simple methods, which do not take into account any effect of variables on the

objective functions, and therefore do not use any additional function evaluations

for obtaining groups.

2. Contribution-based methods, which divide the variables based on their assumed

contribution to convergence or diversity of the problem.

3. Interaction-based methods, which follow the classical approach from single-objective

optimisation to divide based on the interaction between variables.

3.3.1 Simple Methods

In this thesis, we use the term Simple Methods to refer to grouping methods, which do

not use any external knowledge about the problem, any information about the influence

of variables on the objective function, nor do they require function evaluations to be

executed. These mechanisms have, on the one hand, the disadvantage that they are not
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aiming to obtain knowledge about the problems, which can make them unsuitable for

certain applications. On the other hand, as they are computationally inexpensive, they

can be used anew in every generation of the algorithm, i.e. to create different groups,

which might be of advantage. Further, as these methods are independent of the actual

problem to optimise, they can be applied without further adjustments to single- and

multi-objective optimisations. In the following, a few prominent grouping mechanisms are

described. One further method that falls into this category, the Ordered Grouping, was

introduced by the author of this thesis in a previous work [5], and is therefore presented

in Chapter 5.

Random Grouping

Random grouping has often been used in the literature [33, 80]. It creates a fixed number

of γ groups and distributes the variables randomly to them. The result are mostly

evenly-sized groups, each of size n
γ , but uneven random groups are also possible. In most

implementations in the literature, equal-sized groups were used. Random groups do

not require a computational budget (i.e. function evaluations). Therefore, they can be

obtained fast and without additional overhead for the optimisation algorithm. Due to

that, random grouping can also be repeated during the runtime of an algorithm. This

can be an advantage, since it may increase the chances that interacting variables end up

in a common group [26]. On the other hand, random groups may be of limited use when

optimising problems that contain many interacting variables.

Linear Grouping

The so-called Linear Grouping works similarly to the random one, and was for instance

used in [1, 4]. It assigns all n variables to a fixed number (γ) of groups in “natural” order.

This means, the first n
γ variables of the optimisation problem are assigned to the first

group, the next n
γ to the second group and so forth [1]. As in random groups, the number

of groups must be specified beforehand. If no specific knowledge about the problem

exists, linear groups can be assumed as efficient as random groups in terms of keeping

interacting variables together. However, it is to a certain extent more dependent on the

problem formulation (as the order of variables and therefore the groups are defined by

the problem formulation).

3.3.2 Contribution-based Methods

As described above, with the transition from a single to multiple objective functions,

the additional challenge arises to keep a good diversity within the population and as

a consequence, along the Pareto-optimal front. To account for this, the algorithms

MOEA/DVA and LMEA in 2016 proposed grouping mechanisms with the goal to identify

whether a variable is mainly contributing to convergence or diversity of the solution set.

This concept was explained above in Section 2.3.4. At the current time, the proposed

contribution-detection mechanisms of MOEA/DVA and LMEA are the only ones in



56 CHAPTER 3. RELATED WORK

existence, although they have been reused in other algorithms as described above. In the

following, both of these methods are described in further detail.

Control Variable Analysis

In MOEA/DVA, a simple mechanism is used to decide the contribution of a variable by

changing its value while keeping all other variable values fixed [24]. As in the example

given in Section 2.3.4, changing each variable separately might cause the solution to

“move” in the objective space into different directions. The mechanism is called Control

Variable Analysis in the original article and works as follows.

The variables are divided into three categories, called position, mixed and distance

variables. For each variable xi of the problem a separate analysis step is carried out to

determine which of these categories the variable belongs to. Each time, a random solution

is generated in the beginning of the analysis. A parameter of the mechanism, called

NCA, defines how many solutions are sampled in the following procedure. The algorithm

samples NCA different values for xi, where the domain of the variable is divided into

NCA parts and a random solution is drawn from each of these intervals. This results

in a total of NCA solutions, each containing the same values for all variables except

the currently analysed one. I.e., these NCA solutions only differ in their values for xi.

These solutions are then subject to a non-dominated sorting procedure, and the sizes of

the non-dominated fronts of this set are used for the subsequent decision of the variable

type. If the first non-dominated front contains exactly NCA solutions, this means that

the change of variable xi only resulted in pairwise non-dominating solutions, meaning

the variable is likely to only change the position of a solution along the Pareto-front,

but does not affect the closeness towards the front. If the sizes of all non-dominated

fronts are equal to one, it means that varying xi results only in dominating or dominated

solutions, and therefore xi is likely to affect only the convergence of solutions. In all

other cases, xi is called a “mixed” variable, which is likely to affect both, convergence

and diversity at the same time. However, the authors of MOEA/DVA do not treat mixed

and diversity variables differently in the optimisation process, and therefore they add the

mixed variables to the diversity-related set of variables.

Since this procedure is carried out for each of the n variables, and NCA solutions are

evaluated each time, the computational budget necessary is n×NCA, with n being the

number of variables. This budget rises only linear with the number of variables, and is

therefore a small computational overhead compared to the interaction-based analysis

that the MOEA/DVA algorithm uses afterwards.

Clustering-based Contribution Groups

In contrast to the approach in MOEA/DVA, the contribution-based groups in LMEA are

obtained by a clustering approach. One reason to adapt a new mechanism was the fact

that the method used in MOEA/DVA is not able to divide mixed variables in a suitable
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way, and all mixed variables were considered as diversity-related. Since MOEA/DVA

only optimises these diversity- and mixed-variables after a suitable convergence is reached

using the (purely) convergence-related variables, this might influence performance when

a problem contains a lot of mixed variables and only a small number (or none at all) of

purely convergence-related variables.

The approach in LMEA aims to divide the mixed variables better among the two

categories, depending on how large the influence of a mixed variable to convergence

and to diversity is. The authors further motivate this approach with the fact that the

MOEA/DVA contribution analysis is dependent on the concept of Pareto-dominance.

LMEA is as a whole algorithm designed to work for many-objective problems, and since

it is known that this poses difficulties in many-objective problems due to the increased

number of dimensions, the analysis in LMEA is not dependent on dominance.

To determine the contribution of variables, a random initial population of the problem

is used. For each variable i = 1, .., n, a number of nSel of solutions from the current

population is drawn at random. For each of these nSel solutions, the considered variable

value xi is perturbed nPer times to create a number of nPer new solutions. These

solutions are then evaluated and a line is fit to the points in the objective space which

minimises the mean squared error between the line and the nPer solutions. Next, the

angle between this line and the normal of the hyperplane defined by
∑
fi = 1 is computed.

This normal line or normal vector is used to represent the direction of convergence of the

problem. The larger the angle between the fitted line of the solutions and the normal,

the more the variable perturbation resulted in a diversity-related change in the objective

space.

The perturbation, line-fitting and calculation of angles is done for each variable nSel

times, thus each variable is afterwards associated with nSel angles. A k-means clustering

approach (where k = 2) is then used to cluster the variables based on these angles, i.e. in

the nSel-dimensional space. As a result, two disjoint sets S1 and S2 are obtained which

contain the indices of all the variables. After these steps, the sets of convergence- and

diversity-related variables are formed as follows.

• The convergence-related variables are the ones which fulfil the following conditions:

(1) They belong to the set Sk (k = {1, 2}) which has the smaller mean value of the

computed angles and (2) the mean of the mean squared error of the fitted lines is

smaller than 0.01.

• The remaining variables are considered as diversity-related variables.

3.3.3 Interaction-based Methods

The third category of grouping methods regards the interaction based groups. These

methods aim to identify interacting variables (see Section 2.3.3) through an analysis,
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in most cases prior to the start of the actual optimisation phase of algorithms. As a

result, these methods consume function evaluations to examine the effect of changes in

the variables on the fitness function(s).

A general difficulty of such interaction-detection mechanisms lies in the balance between

the computational budget and the level of detail with which the analysis is carried out.

Without prior knowledge about the problem, the decision whether variables are considered

interacting has to be based on definitions like the one given above in Section 2.3.3.

However, under the assumption that the problems are seen as black boxes, the given

equations can only be tested with certain variable value combinations at a time, and not

computed analytically and on a global scale. The large computational budget usually

results from the fact that a large number of variable combinations need to be tested to

determine for each pair of variables whether the interaction conditions are fulfilled. It is

further of importance that there is the possibility of wrong judgements when variables

interact only in local areas of the search space, and conditions like the ones in Section 2.3.3

are for instance only tested with the lower and upper bounds of variables. This risk can

be reduced by testing more combinations of values for each pair of variables, which, on

the other hand, then results in higher amounts of used evaluations again.

The definition of variable interaction is based on differences in objective function values

as shown in Definition 2.5. Therefore, the single-objective methods to check for these

differences are not applicable to multi-objective problems, as the definition of “differences”

between the objective function vectors is not clear any more. For instance, it is possible

that certain variables interact with respect to one of the m objective functions, but not

with respect to the other functions. There are, however, methods to use these definitions

in multi-objective optimisation. Specific ways were implemented into MOEA/DVA and

LMEA before, and their implementations are outlined below. A more generalised way

to apply single-objective grouping methods to multi-objective optimisation was also

proposed in [26] by the author of the present thesis. In the following, some selected single-

and multi-objective interaction-grouping methods are described in further detail.

Differential Grouping

Differential Grouping (DG) is an interaction-based grouping approach for single-objective

optimisation which was introduced in the year 2014 [84]. Its goal is to detect the

interaction between variables by comparing the amount of change in a single objective

function in reaction to a change of a variable xi before and after another variable xj was

changed [1]. Formally, the definition of interaction used in DG differs from the commonly

used one in other works, which we introduced in Section 2.3.3. DG uses the following

equations to determine interaction, where it is noted that they defined interaction for

additively separable functions, and therefore DG does not claim to find any interactions.
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~x1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

~x2 = (1.0, 0.0, 0.0, 0.0, 0.0, 0.0)

~x3 = (0.0, 1.0, 0.0, 0.0, 0.0, 0.0)

~x4 = (1.0, 1.0, 0.0, 0.0, 0.0, 0.0)

∆1 = f(~x1)− f(~x2) ∆2 = f(~x3)− f(~x4)

|∆1 −∆2| > ε

Figure 3.13: Visualisation of Differential Grouping.

Definition 3.1 (Differential Grouping Interaction) Two decision variables xi and

xj are interacting, if ∀a, b1 6= b2, δ ∈ R, δ 6= 0 the following condition holds.

∆δ,xif(~x)|xi=a,xj=b1 6= ∆δ,xif(~x)|xi=a,xj=b2 (3.1)

where

∆δ,xif(~x) = f(..., xi + δ, ...)− f(..., xi, ...) (3.2)

Using these equations, DG answers the following question [1]: “When changing the value

of xi, does the amount of change in f(~x) remains the same regardless of the value of

another variable xj?” If this is the case, the variables xi and xj seem not to interact

with each other, i.e. the fitness function is influenced by a change in each of them, but

the amount of change stays the same. These variables can be separated into different

groups, as the optimal values of xi are supposedly independent of the values of xj . If the

condition is not fulfilled, the two variables seem to interact, so they are assigned to the

same group.

In practice, the definition above is of course too restrictive, as it is highly unlikely that

these differences are ever equal, and variables which only interact minimally, i.e. the

∆ values in Eq. (3.1) are close together but not exactly equal, could be considered as

non-interacting. To account for this, a threshold value ε is used in DG which controls the

maximally allowed amount of variation in fitness so that two variables are not regarded

as interacting. The procedure of DG is shown exemplarily in Fig. 3.13. DG creates four

different solutions, where the values of two variables are changed according to the above

equations. In their implementation in [84], the respective upper and lower bounds of

each of the variables were used for the values of a, b1, b2. The resulting differences in the

function values are compared with the threshold ε. The number and sizes of the groups

are determined by the algorithm automatically depending on how many variables interact

with each other. If |∆1 −∆2| > ε, the variables are considered interacting and they are

put in the same group. All variables that do not interact with any other variables are

gathered in an additional group, which in the end holds all non-interacting variables.

In the literature, DG showed good performance in single-objective optimisation [84], but

requires a large computational overhead to find the interactions. Although the algorithm
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implementation adds variables iteratively to the groups, and therefore might not need

the complete n · (n− 1) checks of variable pairs, each single check needs four function

evaluations, and the total computational effort is quadratic in the number of decision

variables. In [84], it is computed that, assuming that the true interactions of the problem

result in a number of γ = n
l evenly sized groups with l variables each, the number

of function evaluations consumed is in O(n
2

l ). Based on the analysis in the original

article, for a fully separable problem using n = 2000 decision variables, DG requires

n · (n − 1) + 2 · n = 4, 002, 000 function evaluations to perform the grouping, and the

effort reduces with increasing numbers of interactions between variables [1]. Since the

actual used computational budget is dependent on the interactions in the problem, it

is hard to know beforehand how many function evaluations are actually needed until

DG terminates its analysis. This might not be desirable since it would then not be clear

how much computational budget is left for the actual optimisation of the problem. Some

of the shortcomings of DG were addressed in its successor, described in the following

section.

Differential Grouping 2

The Differential Grouping 2 (DG2) was proposed recently in the year 2017 [87] and

addresses some of the drawbacks of DG, which are (1) the dependency on a threshold

parameter, (2) the inability to deal with so-called “overlapping” components and (3) the

high computational overhead. Compared to its predecessor, DG2 obtains a better group

quality and requires a lower computational budget. The results of evaluated solutions

are stored and reused during the grouping process. In this way, the necessary function

evaluations for DG2 are reduced to n(n+1)
2 + 1. For a 1000-variable problem this results

in 500, 500 evaluations. This makes DG2 superior compared to its predecessor, although

for real world problems, this amount can still be infeasible depending on the application.

Moreover, DG2 improves on the quality of the found groups. DG had the disadvantage of

iterating over the variables and adding variables to groups once the first interaction with

another variable was found. Therefore, variables which interact with only one variable

in one group but with many variables in a second group might end up in the first of

these groups. DG2, in contrast, builds up the complete “graph” of interactions between

all variable pairs and forms groups based on this information. For more details on the

specific mechanisms of DG2 the reader is further referred to the original publication.

Interdependence Analysis in MOEA/DVA

The basis for the grouping mechanism of MOEA/DVA, called Interdependence Analysis

in the original article, is the definition in Eq. (2.6). After creating an initial population,

the variables are first divided into convergence- and diversity-related variables. The

following interaction-based analysis is then applied to all variables, although the division

into groups is done for the convergence-variables only in the subsequent step.
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For every combination of variables xi and xj (i, j ∈ 1, .., n), one solution is selected

by random choice out of the current population of the algorithm. Then, DG2 creates

three new individuals by sampling random values for xi and xj within their feasible

domains, and replacing the variable values in the chosen solution candidate. For each

of the m objective functions, the interaction is checked separately, using these four

created solutions, according to Definition 2.5 . DG2 possesses a parameter NIA, which

determines how often this process is repeated in order to increase the probability of

finding the variables’ interactions. To utilise the created solutions, the current population

is updated after each check using the three newly created solutions. If the variables at

hand are convergence-related and dominate the current solution in the population, the

new values for xi and xj are kept and the solution in the population is replaced.

In the following step, the interaction information for each of the objective functions is

used to form the different groups. In order for the algorithm to consider two variables as

interacting, they both need to be convergence-related and have an interaction in at least

one of the objective functions. In addition, any interaction between two variables leads

to the inclusion of all variables that further interact with any of these two into the same

groups. The article describes this concept as forming the groups as maximal connected

subgraphs of the variable interaction graph. This concept might lead to potentially large

groups if the problem contains many interacting variables or the interactions are very

different in the different objective functions.

Regarding the computational budget, it is stated in [24] that the interaction analysis

needs 3n(n−1)∗NIA
2 function evaluations. This is a larger amount than needed by the DG

and DG2 algorithms, and is due to the parameter NIA. The interactions in MOEA/DVA

are checked using random values instead of fixed (i.e. upper and lower bounds in DG)

ones. Therefore, it can potentially discover more local interactions, but to increase

the chances of finding these interactions in all objective functions, the procedure is

repeated NIA times. As a result, to analyse a 1000-variable problem, the algorithm needs

approximately NIA · 1, 500, 000 function evaluations. Using a value of NIA = 6, as

was used for instance in the experiments in [25], the algorithm uses almost 9, 000, 000

evaluations to analyse the problem, which consumed most of the evaluations used in the

experiments in the article.

Interaction Analysis in LMEA

The interaction-based grouping method in LMEA was called Interaction Analysis [25],

and works similarly to the method used in MOEA/DVA. Interaction is assumend between

two variables using the above Definition 2.5. As in MOEA/DVA, an interaction in one of

the objective functions is sufficient to regard two variables as interacting.

The difference to the MOEA/DVA method lies in the way that variables are assigned to

the created groups. The interaction analysis builds the groups iteratively by adding the

variables one after another. Each variable xi is checked for interactions with all variables
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in the already existing groups. If an interaction with at least one of the variables exists, xi
is added to that respective group. This check of interaction is done using the mentioned

equations and a number of randomly chosen solutions from the current population. The

number of solutions drawn and used for the interaction checks is called nCor in the

article and roughly corresponds to the parameter NIA in MOEA/DVA. Groups are

formed by iteratively building the union of sets which share an interaction with a variable.

Therefore, the groups are formed again in the same way as in MOEA/DVA, meaning

that one interacting pair of variables between two groups is sufficient to join these two

groups and form one big one, even if many of the variables inside this group may not

interact with each other.

In contrast to MOEA/DVA, in LMEA only the convergence-related variables are used

in the analysis. For problems with a larger number of diversity-related variables, this

may lead to lower computational overhead. However, the general computational costs

are similar to the ones of MOEA/DVA. In the experiments in the original article the

parameter nCor was set to 6, meaning that the analysis takes again up to 9, 000, 000

evaluations to analyse the interactions of a 1000-variable problem.

Random-based Dynamic Grouping

One of the most striking disadvantages of interaction based grouping methods like DG

or the ones used in MOEA/DVA and LMEA is the necessity of a large computational

budget to find the interacting variables. To address this issue, a Random-based Dynamic

Grouping strategy called RDG was proposed in 2016 [67]. The aim of this RDG strategy

is a reduction of the necessary function evaluations when creating the groups based on the

interaction information. The RDG method was implemented into the same framework

as the MOEA/DVA algorithm, and therefore also only divides the convergence-based

variables into groups [6].

The authors of RDG argue that especially in many-objective optimisation, groups that

are suitable for all objective functions might be hard to find or non-existent, and that

interaction, which might exist only locally between variables, can only be found with

a large computational overhead. Therefore, they apply random groups in RDG, where

in each iteration of the main loop of MOEA/DVA, new random groups are created and

optimised based on the CC-inspired framework. The dynamic property of the method

refers to the sizes of groups. All groups are always created randomly, but the probabilities

of choosing the size of the groups varies and is updated based on the success of previous

usages of the group sizes. In the beginning of the algorithm, all sizes of the random groups

have the same probability to be chosen. When a group size was used to create random

groups, the different groups are optimised and a performance metric is used afterwards to

determine how much of the old population is dominated by the population that was just

optimised with the given group size. Through this mechanism, the algorithm iteratively
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updates the probabilities of choosing the size of the random groups to suit the problem

better.

The proposed algorithm MOEA/D-RDG, as described above, was able to improve on

the performance of MOEA/DVA, since no additional function evaluations are necessary

to obtain the groups. Thus, the optimisation algorithm was able to spend a larger

amount for the actual search [6]. This, together with the fact that many of the current

state-of-the-art algorithms do not depend on interaction analyses any more, raises again

the question of how important interaction-based groups actually are for the success of

the optimisation. For instance, a study made by the author of this thesis in [26] also

revealed that MOEA/DVA with random group shows in many cases better performance

than the original, interaction-based MOEA/DVA.

3.4 Summary

This chapter summarised the related literature in the area of large-scale multi-objective

optimisation. First, a brief overview showed that large-scale approaches have been

studied in the single-objective field for many years, but have only recently begun to draw

attention in the multi-objective community. Most related approaches are based on the

concept of coevolution, although other techniques have been proposed. The concepts of

the existing large-scale multi-objective algorithms were described, including some possible

advantages and disadvantages. Afterwards, we described a selection of existing grouping

methods from the literature, both in single- and multi-objective optimisation.
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4
Classification and Comparison of the

State-of-the-Art

This chapter aims to summarise, compare and classify the existing approaches and

grouping mechanisms in the large-scale multi-objective optimisation area. We point out

common elements and properties as well as differences of these approaches. While an

experimental comparison is carried out in Chapter 6, in this chapter the theoretical

differences as well as possible advantages and disadvantages of different methods are

explored. Furthermore, the experimental evaluations of the algorithms from the literature

are analysed. We propose in Section 4.1 a classification scheme for large-scale multi-

objective algorithms, and the existing algorithms are compared and categorised based on

several proposed criteria, such as their dependency on groups, their required computa-

tional budget, their techniques for dimensionality reduction and others. In addition, in

Section 4.2 a classification of grouping mechanisms is proposed and the related methods

are categorised based on it. The components of algorithms which are interchangeable,

like for instance grouping methods, are also called building blocks in the remainder of

this work. Different candidates for each of such interchangeable blocks are either present

in the related literature or are developed during the process of this dissertation and its

preceding publications. The classification and comparison of large-scale optimisation

algorithms form a new contribution in this thesis and has not been published before.

4.1 Comparison and Classification of Large-scale

Algorithms

The goal of this section is to compare and categorise the related algorithms for large-scale

multi-objective optimisation presented in Section 3.2. To do so, the similarities, common

elements (building blocks) and differences based on different criteria are identified and

presented in the following. We propose several criteria which are relevant to large-scale

optimisation in multi-objective problems and classify the existing approaches accordingly.

65
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2013
CCGDE3

2014

2015
MOEA/DVA

2016
LMEA

MOEA/D-RDG
MOEA/D2

2017
DPCCMOEA

ReMO

2018

S3-CMA-ES
CCLSM

MOEA/D(s&ns)
PEA

DLS-MOEA

2019
LSMOF

Figure 4.1: Publication history of large-scale multi-objective algorithms.

4.1.1 Similarities and Common Building Blocks

Reviewing the existing large-scale multi-objective optimisation literature reveals that

most algorithms were in fact published within the last three years, with 11 out of 13

methods listed in Section 3.2 published in 2016 or later, and 6 of them published in 2018

or 2019. The publication history of the related methods is depicted in Fig. 4.1, and

shows an increased attention of the research community towards this area in the last

years. Looking closer at the structures of the state-of-the-art algorithms, we observe that

on the one hand there are certain common elements in most of these algorithms, while

on the other hand there is a diverse set of different techniques. We now first examine

the state-of-the-art algorithms to identify similarities and common elements, so-called

building blocks, which are present in the large-scale multi-objective algorithms.

The first common element of all the 13 methods is that all of them rely on existing “low-

scale” algorithms to perform the actual optimisation, i.e. algorithms which work well with

traditional multi- or single-objective problems and relatively low dimensionality. This is

implemented in several different ways, but in all cases one or more of the sophisticated

search strategies for single- and multi-objective areas are usually incorporated to optimise

different parts of the whole problem. They are used to optimise either separate populations

for certain areas of the search space (as for instance in S3-CMA-ES) or used to optimise

only certain groups of variables (as in the CC-based approaches like MOEA/DVA or

CCLSM). In some cases, single-objective optimisation is used to optimise the problem

based on an indicator-value (as in LSMOF or DLS-MOEA).

Since sophisticated algorithms in the multi-objective area have been developed over the

last two decades, it is only natural to cover large-scale problems by harvesting the power

of existing algorithms, i.e. by reducing the dimensionality of the large-scale problems,

and then applying these algorithms. All of the mentioned methods, with the exception of

DLS-MOEA, use some kind of dimensionality reduction technique in the decision space

to enable related algorithms to deal with a lower-dimensional problem. In addition, some

of the algorithms - including DLS-MOEA - apply a reduction of dimensionality also in

the objective space.
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These findings lead to one of the most striking observations: There is no common

algorithm structure that covers all large-scale methods, and therefore no kind of general

framework for successful large-scale algorithms seems to present itself. DLS-MOEA is

one of the newest algorithms which, based on the experiments in the original article,

performs very well on current large-scale problem instances. However, it is also the

only method that does not reduce the dimensionality of the search space through any

mechanism. On the other hand, some of the most successful algorithms like LSMOF and

the WOF by the author of this thesis heavily rely on the reduction of dimensionality and

reformulation of the original problem. Similarly, some algorithms show good performance

using variable groups, while others perform equally well without ever using any grouping

technique. Among all methods, the DLS-MOEA is the only example so far that shows

that dimensionality reduction is not necessarily the definite answer to all large-scale

optimisation problems, which is a surprising result given that all other algorithms in the

last 6 years have relied on this principle.

Some further similarities are striking among the related methods. Among them, the

algorithms CCGDE3, MOEA/D2 and CCLSM are all very similar. In fact, CCGDE3 and

MOEA/D2 were proposed by the same authors in 2013 and 2016 respectively. They differ

only in the aspect that the independent populations for the groups were replaced by only

one population, so that the search for suitable partners from the other population for

evaluation is not necessary any more. Following in a publication in 2018, the CCLSM

is essentially the same algorithm as the MOEA/D2, with the only difference that the

random groups were replaced with an interaction-based grouping method.

Similar relationships exist between other algorithms as well. MOEA/D-RDG is equivalent

to MOEA/DVA, only the interaction-based groups are replaced by the dynamic random-

based method (DRG) described in Section 3.3.3. Further, there exist certain similarities

between the three methods PEA, S3-CMA-ES and DPCCMOEA. Based on the simplified

flowcharts of all algorithms in the previous chapter, Table 4.1 shows an overview of which

blocks are used in which methods, and how often each component is used in the literature

in total. As mentioned before, the MOEA/D(s&ns) is excluded from this analysis, due

to the uncertain quality of the work (see Section 3.2).

Based on Table 4.1, we see that the most common element in the literature is the

“Contribution-based grouping”, which occurs in 6 out of 12 methods. Similar popularity

enjoy the building blocks “Interaction-based grouping” and “CC-based optimisation of

convergence-variables”, which occur 5 times each. 4 out of 12 methods use a form of

“Convergence-detection”. Further, the “Creation of independent populations” is used 3

times, which refers to actual independent populations for the original large-scale problem

(i.e. not populations only containing certain variables as in the CC-based approaches). A

minority at the current time are the indicator-based methods and transformation-based

methods, whose building blocks only occur in ReMO, DLS-MOEA and LSMOF. It is

further interesting that random groups are used 4 times, and that also the optimisation



68 CHAPTER 4. CLASSIFICATION OF THE STATE-OF-THE-ART

Building Blocks

R
a
n
d
o
m

G
ro

u
p
in

g

In
te

ra
ct

io
n
-b

a
se

d
G

ro
u
p
in

g

C
o
n
tr

ib
u
ti

o
n
-b

a
se

d
G

ro
u
p
in

g

C
C

-b
a
se

d
o
p
ti

m
is

a
ti

o
n

o
f

la
rg

e-
sc

a
le

p
ro

b
le

m

C
C

-b
a
se

d
o
p
ti

m
is

a
ti

o
n

o
f

co
n
v
er

g
en

ce
-v

a
ri

a
b
le

s

O
p
ti

m
is

e
la

rg
e-

sc
a
le

p
ro

b
le

m

O
p
ti

m
is

e
d
iv

er
si

ty
-v

a
ri

a
b
le

s

In
d
ic

a
to

r-
b
a
se

d
o
p
ti

m
is

a
ti

o
n

In
d
ic

a
to

r-
b
a
se

d
lo

ca
l

se
a
rc

h

O
p
ti

m
is

e
tr

a
n
sf

o
rm

ed
p
ro

b
le

m

O
p
ti

m
is

a
ti

o
n

o
f

a
si

n
g
le

g
ro

u
p

o
f

va
ri

a
b
le

s

U
p

d
a
te

g
lo

b
a
l

a
rc

h
iv

e

C
re

a
te

in
d
ep

en
d
en

t
p

o
p
u
la

ti
o
n
s

C
o
n
v
er

g
en

ce
d
et

ec
ti

o
n

P
ro

b
le

m
tr

a
n
sf

o
rm

a
ti

o
n

CCGDE3 X X
MOEA/DVA X X X X X

LMEA X X X X
MOEA/D-RDG X X X X X

MOEA/D2 X X
DPCCMOEA X X X X X

ReMO X X
S3-CMA-ES X X X X X X

CCLSM X X
PEA X X X X X X

DLS-MOEA X X
LSMOF X X X X

Σ 4 5 6 3 5 3 3 2 1 2 1 1 3 4 2

Table 4.1: Summary of building blocks in the related large-scale algorithms. The bottom
row shows in how many methods a building block is used.

of the large-scale problem as a whole occurs in a quarter of all methods, without reducing

the dimensionality.

The remainder of this section analyses these observations in further detail. The resulting

classification of methods and which categories they belong to are summarised in Table 4.2,

and details about experimental evaluations are shown in Table 4.3. The properties,

similarities and differences are categorised in the next subsections based on the following

criteria.

• Dimensionality Reduction in Decision Space

• Diversity Management

• Many-Objective Capabilities

• Parallelism

• Experimental Evaluation and Computational Budget
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4.1.2 Dimensionality Reduction in Decision Space

Most of the large-scale algorithms use a dimensionality reduction mechanism to be

able to optimise in a lower dimensional space with existing algorithms. To characterise

the different approaches of reduction, we propose the following three categories of

dimensionality reduction techniques. For convenience, the related algorithms and

their respective categories of dimensionality reduction are summarised in Table 4.2.

The first and most common category of dimensionality reduction is based on

Cooperative Coevolution. This strategy is used by 9 out of 12 related methods.

However, not all methods actually apply coevolution in the way it was originally proposed

in single-objective optimisation in 1994 [29]. While the CCGDE3 for instance applies

CC in its original way by keeping independent subpopulations and chooses “partners”

from each of the other subpopulations in each function evaluation, other methods like

MOEA/DVA, and MOEA/D2 do not keep these subpopulations independent. Instead,

only one complete population is used for the whole problem and genetic operators

are only applied to specific variables at a time. This eliminates the need to choose

appropriate partners for each evaluation. For the CC-based dimensionality reduction, a

segregation of variables into groups is usually necessary. Algorithms which apply this

reduction technique are CCGDE3, MOEA/DVA, LMEA, MOEA/D-RDG, MOEA/D2,

DPCCMOEA, S3-CMA-ES, CCLSM and PEA.

The second category of dimensionality reduction concerns the transformation-

based reduction approaches. These methods also can use variable groups, but in

contrast to CC-inspired algorithms, the reduction of the search space is done through

a kind of problem transformation strategy. Algorithms in this category are ReMO and

LSMOF. In case of ReMO, the problem is reformulated into a lower dimensional one by

a transformation matrix which maps the vectors of n decision variables of the original

search space into a lower-dimensional subspace. In a different way, the LSMOF method

uses weight vectors to determine how the original solutions are altered through a set of

weights.

The third category consists of algorithms which do not use any dimensionality

reduction technique in the decision space. The only representative of this category is

currently the DLS-MOEA algorithm, which uses indicator-based optimisation and local

search mechanisms to achieve diversity, but does all of its optimisation in the original,

high-dimensional decision space.

One further interesting property regards the usage of interaction-based variable groups.

We saw that 9 out of the 12 existing approaches lie in the first category and use the

CC-based method of dimensionality reductions. All of these 9 CC-based algorithms need

to divide the variables into groups. However, not all of them actually use interaction-based

information. Based on Table 4.1, the interaction analysis of variables is used only in 5

algorithms: MOEA/DVA, LMEA, DPCCMOEA, S3-CMA-ES and CCLSM. The decision
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Dimensionality
Reduction Category

Diversity Management
Category

Many-

Year Algorithm 1 2 3 1-1 1-2 2 3 objective Parallel

2013 [3] CCGDE3 X X
2015 [24] MOEA/DVA X X (X)

2016 [25] LMEA X X X
2016 [67] MOEA/D-RDG X X

2016 [79] MOEA/D2 X X
2017 [68] DPCCMOEA X X X

2017 [78] ReMO X X
2018 [77] S3-CMA-ES X X X ©

2018 [70] CCLSM X X X
2018 [71] PEA X X X X

2018 [47] DLS-MOEA X X
2019 [69] LSMOF X X X

Table 4.2: Classification of existing large-scale methods based on identified categories.
Many-objective capabilities are based on experiments in the literature (see Table 4.3).
The © indicates that S3-CMA-ES can be parallelised without changes in the algorithm
behaviour.

to not use interaction-based groups in the other 4 CC-based algorithms (CCGDE3,

MOEA/D-RDG, MOEA/D2 and PEA) might often be based on the disadvantage of a

large computational budget to obtain the interaction-based groups, as seen in Section 3.3.

It might be for this reason also that the usage of interaction-based methods seems to

be disregarded by newer methods in favour of computational efficiency and specialised

search strategies as in DLS-MOEA and LSMOF.

4.1.3 Diversity Management

Another way to categorise the large-scale algorithms is by their method of achieving

diversity in the solution set. For this criteria, we propose again three categories based

on the following analysis, where category 1 is divided further into two subcategories.

Again, the algorithms and their corresponding categories of diversity management are

listed in Table 4.2.

One way to achieve and maintain diversity, the first category of diversity manage-

ment, is to make use of the diversity-related variables of a problem, as these

mainly represent the trade-off relationship between objectives. As we see in Table 4.1

above, 6 out of 12 related algorithms make use of such variable contribution informa-

tion. This strategy is used especially since the cost of obtaining this knowledge (i.e.

the contribution-based grouping) is relatively low compared to other, interaction-based

grouping methods. Among the algorithms which use the diversity-based variables, there

are different approaches how to incorporate them into the optimisation. Algorithms

which apply diversity-based groups and how they use these groups are listed in the

following, and can be further divided into two distinct groups.
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Methods in the first group (category 1-1) are MOEA/DVA, MOEA/D-RDG and LMEA.

They use different diversity-variable values for each solution in the population.

• MOEA/DVA and MOEA/D-RDG initialise the diversity-based variables in the

beginning of the search, and then leave them untouched while focussing the op-

timisation only on the convergence-variables. Only after a certain convergence

is detected, the whole problem, including the convergence- and diversity-related

variables, is optimised again until the termination criterion is reached.

• In contrast, LMEA optimises convergence- and diversity-variables only indepen-

dently, but in turn over the course of the whole optimisation process. It is therefore

more likely to deliver good intermediate results, since the optimisation of diversity

does not just happen towards the end of the search as in MOEA/DVA.

Methods in the second group (category 1-2) are S3-CMA-ES, PEA and DPCCMOEA.

They use independent populations for the whole problem, where each population shares

the same values for the diversity-based variables.

• S3-CMA-ES achieves diversity through independent populations, each concentrating

on specific parts of the objective space. Here, the diversity-variables are used to

create multiple populations, where each population shares the same diversity-

variables among its members. Only the convergence-variables are subject to

optimisation. In this way, diversity is achieved because each population tries to

achieve convergence for different areas of the search space and therefore objective

space.

• PEA, which was proposed by the same authors as S3-CMA-ES, follows the same

principle, but with a focus on performing the optimisation of the populations in a

parallel fashion (see below).

• DPCCMEA also follows this approach, with the difference that here the diversity-

variables are not fixed, but also subject to optimisation in each of the independent

populations. As in PEA, the focus and main contribution of DPCCMOEA lies more

in the parallel implementation instead of the general methodology of large-scale

optimisation.

Except using diversity-based variables, there are other approaches to tackle the issue of

diversity. It is of interest for the development of future algorithms in this area that the

usage of diversity-variables does not necessarily lead to superior diversity. Among the

other 6 algorithms, which do not make use of such contribution information, there are 4

that do not apply any specific method to obtain diversity, which we identify as

the second category of diversity-management. These methods mainly rely on the



72 CHAPTER 4. CLASSIFICATION OF THE STATE-OF-THE-ART

hope that the diversity management of the applied metaheutristic, in most cases combined

with a CC-based optimisation, is sufficient. The algorithms CCGDE3, MOEA/D2, ReMO,

and CCLSM are examples of algorithms which do not explicitly define a mechanism to

increase or preserve diversity. And as seen above, with the exception of ReMO, all of them

rely on coevolution. It is further noteworthy that the approach of MOEA/DVA, which

originally belongs to the first category seen above, actually applies an optimisation of the

complete large-scale problem towards the end of the search. This feature of MOEA/DVA

is used with the specific intention to increase diversity, and we can therefore also sort

MOEA/DVA partly into the second category.

The remaining algorithms, DLS-MEOA and LSMOF, both possess a form of diversity

management which belongs to the third category of diversity management. Both

algorithms utilise an indicator-based approach, where the original or transformed

problem is optimised using the hypervolume indicator. This indicator is able to measure

convergence and diversity of a solution set, and in contrast to many other performance

indicators does not need a sample of the true Pareto-front to be applied. Since with

this indicator all objective function values can be mapped to a one-dimensional number,

single-objective search techniques are applied in both algorithms to optimise based on

the hypervolume. In addition, the LSMOF method also follows a similar idea as in

MOEA/DVA and optimises the whole, high-dimensional problem during the second

half of the optimisation process. While DLS-MOEA uses the indicator-based search in

combination with a local search mechanism to increase the diversity during the whole

process, LSMOF focuses on convergence for the first 50% of the function evaluations,

and achieves diversity only in the second stage of the algorithm. Therefore, the second

half of the LSMOF process is representative of the second category as seen above.

4.1.4 Many-Objective Capabilities

One further observation that is related to the matter of diversity management concerns

the reduction of dimensionality in the objective space. This kind of approach has begun

to draw attention in the many-objective area, but has also been used recently in some

of the large-scale approaches. The indicator-based approaches of DLS-MOEA and the

LSMOF both reduce the objective space through the calculation and optimisation of

the Hypervolume. It must be noted, however, that calculation of Hypervolume, at least

when it is done for a whole set of solutions, is computationally expensive when the

number of objectives increases, and as we see later this can be disadvantageous when

the DLS-MOEA method is used. Using the Hypervolume indicator can therefore be

problematic when applying the large-scale methods to many-objective optimisation in

future studies.

Regarding the applicability of algorithms for many-objective problems, in fact there are

4 out of the 13 algorithms in the large-scale area which were originally intended to work

for both large decision spaces and large objective spaces. As we describe in further detail
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later, we also see this in Table 4.3, where LMEA, S3-CMA-ES, CCLSM and PEA are

the only algorithms which have been tested on more than 3 objective functions. Both

of the indicator-based approaches were not tested for more than 2 and 3 objectives

respectively. On the other hand, PEA, CCLSM and LMEA were tested with up to 10,

the S3-CMA-ES with up to 15-objective problems. This does, with the exception of

the indicator-based methods, not imply that the remaining methods do not work well

with many-objective cases. However, since there exist a variety of methodologies to

tackle the large search spaces, it is likely that they show significant differences when

applied to many-objective test problems. Some of the frameworks which are specifically

designed to have interchangeable optimisers, like for instance LSMOF and ReMO, might

be able to tackle many objectives directly through the use of many-objective optimisers

like NSGA-III or RVEA inside their frameworks. Other algorithms might face more

difficulties. Experimental and theoretical evaluation on the effects of building blocks

on high-dimensional search as well as objective spaces might be a driving factor in the

design of future algorithms. The algorithms of the current state-of-the-art which did

report results for many-objective instances are marked in Table 4.2.

4.1.5 Parallelism

Another criterion which sets the algorithms apart is their parallel nature, i.e. their ability

to run in parallel. Two of the related algorithms - namely PEA and DPCCMOEA - are

developed specifically with the goal to speed up the evolutionary search process through

parallel computation (as also indicated in Table 4.2). Therefore, their design is not only

orientated on how to obtain the best solutions, but on how to achieve good performance

while at the same time divide the search process into independent components. This is

reflected in the choice of the used building blocks, and we saw earlier that their form of

diversity management depends on independent populations and diversity-based variables

(see Table 4.1). In these two methods, the experimental evaluation was also done in

parallel and the speed-up in terms of execution time was used as a performance measure.

Although only these were explicitly labelled as parallel algorithms, it is worth to take a

look at how well the remaining methods can be used - or adapted - in a parallel way.

One main aspect that limits the efficiency of a parallel implementation is the need for

communication between processes. In a traditional evolutionary algorithm, this is for

instance the case when in each generation the information of the current population

needs to be gathered to perform parental and environmental selection. Due to this fact,

the PEA and DPCCMOEA both employ independent populations for the whole problem,

so they can be optimised without the need of frequent communication between processes.

As most of the other large-scale approaches also employ a kind of dimensionality reduction

that is often used with variable groups, it seems that most of them can easily be run in

parallel. However, if we look for instance at the relatively simple CCGDE3 algorithm,

we see that this might not necessarily be the case. CCGDE3 employs Cooperative
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Coevolution in its original form, meaning that it holds independent populations for

the variables in each group, and during the optimisation of one group, the variables of

the respective other groups remain fixed. The way that CCGDE3 is written, however,

optimises the populations iteratively, and the optimisation of the subsequent populations

already uses the updated solution candidates of the previous population. Therefore, the

optimisation of the populations is not independent, and optimising all of them with

copies of the populations as they were when the main loop began might result in different

results or slower convergence.

Unfortunately, the same is also true for most of the other methods. Due to the similarity

to CCGDE3, the same argumentation applies to MOEA/D2 and CCLSM. MOEA/DVA

and LMEA also proceed in the same way, and by extension also the MOEA/D-RDG. In

all these methods, which are CC-based, fitness evaluations might be done in parallel, but

frequent communication is necessary in each generation if the same algorithm behaviour

as in the original implementations is desired. However, if this condition is weakened, a

parallel implementation of these approaches might be obtained by using fixed copies of

all variables in the other groups in each generation, optimising each group with these

copies of the variables, and then merging the resulting populations afterwards. In this

way, these methods were to operate with independent population in a similar way as the

above parallel algorithms. It is, however, required that an adequate method can select

those solutions, and as each of the independent populations only provides updated values

for the variables in one group, it is likely that the overall search process is slowed down,

as only small parts of the whole solutions are updated in each generation.

The transformation-based methods ReMO and LSMOF also seem difficult to parallelise.

In ReMO, the transformation only provides a smaller search space, but it seems not clear

how this can help in a parallel implementation. The same is true for LSMOF, especially

since the second half of the search process consists of a classical optimisation of the

large-scale problem, so even a parallel implementation of the transformed optimisation

would only speed up the first half of the search. In DLS-MOEA, one thing that might be

done in parallel is the local search based on an archive and the hypervolume indicator.

However, also in this case this only corresponds to a fraction of the overall search, and

since this is done in each generation, processes would need to wait in idle time until all

local searches are finished.

The one remaining candidate, which might offer a promising solution for a parallel

version, is the S3-CMA-ES. As said above, this algorithm is similar to DPCCMOEA

and PEA, as it also uses independent populations. The only limitation in this case is

the fact that S3-CMA-ES contains a diversity-improvement step, which is done once all

independent populations are considered converged. If this is implemented in a parallel

way, this might result in idle time of processes until the last of the populations achieves

the convergence goal. The speed-up that can be achieved is therefore limited by the

properties of the problem, but in contrast to the above algorithms, it is possible to
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parallelise the S3-CMA-ES without altering its behaviour (this is marked with a © in

Table 4.2).

Lastly, it must be noted that the above considerations mostly apply on the actual

optimisation procedure of the algorithms. Another question of interest might be how

a parallel implementation of grouping methods could be obtained, especially for the

high-budget interaction-based methods. This is also of concern for the S3-CMA-ES and

DPCCMOEA, as they both use interaction-based groups. An analysis in the original

DPCCMOEA article addresses this problem explicitly by calculating that about 10% of

the whole 10, 000, 000 evaluations is spent on the interaction analysis and is therefore

not parallelised.

4.1.6 Experimental Evaluation and Computational Budget

Now we take a look at the experimental evaluation that has been done in the literature

so far with respect to large-scale multi-objective optimisation. With such an amount of

different methods published within a short time, and on a topic that is still in development

and in need of good methods, it is also natural that the evaluation criteria differ. Therefore,

this thesis provides a comparison of the experiments done in the literature. A detailed

overview of the experimental methodologies and results in each of the related articles is

given in Appendix A. In the following, these findings are summarised and analysed.

In Table 4.3 we provide an overview of each of the current large-scale methods that

exist at the current point in time. We list which other algorithms, large-scale and

conventional, they were compared with, which benchmark functions were used with how

many variables and how many objective functions, and lastly we provide the amount of

function evaluations that were used in each of the experiments. The experiments done

in the literature differ largely between works. As we see in Table 4.3, some algorithms

were only compared to conventional “low-scale” algorithms and some have only used

relatively “easy” benchmarks, like the ZDT functions. In some works, other large-scale

methods were used for comparison as well, but the used numbers of variables and objective

functions also varies greatly.

The algorithm which was used most often for comparison from the large-scale area

might be the MOEA/DVA, which appears in 7 out of 11 works which were published

after MOEA/DVA. LMEA was used 3 times and CCGDE3 2 times. In total, 5 out of

13 articles have also never compared their algorithms with other large-scale methods,

although one of them is the CCGDE3, which was at time of its publication the only

large-scale method. Most methods actually compare their large-scale methods with

normal, established metaheuristic methods. This makes sense in the way that many

of the large-scale methods use other algorithms inside them to optimise the formed

subproblems as written above, so it is of interest how the performance compares to them.

On the other hand, there seems to be a general lack of comparison between most of the



76 CHAPTER 4. CLASSIFICATION OF THE STATE-OF-THE-ART

C
o
m

p
a
re

d
A

lg
o
rith

m
s

#
F
u
n
c
tio

n
Y

e
a
r

S
o
u
rc

e
P

ro
p

o
se

d
M

e
th

o
d

la
rg

e
-sc

a
le

n
o
rm

a
l

B
e
n
ch

m
a
rk

s
#

V
a
ria

b
le

s
#

O
b

je
c
tiv

e
s

E
v
a
lu

a
tio

n
s

2
0
1
3

[3
]

C
C

G
D

E
3

-
G

D
E

3
,

N
S
G

A
-II

Z
D

T
1
-3

,
Z

D
T

6
2
0
0

-
5
0
0
0

2
u
p

to
1
0
,0

0
0
,0

0
0

2
0
1
5

[2
4
]

M
O

E
A

/
D

V
A

-
N

S
G

A
-III,

S
M

S
-E

M
O

A
,

M
O

E
A

/
D

U
F

1
-1

0
,

W
F

G
1
-9

,
D

T
L

Z
1
,

D
T

L
Z

3
2
4

-
1
0
0
0

2
-

3
u
p

to
3
,0

0
0
,0

0
0

2
0
1
6

[2
5
]

L
M

E
A

M
O

E
A

/
D

V
A

M
O

E
A

/
D

,
N

S
G

A
-III,

K
n
E

A

D
T

L
Z

1
-7

,
W

F
G

3
,

U
F

9
,

U
F

1
0
,

L
S
M

O
P

1
-9

1
0
0

-
5
0
0
0

3
-

1
0

1
,0

0
0
,0

0
0

-
2
3
0
,0

0
0
,0

0
0

2
0
1
6

[6
7
]

M
O

E
A

/
D

-R
D

G
M

O
E

A
/
D

V
A

M
O

E
A

/
D

U
F

1
-1

0
,

W
F

G
1
-9

8
0
0

-
1
0
0
0

2
-

3
1
0
,0

0
0
,0

0
0

2
0
1
6

[7
9
]

M
O

E
A

/
D

2
-

M
O

E
A

/
D

,
G

D
E

3
D

T
L

Z
1
-7

2
0
0

-
1
2
0
0

3
1
0
0
,0

0
0

2
0
1
7

[6
8
]

D
P

C
C

M
O

E
A

C
C

G
D

E
3
,

M
O

E
A

/
D

V
A

-
D

T
L

Z
1
-7

,
W

F
G

1
-

9
1
0
0
0

3
1
0
,0

0
0
,0

0
0

2
0
1
7

[7
8
]

R
e
M

O
-

N
S
G

A
-II,

M
O

E
A

/
D

m
o
d
ifi

e
d

v
e
rsio

n
s

o
f

Z
D

T
1
-3

1
0
,0

0
0

2
3
0
0
0

2
0
1
8

[7
7
]

S
3
-C

M
A

-E
S

M
O

E
A

/
D

V
A

,
L

M
E

A
N

S
G

A
-III,

R
V

E
A

,
B

iG
E

L
S
M

O
P

1
-9

5
0
0

-
1
5
0
0

5
-

1
5

5
,0

0
0
,0

0
0

-
1
5
,0

0
0
,0

0
0

2
0
1
8

[7
0
]

C
C

L
S
M

-
N

S
G

A
-II,

IB
E

A
,

N
S
G

A
-III

W
F

G
2
-3

,
U

F
5
,

L
S
M

O
P

1
,

L
S
M

O
P

5
,

L
S
M

O
P

9
1
0
0

-
3
0
0

2
-

1
0

5
0
,0

0
0

2
0
1
8

[9
2
]

M
O

E
A

/
D

(s&
n
s)

-
N

S
G

A
-II

Z
D

T
1
-3

,
L

S
M

O
P

1
,

L
S
M

O
P

5
,

L
S
M

O
P

9
2
0
0

-
3
0
0

2
-

3
?

2
0
1
8

[7
1
]

P
E

A
L

M
E

A
,

M
O

E
A

/
D

V
A

N
S
G

A
-III,

M
a
O

E
A

-R
&

D
,

B
iG

E

L
S
M

O
P

1
-3

,
M

a
F

1
-7

3
0
7

-
1
0
3
9

3
-

1
0

3
,0

7
0
,0

0
0

-
1
0
,3

9
0
,0

0
0

2
0
1
8

[4
7
]

D
L

S
-M

O
E

A
C

C
G

D
E

3
,

R
e
M

O
,

W
O

F
-S

M
P

S
O

,
M

O
E

A
/
D

V
A

,
L

M
E

A

S
M

S
-E

M
O

A
,

M
O

E
A

/
D

,
N

S
G

A
-II

Z
D

T
4
,

D
T

L
Z

1
,

D
T

L
Z

3
,

D
T

L
Z

6
,

W
F

G
1
-9

,
U

F
1
-7

1
0
2
4

-
8
1
9
2

2
1
0
,0

0
0
,0

0
0

2
0
1
9

[6
9
]

L
S
M

O
F

W
O

F
-N

S
G

A
-II,

W
O

F
-S

M
P

S
O

,
M

O
E

A
/
D

V
A

N
S
G

A
-II,

M
O

E
A

/
D

-D
E

,
S
M

S
-E

M
O

A
,

C
M

O
P

S
O

D
T

L
Z

1
-7

,
L

S
M

O
P

1
-9

,
W

F
G

1
-9

2
0
0

-
5
0
0
0

2
-

3
5
0
,0

0
0

T
a
b

le
4
.3

:
E

x
p

erim
en

ta
l

eva
lu

a
tio

n
s

o
f

rela
ted

w
o
rk

in
th

e
a
rea

o
f

la
rg

e-sca
le

m
u

lti-o
b

jectiv
e

o
p

tim
isa

tio
n

w
ith

th
eir

co
m

p
a
red

algorith
m

s,
u

sed
b

en
ch

m
ark

s,
d

im
en

sio
n

alities
an

d
com

p
u

tation
al

b
u

d
get.



4.1. CLASSIFICATION OF LARGE-SCALE ALGORITHMS 77

state-of-the-art large-scale methods. A reason might of course be the lack of available

codes online. Another reason might also be that in scientific articles, space is usually

limited and a comprehensive comparison might not fit in each of these works. However,

it is also possible that the high frequency of publications made it difficult to obtain the

current state-of-the-art for some of these works. A lot of the published methods are,

even at the time of writing this thesis, only a few months old, and many of the listed

articles might have been written or under reviews simultaneously. It is therefore of great

interest to the field to compare the performance of the newest members of the large-scale

area with each other in the future, and some comparison with available state-of-the-art,

especially some of the newest algorithms, is provided in this thesis in Chapter 6.

Looking at the used benchmarks and their dimensionality, we also observe great differences.

In total, among all the studies, the DTLZ functions were used most often, in 7 out of 13

articles. Following are the LSMOP (6 times) and WFG (6 times), UF (5 times) and ZDT

(4 times) benchmarks. However, not all problems of the respective families were used in

all articles. Some only picked one or two of the problems of the respective family and

did not report the performance for the other ones. In the ReMO article, only modified

versions of the ZDT1-3 function were used instead of the original ones. In summary,

none of the 13 studies compared the performance on all of the most relevant benchmark

problems in the DTLZ, UF, WFG, and LSMOP benchmark suites (where the ZDT

functions are excluded due to their relatively low complexity).

We would also like to point out that the number of objective functions and variables in

Table 4.3 are not to be understood in the way that exhaustive combinations of these

numbers were tested with all of the used benchmark functions. In many works, only

certain benchmarks were used with certain numbers of variables and objectives (for

further details refer to Appendix A). Often, especially with the LSMOP benchmarks,

the problems with lower numbers of objectives were used also with lower numbers of

variables. This leads to the situation where the large-scale instances were at the same

time also many-objective instances. And while the results are in some cases impressive,

this kind of evaluation makes it of course difficult to examine separately the performance

in large search spaces and the performance in large objective spaces. This is for instance

visible in the evaluation of the S3-CMA-ES algorithm, which was outperformed on several

problem instances by the NSGA-III [23] and RVEA [21] algorithms, which are dedicated

many-objective algorithms and originally not designed for large search spaces. Such

results can indicate that the actual challenge of the used problem instances was more

related to the high number of objective functions rather than the high-dimensional

decision space.

Taking a closer look at the numbers reveals that the term “large-scale” is also not

universally defined in the literature. While some works, for instance CCLSM and

MOEA/D(s&ns) propose large-scale methods and tested them with at most 300 decision

variables, on the other end of the scale CCGDE3, LMEA and LSMOF used up to 5000
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variables, DLS-MOEA used between 1024 and 8192 variables, and ReMO performed

experiments with 10, 000 decision variables. If we turn this around and ask the question

how the large-scale algorithms perform on rather low-dimensional problems, there is

surprisingly less experimental evidence in the literature. Problem instances with fewer

than 100 variables were only tested with the DLS-MOEA. One might argue that it is not

actually necessary to develop algorithms which are universally superior for any number of

variables, as there is no free lunch and in a real application the dimensions of the problems

are known. Therefore, an educated choice can be made to employ either traditional

or large-scale methods. However, from a scientific point of view, it is still of interest

which parts, i.e. building blocks, of large-scale methods might lead to deterioration of

performance in traditional benchmark sizes.

Regarding the number of objectives, it was mentioned above that only LMEA, S3-

CMA-ES, CCLSM and PEA were tested on more than 3 objective functions. Both of

the indicator-based approaches were not tested for more than 2 (DLS-MOEA) and 3

(LSMOF) objectives respectively. On the other hand, PEA, CCLSM and LMEA were

tested with up to 10, the S3-CMA-ES with up to 15-objective problems. Since the current

large-scale approaches provide a variety of different techniques, it is likely that they might

show different behaviours when facing many-objective problems, and an experimental

evaluation in this regard might bring valuable insights for future developments in this

area.

Finally, a very interesting observation that sets many of the algorithms apart is the

computational budget that is used in the respective experiments. Since a variety of

algorithms exist which are able to solve current large-scale benchmarks through different

methodologies, a question of interest is the performance of algorithms over time. The

author of this thesis published a study in this regard in 2017 [6] which showed that

LMEA and MOEA/DVA are unable to reach acceptable results before millions of function

evaluations are used up, while the WOF algorithm (see Section 5.1) is able to deliver

good approximations after just 100, 000 evaluations. This is due to the large overhead

these two methods need for obtaining interaction-based groups. In the meantime since

the study was conducted, however, a variety of new algorithms has been proposed, and

many of them do not rely on interaction-based groups any more, as was discussed above.

Therefore, we now take a look at the computational budget these methods use in their

original implementations by comparing the experimental evaluation in the respective

articles. In the last column of Table 4.3 the number of function evaluations used in the

articles’ experiments is listed. Out of the 13 large-scale algorithms, only the ReMO,

CCLSM, MOEA/D2 and LSMOF use fewer than 1 million function evaluations. A

number of 3 to 10 million is often used in most of the studies. In the extreme case,

the experiments in LMEA used up to 230, 000, 000 evaluations to test the algorithm’s

performance. Sometimes these high numbers may have been chosen due to a comparison

with other algorithms which need a large overhead. In many cases, however, it is not clear
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how the performance of the algorithms relates to the computational budget. Experiments

regarding convergence behaviour (i.e. development of performance over time) were only

rarely conducted in the related literature.

Furthermore, it is not clear whether these high numbers are feasible to realistic scenarios

of real applications. As an example, the LMEA article reports an average runtime of

around 2386 seconds for the 1000-variable instances, which is approximately 40 minutes

for a single run. Although these numbers are faster than the reported times for other

methods like MOEA/DVA, it corresponds to an average of 7124 function evaluations

per second. Assuming that a real-world problem might need additional computational

resources of only 1 second per evaluation (e.g. if physical simulations are part of the

evaluation), such an algorithm would run for almost 200 days to approximate a 1000-

variable problem. And although parallel computing might be able to reduce the time,

this further emphasises the need for sophisticated search strategies which make use of

the computational budget in an efficient and effective manner.

4.2 Comparison and Classification of Grouping Methods

In this section, we compare and categorise existing grouping mechanisms briefly. As

mentioned in the previous chapter, the list of grouping mechanisms in this thesis is not

exhaustive due to the large amount of variants in the single-objective literature. An

extensive study of the properties and differences of variable grouping methods is an

ongoing research topic. However, in the context of methodologies of large-scale methods,

which is the focus of this thesis, it is of less importance how exactly the groups were

created. It is in contrast of higher importance which influence these groups, especially

the interaction-based groups, have on the success of the search process. This topic is

addressed experimentally in Chapter 6. The relevant methods that are explained in

Section 3.3 are compared and classified in this section.

For classification of grouping methods, we propose three different categories in this

thesis. In Section 3.3 a number of methods to group variables together have already

been identified. These grouping mechanisms can, as previously described, be divided into

three main categories as follows.

1. Simple methods which do not use objective function information and are therefore

applicable to single- as well as multi-objective problems.

2. Interaction-based methods, which take into account the change of objective functions

and aim to identify interacting variables. These methods can be designed for either

single- or multi-objective problems.

3. Contribution-based methods, which are only useful in multi-objective optimisation,

as they divide based on contribution of variables to convergence or diversity of the

solution set.
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The resulting classification of the methods is shown in Table 4.4. In addition to the

respective category, we list further criteria of the grouping mechanisms in the table. In the

following, we briefly go into detail on these properties of the variable grouping mechanisms,

and explore whether the method is applicable to multi-objective optimisation, how many

parameters the user needs to set, whether group sizes are fixed or automatically allocated,

and which computational budget the mechanisms consume.

The respective methods were already grouped by categories in the previous chapter, and

each of the categories was introduced. As described, not all methods are applicable to

multi-objective problems without further modification. It is, however, an advantage that

all methods in the “simple” category can be applied to single-, multi- and many-objective

optimisation without further modifications. Further, contribution-based groups are only

applicable to multi-objective problems, as the notions of convergence and diversity might

not have the same meaning or importance in the single-objective area. Regarding the

interaction-based methods, we see that Differential Grouping and Differential Grouping

2 can not be applied to multi-objective problems, as they measure the differences in

fitness values. However, the Interdependence Analysis that was proposed in MOEA/DVA

and is used in a couple of the related algorithms, basically follows a similar idea, and is

applicable to multiple objectives only because the interaction information in each single

function is combined in a certain way before assigning groups. A generalisation of such a

combination mechanism for interaction-information was proposed in [26].

Regarding the parameters that need to be set and the group sizes, we see that simple

methods usually require the user to set only one parameter, which determines either how

big each group is, or the resulting number of groups. Since these methods do not possess

any kind of information about the problem, there is no intelligent way to determine group

sizes automatically. In contrast, the interaction-based approaches and contribution-based

methods usually set the sizes and numbers of groups automatically. While this is an

advantage, it might also result in undesirable situations. For instance, in [26] it was

shown that in case many interactions are present, large groups might be formed, which in

the extreme case might lead to only one large group which contains all variables. While

this situation might be optimal in terms of optimising interacting variables together,

it renders the dimensionality reduction useless in the methods which depend on the

CC-based approaches.

The Random-based Dynamic Grouping which is used in MOEA/D-RDG plays a special

role among the grouping mechanisms. This method does not directly compute any

interaction information, but rather uses it implicitly through learning which group sizes

were successful in the past. Therefore, over time the algorithm might learn how many

independent variable groups exist in the problem, although the groups are still created

randomly, and there is no guarantee that the interacting variables end up together.

Nonetheless, RDG turned out to work well, and it has the advantage of not using any

function evaluations. A drawback would be that the user has to set the highest number of
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parameters compared to the other methods. RDG requires to specify k group sizes, which

the algorithm can choose from, and which efficiencies are learned. In total, however, it

might still be a valid trade-off to set more parameters in the beginning in exchange for

saving millions of function evaluations for the analysis in the other methods.

If we further compare the computational budget, we see that simple methods in general

require no function evaluations at all, as the definition of simple methods exactly defines

this property. We see further that the contribution information can usually, in both known

methods, be obtained with a budget that rises linear in the number of variables, while

all interaction-based methods suffer from quadratically rising computational costs. Note

that the RDG method is classified here as an interaction-based method, although it has

a computational budget of zero. RDG does not require additional function evaluations

prior to the optimisation process, but on the other hand can not work without any

evaluations at all, since the information about the success of the optimisation is needed

to determine optimal group sizes. It can therefore be seen partly as a simple, partly as

an interaction-based approach.

4.3 Summary

This chapter summarised and characterised the existing approaches in the area of large-

scale multi-objective optimisation. First, the approaches from the literature are analysed

based on their building blocks. Based on the simplified structures of the algorithms,

the elements that frequently occur were identified in Table 4.1. The similarities and

differences of the methods were then analysed based on different criteria. This lead to the

classification of existing algorithms into multiple categories, based on their methods of

dimensionality reductions, diversity management, possible parallel implementations and

their capabilities to deal with many-objective problems. These findings were summarised

in Table 4.2. After that, the algorithms were analysed based on their experimental

performances in the literature and their required function evaluations (Table 4.3).

In general, we saw that the CC-based method to optimise large search spaces is the

most prominent one among the existing algorithms. Other approaches like the trans-

formation of the problem are used as well, which come with multiple advantages like a

possible independence of interaction-based variable groups. Comparing the results of

the experiments in the literature, it is also interesting to see that in the development of

the area, which happened mainly in the last three years since the beginning of 2016, no

clear superior method has emerged yet, and a variety of approaches of dimensionality

reduction and diversity management seem to be successful. A major drawback of the

existing work in this area is the lack of common experimental settings in terms of function

evaluations. Most work focused on solving the benchmark problems as well as possible,

but not many papers set these results into perspective with the required amount of

computational budget. Especially the methods which rely on interaction-based groups
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might be at a disadvantage in this regard, as their required budgets rise quadratically

with the dimensionality of the search space.

In Section 4.2, a classification and analysis was presented regarding the different categories

of grouping mechanisms in the literature. The classification in simple methods, interaction-

based and contribution-based methods is build on the information which the grouping

methods aim to extract from the problem. Further criteria were used such as the ability

to be applied to multiple objectives, the number of free parameters, the sizes of the

obtained groups and the required computational budgets.
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5
Proposed Approaches for Large-scale

Optimisation

In this chapter, the three developed approaches and contributions to large-scale multi-

objective optimisation are described and analysed. These are different approaches that

either improve the performance of existing algorithms on their own or in combination. The

main algorithm developed in [4, 1] is the so-called Weighted Optimisation Framework. This

approach belongs to the transformation-based methods, and makes use of dimensionality

reduction, variable grouping methods and uses existing metaheuristics to optimise the

transformed optimisation problems. This framework is explained in detail in the following

Section 5.1. The second approach is the incorporation of variable groups inside existing

mutation operators. This approach was published by the author in [5] and is introduced in

further detail in Section 5.2. A third approach to tackle high-dimensional optimisation is

described in Section 5.3, which uses linear combinations of existing solutions to reduce the

dimensionality and to increase diversity at the same time. This approach was published

by the author earlier in 2019 in [7].

The descriptions of the three methods are based on the respective original publications

by the author. In addition, some improvements or adjustments have been made which

differ from previous versions, and any differences in the implementations in this thesis to

previously published versions of the algorithms are outlined in the respective sections.

Section 5.4 gives a summary and the proposed approaches are classified and analysed

based on the categories and criteria proposed in Chapter 4.

5.1 The Weighted Optimisation Framework

The Weighted Optimisation Framework (WOF) was proposed by the author of the

thesis in [4, 1] and further extended in [6]. The aim of this framework is to reduce the

dimensionality of optimisation problems, so that existing population-based algorithms are

able to perform the optimisation in this new transformed search space in an efficient way.

85



86 CHAPTER 5. PROPOSED LARGE-SCALE APPROACHES

The first version was proposed in 2016, which makes WOF the first transformation-based

large-scale multi-objective algorithm developed.

Similar to coevolutionary methods, WOF requires a distribution of the decision variables

into groups. In contrast to CC, however, the goal is not to optimise the variables

in each group independently, but at the same time and by the same amount relative

to their domain. The reduction of the problem’s dimensionality is not achieved by

keeping variable values in other groups fixed while focusing on one group. Instead,

so-called Transformation Functions are used to optimise all variables in each group at

the same time. In this way, the proposed approach provides a framework that performs

dimensionality reduction and optimisation in smaller search spaces in a different way

than existing coevolutionary methods. This proposed framework requires the use of a

grouping mechanism, but is designed to be generic so that any grouping mechanism and

metaheuristic optimiser from the literature can be used. It is noteworthy that the 2019

LSMOF method, which is described above, is strongly based on WOF, and uses similar

strategies to perform the problem transformation. Respective differences between WOF

and LSMOF are highlighted below.

In the following, we first explain the concept of problem transformation and the effect

of the corresponding dimensionality reduction on the search space. The following

subsections continue with the outline and details of the WOF algorithm. Different

transformation functions as well as mechanisms to choose the necessary pivot solutions

for the transformation are presented. After examining other parameters of the framework,

a discussion is given in Section 5.1.8. The information and statements of this section are

based on the contributions made by the author in [4, 1, 6].

5.1.1 Problem Transformation

The problem transformation, from a theoretical point of view, is essentially a method

to create a new – possibly simpler – optimisation problem by applying a mathematical

operation to the original problem.

Let Z be a multi-objective optimisation problem with n decision variables andm objectives

as shown in Equation Eq. (2.1), where each variable xi is real and has a domain with

minimum value xi,min and a maximum value xi,max. As described, the goal is to find the

set of Pareto-optimal solutions PS := {~x∗} (Pareto-set) and the corresponding objective

values PF := {~f(~x∗)} (Pareto-front) [1]. A transformation function to reformulate this

problem is defined in Definition 5.1.

Definition 5.1 (Transformation Function) A Transformation function ψ is a func-

tion

ψ : [xi,min, xi,max]× [wi,min, wi,max] → [xi,min, xi,max]

(xi, wi) 7→ ψ(xi, wi)
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The transformation function maps the domain of a single variable xi together with a

real value wi back into its domain [xi,min, xi,max]. As an example, consider the simple

transformation function ψ(xi, wi) := xi · wi with xi ∈ [0, 10] and wi ∈ [0, 1]. For a given

value of xi and a weight value wi we obtain a new value that lies in the domain of xi. Note

that a transformation function is neither required to be injective nor surjective, which

allows transformation functions to limit the searchable space (for details see Sections 5.1.2

and 5.1.3). In the above example, the transformation is surjective, since every value

in the domain of xi can be reached by at least one combination of xi and wi. It is not

injective, because if xi = 0, all values of wi map to 0. An example for a non-injective and

non-surjective transformation function would be ψ(xi, wi) := xi · 0.2 · wi with xi ∈ [0, 10]

and wi ∈ [0, 1], since this function maps only to the interval [0, 2].

Since in this work we deal with a vector ~x of decision variables, the transformation

function in the following steps has to be applied to each variable of the optimisation

problem, together with a corresponding weight value. For simplicity, we write ψ(~x, ~w) as

a notation indicating that the function is applied to each of the variable pairs (xi, wi)

independently.

ψ(~x, ~w) = ψ((x1, ..., xn), (w1, ..., wn)) := (ψ(x1, w1), ..., ψ(xn, wn)) (5.1)

This concept is used to transform the original optimisation problem into a new one.

To illustrate how this works, the following explanations use, without loss of generality,

the above mentioned multiplication transformation function ψ(xi, wi) := xi · wi. Using

this transformation, the original fitness value ~f(~x) can be written as ~f(ψ(~w, ~x)), with

~w = (1, ..., 1) a vector of ones, since

~f(ψ(~wi, ~x)) = ~f(w1x1, ..., wnxn) = ~f(x1, ..., xn) (5.2)

To change the given solution vector ~x for the optimisation process, we can now change

the values of ~w. In this way, instead of optimising the vector ~x, for any fixed values of ~x,

a vector ~w can be optimised to approximate an optimal solution [1].

It can be easily seen that the optimal solutions to the optimisation problem can still be

found by changing the values of ~w, provided an unbounded maximum for the domains of

the wi and all xi > 0. In this case, for the optimal weights we obtain ~f(ψ(~w∗, ~x)) = ~f(~x∗)

for a fixed ~x.

∀xi : ∃wi : wixi = x∗i

⇒
∀~x ∈ Rn : ∃~w : ψ(~w, ~x) = ~x∗

(5.3)
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By picking a fixed solution ~x′, it is possible to reformulate the original optimisation

problem Z with a transformation function to a new problem Z~x′ which optimises the

vector ~w using ~x′ as an input parameter [1]:

Z~x′ : min ~f~x′(~w) = (f1,~x′(~w), ..., fm,~x′(~w))T

s.t. ~w ∈ Φ ⊆ Rn

fo,~x′(~w) = fo(ψ(~w, ~x′)) ∀o = 1, ...,m

ψ(~w, ~x′) := (w1x
′
1, ..., wnx

′
n)

(5.4)

It must be noted that the multiplication is not necessarily a good choice for a trans-

formation function. In practice, some xi can be equal to zero and wi has to have an

upper bound. The more sophisticated transformation functions which are described in

Section 5.1.5 are more suitable for application in the optimisation.

As a result of this process, a new problem Z~x′ is created. This new optimisation problem

still has the same number of decision variables as the original one, as |w| = |x| = n.

However, the concept of transformation is used in the following to reduce the amount of

variables to be optimised, i.e. to reduce the size of the vector ~w.

5.1.2 Dimensionality Reduction

To reduce the dimensionality of the problem, the concept of variable groups is used as

introduced in Section 2.4. With the help of variable groups, we are able to reduce the

dimensionality of the vector ~w as follows. The original n variables of the problem Z are

divided into a number of γ groups (G1, ..., Gγ) using a grouping mechanism Γ. These can

be evenly sized or obtained by any other simple or intelligent mechanism. For simplicity,

and without loss of generality, it is assumed in the following argumentation that evenly

sized groups, each of size l (hence γ · l = n) are used. This assumption can later be

relaxed again.

Since the new, transformed problem optimises the variables in the vector ~w, the task

is now to reduce its dimensionality. Instead of assigning one wi for each xi in the

transformation function, only one weight wj is used for all variables within the same

group Gj with l variables. The vector to be applied inside the transformation functions

will then be

(w1, w1, w1, ..., w1︸ ︷︷ ︸
l times

, ..., wγ , wγ , wγ , ..., wγ︸ ︷︷ ︸
l times

) (5.5)
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Since there are only γ different values to be optimised, the vector ~w effectively reduces to

(w1, ..., wγ). Therefore, the above-mentioned example transformation function can then

be reformulated as:

ψ(~w, ~x) = (w1x1, ..., w1xl︸ ︷︷ ︸
use w1

, ..., wγxn−l+1, ..., wγxn︸ ︷︷ ︸
use wγ

) (5.6)

As a result, the size of the vector ~w is reduced to γ � n (same as the number of groups),

and the newly formed optimisation problem Z~x′ has then only γ decision variables. We

can now pick an arbitrary but fixed solution ~x′, and compute an approximation of the

Pareto-set by optimising this new optimisation problem instead [1]. These fixed solutions

that need to be picked before using the transformed problem are called “pivot solutions”

or “candidate solutions” in the following.

The drawback of this approach is that this reduction of the dimensionality limits the

search to certain solutions that can be reached within the transformed problem. This

happens due to the non-surjective transformation function, but also and more importantly

due to the reachable subspace defined by the variable groups. By grouping the original

variables together and applying the same wj to a number of them, their values cannot

be changed independently of each other any more, as they are all changed using the

same wj . This substantially limits the reachable solutions in the original search space.

Geometrically, this dimensionality reduction can be seen as cutting out a γ-dimensional

subspace out of the n-dimensional original search space. The searchable subspace of Ω,

which can be reached by optimising Z~x′ , is defined mainly by three choices [1]:

1. The choice of the pivot solution ~x′

2. The amount of groups and the decision of which variables are put together in the

same group, i.e. the used mechanism Γ

3. The choice of the transformation function ψ(·)

1. Choice of Pivot Solutions

An appropriate choice of ~x′ is important. The chosen solution remains fixed for the time

of optimising the weights and its variables are used for the creation of new solutions

through applying the weight variables. Together with the two other points listed above, it

defines the reachable subspace of Ω. In the following, a small example is used to illustrate

this effect.

As an example, consider an optimisation problem with two decision variables x1 and

x2. In Fig. 5.1 the decision space of this problem is shown together with a hypothetical
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P 

x1

x2
~x0

(a) “Suboptimal” choice of ~x′

P 

x1

x2

~x0

(b) “Better” choice of ~x′

Figure 5.1: Examples for different choices of the pivot solution ~x′ in the decision space.
x1 and x2 belong to the same group, the resulting reachable subspace is shown as a red,
straight line. The Pareto-set is shown as the line P in blue colour. The suboptimal pivot
in Subfigure (a) does not lead to the discovery of optimal solutions, but can help to
advance closer to them. Thus, it can still be useful for the overall search. Graphic taken
from [1].

Pareto-set P . When we optimise the original problem Z, both of the variables can be

altered separately, and therefore the whole decision space can be searched. As a result, it

is possible to obtain a good approximation of P .

At this point, we use a variable grouping mechanism and put both of the variables, x1

and x2, into the same group. As described above, to reduce the dimensionality of the

problem we apply only a single variable w1 for all variables in this group inside the

transformation function. Thus, we reduce the dimensionality of the problem from n = 2

to γ = 1. The newly formed optimisation problem Z~x′ results in the optimisation of just

one single variable w1. This limits the reachable solutions to a 1-dimensional subspace [1].

If again multiplication is used as the transformation function as in the example above,

the new search space of Z~x′ is denoted as a red line from a chosen pivot solution ~x′ to

the origin in Fig. 5.1.

When we compare the scenes of Fig. 5.1a and Fig. 5.1b, we observe that the ability to

reach the optimal solutions in this new search space depends on the choice of ~x′. The

same principle applies in higher dimensional search spaces. Every group of variables

defines a subset of solutions that can be reached by the new optimisation process. It is

to be expected, however, that even “suboptimal” choices of ~x′ as in Fig. 5.1a can help

the overall search process to advance closer to certain parts of the Pareto-set [1].
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2. Choice of Grouping Mechanism

The grouping of the variables has, similar to the location of ~x′, an influence on the

subspace of Ω in which the search takes place [1]. In the example above, this can not

directly be observed since there are only two decision variables. However, if we extend

this example to a 3-dimensional search space, we find a situation as exemplarily shown in

Fig. 5.2. A 3-dimensional search space is shown, where we use the solution ~x′ as pivot to

perform the transformation. We can see here that even if using the same solution ~x′ in

all subfigures, the searchable subspace of the original 3-dimensional space largely differs

depending on which variables end up together in the same group. In Fig. 5.2a, x1 and

x2 are grouped together while a second group consists only of x3. The resulting search

space is 2-dimensional, since there are two groups and therefore two variables w1 and w2.

The resulting subspace that can be reached by optimising these two variables is denoted

as a red shaded area in the figure. We can now observe that this subspace differs largely

in Figs. 5.2b and 5.2c. These show the same situation with different groups, when x1

and x3 or x2 and x3 are put in a common group respectively. The last option is to put

all variables in the same group and optimise only one weight for this group as seen in the

previous 2-dimensional example. The corresponding situation in this 3-dimensional case

is shown in Fig. 5.2d, where only a 1-dimensional subspace can be reached by optimising

the one variable w1, which changes all three original variables x1, x2 and x3 at the same

time.

3. Choice of Transformation Function

The third main influence for the reachable subspace of the newly formed problem is the

transformation function. In addition, the transformation function also defines in which

way the solutions’ locations in the newly created search space change in response to a

change in the variables wj . In addition, it can affect the geometry of the lower-dimensional

space, e.g. by using linear or non-linear transformation functions.

By defining a subspace in which new solutions can be produced based on the original

values of ~x′, the transformation process can also be regarded as a kind of “neighbourhood”

function of the privot solution. However, in mutation operators or local search methods,

the term “neighbourhood” is usually used to indicate a locality around the original

solution. This is, however, not the case for the solutions created by the transformation

process. Given that the transformation is usually used to produce more diverse solutions

and explore larger areas of the original search space, such a locality is actually not

desirable in this situation. Instead, it is assumed that a transformation can enable an

algorithm to make large steps in the search space, depending on the values of the wj .

Different examples of transformation functions are given below.
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(c) Group 1 = {x1}, Group 2 = {x2, x3}
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(d) Group 1 = {x1, x2, x3}

Figure 5.2: Example of the influence of different variable groups on a 3-dimensional
example with a linear transformation function.

5.1.3 Influence of the Transformation on the Search Space

To further examine the effects and implications of the problem transformation, we perform

some exemplary experiments. The following descriptions of these experiments are based

on those in [1]. In Figs. 5.3 to 5.5, the effects of these steps are exemplarily shown on

the three test problems WFG2 [28], UF2 [48] and ZDT1 [39] with n = 1000 decision

variables each. In all three instances, we first created a random initial solution for the

problem. From this solution, 2000 new solutions were created by different methods as

explained in the following.

• In Figs. 5.3a, 5.4a and 5.5a a number of 2000 solutions are created from this

initial solution by using a standard SBX crossover [100] with another randomly

created solution and polynomial mutation [101, 102]. The mutation and crossover
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parameters were standard values often used in the literature, i.e. polynomial

mutation with a probability of 1/n (with n being the number of decision variables)

and a distribution index of 20.0. The SBX crossover is used with a probability of

0.9 and a distribution index of 20.0.

• In the respective subfigures (b), (c) and (d), instead of using traditional genetic

operators, 2000 random solutions are created from the same initial solution by

creating random weight vectors ~w and by applying them in the proposed problem

transformation with different grouping mechanisms. The initial solution is the same

as in subfigures (a) and it is used as the pivot solution ~x′ in these transformations.

In Figs. 5.3b, 5.4b and 5.5b the variables were grouped using a random grouping

mechanism (with γ = 4 groups), the remaining figures show the usage of ordered

grouping (see Section 5.1.6) and Differential Grouping (see Section 3.3.3), where in

the last variant DG is only applied to the first objective function.
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(d) Differential Grouping

Figure 5.3: 2000 randomly created solutions for the WFG2 benchmark by using genetic
operators and different grouping methods in the WOF transformation approach. The
Pareto-front is shown as small black points. Graphic taken from [1].
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(c) Ordered Grouping
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(d) Differential Grouping

Figure 5.4: 2000 randomly created solutions for the UF2 benchmark by using genetic
operators and different grouping methods in the WOF transformation approach. The
Pareto-front is shown as small black points. Graphic taken from [1].

We can observe large differences between the solutions obtained by the problem trans-

formation process and the ones created by the genetic operators. In the case of WFG2,

the different variants of the WOF transformation show solution sets that offer a far

higher diversity and proximity to the Pareto-optimal solutions, compared to the solutions

created by SBX crossover and polynomial mutation. This shows that the newly created

search space contains very promising solutions for the overall search process. As a

consequence, using an optimisation algorithm to obtain the best solutions reachable in

this transformed space, we can expect an improved performance, in terms of convergence

speed and diversity, towards promising solutions.

Looking at the UF2 problem in Fig. 5.4, we observe a similar situation. Even though

there are slight differences between the different grouping mechanisms, all three of

the transformed problems include solutions that lie very close to the true Pareto-front.
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(c) Ordered Grouping
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(d) Differential Grouping

Figure 5.5: 2000 randomly created solutions for the ZDT1 benchmark by using genetic
operators and different grouping methods in the WOF transformation approach. The
Pareto-front is shown as small black points. Graphic taken from [1].

Furthermore, regarding the diversity of solutions, the transformed problems offer the

possibility to reach a set that is at least as diverse as the one reached by classical

operators.

Next, we look at the results of the ZDT1 problem in Fig. 5.5. In contrast to the positive

influences of the transformation in the previous two examples, we now observe a loss of

diversity. In Fig. 5.5a, the solutions obtained by the crossover and mutation operators are

spread widely across the objective space, providing a very diverse set of solutions. This is

achieved because these solutions are produced through a crossover with other, randomly

created solutions. In contrast, the solutions created by the transformation process are

concentrated in a certain part of the objective space (Figs. 5.5b to 5.5d). A reason for

this effect is that the selected pivot solution ~x′, which influences the reachable search

space, happens to be on the “left side” of the shown objective space. The optimisation
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of the transformed problem in this case can lead to fast convergence, especially in the

case of Fig. 5.5d, but the diversity of the solutions may suffer. This effect is caused

by the structure of the ZDT1 problem, since the diversity of the solution set is only

defined by the first decision variable x1, and the used transformation function in this

case was the multiplication as described above. Therefore, since the lower and upper

bounds of the wj were set to 0.0 and 2.0 respectively, the transformed problem is not

able to reach certain parts of the search space, as it can only alter the variables within a

certain interval, based on the values in ~x′. As mentioned above, this emphasises that

other transformation functions than simple multiplication may be more suitable for the

optimisation process of the transformed problem.

We can conclude from these three examples that, if appropriate choices for groups,

transformation function and ~x′ are made, the proposed transformation of the problem can

result in an accelerated optimisation process in terms of both diversity and convergence.

It is, however, important not to sacrifice the diversity in favour of a fast convergence,

as in the case of Fig. 5.5d. In the following, these observations are used to propose the

optimisation strategy of the WOF for large-scale problems.

5.1.4 The WOF Algorithm

The Weighted Optimisation Framework (WOF) is designed as a generic population-based

meta-heuristic. Its main contribution is the transformation of the original problem, which

creates new optimisation problems of lower dimensionality. These transformed problems

are optimised using another optimisation algorithm within the framework. The choice of

this second algorithm to optimise the transformed problems can, for instance, depend on

the problem’s properties, e.g. a many-objective metaheuristic may be used in a problem

which contains more than 3 objective functions. This metaheuristic is used inside the

framework for optimising two different problems Z and Z~x′ in turns. It is further possible

to use two different optimisation algorithms for the two problems. For instance, a classical

evolutionary algorithm may be used for the transformed, low-dimensional problem, while

the original, large-scale problem can be optimised with another large-scale method from

the literature [1]. In the following, however, we concentrate on using only one optimiser

for both problems.

A drawback of the transformed problem Z~x′ is that it limits the search space that is

accessible for the algorithm. On the other hand, it enables the algorithm to search a

space with lower dimensionality more thoroughly, which can result in a faster convergence.

The original problem Z in contrast can reach all possible solutions, but the ability to

achieve a fast convergence and good exploration is limited in the high-dimensional space.

To utilise the synergy of these two, WOF alternates two different phases of optimisation:

A regular optimisation step and another transformed optimisation step, using multiple

pivot solutions. The outline of this proposed method is shown in Fig. 5.6 and more

detailed steps are given as pseudocode in Algorithm 3, Algorithm 4 and Algorithm 5 [1].
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Figure 5.6: Outline of the Weighted Optimisation Framework. Graphic based on [1].

The inputs for the WOF algorithm are an optimisation problem Z, a population-based

metaheuristic A, a grouping mechanism Γ (see Section 2.4) and a transformation function

ψ (see Section 5.1.1). First, the population of the algorithm is initialised with a random

population for the problem Z. In the main loop of the algorithm (Lines 3 − 10 in

Algorithm 3), the two different optimisation phases are carried out. First, the original

problem Z is optimised using algorithm A for a predefined number of t1 function

evaluations (Line 4 in Algorithm 3).

Algorithm 3 WOF(Z,A,Γ,ψ) - Pseudocode based on [1].

Input: Problem Z, Optimisation Algorithm A, Grouping Mechanism Γ, Transformation
Function ψ

Output: Solution population S
1: Initialisation
2: S ← Random initial population for Z
3: repeat
4: S ← A(Z, S, t1) // Optimise Z with Algorithm A for t1 evaluations, using S as a

starting population.
5: {~x′1, .., ~x′q} ← Selection of q pivot solutions from S
6: for k = 1 to q do
7: Wk ← WeightingOptimisation(~x′k, Z,A,Γ, ψ) // Algorithm 4
8: end for
9: S ← updatePopulation(W1, ..,Wq, ~x

′
1, .., ~x

′
q, S) // Algorithm 5

10: until δ · total#Evaluations used
11: repeat
12: S ← A(Z, S, t1) // Optimise Z with Algorithm A for t1 evaluations, using S as a

starting population.
13: until total#Evaluations used
14: return FirstNonDominatedFront(S)

Next, the weighting optimisation (Lines 6 to 8 in Algorithm 3) performs the transformation

and optimisation of the weights q times. For this, q different pivot solutions ~x′k (k =

1, 2, ..., q) are drawn from the current population (Line 5) based on a selection mechanism.

For every one of them, the transformed optimisation is carried out as shown in Algorithm 4.



98 CHAPTER 5. PROPOSED LARGE-SCALE APPROACHES

A suitable choice of the pivots helps in this step to preserve diversity in the population.

Using the above described mechanism of problem transformation, multiple transformed

problems Zk~x′ are created. At this point, we make use of a transformation function, as

shown in Definition 5.1. In our implementation, the same function ψ is used for all

transformed problems, although theoretically different functions could be used for each

single problem as well.

