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Abstract
Locally optimal designs for generalized linear models are derived at certain values of
the regression parameters. In the present thesis analytic solutions for optimal designs
are mostly developed. In particular situations numerical methods are employed. We
restrict to D-, A- and Kiefer Φk-optimality criteria.

For general setup of the generalized linear model, by means of The General Equiv-
alence Theorem, necessary and sufficient conditions in term of intensity values are
obtained to characterize locally optimal designs. In this context, linear predictors with
binary factors are assumed constituting first order models, models with interactions
and models without intercept. Additionally, a particular approach is developed to
identify locally D- or A-optimal design for the model with intercept from that for the
model without intercept and vice versa.

Gamma models with a power link function are considered constituting a particular
class of generalized linear models. Relevant structures for the linear predictor are
employed based on quantitative factors. The notions of locally essentially complete
classes and locally complete classes of designs are introduced and such classes are
established. On that basis locally D- and A-optimal designs are derived. In certain
cases, the obtained results under generalized linear models with binary factors can
be transferred to gamma models with quantitative factors. The explicit impact of
the model parameters on the optimality of the designs is investigated. Furthermore,
product type designs are derived for gamma models with product-type interactions.
Moreover, gamma models having a linear predictor without intercept are considered.
For a specific scenario sets of locally Φk-optimal designs are developed. Further, by a
suitable transformation between gamma models with and without intercept optimality
results are transferred from one model to the other. Additionally with the aid of The
General Equivalence Theorem optimality are characterized for multiple regression by
a system of polynomial inequalities which can be solved analytically or by computer
algebra. The robustness of the derived designs for gamma models with respect to
misspecifications of the initial parameter values is examined by means of their local
efficiencies.

Optimal designs for multivariate generalized linear models are investigated. The
components of the multivariate response might be combined with linear predictors
via distinct link functions. We found that the locally optimal design for the univariate
generalized linear models remains the same in the multivariate structure. In particular,
product type designs are developed for the multivariate gamma model.
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Zusammenfassung
Lokal optimale Versuchspläne für verallgemeinerte lineare Modelle werden für vorge-
gebene Werte der Regressionsparameter hergeleitet. In der vorliegenden Arbeit wer-
den zumeist analytische Lösungen für optimale Versuchpläne entwickelt. In speziellen
Situationen werden auch numerische Methoden verwendet. Wir beschränken unsere
Untersuchungen auf das D- und A-Kriterium sowie Kiefers Φk-Optimalitätskriterien.

Im allgemeinen Rahmen der verallgemeinerten linearen Modelle werden mittels
des allgemeinen Äquivalenzsatzes notwendige und hinreichende Bedingungen erhalten,
die Intensitätswerte verwenden und lokal optimale Versuchspläne charakterisieren. In
diesem Zusammenhang werden für lineare Prädiktoren mit binären Faktoren Modelle
erster Ordnung, Modelle mit Wechselwirkungen und Modelle ohne Interzept (konstan-
ten Term) betrachtet. Darüber hinaus wird eine spezielle Methode entwickelt, um
lokal D- oder A-optimale Versuchspläne für ein Modell mit Interzept aus solchen für
ein Modell ohne Interzept, und umgekehrt, zu konstruieren.

Im Weiteren werden Gamma-Modelle mit einer Potenzfunktion als Link-Funktion
(Power Link) betrachtet, die eine spezielle Klasse verallgemeinerter linearer Modelle
bilden. Hierzu werden relevante Strukturen für lineare Prädiktoren verwendet, die
auf quantitativen Faktoren basieren. Die Begriffe einer lokal wesentlich vollständigen
Klasse und einer lokal vollständigen Klasse von Versuchsplänen werden eingeführt,
und derartige Klassen werden für verallgemeinerte lineare Modelle mit binären Fak-
toren erhaltene Resultate. In geeigneten Fällen können die für verallgemeinerte lineare
Modelle mit binären Faktoren erhaltene Resultate auf Gamma-Modelle mit quantita-
tiven Faktoren übertragen werden. Zur Messung der Qualität wird der Einfluss der
Modellparameter auf die Optimalität der Versuchspläne untersucht. Weiterhin werden
Versuchspläne mit Produkt-Struktur als optimal für Gamma-Modelle mit produktarti-
gen Wechselwirkungen identifiziert. Darüber hinaus werden auch Gamma-Modelle mit
linearem Prädiktor ohne Interzept betrachtet. Für ein spezielles Szenario werden Men-
gen lokal Φk-optimaler Versuchspläne gefunden. Durch eine geeignete Transformation
werden Optimalitätsresultate für Gamma-Modelle mit Interzept auf Gamma-Modelle
ohne Interzept, und umgekehrt, übertragen. Außerdem wird mit Hilfe des allgemeinen
Äquivalenzsatzes die Optimalität für multiple Regression charakterisiert durch ein Sys-
tem polynomialer Ungleichungen, die analytisch oder mittels Computer Algebra gelöst
werden können. Die Robustheit der hergeleiteten Versuchspläne für Gamma-Modelle
bezüglich Fehlspezifikation der Parameter wird mittels ihrer lokalen Effizienzen über-
prüft.
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Schließlich werden optimale Versuchspläne für multivariate verallgemeinerte line-
are Modelle untersucht. Dabei können die Komponenten der multivariaten Regres-
sionsfunktion mit linearen Prädiktoren über verschiedene Link-Funktionen kombiniert
werden. Es kann gezeigt werden dass der lokal optimale Versuchsplan für das univari-
ate verallgemeinerte lineare Modell such für die multivariate Struktur optimal bleibt.
Insbesondere werden Versuchspläne mit Produkt-Struktur für multivariate Gamma-
Modelle entwickelt.
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Chapter 1

Introduction

The generalized linear model (GLM) was developed by Nelder and Wedderburn (1972).
It is viewed as a generalization of the ordinary linear regression which allows contin-
uous or discrete observations from one-parameter exponential family distributions to
be combined with explanatory variables (factors) via proper link functions. Therefore,
wide applications can be addressed by GLMs such as social and educational sciences,
clinical trials, insurance, industry. In particular; logistic and probit models are used for
binary observations whereas Poisson models and gamma models are used for count and
nonnegative continuous observations, respectively (Walker and Duncan (1967), Myers
and Montgomery (1997), Fox (2015), Goldburd, Khare, and Tevet (2016)). Methods of
likelihood are utilized to obtain the estimates of the model parameters. The precision of
these maximum likelihood estimates (MLEs) is measured by their variance-covaraince
matrix. In ordinary regression models for which normality assumption is realized the
variance-covariance matrix is exactly (proportional to) the inverse of the Fisher infor-
mation matrix. In contrast, for the GLMs the observations are often non-normal, and
therefore large sample theory is demanded for the statistical inference. In this context,
the variance-covariance matrix is approximately the inverse of the Fisher information
matrix. It should, however, be emphasized that the Fisher information matrix for
GLMs depends on the model parameters. The theory of generalized linear models is
presented carefully in McCullagh and Nelder (1989) and Dobson and Barnett (2018).

Statistical inference is the procedure of drawing significant conclusions from the
maximum likelihood estimates in the statistical models. The performance of the sta-
tistical inference is governed by research designs (studies). That is in observational
designs like survey designs and cross-sectional designs the values of the explanatory
variables are observed by the researcher, along with the values of the response variable
without affecting them. In the other hand, in experimental designs like factorial designs
the values of the explanatory variables are under the direct control of the researcher.
More precisely, the values of explanatory variables are assigned (not observed) by the
researcher to the values of the response variable or equivalently, the values of the re-
sponse variable are allocated to specific values of the explanatory variables. For more

1



Chapter 1. Introduction

details see Oehlert (2000), Fox (2015), Montgomery (2017). It is worthwhile mention-
ing that the essential ideas and concepts of experimental designs were developed in the
books by Fisher (1937) and Cochran and Cox (1957). In the theory of optimal designs
a more powerful inference is the main purpose that realizes through minimizing the
estimates variation based on certain criteria and therefore, under optimal designs the
most precise estimates are achieved.

The initial contribution in optimal experimental designs was made 101 years ago
by Smith (1918). Her proposed method was later called G-criterion. Around 25 years
later, the next contribution was introduced by Wald (1943) which explicitly includes
the idea of the frequently-applied D-criterion. Rapid developments in the theory of
optimal designs had been done until the outstanding papers by Kiefer (1959), Kiefer and
Wolfowitz (1960) and Kiefer (1961) where the notion of the continuous (approximate)
design was proposed which then allowed to employ convex optimization theory to
obtain solutions of optimal designs leading to the celebrated Kiefer-Wolfowitz General
Equivalence Theorem. Moreover, the alphabet labels referring to the optimality criteria
were essentially proposed in the aforementioned works. Besides, several optimality
criteria like A, E, I, V, L, c, Φk have also been developed. One can follow a variety of
published works from the literature in Wynn (1984), Silvey (1980), Schwabe (1996b),
Atkinson, Donev, and Tobias (2007) and Fedorov and Leonov (2013).

While deriving optimal designs is obtained by minimizing the variance-covariance
matrix there is no loss of generality to concentrate on maximizing the Fisher informa-
tion matrix. For generalized linear models the optimal design cannot be found without
a prior knowledge of the parameters (Khuri et al. (2006), Atkinson and Woods (2015)).
One approach which so-called local optimality was proposed by Chernoff (1953) aiming
at deriving a locally optimal design at a given parameter value (best guess). This ap-
proach is widely employed, for instance; for count data with Poisson models and Rasch
Poisson model see Wang et al. (2006), Russell et al. (2009) and Graßhoff, Holling, and
Schwabe (2013, 2015, 2018). For binary data: see Abdelbasit and Plackett (1983)
and Mathew and Sinha (2001) under logistic models and Biedermann, Dette, and Zhu
(2006) under dose-response models whereas under logit, log-log and probit models see
Yang, Mandal, and Majumdar (2012). In particular, optimal designs for GLMs without
intercept have not been considered carefully. Recently, Kabera, Haines, and Ndlovu
(2015) provided analytic proofs of D-optimal designs for zero intercept parameters of
a two-binary-factor logistic model with no interaction.

Locally optimal designs for a general setup of generalized linear models have re-
ceived some attention. Geometrically, Ford, Torsney, and Wu (1992) considered only
one continuous factor. Atkinson and Haines (1996) presented a study of optimal de-
signs for nonlinear model including GLMs. Yang (2008) provided optimal designs for
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Chapter 1. Introduction

GLMs with applications to logistic and probit models. Also Yang and Stufken (2009)
gave a general solution for GLMs. Analytic solutions under D-criterion obtained by
Tong, Volkmer, and Yang (2014) for particular limitations.

The gamma model is a generalized linear model with gamma-distributed response
variables. Mostly, it is employed for outcomes that are nonnegative, continuous, skewed
and heteroscedastic specifically, when the variances are proportional to the square of
the means. The gamma model with its canonical link (reciprocal) is appropriate for
many real life data. For example; in ecology and forestry (Gea-Izquierdo and Cañellas
(2009)), medicine (Grover, Sabharwal, and Mittal (2013)), air pollution studies (Kur-
toğlu and Özkale (2016)), psychology (Ng and Cribbie (2017)), car insurance (McCul-
lagh and Nelder (1989), Goldburd, Khare, and Tevet (2016), Section 2.1.3) and for
Pharmacokinetic data (Lindsey et al. (2000)). Dette et al. (2013) considered gamma
models with identity, inverse and log links. Gamma models with log-link are mostly
used in cost data analysis (Barber and Thompson (2004), Moran et al. (2007) and
Manning and Mullahy (2001)). However, although the gamma model is used in many
applications, but it has no considerable attention for optimal designs. Geometric ap-
proaches were employed to derive locally D-optimal designs for a gamma model with
a single factor (Ford, Torsney, and Wu (1992)), with two factors without intercept
(Burridge and Sebastiani (1992)) and for multiple factors (Burridge and Sebastiani
(1994)).

Optimal designs for multivariate linear models have been studied carefully (Fe-
dorov (1971), Krafft and Schaefer (1992), Kurotschka and Schwabe (1996), Schwabe
(1996a), Imhof (2000), Huang et al. (2006), Liu, Yue, and Hickernell (2011)). Re-
cently, Rodríguez-Díaz and Sánchez-León (2019) introduced analogous result to that
in Kurotschka and Schwabe (1996) for multiresponse models assuming double covari-
ance structure (intra-correlation and inter-correlation). On the other hand, the research
contributions in optimal designs for multivariate nonlinear models are limited (Heise
and Myers (1996), Zocchi and Atkinson (1999), Fedorov and Leonov (2013), Liu and
Colditz (2017)). In multivariate generalized linear model (MGLM) the marginal mod-
els are addressed within GLM framework. Mukhopadhyay and Khuri (2008) discussed
response surface designs for MGLMs and they mentioned that very little is known
about designs for such MGLMs. Das and Mukhopadhyay (2012) compared designs for
MGLMs using quantile dispersion graphs when the linear predictor is misspecified.

In the present thesis, we are motivated to derive locally optimal designs in more
complex, more realistic generalized linear models with several explanatory variables
(multiple factors) and potentially several dependent variables (multivariate). There-
fore, with the aid of The General Equivalence Theorem we focus on analytic solutions
for optimal designs for a wide class of generalized linear models that are having similar
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Chapter 1. Introduction

form of the Fisher information matrix. We assume various setups of the linear predic-
tor highlighting the impact of the presence or absence of the intercept term and the
existence of interactions. We then concentrate on the gamma model as a particular
application for GLMs. We provide outstanding and novel solutions for optimal designs
for gamma models under different linear predictor taking into account the impact of the
model parameters on the optimality solutions. Moreover, we propose an approach to
reduce the complexity of deriving optimal designs for a multivariate generalized linear
model to its univariate counterparts.

The thesis is organized as follows. In chapter 2 literature review of generalized
linear models and the optimal design theory are presented. In Chapter 3 we intro-
duce locally D- and A-optimal designs for a general setup of the generalized linear
model having various linear predictors. In the subsequent sections some auxiliary re-
sults are developed and then optimal designs are derived for a one-factor model and
a two-factor model with particular extensions to multiple-factor models. Further op-
timal designs are obtained under models with interactions. For non-intercept models
we give a solution for a class of Φk-optimal designs. We also establish a relation of
models with and without intercept under certain assumptions. In Chapter 4 we deal
with the gamma model. We introduce the model considering a class of link functions
as well as introducing the notations of locally complete or essentially complete classes
of designs. Some relevant cases of linear predictors are considered and locally complete
classes and locally essentially complete classes of designs are found leading to a consid-
erable reduction of the problems of locally D- and A-optimal designs. Based on these
results locally D- and A-optimal designs are determined. We begin with a one-factor
model then models without interactions considering particular linear predictors with
and without intercept. Additionally, models with interactions are discussed taking into
account the existence and absence of the intercept. Finally, the performance of some
derived locally D-optimal designs compared with particular non-optimal designs are ex-
amined. In Chapter 5 we concentrate on optimal designs for multivariate generalized
linear models under various model structures. This thesis is closed with a summary of
the results and suggestions for extensions with possible future topics in Chapter 6.
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Chapter 2

Model specification and optimal
designs

In the current chapter we present the fundamental concepts and notations in the the-
ory of optimal experimental designs and generalized linear models that are required
throughout our research. In Section 2.1 we introduce the model, the link functions, the
intensity functions, the Fisher information matrix and the variance-covariance matrix.
In Section 2.2 we introduce approximate designs, optimality criteria and The General
Equivalence Theorem.

For more details about generalized linear models see the books by McCullagh and
Nelder (1989) and Dobson and Barnett (2018). The essential theory of optimal de-
signs and related topics are explained in the books by Fedorov (1972), Silvey (1980),
Pukelsheim (1993), Schwabe (1996b), Atkinson, Donev, and Tobias (2007), Berger and
Wong (2009) and Fedorov and Leonov (2013).

2.1 Univariate model

Let Y1, ..., Yn be independent response variables for n experimental units. Consider the
experimental region X ⊆ Rν , ν ≥ 1, to which the covariate value x belongs. Denote
by β ∈ Rp the parameter vector in a particular statistical model of interest. Let
fβ(x) : X → Rp be a vector of known functions at a given parameter point β. The
image (induced experimental region) fβ(X ) ⊂ Rp is assumed to be a compact set where
fβ(X ) = {fβ(x) : x ∈ X}. The Fisher information matrix, for a single observation
at a point x ∈ X , is given by

M(x,β) = fβ(x)f>β (x), (2.1)

which of course depends on the model parameter β. This form of information matrix
appears when the model is nonlinear in β. The information matrix of the whole
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Chapter 2. Model specification and optimal designs

experimental points x1, . . . ,xn reads as

M (x1, . . . ,xn,β) =
n∑
i=1
M(xi,β). (2.2)

In the context of the generalized linear models the observations (responses) belong to
a one-parameter exponential family. The probability density function of Y defined as

p(y; θ, φ) = exp
(
yθ − b(θ)
a(φ) + c(φ, y)

)
, (2.3)

where a(·), b(·) and c(·) are known functions whereas θ is a canonical parameter and
φ is a dispersion parameter. A common computational method for fitting the models
to data are provided in the GLM framework. That is the expected mean is given by
E(Y ) = µ = b′(θ), and the variance is given by var(Y ) = a(φ)b′′(θ). The quantity
b′′(θ) is called the mean-variance function or equivalently, the variance function of the
expected mean, i.e., V (µ) = b′′(θ). Thus we may write var(Y ) = a(φ)V (µ) which
depends on the values of x (see McCullagh and Nelder (1989), Section 2.2.2).

Let f(x) : X → Rp be a p-dimensional regression function with components
f1(x), . . . , fp(x). Here, the real-valued regression functions f1, . . . , fp are continuous
and linearly independent. The generalized linear model can be introduced as

η = g(µ) where η = f>(x)β, (2.4)

where g is a link function that relates the expected mean µ to the linear predictor
f>(x)β. It is assumed that g is one-to-one and differentiable. Table 2.1 gives the com-
mon link functions including the canonical links with the corresponding one-parameter
exponential family distribution where Φ is the normal cumulative distribution and κ

is the shape parameter of a gamma distribution (see Nelder and Wedderburn (1972),
McCullagh and Nelder (1989), Myers and Montgomery (1997)).

One can realize that µ = µ(x,β) = g−1
(
f>(x)β

)
and dη/dµ = g′

(
g−1

(
f>(x)β

))
and therefore, we can define the intensity function at a point x ∈ X as

u(x,β) =
(

var(Y )
(dη

dµ

)2)−1
(2.5)

which is positive and depends on the value of linear predictor f>(x)β. The intensity
function is regarded as the weight for the corresponding unit at the point x (Atkinson
and Woods (2015)). Table 2.2 shows the intensity functions with the corresponding
link functions (Rodríguez, Ortiz, and Martínez (2016)).
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Chapter 2. Model specification and optimal designs

Table 2.1: The link functions with the corresponding densities.

Density Name Link g(µ) Variance V (µ)
Normal Identity µ 1

Poisson Log logµ µ

Gamma Reciprocal κ/µ µ2

Gamma Power Family µρ µ2

Gamma Box-Cox (µλ − 1)/λ µ2

Inverse Gaussian Inverse-Square 1/µ2 µ3

Binomial Logit or Logistic log(µ/(1− µ)) µ(1− µ)/n

Binomial Probit Φ−1(µ) µ(1− µ)/n

Binomial Complementary log log log{− log(1− µ)} µ(1− µ)/n

Table 2.2:
The intensity functions with the corresponding link functions.

Link Intensity u(x,β)
Identity 1

Log µ

Reciprocal κµ2

Power Family 1
ρ2

κ
µ2ρ

Box-Cox κ
µ2λ

Logit or Logistic µ(1− µ)

Probit Φ2(η)
(Φ(η)(1−Φ(η))

Complementary log log 1−µ
µ (log(1− µ))2

In this context, the Fisher information matrix for a GLM at x ∈ X (see Fedorov
and Leonov (2013), Subsection 1.3.2) has the form

M (x,β) = u(x,β)f(x)f>(x), (2.6)

which can be explicitly represented in the form (2.1) when fβ(x) is written as

fβ(x) =
√
u(x,β)f(x), (2.7)

7



Chapter 2. Model specification and optimal designs

The information matrix of the form (2.6) is appropriate for other nonlinear models,
e.g., survival times observations which depend on the proportional hazard model (see
Schmidt and Schwabe (2017)). Moreover, under homoscedastic regression models the
intensity function is constant equal to 1 whereas, under heteroscedastic regression
models we get intensity that is equal to 1/var(Y ) which depends on x only and thus
we have information matrix of form M (x) = u(x)f(x)f>(x) that does not depend
on the model parameters. The latter case was discussed in Graßhoff et al. (2007) and
in the book by Fedorov and Leonov (2013), p.13.

Remark 2.1.1. In the thesis we will deal with generalized linear models with and
without intercept. The generalized linear model includes explicitly an intercept term
β0 if the regression function f(x) includes the constant 1, whereas the model includes
implicitly an intercept term if there exists a constant vector c such that c>f(x) = 1
for all x ∈ X .

It is worthwhile mentioning that unlike the case of normally distributed response
variables, the sampling distributions for MLEs β̂ in GLMs that used for inference
cannot be determined exactly. Therefore, the statistical inferences for GLMs are con-
ducted for large sample sizes under mild regularity assumptions on the probability
density (2.3). Hence,

√
n(β̂n − β) d−→ Np

(
0,M−1

)
where M = lim

n→∞
1
n
M (x1, . . . ,xn,β) (Fahrmeir and Kaufmann (1985), Theorem 3).

Moreover, the variance-covariance matrix of β̂ is approximately given by the inverse of
the Fisher information matrix (2.2), see Fedorov and Leonov (2013), Section 1.5.,

var(β̂) ≈M−1(x1, . . . ,xn,β). (2.8)

2.2 Optimal design

In the theory of optimal designs there are three main parts that should be taken
into account. The statistical model which relates the response (observation) to the
explanatory variables (factors), the experimental region which represents the range of
these factors and the optimality criterion under which a design for the proposed model
on an experimental region is optimal. The quality of the design is measured by the
variance-covariance matrix of parameter estimates (2.8) or equivalently by its inverse,
the Fisher information matrix. The solution of optimal designs for generalized linear
models is difficult since it is affected by the values of the model parameters β that
appear in the information matrix.
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Chapter 2. Model specification and optimal designs

In the literature of optimal designs there are various approaches to manage the
dependence of the model parameters, see Mukhopadhyay and Khuri (2008) and Yang
and Mandal (2015). These approaches can be listed as below.

• Local optimality approach in which the unknown parameters are replaced by
assumed values.

• Bayesian approach that considers a prior belief on unknown parameters.

• Maximin approach that maximizes the minimum efficiency over certain range of
values of the unknown parameters.

• Sequential approach where the estimates of the design parameters are updated
in an iterative way.

Throughout we restrict to the local optimality approach which was introduced by
Chernoff (1953). A locally optimal design is derived at a certain best guess of the
model parameter w.r.t. a particular optimality criterion.

2.2.1 Approximate design

Throughout the present work we will deal with the approximate (continuous) design
theory, i.e., a design ξ is a probability measure with finite support on the experimental
region X ,

ξ =
 x1 x2 . . . xr

ω1 ω2 . . . ωr

 , (2.9)

where r ∈ N, x1,x2, . . . ,xr ∈ X are pairwise distinct points and ω1, ω2, . . . , ωr > 0
with ∑r

i=1 ωi = 1. The set supp(ξ) = {x1,x2, . . . ,xr} is called the support of ξ and
ω1, . . . , ωr are called the weights of ξ, see Silvey (1980), p.15. The information matrix
of a design ξ from (2.9) at a parameter point β is defined by

M (ξ,β) =
∫
X
M (x,β) ξ(dx) =

r∑
i=1

ωiM (xi,β). (2.10)

One might recognize M(ξ,β) as a convex combination of all information matrices for
all design points of ξ. Another representation of the information matrix (2.10) can be
utilized based on the r×p design matrix F = [f(x1), . . . ,f(xr)]> and the r× r weight
matrix V = diag(ωiu(xi,β))ri=1 and hence,

M(ξ,β) = F>V F .

9



Chapter 2. Model specification and optimal designs

Remark 2.2.1. A particular type of designs appears frequently when the support size
equals the dimension of fβ (or f), i.e., r = p. In such a case the design is minimally
supported and it is often called a minimal-support or a saturated design.

2.2.2 Optimality criteria

Let Ξ be the convex set of all designs on X . Since we deal with local optimality we
define, for a given parameter point β, the set Mβ = {M (ξ,β) : ξ ∈ Ξ} which is
convex and contains symmetric nonnegative definite p × p moment matrices. Define
the criterion function

Φ : Mβ → R

which assumed to be convex and differentiable over Mβ. The criterion function Φ
depends on the design ξ only through the moment matrix M (ξ,β) (see Pukelsheim
(1993), Section 4.1.). Given a parameter point β, a design ξ∗ is said to be locally
Φ-optimal (at β) if its information matrix at β is nonsingular and

Φ
(
M (ξ∗,β)

)
= min

ξ
Φ
(
M (ξ,β)

)
,

where the minimum on the r.h.s. is taken over all designs ξ whose information matrix
at β is nonsingular.

Remark 2.2.2. The set of designs for which the information matrix is nonsingular
does not depend on β (when u(x,β) is strictly positive on X ). In particular it is just
the set of designs for which the information matrix is nonsingular in the corresponding
ordinary regression model (ignoring the intensity u(x,β)). That is the singularity
depends on the support points of a design ξ because its information matrix M (ξ,β) =
F>V F is full rank if and only if F is full rank.

In this research, we mostly concentrate on D- and A-optimal designs so the notions
of locally D- and A-optimality will be introduced here in detail (see Fedorov and Leonov
(2013), Section 2.2).

D-optimal designs are constructed to minimize the determinant of the variance-
covariance matrix of the estimates or equivalently to maximize the determinant of the
information matrix. The D-criterion is typically defined by the convex function

Φ
(
M(ξ,β)

)
= − log det

(
M(ξ,β)

)
where det(A) denotes the determinant of a p×pmatrixA. Geometrically, the volume of
the asymptotic confidence ellipsoid is inversely proportional to

√
det

(
M(ξ,β)

)
where

det
(
M (ξ,β)

)
can be determined by the inverse of the product of the squared lengths

10



Chapter 2. Model specification and optimal designs

of the axes. Therefore, the D-optimal designs minimize the volume of the asymptotic
confidence ellipsoid.

A-optimal designs are constructed to minimize the trace of the variance-covariance
matrix of the estimates, i.e., to minimize the average variance of the estimates. The
A-criterion is defined by

Φ
(
M (ξ,β)

)
= tr

(
M−1(ξ,β)

)
where tr(A) denotes the trace of a p×p matrix A. The A-criterion aims at minimizing
the sum of the squared lengths of the axes of the asymptotic confidence ellipsoid.

An advantage of D-optimality is that the optimal designs do not depend on the
scale of the factors, even though the value of M (ξ∗,β) does. A one-to-one linear
transformation of fβ(x) leaves the optimal design unchanged, which is not, in general,
the case for A-optimal designs.

In a certain part of the current research a family of optimal designs and, more
generally, under Kiefer Φk-criteria (Kiefer (1975)) is introduced, in particular for models
without intercept. Kiefer Φk-criteria aim at minimizing the k-norm of the eigenvalues
of the variance-covariance matrix. The Φk-criteria include the above D- and A-criteria
as well as the E-criterion. Note that for a given parameter point β a design ξ∗ is
locally E-optimal if and only if it maximizes the smallest eigenvalue ofM (ξ,β) among
all designs ξ ∈ Ξ. The E-criterion minimizes the squared length of the ‘largest’ axis of
the asymptotic confidence ellipsoid.

Denote by λi(ξ,β) for all (1 ≤ i ≤ p) the eigenvalues of a nonsingular information
matrix M (ξ,β). The Φk- criteria are defined by

Φk(ξ,β) =
(1
p

tr
(
M−k(ξ,β)

)) 1
k

=
(1
p

p∑
i=1

λ−ki (ξ,β)
) 1
k

, 0 < k <∞,

Φ0(ξ,β) = lim
k→0+

φk(ξ,β) =
(

det(M−1(ξ,β))
) 1
p

,

Φ∞(ξ,β) = lim
k→∞

φk(ξ,β) = max
1≤i≤p

(
λ−1
i (ξ,β)

)
.

Note that Φ0(ξ,β), Φ1(ξ,β) and Φ∞(ξ,β) are the D-, A- and E-criteria, respectively.

Remark 2.2.3. By the strict convexity of the function Φ on Mβ the information matrix
of a locally Φ-optimal design (at β) is unique. That is, if ξ∗ and ξ∗∗ are two locally
Φ-optimal designs (at β) thenM (ξ∗,β) = M (ξ∗∗,β). Of course this is achieved under
D- and A-optimality and in particular under Kiefer Φk-criteria for 0 ≤ k <∞.

Remark 2.2.4. In general, it is assumed that the experimental region is compact and
at a given β the function fβ(x) is continuous. This entails existence of a locally

11



Chapter 2. Model specification and optimal designs

D-, A- or Φk-optimal design for any given parameter point β. Although the experi-
mental region X is the main objective in application more than fβ(X ), but the latter
region is more realistic analytically in mathematical development. Because of the ob-
vious correspondence between fβ(ξ) and ξ, no ambiguity will arise (see Pukelsheim
(1993), Section 1.25). Therefore, choosing a point x in an experimental region X is
equivalent to choosing fβ(x) in an induced experimental region fβ(X ) at a given β.
The compactness of X is demanded to guarantee that fβ(X ) is compact thus the set
of all nonnegative definite matrices Mβ is so. In fact, the compactness of fβ(X ) is
necessarily demanded which might occur while X is non-compact.

2.2.3 The General Equivalence Theorem

In order to verify the local optimality of a design The General Equivalence Theorem
is usually employed. It provides necessary and sufficient conditions for a design to
be Φ-optimal and thus the optimality of a suggested design can be easily verified
or disproved. The most generic one is the celebrated Kiefer-Wolfowitz equivalence
theorem under D-criterion (see Kiefer and Wolfowitz (1960)).

The Equivalence Theorem is established by making use of the directional derivatives
of the optimality criterion Φ at a given parameter point. Denote by ξx a design which
assigns unit mass at the design point x and let ξ′ be defined as

ξ′ = (1− α)ξ + αξx for 0 ≤ α ≤ 1,

then we have
M (ξ′,β) = (1− α)M(ξ,β) + αM (ξx,β),

where M (ξx,β) = fβ(x)f>β (x). Due to convexity of both Ξ and Mβ we observe that
ξ′ ∈ Ξ and M (ξ′,β) ∈Mβ. The directional (Frechet) derivative of Φ at M(ξ,β) in
the direction M (ξx,β) is given by

FΦ
(
M (ξ,β),M (ξx,β)

)
= lim

α→0+

1
α

[
Φ
(
(1− α)M (ξ,β) + αM(ξx,β)

)
− Φ

(
M (ξ,β)

)]
.

The following theorem provides necessary and sufficient conditions for optimality.

Theorem 2.2.1. (Silvey (1980),Theorem 6.1.2, p. 54 ) Given a parameter point β.
Let Φ be convex on Mβ and differentiable at M (ξ∗,β). Then ξ∗ is locally Φ-optimal
(at β) if and only if

FΦ
(
M (ξ∗,β),fβ(x)f>β (x)

)
≥ 0 for all x ∈ X .

12
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Remark 2.2.5. Under the assumptions of Theorem 2.2.1 and if ξ∗ is locally Φ-optimal,
note that

FΦ
(
M (ξ∗,β),fβ(x)f>β (x)

)
= 0 for all x ∈ supp(ξ∗).

The General Equivalence Theorem is characterized for the locally D-, A- and
Φk-optimal designs in the following theorem.

Theorem 2.2.2. Let β be a given parameter point and let ξ∗ be a design with nonsin-
gular information matrix M (ξ∗,β).

(a) The design ξ∗ is locally D-optimal (at β) if and only if

f>β (x)M−1(ξ∗,β)fβ(x) ≤ p for all x ∈ X . (2.11)

(b) The design ξ∗ is locally A-optimal (at β) if and only if

f>β (x)M−2(ξ∗,β)fβ(x) ≤ tr
(
M−1(ξ∗,β)

)
for all x ∈ X . (2.12)

(c) The design ξ∗ is locally Φk-optimal (at β) if and only if

f>β (x)M−k−1(ξ∗,β)fβ(x) ≤ tr(M−k(ξ∗,β)) for all x ∈ X . (2.13)

Remark 2.2.6.
If ξ∗ is a locally D-, A- or Φk-optimal design (at β) then for each support point x of ξ∗

the inequality in (a), (b) or (c), respectively of the theorem is an equality (cp. Remark
2.2.5).

Remark 2.2.7.
In each condition of The General Equivalence Theorem, Theorem 2.2.2, the left hand
side of the inequality is called the sensitivity function.
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Chapter 3

Generalized linear models

In this chapter we deal with a wide class of generalized linear models. In Section 3.1
we develop some approaches to determine the optimal weights for particular designs
under D-, A- and Φk-criteria which will be used later. Throughout, with the aid of The
Equivalence Theorem (Theorem 2.2.2) we establish a necessary and sufficient condition
for a design to be locally D-, A- or Φk-optimal designs. We begin with the single-factor
model by Section 3.2. In Section 3.3 we consider a model without interaction whereas
a model with interaction is studied briefly in Section 3.4. In Section 3.5 we focus on
Kiefer Φk-criteria for models without intercept. In Section 3.6 a relation of models
with and without intercept according to D- and A-optimal designs is developed.

3.1 Auxiliary results

Some saturated designs will appear as candidates for local D- and A-optimality. If
points x∗1, . . . ,x∗p ∈ X are given such that the vectors f(x∗1), . . . ,f(x∗p) are linearly
independent and β is a given parameter point, an interesting question is the choice of
locally D- and A-optimal weights ω∗i (1 ≤ i ≤ p) to obtain the (saturated) design ξ∗

with support {x∗1, . . . ,x∗p} and weights ω∗i (1 ≤ i ≤ p) which yields the minimum value
of − log det

(
M (ξ,β)

)
and the minimum value of tr

(
M−1(ξ,β)

)
over all saturated

designs with the same support {x∗1, . . . ,x∗p}. For the A-criterion the answer was given
in Pukelsheim (1993), Section 8.8, which is part of our following auxiliary lemma.

Lemma 3.1.1. Let x∗1, . . . ,x∗p ∈ X be given such that the vectors f(x∗1), . . . ,f(x∗p) are
linearly independent and let β be a given parameter point. The design ξ∗ which achieves
the minimum value of tr

(
M−1(ξ,β)

)
over all designs ξ with supp(ξ∗) = {x∗1, . . . ,x∗p}

is given by

ξ∗ =
 x∗1 . . . x∗p

ω∗1 . . . ω∗p

 , with ω∗i = c−1
(

cii
u(x∗i ,β)

)1/2
(1 ≤ i ≤ p) , c =

p∑
k=1

(
ckk

u(x∗k,β)

)1/2
,
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Chapter 3. Generalized linear models

where cii (1 ≤ i ≤ p) are the diagonal entries of the matrix C = (F−1)>F−1, and
F =

[
f(x∗1), . . . ,f(x∗p)

]>
. Moreover, the design ξ∗ is locally A-optimal (at β) if and

only if

(
U−1/2(F−1)>f(x)

)>
C∗
(
U−1/2(F−1)>f(x)

)
≤ 1/u(x,β) ∀ x ∈ X \ {x∗1, . . . ,x∗p},

(3.1)

where C∗ = diag
(
c
−1/2
11 , . . . , c−1/2

pp

)
C diag

(
c
−1/2
11 , . . . , c−1/2

pp

)
and

U = diag
(
u(x∗1,β), . . . , u(x∗p,β)

)
.

