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Prolog

I am interested in mathematics only as a creative art.
— Godfrey H. Hardy, A Mathematician’s Apology

[What people] really want is usually not some collection of “answers”—
what they want is understanding.

— William P. Thurston, On Proof and Progress in Mathematics

Once upon a time ...

... there was a real function f : R→ R, studied by a curios (and mathematically educated)
mind which had a basic question:

Does the equation f(x) = 0 have a solution?

The Method of Sub-Supersolutions

There is no answer that fully satisfies a curious mind (which might be a good definition
for such a kind of minds), but there are promising candidates. To find one of them,
we note that from the solvability of f(x) = 0 it follows trivially that there are (not
necessarily distinct) real numbers x and x such that

f(x) 6 0 and 0 6 f(x),

which we will call subsolution and supersolution, respectively. Now, the task is to
find some x∗ that is both a sub- and a supersolution, and our mathematical informed
guess is that we will find it somewhere between a pair of sub-supersolutions. To simplify
notations, let us assume in the following that x 6 x holds for a given subsolution x
and a given supersolution x. Then a natural candidate for x∗ is the greatest subsolution
located between these sub-supersolutions,

x∗ ··= supS, where S ··= {x ∈ [x, x] : x is a subsolution, i.e. f(x) 6 0}.

Since S ⊂ R is bounded and non-empty, the supremum exists. Thus, in order to check
that x∗ is indeed the greatest subsolution of f, it suffices to check that x∗ is not only
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a supremum of subsolutions, but a subsolution itself. However, this may not be the
case as simple examples demonstrate, and thus we assume that f satisfies the following
condition:

(C∗) If (xn) ⊂ R is an increasing sequence converging to x and if f(xn) 6 0 for all n,
then f(x) 6 0.

It follows readily that x∗ is a subsolution. If x∗ is in addition a supersolution (and thus
the desired solution), then it is obviously the smallest supersolution in the interval [x∗, x],
and thus it is a good idea to consider the element

x∗ ··= inf S, where S ··= {x ∈ [x∗, x] : x is a supersolution, i.e. 0 6 f(x)}.

Now, x∗ is a solution if and only if x∗ is a supersolution that equals x∗, and thus we
assume the dual condition to (C∗) from above:

(C∗) If (xn) ⊂ R is a decreasing sequence converging to x and if 0 6 f(xn) for all n,
then 0 6 f(x).

Then, x∗ is known to be a supersolution and it follows readily x∗ = x∗. Indeed, from
x∗ < x∗ it would follow that there is y such that x∗ < y < x∗ and since y is (as every
real number) a sub- or a supersolution, this would contradict the maximality of x∗ or
the minimality of x∗.

All in all, x∗ is the greatest solution of f(x) = 0 in the interval [x, x]. Moreover, by
dual arguments we find the smallest solution, so that we can state:

Theorem A Let f : R → R be a real function satisfying conditions (C∗) and (C∗),
and let (x, x) be an ordered pair of sub-supersolutions. Then the equation f(x) = 0 has
the greatest and the smallest solution in [x, x]. #

Entrance of Bifunctions

Of course, every continuous function f satisfies conditions (C∗) and (C∗), thus, we have
the following corollary of Theorem A:

Corollary (Intermediate Value Theorem) Every continuous function f : [x, x] → R
such that f(x) 6 0 6 f(x) has a zero in [u,u]. #

Furthermore, every decreasing function f satisfies both (C∗) and (C∗), but in this
case it follows

0 6 f(x) 6 f(x) 6 0,

so that the sub-supersolutions have to be solutions themselves. Then, of course, our
celebrated theorem becomes trivial.

Consequently, a curious mind will ask if there is another example, and fortunately
there is a whole class, namely functions f : R → R for which there is a further function
g : R× R→ R (which we call bifunction) such that
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(i) f(x) = g(x, x) for all x ∈ R,

(ii) s 7→ g(s, t) is continuous in s = t for all t ∈ R,

(iii) t 7→ g(s, t) is decreasing for all s ∈ R.

Indeed, let (xn) ⊂ R be an increasing sequence converging to x such that f(xn) 6 0,
then it follows

f(x) = g(x, x) →g(xn, x) 6 g(xn, xn) = f(xn) 6 0, thus f(x) 6 0.

Similarly, for a decreasing sequence (xn) converging to x such that 0 6 f(xn), it follows

0 6 f(xn) = g(xn, xn) 6 g(xn, x)→ g(x, x) = f(x), thus 0 6 f(x).

Consequently, we have the following corollary:

Corollary B Let g : R × R → R be a real function being continuous in the first and
decreasing in the second argument and let (x, x) be an ordered pair of sub-supersolutions
for the function x 7→ g(x, x). Then the equation g(x, x) = 0 has a greatest and a smallest
solution in [x, x]. #

This exemplifies the fruitful interplay of order theory and topology.

Remark Examples for functions g satisfying (ii) and (iii) are given by defining
g(s, t) ··= g1(s) + g2(t) for any continuous g1 : R → R and any decreasing g2 : R → R.
Obviously, the function x 7→ g(x, x) may be neither continuous nor decreasing. #

Approach via Fixed Points

Speaking of order theory, we want to apply the following famous theorem:

Theorem (Fixed Point Theorem of Tarski) Every increasing function f : [x, x]→ [x, x]
has the greatest fixed point. #

It gives rise to another proof of Corollary B, which main idea is to fix one argument
of the bifunction as follows:

Alternative Proof of Corollary B: For any y ∈ [x, x], let us define the real function
gy : x 7→ g(x,y). Then, since g is decreasing in the second argument, we deduce

gy(x) = g(x,y) 6 g(x, x) 6 0, thus gy(x) 6 0.

Similarly, one deduces gy(x) > 0. Thus, the continuous function gy : R→ R satisfies all
conditions of Theorem A, so that we know that the equation gy(x) = 0 has a greatest
solution x∗y in [x, x]. Now, we note that y 7→ x∗y is an increasing self-mapping on [x, x].
Indeed, suppose y1 6 y2, then we have

0 = g(x∗y1
,y1) > g(x

∗
y1

,y2),

Approach via Fixed Points 11



from which it follows that the equation gy2(x) = 0 has a greatest solution in [x∗y1
, x]

(which equals x∗y2
), and thus x∗y1

6 x∗y2
.

Consequently, by the Fixed Point Theorem of Tarski, we know that the equation
y = x∗y has the greatest solution y∗ ∈ [x, x]. Then, by definition of x∗y∗ , it follows

0 = gy∗(y
∗) = g(y∗,y∗),

and so y∗ is a solution of g(x, x) = 0. In fact, it readily follows that y∗ is even the
greatest solution of g(x, x) = 0 in [x, x]. Indeed, assume that y ∈ [x, x] is any solution
of g(x, x, ) = 0. Then the same arguments as above, but now with y instead of x, give
us some solution y∗∗ of y = x∗y located in [y, x]. Then, by construction of y∗, we have
y 6 y∗∗ 6 y∗, which concludes the proof. #

At this Point ...

... the curious mind strongly wondered if this alternative approach could really be of any
use, maybe for problems that far exceeded all what it had seen in its short life. Exhausted,
it fell into a deep sleep full of mathematical dreams.

12 Prolog



Introduction

Aim of this Thesis

Let A be a set, and let S : A × A → P∅(A) be a mapping on A × A whose values are
subsets of A. Then A is called a multivalued bifunction, and the core idea of this
thesis can be expressed in form of the following fixed point principle:

Let F : A→ P∅(A) be a multifunction such that, for all a ∈ A,

F(a) = {a∗ ∈ A : a∗ ∈ S(a∗,a)}.

Then every fixed point of F is a fixed point of S,

i.e. from a∗ ∈ F(a∗) it follows a∗ ∈ S(a∗,a∗).

Let further (P) be a mathematical problem, and suppose that S is defined in such a way
that solutions of (P) are fixed points of S and vice versa. Then, if we search for solutions
of (P), all we have to do is to search for fixed points of F. However, certainly not every
multifunction F : A → P∅(A) has a fixed point. Thus, we have to investigate in detail
under which conditions the set Fix F of fixed points of F is non-empty.

The fixed point theory we develop is linked to the special kind of problems we want
to solve, namely variational inequalities as in [24, 28], in which some parts are given
by nonsmooth, multivalued bifunctions. Those problems allow for an application of the
powerful concept of sub-supersolutions (see the Introduction to Part II for more infor-
mation), so our first task reads as follows:

Develop a powerful yet easy to apply mathematical framework

—which bases on order-theoretical fixed point theorems and comparison principles—

in order to solve variational inequalities with multivalued bifunctions.

This framework will give precise conditions on the auxiliary multifunction F, which in
turn will give precise conditions on Problem (P) that guarantee the existence of solutions
with special properties. Consequently, our second task will be the following one:

Illustrate the applicability of the developed framework

for a wide range of variational problems.

In order to present the main ideas, we will restrict our considerations to more classical
function spaces and zero boundary conditions. However, we try our very best to present
general ideas which can be extended to more sophisticated problems.
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Structure of this Thesis

In Chapter 1, we will present purely order-theoretical results. First, we will devote a
section to recall some fundamental notions in partially ordered sets D, such as the set
relation 6∗ on P∅(D), which is defined by

A 6∗ B :⇐⇒ for every a ∈ A there is b ∈ B such that a 6 b,

and the notion of increasing upward multifunctions F : D→ P∅(D).
After providing a few basic results about multifunctions of isotone type, we then

develop in Section 1.2 several purely order-theoretical fixed point theorems. This study
starts with the famous theorem of Tarski, whose proof can be generalized so that we ob-
tain more insights in a series of fixed point theorems presented recently in [76, 77, 78, 79].
To obtain an even more general fixed point theorem, we then follow [24, 50] and give a
full proof of Theorem 1.59, which guarantees the existence of maximal fixed points under
weak conditions. From this theorem, by use of a new order-theoretical property, we then
deduce Corollary 1.60, in which conditions involving chains are replaced by conditions
involving only sequences. This result serves together with new results about greatest
fixed points as a reference for the rest of this thesis.

In Chapter 2, we incorporate topological results in our study. This will lead to fixed
point theorems on ordered reflexive Banach spaces which are more easy to apply than
Corollary 1.60. Although we roughly follow the path laid out in [50], we develop our own
version of the story, whose highlights are the new Theorem 2.31, which ensures that some
increasing upward multifunctions have maximal fixed points, and the desired framework
of Theorem 2.33, which gives us even a condition under which increasing upward multi-
functions have a greatest fixed point. After a quick comparison of our results with other
fixed point theorems, we then present some topological results needed in applications.

In Chapter 3, we then consider measurable spaces and its connections with topology
and order-theory. To this end, we introduce ordered measurable spaces and investigate
conditions under which multifunctions of isotone type are (weakly) measurable. We then
extend our study to compact-valued multifunctions (x, s, t) 7→ F(x, s, t) which depend
differently on their arguments: x 7→ F(x, s, t) is measurable, s 7→ F(x, s, t) is upper semi-
continuous, and t 7→ F(x, s, t) is increasing upward. In particular, we explore conditions
under which F has a measurable single-valued selection. At the end of this chapter, we
collect useful facts about spaces of measurable functions.

Starting from Chapter 4, we will apply the theoretical results to various variational
problems. Often, such problems are solved with help of topological fixed point theorems,
e.g. a suitable version of the Banach or Kakutani fixed point theorem, which require cer-
tain continuity properties of the fixed point operator involved. But there are operators
of interest that lack continuity, which is why order-theoretical fixed point theorems come
into play. In the last years, Carl, Le and Motreanu, among others, have developed an
approach that covers a wide range of problems, see, e.g., [20, 22, 23, 24, 27, 28, 67, 68].
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They built on theorems presented in [50], see Lemma 1.58, and combined them with the
theory of pseudomonotone operators and the concept of sub-supersolutions. Our goal is
to extend those results about nonsmooth variational inequalities by use of the general
framework developed in Part I.

In Chapter 4, first, for a multivalued bifunction (x, s, t) 7→ f(x, s, t), we will consider
the inclusion

u ∈ K : Au+ f(·,u,u) + ∂IK 3 0, (P)

where A is a Leray-Lions operator on a Sobolev space W, IK is the indicator function of
a given closed and convex set K ⊂ W, and ∂IK is the subgradient of IK in the sense of
convex analysis. By definition, a solution of (P) is a function u ∈ K such that

〈Au,w− u〉+ 〈η,w− u〉 > 0 for all w ∈ K and some selection η ⊂ f(·,u,u).

Since f is assumed to be upper semicontinuous in the second and increasing in the third
argument, we can apply Theorem 2.33 to deduce that there are smallest and greatest
solutions between each pair of sub-supersolutions.

Remark The first four chapters present new results and results from the paper An
order theoretic fixed point theorem with application to multivalued variational inequalities
by the author (see [110, 111]). #

In Chapter 5, we extend our study of Chapter 4 to the following multivalued quasi-
variational inequality problem: Find u ∈W such that for some η ⊂ f(·,u,u) it holds

〈Au,w− u〉+
∫
Ω

η(w− u) + K(w,u) − K(u,u) > 0 for all w ∈W,

where A : W → W ′ is, again, a Leray-Lions operator of divergence form, f is a multi-
valued bifunction being upper semicontinuous in the second and increasing in the third
argument, and K(·,u) : W → R ∪ {+∞} is a convex functional for each u ∈W.

We prove that, under weak assumptions on the data, there are the smallest and the
greatest solution between each pair of sub-supersolutions.

Remark Chapter 5 is based on the results of the paper Multivalued Quasi-Variational
Inequalities with Nonsmooth Bifunctions by the author, which is currently in preparation
(see [112]). #

In Chapter 6, we consider the existence and further qualitative properties of solutions
of the Dirichlet problem to quasilinear multivalued elliptic equations with measures of
the form

Au+G(·,u) 3 f, (P)

where A is, again, a second order elliptic operator of Leray-Lions type and f ∈Mb(Ω) is
a given Radon measure on a bounded domain Ω ⊂ RN. The lower order term s 7→ G(·, s)
is assumed to be a multivalued upper semicontinuous function, which includes Clarke’s
gradient s 7→ ∂j(·, s) of some locally Lipschitz function s 7→ j(·, s) as a special case. Our
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main goals are as follows: First, we develop an existence theory for Problem (P). Second,
we propose concepts of sub-supersolutions for this problem and establish an existence
and comparison principle. Third, we topologically characterize the solution set enclosed
by sub-supersolutions.

Remark Chapter 6 is based on the results of the paper Quasilinear elliptic equations
with measures and multi-valued lower order terms whose results where developed mainly
by the author (see [30]). #

In Chapter 7, we extend the results of Chapter 6 to the case of bifunctions, that is,
we consider multivalued elliptic equations with bifunctions of the form

Au+ f(·,u,u) 3 µ, (P)

where A is, again, an elliptic Leray-Lions operator, (x, s) 7→ f(x, s, t) is upper Carathéo-
dory and t 7→ f(x, s, t) is a decreasing, possibly nonsmooth multifunction, and µ ∈ L1.

Since our abstract framework does not apply directly to Problem (P), we introduce
the concept of limit-solutions and limit-subsolutions. Then we can prove that there exist
smallest and greatest limit-solutions between each ordered pair of sub-supersolutions.

Remark Chapter 7 is based on the results of the paper Multivalued Elliptic Inclusions
with Nonsmooth Bifunctions and L1 Right-Hand Sides by the author, which is currently
in preparation (see [113]). #

In Chapter 8, we then extend the results of Chapters 4, 5 and 7 to systems

Ai(ui) + Fi(ui,u) + ∂Ki,u(ui) 3 0 in W ′i, (Pi)

and
Ai(ui) + Fi(ui,u) 3 µi, (Qi)

which are coupled via the lower-order terms Fi(ui,u). In order to solve Systems (P)
and (Q), we first extend our basic framework to mixed-monotone systems, and then we
apply the results of the forgoing chapters.

Remark Chapter 8 is based on the results of the paper Systems of Quasilinear Elliptic
Equations with L1-Functions and of Quasi-Variational Multivalued Variational Inequal-
ities by the author, which is currently in preparation (see [114]). #

In the concluding Chapter 9, we finally propose topics for further research.
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1 Order Theory

The common theme of this thesis are order-theoretical considerations. In this first chap-
ter, we are going to developed basic results and powerful fixed point theorems for mul-
tifunctions of isotone type that allow for a wide range of applications.

1.1 Basic Concepts

1.1.1 Partially Ordered Sets and Lattices

Let us recall some basic notions. (For more information, see, e.g., [46, 105].)

1.1 Definition Let D be a set and R ⊂ D×D. Then the relation R is called partial
order on D if the following holds:

(i) R is reflexive, i.e. for all a ∈ D it holds (a,a) ∈ R,

(ii) R is anti-symmetric, i.e. from (a,b) ∈ R and (b,a) ∈ R it follows a = b,

(iii) R is transitive, i.e. from (a,b) ∈ R and (b, c) ∈ R it follows (a, c) ∈ R.

In this case, we write a 6R b instead of (a,b) ∈ R, and we call (D,6R) a partially
ordered set, poset for short. If no confusion can occur, we only write a 6 b instead
of a 6R b. Further, we mostly write D instead of (D,6), and a < b means that both
a 6 b and a 6= b. #

Note that for any poset (D,6R) and any A ⊂ D we easily obtain that (A,6R∩(A×A))
is a poset. Thus, we will consider subsets of a poset naturally as posets.

1.2 Example In this thesis, we use only standard partial orders, such as the usual
partial order on R which makes it to an ordered field, or the componentwise partial order
on RN.

The partial order on a poset D can be extended naturally to the pointwise partial
order between functions f,g : M→ D, were M is any set, by setting

f 6 g :⇐⇒ f(x) 6 g(x) for all x ∈M.

For (classes) of measurable functions on a measure space, inequality f(x) 6 g(x) has to
hold for almost every (a.e.) x ∈M, see Definition 3.62 below. #

To each poset we can construct another poset, its so called dual, as follows:
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1.3 Definition Let (D,6R) be a poset and define the set R⊂ D×D via

(a,b) ∈ R :⇐⇒ (b,a) ∈ R.

Obviously, Ris a partial order on D, and we call (D,6 R) the dual poset of (D,6R).
If no confusion can occur, we write a > b instead of a 6 Rb. #

In the following, we will often prove assertions about a general poset (D,6). Since
these assertions hold for its dual poset (D,>), too, we obtain effortlessly the so called dual
assertion. All we have to do is to replace in the assertion and all involved definitions 6
with > and interpreting thereafter the order-theoretical notions in terms of 6. Similarly,
all order-theoretical notions have a dual counterpart.

To begin with, let us introduce the following order-interval for each element a of a
poset (D,6) and a subset C ⊂ D:

a↓ ··= a↓6 ··= {b ∈ D : b 6 a} and a
↓
C
··= a↓ ∩ C.

By replacing 6 with >, we get the dual counterpart

a↑ ··= a↓> = {b ∈ D : b > a} = {b ∈ D : a 6 b}.

Those intervals play a central role in defining various order-theoretical concepts, such as
the following ones:

1.4 Definition Let D be a poset. An element a ∈ D is called

(i) lower bound of a subset M of D if M ⊂ a↑,

(ii) minimal element of D if a↓ = {a}, i.e. if, for all b ∈ D, b 6 a implies b = a,

(iii) smallest element of D if D ⊂ a↑, i.e. if, for all b ∈ D, a 6 b.

By duality, we define upper bounds, maximal and greatest elements, respectively: An
element a ∈ D is called

(i)d upper bound of a subset M of D if M ⊂ a↓,

(ii)d maximal element of D if a↑ = {a}, i.e. if, for all b ∈ D, b > a implies b = a,

(iii)d greatest element of D if D ⊂ a↓, i.e. if, for all b ∈ D, a > b. #

The concepts defined above have the following connection:

1.5 Proposition Let D be a poset. Then each smallest element is a minimal element
but not vice versa, and there is at most one smallest element.

Proof: Let D = {a,b} (with a 6= b) and define R = {(a,a), (b,b)}. Then (D,6R) is a
poset in which all elements are minimal but no element is the smallest. The remaining
assertions follow readily by anti-symmetry of the partial order. #
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By duality, we have at once the following corollary:

1.6 Corollary Let D be a poset. Then each greatest element is a maximal element,
and there is at most one greatest element. #

Note that it is not guaranteed that there are minimal or even smallest elements in a
poset. Therefore, the order-theoretical fixed point theorems to be presented in Section
1.2 below are welcome. They rely on the following notion:

1.7 Definition Let D be a poset.

(i) Let a,b ∈ D. If it exists, we denote by a ∧ b the greatest element of a↓ ∩ b↓ and
call it infimum of a and b.