Next, a population Wk of randomly created solutions (weights) for each of these Zk~x′

is optimised using the optimisation algorithm A. As a result of this step, we obtain a

population Wk of weights, where the objective function values are optimised based on

the values of the originally chosen solution ~x′k, i.e. the population Wk contains the best

found solutions in the subspace defined by the transformation. This process of problem

transformation and optimisation is carried out q times (once for each of the q pivot

solutions), resulting in a set of q weight populations {W1, ...,Wq} [1].

The last step is to merge the original population and the newly obtained weight populations

to perform an overall environmental selection (Line 9 in Algorithm 3). The weight

populations {W1, ...,Wq} each contain vectors of weights which are optimised based on

one of the solutions of the original population, i.e. the chosen ~x′k. If the population size

of each of these Wk is c, and the original solution population S has a size of s individuals,

by combining all weight vectors of all the populations with each solution of S, we can

construct q · c · s new solution candidates for the original problem. This results in a

large number of additional needed function evaluations due to the creation of these new

solutions.

To reduce this computational overhead different strategies can be used. The original

version of WOF in [4, 1] used the strategy to only pick one solution from each Wk (using

the largest Crowding Distance from the first non-dominated front[1]). This weight vector

was used to create one new solution by applying it to each of the solutions in S, resulting

in q · s new solutions. In contrast, a modified approach introduced in [6] used q selected

weight vectors from each Wk and in addition combined each ~x′k with all vectors in the

respective Wk. This results in an overall of q · q · s+ q · c new function evaluations for

the environmental selection step, but showed a better exploitation of the information

contained in the Wk. This second, modified version of the merging step is used in this

thesis and is shown in detail in Algorithm 5, Lines 2 to 9.

The obtained new solutions in the sets S′k for k = 1, .., q are then combined with the

population S (Line 10 in Algorithm 5). In a next step, duplicate solutions are removed

from this union set to prevent negative effects on the population’s diversity (Line 11).

This elimination is based on the values in the objective space, i.e. if two solutions have

the same objective function values, they are considered as duplicates and one of them

is removed. Note that this elimination can also be done using the decision variable

values. This increases the runtime of the algorithm, since the comparison has to be
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Algorithm 4 WeightingOptimisation(~x′k, Z,A,Γ, ψ) - Pseudocode based on [1].

Input: Solution ~x′k, Problem Z, Optimisation Algorithm A, Grouping Mechanism Γ,
Transformation Function ψ

Output: Population of weights Wk

1: Initialisation
2: Divide n variables into γ groups using Γ
3: Zk~x′ ← Build a transformed problem with γ decision variables (weights) from Z, ~x′k,

Γ and ψ
4: Wk ← Random population of weights for Zk~x′
5: Wk ← A(Zk~x′ ,Wk, t2) // Optimise Zk~x′ with Algorithm A for t2 evaluations, using Wk

as a starting population.
6: return Wk

done with the high-dimensional decision variable vectors. On the other hand, it can be

beneficial for multi-modal problems where multiple areas of the search space map to the

same objective function values. The concept of multi-modal multi-objective optimisation

has recently drawn attention in the literature [103, 104, 105, 106, 107], and changing

the elimination of duplicates in WOF is a possible modification for future multi-modal

large-scale research.

Next, in case the newly formed solution set contains fewer than s solutions, additional

solutions are created by genetic operators to fill the population (Lines 12 to 14 in

Algorithm 5). As a last step, an environmental selection in the form of non-dominated

sorting is carried out. This helps to eliminate worse solutions which may have been found

in the weight optimisation, for instance due to a suboptimal selection of a pivot solution.

After the selection process, the main loop of the algorithm starts from the beginning

with a normal optimisation step to alter the variable values independently of each other.

The alternation of optimising the original and the transformed problems (Lines 3 - 10

in Algorithm 3) is repeated until a certain number of function evaluations is used up.

Similar to the strategy used in MOEA/DVA, the performance of WOF is improved if a

certain amount of computation is used for a final so-called “uniformity” optimisation.

Since the weights of WOF usually lead to large “jumps” in the search space, and do

not allow for independent alternation of variables, a normal optimisation with the used

metaheuristic has shown to work better towards the terminal phase of the search. In

this stage, the optimal values for the decision variables can be approximated better with

traditional evolutionary operators, that do not include variable groups, and allow for

independent changes in each variable [1]. To control at which point the optimisation of

weights is stopped, WOF contains a parameter δ ∈ [0, 1], which defines which share of

the total function evaluations are spent for the first phase (Line 11 in Algorithm 3).
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Algorithm 5 UpdatePopulation(W1, ..,Wq, ~x
′
1, .., ~x

′
q, S)

Input: Weight populations W1, ..,Wq, Pivot Solutions ~x′1, .., ~x
′
q, Solution population S

Output: Solution population S
1: s← |S|
2: for k = 1 to q do
3: S′k ← ∅
4: {~w(1)

k , .., ~w
(q)
k } ← Selection of q individuals from Wk

5: for r = 1 to q do

6: S′k ← S′k∪ {Apply w
(r)
k to each solution in population S}

7: end for
8: S′k ← S′k∪ {Apply each individual in Wk to the solution x′k}
9: end for

10: S ← S ∪ {S′k}k=1,..,q

11: Eliminate duplicate solutions from S
12: if |S| < s then
13: Fill S by applying genetic operators to solutions from S until the population size s

is reached
14: end if
15: S ← Perform non-dominated sorting on S
16: return S

5.1.5 Transformation Functions

In the following, four different transformation functions are defined and discussed that

might be used in WOF. The first three of them ψ1, ψ2 and ψ3 are included in the original

publications of WOF [4, 1], while the fourth, parameter-free one was proposed in a later

study [6] to improve the performance of the algorithm. As described, we assume the

variables were divided into γ groups G1, ..., Gγ prior to the transformation, and g(i) = j

is the respective group xi is assigned to [1]. wj is the respective weight that is used to

optimise the values of the variables in Gj .

ψ1 - Product Transformation

The first transformation is based on a simple multiplication of the weight and the variable

values, and is in the following described as in [1]. It is defined as follows:

ψ1(wj , x
′
i) = xi,new := wj · x′i

wj ∈ [0, 2]
(5.7)

If the transformation results in values greater or smaller than the respective variable’s

boundaries, a repair mechanism is used to set the value to the exact boundary instead.

This transformation function was used to motivate the idea above in Section 5.1.1.

However, this function has some disadvantages. First, it can be expected that this

transformation does not deal well with variable domains that involve both positive and

negative values. Depending on whether the input value x′i is positive or negative, a
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multiplication with a positive weight can only obtain positive or negative new values

respectively, and as a result make a certain part of the search space unreachable.

A second problem is that the progress that can be made by altering one weight variable

wj is determined by the absolute value of xi, not its value relative to the search domain.

Consider for instance the variable xi with its domain of xi ∈ [0, 10]. In the transformation

step, we apply a variable wj to it, which has a domain of wj ∈ [0, 2]. Now based on the

value of xi in the chosen pivot solution, the search in the transfomation-induced subspace

can be very limited. An absolute value of xi = 0.1 enables the optimisation algorithm to

explore the original search space in the interval [0, 0.2], while a value of xi = 8 results in

a search that covers at least the whole domain of xi [1]. As a result, the search ability

of WOF can be very limited, and adaptions of the domain of the wj may be required

frequently. Since we do not know the optimal variable values for xi, it is advisable that

the search should not depend on absolute values. The ψ1 transformation is therefore not

recommended to use in practice.

ψ2 - p-Value Transformation

The second function, called p-Value Transformation, was designed to overcome the

disadvantages of the simple multiplication.

ψ2(wj , x
′
i) = xi,new := x′i + p · (x′i,max − x′i,min) · (wj − 1.0)

wj ∈ [0, 2]

p ∈ [0, 1]

(5.8)

The value p in this function defines the range of possible change around the original

value of the variable xi, where xi,min and xi,max are the lower and upper bounds of the

variable xi. As before, should the result be lower or higher than the variables lower and

upper bounds, the value is set to the respective boundary again. To ensure a symmetrical

interval around the original value of x′i, the value of wj is adjusted depending on its

variable domain. In this case, since the wj ∈ [0, 2], a value of 1.0 is subtracted, i.e. the

values of wj are mapped to the interval [−1, 1]. The value p determines how much change

in the original search space is possible at most. For instance, setting p = 0.3, the value of

xi is altered by 30% of the width of the variable’s domain, centered around the original

value x′i [1].

ψ3 - Interval-Intersection Transformation

The third function is inspired by an approach suggested in [34] for single-objective

optimisation.

ψ3(wj , x
′
i) = xi,new := wj · x′i

wj ∈ [ min
h∈G(i)

xh,min
xh

, max
h∈G(i)

xh,max
xh

]
(5.9)
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where xh,min and xh,max are the lower and upper bounds of the variable xh. The actual

transformation formula of this function resembles the multiplication transportation ψ1.

However, the difference lies in the domains of the weight variables. The upper- and

lower-bounds of the wj are based on the other variables in the same group. We saw

in the multiplication transformation that a domain of [0, 2] may not be suitable, first

because it limits the search too much if the absolute value of ~x′i is too low, and second

because it can produce many infeasible values if the absolute value is too high. The

interval-intersection transformation solves this problem by determining for each variable

xi in a group j = G(i) the maximal and a minimal possible weight value that can be used

without exceeding the domain borders of xi. The domain of the weight for this group

is based on the highest and lowest possible values over all variables in the respective

group. This interval [wj,min, wj,max] can be seen as the intersection interval of all possible

minimum and maximum values defined by each variable in the group [1].

The functions ψ1 and ψ2 require a method to repair values in case the domain of the

variable is violated as a result of the transformation. An advantage of ψ3 is that this kind

of repair is no longer needed, as variable domains can never be violated. This can be

helpful to prevent a lot of extremal values due to excessive repairs for certain applications.

On the other hand, this approach might also be very limited in its capabilities since

a near-boundary value for just one variable in a group can lead to almost no possible

change in all other variables in that group. In [1], this transformation function was

included to provide fair comparisons on benchmarks like the ZDT functions, since their

optima include a large number of variables to obtain a value on their domain borders.

ψ4 - Parameter-free Transformation

The fourth function was introduced by the author in [6]. The best-performing transfor-

mation function used in the original publication [1] was ψ2, the p-Value-Transformation.

Even though it achieved good results, its performance is dependent on a parameter p.

Usually, a value of p = 0.2 is recommended in the literature (as shown by the sensitivity

analysis in [1]). However, a disadvantage of the p-Value transformation is that only

a part of the domain [xi,min, xi,max] is covered by the transformed problem. Further,

depending on the value of p and the absolute value of x′i, infeasible values can be created

that have to be repaired afterwards. As written in [6], it can therefore be of advantage to

eliminate this parameter, so the algorithm is more adaptive when dealing with unknown

problem properties and is able to search in the whole variable domain.

As a result, the parameter-free transformation function ψ4 is defined as:

ψ4(wj , x
′
i) = xi,new :=

{
x′i + (wj − 1.0) · (xi,max − x′i) if wj > 1.0

xi,min + wj · (x′i − xi,min) if wj ≤ 1.0

wj ∈ [0, 2]
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where xi,min and xi,max are the respective lower and upper bounds of the variable xi.

Each new variable value xi,new is computed between xi,min and xi,max using the value of

x′i as a center point. The domains of the wj , j = 1, .., γ are located in the interval [0, 2]

as in ψ2. All values in the range of [0, 1] are mapped to the interval [xi,min, x
′
i] in the

original search space, while all values (1, 2] are transformed to (x′i, xi,max] [6]. In this

way, ψ4 is able to cover the whole domain of each variable in each group, therefore not

limiting the search space artificially by a parameter. If wj = 0 for a group j, all variables

in that respective group are set to their lower bounds, while if wj = 2, all variables are

set to their upper bounds. A value of wj = 1 results in no change of the variables at all.

5.1.6 Ordered Grouping

In addition to the simple grouping methods shown in Section 3.3.1, we propose a

mechanism called “Ordered Grouping”. This variant assigns variables to groups based

on their absolute values, and achieved good performance in the original publication of

the WOF method [1]. Since in the WOF, a pivot solution is picked from the population

for the following optimisation process, the variable values of this solution are used to

determine an ordering. The number of groups is specified beforehand, and the variables

are assigned linearly to the groups after sorting them based on their values. As a result,

the first group contains the variables which have the largest (or smallest, depending on

the implementation) values in the picked solution, and so forth. It is worth noting that in

problems where domains (upper and lower bounds) are not the same for all variables, a

variant of this method where the values are normalised with their respective boundaries

seems more suitable. In the remainder of this work, however, the classical ordering based

on absolute values is used from the original WOF publication.

5.1.7 Choice of the Pivot Solutions ~x′

The last design decision that is necessary for WOF is that of how to choose the ~x′k
solutions that are fixed in the weight optimisation steps. To increase the diversity in

the solutions and prevent the algorithm from concentrating only on one part of the

search space, this is done q times independently with different pivots. For this purpose,

q different solutions need to be picked from the population in order to do the weight

optimisation one time for each of them.

In order to choose these q solutions, different mechanisms can be used. Of course, that

can be done completely at random. However, this has the disadvantage that there is

no control over the amount of similarity between these solutions. To be more precise,

it could happen that two solutions which are very similar to each other in the current

population are picked, in which case it might be likely that the weight optimisation for

each of these might not produce very different solutions in the end. As described in [1],

experiments have shown that one of the weaknesses of WOF is the loss of diversity due

to an increased convergence speed. An example for this loss of diversity in favour of
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Figure 5.7: The optimisation of a transformed problem in WOF is performed with q
different pivot solutions. The example shows the original population as diamonds and
the solutions created from the transformed problems as circles. Graphic taken from [1].

convergence was shown earlier, see Fig. 5.5d. Therefore, it is of advantage to counter

this development by an intelligent choice of the q solutions ~x′k, k = 1, .., q.

As also shown in [6], it can be of advantage to set q to a value of m (the number of

objective functions) or larger. For the selection of the pivots it is further useful to include

the diversity of the solutions, as shown in Fig. 5.7. Choosing solutions with a certain

distance from each other in the objective space can lead to the exploration of different

areas of the decision space with the weight optimisation. In the following, we present

three different versions of choosing the pivot solutions ~x′k and examine their possibilities

briefly.

Choice of Pivots by Crowding Distance

The first method to select the q pivot solutions is by using the Crowding Distance metric

from the literature [11]. From the current population of the original problem, the first

non-dominated front is selected, and Crowding Distance is applied to select the solution in

less crowded areas. This approach was used in [1]. By only using the first non-dominated

front from the population, we ensure to use solutions which are (in the current generation)

regarded as best-performing. Since the Crowding Distance assigns values of infinity to

the extremal solutions (i.e. the solutions which have the highest or lowest values in any

objective among the front), it is to be expected that these solutions are selected. The

WOF algorithm would therefore do the optimisation with the solutions which lie on the

far ends of the current non-dominated front. A disadvantage of this method is that it is

rather unlikely to select a solution “in the middle” of the front, especially in the case of

more than 2 objective functions (as the amount of “extremal” solutions rises as well).
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Choice of Pivots by Tournament Selection

The second method that might come to mind is to use a usual selection method that is

also applied before the genetic operators. As an example, a normal tournament selection

as used in NSGA-II is possible, with the front number as the primary and the Crowding

Distance as the secondary criteria. This ensures, similar to the method above, that

solutions with in less crowded areas are preferred, but leaves room for the selection of

solutions other than the extremal ones.

Choice of Pivots by Reference Lines

A method inspired by modern many-objective methods is to choose the ~x′k by reference

directions. This way of selection has first been used in WOF in [6] and showed, in

combination with the newly introduced ψ4 transformation function, good performance in

terms of solution quality as well as convergence behaviour. The choice of solutions is done

in the following way. The first m solutions are selected based on the distances to the axis

of each of the m objectives. More clearly, the solution with the minimum angle between

its function values (interpreted as a vector in the objective space) and the vector along

the f1 axis is selected as the first of the q solutions. This is repeated for each objective

function f1, .., fm, resulting in m selected solutions. If q is larger than m, the next

solution is chosen based on the smallest angle to the vector (f1, f2, .., fm) = (1, 1, .., 1), to

include a solution that represents the “inner part” of the non-dominated front. After that,

solutions are randomly added from the population until q solutions have been selected in

total.

5.1.8 Discussion of the WOF Method

The WOF has the disadvantage that it needs to carefully balance between convergence

and diversity. The mechanism of doing the weight optimisation multiple times achieves

this balance. However, the recent study in [47], for instance, showed that WOF achieves

superior performance mostly in those benchmarks which pose a challenge in terms of

convergence towards the PF. In particular, it was argued that benchmarks like the UF

problems from the CEC 2009 competition (UF benchmarks) pose stronger challenges to

WOF as it is more difficult in these problems to achieve diversity along the PF. It must

be noted, however, that this study used Crowding Distance to chose the pivot solutions.

Another work by the author of the thesis done in [6] argued that performance, and in

particular diversity, is generally increased when pivot solutions are chosen by reference

lines as described above. The performance of WOF on the UF benchmarks using this

technique is examined further in the evaluation in Chapter 6.

Another critical point worth noting is the relatively large amount of free parameters in

WOF. While most other large-scale methods from the literature require some parameters

to choose as well (e.g. number of groups), WOF, in its original version from [1], needs 6

parameters to be set by the user, and additional design decisions like the transformation
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function and the grouping mechanism can be made. The sensitivity analysis in the same

publication, however, showed some suggestions for the choice of parameter values, which

can be used for good performance on most current benchmark problems. Using the

parameter-free transformation function ψ4 as described above, one additional parameter

can be removed. In general, it is desirable to remove further parameters from the algorithm

in future research by determining them automatically based on problem properties or

search dynamics.

One aspect that gives WOF an advantage over other methods is the fact that it has been

shown to work well with simple grouping mechanisms. It is therefore much better able to

optimise problems with limited numbers of function evaluations, compared to methods

like S3-CMA-ES, LMEA or MOEA/DVA, since it does not depend on interaction-based

or contribution-based groups. This aspect is also examined later in further detail in

Chapter 6.

5.2 Groups in Mutation Operators

This section describes the second contribution of the author to multi-objective large-scale

optimisation, which was proposed in [5]. It is based on the idea to include variable

groups in the mutation operators of existing evolutionary algorithms. Since almost

all population-based metaheuristics utilise a kind of mutation operator, changing the

operator itself to include large-scale related concepts is an easy and fast way to enable a

large variety of metaheuristics to deal with large-scale problems.

To create special mutation operators that are able to deal with large-scale problems, we

include variable groups to determine which variables undergo mutation. For this purpose,

the widely used Polynomial Mutation Operator [101] is used, although the concept can

be extended to other mutation methods, for instance for non-real-valued representations,

as well.

In the following, we introduce the concept of the well-known Polynomial Mutation

Operator. Afterwards, we propose three new mutation operators. The first one is called

the Linked Polynomial Mutation, which establishes a connection between the mutated

variables in each individual in terms of the amount of change. Secondly, the concept

of variable groups is incorporated into the Polynomial Mutation, called the Grouped

Polynomial Mutation, by using groups to decide which variables are mutated. The third

proposed operator, the Grouped and Linked Polynomial Mutation Operator utilises both

of the above concepts. The following explanations are based on the initial publication by

the author in [5].
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Algorithm 6 Pseudocode of the Polynomial Mutation operator. Pseudocode based on
[5]

Input: Solution ~x, Probability p, Distribution Index η
Output: Mutated Solution ~y

1: for i = 1 to the number of variables in ~x do
2: r ← random(0,1)
3: if r < p then
4: u ← random(0,1)
5: if u ≤ 0.5 then
6: δ1 =

xi−xi,min
xi,max−xi,min

7: δq = (2u+ (1− 2u)(1− δ1)η+1)
1
η+1 − 1

8: else
9: δ2 =

xi,max−xi
xi,max−xi,min

10: δq = 1− (2(1− u) + 2(u− 0.5)(1− δ2)η+1)
1
η+1

11: end if
12: yi = xi + δq(xi,max − xi,min)
13: repair(yi)
14: else
15: yi = xi
16: end if
17: end for
18: return ~y

5.2.1 Polynomial Mutation

The Polynomial Mutation operator was introduced in [101] and has since been a part of

many metaheuristic optimisation algorithms, for instance in [11, 32, 108]. It is designed

for real-valued variables, and utilises a polynomial distribution around the original value

of a variable to sample a new, mutated value. Two versions of this operator were proposed

in the literature, called highly disruptive and non-highly disruptive Polynomial Mutation.

The difference between them is the distribution of the possible mutated values. The

original, non-highly disruptive mutation has the disadvantage to become useless when

the variable value gets closer to its domain border [109]. For this reason, the new highly

disruptive version was proposed in 2008 [102]. In contrast to the original version, the

complete domain of each variable was included in the distribution of the operator. A

hybrid of both versions was also introduced in [109]. Due to its advantages, the highly

disruptive version is used in this thesis. The functionality of this operator is depicted as

pseudocode in Algorithm 6 and is described in further detail in the following [5].

Polynomial Mutation has two parameters: the mutation probability p and the distribution

index η. For each variable xi (i = 1, ..., n) of a solution ~x, the probability parameter p is

used independently to decide whether this variable is subject to mutation. Thus, the

expected number of mutated variables in a solution is n · p. In the literature, a value

of p = 1
n is often used [11, 108, 32]. As a result, only a single variable per solution is
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mutated in the expected case. The second parameter, the distribution index η, influences

the distribution from which the new, mutated value is chosen. The distribution index

therefore influences how much change the mutation operator produces, and can be used to

balance exploitation and exploration in the search process. A larger value of η corresponds

to a higher probability that the drawn value from the distribution lies very close to the

original xi. In the literature, η is often set to 20.0 [11, 32].

The detailed steps of the operator are as follows. For each variable, it is decided whether

a mutation is applied (Line 3 in Algorithm 6). After that, the operator draws another

value u uniformly at random, which is used in the subsequent steps to determine the new

value of xi, i.e. the value that is chosen from the distribution defined by η. Depending on

the value of u, a value from a distribution is drawn either on the left side or the right side

of the original value of xi (Lines 5 - 11 in Algorithm 6), and the update of the variable

xi is performed (Line 12). In case a drawn, new value for xi exceeds the upper or lower

limit of the variable, a repair mechanism is used in Line 13 which sets the value to the

respective border [5].

In the following, certain changes are made to this operator, and the three proposed

mutation operators for large-scale optimisation are described in detail. The newly

proposed versions are called Linked Polynomial, Grouped Polynomial and Grouped Linked

Polynomial mutation, where the last of these versions is the most effective operator based

on the original publication, and is called the Grouped Linked Mutation Operator (GLMO)

in the remainder of the thesis. In the following, we explain how the mutation can be

equipped with a variable grouping mechanism, and how the amount of change for each

variable can be influenced within these groups [5]. The experimental comparison between

all the different versions inside various algorithms is carried out below in Chapter 6.

5.2.2 Linked Polynomial Mutation

The Linked Polynomial Mutation operator follows essentially the same workflow as the

original Polynomial Mutation. The difference lies in the amount of change, which in this

operator is not independent between the mutated variables. As we have seen above, the

separability of a problem is usually of concern in large-scale optimisation. In a separable

problem, all variables can be optimised independently of each other to obtain the optima

of the problem. In contrast, in non-separable problems (where interactions between

variables exist) the solution quality can be affected in a negative way if changes are made

to one variable without a corresponding, suitable change to another, interacting variable.

To address this issue, we propose a version of the Polynomial Mutation operator where

the amount of change in each variable is connected to the amount of change in the other

mutated variables of the same solution. This “link” between the mutated variables is

implemented by influencing the choice of the value u in the operator. In the pseudocode

in Algorithm 6, the value for u (the amount of change) in Line 4 is now chosen prior
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to the start of the loop in Line 1. In this way, all values for the mutated variables are

determined by only one value for u, which is drawn one time and fix for all variables.

Thus, the same amount of change (relative to the domain) is applied to all variables that

are actually subject to mutation (according to the probability p) [5].

Using this concept can be beneficial for problems with interacting variables. If mutation

is performed on multiple variables of a solution, the link between the variables will

result in a similar change in both of the variables. This can lead to less disturbance in

solution quality in case these variables are interacting with each other. However, this

may not always be the case and is dependent on the specific types of interaction among

the variables. Especially since the mutation probability is usually chosen so that the

expected value of changed variables is 1 out of n variables, the effect of this mechanism

alone, that is without any variable groups, might be rather limited. The effectiveness of

this is examined later in the experiments in Chapter 6.

5.2.3 Grouped Polynomial Mutation

Next, the concept of variable groups is incorporated into the Polynomial Mutation

operator. In this version, we assume that a grouping mechanism is used to separate the

variables into multiple groups. Then, mutation is only applied to a group as a whole

entity, i.e. to each variable in a group at the same time. This is expected to work well in

large-scale problems when the groups are chosen in a way that interacting variables are

put in the same group [5].

In the Grouped Polynomial Mutation, the decision of which variables are mutated is

changed from a random probability per variable to a random choice of which group as

a whole undergoes mutation. The underlying assumption is that through a suitable

grouping mechanism, interacting variables, which should ideally be altered at the same

time, belong to the same group. This is supposed to benefit the search process, especially

in non-separable problems.

A difference to the original operator is that the grouped mutation does not require a

probability parameter p. Which and how many of the n variables are subject to change

is defined by the number of groups (γ), since one of the groups is chosen for the mutation

randomly. The operator works as follows, as written in [5]. In a first step, a grouping

mechanism is used on the solution ~x to separate the decision variables into γ groups, as

described in Section 3.3. This can be done before the actual optimisation starts (in terms

of interaction-based and contribution-based groups), or separately and anew each time the

mutation operator is used (which might only be feasible with simple grouping methods).

The second step is to select one of the γ groups randomly with equal probabilities for

each group. Then, Polynomial Mutation is applied to every variable in the selected group

(Lines 4-13 in Algorithm 6) [5]. More precisely, separate values for u are chosen and

used in the mutation for each variable in the group. No additional probability value is
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used. Which and how many of the variables are subject to mutation is entirely based

on the random selection of one of the groups. All variables belonging to the remaining

groups keep their original values. Assuming evenly sized groups, the amount of variables

which are subject to change is n
γ , which is in the expected case significantly larger than

the amount of mutated variables in the original and Linked Polynomial Mutation [5].

5.2.4 Grouped and Linked Polynomial Mutation

The Grouped and Linked Polynomial Mutation Operator (GLMO) incorporates both of

the concepts from the previous operators. The detailed steps of this mutation operator

are shown as pseudocode in Algorithm 7.

The necessary inputs for this operator are a grouping mechanism Γ and a distribution

index η. In case the groups are already precomputed by a non-simple method as described

above, the groups can also serve as an input directly. Otherwise, the whole mechanism Γ

can be used as an input. In case a simple mechanism is used, it can even be beneficial to

obtain different groups in each iteration or usage of the operator, as the specific simple

groups can be tailored to the specific solution to be mutated (e.g. Ordered Grouping

as seen in Section 5.1.6). Similar to the Grouped Polynomial Mutation, no additional

mutation probability for the variables is needed. One of the γ groups is chosen at random

and all variables in this group are mutated (Lines 1 and 2 in Algorithm 7). In addition,

as in the Linked Polynomial Mutation, only one value for u is drawn from the distribution

at the beginning of the operator (Line 3). This ensures that all variables in the chosen

mutated group are changed equally, i.e. by the same amount relative to their domains.

After choosing one of the groups, Polynomial Mutation is used on all variables in that

group using the given value for u (Lines 4 to 14).

As explained, it can be advantageous to the search if interacting variables are changed at

the same time, and we further assume that changing them by a similar amount can be

useful. This operator combines both of these functionalities. In contrast to the linked

version only, the variables that supposedly interact with each other may now belong

to the same group. Further, since now a larger amount of variables is changed due to

the mutation of a whole group, the link between the variables is expected to have an

increased effect. The original study by the authors in [5] shows that this GLMO version

performs better than each of the two proposed changes alone. It also shows that this

mutation operator is able to greatly enhance the performance of existing methods on

large-scale benchmark problems. The experimental section of this thesis evaluates the

performance further by applying it to a larger set of different benchmark functions with

different amounts of variables (see Chapter 6).
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Algorithm 7 Pseudocode of the Grouped and Linked Polynomial Mutation operator.
Pseudocode based on [5]

Input: Solution ~x, Grouping Mechanism Γ, Distribution Index η
Output: Mutated Solution ~y

1: {G1, ..., Gγ} ← Apply Γ to ~x, producing γ groups
2: j ← Pick a group index uniformly at random from {1, ..., γ}
3: u ← random(0,1)
4: for all variables xi with i ∈ Gj do
5: if u ≤ 0.5 then
6: δ1 =

xi−xi,min
xi,max−xi,min

7: δq = (2u+ (1− 2u)(1− δ1)η+1)
1
η+1 − 1

8: else
9: δ2 =

xi,max−xi
xi,max−xi,min

10: δq = 1− (2(1− u) + 2(u− 0.5)(1− δ2)η+1)
1
η+1

11: end if
12: yi = xi + δq(xi,max − xi,min)
13: repair(yi)
14: end for
15: for all variables xi with i /∈ Gj do
16: yi = xi
17: end for
18: return ~y

5.3 Dimensionality Reduction using Linear Combinations

The third proposed algorithm of this thesis is the concept of using linear combinations of

solutions to reduce the dimensionality of the search space. This section describes the

method based on the findings and explanations of the 2019 publication by the author in

[7]. In particular, some of the mathematical descriptions of the concept in this section

are strongly based on the descriptions in the author’s related article.

The “Linear Combination-based Search Algorithm” (LCSA) is designed to increase the

exploration abilities of existing algorithms while simultaneously performing a dimension-

ality reduction of the search space without using coevolution or variable groups. The

concept is mainly based on the assumption that by using a linear combination of solutions

in the n-dimensional search space, one can obtain other good or promising solutions. The

concept of linear combinations has, for instance, also been used in [110] to preserve the

feasibility in problems with linear constraints.

When metaheuristic, especially evolutionary, approaches are used, it is usually assumed

that through a suitable encoding of the problem, recombinations and mutations of good

solutions can be used to generate other promising solutions. Further, Pareto-optimal

solutions, or approximations of such, may, to certain extent, be similar to each other. In

some of the popular benchmark suites, for instance, all optimal solutions share the same
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values for their convergence-related decision variables [44, 28]. These similar properties

can be approximated by an optimisation algorithm, and the knowledge that certain values

in certain variables are beneficial for the overall quality of solutions is implicitly coded in

the population of the algorithm.

In this LCSA approach, the aim is to make use of this inherent information in the

population. The method is based on the assumption that at each generation of the EA,

the current population’s members contain the information which (sub-)vector-space of the

n-dimensional search space contains the (at that point in time) best or most promising

solutions [7]. To utilise this concept and to search for solutions in this new subspace,

a population of coefficient vectors is formed and used to create linear combinations of

solutions. Optimising these coefficients with a metaheuristic can then help to increase

the exploration and exploitation of the search space in areas that likely contain further

improved solutions. Through such combinations of population members, the aim of the

resulting EA is to improve the search process of multi- and many-objective optimisation

algorithms in terms of solution quality.

The idea of extracting knowledge from the search process can be seen as related to the

concept of “innovisation” from the literature ([111, 112]), specifically online innovisation.

This concept aims to identify relevant information about the problem from the obtained

solutions at runtime of the optimisation, and ideally feed it back to the optimisation

process to further improve the search.

An advantage of this approach is the fact that population sizes are usually smaller than

the number of decision variables (in large-scale optimisation). Therefore, even if all

population members are used in the linear combinations, the proposed method is able

to provide a reduction of dimensionality for large search spaces. In the following, the

concept is introduced formally and the generic algorithm structure is presented. As

the other proposed approaches in this thesis, the LCSA can be used with arbitrary

population-based metaheuristics, and the evaluation of the approach on large-scale and

other problems with various algorithms is performed in Chapter 6.

5.3.1 Concept of Linear Combinations of Solutions

Suppose we have a real-valued optimisation problem as shown in Eq. (2.1), containing n

decision variables and m objectives. As written in [7], let the population of an algorithm be

P and its size be s := |P |. At each given time of the optimisation process the population

consists of s solution vectors each of dimensionality n: P = {~x(1), ~x(2), ..., ~x(s)}. Each

solution is a vector ∈ Rn:

~x(i) = (x
(i)
1 x

(i)
2 ... x(i)

n ) (5.10)
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The set P can be used to define a vector (sub)space, using the population members to

span this space. The dimensionality of this space is given by the rank of the matrix of

the spanning vectors [7]. Using the variables of the population members, we can create

the matrix X̂ ∈ Rs×n, where each row contains one of the solutions in P .

X̂ =


x

(1)
1 x

(1)
2 · · · x

(1)
n

x
(2)
1 x

(2)
2 · · · x

(2)
n

...
...

. . .
...

x
(s)
1 x

(s)
2 · · · x

(s)
n

 (5.11)

In an EA, new solutions for an optimisation problem are usually created by using

recombination operators like, for instance, the arithmetic or simulated binary crossovers.

On the other hand, multiple solutions of the population can also be combined linearly

instead. The focus in the following lies on general linear combinations, although it is also

possible to use smaller subsets of these, for instance convex or conical combinations. We

define a linear combination of the solutions as follows.

~x′ = ~yX̂ = y1~x
(1) + y2~x

(2) + ...+ ys~x
(s) (5.12)

where the vector ~y contains the combination coefficients:

~y = (y1 y2 ... ys) (5.13)

Using this concept, we can employ a metaheuristic algorithm to perform a search for

better solutions from combinations of the existing ones. This new search space, which

spanned by the s vectors in P , has a dimensionality equal to the rank of the matrix X̂,

i.e. 1 ≤ rank(X̂) ≤ min{n, s}.

Since this method combines all of the s existing solutions, it can also be seen as a variant

of an s-parent crossover. However, in a multi-parent crossover new solutions are typically

created through random combinations, while the environmental selection process of the

EA is responsible for the decision whether this produced solution is an improvement. In

contrast, our proposed approach uses an evolutionary process internally to find “optimal”

or improving combinations, i.e. the parameters for the combination are not chosen

randomly, but are subject to an optimisation process.

In the LCSA method, instead of optimising the original variables of the problem, the values

of the vector ~y are optimised to search for promising linear combinations. Thus, assuming
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that all s population members are used in the linear combinations, the dimensionality

of the new optimisation problem is reduced to s decision variables as opposed to the n

variables of the original problem. The effects this procedure has on the search can vary

depending on the dimensionality of the problem.

In the following example, as described in [7], consider a 30-dimensional problem that is

optimised using a population size of s = 100. In this case, searching for optimal linear

combination coefficients results in a search in a 100-dimensional space. The created

solutions by the combinations, however, still remain in the original, 30-dimensional

space, and thus the formed vector space contains redundancy, since not all the vectors

used for the combinations can be linearly independent. On the other hand, if the same

mechanism is used in a high-dimensional problem, for instance with n = 1000 variables,

we can observe a different effect. The s = 100 population members can at most define a

100-dimensional subspace of the original search space. Thus, the optimisation algorithm

searches in an – at most – 100-dimensional subspace of the 1000-dimensional original

search space. In this case, the optimisation in the space of linear combinations serves as

a dimensionality reduction technique. If this technique is used in the beginning of the

search, the whole population still consists of mostly randomly created solutions, where

it is not guaranteed that good solutions actually lie in the defined subspace. However,

after the optimisation already progressed for a certain time, we can assume that the

population started to converge towards promising areas of the search space. Thus, the

spanned vector space, i.e. a combination of the current variable values, may contain

additional promising solutions which can help to approximate the Pareto-optimal areas.

This way of dimensionality reduction makes the LCSA suitable for large-scale problems,

and through the exploration of subspaces, we can also expect a good performance in

multi- and many-objective optimisation in terms of diversity of solutions. A possible

drawback is, of course, that the lower dimensional space might not contain the actual

Pareto-optimal solutions, and therefore optimising only the linear combinations might

make it impossible for the EA to find these optimal regions of the original search space. To

counter this risk, in the algorithm structure which is described in the following subsection,

the optimisation of the original problem and the optimisation of linear-combinations take

turns to harvest the best of both search spaces.

5.3.2 Algorithm Structure of the LCSA

The proposed concept of the LCSA can be used inside arbitrary metaheuristic optimisation

algorithms. In the following, the algorithm structure is described as written in the author’s

contribution in [7]. We define a population Q of ~y-vectors, where each vector in the

population defines one linear combination of the members of P as described above. Thus,

any optimisation algorithm can be used on this newly formed population to search for

promising linear combinations of the underlying original solutions. This optimisation

of the population Q, i.e. the search in a promising subspace of Ω defined by P , is
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Algorithm 8 Linear Combination-based Search Algorithm LCSA

Input: Problem Z, Optimisation algorithm A
Output: Solution population P

1: P ← Random initial population for Z
2: while termination criterion not met do
3: for i = 1 to iter1 do
4: P ← Perform one iteration of A on population P
5: end for
6: X̂ ← Decision variable values of the current population P
7: Q← Random initial population of linear-combination-vectors
8: for i = 1 to iter2 do
9: Q← Perform one iteration of A on population Q

10: P ← EnvironmentalSelection(P ∪Q)
11: end for
12: end while
13: return P

employed inside other, existing metaheuristic algorithms as an additional search step.

More precisely, the search mechanism of the original (arbitrary) metaheuristic is used in

turns with the proposed linear combination-based search [7].

The following mathematical description is identical to the one given in the earlier

publication by the author in [7]. Let X̂ be the matrix of the decision variable values of

all solutions in P as seen above, where each row in X̂ corresponds to one solution in

P . As a result, X̂ is an s× n matrix, where s is the number of solutions in P . In the

same way, let Ŷ be the matrix of the decision variable values (i.e. coefficients of linear

combinations) of the solutions in Q. The population size of Q is t, therefore Ŷ ∈ Rt×s.
The original objective function evaluation can be applied to the new population by simply

multiplying X̂ with Ŷ and computing ~f(Ŷ X̂), i.e. applying ~f to each row in Ŷ X̂. For

practical reasons and to limit the search space of the new problem, we also define lower

and upper bounds for the variables yi, i.e. yi ∈ [yi,min, yi,max], i = 1, .., s′.

The resulting LCSA optimisation approach works as follows, and is shown in Algorithm 8.

In the main loop of the algorithm, the population P of the original problem is optimised

with a multi-objective algorithm A for a specified number iter1 of iterations (Lines 3 to

5 in Algorithm 8). Then, we build the matrix X̂ out of the decision variables’ values

of the current population P . To start the linear combination-based search phase, a

random population Q of linear-combination-vectors is created (Line 7). The algorithm

then optimises Q for a certain amount of iterations iter2 using the same optimisation

algorithm A (Lines 8 to 11). During this step, all evaluated solutions are also used to

update the original population P , using the environmental selection method of A. As a

result, we obtain an updated population P for the next iteration of the main loop.
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5.3.3 Discussion and Modifications of the LCSA

The LCSA switches between two optimisation phases, which optimise either the original

problem or the coefficients of the linear combinations. The resulting algorithm is able to

explore the original search space frequently during its runtime, while at the same giving

increased attention to the exploitation of promising subspaces. If the upper and lower

bounds of the coefficients (yi ∈ [yi,min, yi,max]) are limited to be between zero and one,

the search can only exploit the convex combinations of the existing solutions, i.e. the

“inner” area of the simplex spanned by the (non-dominated) population members. The

experiments in the previous publication [7] and the experiments conducted in this thesis,

however, make use of larger domains for these coefficients, which allows extrapolation

and therefore further enhances the exploration of the algorithm.

Previous results in [7] showed that this method was able to increase the performance in

60 problem instances from different benchmark families, both in many-objectives and

in large-scale problems. The LCSA was able to increase the solution quality for two

standard algorithms NSGA-II and GDE3, and even improved the performance of two

many-objective algorithms: NSGA-III and RVEA.

Even though these results showed the potential of the linear combinations, the original

version had the drawback that it used the NSGA-II optimiser exclusively for the optimi-

sation of the coefficients ~y. This use of NSGA-II can be a disadvantage when optimising

a many-objective problem. To further harvest the advantages of existing methods, the

version proposed in this dissertation thesis uses the employed metaheuristic in both, the

original search space and the reduced space of the combination coefficients. This means,

if SMPSO is used with this method, SMPSO is used to search in both spaces, in contrast

to the version in [7]. In this way, using a many-objective algorithm within the LCSA

framework is expected to deal well with many-objective large-scale problems as well.

One further modification to concentrate on promising solutions can be to use only the

non-dominated solutions in the population for the linear combinations instead of the

whole population. From a theoretical point of view, this can help to achieve a faster

convergence, since the algorithm concentrates more on the “best” subspace spanned

by the first front. In case the first front is significantly smaller than the population

size, this measure also reduces the amount of decision variables of the linear coefficient

problem, as fewer coefficients are necessary. On the other hand, focussing only on the

non-dominated solutions can also be disadvantageous to the overall search. For instance,

it can lead to a reduced exploration of the search space, especially in the early stages of

the optimisation. Moreover, it is known that Pareto-dominance is not a well-performing

concept in many-objective problems, and limiting the linear combinations to those non-

dominated solutions can affect the diversity in the objective space negatively. For these

reasons, the version in this thesis uses the whole population for the linear combinations.
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5.4 Discussion and Classification of Proposed Methods

In this section, the three developed large-scale optimisation approaches are compared to

each other and classified based on the different categories and characteristics proposed in

Chapter 4.

Comparing the three proposed methods in terms of overall complexity, we can see that the

WOF, in comparison with the other two, seems relatively complex, as it requires multiple

different building blocks such as the selection of the pivot solutions, the transformation

functions and the grouping mechanisms. The different GLMO methods are, in contrast,

probably some of the simplest ways to incorporate variable groups into traditional

algorithms and enable them to deal with large-scale problems. GLMO only requires the

change of the mutation operator, and since many algorithms might use the same mutation

operators, this can be applied to a large variety of algorithms without further change. It

is, in this way, also relatively easy to dynamically activate or deactivate the large-scale

capabilities inside an algorithm by simply choosing between modified or original mutation

operators.

In the following, we take a look at the different building blocks from the literature as seen

in Chapter 4, and examine which of these blocks are present in the proposed methods.

The results of this analysis are summarised in Table 5.1. We observe that most of the

building blocks identified in the literature are absent in the proposed methods. The WOF

and GLMO approaches are marked partly for the “random grouping” building block as a

representative of simple grouping methods. Both of them can be (and partly were) used

in the literature with random groups before, but both were used with other grouping

methods like the ordered grouping as well (Section 5.1.6). Mainly, both algorithms do

not use any interaction-based or contribution-based groups. Other than that, we can

see that both WOF and LCSA use the blocks to create and optimise a transformed,

lower-dimensional problem. Looking back to the situation in Table 4.1, only two methods,

ReMO and LSMOF, make use of this kind of technique in the literature, and it should

be noted that LSMOF does so while being based on WOF. One common building block

in all of the three proposed methods is that they all, at some point in their process,

optimise the original large-scale problem. In case of the GLMO, in fact, only the original

problem is optimised, but with a modified operator, while all optimisation takes place on

the original problem.

Dimensionality Reduction

In the following, we categorise the proposed methods based on the categories in Chapter 4

as shown in Table 5.2. Both GLMO and LCSA require different building blocks for

their dimensionality reduction techniques. While the former needs a variable grouping

method inside the mutation operator, the latter relies on reducing the dimensionality

through a search in a spanned subspace as described in Section 5.3. WOF uses pivot
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Building Blocks
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WOF (X) X X X
GLMO (X) X
LCSA X X X

Table 5.1: Building blocks from the related works which are present in the proposed
large-scale algorithms.

solutions and variable groups to transform the problem. Since in both WOF and LCSA,

the new, lower dimensional problem is created by the introduction of new variables which

span a new search space inside the large-scale problem, both of them can be regarded

as transformation-based approaches in the classification of dimensionality reduction

(category 2). GLMO, on the other hand, can be seen as part of the coevolution-based

group of algorithms, since it changes variables in the mutation operator only in certain

groups while leaving the other groups fixed. On the other hand, the crossover or PSO

movements (depending on the used metaheuristic) are always performed on the original

large-scale problem. Although other approaches like MOEA/DVA also apply optimisation

on the original large-scale problem, the related methods usually divide the CC-based

optimisation and the large-scale optimisation in temporal order (meaning the algorithm

applies one of these approaches at a time, after each other). This means that whenever

CC-based optimisation is used, the whole evolutionary process using crossover and

mutation is applied only to a single variable group. In contrast, this division is not done

in GLMO, and only the original problem is optimised. As a result, GLMO falls in the

“no reduction at all” category of dimensionality reduction (category 3). If we look again

at Table 4.2, we see that the only other method in the literature so far which is not

using dimensionality reduction is the DLS-MOEA. Since now GLMO also falls into that

category, with the proposed methods included still only 2 out of 15 methods make use of

this strategy.

Diversity Management

Next, we take a look at the ways of diversity management of the three methods. As

described above and in the original publications, the WOF method, applied to a certain

pivot solution, usually can leads to a fast convergence speed towards some optimal
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Dimensionality
Reduction Category

Diversity Management
Category

Many-

Year Algorithm 1 2 3 1-1 1-2 2 3 4 objective Parallel

2016 [4] [1] WOF X X X (X)
2016 [5] GLMO X X X ©
2019 [7] LCSA X X X

Table 5.2: Classification of the proposed large-scale methods. WOF is the only method in
the new category 4 of diversity management which is not existent in the related literature.

solutions. The drawback of converging too fast to only one region of the Pareto-Front

is the risk of loosing diversity. Therefore, WOF is designed to achieve diversity by

using multiple pivot solutions ~x′k in each of the weighting optimisation steps, to obtain

convergence to different parts of the Pareto-front and therefore achieve and maintain

diversity. The mechanism that allows WOF to balance between diversity and convergence

is the selection of the pivot solutions, and to do the transformation of the problem

multiple times with these solutions before merging the populations. Unfortunately, this

method of achieving diversity is not used in any of the related works and it is different

from the proposed main categories and subcategories introduced in Chapter 4. WOF

is not part of the categories 1-1 or 1-2 since it does not use diversity-related variables.

It does not use indicator-based optimisation as in the third category. However, since

category 2 consists of those methods which do not explicitly have a mechanism for

managing diversity, this category does not fit to WOF either. We therefore introduce

a fourth main category of diversity management, which we define as achieving

diversity through pivot solutions. WOF is currently the only representative of this

way of obtianing diversity. The forth category is added into Table 5.2.

Noteworthy is that the new LSMOF algorithm from the literature [69] is strongly based

on WOF in the way that it uses the transformation function with weight vectors to

create the new subproblems. It does, however, as described above, not make use of any

mechanism to select specific solutions as candidates for this transformation. In fact,

since the transformation step is only done once in the beginning of LSMOF, it uses every

solution in the initial population of the algorithm to do a transformation. And while this

is probably not harmful to the diversity, the LSMOF clearly does not take any steps of

using specific solutions for increasing diversity either, and especially not in the remaining

parts of the algorithm. Instead, since all these transformed problems are optimised at

the same time, the Hypervolume indicator is used as described in Section 3.2.

The GLMO approach does not possess a specific method of diversity management in

the basic implementation, since it only specifies using (simple) variable groups. GLMO

basically takes care of diversity by always optimising the whole, high-dimensional problem

with its crossover operator. Therefore, like the other algorithms in category 2 of diversity

management, it relies on the selection mechanism of the used metaheuristic to achieve

diversity. If GLMO is applied to a NSGA-II or NSGA-III algorithm, it is to be expected
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that the final performance in terms of diversity is entirely depended on the diversity

capabilities of those algorithms. However, this classification relies on the assumption that

the used grouping mechanism in the mutation operator is either a simple method or an

interaction-based method as described in Section 4.2. It is, on the other hand, very easy to

use also contribution-based groups or even a combination of contribution-based and other

methods to obtain the groups for the mutation. For the sake of computational budget,

these groups might have to be precomputed in the beginning of the algorithm, as they

should not be redone in every iteration like the simple methods can. If contribution-based

groups are applied in the GLMO method, it might raise the computational budget needed

for the approach, but it might be beneficial for the overall performance and the diversity

of the problem. The GLMO can therefore easily be extended in this way to be a member

of category 1-1 of diversity management. Nonetheless, in its original version, and as used

in this thesis, it only uses simple groups, and by that does not manage diversity. In

Table 5.2 the approach is listed in category 2 as a result.

Regarding the LCSA, it achieves diversity basically through the assumption that the

inter- and extrapolation of solutions in the transformed problem can produce diverse

solution candidates, and that the selection mechanism of the used metaheuristic is able

to keep these in the population. In addition, LCSA optimises the original problem in

turn with the transformed one, which makes it also similar to other methods like WOF,

MOEA/DVA or LSMOF in the way that there are phases of optimising the original

problem. LCSA therefore also belongs to diversity-management category 2, which does

not include specialised ways of obtaining or retaining diversity (see Table 5.2). However,

the linear search mechanism is actually designed and shown in the original publication

to benefit diversity [7]. This is because it enables the algorithm to produce solutions

through the extrapolation in a linear hyperplane, which can lead to a good exploration

and produce more diverse solutions within a certain converged area in the search space.

Even though LCSA belongs technically to category 2, because it relies on the used

metaheuristic, it is designed with the goal of increasing diversity in the population.

Nevertheless, it does not manage this increased diversity with its own mechanism.

Dealing with Many-objective Problems

Following the analysis of the related work in Table 4.2, we now give a brief analysis

of the many-objective capabilities of the proposed methods as well. In their original

publications, only LCSA was actually designed for many-objective problems, while WOF

ans GLMO were mostly used with 2- and 3-objective problems. However, all of them

possess certain many-objective capabilities if the employed metaheuristic is able to deal

with many-objective problems.

For GLMO, the diversity management is entirely up to the used metaheuristic, and

the modified mutation operator can be used directly inside a many-objective algorithm

like NSGA-III. In the case of WOF, the same applies, but another aspect of WOF can
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affect its efficiency for many-objective problems as well. This regards the selection and

especially the amount of chosen pivot solutions ~x′k. These solutions are used to control

the diversity of the algorithm, and it is recommended to use a number of pivot solutions

that is at least the number of objective functions. Therefore, if reference directions are

used for the pivot-selection, as was proposed in [6] and described in Section 5.1.7, at least

one transformed problem is formed for the extremal solutions in each objective function,

i.e. the solution which has the best value in one objective. Using this recommendation

of the parameter q, we can assume that WOF has a kind of built-in scalability for

increasing numbers of objectives. On the other hand, it is not to be expected that

WOF would achieve a satisfactory performance for many-objective problems when using

NSGA-II as the optimiser, even if the number of pivot solutions is increased, due to the

Pareto-dominance-based selection mechanism of NSGA-II. Therefore, the many-objective

capabilities of WOF depend on different aspects, but the approach can be adjusted to

be applicable to many-objective problems using the correct selection mechanisms and

metaheuristics.

Regarding the LCSA, since the experiments in the original publication actually showed

good performance for many-objective instances, it can be assumed that it is a promising

way to increase the performance of existing many-objective algorithms. It was shown

that the linear search through extrapolation is able to significantly increase the solution

quality of NSGA-III as well as RVEA on 4- and 5-objective benchmark problems. This

shows that not only does the approach work well for many-objective optimisation, it

also further increased the performance of already well-performing algorithms on these

problems. Since the goals of the LCSA is not just dimensionality reduction, but also the

identification of relevant subspaces to increase exploration, among the three proposed

algorithms, the LCSA is the one whose design is intended to work for many-objective

optimisation.

To further explore the capabilities of the proposed methods, in the experimental evaluation

of this thesis (see Chapter 6) all of the three approaches are also tested on many-objective

problems, and show good performance when they are used with many-objective algorithms.

For this reason, Table 5.2 lists all three approaches as suitable for many-objective

optimisation.

Parallel Implementations of the Proposed Methods

Next, we focus on the possible parallel implementations of the proposed methods. It

is clear that the GLMO is actually not easy to parallelise on its own, or at least not

easier than to parallelise any existing metaheuristic that uses the mutation. Since the

algorithm structure does not deviate from the usual flow of the underlying metaheuristic,

it is therefore dependent on the underlying algorithm if GLMO works well for parallel

computation. This is denoted with a © in Table 5.2.
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To parallelise WOF, the same is true as for GLMO, which means if a parallel algorithm

is used, parts of the optimisation can be done in parallel. However, this is only partly

effective, since WOF consists of the different steps of optimisation, namely the normal

optimisation of the original problem and the optimisation of the q transformed problems.

The optimisation of the q different independent problems can be done in parallel with

any metaheuristic, which makes WOF easy to parallelise in these phases. An issue is,

on the other hand, that these parallel processes only exist for a certain time and there

is frequent need for communication between cores to distribute the created problems

and gather their results. The merging of the populations and the subsequent large-scale

optimisation phase needs to be done in a central instance again, before new q problems

are created. In addition, WOF stops this alternation at a certain point in time to focus

entirely on the original problem. WOF is therefore, in parts, parallelisable, but is by

design not meant to work very efficiently on multiple cores at the same time.

The LCSA is probably the hardest to parallelise among the three proposed algorithms,

since it has alternating phases similar to WOF that would require communication and

data transfer, except that it does not use multiple transformed problems, but just a

single one. Therefore, even if LCSA is used with a parallel EA, there is increased need

for central coordination.

5.5 Summary

In this chapter, the proposed approaches to solve large-scale optimisation problems were

explained and analysed. The three methods WOF, GLMO and LCSA were described

together with their components in detail and possible advantages and shortcomings

were discussed. The proposed algorithms were further classified based on the identified

categories from the previous chapter. The comparison of the methods showed various

differences in terms of dimensionality reduction and diversification, and revealed that

the proposed techniques are substantially different in many aspects from most of the

large-scale work in the literature.
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Evaluation

In this chapter, the proposed methods are experimentally evaluated, alongside some of

the most prominent and recent related algorithms from the literature. This is done by

performing a variety of different experiments with various versions of the metaheuristics,

varying parameter settings and computational budgets. The goal of this chapter is

to contribute an in-depth analysis which compares the state-of-the-art using the same

benchmarks, parameters and computational budgets. 184 different problem instances are

used for this purpose, ranging from low-dimensional to large-scale and from 2-objective

to many-objective instances with different properties. In total, the experiments for this

thesis required multiple weeks of calculation time in parallel on multiple machines with

between 20 and 60 cores each, and is the most extensive experimental evaluation of

large-scale methods up to date (to the best of our knowledge). The details are as follows.

After introducing the general parameter settings for the evaluation, the main contributions

of this thesis to large-scale optimisation, namely the WOF, GLMO and LCSA are

evaluated in Sections 6.2 to 6.4. Each of the proposed methods is examined in detail

on its own by applying them with different configurations to a variety of benchmark

functions and by comparing them with their respective low-scale optimisers. Section 6.5

compares the performance of the three algorithms with each other.

In a next step, some of the respective best performing configurations from each of these

methods are used to compare their performance to state-of-the-art large-scale algorithms.

This part is a central focus of the evaluation chapter, as it sets the proposed methods

into relation with the current state of large-scale optimisation algorithms (Section 6.6).

These experiments are performed on different computational budgets to compare with

methods that are based on interaction-based groups.

In the last step, we investigate the influence of interaction-based groups on the success of

certain large-scale methods (Section 6.7). To do so, the used interaction-based groups

of these methods are replaced by random groups and their performance is compared

123
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again to that of other large-scale techniques. The last section of this chapter provides a

summary and discussion of the experiments.

6.1 General Experiment Settings

In this section, the general settings of the experiments are described. These settings

apply to most of the following experiments in this chapter. Wherever the settings of

a specific experiment differ from the ones described here, this is indicated respectively.

In the following, we first describe general experiment settings, and then go into detail

into the configuration of related algorithms, implementation details and configurations

of the proposed methods and the used benchmarks and their settings in the subsequent

subsections.

The experiments were done using the PlatEmo framework, version 2.0.4 [113]. All

experiments are performed for 31 independent runs for each configuration of an algorithm

on the specific problem instance. The results are examined for statistical significance

using the two-sided pairwise Mann-Whitney-U Test (also called the Wilcoxon Ranksum

Test) [114, 115], with the null hypothesis that the distributions of the two samples which

are compared have equal medians. A threshold value of 0.01 is used, i.e. statistically

significant differences between the performance of two algorithms is assumed for a p-value

smaller than 0.01.

The two performance indicators for the experiments are the IGD metric [65] and the

Hypervolume (HV) indicator [75, 76], as described in Section 2.7. The IGD metric

is commonly used in the literature for multi- and many-objective optimisation, and

is in general able to measure convergence and diversity of the obtained solution sets

simultaneously. It serves as the main evaluation metric for measuring final solution

quality as well as convergence behaviour over time, and was also used by many of the

existing large-scale algorithms [67, 68, 69, 24, 25, 70, 71]. The HV indicator is used as the

secondary metric. Due to its large computational effort and the extent of the experiments

(which took multiple weeks of parallel computation), HV values are only computed on

the final solution sets of each algorithm, and only the IGD is used to track the behaviour

of the algorithms during the runtime. Furthermore, two of the related algorithms which

are used in the experiments (DLS-MOEA and LSMOF) use the Hypervolume internally

in their indicator-based optimisation. It can therefore mislead the evaluation if the same

metric is used for evaluation that is internally optimised by some of the algorithms.

The IGD values are computed using a sample of the respective Pareto-front of the

benchmarks. The samples are provided by the used PlatEmo framework. The sample

sizes are based on the number of objectives and are set to 10, 000 points for the 2-objective

instances and to 9870, 9880 and 8855 points for the 3-, 4- and 5-objective problems.

The used reference points used for the Hypervolume calculations are obtained using the

respective nadir points of samples of the benchmarks, multiplied with a factor of 2.0 in
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each dimension. These samples to obtain the nadir points are of size 2000, 1953, 1771

and 1820 for the 2-, 3-, 4- and 5-objective instances respectively. Note that the sizes of

the reference sets produced by the framework can be smaller than these numbers, for

instance in the case of disconnected or degenerated Pareto-fronts.

All algorithms use a computational budget of 100, 000 function evaluations in all ex-

periments if not stated otherwise. A budget of 10, 000, 000 evaluations is used instead

in some of the experiments to compare with the state-of-the-art. The population sizes

are set to 100, 91, 84 and 85 for the 2-, 3-, 4- and 5-objective instances respectively.

These numbers are chosen for all algorithms, so that the population sizes account for

classical and many-objective algorithms, which often require evenly distributed reference

directions.

6.1.1 Configuration of State-of-the-Art Algorithms

Implementations of the related works from Section 3.2 have been obtained through con-

tacting the corresponding authors of the algorithms. In addition, some of the large-scale

algorithms have been provided by the used PlatEmo framework, and have been altered

by the author of the thesis to resemble the original publications as closely as possible.

All of our own proposed contributions have also been implemented in the PlatEmo

framework, which provides implementations of the used benchmark functions as well.

Based on the available sources, the authors were able to obtain implementations of the

CCGDE3, LMEA, MOEA/DVA, S3-CMA-ES, DLS-MOEA, ReMO and LSMOF algo-

rithms from the literature. These methods in total represent all of the different categories

of dimensionality-reduction, diversity management, and many-objective capabilities as

proposed in Chapter 4. The CCGDE3 method is excluded from the experimental evalua-

tion, since it was shown in various publications that its performance is not comparable

to that of other modern mechanisms, and at the same time its methods of dimensionality

reduction and diversity management are represented by the MOEA/DVA and LMEA

techniques as well.

Some of related methods are implemented in multiple different versions as follows. ReMO

is implemented using NSGA-II as well as MOEA/D as internal optimisers, while the

LSMOF implementation is used with the NSGA-II and SMPSO optimisers, as these

versions were also used in the original publication [69]. Further, to examine the effect of

interaction-based groups on the performance of MOEA/DVA, LMEA and S3-CMA-ES, we

implemented each of the algorithms as a random-group-based version. In these algorithms,

the interaction-based groups are replaced with a random grouping. In this way, we can

also apply and compare these search techniques on a smaller computational budgets, since

the original versions are not applicable without a minimum of multiple million evaluations.

As a result, a total of 11 different related algorithms are used in the experiments, denoted

as LMEA, MOEA/DVA, S3-CMA-ES, randomLMEA, randomMOEA/DVA, randomS3-

CMA-ES, DLS-MOEA, Re-NSGA-II, Re-MOEA/D, LS-NSGA-II and LS-SMPSO.
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Whenever possible, the parameters used in the respective original publications are used in

our experiments to follow the recommendations that the original authors of the methods

made. Further, we use the same parameters in all algorithms that depend on the same

mechanisms, e.g. when random grouping is used, all algorithms use the same number of

groups, when interaction-based grouping is used, the same parameters for the grouping is

used in LMEA and MOE/DVA. The further parameter settings of the related methods are

listed in the following. If deviations from these parameters exist in a specific experiment,

this is stated in the respective section.

• LMEA is configured using the parameter values nSel = 2, nPer = 4 and nCor = 6.

• MOEA/DVA in used with NCA = 50 and NIA = 6.

• S3-CMA-ES uses nPer = 50 and further retains the same parameters as in the

source code provided by the authors and in the PlatEmo framework. The number

of subpopulations is set to 5, the size of the subpopulations is 10. The group size

for separable variables in the interaction analysis is set to 35.

• The randomised versions of LMEA, MOEA/DVA and S3-CMA-ES use γ = 4 groups

of even size, where the last group contains additional variables in case n is not

evenly divisible by 4.

• DLS-MOEA was obtained from the original authors and is configured as in the

original publication, with the exception of reducing the number of generations per

phase. In the original publication, each of the two phases was used for 20, 000

generations. However, this roughly corresponds to 800, 000 function evaluations,

which exceeds the number of maximum evaluations in most of our experiments.

Therefore, the number of generations for each phase is set to 200. The crossover

probability is set to 0.9 as in the original work.

• Re-NSGA-II and Re-MOEA/D were obtained as source codes from the original

authors, and the parameters are taken from their implementation. The size of the

transformed problems is set to v = 50. In Re-NSGA-II, crossover probability is 0.7

and mutation probability is set to 0.4. The mutation rate and step size are set to

0.02 and 0.2, and the lower and upper bounds of the variables of the transformed

problems are set to −1 and 1 respectively. Re-MOEA/D uses a neighbourhood size

of 15. Since in the original publication ReMO was only applied to ZDT problems,

where the variable domains are between 0.0 and 1.0, and this is not necessarily

the case in the more complex benchmarks used in our experiments, we adapt

an additional mapping of the variables into the domain of the current problem’s

domains after the transformation step in each function evaluation.

• The LS-NSGA-II and LS-SMPSO codes are also obtained through contacting with

the authors of the method. The number of generations for the weight optimisation

is set to 10, the population sizes of the transformed problems is set to 30.
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• Wherever an algorithm uses polynomial mutation [101, 102], it is configured with a

distribution index of 20.0 and a probability of 1/n. An exception are the cases where

the structure of an algorithm explicitly changes these values, as in DLS-MOEA or

LMEA. SBX crossover [100], where applicable, is used with a distribution index of

20.0 and a crossover probability of 1.0.

6.1.2 Configuration of the Proposed Methods

Regarding the proposed approaches from Chapter 5, each of the methods is implemented

with multiple different optimisation algorithms and in different configurations as follows.

Five different variants of the WOF are used in this chapter, using different internal

optimisers. First, NSGA-II and SMPSO are used, as they have been used in earlier

publications and in the related work. In addition, MOEA/D and NSGA-III are used

inside WOF for the first time, which have not been present in the literature so far. The

fifth version of WOF makes use of a random choice of the internal optimiser. This new

version of WOF is called WOF-Randomised, and is aimed to make use of the potentials of

each of the separate optimisers, which minimises the risk of using a non-suitable optimiser

for a specific problem instance. WOF-Randomised works as follows. In the first phase of

the optimisation process (determined by the parameter δ), the algorithms to optimise

the original problem and the transformed problems are drawn randomly from the pool of

NSGA-II, SMPSO, NSGA-III and MOEA/D each time. In the second phase of the search,

NSGA-III is used in order to obtain and preserve diversity. For all five WOF versions,

the following parameters are used: δ = 0.5, γ = 4 with the ordered grouping method,

t1 = 1000, t2 = 500, q = m+ 1, the transformation function used is the parameter-free

transformation (ψ4), and the pivot solutions are drawn based on reference lines.

The proposed extensions to the mutation operators, namely the grouped mutation, the

linked mutation, and the grouped linked mutations, are implemented into the NSGA-II,

SMPSO and NSGA-III algorithms. For each of these three optimisation algorithms,

besides the original version, four additional versions were created. One where the mutation

is replaced by a linked mutation, another where the mutation is replaced with a grouped

mutation, and one where the grouped and linked mutation is used. In addition, as in the

original work, we compare one version of the optimisers which uses normal polynomial

mutation, but with a high mutation probability, which equals 0.25. This is done to make

a fair comparison, since a number of γ = 4 groups is used in the modified operators,

and the expected amount of changed variables is comparable to a high mutation rate in

the normal polynomial mutation. The ordered grouping method was used to create the

groups. In all of these operator versions, a distribution index of 20.0 is used.

The linear search mechanism LCSA was implemented into NSGA-II, SMPSO and NSGA-

III as well. Here, the original problem is optimised for 100 generations at a time before

one linear search optimisation step is carried out. The modified linear search uses the
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same optimiser and environmental selection strategies, the same population size, and

is done for 30 generations at a time. The whole population is used to create the new

problem instead of only the non-dominated solutions, which means the new linear search

problem contains the same amount of decision variables as the population size of the

original problem. The lower and upper bounds of the coefficient variables are set to

[yi,min, yi,max] = [−10.0, 10.0] for all variables.

6.1.3 Benchmark Problem Specification

Regarding the used benchmark problems and the corresponding numbers of variables

and objectives, we test the algorithms on a total of 184 different problem instances to

cover a wide range of different combinations. Among them are low-scale and large-scale

problems, multi- and many-objective instances, and different benchmark families. The

details are listed below.

1. We use the four most prominent benchmark families, which also are mostly applied

in the related algorithm’s literature. These are the DTLZ1-7 [40], WFG1-9 [28],

UF1-10 [48], and LSMOP1-9 [44] benchmarks, which amount to a total of 35 distinct

test problems.

2. The DTLZ1-7 problems are used with n = 40 and n = 1000 variables, and each of

these in combination with m = 2, 3, 4 and 5 objective functions, resulting in 56

different instances of the DTLZ benchmark suite.

3. The WFG1-9 problems are used with n = 40 and n = 1000 variables, and each of

these in combination with m = 2 and m = 3 objective functions. The number of

diversity-related variables, which can be freely scaled in the WFG suite, is set to n/4

in all instances. For the WFG2 and WFG3 functions, the 2-objective instances are

specified with 41 and 1001 variables respectively, as the problem structure requires

these configurations. In total, we obtain 36 instances of the WFG problems.

4. The UF1-10 problems from the CEC2009 competition on multi-objective optimi-

sation are used, where the UF1-7 problems are 2-objective, while UF8-10 contain

3 objective functions. All of them are used with n = 40 and n = 1000 variables,

which amounts to 20 instances of the UF problems.

5. The LSMOP benchmark suite is used, where each of the 9 functions is used with

m = 2, 3, 4 and 5 objective functions. The number of variables is in the original

work of the LSMOP linked to the number of objectives, and it is used in this way

in many of the recent publications. Therefore, we follow this approach and use

each of the functions with n = m · 100 variables for the different numbers of m. In

addition, we use all the of the instances with n = 1000 variables respectively, to

obtain more results for large search spaces even with low numbers of objectives. In
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total, this amounts to 72 different instances of the LSMOP benchmark suite. The

parameter nk in the problems is set to its standard value of 5.

The total of 184 different problem instances enables the evaluation to examine the

performance of the algorithms broadly from low-scale, traditional problem sizes, with

40 variables and 2 objectives, up until large-scale instances as used in related works,

with up to 5 objectives and 1000 variables. The combinations of these settings further

allow to examine whether algorithms perform well on large search spaces independently

of the number of objectives. The problem setup is identical for all experiments, except

where stated otherwise for certain reasons. This is the case where only 2- and 3-objective

instances are used due to the computational overhead of Hypervolume calculations in

DLS-MOEA, and where experiments with up to 10, 000, 000 function evaluations would

render the computation time intractable if applied to all of the 184 instances.

6.1.4 Presentation of Results

Due to the vast amount of experiments in this evaluation, it is necessary to accumulate

the results to make them presentable in the course of this chapter. The detailed results

of all experiments with regard to the final solution quality (i.e. final IGD values) for all

problem instances and all algorithms in the different experiments are given in Appendix B.

Tables B.1 to B.47 show the median obtained IGD values after the total amount of

function evaluations for the specific experiments, together with the interquartile range

(IQR). The respective best algorithm in each row (i.e. for each problem instance) is

shown with a grey background in the cell, while statistical significance is computed to

this respective best method and denoted with an asterisk in the other method’s columns

where applicable.

In this chapter, the results are summarised in the following form. The 184 problem

instances are divided into four categories and presented as exemplarily shown in Table 6.1.

In these tables, the respective algorithms which took part in the experiment are shown in

the rows and columns, and each cell shows the pairwise comparison between two methods.

The numbers in the cells indicate on how many problem instances the algorithm in the

row performed significantly better than the algorithm in the column. The numbers are

given as percentages from the total number of benchmarks, and we refer to these numbers

as winning rates or winning scores in the remainder. For instance, looking at Table 6.2,

the cell in the second row (WOF-SMPSO) and the third column (NSGAII) indicates how

often WOF-SMPSO performed significantly better than NSGA-II. In the same way, the

numbers in the third row and second column indicate how often NSGA-II outperformed

WOF-SMPSO.

The four coloured numbers in each cell correspond to the different problem categories

to enable a detailed analysis. For each comparison, the black number in the upper left

shows the comparison on all problems of the experiment (in case of Table 6.2 all 184
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Table 6.1: Example of the presentation of winning rates for different problem categories.
The four numbers indicate the amounts of wins of Algorithm A in the row (based
on statistical significance) against Algorithm B in the column for the respective four
categories.

184 56

92 64

A
lg

o
ri

th
m

B

Algorithm A
60.08 23.78

25.00 9.56

instances). The red numbers in the upper right show the winning scores for only the

low-scale problems which contain 40 or 41 decision variables, regardless of the number

of objectives. The blue numbers in the lower left represent the performance on all

large-scale problems, which contain 1000 or 1001 variables and arbitrary numbers of

objective functions. Finally, the green numbers on the lower right show the winning

scores on the many-objective instances, which contain 4 or 5 objective functions (with any

number of variables). To obtain a better understanding of the numbers, the respective

amounts of instances in each of the four categories are shown in each table in the upper

left, next to the algorithms’ names. Using this kind of analysis, we can deduct from

Table 6.2, for instance, that WOF-SMPSO outperformed NSGA-II on low-scale instances

with 40 variables in 24 out of 56 problems (42.85%), while NSGA-II performed superior

in 51.78% of cases (29 out of 56). The remaining 56− 24− 29 = 3 cases resulted in a

draw between these two algorithms. Tables 6.2 to 6.17 in this chapter show the results

based on the detailed IGD values in Appendix B. The same winning rate tables based on

HV results are shown in Appendix C.

As we saw in Section 4.1, the amount of required function evaluations differs largely

between algorithms in the literature. Some algorithms often need millions of evaluations

to achieve a good solution quality, hence the actual usefulness of them for a decision

maker is difficult to judge by only the final solution sets. Therefore, it is of interest

to explore each algorithm’s behaviour and solution quality over time, the convergence

behaviour. For this purpose, we show selected problem instances as convergence plots,

where the IGD values of the compared algorithms are shown against the used function

evaluations. In this kind of plots, for instance in Fig. 6.2, from the 31 independent runs,

for each algorithm the respective run which achieved the median IGD value at the end of

the optimisation process is shown. IGD values are displayed on the vertical axes and

displayed on a logarithmic scale.
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Table 6.2: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations of the SMPSO and NSGA-II algorithms and their WOF-versions as
well as the randomised WOF algorithm. Each row shows the amount of wins (based on
statistical significance) against the respective algorithms in the columns.
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92 64
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SMPSO —
0.54 0.00

0.00 0.00

43.47 12.50

65.21 50.00

19.56 14.28

22.82 35.93

2.71 3.57

2.17 1.56

WOF-SMPSO
90.76 78.57

95.65 85.93
—

80.43 42.85

96.73 89.06

60.86 37.50

77.17 53.12

32.06 17.85

43.47 9.37

NSGA-II
40.21 62.50

25.00 29.68

16.84 51.78

2.17 10.93
—

17.39 41.07

4.34 14.06

3.80 12.50

0.00 0.00

WOF-NSGA-II
73.36 67.85

76.08 59.37

24.45 41.07

13.04 31.25

66.84 17.85

91.30 71.87
—

10.86 10.71

9.78 7.81

WOF-Randomised
90.21 78.57

94.56 90.62

45.65 62.50

35.86 59.37

87.50 60.71

100.00 96.87

73.91 60.71

81.52 84.37
—

6.2 Evaluation of the Weighted Optimisation Framework

In this section, we compare the performance of different versions of the WOF algorithm

framework with the respective original algorithms, and examine how the proposed method

is suitable to increase the performance of algorithms on large-sale optimisation. In total,

we compare 9 different algorithms, which are the four original methods NSGA-II, SMPSO,

MOEA/D and NSGA-II, the four respective WOF versions of these methods, and the

above-described randomised version of WOF. All 184 problem instances are used in

this experiment. For the analysis in the winning-score tables, these problems include

56 low-scale instances, 92 large-scale instances, and 64 many-objective instances. The

winning scores of this experiment are shown in Table 6.2 and Table 6.3, as well as in

Tables B.1 to B.8 in Appendix B for all problems.

Regarding WOF-SMPSO and SMPSO, we see in Table 6.2 that the WOF version

outperfoms SMPSO in 90.76% of all problems (167 out of 184 instances), where the

remaining instances consist of 16 draws and only 1 out of 184 times (0.54%) the original

SMPSO was able to perform better than WOF-SMPSO. We further observe that the

good performance occurs in all kinds of problem categories, where WOF wins in 44 out

56 instances (78.57%) in the low-scale problems, 88 out of 92 times (95.65%) in the

large-scale and 55 out of 64 times (85.93%) in the many-objective area. If we further

take a look at the detailed results in Appendix B, we see that the superior performance
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Table 6.3: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations of the NSGA-III and MOEA/D algorithms and their WOF-versions
as well as the randomised WOF algorithm. Each row shows the amount of wins (based
on statistical significance) against the respective algorithms in the columns.

184 56

92 64
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NSGA-III —
21.73 55.35

5.43 23.43

45.65 58.92

47.82 20.31

26.08 71.42

4.34 14.06

12.50 37.50

1.08 10.93

WOF-NSGA-III
62.50 12.50

88.04 62.50
—

66.84 50.00

84.78 54.68

45.65 67.85

33.69 31.25

4.89 0.00

5.43 7.81

MOEA/D
45.10 21.42

46.73 68.75

22.82 37.50

11.95 37.50
—

25.00 50.00

8.69 25.00

13.04 23.21

6.52 18.75

WOF-MOEA/D
67.39 17.85

90.21 78.12

40.21 25.00

50.00 51.56

61.41 25.00

86.95 57.81
—

18.47 12.50

15.21 35.93

WOF-Randomised
72.28 19.64

95.65 73.43

61.95 44.64

72.82 57.81

73.36 51.78

91.30 60.93

57.60 66.07

57.60 32.81
—

is spread across all problem families. We can conclude from this that WOF is able

to improve the performance of SMPSO for almost all problems independent of their

properties or dimensionality in decision or objective space.

The NSGA-II variants show in general a similar performance, although the superiority

over the original NSGA-II is a little lower than in the SMPSO case. WOF-NSGA-II

outperforms NSGA-II in 123 of 184 instances (66.84%), while NSGA-II wins in 32

instances (17.39%). Interestingly, we can see that the performance in terms of low-scale

problems differs from the one on large-scale and many-objective problems. This is visible

in Table 6.2 (third row, fourth column), where NSGA-II can only outperfom its WOF

version in 4 out of 92 large-scale problems (4.34%), and 9 out of 64 many-objective

instances (14.06%). Therefore, we can conclude that WOF-NSGA-II shows a superior

performance on the large-scale and many-objective problems, but does not improve the

results of NSGA-II on classical problems with small numbers of variables on the same

scale as with the SMPSO.

Next, we take a look at the results for NSGA-III in Table 6.3, which is a dedicated

many-objective optimiser. Also in this case we see that the WOF is able to enhance

the performance strongly. While NSGA-III is still able to claim around 55% of the

wins for low-scale problems, WOF-NSGA-III clearly outperforms NSGA-III on most of

the large-scale and many-objective instances (88.04% and 62.5% respectively), with a
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Table 6.4: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations of NSGA-II and its grouped and linked versions. Each row shows
the amount of wins (based on statistical significance) against the respective algorithms
in the columns.
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NSGA-II —
50.54 87.50

39.13 46.87

1.63 0.00

3.26 0.00

18.47 50.00

5.43 20.31

58.15 87.50

51.08 54.68

GroupedNSGA-II
30.43 3.57

42.39 21.87
—

29.89 3.57

42.39 20.31

1.08 1.78

0.00 0.00

53.80 46.42

60.86 43.75

LinkedNSGA-II
5.43 8.92

3.26 1.56

51.08 87.50

38.04 45.31
—

21.19 58.92

5.43 20.31

59.23 87.50

52.17 54.68

GroupLinkNSGA-II
69.02 17.85

91.30 73.43

89.13 80.35

94.56 89.06

69.02 14.28

92.39 73.43
—

94.02 87.50

97.82 95.31

HighProbNSGA-II
25.00 1.78

38.04 17.18

5.97 1.78

7.60 1.56

25.00 1.78

39.13 15.62

1.08 3.57

0.00 0.00
—

Table 6.5: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations of NSGA-III and its grouped and linked versions. Each row shows
the amount of wins (based on statistical significance) against the respective algorithms
in the columns.
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NSGA-III —
61.41 83.92

52.17 67.18

0.00 0.00

0.00 0.00

21.73 55.35

8.69 21.87

66.84 85.71

58.69 71.87

GroupedNSGA-III
28.26 7.14

40.21 18.75
—

27.17 7.14

39.13 18.75

1.63 5.35

0.00 0.00

56.52 37.50

71.73 50.00

LinkedNSGA-III
8.15 16.07

4.34 3.12

62.50 85.71

54.34 71.87
—

21.73 55.35

8.69 21.87

69.02 89.28

61.95 75.00

GroupLinkNSGA-III
71.19 23.21

90.21 73.43

95.65 85.71

100.00 100.00

69.56 17.85

90.21 71.87
—

96.73 89.28

100.00 100.00

HighProbNSGA-III
20.10 5.35

31.52 14.06

9.78 16.07

5.43 9.37

20.65 5.35

32.60 14.06

1.63 5.35

0.00 0.00
—
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Table 6.6: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations of SMPSO and its grouped and linked versions. Each row shows the
amount of wins (based on statistical significance) against the respective algorithms in
the columns.
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SMPSO —
4.89 1.78

8.69 3.12

1.63 1.78

1.08 1.56

2.17 5.35

1.08 1.56

7.60 7.14

7.60 3.12

GroupedSMPSO
35.86 21.42

47.82 3.12
—

34.23 17.85

46.73 3.12

2.71 8.92

0.00 0.00

25.00 7.14

40.21 3.12

LinkedSMPSO
2.17 1.78

2.17 0.00

5.43 5.35

7.60 3.12
—

3.26 10.71

0.00 0.00

8.69 8.92

9.78 4.68

GroupLinkSMPSO
63.58 37.50

76.08 39.06

61.95 33.92

73.91 43.75

62.50 33.92

75.00 42.18
—

61.95 33.92

72.82 40.62

HighProbSMPSO
28.80 17.85

35.86 0.00

1.08 1.78

0.00 0.00

27.17 10.71

36.95 0.00

2.17 7.14

0.00 0.00
—

Table 6.7: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. The original NSGA-II, SMPSO and NSGA-III algorithms are shown
along their LCSA-enhanced versions. Each row shows the amount of wins (based on
statistical significance) against the respective algorithms in the columns.
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SMPSO —
7.06 17.85

2.17 3.12

44.56 14.28

66.30 53.12

24.45 12.50

32.60 34.37

27.17 7.14

45.65 12.50

14.13 3.57

22.82 7.81

xSMPSO
65.76 23.21

79.34 73.43
—

71.73 21.42

92.39 85.93

47.82 19.64

64.13 53.12

61.95 17.85

80.43 60.93

36.41 17.85

50.00 18.75

NSGA-II
41.30 64.28

26.08 32.81

25.00 67.85

7.60 12.50
—

27.71 33.92

27.17 28.12

14.67 14.28

13.04 4.68

14.13 25.00

9.78 1.56

xNSGA-II
68.47 71.42

65.21 64.06

30.97 66.07

14.13 25.00

52.17 10.71

68.47 62.50
—

53.26 17.85

68.47 57.81

17.93 19.64

16.30 1.56

NSGA-III
65.76 78.57

50.00 81.25

32.06 73.21

15.21 31.25

66.30 57.14

70.65 90.62

35.86 51.78

30.43 37.50
—

32.06 48.21

27.17 28.12

xNSGA-III
78.26 78.57

73.91 85.93

46.73 71.42

33.69 54.68

77.17 51.78

86.95 95.31

53.80 48.21

56.52 82.81

52.71 8.92

72.82 60.93
—
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Table 6.8: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. WOF and LSMOF are compared using the NSGA-II and SMPSO
algorithms. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.
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WOF-SMPSO —
61.41 66.07

60.86 34.37

60.86 37.50

77.17 53.12

51.63 33.92

60.86 37.50

32.06 17.85

43.47 9.37

LS-SMPSO
9.23 1.78

13.04 21.87
—

40.21 26.78

48.91 42.18

34.78 19.64

41.30 35.93

15.21 14.28

18.47 10.93

WOF-NSGA-II
24.45 41.07

13.04 31.25

49.45 58.92

45.65 45.31
—

37.50 33.92

41.30 32.81

10.86 10.71

9.78 7.81

LS-NSGA-II
26.08 42.85

19.56 29.68

42.93 62.50

39.13 39.06

29.89 30.35

34.78 23.43
—

17.39 28.57

15.21 9.37

WOF-Randomised
45.65 62.50

35.86 59.37

67.93 71.42

66.30 68.75

73.91 60.71

81.52 84.37

68.47 57.14

70.65 75.00
—

large number of non-significant differences (draws) between the two in the low-scale and

many-objective cases as well. Overall, NSGA-III can only outperfrom its WOF-enhanced

version in 21.73% of all problems, and in large-scale instances only in 5.43% (5 out of

92 instances). This shows that the WOF method is suitable also for many-objective

optimisation if an appropriate method like NSGA-III is used. Regarding MOEA/D in

comparison with WOF-MOEA/D, the picture looks very similar to the one in NSGA-III,

with similar winning scores in all four categories. An interesting observation is here that

WOF internally uses the concept of Pareto-dominance to merge its created population

from the different subproblems. Nonetheless, it is able to improve the performance also

in algorithms like MOEA/D, which on their own do not rely on this concept.

These results, which reflect the final algorithm performance with respect to obtained

IGD values, show that WOF is able to significantly outperform existing methods in

large-scale optimisation. It is further able to significantly increase the performance of

existing algorithms in many cases on traditional, low-scale problems. The application

to 4 different optimisers shows that the improvement is strongest when applied to the

SMPSO algorithm, but in general suggest that the WOF method can be successfully

used with any arbitrary metaheuristic.

To bring out the best of the four versions of WOF, the randomised version as described

above is compared to the respective other versions and the original algorithms. The
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Table 6.9: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. WOF is compared with the random-group-based MOEA/DVA,
LMEA and S3-CMA-ES. Each row shows the amount of wins (based on statistical
significance) against the respective algorithms in the columns.
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WOF-SMPSO —
60.86 37.50

77.17 53.12

32.06 17.85

43.47 9.37

72.28 33.92

90.21 60.93

86.41 66.07

95.65 78.12

89.67 85.71

94.56 76.56

WOF-NSGA-II
24.45 41.07

13.04 31.25
—

10.86 10.71

9.78 7.81

66.84 30.35

83.69 53.12

73.36 64.28

77.17 53.12

89.13 87.50

93.47 76.56

WOF-Randomised
45.65 62.50

35.86 59.37

73.91 60.71

81.52 84.37
—

78.26 44.64

95.65 67.18

92.39 83.92

95.65 90.62

91.84 89.28

95.65 82.81

randomLMEA
25.54 60.71

8.69 34.37

29.89 62.50

14.13 42.18

16.84 41.07

3.26 28.12
—

71.73 78.57

72.82 67.18

75.54 94.64

80.43 67.18

randomMOEA/DVA
10.32 25.00

4.34 18.75

21.73 25.00

19.56 39.06

3.80 7.14

2.17 3.12

20.10 16.07

22.82 23.43
—

59.23 80.35

56.52 48.43

randomS3-CMA-ES
7.60 7.14

5.43 20.31

9.23 8.92

6.52 20.31

5.97 5.35

3.26 14.06

18.47 3.57

15.21 23.43

31.52 10.71

34.78 39.06
—

Table 6.10: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. WOF is compared with ReMO using NSGA-II and SMPSO. Each
row shows the amount of wins (based on statistical significance) against the respective
algorithms in the columns.
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35.86 46.42

29.34 23.43
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85.86 71.87

10.86 10.71

9.78 7.81

ReNSGA-II
5.97 3.57

7.60 12.50
—

0.54 1.78

0.00 0.00

69.56 85.71

66.30 35.93

0.00 0.00

0.00 0.00

WOF-MOEA/D
48.36 28.57

58.69 65.62

94.02 85.71

97.82 95.31
—

99.45 100.00

100.00 98.43

18.47 12.50

15.21 35.93

ReMOEA/D
7.60 3.57

9.78 21.87

23.91 8.92

28.26 53.12

0.00 0.00

0.00 0.00
—

1.08 0.00

2.17 3.12

WOF-Randomised
73.91 60.71

81.52 84.37

98.91 96.42

100.00 100.00

57.60 66.07

57.60 32.81

98.36 100.00

96.73 95.31
—
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Table 6.11: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. WOF is compared with DLS-MOEA. Each row shows the amount of
wins (based on statistical significance) against the respective algorithms in the columns.

