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Abstract

This cumulative thesis reports on the investigation of the coupling of electrons and non-
collinear spin textures like magnetic skyrmions — small, whirl-like modulations of the
collinear ferromagnetic phase. The considered textures typically carry a finite topologi-
cal charge, which gives rise to the topological Hall effect of electrons and a Hall effect of
the spin textures themselves. Using Monte Carlo simulations and micromagnetic spin
dynamics simulations, I predict individual biskyrmions (two overlapping skyrmions) in
centrosymmetric materials, magnetic bimerons in in-plane magnetized films, and anti-
ferromagnetic skyrmion crystals (the combination of two skyrmions with opposite topo-
logical charges). By utilizing the Berry theory and Landauer-Büttiker approaches the
topological Hall effect and the magnetoelectric properties of skyrmions are quantified.
Furthermore, I predict a purely topologically induced Hall effect of electrons in bimeron
crystals, a topological spin Hall effect of electrons in antiferromagnetic skyrmion crys-
tals, and show that magnetic skyrmioniums exhibit a topological Hall signature even
though they have a vanishing topological charge. As the perhaps most promising con-
tribution to the utilization of non-collinear spin textures in spintronic applications, a
method is established which allows to propel skyrmions parallel to an applied current,
10 times as fast as previously reported.

Kurzzusammenfassung

In dieser kumulativen Doktorarbeit wird die Wechselwirkung von Elektronen mit nicht-
kollinearen Spintexturen, wie zum Beispiel Skyrmionen — kleinen wirbelartigen Anre-
gungen in einer kollinearen ferromagnetischen Phase — untersucht. Die meisten dieser
Spintexturen lassen sich durch eine endliche, ganzzahlige topologische Ladung charak-
terisieren, welche zum Auftreten eines topologischen Hall-Effekts von Elektronen führt
und zusätzlich eine transversale Ablenkung der Spintexturen selbst bewirkt. Unter
Verwendung von Monte-Carlo-Simulationen und mikromagnetischen Spin-Dynamik-
Simulationen wird in dieser Arbeit die Existenz einzelner magnetischer Biskyrmio-
nen (zwei sich überlappende Skyrmionen), sowie periodischer Gitter von Bimeronen
(Skyrmionen in Materialien, die in der Ebene magnetisiert sind) und antiferromag-
netischer Skyrmionen vorhergesagt. Weiterhin erlauben es die Berry-Theorie und der
Landauer-Büttiker-Ansatz, den topologischen Hall-Effekt und den magnetoelektrischen
Effekt in nicht-kollinearen Spintexturen zu quantifizieren. Hierdurch werden ein rein
topologischer Hall-Effekt für Bimeronen und das topologisch induzierte Äquivalent
zum Spin-Hall-Effekt in antiferromagnetischen Skyrmion-Kristallen vorhergesagt und
ein topologischer Hall-Effekt eines Skyrmioniums erklärt, der auftritt, obwohl eine solche
Spintextur keine topologische Ladung besitzt. Der vielversprechenste Beitrag für eine
technologische Anwendung von nicht-kollinearen Spintexturen ist die Simulation und
Erklärung einer Methode zur Unterdrückung der transversalen Ablenkung von Skyrmio-
nen, die von elektrischen Strömen bewegt werden. Dadurch könnte das Geschwindig-
keitslimit für eine stabile Bewegung von Skyrmionen um eine Größenordnung erhöht
werden.
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1 Introduction

Skyrmion-based racetrack storage devices. The ever-growing demand of data-storage
space and energy-efficient data manipulation has put such an enormous challenge onto
the corresponding industry, that Moore’s law [1] (the exponential increase of disk space
and operation speed) has not been fulfilled over the last years [2]. One idea to drasti-
cally increase the storage space is to utilize a magnetic shift device or racetrack storage
device [3, 4]. Here, the spin degree of freedom of the sample’s electrons is used to con-
stitute the carriers of information: The walls between ferromagnetic domains have sizes
on the micrometer length scale and can be written, deleted, moved and detected electro-
magnetically. The racetracks are quasi one-dimensional and the device does not consist
of mechanically movable parts allowing to stack individual racetracks to create an in-
nately three-dimensional device with a strongly increased storage density compared to
traditional two-dimensional hard disk drives.

Furthermore, one desires to decrease the size of the carriers of information without
forfeiting the reliability of the storage devices. For this reason, the idea arose to replace
the domain walls in a racetrack device by magnetic skyrmions [5] (Fig. 1). These whirl-
like particles are enormously stable at sizes down to a few nanometers [6] and can
be driven by currents which are orders of magnitude smaller compared to the driving
currents for domain walls [7], therefore constituting an extremely efficient data storage.
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Figure 1: Skyrmion-based racetrack storage device. a Magnetic skyrmions are non-
collinear spin textures constituted by magnetic moments (arrows whose color
represents their orientation). b They can be written, deleted, moved and read
in a narrow ferromagnetic stripe. The information is encoded via bits: the
existence of a magnetic skyrmion corresponds to a ‘1’ bit, while a missing
skyrmion is interpreted as a ‘0’ bit.
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Magnetic skyrmions. The field of skyrmionics gained enormous interest in 2009 when
magnetic skyrmions were first detected in the non-centrosymmetric material MnSi in
the form of a periodic lattice of skyrmion tubes [8]. In the following years, skyrmion
crystals and also individual skyrmions [9] have been observed in thin films and at in-
terfaces [10]. The broken space-inversion symmetry in these materials gives rise to the
so-called Dzyaloshinskii-Moriya interaction [11,12], which occurs due to spin-orbit cou-
pling, and is the stabilizing mechanism in the vast majority of observed skyrmions and
skyrmion lattices. Several examples exist for which the potential carriers of information
have been written and deleted in a controlled manner [13] and are detected by their
magnetization profile or their characteristic Hall signal [14]. Furthermore, the energy-
efficient current-driven motion of skyrmions has been realized [15, 16], however with
the drawback that they do not move along the applied current direction, i. e., along the
racetrack, but also partially towards the edge (Fig. 2). Today, this so called ‘skyrmion
Hall effect’ is one of the severest limitations for utilizing skyrmions in racetrack devices:
The transverse propulsion of a skyrmion towards the edge of the sample leads to its
pinning or even its annihilation. As will be shown in this thesis, the origin for this effect
is the non-triviality of the real-space topology of the respective magnetic texture.

E field

Topological  
Hall effect

Skyrmion  
Hall effect

Figure 2: Emergent electrodynamic effects in skyrmion hosts. When an electric field
is applied in-plane, a current arises, which has a transverse component (topo-
logical Hall effect). At the same time, the skyrmion itself is propelled as a
consequence of spin torques due to the partial alignment of the current elec-
trons’ spins with the skyrmion texture. This motion occurs at an angle with
respect to the current (skyrmion Hall effect). The fundamental origin of both
effects lies in the non-trivial real-space topology of the skyrmion.
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Skyrmions have originally been proposed by Tony Skyrme in 1961 [17, 18] as excita-
tions in a field theory describing interacting pions. Mathematically speaking, skyrmions
can be characterized by a topological invariant distinguishing them from the trivial state
(e. g. a collinear ferromagnet). This topological charge has the integer value of +1 or −1
for skyrmions. Considering a continuous magnetization profile instead of discrete mag-
netic moments, a skyrmion state can by no means be transformed into a ferromagnetic
state. This fingerprint of the non-trivial real-space topology expresses itself in a high
stability: While one can speak of a topological protection of skyrmions in a continu-
ous model, magnetic skyrmions in nature (formed by discrete magnetic moments) are
not protected strictly speaking but the state can posses such a high energy barrier to-
wards the ferromagnetic groundstate, so that metastable skyrmions can survive at room
temperatures for a literal eternity [19].

Furthermore, the topological charge plays a fundamental role in the electrodynamics
of electrons interacting with skyrmions (Fig. 2). When an electric field is applied along a
film hosting skyrmions, a current emerges which is not parallel to the field: a topological
Hall effect is measurable, which is considered the hallmark of non-trivial real-space
topology. In a similar way, the skyrmions themselves do also not move along the field
direction but are deflected transversally; this is the effect discussed above as skyrmion
Hall effect. Several approaches to suppress this effect have been considered, for example
replacing the magnetic skyrmion by alternative non-collinear spin textures which have
a comparable stability but a vanishing topological charge.

Goals of this thesis. Based on this motivation the main goals for this thesis are:

1. Finding ways to suppress the skyrmion Hall effect and to accelerate the current-
driven motion of skyrmions in racetrack devices.

2. Gaining a profound understanding of the topological Hall effect that goes beyond
relating the measured signal with the skyrmion density.

3. Establishing new hallmarks of topologically non-trivial spin textures for experi-
ments.

4. Predicting and stabilizing alternative non-collinear spin textures, as well as com-
paring their emergent electrodynamic effects to those of skyrmions.

Outline of this thesis. In the following three chapters the foundation is laid for the pre-
sented results in the cumulative part of this thesis. First, in Sec. 2 magnetic skyrmions
are introduced more thoroughly, including the definition of quantities that allow to
characterize different types of skyrmions and related magnetic objects. Different stabi-
lizing mechanisms are presented and relevant experimental findings are reviewed. In
Sec. 3. three different methods to describe the real-space properties of non-collinear
spin textures are introduced: the Monte Carlo formalism, spin dynamics simulations
and an effective description of magnetic quasiparticles by algebraic means called ‘Thiele
equation’. The latter two methods are exemplarily demonstrated for the current-driven
motion of a skyrmion in a racetrack geometry verifying well established results from the
initial proposal of the skyrmion racetrack storage devices in Ref. [5]. Sec. 4 is prepar-
ing the results concerning the electronic properties of non-collinear spin textures. The
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main focus is set on the Berry theory approach which allows to quantify the topological
Hall effect in a tight-binding model. Its elegance is demonstrated at the example of the
quantum Hall effect, which occurs when a strong magnetic field is applied to a metal.
Furthermore, the calculation of related quantities, namely the spin Hall conductivity,
orbital magnetization and magnetoelectric polarizability, is explained.

Sec. 5 is the first cumulative part of this thesis. It contains three publications consid-
ering magnetic skyrmions. The findings address goals 1, 2 and 3. In publication [BG1] a
method to suppress the skyrmion Hall effect is presented, in publication [BG2] uncon-
ventional quantization effects and a strong energy dependence of the topological Hall
effect of electrons in skyrmion crystals are predicted, and in publication [BG3] a geomet-
rically induced magnetoelectric effect is predicted and established as a new hallmark of
skyrmionic phases.

In the second cumulative part (Sec. 6) four publications are presented correspond-
ing to goal 4: the prediction and analysis of alternative magnetic quasiparticles (the
four considered textures are depicted in Fig. 3). In publication [BG4] the existence
of individual magnetic biskyrmions is predicted in centrosymmetric materials. These
objects are the combination of two skyrmions with the same topological charge. In pub-
lication [BG5] the magnetic bimeron (a skyrmion in in-plane magnetized samples) is
predicted to stabilize under a new type of Dzyaloshinskii-Moriya interaction. In publi-
cation [BG6] all constituents of a fully operating racetrack device are simulated, using
skyrmioniums (the combination of two skyrmions with a vanishing topological charge
in total) as carriers of information. Finally, in publication [BG7] the existence of a pe-
riodic lattice of antiferromagnetic skyrmions is predicted. Particularly noteworthy are
also the newly established electrodynamic effects: a purely topological Hall effect for
bimeron textures, a unique signature in the topological Hall effect for skyrmioniums
even though it has a vanishing topological charge, and the prediction of a topologically
induced spin Hall effect for antiferromagnetic skyrmions.

The concluding section 7 of this thesis is a summary of the established results and
provides an outlook on promising future research projects related to the here presented
findings.

a b c d

Figure 3: Considered skyrmion-related quasiparticles in this thesis. a The biskyrmion,
b the bimeron, c the skyrmionium and d the antiferromagnetic skyrmion.
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2 Magnetic skyrmions

In this section the magnetic skyrmion is introduced. After a short historic treatise on
its theoretical prediction, quantities for the classification of different types of magnetic
skyrmions as well as possible stabilizing mechanisms are presented. The quantities
become essential later in this thesis for explaining the emergent electrodynamic effects
of skyrmions (Sec. 5) and also allow to understand the behavior of more ‘exotic’ spin
textures (Sec. 6). The present section closes with a review of the first experimental
discoveries of skyrmions, essential advances concerning their racetrack applicability, and
the initial observations of the topological Hall effect of electrons in skyrmion crystals.

2.1 History and theoretical prediction

The predecessors of magnetic skyrmions are the so called ‘magnetic bubbles’ [20, 21].
These objects have been observed already in the 1960’s and have even been commercially
used in data storage devices in the 1970’s [22,23]. However, they commonly have sizes on
the µm scale and do not have a strictly enforced topological charge; even topologically
trivial bubbles can occur. In order to shrink the inter-bit distance to a few nm and to
utilize a topological protection of the bits, magnetic skyrmions are promising candidates
to supersede the bubbles and to entirely establish non-volatile magnetic storage devices
without mechanically moving parts in our everyday lifes [5, 24].

Historically, the prediction of skyrmions dates back to the British nuclear physicist
Tony Skyrme. In the 1960’s he proposed a theoretical treatment of fundamental particles,
such as interacting pions [17, 18]. The later called ‘skyrmions’ are the quasiparticle-
like topological excitations in the corresponding field theory. Remarkably, these three-
dimensional skyrmions are fermions while the pions themselves are bosons. It took until
1989 when a magnetic skyrmion was predicted for the first time [25], in the sense that it is
formed by magnetic moments [Fig. 4(b)], similar to the case of magnetic bubbles. Here,
the skyrmion is treated as a two-dimensional object which may be extended trivially
into the third dimension as a skyrmion tube [Fig. 4(c)].

In the initial publication, the existence of periodic arrays of skyrmions was analyzed
by means of symmetry predicting several crystallographic classes, which allow for the
stabilization of these so called skyrmion crystals [25]. As will be presented in Sec. 2.3
this symmetry consideration traces back to the Dzyaloshinskii-Moriya interaction [11,12]
(DMI), a chiral interaction of spins that arises due to spin-orbit coupling and a broken
inversion symmetry. A few years later, also the existence of isolated skyrmions was
predicted [26]. As an alternative ingredient for the stabilization of such skyrmions,
Bogdanov and Rößler considered interfaces, at which the inversion symmetry is broken
explicitly. This leads to the emergence of a different type of DMI [27] and the stabiliza-
tion of a different type of skyrmion crystal, as will be explained in Sec. 2.3.

Experimentally, skyrmion lattices and isolated skyrmions were found roughly 20
years later for the first time [8] confirming the theoretical predictions. In Sec. 2.4 a
review of the experimental discovery is presented. Today, skyrmionic objects have been
found or predicted in several fields of physics. Besides skyrmions which are formed
by magnetic moments, examples comprise skyrmions in quantum Hall systems [28], in
Bose-Einstein condensates [29], in liquid crystals [30] or in particle physics [31].
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2.2 Classification

2.2 Classification

In this section the geometric quantities ‘polarity’, ‘vorticity’ and ‘helicity’ are introduced,
which allow for a characterization of magnetic skyrmions. They dictate the topological
charge and the toroidal moment of a skyrmion; both are geometrical quantities that
manifest in experimentally accessible observables.

A magnetic skyrmion can be constructed mathematically by a stereographic projec-
tion. As shown in Fig. 4, a sphere with a radial magnetic texture is ‘unwrapped’ to a
two-dimensional disk. The magnetic texture becomes a whirl-like pattern that is ori-
ented along the −z direction in the center (originating from the bottom of the sphere)
and along the +z direction at the edge (originating from the top of the sphere) in this
case. The reduction of dimension induces a topological charge

NSk =
1

4π

∫
m(r) ·

(
∂m(r)

∂x
× ∂m(r)

∂y

)
d2r. (2.1)

Here, m is the normalized magnetization density. The topological charge can only
have integer values for magnetic excitations in a ferromagnet. It is ±1 for magnetic
skyrmions, depending on the orientation of the ferromagnetic surrounding.

a b c

Figure 4: Stereographic projection. a A three-dimensional sphere with a radial spin
texture can be unfolded to construct b a magnetic skyrmion with topological
charge NSk = −1 in two dimensions. c In real materials this skyrmion is
commonly continued trivially along the third dimension as a skyrmion tube.

In a continuous magnetization-density model the topological charge of a magnetic
texture cannot change under any continuous transformation. This means in particular
that a single skyrmion in a ferromagnetic background cannot be destroyed, since NSk
would not be conserved in this case. This topological protection is less strict in a realistic
description of skyrmions as a collective of non-collinear magnetic moments. In this case
the skyrmion can be destroyed but it is separated from the ferromagnetic ground state
by an energy barrier, which can lead to metastability for more than billions of years [19]
under favorable conditions. For this reason, the non-trivial real-space topology is a key
element for the utility of skyrmions in spintronics applications of the future.

The integer nature of the topological charge can be understood by expressing the
magnetization in spherical coordinates

m(r) = (cos Φ sin θ, sin Φ sin θ, cos θ)T. (2.2)

For a skyrmion, the azimuthal angle θ(r) of the magnetization only depends on the
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2.2 Classification

length r of the position vector r with respect to the skyrmion’s center. The polar angle
of the magnetization Φ(φ) only depends on the polar angle φ of r. The rotational
symmetry can be used to transform the expression for the topological charge to [6]

NSk =
1

4π

∞∫
0

dr
2π∫
0

dφ
∂Φ(φ)

∂φ

∂θ(r)
∂r

sin θ(r) = −1
2

cos θ(r)
∣∣∣∞
r=0
· 1

2π
Φ(φ)

∣∣∣2π

φ=0
. (2.3)

The topological charge can therefore be expressed as a product of polarity p (first term)
and vorticity m (second term)

NSk = p ·m, p = ±1, m = 0,±1,±2, . . . . (2.4)

a b c d

Figure 5: Different types of skyrmions. a Néel skyrmion with topological charge NSk =
+1, polarity p = +1, vorticity m = +1 and helicity γ = 0. b Unspecified
skyrmion with γ = π/4. c Bloch skyrmion with γ = π/2. d Antiskyrmion
with NSk = −1, p = +1, m = −1 and γ = π/2. The color encodes the
orientation of the magnetic moments.

The polarity indicates whether the central spin of the skyrmion points into positive
(p = +1) or negative z direction (p = −1). The vorticity quantifies the sense of rotation
of the in-plane orientation of the magnetic texture when considering magnetic moments
on a circle around the skyrmion’s center. The polar angles of magnetization Φ and
position vector φ, as introduced above, are related by

Φ = mφ + γ. (2.5)

For a skyrmion the vorticity is m = +1 [Fig. 5(a)], while a vorticity of m = −1 char-
acterizes an antiskyrmion [Fig. 5(d)]. Theoretically, also higher-order (anti-)skyrmions
have been predicted [32]. In this case the in-plane magnetization rotates more than once
when considering magnetic moments on the aforementioned circle; the vorticity is then
|m| > 1.

Besides the polarity p and the vorticity m, the helicity γ is the third geometrical quan-
tity that characterizes a magnetic skyrmion. For m = 1 skyrmions, it can be understood
as the offset of the polar angles of the magnetization orientation and the position vector
[Eq. (2.5)]. A variation of the helicity is identified with a global rotation of each individ-
ual magnetic moment in magnetization space around the net magnetization direction z.
While for an antiskyrmion this is merely equivalent to a rotation in real space around its
center, for skyrmions it changes also a physically relevant property: the classical toroidal
moment
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2.3 Stabilizing interactions

t =
gµB

2

∫
r×m(r)d2r. (2.6)

For all antiskyrmions this quantity vanishes regardless of the helicity, due to the broken
rotational symmetry. Instead, for skyrmions it is strictly determined by the helicity,

t ∝ sin(γ)ez. (2.7)

This consideration inspired to investigate a skyrmion crystal’s magnetoelectric behav-
ior, which is determined by the toroidal moment [33] and leads to the establishment of a
new hallmark of skyrmionic phases (presented and explained in publication [BG3] and
the corresponding section).

Experimentally, only the cases γ = 0, π [a Néel skyrmion in Fig. 5(a)] and γ =
π/2,−π/2 [a Bloch skyrmion in Fig. 5(c)] have been observed so far, while interme-
diate skyrmions are theoretically predicted [Fig. 5(b)]. The type of resulting skyrmion is
commonly determined by the type of stabilizing interaction – a relation that is discussed
in the following section.

2.3 Stabilizing interactions

In the previous section, the topological protection of magnetic skyrmions, formed by a
continuous magnetization density, was presented. These objects are stable as long as
continuity of the magnetization density is assumed. In nature, magnetic skyrmions are
constituted by localized magnetic moments si, as was implicated by the arrows in all
previously shown figures. In that case the local magnetization is discontinuous per se,
so topological protection is not given. Still, in experiments one observes great stability
of magnetic skyrmions even though they are only metastable excitations in the collinear
ferromagnetic phase.

In order to understand this stability the different stabilizing interactions of magnetic
skyrmions are addressed now. Besides the Heisenberg exchange interaction, which fa-
vors a collinear alignment of magnetic moments, there are other interactions that en-
ergetically favor spin canting. In nature this non-collinearity is often enforced by the
Dzyaloshinskii-Moriya interaction (DMI) [11, 12]. It is the stabilizing mechanism in the
vast majority of currently identified skyrmion hosts. Still, there exist other stabilizing
mechanisms [6], namely frustrated exchange interactions and the dipole-dipole interac-
tion, which will also be presented in the following.

Heisenberg interaction, Zeeman interaction and anisotropies

Phenomenologically, the existence of a comparably strong interaction, which favors a
parallel alignment of neighbored magnetic moments, is necessary to explain the exis-
tence of ferromagnetism. This fundamental interaction is called ‘Heisenberg interaction’
or ‘exchange interaction’ and has the representation

H = −Js1 · s2, J > 0 (2.8)
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2.3 Stabilizing interactions

in spin space. This phenomenological term can be straightforwardly derived from sym-
metry considerations of the wave functions of two interacting electrons, as will be pre-
sented in the following, similar to Refs. [34, 35].

The starting point is the quantum mechanical Hamiltonian

H =
p2

1
2m

+
p2

2
2m

+ V(r1, r2). (2.9)

Here, m is the electron mass, pi the momentum operator and V the interaction potential
depending on the electrons’ positions ri. Since this Hamiltonian is independent of the
spin, the antisymmetric wavefunction can be separated into a spatial wavefunction |r〉±
and a spin-dependent wavefunction |s〉±,

|ψ〉 = |r〉∓ |s〉± . (2.10)

One of the two wavefunctions needs to be symmetric (+), while the other one has to be
antisymmetric (−). This means, that for the total spin of the two electrons S = 1 (sym-
metric triplet state |1〉 ≡ |s〉+) the spatial wavefunction has to be antisymmetric, and
for S = 0 (antisymmetric singlet state |0〉 ≡ |s〉−) the spatial wavefunction is symmetric.
The corresponding eigenenergies E± differ in general and can effectively be related with
the total spin expectation value due to the above symmetry argumentation. Therefore,
an effective Hamiltonian H̃ has to exist which returns the same eigenenergies E± but is
spin and not space dependent:

H̃ |0〉 = E+ |0〉 , (2.11)
H̃ |1〉 = E− |1〉 . (2.12)

The aim is now to find an expression for the effective spin-dependent Hamiltonian H̃.
For this reason, a spin-dependent term is needed that returns different results for S = 0
and S = 1. One uses S = s1 + s2 to arrive at two expressions for S2

h̄2S(S + 1) and
3
2

h̄2 + 2s1 · s2. (2.13)

Due to their equivalence one finds

s1 · s2 =

{
− 3

4 h̄2 if S = 0
1
4 h̄2 if S = 1

(2.14)

to return different results for the two values of S, allowing to explicitly construct the
effective spin-dependent Hamiltonian

H̃ = H0 −
1
h̄2

(
E+ − E−

)
s1 · s2. (2.15)

Here H0 = (E+ + 3E−)/4 is a constant that can be dropped.

This Hamiltonian can be generalized allowing to describe more than two spins and is
also applicable in the classical limit. The exchange interaction in the Heisenberg model
reads
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2.3 Stabilizing interactions

Hexchange = −
1
2 ∑

i,j
Jijsi · sj. (2.16)

Here, the sum runs over all magnetic moments and Jij is the exchange constant that is
determined experimentally or can in principle be calculated from Jij = (E+

ij − E−ij )/h̄.
The factor 1/2 accounts for double counting each interaction.

Often, for simplicity, only nearest-neighbor exchange is considered with a uniform
exchange constant J. In this case, the exchange interaction can be generalized for a
continuous magnetization density [m(r) is the normalized unitless density] as

Hexchange =
∫

∑
ij

J̃
(

∂mi

∂xj

)2

d3r. (2.17)

In this expression J̃ is the exchange stiffness in units of energy per meter. This expres-
sion becomes useful when large, continuous magnetic textures are considered like in
micromagnetic simulations.

Coming back to the consideration from the beginning of this section, a uniformly
positive exchange constant will lead to a parallel alignment of all moments, explaining
the existence of ferromagnets. For a uniformly negative exchange constant the ground
state of magnetic moments on a square lattice is a collinear antiferromagnet. Each spin
is oriented anti-parallel with respect to its four neighbors giving a checkerboard-type
magnetic order. However, on a hexagonal lattice each atom has six nearest neighbors.
They would all be anti-parallel to the reference moment but pairs of these neighbors
are nearest neighbors themselves, so they should also align antiferromagnetically. The
resulting texture is a compromise of these interactions. It is a non-collinear state that
originates purely from geometrical frustration.

a b

Figure 6: Spin spiral and skyrmion crystal. a Spin spiral with order vector q along ex. b
Skyrmion crystal generated as the superposition of the spin spiral from panel
a with 2 other spin spirals rotated by ±120◦, respectively.

If one introduces additional frustration by a ferromagnetic interaction between nearest
neighbors J1 > 0 and an antiferromagnetic interaction between second-nearest neigh-
bors J2 < 0, this non-collinearity becomes even more preferable. The ground state is a
helical phase; a spin spiral without net magnetization [Fig. 6(a)]. Considering a finite
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2.3 Stabilizing interactions

temperature, the stable orientation can even be a skyrmion lattice [Fig. 6(b)], as has been
shown in Ref. [36]. A necessary ingredient is the application of an external magnetic
field B along the direction of the net magnetization of skyrmions, which is out-of plane.
This field makes the skyrmion energetically favorable over the helical phase, which has
no net magnetization. The magnetic field is introduced in the Hamiltonian via a Zeeman
interaction which has the same type of mathematical expression as the exchange (here
µ is the magnitude of the magnetic moment),

HZeeman = −∑
i

µsi · B. (2.18)

Including also an easy-axis anisotropy along the direction n = ez,

Hanisotropy = −K
2 ∑

i
(si · n)2, (2.19)

favors moments pointing out-of-plane, as is typically the case in thin films. This leads
to a further stabilization of magnetic skyrmions. As was shown in Ref. [37] skyrmions
can be stabilized even at zero temperature when an easy-axis anisotropy is present.

As a closing comment, it is worth mentioning that skyrmions, which are stabilized
by frustrated exchange interactions have a non-fixed helicity. A common rotation of all
magnetic moments around any axis in magnetization space leaves the system’s energy
invariant. This is why the experimentally unobserved skyrmion type with a helicity
between that of Bloch and Néel skyrmions [Fig. 5(b)] has been predicted theoretically in
frustrated magnets. Due to the strong spin canting, skyrmions, which are stabilized by
frustrated exchange, have diameters of only a few nanometers which may be a reason
why they remain unobserved in experiments up to now.

The aforementioned invariance of the Heisenberg exchange interaction with respect
to collective rotations of the magnetic moments in magnetization space was an inspira-
tion to consider also rotations around an in-plane axis. This lead to the prediction of
individual bimerons (in-plane skyrmions as introduced in Sec. 6) and bimeron crystals
(presented in publication [BG5] and the corresponding section).

Dzyaloshinskii-Moriya interaction

Even though the possibility of observing a non-collinear spin texture is already given by
frustrated exchange interactions, most of the observed magnetic skyrmions exist at sizes
of several tens or even hundreds of nanometers, suggesting the existence of another
interaction. Furthermore, the observed skyrmions have a fixed helicity. This brings
about the necessity of a chiral character of this interaction. The responsible interaction
is the antisymmetric exchange, also called Dzyaloshinskii-Moriya interaction [11, 12]
(DMI)

HDMI =
1
2 ∑

ij
Dij · (si × sj), (2.20)

11



2.3 Stabilizing interactions

which occurs due to spin-orbit coupling and a broken inversion symmetry. It can be
derived as a correction to the exchange interaction in second order perturbation the-
ory [38]. The type of broken inversion symmetry determines the orientation of the
Dzyaloshinskii-Moriya vectors Dji = −Dji. As the name tells, the antisymmetric ex-
change allows for a generalization of the exchange in the sense that the exchange con-
stant is actually a 3 × 3 matrix. The antisymmetric part is then the DMI while the
conventional exchange constant enters the diagonal.

For a single pair of magnetic moments the DMI energetically favors the configuration,
for which the moments and the DMI vector are pairwise perpendicular to each other.
However, since the conventional exchange interaction (favoring a parallel alignment for
J > 0) is also present, the magnetic moments will orient at an angle < 90◦ which is
determined by the ratio D/J for a system with uniform DMI strength and exchange
interactions. Since the DMI is a correction to the exchange, this ratio is commonly small,
resulting in a spiral configuration of magnetic moments in the ground state. The period
of this magnetic texture ranges from a few to a hundred nanometers.

A prominent example of a material with DMI is MnSi, a non-centrosymmetric B20
compound with broken inversion symmetry. The ground state is a helical phase with a
period of 19 nm = 41.66 a (lattice constant a) [8]. In this material, skyrmions have been
detected for the first time at a finite temperature and under the presence of an applied
magnetic field.

At the present state of research, almost all skyrmions that have been detected in exper-
iments are indeed stabilized by the DMI. The specific type of helical phase or magnetic
skyrmion depends on the type of inversion symmetry breaking and the orientation of
the DMI vectors, which are determined by the Moriya rules [12].

Moriya rules

The symmetry rules of Moriya allow to deduce the orientation of the Dzyaloshinskii-
Moriya vectors from symmetry arguments. The midpoint of a bond r between two mag-
netic atoms is analyzed with respect to inversion symmetry, mirror symmetry (mirror
planes with normal n) and rotational symmetry (at least two-fold rotational symmetry
with axis along a). The rules read [12]:

1. If the midpoint is a center of inversion, then D = 0.

2. If the midpoint is on a mirror plane with n ‖ r, then D ⊥ r, n.

3. If the midpoint is on a mirror plane with n ⊥ r, then D ‖ n.

4. If a two-fold rotation axis with a ⊥ r exists, then D ⊥ a.

5. If a two ore more-fold rotation axis with a ‖ r exists, then D ‖ r.

Consequences for magnetic skyrmions

In this section the three types of DMI which stabilize experimentally observed skyrmion
hosts are presented: interfacial DMI, bulk DMI, and anisotropic DMI.
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a    Bulk DMI b    Bloch spiral c    Bloch skyrmion

d    Interfacial DMI e    Néel spiral f    Néel skyrmion

g    Anisotropic DMI h    All types  
      of spirals 

i    Antiskyrmion

Figure 7: Typical Dzyaloshinskii-Moriya interactions and resulting spin textures. The
top row represents a non-centrosymmetric B20 material like MnSi with a bulk
DMI. b A Bloch spiral along different directions and c Bloch skyrmions can
be stabilized. The middle row corresponds to an interface like Co/Pt with
d interfacial DMI. In these systems e Néel spirals and f Néel skyrmions are
(meta)stable states. The bottom row corresponds to layered systems like the
Heusler material Mn1.4Pt0.9Pd0.1Sn resulting in g an anisotropic interfacial
DMI. In this system, h all different types of spirals are stabilized along dif-
ferent directions. The skyrmionic solution is i the antiskyrmion. In panels a,
d, and g the black spheres are magnetic atoms and the red arrows represent
the DMI vectors along the corresponding bonds. In all other panels the arrows
represent magnetic moments where the color encodes their orientation.

Interfacial DMI. Most convenient to understand is the interfacial DMI. Here, the inver-
sion symmetry is explicitly broken by an interface. Instead of a continued arrangement
of magnetic atoms, different atoms appear at the different sides. The orientation of
the DM vectors can be determined in the following way: Looking at a bond of two
magnetic atoms (1,2) with a third atom (0) that has the same distance to atoms 1 and
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2.3 Stabilizing interactions

2, i. e., it is located in the mirror plane with n ‖ r but also in the mirror plane with
n ∝ (r1 − r0)× (r2 − r0) ⊥ r, there is no inversion or rotational symmetry, and Moriya
rules number 2 and 3 tell

D ∝ (r1 − r0)× (r2 − r0). (2.21)

This expression is also known as ‘Levy-Fert rule’ [39]. The emerging DMI vector points
perpendicular to the bond and lies in the interfacial plane. For a square lattice the C4
symmetry allows to deduce the other DM vectors from a symmetry analysis as seen in
Fig. 7(d), i. e., the magnitude and sign of the DMI D is equal for all bonds.

In the continuous limit, this DMI reads [40]

Hinterface =
∫

D̃
(

mx
∂mz

∂x
−mz

∂mx

∂x
+ my

∂mz

∂y
−mz

∂my

∂y

)
d3r. (2.22)

The DMI constant D̃ has a dimension of energy/length2. This type of interaction sta-
bilizes Néel spirals, for which the magnetic moments rotate so that they are oriented
partially along the spiral direction [Fig. 7(e)]. As a metastable solution Néel skyrmions
[Fig. 7(f)] are stabilized, as observed for example at Fe/Ir(111) interfaces [10].

This arising type of skyrmion can for example be comprehended by considering a
magnetic moment that points out-of-plane along the +z direction (like in the center of
the skyrmion) and by thinking about the orientation of a magnetic moment correspond-
ing to a bond along the x direction. The arising DM vector D = −Dey gives a bond
energy of HDMI = −Dmz

1mx
2 . For this reason, the second spin is tilted in x direction

since this reduces the energy. This leads to the stabilization of a Néel skyrmion: The
spin next to the center spin of the skyrmion is tilted away from the center as in Fig. 7(f).

Bulk DMI. In non-centrosymmetric materials like the B20 phase of MnSi, in which
skyrmion crystals have been observed first [8], the DMI is named ‘bulk DMI’. The rather
complicated three-dimensional structure of this material breaks the inversion symmetry
intrinsically. If the structure is projected onto a square lattice (as in micromagnetic
simulations), the effective DMI vectors point along the bonds [Fig. 7a]. Considering a
continuous magnetization density, the energy is expressed as

Hbulk =
∫

D̃
(

my
∂mz

∂x
−mz

∂my

∂x
+ mz

∂mx

∂y
−mx

∂mz

∂y
+ mx

∂my

∂z
−my

∂mx

∂z

)
d3r. (2.23)

The first four terms correspond to the DMI vectors depicted in Fig. 7(a). The other terms
correspond to the bonds along the out-of-plane direction. For this setup the arising spin
spirals are of Bloch type [Fig. 7(b)], where the magnetic moments rotate so that they
have a component perpendicular to the spiral direction. The Bloch skyrmion [Fig. 7(c)]
is characterized by a helicity of +π/2 or −π/2.

Anisotropic DMI. Recently, also antiskyrmions have been observed experimentally [41]
in the Heusler material Mn1.4Pt0.9Pd0.1Sn. There, the magnetic Mn atoms form layers
with Pt layers in between. For bonds between the Mn atoms along the x direction the
Pt atoms are located in the layer above and for bonds along the y direction the atoms
are located below the bond, giving rise to the so called ‘anisotropic DMI’ [Fig. 7(g)].
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In principle, this interaction is allowed when the C4v or C3v symmetries of square and
hexagonal lattices are broken [42], e. g. by deformation. It reads in the continuous
formulation

Hanisotropic =
∫

D̃
(

mx
∂mz

∂x
−mz

∂mx

∂x
−my

∂mz

∂y
+ mz

∂my

∂y

)
d3r. (2.24)

For different ordering vectors of the spin spirals, different types of spin spirals are
stabilized [Fig. 7(h)]: Along the x direction one finds a Néel spiral and along the y
direction a Néel spiral with opposite sense of winding. At an angle of 45◦ the spiral is
of Bloch type and even intermediate states exist at other angles. The anisotropic DMI
leads to the stabilization of antiskyrmions as a metastable solution or as stable crystals
when a magnetic field is applied [Fig. 7(i)]. This antiskyrmion is characterized by a
negative vorticity m = −1 and allows to recognize the different types of spin spirals
from Fig. 7(h).

In priniciple, other types of DMI can occur if the inversion symmetry is broken in
another way. For example, in publication [BG5] we discuss a type of DMI which al-
lows to stabilize a new quasiparticle: the magnetic bimeron (it is introduced in Sec. 6).
In order to perform simulations, this type of DMI and also the anisotropic DMI were
implemented in the computer code mumax3 [43, 44].

Dipole-dipole interaction

The third major mechanism, which allows for the stabilization of magnetic skyrmions,
is the dipole-dipole interaction [6]. This interaction accounts for the attractive and re-
pulsive interactions of the negative and positive poles of two magnetic dipoles. The
interaction between the magnetic moments si and sj at distance rij is angular depen-
dent,

Hdd,ij = −
µ0

4π

(
3
(si · rij)(sj · rij)

r5
ij

− si · sj

r3
ij

)
. (2.25)

The dipole-dipole interaction is a long-range interaction and stabilizes skyrmionic
bubbles and other non-collinear spin textures of larger sizes (≈ 100 nm− 1 µm) com-
pared to the skyrmions stabilized by frustrated exchange interactions or by DMI [6].
Even though the dipole-dipole interaction is commonly weaker than the exchange in-
teraction, for long distances it becomes the dominating interaction. This behavior is
essential for the stabilization of non-collinear spin textures and short-range approxima-
tions are not able to explain metastability [45, 46].

Since every magnetic moment interacts with every other magnetic moment, the com-
putation of this term is very demanding in computer codes. Still, one can utilize a
short-range approximation, considering nearest neighbors only and dropping the sec-
ond term

Hdd,approx ∝ −∑
〈i,j〉

(si · rij)(sj · rij), (2.26)

to determine which type of skyrmion type is favored energetically. One has to keep
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in mind that by this approximation alone none of the considered skyrmions would be
stable. In publication [BG4] we have shown that Bloch skyrmions are favored over Néel
skyrmions by this interaction. Still, the dipole-dipole interaction is achiral in the sense
that Bloch skyrmions with helicities of ±π/2 are energetically equivalent.

In some publications, skyrmions stabilized by the dipole-dipole interaction are called
’bubbles’ and are strictly distinguished from skyrmions stabilized by the DMI. The only
geometrical difference is however their mz profile: While skyrmions in the close sense ex-
hibit a continuously changing profile from e. g. −z to +z back to −z, bubble skyrmions
have a wide area in their center where the out-of-plane magnetization is constant. The
non-collinearity is condensed into a very narrow domain wall between the inner part
and the surrounding. Since both objects are topologically equivalent, they will both be
addressed by the term ‘skyrmion’ in the following.

2.4 Experimental discovery and steps towards applications

Now that a general understanding of the properties of magnetic skyrmions and possible
stabilizing mechanisms has been imparted, this section is attributed to the experimental
discovery of magnetic skyrmions. Many of the introduced concepts will be addressed
again. First, a brief historic overview on the discovery of different types of skyrmions is
given. Thereafter, more recent findings are presented that have motivated many of the
publications which will be presented in the cumulative part of this thesis.

Detection of magnetic skyrmions

After the prediction of magnetic skyrmions in 1989 [25], Mühlbauer et al. [8] were the
first to observe skyrmions experimentally in 2009 [‘A-phase’ in Fig. 8(a)]. The authors
of that publication performed neutron scattering experiments of a MnSi sample with
an applied magnetic field. For small temperatures and moderate fields two symmet-
ric intensity maxima in the intensity of this reciprocal-space-measurement technique
indicated a periodicity of the magnetic texture in real space along the corresponding
crystallographic direction. The magnetic texture is in a helical phase [Fig. 8(a)], i. e., a
spin spiral. In the ‘A-phase’, for higher temperatures, three energetically degenerate
spin spirals (occurring at a mutual angle of 120◦) are superposed giving six intensity
maxima in reciprocal space [Fig. 8(b)]. Such a superposition is equivalent to a periodic
lattice of skyrmions (as was presented in Fig. 6) that is continued as a lattice of tubes
along the magnetic field direction.

One year later, these findings have been confirmed by Lorentz transmission electron
microscopy (TEM) images of a similar sample [9] (cf. Fig. 9). In this real-space repre-
sentation of the magnetic texture it becomes apparent that the skyrmions are of Bloch
type with a helicity of γ = π/2. They are stabilized by the bulk DMI as introduced in
Sec. 2.3. After the observation of skyrmion crystals in MnSi more skyrmion hosts in the
family of non-centrosymmetric B20 materials have been identified.

Another year later, in 2011, a second class of skyrmions was observed experimen-
tally [10]. A periodic lattice of Néel skyrmions was identified at the interface of Fe and
Ir(111). Here, the heavy Ir atoms induce an interfacial DMI as explained in Sec. 2.3.
Compared to a Bloch skyrmion all magnetic moments are rotated around the perpen-
dicular direction giving the Néel skyrmion a helicity of γ = 0.
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a b

Figure 8: First observation of magnetic skyrmions. a Measured phase diagram of MnSi.
The ‘A-phase’ denotes the skyrmion crystal phase. b Neutron scattering im-
age with six intensity maxima in reciprocal space corresponding to the wave
vectors of the superimposed spin spirals which form a skyrmion crystal. Both

panels: From (S. Mühlbauer et al. Skyrmion Lattice in a Chiral Magnet. Science 323, 915 (2009) Ref. [8]).

Reprinted with permission from AAAS.

a b

Figure 9: First real-space observation of a magnetic skyrmion crystal. a Reconstructed
image from an over- and underfocussed Lorentz transmission electron mi-
croscopy measurement of the skyrmion crystal phase in MnSi. The arrows and
colors represent the in-plane orientation of the magnetic moments. b Magni-
fied representation of a single skyrmion from panel a. Adapted by the permission from

Springer Nature Terms and Conditions for RightsLink Permissions Springer Nature Customer Service Cen-

tre GmbH: Macmillan Publishers Limited Nature Real-space observation of a two-dimensional skyrmion

crystal, X. Z. Yu et al. 2010; Ref. [9].

Such interfaces of magnetic and heavy metal materials have been proven to be promis-
ing for the control of the resulting skyrmion texture. Generating two distinct interfaces
with opposite signs of the DMI constants in a ‘sandwich’ structure, like Ir/Co/Pt, en-
hances the effective strength of the DMI [47], which is even controllable by varying the
layers’ thicknesses. Consequently, the stability of skyrmions is drastically increased,
which allowed for the detection of skyrmions even at room temperature in such multi-
layer systems [47–50].

In 2017 also antiskyrmion crystals were observed [41]. These textures require an
anisotropic DMI (cf. Sec. 2.3), which is for example induced by the non-symmetric layer
stacking in the Heusler material Mn1.4Pt0.9Pd0.1Sn. Antiskyrmions have a vorticity of
m = −1. For this reason, the rotational symmetry is broken. This brings about new
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possibilities for spintronics applications. Furthermore, in thicker samples, where the
dipole-dipole interaction becomes considerable as well, skyrmions and antiskyrmions
can both be present in such a material, as was shown for the first time in our experi-
mental collaboration in publication [BG13].

Today, these three types of (anti-) skyrmion crystals have been observed in a manifold
of materials. Furthermore, it is worth mentioning that skyrmions have not only been
found in ferromagnetic materials but also in ferrimagnets [51], multiferroics [52] and
ferroelectric materials [53].

Even though skyrmion tubes with a varying helicity along the tube direction have
been observed recently [54], skyrmion tubes with a fixed helicity, different to that of
Bloch and Néel-type skyrmions, remain unobserved. Furthermore, skyrmions in in-
plane magnetized materials lack observation, which motivated the prediction of mag-
netic bimerons in publication [BG5].

Steps towards applications

In the following, relevant findings for spintronics applications of skyrmions in ferromag-
nets are presented. On that account many predictions exist: skyrmions may be utilized
for logic computing [55], in transistors [56], as microwave devices [57] or magnonic de-
vices [58]. In this thesis, the racetrack storage device is in the center of interest. As
explained in the introduction, it is one of the most promising applications of magnetic
skyrmions [3, 5]. Here, the existence of a skyrmion at certain positions encodes ‘1’ bits,
while a missing skyrmion corresponds to a ‘0’ bit. As will be presented in the following,
the four essential processes ‘writing’, ‘deleting’, ‘moving’, and ‘reading’ of these bits
have been realized experimentally.