Proof. The formula for the A-optimal weights ω∗i (1 ≤ i ≤ p) is due to the corollary
in Section 8.8 of Pukelsheim (1993). Denoting the weight matrix by V = ΩU where
Ω = diag

(
ω∗1, . . . , ω

∗
p

)
, we can write M (ξ∗,β) = F>V F = F>ΩUF and

tr
(
M−1(ξ∗,β)

)
= tr

(
F−1U−1Ω−1(F−1)>

)
= tr

(
Ω−1U−1C

)
=

p∑
i=1

(
ω∗i u(x∗i ,β)

)−1
cii

= c
p∑
i=1

(
ciiu(x∗i ,β)

)−1/2
cii = c

p∑
i=1

(
cii

u(x∗i ,β)

)1/2
= c2,

and

M−2(ξ∗,β) = F−1U−1Ω−1(F−1)> F−1U−1Ω−1(F−1)>

= c2 F−1U−1/2C∗U−1/2(F−1)> since U−1/2Ω−1 = c diag
(
c
−1/2
11 , . . . , c−1/2

pp

)
.

So, together with The Equivalence Theorem (Theorem 2.2.2, condition (2.12)) and
Remark 2.2.6 the asserted characterization of local A-optimality (at β) of ξ∗ follows.

For the D-criterion the well-known answer is ω∗i = 1/p (1 ≤ i ≤ p), see Lemma
5.1.3 of Silvey (1980). That is the locally D-optimal saturated design assigns equal
weights to the support points. On the other hand, there is no unified formulas for
the optimal weights of a non-saturated design with respect to D-criterion. However,
let the model be given with parameter vector β of dimension p = 3, i.e., β ∈ R3.
The next lemma provides the optimal weights of a design with four support points
ξ∗ = {(x∗i , ω∗i ), i = 1, 2, 3, 4} under certain conditions.

Lemma 3.1.2. Let p = 3. Let the design points x∗1, x∗2, x∗3, x∗4 ∈ X be given such
that any three of the four vectors f(x∗1),f(x∗2),f(x∗3),f(x∗4) are linearly independent.
Denote

d1 = det
[
f(x∗2),f(x∗3),f(x∗4)

]
, d2 = det

[
f(x∗1),f(x∗3),f(x∗4)

]
,

d3 = det
[
f(x∗1),f(x∗2),f(x∗4)

]
, d4 = det

[
f(x∗1),f(x∗2),f(x∗3)

]
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such that di 6= 0, i = 1, 2, 3, 4. For a given parameter point β denote ui = u(x∗i ,β), i =
1, 2, 3, 4. Assume that u2 = u3 and d2

2 = d2
3 and let

ω∗1 = 3
8 + 1

4

(
1 + d2

1
d2

4

u1

u4
− 4d

2
2
d2

4

u1

u2

)−1
,

ω∗2 = ω∗3 = 1
2

(
4− d2

4
d2

2

u2

u1
− d2

1
d2

2

u2

u4

)−1
,

ω∗4 = 3
8 + 1

4

(
1 + d2

4
d2

1

u4

u1
− 4d

2
2
d2

1

u4

u2

)−1
.

Assume that ω∗i > 0, i = 1, 2, 3, 4. Then the design ξ∗ which achieves the minimum
value of − log det

(
M (ξ,β)

)
over all designs ξ with supp(ξ) = {x∗1,x∗2,x∗3,x∗4} is given

by ξ∗ = {(x∗i , ω∗i ), i = 1, 2, 3, 4}.

Proof. Let f ` = f(x∗`) =
(
f`1, f`2, f`3

)>
(1 ≤ ` ≤ 4). The 4 × 3 design matrix is

given by F =
[
f 1,f 2,f 3,f 4

]>
. Denote V = diag

(
ω`u`

)4

`=1
. Then M (ξ,β) = F>V F

and by the Cauchy-Binet formula the determinant ofM (ξ,β) is given by the function
ϕ(ω1, ω2, ω3, ω4) where

ϕ(ω1, ω2, ω3, ω4) =
∑

1≤i<j<k≤4
h∈{1,2,3,4}\{i,j,k}

d2
huiujuk ωiωjωk. (3.2)

By assumptions u2 = u3, d2
2 = d2

3 the function ϕ(ω1, ω2, ω3, ω4) is invariant w.r.t.
permuting ω2 and ω3, i.e., ϕ(ω1, ω2, ω3, ω4) = ϕ(ω1, ω3, ω2, ω4) and thus minimizing
(3.2) has similar solutions for ω2 and ω3. Hence, ω4 = 1− ω1 − 2ω2 and (3.2) reduces
to

ϕ(ω1, ω2) = α1ω
3
2 + α2ω

2
2 + α3ω

2
1ω2 + α4ω

2
2ω1 + α5ω1ω2,

where α` (1 ≤ ` ≤ 5) are given by

α1 = −2α2 = −2 d2
4 u

2
2 u4,

α3 = −α5 = −4 d2
2 u1 u2 u4,

α4 = u2
2

(
d2

1 u1 − d2
4 u4

)
− 4 d2

2 u1 u2 u4.

Thus we obtain the system of two equations ∂ϕ(ω1, ω2)/∂ω1 = 0, ∂ϕ(ω1, ω2)/∂ω2 = 0.
Straightforward computations show that the solution of the above system is the op-
timal weights ω∗` (1 ≤ ` ≤ 4) presented by the lemma. Hence, these optimal weights
minimizing ϕ(ω1, ω2).

Remark 3.1.1. As a consequence of Lemma 3.1.2, let h, i, j, k ∈ {1, 2, 3, 4} be pairwise
distinct. Assume there are two design points x∗i and x∗j , say, such that ui = uj and
d2
i = d2

j . Then the optimal weights are given in the following
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ω∗h = 3
8 + 1

4

(
1 + d2

huh
d2
kuk
− 4d

2
iuh
d2
kui

)−1
,

ω∗i = ω∗j = 1
2

(
4− d2

kui
d2
iuh
− d2

hui
d2
iuk

)−1
,

ω∗k = 3
8 + 1

4

(
1 + d2

kuk
d2
huh
− 4d

2
iuk
d2
hui

)−1
.

Remark 3.1.2. Note that Lemma 3.1.1 and Lemma 3.1.2 can be applied even for
generalized linear models without intercept.

Moreover, saturated designs under Kiefer Φk-criteria for a GLM without intercept
are of our interest, in specific, under the first order model f(x) = (x1, . . . , xν)> and
parameter vector β = (β1, . . . , βν)>. Therefore, the choice of locally Φk-optimal weights
which yields the minimum value of Φk(ξ,β) over all saturated designs with the same
support are given by the next lemma.

Lemma 3.1.3. Consider a GLM without intercept with f(x) = (x1, . . . , xν)> on the
experimental region X . Denote by ei for all (1 ≤ i ≤ ν) the ν-dimensional unit
vectors. Let x∗i = ai ei, ai > 0 for all (1 ≤ i ≤ ν) be design points in X such that the
vectors f(x∗1), . . . ,f(x∗ν) are linearly independent. Let β = (β1, . . . , βν)> be a given
parameter point. Let ui = u(x∗i ,β) for all (1 ≤ i ≤ ν). For a given positive real vector
a = (a1, . . . , aν)> the design ξ∗a which achieves the minimum value of Φk(ξa,β) over
all designs ξa with supp(ξ∗a) = {x∗1, . . . ,x∗ν} assigns weights

ω∗i = (a2
iui)

−k
k+1

ν∑
j=1

(a2
juj)

−k
k+1

(1 ≤ i ≤ ν)

to the corresponding design points in {x∗1, . . . ,x∗ν}.

For D-optimality (k = 0), ω∗i = 1/ν (1 ≤ i ≤ ν).

For A-optimality (k = 1), ω∗i = (a2
i ui)

−1/2

ν∑
j=1

(a2
juj)−1/2

(1 ≤ i ≤ ν).

For E-optimality (k →∞), ω∗i = (a2
i ui)

−1

ν∑
j=1

(a2
juj)−1

(1 ≤ i ≤ ν).

Proof. Define the ν × ν design matrix F = diag(ai)νi=1 with the ν × ν weight ma-
trix V = diag(uiωi)νi=1. Then we have M

(
ξa,β

)
= F>V F = diag(a2

iuiωi)νi=1 and

M−k
(
ξa,β

)
= diag

(
(a2
iuiωi)−k

)ν
i=1

with tr
(
M−k(ξa,β)

)
=

ν∑
i=1

(a2
iuiωi)−k. Note that

the eigenvalues of M−k
(
ξa,β

)
are given by λi(ξa,β) = (a2

iuiωi)−k (1 ≤ i ≤ ν). Thus
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the Kiefer Φk-criteria are defined as

Φk(ξa,β) =
(1
ν

ν∑
i=1

(a2
iuiωi)−k

) 1
k

(0 < k <∞).

Now we aim at minimizing Φk(ξa,β) such that ωi > 0 and
ν∑
i=1

ωi = 1. Then we write

ων = 1−
ν−1∑
i=1

ωi and thus we obtain

Φk(ξa,β) = 1
ν1/k

(
(a2
νuν)−k(1−

ν−1∑
i=1

ωi)−k +
ν−1∑
i=1

(a2
iuiωi)−k

) 1
k

.

It follows that the equation ∂Φk(ξa,β)
∂ωi

= 0 is equivalent to

(
1+(a2

νuν)k(1−
ν−1∑
i=1

ωi)k
ν−1∑
i=1

(a2
iuiωi)−k

) 1
k
−1
(a2

iui)kωk+1
i − (a2

νuν)k(1−
ν−1∑
i=1

ωi)k+1

a2
νuν (a2

iui)kωk+1
i (1−

ν−1∑
i=1

ωi)2

 = 0.

The l.h.s. of the above equation is a multiplication of two quantities. The first one as

an equation;
(

1 + (a2
νuν)k(1 −

ν−1∑
i=1

ωi)k
ν−1∑
i=1

(a2
iuiωi)−k

) 1
k
−1

= 0 has no solution. From
the other one we get

(a2
iui)kωk+1

i − (a2
νuν)k(1−

ν−1∑
i=1

ωi)k+1 = 0

which gives ωi =
(
a2
νuν/(a2

iui)
) k
k+1
ων (1 ≤ i ≤ ν−1), thus ωi (a2

iui)
k
k+1 = ων (a2

νuν)
k
k+1

(1 ≤ i ≤ ν−1). This means ωi (a2
iui)

k
k+1 (1 ≤ i ≤ ν) are all equal, i.e., ωi (a2

iui)
k
k+1 = c

(1 ≤ i ≤ ν), where c > 0. It implies that ωi = c (a2
iui)

−k
k+1 (1 ≤ i ≤ ν). Since

ν∑
i=1

ωi = 1

we get
ν∑
i=1

c (a2
iui)

−k
k+1 = c

ν∑
i=1

(a2
iui)

−k
k+1 = 1, and thus c =

( ν∑
i=1

(a2
iui)

−k
k+1
)−1

. So we

finally obtain ωi = (a2
iui)

−k
k+1/

( ν∑
j=1

(a2
juj)

−k
k+1
)

for all (1 ≤ i ≤ ν) which are the optimal
weights given by the lemma.

3.2 Single-factor model

In this section we concentrate on the simplest case for which the model is composed
by a single factor through the linear predictor

η(x,β) = f>(x)β = β0 + β1x, x ∈ X .
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We begin with the discrete experimental region X = {a, b}, a, b ∈ R, i.e., the factor x
is binary. In another situation, we consider the continuous experimental region given
by the unit interval X = [0, 1]. In each situation we provide locally D- and A-optimal
designs.

Theorem 3.2.1. Consider model f(x) =
(
1, x

)>
and experimental region X = {a, b}

with real numbers a, b. Let a parameter point β = (β0, β)> be given. Let ua = u(a,β)
and ub = u(b,β). Then:
(i) The unique locally D-optimal design (at β) is the two-point design supported by
a and b with equal weights 1/2.
(ii) The unique locally A-optimal design (at β) is the two-point design supported by
a and b with weights

ω∗a = u−1/2
a

√
1 + b2

u
−1/2
a

√
1 + b2 + u

−1/2
b

√
1 + a2

, ω∗b = 1− ω∗a.

Proof. Any D-optimal design and any A-optimal design must have support equal to
{a, b}. In particular, they are saturated designs. Hence the unique D-optimal design
gives equal weights 1/2 to a and b. The weights of the A-optimal design, by Lemma
3.1.1, are obtained from the diagonal entries c11 and c22 of the matrix

C = (F−1)TF−1, where F =
 1 a

1 b

 .

From F−1 = 1
b− a

 b −a
−1 1

 we obtain C = 1
(b− a)2

 1 + b2 −(1 + ab)
−(1 + ab) 1 + a2

 .
So, by Lemma 3.1.1, ω∗1 =

√
1 + b2u−1/2

a (b− a)−1/c, where
c = (b − a)−1

(√
1 + b2u−1/2

a +
√

1 + a2u
−1/2
b

)
, which is the same as ω∗a stated in the

theorem.

The locally D-optimal design given in the previous theorem is independent of the
intensities, i.e., it is the same for all generalized linear models. Similar results for
Poisson models were indicated in Wang et al. (2006). Furthermore, for each setup (or
each intensity form) of a generalized linear model there is a locally A-optimal design
that even varies with parameter values. Since a and b are the only design points there
is a locally D- or A-optimal design at any parameter value in the parameter space of
β = (β0, β1)>.
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Let the experimental region is taken to be the continues unit interval X = [0, 1]. In
the following we introduce, for a fixed β = (β0, β1)>, the function

h(x) = 1
u(x,β) , x ∈ [0, 1],

which will be utilized for the characterization of the optimal designs. Consider the
following conditions:
(i) u(x,β) is positive and twice continuously differentiable on [0, 1].
(ii) u(x,β) is strictly increasing on [0, 1].
(iii) h′′(x) is an injective (one-to-one) function on [0, 1].
Recently, Lemma 1 in Konstantinou, Biedermann, and Kimber (2014) showed that
under the above conditions (i)-(iii) with h(x) = 2/u(x,β) a locally D-optimal design
on [0, 1] is only supported by two points a and b where 0 ≤ a < b ≤ 1. In what fol-
lows analogous result is presented for locally optimal designs under various optimality
criteria.

Lemma 3.2.1. Consider model f(x) = (1, x)> and experimental region X = [0, 1]. Let
a parameter point β = (β0, β)> be given. Let conditions (i)-(iii) be satisfied. Denote
by A a positive definite matrix and let c be constant. Then if the condition of The
General Equivalence Theorem is of the form

u(x,β)f>(x)Af(x) ≤ c

then the support points of a locally optimal design ξ∗ is concentrated on exactly 2 points
a and b where 0 ≤ a < b ≤ 1.

Proof. Let A = [aij]i,j=1,2. Then let p(x) = f>(x)Af(x) = a22x
2 + 2a12x + a11 which

is a polynomial in x of degree 2 where x ∈ X . Hence, by The Equivalence Theorem ξ∗

is locally optimal (at β) if and only if

p(x) ≤ h(x) for all x ∈ [0, 1].

The above inequality is similar to that obtained in the proof of Lemma 1 in Konstanti-
nou, Biedermann, and Kimber (2014) and thus the rest of our proof is analogous to
that.

Accordingly, for D-optimality we have c = 2, A = M−1(ξ∗,β) and equal weights
1/2. For A-optimality, c = tr(M−1(ξ∗,β)) =

(√
(a2 + 1)/ub +

√
(b2 + 1)/ua

)
/(b− a)2

where ua = u(a,β) and ub = u(b,β) with A = M−2(ξ∗,β) and optimal weights as
what are given in part (ii) of Theorem 3.2.1. In general, under Kiefer’s Φk-criteria we
denote c = tr(M−k(ξ∗,β)) andA = M−k−1(ξ∗,β) where the optimal weights might be
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obtained by minimizing the Kiefer Φk-criteria. Moreover, the Generalized D-criterion
and L-criterion can be applied (Atkinson and Woods (2015), Chapter 10).

Remark 3.2.1. For a GLM of multiple factors and experimental region given by a
polytope, Schmidt (2019), Lemma 2, showed that the support points of an optimal
design are located at the edges of the experimental region.

As a consequence of Lemma 3.2.1, we next provide sufficient conditions for a design
whose support is the boundaries of [0, 1], i.e., 0 and 1 to be locally D- or A-optimal on
X = [0, 1] at a given β. Let q(x) = 1/u(x,β), q0 = q

1
2 (0) and q1 = q

1
2 (1).

Theorem 3.2.2. Consider model f(x) =
(
1, x

)>
and experimental region X = [0, 1].

Let a parameter point β = (β0, β)> be given. Let q(x) be positive, twice continuously
differentiable. Then:
(i) The unique locally D-optimal design (at β) is the two-point design supported by
0 and 1 with equal weights 1/2 if

q2
0 + q2

1 > q′′(x)/2 for all x ∈ (0, 1). (3.3)

(ii) The unique locally A-optimal design (at β) is the two-point design supported by
0 and 1 with weights

ω∗0 =
√

2q0√
2q0 + q1

and ω∗1 = q1√
2q0 + q1

, respectively

if
q2

0 + q2
1 +
√

2q0q1 > q′′(x)/2 for all x ∈ (0, 1). (3.4)

Proof. Ad (i) Employing condition (2.11) of The Equivalence Theorem (Theorem 2.2.2)
implies that ξ∗ is locally D-optimal if and only if

(1− x)2q2
0 + x2q2

1 − q(x) ≤ 0 ∀x ∈ [0, 1]. (3.5)

Since the support points are {0, 1}, the l.h.s. of the above inequality equals zero at
the boundaries of [0, 1]. Then it is sufficient to show that the aforementioned l.h.s. is
convex on the interior (0, 1) and this convexity realizes under condition (3.3) asserted in
the theorem. Now to show that ξ∗ is unique at β assume that ξ∗∗ is locally D-optimal
at β. Then M (ξ∗,β) = M (ξ∗∗,β) and therefore, the condition of the equivalence
theorem under ξ∗∗ is equivalent to (3.5) and this is an equation only at the support of
ξ∗, i.e., 0 and 1.

Ad (ii) This case can be shown in analogy to case (i) by employing condition (2.12) of
The Equivalence Theorem (Theorem 2.2.2) with tr(M−1(ξ∗,β)) = (

√
2q0 + q1)2.
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3.3 Model without interaction

In this section we consider the model with multiple factors without interactions. More
precise, a first order model is employed

f(x) =
(
1,x>

)>
, x ∈ X ; (3.6)

where the linear predictor is determined by η(x,β) = f>(x)β = β0 +
ν∑
i=1

βixi with
binary factors. That is a discrete experimental region is considered and has the form
X = {0, 1}ν , ν ≥ 2. We aim at constructing locally D- and A-optimal designs for a
given parameter point β adopting particular analytic solutions.

To this end, we firstly begin with a two-factor model

f(x) =
(
1, x1, x2

)>
where x = (x1, x2)> ∈ X = {0, 1}2. (3.7)

The experimental region can be written as X = {(0, 0)>, (1, 0)>(0, 1)>, (1, 1)>}. Let us
denote the design points by x∗1 = (0, 0)>, x∗2 = (1, 0)>, x∗3 = (0, 1)>, and x∗4 = (1, 1)>.

Theorem 3.3.1. Consider model (3.7) and experimental region X = {0, 1}2. Let a
parameter point β = (β0, β1, β2)> be given. Denote uk = u(x∗k,β), x∗k ∈ X (1 ≤ k ≤ 4),
and denote by u(1) ≤ u(2) ≤ u(3) ≤ u(4) the intensity values u1, u2, u3, u4 rearranged in
ascending order. Then:
(o) The locally D-optimal design ξ∗ (at β) is unique.
(i) If u−1

(1) ≥ u−1
(2) + u−1

(3) + u−1
(4) then ξ∗ is a three-point design supported by the three

design points whose intensity values are given by u(2), u(3), u(4), with equal weights 1/3.
(ii) If u−1

(1) < u−1
(2) + u−1

(3) + u−1
(4) then ξ∗ is a four-point design supported by the four

design points x∗1,x∗2,x∗3,x∗4 with weights ω∗1, ω∗2, ω∗3, ω∗4 which are uniquely determined
by the condition

ω∗k > 0 (1 ≤ k ≤ 4),
4∑

k=1
ω∗k = 1, and ukω

∗
k

(
1
3 − ω

∗
k

)
(1 ≤ k ≤ 4) are equal. (3.8)

Proof. Ad (o) We know that the information matrix M (ξ∗,β) of a locally D-optimal
design ξ∗ (at β) is unique. To show uniqueness of the locally D-optimal design (at β)
it suffices to show that if

4∑
k=1

ωkukf(x∗k)f>(x∗k) =
4∑

k=1
ω̃kukf(x∗k)f>(x∗k) then ωk = ω̃k

(1 ≤ k ≤ 4). Since the intensities uk (1 ≤ k ≤ 4) are positive it suffices to show that the
four information matrices M k = f(x∗k)f>(x∗k) (1 ≤ k ≤ 4) are linearly independent.
This is straightforward to verify in view of
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M 1 =


1 0 0
0 0 0
0 0 0

 , M 2 =


1 1 0
1 1 0
0 0 0

 , M 3 =


1 0 1
0 0 0
1 0 1

 , M 4 =


1 1 1
1 1 1
1 1 1

 .

For the proof of (i) and (ii) we will use the following three auxiliary statements (3.9),
(3.10) and (3.11).

f(x∗1)− f(x∗2)− f(x∗3) + f(x∗4) = 0; (3.9)

det
(
[f(x∗h),f(x∗i ),f(x∗j)]

)
= ±1 for all pairwise distinct h, i, j ∈ {1, 2, 3, 4};

(3.10)

For A positive definite p× p and b ∈ Rp: b>
(
A+ bb>

)−1
b = b>A−1b

1 + b>A−1b
.

(3.11)

Equations (3.9) and (3.10) are straightforward to verify, and (3.11) is obtained from
the Sherman-Morrison formula on the inverse of A+ bb>, see Bartlett (1951).
Ad (i), (ii): We show that the locally D-optimal design ξ∗ is a three-point design if and
only if

u−1
(1) ≥ u−1

(2) + u−1
(3) + u−1

(4) (3.12)

in which case ξ∗ is supported by the three design points whose intensity values are
given by u(2), u(3) and u(4), and their weights are all equal to 1/3. To this end consider
a three-point design ξ supported by x∗h, x∗i , x∗j for some 1 ≤ h < i < j ≤ 3 and with
equal weights 1/3. Then

M(ξ∗,β) = (1/3)F>UF , where

F> =
[
f(x∗h) , f(x∗i ) , f(x∗j)

]
and U = diag(uh, ui, uj).

So, by The Equivalence Theorem (Theorem 2.2.2, condition (2.11)) ξ is locally D-
optimal (at β) if and only if

u`
((
F>

)−1
f(x∗`)

)>
U−1

(
F>

)−1
f(x∗`) ≤ 1 ∀ ` = 1, 2, 3, 4. (3.13)

For ` ∈ {h, i, j} one has
(
F>

)−1
f(x∗`) = e` where e` denotes the `-th elementary unit

vector in R3, and hence the left hand side of (3.13) is equal to 1. So (3.13) is equivalent
to the single inequality for the index ` ∈ {1, 2, 3, 4} \ {h, i, j}. From (3.9) it follows
that f(x∗`) = F>z for some vector z = (z1, z2, z3)> ∈ R3 with zs ∈ {±1} (1 ≤ s ≤ 3).
Hence z =

(
F>

)−1
f(x∗`) and the l.h.s. of (3.13) reads

u`z
>U−1z = u`

(
u−1
h + u−1

i + u−1
j

)
,
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and we see that (3.13) is equivalent to u−1
` ≥ u−1

h + u−1
i + u−1

j . From this we see that
ξ∗ is a three-point design whose support in X if and only if (3.12) holds. Now assume
u−1

(1) < u−1
(2)+u

−1
(3)+u

−1
(4). Then ξ∗ is a four-point design with support points x∗1,x∗2,x∗3,x∗4.

It remains to show that a four-point design ξ with support points x∗1,x∗2,x∗3,x∗4 and
positive weights ω1, ω2, ω3, ω4 is locally D-optimal (at β) if and only if ukωk

(
1
3 − ωk

)
are equal for k = 1, 2, 3, 4. Again, by The Equivalence Theorem, local D-optimality of
ξ is equivalent to

u` f
>(x∗`)M−1(ξ,β)f(x∗`) = 3 ∀ ` = 1, 2, 3, 4. (3.14)

Note that the equality in (3.14) is due to Remark 2.2.6. For a given ` ∈ {1, 2, 3, 4} let
A` =

4∑
k=1, k 6=`

ωkukf(x∗k)f>(x∗k) which is positive definite by (3.10), and b` = √ω`u`f(x∗`).

Then
M (ξ,β) = A` + b`b>` ,

and hence, using formula (3.11),

u`f
>(x∗`)M−1(ξ,β)f(x∗`) = (1/ω`)b>`

(
A` + b`b>`

)−1
b` = u`f

>(x∗`)A−1
` f(x∗`)

1 + ω`u`f
>(x∗`)A−1

` f(x∗`)
.

Let 1 ≤ h < i < j ≤ 4 be such that {`, h, i, j} = {1, 2, 3, 4}. Then

A` =
[
f(x∗h),f(x∗i ),f(x∗j)

]
V
[
f(x∗h),f(x∗i ),f(x∗j)

]>
, where V = diag(ωhuh, ωiui, ωjuj).

From (3.9) we get
[
f(x∗h),f(x∗i ),f(x∗j)

]
z = f(x∗`) for some z ∈ R3 having components

in {±1}. Hence

f>(x∗`)A−1
` f(x∗`) = z>V −1z =

4∑
k=1
k 6=`

(ωkuk)−1 = λ(ξ)− (ω`u`)−1,

where λ(ξ) =
4∑

k=1
(ωkuk)−1, (3.15)

and we have obtained

u`f
>(x∗`)M−1(ξ,β)f(x∗`) =

u`
(
λ(ξ)− (ω`u`)−1

)
1 + ω`u`

(
λ(ξ)− (ω`u`)−1

) = u`λ(ξ)− ω−1
`

ω`u`λ(ξ) .

So (3.14) is equivalent to

u`λ(ξ)− ω−1
`

ω`u`λ(ξ) = 3 ∀ ` = 1, 2, 3, 4 (with λ(ξ) from (3.15)). (3.16)
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(3.16) rewrites equivalently as u`ω`
(

1
3 − ω`

)
= 1/

(
3λ(ξ)

)
for all ` = 1, 2, 3, 4. Utilizing

that ωk > 0 (1 ≤ k ≤ 4),
4∑

k=1
ωk = 1, and the definition (3.15) of λ(ξ) one obtains that

these equations can equivalently be stated as

u`ω`
(1

3 − ω`
)

are equal for ` = 1, 2, 3, 4.

Remark 3.3.1.
1. It is already seen from the optimality conditions asserted in part (i) of Theorem

3.3.1 that the design points with highest intensities perform as a support of a
locally D-optimal design at a given parameter value.

2. The optimality condition asserted in part (ii) of Theorem 3.3.1 applies only when
the optimality conditions for the three-point (saturated) designs in (i) cannot be
satisfied.

Theorem 3.3.1 covers various results in the literature. For examples; see Yang,
Mandal, and Majumdar (2012) for binary responses with several link functions and see
Graßhoff, Holling, and Schwabe (2013) for count data in item response theory.

In analogy to Theorem 3.3.1 we introduce locally A-optimal designs in the next
theorem where also the design points with highest intensities perform as a support of
a locally A-optimal design at a given parameter value.

Theorem 3.3.2. Consider the assumptions and notations of Theorem 3.3.1. Denote
qi = u

−1/2
i (1 ≤ i ≤ 4). Then:

(o) The locally A-optimal design ξ∗ (at β) is unique.

(i) If q2
1 ≥ q2

2 + q2
3 + q2

4 + q2q3 + 2
√

2
3q2q4 + 2

√
2
3q3q4 then

ξ∗ =
 x∗2 x∗3 x∗4√

2q2/c
√

2q3/c
√

3q4/c

 .

(ii) If q2
2 ≥ q2

1 + q2
3 + q2

4 + q1q3 +
√

2q3q4 then

ξ∗ =
 x∗1 x∗3 x∗4√

2q1/c
√

2q3/c q4/c

 .

(iii) If q2
3 ≥ q2

1 + q2
2 + q2

4 + q1q2 +
√

2q2q4 then

ξ∗ =
 x∗1 x∗2 x∗4√

2q1/c
√

2q2/c q4/c

 .
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(iv) If q2
4 ≥ q2

1 + q2
2 + q2

3 + 2√
3q1q2 + 2√

3q1q3 then

ξ∗ =
 x∗1 x∗2 x∗3√

3q1/c q2/c q3/c

 .
For each case (i) – (iv), the constant c appearing in the weights equals the sum of
the numerators of the three ratios. If none of the cases (i) – (iv) applies then ξ∗ is
supported by the four design points x∗1,x∗2,x∗3,x∗4.

Proof.
Ad (o): Similar to proof of part (o) of Theorem 3.3.1.
For the proof of (i) – (iv), we employ Lemma 3.1.1 where the experimental region
X = {x∗1,x∗2,x∗3,x∗4} is employed. In each of the cases (i) – (iv) the design ξ∗ stated
in the theorem is a saturated design with supp(ξ∗) = X \ {x∗`}, ` = 1, 2, 3, 4 where the
index ` corresponds to the case label. We will show that in each case the design ξ∗ coin-
cides with that of Lemma 3.1.1 and the inequality stated in the theorem coincides with
the equivalent condition for local A-optimality of the design stated in Lemma 3.1.1. To
this end, for each case (i) – (iv), we report the matrices F , F−1, and C = (F−1)>F−1

from Lemma 3.1.1. Then the weights of ξ∗ are easily verified to be those from the lemma
and the condition for local A-optimality of ξ∗ from the lemma gives that of the theorem.

(i) : F =


1 1 0
1 0 1
1 1 1

 , F−1 =


1 1 −1
0 −1 1
−1 0 1

 , C =


2 1 −2
1 2 −2
−2 −2 3

 ;

(ii) : F =


1 0 0
1 0 1
1 1 1

 , F−1 =


1 0 0
0 −1 1
−1 1 0

 , C =


2 −1 0
−1 2 −1

0 −1 1

 ;

(iii) : F =


1 0 0
1 1 0
1 1 1

 , F−1 =


1 0 0
−1 1 0

0 −1 1

 , C =


2 −1 0
−1 2 −1

0 −1 1

 ;

(iv) : F =


1 0 0
1 1 0
1 0 1

 , F−1 =


1 0 0
−1 1 0
−1 0 1

 , C =


3 −1 −1
−1 1 0
−1 0 1

 .

In the following we consider model (3.6) for a general number of factors, ν ≥ 2,
and with the experimental region X = {0, 1}ν . Here, we are interested in providing
an extension of particular locally D- and A-optimal designs given in the preceding
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theorems under a two-factor model. In specific, the three-point designs with support
(0, 0)>, (1, 0)>, (0, 1)> are to be extended.

Theorem 3.3.3. Consider model (3.6) with experimental region X = {0, 1}ν, where
ν ≥ 2. Denote the design points by

x∗1 = (0, . . . , 0)>, x∗2 = (1, . . . , 0)>, . . . , x∗ν+1 = (0, . . . , 1)>.

For a given parameter point β = (β0, β1, . . . , βν)> let ui = u(x∗i ,β) (1 ≤ i ≤ ν + 1).
Then the design ξ∗ which assigns equal weights 1/(ν + 1) to the design points x∗i for
all (1 ≤ i ≤ ν + 1) is locally D-optimal (at β) if and only if

u−1
1

(
1−

ν∑
j=1

xj)2 +
ν∑
i=1

u−1
i+1x

2
i ≤ u−1(x,β) for all x ∈

{
0, 1

}ν
. (3.17)

Proof. Define the (ν + 1)× (ν + 1) design matrix F =
[
f(x∗1), . . . ,f(x∗ν+1)

]>
, then

M (ξ∗,β) = 1
ν + 1F

>UF , where U = diag
(
ui
)ν+1

i=1
.

We have

F =
 1 01×ν

1ν×1 Iν

 , hence F−1 =
 1 01×ν

−1ν×1 Iν

 , (3.18)

where 01×ν , 1ν×1, and Iν denote the ν-dimensional row vector of zeros, the ν-dimensional
column vector of ones, and the ν×ν unit matrix, respectively. So, by The Equivalence
Theorem (Theorem 2.2.2, condition (2.11)) the design is locally D-optimal if and only
if

u(x,β)f>(x)M−1(ξ∗,β)f(x) ≤ ν + 1 ∀x ∈ {0, 1}ν . (3.19)

The l.h.s. of (3.19) reads as

u(x,β) (ν + 1)f>(x)F−1U−1
(
F−1

)>
f(x) =

(ν + 1)u(x,β)
(
u−1

1

(
1−

ν∑
j=1

xj
)2

+
ν∑
i=1

u−1
i+1x

2
i

)
,

and hence it is obvious that (3.19) is equivalent to (3.17).

Remark 3.3.2. The D-optimal design under a two-factor model with support (0, 0)>,
(1, 0)>, (0, 1)> from Theorem 3.3.1 is covered by Theorem 3.3.3 for ν = 2 where con-
dition (3.17) is equivalent to the inequality u−1

4 ≥ u−1
1 + u−1

2 + u−1
3 that is asserted in

part (i) of Theorem 3.3.1. Moreover, Theorem 3.3.3 covers various results in literature.
For example; Russell et al. (2009) provided for the Poisson model a locally D-optimal
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saturated design on the continuous experimental region [0, 1]ν , ν ≥ 2 that is supported
by (0, . . . , 0)>, (1, . . . , 0)>, . . . , (0, . . . , 1)> at βi = −2, (1 ≤ i ≤ ν).

In analogy to Theorem 3.3.3 we introduce locally A-optimal designs in the next
theorem.

Theorem 3.3.4. Consider the assumptions and notations of Theorem 3.3.3. Denote
qi = u

−1/2
i (1 ≤ i ≤ ν+ 1). Then the design ξ∗ which is supported by x∗i (1 ≤ i ≤ ν+ 1)

with weights

ω1 =
√
ν + 1q1/c and ω∗i+1 = qi+1/c, i = 1, . . . , ν, c =

√
ν + 1q1 +

ν∑
i=2

qi

is locally A-optimal (at β) if and only if for all x = (x1, . . . , xν)> ∈
{

0, 1
}ν

q2
1

(
1−

ν∑
j=1

xj

)2
+

ν∑
i=1

q2
i+1x

2
i + 2q1√

ν + 1

( ν∑
j=1

xj − 1
) ν∑
i=1

qi+1xi ≤ u−1(x,β). (3.20)

Proof. We show that the design ξ∗ coincides with that from Lemma 3.1.1. As in the
proof of Theorem 3.3.3 the design matrix F and its inverse are given by (3.18) and we
obtain

C =
(
F−1

)>
F−1 =

 ν + 1 −11×ν

−1ν×1 Iν

 .
This yields

√
c11/u(x∗1,β) =

√
ν + 1q1 and

√
cii/u(x∗i ,β) = qi for i = 2, . . . , ν + 1, and

an elementary calculation shows that the weights given by Lemma 3.1.1 coincide with
the ω∗i (1 ≤ i ≤ ν+1) as stated in the theorem. Straightforward calculation shows that
condition (3.1) that provides a characterization of local A-optimality of ξ∗ is equivalent
to (3.20).