102 42

60 0
W

O
F

-S
M

P
S

O

W
O

F
-N

S
G

A
-I

I

W
O

F
-R

a
n

d
o
m

is
ed

D
L

S
-M

O
E

A

WOF-SMPSO —
63.72 33.33
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43.13 23.80

56.66

74.50 52.38

90.00

WOF-NSGA-II
21.56 40.47

8.33
—

11.76 14.28

10.00

61.76 35.71

80.00

WOF-Randomised
41.17 61.90

26.66

68.62 52.38

80.00
—

70.58 42.85

90.00

DLS-MOEA
19.60 35.71

8.33

18.62 28.57

11.66

11.76 19.04

6.66
—

Table 6.12: Winning rates using the IGD indicator for different problem categories
using 10, 000, 000 evaluations. WOF is compared with MOEA/DVA and LMEA. Each
row shows the amount of wins (based on statistical significance) against the respective
algorithms in the columns.
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Table 6.13: Winning rates using the IGD indicator for different problem categories using
10, 000, 000 evaluations. WOF is compared with MOEA/DVA, LMEA and S3-CMA-
ES. Each row shows the amount of wins (based on statistical significance) against the
respective algorithms in the columns.
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82.14
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64.28
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82.14

82.14

WOF-Randomised
46.42

46.42
—

82.14

82.14

64.28

64.28

75.00

75.00

LMEA
17.85

17.85

14.28

14.28
—

21.42

21.42

53.57

53.57

MOEA/DVA
28.57

28.57

32.14

32.14

67.85

67.85
—

60.71

60.71

S3-CMA-ES
17.85

17.85

17.85

17.85

42.85

42.85

32.14

32.14
—

numbers in Tables 6.2 and 6.3 show that the randomised version of WOF is able to

improve the performance even further. In different problems the 4 different algorithms

which are used internally might perform differently. By using all of them with an expected

share of 1
4 , there is a high chance that the respective best method will be able to produce

some solutions which enable the rest of the algorithm to advance towards better solutions

as well. Since the second half of the randomised WOF uses only the NSGA-III optimiser,

a good diversity is also expected for the final solution sets. The winning rates of the 4

original algorithms against the randomised WOF are in general very low, with 2.71% for

SMPSO and 3.8%, 12.5% and 13.04% for NSGA-II, NSGA-III and MOEA/D respectively.

Note that these numbers even include the low-dimensional problems as well. If applied to

large-scale problems only, randomised WOF outperforms all algorithms by far, winning

for instance 100.0% of all large-scale problems against the original NSGA-II, and over 90%

of instances against SMPSO, NSGA-III and MEOEA/D. It also outperfroms the other

WOF versions in many cases, winning 81.52% of problems against the WOF-NSGA-II

and 72.82% against WOF-NSGA-III. With around 35%, the WOF-SMPSO is the only

algorithm against which the randomised WOF looses more often that it wins. All this

shows that a combination of different algorithms inside one framework can be a promising

direction for future large-scale algorithms.
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Table 6.14: Winning rates using the IGD indicator for different problem categories using
100, 000 evaluations. WOF is compared with modified versions of MOEA/DVA, LMEA
and S3-CMA-ES. Each row shows the amount of wins (based on statistical significance)
against the respective algorithms in the columns.
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Table 6.15: Winning rates using the IGD indicator for different problem categories
using 100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using
NSGA-II. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.
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Table 6.16: Winning rates using the IGD indicator for different problem categories
using 100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using
NSGA-III. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.
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GroupLinkNSGA-III
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55.43 48.43

51.08 21.42

64.13 40.62
—

Table 6.17: Winning rates using the IGD indicator for different problem categories
using 100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using
SMPSO. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.

184 56

92 64

W
O

F
-S

M
P

S
O

x
S

M
P

S
O

G
ro

u
p

L
in

k
S

M
P

S
O

WOF-SMPSO —
60.32 67.85

61.95 28.12

65.76 58.92

66.30 73.43

xSMPSO
9.78 7.14

9.78 20.31
—

32.06 21.42

30.43 64.06

GroupLinkSMPSO
13.58 3.57

19.56 6.25

44.56 32.14

54.34 10.93
—



6.2. EVALUATION OF THE WOF 141

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Evaluations ×105

10-2

10-1

100

101

IG
D

 V
a
lu

e

WOF-SMPSO

WOF-NSGA-II

NSGA-II

SMPSO

WOFRandomised

(a) SMPSO and NSGA-II

0. 0 0. 2 0. 4 0. 6 0. 8 1. 0
Evaluations ×105

10-1

100

101

IG
D

 V
a
lu

e

WOF-MOEA/D

WOF-NSGA-III

MOEA/D

NSGA-III

(b) MOEA/D and NSGA-III

Figure 6.1: Convergence behaviour of the original and respective WOF algorithms on
the 3-objective UF3 problem with 1000 variables.

Next, we take a brief look at the convergence behaviour to examine if the good performance

is not only reflected in the final solution sets after the complete 100, 000 function

evaluations, but also during the search process. In Figs. 6.1 and 6.2 we show examples

of the performance of the algorithms over the amount of function evaluations for the

UF3 problem with 2 objectives and 1000 variables as well as LSMOP5 with 5 objectives

and 1000 variables. We observe in these figures not only that all four WOF versions

perform better than the respective original algorithm, we also see a rapid convergence

towards low IGD values in the very beginning of the search process. This finding is

consistent with the observations in [1, 6], where WOF shows a very fast convergence

in all problem instances as well. The observed behaviour reflects the ability of WOF

to converge to promising areas of the search space easily with the transformed, lower

dimensional problem. This is especially useful in the beginning, while in later phases of

the search the spread along the PF is more important and the transformed problems can

not lead to large jumps in solution quality any more.

In general, this behaviour of the WOF algorithm is beneficial for the overall search, and

desired behaviour that can lead to advantages when applied to practical applications.

WOF is able to provide a reasonable solution quality after a very small amount of function

evaluations, which might be helpful when resources are limited. From that point, it

gradually improves, and the selection of multipe pivot solutions helps to keep diversity

despite the fast convergence, to prevent the population from collapsing to a small area

on the PF.
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Figure 6.2: Convergence behaviour of the original and respective WOF algorithms on
the 5-objective LSMOP5 problem with 1000 variables.

6.3 Evaluation of the Grouped and Linked Mutation

Operator

In this section, we evaluate the performance of the proposed GLMO and its associated

methods as described above in Section 5.2. We compare the different version of the grouped

and linked mutation operators inside of three well-known metaheuristic algorithms with

their respective original version. For each of the three used algorithms (NSGA-II,

NSGA-III and SMPSO) we implemented 5 versions which are compared with each

other in Tables 6.4 to 6.6. The original version is compared with three versions that

use only grouped mutation, only linked mutation or the combination in the grouped

and linked mutation operator (GLMO). All algorithms use the polynomial mutation

operator. The fifth algorithm uses the standard polynomial mutation but with a high

mutation probability. This serves as a baseline to test whether the positive effect on

the solution quality actually comes from the linkage or the groups, or if this is merely

an effect from an increased amount of changed variables per iteration. Therefore, the

mutation probability is set to produce the same expected amount of change in a solution

as the grouped mutations. Since 4 evenly sized groups are used in all experiments,

the mutation probability in this algorithm version is set to 0.25. All other settings of

algorithm parameters and experiment specifications are identical to the descriptions

above in Section 6.1.

As the focus lies on the effect of the proposed changes, we are not primarily interested

in which of the underlying algorithms (NSGA-II, NSGA-III, SMPSO) performed best
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or worst. As we want to show the effects of the proposed changes to the mutation

operators, in the following we take a look at each of the three algorithms separately. We

first concentrate on the final solution quality before taking a look at the convergence

behaviour.

Regarding the NSGA-II and its derived versions, the results are shown in Table 6.4. The

first observation we can draw from these winning-rates is that the linked algorithm does

not perform better than the original NSGA-II in most instances, and only outperforms

it in a little over 5% of the problems. This behaviour makes sense since both of these

versions use a mutation probability of 1/n, and therefore the expected amount of mutated

genes in each individual is 1 out of the n variables. As a result, linking the amount of

change between all mutated variables might in most cases not have any effect, since it

only applies when more than 1 variables is changed in the first place.

The next observation regards the grouped NSGA-II version, especially in comparison

with the high mutation probability version. Here we can see in Table 6.4 that the

GroupedNSGA-II performs better than the original NSGA-II in about 30% of the

cases, and better than the HighProbabilityNSGA-II in 53, 8% of all problems. Since

NSGA-II also outperforms the grouped version in around 50% of problems, a clear

superior performance between these two can not be observed when all problem instances

are considered. However, when only looking at the large-scale problems, these results

differ, and the GroupedNSGA-II and NSGA-II win against each other in 42% and 39%

respectively, the remaining instances resulting in draws. If we compare with the version

using a high mutation probability, we see that the grouped version performs significantly

better on 60.86% of the large-scale problems, while on the other hand, the high probability

NSGA-II can only outperfom the grouped NSGA-II in 7.6% of large-scale problems. This

is especially interesting since the expected amount of change to each individual remains

the same in both operators (1/4 of the n variables). However, there seems to be an

influence in the choice of which of the variables are mutated. Since we used the ordered

grouping mechanism in these experiments, the grouped version usually mutates solutions

with relatively similar values (relative to their domains), which might in the current

benchmark problems lead to groups that seem more beneficial. Without the detailed

knowledge on why these ordered groups are favourable for each specific benchmark, we

can nevertheless conclude that the choice of which variables are being mutated has in

influence besides the mere increase of mutation compared to the normal, low mutation

rate.

The most important observation concerns the version that uses both the groups and the

links between the variables. In this GLMO operator, even though both effects on their

own did not lead to a clearly superior performance over the original NSGA-II, we can

observe that the “GroupLinkNSGA-II” in Table 6.4 can obtain significantly better results

than the original NSGA-II in 91.30% of the 92 different large-scale instances and 73, 43%

of the many-objective problems. This shows that the solution quality can be significantly
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improved using the proposed GLMO mutation operator, and that variable groups and

especially the link between the amount of mutation for the variables can enhance the

effectiveness of traditional algorithms in the large-scale area.

When we look at the results of the NSGA-III and SMPSO in Tables 6.5 and 6.6, we

observe a similar picture. The GroupLinkNSGA-III algorithm obtains better results than

NSGA-III in over 90% of the large-scale problems, and over 73% of the many-objective

problems. Although NSGA-III is already a dedicated many-objective algorithm, and we

can naturally expect it to work well for the 64 many-objective instances, we still observe

a large increase in performance in those many-objective instances when we apply the

modified mutation operator, which confirms the observation that these operators might

not just be useful for large-scale, but also for many-objective problems.

The same operator applied to SMPSO yields similar result. However, the winning rates

compared to the original SMPSO are with 76% and 39% for large-scale and many-objective

instances respectively a little lower than for the other optimisers. On the other hand, the

original SMPSO can only win against the GroupLinkSMPSO version in less than 2% of

the cases, suggesting that in more than 20% of the cases there is no statistical difference

between the two algorithms.

Another interesting aspect is the convergence behaviour of the proposed methods. In

Figs. 6.3 to 6.5 we show exemplarily the development of the IGD values for the 2-objective

WFG5 and UF3 problems with 1000 variables for the algorithm versions using NSGA-II,

SMPSO and NSGA-III respectively. In all three figures it is clearly observable that the

GLMO which uses both groups and links between variables performs superiorly, not just

with a statistically signifiant difference, but also by a large margin. In contrast, even

though in general there exist such significant differences between the other algorithm

versions as well, we see that in the median performance, the results of the other three

versions are always very close to their respective original algorithm. What is also visible

is that all algorithms have the phase of highest progression in the beginning of the search,

while after the first 10% of the evaluations the IGD values decrease only slowly. The

big difference between the GLMO and the other versions is that this progression in the

beginning is much more significant, which may indicate a much better exploration of

the high-dimensional search space in the beginning of the search compared to the other

algorithms.

In conclusion, we can see that the modified mutation operators, although they require

very little change to the operator, and no changes at all to the used metaheuristic, can

significantly increase the performance of existing algorithms for large-scale and also for

many-objective optimisation. Especially the combination of variable groups and variable

linkage can lead to increased performance in over 90% of the 92 large-scale problems and

over 70% in many-objective instances when the NSGA-II or NSGA-III algorithms are
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Figure 6.3: Convergence behaviour of the different NSGA-II versions using the grouped
and linked mutation operators on the 2-objective UF3 and WFG5 problems with 1000
variables.

used. The convergence analysis further confirms a superior performance of the GLMO not

only in solution quality, but also in the speed of convergence towards the Pareto-front.

6.4 Evaluation of the Linear Combination-based Search

Algorithm

In this section, we take a look at the performance of the Linear Combination-based Search

Algorithm (LCSA). Similar to the previous sections, we apply the LCSA method to three

different optimisation algorithms: NSGA-II, NSGA-III and SMPSO. The experiment and

algorithm settings are the same as described in Section 6.1. All 184 problem instances are

used in this experiment. In total, 6 different algorithms are compared with each other,

where the three versions using the LCSA are denoted with an “x” in front of their names

in the following tables and figures, i.e. “xNSGA-II”, “xNSGA-III” and “xSMPSO”.

In general, the results in Table 6.7 indicate a superior performance of the LCSA-versions

over their respective original algorithms for all three metaheuristics. The numbers

show that for SMPSO, NSGA-II and NSGA-II respectively, the LCSA version performs

better in 79%, 68% and 72% of the large-scale instances and in about 73%, 62% and

61% of instances from the many-objective area. We can also observe that this superior

performance is not observed in such a magnitude when we look at the low-scale (i.e.

40-variable) problems in the upper right of each table cell.
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Figure 6.4: Convergence behaviour of the different SMPSO versions using the grouped
and linked mutation operators on the 2-objective UF3 and WFG5 problems with 1000
variables.

The best performance among all the 6 algorithm versions is often achieved by xSMPSO,

NSGA-III or xNSGA-III (see Tables B.21 to B.24 in Appendix B). Especially in the

large-scale problems, with lower numbers of objective functions, the xSMPSO works

best, while with increased numbers of objective functions the xNSGA-III performs best

among all versions. Best performances of the original NSGA-III algorithm are usually

only acquired in the low-dimensional problem instances. These results show that also

the third proposed large-scale approach is able to greatly enhance the performance of

existing methods on large-scale optimisation and to a similar extent than the GLMO

method.

To take look at the convergence behaviour, in Fig. 6.6, the IGD development for four

different problem instances are shown. Fig. 6.6a shows the performance for the 2-

objective DTLZ4 problem with 1000 variables. This problem is an example where the

LCSA method actually leads to a reduced solution quality at the end of the optimisation

for all three algorithms. The performance of NSGA-II, NSGA-III as well as both of the

LCSA-enhanced versions of these shows very little difference in the early stages of the

optimisation, until approximately 20, 000 function evaluations were used.

The linear combinations are not able to identify better solutions in this DTLZ4 problem,

which is clearly visible in the repeated “straight” phases of IGD development that are

interrupted by the normal optimisation, during which the IGD values shrink. This could

be a result of the properties of this specific problem. According to an analysis done in
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Figure 6.5: Convergence behaviour of the different NSGA-III versions using the grouped
and linked mutation operators on the 2-objective UF3 and WFG5 problems with 1000
variables.

[42], the DTLZ4 problem has a concave PF and is separable and unimodal. This means

that it can in fact be solvable with little difficulties by traditional methods, as it does not

possess local optima and can be solved without taking variable interactions into account.

However, exactly for this reason, the LCSA method might have difficulties with it, as the

phases of linear-combining solutions alter all variables at the same time, which may not

hurt the solution quality, but on the other hand, neither advance the IGD values as much

as a normal optimisation could with the same computational budget. For this reason,

the original version of the algorithms might perform better on this type of problem.

In contrast, this claim is not supported by the results shown in Fig. 6.6b, where the

convergence for the WFG7 problem are shown. WFG7 has the same properties as DTLZ4,

with a concave PF, separability and unimodality. Nonetheless, we observe that xNSGA-II

and xNSGA-III perform better on this problem than their respective original versions.

This indicates that the low effectiveness of LCSA on the DTLZ4 problem might result

from other properties, or the specific problem structure of the DTLZ benchmark family.

Figs. 6.6c and 6.6d show the IGD developments for the 3-objective WFG6 and 5-objective

LSMOP9 benchmarks. In these cases we see that the LCSA performs in all three

algorithms superiorly to the original versions on the large-scale instances with higher

numbers of objective functions, which is in line with the high winning rates on the

many-objective instances described above.
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Figure 6.6: Convergence behaviour of the LCSA-based algorithms (denoted with an “x”)
and the respective original versions. All problems have 1000 decision variables.
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6.5 Comparison of the Proposed Methods

After evaluating each of the three proposed large-scale methods with their respective

original algorithm version, we will now take a look at how these methods compare to each

other. We have seen in the previous three sections, that WOF, GLMO and LCSA are

all able to significantly improve the performance of existing methods on large-scale and

partly many-objective problems. All of them can be used with arbitrary metaheuristics,

and the positive effects have been shown for different PSO and EA methods, which

indicates that they are flexible and can be used with algorithms for specific applications

in the future as well.

To compare them now with each other and evaluate possible differences between them,

we compare the different methods using the SMPSO, NSGA-II and NSGA-III versions

respectively with each other. In Table 6.15 we show the winning rates when comparing

WOF-NSGA-II, xNSGA-II and GroupLinkNSGA-II with each other. The same compar-

ison is shown when all methods use SMPSO or NSGA-III respectively in Tables 6.16

and 6.17.

First we look at the NSGA-II performances of the three proposed techniques. The

winning rates are, in general, mixed, with WOF winning against LCSA in over 66%

and against GLMO in over 38% of large-scale instances. It is, however, outperformed

by GLMO in over 53% of the 92 large-scale problems. The LCSA seems, at least in its

NSGA-II version, the weakest among the three, with WOF and GLMO on par in the

different categories, and in general a high number of non-significant differences between

the algorithms.

Looking at the NSGA-III versions in Table 6.16, we see a similar picture, which is not

surprising since both algorithms use common elements. When comparing these numbers,

it seems that the GLMO is actually the slightly better choice compared to WOF in

the large-scale instances and the many-objective instances, but both algorithms show

significantly better performance over each other in over 37% of instances in all categories

of problems. We can see that the GLMO seems to have slightly higher winning rates

in the large-scale instances, while the WOF is more useful in the 40-variable instances,

indicating a better robustness to changing numbers of variables.

This impression for both of the NSGA-based algorithms is not the same when the

SMPSO is used as the optimiser. These results are shown in Table 6.17. In these cases,

WOF-SMPSO outperforms both of the other proposed techniques in about 66% and 62%

respectively on the large-scale instances, and the GLMO technique in over 73% of the

many-objective problems. Interestingly, using SMPSO, WOF and LCSA perform very

similarly on the many-objective problems, with over 50% of problems resulting in no

statistical difference at all. Especially in the small-scale problems, WOF outperforms the

other two methods by far, which is consistent with the results from NSGA-III.
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Taking a look at the convergence speed of the three large-scale methods, we show in

Fig. 6.7 the 2-objective WFG5 problems with 1000 variables for the three techniques

using each of the three optimisers in the subfigures. For this specific problem, the WOF

method is the best with all 3 algorithms, and further shows the fastest convergence

among the three proposed large-scale techniques.
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Figure 6.7: Convergence behaviour of the three proposed large-scale methods using the
NSGA-II, NSGA-III and SMPSO algorithms on the WFG5 benchmark with 2 objective
functions and 1000 decision variables.

In conclusion, the results indicate that WOF is the best large-scale strategy among

the three proposed ones when the SMPSO is used as the optimisation strategy. Using

NSGA-based variants, GLMO and WOF perform on par, with GLMO having slightly

higher winning rates on the large-scale instances. Based on the results of this comparison,

we identify the WOF as the most efficient of the three proposed techniques. Due to

this fact and the large amount of data and limited space in this work, in the following

experiments different versions of WOF are being used in comparison with the related

works from the literature.

6.6 Comparison with Related Large-scale Approaches

After the evaluation of each of the proposed methods on their own, this section com-

pares the performance of the proposed methods with the state-of-the-art in large scale

optimisation.

We showed in the previous three sections that the WOF, GLMO and LCSA are all able

to greatly improve the performance of different multi- and many-objective metaheuristics.

As described in the beginning of the chapter, we also reached out to all the authors of the

related state-of-the-art in large-scale optimisation, which were described in Chapter 3.

The obtained algorithms and their configuration were described above in Section 6.1.
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In this section, we perform the experiments in two different parts in the following two

Sections 6.6.1 and 6.6.2. First, we compare only those algorithms which can be compared

on a relatively low computational budget in Section 6.6.1, i.e. algorithms which do not

require expensive grouping methods. These experiments use a computational budget

of 100, 000 function evaluations as in the experiments in the previous three sections.

Due to the fact that some of the algorithms (MOEA/DVA, LMEA and S3-CMA-ES)

rely on interaction-based groups, these require a large computational budget to run.

These larger experiments, which use 10, 000, 000 function evaluations, are the subject of

Section 6.6.2. However, in order to evaluate whether their respective search strategies

can work efficiently even without the interaction-based groups, we also use these three

algorithms with random grouping strategies in the low-budget experiments.

The algorithms compared in this sections are as follows.

• Three of the previously introduced and compared WOF versions: WOF-NSGA-II,

WOF-SMPSO and WOF-Randomised

• Two different versions of the LSMOF algorithm: LS-NSGA-II and LS-SMPSO

• Three versions of MOEA/DVA, LMEA and S3-CMA-ES, which use contribution-

based groups but have their interaction-based grouping methods replaced with ran-

dom groups. These are called randomMOEA/DVA, randomLMEA and randomS3-

CMA-ES.

• The DLS-MOEA algorithm from the literature.

• Two version of the ReMO algorithm which use NSGA-II and MOEA/D respectively

as the optimiser, called ReNSGA-II and ReMOEA/D.

• The original versions of MOEA/DVA, LMEA and S3-CMA-ES.

For most of the experiments, especially the ones using 100, 000 function evaluations (low-

budget experiments), all 184 benchmark functions are used as described in Section 6.1.

The exception from this is only the comparison with DLS-MOEA, which is further

explained below.

Due to various reasons, the amount of used benchmark functions in the 10, 000, 000

evaluation experiments (large-budget experiments) also differ in certain cases from the

common setting. To be precise, certain benchmark functions were excluded from some

of the experiments due to their extremely large, infeasible computational overhead.

Some additional insights on these decisions are elaborated below and in the respective

subsections. The details on the used benchmarks for the experiments are as follows.

• The low-budget comparison between the WOF methods and the LSMOF versions,

the ReMO versions and the random-grouping-based versions of MOEA/DVA, LMEA
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and S3-CMA-ES are done using all of the described 184 problem instances in the

same way as the previous subsections.

• The low-budget comparison between the WOF versions and DLS-MOEA are done

using 102 problem instances. The LSMOP problems are used with n = 1000

variables, and the instances with 200 to 500 variables are not used. Further, the

many-objective problems are excluded from these experiments. DLS-MOEA, as

was theoretically analysed in previous chapters (see Chapters 3 and 4), needs to

compute the Hypervolume of a solution set multiple times in each iteration of the

algorithm. Using this method on many-objective problems would result in expected

calculation times of multiple months and is not feasible within the time frame of

this thesis, nor would such a long calculation time be of practical use for real-world

applications, even if the results should be satisfactory. The DTLZ1-7, WFG1-9 and

UF1-10 problems are used in these experiments in the same way as in the previous

sections with the combinations of n = 40 and n = 1000 variables and m = 2 and

m = 3 objectives, resulting in 102 problem instances overall, 42 of them low-scale

and 60 of them large-scale.

• The large-budget comparison between WOF-SMPSO, WOF-Randomised, LMEA

and MOEA/DVA were done only on large-scale problem instances, as they are the

main focus of the evaluation. The low-scale (40-variable) problems, as well as the

many-objective problems, were not used in these cases. The WFG problems were

not used in these experiments due to exceptionally long computation time of the

function evaluations, especially in the problems WFG6 and WFG9. The results

of these experiments are listed and analysed below in Table 6.12, and are shown

in the appendix of the thesis in further detail. In total, 42 different large-scale

problem instances were used which include the LSMOP1-9, DTLZ1-7 and UF1-10

problems, all of them used with n = 1000 decision variables and with m = 2 and

m = 3 objective functions.

• Finally, the large-budget comparison with the S3-CMA-ES algorithm is performed

only on the DTLZ1-7 as well as the LSMOP2 and LSMOP4-9 benchmarks, all

of them with 1000 decision variables and with 2 and 3 objectives each. The

reason to exclude the low-scale problems and the WFG problems lies again in

the computational budget as described above. However, the exclusion of the UF

problems and the LSMOP1 and LSMOP3 is attributed to a major weakness of

the S3-CMA-ES method when dealing with these problems, which is explained in

detail below in the analysis. As a result, S3-CMA-ES is compared on 28 large-scale

problem instances.

In the following, the results of these experiments are described and analysed.
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6.6.1 Results and Analysis: Small Budget

This section deals with the analysis of the experiments using 100, 000 function evaluations.

The results of these comparisons are shown in Tables 6.8 to 6.11, and in further detail in

Appendices B and C.

Comparison with LSMOF

First, we pay attention to the comparison between WOF and LSMOF. This pair of

algorithms is of special interest as the LSMOF is strongly based on the WOF and

uses similar concepts, that were first introduced in the original publication of WOF.

Both algorithms belong to the transformation-based category in terms of dimensionality

reduction and make use of transformation functions as introduced in Sections 5.1.1

and 5.1.5. As described in Section 3.2, LSMOF does not use variable groups and does

not alternate between different optimisation steps in contrast to WOF. In Table 6.8 we

see the resulting winning rates of the different versions of both methods. To enable a

fair comparison, the same optimisation methods were implemented in both frameworks,

i.e. SMPSO and NSGA-II. In the results, a striking observation is that WOF seems to

benefit more from a combination with the SMPSO algorithm, while the LSMOF can

obtain higher winning rates when both frameworks utilise the NSGA-II algorithm. For

further comparison, the randomised version of WOF, which chooses the metaheuristic

randomly, is also applied in these experiments. The findings are outlined in further detail

in the following.

WOF-SMPSO performs significantly better than LS-SMPSO in 61.41% of all problem

instances, while LS-SMPSO is only able to outperform WOF-SMPSO in 9.23% of all

184 problems. If we look closer into the different categories of problems, we see that

this difference is even larger on the low-scale problems, where WOF-SMPSO wins in

66.07% while LS-SMPSO can only win in 1.78% of the cases (which corresponds to

exactly one instance out of the 56 low-scale problems). In the many-objective category,

the performances lie closer together, with WOF winning in around 34% and LSMOF

winning in around 21% of the cases. Especially in the many-objective cases, these

numbers together only sum up to a little over 50%, suggesting that in almost half of the

many-objective cases both of these frameworks perform evenly, i.e. without significant

differences in their final solution quality.

These results already indicate that WOF seems to be more robust in terms of scalability

of the search space, as it can almost every time outperform LSMOF on low-scale problems.

This is further supported by the most important category of benchmarks, which are the 92

large-scale instances. Out of these, WOF-SMPSO outperforms LS-SMPSO significantly in

60.86% of instances (56 out of 92), while LS-SMPSO can only show superior performance

in 13.04% (12 out of 92) problems. The remaining 24 instances result in a draw, which is

not surprising considering their related underlying transformation mechanics. Based on

the numbers we can conclude for the SMPSO that even though LSMOF is the newer
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algorithm, it is not able to show convincing performance compared with WOF, and is

outperformed by WOF on most of the problems in both low-scale and large-scale area.

Next, we look at the comparison between the NSGA-II variants in both of the frameworks.

Surprisingly, the results here look less clear, and the performance of both methods lies

closer together. While the results in the many-objective category are almost identical

to the SMPSO results, overall WOF outperforms LSMOF in 37.5% of instances while

LSMOF wins in 29.89% of cases. This still leaves a little over 20% of 184 problems where

both methods perform equally according to our statistical test. In the low-scale problems,

both methods also show a similar strength over each other, with winning rates of little

over 30%. Although these numbers indicate that none of the algorithms is really superior

on the low-scale instances, it also suggests that, depending on the problem, one algorithm

might perform better than the other in almost 60% of the cases. This highlights again the

need to choose appropriate metaheuristics in real applications, and that the right choice

of the metaheuristic can depend on the problem’s characteristics. On the most important

large-scale problem instances, WOF-NSGA-II shows slightly higher winning rates with

41.3% over 34.78% of instances. This indicates that WOF is, for large-scale problems,

still the better choice when NSGA-II is preferred as the optimisation strategy, although,

as said earlier, the superiority of WOF is much stronger when SMPSO is applied as the

optimiser.

This leads to another important observation, which regards the overall best performance.

Even though the winning rates can help to see how two algorithms compare directly

with each other, the tables in Appendix B show that the overall best performance of

all five algorithms is most often achieved by one of the WOF versions, usually by the

WOF-SMPSO or the randomised WOF. This is also visible in the last row of Table 6.8,

which shows very high winning rates of the randomised WOF in comparison with the

LSMOF as also with the other WOF versions. However, this comparison is of course

only partly fair, since this version makes use of MOEA/D and NSGA-III as well. Based

on these findings, it is suggested that while LSMOF might be a valuable alternative in

NSGA-II-based large-scale optimisation, the performance of WOF overall, when more

successful optimisers like the SMPSO are used, is clearly superior to those of LSMOF.

It is noted that these results only partly match the reported findings from the original

LSMOF article. The parameters used in the present thesis are the same as suggested in

the original WOF publication [1], which were obtained by a sensitivity analysis of all

of WOF’s parameters. The experiments in the LSMOF study [69] have used different

parameter settings for WOF, and mostly used NSGA-II in their experiments, while only

limited experiments were reported for the SMPSO versions. This can be a reason for the

mostly superior performance of the LSMOF method in [69], which was not observed in

the same way in our experiments.
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Figure 6.8: Convergence behaviour of the LSMOF and WOF algorithms. All problems
have 1000 decision variables.
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Next, we take a look at some of the convergence behaviours of both methods. Four

selected benchmark instances are shown in Fig. 6.8 from each of the four benchmark

families with 2, 3 and 4 objectives. These four subfigures reveal interesting behaviour of

the algorithms. First of all, it is clearly visible from in both methods that they change

their behaviour after around half of the total function evaluations. This is the point where

both techniques switch their behaviour from using transformation-based approaches to

using the normal metaheuristic optimisation of the large-scale problem. Especially in

Figs. 6.8a and 6.8b this change is clearly visible in the development of IGD values. The

effect can be attributed to a sudden increase in diversity of the solution set, since the

transformation-based steps are meant to converge quickly, and the second phase is meant

to spread the good solution candidates further along the PF.

In Fig. 6.8a, the 2-objective DTLZ4 problem is shown, where the LSMOF algorithms

obtain in the end of the optimisation a better solution quality than the WOF-based

algorithms. In contrast, during the optimisation the performances are mixed. WOF-

NSGA-II is almost from the beginning the worst performing of all 5 methods, and

especially performs worse than the corresponding LS-NSGA-II. Overall, LS-NSGA-II and

LS-SMPSO perform in the same way until the change occurs after the first half of the

available evaluations. The good performance of these LSMOF methods is only achieved

during this second phase. In case of LS-NSGA-II this happens shortly after the first half

of evaluations, but in the LS-SMPSO, the final solution quality that outperforms the

WOF versions is only achieved gradually and mostly during the last few generations of

the search process. The WOF-SMPSO, on the other hand, achieves a relatively good

IGD value from the start of the search and gradually improves on this even during the

first half of the optimisation. During the first 50% of evaluations, the WOF-SMPSO

(and also the randomised WOF) achieve the best IGD values, and keep improving after

the change towards the normal optimisation. These results indicate that for a small

amount of function evaluations, the WOF methods might be the better alternative, even

the problem instances that LSMOF wins after the total amount of evaluations. On the

other hand, if only 50, 000 evaluations had been used, the change of the algorithms’

behaviour might have occurred earlier as well in the LSMOF methods. Nonetheless, it

might be beneficial to use the WOF method over the LSMOF, since its search process

can be stopped at earlier points in time and it produces acceptable solution quality

throughout the whole process. This behaviour of fast convergence towards the beginning

of the search might be desirable for many real-world applications. It also indicates that

the alternation between normal and transformed optimisation is beneficial in the WOF

algorithm. LSMOF optimises the transformed problems only in the first half of the

search, which might, as in this case, result in a situation where the algorithm wastes

many function evaluations without improvement, before the normal optimisation occurs.

WOF alternates these phases and has an advantage of a more stable progress over time.

A similar behaviour is visible in Fig. 6.8b. First, we can observe that both PSO-based

algorithms perform better than the NSGA-II-based ones, and that the WOF versions
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perform better than the LSMOF versions in both cases. We also observe the sudden

increase in performance after 50% of the used evaluations, which fits to the observations

in [47], where the UF problems are identified as mainly diversity-oriented, meaning that

the main challenge in these problems is diversity, not convergence. The decrease of

the IGD values in this case fits to this observation, as the algorithms start to optimise

diversity mostly after in the second half of the search.

In Fig. 6.8c we show the WFG2 problem, which has a disconnected PF. As a result, if

an algorithm covers parts of the PF in earlier stages of the search, it might be difficult

to find the other parts of it later on. Keeping this in mind, the convergence behaviour

of the LSMOF methods in Fig. 6.8c make sense, because the LSMOF is designed to

only optimise convergence in the first half. If by chance only certain solutions are found

during this stage which belong to only a part of the PF, it might explain the overall

bad performance in the WFG2 problem, and the inability to improve the IGD values

throughout the rest of the search. In contrast, WOF has a diversity-balancing mechanism

through its pivot solutions throughout the whole search, which enables it in this case

to achieve better IGD values and to solve the WFG2 problem better. Finally, Fig. 6.8d

shows an example from the many-objective area, where all algorithms perform more

or less equally, and, except for the WOF-NSGA-II, also show the same convergence

behaviour.

In summary, the comparison between WOF and LSMOF shows that both algorithms,

although based on similar concepts, have various differences in their performances. If

SMPSO is used as the internal optimiser, WOF is overall the superior method and

outperforms LSMOF in most problem instances. If NSGA-II is used, the performance

is more similar and both algorithms outperform each other on multiple occasions, and

perform in general on par to each other. In the convergence analysis, WOF often

achieves faster convergence towards good solutions in earlier stages of the optimisation.

In addition, WOF seems more robust to different numbers of variables, as it performs

better on low-dimensional problems when the SMPSO is used.

Comparison with ReMO

In this part we show the results and analysis when WOF is compared to the transformation-

based ReMO method from the literature. The results in terms of winning rates are

shown in Table 6.10 and in further detail in Appendices B and C. Like in the original

publication in [78], we use ReMO with the two algorithms NSGA-II and MOEA/D, and

the same two algorithms are used in the WOF framework to compare the performance.

In Table 6.10, the WOF and ReMO versions of NSGA-II and MOEA/D are compared,

along with the randomised version of WOF as in the previous experiments.

Overall, the results show that ReMO is not competitive to WOF, no matter which

optimisation method is used. Similar results have been reported also in [47], where

Re-NSGA-II was not able to perform on par with the DLS-MOEA. The results on the
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NSGA-II versions show that WOF-NSGA-II significantly outperforms Re-NSGA-II in

over 90% of all instances, in around 94% of low-scale and 90% of large-scale problems,

and around 84% of many-objective problems. Re-NSGA-II can only perform better than

WOF-NSGA-II in 7 out of 92 large-scale problems showing its inferiority compared to

the Weighted Optimisation Framework. The results of the MOEA/D algorithms show an

even clearer picture, with WOF-MOEA/D winning over Re-MOEA/D in 99.45% of all

problems, among these 100.0% of all low-scale and 100.0% of all large-scale problems.

Only in one out of 184 problem instances both algorithms perform equally, and in fact

Re-MOEA/D never wins against WOF-MOEA/D even a single time, as seen in Table 6.10,

row 4, column 3. ReMO is, based on these findings, the only algorithm in the study

which is completely outperformed by another.

The random embedding approach of ReMO relies heavily on the fact that the random

matrix, which is sampled in the beginning of the algorithm, results in a suitable transfor-

mation of the problem. In ReMO, this means a suitable embedding of the problem into

the low-dimensional search space through the matrix is essential. However, this is only

possible if there exists a useful embedding in the first place. In the original publication,

ReMO was proposed and used purely to solve large-scale problems with low effective

dimensions. As such, ReMO does not claim to solve any large-scale problems, but only

those which include a large part of variables that do not or only weakly contribute to

the objective function values. This assumption makes ReMO almost incapable of solving

any problems which can not be embedded in a low-dimensional space without significant

loss of the reachable search space. The used benchmarks in the large-scale literature and

in this thesis require all variables to be part of the optimisation process, with most of

them equally contributing to the objective function values. It is therefore not surprising

that ReMO is outperformed by far, almost entirely, in the present study. Based on the

results in this section, we conclude that ReMO can hardly be seen as a general large-scale

optimisation alternative for future studies. However, it is the author’s opinion that

the random embedding approach might offer multiple valuable ways for extension and

development of new transformation-based algorithms in future work.

Comparison with Randomised Algorithms

Now we take a closer look at how the random-group-based versions of MOEA/DVA,

LMEA and S3-CMA-ES perform against different versions of the Weighted Optimisation

Framework. In Table 6.9 we list the winning rates of all six algorithms in comparison

with each other, and the detailed IGD results are shown in Appendix B in Tables B.27,

B.30, B.33 and B.36. The winning rates using the Hypervolume indicator are shown in

Appendix C.

Since the three modified algorithms from the literature usually rely on interaction-based

groups, it is expected that their performance is to some extent inferior to the results that

are usually reported in the literature. All three methods, however, still use their original
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contribution-based grouping mechanisms, and removing the interaction-based groups

enables them to run of a small computational budget of 100, 000 function evaluations. In

this way, we can examine in these experiments how well these three methods perform

with their search strategies when only a limited computational budget or predefined

variable groups are available.

Comparing the three methods with each other first (the last three columns and last three

rows of Table 6.9), it is visible that the search mechanism of LMEA works best with

these random groups, and can outperform the other two on the entire set of benchmarks

in around 71% (MOEA/DVA) and 75% (S3-CMA-ES) respectively. On the large-scale

instances, the picture remains the same, and the LMEA further obtains the highest

winning rates (over 67%) on the many-objective instances and the low-scale problems.

These results indicate that LMEA possesses a search mechanism that is not only more

robust against non-optimal variable groups, but can also perform a suitable optimisation

with its search mechanism alone. In contrast, the other two algorithms rely more on

either the large amount of available evaluations or the quality of variable groups, as they

do not perform well with random groups.

The more interesting observations stem from comparing the three WOF versions with the

random-group versions of these related methods. Using the same computational budget,

we observe that all of the three WOF versions outperform the LMEA, MOEA/DVA and

S3-CMA-ES algorithms by far. The randomised WOF version performs significantly

better than all of the three related ones in over 95% of instances among the large-scale

problems. Similar high numbers are also obtained in the many-objective problems and

the overall benchmark set. Even though we saw earlier that the random-group LMEA

obtained better results that the corresponding MOEA/DVA and S3-CMA-ES methods,

we can see that it is outperformed significantly in over 83% of large-scale problems by

WOF-NSGA-II and over 90% by WOF-SMPSO and the randomised version of WOF. In

general, the winning rates of all of the related algorithms remain very low compared to

the WOF versions, often in the area of less than 10% overall as well as on the large-scale

problems.

Looking at the convergence behaviour, further details can be identified. In Fig. 6.9, the

convergence behaviour is shown for the 1000-variable UF6 problem with 2 objectives and

the 1000-variable DTLZ7 problem with 5 objectives. The first observation is that the

MOEA/DVA and S3-CMA-ES only start their optimisation after they already used up

half of the total evaluations. This is due to the contribution-based grouping methods,

which consume n ·NCA function evaluations (see Table 4.4). For this reason, both of

these methods suffer from a reduced amount of resources for the actual optimisation,

even though the interaction-based groups have been replaced. The same applies to the

LMEA, which starts its optimisation after 8, 000 evaluations due to its clustering-based

mechanism. Unfortunately, we can not observe that these found contribution-based

groups have a big influence on the development of the IGD values. The desired effect



160 CHAPTER 6. EVALUATION

seems visible only for the S3-CMA-ES in the UF6 problem, where the IGD is increased

rapidly in the beginning of its optimisation. The other algorithms seem not to be able

to reach similar convergence rates as the transformation-based WOF versions, which

indicates that the CC-based approaches of the three related methods might be at a

disadvantage.

In summary, these results show that the transformation-based search strategy seems to

have a definite advantage in the case when only random or other simple variable groups

are available. It also suggests that most of the good performance of MOEA/DVA, LMEA

and S3-CMA-ES comes not from their actual superior exploration mechanism in the

search space, but either from the quality of the variable groups or the sheer amount of

available evaluations that are usually used in the literature. To test these findings further,

we show later in Section 6.6.2 the experiments using a large computational budget of

10, 000, 000 function evaluations. In this way it is analysed whether the performance of

WOF can still keep up in these scenarios where the three related algorithms can make

use of their interaction-based variable groups.
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Figure 6.9: Convergence behaviour of the random-group-based algorithms from the
literature and different WOF versions. All problems have 1000 decision variables.

Comparison with DLS-MOEA

The last analysis in the low-budget experiments concern the recent DLS-MOEA algorithm.

It was only published recently in the end of the year 2018 and relies mostly on a local

search using an archive and the Hypervolume indicator. In Table 6.11 we list the winning
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rates of the DLS-MOEA in comparison with the three tested WOF versions. In addition,

the appendix shows the detailed performance results in terms of IGD in Appendix B and

the Hypervolume in Appendix C.

The results performed on 102 benchmark instances show in general a favourable perfor-

mance of WOF compared to DLS-MOEA. DLS-MOEA performs significantly worse than

WOF-SMPSO, WOF-NSGA-II and WOF-Randomised in 74.5%, 61.76% and 70.58% of

problems instances respectively. In only the large-scale benchmarks, the WOF versions

perform significantly better than DLS-MOEA in 90%, 80% and 90% respectively. If we

take a look in the appendix at Tables B.40 to B.43, we see that among all 60 large-scale

instances, DLS-MOEA only achieves the best performance among all 4 algorithms 2

times in the 3-objective LSMOP2 and LSMOP4 problems. Both of these problems are

non-separable and multimodal according to [42]. Further, the results on other problems

with the same characteristics like LSMOP6-8 show inferior performance of DLS-MOEA.

It is therefore difficult to examine why these three problems favour the DLS-MOEA

search strategy based on the properties of the problems. However, these results show

that WOF methods in general outperform DLS-MOEA on 90% of cases on different

benchmark families and with different numbers of variables.

As was described in the beginning of this section, the many-objective instances were

not used in these experiments because the DLS-MOEA relies heavily on the calculation

of Hypervolume in the objective space. This can be considered as a weakness of this

approach, since it uses a performance indicator that, on the one hand, can measure

diversity and convergence of solutions without the need of a reference set, but on the

other hand is computationally expensive to calculate, especially when the number of

objectives increases. Therefore, the computational budget needed by DLS-MOEA in

terms of computation time is dependent on the number of objectives, which gives it a

disadvantage for many-objective optimisation.

The reported results of DLS-MOEA in comparison with WOF in the original work [47]

differ from the results obtained in our experiments. In the present thesis, a larger variety

of benchmarks with different numbers of variables and objectives was used. However, if

we focus our analysis on only those benchmarks used in [47], we also observe differences.

More precisely, the original study claimed that DLS-MOEA works especially well on

problems with certain properties, i.e. which require a great amount of care to obtain

diversity, while convergence can be achieved relatively easily. The problems that were

identified to lie in this category were the UF benchmark problems. Table B.41 shows

the result of WOF methods and DLS-MOEA on the 40-variable and 1000-variable UF

instances in our experiments. We can see that the best performance is acquired in the

40-variable problems by DLS-MOEA in UF2, 4, 5, 9 and 10, while in the other instances

DLS-MOEA ties with one of the WOF versions or performs significantly worse. However,

the situation which is of interest in this thesis are the large-scale 1000-variable tests

in the second half of Table B.41. It is visible that DLS-MOEA performs significantly
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worse than one of the WOF versions in all 10 benchmarks except UF7, where it ties with

WOF-NSGA-II. This means that DLS-MOEA never actually achieves a best performance

in any of the large-scale UF problems. This is a contrast to the result reported in

[47], and can be explained with the different version of the WOF algorithm which was

used in that study. In [47] the WOF-SMPSO was used in the version from the article

published in [1], which chose the pivot solutions by Crowding Distance and employed the

p-Value transformation function. The WOF version used in the present work, on the

other hand, chooses the pivots by reference directions and uses the new parameter-free

transformation function which was introduced in [6] and explained earlier in this thesis

in Section 5.1.5. Furthermore, the experiments in [47] used a computational budget of

10, 000, 000 evaluations.

In Fig. 6.10b we show the convergence behaviour for the 2-objective LSMOP2 and the

3-objective DTLZ7 problems. An interesting observation is that the IGD values of

DLS-MOEA are not changing during the local search phase of the search. DLS-MOEA

is alternating between two different stages of optimisation, and we can observe that one

that uses the proposed dual local search has no real effect on the development of the IGD

in these two problems. The advancement in IGD happens only during those phases where

the Hypervolume-based optimisation takes place. This is not the case in all benchmarks,

but it is an interesting observation which might be due to the multi-modality of those

selected problems.
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Figure 6.10: Convergence behaviour of the DLS-MOEA from the literature and different
WOF versions. All problems have 1000 decision variables.
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6.6.2 Results and Analysis: Large Budget

In this section the results of the large-budget experiments are analysed. These experiments

used 10, 000, 000 function evaluations and are conducted with WOF-SMPSO, WOF-

Randomised, LMEA, MOEA/DVA and S3-CMA-ES. The respective settings of the

algorithms are the same as in Section 6.1.1. The results are summarised in Tables 6.12

and 6.13 and details are found in Appendices B and C. As described above, the amount

of used benchmarks varies in these experiments due to the large computation time when

applying all algorithms to a large set of different benchmarks. Therefore, only large-scale

instances were used in these experiments, and further details regarding the exclusion of

other benchmarks for algorithmic reasons in case of S3-CMA-ES are given below.

Comparison with MOEA/DVA and LMEA

At first, we pay attention to the results in Table 6.12, where we see the winning rates of

WOF-SMPSO and WOF-Randomised (the two best performing WOF versions in the

previous experiments) compared to the original LMEA and MOEA/DVA on 42 different

large-scale instances from the 2- and 3-objective LSMOP, UF and DTLZ families. In

these experiments we obtain mixed results and, more importantly, different results than

above when the same algorithms were used with random groups and small computational

budgets.

Comparing MOEA/DVA and LMEA reveals that LMEA can only win in around 16%

of problem instances while it is outperformed by MOEA/DVA in over 76% of cases.

This picture opposes that of Table 6.9 and indicates that MOEA/DVA uses its large

computational budget more efficiently than LMEA. More precisely, MOEA/DVA has

a mechanisms of updating the population during the interaction-based grouping. If a

solution produced throughout the interaction analysis can dominate a population member,

the population is updated accordingly. Therefore, a large share of function evaluations (see

Table 4.4) is used to actually contribute to the search process in contrast to LMEA, where

the interaction-based analysis is carried out independently of the subsequent optimisation

steps. This implementation detail may explain why MOEA/DVA can outperform LMEA

in the experiments that include the interaction-based grouping mechanisms. This theory

is explored further below in Section 6.7, where exactly this property is deactivated to

examine the influence of variable groups on the search in more detail.

When taking the WOF algorithms into account, we observe that LMEA is not able to

compare with the rest of the algorithms in their unity. Out of all 42 large-scale problems,

LMEA performs significantly worse than one of the other three method on 40 benchmark

instances, ties with the other algorithms on the 2-objective DTLZ7 and performs best

only one time, on the 3-objective DTLZ7. The performance of MOEA/DVA compared to

WOF reveals more mixed results, with WOF-SMPSO winning against MOEA/DVA in

20 instances, and also loosing in 20 instances. The same holds for the randomised WOF

version. A closer look into the tables in the appendix (Tables B.37 to B.39) reveals that
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results on the LSMOP are generally mixed, while MOEA/DVA seems to be the better

option in almost all UF problems and WOF seems to be the better choice in almost all

DTLZ problems.

Comparison with S3-CMA-ES

The last comparison with the state-of-the-art on a large computational budget involves

the S3-CMA-ES algorithm. This method is based on the concept of covariance matrix

adaptation, and also utilises interaction-based variable groups. The results based on

28 large-scale problems are shown in Table 6.13 and Tables B.44, B.45 and C.12 in the

appendices of this thesis.

The results, in comparison with MOEA/DVA, LMEA and two WOF versions, do reveal

a rather poor performance of S3-CMA-ES, which is significantly worse than the state-of-

the-art in 82% and 75% of cases compared to the WOF-SMPSO and WOF-Randomised

respectively. It is further outperformed by MOEA/DVA and LMEA in 60% and 53%

of benchmarks respectively. While these numbers suggest that S3-CMA-ES is at least

comparable to LMEA in its performance (winning 42% against LMEA), it shows a

worse performance especially in comparison with WOF. And while S3-CMA-ES can

win in 9 out of 28 instances (32%) against MOEA/DVA, it must be noted that these

experiments did not include the UF benchmarks (reasons are explained below). It is

therefore expected that if more benchmarks like UF were used, the percentage of wins of

MOEA/DVA compared to S3-CMA-ES would lie even higher, since we have seen in the

above experiment that MOEA/DVA performs mostly superior to other algorithms on

the UF benchmarks.

Next, we focus on a major weakness of the S3-CMA-ES algorithm. While this method

is built upon the (otherwise successful) concept of covariance matrix adaptation, a big

problem actually lies in the size of the covariance matrices in the algorithm. S3-CMA-

ES uses interaction-based groups, and optimises each group separately using its own

covariance matrix adaption instance to optimise only the variables in a specific group.

Therefore, each of the matrices’ dimensions are determined by the sizes of the variable

groups. Since the dimensions of the matrices rise quadratically with the number of

variables, a quadratic amount of memory is needed to store them. The issue, however,

lies in the computation time, since inside of the algorithm matrix multiplications and

inversions are calculated frequently. For an optimisation problem containing equal-sized

groups, which do not contain too many variables each, this results in several moderate-

sized matrices. However, when problems are non-separable, the interaction analysis

produces (in the worst case) one large group of variables which includes the entirety of

variables. In our experiments, this has been the case for all of the UF problems except

UF3 and the LSMOP1 and LSMOP3 problems. In these cases, the algorithm operates

with one large matrix of size 1000× 1000 and as such uses a large computation time for

multiplication and especially inversion of these. In our experiments, while S3-CMA-ES
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solved other problems with 1000 variables like LSMOP8 or DTLZ1 in around 14 minutes

on a single core, for some of the UF functions a single run of the algorithm took more

than 22 hours of calculation time. In case of the LSMOP benchmarks, not a single run

had finished after more than 46 hours of computation time. Since this kind of runtime

would make it impossible to test this algorithm for over 30 independent runs on these

problems, the UF and LSMOP1 and LSMOP3 problems were therefore omitted in this

experiment.

In conclusion, S3-CMA-ES certainly has interesting properties, since it is easily adapted

into a parallel algorithm (see Table 4.2). On the other hand, it is outperformed in most

instances by WOF or MOEA/DVA, and it heavily depends on suitable variable groups

of small to moderate sizes. If this algorithm was applied to real-world problems with

non-separable variables, its long computation time, apart from the usual required time

for the 10, 000, 000 function evaluations, might render S3-CMA-ES unsuitable in practise.
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Figure 6.11: Convergence behaviour of LMEA, MOEA/DVA, S3-CMA-ES and different
WOF versions. All problems have 1000 decision variables.

Finally, we look into the convergence behaviour of LMEA, MOEA/DVA and S3-CMA-ES

in Fig. 6.11. Multiple interesting features are visible in these two plots of the 2-objective

DTLZ2 and LSMOP7 problems. First of all, due to the contribution-based and interaction-

based grouping phases, the MOEA/DVA, LMEA and S3-CMA-ES start their optimisation

procedures later than the two WOF versions. This is visible immediately in the IGD

values of LMEA and S3-CMA-ES since they do not produce IGD values before their groups

are finished. Here we also see immediately the difference in the grouping mechanisms.

S3-CMA-ES uses a version of DG2, and therefore finishes the grouping phases after
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around 500, 000 evaluations. In contrast, LMEA and MOEA/DVA need multiple millions

of evaluations in both benchmarks before they obtain the interaction-based groups. In

MOEA/DVA, however, this is not immediately visible, since it saves the solutions created

during the interaction analysis and constantly updates its initial population during the

process. Especially in Fig. 6.11a it is visible that the IGD values gradually improve until

the optimisation starts after around 9 million evaluations, and the IGD improves rapidly

afterwards.

Another interesting observation is the sudden increase in IGD of the S3-CMA-ES. This

algorithm has two different stages, which are the independent optimisation of the popula-

tions until convergence and the diversity optimisation. It is visible that the IGD converges

in the beginning and once no more improvement is possible, the algorithm detects that all

populations have converged, starts the optimisation of the diversity-related variables, and

creates new independent populations for the next iteration. However, this mechanism

seems to increase the IGD values in both benchmark functions, and leads to an overall

worse performance. This insight can be valuable to reconsider the way the diversity

optimisation is carried out in S3-CMA-ES, or how the preservation of good solutions in

an archive is implemented in future versions of the S3-CMA-ES.

6.7 Influence and Efficiency of Grouping Mechanisms

In the previous sections we have seen that some algorithms are based on costly interaction-

based grouping methods, and are only able to show their full potential when used with

large computational budgets (as seen in the random-grouped versions in Table 6.9).

Therefore, the reason for the good performance is not clear, i.e. whether the good

performance stems from the actual search mechanism of these algorithms or whether the

good quality of the interaction-based groups is responsible for the successful optimisation

result.

For instance, MOEA/DVA saves the created solutions during the interaction-based

grouping to update the population. Therefore, it uses the large amount of function

evaluations already partly to search better solutions. The resulting updated population

is, when compared to the initial random population, very likely to provide a better

starting point for the actual search. On the one hand, after comparing MOEA/DVA

with another algorithm for a total of multiple million evaluations, the final performance

can show which algorithm makes better use of the total budget. On the other hand, it

is very difficult to decide whether the good performance of MOEA/DVA stems form

(a) the special optimisation procedure after the grouping phases, (b) the updated start

population or (c) the quality of the obtained groups. There is a chance that the good

performance in the end is only the result of the algorithm’s search process after the

grouping phase, and would have lead to the same good results if random groups had been

used. However, this can not be examined by just replacing different grouping mechanisms
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with another, since the varying computational budget then allows the algorithm to use

more evaluations for the optimisation.

Therefore, in this section we examine the performance of the three interaction-based

methods from the previous experiments in further detail. The goal of this experiment is

to find out which influence interaction-based groups have on the actual performance of

the three most prominent algorithms using this concept. This analysis can especially be of

interest considering that “good” variable groups in reality might be obtained through the

inclusion of expert knowledge, and therefore it is of interest to know whether MOEA/DVA,

LMEA and S3-CMA-ES are competitive algorithms to use in these scenarios, even when

only a limited computational budget is available for the actual optimisation phase of the

problem.

Experimental Outline

To test for the influence of the interaction-based groups and to assess whether the search

mechanisms alone are competitive, we use MOEA/DVA, LMEA and S3-CMA-ES and

implement special versions of them as follows. The normal version of each algorithm is

modified so that the used function evaluations are not counted during the group-finding

phase. Therefore, each of them performs their contribution-based and interaction-based

grouping mechanisms, and starts the following optimisation phase as if no evaluations

had been used so far.

In addition, no population update is done in the case of MOEA/DVA, so that after

finding the interaction-based groups, all algorithms start with a random initial population.

For comparison, the WOF-SMPSO and WOF-Randomised algorithms are used. In the

previous sections, these two algorithms have already been compared with the random-

group-based versions (see Section 6.6.1 and Table 6.9) and the original versions of LMEA,

MOEA/DVA and S3-CMA-ES on a large computational budget (see Section 6.6.2 and

Table 6.12).

The algorithms perform the optimisation in these experiments with a budget of 100, 000

function evaluations. This means that the WOF versions use the standard parameters

as described above with simple variable groups, while the three related methods use

interaction-based groups, but all algorithms use the same budget for search process after

the groups are formed.

We point out that this kind of experiment can usually not be seen as a fair comparison,

as the versions with the interaction-based groups actually use millions of additional

evaluations to obtain knowledge of the problem. It would therefore not be surprising to

see that the interaction-based algorithms can outperform the WOF versions in this case.

However, this experiment can reveal information on whether the high computational

effort that is associated with interaction-based groups is actually justified and should

be pursued in future large-scale algorithms. We can also obtain insight on whether the
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actual search procedure of the three algorithms causes the good performance, and see

how well these methods can perform on a fairly low computational budget.

The remaining settings and parameters of this experiment are as described in Section 6.1

and Section 6.6.2 respectively. Since the S3-CMA-ES is involved in the experiments, the

same 28 large-scale benchmark problems as in the previous section are used. The results

are analysed in detail in the following and especially compared with the performances in

the previous sections regarding the other version of the three related interaction-based

methods.

Results and Analysis

The resulting winning rates of the five algorithms are shown in Table 6.14. Since the

algorithms are altered to assess the influence of variable groups, the versions of the three

related algorithms in Table 6.14 are called “groupInfMOEA/DVA”, “groupInfLMEA”

and “groupInfS3-CMA-ES”.

Similar to the previous experiments, the WOF methods obtain high winning rates

compared with the other three algorithms. WOF-SMPSO performs significantly better

than LMEA, MOEA/DVA and S3-CMA-ES in 27 out of 28 instances, and shows no

statistical difference on the one remaining problem when compared with MOEA/DVA.

Similarly, WOF-Randomised wins in 100% of all cases against LMEA and S3-CMA-ES

and in all but one instances against MOEA/DVA. None of the three related algorithms

is able to win a single time against the randomised WOF version.

These winning rates of the WOF algorithms are higher than the ones obtained in the

above experiment in Table 6.12. In those experiments all algorithms used 10, 000, 000

evaluations, and the three related methods use up a major part of it for their interaction

analysis. Nonetheless, they still used more than 1, 000, 000 evaluations afterwards for

the actual optimisation, which enabled them to obtain competitive IGD values for some

benchmark functions. Compared to the present experiment, the difference lies only in

the fact that once the contribution-based and interaction-based groups are obtained,

the algorithms can only use 100, 000 evaluations for the optimisation. The numbers in

Table 6.14 indicate that this amount is not sufficient to make use of the obtained variable

groups. We can conclude that even when optimal groups (or groups of suitable quality)

have been found, or are given from external sources, the search mechanisms of the LMEA,

MOEA/DVA and S3-CMA-ES can only obtain good results when used with a sufficiently

large computational budget. If only limited budget is available, methods like WOF make

better use of these computational resources.

Next, we take a look at the differences to the random group-based versions of the

algorithms. In Table 6.9 we saw that LMEA in most cases performs superiorly to

MOEA/DVA and S3-CMA-ES on the large-scale problems when random groups are used,

winning 72% and 80% respectively. Slightly different results are observed in Table 6.14,
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although the winning rates of the groupInfLMEA over the other algorithms are still the

highest with approximately 67% and 42% respectively. However, groupInfS3-CMA-ES also

wins against groupInfLMEA in 42% of the instances, which makes both algorithms equally

strong. Surprisingly, groupInfS3-CMA-ES also wins against the respective MOEA/DVA

version in over 67% of the cases, which makes MOEA/DVA the weakest of the three

algorithms in this experiment.

In summary, we see that the MOEA/DVA performs better in comparison with the other

methods when a higher amount of function evaluations is available, which suggests that

it reaches good performance mainly through its optimisation procedure rather than

through the quality of groups alone. Overall, the results in this section reveal that

the WOF algorithms can outperform the related methods on almost all the problem

instances, even though the three methods from the literature used millions of additional

function evaluations for their interaction analyses. Therefore, we can deduce that the

high computational effort to obtain “good” variable groups does not contribute to the

overall solution quality in most cases.

6.8 Summary and Discussion

In this section the results of the different experiments are summarised and discussed with

respect to the different algorithm categories and properties.

Each of the three proposed approaches was evaluated on its own using a set of 184

different benchmark instances with different dimensionalities and properties. The results

showed that each of the three methods is able to significantly increase the performance of

existing traditional algorithms. This holds for the large-scale problem instances, but also

in many cases for problems with lower numbers of variables and many-objective instances.

In terms of complexity, the GLMO is the simplest approach, while the WOF requires the

most change in algorithm behaviour. The performance of the methods, when compared

to each other, reveals that the WOF method is generally the strongest among the three

when the SMPSO is used as the internal optimiser, although the numbers suggest that

the GLMO performs slightly better when NSGA-based algorithms are used.

In comparison with the state-of-the-art, the results show that the WOF-based algorithms

perform superiorly in the majority of experiments. Using moderate computational budgets

of 100, 000 function evaluations, WOF performs superiorly to ReMO in almost all problem

instances, and achieves winning rates over 90% when compared with the DLS-MOEA.

In comparison with the LSMOF, WOF performs superiorly using the SMPSO. Both

methods are competitive using NSGA-II or NSGA-III, although the overall convergence

speed of WOF is higher.

The three methods MOEA/DVA, LMEA and S3-CMA-ES from the literature were

tested in multiple different versions to test their abilities to work with random groups,
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interaction-based groups and different computational budgets. As a result, we conclude

that these methods do not perform well with random groups and with small computational

budgets. On the other hand, their search mechanisms seem to benefit from higher budgets

for the optimisation phases more than from the correct interaction-based segregation

of variables. In summary, these three algorithms usually require a large computational

budget to be effective, which can render them inferior when applied to costly real-world

evaluation functions. In addition, their performance was in many cases inferior to WOF

even after millions of additional evaluations.

Among these three algorithms, using the large computational budget, MOEA/DVA

performs in general best among them, even though the interaction-based grouping

method of S3-CMA-ES requires fewer function evaluations and thus leaves more budget

for optimisation. A critical weakness of S3-CMA-ES was discovered in the course of the

experiments which regards the computational effort of the algorithm for highly interacting

problems, i.e. problems for which the grouping methods produce few very large groups. In

these cases S3-CMA-ES is unlikely to produce results in feasible time for real applications

with expensive function evaluations.

Hypervolume Results

In Appendix C the winning scores of all experiments with regard to the Hypervolume

indicator are shown. The used reference points used for the Hypervolume calculations are

obtained using the respective nadir points of the benchmarks, multiplied with a factor of

2.0 in each dimension to account for Hypervolume contributions of extremal solutions of

the obtained fronts. Since not all algorithms are able to obtain solutions close enough to

the true Pareto-fronts in several problem instances, the Hypervolume values amount to

zero in many problem instances. For this reason, the results using the IGD indicator are

generally more reliable to judge the differences in algorithms’ performances.

The results using the Hypervolume metric show that in most experiments the winning

rates are lower than the corresponding IGD winning rates, resulting from an increased

amount of ties between algorithms due to the zero-values. This effect influences all

algorithms in the same way, and it is visible that despite the lower overall rates, the

relations between algorithms stay the same. Therefore, the results overall match the

ones from the IGD indicator, and confirm the strengths and weaknesses of the individual

methods compared to each other in all experiments.

Analysis based on Algorithms’ Categories

Finally, we perform a brief analysis which aims to identify different levels of performance

not based on individual algorithms, but on the basis of the classifications from Chapter 4.

First, we take a look at the different categories of dimensionality reduction. Among the

algorithms used in our evaluation, LMEA, MOEA/DVA and S3-CMA-ES are CC-based
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methods (category 1). The methods ReMO, LSMOF, WOF and LCSA are transformation-

based methods (category 2), and DLS-MOEA and GLMO belong to category 3 and do

not use dimensionality reduction. Between the representatives of these three categories,

no clear lines can be drawn based on their performances, i.e. no class of dimensionality

reduction seems superior to another.

Especially among the transformation-based approaches, LSMOF, WOF and LCSA

perform very well, while we saw that ReMO is outperformed in almost all the benchmarks.

We further saw that both WOF and LSMOF usually have a short phase of rapid

convergence in the beginning of the search, though differences exist between both

methods. We can deduce that on the one side, transformation-based approaches can

be very powerful in terms of solution quality and convergence speed, but on the other

side it is of importance that a suitable transformation is done, and that not any random

transformation, as in the case of ReMO, is effective.

Looking at the CC-based approaches, we also obtain mixed results, with partly com-

petitive, partly inferior performance compared to the transformation-based WOF. The

CC-based approaches show differences in their performance, with MOEA/DVA being in

general more competitive to WOF than the other algorithms on large-scale problems.

The methods DLS-MOEA and GLMO, which do not reduce the dimensionality of the

problem, show good performance in general, but while DLS-MOEA is mostly inferior

to the WOF algorithm, GLMO is very competitive in its results. This is a surprising

finding and shows that dimensionality reduction is not necessarily the best answer to

large-scale optimisation.

Taking a look at the different categories of diversity management, LMEA, MOEA/DVA

and S3-CMA-ES belong to categories 1-1 and 1-2 respectively, which all make use of

diversity-related variables through contribution-based grouping mechanisms. ReMO,

GLMO and LCSA do not implement a special mechanism of diversity management, while

DLS-MOEA and partly LSMOF use indicator-based approaches. Each of the three main

categories has advantages and contains at least one method which performs reasonably

well in the experiments. It is therefore not possible to attribute the performance to a

specific type of diversity management.

In summary, our experiments do not reveal a clear superior strategy of dimensionality

reduction or diversity management. While the LSMOF and WOF methods are two of the

most promising algorithms, the GLMO and MOEA/DVA from the other two reduction

categories show competitive performance as well. Moreover, ReMO was one of the weakest

methods in the evaluations. We can conclude that, if used properly, all three categories

of dimensionality reduction can be of advantage and should be taken into account for

the future development of large-scale algorithms. However, the dependency of CC-based

approaches on suitable variable groups and the reduction of their computational budget

might be one of the biggest drawbacks of this category.
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Conclusions and Future Work

In this chapter we summarise the findings from this thesis and provide conclusions

regarding the research objectives from Chapter 1. Finally, several promising topics for

future research in the large-scale area are outlined.

The present thesis deals with the metaheuristic optimisation of large-scale multi-objective

problems. The basic concepts from this research area were introduced in Chapter 2,

including principles of multi-objective problems, evolutionary algorithms, variable groups

based on interaction or contribution and cooperative coevolution. The following Chapter 3

presented the state-of-the-art from the literature in this research area, and outlined the

concepts and properties of all 13 large-scale multi-objective algorithms published until

the end of March 2019. Furthermore, an overview of popular grouping mechanisms was

given.

Chapters 4 and 5 presented new contributions of this thesis. First, the existing large-scale

algorithms and grouping mechanisms were analysed based on their components (building-

blocks), and their properties. Based on the findings, classification schemes were proposed.

The algorithms were analysed in detail based on their diversification, their dimensionality

reduction and their capabilities for many-objective optimisation and possibilities for

parallel implementations. In addition, the methods were analysed based on their required

computational budgets, and previous experiments from the literature were analysed

with respect to the used benchmark functions and dimensionality of the tested problems.

Existing grouping methods from the literature were classified based on their computational

budget and their segregation criteria into simple methods, contribution-based methods

and interaction-based methods. The advantages and disadvantages, especially with

respect to the necessary function evaluations to obtain the variable groups, were outlined.

In Chapter 5 the proposed approaches to solve large-scale optimisation problems were

explained and analysed. The three methods, called GLMO, WOF and LCSA, were

described together with their components in detail and their possible advantages and
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shortcomings were discussed. The proposed algorithms were further classified based on

the identified categories from the previous chapter.

Lastly, the experimental evaluation gave insights in the performance of the proposed

methods and 6 of the related algorithms from the literature as well as different variations

of them. Various experiments were performed with up to 184 different benchmark

instances with different properties and dimensionalities. Since many of the algorithms are

further configurable with arbitrary metaheuristics, four different metaheuristics (NSGA-II,

NSGA-III, MOEA/D and SMPSO) were employed inside the large-scale methods. The

results revealed a competitive and in many cases superior performance of the proposed

methods compared to the state-of-the-art. The WOF was identified as the strongest of the

three methods, and was able to significantly outperform most other algorithms with low

computational budgets. In comparison with the state-of-the-art using interaction-based

grouping methods, and using a large computational budget, the MOEA/DVA showed best

performance among the related methods and was competitive to WOF in several cases.

In addition to the final solution quality in terms of IGD and hypervolume indicators,

the results were further compared based on convergence speed, revealing fast initial

convergence of transformation-based algorithms. Generally, no clearly superior strategy

could be identified among the classes of dimensionality reduction or diversity management.

However, several weaknesses of single algorithms, related to the computational budget,

the used matrix operations or the hypervolume indicator, were identified, which may

make them unsuitable for real applications. It is the author’s belief that a transformation

of the problem is especially useful in early stages of optimisation, but CC-based methods

can become more useful for parallel implementations and problems with many interactions

between the variables.

Research Objectives

In conclusion of this thesis, we recapitulate on the research objectives stated in the

introduction of this thesis and summarise the results for each of them.

Objective 1: Analysis and Classification of State-of-the-Art The first objective

was to examine what the challenges of large search spaces are and which approaches have

been developed in recent years for multi-objective large-scale optimisation. This objective

was achieved first through a literature review, leading to a description of the existing

large-scale algorithms and their components, called building-blocks. The methods and

their building blocks were analysed based on various criteria and afterwards classified into

categories. The further analysis of these categories and the experimental evaluations from

the literature revealed that many common elements exist among large-scale algorithms,

but also that experimental evaluations and computational resources often differ among

publications. Several theoretical weaknesses and advantages of the existing methods were
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also discussed. The classification scheme of the methods may be helpful in the future

development of algorithms and to better understand the existing techniques.

Objective 2: Examination of Grouping Mechanisms The second objective con-

cerned grouping mechanisms with the aim to examine how existing grouping methods for

variables work and how important different groups are for the results of the optimisation

with different algorithms. To achieve this goal, a selection of methods from the literature

to obtain variable groups were described and analysed. As a result, a classification scheme

for grouping methods was proposed. The methods were divided into simple methods,

interaction-based and contribution-based methods, and the importance of interaction-

based groups for the results of the optimisation, especially in CC-based algorithms, was

evaluated experimentally. CC-based methods work better with interaction-based groups

compared to random groups, but in exchange require a large computational budget to be

carried out.

Objective 3: Proposal of new Algorithms The third objective of this thesis was

to propose new methods to solve large-scale multi-objective problems and to improve the

search abilities of current algorithms. Three distinct search methods were proposed in

this thesis which make use of problem transformation and variable groups to achieve fast

convergence and diversity when solving such large-scale problems. The three methods

were formally described in detail and analysed theoretically. A classification based on the

previously introduced categories was done for the proposed methods. The experimental

evaluation showed in most cases superior behaviour both in terms of solution quality and

convergence speed compared to the state-of-the-art.

Objective 4: Experimental Evaluation The fourth objective dealt with the ex-

perimental evaluation of the proposed methods in comparison with the state-of-the-art.

Several experiments were conducted, comparing the proposed algorithms with classical

methods and with each other. Several methods from the literature and the proposed WOF

were then compared with each other using up to 184 different benchmark instances with

varying dimensionality of search space and objective space. Many of the used algorithms

were compared for the first time directly with each other and with a common parameter

set. Further, different computational budgets were used and some related algorithms

were used in altered versions to test for specific influences of grouping mechanisms. The

findings show good performance of all three proposed methods, and that they are superior

to many and competitive to some state-of-the-art algorithms. Aside from algorithms’

performances, practical issues have been identified which include the dependency on indi-

cators for high-dimensional objective spaces or the weakness of CMA-based approaches

for large variable groups. As a result of the evaluation, several insights were gained which

can be helpful for the future development of large-scale algorithms.
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Future Work

Based on the findings of this thesis, we observe a development in the large-scale multi-

objective area from the beginning in the year 2013 to modern techniques like the LSMOF

or DLS-MOEA. The techniques used in this area have developed from simple CC-based

algorithms which proved to be effective in single-objective optimisation to more advanced

transformation-based methods working with lower computational budgets. It is also

visible that the topic has received higher attention recently, with most articles published

within the last 2 years. The future of the large-scale area still holds many challenges

to face which can be the subjects of future work. Some possible issues that might be

promising are listed in the following.

• One of the greatest challenges of large-scale optimisation is the issue of finding

relevant groups for the decision variables with reasonable computational budgets.

It is crucial for many of the current algorithms to obtain knowledge about variable

interaction and contribution, and our experiments have shown that these can not

be replaced by random groups in CC-based methods without loss of solution quality.

While in real applications these might be obtained with the assistance of expert

knowledge, it might be promising to develop methods which can obtain more of

these variable properties during runtime or through surrogates to save function

evaluation while at the same time improve the performance of current algorithms.

• Another topic of interest can be the further development of transformation-based

approaches. We saw that a transformation of the problem can greatly enhance the

search process, but should not be used without other optimisation techniques like

optimising the original problem or using indicator-based methods. The difference in

performance we observed between for instance LCSA and ReMO further shows that

the type of transformation is important. Future work in this area can incorporate

more information obtained from the search process like statistical measures of the

current population into the transformation. Transformation functions can further

be used more flexibly or only on parts of the variables, e.g. in combination with

only certain variable groups.

• More attention can go towards suitable exploration techniques in high-dimensional

spaces. Simple techniques like the GLMO reveal that changes in existing operators

lead to more exploration and more change in the population’s variables, which

leads to better performance of the algorithms. It can therefore be promising to

develop further specialised operators for selection, crossover or velocity updates in

large-scale PSO techniques.

• In some algorithms a criterion is needed to determine when to stop using the

transformation or CC-based optimisation and switch to the next phase of the

algorithm, for instance to achieve diversity. This is done in WOF and LSMOF
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through a fixed parameter. MOEA/DVA or S3-CMA-ES aim to detect convergence

during runtime. However, it is an open topic how to actually best detect convergence

and how often this should be done during the optimisation. Suitable mechanisms

can be developed in the future which enable large-scale methods to better balance

their computational budget between different techniques of optimisation.

• An important factor is further the test of the existing methods on real-world

applications. It is not yet explored how well the proposed methods or techniques

from the literature perform when confronted with real optimisation problems.

This relates to a general challenge in the field of multi-objective optimisation

which usually relies on benchmark functions. The assumption that benchmarks

represent the properties of real problems adequately is a topic of ongoing research

in metaheuristic optimisation in general.

• Finally, it is the author’s belief that great enhancement of large-scale multi- and

many-objective algorithms can be achieved through hybrid approaches. We saw

that transformation function can achieve fast convergence speeds, but may be

more effective in the beginning of the search. We also observed that CC-based

approaches or changed operators can be beneficial, and that PSO techniques and

EA-based methods can show different performances. The randomised version of

WOF achieved in general better performance than using just one metaheuristic

as the internal optimiser. Future work might go towards detection of problem

properties and applying suitable mechanisms automatically. Based on the measured

convergence, diversity and overall performance of the search, different methods of

dimensionality reduction might be applied either to the whole problem or to parts

of it.

Using these and other future research directions, the development of large-scale algorithms

can accelerate in the upcoming years. More research can produce algorithms which focus

not only on large search spaces but also on many objective functions simultaneously.

Hybrid techniques and dynamically changing components and operators can lead the way

to future algorithms that outperform the current methods, including the ones proposed

in this thesis. In this way, more elaborate algorithms can incorporate single-, multi- and

many-objective optimisation with arbitrary numbers of variables. The author hopes

that the insights and proposed methods from this thesis will be helpful for the further

development of such methods on large-scale multi-objective optimisation. Overall, the

author believes that the research area of metaheuristic optimisation will produce more

advanced and wholesome techniques in the future which can aid to solve increasingly

complex problems of modern society and technology.
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[49] M. Köppen and K. Yoshida, “Many-objective particle swarm optimization by grad-

ual leader selection,” in Adaptive and Natural Computing Algorithms. Springer,

2007, pp. 323–331.

[50] ——, “Substitute distance assignments in nsga-ii for handling many-objective opti-

mization problems,” in Evolutionary Multi-Criterion Optimization. Springer,

2007, pp. 727–741.

[51] O. Schütze, A. Lara, and C. A. Coello Coello, “On the influence of the number of

objectives on the hardness of a multiobjective optimization problem,” IEEE

Transactions on Evolutionary Computation, vol. 15, no. 4, pp. 444–455, 2011.

[52] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, and Y. Nojima, “Many-objective

test problems to visually examine the behavior of multiobjective evolution in a

decision space,” in Parallel Problem Solving from Nature, PPSN XI. Springer,

2010, pp. 91–100.

[53] H. Masuda, Y. Nojima, and H. Ishibuchi, “Visual examination of the behavior of

emo algorithms for many-objective optimization with many decision variables,”

in IEEE Congress on Evolutionary Computation, 2014, pp. 2633–2640.

[54] S. Mostaghim, C. Steup, and H. Zille, “Multi-objective distance minimization

problems – applications in technical systems,” at-Automatisierungstechnik,

vol. 66, no. 11, pp. 964–974, 2018.

[55] H. Ishibuchi, N. Akedo, and Y. Nojima, “A many-objective test problem for

visually examining diversity maintenance behavior in a decision space,” in ACM

Genetic and Evolutionary Computation Conference (GECCO). ACM, 2011,

pp. 649–656.

[56] J. E. Fieldsend, T. Chugh, R. Allmendinger, and K. Miettinen, “A feature rich

distance-based many-objective visualisable test problem generator,” in ACM

Genetic and Evolutionary Computation Conference (GECCO). New York, NY,

USA: ACM, 2019, pp. 541–549.

[57] Y. Nojima, T. Fukase, Y. Liu, N. Masuyama, and H. Ishibuchi, “Constrained multi-

objective distance minimization problems,” in ACM Genetic and Evolutionary

Computation Conference (GECCO). New York, NY, USA: ACM, 2019, pp.

586–594.

[58] M. Heibig, H. Zille, M. Javadi, and S. Mostaghim, “Performance of dynamic

algorithms on the dynamic distance minimization problem,” in ACM Genetic

and Evolutionary Computation Conference (GECCO) Companion. New York,

NY, USA: ACM, 2019, pp. 205–206.

[59] H. Zille and S. Mostaghim, “Properties of scalable distance minimization problems

using the manhattan metric,” in IEEE Congress on Evolutionary Computation

(CEC), May 2015, pp. 2875–2882.

[60] ——, “Using ε-dominance for hidden and degenerated pareto-fronts,” in IEEE

Symposium Series on Computational Intelligence (SSCI), Dec 2015, pp. 845–852.



184 BIBLIOGRAPHY

[61] S. K. Goh, K. C. Tan, A. Al-Mamun, and H. A. Abbass, “Evolutionary big opti-

mization (BigOpt) of signals,” in IEEE Congress on Evolutionary Computation

(CEC). IEEE, 2015, pp. 3332–3339.

[62] Y. Zhang, J. Liu, M. Zhou, and Z. Jiang, “A multi-objective memetic algorithm

based on decomposition for big optimization problems,” Memetic Computing,

vol. 8, no. 1, pp. 45–61, 2016.

[63] S. Elsayed and R. Sarker, “An adaptive configuration of differential evolution

algorithms for big data,” in IEEE Congress on Evolutionary Computation

(CEC). IEEE, 2015, pp. 695–702.

[64] D. A. Van Veldhuizen and G. B. Lamont, “Multiobjective evolutionary algorithm

research: A history and analysis,” Department of Electrical and Computer

Engineering, Graduate School of Engineering, Air Force Institute of Technology,

Wright- Patterson AFB, Ohio, Tech. Rep. TR-98-03, 1998.

[65] C. A. Coello Coello and M. Reyes Sierra, “A study of the parallelization of

a coevolutionary multi-objective evolutionary algorithm,” in MICAI 2004:

Advances in Artificial Intelligence, R. Monroy, G. Arroyo-Figueroa, L. E. Sucar,

and H. Sossa, Eds. Berlin, Heidelberg: Springer, 2004, pp. 688–697.
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and B. Paechter, Eds. Cham: Springer International Publishing, 2016, pp.

525–534.

[80] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-scale global

continues optimization: A survey,” Information Sciences, vol. 295, pp. 407–428,

2015.

[81] “Efficient implementation of an active set algorithm for large-scale portfolio selec-

tion,” Computers & Operations Research, vol. 35, no. 12, pp. 3945 – 3961, 2008,

part Special Issue: Telecommunications Network Engineering.

[82] W. Chen and K. Tang, “Impact of problem decomposition on cooperative coevolu-

tion,” in IEEE Congress on Evolutionary Computation (CEC). IEEE, 2013,

pp. 733–740.



186 BIBLIOGRAPHY

[83] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-dimensional function

optimization,” in IEEE Congress on Evolutionary Computation (CEC), 2007,

pp. 3523–3530.

[84] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differen-

tial grouping for large scale optimization,” IEEE Transactions on Evolutionary

Computation, vol. 18, no. 3, pp. 378–393, 2014.

[85] M. N. Omidvar, Y. Mei, and X. Li, “Effective decomposition of large-scale separable

continuous functions for cooperative co-evolutionary algorithms,” in IEEE

Congress on Evolutionary Computation (CEC). IEEE, 2014, pp. 1305–1312.

[86] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential grouping for large

scale global optimization with direct and indirect variable interactions,” in ACM

Genetic and Evolutionary Computation Conference (GECCO). ACM Press,

2015, pp. 313–320.

[87] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “DG2: A faster and more

accurate differential grouping for large-scale black-box optimization,” IEEE

Transactions on Evolutionary Computation, vol. 21, no. 6, pp. 929–942, Dec

2017.

[88] R. Cheng and Y. Jin, “A Competitive Swarm Optimizer for Large Scale Opti-

mization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp. 191–204,

2015.

[89] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route distance group-

ing for large-scale capacitated arc routing problems,” IEEE Transactions on

Evolutionary Computation, vol. 18, no. 3, pp. 435–449, June 2014.

[90] H. Zille, S. Nunokawa, S. Mostaghim, M. Miki, and T. Hiroyasu, “Comparison study

of moeas with high dimensional objective and decision spaces,” in Japanese

Society for Evolutionary Computation Symposium, Kirishima, Japan, Dec 2013.

[91] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of generalized

differential evolution,” in IEEE Congress on Evolutionary Computation (CEC),

vol. 1. IEEE, 2005, pp. 443–450.

[92] S. Basu, A. Mondal, and A. Basu, “A cooperative co-evolutionary approach for

multi-objective optimization,” in Recent Trends in Signal and Image Processing,

S. Bhattacharyya, A. Mukherjee, H. Bhaumik, S. Das, and K. Yoshida, Eds.

Singapore: Springer Singapore, 2019, pp. 57–65.

[93] H. Li and Q. Zhang, “Multiobjective optimization problems with complicated pareto

sets, moea/d and nsga-ii,” IEEE Transactions on Evolutionary Computation,

vol. 13, no. 2, pp. 284–302, April 2009.

[94] M. Emmerich, N. Beume, and B. Naujoks, “An emo algorithm using the hy-

pervolume measure as selection criterion,” in Evolutionary Multi-Criterion

Optimization, C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 62–76.



BIBLIOGRAPHY 187

[95] N. Beume, B. Naujoks, and M. Emmerich, “Sms-emoa: Multiobjective selection

based on dominated hypervolume,” European Journal of Operational Research,

vol. 181, no. 3, pp. 1653 – 1669, 2007.

[96] P. Yang, K. Tang, and X. Yao, “Turning high-dimensional optimization into

computationally expensive optimization,” IEEE Transactions on Evolutionary

Computation, vol. 22, no. 1, pp. 143–156, Feb 2018.

[97] K. Klamroth, S. Mostaghim, B. Naujoks, S. Poles, R. Purshouse, G. Rudolph,

S. Ruzika, S. Sayın, M. M. Wiecek, and X. Yao, “Multiobjective optimization

for interwoven systems,” Journal of Multi-Criteria Decision Analysis, vol. 24,

no. 1-2, pp. 71–81, 2017.

[98] Z. Yang, K. Tang, and X. Yao, “Multilevel cooperative coevolution for large scale

optimization,” in IEEE Congress on Evolutionary Computation (CEC). IEEE,

2008, pp. 1663–1670.

[99] C. A. Coello Coello and M. R. Sierra, “A coevolutionary multi-objective evolutionary

algorithm,” in IEEE Congress on Evolutionary Computation (CEC), vol. 1.

IEEE, 2003, pp. 482–489.

[100] K. Deb and A. Kumar, “Real-coded genetic algorithms with simulated binary

crossover: Studies on multimodal and multiobjective problems,” Complex

Systems, vol. 9, pp. 431–454, 1995.

[101] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engi-

neering design,” Computer Science and Informatics, vol. 26, no. 1, pp. 30–45,

1996.

[102] K. Deb and S. Tiwari, “Omni-optimizer: A generic evolutionary algorithm for single

and multi-objective optimization,” European Journal of Operational Research,

vol. 185, no. 3, pp. 1062–1087, 2008.

[103] M. Javadi, H. Zille, and S. Mostaghim, “Modified crowding distance and mutation

for multimodal multi-objective optimization,” in Proceedings of the Genetic

and Evolutionary Computation Conference Companion. New York, NY, USA:

ACM, 2019, pp. 211–212.

[104] ——, “The effects of crowding distance and mutation in multimodal and multi-

objective optimization problems,” accepted for publication at the EUROGEN
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Experimental Evaluations in the

Literature

In this appendix, we describe the details of the experiments in the related literature. For

each of the 13 algorithms listed in Section 3.2, the methodology of the experiments and

the results based on their respective original publications are described in the following.