Writing and deleting skyrmions in thin films

To utilize skyrmions in spintronic devices, these quasiparticles have to appear individu-
ally and not as periodic lattices. This happens naturally, when the stabilizing magnetic
field is increased and a skyrmion lattice transforms into the field-polarized phase. How-
ever, methods for a controlled generation and deletion are inevitable. As one example,
the controlled writing and destructing of skyrmions by spin-polarized currents from a
scanning tunneling microscopy (STM) tip has been shown for a PdFe/Ir sample [13]
(Fig. 10). In this particular case the externally applied magnetic field is chosen such that
the skyrmion and the ferromagnetic states are energetically equivalent and the tempera-
ture has been decreased to 4.2 K so that thermal switching is extremely improbable. The
injected spins are oriented out-of-plane and switch a ‘bit’ at an average rate on the Hz
scale. By increasing or decreasing the field, either the ferromagnetic or the skyrmionic
state becomes more favorable, respectively, allowing for a deterministic switching of
bits.

Over the following years several alternative writing mechanisms have been realized
or predicted. Besides the presented generation due to spin torques [5,13,59], skyrmions
can be generated by locally applied magnetic fields [60, 61], by electric fields [62], laser
pulses [63], electron pulses [64] or by defects and at boundaries [65–67]. An overview
of generating mechanisms is given in several review articles on magnetic skyrmions
[6, 68, 69].
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Figure 10: Writing and deleting of magnetic skyrmions. Left (G-J): Writing process of
four magnetic skyrmions by local spin-polarized currents from a scanning
tunneling microscope tip polarized out-of plane. The images have been de-
tected by an in-plane polarized scanning tunneling microscope tip. The color
represents the signal difference to the reference state in panel F (red: positive,
blue: negative). Right (B-E): Deleting process. Here, the switching process
is reversible, occurring at an average rate on the Hz scale. It can be made
deterministic favoring the writing (the deleting) process by decreasing (in-
creasing) the magnetic field. Panels A and F show the raw measurements
before and after the writing process. Panel K shows the spin texture: a Néel
skyrmion. From (N. Romming et al. Writing and Deleting Single Magnetic Skyrmions. Science 341,

636 (2013) Ref. [13]). Reprinted with permission from AAAS.

Current-driven motion of magnetic skyrmions

In this thesis the focus is set mainly on the emergent electrodynamic effects of skyrmions.
One of those is the current-driven motion of skyrmions whose mathematical back-
ground will be discussed in more detail in the section on simulation techniques (Sec.
3.2). The propulsion of skyrmions can be realized typically by two scenarios:

The easiest way is to apply an electric current directly along the magnetic racetrack
where the resulting spin-polarized current interacts with the magnetic moments that
form the skyrmion. As a consequence of the spin-transfer torque, a skyrmion is moved
along the track or a skyrmion crystal moves as a whole, which was first observed in bulk
MnSi [7,70]. The skyrmion velocity was found to be proportional to the current density
except for very low currents, for which the skyrmions are pinned. The critical current
density, where the skyrmions start moving, was determined to be around 106 A/cm2

which is much smaller than that for domain walls, in great favor of technological appli-
cations.

The second method is to consider a multilayer system consisting of the actual fer-
romagnetic racetrack layer interfaced with a heavy metal material. Here, the charge
current generates a pure spin current via the spin Hall effect which is injected into the
ferromagnetic layer. Due to the possibility of large angles between a skyrmion’s mag-
netic moments and the injeced spins, larger spin torques are generated and a skyrmion
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moves faster. In Ref. [15] this motion has been realized. However, as is observable in
Fig. 11, the skyrmion does not move in the middle of the track but is pushed towards
the edge. The reason for the transverse component of this motion is the skyrmion Hall
effect originating in the topological charge of the skyrmion (for a derivation and de-
tailed explanation see Sec. 3.4). One of the main goals of this thesis is to suppress this
effect. It has been achieved by changing the racetrack materials (publication [BG1]) or
by considering alternative quasiparticles (publications [BG6] and [BG7]).

b

a

Figure 11: Current-pulse-driven skyrmion motion. a Magneto-optic Kerr effect mea-
surements show a single skyrmion in a Ta/CoFeB/TaOx racetrack. Due to
a rather small DMI (D ≤ 0.5 mJ/m2), the skyrmion has a large diameter of
approximately 1 µm. The current pulse is applied for 50 µs between each
panel with a magnitude of jx = 2.8 MA/cm2. Panel b summarizes the trajec-
tory. Adapted by the permission from Springer Nature Terms and Conditions for RightsLink Permis-

sions Springer Nature Customer Service Centre GmbH: Macmillan Publishers Limited, part of Springer

Nature Nature Physics Direct observation of the skyrmion Hall effect, W. Jiang et al. 2016; Ref. [15].

Topological Hall effect and detection of skyrmions

The last required constituent for constructing a racetrack storage device is reading the
magnetic skyrmions. This can in principle be achieved by real-space imaging similar
to Fig. 9. It is however impracticable for production-line applications. A more elegant
method is an electrical detection. Here, one aims at utilizing the unique Hall signal of
the magnetic skyrmion.

Differently to most spin textures, like spin spirals, a skyrmion phase does not only
exhibit a conventional Hall effect (proportional to the external field Bz; cf. the detailed
discussion in the later section 4.5) and an anomalous Hall effect (proportional to the net
magnetization Mz) but also an additional contribution which arises due to the topolog-
ical charge density of the skyrmion. It is therefore labeled ‘topological Hall effect’ (a
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a b

Figure 12: Hall effects in MnSi. a Hall resistivity of a 50 nm thick MnSi film at a fixed
temperature of T = 25 K. The measured signal (black) is separated into three
contributions: the conventional Hall effect (red), the anomalous Hall effect
(green) and the topological Hall effect (blue). b Topological contribution in
the phase diagram. The signal is non-zero mainly in the skyrmion crystal
phase. The dashed line indicates the phase boundary to the field-polarized
phase. Both panels: Reprinted (figure) with permission from (Y. Li et al. Physical Review Letters 110,

117202 (2013); Ref. [71]; Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial

Thin Films of MnSi. Copyright (2013) by the American Physical Society.

more detailed explanation will be given in the publication section 5.2). Experimentally,
the topological Hall effect was first observed in 2012 for the skyrmion crystal phase of
MnSi by Schulz et al. [70] as a drop in the Hall signal when scanning the temperature.
In later publications, the magnetic-field dependence was analyzed [71]. The signal can
be decomposed into the three aforementioned contributions

ρxy = RHE
0 Bz + RAHE

0 Mz + RTHE
0 〈nSk〉 (2.27)

as can be seen in Fig. 12(a). The topological contribution occurs only for fields below
1 T which is where the skyrmion crystal phase is stabilized in this case. Note, that the
mapping of the signal over field and temperature in Fig. 12(b) looks very similar to the
phase diagram which was determined by neutron scattering [Fig. 8(a)]. Only the critical
field is lager here, since only a 50 nm thick film is considered. For a 10 nm thick film the
critical field increases even further [71].

Since the topological Hall effect is unique for topologically non-trivial spin textures,
its existence allows in principle for an unambiguous detection of skyrmions in racetrack
devices (skyrmions are well distinguished for example from domain walls). The utiliza-
tion of the Hall effect for a local measurement was realized in 2018 by Maccariello et
al. [14]. The authors considered a multilayer racetrack and measured the voltage change
between two thin leads attached to the track [Fig. 13(a)]. In parallel, they compared their
results with real-space images. As a result they found a linear relation of the Hall signal
and the number of skyrmions between the leads [Fig. 13(b)]. However, as the authors
point out, the main contribution to the voltage arises from the anomalous Hall effect
due to the locally reduced net magnetization. The estimated topological contribution to
the signal is two orders of magnitude smaller. This means that in the considered sample
with skyrmions of 100 nm size the signal cannot be distinguished from that of domain
walls.
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a b c

Figure 13: Electrical detection of magnetic skyrmions. a Multilayer racetrack with
measured out-of-plane magnetization (red and blue) by local probe magnetic
force microscopy. The combination with a Hall measurement allows to relate
the Hall resistivity response with the local skyrmion density. b Transverse
resistivity for multiple configurations (examples shown in c). The increase in
resistivity compared to the ferromagnetic state is proportional to the num-
ber of skyrmions between the leads. Green data points have been measured
at constant magnetic fields during the nucleation of skyrmions by current
pulses; for the red points the field has been increased so that the number of
skyrmions is reduced. Adapted by the permission from Springer Nature Terms and Conditions

for RightsLink Permissions Springer Nature Customer Service Centre GmbH: Macmillan Publishers Lim-

ited, part of Springer Nature Nature Nanotechnology Electrical detection of single magnetic skyrmions in

metallic multilayers at room temperature, D. Maccariello et al. 2018; Ref. [14].

Luckily, for the actual realization of a skyrmion racetrack device, much smaller skyr-
mions are the optimal candidates for the carriers of infomation. Since the anomalous
Hall effect scales with the skyrmions’ area but the topological Hall effect does not, a
drastical increase of the importance of the topological Hall effect is expected for the
practicable case. Note for example, how in MnSi the topological Hall effect has a similar
magnitude compared to the anomalous Hall effect at low fields [Fig. 12(a)]. The work of
Maccariello et al. [14] proves that an electrical local detection of skyrmions is in principle
possible. For an actual application, smaller skyrmions need to be considered and the
racetrack has to be fabricated much narrower.

A detailed discussion of the topological Hall effect is presented in the publication sec-
tion 5.2. This effect is an essential part of this PhD thesis: it is considered for skyrmions
in publication [BG2], [BG8] and [BG9], and for other quasiparticles in publications [BG5]
(for the bimeron), publication [BG6] (for the skyrmionium), and publication [BG7] (for
the antiferromagnetic skyrmion).
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3 Simulation of magnetic textures

In the previous section magnetic skyrmions have been introduced as one of the most
prominent examples of non-collinear spin textures. For a continuous magnetization
density their stability is a manifestation of non-trivial real-space topology. However,
since this density is condensed near magnetic atoms, a skyrmion can be viewed to be
formed by discrete magnetic moments. Then, a stabilizing mechanism like the DMI is
inevitable.

In this section the foundation is laid for the simulation and the quantitative descrip-
tion of the aforementioned stabilization of magnetic textures, as well as for the simu-
lation of their current-driven motion. First, in Sec. 3.1 the Monte Carlo method is ex-
plained. It allows to determine the stable ground state of a cluster of magnetic moments.
Thereafter, in Sec. 3.2 the Landau-Lifshitz-Gilbert equation is introduced. This equation
allows to simulate the temporal propagation of a spin cluster or a magnetization density
even when externally perturbed. It can be utilized to simulate the current-driven mo-
tion of non-collinear spin textures. An elegant way to effectively describe this process by
means of an algebraic equation of motion is the Thiele equation, presented in Sec. 3.3.
The latter two concepts are exemplarily demonstrated for the current-driven motion of
a Néel skyrmion in a racetrack geometry in Sec. 3.4.

3.1 Monte Carlo simulations

An efficient way to determine the ground state of a spin system, i. e., the spin texture
with the lowest energy, is to conduct Monte Carlo simulations [72]. A cluster of magnetic
moments is initialized in a random configuration and is then relaxed in the following
way for zero temperature: A randomly selected magnetic moment is reoriented along
a randomly determined direction. Thereafter, the total energies before and after this
reorientation are compared. If the reorientation lowers the total energy of the system,
the altered moment is accepted. If the reorientation increases the total energy, the initial
state is restored. Repeating this step gradually decreases or conserves the energy of the
spin system.

However, this procedure convergences towards a local energy minimum which might
not be the global ground state. This can be avoided by considering a finite temperature.
The so called ‘Metropolis algorithm’ [73] allows for the acceptance of a reorientation by
chance, even if the total energy of the spin cluster is increased by a reorientation of a
magnetic moment. The new configuration is accepted with the probability

p = max{exp(−∆E/kBT), 1}. (3.1)

In case the energy decreases ∆E < 0 by the reorientation, the probability is 1. For
∆E > 0 the probability is given by an Arrhenius law (T > 0 temperature, kB Boltzmann
constant). Since the total energy of the system depends only on the reoriented spin and
the spins which are directly interacting with it (typically nearest neighbors), ∆E can be
calculated using only a few spins instead of the whole cluster.

The convergence speed of the Monte Carlo method can be increased by including
several modifications which are more sophisticated than the Metropolis algorithm [72].
Examples are ‘parallel tempering’, ‘importance sampling’ and ‘over-relaxation’. The
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3.1 Monte Carlo simulations

efficiency of these additions depends strongly on the considered system. In publica-
tion [BG7] for example, the system has been heated periodically for only a few Metropo-
lis steps each time. This way, local energy minima could be overcome while the tem-
perature, which is highly relevant for the magnetic texture, remained low in the long
term.

For the Monte Carlo simulations in publications [BG5] and [BG7] an in-house For-
tran90 code (mainly created by Alexander Mook and adpated by me to the needs of
the considered systems) has been used. Test simulations have been presented in his
PhD thesis [74] and also in my master thesis [75]. One of these tests is reviewed in the
following.

Stabilization of a skyrmion crystal

Besides being a verification for the used code, the following considerations demonstrate
the technical details that need to be accounted for, before starting a simulation. At
the same time, the stabilization of skyrmions from frustrated exchange interactions is
exemplarily shown.

Utilizing the Monte Carlo method, a typical phase diagram of a skyrmion host can
be simulated; cf. Fig. 14. Here, frustrated exchange interactions are considered on
a hexagonal lattice with an external magnetic field B oriented along the out-of-plane
direction, as introduced in Sec. 2.3. The frustration is induced by opposite signs for the
exchange interactions of nearest neighbors J1 and third-nearest neighbors J3 = −3J1.
Fig. 14 is adapted from my master thesis [75] where the used Monte Carlo code has
been tested by reproducing Fig. 1 of Ref. [36]. In that publication a skyrmion crystal has
also been realized for the case of J2 6= 0 and J3 = 0.

Stabilized magnetic textures. In Fig. 14 the phase boundaries (gray lines) are taken
from Ref. [36], while the color indicates the number of skyrmions determined from
the stabilized spin texture at the given parameters. For vanishing magnetic field and
temperature, the ground state is in a helical phase (‘single q’); a spin spiral which is
characterized by a single ordering vector q, like in Fig. 6(a). For high fields the system
transitions to the field-polarized phase, while it transitions to the paramagnetic phase
upon increasing the temperature. Near this phase boundary the skyrmion crystal phase
(‘triple q’) is stabilized, like in Fig. 6(b). Here, the topological charge has a finite value. In
Ref. [36] also a ‘double-q phase’ and a ‘Z phase’ have been characterized. In the Z phase
thermal fluctuations are so large that skyrmions and antiskyrmions appear in the same
spin cluster. This behavior is unique for the frustrated exchange mechanism. Since the
exchange interaction energy is invariant under variation of the skyrmions’ helicity γ and
also their vorticity m = ±1 (characterizing skyrmions and antiskyrmions, respectively),
simulations for the same parameters will result in different types of skyrmion crystals
even in the triple-q phase.

Cluster size. The ‘multi-q’ labeling originates in the mathematical construction of the
magnetic phases. A skyrmion crystal is for example constructed by the superposition
of three spin spirals, therefore the alternative name ‘triple-q state’. Hence, the skyrmion
size can be calculated from the spiral pitch λ = 2π/q = πa/ arccos[ 1

4 (1+
√

1− 2J1/J3)],
which is determined by the exchange constants [36]. The cluster size of 72× 72 and the
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3.1 Monte Carlo simulations

exchange constants have been chosen such that a finite number of skyrmions fits the
lattice commensurately. This consideration is highly important before performing simu-
lations, and has been accounted for also in the publications [BG5] and [BG7]. The aim is
to simulate a perfectly periodic bulk skyrmion crystal. However, due to computational
limitations, only finite spin clusters can be simulated. Choosing a non-fitting cluster size
would lead to a deformation of the skyrmions due to the boundary conditions, altering
the energetic profile of the skyrmion host — an effect which would not be present in an
experimental quasi-infinite system. It should therefore be avoided in the simulation as
well.

Here, 3N2/(4λ2) = 364 skyrmions fit the spin cluster geometrically. This number is
however underestimated by the numerical calculation; the maximum value in Fig. 14
is ≈ 280. However, it would be achieved if the skyrmion phase would extend down
to zero temperature. The finite temperatures lead to thermally distorted skyrmions, so
that the numerical calculation of the skyrmion number gives a smaller result than what
is expected from geometry.

The agreement of the presented simulations with those of Ref. [36] suggests the cor-
rectness of the used computer code and sets the foundation of publication [BG11], where
the transport properties of magnons in exactly these skyrmion crystals has been simu-
lated. Furthermore, the Monte Carlo code has been used to simulate the skyrmion,
bimeron and antiskyrmion crystals in publication [BG5], as well as the antiferromag-
netic skyrmion crystals in Fig. [BG7].

Single-qSingle-q

Triple-qTriple-q

Double-qDouble-q

ZZ

0.0 0.1 0.2 0.3 0.4
0

2

4

6

8

Temperature kBT / |J3|

M
ag

ne
tic

fie
ld

B
/
|J

3
|

NSk

0

50

100

150

200

250

Figure 14: Phase diagram of a frustrated skyrmion host. Adapted from Ref. [75] repro-
ducing Fig. 1 of Ref. [36]. The skyrmion number (colored bar) is non-zero
mainly in the skyrmion-crystal phase (‘triple-q’). The calculations were car-
ried out for a cluster of size 72× 72 with exchange parameters J1/J3 = −1/3.
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3.2 Spin dynamics simulations

3.2 Spin dynamics simulations

In this section the Landau-Lifshitz Gilbert (LLG) equation is derived. It is the equation of
motion of magnetic moments and allows to compute their temporal propagation instead
of merely finding the configuration of lowest energy (as is done in Monte Carlo simu-
lations). In the following, the precessional term is derived (which was introduced by
Landau and Lifshitz [76]), the damping term is introduced (as predicted by Gilbert [77])
and spin torques are explained (originally introduced by Slonczewski [78]).

Precession

In linear response, the angle between a classical magnetic moment M (here not normal-
ized) and its corresponding effective magnetic field

Beff = −
∂H
∂M

, (3.2)

is fixed if the energy in the system

E = −M · Beff (3.3)

is conserved. The effective magnetic field covers all interactions of the magnetic moment
with external fields and also other magnetic moments that enter the lattice Hamiltonian
H.

The magnetic moment precesses around Beff with a constant frequency. This can be
derived from the equation of motion of the quantum mechanical spin operator s [74]

ṡ = − i
h̄
[s, H]. (3.4)

Since the aim is to describe classical magnetic moments M = −γs (only the spin contri-
bution is considered here), the Hamiltonian is expanded to first order in the spin [79]

[si, H] = [si, ∑
j=x,y,z

∂H
∂sj

sj + O(s2)] (3.5)

= ih̄ ∑
j

εijk
∂H
∂sj

sk + O(s2) (3.6)

= ih̄
(

∂H
∂s
× s
)
· ei + O(s2). (3.7)

Exchanging the quantum mechanical operators with the corresponding expectation val-
ues (Ehrenfest theorem) and dropping the higher order terms (classical limit) gives

∂M
∂t

= −γM × Beff (3.8)

with γ = gµB/h̄. As expected, this equation leads to a precession of the magnetic
moment around its effective magnetic field (cf. cone in Fig. 15).
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3.2 Spin dynamics simulations

Figure 15: Damped precession of a magnetic moment. The magnetic moment M pre-
cesses around its effective magnetic field Beff. Due to the Gilbert damping the
system converges to a parallel alignment of both quantities.

Damping

In Ref. [77] a phenomenological damping term was added to Eq. (3.8) which accounts for
energy dissipation (mainly due to excitations of phonons and conduction electrons [77,
79]). When the system is fully relaxed, each magnetic moment points along its respective
effective magnetic field. For this reason, the damping term has to point perpendicular to
the precessional term towards the effective magnetic field. Consequently, the damping
term was introduced as

α

Ms
M × ∂M

∂t
. (3.9)

Here, Ms is the saturation magnetization and α is the dimensionless Gilbert damp-
ing parameter. The corresponding term alters the precessional trajectory to a damped
precession, where the orientation of a magnetic moment converges towards a parallel
alignment with its effective magnetic field (cf. Fig. 15). In total, this yields the Landau-
Lifshitz-Gilbert equation

∂M
∂t

= −γM × Beff +
α

Ms
M × ∂M

∂t
. (3.10)

The effective magnetic field Beff determines the quantitative behavior of the propagation
of a magnetic moment’s orientation. It allows to also include external perturbations like
spin torques.

Spin torque

In the following, the interaction of magnetic moments with electron spins is introduced.
This allows to describe the current-driven motion of non-collinear spin textures via spin
torques. The corresponding term in the LLG equation is derived for the most simple
case, as in Ref. [80]: the ferromagnetic layer of interest (magnetization along M1) is
interfaced with a second ferromagnetic layer which is assumed to have a constant mag-
netization along M2 for all times. Both layers shall have non-parallel magnetizations
M1 ∦ M2. When a current is applied perpendicularly to the layers, the conduction elec-
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3.2 Spin dynamics simulations

trons coming from the second ferromagnet have a spin s ‖ M2. When they are injected
into the first ferromagnetic layer, they generate a spin accumulation sacc interacting with
M1 via the exchange interaction

Hex = −Jsacc ·M1. (3.11)

For this reason, an additional term to the effective magnetic field arises, which is Jsacc.
However, only the component s⊥acc, which is perpendicular to M1, has an effect. There-
fore, the LLG equation describing the magnetic moments of layer one reads

∂M1

∂t
= −γM1 × (B0

eff + Js⊥acc) +
α

Ms
M1 ×

∂M1

∂t
. (3.12)

It has to be noted that s⊥acc is in general not parallel to s (the injected spin polarization
parallel to M2) but is per definition perpedicular to M1. For this reason, it can be
formally expressed as [80]

Js⊥acc = As×M1 + B(s×M1)×M1. (3.13)

Inserting this equation into Eq. (3.12) gives

∂M1

∂t
= −γM1 × (B0

eff + Bs)− γAM1 × (s×M1) +
α

Ms
M1 ×

∂M1

∂t
. (3.14)

After relabeling M1, the effective magnetic field B0
eff (excluding the term due to the

injected spins Hex) and the prefactors of the torque terms, the LLG equation reads

∂M
∂t

= −γM × Beff +
α

Ms
M × ∂M

∂t
+ τFLM × s + τIPM × (s×M). (3.15)

The first torque term is called ‘field-like’ (FL) or ‘out-of-plane’ torque. It is commonly
small [81] compared to the second torque term, called ‘in-plane’ (IP) torque, and has no
qualitative influence on the motion of non-collinear spin textures, as will be shown in
the next section. Therefore, it is neglected for the rest of this thesis.

Spin-orbit torque. Besides the possibility to inject spins from the perpendicular direc-
tion via a second ferromagnetic layer, the ferromagnet of interest can also be interfaced
with a heavy metal (HM) layer [5] [Fig. 16(a)]. A charge current mainly flows in the HM
and the spin Hall effect (SHE) [82–84] generates a pure spin current along the perpen-
dicular direction. Spins s are injected like in the case explained above. Again, the spins
generate a torque that affects the magnetization of the FM layer. Since it arises due to
the spin-orbit interaction, the torque is also labeled ‘spin-orbit torque’ (SOT).

In this scenario the magnitude of the in-plane torque can be determined by a sophis-
ticated analysis of the conduction electrons in the ferromagnetic layer. This allows to
write the version of the LLG equation that is considered for the rest of this paper

∂M
∂t

= −γM × Beff +
α

Ms
M × ∂M

∂t
+

εβ

Ms
M × (s×M), (3.16)
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3.2 Spin dynamics simulations

with the spin-orbit-torque constant [81]

εβ =
γeh̄jΘSH

2eMsdz
. (3.17)

Here, γe = γ/µ0 = 1.760× 1011 T−1s−1 is the gyromagnetic ratio of an electron, ΘSH is
the spin Hall angle, dz is the thickness of the ferromagnetic layer, j is the current density,
and Ms is the saturation magnetization.

In the publications [BG1],[BG4],[BG5],[BG6] this equation has been solved using a
modified version of the GPU-accelerated micromagnetic software package Mumax3 [43,
44] (based on nvidia’s language ‘cuda’ and google’s language ‘go’).

a

b

Figure 16: Racetrack geometries. a Spin-orbit-torque scenario of perpendicular spin in-
jection: A charge current (density j) along the heavy metal (HM) layer is
translated into a spin current by the spin Hall effect (SHE). This current is
oriented along the perpendicular direction with spins polarized perpendicu-
lar to both currents. These spins (yellow) are injected into the ferromagnetic
(FM) racetrack layer. b Spin-transfer-toque scenario where a current is ap-
plied directly along the FM layer. There, the current becomes spin polarized
and generates a torque wherever the magnetization density is not uniform.
Both setups allow to move a magnetic skyrmion (circular object; the color
represents the out-of-plane magnetization density) but at an angle θsk with
respect to j. This figure is partially adapted from publication [BG1].

Spin-transfer torque. Another possibility that allows for the current-driven motion of
non-collinear spin textures is the ‘spin-transfer torque’. Here the electron current flows
in a single magnetic layer, where the electron spin partially aligns with the texture.
Instead of a fixed spin orientation s (like in the SOT scenario), the ‘injected’ electron
spin is determined by the magnetic texture itself [85]

s−M ∝ (j · ∇)M. (3.18)

The orientation of s can differ from M when the latter is non-collinear (M is meant here
as a continuous magnetization density but the derivative can be discretized to cover also
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3.3 Thiele equation

localized magnetic moments). The effect is enhanced if the current density j is increased.
The LLG equation is then derived by analogy with the SOT case.

Since the misalignment of spins with respect to the texture is given by the local change
of the texture, only torques smaller than in the SOT scenario can be achieved. For this
reason, in the following considerations, only the SOT scenario is discussed since it allows
to drive magnetic quasiparticles at much lower driving-current densities compared to
the STT scenario [5].

3.3 Thiele equation

In order to understand the results of spin dynamics simulations better, it is desirable to
find an algebraic, effective description for the motion of non-collinear spin textures. For
this reason, in the following, the ‘Thiele equation’ [86] is derived and generalized. The
essence of the Thiele equation is to consider spin textures that do not change drastically
while moving. The ansatz of a steady motion leads to the relation

∂Mi

∂t
= −vj

∂Mi

∂xj
, (3.19)

where x is the center coordinate of the magnetic quasiparticle and v is its velocity. Using
this approximation, all non-collinearities of the spin texture can be condensed in tensors,
which include the spatial derivative of the magnetic texture ∂Mi/∂xj. These terms have
to be calculated only once and then an algebraic equation is solved to determine the
trajectory of the quasiparticle instead of having to propagate the LLG equation time step
by time step. The derivation of the Thiele equation follows the original publication [86].

The ansatz for the Thiele equation assumes that the total force in the system vanishes.
The force density

fi = −µ0Beff
k

∂Mk

∂xi
(3.20)

will be separated into several terms that compensate each other. To determine these
forces the LLG equation (3.16) with the SOT term is multiplied by M × (·) from the left
side

M × ∂M
∂t

= −γM × (M × Beff) +
α

Ms
M ×

(
M × ∂M

∂t

)
− εβ

Ms
M × [M × (s×M)] .

(3.21)

Utilizing the relations ∂M
∂xi
⊥ M ⊥ ∂M

∂t , which follow from |M| = const., and a× (a×
b) = −a2b for perpendicular vectors, this simplifies to

M × ∂M
∂t

= γM2
s Beff − αMs

∂M
∂t

+ εβMs(s×M). (3.22)

The term M(−γM · Beff) ∝ M has been dropped since the resulting force vanishes. The
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3.3 Thiele equation

equation can be solved for the effective field

Beff =
1

γM2
s

M × ∂M
∂t

+
α

γMs

∂M
∂t
− εβ

γMs
(s×M). (3.23)

The three terms are labeled ‘gyroscopic’, ‘dissipative’ and ‘spin-torque’ terms, respec-
tively. The vector product is expressed via the Levi-Civita symbol ε (note Einstein’s sum
convention)

Beff
k =

1
γM2

s
εkln Ml

∂Mn

∂t
+

α

γMs

∂Mk

∂t
− εβ

γMs
εklnsl Mn, (3.24)

and the time derivative is substituted by the spatial derivative [Eq. (3.19)]

Beff
k = − 1

γM2
s

εkln Mlvj
∂Mn

∂xj
− α

γMs
vj

∂Mk

∂xj
+

εβ

γMs
εklnsl Mn. (3.25)

The three force density contributions are therefore [Eq. (3.20)]

f gyro
i =

µ0

γM2
s

εkln Ml
∂Mn

∂xj

∂Mk

∂xi
vj, (3.26)

f diss
i =

µ0α

γMs

∂Mk

∂xj

∂Mk

∂xi
vj, (3.27)

f torque
i =

µ0εβ

γMs
εklnsl Mn

∂Mk

∂xi
. (3.28)

A gyroscopic tensor can be defined as

g̃ij =
1

dz M3
s

εkln Ml
∂Mn

∂xj

∂Mk

∂xi
= − 1

dz M3
s

M ·
(

∂M
∂xi
× ∂M

∂xj

)
, (3.29)

which relates the force density and the velocity

f gyro =
Msdzµ0

γ
g̃v. (3.30)

Since the gyroscopic tensor is antisymmetric, it can be expressed as a vector g allowing
to rewrite the gyroscopic force density,

g = (g̃yz, g̃zx, g̃xy)
T, f gyro = −Msdzµ0

γ
g × v. (3.31)

For the dissipative term a dissipative tensor d is defined, which relates the force and the
velocity as well,

dij =
1

dz M2
s

(
∂M
∂xi
· ∂M

∂xj

)
, f diss =

Msdzµ0

γ
dαv. (3.32)
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On the contrary, the torque tensor i relates the force with the injected spin orientation,

iij =
1

dz M2
s

(
∂M
∂xi
×M

)
j
, f torque =

εβ

j
Msdzµ0

γ
jis. (3.33)

To arrive at the forces that compensate each other in the Thiele equation,

Fgyro + Fdiss + Ftorque + Fext = 0, (3.34)

the force densities have to be integrated over the extent that is considered to be a quasi-
particle (QP). Additionally to the gyroscopic, dissipative and torque terms, an extrinsic
force F = −∇U(r) is considered. The interaction potential U(r) accounts for the inter-
action of a magnetic quasiparticle with other non-collinearities or the sample’s edge. In
total, the Thiele equation reads

b G× v− bDαv− BjIs = ∇U(r) (3.35)

with the gyroscopic vector, the dissipative tensor and the torque tensor

G =
∫

QP

g dr, D =
∫

QP

d dr, I =
∫

QP

i dr, (3.36)

respectively, and with the constants

b =
Msdz

γe
, B =

εβ

j
Msdz

γe
=

h̄
2e

ΘSH. (3.37)

For a thin film in the xy-plane the gyroscopic vector only has a z component

G = − 1
dz M3

s

∫
QP

M ·
(

∂M
∂x
× ∂M

∂y

)
dr ez, (3.38)

which is proportional to the topological charge

G = −4πNSk ez. (3.39)

The dissipative tensor reads

Dij =
1

dz M2
s

∫
QP

(
∂M
∂xi
· ∂M

∂xj

)
dr (3.40)

resulting in

Dij =
∫

QP

(
∂m
∂xi
· ∂m

∂xj

)
d2r (3.41)
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for a two-dimensional array of normalized magnetic moments. The torque tensor be-
comes

Iij =
1

dz M2
s

∫
QP

(
∂M
∂xi
×M

)
j

dr (3.42)

which can be simplified in a two-dimensional system to

Iij =
∫

QP

(
∂m
∂xi
×m

)
j

dr. (3.43)

Comment on the out-of-plane torque term. In the derivation of the LLG equation with
SOT term [Eq. (3.16)] it was stated that the out-of-plane torque term does not drive
non-collinear spin textures and merely alters their shape (therefore it only affects their
motion indirectly on a quantitative level). This can be understood by analogy with the
above consideration of the in-plane torque term: The out-of-plane torque term leads to
two contributions to the effective magnetic field. The first term is oriented along the
magnetic moment and the second one is parallel to s for all lattice sites. Therefore, even
though the out-of-plane term may affect the size and shape of a non-collinear magnetic
object, it does not generate a finite effective force in the Thiele equation.

3.4 Example: Current-driven motion of a magnetic skyrmion

Starting from the LLG equation — an analytically unsolvable system of differential equa-
tions describing the propagation of every magnetic moment — the Thiele equation — an
analytically solvable system of algebraic equations describing the velocity of a magnetic
quasiparticle — has been derived. In this section the derived theory will be demon-
strated at the example of the current-driven motion of a magnetic Néel skyrmion in a
thin Co film on Pt, as initially presented in Ref. [5]. This system is the foundation of
publication [BG1]. In a similar fashion the motion of a bimeron and a skyrmionium
have been explained in publications [BG5] and [BG6].

In the following, the results of micromagnetic simulations [explicitly propagating the
LLG equation with SOT term in Eq. (3.16)] are overlayed with the results of analytical
considerations [solving the Thiele equation (3.35)]. The system of Co/Pt is described by
the parameters listed in Tab. 1 (taken from Ref. [5]). Since the system is an interface of
magnetic atoms and heavy metal atoms [cf. Fig. 16(a)], an interfacial DMI arises, which
stabilizes Néel skyrmions as explained in Sec. 2.3.

For a Néel skyrmion characterized by NSk = −1 and γ = 0 the tensors D and I have
the following shapes:

Dxx = Dyy, Dij = 0 else, (3.44)

Ixy = −Iyx, Iij = 0 else. (3.45)

Even in a confined sample, where the rotational symmetry of the skyrmion is broken, the
above equations are good approximations. For a Néel skyrmion in a racetrack [periodic
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3.4 Example: Current-driven motion of a magnetic skyrmion

Saturation magnetization 0.58 MA/m
Exchange stiffness 15 pJ/m
DMI constant 3 mJ/m2

Uniaxial anisotropy (z) 0.8 MJ/m3

Gilbert damping 0.3
Spin Hall angle 0.4

Table 1: Micromagnetic parameters of a Co/Pt interface. The parameters have been
taken from Ref. [5]. For several of these parameters different values have been
presented elsewhere, e. g. for the DMI in Ref. [87] or for the spin Hall angle
in Ref. [88]. Using altered values will not qualitatively change the skyrmion’s
behavior as long as it can still be meta-stabilized.

boundary conditions along x, therefore U(r) = U(y)] the Thiele equation reads

−4πNSkb

−vy
vx
0

 = bDxxα

vx
vy
0

+ BIxy

 sy
−sx

0

 j +

 0
∂yU(y)

0

 . (3.46)

For injected spins along −y (sx = 0 and sy = −1) and for skyrmions far from the edge
[∂yU(y) = 0] the equation simplifies to

−4πNSkb

−vy
vx
0

 = bDxxα

vx
vy
0

− BIxy

 j
0
0

 . (3.47)

The y component of this equation gives the relation for the skyrmion Hall angle

tan θsk =
vy

vx
= −4πNSk

Dxxα
. (3.48)

The x component yields the skyrmion velocity characterizing the motion along the track

vx =
BIxy

bDxxα
j− tan θskvy. (3.49)

The skyrmion moves at the skyrmion Hall angle towards the confinement of the race-
track. While approaching the edge, the potential U and also the corresponding force on
the skyrmion −∂yU increase until either the transverse motion is compensated [stable
motion as in Fig. 17(a)] or until the maximum repulsion force is overcome [edge anni-
hilation as in Fig. 17(b)]. For small enough current densities the motion in y direction is
suppressed if

4πbvx = ∂yU(y)|y=ycomp . (3.50)

The skyrmion will then move along the confinement at a steady velocity [first term
in Eq. (3.49)]. If the extremum of the force due to the confinement potential F0 =
−∂xU(x)|extremum is overcome, the skyrmion annihilates at the edge of the racetrack.
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3.4 Example: Current-driven motion of a magnetic skyrmion

0 ns

2 ns 10 ns

0 ns

2 ns 3.5 ns

50 nm

a

b

Figure 17: Current-driven motion of a racetrack skyrmion. The stabilized Néel
skyrmion (NSk = −1 and helicity γ = 0) is driven by the spin-orbit torque in
a 500 nm× 100 nm Co/Pt racetrack with periodic boundary conditions along
the track. A charge current is applied along the x direction in the HM layer
where the spin Hall effects leads to a generation of a spin current that is
injected from the perpendicular direction into the simulated FM layer with
spins pointing along the −y direction. Black indicates the skyrmion’s trajec-
tory and orange is the expected trajectory from the Thiele equation without
considering the skyrmion-edge interaction. In the beginning, the skyrmion
moves along this line at an angle of approximately 70◦ with respect to the
charge current direction. a The effective current density is ΘSH jx = 2.0 MA

cm2

and the skyrmion creeps along the edge after about 2 ns due to the repul-
sive skyrmion-edge interaction. b The effective current density is increased
to ΘSH jx = 3.0 MA

cm2 where the skyrmion annihilates after approximately 3.5 ns.
The magnetic texture is visualized as in the previous figures.

The highest possible velocity is therefore

vc = ±|F0|
1

4πb
= ±|F0|

γe

4πMsdz
(3.51)

at a critical current density of

jc = ±|F0|
1

4π

Dxxα

BIxy
= ±|F0|

Dxxα

4π Ixy

2e
h̄ΘSH

. (3.52)

Fig. 17 shows that this behavior is in good agreement with the micromagnetic sim-
ulations. The stabilized Néel skyrmion is described by NSk = −1, Dxx = 15 and
Ixy = 60 nm. This gives a skyrmion Hall angle of θsk = 70◦.

To determine the critical current density and the highest possible velocity, U(y) has
to be determined. The numerically computed value of the critical force is around
|F0| = 8 meV/nm, similar to the case presented in the supplementary material of publi-
cation [BG1]. This results in

vc = 62
m
s

, jcΘSH = 2.3
MA
cm2 . (3.53)
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3.4 Example: Current-driven motion of a magnetic skyrmion

In agreement with this consideration, the current density jΘSH = 2.0 MA/cm2 < jcΘSH
results in a steady motion of the skyrmion along the confinement at a velocity of
vx = 53 m/s [Fig. 17(a)]. In Fig. 17(b) the current density was increased to jΘSH =
3.0 MA/cm2, which is larger than the critical value. The skyrmion annihilates at the
edge after a few ns.

Following from these consideration, the maximum propulsion velocity of a skyrmion
driven by SOT is limited by the skyrmion Hall effect. A critical velocity of around
50 m/s at a bit spacing of around 50 nm gives a maximal operation rate of 1 Gbit/s,
which is not sufficient for future demands in data accessibility. In reality, the skyrmion
Hall effect is even more detrimental: skyrmions will not creep along defect-decorated
edges. A skyrmion will annihilate instead and the information in the device is lost.
For this reason, a suppression of the skyrmion Hall is essential and several solutions
are presented in the cumulative sections of this thesis, namely the utilization of low-
symmetric heavy metals in publication [BG1] or the utilization of alternative magnetic
quasiparticles with a vanishing topological charge in publications [BG6] and [BG7].

36



4 Electronic properties

In the previous section the foundation was set for simulating the current-driven motion
of non-collinear spin textures. As was shown at the example of a Néel skyrmion, spin
textures with a non-trivial real-space topology will not move parallel to an applied
current; a transverse force occurs.

In this section the behavior of the electrons that form the current is analyzed. Upon
traversing a non-collinear spin texture, the conduction electrons’ spin reorients partially
along the spatially-dependent magnetic texture. Therefore, the topological properties
of the texture are adapted by the current electrons and manifest themselves as a phase
factor in their wave function. In the following, the Berry theory is used to derive the force
on the electrons corresponding to such a phase factor and to quantify the corresponding
Hall conductivity.

This section is structured as follows. First, the definitions of the Berry phase and the
Berry curvature are motivated in Sec. 4.1. These quantities allow to calculate the Hall
conductivity of electrons in periodic bulk crystals, as will be presented in Sec. 4.2. In
Sec. 4.3 the spin Hall conductivity, the orbital magnetization and the magnetoelectric
polarizability are introduced. These quantities are related to the Berry theory in a wider
sense and have been calculated in publications [BG3] and [BG9] for skyrmions and
in [BG7] for antiferromagnetic skyrmions. To model the electronic properties the tight-
binding formalism is used in all cases. It is explained in Sec. 4.4 and demonstrated to be
compatible with the Berry theory approach in Sec. 4.5. There, the quantum Hall effect
is exemplarily quantified. This sets the foundation for the calculation and discussion
of the topological Hall effect of electrons in topologically non-trivial spin textures in
publications [BG2], [BG5], [BG8] and [BG9].

4.1 Berry theory

In the following, the Berry phase, the Berry connection and the Berry curvature are de-
rived, following Berry’s original publication [89]. Besides application of this concept in
condensed-matter physics, the Berry theory can be utilized to describe other phenomena
like the rotation of the plane of oscillation of Focault’s pendulum in classical mechan-
ics [90]. In quantum mechanical systems, the Berry phase is a phase factor by which a
wave function differs before and after traversing a closed loop in parameter space. In
this thesis the parameter space is the reciprocal space. As will be shown in Sec. 4.2, the
Berry curvature then allows to calculate the transverse conductivity of electrons under
application of an external field or in the presence of a skyrmion crystal.

To derive the Berry curvature one considers a Hamiltonian H(R) that depends on a set
of parameters R(t), which are time-dependent. At every point of time t the stationary
Schrödinger equation

H(R(t)) |n(R(t))〉 = En |n(R(t))〉 (4.1)

is fulfilled. Here, |n(R(t))〉 is the n-th eigenstate with eigenenergy En. The time propa-
gation of the wave function |ψ(t, R(t))〉 follows the time-dependent Schrödinger equa-
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4.1 Berry theory

tion

H(R(t)) |ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉 . (4.2)

If the parameters R(t) are varied adiabatically along a path in parameter space, a state
|n(R(t))〉 cannot change its quantum number n as long as the eigenenergies are non-
degenerate. The wave function then reads

|ψ(t, R(t))〉 = exp

− i
h̄

t∫
0

dt′ En(R(t′))

 exp[iγn(t)] |n(R(t))〉 . (4.3)

The first exponential function accounts for the time propagation and contains the dy-
namic phase factor. Additionally, the wave function can accumulate a second phase
factor γn(t), which is a geometric phase, later called ‘Berry phase’. To determine this
formally introduced phase, the time-dependent Schrödinger equation is solved. One
finds

∂

∂t
|ψ(t, R(t))〉 =

(
Ṙ(t)∇R |n〉+ iγ̇n(t) |n〉 −

i
h̄

En |n〉
)

(4.4)

× exp

− i
h̄

t∫
0

dt′ En(R(t′))

 exp[iγn(t)]. (4.5)

Inserting this into the Schrödinger equation (4.2) gives

γ̇n(t) |n〉 = iṘ(t)∇R |n〉 (4.6)

and after multiplication with 〈n| from the left

γ̇n(t) = iṘ(t) 〈n|∇R|n〉 . (4.7)

The above equation can be integrated along a closed path in the parameter space to
arrive at an expression for the Berry phase

γn =
∮

i 〈n|∇R|n〉 · dR. (4.8)

The integrand of this equation

An(R) = i 〈n|∇R|n〉 (4.9)

is called ‘Berry connection’. It can be identified as a geometric vector potential which is
not gauge invariant. The corresponding ‘field’, the Berry curvature

Ωn(R) = i 〈∇R n| × |∇R n〉 , (4.10)

is the curl of the Berry connection. It is gauge-invariant just like a real magnetic field in
conventional electrodynamics.
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4.2 Reciprocal-space Berry curvature and Hall conductivity

Alternatively, the Berry curvature can be expressed in terms of eigenstates and eigenen-
ergies. For a three-dimensional order parameter, the above expression is expanded

Ωn(R) = i ∑
m
〈∇R n(R)|m(R)〉 × 〈m(R)|∇R n(R)〉 (4.11)

= −i ∑
m
〈n(R)|∇R|m(R)〉 × 〈m(R)|∇R|n(R)〉 . (4.12)

Using

〈m(R)|∇R|n(R)〉 = 〈m(R)|∇RH|n(R)〉
En(R)− Em(R)

(4.13)

for n 6= m, the result is [89]

Ωn(R) = i ∑
m 6=n

〈n(R)|∇RH|m(R)〉 × 〈m(R)|∇RH|n(R)〉
[En(R)− Em(R)]2

. (4.14)

The advantage of this formula is that it is calculated directly from the eigenstates and
eigenenergies. The gradient is now applied to the Hamiltonian which in many cases
allows for an analytical calculation. This saves computation time when numerically
calculating the Berry curvature.