(ii) In general, for any A ⊂ D denote by inf A the greatest lower bound of A (called the
infimum of A). Further, we sometimes denote by y∧ the infimum of any familiy
{yi : i ∈ I} ⊂ D.

(iii) If, for all a,b ∈ D, the infimum a∧ b exists, we call D an inf-semilattice.

By duality, we define the supremum of a and b, denoted by a∨ b, the supremum
supA of any subset A ⊂ D, the abbreviation y∨ and the notion of sup-semilattice.

(iv) If D is both an inf- and a sup-semilattice, we call it a lattice.

(v) If D is a lattice, then A ⊂ D is called a sub-lattice of D if A is closed under ∧

and ∨ (where infimum and supremum are taken in D). #

In the sequel, we will often consider poset and lattices which are order-intervals

[a,b] := {x ∈ D : a 6 x 6 b} = a↑ ∩ b↓.

If D is a poset or a lattice, then [a,b] is also a poset or a lattice, respectively. If C ⊂ D,
we often write [a,b]C instead of [a,b] ∩ C.

Finally, let us recall the following properties of subsets of a poset:

1.8 Definition Let D be a poset, and let A ⊂ D.

(i) A is called increasing if a↑ ⊂ A for all a ∈ A.

(ii) A is called order-convex upward if for all yα,yβ ∈ A the order-interval [yα,y∨]
belongs to A.

By duality, we define what it means to be a decreasing or order-convex downward
set. For instance, A is called order-convex downward if for all yα,yβ ∈ A the order-
interval [y∧,yα] belongs to A.

(iii) A is called order-convex if it is both order-convex upward and order-convex
downward. #

Note, that it is not required in the definition of order-convex sets that yα 6 yβ, since
then one would have y∧ = yα and y∨ = yβ and all three types of convexity would
be identical. Further, let yα and yβ belong to an order-convex set A. Then one has
especially z1 ··= y∧ ∈ A and z2 ··= y∨ ∈ A and thus [y∧,y∨] = [z∧, z2] ⊂ A.
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1.1.2 Set Relations

1.9 Definition Let X be a set. Then P∅(X) denotes the power set of X, and P(X)
denotes the set of all non-empty subsets of X. #

Let D be a poset, and let A,B ∈ P∅(D) be any subsets. Then it will be convenient to
compare A and B with respect to the partial order of D. There are a few possibilities to
achieve this, however, the set relations we will use frequently are the following ones:

1.10 Definition Let D be a poset.

(i) The relation 6∗ on P∅(D) is defined via

A 6∗ B :⇐⇒ a↑ ∩ B 6= ∅ for all a ∈ A,

and we read “A 6∗ B” as “A looks up to B”.

(i)d By duality, the relation 6∗ on P∅(D) is defined via

A 6∗ B :⇐⇒ B >∗ A ⇐⇒ b↓ ∩A 6= ∅ for all b ∈ B,

and we read “A 6∗ B” as “B looks down on A”. #

1.11 Remark The notion for those relations is not standardized in the literature;
6∗ is denoted by 6u in [64], by 61 in [54], by 41 in [41] and by 6∗ in [68]. However,
we have chosen the symbol 6∗ with ∗ on top to indicate that for A 6∗ B to be true we
have to find, for every a ∈ A, some b ∈ B which tops a. #

1.12 Remark The set relations 6∗ and 6∗ were generalized in vector-valued opti-
mization to various kinds of variable set relations, see [39], where A 4D

u B ⊂ Y means,
for a fixed multifunction D : Y → P(Y), that for any a ∈ A there is some b ∈ B such that
b ∈ a+D(a). Those relations can be used with gain in optimization, see, e.g., [48, 83],
but are to general for our current purposes. #

Since those relations are of utmost importance in the sequel, let us reformulate Defi-
nition 1.10 in other words. We have

(i) A 6∗ B if and only if for every a ∈ A there is b ∈ B such that a 6 b,

(ii) A 6∗ B if and only if for every b ∈ B there is a ∈ A such that a 6 b.

Further we have the duality rules A 6∗ B⇐⇒ B >∗ A and A 6∗ B⇐⇒ B >∗ A.

The following property of the so defined set relations is readily seen:

1.13 Proposition Let D be a poset. Then 6∗ is a pre-order, i.e. reflexive and
transitive. By duality, 6∗ is a pre-order, too. #

Of course, 6∗ is no partial order, since it is not anti-symmetric in general. Consider
for a counterexample, e.g., the sets {1, 2, 3} and {2, 3} of real numbers. However, we can
combine those two relations in the following natural way:

22 1 Order Theory



1.14 Definition Let D be a poset, and let A,B ∈ P∅(D). Then we write A 6∗∗ B if
both A 6∗ B and A 6∗ B. #

It is readily seen that 6∗∗ is a pre-order. We further have the following result:

1.15 Proposition Let D be a poset. Then 6∗ and 6∗∗ are anti-symmetric in the
following sense:

(i) If A 6∗ B and B 6∗ A for A,B ⊂ D, then A = B if and only if A and B are
decreasing sets in A ∪ B.

(ii) If A 6∗∗ B and B 6∗∗ A for A,B ⊂ D, then A = B if and only if A and B are
order-convex sets in A ∪ B.

Proof: Suppose A 6∗ B and B 6∗ A. If A = B, then of course A is a decreasing set in
A ∪ B = A. The other way around: For any a ∈ A there is some b ∈ B such that a 6 b.
If B is a decreasing set in A ∪ B, then it follows a ∈ B, thus A ⊂ B. Since the problem
is symmetric in A and B, (i) holds true.

Now, suppose A 6∗∗ B and B 6∗∗ A. If A = B, then A is obviously order convex
in A ∪ B = A. The other way around: For any a ∈ A there are b,b ′ ∈ B such that
b 6 a 6 b ′. If B is order-convex in A ∪ B, then it follows a ∈ B, thus A ⊂ B. Since the
problem is symmetric in A and B, (ii) holds true. #

It is illustrating to compare the pre-orders 6∗ and 6∗, which base directly on the
partial order 6, with the relations 4∗ and 4∗, which base on the lattice-operators in the
following way:

1.16 Definition Let D be a poset.

(i) The relation 4∗ on P∅(D) is defined via

A 4∗ B :⇐⇒ a∨ b ∈ B for all a ∈ A and all b ∈ B,

and we read “A 4∗ B” as “B is superior to A”.

(i)d By duality, the relation 4∗ on P∅(D) is defined via

A 4∗ B :⇐⇒ a∧ b ∈ A for all a ∈ A and all b ∈ B,

and we read “A 4∗ B” as “A is inferior to B”.

(ii) We write A 4∗∗ B if both A 4∗ B and A 4∗ B. #

In general, 4∗ is neither reflexive nor transitive and thus no pre-order. Indeed, A 4∗ A
is the same as to say that A is closed under ∨, and on R, equipped with the usual order,
4∗ is not transitive, since {1} 4∗ {2} and {2} 4∗ {0, 2}, but {1} 4∗ {0, 2} does not hold.
However, it is interesting to note that we have the following result:

1.17 Proposition Let D be a poset. Then 4∗∗ is transitive on P(D).
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Proof: Let A,C ∈ P∅(D) and B ∈ P(D) be given such that A 4∗ B and B 4∗∗ C. Then,
for all a ∈ A, b ∈ B and c ∈ C one has (a∨ (b∧ c))∨ c ∈ C and this element clearly is
the supremum of a and c. Thus, A 4∗ C. The remaining relation A 4∗ C is proved by
duality. #

The situation is different if D is a sup-semilattice; then 4∗ is a pre-order on the
non-empty order-convex upward subsets of D, which follows from the next result.

1.18 Proposition Let D be a poset and A,B ∈ P(D). Then A 4∗ B implies A 6∗ B.
If D is a sup-semilattice and if B is order-convex upward, the reverse implication holds
true, too.

Proof: It is readily seen that A 4∗ B implies A 6∗ B, since for every a ∈ A and each
b ∈ B we have a 6 a∨ b ∈ B. Now let D be a sup-semilattice and suppose A 6∗ B with
B being order-convex upward. Then for all a ∈ A and b ∈ B there is some c ∈ B such
that a 6 c and it follows b 6 a∨ b 6 c∨ b ∈ B and thus a∨ b ∈ B. #

If in Proposition 1.18 the set B is not known to be order-convex upward but only
closed under ∨, we have the following more technical equivalences:

1.19 Proposition Let D be a poset and suppose A,B ∈ P(D) are closed under ∨.
Then the following assertions hold true:

(i) A 4∗ B if and only if there is some ∨-closed set C ⊂ D such that A,B ⊂ C and

b ∈ B implies b↑C ⊂ B.

(ii) A 4∗ B if and only if A 6∗ B and there is some ∨-closed set C ⊂ D such that
A,B ⊂ C and b,b ′′ ∈ B imply [b,b ′′]C ⊂ B.

Especially, if D is a lattice and B = [B∗,B
∗], then A 4∗ B if and only if A 6∗ B.

Proof: Ad (i): Suppose A 4∗ B, then A 6∗ B, the set C ··= A∪B is closed under ∨, and

for all b ∈ B we have b↑C ⊂ B. Indeed, suppose a ∈ A such that b 6 a, then A 4∗ B
implies a = a∨ b ∈ B.

Now, let C ⊂ D be closed under ∨ and suppose A,B ⊂ C and b↑C ⊂ B for all b ∈ B.
Then, for each a ∈ A and each b ∈ B we have b 6 a∨ b ∈ C and thus a 6 a∨ b ∈ B.

Ad (ii): Suppose A 4∗ B, then we have A 6∗ B and as in (i) we set C ··= A ∪ B and

obtain [b,b ′′]A∪B ⊂ b↑A∪B ⊂ B for all b,b ′′ ∈ B.

Now, suppose A 6∗ B, let C ⊂ D be closed under ∨ and suppose A,B ⊂ C and
[b,b ′′]C ⊂ B for all b,b ′′ ∈ B. Then, for each a ∈ A there is b ′ ∈ B such that a 6 b ′,
and for each b ∈ B it follows b 6 a ∨ b 6 b ′ ∨ b. Since b ′ ∨ b ∈ B and a ∨ b ∈ C, it
follows a∨ b ∈ B and thus A 4∗ B. #
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1.1.3 Multifunctions of Isotone Type

For functions, we have the following well known notion:

1.20 Definition Let D and D ′ be posets, and let f : D → D ′ be a function. Then f
is called increasing (or isotone, or order-preserving) if

x 6 y in D =⇒ f(x) 6 f(y) in D ′.

If from x < y it follows f(x) < f(x), f is called strictly increasing. By either dualizing
the order in D or in D ′, one obtains the definition of a (strictly) decreasing function.

#

In what follows, we generalize Definition 1.20 to multifunctions, defined as follows:

1.21 Definition Let X and Y be sets. Then a multifunction is defined to be a
mapping F : X → P∅(Y). Its domain is defined by D(F) ··= {x ∈ X : F(x) 6= ∅}, its
graph is defined by gr F ··= {(x,y) ∈ X × Y : y ∈ F(x)}, and its range is defined by
F(X) ··=

⋃
{F(x) : x ∈ X}. If f : X → Y is a function, we may identify f with the single-

valued multifunction F : X → P(Y) defined by F(x) ··= {f(x)}. If G : X → P∅(Y) is also a
multifunction, we write F ⊂ G if F(x) ⊂ G(x) for all x ∈ X. If f ⊂ G, i.e. if f(x) ∈ G(x)
for all x ∈ X, then f is called a selection of G. #

By use of the set relations introduced in Definitions 1.10 and 1.14, let us define the
following six kinds of monotone multifunctions:

1.22 Definition Let D and D ′ be posets, and let F : D→ P∅(D
′) be a multifunction.

(i) F is called increasing upward if x 6 y implies F(x) 6∗ F(y).

F is called increasing downward if x 6 y implies F(x) 6∗ F(y).

F is called increasing if x 6 y implies F(x) 6∗∗ F(y).

(ii) F is called decreasing upward if x 6 y implies F(y) 6∗ F(x).

F is called decreasing downward if x 6 y implies F(y) 6∗ F(x).

F is called decreasing if x 6 y implies F(y) 6∗∗ F(x). #

1.23 Remark To apply duality with ease, note that if one replaces the order in D ′ by
its dual, the naming of the properties chances from ‘increasing’ to ‘decreasing’ and vice
versa. If one wants to swap ‘upward’ with ‘downward’, one has to dualize both the order
in D and in D ′ (which might be counterintuitive). Consequently, for a multifunction
F : D→ P∅(D

′), the following assertions are equivalent:

F : (D,6D)→ P∅(D
′,6D ′) is increasing upward,

F : (D,>D)→ P∅(D
′,>D ′) is increasing downward,

F : (D,6D)→ P∅(D
′,>D ′) is decreasing upward,

F : (D,>D)→ P∅(D
′,6D ′) is decreasing downward.
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Thus, it suffices to prove central properties only for increasing upward multifunctions
and to rely for the other cases on duality.

Further, if D is an ordered linear space (see Definition 2.12 below), (−A) 6∗ (−B)
holds if and only if B 6∗ A. Consequently, the same effects as described above can be
achieved by replacing F by x 7→ −F(−x), x 7→ −F(x) or x 7→ F(−x), respectively. #

1.24 Remark Definition 1.22 generalizes the notion of increasing functions from the
single-valued case to multifunctions. This is by no means a new idea, as, in 1971, fixed
point theorems for increasing upward multifunctions were derived in [107] (there, those
multifunctions were called mappings satisfying condition I or order preserving multi-
functions). Little later, decreasing mappings were introduced in [34] and Proposition
1.26 below and further properties were established.

The naming of those multifunctions varies to this day in the vast recent literature.
What we call increasing upward is called upper order-preserving in, e.g., [80] and (1)-
increasing in [54]. (The last notion is clearly inspired by the notion A 61 B instead of
our A 6∗ B). The naming used in this thesis follows the nomenclature of [24]. Note also
that increasing upward multifunctions are used in semantic analysis of logic programs,
see, e.g., [52]. There, they are called Hoare monotonic after Sir Tony Hoare. #

1.25 Remark There is another way to generalize monotonicity of real functions
to multifunctions, see Section 2.3. In order to distinguish both notions, we will call a
multifunction with one of the properties presented in Definition 1.22 a multifunction
of isotone type. #

In applications, the values of F : D→ P∅(D
′) are often assumed to be order-intervals

[a,b], that is, there are single-valued functions F∗, F
∗ : D → D ′ called envelopes such

that F(x) = [F∗(x), F
∗(x)]. In this setting, the monotonic behavior of F is fully character-

ized by the monotonic behavior of F∗ and F∗, as was noted for the most part in [34]. Let
us inspect this connection next in a slightly more abstract setting.

1.26 Proposition Let D and D ′ be posets, let F : D→ P(D ′) be a multifunction, and
suppose that all values of F have the greatest element F∗(x) ∈ F(x). Then F is increasing
upward if and only if the function F∗ : D→ D ′ is increasing.

Proof: Let F be increasing upward and x 6 y in D. Then F(x) 6∗ F(y) and thus there is
some z ∈ F(y) such that F∗(x) 6 z 6 F∗(y). Consequently, F∗ is increasing.

Conversely, if F∗ is increasing and z ∈ F(x), then z 6 F∗(x) 6 F∗(y) ∈ F(y), thus F is
increasing upward. #

1.27 Corollary Let D and D ′ be posets and let F : D→ P(D ′) be such that there are
functions F∗, F

∗ : D → D ′ such that F(x) = [F∗(x), F
∗(x)]. Then F is decreasing upward

if and only if F∗ is decreasing, F is increasing downward if and only if F∗ is increasing,
and F is decreasing downward if and only if F∗ is decreasing. #

By use of 4∗ from Definition 1.16, we can define another six kinds of monotone
multifunctions in analogy to Definition 1.22. Let us only define the prototype:
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1.28 Definition Let D and D ′ be posets, and let F : D→ P∅(D
′) be a multifunction.

Then F is called lattice-increasing upward if x 6 y implies F(x) 4∗ F(y). #

From Proposition 1.18 we obtain at once the following corollary:

1.29 Corollary Let D be a poset, let D ′ be a sup-semilattice, and suppose that all
values of the multifunction F : D→ P(D ′) are order-convex upward. Then F is increasing
upward if and only if it is lattice-increasing upward. #

If the requirements of Corollary 1.29 are not met, one can use the following more
general corollary, which can be deduced from Proposition 1.19.

1.30 Corollary Let D and D ′ be posets, and let F : D → P(D ′) be a multifunction.
Then the following assertions hold true:

(i) If F is lattice-increasing upward, then F is increasing upward and its values are
closed under ∨.

(ii) If F is increasing upward and its values are ∨-closed, then F need not to be lattice-
increasing upward; however, if, e.g., there is some ∨-closed C ⊂ D such that, for all
x ∈ D, F(x) ⊂ C and [a,b]C ⊂ F(x) for all a,b ∈ F(x), then F is lattice-increasing
upward.

Proof: Suppose first that F is lattice-increasing upward. Since A 4∗ B implies A 6∗ B, F
is increasing upward. Furthermore, for all a,b ∈ F(x), F(x) 4∗ F(x) implies a∨b ∈ F(x),
thus (i) is proved.

Suppose now that F is increasing upward and that its values are ∨-closed. A neat
example is the Z-shaped mapping

F : [0, 1] ⊂ R→ P(R), x 7→ F(x) = {0, 1 − x, 1}.

This map is additionally increasing downward, but neither lattice-increasing upward nor
downward. But if there is some C ⊂ D as demanded in (ii), then, by invoking Proposition
1.19, F is readily seen to be lattice-increasing upward. #

As usual, the dual assertions of Proposition 1.19 and Corollary 1.30 hold true. Espe-
cially, if F has order-convex values, then F is increasing if and only if it is lattice-increasing,
and if F(x) = [F∗(x), F

∗(x)], the former holds if and only if both F∗ and F∗ are increasing
(cf. with [68, Prop. 4.4, 4.5]).

1.31 Example Out of interest, we may add that there are increasing multifunctions
whose values are not closed under ∨ (and that are thus not order-convex upward) even
if they are topological closed. Consider, e.g., the multifunction

F : R→ P(R2), x 7→ F(x) =
(
(−∞, x]× {1}

)
∪
(
[x,∞)× {0}

)
.

Furthermore, one may consider the (rather exotic) mapping

F : R→ R, x 7→ F(x) = x+ [0, 1]Q,

which is increasing, but not lattice-increasing.
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Finally, let us consider the multifunction

F : ( −∞, 0] ⊂ R→ P([−1, 0]), x 7→ −C−dxe,

where dxe denotes the least integer z > x, and Cn denotes the n-th set obtained by con-
structing the cantor set inductively as usual. This multifunction is obviously increasing
and lattice-increasing upward, but not lattice-increasing downward. Since Corollary 1.30
is not applicable, one could generalize it using Proposition 1.19: F is lattice-increasing
upward if and only if F is increasing upward, its values are closed under ∨ and x 6 y
in D implies that there is some ∨-closed set Cx,y such that F(x), F(y) ⊂ Cx,y and
[a,b]Cx,y ⊂ F(y) for all a,b ∈ F(y). #

Finally, following [67], let us extend 4∗∗ to functionals k : D→ R∪ {+∞} over a lattice
D. To this end, consider sets A,B ∈ P∅(D) and their indicator functions IA, IB with

IA : D→ R ∪ {+∞}, x 7→

{
0 if x ∈ A,

+∞ otherwise.

Then we have A 4∗ B if and only if IA(a) < ∞ and IB(b) < ∞ imply IB(a ∨ b) < ∞.
If one developes this idea further with regard to the later applications, on arrives at the
following definition:

1.32 Definition Let D be a lattice. Then, for k,K : D→ R ∪ {+∞}, we define

k 4∗∗ K :⇐⇒ k(u∧ v) + K(u∨ v) 6 k(u) + K(v) for all u, v ∈ D. #

On readily verifies that k 4∗∗ K implies D(k) 4∗∗ D(K), where D(k) denotes the
effective domain {u ∈ D : k(u) 6= ∞} of k. In particular, A 4∗∗ B holds if and only if
the indicator functions of A and B are related by IA 4∗∗ IB. Further, we have the following
result for distributive lattices (which are lattices, in which ∧ and ∨ distribute over
each other):

1.33 Proposition Let D be a distributive lattice. If functions j,k, l : D→ R ∪ {+∞}

satisfy j 4∗∗ k 4
∗
∗ k 4

∗
∗ l and if D(k) 6= ∅, then it holds j 4∗∗ l.