A detailed summary of these related experiments and the analysis of the algorithms’

performances is given in Section 4.1.6 and Table 4.3.

CCGDE3

The experiments in the CCGDE3 work were performed with up to 10, 000, 000 function

evaluations, using the ZDT1-3 and ZDT6 [39] problems with up to 5000 decision variables.

The algorithms were stopped after a suitable approximation of the true Pareto-front

was reached, i.e. when the population reached a value of 95% of the Hypervolume

indicator with respect to the Hypervolume of a sample of the true Pareto-front. The

needed evaluations were compared between the different algorithms (CCGDE3, GDE3

and NSGA-II). In result, CCGDE3 was able to obtain 95% approximations in all four

tested problems even with up to 5, 000 variables, while the classical algorithms failed

to do so within the budget of 10, 000, 000 evaluations in the 4000 and 5000 variable

instances of all problems. The computational budget to do so, however, was still quite

high. To solve the 1000-variable instances, CCGDE3 needed between around 155, 000 and

1, 280, 000 evaluations, depending on the used problem. For the 5000 variable instances,

between 1, 180, 000 and 5, 760, 000 evaluations were needed.

Although the performance was originally not tested for more complicated benchmark

functions, later experiments by the author of this thesis in [1] compared its performance

among others with the WOF method (Section 5.1). The same ZDT experiments with up

to 5000 variables were repeated as well as tests with up to 1000-dimensional problems

of the WFG [28], DTLZ [40] and CEC2009 competition (UF) [48] benchmark families.

The results showed that CCGDE3 was significantly outperformed by the WOF method
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and in most instances even by classical (i.e. non-large-scale) optimisation methods. This

may be due to the inability to change the groups during runtime, making this algorithm

potentially vulnerable to problems with high interactions between variables. Another

drawback was the high computational budget used in the CCGDE3 study. Using up

to 5, 760, 000 function evaluations to solve ZDT problems may be unsuitable for real

applications, and is far more than other modern methods require for the same task.

MOEA/D2

For the experiments in this MOEA/D2 article, the DTLZ1-7 problems were used with

200 to 1200 variables and three objective functions. The variables were divided so

that each group always contained 2 variables, i.e. they used 100 groups for the 200-

variable problems, 200 groups for the 400-variable problems, and so forth. The obtained

Hypervolume values were compared with those of the MOEA/D and GDE3 algorithms

after a total of 100, 000 function evaluations. The results showed a significant improvement

in performance compared to both of the standard (and low-scale) algorithms, although it

is noteworthy that no other large-scale methods, like for instance CCGDE3, were used in

the experiments for comparison.

CCLSM

The CCLSM experiments were done using 50, 000 evaluations on selected problem

instances, i.e. WFG2, WFG3, UF5, LSMOP1, 5 and 9. The number of objectives varied

between 2 and 10, and the number of variables between 100 and 300. However, it must

be noted that no exhaustive combinations of these numbers were reported, but merely

an arbitrary selection with no clear reason on why exactly these and only these results

were reported. WFG3 was only tested with 7 and 10 objectives, WFG2 with 5 objectives,

LSMOP1 with 3 and 5 objectives, while LSMOP5 was tested with 4 and 5 objectives.

Furthermore, only averages were shown, and no spread measure of performance was

reported. The number of independent runs was not revealed in the paper, and no test

for statistical significance was done. In addition, the method was not able to deliver an

acceptable approximation of the Pareto-front in a 2-objective LSMOP9 problem with

only 100 decision variables, and a comparison with other large-scale methods was not

done.

MOEA/D(s&ns)

The MOEA/D(s&ns) was compared with NSGA-II on ZDT1-3 and LSMOP1, 5 and 9

problems with 2 and 3 objectives and 200 and 300 variables respectively. In the results,

however, the different test problems were compared with the result that the obtained IGD

values were lower on the ZDT problems than on the LSMOP problems. The used number

of independent runs was not reported, nor was the number of function evaluations, and

no statistical tests were conducted.
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MOEA/DVA

In the MOEA/DVA article, experiments were performed with 200 decision variables

using the 2-objective ZDT4 and UF1-6 and the 3-objective DTLZ1, DTLZ3 and UF10

benchmarks. The maximum number of function evaluations was set between 1, 200, 000

to 3, 000, 000, depending on the test problem. MOEA/DVA outperformed other popular

algorithms in these tests, although it must be noted that none of them was specifically

designed for large-scale problems. Further, MOEA/DVA was used with 1000-variable

problems in this and other subsequent studies.

MOEA/D-RDG

The dynamic grouping strategy MOEA/D-RDG was compared in [67], using a compu-

tational budget of 10, 000, 000 function evaluations, with the original MOEA/DVA and

MOEA/D. They used the UF1-7 problems with 2 objectives and the UF8-10 and WFG1-9

problems with 3 objective functions and between 800 and 1000 variables. The results

showed that the proposed RDG version can improve the performance of the original

MOEA/DVA in most of the problem instances.

LMEA

For the evaluation of LMEA in [25], large-scale instances of the LSMOP benchmarks

were used with 500 variables and 5 objectives. The maximum function evaluations

were set to 6, 800, 000. LMEA performed superior to the other algorithms in the study

on the LSMOP1-3, 5, 8 and 9 problems. On the other hand, it was outperformed by

MOEA/DVA on the LSMOP4 and LSMOP7 and by the non-large-scale method NSGA-III

on the LSMOP6 benchmark. In further experiments, LMEA was tested on selected

problems from the DTLZ, WFG and UF families with up to 1000 decision variables and

10 objectives. A computational budget of 17, 000, 000 function evaluations was used in

these experiments. It was outperformed by MOEA/DVA on some instances DTLZ1 and

3 and all instances of the UF9 and 10 problems. However, LMEA performed best on all

instances of DTLZ5 and 6, WFG3 and some instances of DTLZ1, 2, 3 and 7, showing

that it can work well on large-scale problems which include many variables and many

objectives at the same time.

Finally, LMEA was used on instances of up to 5000 variables with the DTLZ1-7, WFG3

and UF9 and UF10 problems. However, the performance of these high-dimensional

instances was not compared to any other methods, and used up to 230, 000, 000 function

evaluations. The goal of these experiments in the original article was to show that the

performance of LMEA does not deteriorate when increasing the number of variables.

This claim, however, needs further investigation, since this behaviour can be a result

of a constant complexity of the used benchmarks, despite scaling the variable numbers.

Furthermore, as the number of used evaluations was scaled up dramatically, it is not

surprising to observe respective similar solution quality in the end of the search process.
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A budget of 230, 000, 000 evaluations to solve a 5000-variable problem might be seen

as the biggest disadvantage of the LMEA method. Similar to the interaction-based

decomposition in MOEA/DVA, the number of required evaluations for obtaining the

groups rises quadratically with the decision variables. For the 1000-variable instances, the

authors of the LMEA article report an average runtime of around 2386 seconds, which

is approximately 40 minutes for a single run. Although these numbers are faster than

the reported times for the MOEA/DVA, it corresponds to an average of 7124 function

evaluations per second. It remains unclear whether these numbers are in any way related

to real-world applications, since complex simulations may consume much more time for

each single evaluation.

DPCCMOEA

The experiments in the DPCCMOEA publication compared this method with CCGDE3

and MOEA/DVA on 3-objective instances with 100 variables of the DTLZ1-7 and WFG1-

9 problems. The number of function evaluations was set to 10, 000, 000. As expected,

the proposed distributed method was able to achieve a large speed-up in computation

time compared to its sequential competitors. In addition, the DPCCMOEA was also

able to achieve better solution quality on several problem instances, although it must be

noted that a pairwise test for statistical significance was not reported and the resulting

IGD and Hypervolume values were in fact very close together between MOEA/DVA

and DPCCMOEA in most instances. Only problems with 100 variables were tested,

which makes the computational budget of 10 million function evaluations seem generous,

especially in the light of other recent large-scale algorithms and their capabilities, which

solve problems with many more variables using the same budgets.

S3-CMA-ES

For testing the S3-CMA-ES, the experiments in the original article were performed using

the LSMOP1-9 problems with 5, 8, 10 and 15 objective functions, containing around 500,

800, 1000 and 1500 variables respectively. The used function evaluations were determined

based on the amount of variables, i.e. 5, 000, 000, 8, 000, 000, 10, 000, 000 and 15, 000, 000

evaluations respectively for each of the problem instances. S3-CMA-ES performed well on

most problem instances, but was in some cases outperformed by MOEA/DVA. Moreover,

it was also outperformed on several problem instances by the NSGA-III and RVEA

algorithms, which are dedicated many-objective algorithms and originally not designed

for large search spaces. This might indicate that the actual challenge of the used problem

instances was more related to the high number of objective functions rather than the

high-dimensional decision space. The results, however, show that the decomposition

into subpopulations and variable groups in S3-CMA-ES, although a large computational

budget was needed, is able to deal well with LSMOP’s high-dimensional objective spaces

as well as search spaces.
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PEA

In the results of the PEA article, using a budget roughly between 3, 000, 000 and

10, 000, 000 function evaluations, the PEA was compared with LMEA and MOEA/DVA,

along with some other, non-large-scale methods. The LSMOP1-3 and MaF1-7 problems

were used with between 307 and 1039 variables and 3 to 10 objective functions. While

the PEA algorithm was able to decrease the computation time due to its parallel nature,

it also showed significant improvements in terms of IGD values compared to LMEA and

MOEA/DVA.

ReMO

The experimental evaluation of ReMO was performed with modified versions of the

ZDT1-3 functions. To test for the ability of the algorithms to deal with low effective

dimensions, the ZDT functions were used with 30 variables, but embedded in a 10, 000-

dimensional decision space. This means that 9970 variables were artificially added to the

problems, which had to be optimised by the used metaheuristics, but had no or almost

no influence on the actual objective function values. Using their random embedding

approach with v = 50, the ReMO algorithms were able to search in only a 50-dimensional

space to solve these problems. The ReMO approach was not tested on more complicated

benchmarks or problems without the property of having low effective dimensions. The

results showed superior performance compared to the respective original NSGA-II and

MOEA/D algrithms. Notable is that this study used a very low function evaluation

budget of just 3000 evaluations. It is, however, not surprising that the NSGA-II and

MOEA/D algorithms were not able to obtain good solutions in a 10, 000-dimensional

problem after such a short time. The results of the ReMO versions improved on these

performances, although the approach was not tested on more complicated benchmarks or

problems without the property of having low effective dimensions. Experiments performed

in the later DLS-MOEA work [47] showed that Re-NSGA-II could not compare in other

high-dimensional benchmarks against DLS-MOEA, WOF-SMPSO or even CCGDE3.

DLS-MOEA

The DLS-MOEA aims to produce more diverse solution sets in problems where diversity is

difficult to obtain. The experimental evaluation in the article was therefore focused mainly

on problems with such properties. The experimental evaluation was conducted using

several state-of-the-art large-scale algorithms, among them the Re-NSGA-II, CCGDE3,

LMEA, MOEA/DVA and the WOF-SMPSO (see Section 5.1). The focus lay on large

search spaces and all experiments were done with only 2 objective functions, and up

to 10, 000, 000 function evaluations were used for problem instances with 1024 to 8192

decision variables. Overall, DLS-MOEA achieved good performances on a variety of

large-scale instances. However, the average best performance for the convergence-related

and the diversity-type I related problems was achieved by the WOF-SMPSO method,
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while the DLS-MOEA was able to perform best on average on the diversity-type II, i.e.

the UF1-7, problems.

LSMOF

The experiments of the LSMOF article compared the algorithm with several low-

dimensional methods and showed that the framework is able to increase the perfor-

mance for different instances of the LSMOP, DTLZ and WFG benchmark suites. Only

a relatively small budget of 50, 000 function evaluations was used, and the number of

objectives were chosen as 2 and 3, with 200 to 1000 variables. In addition, LSMOF

was compared with MOEA/DVA and WOF (see Section 5.1), with decision-variables

rising up to 5000. The results showed that the LSMOF which employs NSGA-II as the

internal optimiser (LS-NSGA-II) was able to perform on par with WOF-NSGA-II and

MOEA/DVA on most problem instances and outperform them in several cases, while in

other instances MOEA/DVA or WOF-NSGA-II showed significantly better performance.

When employing SMPSO as the optimiser, WOF-SMPSO and the LS-SMPSO performed

on par on most instances of the WFG problems and mixed results on the DTLZ function.

The LSMOP problems were only tested with the NSGA-II-versions of both algorithms.
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Detailed IGD Results

In this Appendix we list the detailed results regarding the IGD indicator of all algorithms

in the different experiments from Chapter 6. Shown are the medians and interquartile

ranges over the set of 31 independent runs of the respective algorithm on each benchmark.

The respective best performance for each benchmark instance (each row) is shown in

bold front and marked with a grey background. Statistical significance is assumed for

p < 0.01 and indicated by an asterisk for each algorithm compared to the respective best

in each row.
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Table B.1: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

SMPSO WOF-SMPSO NSGA-II WOF-NSGA-II WOF-Randomised

n = 200

LSMOP1 2 8.61E-1 * (1.6E-1) 5.34E-2 (3.1E-2) 3.25E-1 * (4.0E-2) 5.78E-1 * (8.4E-2) 1.80E-1 * (1.0E-1)
LSMOP2 2 8.95E-2 * (2.7E-3) 1.31E-2 (8.7E-4) 9.68E-2 * (4.6E-3) 4.78E-2 * (9.0E-3) 2.08E-2 * (5.6E-3)
LSMOP3 2 2.42E1 * (1.6E0) 1.49E0 * (1.0E-2) 1.30E1 * (2.2E0) 1.06E0 (2.4E-1) 1.45E0 * (5.1E-1)
LSMOP4 2 1.14E-1 * (2.2E-2) 5.75E-2 (9.2E-3) 1.45E-1 * (4.0E-3) 1.16E-1 * (6.5E-3) 8.34E-2 * (1.6E-2)
LSMOP5 2 1.05E0 * (3.5E-1) 3.52E-1 (2.9E-1) 3.80E-1 * (5.9E-2) 3.43E-1 (2.6E-2) 3.94E-1 (8.6E-2)
LSMOP6 2 5.06E-1 * (6.0E-2) 1.08E-1 (1.5E-2) 8.86E-1 * (4.4E-2) 6.57E-1 * (4.7E-2) 3.93E-1 * (2.0E-1)
LSMOP7 2 6.75E1 * (2.2E1) 1.47E0 * (4.7E-3) 3.70E0 * (1.8E0) 1.47E0 * (5.0E-3) 1.47E0 (1.0E-2)
LSMOP8 2 7.80E-1 * (2.2E-1) 1.18E-1 (1.0E-1) 3.81E-1 * (9.7E-2) 7.42E-1 * (3.9E-1) 2.53E-1 * (1.7E-1)
LSMOP9 2 4.22E-1 (1.0E-2) 8.10E-1 * (2.5E-1) 1.40E0 * (1.4E-1) 8.10E-1 * (1.5E-9) 8.10E-1 * ( — )

n = 300

LSMOP1 3 2.23E0 * (4.7E-1) 1.78E-1 (4.8E-2) 2.18E0 * (4.7E-1) 3.09E-1 * (5.8E-2) 3.03E-1 * (1.7E-1)
LSMOP2 3 9.84E-2 * (6.1E-3) 7.44E-2 (6.3E-3) 1.05E-1 * (3.8E-3) 1.15E-1 * (4.5E-3) 8.34E-2 * (5.2E-3)
LSMOP3 3 1.50E1 * (5.4E0) 8.60E-1 * (3.7E-4) 7.77E0 * (1.8E0) 8.26E-1 (8.8E-2) 8.60E-1 * (1.5E-4)
LSMOP4 3 2.61E-1 * (9.8E-3) 1.98E-1 * (8.8E-3) 2.65E-1 * (1.0E-2) 2.76E-1 * (1.0E-2) 1.84E-1 (1.2E-2)
LSMOP5 3 6.05E0 * (7.6E-1) 4.50E-1 (1.6E-1) 6.02E0 * (1.1E0) 5.21E-1 * (2.2E-2) 4.26E-1 (7.7E-2)
LSMOP6 3 2.02E3 * (1.7E3) 7.52E-1 (2.1E-1) 5.16E0 * (1.3E2) 1.24E0 * (4.2E-3) 1.24E0 * (1.7E-2)
LSMOP7 3 1.52E0 * (2.5E-2) 8.98E-1 * (3.4E-3) 1.57E0 * (6.7E-2) 9.15E-1 * (1.1E-2) 8.70E-1 (1.7E-2)
LSMOP8 3 9.80E-1 * (1.2E-2) 1.05E-1 (2.1E-2) 4.59E-1 * (6.3E-2) 3.61E-1 * (1.8E-2) 2.25E-1 * (1.5E-1)
LSMOP9 3 1.57E1 * (3.1E0) 1.53E0 * (4.0E-1) 2.95E0 * (8.9E-1) 1.14E0 (4.6E-4) 1.15E0 * (2.1E-1)

n = 400

LSMOP1 4 4.92E0 * (2.2E0) 4.98E-1 (1.0E-1) 5.98E0 * (1.1E0) 6.54E-1 * (3.8E-2) 4.89E-1 (1.7E-1)
LSMOP2 4 1.70E-1 * (9.4E-3) 1.50E-1 (7.6E-3) 1.81E-1 * (1.7E-2) 1.85E-1 * (7.9E-3) 1.48E-1 (4.7E-3)
LSMOP3 4 1.97E1 * (2.8E0) 1.78E0 * (2.7E-3) 1.36E1 * (2.6E0) 1.77E0 * (5.4E-2) 1.52E0 (4.6E-1)
LSMOP4 4 2.53E-1 * (1.8E-2) 2.24E-1 * (1.4E-2) 2.66E-1 * (1.8E-2) 2.76E-1 * (1.1E-2) 2.21E-1 (9.3E-3)
LSMOP5 4 1.85E1 * (5.9E0) 5.44E-1 (3.3E-1) 1.83E1 * (2.2E0) 4.66E-1 * (7.0E-3) 4.54E-1 (1.7E-2)
LSMOP6 4 1.27E0 * (1.0E-11) 8.86E-1 (1.0E-1) 1.27E0 * (7.4E-3) 8.89E-1 * (7.0E-3) 8.69E-1 (8.2E-3)
LSMOP7 4 5.23E4 * (5.2E4) 1.23E0 (4.5E-2) 1.91E4 * (5.6E3) 1.23E0 (1.1E-2) 1.22E0 (2.6E-1)
LSMOP8 4 1.15E1 * (4.9E0) 4.89E-1 * (1.2E-1) 9.23E0 * (1.2E0) 4.66E-1 * (4.1E-3) 4.49E-1 (5.1E-2)
LSMOP9 4 1.34E1 * (2.9E0) 2.24E0 * ( — ) 5.80E0 * (1.0E0) 1.46E0 (1.5E-3) 1.77E0 * (4.6E-1)

n = 500

LSMOP1 5 5.55E0 * (2.4E0) 8.35E-1 * (7.0E-2) 8.89E0 * (1.2E0) 9.11E-1 * (1.6E-2) 7.80E-1 (2.4E-1)
LSMOP2 5 2.07E-1 * (1.3E-2) 1.91E-1 * (5.8E-3) 2.17E-1 * (1.5E-2) 2.19E-1 * (1.5E-2) 1.73E-1 (2.3E-3)
LSMOP3 5 2.01E1 * (3.4E0) 9.58E-1 ( — ) 1.92E1 * (2.4E0) 9.59E-1 * (5.5E-3) 9.58E-1 ( — )
LSMOP4 5 3.43E-1 * (3.1E-2) 2.95E-1 * (1.3E-2) 3.72E-1 * (1.8E-2) 3.44E-1 * (1.9E-2) 2.85E-1 (5.2E-3)
LSMOP5 5 2.12E1 * (6.0E0) 9.52E-1 * (3.1E-1) 2.02E1 * (3.5E0) 5.47E-1 * (6.7E-2) 4.28E-1 (2.8E-2)
LSMOP6 5 8.51E4 * (2.2E4) 1.80E0 * (2.6E-1) 5.17E4 * (1.8E4) 1.36E0 * (1.1E-1) 1.12E0 (1.4E-1)
LSMOP7 5 3.35E0 * (1.8E-1) 1.65E0 * (2.9E-1) 3.47E0 * (1.0E-1) 1.28E0 * (1.5E-1) 1.03E0 (2.0E-1)
LSMOP8 5 1.21E0 * (1.4E-2) 7.66E-1 * (1.7E-1) 1.21E0 * (2.2E-2) 4.13E-1 * (2.7E-2) 3.42E-1 (1.4E-2)
LSMOP9 5 5.40E1 * (7.1E0) 3.00E0 * (2.5E-4) 2.92E1 * (7.9E0) 1.82E0 (5.4E-3) 1.90E0 * (6.1E-1)

n = 1000

LSMOP1 2 1.76E0 * (1.3E-1) 7.17E-2 (6.2E-3) 3.55E0 * (3.3E-1) 6.46E-1 * (9.1E-2) 1.74E-1 * (1.1E-1)
LSMOP2 2 2.56E-2 * (8.5E-4) 7.29E-3 (3.9E-4) 3.62E-2 * (6.7E-4) 1.90E-2 * (5.2E-4) 1.03E-2 * (3.0E-3)
LSMOP3 2 2.81E1 * (5.3E-1) 1.56E0 (1.9E-3) 2.12E1 * (1.1E0) 1.57E0 * (2.5E-3) 1.57E0 * (3.7E-3)
LSMOP4 2 5.34E-2 * (5.6E-4) 2.04E-2 (5.9E-4) 6.07E-2 * (9.4E-4) 4.13E-2 * (4.3E-3) 2.37E-2 * (2.5E-3)
LSMOP5 2 3.89E0 * (2.4E-1) 7.42E-1 (2.9E-1) 1.01E1 * (7.3E-1) 7.42E-1 (1.6E-1) 7.41E-1 (4.7E-2)
LSMOP6 2 7.58E-1 * (1.9E-3) 1.73E-1 (3.4E-3) 7.74E-1 * (8.4E-4) 6.71E-1 * (1.3E-3) 3.49E-1 * (1.8E-1)
LSMOP7 2 2.04E3 * (3.6E2) 1.51E0 (6.0E-4) 3.91E3 * (4.5E3) 1.51E0 * (2.4E-3) 1.51E0 (2.8E-3)
LSMOP8 2 2.95E0 * (3.5E-1) 2.12E-1 (5.9E-1) 5.00E0 * (6.3E-1) 7.42E-1 * (4.0E-2) 2.14E-1 (1.8E-1)
LSMOP9 2 2.80E0 * (7.0E-1) 4.67E-1 (9.5E-3) 1.39E0 * (1.7E-1) 8.08E-1 * (1.6E-3) 4.90E-1 * (7.5E-1)
LSMOP1 3 2.55E0 * (5.8E-1) 2.00E-1 (4.1E-2) 6.23E0 * (8.2E-1) 5.93E-1 * (3.9E-2) 3.24E-1 * (1.4E-1)
LSMOP2 3 6.45E-2 * (1.6E-3) 6.12E-2 * (5.2E-3) 7.04E-2 * (6.5E-3) 7.58E-2 * (8.1E-3) 5.16E-2 (5.7E-4)
LSMOP3 3 1.65E1 * (4.0E0) 8.60E-1 ( — ) 1.89E1 * (6.9E0) 8.60E-1 * (4.4E-4) 8.60E-1 (2.6E-8)
LSMOP4 3 1.19E-1 * (4.5E-3) 8.91E-2 (4.9E-3) 1.31E-1 * (4.7E-3) 1.43E-1 * (5.2E-3) 9.31E-2 * (7.0E-3)
LSMOP5 3 6.07E0 * (5.8E-1) 4.29E-1 (2.3E-1) 1.59E1 * (1.1E0) 5.41E-1 * (5.1E-4) 4.51E-1 (7.3E-2)
LSMOP6 3 3.13E3 * (1.7E3) 9.11E-1 (5.8E-1) 1.09E4 * (2.9E3) 1.31E0 * (1.8E-3) 1.31E0 * (9.8E-2)
LSMOP7 3 1.08E0 * (1.8E-3) 8.49E-1 (1.0E-1) 1.10E0 * (4.8E-3) 8.56E-1 * (4.3E-3) 8.47E-1 (3.3E-3)
LSMOP8 3 9.57E-1 * (7.6E-2) 9.22E-2 (1.5E-2) 9.58E-1 * (8.5E-3) 3.43E-1 * (5.7E-2) 1.86E-1 * (7.8E-2)
LSMOP9 3 2.65E1 * (2.6E0) 1.11E0 (5.7E-1) 1.39E1 * (2.7E0) 1.14E0 * (3.4E-4) 1.14E0 * (1.7E-2)
LSMOP1 4 5.71E0 * (2.1E0) 4.91E-1 (1.3E-1) 8.43E0 * (1.0E0) 8.33E-1 * (3.1E-2) 5.98E-1 * (1.7E-1)
LSMOP2 4 1.33E-1 * (7.1E-3) 1.26E-1 * (5.7E-3) 1.44E-1 * (5.5E-3) 1.46E-1 * (9.9E-3) 1.16E-1 (1.2E-3)
LSMOP3 4 1.98E1 * (2.5E0) 1.81E0 (3.3E-3) 2.04E1 * (1.6E0) 1.81E0 * (2.4E-3) 1.81E0 (2.4E-2)
LSMOP4 4 1.70E-1 * (8.9E-3) 1.55E-1 * (6.9E-3) 1.84E-1 * (7.6E-3) 1.87E-1 * (9.4E-3) 1.48E-1 (4.2E-3)
LSMOP5 4 2.02E1 * (4.9E0) 4.94E-1 (2.5E-1) 2.11E1 * (1.3E0) 4.65E-1 * (6.2E-3) 4.57E-1 (1.3E-2)
LSMOP6 4 1.12E0 * (2.3E-12) 9.09E-1 (1.1E-1) 1.12E0 * (7.9E-4) 9.05E-1 * (4.9E-3) 8.97E-1 (7.3E-3)
LSMOP7 4 5.48E4 * (3.9E4) 1.20E0 (2.5E-2) 3.98E4 * (8.9E3) 1.25E0 * (1.5E-2) 1.24E0 * (1.1E-1)
LSMOP8 4 1.05E1 * (3.7E0) 4.89E-1 * (1.3E-1) 1.26E1 * (8.8E-1) 4.65E-1 * (4.0E-3) 4.54E-1 (2.4E-2)
LSMOP9 4 1.48E1 * (1.7E0) 2.24E0 (1.4E0) 2.27E1 * (3.3E0) 1.46E0 (7.1E-4) 1.74E0 * (4.5E-1)
LSMOP1 5 7.02E0 * (2.0E0) 8.46E-1 (1.0E-1) 9.20E0 * (1.2E0) 9.17E-1 * (1.4E-2) 8.33E-1 (1.7E-1)
LSMOP2 5 1.82E-1 * (1.1E-2) 1.82E-1 * (1.1E-2) 1.92E-1 * (8.4E-3) 1.91E-1 * (9.2E-3) 1.52E-1 (1.3E-3)
LSMOP3 5 2.17E1 * (2.4E0) 9.58E-1 ( — ) 2.34E1 * (1.4E0) 9.62E-1 * (6.7E-2) 9.58E-1 ( — )
LSMOP4 5 2.56E-1 * (1.4E-2) 2.33E-1 * (1.3E-2) 2.87E-1 * (1.9E-2) 2.71E-1 * (1.5E-2) 2.22E-1 (5.6E-3)
LSMOP5 5 1.89E1 * (7.4E0) 9.83E-1 * (2.2E-1) 2.08E1 * (3.2E0) 5.23E-1 * (4.6E-2) 4.29E-1 (6.7E-2)
LSMOP6 5 7.59E4 * (4.5E4) 1.83E0 * (2.8E-1) 5.30E4 * (1.5E4) 1.48E0 * (2.2E-1) 1.26E0 (4.0E-1)
LSMOP7 5 2.05E0 * (3.6E-2) 1.35E0 * (1.8E-1) 2.09E0 * (4.4E-2) 1.16E0 * (1.4E-1) 1.02E0 (1.4E-1)
LSMOP8 5 1.15E0 * (2.3E-3) 6.59E-1 * (1.5E-1) 1.15E0 * (7.5E-3) 4.08E-1 * (2.5E-2) 3.32E-1 (1.1E-2)
LSMOP9 5 6.17E1 * (2.8E0) 3.00E0 (2.2E0) 7.38E1 * (1.1E1) 1.81E0 (7.4E-3) 1.86E0 * (3.4E-1)
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Table B.2: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

NSGA-III WOF-NSGA-III MOEA/D WOF-MOEA/D WOF-Randomised

n = 200

LSMOP1 2 5.35E-1 * (1.5E-1) 5.31E-1 * (1.3E-1) 2.20E-1 * (6.2E-2) 2.13E-1 (3.1E-2) 1.80E-1 (1.0E-1)
LSMOP2 2 9.24E-2 * (3.3E-3) 4.59E-2 * (7.5E-3) 1.21E-1 * (4.4E-3) 6.83E-2 * (7.1E-3) 2.08E-2 (5.6E-3)
LSMOP3 2 1.25E1 * (3.5E0) 9.65E-1 * (4.3E-1) 7.07E-1 (8.3E-2) 7.08E-1 (3.3E-2) 1.45E0 * (5.1E-1)
LSMOP4 2 1.40E-1 * (3.4E-3) 1.16E-1 * (7.6E-3) 1.62E-1 * (1.1E-2) 1.46E-1 * (7.7E-3) 8.34E-2 (1.6E-2)
LSMOP5 2 5.01E-1 * (1.6E-1) 3.45E-1 * (3.5E-1) 7.42E-1 * (4.0E-1) 2.01E-1 (1.1E-2) 3.94E-1 * (8.6E-2)
LSMOP6 2 8.90E-1 * (1.0E-2) 6.61E-1 * (5.0E-2) 5.79E-1 * (4.2E-2) 7.47E-1 * (1.9E-3) 3.93E-1 (2.0E-1)
LSMOP7 2 1.12E1 * (1.7E1) 1.47E0 * (9.9E-3) 3.55E0 * (1.6E0) 1.46E0 (2.6E-3) 1.47E0 * (1.0E-2)
LSMOP8 2 4.82E-1 * (1.7E-1) 7.42E-1 * (3.9E-1) 2.12E-1 * (4.1E-1) 1.14E-1 (8.9E-3) 2.53E-1 * (1.7E-1)
LSMOP9 2 1.50E0 * (1.0E-1) 8.10E-1 * (6.6E-8) 4.32E-1 * (3.1E-2) 1.74E-1 (4.1E-2) 8.10E-1 * ( — )

n = 300

LSMOP1 3 9.03E-1 * (1.9E-1) 4.04E-1 * (1.0E-1) 4.81E-1 * (2.4E-1) 4.36E-1 * (8.2E-2) 3.03E-1 (1.7E-1)
LSMOP2 3 8.31E-2 (1.4E-3) 8.85E-2 * (3.1E-3) 8.89E-2 * (1.0E-3) 9.23E-2 * (1.8E-3) 8.34E-2 (5.2E-3)
LSMOP3 3 3.72E0 * (9.2E-1) 8.60E-1 (4.1E-2) 9.29E-1 (5.6E-1) 8.60E-1 (8.0E-6) 8.60E-1 (1.5E-4)
LSMOP4 3 1.97E-1 * (4.2E-3) 2.18E-1 * (1.2E-2) 2.49E-1 * (6.3E-3) 2.60E-1 * (2.2E-2) 1.84E-1 (1.2E-2)
LSMOP5 3 2.84E0 * (9.9E-1) 5.32E-1 * (3.0E-2) 6.83E-1 * (3.2E-1) 2.51E-1 (2.3E-1) 4.26E-1 * (7.7E-2)
LSMOP6 3 5.14E0 * (4.6E0) 1.24E0 (3.9E-3) 2.00E0 * (1.3E0) 1.58E0 * (2.6E-1) 1.24E0 (1.7E-2)
LSMOP7 3 1.54E0 * (1.9E-2) 8.97E-1 (1.7E-2) 8.57E-1 (2.1E-1) 9.46E-1 * (1.1E-4) 8.70E-1 (1.7E-2)
LSMOP8 3 3.69E-1 * (5.0E-2) 3.62E-1 * (9.6E-4) 5.93E-1 * (7.7E-3) 2.28E-1 (3.2E-2) 2.25E-1 (1.5E-1)
LSMOP9 3 2.92E0 * (9.0E-2) 1.14E0 * (2.9E-3) 4.86E-1 (5.6E-2) 1.15E0 * (1.1E-2) 1.15E0 * (2.1E-1)

n = 400

LSMOP1 4 3.22E0 * (4.3E-1) 6.06E-1 * (7.0E-2) 2.43E0 * (1.0E0) 6.07E-1 * (7.4E-2) 4.89E-1 (1.7E-1)
LSMOP2 4 1.51E-1 * (1.1E-3) 1.53E-1 * (3.2E-3) 1.56E-1 * (1.2E-3) 1.52E-1 * (2.3E-3) 1.48E-1 (4.7E-3)
LSMOP3 4 1.69E1 * (4.1E0) 1.67E0 * (2.1E-1) 1.66E0 * (9.3E-1) 9.43E-1 (2.2E-2) 1.52E0 * (4.6E-1)
LSMOP4 4 2.01E-1 (3.8E-3) 2.31E-1 * (6.6E-3) 2.19E-1 * (5.8E-3) 2.58E-1 * (7.3E-2) 2.21E-1 * (9.3E-3)
LSMOP5 4 5.99E0 * (1.1E0) 4.57E-1 * (1.2E-3) 7.14E-1 * (1.9E-1) 1.04E0 * (2.2E-5) 4.54E-1 (1.7E-2)
LSMOP6 4 1.22E0 * (9.0E-3) 8.75E-1 * (3.4E-3) 9.16E-1 * (5.6E-2) 1.05E0 * (1.2E-3) 8.69E-1 (8.2E-3)
LSMOP7 4 4.48E2 * (2.9E2) 1.21E0 (2.9E-3) 2.99E0 * (1.0E0) 1.75E0 * (2.5E-3) 1.22E0 * (2.6E-1)
LSMOP8 4 2.33E0 * (6.7E-1) 4.57E-1 * (1.4E-3) 6.13E-1 * (4.4E-2) 1.04E0 * (5.9E-1) 4.49E-1 (5.1E-2)
LSMOP9 4 7.07E0 * (7.4E-1) 1.48E0 * (2.3E-2) 6.85E-1 (9.0E-2) 1.47E0 * (3.2E-2) 1.77E0 * (4.6E-1)

n = 500

LSMOP1 5 2.98E0 * (6.9E-1) 8.64E-1 * (3.2E-2) 1.18E0 * (1.2E0) 5.37E-1 (2.5E-1) 7.80E-1 * (2.4E-1)
LSMOP2 5 1.75E-1 * (4.2E-4) 1.74E-1 * (2.0E-3) 1.74E-1 * (5.8E-4) 1.67E-1 (8.3E-3) 1.73E-1 * (2.3E-3)
LSMOP3 5 1.14E1 * (2.6E0) 9.60E-1 * (1.0E-1) 1.00E0 * (5.6E-1) 9.58E-1 (2.1E-8) 9.58E-1 * ( — )
LSMOP4 5 2.91E-1 * (3.6E-3) 2.93E-1 * (6.9E-3) 2.87E-1 * (8.1E-3) 2.52E-1 (8.1E-3) 2.85E-1 * (5.2E-3)
LSMOP5 5 7.53E0 * (9.7E-1) 4.20E-1 (2.9E-2) 7.88E-1 * (3.5E-1) 3.58E-1 (6.3E-1) 4.28E-1 (2.8E-2)
LSMOP6 5 2.94E1 * (6.4E1) 1.12E0 (2.4E-2) 1.32E0 * (4.7E-1) 1.40E0 * (8.6E-2) 1.12E0 (1.4E-1)
LSMOP7 5 2.66E0 * (1.5E-1) 1.06E0 (8.2E-2) 1.10E0 (2.6E-1) 1.11E0 (7.6E-4) 1.03E0 (2.0E-1)
LSMOP8 5 1.15E0 * (1.2E-2) 3.42E-1 * (1.1E-2) 7.60E-1 * (1.1E-2) 3.27E-1 (2.2E-2) 3.42E-1 * (1.4E-2)
LSMOP9 5 1.42E1 * (3.4E0) 1.84E0 * (3.9E-2) 1.12E0 (7.9E-1) 1.87E0 * (1.4E-2) 1.90E0 * (6.1E-1)

n = 1000

LSMOP1 2 2.94E0 * (2.6E-1) 6.26E-1 * (9.0E-2) 2.06E0 * (4.7E-1) 2.71E-1 * (1.5E-2) 1.74E-1 (1.1E-1)
LSMOP2 2 3.42E-2 * (4.1E-4) 1.36E-2 * (1.7E-3) 3.67E-2 * (4.5E-4) 1.91E-2 * (1.0E-3) 1.03E-2 (3.0E-3)
LSMOP3 2 2.10E1 * (1.7E0) 1.57E0 * (5.7E-3) 1.26E1 * (5.6E0) 1.47E0 (2.1E-1) 1.57E0 * (3.7E-3)
LSMOP4 2 4.84E-2 * (1.1E-3) 3.24E-2 * (2.5E-3) 6.21E-2 * (3.2E-3) 5.86E-2 * (1.6E-3) 2.37E-2 (2.5E-3)
LSMOP5 2 9.01E0 * (6.9E-1) 7.40E-1 (4.8E-2) 4.07E0 * (7.0E-1) 7.34E-1 (6.2E-3) 7.41E-1 (4.7E-2)
LSMOP6 2 7.73E-1 * (4.8E-4) 6.71E-1 * (1.5E-3) 4.46E-1 * (3.2E-1) 7.47E-1 * (1.2E-4) 3.49E-1 (1.8E-1)
LSMOP7 2 6.62E3 * (2.4E3) 1.51E0 * (2.2E-3) 2.30E2 * (4.5E2) 1.51E0 (6.2E-4) 1.51E0 (2.8E-3)
LSMOP8 2 3.77E0 * (3.6E-1) 7.42E-1 * (3.2E-5) 2.99E0 * (4.1E-1) 4.78E-1 * (5.9E-2) 2.14E-1 (1.8E-1)
LSMOP9 2 1.33E0 * (1.6E-1) 8.08E-1 * (1.1E-3) 2.51E0 * (9.2E-1) 8.94E-2 (5.7E-1) 4.90E-1 (7.5E-1)
LSMOP1 3 2.91E0 * (3.4E-1) 5.94E-1 * (3.0E-2) 3.87E0 * (8.9E-1) 4.32E-1 * (7.3E-2) 3.24E-1 (1.4E-1)
LSMOP2 3 5.18E-2 (1.3E-4) 5.22E-2 * (4.6E-4) 5.20E-2 * (1.1E-4) 5.46E-2 * (1.2E-3) 5.16E-2 (5.7E-4)
LSMOP3 3 1.06E1 * (9.1E-1) 8.60E-1 * (8.7E-4) 6.96E0 * (2.1E0) 8.60E-1 (8.4E-6) 8.60E-1 * (2.6E-8)
LSMOP4 3 9.89E-2 * (1.6E-3) 1.05E-1 * (2.9E-3) 1.08E-1 * (1.7E-3) 1.19E-1 * (3.8E-3) 9.31E-2 (7.0E-3)
LSMOP5 3 7.55E0 * (5.7E-1) 5.41E-1 * (4.2E-4) 5.11E0 * (7.5E-1) 3.98E-1 (1.7E-1) 4.51E-1 (7.3E-2)
LSMOP6 3 2.25E3 * (9.7E2) 1.31E0 (3.1E-3) 5.16E0 * (1.3E0) 1.67E0 * (2.0E-3) 1.31E0 (9.8E-2)
LSMOP7 3 1.09E0 * (2.7E-3) 8.54E-1 * (3.8E-3) 7.60E-1 (1.8E-2) 9.47E-1 * (6.0E-4) 8.47E-1 * (3.3E-3)
LSMOP8 3 7.68E-1 * (4.5E-2) 3.59E-1 * (7.5E-2) 5.52E-1 * (5.0E-4) 2.12E-1 (3.4E-2) 1.86E-1 (7.8E-2)
LSMOP9 3 1.26E1 * (1.9E0) 1.14E0 * (1.1E-2) 9.90E-1 (2.2E-1) 1.16E0 * (2.7E-2) 1.14E0 * (1.7E-2)
LSMOP1 4 5.67E0 * (7.4E-1) 7.50E-1 * (4.3E-2) 4.51E0 * (9.5E-1) 6.37E-1 (4.7E-2) 5.98E-1 (1.7E-1)
LSMOP2 4 1.18E-1 * (2.4E-4) 1.17E-1 * (1.3E-3) 1.18E-1 * (2.1E-4) 1.18E-1 * (2.7E-3) 1.16E-1 (1.2E-3)
LSMOP3 4 2.02E1 * (2.8E0) 1.81E0 * (2.4E-3) 8.82E0 * (5.9E0) 1.07E0 (4.6E-2) 1.81E0 * (2.4E-2)
LSMOP4 4 1.45E-1 (9.4E-4) 1.53E-1 * (1.8E-3) 1.52E-1 * (1.9E-3) 1.61E-1 * (6.7E-3) 1.48E-1 * (4.2E-3)
LSMOP5 4 1.06E1 * (1.2E0) 4.57E-1 (9.7E-4) 5.20E0 * (1.3E0) 1.04E0 * (2.2E-4) 4.57E-1 (1.3E-2)
LSMOP6 4 1.11E0 * (1.1E-3) 8.97E-1 * (1.7E-3) 7.72E-1 (5.9E-3) 1.05E0 * (1.2E-3) 8.97E-1 * (7.3E-3)
LSMOP7 4 4.61E3 * (1.9E3) 1.23E0 (2.1E-3) 7.22E0 * (3.1E0) 1.78E0 * (7.6E-1) 1.24E0 * (1.1E-1)
LSMOP8 4 4.33E0 * (6.4E-1) 4.57E-1 * (1.5E-3) 7.21E-1 * (8.5E-2) 4.57E-1 (6.3E-1) 4.54E-1 (2.4E-2)
LSMOP9 4 2.28E1 * (3.8E0) 1.47E0 * (2.7E-2) 7.01E-1 (5.4E-2) 1.46E0 * (1.0E-2) 1.74E0 * (4.5E-1)
LSMOP1 5 4.78E0 * (8.7E-1) 8.97E-1 * (2.3E-2) 3.63E0 * (1.4E0) 6.44E-1 (1.8E-1) 8.33E-1 * (1.7E-1)
LSMOP2 5 1.53E-1 * (1.6E-4) 1.53E-1 * (1.2E-3) 1.53E-1 * (2.7E-4) 1.55E-1 (1.7E-2) 1.52E-1 (1.3E-3)
LSMOP3 5 1.29E1 * (2.7E0) 9.64E-1 * (8.5E-2) 3.21E0 * (3.7E0) 9.58E-1 (8.1E-9) 9.58E-1 * ( — )
LSMOP4 5 2.24E-1 * (1.7E-3) 2.28E-1 * (1.7E-3) 2.20E-1 * (4.2E-3) 2.09E-1 (7.0E-3) 2.22E-1 * (5.6E-3)
LSMOP5 5 1.00E1 * (1.0E0) 4.27E-1 * (3.6E-2) 2.60E0 * (1.3E0) 3.72E-1 (1.3E-1) 4.29E-1 (6.7E-2)
LSMOP6 5 3.46E2 * (3.6E2) 1.17E0 (2.3E-2) 3.33E0 * (2.2E0) 1.95E0 * (2.5E-1) 1.26E0 * (4.0E-1)
LSMOP7 5 1.84E0 * (3.3E-2) 1.02E0 (1.1E-1) 1.42E0 * (2.4E-1) 1.11E0 (6.6E-4) 1.02E0 (1.4E-1)
LSMOP8 5 1.15E0 * (2.3E-3) 3.38E-1 (1.0E-2) 7.85E-1 * (1.8E-2) 3.29E-1 (2.3E-2) 3.32E-1 (1.1E-2)
LSMOP9 5 4.61E1 * (5.9E0) 1.84E0 * (4.1E-2) 1.19E0 (7.0E-1) 1.88E0 * (2.5E-2) 1.86E0 * (3.4E-1)
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Table B.3: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

SMPSO WOF-SMPSO NSGA-II WOF-NSGA-II WOF-Randomised

n = 40

UF1 2 1.19E-1 * (3.6E-2) 9.14E-2 (2.2E-2) 1.10E-1 * (4.6E-2) 1.01E-1 * (2.6E-2) 9.04E-2 (2.2E-2)
UF2 2 6.23E-2 * (6.0E-3) 5.41E-2 * (5.7E-3) 4.32E-2 (1.7E-2) 4.11E-2 (7.4E-3) 4.21E-2 (8.2E-3)
UF3 2 2.49E-1 * (1.2E-1) 1.33E-1 (3.6E-2) 2.12E-1 * (6.4E-2) 1.69E-1 * (2.0E-2) 1.68E-1 * (4.0E-2)
UF4 2 9.83E-2 * (1.8E-2) 5.19E-2 * (8.4E-3) 4.91E-2 * (2.0E-3) 4.72E-2 (1.1E-3) 4.88E-2 (5.6E-3)
UF5 2 2.40E0 * (1.5E0) 6.24E-1 * (1.6E-1) 2.80E-1 (9.2E-2) 3.86E-1 * (2.0E-1) 3.48E-1 (2.0E-1)
UF6 2 3.84E-1 * (1.0E-1) 3.22E-1 * (1.7E-1) 1.27E-1 (1.5E-1) 1.14E-1 (1.8E-1) 1.27E-1 (2.4E-1)
UF7 2 5.65E-2 * (2.3E-1) 4.68E-2 (9.4E-3) 6.64E-2 * (2.4E-1) 5.56E-2 * (1.4E-2) 5.08E-2 (1.6E-2)
UF8 3 4.22E-1 * (1.1E-1) 2.52E-1 (5.0E-2) 3.10E-1 * (4.4E-2) 2.24E-1 (1.2E-1) 5.28E-1 * (5.4E-2)
UF9 3 5.82E-1 * (1.2E-1) 4.81E-1 * (8.9E-2) 3.41E-1 (9.8E-2) 3.06E-1 (1.4E-1) 3.13E-1 (2.3E-1)
UF10 3 2.65E0 * (1.1E0) 1.28E0 * (2.9E-1) 4.76E-1 (1.1E-1) 4.30E-1 (1.4E-1) 5.20E-1 * (3.9E-2)

n = 1000

UF1 2 1.38E0 * (1.7E-2) 2.72E-1 * (5.9E-3) 2.85E-1 * (9.0E-2) 1.57E-1 (3.7E-2) 1.96E-1 * (1.6E-2)
UF2 2 1.68E-1 * (7.5E-3) 8.50E-2 (4.1E-4) 2.32E-1 * (1.1E-2) 1.13E-1 * (1.3E-2) 8.69E-2 * (3.2E-3)
UF3 2 3.26E-1 * (7.9E-3) 2.54E-2 (3.8E-3) 2.74E-1 * (8.3E-3) 1.38E-1 * (1.0E-2) 3.50E-2 * (1.0E-2)
UF4 2 1.36E-1 * (6.5E-4) 5.49E-2 (9.0E-3) 1.61E-1 * (6.5E-3) 7.40E-2 * (5.0E-3) 7.08E-2 * (1.8E-2)
UF5 2 5.56E0 * (8.7E-2) 2.81E0 * (1.1E-1) 2.05E0 * (4.5E-1) 1.20E0 (1.9E-1) 1.61E0 * (5.3E-1)
UF6 2 5.54E0 * (2.9E-1) 1.02E0 * (5.9E-2) 8.93E-1 * (2.0E-1) 4.74E-1 (2.6E-1) 4.64E-1 (3.1E-1)
UF7 2 1.42E0 * (2.9E-2) 2.77E-1 * (7.4E-3) 3.21E-1 * (5.9E-2) 1.50E-1 (2.6E-2) 1.67E-1 * (2.0E-2)
UF8 3 5.53E-1 * (4.4E-2) 3.56E-1 (4.4E-3) 9.55E-1 * (1.3E-1) 4.67E-1 * (2.9E-2) 5.42E-1 * (2.1E-3)
UF9 3 8.02E-1 * (2.9E-2) 5.70E-1 (7.2E-3) 7.72E-1 * (5.5E-2) 6.52E-1 * (8.4E-2) 6.20E-1 * (9.6E-2)
UF10 3 4.88E0 * (4.9E-1) 2.08E0 * (7.6E-1) 3.61E0 * (1.5E0) 1.90E0 * (4.1E-1) 8.97E-1 (2.9E-1)

Table B.4: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

NSGA-III WOF-NSGA-III MOEA/D WOF-MOEA/D WOF-Randomised

n = 40

UF1 2 1.09E-1 * (1.9E-2) 9.71E-2 * (7.6E-3) 2.29E-1 * (2.0E-1) 6.98E-2 (1.2E-2) 9.04E-2 * (2.2E-2)
UF2 2 4.15E-2 (1.5E-2) 4.50E-2 (8.9E-3) 1.82E-1 * (1.2E-1) 4.77E-2 * (1.1E-2) 4.21E-2 (8.2E-3)
UF3 2 2.15E-1 * (7.2E-2) 2.04E-1 * (1.9E-2) 3.20E-1 * (2.5E-2) 2.24E-1 * (4.3E-2) 1.68E-1 (4.0E-2)
UF4 2 5.05E-2 * (2.2E-3) 4.69E-2 (1.0E-3) 8.31E-2 * (6.4E-3) 8.27E-2 * (5.4E-3) 4.88E-2 (5.6E-3)
UF5 2 2.70E-1 (7.1E-2) 2.92E-1 (1.4E-1) 4.69E-1 * (1.1E-1) 5.16E-1 * (1.7E-1) 3.48E-1 * (2.0E-1)
UF6 2 1.09E-1 (3.7E-2) 1.18E-1 (1.0E-1) 4.09E-1 * (1.3E-1) 1.88E-1 * (2.8E-1) 1.27E-1 (2.4E-1)
UF7 2 5.25E-2 (2.1E-1) 5.45E-2 (1.4E-2) 4.17E-1 * (2.1E-1) 3.43E-1 (3.0E-1) 5.08E-2 (1.6E-2)
UF8 3 5.31E-1 (1.9E-2) 5.28E-1 (3.8E-1) 2.72E-1 (5.9E-1) 2.91E-1 (1.6E-2) 5.28E-1 (5.4E-2)
UF9 3 4.05E-1 * (1.9E-1) 1.69E-1 (1.9E-1) 3.68E-1 * (4.6E-2) 3.47E-1 * (1.1E-1) 3.13E-1 (2.3E-1)
UF10 3 4.29E-1 (1.4E-1) 5.07E-1 (2.1E-1) 6.99E-1 * (1.4E-1) 7.12E-1 * (1.3E-1) 5.20E-1 * (3.9E-2)

n = 1000

UF1 2 2.80E-1 * (4.8E-2) 1.79E-1 (3.7E-2) 8.99E-1 * (2.9E-1) 2.67E-1 * (1.4E-2) 1.96E-1 * (1.6E-2)
UF2 2 2.23E-1 * (1.1E-2) 1.16E-1 * (1.6E-2) 4.54E-1 * (6.2E-2) 9.84E-2 * (4.6E-3) 8.69E-2 (3.2E-3)
UF3 2 2.83E-1 * (1.1E-2) 1.38E-1 * (1.5E-2) 3.82E-1 * (2.1E-2) 2.02E-1 * (1.8E-2) 3.50E-2 (1.0E-2)
UF4 2 1.61E-1 * (2.9E-3) 7.31E-2 (3.7E-3) 2.00E-1 * (5.3E-3) 1.04E-1 * (6.7E-3) 7.08E-2 (1.8E-2)
UF5 2 1.84E0 * (5.0E-1) 1.35E0 (2.6E-1) 3.12E0 * (2.0E-1) 1.41E0 (1.6E-1) 1.61E0 (5.3E-1)
UF6 2 8.73E-1 * (1.7E-1) 5.83E-1 (3.4E-1) 2.42E0 * (3.7E-1) 7.74E-1 * (1.1E-1) 4.64E-1 (3.1E-1)
UF7 2 3.13E-1 * (7.6E-2) 1.50E-1 (2.8E-2) 9.04E-1 * (2.3E-1) 4.71E-1 * (2.4E-1) 1.67E-1 * (2.0E-2)
UF8 3 8.62E-1 (6.0E-2) 5.58E-1 (6.7E-2) 1.66E0 * (3.0E-1) 3.31E-1 (6.4E-1) 5.42E-1 (2.1E-3)
UF9 3 8.34E-1 * (2.9E-2) 6.76E-1 (1.5E-1) 7.77E-1 * (3.0E-2) 7.14E-1 * (1.0E-1) 6.20E-1 (9.6E-2)
UF10 3 3.01E0 * (3.4E-1) 2.16E0 * (1.0E0) 2.57E0 * (5.8E-1) 8.59E-1 (9.8E-2) 8.97E-1 (2.9E-1)
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Table B.5: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

SMPSO WOF-SMPSO NSGA-II WOF-NSGA-II WOF-Randomised

n = 40

WFG1 2 1.22E0 * (2.9E-2) 1.12E0 * (7.3E-2) 4.98E-2 (2.5E-2) 1.71E-1 * (6.1E-2) 3.49E-1 * (9.5E-2)
WFG2 2 2.49E-1 * (1.8E-2) 2.80E-2 * (7.5E-3) 6.65E-1 * (8.0E-3) 2.87E-2 (1.1E-2) 2.44E-2 (6.1E-3)
WFG3 2 6.15E-2 * (2.3E-2) 3.00E-2 * (6.4E-3) 2.75E-2 * (8.7E-3) 2.98E-2 * (8.7E-3) 2.16E-2 (3.7E-3)
WFG4 2 1.01E-1 * (8.9E-3) 7.68E-2 * (3.4E-2) 2.08E-2 * (2.1E-3) 2.24E-2 * (3.4E-3) 1.85E-2 (2.4E-3)
WFG5 2 9.09E-2 * (3.2E-2) 6.79E-2 (4.6E-3) 7.16E-2 * (9.3E-4) 7.22E-2 * (7.1E-4) 6.94E-2 (1.2E-4)
WFG6 2 4.75E-2 * (2.4E-3) 2.28E-2 (9.8E-3) 6.05E-2 * (1.5E-2) 8.32E-2 * (1.2E-3) 4.13E-2 * (4.9E-2)
WFG7 2 2.39E-2 * (1.0E-2) 1.88E-2 * (1.6E-3) 1.71E-2 * (9.5E-4) 1.83E-2 * (1.2E-3) 1.38E-2 (5.7E-4)
WFG8 2 3.29E-1 * (4.5E-2) 1.07E-1 (8.7E-2) 2.39E-1 * (1.1E-2) 2.15E-1 * (1.6E-2) 2.09E-1 * (5.9E-2)
WFG9 2 9.62E-2 * (2.0E-2) 4.27E-2 (1.3E-2) 9.34E-2 * (1.5E-3) 9.15E-2 * (4.6E-2) 8.28E-2 (5.4E-2)
WFG1 3 1.53E0 * (1.4E-2) 1.51E0 * (2.1E-2) 6.63E-1 (9.0E-2) 9.77E-1 * (7.2E-2) 1.18E0 * (1.0E-1)
WFG2 3 3.10E-1 * (1.3E-1) 2.36E-1 * (1.7E-2) 5.13E-1 * (1.1E-2) 2.24E-1 * (9.0E-3) 1.66E-1 (4.8E-3)
WFG3 3 2.57E-1 * (9.0E-2) 1.43E-1 * (2.6E-2) 1.30E-1 (3.2E-2) 1.35E-1 (2.7E-2) 1.20E-1 (3.0E-2)
WFG4 3 4.12E-1 * (3.7E-2) 3.46E-1 * (3.2E-2) 2.89E-1 * (1.3E-2) 2.91E-1 * (1.2E-2) 2.35E-1 (4.5E-3)
WFG5 3 4.81E-1 * (1.3E-1) 3.04E-1 * (2.5E-2) 2.93E-1 * (1.4E-2) 2.92E-1 * (1.4E-2) 2.36E-1 (2.5E-3)
WFG6 3 3.44E-1 * (5.1E-2) 3.48E-1 * (6.2E-2) 3.01E-1 * (1.4E-2) 3.13E-1 * (1.9E-2) 2.41E-1 (4.1E-3)
WFG7 3 4.61E-1 * (1.1E-1) 2.99E-1 * (1.9E-2) 2.84E-1 * (2.1E-2) 3.13E-1 * (1.1E-1) 2.28E-1 (4.0E-2)
WFG8 3 7.03E-1 * (7.4E-2) 5.60E-1 * (3.4E-2) 4.56E-1 * (2.4E-2) 5.02E-1 * (3.6E-2) 3.53E-1 (6.4E-2)
WFG9 3 4.00E-1 * (5.0E-2) 3.38E-1 * (3.1E-2) 3.26E-1 * (2.1E-2) 3.18E-1 * (1.0E-2) 2.46E-1 (6.3E-3)

n = 1000

WFG1 2 1.31E0 * (9.7E-3) 1.20E0 (5.1E-2) 1.71E0 * (3.0E-2) 1.27E0 * (1.2E-2) 1.22E0 * (2.7E-2)
WFG2 2 8.99E-1 * (5.4E-1) 7.25E-2 (2.1E-2) 8.95E-1 * (2.0E-2) 2.35E-1 * (7.5E-2) 1.40E-1 * (2.9E-2)
WFG3 2 8.97E-1 * (4.5E-2) 8.94E-2 (1.3E-2) 8.39E-1 * (4.6E-2) 2.12E-1 * (2.9E-2) 1.25E-1 * (3.1E-2)
WFG4 2 4.90E-1 * (1.4E-2) 1.11E-1 (8.2E-3) 9.78E-1 * (6.6E-2) 1.77E-1 * (2.3E-2) 1.27E-1 * (1.8E-2)
WFG5 2 6.03E-1 * (1.1E-2) 6.78E-2 (4.8E-3) 9.74E-1 * (5.6E-2) 9.28E-2 * (6.6E-2) 6.97E-2 (3.3E-3)
WFG6 2 2.86E-1 * (2.7E-2) 1.69E-2 * (1.4E-3) 1.03E0 * (7.5E-2) 2.34E-2 * (5.4E-3) 1.35E-2 (3.6E-3)
WFG7 2 9.40E-1 * (3.2E-2) 7.70E-2 (1.1E-2) 9.24E-1 * (2.7E-2) 2.41E-1 * (2.7E-2) 1.39E-1 * (2.9E-2)
WFG8 2 1.29E0 * (7.8E-2) 1.03E-1 (1.0E-1) 1.09E0 * (4.1E-2) 3.59E-1 * (4.3E-2) 2.81E-1 * (7.8E-2)
WFG9 2 4.54E-1 * (7.0E-2) 3.83E-2 (7.2E-3) 9.57E-1 * (7.4E-2) 1.04E-1 * (5.2E-2) 5.05E-2 * (2.9E-2)
WFG1 3 1.75E0 * (4.5E-2) 1.51E0 * (1.9E-2) 1.82E0 * (5.5E-2) 1.55E0 * (3.6E-2) 1.50E0 (1.8E-2)
WFG2 3 1.76E0 * (2.6E-2) 2.43E-1 (1.6E-2) 1.78E0 * (1.5E-2) 5.15E-1 * (1.1E-1) 4.04E-1 * (1.0E-1)
WFG3 3 8.94E-1 * (1.0E-1) 1.13E-1 (3.0E-2) 8.64E-1 * (6.4E-2) 3.97E-1 * (1.5E-1) 3.98E-1 * (1.4E-1)
WFG4 3 1.37E0 * (9.3E-2) 3.70E-1 (2.4E-2) 1.86E0 * (7.4E-2) 6.48E-1 * (1.2E-1) 4.22E-1 * (9.3E-2)
WFG5 3 1.57E0 * (3.8E-2) 4.28E-1 (1.4E-1) 1.66E0 * (6.9E-2) 6.22E-1 * (1.0E-1) 4.01E-1 (1.1E-1)
WFG6 3 1.18E0 * (5.4E-2) 3.78E-1 * (5.9E-2) 1.59E0 * (5.1E-2) 4.03E-1 * (8.8E-2) 2.46E-1 (1.8E-2)
WFG7 3 1.60E0 * (5.7E-2) 3.58E-1 (4.1E-2) 1.78E0 * (5.0E-2) 7.19E-1 * (3.7E-2) 5.29E-1 * (5.5E-2)
WFG8 3 1.78E0 * (9.0E-2) 6.19E-1 (7.5E-2) 1.83E0 * (5.1E-2) 1.07E0 * (1.2E-1) 7.72E-1 * (1.3E-1)
WFG9 3 1.21E0 * (1.0E-1) 3.68E-1 (3.6E-2) 1.56E0 * (9.9E-2) 7.51E-1 * (1.2E-1) 4.31E-1 * (1.1E-1)
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Table B.6: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

NSGA-III WOF-NSGA-III MOEA/D WOF-MOEA/D WOF-Randomised

n = 40

WFG1 2 1.29E-1 (3.2E-2) 3.34E-1 * (7.1E-2) 6.14E-1 * (7.5E-2) 1.01E0 * (6.5E-2) 3.49E-1 * (9.5E-2)
WFG2 2 6.64E-1 * (5.7E-3) 3.13E-2 * (1.2E-2) 7.82E-1 * (1.2E-2) 9.68E-2 * (9.2E-3) 2.44E-2 (6.1E-3)
WFG3 2 2.97E-2 * (1.2E-2) 2.86E-2 * (5.6E-3) 9.62E-2 * (6.3E-2) 4.81E-2 * (4.8E-3) 2.16E-2 (3.7E-3)
WFG4 2 1.65E-2 (2.0E-3) 1.96E-2 * (2.3E-3) 3.59E-2 * (6.4E-3) 7.19E-2 * (8.5E-3) 1.85E-2 * (2.4E-3)
WFG5 2 7.04E-2 * (5.6E-4) 7.03E-2 * (9.0E-4) 7.80E-2 * (6.6E-3) 7.28E-2 * (2.4E-3) 6.94E-2 (1.2E-4)
WFG6 2 5.92E-2 (1.3E-2) 8.10E-2 * (2.5E-4) 8.24E-2 * (2.0E-2) 8.54E-2 * (5.4E-3) 4.13E-2 (4.9E-2)
WFG7 2 1.59E-2 * (1.2E-2) 1.48E-2 * (1.2E-3) 3.03E-2 * (2.0E-2) 4.67E-2 * (1.5E-2) 1.38E-2 (5.7E-4)
WFG8 2 2.56E-1 * (2.2E-2) 2.19E-1 * (1.6E-2) 2.45E-1 * (3.3E-2) 1.67E-1 (1.8E-2) 2.09E-1 * (5.9E-2)
WFG9 2 9.23E-2 * (2.1E-3) 7.69E-2 (3.4E-2) 7.56E-2 (2.4E-2) 9.31E-2 * (2.9E-3) 8.28E-2 (5.4E-2)
WFG1 3 8.38E-1 (1.2E-1) 1.20E0 * (8.8E-2) 7.82E-1 (1.0E-1) 1.38E0 * (7.5E-2) 1.18E0 * (1.0E-1)
WFG2 3 4.90E-1 * (6.7E-3) 1.69E-1 * (3.7E-3) 6.25E-1 * (8.4E-1) 3.02E-1 * (3.0E-2) 1.66E-1 (4.8E-3)
WFG3 3 8.27E-2 (2.1E-2) 1.32E-1 * (3.4E-2) 4.12E-1 * (2.9E-1) 1.74E-1 * (3.0E-2) 1.20E-1 * (3.0E-2)
WFG4 3 2.31E-1 (2.7E-3) 2.38E-1 * (5.2E-3) 2.56E-1 * (5.5E-3) 2.97E-1 * (2.5E-2) 2.35E-1 * (4.5E-3)
WFG5 3 2.37E-1 * (2.5E-3) 2.36E-1 (4.5E-3) 2.50E-1 * (3.7E-3) 2.91E-1 * (1.0E-2) 2.36E-1 (2.5E-3)
WFG6 3 2.36E-1 (6.7E-3) 2.40E-1 * (3.6E-3) 2.66E-1 * (2.0E-2) 3.28E-1 * (1.9E-2) 2.41E-1 * (4.1E-3)
WFG7 3 2.30E-1 (1.0E-2) 2.36E-1 (2.2E-2) 2.73E-1 * (4.4E-2) 2.95E-1 * (3.8E-2) 2.28E-1 (4.0E-2)
WFG8 3 3.53E-1 (1.2E-2) 3.76E-1 (2.0E-2) 3.60E-1 (2.7E-2) 4.93E-1 * (8.8E-2) 3.53E-1 (6.4E-2)
WFG9 3 2.45E-1 (5.0E-3) 2.48E-1 * (5.4E-3) 2.86E-1 * (2.2E-2) 3.15E-1 * (2.1E-2) 2.46E-1 (6.3E-3)

n = 1000

WFG1 2 1.65E0 * (3.4E-2) 1.26E0 * (9.9E-3) 1.89E0 * (7.2E-2) 1.26E0 * (8.7E-3) 1.22E0 (2.7E-2)
WFG2 2 8.88E-1 * (2.9E-2) 2.45E-1 * (7.6E-2) 1.47E0 * (4.4E-1) 2.17E-1 * (3.6E-2) 1.40E-1 (2.9E-2)
WFG3 2 7.87E-1 * (3.6E-2) 2.10E-1 * (3.5E-2) 1.05E0 * (3.6E-2) 1.71E-1 * (5.1E-2) 1.25E-1 (3.1E-2)
WFG4 2 9.13E-1 * (5.2E-2) 1.66E-1 * (2.7E-2) 1.05E0 * (7.5E-2) 1.64E-1 * (3.1E-2) 1.27E-1 (1.8E-2)
WFG5 2 8.92E-1 * (5.8E-2) 1.25E-1 * (6.3E-2) 1.18E0 * (6.3E-2) 1.01E-1 * (1.6E-2) 6.97E-2 (3.3E-3)
WFG6 2 9.14E-1 * (5.9E-2) 1.62E-2 * (3.7E-3) 2.47E0 * (1.9E-2) 7.35E-2 * (3.5E-2) 1.35E-2 (3.6E-3)
WFG7 2 8.87E-1 * (3.9E-2) 2.38E-1 * (3.3E-2) 1.01E0 * (5.9E-2) 2.23E-1 * (9.9E-2) 1.39E-1 (2.9E-2)
WFG8 2 1.05E0 * (3.8E-2) 3.45E-1 * (3.6E-2) 1.31E0 * (5.0E-2) 3.77E-1 * (5.6E-2) 2.81E-1 (7.8E-2)
WFG9 2 9.14E-1 * (6.0E-2) 1.18E-1 * (7.1E-2) 2.19E0 * (4.4E-2) 8.67E-2 * (3.6E-2) 5.05E-2 (2.9E-2)
WFG1 3 1.85E0 * (6.1E-2) 1.55E0 * (4.6E-2) 1.89E0 * (4.6E-2) 1.62E0 * (5.5E-2) 1.50E0 (1.8E-2)
WFG2 3 1.76E0 * (1.8E-2) 4.88E-1 * (9.2E-2) 1.84E0 * (2.4E-2) 7.63E-1 * (1.0E-1) 4.04E-1 (1.0E-1)
WFG3 3 1.17E0 * (1.8E-1) 5.57E-1 * (1.2E-1) 1.33E0 * (8.1E-2) 3.39E-1 (9.8E-2) 3.98E-1 (1.4E-1)
WFG4 3 2.84E0 * (9.5E-2) 4.60E-1 * (5.2E-2) 1.36E0 * (1.1E-1) 5.25E-1 * (7.4E-2) 4.22E-1 (9.3E-2)
WFG5 3 1.64E0 * (9.5E-2) 6.73E-1 * (7.1E-1) 1.29E0 * (6.5E-2) 4.63E-1 * (4.0E-1) 4.01E-1 (1.1E-1)
WFG6 3 1.45E0 * (4.8E-2) 2.44E-1 (2.3E-2) 1.82E0 * (2.2E-1) 3.85E-1 * (6.4E-2) 2.46E-1 (1.8E-2)
WFG7 3 2.55E0 * (7.9E-1) 5.98E-1 * (6.4E-2) 1.30E0 * (1.1E-1) 6.61E-1 * (8.3E-2) 5.29E-1 (5.5E-2)
WFG8 3 1.90E0 * (8.7E-2) 8.50E-1 * (1.1E-1) 1.49E0 * (1.1E-1) 1.35E0 * (2.1E-1) 7.72E-1 (1.3E-1)
WFG9 3 1.39E0 * (9.2E-2) 5.29E-1 * (1.6E-1) 1.51E0 * (1.9E-1) 5.88E-1 * (7.6E-2) 4.31E-1 (1.1E-1)



201

Table B.7: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

SMPSO WOF-SMPSO NSGA-II WOF-NSGA-II WOF-Randomised

n = 40

DTLZ1 2 6.00E1 * (8.0E1) 2.25E-3 (1.1E-4) 1.11E0 * (7.7E-1) 6.22E0 * (4.4E0) 3.33E0 * (1.1E1)
DTLZ2 2 5.10E-3 * (2.3E-4) 5.11E-3 * (2.9E-4) 5.08E-3 * (2.8E-4) 5.05E-3 * (2.4E-4) 3.96E-3 (3.4E-7)
DTLZ3 2 1.75E2 * (2.0E2) 4.98E-3 (6.0E-4) 2.20E0 * (2.2E0) 2.00E1 * (7.5E0) 1.03E1 * (1.9E1)
DTLZ4 2 5.49E-3 * (7.3E-1) 5.31E-3 * (7.3E-1) 5.09E-3 * (2.0E-4) 5.19E-3 * (4.4E-4) 3.96E-3 (2.8E-6)
DTLZ5 2 5.21E-3 * (3.2E-4) 5.07E-3 * (2.0E-4) 5.15E-3 * (2.1E-4) 5.03E-3 * (2.0E-4) 3.96E-3 (1.9E-7)
DTLZ6 2 5.16E-3 * (2.1E-4) 5.15E-3 * (3.3E-4) 7.36E-3 * (5.6E-3) 5.62E-3 * (3.7E-4) 3.96E-3 (5.3E-8)
DTLZ7 2 5.46E-3 (4.3E-1) 4.42E-1 * (4.3E-1) 5.30E-3 (3.0E-4) 5.44E-3 (4.3E-1) 4.42E-1 (4.3E-1)
DTLZ1 3 1.57E1 * (1.9E1) 7.27E-2 (3.8E-1) 8.93E0 * (3.5E0) 2.77E1 * (1.2E1) 1.11E1 * (2.4E1)
DTLZ2 3 9.55E-2 * (8.2E-3) 8.41E-2 * (6.4E-3) 7.32E-2 * (2.6E-3) 7.32E-2 * (3.4E-3) 5.44E-2 (6.1E-6)
DTLZ3 3 3.26E1 * (5.6E1) 1.12E-1 (2.7E-1) 1.65E1 * (6.0E0) 6.04E1 * (4.2E1) 2.41E1 * (3.3E1)
DTLZ4 3 3.70E-1 * (2.8E-1) 2.46E-1 * (1.8E-1) 7.24E-2 * (4.7E-3) 7.10E-2 * (3.2E-3) 5.44E-2 (8.3E-6)
DTLZ5 3 6.59E-3 * (6.2E-4) 5.80E-3 (2.6E-4) 6.45E-3 * (4.3E-4) 6.48E-3 * (5.1E-4) 1.37E-2 * (2.9E-3)
DTLZ6 3 5.98E-3 (1.1E0) 5.98E-3 (5.0E-4) 6.75E-3 * (6.4E-3) 6.46E-3 * (7.0E-4) 2.29E-2 * (3.5E-3)
DTLZ7 3 1.05E-1 * (1.2E-2) 1.04E-1 * (2.5E-2) 8.19E-2 (4.6E-3) 8.54E-2 * (7.1E-1) 8.01E-1 * (7.2E-1)
DTLZ1 4 1.88E1 (2.7E1) 2.06E1 * (1.9E1) 3.13E1 * (9.1E0) 1.60E2 * (4.9E1) 1.02E1 (1.4E1)
DTLZ2 4 7.69E-1 * (2.1E-1) 6.12E-1 * (1.2E-1) 1.67E-1 * (7.0E-3) 1.64E-1 * (8.1E-3) 1.40E-1 (2.0E-5)
DTLZ3 4 5.93E1 * (7.4E1) 2.29E1 (4.5E1) 5.76E1 * (2.4E1) 2.99E2 * (1.4E2) 3.25E1 (7.3E1)
DTLZ4 4 4.05E-1 * (8.3E-2) 4.10E-1 * (6.6E-2) 1.64E-1 * (6.6E-3) 1.63E-1 * (5.7E-3) 1.40E-1 (7.5E-5)
DTLZ5 4 2.77E-1 * (8.9E-2) 2.71E-1 * (1.8E-1) 1.23E-1 * (2.5E-2) 1.52E-1 * (4.1E-2) 8.13E-2 (3.5E-2)
DTLZ6 4 1.56E1 * (4.1E0) 1.50E-1 (2.3E-1) 1.47E1 * (1.7E0) 1.02E1 * (2.2E0) 1.83E-1 (6.1E-2)
DTLZ7 4 3.49E-1 * (6.6E-2) 3.26E-1 * (2.6E-2) 2.36E-1 (1.6E-2) 2.41E-1 (8.9E-1) 3.83E-1 (9.1E-1)
DTLZ1 5 1.42E2 * (2.4E2) 1.95E1 (3.1E1) 5.42E1 * (1.9E1) 2.02E2 * (5.6E1) 2.10E1 (2.6E1)
DTLZ2 5 1.07E0 * (3.2E-1) 8.86E-1 * (1.7E-1) 2.62E-1 * (9.4E-3) 2.71E-1 * (1.3E-2) 2.12E-1 (1.4E-4)
DTLZ3 5 2.56E2 * (2.0E2) 5.18E1 (4.9E1) 1.95E2 * (6.3E1) 6.24E2 * (1.6E2) 4.41E1 (8.4E1)
DTLZ4 5 7.86E-1 * (1.5E-1) 7.12E-1 * (1.0E-1) 2.60E-1 * (1.1E-2) 2.73E-1 * (1.3E-2) 2.12E-1 (1.7E-4)
DTLZ5 5 5.18E-1 * (3.2E-1) 4.61E-1 * (2.7E-1) 1.09E0 * (4.7E-1) 1.47E0 * (6.6E-1) 1.45E-1 (4.0E-2)
DTLZ6 5 1.72E1 * (4.9E0) 3.29E0 * (5.3E0) 2.35E1 * (1.7E0) 1.96E1 * (3.8E0) 4.52E-1 (1.9E-1)
DTLZ7 5 6.94E-1 * (1.9E-1) 5.25E-1 * (2.5E-2) 4.04E-1 (2.0E-2) 4.01E-1 (1.9E-2) 3.97E-1 (5.8E-2)

n = 1000

DTLZ1 2 1.86E3 * (1.6E3) 2.32E-3 (5.1E-1) 4.37E3 * (1.6E2) 5.15E3 * (1.7E3) 7.98E2 * (9.7E2)
DTLZ2 2 3.15E0 * (5.1E-1) 5.89E-3 * (8.1E-4) 1.88E0 * (2.0E-1) 7.18E-1 * (6.3E-1) 4.56E-3 (1.0E-3)
DTLZ3 2 5.32E3 * (4.4E3) 1.14E-2 (2.1E0) 1.15E4 * (4.1E2) 1.38E4 * (4.5E3) 1.51E3 * (2.7E3)
DTLZ4 2 3.66E0 * (1.3E0) 8.93E-3 (4.3E-3) 2.38E0 * (4.6E-1) 6.91E-1 * (4.0E-1) 8.13E-3 (4.8E-3)
DTLZ5 2 3.14E0 * (4.3E-1) 5.87E-3 (5.8E-4) 1.95E0 * (2.6E-1) 7.07E-1 * (5.2E-1) 4.77E-3 (2.3E-3)
DTLZ6 2 4.28E2 * (2.3E1) 5.18E-3 * (3.7E-4) 5.83E2 * (1.2E1) 7.65E1 * (4.7E1) 3.96E-3 (6.2E-8)
DTLZ7 2 4.84E0 * (4.0E-1) 4.42E-1 * (2.5E-4) 1.69E0 * (1.5E-1) 4.42E-1 * (1.1E-4) 4.42E-1 (4.3E-1)
DTLZ1 3 7.30E2 * (5.5E2) 2.40E0 (4.1E1) 7.46E3 * (3.2E2) 5.40E3 * (1.8E3) 1.02E3 * (1.1E3)
DTLZ2 3 4.92E0 * (1.2E0) 1.62E-1 * (9.0E-2) 8.01E0 * (3.9E-1) 1.85E0 * (1.3E0) 5.89E-2 (4.1E-3)
DTLZ3 3 1.20E3 * (1.9E3) 5.62E-1 (1.0E1) 1.79E4 * (6.4E2) 1.74E4 * (4.4E3) 3.45E3 * (2.9E3)
DTLZ4 3 1.95E0 * (1.5E0) 2.78E-1 * (2.2E-1) 9.66E0 * (1.3E0) 1.82E0 * (1.5E0) 6.55E-2 (1.0E-2)
DTLZ5 3 5.74E0 * (1.2E0) 5.14E-2 * (5.1E-2) 9.90E0 * (9.4E-1) 2.25E0 * (2.1E0) 2.50E-2 (1.2E-2)
DTLZ6 3 4.86E2 * (2.2E1) 5.89E-3 (2.5E-4) 7.52E2 * (7.0E0) 2.33E2 * (9.5E1) 2.43E-2 * (3.3E-3)
DTLZ7 3 8.05E0 * (4.7E-1) 1.53E0 * (1.1E0) 2.75E0 * (1.8E-1) 7.99E-1 (7.1E-1) 8.03E-1 * (4.2E-1)
DTLZ1 4 7.55E2 (1.4E3) 5.24E2 (8.9E2) 1.09E4 * (7.0E2) 6.32E3 * (3.2E3) 7.55E2 (1.0E3)
DTLZ2 4 1.84E1 * (5.0E0) 1.06E1 * (4.1E0) 2.27E1 * (2.0E0) 5.22E0 * (2.3E0) 2.26E-1 (2.1E-1)
DTLZ3 4 1.64E3 (1.0E3) 1.02E3 (1.7E3) 3.63E4 * (1.3E3) 2.08E4 * (6.4E3) 4.10E3 * (3.9E3)
DTLZ4 4 6.05E0 * (2.7E0) 3.78E0 * (1.6E0) 2.51E1 * (2.1E0) 8.91E0 * (5.0E0) 7.17E-1 (9.0E-1)
DTLZ5 4 3.14E1 * (1.8E1) 2.25E1 * (2.0E1) 5.75E1 * (2.2E0) 4.84E1 * (1.7E1) 2.34E0 (4.5E0)
DTLZ6 4 4.95E2 * (2.2E1) 4.30E0 * (2.2E1) 8.70E2 * (4.2E0) 6.26E2 * (8.2E1) 3.06E-1 (3.1E-1)
DTLZ7 4 1.16E1 * (6.3E-1) 2.24E0 * (1.9E0) 5.13E0 * (2.0E-1) 1.11E0 (4.9E-1) 1.13E0 * (4.9E-1)
DTLZ1 5 5.00E3 * (6.5E3) 9.53E2 (6.4E2) 1.24E4 * (6.5E2) 8.15E3 * (3.2E3) 1.96E3 * (1.3E3)
DTLZ2 5 2.70E1 * (1.5E1) 1.93E1 * (5.7E0) 4.50E1 * (2.6E0) 3.44E1 * (7.2E0) 6.81E0 (7.0E0)
DTLZ3 5 9.01E3 * (5.0E3) 1.66E3 (2.5E3) 6.28E4 * (2.6E3) 2.46E4 * (1.1E4) 6.62E3 * (4.4E3)
DTLZ4 5 1.47E1 * (4.4E0) 8.66E0 (3.6E0) 4.69E1 * (4.4E0) 3.44E1 * (8.4E0) 1.18E1 (5.6E0)
DTLZ5 5 5.26E1 * (2.7E1) 3.12E1 * (1.7E1) 7.25E1 * (2.5E0) 6.70E1 * (1.8E1) 1.61E1 (2.0E1)
DTLZ6 5 5.02E2 * (2.5E1) 9.17E1 (1.4E2) 8.80E2 * (3.3E0) 6.48E2 * (8.3E1) 2.28E2 * (1.3E2)
DTLZ7 5 1.52E1 * (5.7E-1) 3.00E0 * ( — ) 9.30E0 * (6.4E-1) 1.46E0 (1.0E0) 9.18E-1 (1.0E0)
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Table B.8: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