4.2 Reciprocal-space Berry curvature and Hall conductivity

Berry curvature in periodic crystals

In the context of solid-state physics, the Berry curvature is defined in reciprocal space,
which accounts for the translational symmetry of a crystalline material. Bloch’s theo-
rem [91] tells that the wave function ψn(k, r) can be expressed as a product

ψn(k, r) = exp (ik · r)un(k, r), (4.15)

where un(k, r) has the same real-space periodicity as the lattice. To define the Berry
curvature with respect to this lattice-periodic part of the wave function, the stationary
Schrödinger equation is rewritten as [92, 93]

e−ik·r Heik·run,k(r) = En,kun,k(r). (4.16)

The left side defines a new Hamiltonian

H̃(k) = e−ik·r Heik·r (4.17)

that acts on un,k(r). Note, that the wave vector k has deliberately been written as a
parameter (from now on R ≡ k) which is adiabatically changing, in order to determine
the Berry phase, connection and curvature. H̃ is the lattice-periodic Hamiltonian that is
later considered in the tight-binding model. The Berry curvature is now defined as [92]

Ωn(k) = i 〈∇kun| × |∇kun〉 . (4.18)
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4.2 Reciprocal-space Berry curvature and Hall conductivity

Like the band dispersion En(k), the Berry curvature is periodic in reciprocal space and
has to be calculated only in the first Brillouin zone. However, it is not solely deter-
mined by En(k) but information on the lattice-periodic part of the eigenfunctions |un〉
is required.

The reason why the Berry curvature accounts for the topological properties of an
electron system becomes apparent from the fact that the integral over the Brillouin zone,
called ‘Chern number’

Cn =
1

2π

∫
BZ

Ωz
n(k)d2k, (4.19)

can only have integer values [94] (here written for a two-dimensional system).
The precise role of the Berry curvature and the Chern number for electronic transport

will be derived in the following. For now, we settle with the fact that they account for
the topological properties of the system and lead to the emergence of priorly unexpected
observables. As one example, Thouless et al. [94] used the concept of topology to explain
why a quantized Hall effect appears for large magnetic fields (will be discussed in detail
in Sec. 4.5). For this work he has been awarded the Nobel prize in 2016 together with
Haldane and Kosterlitz for their “theoretical discoveries of topological phase transitions
and topological phases of matter” (Nobel Foundation). Their works set the foundation
for the understanding and discovery of topological materials (like topological insulators
[95]), which have been in the eminent focus of research ever since.

Emergence of a Berry curvature

In order for the Berry curvature or Chern numbers to be non-zero, one can analyze
two important symmetries of electronic systems. The Berry curvature is antisymmeteric
under time-reversal symmetry [75]

Ωn(k) = −Ωn(−k) (time-reversal symmetry) (4.20)

and symmetric under inversion symmetry

Ωn(k) = Ωn(−k) (inversion symmetry). (4.21)

For this reason, the Berry curvature vanishes if both symmetries are present. Further-
more, physical observables (like the Hall conductivity) are always determined by an in-
tegral over an energy contour or energy range. As long as the time-reversal symmetry is
conserved, even in the case of broken inversion symmetry, En(k) = −En(k) leads to the
cancellation of the Berry curvature contributions from k0 and −k0. This means, to have
an actual effect, the time-reversal symmetry has to be broken, e. g. by the application of
a magnetic field or by accounting for a magnetic texture. Reversely, it is inevitable to
account for the Berry curvature-induced effects when describing the electronic behavior
of magnetic systems, including skyrmion crystals and other non-collinear spin textures.
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4.2 Reciprocal-space Berry curvature and Hall conductivity

Hall conductivity

In the following, the precise relation between the reciprocal-space Berry curvature and
the Hall conductivity is established.

When an electric field E is applied to a metal, electrons move because of their charge
q = −e. This leads to the emergence of an electric current density j. In the most simple
case, the electric field and the current density are parallel but this is not strictly enforced
by Ohm’s law

j = σE, E = ρj. (4.22)

Here, σ and ρ are inverse tensors: the conductivity and the resistivity, respectively. In
the case of broken time-reversal symmetry, e. g. when a magnetic field is applied or a
magnetic texture is present, transverse transport-tensor elements can appear.

In 1934 Bloch, Peierls, Jones and Zener derived the semiclassical equations of motion
of a Bloch electron wave packet in electromagnetic fields [91, 96, 97]. In 1999 a crucial
missing term, the so called ‘anomalous velocity’, was found, modifying the equations of
motion to [98]

ṙ = vn(k)− k̇×Ωn(k), (4.23)

h̄k̇ = qE + qṙ× B. (4.24)

Here, vn = h̄−1 ∂En(k)
∂k is the group velocity and, by analogy, −k̇×Ωn(k) is the anoma-

lous velocity. The second equation accounts for the Lorentz force: the wave vector k
changes under application of an electric field E and magnetic field B. Due to the sim-
ilarity of the two equations, the Berry curvature Ωn(k) can be considered a ‘reciprocal
magnetic field’. This implies a transverse deflection of electrons even in the absence of a
magnetic field: In this case k̇ ‖ E point along the Hall bar. In a two-dimensional system
the Berry curvature is always oriented perpendicular to the plane, therefore inducing
an anomalous velocity pointing along the transverse direction. This formally explains
why the anomalous Hall effect and the topological Hall effect can occur without the
application of a magnetic field.

The precise relation of the conductivity and Berry curvature can for example be de-
rived utilizing the Boltzmann equation, as is presented in Appendix A. The result of this
derivation for a two-dimensional system is

σxx = −e2 1
2π

2

∑
n

∫
BZ

vn,x(k)2τn(k)
∂ f
∂E

∣∣∣∣∣
E=En(k)

d2k, (4.25)

σxy = − e2

h
1

2π ∑
n

∫
BZ

Ωz
n(k) f (En(k)− EF)d2k. (4.26)

Here, f is the equilibrium Fermi-distribution function, and τn(k) is the relaxation time,
which arises due to extrinsic effects. For this reason, only the transverse element is
purely intrinsic. Using Eq. (4.14) it can be rewritten as
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4.2 Reciprocal-space Berry curvature and Hall conductivity

σxy(EF) = −
e2

h
1

2π
2 Im ∑

m 6=n

∫ 〈n|∂kx H|m〉 〈m|∂ky H|n〉
(En − Em)2 f (En(k)− EF)d2k. (4.27)

For T = 0 the transverse conductivity is only affected by states below the Fermi energy
EF

σxy(EF) = −
e2

h
1

2π ∑
n

∫
En(k)≤EF

Ωz
n(k)d2k. (4.28)

If the Fermi energy is situated in a band gap, the Hall conductivity is given by the sum
over the Chern numbers Cn of all occupied (occ) bands

σxy = − e2

h

occ

∑
n

Cn, Cn =
1

2π

∫
BZ

Ωz
n(k)d2k. (4.29)

Since Cn can only have integer values, non-trivial Chern numbers lead to quantized
transport. As shown by Hatsugai [99, 100], the origin is the occurrence of topologically
protected edge states, which make the system conducting at the edges (and generate a
non-zero σxy), while the bulk remains insulating. The quantitative difference of left- (wl

n)
and right-propagating (wr

n) edge states in the gap above band n is given by the winding
number wn

wl
n − wr

n = wn ≡ ∑
m≤n

Cn. (4.30)

This relation allows to deduce boundary properties purely from bulk information and is
therefore called ‘bulk-boundary correspondence’. A material which exhibits these edge
states is labeled ‘Chern insulator’.

Conclusion

Summarizing this section, a mathematical description for the Hall conductivity was es-
tablished [Eq. (4.27)] and the implications for Chern insulators have been discussed.
The presented method utilizes the Berry curvature that accounts for the topological
properties in a periodic system. It allows to describe conventional crystalline matter
under application of an external magnetic field (as will be discussed in Sec. 4.5), and
in the presence of periodic magnetic textures (as in the case of skyrmion crystals in
publications [BG2], [BG8] and [BG9], bimeron crystals in publication [BG5], and antifer-
romagnetic skyrmion crystals in publication [BG7]).

To quantify an emerging current for non-periodic magnetic textures (e. g. an indi-
vidual skyrmion in a racetrack device), other methods have to be considered, that are
not directly related to a Berry phase or curvature. In publication [BG6] the Landauer-
Büttiker approach will be used to calculate the topological Hall effect of individual
skyrmioniums in a racetrack device. The method is introduced in the corresponding
section 6.3 and is further explained in Appendix B.
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4.3 Spin Hall conductivity, orbital magnetization, and magnetoelectric effect

4.3 Spin Hall conductivity, orbital magnetization, and magnetoelectric effect

In the previous sections the mathematical foundation for the simulation of the current-
driven motion of non-collinear spin textures (goals 1 and 4 from the introduction) and
for the quantification of the topological Hall effect of electrons in these textures (goals
2 and 4) has been established. This section introduces three more observables which
allow to substantiate new hallmarks of the skyrmion crystal phase (goal 3) and other
non-collinear spin textures (goal 4). All of the here introduced quantities ‘spin conduc-
tivity’, ‘magnetoelectric polarizability’, and ‘orbital magnetization’ can be considered
wide topics by themselves. I limit the following discussion to the essential ideas and
present how I have implemented the computation of these quantities in a computer
code.

Similar to the derivation of the charge conductivity, one can derive expressions for
other observables in Kubo theory. Relevant for this thesis are the spin conductivity (as
considered for a skyrmion crystal in publication [BG9] and for an antiferromagnetic
skyrmion crystal in publication [BG7]) and the magnetoelectric polarizability (as dis-
cussed for different types of skyrmion crystals in publication [BG3]). Both quantities are
not determined by the reciprocal-space Berry curvature, but a spin Berry curvature and
a mixed Berry curvature (defined in magnetization and in reciprocal space), respectively.
Furthermore, the orbital magnetization is introduced (as calculated in publication [BG3]
for skyrmion and antiskyrmion crystals). It is partially related to the reciprocal-space
Berry curvature but cannot be formulated by analogy with the three observables men-
tioned above.

ba c

Magnetoelectric effectSpin Hall effect Orbital magnetization

Figure 18: Alternative hallmarks of skyrmionic phases. a The transverse spin conduc-
tivity quantifies the spin Hall effect where two spin-polarized charge currents
compensate each other with respect to the charge (gray) but add up in spin
(yellow and green). A pure spin current (blue) emerges along the transverse
direction. b The magnetoelectric polarizability quantifies the magnetoelec-
tric effect. As one consequence it leads to the emergence of a magnetization
(blue) if an electric field (red) is applied. Here, a transverse magnetoelectric
effect is depicted as occurring in spin textures with a finite toroidal moment.
c The orbital magnetization arises due to the circulation of electrons (red).
An orbital contribution to the magnetization (blue) arises additionally to the
spin moment of the material. It is oriented perpendicularly to the circulation
plane.
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4.3 Spin Hall conductivity, orbital magnetization, and magnetoelectric effect

Spin conductivity

The intrinsic part of the spin conductivity can be defined straightforwardly [101] by
analogy with the charge conductivity [Eq. (4.27)]

σ
γ
αβ(E) = −2 Im

e
2

1
(2π)2 ∑

m 6=n

∫ 〈n|∂kα
H|m〉 〈m| 12{∂kβ

H, σγ}|n〉
(En − Em)2 f (En(k)− E)d2k,

(4.31)

where σγ is the generalized γ Pauli matrix and {·, ·} is the anti-commutator. Here, one
velocity operator has been exchanged with the spin-current operator and the quantum
of spin conductivity in two dimensions is not e2/h but (e2/h)(h̄/2e) = e/4π.

In some sense, the integrand can be considered a ‘spin Berry curvature’ but in this
case it is a 3× 3× 3 tensor that cannot be reduced to a three component vector as was
the case for the reciprocal-space Berry curvature. The reason is that the σ

γ
αβ element is

not necessarily the sign reversed of the σ
γ
βα element. Also, longitudinal elements σ

γ
αα

are well defined, which implies that an intrinsic contribution to the longitudinal spin
conductivity exists.

The transverse element σ
γ
xy characterizes the spin Hall effect [82–84]. As an example,

in non-magnetic materials with spin-orbit coupling, spins of opposite orientations are
deflected into opposite directions leading to the cancellation of the charge current and
the emergence of a pure spin current [Fig. 18(a)]. Such a spin Hall effect can have
multiple origins (side jump, skew scattering and intrinsic geometrical reasons [102]). As
will be shown, non-collinear spin textures can lead to the emergence of a pure spin Hall
effect as well.

In the cumulative part of this thesis (Sec. 5.2 and 6.4) a local spin conductivity is used
to calculate the spin Hall effect of electrons in non-collinear spin textures. Here, instead
of the γ axis for the spin (commonly z is considered), the local magnetic moment’s
orientation is used at each lattice site.

Magnetoelectric polarizability

The magnetoelectric polarizability (in two dimensions)

αij(EF) = gµb
e

2π

2
∑
n

∫
occ

D(ij)
n (k)d2k (4.32)

quantifies the magnetoelectric effect

αij =
∂Pi

∂Bj
=

∂Mj

∂Ei
. (4.33)

As was first described in 1888 [103], the effect implies that a magnetic field induces a po-
larization and, as Onsager reciprocal effect, that an electric field induces a magnetization
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4.3 Spin Hall conductivity, orbital magnetization, and magnetoelectric effect

[Fig. 18(b)]. The integrand

D(ij)
n (k) = −2 Im ∑

l 6=n

〈n|∂ki H|l〉 〈l|σj|m〉
(En − El)2 (4.34)

can be labeled a ‘mixed Berry curvature’, since it is defined in reciprocal and real space
(note that the magnetic field is defined in real space and that ∂BH ∝ σ).

The derivation of Eq. (4.32) is based on the so called ‘modern formulation’ of the
polarization [104, 105]. This polarization changes by [106]

∆Pi = e ∑
n

∫
occ

1
(2π)d Im 〈∂ki u|∂Bj u〉 dk dBj (4.35)

upon variation of the j component of B. A formal motivation for the emergence of this
effect can be established by expanding the free energy with respect to the electric and
magnetic fields E and B [107]

F(E, B) = F0 − PS
i Ei −MS

i Bi −
1
2

ε0εijEiEj −
1
2

µ0µijBiBj − αijEiBj − . . . . (4.36)

Differentiation gives

Pi(E, B) = − ∂F
∂Ei

= PS
i + ε0εijEj + αijBj, (4.37)

Mi(E, B) = − ∂F
∂Bi

= MS
i + µ0µijHj + αjiEj. (4.38)

Up to quadratic order the polarization P (magnetization M) is determined by the spon-
taneous polarization PS (spontaneous magnetization MS), the electric susceptibility ε
(magnetic susceptibility µ) and the magnetoelectric polarizability α. The latter quanti-
fies the aforementioned magnetoelectric effect.

The linear magnetoelectric effect can only arise if the spatial inversion symmetry and
the time-reversal symmetry are simultaneously broken [33]. Therefore, it can occur for
inversion symmetric lattices in case the magnetic texture breaks this particular symme-
try. Possible textures are characterized by the pseudoscalar a, the toroidal moment t and
the quadrupole magnetic moment q [33]

a =
gµB

3 ∑
n

rn · sn, (4.39)

t =
gµB

2 ∑
n

rn × sn, (4.40)

qij =
gµB

2 ∑
n

(
rnisnj + rnjsni −

2
3

δijrn · sn

)
. (4.41)

These quantities allow to express the term of the free energy that corresponds to the
magnetoelectric effect as [108]

Fme = −a(E · B)− t · (E× B)− qij(EiBj + EjBi). (4.42)
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4.3 Spin Hall conductivity, orbital magnetization, and magnetoelectric effect

By symmetry this means that

P = −t× B, M = t× E. (4.43)

In other words, the transverse tensor element of the magnetoelectric polarizability is
proportional to the toroidal moment of the magnetic texture. This moment changes
its sign under time reversal and under space inversion and is defined in the above
given manner where the sum runs over all basis atoms; ri is defined with respect to the
inversion center of the lattice.

As was explained in Sec. 2.2, the toroidal moment of a skyrmion is proportional to
the sine of its helicity. This was one motivation for publication [BG3] in which the
magnetoelectric effect was investigated for different types of skyrmion crystals and new
hallmarks of the skyrmion crystal phase were established.

Orbital magnetization

A quantity that cannot be related purely to a Berry curvature is the orbital magnetiza-
tion [109]

Mz(EF) =
1

(2π)2

∫
occ

m(z)
n (k)d2k

+
e
h̄

1
(2π)2

∫
occ

Ω(xy)
n (k)−Ω(yx)

n (k)
2

[EF − En(k)]d2k. (4.44)

The measured magnetization is not purely given by the spin moments but also has
an orbital component, even though small in most materials. When a wave packet ro-
tates, it generates a magnetic moment which is measured as a magnetization component
perpendicular to the circulation plane [Fig. 18(c)]. The first term of this orbital magneti-
zation contains the orbital magnetic moment [110, 111]

mn(k) = −
e

2h̄
Im ∑

l 6=n

〈n|∇kH|l〉 × 〈l|∇kH|n〉
En(k)− El(k)

, (4.45)

capturing the intrinsic contributions of the Bloch electrons. The second term is deter-
mined by the Berry curvature of all occupied bands; it accounts for the change of the
phase-space volume, as presented in Ref. [109].

The orbital magnetization fulfills the relation

∂

∂EF
Mz(EF) =

1
2e
[σyx(EF)− σxy(EF)] = −

1
e

σxy(EF), (4.46)

which means that the orbital magnetization changes linearly with the Fermi energy in
the band gap of a Chern insulator.

In publication [BG3] the orbital magnetization has been calculated for skyrmion and
antiskyrmion crystals. In a semiclassical picture, electrons are circulating around the
corresponding emergent field of the texture. This brings about a topologically-induced
contribution to the orbital magnetization [112, 113].
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4.4 Tight-binding model

One main goal of this thesis is the explanation of the topological Hall effect of electrons
in skyrmion crystals which goes beyond relating the measured signal to the real-space
skyrmion density as presented in the experimental section 2.4. For this reason, a model
is needed that allows to access the electronic eigenstates. As derived in the previous
section, the latter are essential for utilizing the Berry theory. Since the here considered
magnetic quasiparticles are large compared to the lattice spacing, a sizable number of
atoms has to be considered. This makes an ab initio approach very demanding; the
method of choice is the tight-binding formalism, which is introduced in the following.

In contrast to an ab initio approach, a tight-binding model contains (physical) param-
eters. This essentially allows to disregard selected contributions to physical effects and
therefore to isolate individual contributions. Here for example, the spin-orbit coupling
is deliberately neglected in all calculations to isolate the topological contribution to the
Hall effect of electrons in non-collinear spin textures. This makes the tight-binding
method a useful tool for understanding the fundamentals of physical effects.

Derivation of the tight-binding Hamiltonian

The goal of the tight-binding method is to solve the stationary Schrödinger equation

H |ψn,k〉 = En,k |ψn,k〉 (4.47)

for eigenergies En,k and eigenfunctions |ψn,k〉 in a simplified way. The idea is to express
the wave function as a linear combination of orbitals [114–116]

ψn,k =
1√
N

∑
α

∑
Ri

cn,α(k)eik·(Ri+tl)φo,σ(r− Ri − tl). (4.48)

Here, the coefficients cn,α(k) have a band index n and an index α comprising the indices
for the basis atom l, the spin σ, and the orbital o. They are normalized to ∑ |cn,α(k)|2 = 1.
This approach satisfies the Bloch theorem and it is assumed that the wave functions φo,σ
at the atom positions Ri + tl are orthogonal (this can be achieved by a transformation of
the initial orbitals [117]).

When the linearly combined wave function is used to solve the Schrödinger equation,
the eigenenergy reads

En,k = 〈ψn,k|H|ψn,k〉 =
1
N ∑

α,β
∑

Ri ,Rj

c∗n,α(k)cn,β(k)

×eik(Ri+tl−Rj−tm) 〈φo′,σ′(r− Rj − tm)|H|φo,σ(r− Ri − tl)〉 . (4.49)

Due to the lattice periodicity, any reference point can be chosen, e. g. Ri = 0, giving N
identical terms

En,k = ∑
α,β

c∗n,α(k)cn,β(k)∑
Rj

e−ik·∆jlm 〈φo′,σ′(r− Rj − tm)|H|φo,σ(r− tl)〉︸ ︷︷ ︸
:=Hα,β

(k), (4.50)
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where ∆jlm = Rj + tm − tl is the distance between two atoms: one in located in the
reference cell Ri = 0 at tl , the other in the cell with lattice vector Rj at tm. In the last
equation the tight-binding Hamilton matrix H has been introduced with elements Hα,β.
The Schrödinger equation has been reduced to an algebraic matrix equation

H cn(k) = En(k) cn(k). (4.51)

Computational details

The integrals 〈φo′,σ′(r− Rj − tm)|H|φo,σ(r− tl)〉 can in principle be calculated from the
considered orbital wave functions. However, often it is more convenient to use them
as parameters which can for example be optimized by fitting the tight-binding band
structure to an experimentally determined band structure (as has been done in publi-
cation [BG10] using ARPES data of a SrTiO3 two-dimensional electron gas) or to an ab
initio calculation. As a valid simplification, one can consider a two-center approxima-
tion neglecting integrals for which the potential of the Hamilton operator is localized on
none of the two atomic positions. The calculated elements are called ‘on-site energies’
and ‘hopping amplitudes’ characterizing the interaction of orbitals from the same site
or different sites, respectively.

Additionally to these terms, different effects can be considered in the tight-binding
matrix. In this thesis, the aim is to make general statements on the topological Hall
effect. For this reason, only the nearest-neighbor hopping of s orbitals and a coupling of
the electrons’ spin to a magnetic texture are considered. This is the most simple setup
for describing the topological Hall effect in a tight-binding model. The hopping terms
reduce to expressions of the shape t eik·∆ and the Hund’s coupling (similar to a Zeeman
term) at atom i reads m σ · si, with σ the vector of Pauli matrices. The ratio of m/t
determines which of the two terms is dominating.

After defining the tight-binding matrix, it is diagonalized numerically to obtain the
eigenenergies and the eigenfunctions via the eigenvectors cn,k that consist of the coef-
ficients cn,α(k). These can be used to calculate the Berry curvature and the Hall con-
ductivity, as in Eq. (4.27). As explained earlier, an advantage of this expression is that
the terms ∇ki H can be calculated analytically in advance. The corresponding speed-up
in computation time is well needed: Even after utilizing this advantage, the calculation
of an energy-resolved conductivity curve can take several days even on the CPU clus-
ter of our department. The reason is the large unit cell of more than 100 atoms when
considering a non-collinear spin texture.

Before closing this section, one remark appears adequate. For the definition of the
hopping, two conventions can be found in the literature (cf. comparison in the program
documentation of the code PythTB [118]). The convention which is presented above
considers the actual distance between two atoms ∆. Alternatively, only Rj, the corre-
sponding lattice vector (without the basis vector), can be considered for determining the
phase of the hopping. This alternative convention gives the correct band structure and
Hall conductivity and is therefore used in many publications. However, the k-space dis-
tribution of the Berry curvature is unphysical [119]. More adversely, the magnetoelectric
properties in this convention are not gauge invariant, thus incorrect [118]. This comes
from the fact that this convention effectively uses the full wave function for calculating
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the Berry curvature instead of only the lattice periodic part. For this reason, in the here
presented publications the basis vectors have always been incorporated in the hopping
phases as presented above.

4.5 Example: Quantum Hall effect

At this point of this thesis the used methods for the theoretical description of the emer-
gent electrodynamics of non-collinear spin textures have been introduced and explained.
As before, I conclude with one extended example which illustrates the presented theo-
retical method. The example of choice is the quantum Hall effect in a two-dimensional
free electron gas and in graphene. It is quantified by the Berry theory approach, whose
understanding is especially essential for the publications on the topological Hall effect
in non-collinear spin textures ([BG2], [BG3], [BG5], [BG7], [BG8] and [BG9]) in sections
5 and 6.

The starting point of the following discussion is the conventional Hall effect [120]. This
phenomenon of an occuring charge current transverse to an applied electric field under
the presence of a perpendicular magnetic field can be fully described by a semi-classical
approach. Once the transition is made to a two-dimensional sample, low temperatures,
and high magnetic field strengths, the quantized version of the Hall effect arises. This
effect can still be understood by semi-classical considerations but the essential results
are nicely reproduced using the Berry theory. As a third step, graphene is investigated,
for which the electrons do not behave freely. Here, the Berry theory approach can
show its strengths as it allows for a straightforward calculation of the unconventional
quantization of the Hall effect, which has been measured experimentally [121].

Conventional Hall effect

In 1879 Hall detected a voltage across a metal in perpendicular direction to an applied
electric current [120]. He applied a magnetic field Bz perpendicular to this so called
‘Hall bar’. In a semiclassical picture of free electrons propagating along the Hall bar,
the charge carriers are deflected into the transverse direction by the Lorentz force. This
leads to a charge accumulation and a counteracting electrostatic force. In equilibrium
the forces compensate each other,

q(v× B) = −qE, (4.52)
vxBz = Ey. (4.53)

Expressing the electric field in term of a voltage VH and the sample width w, and the
longitudinal velocity in terms of the applied current density j and the carrier density n

Ey = VH/w, jx = nvxq, (4.54)

the Hall voltage can be written as

VH =
wBz jx

nq
. (4.55)
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In terms of the resistivity [Eq. (4.22)] the Hall coefficient is normalized by the magnetic
field

RH =
ρxy

Bz
=

1
Bz

Ey

jx
. (4.56)

This leads to

ρxy = RHBz, RH =
1

nq
. (4.57)

The above equation implies that the Hall resistivity is proportional to the out-of-plane
magnetic field and depends on electronic properties, namely the carrier density and
charge; the equation holds also for holes with q = +e.

Quantum Hall effect of free electrons

In order to calculate the Hall conductivity by means of the Berry theory in reciprocal
space, first the Hamiltonian with an applied magnetic field has to be determined. The
field B = B ez can be described by a vector potential A = Bxey (Landau gauge), fulfilling
B = ∇× A.

For free electrons with a zero-field band structure of E(k) = h̄2k2/(2m) [cf. Fig. 19(a)],
the Hamiltonian reads then [122]

H =
1

2m
[
p2

x + (py − qBx)2] , (4.58)

whose Eigenvalues [122] [cf. Fig. 19(b)]

En = h̄ω(n +
1
2
), n = 0, 1, 2, . . . (4.59)

can be determined in second quantization by analogy with the harmonic oscillator:
The canonical momentum π = p− qA defines the creation and annihilation operators
a† = R√

2h̄
(πx − iπy), a = R√

2h̄
(πx + iπy), respectively. Here, ω = qB/m is the cyclotron

frequency and R =
√

h̄/qB is the Larmor radius. The bands have no dispersion, imply-
ing that at zero temperature the sample becomes insulating for practically every Fermi
energy. As was presented in Sec. 4.2, edge currents can occur anyway.

In a simplified picture one can introduce the edge of the sample (or more precisely
the air or vacuum) as an infinitely large scalar potential, which has to be added to the
Hamiltonian (4.58). This leads to a strong deformation of the energy levels near the
sample’s edges: The energy of every level continuously increases up to infinity. For this
reason, every level below the Fermi energy cuts this particular energy close to the edge,
making the sample conducting. Each energy level below the Fermi energy delivers one
conduction channel.

This ‘rough’ version of a bulk-boundary correspondence can be expressed in terms
of the reciprocal-space Berry curvaure defining integer Chern numbers. Since free elec-
trons have been considered, there is no k-dependence in the equidistant energy spec-
trum [Fig. 19(b)]. As has been shown in my master thesis [75], the reciprocal-space
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Figure 19: Quantized Hall effect for free electrons in a two-dimensional sample. a
Free-electron parabola (along all wave vector directions) for Bz = 0. b Formed
Landau levels when Bz is applied. c Magnetic-field dependence of the trans-
verse resistivity ρxy for a fixed location of the Fermi energy. For large fields
the signal is quantized at values of 1

n
h
e2 , with n = 1, 2, 3, . . .. For small fields

this quantization is hard to resolve and the quantized Hall effect transitions
into the conventional Hall effect. All figures show schematic representa-
tions at zero temperature. Arbitrary units have been used if not indicated
otherwise.

Berry curvature Ωz
n(k) is homogeneous for every band, giving them indeed non-zero

Chern numbers of

Cn = 1 (4.60)

for a positive magnetic field. The Chern number of one imposes that every band below
the Fermi energy contributes with one conductance quantum of e2/h to σxy making the
insulating bulk sample conducting at the edge, i. e., a Chern insulator.

In the considered system the transverse conductivity is given by

σxy = − e2

h

occ.

∑
n

Cn = −l
e2

h
, (4.61)

where l is the number of occupied bands. The negative sign is in agreement with semi-
classical considerations of the conventional Hall effect: if a magnetic field is applied
along the +z direction and an electron initially moves along the −y direction due to
an applied field along +y, it will be deflected along the +x direction, i. e., there is an
electric current flowing along the −x direction.

As follows from this consideration, free electrons in a two-dimensional system at zero
temperature always exhibit a quantized Hall effect. For small fields however, the energy
levels are denser in energy (∆E = h̄ω ∝ B), therefore the transverse conductivity appears
to be continuous even at low temperatures. The quantized Hall effect approaches the
ordinary Hall effect. Assuming a continuum of bands for small B, the number of bands
below the Fermi energy (and therefore also σxy) is proportional to 1/B. Since in a band
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gap the longitudinal conductivity vanishes, the transverse resistivity is given by

ρxy = −σ−1
xy ∝ B, (4.62)

in agreement with the semiclassical consideration of the conventional Hall effect [cf.
Eq. (4.57)]. The transition to the quantum Hall effect has been observed first in 1980 by
Klaus von Klitzing [123] (Nobel prize in 1985). In the experiments ρxy increases linearly
with Bz for small fields until quantized plateaus at values of 1

n
h
e2 , with n = 1, 2, 3, . . . are

visible at higher fields, as also follows from the above calculations [cf. Fig. 19(c)].
Summarizing at this point, it has been presented that for free electrons a parabolic

band dispersion condenses to equidistant Landau levels when a magnetic field is applied
along the normal of the two-dimensional system [cf. Fig. 19(a) and (b)]. Those bands
carry a Chern number of 1. Therefore, they contribute with one quantum of e2/h (or
2 · e2/h for spin-degenerate bands) to the transverse conductivity. The origin of the
quantized Hall effect are topologically protected edge channels and the quantized Hall
effect transitions into the conventional Hall effect for small fields and large temperatures
[cf. Fig. 19(c)].

Quantum Hall effect in graphene

Many innately two-dimensional systems exhibit different energy-dependent Hall sig-
nals compared to what has just been discussed. Essentially, electrons in real crystals
cannot be considered as free electrons since the effective mass changes magnitude and
even sign throughout the band structure. One of such examples is graphene, which is
constituted by C atoms that form a two-dimensional honeycomb lattice [124] [Fig. 20(a)].
The consideration below is oriented at Ref. [BG8].
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Figure 20: Graphene. a Lattice with two equivalent basis atoms A and B. If a mag-
netic field is considered, the theoretically relevant unit cell becomes enlarged
(blue). For the hopping paths within this magnetic unit cell the phase factors
are indicated. b Band structure in the hexagonal Brillouin zone without mag-
netic field. c Density of states for the band structure from (b). The electronic
character is indicated. This figure is partially adapted from Ref. [BG8].
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Zero-field band structure. The band structure near the Fermi level is given by two
bands which intersect (neglecting a small spin-orbit gap) in the shape of a Dirac cone
(linear band dispersion) [Fig. 20(b)]. These bands have pz character, and since they
hybridize equally along all directions in the plane, a tight-binding description requires
only a single hopping amplitude t. Diagonalization of

H = t

(
0 eiaky + e−ia(

√
3

2 kx+
1
2 ky) + e−ia(−

√
3

2 kx+
1
2 ky)

e−iaky + eia(
√

3
2 kx+

1
2 ky) + eia(−

√
3

2 kx+
1
2 ky) 0

)
(4.63)

gives the band structure in Fig. 20(b) with the corresponding density of states in Fig. 20(c).
The Fermi energy is located at EF = 0. The tight-binding matrix H has been constructed
from the nearest-neighbor-hopping terms. Each of the two atoms in the unit cell has
three nearest neighbors of the other kind of basis atom. Their distance is a. Due to
particle-hole symmetry of the Hamiltonian the band structure is symmetric with respect
to the Fermi energy EF = 0.

The lower band is close to a free electron parabola near the band bottom at −3t and
has a saddle point (van Hove singularity) at −1t. At this energy, the constant energy
cuts of the band (Fermi lines) transition from one electron pocket to two hole pockets,
i. e., the whole Brillouin zone is filled except for two circular areas.

Introduction of the magnetic field. The external magnetic field is included by means
of a Peierls substitution [125]. To account for the transverse deflection by the Lorentz
force, a phase factor is added to the hopping [126]

eik·rij → ei(k·rij+bij), bij =
e
h̄

∫
ri→r j

A(r) · dl. (4.64)

To allow for the calculation of a band structure, the phase factors have to be periodic in
the unit cell. This imposes restrictions on the magnetic field strength, as will be shown
in the following. In any case, instead of the structural unit cell, a larger magnetic unit
cell has to be considered, as shown in Fig. 20(a).

For the calculation of the line integral, the vector potential is expressed in the gauge
A(r) = B(x/

√
3− y)ex. For the following example only the hoppings along the direction

a
√

3/2ex + a/2ey are considered. The magnetic field strength has to fulfill the relation

BA =
p

bq
Φ0 (4.65)

in order to be compatible with the lattice. Here, A = 3
√

3a2/4 is the area of the unit
cell, Φ0 = h/e is the flux quantum, b = 2 is the number of basis atoms and p and q are
coprime integers. Only if this relation is fulfilled, the phase factors can be expressed as
0π

p
bq , 2π

p
bq , 4π

p
bq , . . . for these particular hopping paths (the other hopping paths can be

considered by analogy).
As an example, p/2q = 1/4 as in Fig. 20 corresponds to phase factors of 0 and

π. This set of p and q describes a magnetic field of around 39.5 kT for graphene (a =
0.142 nm), which is unachievable experimentally. However, the effective magnetic field

53



4.5 Example: Quantum Hall effect

of skyrmions is characterized by p → NSk and q → n, with n being the number of sites
forming a skyrmion. For small skyrmions (n ≈ 100), field strengths of several thousands
of Tesla can be achieved, which is why in the following example p/bq = 1/72 is used.
This corresponds to a field of 2193 T.

Landau quantization and Hall conductivity. Under the influence of this large external
magnetic field, the bands of graphene are mostly flat [Fig. 21(a)]. Especially near the
zero-field band structure’s minimum and maximum, these Landau levels are equidistant
and show no visible k dependence just like for the case of free electrons. Likewise, these
bands have an almost homogeneous Berry curvature and a Chern number of 1. The Hall
conductivity [Fig. 21(b)] exhibits steps of −e2/h in this energy range, starting from zero
and going back to zero, as is expected.

Near the energies of van Hove singularities of the zero-field band structure (E = ±t)
the Landau levels exhibit q/b oscillations along the long side of the Brillouin zone (here
18 oscillations). At these energies the Hall conductivity changes sign due to a single
band with an enormous Chern number of 1− q = −35 which compensates the Chern
numbers of all other bands.

In the range between the two characteristic energies, the bands are doubly degenerate
[note, that the bands are plotted in red and blue alternately in Fig. 21(b)]. They have
a combined Chern number of 2 and are not equidistant. The Hall conductivity is still
quantized but takes values of . . . ,+3e2/h,+e2/h,−e2/h,−3e2/h, . . .. At E = 0 (the
energy of the Dirac point in the zero-field band structure) the Hall conductivity changes
from +e2/h to −e2/h. For positive energies the Hall conductivity is sign reversed with
respect to the Fermi energy EF = 0, originating in the electron-hole symmetry of this
system.

Onsager’s quantization scheme. The unconventional quantization of the Hall conduc-
tivity and the sign changes at energies of van Hove singularities and EF = 0 are strongly
related to the zero-field band structure. Onsager’s quantization scheme [127,128] allows
to deduce the precise dependence.

As was presented before, a free electron parabola in the zero-field band structure
condenses to dispersion-less equidistant bands once the magnetic field is introduced [cf.
Fig. 19(a) and (b)]. One can understand the equidistant energy spacing from the constant
density of states (in two-dimensions): Each Landau level is formed by an equal number
of states starting from the zero-field band minimum. A Landau level forms right in
the middle of the corresponding energy range, which explains why the lowest Landau
level is energetically higher than the band minimum of the zero-field band structure [cf.
Fig. 19(a) and (b)].

For a real material the density of states is not constant. In graphene [Fig. 20(c)] it in-
creases starting at the band minimum. Therefore, the resulting Landau levels are form-
ing more densely [cf. Fig. 21(a)]. Their energy can be reconstructed by integrating the
density of states and placing a Landau level whenever a multiple of a field-determined
constant is reached, by analogy with the case of free electrons.

This procedure is known as Onsager’s quantization scheme [127, 128] and has been
used to generate the gray curve in Fig. 21(b), which approximates the Hall conductivity
well. Energies that require a special consideration are the energies of van Hove singu-
larities. Here, the electronic character changes from electron- to hole-like. To account for
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this, a jump of qe2/h is introduced at these particular energies. Furthermore, between
−t and +t the zero-field band structure has two equivalent pockets [Fig. 20(b) and (c)].
The number of states in each of the pockets has to overcome the specific threshold for
the formation of a Landau level. For this reason, two Landau levels form at the same
energy and contribute with one edge channel each to the transverse conductivity.

This scheme allows for an intuitive understanding of the calculated curve and approx-
imates it precisely, except for a few features close to the energies of the van Hove sin-
gularities [Fig. 21(b)]. These inaccuracies occur because Onsager’s quantization scheme
assumes perfectly flat Landau levels. For a more detailed analysis of this quantization
scheme and a generalization to the topological Hall effect of electrons in non-collinear
spin textures, one is referred to publication [BG8] (not explicitly included in this the-
sis). There, also the complicated Berry-curvature distribution in the band with the large
Chern number is shown and explained.

Relation to the conventional Hall effect. To reestablish the relation to the conventional
Hall effect, the focus is set on the energy range near the zero-field band’s minimum.
Assuming the synthetic case where the Fermi energy is located here, the density of
states is almost constant [cf. Fig 20(c)].

Going to smaller magnetic fields, the magnetic unit cell becomes larger, in order to
ensure periodicity of the Peierls phase [Eq. (4.64)]. Consequently, more Landau levels
are formed, all with a Chern number of 1, each. The bands become so dense that
quantized values in the conductivity disappear even for low temperatures, similar to
the discussion for free electrons. In this case, the expected Hall signal is the integrated
density of states multiplied by bq/p, as follows from the Onsager quantization scheme.
This means that for a fixed Fermi energy

ρxy ∝
1

σxy
∝

p
bq

∝ B (4.66)

in the limit of small temperatures and large magnetic fields T/B → ∞, in agreement
with the conventional Hall effect [Eq. (4.57)].

Comparison to the experiment. In one of the earliest publications on graphene, the
Hall signal is presented [121] in the energy range near the Dirac crossing, i. e., the
touching point of the blue and red band in Fig. 20(b). Starting at E = 0 and go-
ing to higher energies, the resistivity ρxy takes a value of 1

2
h
e2 and then decreases to

1
6

h
e2 , 1

10
h
e2 , . . .. This corresponds to conductivities of −2 e2

h ,−6 e2

h ,−10 e2

h , . . . which were
calculated in Fig. 21(b) but with a missing factor of 2. This factor comes from the spin
degree of freedom which has been neglected in the calculations. In terms of a Zeeman
interaction (coupling of the spin to the magnetic field), the spin splitting is negligible
compared to the Landau level quantization. For this reason, all Landau levels appear to
be spin degenerate in the experiment.

The transitions between the plateaus are not step-wise in the experiment because of
the discussed lattice effects and (most importantly) the small but finite temperature of
1.6 K. Furthermore, the applied maximum gate voltage of ±80 V did not allow to access
the energies which correspond to the van Hove singularities. Also, in the depicted
energy range (which has to be within the range of −t to +t) many more plateaus appear
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Figure 21: Quantum Hall effect in graphene. a Band structure (Landau levels are al-
ternately depicted in red and blue) and b Hall conductivity versus location
of the Fermi energy. Here, blue indicates the actual calculation and gray is
the result of Onsager’s quantization scheme (see text). This figure is partially
adapted from Ref. [BG8]. The magnetic field Bz = 2193 T corresponds to
p/bq = 1/72.

in the experiment compared to the calculation; even though the experimental field of
9 T is large, the magnetic field was more than 200 times larger in the calculation.

Overall, the experimentally detected quantum Hall effect in graphene was well re-
produced by the Berry theory approach; even an unconventional quantization could be
explained. This validates its utility also for the quantification of the topological Hall
effect in non-collinear spin textures, which is relevant for the publications [BG2], [BG3],
[BG5], [BG7], [BG8] and [BG9].
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In the last sections, the theoretical methods for simulating magnetic textures and for
describing the electronic transport properties have been introduced. In the following,
seven publications will be presented and put into the context of this thesis. In the present
section, the publications concerning conventional magnetic skyrmions and skyrmion
crystals are discussed.

Suppression of the skyrmion Hall effect. The first publication [BG1] is attributed to
the first goal formulated in the introduction. As presented in Sec. 3.4, a Néel skyrmion
driven by spin-orbit torque suffers from a transverse deflection towards the racetrack’s
confinement, which is one of the major problems for the technological realization of a
skyrmion-based racetrack storage device. In the publication a solution to this problem is
presented: Néel skyrmions are driven by a modified spin-orbit torque so that a skyrmion
Hall effect does not emerge. This increases the reliability and operation speed of a
racetrack storage device drastically.

Topological Hall effect. Based on the mathematical concept of the Berry curvature (as
presented in Sec. 4), publication [BG2] establishes an understanding of the topological
Hall effect in skyrmion crystals that goes beyond justifying the charge deflection with
the emergent field of the skyrmion (goal number two in the introduction). Unconven-
tional quantization and sign changes in the signal are predicted. The latter have their
origin in the energy-dependent electronic carrier characteristics.

New hallmarks of skyrmion phases. In publication [BG3] the orbital magnetization
and the magnetoelectric polarizability have been computed for different types of skyr-
mion and antiskyrmion crystals, as introduced in Sec. 4.3. These quantities establish
alternative hallmarks of skyrmionic phases in magnetic materials (goal number three)
and even allow to distinguish different types of textures.

Alternative magnetic quasiparticles. The fourth goal formulated in the introduction
is the prediction of alternative magnetic quasiparticles and the investigation of their
emergent electrodynamic effects. In this regard, four types of textures will be discussed.
The corresponding publications are presented in Sec. 6.
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Skyrmions as carriers of information. Magnetic skyrmions are considered to be the car-
riers of information in future data storage devices like the racetrack device. In Sec. 3.4
the current-driven motion of a Néel skyrmion in thin films has been simulated and
explained. Inconvenient for applications is the skyrmion Hall effect [15, 16], that de-
scribes the transverse deflection of skyrmions towards the confinement of a racetrack
when an electron current flows along the track. In real materials with a rough edge, the
skyrmions will annihilate and the stored information is lost. And even when an ideally
smooth edge is assumed, the maximally applicable current density is limited, resulting
in a limited propulsion velocity.

Possibilities for suppressing the skyrmion Hall effect. To find approaches to suppress
the skyrmion Hall effect one may consider the Thiele equation [identical to Eq. (3.35)]

−4πNSkb ez × v− bDαv− BjIs = ∇U(r). (5.1)

The evident solution is to consider quasiparticles with a topological charge of NSk = 0,
like the antiferromagnetic skyrmion or the skyrmionium (cf. the publications in Sec. 6).
Since conventional skyrmions (NSk = ±1) are by far better understood experimentally,
it is desirable to search for solutions also for these quasiparticles. The two-layer setup
of the racetrack [as presented in Fig. 16(a)] enforces stabilized skyrmions to be of Néel
type, so D and I are fixed as well. One is left with the manipulation of the torque-
exhibiting polarization orientation s. A suggested approach is the injection of spins via
a magnetic layer on top of the actual racetrack layer, like in Ref. [129]. However, this
method utilizes a charge current applied along the racetrack normal. For this reason,
enormous currents are required to maintain this spin injection over the whole extent of
the racetrack. An alternative method for injecting such spins is highly desired.

This publication. In the following publication “Overcoming the speed limit in race-
track devices by suppressing the skyrmion Hall effect” [BG1] an improved version of
the skyrmion racetrack storage device is presented. As explained in Sec. 3.4, the con-
ventional spin-orbit torque setup consists of a ferromagnetic layer and a heavy metal
layer, where a charge current is transferred into a spin current by the spin Hall effect.
The heavy metal commonly has such a high symmetry (e. g. Pt) that the spin polariza-
tion s will necessarily be oriented perpendicularly to the charge current and the spin
current. By considering a lower symmetric heavy metal, the spins can be oriented par-
tially along the current direction. This changes the propulsion direction of the skyrmion
(cf. Fig. 1 of the publication). At an optimal spin orientation the skyrmion Hall effect
is completely suppressed, allowing to apply much higher current densities compared
to the conventional system. Consequently, the skyrmions move in the middle of the
racetrack at a velocity which is increased by one order of magnitude (cf. Fig. 2).