Proof: For arbitrary a, c ∈ D we claim

j(a∧ c) + l(a∨ c) 6 j(a) + l(c). (1.1)

We can assume a ∈ D(j) and c ∈ D(l). Further, let b ∈ D(k). Then by the relations
given and from a∧ c = a∧ (c∧ (a∨ b)) it follows

j(a∧ c) + k(a∨ (c∧ (a∨ b))) 6 j(a) + k(c∧ (a∨ b)). (1.2)

By dual reasoning, we further have

l(c∨ a) + k(c∧ (a∨ (c∧ b))) 6 l(c) + k(a∨ (c∧ b)). (1.3)

All terms in (1.2) and (1.3) are finite (recall that D(j) 4∗∗ D(k) 4∗∗ D(l)), and thus (1.1)
follows from k 4∗∗ k and the identity

[a∨ (c∧ (a∨ b))]∧ [c∧ (a∨ (c∧ b))] = c∧ (a∨ b)

together with its dual counterpart. #
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1.2 Fixed Point Theorems on Posets

Let f : X → X be any function on a set X. Then any point x ∈ X such that x = f(x) is
called fixed point of f. This notion generalizes to multifunctions:

1.34 Definition Let F : X → P∅(X) be a multifunction on a set X. Then u ∈ X is
called a fixed point of F if u ∈ F(u). The set of all fixed points of F is denoted by
Fix F. #

The aim of this section is to investigate the set Fix F of fixed points of a multifunction
F : D→ P∅(D), defined on a poset D. In doing so, we provide conditions such that

• F has at least one fixed point,

• F has a maximal fixed point u (i.e. for every v ∈ Fix F, u 6 v implies u = v),

• F has the greatest fixed point u∗ (i.e. for every v ∈ Fix F it holds v 6 u∗).

The order-theoretical conditions we impose on the domain D and the multifunction
F will be of different generality, but all fixed point theorems have in common that they
assume the existence of a subpoint, which is defined as follows:

1.35 Definition Let F : D → P∅(D) be a multifunction on a poset D. Then u ∈ D
is called a subpoint of F if u 6∗ F(u). The set of all subpoints of F is denoted by
Sub F. #

(In Definition 1.35 and below, a 6∗ A is the same as {a} 6∗ A; analogously for other
set-relations.)

Obviously, every fixed point of any multifunction F : D → P∅(D) is also a subpoint,
i.e. Fix F ⊂ Sub F. In the following, we will consider cases in which, poetically speaking,
each subpoint generates an ascending family of subpoints that can only be stopped if
one of these subpoints happens to be a fixed point.

1.2.1 Tarski Fixed Point Theorems

Probably the most widely known order-theoretical fixed point theorem was introduced
by Tarski [109] for a single-valued increasing function f : D → D. There are numerous
versions of this theorem and further generalizations to multifunctions, as we will see
below. In order to examine the common core of those theorems, let us first provide two
useful results about the connection of fixed points and subpoints of increasing upward
multifunctions:

1.36 Proposition Let D be a poset, let F : D → P∅(D) be an increasing upward
multifunction, and let u be any subpoint of F. Then there is a subpoint s of F such that
u < s, or u is a fixed point of F.

Proof: Let u ∈ Sub F be given. Then we have u 6∗ F(u) and thus there is s ∈ F(u) such
that u 6 s. Since F is increasing upward, it follows F(u) 6∗ F(s), and, since s ∈ F(u),
we have especially s 6∗ F(s), i.e. s ∈ Sub F. If there is no such s with u < s, we have
u = s ∈ F(u), i.e. u ∈ Fix F. #
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1.37 Proposition Let D be a poset, and let F : D→ P∅(D) be an increasing upward
multifunction. Then the following assertions hold true:

(i) Every maximal subpoint of F is a maximal fixed point of F.

(ii) If the greatest subpoint of F exists, then it is the greatest fixed point of F.

Proof: Let u∗ be a maximal subpoint of F. Then u∗ ∈ FixS, since otherwise, by Propo-
sition 1.36, there would be a subpoint s of F such that u∗ < s, which contradicts the
maximality of u∗. Further, from Fix F ⊂ Sub F it follows that u∗ is a maximal fixed
point of F, which proves (i). If u∗ is even the greatest subpoint of F, it follows again from
Fix F ⊂ Sub F that u∗ is the greatest fixed point of F. #

To prove the existence of a maximal (or greatest) fixed point of an increasing up-
ward multifunction F, it thus suffices to prove the existence of a maximal (or greatest)
subpoint—which is possible under further order-theoretical conditions on D or F.

First, let us recall a variant of the original theorem of Tarski for complete lattices.

1.38 Definition A poset D is called a sup-complete lattice if all M ∈ P(D) have
the supremum supM ∈ D. #

1.39 Theorem (Tarski) Let D be a sup-complete lattice, and let f : D → D be an
increasing function. If f has a subpoint, then f has the greatest fixed point u∗, which is
also the greatest subpoint of f.

Proof: We are going to prove that Sub F has the greatest element. To this end, note that
Sub f is a non-empty subset of the complete poset D, and define

u∗ ··= sup(Sub f).

By definition, we have, for all u ∈ Sub f, u 6 u∗, and since f is increasing, it follows
u 6 f(u) 6 f(u∗). That means Sub f 6∗ f(u∗), so that f(u∗) is seen to be an upper bound
of Sub f. But u∗ is the least upper bound of Sub f, thus u∗ 6 f(u∗), i.e. u∗ ∈ Sub f.
Evidently, u∗ is the greatest element of Sub f. By Proposition 1.37, u∗ is the greatest
fixed point of f. #

Now, let us generalize Theorem 1.39 to the case of multifunctions F : D→ P∅(D) with
some technical Property (X):

1.40 Corollary Let D be a sup-complete lattice, and let F : D → P∅(D) be an in-
creasing upward multifunction. If F has a subpoint and Property (X), given by

(X) For all u ∈ D such that Sub F 6∗ F(u) there is s ∈ F(u) such that Sub F 6∗ s,

then F has the greatest fixed point u∗, which is also the greatest subpoint of F.

Proof: We set u∗ ··= sup(Sub F) and proceed as in the proof of Theorem 1.39 to obtain
Sub F 6∗ F(u∗). Thus, from (X) we obtain Sub F 6∗ s∗ for some s∗ ∈ F(u∗). It follows
that u∗ is the greatest element of Sub F and, thanks to Proposition 1.37, also the greatest
fixed point of F. #
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Property (X) is formulated in such a way that the idea of the proof of Theorem 1.39
can be used, but it may be a tedious task to check if (X) holds. If one searches for an
easy to check Property (X’) which implies (X), one could find the following one:

(X’) All values of F are completely directed upward, i.e. for all A ⊂ D and x ∈ D it
follows from A 6∗ F(x) that there is b ∈ F(x) such that A 6∗ b.

Note, however, that (X’) is equivalent to the property that all values of F have either
the greatest element or are empty (to see this, let A = F(x)). In this case, we can give
another proof:

1.41 Corollary Let D be a sup-complete lattice, and let F : D → P∅(D) be an in-
creasing upward multifunction. If F has a subpoint and if all values of F have either the
greatest element F∗(x) ∈ F(x) or are empty, then F has the greatest fixed point u∗, which
is also the greatest subpoint of F.

Proof: We can assume that all values of F have the greatest element (otherwise, we
replace D by the sup-complete lattice

⋃
{d↑ : d ∈ D and F(d) 6= ∅}). Further, it is readily

seen that

Fix F∗ ⊂ Fix F ⊂ Sub F = Sub F∗.

Now, due to Proposition 1.26, F∗ : D→ D is increasing, and since F∗ has a subpoint like
F, it follows from Theorem 1.39 that F∗ has the greatest fixed point, which is also the
greatest element of Sub F∗ = Sub F and thus the greatest fixed point of F. #

What we have proved so far is summed up in Figure 1.1 (there, a theorem is followed
by a # if the marked result is shown in the proof of the theorem).

F is single-valued

All non-empty values of F
have the greatest element

F has Property (X) F has the greatest subpoint

F has the greatest fixed point

Prop. 1.37

Thm. 1.39 #

Thm. 1.41 #

Thm. 1.40 #

Fig. 1.1: The situation in case D is a sup-complete lattice, F : D → P∅(D) is increasing
upward, and F has a subpoint.

To be a sup-complete lattice is a rather strong property for a poset, thus there is need
for fixed point theorems with weaker assumptions on the underlying poset. To this end,
let us recall the results of [76, 77, 78, 79] and restate them with our notation. They are
not as general as possible (as we will see below), but the proof is lucid and the theorem
would be in fact enough for the applications presented in Part II of this thesis.
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Up to now, the main idea was to show that Sub F has a greatest element. Now, we
are going to give conditions that guarantee that Sub F has at least a maximal element.
To this end, let us recall the famous Lemma of Zorn.

1.42 Definition Let D be a poset.

(i) D is called a chain if all elements of D are comparable, i.e. for all a,b ∈ D it holds
either a < b, a = b or b < a.

(ii) D is called well-ordered if each M ∈ P(D) has the smallest element.

(iii) D is called inductive if each well-ordered subset of D has an upper bound in
D. #

1.43 Lemma (Zorn) Let D be an inductive poset, and let u ∈ D. Then D has a
maximal element u∗ such that u 6 u∗. #

1.44 Remark Zorn’s Lemma was introduced as an axiom in [124] (although the ideas
circulated even earlier, see [86]), and is equivalent to the Axiom of Choice. A simple proof
of Zorn’s Lemma from the Axiom of Choice can be found in [75]. See also the Appendix
of [18], where a proof via the Bourbaki-Witt fixed point Theorem is presented.

Note, however, that in literature, Zorn’s Lemma is usually stated with the presump-
tion that not only well-ordered subsets of D have an upper bound, but all chains. As
a consequence thereof, inductive sets are usually defined to be sets in which each chain
has an upper bound. However, as noted in [108, Remark 14], Zorn’s Lemma in its usual
formulation can be strengthened lightly to obtain Lemma 1.43 (to this end, note that

for an inductive set D, for each u ∈ D also the set u↑D is inductive). We thus followed
the spirit of [13] and defined inductive posets in such a way that inductive sets are those
sets for which Zorn’s Lemma is applicable.

Note moreover that an inductive poset D is always non-empty, since ∅ is a well-
ordered subset of D and thus there has to be an upper bound of ∅ in D (and, in fact,
every element of D is an upper bound of ∅). #

From Lemma 1.43 and Proposition 1.37 we have at once the following theorem:

1.45 Theorem Let D be a poset, and let F : D → P∅(D) be an increasing upward
multifunction. If Sub F is inductive, then for each subpoint u of F there is a maximal
fixed point u∗ of F such that u 6 u∗. #

However, it is not easy to check if Sub F is inductive. Thus, we once again introduce a
handy property, which is the property given in [77] with the difference that we consider
not all chains, but only well-ordered ones.

1.46 Definition Let D be a poset. A subset B ∈ P∅(D) is called universally in-
ductive in D if for any well-ordered set A ∈ P∅(D) such that A 6∗ B there is b ∈ B
such that A 6∗ b. #
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Note that the definition of universally inductive sets closely resembles the definition
of completely directed upward sets we introduced in Property (X’) above. The important
difference is that A is now assumed to be well-ordered, so that a universally inductive
set B is only forced to have a greatest element if B is well-ordered, too.

The following theorem slightly generalizes [77, Theorem 3.4] which presumes that all
non-empty chains have a supremum. However, the proof follows the same lines, and the
calculations are very similar to the ones presented in the proof of Theorem 1.39.

1.47 Theorem Let D be a poset in which each non-empty well-ordered set has the
supremum, and let F : D → P∅(D) be an increasing upward multifunction. If F has a
subpoint u and if all values of F are universally inductive in D, then F has a maximal
fixed point u∗ such that u 6 u∗.

Proof: In view of Theorem 1.45 we have only to show that Sub F is inductive. To this
end, let A ⊂ Sub F be any well-ordered set. If A = ∅, then u ∈ Sub F is an upper bound
of A. Otherwise, α ··= supA exists. Then, for all a ∈ A, we have a 6 α, and since F
is increasing upward, it follows a 6∗ F(a) 6∗ F(α). Since F(α) is universally inductive,
there is β ∈ F(α) such that A 6∗ β, which implies α 6 β ∈ F(α), i.e. α ∈ Sub F is an
upper bound of A. Therefore, Sub F is inductive. #

The new results are summed up in Figure 1.2:

Each well-ordered set in D has the supremum
and all values of F are universally inductive

Sub F is inductive

F has a maximal subpoint above u

F has a maximal fixed point above u

Thm. 1.47 #

Thm. 1.43

Prop. 1.37

Fig. 1.2: The situation in case D is a poset, F : D → P∅(D) is increasing upward, and F
has a subpoint u.

For applications it is convenient to have a topological criterion that guarantees that a
set is universally inductive, such as [77, Lemma 3.6], which states that every nonempty
compact subset of an ordered Hausdorff space is universally inductive. Thus, in Section
2.1 we will examine our fixed point theorems in the context of ordered topological spaces.
But next let us bring purely order-theoretical fixed point theorems to the next level.

1.2.2 Maximal Fixed Points

Let F,S : D→ P∅(D) be multifunctions such that S ⊂ F. Then we have FixS ⊂ Fix F, so
that F has a fixed point if S satisfies the requirements of any fixed point theorem, say
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Theorem 1.45. In the following, we are going to extend this principle in such a way, that
a multifunction F is known to have a maximal fixed point if only some increasing parts
of F behave well. To make this more clear, let us first provide the following proposition
about selections:

1.48 Proposition Let D be a poset, let F : D → P(D) be an increasing upward
multifunction, and let s : D → D be a single-valued increasing function such that s ⊂ F
(i.e. s(d) ∈ F(d) for all d ∈ D). Then the following assertions hold true:

(i) If U ⊂ D is well-ordered, then s(U) is well-ordered.

(ii) If Sub F is inductive, then for any well-ordered set U ⊂ Sub s the set s(U) has an
upper bound in Sub F.

Proof: To proof (i), let U ⊂ D be well-ordered and let M ⊂ s(U) be non-empty. Then
s−1(M) is non-empty as well and has the smallest element a. Then it follows s(a) 6 s(b)
for all b ∈ s−1(M), i.e. s(a) is the smallest element of M.

To prove (ii), note first that u ∈ Sub s is the same as to say u 6 s(u), from which it
follows s(u) ∈ F(u) 6∗ F(s(u)), i.e. s(u) ∈ Sub F. By (i) and the inductivity of Sub F the
assertion follows. #

Thus, we have proved that for any multifunction F satisfying the conditions of Theo-
rem 1.45 we have that Sub F is F-inductive in the following sense:

1.49 Definition Let D be a poset, and let F : D→ P∅(D) be a multifunction.

(i) A subset V ⊂ D is called F-selected if there is a well-ordered set U ⊂ Sub F and
a strictly increasing, bijective function s : U→ V such that

u 6 s(u) ∈ F(u) for all u ∈ U.

(ii) Sub F is called F-inductive if each F-selected set V ⊂ D has an upper bound
s∗ ∈ Sub F. #

We have the following elementary result about multifunctions F whose set of subpoints
is F-inductive:

1.50 Proposition Let D be a poset, and let F : D → P∅(D) be a multifunction such
that Sub F is F-inductive. Then the following holds true:

(i) F has a subpoint.

(ii) Every maximal subpoint of F is a maximal fixed point of F (cf. Proposition 1.37).

Proof: Ad (i): The empty function s : ∅ → ∅ is strictly increasing, surjective, and it holds
u 6 s(u) ∈ F(u) for all u ∈ ∅. Thus, ∅ is an F-selected subset of Sub F, and since Sub F
is F-inductive, it follows that ∅ has an upper bound in Sub F, i.e. Sub F is non-empty.

Ad (ii): Let s∗ ∈ Sub F be maximal and let a ∈ D be such that s∗ 6 a ∈ F(s∗).
By setting U ··= {s∗} and defining s : U → {a} trivially by s(s∗) ··= a, we see that {a}
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is an F-selected subset of the F-inductive set Sub F. Thus, there is s ∈ Sub F such that
s∗ 6 a 6 s. From the maximality of s∗ it then follows s∗ = a = s, and so s∗ ∈ F(s∗),
meaning that s∗ is a fixed point of F. Moreover, from Fix F ⊂ Sub F it follows that s∗ is
also maximal in Fix F. #

The aim of this subsection is to prove the following fixed point theorem, that gener-
alizes Theorem 1.45:

1.51 Theorem Let D be a poset, and let F : D→ P∅(D) be a multifunction. If Sub F
is F-inductive, then for each subpoint u of F there is a maximal fixed point u∗ of F such
that u 6 u∗.

To prove this central theorem (on page 40 below), we proceed in three steps:

1. We recall the comparison principle for well-ordered sets, Proposition 1.55.

2. We recall the chain generating principle, Lemma 1.58, introduced in [50].

3. We deduce from Lemma 1.58 the very general fixed point Theorem 1.59, from
which Theorem 1.51 then follows easily like in [24].

Although those results are already known in literature, we decided to give full-length
proofs for good reasons: The proofs nicely illustrate the concepts of order theory, our
notations differ in some aspects from the notations in literature, and—most important—
Theorem 1.51 is the theoretical core of this thesis and should thus be proved as compre-
hensible as possible.

1.52 Remark The subsequent proofs make no use of transfinite induction or Zorn’s
Lemma, but need only elementary tools of set theory. In order to prove Proposition 1.55
and Lemma 1.58, we even do not need the Axiom of Choice. However, we have to use
the Axiom of Choice in order to prove Theorem 1.59. #

First, let us recall that well-ordered posets have the very useful property that, given
two of them, one can mapped via an increasing bijection (which is readily seen to be
strictly increasing) to the first elements of the other. To make this more clear, let us use
the following order-theoretical notations:

1.53 Definition For a poset D and a ∈ D we call

a↓↓ ··= {x ∈ D : x 6 a and x 6= a} = {x ∈ D : x < a}

the initial segment generated by a. If M ⊂ D, we set a↓↓M ··= a
↓↓ ∩M. #

1.54 Definition Two posets D and D ′ are called isomorphic (as posets) if there is
an increasing bijection ϕ : D→ D ′ whose inverse ϕ−1 is also increasing. In this case, we
write D ∼ D ′. #

With these notations, the basic comparison principle for well-ordered sets reads as
follows:
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1.55 Proposition Let A and B be well-ordered posets. Then it holds A ∼ B or there
is β ∈ B such that A ∼ β↓↓ or there is α ∈ A such that α↓↓ ∼ B.

The proof of Proposition 1.55 is well-known and roughly sketched in, e.g., [47]. How-
ever, we will give it here in full length, preceded by two basic propositions:

1.56 Proposition Let D be a chain, let D ′ be a poset and let ϕ : D → D ′ be an
increasing bijection. Then ϕ−1 : D ′ → D is an increasing bijection, too, and for all
a ∈ D it holds ϕ(a↓↓) = ϕ(a)↓↓.

Proof: To prove that ϕ−1 is increasing, let a ′ < b ′ in D ′. Then it does not hold
ϕ−1(a ′) > ϕ−1(b ′), since otherwise monotonicity of ϕ would imply a ′ > b ′. Thus,
since all elements in D are comparable, we have ϕ−1(a ′) < ϕ−1(b ′). Consequently, ϕ−1

is increasing.

The second assertion is an easy consequence of the monotonicity of ϕ and ϕ−1: For
each b ′ ∈ ϕ(a↓↓) there is a ′ < a such that b ′ = ϕ(a ′) < ϕ(a), thus b ′ ∈ ϕ(a)↓↓
and, consequently, ϕ(a↓↓) ⊂ ϕ(a)↓↓. The reversed inclusion is obtained by taking any
b ′ ∈ ϕ(a)↓↓ and applying ϕ−1 to b ′ < ϕ(a). Since ϕ−1 is strictly increasing, we obtain
a ′ ··= ϕ−1(b ′) < a and thus b ′ = ϕ(a ′) ∈ ϕ(a↓↓). #

1.57 Proposition Let D be a well-ordered set. Then each decreasing subset A of D
either equals D or is an initial segment of D.

Proof: Let A ⊂ D be decreasing and assume that D\A is non-empty. Then the smallest
element β of D \ A exists and we claim A = β↓↓. Indeed, for all a < β we have a ∈ A
per definition of β, and from a ∈ A it follows a < β, since otherwise we would have
β 6 a and thus, since A is decreasing, β ∈ A, which contradicts the choice of β. #

Now, let us provide the promised proof of Proposition 1.55:

Proof of Proposition 1.55: Let A and B be well-ordered posets, and define the multi-
function

ψ : A→ P∅(B), a 7→ {b ∈ B : a↓↓ ∼ b↓↓}.