Remark 3.3.3. Theorem 3.3.4 with ν = 2 covers the result stated in case (iv) of The-
orem 3.3.2. It can be checked that, with the notations of Theorem 3.3.2, the inequality
q2

4 > q2
1 +q2

2 +q2
3 + 2√

3q1q2 + 2√
3q1q3 is equivalent to assumption (3.20) of Theorem 3.3.4

for ν = 2.

3.4 Model with interaction

We consider a first order model augmented by interaction terms which are products of
two or more binary variables xi (1 ≤ i ≤ ν),

f(x) =
(
1,x>, gS1(x), . . . , gSq(x)

)>
, (3.21)

where Sj ⊆ {1, . . . , ν}, #Sj ≥ 2, and gSj(x) =
∏
i∈Sj

xi (1 ≤ j ≤ q).
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Of course, we assume that the subsets Sj (1 ≤ j ≤ q) in (3.21) are pairwise distinct
which implies that the components of f are linearly independent functions on X .
Consider the full interaction model, i.e., the collection of subsets Sj (1 ≤ j ≤ q)
provide all subsets of {1, . . . , ν} of size at least 2 (hence q = 2ν − ν − 1). E.g., the full
interaction models for ν = 2 and ν = 3 read as

ν = 2 : f(x) =
(
1 , x1 , x2 , x1x2

)>
, x = (x1, x2)>;

ν = 3 : f(x) =
(
1 , x1 , x2 , x3 , x1x2 , x1x3 , x2x3 , x1x2x3

)>
, x = (x1, x2, x3)>.

First note that for full interaction models the dimension of f is p = 2ν . For a full
interaction model a design supported by all the 2ν vertices of a hyperrectangle X is
minimally supported. The following result is immediate.

Theorem 3.4.1. Consider the full interaction generalized linear model on the experi-
mental region X = {a, b}ν , ν ≥ 2. For any given parameter point β the unique locally
D-optimal design (at β) is supported by X with equal weights 2−ν.

As an example; Theorem 3.4.1 covers a result in Section 3 of Yang, Mandal, and Ma-
jumdar (2012) where a two-factor model with interaction f(x) =

(
1 , x1 , x2 , x1x2

)>
was considered for binary observations with logit, probit and complementary log-log
link functions.

Remark 3.4.1. For the full interaction model and local A-optimality the unique locally
A-optimal design (at β) is again supported by X but the weights will depend on β
according to Lemma 3.1.1. For ν = 2 and the set {0, 1}2 as experimental region the
locally A-optimal design is given explicitly by the following theorem.

Theorem 3.4.2. Consider the full interaction generalized linear model and X = {0, 1}2

as an experimental region, i.e., f(x) =
(
1, x1, x2, x1x2)> for all x = (x1, x2)> ∈ {0, 1}2.

Denote the design points by x∗1 = (0, 0)>, x∗2 = (1, 0)>, x∗3 = (0, 1)>, and x∗4 = (1, 1)>.
For any given parameter point β = (β0, β1, β2, β3)> denote ui = u(x∗i ,β), i = 1, 2, 3, 4
and let qi = u

−1/2
i , i = 1, 2, 3, 4. The unique locally A-optimal design (at β) is supported

by the points x∗1,x∗2,x∗3,x∗4 with weights

ω∗1 = 2q1/c, ω∗2 =
√

2q2/c, ω∗3 =
√

2q3/c, ω∗4 = q4/c,

where c = 2q1 +
√

2q2 +
√

2q3 + q4.

Proof. The design ξ∗ is saturated. Hence the unique locally A-optimal design (at β)
is given by the design ξ∗ from Lemma 3.1.1 where the prescribed support points are
given by x∗1,x∗2,x∗3,x∗4. For the matrices F and C in that lemma we obtain
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F =


1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

 and F−1 =


1 0 0 0
−1 1 0 0
−1 0 1 0

1 −1 −1 1

 ,

hence C =
(
F−1

)>
F−1 =


4 −2 −2 1
−2 2 1 −1
−2 1 2 −1

1 −1 −1 1

 .

The weights c−1
(
cii/u(x∗i ,β)

)1/2
(1 ≤ i ≤ 4) from Lemma 3.1.1 coincide with the

ω∗i , i = 1, 2, 3, 4 stated in the theorem.

3.5 Model without intercept

In this section we consider GLMs having a first order linear predictor without intercept,
i.e.,

f(x) = (x1, . . . , xν)> for all x = (x1, . . . , xν)> ∈ X .

Here, f(0) = 0. We focus on locally optimal designs derived under Kiefer Φk-criteria
and thus, our results implicitly cover the D- and A-optimal designs. In the following
we provide a necessary and sufficient condition for constructing Φk-optimal designs.
The optimal weights are obtained according to Lemma 3.1.3.

Theorem 3.5.1. Consider the experimental region X . Given a vector a = (a1, . . . , aν)>

where ai ∈ R, ai > 0 (1 ≤ i ≤ ν). Let x∗i = aiei (1 ≤ i ≤ ν) denote the design points
which are assumed to belong to X . For a given parameter point β denote ui = u(x∗i ,β)
(1 ≤ i ≤ ν). Let ξ∗a be the saturated design whose support is x∗i (1 ≤ i ≤ ν) with the
corresponding weights

ω∗i = (a2
iui)

−k
k+1

ν∑
j=1

(a2
juj)

−k
k+1

(1 ≤ i ≤ ν).

Then ξ∗a is locally Φk-optimal (at β) if and only if

u(x,β)
ν∑
i=1

u−1
i a−2

i x2
i ≤ 1 for all x = (x1, . . . , xν)> ∈ X . (3.22)

Proof. Define the ν × ν design matrix F = diag(ai)νi=1 with the ν × ν weight matrix

V = diag(uiω∗i )νi=1 =
( ν∑
j=1

(a2
juj)

−k
k+1

)−1
diag

(
(a−2k
i ui)

1
k+1

)ν
i=1
.
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Then we have

M
(
ξ∗a,β

)
= F>V F =

( ν∑
j=1

(a2
juj)

−k
k+1

)−1
diag

(
(a2
iui)

1
k+1

)ν
i=1
,

M−k−1
(
ξ∗a,β

)
=
( ν∑
j=1

(a2
juj)

−k
k+1

)k+1
diag

(
a−2
i u−1

i

)ν
i=1
, and

tr
(
M−k

(
ξ∗a,β

))
=
( ν∑
j=1

(a2
juj)

−k
k+1

)k+1
.

Adopting these formulas simplifies the l.h.s. of The Equivalence Theorem (Theo-

rem 2.2.2, condition (2.13)) to u(x,β)
(

ν∑
j=1

(a2
juj)

−k
k+1

)k+1 ν∑
i=1

u−1
i a−2

i x2
i which is hence,

bounded by
(

ν∑
j=1

(a2
juj)

−k
k+1

)k+1
if and only if condition (3.22) holds true.

In particular, Theorem 3.5.1 states that for a given parameter point β the locally
D-optimal design (k = 0) has wights ω∗i = 1/ν (1 ≤ i ≤ ν) and the locally A-optimal
design (k = 1) has weights ω∗i = (a2

i ui)
−1/2

ν∑
j=1

(a2
juj)−1/2

(1 ≤ i ≤ ν).

Theorem 3.5.1 might be applicable for a wide class of GLMs on appropriate ex-
perimental regions. In case of gamma models the relevant aspect will be discussed in
Chapter 4, Subsection 4.4.2.

For a Poisson model with intensity u(x,β) = exp
(
x>β

)
and experimental region

X = {0, 1}ν , ν ≥ 2 let us restrict to the case of ai = 1 (1 ≤ i ≤ ν), i.e., the design
points are the unit vectors ei (1 ≤ i ≤ ν). As a result, condition (3.22) is simplified in
the following corollary.

Corollary 3.5.1. Consider a non-intercept Poisson model with f(x) = x on the ex-
perimental region X = {0, 1}ν , ν ≥ 2 and intensity u(x,β) = exp

(
x>β

)
. For a

given parameter point β = (β1, . . . , βν)> define λi = exp(βi) (1 ≤ i ≤ ν) and denote by
λ[1] ≥ λ[2] ≥ · · · ≥ λ[ν] the descending order of λ1, λ2, . . . , λν. Let the locally Φk-optimal
design ξ∗a (at β) from Theorem 3.5.1 be supported by the unit vectors ei (1 ≤ i ≤ ν)

with weights ω∗i = λ
−k
k+1
i

ν∑
j=1

λ
−k
k+1
j

(1 ≤ i ≤ ν). Then condition (3.22) is equivalent to

λ[1] + λ[2] ≤ 1. (3.23)

Proof. For intensity u(x,β) = exp
(
x>β

)
and ai = 1 (1 ≤ i ≤ ν) condition (3.22)

reduces to
exp(

ν∑
i=1

βixi)
ν∑
i=1

exp(−βi)x2
i ≤ 1 ∀x ∈ X . (3.24)
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For any x = (x1, . . . , xν) ∈ {0, 1}ν , ν ≥ 2 define the index set S ⊆ {1, . . . , ν} such that
xi = 1 if i ∈ S and xi = 0 else. So for x described by S ⊆ {1, . . . , ν} and s = #S,
if s = 0 (i.e., S = ∅) then the l.h.s. of (3.24) is zero. If s = 1, inequality (3.24) becomes
an equality. However, the l.h.s. of (3.24) is equal to exp(∑

i∈S
βi)

∑
i∈S

exp(−βi) which thus

rewrites as ∏
i∈S

λi
∑
i∈S

λ−1
i or equivalently as ∑

i∈S

∏
j∈S\{i}

λj. By the the descending order

λ[1] ≥ λ[2] ≥ · · · ≥ λ[ν] of λ1, λ2, . . . , λν we obtain for all subsets S ⊆ {1, . . . , ν} of same
sizes s ≥ 2,

s∑
i=1

λ−1
[i]

s∏
i=1

λ[i] =
s∑
i=1

s∏
i 6=j=1

λ[j] ≥
∑
i∈S

∏
j∈S\{i}

λj.

Denote Ts =
s∑
i=1

λ−1
[i]

s∏
i=1

λ[i]. Hence, inequality (3.24) is equivalent to Ts ≤ 1 for all
s = 2, . . . , ν. Then it is sufficient to show that

λ[1] + λ[2] ≤ 1 ⇐⇒ Ts ≤ 1 ∀s = 2, . . . , ν.

For “⇐=”, let s = 2 then T2 = λ[1]+λ[2] ≤ 1. For “=⇒”, firstly, note that T2 = λ[1]+λ[2]

thus Ts ≤ 1 is true for s = 2. Now assume Ts ≤ 1 is true for some s = q < ν, i.e.,
Tq ≤ 1 and we want to show that it is true for s = q + 1. We can write

Tq+1 =
( q∑
i=1

λ−1
[i] + λ−1

[q+1]

)( q∏
i=1

λ[i]

)
λ[q+1]

= Tqλ[q+1] +
q∏
i=1

λ[i] = Tqλ[q+1] + Tq

( q∑
i=1

λ−1
[i]

)−1
= Tq

(
λ[q+1] +

( q∑
i=1

λ−1
[i]

)−1)

since
( q∑
i=1

λ−1
[i]

)−1
≤ 1
q
λ[1] and λ[q+1] + 1

q
λ[1] ≤ T2 = λ[1] + λ[2] ≤ 1 we have

Tq+1 ≤ Tq

(
λ[q+1] + 1

q
λ[1]

)
≤ TqT2 ≤ 1.

In analogy to Corollary 3.5.1 we introduce the next corollary for logistic models on
the experimental region X = {0, 1}ν , ν ≥ 2.

Corollary 3.5.2. Consider a non-intercept logistic model with f(x) = x on the experi-
mental region X = {0, 1}ν , ν ≥ 2 and intensity u(x,β) = exp(x>β)

(1+exp(x>β))2 . For a given pa-
rameter point β = (β1, . . . , βν)> define λi = exp(βi) with ui = λi/(1+λi)2 (1 ≤ i ≤ ν).
Let the locally Φk-optimal design ξ∗a (at β) from Theorem 3.5.1 be supported by the unit

vectors ei (1 ≤ i ≤ ν) with weights ω∗i = u
−k
k+1
i

ν∑
j=1

u
−k
k+1
j

(1 ≤ i ≤ ν). Then condition (3.22) is
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equivalent to∏
i∈S

λi

(1 + ∏
i∈S

λi)2

(∑
i∈S

λi +
∑
i∈S

λ−1
i + 2s

)
≤ 1 ∀∅ 6= S ⊆ {1, . . . , ν}, s = #S. (3.25)

Proof. For ai = 1 (1 ≤ i ≤ ν) condition (3.22) under a logistic model is equivalent to

exp(
ν∑
i=1

βixi)(
1 + exp(

ν∑
i=1

βixi)
)2

ν∑
i=1

(1 + λi)2

λi
x2
i ≤ 1 ∀x ∈ X . (3.26)

So for x described by S ⊆ {1, . . . , ν} with λi = exp(βi) (1 ≤ i ≤ ν), (3.26) rewrites as

exp(∑
i∈S

βi)

(1 + exp(∑
i∈S

βi))2

∑
i∈S

(1 + λi)2

λi
=

∏
i∈S

λi

(1 + ∏
i∈S

λi)2

∑
i∈S

(λi + λ−1
i + 2) ≤ 1 ∀∅ 6= S ⊆ {1, . . . , ν},

which is equivalent to (3.25).

Remark 3.5.1. One can slightly highlight on Φk-optimality under the multiple linear
model without intercept f(x) = (x1, . . . , xν)> on the continuous experimental region
X = [0, 1]ν , ν ≥ 2. Here, u(x,β) = 1 for all x ∈ X so the information matrices
in a linear model are independent of β. Note that Theorem 3.5.1 does not cover a
non-intercept linear model on X since condition (3.22) cannot hold true for ν ≥ 2.
However, the l.h.s. of condition (2.13) of The Equivalence Theorem (Theorem 2.2.2)
under a linear model, i.e., u(x,β) = 1, is strictly convex and of course it attains its
maximum at some vertices of X . Thus the support of any Φk(or D, A)-optimal design
is a subset of {0, 1}ν. As a result, in particular for D- and A-optimality, one might
apply the results of Theorem 3.1 in Huda and Mukerjee (1988) which were obtained
under a linear model on {0, 1}ν.

• For odd numbers of factors ν = 2q + 1, q ∈ N, the equally weighted designs ξ∗

supported by all x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that
ν∑
i=1

xi = q + 1 is D- and
A-optimal.

• For even numbers of factors ν = 2q, q ∈ N, the equally weighted design ξ∗

supported by all x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that
ν∑
i=1

xi = q or
ν∑
i=1

xi = q + 1
is D-optimal. Moreover, the design ξ∗ which assigns equal weights to all points
x∗ = (x1, . . . , xν) ∈ {0, 1}ν such that

ν∑
i=1

xi = q is A-optimal.
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3.6 Relation of models with and without intercept

In this section we develop a particular approach to reduce the solution of locally optimal
designs for generalized linear models. Our approach can be utilized under D- and A-
criteria. We will show that under certain assumptions the locally D-optimal design for
the model with interceptM can be obtained from the locally D-optimal design for the
corresponding model without intercept M̃ by adding the origin to its support points.
Conversely, the locally D-optimal design of the model without intercept M̃ can be
obtained from the locally D-optimal design for the corresponding model with intercept
M by removing the origin from its support points. Analogous result will be achieved
for the A-criterion.

For that purpose we modify our notations and thus these models; M̃ and M are
(without loss of generality) characterized in the following.

M̃ : η̃ = f>(x)β̃, x ∈ X̃

where β̃ = (β1, . . . , βν)> with intensity function ũ(x, β̃). Here we assume there is no
constant (intercept) term explicitly involved in the present model, i.e., none of the
regression components of the ν real-valued function f(x) is constant equal to 1. In the
current situation, denote f β̃(x) = ũ

1
2 (x, β̃)f(x) = (f (1)

β̃
, . . . , f

(ν)
β̃

)>. The information
matrix of ξ on X̃ under model M̃ is thus written as

M̃
(
ξ, β̃

)
=
∫
X̃
f β̃(x)f>β̃ (x) ξ(dx).

The corresponding model M is obtained by including the constant 1 and the in-
tercept parameter β0 into the linear predictor of the generalized linear model as in the
following.

M : η =
(
1,f>(x)

)
β = β0 + f>(x)β̃, x ∈ X

where β = (β0, β̃
>)> with intensity function u(x,β). Let u0 = u(0,β).

Denote the function fβ(x) = u
1
2
(
x,β

)
f(x) = (f (1)

β , . . . , f
(ν)
β )>. So we can write

u
1
2
(
x,β

)(
1,f>(x)

)>
=
(
u

1
2
(
x,β

)
,f>β (x)

)>
.

Define Ξ0 to be the set of all designs on X for modelM such that 0 ∈ supp(ξ) and
there exists a constant vector c such that c>f(x) = 1 for all x ∈ supp(ξ) \ {0}, i.e.,

Ξ0 =
{
ξ : ξ on X with 0 ∈ supp(ξ) and ∃ c ∈ Rν 3 c>f(x) = 1∀x ∈ supp(ξ) \ {0}

}
.

Then the information matrix of ξ ∈ Ξ0 under modelM reads as

M
(
ξ,β

)
=
∫
X

(
u

1
2
(
x,β

)
,f>β (x)

)>(
u

1
2
(
x,β

)
,f>β (x)

)
ξ(dx).

34



Chapter 3. Generalized linear models

Lemma 3.6.1. Consider design ξ∗ ∈ Ξ0 for model M such that fβ(0) = 0. Then if
the design ξ∗ is locally D-optimal (at β), the weight of the origin 0 is ω = (ν + 1)−1.

Proof. DenoteM−1(ξ∗,β) = (ai,j)i,j=1,...,ν+1. Let A11 be the submatrix ofM−1(ξ∗,β)
formed by deleting the first row and the first column. Let a = (a1,2, . . . , a1,ν+1)>. Then
the sensitivity function obtained from condition (2.11) of The Equivalence Theorem
(Theorem 2.2.2) is given by

ψ(x, ξ∗) = u
(
x,β

)(
1,f>(x)

)
M−1(ξ∗,β)

(
1,f>(x)

)>
= u

(
x,β

)(
f>(x)A11f(x) + 2a>f(x) +

(
ωu0

)−1
)
.

According to Remark 2.2.6 ξ∗ is locally D-optimal if ψ(0, ξ∗) = ν + 1. It implies that
u0
(
ωu0

)−1
= ν + 1 which holds true if ω = (ν + 1)−1.

Lemma 3.6.2. Consider design ξ∗ ∈ Ξ0 for model M such that fβ(0) = 0. Then if
the design ξ∗ is locally A-optimal (at β), the weight of the origin 0 is

ω =

√√√√ c>c+ 1
u0tr(M−1(ξ∗,β))

.

Proof. DenoteM−2(ξ∗,β) = (ai,j)i,j=1,...,ν+1. Let A11 be the submatrix ofM−2(ξ∗,β)
formed by deleting the first row and the first column. Let a = (a1,2, . . . , a1,ν+1)>. Then
the sensitivity function obtained from condition (2.12) of The Equivalence Theorem
(Theorem 2.2.2) is given by

ψ(x, ξ∗) = u
(
x,β

)(
1,f>(x)

)
M−2(ξ∗,β)

(
1,f>(x)

)>
= u

(
x,β

)(
f>(x)A11f(x) + 2a>f(x) + (c>c+ 1)

(
ωu0

)−2
)
.

According to Remark 2.2.6 ξ∗ is locally A-optimal if ψ(0, ξ∗) = tr(M−1(ξ∗,β)). It
implies that u0(c>c+ 1)

(
ωu0

)−2
= tr(M−1(ξ∗,β)) which holds true if

ω =
√

(c>c+ 1)/(u0tr(M−1(ξ∗,β)).

In the following we give sufficient conditions under which the locally D- resp. A-
optimal design at a parameter point β̃ for model M̃ can be obtained from the locally
D- resp. A-optimal design from Ξ0 at a parameter point β = (β0, β̃

>)> for the corre-
sponding model M by simply removing the origin point from its support points and
renormalizing the weights of the remaining support points or vice versa. To this end,
for a design ξ ∈ Ξ0 define ξ−0 on X̃ ⊆ X to be the conditional measure of ξ given
x 6= 0. It is noted that supp(ξ) = supp(ξ−0)∪{0}. Let ξ0 denotes the one point design

35



Chapter 3. Generalized linear models

supported by the origin point 0, then let us set

ξ = ω ξ0 + (1− ω) ξ−0.

Assume that for a given parameter point β = (β0, β̃
>)> we have u(x,β) = ũ(x, β̃)

and thus fβ(x) = f β̃(x) and let f β̃(0) = 0. It follows that

M (ξ,β) =

 m1,1(ξ, β̃) (1− ω) m̃>(ξ−0, β̃)

(1− ω) m̃(ξ−0, β̃) (1− ω)M̃ (ξ−0, β̃)


where

m1,1(ξ, β̃) =
∫
X
ũ(x, β̃) ξ(dx), m̃(ξ−0, β̃) =

∫
X̃
ũ

1
2 (x, β̃)f β̃(x) ξ−0(dx),

and M̃ (ξ−0, β̃) =
∫
X̃
f β̃(x)f>β̃ (x) ξ−0(dx),

where the submatrix M̃(ξ−0, β̃) is the information matrix of ξ−0 for model M̃. Note
that m1,1(ξ, β̃) = ωu0 + (1 − ω)m̃◦(ξ−0, β̃) where m̃◦(ξ−0, β̃) =

∫
X̃ ũ(x, β̃) ξ−0(dx).

Since there exists a constant vector c such that c>f(x) = 1 for all x ∈ supp(ξ∗) \ {0},
it is straightforward to verify the following

c>m̃(ξ−0, β̃) = m̃◦(ξ−0, β̃) and M̃−1(ξ−0, β̃)m̃(ξ−0, β̃) = c thus

m̃>(ξ−0, β̃)M̃−1(ξ−0, β̃)m̃(ξ−0, β̃) = m̃◦(ξ−0, β̃).

If M (ξ,β) is nonsingular, we can get

M−1(ξ,β) =

 1
ω u0

− c>

ω u0

− c
ω u0

1
1−ω M̃

−1(ξ−0, β̃) + cc>

ω u0

 . (3.27)

Theorem 3.6.1. Consider design ξ∗ ∈ Ξ0 for model M. Let the design ξ∗−0 on X̃ be
the conditional measure of ξ∗ given x 6= 0. Let a parameter point β = (β0, β̃

>)> be
given such that u(x,β) = ũ(x, β̃) for all x ∈ X̃ . Assume that X̃ ⊆ X and f β̃(0) = 0.
Let ξ∗ = (1/(ν + 1)) ξ0 + (ν/(ν + 1)) ξ∗−0. Then
(1) If ξ∗ is locally D-optimal (at β) for modelM then ξ∗−0 is locally D-optimal (at β̃)
for model M̃ .
(2) If ξ∗−0 is locally D-optimal (at β̃) for model M̃ and

f>β̃ (x)M̃−1(ξ∗−0, β̃)f β̃(x) ≤ ν
(

1−
(c>f β̃(x)− ũ 1

2 (x, β̃))2

u0

)
∀x ∈ X (3.28)

then ξ∗ is locally D-optimal (at β) for modelM.
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Proof. Ad (1) Let ξ∗ = (1/(ν + 1)) ξ0 + (ν/(ν + 1)) ξ∗−0 ∈ Ξ0 be locally D-optimal (at
β) on X for model M. We want to prove that ξ∗−0 on X̃ is locally D-optimal (at β̃)
for model M̃. By condition (2.11) of The Equivalence Theorem (Theorem 2.2.2) we
guarantee at β = (β0, β̃

>)> that

u(x,β)
(
1,f>(x)

)
M−1(ξ∗,β)

(
1,f>(x)

)>
≤ ν + 1 ∀x ∈ X , (3.29)

where, at β = (β0, β̃
>)>, u(x,β) = ũ(x, β̃) and fβ(x) = f β̃(x) for all x ∈ X̃ with

X̃ ⊆ X . Note also M−1(ξ∗,β) is given by (3.27) with ω = 1/(ν + 1). Then inequality
(3.29) is equivalent to

f>β̃ (x)
(
ν + 1
ν

M̃
−1(ξ∗−0,β) + (ν + 1)cc>

u0

)
f β̃(x)

−
2(ν + 1)c>f β̃(x) + (ν + 1)ũ(x, β̃)

u0
≤ ν + 1 ∀x ∈ X̃ .

Elementary computations show that the above inequality is equivalent to

f>β̃ (x)M̃−1(ξ∗−0,β)f β̃(x) +
ν (c>f β̃(x)− ũ 1

2 (x, β̃))2

u0
≤ ν ∀x ∈ X̃ . (3.30)

Since
ν (c>f β̃(x)− ũ 1

2 (x, β̃))2

u0
≥ 0, (3.30) implies that

f>β̃ (x)M̃−1(ξ∗−0,β)f β̃(x) ≤ ν ∀x ∈ X̃ .

and so ξ∗−0 is locally D-optimal (at β̃) by The Equivalence Theorem (Theorem 2.2.2,
condition (2.11)) .
Ad (2) Let ξ∗−0 on X̃ is locally D-optimal (at β̃) for model M̃. Under the assumptions
stated in the theorem we want to show that ξ∗ from Ξ0 on X is locally D-optimal
(at β) for modelM. To this end, we investigate condition (2.11) of The Equivalence
Theorem (Theorem 2.2.2) which is given above by (3.29) and is also equivalent to
(3.30) at β. Hence, (3.30) holds true by condition (3.28). Of course, because ξ∗−0 is
locally D-optimal inequality (3.28) becomes an equality at each design point of ξ∗−0

which surely is a design point of ξ∗ and since ω = 1/(ν + 1) the equality also holds at
point 0.
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Next we introduce analogous result for the A-optimality. From (3.27), M−2(ξ, β̃)
is equal to


c>c+1
ω2 u2

0
− (c>c+1)c>

ω2 u2
0
− c>M̃

−1(ξ−0,β̃)
(1−ω)ωu0

−c(c
>c+1)
ω2 u2

0
− M̃

−1(ξ−0,β̃)c
(1−ω)ωu0

(c>c+1)cc>
ω2 u2

0
+ M̃

−1(ξ−0,β̃)cc>+cc>M̃−1(ξ−0,β̃)
(1−ω)ωu0

+ M̃
−2(ξ−0,β̃)
(1−ω)2

 .
(3.31)

Lemma 3.6.3. Let ξ ∈ Ξ0. Let a parameter point β = (β0, β̃
>)> be given such that

u(x,β) = ũ(x, β̃) for all x ∈ X̃ . Assume that ξ is locally A-optimal (at β) for model
M. Then the optimal weight ω of the origin 0 is given by

ω =
√
c>c+ 1

√
c>c+ 1 +

√
u0 tr

(
M̃
−1(ξ−0, β̃)

) . (3.32)

Moreover, we have

tr
(
M−1(ξ,β)

)
= 1
u0

√c>c+ 1 +
√
u0tr

(
M̃
−1(ξ−0, β̃)

)2

. (3.33)

Proof. As tr
(
cc>

)
= c>c we obtain from (3.27)

tr
(
M−1(ξ,β)

)
= c>c+ 1

ωu0
+ 1

1− ω tr
(
M̃
−1(ξ−0, β̃)

)
. (3.34)

From Lemma 3.6.2 the ω is given by

ω =

√√√√ c>c+ 1
u0tr(M−1(ξ,β))

.

We can write
1
ω

=
√
u0tr(M−1(ξ,β))

c>c+ 1 .

Substituting (3.34) in the r.h.s. of the above equation leads to

1
ω

=

√√√√ 1
ω

+
u0tr

(
M̃
−1(ξ−0, β̃)

)
c>c+ 1

( 1
1− ω

)
thus ( 1

ω

)2
= 1
ω

+
u0tr

(
M̃
−1(ξ−0, β̃)

)
c>c+ 1

( 1
1− ω

)
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so we get ( 1
ω2 −

1
ω

)
(1− ω) =

u0tr
(
M̃
−1(ξ−0, β̃)

)
c>c+ 1

The l.h.s. of the above equation is equal to the square ( 1
ω
− 1)2. Straightforward

computations imply that

1
ω

=

√
u0tr

(
M̃
−1(ξ−0, β̃)

)
+
√
c>c+ 1

√
c>c+ 1

and it follows that the ω from (3.32) can be given by the inverse of the r.h.s. of above
equation. Now it remains to proof (3.33). To this end, substitute (3.32) in (3.34) and
hence we get

tr
(
M−1(ξ,β)

)
= c>c+ 1

u0
+ 2

√√√√(c>c+ 1)tr
(
M̃
−1(ξ−0, β̃)

)
u0

+ tr
(
M̃
−1(ξ−0, β̃)

)
=
(√

c>c+ 1
u0

+
√

tr
(
M̃
−1(ξ−0, β̃)

))2
.

Then (3.33) follows.

Theorem 3.6.2. Consider the assumptions and notations of Theorem 3.6.1. Denote
τ̃ = tr

(
M̃
−1(ξ∗−0, β̃)

)
and let

ξ∗ =
 √

c>c+ 1√
c>c+ 1 +

√
u0τ̃

 ξ0 +
 √

u0 τ̃√
c>c+ 1 +

√
u0 τ̃

 ξ∗−0.

Denote the following equations

T1(x, β̃) =
(
√
c>c+ 1 +

√
u0τ̃)2(c>f̃ β̃(x)− ũ 1

2 (x, β̃))2

u2
0

+ (
√
c>c+ 1 +

√
u0τ̃)2

u0

√
τ̃u0(c>c+ 1)

f̃>β̃ (x)
(
M̃
−1(ξ∗−0, β̃)cc> + cc>M̃−1(ξ∗−0, β̃)

)
f̃ β̃(x)

− 4c>M̃−1(ξ∗−0, β̃)ũ 1
2 (x, β̃)f̃ β̃(x)

,
T2(x, β̃) =

√
τ̃

u0(c>c+ 1)

f̃>β̃ (x)
(
M̃
−1(ξ∗−0, β̃)cc> + cc>M̃−1(ξ∗−0, β̃)

)
f̃ β̃(x)

− 2c>M̃−1(ξ∗−0, β̃)ũ 1
2 (x, β̃)f̃ β̃(x)

.
Then
(1) If ξ∗ is locally A-optimal (at β) for modelM and T1(x, β̃) ≥ 0 for all x ∈ X̃ then
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ξ∗−0 is locally A-optimal (at β̃) for model M̃.
(2) If ξ∗−0 is locally A-optimal (at β̃) for model M̃ and

f̃
>
β̃ (x)M̃−2(ξ∗−0, β̃)f̃ β̃(x) ≤ τ̃

(
1−

(c>f>β̃ (x)− ũ 1
2 (x, β̃))2

u0

)
+ T2(x, β̃) ∀x ∈ X

(3.35)

then ξ∗ is locally A-optimal (at β) for modelM.

Proof. Ad (1) Let ξ∗ = (
√
c>c+1√

c>c+1+
√
u0 τ̃

) ξ0 + (
√
u0 τ̃√

c>c+1+
√
u0 τ̃

) ξ∗−0 ∈ Ξ0 on X be locally

A-optimal (at β) for modelM. We want to prove that ξ∗−0 on X̃ is locally A-optimal
(at β̃) for model M̃. Considering (3.33) then condition (2.12) of The Equivalence
Theorem (Theorem 2.2.2) guarantees at β = (β0, β̃

>)> that for all x ∈ X

u(x,β)
(
1,f>(x)

)
M−2(ξ∗,β)

(
1,f>(x)

)>
≤ 1
u0

√c>c+ 1 +
√

tr
(
M̃
−1(ξ∗−0, β̃)

)2

,

(3.36)
where, at β = (β0, β̃

>)>, u(x,β) = ũ(x, β̃) and fβ(x) = f β̃(x) for all x ∈ X̃ with
X̃ ⊆ X , andM−2(ξ∗,β) is given by (3.31) with ω = (

√
c>c+ 1)/(

√
c>c+ 1 +

√
u0 τ̃).

Then the l.h.s. of inequality (3.36) equals

f̃
>
β̃ (x)

(
(c>c+ 1)cc>

ω2u2
0

+
M̃
−1(ξ∗−0, β̃)cc> + cc>M̃−1(ξ∗−0, β̃)

ω(1− ω)u0
+ 1

(1− ω)2M̃
−2(ξ∗−0, β̃)

)
f̃ β̃(x)

− 2
(
c>(c>c+ 1)

ω2 u2
0

+
c>M̃

−1(ξ∗−0, β̃)
ω(1− ω)u0

)
ũ

1
2 (x, β̃)f̃ β̃(x) + (c>c+ 1)ũ(x, β̃)

ω2 u2
0

,

and it is straightforward to see that (3.36) is equivalent to

f>
β̃

(x)M̃−2(ξ∗−0, β̃)f β̃(x) + T1(x, β̃) ≤ τ̃ ∀x ∈ X̃ . (3.37)

By the assumption T1(x, β̃) ≥ 0 for all x ∈ X̃ , (3.37) implies that

f>
β̃

(x)M̃−2(ξ∗−0, β̃)f β̃(x) ≤ τ̃ ∀x ∈ X̃ .

and so ξ∗−0 is locally A-optimal (at β̃) by The Equivalence Theorem (Theorem 2.2.2, condition
(2.12)) .
Ad (2) Let ξ∗−0 on X̃ is locally A-optimal (at β̃) for model M̃. Under the assumptions stated
in the theorem we want to show that ξ∗ from Ξ0 on X is locally A-optimal (at β) for model
M. To this end, we investigate condition (2.12) of The Equivalence Theorem (Theorem 2.2.2)
which is given above by (3.36) and is also equivalent to (3.37) at β for all x ∈ X . Hence, it
is straightforward to see that (3.37) for all x ∈ X holds true by condition (3.35). Of course,
because ξ∗−0 is locally A-optimal and T2(x, β̃) = 0 for all x ∈ supp(ξ∗−0) inequality (3.35)
becomes an equality at each design point of ξ∗−0 which surely is a design point of ξ∗. Since
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ω = (
√
c>c+ 1)/(

√
c>c+ 1 +

√
u0 τ̃) and T2(0, β̃) = 0 the equality also holds at the origin

point 0.

Remark 3.6.1. The results of this section might be viewed as a generalization of the
results of both Li, Lau, and Zhang (2005) and Zhang and Wong (2013) that were derived
under linear models, i.e., when the intensities are constants equal to 1.