NSGA-III WOF-NSGA-III MOEA/D WOF-MOEA/D WOF-Randomised

n = 40

DTLZ1 2 2.21E0 (2.1E0) 1.32E1 * (9.3E0) 1.52E0 (1.7E0) 4.40E0 * (2.2E0) 3.33E0 * (1.1E1)
DTLZ2 2 3.96E-3 * (5.3E-8) 3.96E-3 * (1.1E-6) 3.96E-3 (6.3E-8) 4.42E-3 * (1.9E-3) 3.96E-3 * (3.4E-7)
DTLZ3 2 4.52E0 (5.2E0) 3.86E1 * (3.1E1) 4.36E0 (3.9E0) 1.61E1 * (2.0E1) 1.03E1 (1.9E1)
DTLZ4 2 3.96E-3 * (6.2E-7) 3.96E-3 * (1.2E-6) 3.96E-3 (7.3E-1) 5.87E-3 * (2.4E-3) 3.96E-3 * (2.8E-6)
DTLZ5 2 3.96E-3 * (9.2E-8) 3.96E-3 * (1.5E-6) 3.96E-3 (6.5E-8) 4.46E-3 * (2.0E-3) 3.96E-3 * (1.9E-7)
DTLZ6 2 3.96E-3 * (4.8E-8) 3.96E-3 * (6.3E-8) 3.96E-3 (1.6E-8) 6.52E-3 * (7.4E-4) 3.96E-3 * (5.3E-8)
DTLZ7 2 5.06E-3 (7.8E-5) 5.14E-3 * (4.3E-1) 7.53E-3 * (4.3E-1) 4.46E-1 * (4.0E-4) 4.42E-1 * (4.3E-1)
DTLZ1 3 5.55E0 (3.0E0) 2.07E1 * (1.0E1) 7.52E0 (3.7E0) 1.08E1 * (1.1E1) 1.11E1 (2.4E1)
DTLZ2 3 5.44E-2 * (1.1E-6) 5.44E-2 * (1.0E-5) 5.44E-2 (3.7E-7) 5.50E-2 * (2.9E-3) 5.44E-2 * (6.1E-6)
DTLZ3 3 1.17E1 (7.0E0) 5.18E1 * (3.7E1) 3.95E1 * (1.9E1) 2.52E1 * (3.1E1) 2.41E1 (3.3E1)
DTLZ4 3 5.44E-2 (7.3E-3) 5.44E-2 * (2.5E-5) 5.41E-1 (8.9E-1) 5.47E-2 * (2.1E-3) 5.44E-2 (8.3E-6)
DTLZ5 3 1.38E-2 (2.7E-3) 1.31E-2 (1.9E-3) 3.38E-2 * (4.9E-5) 3.16E-2 * (2.0E-3) 1.37E-2 (2.9E-3)
DTLZ6 3 2.05E-2 (3.0E-3) 2.15E-2 (4.6E-3) 3.38E-2 * (8.4E-5) 3.52E-2 * (4.2E-3) 2.29E-2 * (3.5E-3)
DTLZ7 3 7.61E-2 (6.0E-3) 7.98E-1 * (7.2E-1) 1.41E-1 * (5.6E-4) 8.02E-1 * (6.5E-1) 8.01E-1 * (7.2E-1)
DTLZ1 4 1.10E1 * (6.9E0) 7.17E1 * (3.2E1) 1.12E1 * (5.3E0) 5.74E0 (6.6E0) 1.02E1 (1.4E1)
DTLZ2 4 1.40E-1 * (5.1E-6) 1.40E-1 * (2.0E-5) 1.40E-1 (2.5E-6) 1.48E-1 * (3.9E-3) 1.40E-1 * (2.0E-5)
DTLZ3 4 2.97E1 (1.0E1) 1.59E2 * (1.1E2) 5.05E1 * (2.1E1) 2.32E1 (4.8E1) 3.25E1 (7.3E1)
DTLZ4 4 1.40E-1 (3.1E-1) 1.40E-1 (5.3E-5) 7.51E-1 * (5.8E-1) 4.58E-1 * (6.0E-1) 1.40E-1 (7.5E-5)
DTLZ5 4 6.27E-2 * (1.5E-2) 7.00E-2 * (2.0E-2) 3.61E-2 (7.4E-5) 4.69E-2 * (5.6E-3) 8.13E-2 * (3.5E-2)
DTLZ6 4 2.03E-1 * (8.5E-2) 1.88E-1 * (4.5E-2) 3.61E-2 (6.2E-4) 5.12E-2 * (1.2E-1) 1.83E-1 * (6.1E-2)
DTLZ7 4 2.19E-1 (2.0E-2) 6.51E-1 * (7.4E-1) 3.91E-1 * (2.5E-4) 1.12E0 * (7.2E-1) 3.83E-1 * (9.1E-1)
DTLZ1 5 1.57E1 (4.5E0) 1.21E2 * (2.6E1) 1.58E1 (6.4E0) 1.87E1 (2.0E1) 2.10E1 (2.6E1)
DTLZ2 5 2.12E-1 * (1.3E-5) 2.12E-1 * (1.5E-4) 2.12E-1 (1.2E-4) 2.31E-1 * (4.8E-3) 2.12E-1 * (1.4E-4)
DTLZ3 5 5.01E1 (2.3E1) 3.61E2 * (1.8E2) 5.76E1 (1.5E1) 8.63E1 (4.5E1) 4.41E1 (8.4E1)
DTLZ4 5 2.12E-1 (8.9E-5) 2.12E-1 * (2.9E-4) 6.46E-1 * (4.4E-1) 4.30E-1 * (2.1E-1) 2.12E-1 * (1.7E-4)
DTLZ5 5 1.26E-1 * (3.7E-2) 1.61E-1 * (5.0E-2) 2.60E-2 (1.2E-3) 3.48E-2 * (8.2E-3) 1.45E-1 * (4.0E-2)
DTLZ6 5 1.26E0 * (8.9E-1) 7.19E-1 * (2.4E-1) 2.99E-2 (2.3E-3) 3.57E-2 * (8.3E-3) 4.52E-1 * (1.9E-1)
DTLZ7 5 3.89E-1 (2.8E-2) 4.67E-1 * (5.5E-1) 1.14E0 * (2.0E-1) 9.09E-1 * (6.5E-1) 3.97E-1 (5.8E-2)

n = 1000

DTLZ1 2 4.88E3 * (2.1E2) 4.99E3 * (1.6E3) 5.72E3 * (8.2E2) 8.86E2 (5.7E2) 7.98E2 (9.7E2)
DTLZ2 2 2.12E0 * (1.9E-1) 1.03E0 * (5.7E-1) 7.89E0 * (1.6E0) 1.03E-1 * (1.1E-1) 4.56E-3 (1.0E-3)
DTLZ3 2 1.29E4 * (2.8E2) 1.45E4 * (3.8E3) 1.66E4 * (1.7E3) 2.80E3 * (1.2E3) 1.51E3 (2.7E3)
DTLZ4 2 2.53E0 * (6.2E-1) 9.13E-1 * (5.7E-1) 6.02E0 * (1.1E1) 1.34E-2 * (7.7E-3) 8.13E-3 (4.8E-3)
DTLZ5 2 2.05E0 * (2.9E-1) 9.48E-1 * (9.7E-1) 7.21E0 * (1.4E0) 1.36E-1 * (6.2E-2) 4.77E-3 (2.3E-3)
DTLZ6 2 5.40E2 * (1.6E1) 8.79E1 * (3.6E1) 6.37E2 * (1.8E1) 1.32E-2 * (2.7E-2) 3.96E-3 (6.2E-8)
DTLZ7 2 1.32E0 * (1.1E-1) 4.42E-1 (4.3E-1) 4.38E0 * (4.1E-1) 4.56E-1 * (2.9E-2) 4.42E-1 (4.3E-1)
DTLZ1 3 8.15E3 * (1.2E3) 5.30E3 * (1.6E3) 6.30E3 * (1.7E3) 6.50E2 (5.9E2) 1.02E3 (1.1E3)
DTLZ2 3 4.94E0 * (5.0E-1) 1.53E0 * (1.3E0) 7.69E0 * (2.3E0) 1.03E-1 * (1.7E-1) 5.89E-2 (4.1E-3)
DTLZ3 3 1.74E4 * (1.1E3) 1.50E4 * (4.8E3) 2.46E4 * (3.9E3) 2.35E3 (1.7E3) 3.45E3 (2.9E3)
DTLZ4 3 6.52E0 * (1.0E0) 1.62E0 * (1.0E0) 1.97E0 * (1.9E0) 5.43E-1 * (4.0E-1) 6.55E-2 (1.0E-2)
DTLZ5 3 5.86E0 * (3.9E-1) 1.85E0 * (1.0E0) 7.16E0 * (1.4E0) 7.28E-1 * (4.9E-1) 2.50E-2 (1.2E-2)
DTLZ6 3 6.23E2 * (8.3E0) 1.98E2 * (9.0E1) 6.74E2 * (1.6E1) 4.95E-2 * (2.1E-1) 2.43E-2 (3.3E-3)
DTLZ7 3 3.26E0 * (2.2E-1) 8.03E-1 (5.3E-3) 3.12E0 * (3.0E-1) 8.02E-1 (2.0E-3) 8.03E-1 (4.2E-1)
DTLZ1 4 8.23E3 * (1.0E3) 5.02E3 * (1.4E3) 6.20E3 * (8.4E2) 4.04E2 (4.5E2) 7.55E2 * (1.0E3)
DTLZ2 4 7.62E0 * (7.6E-1) 3.03E0 * (1.6E0) 1.05E1 * (4.2E0) 1.04E0 (8.8E-1) 2.26E-1 (2.1E-1)
DTLZ3 4 2.87E4 * (2.8E3) 1.72E4 * (4.8E3) 2.91E4 * (5.5E3) 1.03E3 (1.5E3) 4.10E3 * (3.9E3)
DTLZ4 4 9.33E0 * (1.2E0) 6.96E0 * (3.5E0) 1.97E0 * (1.0E1) 7.53E-1 (5.8E-1) 7.17E-1 (9.0E-1)
DTLZ5 4 8.37E0 * (9.4E-1) 5.08E0 * (1.9E0) 7.85E0 * (2.5E0) 7.41E-1 (1.4E-1) 2.34E0 * (4.5E0)
DTLZ6 4 6.92E2 * (3.5E0) 4.46E2 * (6.2E1) 6.95E2 * (1.4E1) 7.42E-1 * ( — ) 3.06E-1 (3.1E-1)
DTLZ7 4 6.00E0 * (4.6E-1) 1.13E0 (9.0E-1) 4.76E0 * (4.6E-1) 1.12E0 (5.6E-3) 1.13E0 (4.9E-1)
DTLZ1 5 9.81E3 * (1.1E3) 5.31E3 * (1.6E3) 7.44E3 * (9.4E2) 1.72E3 (1.7E3) 1.96E3 (1.3E3)
DTLZ2 5 9.90E0 * (1.2E0) 1.00E1 * (2.4E0) 1.24E1 * (2.5E0) 3.13E-1 (3.6E-1) 6.81E0 * (7.0E0)
DTLZ3 5 3.77E4 * (3.2E3) 2.33E4 * (1.0E4) 3.19E4 * (3.9E3) 4.53E3 (3.7E3) 6.62E3 (4.4E3)
DTLZ4 5 1.12E1 * (1.0E1) 1.65E1 * (4.5E0) 1.26E0 * (4.9E0) 6.56E-1 (4.0E-1) 1.18E1 * (5.6E0)
DTLZ5 5 1.24E1 * (1.1E0) 2.03E1 * (6.7E0) 1.08E1 * (4.7E0) 7.46E-1 (1.1E-2) 1.61E1 * (2.0E1)
DTLZ6 5 7.41E2 * (8.3E0) 4.80E2 * (7.8E1) 7.23E2 * (1.0E1) 1.14E2 (1.4E2) 2.28E2 * (1.3E2)
DTLZ7 5 5.40E0 * (8.4E-1) 1.49E0 (6.2E-1) 6.71E0 * (4.4E-1) 1.55E0 * (3.2E-2) 9.18E-1 (1.0E0)
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Table B.9: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

NSGA-II GroupedNSGA-II LinkedNSGA-II GroupLinkNSGA-II HighProbNSGA-II

n = 200

LSMOP1 2 3.33E-1 * (1.0E-1) 3.42E-1 * (1.4E-1) 3.13E-1 * (2.8E-2) 1.63E-1 (7.0E-2) 3.65E-1 * (2.5E-2)
LSMOP2 2 9.48E-2 * (5.9E-3) 1.01E-1 * (6.2E-3) 9.75E-2 * (5.0E-3) 3.96E-2 (2.0E-3) 8.96E-2 * (2.8E-3)
LSMOP3 2 1.30E1 * (4.3E0) 1.37E1 * (3.1E0) 1.08E1 * (5.5E0) 1.39E0 (3.1E-1) 1.19E1 * (2.3E0)
LSMOP4 2 1.44E-1 * (4.3E-3) 1.26E-1 * (3.0E-3) 1.46E-1 * (4.7E-3) 9.29E-2 (2.0E-3) 1.39E-1 * (2.3E-3)
LSMOP5 2 3.86E-1 * (5.5E-2) 6.47E-1 * (2.2E-2) 3.56E-1 * (4.8E-2) 3.43E-1 (2.0E-3) 7.93E-1 * (5.4E-2)
LSMOP6 2 8.80E-1 * (3.5E-2) 8.91E-1 * (1.3E-2) 8.73E-1 * (3.2E-2) 4.29E-1 (8.4E-3) 8.26E-1 * (1.3E-2)
LSMOP7 2 4.29E0 * (2.7E0) 2.76E1 * (3.3E1) 3.82E0 * (1.5E0) 1.48E0 (1.9E-3) 5.38E1 * (1.3E1)
LSMOP8 2 4.03E-1 * (6.9E-2) 5.58E-1 * (5.2E-2) 3.73E-1 * (6.1E-2) 3.52E-1 (3.0E-2) 6.68E-1 * (4.8E-2)
LSMOP9 2 1.37E0 * (1.8E-1) 9.60E-1 * (1.1E-2) 1.16E0 * (1.9E-1) 8.10E-1 (6.6E-16) 1.93E0 * (4.0E-2)

n = 300

LSMOP1 3 2.31E0 * (4.3E-1) 7.10E-1 * (7.6E-2) 2.24E0 * (5.2E-1) 3.87E-1 (6.2E-2) 8.82E-1 * (9.3E-2)
LSMOP2 3 1.05E-1 (5.8E-3) 1.05E-1 * (4.3E-3) 1.06E-1 * (5.6E-3) 1.03E-1 (2.8E-3) 1.07E-1 * (2.5E-3)
LSMOP3 3 7.71E0 * (1.4E0) 5.43E0 * (7.7E-1) 7.75E0 * (1.6E0) 1.91E0 (1.2E0) 7.54E0 * (9.1E-1)
LSMOP4 3 2.62E-1 (9.7E-3) 2.77E-1 * (7.3E-3) 2.65E-1 (1.0E-2) 2.81E-1 * (9.1E-3) 2.81E-1 * (7.1E-3)
LSMOP5 3 6.36E0 * (9.4E-1) 2.05E0 * (3.0E-1) 6.04E0 * (1.1E0) 4.76E-1 (2.5E-2) 2.42E0 * (3.8E-1)
LSMOP6 3 6.79E0 * (1.2E2) 5.76E1 * (3.1E1) 5.75E0 * (1.1E2) 1.26E0 (6.6E0) 1.44E2 * (4.3E1)
LSMOP7 3 1.59E0 * (5.2E-2) 1.53E0 * (3.5E-2) 1.59E0 * (5.3E-2) 9.02E-1 (3.1E-3) 1.50E0 * (4.0E-2)
LSMOP8 3 4.72E-1 * (7.7E-2) 3.53E-1 * (4.9E-2) 4.46E-1 * (6.9E-2) 2.42E-1 (1.9E-2) 5.02E-1 * (4.5E-2)
LSMOP9 3 2.95E0 * (1.0E-1) 1.88E0 * (1.1E-1) 2.91E0 * (8.9E-2) 1.14E0 (3.4E-3) 3.53E0 * (1.5E-1)

n = 400

LSMOP1 4 5.84E0 * (7.3E-1) 5.78E0 * (1.0E0) 6.13E0 * (6.6E-1) 7.65E-1 (2.5E-1) 6.05E0 * (1.6E0)
LSMOP2 4 1.85E-1 * (1.1E-2) 1.81E-1 (5.6E-3) 1.85E-1 * (1.1E-2) 1.77E-1 (8.0E-3) 1.82E-1 * (5.6E-3)
LSMOP3 4 1.37E1 * (1.6E0) 1.57E1 * (2.0E0) 1.32E1 * (1.6E0) 7.53E0 (1.7E0) 1.64E1 * (1.3E0)
LSMOP4 4 2.60E-1 (1.8E-2) 2.59E-1 (1.1E-2) 2.63E-1 (1.7E-2) 2.55E-1 (1.2E-2) 2.61E-1 (1.1E-2)
LSMOP5 4 1.85E1 * (1.9E0) 2.05E1 * (9.5E-1) 1.84E1 * (1.2E0) 4.68E-1 (1.0E-2) 2.16E1 * (1.3E0)
LSMOP6 4 1.27E0 * (7.4E-3) 1.27E0 * (6.7E-3) 1.27E0 * (7.5E-3) 8.87E-1 (7.6E-3) 1.27E0 * (6.2E-3)
LSMOP7 4 1.97E4 * (9.4E3) 4.80E3 * (4.6E3) 1.80E4 * (7.3E3) 1.22E0 (4.5E-3) 5.18E3 * (3.5E3)
LSMOP8 4 9.33E0 * (1.0E0) 8.13E0 * (1.5E0) 9.37E0 * (8.9E-1) 4.82E-1 (2.1E-1) 1.01E1 * (1.6E0)
LSMOP9 4 5.86E0 * (7.2E-1) 3.81E0 * (4.6E-1) 5.59E0 * (9.4E-1) 1.46E0 (6.1E-1) 7.01E0 * (2.7E-1)

n = 500

LSMOP1 5 9.04E0 * (1.1E0) 8.55E0 * (2.7E0) 9.08E0 * (8.7E-1) 2.09E0 (1.1E0) 9.12E0 * (2.3E0)
LSMOP2 5 2.16E-1 * (1.1E-2) 2.04E-1 (1.0E-2) 2.16E-1 * (1.2E-2) 2.03E-1 (7.8E-3) 2.09E-1 * (8.8E-3)
LSMOP3 5 1.94E1 * (2.4E0) 1.79E1 * (4.2E0) 1.90E1 * (2.8E0) 8.30E0 (5.3E0) 1.90E1 * (4.5E0)
LSMOP4 5 3.68E-1 * (1.8E-2) 3.56E-1 * (3.1E-2) 3.70E-1 * (1.9E-2) 3.44E-1 (2.2E-2) 3.64E-1 * (2.4E-2)
LSMOP5 5 1.95E1 * (4.1E0) 2.15E1 * (4.2E0) 2.14E1 * (3.2E0) 1.20E0 (1.6E0) 2.12E1 * (4.9E0)
LSMOP6 5 4.75E4 * (1.6E4) 1.42E4 * (1.4E4) 4.95E4 * (1.8E4) 1.33E0 (1.4E-1) 5.66E4 * (3.0E4)
LSMOP7 5 3.47E0 * (1.4E-1) 3.44E0 * (1.5E-1) 3.50E0 * (1.5E-1) 1.26E0 (7.4E-2) 3.42E0 * (1.2E-1)
LSMOP8 5 1.21E0 * (1.9E-2) 1.21E0 * (1.4E-2) 1.21E0 * (2.2E-2) 5.02E-1 (1.9E-1) 1.21E0 * (1.6E-2)
LSMOP9 5 3.02E1 * (7.5E0) 3.45E1 * (2.8E1) 3.01E1 * (1.0E1) 6.44E-1 (2.2E-2) 2.29E1 * (1.1E1)

n = 1000

LSMOP1 2 3.55E0 * (3.9E-1) 1.16E0 * (7.8E-2) 3.59E0 * (3.8E-1) 3.06E-1 (3.4E-2) 1.51E0 * (9.2E-2)
LSMOP2 2 3.60E-2 * (8.2E-4) 3.93E-2 * (2.2E-4) 3.61E-2 * (3.9E-4) 1.81E-2 (4.7E-4) 3.94E-2 * (1.4E-4)
LSMOP3 2 2.10E1 * (1.0E0) 2.05E1 * (1.3E0) 2.08E1 * (1.1E0) 1.57E0 (1.6E-4) 1.87E1 * (1.0E0)
LSMOP4 2 6.07E-2 * (1.2E-3) 6.54E-2 * (9.3E-4) 6.07E-2 * (1.0E-3) 3.07E-2 (8.3E-4) 6.74E-2 * (8.7E-4)
LSMOP5 2 1.04E1 * (9.4E-1) 3.55E0 * (2.2E-1) 1.03E1 * (6.9E-1) 5.07E-1 (2.4E-2) 4.53E0 * (1.8E-1)
LSMOP6 2 7.74E-1 * (6.4E-4) 7.73E-1 * (5.1E-4) 7.74E-1 * (6.4E-4) 3.83E-1 (1.1E-2) 7.73E-1 * (8.1E-4)
LSMOP7 2 2.20E3 * (5.0E3) 2.48E3 * (2.9E2) 3.48E3 * (4.4E3) 1.51E0 (5.7E-4) 1.34E3 * (1.8E2)
LSMOP8 2 4.94E0 * (8.0E-1) 1.04E0 * (4.5E-2) 4.77E0 * (7.1E-1) 5.71E-1 (1.3E-1) 1.54E0 * (5.2E-2)
LSMOP9 2 1.40E0 * (1.5E-1) 9.38E-1 * (1.3E-2) 1.37E0 * (1.2E-1) 6.00E-1 (1.4E-1) 1.75E0 * (5.2E-2)
LSMOP1 3 6.13E0 * (6.1E-1) 7.31E0 * (7.5E-1) 6.08E0 * (5.1E-1) 5.53E-1 (1.8E-1) 7.53E0 * (1.0E0)
LSMOP2 3 7.11E-2 * (7.2E-3) 6.65E-2 (4.1E-3) 7.10E-2 * (5.6E-3) 6.69E-2 (2.9E-3) 6.66E-2 (4.4E-3)
LSMOP3 3 1.72E1 * (8.5E0) 2.36E1 * (8.4E0) 1.78E1 * (6.2E0) 3.06E0 (1.2E0) 2.38E1 * (7.8E0)
LSMOP4 3 1.30E-1 * (8.1E-3) 1.27E-1 (4.3E-3) 1.30E-1 * (8.1E-3) 1.27E-1 (4.4E-3) 1.29E-1 * (4.1E-3)
LSMOP5 3 1.57E1 * (7.9E-1) 1.72E1 * (1.0E0) 1.56E1 * (1.1E0) 5.23E-1 (4.4E-3) 1.89E1 * (1.2E0)
LSMOP6 3 1.20E4 * (3.0E3) 2.71E3 * (3.1E3) 1.02E4 * (4.4E3) 3.60E0 (1.5E1) 3.73E3 * (3.3E3)
LSMOP7 3 1.10E0 * (5.0E-3) 1.10E0 * (4.3E-3) 1.10E0 * (4.5E-3) 8.53E-1 (4.2E-3) 1.10E0 * (6.2E-3)
LSMOP8 3 9.58E-1 * (1.3E-2) 9.58E-1 * (3.5E-2) 9.58E-1 * (6.5E-2) 2.13E-1 (2.2E-2) 9.57E-1 * (1.0E-1)
LSMOP9 3 1.42E1 * (2.1E0) 1.85E0 * (2.1E-1) 1.41E1 * (1.5E0) 1.14E0 (8.9E-4) 5.89E0 * (3.8E-1)
LSMOP1 4 8.01E0 * (8.0E-1) 8.97E0 * (8.3E-1) 8.22E0 * (9.3E-1) 9.39E-1 (4.0E-1) 9.35E0 * (7.4E-1)
LSMOP2 4 1.47E-1 * (1.0E-2) 1.38E-1 * (4.6E-3) 1.48E-1 * (9.8E-3) 1.34E-1 (8.3E-3) 1.38E-1 * (4.3E-3)
LSMOP3 4 2.11E1 * (1.9E0) 2.29E1 * (1.4E0) 2.10E1 * (2.0E0) 9.43E0 (8.4E-1) 2.31E1 * (1.1E0)
LSMOP4 4 1.79E-1 * (1.0E-2) 1.73E-1 (1.1E-2) 1.79E-1 * (9.0E-3) 1.70E-1 (9.0E-3) 1.74E-1 * (6.3E-3)
LSMOP5 4 2.10E1 * (1.2E0) 2.15E1 * (1.0E0) 2.10E1 * (1.0E0) 4.66E-1 (8.7E-3) 2.25E1 * (1.2E0)
LSMOP6 4 1.12E0 * (6.5E-4) 1.12E0 * (6.6E-4) 1.12E0 * (4.7E-4) 9.04E-1 (4.0E-3) 1.12E0 * (5.5E-4)
LSMOP7 4 4.14E4 * (6.8E3) 4.59E4 * (1.2E4) 4.02E4 * (9.7E3) 1.24E0 (4.7E-3) 4.86E4 * (1.1E4)
LSMOP8 4 1.29E1 * (7.7E-1) 1.35E1 * (1.1E0) 1.25E1 * (6.4E-1) 4.72E-1 (2.1E-1) 1.51E1 * (1.2E0)
LSMOP9 4 2.43E1 * (4.7E0) 8.90E0 * (1.6E0) 2.29E1 * (2.9E0) 8.51E-1 (6.1E-1) 1.21E1 * (1.2E0)
LSMOP1 5 9.48E0 * (1.1E0) 1.03E1 * (7.3E-1) 9.71E0 * (1.1E0) 2.43E0 (1.5E0) 1.04E1 * (1.0E0)
LSMOP2 5 1.94E-1 * (7.0E-3) 1.84E-1 (7.3E-3) 1.92E-1 * (1.1E-2) 1.80E-1 (9.6E-3) 1.83E-1 (7.3E-3)
LSMOP3 5 2.38E1 * (1.7E0) 2.41E1 * (1.8E0) 2.35E1 * (2.5E0) 1.14E1 (1.5E0) 2.43E1 * (2.4E0)
LSMOP4 5 2.80E-1 * (1.5E-2) 2.76E-1 * (1.7E-2) 2.80E-1 * (1.2E-2) 2.62E-1 (1.2E-2) 2.71E-1 * (2.1E-2)
LSMOP5 5 2.06E1 * (2.2E0) 2.25E1 * (2.8E0) 2.09E1 * (2.3E0) 2.16E0 (2.2E0) 2.20E1 * (2.9E0)
LSMOP6 5 5.20E4 * (1.3E4) 6.40E4 * (1.6E4) 5.48E4 * (1.2E4) 1.29E0 (1.3E-1) 6.44E4 * (1.2E4)
LSMOP7 5 2.09E0 * (4.8E-2) 2.08E0 * (2.6E-2) 2.08E0 * (5.4E-2) 1.20E0 (1.0E-1) 2.06E0 * (4.5E-2)
LSMOP8 5 1.15E0 * (8.9E-4) 1.15E0 * (2.7E-3) 1.15E0 * (4.3E-3) 4.64E-1 (1.5E-1) 1.15E0 * (9.1E-4)
LSMOP9 5 7.36E1 * (6.6E0) 7.52E1 * (3.2E1) 7.37E1 * (7.8E0) 6.43E-1 (2.4E-2) 6.13E1 * (2.5E1)
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Table B.10: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

NSGA-III GroupedNSGA-III LinkedNSGA-III GroupLinkNSGA-III HighProbNSGA-III

n = 200

LSMOP1 2 5.09E-1 * (1.1E-1) 5.27E-1 * (6.3E-2) 5.12E-1 * (1.3E-1) 1.91E-1 (5.2E-2) 5.83E-1 * (1.6E-1)
LSMOP2 2 9.34E-2 * (4.2E-3) 1.01E-1 * (7.5E-3) 9.38E-2 * (4.7E-3) 3.85E-2 (1.6E-3) 9.45E-2 * (4.2E-3)
LSMOP3 2 1.22E1 * (3.4E0) 1.28E1 * (2.7E0) 1.19E1 * (3.3E0) 1.54E0 (4.8E-2) 1.13E1 * (2.9E0)
LSMOP4 2 1.41E-1 * (2.8E-3) 1.28E-1 * (2.1E-3) 1.41E-1 * (3.2E-3) 9.44E-2 (1.6E-3) 1.41E-1 * (1.6E-3)
LSMOP5 2 4.72E-1 * (1.2E-1) 7.48E-1 * (6.1E-2) 4.66E-1 * (1.3E-1) 3.46E-1 (6.6E-3) 8.89E-1 * (4.8E-2)
LSMOP6 2 8.89E-1 * (7.6E-3) 8.78E-1 * (1.4E-2) 8.93E-1 * (1.2E-2) 4.32E-1 (1.3E-1) 8.45E-1 * (1.6E-2)
LSMOP7 2 8.01E0 * (2.0E1) 7.56E1 * (2.0E1) 1.88E1 * (1.5E1) 1.48E0 (1.8E-3) 8.73E1 * (2.0E1)
LSMOP8 2 4.56E-1 * (1.1E-1) 5.78E-1 * (6.9E-2) 5.07E-1 * (1.3E-1) 3.55E-1 (1.7E-2) 6.77E-1 * (5.8E-2)
LSMOP9 2 1.52E0 * (1.3E-1) 9.94E-1 * (2.4E-2) 1.34E0 * (1.2E-1) 8.10E-1 (6.6E-16) 1.96E0 * (2.5E-2)

n = 300

LSMOP1 3 9.20E-1 * (2.7E-1) 1.25E0 * (2.4E-1) 9.11E-1 * (2.7E-1) 3.89E-1 (1.0E-2) 1.29E0 * (1.8E-1)
LSMOP2 3 8.31E-2 * (1.2E-3) 8.88E-2 * (8.3E-4) 8.30E-2 * (1.1E-3) 6.94E-2 (2.0E-3) 8.87E-2 * (1.0E-3)
LSMOP3 3 4.08E0 (1.3E0) 8.52E0 * (1.1E0) 3.75E0 (6.7E-1) 5.41E0 * (1.3E0) 8.85E0 * (7.4E-1)
LSMOP4 3 1.97E-1 * (4.1E-3) 2.18E-1 * (4.1E-3) 1.99E-1 * (5.4E-3) 1.66E-1 (5.5E-3) 2.19E-1 * (3.7E-3)
LSMOP5 3 2.57E0 * (8.2E-1) 3.10E0 * (4.5E-1) 2.92E0 * (1.1E0) 4.90E-1 (5.2E-2) 3.28E0 * (1.3E0)
LSMOP6 3 6.18E0 * (5.2E0) 1.88E1 * (9.7E0) 4.83E0 * (4.1E0) 3.24E0 (4.1E0) 5.77E1 * (1.8E1)
LSMOP7 3 1.53E0 * (2.7E-2) 1.49E0 * (2.8E-2) 1.53E0 * (2.6E-2) 8.99E-1 (4.0E-3) 1.49E0 * (3.6E-2)
LSMOP8 3 3.80E-1 * (4.7E-2) 3.59E-1 * (4.5E-2) 3.64E-1 * (4.1E-2) 2.13E-1 (5.2E-2) 4.86E-1 * (4.5E-2)
LSMOP9 3 2.91E0 * (7.2E-2) 1.95E0 * (1.3E-1) 2.84E0 * (9.3E-2) 1.14E0 (1.8E-1) 3.58E0 * (9.0E-2)

n = 400

LSMOP1 4 3.25E0 * (6.4E-1) 3.58E0 * (5.7E-1) 3.25E0 * (3.1E-1) 5.21E-1 (5.7E-2) 3.46E0 * (7.8E-1)
LSMOP2 4 1.51E-1 * (1.5E-3) 1.59E-1 * (1.3E-3) 1.51E-1 * (1.5E-3) 1.36E-1 (2.4E-3) 1.59E-1 * (2.1E-3)
LSMOP3 4 1.78E1 * (3.7E0) 1.73E1 * (2.4E0) 1.69E1 * (2.5E0) 4.86E0 (3.1E0) 1.71E1 * (2.9E0)
LSMOP4 4 2.01E-1 * (5.1E-3) 2.12E-1 * (4.0E-3) 2.01E-1 * (4.5E-3) 1.80E-1 (4.6E-3) 2.16E-1 * (4.2E-3)
LSMOP5 4 5.93E0 * (1.1E0) 6.23E0 * (1.0E0) 5.98E0 * (1.2E0) 4.56E-1 (2.7E-3) 7.78E0 * (9.9E-1)
LSMOP6 4 1.22E0 * (9.6E-3) 1.22E0 * (8.7E-3) 1.22E0 * (1.0E-2) 8.93E-1 (1.2E-2) 1.21E0 * (9.7E-3)
LSMOP7 4 4.74E2 * (3.3E2) 5.07E2 * (3.1E2) 5.28E2 * (4.1E2) 9.29E0 (1.2E1) 6.83E2 * (2.2E2)
LSMOP8 4 2.30E0 * (5.1E-1) 1.70E0 * (4.1E-1) 2.24E0 * (4.3E-1) 4.36E-1 (4.0E-2) 2.57E0 * (3.9E-1)
LSMOP9 4 7.32E0 * (7.8E-1) 3.78E0 * (3.5E-1) 7.08E0 * (9.3E-1) 1.83E0 (1.3E-1) 7.07E0 * (1.2E0)

n = 500

LSMOP1 5 2.94E0 * (5.3E-1) 3.41E0 * (4.9E-1) 3.16E0 * (6.8E-1) 7.24E-1 (1.2E-1) 3.61E0 * (7.0E-1)
LSMOP2 5 1.74E-1 * (4.6E-4) 1.76E-1 * (4.0E-4) 1.74E-1 * (6.8E-4) 1.72E-1 (1.6E-3) 1.77E-1 * (3.5E-4)
LSMOP3 5 1.03E1 * (2.4E0) 1.31E1 * (2.9E0) 1.02E1 * (2.6E0) 8.11E0 (1.1E0) 1.37E1 * (3.0E0)
LSMOP4 5 2.91E-1 * (5.2E-3) 3.02E-1 * (4.7E-3) 2.92E-1 * (5.4E-3) 2.79E-1 (3.8E-3) 3.09E-1 * (3.4E-3)
LSMOP5 5 7.11E0 * (1.1E0) 9.17E0 * (2.1E0) 6.82E0 * (9.6E-1) 4.29E-1 (5.4E-3) 9.11E0 * (1.2E0)
LSMOP6 5 1.88E1 * (3.0E1) 2.77E1 * (5.1E1) 2.84E1 * (6.8E1) 4.55E0 (5.1E0) 4.68E1 * (2.2E2)
LSMOP7 5 2.69E0 * (1.8E-1) 2.45E0 * (1.5E-1) 2.69E0 * (1.7E-1) 1.16E0 (2.4E-2) 2.41E0 * (2.1E-1)
LSMOP8 5 1.15E0 * (8.1E-3) 1.15E0 * (1.3E-2) 1.15E0 * (1.3E-2) 3.41E-1 (8.6E-3) 1.15E0 * (9.1E-3)
LSMOP9 5 1.36E1 * (4.2E0) 4.47E0 * (7.1E-1) 1.32E1 * (3.0E0) 2.19E0 (9.0E-1) 1.14E1 * (9.8E-1)

n = 1000

LSMOP1 2 3.05E0 * (3.9E-1) 1.23E0 * (6.6E-2) 2.90E0 * (2.9E-1) 3.29E-1 (1.4E-2) 1.58E0 * (1.0E-1)
LSMOP2 2 3.41E-2 * (3.4E-4) 3.66E-2 * (2.9E-4) 3.41E-2 * (4.5E-4) 1.09E-2 (3.2E-4) 3.71E-2 * (1.8E-4)
LSMOP3 2 2.16E1 * (1.7E0) 2.19E1 * (2.2E0) 2.14E1 * (2.7E0) 1.57E0 (2.7E-4) 2.02E1 * (1.6E0)
LSMOP4 2 4.85E-2 * (1.0E-3) 5.12E-2 * (5.8E-4) 4.81E-2 * (7.0E-4) 2.54E-2 (3.9E-4) 5.23E-2 * (6.2E-4)
LSMOP5 2 8.91E0 * (1.0E0) 4.52E0 * (3.6E-1) 9.03E0 * (1.0E0) 6.28E-1 (5.0E-2) 5.63E0 * (3.8E-1)
LSMOP6 2 7.73E-1 * (4.7E-4) 7.73E-1 * (4.3E-4) 7.73E-1 * (5.8E-4) 3.90E-1 (1.1E-2) 7.73E-1 * (5.6E-4)
LSMOP7 2 6.04E3 * (2.2E3) 3.14E3 * (3.8E2) 6.50E3 * (2.5E3) 1.51E0 (4.3E-4) 2.83E3 * (6.1E2)
LSMOP8 2 3.83E0 * (4.2E-1) 1.42E0 * (8.6E-2) 3.67E0 * (3.3E-1) 6.78E-1 (8.1E-2) 1.92E0 * (1.2E-1)
LSMOP9 2 1.41E0 * (1.6E-1) 1.01E0 * (1.0E-2) 1.35E0 * (1.0E-1) 5.33E-1 (6.5E-2) 1.90E0 * (5.0E-2)
LSMOP1 3 2.98E0 * (6.8E-1) 3.94E0 * (3.1E-1) 2.91E0 * (5.0E-1) 3.99E-1 (1.6E-2) 4.49E0 * (4.3E-1)
LSMOP2 3 5.18E-2 * (9.0E-5) 5.23E-2 * (7.4E-5) 5.18E-2 * (1.0E-4) 4.84E-2 (7.6E-4) 5.24E-2 * (6.7E-5)
LSMOP3 3 1.07E1 * (1.2E0) 1.40E1 * (3.6E-1) 1.06E1 * (1.3E0) 6.09E0 (1.4E0) 1.41E1 * (6.4E-1)
LSMOP4 3 9.91E-2 * (1.1E-3) 1.05E-1 * (1.1E-3) 9.85E-2 * (8.0E-4) 8.08E-2 (3.0E-3) 1.07E-1 * (1.0E-3)
LSMOP5 3 7.14E0 * (7.9E-1) 9.13E0 * (9.7E-1) 7.45E0 * (9.4E-1) 5.36E-1 (1.6E-2) 1.19E1 * (9.0E-1)
LSMOP6 3 1.98E3 * (4.0E2) 6.57E2 * (1.9E2) 1.93E3 * (7.9E2) 5.48E0 (3.8E0) 1.07E3 * (3.1E2)
LSMOP7 3 1.09E0 * (4.3E-3) 1.08E0 * (2.6E-3) 1.09E0 * (3.0E-3) 8.50E-1 (4.7E-4) 1.08E0 * (3.7E-3)
LSMOP8 3 7.55E-1 * (3.1E-2) 6.38E-1 * (4.0E-2) 7.57E-1 * (5.1E-2) 1.94E-1 (3.2E-3) 6.35E-1 * (3.6E-2)
LSMOP9 3 1.35E1 * (1.8E0) 2.59E0 * (1.9E-1) 1.27E1 * (2.4E0) 1.14E0 (1.5E-2) 6.07E0 * (3.7E-1)
LSMOP1 4 5.53E0 * (5.7E-1) 6.55E0 * (5.3E-1) 5.61E0 * (5.5E-1) 5.08E-1 (3.9E-2) 6.62E0 * (8.3E-1)
LSMOP2 4 1.18E-1 * (2.2E-4) 1.19E-1 * (2.6E-4) 1.18E-1 * (3.2E-4) 1.10E-1 (7.7E-4) 1.19E-1 * (1.3E-4)
LSMOP3 4 1.98E1 * (2.0E0) 2.29E1 * (2.7E0) 2.05E1 * (3.0E0) 3.99E0 (1.0E0) 2.28E1 * (2.6E0)
LSMOP4 4 1.45E-1 * (1.3E-3) 1.50E-1 * (1.4E-3) 1.45E-1 * (1.6E-3) 1.32E-1 (2.0E-3) 1.51E-1 * (1.0E-3)
LSMOP5 4 1.01E1 * (8.0E-1) 1.40E1 * (1.6E0) 1.00E1 * (8.4E-1) 4.56E-1 (2.1E-3) 1.48E1 * (8.6E-1)
LSMOP6 4 1.11E0 * (1.7E-3) 1.11E0 * (1.6E-3) 1.11E0 * (1.3E-3) 9.01E-1 (5.8E-3) 1.11E0 * (1.1E-3)
LSMOP7 4 4.51E3 * (1.7E3) 5.96E3 * (1.6E3) 4.13E3 * (1.2E3) 4.89E0 (1.1E1) 5.81E3 * (2.1E3)
LSMOP8 4 4.53E0 * (4.6E-1) 5.19E0 * (6.6E-1) 4.35E0 * (5.5E-1) 4.51E-1 (4.4E-2) 5.66E0 * (7.8E-1)
LSMOP9 4 2.18E1 * (4.3E0) 3.34E0 * (1.3E0) 2.15E1 * (3.7E0) 1.76E0 (3.0E-1) 9.13E0 * (9.9E-1)
LSMOP1 5 4.86E0 * (6.2E-1) 5.99E0 * (5.2E-1) 5.06E0 * (9.1E-1) 6.72E-1 (9.3E-2) 6.30E0 * (4.9E-1)
LSMOP2 5 1.53E-1 * (1.2E-4) 1.54E-1 * (1.2E-4) 1.53E-1 * (1.7E-4) 1.51E-1 (1.4E-3) 1.54E-1 * (1.0E-4)
LSMOP3 5 1.38E1 * (3.7E0) 1.49E1 * (2.6E0) 1.29E1 * (2.9E0) 8.83E0 (1.2E0) 1.66E1 * (5.4E0)
LSMOP4 5 2.24E-1 * (2.2E-3) 2.31E-1 * (1.5E-3) 2.24E-1 * (2.6E-3) 2.14E-1 (3.9E-3) 2.33E-1 * (1.7E-3)
LSMOP5 5 1.00E1 * (1.2E0) 1.23E1 * (1.7E0) 9.71E0 * (1.0E0) 4.28E-1 (3.1E-3) 1.34E1 * (1.4E0)
LSMOP6 5 3.17E2 * (5.6E2) 1.03E2 * (1.8E2) 2.83E2 * (2.2E2) 4.33E0 (7.2E0) 2.40E2 * (3.9E2)
LSMOP7 5 1.85E0 * (2.8E-2) 1.80E0 * (4.6E-2) 1.85E0 * (5.5E-2) 1.09E0 (1.4E-2) 1.80E0 * (3.3E-2)
LSMOP8 5 1.15E0 * (2.5E-3) 1.14E0 * (2.1E-3) 1.15E0 * (2.9E-3) 3.31E-1 (5.6E-3) 1.14E0 * (1.4E-3)
LSMOP9 5 4.58E1 * (9.9E0) 8.31E0 * (1.9E0) 4.69E1 * (5.2E0) 2.12E0 (1.0E0) 2.06E1 * (2.0E0)
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Table B.11: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

SMPSO GroupedSMPSO LinkedSMPSO GroupLinkSMPSO HighProbSMPSO

n = 200

LSMOP1 2 8.75E-1 * (1.4E-1) 3.78E-1 * (9.3E-2) 8.73E-1 * (1.7E-1) 7.89E-2 (1.7E-2) 4.18E-1 * (6.7E-2)
LSMOP2 2 9.08E-2 * (4.2E-3) 9.00E-2 * (3.7E-3) 9.00E-2 * (3.6E-3) 1.63E-2 (1.8E-3) 8.86E-2 * (3.1E-3)
LSMOP3 2 2.41E1 * (2.1E0) 3.48E0 * (4.1E0) 2.41E1 * (1.8E0) 1.07E0 (3.5E-1) 7.31E0 * (5.2E0)
LSMOP4 2 1.13E-1 * (2.5E-2) 6.29E-2 (9.9E-3) 1.13E-1 * (2.1E-2) 6.33E-2 (9.3E-3) 8.62E-2 * (2.7E-2)
LSMOP5 2 1.02E0 * (2.6E-1) 7.31E-1 * (9.5E-2) 1.11E0 * (1.4E-1) 6.55E-1 (1.0E-1) 7.35E-1 * (7.2E-2)
LSMOP6 2 5.00E-1 * (9.0E-2) 4.78E-1 * (1.3E-1) 4.87E-1 * (8.5E-2) 9.44E-2 (2.3E-2) 4.79E-1 * (1.5E-1)
LSMOP7 2 5.55E1 * (2.6E1) 9.59E0 * (3.7E0) 5.28E1 * (2.1E1) 1.48E0 (2.1E-4) 1.34E1 * (4.7E0)
LSMOP8 2 7.73E-1 * (1.6E-1) 7.35E-1 * (1.1E-2) 8.26E-1 * (1.4E-1) 1.38E-1 (4.4E-2) 7.32E-1 * (1.0E-2)
LSMOP9 2 4.23E-1 (8.8E-3) 6.03E-1 (2.7E-1) 4.23E-1 (1.2E-2) 4.99E-1 (4.1E-1) 4.42E-1 * (3.1E-2)

n = 300

LSMOP1 3 2.20E0 * (4.2E-1) 1.81E0 * (3.5E-1) 2.14E0 * (4.5E-1) 3.34E-1 (6.1E-2) 1.86E0 * (3.3E-1)
LSMOP2 3 9.80E-2 (5.0E-3) 9.80E-2 * (5.0E-3) 9.73E-2 (6.3E-3) 9.60E-2 (4.0E-3) 9.88E-2 * (4.5E-3)
LSMOP3 3 1.35E1 * (4.9E0) 1.20E1 * (1.7E0) 1.32E1 * (3.9E0) 1.52E0 (2.6E0) 1.26E1 * (1.7E0)
LSMOP4 3 2.59E-1 * (1.0E-2) 2.57E-1 * (7.5E-3) 2.61E-1 * (9.2E-3) 2.10E-1 (1.7E-2) 2.61E-1 * (8.1E-3)
LSMOP5 3 6.11E0 * (7.0E-1) 6.24E0 * (1.6E0) 6.11E0 * (1.1E0) 4.86E-1 (2.7E-2) 6.65E0 * (1.1E0)
LSMOP6 3 2.60E3 * (1.7E3) 1.44E3 * (1.0E3) 2.14E3 * (1.9E3) 8.50E-1 (5.1E-1) 1.19E3 * (1.4E3)
LSMOP7 3 1.52E0 * (2.2E-2) 1.54E0 * (3.5E-2) 1.53E0 * (2.9E-2) 7.64E-1 (1.7E-1) 1.54E0 * (3.3E-2)
LSMOP8 3 9.81E-1 * (4.4E-3) 9.81E-1 * (1.2E-2) 9.64E-1 * (7.5E-2) 1.19E-1 (1.7E-2) 9.80E-1 * (1.1E-1)
LSMOP9 3 1.67E1 * (3.0E0) 1.53E0 * (8.5E-1) 1.66E1 * (3.0E0) 5.02E-1 (5.2E-1) 7.61E0 * (1.5E0)

n = 400

LSMOP1 4 3.73E0 * (1.4E0) 4.20E0 * (2.0E0) 4.39E0 * (1.3E0) 1.29E0 (5.3E-1) 4.47E0 * (1.6E0)
LSMOP2 4 1.70E-1 (9.9E-3) 1.69E-1 (8.2E-3) 1.72E-1 (1.0E-2) 1.69E-1 (1.1E-2) 1.69E-1 (7.4E-3)
LSMOP3 4 1.89E1 * (2.7E0) 1.92E1 * (2.5E0) 1.94E1 * (1.7E0) 1.20E1 (1.9E0) 1.93E1 * (2.0E0)
LSMOP4 4 2.47E-1 (1.7E-2) 2.49E-1 * (1.6E-2) 2.45E-1 * (2.0E-2) 2.36E-1 (1.8E-2) 2.48E-1 * (2.8E-2)
LSMOP5 4 1.81E1 * (6.9E0) 1.94E1 * (6.2E0) 1.81E1 * (9.4E0) 1.35E1 (5.5E0) 1.83E1 * (6.2E0)
LSMOP6 4 1.27E0 * (3.3E-4) 1.27E0 * (5.5E-3) 1.27E0 * (6.1E-3) 1.25E0 (5.5E-2) 1.27E0 * (4.8E-3)
LSMOP7 4 4.70E4 * (4.8E4) 6.20E4 * (4.8E4) 4.98E4 * (5.6E4) 1.46E0 (1.6E-1) 5.43E4 * (4.8E4)
LSMOP8 4 9.84E0 * (3.7E0) 1.16E1 * (5.8E0) 1.08E1 * (5.3E0) 8.19E0 (3.0E0) 1.03E1 * (3.7E0)
LSMOP9 4 1.35E1 * (2.1E0) 1.43E1 * (2.4E0) 1.34E1 * (2.3E0) 5.69E-1 (1.8E-1) 1.43E1 * (2.3E0)

n = 500

LSMOP1 5 4.80E0 (1.4E0) 5.08E0 * (2.3E0) 5.63E0 * (1.7E0) 3.99E0 (2.1E0) 5.18E0 * (1.5E0)
LSMOP2 5 2.02E-1 (1.0E-2) 2.06E-1 (9.7E-3) 2.04E-1 (1.0E-2) 2.02E-1 (1.3E-2) 2.06E-1 (1.0E-2)
LSMOP3 5 2.02E1 * (2.6E0) 2.01E1 * (1.7E0) 2.06E1 * (2.9E0) 1.76E1 (4.2E0) 1.98E1 * (1.6E0)
LSMOP4 5 3.41E-1 (2.0E-2) 3.53E-1 (3.0E-2) 3.45E-1 (2.0E-2) 3.35E-1 (1.7E-2) 3.44E-1 (2.0E-2)
LSMOP5 5 2.39E1 (8.1E0) 2.26E1 (8.0E0) 1.86E1 (9.6E0) 2.06E1 (5.9E0) 2.08E1 (9.9E0)
LSMOP6 5 8.04E4 (3.6E4) 9.60E4 (3.7E4) 9.22E4 (5.3E4) 8.19E4 (3.4E4) 8.47E4 (4.1E4)
LSMOP7 5 3.32E0 (1.6E-1) 3.28E0 (1.4E-1) 3.31E0 (1.4E-1) 3.30E0 (3.7E-1) 3.35E0 (2.3E-1)
LSMOP8 5 1.21E0 (9.0E-3) 1.21E0 (1.4E-2) 1.21E0 (1.1E-2) 1.21E0 (1.2E-2) 1.21E0 (4.5E-3)
LSMOP9 5 5.44E1 * (4.3E0) 5.48E1 * (6.9E0) 5.36E1 * (4.2E0) 1.23E0 (1.6E1) 5.58E1 * (5.6E0)

n = 1000

LSMOP1 2 1.73E0 * (1.1E-1) 1.43E0 * (1.0E-1) 1.73E0 * (1.1E-1) 9.20E-2 (1.4E-2) 1.51E0 * (1.2E-1)
LSMOP2 2 2.55E-2 * (9.3E-4) 2.67E-2 * (8.2E-4) 2.55E-2 * (8.6E-4) 8.60E-3 (7.5E-4) 2.70E-2 * (7.1E-4)
LSMOP3 2 2.80E1 * (7.2E-1) 2.76E1 * (1.0E0) 2.79E1 * (6.2E-1) 1.36E0 (3.2E-1) 2.76E1 * (9.6E-1)
LSMOP4 2 5.34E-2 * (7.1E-4) 5.16E-2 * (1.7E-3) 5.31E-2 * (6.9E-4) 2.10E-2 (2.5E-3) 5.30E-2 * (1.1E-3)
LSMOP5 2 3.88E0 * (1.8E-1) 3.18E0 * (2.7E-1) 3.87E0 * (4.0E-1) 7.42E-1 ( — ) 3.50E0 * (3.1E-1)
LSMOP6 2 7.58E-1 * (2.2E-3) 2.03E-1 * (1.0E-2) 7.58E-1 * (2.4E-3) 1.33E-1 (1.1E-2) 4.31E-1 * (7.9E-2)
LSMOP7 2 2.11E3 * (3.9E2) 1.04E3 * (1.2E2) 2.02E3 * (4.4E2) 1.30E0 (2.0E-1) 1.04E3 * (1.6E2)
LSMOP8 2 2.94E0 * (2.0E-1) 2.29E0 * (1.9E-1) 2.96E0 * (2.9E-1) 1.80E-1 (1.2E-1) 2.42E0 * (2.4E-1)
LSMOP9 2 2.78E0 * (5.0E-1) 8.57E-2 (5.8E-3) 2.60E0 * (8.8E-1) 2.52E-2 (4.3E-1) 1.48E-1 (2.7E-2)
LSMOP1 3 2.65E0 * (5.6E-1) 2.72E0 * (4.5E-1) 2.67E0 * (7.0E-1) 3.28E-1 (1.0E-1) 2.66E0 * (4.5E-1)
LSMOP2 3 6.43E-2 * (3.2E-3) 6.38E-2 (3.2E-3) 6.37E-2 (3.5E-3) 6.23E-2 (4.0E-3) 6.34E-2 (2.9E-3)
LSMOP3 3 1.84E1 * (8.3E0) 1.59E1 * (6.7E0) 1.60E1 * (6.3E0) 3.04E0 (1.2E0) 1.62E1 * (4.6E0)
LSMOP4 3 1.19E-1 * (4.4E-3) 1.17E-1 * (4.5E-3) 1.18E-1 * (4.0E-3) 9.42E-2 (4.5E-3) 1.19E-1 * (4.1E-3)
LSMOP5 3 6.11E0 * (9.7E-1) 6.90E0 * (8.4E-1) 5.96E0 * (9.5E-1) 5.17E-1 (2.9E-2) 7.13E0 * (9.2E-1)
LSMOP6 3 2.75E3 * (2.0E3) 3.27E3 * (1.6E3) 3.60E3 * (2.2E3) 7.21E-1 (2.2E-1) 3.55E3 * (2.7E3)
LSMOP7 3 1.08E0 * (2.0E-3) 1.08E0 * (3.9E-3) 1.08E0 * (1.7E-3) 7.41E-1 (4.6E-2) 1.08E0 * (3.0E-3)
LSMOP8 3 9.33E-1 * (1.3E-1) 9.57E-1 * (9.0E-3) 8.98E-1 * (1.2E-1) 1.03E-1 (7.7E-3) 9.57E-1 * (4.1E-2)
LSMOP9 3 2.58E1 * (2.3E0) 2.01E1 * (2.4E0) 2.65E1 * (2.6E0) 4.67E-1 (5.9E-2) 2.22E1 * (1.5E0)
LSMOP1 4 5.07E0 * (2.2E0) 6.07E0 * (2.4E0) 5.60E0 * (1.8E0) 2.06E0 (1.1E0) 5.22E0 * (2.3E0)
LSMOP2 4 1.34E-1 (7.2E-3) 1.31E-1 (8.1E-3) 1.34E-1 (6.0E-3) 1.33E-1 (7.9E-3) 1.35E-1 (7.0E-3)
LSMOP3 4 1.98E1 * (2.9E0) 2.01E1 * (2.0E0) 2.05E1 * (2.6E0) 1.15E1 (2.7E0) 1.98E1 * (1.6E0)
LSMOP4 4 1.67E-1 * (8.3E-3) 1.72E-1 * (9.9E-3) 1.70E-1 * (9.3E-3) 1.60E-1 (1.0E-2) 1.69E-1 * (1.4E-2)
LSMOP5 4 2.16E1 * (9.1E0) 1.76E1 (6.8E0) 1.99E1 * (6.3E0) 1.54E1 (4.3E0) 1.95E1 * (8.3E0)
LSMOP6 4 1.12E0 (2.9E-12) 1.12E0 (2.7E-12) 1.12E0 (3.3E-12) 1.12E0 (1.8E-3) 1.12E0 (3.3E-12)
LSMOP7 4 5.34E4 * (4.5E4) 6.32E4 * (4.8E4) 5.93E4 * (4.5E4) 1.55E0 (4.2E3) 5.89E4 * (5.6E4)
LSMOP8 4 1.21E1 * (4.6E0) 1.13E1 (4.4E0) 1.17E1 * (3.2E0) 8.41E0 (5.5E0) 1.16E1 * (5.2E0)
LSMOP9 4 1.51E1 * (2.5E0) 1.67E1 * (3.2E0) 1.46E1 * (3.9E0) 5.67E-1 (2.7E-1) 1.63E1 * (3.7E0)
LSMOP1 5 6.87E0 * (3.0E0) 6.59E0 * (2.0E0) 6.95E0 * (2.8E0) 4.71E0 (1.1E0) 6.41E0 * (1.1E0)
LSMOP2 5 1.80E-1 (9.3E-3) 1.85E-1 * (9.3E-3) 1.81E-1 (6.8E-3) 1.84E-1 * (9.7E-3) 1.82E-1 (1.1E-2)
LSMOP3 5 2.09E1 * (2.1E0) 2.14E1 * (2.1E0) 2.01E1 * (1.4E0) 1.84E1 (2.2E0) 2.14E1 * (2.7E0)
LSMOP4 5 2.53E-1 (1.6E-2) 2.56E-1 (1.1E-2) 2.54E-1 (1.5E-2) 2.52E-1 (1.3E-2) 2.53E-1 (1.1E-2)
LSMOP5 5 1.83E1 (6.9E0) 2.02E1 (6.1E0) 1.95E1 (7.1E0) 2.16E1 (6.2E0) 1.95E1 (5.4E0)
LSMOP6 5 8.63E4 (5.4E4) 8.70E4 (3.2E4) 8.77E4 (4.5E4) 8.73E4 (3.1E4) 9.88E4 (2.8E4)
LSMOP7 5 2.05E0 (7.5E-2) 2.06E0 * (6.0E-2) 2.05E0 * (4.9E-2) 2.01E0 (6.7E-2) 2.06E0 (7.5E-2)
LSMOP8 5 1.15E0 (2.5E-3) 1.15E0 (2.0E-3) 1.15E0 (2.3E-3) 1.15E0 (3.1E-3) 1.15E0 (2.0E-3)
LSMOP9 5 6.22E1 * (3.3E0) 6.31E1 * (5.1E0) 6.31E1 * (4.5E0) 9.23E-1 (1.5E1) 6.29E1 * (4.2E0)
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Table B.12: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

NSGA-II GroupedNSGA-II LinkedNSGA-II GroupLinkNSGA-II HighProbNSGA-II

n = 40

UF1 2 1.10E-1 * (2.6E-2) 8.62E-2 (1.0E-2) 1.08E-1 * (2.2E-2) 9.58E-2 * (1.7E-2) 8.75E-2 (1.7E-2)
UF2 2 4.14E-2 (1.0E-2) 3.82E-2 (6.8E-3) 4.25E-2 (1.2E-2) 3.80E-2 (7.7E-3) 4.33E-2 (1.0E-2)
UF3 2 2.42E-1 * (6.5E-2) 2.51E-1 * (1.6E-2) 2.70E-1 * (9.4E-2) 1.61E-1 (2.9E-2) 2.37E-1 * (1.7E-2)
UF4 2 4.90E-2 * (1.8E-3) 5.45E-2 * (3.1E-3) 4.91E-2 * (2.0E-3) 4.71E-2 (4.0E-3) 5.49E-2 * (2.1E-3)
UF5 2 2.75E-1 (9.1E-2) 4.58E-1 * (1.8E-1) 2.97E-1 (1.7E-1) 4.80E-1 * (1.7E-1) 3.67E-1 * (1.0E-1)
UF6 2 1.12E-1 (7.4E-2) 2.41E-1 * (4.3E-2) 1.19E-1 (2.8E-2) 2.44E-1 * (2.4E-1) 2.46E-1 * (2.7E-2)
UF7 2 5.73E-2 (2.4E-1) 4.36E-2 (2.5E-1) 9.88E-2 (2.3E-1) 5.96E-2 (2.5E-1) 4.54E-2 (2.6E-1)
UF8 3 3.06E-1 (1.0E-1) 4.77E-1 * (1.3E-1) 3.05E-1 (7.3E-2) 2.77E-1 (1.6E-1) 4.10E-1 * (8.8E-2)
UF9 3 3.16E-1 (7.7E-2) 5.46E-1 * (1.4E-1) 3.12E-1 (8.4E-2) 3.16E-1 (1.8E-1) 5.94E-1 * (1.4E-1)
UF10 3 4.83E-1 (1.6E-1) 2.68E0 * (6.0E-1) 4.57E-1 (1.3E-1) 6.12E-1 (6.7E-1) 2.33E0 * (8.1E-1)

n = 1000

UF1 2 2.54E-1 * (6.1E-2) 2.09E-1 * (2.0E-2) 2.65E-1 * (5.1E-2) 1.24E-1 (4.9E-3) 1.82E-1 * (1.6E-2)
UF2 2 2.28E-1 * (1.0E-2) 2.32E-1 * (7.7E-3) 2.31E-1 * (1.2E-2) 8.51E-2 (9.2E-3) 2.79E-1 * (7.5E-3)
UF3 2 2.72E-1 * (7.6E-3) 2.93E-1 * (4.8E-3) 2.74E-1 * (9.7E-3) 1.31E-1 (5.2E-3) 2.92E-1 * (5.9E-3)
UF4 2 1.62E-1 * (4.7E-3) 1.67E-1 * (4.1E-3) 1.60E-1 * (4.2E-3) 1.19E-1 (1.5E-2) 1.79E-1 * (3.8E-3)
UF5 2 1.84E0 (3.0E-1) 3.15E0 * (6.1E-1) 1.95E0 * (7.6E-1) 1.46E0 (8.3E-1) 3.20E0 * (4.9E-1)
UF6 2 9.09E-1 * (2.8E-1) 6.40E-1 * (4.8E-2) 8.36E-1 * (1.6E-1) 1.81E-1 (7.6E-3) 5.46E-1 * (2.9E-2)
UF7 2 3.55E-1 * (1.0E-1) 1.92E-1 * (5.7E-3) 3.30E-1 * (1.8E-1) 9.93E-2 (2.0E-2) 1.64E-1 * (3.8E-3)
UF8 3 9.72E-1 * (1.1E-1) 1.41E0 * (1.3E-1) 9.50E-1 * (1.5E-1) 5.02E-1 (1.3E-2) 2.07E0 * (1.1E-1)
UF9 3 7.66E-1 * (3.4E-2) 1.51E0 * (1.3E-1) 7.90E-1 * (5.4E-2) 5.43E-1 (1.0E-2) 2.04E0 * (1.9E-1)
UF10 3 4.36E0 * (1.7E0) 8.81E0 * (4.2E-1) 3.14E0 * (2.2E0) 4.86E-1 (4.3E-2) 1.14E1 * (6.4E-1)

Table B.13: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

NSGA-III GroupedNSGA-III LinkedNSGA-III GroupLinkNSGA-III HighProbNSGA-III

n = 40

UF1 2 1.10E-1 * (1.3E-2) 8.37E-2 (1.6E-2) 1.06E-1 * (1.6E-2) 9.83E-2 * (1.3E-2) 8.49E-2 (1.3E-2)
UF2 2 4.23E-2 * (8.8E-3) 4.32E-2 * (5.4E-3) 4.16E-2 (1.0E-2) 3.81E-2 (7.1E-3) 4.43E-2 * (7.6E-3)
UF3 2 2.48E-1 * (8.8E-2) 2.70E-1 * (1.3E-2) 2.23E-1 * (8.4E-2) 1.86E-1 (2.8E-2) 2.57E-1 * (1.4E-2)
UF4 2 5.00E-2 * (2.0E-3) 5.49E-2 * (1.8E-3) 5.01E-2 * (2.3E-3) 4.56E-2 (2.4E-3) 5.56E-2 * (2.8E-3)
UF5 2 2.73E-1 (7.8E-2) 4.85E-1 * (1.6E-1) 2.78E-1 (9.1E-2) 4.13E-1 * (1.2E-1) 4.10E-1 * (2.2E-1)
UF6 2 1.11E-1 (3.0E-2) 2.82E-1 * (3.2E-2) 1.13E-1 (1.7E-2) 1.28E-1 * (1.0E-1) 2.58E-1 * (2.0E-2)
UF7 2 5.38E-2 (1.9E-1) 4.41E-2 (1.0E-2) 5.83E-2 * (8.1E-2) 6.07E-2 * (2.7E-2) 4.30E-2 (1.2E-2)
UF8 3 5.32E-1 * (1.3E-2) 4.54E-1 (9.9E-2) 5.35E-1 * (1.2E-2) 5.35E-1 * (8.1E-3) 4.57E-1 (7.3E-2)
UF9 3 3.63E-1 * (1.9E-1) 3.12E-1 * (1.0E-1) 3.93E-1 * (2.2E-1) 1.35E-1 (2.1E-1) 2.73E-1 * (1.1E-1)
UF10 3 3.72E-1 (7.6E-2) 8.54E-1 * (1.8E-1) 3.97E-1 (5.1E-2) 5.22E-1 * (4.7E-2) 1.07E0 * (1.3E-1)

n = 1000

UF1 2 2.79E-1 * (4.8E-2) 2.35E-1 * (2.4E-2) 3.00E-1 * (7.3E-2) 1.30E-1 (1.7E-2) 2.02E-1 * (1.6E-2)
UF2 2 2.22E-1 * (1.1E-2) 2.36E-1 * (8.7E-3) 2.23E-1 * (1.2E-2) 8.50E-2 (5.2E-4) 2.85E-1 * (7.0E-3)
UF3 2 2.82E-1 * (8.3E-3) 3.08E-1 * (6.6E-3) 2.82E-1 * (1.2E-2) 1.42E-1 (6.5E-3) 3.10E-1 * (3.9E-3)
UF4 2 1.61E-1 * (3.0E-3) 1.75E-1 * (3.4E-3) 1.61E-1 * (4.0E-3) 1.12E-1 (2.5E-3) 1.79E-1 * (2.0E-3)
UF5 2 1.87E0 (4.1E-1) 3.45E0 * (4.8E-1) 1.91E0 (4.8E-1) 2.08E0 (7.2E-1) 3.45E0 * (4.6E-1)
UF6 2 9.82E-1 * (1.6E-1) 7.29E-1 * (9.0E-2) 1.01E0 * (4.0E-1) 2.11E-1 (1.3E-2) 6.30E-1 * (3.8E-2)
UF7 2 3.37E-1 * (2.3E-1) 2.05E-1 * (5.4E-3) 3.09E-1 * (1.4E-1) 9.87E-2 (6.2E-3) 1.75E-1 * (5.4E-3)
UF8 3 8.50E-1 * (6.1E-2) 1.15E0 * (1.0E-1) 8.56E-1 * (3.9E-2) 5.38E-1 (3.6E-3) 1.46E0 * (7.6E-2)
UF9 3 8.44E-1 * (5.2E-2) 9.98E-1 * (3.2E-2) 8.45E-1 * (2.4E-2) 5.85E-1 (1.9E-1) 1.28E0 * (4.8E-2)
UF10 3 2.97E0 * (5.0E-1) 6.47E0 * (2.3E-1) 3.04E0 * (5.8E-1) 5.27E-1 (1.5E-2) 7.96E0 * (3.3E-1)
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Table B.14: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

SMPSO GroupedSMPSO LinkedSMPSO GroupLinkSMPSO HighProbSMPSO

n = 40

UF1 2 1.23E-1 * (2.9E-2) 1.03E-1 (2.1E-2) 1.34E-1 * (3.7E-2) 9.78E-2 (1.0E-2) 9.89E-2 (1.7E-2)
UF2 2 6.00E-2 * (7.6E-3) 4.37E-2 (2.4E-3) 6.23E-2 * (7.5E-3) 5.03E-2 * (5.6E-3) 4.65E-2 * (4.7E-3)
UF3 2 2.41E-1 * (1.2E-1) 1.46E-1 (4.4E-2) 1.62E-1 (3.5E-2) 1.91E-1 * (2.2E-2) 1.49E-1 (1.2E-1)
UF4 2 1.04E-1 (2.0E-2) 1.02E-1 (1.2E-2) 1.01E-1 (1.7E-2) 9.80E-2 (1.5E-2) 9.95E-2 (2.0E-2)
UF5 2 1.27E0 (9.4E-1) 1.91E0 (9.6E-1) 1.47E0 (1.4E0) 1.37E0 (6.0E-1) 1.45E0 (7.8E-1)
UF6 2 4.13E-1 (1.5E-1) 3.61E-1 (2.1E-1) 3.75E-1 (1.2E-1) 5.01E-1 * (1.1E-1) 3.93E-1 (9.8E-2)
UF7 2 5.96E-2 * (2.7E-1) 3.82E-2 (2.8E-1) 4.87E-2 (2.5E-1) 5.21E-2 (2.2E-1) 3.92E-2 (2.4E-1)
UF8 3 3.89E-1 * (1.4E-1) 5.25E-1 * (1.1E-1) 4.22E-1 * (9.1E-2) 2.43E-1 (4.3E-2) 4.37E-1 * (1.2E-1)
UF9 3 5.68E-1 * (6.0E-2) 6.28E-1 * (1.1E-1) 5.49E-1 * (9.4E-2) 4.79E-1 (5.9E-2) 5.73E-1 * (1.5E-1)
UF10 3 2.52E0 * (5.6E-1) 2.41E0 * (5.9E-1) 2.51E0 * (7.0E-1) 1.32E0 (8.0E-1) 2.01E0 * (8.3E-1)

n = 1000

UF1 2 1.39E0 * (1.8E-2) 1.21E0 * (9.7E-2) 1.38E0 * (2.2E-2) 2.78E-1 (7.0E-3) 1.27E0 * (5.8E-2)
UF2 2 1.70E-1 * (7.4E-3) 1.63E-1 * (6.4E-3) 1.71E-1 * (5.5E-3) 8.50E-2 (5.3E-4) 1.67E-1 * (7.6E-3)
UF3 2 3.28E-1 * (7.6E-3) 2.64E-1 * (5.1E-3) 3.25E-1 * (9.2E-3) 2.85E-2 (5.2E-3) 2.67E-1 * (5.4E-3)
UF4 2 1.36E-1 * (7.6E-4) 1.36E-1 * (1.2E-3) 1.36E-1 * (1.0E-3) 1.20E-1 (1.2E-2) 1.36E-1 * (8.6E-4)
UF5 2 5.54E0 * (9.0E-2) 5.31E0 * (2.4E-1) 5.53E0 * (9.0E-2) 2.79E0 (2.1E-1) 5.40E0 * (1.3E-1)
UF6 2 5.58E0 * (2.2E-1) 3.67E0 * (2.1E0) 5.52E0 * (2.4E-1) 1.11E0 (1.4E-1) 4.15E0 * (1.9E0)
UF7 2 1.42E0 * (2.8E-2) 6.36E-1 * (1.2E-1) 1.38E0 * (3.4E-2) 2.71E-1 (6.5E-3) 9.40E-1 * (9.5E-2)
UF8 3 5.61E-1 * (2.3E-2) 5.16E-1 * (3.5E-2) 5.64E-1 * (4.3E-2) 3.55E-1 (4.1E-2) 5.37E-1 * (2.8E-2)
UF9 3 8.10E-1 * (3.4E-2) 7.26E-1 * (2.8E-2) 7.94E-1 * (2.2E-2) 5.65E-1 (3.0E-2) 7.55E-1 * (3.7E-2)
UF10 3 5.01E0 * (4.7E-1) 4.78E0 * (2.8E-1) 4.89E0 * (4.0E-1) 5.33E-1 (1.7E0) 4.78E0 * (3.7E-1)

Table B.15: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

NSGA-II GroupedNSGA-II LinkedNSGA-II GroupLinkNSGA-II HighProbNSGA-II

n = 40

WFG1 2 4.65E-2 (2.6E-2) 6.91E-1 * (1.1E-1) 4.16E-2 (4.2E-2) 6.44E-1 * (1.2E-1) 8.19E-1 * (3.0E-2)
WFG2 2 6.65E-1 * (8.4E-3) 6.64E-1 * (4.4E-1) 6.66E-1 * (1.0E-2) 2.20E-1 (8.0E-3) 6.69E-1 * (1.7E-3)
WFG3 2 3.00E-2 (7.2E-3) 3.42E-2 * (3.9E-3) 2.67E-2 (4.0E-3) 2.92E-2 * (3.5E-3) 4.80E-2 * (2.5E-3)
WFG4 2 2.06E-2 (1.8E-3) 3.60E-2 * (3.2E-3) 2.05E-2 (1.3E-3) 3.26E-2 * (4.6E-3) 5.28E-2 * (2.9E-3)
WFG5 2 7.20E-2 (6.9E-4) 8.02E-2 * (1.2E-3) 7.16E-2 (1.3E-3) 7.25E-2 * (8.6E-4) 8.27E-2 * (1.4E-3)
WFG6 2 6.18E-2 (1.4E-2) 7.07E-2 * (2.0E-2) 5.62E-2 (7.8E-3) 6.05E-2 (3.4E-2) 1.15E-1 * (1.5E-2)
WFG7 2 1.77E-2 (1.0E-3) 2.65E-2 * (1.3E-3) 1.74E-2 (1.1E-3) 2.11E-2 * (1.3E-3) 3.78E-2 * (2.6E-3)
WFG8 2 2.41E-1 * (1.0E-2) 2.27E-1 (7.0E-3) 2.40E-1 * (6.9E-3) 2.24E-1 (1.4E-2) 2.40E-1 * (6.5E-3)
WFG9 2 9.29E-2 (2.0E-3) 9.51E-2 * (3.1E-3) 9.33E-2 (2.4E-3) 9.53E-2 * (3.3E-2) 9.65E-2 * (2.4E-3)
WFG1 3 6.55E-1 (7.4E-2) 1.34E0 * (1.2E-1) 6.47E-1 (6.4E-2) 1.25E0 * (9.6E-2) 1.39E0 * (4.8E-2)
WFG2 3 5.15E-1 * (1.6E-2) 5.34E-1 * (1.4E-2) 5.16E-1 * (1.6E-2) 2.36E-1 (1.3E-2) 5.41E-1 * (1.6E-2)
WFG3 3 1.26E-1 (2.8E-2) 1.75E-1 * (3.0E-2) 1.31E-1 (3.4E-2) 1.47E-1 * (2.8E-2) 1.79E-1 * (1.9E-2)
WFG4 3 2.88E-1 (1.9E-2) 3.37E-1 * (1.3E-2) 2.88E-1 (1.6E-2) 3.27E-1 * (1.8E-2) 3.40E-1 * (2.3E-2)
WFG5 3 2.94E-1 (1.4E-2) 3.40E-1 * (1.4E-2) 2.94E-1 (1.0E-2) 3.04E-1 * (9.9E-3) 3.54E-1 * (1.3E-2)
WFG6 3 3.02E-1 (2.1E-2) 4.33E-1 * (3.2E-2) 3.03E-1 (2.0E-2) 3.74E-1 * (1.7E-2) 4.57E-1 * (3.7E-2)
WFG7 3 2.82E-1 (1.0E-2) 3.36E-1 * (1.9E-2) 2.83E-1 (2.3E-2) 3.10E-1 * (2.0E-2) 3.35E-1 * (1.6E-2)
WFG8 3 4.49E-1 (2.2E-2) 5.34E-1 * (2.3E-2) 4.56E-1 (1.6E-2) 4.93E-1 * (1.8E-2) 5.29E-1 * (2.3E-2)
WFG9 3 3.25E-1 (1.4E-2) 3.39E-1 * (1.9E-2) 3.22E-1 (2.3E-2) 3.33E-1 * (1.8E-2) 3.46E-1 * (2.4E-2)

n = 1000

WFG1 2 1.69E0 * (4.0E-2) 1.63E0 * (4.7E-2) 1.70E0 * (5.3E-2) 1.30E0 (2.3E-2) 1.78E0 * (2.7E-2)
WFG2 2 9.07E-1 * (5.2E-1) 8.78E-1 * (5.3E-1) 9.15E-1 * (5.2E-1) 3.50E-1 (3.6E-3) 8.81E-1 * (3.3E-2)
WFG3 2 8.30E-1 * (3.6E-2) 6.11E-1 * (3.2E-2) 8.35E-1 * (4.2E-2) 2.62E-1 (5.1E-3) 7.23E-1 * (2.8E-2)
WFG4 2 9.43E-1 * (4.6E-2) 7.06E-1 * (4.0E-2) 9.75E-1 * (6.2E-2) 2.59E-1 (8.1E-3) 7.82E-1 * (5.4E-2)
WFG5 2 9.73E-1 * (5.4E-2) 6.33E-1 * (3.4E-2) 9.68E-1 * (3.0E-2) 2.73E-1 (2.0E-2) 7.13E-1 * (2.3E-2)
WFG6 2 1.00E0 * (1.2E-1) 8.38E-1 * (3.0E-2) 1.02E0 * (7.9E-2) 4.04E-1 (2.2E-2) 9.21E-1 * (3.5E-2)
WFG7 2 9.34E-1 * (4.8E-2) 7.52E-1 * (3.8E-2) 9.21E-1 * (2.7E-2) 3.14E-1 (1.3E-2) 7.96E-1 * (4.6E-2)
WFG8 2 1.10E0 * (3.3E-2) 8.83E-1 * (1.9E-2) 1.09E0 * (3.4E-2) 4.45E-1 (1.7E-2) 9.19E-1 * (3.4E-2)
WFG9 2 9.72E-1 * (6.7E-2) 7.35E-1 * (4.9E-2) 9.72E-1 * (7.9E-2) 3.22E-1 (1.4E-1) 7.83E-1 * (3.1E-2)
WFG1 3 1.83E0 * (2.7E-2) 1.70E0 * (4.2E-2) 1.82E0 * (8.7E-2) 1.61E0 (4.3E-2) 1.93E0 * (2.1E-2)
WFG2 3 1.79E0 * (2.1E-2) 1.77E0 * (1.4E-2) 1.78E0 * (1.8E-2) 8.72E-1 (1.0E-1) 1.83E0 * (1.5E-2)
WFG3 3 8.81E-1 * (5.8E-2) 7.26E-1 * (4.9E-2) 8.93E-1 * (6.2E-2) 3.78E-1 (1.4E-2) 8.18E-1 * (2.2E-2)
WFG4 3 1.89E0 * (9.6E-2) 1.70E0 * (6.6E-2) 1.90E0 * (1.0E-1) 7.01E-1 (1.0E-1) 1.64E0 * (4.0E-2)
WFG5 3 1.67E0 * (5.4E-2) 1.43E0 * (4.0E-2) 1.65E0 * (7.6E-2) 9.99E-1 (4.9E-2) 1.53E0 * (2.9E-2)
WFG6 3 1.60E0 * (5.7E-2) 1.48E0 * (4.8E-2) 1.60E0 * (7.0E-2) 9.68E-1 (3.9E-2) 1.51E0 * (5.9E-2)
WFG7 3 1.78E0 * (5.6E-2) 1.59E0 * (3.9E-2) 1.78E0 * (5.1E-2) 7.26E-1 (2.9E-2) 1.60E0 * (4.0E-2)
WFG8 3 1.83E0 * (4.6E-2) 1.65E0 * (4.1E-2) 1.83E0 * (5.4E-2) 1.11E0 (7.9E-2) 1.67E0 * (3.8E-2)
WFG9 3 1.60E0 * (1.1E-1) 1.60E0 * (4.4E-2) 1.57E0 * (6.8E-2) 9.15E-1 (1.6E-1) 1.63E0 * (3.7E-2)
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Table B.16: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

NSGA-III GroupedNSGA-III LinkedNSGA-III GroupLinkNSGA-III HighProbNSGA-III

n = 40

WFG1 2 1.39E-1 (6.1E-2) 6.67E-1 * (1.1E-1) 1.36E-1 (6.5E-2) 6.68E-1 * (1.4E-1) 8.71E-1 * (4.7E-2)
WFG2 2 6.63E-1 * (4.3E-1) 6.64E-1 * (4.3E-1) 6.62E-1 * (4.3E-1) 2.19E-1 (5.4E-3) 6.71E-1 * (2.9E-3)
WFG3 2 2.83E-2 * (7.2E-3) 3.61E-2 * (4.5E-3) 3.41E-2 * (1.1E-2) 2.20E-2 (3.9E-3) 5.30E-2 * (3.4E-3)
WFG4 2 1.70E-2 (1.4E-3) 3.89E-2 * (3.8E-3) 1.69E-2 (2.0E-3) 3.34E-2 * (3.6E-3) 5.67E-2 * (3.9E-3)
WFG5 2 7.04E-2 (4.5E-4) 7.77E-2 * (2.2E-3) 7.04E-2 (5.8E-4) 7.04E-2 (1.1E-3) 8.00E-2 * (1.4E-3)
WFG6 2 5.42E-2 (1.4E-2) 7.55E-2 (2.1E-2) 5.66E-2 (1.2E-2) 5.09E-2 (4.5E-2) 1.33E-1 * (1.9E-2)
WFG7 2 1.50E-2 (8.4E-3) 2.59E-2 * (2.8E-3) 1.61E-2 (9.9E-3) 1.57E-2 (1.2E-3) 3.89E-2 * (3.4E-3)
WFG8 2 2.55E-1 * (2.0E-2) 2.40E-1 * (5.4E-3) 2.54E-1 * (2.0E-2) 2.27E-1 (1.2E-2) 2.52E-1 * (5.9E-3)
WFG9 2 9.23E-2 (1.6E-3) 9.46E-2 * (2.4E-3) 9.28E-2 (1.7E-3) 9.43E-2 (2.1E-3) 9.49E-2 * (2.1E-3)
WFG1 3 8.60E-1 (1.0E-1) 1.31E0 * (8.4E-2) 8.41E-1 (1.2E-1) 1.24E0 * (8.8E-2) 1.36E0 * (6.2E-2)
WFG2 3 4.93E-1 * (1.2E-2) 5.05E-1 * (5.5E-3) 4.90E-1 * (8.7E-3) 1.73E-1 (3.1E-1) 5.08E-1 * (5.2E-3)
WFG3 3 8.85E-2 (3.0E-2) 2.07E-1 * (3.8E-2) 1.20E-1 (4.1E-2) 1.70E-1 * (4.3E-2) 2.22E-1 * (2.7E-2)
WFG4 3 2.30E-1 (3.9E-3) 2.54E-1 * (3.5E-3) 2.31E-1 (2.6E-3) 2.48E-1 * (3.4E-3) 2.59E-1 * (5.1E-3)
WFG5 3 2.38E-1 * (2.2E-3) 2.56E-1 * (2.3E-3) 2.38E-1 * (3.6E-3) 2.33E-1 (1.4E-3) 2.61E-1 * (4.3E-3)
WFG6 3 2.35E-1 (6.6E-3) 3.07E-1 * (1.2E-2) 2.37E-1 (7.9E-3) 2.49E-1 * (7.2E-3) 3.10E-1 * (1.2E-2)
WFG7 3 2.30E-1 (1.0E-2) 2.48E-1 * (9.0E-3) 2.31E-1 (1.4E-2) 2.29E-1 (2.3E-3) 2.47E-1 * (5.7E-3)
WFG8 3 3.52E-1 (1.2E-2) 3.88E-1 * (7.4E-3) 3.57E-1 (1.1E-2) 3.53E-1 (6.5E-3) 3.93E-1 * (9.3E-3)
WFG9 3 2.45E-1 (5.1E-3) 2.51E-1 * (4.6E-3) 2.46E-1 (4.8E-3) 2.49E-1 * (4.5E-3) 2.51E-1 * (3.6E-3)

n = 1000

WFG1 2 1.64E0 * (4.8E-2) 1.62E0 * (4.6E-2) 1.65E0 * (6.5E-2) 1.32E0 (2.6E-2) 1.77E0 * (2.1E-2)
WFG2 2 8.84E-1 * (4.9E-2) 8.41E-1 * (2.5E-2) 8.82E-1 * (1.8E-2) 3.51E-1 (5.7E-3) 8.71E-1 * (2.9E-2)
WFG3 2 7.81E-1 * (2.2E-2) 6.71E-1 * (2.3E-2) 7.85E-1 * (4.2E-2) 2.56E-1 (4.7E-3) 7.48E-1 * (3.1E-2)
WFG4 2 9.12E-1 * (5.4E-2) 7.68E-1 * (4.5E-2) 9.06E-1 * (3.5E-2) 2.57E-1 (8.2E-3) 8.22E-1 * (5.1E-2)
WFG5 2 8.90E-1 * (5.0E-2) 6.71E-1 * (4.0E-2) 8.92E-1 * (4.1E-2) 2.96E-1 (3.1E-2) 7.47E-1 * (3.3E-2)
WFG6 2 9.27E-1 * (8.5E-2) 9.00E-1 * (3.0E-2) 9.27E-1 * (7.1E-2) 4.24E-1 (1.5E-2) 9.65E-1 * (2.6E-2)
WFG7 2 8.81E-1 * (4.8E-2) 7.82E-1 * (3.5E-2) 8.82E-1 * (5.8E-2) 3.18E-1 (6.0E-3) 8.19E-1 * (4.2E-2)
WFG8 2 1.05E0 * (4.6E-2) 9.35E-1 * (3.6E-2) 1.04E0 * (4.8E-2) 4.98E-1 (1.8E-2) 9.78E-1 * (2.4E-2)
WFG9 2 9.04E-1 * (8.5E-2) 8.04E-1 * (3.8E-2) 9.08E-1 * (8.1E-2) 3.63E-1 (1.1E-1) 8.45E-1 * (3.4E-2)
WFG1 3 1.85E0 * (3.6E-2) 1.83E0 * (2.8E-2) 1.85E0 * (4.0E-2) 1.61E0 (2.7E-2) 1.99E0 * (2.9E-2)
WFG2 3 1.77E0 * (2.9E-2) 1.76E0 * (3.5E-2) 1.77E0 * (2.3E-2) 9.16E-1 (5.6E-2) 1.81E0 * (2.8E-2)
WFG3 3 1.20E0 * (1.8E-1) 9.26E-1 * (8.1E-2) 1.17E0 * (1.2E-1) 4.33E-1 (3.4E-2) 1.01E0 * (6.8E-2)
WFG4 3 2.85E0 * (1.1E-1) 2.56E0 * (1.4E-1) 2.83E0 * (1.6E-1) 5.64E-1 (6.0E-2) 2.59E0 * (1.5E-1)
WFG5 3 1.62E0 * (7.6E-2) 1.49E0 * (6.8E-2) 1.59E0 * (9.8E-2) 9.14E-1 (8.7E-2) 1.65E0 * (1.1E-1)
WFG6 3 1.46E0 * (4.8E-2) 1.44E0 * (4.3E-2) 1.47E0 * (3.8E-2) 7.27E-1 (2.9E-2) 1.45E0 * (3.7E-2)
WFG7 3 2.56E0 * (3.9E-1) 2.44E0 * (2.1E-1) 2.54E0 * (1.4E-1) 1.46E0 (9.1E-1) 2.48E0 * (1.8E-1)
WFG8 3 1.91E0 * (9.5E-2) 1.77E0 * (5.3E-2) 1.90E0 * (9.9E-2) 1.28E0 (4.1E-1) 1.82E0 * (7.0E-2)
WFG9 3 1.37E0 * (7.1E-2) 1.54E0 * (7.8E-2) 1.35E0 * (8.9E-2) 8.52E-1 (1.2E-1) 1.55E0 * (7.9E-2)
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Table B.17: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

SMPSO GroupedSMPSO LinkedSMPSO GroupLinkSMPSO HighProbSMPSO

n = 40

WFG1 2 1.22E0 * (3.4E-2) 1.23E0 * (2.6E-2) 1.23E0 * (3.9E-2) 1.20E0 (2.3E-2) 1.23E0 * (1.3E-2)
WFG2 2 2.54E-1 * (2.2E-2) 2.32E-1 (7.9E-3) 2.40E-1 * (4.3E-1) 2.45E-1 (1.8E-1) 2.39E-1 * (1.7E-2)
WFG3 2 5.20E-2 * (1.7E-2) 3.70E-2 (7.2E-3) 4.53E-2 * (1.7E-2) 7.05E-2 * (1.6E-2) 3.98E-2 (1.0E-2)
WFG4 2 1.03E-1 * (1.4E-2) 1.01E-1 * (9.7E-3) 1.02E-1 * (1.8E-2) 8.70E-2 (9.1E-3) 9.81E-2 * (8.5E-3)
WFG5 2 8.26E-2 (1.6E-2) 8.17E-2 (1.9E-2) 9.29E-2 (3.1E-2) 9.40E-2 (3.8E-2) 8.61E-2 (3.2E-2)
WFG6 2 4.79E-2 * (1.6E-3) 4.75E-2 * (2.0E-3) 4.73E-2 * (1.7E-3) 3.03E-2 (9.3E-3) 5.14E-2 * (3.6E-3)
WFG7 2 2.37E-2 (8.8E-3) 2.51E-2 (4.7E-3) 2.26E-2 (7.6E-3) 5.28E-2 * (1.0E-2) 2.68E-2 * (7.9E-3)
WFG8 2 3.45E-1 * (3.8E-2) 2.85E-1 * (3.7E-2) 3.37E-1 * (3.7E-2) 2.31E-1 (2.8E-2) 2.88E-1 * (3.1E-2)
WFG9 2 9.60E-2 (3.3E-2) 7.71E-2 (3.1E-2) 8.96E-2 * (2.1E-2) 8.34E-2 (2.2E-2) 8.83E-2 (2.2E-2)
WFG1 3 1.54E0 (1.2E-2) 1.54E0 (2.0E-2) 1.53E0 (1.8E-2) 1.53E0 (1.7E-2) 1.54E0 (1.4E-2)
WFG2 3 3.41E-1 * (1.4E-1) 2.79E-1 * (4.1E-2) 2.85E-1 * (5.9E-2) 2.46E-1 (1.9E-2) 2.76E-1 * (4.2E-2)
WFG3 3 2.71E-1 * (5.7E-2) 2.12E-1 * (6.3E-2) 2.73E-1 * (5.2E-2) 1.73E-1 (2.7E-2) 2.24E-1 * (6.4E-2)
WFG4 3 4.16E-1 * (4.9E-2) 3.97E-1 * (1.9E-2) 4.16E-1 * (3.5E-2) 3.67E-1 (2.3E-2) 3.90E-1 * (2.9E-2)
WFG5 3 4.37E-1 (7.2E-2) 4.69E-1 * (7.8E-2) 4.85E-1 * (1.5E-1) 4.19E-1 (1.0E-1) 4.82E-1 * (9.0E-2)
WFG6 3 3.53E-1 * (4.6E-2) 3.47E-1 (3.9E-2) 3.39E-1 (2.5E-2) 3.31E-1 (2.8E-2) 3.39E-1 (4.1E-2)
WFG7 3 4.70E-1 * (9.3E-2) 4.70E-1 * (4.9E-2) 4.75E-1 * (8.5E-2) 3.42E-1 (3.1E-2) 4.76E-1 * (3.5E-2)
WFG8 3 6.87E-1 * (6.2E-2) 7.05E-1 * (7.3E-2) 7.16E-1 * (7.6E-2) 6.00E-1 (7.7E-2) 7.09E-1 * (5.8E-2)
WFG9 3 3.91E-1 (3.5E-2) 3.69E-1 (5.2E-2) 3.85E-1 (6.4E-2) 3.75E-1 (4.3E-2) 3.72E-1 (3.1E-2)

n = 1000

WFG1 2 1.31E0 * (1.2E-2) 1.29E0 * (6.4E-3) 1.31E0 * (1.0E-2) 1.26E0 (8.1E-3) 1.31E0 * (1.6E-2)
WFG2 2 8.99E-1 * (5.5E-1) 8.12E-1 * (6.0E-1) 9.03E-1 * (5.4E-1) 2.95E-1 (1.4E-1) 8.68E-1 * (5.7E-1)
WFG3 2 8.97E-1 * (3.9E-2) 5.12E-1 * (4.2E-2) 8.97E-1 * (4.5E-2) 1.57E-1 (1.3E-2) 6.02E-1 * (2.6E-2)
WFG4 2 4.95E-1 * (1.4E-2) 3.50E-1 * (1.8E-2) 4.96E-1 * (1.6E-2) 1.29E-1 (6.9E-3) 4.68E-1 * (1.2E-2)
WFG5 2 6.12E-1 * (2.0E-2) 5.11E-1 * (2.4E-2) 6.09E-1 * (1.5E-2) 1.95E-1 (4.7E-2) 5.74E-1 * (1.6E-2)
WFG6 2 2.89E-1 * (1.8E-2) 1.84E-2 * (2.5E-3) 2.91E-1 * (1.9E-2) 1.58E-2 (9.2E-4) 2.83E-1 * (2.1E-2)
WFG7 2 9.32E-1 * (2.7E-2) 6.34E-1 * (3.9E-2) 9.40E-1 * (4.0E-2) 1.34E-1 (1.1E-2) 6.48E-1 * (4.3E-2)
WFG8 2 1.28E0 * (7.8E-2) 1.11E0 * (1.4E-1) 1.28E0 * (9.5E-2) 3.60E-1 (4.3E-2) 8.96E-1 * (3.8E-1)
WFG9 2 4.56E-1 * (7.5E-2) 3.26E-1 * (5.3E-2) 4.74E-1 * (7.3E-2) 8.08E-2 (2.5E-2) 3.92E-1 * (4.5E-2)
WFG1 3 1.74E0 * (3.6E-2) 1.66E0 * (4.7E-2) 1.74E0 * (4.0E-2) 1.53E0 (1.2E-2) 1.69E0 * (4.9E-2)
WFG2 3 1.76E0 * (1.0E0) 1.68E0 * (1.6E-2) 1.76E0 * (3.5E-2) 3.49E-1 (1.4E-1) 1.70E0 * (2.0E-2)
WFG3 3 8.77E-1 * (1.0E-1) 4.62E-1 * (3.5E-2) 8.83E-1 * (9.9E-2) 1.41E-1 (2.3E-2) 6.36E-1 * (2.5E-2)
WFG4 3 1.36E0 * (8.0E-2) 1.06E0 * (1.1E-1) 1.37E0 * (7.2E-2) 4.46E-1 (9.9E-2) 1.30E0 * (8.6E-2)
WFG5 3 1.56E0 * (5.2E-2) 1.47E0 * (5.3E-2) 1.56E0 * (3.9E-2) 7.51E-1 (1.5E-1) 1.52E0 * (5.8E-2)
WFG6 3 1.18E0 * (7.7E-2) 8.59E-1 * (8.4E-2) 1.17E0 * (6.2E-2) 3.88E-1 (7.2E-2) 1.10E0 * (7.5E-2)
WFG7 3 1.60E0 * (8.1E-2) 1.34E0 * (6.5E-2) 1.63E0 * (8.5E-2) 5.10E-1 (2.4E-2) 1.43E0 * (5.5E-2)
WFG8 3 1.80E0 * (7.4E-2) 1.50E0 * (7.9E-2) 1.77E0 * (9.6E-2) 8.78E-1 (5.2E-2) 1.62E0 * (5.1E-2)
WFG9 3 1.21E0 * (4.7E-2) 1.12E0 * (8.6E-2) 1.22E0 * (9.4E-2) 4.57E-1 (5.9E-2) 1.11E0 * (9.1E-2)
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Table B.18: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