We claim that ψ has the following properties:

(i) ψ is increasing downward,

(ii) ψ(A) is a decreasing set,

(iii) the values of ψ have at most one element.

To prove (i), suppose a1 < a2 in A and let b2 ∈ ψ(a2) be given. Then there is an

increasing bijection ϕ2 : a
↓↓
2 → b

↓↓
2 . Since a1 < a2, b1 ··= ϕ2(a1) < b2 is well-defined,

and we conclude that the function

ϕ1 : a
↓↓
1 → b

↓↓
1 , x 7→ ϕ2(x)
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is well-defined, increasing and, thanks to Proposition 1.56, bijective. Thus, we have shown
a
↓↓
1 ∼ b

↓↓
1 , which means b1 ∈ ψ(a1). Consequently, ψ is increasing downward.

To prove (ii), let b2 ∈ ψ(A) and b1 ∈ b↓↓2 be given. Then there is a2 ∈ A such that

b2 ∈ ψ(a2), which implies that there is an increasing bijection ϕ2 : b
↓↓
2 → a

↓↓
2 . Then,

as above, there is a1 ∈ A such that b↓↓1 ∼ a
↓↓
1 , implying b1 ∈ ψ(A). Thus, ψ(A) is

decreasing.

Finally, to prove (iii), suppose b1,b2 ∈ ψ(a) for some a ∈ A. Then there are increasing

bijections ϕ1 : a
↓↓ → b

↓↓
1 and ϕ2 : a

↓↓ → b
↓↓
2 and we infer that

ϕ ··= ϕ2 ◦ϕ−1
1 : b↓↓1 → b

↓↓
2

is an increasing bijection. If b1 6= b2, we may assume b2 < b1, i.e. b2 ∈ b↓↓1 . Since

b2 /∈ b↓↓2 , we have b2 6= ϕ(b2). Now, let β be the smallest element of b↓↓1 such that
β 6= ϕ(β). Then we have β < ϕ(β), as otherwise we would have ϕ(β) < β and thus,
due to the definition of β and the monotonicity of ϕ, ϕ(β) = ϕ(ϕ(β)) < ϕ(β), which is

ridiculous. But from β < ϕ(β) ∈ b↓↓2 it follows β < b2 and thus there has to be γ ∈ b↓↓1
such that β = ϕ(γ). But this is not possible, neither for γ < β (for which ϕ(γ) = γ < β)
nor γ = β (since β 6= ϕ(β)) nor γ > β (for which, by monotonicity of ϕ, ϕ(γ) > ϕ(β)
in contrast to β < ϕ(β)). Thus, our assumption b1 6= b2 does not hold and we have
proved that the values of ψ have at most one element.

Now, let us define

A0 ··= {a ∈ A : ψ(a) 6= ∅}.

In consequence of (i) and (iii), we can interpret ψ : A0 → P(B) as an increasing, single-
valued function. Furthermore, the proof of (i) reveals that ψ is even strictly increasing,
so that ψ : A0 → ψ(A0) is an increasing bijection, i.e. A0 ∼ ψ(A0).

Now note that A0 is a decreasing subset of A (which follows readily from (i)) and
that ψ(A0) is a decreasing subset or B (which follows readily from (i) and (ii)). Thus, in
view of Proposition 1.57, we have one of the following three cases:

(i) A0 = A and ψ(A0) = B, thus A ∼ B.

(ii) A0 = A and ψ(A0) 6= B, thus A ∼ β↓↓ for some β ∈ B.

(iii) A0 6= A and ψ(A0) = B, thus α↓↓ ∼ B for some α ∈ A.

The forth conceivable case A0 6= A and ψ(A0) 6= B is not possible, since in this case we
would have ψ(α↓↓) = ψ(A0) = β

↓↓ for some α ∈ A \A0 and β ∈ B, thus β ∈ ψ(α) per
definition of ψ, which contradicts α /∈ A0. #

With help of this comparison principle, we can prove the following chain generating
principle like in [24]. Its merit is that it provides a tool to generate a unique chain with
a nice order-theoretical property (which will be used to prove Theorem 1.59).
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1.58 Lemma Let D be a poset, let D ⊂ P∅(D) be a family of subsets of D with ∅ ∈ D,
and let d : D → D be a single-valued function. Then there is a unique well-ordered set
C ∈ P(D) such that

c ∈ C if and only if c = d(c↓↓C ). (1.4)

Furthermore, if C ∈ D, then d(C) is not a strict upper bound of C.

Proof: Let us call A ∈ P(D) a d-set if A is well-ordered and if

α ∈ A implies α = d(α↓↓A ). (1.5)

Note that there are d-sets, e.g. {d(∅)}. Our aim is to show that the union of all d-sets is
the well-ordered set C ∈ P(D) we are searching for. To this end, let us first prove that
by use of Property (1.5) we can strengthen Proposition 1.55 in the following way:

(D) For all d-sets A and B it either holds A = B or there is β ∈ B such that A = β↓↓B
or there is α ∈ A such that α↓↓A = B.

Indeed, for d-sets A and B we have, due to Proposition 1.55, ϕ : A→ B or ϕ : A→ β
↓↓
B

or ϕ : α↓↓A → B for suitable elements β ∈ B or α ∈ A and an increasing bijection ϕ. In
each of these cases, we are done if ϕ(a) = a for all a ∈ A0, A0 being the domain of ϕ.
So let us assume that M ··= {a ∈ A0 : a 6= ϕ(a)} ⊂ A is non-empty and let γ be the
smallest element of M. Then we have, due to Proposition 1.56,

γ
↓↓
A0

= ϕ(γ↓↓A0
) = ϕ(γ)↓↓

ϕ(A0)
. (1.6)

But A0 and ϕ(A0) are readily seen to be d-sets like A and B (in fact, each descreasing
subset of a d-set is a d-set, too), so that from (1.6) we have

γ = d(γ↓↓A0
) = d(ϕ(γ)↓↓

ϕ(A0)
) = ϕ(γ),

which contradicts γ ∈M. Thus, M is empty and Property (D) of d-sets holds true.

Now, let us prove that the union of all d-sets

C ··=
⋃

{A ∈ P(D) : A is a d-set}

has all demanded properties: First, to prove that C is well-ordered, let N ⊂ C be non-
empty. Then let A be a d-set such that N ∩ A is non-empty and let α be the smallest
element of N∩A. We claim that α is the smallest element of N. To this end, let β ∈ N\A

be arbitrary and let us show that α 6 β: From β ∈ C\A it follows that there is a d-set B
such that β ∈ B and B 6⊂ A. From Property (D) we deduce that there is γ ∈ B such that

A = γ
↓↓
B . In particular, both α and β belong to the chain B, so they are comparable,

and the only possibility is α < β. Indeed, from β 6 α it would follow β < γ and thus
β ∈ A, which contradicts the choice of β. Thus, α is indeed the smallest element of N,
and C is seen to be well-ordered.
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Second, let us prove that C is not only well-ordered, but even a d-set: Let α ∈ C,
then we have α ∈ A for some d-set A and, since A ⊂ C, we have α↓↓A ⊂ α

↓↓
C . To show the

reversed inclusion, let β ∈ C be given such that β < α. Then, like above, from β /∈ A it
would follow that A is the initial segment of some other d-set B containing β, and thus
β ∈ A (implying that β /∈ A is not possible), and so we have β ∈ α↓↓A . Since A is a d-set,

we obtain finally α = d(α↓↓A ) = d(α↓↓C ), thus C is a d-set, too.

Third, to prove that not only (1.5), but even (1.4) holds, suppose c = d(c↓↓C ). Then,

since C is a d-set, c↓↓C ∪ {c} is a d-set, too, and thus c belongs to the union C of all d-sets.

Fourth, to prove that C is the unique well-ordered set satisfying (1.4), let B be a

d-set such that b = d(b↓↓B ) implies b ∈ B. Then we have B ⊂ C and due to Property

(D) it follows B = C, since otherwise there would be γ ∈ C such that B = γ↓↓C , implying

d(γ↓↓B ) = d(γ↓↓C ) = γ and thus γ ∈ B, which is a contradiction.

Finally, suppose that d(C) is defined, then d(C) is no strict upper bound of C. Other-

wise, we have c < d(C) for all c ∈ C which is the same as to say C = d(C)↓↓C , from which
it follows that C ∪ {d(C)} is a d-set not contained in C, which contradicts the definition
of C. #

Consequences of Lemma 1.58 and the Axiom of Choice are a generalized version of
Zorn’s Lemma (for details we refer to [50]), and Theorem 1.51. To prove the latter, we
proceed by deducing from Lemma 1.58 the following basic fixed point theorem like in
[24, Lemma 2.7]).

1.59 Theorem Let D be a poset, and let F : D→ P∅(D) be a multifunction. If Sub F
is F-inductive, i.e. if F has Property (Y), given by

(Y) If U ⊂ Sub F is a well-ordered set, s : U → D a strictly increasing mapping and
u 6 s(u) ∈ F(u) for all u ∈ U, then s(U) has an upper bound s∗ ∈ Sub F,

then F has a maximal fixed point which is also a maximal subpoint of F.

Proof: We are going to apply Lemma 1.58. To this end, set

D ··= {W ⊂ D :W is well-ordered and has a strict upper bound in Sub F}.

Then, we note first that ∅ belongs to D, since F has at least one subpoint due to Propsition
1.50, which is a strict upper bound of ∅. Further, let us define a function d : D → D as
follows: Let v : D → Sub F be a function such that v(W) is a strict upper bound of W
and choose, for any W ∈ D, d(W) ∈ D such that

v(W) 6 d(W) ∈ F(v(W))

(where we have used the Axiom of Choice twice). Then, thanks to Lemma 1.58, there is
a unique well-ordered set C ∈ P(D) such that

c ∈ C if and only if c = d(c↓↓C ).
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In particular, for each c ∈ C we have c↓↓C ∈ D, so that the function

u : C→ Sub F, c 7→ u(c) = v(c↓↓C )

is well-defined. By definitions of v and d it follows

u(c) = v(c↓↓C ) 6 d(c↓↓C ) ∈ F(v(c↓↓C )) = F(u(c)) for all c ∈ C. (1.7)

Now, let U ··= u(C) and note the following:

(a) From (1.7) it follows U ⊂ Sub F and, since C is a d-set, u(c1) 6 c1 for any c1 ∈ C.
If c1 < c2 for some c2 ∈ C, we deduce, by definition of u and v, u(c1) 6 c1 < u(c2).
Since C is a chain, it follows that u : C→ U is an increasing bijection.,

(b) From (a) and Proposition 1.56 we have that s ··= u−1 : U→ D is strictly increasing.
Since C is well-ordered and non-empty, we further readily obtain that U ⊂ Sub F is
well-ordered and non-empty, too. Lastly, from (1.7) and since C is a d-set, we have
u 6 s(u) ∈ F(u) for all u ∈ U.

From (b) and (Y) it now follows that C = s(U) has an upper bound s∗ ∈ Sub F, which
is maximal in Sub F. Indeed, for any s ∈ Sub F we cannot have s∗ < s, since otherwise
C ∈ D and d(C) is a strict upper bound of C which contradicts Lemma 1.58. Finally,
Proposition 1.50 ensures that s∗ is a maximal fixed point of F. #

Now, our central fixed point theorem follows readily:

Proof of Theorem 1.51: Let D and F be such that the assumptions of Theorem 1.51 are
satisfied, i.e. the assumptions of Theorem 1.59 hold true and a subpoint u of F is fixed.
Then let F ′ be the restriction of F to the poset D ′ ··= u↑, that is

F ′ : D ′ → P∅(D
′), a 7→ F(a) ∩D ′.

We claim that Sub F ′ is F ′-inductive. Indeed, let U ⊂ Sub F ′ ⊂ Sub F be a well-ordered
set in D ′, and let s : U→ D ′ ⊂ D be a strictly increasing function such that

u 6 s(u) ∈ F ′(u) ⊂ F(u) for all u ∈ U.

If s(U) = ∅, then u ∈ Sub F ′ is an upper bound of s(U). If s(U) 6= ∅, let s∗ ∈ Sub F be
any upper of s(U) (which exists since Sub F is F-inductive). Then, for any v ∈ s(U), it
holds u 6 v 6 s∗ 6∗ F(s∗), from which it follows s∗ ∈ D ′. Thus, s∗ ∈ Sub F ′ is an upper
bound of s(U).

Since Sub F ′ is F ′-inductive, F ′ has, thanks to Theorem 1.59, a maximal fixed point
u∗, which is, in view of F ′ ⊂ F, also a fixed point of F. Moreover, if v∗ ∈ D is any fixed
point of F such that u∗ 6 v∗, we have u 6 u∗ 6 v∗, thus v∗ ∈ D ′ is a fixed point of F ′.
Since u∗ is maximal in Fix F ′, it follows u∗ = v∗, and so u∗ is a maximal fixed point of
F such that u 6 u∗. #
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Comparing the structure of Theorems 1.47 and 1.51, we see that the technical con-
dition (Y) (meaning that Sub F is F-inductive) comprises both conditions on D and F
and the existence of at least on subpoint. However, in analytic applications dealing with
well-ordered sets is not standard, so it is convenient to introduce conditions on D such
that (Y) can be formulated in terms of increasing sequences.

The naive approach would be to consider only posets D in which all well-ordered
chains are increasing sequences. However, this is a very strong property which not even
holds for the basic set of analysis, the compact interval [0, 1] ⊂ R. Indeed, consider the
sets

C0 ··= {1 − 1/n : n ∈ N} and C1 ··= C0 ∪ {1}.

If M ⊂ C0 is non-empty and N ⊂ N such that M = {1− 1/n : n ∈ N}, then 1− 1/minN
is the smallest element of M. Thus, C1 is seen to be well-ordered. However, if C1 = (cn)
for some sequence (cn) (i.e. C1 = {cn : n ∈ N}), then there is n1 such that 1 = cn1 , and
we have cn2 < cn1 for every (of infinitely many) n2 such that cn2 ∈ C0, so that (cn) is
seen to be not increasing.

Fortunately, there is a much more weaker assumption on a poset D which allows us
to consider only (possibly finite) strictly increasing sequences. It reads as follows:

(B) For each well-ordered subset C ofD such that each possibly finite strictly increasing
sequence in C has an upper bound in D, there is a possibly finite strictly increasing
sequence in C that has the same upper bounds as C.

(To avoid confusion, it should be noted that we allow also for the empty sequence
when speaking of possibly finite sequences.)

1.60 Corollary Let D be a poset satisfying Property (B), and let F : D → P∅(D) be
a multifunction. If F has Property (Z), given by

(Z) For all possibly finite strictly increasing sequences (un) ⊂ Sub F and (sn) ⊂ D

such that un 6 sn ∈ F(un) for all n, there is an upper bound s∗ ∈ Sub F of (sn),

then F has a maximal fixed point u∗. If u is any subpoint of F, then u∗ can be chosen
such that u 6 u∗.

Proof: Let U ⊂ Sub F be a well-ordered set and let s : U → D be a strictly increasing
mapping such that u 6 s(u) ∈ F(u) for all u ∈ U. Then for every possibly finite strictly
increasing sequence (sn) ⊂ s(U) ⊂ D let un ··= s−1(sn), such that (un) ⊂ U ⊂ Sub F is a
possibly finite strictly increasing sequence with un 6 sn ∈ F(un). From the assumptions,
(sn) has an upper bound s∗ ∈ Sub F ⊂ D. Thus, due to (B) and since s(U) is well-ordered,
there is a possibly finite strictly increasing sequence in s(U) which has the same upper
bounds as s(U), and we can assume that this sequence is given by (sn). Consequently,
s∗ ∈ Sub F is an upper bound of s(U), and Sub F is seen to be F-inductive. This shows
that all assumption of Theorem 1.51 are satisfied, thus F has a maximal fixed point u∗

with the required properties. #
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It may seem that (B) is a rather general property for a poset D, but in fact it implies
that every well-ordered subset of D is countable, which gives a nice necessary condition
for (B).

1.61 Lemma Let D be a poset. Then Property (B) implies that each well-ordered
subset C of D is countable, which in turn is equivalent to the property

(C) Each well-ordered subset C of D possesses a countable subset B such that C 6∗ B
(such a set B is called cofinal chain of C).

Proof: Let us first prove the claimed equivalence. To this end, it suffices to prove that
(C) implies that all well-ordered subsets of D are countable. In order to do so, we follow
the proof of [50, Lemma 1.1.4]):

Suppose that (C) holds true and let C ⊂ D be well-ordered. Then we distinguish two
cases:

(i) If C has the greatest element α, then it follows C = α↓↓ ∪ {α}.

(ii) If C has no greatest element, let B ⊂ C be a countable cofinal chain of C. Then,
for all c ∈ C there is c ′ ∈ C and some b ∈ B such that c < c ′ 6 b, which implies
that C is the union of all (countably many) b↓↓C , b ∈ B.

Now, if c↓↓ is countable for all c ∈ C, it follows in both cases (i) and (ii) that C is

countable. So let us assume that there is z ∈ C such that z↓↓C is not countable, and let z

be the smallest such element. Then, by construction, Z ··= z
↓↓
C is a well-ordered subset

of D such that c↓↓Z = c↓↓C is countable for all c ∈ Z, from which it follows like above that

Z = z
↓↓
C is countable—which contradicts our assumption. Thus, such z does not exist

and C is seen to be countable.
Now, let us prove that also under condition (B) all well-ordered subsets of D are

countable. To this end, we could use some knowledge about infinite ordinals and the
least uncountable ordinal ω1. However, since uncountable ordinals play no further role
in this thesis, let us formulate the proof more elementary:

Let us by way of contraposition assume that there is a well-ordered uncountable chain
C in D. Then we can assume that c↓↓C is countable for each c ∈ C (as otherwise there

is a smallest z ∈ C such that z↓↓C is uncountable, in which case we replace C by z↓↓C ).
Now take any possibly finite strictly increasing sequence (cn) in C and let B be the

union of all cn
↓↓
C . Since B ⊂ C, B is well-ordered like C, and from the countability of

each cn
↓↓
C it follows that B is countable. Further, B is a decreasing set, from which it

follows readily C ′ = B whenever B is a cofinal chain of some set C ′ ⊂ C. Especially,
such sets C ′ are countable, whence B is not a cofinal chain of C. Thus in C there is a
strict upper bound of B, and we take c to be the smallest one. This element c cannot
be an upper bound (and thus a maximal element) of C, since otherwise we would have

C = c↓ = c
↓↓
C ∪ {c} = B ∪ {c} and thus C would be countable. Thus, all possibly finite

strictly increasing sequences in C have an upper bound c which is no upper bound of C,
whence Property (B) does not hold. #
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The core results of this subsection are summed up in Figure 1.3.

D has Property (B)
and F has Property (Z)

F is increasing upward
and Sub F is inductive

Sub F is F-inductive

F has a maximal fixed point

F has a maximal fixed point above every subpoint

Cor. 1.60 #

Thm. 1.59

Thm. 1.51

Prop. 1.48

Fig. 1.3: The situation in case D is a poset and F : D→ P∅(D) is a multifunction (which
has, implicitly, a subpoint)

In Section 2.1 we will give some mild topological conditions which guarantee that
Properties (B) and (Z) hold, see Propositions 2.6 and 2.7, and Theorems 2.10 and 2.30.

1.2.3 Greatest Fixed Points

The fixed point theorems presented in Subsection 1.2.2 do not ensure that there are
greatest fixed points. However, there is no need to use a theorem for complete posets,
since there is a simple result establishing a connection with directed upward sets:

1.62 Definition Let D be a poset. A set A ⊂ D is called directed upward if for
all a,b ∈ A there is c ∈ A such that {a,b} 6∗ c. By duality, A is called directed
downward if for all a,b ∈ A there is c ∈ A such that c 6∗ {a,b}. #

1.63 Lemma Let D be a poset and suppose that F : D→ P∅(D) has a maximal fixed
point. Then F has a greatest fixed point if and only if Fix F is directed upward.

Proof: If a is the greatest fixed point of F, than Fix F is obviously directed upward. If
Fix F is directed upward, then for a maximal fixed point a ∈ Fix F and any b ∈ Fix F
there is some c ∈ Fix F such that a 6 c and b 6 c. Since a is maximal, it follows a = c
and thus b 6 a, proving that a is the greatest fixed point. #

To apply Lemma 1.63, we need conditions that guarantee that the set of fixed points
is directed upward. For this purpose, we introduce the following properties:

1.64 Definition Let D be a poset and let F : D→ P∅(D) be a multifunction.

(i) F is called permanent upward if x 6 y in D and z ∈ F(x) imply z ∈ F(y).