Remark 3.6.2. Note that the assumption c>f(x) = 1 for all x ∈ supp(ξ∗) \ {0}
is equivalent to that f(x) for all x ∈ supp(ξ∗−0) lies on a hyperplane not containing
the origin. Thus every saturated design for generalized linear models without intercept
satisfies that assumption. Moreover, the assumption c>f(x) = 1 for all x ∈ X̃ is
satisfied when X̃ is given by the (ν − 1)-dimensional unit simplex, i.e., X̃ = {x =
(x1, . . . , xν)>, 0 ≤ xi ≤ 1 ∀i,∑ν

i=1 xi = 1}. In such a case the mixture constraint of X̃
which is given by

ν∑
i=1

xi = 1 entails that c = (1, . . . , 1)>.

Example 3.6.1. Here, we consider a first order Poisson model where f(x) = (1,x>)>.
The intensity functions underM and M̃ are given by

u(x,β) = exp(β0 + x>β̃) and ũ(x, β̃) = exp(x>β̃),

respectively. It is noted that u(x,β) factorizes; i.e., u(x,β) = exp(β0)ũ(x, β̃). There-
fore, M (ξ,β) = exp(β0)M (ξ, β̃) for any given parameter point β = (β0, β̃

>)>. That
means the design ξ is independent of β0 and hence, locally optimal designs for a Pois-
son model with intercept is governed by ũ(x, β̃). Similar situation holds under the
Rasch Poisson-Gamma counts model (Graßhoff, Holling, and Schwabe (2013)) in item
response theory and the Rasch Poisson counts model (Graßhoff, Holling, and Schwabe
(2018)).

In the current thesis, a Poisson model with two binary factors is addressed as a
generalized linear model in Section 3.3. Part (i) in Theorem 3.3.1 and Part (iii) in
Theorem 3.3.2 introduce D- and A-optimal saturated designs ξ∗, respectively, which
belong to Ξ0. Hence, by part (1) in Theorem 3.6.1 or Theorem 3.6.2 the design ξ∗−0

is locally D- or A-optimal, respectively, and is equivalent to the corresponding design
given by Corollary 3.5.1 for ν = 2 (see Section 3.5 for Φk-optimality for GLMs without
intercept).

A relevant work from the literature includes Russell et al. (2009) who derived a
locally D-optimal saturated design ξ∗ for a first order Poisson model with intercept
on X = [0, 1]ν where ν ≥ 2 at βi = −2 (1 ≤ i ≤ ν). The support is given by
x∗0 = (0, 0, . . . , 0)> and the ν-dimensional unit vectors x∗i = ei (1 ≤ i ≤ ν) with equal
weights (ν+1)−1. So under the assumptions of Theorem 3.6.1, part (1), the design ξ∗−0

on X is locally D-optimal at βi = −2 (1 ≤ i ≤ ν) for the corresponding model without
intercept.
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Furthermore, Schmidt (2019) constructed a class of locally D- and A-optimal designs
for a general setup of generalized linear models with intercept where the assumptions of
Theorem 3.6.1 and Theorem 3.6.2 can be satisfied in some of his results. On that basis
it is possible to determine the locally optimal designs for the corresponding models
without intercept. �

Example 3.6.2. Consider a first order logistic model with f(x) = (1,x>)>. The
intensity functions underM and M̃ are given by

u(x,β) = exp(β0 + x>β̃)
(1 + exp(β0 + x>β̃))2

and ũ(x, β̃) = exp(x>β̃)
(1 + exp(x>β̃))2

,

respectively. Note that u(x,β) = ũ(x, β̃) at β = (0, β̃>)>.
A relevant work from the literature includes Kabera, Haines, and Ndlovu (2015)

in which Theorem 3.2 in that work provided a three-point locally D-optimal saturated
design ξ∗ at (0, β̃>)>, β̃ ∈ (0,∞)2 for the two-factor logistics model on the experimental
region X = [0,∞)2. The support is given by (0, 0)>, (0, u∗)>, (u∗, 0)> where u∗ > 0 is
the unique solution for u to the equation 2+u+2eu−ueu = 0. Hence, the assumptions
of Theorem 3.6.1, part (1), are satisfied so the design ξ∗−0 on X is locally D-optimal
(at β̃) with equal weights 1/2 for the corresponding model without intercept.

See also Example 1 and Example 3 in Schmidt (2019) where product type designs
are locally D-optimal at β = (0, β̃>)> for Poisson and logistic models with intercept,
respectively, which are relevant to our results in this section. �
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Applications to gamma models

In the present chapter the gamma model with continuous (quantitative) factors is
considered. There are wide applications where the gamma model with its canonical
link can be fitted. Nevertheless, there is always a doubt about the suitable link function
for outcomes. The common alternative links may come from the power link family that
includes the canonical link therefore it is a favorite choice for employment in the thesis.

In section 4.1, we introduce the gamma model highlighting on the related assump-
tions. Additionally, the notions of locally complete classes and locally essentially com-
plete classes are presented. In section 4.2, locally complete classes and locally essen-
tially complete classes of designs are found leading to a considerable reduction of the
problems of locally optimal designs for gamma models. From those classes locally D-
and A-optimal designs are derived. Besides, as a gamma model is recognized as a par-
ticular generalized linear model the results that are obtained in Chapter 3 for a general
setup of the generalized linear model will be applied in relevant cases here. The opti-
mality conditions will be intuitively characterized by the model parameters and hence,
those conditions cover relevant subregions of the parameter space. So, our results on
locally D- or A-optimality are applicable for the majority of possible parameter points.

In Section 4.3, we consider a model with a single continuous factor. In section
4.4, we deal with a model without interactions whereas a model with interactions is
employed in Section 4.5. In both sections, we distinguish between models with and
without intercept. Finally, in Section 4.6 the performance of some derived locally
D-optimal designs compared with particular non-optimal designs are examined.

The numerical computations are conducted by computer algebra with the aid of the
software packages R (R Core Team (2018)) and Wolfram Mathematica 11.3 (Wolfram
Research, Inc. (2018)).

Some of the results in this chapter are provided in Gaffke, Idais, and Schwabe (2019)
and Idais and Schwabe (2019).
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4.1 Model specification

Let Y1, ..., Yn be independent gamma-distributed response variables for n experimental
units, where the density for each Yi is written as

p(yi;κ, λi) = λκi
Γ (κ)y

κ−1
i e−λiyi , κ, λi, yi > 0, (1 ≤ i ≤ n), (4.1)

where the shape parameter κ of the gamma distribution is the same for all Yi but the
expectations µi = E(Yi) depend on the values xi of a covariate x. The canonical link
for a gamma distribution (4.1) is reciprocal (inverse),

ηi = κ/µi, where ηi = f>(xi)β is the linear predictor, (1 ≤ i ≤ n).

Here f = (f1, . . . , fp)> is a given Rp-valued vector of regression functions on the experi-
mental region X ⊂ Rν , ν ≥ 1 with linearly independent component functions f1, . . . , fp,
and β ∈ Rp is a parameter vector (see McCullagh and Nelder (1989), Section 2.2.4).
In this case the mean-variance function is V (µ) = µ2 and the variance of a gamma
distribution is thus given by var(Y ) = κ−1µ2. Therefore, the intensity function (2.5)
at a point x ∈ X reads as

u(x,β) = κ
(
f>(x)β

)−2
.

The power link family which is considered throughout presents the class of link func-
tions as in Burridge and Sebastiani (1994), see also Atkinson andWoods (2015), Section
2.5,

ηi = µρi , where ηi = f>(xi)β, (1 ≤ i ≤ n). (4.2)

The exponent ρ of the power link function is a given nonzero real number. The intensity
function under this family is defined as

u0(x,β) = κρ−2
(
f>(x)β

)−2
for all x ∈ X . (4.3)

Gamma-distributed responses are continuous and nonnegative and thus for a given
experimental region X we assume throughout that the parameter vector β satisfies

f>(x)β > 0 for all x ∈ X . (4.4)

The Fisher information matrix for a single observation at a point x ∈ X under a
parameter vector β is given by u0(x,β)f(x)f>(x). Note that the positive factor
κρ−2 is the same for all x and β and will not affect any design consideration below.
We will ignore that factor and consider a normalized version of the information matrix
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at x and β,
M (x,β) =

(
f>(x)β

)−2
f(x)f>(x). (4.5)

Modifying notions of Ehrenfeld (1956) we introduce the notions of a locally complete
class of designs and of a locally essentially complete class of designs. They are based
on the Loewner semi-ordering, ” ≤ ”, of information matrices or, more generally, of
nonnegative definite p×p matrices. If A and B are nonnegative definite p×p matrices
we write A ≤ B if and only if B −A is nonnegative definite.

Definition 4.1.1. Let β be a given parameter point. Denote by Ξ the set of all designs
and let Ξ̃ ⊆ Ξ.
(i) The subset Ξ̃ is called a locally essentially complete class (at β) if for each design

ξ ∈ Ξ \ Ξ̃ there exists a design ξ̃ ∈ Ξ̃ such that M (ξ,β) ≤M(ξ̃,β).

(ii) The subset Ξ̃ is called a locally complete class (at β) if for each design ξ ∈ Ξ \ Ξ̃
there exists a design ξ̃ ∈ Ξ̃ such thatM(ξ,β) ≤M (ξ̃,β) andM (ξ,β) 6= M (ξ̃,β).

In particular, the D-criterion as well as the A-criterion are strictly decreasing on
the set of all positive definite p × p matrices w.r.t. the Loewner semi-ordering, i.e.,
the functions ΦD(A) = − log det

(
A
)
and ΦA(A) = tr

(
A−1

)
defined on the set of all

positive definite p× p matrices A satisfy the following.

If A and B are positive definite p× p and A ≤ B, A 6= B then Φ(A) > Φ(B),

for Φ = ΦD and Φ = ΦA. So, if Ξ̃ is a locally essentially complete class (at β) then
there exists a design ξ̃∗ ∈ Ξ̃ which is locally D-optimal (at β). If Ξ̃ is a locally complete
class (at β) then any locally D-optimal design ξ∗ (at β) must be a member of Ξ̃. In
other words, if a locally essentially complete or a locally complete class (at β) is given
then the search of a locally D-optimal design (at β) may be restricted to that class of
designs. In case of a locally complete class (at β) it is guaranteed that there are no
other locally D-optimal designs (at β) outside that class whereas in the weaker case
of a locally essentially complete class there may be other locally D-optimal designs
outside that class. Analogous statements are true for the A-criterion.

4.2 Complete class results

We consider the case of a ν-dimensional covariate x = (x1, . . . , xν)>. So the experi-
mental region X is a subset of Rν . Below, X will be a polytope, i.e.,

X = Conv
{
v1, . . . ,vK

}
with K ∈ N, v1, . . . ,vK ∈ Rν , (4.6)
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where ‘Conv’ denotes convex hull operation. That is, Conv
{
v1, . . . ,vK

}
consists of

all linear combinations ∑K
k=1 αkvk with coefficients αk ≥ 0 (1 ≤ k ≤ K) such that∑K

k=1 αk = 1. Usually, the generating vectors v1, . . . ,vK will constitute the set of
vertices of the polytope X . A particular case frequently occurring in applications is
that of a ν-dimensional hyperrectangle, i.e., each component xi may range over a given
compact interval [ai, bi], ai, bi ∈ R, ai < bi, i = 1, . . . , ν, so

X =
{
x = (x1, . . . , xν)> ∈ Rν : ai ≤ xi ≤ bi ∀ i = 1, . . . , ν

}
. (4.7)

Clearly, X from (4.7) is a special case of (4.6) with K = 2ν vertices given by the points
whose ith coordinates are either ai or bi for all i = 1, . . . , ν. Even more special is the
case of a hypercube X =

[
a, b

]ν
with a, b ∈ R and a < b, which emerges from (4.7)

when ai = a and bi = b for all i = 1, . . . , ν.
Let f = (f1, . . . , fp)> be an Rp-valued function that is defining a linear predictor

η(x,β) = f>(x)β, where the set of feasible parameter points β is given by (4.4), i.e.,
f>(x)β > 0 for all x ∈ X . We call f affine-linear if each component function fj is
affine-linear, i.e., fj has the form

fj(x) = c0j + c>j x ∀ x ∈ X ,

with constants c0j ∈ R and cj ∈ Rν , 1 ≤ j ≤ p. A weaker condition on f is the
following. We call f affine-multilinear if each component function fj (1 ≤ j ≤ p)
satisfies

fj ∈ span
{
gS : S ⊆ {1, . . . , ν}

}
, (4.8)

where gS(x) =
∏
i∈S

xi ∀ x = (x1, . . . , xν)> ∈ X , (4.9)

and, by convention, for S = ∅ the empty product ∏i∈∅ xi is equal to 1. We mean by
span

{
gS : S ⊆ {1, . . . , ν}

}
in (4.8) the linear space consisting of all linear combinations

of the functions gS (S ⊆ {1, . . . , ν}). Clearly, this space contains in particular all the
affine-linear real-valued functions. Hence the condition of affine-multilinearity of f is
weaker than that of affine-linearity. A popular example of an affine-linear function f
is given by

f(x) =
(
1, x1, . . . , xν

)>
∀ x = (x1, . . . , xν)> ∈ X . (4.10)

When pairwise interaction terms xhxi (1 ≤ h < i ≤ ν) are included, e.g. if ν = 2,

f(x) =
(
1, x1, x2, x1x2

)>
∀ x = (x1, x2)> ∈ X , (4.11)

one has an example of an affine-multilinear function f which is not affine-linear (unless
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X is a suitably degenerated set). Further examples are obtained in case ν ≥ 3 where
also interaction terms of third order, xhxixj (1 ≤ h < i < j ≤ ν), or even higher order
may be included.

In what follows, for a given parameter point β (satisfying (4.4)), we denote

fβ(x) =
(
f>(x)β

)−1
f(x) for all x ∈ X . (4.12)

Clearly, the information matrices given by (4.5) can be written in form (2.1), i.e.,
M (x,β) = fβ(x)f>β (x). So there is no loss of generality to restrict our attention to
fβ(x). Next we derive an auxiliary result of geometric type.

Lemma 4.2.1. Assume one of the following conditions (i) or (ii).
(i) The experimental region X is a polytope (4.6) and f is affine-linear.
(ii) X is a ν-dimensional hyperrectangle (4.7) and f is affine-multilinear.
Then, for each parameter point β according to (4.4),

{
fβ(x) : x ∈ X

}
⊆ Conv

{
fβ(v1) , . . . , fβ(vK)

}
,

where in case (i) the vk (1 ≤ k ≤ K) are from (4.6), whereas in case (ii) the vk
(1 ≤ k ≤ K = 2ν) are the vertices of the hyperrectangle (4.7).

Proof. We will use similar arguments as in Gaffke, Graßhoff, and Schwabe (2014) when
proving their Lemma 4.2. Let β be given. We have to show that

fβ(x) ∈ Conv
{
fβ(v1) , . . . , fβ(vK)

}
for all x ∈ X . (4.13)

A result from convex analysis (see Rockafellar (1970), Corollary 13.1.1) tells us that
(4.13) holds true if and only if

a>fβ(x) ≤ max
1≤k≤K

a>fβ(vk) for all a ∈ Rp and all x ∈ X . (4.14)

Case 1: Condition (i) is satisfied.
To show that (4.14) holds true consider, for any given a ∈ Rp, the real valued function
ha on X defined by

ha(x) = a>fβ(x) = a>f(x)
β>f(x)

, x ∈ X .

Then ha is quasi-convex, i.e., for all x1,x2 ∈ X and all α ∈ [0, 1] one has

ha
(
αx1 + (1− α)x2

)
≤ max

{
ha(x1) , ha(x2)

}
. (4.15)
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This can be seen as follows. By the affine-linearity of f we have

f
(
αx1 + (1− α)x2

)
= αf(x1) + (1− α)f(x2),

and thus the l.h.s. of (4.15) rewrites as

αa>f(x1) + (1− α)a>f(x2)
αβ>f(x1) + (1− α)β>f(x2)

= c0 + c1α

d0 + d1α
,

where

c0 = a>f(x2), c1 = a>f(x1)− a>f(x2),

d0 = β>f(x2), d1 = β>f(x1)− β>f(x2).

Note that d0 + d1α > 0 for all α ∈ [0, 1] due to (4.4). By the monotonicity of the ratio
(c0 + c1α)/(d0 + d1α) as a function of α on [0, 1], i.e., nondecreasing or nonincreasing,
we have

c0 + c1α

d0 + d1α
≤ max

{
c0

d0
,
c0 + c1

d0 + d1

}
∀ α ∈ [0, 1].

From c0/d0 = a>f(x2)
/(
β>f(x2)

)
= ha(x2) and

(c0 + c1)/(d0 + d1) = a>f(x1)
/(
β>f(x1)

)
= ha(x1) inequality (4.15) follows. By

induction one obtains from (4.15) that for all r ≥ 2, x1, . . . ,xr ∈ X , and α1, . . . , αr ≥ 0
with ∑r

k=1 αk = 1 one has

ha

(
r∑

k=1
αkxk

)
≤ max

1≤k≤r
ha(xk). (4.16)

Now, by (4.6), every x ∈ X can be written as x = ∑K
k=1 αkvk for some αk ≥ 0

(1 ≤ k ≤ K) with ∑K
k=1 αk = 1, and applying (4.16) to r = K, xk = vk (1 ≤ k ≤ K)

we obtain
ha(x) ≤ max

1≤k≤K
ha(vk)

for all a ∈ Rp and all x ∈ X which is (4.14).
Case 2: Condition (ii) is satisfied.
Let a ∈ Rp be given. Consider

a>fβ(x) = a>f(x)
β>f(x)

, x ∈ X .

By the affine-multilinearity of f both a>f(x) and β>f(x) are affine-multilinear func-
tions of x ∈ X . So for any fixed i ∈ {1, . . . , ν} and fixed components xj ∈ [aj, bj] for
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all j 6= i, the function

xi 7→
a>f(x1, . . . , xν)
β>f(x1, . . . , xν)

, ai ≤ xi ≤ bi,

has the form
c0 + c1xi
d0 + d1xi

, ai ≤ xi ≤ bi, (4.17)

with constants c0, c1, d0, d1 (depending on the xj, j 6= i) such that d0 + d1xi > 0 for all
xi ∈ [ai, bi]. By the monotonicity of the ratio (4.17) on [ai, bi], it attains its maximum
at one of the end points ai or bi of the interval. So, in particular, we have shown that for
every x ∈ X and i ∈ {1, . . . , ν} there is an x̃ = (x̃1, . . . , x̃ν) ∈ X such that x̃i = ai or
x̃i = bi, and a>fβ(x) ≤ a>fβ(x̃). Using this iteratively for i = 1, . . . , ν, we conclude
that for every x ∈ X there is a vertex vk0 of the ν-dimensional hyperrectangle X for
some k0 ∈ {1, . . . , 2ν} such that a>fβ(x) ≤ a>fβ(vk0). Hence (4.14) follows.

Remark 4.2.1. For the case that f is given by (4.10) and X is the unit hypercube
[0, 1]ν it was shown in Burridge and Sebastiani (1994) that equality of both sets in
Lemma 4.2.1 holds.

Theorem 4.2.1. Under the assumptions of Lemma 4.2.1 consider the subset Ξ̃ of all
designs ξ̃ with supp(ξ̃) ⊆ {v1, . . . ,vK}. Let a parameter point β with (4.4) be given.
Then

• Ξ̃ is a locally essentially complete class (at β).

• Ξ̃ is a locally complete class (at β) if the function fβ from (4.12) is injective.

Proof. Let ξ ∈ Ξ \ Ξ̃ be given,

ξ =
 x1 . . . xr

ω1 . . . ωr

 .
Take any support point x = xi0 of ξ which does not belong to {v1, . . . ,vK} and let
ω = ωi0 . The information matrix of ξ at β can be written as

M (ξ,β) = ωM (x,β) + ωM(ξ−x,β), where ω = 1− ω (4.18)

and the design ξ−x is obtained from ξ by removing x from the support of ξ and
renormalizing the weights of the remaining support points, i.e.,

ξ−x =
 x1 . . . xi0−1 xi0+1 . . . xr

ω1/ω . . . ωi0−1/ω ωi0+1/ω . . . ωr/ω

 .
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We will show that there is a design ξ̃x ∈ Ξ̃ such that

M (x,β) ≤M (ξ̃x,β); (4.19)

M (x,β) 6= M(ξ̃x,β) if fβ is injective. (4.20)

Then the design ξ′x = ωξ̃x + ωξ−x satisfies

M (ξ,β) ≤M (ξ′x,β); (4.21)

M (ξ,β) 6= M (ξ′x,β) if fβ is injective. (4.22)

Note that the number of support points which do not belong to {v1, . . . ,vK} was
diminished by 1 when going from ξ to ξ′x. If ξ′x ∈ Ξ̃ then ξ̃ = ξ′x has the desired
properties. Otherwise, i.e., ξ′x 6∈ Ξ̃ the above arguments can be applied to ξ′x instead of
ξ, and so on. After a finite number of repetitions the process must stop with a design
ξ̃ ∈ Ξ̃ and, since at each step an analogue to (4.21), (4.22) holds, the design ξ̃ satisfies

M(ξ,β) ≤M(ξ̃,β);

M(ξ,β) 6= M (ξ̃,β) if fβ is injective.

It remains to show that for any given x 6∈ {v1, . . . ,vK} there exists a design ξ̃x ∈ Ξ̃
such that (4.19), (4.20) hold. To this end we write M (x,β) = fβ(x)f>β (x) and by
using Lemma 3.1,

fβ(x) =
K∑
k=1

αkfβ(vk) (4.23)

for some αk ≥ 0 (1 ≤ k ≤ K) with ∑K
k=1 αk = 1. Employing a lemma in Pukelsheim

(1993), Section 8.4, see also Theorem 4.2 in Gaffke and Krafft (1982), one gets from
(4.23)

M (x,β) ≤
K∑
k=1

αkM (vk,β). (4.24)

The Loewner inequality in (4.24) is an equality if and only if all vectors fβ(vk) with
αk > 0 (1 ≤ k ≤ K) coincide which by (4.23) implies that fβ(x) = fβ(vk0) for some
k0 ∈ {1, . . . , K}. If fβ is injective the latter is not possible since x 6∈ {v1, . . . ,vK}.
Hence it follows that

M (x,β) 6=
K∑
k=1

αkM(vk,β) if fβ is injective. (4.25)

Now consider the design ξ̃x with support points vk and weights αk for all k ∈ {1, . . . , K}
with αk > 0. Clearly, ξ̃x ∈ Ξ̃, and observing that M (ξ̃x,β) is equal to the r.h.s. of
(4.24) as well as of (4.25), statements (4.19), (4.20) follow.
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4.3 Single-factor model

In this section we consider the simplest case (ν = 1) determined by a single factor
model

f(x) = (1, x)>, x ∈ X = [a, b], a < b. (4.26)

By assumption (4.4), i.e., β0 + β1x > 0 for all x ∈ X = [a, b], the parameter point
β = (β0, β1)> is such that β0 + β1a > 0 and β0 + β1b > 0. Note that the function
(4.12), i.e., fβ(x) = (β0 + β1x)−1(1, x)> is injective, and hence we utilize the results
of complete class of designs from the previous section, so we only restrict to designs
supported by {a, b}. Consequently, the result of Theorem 3.2.1 can be transferred.

Corollary 4.3.1. Consider model (4.26) and experimental region X = [a, b] with real
numbers a, b, a < b. Let a parameter point β = (β0, β1)> be given. Then:
(i) The unique locally D-optimal design (at β) is the two-point design supported by a
and b with equal weights 1/2.
(ii) The unique locally A-optimal design (at β) is the two-point design supported by a
and b with weights

ω∗a = (β0 + β1a)
√

1 + b2

(β0 + β1a)
√

1 + b2 + (β0 + β1b)
√

1 + a2
, ω∗b = 1− ω∗a.

Proof. The locally complete class Ξ̃ from Theorem 4.2.1 consists all one- or two-point
designs with support points a or b. Hence any D-optimal design and any A-optimal
design must have support equal to {a, b}. Thus the rest of the proof follows from
Theorem 3.2.1 where ua = (β0 + β1a)−2 and ub = (β0 + β1b)−2.

Remark 4.3.1. The D-optimal design ξ∗D from the above corollary can be approved by
condition (2.11) of The Equivalence Theorem (Theorem 2.2.2). Let δ(x) be a function
in x evaluated from the difference of the l.h.s. (sensitivity function) and the r.h.s. of
condition (2.11), hence condition (2.11) is equivalent to δ(x) ≤ 0 for all x ∈ [a, b]. We
have

δ(x) =
(

2
(
β0 + β1a

)(
β0 + β1b

))
x2

− 2
(
a
(
β0 + β1b

)2
+ b

(
β0 + β1a

)2
+ β0β1(a− b)2

)
x

+
(
a2
(
β0 + β1b

)2
+ b2

(
β0 + β1a

)2
− β2

0(a− b)2
)
.

The function δ(x) is a polynomial of degree 2. Since β0 + β1x > 0 for all x ∈ [a, b] the
leading coefficient 2

(
β0 + β1a

)(
β0 + β1b

)
is positive. Hence, by the strict convexity of

δ(x) we get δ(x) < 0 for all x ∈ (a, b) where δ(a) = δ(b) = 0.
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The A-optimal design ξ∗A from the above corollary depends on the model parameter
β = (β0, β1)> and on the values of a and b. So the A-optimal design on a specific
experimental region varies with the parameter value. In order to examine the effect
of β on ξ∗A let us consider, for simplicity, the experimental region X = [0, 1] and thus,
the parameter space of β = (β0, β)> obtained from assumption (4.4) is determined by
β1 > −β0, β0 > 0. Define the ratio γ = β1/β0 whose range is (−1,∞). The optimal
weight as a function of γ rewrites as ω∗ =

√
2

1+
√

2+γ . The curve of ω∗ is depicted in
Figure 4.1. Clearly, ω∗ is monotonic decreasing. The design ξ∗A is equally weighted
(ω∗ = 1/2) at γ =

√
2 − 1. If γ = 1 then ω∗ =

√
2

2+
√

2 =
√

2 − 1. If γ = 0 we get
ω∗ =

√
2

1+
√

2 which is identical to the case under simple linear models. Of course the
designs is not A-optimal at the limits where in such a case the design is supported only
by 0 if γ → −1 since ω∗ = 1 or by 1 if γ →∞ since ω∗ = 0.

Figure 4.1: Effect of γ = β1/β0, β0 > 0, γ > −1 on the optimal
weight ω∗ of the locally A-optimal design given in Corollary 4.3.1
where X = [0, 1],

Remark 4.3.2. The model in Corollary 4.3.1 was also addressed in Aminnejad and
Jafari (2017), Section 2 of that reference. The authors report some numerical results
on locally D- or A-optimal designs (Subsection 2.1 of that paper). However, they claim
the experimental region to be defined by −β0/β1 < x ≤ 1 where β0 > 0 and β1 > 0
are given. This half open interval does not make sense as an experimental region since
no locally D- or A-optimal design (at β = (β0, β1)>) exists. E.g., for β0 = β1 = 3
the authors report a design ξD supported by −0.980 and 1.000 with equal weights 0.5
as a locally D-optimal design, and a design ξA supported by −0.998 and 1.000 with
weights 0.001 and 0.999 as a locally A-optimal design, resp. In fact, by our Corollary
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4.3.1, ξD is the locally D-optimal design on the experimental region [−0.980 , 1] and
ξA is the locally A-optimal design on the experimental region [−0.998 , 1]. Consider
any experimental region [a, 1] with −β1/β0 < a < 1 and the locally D- and A-optimal
designs ξ∗D and ξ∗A, resp., from Corollary 4.3.1. Letting a decrease to −β1/β0 entails
that ξ∗D converges to the two point design on −β0/β1 and 1 with equal weights 1/2 and
ξ∗A converges to the one-point design on 1 (as it is indicated in Figure 4.1), whereas
the information matrices M (ξ∗D,β) and M(ξ∗A,β) diverge. The information matrices
of both limiting designs are undefined.

4.4 Model without interaction

In this section we deal with first order gamma models with arbitrary number of quan-
titative factors without interaction terms. We begin with models with intercept by
Subsection 4.4.1 whereas models without intercept are utilized in Subsection 4.4.2.

Here, f is affine-linear as defined in Section 4.2 and the experimental region X is
a ν-dimensional hyperrectangle from (4.7). So by Theorem 4.2.1 we will look for the
optimal designs in the set of vertices of X .

4.4.1 Model with intercept

Consider the model
f(x) =

(
1 , x>

)>
, x ∈ X ; (4.27)

that is, the linear predictor η(x,β) = f>(x)β is assumed to be an affine-linear function
of the ν-dimensional covariate with coefficient vector β. The experimental region is
assumed to be the ν-dimensional unit hypercube X = [0, 1]ν , ν ≥ 2. For D-optimality,
as pointed out in Burridge and Sebastiani (1994), this is no loss of generality since the
case of an arbitrary ν-dimensional hyperrectangle can be transformed to that standard
case. However, for A-optimality it is a special case to which we restrict in order to
reduce the technical effort.

For a given parameter point β = (β0, β1, . . . , βν)> with (4.4), i.e., (1,x>)β > 0 for
all x = (x1, . . . , xν)> ∈ X , the function fβ is injective in view of

fβ(x) =
(
(1,x>)β

)−1 (
1 , x>

)>
for all x ∈ X .

So by Theorem 4.2.1 the set Ξ̃ of those designs which are supported only by the vertices
of X is a locally complete class of designs (at β), and hence any locally D- or A-optimal
design (at β) must be a member of that class.
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Let us now focus on the model with ν = 2 factors. In view of Theorem 3.3.1 we
next provide necessary and sufficient conditions for the D- and A-optimality.

Corollary 4.4.1. Consider model (4.27) with ν = 2 and experimental region X = [0, 1]2.
Denote the vertices by v1 = (0, 0)>, v2 = (1, 0)>, v3 = (0, 1)>, and v4 = (1, 1)>. Let
β = (β0, β1, β2)> be a parameter point, i.e., β0 > 0, β0 + βi > 0 (i = 1, 2), and
β0 + β1 + β2 > 0. Then the unique locally D-optimal design ξ∗ is as follows.

(i) If β2
0 − β1β2 ≤ 0 then ξ∗ assigns equal weights 1/3 to v1,v2,v3.

(ii) If (β0 + β1)2 + β1β2 ≤ 0 then ξ∗ assigns equal weights 1/3 to v1,v2,v4.

(iii) If (β0 + β2)2 + β1β2 ≤ 0 then ξ∗ assigns equal weights 1/3 to v1,v3,v4.

(iv) If β2
0 + β2

1 + β2
2 + β1β2 + 2β0(β1 + β2) ≤ 0 then ξ∗ assigns equal weights 1/3 to

v2,v3,v4.

(v) If none of the cases (i) – (iv) applies then ξ∗ is supported by the four vertices

ξ∗ =
 v1 v2 v3 v4

ω∗1 ω∗2 ω∗3 ω∗4

 .
where the optimal weights in case (v) are uniquely determined by the condition

ω∗k > 0 (1 ≤ k ≤ 4),
4∑

k=1
ω∗k = 1, and ukω

∗
k

(
1
3 − ω

∗
k

)
(1 ≤ k ≤ 4) are equal. (4.28)

Proof. By Theorem 4.2.1 the support of a locally D-optimal design must be a subset of
the set of vertices X̃ = {v1,v2,v3,v4}. So we may restrict to designs on the reduced
experimental region X̃ . Denote uk = u(vk,β) (1 ≤ k ≤ 4), i.e.,

u1 = 1/β2
0 , u2 = 1/(β0 + β1)2, u3 = 1/(β0 + β2)2, u4 = 1/(β0 + β1 + β2)2.

Then the proof follows that of Theorem 3.3.1. Hence, straightforward computations
can show that the conditions of parts (i)–(iv) in the corollary are equivalent to the
following conditions, respectively, derived from part (i) of Theorem 3.3.1.

u−1
4 ≥ u−1

1 + u−1
2 + u−1

3 ,

u−1
3 ≥ u−1

1 + u−1
2 + u−1

4 ,

u−1
2 ≥ u−1

1 + u−1
3 + u−1

4 ,

u−1
1 ≥ u−1

2 + u−1
3 + u−1

4 .
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For case (v) of the corollary, however, it is essentially obtained from the condition in
part (ii) of Theorem 3.3.1 which argues that there is no β value satisfies the conditions
mentioned above of saturated designs. Thus from Remark 2.2.4 we guarantee that at
any parameter point that does not satisfy the conditions of the saturated designs there
exists a four-point design which is locally D-optimal at that parameter point.

Each condition provided in parts (i)–(iv) of Corollary 4.4.1 characterizes a subregion
of the parameter space (β0 > 0, β1 > −β0, β2 > −β0, β1 + β2 > −β0) where the
corresponding saturated design is D-optimal. As examples of parameter points for
which Corollary 4.4.1 applies and hence the locally D-optimal design (at β) is a three-
point design are the following.

(i) β1 = β2 = −β < 0 where β0/3 ≤ β ≤ β0; three-point design on v2,v3,v4.

(ii) β1 = β > 0, β2 = −β where β0/2 ≤ β < β0; three-point design on v1,v3,v4.

Remark 4.4.1. The subregion where a four-point design given in Corollary 4.4.1 is
D-optimal has been determined by computer algebra and is given below.

• −β0 < β1 < 0 and 1
2

(√
−(3β2

1 + 4β0β1)− (β1 + 2β0)
)
< β2 < −(β1 + β0)2/β1.

• β1 = 0 and β2 > −β0.

• β1 > 0 and 1
2

(√
4β0β1 + β2

1 − (β1 + 2β0)
)
< β2 < β2

0/β1.

On this subregion the optimal weights of a D-optimal design depend on the parameter
values and thus there are various locally D-optimal designs with four design points.

Define the ratios γ1 = β1/β0 and γ2 = β2/β0 such that β0 > 0 and γ1 + γ2 > −1.
Without loss of generality the conditions of the D-optimal designs given in Corollary
4.4.1 can be determined in terms of γ1 and γ2. In Figure 4.2 the parameter subregions of
γ1 and γ2 are depicted where the designs given by Corollary 4.4.1 are locally D-optimal.
The design with support v1,v2,v3 is locally D-optimal over the larger subregion in
particular for positive larger values of γ1 and γ2. It is clear in case of γ1 = γ2 = 0 the
design assigns equal weights 1/4 to {v1,v2,v3,v4}. This case is equivalent to ordinary
regression models with two binary factors.

Let us focus on the case of equally effect sizes; i.e., β1 = β2 = β or equivalently,
γ2 = γ1 = γ where γ = β/β0. This case corresponds to the diagonal dashed line
in Figure 4.2 at which the D-optimality is achieved for only two saturated designs
supported by {v1,v2,v3} and {v2,v3,v4} and for four-point designs. The D-optimal
design has four design points in the range −1/3 < γ < 1, i.e., −(1/3)β0 < β < β0. The
next theorem gives explicit formulas for the weights of locally D-optimal four-point
designs at parameter points β = (β0, β1, β2) with −(1/3)β0 < β1 = β2 < β0.
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Figure 4.2: D-optimal designs on the respective subregions of model
parameters where supp(ξ∗ijk) = {vi,vj ,vk} ⊂ {v1,v2,v3,v4} and
supp(ξ∗1234) = {v1,v2,v3,v4}. The diagonal dashed line is γ2 = γ1.