For the simulation of the skyrmion motion the LLG equation (3.16) has been solved.
For the effective description of the skyrmion’s trajectory the Thiele equation (3.35) was
used.

The following publication: Reprinted (whole article) with permission from (B. Göbel et al. Physical Review B 99,

020405(R) (2019); Ref. [BG1]; Overcoming the speed limit in skyrmion racetrack devices by suppressing the skyrmion

Hall effect). Copyright (2019) by the American Physical Society.
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Magnetic skyrmions are envisioned as carriers of information in racetrack storage devices. Unfavorably, the
skyrmion Hall effect hinders the fast propagation of skyrmions along an applied electric current and limits
the device’s maximum operation speed. In this Rapid Communication, we show that the maximum skyrmion
velocity increases by a factor of 10 when the skyrmion Hall effect is suppressed, since the straight-line motion of
the skyrmion allows for the application of larger driving currents. We consider a ferromagnet on a heavy-metal
layer, which converts the applied charge current into a spin current by the spin Hall effect. The spin current drives
the skyrmions in the ferromagnet via spin-orbit torque. We show by analytical considerations and simulations
that the deflection angle decreases, when the spin current is polarized partially along the applied current direction,
and derive the condition for complete suppression of the skyrmion Hall effect.

DOI: 10.1103/PhysRevB.99.020405

Introduction. Over recent years, the capacity of data stor-
age devices has steadily grown by reducing the size of mag-
netic bits in two-dimensional arrays [1]. The minimal size of a
bit is limited by quantum effects, so new storage devices have
been proposed and tested. Parkin et al. suggested a device
that consists of quasi-one-dimensional racetracks which can
be arranged to create a truly three-dimensional device with
a drastically increased storage density [1–3]. Initially, walls
between two ferromagnetic domains were considered as infor-
mation carriers that can be written, moved, read, and deleted.

With the discovery of magnetic skyrmions [4–9] the con-
cept of racetrack storage devices could be further improved. In
a proposal by Fert et al. [10,11] domain walls were replaced
by these whirl-like magnetic skyrmions in a ferromagnetic
surrounding. Significant advantages of magnetic skyrmions
as information carriers are their small size and their topo-
logical protection, quantified by an integer topological charge
NSk = ±1.

Besides great stability the nontrivial real-space topology
of a skyrmion induces emergent electrodynamic effects: spin-
polarized electron currents, injected along the ferromag-
netic racetrack, experience a topological Hall effect (THE)
[12–20] and drive the magnetic skyrmion itself. Detrimen-
tally, this skyrmion propagation is not parallel to the elec-
tric current direction; in most scenarios the skyrmion Hall
effect (SkHE) [9,21–26] limits the maximum velocity, beyond
which skyrmions annihilate at the edges of the racetrack.

To overcome this limitation, several concepts have been
established. The combination of two skyrmions with oppo-
site topological charges for example results in antiferromag-
netic skyrmions [27,28], bilayer skyrmions [29,30], or 2π -
skyrmions [31–38]. Their zero topological charge gives a zero
SkHE but these quasiparticles have either not been observed
experimentally yet or are unstable under motion [37].

*bgoebel@mpi-halle.mpg.de

Another idea is to modify the racetrack setup. Interfac-
ing the actual racetrack with a second ferromagnet, a spin-
polarized current can be injected perpendicularly into the in-
terface [11]. The magnetization direction can be chosen such
that the skyrmion moves along the racetrack [39]. However,
the spin current has to be applied over the whole racetrack,
what obliterates the necessary low driving currents and the
stackability of the racetrack device.

Replacing the second layer by a nonmagnetic heavy-metal
(HM) layer, the spin Hall effect (SHE) converts a charge
current along the HM into a spin current injected perpendic-
ularly into the ferromagnetic layer (FM) [11] (see Fig. 1).
In this Rapid Communication, we show that the skyrmion
Hall angle can be engineered to zero in this setup. For HMs
with reduced symmetry the generated spin current is polar-
ized partially along the applied charge current, as recently
shown in Refs. [40–43]. This reduces the skyrmion Hall angle
compared to a cubic HM layer, where applied charge current,
generated spin current, and the spin current’s polarization are
perpendicular to each other. FM and HM materials can be
chosen accordingly to suppress the hindering skyrmion Hall
effect completely and allow for a ten times as fast skyrmion
motion compared to cubic HMs.

Suppression of skyrmion Hall angle. The motion of a mag-
netic skyrmion in a ferromagnetic thin film can be induced
via two mechanisms: spin-transfer torque (STT) or spin-orbit
torque (SOT). The first mechanism features in-plane injection
of a spin-polarized current into the magnetic film. The elec-
tron spins align partially with the texture and transfer a torque
to the magnetic texture, wherever the latter is noncollinear, in
particular at a skyrmion. However, the direction of the injected
spins is determined by the texture itself. Therefore the STT
scenario does not allow for manipulation of the skyrmion Hall
angle (angle of motion with respect to the applied current) and
will inevitably suffer from the hindering transverse deflection.

We consider the second mechanism: skyrmion motion via
SOT. In this scenario the FM is interfaced with a HM layer

2469-9950/2019/99(2)/020405(6) 020405-1 ©2019 American Physical Society
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FIG. 1. Proposed mechanism to suppress the skyrmion Hall effect. A ferromagnetic layer (FM) is attached to a heavy-metal layer (HM);
the interfacial DMI stabilizes Néel skyrmions (red-white circular object) in the FM. When a charge current (density j) is applied in the HM the
spin Hall effect (SHE) generates spins that are injected into the FM where they cause a SOT onto the magnetic moments. In highly symmetric
materials the injected spins point into the ±y direction (white line) and the skyrmion moves at a certain skyrmion Hall angle angle θSk (white
line). In HMs with a reduced symmetry the spin polarization has an angle δ in the xy plane and the propagation direction of the skyrmion is
altered by δ (orange). The skyrmion Hall effect is absent for δ = θSk (see text).

with a nonvanishing SHE (Fig. 1). To propel the skyrmion
a charge current j is injected along the HM layer (x) where
the SHE leads to perpendicular injection (z) of spins with
polarization

s ∝
∑

m

σ m
zx em, (1)

giving a spin Hall angle �SH = js
z/ jx. σ m

zx is an element of
the spin conductivity tensor (x applied current direction, z
generated spin current direction, m = {x, y, z} direction of
spin polarization), and em is the unit vector in the m direction.
For a cubic HM σ

y
zx �= 0 and σ x

zx = σ z
zx = 0, which means that

injected spins always point into the ±y direction (we use −y
in the following). For this reason skyrmions driven by SOTs
via highly symmetric HMs inhibit to manipulate the skyrmion
Hall angle.

However, if the symmetry of the HM allows for σ x
zx �=

0, the injected spin orientation becomes s ∝ (σ y
zxey + σ x

zxex ),
with a deviation angle about the −y direction of

δ = arctan
(
σ x

zx

/
σ y

zx

)
. (2)

As we will show, this angle can compensate the hindering
skyrmion Hall effect completely.

The collective behavior of the magnetic texture under
torques follows the Landau-Lifshitz-Gilbert (LLG) equation
[44–46]

ṁi = − γemi × Bi,eff + αmi × ṁi

+ γeεβ[(mi × s) × mi] − γeε
′β(mi × s). (3)

Each magnetic moment mi precesses about the effective mag-
netic field Bi,eff = −δmi F/Ms, which is derived from the free-
energy density F [covering exchange, easy-axis anisotropy,
interfacial Dzyaloshinskii-Moriya interaction (DMI), and de-
magnetization fields]. Damping is quantified by the material-
dependent Gilbert damping parameter α, and γe = γ /μ0 =
1.760 × 1011 T−1 s−1 is the gyromagnetic ratio of an electron.
The in-plane torque coefficient is εβ = h̄ j�SH

2edzMs
; we set the out-

of-plane torque parameter ε′ to zero [47], due to its negligible
influence on the skyrmion dynamics [25,39,48].

The generalized Thiele equation [49] for the SOT sce-
nario describes effectively the center-coordinate motion of a

skyrmion [11]

bG × vvv − bDαvvv − BIR(−δ − π/2) j = 0. (4)

The skyrmion moves with velocity vvv when driven by the
current density j. The gyromagnetic coupling vector G = Gez

with G = − ∫
m(r) · [∂xm(r) × ∂ym(r)]d2r = −4πNSk and

the dissipation tensor D with Di j = ∫
∂xi m(r) · ∂x j m(r)d2r

(only Dxx, Dyy nonzero) determine the motion direction. R(φ)
is a rotation matrix in the xy plane around the angle φ,
δ characterizes the injected spin orientation with respect to
the −y direction, and B = h̄/(2e)�SH [11,50]. The factor
b = Msdz/γe contains the thickness of the FM dz and its
saturation magnetization Ms. I is the tensor Ii j = ∫

[∂xi m(r) ×
m(r)]x j d

2r. A Néel skyrmion (helicity h = 0) has only Ixy and
Iyx nonzero. For a different helicity this particular tensor is
rotated by −h.

The Thiele equation gives a skyrmion Hall angle θSk =
arctan(vy/vx ) which is zero for

tan(δ + h) = G

αDxx
, (5)

determined via vy = 0. This tells us that an optimal spin
orientation δ or an optimal skyrmion helicity h can be found,
for which the skyrmion Hall angle is absent. For δ = 0, the
above equation condenses the recent geometric considerations
by Kim et al. [51] to a simple expression. They showed that
for a mixed interfacial and bulk DMI [52,53], i.e., h �= 0, π/2,
the skyrmion Hall angle can vanish. However, such skyrmions
are still awaiting experimental identification.

Due to interfacial DMI the SOT scenario typically sta-
bilizes Néel skyrmions (h = 0). A vanishing skyrmion Hall
angle is then achieved when the skyrmion Hall angle
arctan[G/(αDxx )] of the system with σ x

zx = 0 is compensated
by δ = arctan(σ x

zx/σ
y
zx ):

σ x
zx

σ
y
zx

= G

αDxx
. (6)

The effective torque has been manipulated via the injected
spin orientation instead of the magnetic texture itself, so that
the skyrmion Hall angle is completely suppressed.

High-speed skyrmions in micromagnetic simulations. We
verify the results of the Thiele equation using micromagnetic
simulations and begin with CoPt, as considered in Ref. [11],
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[°] v [m�s] j [MA�cm2]

(a) 0 48. .0

(b) 0 � 3.2

(c) 70.7 26.

21

35 .2

(d) 70.7 173.7 20.0

(e) 70.7 481.2 44.0

FIG. 2. Micromagnetic simulations comparing conventional and optimized setup. (a),(b) Conventional CoPt racetrack with δ = 0◦. (c)–(e)
Optimized racetrack with δ = 70.7◦. Results of the simulations are shown after 1 ns propagation duration at different current densities �SH j
(indicated on the right). The optimal geometry yields a stable motion for much larger current densities, allowing for faster propagation of the
skyrmion. The skyrmion’s velocity in (e) is ten times as large as in the conventional scenario in (a); v = 481.2 m/s compared to v = 48.1 m/s.
Red: −z; blue: +z magnetization; white shows the actual trajectory and dashed orange shows the predicted trajectory from the Thiele equation
without confining potential. An animated version of this figure is presented in the Supplemental Material [57].

where −y polarized spins are injected into the FM. We
use MUMAX3 [54,55] to solve the LLG equation with the
SOT term (3). The racetrack geometry throughout this Rapid
Communication is width 40 nm, thickness dz = 0.5 nm, pe-
riodic boundary conditions in x direction, and a cell size
of 0.5 nm × 0.5 nm. The parameters for CoPt read [11] ex-
change stiffness J = 15 pJ/m, DMI constant D = 3 mJ/m2,
uniaxial anisotropy Kz = 0.8 MJ/m3, saturation magnetiza-
tion Ms = 0.58 MA/m, and Gilbert damping α = 0.3. Note
that the choice of parameters does not qualitatively affect
the skyrmion motion (as long as individual skyrmions can
be stabilized). This is especially important since ab initio
calculations predict D values that differ by up to 60% [56].

When driven by SOT a stabilized Néel skyrmion is pushed
in the x direction (along the track) via the dissipative force
(proportional to Dxx) and is also pushed in the y direction (to
the edge) by the gyrotropic force (proportional to NSk).

The confined geometry introduces another term to the right
side of the Thiele equation (4), which is the gradient ∇U (y)
of the potential energy of the skyrmion in the ferromagnetic
layer. It contributes strongly at the edge of the racetrack, and
repels and slightly deforms a skyrmion. Using the parameters
of CoPt Néel skyrmions are stabilized with Dxx = 14.63 and
Ixy = 55.58 nm, what gives a skyrmion Hall angle of about
70.7◦. The skyrmions are not perfectly rotational symmetric.

In Fig. 2(a) the skyrmion is driven by a considerably
low current density of �SH j = 2 MA/cm2. In the beginning
the skyrmion moves under the above angle. Increasing the
y coordinate upon propagation leads to an increase of the
repelling force from the confining potential. After this short
acceleration phase the skyrmion moves in a steady state
along the track. For current densities beyond a threshold,
the gyrotropic force in the y direction is so strong that the
confining potential is overcome and the skyrmion annihilates
at the edge of the racetrack [Fig. 2(b)]. In this particular
CoPt racetrack the applicable current density is limited to

about �SH j = 3 MA/cm2, what limits the velocity to about
50 m/s.

Next, we consider a HM material with nonzero σ x
zx, i.e.,

when an electric current is applied along the racetrack (x) the
injected spins are not polarized in the −y direction but are
rotated by δ. Choosing the tensor elements so that Eq. (6) is
fulfilled, the skyrmion Hall effect is completely suppressed
and the skyrmion moves in the middle of the racetrack
[Fig. 2(c)]. The trajectory prediction from the Thiele equation
coincides with the simulated trajectory.

The velocity of this optimized racetrack is less than that of
the CoPt racetrack for the same j which follows directly from
the Thiele equation,

vx = B

b

Ixy cos δ

αDxx
j. (7)

However, skyrmions in this optimized geometry can be driven
by currents 20 times as large and reach skyrmion velocities
10 times as large as for the CoPt racetrack. The result of
a micromagnetic simulation for a fast-moving skyrmion is
depicted in Fig. 2(e).

We showed that the skyrmion Hall angle vanishes in the
optimized setup. However, δ is given by material-specific
parameters that can be tuned only slightly. Therefore, we
analyze the range of current densities yielding a stable motion
in dependence of δ and find that the maximum skyrmion
velocity (at maximal allowed current density) increases in
every case compared to the σ x

zx = 0 velocity, even if δ deviates
from the optimal value.

The skyrmion motion is stable in the colored areas of
Fig. 3(a) (solved analytically in the Supplemental Material
[58]). For very low current densities the skyrmion remains sta-
ble for every spin polarization orientation since the transverse
force is too weak to overcome the confining potential regard-
less of the propagation direction. For large j the skyrmion
can only “survive” if the skyrmion Hall angle is zero. The
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FIG. 3. Skyrmion velocity and stability for different HM mate-
rials. (a) The range of allowed δ directions over j (colored area).
(b) The j dependence of the velocity for selected δ. The color in
both panels corresponds to the velocity along the racetrack (blue
positive, red negative; indicated with numbers). The colored lines
correspond to constant δ values (indicated). Lines and velocities
have been calculated from the Thiele equation, without considering
pinning effects which become negligible at large current densities.
Explicit results from the micromagnetic simulations are indicated by
points (green: stable motion; red: skyrmion annihilation). The black
line (STT) is taken from Ref. [11] for comparison.

motion is reversed for δ → δ + 180◦ (sign reversal of current
direction or spin conductivity tensor elements).

The velocity along the racetrack (represented by the color
scale in Fig. 3) is in first approximation proportional to
the applied current density j [cf. Eq. (7)]. Yet Ixy and Dxx

depend on j as well. A power-law fit of these quantities (see
Supplemental Material [58]) correctly reproduces the trend
of the micromagnetic results [Fig. 3(b)]. Not only does the
skyrmion velocity vx increase with current density but also
the efficiency vx/ j.

The j dependence of Dxx also affects the optimal δ value
[cf. Eq. (6)]. It leads to the emergence of a small skyrmion
Hall effect for δ = 70.7◦ at high current densities [clearly
visible in the simulation in Fig. 2(e)], while being negligible
for lower current densities [Fig. 2(d)]. The optimal δ shifts to
about 69◦ for �SH j = 44 MA/cm2. In any case the maximum
applicable current density is limited to �SH j ≈ 45 MA/cm2.
Even for the corrected δ the skyrmion becomes so extended
that it touches both edges of the racetrack. This limit of the
maximal velocity therefore depends on the racetrack’s width
(here 40 nm).

The results of the micromagnetic simulations confirm the
predictions of the Thiele equation quantitatively well, espe-
cially for the optimal δ. Small deviations of analytical and
numerical results are attributed to the fact that Dxx and Ixy

are not only j but also δ dependent; a skyrmion at the edge
of the racetrack has a different shape compared to a skyrmion
in the middle of the racetrack. For Fig. 3 we fitted only the j
dependence for a fixed δ = 70.7◦ which already yields good
agreement with the simulations.

Discussion. In the previous section, we proved that the
skyrmion Hall angle can be suppressed by a nonzero σ x

zx. To
utilize the demonstrated advantage of SOT-driven skyrmions
on a racetrack a HM with a nontrivial spin conductivity tensor
has to be used. It has to generate a spin current with spins
partially oriented along the charge current direction.

This nonzero σ x
zx can be realized in nonmagnetic materials

for triclinic, monoclinic, trigonal, and in tetragonal/hexagonal
crystal systems, if the latter two have C4, S4, and C4h symme-
try. Besides prohibition in all other tetragonal/hexagonal crys-
tal systems, the element is forbidden to arise in orthorombic
and cubic crystal systems (cf. symmetry analysis of the spin
conductivity tensor in Ref. [40]).

The results of Ref. [41] suggest that Pt3Ge, Au4Sc, and
(Au1−xPtx)Sc may be suitable candidates for our predicted
HM layer setup: they have a nonzero σ x

zx element; e. g., for
(Au0.8Pt0.2)Sc the authors of that publication find σ x

zx/σ
y
zx =

1/3. Moreover, these materials are nonmagnetic and consist of
elements with a sizable spin-orbit coupling, which is expected
to constitute interfacial DMI necessary for stabilizing Néel
skyrmions. Even though unfavorable as a HM layer, magnetic
Mn3Rh, Mn3Ir, and Mn3Pt were shown to have σ x

zx/σ
y
zx of

1.903, 1.288, and 2.063, respectively [42,43].
There exist many materials in the above crystal systems,

which can potentially have even larger ratios. Even if a setup
does not fulfill the optimal condition, the merest rotation of
the injected spin orientation improves the racetrack.

Summarizing, we have presented an approach to suppress
the skyrmion Hall effect in a bilayer system via spin-orbit
torques. Relation (6) comprises the parameters that determine
the magnitude of the skyrmion Hall angle in a spin-orbit
torque scenario: Gilbert damping α, skyrmion shape G/Dxx,
and injected spin polarization angle δ. While the magnetic
layer provides the Gilbert damping α, the heavy-metal layer
determines the quotient of spin Hall conductivity tensor ele-
ments δ. The two materials have to be chosen accordingly to
ensure a suppression of the SkHE.

At the current state of skyrmion racetrack memory de-
velopment, our proposal is likely more feasible to tune
the skyrmion Hall angle to zero compared to the concepts
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presented in the Introduction. We demonstrated that by sup-
pressing the skyrmion Hall effect skyrmion velocities of up to
500 m/s can be achieved at a reasonable vx/ j efficiency.
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5.2 Topological Hall effect

5.2 Topological Hall effect

Phenomenological characterization. The second main electrodynamic effect that emer-
ges from the non-trivial real-space topology of a magnetic texture is the topological
Hall effect of electrons. Summarizing the discussion so far, the Hall effect of electrons
characterizes the occurrence of a transverse charge current (density j) when an electric
field E is applied; both quantities are not parallel to each other. An experimentally
measured Hall resistivity ρxy = Ey/jx can be decomposed into the conventional Hall
effect, the anomalous Hall effect and the topological Hall effect [cf. also Fig. 22(b)]

ρxy = RHE
0 Bz + RAHE

0 Mz + RTHE
0 〈nSk〉 . (5.2)

The resistivity tensor element associated with the topological Hall effect is proportional
to the average topological charge density 〈nSk〉. For this reason, the topological Hall
effect can in principle be used to unambiguously detect topologically non-trivial spin
textures in racetrack devices (see Appendix B).

Electron deflection due to real-space topology. Due to its analogy with the conven-
tional Hall effect, the topological Hall effect can be related to an effective magnetic field,
called ‘emergent field’ Bem = Bemez ∝ nSkez, which accounts for the non-trivial real-
space topology of a skyrmion. In a simplified picture, the traversing electrons’ spins
align with the magnetic texture of the skyrmion, thereby adapting its topological prop-
erties. The conduction electrons accumulate a Berry phase in real space, which leads to
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Figure 22: Topological Hall effect of electrons. a Emergent-field interpretation in the
adiabatic limit. The electron spin aligns with the texture. Consequently, the
electron accumulates a Berry phase and is deflected. b Schematic curve of a
typical experimental measurement of the transverse resistivity versus the out-
of-plane magnetic field. For large fields the signal exhibits a constant slope,
which represents the conventional Hall effect. The curve has an offset; the
sample is gradually magnetized and the anomalous Hall effect occurs. In the
range between 0.5 T and 1 T a skyrmion phase is assumed to form. There, an
additional contribution is present: the topological Hall effect.
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a transverse deflection [130] [cf. Fig. 22(a)].
In Sec. 4.5 the conventional Hall effect was calculated for graphene using the Berry

theory. The signal depends strongly on the electronic character (electron-like, hole-like),
and is quantized for large fields. This motivates to utilize this reciprocal-space method
also for the calculation of the topological Hall effect, for which similar phenomena are
expected.

This publication. In the publication “Unconventional topological Hall effect in skyr-
mion crystals caused by the topology of the lattice” [BG2] the Berry curvature approach
(Sec. 4.1) is applied to a periodic lattice of skyrmions. This treatment goes beyond
the conventional interpretation of the topological Hall effect in terms of a real-space
skyrmion density.

Based on the work of Hamamoto et al. [131] a quantized version of the topological Hall
effect is found, which is most pronounced for small skyrmions whose emergent field can
be as large as several thousands of Tesla. This effect is the analogue of the quantized
version of the conventional Hall effect in the presence of large magnetic fields.

For a strong Hund’s coupling of electron spins and magnetic texture, a transformation
is presented that shows how the reciprocal-space Berry curvature approach is equivalent
to the consideration of the emergent field of the skyrmion. This transformation only
holds in the adiabatic limit where the electron spin is locally aligned with the skyrmion
texture.

Furthermore, it is shown that the magnitude of the topological Hall effect strongly
depends on the electronic details of the skyrmion host. For simplicity a hexagonal
lattice of s orbitals is considered. Without the presence of the skyrmion phase, the
band structure is a single spin-degenerate band with positive effective mass near the
band minimum (electron-like behavior) and a negative effective mass near the band
maximum (hole-like behavior). Depending on this electronic character, the sign of the
topological Hall conductivity is determined, and a sign change occurs at the energy of a
van Hove singularity where the band structure has a saddle point. These findings are in
analogy with the quantized Hall effect as presented in Sec. 4.5, as long as the adiabatic
condition is fulfilled.

As an implication, shifting the Fermi energy (by doping or by applying a gate voltage)
allows in principle to reverse the transverse electron transport. This feature may be
attractive for spintronics applications. The results can be generalized to account for the
multi-band dispersion relations of real materials.

In order to calculate the topological Hall conductivity the tight-binding model has
been used, as introduced in Sec. 4.4. From the reciprocal-space Berry curvature the
transverse Hall conductivity was then calculated using Eq. (4.27).

Additional considerations

Other publications. Based on this publication, we published two more papers about
the topological Hall effect of electrons in skyrmion crystals ([BG8] and [BG9]). For the
course of this thesis I decided to limit myself to presenting only the most significant
findings discussed in these publications.
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alignment and red a parallel alignment for positive m. The figure considers
small skyrmions on a hexagonal lattice with 12 magnetic moments in the unit
cell. Reprinted from (B. Göbel et al.: Signatures of lattice geometry in quantum and topological Hall

effect. New Journal of Physics 19, 063042 (2017), DOI: https://doi.org/10.1088/1367-2630/aa709b; Ref.
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Band structure and spin polarization. A more detailed explanation of the band struc-
ture in the presented publication is given in publication [BG8]. Starting from the Hamil-
tonian (1) the s electrons are coupled via their spin with the skyrmion texture. Without
coupling, the result would be the initial bands of the hexagonal lattice – spin-degenerate
and folded back into the magnetic Brillouin zone [Fig. 23(a)]. Considering the coupling
leads to a local alignment of the electron spins with the texture. In Fig. 23 the colors red
(parallel) and blue (anti-parallel) signify the local spin polarization

Plocal,n(k) = 〈n, k|diag{σ ·mi}i|n, k〉 . (5.3)

It increases when m/t is increased until an almost complete alignment is reached at
approximately m = 5t. This corresponds to the adiabatic limit. The resulting bands
become flatter and exhibit global band gaps near the band edges (better visible for larger
skyrmions resulting in more bands). In fact, they are Landau levels with the same Chern
numbers as for the quantum Hall system presented in Sec. 4.5. The edge states and the
bulk-boundary correspondence have been further investigated in publication [BG8].

Locally spin-polarized topological Hall effect. As a subsequent result, in publica-
tion [BG9] the spin Hall conductivity has been calculated using Eq. (4.31). Instead of a
global spin axis σγ, a local formulation has been used. The reason for this is the follow-
ing: The spin Hall conductivity in the global axis definition averages the out-of-plane
spin component of the arising transverse spin current over the whole bulk system. How-
ever, in typical experiments (like Kerr measurements [84] or using the inverse spin Hall
effect) one measures the spins near the edge of the sample. In case of a collinear edge
(as is the case for skyrmions in ferromagnets), the local formulation accounts for this by
projecting the spin orientation onto the local magnetic moment and then onto the local
spin orientation at the edge (here considered +z). In case of an antiferromagnet, like in
publication [BG7], the sign of the magnetization has to be reversed for one sublattice to
account for the opposite edge magnetization of this sublattice.

Due to an almost complete local spin polarization for a large Hund’s coupling m� t,
the spin Hall effect is equivalent to the charge Hall effect multiplied by ±h̄/(2e) for the
two blocks. When instead the global axis formulation (red) is used, the result is scaled
by a factor −1 < 〈mz

i 〉 < 1 which does not agree with the expected accumulation at the
edge. As a consequence, the local projection is reasonable, at least as long m � t. For
weak coupling, the spin diffusion length has to be considered.

The consequence of this consideration is that skyrmion hosts exhibit a locally spin-
polarized version of the topological Hall effect. This must not be confused with a
topological version of a pure spin Hall effect, which is predicted for antiferromagnetic
skyrmion hosts in publication [BG7].

The following publication: Reprinted (whole article) with permission from (B. Göbel et al. Physical Review B 95,

094413 (2017); Ref. [BG2]; Unconventional topological Hall effect in skyrmion crystals caused by the topology of the

lattice). Copyright (2017) by the American Physical Society.
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The hallmark of a skyrmion crystal (SkX) is the topological Hall effect (THE). In this article we predict and
explain an unconventional behavior of the topological Hall conductivity in SkXs. In simple terms, the spin texture
of the skyrmions causes an inhomogeneous emergent magnetic field whose associated Lorentz force acts on the
electrons. By making the emergent field homogeneous, the THE is mapped onto the quantum Hall effect (QHE).
Consequently, each electronic band of the SkX is assigned to a Landau level. This correspondence of THE and
QHE allows us to explain the unconventional behavior of the THE of electrons in SkXs. For example, a skyrmion
crystal on a triangular lattice exhibits a quantized topological Hall conductivity with steps of 2 · e2/h below and
with steps of 1 · e2/h above the van Hove singularity. On top of this, the conductivity shows a prominent sign
change at the van Hove singularity. These unconventional features are deeply connected to the topology of the
structural lattice.

DOI: 10.1103/PhysRevB.95.094413

I. INTRODUCTION

The quantum Hall effect (QHE) is one of the best known
phenomena in condensed matter physics. It was first discussed
for a two-dimensional electron gas in which the parabolic
dispersion of free electrons is “compressed” into dispersion-
less Landau levels (LLs) [1,2]. Even before its experimental
discovery [3] the QHE was described for various lattices in
terms of Hofstadter butterflies [4–8]: the quantized energy
levels become dispersive and the Hall conductivity σxy can
change sign when applying a bias voltage. However, most of
these manifestations of lattice topology remain to be verified
by experiments. As an exception, σxy of graphene has been
measured in a small energy window for half-filling [9]. The
observed unconventional quantization—a sign change of the
Hall conductivity for small variation of the bias—has been
understood in terms of Chern numbers of the LLs [10,11].

Skyrmions [12] have conquered the field of magnetism
since their theoretical [13–15] and experimental discover-
ies [16]. They are typically generated by the Dzyaloshinskii-
Moriya interaction [17,18] in chiral magnets, for example
in the noncentrosymmetric B20 materials, prominently rep-
resented by MnSi [16]. A skyrmion spin texture s(r) [arrows
in Fig. 1(a)] stands out from topologically trivial textures (e.g.,
collinear magnets or spin helices) by its topological charge

NSk = 1

4π

∫
xy

nSk(r) d2r,

nSk(r) = s(r) ·
[
∂s(r)

∂x
× ∂s(r)

∂y

]
,

which is a nonzero integer; nSk(r) is the topological charge
density. It gives rise to the topological Hall effect (THE)
[19–25]: the nontrivial magnetic texture causes an emergent
magnetic field Bem which acts on the propagating electrons by
its Lorentz force.

In this article we discuss an unconventional quantized THE
in skyrmion crystals (SkXs): the topological Hall conductivity

*bgoebel@mpi-halle.mpg.de

exhibits a prominent change of sign as a function of bias
voltage. This sign change is assigned to the topology of
the structural lattice rather than to the nontrivial magnetic
topology of the skyrmions. For this purpose, we relate the
THE to the QHE as follows. The emergent field Bem is
inhomogeneous [central hexagon in Fig. 1(a)] because it is
proportional to nSk(r). By making Bem homogeneous, i.e.,
by redistributing the magnetic flux, the THE is mapped onto
a QHE on a structural lattice but in an homogeneous field
[lower hexagon in Fig. 1(a)]. As a result, the quantum Hall
conductivity σxy is quantized in the same way as for the THE:
in steps of 2 · e2/h below and in steps of 1 · e2/h above the van
Hove singularity (VHS). Most strikingly, it exhibits an abrupt
change of sign when the VHS is crossed in dependence of bias.
We attribute this unconventional behavior to the number and
the character (electron versus hole) of the Fermi pockets. Thus,
it is tightly related to the topology of the structural lattice.

The exceptional behavior, sketched in Fig. 1(b), calls for
experiments on samples exhibiting a SkX phase. The Hall
conductivity σxy in clean samples (mean free path of the
electrons is larger than the skyrmion size) should be extremely
sensitive to a gate voltage: the contribution of the THE to σxy

can change sign [red versus blue curve in Fig. 1(c)]. In the
following, we provide details supporting our claim.

II. ELECTRONS IN A SKYRMION CRYSTAL

Following Ref. [24] we describe the spin-dependent elec-
tronic structure by means of the tight-binding Hamiltonian

H =
∑
ij

tij c
†
i cj + m

∑
i

si · (c†i σci) (1)

with constant nearest-neighbor hopping tij = t (i, j sites of the
structural lattice). The electron spin is coupled to the skyrmion
magnetic texture {si} with strength m (measured in units of
t ; second sum). σ is the vector of Pauli matrices, and c

†
i

and ci are spin-dependent creation and annihilation operators,
respectively.

2469-9950/2017/95(9)/094413(5) 094413-1 ©2017 American Physical Society
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FIG. 1. Core message of the paper. (a) A skyrmion (top hexagon)
generates an inhomogeneous emergent magnetic field (central
hexagon; blue: positive; white: zero; red: negative). By redistributing
this field such that it becomes homogeneous (lower hexagon), the
topological Hall effect is mapped onto a quantum Hall effect.
(b) Schematic bias dependence of the topological contribution σTHE

to the Hall conductivity σxy , exhibiting a sign change at the energy
of a van Hove singularity (purple). (c) Magnetic-field dependence of
σxy for a bias below (blue) and above (red) the van Hove singularity.
σxy can show a decrease (blue) as well as an increase (red) in the
skyrmion crystal phase which is present for 1 � B � 3 in arbitrary
units.

To model a SkX (a regular array of skyrmions), {si} is
assumed to be a triple-q state [26], that is, a coherent superpo-
sition of three spin spirals with a prescribed wavelength λ. In
the following, we consider a structural triangular lattice with
lattice constant a.

The intrinsic contribution to the Hall conductivity [27]

σxy(EF) = e2

h

1

2π

∑
n

∫
BZ

�(z)
n (q) f [En(q) − EF] d2q (2)

is given by a Brillouin-zone (BZ) integral of the Berry
curvature �(z)

n (q) = ∂qx
A

(y)
n (q) − ∂qy

A(x)
n (q). The Berry con-

nection An(q) = i 〈un(q)|∇q |un(q)〉 is determined from the
eigenvectors un(q) with energies En(q) of the Hamiltonian (1).
The sum runs over all bands n; e and h are the electron charge
and Planck’s constant, respectively, while f (E) is the Fermi
distribution function.

At zero temperature only states below the Fermi energy EF

contribute to the transport: if EF is located within the band gap
above the lth band, σxy is proportional to the winding number
wl = ∑

n�l Cn [28,29] which is the accumulation of the Chern
numbers

Cn = 1

2π

∫
BZ

�(z)
n (q) d2q. (3)

III. QUANTIZED TOPOLOGICAL HALL EFFECT

For zero coupling [m = 0 in Eq. (1)], the bands are spin
degenerate and we obtain the band structure of a triangular
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FIG. 2. Topological Hall effect in SkXs. (a) Electronic band
structure of a SkX with skyrmion size λ = 3a for coupling strength
m = 5t (a is a lattice constant). The alignment of the electron spin to
the magnetic skyrmion texture is indicated by color (parallel: blue;
antiparallel: red). (b) Topological Hall conductivity σTHE versus Fermi
energy for skyrmion sizes λ = 3a (green), 6a (blue), and 9a (red).
σTHE is normalized to the number n of atomic sites per skyrmion
unit cell (σ0 = e2/h conductance quantum). Energy regions with
electronlike (e−, blue background) and holelike (h+, red background)
behavior are indicated (see text).

lattice. The bottom of the band is at −3t , its top at +6t ; a VHS
shows up at EVHS ≡ −2t [Fig. 4(b)].

For finite coupling m, the electron spin aligns with the
skyrmion spin texture and the spin degeneracy is lifted. With
increasing m, the band structure is split into two blocks of
bands: one with spins parallel, the other with spins antiparallel
to the spin texture. In the limit m → ∞ both blocks exhibit
identical dispersion relations.

The band structure for m = 5t and λ = 3a is depicted in
Fig. 2(a). In each block, the energetically higher bands are well
separated and show considerable dispersion (right part of each
block). Close to the VHSs, that is at E = −2t ± m, the bands
become very narrow.

The separation into blocks is reflected in the conductivity
σxy [Fig. 2(b)]. Since both blocks produce similar features,
except for a change of sign, it is sufficient to discuss the
block with lower energy. Starting from the band bottom, σxy is
negative and decreases with energy in quanta of 2 · e2/h. Close
to the VHS (E ≈ −2t − m = −7t), the conductivity increases
abruptly to positive values. At larger energies σxy drops again
but in steps of 1 · e2/h until it reaches zero conductance.
This “quantization” region [label in Fig. 2(b)] shows up most
pronounced for small skyrmions; cf. λ = 3a (green data set).
Recall that there the bands are well separated by gaps, the
associated states carry Chern number −1.

The sawtooth shape of σxy becomes more pronounced the
larger the skyrmion size λ: the steps as well as the jump become

094413-2



UNCONVENTIONAL TOPOLOGICAL HALL EFFECT IN . . . PHYSICAL REVIEW B 95, 094413 (2017)

energetically more narrow because there are more bands within
the same energy range [compare the green, blue, and red data
sets in Fig. 2(b)].

A. Transformation to the emergent field

In the strong-coupling limit m � t , the electron spin is
fully aligned with the skyrmion texture and the two blocks of
bands are identical but rigidly shifted in energy by the Zeeman
term in the Hamiltonian. Consequently, each individual block
can be discussed in terms of spinless electrons. However, the
skyrmion texture has to be taken into account by a local
gauge transformation into the reference frame of its mag-
netic moments [24,30,31]. The gauge field A(r) defines the
emergent magnetic field Bem(r) = ∇ × A(r) with B(z)

em(r) ∝
nSk(r) [30], which is collinear (along z) but inhomogeneous
[central hexagon in Fig. 1(a)]. The gauge transformation
recasts the coupling of the electron spin to the skyrmion texture
to a fictitious field acting on the electron charge. Of course,
both descriptions yield identical results for the THE.

In the tight-binding model, the gauge field A(r) leads to
effective complex hopping strengths [24]

teff
ij ≡ t cos

θij

2
eiaij (4)

that enter the Hamiltonian of the quantum Hall effect

HQH =
∑
ij

teff
ij d

†
i dj . (5)

d
†
i (di) is a creation (annihilation) operator and θij is the angle

between the spins at sites i and j . With the polar angles φi and
φj of these spins the phase in Eq. (4) is written as [24]

tan aij = − sin(φi − φj )

cos(φi − φj ) + cot θi

2 cot θj

2

. (6)

B. Topological Hall effect as quantum Hall effect

The reformulation of the THE as QHE requires us
to redistribute the inhomogeneous emergent field B(z)

em(r)
into a homogeneous field with strength B. The topological
charge of each skyrmion is conserved by the constraint
(4πh̄)−1

∫
uc B(z)

em(r) d2r = NSk (uc is the unit cell of the SkX).
The hopping strengths in Eq. (4) and especially the phases aij

[Eq. (6)] have to be adjusted accordingly [24],

teff
ij = t exp

(
−ie/h̄

∫ rj

r i

A(r) · d l
)

. (7)

d l points along the hopping path (r i → rj ) and A is the vector
potential of the homogeneous magnetic field with B = ∇ × A.
For our calculations we used A(r) = B ex(y − x/

√
3).

It is illustrative to compare the band structures for the
inhomogeneous and the homogeneous emergent field (Fig. 3).
The total bandwidth for the inhomogeneous emergent field (a)
is increased if the term cos θij /2 in Eq. (4) is approximated
by 1 (b); however, the shapes of the individual bands remain
almost unchanged. The total bandwidth in (b) is very close
to that of the LLs (c). On top of that, there is a one-to-one
correspondence between the bands in (b) and the LLs (c).
This is most obvious for large energies where the Chern

FIG. 3. Electronic band structure of a skyrmion crystal and
Landau levels. (a) Band structure of a skyrmion crystal (skyrmion size
λ = 3a, 12 sites per unit cell). (b) As (a) but with the approximation
cos θij /2 → 1 in Eq. (4). (c) Landau levels for a homogeneous
emergent magnetic field. The five topmost bands in (a)–(c) carry
Chern number −1. The energy of the van Hove singularity is indicated
by the purple dashed line.

numbers (−1) are identical as well. Hence, we conclude
that the redistribution of the emergent field merely causes
bandwidth broadening but conserves the topology.

We now corroborate the close relation of THE and QHE
further. Constant-energy cuts (CECs) through the original band
structure of the triangular lattice [(α), . . . ,(δ) in Figs. 4(a)
and 4(b)] at elevated energies are circular because there the
band is parabolic [cf. CEC (α)]. Separating occupied states in
the outside from unoccupied states in the inside of the CEC, a
circle is a hole pocket with negative curvature (for t > 0). The
LLs in this energy region are dispersionless, as expected for
free electrons.

Constant energy cuts closer to the VHS show increased
hexagonal warping [cf. CEC (β)]. At the VHS the CEC is a
hexagon [cf. CEC (γ )]. Having no curvature, (γ ) features an
infinite effective mass, with the consequence that electrons
at the VHS are not affected by the emergent field. These
electrons behave as in a continuum [32]; the associated band
exhibits oscillations in the reduced zone scheme [Fig. 3(c)],
thereby resembling the band structure of the triangular lattice
[Fig. 4(b)]. Constant-energy cuts at energies below the VHS
exhibit two electron orbits [cf. CEC (δ)].

Landau levels with energies larger than that of the VHS
carry Chern number −1 [red peaks in Fig. 4(c)] because
there is a single holelike Fermi contour [(α) and (β) in
Fig. 4(a); the number of enclosed states is ζh]. In contrast,
Landau levels below the VHS appear in pairs because there
are two electronlike Fermi lines, each enclosing ζe states
[see (δ)]. Thus, each pair carries twice the Chern number of
free-electron-like LLs, i.e., −2 (blue peaks).

To explore the Hall conductivity in detail, we utilize an
approximate construction. Onsager’s quantization scheme [2]
allows us to deduce LLs directly from the CECs of the original
band structure of the triangular lattice [Fig. 4(b)]: if a LL con-
tains ζ0 states, the associated CEC encloses (j + 1

2 )ζ0 states (j
integer). This means for CECs with two electron orbits that the
total number of enclosed states reads 2 · (j + 1

2 )ζ0. The char-
acter of the pockets is respected by assigning positive numbers
to ζh for holelike pockets (red in Fig. 4) but negative numbers to
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FIG. 4. Quantum Hall effect on the triangular lattice for n = 24 sites in the unit cell. (a) and (b) The band structure for the triangular lattice
without magnetic field is depicted in (b). Cuts at selected energies are labeled (α), . . . ,(δ) and are shown in (a). The numbers ζe and ζh of
enclosed states in the Brillouin zone (black hexagons) has to obey Onsager’s quantization scheme. At the van Hove singularity [EVHS = −2t ,
cut (γ )] the constant-energy contours exhibit a Lifshitz transition. (c) Density of states (DOS) of the band structure in (b) depicted by light
smooth curves. The associated Landau levels are shown by dark colors; their Chern numbers C are indicated. (d) Number of enclosed states ζe

and ζh before (light smooth curves) and after Landau quantization (dark). (e) Transverse quantum Hall conductivity in units of σ0 = e2/h. In
all panels, the character of the constant-energy pockets is indicated by color (blue: electronlike; red: holelike).

ζe for electronlike pockets (blue in Fig. 4) [33,34]. At the van
Hove singularity which separates holelike from electronlike
pockets the constructed conductivity changes sign [Fig. 4(d)].

The conductivity constructed from the number of enclosed
states is remarkably similar to the quantum Hall conductivity
σxy that has been explicitly computed from Eq. (2) for
the LLs [Figs. 4(d) versus 4(e)]. The Chern numbers are
proportional to the number of pockets and appear as steps in the
constructed curve, although they are never explicitly used for
the construction. Both curves deviate near the VHS at EVHS =
−2t , that is, where lattice effects are prominent; recall that
the latter are neglected in Onsager’s quantization scheme. The
Landau levels in this energy range show oscillations [Fig. 3(c)].
Thus, the sign change of σxy is not located exactly at the VHS
but is associated with the oscillating LL closest to the VHS.

This particular LL is composed of states with energies
below and above the VHS; corresponding constant-energy
cuts are taken below and above the cut (γ ) [Figs. 4(a) and 4(b)],
which features an open orbit with infinite mass. The distinction
of the number of enclosed states and of their character—two
holelike pockets below the VHS but a single electronlike
pocket above the VHS—dictates a mismatch of Chern
numbers. The result is a large Chern number of C = n − 1 for
this particular LL [magenta peak in Fig. 4(c) with C = +23
for n = 24] [10,11,33,35]. The outstanding Chern number
compensates the sum of all other Chern numbers. This result
is clearly a manifestation of the van Hove singularity. It is
thus caused by the topology of the structural lattice: the large
Chern number and the associated jump of the transverse Hall
conductivity would occur at VHSs for every lattice.