NSGA-II GroupedNSGA-II LinkedNSGA-II GroupLinkNSGA-II HighProbNSGA-II

n = 40

DTLZ1 2 7.59E-1 * (1.0E0) 2.19E2 * (3.0E1) 3.98E-1 (7.1E-1) 9.16E-1 * (1.3E0) 2.21E2 * (2.8E1)
DTLZ2 2 5.11E-3 (2.0E-4) 1.24E-2 * (9.0E-4) 5.06E-3 (3.4E-4) 5.31E-3 * (1.9E-4) 1.34E-2 * (1.2E-3)
DTLZ3 2 2.14E0 * (2.0E0) 5.69E2 * (1.4E2) 1.08E0 (1.9E0) 2.34E0 * (2.4E0) 5.81E2 * (5.8E1)
DTLZ4 2 5.12E-3 (6.0E-4) 1.37E-2 * (1.8E-3) 5.22E-3 (3.0E-4) 5.25E-3 (7.3E-1) 1.40E-2 * (1.2E-3)
DTLZ5 2 5.12E-3 (2.8E-4) 1.27E-2 * (1.0E-3) 5.04E-3 (2.7E-4) 5.17E-3 * (2.3E-4) 1.35E-2 * (7.3E-4)
DTLZ6 2 8.86E-3 * (9.9E-3) 1.12E0 * (4.3E-1) 6.60E-3 * (9.7E-3) 5.29E-3 (5.0E-4) 1.34E0 * (4.2E-1)
DTLZ7 2 5.32E-3 (3.4E-4) 8.15E-3 * (9.0E-4) 5.22E-3 (2.7E-4) 5.22E-3 (2.5E-4) 8.02E-3 * (3.9E-4)
DTLZ1 3 9.07E0 * (4.4E0) 2.22E2 * (3.3E1) 5.63E0 (4.0E0) 1.18E1 * (1.1E1) 2.37E2 * (3.2E1)
DTLZ2 3 7.32E-2 (4.4E-3) 1.11E-1 * (4.1E-3) 7.30E-2 (5.4E-3) 7.93E-2 * (2.6E-3) 1.19E-1 * (6.1E-3)
DTLZ3 3 1.56E1 * (8.9E0) 5.86E2 * (6.5E1) 7.33E0 (4.9E0) 1.00E1 (1.0E1) 6.07E2 * (7.5E1)
DTLZ4 3 7.31E-2 (4.1E-3) 1.09E-1 * (8.5E-3) 7.21E-2 (3.9E-3) 7.81E-2 * (3.3E-3) 1.15E-1 * (8.1E-3)
DTLZ5 3 6.52E-3 (4.8E-4) 2.59E-2 * (2.9E-3) 6.35E-3 (4.6E-4) 7.05E-3 * (7.4E-4) 2.91E-2 * (3.9E-3)
DTLZ6 3 1.04E-2 * (9.7E-3) 1.43E0 * (5.3E-1) 6.51E-3 (5.6E-3) 6.08E-3 (5.3E-4) 4.79E0 * (2.0E0)
DTLZ7 3 8.15E-2 (5.1E-3) 1.22E-1 * (1.2E-2) 8.30E-2 (7.3E-3) 8.04E-2 (6.7E-3) 1.48E-1 * (1.5E-2)
DTLZ1 4 3.57E1 (1.5E1) 4.08E2 * (6.4E1) 3.09E1 (1.7E1) 1.20E2 * (3.4E1) 4.09E2 * (5.4E1)
DTLZ2 4 1.63E-1 (4.6E-3) 2.51E-1 * (1.2E-2) 1.67E-1 (7.2E-3) 1.96E-1 * (8.0E-3) 2.61E-1 * (1.3E-2)
DTLZ3 4 6.70E1 * (4.5E1) 9.04E2 * (1.3E2) 4.49E1 (2.7E1) 2.29E2 * (8.3E1) 9.58E2 * (1.2E2)
DTLZ4 4 1.62E-1 (6.5E-3) 2.49E-1 * (1.3E-2) 1.63E-1 (8.4E-3) 1.94E-1 * (1.3E-2) 2.56E-1 * (1.0E-2)
DTLZ5 4 1.19E-1 (3.1E-2) 2.26E-1 * (5.9E-2) 1.29E-1 (4.4E-2) 1.27E-1 (2.5E-2) 2.18E-1 * (4.7E-2)
DTLZ6 4 1.47E1 * (1.2E0) 2.20E1 * (1.7E0) 1.45E1 * (1.6E0) 1.10E1 (2.6E0) 2.46E1 * (1.2E0)
DTLZ7 4 2.35E-1 (1.2E-2) 3.69E-1 * (3.2E-2) 2.32E-1 (1.9E-2) 2.60E-1 * (2.8E-2) 4.30E-1 * (2.6E-2)
DTLZ1 5 5.57E1 (2.1E1) 5.41E2 * (6.5E1) 6.04E1 (1.5E1) 1.98E2 * (3.2E1) 5.18E2 * (7.6E1)
DTLZ2 5 2.62E-1 (1.2E-2) 4.36E-1 * (2.6E-2) 2.61E-1 (1.0E-2) 3.44E-1 * (2.0E-2) 4.55E-1 * (2.8E-2)
DTLZ3 5 1.90E2 (4.3E1) 1.41E3 * (1.6E2) 2.02E2 (5.2E1) 5.78E2 * (1.1E2) 1.39E3 * (1.6E2)
DTLZ4 5 2.64E-1 (9.8E-3) 4.23E-1 * (2.3E-2) 2.62E-1 (1.0E-2) 3.46E-1 * (2.8E-2) 4.32E-1 * (2.1E-2)
DTLZ5 5 1.15E0 (3.4E-1) 1.18E0 (4.0E-1) 1.15E0 (4.7E-1) 1.05E0 (4.4E-1) 1.13E0 (3.1E-1)
DTLZ6 5 2.40E1 * (1.9E0) 2.65E1 * (1.4E0) 2.34E1 * (1.6E0) 2.16E1 (2.7E0) 2.71E1 * (1.5E0)
DTLZ7 5 4.02E-1 (2.2E-2) 6.02E-1 * (3.9E-2) 4.08E-1 (1.6E-2) 4.37E-1 * (3.5E-2) 6.66E-1 * (4.2E-2)

n = 1000

DTLZ1 2 4.34E3 * (1.3E2) 2.63E4 * (2.1E3) 4.18E3 (1.8E2) 4.23E3 (9.3E2) 3.00E4 * (2.8E2)
DTLZ2 2 1.97E0 * (3.1E-1) 8.18E0 * (1.5E-1) 2.16E0 * (3.2E-1) 5.56E-3 (2.2E-4) 1.22E1 * (2.6E-1)
DTLZ3 2 1.16E4 * (4.2E2) 7.27E4 * (4.1E3) 1.11E4 * (3.5E2) 8.54E3 (1.2E3) 8.30E4 * (7.6E2)
DTLZ4 2 2.32E0 * (3.0E-1) 8.70E0 * (3.0E-1) 2.87E0 * (3.8E-1) 5.39E-3 (4.9E-4) 1.24E1 * (2.3E-1)
DTLZ5 2 1.91E0 * (3.5E-1) 8.17E0 * (2.1E-1) 2.22E0 * (4.0E-1) 5.45E-3 (3.1E-4) 1.22E1 * (4.0E-1)
DTLZ6 2 5.97E2 * (1.7E1) 3.77E2 * (5.9E0) 5.87E2 * (1.0E1) 1.03E1 (6.7E-1) 7.50E2 * (6.9E0)
DTLZ7 2 1.67E0 * (2.6E-1) 2.79E-1 * (1.1E-2) 1.54E0 * (1.5E-1) 5.23E-3 (2.9E-4) 7.22E-1 * (1.5E-2)
DTLZ1 3 7.38E3 (4.8E2) 2.79E4 * (1.3E3) 7.50E3 (3.2E2) 1.45E4 * (1.9E3) 2.89E4 * (7.1E2)
DTLZ2 3 8.29E0 * (8.1E-1) 1.65E1 * (7.6E-1) 8.32E0 * (7.6E-1) 8.23E-2 (3.4E-3) 2.30E1 * (1.0E0)
DTLZ3 3 1.80E4 (7.4E2) 8.64E4 * (1.4E3) 1.77E4 (9.5E2) 4.01E4 * (4.9E3) 9.00E4 * (1.1E3)
DTLZ4 3 1.02E1 * (1.9E0) 1.71E1 * (8.8E-1) 1.00E1 * (1.8E0) 8.31E-2 (4.6E-1) 2.21E1 * (9.2E-1)
DTLZ5 3 9.91E0 * (7.0E-1) 2.14E1 * (9.5E-1) 9.96E0 * (1.0E0) 8.60E-3 (7.4E-4) 2.80E1 * (1.5E0)
DTLZ6 3 7.53E2 * (8.6E0) 7.47E2 * (6.3E0) 7.55E2 * (7.4E0) 1.41E1 (3.7E-1) 8.41E2 * (4.8E0)
DTLZ7 3 2.79E0 * (2.1E-1) 8.73E-1 * (4.7E-2) 2.81E0 * (2.2E-1) 8.01E-2 (6.4E-3) 1.94E0 * (9.5E-2)
DTLZ1 4 1.09E4 (7.8E2) 2.63E4 * (1.3E3) 1.10E4 (4.8E2) 1.65E4 * (1.6E3) 2.69E4 * (6.4E2)
DTLZ2 4 2.31E1 * (1.4E0) 3.80E1 * (2.1E0) 2.30E1 * (1.3E0) 2.29E-1 (1.7E-2) 4.78E1 * (2.1E0)
DTLZ3 4 3.64E4 (2.0E3) 8.95E4 * (1.7E3) 3.67E4 (2.0E3) 4.85E4 * (3.5E3) 9.15E4 * (1.9E3)
DTLZ4 4 2.44E1 * (2.2E0) 3.81E1 * (1.7E0) 2.40E1 * (2.4E0) 2.55E-1 (2.9E-2) 4.68E1 * (1.5E0)
DTLZ5 4 5.67E1 * (2.0E0) 6.54E1 * (2.7E0) 5.74E1 * (3.7E0) 3.81E1 (7.7E0) 6.93E1 * (1.4E0)
DTLZ6 4 8.70E2 * (3.6E0) 8.69E2 * (6.5E0) 8.69E2 * (4.2E0) 6.49E2 (1.0E2) 8.80E2 * (3.6E0)
DTLZ7 4 5.12E0 * (3.7E-1) 2.68E0 * (2.6E-1) 5.11E0 * (3.6E-1) 2.45E-1 (2.7E-2) 4.74E0 * (2.1E-1)
DTLZ1 5 1.25E4 (1.1E3) 2.48E4 * (1.3E3) 1.25E4 (9.1E2) 1.77E4 * (2.6E3) 2.53E4 * (1.4E3)
DTLZ2 5 4.53E1 * (4.5E0) 6.12E1 * (3.4E0) 4.53E1 * (2.3E0) 8.14E-1 (1.5E-1) 6.79E1 * (2.6E0)
DTLZ3 5 6.32E4 * (3.1E3) 9.15E4 * (1.5E3) 6.36E4 * (3.2E3) 5.25E4 (4.8E3) 9.28E4 * (1.8E3)
DTLZ4 5 4.79E1 * (5.4E0) 6.01E1 * (7.8E0) 4.73E1 * (5.8E0) 2.43E0 (1.0E0) 7.12E1 * (4.4E0)
DTLZ5 5 7.24E1 (2.4E0) 7.13E1 (4.7E0) 7.24E1 (3.0E0) 7.02E1 (6.9E0) 7.49E1 * (2.1E0)
DTLZ6 5 8.79E2 * (4.9E0) 8.74E2 * (5.3E0) 8.79E2 * (5.2E0) 7.39E2 (4.4E1) 8.83E2 * (3.5E0)
DTLZ7 5 9.60E0 * (8.3E-1) 8.14E0 * (2.4E0) 9.36E0 * (5.7E-1) 4.39E-1 (2.1E-2) 9.31E0 * (9.4E-1)
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Table B.19: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

NSGA-III GroupedNSGA-III LinkedNSGA-III GroupLinkNSGA-III HighProbNSGA-III

n = 40

DTLZ1 2 2.57E0 * (1.4E0) 2.82E2 * (4.0E1) 1.13E0 (1.0E0) 1.54E1 * (9.7E0) 2.72E2 * (3.0E1)
DTLZ2 2 3.96E-3 * (6.1E-8) 1.40E-2 * (9.6E-4) 3.96E-3 (5.7E-8) 3.97E-3 * (1.1E-5) 1.49E-2 * (1.0E-3)
DTLZ3 2 6.78E0 * (4.1E0) 7.10E2 * (7.4E1) 2.77E0 (2.8E0) 4.00E1 * (1.9E1) 7.21E2 * (6.6E1)
DTLZ4 2 3.96E-3 (2.3E-6) 1.50E-2 * (2.4E-3) 3.96E-3 (3.9E-5) 4.00E-3 * (5.6E-5) 1.58E-2 * (1.2E-3)
DTLZ5 2 3.96E-3 * (4.7E-8) 1.39E-2 * (8.1E-4) 3.96E-3 (7.9E-8) 3.97E-3 * (1.3E-5) 1.48E-2 * (1.2E-3)
DTLZ6 2 3.96E-3 * (3.8E-8) 1.33E0 * (4.2E-1) 3.96E-3 (3.7E-8) 3.96E-3 * (2.3E-8) 2.12E0 * (7.1E-1)
DTLZ7 2 5.06E-3 (8.5E-5) 1.03E-2 * (9.4E-4) 5.07E-3 (1.0E-4) 5.16E-3 * (1.5E-4) 1.00E-2 * (1.3E-3)
DTLZ1 3 6.59E0 * (4.0E0) 2.44E2 * (2.7E1) 4.25E0 (2.3E0) 2.54E1 * (1.2E1) 2.38E2 * (3.3E1)
DTLZ2 3 5.44E-2 (1.2E-6) 6.47E-2 * (1.5E-3) 5.44E-2 (6.9E-7) 5.45E-2 * (2.6E-5) 6.32E-2 * (9.7E-4)
DTLZ3 3 1.48E1 * (9.0E0) 6.83E2 * (5.5E1) 6.61E0 (5.6E0) 6.29E1 * (3.1E1) 6.54E2 * (6.1E1)
DTLZ4 3 5.44E-2 (1.2E-4) 7.18E-2 * (4.0E-3) 5.44E-2 (4.8E-1) 5.65E-2 * (4.8E-1) 6.83E-2 * (3.2E-3)
DTLZ5 3 1.36E-2 * (2.1E-3) 3.16E-2 * (3.1E-3) 1.34E-2 * (2.5E-3) 1.22E-2 (1.3E-3) 3.42E-2 * (3.2E-3)
DTLZ6 3 2.01E-2 * (3.7E-3) 1.37E0 * (4.3E-1) 2.12E-2 * (3.6E-3) 1.68E-2 (3.4E-3) 3.28E0 * (1.1E0)
DTLZ7 3 7.72E-2 (4.4E-3) 1.20E-1 * (1.6E-2) 7.80E-2 (6.8E-3) 7.63E-2 (4.8E-3) 1.29E-1 * (1.7E-2)
DTLZ1 4 1.10E1 (7.3E0) 2.52E2 * (2.0E1) 8.53E0 (4.5E0) 7.56E1 * (1.8E1) 2.28E2 * (2.7E1)
DTLZ2 4 1.40E-1 (2.4E-6) 1.51E-1 * (1.0E-3) 1.40E-1 (2.7E-6) 1.40E-1 * (8.6E-5) 1.48E-1 * (1.2E-3)
DTLZ3 4 2.72E1 (1.2E1) 6.88E2 * (1.0E2) 2.34E1 (1.4E1) 1.54E2 * (8.7E1) 7.00E2 * (9.6E1)
DTLZ4 4 1.40E-1 (3.1E-1) 1.65E-1 * (8.2E-3) 1.40E-1 (7.1E-5) 1.42E-1 * (3.0E-3) 1.58E-1 * (5.0E-3)
DTLZ5 4 6.16E-2 (1.2E-2) 1.27E-1 * (4.4E-2) 6.53E-2 (1.6E-2) 9.05E-2 * (2.8E-2) 1.49E-1 * (5.8E-2)
DTLZ6 4 1.88E-1 (4.6E-2) 3.97E0 * (6.0E-1) 1.94E-1 (6.1E-2) 2.08E-1 (5.7E-2) 9.25E0 * (1.1E0)
DTLZ7 4 2.17E-1 (2.2E-2) 3.24E-1 * (4.2E-2) 2.11E-1 (2.0E-2) 2.09E-1 (1.5E-2) 3.81E-1 * (5.1E-2)
DTLZ1 5 1.44E1 (7.8E0) 2.63E2 * (3.0E1) 1.67E1 (7.9E0) 1.00E2 * (2.1E1) 2.52E2 * (2.7E1)
DTLZ2 5 2.12E-1 (1.6E-5) 2.29E-1 * (2.1E-3) 2.12E-1 (8.2E-6) 2.13E-1 * (5.1E-4) 2.26E-1 * (1.8E-3)
DTLZ3 5 4.84E1 * (2.5E1) 7.99E2 * (1.1E2) 3.64E1 (1.7E1) 2.66E2 * (6.6E1) 8.11E2 * (1.0E2)
DTLZ4 5 2.12E-1 (2.1E-1) 2.51E-1 * (4.9E-3) 2.12E-1 (2.1E-1) 2.16E-1 * (2.9E-1) 2.42E-1 * (7.6E-3)
DTLZ5 5 1.26E-1 (3.8E-2) 2.97E-1 * (7.0E-2) 1.36E-1 (4.8E-2) 2.36E-1 * (8.0E-2) 3.01E-1 * (1.0E-1)
DTLZ6 5 1.25E0 * (8.5E-1) 5.41E0 * (1.0E0) 5.45E-1 (6.6E-1) 4.90E-1 (1.4E-1) 1.07E1 * (1.2E0)
DTLZ7 5 3.87E-1 (2.6E-2) 4.23E-1 * (3.7E-2) 3.83E-1 (2.7E-2) 3.94E-1 (2.7E-2) 4.32E-1 * (2.5E-2)

n = 1000

DTLZ1 2 4.81E3 (2.3E2) 2.80E4 * (7.5E2) 4.78E3 (2.4E2) 1.03E4 * (2.7E3) 3.03E4 * (2.6E2)
DTLZ2 2 2.12E0 * (3.0E-1) 8.95E0 * (3.0E-1) 2.23E0 * (2.4E-1) 4.58E-3 (1.9E-4) 1.32E1 * (2.9E-1)
DTLZ3 2 1.27E4 * (5.1E2) 7.67E4 * (2.6E3) 1.25E4 (6.4E2) 2.45E4 * (4.3E3) 8.41E4 * (1.0E3)
DTLZ4 2 2.52E0 * (3.8E-1) 9.61E0 * (2.3E-1) 2.70E0 * (5.6E-1) 4.72E-3 (7.3E-1) 1.35E1 * (3.0E-1)
DTLZ5 2 2.14E0 * (2.9E-1) 8.90E0 * (4.4E-1) 2.23E0 * (2.5E-1) 4.56E-3 (3.0E-4) 1.32E1 * (2.6E-1)
DTLZ6 2 5.39E2 * (1.4E1) 4.83E2 * (1.0E1) 5.42E2 * (9.9E0) 1.00E1 (5.6E-1) 7.49E2 * (4.9E0)
DTLZ7 2 1.37E0 * (1.4E-1) 3.25E-1 * (1.2E-2) 1.24E0 * (8.2E-2) 5.04E-3 (1.1E-4) 7.65E-1 * (1.5E-2)
DTLZ1 3 8.44E3 (1.1E3) 2.46E4 * (4.8E2) 8.15E3 (1.2E3) 1.25E4 * (1.1E3) 2.59E4 * (4.4E2)
DTLZ2 3 5.24E0 * (8.1E-1) 1.32E1 * (8.4E-1) 5.39E0 * (5.0E-1) 5.59E-2 (7.4E-4) 1.76E1 * (5.1E-1)
DTLZ3 3 1.76E4 (9.6E2) 8.23E4 * (1.5E3) 1.71E4 (9.1E2) 3.70E4 * (3.8E3) 8.64E4 * (1.0E3)
DTLZ4 3 6.31E0 * (9.1E-1) 1.51E1 * (5.3E-1) 6.56E0 * (1.7E0) 5.81E-2 (4.8E-1) 1.84E1 * (6.4E-1)
DTLZ5 3 5.68E0 * (7.8E-1) 1.53E1 * (5.1E-1) 6.00E0 * (8.4E-1) 1.51E-2 (1.7E-3) 1.96E1 * (4.6E-1)
DTLZ6 3 6.23E2 * (8.2E0) 6.56E2 * (5.6E0) 6.22E2 * (8.9E0) 1.32E1 (6.8E-1) 7.81E2 * (3.3E0)
DTLZ7 3 3.16E0 * (3.1E-1) 9.33E-1 * (6.2E-2) 3.16E0 * (1.4E-1) 7.67E-2 (5.6E-3) 2.11E0 * (1.2E-1)
DTLZ1 4 8.32E3 (7.7E2) 2.27E4 * (3.9E2) 8.36E3 (1.0E3) 1.22E4 * (9.5E2) 2.37E4 * (4.6E2)
DTLZ2 4 7.51E0 * (6.0E-1) 2.07E1 * (5.3E-1) 7.46E0 * (5.1E-1) 1.47E-1 (1.8E-3) 2.34E1 * (6.2E-1)
DTLZ3 4 2.93E4 (3.8E3) 8.37E4 * (9.6E2) 2.86E4 (3.2E3) 4.15E4 * (5.2E3) 8.77E4 * (7.5E2)
DTLZ4 4 8.93E0 * (9.7E-1) 2.64E1 * (1.5E0) 9.59E0 * (1.8E0) 1.66E-1 (3.7E-1) 2.68E1 * (1.0E0)
DTLZ5 4 8.62E0 * (9.9E-1) 2.55E1 * (8.6E-1) 8.63E0 * (5.1E-1) 3.18E-1 (1.3E-1) 2.84E1 * (4.9E-1)
DTLZ6 4 6.93E2 * (5.3E0) 7.18E2 * (4.4E0) 6.90E2 * (6.1E0) 1.11E2 (6.3E1) 8.09E2 * (4.0E0)
DTLZ7 4 5.87E0 * (4.7E-1) 3.30E0 * (2.7E-1) 5.81E0 * (5.8E-1) 2.14E-1 (2.5E-2) 4.93E0 * (4.0E-1)
DTLZ1 5 9.79E3 (1.0E3) 2.19E4 * (5.6E2) 9.61E3 (9.9E2) 1.18E4 * (8.0E2) 2.28E4 * (4.2E2)
DTLZ2 5 9.76E0 * (5.9E-1) 2.80E1 * (1.3E0) 9.78E0 * (8.9E-1) 2.36E-1 (3.5E-3) 3.02E1 * (1.3E0)
DTLZ3 5 3.75E4 (3.2E3) 8.49E4 * (1.0E3) 3.62E4 (3.6E3) 4.49E4 * (4.1E3) 8.83E4 * (1.0E3)
DTLZ4 5 1.16E1 * (1.3E1) 3.41E1 * (2.1E0) 1.14E1 * (1.0E1) 3.01E-1 (6.1E-1) 3.46E1 * (2.2E0)
DTLZ5 5 1.19E1 * (7.6E-1) 3.38E1 * (1.7E0) 1.17E1 * (1.0E0) 6.41E-1 (1.2E-1) 3.61E1 * (1.1E0)
DTLZ6 5 7.42E2 * (7.1E0) 7.62E2 * (1.0E1) 7.40E2 * (8.2E0) 2.91E2 (1.8E1) 8.28E2 * (2.9E0)
DTLZ7 5 5.42E0 * (5.4E-1) 2.32E0 * (3.5E-1) 5.35E0 * (6.7E-1) 3.85E-1 (2.3E-2) 3.80E0 * (4.6E-1)
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Table B.20: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

SMPSO GroupedSMPSO LinkedSMPSO GroupLinkSMPSO HighProbSMPSO

n = 40

DTLZ1 2 2.22E1 (4.6E1) 3.86E1 (7.0E1) 4.48E1 (4.2E1) 5.49E1 (4.3E1) 6.93E1 * (6.4E1)
DTLZ2 2 5.21E-3 (4.4E-4) 5.17E-3 (2.8E-4) 5.23E-3 (1.9E-4) 5.12E-3 (2.8E-4) 5.21E-3 * (1.6E-4)
DTLZ3 2 1.04E2 (2.8E2) 7.61E1 (2.0E2) 1.29E2 (2.3E2) 1.07E2 (1.2E2) 8.11E1 (1.7E2)
DTLZ4 2 5.32E-3 (7.3E-1) 7.42E-1 (7.3E-1) 5.46E-3 (7.3E-1) 5.90E-3 (7.3E-1) 7.42E-1 (7.3E-1)
DTLZ5 2 5.13E-3 (2.3E-4) 5.21E-3 (2.0E-4) 5.16E-3 (2.7E-4) 5.10E-3 (3.6E-4) 5.13E-3 (2.2E-4)
DTLZ6 2 5.21E-3 (3.1E-4) 5.24E-3 (3.6E-4) 5.16E-3 (3.1E-4) 5.29E-3 (3.1E-4) 5.14E-3 (2.3E-4)
DTLZ7 2 5.39E-3 (3.1E-4) 5.39E-3 (5.8E-4) 5.32E-3 (5.8E-4) 4.42E-1 * (4.3E-1) 5.44E-3 (4.3E-1)
DTLZ1 3 1.57E1 (1.7E1) 2.34E1 (2.2E1) 1.66E1 (1.8E1) 1.60E1 (2.8E1) 2.25E1 (2.3E1)
DTLZ2 3 9.47E-2 * (8.0E-3) 9.09E-2 * (8.4E-3) 9.90E-2 * (1.4E-2) 7.64E-2 (4.6E-3) 9.66E-2 * (1.0E-2)
DTLZ3 3 2.63E1 (7.3E1) 6.05E1 (9.7E1) 5.01E1 (5.7E1) 5.01E1 (7.3E1) 2.51E1 (5.3E1)
DTLZ4 3 2.58E-1 (2.8E-1) 3.81E-1 * (2.8E-1) 2.57E-1 (2.6E-1) 5.41E-1 * (2.7E-1) 5.41E-1 * (2.7E-1)
DTLZ5 3 6.74E-3 * (9.5E-4) 6.11E-3 * (4.0E-4) 6.55E-3 * (6.3E-4) 5.79E-3 (3.3E-4) 6.10E-3 * (3.9E-4)
DTLZ6 3 3.42E-1 * (2.2E0) 5.99E-3 (4.7E-4) 6.05E-3 (1.9E-1) 6.03E-3 (4.1E-4) 3.00E0 * (2.4E0)
DTLZ7 3 1.00E-1 (1.7E-2) 1.06E-1 (1.2E-2) 9.95E-2 (1.1E-2) 9.60E-2 (2.1E-2) 1.01E-1 (1.3E-2)
DTLZ1 4 1.90E1 (4.7E1) 2.34E1 (3.3E1) 2.11E1 (2.7E1) 1.80E1 (2.5E1) 2.12E1 (2.6E1)
DTLZ2 4 8.00E-1 (2.0E-1) 8.83E-1 (1.6E-1) 8.01E-1 (1.2E-1) 8.58E-1 (1.5E-1) 8.20E-1 (1.9E-1)
DTLZ3 4 2.52E1 (9.5E1) 5.03E1 (1.0E2) 2.58E1 (7.4E1) 4.82E1 (6.3E1) 5.14E1 (6.7E1)
DTLZ4 4 4.04E-1 (7.9E-2) 4.18E-1 (4.4E-2) 4.04E-1 (6.4E-2) 4.02E-1 (3.1E-2) 4.21E-1 (4.0E-2)
DTLZ5 4 2.86E-1 (8.7E-2) 2.81E-1 (5.8E-2) 2.79E-1 (9.1E-2) 2.79E-1 (1.5E-1) 3.24E-1 (1.2E-1)
DTLZ6 4 1.51E1 (4.8E0) 1.51E1 (4.9E0) 1.48E1 (2.7E0) 1.48E1 (3.9E0) 1.63E1 (5.8E0)
DTLZ7 4 3.34E-1 * (8.1E-2) 3.57E-1 * (3.5E-2) 3.33E-1 * (4.3E-2) 3.09E-1 (3.0E-2) 3.56E-1 * (2.7E-2)
DTLZ1 5 1.25E2 (1.6E2) 1.53E2 (1.7E2) 1.12E2 (2.1E2) 1.33E2 (2.0E2) 1.81E2 (8.7E1)
DTLZ2 5 1.15E0 (3.7E-1) 1.11E0 (3.4E-1) 1.08E0 (2.6E-1) 1.20E0 (4.4E-1) 1.27E0 (3.7E-1)
DTLZ3 5 2.62E2 (3.9E2) 3.54E2 * (2.9E2) 2.25E2 (2.9E2) 1.69E2 (2.0E2) 2.51E2 (3.0E2)
DTLZ4 5 7.29E-1 (2.1E-1) 7.76E-1 (1.5E-1) 8.16E-1 (2.4E-1) 7.81E-1 (1.9E-1) 8.15E-1 (2.1E-1)
DTLZ5 5 7.32E-1 (6.8E-1) 4.53E-1 (4.9E-1) 4.12E-1 (6.9E-1) 4.53E-1 (6.1E-1) 5.85E-1 (6.3E-1)
DTLZ6 5 1.53E1 (3.9E0) 1.73E1 (4.1E0) 1.53E1 (4.0E0) 1.52E1 (6.0E0) 1.68E1 (5.9E0)
DTLZ7 5 7.29E-1 * (2.5E-1) 6.41E-1 * (1.2E-1) 6.18E-1 * (1.9E-1) 5.16E-1 (3.5E-2) 6.85E-1 * (2.0E-1)

n = 1000

DTLZ1 2 2.59E3 * (1.5E3) 2.48E3 * (1.4E3) 1.86E3 (2.1E3) 1.67E3 (1.1E3) 1.85E3 (1.9E3)
DTLZ2 2 3.12E0 * (3.9E-1) 2.05E0 * (3.0E-1) 3.39E0 * (9.1E-1) 5.40E-3 (4.1E-4) 2.77E0 * (6.2E-1)
DTLZ3 2 5.03E3 (5.4E3) 6.02E3 (3.5E3) 4.32E3 (5.9E3) 3.91E3 (3.4E3) 4.66E3 (6.3E3)
DTLZ4 2 3.53E0 * (1.1E0) 2.26E0 * (1.5E0) 4.31E0 * (1.5E0) 5.41E-3 (5.1E-4) 3.24E0 * (1.0E0)
DTLZ5 2 3.09E0 * (7.5E-1) 1.99E0 * (3.2E-1) 3.21E0 * (5.7E-1) 5.29E-3 (3.8E-4) 2.90E0 * (5.0E-1)
DTLZ6 2 4.23E2 * (2.7E1) 1.23E2 * (3.5E1) 4.13E2 * (3.1E1) 6.28E-3 (7.3E-1) 4.75E2 * (1.3E1)
DTLZ7 2 4.88E0 * (3.1E-1) 6.13E-1 (9.2E-2) 4.74E0 * (3.2E-1) 8.10E-1 (3.6E-1) 4.39E0 * (2.1E-1)
DTLZ1 3 6.03E2 (8.8E2) 8.54E2 (8.7E2) 5.79E2 (1.1E3) 8.91E2 (6.3E2) 9.74E2 (1.1E3)
DTLZ2 3 4.83E0 * (1.1E0) 5.69E0 * (1.6E0) 4.91E0 * (9.5E-1) 8.62E-2 (1.1E-2) 5.36E0 * (1.1E0)
DTLZ3 3 1.92E3 (1.7E3) 1.04E3 (1.3E3) 1.49E3 (1.6E3) 1.49E3 (1.2E3) 1.63E3 (2.1E3)
DTLZ4 3 2.36E0 * (1.3E0) 1.96E0 * (8.9E-1) 2.19E0 * (9.5E-1) 5.41E-1 (1.7E-1) 2.54E0 * (1.0E0)
DTLZ5 3 5.46E0 * (1.5E0) 6.90E0 * (1.2E0) 5.37E0 * (1.4E0) 6.38E-3 (1.1E-3) 7.00E0 * (1.5E0)
DTLZ6 3 4.84E2 * (1.4E1) 2.02E2 * (6.2E1) 4.78E2 * (1.7E1) 1.83E0 (7.4E0) 4.81E2 * (2.0E1)
DTLZ7 3 7.90E0 * (5.0E-1) 1.97E0 * (8.3E-1) 7.88E0 * (2.5E-1) 1.53E0 (1.4E0) 7.92E0 * (5.4E-1)
DTLZ1 4 8.47E2 (1.2E3) 7.06E2 (9.9E2) 9.07E2 (9.7E2) 1.11E3 (3.1E3) 8.64E2 (1.1E3)
DTLZ2 4 1.80E1 (4.7E0) 1.91E1 * (7.0E0) 1.74E1 (5.4E0) 1.65E1 (5.5E0) 1.91E1 (5.6E0)
DTLZ3 4 1.62E3 (2.0E3) 2.16E3 (2.0E3) 1.78E3 (2.2E3) 1.67E3 (1.8E3) 1.73E3 (1.0E3)
DTLZ4 4 6.23E0 * (2.1E0) 7.69E0 * (2.5E0) 6.17E0 * (3.1E0) 2.07E0 (1.0E0) 7.38E0 * (4.2E0)
DTLZ5 4 2.67E1 (1.3E1) 3.63E1 (2.4E1) 3.54E1 (1.9E1) 3.52E1 (2.8E1) 3.50E1 (1.3E1)
DTLZ6 4 5.00E2 (2.4E1) 5.03E2 * (1.8E1) 4.96E2 (2.6E1) 4.88E2 (3.5E1) 4.94E2 (2.4E1)
DTLZ7 4 1.16E1 * (6.5E-1) 8.40E0 * (1.3E0) 1.18E1 * (7.6E-1) 3.43E-1 (7.0E-2) 1.16E1 * (3.3E-1)
DTLZ1 5 2.97E3 (5.9E3) 4.49E3 (7.1E3) 4.28E3 (5.1E3) 5.44E3 (6.5E3) 4.31E3 (3.0E3)
DTLZ2 5 2.90E1 (1.5E1) 3.05E1 (1.3E1) 2.67E1 (1.4E1) 2.76E1 (1.4E1) 2.67E1 (1.2E1)
DTLZ3 5 8.22E3 (7.3E3) 9.66E3 (1.0E4) 9.19E3 (6.7E3) 9.11E3 (5.8E3) 1.07E4 (6.8E3)
DTLZ4 5 1.48E1 (6.0E0) 1.56E1 (6.0E0) 1.41E1 (6.9E0) 1.45E1 (8.8E0) 1.70E1 (4.7E0)
DTLZ5 5 4.56E1 (1.6E1) 4.62E1 (1.6E1) 4.05E1 (3.1E1) 4.83E1 (1.7E1) 4.11E1 (1.5E1)
DTLZ6 5 4.97E2 (2.8E1) 5.00E2 (2.5E1) 4.97E2 (1.5E1) 4.99E2 (2.9E1) 5.02E2 (1.8E1)
DTLZ7 5 1.55E1 * (7.6E-1) 1.24E1 * (1.9E0) 1.53E1 * (4.4E-1) 5.90E-1 (1.0E-1) 1.55E1 * (5.5E-1)
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Table B.21: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

SMPSO xSMPSO NSGA-II xNSGA-II NSGA-III xNSGA-III

n = 200

LSMOP1 2 8.99E-1 * (1.5E-1) 2.12E-1 (1.6E-2) 3.13E-1 * (2.8E-2) 5.67E-1 * (3.3E-1) 5.03E-1 * (1.0E-1) 6.87E-1 * (8.3E-3)
LSMOP2 2 9.09E-2 * (3.7E-3) 2.53E-2 (1.4E-3) 9.68E-2 * (2.9E-3) 7.73E-2 * (1.1E-3) 9.30E-2 * (3.7E-3) 7.03E-2 * (1.1E-3)
LSMOP3 2 2.43E1 * (2.5E0) 1.49E0 * (1.0E-2) 1.25E1 * (3.1E0) 9.39E-1 (9.6E-2) 1.33E1 * (2.9E0) 1.03E0 * (1.3E-1)
LSMOP4 2 1.10E-1 * (2.3E-2) 6.80E-2 (6.6E-3) 1.45E-1 * (4.7E-3) 1.43E-1 * (3.1E-3) 1.40E-1 * (3.5E-3) 1.42E-1 * (3.7E-3)
LSMOP5 2 1.10E0 * (3.0E-1) 7.42E-1 * (1.4E-2) 3.96E-1 (9.4E-2) 7.42E-1 * ( — ) 4.76E-1 * (1.0E-1) 7.42E-1 * ( — )
LSMOP6 2 5.17E-1 * (8.1E-2) 1.15E-1 (1.9E-2) 8.86E-1 * (3.2E-2) 6.84E-1 * (7.5E-3) 8.88E-1 * (1.1E-2) 6.88E-1 * (1.4E-2)
LSMOP7 2 6.26E1 * (2.2E1) 1.48E0 * (3.8E-3) 3.62E0 * (1.2E0) 1.47E0 (2.7E-3) 8.22E0 * (1.9E1) 1.47E0 (5.0E-3)
LSMOP8 2 7.85E-1 * (1.5E-1) 2.31E-1 (8.6E-2) 3.86E-1 * (6.2E-2) 7.42E-1 * ( — ) 4.51E-1 * (9.8E-2) 7.42E-1 * ( — )
LSMOP9 2 4.26E-1 (1.2E-2) 8.10E-1 * ( — ) 1.34E0 * (1.2E-1) 8.10E-1 * ( — ) 1.50E0 * (1.2E-1) 8.10E-1 * ( — )

n = 300

LSMOP1 3 2.21E0 * (4.0E-1) 3.66E-1 (1.1E-2) 2.21E0 * (3.8E-1) 4.66E-1 * (5.8E-2) 8.65E-1 * (1.9E-1) 5.27E-1 * (3.3E-2)
LSMOP2 3 9.71E-2 * (4.6E-3) 7.89E-2 (5.2E-3) 1.07E-1 * (4.1E-3) 1.15E-1 * (4.7E-3) 8.32E-2 * (1.2E-3) 8.69E-2 * (7.8E-4)
LSMOP3 3 1.48E1 * (4.1E0) 8.49E-1 (1.0E-1) 7.51E0 * (2.3E0) 7.90E-1 (4.9E-2) 3.95E0 * (1.2E0) 8.37E-1 * (2.4E-2)
LSMOP4 3 2.60E-1 * (8.6E-3) 2.03E-1 (1.1E-2) 2.64E-1 * (1.3E-2) 2.94E-1 * (1.0E-2) 1.97E-1 (5.0E-3) 2.10E-1 * (5.0E-3)
LSMOP5 3 6.19E0 * (1.5E0) 5.18E-1 (2.0E-2) 5.96E0 * (9.8E-1) 5.41E-1 * (8.1E-5) 3.27E0 * (9.6E-1) 5.42E-1 * (3.2E-4)
LSMOP6 3 2.20E3 * (1.8E3) 1.25E0 (3.3E-1) 7.22E1 * (1.5E2) 1.24E0 (3.3E-3) 6.25E0 * (6.8E0) 1.24E0 (3.4E-3)
LSMOP7 3 1.52E0 * (2.6E-2) 9.38E-1 (1.8E-2) 1.55E0 * (7.4E-2) 9.71E-1 * (9.9E-3) 1.53E0 * (2.5E-2) 9.63E-1 * (1.0E-2)
LSMOP8 3 9.80E-1 * (7.5E-2) 3.59E-1 (2.9E-2) 4.62E-1 * (7.5E-2) 3.62E-1 * (9.9E-4) 3.67E-1 * (4.8E-2) 3.63E-1 * (4.2E-4)
LSMOP9 3 1.56E1 * (2.1E0) 1.53E0 * ( — ) 2.94E0 * (1.1E-1) 1.53E0 * ( — ) 2.91E0 * (8.3E-2) 1.49E0 (2.3E-1)

n = 400

LSMOP1 4 4.49E0 * (1.6E0) 8.14E-1 (1.5E-1) 5.59E0 * (6.8E-1) 7.73E-1 * (3.7E-2) 3.15E0 * (3.7E-1) 7.29E-1 (6.8E-2)
LSMOP2 4 1.70E-1 * (5.6E-3) 1.50E-1 (8.2E-3) 1.81E-1 * (1.1E-2) 1.89E-1 * (9.3E-3) 1.52E-1 (1.8E-3) 1.51E-1 (1.8E-3)
LSMOP3 4 1.96E1 * (2.7E0) 1.79E0 * (3.7E-3) 1.45E1 * (2.0E0) 1.74E0 * (1.0E-1) 1.71E1 * (4.5E0) 1.66E0 (1.3E-1)
LSMOP4 4 2.52E-1 * (1.8E-2) 2.35E-1 * (1.3E-2) 2.62E-1 * (1.5E-2) 2.80E-1 * (1.0E-2) 2.01E-1 (3.8E-3) 2.19E-1 * (3.9E-3)
LSMOP5 4 1.83E1 * (6.0E0) 4.60E-1 * (4.9E-3) 1.82E1 * (1.6E0) 4.67E-1 * (7.2E-3) 5.76E0 * (1.0E0) 4.57E-1 (1.1E-3)
LSMOP6 4 1.27E0 * (1.4E-4) 8.83E-1 (3.5E-2) 1.26E0 * (7.9E-3) 8.92E-1 * (3.5E-3) 1.22E0 * (1.0E-2) 8.79E-1 (3.5E-3)
LSMOP7 4 5.34E4 * (5.1E4) 1.22E0 * (1.3E-2) 2.05E4 * (1.0E4) 1.23E0 * (6.6E-3) 5.21E2 * (2.9E2) 1.21E0 (2.0E-3)
LSMOP8 4 1.21E1 * (3.6E0) 4.59E-1 (1.1E-2) 9.32E0 * (1.2E0) 4.66E-1 * (4.8E-3) 2.10E0 * (6.3E-1) 4.57E-1 (1.4E-3)
LSMOP9 4 1.35E1 * (2.4E0) 2.24E0 * ( — ) 5.77E0 * (7.9E-1) 2.24E0 * ( — ) 7.19E0 * (1.0E0) 6.40E-1 (6.1E-1)

n = 500

LSMOP1 5 4.97E0 * (1.8E0) 9.33E-1 (1.8E-2) 8.76E0 * (1.1E0) 9.33E-1 (2.1E-2) 3.00E0 * (5.8E-1) 9.32E-1 (1.4E-2)
LSMOP2 5 2.06E-1 * (1.1E-2) 1.93E-1 * (9.2E-3) 2.17E-1 * (1.3E-2) 2.20E-1 * (9.8E-3) 1.74E-1 (6.3E-4) 1.74E-1 (9.8E-4)
LSMOP3 5 1.98E1 * (2.5E0) 9.58E-1 ( — ) 1.87E1 * (2.7E0) 9.58E-1 ( — ) 1.04E1 * (1.5E0) 9.58E-1 ( — )
LSMOP4 5 3.44E-1 * (2.5E-2) 2.96E-1 * (8.1E-3) 3.75E-1 * (3.5E-2) 3.51E-1 * (1.2E-2) 2.93E-1 (5.6E-3) 2.90E-1 (3.7E-3)
LSMOP5 5 2.21E1 * (9.3E0) 6.01E-1 * (1.0E-1) 2.03E1 * (3.8E0) 5.05E-1 * (4.0E-2) 6.97E0 * (1.5E0) 3.81E-1 (1.3E-2)
LSMOP6 5 7.96E4 * (4.2E4) 1.32E0 * (1.1E-1) 5.14E4 * (9.8E3) 1.26E0 * (5.8E-2) 2.31E1 * (3.5E1) 1.11E0 (5.0E-3)
LSMOP7 5 3.34E0 * (2.0E-1) 1.26E0 * (5.9E-2) 3.46E0 * (1.1E-1) 1.12E0 * (3.5E-2) 2.66E0 * (1.8E-1) 1.05E0 (1.4E-2)
LSMOP8 5 1.21E0 * (1.6E-2) 5.18E-1 * (5.0E-2) 1.21E0 * (1.6E-2) 4.11E-1 * (2.3E-2) 1.15E0 * (1.1E-2) 3.61E-1 (2.1E-3)
LSMOP9 5 5.42E1 * (4.9E0) 3.00E0 * (6.6E-1) 3.07E1 * (1.0E1) 3.00E0 * ( — ) 1.33E1 * (2.4E0) 6.01E-1 (3.3E-2)

n = 1000

LSMOP1 2 1.74E0 * (9.9E-2) 2.99E-1 (3.7E-3) 3.56E0 * (4.3E-1) 5.75E-1 * (1.4E-1) 2.97E0 * (3.5E-1) 6.89E-1 * (5.9E-3)
LSMOP2 2 2.54E-2 * (6.2E-4) 8.91E-3 (3.0E-4) 3.61E-2 * (5.1E-4) 1.91E-2 * (3.2E-4) 3.42E-2 * (4.1E-4) 1.65E-2 * (8.5E-5)
LSMOP3 2 2.78E1 * (9.8E-1) 1.56E0 (1.0E-3) 2.12E1 * (2.3E0) 1.58E0 * (4.0E-4) 2.09E1 * (2.3E0) 1.58E0 * (3.4E-4)
LSMOP4 2 5.33E-2 * (7.0E-4) 2.25E-2 (3.2E-4) 6.07E-2 * (9.9E-4) 5.91E-2 * (1.9E-3) 4.83E-2 * (8.5E-4) 5.37E-2 * (8.2E-4)
LSMOP5 2 3.92E0 * (2.8E-1) 7.42E-1 ( — ) 1.06E1 * (1.0E0) 7.42E-1 ( — ) 8.85E0 * (1.0E0) 7.42E-1 ( — )
LSMOP6 2 7.58E-1 * (1.8E-3) 1.74E-1 (4.8E-3) 7.74E-1 * (9.6E-4) 6.77E-1 * (3.1E-4) 7.73E-1 * (4.8E-4) 6.77E-1 * (3.6E-4)
LSMOP7 2 1.90E3 * (3.6E2) 1.51E0 (3.2E-4) 2.54E3 * (2.6E3) 1.51E0 * (4.0E-4) 5.61E3 * (1.8E3) 1.51E0 * (4.2E-4)
LSMOP8 2 2.98E0 * (3.5E-1) 7.42E-1 ( — ) 4.89E0 * (5.9E-1) 7.42E-1 ( — ) 3.69E0 * (4.0E-1) 7.42E-1 ( — )
LSMOP9 2 2.52E0 * (4.8E-1) 5.61E-1 (1.5E-2) 1.43E0 * (1.3E-1) 8.09E-1 * (5.8E-4) 1.37E0 * (1.6E-1) 8.09E-1 * (5.9E-4)
LSMOP1 3 2.55E0 * (6.8E-1) 3.75E-1 (1.8E-2) 6.17E0 * (8.7E-1) 6.71E-1 * (3.9E-2) 2.97E0 * (3.0E-1) 7.35E-1 * (2.7E-2)
LSMOP2 3 6.35E-2 * (4.1E-3) 6.13E-2 * (4.8E-3) 7.11E-2 * (3.7E-3) 7.49E-2 * (6.6E-3) 5.17E-2 * (1.1E-4) 5.11E-2 (3.0E-4)
LSMOP3 3 1.64E1 * (6.4E0) 8.57E-1 (1.9E-2) 2.00E1 * (6.7E0) 8.60E-1 * ( — ) 1.05E1 * (1.0E0) 8.60E-1 * ( — )
LSMOP4 3 1.18E-1 * (5.2E-3) 8.96E-2 (5.3E-3) 1.29E-1 * (6.9E-3) 1.45E-1 * (7.6E-3) 9.91E-2 * (1.1E-3) 1.05E-1 * (1.7E-3)
LSMOP5 3 6.08E0 * (5.4E-1) 5.34E-1 (9.3E-3) 1.56E1 * (1.7E0) 5.41E-1 * (6.6E-5) 7.34E0 * (8.7E-1) 5.42E-1 * (3.6E-4)
LSMOP6 3 3.20E3 * (9.8E2) 1.30E0 (4.7E-1) 1.08E4 * (3.9E3) 1.31E0 * (1.1E-3) 2.08E3 * (9.7E2) 1.31E0 * (7.6E-4)
LSMOP7 3 1.08E0 * (2.3E-3) 8.58E-1 (4.4E-3) 1.10E0 * (5.1E-3) 8.69E-1 * (1.2E-3) 1.09E0 * (1.9E-3) 8.67E-1 * (1.3E-3)
LSMOP8 3 9.23E-1 * (1.2E-1) 3.27E-1 (6.2E-2) 9.58E-1 * (4.2E-4) 3.43E-1 * (2.8E-2) 7.65E-1 * (3.8E-2) 3.59E-1 * (3.1E-4)
LSMOP9 3 2.63E1 * (1.9E0) 1.53E0 (9.4E-1) 1.37E1 * (1.1E0) 1.53E0 * ( — ) 1.27E1 * (2.0E0) 1.52E0 (3.7E-1)
LSMOP1 4 5.50E0 * (2.9E0) 7.13E-1 (1.7E-1) 8.18E0 * (7.9E-1) 8.64E-1 * (2.0E-2) 5.60E0 * (6.7E-1) 8.62E-1 * (4.2E-2)
LSMOP2 4 1.34E-1 * (5.6E-3) 1.29E-1 * (5.9E-3) 1.44E-1 * (9.9E-3) 1.44E-1 * (7.9E-3) 1.18E-1 * (3.4E-4) 1.16E-1 (8.0E-4)
LSMOP3 4 1.97E1 * (2.2E0) 1.81E0 (4.2E-3) 2.07E1 * (2.1E0) 1.81E0 (2.6E-5) 2.08E1 * (2.3E0) 1.81E0 (4.3E-4)
LSMOP4 4 1.72E-1 * (8.8E-3) 1.52E-1 * (8.6E-3) 1.79E-1 * (9.0E-3) 1.91E-1 * (1.0E-2) 1.45E-1 (1.5E-3) 1.50E-1 * (1.8E-3)
LSMOP5 4 1.76E1 * (5.0E0) 4.58E-1 (7.5E-3) 2.11E1 * (9.2E-1) 4.66E-1 * (5.3E-3) 1.02E1 * (9.0E-1) 4.57E-1 (1.2E-3)
LSMOP6 4 1.12E0 * (3.1E-12) 9.04E-1 (8.9E-2) 1.12E0 * (4.8E-4) 9.05E-1 * (3.4E-3) 1.11E0 * (1.6E-3) 8.99E-1 (9.4E-4)
LSMOP7 4 5.46E4 * (4.1E4) 1.25E0 * (1.1E-2) 3.88E4 * (1.0E4) 1.25E0 * (6.3E-3) 4.33E3 * (1.9E3) 1.23E0 (1.0E-3)
LSMOP8 4 1.26E1 * (4.6E0) 4.54E-1 (1.0E-2) 1.25E1 * (8.4E-1) 4.64E-1 * (4.4E-3) 4.34E0 * (5.3E-1) 4.57E-1 (8.8E-4)
LSMOP9 4 1.47E1 * (3.1E0) 2.24E0 * ( — ) 2.28E1 * (4.2E0) 2.24E0 * ( — ) 2.30E1 * (2.9E0) 6.54E-1 (1.6E0)
LSMOP1 5 6.42E0 * (1.7E0) 9.32E-1 (1.5E-2) 9.61E0 * (1.1E0) 9.39E-1 * (4.8E-3) 5.08E0 * (7.1E-1) 9.33E-1 (6.1E-3)
LSMOP2 5 1.85E-1 * (8.3E-3) 1.83E-1 * (7.1E-3) 1.91E-1 * (9.9E-3) 1.93E-1 * (1.5E-2) 1.53E-1 * (1.3E-4) 1.52E-1 (4.5E-4)
LSMOP3 5 2.10E1 * (3.0E0) 9.58E-1 ( — ) 2.35E1 * (2.2E0) 9.58E-1 ( — ) 1.30E1 * (3.0E0) 9.58E-1 ( — )
LSMOP4 5 2.54E-1 * (1.6E-2) 2.35E-1 * (1.1E-2) 2.86E-1 * (2.8E-2) 2.72E-1 * (1.1E-2) 2.24E-1 (1.6E-3) 2.26E-1 * (2.0E-3)
LSMOP5 5 2.04E1 * (6.4E0) 5.69E-1 * (9.9E-2) 2.10E1 * (2.4E0) 4.88E-1 * (2.5E-2) 9.91E0 * (7.3E-1) 3.78E-1 (1.1E-2)
LSMOP6 5 9.26E4 * (3.4E4) 1.37E0 * (1.2E-1) 5.58E4 * (1.1E4) 1.29E0 * (1.2E-1) 2.15E2 * (2.5E2) 1.17E0 (1.7E-3)
LSMOP7 5 2.05E0 * (5.0E-2) 1.13E0 * (4.3E-2) 2.09E0 * (3.7E-2) 1.05E0 * (3.2E-2) 1.84E0 * (3.5E-2) 9.99E-1 (6.0E-3)
LSMOP8 5 1.15E0 * (2.1E-3) 5.18E-1 * (9.0E-2) 1.15E0 * (1.5E-3) 3.99E-1 * (1.5E-2) 1.15E0 * (2.8E-3) 3.59E-1 (3.2E-3)
LSMOP9 5 6.17E1 * (4.0E0) 3.00E0 * ( — ) 7.37E1 * (9.5E0) 3.00E0 * ( — ) 4.83E1 * (7.7E0) 6.75E-1 (4.0E-1)
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Table B.22: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

SMPSO xSMPSO NSGA-II xNSGA-II NSGA-III xNSGA-III

n = 40

UF1 2 1.17E-1 * (3.6E-2) 1.53E-1 * (3.6E-2) 1.09E-1 (2.9E-2) 1.05E-1 (1.4E-2) 1.04E-1 (2.3E-2) 1.06E-1 (3.7E-2)
UF2 2 6.40E-2 * (9.7E-3) 6.55E-2 * (9.1E-3) 4.35E-2 (9.5E-3) 4.36E-2 (1.6E-2) 4.21E-2 (1.0E-2) 4.39E-2 (1.0E-2)
UF3 2 2.14E-1 * (1.3E-1) 1.64E-1 (2.4E-2) 2.33E-1 * (7.4E-2) 1.74E-1 (2.0E-2) 2.26E-1 * (1.0E-1) 1.88E-1 * (2.0E-2)
UF4 2 1.01E-1 * (1.9E-2) 7.45E-2 * (1.1E-2) 4.90E-2 (2.0E-3) 4.74E-2 (2.4E-3) 4.98E-2 * (2.6E-3) 4.71E-2 (4.1E-3)
UF5 2 1.48E0 * (1.2E0) 1.45E0 * (1.4E0) 3.20E-1 * (1.4E-1) 3.22E-1 (1.1E-1) 2.68E-1 (8.3E-2) 3.26E-1 (1.2E-1)
UF6 2 3.80E-1 * (1.4E-1) 4.01E-1 * (1.2E-1) 1.18E-1 (9.3E-2) 1.10E-1 (2.1E-2) 1.08E-1 (1.9E-2) 1.10E-1 (2.9E-2)
UF7 2 5.21E-2 (2.4E-1) 5.03E-2 (2.2E-2) 5.36E-2 (2.8E-1) 5.19E-2 (1.7E-2) 5.60E-2 (4.0E-2) 5.05E-2 (1.4E-2)
UF8 3 4.55E-1 * (1.4E-1) 4.19E-1 * (1.1E-1) 3.08E-1 (3.4E-2) 3.05E-1 (7.6E-2) 5.29E-1 * (1.4E-2) 5.37E-1 * (1.3E-2)
UF9 3 5.18E-1 * (1.0E-1) 5.75E-1 * (7.2E-2) 3.31E-1 (1.4E-1) 3.38E-1 (6.3E-2) 3.54E-1 (1.8E-1) 3.84E-1 (1.5E-1)
UF10 3 2.51E0 * (1.0E0) 2.63E0 * (7.4E-1) 4.59E-1 * (8.6E-2) 4.31E-1 * (1.6E-1) 3.71E-1 (8.7E-2) 4.02E-1 (1.2E-1)

n = 1000

UF1 2 1.39E0 * (1.5E-2) 1.39E0 * (1.9E-2) 2.74E-1 (4.5E-2) 3.66E-1 * (7.1E-2) 2.85E-1 (5.6E-2) 3.46E-1 * (7.4E-2)
UF2 2 1.69E-1 * (6.0E-3) 1.66E-1 (2.7E-2) 2.31E-1 * (1.4E-2) 2.57E-1 * (1.9E-2) 2.25E-1 * (1.2E-2) 2.37E-1 * (1.0E-2)
UF3 2 3.28E-1 * (6.2E-3) 1.23E-1 (1.1E-3) 2.71E-1 * (8.2E-3) 2.25E-1 * (2.7E-2) 2.80E-1 * (6.1E-3) 2.38E-1 * (9.3E-3)
UF4 2 1.36E-1 * (9.4E-4) 1.30E-1 * (3.4E-3) 1.63E-1 * (3.8E-3) 8.73E-2 (1.0E-2) 1.62E-1 * (2.4E-3) 8.99E-2 (7.7E-3)
UF5 2 5.55E0 * (6.9E-2) 5.54E0 * (1.3E-1) 1.96E0 (3.2E-1) 2.16E0 * (4.8E-1) 1.91E0 (7.0E-1) 2.30E0 * (6.4E-1)
UF6 2 5.48E0 * (3.3E-1) 5.61E0 * (2.2E-1) 8.65E-1 (2.3E-1) 1.20E0 * (2.3E-1) 9.21E-1 (2.8E-1) 1.28E0 * (2.3E-1)
UF7 2 1.41E0 * (2.9E-2) 1.42E0 * (2.2E-2) 3.35E-1 (9.3E-2) 4.21E-1 * (2.5E-1) 2.95E-1 (7.9E-2) 3.85E-1 * (1.0E-1)
UF8 3 5.64E-1 * (4.5E-2) 4.89E-1 (2.9E-2) 9.60E-1 * (7.6E-2) 1.08E0 * (9.3E-2) 8.49E-1 * (7.5E-2) 9.18E-1 * (6.3E-2)
UF9 3 7.96E-1 * (2.8E-2) 7.08E-1 (1.7E-2) 7.78E-1 * (3.9E-2) 9.01E-1 * (7.1E-2) 8.50E-1 * (3.5E-2) 9.08E-1 * (4.4E-2)
UF10 3 4.85E0 * (4.7E-1) 2.07E0 (2.2E0) 3.61E0 * (1.3E0) 4.23E0 * (1.6E0) 2.94E0 (4.5E-1) 3.78E0 * (3.7E-1)

Table B.23: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

SMPSO xSMPSO NSGA-II xNSGA-II NSGA-III xNSGA-III

n = 40

WFG1 2 1.23E0 * (2.4E-2) 1.23E0 * (3.0E-2) 4.80E-2 (5.6E-2) 9.29E-2 * (5.4E-2) 1.11E-1 * (5.1E-2) 2.02E-1 * (7.4E-2)
WFG2 2 2.61E-1 * (3.2E-2) 1.84E-1 * (5.7E-2) 6.66E-1 * (8.8E-3) 3.65E-2 (1.4E-2) 6.65E-1 * (4.4E-1) 3.25E-2 (1.9E-2)
WFG3 2 6.08E-2 * (1.9E-2) 6.97E-2 * (2.8E-2) 2.86E-2 (1.0E-2) 3.34E-2 (7.5E-3) 2.87E-2 (1.0E-2) 3.41E-2 (9.6E-3)
WFG4 2 9.72E-2 * (1.0E-2) 1.13E-1 * (1.6E-2) 2.09E-2 * (1.6E-3) 2.17E-2 * (1.7E-3) 1.72E-2 (2.1E-3) 1.90E-2 * (2.2E-3)
WFG5 2 8.04E-2 * (3.2E-2) 8.78E-2 * (3.6E-2) 7.21E-2 * (7.3E-4) 7.20E-2 * (7.6E-4) 7.05E-2 (5.4E-4) 7.08E-2 (1.5E-3)
WFG6 2 4.72E-2 * (1.3E-3) 2.87E-2 (4.1E-3) 5.76E-2 * (1.1E-2) 5.73E-2 * (3.0E-2) 5.73E-2 * (1.8E-2) 8.09E-2 * (2.1E-6)
WFG7 2 2.30E-2 * (5.9E-3) 3.63E-2 * (1.5E-2) 1.75E-2 (1.0E-3) 1.82E-2 * (2.5E-3) 1.50E-2 (6.1E-3) 1.71E-2 (8.2E-3)
WFG8 2 3.38E-1 * (4.9E-2) 3.61E-1 * (5.5E-2) 2.37E-1 (9.1E-3) 2.43E-1 * (6.5E-3) 2.54E-1 * (1.7E-2) 2.49E-1 * (1.0E-2)
WFG9 2 9.42E-2 * (1.5E-2) 4.82E-2 (1.1E-2) 9.28E-2 * (1.4E-3) 9.33E-2 * (1.4E-3) 9.27E-2 * (2.2E-3) 9.47E-2 * (5.3E-3)
WFG1 3 1.54E0 * (1.8E-2) 1.53E0 * (1.8E-2) 6.33E-1 (7.6E-2) 7.79E-1 * (9.8E-2) 8.90E-1 * (1.3E-1) 1.03E0 * (8.6E-2)
WFG2 3 3.13E-1 * (9.2E-2) 3.01E-1 * (1.0E-1) 5.13E-1 * (1.6E-2) 2.27E-1 * (2.0E-2) 4.88E-1 * (5.7E-3) 1.74E-1 (8.4E-3)
WFG3 3 2.36E-1 * (6.3E-2) 1.44E-1 * (5.4E-2) 1.33E-1 * (2.9E-2) 1.44E-1 * (2.7E-2) 9.94E-2 (3.6E-2) 1.57E-1 * (3.9E-2)
WFG4 3 4.16E-1 * (3.5E-2) 4.24E-1 * (4.4E-2) 2.85E-1 * (1.2E-2) 2.88E-1 * (9.2E-3) 2.30E-1 (3.6E-3) 2.36E-1 * (5.0E-3)
WFG5 3 4.73E-1 * (9.9E-2) 4.68E-1 * (1.3E-1) 2.92E-1 * (1.0E-2) 2.92E-1 * (1.7E-2) 2.38E-1 (2.5E-3) 2.37E-1 (3.1E-3)
WFG6 3 3.38E-1 * (4.2E-2) 3.29E-1 * (3.5E-2) 3.05E-1 * (1.7E-2) 3.35E-1 * (2.9E-2) 2.36E-1 (8.9E-3) 2.40E-1 * (2.3E-3)
WFG7 3 4.55E-1 * (6.2E-2) 4.91E-1 * (6.1E-2) 2.87E-1 * (2.0E-2) 2.90E-1 * (3.0E-2) 2.29E-1 (1.2E-2) 2.32E-1 (1.3E-2)
WFG8 3 7.19E-1 * (4.5E-2) 7.18E-1 * (4.1E-2) 4.52E-1 * (1.5E-2) 4.55E-1 * (2.4E-2) 3.53E-1 (9.8E-3) 3.64E-1 * (1.2E-2)
WFG9 3 3.96E-1 * (4.0E-2) 3.80E-1 * (6.2E-2) 3.22E-1 * (1.3E-2) 3.28E-1 * (2.2E-2) 2.46E-1 (4.7E-3) 2.49E-1 * (4.4E-3)

n = 1000

WFG1 2 1.31E0 * (1.2E-2) 1.26E0 (6.6E-3) 1.70E0 * (5.4E-2) 1.30E0 * (1.3E-3) 1.64E0 * (4.6E-2) 1.29E0 * (1.6E-3)
WFG2 2 8.91E-1 * (5.4E-1) 4.39E-1 (8.5E-3) 8.97E-1 * (2.5E-2) 6.51E-1 * (2.5E-2) 8.84E-1 * (2.5E-2) 6.54E-1 * (1.4E-2)
WFG3 2 9.00E-1 * (5.4E-2) 4.76E-1 (7.8E-2) 8.37E-1 * (4.5E-2) 5.17E-1 * (1.7E-2) 8.01E-1 * (3.1E-2) 6.10E-1 * (1.6E-2)
WFG4 2 4.92E-1 * (1.4E-2) 5.03E-1 * (1.5E-2) 9.72E-1 * (6.3E-2) 3.89E-1 (1.3E-2) 9.14E-1 * (5.7E-2) 4.16E-1 * (1.7E-2)
WFG5 2 6.07E-1 * (1.9E-2) 5.31E-1 (1.9E-2) 9.75E-1 * (5.1E-2) 5.24E-1 (5.5E-2) 8.88E-1 * (3.9E-2) 5.15E-1 (5.9E-2)
WFG6 2 2.87E-1 * (1.6E-2) 1.83E-2 * (2.0E-3) 1.04E0 * (7.6E-2) 2.16E-2 * (3.0E-3) 9.52E-1 * (6.3E-2) 1.33E-2 (1.4E-4)
WFG7 2 9.37E-1 * (3.4E-2) 5.96E-1 * (1.5E-2) 9.17E-1 * (2.7E-2) 4.52E-1 (1.1E-2) 8.83E-1 * (6.6E-2) 5.11E-1 * (2.1E-2)
WFG8 2 1.27E0 * (8.1E-2) 3.69E-1 (6.5E-2) 1.09E0 * (3.4E-2) 6.07E-1 * (1.6E-2) 1.04E0 * (3.9E-2) 6.29E-1 * (1.2E-2)
WFG9 2 4.66E-1 * (7.4E-2) 3.07E-1 (5.0E-2) 9.72E-1 * (7.1E-2) 3.56E-1 * (8.1E-2) 9.24E-1 * (7.9E-2) 3.84E-1 * (4.0E-2)
WFG1 3 1.75E0 * (4.5E-2) 1.68E0 * (3.5E-2) 1.81E0 * (4.8E-2) 1.63E0 * (7.3E-2) 1.84E0 * (4.7E-2) 1.54E0 (2.9E-3)
WFG2 3 1.75E0 * (2.3E-2) 1.14E0 * (7.6E-2) 1.79E0 * (2.1E-2) 1.17E0 * (5.2E-2) 1.77E0 * (3.2E-2) 1.00E0 (3.3E-2)
WFG3 3 8.63E-1 * (8.2E-2) 6.80E-1 (6.7E-2) 8.73E-1 * (3.8E-2) 1.15E0 * (1.1E-2) 1.19E0 * (1.6E-1) 9.88E-1 * (1.6E-2)
WFG4 3 1.36E0 * (6.4E-2) 1.36E0 (7.3E-2) 1.87E0 * (6.3E-2) 1.34E0 (4.6E-2) 2.87E0 * (1.0E-1) 1.66E0 * (5.9E-2)
WFG5 3 1.57E0 * (4.7E-2) 1.45E0 (4.5E-2) 1.67E0 * (5.9E-2) 1.43E0 (6.1E-2) 1.62E0 * (8.5E-2) 2.68E0 * (6.3E-2)
WFG6 3 1.16E0 * (8.7E-2) 3.61E-1 * (4.0E-2) 1.58E0 * (5.8E-2) 3.56E-1 * (3.8E-2) 1.45E0 * (3.2E-2) 2.23E-1 (1.0E-3)
WFG7 3 1.60E0 * (4.4E-2) 1.23E0 (6.2E-2) 1.78E0 * (5.3E-2) 1.44E0 * (2.8E-2) 2.52E0 * (2.2E-1) 1.70E0 * (9.3E-2)
WFG8 3 1.79E0 * (7.8E-2) 1.12E0 (6.6E-2) 1.83E0 * (5.7E-2) 1.44E0 * (2.9E-2) 1.89E0 * (7.5E-2) 1.34E0 * (2.4E-2)
WFG9 3 1.21E0 * (8.1E-2) 1.17E0 * (7.2E-2) 1.57E0 * (6.3E-2) 1.11E0 (1.2E-1) 1.35E0 * (9.7E-2) 1.06E0 (2.0E-1)
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Table B.24: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

SMPSO xSMPSO NSGA-II xNSGA-II NSGA-III xNSGA-III

n = 40

DTLZ1 2 2.63E1 * (8.9E1) 3.96E1 * (5.8E1) 8.08E-1 (1.0E0) 2.64E0 * (1.0E0) 2.65E0 * (8.2E-1) 5.98E0 * (4.2E0)
DTLZ2 2 5.21E-3 * (1.8E-4) 5.25E-3 * (2.5E-4) 5.08E-3 * (2.6E-4) 5.13E-3 * (1.6E-4) 3.96E-3 (7.7E-8) 3.96E-3 * (1.6E-7)
DTLZ3 2 1.08E2 * (1.6E2) 4.54E1 * (1.2E2) 2.15E0 (1.1E0) 6.99E0 * (4.5E0) 5.29E0 * (4.0E0) 1.35E1 * (8.4E0)
DTLZ4 2 5.40E-3 * (7.3E-1) 5.30E-3 * (6.3E-4) 5.08E-3 * (3.8E-4) 5.09E-3 * (1.7E-4) 3.96E-3 (3.2E-6) 3.96E-3 (2.9E-7)
DTLZ5 2 5.10E-3 * (3.0E-4) 5.40E-3 * (4.7E-4) 5.12E-3 * (1.3E-4) 5.02E-3 * (3.4E-4) 3.96E-3 (6.7E-8) 3.96E-3 * (1.4E-7)
DTLZ6 2 5.20E-3 * (2.8E-4) 5.13E-3 * (3.7E-4) 6.04E-3 * (8.6E-3) 5.68E-3 * (3.6E-4) 3.96E-3 (4.5E-8) 3.96E-3 (2.5E-8)
DTLZ7 2 5.49E-3 * (4.3E-1) 5.33E-3 * (3.6E-4) 5.30E-3 * (2.1E-4) 5.35E-3 * (3.4E-4) 5.08E-3 (1.0E-4) 5.19E-3 * (1.4E-4)
DTLZ1 3 1.76E1 * (3.3E1) 4.17E1 * (4.7E1) 8.59E0 * (5.0E0) 1.54E1 * (5.1E0) 6.45E0 (3.2E0) 1.10E1 * (5.3E0)
DTLZ2 3 9.53E-2 * (1.2E-2) 1.03E-1 * (2.0E-2) 7.26E-2 * (4.0E-3) 7.18E-2 * (3.1E-3) 5.44E-2 (7.7E-7) 5.44E-2 * (2.5E-6)
DTLZ3 3 5.29E1 * (6.7E1) 2.51E1 (4.9E1) 1.63E1 (1.0E1) 2.67E1 * (1.7E1) 1.33E1 (7.3E0) 2.85E1 * (1.0E1)
DTLZ4 3 2.58E-1 (2.4E-1) 2.64E-1 (4.9E-2) 7.22E-2 (3.4E-3) 7.18E-2 (2.7E-3) 5.44E-2 (4.8E-1) 5.44E-2 (6.7E-6)
DTLZ5 3 6.49E-3 (6.5E-4) 7.55E-3 * (1.5E-3) 6.42E-3 (4.1E-4) 6.44E-3 (4.4E-4) 1.37E-2 * (2.2E-3) 1.37E-2 * (3.0E-3)
DTLZ6 3 6.35E-3 * (2.0E0) 5.92E-3 (3.9E-4) 8.70E-3 * (8.5E-3) 6.46E-3 * (5.7E-4) 2.10E-2 * (4.8E-3) 2.08E-2 * (4.2E-3)
DTLZ7 3 1.00E-1 * (9.7E-3) 1.03E-1 * (1.5E-2) 8.19E-2 (5.9E-3) 7.96E-2 (7.3E-3) 7.78E-2 (3.9E-3) 7.83E-2 (5.5E-3)
DTLZ1 4 1.54E1 (3.1E1) 2.07E1 * (2.4E1) 3.61E1 * (1.8E1) 2.08E2 * (5.1E1) 1.18E1 (7.2E0) 1.67E1 * (8.0E0)
DTLZ2 4 8.92E-1 * (1.6E-1) 8.70E-1 * (1.8E-1) 1.64E-1 * (7.4E-3) 1.74E-1 * (8.6E-3) 1.40E-1 (3.9E-6) 1.40E-1 * (9.7E-6)
DTLZ3 4 4.49E1 (7.6E1) 2.53E1 (5.9E1) 7.18E1 * (4.1E1) 9.92E1 * (4.2E1) 2.80E1 (1.0E1) 5.24E1 * (2.9E1)
DTLZ4 4 4.10E-1 * (3.4E-2) 5.28E-1 * (8.1E-2) 1.64E-1 * (8.6E-3) 1.71E-1 * (8.8E-3) 1.40E-1 (9.0E-5) 1.40E-1 (4.2E-5)
DTLZ5 4 3.06E-1 * (6.4E-2) 2.80E-1 * (7.9E-2) 1.32E-1 * (3.7E-2) 1.52E-1 * (4.3E-2) 6.23E-2 (1.4E-2) 1.33E-1 * (5.3E-2)
DTLZ6 4 1.48E1 * (3.1E0) 9.62E-2 (4.1E-2) 1.48E1 * (2.8E0) 2.00E-1 * (8.2E-2) 1.99E-1 * (7.7E-2) 2.63E-1 * (6.2E-2)
DTLZ7 4 3.36E-1 * (7.7E-2) 3.25E-1 * (1.7E-2) 2.33E-1 * (1.9E-2) 2.32E-1 * (1.2E-2) 2.10E-1 (1.9E-2) 2.14E-1 (2.6E-2)
DTLZ1 5 1.12E2 * (2.1E2) 1.01E2 * (1.0E2) 5.75E1 * (2.0E1) 2.59E2 * (3.7E1) 1.64E1 (7.2E0) 1.35E2 * (6.5E1)
DTLZ2 5 1.28E0 * (4.5E-1) 1.16E0 * (3.9E-1) 2.63E-1 * (8.3E-3) 3.01E-1 * (2.1E-2) 2.12E-1 (1.2E-5) 2.12E-1 * (2.5E-5)
DTLZ3 5 2.74E2 * (3.8E2) 9.48E1 * (7.6E1) 1.97E2 * (5.4E1) 8.14E2 * (2.6E1) 4.82E1 (2.8E1) 1.45E2 * (3.2E2)
DTLZ4 5 7.54E-1 * (2.6E-1) 9.51E-1 * (1.9E-1) 2.62E-1 (1.3E-2) 3.03E-1 (1.4E-2) 2.12E-1 (2.2E-1) 2.12E-1 (7.9E-5)
DTLZ5 5 5.36E-1 * (4.9E-1) 4.96E-1 * (4.2E-1) 1.06E0 * (5.0E-1) 1.34E0 * (3.5E-1) 1.21E-1 (3.6E-2) 2.90E-1 * (1.0E-1)
DTLZ6 5 1.53E1 * (4.0E0) 1.10E-1 (5.8E-2) 2.34E1 * (1.1E0) 3.42E-1 * (1.0E-1) 1.24E0 * (8.1E-1) 3.30E-1 * (9.5E-2)
DTLZ7 5 7.67E-1 * (1.2E-1) 5.14E-1 * (2.3E-2) 4.06E-1 * (2.4E-2) 4.00E-1 (2.3E-2) 3.85E-1 (3.4E-2) 3.88E-1 (2.3E-2)

n = 1000

DTLZ1 2 2.05E3 * (1.4E3) 1.28E3 (1.1E3) 4.37E3 * (1.9E2) 2.63E3 * (7.6E3) 4.85E3 * (2.5E2) 2.57E3 * (4.9E3)
DTLZ2 2 3.22E0 * (7.8E-1) 3.60E0 * (8.0E-1) 1.97E0 (2.3E-1) 3.87E0 * (6.7E-1) 2.04E0 (2.2E-1) 3.82E0 * (5.2E-1)
DTLZ3 2 5.90E3 * (5.8E3) 2.20E3 (3.6E3) 1.16E4 * (5.3E2) 2.39E4 * (2.3E2) 1.29E4 * (5.6E2) 4.23E3 * (6.5E3)
DTLZ4 2 3.91E0 * (1.9E0) 4.36E0 * (1.4E0) 2.42E0 (4.9E-1) 4.67E0 * (8.9E-1) 2.55E0 (3.8E-1) 4.51E0 * (7.5E-1)
DTLZ5 2 3.20E0 * (4.7E-1) 3.53E0 * (4.9E-1) 1.94E0 (2.4E-1) 3.88E0 * (5.2E-1) 2.05E0 (3.3E-1) 3.72E0 * (4.9E-1)
DTLZ6 2 4.40E2 * (1.5E1) 5.30E-3 * (3.1E-4) 5.87E2 * (1.1E1) 5.82E-3 * (3.4E-4) 5.39E2 * (1.7E1) 3.96E-3 (2.4E-8)
DTLZ7 2 4.88E0 * (3.2E-1) 5.38E-3 * (3.0E-4) 1.64E0 * (1.5E-1) 5.40E-3 * (2.8E-4) 1.36E0 * (1.6E-1) 5.12E-3 (1.5E-4)
DTLZ1 3 7.94E2 (8.9E2) 6.64E2 (1.0E3) 7.41E3 * (3.9E2) 7.31E3 * (2.1E2) 8.42E3 * (1.2E3) 6.53E3 * (2.8E3)
DTLZ2 3 4.80E0 * (1.5E0) 4.36E0 (8.0E-1) 8.28E0 * (7.6E-1) 1.03E1 * (8.4E-1) 5.06E0 * (5.5E-1) 7.42E0 * (5.4E-1)
DTLZ3 3 1.80E3 (1.8E3) 1.26E3 (1.4E3) 1.78E4 * (8.2E2) 8.82E3 * (1.4E4) 1.75E4 * (1.3E3) 7.72E3 * (1.0E4)
DTLZ4 3 1.82E0 * (1.4E0) 6.70E-1 (3.8E-1) 1.00E1 * (1.6E0) 1.27E1 * (1.0E0) 6.25E0 * (1.0E0) 8.72E0 * (8.4E-1)
DTLZ5 3 5.13E0 (1.2E0) 5.03E0 (1.8E0) 9.67E0 * (8.6E-1) 1.21E1 * (1.1E0) 5.87E0 * (6.2E-1) 8.21E0 * (7.1E-1)
DTLZ6 3 4.85E2 * (2.4E1) 5.82E-3 (4.9E-4) 7.52E2 * (5.8E0) 6.52E-3 * (5.5E-4) 6.23E2 * (5.5E0) 2.27E-2 * (4.6E-3)
DTLZ7 3 8.12E0 * (3.6E-1) 1.53E0 * (1.4E0) 2.88E0 * (2.4E-1) 8.16E-2 (5.7E-3) 3.23E0 * (3.4E-1) 7.89E-2 (5.6E-3)
DTLZ1 4 6.65E2 (1.1E3) 4.40E2 (7.3E2) 1.09E4 * (9.0E2) 7.35E3 * (3.3E2) 8.34E3 * (9.6E2) 6.49E3 * (2.1E2)
DTLZ2 4 1.90E1 * (5.6E0) 1.82E1 * (8.3E0) 2.24E1 * (1.2E0) 2.64E1 * (1.9E0) 7.38E0 (9.1E-1) 9.54E0 * (6.6E-1)
DTLZ3 4 1.85E3 * (2.4E3) 2.29E2 (2.1E2) 3.61E4 * (1.7E3) 2.48E4 * (2.3E1) 2.84E4 * (3.1E3) 1.32E4 * (1.2E4)
DTLZ4 4 5.84E0 (2.1E0) 6.13E0 (2.6E0) 2.45E1 * (1.4E0) 2.76E1 * (3.0E0) 9.79E0 * (2.8E0) 1.20E1 * (1.8E0)
DTLZ5 4 3.53E1 * (1.3E1) 9.64E0 (2.0E1) 5.70E1 * (3.4E0) 6.67E1 * (2.9E0) 8.58E0 (4.7E-1) 1.32E1 * (1.6E0)
DTLZ6 4 5.04E2 * (1.7E1) 1.41E-1 (8.0E-2) 8.71E2 * (5.9E0) 3.42E-1 * (2.4E-2) 6.92E2 * (5.7E0) 3.35E-1 * (6.8E-2)
DTLZ7 4 1.15E1 * (4.0E-1) 2.24E0 * (1.0E0) 5.06E0 * (4.5E-1) 2.24E0 * (2.0E0) 5.89E0 * (4.1E-1) 2.09E-1 (2.2E-2)
DTLZ1 5 3.26E3 (4.8E3) 2.29E3 (2.1E3) 1.23E4 * (7.8E2) 7.77E3 * (6.2E2) 1.01E4 * (1.2E3) 6.22E3 * (7.3E2)
DTLZ2 5 3.30E1 * (1.4E1) 2.78E1 * (1.0E1) 4.60E1 * (4.0E0) 6.41E1 * (7.3E0) 9.69E0 (1.0E0) 1.22E1 * (1.0E0)
DTLZ3 5 8.66E3 * (7.8E3) 2.23E3 (2.3E3) 6.30E4 * (3.4E3) 2.48E4 * (1.0E1) 3.75E4 * (3.9E3) 1.78E4 * (9.9E3)
DTLZ4 5 1.45E1 * (4.4E0) 1.58E1 (8.0E0) 4.65E1 * (3.1E0) 6.00E1 * (3.6E0) 1.14E1 (1.2E0) 1.40E1 * (1.0E1)
DTLZ5 5 4.84E1 * (1.2E1) 2.08E1 (2.0E1) 7.23E1 * (2.2E0) 7.41E1 * (2.4E0) 1.19E1 (1.0E0) 2.14E1 * (2.4E0)
DTLZ6 5 4.98E2 * (1.9E1) 1.27E-1 (1.4E-1) 8.79E2 * (7.0E0) 7.42E-1 * (3.9E-1) 7.41E2 * (5.8E0) 6.08E-1 * (4.3E-1)
DTLZ7 5 1.53E1 * (7.8E-1) 3.00E0 * (1.2E0) 9.32E0 * (6.4E-1) 3.00E0 * ( — ) 5.37E0 * (5.7E-1) 3.90E-1 (2.6E-2)
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Table B.25: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