Theorem 4.4.1. Under the assumptions of Corollary 4.4.1 let the parameter point
β = (β0, β1, β2)> be such that β1 = β2 = β where −(1/3)β0 < β < β0. Then the locally
D-optimal design (at β) is supported by the four vertices v1 = (0, 0)>, v2 = (1, 0)>,
v3 = (0, 1)>, v4 = (1, 1)> with weights

ω∗1 = 3γ + 1
4(2γ + 1) , ω∗2 = ω∗3 = (γ + 1)2

4(2γ + 1) , ω∗4 = 1− γ
4 , where γ = β

β0
.

Proof. By Corollary 4.4.1 for a given β a four-point design is D-optimal if and only if
the design is not minimally supported (not saturated). Therefore, under the parameter
assumption −(1/3)β0 < β < β0 the design is only supported by four design points with
positive weights determined by condition (4.28). Denote uk = u(vk,β) (1 ≤ k ≤ 4),
i.e.,

u1 = 1/β2
0 , u2 = u3 = β2

0/(1 + γ)2, u4 = β2
0/(1 + 2γ)2.

For the weights ω∗k stated in the theorem, elementary calculations yield

ukω
∗
k

(
1
3 − ω

∗
k

)
= 1
β2

0

(3γ + 1)(1− γ)
48(2γ + 1)2 for k = 1, 2, 3, 4,

and the result follows.

The optimal weights ω∗1, ω∗2 and ω∗4 of ξ∗ given in Theorem 4.4.1 depend on γ. The
range of γ is given by (−1/3, 1). Figure 4.3 exhibits these weights as functions of γ.
Clearly, the weights are positive over the respective domain (−1/3, 1) and note that
1/4 ≤ ω∗2 = ω∗3 ≤ 1/3. The design ξ∗ at γ = 0 assigns uniform weights to the set
of vertices {v1,v2,v3,v4}. At the limits of (−1/3, 1) the D-optimal four-point design
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becomes a D-optimal saturated design. That is at γ = −1/3 we have ω∗1 = 0 and at
γ = 1 we have ω∗4 = 0.

Figure 4.3: Effect of γ on the optimal weights ω∗1,ω∗2 and ω∗4 of the
locally D-optimal design given in Theorem 4.4.1.

Remark 4.4.2. Actually, we did not succeed in evaluating condition (4.28) from Corol-
lary 4.4.1 to find the explicit formulas for the weights ω∗k (1 ≤ k ≤ 4) given in Theorem
4.4.1. We derived them from Lemma 3.1.2 by utilizing an explicit representation of
det

(
M(ξ,β)

)
when ξ is supported by the four vertices vk (1 ≤ k ≤ 4) with positive

weights ωk. So we have u2 = u3 and d2
k = 1 (1 ≤ k ≤ 4) where

det
(
M(ξ,β)

)
=

∑
1≤h<i<j≤4

uhuiuj ωhωiωj.

Next we study the problem of A-optimal designs for ν = 2 and the unit square
[0, 1]2 as the experimental region. In view of Theorem 3.3.2 the following corollary
presents the cases in which the locally A-optimal design (at β) is saturated, i.e., a
three-point design and moreover, the case of four-point designs.

Corollary 4.4.2. Under the assumptions and notations of Corollary 4.4.1. The unique
locally A-optimal design is as follows.

(i) If (3 + 4
√

2/3)(β2
0 + β1β2) + 2(1 +

√
2/3)(β2

1 + β2
2) + (5 + 6

√
2/3)β0(β1 + β2) ≤ 0

then

ξ∗ =
 v2 v3 v4√

2(β0 + β1)/c
√

2(β0 + β2)/c
√

3(β0 + β1 + β2)/c

 .
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(ii) If (3 +
√

2)β2
0 + (2 +

√
2)(β2

2 + β1β2) + (5 + 2
√

2)β0β2 +
√

2β0β1 ≤ 0 then

ξ∗ =
 v1 v3 v4√

2β0/c
√

2(β0 + β2)/c (β0 + β1 + β2)/c

 .
(iii) If (3 +

√
2)β2

0 + (2 +
√

2)(β2
1 + β1β2) + (5 + 2

√
2)β0β1 +

√
2β0β2 ≤ 0 then

ξ∗ =
 v1 v2 v4√

2β0/c
√

2(β0 + β1)/c (β0 + β1 + β2)/c

 .
(iv) If (1 + 2/

√
3)β2

0 + (1/
√

3)β0(β1 + β2)− β1β2 ≤ 0 then

ξ∗ =
 v1 v2 v3√

3β0/c (β0 + β1)/c (β0 + β2)/c

 .
For each case (i) – (iv), the constant c appearing in the weights equals the sum of
the numerators of the three ratios. If none of the cases (i) – (iv) applies then ξ∗ is
supported by the four vertices v1,v2,v3,v4.

Proof. In analogy to proof of Corollary 4.4.1 together with Theorem 4.2.1 the sup-
port of a locally A-optimal design must be a subset of X̃ = {v1,v2,v3,v4}. Denote
uk = u(vk,β) (1 ≤ k ≤ 4) and let qi = u

−1/2
i (1 ≤ i ≤ 4). Then the proof follows that

of Theorem 3.3.2 in which each condition provided by parts (i)–(iv) is equivalent to
those in the corresponding parts of the corollary.

As the optimal weights of the A-optimal designs depend on the model parameters
so each condition provided in Corollary 4.4.2 characterizes a subregion of the parameter
space where the corresponding designs with the same support are A-optimal. Accord-
ingly, for each subregion there is a wide class of A-optimal designs that vary with
parameter values but the support is similar.

In fact, for each of the cases (i) – (iv) of Corollary 4.4.2 it is not difficult to con-
struct particular parameter points meeting the respective condition. Examples of pa-
rameter points for which case (iii) of the theorem applies are β = (β0,−β, β)> with
3+
√

2
5+
√

2β0 ≤ β < β0.
Again, the conditions of A-optimal designs can be written in terms of the defined

ratios γ1 = β1/β0 and γ2 = β2/β0, β0 > 0. In Figure 4.4 the parameter subregions
of γ1 and γ2 are depicted where the designs given by Corollary 4.4.2 are locally A-
optimal. Comparing to Figure 4.2 under D-optimality, similar interpretation might be
observed. In particular, the majority of the parameter points is for A-optimal designs
with support {v1,v2,v3}.
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Figure 4.4: A-optimal designs at given parameter values
supp(ξ∗ijk) = {vi,vj ,vk} ⊂ {v1,v2,v3,v4} and
supp(ξ∗1234) = {v1,v2,v3,v4}. The diagonal dashed line is γ2 = γ1
where γi = βi/β0, i = 1, 2.

Locally A-optimal four-point designs (for ν = 2) can be computed numerically.
Here, we assume γ1 = γ2 = γ and thus γ ∈ (−1/2,∞). This assumption implies
that the conditions in parts (ii) and (iii) of Corollary 4.4.2 are not fulfilled and thus
the corresponding designs are not A-optimal. In contrast, the condition in part (i) is
fulfilled by γ ∈

(
−1/2,−(9+4

√
6)/(21+8

√
6)
]
and the condition in part (v) is fulfilled

by γ ∈
[
(3 +

√
2)/3,∞

)
. Then it turns out that the A-optimal four-point designs are

given at parameter points γ in
(
−(9 + 4

√
6)/(21 + 8

√
6), 1 + 2

√
3
)
. On that basis,

the multiplicative algorithm (see Yu (2010) and Harman and Trnovská (2009)) can be
employed. Table 4.1 shows some numerical results at particular parameter points γ in(
−(9 + 4

√
6)/(21 + 8

√
6), 1 + 2/

√
3
)
.

Table 4.1: ν = 2, X = [0, 1]2; locally A-optimal designs at parameter
points β = β0(1, γ, γ)> where − 9+4

√
6

21+8
√

6 < γ < 1 + 2/
√

3.

γ v1 v2 v3 v4

−0.45 0.1136 0.3983 0.3983 0.0898
0 0.3561 0.2250 0.2250 0.1938
1 0.2700 0.3000 0.3000 0.1300
2 0.2210 0.3805 0.3805 0.0180

Now consider model (4.27) for a general number of factors, ν ≥ 2, where the
experimental region is the ν-dimensional unit hypercube [0, 1]ν . Note that condition
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(4.4) characterizing the feasible parameter points β = (β0, β1, . . . , βν)> is equivalent to

β0 +
∑
i∈S

βi > 0 for all subsets S ⊆ {1, . . . , ν}. (4.29)

In Burridge and Sebastiani (1994) the following result was obtained for which we give
a shorter and more transparent proof than that in the reference.

Theorem 4.4.2. (Burridge and Sebastiani (1994))
Consider model (4.27) with experimental region X = [0, 1]ν, where ν ≥ 2. Let the
parameter point β = (β0, β1, . . . , βν)> be given with (4.29). Then the design ξ∗ that
assigns equal weights 1/(ν + 1) to the support points

x∗1 = (0, . . . , 0)>, x∗2 = (1, . . . , 0)>, . . . , x∗ν+1 = (0, . . . , 1)>

is locally D-optimal (at β) if and only if β2
0 ≤ βiβj for all 1 ≤ i < j ≤ ν.

Proof. The complete class Ξ̃ from Theorem 4.2.1 consists of all designs whose support
points are vertices of the unit cube

[
0, 1

]ν
, i.e., points with components from

{
0, 1

}
. So

it suffices to consider the reduced experimental region X̃ =
{

0, 1
}ν

and to show that
the stated design ξ∗ is locally D-optimal (at β) for model (4.27) on the experimental
region X̃ . By Theorem 3.3.3 the design ξ∗ is D-optimal if and only if condition (3.17)
holds true. Let u(x,β) = (β0 +

ν∑
i=1

βixi)−2 and denote u1 = u(x∗1,β) = β−2
0 and

ui+1 = u(x∗i+1,β) = (β0 + βi)−2 (1 ≤ i ≤ ν). Then condition (3.17) is equivalent to
(4.30) given below;

u−1
1

(
1−

ν∑
j=1

xj)2 +
ν∑
i=1

u−1
i+1x

2
i ≤ (β0 +

ν∑
i=1

βixi)2 for all x ∈
{

0, 1
}ν
. (4.30)

Every x = (x1, . . . , xν)> ∈ {0, 1}ν is described by a subset S ⊆ {1, . . . , ν} via

xi = 1 if i ∈ S, and xi = 0 else.

So for x described by S ⊆ {1, . . . , ν}, and denoting s = #S, the l.h.s. of (4.30) under
model (4.27) rewrites as

β2
0(1− s)2 +

∑
i∈S

(β0 + βi)2 = β2
0(s− 1)2 + β2

0s+ 2β0
∑
i∈S

βi +
∑
i∈S

β2
i ,

and the r.h.s. of (4.30) rewrites as

(
β0 +

∑
i∈S

βi

)2
= β2

0 + 2β0
∑
i∈S

βi +
(∑
i∈S

βi

)2
= β2

0 + 2β0
∑
i∈S

βi +
∑
i∈S

β2
i +

∑
i,j∈S, i 6=j

βiβj.
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Hence (4.30) is equivalent to

β2
0s(s− 1) ≤

∑
i,j∈S, i 6=j

βiβj for all S ⊆ {1, . . . , ν} (where s = #S),

or, equivalently,

∑
i,j∈S, i 6=j

(
β2

0 − βiβj
)
≤ 0 for all S ⊆ {1, . . . , ν}. (4.31)

By the assumption that β2
0 ≤ βiβj (1 ≤ i < j ≤ ν), condition (4.31) holds true, i.e., the

design ξ∗ satisfies the condition of The Equivalence Theorem (Theorem 2.2.2, condition
(2.11)) and hence ξ∗ is locally D-optimal.

Remark 4.4.3. For ν = 2 the result of Theorem 4.4.2 is covered by case (i) of Corol-
lary 4.4.1.

The next corollary deals with local A-optimality and may be viewed as an analogue
to Theorem 4.4.2 for D-optimality.

Corollary 4.4.3. Consider model (4.27) with experimental region X = [0, 1]ν, where
ν ≥ 2. Let β = (β0, β1, . . . , βν)> be a parameter point satisfying (4.29) and denote
γj = βj/β0 (1 ≤ j ≤ ν). Then the design ξ∗ that is supported by

x∗1 = (0, . . . , 0)>, x∗2 = (1, . . . , 0)>, . . . , x∗ν+1 = (0, . . . , 1)>,

with the corresponding weights

ω∗1 =
√
ν + 1/c, ω∗j = (1+γj−1)/c, (j = 2, . . . , ν+1), where c = (

√
ν + 1+ν)+

ν∑
j=1

γj.

is locally A-optimal (at β) if and only if

γiγj −
1√
ν + 1

(γi + γj) ≥
(
1 + 2√

ν + 1
)

for all 1 ≤ i < j ≤ ν (4.32)

Proof. As in the proof of Theorem 4.4.2 we may reduce the experimental region to
X̃ =

{
0, 1

}ν
. By Theorem 3.3.4 the design ξ∗ is A-optimal if and only if condition

(3.20) holds true. As in the proof of Theorem 4.4.2 we describe every x ∈
{

0, 1
}ν

by
a subset S ⊆ {1, . . . , ν}. After some elementary calculations and denoting s = #S,
condition (3.20) under model (4.27) rewrites as

β2
0 s(s−1)(1+ 2√

ν + 1
)+2 (s− 1)√

ν + 1
β0
∑
i∈S

βi−
∑

i,j∈S, i 6=j
βiβj ≤ 0 ∀ S ⊆ {1, . . . , ν}, #S ≥ 2,
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which is equivalent to

∑
i,j∈S, i 6=j

γiγj −
2 (s− 1)√
ν + 1

∑
i∈S

γi − s(s− 1)(1 + 2√
ν + 1

) ≥ 0 ∀ S ⊆ {1, . . . , ν}, #S ≥ 2.

(4.33)
and (4.33) is equivalent to

∑
i,j∈S, i 6=j

(
γiγj −

1√
ν + 1

(
γi + γj

)
− (1 + 2√

ν + 1
)
)
≥ 0 ∀ S ⊆ {1, . . . , ν}, #S ≥ 2.

The above system of inequalities is equivalent to (4.32). Thus the design ξ∗ satisfies the
condition of The Equivalence Theorem (Theorem 2.2.2, condition (2.12)) and hence ξ∗

is locally A-optimal.

Remark 4.4.4. For ν = 2 the result is covered by case (iv) of Corollary 4.4.2. In
fact, it can easily be checked that, with the notations of Corollary 4.4.2, the inequality
(1 + 2/

√
3)β2

0 + (1/
√

3)β0(β1 + β2) − β1β2 ≤ 0 is equivalent to assumption (4.32) of
Corollary 4.4.3 for ν = 2.

4.4.2 Model without intercept

In this subsection we restrict to the first order model without intercept,

f(x) = x, where x = (x1, . . . , xν)>, ν ≥ 2, x ∈ X , (4.34)

with

fβ(x) = 1
β1x1 + · · ·+ βνxν


x1
...
xν

 . (4.35)

Clearly, f(0) = 0 and thus condition (4.4), i.e., x>β > 0 for all x ∈ X requires 0 /∈ X .
Firstly consider the experimental region X = [0,∞)ν \ {0}. The proposed exper-

imental region is no longer compact therefore the existence of optimal designs is not
assured and has to be checked separately. To this end, denote by ei for all (1 ≤ i ≤ ν)
the ν-dimensional unit vectors. The parameter space is determined by condition (4.4)
which implies that β ∈ (0,∞)ν , i.e., βi > 0 for all (1 ≤ i ≤ ν). In view of Theorem
3.5.1 the next result is immediate.

Corollary 4.4.4. Consider model (4.34) with the experimental region X = [0,∞)ν \ {0}.
Given a vector a = (a1, . . . , aν)> where ai ∈ R, ai > 0 (1 ≤ i ≤ ν). Let x∗i = aiei

for all i = 1, . . . , ν denote the design points which are assumed to belong to X . For a
given parameter point β ∈ (0,∞)ν let ξ∗a be the saturated design whose support is x∗i
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(1 ≤ i ≤ ν) with the corresponding weights

ω∗i = β
2k
k+1
i

ν∑
j=1

β
2k
k+1
j

(1 ≤ i ≤ ν).

Then ξ∗a is locally Φk-optimal (at β).

Proof. The corollary covers the result of Theorem 3.5.1 under gamma model (4.34).
For a given β ∈ (0,∞)ν under model (4.34) let ui = u(x∗i ,β) (1 ≤ i ≤ ν). Thus
ui = (aiβi)−2 (1 ≤ i ≤ ν). Then condition (3.22) of Theorem 3.5.1 is equivalent to
−2

ν∑
i<j=1

βiβjxixj ≤ 0 for all x ∈ X . Since βi > 0, xi > 0 (1 ≤ i ≤ ν) the condition

holds true for any x ∈ X at any given β ∈ (0,∞)ν .

Note that for any point β the locally Φk-optimal design given by Corollary 4.4.4
is not unique. That is at β any set of ν design points that are located at all distinct
edges of X is a support of a locally Φk-optimal design. Given two constant vectors a1

and a2 such that the designs ξ∗a1 and ξ∗a2 from Corollary 4.4.4 are locally Φk-optimal
at a given β. Then their convex combination αξ∗a1 + (1− α)ξ∗a2 where (0 ≤ α ≤ 1) is
locally Φk-optimal according to Remark 2.2.3 which assertsM (ξ∗a1 ,β) = M(ξ∗a2 ,β) =
M (αξ∗a1 + (1− α)ξ∗a2 ,β). The next corollary is immediate.

Corollary 4.4.5. Under assumptions of Corollary 4.4.4 let a parameter point β be
given. Then Ξ∗ = Conv{ξ∗a : a = (a1, . . . , aν)>, ai > 0 ∀i = 1, . . . , ν} is a set of locally
Φk-optimal designs (at β).

Example 4.4.1. Let ν = 3 and take ξ∗1 with support (1, 0, 0)>, (0, 1, 0)>, (0, 0, 7)> and
ξ∗2 with support (1, 0, 0)>, (0, 6, 0)>, (0, 0, 1)>. Let ξ∗1 and ξ∗2 be locally Φk-optimal (at
β) under the assumptions of Corollary 4.4.4. Then ξ∗3 = αξ∗1 + (1 − α)ξ∗2 has support
(1, 0, 0)>, (0, 1, 0)>, (0, 0, 7)>, (0, 6, 0)>, (0, 0, 1)> and is locally Φk-optimal (at β).

Remark 4.4.5. Let us denote by ψ(x, ξ) the left hand side (the sensitivity function)
of The Equivalence Theorems, Theorem 2.2.2. Actually, under non-intercept gamma
models ψ(x, ξ) is invariant with respect to simultaneous scale transformation of x, i.e.,
ψ(λx, ξ) = ψ(x, ξ) for any λ > 0. This essentially comes from the fact that the function
fβ(x) =

(
x>β

)−1
x from (4.35) is invariant with respect to simultaneous rescaling of

the components of x, i.e., fβ(λx) = fβ(x). This property is explicitly transferred to the
information matrix (4.5) since it can be represented in form M (x,β) = fβ(x)f>β (x),
and hence M(λx,β) = M(x,β). In fact, this property plays a main rule in the
solution of the forthcoming optimal designs.

In what follows we consider a hypercube X = [a, b]ν , ν ≥ 2, 0 < a < b, as an
experimental region. As the function fβ(x) from (4.35) is not injective we know from
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Theorem 4.2.1 that the set Ξ̃ of those designs which are supported only by the vertices
of X is an essentially locally complete class of designs (at β), and hence there exists a
locally D- or A-optimal design (at β) in that class.

As pointed out in Remark 4.4.5, we have fβ(λx) = fβ(x), λ > 0 and thus a
transformation of a gamma model without intercept to a gamma model with intercept
can be obtained if, in particular, λ = x−1

1 , x1 > 0. This reduction is useful to determine
precisely the candidate support points of a design.

Let us begin with the simplest case ν = 2. A transformation of a two-factor model
without intercept to a single-factor model with intercept is employed. Based on that
D- and A-optimal designs are derived.

Theorem 4.4.3. Consider the experimental region X = [a, b]2, 0 < a < b. Let
x∗1 = (a, b)> and x∗2 = (b, a)>. Let β = (β1, β2)> be given such that β>x∗i > 0 for
all i = 1, 2 (which is equivalent to condition (4.4)). Then, the unique locally D-optimal
design ξ∗D (at β) is the two-point design supported by x∗1 and x∗2 with equal weights 1/2.
The unique locally A-optimal design ξ∗A (at β) is the two-point design supported by x∗1
and x∗2 with weights ω∗1 = β1b+β2a

(β1+β2)(a+b) and ω∗2 = β1a+β2b
(β1+β2)(a+b) .

Proof. Since fβ(x−1
1 x) = fβ(x) for all x = (x1, x2)> ∈ [a, b]2, we write

fβ(x) =
(
β1x1 + β2x2

)−1 (
x1 , x2

)>
=
(
β1 + β2t

)−1 (
1 , t

)>
,

where t = t(x) = x2/x1.

So the information matrices coincide with those from a single-factor gamma model with
intercept. The range of t = t(x), as x ranges over [a, b]2 is the interval

[
(a/b) , (b/a)

]
.

Note also that the end points a/b and b/a come from the unique points x∗1 = (a, b)>

and x∗2 = (b, a)>, respectively. This together with Corollary 4.3.1 yields the stated
results on the locally D- and A-optimal designs, where for local A-optimality we get

ω∗1 =

(
β1 + β2

a
b

)√
1 + ( b

a
)2(

β1 + β2
a
b

)√
1 + ( b

a
)2 +

(
β1 + β2

b
a

)√
1 + (a

b
)2

and it is straightforward to verify that the above quantity is equal to β1b+β2a
(β1+β2)(a+b) .

Remark 4.4.6. Actually, in case ν ≥ 3 an analogous transformation of the model as
in the proof of Theorem 4.4.3 is obvious,

fβ(x) =
(
β1 + β2t1 + β3t2 + . . .+ βνtν−1

)−1(
1, t1, . . . , tν−1

)>
where tj = tj(x) = xj+1/x1 (1 ≤ j ≤ ν − 1) for x = (x1, . . . , xν)> ∈ [a, b]ν , 0 < a < b,
leading thus to a first order model with intercept employing a (ν−1)-dimensional factor
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t = (t1, . . . , tν−1)>. However, its range
{
t(x) : x ∈ [a, b]ν

}
⊆ Rν−1 is not a cube but a

more complicated polytope. E.g., for ν = 3 it can be shown that

{
t(x) : x ∈ [a, b]3

}
= Conv

{ a/b

1

 ,
 1
a/b

 ,
 a/b

a/b

 ,
 b/a

1

 ,
 1
b/a

 ,
 b/a

b/a

}

where for each x ∈ [a, b]3 we get t(x) = (x2/x1, x3/x1)> as it is depicted in Figure 4.5
for, in specific, a = 1 and b = 2. One notes that for each vertex v ∈ {(a, a, a)>, (b, b, b)>}
we get t(v) = (1, 1)> which lies in the interior of the convex hull above, i.e., (1, 1)> is
a proper convex combination of the vertices of the polytope. Thus this reduction on the
vertices implies that both vertices (a, a, a)> and (b, b, b)> of the hupercube [a, b]3 are out
of consideration as support points of any optimal design.

(a) (b)

Figure 4.5: Panel (a): The experimental region X = [1, 2]3.
Panel (b): The transformed experimental region
Conv

{
(1/2, 1/2)>, (1/2, 1)>, (1, 1/2)>, (2, 1)>, (1, 2)>, (2, 2)>

}
. The

interior point is (1, 1)> which represents the original points (1, 1, 1)>
and (2, 2, 2)> in [1, 2]3.

Let us concentrate on the experimental region X = [1, 2]3. The linear predic-
tor of a three-factor gamma model is given by η(x,β) = β1x1 + β2x2 + β3x3. As-
sume that β2 = β3 = β, so the set of all parameter points under condition (4.4), i.e.,
β1x1 + β2x2 + β3x3 > 0 for all x = (x1, x2, x3)> ∈ X is characterized by

β1 ≤ 0, β > −β1 or β1 > 0, β > −1
4β1

which is shown by Panel (a) of Figure 4.6. We aim at finding locally D-optimal
designs at a given parameter point in this space. Let the vertices of X = [1, 2]3

be denoted by v1 =
(
1, 1, 1

)>
, v2 =

(
2, 1, 1

)>
, v3 =

(
1, 2, 1

)>
, v4 =

(
1, 1, 2

)>
,

v5 =
(
1, 2, 2

)>
, v6 =

(
2, 1, 2

)>
, v7 =

(
2, 2, 1

)>
, v8 =

(
2, 2, 2

)>
with intensities

ui = u(vi,β), i = 1, . . . , ν.
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In Theorem 4.4.4, below, we introduce analytic solutions for the locally D-optimal
designs on respective optimality subregions. The results are also shown in Panel (b)
of Figure 4.6 where, in particular, the solution of locally D-optimal designs of type
ξ∗5 at a point β from the subregion −3β1 < β < −6

5β1, β1 < 0 cannot be developed
analytically so that numerical results are to be derived (cp. Remark 4.4.7). Table 4.2
presents the order of the intensities in all optimality subregions and the corresponding
D-optimal designs that determined by Theorem 4.4.4 . The intensities for both vertices
v1 and v8 are ignored due to the reduction (cp. Remark 4.4.6). It is noted that on
each subregion the vertices of highest intensities perform mostly as a support of the
corresponding D-optimal design.

Table 4.2: The order of intensity values according to subregions
correspond to D-optimal designs

Subregions Intensities order D-optimal design
β > 0,β1 = 0 u2 > u3 = u4 = u6 = u7 > u5 ξ∗1

β ≥ −3β1, β1 < 0 u2 > u6 = u7 ≈ u3 = u4 > u5 ξ∗1

β > 1
5β1, β1 > 0 u2 > u3 = u4 > u6 = u7 > u5 ξ∗1

−1
4β1 < β ≤ − 5

23β1, β1 > 0 u5 > u3 = u4 > u6 = u7 > u2 ξ∗2

− 5
23β1 < β < 1

5β1, β1 > 0 u3 = u4 ≥ u5 > u2 ≥ u6 = u7 ξ∗3

−β1 < β ≤ −6
5β1, β1 < 0 u2 > u6 = u7 > u3 = u4 > u5 ξ∗4

−3β1 < β < −6
5β1, β1 < 0 u2 > u6 = u7 > u3 = u4 > u5 ξ∗5

(a) (b)

Figure 4.6: Panel (a): The parameter space of β = (β1, β2, β3)> such
that β2 = β3 = β. Panel (b): Dependence of locally D-optimal designs
from Theorem 4.4.4 on β = (β1, β2, β3)> such that β2 = β3 = β. The
dashed lines are; diagonal: β = β1, vertical: β1 = 0, horizontal: β = 0.
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Theorem 4.4.4. Consider the experimental region X = [1, 2]3. Let a parameter point
β = (β1, β2, β3)> be given such that β2 = β3 = β with either β > −β1, β1 ≤ 0 or
β > −1

4β1, β1 > 0. Then the following designs are locally D-optimal (at β).

(i) If β > 0, β1 = 0 or β ≥ −3β1, β1 < 0 or β > 1
5β1, β1 > 0 then

ξ∗1 =
 v2 v3 v4

1
3

1
3

1
3

 .

(ii) If −1
4β1 < β ≤ − 5

23β1, β1 > 0 then

ξ∗2 =
 v3 v4 v5

1
3

1
3

1
3

 .

(iii) If − 5
23β1 < β < 1

5β1, β1 > 0 then

ξ∗3 =
 v2 v3 v4 v5

ω∗1 ω∗2 ω∗3 ω∗4

 .
where

ω∗1 = 5 + 23 γ
16 (1 + 4 γ) , ω

∗
2 = ω∗3 = 9 (1 + 3γ)2

32 (1 + γ)(1 + 4 γ) , ω
∗
4 = 1− γ − 20 γ2

8 (1 + γ)(1 + 4 γ) , γ = β

β1
.

(iv) If −β1 < β ≤ −6
5β1, β1 < 0 then

ξ∗4 =
 v2 v6 v7

1
3

1
3

1
3

 .
Proof. The proof is obtained by making use of condition (2.11) of the Equivalence The-
orem (Theorem 2.2.2). So that we develop a system of feasible inequalities evaluated
at the vertices vi for all (1 ≤ i ≤ 8). For simplicity in computations, when β1 6= 0
we utilize the ratio γ = β/β1 of which the range is given by (−∞,−1) ∪ (−1

4 ,∞). It
turns out that some inequalities are equivalent and thus a resulted system is reduced
to an equivalent system of a few inequalities. The intersection of the set of solutions
of each system with the range of γ leads to the optimality condition (subregion) of the
corresponding optimal design. For saturated designs given in cases (i), (ii), (iv) we
report the 3× 3 design matrix F with F−1 and the 3× 3 weight matrix V . Note that
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for β1 6= 0,

u1 = β−2
1

(
1 + 2 γ

)−2
, u2 = β−2

1

(
2 + 2 γ

)−2
, u3 = u4 = β−2

1

(
1 + 3 γ

)−2
,

u5 = β−2
1

(
1 + 4 γ

)−2
, u6 = u7 = β−2

1

(
2 + 3 γ

)−2
, u8 = β−2

1

(
2 + 4 γ

)−2
.

Ad (i) The 3× 3 design matrix F = [v2,v3,v4]> is given by

F =


2 1 1

1 2 1

1 1 2

 with F−1 =


3
4 −

1
4 −

1
4

−1
4

3
4 −

1
4

−1
4 −

1
4

3
4

 and V = diag
(
u2, u3, u4

)
.

Hence, the condition of The Equivalence Theorem is given by

f>(x)F−1V −1
(
F>

)−1
f(x) ≤

(
β1x1 + β2x2 + β3x3

)2
∀x ∈ {1, 2}3. (4.36)

For case β > 0,β1 = 0, condition (4.36) is equivalent to

4
(
3x1 − (x2 + x3)

)2
+ 9

((
3x2 − (x1 + x3)

)2
+
(
3x3 − (x1 + x2)

)2)
≤ 16

(
x2 + x3

)2

for all x ∈ {1, 2}3, which is independent of β and is satisfied by vi for all (1 ≤ i ≤ 8)
with equality holds for the support. For the other cases, i.e., β ≥ −3β1,β1 < 0 or
β > 1

5β1,β1 > 0 condition (4.36) is equivalent to

(
3x1 − (x2 + x3)

)2
(2 + 2 γ)2 +

((
3x2 − (x1 + x3)

)2

+
(
3x3 − (x1 + x2)

)2)
(1 + 3 γ

)2
≤ 16

(
x1 + γ(x2 + x3)

)2
∀x ∈ {1, 2}3. (4.37)

After some lengthy but straightforward calculations, the above inequalities reduce to

15γ2 + 2γ − 1 ≥ 0 (4.38)

3γ2 + 10γ + 3 ≥ 0 (4.39)

where (4.38) arises from the vertex v5 and (4.39) arises from the vertices v6 and v7.
The l.h.s. of each of (4.38) and (4.39) above is a polynomial in γ of degree 2 and
thus the sets of solutions are given by (−∞,−1

3 ] ∪ [1
5 ,∞) and (−∞,−3] ∪ [−1

3 ,∞),
respectively. Note that the interior bounds are the roots of the respective polynomials.
Hence, by considering the intersection of both sets with the range of γ, the design ξ∗1
is locally D-optimal if γ ∈ (−∞,−3] ∪ [1

5 ,∞) which is equivalent to the optimality
subregion β ≥ −3β1,β1 < 0 or β > 1

5β1,β1 > 0 given in part (i) of the theorem.
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Ad (ii) The 3× 3 design matrix F = [v3,v4,v5]> is given by

F =


1 2 1

1 1 2

1 2 2

 with F−1 =


2 2 −3

0 −1 1

−1 0 1

 and V = diag
(
u3, u4, u5

)
.

Hence, the condition of The Equivalence Theorem is equivalent to

((
2x1 − x2

)2
+
(
2x1 − x3

)2) (
1 + 3 γ

)2

+
(
x3 + x2 − 3x1

)2 (
1 + 4 γ

)2
≤
(
x1 + γ(x2 + x3)

)2
∀ x ∈ {1, 2}3,

which reduce to

69γ2 + 38γ + 5 ≤ 0 (4.40)

which arises from the vertex v2. Again, the set of solutions of the polynomial de-
termined by the l.h.s. of inequality (4.40) is given by [−1

3 ,−
5
23 ]. By considering the

intersection with the range of γ, the design ξ∗2 is locally D-optimal if γ ∈ (−1
4 ,−

5
23 ].

Ad (iii) Consider design ξ∗3 . Note that ω∗1 > 0 for all γ > −5/23, ω∗2 > 0 for all γ ∈ R
and ω∗4 > 0 for all γ ∈ (−1

4 ,
1
5), and thus it is obvious that ω∗1, ω∗2, ω∗4 are positive over

(− 5
23 ,

1
5) and ∑4

i=1 ω
∗
i = 1. The 4 × 3 design matrix is given by F = [v2,v3,v4,v5]>

with weight matrix V = diag
(
s2, s3, s4, s5

)
where si = ω∗i ui, i = 2, 3, 4, 5 and s3 = s4.

The information matrix is given by

M
(
ξ∗3 ,β

)
=


4 s2 + 2 s3 + s5 2 s2 + 3 s3 + 2 s5 2 s2 + 3 s3 + 2 s5

2 s2 + 3 s2 + 2 s5 s2 + 5 s3 + 4 s5 s2 + 4 s3 + 4 s5

2 s2 + 3 s3 + 2 s5 s2 + 4 s3 + 4 s4 s2 + 5 s3 + 4 s5


and one calculates detM

(
ξ∗3 ,β

)
= 16 s2 s

2
3 + 18 s2 s3 s5 + s2

3s5. Define the following
quantities

c1 = s3(2 s2 + 9 s3 + 8 s5)
16 s2 s2

3 + 18 s2 s3 s5 + s2
3s5

, c2 = −s3(2 s2 + 3 s3 + 2 s5)
16 s2 s2

3 + 18 s2 s3 s5 + s2
3s5

,

c3 = 10 s2 s3 + 9 s2 s5 + s2
3 + s3 s5

16 s2 s2
3 + 18 s2 s3 s5 + s2

3s5
, c4 = −6 s2 s3 + 9 s2 s5 − s2

3
16 s2 s2

3 + 18 s2 s3 s5 + s2
3s5

.