The energy dependence of the quantum Hall conductivity
σxy shows striking similarity to that of the topological Hall
effect in skyrmion crystals. Both conductivities—σxy of one
block in Fig. 2(b) and σxy in Fig. 4(e)—feature steps of
−2 · e2/h below the VHS, the substantial jump near the

VHS, and steps of −1 · e2/h above the VHS. Accordingly,
topological and quantum Hall effect are essentially equivalent.
A difference is that in the case of the THE the inhomogeneity of
the emergent field “adds” dispersion to the bands [cf. Figs. 3(b)
and 3(c)]. To reiterate, the effects ascribed to the topology of
the structural lattice—quantization and the jump of σxy—are
transferred from the THE to the QHE and vice versa. In
general, topological Hall conductivities would rise abruptly
at VHSs on every lattice.

IV. SUGGESTION FOR EXPERIMENTS

The established relation of lattice topology and bias
dependence of the topological Hall conductivity calls for
experimental verification. The quantized topological Hall
effect can be studied in metals which exhibit a SkX phase,
e.g., MnSi [16], Fe1−xCoxSi [36], and FeGe [37]. A necessary
prerequisite is that the mean free path of the electrons is larger
than the skyrmion size.

In samples with insignificant anomalous Hall effect, the
Hall conductivity σxy increases with B, if B is small. A
transition from a topologically trivial magnetic phase to a
SkX phase would cause an abrupt change of σxy because the
THE provides an additional contribution to σxy [Fig. 1(b)].
The application of a gate voltage, which allows us to scan
the energy dependence of σxy , can make this variation either
a decrease or an increase, depending on whether the Fermi
energy lies below or above a VHS [red and blue lines in
Fig. 1(c)].

The change of sign in σxy is preferably studied for
large skyrmions: the sawtooth-shaped variation of the Hall
conductivity becomes cultrate with increasing skyrmion size
[green, blue, and red curves in Fig. 2(b)]. This behavior
is, however, limited by the finite sample size because an
experiment measures a conductance rather than a conductivity.
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Therefore, a compromise between signal strength (favored by
small skyrmions) and sharpness of the sawtooth-shaped feature
(favored by large skyrmions) has to be made.

In real samples, the Hall conductivity is due to two
contributions: the topological Hall effect and the anomalous
Hall effect. The THE contribution to the Hall conductivity
is attributed to the nontrivial topology in reciprocal space
that arises from the real-space topology of the magnetic
texture; spin-orbit coupling is not required. The contribution
of the anomalous Hall effect relies on a nonzero Berry
curvature as well but is solely induced by intrinsic spin-orbit
coupling and a topologically trivial magnetic texture (like a
ferromagnet); a topologically nontrivial magnetic texture is

not required. Both anomalous and topological contributions
to the Hall conductivity would vary with gate voltage. Thus,
the dominating contribution of the two effects should be iden-
tified in advance [38]. As real materials exhibit complicated
band structures and feature intrinsic spin-orbit interaction, a
combined analysis of the anomalous and the topological Hall
effects seems to be worthwhile in the future.
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5.3 Magnetoelectric effect and orbital magnetization

Alternative hallmarks of skyrmionic phases. Besides the skyrmion Hall effect and the
topological Hall effect of electrons, other geometrically induced phenomena have been
proposed or detected in skyrmionic phases.

The orbital magnetization was predicted for materials hosting a magnetic texture with
a finite topological charge [112]. As explained in the last section, the topological real-
space properties of a skyrmion manifest themselves as an effective magnetic field. Just
like the topological Hall effect is explainable by analogy with the conventional Hall
effect in the presence of an actual magnetic field, a topologically induced orbital magne-
tization arises by analogy with the conventional orbital magnetization (briefly discussed
in Sec. 4.3). So far, this quantity remains unobserved experimentally.

As a second phenomenon, a magnetoelectric effect has been observed in the skyrmion
hosts Cu2OSeO3 [52, 132] and GaV4S8 [133, 134]. However, its origin is attributed to the
multiferroic nature of these materials and not to the presence of skyrmions. Still, as
explained in Sec. 4.3, spin textures with a finite toroidal moment (like Bloch skyrmions)
allow for a transverse magnetoelectric effect in any case. This motivates to find a magne-
toelectric contribution of geometric origin that occurs even in non-multiferroic materials.

a b

Figure 25: Edelstein effect in skyrmion crystals. In metals an applied electric field
generates a current (density j). Due to the Edelstein effect, a non-equilibrium
spin accumulation 〈s〉 arises. The shape of the α tensor determines the angle
under which these quantities emerge. a For a Bloch skyrmion j and 〈s〉 are
perpendicular to each other, b for a Néel skyrmion they are (anti-)parallel.

This publication. In the following publication “Magnetoelectric effect and orbital mag-
netization in skyrmion crystals: Detection and characterization of skyrmions” [BG3] the
two above discussed effects have been quantified for different types of skyrmion crystals
using a tight-binding model (Sec. 4.3).

For the orbital magnetization we explain its dependence on the properties of the elec-
tronic band structure, similar to the discussion of the topological Hall effect in the be-
fore presented publication [BG2]. Furthermore, we find that the orbital magnetization
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is proportional to the topological charge of the texture, similar to the topological Hall
conductivity.

As the main result, we predict a magnetoelectric effect which arises in any skyrmion-
hosting material; the contribution arises solely due to the geometric properties of the
skyrmion. As expected from the geometric considerations in Sec. 4.3, the transverse ten-
sor element is proportional to the toroidal moment of the skyrmion: a Bloch skyrmion
has a finite toroidal moment and a Néel skyrmion’s toroidal moment vanishes by sym-
metry. As a consequence, these two types of skyrmions can be distinguished by their
transverse magnetoelectric polarizability αxy. Knowledge of the full α tensor allows to
determine the helicity of an unknown skyrmion unambiguously.

Since many skyrmion hosts are metallic, it is important to clarify the meaning of α
for these materials. It cannot characterize a magnetoelectric effect since an electric po-
larization is ill-defined in a metal. Instead, the intrinsic Edelstein effect is quantified.
The electric field generates a current which, in turn, generates a non-equilibrium spin
accumulation 〈s〉 (similar to a magnetization). As Onsager reciprocal effect, the inverse
Edelstein effect describes the emergence of a charge current (time derivative of P) upon
spin pumping (time derivative of B). The nomenclature of this effect is quite intricate: an
Edelstein effect is commonly defined for systems with time-reversal symmetry, which is
however broken in any magnetic material. For this reason, the described effect has also
been labeled ‘new magnetoelectric effect’ [135] or simply ‘magnetoelectric effect in met-
als’ [108]. We decided to stick with this nomenclature in the following publication. The
effect has originally been predicted for metals with coplanar toroidal spin textures [108],
and has been confirmed in UNi4B [135] experimentally.

The following publication: Reprinted (whole article) with permission from (B. Göbel et al. Physical Review B 99,

060406(R) (2019); Ref. [BG3]; Magnetoelectric effect and orbital magnetization in skyrmion crystals: Detection and

characterization of skyrmions). Copyright (2019) by the American Physical Society.
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Skyrmions are small magnetic quasiparticles, which are uniquely characterized by their topological charge and
their helicity. In this Rapid Communication, we show via calculations how both properties can be determined
without relying on real-space imaging. The orbital magnetization and topological Hall conductivity measure the
arising magnetization due to the circulation of electrons in the bulk and the occurrence of topologically protected
edge channels due to the emergent field of a skyrmion crystal. Both observables quantify the topological
Hall effect and distinguish skyrmions from antiskyrmions by sign. Additionally, we predict a magnetoelectric
effect in skyrmion crystals, which is the generation of a magnetization (polarization) by application of an
electric (magnetic) field. This effect is quantified by spin toroidization and magnetoelectric polarizability. The
dependence of the transverse magnetoelectric effect on the skyrmion helicity fits that of the classical toroidal
moment of the spin texture and allows one to differentiate skyrmion helicities: It is largest for Bloch skyrmions
and zero for Néel skyrmions. We predict distinct features of the four observables that can be used to detect and
characterize skyrmions in experiments.

DOI: 10.1103/PhysRevB.99.060406

Introduction. Skyrmionics has attracted enormous interest
over the recent years, as skyrmions [1–5]—small magnetic
quasiparticles that are topologically protected—are aspirants
to be “bits” in future data storage devices [6–16]. The integral
of the local spin chirality

nSk(r) = s(r) ·
(

∂s(r)

∂x
× ∂s(r)

∂y

)
(1)

of a skyrmion with magnetic texture s(r) tells the skyrmion
number NSk = ±1 [17,18], that is, the topological invariant
which characterizes skyrmions and antiskyrmions [19–22],
respectively. On top of this, nSk(r) induces a topological Hall
effect (THE) [23–34], which is an additional contribution to
the Hall effect [35] of electrons in skyrmion crystals (SkXs, a
periodic array of skyrmions; Fig. 1).

Another quantity related to the magnetic texture is the
orbital magnetization, which is explained in a semiclassical
picture by the circulation of conduction electrons in the pres-
ence of spin-orbit coupling (SOC) [36–41]. Recently, it has
been shown that spin chirality, for example, in SkXs, can
as well induce an orbital magnetization, even without SOC
[42–44].

In this Rapid Communication, we establish a complete
scheme (Fig. 1) for identifying the type of SkX in an exper-
iment, without reverting to real-space imaging (e.g., Lorentz
microscopy [45]). The TH conductivity and the orbital mag-
netization describe the THE and are proportional to NSk;
therefore they differentiate skyrmions from antiskyrmions.
Furthermore, we predict a magnetoelectric effect in SkXs,
which is within experimental reach; the magnetoelectric po-

*Corresponding author: bgoebel@mpi-halle.mpg.de

larizability [46–48] and the spin toroidization [49,50] al-
low one to determine the skyrmion helicity, by which Néel
skyrmions are differentiated from Bloch skyrmions. While the
THE quantities are based on reciprocal space Berry curvature,
the magnetoelectric effect is characterized by the mixed Berry
curvature analogs (Fig. 1).

Model and methods. We consider a two-dimensional square
lattice with a fixed skyrmion texture {si} (unit length, i lattice
site). The resulting skyrmions and antiskyrmions can have
various helicities [cf. Figs. 1(c)–1(e)].

The electrons in the SkX are described by a tight-binding
Hamiltonian

H =
∑

i j

t c†
i c j + m

∑
i

si · (c†
i σci ) (2)

(c†
i and c j creation and annihilation operators, respectively),

with Hund’s rule coupling. The electron spins interact with
the magnetic texture (m coupling energy; si unit vector; σ

vector of Pauli matrices), which could be created by localized
d electrons that are not explicitly featured in this one-orbital
Hamiltonian.

From the eigenvalues En(k) and eigenvectors |un(k)〉 of the
Hamiltonian (2) we calculate the k space and the mixed Berry
curvature for band n,

�(i j)
n (k) = −2 Im

〈
∂ki un(k)

∣∣∂k j un(k)
〉
, (3a)

D(i j)
n (k) = −2 Im

〈
∂ki un(k)

∣∣ 1

m
∂s j un(k)

〉
, (3b)

respectively. With

v
( j)
nl (k) ≡ 〈un(k)|∂k j H (k)|ul (k)〉 , (4a)

s( j)
nl (k) ≡ 〈un(k)|σ j |ul (k)〉 (4b)

2469-9950/2019/99(6)/060406(6) 060406-1 ©2019 American Physical Society
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FIG. 1. Core message of this Rapid Communication. (a)
Skyrmions and antiskyrmions are distinguished by the topological
Hall effect. (b) The helicity of skyrmions (e.g., Bloch and Néel
skyrmions) is differentiated by the magnetoelectric effect. With these
quantities, (c) Bloch skyrmions, (d) Néel skyrmions, and (e) anti-
skyrmions can be distinguished. The color scale in (c)–(e) indicates
the in-plane orientation of the spins (arrows).

( j = x, y, z), we arrive at

�(i j)
n (k) = −2 Im

∑
l �=n

v
(i)
nl (k)v( j)

ln (k)

[En(k) − El (k)]2
, (5a)

D(i j)
n (k) = −2 Im

∑
l �=n

v
(i)
nl (k)s( j)

ln (k)

[En(k) − El (k)]2
. (5b)

Integration over the occupied states [shorthand notation∫
occ(·) ≡ ∑

n

∫
(·)�(En(k) − EF )d2k with EF Fermi energy

and � Fermi distribution at zero temperature] yields the
conductivity σi j [51] and the magnetoelectric polarizability
αi j [47–49],

σi j (EF) = −e2

h

1

2π

∫
occ

�(i j)
n (k), (6a)

αi j (EF) = gμB
e

(2π )2

∫
occ

D(i j)
n (k). (6b)

From the orbital magnetic moment [36,37]

mn(k) = − e

2h̄
Im

∑
l �=n

vnl (k) × vln(k)

En(k) − El (k)
, (7)

we calculate the orbital magnetization [39],

Mz(EF) = 1

(2π )2

∫
occ

m(z)
n (k) + e

h̄

1

(2π )2

×
∫

occ

�
(xy)
n (k) − �

(yx)
n (k)

2
[EF − En(k)]; (8)

likewise, from the spin toroidal moment,

tn(k) = gμB

2
Im

∑
l �=n

vnl (k) × sln

En(k) − El (k)
, (9)

the spin toroidization, as recently shown by Gao et al. [49],

Tz(EF) = 1

(2π )2

∫
occ

t (z)
n (k) − gμB

1

(2π )2

×
∫

occ

D(xy)
n (k) − D(yx)

n (k)

2
[EF − En(k)]. (10)

The terms with m(z)
n and t (z)

n capture the intrinsic contributions
of each Bloch electron, while the other terms account for the
Berry curvatures �

(i j)
n and D(i j)

n , which modify the density of
states [39].

Topological Hall effect as a quantum Hall effect. Before
discussing the novel results concerning the energy-dependent
orbital magnetization, magnetoelectric polarizability, and spin
toroidization, a sketch of the band formation and the TH
conductivity is adequate; cf. Refs. [30,31].

For m = 0 in the Hamiltonian (2), the so-called zero-field
band structure is spin degenerate because there is neither spin-
orbit coupling nor coupling to the SkX magnetic texture.

If m is turned on, the spin degeneracy is lifted and the
electron spins tend to align locally parallel or antiparallel with
the magnetic texture. At m ≈ 5t the spin alignment is almost
complete and two blocks with nb (number of sites forming a
SkX unit cell) bands each are formed: one for parallel (higher
energies) and one for antiparallel alignment (lower energies);
see Fig. 2(a).

In the limit m → ∞ the alignment is perfect and the
electron spins follow the skyrmion texture adiabatically. Both
blocks are identical but shifted in energy. Roughly speaking,
besides the rigid shift by ±m, the nontrivial Zeeman term
leads to a “condensation” of bands [identified as Landau levels
(LLs) in what follows].

The perfect alignment for m → ∞ motivates the transfor-
mation of the Hamiltonian (2): A local spin rotation diagonal-
izes the Zeeman term [29–31,52] and alters the hopping term
(the hopping strengths ti j become complex 2 × 2 matrices).
Since the system can be viewed as consisting of two (uncou-
pled) spin species, it is sufficient to consider only one species.
The resulting Hamiltonian describes a spin-polarized version
of the quantum Hall effect (QHE). Since we discuss charge
conductivities, the diagonal Zeeman term is dropped and we
arrive at the Hamiltonian

H‖ =
∑

i j

t (eff )
i j c̃†

i c̃ j (11)

of a quantum Hall (QH) system (spinless electrons on a
lattice) [53–59]. The effective hopping strengths t (eff )

i j de-
scribe the coupling of the electron charges with a collinear
inhomogeneous magnetic field,

B(z)
em(r) ∝ nSk(r). (12)

This emergent field [17,18] is given by the spin chirality (1),
that is, the real-space Berry curvature in the continuous limit
[17,18]. The parallel (antiparallel) alignment of the electron
spins, corresponding to the upper (lower) block in the band
structure for m → ∞, manifests itself in the sign of the
nonzero average of Bem.

For finite m, the mapping of the THE onto the QHE—and
the one-to-one identification of bands and LLs—is reasonable
as long as the band blocks are separated, i.e., for m � 4t [60].
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FIG. 2. Properties of a skyrmion crystal. Parameters read nb = 36 (sites in the skyrmion unit cell), coupling m = 5t . A Bloch (NSk = +1,
γ = π/2; topological charge and helicity), a Néel (NSk = +1, γ = 0), and an antiskyrmion (NSk = −1, γ = 0) are compared. (a) Band
structure, (b) TH conductivity σxy, (c) orbital magnetization Mz, (d) magnetoelectric polarizability αxy, and (e) spin toroidization Tz are separated
into blocks in which the electron spins are aligned parallel [red in (a)] or antiparallel (blue) with the skyrmion magnetic texture (σ0 ≡ e2/h,
M0 ≡ te/h̄, α0 ≡ gμBe/at , and T0 ≡ gμB/a; a is the lattice constant). The band structure is identical for all skyrmion types. In (d) results for an
intermediate skyrmion with γ = π/6 are shown in addition (green). Colored dots refer to Fig. 3. (f) αxy in the strong-coupling limit m = 900t
and (g) for larger skyrmions nb = 48 on a different lattice (triangular).

The LL character of the bands arises in Chern numbers
and in the TH conductivity [Fig. 2(b)]. Bands of the upper
(lower) block carry Chern numbers of +1 (−1) due to the
positive (negative) average emergent field. As a result, the
TH conductivity is quantized in steps of e2/h. At the shifted
van Hove singularity (VHS) EVHS = ±m, the TH conductivity
changes sign in a narrow energy window.

The quantization and the sign change are closely related to
the zero-field band structure [30,31,61]. At the VHS the char-
acter of the Fermi lines changes from electron- to holelike.
The bands close to the VHS are simultaneously formed from
electron- and holelike states, leading to a large Chern number
that causes this jump.

Having sketched the influences of the zero-field band
structure on the THE, we derive consequences for the orbital
magnetization.

Orbital magnetization. The block separation manifests it-
self in the orbital magnetization (8) as well. Its energy depen-
dence within the lower block is similar to that in the upper one
but with opposite sign [Fig. 2(c)]; the latter is explained by the
alignment of the electron spin with the magnetic texture.

Mz(EF) shows rapid oscillations with zero crossings within
the band gaps, which is explicated as follows. The emergent
field leads to a rotation of an electron wave packet around
its center of mass. The first term in Eq. (8), given by mn(k),
changes continuously within the bands but is constant within
the band gaps. In contrast, the phase-space correction due to
the Berry curvature [39] (second term) varies continuously in
energy. Its slope in the band gaps is determined by the TH
conductivity,

∂

∂EF
Mz(EF) = 1

2e
[σyx(EF) − σxy(EF)]. (13)

Both gauge-invariant contributions are similar in absolute
value but differ in sign. Consequently, their small difference
leads to one oscillation per band.

For a better understanding we relate the orbital magnetiza-
tion in a SkX to that of the associated QH system with (al-
most) dispersionless bands [62–64]. Besides the oscillations
we identify a continuous envelope function [62] (Fig. S1 in
the Supplemental Material [65]). In the SkX this envelope is
“deformed” due to the inhomogeneity of the emergent field.
Nevertheless, the spectrum of the QH system is quite similar
to that of the SkX.

The influences of the two terms in Eq. (8) show up “undis-
torted” in the QH system. The orbital magnetic moment per
band (entering the first term) decreases (increases) stepwise at
energies below (above) the shifted zero-field VHSs at EVHS ≡
±m [cf. Fig. S1(c)]. There is no sign change at the VHSs, in
contrast to the TH conductivity. Still, a zero-field explanation
holds as M is also based on the k-space Berry curvature.
At energies below a VHS, LLs are formed from electronlike
orbits with a fixed common circular direction. At energies
above a VHS, holelike orbits are formed in addition. Since
these exhibit the opposite circular direction, they contribute
with opposite sign. Both contributions result in an extremum
at the VHS.

The size and shape of the orbits dictate the magnitude of
the contributions of each band. Therefore, on one hand, the os-
cillation amplitudes in Figs. 2(c) and S1(b) [corresponding to
the step heights in Fig. S1(c)] increase with increasing energy
distance of the Fermi energy and band edges. On the other
hand, the oscillation amplitudes vanish at the VHS. Recall that
the Fermi lines have zero curvature at this particular energy.

When exchanging skyrmions with antiskyrmions the sign
of the emergent field changes and so does the sign of both the
TH conductivity and the orbital magnetization in Figs. 2(b)
and 2(c), as both characterize the THE. These quantities

060406-3



GÖBEL, MOOK, HENK, AND MERTIG PHYSICAL REVIEW B 99, 060406(R) (2019)

distinguish skyrmions from antiskyrmions but cannot distin-
guish Bloch and Néel skyrmions.

Magnetoelectric polarizability. The independence of all
above quantities on the skyrmions’ helicity calls for further
characterization: This is met by the magnetoelectric effect de-
scribed by magnetoelectric polarizability and spin toroidiza-
tion. Both quantities are derived from the mixed Berry cur-
vature D(i j)

n . If the Fermi energy lies between two Landau
levels, the system is insulating. In this case, the transverse
magnetoelectric polarizability

αxy = ∂My

∂Ex

∣∣∣∣
B=0

= ∂Px

∂By

∣∣∣∣
E=0

(14)

quantifies the magnetoelectric coupling [46] to in-plane fields
that are applied to a sample in the SkX phase: An in-plane
magnetization M (polarization P) can be modified by an
orthogonal in-plane electric field E (magnetic field B [66]).
If the Fermi energy lies within a Landau level, the system
is metallic and cannot exhibit a polarization. Nevertheless,
an in-plane magnetization can be produced by perpendicular
in-plane currents that are brought about by an applied electric
field. This so-called magnetoelectric effect in metals is equiva-
lent to an intrinsic Edelstein effect [67] and was predicted [48]
and confirmed experimentally for UNi4B [68], which shows a
coplanar toroidal order. The Onsager reciprocal effect is the
inverse Edelstein effect: the generation of a current via the
injection of a nonequilibrium spin polarization.

For a Bloch SkX, the spectrum of the magnetoelectric
polarizability αxy(EF), Eq. (6b), shows a sign reversal of
the two separated blocks [Fig. 2(d)]. Although αxy exhibits
plateaus, it is not quantized. Around the VHS the curve shows
a sharp peak (circle).

For m � t the spectrum of each block becomes symmetric
[Fig. 2(f)]. Within a block the sign of αxy mostly remains, in
contrast to σxy. The monotonicity, however, is reversed above
the VHS, the reason being the exchange of vln and sln in
Eqs. (5a) and (5b). While the sign of the velocity is given
by the electron or hole character, the spin is aligned with
the magnetic texture, irrespective of the electronic character
of band l . The mixing of electron and hole states in a small
energy window about EVHS leads to a collapse of αxy with
a reversed sign for this small energy region. This energy
window corresponds to the jump in σxy.

Spin toroidization. As the magnetoelectric polarizability is
related to the TH conductivity, the spin toroidization (10) is
related to the orbital magnetization. It comprises two terms:
one given by the spin toroidal moments tn, and the other by
the phase-space correction due to the mixed Berry curvature.
In analogy to Eq. (13), its slope

∂

∂EF
Tz(EF) = 1

2e
[αyx(EF) − αxy(EF)]

is given by the magnetoelectric polarizability in the band gap
[49].

Tz(EF) oscillates rapidly for the Bloch SkX [Fig. 2(e)]. In
the strong-coupling limit m � t the shape of the oscillations
becomes more pronounced.

Relation to skyrmion helicity. Changing continuously
the skyrmion helicity, from Bloch to Néel skyrmions, αxy

and Tz are reduced by a Fermi-energy-independent factor

tz Skyrmion

tz Antiskyrmion

xy EF = −4.59t

xy EF = −4.91t

xy EF = −5.49t

Ne −3/4 Bl −1/4 Ne 1/4 Bl 3/4 Ne
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FIG. 3. Dependence of the classical toroidal moment tz (blue,
red) and the magnetoelectric polarizability αxy on the helicity of a
skyrmion for selected Fermi energies EF [distinguished by color, as
indicated; also marked in Fig. 2(d)]. tz is proportional to αxy, with the
proportionality factor depending on EF. t0 ≡ gμBa, α0 ≡ gμBe/at .

[Fig. 3 and green curve in Fig. 2(d)]; both quantities vanish for
Néel SkXs by symmetry. We find that this factor is quantified
by the classical toroidal moment [48]

t = gμB

2

∑
i

ri × si ∝ sin(γ )ez (15)

(ri position of spin si with respect to the skyrmion center). t
is a pure real-space quantity given by the skyrmion helicity γ

(blue line in Fig. 3). This easily accessible quantity success-
fully reproduces the functional dependence of αxy (and also of
Tz) on the helicity but fails to reproduce the proportionality
factor because it does not depend on EF. Being a classical
quantity, t cannot explain the shape of αxy(EF) and Tz(EF).

For a Bloch skyrmion (γ = π/2) the full α tensor is anti-
symmetric (αxy = −αyx) and has no longitudinal components.
A Néel skyrmion (γ = 0) exhibits only a longitudinal effect
αxx = αyy identical to αxy of the Bloch skyrmion, since all
spins are rotated by π/2 around the z axis [69]. For anti-
skyrmions Eq. (15) always gives zero. This is why the α tensor
is symmetric and Tz is zero in this case. Rotation of the sample
always allows one to diagonalize the tensor for antiskyrmion
crystals since γ merely orients the two principal axes of
an antiskyrmion, for which the texture points into opposite
directions giving opposite longitudinal effects αxx = −αyy.

The full tensor of the texture-induced magnetoelectric po-
larizability for a structural square lattice reads

α(EF) = αBloch
xy (EF)

(
cos(γ ) sin(γ )

−NSk sin(γ ) NSk cos(γ )

)
.

The measurement of all tensor elements allows one to de-
termine topological charge NSk and helicity γ of an unknown
skyrmion.

Conclusion. In this Rapid Communication, we established
a complete scheme for the characterization of the skyrmion
crystals’ topological charge and helicity (Fig. 1). Our findings
on the topological Hall effect and the magnetoelectric effect
are explained by quite simple pictures: a quantum Hall
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system and the classical toroidal moment of a spin texture,
respectively.

Our prediction of the helicity-dependent magnetoelectric
effect allows one to discriminate Néel and Bloch skyrmions,
without reverting to real-space imaging of their magnetic
texture (which is in particular difficult for skyrmions arising at
interfaces). For an electric field of 108 V/m an additional in-
plane magnetic moment of one-hundredth of gμB is induced
per atom [70]. The collapse of αxy near van Hove singularities
is a significant feature and could establish a new hallmark of
the SkX phase: It is observable by shifting the Fermi energy
(e.g., by a gate voltage or by chemical doping).

As shown in Figs. 2(f) and 2(g) as well as in the Supple-
mental Material [65], the main claims of this Rapid Com-
munication depend qualitatively neither on skyrmion size,
strength of the exchange interaction, nor on the lattice ge-
ometry. The established scheme for discrimination (Fig. 1)
is a general result, which is not limited to specific materi-
als. All presented quantities arise solely due to coupling of

“spinful” electrons with the skyrmion texture and vanish in the
absence of skyrmions. The skyrmion-induced contributions
are distinguishable from the corresponding nonskyrmionic
counterparts, e.g., the anomalous Hall effect in the pres-
ence of spin-orbit coupling, the “conventional” magnetization,
and the “conventional” magnetoelectric effect in multiferroic
materials [14,71–73]).

An experimental proof of the predicted magnetoelectric
effect can be done simplest for a nonmultiferroic material
with a crystal symmetry that allows only for Bloch skyrmions
(e.g., MnSi) [74]. The transverse magnetoelectric effect arises
purely due to toroidal order of the SkX and should be measur-
able in an isolated manner in such a material. The experiment
can be conducted in analogy to that of Ref. [68], in which the
metallic coplanar toroidal magnet UNi4B was investigated.
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6 Publications: Beyond skyrmions

In this section the stabilization of alternative magnetic quasiparticles and their emer-
gent electrodynamic effects are discussed (goal number 4 from the introduction). Four
publications are presented corresponding to the quasiparticles depicted in Fig. 3 of the
introduction: biskyrmion, bimeron, skyrmionium and antiferromagnetic skyrmion.

First, in publication [BG4] the merging process of two skyrmions with reversed in-
plane magnetizations is investigated. In case of a partial overlap, a biskyrmion with
a topological charge NSk = ±2 is constituted. Thereafter, a theoretical study on mag-
netic bimerons is presented (publication [BG5]). These particles can be viewed as spin-
rotated versions of magnetic skyrmions (NSk = ±1) which can be stabilized in in-plane
magnetized samples. In publication [BG6] the magnetic skyrmionium is considered as
carrier of information in a racetrack device. This object can be described as a skyrmion
with a second skyrmion with reversed magnetization positioned in its center, giving the
skyrmionium a topological charge of NSK = 0. In the fourth publication [BG7] the exis-
tence of a periodic lattice of antiferromagnetic skyrmions is predicted. These objects also
carry a topological charge of NSk = 0 but the subskyrmions are ‘intertwined’, existing
on two sublattices.

Emergent electrodynamics. All of the considered magnetic quasiparticles are combi-
nations of two simpler topologically non-trivial spin textures. This brings about different
emergent electrodynamic effects compared to those of conventional skyrmions.

For the topological Hall effect of electrons the discussion is straight forward. As long
as a spin texture has a finite topological charge, a topological Hall effect occurs. For
this reason, the bimeron (NSK = ±1) and the biskyrmion (NSk = ±2) exhibit a topo-
logical Hall effect but not the antiferromagnetic skyrmion or the skyrmionium (both
NSk = 0). Still, due to the spatial separation of the two subskyrmions that constitute
a skyrmionium, we observe a local version of the topological Hall effect in publica-
tion [BG6] allowing for an electrical detection of these objects in a racetrack device. For
antiferromagnetic skyrmions this is not possible, since the topological charge densities
of the two subskyrmions are mutually compensated locally. Instead, we establish the
topological spin Hall effect as a hallmark of this topological phase in publication [BG7].

On the contrary, the skyrmion Hall effect in the spin-orbit torque scenario (as pre-
sented in Sec. 3.4) is not directly coupled to the topological charge of a spin texture. This
can already be understood by recalling the result of publication [BG1] from the previous
section, where the skyrmion Hall effect was suppressed for a Néel skyrmion by manipu-
lation of the orientation of the injected spins. Even if one considers the conventional spin
injection, like for a Co/Pt bilayer, the skyrmion Hall angle is not exclusively determined
by the topological charge. Admittedly, it is correct that antiferromagnetic skyrmions and
skyrmioniums (both NSk = 0) do not exhibit such a transverse deflection with respect
to the applied driving current but non-symmetric D tensors and non-antisymmetric I
tensors can suppress such an effect as well, as can be seen in the Thiele equation

−4πNSkb ez × v− bDαv− BjIs = ∇U(r). (6.1)

Especially when a magnetic quasiparticle lacks rotational symmetry, like in the case of
the biskyrmion or the bimeron, the current-driven motion exhibits a different angular
dependence as in the skyrmionic case.
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6.1 Magnetic biskyrmions in centrosymmetric nanodisks

Combining two skyrmions to form a biskyrmion. Conceptionally speaking, an intuitive
way to combine magnetic skyrmions is to stabilize two of them in a sample and make
them merge partially. Already from geometrical arguments it becomes apparent that the
skyrmion helicity is crucial for this merging process: If both skyrmions have the same
helicity, the magnetic moments between the two skyrmions’ centers point into opposite
in-plane directions. This configuration is very unfavorable concerning the dominant
ferromagnetic exchange interaction leading to a strong repulsive interaction between the
two quasiparticles. In order to be geometrically compatible, the in-plane components of
the magnetic moments between the skyrmions’ centers have to be parallel to each other,
which is only achieved if the helicities of both skyrmions differ by π.

Preliminary studies. A so-called ‘biskyrmion’ consists of two Bloch skyrmions with he-
licities ±π/2 that exhibit a considerable overlap. Such a merged spin texture has been
observed experimentally, for example in layered manganite La2−2xSr1+2xMn2O7 [136]; cf.
Fig. 26. The stabilizing mechanism cannot be the DMI, since this interaction strictly fa-
vors one type of skyrmion with a fixed helicity (cf. Sec. 2.3). The detrimental interaction
is indeed forbidden in La2−2xSr1+2xMn2O7, since it is centrosymmetric.

a b c

Figure 26: Lorentz TEM images of a biskyrmion lattice. a The color encodes the in-
plane orientation of the biskyrmion lattice. The information is extracted from
the over-focused and under-focused images, shown in pannels b and c for an
individual biskyrmion. Adapted by the permission from Springer Nature Terms and Conditions

for RightsLink Permissions Springer Nature Customer Service Centre GmbH: Macmillan Publishers Lim-

ited Nature Communications Biskyrmion states and their current-driven motion in a layered manganite,

X. Z. Yu et al. 2014; Ref. [136].

A possible stabilizing mechanism is the frustration of exchange interactions. As pre-
sented in Sec. 2.3, this mechanism does not favor a specific skyrmion helicity. Conse-
quently, the two skyrmions can coexist and merge, as presented in the theoretical work
by Zhang et al. [137]. However, as described earlier, even conventional skyrmions due
to frustration have never been observed experimentally. Also, the biskyrmions from the
experiments have a strictly fixed helicity of ±π/2. For this reason, frustrated exchange
interactions are unlikely the stabilizing mechanism of biskyrmions in nature. Therefore,
alternative mechanisms have to be considered to explain the bisykrmion stabilization.
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This publication. A more realistic mechanism for the stabilization of biskyrmions is
the dipole-dipole interaction. As is shown in the following publication “Forming in-
dividual magnetic biskyrmions by merging two skyrmions in a centrosymmetric nan-
odisk” [BG4], this interaction stabilizes Bloch skyrmions with helicities ±π/2 likewise
and even favors their spatial overlap energetically. The predicted effective interaction is
verified by micromagnetic simulations of a nanodisk. The main result of the publication
is the controlled generation of individual biskyrmions by writing two individual Bloch
skyrmions in the first step.

For the micromagnetic simulations of the magnetic textures, the LLG equation (3.16)
has been propagated. The effective description utilized the Thiele equation (3.35).

Conclusion. Up to now, biskyrmions have only been found as periodic lattices. The
presented publication predicts the existence of individual biskyrmions. It lays the
foundation for utilizing biskyrmions in spintronic devices. Just like a skyrmion, the
biskyrmion exhibits emergent electrodynamic effects, namely the topological Hall effect
and the skyrmion Hall effect. Since the topological charge has a finite value of ±2,
biskyrmions have the same advantages but also disadvantages as skyrmions on first
sight. However, the missing rotational symmetry finds expression in the utility as well:
the orientation of a biskyrmion provides another degree of freedom which can be used
to store information. Also, anisotropic features of the current-driven motion should be
investigated in the future.

It is worth mentioning that in two recent publications the experimental observations
of biskyrmion crystals have been contested. Two groups have shown that the Lorentz
TEM images from Ref. [136] (cf. Fig. 26) and other works do not necessarily show
biskyrmions but can also arise if topologically trivial bubbles (called ‘type-II bubbles’
or ‘hard bubbles’ in these publications) are viewed at an angle [138, 139]. Alternative
observation techniques would have to be considered in order to be sure of the exis-
tence of magnetic biskyrmion crystals in these materials. In the predicted setup of the
following publication [BG4] the magnetic material is only a few nm thick. Therefore,
a biskyrmion-like image in a Lorentz TEM measurement would irrevocably prove the
stabilization of the proposed individual biskyrmions.

Reprinted from (B. Göbel et al.: Forming individual magnetic biskyrmions by merging two skyrmions in a cen-

trosymmetric nanodisk. Scientific Reports 9, 9521 (2019), DOI: https://doi.org/10.1038/s41598-019-45965-8; Ref. [BG4]).

Published by Springer Nature under the terms of the Creative Commons Attribution 4.0 license.
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Forming individual magnetic 
biskyrmions by merging two 
skyrmions in a centrosymmetric 
nanodisk
Börge Göbel  1, Jürgen Henk2 & Ingrid Mertig1,2

When two magnetic skyrmions – whirl-like, topologically protected quasiparticles – form a bound 
pair, a biskyrmion state with a topological charge of Nsk = ±2 is constituted. Recently, especially the 
case of two partially overlapping skyrmions has brought about great research interest. Since for its 
formation the individual skyrmions need to posses opposite in-plane magnetizations, such a biskyrmion 
cannot be stabilized by the Dzyaloshinskii-Moriya-interaction (DMI), which is the interaction that 
typically stabilizes skyrmions in non-centrosymmetric materials and at interfaces. Here, we show that 
these biskyrmions can be stabilized by the dipole-dipole interaction in centrosymmetric materials in 
which the DMI is forbidden. Analytical considerations indicate that the bound state of a biskyrmion is 
energetically preferable over two individual skyrmions. As a result, when starting from two skyrmions in 
a micromagnetic simulation, a biskyrmion is formed upon relaxation. We propose a scheme that allows 
to control this biskyrmion formation in nanodisks and analyze the individual steps.

Magnetic skyrmions1–3 are whirl-like magnetic quasiparticles on the sub-micrometer scale, first observed in 
MnSi2 as periodic arrays (so-called skyrmion crystals or lattices). Later, also isolated skyrmions have been found 
in ferromagnetic Fe0.5Co0.5Si films4. Each skyrmion is characterized by a topological charge
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of ±1 [m(r) is the magnetization], which imposes an energy barrier that protects a skyrmion from annihilating 
to the ferromagnetic groundstate. Their high stability and small sizes make skyrmions candidates for the carriers 
of information in future storage devices5,6. For example, skyrmions can be written and deleted, driven by electric 
currents and read in thin films6–11.

An object which is closely related to the skyrmion is the biskyrmion, a term that describes two skyrmions in 
a bound state. Like the skyrmion12 it was initially proposed in nuclear physics13,14. In the context of magnetism 
the term ‘biskyrmion’ has been used for two skyrmions in a bilayer quantum Hall system15, for two asymmetric 
skyrmions in the cone phase of a chiral helimagnet which exhibit an attractive interaction16,17, and – as observed 
for the first time in 201418 – a composition of two partially overlapping skyrmions with opposite in-plane magnet-
izations (Fig. 1b)18–23. Still, all of these objects are geometrically distinct. In the remainder of this paper the term 
‘biskyrmion’ refers always to the latter object: a pair of partially overlapping skyrmions with a helicity difference 
of π that has attracted an enormous research interest since its initial discovery.

Although merged, each skyrmion forming the biskyrmion can still be identified and their shifted centers 
indicate a merely partial overlap. For this reason, each skyrmion contributes with its topological charge of ±1 
to the biskyrmion’s topological charge of NSk = ±2. Periodic arrays of such biskyrmions (biskyrmion crystals) 
have first been observed in the centrosymmetric layered manganite La2−2xSr1+2xMn2O7

18; other centrosymmetric 
biskyrmion hosts followed recently19–22.

If individual biskyrmions could be stabilized, they could be used to store information just like conventional 
skyrmions. However, up to now, individual biskyrmions have only been predicted in frustrated magnets23 — even 
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the existence of conventional skyrmions in these materials24–26 remains to be proven experimentally. These con-
siderations suggest to investigate centrosymmetric materials with dominating dipole-dipole interaction, like in 
the experimental observations of biskyrmion crystals, to find also individual biskyrmions. In these materials the 
constituents of biskyrmions — skyrmionic bubbles — have been found already decades ago27,28.

In this Paper, we propose a scheme for creating biskyrmions in a controlled manner. In a first step, we derive 
an attractive skyrmion-skyrmion interaction which is necessary for the formation of a biskyrmion, using an 
analytical model. Thereafter, we show by micromagnetic simulations for a nanodisk geometry that two Bloch 
skyrmions with opposite in-plane magnetizations can be written at opposite sides of a nanodisk. We simulate 
the resultant motion of such skyrmions upon relaxation and derive their equations of motion analytically. After 
relaxation we find that both skyrmions have merged to a stable biskyrmion state (Fig. 1). The importance of the 
skyrmions’ helicities for this process is discussed. We summarize our findings and give an outlook.

Results
Analytical superposition of two skyrmions. As presented in the introduction, it is an established fact 
that non-collinear spin textures like skyrmions can be stabilized by the dipole-dipole interaction3. Therefore, it 
is well conceivable that also two skyrmions with reversed in-plane magnetizations can be stabilized in the same 
sample by this mechanism. The question is now how these skyrmions interact. As we will show, already consider-
ing a short-range approximation of the dipole-dipole interaction leads to the conclusion that the two skyrmions 
attract each other, thereby allowing to form a biskyrmion. This finding is later confirmed by micromagnetic sim-
ulations where the full dipole-dipole interaction is considered and a biskyrmion state is metastabilized.

To find the attractive interaction between two skyrmions with opposite in-plane magnetizations, we super-
pose such two (fixed) skyrmions at a distance of Δr analytically. For simplicity we neglect shape deformations of 
the skyrmions (such deformations are accounted for by the micromagnetic simulations later in this paper). The 
magnetic textures m(r) = (sinΘcosΦ, sinΘsinΦ, cosΘ) are imposed onto a two-dimensional square lattice with 
lattice constant a.

The spherical coordinates of the magnetic moments of an individual skyrmion read Φ = arctan(my/x) + γ and 
Θ = +x y r2arctan( / )2 2

0 ; r0 determines the size of the skyrmion. The helicity γ of the skyrmion manifests itself 
in the in-plane components via Φ = mφ + γ. Here, φ is the polar angle of the position vector with respect to the 
skyrmion’s center and m = +1 is the vorticity, which defines the sense of in-plane spin rotation. In case of a Bloch 
skyrmion we have m = 1 and γ = ±π/2, i. e., the polar angle of the spin orientation Φ has a fixed offset to the polar 
angle φ of the position r with respect to the skyrmion’s center. The topological charge NSk = p · m = ±1 of a skyr-
mion depends on the skyrmion’s polarity p = ±1. In this Paper, we consider skyrmions in a ferromagnetic sur-
rounding, magnetized along −z, which gives a polarity and topological charge of +1.

One way to superpose two skyrmions is adding their polar angles and multiplying the arguments of their 
arctan function for the azimuthal angle,
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The condition |m| = 1 holds for all r. Here, Δr = (Δx, Δy, 0) = Δr(cosα, sinα, 0) is the displacement vector 
of the two skyrmions with helicities γd and γd + π. For an inter-skyrmion distance of Δr ≫ r0 we find two isolated 
skyrmions, for Δr ≈ 2r0 the solution is a biskyrmion state with two skyrmions overlapping partially, and for 
Δr = 0 a higher-order skyrmion is formed. In any case, the total topological charge is NSk = +2.

Attractive skyrmion-skyrmion interaction. We clarify now which term in the lattice Hamiltonian 
causes an attractive interaction of the two skyrmions, what can lead to the formation of a biskyrmion. The 
exchange interaction = − ∑ ⋅m mH Jij ij i jex

1
2

 is independent of Δr and independent of the skyrmions’ sizes and 
shapes. Hence, the exchange interaction alone will not stabilize a biskyrmion. This finding is in line with the fact 
that even conventional skyrmions cannot be stabilized by a bare exchange interaction, unless further (frustrated) 
exchange interactions are considered; then, the interaction constants Jij have different signs for nearest and 
second-nearest neighbor spins. The same requirement holds for biskyrmions23.

In most materials, skyrmions are stabilized by the Dzyaloshinskii-Moriya interaction (DMI)29,30 
= ∑ ⋅ ×D m mH ( )ij ij i jDMI

1
2

 that originates from spin-orbit coupling and a broken inversion symmetry. The 
DMI vectors Dij = −Dji whose directions are prescribed by the crystal symmetry determine the type of metastable 
spin texture31. For all types of DMI the energy contributions of the two skyrmions with reversed in-plane magnet-
izations — what is necessary for the formation of the here considered biskyrmion — cancel. As a result, HDMI is 
independent of Δr and does not allow for the formation of a biskyrmion. Even more detrimental, at least one of 
the two skyrmions would annihilate in a simulation.

An interaction that is present in all magnetic materials, but  often ‘overshadowed’ by the DMI in 
non-centrosymmetric materials, is the dipole-dipole interaction
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In case the DMI is forbidden, like in centrosymmetric materials, this interaction can stabilize not only skyrmi-
ons32–35 but also biskyrmions, as will be presented later in this paper by micromagnetic simulations. To establish 
an intuitive understanding of the attractive skyrmion-skyrmion interaction, which is necessary for the formation 
of a biskyrmion, we consider a short-range approximation of the dipole-dipole interaction for the calculations 
in this section. Note however, that this approximation is accompanied by a loss of information36: Even the lowest 
energy state of the considered model would relax to a collinear ferromagnetic configuration if only the short-range 
approximation was considered in a simulation in which shape relaxation is allowed. Since Derrick’s theorem37 
implies the absence of local energy minima for non-collinear spin textures for this reduced type of dipole-dipole 
interaction38, we cannot make statements on the metastability of a certain configuration. However, comparing 
the energies of states described by the model in Eq. (2) allows to extract an attractive skyrmion-skyrmion inter-
action. The actual proof of metastability are the micromagnetic simulations of the three-dimensional system with 
the full dipole-dipole interaction shown later in this paper. A three-dimensional consideration is essential since 
non-collinear spin textures are only metastable once the sample is thicker than a critical value28,39.