WOF-NSGA-II ReNSGA-II WOF-MOEA/D ReMOEA/D WOF-Randomised

n = 200

LSMOP1 2 5.78E-1 * (8.4E-2) 1.38E0 * (2.8E0) 2.13E-1 (3.1E-2) 1.83E1 * (4.6E0) 1.80E-1 (1.0E-1)
LSMOP2 2 4.78E-2 * (9.0E-3) 1.56E-1 * (7.9E-3) 6.83E-2 * (7.1E-3) 1.71E-1 * (1.2E-3) 2.08E-2 (5.6E-3)
LSMOP3 2 1.06E0 * (2.4E-1) 2.29E1 * (4.7E0) 7.08E-1 (3.3E-2) 3.13E1 * (4.0E0) 1.45E0 * (5.1E-1)
LSMOP4 2 1.16E-1 * (6.5E-3) 2.09E-1 * (3.0E-2) 1.46E-1 * (7.7E-3) 2.90E-1 * (9.8E-3) 8.34E-2 (1.6E-2)
LSMOP5 2 3.43E-1 * (2.6E-2) 3.11E0 * (3.0E-1) 2.01E-1 (1.1E-2) 4.42E1 * (4.4E0) 3.94E-1 * (8.6E-2)
LSMOP6 2 6.57E-1 * (4.7E-2) 9.72E-1 * (1.3E-2) 7.47E-1 * (1.9E-3) 9.72E-1 * (1.5E-12) 3.93E-1 (2.0E-1)
LSMOP7 2 1.47E0 * (5.0E-3) 2.10E3 * (8.7E2) 1.46E0 (2.6E-3) 2.46E5 * (3.6E4) 1.47E0 * (1.0E-2)
LSMOP8 2 7.42E-1 * (3.9E-1) 2.67E0 * (5.1E-1) 1.14E-1 (8.9E-3) 3.81E1 * (3.7E0) 2.53E-1 * (1.7E-1)
LSMOP9 2 8.10E-1 * (1.5E-9) 2.81E1 * (2.0E1) 1.74E-1 (4.1E-2) 1.38E2 * (1.6E1) 8.10E-1 * ( — )

n = 300

LSMOP1 3 3.09E-1 (5.8E-2) 6.07E0 * (2.0E0) 4.36E-1 * (8.2E-2) 1.56E1 * (4.2E0) 3.03E-1 (1.7E-1)
LSMOP2 3 1.15E-1 * (4.5E-3) 1.10E-1 * (3.0E-3) 9.23E-2 * (1.8E-3) 1.17E-1 * (5.1E-3) 8.34E-2 (5.2E-3)
LSMOP3 3 8.26E-1 (8.8E-2) 1.89E1 * (5.2E0) 8.60E-1 * (8.0E-6) 2.53E1 * (2.2E0) 8.60E-1 * (1.5E-4)
LSMOP4 3 2.76E-1 * (1.0E-2) 3.22E-1 * (1.1E-2) 2.60E-1 * (2.2E-2) 3.38E-1 * (4.7E-3) 1.84E-1 (1.2E-2)
LSMOP5 3 5.21E-1 * (2.2E-2) 1.11E1 * (6.7E0) 2.51E-1 (2.3E-1) 2.30E1 * (2.8E0) 4.26E-1 * (7.7E-2)
LSMOP6 3 1.24E0 (4.2E-3) 1.32E4 * (1.3E4) 1.58E0 * (2.6E-1) 8.42E4 * (1.1E4) 1.24E0 (1.7E-2)
LSMOP7 3 9.15E-1 * (1.1E-2) 1.64E0 * (5.4E-2) 9.46E-1 * (1.1E-4) 1.61E0 * (3.5E-2) 8.70E-1 (1.7E-2)
LSMOP8 3 3.61E-1 * (1.8E-2) 9.82E-1 * (1.2E-3) 2.28E-1 (3.2E-2) 9.79E-1 * (1.9E-3) 2.25E-1 (1.5E-1)
LSMOP9 3 1.14E0 (4.6E-4) 1.06E2 * (5.3E1) 1.15E0 * (1.1E-2) 3.28E2 * (2.8E1) 1.15E0 * (2.1E-1)

n = 400

LSMOP1 4 6.54E-1 * (3.8E-2) 9.45E0 * (3.8E0) 6.07E-1 * (7.4E-2) 1.33E1 * (5.5E0) 4.89E-1 (1.7E-1)
LSMOP2 4 1.85E-1 * (7.9E-3) 1.86E-1 * (7.3E-3) 1.52E-1 * (2.3E-3) 1.69E-1 * (5.0E-3) 1.48E-1 (4.7E-3)
LSMOP3 4 1.77E0 * (5.4E-2) 2.43E1 * (5.0E0) 9.43E-1 (2.2E-2) 2.41E1 * (5.7E0) 1.52E0 * (4.6E-1)
LSMOP4 4 2.76E-1 * (1.1E-2) 2.79E-1 * (1.5E-2) 2.58E-1 * (7.3E-2) 2.57E-1 * (7.2E-3) 2.21E-1 (9.3E-3)
LSMOP5 4 4.66E-1 * (7.0E-3) 3.35E1 * (5.4E0) 1.04E0 * (2.2E-5) 2.89E1 * (4.3E0) 4.54E-1 (1.7E-2)
LSMOP6 4 8.89E-1 * (7.0E-3) 1.27E0 * (3.4E-12) 1.05E0 * (1.2E-3) 1.27E0 * (1.8E-12) 8.69E-1 (8.2E-3)
LSMOP7 4 1.23E0 (1.1E-2) 1.05E5 * (4.4E4) 1.75E0 * (2.5E-3) 1.16E5 * (1.5E4) 1.22E0 (2.6E-1)
LSMOP8 4 4.66E-1 * (4.1E-3) 2.61E1 * (4.2E0) 1.04E0 * (5.9E-1) 2.76E1 * (2.7E0) 4.49E-1 (5.1E-2)
LSMOP9 4 1.46E0 (1.5E-3) 1.53E2 * (1.2E2) 1.47E0 * (3.2E-2) 5.08E2 * (3.3E1) 1.77E0 * (4.6E-1)

n = 500

LSMOP1 5 9.11E-1 * (1.6E-2) 1.25E1 * (5.0E0) 5.37E-1 (2.5E-1) 1.61E1 * (7.6E0) 7.80E-1 * (2.4E-1)
LSMOP2 5 2.19E-1 * (1.5E-2) 2.12E-1 * (9.6E-3) 1.67E-1 (8.3E-3) 1.88E-1 * (8.0E-3) 1.73E-1 * (2.3E-3)
LSMOP3 5 9.59E-1 * (5.5E-3) 2.76E1 * (8.0E0) 9.58E-1 (2.1E-8) 2.29E1 * (4.2E0) 9.58E-1 * ( — )
LSMOP4 5 3.44E-1 * (1.9E-2) 3.73E-1 * (2.4E-2) 2.52E-1 (8.1E-3) 3.51E-1 * (4.3E-2) 2.85E-1 * (5.2E-3)
LSMOP5 5 5.47E-1 (6.7E-2) 3.20E1 * (6.3E0) 3.58E-1 (6.3E-1) 1.08E1 * (4.0E0) 4.28E-1 (2.8E-2)
LSMOP6 5 1.36E0 * (1.1E-1) 1.38E5 * (3.4E4) 1.40E0 * (8.6E-2) 2.41E4 * (9.5E3) 1.12E0 (1.4E-1)
LSMOP7 5 1.28E0 * (1.5E-1) 3.36E0 * (1.3E-1) 1.11E0 (7.6E-4) 2.58E0 * (4.3E-1) 1.03E0 (2.0E-1)
LSMOP8 5 4.13E-1 * (2.7E-2) 1.21E0 * (1.1E-2) 3.27E-1 (2.2E-2) 1.17E0 * (1.1E-2) 3.42E-1 * (1.4E-2)
LSMOP9 5 1.82E0 (5.4E-3) 2.67E2 * (2.0E2) 1.87E0 * (1.4E-2) 8.14E2 * (5.6E1) 1.90E0 * (6.1E-1)

n = 1000

LSMOP1 2 6.46E-1 * (9.1E-2) 1.50E0 * (6.0E-2) 2.71E-1 * (1.5E-2) 2.42E1 * (1.2E0) 1.74E-1 (1.1E-1)
LSMOP2 2 1.90E-2 * (5.2E-4) 4.09E-2 * (8.8E-4) 1.91E-2 * (1.0E-3) 4.44E-2 * (1.0E-3) 1.03E-2 (3.0E-3)
LSMOP3 2 1.57E0 * (2.5E-3) 2.84E1 * (1.3E0) 1.47E0 (2.1E-1) 4.27E1 * (2.1E0) 1.57E0 * (3.7E-3)
LSMOP4 2 4.13E-2 * (4.3E-3) 5.97E-2 * (3.9E-3) 5.86E-2 * (1.6E-3) 9.46E-2 * (9.7E-4) 2.37E-2 (2.5E-3)
LSMOP5 2 7.42E-1 (1.6E-1) 3.22E0 * (2.4E-1) 7.34E-1 (6.2E-3) 4.99E1 * (3.0E0) 7.41E-1 (4.7E-2)
LSMOP6 2 6.71E-1 * (1.3E-3) 7.67E-1 * (3.0E-3) 7.47E-1 * (1.2E-4) 7.75E-1 * (6.8E-13) 3.49E-1 (1.8E-1)
LSMOP7 2 1.51E0 * (2.4E-3) 1.51E3 * (3.2E2) 1.51E0 (6.2E-4) 3.10E5 * (2.9E4) 1.51E0 (2.8E-3)
LSMOP8 2 7.42E-1 * (4.0E-2) 2.47E0 * (1.6E-1) 4.78E-1 * (5.9E-2) 4.53E1 * (2.1E0) 2.14E-1 (1.8E-1)
LSMOP9 2 8.08E-1 * (1.6E-3) 8.04E0 * (2.1E0) 8.94E-2 (5.7E-1) 1.54E2 * (8.6E0) 4.90E-1 (7.5E-1)
LSMOP1 3 5.93E-1 * (3.9E-2) 4.48E0 * (1.4E0) 4.32E-1 * (7.3E-2) 2.37E1 * (1.7E0) 3.24E-1 (1.4E-1)
LSMOP2 3 7.58E-2 * (8.1E-3) 6.84E-2 * (5.1E-3) 5.46E-2 * (1.2E-3) 8.34E-2 * (6.6E-3) 5.16E-2 (5.7E-4)
LSMOP3 3 8.60E-1 * (4.4E-4) 1.64E1 * (7.8E0) 8.60E-1 (8.4E-6) 2.99E1 * (1.7E0) 8.60E-1 * (2.6E-8)
LSMOP4 3 1.43E-1 * (5.2E-3) 1.36E-1 * (5.1E-3) 1.19E-1 * (3.8E-3) 1.51E-1 * (2.9E-3) 9.31E-2 (7.0E-3)
LSMOP5 3 5.41E-1 * (5.1E-4) 9.70E0 * (2.4E0) 3.98E-1 (1.7E-1) 3.34E1 * (3.4E0) 4.51E-1 (7.3E-2)
LSMOP6 3 1.31E0 (1.8E-3) 7.46E3 * (5.3E3) 1.67E0 * (2.0E-3) 1.04E5 * (7.6E3) 1.31E0 (9.8E-2)
LSMOP7 3 8.56E-1 * (4.3E-3) 1.09E0 * (8.9E-3) 9.47E-1 * (6.0E-4) 1.11E0 * (3.3E-3) 8.47E-1 (3.3E-3)
LSMOP8 3 3.43E-1 * (5.7E-2) 9.58E-1 * (6.7E-4) 2.12E-1 (3.4E-2) 9.58E-1 * (1.9E-1) 1.86E-1 (7.8E-2)
LSMOP9 3 1.14E0 (3.4E-4) 4.22E1 * (9.9E0) 1.16E0 * (2.7E-2) 3.51E2 * (2.1E1) 1.14E0 * (1.7E-2)
LSMOP1 4 8.33E-1 * (3.1E-2) 1.11E1 * (2.8E0) 6.37E-1 (4.7E-2) 2.13E1 * (1.9E0) 5.98E-1 (1.7E-1)
LSMOP2 4 1.46E-1 * (9.9E-3) 1.38E-1 * (7.7E-3) 1.18E-1 * (2.7E-3) 1.35E-1 * (4.9E-3) 1.16E-1 (1.2E-3)
LSMOP3 4 1.81E0 * (2.4E-3) 2.97E1 * (5.0E0) 1.07E0 (4.6E-2) 2.91E1 * (3.5E0) 1.81E0 * (2.4E-2)
LSMOP4 4 1.87E-1 * (9.4E-3) 1.80E-1 * (1.3E-2) 1.61E-1 * (6.7E-3) 1.75E-1 * (6.2E-3) 1.48E-1 (4.2E-3)
LSMOP5 4 4.65E-1 * (6.2E-3) 3.00E1 * (6.3E0) 1.04E0 * (2.2E-4) 3.53E1 * (3.6E0) 4.57E-1 (1.3E-2)
LSMOP6 4 9.05E-1 * (4.9E-3) 1.12E0 * (3.8E-12) 1.05E0 * (1.2E-3) 1.12E0 * (3.4E-12) 8.97E-1 (7.3E-3)
LSMOP7 4 1.25E0 (1.5E-2) 9.12E4 * (6.5E4) 1.78E0 * (7.6E-1) 1.34E5 * (1.0E4) 1.24E0 (1.1E-1)
LSMOP8 4 4.65E-1 * (4.0E-3) 2.50E1 * (3.6E0) 4.57E-1 (6.3E-1) 3.08E1 * (1.9E0) 4.54E-1 (2.4E-2)
LSMOP9 4 1.46E0 (7.1E-4) 7.48E1 * (4.8E1) 1.46E0 * (1.0E-2) 5.33E2 * (2.6E1) 1.74E0 * (4.5E-1)
LSMOP1 5 9.17E-1 * (1.4E-2) 1.50E1 * (2.2E0) 6.44E-1 (1.8E-1) 2.11E1 * (1.9E0) 8.33E-1 * (1.7E-1)
LSMOP2 5 1.91E-1 * (9.2E-3) 1.86E-1 * (1.1E-2) 1.55E-1 (1.7E-2) 1.73E-1 * (7.9E-3) 1.52E-1 (1.3E-3)
LSMOP3 5 9.62E-1 * (6.7E-2) 3.49E1 * (4.9E0) 9.58E-1 (8.1E-9) 2.77E1 * (2.3E0) 9.58E-1 * ( — )
LSMOP4 5 2.71E-1 * (1.5E-2) 2.80E-1 * (1.4E-2) 2.09E-1 (7.0E-3) 2.57E-1 * (2.4E-2) 2.22E-1 * (5.6E-3)
LSMOP5 5 5.23E-1 * (4.6E-2) 3.47E1 * (5.3E0) 3.72E-1 (1.3E-1) 1.65E1 * (5.3E0) 4.29E-1 (6.7E-2)
LSMOP6 5 1.48E0 * (2.2E-1) 1.26E5 * (5.8E4) 1.95E0 * (2.5E-1) 4.05E4 * (5.5E3) 1.26E0 (4.0E-1)
LSMOP7 5 1.16E0 * (1.4E-1) 2.05E0 * (4.2E-2) 1.11E0 (6.6E-4) 1.91E0 * (8.6E-2) 1.02E0 (1.4E-1)
LSMOP8 5 4.08E-1 * (2.5E-2) 1.15E0 * (1.4E-3) 3.29E-1 (2.3E-2) 1.14E0 * (9.4E-3) 3.32E-1 (1.1E-2)
LSMOP9 5 1.81E0 (7.4E-3) 1.53E2 * (5.6E1) 1.88E0 * (2.5E-2) 8.39E2 * (3.3E1) 1.86E0 * (3.4E-1)
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Table B.26: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

WOF-SMPSO LS-SMPSO WOF-NSGA-II LS-NSGA-II WOF-Randomised

n = 200

LSMOP1 2 5.34E-2 (3.1E-2) 2.46E-1 * (1.3E-2) 5.78E-1 * (8.4E-2) 5.60E-1 * (7.2E-2) 1.80E-1 * (1.0E-1)
LSMOP2 2 1.31E-2 (8.7E-4) 2.64E-2 * (1.1E-3) 4.78E-2 * (9.0E-3) 3.72E-2 * (1.8E-3) 2.08E-2 * (5.6E-3)
LSMOP3 2 1.49E0 * (1.0E-2) 1.51E0 * (6.0E-3) 1.06E0 (2.4E-1) 1.53E0 * (3.5E-3) 1.45E0 * (5.1E-1)
LSMOP4 2 5.75E-2 (9.2E-3) 7.62E-2 * (6.0E-3) 1.16E-1 * (6.5E-3) 9.98E-2 * (2.9E-3) 8.34E-2 * (1.6E-2)
LSMOP5 2 3.52E-1 (2.9E-1) 7.42E-1 * ( — ) 3.43E-1 (2.6E-2) 7.42E-1 * ( — ) 3.94E-1 (8.6E-2)
LSMOP6 2 1.08E-1 (1.5E-2) 1.98E-1 * (5.4E-2) 6.57E-1 * (4.7E-2) 3.58E-1 * (2.3E-3) 3.93E-1 * (2.0E-1)
LSMOP7 2 1.47E0 * (4.7E-3) 1.48E0 * (3.0E-3) 1.47E0 * (5.0E-3) 1.47E0 (2.1E-3) 1.47E0 (1.0E-2)
LSMOP8 2 1.18E-1 (1.0E-1) 7.42E-1 * ( — ) 7.42E-1 * (3.9E-1) 7.42E-1 * ( — ) 2.53E-1 * (1.7E-1)
LSMOP9 2 8.10E-1 (2.5E-1) 8.10E-1 ( — ) 8.10E-1 * (1.5E-9) 8.10E-1 ( — ) 8.10E-1 ( — )

n = 300

LSMOP1 3 1.78E-1 (4.8E-2) 3.86E-1 * (3.8E-2) 3.09E-1 * (5.8E-2) 4.51E-1 * (3.2E-2) 3.03E-1 * (1.7E-1)
LSMOP2 3 7.44E-2 (6.3E-3) 8.29E-2 * (7.8E-3) 1.15E-1 * (4.5E-3) 1.17E-1 * (5.4E-3) 8.34E-2 * (5.2E-3)
LSMOP3 3 8.60E-1 * (3.7E-4) 8.60E-1 * (6.7E-3) 8.26E-1 (8.8E-2) 7.93E-1 (3.0E-2) 8.60E-1 * (1.5E-4)
LSMOP4 3 1.98E-1 * (8.8E-3) 2.09E-1 * (1.1E-2) 2.76E-1 * (1.0E-2) 2.79E-1 * (7.5E-3) 1.84E-1 (1.2E-2)
LSMOP5 3 4.50E-1 (1.6E-1) 5.17E-1 * (3.0E-1) 5.21E-1 * (2.2E-2) 5.38E-1 * (2.0E-2) 4.26E-1 (7.7E-2)
LSMOP6 3 7.52E-1 (2.1E-1) 7.65E-1 (1.7E-1) 1.24E0 * (4.2E-3) 7.20E-1 (4.0E-2) 1.24E0 * (1.7E-2)
LSMOP7 3 8.98E-1 * (3.4E-3) 9.48E-1 * (6.7E-2) 9.15E-1 * (1.1E-2) 9.51E-1 * (2.6E-2) 8.70E-1 (1.7E-2)
LSMOP8 3 1.05E-1 (2.1E-2) 3.13E-1 * (6.8E-2) 3.61E-1 * (1.8E-2) 3.61E-1 * (3.0E-2) 2.25E-1 * (1.5E-1)
LSMOP9 3 1.53E0 * (4.0E-1) 1.53E0 * ( — ) 1.14E0 (4.6E-4) 1.53E0 * ( — ) 1.15E0 * (2.1E-1)

n = 400

LSMOP1 4 4.98E-1 (1.0E-1) 8.50E-1 * (5.9E-2) 6.54E-1 * (3.8E-2) 7.28E-1 * (3.8E-2) 4.89E-1 (1.7E-1)
LSMOP2 4 1.50E-1 (7.6E-3) 1.51E-1 * (8.0E-3) 1.85E-1 * (7.9E-3) 1.88E-1 * (9.0E-3) 1.48E-1 (4.7E-3)
LSMOP3 4 1.78E0 * (2.7E-3) 1.73E0 (3.5E-2) 1.77E0 * (5.4E-2) 1.78E0 * (1.2E-3) 1.52E0 (4.6E-1)
LSMOP4 4 2.24E-1 * (1.4E-2) 2.34E-1 * (8.8E-3) 2.76E-1 * (1.1E-2) 2.82E-1 * (1.4E-2) 2.21E-1 (9.3E-3)
LSMOP5 4 5.44E-1 (3.3E-1) 7.90E-1 * (3.8E-1) 4.66E-1 * (7.0E-3) 4.66E-1 * (5.0E-3) 4.54E-1 (1.7E-2)
LSMOP6 4 8.86E-1 (1.0E-1) 8.45E-1 (1.8E-1) 8.89E-1 (7.0E-3) 1.06E0 * (2.2E-1) 8.69E-1 (8.2E-3)
LSMOP7 4 1.23E0 (4.5E-2) 1.27E0 (2.5E-1) 1.23E0 (1.1E-2) 1.23E0 (4.4E-2) 1.22E0 (2.6E-1)
LSMOP8 4 4.89E-1 * (1.2E-1) 6.72E-1 * (2.1E-1) 4.66E-1 * (4.1E-3) 4.64E-1 * (4.4E-3) 4.49E-1 (5.1E-2)
LSMOP9 4 2.24E0 * ( — ) 2.24E0 * ( — ) 1.46E0 (1.5E-3) 2.24E0 * ( — ) 1.77E0 * (4.6E-1)

n = 500

LSMOP1 5 8.35E-1 * (7.0E-2) 9.34E-1 * (1.9E-2) 9.11E-1 * (1.6E-2) 9.18E-1 * (4.9E-2) 7.80E-1 (2.4E-1)
LSMOP2 5 1.91E-1 * (5.8E-3) 1.97E-1 * (1.0E-2) 2.19E-1 * (1.5E-2) 2.19E-1 * (1.0E-2) 1.73E-1 (2.3E-3)
LSMOP3 5 9.58E-1 ( — ) 9.58E-1 ( — ) 9.59E-1 * (5.5E-3) 9.58E-1 ( — ) 9.58E-1 ( — )
LSMOP4 5 2.95E-1 * (1.3E-2) 2.98E-1 * (1.2E-2) 3.44E-1 * (1.9E-2) 3.49E-1 * (1.5E-2) 2.85E-1 (5.2E-3)
LSMOP5 5 9.52E-1 * (3.1E-1) 7.09E-1 * (2.1E-1) 5.47E-1 * (6.7E-2) 5.41E-1 * (4.9E-2) 4.28E-1 (2.8E-2)
LSMOP6 5 1.80E0 * (2.6E-1) 1.50E0 * (1.7E-1) 1.36E0 * (1.1E-1) 1.69E0 * (4.9E-1) 1.12E0 (1.4E-1)
LSMOP7 5 1.65E0 * (2.9E-1) 1.24E0 * (1.1E-1) 1.28E0 * (1.5E-1) 1.26E0 * (1.4E-1) 1.03E0 (2.0E-1)
LSMOP8 5 7.66E-1 * (1.7E-1) 9.58E-1 * (3.0E-2) 4.13E-1 * (2.7E-2) 4.17E-1 * (6.6E-2) 3.42E-1 (1.4E-2)
LSMOP9 5 3.00E0 * (2.5E-4) 3.00E0 * ( — ) 1.82E0 (5.4E-3) 3.00E0 * ( — ) 1.90E0 * (6.1E-1)

n = 1000

LSMOP1 2 7.17E-2 (6.2E-3) 3.06E-1 * (3.4E-3) 6.46E-1 * (9.1E-2) 6.27E-1 * (3.5E-2) 1.74E-1 * (1.1E-1)
LSMOP2 2 7.29E-3 (3.9E-4) 9.43E-3 * (1.6E-3) 1.90E-2 * (5.2E-4) 1.86E-2 * (9.3E-4) 1.03E-2 * (3.0E-3)
LSMOP3 2 1.56E0 (1.9E-3) 1.56E0 * (1.1E-3) 1.57E0 * (2.5E-3) 1.57E0 * (6.7E-4) 1.57E0 * (3.7E-3)
LSMOP4 2 2.04E-2 (5.9E-4) 2.28E-2 * (6.1E-4) 4.13E-2 * (4.3E-3) 3.31E-2 * (1.5E-3) 2.37E-2 * (2.5E-3)
LSMOP5 2 7.42E-1 (2.9E-1) 7.42E-1 * ( — ) 7.42E-1 (1.6E-1) 7.42E-1 * ( — ) 7.41E-1 (4.7E-2)
LSMOP6 2 1.73E-1 (3.4E-3) 1.90E-1 * (1.4E-1) 6.71E-1 * (1.3E-3) 3.12E-1 * (1.3E-4) 3.49E-1 * (1.8E-1)
LSMOP7 2 1.51E0 * (6.0E-4) 1.51E0 * (3.9E-4) 1.51E0 * (2.4E-3) 1.50E0 (7.8E-4) 1.51E0 * (2.8E-3)
LSMOP8 2 2.12E-1 (5.9E-1) 7.42E-1 * ( — ) 7.42E-1 * (4.0E-2) 7.42E-1 * ( — ) 2.14E-1 (1.8E-1)
LSMOP9 2 4.67E-1 (9.5E-3) 8.04E-1 * (1.3E-3) 8.08E-1 * (1.6E-3) 8.07E-1 * (2.9E-3) 4.90E-1 * (7.5E-1)
LSMOP1 3 2.00E-1 (4.1E-2) 4.00E-1 * (3.6E-2) 5.93E-1 * (3.9E-2) 5.96E-1 * (1.3E-2) 3.24E-1 * (1.4E-1)
LSMOP2 3 6.12E-2 * (5.2E-3) 6.16E-2 * (4.4E-3) 7.58E-2 * (8.1E-3) 7.40E-2 * (5.9E-3) 5.16E-2 (5.7E-4)
LSMOP3 3 8.60E-1 * ( — ) 8.60E-1 * ( — ) 8.60E-1 * (4.4E-4) 8.60E-1 (3.1E-4) 8.60E-1 * (2.6E-8)
LSMOP4 3 8.91E-2 (4.9E-3) 9.56E-2 * (4.7E-3) 1.43E-1 * (5.2E-3) 1.45E-1 * (5.6E-3) 9.31E-2 * (7.0E-3)
LSMOP5 3 4.29E-1 (2.3E-1) 8.92E-1 * (3.7E-1) 5.41E-1 * (5.1E-4) 5.40E-1 * (5.8E-5) 4.51E-1 (7.3E-2)
LSMOP6 3 9.11E-1 (5.8E-1) 7.88E-1 (1.0E-1) 1.31E0 * (1.8E-3) 7.43E-1 (4.0E-2) 1.31E0 * (9.8E-2)
LSMOP7 3 8.49E-1 (1.0E-1) 8.63E-1 * (9.5E-2) 8.56E-1 * (4.3E-3) 8.64E-1 * (5.4E-3) 8.47E-1 (3.3E-3)
LSMOP8 3 9.22E-2 (1.5E-2) 2.33E-1 * (1.8E-1) 3.43E-1 * (5.7E-2) 3.39E-1 * (1.6E-2) 1.86E-1 * (7.8E-2)
LSMOP9 3 1.11E0 (5.7E-1) 1.53E0 * (3.9E-1) 1.14E0 * (3.4E-4) 1.49E0 * (3.9E-1) 1.14E0 * (1.7E-2)
LSMOP1 4 4.91E-1 (1.3E-1) 8.53E-1 * (3.7E-2) 8.33E-1 * (3.1E-2) 7.68E-1 * (2.4E-2) 5.98E-1 * (1.7E-1)
LSMOP2 4 1.26E-1 * (5.7E-3) 1.29E-1 * (8.1E-3) 1.46E-1 * (9.9E-3) 1.47E-1 * (1.0E-2) 1.16E-1 (1.2E-3)
LSMOP3 4 1.81E0 (3.3E-3) 1.77E0 (5.4E-2) 1.81E0 * (2.4E-3) 1.80E0 * (5.8E-4) 1.81E0 (2.4E-2)
LSMOP4 4 1.55E-1 * (6.9E-3) 1.56E-1 * (6.6E-3) 1.87E-1 * (9.4E-3) 1.90E-1 * (9.4E-3) 1.48E-1 (4.2E-3)
LSMOP5 4 4.94E-1 (2.5E-1) 7.80E-1 * (3.0E-1) 4.65E-1 * (6.2E-3) 4.64E-1 * (5.1E-3) 4.57E-1 (1.3E-2)
LSMOP6 4 9.09E-1 (1.1E-1) 8.53E-1 (2.0E-1) 9.05E-1 * (4.9E-3) 1.04E0 * (6.0E-2) 8.97E-1 * (7.3E-3)
LSMOP7 4 1.20E0 (2.5E-2) 1.32E0 * (2.2E-1) 1.25E0 * (1.5E-2) 1.22E0 (1.1E-1) 1.24E0 * (1.1E-1)
LSMOP8 4 4.89E-1 * (1.3E-1) 7.56E-1 * (1.3E-1) 4.65E-1 * (4.0E-3) 4.62E-1 * (5.0E-3) 4.54E-1 (2.4E-2)
LSMOP9 4 2.24E0 (1.4E0) 2.24E0 * ( — ) 1.46E0 (7.1E-4) 2.24E0 * ( — ) 1.74E0 * (4.5E-1)
LSMOP1 5 8.46E-1 (1.0E-1) 9.27E-1 * (1.0E-2) 9.17E-1 * (1.4E-2) 9.19E-1 * (3.8E-2) 8.33E-1 (1.7E-1)
LSMOP2 5 1.82E-1 * (1.1E-2) 1.85E-1 * (9.8E-3) 1.91E-1 * (9.2E-3) 1.97E-1 * (1.3E-2) 1.52E-1 (1.3E-3)
LSMOP3 5 9.58E-1 ( — ) 9.58E-1 ( — ) 9.62E-1 * (6.7E-2) 9.58E-1 ( — ) 9.58E-1 ( — )
LSMOP4 5 2.33E-1 * (1.3E-2) 2.36E-1 * (8.1E-3) 2.71E-1 * (1.5E-2) 2.74E-1 * (9.2E-3) 2.22E-1 (5.6E-3)
LSMOP5 5 9.83E-1 * (2.2E-1) 8.32E-1 * (7.7E-2) 5.23E-1 * (4.6E-2) 5.05E-1 * (3.8E-2) 4.29E-1 (6.7E-2)
LSMOP6 5 1.83E0 * (2.8E-1) 1.54E0 (4.2E-1) 1.48E0 * (2.2E-1) 1.42E0 (6.0E-1) 1.26E0 (4.0E-1)
LSMOP7 5 1.35E0 * (1.8E-1) 1.15E0 * (8.8E-2) 1.16E0 * (1.4E-1) 1.18E0 * (5.4E-2) 1.02E0 (1.4E-1)
LSMOP8 5 6.59E-1 * (1.5E-1) 9.39E-1 * (2.9E-3) 4.08E-1 * (2.5E-2) 4.83E-1 * (2.8E-1) 3.32E-1 (1.1E-2)
LSMOP9 5 3.00E0 (2.2E0) 3.00E0 * ( — ) 1.81E0 (7.4E-3) 3.00E0 * ( — ) 1.86E0 * (3.4E-1)
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Table B.27: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised randomLMEA randomMOEA/DVA randomS3-CMA-ES

n = 200

LSMOP1 2 5.34E-2 (3.1E-2) 5.78E-1 * (8.4E-2) 1.80E-1 * (1.0E-1) 6.13E-1 * (4.3E-2) 6.39E-1 * (8.2E-2) 7.54E-1 * (1.2E0)
LSMOP2 2 1.31E-2 (8.7E-4) 4.78E-2 * (9.0E-3) 2.08E-2 * (5.6E-3) 1.03E-1 * (5.2E-3) 1.53E-1 * (1.0E-3) 5.70E-2 * (6.4E-3)
LSMOP3 2 1.49E0 * (1.0E-2) 1.06E0 (2.4E-1) 1.45E0 * (5.1E-1) 2.06E1 * (2.9E0) 1.20E1 * (3.0E1) 5.70E0 * (6.8E-1)
LSMOP4 2 5.75E-2 (9.2E-3) 1.16E-1 * (6.5E-3) 8.34E-2 * (1.6E-2) 1.67E-1 * (4.2E-3) 1.73E-1 * (3.0E-3) 2.09E-1 * (1.3E-2)
LSMOP5 2 3.52E-1 (2.9E-1) 3.43E-1 (2.6E-2) 3.94E-1 (8.6E-2) 7.24E-1 * (1.4E0) 8.52E-1 * (8.0E-1) 7.50E-1 * (1.0E-3)
LSMOP6 2 1.08E-1 (1.5E-2) 6.57E-1 * (4.7E-2) 3.93E-1 * (2.0E-1) 9.04E-1 * (1.8E-2) 5.07E0 * (1.1E1) 7.66E-1 * (3.5E-3)
LSMOP7 2 1.47E0 * (4.7E-3) 1.47E0 * (5.0E-3) 1.47E0 (1.0E-2) 6.15E0 * (4.1E0) 1.95E1 * (3.4E1) 5.79E2 * (1.1E3)
LSMOP8 2 1.18E-1 (1.0E-1) 7.42E-1 * (3.9E-1) 2.53E-1 * (1.7E-1) 1.93E0 * (2.7E-1) 8.02E-1 * (1.0E-2) 1.90E0 * (1.5E0)
LSMOP9 2 8.10E-1 (2.5E-1) 8.10E-1 * (1.5E-9) 8.10E-1 ( — ) 1.82E0 * (6.4E-2) 1.95E0 * (7.3E-2) 9.87E-1 * (2.4E-2)

n = 300

LSMOP1 3 1.78E-1 (4.8E-2) 3.09E-1 * (5.8E-2) 3.03E-1 * (1.7E-1) 4.73E-1 * (6.4E-2) 6.49E-1 * (9.7E-2) 2.09E0 * (1.5E0)
LSMOP2 3 7.44E-2 (6.3E-3) 1.15E-1 * (4.5E-3) 8.34E-2 * (5.2E-3) 8.05E-2 * (1.7E-3) 7.95E-2 * (1.4E-3) 7.16E-2 (4.0E-3)
LSMOP3 3 8.60E-1 * (3.7E-4) 8.26E-1 (8.8E-2) 8.60E-1 * (1.5E-4) 1.15E1 * (1.9E0) 3.77E1 * (2.3E1) 9.69E0 * (1.6E0)
LSMOP4 3 1.98E-1 * (8.8E-3) 2.76E-1 * (1.0E-2) 1.84E-1 (1.2E-2) 1.91E-1 * (5.1E-3) 2.32E-1 * (5.4E-3) 2.40E-1 * (1.3E-2)
LSMOP5 3 4.50E-1 (1.6E-1) 5.21E-1 * (2.2E-2) 4.26E-1 (7.7E-2) 2.26E0 * (1.3E0) 2.61E0 * (1.0E0) 9.87E-1 * (2.0E-2)
LSMOP6 3 7.52E-1 (2.1E-1) 1.24E0 * (4.2E-3) 1.24E0 * (1.7E-2) 2.25E0 * (1.7E0) 2.98E1 * (4.5E1) 1.90E1 * (1.8E1)
LSMOP7 3 8.98E-1 * (3.4E-3) 9.15E-1 * (1.1E-2) 8.70E-1 (1.7E-2) 1.79E0 * (9.7E-3) 5.53E1 * (7.1E1) 1.03E0 * (8.0E-3)
LSMOP8 3 1.05E-1 (2.1E-2) 3.61E-1 * (1.8E-2) 2.25E-1 * (1.5E-1) 3.35E-1 * (5.2E-2) 2.77E-1 * (6.6E-2) 9.56E-1 * (8.5E-3)
LSMOP9 3 1.53E0 * (4.0E-1) 1.14E0 (4.6E-4) 1.15E0 * (2.1E-1) 3.47E0 * (2.9E-1) 1.80E0 * (7.0E-2) 1.22E1 * (1.1E1)

n = 400

LSMOP1 4 4.98E-1 (1.0E-1) 6.54E-1 * (3.8E-2) 4.89E-1 (1.7E-1) 8.91E-1 * (1.6E-1) 8.70E-1 * (5.1E-1) 1.02E0 * (5.2E-1)
LSMOP2 4 1.50E-1 * (7.6E-3) 1.85E-1 * (7.9E-3) 1.48E-1 * (4.7E-3) 1.37E-1 * (2.9E-3) 1.64E-1 * (1.4E-3) 1.33E-1 (4.9E-3)
LSMOP3 4 1.78E0 * (2.7E-3) 1.77E0 * (5.4E-2) 1.52E0 (4.6E-1) 2.31E1 * (4.0E0) 3.77E2 * (6.1E2) 1.35E1 * (8.5E0)
LSMOP4 4 2.24E-1 * (1.4E-2) 2.76E-1 * (1.1E-2) 2.21E-1 * (9.3E-3) 1.83E-1 (4.8E-3) 2.25E-1 * (5.1E-3) 1.95E-1 * (1.7E-2)
LSMOP5 4 5.44E-1 (3.3E-1) 4.66E-1 * (7.0E-3) 4.54E-1 (1.7E-2) 3.88E0 * (1.5E0) 6.73E0 * (3.6E0) 1.22E0 * (7.6E-2)
LSMOP6 4 8.86E-1 (1.0E-1) 8.89E-1 * (7.0E-3) 8.69E-1 (8.2E-3) 1.27E0 * (1.9E-4) 1.61E1 * (3.8E1) 1.09E0 * (7.2E-3)
LSMOP7 4 1.23E0 (4.5E-2) 1.23E0 (1.1E-2) 1.22E0 (2.6E-1) 1.62E3 * (1.4E3) 9.26E3 * (2.2E3) 2.89E2 * (3.1E3)
LSMOP8 4 4.89E-1 * (1.2E-1) 4.66E-1 * (4.1E-3) 4.49E-1 (5.1E-2) 1.57E0 * (8.3E-1) 1.11E0 * (9.3E-1) 1.34E0 * (1.8E0)
LSMOP9 4 2.24E0 * ( — ) 1.46E0 (1.5E-3) 1.77E0 * (4.6E-1) 7.79E0 * (7.0E-1) 4.25E0 * (8.5E-2) 4.57E0 * (6.0E-1)

n = 500

LSMOP1 5 8.35E-1 * (7.0E-2) 9.11E-1 * (1.6E-2) 7.80E-1 (2.4E-1) 1.29E0 * (3.0E-1) 8.84E-1 * (7.1E-2) 1.82E0 * (1.0E0)
LSMOP2 5 1.91E-1 * (5.8E-3) 2.19E-1 * (1.5E-2) 1.73E-1 * (2.3E-3) 1.69E-1 * (3.3E-3) 1.88E-1 * (2.1E-3) 1.65E-1 (2.8E-3)
LSMOP3 5 9.58E-1 ( — ) 9.59E-1 * (5.5E-3) 9.58E-1 ( — ) 1.74E1 * (5.0E0) 4.50E2 * (6.8E2) 6.55E0 * (3.2E0)
LSMOP4 5 2.95E-1 * (1.3E-2) 3.44E-1 * (1.9E-2) 2.85E-1 * (5.2E-3) 2.62E-1 * (8.0E-3) 3.29E-1 * (3.7E-3) 2.54E-1 (1.3E-2)
LSMOP5 5 9.52E-1 * (3.1E-1) 5.47E-1 * (6.7E-2) 4.28E-1 (2.8E-2) 3.85E0 * (3.2E0) 1.10E0 * (3.2E-2) 1.14E0 * (2.0E-2)
LSMOP6 5 1.80E0 * (2.6E-1) 1.36E0 * (1.1E-1) 1.12E0 (1.4E-1) 1.23E2 * (5.0E2) 1.49E2 * (1.9E2) 6.43E0 * (2.4E0)
LSMOP7 5 1.65E0 * (2.9E-1) 1.28E0 * (1.5E-1) 1.03E0 (2.0E-1) 3.69E0 * (8.9E-2) 5.42E2 * (1.2E3) 1.30E0 * (3.7E-2)
LSMOP8 5 7.66E-1 * (1.7E-1) 4.13E-1 * (2.7E-2) 3.42E-1 (1.4E-2) 1.23E0 * (2.2E-1) 1.12E0 * (2.0E-2) 1.11E0 * (4.2E-3)
LSMOP9 5 3.00E0 * (2.5E-4) 1.82E0 (5.4E-3) 1.90E0 * (6.1E-1) 1.48E1 * (3.5E0) 8.10E0 * (6.5E0) 5.62E1 * (2.2E1)

n = 1000

LSMOP1 2 7.17E-2 (6.2E-3) 6.46E-1 * (9.1E-2) 1.74E-1 * (1.1E-1) 2.78E0 * (2.7E-1) 7.06E0 * (3.5E-1) 7.83E0 * (5.6E-1)
LSMOP2 2 7.29E-3 (3.9E-4) 1.90E-2 * (5.2E-4) 1.03E-2 * (3.0E-3) 3.44E-2 * (6.6E-4) 3.98E-2 * (5.0E-4) 3.63E-2 * (3.8E-4)
LSMOP3 2 1.56E0 (1.9E-3) 1.57E0 * (2.5E-3) 1.57E0 * (3.7E-3) 3.15E1 * (1.2E0) 7.65E2 * (1.0E3) 2.76E1 * (2.2E0)
LSMOP4 2 2.04E-2 (5.9E-4) 4.13E-2 * (4.3E-3) 2.37E-2 * (2.5E-3) 6.18E-2 * (9.1E-4) 6.67E-2 * (1.1E-3) 6.09E-2 * (1.7E-3)
LSMOP5 2 7.42E-1 (2.9E-1) 7.42E-1 (1.6E-1) 7.41E-1 (4.7E-2) 6.62E0 * (9.2E-1) 1.55E1 * (1.3E0) 1.48E1 * (6.6E-1)
LSMOP6 2 1.73E-1 (3.4E-3) 6.71E-1 * (1.3E-3) 3.49E-1 * (1.8E-1) 7.74E-1 * (5.4E-4) 2.02E3 * (2.2E3) 7.71E-1 * (1.3E-3)
LSMOP7 2 1.51E0 (6.0E-4) 1.51E0 * (2.4E-3) 1.51E0 (2.8E-3) 4.73E3 * (1.4E3) 5.22E4 * (8.3E3) 3.84E4 * (3.8E3)
LSMOP8 2 2.12E-1 (5.9E-1) 7.42E-1 * (4.0E-2) 2.14E-1 (1.8E-1) 8.78E0 * (6.2E-1) 1.26E1 * (1.0E0) 1.26E1 * (7.6E-1)
LSMOP9 2 4.67E-1 (9.5E-3) 8.08E-1 * (1.6E-3) 4.90E-1 * (7.5E-1) 6.88E0 * (1.3E0) 2.82E1 * (1.7E0) 1.30E1 * (1.6E0)
LSMOP1 3 2.00E-1 (4.1E-2) 5.93E-1 * (3.9E-2) 3.24E-1 * (1.4E-1) 2.52E0 * (3.2E-1) 6.73E0 * (5.1E-1) 7.95E0 * (5.5E-1)
LSMOP2 3 6.12E-2 * (5.2E-3) 7.58E-2 * (8.1E-3) 5.16E-2 (5.7E-4) 5.32E-2 * (6.0E-4) 6.59E-2 * (4.0E-3) 5.23E-2 * (6.3E-4)
LSMOP3 3 8.60E-1 ( — ) 8.60E-1 * (4.4E-4) 8.60E-1 (2.6E-8) 1.69E1 * (1.4E0) 2.74E2 * (3.4E2) 1.95E1 * (3.7E0)
LSMOP4 3 8.91E-2 (4.9E-3) 1.43E-1 * (5.2E-3) 9.31E-2 * (7.0E-3) 9.51E-2 * (1.9E-3) 1.21E-1 * (3.1E-3) 1.10E-1 * (2.5E-3)
LSMOP5 3 4.29E-1 (2.3E-1) 5.41E-1 * (5.1E-4) 4.51E-1 (7.3E-2) 6.85E0 * (8.2E-1) 1.28E1 * (1.2E0) 1.24E1 * (1.5E0)
LSMOP6 3 9.11E-1 (5.8E-1) 1.31E0 * (1.8E-3) 1.31E0 * (9.8E-2) 1.63E2 * (6.3E1) 2.14E4 * (6.6E3) 1.51E4 * (3.1E3)
LSMOP7 3 8.49E-1 (1.0E-1) 8.56E-1 * (4.3E-3) 8.47E-1 (3.3E-3) 1.12E0 * (4.2E-3) 6.01E2 * (1.0E3) 1.07E0 * (6.6E-3)
LSMOP8 3 9.22E-2 (1.5E-2) 3.43E-1 * (5.7E-2) 1.86E-1 * (7.8E-2) 9.59E-1 * (5.1E-4) 6.86E-1 * (7.6E-2) 6.25E-1 * (6.0E-2)
LSMOP9 3 1.11E0 (5.7E-1) 1.14E0 * (3.4E-4) 1.14E0 * (1.7E-2) 2.50E1 * (3.3E0) 7.28E1 * (6.2E0) 7.51E1 * (7.2E0)
LSMOP1 4 4.91E-1 (1.3E-1) 8.33E-1 * (3.1E-2) 5.98E-1 * (1.7E-1) 2.89E0 * (2.4E-1) 6.05E0 * (7.3E-1) 7.05E0 * (2.9E-1)
LSMOP2 4 1.26E-1 * (5.7E-3) 1.46E-1 * (9.9E-3) 1.16E-1 * (1.2E-3) 1.13E-1 * (2.2E-3) 1.42E-1 * (1.0E-2) 1.09E-1 (1.7E-3)
LSMOP3 4 1.81E0 (3.3E-3) 1.81E0 * (2.4E-3) 1.81E0 (2.4E-2) 2.51E1 * (2.3E0) 3.11E3 * (2.8E3) 3.26E1 * (2.3E0)
LSMOP4 4 1.55E-1 * (6.9E-3) 1.87E-1 * (9.4E-3) 1.48E-1 * (4.2E-3) 1.36E-1 (1.7E-3) 1.70E-1 * (1.6E-2) 1.44E-1 * (4.3E-3)
LSMOP5 4 4.94E-1 (2.5E-1) 4.65E-1 * (6.2E-3) 4.57E-1 (1.3E-2) 1.05E1 * (2.5E0) 1.23E1 * (1.4E0) 1.22E1 * (1.2E0)
LSMOP6 4 9.09E-1 (1.1E-1) 9.05E-1 * (4.9E-3) 8.97E-1 (7.3E-3) 1.12E0 * (2.7E-12) 7.21E2 * (1.3E3) 1.11E0 * (2.2E-3)
LSMOP7 4 1.20E0 (2.5E-2) 1.25E0 * (1.5E-2) 1.24E0 * (1.1E-1) 5.94E3 * (2.4E3) 2.48E4 * (6.5E3) 2.03E4 * (3.5E3)
LSMOP8 4 4.89E-1 * (1.3E-1) 4.65E-1 * (4.0E-3) 4.54E-1 (2.4E-2) 4.75E0 * (1.2E0) 8.85E0 * (1.0E0) 8.86E0 * (1.2E0)
LSMOP9 4 2.24E0 (1.4E0) 1.46E0 (7.1E-4) 1.74E0 * (4.5E-1) 2.97E1 * (6.0E0) 9.10E1 * (1.3E1) 6.77E1 * (1.6E1)
LSMOP1 5 8.46E-1 (1.0E-1) 9.17E-1 * (1.4E-2) 8.33E-1 (1.7E-1) 2.49E0 * (4.7E-1) 9.25E-1 * (3.8E-2) 6.84E0 * (6.7E-1)
LSMOP2 5 1.82E-1 * (1.1E-2) 1.91E-1 * (9.2E-3) 1.52E-1 * (1.3E-3) 1.54E-1 * (2.2E-3) 1.62E-1 * (1.3E-3) 1.46E-1 (2.9E-3)
LSMOP3 5 9.58E-1 ( — ) 9.62E-1 * (6.7E-2) 9.58E-1 ( — ) 2.64E1 * (9.8E0) 1.43E3 * (1.9E3) 1.81E1 * (6.0E0)
LSMOP4 5 2.33E-1 * (1.3E-2) 2.71E-1 * (1.5E-2) 2.22E-1 * (5.6E-3) 2.07E-1 (5.6E-3) 2.52E-1 * (5.2E-3) 2.20E-1 * (4.8E-3)
LSMOP5 5 9.83E-1 * (2.2E-1) 5.23E-1 * (4.6E-2) 4.29E-1 (6.7E-2) 6.15E0 * (2.5E0) 1.19E0 * (1.9E-1) 8.34E0 * (2.1E0)
LSMOP6 5 1.83E0 * (2.8E-1) 1.48E0 * (2.2E-1) 1.26E0 (4.0E-1) 2.26E2 * (5.7E2) 1.02E3 * (1.3E3) 4.47E3 * (3.9E3)
LSMOP7 5 1.35E0 * (1.8E-1) 1.16E0 * (1.4E-1) 1.02E0 (1.4E-1) 2.14E0 * (2.4E-2) 9.50E2 * (2.1E3) 1.66E0 * (1.1E-1)
LSMOP8 5 6.59E-1 * (1.5E-1) 4.08E-1 * (2.5E-2) 3.32E-1 (1.1E-2) 1.16E0 * (1.9E-3) 1.13E0 * (2.9E-2) 1.13E0 * (8.1E-3)
LSMOP9 5 3.00E0 (2.2E0) 1.81E0 (7.4E-3) 1.86E0 * (3.4E-1) 4.45E1 * (8.6E0) 1.70E2 * (1.7E1) 1.77E2 * (2.2E1)
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Table B.28: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

WOF-NSGA-II ReNSGA-II WOF-MOEA/D ReMOEA/D WOF-Randomised

n = 40

UF1 2 1.01E-1 * (2.6E-2) 2.12E-1 * (8.4E-2) 6.98E-2 (1.2E-2) 9.23E-1 * (4.6E-1) 9.04E-2 * (2.2E-2)
UF2 2 4.11E-2 (7.4E-3) 1.47E-1 * (1.3E-1) 4.77E-2 * (1.1E-2) 1.34E0 * (1.3E-1) 4.21E-2 (8.2E-3)
UF3 2 1.69E-1 (2.0E-2) 6.29E-1 * (1.4E-1) 2.24E-1 * (4.3E-2) 1.69E0 * (3.0E-1) 1.68E-1 (4.0E-2)
UF4 2 4.72E-2 (1.1E-3) 7.55E-2 * (7.7E-3) 8.27E-2 * (5.4E-3) 1.02E-1 * (7.0E-3) 4.88E-2 (5.6E-3)
UF5 2 3.86E-1 (2.0E-1) 2.04E0 * (5.6E-1) 5.16E-1 * (1.7E-1) 3.72E0 * (9.5E-1) 3.48E-1 (2.0E-1)
UF6 2 1.14E-1 (1.8E-1) 9.92E-1 * (5.0E-1) 1.88E-1 * (2.8E-1) 3.80E0 * (1.8E0) 1.27E-1 (2.4E-1)
UF7 2 5.56E-2 (1.4E-2) 2.20E-1 * (1.6E-1) 3.43E-1 (3.0E-1) 7.96E-1 * (3.0E-1) 5.08E-2 (1.6E-2)
UF8 3 2.24E-1 (1.2E-1) 1.20E0 * (4.9E-1) 2.91E-1 (1.6E-2) 5.77E0 * (3.3E0) 5.28E-1 * (5.4E-2)
UF9 3 3.06E-1 (1.4E-1) 1.38E0 * (7.0E-1) 3.47E-1 * (1.1E-1) 5.50E0 * (2.6E0) 3.13E-1 (2.3E-1)
UF10 3 4.30E-1 (1.4E-1) 7.46E0 * (2.6E0) 7.12E-1 * (1.3E-1) 2.75E1 * (5.0E0) 5.20E-1 * (3.9E-2)

n = 1000

UF1 2 1.57E-1 (3.7E-2) 1.35E0 * (1.6E-2) 2.67E-1 * (1.4E-2) 3.01E0 * (1.7E-1) 1.96E-1 * (1.6E-2)
UF2 2 1.13E-1 * (1.3E-2) 1.56E-1 * (7.0E-3) 9.84E-2 * (4.6E-3) 2.08E0 * (4.0E-1) 8.69E-2 (3.2E-3)
UF3 2 1.38E-1 * (1.0E-2) 3.46E-1 * (2.5E-3) 2.02E-1 * (1.8E-2) 2.44E0 * (9.5E-2) 3.50E-2 (1.0E-2)
UF4 2 7.40E-2 (5.0E-3) 1.39E-1 * (1.2E-3) 1.04E-1 * (6.7E-3) 1.43E-1 * (2.4E-3) 7.08E-2 (1.8E-2)
UF5 2 1.20E0 (1.9E-1) 6.31E0 * (3.7E-1) 1.41E0 * (1.6E-1) 8.54E0 * (2.5E-1) 1.61E0 * (5.3E-1)
UF6 2 4.74E-1 (2.6E-1) 5.55E0 * (1.5E-1) 7.74E-1 * (1.1E-1) 1.20E1 * (4.4E-1) 4.64E-1 (3.1E-1)
UF7 2 1.50E-1 (2.6E-2) 1.41E0 * (1.9E-2) 4.71E-1 * (2.4E-1) 3.00E0 * (1.5E-1) 1.67E-1 * (2.0E-2)
UF8 3 4.67E-1 (2.9E-2) 6.14E-1 (5.9E-2) 3.31E-1 (6.4E-1) 9.02E0 * (1.3E0) 5.42E-1 (2.1E-3)
UF9 3 6.52E-1 (8.4E-2) 7.81E-1 * (2.2E-2) 7.14E-1 * (1.0E-1) 1.03E1 * (7.8E-1) 6.20E-1 (9.6E-2)
UF10 3 1.90E0 * (4.1E-1) 5.46E0 * (4.8E-1) 8.59E-1 (9.8E-2) 4.20E1 * (2.5E0) 8.97E-1 (2.9E-1)

Table B.29: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

WOF-SMPSO LS-SMPSO WOF-NSGA-II LS-NSGA-II WOF-Randomised

n = 40

UF1 2 9.14E-2 (2.2E-2) 1.22E-1 * (3.1E-2) 1.01E-1 * (2.6E-2) 1.35E-1 * (3.8E-2) 9.04E-2 (2.2E-2)
UF2 2 5.41E-2 * (5.7E-3) 6.53E-2 * (5.0E-3) 4.11E-2 (7.4E-3) 6.93E-2 * (1.0E-2) 4.21E-2 (8.2E-3)
UF3 2 1.33E-1 (3.6E-2) 1.91E-1 * (2.5E-2) 1.69E-1 * (2.0E-2) 2.03E-1 * (1.9E-2) 1.68E-1 * (4.0E-2)
UF4 2 5.19E-2 * (8.4E-3) 5.76E-2 * (3.4E-4) 4.72E-2 (1.1E-3) 4.69E-2 (1.2E-3) 4.88E-2 (5.6E-3)
UF5 2 6.24E-1 * (1.6E-1) 8.98E-1 * (2.8E-1) 3.86E-1 (2.0E-1) 4.38E-1 (1.4E-1) 3.48E-1 (2.0E-1)
UF6 2 3.22E-1 * (1.7E-1) 4.83E-1 * (4.7E-2) 1.14E-1 (1.8E-1) 4.07E-1 * (3.2E-2) 1.27E-1 (2.4E-1)
UF7 2 4.68E-2 (9.4E-3) 3.71E-1 * (4.3E-2) 5.56E-2 * (1.4E-2) 3.60E-1 * (3.9E-3) 5.08E-2 (1.6E-2)
UF8 3 2.52E-1 (5.0E-2) 3.29E-1 * (8.9E-2) 2.24E-1 (1.2E-1) 2.33E-1 (6.2E-2) 5.28E-1 * (5.4E-2)
UF9 3 4.81E-1 * (8.9E-2) 4.94E-1 * (7.0E-2) 3.06E-1 (1.4E-1) 4.78E-1 * (7.0E-2) 3.13E-1 (2.3E-1)
UF10 3 1.28E0 * (2.9E-1) 1.91E0 * (5.4E-1) 4.30E-1 (1.4E-1) 4.81E-1 (1.7E-2) 5.20E-1 * (3.9E-2)

n = 1000

UF1 2 2.72E-1 * (5.9E-3) 2.85E-1 * (9.5E-3) 1.57E-1 (3.7E-2) 2.34E-1 * (1.6E-2) 1.96E-1 * (1.6E-2)
UF2 2 8.50E-2 (4.1E-4) 8.61E-2 * (1.1E-3) 1.13E-1 * (1.3E-2) 9.50E-2 * (2.3E-3) 8.69E-2 * (3.2E-3)
UF3 2 2.54E-2 (3.8E-3) 1.24E-1 * (1.0E-3) 1.38E-1 * (1.0E-2) 1.31E-1 * (2.7E-3) 3.50E-2 * (1.0E-2)
UF4 2 5.49E-2 (9.0E-3) 5.91E-2 * (8.9E-5) 7.40E-2 * (5.0E-3) 7.22E-2 * (1.7E-3) 7.08E-2 * (1.8E-2)
UF5 2 2.81E0 * (1.1E-1) 3.01E0 * (1.0E-1) 1.20E0 (1.9E-1) 1.64E0 * (2.1E-1) 1.61E0 * (5.3E-1)
UF6 2 1.02E0 * (5.9E-2) 1.14E0 * (1.3E-1) 4.74E-1 (2.6E-1) 1.14E0 * (2.1E-1) 4.64E-1 (3.1E-1)
UF7 2 2.77E-1 * (7.4E-3) 4.69E-1 * (1.5E-1) 1.50E-1 (2.6E-2) 4.40E-1 * (8.1E-3) 1.67E-1 * (2.0E-2)
UF8 3 3.56E-1 (4.4E-3) 5.02E-1 * (1.3E-1) 4.67E-1 * (2.9E-2) 6.08E-1 * (2.5E-2) 5.42E-1 * (2.1E-3)
UF9 3 5.70E-1 (7.2E-3) 5.95E-1 * (1.6E-2) 6.52E-1 * (8.4E-2) 5.85E-1 * (1.1E-2) 6.20E-1 * (9.6E-2)
UF10 3 2.08E0 * (7.6E-1) 4.06E0 * (3.6E-1) 1.90E0 * (4.1E-1) 1.81E0 * (2.2E-1) 8.97E-1 (2.9E-1)
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Table B.30: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised randomLMEA randomMOEA/DVA randomS3-CMA-ES

n = 40

UF1 2 9.14E-2 * (2.2E-2) 1.01E-1 * (2.6E-2) 9.04E-2 * (2.2E-2) 1.16E-1 * (1.2E-2) 3.14E-2 (2.3E-3) 3.39E-1 * (1.5E-1)
UF2 2 5.41E-2 * (5.7E-3) 4.11E-2 * (7.4E-3) 4.21E-2 * (8.2E-3) 8.28E-2 * (8.7E-3) 3.37E-2 (1.4E-3) 7.79E-2 * (3.1E-2)
UF3 2 1.33E-1 (3.6E-2) 1.69E-1 * (2.0E-2) 1.68E-1 * (4.0E-2) 3.19E-1 * (2.8E-3) 2.26E-1 * (6.8E-3) 3.60E-1 * (3.5E-2)
UF4 2 5.19E-2 * (8.4E-3) 4.72E-2 (1.1E-3) 4.88E-2 (5.6E-3) 6.33E-2 * (7.5E-3) 6.32E-2 * (2.9E-3) 9.98E-2 * (3.8E-3)
UF5 2 6.24E-1 * (1.6E-1) 3.86E-1 * (2.0E-1) 3.48E-1 * (2.0E-1) 2.49E-1 (4.1E-2) 1.49E0 * (6.5E-2) 1.24E0 * (5.2E-1)
UF6 2 3.22E-1 * (1.7E-1) 1.14E-1 (1.8E-1) 1.27E-1 (2.4E-1) 1.31E-1 (1.9E-2) 3.87E-1 * (1.1E-2) 1.21E0 * (1.3E0)
UF7 2 4.68E-2 (9.4E-3) 5.56E-2 * (1.4E-2) 5.08E-2 (1.6E-2) 7.21E-2 * (2.5E-1) 7.87E-2 * (2.3E-3) 4.81E-1 * (1.4E-1)
UF8 3 2.52E-1 * (5.0E-2) 2.24E-1 * (1.2E-1) 5.28E-1 * (5.4E-2) 5.34E-1 * (5.7E-3) 1.66E-1 (9.0E-3) 4.89E-1 * (1.8E-1)
UF9 3 4.81E-1 * (8.9E-2) 3.06E-1 * (1.4E-1) 3.13E-1 * (2.3E-1) 6.01E-1 * (5.8E-2) 1.92E-1 (1.2E-2) 4.86E-1 * (1.2E-1)
UF10 3 1.28E0 * (2.9E-1) 4.30E-1 (1.4E-1) 5.20E-1 * (3.9E-2) 6.32E-1 * (1.6E-1) 2.97E0 * (2.1E-1) 1.93E0 * (2.9E-1)

n = 1000

UF1 2 2.72E-1 * (5.9E-3) 1.57E-1 (3.7E-2) 1.96E-1 * (1.6E-2) 5.34E-1 * (8.0E-2) 1.64E0 * (5.1E-2) 5.76E-1 * (4.0E-1)
UF2 2 8.50E-2 (4.1E-4) 1.13E-1 * (1.3E-2) 8.69E-2 * (3.2E-3) 3.23E-1 * (2.1E-2) 7.20E-1 * (4.3E-2) 9.51E-1 * (8.4E-2)
UF3 2 2.54E-2 (3.8E-3) 1.38E-1 * (1.0E-2) 3.50E-2 * (1.0E-2) 3.70E-1 * (1.2E-2) 8.63E-1 * (6.8E-2) 7.65E-1 * (1.5E-1)
UF4 2 5.49E-2 (9.0E-3) 7.40E-2 * (5.0E-3) 7.08E-2 * (1.8E-2) 1.79E-1 * (2.6E-3) 1.31E-1 * (9.2E-4) 1.45E-1 * (7.8E-3)
UF5 2 2.81E0 * (1.1E-1) 1.20E0 (1.9E-1) 1.61E0 * (5.3E-1) 2.57E0 * (1.1E-1) 6.21E0 * (1.0E-1) 3.53E0 * (1.0E0)
UF6 2 1.02E0 * (5.9E-2) 4.74E-1 (2.6E-1) 4.64E-1 (3.1E-1) 2.18E0 * (2.8E-1) 6.68E0 * (2.1E-1) 1.46E0 * (8.6E-2)
UF7 2 2.77E-1 * (7.4E-3) 1.50E-1 (2.6E-2) 1.67E-1 * (2.0E-2) 6.78E-1 * (1.8E-1) 1.72E0 * (5.2E-2) 8.22E-1 * (3.9E-1)
UF8 3 3.56E-1 (4.4E-3) 4.67E-1 * (2.9E-2) 5.42E-1 * (2.1E-3) 1.01E0 * (5.9E-2) 2.73E0 * (5.9E-1) 1.82E0 * (2.6E-1)
UF9 3 5.70E-1 (7.2E-3) 6.52E-1 * (8.4E-2) 6.20E-1 * (9.6E-2) 1.21E0 * (8.9E-2) 3.17E0 * (3.5E-1) 1.86E0 * (1.0E0)
UF10 3 2.08E0 * (7.6E-1) 1.90E0 * (4.1E-1) 8.97E-1 (2.9E-1) 5.80E0 * (4.4E-1) 1.57E1 * (2.0E0) 1.12E1 * (1.8E0)

Table B.31: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

WOF-NSGA-II ReNSGA-II WOF-MOEA/D ReMOEA/D WOF-Randomised

n = 40

WFG1 2 1.71E-1 (6.1E-2) 1.22E0 * (2.9E-2) 1.01E0 * (6.5E-2) 1.30E0 * (7.0E-3) 3.49E-1 * (9.5E-2)
WFG2 2 2.87E-2 (1.1E-2) 7.08E-1 * (7.0E-2) 9.68E-2 * (9.2E-3) 8.02E-1 * (5.8E-2) 2.44E-2 (6.1E-3)
WFG3 2 2.98E-2 * (8.7E-3) 5.20E-1 * (8.9E-2) 4.81E-2 * (4.8E-3) 7.81E-1 * (3.5E-2) 2.16E-2 (3.7E-3)
WFG4 2 2.24E-2 * (3.4E-3) 1.85E-1 * (6.7E-2) 7.19E-2 * (8.5E-3) 1.02E0 * (2.1E-1) 1.85E-2 (2.4E-3)
WFG5 2 7.22E-2 * (7.1E-4) 2.50E-1 * (2.0E-1) 7.28E-2 * (2.4E-3) 6.28E-1 * (2.6E-1) 6.94E-2 (1.2E-4)
WFG6 2 8.32E-2 * (1.2E-3) 8.23E-2 * (1.8E-3) 8.54E-2 * (5.4E-3) 1.53E-1 * (3.1E-1) 4.13E-2 (4.9E-2)
WFG7 2 1.83E-2 * (1.2E-3) 2.47E-1 * (6.1E-2) 4.67E-2 * (1.5E-2) 8.24E-1 * (7.5E-2) 1.38E-2 (5.7E-4)
WFG8 2 2.15E-1 * (1.6E-2) 4.41E-1 * (5.1E-2) 1.67E-1 (1.8E-2) 8.99E-1 * (7.3E-2) 2.09E-1 * (5.9E-2)
WFG9 2 9.15E-2 (4.6E-2) 9.43E-2 * (6.7E-3) 9.31E-2 * (2.9E-3) 1.38E-1 * (4.6E-2) 8.28E-2 (5.4E-2)
WFG1 3 9.77E-1 (7.2E-2) 1.53E0 * (1.2E-2) 1.38E0 * (7.5E-2) 1.55E0 * (1.4E-2) 1.18E0 * (1.0E-1)
WFG2 3 2.24E-1 * (9.0E-3) 7.90E-1 * (1.2E-1) 3.02E-1 * (3.0E-2) 8.91E-1 * (3.4E-2) 1.66E-1 (4.8E-3)
WFG3 3 1.35E-1 (2.7E-2) 8.26E-1 * (1.8E-1) 1.74E-1 * (3.0E-2) 1.03E0 * (4.6E-2) 1.20E-1 (3.0E-2)
WFG4 3 2.91E-1 * (1.2E-2) 4.86E-1 * (5.4E-2) 2.97E-1 * (2.5E-2) 1.09E0 * (1.0E-1) 2.35E-1 (4.5E-3)
WFG5 3 2.92E-1 * (1.4E-2) 4.23E-1 * (7.7E-2) 2.91E-1 * (1.0E-2) 8.04E-1 * (2.9E-1) 2.36E-1 (2.5E-3)
WFG6 3 3.13E-1 * (1.9E-2) 3.38E-1 * (3.4E-2) 3.28E-1 * (1.9E-2) 4.89E-1 * (5.7E-2) 2.41E-1 (4.1E-3)
WFG7 3 3.13E-1 * (1.1E-1) 6.15E-1 * (8.1E-2) 2.95E-1 * (3.8E-2) 1.09E0 * (9.4E-2) 2.28E-1 (4.0E-2)
WFG8 3 5.02E-1 * (3.6E-2) 8.90E-1 * (8.3E-2) 4.93E-1 * (8.8E-2) 1.12E0 * (5.2E-2) 3.53E-1 (6.4E-2)
WFG9 3 3.18E-1 * (1.0E-2) 3.30E-1 * (2.6E-2) 3.15E-1 * (2.1E-2) 4.81E-1 * (4.2E-2) 2.46E-1 (6.3E-3)

n = 1000

WFG1 2 1.27E0 * (1.2E-2) 1.32E0 * (1.1E-2) 1.26E0 * (8.7E-3) 1.38E0 * (1.3E-2) 1.22E0 (2.7E-2)
WFG2 2 2.35E-1 * (7.5E-2) 1.22E0 * (5.4E-3) 2.17E-1 * (3.6E-2) 1.27E0 * (1.9E-2) 1.40E-1 (2.9E-2)
WFG3 2 2.12E-1 * (2.9E-2) 1.12E0 * (4.6E-2) 1.71E-1 * (5.1E-2) 1.19E0 * (4.3E-2) 1.25E-1 (3.1E-2)
WFG4 2 1.77E-1 * (2.3E-2) 5.74E-1 * (2.0E-2) 1.64E-1 * (3.1E-2) 1.68E0 * (1.1E-1) 1.27E-1 (1.8E-2)
WFG5 2 9.28E-2 * (6.6E-2) 1.34E0 * (9.4E-2) 1.01E-1 * (1.6E-2) 1.58E0 * (5.5E-2) 6.97E-2 (3.3E-3)
WFG6 2 2.34E-2 * (5.4E-3) 2.52E0 * (1.6E-2) 7.35E-2 * (3.5E-2) 2.44E0 * (2.0E-2) 1.35E-2 (3.6E-3)
WFG7 2 2.41E-1 * (2.7E-2) 9.61E-1 * (4.3E-2) 2.23E-1 * (9.9E-2) 1.56E0 * (1.5E-1) 1.39E-1 (2.9E-2)
WFG8 2 3.59E-1 * (4.3E-2) 1.36E0 * (6.4E-3) 3.77E-1 * (5.6E-2) 1.65E0 * (6.9E-2) 2.81E-1 (7.8E-2)
WFG9 2 1.04E-1 * (5.2E-2) 4.88E-1 * (7.8E-2) 8.67E-2 * (3.6E-2) 8.82E-1 * (1.7E-1) 5.05E-2 (2.9E-2)
WFG1 3 1.55E0 * (3.6E-2) 1.68E0 * (5.1E-2) 1.62E0 * (5.5E-2) 1.70E0 * (1.3E-1) 1.50E0 (1.8E-2)
WFG2 3 5.15E-1 * (1.1E-1) 2.11E0 * (1.3E-2) 7.63E-1 * (1.0E-1) 2.15E0 * (2.0E-2) 4.04E-1 (1.0E-1)
WFG3 3 3.97E-1 (1.5E-1) 1.08E0 * (2.4E-1) 3.39E-1 (9.8E-2) 1.33E0 * (8.7E-2) 3.98E-1 (1.4E-1)
WFG4 3 6.48E-1 * (1.2E-1) 1.34E0 * (5.2E-2) 5.25E-1 * (7.4E-2) 2.02E0 * (2.0E-1) 4.22E-1 (9.3E-2)
WFG5 3 6.22E-1 * (1.0E-1) 2.61E0 * (2.4E-1) 4.63E-1 * (4.0E-1) 3.09E0 * (1.3E-1) 4.01E-1 (1.1E-1)
WFG6 3 4.03E-1 * (8.8E-2) 3.92E0 * (3.6E-2) 3.85E-1 * (6.4E-2) 3.75E0 * (7.9E-2) 2.46E-1 (1.8E-2)
WFG7 3 7.19E-1 * (3.7E-2) 1.81E0 * (1.1E-1) 6.61E-1 * (8.3E-2) 2.31E0 * (9.1E-2) 5.29E-1 (5.5E-2)
WFG8 3 1.07E0 * (1.2E-1) 1.97E0 * (8.8E-2) 1.35E0 * (2.1E-1) 2.31E0 * (1.6E-1) 7.72E-1 (1.3E-1)
WFG9 3 7.51E-1 * (1.2E-1) 1.12E0 * (8.6E-2) 5.88E-1 * (7.6E-2) 1.69E0 * (1.8E-1) 4.31E-1 (1.1E-1)
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Table B.32: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

WOF-SMPSO LS-SMPSO WOF-NSGA-II LS-NSGA-II WOF-Randomised

n = 40

WFG1 2 1.12E0 * (7.3E-2) 1.23E0 * (2.4E-2) 1.71E-1 (6.1E-2) 3.07E-1 * (8.1E-2) 3.49E-1 * (9.5E-2)
WFG2 2 2.80E-2 * (7.5E-3) 2.44E-1 * (4.4E-2) 2.87E-2 * (1.1E-2) 1.90E-2 (1.4E-2) 2.44E-2 * (6.1E-3)
WFG3 2 3.00E-2 * (6.4E-3) 3.64E-2 * (2.1E-2) 2.98E-2 * (8.7E-3) 2.69E-2 * (6.9E-3) 2.16E-2 (3.7E-3)
WFG4 2 7.68E-2 * (3.4E-2) 9.48E-2 * (2.2E-2) 2.24E-2 * (3.4E-3) 1.61E-2 (8.1E-4) 1.85E-2 * (2.4E-3)
WFG5 2 6.79E-2 (4.6E-3) 1.29E-1 * (4.9E-2) 7.22E-2 * (7.1E-4) 7.17E-2 (4.4E-2) 6.94E-2 (1.2E-4)
WFG6 2 2.28E-2 (9.8E-3) 3.53E-2 * (7.8E-3) 8.32E-2 * (1.2E-3) 4.49E-2 * (4.2E-2) 4.13E-2 * (4.9E-2)
WFG7 2 1.88E-2 * (1.6E-3) 7.66E-2 * (1.0E-1) 1.83E-2 * (1.2E-3) 3.37E-2 * (1.4E-2) 1.38E-2 (5.7E-4)
WFG8 2 1.07E-1 (8.7E-2) 3.04E-1 * (2.5E-2) 2.15E-1 * (1.6E-2) 2.92E-1 * (1.0E-1) 2.09E-1 * (5.9E-2)
WFG9 2 4.27E-2 (1.3E-2) 6.68E-2 * (2.5E-2) 9.15E-2 * (4.6E-2) 4.39E-2 (8.4E-3) 8.28E-2 (5.4E-2)
WFG1 3 1.51E0 * (2.1E-2) 1.54E0 * (1.8E-2) 9.77E-1 (7.2E-2) 1.07E0 * (8.0E-2) 1.18E0 * (1.0E-1)
WFG2 3 2.36E-1 * (1.7E-2) 5.78E-1 * (1.9E-1) 2.24E-1 * (9.0E-3) 2.15E-1 * (1.2E-2) 1.66E-1 (4.8E-3)
WFG3 3 1.43E-1 * (2.6E-2) 1.16E-1 (1.1E-1) 1.35E-1 * (2.7E-2) 8.72E-2 (1.9E-2) 1.20E-1 * (3.0E-2)
WFG4 3 3.46E-1 * (3.2E-2) 5.12E-1 * (8.9E-2) 2.91E-1 * (1.2E-2) 2.79E-1 * (1.7E-2) 2.35E-1 (4.5E-3)
WFG5 3 3.04E-1 * (2.5E-2) 5.15E-1 * (2.1E-1) 2.92E-1 * (1.4E-2) 3.01E-1 * (2.5E-2) 2.36E-1 (2.5E-3)
WFG6 3 3.48E-1 * (6.2E-2) 3.76E-1 * (5.0E-2) 3.13E-1 * (1.9E-2) 3.16E-1 * (1.9E-2) 2.41E-1 (4.1E-3)
WFG7 3 2.99E-1 * (1.9E-2) 5.31E-1 * (3.1E-2) 3.13E-1 * (1.1E-1) 4.35E-1 * (2.4E-2) 2.28E-1 (4.0E-2)
WFG8 3 5.60E-1 * (3.4E-2) 7.72E-1 * (1.0E-1) 5.02E-1 * (3.6E-2) 5.98E-1 * (5.4E-2) 3.53E-1 (6.4E-2)
WFG9 3 3.38E-1 * (3.1E-2) 4.34E-1 * (7.8E-2) 3.18E-1 * (1.0E-2) 3.31E-1 * (2.5E-2) 2.46E-1 (6.3E-3)

n = 1000

WFG1 2 1.20E0 (5.1E-2) 1.27E0 * (8.9E-3) 1.27E0 * (1.2E-2) 1.29E0 * (4.3E-3) 1.22E0 * (2.7E-2)
WFG2 2 7.25E-2 (2.1E-2) 4.49E-1 * (4.7E-3) 2.35E-1 * (7.5E-2) 4.57E-1 * (5.1E-4) 1.40E-1 * (2.9E-2)
WFG3 2 8.94E-2 (1.3E-2) 4.16E-1 * (7.1E-3) 2.12E-1 * (2.9E-2) 4.44E-1 * (6.2E-3) 1.25E-1 * (3.1E-2)
WFG4 2 1.11E-1 (8.2E-3) 5.51E-1 * (1.8E-2) 1.77E-1 * (2.3E-2) 1.20E-1 * (1.1E-2) 1.27E-1 * (1.8E-2)
WFG5 2 6.78E-2 (4.8E-3) 5.49E-1 * (2.0E-2) 9.28E-2 * (6.6E-2) 1.69E-1 * (8.5E-2) 6.97E-2 (3.3E-3)
WFG6 2 1.69E-2 * (1.4E-3) 1.75E-2 * (3.9E-3) 2.34E-2 * (5.4E-3) 1.95E-1 * (1.7E-1) 1.35E-2 (3.6E-3)
WFG7 2 7.70E-2 (1.1E-2) 6.56E-1 * (1.1E-2) 2.41E-1 * (2.7E-2) 2.57E-1 * (1.9E-2) 1.39E-1 * (2.9E-2)
WFG8 2 1.03E-1 (1.0E-1) 4.17E-1 * (9.9E-3) 3.59E-1 * (4.3E-2) 4.72E-1 * (4.2E-3) 2.81E-1 * (7.8E-2)
WFG9 2 3.83E-2 (7.2E-3) 3.48E-1 * (7.8E-2) 1.04E-1 * (5.2E-2) 1.33E-1 * (2.8E-2) 5.05E-2 * (2.9E-2)
WFG1 3 1.51E0 * (1.9E-2) 1.73E0 * (4.8E-2) 1.55E0 * (3.6E-2) 1.70E0 * (2.6E-2) 1.50E0 (1.8E-2)
WFG2 3 2.43E-1 (1.6E-2) 1.31E0 * (1.0E-2) 5.15E-1 * (1.1E-1) 1.32E0 * (9.6E-3) 4.04E-1 * (1.0E-1)
WFG3 3 1.13E-1 (3.0E-2) 7.16E-1 * (1.9E-3) 3.97E-1 * (1.5E-1) 5.98E-1 * (5.0E-2) 3.98E-1 * (1.4E-1)
WFG4 3 3.70E-1 (2.4E-2) 1.42E0 * (6.1E-2) 6.48E-1 * (1.2E-1) 1.08E0 * (4.8E-2) 4.22E-1 * (9.3E-2)
WFG5 3 4.28E-1 (1.4E-1) 1.49E0 * (5.4E-2) 6.22E-1 * (1.0E-1) 1.11E0 * (5.8E-2) 4.01E-1 (1.1E-1)
WFG6 3 3.78E-1 * (5.9E-2) 1.20E0 * (5.8E-2) 4.03E-1 * (8.8E-2) 6.78E-1 * (2.5E-1) 2.46E-1 (1.8E-2)
WFG7 3 3.58E-1 (4.1E-2) 1.42E0 * (9.6E-2) 7.19E-1 * (3.7E-2) 1.31E0 * (3.2E-2) 5.29E-1 * (5.5E-2)
WFG8 3 6.19E-1 (7.5E-2) 1.32E0 * (2.8E-1) 1.07E0 * (1.2E-1) 1.58E0 * (1.8E-1) 7.72E-1 * (1.3E-1)
WFG9 3 3.68E-1 (3.6E-2) 1.25E0 * (1.0E-1) 7.51E-1 * (1.2E-1) 7.00E-1 * (4.2E-1) 4.31E-1 * (1.1E-1)
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Table B.33: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised randomLMEA randomMOEA/DVA randomS3-CMA-ES

n = 40

WFG1 2 1.12E0 * (7.3E-2) 1.71E-1 (6.1E-2) 3.49E-1 * (9.5E-2) 6.46E-1 * (1.5E-1) 1.13E0 * (1.0E-1) 1.52E0 * (1.4E-1)
WFG2 2 2.80E-2 * (7.5E-3) 2.87E-2 (1.1E-2) 2.44E-2 (6.1E-3) 6.66E-1 * (4.3E-1) 2.39E-1 * (2.5E-2) 1.08E0 * (1.2E-1)
WFG3 2 3.00E-2 * (6.4E-3) 2.98E-2 * (8.7E-3) 2.16E-2 (3.7E-3) 7.24E-2 * (3.6E-2) 3.02E-2 * (1.1E-2) 1.06E0 * (2.1E-1)
WFG4 2 7.68E-2 * (3.4E-2) 2.24E-2 * (3.4E-3) 1.85E-2 (2.4E-3) 2.79E-2 * (1.7E-2) 7.88E-1 * (8.7E-2) 1.44E0 * (3.9E-1)
WFG5 2 6.79E-2 (4.6E-3) 7.22E-2 * (7.1E-4) 6.94E-2 (1.2E-4) 8.66E-2 * (1.0E-2) 5.18E-1 * (9.6E-2) 9.11E-1 * (1.9E-1)
WFG6 2 2.28E-2 (9.8E-3) 8.32E-2 * (1.2E-3) 4.13E-2 * (4.9E-2) 5.97E-2 * (1.1E-2) 6.07E-1 * (1.1E-1) 2.20E0 * (2.9E-1)
WFG7 2 1.88E-2 * (1.6E-3) 1.83E-2 * (1.2E-3) 1.38E-2 (5.7E-4) 8.49E-2 * (7.3E-2) 1.70E-2 * (1.7E-3) 1.42E0 * (4.1E-1)
WFG8 2 1.07E-1 (8.7E-2) 2.15E-1 * (1.6E-2) 2.09E-1 * (5.9E-2) 3.51E-1 * (2.6E-2) 6.94E-1 * (4.7E-2) 1.20E0 * (2.5E-1)
WFG9 2 4.27E-2 (1.3E-2) 9.15E-2 * (4.6E-2) 8.28E-2 (5.4E-2) 9.57E-2 * (6.3E-3) 9.11E-2 * (2.5E-3) 1.06E0 * (3.1E-1)
WFG1 3 1.51E0 * (2.1E-2) 9.77E-1 * (7.2E-2) 1.18E0 * (1.0E-1) 7.26E-1 (1.5E-1) 1.46E0 * (6.2E-2) 1.59E0 * (7.5E-2)
WFG2 3 2.36E-1 * (1.7E-2) 2.24E-1 * (9.0E-3) 1.66E-1 (4.8E-3) 5.17E-1 * (1.6E-2) 1.05E0 * (6.3E-1) 7.94E-1 * (2.5E-1)
WFG3 3 1.43E-1 * (2.6E-2) 1.35E-1 * (2.7E-2) 1.20E-1 * (3.0E-2) 8.54E-2 (2.2E-2) 4.50E-1 * (6.3E-2) 1.29E0 * (3.9E-1)
WFG4 3 3.46E-1 * (3.2E-2) 2.91E-1 * (1.2E-2) 2.35E-1 * (4.5E-3) 2.18E-1 (3.7E-3) 1.54E0 * (1.7E-1) 1.45E0 * (2.6E-1)
WFG5 3 3.04E-1 * (2.5E-2) 2.92E-1 * (1.4E-2) 2.36E-1 * (2.5E-3) 2.33E-1 (3.4E-3) 9.23E-1 * (9.5E-2) 1.19E0 * (3.5E-1)
WFG6 3 3.48E-1 * (6.2E-2) 3.13E-1 * (1.9E-2) 2.41E-1 * (4.1E-3) 2.23E-1 (5.4E-3) 9.45E-1 * (1.0E-1) 2.09E0 * (6.9E-1)
WFG7 3 2.99E-1 * (1.9E-2) 3.13E-1 * (1.1E-1) 2.28E-1 (4.0E-2) 2.54E-1 * (4.5E-2) 3.97E-1 * (3.6E-2) 1.58E0 * (2.2E-1)
WFG8 3 5.60E-1 * (3.4E-2) 5.02E-1 * (3.6E-2) 3.53E-1 (6.4E-2) 3.45E-1 (1.0E-2) 1.10E0 * (1.4E-1) 1.63E0 * (3.2E-1)
WFG9 3 3.38E-1 * (3.1E-2) 3.18E-1 * (1.0E-2) 2.46E-1 (6.3E-3) 2.96E-1 * (3.8E-2) 3.46E-1 * (1.8E-2) 1.22E0 * (2.4E-1)

n = 1000

WFG1 2 1.20E0 (5.1E-2) 1.27E0 * (1.2E-2) 1.22E0 * (2.7E-2) 1.77E0 * (2.1E-2) 1.32E0 * (1.3E-2) 1.67E0 * (1.5E-1)
WFG2 2 7.25E-2 (2.1E-2) 2.35E-1 * (7.5E-2) 1.40E-1 * (2.9E-2) 8.95E-1 * (5.4E-1) 9.55E-1 * (3.8E-2) 3.13E0 * (2.9E-3)
WFG3 2 8.94E-2 (1.3E-2) 2.12E-1 * (2.9E-2) 1.25E-1 * (3.1E-2) 8.13E-1 * (2.2E-2) 8.48E-1 * (4.6E-2) 2.48E0 * (2.4E-2)
WFG4 2 1.11E-1 (8.2E-3) 1.77E-1 * (2.3E-2) 1.27E-1 * (1.8E-2) 1.06E0 * (4.6E-2) 1.50E0 * (2.3E-2) 1.99E0 * (5.3E-2)
WFG5 2 6.78E-2 (4.8E-3) 9.28E-2 * (6.6E-2) 6.97E-2 (3.3E-3) 9.84E-1 * (2.1E-2) 1.17E0 * (3.3E-2) 1.65E0 * (3.9E-2)
WFG6 2 1.69E-2 * (1.4E-3) 2.34E-2 * (5.4E-3) 1.35E-2 (3.6E-3) 9.50E-1 * (3.5E-2) 1.59E0 * (3.7E-2) 1.60E0 * (3.5E-2)
WFG7 2 7.70E-2 (1.1E-2) 2.41E-1 * (2.7E-2) 1.39E-1 * (2.9E-2) 9.75E-1 * (8.9E-2) 9.91E-1 * (2.7E-2) 1.91E0 * (5.5E-2)
WFG8 2 1.03E-1 (1.0E-1) 3.59E-1 * (4.3E-2) 2.81E-1 * (7.8E-2) 1.10E0 * (3.2E-2) 1.46E0 * (2.0E-2) 2.10E0 * (3.6E-2)
WFG9 2 3.83E-2 (7.2E-3) 1.04E-1 * (5.2E-2) 5.05E-2 * (2.9E-2) 1.08E0 * (1.7E-1) 1.58E0 * (3.7E-2) 1.65E0 * (1.6E-1)
WFG1 3 1.51E0 * (1.9E-2) 1.55E0 * (3.6E-2) 1.50E0 (1.8E-2) 1.93E0 * (4.8E-2) 1.60E0 * (2.4E-2) 1.94E0 * (5.9E-2)
WFG2 3 2.43E-1 (1.6E-2) 5.15E-1 * (1.1E-1) 4.04E-1 * (1.0E-1) 1.74E0 * (3.6E-2) 1.93E0 * (1.2E-2) 5.35E0 * (8.5E-3)
WFG3 3 1.13E-1 (3.0E-2) 3.97E-1 * (1.5E-1) 3.98E-1 * (1.4E-1) 9.46E-1 * (5.4E-2) 1.59E0 * (4.3E-2) 3.13E0 * (6.4E-2)
WFG4 3 3.70E-1 (2.4E-2) 6.48E-1 * (1.2E-1) 4.22E-1 * (9.3E-2) 2.04E0 * (7.0E-2) 2.85E0 * (3.6E-2) 2.70E0 * (9.5E-2)
WFG5 3 4.28E-1 (1.4E-1) 6.22E-1 * (1.0E-1) 4.01E-1 (1.1E-1) 1.62E0 * (8.1E-2) 2.10E0 * (5.2E-2) 3.19E0 * (7.0E-2)
WFG6 3 3.78E-1 * (5.9E-2) 4.03E-1 * (8.8E-2) 2.46E-1 (1.8E-2) 1.29E0 * (7.2E-2) 2.32E0 * (4.1E-2) 2.97E0 * (7.6E-2)
WFG7 3 3.58E-1 (4.1E-2) 7.19E-1 * (3.7E-2) 5.29E-1 * (5.5E-2) 1.75E0 * (9.4E-2) 2.04E0 * (7.2E-2) 2.56E0 * (5.7E-2)
WFG8 3 6.19E-1 (7.5E-2) 1.07E0 * (1.2E-1) 7.72E-1 * (1.3E-1) 1.75E0 * (7.5E-2) 2.48E0 * (5.8E-2) 3.83E0 * (5.3E-2)
WFG9 3 3.68E-1 (3.6E-2) 7.51E-1 * (1.2E-1) 4.31E-1 * (1.1E-1) 1.65E0 * (1.4E-1) 1.59E0 * (8.1E-1) 3.16E0 * (2.7E-1)
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Table B.34: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