(ii) F is called fixed upward if a 6 b ∈ F(a) imply b ∈ F(b).

Now let D be a sup-semilattice.
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(iii) F is said to be of type (U) if

a,b ∈ F(a∨ b) imply a∨ b 6∗ F(a∨ b).

(iv) F is said to be of type (U+) if

c 6 a∨ b and a,b ∈ F(c) imply a∨ b 6∗ F(c). #

1.65 Remark Clearly, any operator that is permanent upward is both increasing
upward and fixed upward, whereas the reversed implication does not hold in general.
Furthermore, if F has directed upward values, it is of type (U+), and if it is of type (U+),
it is of type (U), whereas the reversed implications do not hold in general. #

1.66 Lemma Let D be a sup-semilattice and let F : D → P∅(D) be a multifunction.
Suppose further that one of the following conditions holds true:

(i) F is permanent upward and of type (U).

(ii) F is increasing upward, fixed upward and of type (U+).

Then Fix F is directed upward.

Proof: First, let F satisfy the conditions in (i), let ai ∈ Fix F, i = 1, 2, be arbitrary
fixed points and set a3 ··= a1 ∨ a2. F is permanent upward, so from ai 6 a3 it follows
ai ∈ F(ai) ⊂ F(a3), i = 1, 2. Since F if of type (U), we deduce a3 6 b for some b ∈ F(a3)
and it follows, again since F is permanent upward, b ∈ F(b), that is, b ∈ Fix F. Thus,
Fix F is directed upward.

Now, let F satisfy the conditions in (ii) and let ai, i = 1, 2, 3, be given as above.
Since F is increasing upward, there are a ′i ∈ F(a3) such that ai 6 a ′i, i = 1, 2. Since
a3 6 a ′1 ∨ a

′
2 and since F is of type (U+), there is some b ∈ F(a3) such that it holds

a3 6 a ′1 ∨ a ′2 6 b. Since F is fixed upward, we deduce b ∈ F(b), that is, b ∈ Fix F.
Consequently, Fix F is directed upward. #

For applications, usually the following corollary of Lemma 1.66 is enough:

1.67 Corollary Let D be a sup-semilattice, and let F : D → P∅(D) be a permanent
upward multifunction with directed upward values. Then Fix F is directed upward. #

1.68 Remark Condition (ii) of Lemma 1.66 can be weakened in such a way, that
F is not supposed to be fixed upward, but only weakly fixed upward in the sense that
u 6 v ∈ F(u) implies w ∈ F(w) for some w > v. #

1.69 Remark Simple examples of multifunctions can be visualized with graphs in
the following way: The sup-semilattice D ⊂ R2 is taken as the set of nodes of a directed
graph, and there is an edge (a,b) that points to b if and only if b ∈ F(a). Thus, F is,
e.g., fixed upward if and only if any upward pointing edge (where R2 is equipped with
the usual componentwise partial order) points to a node with a loop. The examples in
Figures 1.4 and 1.5 show that Lemma 1.66 is optimal in the following two senses:
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(i) No weaker combination of the considered properties is enough to guarantee that
a multivalued operator over a sup-semilattice has a directed upward set of fixed
points.

(ii) No logically permitted combination of these properties in combination with Fix F
having a maximal and a minimal fixed point (and thus being directed upward)
implies another of these properties.

To shorten notations, we have captioned a diagram with the letters p, i, f, U and U+ if
and only if the depicted operator is permanent upward, increasing upward, fixed upward,
or is of type (U) or type (U+), respectively.

For example, the first graph of Figure 1.4 depicts a multifunction F on the lattice
{a,b, c,d}. Its set of fixed points Fix F = {a,b,d} is not directed upward since the only
upper bound of {b,d} is c. Further, F is permanent upward, since for every edge (b, x)
and (d,y) there is an edge (c, x) and (c,y), respectively, and for every edge (a, x) (which
is only (a,a)) there are edges (b, x), (c, x) and (d, x). Consequently, F is also increasing
upward and fixed upward. Further, F is not of type (U), since c = b∨d, b,d ∈ F(c), but
there is no x ∈ F(c) such that c 6 x. Consequently, F has neither Property (U+) nor are
all its values directed upward. #

a
b

c

d

p/i/f i/f/U i/U+/U f/U+/U

Fig. 1.4: Multifunctions whose set of fixed points is not directed upward.

In the analytic application of Part II, we will work not only with one, but with
two multifunctions. The main operator S maps functions to solutions of the considered
problem, while the suboperator Smaps functions to so called subsolutions. As a matter of
fact, solutions and subsolution are defined carefully in such a way that the suboperator
S has good order-theoretical properties while the main operator S has good analytic
properties. The following proposition demonstrates the order-theoretical interplay of S
and S in an abstract setting.

1.70 Proposition Let D and D ′ be posets, and let F,G : D→ P∅(D
′) be two multi-

functions.

(i) Suppose that F and G are equivalent in the sense that F(v) 6∗ G(v) 6∗ F(v) for all
v ∈ D. Then F is increasing upward if and only if G is increasing upward.

(ii) Suppose that F and G are equivalent in the sense that Fix F 6∗ FixG 6∗ Fix F.
Then F and G have the same maximal and greatest fixed points.
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p/i/f/U+/U i/f/U+/U i/U+/U f/U+/U U+/U

p/i/f/U i/f/U i/U f/U U

p/i/f i/f i f ∅

Fig. 1.5: Multifunctions with minimal and maximal fixed points.

Proof: Suppose first that F(v) 6∗ G(v) 6∗ F(v) for all v ∈ D and assume that G is
increasing upward. Then, for all a,b ∈ D such that a 6 b it follows

F(a) 6∗ G(a) 6∗ G(b) 6∗ F(b),

which means that F is increasing upward. By symmetry, the claim in (i) is proved.

Suppose now that Fix F 6∗ FixG 6∗ Fix F and let a be a maximal fixed point of F.
Then there are b ∈ FixG and c ∈ Fix F such that a 6 b 6 c and since a is maximal, it
follows a = c and thus a = b ∈ FixG. Further, let d ∈ FixG be such that a 6 d, then
there is e ∈ Fix F such that a 6 d 6 e, implying a = e and thus a = d, so that a is
maximal in FixG. By symmetry, we deduce that F and G have the same maximal fixed
points.

If the greatest fixed point a of F exists, it is the only maximal fixed point of F and
thus the only maximal fixed point of G. Since for any b ∈ FixG there is some c ∈ Fix F
such that b 6 c 6 a, we deduce that a is in fact the greatest element of FixG. By
symmetry, the greatest fixed points of F and G coincide. #

Finally, let us combine the results so far to obtain an abstract purely order-theoretical
framework combining the concepts of subsolutions and subpoints.
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1.71 Theorem Let D be a poset, and let S : D → P∅(D) and S : D → P∅(D) be
multifunctions such that the following conditions are satisfied:

(i) S has a subpoint u, i.e. u 6∗ S(u).

(ii) S is permanent upward and of type (U), or S is increasing upward, fixed upward
and of type (U+)

(which holds especially if S is permanent upward and has directed upward values).

(iii) SubS is S-inductive

(which holds especially if D has property (B) and if S has property (Z)).

(iv) For all v ∈ D it holds S(v) 6∗ S(v) 6∗ S(v).

(v) It holds FixS 6∗ FixS.

Then FixS has the greatest element u∗ and it holds u 6 u∗.

Proof: Due to the first part of Proposition 1.70, S : D → P∅(D) is increasing upward
like S, and we have, since 6∗ is transitive, u 6∗ S(u). Thus, Theorem 1.51 ensures the
existence of some maximal element u∗ ∈ FixS such that u 6 u∗. Since u ∈ SubS can
be an arbitrary subpoint of S, in particular we infer FixS 6∗ FixS. Thus, by the second
part of Proposition 1.70, it follows that S and S have the same maximal and greatest
fixed points. In particular, u∗ is a maximal fixed point of S. From Lemmata 1.63 and
1.66 we thus deduce that S has the greatest fixed point u∗∗, which is also the greatest
fixed point of S. Since u 6 u∗ 6 u∗∗, the proof is complete. #

In the next chapter, we will extend this framework by topological methods in order to
find, in Part II, smallest and greatest solutions of multivalued variational inequalities.
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2 Topology

In this chapter, let us strengthen our purely order-theoretical insights by use of topologi-
cal results on linear spaces, in order to obtain a general framework for solving variational
inequalities with multivalued bifunctions. Further, let us collect some well-known results
from Functional Analysis.

The notions of posets with special structure, such as ordered topological spaces or
ordered Banach spaces, and their basic properties are standard and only presented to
the extent required in this thesis. For more information and deeper results, we refer to
standard textbooks, e.g. [37, 56, 100, 103, 120, 121, 122, 123], to the monographs [28, 50],
and—for a wealth of information about multifunctions—to [53].

2.1 Order-Topological Fixed Point Theorems

In this first section, we are going to continue the study of fixed point theorems started
in Section 1.2. The order-theoretical fixed point theorem that is most suitable for appli-
cations is Corollary 1.60. There, the poset D is assumed to satisfy Property (B), which
reads as follows:

(B) For each well-ordered subset C ofD such that each possibly finite strictly increasing
sequence in C has an upper bound in D, there is a possibly finite strictly increasing
sequence in C that has the same upper bounds as C.

To ensure the existence of such a sequence, we will use a central tool of topology: com-
pactness. Especially, this will be useful if D is not only an ordered topological space,
but even a reflexive ordered Banach space, because then we have that bounded sets are
sequentially weakly compact. Further, we will find simple topological conditions such
that a multifunction F : D → P∅(D) has Property (Z) presented above, which reads as
follows:

(Z) For all possibly finite strictly increasing sequences (un) ⊂ Sub F and (sn) ⊂ D

such that un 6 sn ∈ F(un) for all n, there is an upper bound s∗ ∈ Sub F of (sn).

To this end, we will demand that the values of F are weakly closed subsets of a reflexive
Banach space. These results then will constitute our central framework for the applica-
tions in Part II.

In the following, we will work only with posets D that have more structure. For a
steady reminder, such spaces will by denoted by capitals W, X, Y or Z, or sometimes R.
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2.1.1 Ordered Topological Spaces

Recall that a topological space is a set X together with a topology τ, which is a
family τ ⊂ P∅(X) of subsets of X such that ∅ ∈ τ and X ∈ τ, and such that τ is
closed under unions and finite intersections. The elements of τ are called open and
their complements are called closed. For a sequence (xn) ⊂ X, the topology τ defines
a convergence xn → x in the usual way, in which case we also write limn xn = x. If
C ⊂ X is closed and (xn) ⊂ C converges, then limn xn ∈ C. If for all closed C ⊂ X and
each element x ∈ C there is a sequence (xn) ⊂ C such that xn → x, then X = (X, τ)
is called Fréchet-Uryson. If Y is also a topological space, then a function f : X → Y is
called continuous if f−1(U) = {x ∈ X : f(x) ∈ U} is open in X for every open subset U
of Y.

To bring topology and order theory together, we will use the following compatibility
condition:

2.1 Definition Let (X,6) be a poset, and let (X, τ) be a topological space. Then the
triple X = (X,6, τ) is called ordered topological space if for all a ∈ X the sets a↑

and a↓ are closed. #

Of course, R is an ordered topological space. This generalizes to chains in the following
way:

2.2 Definition Let X be a chain. Then a topology τ on X is called interval topology
on X if the sets a↓↓ and a↑↑ are a subbase of τ (i.e. all sets in τ are a union of (possibly
infinitely many) finite intersections of sets a↓↓ and b↑↑). #

2.3 Proposition Let (X,6) be a chain, and let τ be its interval topology. Then the
triple (X,6, τ) is an ordered topological space.

Proof: Let a ∈ X, then a↑ = X \a↓↓ and a↓ = X \a↑↑ are complements of open sets and
thus closed. #

2.4 Remark If (X,6, τ) is an ordered topological space, then (X,>, τ) is an ordered
topological space, so that order-theoretical duality methods apply. #

The definition of ordered topological spaces is chosen such that limits preserve the
order-structure of X and such that we have a way of computing suprema of increasing
sequences via subsequences:

2.5 Proposition Let X be an ordered topological space, and let (xn) ⊂ X be a sequence.

(i) If (xn) converges and if x ∈ X is such that xn 6 x for all n, then limn xn 6 x.

(ii) If (xn) is increasing, then each convergent subsequence (yn) of (xn) converges to
the supremum x∨ of (xn).

Proof: Assertion (i) follows readily since x↓ is closed.
To prove (ii), let y ∈ D be such that limn yn = y. Then we have for every m, up to

a subsequence, (yn) ⊂ xm↑, thus xm 6 y by the dual of (i), from which it is seen that y
is an upper bound of (xn). Further, for all upper bounds x of (xn) it holds yn ∈ x↓ and
thus y 6 x by (i), implying that y is the smallest upper bound of (xn), i.e. y = x∨. #
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Proposition 2.5 helps us to find a topological criterion that guarantees that a poset
has Property (B). Let us start with the following intermediate step:

2.6 Proposition Let X be an ordered topological space with Property (B’), given by

(B’) Each non-empty well-ordered subset C of X contains an increasing sequence which
converges to supC.

Then X has Property (B).

Proof: Let C be a well-ordered subset of X. The case of C = ∅ makes no trouble, so let
us assume that C is non-empty. Then, by Property (B’), there is an increasing sequence
(xn) ⊂ C such that limn xn = supC. If c is any upper bound of (xn), it follows by
Proposition 2.5 that supC 6 c, implying that c is an upper bound of C, too. Thus,
C and (xn) have the same upper bounds. Since (xn) is maybe not strictly increasing,
define (yn) recursively via

y1 ··= x1, yn+1 ··= min{xk : xk > yn}

for all n for which yn is well-defined. Then, (yn) is a possibly finite strictly increasing
sequence with the same upper bounds as (xn) and thus with the same upper bounds as
C, whence X has Property (B). #

Now, we have two tasks: We have to find a topological criterion which guarantees
that a well-ordered set C has the supremum, and we have to make sure that this supre-
mum is attained as the limit of some subsequence of C. Both tasks can be tackled by
incorporating compactness. To this end, recall that a subset M of a topological space X
is called compact if every open cover of M has a finite subcover, and that M is called
relatively compact if the closure of M is compact. Then, with the ideas of the proof
of [50, Proposition 1.1.4], we can prove the following proposition:

2.7 Proposition Let X be an ordered topological space, and let C ⊂ X be a relatively
compact chain. Then supC exists. If X is Fréchet-Urysohn, then limn xn = supC for
some increasing sequence (xn) ⊂ C.

Proof: Let C be the closure of C. Then the family C ··= {c↑∩C : c ∈ C} consists of closed
subsets of C such that the intersection of finitely many members of C is non-empty. Since
each c↑ ∩ C is compact, it follows that there is α ∈

⋂
C, i.e. it holds α ∈ C and c 6 α

for all c ∈ C. It follows that α = supC. Indeed, α is an upper bound of C, and for all
upper bounds β of C we have C ⊂ β↓, since β↓ is closed, and so α 6 β.

Next, let X be Fréchet-Urysohn. Then from supC ∈ C it follows that there is a
sequence (xn) ⊂ C which converges to supC. However, (xn) may be not increasing. In
order to fix this, let us first assume that (xn) has the greatest element xn0 . Then, by
Proposition 2.5, it follows supC = limn xn 6 xn0 6 supC, such that xn0 ∈ C is seen
to be the greatest element of C. Then, (xn) may not be increasing, but the constant
sequence (supC) is increasing and converges to supC.
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Now, let us assume that (xn) has no greatest element. Then to each xn there is xm,
m > n, such that xn < xm (as otherwise xm 6 xn for allm > n and the greatest element
of {x1, x2, . . . , xn} would be the greatest element of (xn)). Thus, we can recursively define
an increasing subsequence (yn) of (xn) by setting

y1 ··= x1 and yn+1 ··= min{xm : xn < xm and n < m}.

It is readily seen that limn yn = limn xn, i.e. (yn) ⊂ C converges to supC. #

From Propositions 2.6 and 2.7 and the fact that each subset of a compact set is
relatively compact, we have at once the following corollary of Corollary 1.60, which is
our first fixed point result on ordered topological spaces:

2.8 Corollary Let X be an ordered topological space which is compact and Fréchet-
Urysohn, and let F : X → P∅(X) be a multifunction. If F has a subpoint u, and if F has
Property (Z), then F has a maximal fixed point u∗ which is also a maximal element of
Sub F and which satisfies u 6 u∗. #

Now, it is the right time to consider again increasing upward multifunctions F to
obtain the analogue of Theorem 1.47 for compact ordered topological spaces. To this
end, let us introduce the following analogue of universally inductive sets:

2.9 Definition Let D be a poset. A subset B ∈ P∅(D) is called countably uni-
versally inductive in D if for any increasing sequence (an) ⊂ D such that (an) 6∗ B
there is b ∈ B such that (an) 6∗ b. #

Note that each universally inductive set is countably universally inductive, since an
increasing sequence (an) is a well-ordered chain. Indeed, if M ⊂ (an) is non-empty, set
N ··= {n ∈ N : an ∈M}, then minM = aminN.

2.10 Theorem Let X be an ordered topological space which is compact and Fréchet-
Urysohn, and let F : X→ P∅(X) be an increasing upward multifunction. If F has a subpoint
u and if all values of F are countably universally inductive, then F has a maximal fixed
point u∗ which is also a maximal element of Sub F and which satisfies u 6 u∗.

Proof: In view of Corollary 2.8, we have only to prove that F has Property (Z), so let
(un) and (sn) be increasing sequences in X such that un 6 sn ∈ F(un) for all n.
Then, by Proposition 2.7, s ··= sup(sn) exists, and we have un 6 sn 6 s. Since F is
increasing upward, it follows sn ∈ F(un) 6∗ F(s), i.e. (sn) 6∗ F(s). By assumption, F(s)
is countably universally inductive, so that (sn) 6 s∗ for some s∗ ∈ F(s). By definition of
s, we have s 6 s∗, from which we have s∗ ∈ F(s) 6∗ F(s∗). Thus, s∗ ∈ Sub F is an upper
bound of (sn), and F has Property (Z). #

In applications, compactness of X is a rather strong property, especially in function
spaces, and it is rather technical to check if the values of F are countably universally
inductive. We will overcome these problems in the next subsection by considering ordered
linear spaces, especially reflexive ordered Banach spaces.
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2.1.2 Reflexive Ordered Banach Spaces

Recall that a linear space over a field K is a set X together with an addition + and a
scalar multiplication · that satisfy the usual axioms. Especially, there exists some element
0 ∈ X such that u+ 0 = u for all u ∈ X. In this thesis, we will always set K ··= R.

On linear spaces we have the following two central notions:

2.11 Definition Let X and Y be linear spaces.

(i) A set K ⊂ X is called convex if (1− λ)u+ λv ∈ K for all u, v ∈ K and all λ ∈ [0, 1].

(ii) A function f : X → Y is called linear if f(λu + v) = λf(u) + v for all u, v ∈ X and
all λ ∈ R. #

To bring linearity and order theory together, we will use the following compatibility
condition:

2.12 Definition Let (X,6) be a poset, and let (X,+, ·) be a linear space over R.
Then X = (X,6,+, ·) is called ordered linear space if a 6 b is equivalent to 0 6 b−a
and if 0 6 λ in R and 0 6 a in X imply 0 6 λa. #

2.13 Remark Let (X,6,+, ·) be an ordered linear space. If we consider the dual
order >, then it follows

u > v ⇔ v 6 u ⇔ 0 6 u− v = 0 − (v− u) ⇔ v− u 6 0 ⇔ 0 > v− u,

and from 0 6 λ in R and 0 > u in X it follows 0 6 −u, thus

0 6 λ(−u) = −(λu) ⇔ λu 6 0 ⇔ 0 > λu.

Thus, (X,>,+, ·) is also an ordered linear space and duality applies. (Note that the
partial order in R was not changed.) #

2.14 Definition Let K be a convex subset of a linear space X, and let Y be an ordered
linear space. A function f : K→ Y is called convex if f((1−λ)u+λv) 6 (1−λ)f(u)+λf(v)
for all u, v ∈ X and all λ ∈ [0, 1]. #

Ordered linear spaces without any further structural property will not play a role in
this thesis. However, we have at least a useful connection to convex sets:

2.15 Proposition Let X be an ordered linear space, and let u, v ∈ X. Then u↑, v↓

and [u, v] are convex.