To extract the attractive interaction we consider in this section only nearest-neighbor interactions in a 
two-dimensional square lattice. In this case the second term in Eq. (3) merely rescales the exchange interaction, 
thereby rendering only the first term relevant

∑∝ − ⋅ ⋅ˆ ˆm r rH m( )( ),
(4)ij

i ij j ijdp,approx

where r̂ij is a unit vector which is parallel to either ex  or ey. This interaction can be interpreted as a special 
easy-plane anisotropy. It favors parallel spins energetically. Such an alignment is approximately fulfilled for the 
overlap region of the two skyrmions (that is the center of the biskyrmion). As a result, two skyrmions in cen-
trosymmetric materials attract each other.

We find that partially overlapping Bloch skyrmions (γ = ±π/2) at a displacement angle of α = ±π/4 or ±3π/4 
have the lowest energy of all states described by Eq. (2) with respect to the short-range approximation of the 
dipole-dipole interaction. The energy minimum occurs at an inter-skyrmion distance of Δr ≈ 2r0, which is a 
biskyrmion state (Fig. 2a). The helicity dependence (Fig. 2b) has a cosine shape making the Bloch skyrmion ener-
getically most favorable. This helicity dependence is not unique to the biskyrmion state; a similar dependence is 
found for a single skyrmion. The α dependence (Fig. 2c; global rotation of the texture) originates from the under-
lying lattice. As a consequence it has a period of π/2 with respect to α for the square lattice. Different lattices have 
energy minima at other angles, e. g. α = ±π/6, ±3π/6 and ±5π/6 for a hexagonal lattice.

So far, we have shown that two skyrmions with reversed in-plane magnetizations attract each other in cen-
trosymmetric systems without DMI but with dipole-dipole interaction. The resulting biskyrmion is expected to be 
of Bloch type and to form at an angle of 45° with respect to the underlying lattice. In the following, micromagnetic 
simulations will be used to analyze how these two specific skyrmions can be stabilized in a three-dimensional 
sample considering the full dipole-dipole interaction. We will show that all three results from the analytic 
model are confirmed in the simulation: the skyrmions attract each other to form a biskyrmion characterized by 
γe = ±π/2 and α = ±π/4, ±3π/4.

Setup for the micromagnetic simulations. To support the above analytical considerations, we per-
formed micromagnetic simulations for a thin magnetic nanodisk with out-of-plane anisotropy. These disks have 
been in the focus of skyrmion-related research in many recent publications40–45. The considered disk and its 

Figure 1. Magnetic biskyrmion. (a) Spin texture of a magnetic biskyrmion in the considered nanodisk resulting 
from a micromagnetic simulation (also presented in Fig. 5). The orientation of the individual magnetic moments 
is represented by a Lorentz transmission electron microscopy (LTEM) color scheme. (b) Close-up of the center 
region of (a). The biskyrmion consists of two overlapping skyrmions with helicities ±π/2, respectively. In the 
two panels only every fourth or sixteenth magnetic moment from the simulation is displayed, respectively, for 
better visibility.



4Scientific RepoRts |          (2019) 9:9521  | https://doi.org/10.1038/s41598-019-45965-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

surfaces exhibit negligibly small DMI, so that only the dipole-dipole interaction (included in the demagnetization 
field) could stabilize a biskyrmion.

The micromagnetic simulations were performed using the Mumax3 code46,47. Therein, the Landau- 
Lifshitz-Gilbert equation (LLG)48–50 with parameters similar to those in ref.35 is solved for each discretized 
magnetic moment mi; see Methods.

Initially, two energetically degenerate metastable skyrmions with helicities ±π/2 are ‘written’ symmetrically 
to the nanodisk’s center. Upon relaxation they are pushed to the center by their attractive interaction and the con-
finement potential of the nanodisk. When the skyrmions reach the energetically optimal distance, a biskyrmion 
has formed. We proceed by discussing the individual steps in detail and begin with the mechanism for writing 
the skyrmions.

Generation of isolated skyrmions. The vanishing DMI complicates a controlled writing of skyrmions in 
centrosymmetric materials, since there is no energetically preferred chirality: injecting spins oriented along z via 
spin torque, as commonly done in DMI-dominated systems6, produces a topologically trivial bubble (the in-plane 
spin components point toward the disk’s center; they are oriented nearly parallel). Evidently, in order to write two 
skyrmions off-center without DMI the aimed-for texture has to be induced explicitly. In other words, determin-
istic instead of stochastic writing has to be considered. This is especially important since the two skyrmions need 
to have opposite helicities.

We consider two smaller disks attached to the nanodisk (Fig. 3a). These additional disks host stable in-plane 
vortex configurations51,52, similar to refs.53–56. The opposite helicities of the vortices, which are switchable e. g., 
by a magnetic field57–60, determine the helicity of the two emerging Bloch skyrmions. If an electric current jwrite 
is applied in perpendicular direction (here: jwrite = 7 × 108A/cm−2ez applied for 200 ps), the spin of the flowing 
electrons is aligned with the vortex (as long as the coupling is sufficiently large) and injected into the underlying 
nanodisk; there a skyrmion is formed via spin torque.

The writing process is visualized in Fig. 3b–g. Starting from a ferromagnetic state, a skyrmionium-like con-
figuration (a skyrmion with reversed skyrmion-like magnetization in its center61–63) is written (b–d). Since the 
‘central’ reversed skyrmion is very small, it quickly annihilates (<100 ps) so that a skyrmion with a topological 
charge of NSk = +1 remains at each side of the disk (e). On the time scale of 1ns their sizes relax (f, g).

While the writing mechanism considered here appears convenient, other approaches are suited for an experi-
mental realization as well; in the following, we give an incomplete list.

Merons (vortices with out-of-plane spins in their center) in the writing devices work equally well. The same 
holds for skyrmions. All of the considered textures have a similar in-plane magnetization which seems to be 
the most important component for skyrmion generation in centrosymmetric materials; due to the fact that the 
dipole-dipole interaction is achiral, a suitable in-plane magnetization has to be ‘imprinted’ in order to ‘generate’ 
a topological charge.

In a recent publication63 we have presented a mechanism for writing skyrmioniums via a photosensitive 
switch64: a laser triggers a radial current in a ring of a heavy metal, thereby generating an in-plane toroidal spin 
polarization via the spin Hall effect. This toroidal spin profile is then injected into the magnetic nanodisk, very 
similar to the vortex-writing device but for a ring geometry instead of a disk geometry. Depending on the chosen 
parameters, this method works for writing skyrmions as well. The sign of the applied bias voltage controls the spin 
polarization’s orientation and thus the writing of either +π/2 or −π/2 Bloch skyrmions.

As a third option, one may consider spatiotemporally tuned electron sources65. The type of induced Bloch 
skyrmion can be controlled via the propagation direction of the electrons (beam applied from above or below the 
nanodisk).

Figure 2. Formation of a biskyrmion by the dipole-dipole interaction. (a) Approximated dipole-dipole 
interaction energy [Eq. (4)] versus distance of the two skyrmions in the model [Eq. (2)]. Insets visualize the 
energy density for an NSk = 2 skyrmion with Δr = 0 (left), a biskyrmion with Δr = 15a (center), and for two 
skyrmions with Δr = 30a (right); a is the lattice constant. Here, α = π/4 and γd = π/2. The size parameter is 
r0 = 8a in all panels. (b) Helicity dependence of the approximated dipole-dipole energy for the biskyrmion with 
Δr = 15a and α = π/4. Insets show the in-plane magnetization, representing two superposed Bloch skyrmions 
for γd = ±π/2 and Néel skyrmions for γd = 0. In all cases the two skyrmions have helicities γd and γd + π, 
respectively. (c) Approximated dipole-dipole energy for the biskyrmion with Δr = 15a and γd = π/2 versus the 
biskyrmion orientation angle α. Insets visualize the energy density.
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Motion of a single skyrmion. Before discussing the formation of biskyrmions, we address the motion 
of a single skyrmion within the nanodisk. After relaxation of shape and size, a skyrmion starts to move toward 
the center of the nanodisk in a counter-clockwise spiral trajectory (orange in Fig. 4a–c). Initially, the skyrmion 
is accelerated but is subsequently decelerated when the skyrmion’s center is close to the nanodisk’s center. The 
helicity of the skyrmion remains unchanged during the evolution.

The spiral trajectory is understood by considering the Thiele equation66,67

α× − + = .G v v rb bD F r
r

( ) 0 (5)int

In this effective ‘center-of-mass-like’ description of magnetic quasiparticles with velocity v all internal degrees 
of freedom have been integrated out. The spatial details of the skyrmion are ‘condensed’ in the gyromagnetic 
coupling vector G = −4πNSkez and in the dissipative tensor D with elements ∫= ∂ ⋅ ∂m r m rD r( ) ( ) dij i j

2 . Only 
Dxx = Dyy are nonzero. b = Msdz/γe is determined by the saturation magnetization Ms, the disk thickness dz and the 
gyromagnetic ratio of an electron γe. Due to the disk geometry the force Fint, that covers interactions of the con-
sidered quasiparticle with other quasiparticles or with the edge of the sample, is radially symmetric. The Thiele 
equation in polar coordinates
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Figure 3. Writing two Bloch skyrmions with opposite helicities into a nanodisk. (a) Thin nanodisk with two 
smaller writing disks that host vortex textures (colored) with opposite helicities. The writing process is triggered 
by spin-polarized current densities jwrite which are applied for 200 ps. (b–g) Snapshots during the generation 
of two skyrmions. The color scale is the same as in Fig. 1. An animated version is accessible in Supplementary 
Video 1.

Figure 4. Motion of a single skyrmion within a nanodisk. (a–c) Snapshots and trajectory (orange line) of a 
single skyrmion in the nanodisk at indicated times. (d) Temporal progression of the system’s total energy. An 
animated version is accessible in Supplementary Video 2.
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Since Fint(r) < 0, a skyrmion moves to the nanodisk’s center along a counter-clockwise spiral trajectory ( <r 0, 
φ > 0). When it approaches the center, the angular velocity decreases since Fint(r) drops faster to 0 than 1/r. The 
transverse component of the spiral motion is a consequence of the skyrmion’s topological charge. Like any quasi-
particle with nontrivial real-space topology a skyrmion does not move parallel to the propelling force — let it be 
due to a current or the skyrmion–edge interaction3,8,9,31,67,68 — and thus exhibits a skyrmion Hall effect. The cor-
responding transverse force is similar to the Magnus force for classical particles3,69.

Formation of biskyrmions. The formation of a biskyrmion starts with two Bloch skyrmions with opposite 
helicities of γ = ±π/2, as stabilized in Fig. 3. Since both skyrmions have identical dissipative tensors D and topo-
logical charges NSk = +1, the equations of motion (7) hold for both quasiparticles. They move on a spiral trajec-
tory towards the nanodisk’s center. However, the skyrmion-skyrmion interaction has to be considered in Fint. This 
force changes sign when both skyrmions come close to each other, corresponding to the energy minimum in 
Fig. 2a; it is zero at a finite distance of the two skyrmions.

This behavior is well visible in the results of micromagnetic simulations (Fig. 5). After the writing period 
(relaxation after ≈1 ns as presented in Fig. 3), both skyrmions start to exhibit a spiral motion to the center as in 
the case of a single skyrmion. Once both skyrmions start to overlap the spiral motion stops and a biskyrmion is 
formed. During the formation process the topological charge remains NSk = +2 within an error of less than 1.5% 
(the topological charge is not integer due to the discreteness of the underlying lattice).

The biskyrmion configuration is remarkably stable. The energy drops significantly once the two skyrmions 
are close to each other (Fig. 5d). This drop corresponds to the energy minimum established in the analytic model 
(Fig. 2a). In the final phase of the propagation the biskyrmion aligns with one of the crystallographic directions 
α = 45°, 135°, 225° or 315°, visible as energy minimum in Fig. 2c (here: α = 135°). Once the system is close to 
the energy minimum Fint is far from being rotational symmetric and the equations of motion derived from the 
Thiele equation do not hold anymore. By comparing the energy scales of Figs. 2a,c it becomes apparent that the 
reorientation of the biskyrmion plays a role after the optimal distance of the two skyrmions has been reached. The 
distinguished axis of the biskyrmion can in principle be imposed by the initial positions of the skyrmions. If the 
two writing disks are closer together the biskyrmion can end for example at α = 45° (Fig. S1 of the Supplementary 
Information).

Starting with two skyrmions with identical helicity (i. e. by switching one of the two writing vortices) a mostly 
static behavior is observed (Fig. S2 of the Supplementary Information). This is readily explained by the stronger 
repulsion of skyrmions with the same helicity in comparison to those with opposite helicities. Due to the disk 
geometry both skyrmions experience a force towards the center, resulting in a zero of Fint at larger distances com-
pared to the biskyrmion system. The (final) steady state — two skyrmions without considerable overlap — has a 
sizably higher energy than the biskyrmion state (cf. Fig. S2d and Fig. 5d). Starting from this particular configura-
tion a biskyrmion does not form since one skyrmion would have to reverse its helicity. That, however, requires to 
overcome an energy barrier similar to that in Fig. 2b, corresponding to a Néel skyrmion state.

In refs.16,17 it was shown that asymmetric skyrmion tubes (e. g. in the cone phase of chiral magnetic materials) 
can exhibit an attractive interaction despite their equal helicities. The resulting non-overlapping pair of skyrmions 
is stabilized by a different mechanism and at a larger inter-skyrmion distance compared to the type of biskyrmion 
discussed in the present paper. Nevertheless, the skyrmion-skyrmion pair was labeled ‘biskyrmion’ in ref.16 due to 
the topological equivalence (NSk = ±2) of both textures. Yet, both are geometrically distinct objects.

Discussion
Here, we have demonstrated that the dipole-dipole interaction in centrosymmetric magnetic systems can stabilize 
isolated biskyrmions, in the sense of a pair of partially overlapping skyrmions with reversed in-plane magnetiza-
tions. We propose methods for writing two Bloch skyrmions with opposite helicities at opposite sides of a nan-
odisk. After spiral propagation of each skyrmion towards the nanodisk’s center, an isolated biskyrmion is formed 
due to the attractive interaction that originates in the dipole-dipole interaction. These ingredients provide a step 
towards utilizing biskyrmions as carriers of information in spintronics devices.

Figure 5. Formation of a biskyrmion. (a–c) Snapshots and trajectories (orange) of two Bloch skyrmions with 
opposite helicities. (d) Temporal progression of the system’s total energy. The pronounced drop (indicated by an 
arrow) corresponds to the energy minimum in Fig. 2a: a stable biskyrmion is formed at that point in time. An 
animated version is accessible in Supplementary Video 3.
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To the best of our knowledge, only biskyrmion lattices have been found experimentally so far18–22, and even 
for them the interpretation of the presented Lorentz transmission electron microscopy images is under serious 
debate. In two recent publications it was shown that tubes of topologically trivial bubbles (called type-II or hard 
bubbles) can appear as biskyrmion-like features when observed under an angle70,71. Since thin magnetic disks 
are considered in the present work, potential real-space images can hardly be misinterpreted, and therefore our 
prediction may be decisive for showing that biskyrmions can exist at all.

Besides their potential for applications, biskyrmions are also worth being investigated from a fundamental 
point of view. Their nontrivial real-space topology, manifested in the topological charge of NSk = ±2, imposes 
emergent electrodynamic effects: just like conventional skyrmions, biskyrmions exhibit a skyrmion Hall 
effect3,8,9,67,68 and a topological Hall effect3,10,11,72–78. In other words, under the effect of a spin-polarized current 
the biskyrmion and the current electrons are deflected into transverse directions. Our study motivates future 
in-depth analyses of similarities and differences of these Hall effects for skyrmions and biskyrmions.

One fundamental aspect that distinguishes biskyrmions from skyrmions is their missing rotational symmetry. 
The orientation of a biskyrmion could be exploited to store multiple bits per biskyrmion. Here, the underlying 
cubic lattice yields four energetically degenerate orientations α and allows for quaternary instead of binary logic. 
It is conceivable to store data in an array of nanodisks instead of in a racetrack device.

Methods
For the micromagnetic simulations the Landau-Lifshitz-Gilbert equation48–50

γ α γ εβ= − × + × + × ×
 
m m B m m m s m[( ) ] (8)i e i i g i i e i i i,eff

is solved using Mumax346,47.
The first term describes the precession of each magnetic moment around its instantaneous effective magnetic 

field δ= −B F M/m
i

seff i
. This field, derived from the free energy density F, takes into account exchange interaction, 

uniaxial anisotropy, Zeeman energy, and the demagnetization field accounting for the dipole-dipole interaction.
The second term, introduced phenomenologically, considers that the magnetic moments tend to align along 

their effective magnetic field. The strength of this damping is quantified by the Gilbert damping constant αg.
The third term accounts for the coupling of the magnetic moments with injected spin-polarized currents. 

The in-plane torque coefficient εβ = ħPj/2edzMs depends on the current’s spin polarization P and the current 
density j. The spatial distribution of the injected spins {si} is given by the vortex textures in the writing disks. An 
out-of-plane torque has been neglected since it is usually small and merely rescales the external magnetic field. 
γe = 1.760 × 1011 T−1s−1 is the gyromagnetic ratio of an electron.

We use parameters that stabilize stray-field skyrmions, similar to those in ref.35: exchange A = 15 pJ/m, uniax-
ial anisotropy in z direction Kz = 1.2 MJ/m3, external field B = −40 mTez (along the ferromagnetic orientation), 
saturation magnetization Ms = 1.4 MA/m, and Gilbert damping αg = 0.3. The disk has a radius of 150 nm and a 
thickness of dz = 3 nm. For the simulations we used discrete magnetization cells of size 1 nm × 1 nm × 1 nm. The 
DMI has been set to zero. We checked that a small DMI constant (interfacial DMI D = 0.1 mJ/m2) does not quali-
tatively affect the results of the simulations shown in Fig. 5; for larger values of D one of the two skyrmions would 
annihilate and a biskyrmion would not form.

As stated in the main text, a spin-polarized current of  jwriteP = 7 × 108 A/cm−2ez with a spin polarization ori-
entation {si}, given by an in-plane vortex texture

= ± − Δ ± Δ +s y x x x x y( , /2, 0)/ ( /2) , (9)i i
2 2

writes well-defined skyrmions into the nanodisk, if the current is applied for 200 ps. The two signs correspond to 
the left and right writing disks, respectively. The writing disks have a radius of 25 nm each and their centers are at 
a distance of 120 nm. The writing disks and the process of spin polarization have not been simulated explicitly but 
are condensed into the spin-polarization parameter P which scales the necessary applied current density.

Accession codes. The code Mumax3 is accessible at https://github.com/mumax/3/releases/tag/v3.9.3.
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6.2 Magnetic bimerons as in-plane analogues of skyrmions

As the next magnetic quasiparticle the bimeron is discussed. This spin texture consists
of a meron and an antimeron with reversed net magnetizations. Both objects have the
same topological charge of NSk = 1/2 or NSk = −1/2, depending of their polarity. They
can be seen as half a skyrmion or antiskyrmion, respectively; the spins are oriented in
the plane far from the objects’ centers [see Fig. 27(a)]. While a meron and an antimeron
cannot exist in a ferromagnetic background, a bimeron can [see Fig. 27(b)]. It has a
topological charge of NSk = ±1. Similar to skyrmions, different types of bimerons can
be defined. Besides changing the helicity of the bimeron, also the connecting vector
of meron and antimeron can be rotated around the bimeron’s center; in contrast to a
skyrmion, a bimeron is not rotationally symmetric.

Besides its interpretation as an object constructed from two subparticles, a bimeron
can also be understood as a skyrmion whose magnetic moments have been rotated
around an in-plane axis (very similar to the rotation of every moment around the out-
of-plane axis upon changing a skyrmion’s helicity). Both rotations leave the topological
charge (and even its density) invariant. For this reason, the bimeron can also be under-
stood as a skyrmion in an in-plane magnetized sample (Fig. 27).

Preliminary studies. Bimeron spin textures have first been stabilized theoretically by
Kharkov et al. [140] in thin films with in-plane anisotropy. The authors considered frus-
trated exchange interactions as the stabilizing mechanism. As shown in Sec. 2.3 this
interaction is not chiral, which means that the corresponding energy is invariant under

a

b

c

Bimeron In-plane skyrmion

Figure 27: Magnetic bimeron. a A pair of meron and antimeron with reversed out-of-
plane magnetizations. b The combination of these two textures constitutes a
bimeron. Alternatively, the present texture can be understood as an in-plane
skyrmion, since it can be generated by rotating all magnetic moments of a
conventional skyrmion c by 90◦ around an in-plane axis. The net magneti-
zation and the surrounding of the bimeron point into an in-plane direction.
Panels b and c: Reprinted (figure) with permission from (B. Göbel et al. Physical Review B 99, 060407(R)

(2019); Ref. [BG3]); Magnetic bimerons as skyrmion analogues in in-plane magnets. Copyright (2019) by

the American Physical Society.
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common rotations of all spins’ orientations around any global axis. This includes the
out-of-plane axis, (a continuous change of the helicity) and in-plane axes (the transfor-
mation of a skyrmion to a bimeron).

A few papers present experimental results, which are loosely related to magnetic
bimerons. Perhaps most relevant is Ref. [141], where the existence of skyrmion tubes,
which lay in an in-plane direction, is presented. These tubes are meandering and cut
off after only a few nanometers. The cross-section magnetization then looks just like a
bimeron. However, this texture is not continued trivially along the third dimension. It
is not a bimeron tube but a short skyrmion tube.

The lack of an experimental observation of bimerons and the fact that theoretical
predictions consider only frustrated exchange (a stabilizing mechanism which remains
unproven experimentally even for conventional skyrmions) imply that new mechanisms
for stabilizing bimerons have to be predicted.

This publication. In the following publication “Magnetic bimerons as skyrmion ana-
logues in in-plane magnets” [BG5] the idea of the common spin rotation is adapted. It
allows to straightforwardly explain why bimerons can be stabilized by the frustrated
exchange interactions as in Ref. [140] and allows for a generalization to other stabilizing
mechanisms. One main result is the proposal of a novel DMI setup [Fig. 1(c) of the
publication] that stabilizes bimerons and bimeron crystals.

Furthermore, the geometric argumentation allows to predict a Hall effect, which is of
purely topological origin (cf. Fig. 2 of the publication). The spin rotation gives a bimeron
a net magnetization in the plane and leads to a stabilization under the presence of an
external magnetic field which also points in the plane. For this reason, the xy elements
of the anomalous Hall effect and the conventional Hall effect vanish. However, the
spin rotation leaves the emergent field of the spin texture invariant, which is why a
topological Hall effect still emerges.

The behavior under spin torques is presented in Fig. 3 of the publication and can
be understood from the geometric consideration as well. The main results are that
bimerons can be utilized as carriers of information in racetrack-storage devices, just like
skyrmions, but that they can be written and moved also by different spin orientations.
This allows to use new materials in devices.

The stability of the magnetic textures has been identified using Monte Carlo simula-
tions (Sec. 3.1). The topological Hall effect has been calculated using the Berry theory
(Sec. 4.2) for a tight-binding model (Sec. 4.4). The current-driven motion was simulated
by propagating the LLG equation using mumax3 and by considering the Thiele equa-
tion (3.35) for an effective description. For the micromagnetic simulations the modified
DMI configurations, corresponding to bimerons and antiskyrmions, had to be imple-
mented in the code.

The following publication: Reprinted (whole article) with permission from (B. Göbel et al. Physical Review B 99,

060407(R) (2019); Ref. [BG5]; Magnetic bimerons as skyrmion analogues in in-plane magnets). Copyright (2019) by the

American Physical Society.
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A magnetic bimeron is a pair of two merons and can be understood as the in-plane magnetized version of a
skyrmion. Here we theoretically predict the existence of single magnetic bimerons as well as bimeron crystals,
and compare the emergent electrodynamics of bimerons with their skyrmion analogues. We show that bimeron
crystals can be stabilized in frustrated magnets and analyze what crystal structure can stabilize bimerons or
bimeron crystals via the Dzyaloshinskii-Moriya interaction. We point out that bimeron crystals, in contrast
to skyrmion crystals, allow for the detection of a pure topological Hall effect. By means of micromagnetic
simulations, we show that bimerons can be used as bits of information in in-plane magnetized racetrack devices,
where they allow for current-driven motion for torque orientations that leave skyrmions in out-of-plane magnets
stationary.

DOI: 10.1103/PhysRevB.99.060407

Over the last years magnetic skyrmions [Fig. 1(a) top]
[1–6] have attracted immense research interest, as these small
spin textures m(r) possess strong stability, characterized by a
topological charge NSk = ±1. Skyrmions offer a topological
contribution to the Hall effect [7–18], commonly measured
in skyrmion crystals, and can be stabilized as individual
quasiparticles in collinear ferromagnets. They can be driven
by currents in thin films [6,19–26] allowing for spintronics
applicability. The stabilizing interaction in most systems is the
Dzyaloshinskii-Moriya interaction (DMI) [27,28], while theo-
retical simulations also point to other stabilizing mechanisms,
e.g., frustrated exchange interactions [29,30]. Textures with
a half-integer topological charge, like merons and antimerons
(or vortices and antivortices), have also been subject of intense
research [31–33].

Magnetic bimerons [34–37] [Fig. 1(a) bottom] are the com-
bination of two merons [red and blue] and can be understood
as in-plane magnetized versions of magnetic skyrmions [38].
Instead of the out-of-plane component of the magnetization
it is an in-plane component which is radial symmetric about
the quasiparticle’s center; being aligned with the saturation
magnetization of the ferromagnet at the outer region of the
bimeron and pointing into the opposite direction in the center.
Recently, Kharkov et al. showed that isolated bimerons can
be stabilized in an easy-plane magnet by frustrated exchange
interactions [34]. In DMI dominated systems (as is the case for
all experimentally known skyrmion-host materials) bimerons
have only been shown to exist as unstable transition states
[35,36].

In this Rapid Communication, we show that bimerons in
frustrated magnets can also be stabilized in an array, the

*Corresponding author: bgoebel@mpi-halle.mpg.de

bimeron crystal. Furthermore, we propose a structural con-
figuration that allows for DMI stabilizing isolated bimerons
and bimeron crystals. We compare fundamental properties of
skyrmions and bimerons and find that both show the same
topological Hall effect, whereas the bimeron allows for a pure
detection, that is without superposition of the anomalous and
ordinary Hall effects. Elaborating on the spintronics applica-
bility of bimerons in in-plane racetrack memory devices, we
find that bimerons can be driven by spin currents, similar to
skyrmions. However, they extend the class of materials and
spin-torque configurations for building spintronics devices.

Stabilization of bimerons and bimeron crystals. A bimeron
[see Fig. 1(a) bottom] (or a vortex-antivortex pair) consists of
two subtextures: a meron and an antimeron (or a vortex and
an antivortex), with mutually reversed z components of the
magnetic moments {mi}. Still, the bimeron itself is the quasi-
particle in in-plane magnets, since merons and antimerons can
not exist individually in a ferromagnet. The topological charge
density

nSk(r) = 1

4π
m(r) ·

[
∂m(r)

∂x
× ∂m(r)

∂y

]
(1)

is distributed radially symmetrically around the center of the
bimeron and integrates to NSk = ±1; meron and antimeron
carry a topological charge of ±1/2 each [39].

The recurring idea of this paper is a geometric comparison
of skyrmions, bimerons, and antiskyrmions: all three magnetic
textures are related by a rotation of each spin around an in-
plane axis (in this paper always y). A bimeron is constructed
by rotating each spin of a skyrmion by 90◦ [cf. Fig. 1(a)]; for
an antiskyrmion the spins have to be rotated by another 90◦.

To find stable bimerons or bimeron crystals, one can there-
fore start from any system that stabilizes skyrmions and rotate
every vectorial term in the Hamiltonian. The most effortless
approach is to consider skyrmions stabilized by frustrated

2469-9950/2019/99(6)/060407(6) 060407-1 ©2019 American Physical Society
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FIG. 1. Magnetic textures. (a) If the magnetic moments of a magnetic skyrmion (top) are rotated by 90◦ around the y axis the resulting
texture is a magnetic bimeron (bottom), which requires a stabilizing magnetic field B and has net magnetization M, both rotated in the same
way. The emergent field Bem remains out-of plane. (b)–(d) show the necessary geometry of magnetic atoms (black) and heavy metal atoms
(blue, green) to generate the DMI vectors (red), which stabilize (e)–(g) isolated skyrmions, bimerons and antiskyrmions, respectively. (h)–(j)
show periodic arrays. The color in the magnetic textures indicates the out-of plane component of the magnetization (blue: positive, red:
negative). (a) shows schematic representations. (e)–(g) are relaxed metastable textures from propagating the LLG equation in a ferromagnetic
background at zero temperature for the parameters: D = J/3, |K| = |B| = J/15 (here J is the nearest-neighbor exchange constant) and Gilbert
damping α = 0.01. (h)–(j) are results of Monte Carlo simulations at zero temperature, with D = J , |B| = |K| = 0.3 J . Magnetic field B and
easy-axis anisotropy K point along z for the skyrmion, x for the bimeron and −z for the antiskyrmion; the corresponding DMI vectors have
been used.

exchange −Ji jmi · m j . If the scalar constants Ji j for nearest
and next-nearest neighbor interactions have opposite signs the
ground state of the system can be a spin-spiral phase [29].
When an external magnetic field B and easy-axis anisotropy
K are present pointing out-of-plane, skyrmions and skyrmion
crystals may be stabilized.

Following this idea, bimerons and bimeron crystals are
stabilized in a system where both B and K are rotated in-plane
[cf. Fig. 1(a)]. Then, the Hamiltonian

H = − 1

2

∑
i, j

Ji jmi · m j −
∑

i

B · mi

− 1

2

∑
i

∑
A∈{x,y,z}

KA
(
mA

i

)2

gives the same energy as for the skyrmion phase before the
rotation. The results of Monte Carlo simulations confirming
this finding are presented in Ref. [40]. The analogy of the two
systems does also hold for other typical phases: for low fields,
we find a spin-spiral state, for medium fields the bimeron
crystal and for high fields the system is fully magnetized.
At the transition, we find isolated bimerons in an in-plane
magnetized background.

To illustrate the geometric equivalence of bimeron and
skyrmion we used an easy-axis anisotropy along an in-plane

direction, even though such quantity is commonly small.
Our results also hold for systems without anisotropy or with
an easy-plane anisotropy (as in Ref. [34], where isolated
metastable bimerons have been considered), since the applied
magnetic field makes the two in-plane directions inequivalent
(see Ref. [40]).

At the present state of research almost all experimen-
tally detected skyrmions are generated by the Dzyaloshinskii-
Moriya interaction (DMI) [27,28]

HDMI = 1

2

∑
i, j

Di j · (mi × m j ). (2)

It is a relativistic energy contribution due to spin-orbit cou-
pling and broken inversion symmetry. The DMI vectors Di j

obey Moriya’s symmetry rules [28] and can be estimated
from the Levy-Fert rule [41]; Di j points into the direction
ri→ j × ri→HM, i. e., it is perpendicular to the plane of the
two lattice sites i, j and the nearest heavy-metal atom (HM).
Similar to the frustrated exchange interactions the DMI leads
to spin canting, but since it is vectorial it strictly dictates
the type of magnetic texture: Skyrmions can not be turned
into bimerons by rotating B and K only. The Di j have to be
adjusted as well [42].

At interfaces of layered systems [Fig. 1(b)] heavy-
metal atoms (green and blue) induce DMI vectors between

060407-2
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FIG. 2. Hall resistivity (schematic). We compare the signal for
a bimeron (red) and a skyrmion (blue). While the signal is purely
of topological origin in the bimeron phase (here stable for magnetic
fields in x direction between 0.5 and 1 T), it is superimposed by the
ordinary Hall (cf. slope of the gray curve) and the anomalous Hall
effect (offset of the gray curve) for the skyrmion (here the stabilizing
field is applied along z).

neighboring magnetic atoms (black). Typically, the DMI vec-
tors form a toroidal arrangement and produce Néel skyrmions
(e) or Néel skyrmion crystals (h). Rotating the HM atoms
around the bond in y direction, the Di j are rotated in the
same way according to the Levy-Fert rule. If now external
field and anisotropy are oriented along the x direction, as in
the frustrated exchange case, bimerons or bimeron crystals
are stabilized for the same parameters (in magnitude) as for
the skyrmion phase, see Figs. 1(f) and 1(i). This approach is
confirmed by Monte Carlo simulations and atomistic simula-
tions of the Landau-Lifshitz-Gilbert equation (LLG) [43,44]
(see Ref. [40]). To complete this picture, we point out that for
the stabilization of antiskyrmions [(g) and (j)] the indicated
HM atoms (green) have to be rotated another 90◦ around
the bond in y direction (d)—a configuration recently found
experimentally [45] in the Heusler alloy Mn1.4Pt0.9Pd0.1Sn.
The corresponding DMI is called “anisotropic” [46–48].

Summarizing up to this point we predict the existence of
isolated bimerons and bimeron crystals by frustrated exchange
and DMI. Next, we discuss implications of the in-plane
magnetized bulk systems and thin films with bimerons for
electronic properties and spintronic applications.

Pure topological Hall effect of electrons. When an electric
field E is applied to a metal, a current j flows according to
Ohm’s law E = ρ j. For a skyrmion crystal the transverse
element of the resistivity tensor

ρxy = ρHE
xy + ρAHE

xy + ρTHE
xy (3)

is decomposed into an ordinary Hall contribution [49] due
to an external magnetic field ρHE

xy ∝ Bz, an anomalous Hall
contribution [50] due to spin-orbit coupling and a net magne-
tization ρAHE

xy ∝ Mz [51], and a topological Hall contribution
due to the local topological charge density [Eq. (1)] that acts
like an emergent field ρTHE

xy ∝ 〈Bem,z〉 ∝ NSk. For skyrmions,
B, M, and 〈Bem〉 point along the z direction.

For a bimeron, the spin rotation renders the z component
of magnetic quantities zero, Bz = Mz = 0 [cf. Fig. 1(a)], but
since nSk is invariant under global spin rotation Bem,z remains.
For this reason, only the topological Hall effect emerges
in a sample with bimerons (see Fig. 2). This hallmark for
real-space topology can be detected in an isolated manner

making bimeron crystals a playground for investigating fun-
damental physics. In Ref. [40], we numerically validate the
equivalence of the topological Hall effect for skyrmion and
bimeron crystals following Refs. [13,15–18,52], in which the
energy-dependent conductivity is discussed.

Current-driven motion in thin film. In Ref. [37], the rotation
of an annihilating vortex-antivortex pair in in-plane magnets
without DMI has been analyzed. We are now able to discuss
the current-driven propagation of metastable bimerons. In the
following, we show that bimerons can be utilized as topolog-
ically protected information carriers in in-plane magnetized
thin films and discuss similarities and differences to skyrmion
racetrack devices [20,53–56].

In the spin-transfer toque (STT) scenario [20], a current j
of spin-polarized electrons is applied along the ferromagnet.
Since the electron spin at site i is given by the magnetic
texture itself, the torque is rotated in the same way as the
magnetization, which leads to identical motion of bimerons
and skyrmions under STT.

A more efficient way to drive skyrmions is the spin-orbit
torque (SOT) scenario [20]: spins are injected perpendicularly
to the ferromagnetic film, via (i) a spin-polarized current
traversing a second ferromagnetic layer with a distinct mag-
netization sin or via (ii) a charge current in an adjacent heavy-
metal layer, which is transformed into a spin current by the
spin Hall effect (sin ‖ y in cubic systems). The perpendicularly
injected spins are independent of the magnetization in the
actual racetrack layer, and large torques can be generated.

The motion of magnetic textures in nanostructured samples
is simulated within the micromagnetic approach, that models
magnetic textures on a larger length scale compared to the
atomistic simulations presented in Fig. 1. We solve the LLG
equation (see Ref. [40]) for each micromagnetic moment mi

with the in-plane spin torque [57] proportional to

jP

dzMs
[(mi × sin ) × mi], (4)

where dz is the layer thickness, Ms is the saturation mag-
netization, and P is the spin polarization of a perpendicular
current j for (i) or spin Hall angle for (ii). For comparability
the parameters of Co/Pt are taken from Ref. [20] (they are
specified in Ref. [40]). The DMI that stabilizes bimerons is
derived from the vectors of Fig. 1(c)

εDMI = D

(
mz

∂mx

∂x
− mx

∂mz

∂x
+ mx

∂my

∂y
− my

∂mx

∂y

)

and was implemented in MUMAX3 [58,59].
For the SOT scenario (i), skyrmions in a z magnetized

ferromagnet can be driven by injected spins sin ⊥ z. Due to
the global rotation of spins a bimeron in an x magnetized fer-
romagnet can be driven by spins sin ⊥ x and remain stationary
for sin ‖ x, see Fig. 3(a).

Towards utilization in a racetrack device the current-driven
motion ( j ‖ x) is the most relevant aspect of SOTs. Using a
cubic heavy metal material for scenario (ii) (e.g., Pt), i. e.,
sin ‖ y, skyrmions and bimerons are propelled equally in a
system with their favoring easy-axis anisotropy (Kz > 0 for
the skyrmion and Kx > 0 for the bimeron) and DMI [Fig. 1(b)
for the skyrmion and Fig. 1(c) for the bimeron], as long as the
demagnetization field is neglected, cf. Fig. 3(b). In this case
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FIG. 3. Current-driven motion of magnetic bimerons and skyrmions. (a) Superposition of three results of micromagnetic simulations of a
bimeron in an in-plane magnet with periodic boundary conditions starting from the orange circle (top left). The bimerons are driven by SOT
type (i) (injected spins sin ‖ x, y, z as indicated). (b) Bimeron (top) and skyrmion (bottom) in a racetrack geometry driven by SOT type (ii)
(current along the track jx = 5 MA/cm2, injected spins sin ‖ y). The demagnetization field is set to zero. (c) Like (b) but with demagnetization
field. (d) Like (c) but at double the current density. In all panels, the trajectory (orange) of the center of the bimeron or skyrmion is indicated;
the figures show the results after 10-ns propagation time, except for (d) bottom, where the skyrmion already annihilates after 0.5 ns.

both quasiparticles experience the same forces and behave
equally under the influence of temperature.

The demagnetization field acts effectively as an inhomo-
geneous in-plane magnetic field for both textures, leading
to an increase of the skyrmion size and a decrease of the
bimeron size. Consequently the skyrmion velocity is larger
than that of the bimeron [cf. Fig. 3(c) and see Ref. [40] for
a complementary Thiele equation analysis]. Still, the bimeron
can reach similar velocities as the skyrmion since the bimeron
allows for larger applied currents densities. While a bimeron is
still stable at j = 10 MA/cm2, the skyrmion is already an-
nihilated at the edge of the racetrack for j � 6.25 MA/cm2

[cf. Fig. 3(d)]. Both quasiparticles can reach velocities of
around 50 m/s although the skyrmion moves more efficiently
for the presented parameters. In Ref. [40], we show that
current-driven motion is also possible for a material with
an easy-plane anisotropy (Kz < 0), when a magnetic field is
applied in-plane to generate a preferred direction.

Conclusion and perspective. In this Rapid Communication,
we have demonstrated how to generate isolated bimerons and
bimeron crystals via DMI and frustrated exchange interac-
tions. Since the magnetic moments of a bimeron are merely
rotated moments of a skyrmion, the topological properties of
the two objects are unchanged and the topological Hall effects
due to both of them are identical. Nevertheless, the fact that all
magnetic quantities (net magnetization and stabilizing field)
are rotated, while the emergent field is not, allows for the pure
and therefore unambiguous detection of the topological Hall
effect in bimeron systems, and for the development of future
spintronic devices based on this effect.

We have shown that magnetic materials with in-plane
magnetization can be used to build racetrack storage devices
with magnetic bimerons as carriers of information. In these
materials, the current-induced dynamics of bimerons can be
accomplished similarly to that of skyrmions in conventional
racetracks. Furthermore, in-plane ferromagnets allow us to

use different orientations of injected spins for the propulsion
of bimerons as well as for their generation (for sin ‖ x in
analogy to Refs. [20,60]). A technological advantage of these
materials is the stackability of the quasi-one-dimensional
racetracks, since the dipolar energy of two in-plane magnets
is smaller than that of two out-of-plane magnets. The smaller
stray fields in a bimeron-based racetrack allow for a denser
array of tracks in three dimensions and thus a higher storage
density.

The established analogy between skyrmions and bimerons
can be carried over to all types of skyrmion-related spin
textures such as higher-order skyrmions [30,61], biskyrmions
[62,63], multi-π skyrmions [64–67], bobbers [68,69], and
topologically trivial bubbles. Regarding applicability in spin-
tronics the antiferromagnetic skyrmions [70–76] that become
antiferromagnetic bimerons (two mutually reversed bimerons
on different sublattices), stand above all, since they allow for
SOT-driven dynamics precisely in the middle of the racetrack
at speeds of up to several km/s. Very recently the existence of
such bimerons has been confirmed experimentally in synthetic
antiferromagnets [77].

Note added. After the submission of this Paper a vortex-
antivortex crystal has been observed by Lorentz transmission
electron microscopy in Co8Zn9Mn3 [78]. These textures have
been predicted earlier [79] and are topologically (but not
geometrically) equivalent to bimeron crystals.

We are grateful to Steffen Trimper and Stuart S. P. Parkin
for fruitful discussions. This work is supported by Priority
Program SPP 1666 and SFB 762 of Deutsche Forschungs-
gemeinschaft (DFG). O.A.T. acknowledges support by the
Grants-in-Aid for Scientific Research (Grants No. 17K05511
and No. 17H05173) from MEXT (Japan), by the grant of
the Center for Science and Innovation in Spintronics (Core
Research Cluster), Tohoku University, and by JSPS and RFBR
under the Japan-Russian Research Cooperative Program.

060407-4



MAGNETIC BIMERONS AS SKYRMION ANALOGUES IN … PHYSICAL REVIEW B 99, 060407(R) (2019)

[1] T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
[2] A. N. Bogdanov and D. A. Yablonskii, Zh. Eksp. Teor. Fiz. 95,

178 (1989) [Sov. Phys. JETP 68, 101 (1989)].
[3] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255

(1994).
[4] U. Rößler, A. Bogdanov, and C. Pfleiderer, Nature (London)

442, 797 (2006).
[5] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.

Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).
[6] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[7] P. Bruno, V. K. Dugaev, and M. Taillefumier, Phys. Rev. Lett.

93, 096806 (2004).
[8] A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G.

Niklowitz, and P. Böni, Phys. Rev. Lett. 102, 186602 (2009).
[9] T. Schulz, R. Ritz, A. Bauer, M. Halder, M. Wagner, C. Franz,

C. Pfleiderer, K. Everschor, M. Garst, and A. Rosch, Nat. Phys.
8, 301 (2012).

[10] N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama,
S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys.
Rev. Lett. 106, 156603 (2011).

[11] M. Lee, W. Kang, Y. Onose, Y. Tokura, and N. P. Ong, Phys.
Rev. Lett. 102, 186601 (2009).

[12] Y. Li, N. Kanazawa, X. Z. Yu, A. Tsukazaki, M. Kawasaki, M.
Ichikawa, X. F. Jin, F. Kagawa, and Y. Tokura, Phys. Rev. Lett.
110, 117202 (2013).

[13] K. Hamamoto, M. Ezawa, and N. Nagaosa, Phys. Rev. B 92,
115417 (2015).

[14] J. L. Lado and J. Fernández-Rossier, Phys. Rev. B 92, 115433
(2015).

[15] B. Göbel, A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 95,
094413 (2017).

[16] B. Göbel, A. Mook, J. Henk, and I. Mertig, New J. Phys. 19,
063042 (2017).

[17] P. B. Ndiaye, C. A. Akosa, and A. Manchon, Phys. Rev. B 95,
064426 (2017).

[18] G. Yin, Y. Liu, Y. Barlas, J. Zang, and R. K. Lake, Phys. Rev. B
92, 024411 (2015).

[19] F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W.
Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine
et al., Science 330, 1648 (2010).

[20] J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert, Nat.
Nanotechnol. 8, 839 (2013).

[21] J. Zang, M. Mostovoy, J. H. Han, and N. Nagaosa, Phys. Rev.
Lett. 107, 136804 (2011).

[22] J. Iwasaki, M. Mochizuki, and N. Nagaosa, Nat. Nanotechnol.
8, 742 (2013).

[23] W. Jiang, X. Zhang, G. Yu, W. Zhang, X. Wang, M. B.
Jungfleisch, J. E. Pearson, X. Cheng, O. Heinonen, K. L. Wang
et al., Nat. Phys. 13, 162 (2017).