WOF-NSGA-II ReNSGA-II WOF-MOEA/D ReMOEA/D WOF-Randomised

n = 40

DTLZ1 2 6.22E0 (4.4E0) 3.18E2 * (6.7E0) 4.40E0 (2.2E0) 3.24E2 * (8.3E0) 3.33E0 (1.1E1)
DTLZ2 2 5.05E-3 * (2.4E-4) 1.19E-1 * (2.9E-1) 4.42E-3 * (1.9E-3) 5.22E0 * (9.6E-1) 3.96E-3 (3.4E-7)
DTLZ3 2 2.00E1 * (7.5E0) 8.75E2 * (3.0E1) 1.61E1 (2.0E1) 9.08E2 * (1.4E1) 1.03E1 (1.9E1)
DTLZ4 2 5.19E-3 * (4.4E-4) 6.02E-1 * (3.8E-1) 5.87E-3 * (2.4E-3) 5.61E0 * (9.1E-1) 3.96E-3 (2.8E-6)
DTLZ5 2 5.03E-3 * (2.0E-4) 2.88E-1 * (2.4E-1) 4.46E-3 * (2.0E-3) 4.97E0 * (8.4E-1) 3.96E-3 (1.9E-7)
DTLZ6 2 5.62E-3 * (3.7E-4) 3.00E0 * (1.0E0) 6.52E-3 * (7.4E-4) 6.00E0 * (2.0E0) 3.96E-3 (5.3E-8)
DTLZ7 2 5.44E-3 (4.3E-1) 2.57E-1 * (2.8E-1) 4.46E-1 * (4.0E-4) 2.23E0 * (1.5E0) 4.42E-1 (4.3E-1)
DTLZ1 3 2.77E1 * (1.2E1) 2.75E2 * (1.5E0) 1.08E1 (1.1E1) 2.66E2 * (7.4E0) 1.11E1 (2.4E1)
DTLZ2 3 7.32E-2 * (3.4E-3) 3.86E-1 * (5.2E-1) 5.50E-2 * (2.9E-3) 4.62E0 * (5.2E-1) 5.44E-2 (6.1E-6)
DTLZ3 3 6.04E1 * (4.2E1) 8.64E2 * (2.7E1) 2.52E1 (3.1E1) 8.81E2 * (1.5E1) 2.41E1 (3.3E1)
DTLZ4 3 7.10E-2 * (3.2E-3) 8.73E-1 * (4.2E-1) 5.47E-2 * (2.1E-3) 4.98E0 * (7.3E-1) 5.44E-2 (8.3E-6)
DTLZ5 3 6.48E-3 (5.1E-4) 3.85E-1 * (4.8E-1) 3.16E-2 * (2.0E-3) 4.34E0 * (9.9E-1) 1.37E-2 * (2.9E-3)
DTLZ6 3 6.46E-3 (7.0E-4) 3.98E0 * (2.5E0) 3.52E-2 * (4.2E-3) 5.01E0 * (3.4E0) 2.29E-2 * (3.5E-3)
DTLZ7 3 8.54E-2 (7.1E-1) 5.86E-1 * (5.7E-1) 8.02E-1 * (6.5E-1) 2.59E0 * (1.5E0) 8.01E-1 (7.2E-1)
DTLZ1 4 1.60E2 * (4.9E1) 2.45E2 * (2.0E1) 5.74E0 (6.6E0) 2.28E2 * (5.9E0) 1.02E1 (1.4E1)
DTLZ2 4 1.64E-1 * (8.1E-3) 1.56E0 * (5.4E-1) 1.48E-1 * (3.9E-3) 4.51E0 * (1.0E0) 1.40E-1 (2.0E-5)
DTLZ3 4 2.99E2 * (1.4E2) 8.35E2 * (3.6E1) 2.32E1 (4.8E1) 8.50E2 * (2.0E1) 3.25E1 (7.3E1)
DTLZ4 4 1.63E-1 * (5.7E-3) 1.15E0 * (5.5E-1) 4.58E-1 * (6.0E-1) 4.66E0 * (5.4E-1) 1.40E-1 (7.5E-5)
DTLZ5 4 1.52E-1 * (4.1E-2) 1.92E0 * (1.1E0) 4.69E-2 (5.6E-3) 4.07E0 * (1.1E0) 8.13E-2 * (3.5E-2)
DTLZ6 4 1.02E1 * (2.2E0) 7.40E0 * (2.8E0) 5.12E-2 (1.2E-1) 3.11E0 * (2.0E0) 1.83E-1 * (6.1E-2)
DTLZ7 4 2.41E-1 (8.9E-1) 7.87E-1 * (5.2E-1) 1.12E0 * (7.2E-1) 4.83E0 * (3.6E0) 3.83E-1 (9.1E-1)
DTLZ1 5 2.02E2 * (5.6E1) 2.89E2 * (3.7E1) 1.87E1 (2.0E1) 2.15E2 * (1.8E1) 2.10E1 (2.6E1)
DTLZ2 5 2.71E-1 * (1.3E-2) 3.03E0 * (9.2E-1) 2.31E-1 * (4.8E-3) 3.83E0 * (6.7E-1) 2.12E-1 (1.4E-4)
DTLZ3 5 6.24E2 * (1.6E2) 8.16E2 * (2.7E1) 8.63E1 (4.5E1) 8.23E2 * (1.4E1) 4.41E1 (8.4E1)
DTLZ4 5 2.73E-1 * (1.3E-2) 1.81E0 * (4.3E-1) 4.30E-1 * (2.1E-1) 4.52E0 * (8.8E-1) 2.12E-1 (1.7E-4)
DTLZ5 5 1.47E0 * (6.6E-1) 2.55E0 * (9.0E-1) 3.48E-2 (8.2E-3) 3.92E0 * (7.6E-1) 1.45E-1 * (4.0E-2)
DTLZ6 5 1.96E1 * (3.8E0) 7.40E0 * (2.9E0) 3.57E-2 (8.3E-3) 3.45E0 * (1.9E0) 4.52E-1 * (1.9E-1)
DTLZ7 5 4.01E-1 (1.9E-2) 9.47E-1 * (1.5E0) 9.09E-1 * (6.5E-1) 6.23E0 * (2.6E0) 3.97E-1 (5.8E-2)

n = 1000

DTLZ1 2 5.15E3 * (1.7E3) 1.10E4 * (3.9E2) 8.86E2 (5.7E2) 1.16E4 * (3.4E2) 7.98E2 (9.7E2)
DTLZ2 2 7.18E-1 * (6.3E-1) 5.95E-1 * (1.1E-1) 1.03E-1 * (1.1E-1) 1.73E2 * (9.2E1) 4.56E-3 (1.0E-3)
DTLZ3 2 1.38E4 * (4.5E3) 3.02E4 * (8.4E2) 2.80E3 * (1.2E3) 3.18E4 * (1.5E3) 1.51E3 (2.7E3)
DTLZ4 2 6.91E-1 * (4.0E-1) 2.46E0 * (2.9E-1) 1.34E-2 * (7.7E-3) 1.89E2 * (1.6E1) 8.13E-3 (4.8E-3)
DTLZ5 2 7.07E-1 * (5.2E-1) 6.51E-1 * (1.3E-1) 1.36E-1 * (6.2E-2) 1.56E2 * (1.2E2) 4.77E-3 (2.3E-3)
DTLZ6 2 7.65E1 * (4.7E1) 4.90E2 * (2.2E1) 1.32E-2 * (2.7E-2) 4.91E2 * (2.7E1) 3.96E-3 (6.2E-8)
DTLZ7 2 4.42E-1 * (1.1E-4) 5.91E0 * (3.0E-1) 4.56E-1 * (2.9E-2) 7.05E0 * (3.9E-1) 4.42E-1 (4.3E-1)
DTLZ1 3 5.40E3 * (1.8E3) 1.10E4 * (7.6E2) 6.50E2 (5.9E2) 9.74E3 * (4.9E2) 1.02E3 (1.1E3)
DTLZ2 3 1.85E0 * (1.3E0) 4.45E0 * (1.2E0) 1.03E-1 * (1.7E-1) 1.18E0 * (4.9E-1) 5.89E-2 (4.1E-3)
DTLZ3 3 1.74E4 * (4.4E3) 3.26E4 * (1.1E3) 2.35E3 (1.7E3) 3.11E4 * (1.1E3) 3.45E3 (2.9E3)
DTLZ4 3 1.82E0 * (1.5E0) 6.00E0 * (3.7E0) 5.43E-1 * (4.0E-1) 1.73E2 * (1.8E1) 6.55E-2 (1.0E-2)
DTLZ5 3 2.25E0 * (2.1E0) 5.71E0 * (1.4E0) 7.28E-1 * (4.9E-1) 1.40E0 * (9.8E0) 2.50E-2 (1.2E-2)
DTLZ6 3 2.33E2 * (9.5E1) 5.10E2 * (2.0E1) 4.95E-2 * (2.1E-1) 4.67E2 * (1.3E1) 2.43E-2 (3.3E-3)
DTLZ7 3 7.99E-1 (7.1E-1) 8.75E0 * (3.9E-1) 8.02E-1 * (2.0E-3) 1.04E1 * (5.3E-1) 8.03E-1 * (4.2E-1)
DTLZ1 4 6.32E3 * (3.2E3) 1.31E4 * (1.3E3) 4.04E2 (4.5E2) 8.88E3 * (4.2E2) 7.55E2 * (1.0E3)
DTLZ2 4 5.22E0 * (2.3E0) 4.83E1 * (2.0E1) 1.04E0 (8.8E-1) 1.33E0 * (8.9E-1) 2.26E-1 (2.1E-1)
DTLZ3 4 2.08E4 * (6.4E3) 3.40E4 * (7.3E2) 1.03E3 (1.5E3) 3.07E4 * (6.2E2) 4.10E3 * (3.9E3)
DTLZ4 4 8.91E0 * (5.0E0) 2.37E1 * (1.2E1) 7.53E-1 (5.8E-1) 1.40E2 * (2.9E1) 7.17E-1 (9.0E-1)
DTLZ5 4 4.84E1 * (1.7E1) 6.54E1 * (2.5E1) 7.41E-1 (1.4E-1) 1.03E0 * (6.4E-1) 2.34E0 * (4.5E0)
DTLZ6 4 6.26E2 * (8.2E1) 5.22E2 * (1.7E1) 7.42E-1 * ( — ) 4.57E2 * (1.5E1) 3.06E-1 (3.1E-1)
DTLZ7 4 1.11E0 (4.9E-1) 1.16E1 * (5.4E-1) 1.12E0 * (5.6E-3) 1.42E1 * (9.6E-1) 1.13E0 * (4.9E-1)
DTLZ1 5 8.15E3 * (3.2E3) 1.53E4 * (1.6E3) 1.72E3 (1.7E3) 8.49E3 * (5.1E2) 1.96E3 (1.3E3)
DTLZ2 5 3.44E1 * (7.2E0) 9.68E1 * (1.2E1) 3.13E-1 (3.6E-1) 1.51E0 * (7.1E-1) 6.81E0 * (7.0E0)
DTLZ3 5 2.46E4 * (1.1E4) 3.42E4 * (1.8E3) 4.53E3 (3.7E3) 3.13E4 * (1.5E3) 6.62E3 (4.4E3)
DTLZ4 5 3.44E1 * (8.4E0) 6.34E1 * (2.7E1) 6.56E-1 (4.0E-1) 1.16E2 * (8.6E1) 1.18E1 * (5.6E0)
DTLZ5 5 6.70E1 * (1.8E1) 8.35E1 * (2.6E1) 7.46E-1 (1.1E-2) 1.51E0 * (1.1E0) 1.61E1 * (2.0E1)
DTLZ6 5 6.48E2 * (8.3E1) 5.21E2 * (1.6E1) 1.14E2 (1.4E2) 4.54E2 * (2.4E1) 2.28E2 * (1.3E2)
DTLZ7 5 1.46E0 (1.0E0) 1.49E1 * (4.5E-1) 1.55E0 * (3.2E-2) 1.82E1 * (1.2E0) 9.18E-1 (1.0E0)
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Table B.35: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

WOF-SMPSO LS-SMPSO WOF-NSGA-II LS-NSGA-II WOF-Randomised

n = 40

DTLZ1 2 2.25E-3 (1.1E-4) 2.52E-3 * (2.8E-4) 6.22E0 * (4.4E0) 2.81E-3 * (2.6E-4) 3.33E0 * (1.1E1)
DTLZ2 2 5.11E-3 * (2.9E-4) 5.15E-3 * (2.1E-4) 5.05E-3 * (2.4E-4) 5.12E-3 * (2.9E-4) 3.96E-3 (3.4E-7)
DTLZ3 2 4.98E-3 (6.0E-4) 5.05E-3 (1.6E-4) 2.00E1 * (7.5E0) 5.64E-3 * (3.0E-4) 1.03E1 * (1.9E1)
DTLZ4 2 5.31E-3 * (7.3E-1) 5.22E-3 * (2.8E-4) 5.19E-3 * (4.4E-4) 5.12E-3 * (2.1E-4) 3.96E-3 (2.8E-6)
DTLZ5 2 5.07E-3 * (2.0E-4) 5.19E-3 * (3.5E-4) 5.03E-3 * (2.0E-4) 5.17E-3 * (2.7E-4) 3.96E-3 (1.9E-7)
DTLZ6 2 5.15E-3 * (3.3E-4) 5.16E-3 * (2.8E-4) 5.62E-3 * (3.7E-4) 5.67E-3 * (2.8E-4) 3.96E-3 (5.3E-8)
DTLZ7 2 4.42E-1 (4.3E-1) 4.42E-1 * (9.3E-5) 5.44E-3 (4.3E-1) 4.42E-1 * (4.7E-5) 4.42E-1 (4.3E-1)
DTLZ1 3 7.27E-2 * (3.8E-1) 1.87E-1 * (3.5E-1) 2.77E1 * (1.2E1) 2.89E-2 (1.8E-3) 1.11E1 * (2.4E1)
DTLZ2 3 8.41E-2 * (6.4E-3) 1.26E-1 * (3.7E-2) 7.32E-2 * (3.4E-3) 7.32E-2 * (4.1E-3) 5.44E-2 (6.1E-6)
DTLZ3 3 1.12E-1 * (2.7E-1) 4.25E-1 * (4.0E-1) 6.04E1 * (4.2E1) 7.31E-2 (3.9E-3) 2.41E1 * (3.3E1)
DTLZ4 3 2.46E-1 * (1.8E-1) 2.82E-1 * (2.7E-1) 7.10E-2 * (3.2E-3) 7.16E-2 * (3.8E-3) 5.44E-2 (8.3E-6)
DTLZ5 3 5.80E-3 (2.6E-4) 5.88E-3 (5.3E-4) 6.48E-3 * (5.1E-4) 6.63E-3 * (4.8E-4) 1.37E-2 * (2.9E-3)
DTLZ6 3 5.98E-3 (5.0E-4) 5.84E-3 (4.5E-4) 6.46E-3 * (7.0E-4) 6.61E-3 * (5.0E-4) 2.29E-2 * (3.5E-3)
DTLZ7 3 1.04E-1 (2.5E-2) 1.09E-1 (2.5E-1) 8.54E-2 (7.1E-1) 7.99E-1 * (1.1E-3) 8.01E-1 (7.2E-1)
DTLZ1 4 2.06E1 * (1.9E1) 1.95E0 * (3.5E1) 1.60E2 * (4.9E1) 5.93E-2 (2.6E-3) 1.02E1 * (1.4E1)
DTLZ2 4 6.12E-1 * (1.2E-1) 1.08E0 * (3.2E-1) 1.64E-1 * (8.1E-3) 1.64E-1 * (7.2E-3) 1.40E-1 (2.0E-5)
DTLZ3 4 2.29E1 * (4.5E1) 8.88E-1 * (9.2E0) 2.99E2 * (1.4E2) 1.76E-1 (1.4E-2) 3.25E1 * (7.3E1)
DTLZ4 4 4.10E-1 * (6.6E-2) 9.06E-1 * (3.2E-1) 1.63E-1 * (5.7E-3) 1.68E-1 * (9.4E-3) 1.40E-1 (7.5E-5)
DTLZ5 4 2.71E-1 * (1.8E-1) 2.93E-1 * (1.0E-1) 1.52E-1 * (4.1E-2) 1.41E-1 * (4.1E-2) 8.13E-2 (3.5E-2)
DTLZ6 4 1.50E-1 (2.3E-1) 3.42E-1 * (4.1E-1) 1.02E1 * (2.2E0) 2.90E-1 (1.0E-1) 1.83E-1 (6.1E-2)
DTLZ7 4 3.26E-1 (2.6E-2) 3.29E-1 (3.9E-2) 2.41E-1 (8.9E-1) 1.11E0 * (1.7E-3) 3.83E-1 (9.1E-1)
DTLZ1 5 1.95E1 (3.1E1) 4.51E0 (5.1E1) 2.02E2 * (5.6E1) 1.42E2 * (1.5E2) 2.10E1 (2.6E1)
DTLZ2 5 8.86E-1 * (1.7E-1) 1.55E0 * (7.8E-1) 2.71E-1 * (1.3E-2) 2.87E-1 * (2.0E-2) 2.12E-1 (1.4E-4)
DTLZ3 5 5.18E1 (4.9E1) 6.57E1 (2.8E2) 6.24E2 * (1.6E2) 1.12E2 (2.2E2) 4.41E1 (8.4E1)
DTLZ4 5 7.12E-1 * (1.0E-1) 1.52E0 * (7.0E-1) 2.73E-1 * (1.3E-2) 4.46E-1 * (4.8E-1) 2.12E-1 (1.7E-4)
DTLZ5 5 4.61E-1 * (2.7E-1) 4.85E-1 * (5.9E-1) 1.47E0 * (6.6E-1) 1.73E0 * (1.5E0) 1.45E-1 (4.0E-2)
DTLZ6 5 3.29E0 * (5.3E0) 7.42E-1 * (7.1E-2) 1.96E1 * (3.8E0) 3.42E-1 (1.9E-2) 4.52E-1 * (1.9E-1)
DTLZ7 5 5.25E-1 * (2.5E-2) 5.34E-1 * (5.1E-2) 4.01E-1 (1.9E-2) 4.05E-1 (1.8E-2) 3.97E-1 (5.8E-2)

n = 1000

DTLZ1 2 2.32E-3 (5.1E-1) 1.76E-1 (1.1E-15) 5.15E3 * (1.7E3) 2.74E-3 (7.0E-4) 7.98E2 * (9.7E2)
DTLZ2 2 5.89E-3 * (8.1E-4) 5.46E-3 * (5.5E-4) 7.18E-1 * (6.3E-1) 5.26E-3 * (2.5E-4) 4.56E-3 (1.0E-3)
DTLZ3 2 1.14E-2 (2.1E0) 4.32E-1 * (4.2E-1) 1.38E4 * (4.5E3) 5.56E-3 (5.3E-4) 1.51E3 * (2.7E3)
DTLZ4 2 8.93E-3 * (4.3E-3) 5.43E-3 (1.1E-2) 6.91E-1 * (4.0E-1) 5.16E-3 (2.8E-4) 8.13E-3 * (4.8E-3)
DTLZ5 2 5.87E-3 (5.8E-4) 5.43E-3 (6.4E-4) 7.07E-1 * (5.2E-1) 5.20E-3 (2.7E-4) 4.77E-3 (2.3E-3)
DTLZ6 2 5.18E-3 * (3.7E-4) 5.22E-3 * (3.8E-4) 7.65E1 * (4.7E1) 5.75E-3 * (3.4E-4) 3.96E-3 (6.2E-8)
DTLZ7 2 4.42E-1 * (2.5E-4) 4.42E-1 * (3.9E-4) 4.42E-1 * (1.1E-4) 4.42E-1 * (6.6E-5) 4.42E-1 (4.3E-1)
DTLZ1 3 2.40E0 * (4.1E1) 2.66E-1 * (9.3E0) 5.40E3 * (1.8E3) 3.03E-2 (2.4E-3) 1.02E3 * (1.1E3)
DTLZ2 3 1.62E-1 * (9.0E-2) 9.86E-1 * (1.0E0) 1.85E0 * (1.3E0) 7.43E-2 * (6.2E-3) 5.89E-2 (4.1E-3)
DTLZ3 3 5.62E-1 * (1.0E1) 5.62E-1 * (2.4E-2) 1.74E4 * (4.4E3) 7.57E-2 (8.3E-3) 3.45E3 * (2.9E3)
DTLZ4 3 2.78E-1 * (2.2E-1) 8.43E-1 * (3.8E-1) 1.82E0 * (1.5E0) 7.72E0 * (2.1E1) 6.55E-2 (1.0E-2)
DTLZ5 3 5.14E-2 * (5.1E-2) 2.71E-1 * (3.7E-1) 2.25E0 * (2.1E0) 6.99E-3 (4.2E-4) 2.50E-2 * (1.2E-2)
DTLZ6 3 5.89E-3 (2.5E-4) 5.86E-3 (4.7E-4) 2.33E2 * (9.5E1) 6.49E-3 * (3.9E-4) 2.43E-2 * (3.3E-3)
DTLZ7 3 1.53E0 * (1.1E0) 1.53E0 * ( — ) 7.99E-1 (7.1E-1) 1.53E0 * (7.3E-1) 8.03E-1 * (4.2E-1)
DTLZ1 4 5.24E2 * (8.9E2) 3.05E-1 * (1.5E1) 6.32E3 * (3.2E3) 6.12E-2 (4.1E-3) 7.55E2 * (1.0E3)
DTLZ2 4 1.06E1 * (4.1E0) 2.68E1 * (1.7E1) 5.22E0 * (2.3E0) 3.05E1 * (2.4E1) 2.26E-1 (2.1E-1)
DTLZ3 4 1.02E3 * (1.7E3) 7.59E-1 * (5.0E1) 2.08E4 * (6.4E3) 1.74E-1 (1.2E-2) 4.10E3 * (3.9E3)
DTLZ4 4 3.78E0 * (1.6E0) 1.34E1 * (4.8E0) 8.91E0 * (5.0E0) 3.02E1 * (2.8E1) 7.17E-1 (9.0E-1)
DTLZ5 4 2.25E1 * (2.0E1) 2.73E1 * (2.5E1) 4.84E1 * (1.7E1) 5.94E1 * (2.2E1) 2.34E0 (4.5E0)
DTLZ6 4 4.30E0 * (2.2E1) 7.42E-1 (1.2E-1) 6.26E2 * (8.2E1) 3.42E-1 (3.7E-3) 3.06E-1 (3.1E-1)
DTLZ7 4 2.24E0 * (1.9E0) 2.24E0 * ( — ) 1.11E0 (4.9E-1) 2.24E0 * ( — ) 1.13E0 * (4.9E-1)
DTLZ1 5 9.53E2 * (6.4E2) 1.29E1 (1.3E2) 8.15E3 * (3.2E3) 1.10E3 * (1.6E3) 1.96E3 * (1.3E3)
DTLZ2 5 1.93E1 * (5.7E0) 4.71E1 * (2.6E1) 3.44E1 * (7.2E0) 6.03E1 * (1.5E1) 6.81E0 (7.0E0)
DTLZ3 5 1.66E3 * (2.5E3) 8.04E-1 (2.4E1) 2.46E4 * (1.1E4) 1.80E4 * (1.1E4) 6.62E3 * (4.4E3)
DTLZ4 5 8.66E0 (3.6E0) 2.98E1 * (2.5E1) 3.44E1 * (8.4E0) 9.75E1 * (2.2E1) 1.18E1 (5.6E0)
DTLZ5 5 3.12E1 * (1.7E1) 6.07E1 * (2.9E1) 6.70E1 * (1.8E1) 9.65E1 * (2.0E1) 1.61E1 (2.0E1)
DTLZ6 5 9.17E1 * (1.4E2) 7.42E-1 * ( — ) 6.48E2 * (8.3E1) 7.22E-1 (2.7E-1) 2.28E2 * (1.3E2)
DTLZ7 5 3.00E0 * ( — ) 3.00E0 * ( — ) 1.46E0 (1.0E0) 3.00E0 * ( — ) 9.18E-1 (1.0E0)
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Table B.36: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised randomLMEA randomMOEA/DVA randomS3-CMA-ES

n = 40

DTLZ1 2 2.25E-3 (1.1E-4) 6.22E0 * (4.4E0) 3.33E0 * (1.1E1) 1.87E0 * (1.4E0) 1.33E2 * (3.4E1) 4.71E2 * (8.2E1)
DTLZ2 2 5.11E-3 * (2.9E-4) 5.05E-3 * (2.4E-4) 3.96E-3 (3.4E-7) 4.45E-3 * (1.0E-4) 4.43E-2 * (6.4E-3) 9.07E-2 * (3.7E-3)
DTLZ3 2 4.98E-3 (6.0E-4) 2.00E1 * (7.5E0) 1.03E1 * (1.9E1) 5.74E0 * (4.0E0) 3.21E2 * (7.1E1) 1.28E3 * (1.9E2)
DTLZ4 2 5.31E-3 * (7.3E-1) 5.19E-3 * (4.4E-4) 3.96E-3 (2.8E-6) 4.45E-3 * (8.4E-5) 1.89E-1 * (1.2E-2) 3.90E-1 * (5.6E-1)
DTLZ5 2 5.07E-3 * (2.0E-4) 5.03E-3 * (2.0E-4) 3.96E-3 (1.9E-7) 4.45E-3 * (4.9E-5) 4.43E-2 * (3.1E-3) 9.04E-2 * (8.1E-3)
DTLZ6 2 5.15E-3 * (3.3E-4) 5.62E-3 * (3.7E-4) 3.96E-3 (5.3E-8) 4.43E-3 * (7.7E-5) 2.23E0 * (1.1E0) 1.77E1 * (1.6E0)
DTLZ7 2 4.42E-1 * (4.3E-1) 5.44E-3 * (4.3E-1) 4.42E-1 * (4.3E-1) 4.57E-3 (5.2E-6) 5.36E-2 * (1.4E-2) 2.63E-1 * (2.2E-1)
DTLZ1 3 7.27E-2 (3.8E-1) 2.77E1 * (1.2E1) 1.11E1 * (2.4E1) 1.58E0 * (1.1E0) 1.30E2 * (3.4E1) 4.10E2 * (6.1E1)
DTLZ2 3 8.41E-2 * (6.4E-3) 7.32E-2 * (3.4E-3) 5.44E-2 (6.1E-6) 5.60E-2 * (7.4E-4) 6.20E-2 * (1.6E-3) 1.05E-1 * (1.2E-2)
DTLZ3 3 1.12E-1 (2.7E-1) 6.04E1 * (4.2E1) 2.41E1 * (3.3E1) 8.45E0 * (4.2E0) 3.56E2 * (7.5E1) 1.23E3 * (1.7E2)
DTLZ4 3 2.46E-1 * (1.8E-1) 7.10E-2 * (3.2E-3) 5.44E-2 (8.3E-6) 2.55E-1 * (4.8E-1) 4.75E-1 * (1.7E-3) 4.63E-1 * (2.1E-1)
DTLZ5 3 5.80E-3 * (2.6E-4) 6.48E-3 * (5.1E-4) 1.37E-2 * (2.9E-3) 5.27E-3 (1.5E-4) 1.83E-2 * (1.8E-3) 7.27E-2 * (1.3E-2)
DTLZ6 3 5.98E-3 * (5.0E-4) 6.46E-3 * (7.0E-4) 2.29E-2 * (3.5E-3) 5.10E-3 (2.0E-4) 2.18E0 * (1.7E0) 1.69E1 * (1.7E0)
DTLZ7 3 1.04E-1 * (2.5E-2) 8.54E-2 * (7.1E-1) 8.01E-1 * (7.2E-1) 6.24E-2 (1.7E-3) 1.60E-1 * (1.8E-2) 3.18E-1 * (4.4E-2)
DTLZ1 4 2.06E1 * (1.9E1) 1.60E2 * (4.9E1) 1.02E1 * (1.4E1) 1.32E0 (7.7E-1) 1.13E2 * (2.3E1) 3.07E2 * (7.0E1)
DTLZ2 4 6.12E-1 * (1.2E-1) 1.64E-1 * (8.1E-3) 1.40E-1 * (2.0E-5) 1.38E-1 (1.7E-3) 1.56E-1 * (2.5E-4) 1.56E-1 * (6.9E-3)
DTLZ3 4 2.29E1 (4.5E1) 2.99E2 * (1.4E2) 3.25E1 * (7.3E1) 9.42E0 (5.8E0) 3.51E2 * (8.9E1) 1.02E3 * (2.1E2)
DTLZ4 4 4.10E-1 * (6.6E-2) 1.63E-1 * (5.7E-3) 1.40E-1 (7.5E-5) 3.79E-1 (4.6E-1) 6.38E-1 * (9.0E-4) 5.87E-1 * (1.5E-1)
DTLZ5 4 2.71E-1 * (1.8E-1) 1.52E-1 * (4.1E-2) 8.13E-2 * (3.5E-2) 6.16E-3 (2.4E-4) 7.74E-2 * (7.8E-2) 5.79E-2 * (9.8E-3)
DTLZ6 4 1.50E-1 * (2.3E-1) 1.02E1 * (2.2E0) 1.83E-1 * (6.1E-2) 5.95E-3 (2.8E-4) 1.35E0 * (1.2E0) 1.67E1 * (9.2E-1)
DTLZ7 4 3.26E-1 * (2.6E-2) 2.41E-1 * (8.9E-1) 3.83E-1 * (9.1E-1) 1.93E-1 (7.4E-3) 3.14E-1 * (2.4E-2) 4.14E-1 * (2.3E-1)
DTLZ1 5 1.95E1 * (3.1E1) 2.02E2 * (5.6E1) 2.10E1 * (2.6E1) 1.18E0 (8.4E-1) 1.05E2 * (2.2E1) 2.76E2 * (5.9E1)
DTLZ2 5 8.86E-1 * (1.7E-1) 2.71E-1 * (1.3E-2) 2.12E-1 (1.4E-4) 2.12E-1 (2.0E-3) 2.69E-1 * (2.2E-4) 2.32E-1 * (5.2E-3)
DTLZ3 5 5.18E1 * (4.9E1) 6.24E2 * (1.6E2) 4.41E1 * (8.4E1) 1.08E1 (7.2E0) 3.42E2 * (7.1E1) 1.04E3 * (2.0E2)
DTLZ4 5 7.12E-1 * (1.0E-1) 2.73E-1 * (1.3E-2) 2.12E-1 (1.7E-4) 3.50E-1 * (6.4E-1) 7.26E-1 * (5.0E-4) 7.24E-1 * (1.3E-1)
DTLZ5 5 4.61E-1 * (2.7E-1) 1.47E0 * (6.6E-1) 1.45E-1 * (4.0E-2) 6.60E-3 (3.5E-4) 2.11E-1 * (1.3E-1) 5.73E-2 * (1.1E-2)
DTLZ6 5 3.29E0 * (5.3E0) 1.96E1 * (3.8E0) 4.52E-1 * (1.9E-1) 6.38E-3 (4.8E-4) 1.59E0 * (1.1E0) 1.63E1 * (1.1E0)
DTLZ7 5 5.25E-1 * (2.5E-2) 4.01E-1 * (1.9E-2) 3.97E-1 * (5.8E-2) 3.71E-1 (1.2E-2) 4.63E-1 * (3.7E-2) 5.14E-1 * (2.6E-2)

n = 1000

DTLZ1 2 2.32E-3 (5.1E-1) 5.15E3 * (1.7E3) 7.98E2 * (9.7E2) 7.33E3 * (2.0E2) 3.64E3 * (1.5E3) 2.63E4 * (5.2E2)
DTLZ2 2 5.89E-3 * (8.1E-4) 7.18E-1 * (6.3E-1) 4.56E-3 (1.0E-3) 1.72E1 * (2.0E0) 5.16E1 * (8.1E0) 1.14E2 * (2.0E0)
DTLZ3 2 1.14E-2 (2.1E0) 1.38E4 * (4.5E3) 1.51E3 * (2.7E3) 2.13E4 * (1.4E3) 9.91E3 * (4.4E3) 7.28E4 * (1.1E3)
DTLZ4 2 8.93E-3 (4.3E-3) 6.91E-1 * (4.0E-1) 8.13E-3 (4.8E-3) 1.69E1 * (3.0E0) 5.35E1 * (6.2E0) 1.16E2 * (2.9E0)
DTLZ5 2 5.87E-3 (5.8E-4) 7.07E-1 * (5.2E-1) 4.77E-3 (2.3E-3) 1.69E1 * (1.4E0) 5.32E1 * (8.0E0) 1.14E2 * (1.8E0)
DTLZ6 2 5.18E-3 * (3.7E-4) 7.65E1 * (4.7E1) 3.96E-3 (6.2E-8) 6.97E2 * (1.4E1) 4.57E2 * (6.8E0) 8.83E2 * (5.2E0)
DTLZ7 2 4.42E-1 * (2.5E-4) 4.42E-1 * (1.1E-4) 4.42E-1 (4.3E-1) 3.16E0 * (2.8E-1) 5.98E0 * (1.8E-1) 8.93E0 * (3.0E-1)
DTLZ1 3 2.40E0 (4.1E1) 5.40E3 * (1.8E3) 1.02E3 * (1.1E3) 5.75E3 * (2.9E2) 3.94E3 * (1.2E3) 2.18E4 * (4.3E2)
DTLZ2 3 1.62E-1 * (9.0E-2) 1.85E0 * (1.3E0) 5.89E-2 (4.1E-3) 1.66E1 * (1.5E0) 5.03E1 * (7.9E0) 1.15E2 * (2.4E0)
DTLZ3 3 5.62E-1 (1.0E1) 1.74E4 * (4.4E3) 3.45E3 * (2.9E3) 2.25E4 * (1.1E3) 1.07E4 * (2.7E3) 7.28E4 * (1.6E3)
DTLZ4 3 2.78E-1 * (2.2E-1) 1.82E0 * (1.5E0) 6.55E-2 (1.0E-2) 1.73E1 * (2.4E0) 5.05E1 * (8.8E0) 1.09E2 * (4.2E0)
DTLZ5 3 5.14E-2 * (5.1E-2) 2.25E0 * (2.1E0) 2.50E-2 (1.2E-2) 1.68E1 * (1.5E0) 5.07E1 * (8.1E0) 1.15E2 * (2.4E0)
DTLZ6 3 5.89E-3 (2.5E-4) 2.33E2 * (9.5E1) 2.43E-2 * (3.3E-3) 6.97E2 * (1.7E1) 4.56E2 * (6.4E0) 8.83E2 * (5.0E0)
DTLZ7 3 1.53E0 * (1.1E0) 7.99E-1 (7.1E-1) 8.03E-1 * (4.2E-1) 4.27E0 * (4.1E-1) 8.61E0 * (4.2E-1) 1.28E1 * (1.1E0)
DTLZ1 4 5.24E2 (8.9E2) 6.32E3 * (3.2E3) 7.55E2 (1.0E3) 4.75E3 * (1.6E2) 4.08E3 * (1.1E3) 1.92E4 * (4.4E2)
DTLZ2 4 1.06E1 * (4.1E0) 5.22E0 * (2.3E0) 2.26E-1 (2.1E-1) 1.65E1 * (1.6E0) 5.02E1 * (7.5E0) 1.12E2 * (3.2E0)
DTLZ3 4 1.02E3 (1.7E3) 2.08E4 * (6.4E3) 4.10E3 * (3.9E3) 2.18E4 * (1.6E3) 1.14E4 * (3.8E3) 7.25E4 * (1.1E3)
DTLZ4 4 3.78E0 * (1.6E0) 8.91E0 * (5.0E0) 7.17E-1 (9.0E-1) 1.75E1 * (3.5E0) 4.90E1 * (6.4E0) 1.04E2 * (2.5E1)
DTLZ5 4 2.25E1 * (2.0E1) 4.84E1 * (1.7E1) 2.34E0 (4.5E0) 1.66E1 * (1.9E0) 4.85E1 * (8.9E0) 1.12E2 * (2.8E0)
DTLZ6 4 4.30E0 * (2.2E1) 6.26E2 * (8.2E1) 3.06E-1 (3.1E-1) 6.94E2 * (1.4E1) 4.56E2 * (1.5E1) 8.86E2 * (3.9E0)
DTLZ7 4 2.24E0 * (1.9E0) 1.11E0 (4.9E-1) 1.13E0 * (4.9E-1) 5.30E0 * (6.3E-1) 1.13E1 * (5.5E-1) 1.67E1 * (3.4E-1)
DTLZ1 5 9.53E2 (6.4E2) 8.15E3 * (3.2E3) 1.96E3 * (1.3E3) 4.34E3 * (1.5E2) 3.79E3 * (1.8E3) 1.72E4 * (5.3E2)
DTLZ2 5 1.93E1 * (5.7E0) 3.44E1 * (7.2E0) 6.81E0 (7.0E0) 1.58E1 * (1.6E0) 6.48E0 (1.8E0) 1.13E2 * (3.0E0)
DTLZ3 5 1.66E3 (2.5E3) 2.46E4 * (1.1E4) 6.62E3 * (4.4E3) 2.20E4 * (1.1E3) 1.24E4 * (1.0E4) 7.24E4 * (1.0E3)
DTLZ4 5 8.66E0 * (3.6E0) 3.44E1 * (8.4E0) 1.18E1 * (5.6E0) 1.67E1 * (3.2E0) 3.55E0 (2.2E0) 4.85E1 * (2.5E1)
DTLZ5 5 3.12E1 * (1.7E1) 6.70E1 * (1.8E1) 1.61E1 * (2.0E1) 1.64E1 * (1.5E0) 6.76E0 (2.3E0) 1.13E2 * (1.9E0)
DTLZ6 5 9.17E1 (1.4E2) 6.48E2 * (8.3E1) 2.28E2 * (1.3E2) 6.92E2 * (1.8E1) 4.58E2 * (1.2E1) 8.86E2 * (6.6E0)
DTLZ7 5 3.00E0 * ( — ) 1.46E0 (1.0E0) 9.18E-1 (1.0E0) 6.96E0 * (1.1E0) 1.57E1 * (5.9E-1) 2.11E1 * (7.3E-1)

Table B.37: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 10, 000, 000 function evaluations.

WOF-SMPSO WOF-Randomised LMEA MOEA/DVA

n = 1000

LSMOP1 2 2.36E-2 * (1.3E-3) 1.08E-1 * (3.4E-2) 2.39E-1 * (3.0E-2) 3.63E-3 (1.2E-5)
LSMOP2 2 6.96E-3 (8.0E-4) 8.51E-3 * (5.3E-3) 3.09E-2 * (3.5E-4) 3.31E-2 * (1.5E-2)
LSMOP3 2 3.61E-1 (6.3E-2) 8.97E-1 * (2.4E-1) 5.58E0 * (1.0E0) 9.31E-1 * (3.5E-2)
LSMOP4 2 1.88E-2 * (5.6E-4) 1.97E-2 * (3.2E-3) 3.85E-2 * (1.4E-3) 1.11E-2 (7.6E-3)
LSMOP5 2 2.23E-2 * (3.5E-3) 2.16E-1 * (1.0E-1) 4.72E-1 * (3.1E-1) 4.71E-3 (4.9E-4)
LSMOP6 2 2.82E-2 (2.2E-3) 1.81E-1 * (6.2E-3) 7.67E-1 * (8.4E-4) 4.88E-1 * (4.6E-2)
LSMOP7 2 8.24E-1 (1.1E-1) 1.11E0 * (5.4E-1) 1.71E0 * (2.3E-1) 6.89E0 * (1.7E0)
LSMOP8 2 1.70E-2 * (1.9E-3) 3.57E-2 * (1.2E-2) 1.22E-1 * (2.2E-1) 1.53E-2 (1.1E-2)
LSMOP9 2 1.26E-2 (3.1E-3) 4.58E-1 * (2.0E-3) 6.19E-1 * (4.0E-2) 7.64E-3 (1.9E-2)
LSMOP1 3 1.82E-1 * (1.7E-2) 1.21E-1 * (4.1E-2) 1.45E-1 * (1.9E-2) 4.14E-2 (9.7E-5)
LSMOP2 3 5.92E-2 * (3.2E-3) 4.41E-2 (4.0E-4) 5.13E-2 * (5.2E-4) 4.74E-2 * (1.4E-2)
LSMOP3 3 8.60E-1 * ( — ) 4.60E-1 (2.0E-1) 1.86E0 * (3.7E-1) 6.62E-1 * (6.0E-2)
LSMOP4 3 8.44E-2 * (7.4E-3) 6.37E-2 * (3.7E-3) 7.31E-2 * (1.9E-3) 5.73E-2 (1.7E-2)
LSMOP5 3 2.47E-1 * (5.1E-2) 2.17E-1 * (1.8E-1) 6.11E0 * (6.1E0) 5.50E-2 (8.7E-5)
LSMOP6 3 9.08E-1 (7.1E-3) 1.28E0 * (3.4E-2) 1.64E0 * (1.6E-1) 5.11E0 * (4.5E-1)
LSMOP7 3 3.94E-1 (1.4E-2) 8.24E-1 * (1.7E-1) 5.81E-1 * (2.1E-2) 6.15E-1 * (5.3E-2)
LSMOP8 3 8.08E-2 * (5.2E-3) 1.03E-1 * (4.5E-2) 7.79E-2 * (7.3E-3) 5.75E-2 (1.8E-2)
LSMOP9 3 4.10E-1 * (9.6E-3) 1.40E0 * (3.2E-1) 6.06E-1 * (5.1E-2) 1.48E-1 (2.2E-2)



226 APPENDIX B. DETAILED IGD RESULTS

Table B.38: Performance comparison using the IGD indicator on the UF benchmarks
using 10, 000, 000 function evaluations.

WOF-SMPSO WOF-Randomised LMEA MOEA/DVA

n = 1000

UF1 2 2.19E-1 * (7.6E-3) 9.51E-2 * (1.1E-2) 6.49E-2 * (1.4E-2) 4.18E-3 (3.1E-5)
UF2 2 7.89E-2 * (1.0E-3) 3.25E-2 * (8.5E-3) 2.53E-2 * (8.3E-4) 7.32E-3 (1.3E-3)
UF3 2 2.46E-2 * (7.4E-4) 2.08E-2 * (1.6E-3) 9.44E-2 * (1.6E-2) 4.13E-3 (6.4E-5)
UF4 2 4.26E-2 (1.5E-4) 5.11E-2 * (4.3E-3) 4.46E-2 * (7.9E-4) 6.39E-2 * (5.4E-3)
UF5 2 1.39E0 * (6.6E-1) 1.90E-1 * (4.7E-2) 6.04E-1 * (2.0E-1) 9.77E-2 (2.6E-3)
UF6 2 3.89E-1 * (2.5E-1) 1.16E-1 * (5.9E-2) 1.35E-1 * (1.1E-2) 3.05E-2 (9.3E-3)
UF7 2 1.72E-1 * (8.5E-3) 5.14E-2 * (4.7E-3) 1.20E-1 * (1.3E-1) 4.37E-3 (1.0E-4)
UF8 3 2.67E-1 * (1.0E-2) 2.55E-1 * (2.9E-1) 2.68E-1 * (3.2E-2) 2.01E-1 (2.6E-1)
UF9 3 5.11E-1 * (6.4E-2) 5.85E-1 * (1.2E-1) 2.73E-1 * (3.7E-2) 4.68E-2 (6.4E-6)
UF10 3 1.93E0 * (1.6E0) 5.45E-1 * (1.4E-1) 7.23E-1 * (1.8E-1) 3.31E-1 (2.6E-3)

Table B.39: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 10, 000, 000 function evaluations.

WOF-SMPSO WOF-Randomised LMEA MOEA/DVA

n = 1000

DTLZ1 2 2.23E-3 * (1.4E-4) 1.78E-3 (5.0E-6) 6.01E2 * (2.8E1) 4.63E2 * (1.1E1)
DTLZ2 2 5.12E-3 * (2.8E-4) 3.96E-3 (3.8E-9) 2.42E-2 * (5.5E-3) 2.19E-2 * (4.3E-4)
DTLZ3 2 4.86E-3 * (2.2E-4) 3.96E-3 (1.3E-5) 1.63E3 * (4.9E1) 1.27E3 * (3.0E1)
DTLZ4 2 5.11E-3 * (2.6E-4) 3.96E-3 (1.3E-7) 2.86E-2 * (1.5E-2) 2.74E-2 * (1.3E-2)
DTLZ5 2 5.07E-3 * (2.5E-4) 3.96E-3 (2.6E-9) 2.49E-2 * (8.8E-3) 2.19E-2 * (4.0E-4)
DTLZ6 2 5.12E-3 * (3.3E-4) 3.96E-3 (1.0E-8) 2.44E2 * (6.1E0) 1.60E2 * (3.1E0)
DTLZ7 2 5.36E-3 (3.0E-4) 5.25E-3 (4.3E-1) 9.36E-3 (1.2E-3) 2.25E-2 (5.2E-4)
DTLZ1 3 8.42E0 * (3.0E1) 2.09E-2 (2.9E-2) 3.83E2 * (1.9E1) 3.42E2 * (1.3E1)
DTLZ2 3 7.15E-2 * (5.0E-3) 5.44E-2 (6.0E-8) 6.23E-2 * (3.4E-3) 6.05E-2 * (1.4E-4)
DTLZ3 3 2.82E-1 * (2.1E0) 5.44E-2 (2.2E-4) 1.27E3 * (6.0E1) 1.12E3 * (2.5E1)
DTLZ4 3 7.18E-2 * (5.3E-3) 5.44E-2 (4.3E-6) 1.07E-1 * (1.1E-1) 4.74E-1 * (4.0E-4)
DTLZ5 3 5.95E-3 (4.5E-4) 1.36E-2 * (2.8E-3) 2.59E-2 * (1.2E-2) 1.78E-2 * (3.3E-4)
DTLZ6 3 5.85E-3 (5.2E-4) 2.24E-2 * (5.1E-3) 2.18E2 * (1.0E1) 1.42E2 * (3.8E0)
DTLZ7 3 9.74E-2 * (1.3E-2) 7.86E-2 * (6.7E-3) 6.18E-2 (2.2E-3) 1.11E-1 * (2.7E-4)

Table B.40: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised DLS-MOEA

n = 1000

LSMOP1 2 7.17E-2 (6.2E-3) 6.46E-1 * (9.1E-2) 1.74E-1 * (1.1E-1) 1.31E0 * (9.9E-2)
LSMOP2 2 7.29E-3 (3.9E-4) 1.90E-2 * (5.2E-4) 1.03E-2 * (3.0E-3) 3.16E-2 * (5.7E-4)
LSMOP3 2 1.56E0 (1.9E-3) 1.57E0 * (2.5E-3) 1.57E0 * (3.7E-3) 1.88E1 * (1.7E0)
LSMOP4 2 2.04E-2 (5.9E-4) 4.13E-2 * (4.3E-3) 2.37E-2 * (2.5E-3) 4.51E-2 * (6.6E-4)
LSMOP5 2 7.42E-1 (2.9E-1) 7.42E-1 (1.6E-1) 7.41E-1 (4.7E-2) 5.25E0 * (4.9E-1)
LSMOP6 2 1.73E-1 (3.4E-3) 6.71E-1 * (1.3E-3) 3.49E-1 * (1.8E-1) 7.62E-1 * (9.5E-2)
LSMOP7 2 1.51E0 (6.0E-4) 1.51E0 * (2.4E-3) 1.51E0 (2.8E-3) 4.79E2 * (3.0E2)
LSMOP8 2 2.12E-1 (5.9E-1) 7.42E-1 * (4.0E-2) 2.14E-1 (1.8E-1) 2.33E0 * (2.5E-1)
LSMOP9 2 4.67E-1 (9.5E-3) 8.08E-1 * (1.6E-3) 4.90E-1 * (7.5E-1) 1.06E0 * (1.7E-2)
LSMOP1 3 2.00E-1 (4.1E-2) 5.93E-1 * (3.9E-2) 3.24E-1 * (1.4E-1) 1.30E0 * (1.3E-1)
LSMOP2 3 6.12E-2 * (5.2E-3) 7.58E-2 * (8.1E-3) 5.16E-2 * (5.7E-4) 5.08E-2 (2.5E-4)
LSMOP3 3 8.60E-1 ( — ) 8.60E-1 * (4.4E-4) 8.60E-1 (2.6E-8) 6.12E0 * (7.9E-1)
LSMOP4 3 8.91E-2 (4.9E-3) 1.43E-1 * (5.2E-3) 9.31E-2 * (7.0E-3) 8.83E-2 (9.9E-4)
LSMOP5 3 4.29E-1 (2.3E-1) 5.41E-1 * (5.1E-4) 4.51E-1 (7.3E-2) 5.50E0 * (5.2E-1)
LSMOP6 3 9.11E-1 (5.8E-1) 1.31E0 * (1.8E-3) 1.31E0 * (9.8E-2) 1.09E2 * (4.7E1)
LSMOP7 3 8.49E-1 (1.0E-1) 8.56E-1 * (4.3E-3) 8.47E-1 (3.3E-3) 1.09E0 * (1.0E-2)
LSMOP8 3 9.22E-2 (1.5E-2) 3.43E-1 * (5.7E-2) 1.86E-1 * (7.8E-2) 5.99E-1 * (7.3E-2)
LSMOP9 3 1.11E0 (5.7E-1) 1.14E0 * (3.4E-4) 1.14E0 * (1.7E-2) 4.01E0 * (6.1E-1)
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Table B.41: Performance comparison using the IGD indicator on the UF benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised DLS-MOEA

n = 40

UF1 2 9.14E-2 (2.2E-2) 1.01E-1 (2.6E-2) 9.04E-2 (2.2E-2) 8.68E-2 (3.9E-2)
UF2 2 5.41E-2 * (5.7E-3) 4.11E-2 (7.4E-3) 4.21E-2 (8.2E-3) 2.83E-2 (3.0E-2)
UF3 2 1.33E-1 (3.6E-2) 1.69E-1 * (2.0E-2) 1.68E-1 * (4.0E-2) 2.93E-1 * (5.0E-2)
UF4 2 5.19E-2 * (8.4E-3) 4.72E-2 (1.1E-3) 4.88E-2 * (5.6E-3) 4.57E-2 (2.8E-3)
UF5 2 6.24E-1 * (1.6E-1) 3.86E-1 (2.0E-1) 3.48E-1 (2.0E-1) 3.12E-1 (1.3E-1)
UF6 2 3.22E-1 * (1.7E-1) 1.14E-1 (1.8E-1) 1.27E-1 (2.4E-1) 2.69E-1 (2.2E-1)
UF7 2 4.68E-2 (9.4E-3) 5.56E-2 * (1.4E-2) 5.08E-2 (1.6E-2) 4.95E-2 (2.6E-1)
UF8 3 2.52E-1 (5.0E-2) 2.24E-1 (1.2E-1) 5.28E-1 * (5.4E-2) 5.27E-1 * (1.8E-1)
UF9 3 4.81E-1 * (8.9E-2) 3.06E-1 * (1.4E-1) 3.13E-1 * (2.3E-1) 2.44E-1 (1.7E-1)
UF10 3 1.28E0 * (2.9E-1) 4.30E-1 (1.4E-1) 5.20E-1 * (3.9E-2) 4.18E-1 (1.2E-1)

n = 1000

UF1 2 2.72E-1 * (5.9E-3) 1.57E-1 (3.7E-2) 1.96E-1 * (1.6E-2) 1.77E-1 * (2.2E-2)
UF2 2 8.50E-2 (4.1E-4) 1.13E-1 * (1.3E-2) 8.69E-2 * (3.2E-3) 1.64E-1 * (1.2E-2)
UF3 2 2.54E-2 (3.8E-3) 1.38E-1 * (1.0E-2) 3.50E-2 * (1.0E-2) 2.67E-1 * (6.2E-3)
UF4 2 5.49E-2 (9.0E-3) 7.40E-2 * (5.0E-3) 7.08E-2 * (1.8E-2) 1.54E-1 * (2.4E-3)
UF5 2 2.81E0 * (1.1E-1) 1.20E0 (1.9E-1) 1.61E0 * (5.3E-1) 2.22E0 * (3.5E-1)
UF6 2 1.02E0 * (5.9E-2) 4.74E-1 (2.6E-1) 4.64E-1 (3.1E-1) 6.59E-1 * (1.6E-1)
UF7 2 2.77E-1 * (7.4E-3) 1.50E-1 (2.6E-2) 1.67E-1 * (2.0E-2) 1.55E-1 (1.1E-1)
UF8 3 3.56E-1 (4.4E-3) 4.67E-1 * (2.9E-2) 5.42E-1 * (2.1E-3) 4.14E-1 * (1.8E-2)
UF9 3 5.70E-1 (7.2E-3) 6.52E-1 * (8.4E-2) 6.20E-1 * (9.6E-2) 6.60E-1 * (2.8E-2)
UF10 3 2.08E0 * (7.6E-1) 1.90E0 * (4.1E-1) 8.97E-1 (2.9E-1) 3.81E0 * (3.9E-1)

Table B.42: Performance comparison using the IGD indicator on the WFG benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised DLS-MOEA

n = 40

WFG1 2 1.12E0 * (7.3E-2) 1.71E-1 (6.1E-2) 3.49E-1 * (9.5E-2) 1.11E0 * (3.0E-2)
WFG2 2 2.80E-2 * (7.5E-3) 2.87E-2 (1.1E-2) 2.44E-2 (6.1E-3) 6.60E-1 * (3.7E-3)
WFG3 2 3.00E-2 * (6.4E-3) 2.98E-2 * (8.7E-3) 2.16E-2 * (3.7E-3) 1.71E-2 (5.0E-3)
WFG4 2 7.68E-2 * (3.4E-2) 2.24E-2 * (3.4E-3) 1.85E-2 (2.4E-3) 1.96E-2 (4.8E-3)
WFG5 2 6.79E-2 (4.6E-3) 7.22E-2 * (7.1E-4) 6.94E-2 (1.2E-4) 7.26E-2 * (1.8E-3)
WFG6 2 2.28E-2 (9.8E-3) 8.32E-2 * (1.2E-3) 4.13E-2 * (4.9E-2) 4.91E-2 * (1.6E-2)
WFG7 2 1.88E-2 * (1.6E-3) 1.83E-2 * (1.2E-3) 1.38E-2 (5.7E-4) 2.05E-2 * (1.2E-2)
WFG8 2 1.07E-1 (8.7E-2) 2.15E-1 * (1.6E-2) 2.09E-1 * (5.9E-2) 2.05E-1 * (1.1E-2)
WFG9 2 4.27E-2 (1.3E-2) 9.15E-2 * (4.6E-2) 8.28E-2 (5.4E-2) 9.31E-2 * (5.1E-2)
WFG1 3 1.51E0 * (2.1E-2) 9.77E-1 * (7.2E-2) 1.18E0 * (1.0E-1) 3.73E-1 (7.0E-2)
WFG2 3 2.36E-1 * (1.7E-2) 2.24E-1 * (9.0E-3) 1.66E-1 (4.8E-3) 5.01E-1 * (6.1E-3)
WFG3 3 1.43E-1 * (2.6E-2) 1.35E-1 * (2.7E-2) 1.20E-1 * (3.0E-2) 3.02E-2 (4.8E-3)
WFG4 3 3.46E-1 * (3.2E-2) 2.91E-1 * (1.2E-2) 2.35E-1 (4.5E-3) 3.18E-1 * (9.7E-3)
WFG5 3 3.04E-1 * (2.5E-2) 2.92E-1 * (1.4E-2) 2.36E-1 (2.5E-3) 3.25E-1 * (8.4E-3)
WFG6 3 3.48E-1 * (6.2E-2) 3.13E-1 * (1.9E-2) 2.41E-1 (4.1E-3) 3.21E-1 * (1.6E-2)
WFG7 3 2.99E-1 * (1.9E-2) 3.13E-1 * (1.1E-1) 2.28E-1 (4.0E-2) 3.14E-1 * (7.6E-3)
WFG8 3 5.60E-1 * (3.4E-2) 5.02E-1 * (3.6E-2) 3.53E-1 (6.4E-2) 3.70E-1 (8.4E-3)
WFG9 3 3.38E-1 * (3.1E-2) 3.18E-1 * (1.0E-2) 2.46E-1 (6.3E-3) 3.14E-1 * (8.2E-3)

n = 1000

WFG1 2 1.20E0 (5.1E-2) 1.27E0 * (1.2E-2) 1.22E0 * (2.7E-2) 2.13E0 * (1.0E-2)
WFG2 2 7.25E-2 (2.1E-2) 2.35E-1 * (7.5E-2) 1.40E-1 * (2.9E-2) 1.42E0 * (9.0E-3)
WFG3 2 8.94E-2 (1.3E-2) 2.12E-1 * (2.9E-2) 1.25E-1 * (3.1E-2) 8.86E-1 * (3.9E-2)
WFG4 2 1.11E-1 (8.2E-3) 1.77E-1 * (2.3E-2) 1.27E-1 * (1.8E-2) 1.09E0 * (6.7E-2)
WFG5 2 6.78E-2 (4.8E-3) 9.28E-2 * (6.6E-2) 6.97E-2 (3.3E-3) 9.85E-1 * (5.6E-2)
WFG6 2 1.69E-2 * (1.4E-3) 2.34E-2 * (5.4E-3) 1.35E-2 (3.6E-3) 1.20E0 * (1.3E-1)
WFG7 2 7.70E-2 (1.1E-2) 2.41E-1 * (2.7E-2) 1.39E-1 * (2.9E-2) 8.74E-1 * (4.1E-2)
WFG8 2 1.03E-1 (1.0E-1) 3.59E-1 * (4.3E-2) 2.81E-1 * (7.8E-2) 1.11E0 * (3.9E-2)
WFG9 2 3.83E-2 (7.2E-3) 1.04E-1 * (5.2E-2) 5.05E-2 * (2.9E-2) 1.02E0 * (9.0E-2)
WFG1 3 1.51E0 * (1.9E-2) 1.55E0 * (3.6E-2) 1.50E0 (1.8E-2) 2.37E0 * (1.4E-2)
WFG2 3 2.43E-1 (1.6E-2) 5.15E-1 * (1.1E-1) 4.04E-1 * (1.0E-1) 1.69E0 * (1.0E0)
WFG3 3 1.13E-1 (3.0E-2) 3.97E-1 * (1.5E-1) 3.98E-1 * (1.4E-1) 7.74E-1 * (4.9E-2)
WFG4 3 3.70E-1 (2.4E-2) 6.48E-1 * (1.2E-1) 4.22E-1 * (9.3E-2) 1.19E0 * (8.4E-2)
WFG5 3 4.28E-1 (1.4E-1) 6.22E-1 * (1.0E-1) 4.01E-1 (1.1E-1) 9.84E-1 * (2.8E-2)
WFG6 3 3.78E-1 * (5.9E-2) 4.03E-1 * (8.8E-2) 2.46E-1 (1.8E-2) 9.04E-1 * (2.2E-2)
WFG7 3 3.58E-1 (4.1E-2) 7.19E-1 * (3.7E-2) 5.29E-1 * (5.5E-2) 8.93E-1 * (5.4E-2)
WFG8 3 6.19E-1 (7.5E-2) 1.07E0 * (1.2E-1) 7.72E-1 * (1.3E-1) 1.14E0 * (4.4E-2)
WFG9 3 3.68E-1 (3.6E-2) 7.51E-1 * (1.2E-1) 4.31E-1 * (1.1E-1) 1.06E0 * (8.3E-2)
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Table B.43: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-NSGA-II WOF-Randomised DLS-MOEA

n = 40

DTLZ1 2 2.25E-3 (1.1E-4) 6.22E0 * (4.4E0) 3.33E0 * (1.1E1) 5.88E0 * (4.2E0)
DTLZ2 2 5.11E-3 * (2.9E-4) 5.05E-3 * (2.4E-4) 3.96E-3 (3.4E-7) 5.63E-3 * (2.0E-4)
DTLZ3 2 4.98E-3 (6.0E-4) 2.00E1 * (7.5E0) 1.03E1 * (1.9E1) 1.54E1 * (9.4E0)
DTLZ4 2 5.31E-3 * (7.3E-1) 5.19E-3 * (4.4E-4) 3.96E-3 (2.8E-6) 5.82E-3 * (7.3E-1)
DTLZ5 2 5.07E-3 * (2.0E-4) 5.03E-3 * (2.0E-4) 3.96E-3 (1.9E-7) 5.58E-3 * (2.3E-4)
DTLZ6 2 5.15E-3 * (3.3E-4) 5.62E-3 * (3.7E-4) 3.96E-3 (5.3E-8) 2.22E-1 * (8.0E-2)
DTLZ7 2 4.42E-1 * (4.3E-1) 5.44E-3 * (4.3E-1) 4.42E-1 * (4.3E-1) 4.19E-3 (1.4E-5)
DTLZ1 3 7.27E-2 (3.8E-1) 2.77E1 * (1.2E1) 1.11E1 * (2.4E1) 4.61E0 * (2.9E0)
DTLZ2 3 8.41E-2 * (6.4E-3) 7.32E-2 * (3.4E-3) 5.44E-2 (6.1E-6) 7.80E-2 * (8.2E-4)
DTLZ3 3 1.12E-1 (2.7E-1) 6.04E1 * (4.2E1) 2.41E1 * (3.3E1) 2.18E1 * (1.1E1)
DTLZ4 3 2.46E-1 * (1.8E-1) 7.10E-2 * (3.2E-3) 5.44E-2 (8.3E-6) 5.41E-1 * (4.6E-1)
DTLZ5 3 5.80E-3 (2.6E-4) 6.48E-3 * (5.1E-4) 1.37E-2 * (2.9E-3) 6.09E-3 * (2.2E-4)
DTLZ6 3 5.98E-3 (5.0E-4) 6.46E-3 * (7.0E-4) 2.29E-2 * (3.5E-3) 1.40E-1 * (6.6E-2)
DTLZ7 3 1.04E-1 (2.5E-2) 8.54E-2 (7.1E-1) 8.01E-1 (7.2E-1) 1.62E-1 (5.6E-4)

n = 1000

DTLZ1 2 2.32E-3 (5.1E-1) 5.15E3 * (1.7E3) 7.98E2 * (9.7E2) 4.68E3 * (1.8E2)
DTLZ2 2 5.89E-3 * (8.1E-4) 7.18E-1 * (6.3E-1) 4.56E-3 (1.0E-3) 1.06E0 * (1.0E-1)
DTLZ3 2 1.14E-2 (2.1E0) 1.38E4 * (4.5E3) 1.51E3 * (2.7E3) 1.32E4 * (4.3E2)
DTLZ4 2 8.93E-3 (4.3E-3) 6.91E-1 * (4.0E-1) 8.13E-3 (4.8E-3) 1.49E0 * (4.1E-1)
DTLZ5 2 5.87E-3 (5.8E-4) 7.07E-1 * (5.2E-1) 4.77E-3 (2.3E-3) 1.12E0 * (1.2E-1)
DTLZ6 2 5.18E-3 * (3.7E-4) 7.65E1 * (4.7E1) 3.96E-3 (6.2E-8) 6.65E2 * (8.8E0)
DTLZ7 2 4.42E-1 * (2.5E-4) 4.42E-1 * (1.1E-4) 4.42E-1 (4.3E-1) 9.66E-1 * (7.8E-2)
DTLZ1 3 2.40E0 (4.1E1) 5.40E3 * (1.8E3) 1.02E3 * (1.1E3) 4.26E3 * (2.5E2)
DTLZ2 3 1.62E-1 * (9.0E-2) 1.85E0 * (1.3E0) 5.89E-2 (4.1E-3) 9.26E-1 * (1.2E-1)
DTLZ3 3 5.62E-1 (1.0E1) 1.74E4 * (4.4E3) 3.45E3 * (2.9E3) 1.24E4 * (5.1E2)
DTLZ4 3 2.78E-1 * (2.2E-1) 1.82E0 * (1.5E0) 6.55E-2 (1.0E-2) 1.65E0 * (2.1E-1)
DTLZ5 3 5.14E-2 * (5.1E-2) 2.25E0 * (2.1E0) 2.50E-2 (1.2E-2) 1.39E0 * (1.5E-1)
DTLZ6 3 5.89E-3 (2.5E-4) 2.33E2 * (9.5E1) 2.43E-2 * (3.3E-3) 7.00E2 * (3.1E1)
DTLZ7 3 1.53E0 * (1.1E0) 7.99E-1 (7.1E-1) 8.03E-1 * (4.2E-1) 1.58E0 * (1.7E-1)

Table B.44: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 10, 000, 000 function evaluations.

WOF-SMPSO WOF-Randomised LMEA MOEA/DVA S3-CMA-ES

n = 1000

LSMOP2 2 6.96E-3 (8.0E-4) 8.51E-3 * (5.3E-3) 3.09E-2 * (3.5E-4) 3.31E-2 * (1.5E-2) 9.64E-3 * (1.3E-3)
LSMOP4 2 1.88E-2 * (5.6E-4) 1.97E-2 * (3.2E-3) 3.85E-2 * (1.4E-3) 1.11E-2 (7.6E-3) 1.25E-2 * (2.8E-3)
LSMOP5 2 2.23E-2 * (3.5E-3) 2.16E-1 * (1.0E-1) 4.72E-1 * (3.1E-1) 4.71E-3 (4.9E-4) 7.42E-1 * (4.8E-10)
LSMOP6 2 2.82E-2 (2.2E-3) 1.81E-1 * (6.2E-3) 7.67E-1 * (8.4E-4) 4.88E-1 * (4.6E-2) 7.45E-1 * (1.0E-3)
LSMOP7 2 8.24E-1 (1.1E-1) 1.11E0 * (5.4E-1) 1.71E0 * (2.3E-1) 6.89E0 * (1.7E0) 1.78E0 * (2.1E-1)
LSMOP8 2 1.70E-2 * (1.9E-3) 3.57E-2 * (1.2E-2) 1.22E-1 * (2.2E-1) 1.53E-2 (1.1E-2) 2.75E-1 * (8.0E-2)
LSMOP9 2 1.26E-2 (3.1E-3) 4.58E-1 * (2.0E-3) 6.19E-1 * (4.0E-2) 7.64E-3 (1.9E-2) 5.18E-1 * (1.6E-1)
LSMOP2 3 5.92E-2 * (3.2E-3) 4.41E-2 * (4.0E-4) 5.13E-2 * (5.2E-4) 4.74E-2 * (1.4E-2) 4.37E-2 (1.1E-3)
LSMOP4 3 8.44E-2 * (7.4E-3) 6.37E-2 * (3.7E-3) 7.31E-2 * (1.9E-3) 5.73E-2 (1.7E-2) 5.25E-2 (4.8E-3)
LSMOP5 3 2.47E-1 * (5.1E-2) 2.17E-1 * (1.8E-1) 6.11E0 * (6.1E0) 5.50E-2 (8.7E-5) 9.45E-1 * (1.0E-1)
LSMOP6 3 9.08E-1 (7.1E-3) 1.28E0 * (3.4E-2) 1.64E0 * (1.6E-1) 5.11E0 * (4.5E-1) 1.45E0 * (9.1E-3)
LSMOP7 3 3.94E-1 (1.4E-2) 8.24E-1 * (1.7E-1) 5.81E-1 * (2.1E-2) 6.15E-1 * (5.3E-2) 9.45E-1 * (1.0E-8)
LSMOP8 3 8.08E-2 * (5.2E-3) 1.03E-1 * (4.5E-2) 7.79E-2 * (7.3E-3) 5.75E-2 (1.8E-2) 9.45E-1 * (1.4E-9)
LSMOP9 3 4.10E-1 * (9.6E-3) 1.40E0 * (3.2E-1) 6.06E-1 * (5.1E-2) 1.48E-1 (2.2E-2) 6.55E-1 * (3.1E-2)

Table B.45: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 10, 000, 000 function evaluations.

WOF-SMPSO WOF-Randomised LMEA MOEA/DVA S3-CMA-ES

n = 1000

DTLZ1 2 2.23E-3 * (1.4E-4) 1.78E-3 (5.0E-6) 6.01E2 * (2.8E1) 4.63E2 * (1.1E1) 1.00E4 * (1.5E2)
DTLZ2 2 5.12E-3 * (2.8E-4) 3.96E-3 (3.8E-9) 2.42E-2 * (5.5E-3) 2.19E-2 * (4.3E-4) 5.56E-3 * (5.9E-4)
DTLZ3 2 4.86E-3 * (2.2E-4) 3.96E-3 (1.3E-5) 1.63E3 * (4.9E1) 1.27E3 * (3.0E1) 2.75E4 * (3.8E2)
DTLZ4 2 5.11E-3 * (2.6E-4) 3.96E-3 (1.3E-7) 2.86E-2 * (1.5E-2) 2.74E-2 * (1.3E-2) 1.70E-1 * (5.4E-1)
DTLZ5 2 5.07E-3 * (2.5E-4) 3.96E-3 (2.6E-9) 2.49E-2 * (8.8E-3) 2.19E-2 * (4.0E-4) 5.53E-3 * (3.4E-4)
DTLZ6 2 5.12E-3 * (3.3E-4) 3.96E-3 (1.0E-8) 2.44E2 * (6.1E0) 1.60E2 * (3.1E0) 7.45E2 * (9.4E0)
DTLZ7 2 5.36E-3 (3.0E-4) 5.25E-3 (4.3E-1) 9.36E-3 (1.2E-3) 2.25E-2 (5.2E-4) 2.80E-2 * (5.8E-3)
DTLZ1 3 8.42E0 * (3.0E1) 2.09E-2 (2.9E-2) 3.83E2 * (1.9E1) 3.42E2 * (1.3E1) 8.29E3 * (2.5E2)
DTLZ2 3 7.15E-2 * (5.0E-3) 5.44E-2 (6.0E-8) 6.23E-2 * (3.4E-3) 6.05E-2 * (1.4E-4) 5.91E-2 * (1.6E-3)
DTLZ3 3 2.82E-1 * (2.1E0) 5.44E-2 (2.2E-4) 1.27E3 * (6.0E1) 1.12E3 * (2.5E1) 2.75E4 * (3.7E2)
DTLZ4 3 7.18E-2 * (5.3E-3) 5.44E-2 (4.3E-6) 1.07E-1 * (1.1E-1) 4.74E-1 * (4.0E-4) 5.72E-1 * (2.7E-1)
DTLZ5 3 5.95E-3 (4.5E-4) 1.36E-2 * (2.8E-3) 2.59E-2 * (1.2E-2) 1.78E-2 * (3.3E-4) 1.27E-2 * (1.0E-3)
DTLZ6 3 5.85E-3 (5.2E-4) 2.24E-2 * (5.1E-3) 2.18E2 * (1.0E1) 1.42E2 * (3.8E0) 7.44E2 * (1.1E1)
DTLZ7 3 9.74E-2 * (1.3E-2) 7.86E-2 * (6.7E-3) 6.18E-2 (2.2E-3) 1.11E-1 * (2.7E-4) 7.40E-2 * (4.2E-3)
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Table B.46: Performance comparison using the IGD indicator on the LSMOP benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-Randomised groupInfLMEA groupInfMOEA/DVA groupInfS3-CMA-ES

n = 1000

LSMOP2 2 7.29E-3 (3.9E-4) 1.03E-2 * (3.0E-3) 3.88E-2 * (6.6E-4) 3.93E-2 * (1.4E-2) 3.61E-2 * (5.1E-4)
LSMOP4 2 2.04E-2 (5.9E-4) 2.37E-2 * (2.5E-3) 5.58E-2 * (9.3E-4) 5.22E-2 * (2.0E-2) 5.51E-2 * (1.0E-3)
LSMOP5 2 7.42E-1 (2.9E-1) 7.41E-1 (4.7E-2) 6.68E0 * (4.3E-1) 1.24E1 * (3.9E-1) 6.67E0 * (4.4E-1)
LSMOP6 2 1.73E-1 (3.4E-3) 3.49E-1 * (1.8E-1) 1.12E2 * (4.9E2) 4.12E2 * (6.2E2) 7.70E-1 * (1.7E-3)
LSMOP7 2 1.51E0 (6.0E-4) 1.51E0 (2.8E-3) 7.58E3 * (9.3E2) 4.31E4 * (4.1E3) 5.95E3 * (8.4E2)
LSMOP8 2 2.12E-1 (5.9E-1) 2.14E-1 (1.8E-1) 4.53E0 * (2.2E-1) 1.03E1 * (3.4E-1) 5.94E0 * (7.0E-1)
LSMOP9 2 4.67E-1 (9.5E-3) 4.90E-1 * (7.5E-1) 1.25E1 * (8.1E-1) 1.99E1 * (2.1E0) 2.15E0 * (3.0E-1)
LSMOP2 3 6.12E-2 (5.2E-3) 5.16E-2 (5.7E-4) 5.66E-2 (2.9E-3) 5.10E-2 (1.7E-2) 5.20E-2 (7.6E-4)
LSMOP4 3 8.91E-2 (4.9E-3) 9.31E-2 * (7.0E-3) 1.05E-1 * (4.1E-3) 1.01E-1 * (2.5E-2) 9.95E-2 * (3.3E-3)
LSMOP5 3 4.29E-1 (2.3E-1) 4.51E-1 (7.3E-2) 5.10E0 * (8.9E0) 1.09E1 * (5.0E-1) 6.09E0 * (9.9E-1)
LSMOP6 3 9.11E-1 (5.8E-1) 1.31E0 * (9.8E-2) 5.20E2 * (3.1E2) 1.24E4 * (3.4E3) 5.02E3 * (2.0E3)
LSMOP7 3 8.49E-1 (1.0E-1) 8.47E-1 (3.3E-3) 1.74E1 * (2.9E2) 1.06E3 * (8.5E2) 1.02E0 * (5.2E-3)
LSMOP8 3 9.22E-2 (1.5E-2) 1.86E-1 * (7.8E-2) 6.02E-1 * (4.7E-2) 6.43E-1 * (4.6E-2) 5.92E-1 * (2.9E-2)
LSMOP9 3 1.11E0 (5.7E-1) 1.14E0 * (1.7E-2) 2.84E1 * (1.6E0) 5.47E1 * (2.6E0) 3.47E1 * (7.7E0)

Table B.47: Performance comparison using the IGD indicator on the DTLZ benchmarks
using 100, 000 function evaluations.

WOF-SMPSO WOF-Randomised groupInfLMEA groupInfMOEA/DVA groupInfS3-CMA-ES

n = 1000

DTLZ1 2 2.32E-3 (5.1E-1) 7.98E2 * (9.7E2) 2.23E4 * (3.1E2) 2.06E4 * (4.2E2) 1.54E4 * (6.1E2)
DTLZ2 2 5.89E-3 * (8.1E-4) 4.56E-3 (1.0E-3) 3.82E1 * (7.4E-1) 5.45E1 * (8.0E-1) 5.03E1 * (2.5E0)
DTLZ3 2 1.14E-2 (2.1E0) 1.51E3 * (2.7E3) 6.27E4 * (9.3E2) 5.68E4 * (1.1E3) 4.31E4 * (1.5E3)
DTLZ4 2 8.93E-3 (4.3E-3) 8.13E-3 (4.8E-3) 3.82E1 * (1.0E0) 5.48E1 * (9.9E-1) 5.08E1 * (4.0E0)
DTLZ5 2 5.87E-3 (5.8E-4) 4.77E-3 (2.3E-3) 3.81E1 * (9.8E-1) 5.45E1 * (1.1E0) 4.94E1 * (2.0E0)
DTLZ6 2 5.18E-3 * (3.7E-4) 3.96E-3 (6.2E-8) 8.55E2 * (1.6E0) 8.19E2 * (3.3E0) 7.67E2 * (8.7E0)
DTLZ7 2 4.42E-1 * (2.5E-4) 4.42E-1 (4.3E-1) 4.82E0 * (1.1E-1) 6.46E0 * (1.0E-1) 3.07E0 * (1.6E-1)
DTLZ1 3 2.40E0 (4.1E1) 1.02E3 * (1.1E3) 1.12E4 * (2.0E2) 1.15E4 * (3.1E2) 1.27E4 * (5.7E2)
DTLZ2 3 1.62E-1 * (9.0E-2) 5.89E-2 (4.1E-3) 1.55E1 * (4.4E-1) 3.94E1 * (1.1E0) 5.03E1 * (2.1E0)
DTLZ3 3 5.62E-1 (1.0E1) 3.45E3 * (2.9E3) 3.76E4 * (9.0E2) 3.78E4 * (6.1E2) 4.36E4 * (1.9E3)
DTLZ4 3 2.78E-1 * (2.2E-1) 6.55E-2 (1.0E-2) 1.58E1 * (6.1E-1) 3.96E1 * (5.7E-1) 5.04E1 * (2.2E0)
DTLZ5 3 5.14E-2 * (5.1E-2) 2.50E-2 (1.2E-2) 1.54E1 * (4.2E-1) 3.93E1 * (1.0E0) 5.04E1 * (2.6E0)
DTLZ6 3 5.89E-3 (2.5E-4) 2.43E-2 * (3.3E-3) 8.02E2 * (1.9E0) 7.40E2 * (4.4E0) 7.67E2 * (1.3E1)
DTLZ7 3 1.53E0 * (1.1E0) 8.03E-1 (4.2E-1) 3.53E0 * (1.8E-1) 7.67E0 * (2.0E-1) 4.18E0 * (2.5E-1)
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Table C.1: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations of the SMPSO and NSGA-II algorithms and their WOF-versions as
well as the randomised WOF algorithm. Each row shows the amount of wins (based on
statistical significance) against the respective algorithms in the columns.
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SMPSO —
1.08 1.78

0.00 1.56

18.47 7.14

27.17 0.00

2.17 3.57

0.00 1.56

1.63 3.57

0.00 0.00

WOF-SMPSO
83.69 73.21

84.78 67.18
—

69.56 32.14

82.60 59.37

50.54 26.78

64.13 26.56

30.97 21.42

39.13 0.00

NSGA-II
34.78 64.28
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1.08 12.50
—
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77.71 69.64

77.17 68.75
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—
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85.32 76.78
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63.58 46.42

69.56 65.62
—
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Table C.2: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations of the NSGA-III and MOEA/D algorithms and their WOF-versions
as well as the randomised WOF algorithm. Each row shows the amount of wins (based
on statistical significance) against the respective algorithms in the columns.
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MOEA/D
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—

16.84 35.71
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1.08 10.93

WOF-MOEA/D
61.95 17.85

80.43 60.93

27.17 8.92

40.21 25.00

66.30 30.35

82.60 59.37
—

10.32 7.14

8.69 18.75

WOF-Randomised
69.02 23.21

85.86 65.62

54.34 33.92

66.30 37.50

77.71 53.57

85.86 67.18

67.39 64.28

70.65 54.68
—

Table C.3: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations of NSGA-II and its grouped and linked versions. Each row shows
the amount of wins (based on statistical significance) against the respective algorithms
in the columns.
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Table C.4: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations of NSGA-III and its grouped and linked versions. Each row shows
the amount of wins (based on statistical significance) against the respective algorithms
in the columns.
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Table C.5: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations of SMPSO and its grouped and linked versions. Each row shows the
amount of wins (based on statistical significance) against the respective algorithms in
the columns.
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Table C.6: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. The original NSGA-II, SMPSO and NSGA-III algorithms are shown
along their LCSA-enhanced versions. Each row shows the amount of wins (based on
statistical significance) against the respective algorithms in the columns.
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Table C.7: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. WOF and LSMOF are compared using the NSGA-II and SMPSO
algorithms. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.
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Table C.8: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. WOF is compared with the random-group-based MOEA/DVA,
LMEA and S3-CMA-ES. Each row shows the amount of wins (based on statistical
significance) against the respective algorithms in the columns.

184 56

92 64

W
O

F
-S

M
P

S
O

W
O

F
-N

S
G

A
-I

I

W
O

F
-R

a
n

d
o
m

is
ed

ra
n

d
o
m

L
M

E
A

ra
n

d
o
m

M
O

E
A

/
D

V
A

ra
n

d
o
m

S
3
-C

M
A

-E
S

WOF-SMPSO —
51.08 26.78

64.13 28.12

30.97 21.42

39.13 0.00

70.10 42.85

79.34 46.87

83.15 75.00

83.69 64.06

80.43 76.78

80.43 51.56

WOF-NSGA-II
27.17 39.28

16.30 37.50
—

8.69 8.92

5.43 3.12

62.50 32.14

72.82 46.87

75.00 62.50

77.17 59.37

74.45 69.64

73.91 51.56

WOF-Randomised
42.93 50.00

33.69 62.50

63.58 46.42

69.56 65.62
—

76.08 44.64

85.86 70.31

84.23 71.42

85.86 78.12

85.86 78.57

85.86 76.56

randomLMEA
19.02 46.42

5.43 29.68

19.56 42.85

6.52 28.12

10.86 35.71

0.00 10.93
—

44.56 71.42

36.95 34.37

49.45 85.71

34.78 35.93

randomMOEA/DVA
4.34 10.71

1.08 7.81

4.34 5.35

1.08 9.37

0.54 1.78

0.00 0.00

14.67 12.50

9.78 15.62
—

33.15 58.92

17.39 17.18

randomS3-CMA-ES
7.60 8.92

4.34 18.75

7.06 5.35

5.43 15.62

1.08 1.78

0.00 1.56

11.95 1.78

11.95 12.50

24.45 16.07

25.00 26.56
—

Table C.9: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. WOF is compared with ReMO using NSGA-II and SMPSO. Each
row shows the amount of wins (based on statistical significance) against the respective
algorithms in the columns.
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Table C.10: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. WOF is compared with DLS-MOEA. Each row shows the amount of
wins (based on statistical significance) against the respective algorithms in the columns.
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Table C.11: Winning rates using the HV indicator for different problem categories
using 10, 000, 000 evaluations. WOF is compared with MOEA/DVA and LMEA. Each
row shows the amount of wins (based on statistical significance) against the respective
algorithms in the columns.
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Table C.12: Winning rates using the HV indicator for different problem categories using
10, 000, 000 evaluations. WOF is compared with MOEA/DVA, LMEA and S3-CMA-
ES. Each row shows the amount of wins (based on statistical significance) against the
respective algorithms in the columns.
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Table C.13: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. WOF is compared with modified versions of MOEA/DVA, LMEA
and S3-CMA-ES. Each row shows the amount of wins (based on statistical significance)
against the respective algorithms in the columns.
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Table C.14: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using NSGA-
II. Each row shows the amount of wins (based on statistical significance) against the
respective algorithms in the columns.
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Table C.15: Winning rates using the HV indicator for different problem categories using
100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using NSGA-
III. Each row shows the amount of wins (based on statistical significance) against the
respective algorithms in the columns.
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Table C.16: Winning rates using the HV indicator for different problem categories
using 100, 000 evaluations. The proposed WOF, GLMO and LCSA are compared using
SMPSO. Each row shows the amount of wins (based on statistical significance) against
the respective algorithms in the columns.
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Glossary

MOP Multi-objective Problem (Section 2.1)

LSO Large-scale Optimisation (Section 2.3)

EA Evolutionary Algorithm (Section 2.2)

PSO Particle Swarm Optimisation (Section 2.2)

PF Pareto-front of a multi-objective optimisation problem (Definition 2.4)

PS Pareto-set of a multi-objective optimisation problem (Definition 2.3)

n Number of decision variables of an optimisation problem

m Number of objective functions of an optimisation problem

Ω The decision space of an optimisation problem

M The objective space of an optimisation problem

Γ A grouping mechanism (Definition 2.6)

CC Cooperative Coevolution (Section 2.5)

GLMO Grouped and Linked Polynomial Mutation Operator (Section 5.2.4)

LCSA Linear Combination-based Search Algorithm (Section 5.3)

WOF Weighted Optimisation Framework (Section 5.1)

HV Hypervolume indicator (Section 2.7)

IGD Inverted Generational Distance indicator (Section 2.7)

DG / DG2 Differential Grouping / Differential Grouping 2 (Section 3.3.3)
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