Proof: Let u ∈ X, x,y ∈ u↑ and λ ∈ [0, 1] be given. Then we have 0 6 (1 − λ) and
0 6 x − u, from which it follows 0 6 (1 − λ)(x − u). Furthermore, we have 0 6 λ and
0 6 y − u, from which it follows 0 6 λ(y − u) ⇔ λ(u − y) 6 0. By transitivity of 6 it
follows λ(u− y) 6 (1 − λ)(x− u), which is equivalent to u 6 (1 − λ)x+ λy. Thus, u↑ is
convex.

Let furthermore v ∈ X be given. Then v↓ is convex by duality, and [u, v] is convex,
since it is the intersection of the convex sets u↑ and v↓. #
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Next, let us combine order theory, topology and linearity:

2.16 Definition Let (X,6, τ) be an ordered topological space, and let (X,6,+, ·) be
an ordered linear space. Then X = (X,6, τ,+, ·) is called ordered topological vector
space if + and · are continuous. If furthermore τ stems from a norm ‖ · ‖ under which
X is complete (i.e. all Cauchy sequences are convergent), then X = (X,6, ‖ · ‖) is called
an ordered Banach space. #

2.17 Remark The order cone K = 0↑ of an ordered Banach space is closed, satisfies
x 6 y if and only if y − x ∈ K, and K + K ⊂ K, K ∩ (−K) = {0} and αK ⊂ K for each
α > 0. Further, each ordered Banach space is Fréchet-Urysohn. #

On ordered Banach spaces we can use all tools of analysis. To this end, let us recall
some standard definitions and theorems. (Recall that in this thesis all Banach spaces are
real Banach spaces.)

2.18 Definition Let (X, ‖ · ‖) and Y be normed linear spaces, and let A : X→ Y be a
function. We call A an operator and write Au instead of A(u) for the image of u ∈ X.

(i) A subset M of X is called bounded if there is r > 0 such that ‖u‖ 6 r for all
u ∈M.

(ii) A is called bounded if it maps bounded sets to bounded ones. #

2.19 Remark Note that also a subset M of an ordered Banach space X is called
bounded if it is bounded with respect to the norm of X. If there are u, v ∈ X such
that u 6∗ M 6∗ v, we call M order-bounded. If M = [u, v], then M is obviously
order-bounded. An order-bounded set M is easily seen to be bounded provided there is
a constant c such that 0 6 x 6 y implies ‖x‖ 6 c‖y‖ for all x,y ∈ X. In this case, the
norm is called normal. #

It is well-known that the set L(X, Y) of all linear and bounded operators A : X → Y

between normed spaces is a normed space with respect to the operator norm given by

‖A‖ ··= sup{Au : u ∈ X, ‖u‖ 6 1}.

Further, any A ∈ L(X, Y) is continuous with respect to the norms on X and Y. An
important special case is given by Y = R:

2.20 Definition Let X be a normed space.

(i) We call X ′ ··= L(X,R) the dual space of X and its elements ϕ : X → R linear
continuous functionals.

(ii) Let u ∈ X and ϕ ∈ X ′. Then we define 〈ϕ,u〉 ··= 〈ϕ,u〉X ··= ϕ(u), the duality
pairing. #

If X is an ordered normed space, then functionals ϕ ∈ X ′ such that 〈ϕ,u〉 > 0 for all
u > 0, so called positive functionals, may be useful. However, in this thesis we will work
only with the whole space X ′, which is large enough to give us the following result:
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2.21 Proposition Let X be a normed space, and let u ∈ X be such that 〈ϕ,u〉 = 0
for all ϕ ∈ X ′. Then u = 0. #

On a Banach space X we have not only the topology induced by the norm, but the
weak topology, which has fewer open sets and allows thus for more convergent sequences
and more compact sets. Let us recall the basics:

2.22 Definition Let X be a Banach space, and let un,u ∈ X for n ∈ N.

(i) The norm on X induces a topology which we call the strong topology. Conver-
gence of (un) to u with respect to this topology is denoted by un → u.

(ii) The coarsest topology on X such that each element of X ′ remains continuous is
called the weak topology. Convergence of (un) to u with respect to this topology
is called weak convergence and is denoted by un ⇀ u.

(iii) A subset M of X is called weakly closed or weakly compact if it is closed or
compact with respect to the weak topology, respectively. M is called weakly se-
quentially compact if each sequence in M contains a subsequence that converges
weakly to some element of M. #

2.23 Proposition Let X be a Banach space, and let un,u ∈ X for n ∈ N.

(i) The weak convergence un ⇀ u holds if and only if 〈ϕ,un〉 → 〈ϕ,u〉 for all ϕ ∈ X ′.

(ii) If un → u, then un ⇀ u.

(iii) If un ⇀ u, then (un) is bounded and ‖u‖ 6 lim infn‖un‖.

(iv) If un ⇀ u in X and ϕn → ϕ in X ′, or if un → u in X and ϕn ⇀ ϕ in X ′, then
〈ϕn,un〉 → 〈ϕ,u〉.

(v) Let K be a convex subset of X. Then, K is closed if and only if K is weakly closed. #

2.24 Definition Let X be a normed space.

(i) We define the canonical embedding j : X → (X ′) ′ via 〈j(u),ϕ〉 ··= 〈ϕ,u〉 for all
u ∈ X and ϕ ∈ X ′.

(ii) X is called reflexive if the canonical embedding j : X→ (X ′) ′ is surjective. #

2.25 Proposition Let X be a reflexive normed space. Then the following assertions
hold true:

(i) X is a Banach space.

(ii) Every bounded subset of X is weakly relatively compact.

(iii) A subset of X is weakly compact if and only if it is weakly sequentially compact. If
M ⊂ X is bounded, then each point in the weak closure of M is the weak limit of
some sequence (un) ⊂M. [Eberlein-S̆mulian] #
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2.26 Remark The last assertion in Proposition 2.25 follows from the proof given
first in [118]. #

As an application, let us provide a standard result about the existence of weakly
convergent subsequences in intersections of continuously descending reflexive Banach
spaces. To this end, recall the following definition:

2.27 Definition Let X and Y be normed spaces.

(i) We say that X is continuously embedded in Y (and write X ↪→ Y) if the embed-
ding operator i : X→ Y, defined via i(u) = u, is continuous.

(ii) We say that X is even compactly embedded in Y if the embedding operator
i : X → Y is compact, i.e. if i is continuous and maps bounded sets to relatively
compact ones. #

2.28 Proposition Let I ⊂ R, let Xi be reflexive Banach spaces, i ∈ I, such that
Xj ↪→ Xi is a continuous embedding for i < j, and let (un) ⊂ X ··=

⋂
i Xi. If (un) is

bounded in every Xi, then there is u ∈ X and a subsequence of (un) converging weakly
in every Xi to u.

Proof: Fix some i0 ∈ I. Then, since (un) is a bounded sequence in the reflexive Banach
space Xi0 , there is u ∈ Xi0 such that a subsequence of (un) converges weakly to u in
Xi0 . W.l.o.g. we can assume un ⇀ u in Xi0 .

We claim that even un ⇀ u in every Xi. To this end, let i1 ∈ I be arbitrary. We
consider two cases:

(i) Let i0 > i1. Then we have the continuous embedding i : Xi0 ↪→ Xi1 with the
continuous dual embedding i∗ : X ′i1 ↪→ X ′i0 (cf. Remark 3.77). Then we have, for
every ϕ ∈ X ′i1 ,

〈ϕ, iun〉 = 〈i∗ϕ,un〉 → 〈i∗ϕ,u〉 = 〈ϕ, iu〉,

implying iun ⇀ iu in Xi1 . Since i is the embedding operator, we conclude un ⇀ u

in Xi1 .

(ii) Let i1 > i0. Then (un) is bounded in Xi1 and thus there is a subsequence unk that
converges weakly in Xi1 to some v ∈ Xi1 . As in case (i), we conclude unk ⇀ v in
Xi0 and thus, since weak limits are unique, v = u.

Now let us assume that (un) does not converge weakly in Xi1 to u. Then there are
a subsequence (unk), a functional ϕ ∈ X ′i1 and ε > 0 such that |〈ϕ,unk −u〉| > ε.
But, according to the same arguments as above, (unk) has a weakly convergent
subsequence with weak limit u, contradicting that 〈ϕ,unk − u〉 is bounded away
from 0. Thus the assumption is false and we have un ⇀ u in Xi1 .

In both cases, we have un ⇀ u in Xi1 , which concludes the proof. #

Finally, we have the following order-theoretical result:
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2.29 Proposition Let X = (X,6, ‖ · ‖,+, ·) be an ordered Banach space, and let σ be
the weak topology of X. Then Y = (X,6,σ,+, ·) is an ordered topological vector space.

Proof: Let u ∈ X. Since X is especially an ordered topological space, the order-intervals
u↑ and u↓ are closed. Further, X is an ordered linear space, from which it follows (see
Proposition 2.15) that u↑ and u↓ are convex. Thus, by Proposition 2.23, u↑ and u↓,
are weakly closed, so that (X,6,σ) is an ordered topological space. Further, it is readily
seen that + and · are continuous with respect to σ, thus Y = (X,6,σ,+, ·) is an ordered
topological vector space. #

Now, from Theorem 2.10 we deduce the following basic fixed point theorem on re-
flexive Banach spaces:

2.30 Theorem Let D be a bounded and weakly sequentially closed subset of a reflexive
ordered Banach space X, and let F : D→ P∅(D) be an increasing upward multifunction.
If F has a subpoint u and if all values of F are weakly sequentially closed, then F has a
maximal fixed point u∗ which satisfies u 6 u∗.

Proof: We are going to apply Theorem 2.10. To this end, note first that, by Proposition
2.25, D is compact and Fréchet-Urysohn with respect to the weak topology of X. Second,
all values of F are countably universally inductive. Indeed, let u ∈ D and any increasing
sequence (an) ⊂ D be given such that (an) 6∗ F(u). Then there is a sequence (bn) such
that an 6 bn ∈ F(u) for all n. Since (bn) ⊂ D, there is a subsequence (bkn) of (bn) and
b ∈ D such that bkn ⇀ b (where k : N→ N is strictly increasing). Now, for each n and
all m > n we have an 6 akn 6 akm 6 bkm , so that, by the dual of Proposition 2.5(i),
an 6 b. Furthermore, we obtain b ∈ F(u), since F(u) is weakly sequentially closed. Thus,
we have (an) 6∗ b ∈ F(u), verifying that F(u) is countable universally inductive. Thus,
by Theorem 2.10, all claims follow. #

Next, let us slightly generalize Theorem 2.30 to the following case, in which two
reflexive ordered Banach spaces V and W are considered such that W ⊂ V as posets,
which means that we have W ⊂ V and u 6 v in W only if u 6 v in V. A further
compatibility condition between V and W is not needed. (If W is continuously embedded
in V, then the proof simplifies and can be done similar as the proof of Theorem 2.30.)

2.31 Theorem Let V and W be reflexive ordered Banach spaces such that W ⊂ V
as posets, and let F : D ⊂ V → P∅(D ∩W) be a multifunction such that the following
hypotheses are satisfied:

(i) D is bounded and weakly sequentially closed in V, and F has a subpoint u.

(ii) F is increasing upward and has weakly sequentially closed values in W.

(iii) The values of F are uniformly bounded in W.

Then F has a maximal fixed point u∗ such that u 6 u∗.
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Proof: From W ⊂ V and Proposition 2.25 we obtain that F : D→ P∅(D) is an increasing
upward multifunction on a weakly compact and Fréchet-Urysohn subset D of V. Thus,
by Corollary 2.8, it suffices to show that F has Property (Z). To this end, let increasing
sequences (un) ⊂ D ⊂ V and (sn) ⊂ D ∩W ⊂ V be given such that un 6 sn ∈ F(un).
We have to prove that (sn) has an upper bound s∗ ∈ Sub F.

Since (un) belongs to D, which is bounded and weakly sequentially closed in V, and
since (sn) belongs to

⋃
n F(un), which is bounded in W, there are subsequences (ukn)

of (un) and (skn) of (sn) and u ∈ D and s ∈ W such that ukn ⇀ u in V and skn ⇀ s

in W. Since both (un) and (sn) are increasing, we have furthermore from Proposition
2.5 that u = u∨ (the supremum in U) and s = s∨ (the supremum in W), and since s is
an upper bound of (sn) in W (and thus in V) and so of (un), we infer u 6 s.

Further, since F is increasing upward, it follows skn 6
∗ F(u) for all n. Let (s∗kn) ⊂ F(u)

be a sequence such that skn 6 s
∗
kn

. Since F(u) is bounded in W, there is s∗ ∈W and a
subsequence (s∗ln) of (s∗kn) such that s∗ln ⇀ s∗ inW, and since F(u) is weakly sequentially
closed in W, we have s∗ ∈ F(u) ⊂ D.

Now, from sln 6 s
∗
ln

we infer, since W together with its weak topology is an ordered
topological vector space, s 6 s∗. Further, from u 6 s it follows u 6 s∗ and thus, again
since F is increasing upward, s∗ ∈ F(u) 6∗ F(s∗), from which we have at once s∗ ∈ Sub F.
Thus, s∗ is the upper bound of (sn) we searched for, and thus, by Corollary 2.8, F has
a maximal fixed point u∗ such that u 6 u∗. #

Of course, in Theorem 2.31 one can choose V = W to obtain as a special case again
Theorem 2.30.

2.32 Remark By inspecting the proof of Theorem 2.31, we see that we can replace
Condition (iii) by the following more general condition:

(iii’) Each value of F is bounded in W and if (un) ⊂ D and (sn) ⊂ W are increasing
sequences such that un 6 sn ∈ F(un), then (sn) is bounded in W. #

Finally, let us combine all results in the spirit of Theorem 1.71 to obtain an abstract
framework that combines order-theoretical and topological properties with the concept
of sub-supersolutions. This framework will be applied later to guarantee the existence of
smallest and greatest solutions of multivalued variational inequalities. Since we will not
need the framework in its most general form, let us formulate only a special version:

2.33 Theorem Let V and W be reflexive ordered Banach spaces such that W ⊂ V as
ordered sets, and let S : D ⊂ V → P∅(D ∩W) and S : D→ P∅(V) be multifunctions such
that the following conditions are satisfied:

(i) D is a sup-semilattice, bounded and weakly sequentially closed in V, and there is
u ∈ D such that u 6∗ S(u).

(ii) In W, S(D) is bounded and S has weakly sequentially closed values.

(iii) S is permanent upward, its values are directed upward and for all v ∈ D it holds
S(v) ⊂ S(v) 6∗ S(v).

Then FixS has the greatest element u∗ and it holds u 6 u∗.
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Proof: We proceed along the same lines as in the proof of Theorem 1.71, but of course
the existence of some maximal element u∗ ∈ FixS such that u 6 u∗ now follows from
Theorem 2.31. To conclude the proof, note that from S(v) ⊂ S(v) it readily follows
FixS ⊂ FixS (which is a special case of FixS 6∗ FixS). #

2.34 Remark In the analytic application in Part II, the properties of S and S which
are hard to show are the relation S(v) 6∗ S(v) and that the values of S are directed
upward. Those properties can be derived by use of involved analytic tools if one has
not only u ∈ SubS but even u ∈ FixS. Furthermore, we usually will introduce the
superoperator S : D → P(D) as the dual counterpart to S. Then, the existence of some
u ∈ FixS such that u 6 u can be used to find both smallest and greatest fixed points
of S between u and u. This can be seen as a special case of Theorem 2.33 if one chooses
D = [u,u].

However, for our aims it is not enough to formulate only an even more special case
of Theorem 2.33, as we will see in Chapter 7. There, we do not need a superoperator S,
and u can only be guaranteed to be a subpoint of the suboperator S. #

2.1.3 Various Fixed Point Theorems

It is illustrating to compare Theorem 2.30 with the following fixed point theorem, which
is [24, Theorem 4.36].

2.35 Theorem Let X be a lattice-ordered reflexive Banach space, let D ⊂ X, and let
S : D→ P(D) be a multifunction such that the following hypotheses are satisfied:

(i) D is bounded, weakly sequentially closed and has an inf-center u, i.e. u ∈ X and
u∧ v ∈ D for all v ∈ D;

(ii) S is increasing and has weakly sequentially closed values.

Then S has a maximal fixed point. #

The differences between our Theorem 2.30 and Theorem 2.35 are the following:

(i) We ask X only to be an ordered reflexive Banach space and F only to be increas-
ing upward. It should be possible to prove Theorem 2.35 also under these more
restrictive conditions.

(ii) We ask for an element u ∈ D such that u 6∗ S(u), whereas Theorem 2.35 asks for
an element u ∈ X such that u∧ v ∈ D for all v ∈ D. Both conditions are fulfilled
if D is an order-interval [u,u] or the increasing set u↑.

Since we can reduce our considerations to the poset D ∩ u↑ (cf. with the deduction
of Theorem 1.51 from Theorem 1.59), we can deduce Theorem 2.30 from Theorem 2.35
(if we ignore the differences listed in (i)) or from a weaker form of this theorem in which
the set D is of the form D ∩ u↑ for some u ∈ D. However, the proof of Theorem 2.35
bases also on Lemma 1.58 and is more involved.
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Let us also compare our derived fixed point theorem with other widely used fix point
theorems for multifunctions on a Banach space (where the following list is by no means
conclusive; for more fixed point results (as well as related topics), we refer to, e.g.,
[24, 44, 45, 58, 63]).

As a rule of thumb, if one searches for fixed points of some multifunction F : X→ P(X),
one needs two ingredients: the existence of elements with some special property, and the
right compatibility of F with this property. In order-theory, usually there exist suprema
of special sets, and F is of isotone type. If one has no partial order (or chooses to ignore
it), usually topological fixed point theorems are considered. There, the special elements
are convergent sequences which exist due to some compactness property of X, and the
graph of F is closed in some sense, which results in some kind of continuity.

First, let us inspect two fixed point theorems for single-valued functions, the classical
Theorem of Schauder and its generalization, a strong version of the Tychonoff fixed point
theorem for Hausdorff locally convex topological vector spaces (see [88]):

2.36 Theorem (Schauder) Let X be a Banach space, let M ⊂ X, and let f : M→M

be a function such that the following hypotheses are satisfied:

(i) M is non-empty, compact and convex.

(ii) f is continuous.

Then Fix f is non-empty and compact. #

2.37 Theorem (Tychonoff) Let X be a Hausdorff locally convex topological vector
space, let M ⊂ X, and let f : M → M be a function such that the following hypotheses
are satisfied:

(i) M is non-empty and convex.

(ii) f is continuous and f(M) is contained in a compact subset of M.

Then Fix f is non-empty and compact. #

Those theorems rely on compactness—but we have used at least weak compactness in
the deduction of Theorem 2.30, too. So the core difference between those topological fixed
point theorems and ours is the continuity of the considered function f and the convexity
assumption. If f is not continuous, purely topological fixed point theorems fail, while
one has the chance of f being monotonous. But of course, if f is not monotonous, order-
theoretical fixed point theorems fail and one might apply a topological result. Thus,
these various fixed point results complement each other.

Interestingly enough, the fixed point theorem of Banach (for multifunctions on com-
plete metric spaces) is proved in [52] in the context of quasi-metric spaces which are also
used to provide a multivalued version of Kleene’s order-theoretical fixed point theorem.
To this end, a quasi-metric d on a poset D with values 0 and 1 is defined via d(x,y) = 0
if and only if x 6 y. Thus, there is a connection between the following two rather special
fixed point theorems:
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2.38 Theorem (Banach) Let X be a complete metric space with metric d, and let
F : X→ P(X) be a multifunction such that the following hypotheses are satisfied:

(i) F is a contraction, i.e. there is L ∈ [0, 1) such that for all x,y ∈ X and all a ∈ F(x)
there is b ∈ F(y) such that d(a,b) 6 Ld(x,y).

(ii) F has closed values.

Then F has a unique fixed point. #

2.39 Theorem (Kleene) Let D be a poset in which each increasing sequence has a
supremum, and let F : D → P(D) be a multifunction such that the following hypotheses
are satisfied:

(i) F has a subpoint.

(ii) F is increasing upward, and further, for each increasing sequence (xn) ⊂ D such
that xn+1 ∈ F(xn), it holds x∨ ∈ F(x∨) (such a multifunction F is sometimes called
order-continuous).