The inverse of the information matrix M
(
ξ∗3 ,β

)
is given by
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M−1
(
ξ∗3 ,β

)
=


c1 c2 c2

c2 c3 c4

c2 c4 c3

 . Hence, the condition of The Equivalence Theorem

is equivalent to

c1 x
2
1 + c3 (x2

2 + x2
3) + 2 c2 (x1 x2 + x1 x3) + 2 c4 x2 x3 ≤ 3

(
x1 + γ (x2 + x3)

)2
∀ x ∈ {1, 2}3

which is equivalent to the following system of inequalities

c1 + 4c2 + 2c3 + 2c4 ≤ 3 (1 + 2γ)2

4c1 + 12c2 + 5c3 + 4c4 ≤ 3 (2 + 3γ)2

where the first inequality arises from the vertices v1 and v8 and the second inequality
comes from the vertices v6 and v7. However, due to the complexity of the system
above we employed computer algebra using Wolfram Mathematica 11.3 (see Wolfram
Research, Inc. (2018)) to obtain the solution for γ.
Ad (iv) The 3× 3 design matrix F = [v2,v6,v7]> is given by

F =


2 1 1

2 1 2

2 2 1

 with F−1 =


3
2 −

1
2 −

1
2

−1 0 1

−1 1 0

 and V = diag
(
u2, u6, u7

)
.

Hence, the condition of The Equivalence Theorem is equivalent to((
x2 −

x1

2

)2
+
(
x3 −

x1

2

)2
)

(2 + 3γ)2 +
(3x1

2 − x2 − x3

)2
(2 + 2γ)2 ≤

(
x1 + γ(x2 + x3)

)2

for all x ∈ {1, 2}3, which reduce to

90 γ2 + 168γ + 72 ≤ 0 (4.41)

6γ2 + 16γ + 8 ≤ 0 (4.42)

where (4.41) arises from the vertices v3 and v4 and (4.42) arises from the vertex v8.
In analogy to parts (i) and (ii) the sets of solutions of (4.41) and (4.42) are given by
[−1.2,−2

3 ] and [−2,−2
3 ], respectively where the interior bounds are the roots of the

respective polynomials. Hence, by considering the intersection of both sets with the
range of γ, the design ξ∗4 is locally D-optimal if γ ∈ [−1.2,−1).

In Panel (b) of Figure 4.6 the optimality subregions of ξ∗1 , ξ∗2 , ξ∗3 and ξ∗4 from The-
orem 4.4.4 are depicted. Note that each design of ξ∗1 , ξ∗2 and ξ∗4 denotes a single design
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whereas ξ∗3 determines a certain type of designs with weights depend on the param-
eter values. A well known form of ξ∗3 is obtained at β = (−1/7)β1 which represents
the uniform design on the vertices v2,v3,v4,v5. Additionally, along the horizontal
dashed line, i.e., β = 0, ξ∗3 assigns the weights ω∗1 = 5/16, ω∗2 = ω∗3 = 9/32, ω∗4 = 1/8
to v2,v3,v4,v5, respectively. For equally size of parameters, i.e., β1 = β the diagonal
dashed line in Panel (b) represents a case where ξ∗1 is D-optimal.

Remark 4.4.7. Deriving a locally D-optimal design at a given parameter point from
the subregion −3β1 < β < −(6/5)β1, β1 < 0 is not available analytically. There-
fore, employing the multiplicative algorithm (see Yu (2010) and Harman and Trnovská
(2009)) in the software package R (see R Core Team (2018)) provides numerical solu-
tions which show that the locally D-optimal design on that subregion is of form

ξ∗5 =
 v2 v3 v4 v6 v7

ω∗1 ω∗2 ω∗2 ω∗3 ω∗3


which is supported by five vertices with weights may depend on β. The equal weights
are due to the symmetry. Table 4.3 shows some numerical results in terms of the ratio
γ = β/β1 where γ ∈ (−3,−6/5) .

Table 4.3: D-optimal designs on X = [1, 2]3 at γ ∈ (−3,−6/5) where
γ = β/β1 and −3β1 < β < −(6/5)β1, β1 < 0.

γ v2 v3 v4 v6 v7

−2.9 0.3312 0.3285 0.3285 0.0059 0.0059
−2.5 0.3225 0.3051 0.3051 0.0336 0.0336
−2 0.3125 0.2604 0.2604 0.0833 0.0833
−1.5 0.3125 0.1701 0.1701 0.1736 0.1736
−1.23 0.3297 0.0325 0.0325 0.3027 0.3027

It is worthwhile to consider another parameter constellation such that β1 6= 0 and
f>(x)β > 0 ∀x ∈ X = [1, 2]3. Here it is not necessary that β2 = β3. Denote γ1 = β2

β1

and γ2 = β3
β1

such that x1 + γ1x2 + γ2x3 > 0, i.e., γ2 > −(x1
x3

+ γ1
x2
x3

) ∀x ∈ X . Let
γ1 = 1 thus γ2 > −1. Also by employing the multiplicative algorithm locally D-optimal
designs were numerically computed on X . Table 4.4 shows some numerical results at
particular parameter points and it turns out that ξ∗ has different performances as
follows.
(i) If −1 < γ2 < −0.833 then ξ∗ is saturated and supported by v4, v5, v6.
(ii) If −0.833 ≤ γ2 < −0.335 then ξ∗ is supported by v2, v3, v4, v5, v6.
(iii) If −0.335 ≤ γ2 < 5 then ξ∗ is saturated and supported by v2, v3, v4.
(iv) If γ2 ≥ 5 then ξ∗ is supported by v2, v3, v4, v7.
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Table 4.4: D-optimal designs on X = [1, 2]3 at β = (β1, β2, β3)>
where γ2 = β3/β1, γ1 = β2/β1 = 1.

γ2 v1 v2 v3 v4 v5 v6 v7 v8

−0.9 0 0 0 0.3333 0.3333 0.3333 0 0
−0.5 0 0.2604 0.2604 0.3126 0.0833 0.0833 0 0

0 0 0.3333 0.3333 0.3333 0 0 0 0
1 0 0.3333 0.3333 0.3333 0 0 0 0

100 0 0.2840 0.2840 0.3143 0 0 0.1175 0

In general, for gamma models without intercept, finding optimal designs for a model
with multiple factors, i.e., ν ≥ 4 is not an easy task. The optimal design given by part
(i) of Theorem 4.4.4 might be extended for arbitrary number of factors under a sufficient
and necessarily condition on the parameter points:

Theorem 4.4.5. Consider the experimental region X = [a, b]ν , ν ≥ 3, 0 < a < b. Let
β be a parameter point such that f>(x)β > 0 for all x ∈ X . Define T (x) = ∑ν

i=1 xi,
q = a

(ν−1)a+b and cj = (b − a)βj + a
∑ν
i=1 βi (1 ≤ j ≤ ν). Then the design ξ∗ which

assigns equal weights ν−1 to the support

x∗1 =
(
b, a, . . . , a

)>
, x∗2 =

(
a, b, . . . , a

)>
, . . . , x∗ν =

(
a, a, . . . , b

)>
is locally D-optimal (at β) if and only if for all x = (x1, . . . , xν)> ∈ {a, b}ν

ν∑
j=1

(
xj − qT (x)

)2
c2
j ≤ (b− a)2

( v∑
j=1

βjxj
)2
. (4.43)

Proof. Define the ν×ν design matrix F = [f(x∗1), . . . ,f(x∗ν)]> which is thus presented
as F = (b− a)Iν + a11> with F−1 = 1

(b−a)

(
Iν − q11>

)
where Iν is the ν× ν identity

matrix and 1 is a ν × 1 vector of ones. The information matrix of ξ∗ is given by
M
(
ξ∗,β

)
= 1

ν
F>V F where V = diag

(
u(x∗j ,β)

)ν
j=1

is the ν × ν weight matrix. Note

that u(x∗j ,β) = c−2
j for all (1 ≤ j ≤ ν). Hence, the l.h.s. of the condition (2.11) of

the Equivalence Theorem (Theorem 2.2.2) is equal to

( v∑
j=1

βjxj
)−2
f>(x)M−1

(
ξ∗,β

)
f(x) = ν

( v∑
j=1

βjxj
)−2
f>(x)F−1V −1F−1f(x)

= ν
(
(b− a)

v∑
j=1

βjxj
)−2 (

f>(x)− qT (x)1>
)

diag
(
c2
j

)ν
j=1

(f(x)− qT (x)1)

= ν
(

(b− a)
v∑
j=1

βjxj

)−2 ν∑
j=1

(
xj − qT (x)

)2
c2
j . (4.44)
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By The Equivalence Theorem design ξ∗ is locally D-optimal if and only if (4.44) is
less than or equal to ν for all x ∈ {a, b}ν leading to resulting inequalities that are
equivalent to assumption (4.43).

Note that the D-optimal design given in part (i) of Theorem 4.4.4 is a special case
of Theorem 4.4.5 when ν = 3 where condition (4.43) is equivalent to condition (4.37)
in the proof of part (i) of Theorem 4.4.4. Actually it can be seen that already in
the general case of Theorem 4.4.5 the optimality condition (4.43) depends only on the
ratios βj/(

∑ν
i=1 βi) for all (1 ≤ j ≤ ν). Similarly note that condition (4.43) depends

on a and b only through their ratio a/b. However, assuming the model parameters are
having equal size implies that the D-optimality of a design is independent of the model
parameters but it depends on the ratio a/b as it is shown in the next corollary.

Corollary 4.4.6. Consider the experimental region X = [a, b]ν , ν ≥ 3, 0 < a < b. Let
β be a parameter point such that βj = βj′ = β > 0 (1 ≤ j < j′ ≤ ν). Then the design ξ∗

which assigns equal weights ν−1 to the support x∗1 =
(
b, a, . . . , a

)>
, x∗2 =

(
a, b, . . . , a

)>
,

. . . , x∗ν =
(
a, a, . . . , b

)>
is locally D-optimal (at β) if and only if

(
b

a

)2
≥

(
ν − 1

)(
ν − 2

)
2 . (4.45)

Proof. Let βj = βj′ = β (1 ≤ j < j′ ≤ ν) then condition (4.43) of Theorem 4.4.5
reduces to

(
(ν − 1)a2 + b2

) ν∑
j=1

xj

2

− ((ν − 1)a+ b)2
ν∑
j=1

x2
j ≥ 0 ∀x ∈ {a, b}ν . (4.46)

For x = (x1, . . . , xν) ∈ {a, b}ν let r = r(x) ∈ {0, 1, . . . , ν} denote the number of
coordinates of x that are equal to b. Then we have ∑ν

j=1 x
2
j = (ν − r) a2 + r b2 and(∑ν

j=1 xj
)2

= ((ν − r) a+ r b)2. Hence, condition (4.46) is equivalent to

(a− b)2 τ r2 + (a− b)((b+ a)− 2 a ν τ) r + ν a2(ν τ − 1) ≥ 0 ∀r ∈ {0, 1, . . . , ν}, ν ≥ 2
(4.47)

where τ = (ν−1)a2+b2

((ν−1)a+b)2 . The l.h.s. of inequality (4.47) is a polynomial in r of degree 2 with
positive leading term. The polynomial attains 0 at r = 1 (r1 = 1 indicates the support
of ξ∗) and at r2 = ν (ν−1) a2

(ν−1)a2+b2 . Note that the polynomial is positive and increasing for
all r > 2 (i.e., (4.47) holds true) when r2 ≤ 2 or, equivalently, ν (ν−1) a2

(ν−1)a2+b2 ≤ 2 which
coincides with condition (4.45).
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Remark 4.4.8. Actually, condition (4.45) is obviously fulfilled for ν = 2 (compare
Theorem 4.4.3). For the case ν = 3 the bound of l.h.s. of condition (4.45) is 1 and,
hence always fulfilled.

4.5 Model with interaction

In this section we deal with gamma models with arbitrary number of quantitative
factors with interactions. In Subsection 4.5.1 we consider full interactions models with
intercept. In Subsection 4.5.2 we concentrate on a three-factor model without intercept.
The gamma models of complete product-type interactions are employed in Subsection
4.5.3.

Here, f is affine-multilinear as defined in Section 4.2 and the experimental region
X is a ν-dimensional hyperrectangle from (4.7). So by Theorem 4.2.1 we will look for
the optimal designs in the set of vertices of X .

4.5.1 Model with intercept

In this situation, we briefly discuss locally D- and A-optimal designs for gamma models
with intercept where f(x) collects interaction terms as given by (3.21) with X = [a, b]ν .

Following the results in Section 3.4, the locally D-optimal design for a full interac-
tion gamma model is implicitly obtained from Theorem 3.4.1 which is thus supported
by all vertices {a, b}ν with equal weights. Moreover, from Theorem 3.4.2 we introduce
a locally A-optimal design in the next corollary.

Corollary 4.5.1. Consider the full interaction gamma model on the unit square X = [0, 1]2,
i.e., f(x) =

(
1, x1, x2, x1x2)> for all x = (x1, x2)> ∈ [0, 1]2. Denote the vertices of X

by v1 = (0, 0)>, v2 = (1, 0)>, v3 = (0, 1)>, and v4 = (1, 1)>. For any given parame-
ter point β = (β0, β1, β2, β3)> with (4.4) the unique locally A-optimal design (at β) is
supported by the vertices v1,v2,v3,v4 with weights

ω∗1 = 2β0/c, ω∗2 =
√

2(β0 + β1)/c, ω∗3 =
√

2(β0 + β2)/c, ω∗4 = (β0 + β1 + β2 + β3)/c,

where c = (3 + 2
√

2)β0 + (
√

2 + 1)(β1 + β2) + β3.

4.5.2 Model without intercept

In this subsection we consider a model without intercept, in particular, a two-factor
model with interaction where f(x) =

(
x1, x2, x1x2

)>
and β =

(
β1, β2, β3

)>
. The

experimental region is given by X = [a, b]2, 0 < a < b and we aim at deriving a locally
D-optimal design. Our approach is employing a transformation of the proposed model
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to a model with intercept by removing the interaction term x1x2. As it was pointed
out in Remark 4.4.5 the function fβ(x) is invariant w.r.t. simultaneously scaling of x,
i.e., fβ(λx) = fβ(x). Let λ = 1/(x1x2) then we obtain

fβ(x) =
(
β1x1 + β2x2 + β3x1x2

)−1


x1

x2

x1x2

 (4.48)

=
(
β1t2 + β2t1 + β3

)−1


t2

t1

1

 = f ◦β(t) (4.49)

where t =
(
t1, t2

)>
, tj = 1/xj, j = 1, 2. The range of t = t(x), as x ranges over

X = [a, b]2 is a cube given by T =
[
(1/b) , (1/a)

]2
with f ◦(t) = (t2, t1, 1)>. One can

rearrange the terms of (4.49) by making use of the 3× 3 anti-diagonal transformation
matrix Q. So we have f̃(t) = Qf ◦(t) = (1, t1, t2)> and β̃ =

(
Q>

)−1
β =

(
β3, β2, β1

)>
.

Hence, f̃ β̃(t) =
(
f̃
>(t)β̃

)−1
f̃(t) and rewrites as

f̃ β̃(t) =
(
β3 + β2t1 + β1t2

)−1


1
t1

t2

 , t ∈ [(1/b) , (1/a)
]2
. (4.50)

Since (4.50) coincides with that for a gamma model with intercept the D-criterion is
equivariant (see Radloff and Schwabe (2016)) with respect to a one-to-one transforma-
tion from T =

[
(1/b) , (1/a)

]2
to Z = [0, 1]2 where

tj → zj = 1
(1/a)− (1/b)tj −

1/b
(1/a)− (1/b) , j = 1, 2. (4.51)

For a given transformation matrix

B =


1 0 0

−(1/b)
(1/a)−(1/b)

1
(1/a)−(1/b) 0

−(1/b)
(1/a)−(1/b) 0 1

(1/a)−(1/b)

 with B−1 =


1 0 0
1
b

1
a −

1
b 0

1
b 0 1

a −
1
b



we have f̃(z) = Bf̃(t) = (1, z1, z2)> with ˜̃β =
(
B>

)−1
β̃ = ( ˜̃β0,

˜̃β1,
˜̃β2)> where

˜̃β0 = β3 + (1/b)(β1 + β2) , ˜̃β1 = β2((1/a) − (1/b)) and ˜̃β2 = β1((1/a) − (1/b)). It
follows that f̃ ˜̃β(z) =

(
f̃
>(z) ˜̃β

)−1
f̃(z) which rewrites as
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f̃ ˜̃β(z) =
( ˜̃β0 + ˜̃β1z1 + ˜̃β2z2)−1


1
z1

z2

 , z ∈ [0, 1]2. (4.52)

Let M (x,β) = fβ(x)f>β (x), M̃ (t, β̃) = f̃ β̃(t)f̃>β̃ (t) and ˜̃M (z, ˜̃β) = f̃ ˜̃β(z)f̃>˜̃β (z)
be the information matrices for the models which corresponding to (4.48), (4.50) and
(4.52), respectively. It is easy to observe that

M (x,β) = Q−1M̃(t, β̃)Q−1 = B−1Q−1 ˜̃M (z, ˜̃β)Q−1B−1,

thus the derived D-optimal designs on X , T and Z, respectively are equivariant. Ac-
cording to the mapping of x to t in the line following (4.49) and the mapping from t

to z in (4.51) each component is mapped separately: xj → tj → zj without permuting
them. Therefore, one modifies the direct one-to-one transformation g : X → Z where

xj → zj = 1/xj
(1/a)− (1/b) −

1/b
(1/a)− (1/b) , j = 1, 2. (4.53)

Let ξ∗g be a design defined on Z that assigns the weights ξ(x) to the mapped support
points g(x), x ∈ supp(ξ∗). In fact, ξ∗ on X is locally D-optimal (at β) if and only if
ξ∗g on Z is locally D-optimal (at ˜̃β). Note that the function f̃ ˜̃β(z) is injective and thus
the optimal design on Z is only supported by the vertices (cp. Theorem 4.2.1). It is
worth noting by transformation (4.53) we obtain

(b, b)> → (0, 0)>, (b, a)> → (1, 0)>,

(a, b)> → (0, 1)>, (a, a)> → (1, 1)>.

Corollary 4.5.2. Consider f(x) =
(
x1, x2, x1x2

)>
on X = [a, b]2, 0 < a < b. De-

note the vertices by v1 = (b, b)>, v2 = (b, a)>, v3 = (a, b)>, v4 = (a, a)>. Let
β = (β1, β2, β3)> be a parameter point satisfying (4.4). Then the unique locally D-
optimal design ξ∗ (at β) is as follows.

(i) If β2
3 + 1

b2 (β2
1 +β2

2) + ( 1
b2 − 1

a2 + 2
a b

)β1β2 + 2
b
β3(β1 +β2) ≤ 0 then ξ∗ assigns equal

weights 1/3 to v1,v2,v3.

(ii) If β2
3 + 1

b2β
2
1 + 1

a2β
2
2 + 2

b
β3β1 + 2

a
β3β2 + ( 1

b2 + 1
a2 )β1β2 ≤ 0 then ξ∗ assigns equal

weights 1/3 to v1,v2,v4.

(iii) If β2
3 + 1

b2β
2
2 + 1

a2β
2
1 + 2

b
β3β2 + 2

a
β3β1 + ( 1

b2 + 1
a2 )β1β2 ≤ 0 then ξ∗ assigns equal

weights 1/3 to v1,v3,v4.
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(iv) If β2
3 + 1

a2 (β2
1 +β2

2) + ( 1
a2 − 1

b2 + 2
ab

)β1β2 + 2
a
β3(β1 +β2) ≤ 0 then ξ∗ assigns equal

weights 1/3 to v2,v3,v4.

(v) If none of the cases (i) – (iv) applies then ξ∗ is supported by the four vertices

ξ∗ =
 v1 v2 v3 v4

ω∗1 ω∗2 ω∗3 ω∗4

 , where ω∗` > 0 (1 ≤ ` ≤ 4), ∑4
`=1 ω

∗
` = 1.

Proof. The proof is obtained by verifying the D-optimality of ξ∗g on Z = [0, 1]2 under
transformation g given by (4.53). The regression vector f̃ ˜̃β(z) given by (4.52) coincides
with that for the two-factor gamma model with intercept on Z = [0, 1]2 whose intensity
function is defined as u ˜̃β(z) = ( ˜̃β0 + ˜̃β1z1 + ˜̃β2z2)−2 for all z ∈ Z. Denote

c1 = u ˜̃β((0, 0)>) = ˜̃β−2
0 = (β3 + 1

b
(β1 + β2))−2,

c2 = u ˜̃β((1, 0)>) = ( ˜̃β0 + ˜̃β1)−2 = (β3 + β1
1
b

+ β2
1
a

)−2,

c3 = u ˜̃β((0, 1)>) = ( ˜̃β0 + ˜̃β2)−2 = (β3 + β1
1
a

+ β2
1
b

)−2,

c4 = u ˜̃β((1, 1)>) = ( ˜̃β0 + ˜̃β1 + ˜̃β2)−2 = (β3 + 1
a

(β1 + β2))−2.

Let h, i, j, k ∈ {1, 2, 3, 4} are pairwise distinct such that ck = min{c1, c2, c3, c4} then it
follows from Theorem 3.3.1 that if c−1

k ≥ c−1
h + c−1

i + c−1
j then ξ∗ is a three-point

design supported by the three vertices vh, vi, vj, with equal weights 1/3. Hence,
straightforward computations show that the condition in case (i) of the corollary is
equivalent to c−1

4 ≥ c−1
1 + c−1

2 + c−1
3 . Analogous verifying is obtained for the cases (ii),

(iii), (iv). For case (v) the four-point design according to Theorem 3.3.1 is locally
D-optimal if c−1

k < c−1
h + c−1

i + c−1
j which applies implicitly if non of the conditions (i)

– (iv) of saturated designs is fulfilled by a given β (cp. Remark 2.2.4).

It is noted that the optimality conditions provided in parts (i)–(iv) of Corollary
4.5.2 depend on the values of a and b. Changing these values might affect the D-
optimality of a design. To see that, more specifically, let a = 1 and b = 2, i.e., the
experimental region is X = [1, 2]2 and define γ1 = β1/β3 and γ2 = β2/β3, β3 6= 0.
Here, the parameter space which is depicted in Panel (a) of Figure 4.7 is characterized
by γ2 + γ1 > −1, 2 γ2 + γ1 > −2 and γ2 + 2 γ1 > −2. It is observed from Panel
(a) of Figure 4.7 that the design given by part (i) of Corollary 4.5.2 is not locally
D-optimal because the corresponding optimality condition in part (i) of the corollary;
1
4(γ2

1 + γ2
2) + 1

4γ1γ2 + γ1 + γ2 ≤ −1 can not be satisfied.
Let us consider another experimental region with a higher length by fixing a = 1 and

taking b = 4, i.e., the experimental region is X = [1, 4]2. The parameter space which is
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depicted in Panel (b) of Figure 4.7 is characterized by γ2 +γ1 > −1, 4 γ2 + γ1 > −4 and
γ2 + 4 γ1 > −4. In this case all designs given by Corollary 4.5.2 are locally D-optimal
at particular values of γ2 and γ1 as it is observed from the figure. It is obvious that
along the diagonal dashed line, γ2 = γ1, there exist at most three different types of
locally D-optimal designs.

(a) (b)

Figure 4.7: Dependence of locally D-optimal designs on γ1 = β1/β3
and γ2 = β2/β3 where for Panel (a) X = [1, 2]2 and for Panel (b)
X = [1, 4]2. The diagonal dashed line represents the case γ2 = γ1. Note
that supp(ξ∗ijk) = {vi,vj ,vk} ⊂ {v1,v2,v3,v4} and
supp(ξ∗1234) = {v1,v2,v3,v4}.

.

For arbitrary values of a and b, 0 < a < b let us restrict to case γ2 = γ1 = γ, i.e.,
β1 = β2 = β, β3 6= 0 and the next corollary is immediate.

Corollary 4.5.3. Consider f(x) = (x1, x2, x1x2)> on an arbitrary square X = [a, b]2,
0 < a < b in the positive quadrant. Let β = (β1, β2, β3)> be a parameter point satisfying
(4.4) with β1 = β2 = β and β3 6= 0. Define γ = β

β3
. Then the locally D-optimal design

ξ∗ (at β) is as follows.

(i) If −a
2 < γ ≤ − ab

3b−a , then ξ
∗ assigns equal weights 1/3 to v2,v3, v4.

(ii) If b− 3a > 0 and γ ≥ ab
b−3a , then ξ

∗ assigns equal weights 1/3 to v1,v2,v3.

(iii) If b−3a > 0 and − ab
3b−a < γ < ab

b−3a then the design ξ∗ is supported by v1,v2,v3,v4

with optimal weights given by

ω∗1 = ab− (a− 3b)γ
4b(a+ 2γ) , ω∗2 = ω∗3 =

(
ab+ (a+ b)γ

)2

4ab(b+ 2γ)(a+ 2γ) , ω∗4 = ab− (b− 3a)γ
4a(b+ 2γ) .
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Proof. Consider the experimental region X = [a, b]2, 0 < a < b. By assumption
β1 = β2 = β, β3 6= 0 the range of γ = β

β3
is given by (−a/2,∞). Assumption b− 3a > 0

implies that −a
2 < −

ab
3b−a <

ab
b−3a . According to Corollary 4.5.2 we show the following

under the assumptions of Corollary 4.5.3. Both conditions provided in parts (ii) and
(iii) of Corollary 4.5.2 are not fulfilled by any parameter point thus the corresponding
designs are not D-optimal. In contrast, the design ξ∗ given in (i) of Corollary 4.5.3 is
locally D-optimal if the condition provided in part (iv) of Corollary 4.5.2 holds true.
That condition is equivalent to

(3b2 + 2ab− a2)γ2 + 4ab2γ + a2b2 ≤ 0.

The l.h.s. of above inequality is polynomial in γ of degree 2 and thus the inequality is
fulfilled by −a

2 < γ ≤ − ab
3b−a .

Similarly, the design ξ∗ in (ii) of Corollary 4.5.3 is locally D-optimal if the condition
provided in part (i) of Corollary 4.5.2 holds true. That condition is equivalent to

(3a2 + 2ab− b2)γ2 + 4a2bγ + a2b2 ≤ 0.

The l.h.s. of above inequality is polynomial in γ of degree 2 and thus the inequality is
fulfilled by γ ≥ ab

b−3a if b− 3a > 0.
The four-point design given in (iii) has positive weights on − ab

3b−a < γ < ab
b−3a if

b− 3a > 0 and hence it is locally D-optimal in view of Remark 2.2.4.

Remark 4.5.1. One may note that from Corollary 4.5.3 when β = 0 the uniform
design on the vertices v1,v2,v3,v4 is locally D-optimal.

4.5.3 Model of complete product-type interactions

Schwabe (1996b) developed an approach to construct optimal designs for linear models
of complete product-type interactions by making use of optimal designs under marginal
models. This approach is independent of the actual structure of the influence of the
single factors and, hence, covers models with both qualitative and quantitative factors
as well as purely qualitative or purely quantitative models (see Schwabe (1996b), p.35).
In this subsection we extend that approach for gamma models of complete product-
type interactions. We will show that locally optimal designs for gamma models of
complete product-type interactions can be obtained from locally optimal designs under
the marginal counterparts.
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We consider K marginal models each is containing νk factors, k = 1, . . . , K. The
marginal νk-factor model is defined with a power link as in (4.2) where

µρk(xk) = f (k)>(xk)β(k), xk = (xk1, . . . , xkνk)> ∈ Xk ⊆ Rνk (4.54)

with exponent ρ ∈ R, ρ > 0. So all marginal gamma models are having equal exponent
ρ, or, equivalently, all link functions of the marginal models are the same. The positivity
assumption (4.4) of the expected mean µk is to be satisfied, i.e., f (k)>(xk)β(k) > 0 for
all xk = (xk1, . . . , xkνk)> ∈ Xk where

f (k) : Xk → Rpk , β(k) = (β(k)
1 , . . . , β(k)

pk
)> ∈ Rpk (1 ≤ k ≤ K).

For each k, the marginal model (4.54) has intensity function

uk(xk,β(k)) =
(
f (k)>(xk)β(k)

)−2
, xk ∈ Xk (1 ≤ k ≤ K). (4.55)

Let ν denotes the total number of factors in all marginal models, i.e., ν = ∑K
k=1 νk. The

resulting ν-factor gamma model of complete product-type interactions with exponent
ρ is thus defined by

µρ(x) = f>(x)β

=
p1∑
i1=1
· · ·

pK∑
iK=1

f
(1)
i1 (x1) · . . . · f (K)

iK
(xK)βi1,...,iK (4.56)

where x = (x>1 , . . . ,x>K)> ∈ X = X1 × · · · × XK , in which f(x) collects all K − fold
products of the components f (k)

i (xk) which belong to the regression functions f (k)(xk),
k = 1, . . . , K and x = (x11, . . . , x1ν1 , . . . , xK1, . . . , xKνK )> is a ν-tuple. The un-
known parameter βi1,...,iK is equal to ∏K

k=1 β
(k)
ik

and β is a p-dimensional parameter
vector, i.e., β ∈ Rp where p = ∏K

k=1 pk. Note that β collects the parameters βi1,...,iK ,
ik = 1, . . . , pk, k = 1, . . . , K and in lexicographic order β rewrites as

β = (β1,...,1,1 , β1,...,1,2 , . . . , β1,...,1,pK , β1,...,2,1 , . . . , βp1,...,pK−1,pK )>.

Note that f(x) : X → Rp and can be described by Kronecker products “⊗” as in the
following;

f(x) = f (1)(x1)⊗ · · · ⊗ f (K)(xK) =
K⊗
k=1
f (k)(xk), (4.57)

with β = β(1) ⊗ · · · ⊗ β(K) =
K⊗
k=1
β(k). (4.58)
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Therefore, model (4.56) rewrites as

µρ(x) =
( K⊗
k=1
f (k)(xk)

)>( K⊗
k=1
β(k)

)
(4.59)

and of course f>(x)β > 0 for all x ∈ X . The latter positivity assumption is obtained
from that in the marginal models; that is because

f>(x)β =
( K⊗
k=1
f (k)(xk)

)>( K⊗
k=1
β(k)

)
=

K∏
k=1
f (k)>(xk)β(k) > 0.

The intensity function u(x,β) for model (4.56) is determined by the product of the
intensity functions (4.55) in the marginal νk-factor models (4.54).

Lemma 4.5.1. The intensity function for model (4.56) is given by

u(x,β) =
K∏
k=1

uk(xk,β(k)).

Proof. In general, the intensity function of gamma models with linear predictor f>(x)β
is defined by u(x,β) = (f>(x)β)−2. In view of (4.57) and (4.58) it follows that

u(x,β) =
( K⊗

k=1
f (k)(xk)

)>( K⊗
k=1
β(k)

)−2

=
 K⊗
k=1
f (k)>(xk)β(k)

−2

=
K⊗
k=1

(
f (k)>(xk)β(k)

)−2
=

K∏
k=1

uk(xk,β(k)).

Our aim is deriving an optimal design for model (4.56) as a product type design
which is supported by the cross-product of the finite sets of design points of the designs
under marginal νk-factor models and the weights are given by the product of the weights
of those designs. To be more specific, denote by ξk a design defined on Xk for a marginal
νk-factor model (4.54) (1 ≤ k ≤ K). We introduce ξk as in (2.9);

ξk =
 xk1 xk2 . . . xkrk
ωk1 ωk2 . . . ωkrk

 , (4.60)

where ξk has rk design points xkj and corresponding weights ωkj, j = 1, . . . , rk. Then
the product type design ξ = ⊗K

k=1 ξk is defined on X = X1 × · · · × XK and has
r = ∏K

k=1 rk design points xi1,...,iK = (x1i1 , . . . , xKiK )> with corresponding weights
ωi1,...,iK = ∏K

k=1 ωkik , ik = 1, . . . , rk, k = 1, . . . , K.
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In order to reduce the problem of locally optimal designs at a given β for model
(4.56) to the locally optimal designs for the marginal νk-factor models at a given βk it
is required to use a factorized information matrix. The information matrix and, hence,
the variance-covariance matrix of a product type design ξ factorizes into its marginal
counterparts as it is given by the next lemma.

Lemma 4.5.2. The information matrix of a product type design ξ =
K⊗
k=1

ξk for a
gamma model of complete product-type interactions (4.56) is

M
(
ξ,β

)
=

K⊗
k=1
M k

(
ξk,β

(k)
)

Proof. In general, the information matrix of ξ for the model (4.56) is given by
M (ξ,β) =

∫
X u(x,β)f(x)f>(x) ξ(dx). In view of Lemma 4.5.1 with (4.57) and (4.58)

it follows that

M
(
ξ,β

)
=
∫
X
u(x,β)

( K⊗
k=1
f (k)(xk)

)( K⊗
k=1
f (k)(xk)

)> K⊗
k=1

ξk(dxk)

=
∫
X1
· · ·

∫
XK

( K∏
k=1

uk(xk,β(k))
)( K⊗

k=1
f (k)(xk)f (k)>(xk)

) K∏
k=1

ξk(dxk)

=
K⊗
k=1

( ∫
Xk
uk(xk,β(k))f (k)(xk)f (k)>(xk) ξk(dxk)

)

=
K⊗
k=1
M k

(
ξk,β

(k)
)
.

As a consequence of Lemma 4.5.2 we get

det
(
M (ξ,β)

)
= det

( K⊗
k=1
M k

(
ξk,β

(k)
))

=
K∏
k=1

det
(
M k

(
ξk,β

(k)
))

K∏
j=1
j 6=k

pj

.

For example; let ξ = ξ1 ⊗ ξ2 ⊗ ξ3 then

det(M (ξ,β)) = det(M 1(ξ1,β
(1)))p2p3 det(M 2(ξ2,β

(2)))p1p3 det(M 3(ξ3,β
(3)))p1p2 .

Therefore, for a given parameter point β that is evaluated from the parameter points
of the marginal models, i.e., β =

K⊗
k=1
β(k) the best product type design ξ∗ =

K⊗
k=1

ξ∗k with

respect to the D-criterion is generated from the locally D-optimal designs ξ∗k at β(k) for
the marginal νk-factor models (1 ≤ k ≤ K).

Theorem 4.5.1. Let ξ∗k be a locally D-optimal design (at β(k)) for a marginal νk-factor
model (4.54) on the experimental region Xk (1 ≤ k ≤ K). Then ξ∗ =

K⊗
k=1

ξ∗k is a
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locally D-optimal design (at β =
K⊗
k=1
β(k)) for model (4.56) on the experimental region

X = ×Kk=1Xk.

Proof. The proof is obtained by making use of condition (2.11) of The Equivalence
Theorem (Theorem 2.2.2 ). To this end, denote f (k)

β(k)(xk) =
√
uk(xk,β(k))f (k)(xk) and

fβ(x) =
√
u(x,β)f(x). Since ξ∗k is locally D-optimal (at β(k)) we guarantee that

f
(k)>
β(k) (xk)M−1

k (ξ∗k,β(k))f (k)
β(k)(xk) ≤ pk for all xk ∈ Xk. Thus in view of Lemma 4.5.2

with (4.57) and (4.58) we obtain

f>β (x)M−1(ξ∗,β)fβ(x) = u(x,β)
( K⊗
k=1
f (k)(xk)

)>( K⊗
k=1
M k

(
ξk,β

(k)
))−1( K⊗

k=1
f (k)(xk)

)

=
K⊗
k=1

(
uk(xk,β(k))f (k)>(xk)M−1

k

(
ξ∗k,β

(k)
)
f (k)(xk)

)

=
K∏
k=1
f

(k)>
β(k) (xk)M−1

k (ξ∗k,β(k))f (k)
β(k)(xk) ≤

K∏
k=1

pk = p

for all x ∈ X . The Equivalence Theorem, thus, proves the local D-optimality of the
product design ξ∗ =

K⊗
k=1

ξ∗k at a parameter point β =
K⊗
k=1
β(k).