[24] K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K.
Richter, F. Büttner, K. Sato, O. A. Tretiakov, J. Förster et al.,
Nat. Phys. 13, 170 (2017).

[25] R. Tomasello, E. Martinez, R. Zivieri, L. Torres, M. Carpentieri,
and G. Finocchio, Sci. Rep. 4, 6784 (2014).

[26] B. Göbel, A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 99,
020405(R) (2019).

[27] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[28] T. Moriya, Phys. Rev. 120, 91 (1960).
[29] T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108,

017206 (2012).

[30] A. Leonov and M. Mostovoy, Nat. Commun. 6, 8275 (2015).
[31] A. M. Kosevich, B. Ivanov, and A. Kovalev, Phys. Rep. 194,

117 (1990).
[32] F. G. Mertens and A. R. Bishop, in Nonlinear Science at

the Dawn of the 21st Century (Springer, Heidelberg-Berlin,
Germany, 2000), pp. 137–170.

[33] E. Kamenetskii, in Electromagnetic, Magnetostatic, and
Exchange-Interaction Vortices in Confined Magnetic Structures
(Transworld Research Network, Kerala, India, 2008).

[34] Y. A. Kharkov, O. P. Sushkov, and M. Mostovoy, Phys. Rev.
Lett. 119, 207201 (2017).

[35] C. Heo, N. S. Kiselev, A. K. Nandy, S. Blügel, and T. Rasing,
Sci. Rep. 6, 27146 (2016).

[36] X. Zhang, M. Ezawa, and Y. Zhou, Sci. Rep. 5, 9400 (2015).
[37] S. Komineas, Phys. Rev. Lett. 99, 117202 (2007).
[38] Note that recently the term “bimeron” has also been used for

elongated skyrmions [80–82], instead of the original object,
found in dual layer two-dimensional electron gases and quan-
tum Hall systems [83–87]. Throughout this paper we always
refer to the latter.

[39] O. A. Tretiakov and O. Tchernyshyov, Phys. Rev. B 75, 012408
(2007).

[40] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevB.99.060407 for a numerical validation of
several claims made in the main text, which includes
Refs. [13,15,20,26,30,43,44,50,57,88–91].

[41] A. Fert and P. M. Levy, Phys. Rev. Lett. 44, 1538 (1980).
[42] Note that in magnets with in-plane anisotropy and conventional

interfacial DMI [Fig. 1(b)] asymmetric skyrmions are stabilized
[92]. These objects are intermediate states between skyrmions
and bimerons with nonvanishing in-plane and out-of-plane net
magnetization.

[43] L. D. Landau and E. Lifshitz, Phys. Z. Sowjetunion 8, 153
(1935) [Ukr. J. Phys. 53, 14 (2008)].

[44] T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
[45] A. K. Nayak, V. Kumar, T. Ma, P. Werner, E. Pippel, R. Sahoo,

F. Damay, U. K. Rößler, C. Felser, and S. S. Parkin, Nature
(London) 548, 561 (2017).

[46] U. Güngördü, R. Nepal, O. A. Tretiakov, K. Belashchenko, and
A. A. Kovalev, Phys. Rev. B 93, 064428 (2016).

[47] S. Huang, C. Zhou, G. Chen, H. Shen, A. K. Schmid, K. Liu,
and Y. Wu, Phys. Rev. B 96, 144412 (2017).

[48] M. Hoffmann, B. Zimmermann, G. P. Müller, D. Schürhoff,
N. S. Kiselev, C. Melcher, and S. Blügel, Nat. Commun. 8, 308
(2017).

[49] E. H. Hall, Am. J. Math. 2, 287 (1879).
[50] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P.

Ong, Rev. Mod. Phys. 82, 1539 (2010).
[51] Over the recent years an additional contribution to the Hall

resistivity ρxy has been predicted which is neither proportional
to M nor Nsk; it is only determined by the SOC [93]. Even
though this effect cannot be excluded, all Hall measurements
in skyrmion crystals are well approximated by Eq. (3) to the
best of our knowledge.

[52] B. Göbel, A. Mook, J. Henk, and I. Mertig, Eur. Phys. J. B 91,
179 (2018).

[53] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152
(2013).

[54] S. S. Parkin, Shiftable magnetic shift register and method of
using the same, US Patent No. 6,834,005, 2004.

060407-5



GÖBEL, MOOK, HENK, MERTIG, AND TRETIAKOV PHYSICAL REVIEW B 99, 060407(R) (2019)

[55] S. S. Parkin, M. Hayashi, and L. Thomas, Science 320, 190
(2008).

[56] S. Parkin and S.-H. Yang, Nat. Nanotechnol. 10, 195 (2015).
[57] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[58] A. Vansteenkiste and B. Van de Wiele, J. Magn. Magn. Mater.

323, 2585 (2011).
[59] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-

Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).
[60] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,

K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[61] R. Ozawa, S. Hayami, and Y. Motome, Phys. Rev. Lett. 118,
147205 (2017).

[62] X. Yu, Y. Tokunaga, Y. Kaneko, W. Zhang, K. Kimoto, Y.
Matsui, Y. Taguchi, and Y. Tokura, Nat. Commun. 5, 3198
(2014).

[63] L. Peng, Y. Zhang, W. Wang, M. He, L. Li, B. Ding, J. Li, Y.
Sun, X.-G. Zhang, J. Cai et al., Nano Lett. 17, 7075 (2017).

[64] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 195, 182
(1999).

[65] X. Zhang, J. Xia, Y. Zhou, D. Wang, X. Liu, W. Zhao, and M.
Ezawa, Phys. Rev. B 94, 094420 (2016).

[66] F. Zheng, H. Li, S. Wang, D. Song, C. Jin, W. Wei, A. Kovács,
J. Zang, M. Tian, Y. Zhang et al., Phys. Rev. Lett. 119, 197205
(2017).

[67] S. Zhang, F. Kronast, G. van der Laan, and T. Hesjedal, Nano
Lett. 18, 1057 (2018).

[68] F. N. Rybakov, A. B. Borisov, S. Blügel, and N. S. Kiselev,
Phys. Rev. Lett. 115, 117201 (2015).

[69] F. Zheng, F. N. Rybakov, A. B. Borisov, D. Song, S. Wang,
Z.-A. Li, H. Du, N. S. Kiselev, J. Caron, A. Kovács et al., Nat.
Nanotechnol. 13, 451 (2018).

[70] J. Barker and O. A. Tretiakov, Phys. Rev. Lett. 116, 147203
(2016).

[71] X. Zhang, Y. Zhou, and M. Ezawa, Nat. Commun. 7, 10293
(2016).

[72] X. Zhang, Y. Zhou, and M. Ezawa, Sci. Rep. 6, 24795 (2016).
[73] P. F. Bessarab, D. Yudin, D. R. Gulevich, P. Wadley, M. Titov,

and O. A. Tretiakov, arXiv:1709.04454.

[74] B. Göbel, A. Mook, J. Henk, and I. Mertig, Phys. Rev. B 96,
060406(R) (2017).

[75] L. Shen, J. Xia, G. Zhao, X. Zhang, M. Ezawa, O. A. Tretiakov,
X. Liu, and Y. Zhou, Phys. Rev. B 98, 134448 (2018).

[76] C. A. Akosa, O. A. Tretiakov, G. Tatara, and A. Manchon, Phys.
Rev. Lett. 121, 097204 (2018).

[77] A. G. Kolesnikov, V. S. Plotnikov, E. V. Pustovalov, A. S.
Samardak, L. A. Chebotkevich, A. V. Ognev, and O. A.
Tretiakov, Sci. Rep. 8, 15794 (2018).

[78] X. Yu, W. Koshibae, Y. Tokunaga, K. Shibata, Y. Taguchi, N.
Nagaosa, and Y. Tokura, Nature (London) 564, 95 (2018).

[79] Y. Gaididei, O. M. Volkov, V. P. Kravchuk, and D. D. Sheka,
Phys. Rev. B 86, 144401 (2012).

[80] M. Ezawa, Phys. Rev. B 83, 100408 (2011).
[81] H. Du, W. Ning, M. Tian, and Y. Zhang, Phys. Rev. B 87,

014401 (2013).
[82] R. L. Silva, L. D. Secchin, W. A. Moura-Melo, A. R. Pereira,

and R. L. Stamps, Phys. Rev. B 89, 054434 (2014).
[83] K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald,

L. Zheng, D. Yoshioka, and S.-C. Zhang, Phys. Rev. B 51, 5138
(1995).

[84] K. Yang and A. H. MacDonald, Phys. Rev. B 51, 17247(R)
(1995).

[85] L. Brey, H. A. Fertig, R. Côté, and A. H. MacDonald, Phys.
Rev. B 54, 16888 (1996).

[86] J. Bourassa, B. Roostaei, R. Côté, H. A. Fertig, and K. Mullen,
Phys. Rev. B 74, 195320 (2006).

[87] R. Côté, W. Luo, B. Petrov, Y. Barlas, and A. H. MacDonald,
Phys. Rev. B 82, 245307 (2010).

[88] I. A. Ado, O. A. Tretiakov, and M. Titov, Phys. Rev. B 95,
094401 (2017).

[89] A. Thiele, Phys. Rev. Lett. 30, 230 (1973).
[90] O. A. Tretiakov, D. Clarke, G.-W. Chern, Y. B. Bazaliy, and O.

Tchernyshyov, Phys. Rev. Lett. 100, 127204 (2008).
[91] D. J. Clarke, O. A. Tretiakov, G.-W. Chern, Y. B. Bazaliy, and

O. Tchernyshyov, Phys. Rev. B 78, 134412 (2008).
[92] A. Leonov and I. Kézsmárki, Phys. Rev. B 96, 014423 (2017).
[93] H. Chen, Q. Niu, and A. MacDonald, Phys. Rev. Lett. 112,

017205 (2014).

060407-6



6.3 Magnetic skyrmioniums in racetrack applications

6.3 Magnetic skyrmioniums in racetrack applications

Quasiparticles with a vanishing topological charge are highly attractive for racetrack
applications since they do not exhibit a skyrmion Hall effect, even in the conventional
SOT geometry. To construct a quasiparticle with a vanishing topological charge, two
skyrmions with topological charges +1 and −1 may be combined.

One way is to write a skyrmion in the center of the second skyrmion with the opposite
polarity. The resulting ‘skyrmionium’ can be stabilized by DMI just like a skyrmion;
this has been known even before the initial detection of conventional skyrmions [142].
Analyzing the magnetic moments starting from the edge and going to the center of this
magnetic object, the azimuthal angle changes for example from 0 to π to 2π, hence the
skyrmionium is also referred to as ‘2π skyrmion’.

Experimental discovery. Besides the DMI, the confining potential in nanodisks or nano-
rods helps stabilizing these quasiparticles as has been shown experimentally in Ref. [143]
[Fig. 28(b)]. In these geometries the texture is often called ‘target skyrmion’. For these
objects, the azimuthal angle does not change by a full 2π and therefore the topological
charge is not exactly zero. However, these objects resemble ideal skyrmioniums to a
large degree. Actual skyrmioniums, which are addressable individually, have been re-
alized experimentally by laser pulses [63] and were observed in ferromagnetic films on
top of topological insulators [144] [Fig. 28(a)]. This motivates to consider skyrmionium-
based racetrack storage devices, in which the bits move parallel to the current, directly
in the middle of the racetrack.

a b

Figure 28: Magnetic skyrmioniums in experiments. a A skyrmionium stabilized in
NiFe interfaced with a topological insulator. b A target skyrmion in a nano
pillar. Panel a: Reprinted (adapted) with permission from (S. Zhang et al.: Real-Space Observation of

Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure. Nano Letters 18, 1057

(2018); Ref. [144]). Copyright (2018) American Chemical Society. Panel b: Reprinted from (F. Zheng et al.:

Direct Imaging of a Zero-Field Target Skyrmion and Its Polarity Switch in a Chiral Magnetic Nanodisk.

Physical Review Letters 119, 197205 (2017); Ref. [143]). Published by the American Physical Society under

the terms of the Creative Commons Attribution 4.0 International license.

This publication. In the following publication “Electrical writing, deleting, reading,
and moving of magnetic skyrmioniums in a racetrack device” [BG6] all four constituents
of a racetrack-storage device have been simulated.

The writing and deleting processes are realized by the injection of a toroidal spin
configuration for an ultra-short time span. This SOT-based mechanism is induced by a
current pulse which is triggered by a laser (Fig. 1 of the publication). This step has been
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simulated by Alexander Schäffer. The main advantage of the ultra-fast generation of
skyrmioniums is that the driving current may remain applied while the bits are written
or deleted. A sequence of skyrmioniums moves perfectly in the middle of the racetrack
due to the vanishing topological charge (Fig. 4 of the publication). For this consideration
I have conducted micromagnetic simulations using mumax3 to solve the LLG equation
(Sec. 3.2; together with Alexander Schäffer) and analyzed the trajectory with the Thiele
equation (3.35).

For the reading process I have conducted calculations of the topological Hall effect.
The opposite topological charges of the two subskyrmions lead to a cancellation of the
topological Hall effect globally, as follows from a calculation using the Berry-curvature
approach. However, for the detection of magnetic quasiparticles in a racetrack, only the
deflected electrons in a finite area are relevant. This was calculated using a Landauer-
Büttiker formalism, as introduced in Appendix B.

The general idea of this method is that four leads are attached to the racetrack: two
along the longitudinal directions to apply the current, and two on the sides for the
detection of the transverse voltage. The voltages Ui and currents Ii at the four leads are
related by a system of linear equations

Im =
e2

h ∑
n

TmnUn, (6.2)

where T is the transition matrix, which has been computed using the code Kwant [145].
The transverse resistance is given by Rxy = ∆Utrans/Ilong. As can be seen in Fig. 5
of the publication, despite its vanishing topological charge, a skyrmionium exhibits a
pronounced signal in the topological Hall resistivity. This allows for an unambiguous
detection and even for a distinction from other non-collinear spin textures. An electrical
detection should therefore be feasible just like for conventional skyrmions as presented
in Ref. [14] (cf. Fig. 13 presented in the experimental review section).

Reprinted from (B. Göbel et al.: Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in

a racetrack device. Scientific Reports 9, 12119 (2019), DOI: https://doi.org/10.1038/s41598-019-48617-z; Ref. [BG6]).

Published by Springer Nature under the terms of the Creative Commons Attribution 4.0 license.
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electrical writing, deleting, 
reading, and moving of magnetic 
skyrmioniums in a racetrack device
Börge Göbel  1, Alexander f. Schäffer  2, Jamal Berakdar  2, ingrid Mertig1,2 & 
Stuart S. p. parkin  1

A magnetic skyrmionium (also called 2π-skyrmion) can be understood as a skyrmion—a topologically 
nontrivial magnetic whirl—which is situated in the center of a second skyrmion with reversed 
magnetization. Here, we propose a new optoelectrical writing and deleting mechanism for 
skyrmioniums in thin films, as well as a reading mechanism based on the topological Hall voltage. 
furthermore, we point out advantages for utilizing skyrmioniums as carriers of information in 
comparison to skyrmions with respect to the current-driven motion. We simulate all four constituents of 
an operating skyrmionium-based racetrack storage device: creation, motion, detection and deletion of 
bits. The existence of a skyrmionium is thereby interpreted as a ‘1’ and its absence as a ‘0’ bit.

Magnetic skyrmions1–3 are whirl-like quasiparticles that are under consideration as carriers of information in 
modern data storages: Sampaio et al.4 proposed to write and move skyrmions in thin film nanowires what consti-
tutes a derivative of a racetrack storage device, initially proposed for domain walls in a ferromagnetic thin films5–7. 
The low driving current, small size and high stability of skyrmions, combined with the stackability of these tracks 
into three dimensions may lead to the development of highly efficient magnetic memory-storage devices with 
capacities that rival those of magnetic hard-disk drives, satisfying the ever-growing demand for data storage.

Since the initial discovery of skyrmions in the form of periodic lattices in bulk single crystals of MnSi2, scien-
tific effort has led to promising advances towards the utilization of isolated skyrmions as information carriers4,8–13. 
Still, one major issue for  driving skyrmions on a racetrack is the skyrmion Hall effect3,11,14,15 originating from the 
real-space topological properties of skyrmions. A skyrmion carries a topological charge of NSk ± 1, defined as the 
integral over the topological charge density

π
= ⋅






∂

∂
×

∂
∂





r m r m r m rn

x y
( ) 1

4
( ) ( ) ( ) ,
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Sk

where m(r) is the unit vector magnetization field. Skyrmions driven by spin-polarized electrical currents are 
not propelled parallel to the racetrack. They experience a transverse deflection towards the edge of the racetrack 
where they may be confined. This effect is detrimental for racetrack applications.

Theoretical suggestions for suppressing the skyrmion Hall effect are to manipulate the driving torque orien-
tation16–19 or to use antiferromagnetic skyrmions with a vanishing topological charge20–23 instead of skyrmions. 
However, both approaches have not yet been realized experimentally.

Here, we utilize another type of magnetic quasi-particle (Fig. 1a) with a zero topological charge: the skyrmi-
onium (also called a 2π-skyrmion)24–34. The skyrmionium has been observed experimentally created by laser 
pulses27, as target skyrmionium in nanodiscs28 and very recently in a thin ferromagnetic film on top of a topo-
logical insulator29. A magnetic skyrmionium (Fig. 1b) can be described as a skyrmion, with a second skyrmion 
situated in the center. The inner skyrmion has a reversed polarity and deforms the outer skyrmion to a ring.

Here, we show that skyrmioniums can be used as carriers of information in a racetrack storage device (Fig. 1a): 
the existence of a skyrmionium is interpreted as a ‘1’ bit, while its absence is a ‘0’ bit. Based on recent progresses 
in optically generated current pulses35 we propose a way to write and delete magnetic skyrmioniums on the 
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picosecond timescale, so that the current-induced skyrmionium flow–without the detrimental skyrmion Hall 
effect–can remain steady while writing. Also we show that skyrmioniums can be detected electrically by their 
topological Hall signal, that arises from the local topological charge density (Fig. 1b bottom), even though the 
global topological charge vanishes.

Results
Skyrmionium racetrack. In the following, we simulate and analyze point by point the four essential con-
stituents to operate a racetrack-storage device based on magnetic skyrmioniums. First, we show via micro-
magnetic simulations how skyrmioniums can be written and deleted by optically excited localized current 
pulses. Thereafter, we present advantages in the current-driven motion of skyrmioniums compared to that of 
conventional skyrmions; we explain the simulated results by an effective description using the Thiele equation. 
Ultimately, we show via Landauer-Büttiker calculations that the local separation of the two subskyrmions of a 
skyrmionium can be exploited to electrically detect skyrmioniums even though they exhibit no topological Hall 
voltage when integrated over the whole sample.

For the device (Fig. 1a) we consider a magnetic layer on a heavy metal: here we exemplarily select Co (gray) 
on Pt (transparent), as in refs4,26. In this setup an applied charge current density j (white) within the Pt layer is 
translated into  a spin current by the considerable spin Hall effect that has been observed in Pt. The spin current 
flows perpendicularly to the plane into the Co potentially hosting skyrmioniums. The spin polarization s (cyan) 
is perpendicular to j and the plane normal, thereby leading to a spin-orbit torque36 (SOT) that can propel a 
skyrmionium.

On top of the basic racetrack that is formed from the Pt/Co bilayer a photosensitive switch37 is fabricated that 
can switch the magnetization as experimentally shown in ref.35. A circular gold disk inside a gold ring is isolated 
from the metallic racetrack by an underlying semiconducting layer (green) so that a bias voltage can be applied 
between the inner and outer gold electrodes (Corbino geometry). The semiconductor is electrically activated by 
fs-laser pulses which generate a radially symmetric current pulse profile = ˆj j er

r rwrite
0  (white) in the Pt-layer.  

By analogy with the explanation given above, this leads to a toroidal spin polarization profile || ± φ̂s r e( )  (cyan) of 
the spin currents (parallel to êz) that diffuse into the Co layer to create or delete the skyrmionium. To model the 
skyrmionium generation, deletion and motion we use a micromagnetic framework based on the 
Landau-Lifshitz-Gilbert (LLG) equation36,38,39. For details and simulation parameters see Methods.

For the reading process we utilize the local topological properties of a skyrmionium. The non-zero topological 
charge density nSk leads to a deflection of electrons into a transverse direction. A Hall voltage UR builds up that 
can be measured by attaching two small leads (gray) to the sides of the device.

optoelectrical writing of skyrmioniums. Several mechanisms for writing skyrmions have been pro-
posed, such as the application of spin-polarized currents40, laser beams27 and electron beams41,42. These mech-
anisms can potentially be adapted to generate also skyrmioniums. It has been predicted that skyrmioniums can 
be generated by alternating the out-of-plane orientation of an external magnetic field30 or by the perpedicular 
injection of spin currents26,31.

We propose a faster writing mechanism, where spins are injected from the perpendicular direction for an 
ultrashort duration. We consider a SOT-driven approach based on a nanostructured skyrmionium manipulation 
unit as sketched in Fig. 1a. Optically excited radially symmetric charge currents (white) in the Pt-layer lead to 
out-of-plane spin currents with a controllable toroidal spin polarization configuration (cyan): For opposite signs 
of the applied bias-voltage opposite spin polarizations are achieved (± ϕ̂e ). According to Yang et al.35 current den-

Figure 1. Skyrmionium-based racetrack storage device. (a) Schematic presentation of the proposed device 
including the four constituents: writing, deleting, moving and reading. A skyrmionium, the circular object in 
the Co layer (gray), is written or deleted by a photosensitive switch built from gold (Au) and a semi-conductor 
(SC). A radial current (white) is triggered upon illuminating the antenna with a fs-laser pulse due to the 
applied bias voltage. The current mainly flows in the Pt layer (transparent) where the SHE injects spins (cyan) 
into the Co layer that are oriented perpendicularly to the plane normal and current directions. Depending 
on the polarity of the gate voltage, the sign of the optically activated current pulse and the orientation of the 
polarization are determined, so that a skyrmionium can be written or deleted. To move the skyrmionium 
a uniform current density j is applied along the track, again generating spins s that exert a SOT onto the 
skyrmionium. When a skyrmionium is located near the two leads on the right, a Hall voltage UR can be 
measured, allowing for a distinct detection of a skyrmionium bit. (b) (top) Magnetic texture of a skyrmionium, 
and (bottom) topological charge density nSk with opposite signs for the inner skyrmion and the outer ring.
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sities on the order of jmax = 2 × 1013A/m2 could be created for a pulse duration of 9 ps full width at half maximum 
(FWHM). These values were adapted in our proposed optoelectrical writing and deleting process of a single 
skyrmionium. They cannot be reached by a conventional perpendicular spin current injection. The diameter of 
the inner disk of the photosensitive switch is 20 nm and the outer ring’s inner diameter is 60 nm in order to match 
the skyrmionium’s dimension. These dimensions are at the limit of what is possible today using conventional 
lithographic processes.

Starting from an initially uniform magnetization pointing into the −z direction (Fig. 2a), the system is 
excited by an out-of-plane spin current with toroidal polarization. Because of the ultrashort current pulses of 9 ps 
(FWHM) the excitation itself is non-adiabatic and the magnetic texture will relax on a longer time scale.

During the current-pulse (Fig. 2b, maximum current at 15 ps) the magnetization in the excited ring-shaped 
region begins to align with the spin current’s polarization, i.e. along − ϕ̂e . The amplitude of the current as well as its 
location needs to be tuned in such a way, that it will effectively switch a ring-shaped domain of a suitable size 
(Fig. 2c). Subsequently not only spin waves propagate radially, but also the central circular region remaining in its 
initial orientation starts to pulsate (Fig. 2c–f). Associated with this, the domain wall between the central −z region 
and the intermediate +z region is rotating such that a central Néel-skyrmion is generated, thereby, in total, consti-
tuting a skyrmionium. The slowest relaxation is the adjustment of the skyrmionium’s size, taking place after the 
central fluctuations decay. The shrinking towards the final diameter (around 80 nm) lasts for ~500 ps (Fig. 2e,f).

optoelectrical deleting of skyrmioniums. Deleting a non-collinear magnetic texture means turning it 
into a ferromagnetic state. Since no stabilizing external magnetic field is applied to the racetrack, the magnetiza-
tion can in principle point into both out-of-plane directions. The uncontrolled annihilation of a skyrmionium can 
therefore easily lead to a local reversal of the magnetization direction, i. e., the formation of a domain. Therefore 
‘1’ bits need to be turned into ‘0’ bits in a controlled way; no ferromagnetic domains must form. An efficient way 
is to invert the writing mechanism by reversing the bias voltage, which goes along with a change of the spin cur-
rent’s polarization from − ϕ̂e  to + ϕ̂e .

The annihilation process is shown in Fig. 3. The generated spin current effectively unwinds the skyrmionium 
structure step by step. First, the rotation of the domain wall leads to the dissolving of the central −z domain 
(Fig. 3a–c). Second, the remaining skyrmion-like configuration contracts (Fig. 3d,e) until it collapses (Fig. 3f). 
The system relaxes towards the ferromagnetic state in less than 40 ps.

current-driven motion of skyrmioniums. Skyrmions and skyrmioniums can be driven by spin torques. 
As discussed above, we use a two-layer setup that utilizes SOT, which means ||s  − y for j||x. This mechanism has 

Figure 2. Writing skyrmioniums by optically excited current pulses. (a) The starting point is a ferromagnet 
magnetized along −z. The orange areas indicate the gold nanostructures that generate a current pulse of 9 ps 
duration (FWHM) with jmax(t = 15 ps) = 2 × 1013A/m2 at the disk. (b) After the spin current has induced a 
skyrmionium-shaped excitation the quasiparticle relaxes in (c–f). The color code is the same as in Fig. 1. 
An animated version is accessible in Supplementary Video 1. For sample and beam parameters see text and 
Methods. The scale bar corresponds to 50 nm.

Figure 3. Deleting skyrmioniums by optically excited current pulses. (a) We start from the skyrmionium 
stabilized in Fig. 2 and generate a spin current with opposite polarization ( ϕ̂e ) compared to the writing process 
achieved by switching the sign of the bias voltage. (b,c) The domain wall unwinds the inner skyrmion leading to 
its collapse. (d–f) Subsequently, the skyrmion-like configuration contracts and dissolves. An animated version is 
accessible in Supplementary Video 2. The scale bar corresponds to 50 nm.
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been proven to be far more efficient compared to propagation induced by spin-polarized currents applied within 
the ferromagnetic layer (spin-transfer torque)4,26.

In our simulations (Fig. 4a,b) a reference skyrmion (Fig. 4b) first moves to the edge partially along the −y 
direction of the racetrack for about 10 ns and then moves at a steady velocity along the confining edge along the 
+x direction. The skyrmionium (Fig. 4a) on the other hand is propelled almost instantly to the steady state veloc-
ity and moves in the middle of the racetrack along +x.

The results of micromagnetic simulations can most easily be understood by an effective center-of-mass 
description of magnetic quasiparticles (velocity v): the Thiele equation (in units of force)4,19,26,43

α× − + = ∇ .G v v sb bD BjI U y( ) (2)

The properties of the respective quasiparticle are condensed into the gyromagnetic coupling vector G = Gez 
with G = −4πNSk, and the dissipative tensor D determined by ∫= ∂ ⋅ ∂m r m rD r( ) ( ) dij i j

2 . Only Dxx and Dyy are 
nonzero. The tensor I  is calculated from ∫= ∂ ×m r m rI r[ ( ) ( )] dij i j

2  and has only nonzero xy and yx elements 
for the stabilized Néel skyrmion (the type of skyrmion is determined by the Dzyaloshinskii-Moriya interaction 
(DMI)44,45 arising at the interface between the Pt and Co layers) and skyrmionium. This tensor describes the 
interaction of injected spins s and the magnetic texture. The constants are b = Msdz/γe and B = ℏ/(2e)ΘSH.

While neglecting the racetrack potential U (minimum in the middle of the racetrack), both textures expe-
rience a skyrmion Hall angle of θSk = arctan(G/Dxxα), which gives an angle of −60.5° for the skyrmion and 0° 
for the skyrmionium with respect to the +x direction, in agreement with the first period of the simulation (blue 
dashed lines in Fig. 4a,b). The magnetic quasiparticles move at a velocity of

α
θ= −v B

b
I
D

j v1 tan
(3)x

xy

xx
x ySk

along the racetrack. If the current density jx is small enough, a skyrmion moves to the edge of the racetrack due to 
its topological charge, until the gradient potential of the racetrack edge compensates the transverse force. In this 
case the longitudinal velocity is increased, because the second term vanishes. Due to θSk = 0 a skyrmionium on the 
other hand moves instantly at a constant velocity, which is given by the first term of Eq. 3.

In agreement with ref.26 we find a slightly increased skyrmionium velocity (| | = .v 13 8 m/sx
st ) compared to the 

skyrmion velocity (| | = .v 13 2 m/sx
st ) even in the steady state, which is explained by vx ∝ Ixy/Dxx in Eq. 3. In 

infinitely wide racetracks this ratio is equal for skyrmions and skyrmioniums. In finite tracks however, the confin-
ing potential deforms the magnetic quasiparticles slightly, altering the above ratio. Since skyrmioniums are larger 
than skyrmions, they experience a stronger deformation which manifests itself in a slightly increased Ixy/Dxx ratio.

The striking advantage of skyrmioniums as carriers of information compared to skyrmions becomes apparent 
in the first 10 ns of their motion after a current pulse is applied. During this period of time the skyrmionium 
already moves at maximum speed in the middle of the track, thereby allowing the writing of several skyrmioni-
ums in sequence while the driving current is still applied (Fig. 4c).

Similarly to the skyrmion-skyrmion interaction46, also the interaction between skyrmioniums is decreasing 
exponentially with the distance between them (see Supplementary Fig. S1). A repulsion of the quasiparticles is 
mainly limited to the case of a spatial overlap of the spin textures, therefore leaving the inter-skyrmionium dis-
tance in Fig. 4c constant during the considered time period.

In Fig. 4c we apply a current density of jΘSH = 2.0 MA/cm2. The skyrmionium moving at 46.28 m/s is no longer 
rotationally symmetric: Its inner part is pushed to the top while the outer ring is dragged to the bottom of the 
racetrack, in accordance with the opposite skyrmion Hall effects that originate in the opposite partial topological 
charges of the two skyrmionium parts.

Figure 4. Current-driven motion of skyrmioniums. (a) A skyrmionium in a racetrack is driven by SOT: applied 
current density jxΘSH = 0.6 MA/cm2, injected spins are oriented along −y. (b) The motion of a skyrmion is 
shown for comparison. In both cases the image is taken after 50 ns of propagation time. The orange curve 
shows the trajectory of the quasiparticles’ centers (starting point is indicated by 0 ns). The blue line indicates 
the motion direction under the skyrmion Hall angle, calculated from the Thiele equation (see text). (c) The 
results of a ‘writing-under-current’ simulation are shown after 35 ns propagation time in a racetrack with a 
doubled length. Due to the stronger current (jxΘSH = 2.0 MA/cm2) the skyrmioniums are slightly deformed. 
Skyrmioniums are written after 0 ns, 5 ns, 15 ns, 20 ns, 25 ns, and 35 ns. The last skyrmion is not yet fully relaxed. 
An animated version of the skyrmionium-sequence generation is accessible in the Supplementary Video 3. The 
scale bar corresponds to 100 nm.
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The maximal current density that can be applied to skyrmions and skyrmioniums is limited to around the 
same value. When the driving current is too large skyrmioniums self destruct because the forces pushing the two 
parts of the skyrmionium in opposite directions become too large26 (For an analysis of the current dependence of 
the skyrmionium velocity and stability see Supplementary Fig. S2). On the other hand skyrmions are annihilated 
at the edge. For skyrmioniums the steady state velocity can be increased up to around 140 m/s. Alternatively, 
skyrmioniums can also be driven by spin waves32,33.

electrical reading of skyrmioniums. Due to its distinct magnetization a skyrmionium can easily be 
detected by out-of-plane measurements. However, electrical in-plane measurement can be included in the race-
track geometry more easily. For this reason we consider detection of skyrmioniums via the Hall voltage as has 
been done experimentally for conventional skyrmions9.

When a small reading current I is applied along the track, the Hall resistivity is given by anomalous Hall 
and topological Hall contributions. The anomalous contribution is proportional to the net magnetization of the 
texture between the two detecting leads. For this reason every non-collinear magnetic texture is easily detected 
by the anomalous Hall effect. However, the signal is rather similar for different textures. Skyrmioniums cannot 
unambiguously be distinguished from skyrmions or even domain walls. This problem is resolved by the addi-
tional topological contribution to the Hall effect.

The topological Hall effect3,9,10,47–52 is a hallmark of the skyrmion phase: Traversing electrons are deflected 
into a transverse direction, since their spins (partially) align with the non-collinear texture and a Berry phase 
is accumulated. The topological charge density acts like a fictitious magnetic field, called an emergent field3. We 
show that even though a skyrmionium has a zero topological charge it exhibits a distinct topological Hall signal 
that allows for a failsafe detection of skyrmioniums as ‘1’ bits in comparison to other non-collinear textures that 
may appear as defects in imperfect racetracks.

We calculate the Hall resistance for skyrmioniums in a racetrack by means of the Landauer-Büttiker formal-
ism53,54, by analogy with refs10,52 where skyrmions have been considered (see Methods for details). To model the 
interaction of electrons with the magnetic texture we considered a tight-binding model, which features 
nearest-neighbor hopping (amplitude t; creation and annihilation operator †ci , ci) and a Hund’s coupling term 
(amplitude m, vector of Pauli matrices σ)

∑ ∑ σ= + ⋅ .† †mH t c c m c c( )
(4)i j

i j
i

i i i
,

Without the presence of skyrmioniums the Hamiltonian for the ferromagnet gives the energy bands E = 
2t[cos(kxa) + cos(kya)] ± m. Since skyrmions are detected most easily for low carrier concentrations10, we set 
the Fermi energy of the system close to the lower band edge, where the electrons behave like free electrons 
(EF = −8.5 t for m = 5 t).

Since NSk = 0 the topological Hall effect vanishes globally: The inner part of the skyrmion deflects electrons to 
the bottom, while the outer ring redirects electrons into the opposite direction. Fortunately, this spatial separation 
of the two opposing contributions leads to a non-zero signal in a local measurement (Fig. 5). The topological Hall 
resistance Rxy = (Uup − Udown)/I is determined by the difference in voltage U at the two leads normalized by the 
reading current.

Whenever a skyrmionium approaches the contacts, at first only electrons deflected by the outer ring are 
detected. Later, when the skyrmionium is right between the leads, the inner part dominates the electron deflec-
tion and the effective charge accumulation is reversed. Finally, upon leaving the vicinity of the contacts, only the 
outer ring contributes to the signal. This leads to a characteristic curve that is well approximated (orange) by the 
topological charge density between the leads for a skyrmionium at position x

∫ ∫∝ − ′ ′ ′ ′.
−

R x n x x y x y( ) ( , ) d d
(5)xy

y x

x
Sk

0

0

Figure 5. Electrical reading of skyrmioniums. The black curve shows the calculated transverse resistance signal 
when the skyrmionium sequence (top panel) passes the leads. In the presence of a skyrmionium between the 
leads (green background) a distinct pattern is found that exceeds two thresholds (dashed lines) three times. In 
good approximation the signal is proportional to the integrated topological charge density between the leads 
(orange). If no skyrmionium is present (red) the curve fluctuates around zero. Parameters: skyrmionium radius: 
40 sites, track width: 120 × 2000 sites, bit width: 240 sites, lead width: 29 sites, m/t = 5, EF = −8.5 t.
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Electrons that traverse the spin texture are deflected by the locally nonzero emergent field of the skyrmionium 
Bem ∝ nSkez to the leads (voltage Uup and Udown) of finite width ranging from x = −x0 to +x0. Note, that for x0 → ∞ 
the result of zero global resistivity is recovered, independent of the position of the skyrmionium.

Discussion
In this Paper we simulated the four fundamental constituents of a racetrack storage device utilizing magnetic 
skyrmioniums as carriers of information.

For the writing and deleting mechanism we proposed a new method that utilizes the optoelectrical control of 
localized spin currents and their polarizations. Based on previous experimental advances we designed a nanos-
tructured geometry enabling the writing or deleting of single skyrmionium bits, depending on the sign of the bias 
voltage. Since the writing process is ultrafast, skyrmioniums can be written while the driving current is applied 
even at the maximal velocity of the bits along the track of around 140 m/s (Fig. 4c). The reliability of this deter-
ministic method is emphasized by the result, that an excitation with the ‘wrong’ gate voltage cannot change an 
existing bit (see Supplementary Videos 4 and 5). In that case the spin current’s associated chirality is not suited to 
wind or unwind the present configuration, respectively. Furthermore, even when room temperature fluctuations 
(see Methods for details) are accounted for, the proposed manipulation technique still works (see Supplementary 
Fig. S3 and Videos 6 and 7) what makes the presented mechanism highly attractive over other proposals. Also, we 
checked the range of parameters characterizing the optoelectrical writing mechanism that allow for a controlled 
generation of skyrmioniums (cf. Supplementary Fig. S4).

We analyzed the motion of skyrmioniums under application of electrical currents in the Pt layer where a spin 
current is injected perpendicularly into the Co layer (SOT). Due to their vanishing topological charge, skyrmion-
iums move in the middle of the racetrack and reach a steady state of motion almost instantly.

Reading magnetic skyrmioniums is possible via measurements of the Hall voltage. A local drop in the net 
magnetization leads to the emergence of an anomalous Hall effect and the segregation of the two skyrmionic 
subsystems even allows for the detection of a topological contribution: While the outer ring deflects electrons into 
one transverse direction, the inner ring redirects electrons into the other direction. Since the detecting leads are 
of finite size, one observes an oscillating Hall signal when the skyrmionium moves through them allowing for a 
highly reliable reading process.

Compared to skyrmions the main advantages of utilizing skyrmioniums as bits of information are (a) the 
slightly higher velocity (effect increases for narrower racetracks), (b) the absence of an acceleration phase (vx 
is instantly proportional to jx; this effect is more prominent for a wider track), and (c) the skyrmionium moves 
always in the middle of the track. Advantages (b) and (c) are essential for an effective reading process, allow for 
changes in the moving direction and–combined with the ultrafast writing speed of the presented optoelectrical 
approach–allow for a convenient ‘writing-while-moving’ as well as ‘deleting-while-moving’ functionality of a 
skyrmionium racetrack (cf. Fig. 4c).

In conclusion, writing and reading of magnetic skyrmioniums in thin films can be exploited to allow for the 
operation of an efficient skyrmionium-based racetrack storage device. In contrast to other magnetic quasipar-
ticles, that are predicted to move without a skyrmion Hall effect, skyrmioniums have already been detected in 
experiments. Our proposals will expedite the development of a working data storage device based on magnetic 
quasiparticles.

Methods
Micromagnetic simulations. We use the GPU-accelerated micromagnetic software package Mumax355,56 
to solve the LLG equation with the SOT term for every magnetic moment mi of the discretized magnetization36,38,39

γ α γ β= − × + × + × × .
 
m m B m m m s m[( ) ] (6)i e i i i i e i i,eff

Here, γe = 1.760 × 1011T−1 s−1 is the gyromagnetic ratio of an electron. The in-plane torque coefficient is 
εβ = Θj
ed M2 z s

SH ; the out-of-plane torque parameter is set zero as it is small and does not drive the quasiparticles. The 
space- and time-dependent effective magnetic field

δ
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is derived from the system’s total free energy density F, given as the sum of exchange interaction, magnetocrys-
taline anisotropy, the demagnetization field, Zeeman energy, and DMI.

To generate skyrmioniums we use a modified photosensitive switch setup as shown in Fig. 1a, motivated by 
the experimental results from Yang et al.35. As discussed in the main text an optoelectrically induced spin current 
is superposed on the uniform spin current, which drives the skyrmioniums along the racetrack. For the simula-
tions we assumed a Gaussian envelope in time according to ref.35.

Additionally, for the room temperature simulations an effective thermal field is included as

η
αµ

γ
=

Δ Δ
B

k T
M V t
2

,
(8)

i

s
therm

0 B

where η is a random vector generated according to a standard normal distribution for each simulation cell and 
changed after every time step. kB is Boltzmann’s constant, T the temperature, ΔV the simulation cells’ size and Δt 
the time simulation’s step. The thermal fluctuations due to the room-temperature ambience lead to deformations 
of the skyrmionium structure, but the switching mechanism still works successfully.
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The system of Co/Pt is described by the following parameters4,26: saturation magnetization Ms = 0.58 MA/m, 
exchange stiffness A = 15 pJ/m, interfacial DMI D = 3.5 mJ/m2, uniaxial anisotropy in z-direction Kz = 0.8 MJ/m3, 
Gilbert damping parameter α = 0.3 and the spin Hall angle ΘSH = 0.4. We simulate a Co nanowire racetrack of 
width 150 nm and thickness dz = 1 nm, and discretize the magnetization in cubic cells of size 1 nm3.

We use these values for comparability with refs4,26, while noting that the DMI constant57 and the spin Hall 
angle58 are still under debate. For the here presented parameters a skyrmionium is stable for DMI strengths 
between 3.3 mJ/m2 and 3.7 mJ/m2 (cf. Supplementary Fig. S5). In this context we note, that the effective DMI con-
stant can be tuned, for instance as in a Pt/Co/Ir setup presented in ref.59 or by utilizing a different bilayer system, 
what is possible since our predictions are generally applicable and not limited to Co/Pt interfaces.

topological Hall effect calculations. To calculate the topological Hall resistivity we consider the 
tight-binding Hamiltonian (Eq. 4) on a finite square lattice that forms the racetrack, as in Fig. 5. We apply four 
leads to the track: to the left and right to inject a small reading current, i. e., Il = −Ir = I and Vl = −Vr, and up and 
down to detect the voltage due to the transverse deflection and accumulation of the electrons, i. e., Iu = Id = 0 and 
Vu and Vd. The transverse resistance follows directly from these voltages and currents, see text. To calculate the 
relationship between the currents and voltages we use a Landauer-Büttiker approach53,54, by analogy with refs10,52, 
where skyrmions have been investigated. For the calculations we use the transport simulation package Kwant60.

We solve the set of linear equations {m, n} = {l, r, u, d}

∑=I e
h

T V ,
(9)m

n
mn n

2

containing the transition matrix

= Γ Γ †T G GTr( ), (10)mn m mn n mn

for the current I and non-fixed voltages Vu and Vd. Here, the retarded Green’s function

∑= − − Σ −G E H( ) (11)i
1

and Γ = Σ − Σ†i( )i i i  enter (E energy, H tight-binding Hamiltonian). Σi is the self energy of the i th lead.
Analyzing the results for different geometric parameters we find that skyrmioniums need to have a minimal 

size so that the topological charge density is well resembled. The leads should not be too large (optimally below 
half the skyrmionium radius) since they integrate the locally distinct signal making it broader and ambiguous. 
The distance between two bits can be small but then their signals begin to overlap, hampering an unambiguous 
detection. A minimal distance is given by 2(r0 + x0), which is the width of the predicted signal (orange). In ‘0’ bit 
regions oscillations of the signal around zero are visible originating from backscattering of electrons from the 
racetrack edges. This unfavorable effect decreases for wider tracks.
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6.4 Antiferromagnetic skyrmion crystals and topological spin Hall effect

Theoretical prediction. At the present state of research antiferromagnetic skyrmions
are perhaps the most promising candidates for improved bits in racetrack storage de-
vices. These quasiparticles consist of two copies of conventional skyrmions with mutu-
ally reversed spins, living on separate layers [Fig. 29(a); initially proposed by Zhang et
al. [146] and Barker et al. [147]] or sublattices [Fig. 29(b); first introduced by Zhang et
al. [148]].

Current-driven motion without skyrmion Hall effect. The two subskyrmions constitut-
ing the antiferromagnetic skyrmion have opposite polarities resulting in a compensated
NSk = 0 for the here considered object. When an antiferromagnetic skyrmion is driven
by a current via spin torques, both subparticles will experience the same drag force but
opposite transverse forces (determined by their opposite topological charges NSk); cf.
Fig. 29(c). For this reason, the antiferromagnetic skyrmion will move perfectly in the
middle of the racetrack without skyrmion Hall effect. Since the two skyrmions are ‘in-
tertwined’ (and not spearated from each other like for the skyrmionium), much larger
current densities can be applied. Antiferromagnetic skyrmions are predicted to move
more than an order of magnitude faster compared to conventional skyrmions in the
conventional SOT geometry [149].

a b c

Current

Drag force A

Drag force B

Magnus 
A

Magnus 
B

NSk = +1

NSk = -1

Figure 29: Antiferromagnetic skyrmion. a shows the considered quasiparticle as bilayer
skyrmion, and b as two ‘intertwined’ skyrmions on individual sublattices. c
visualizes the compensation of the skyrmion Hall effect. For both sublattices
the drag forces (or dissipative forces) are oriented parallel while the trans-
verse forces (here often called Magnus forces) cancel due to the sign reversed
topological charges NSk. Consequently, an antiferromagnetic skyrmion will
move parallel to an applied current.