Then F has a fixed point. If F is furthermore increasing downward and if all values of F
have the smallest element, then F has the smallest fixed point. #

Although Kleene’s fixed point theorem is similar to Tarski’s one, it is not useful for
our targeted application, because it imposes a rather strong order-theoretical condition
on F. More useful in the treatment of variational problems are the following generalized
version of the Kakutani fixed point theorem (see [2]) and Kluge’s fixed point theorem,
which is applied in, e.g., [60, 61].

2.40 Theorem (Kakutani-Fan-Glicksberg) Let X be a locally convex Hausdorff space,
let M ⊂ X, and let F : M→ P(M) be a multifunction such that the following hypotheses
are satisfied:

(i) M is non-empty, compact and convex.

(ii) F has a closed graph and its values are convex.

Then Fix F is non-empty and compact. #

2.41 Theorem (Kluge) Let X be a reflexive ordered Banach space, let M ⊂ X, and
let F : M→ P(M) be a multifunction such that the following hypotheses are satisfied:

(i) M is non-empty, weakly closed and convex.

(ii) F has weakly closed graph and closed and convex values.

(iii) Either M is bounded or F(M) is bounded.

Then F has a fixed point. #

It could be an interesting endeavor to combine those purely topological fixed point
theorems with our order-theoretical ones or to find a common generalization.
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2.2 Continuous Operators

The concept of continuity generalizes with ease to multifunctions F : X→ P∅(Y) between
topological spaces if one defines pre-images. To this end, one has to generalize the condi-
tion f(x) ∈ U in the definition of pre-images of single-valued functions to the set-valued
case, and as a matter of fact, there are two different ways of doing so:

2.42 Definition Let X and Y be sets, let F : X → P∅(Y) be a multifunction, and let
M be a subset of Y.

(i) The (large) pre-image of F is defined by F−1
− (M) ··= {x ∈ X : F(x) ∩M 6= ∅}.

(ii) The small pre-image of F is defined by F−1
+ (M) ··= {x ∈ X : F(x) ⊂M}. #

Thus, we have two different notions of continuity for multifunctions (however, in this
thesis, we will deal only with upper semicontinuous multifunctions, as they allow for
measurable selections in bifunctions, see Theorem 3.47 below):

2.43 Definition Let X and Y be topological spaces, and let F : X → P∅(Y) be a
multifunction.

(i) F is called upper semicontinuous if F−1
+ (U) is open for all open U ⊂ Y.

(ii) F is called lower semicontinuous if F−1
− (U) is open for all open U ⊂ Y. #

2.44 Remark It is readily seen that X \ F−1
+ (M) = F−1

− (Y \M). By this knowledge,
we can apply the so called topological duality. For instance, F : X → P∅(Y) is upper
semicontinuous if and only if F−1

− (C) is closed for any closed subset C of Y. #

In Proposition 1.26 we have seen that some properties of a multifunction F of isotone
type can be derived by knowledge of the properties of F∗. Similar results hold for semi-
continuous multifunctions from X to Y if Y is an ordered topological space. To this end,
let us define first what it means for single-valued functions to be semicontinuous:

2.45 Definition Let X be a topological space, let R be an ordered topological space,
and let f : X→ R be a function.

(i) f is called upper semicontinuous if f−1(α↑) is closed for all α ∈ R.

(i)d f is called lower semicontinuous if f−1(α↓) is closed for all α ∈ R. #

Let R ··= R∪ {−∞,+∞} be partially ordered by extending the natural order on R by
setting −∞ < x < +∞ for all x ∈ R, and −∞ < +∞. If the topology on R is chosen to
be its interval topology, R is an ordered topological space, and if a functional f : X→ R
is semicontinuous in the sense of Definition 2.45 then it is semicontinuous in the usual
sense. This holds also if X is a normed linear space with its weak topology, in which case
an upper semicontinuous function is called weakly upper semicontinuous. Indeed,
we have the following well-known result:
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2.46 Proposition Let X be a topological space and let f : X → R be a function. If
f is upper semicontinuous with respect to Definition 2.45, then for all x ∈ X and all
sequences (xn) ⊂ X with xn → x it holds lim supn f(xn) 6 f(x). The converse holds true
if X is sequential, i.e. if a set C is closed if and only if for each convergent sequence
(xn) ⊂ C one has limn xn ∈ C.

Proof: Let f be upper semicontinuous, let xn → x in X and assume lim supn f(xn) > f(x).
Then there is a subsequence (yn) of (xn) and y > f(x) such that f(yn) > y. Since
f−1(y↑) is closed (and thus sequentially closed), we deduce f(x) > y > f(x), which is a
clear contradiction. Thus, lim supn f(xn) 6 f(x).

The other way around, assume that f−1(y↑) is not closed for some y ∈ R. Then,
since X is sequential, we have xn → x for some sequence (xn) ⊂ f−1(y↑) and some
x /∈ f−1(y↑). Then, there is ε > 0 such that f(x) + ε < y and some element x0 of (xn)
such that

y 6 f(x0) 6 lim supnf(xn) + ε 6 f(x) + ε < y,

which is a contradiction. Thus, f is upper semicontinuous. #

We have chosen our general definition of upper semicontinuous functions such that it
fits nicely to multivalued upper semicontinuity, as seen in the next result:

2.47 Proposition Let X be a topological space, let R be an ordered topological space,
and let F : X→ P(R) be a multifunction.

(i) Let F be upper semicontinuous, and suppose that the values of F have the greatest
element F∗(x) ∈ F(x). Then F∗ : X→ R is upper semicontinuous.

(i)d Let F be upper semicontinuous, and suppose that the values of F have the smallest
element F∗(x) ∈ F(x). Then F∗ : X→ R is lower semicontinuous.

(ii) Suppose that F(x) = [F∗(x), F
∗(x)] for all x ∈ X, and let either X be sequential and

R = R, or, more generally, let R be a chain equipped with its interval topology. If
F∗ and F∗ are lower semicontinuous and upper semicontinuous, respectively, then
F is upper semicontinuous.

Proof: Concerning (i), let us note that for all α,β ∈ R it holds

(F∗)−1(α↑) = F−1
− (α↑) and (F∗)−1(β↓) = F−1

+ (β↓). (2.1)

From the first equality in (2.1), assertion (i) follows, and (i)d follows by duality (i.e. by
application of the second equality in (2.1)).

To prove (ii), suppose first that X is sequential and that R = R, let C ⊂ R be closed
and let (xn) ⊂ F−1

− (C) be a sequence converging to x. Then there are yn ∈ F(xn) ∩ C
and it follows

F∗(x) 6 lim infnF∗(xn) 6 lim infnyn 6 lim supnyn 6 lim supnF
∗(xn) 6 F

∗(x),

implying, e.g., lim infn yn ∈ F(x)∩C and thus x ∈ F−1
− (C). Since X is sequential, F−1

− (C)
is closed. Consequently, F is upper semicontinuous.
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If R is a general chain equipped with its interval topology, let any open set U ⊂ R
be given and let x ∈ X be such that x ∈ F−1

+ (U), implying [F∗(x), F
∗(x)] ⊂ U. Since

F∗(x) ∈ U, either F∗(x) is the greatest element of R, or there is y∗ > F∗(x) such that
[F∗(x),y∗) ⊂ U (where [a,b) = a↑ ∩ b↓↓). In the latter case, {x ′ ∈ X : F∗(x ′) < y∗}
is open due to the upper semicontinuity of F∗. By dual reasoning, either F∗(x) is the
smallest element of R, or there is y∗ < F∗(x) such that (y∗, F∗(x)] ⊂ U and the set
{x ′ ∈ X : F∗(x

′) > y∗} is open. Consequently, there is an open neighborhood N of x such
that for all x ′ ∈ N one has [F∗(x

′), F∗(x ′)] ⊂ U, meaning x ′ ∈ F−1
+ (U), which implies

that F is upper semicontinuous. #

2.48 Remark A single-valued function f : R→ R which is upper semicontinuous as a
single-valued function is in general not upper semicontinuous as a multivalued function.
For instance, consider the function f : R → {0, 2} with f(x) = 0 if and only if x < 0.
Then f is obviously upper semicontinuous as a single-valued function, but not upper
semicontinuous as a multifunction, since we have, e.g., 0 ∈ f−1

+ ((1, 3)), but, for every
x < 0, x /∈ f−1

+ ((1, 3)), so that f−1
+ ((1, 3)) is not open. #

Finally, let us state two well known results about functions of continuous type:

2.49 Proposition Let X and Y be Banach spaces.

(i) If K ⊂ X is convex and if f : K→ [−∞,+∞] is a convex functional, then f is lower
semicontinuous if and only if it is weakly lower semicontinuous.

(ii) If A : X→ Y is linear and continuous, then un ⇀ u in X implies Aun ⇀ Au in Y
(which means that A is weakly continuous). #

2.3 Operators of Monotone Type

Until now, we have only considered multifunctions of isotone type as introduced in
Subsection 1.1.3. The basic idea was to generalize the notion of increasing functions
f : R→ R to multifunctions F : D→ P∅(D

′) on arbitrary posets D and D ′.
However, there is another way of generalization. To this end, note that f : R → R

is increasing if and only if for all x,y ∈ R it holds (f(x) − f(y))(x − y) > 0. This
characterization can be generalized to multifunctions F : X → P∅(X

′) from a normed
space to its dual (as seen below). This concept can be generalized even further to so
called generalized pseudomonotone operators. This theory was developed in order to
obtain very general existence results for variational inequalities, and thus the results
presented in this section will be of equal importance as the fixed point results presented
above.

2.3.1 Basic Concepts

Let us first recall the basic definitions for single-valued operators A : X→ X ′:

2.50 Definition Let X be a Banach space, and let A : X→ X ′ be an operator.

2.3 Operators of Monotone Type 63



(i) A is called coercive if

〈Aun,un〉
‖un‖

→∞ for all sequences (un) ⊂ X such that ‖un‖ →∞.

(ii) A is called monotone if 〈Au−Av,u− v〉 > 0 for all u, v ∈ X.

(iii) A is called pseudomonotone if from

un ⇀ u in X and lim supn〈Aun,un − u〉 6 0 (2.2)

it follows
〈Au,u− v〉 6 lim infn〈Aun,un − v〉 for all v ∈ X. #

We have the following connection to monotone operators and a useful property of
pseudomonotone operators:

2.51 Proposition Let X be a Banach space, and let A : X→ X ′ be an operator.

(i) If A is completely continuous (i.e. un ⇀ u in X implies Aun → Au in X ′),
then A is pseudomontone.

(ii) A is pseudomonotone if and only if (2.2) implies

Aun ⇀ Au and 〈Aun,un〉 → 〈Au,u〉. #

In [81] (see also, e.g., [115]) the so called Leray-Lions operators A : X → X ′ are
defined, which are operators such that Au = a(u,u) for some operator a : X × X → X ′

satisfying certain topological conditions. As seen in [115], each Leray-Lions operator is
pseudomonotone. We will give an example of outmost importance for our study of vari-
ational inequalities in Subsection 3.3.3 below, where Sobolev spaces are studied.

Next, let us consider multivalued operators A : X→ P∅(X
′).

2.52 Definition Let X be a Banach space, and let A : X→ P∅(X
′) be a multivalued

operator.

(i) A is called bounded if it maps bounded sets to bounded ones.

(ii) A is called coercive with respect to u0 ∈ X if there exists a function c : R+ → R
with lims→∞ c(s) =∞ such that

〈u ′,u− u0〉 > c(‖u‖)‖u‖ for all u ∈ X and all u ′ ∈ Au.

(iii) A is called monotone if 〈u ′ − v ′,u− v〉 > 0 for all (u,u ′), (v, v ′) ∈ grA.

(iv) A is called maximal monotone if A is maximal in the set of all monotone oper-
ators on X, ordered by inclusion.
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(v) A is called pseudomonotone if

(α) A has nonempty, bounded, closed and convex values,

(β) A is upper semicontinuous from each finite-dimensional subspace of X to X ′

with its weak topology,

(γ) if un ⇀ u in X and if u ′n ∈ Aun is such that lim supn〈u ′n,un − u〉 6 0, then
for each v ∈ X there is u ′ ∈ Au such that 〈u ′,u−v〉 6 lim infn〈u ′n,un−v〉. #

For pseudomonotone multifunctions we have the following results, which simplify
some calculations:

2.53 Proposition Let X be a Banach space, and let A,B : X→ P∅(X
′) be multivalued

operators.

(i) Let A be single-valued. Then A is pseudomonotone with respect to Definition 2.50
if and only if A is pseudomonotone with respect to Definition 2.52.

(ii) Let A and B be pseudomonotone. Then A+ B is pseudomonotone. #

From [92, Prop. 2.2] we deduce the following result (which can be stated in more
generality):

2.54 Proposition Let X be a reflexive Banach space and let A : X → P(X ′) be a
multivalued operator having the following properties:

(i) A has non-empty, closed and convex values,

(ii) A is bounded,

(iii) the graph of A is sequentially weakly closed, i.e. for all weakly convergent se-
quences un ⇀ u in X and u∗n ⇀ u∗ in X ′ with u∗n ∈ Aun one has u∗ ∈ Au,

(iiv) the duality pairing is (w×w)-continuous on grA, i.e. un ⇀ u in X and u∗n ⇀ u∗

in X ′ with u∗n ∈ Aun imply 〈u∗n,un〉 → 〈u∗,u〉.

Then A is pseudomonotone. #

2.3.2 Surjectivity Results

For single-valued pseudomonotone operators, we have the following result:

2.55 Theorem (Main Theorem on Single-Valued Pseudomonotone Operators) Let
X be a reflexive Banach space, and let A : X → X ′ be a pseudomonotone, bounded and
coercitive operator. Then A is surjective. #

It should be noted that the proof of Theorem 2.55, as presented, e.g., in [98], allows for
a slightly more general theorem. Moreover, we refer the interested reader to the original
papers [14], [17] and [85].

A consequence of Theorem 2.55 is the well-known Lax-Milgram theorem about bi-
linear forms. (If in doubt about the validity of this corollary, please see [33] for a very
detailed and elementary proof.)
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2.56 Corollary (Lax-Milgram) Let H be a real Hilbert space, and let A : H→ H ′ be
a linear bounded operator (which induces a bounded bilinear function a : X× X→ R via
a(u, v) = 〈Au, v〉, and vice versa) such that there is c > 0 such that 〈Au,u〉 > c‖u‖2
for all u ∈ X. Then A is surjective (and has, in fact, a bounded inverse). #

In the sequel, the following existence theorem for perturbed coercive pseudomonotone
operators will be a key element:

2.57 Theorem (Main Theorem on Multivalued Pseudomonotone Operators) Let X be
a reflexive Banach space, let A : X→ P(X ′) be a bounded, pseudomonotone multifunction
with closed and convex values, let M : X→ P∅(X) be a maximal monotone multifunction,
and suppose M(u0) 6= ∅ for some u0 ∈ X. If A is coercive with respect to u0, then A+M
is surjective, i.e. for all u ′ ∈ X ′ there is u ∈ X such that u ′ ∈ (A+M)(u). #

The proof of Theorem 2.57 along with other information is contained in, e.g., [92].
There, also generalized pseudomonotone operators and more general surjectivity results
are presented. We also refer to [65, Theorem 2.2] for the following result (among others)
in which the whole operator A+M is assumed to be generalized coercive:

2.58 Theorem Let X be a reflexive Banach space, let A : X → P(X ′) be a bounded
and pseudomonotone multifunction, let M : D(B) ⊂ X→ P(X ′) be a maximal monotone
multifunction, and let u ′ ∈ X ′. Assume there exist u0 ∈ X and R > ‖u0‖ such that

D(M) ∩ {x ∈ X : ‖x‖ < R} 6= ∅ and 〈η+ ξ− u ′,u− u0〉 > 0

for all u ∈ D(M) with ‖u‖ = R, all η ∈ A(u), and all ξ ∈ M(u). Then the inclusion
A(u) +M(u) 3 u ′ has a solution. #

2.3.3 Subdifferentials

Let us start with the standard subdifferential of Convex Optimization:

2.59 Definition Let X be a Banach space, and let f : X→ R∪ {+∞} be a functional.

(i) f is called proper if its effective domain D(f) is non-empty.

(ii) Let f be convex and proper. An element u ′ ∈ X ′ is called a subgradient of f at
u ∈ D(f) if

f(v) > f(u) + 〈u ′, v− u〉 for all v ∈ X.

(iii) The set of all subgradients of f at u is called subdifferential of f at u, and is
denoted by ∂f(u). #

2.60 Example Let K be a non-empty, closed and convex subset of a Banach space
X. Then the indicator function IK : X→ R ∪ {+∞} of K, defined by

IK(u) ··=

{
0 if u ∈ K,

+∞ otherwise,
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is a convex and proper functional with effective domain D(IK) = K. Moreover, we have
the following variational characterization of ∂IK, which follows readily from its definition:
For any u ∈ X, we have u ′ ∈ ∂IK(u) if and only if

u ∈ K and 〈u ′, v− u〉 6 0 for all v ∈ K.

We will use this special functional (and some generalization of it) in the applications
below in order to transform a variational inequality into a multivalued inclusion. #

To apply the surjectivity result Theorem 2.57, we need further the following classical
result, proved in [97]:

2.61 Theorem Let X be a reflexive Banach space, and let f : X→ R∪{+∞} be proper,
convex and lower semicontinuous. Then ∂f : X→ P∅(X

′) is maximal monotone. #

Now, let us generalize the subgradient to the famous generalized gradient of Clarke
(for the definitions and basic results see, e.g., [32]), which can be formed for all locally
Lipschitz functions and has a wide range of applications in Variational Analysis.

2.62 Definition Let X be a Banach space, and let f : X→ R be a function.

(i) f is said to be locally Lipschitz if for every x ∈ X there are an open neighborhood
U of x and a constant L > 0 such that |f(x) − f(y)| 6 L‖x− y‖ for all y ∈ U.

(ii) Let f be locally Lipschitz. Then the generalized directional derivative of f at
x in the direction v is defined as

f◦(x, v) ··= lim sup
y→x,t↓0

f(y+ tv) − f(y)

t

and the generalized gradient of f at x is defined as

∂f(x) ··= {ϕ ∈ X ′ : 〈ϕ, v〉 6 f◦(x, v) for all v ∈ X}. #

Let us recall some basic properties of the generalized gradient:

2.63 Lemma Let X be a Banach space, and let f : X → R be locally Lipschitz. Then
the following holds true:

(i) For all x, v ∈ X, f◦(x, v) is well-defined and finite.

(ii) For all x ∈ X, the mapping v 7→ f◦(x, v) is positively homogeneous and subadditive.

(iii) For all x ∈ X one has f◦(x,−v) = (−f)◦(x, v).

(iv) The function −f is locally Lipschitz, too, and one has ∂(−f) = −∂f.

(v) For all v ∈ X, the mapping x 7→ f◦(x, v) is upper semicontinuous. #

There is a rich theory about Clarke’s generalized gradient. However, in the sequel, we
need only the following simple result:
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2.64 Proposition Let f : R→ R be locally Lipschitz. Then for all x ∈ R we have

∂f(x) = [−f◦(x,−1), f◦(x, 1)] 6= ∅. (2.3)

Proof: In the case X = R, Clarke’s generalized gradient is given by

∂f(x) = {ϕ ∈ R : ϕv 6 f◦(x, v) for all v ∈ R}. (2.4)

As v 7→ f◦(x, v) is positively homogeneous, (2.4) implies that ϕ ∈ ∂f(x) if and only
if ϕ 6 f◦(x, 1) for all v > 0 and ϕ > −f◦(x,−1) for all v < 0. This proves (2.3).
Furthermore, from

0 = f◦(x, 0) 6 f◦(x,−1) + f◦(x, 1).

it follows that ∂f : R→ P(R) is well-defined. #

At the end of this subsection, it should be noted that there is a more general subdif-
ferential, the so called approximate subdifferential introduced by Mordukhovich, which
is widely used in contemporary Optimization, but has, in general, not so good analytic
properties (see, e.g., [87]). It would be interesting to investigate in what extend the
results of this thesis can be generalized in this direction.
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3 Measure Theory

In this last theoretical chapter, we investigate the connection between order-theoretical,
topological and measure-theoretical concepts for multifunctions. In particular, we explore
conditions under which multifunctions have measurable single-valued selections.

For basic notations and results we refer, e.g., to [11, 12, 53, 96, 119].