In the following we focus on the local A-optimality. From Lemma 4.5.2 we obtain
the next straightforward factorization for every product type design ξ =

K⊗
k=1

ξk.

tr
(
M−1(ξ,β)

)
= tr

( K⊗
k=1

(
M k

(
ξk,β

(k)
))−1

 =
K∏
k=1

tr
(
M−1

k (ξk,β(k))
)
.

Hence, in analogy to the previous case of local D-optimality for a given parameter
point β that is evaluated from the parameter points of the marginal models, i.e.,
β =

K⊗
k=1
β(k) the best product type design ξ∗ =

K⊗
k=1

ξ∗k with respect to the A-criterion

is generated from the locally A-optimal designs ξ∗k at β(k) for the marginal νk-factor
models (1 ≤ k ≤ K).

Theorem 4.5.2. Let ξ∗k be a locally A-optimal design (at β(k)) for a marginal νk-factor
model (4.54) on the experimental region Xk (1 ≤ k ≤ K). Then ξ∗ =

K⊗
k=1

ξ∗k is a

locally A-optimal design (at β =
K⊗
k=1
β(k)) for model (4.56) on the experimental region

X = ×Kk=1Xk.

Proof. The proof is obtained by making use of condition (2.12) of The Equivalence
Theorem (Theorem 2.2.2 ). Since ξ∗k is locally A-optimal (at β(k)) we guarantee that
f

(k)>
β(k) (xk)M−2

k (ξ∗k,β(k))f (k)
β(k)(xk) ≤ tr(M−1

k (ξ∗k,β(k))) for all xk ∈ Xk. Thus in view of
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Lemma 4.5.2 with (4.57) and (4.58) we obtain

f>β (x)M−2(ξ∗,β)fβ(x) = u(x,β)
( K⊗
k=1
f (k)(xk)

)>( K⊗
k=1
M k

(
ξk,β

(k)
))−2( K⊗

k=1
f (k)(xk)

)

=
K⊗
k=1

(
uk(xk,β(k))f (k)>(xk)M−2

k

(
ξ∗k,β

(k)
)
f (k)(xk)

)

=
K∏
k=1
f

(k)>
β(k) (xk)M−2

k (ξ∗k,β(k))f (k)
β(k)(xk)

≤
K∏
k=1

tr(M−1
k (ξ∗k,β(k))) = tr

(( K⊗
k=1

(
M k

(
ξ∗k,β

(k)
))−1)

= tr
(
M−1(ξ∗,β)

)

for all x ∈ X . The Equivalence Theorem, thus, proves the local A-optimality of the
product design ξ∗ =

K⊗
k=1

ξ∗k at a parameter point β =
K⊗
k=1
β(k).

Example 4.5.1. Marginal single-factor models.
Here we consider model (4.54) with one factor, νk = 1, and two parameters, pk = 2,.
We restrict ourselves to the case of two marginal models k = 2 where

µρ1(x1) = f (1)>(x1)β(1) = β
(1)
0 + β

(1)
1 x1, x1 ∈ X1 = [0, 1], (4.61)

µρ2(x2) = f (2)>(x2)β(2) = β
(2)
0 + β

(2)
1 x2, x2 ∈ X2 = [0, 1] (4.62)

such that β(k)
0 > 0, β(k)

0 + β
(k)
1 > 0, k = 1, 2. The resulting 2-factor gamma model of

complete product-type interactions is thus written as

µρ(x) = f>(x)β = β0 + β1x1 + β2x2 + β3x1x2 (4.63)

where x = (x1, x2)> ∈ X = X1 ×X2 = [0, 1]2,β ∈ R4,β = β(1) ⊗ β(2), hence

β =


β0

β1

β2

β3

 =


β

(1)
0 β

(2)
0

β
(2)
0 β

(1)
1

β
(1)
0 β

(2)
1

β
(1)
1 β

(2)
1

 , (4.64)

where β satisfies f>(x)β > 0 for all x ∈ X . Note that the 2-factor model with in-
teraction (4.63) was considered in Subsection 4.5.1 where locally D- and A-optimal
designs were derived. However, from Corollary 4.3.1 the marginal design ξ∗k on Xk =
[0, 1] with support {0, 1} is equally weighted D-optimal (at β(k)). Thus the design
ξ∗ = ξ∗1 ⊗ ξ∗2 is locally D-optimal (at β = β(1) ⊗ β(2)) on the experimental region
X = [0, 1]2 for model (4.63). The design ξ∗ assigns uniform weights 1/4 to the support
(0, 0)>, (1, 0)>, (0, 1)>, (1, 1)>.
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Moreover, from Corollary 4.3.1 the marginal design ξ∗k on Xk = [0, 1] with support
{0, 1} is A-optimal (at β(k)) with weightsω∗k0 =

√
2β(k)

0 /((
√

2 + 1)β(k)
0 + β

(k)
1 ) and

ω∗k1 = (β(k)
0 + β

(k)
1 )/((

√
2 + 1)β(k)

0 + β
(k)
1 ). For a given β = β(1) ⊗ β(2) from (4.64) the

product type design ξ∗ = ξ∗1⊗ξ∗2 on the experimental region X = [0, 1]2 for model (4.63)
is locally A-optimal and assigns weights ω∗10ω

∗
20 to (0, 0)>, ω∗11ω

∗
20 to (1, 0)>, ω∗10ω

∗
21

to (0, 1)> and ω∗11ω
∗
21 to (1, 1)>. Clearly, the product type design w.r.t. A-criterion

coincides with that from Corollary 4.5.1 where for instance; the optimal weight ω∗10ω
∗
20

of the point (0, 0)> leads to the identity

2β(1)
0 β

(2)
0

(3 + 2
√

2)β(1)
0 β

(2)
0 + (1 +

√
2)(β(1)

0 β
(2)
1 + β

(2)
0 β

(1)
1 ) + β

(1)
1 β

(2)
1

= 2β0
c

where c = (3 + 2
√

2)β0 + (1 +
√

2)(β1 + β2) + β3.

Example 4.5.2. Marginal two-factor models.
Here we consider model (4.54) with two factors, νk = 2, and three parameters, pk = 3,.
The case of two marginal models k = 2 is also adopted where

µρ1(x1) = f (1)>(x1)β(1) = β
(1)
0 + β

(1)
1 x11 + β

(1)
2 x12, x1 = (x11, x12)> (4.65)

µρ2(x2) = f (2)>(x2)β(2) = β
(2)
0 + β

(2)
1 x21 + β

(2)
2 x22, x2 = (x21, x22)> (4.66)

where x1 ∈ Xk = [0, 1]2, k = 1, 2 such that β(k)
0 > 0, β(k)

0 + β
(k)
1 > 0, β(k)

0 + β
(k)
2 > 0,

β
(k)
0 + β

(k)
1 + β

(k)
2 > 0, k = 1, 2. The resulting 2-factor gamma model of complete

product-type interactions is thus written as

µρ(x) =β0 + β1x11 + β2x12 + β3x21 + β4x22 + β5x11x21 + β6x11x22

+ β7x12x21 + β8x12x22 (4.67)

where x = (x11, x12, x21, x22)> ∈ X = [0, 1]4,β ∈ R9,β = β(1) ⊗ β(2). Note that
β0 = β

(1)
0 β

(2)
0 . From part (i) of Corollary 4.4.1 the design ξ∗k on Xk = [0, 1]2 with

support {(0, 0)>, (1, 0)>, (0, 1)>} for the kth marginal model is equally weighted D-
optimal (at β(k)) if and only if (β(k)

0 )2 ≤ β
(k)
1 β

(k)
2 , k = 1, 2. The latter optimality

conditions transfer to the product type design ξ∗ = ξ∗1 ⊗ ξ∗2 which is thus locally D-
optimal on the experimental region X = [0, 1]4 for model (4.67) at β = β(1) ⊗ β(2) if
(β(1)

0 β
(2)
0 )2 ≤ (β(1)

1 β
(2)
1 )(β(1)

2 β
(2)
2 ), i.e., β2

0 ≤ β5β8 and ξ∗ assigns weights 1/9 to
{(0, 0)>, (1, 0)>, (0, 1)>} × {(0, 0)>, (1, 0)>, (0, 1)>}=
{(0, 0, 0, 0)>,(0, 0, 1, 0)>, (0, 0, 0, 1)>, (1, 0, 0, 0)>, (1, 0, 1, 0)>, (1, 0, 0, 1)> ,(0, 1, 0, 0)>,
(0, 1, 1, 0)>, (0, 1, 0, 1)>}.
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For A-optimality, from part (iv) of Corollary 4.4.2 the design ξ∗k on Xk = [0, 1]2

with support {(0, 0)>, (1, 0)>, (0, 1)>} and the following weights

ξ∗k
(
(0, 0)>

)
=
√

3β(k)
0 /c,

ξ∗k
(
(1, 0)>

)
= (β(k)

0 + β
(k)
1 )/c,

ξ∗k
(
(0, 1)>

)
= (β(k)

0 + β
(k)
2 )/c where c = (

√
3 + 2)β(k)

0 + β
(k)
1 + β

(k)
2 , k = 1, 2,

is locally A-optimal (at β(k)) if and only if
(1+ 2/

√
3)(β(k)

0 )2 +(1/
√

3)β(k)
0 (β(k)

1 +β
(k)
2 )−β(k)

1 β
(k)
2 ≤ 0, k = 1, 2. Hence, the product

type design ξ∗ = ξ∗1 ⊗ ξ∗2 which is thus locally A-optimal (at β = β(1) ⊗ β(2)) on the
experimental region X = [0, 1]4 for model (4.67) assigns weights ξ∗1(x1)ξ∗2(x2) to the
point (x>1 ,x>2 )> ∈ {(0, 0)>, (1, 0)>, (0, 1)>} × {(0, 0)>, (1, 0)>, (0, 1)>}.

Another result of this type treats the Kiefer Φs-optimality (for notational con-
venience we use index s instead of index k) which covers D-optimality at s = 0,
A-optimality at s = 1 and E-optimality at s → ∞. Therefore, we obtain the next
lemma.

Lemma 4.5.3. For every product type design ξ =
K⊗
k=1

ξk we have the next factorization

Φs(ξ,β) =
K∏
k=1

Φs(ξk,β(k)), (0 ≤ s <∞)

Proof. Employing the definition of Kiefer Φs-criterion yields

Φs(ξ,β) =
(1
p

tr
(
M−s(ξ,β)

)) 1
s

=
1
p

tr
( K⊗
k=1

(
M k(ξk,β(k))

))−s 1
s

=
 K∏
k=1

1
pk

tr
(
M−s

k (ξk,β(k))
) 1

s

=
K∏
k=1

Φs(ξk,β(k)).

Theorem 4.5.3. Let ξ∗k be a locally Φs-optimal design (at β(k)) for a marginal νk-factor
model (4.54) on the experimental region Xk (1 ≤ k ≤ K). Then ξ∗ =

K⊗
k=1

ξ∗k is a

locally Φs-optimal design (at β =
K⊗
k=1
β(k)) for model (4.56) on the experimental region

X = ×Kk=1Xk.

Proof. The proof is obtained by making use of condition (2.13) of The Equivalence
Theorem (Theorem 2.2.2 ). Since ξ∗k is locally Φs-optimal (at β(k)) we guarantee that
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f
(k)>
β(k) (xk)M−s−1

k (ξ∗k,β(k))f (k)
β(k)(xk) ≤ tr(M−s

k (ξ∗k,β(k))) for all xk ∈ Xk. Thus in view
of Lemma 4.5.2 with (4.57) and (4.58) we obtain

f>β (x)M−s−1(ξ∗,β)fβ(x) = u(x,β)
( K⊗
k=1
f (k)(xk)

)>( K⊗
k=1
M k

(
ξk,β

(k)
))−s−1( K⊗

k=1
f (k)(xk)

)

=
K⊗
k=1

(
uk(xk,β(k))f (k)>(xk)M−s−1

k

(
ξ∗k,β

(k)
)
f (k)(xk)

)

=
K∏
k=1
f

(k)>
β(k) (xk)M−s−1

k (ξ∗k,β(k))f (k)
β(k)(xk)

≤
K∏
k=1

tr(M−s
k (ξ∗k,β(k))) = tr

(( K⊗
k=1

(
M k

(
ξ∗k,β

(k)
))−s)

= tr
(
M−s(ξ∗,β)

)

for all x ∈ X . The Equivalence Theorem, thus, proves the local Φs-optimality of the
product design ξ∗ =

K⊗
k=1

ξ∗k at a parameter point β =
K⊗
k=1
β(k).

4.6 Design efficiency and simulation

It is interesting to study the adequacy of locally optimal designs for generalized linear
models because typically, the performance of a locally optimal design is affected by the
initial parameter values. Misspecified values may lead to a poor performance of the
locally optimal design and thus a highly sensitivity of the statistical inference might
occur. From our results, in this chapter, each locally optimal design refers to a specific
subregion of the parameter space where the design is optimal. In this section we
discuss the potential benefits of the derived designs for gamma models with intercept
and without intercept. We restrict ourselves to the optimal designs that have been
derived with respect to the D-criterion specifically from Corollary 4.4.1, Theorem 4.4.4
and Corollary 4.5.3. Our objective is to examine the overall performance of some of
the locally D-optimal designs as well as investigating the performance for finite sample
sizes.

4.6.1 Design efficiency

The overall performance of any design ξ is described by its D-efficiencies, as a function
of β,

Eff(ξ,β) =
(

detM (ξ,β)
detM (ξ∗β,β)

)1/p

(4.68)

where ξ∗β denotes the locally D-optimal design at β and p is the dimension of β.
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Example 4.6.1. In the situation of Corollary 4.4.1 we consider the D-optimal designs
for gamma models with intercept. The experimental region is given by X = [0, 1]2

with the vertices v1 = (0, 0)>, v2 = (1, 0)>, v3 = (0, 1)>, and v4 = (1, 1)>. For
simplicity we restrict to case β1 = β2 = β, say. That is, the parameter vector is of the
form β = (β0, β, β)>. We utilize the ratio γ = β/β0, β0 > 0. Note that the positivity
condition (4.4) implies that γ ∈ (−1/2,∞). Our interest is in the saturated and equally
weighted designs ξ1 and ξ2 where supp(ξ1) = {v1,v2,v3}, supp(ξ2) = {v2,v3,v4} which
by Corollary 4.4.1 are locally D-optimal at γ ≥ 1 and γ ∈ (−1/2,−1/3], respectively. In
particular, ξ1 and ξ2 are robust against misspecified parameter values in their respective
subregions. Additionally, for γ ∈ (−1/3, 1) we consider the locally D-optimal design
ξ3(γ) given by Theorem 4.4.1. Note that supp(ξ3(γ)) = {v1,v2,v3,v4} and the weights
depend on γ.

To employ (4.68) we put ξ∗β = ξ1 if γ ≥ 1, ξ∗β = ξ2 if γ ∈ (−1/2,−1/3] and ξ∗β = ξ3(γ)
if γ ∈ (−1/3, 1). We select for examination the designs ξ1, ξ2, ξ3(0) and, moreover as a
natural competitor ξ4 which assigns uniform weights to the grid {0, 0.5, 1}2. Note that
ξ3(0) assigns uniform weights to the set of vertices {0, 1}2.

In Figure 4.8, the D-efficiencies of the four designs ξ1, ξ2, ξ3(0) and ξ4 are depicted.
The efficiencies of ξ1 and ξ2 are, of course, equal to 1 in their optimality subregions
γ ∈ [1,∞) and γ ∈ (−1/2,−1/3], respectively. However, for γ outside but fairly close
to the respective optimality subregion both designs perform quite well; the efficiencies
of ξ1 and ξ2 are greater than 0.80 for 0.07 ≤ γ < 1 and −1/3 < γ ≤ −0.06, respectively.
However, their efficiencies decrease towards zero when γ moves away from the respective
optimality subregion. So, the overall performance of ξ1 and ξ2 cannot be regarded as
satisfactory. The design ξ3(0), though locally D-optimal only at γ = 0, does show
a more satisfactory overall performance with efficiencies range between 0.8585 and 1.
The design ξ4 turns out to be uniformly worse than ξ3(0) and its efficiencies range
between 0.6598 and 0.7631.

In addition, we studied the performance of optimal designs of the form ξ3(γ) for
various γ ∈ (−1/3, 1). The efficiencies of some of these designs are shown in Figure
4.9 for γ ∈ {−0.2, 0, 0.6}. We observe that the performance of the design ξ3(γ) comes
closer to the performance of ξ1 or ξ2 when γ approaches 1 or −1/3, respectively.
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Figure 4.8: Example 4.6.1. D-efficiencies from (4.68) over the region
−1/2 < γ <∞, γ = β/β0, β = β1 = β2, β0 > 0.

,

Figure 4.9: Example 4.6.1. D-efficiencies of ξ3(−0.2), ξ3(0), ξ3(0.6)
from (4.68) over the region −1/2 < γ <∞, γ = β/β0,β = β1 = β2,
β0 > 0.
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Example 4.6.2. In the situation of Theorem 4.4.4 the experimental region is given
by X = [1, 2]3 with the vertices v1 =

(
1, 1, 1

)>
, v2 =

(
2, 1, 1

)>
, v3 =

(
1, 2, 1

)>
,

v4 =
(
1, 1, 2

)>
, v5 =

(
1, 2, 2

)>
, v6 =

(
2, 1, 2

)>
, v7 =

(
2, 2, 1

)>
, v8 =

(
2, 2, 2

)>
. We

restrict only to the case β1 > 0, β2 = β3 = β and hence we utilize the ratio γ = β/β1

with range (−1/4,∞). Our interest is in the saturated and equally weighted designs
ξ1 and ξ2 where supp(ξ1) = {v2,v3,v4} and supp(ξ2) = {v3,v4,v5} which by Theo-
rem 4.4.4 are locally D-optimal at γ ≥ 1/5 and γ ∈ (−1/4,−5/23], respectively. In
particular, ξ1 and ξ2 are robust against misspecified parameter values in their respec-
tive subregions. Additionally, for γ ∈ (−5/23, 1/5) we consider the locally D-optimal
designs of type ξ3(γ) given by the theorem. Note that supp(ξ3(γ)) = {v2,v3,v4,v5}
and the weights depend on γ.

To employ (4.68) we put ξ∗β = ξ1 if γ ≥ 1/5, ξ∗β = ξ2 if γ ∈ (−1/4,−5/23] and
ξ∗β = ξ3(γ) if γ ∈ (−5/23, 1/5). We select for examination the designs ξ1, ξ2, ξ3(−1/7).
Moreover, as natural competitors we select various uniform designs supported by spe-
cific vertices. That is ξ4 with support {vi : i = 1, . . . , 8}3 and the two half-fractional
designs ξ5 and ξ6 supported by {v1,v5,v6,v7} and {v2,v3,v4,v8}, respectively. Addi-
tionally, we consider ξ7 which assigns uniform weights to the grid {1, 1.5, 2}3.

In Figure 4.10, the D-efficiencies of the designs ξ1, ξ2, ξ3(−1/7), ξ4, ξ5, ξ6 and ξ7

are depicted. In analogy to Example 4.6.1 similar interpretation can be presented.
The efficiencies of ξ1 and ξ2 are, of course, equal to 1 in their optimality subregions
γ ∈ [1/5,∞) and γ ∈ (−1/4,−5/23], respectively. However, for γ outside but fairly
close to the respective optimality subregion both designs perform quite well; the effi-
ciencies of ξ1 and ξ2 are greater than 0.80 for −0.15 ≤ γ < 1/5 and −1/4 < γ ≤ −0.28,
respectively. However, their efficiencies decrease towards zero when γ moves away from
the respective optimality subregion. So, the overall performance of ξ1 and ξ2 cannot
be regarded as satisfactory. The design ξ3(−1/7), though locally D-optimal only at
γ = −1/7, does show a more satisfactory overall performance with efficiencies range
between 0.8585 and 1. The efficiencies of the half-fractional design ξ6 are greater than
0.80 only for γ > −0.049, otherwise the efficiencies decrease towards zero. The design
ξ4 turns out to be uniformly worse than ξ3(−1/7) and its efficiencies range between
0.5768 and 0.7615. The worst performance is shown by the designs ξ5 and ξ7.
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Figure 4.10: Example 4.6.2. D-efficiencies from (4.68) over the
region −1/4 < γ ≤ 1, γ = β/β1, β = β2 = β3, β1 > 0.

Example 4.6.3. In the situation of Corollary 4.5.3 we consider the experimental region
X = [1, 4]2 where condition b − 3a > 0 is satisfied. The vertices are denoted by
v1 =

(
4, 4

)>
, v2 =

(
4, 1

)>
, v3 =

(
1, 4

)>
, v4 =

(
1, 1

)>
. We restrict to β3 6= 0,

β1 = β2 = β, and the range of γ = β/β3 is (−1/2,∞). In analogy to Example
4.6.2 denote by ξ1 and ξ2 the saturated and equally weighted designs with support
{v1,v2,v3} and {v2,v3,v4}, respectively. By the corollary ξ1 and ξ2 are locally D-
optimal at γ ≥ 4 and γ ∈ (−1/2,−4/11], restrictively. Denote by ξ3(γ) the design
given in part (iii) of Corollary 4.5.3 which is locally D-optimal at γ ∈ (−4/11, 4). Note
that from (4.68) we put ξ∗β = ξ1 if γ ≥ 4, ξ∗β = ξ2 if γ ∈ (−1/2,−4/11] and ξ∗β = ξ3(γ)
if γ ∈ (−4/11, 4). For examination we select ξ1, ξ2, ξ3(0). As a natural competitor
we select ξ4 that assigns uniform weights to the grid {1, 2.5, 4}2. The efficiencies are
depicted in Figure 4.11. We observe that the performance of ξ1 and ξ2 is similar to
that of the corresponding designs in Example 4.6.2. Moreover, the design ξ(0) show
a more satisfactory overall performance. The efficiencies of ξ4 vary between 0.77 and
0.83 for γ > −4/11.
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Figure 4.11: Example 4.6.3. D-efficiencies from (4.68) over the
region −1/2 < γ ≤ 5, γ = β/β3, β = β1 = β2, β3 6= 0.

4.6.2 Simulation

It is worth to examine also the performance of a locally D-optimal design for finite
sample sizes, in particular, under Example 4.6.1 in the preceding subsection. So, for
the locally D-optimal design ξ1 we compare the precision of the maximum likelihood
estimator (MLE) β̂(ξ1, n) under ξ1 and for sample size n with that of the MLE β̂(ξ, n)
under another non-optimal design ξ for the same sample size n. Note that here the true
parameter vector β is chosen from the optimality subregion of ξ1, i.e., β ≥ 1. Denote
by V (β̂(ξ, n),β) the variance-covariance matrix of the MLE at β for a given design
ξ. Since there is no analytic formula for this quantity its (approximate) numerical
computation is done by simulations. Our simulations showed in particular, that the
biases of the MLE’s are small and hence only the variance-covariance matrices are
relevant. In analogy to (4.68) consider the D-efficiencies,

Eff(ξ, ξ1, n,β) =
(

detV (β̂(ξ1, n),β)
detV (β̂(ξ, n),β)

)1/p

(4.69)

which give the relative precision of the MLE under ξ, relative to the precision of the
MLE under ξ1, at the parameter point β and for the sample size n. In fact, for large
sample size n the efficiencies given by (4.68) for ξ∗β = ξ1 will be close to those from
(4.69). In our simulation study we generated independent gamma-distributed obser-
vations according to the designs under consideration with shape parameter κ = 1
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and expectations µi = 1/(1 + βx1i + βx2i), i = 1, . . . , n, β ∈ {1, 3, 5}. For each sam-
ple size n ∈ {36, 72, 108, 360, 720, 1080, 1800, 3600} and each β ∈ {1, 3, 5} s = 10000
simulation runs were carried out. For each instance we calculated the approximate ex-
pectation E(β̂(ξ, n)) ≈ 1

s

∑s
i=1 β̂i(ξ, n) and the approximate variance-covariance matrix

V (β̂(ξ, n),β) ≈ 1
s

∑s
i=1

(
β̂i(ξ, n)− E(β̂(ξ, n))

)(
β̂i(ξ, n)− E(β̂(ξ, n))

)>
.

In Table 4.5 the computed values of the efficiencies (4.69) are reported for the
designs ξ = ξ3(0) and ξ = ξ4. The table shows the benefit of the locally D-optimal
design ξ1 compared to its competitors even for moderate finite sample sizes. Of course,
for large sample sizes the reported efficiencies nearly coincide with those from (4.68)
which are addressed to in Table 4.5 as n =∞.

Table 4.5: Example 4.6.1. D-efficiencies of ξ3(0) and ξ4 from (4.69).
The employed built-in R-algorithm did not yield results for n = 36
under ξ4. For n→∞ the values are equal to efficiencies from (4.68)

Eff(ξ3(0), ξ1, n,β) Eff(ξ4, ξ1, n,β)
n β = 1 β = 3 β = 5 β = 1 β = 3 β = 5
36 1.0431 0.9412 0.9189 . . . . . . . . .

72 0.9832 0.9046 0.8736 0.7614 0.6604 0.6306
108 0.9607 0.8891 0.8965 0.7297 0.6739 0.6522
360 0.9501 0.8997 0.8971 0.7061 0.6702 0.6575
720 0.9328 0.8998 0.8782 0.7078 0.6601 0.6589
1080 0.9311 0.9053 0.8880 0.7063 0.6630 0.6548
1800 0.9399 0.8903 0.8843 0.7032 0.6643 0.6572
3600 0.9551 0.9002 0.8720 0.7128 0.6673 0.6666
∞ 0.9449 0.8904 0.8778 0.7061 0.6634 0.6598
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Chapter 5

Extensions to multivariate
generalized linear models

The purpose of this chapter is to study the design optimality for the multivariate
generalized linear models, MGLMs. We will use the results obtained in Chapter 3
and Chapter 4 under univariate models to derive optimal designs in the multivariate
structure. In Section 5.1 we introduce the model with related assumptions. In Section
5.2 we develop a particular solution of optimal designs for a general setup of MGLMs.
In Section 5.3 we concentrate on a MGLM with univariate gamma models.

5.1 Model specification

Let Y 1, ...,Y n be independent m-dimensional response variables for n experimental
units. There are n observations taken for each one of the m components of the exper-
imental unit i, i = 1, . . . , n. Let a compact experimental region X be given. Denote
by

Y =
(
Y1, . . . , Ym

)>
the vector of responses for a particular unit at a point x ∈ X , i.e., an m-dimensional
real valued vector is observed instead of a single real valued random variable at each
point x ∈ X .

The distribution of a single response Yj is assumed to belong to a one-parameter
exponential family distribution p(Yj; θj, φj) from (2.3). Therefore, the approach of the
generalized linear model, GLM, that was introduced in Section 2.1 is utilized and to
be extended here. Each jth component has expected mean E(Yj) = µj = b′j(θj) and
variance function Vj(µj) = b′′j (θj) and thus, var(Yj) = aj(φj)Vj(µj). The expected
mean µj is combined to the linear predictor f>j (x)βj by a proper link function gj as
in (2.4);

ηj = gj (µj) where ηj = f>j (x)βj (1 ≤ j ≤ m),
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and f j(x) is the pj-dimensional vector of known regression functions fj1, . . . , fjpj with
the vector of unknown parameters βj =

(
βj1, . . . , βjpj

)>
∈ Rpj . Note that in the jth

component f>j (x)βj =
pj∑
l=1

fjl(x)βjl. The total number of MGLM parameters is denoted
by p, i.e., p = ∑m

j=1 pj. The link functions gj (1 ≤ j ≤ m) are not necessarily similar
and thus the single responses Yj (1 ≤ j ≤ m) may belong to distinct one-parameter
probability distributions.

Note that µj = µj(x,β) = g−1
j

(
f>j (x)βj

)
and dηj/dµj = g′j

(
g−1
j

(
f>j (x)βj

))
so the

intensity function in the jth component is given from (2.5) as

uj(x,βj) =
(

var(Yj)
(dηj

dµj

)2)−1
for all x ∈ X (1 ≤ j ≤ m).

Let f(x) = diag
(
f 1(x), . . . ,fm(x)

)
denotes the p×m block diagonal multivariate re-

gression function and β = (β>1 , . . . ,β>m)> is the stacked parameter vector of dimension
p× 1. Denote by µ = (µ1, . . . , µm)> the vector of expected means of a unit at a point
x ∈ X . The MGLM for each unit at a point x ∈ X is defined by

η = g
(
µ
)

where η = f>(x)β (5.1)

with g
(
µ
)

=
(
g1(µ1), . . . , gm(µm)

)>
and f>(x)β =

(
f>1 (x)β1, . . . ,f

>
m(x)βm

)>
. To

assure estimability it is assumed that the components fj1, . . . , fjpj of f j(x) are linearly
independent functions on X and thus, the components of f(x) are linearly independent
functions on X .

The simplest situation can be taken under identiy links, i.e., g
(
µ
)

= µ for which
the intensities uj(x,βj), j = 1, . . . ,m are constants equal to 1 for any x ∈ X . Hence,
the design problems are addressed under the multivariate linear model, e.g. see Chang
(1994) and Yue, Liu, and Chatterjee (2014). However, Liang and Zeger (1986) men-
tioned that there is a lack of a rich class of distributions for the multivariate non-normal
outcomes. Therefore, they proposed the method of generalized estimating equations
(GEEs) to estimate the model parameters. GEEs are considered as an extension of
the score function for the GLM. However, in optimal design theory GEEs were used
to obtain optimal blocked designs for correlated binary data in Woods and Ven (2011)
and then used in Ven and Woods (2014) to find optimal blocked minimum-support
designs for non-linear models.

To employ GEEs method we assume that the observations Y i (1 ≤ i ≤ n) are uncor-
related across the units while the components are correlated within each unit. That is
for the observation Y letR be them×m true correlation matrix which is independent of
x and β. The correlation matrixR is assumed to be positive definite and might rewrite
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as R =
(
ρjh
)h=1,...,m

j=1,...,m
where ρjj = 1 (1 ≤ j ≤ m) and −1 ≤ ρjh < 1 (1 ≤ j < h ≤ m).

Denote also the inverse of the correlation matrix by R−1 =
(
ρ(jh)

)h=1,...,m

j=1,...,m
.

Remark 5.1.1. In general, for a square matrix B if there exists a matrix C such
that CC> = B, then we call C a square root of the matrix B. If B is a di-
agonal matrix given by B = diag(b1, . . . , bm) then we can define its square root as
C = diag(b

1
2
1 , . . . , b

1
2
m) and we denote B

1
2 = C.

Define A(x,β) = diag
(

var(Yj)
)m
j=1

for all x ∈ X . Then the observation Y at a

point x ∈ X has the covariance structure Cov(Y ) = Σ (x,β), see Liang and Zeger
(1986), where

Σ (x,β) = A
1
2 (x,β)RA 1

2 (x,β). (5.2)

Let ∆(x,β) = diag
(

dµj
dηj

)m
j=1

for all x ∈ X . In the context of GEEs we define the

quasi-score function as U
(
β
)

=
n∑
i=1

f(xi)∆(xi,β) Σ−1(xi,β)
(
Y i−µi

)
where U (β) is

a p× 1 quasi-score vector. The maximum quasi-likelihood estimates β̂ is the solution
of the generalized estimating equations U (β) = 0p, where 0p is a p× 1 vector of zeros,
see Crowder (1995).

The quasi-Fisher information matrix for the MGLM at a single point x is given by
M (x,β) = f(x)∆(x,β)Σ−1 (x,β) ∆(x,β)f>(x).

By modifying function (2.7) for each component j we write

f j,βj(x) =
√
uj(x,βj)f j(x), j = 1, . . . ,m,

which then constitute the p ×m matrix fβ(x) = diag
(
f 1,β1

(x), . . . ,fm,βm(x)
)
. It is

straightforward to obtain

∆(x,β)Σ−1(x,β)∆(x,β) = diag
(
u

1
2
j (x,βj)

)m
j=1
R−1 diag

(
u

1
2
j (x,βj)

)m
j=1
,

and thus the quasi-score function rewrites as U
(
β
)

=
n∑
i=1

fβ(xi)R−1
(
Y i−µi

)
whereas

the quasi-Fisher information matrix reads as

M(x,β) = fβ(x)R−1f>β (x).

For the whole experiment we introduce the information matrix

M (x1, . . . ,xn,β) =
n∑
i=1
M(xi,β) (5.3)
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which rewrites in a block representation as

M (x1, . . . ,xn,β) =
(
ρ(jh)

n∑
i=1
f j,βj(xi)f

>
h,βh

(xi)
)h=1,...,m

j=1,...,m
. (5.4)

The variance-covariance matrix var(β̂) of the estimated parameters is approximately

var(β̂) ≈M−1(x1, . . . ,xn,β).

Multi-dimensional observations are rearranged in matrix form in different ways. For
the design point of view, particularly, under our assumptions we are to emphasize the
relation of MGLM to its univariate GLM as for the linear case in Zellner (1962), Krafft
and Schaefer (1992) and Kurotschka and Schwabe (1996). The observational vector of
the whole experiment is obtained by vectorization of the data (design) matrix, i.e., by
stacking the columns on top of each other which represent the components. Therefore,
let Y j =

(
Yj(x1), . . . , Yj(xn)

)>
be the observations of the jth component of the whole

experiment x1, . . . ,xn. The stacked vector of responses for all units at the whole
experiment is thus denoted by Y =

(
Y >1 , . . . ,Y

>
m

)>
.

In this context, the design matrix F for the multivariate model is written in com-
ponent wise. So let F j = [f j(x1), . . . ,f j(xn)]> be the n× pj design matrix for the jth
marginal model, then we obtain F = diag

(
F 1, . . . ,Fm

)
which represents the stacked

mn × p design matrix for the MGLM. As a result the stacked vector of linear predic-
tors is given by H = [η>1 , . . . ,η>m]> = Fβ, where ηj =

(
ηj(x1,βj), . . . , ηj(xn,βj)

)>
,

j = 1, . . . ,m.
For notational simplicity let Yji = Yj(xi) denote the ith observation of the jth

component at the point xi and µji denote the value of the jth marginal expected
mean at the point xi, i.e., µji = µj(xi,βj) with ηji = ηj(xi,βj). Then define the n×n

diagonal matricesDj = diag
(

var(Yji)
)n
i=1

and Ej = diag
((

∂µji
∂ηji

)2
)n
i=1

, j = 1, . . . ,m.

Then we obtain the mn×mn matrices D = diag
(
Dj

)m
j=1

and E = diag
(
Ej

)m
j=1

. It

can be seen that D−1
j Ej = diag

(
uj(xi,βj)

)n
i=1
, j = 1, . . . ,m.

By the Kronecker product “⊗” the mn × mn variance-covariance matrix of Y is
obtained by

Cov(Y ) = D
1
2 (R⊗ In)D 1

2 =



ρ11D1 ρ12D
1
2
1D

1
2
2 . . . ρ1mD

1
2
1D

1
2
m

ρ21D
1
2
2D

1
2
1 ρ22D2 . . . ρ2mD

1
2
2D

1
2
m

... ... . . . ...
ρm1D

1
2
mD

1
2
1 ρm2D

1
2
mD

1
2
2 . . . ρmmDm
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where In is an n×n identity matrix. The overall mn×mn weight matrixW is defined
as W = E

1
2
(
Cov(Y )

)−1
E

1
2 = E

1
2D−

1
2 (R ⊗ In)−1D−

1
2E

1
2 . Hence, the information

matrix (5.3) can be represented in the form

M (x1, . . . ,xn,β) = F>WF .