This publication. In the following publication “Antiferromagnetic skyrmion crystals:
Generation, topological Hall, and topological spin Hall effect” [BG7] we predict a new
state of matter: the antiferromagnetic skyrmion crystal. Up to this publication, only
individual antiferromagnetic skyrmions had been proposed.

The difficulty in producing these objects is that the vectorial quantity that character-
izes the generating mechanism has to be oriented oppositely for the two subskyrmions.
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This is especially difficult to fulfill since an externally applied magnetic field is nec-
essary for the formation of antiferromagnetic skyrmion crystals, as suggested by the
experiences with conventional skyrmion crystals. In fact, the field cannot change its
orientation on the length scale of the lattice constant, which would be necessary for
the stabilization of a pair of skyrmions living on two intertwined sublattices. For this
reason, we propose to mimic a staggered magnetic field by growing a potential antiferro-
magnetic skyrmion layer on top of a collinear antiferromagnet. This way, the exchange
interaction between the layers has the same mathematical expression as the required
Zeeman term. Monte Carlo simulations (cf. Sec. 3.1) have been performed to confirm
the idea numerically.

Antiferromagnetic skyrmion crystals have never been observed in an experiment and
even isolated antiferromagnetic skyrmions in a synthetic antiferromagnet had never
been seen at the moment of publication of the presented paper (they have been observed
just recently, see note added). Even if antiferromagnetic skyrmion crystals were present
in a material, a main challenge is to realize their existence. The topological charge
density and the magnetization density are both compensated on the length scale of
the lattice constant. This renders typical observation techniques like the Lorentz TEM
or a registration by the Hall signal suboptimal, especially for ‘real’ antiferromagnetic
skyrmions living in the same layer.

The second main claim of the following publication is the prediction of a topologi-
cally induced version of the spin Hall effect, complementary to Ref. [150]. Instead of a
transverse charge current, a (locally aligned) pure spin current arises. The explanation
is similar to the cancellation of the skyrmion Hall effect: two transverse charge currents
emerge, which are oriented oppositely and cancel. However, they are (locally) spin po-
larized oppositely as well, which is why they add up with respect to the spin degree
of freedom [cf. Fig. 4(b) of the following publication]. This hallmark of the antifer-
romagnetic skyrmion crystal phase may be utilized to detect these highly desired spin
textures in experiments. The topological version of the spin Hall effect was calculated
by analogy with Sec. 4.3.

Note added. Shortly before the submission of this thesis, antiferromagnetic skyrmions
have finally been observed by magnetic force microscopy (MFM) in Pt/Co/Ru multi-
layers [151]. The Ru acts as a bias layer that leads to an antiferromagnetic coupling
of the magnetic layers. For this reason, the system can be considered a synthetic an-
tiferromagnet. Due to the spatial separation of the magnetic layers, the dipolar fields
are not compensated and the object can be detected via real-space techniques. The fa-
vorable emergent electrodynamics remains to be observed. Our presented contribution
to this field may help to find also native antiferromagnetic skyrmions in an innately
antiferromagnetic material.

The following publication: Reprinted (whole article) with permission from (B. Göbel et al. Physical Review B 96,

060406(R) (2017); Ref. [BG7]; Antiferromagnetic skyrmion crystals: Generation, topological Hall, and topological spin

Hall effect). Copyright (2017) by the American Physical Society.
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Skyrmions are topologically nontrivial, magnetic quasiparticles that are characterized by a topological
charge. A regular array of skyrmions, a skyrmion crystal (SkX), features the topological Hall effect (THE)
of electrons, which, in turn, gives rise to the Hall effect of the skyrmions themselves. It is commonly believed that
antiferromagnetic skyrmion crystals (AFM-SkXs) lack both effects. In this Rapid Communication, we present
a generally applicable method to create stable AFM-SkXs by growing a two-sublattice SkX onto a collinear
antiferromagnet. As an example we show that both types of skyrmion crystals, conventional and antiferromagnetic,
exist in honeycomb lattices. While AFM-SkXs with equivalent lattice sites do not show a THE, they exhibit a
topological spin Hall effect. On top of this, AFM-SkXs on inequivalent sublattices exhibit a nonzero THE, which
may be utilized in spintronics devices. Our theoretical findings call for experimental realization.

DOI: 10.1103/PhysRevB.96.060406

Introduction. Skyrmions [1–5] are small magnetic quasi-
particles, which are usually caused by the Dzyaloshinskii-
Moriya interaction [6,7], but they have been produced by
other mechanisms [8], like frustrated exchange interactions
[9], as well. While single skyrmions are envisioned to be
used as “bits” in data storage devices [10–19], which provide
durability of data due to topological protection [8], skyrmion
crystals (SkXs), regular arrays of skyrmions, are best known
for exhibiting the topological Hall effect (THE) of electrons
[20–29], which, in turn, gives rise to the skyrmion Hall effect
(SkHE; also present in isolated skyrmions) [8,30–32].

From the perspective of applications in data storage
devices, the SkHE is undesirable. Thus, the concept of
antiferromagnetic (AFM) skyrmions has been developed
[33–36]: skyrmions on two sublattices in which the spins
on one sublattice are reversed. As a result, both THE and
SkHE vanish [33]. Because no periodic antiferromagnetic
skyrmion crystal (AFM-SkX) is known yet, surrogate systems
consisting of two skyrmion layers with opposite winding have
been investigated [37,38].

In this Rapid Communication, we predict the generation of
stable AFM-SkXs by coupling a bipartite skyrmion material to
a collinear antiferromagnetic layer [Fig. 1(b)]. The interlayer
interaction acts as a staggered magnetic field, which flips
the spins of the SkX on one sublattice. The approach is
generally applicable, as it can turn every established phase
of conventional SkXs into an AFM-SkX phase, irrespective of
the skyrmion-generating mechanism. As an example, we apply
the method to frustrated spins on a honeycomb lattice, i.e., two
triangular sublattices that exhibit SkXs via frustrated exchange
interactions (cf. Ref. [9]).

If both sublattices of the AFM-SkX are equivalent, there
is no THE. However, we find a topological spin Hall effect
(TSHE). Since the TSHE arises in a single two-dimensional
layer, it is clearly distinguished from that in the surrogate sys-
tem discussed in Refs. [37,38]. For inequivalent sublattices the
THE becomes also nonzero, which may become considerable

*bgoebel@mpi-halle.mpg.de

for applications once the predicted existence of AFM-SkXs
has been realized experimentally.

Generation of AFM skyrmion crystals. First, we present
our approach to create a stable AFM-SkX starting from a
known SkX phase. We take two copies of that two-dimensional
system and couple them to a collinear antiferromagnet. This
inverts the spins of one sublattice and yields a stable AFM-
SkX with the parameters of the initial SkX. This approach
is generally applicable, as it does not depend on the SkX-
generating mechanism.

As an example we take a honeycomb lattice featuring
two triangular sublattices, A and B, which both exhibit a
SkX generated by frustrated exchange interactions [9]. The
sublattice skyrmions are stabilized by an external magnetic

FIG. 1. (a) Skyrmion and (b) antiferromagnetic skyrmion crystal
on a honeycomb lattice. The spins at each site are represented by
arrows. The lower hexagon represents (a) a ferromagnet and (b) a
collinear antiferromagnet, on which the (antiferromagnetic) skyrmion
layer has been deposited. Gray lines, forming the honeycomb lattice,
represent exchange interactions with constant J AB

1 ; see text. White
thin lines visualize the exchange coupling within a sublattice (among
second-nearest sites) J1.

2469-9950/2017/96(6)/060406(5) 060406-1 ©2017 American Physical Society
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FIG. 2. Antiferromagnetic skyrmion crystals on a honeycomb lattice of size λ = 4.5a [see (b); a lattice constant] characterized by vorticity
v and helicity γ (azimuth of a spin � = vφ + γ , where φ is the azimuth of the position vector with respect to the skyrmions center). Blue (red)
circles denote a positive (negative) z component of the spins, whereas arrows represent their in-plane components (modulus and direction). (a)
Crystal of antiskyrmions (v = −1; γ ≈ −π/3). (b) Crystal of antiferromagnetic Néel-type skyrmions (sublattice skyrmions v = +1; γ ≈ π

2 ±
π

2 ). (c) Crystal of antiferromagnetic Bloch-type skyrmions (sublattice skyrmions v = +1; γ ≈ π ± π

2 ). Parameters: J1 = 1.63042J ; J3 = −J ,
and kBT = 2.5J ; for (a) J AB

1 = +0.05J and BA = +BB = 0.9J , while for (b) and (c) J AB
1 = −0.05J and BA = −BB = 0.9J . This staggered

magnetic field corresponds to a coupling to a collinear antiferromagnet with strength 0.9J . Cluster size: 36 × 36 sites per sublattice. (d)
Realistic antiferromagnetic antiskyrmion crystal. Parameters: J1 = 0.42J ; J3 = −0.665J ; J AB

1 = −1.751J on a 32 × 32 cluster; T and B are
as in (b) and (c). The size of the antiferromagnetic skyrmions is reduced (λ = 4a).

field and by thermal fluctuations; they can be understood as
the superposition of three energetically degenerate spin spirals;
one of them forms the ground state for zero temperature and
no magnetic field. To make the sublattice SkXs match we
add a weak intersublattice coupling (results for a realistic
intersublattice coupling are shown thereafter).

The system is described by the Hamiltonian [9]

HMC = −1

2

∑
i,j

Jij si · sj −
∑

i

sz
i Bi, (1)

in which Jij are Heisenberg exchange constants (i and j

site indices). We take into account nearest-neighbor (J1) and
third-nearest-neighbor (J3) exchange within each sublattice
and add intersublattice coupling J AB

1 . The Zeeman term
provides coupling to the external magnetic field Bi along the
z direction. All energies are given in units of a global constant
J . The magnetic configuration {si} is computed by classical
Monte Carlo simulations (si spin of unit length).

As a prerequisite, a weak intersublattice coupling J AB
1 �

J (see caption of Fig. 1) ensures that the skyrmion-center
locations of A and B adjust to each other. In this way the
lattice constant of the SkX and the magnetic phase diagram
remain almost unchanged (with respect to the uncoupled SkXs
[9]). An exemplary result for a conventional SkX is shown in
Fig. 2(a).

To create an AFM-SkX the spins of one sublattice have
to be reversed, which would require an unrealistic staggered
magnetic field BA = −BB. Instead, we mimic it by placing the
skyrmion lattice on a collinear antiferromagnet with strong
out-of-plane uniaxial anisotropy [Fig. 1(b)]. For matching
sublattices the intersublattice coupling J AB

1 has to be chosen
to be negative. The resulting AFM-SkXs on top of an
antiferromagnet [Fig. 1(b)] have the same energy and exhibit
the same geometry [compare Fig. 2(a) with Figs. 2(b) and 2(c)]
as the SkXs [Fig. 1(a)].

Special properties of the SkXs attributed to frustration
survive our approach: helicity (i.e., Néel- or Bloch-type
skyrmions), winding (i.e., skyrmions or antiskyrmions with

topological charge ∓1), and skyrmion-center locations are not
fixed for both SkXs and AFM-SkXs (Fig. 2).

In real materials the sublattices A and B are strongly
coupled; J AB

1 � 0. Nevertheless, our simulations show that
AFM-SkXs can still be stabilized [Fig. 2(d)], but the lattice
constant, stabilizing field, and temperature of the initial
sublattice skyrmions cannot be carried over to the resulting
AFM-SkX.

In summary, AFM-SkXs can be produced by coupling a
two-sublattice SkX to an antiferromagnetic layer [Fig. 1(b)].
This approach is valid irrespective of the physical mechanism
that stabilizes the SkX (frustration [9], Dzyaloshinskii-Moriya
interaction [39], or anisotropy [40]). The novel AFM-SkX state
motivates us to calculate the THE and TSHE.

Electron transport in (AFM) skyrmion crystals. In a tight-
binding model the interaction of electrons with an (AFM)
skyrmion texture {si} is described by the Hamiltonian [29]

H =
∑
ij

tij c
†
i cj + m

∑
i

si · (c†i σci), (2)

where c
†
i and ci creation and annihilation operators, respec-

tively, and σ is the vector of Pauli matrices. The hopping from
site i to site j is quantified by tij , and the coupling to the
skyrmion texture is quantified by m.

The transverse charge conductivity σxy at the Fermi energy
EF is calculated from the Kubo formula [41]

σxy(EF) = e2

h

1

2π

∑
n

∫
BZ

�(z)
n (k) f (Enk − EF) d2k, (3)

where BZ indicates the Brillouin zone and k is the wave
vector. The sum runs over all bands n. f (E) is the Fermi
distribution function at temperature T ; e, h, and kB denote
the electron charge, the Planck constant, and the Boltzmann
constant, respectively. The Berry curvature (a general version
which also describes spin transport),

�n(k) = i
∑
m�=n

〈unk|∇kMHk|umk〉 × 〈umk|∇kHk|unk〉
(Enk − Emk)2

,

060406-2



RAPID COMMUNICATIONS

ANTIFERROMAGNETIC SKYRMION CRYSTALS: . . . PHYSICAL REVIEW B 96, 060406(R) (2017)

is determined from the eigenvectors unk with eigenenergies
Enk of the k-dependent Hamiltonian Hk [42]. For the topologi-
cal Hall conductivity σxy in skyrmion textures, the (2 n) × (2 n)
matrix M is a unit matrix. If EF lies within the band gap
above the nth band, σxy is proportional to the winding number
[43,44], wn = ∑

m�n Cm, which is the accumulation of the
integer Chern numbers Cm = 1

2π

∫
BZ �(z)

m (k) d2k.
For the spin conductivity, M = diag(s1 · σ , . . . ,sn · σ )

accounts for the alignment of the electron spin with the
skyrmion texture. Additionally, Eq. (3) has to be multiplied
by h̄/(2e) to reflect spin instead of charge transport. For the
spin conductivity in AFM-SkXs the signs of the entries are
reversed for the sublattice with negative net magnetization
since a locally parallel aligned spin means spin up or down in
the respective sublattice.

In the following, we utilize skyrmion textures on the
honeycomb lattice that enter Eq. (2) by superposing three
spin spirals, as in Ref. [9] [Fig. 1(a)]. An AFM-SkX is then
constructed by reversing the spins in one of the sublattices
[Fig. 1(b)]. These textures are idealized versions of those
generated from HMC (Fig. 2).

Topological Hall effects in skyrmion crystals. For the THE
in a SkX [Fig. 1(a)], we consider two generic cases: (i) nearest-
neighbor hopping strength t1 = t and second-nearest neighbor
hopping strength t2 = 0 and (ii) t1 = 0 and t2 = t (compare
the insets in Fig. 3).

For large coupling m to the skyrmion texture (m = 5t

in Fig. 3), the band structure is energetically split into two
blocks (rigidly shifted by ±m). In each of the blocks, the
electron spin is aligned parallel (lower block) or antiparallel
(upper block) to the texture. As a result, the respective

FIG. 3. Topological Hall conductivities in skyrmion crystals
[black: charge conductivity (SkX); orange: spin conductivity (SkXS)]
and in antiferromagnetic skyrmion crystals [red: charge conductivity
(AFM-SkX); blue: spin conductivity (AFM-SkXS)] with 72 sites in
the unit cell. The tight-binding parameters read (a) t1 = t ; t2 = 0
[case (i)] and (b) t1 = 0; t2 = t [case (ii)]; the coupling to the
skyrmion texture equals m = 5t . The hopping strengths are sketched
in the insets. Conductivities are quantized in units of σ0 = e2/h

(charge) and σ0 = e/(4π ) (spin) (see Refs. [26,27]).

energy-dependent transverse conductivities have opposite sign
and exhibit (almost) identical shapes [26].

The above qualitative picture is nicely reproduced by the
computed THE of case (i) [black line in Fig. 3(a); cf. Ref. [27]].
Within each block, the conductivity curve is antisymmetric
because the sublattices are equivalent. The bands of the lower
(upper) block carry Chern number −1 (+1), except for bands
close to a van Hove singularity of the zero-field band structure
(at ±m ± t), as is explained in Refs. [26,27] (at the associated
energies the Fermi lines change their character from electron
to hole pockets). The latter bands compensate the accumulated
large Chern numbers of all other bands in their block and bring
about a sign change in σxy .

For case (ii) (two uncoupled triangular sublattices [26]),
we find the separation into two blocks as well. Every band
is almost degenerate [minimal splitting due to E(k) �= E(−k)
for bands of both sublattices; see Fig. S2 in the Supplemental
Material [45]]. Thus, the conductivity shows steps in units of
2e2/h [Fig. 3(b)], which is twice as large as in case (i).

The alignment of the spins (parallel or antiparallel) with the
skyrmion texture results in a transverse spin-polarized current
[46]. The magnitude of the spin conductivity corresponds to
the charge conductivity (in the block-separated case for large
coupling m). Spin and charge current are inseparable.

Topological spin Hall effect in AFM skyrmion crystals. We
proceed with the generic cases for the AFM-SkXs [Fig. 1(b)].
Case (i) exhibits no considerable transverse transport because
the emergent field fluctuates around zero, yielding zero net
field. In case (ii) the topological Hall conductivity is zero as
well; this is explained by the two sublattices having opposite
emergent fields. However, we find a topological spin Hall
effect.

The bands of case (ii) are twofold degenerate because
the sublattices are equivalent [EA(k) = EB(k)]. The spin is
aligned parallel (lower block) or antiparallel (upper block) to
the texture of the respective sublattice. Since the sublattices
are decoupled (t1 = 0), the electrons are localized exclusively
in either sublattice. This causes a spin-up current (from
the sublattice with positive net magnetization) and a spin-
down current (from the other sublattice, with negative net
magnetization). Hence, a TSHE occurs which is identical to the
(spin-polarized) THE in the SkX [Figs. 4(b) and 4(c); compare
the blue and orange lines in Fig. 3(b)]. For the AFM-SkX we
find a pure spin current; the THE is zero.

In each of the bulk-band gaps the number of right-
propagating edge states is identical to that of left-propagating
ones [Fig. 4(a)]: there is no charge transport, i.e., no THE.
Since the edge states “live” on different sublattices, they
carry opposite spin because their spins are aligned with
the associated sublattice texture. The emergent fields of the
individual sublattices have opposite signs; thus, they deflect
electrons of opposite spin into opposite directions [Fig. 4(b)].
The result is a TSHE. Recall that in a SkX the identical
emergent fields of the sublattices deflect electrons of the
same spin in the same direction [Fig. 4(c)]; hence, the
spin conductivities for AFM-SkX and SkX are identical,
but in the AFM-SkX there is no effective transverse charge
current.

For intermediate and more general cases, i.e., t1 �= 0 and
t2 �= 0, the results lie between cases (i) and (ii) (see Fig. S1 in
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FIG. 4. Topological spin Hall effect in an antiferromagnetic
skyrmion crystal of generic case (ii) with 32 sites in the unit cell. (a)
Electronic structure at the edge of the semi-infinite sample computed
by Green’s function renormalization [47,48]. Black: bulk states,
orange: edge states. (b) Deflection of electrons with opposite spins
(blue and red arrows) in an AFM-SkX (schematic). (c) Deflection of
electrons with equal spins in a SkX.

the Supplemental Material [49]). The TSHE in an AFM-SkX
is nonzero as long as t2 > 0. The THE is zero in any case.

Summarizing, one finds a THE of spin-polarized electrons
in SkXs [Fig. 1(a)] and a TSHE in AFM-SkXs [Fig. 1(b)],
which are, the analogs to Hall and spin Hall physics in a single
two-dimensional layer, as distinguished from the surrogate
multilayer system of Refs. [37,38].

Topological Hall effect in asymmetric AFM skyrmion
crystals. Having discussed generic cases, we proceed with
sublattice-asymmetric AFM-SkXs (e.g., in crystals consisting
of two different elements), which is modeled by setting
tA
2 �= tB

2 and by differing on-site energies, δε = εA − εB �= 0.
The topological Hall conductivity exhibits the band-block
separation [Figs. 5(a) and 5(b)] and is nonzero in any case.

To clarify these findings we consider the tight-binding
Hamiltonian (2) without spin texture (m = 0), with parameters
as in Fig. 5(b) (uncoupled sublattices). The density of states
(DOS) of the resulting two bands (one band per sublattice)
is shown in Fig. 5(c). Comparing SkX and AFM-SkX, the
sublattice skyrmions on sublattice A (green curve) have
the same winding, while for sublattice B (blue) they have
opposite winding. Therefore, in regions in which the two
zero-field bands (green and blue) do not overlap in energy, the
topological Hall conductivities of a SkX and an AFM-SkX are
identical.

The contribution of the narrow band (blue) has to be
subtracted (added) from (to) the conductivity corresponding
to the green band for the AFM-SkX (SkX) because of the
opposite (identical) winding of the sublattice skyrmion (see
Ref. [27]).

FIG. 5. Topological Hall conductivity (SkX: black; asymmetric
AFM-SkX: red; in units of σ0 = e2/h). (a) Conductivity σxy versus
energy for differing on-site energies and second-nearest-neighbor
strengths: t1 = 0.75t ; tA

2 = 0.2t �= tB
2 = t ; δε = 2t . (b) Same as (a)

but with δε = 0 and t1 = 0. The coupling to the skyrmion texture is
m = 5t in all cases. (c) DOS of the zero-field band structure for the
parameters of (b).

For nonzero t1 and δε [Fig. 5(a)] a sublattice separation of
the bands is no longer given, but the conductivity does not
change qualitatively. It is even possible that the topological
Hall conductivity of an AFM-SkX exceeds that of a SkX (see
Fig. S3 in the Supplemental Material [50]).

Conclusion. In this Rapid Communication, we predicted
the generation of stable antiferromagnetic skyrmion crystals.
These systems can, in principle, be realized on any bipartite lat-
tice, provided the individual sublattices exhibit a conventional
skyrmion crystal (irrespective of the generating mechanism),
by growing it on a collinear antiferromagnet [Fig. 1(b)].

For equivalent sublattices, there is no topological Hall effect
but a topological spin Hall effect. Furthermore, asymmetric
antiferromagnetic skyrmion crystals (i.e., with inequivalent
sublattices) exhibit a topological Hall effect. These findings are
valid also for metastable single antiferromagnetic skyrmions
(see Refs. [33–35]). Very recently, ferrimagnetic skyrmions
have been found in GdFeCo films [51]. The magnetic moments
of the two sublattices are inequivalent, and a topological Hall
effect is measurable, which corroborates our analysis.

Besides the potential of stable AFM-SkXs for applications,
the Hamiltonian HMC of Eq. (1) motivates further theoretical
investigations. An example is transport via magnons, studied
in stable magnetic configurations. One may compare the
topological magnon Hall effects in skyrmion crystals [52] with
that in antiferromagnetic skyrmion crystals.

Acknowledgment. This work is supported by Priority
Program SPP 1666 of Deutsche Forschungsgemeinschaft
(DFG).

[1] T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
[2] A. Bogdanov and D. Yablonskii, Zh. Eksp. Teor. Fiz. 95, 182

(1989).

[3] A. Bogdanov and A. Hubert, J. Magn. Magn. Mater. 138, 255
(1994).

060406-4



RAPID COMMUNICATIONS

ANTIFERROMAGNETIC SKYRMION CRYSTALS: . . . PHYSICAL REVIEW B 96, 060406(R) (2017)

[4] U. Rößler, A. Bogdanov, and C. Pfleiderer, Nature (London)
442, 797 (2006).

[5] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A.
Neubauer, R. Georgii, and P. Böni, Science 323, 915 (2009).

[6] I. Dzyaloshinsky, J. Phys. Chem. Sol. 4, 241 (1958).
[7] T. Moriya, Phys. Rev. 120, 91 (1960).
[8] N. Nagaosa and Y. Tokura, Nat. Nanotechnol. 8, 899 (2013).
[9] T. Okubo, S. Chung, and H. Kawamura, Phys. Rev. Lett. 108,

017206 (2012).
[10] A. Fert, V. Cros, and J. Sampaio, Nat. Nanotechnol. 8, 152

(2013).
[11] R. Wiesendanger, Nat. Rev. Mater. 1, 16044 (2016).
[12] N. Romming, C. Hanneken, M. Menzel, J. E. Bickel, B. Wolter,

K. von Bergmann, A. Kubetzka, and R. Wiesendanger, Science
341, 636 (2013).

[13] P.-J. Hsu, A. Kubetzka, A. Finco, N. Romming, K. von
Bergmann, and R. Wiesendanger, Nat. Nanotechnol. 12, 123
(2017).

[14] X. Zhang, M. Ezawa, and Y. Zhou, Sci. Rep. 5, 9400 (2015).
[15] X. Zhang, Y. Zhou, M. Ezawa, G. Zhao, and W. Zhao, Sci. Rep.

5, 11369 (2015).
[16] W. Jiang, P. Upadhyaya, W. Zhang, G. Yu, M. B. Jungfleisch,

F. Y. Fradin, J. E. Pearson, Y. Tserkovnyak, K. L. Wang, O.
Heinonen et al., Science 349, 283 (2015).

[17] O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves,
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7 Conclusion and perspectives

In this thesis the stabilization and the emergent electrodynamics of topologically non-
trivial spin textures have been investigated. A major part was attributed to magnetic
skyrmions. The formation of these small magnetic whirls as well as periodic lattices of
skyrmions, stabilized by different mechanisms, has been simulated by means of Monte
Carlo, atomistic and micromagnetic simulations. For periodic lattices, the topological
Hall effect and the magnetoelectric effect have been analyzed using a Berry theory ap-
proach. For individual skyrmions, a Landauer-Büttiker approach was utilized. In both
cases a transverse deflection of electrons has been observed. Furthermore, the current-
driven motion of skyrmions has been simulated using a micromagnetic approach and
analyzed using an effective equation of motion. Another major part of this thesis was
concerned with alternative quasiparticles that can be understood as the combination
of two subparticles (skyrmions or merons): biskyrmions, bimerons, skyrmioniums and
antiferromagnetic skyrmions have been stabilized and their emergent electrodynamic
effects have been compared to those of skyrmions.

Achievements. In the introduction four goals have been formulated. In the following,
the main findings, presented in this thesis, are listed:

1. Established new ways to suppress the skyrmion Hall effect and to accelerate the
current-driven motion of skyrmions in racetrack devices

• A new method to completely suppress the skyrmion Hall effect was proposed
and simulated in publication [BG1]. Considering low-symmetric heavy metal
materials as the generator of a spin-orbit torque, the injected spin polarization
orientation can be manipulated. By suppressing the skyrmion Hall effect, the
maximum velocity of skyrmions could be increased by one order of magni-
tude compared to the conventional racetrack geometry.

2. Gained a profound understanding of the topological Hall effect that goes beyond
relating the measured signal with the skyrmion density

• In agreement with Ref. [131] it was established that the Berry theory can
be utilized to quantify the topological Hall effect of electrons in skyrmion
crystals (by analogy with the description of the quantized Hall effect). As
a new result, in publication [BG2] it was presented that the topological Hall
effect strongly depends on the details of the band structure. In particular, the
transverse conductivity can change its sign.

• In the non-adiabatic limit, the emerging current is not fully spin polarized
anymore. This leads to a decoupled occurrence of a topological (charge) Hall
effect and a topological spin Hall effect (presented in the not explicitly in-
cluded publication [BG9]).

3. Established new hallmarks of magnetic skyrmions accessible in experiments

• The discussion of the orbital magnetization in skyrmion crystals in Ref. [112]
was generalized in publication [BG3] and its energy dependence was investi-
gated. This quantity can be used to detect skyrmions and to distinguish them
from antiskyrmions by their topological charge.
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• A geometrically induced magnetoelectric effect in skyrmion crystals was pre-
dicted in publication [BG3]. This quantity can be utilized to detect skyrmions
and to determine the skyrmions’ helicity. For metallic skyrmion hosts, an
intrinsic version of the Edelstein effect was proposed.

4. Predicted alternative non-collinear spin textures and compared their emergent
electrodynamic effects to those of skyrmions

• Individual magnetic biskyrmions have been stabilized in centrosymmetric
materials in publication [BG4]. These objects can be understood as two par-
tially overlapping skyrmions with reversed in-plane magnetizations. The
dipole-dipole interaction has been found to be the stabilizing mechanism.

• The prediction of magnetic bimerons (‘in-plane rotated’ skyrmions) [140] has
been generalized in publication [BG5]. As new states of matter, individual
bimerons have been predicted and a stabilizing DMI has been proposed. Fur-
thermore, a purely topological Hall effect as well as the possibility to consider
new geometries to drive these magnetic quasiparticles by spin torques have
been predicted.

• For the magnetic skyrmionium (a skyrmion within another skyrmion with
mutually reversed spins) a racetrack storage device has been fully simulated
in publication [BG6], including the creation, deletion, motion and detection
processes of the bits. As new findings, a locally occurring topological Hall
effect and an optoelectrical writing mechanism have been predicted.

• As a new state of matter, the antiferromagnetic skyrmion crystal has been pre-
dicted in publication [BG7]. It consists of two conventional skyrmion crystals
with mutually reversed spins existing on two separate sublattices. In agree-
ment with Ref. [150], the topological version of a pure spin Hall effect has
been established as the hallmark of this state of matter.

Techniques. Summarizing the results of this PhD thesis, several new topologically non-
trivial spin textures and emergent electrodynamic effects have been predicted and a
deeper understanding of existing phenomena has been established. In the process I
have on one hand considered analytical models (e. g. the Thiele equation) and on the
other hand used and developed computer codes for the simulations. Less demanding
calculations have been conducted using Wolfram’s Mathematica. For the more demand-
ing calculations I have adapted the Monte Carlo code (fortran90) of our group [74] to
the considered systems and implemented the computation of Hall conductivity, spin
Hall conductivity, orbital magnetization and magnetoelectric polarizability in the tight-
binding code (fortran90) of the group [116]. For the Landauer-Büttiker simulations I
used the open-source code Kwant [145] (python) and for the micromagnetic simulations
I used and modified the GPU-accelerated environment mumax3 [43, 44] (nvidia’s lan-
guage cuda and google’s language go).

Outlook. In the publication section 6 several skyrmion-related magnetic quasiparticles
have been introduced. For future projects it seems promising to investigate more alter-
native spin textures and to systematically characterize them. Antiskyrmions [41] and
higher-order skyrmions [32, 152] for example are not rotational symmetric. This may
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lead to an anisotropic current-driven motion. Also, more complicated combinations
of two skyrmions like ferrimagnetic skyrmions [51, 153], antiferromagnetic skyrmion-
iums [154, 155], and antiferromagnetic bimerons [156] have been discussed in the lit-
erature and are worth a further investigation. Up to now, the main focus of research
was attributed to quasi two-dimensional spin textures but non-trivial continuations
of skyrmions like chiral bobbers [157, 158], hopfions [159, 160] or three-dimensional
monopole crystals [161, 162] govern interesting electrodynamic effects as well.

Furthermore, we have recently shown in an experimental collaboration [BG13] that
typical antiskyrmion hosts can stabilize also skyrmions by dipole-dipole interactions.
This finding suggests spintronic devices based on switching between these topologically
distinct objects.

Concerning an imminent technological realization of a racetrack storage device, it is
perhaps most convenient to rely on conventional skyrmions since they are best under-
stood experimentally. As explained, the Thiele equation allows to understand different
possibilities to suppress the skyrmion Hall effect for these particles. The last possibility
which remains to be investigated is to manipulate the confining potential of the race-
track. Here, different predictions exist, like the addition of a high-anisotropy material
at the racetrack’s edges [163] or by utilizing repulsive or attractive defect atoms [164].
In this way, the skyrmion Hall effect is not suppressed but its disadvantage on the ap-
plicability is diminished; room for improvement is still available. A combination of the
different proposed concepts to suppress the skyrmion Hall effect may be the expedient
solution in the end, which eventually allows to realize an operating skyrmion racetrack
storage device in the real world. The discovery of skyrmioniums [144] and, very re-
cently, also antiferromagnetic skyrmions in synthetic antiferromagnets [151] motivates
to pursue this avenue as well, exploiting the favorable emergent electrodynamics of
these objects.

In terms of driving non-collinear spin textures, one is not limited to applying electric
currents or spin currents. It has for example been shown that skyrmions can be driven
by a temperature gradient [165], by an anisotropy gradient [166], or by spin waves [58].
In publication [BG11] we have established the opposite effect: the topological version of
a magnon Hall effect. Just like for electrons in a skyrmion crystal, also magnons expe-
rience a transverse deflection due to the non-trivial real-space topology of skyrmions.
In fact, there exists an analogy between electrons and magnons, as we have shown in
publication [BG12], which allows to understand the emergence of this effect quite ele-
gantly. A further investigation of magnon-mediated effects in non-collinear spin textures
seems to be worthwhile in the future. Another aspect is to take also the lattice degree
of freedom into account and to investigate how phonons affect the presented emergent
electrodynamics.

Lastly, it is worth mentioning, that the introduced mathematical concepts for comput-
ing the Hall effect, magnetoelectric effect and orbital magnetization are not limited to
systems with non-collinear spin textures. The presented approach is applicable even for
non-magnetic systems: In the experimental collaboration [BG10] we have calculated the
extrinsic Edelstein effect (which is formulated by analogy with the magnetoelectric ef-
fect in metals) for the two-dimensional electron gas at the interface of SrTiO3 and AlOx
after fitting a tight-binding model to the band structure determined by ARPES mea-
surements. This mapping allowed to explain the origin of a measured enormous spin to
charge conversion efficiency – highly relevant for future spintronic devices.
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Appendix

A Derivation of the Hall conductivity by the Boltzmann
equation

The following derivation is oriented at Refs. [74, 167, 168].
All physical systems in the following are two-dimensional, which is why the fol-

lowing derivation of the Hall conductivity considers the charge current density in two
dimensions

j =
q

(2π)2 ∑
n

∫
BZ

ṙ f d2k.

The distribution function f is decomposed into the local equilibrium function f 0(r, k, t)
and its deviation in linear response δ f (r, k, t)

f = f 0 + δ f .

Also, the definition of the group velocity v = h̄−1 ∂En(k)
∂k and k̇ = q/h̄E under B = 0 are

used to arrive at

j =
q

(2π)2 ∑
n

∫
BZ

(
v− q

h̄
E×Ωn(k)

)
( f 0 + δ f )d2k.

Now it is assumed that δ f is proportional to the electron scattering with other parti-
cles, quasiparticles or impurities (called collision integral)

δ f (r, k, t) = −τ(k)
∂ f (r, k, t)

∂t

∣∣∣∣∣
collision

.

The proportionality factor is the relaxation time τ(k). The collision integral is estimated
by the Boltzmann equation [168] for a stationary and homogeneous distribution function

∂ f (r, k, t)
∂t

∣∣∣∣∣
collision

= k̇ · ∂ f (k)
∂k

.

Combining the two above equations and using k̇ = q/h̄E under B = 0 [cf. Eq. (4.24)]
gives

δ f = −qτ
E
h̄
· ∂ f (k)

∂k
.

The derivative of the distribution function can be expressed as an energy derivative

∂ f (k)
∂k

=
∂En(k)

∂k
∂ f
∂E

= h̄v
∂ f
∂E

.

In linear response theory, the derivative of the equilibrium distribution function f 0 is
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used instead of the actual equilibrium distribution function. This simplifies the current
density to

j =
1

(2π)2 ∑
n

∫
BZ

(
v− q

h̄
E×Ωn(k)

)(
f 0 − qτE · v ∂ f (k)

∂E

)
d2k.

For small fields the term proportional E2 can be dropped; the integral over v f 0 gives
zero, leading to

j = − 1
(2π)2 ∑

n

∫
BZ

[
v
(

qτE · v ∂ f (k)
∂E

)
+

q
h̄

E×Ωn(k) f 0
]

d2k.

Considering the currents applied along x with Ωn(k) = Ωz
n(k)ez gives

jx = − 1
(2π)2 ∑

n

∫
BZ

[
vx

(
qτE · v ∂ f (k)

∂E

)
+

q
h̄

EyΩn(k) f 0
]

d2k.

Note, that due to periodicity of the Brillouin zone
∫

BZ vxvy dkxdky = 0. Therefore, the
longitudinal and transverse conductivity can be identified as

σxx = −e2 1
2π

2

∑
n

∫
BZ

vn,x(k)2τn(k)
∂ f 0

∂E

∣∣∣∣∣
E=En(k)

d2k,

σxy = − e2

h
1

2π ∑
n

∫
BZ

Ωz
n(k) f 0(En(k)− EF)d2k.
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B Appendix: Landauer-Büttiker formalism

The Landauer-Büttiker formalism is an alternative method for calculating the electronic
transport properties. Instead of considering a perfectly periodic bulk system for which
statements about the edges of the sample can only be made indirectly via the topological
invariants, the Landauer-Büttiker approach considers a finite sample directly. For this
reason, it allows to determine local properties, e. g., a charge or spin accumulation or
the propagation of edge states in real space. It can therefore be used to simulate the
local detection of non-collinear spin textures at a certain position in a racetrack as has
been shown in publication [BG6]. Furthermore, it allows to calculate also longitudinal
transport properties.

In the following, the approach is introduced on a level that allows to use and under-
stand the software package Kwant [145], which has been used in publication [BG6]. This
python-based package undertakes the calculation of the transition matrix, which is the
numerically most demanding part. The derivation follows Refs. [126, 169, 170].

The general idea of the Landauer-Büttiker approach is to consider a finite sample and
to attach semi-infinite terminals (index i) to model flowing currents Ii and accumulated
charges or voltages Ui. For a system with multiple terminals, a set of linear equations
has to be solved

Im =
e2

h ∑
n

TmnUn.

The calculation of the transition matrix T is the most demanding part as it depends on
the tight-binding Hamiltonian H, the energy E and the self energies of the leads Σi. It
is calculated from the retarded Green’s function G; a short excursion is appropriate.

In a single-particle picture, the Green’s function Ĝ is defined as the solution of

[E− Ĥ(r)]Ĝ(r, r′, E) = δ(r− r′),

written here in position space; Ĥ is the Hamiltonian of the full system. Simply inverting
(E− Ĥ) is not well defined when the energy is equal to an eigenenergy of the system.
For this reason, a small imaginary energy is added, giving the retarded Green’s function

G(r, r′, E) = lim
δ→0+

Ĝ(r, r′, E + iδ),

satisfying

[E + iδ− Ĥ(r)]G(r, r′, E) = δ(r− r′).

The general solution for the retarded Green’s is therefore

G = lim
δ→0+

(E + iδ− Ĥ)−1.

This expression is still inconvenient for a calculation in the present system: one contri-
bution to the full Hamiltonian Ĥ of the system is the Hamiltonian of the semi-infinite
leads. Since it has an infinite rank, it cannot be inverted straightforwardly. The trick is
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to condense the properties of the leads in self energies. Then, the full Hamiltonian

Ĥ = H + ∑
i
(Hi

lead + Vi + V†
i ),

given by the Hamiltonian of the finite sample H, the Hamiltonian of the lead Hi
lead and

their interaction potential Vi, becomes

Ĥ = H + ∑
i

Σi.

The self energy of lead i is given by

Σi = Vi(E + iδ− Hi
lead)

−1V†
i .

This quantity can be calculated for nearest-neighbor hoppings since now only the inter-
face elements of Vi are non-zero.

Following from this consideration, the retarded Green’s function of the considered
system reads

G =

(
E− H −∑

i
Σi

)−1

and the transition matrix is calculated as

Tmn = Tr(ΓmGmnΓnG†
mn),

with Γi = i(Σi − Σ†
i ). Another self energy Γinelast = −iη can be considered to model

inelastic scattering (electrons interacting with other electrons or phonons).

Depending on the considered measurement setup, some of the voltages Un and cur-
rents In are fixed. In order to quantify a Hall effect, one can consider a crossbar geometry
with the terminals attached at the up (u), down (d), left (l), and right (r) directions. One
considers a current which flows from left to right (Il = −Ir ≡ I and Iu = Id = 0) and
is interested in the charge accumulation in the transverse directions (up and down). A
small potential gradient is simulated Ul −Ur = ∆U.

The resistivity is given as

Rxy = (Uu −Ud)/I, Rxx = (Ul −Ur)/I,

from where the conductance G = R−1 can be calculated

Gxy = −Rxy/(R2
xx + R2

xy), Gxx = Rxx/(R2
xx + R2

xy).

Since the Landauer-Büttiker formalism does also account for extrinsic contributions, the
longitudinal conductance is well defined. This allows to calculate a Hall angle

θH =
Uu −Ud

Ul −Ur
.
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Local detection of skyrmions

Since the topological Hall effect of electrons is the hallmark of the skyrmion crystal
phase, the idea arose to utilize this effect for a local detection of individual skyrmions,
for example in a racetrack device [170]. For this example, I generalize the results of that
paper to detect a sequence of skyrmionic bits.

By analogy with Ref. [170] I considered s electrons on a lattice (here a square lattice)
without taking spin-orbit coupling into account. Especially for Fermi energies near the
band bottom of the zero-field band strucuture (here the carriers behave similar to free
electrons) an unambiguous detection is possible, as shown in Fig. 30. A significant peak
arises whenever a skyrmion traverses the area between the two leads. This peak is in
good approximation proportional to the topological charge density integrated over this
area. When no skyrmion is present, only oscillations around zero occur. The experi-
mental realization of such a measurement has recently been reported in Ref. [14], as
presented in the experimental overview (Fig. 13 in Sec. 2.4).

Figure 30: Simulated detection of a sequence of skyrmions in a racetrack geometry. A
peak appears in the transverse resistance (proportional to the detected volt-
age) whenever a skyrmion is located between the two thin contacts. t0 is the
time constant of the racetrack. The parameters are like in publication [BG6].
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[101] Zhang, Y., Železnỳ, J., Sun, Y., van den Brink, J. & Yan, B. Spin Hall effect emerging
from a noncollinear magnetic lattice without spin-orbit coupling. New J. Phys. 20,
073028 (2018).

[102] Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. & Jungwirth, T. Spin Hall
effects. Rev. Mod. Phys. 87, 1213 (2015).

[103] Röntgen, W. C. Über die durch Bewegung eines im homogenen electrischen Felde
befindlichen Dielectricums hervorgerufene electrodynamische Kraft. Annalen der
Physik 271, 264 (1888).

[104] King-Smith, R. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys.
Rev. B 47, 1651 (1993).

[105] Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase
approach. Rev. Mod. Phys. 66, 899 (1994).

136



References

[106] Gao, Y., Vanderbilt, D. & Xiao, D. Microscopic theory of spin toroidization in
periodic crystals. Phys. Rev. B 97, 134423 (2018).

[107] Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 38, R123
(2005).

[108] Hayami, S., Kusunose, H. & Motome, Y. Toroidal order in metals without local
inversion symmetry. Phys. Rev. B 90, 024432 (2014).

[109] Xiao, D., Shi, J. & Niu, Q. Berry phase correction to electron density of states in
solids. Phys. Rev. Lett. 95, 137204 (2005).

[110] Chang, M.-C. & Niu, Q. Berry phase, hyperorbits, and the Hofstadter spectrum:
Semiclassical dynamics in magnetic Bloch bands. Phys. Rev. B 53, 7010 (1996).

[111] Raoux, A., Piéchon, F., Fuchs, J.-N. & Montambaux, G. Orbital magnetism in
coupled-bands models. Phys. Rev. B 91, 085120 (2015).

[112] Dias, M. d. S., Bouaziz, J., Bouhassoune, M., Blügel, S. & Lounis, S. Chirality-
driven orbital magnetic moments as a new probe for topological magnetic struc-
tures. Nat. Commun. 7, 13613 (2016).

[113] Lux, F. R., Freimuth, F., Blügel, S. & Mokrousov, Y. Engineering chiral and topo-
logical orbital magnetism of domain walls and skyrmions. Commun. Phys. 1, 60
(2018).

[114] Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential
problem. Phys. Rev. 94, 1498 (1954).

[115] Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston,
New York, 1976).

[116] Rauch, T. Topological Insulators and Semimetals: Theory for Bulk and Surface Electronic
Properties. Thesis, Martin-Luther-Universität Halle-Wittenberg (2016).

[117] Löwdin, P.-O. On the non-orthogonality problem connected with the use of atomic
wave functions in the theory of molecules and crystals. The J. Chem. Phys. 18, 365
(1950).

[118] Yusufaly, T., Vanderbilt, D. & Coh, S. Tight-Binding Formalism in
the Context of the PythTB Package (Program documentation) (2018), ac-
cessed August 2019: http://www.physics.rutgers.edu/pythtb/_downloads/
915304f3240dca549efa8f491463a797/pythtb-formalism.pdf.
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