Lemma 5.1.1. Consider the MGLM (5.1) and the whole experiment x1, . . . ,xn. Let
F j = [f j(x1), . . . ,f j(xn)]>. For a given parameter point β = (β>1 , . . . ,β>m)> de-
fine F j,βj = D

− 1
2

j E
1
2
j F j = [f j,βj(x1), . . . ,f j,βj(xn)]> for all j = 1, . . . ,m and denote

F β = D−
1
2E

1
2F = diag

(
F 1,β1 , . . . ,Fm,βm

)
. Then the information matrix (5.3) has the

form

M(x1, . . . ,xn,β) = F>β
(
R−1 ⊗ In

)
F β. (5.5)

Proof. Let a parameter point β = (β>1 , . . . ,β>m)> be given. Straightforward steps
imply that

M(x1, . . . ,xn,β) = F>WF = F>E
1
2
(
Cov(Y )

)−1
E

1
2F

= F>E
1
2D−

1
2 (R⊗ In)−1D−

1
2E

1
2F

= F>β
(
R−1 ⊗ In

)
F β.

The multivariate version of The Equivalence Theorem (Theorem 2.2.2, part (a),
part (b)) for checking the D- and A-optimality of a given design (see Fedorov, Gagnon,
and Leonov (2002)) can be used. Denote by tr(A) the trace of a p× p matrix A.

Theorem 5.1.1. Let β be a given parameter point and let ξ∗ be a design with nonsin-
gular information matrix M (ξ∗,β).

• A design ξ∗ is locally D-optimal (at β) for the MGLM if and only if

tr
(
R−1f>β (x)M−1(ξ∗,β)fβ(x)

)
≤ p ∀x ∈ X (5.6)

• A design ξ∗ is locally A-optimal (at β) for the MGLM if and only if

tr
(
R−1f>β (x)M−2(ξ∗,β)fβ(x)

)
≤ tr

(
M−1(ξ∗,β)

)
∀x ∈ X (5.7)

where at the support points of ξ∗ both inequalities (5.6) and (5.7) are equations.
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5.2 Reduction to univariate models

The locally optimal design for a MGLM is derived at a given parameter point β under
known correlation matrix R. Throughout we focus on approximate designs ξ with
support {x1, . . . ,xr} ⊆ X defined by (2.9). The information matrix (5.3) of ξ is given
by

M (ξ,β) =
r∑
i=1

ωiM(xi,β). (5.8)

In this context, in each jth component the functions f j(x1), . . . ,f j(xr) are linearly
independent which constitute the r × pj design matrix F j = [f j(x1), . . . ,f j(xr)]>.
Here, Yji = Yj(xi), µji = µj(xi,βj) and ηji = ηj(xi,βj), i = 1, . . . , r. Thus we

write Dj = diag
(

var(Yji)
)r
i=1

and Ej = diag
((

∂µji
∂ηji

)2
)r
i=1

. For the MGLM we

get the mr × p design matrix F = diag
(
F 1, . . . ,Fm

)
with the mr × mr matrices

D = diag
(
Dj

)m
j=1

and E = diag
(
Ej

)m
j=1

. Let Ω = diag(ω1, . . . , ωr) be a diagonal

matrix of the design weights. Denote F j,βj = D
− 1

2
j E

1
2
j F j = [f j,βj(x1), . . . ,f j,βj(xr)]

>

with F β = D−
1
2E

1
2F = diag

(
F 1,β1 , . . . ,Fm,βm

)
then by Lemma 5.1.1 the information

matrix (5.8) of a design ξ rewrites

M(ξ,β) = F>β
(
R−1 ⊗Ω

)
F β. (5.9)

Furthermore, M−1(ξ,β) =
(
F>β

(
R−1 ⊗ Ω

)
F β

)−1
, which factorizes if F β is square,

i.e.,

M−1(ξ,β) = F−1
β

(
R⊗Ω−1

)(
F>β

)−1
.

In general, a block representation of the information matrix (5.8) is of the form

M (ξ,β) =
(
ρ(jh)M jh(ξ,βj,βh)

)h=1,...,m

j=1,...,m
(5.10)

whereM j(ξ,βj) = M jj(ξ,βj) = F>j,βjΩF j,βj =
r∑
i=1

ωif j,βj

(
xi
)
f>j,βj

(
xi
)
is the pj × pj

information matrix for the jth marginal model (1 ≤ j ≤ m), whereas the pj × ph sub-
matrices M jh(ξ,βj,βh) = F>j,βjΩF h,βh =

r∑
i=1

ωif j,βj

(
xi
)
f>h,βh

(
xi
)

(1 ≤ j 6= h ≤ m)
which are not necessarily square.

Remark 5.2.1. All the submatrices M j(ξ,βj), j = 1, . . . ,m are nonsingular if for
any design ξ with r design points we have r ≥ max

(1≤j≤m)
pj.
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Lemma 5.2.1. Consider a design ξ defined on X with information matrix (5.10).
Let a parameter point β = (β>1 , . . . ,β>m)> be given. Assume that all submatrices
M jh(ξ,βj,βh), j, h = 1, . . . ,m are square, i.e., p1 = · · · = pm = p0 and nonsingu-
lar where the parameters for each component are not necessarily equal.
If

m∑
k=1

ρjkρ
(hk)M jk(ξ,βj,βk)M−1

hk (ξ,βh,βk) = 0 for all (1 ≤ j 6= h ≤ m) then M (ξ,β)
given by (5.10) is nonsingular and a block representation of its inverse is given by

M−1(ξ,β) =
(
ρhjM

−1
hj (ξ,βh,βj)

)h=1,...,m

j=1,...,m
(5.11)

Proof. The proposed assumption
m∑
k=1

ρjkρ
(hk)M jk(ξ,βj,βk)M−1

hk (ξ,βh,βk) = 0 for all
(1 ≤ j 6= h ≤ m) is explicitly describes the multiplication of the off-diagonal subma-
trices and therefore, M (ξ,β)M−1(ξ,β) is an identity matrix.

Corollary 5.2.1. Let a design ξ on X be given for a bivariate GLM (m = 2) such that

p1 = p2 = p0. Given the correlation matrixR =
 1 ρ

ρ 1

 withR−1 = 1
1−ρ2

 1 −ρ
−ρ 1

.
Let a parameter point β = (β>1 ,β>2 )> be given. Then we have

M (ξ,β) = 1
1−ρ2

 M 1(ξ,β1) −ρM 12(ξ,β)
−ρM 21(ξ,β) M 2(ξ,β2)

 whereM j(ξ,βj) = F>j,βjΩF j,βj , j = 1, 2

and M jh(ξ,β) = F>j,βjΩF h,βh(1 ≤ j 6= h ≤ 2). If M j(ξ,βj), j = 1, 2, M 12(ξ,β) and
M 21(ξ,β) are nonsingular then the inverse of M (ξ,β) (see Lu and Shiou (2002) for
inverses of 2× 2 block matrices ) is denoted by

M−1(ξ,β) = (1− ρ2)
 m11 m12

m21 m22

 where

m11 =
(
M 1(ξ,β1)− ρ2M 12(ξ,β)M−1

2 (ξ,β2)M 21(ξ,β)
)−1

,

m12 = ρm11M 12(ξ,β)M−1
2 (ξ,β2),

m22 = M−1
2 (ξ,β2) + ρ2M−1

2 (ξ,β2)M 21(ξ,β)m11M 12(ξ,β)M−1
2 (ξ,β2),

Moreover, the elements m11,m12,m21,m22 can be determined as in the following.

(i) m11 = 1
1−ρ2M

−1
1 (ξ,β1) and m12 = ρ

1−ρ2M
−1
21 (ξ,β) if

M 12(ξ,β)M−1
2 (ξ,β2)M 21(ξ,β) = M 1(ξ,β1).

(ii) m22 = 1
1−ρ2M

−1
2 (ξ,β2) and m21 = ρ

1−ρ2M
−1
12 (ξ,β) if

M 21(ξ,β)M−1
1 (ξ,β1)M 12(ξ,β) = M 2(ξ,β1).
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and hence under the above assumptions we get

M−1(ξ,β) =
 M−1

1 (ξ,β1) ρM−1
21 (ξ,β)

ρM−1
12 (ξ,β) M−1

2 (ξ,β2)


Proof. Under assumptions (i) and (ii), straightforward multiplication yields
M (ξ,β)M−1(ξ,β) = Ip.

The previous situation can be simplified under saturated designs. Let Ξp0 de-
notes the set of all saturated designs under each jth univariate GLM (1 ≤ j ≤ m),
i.e. Ξp0 = {ξ : supp(ξ) ⊆ X , r = p0}. Clearly, for any design ξ ∈ Ξp0 the design ma-
trix F (or F β) of the MGLM is square. In particular, under Corollary 5.2.1 with
ξ ∈ Ξp0 both matrices F β1 and F β2 are square and nonsingular. Hence, the submatri-
ces M j(ξ,βj), j = 1, 2, M jh(ξ,β) (1 ≤ j 6= h ≤ 2) factorize so that the assumptions
(i) and (ii) in Corollary 5.2.1 will be implicitly satisfied as it is given by the next
corollary.

Corollary 5.2.2. Consider the notations presented in Corollary 5.2.1. Let ξ ∈ Ξp0.
Then the assumptions (i) and (ii) given in Corollary 5.2.1 are satisfied. That is
(i) M 12(ξ,β)M−1

2 (ξ,β2)M 21(ξ,β) = M 1(ξ,β1)
(ii) M 21(ξ,β)M−1

1 (ξ,β1)M 12(ξ,β) = M 2(ξ,β1).

Proof. Note that M j(ξ,βj) = F>j,βjΩF j,βj , j = 1, 2 and M jh(ξ,β) = F>j,βjΩF h,βh

(1 ≤ j 6= h ≤ 2). Then
(i) M 12(ξ,β)M−1

2 (ξ,β2)M 21(ξ,β) = F>1,β1
ΩF 2,β2F

−1
2,β2

Ω−1(F>2,β2
)−1F>2,β2

ΩF 1,β1 =
F>1,β1

ΩF 1,β1

(ii) M 21(ξ,β)M−1
1 (ξ,β1)M 12(ξ,β) = F>2,β2

ΩF 1,β1F
−1
1,β1

Ω−1(F>1,β1
)−1F>1,β1

ΩF 2,β2 =
F>2,β2

ΩF 2,β2 .

Lemma 5.2.2. The locally D-optimal design ξ∗ ∈ Ξp0 at a given parameter point β
for a MGLM (5.1) is independent of correlation matrix R.

Proof. The determinant of the information matrix M(ξ∗,β) from (5.9) is given by

detM (ξ∗,β) = detF>β
(
R−1 ⊗Ω

)
F β

= det
(
F>βF β

)
det

(
R−1 ⊗Ω

)
= det

(
F>βF β

)(
det Ω

)m(
detR−1

)r
where

(
det Ω

)m
=
(

r∏
i=1

ωi

)m
= p−rm0 since ξ∗ is saturated. It follows that detM(ξ∗,β)

is proportional to det
(
F>βF β

)
. Thus the design ξ∗ is D-optimal if and only if it

maximizes det
(
F>βF β

)
and hence, ξ∗ is independent of R.
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Theorem 5.2.1. Given a parameter point β = (β>1 , . . . ,β>m)>. Let the design ξ∗ ∈ Ξp0

be locally D-optimal (at βj ) for each jth marginal model (1 ≤ j ≤ m). Then ξ∗ is
locally D-optimal (at β) for the MGLM (5.1) in the set Ξp0.

Proof. From the proof of Lemma 5.2.2 we have

detM(ξ∗,β) = det
(
F>βF β

)(
det Ω

)m(
detR−1

)r
= p−rm0 (detF )2

(
detE 1

2D−
1
2

)2(
detR−1

)r
= p−rm0 (detF )2

( m∏
j=1

r∏
i=1

uj(xi,βj)
)(

detR−1
)r

where detF =
m∏
j=1

detF j. Moreover, the determinant of the information matrix for

the jth marginal models is detM j(ξ∗,βj) = p−r0 (detF j)2
r∏
i=1

uj(xi,βj), j = 1, . . . ,m.

Thus
r∏
i=1

uj(xi,βj) = pr0
(

detF j

)−2
detM j(ξ∗,βj). It follows that

detM(ξ∗,β) = p−rm0

( m∏
j=1

detF j

)2( m∏
j=1

pr0
(

detF j

)−2
detM j(ξ∗,βj)

)(
detR−1

)r
= p−rm0 prm0

( m∏
j=1

detF j

)2 ( m∏
j=1

detF j

)−2 m∏
j=1

detM j(ξ∗,βj)
(

detR−1
)r

=
(

detR−1
)r m∏

j=1
detM j(ξ∗,βj)

Since ξ∗ is locally D-optimal for the jth marginal model it maximizes detM j(ξ,βj)
on Ξp0 . Thus

m∏
j=1

detM j(ξ∗,βj) ≥
m∏
j=1

detM j(ξ,βj) for all ξ ∈ Ξp0 . As a result,

ξ∗ maximizes detM (ξ,β) on Ξp0 . Hence, ξ∗ ∈ Ξp0 is locally D-optimal (at β) for a
MGLM.

Next we will deal with the local A-optimality and the following lemma is immediate.

Lemma 5.2.3. The locally A-optimal design ξ∗ ∈ Ξp0 at a given parameter point β
for a MGLM (5.1) is independent of correlation matrix R.

Proof. The inverse of the information matrix of ξ∗ ∈ Ξp0 is given by
M−1(ξ∗,β) = F−1

β

(
R⊗Ω−1

)(
F>β

)−1
which has the block representation (5.11). Thus

tr(M−1(ξ∗,β)) =
m∑
j=1

tr(M−1
j (ξ∗,βj)). It is clear that tr(M−1(ξ∗,β)) does not depend

on R.

Theorem 5.2.2. Given a parameter point β = (β>1 , . . . ,β>m)>. Let the design ξ∗ ∈ Ξp0

be locally A-optimal (at βj ) for each jth marginal model (1 ≤ j ≤ m). Then ξ∗ is
locally A-optimal (at β) for the MGLM (5.1) in the set Ξp0.
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Proof. For the design ξ∗ ∈ Ξp0 we have tr(M−1(ξ∗,β)) =
m∑
j=1

tr(M−1
j (ξ∗,βj)). As ξ∗ is

locally A-optimal for the jth marginal model then tr(M−1
j (ξ∗,βj)) ≤ tr(M−1

j (ξ,βj))
for all ξ ∈ Ξp0 . Thus

m∑
j=1

tr(M−1
j (ξ∗,βj)) ≤

m∑
j=1

tr(M−1
j (ξ,βj)) for all ξ ∈ Ξp0 . As a

result, ξ∗ minimizes tr(M−1(ξ,β)) on Ξp0 . Hence, ξ∗ is locally A-optimal (at β) for a
MGLM.

Remark 5.2.2. It is well known from Lemma 3.1.1 in Section 3.1 that the optimal
weights of a locally A-optimal design under a univariate generalized linear model de-
pends on the model parameters through the intensity functions. Therefore, the locally
A-optimal design for marginal univariate models is A-optimal for the MGLM if all
intensities in all components have the same form and the A-optimality is derived at
equal parameter points. This guarantees that the A-optimal design is the same for all
marginal models.

In the following corollary we provide a solution of locally optimal designs for a
multivariate GLM under identical components.

Corollary 5.2.3. Consider the MGLM (5.1) such that f 1(x) = · · · = fm(x) = f 0(x).
Let the parameter point β be given such that β1 = · · · = βm = β0, i.e., β = 1⊗ β0.
Assume that u1(x,β1) = · · · = um(x,βm) = u0(x,β0) for all x ∈ X . Hence,
F 1,β1 = · · · = Fm,βm = F 0,β0. Let the design ξ∗ be locally D- resp. A-optimal (at β0)
for each jth marginal model (1 ≤ j ≤ m). Then the design ξ∗ is locally D- resp.
A-optimal (at β = 1⊗ β0) for the MGLM (5.1).

Proof. The proposed assumptions in the corollary implies that the information matrix
of a design ξ and its inverse factorize as in the following

M (ξ,β0) = R−1 ⊗M (ξ,β0) and thus M−1(ξ,β0) = R⊗M−1(ξ,β0).

Therefore, we obtain

detM(ξ,β0) =
(

detR−1
)p0( detM(ξ,β0)

)m
,

tr(M−1(ξ,β0)) = tr(R)tr(M−1(ξ,β0)).

The optimization with respect to D- and A-criteria reduces to the corresponding uni-
variate optimization problem.
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5.3 Seemingly unrelated univariate gamma models

In this section we assume that the MGLM is constituted by seemingly unrelated gamma
models. That is the univariate responses Yj (1 ≤ j ≤ m) come from gamma distribu-
tions that were determined in Section 4.1. Besides, we allow different factors belong to
different experimental regions and different regression functions in the linear predictors
that are related to the expected means by power link functions,

ηj = µ
kj
j where ηj = f>j (xj)βj =

pj∑
l=1

fjl(xj)βjl (1 ≤ j ≤ m),

where kj denotes the exponent of the power link in the jth model (for notational
convenience we use the exponents kj instead of ρj). Here, for the jth component
f j(xj) is the pj-dimensional vector of linearly independent known regression functions
fj1, . . . , fjpj and βj =

(
βj1, . . . , βjpj

)>
∈ Rpj . Denote by νj the number of factors in

component j and ν denotes the total number of factors in the MGLM, i.e., ν = ∑m
j=1 νj.

The point xj = (xj1, . . . , xjνj)> may differ across the components of a unit and is chosen
from an experimental region Xj ⊆ Rνj . The intensity function in component j is given
at xj ∈ Xj as uj(xj,βj) =

(
f>j (xj)βj

)−2
.

The experimental region for the multivariate model is given by X = ×mj=1Xj. De-
note p = ∑m

j=1 pj. The p × m block diagonal multivariate regression is given by
f(x) = diag

(
f 1(x1), . . . ,fm(xm)

)
where x ∈ X . Note that x is a ν-tuple, i.e.,

x = (x>1 , . . . ,x>m)> = (x11, . . . , x1ν1 , . . . , xm1, . . . , xmνm)>. Let the stacked parame-
ter p-vector β = (β>1 , . . . ,β>m)> be given. The MGLM with univariate gamma models
for each unit at a point x ∈ X is defined by

η =
(
µk1

1 , . . . , µ
km
m

)>
where η = f>(x)β.

In particular, for multivariate models with seemingly unrelated linear models i.e.,
ηj = µj, j = 1, . . . ,m product type designs (see Subsection 4.5.3) were developed by
Soumaya, Gaffke, and Schwabe (2015). In the following we will develop analogous
results under the MGLM with seemingly unrelated gamma models. To this end for the
univariate gamma model in component j we define

f j,βj(xj) =
(
f>j (xj)βj

)−1
f j(xj), xj ∈ Xj, j = 1, . . . ,m. (5.12)

The function f j,βj(xj) given above in (5.12) involves implicitly the intercept term,
i.e., there exist constant vectors cj such that c>j f j,βj(xj) = 1 for all xj ∈ Xj with
cj = βj, j = 1, . . . ,m. Therefore, under this model property we are able to develop a
product structure of a locally optimal design for our MGLM.

In analogy to Lemma 4.1, Lemma 4.2 in Soumaya, Gaffke, and Schwabe (2015) the
information matrix of a product type design for the MGLM with seemingly unrelated
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gamma models and its inverse are given in the following lemmas where the proof is
similar to that in the reference.

Lemma 5.3.1. Let ξ =
m⊗
j=1

ξj be a product-type design on the experimental region

X = ×mj=1Xj. Let a parameter point β = (β>1 , . . . ,β>m)> be given. For each marginal
design ξj denote by M j(ξj,βj) =

∫
Xj f j,βj(xj)f

>
j,βj

(xj) ξj(dxj) the information matrix
and by mj(ξj,βj) =

∫
Xj f j,βj(xj) ξj(dxj) the moment vector. Then the information

matrix of design ξ has the form

M(ξ,β) = diag
(
ρ(jj)

(
M j(ξj,βj)−mj(ξj,βj)m>j (ξj,βj)

) )
+m(ξ,β)R−1m>(ξ,β)

where m(ξ,β) = diag
(
mj(ξj,βj)

)m
j=1

is the block diagonal matrix of the marginal
moments.

Lemma 5.3.2. Let a parameter point β = (β>1 , . . . ,β>m)> be given. Let ξ =
m⊗
j=1

ξj be

a product type design on the experimental region X = ×mj=1Xj such that for each j the
information matrix M j(ξj,βj) of ξj in the jth marginal model is nonsingular. Then
the information matrix M(ξ,β) of ξ in the MGLM with seemingly unrelated gamma
models is nonsingular and

M−1(ξ,β) = diag
(

1
ρ(jj)

(
M−1

j (ξj,βj)− βjβ>j
))m

j=1
+BRB>

where B = diag
(
βj
)m
j=1

is the block diagonal matrix of the parameter vectors βj.

Next we provide the locally D- and A-optimal designs in the product type. The
proof is derived by the conditions of The Equivalence Theorem given in (5.6) and (5.7)
which is analogous to the proof of Theorem 4.1 and Theorem 4.2 in Soumaya, Gaffke,
and Schwabe (2015). The proof is obtained on the fact that the sensitivity function
in condition (5.6) or (5.7) is the sum of the marginal sensitivity functions in condition
(2.11) or (2.12), respectively, under univariate models.

Theorem 5.1. Let a parameter point β = (β>1 , . . . ,β>m)> be given. For each j = 1, . . . ,m,
let ξ∗j be a locally D-optimal design (at βj) for the jth univariate gamma model on the
experimental region Xj. Then the product type design ξ∗ =

m⊗
j=1

ξ∗j is a locally D-optimal

design (at β) for the MGLM with seemingly unrelated gamma models on the experi-
mental region X = ×mj=1Xj.

Theorem 5.2. Let a parameter point β = (β>1 , . . . ,β>m)> be given. For each j = 1, . . . ,m,
let ξ∗j be a locally A-optimal design (at βj) for the jth univariate gamma model on the
experimental region Xj. Then the product type design ξ∗ =

m⊗
j=1

ξ∗j is a locally A-optimal

design (at β) for the MGLM with seemingly unrelated gamma models on the experi-
mental region X = ×mj=1Xj.
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Chapter 6

Discussion and Outlook

In this chapter the summary of the obtained results is presented in the first section. In
the second section potential extensions of the work and future topics are suggested.

6.1 Summary

Optimal experimental designs aim to find an optimal choice of the experimental settings
that achieve the most precise statistical inferences of the estimates of the model param-
eters. There is a considerable amount of literature for constructing optimal designs for
generalized linear models. In the current thesis, Chapter 3, we firstly focused on ana-
lytic solutions of the optimal designs for generalized linear models considering various
setups of the linear predictor. On that basis locally D-, A- and Φk-optimal designs were
derived. The results of Chapter 3 cover many works in literature specifically Poisson
models, logistic models, probit models, survival models and gamma models. The main
results are in the following according to the corresponding sections in Chapter 3.

• In Section 3.1, particular approaches were established to obtain the optimal
weights of some structures of designs under D-, A- and Kiefer Φk-criteria that
appeared throughout the thesis.

• In Section 3.2, for a first order model with a single binary factor the D- and A-
optimal designs were derived. In contrast, in case of a continuous single factor in
a one-dimensional experimental region, X = [0, 1], we provided a condition on a
design to be supported by only two design points a and b such that 0 ≤ a < b ≤ 1.

• In Section 3.3, for a first order model with two binary factors on X = {0, 1}2 as
an experimental region the locally D- and A-optimal saturated designs as well as
D-optimal four-point designs were derived followed by an extension of particular
D- and A-optimal saturated designs for multiple-factor models.
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• In Section 3.4, the D-optimal design were derived for models with complete in-
teractions whereas we restricted ourselves to a two-factor model with interaction
for deriving A-optimality.

• In Section 3.5, for a model without intercept; optimal saturated designs with
respect to Kiefer Φk-criteria were obtained on a general experimental region. The
result guarantees that any point located at the edges of the given experimental
region X is a support of a Φk-optimal design. Of course, D- and A-optimal
designs are included in that class.

• In Section 3.6, we imposed specific assumptions to allow optimal designs for
models with intercept to be obtained from optimal designs for models without
intercept and vice versa.

The generalized linear models for gamma-distributed outcomes were adopted in
Chapter 4 of the thesis. These so-called gamma models are appropriate for many real
life data from psychology, ecology or medicine. Despite of that, much attention has
not been given to gamma models in optimal designs consideration. In the literature
geometric approaches were only used. In the present thesis, gamma models with the
family of power links were considered on a polytope as an experimental regions, partic-
ularly a ν-dimensional hypercube, i.e., X = [a, b]ν . We aimed at providing outstanding
and novel solutions for optimal designs for gamma models under various setups of
linear predictor. On that basis we obtained the following results according to the
corresponding sections in Chapter 4.

• In Section 4.2, a locally complete class of designs and a locally essentially complete
class of designs were developed based on the Loewner semi-ordering of informa-
tion matrices. These classes contain only the designs which are supported by the
vertices. So that the support points of any design for the relevant gamma models
are chosen from set of all vertices of the experimental region.

• Consequently, the solutions of particular optimal designs for gamma models with
quantitative (continuous) factors were transferred from those under the gener-
alized linear models in Chapter 3. We provided illustrative analysis for D- and
A-optimal designs for gamma models with continuous factors on a hypercube
X = [a, b]ν as an experimental region. We started with Section 4.3 considering
one factor, i.e., ν = 1, then Subsection 4.4.1 considering two factors, i.e., ν = 2
with extension of D- and A-optimal saturated designs to models with multiple
factors, i.e., ν ≥ 2.
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• Moreover, gamma models having linear predictors without intercept were consid-
ered and thus the models are undefined on the origin point. Therefore, experi-
mental regions that do not include the origin are allowed. In Subsection 4.4.2 for
models without interactions Φk-optimal designs were obtained on experimental
region [0,∞]ν \ {0}. However, finding the optimal designs for a gamma model
without intercept on the experimental region X = [a, b], 0 < a < b is complicated
and thus various technical approaches were introduced to solve the optimal de-
signs in Subsection 4.4.2 for models without interaction and in Subsection 4.5.2
for a two-factor model with interaction:

– By a suitable transformation of gamma models without intercept to models
with intercept the optimality results thus were transferred.

– By means of The General Equivalence Theorem optimality were character-
ized for multiple regression by a system of polynomial inequalities which
were solved analytically or by computer algebra.

• In Subsection 4.5.3, we developed an approach to construct locally optimal de-
signs for gamma models of complete product-type interactions by making use of
optimal designs under marginal models. The product type designs were derived
with respect to D-, A- and Φk-criteria.

• In Section 4.6, A comprehensive discussion of the potential benefits of the derived
locally D-optimal designs for gamma models with and without intercept were
presented. It showed how the performance of a locally optimal design is affected
by the initial parameter values and how misspecified values may lead to a poor
performance of the locally optimal design.

In Chapter 5 we developed locally optimal designs for multivariate generalized linear
models.
• A reduction of design problems for MGLM to the univariate GLM was provided.

The locally D- and A-optimal saturated designs are independent of the correlation
coefficients. If the saturated design is optimal for the univariate GLMs then it
is also optimal for its multivariate extension with respect to D- and A-criteria in
the set of all saturated designs. The marginal models are not necessary similar,
for instance; a gamma model and a Poisson model may be adopted as a bivariate
GLM.
• Locally optimal product-type designs with respect to D- and A-criteria were

derived for MGLM when the univariate models are seemingly unrelated gamma
models. If designs are optimal under the corresponding marginal gamma models
then their product is optimal under the multivariate structure of the marginal
models.
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6.2 Further topics and extensions

Some of our result might be applicable under another nonlinear models which have
similar structure of the information matrix (2.1). A nonlinear model is given by

Y = h(x,β) + ε where ε is the error term. (6.1)

In this context fβ(x) is defined as the gradient vector of h(x,β), i.e.,

fβ(x) = ∇h(x,β) = ∂h(x,β)
∂β

=
(
∂h(x,β)
∂β1

, . . . ,
∂h(x,β)
∂βp

)>
. (6.2)

Actually, nonlinear models of form (6.1) were discussed carefully in the literature (see
Ford, Titterington, and Kitsos (1989), Atkinson and Haines (1996)). In Dette et al.
(2008) some dose–response nonlinear models with intercept were listed, e.g., exponen-
tial models and Emax model. Here, a nonlinear model includes explicitly an intercept
term if the function fβ(x) includes the constant 1 (see Schwabe (1995), Li and Bal-
akrishnan (2011), Rodríguez, Ortiz, and Martínez (2015), He (2018)).

In the situation of Section 3.6 extended results can be obtained for nonlinear models
of form (6.1). Here, the information matrix of ξ on X̃ under non-intercept model reads
as

M̃(ξ, β̃) =
∫
X̃
f β̃(x)f>β̃ (x) ξ(dx),

while the information matrix of ξ on X under model with intercept is

M(ξ,β) =
∫
X

(
1,f>β (x)

)>(
1,f>β (x)

)
ξ(dx).

Corollary 6.2.1. Let the design ξ∗ be defined on X such that 0 ∈ supp(ξ∗). Let the
design ξ∗−0 on X̃ be the conditional measure of ξ∗ given x 6= 0 such that X̃ ⊆ X .
Given a parameter point β = (β0, β̃

>)> such that fβ(x) = f β̃(x) for all x ∈ X̃ with
f β̃(0) = 0. Then assume there exists a constant vector c such that c>f β̃(x) = 1 for
all x ∈ supp(ξ∗) \ {0}. Let ξ∗ = (1/(ν + 1)) ξ0 + (ν/(ν + 1)) ξ∗−0. Then
(1) If ξ∗ is locally D-optimal (at β) for model with intercept then ξ∗−0 is locally D-
optimal (at β̃) for the corresponding model without intercept.
(2) If ξ∗−0 is locally D-optimal (at β̃) for model without intercept and

f>β̃ (x)M̃−1(ξ∗−0, β̃)f β̃(x) ≤ ν
(

1− (c>f β̃(x)− 1)2
)
∀x ∈ X (6.3)

then ξ∗ is locally D-optimal (at β) for the corresponding model with intercept.
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Corollary 6.2.2. Under assumptions and notations of Corollary 6.2.1 Let

ξ∗ =
 √

c>c+ 1√
c>c+ 1 +

√
τ̃

 ξ0 +
 √

τ̃√
c>c+ 1 +

√
τ̃

 ξ∗−0.

Denote the following equations

T1(x, β̃) = (
√
c>c+ 1 +

√
τ̃)2(c>f̃ β̃(x)− 1)2

+ (
√
c>c+ 1 +

√
τ̃)2√

τ̃(c>c+ 1)

f̃>β̃ (x)
(
M̃
−1(ξ∗−0, β̃)cc> + cc>M̃−1(ξ∗−0, β̃)

)
f̃ β̃(x)

− 4c>M̃−1(ξ∗−0, β̃)f̃ β̃(x)
,

T2(x, β̃) =
√

τ̃

c>c+ 1

f̃>β̃ (x)
(
M̃
−1(ξ∗−0, β̃)cc> + cc>M̃−1(ξ∗−0, β̃)

)
f̃ β̃(x)

− 2c>M̃−1(ξ∗−0, β̃)f̃ β̃(x)
.

Then
(1) If ξ∗ is locally A-optimal (at β) for a model with intercept and T1(x, β̃) ≥ 0 for
all x ∈ X̃ then ξ∗−0 is locally A-optimal (at β̃) for the corresponding model without
intercept.
(2) If ξ∗−0 is locally A-optimal (at β̃) for a model without intercept and

f>β̃ (x)M̃−2(ξ∗−0, β̃)f β̃(x) ≤ τ̃
(

1− (c>f>β̃ (x)− 1)2
)

+ T2(x, β̃) ∀x ∈ X

then ξ∗ is locally A-optimal (at β) for the corresponding model with intercept.

Remark 6.2.1. In view of the assumptions of the previous corollaries M−1(ξ,β) is
given by (3.27) (ũ0 vanishes). That is c>m̃(ξ−0, β̃) = 1, M̃−1(ξ−0, β̃)m̃(ξ−0, β̃) = c

thus m̃>(ξ−0, β̃)M̃−1(ξ−0, β̃)m̃(ξ−0, β̃) = 1.

In addition, specific results given in Chapter 5 can be extended under the multivari-
ate nonlinear model with univariate models given by (6.1). In particular, as presented
in Section 5.3, for the jth component with nonlinear model (6.1) and function fβj(xj)
from (6.2) if there exist constant vectors cj such that c>j fβj(xj) = 1 for all xj ∈ Xj
(1 ≤ j ≤ m) then a product-type design can be derived. E.g. Nonlinear models that
were discussed in Dette et al. (2008) can provide such a result.

Furthermore, in many applied aspects for gamma models, the log-link function is
considered as a main alternative to the canonical one (see Kilian et al. (2002), Wenig et
al. (2009), Gregori et al. (2011), McCrone, Knapp, and Fombonne (2005), Montez-Rath
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et al. (2006)). In that case the intensity function u(x,β) = 1 and thus the information
matrix under gamma models is equivalent to that under ordinary regression models.
For that reason, the optimal designs for a gamma model are identical to those for an
ordinary regression model with similar linear predictor. However, in Hardin and Hilbe
(2018) gamma models were fitted considering various link functions, for example; the
Box-Cox family of link functions that is given by

f>(x)β =


(
µλ − 1

)
/λ (λ 6= 0)

log µ (λ = 0)
(6.4)

which involves the log-link at λ = 0 (see Atkinson and Woods (2015)). The intensity
function is thus defined as

u(x, λβ) =
(
λf>(x)β + 1

)−2
,x ∈ X . (6.5)

Here, the positivity condition (4.4) of the expected mean µ = E(Y ) of a gamma
distribution is modified to λf>(x)β > −1 for all x ∈ X . Therefore, in specific, for
a gamma model without intercept the experimental region might be considered as
X = [0, 1]ν . As an example, consider f(x) = (x1, x2)> on X = [0, 1]2 with vertices
v1 = (0, 0)>, v2 = (1, 0)>, v3 = (0, 1)>, v4 = (1, 1)>. Let uk = u(vk, λβ) for all
(1 ≤ k ≤ 4). The Equivalence Theorem (Theorem 2.2.2, condition (2.11)) approves
the D-optimality of the design ξ∗ which assigns equal weights 1/2 to the vertices v2 and
v3 at the point λβ. This result might be extended for a multiple-factor model without
intercept. However, the expression λf>(x)β + 1 under non-intercept model could be
viewed as a linear predictor of a gamma model with known intercept (i.e. β0 = 1).
Adopting the Box-Cox family as a class of link functions for gamma models could be
a topic of future research.

There are still various optimality criteria that might be employed under gamma
models together with the complete class of designs provided in Chapter 4. In spe-
cific, the integrated mean squared error (IMSE)-criterion was not considered carefully
under generalized linear models and therefore, it is highly recommended as the next
challenging topic.
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