3.1 Measurable Multifunctions

3.1.1 Ordered Measurable Spaces

Recall that a measurable space is a set X together with a σ-algebra A, which is a
family A ⊂ P∅(X) of subsets of X such that X ∈ A and such that A is closed under
complementation and countable unions. The sets in A are called measurable. To every
family M ⊂ P∅(X) let σ(M) be the smallest σ-algebra on X (with respect to set-inclusion)
which contains M, and M is called base of a σ-algebra A if σ(M) = A. If (X, τ) is a
topological space, then, unless otherwise stated, we will equip X with its Borel σ-
algebra B(X) ··= σ(τ). For X = Rn, the Lebesgue σ-algebra L(X) is the completion
of B(X) with respect to the Lebesgue measure λ. Measurable functions into a topological
space are defined as follows:

3.1 Definition Let X be a measurable space, and let R be a topological space. Then
a function f : X → R is called measurable if, for any open set A ⊂ R, the pre-image
f−1(A) is measurable in X. #

Evidently, if X is a topological space and if (X,A) is a measurable space such that
B(X) ⊂ A, and if R is any topological space, then any continuous function f : X → R

is measurable. To have an analogous result for increasing functions, we have to bring
order and measure together. To this end, we recall from Definition 1.8 that a subset A
of a poset D is called increasing if a↑ ⊂ A for all a ∈ A, and introduce the following
compatibility condition:

3.2 Definition Let (X,6) be a poset, and let (X,A) be a measurable space. Then
X = (X,6,A) is called ordered measurable space if all increasing subsets of X are
measurable. #

3.3 Remark Let M be a decreasing subset of a poset D. Then the complement
D \M is increasing. Indeed, let a ∈ D \M and b ∈ D with a 6 b be given, and
assume that b /∈ D \M. Then b ∈M and thus a ∈M, which is a contradiction. Thus,
D \M is increasing. It follows that in any ordered measurable space decreasing sets are
measurable, too, so that we can apply order-duality. #
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The notion of ordered measurable spaces is a natural combination of order and mea-
surability that mimics the way how ordered topological spaces are defined: As well as
it is favored that order-intervals a↑ and b↓ are closed, it is favored that increasing and
decreasing sets are measurable, which implies that multifunctions of isotone type with
compact values in R are measurable, see Corollary 3.21 below. The same holds, of course,
for single-valued functions, along with its converse:

3.4 Proposition Let (X,6) be a poset, and let (X,A) be a measurable space. Then
the following assertions are equivalent:

(i) X = (X,6,A) is an ordered measurable space.

(ii) Every increasing function f : X→ R is measurable.

Proof: First, let (X,6,A) be an ordered measurable space and let f : X→ R be increasing.
To show that f is measurable, let a ∈ R, and x > y for some y ∈ f−1(a↑). Then it follows
f(x) > f(y) > a, which implies x ∈ f−1(a↑). Thus, the set f−1(a↑) is increasing and thus
measurable. Since the sets a↑ form a base of B(R), f is measurable.

Now, suppose that (ii) holds true, and let A ⊂ X be any increasing set. Then the
characteristic function

χA : X→ R, x 7→

{
1 if x ∈ A,

0 otherwise,

is increasing. Indeed, for x 6 y we have either f(x) = 0 and thus f(x) 6 f(y), or f(x) = 1
and thus x ∈ A, thus y ∈ A, thus f(y) = 1, and thus f(x) 6 f(y). So, f is measurable,
which implies that A = f−1(1) is measurable, too. Consequently, (X,6,A) is an ordered
measurable space. #

Our notion of ordered measurable spaces is very natural, but it seems to be no stan-
dard in literature. However, there are other notions of ordered measurable spaces, which
serve other purposes.

First, we may mention the extensively studied so called totally ordered topological
spaces, which are chains X equipped with their interval topology and Baire or Borel
measures, see, e.g., [102]. We will not deal with them, since the presumption that X is a
chain is to strong for our aim. Moreover, it is no option to drop the requirement that X
is a chain, since then increasing sets may not be measurable, as the following example
shows.

3.5 Example Consider D = {(x,y) ∈ R2 : x+y = 0}, equipped with component-wise
ordering. Then, all subsets of D are increasing, but a↑↑ = a↓↓ = ∅ for all a ∈ D, so that
both the interval topology of D and the induced Borel algebra equal {∅,D}. Thus, there
are many increasing sets which a not measurable. #

Second, we mention so called proper ordered spaces as defined in [117], which allow
to extend orders to spaces of probabilities, which leads to economic applications.
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3.6 Definition Let (X,6) be a poset, and let (X,A) be a measurable space. Then
X = (X,6,A) is called proper ordered space if A has a base B such that B generates
6 in the sense that a 6 b holds if and only if, for all B ∈ B, a ∈ B implies b ∈ B. #

Evidently, ordered measurable spaces and proper ordered spaces share a common
core. To make the connection clear, we denote by I the set of all increasing subsets
of a poset D. Then we have the following results:

(i) Let B be a base of a proper ordered space (X,6,A), then clearly every B ∈ B is
an increasing set. Thus, we have

A = σ(B) ⊂ σ(I),

and since B generates 6, I generates 6, too.

(ii) Let (X,6,A) be an ordered measurable space, then the set B consisting of all
intervals x↑ generates 6 (and thus I generates 6, too) and we have

σ(B) ⊂ σ(I) ⊂ A.

Thus, every proper ordered space can be made to be an ordered measurable space if
one extends A such that A = σ(I), and every ordered measurable space can be made to
be a proper ordered space if one restricts A such that A = σ(I), in which case I is the
base. However, neither of those two kinds of measurable spaces equipped with a partial
order is a special case of the other, as the following simple examples show:

3.7 Example The set R, ordered canonically and equipped with the Lebesgue σ-
algebra L(R), is an ordered measurable space, since each increasing, non-trivial set M
is of the form α↑ or α↑↑ with α = infM, such that M is even contained in B(R). But R
is not a proper measurable space, since σ(I) = B(R) ( L(R). #

For the next example, we need the following projection theorem:

3.8 Theorem Let Ω ⊂ Rn be open, and let M ⊂ L(Ω) ⊗ B(Rn) be given (where
L ⊗ B denotes the product σ-algebra of two σ-algebras L and B). Then the projection
projΩ(M) of M to Ω belongs to L(Ω). #

For a proof, see, e.g., [31, Theorem III.23], or [53, Theorem II.1.33], where a far more
general version is presented.

3.9 Example The set R2, equipped with coordinate-wise ordering and the σ-algebra
A generated by all sets of the form x↑ is a proper measurable space, since the sets
x↑ generate 6. But the considered space is not an ordered measurable space. Indeed,
since x↑ is closed with respect to the Euclidean topology, all measurable sets are Borel
measurable, i.e. A ⊂ B(R2). However, let A ⊂ R be not Lebesgue measurable, then
M ··=

⋃
a∈A(a,−a)↑ is increasing, but not Borel measurable (which is a consequence

of Theorem 3.8, since A = projR(M \ {(x,y) ∈ R2 : x + y > 0}).) Thus, there are
non-measurable increasing sets. (Cf. Example 3.5.) #
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Third, let us shortly consider so called natural proper ordered spaces (see [117]),
which are proper ordered spaces whose σ-algebra is generated by the sets x↑ and x↓.
Those natural proper ordered spaces have, despite their name, the unnatural defect that
a subset of them may not be again a natural proper ordered space: Consider, e.g., the set
M ··= {(x,y) ∈ R2 : x+ y = 0} as a subset of R2. All sets x↑ and x↓ in M are singletons.
Thus, the generated σ-algebra is only the algebra of all countable and co-countable
subsets of M, which is smaller than the induced σ-algebra on M.

Fortunately, this unpleasant property does not hold neither for ordered measurable
spaces nor for proper ordered spaces:

3.10 Proposition Let (X,6,A) be an ordered measurable space or a proper ordered
space, and let M ⊂ X be any subset. Then (M,6|M,A|M) is an ordered space or an
proper ordered space, respectively, where 6M and A|M denote the canonical restriction
of 6 and A to M, i.e. for a,b ∈M it holds a 6|M b if and only if a 6 b, and A ∈ A|M

if and only if A = B ∩M for some B ∈ A.

Proof: First, let (X,6,A) be an ordered measurable space and M ⊂ X. Then, for every
A ⊂ M, we have in (X,6) that the set A↑ ··=

⋃
a∈A a

↑ is increasing and thus A↑ ∈ A.
Further, if A is increasing in (M,6|M), it holds A = A↑∩M, as, obviously, A ⊂ A↑∩M,
and b ∈ A for all b ∈ M such that there is a ∈ A with a 6 b. Thus, A ∈ A|M and
(M,6|M,A|M) is seen to be an ordered measurable space.

Second, let (X,6,A) be a proper ordered space with base B and let M ⊂ X. Then
BM ··= {B ∩M : B ∈ B} is obviously a base of A|M. Further, we have a 6|M b if and
only if a ∈ B∩M implies b ∈ B∩M for all B ∈ B. Indeed, since any B ∈ B is increasing
with respect to 6, B ∩M is increasing with respect to 6|M; and if a 6|M b does not
hold, then a 6 b does not hold, and thus there is some B ∈ B such that a ∈ B and
b /∈ B, wherefore a ∈ B∩M and b /∈ B∩M. Thus, (M,6|M,A|M) is seen to be a proper
ordered measurable space. #

It follows that (R2,B(R2)) is not an ordered measurable space (since all subsets of
its subset {(x,y) ∈ R2 : x+ y = 0} are increasing, but in general not Borel measurable).
However, we already know that (R,B(R)) is an ordered measurable space (cf. Example
3.7). Thus, if (X,6) is not a chain, the measurability of null-sets is of interest, which
leads us to the following examples of ordered measurable spaces.

3.11 Proposition For any n ∈ N, (Rn,L(Rn)) is an ordered measurable space.

Proof: All subsets of R0 = {0} are Borel measurable. Now let us proceed by induction and
assume that (Rn,L(Rn)) is an ordered measurable space. Let M ⊂ Rn+1 be increasing
and define f : Rn → R by setting pointwise

f(x) ··= infMx, where Mx ··= {y ∈ R : (x,y) ∈M}.

Since M is increasing, f is decreasing. To see this, let x 6 x ′ in Rn and let y ∈ Mx

be arbitrary. It follows (x,y) ∈ M and (x,y) 6 (x ′,y), thus (x ′,y) ∈ M and y ∈ Mx ′ .
Consequently, Mx ⊂Mx ′ and thus f(x) = infMx > infMx ′ = f(x

′).
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Thanks to the dual of Proposition 3.4 and due to the induction hypothesis, f is
measurable, and thus its epigraph epi f = {(x,y) ∈ Rn × R : f(x) 6 y} is measurable.
Now, let g : Rn → R>0 be integrable. Then, for each ε > 0, we have

epi(f+ εg) ⊂M ⊂ epi f,

where the first inclusion follows readily since M is increasing (such that (x,y ′) ∈ M
implies (x,y) ∈M if y ′ 6 y). Because ε > 0 can be made arbitrary small, we conclude
that M and epi f differ only be a null-set and thus M ∈ L(Rn+1). #

3.1.2 Weakly Measurable Multifunctions of Isotone Type

Now, let us extend Proposition 3.4 to multifunctions. To this end, let us first generalize
the concept of measurability to multifunctions. Since there are two pre-image, we have
two different notions:

3.12 Definition Let (X,A) be a measurable space, let R be a topological space, and
let F : X→ P∅(R) be a multifunction.

(i) F is called (strongly) measurable if, for every open U ⊂ R, the small pre-image
F−1
+ (U) = {x ∈ X : F(x) ⊂ U} is measurable.

(ii) F is called weakly measurable if, for every open U ⊂ R, the (large) pre-image
F−1
− (U) = {x ∈ X : F(x) ∩U 6= ∅} is measurable. #

3.13 Remark Unlike in the single-valued case, the pre-image F−1
− (B) of some Borel

set B may not be measurable, even if F is measurable. If one tries to prove otherwise,
one is confronted with the fact, that, in general, the large pre-image commutes not with
intersections.

In contrast, for any multifunction F : X → P∅(R), where X and R are only supposed
to be sets, it holds F−1

− (
⋃
i∈IAi) =

⋃
i∈I F

−1
− (Ai) for any family of sets Ai ⊂ R. #

In general, neither of the two measurability notions implies the other (like it is with
lower and upper semicontinuity). However, the situation is different if the topological
space R has better topological properties. To this end, recall the following notions:

(i) R is called separable if it contains a countable, dense subset.

(ii) R is called σ-compact if it is the countable union of compact sets.

(iii) A metric space is a pair R = (R,d) of a set R and a mapping d : R × R → R>0

which is positive definite, symmetric, and subadditive. Each metric space (R,d)
is also a topological space; its topology is induced by d by taking all open balls
Bε ··= {y ∈ R : d(x,y) < ε} as a base.

Then, we have, among others, the following results from [51]:

3.14 Proposition Let X be a measurable space, let R be a topological space, and let
F : X→ P∅(R) be a multifunction.
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(i) Let F be measurable and let R be such that every open set is the union of countably
many closed sets (which is the case if, e.g., the topology of R is generated by a
metric). Then F is weakly measurable.

(ii) Let F be weakly measurable, let the values of F be closed, and let R be a separable
metric space. Then F is measurable. #

In order to generalize Proposition 3.4, we now have to provide a few results that inves-
tigate the connections between order and measurability. Let us start with the following
result:

3.15 Proposition Let D and D ′ be posets, and let F : D → P∅(D
′) be increasing

upward. Then, for any increasing set B ⊂ D ′, the set F−1
− (B) ⊂ D is increasing.

Proof: Let B ⊂ D ′ be increasing and let a ∈ F−1
− (B) be arbitrary. Then, by definition,

there is b ∈ F(a) ∩ B. Since F is increasing upward, for all a ′ > a there is b ′ ∈ F(a ′)
such that b ′ > b, and since B is increasing, it follows b ′ ∈ B and thus a ′ ∈ F−1

− (B).
Consequently, F−1

− (B) is increasing. #

As stated in Remark 3.13, one major problem in dealing with multifunctions is the
defect that pre-images do not commute with intersections. Thus, to give an useful mea-
surability result for increasing upward multifunctions F : X → P∅(R), we furthermore
have to develop a condition on F and subsets A,B ⊂ R under which

F−1
− (A ∩ B) = F−1

− (A) ∩ F−1
− (B) (3.1)

holds. In order to approach this question, note that

• it is well-known that F−1
− (A ∩ B) ⊂ F−1

− (A) ∩ F−1
− (B) holds, as obviously for all

x ∈ X such that f(x) ∩A ∩ B 6= ∅ one has F(x) ∩A 6= ∅ and F(x) ∩ B 6= ∅;

• (3.1) holds if F is single-valued; F(x)∩A 6= ∅ and F(x)∩B 6= ∅ imply F(x)∩A∩B 6= ∅;

• if F is not single-valued, i.e. if there is some x ∈ X such that F(x) contains at least
two distinct values y1 and y2, one has F(x) ∩ {y1} 6= ∅ and F(x) ∩ {y2} 6= ∅, but
F(x) ∩ {y1} ∩ {y2} = ∅.

Thus, a reasonable (but neither sufficient nor necessary) condition for Equation (3.1) to
hold is A ∩ B 6= ∅. If the underlying space is a poset, a large class of such pairs is given
by

A = α↑ and B = β↓, provided α 6 β.

That given, we have A ∩ B = [α,β] 6= ∅ and (3.1) reduces to the question if

F−1
− ([α,β]) ⊃ F−1

− (α↑) ∩ F−1
− (β↓). (3.2)

To tackle this inclusion, let us first notate the following auxiliary result:
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3.16 Proposition Let R be a lattice, and let α,yα,β,yβ ∈ R be given such that
α 6 β, α 6 yα and yβ 6 β. Then

[α,β] ∩ [y∧,yα] 6= ∅, [α,β] ∩ [yβ,y∨] 6= ∅, [α,β] ∩ [y∧,y∨] 6= ∅.

Proof: By assumption, we have y∧ 6 yβ 6 β and α 6 yα 6 y∨, which together with
α 6 β and y∧ 6 y∨ imply γ ··= α∨ y∧ 6 β∧ y∨ =·· δ. This implies

γ, δ ∈ [γ, δ] ⊂ [α,β] ∩ [y∧,y∨].

Furthermore, it holds y∧ 6 γ 6 yα and yβ 6 δ 6 y∨, thus

γ ∈ [γ,yα ∧ β] ⊂ [α,β] ∩ [y∧,yα], δ ∈ [yβ ∨ α, δ] ⊂ [α,β] ∩ [yβ,y∨]. #

In view of Proposition 3.16, the appropriate condition for Equation (3.2) to hold is,
interestingly enough, that the values of F are of order-convex type (see Definition 1.8):

3.17 Lemma Let X be a set, let R be a sup-semilattice with elements α 6 β, and let
F : X→ P∅(R) be a multifunction whose values are order-convex upward. Then it holds

F−1
− ([α,β]) = F−1

− (α↑) ∩ F−1
− (β↓).

Proof: Suppose x ∈ F−1
− (α↑)∩ F−1

− (β↓), then there exist yα,yβ ∈ F(x) such that α 6 yα
and yβ 6 β. Obviously, this implies

yβ 6 α∨ yβ 6 y∨ and α 6 α∨ yβ 6 β,

such that α∨yβ ∈ F(x)∩ [α,β], since F(x) is order-convex upward. Thus, x ∈ F−1
− ([α,β])

and by the preceding notes, the proof is complete. #

To bring order, topology and measurability together, we formulate the following prop-
erty of an ordered topological space:

(Q) Every open set is a countable union of order-intervals [α,β].

An example for an ordered topological space having property (Q) is R (which is, in
fact, the only case we consider in the applications in Part II). For R, we have even the
following folkloric lemma:

3.18 Lemma Every open set U ⊂ R is the union of countably many disjoint open
intervals.

Proof: Let U be an open subset of R and consider the equivalence relation ∼ on U,
defined by a1 ∼ a2 if and only if [a∧,a∨] ⊂ U. Since U is the disjoint union of all
equivalence classes C of ∼, which are open intervals (inf C)↑↑ ∩ (supC)↓↓ containing at
least one rational number, the assertion follows. #

The merit of property (Q) is obvious: If F−1
− (α↑) and F−1

− (α↓) are measurable for all
α ∈ R, property (Q) and Lemma 3.17 imply that F is measurable, as the large pre-image
commutes with unions. This idea gives us the desired generalization of Proposition 3.4:
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3.19 Theorem Let X be an ordered measurable space, let R be an ordered topological
space with sup-semilattice-structure satisfying property (Q), and let F : X→ P∅(R) be an
increasing multifunction with order-convex upward values. Then F is weakly measurable.

Proof: Let U ⊂ R be any open set. Then, thanks to property (Q), there are countably
many αi,βi ∈ R such that

U =
⋃
i∈N

[αi,βi] =
⋃
i∈N

α
↑
i ∩ β

↓
i .

Due to Lemma 3.17 and Remark 3.13 it follows

F−1
− (U) = F−1

− (
⋃
i∈N

α
↑
i ∩ β

↓
i ) =

⋃
i∈N

F−1
− (α↑i ∩ β

↓
i ) =

⋃
i∈N

F−1
− (α↑i ) ∩ F

−1
− (β↓i ).

By Proposition 3.15, F−1
− (α↑i ) is increasing and thus measurable, and by the dual of

Proposition 3.15 for an increasing downward multifunction, F−1
− (β↓i ) is decreasing and

thus measurable, too. It follows that F−1
− (U) is measurable and thus that F is a weakly

measurable multifunction, which concludes the proof. #

3.20 Remark Let X be a topological space equipped with the Borel σ-algebra or
some finer σ-algebra, and let F : X → P(R) be a multifunction with non-empty and
compact values. Then the assertion of Theorem 3.19 can be deduced as follows: Since F
is increasing if and only if its envelopes F∗ : X → R and F∗ : X → R are increasing (see
Proposition 1.26), and since increasing real functions are Borel measurable, Proposition
3.31 below implies that F is weakly measurable.

(The same holds if the values of F are such that inf F(x) and sup F(x) exist in R, since
F is measurable if and only if the multifunction x 7→ F(x) is measurable, where F(x)
denotes the closure of F(x).) #

3.21 Corollary Let R be equipped with the usual order, the Euclidean metric and its
Borel σ-algebra, and let F : R → P∅(R) be an increasing multifunction whose values are
closed intervals. Then F is measurable. #

The space R has property (Q). To illustrate the applicability of Theorem 3.19, we are
going to provide further examples for ordered topological spaces having property (Q).
To this end, we need the following definitions and well-known insights.

3.22 Definition Let R be an ordered normed space with order cone K. We say that
K is proper if K 6= R and if K has non-empty interior intK. In this case, for s, t ∈ R
we write s � t and t � s if t − s ∈ intK, i.e. if there is some ε > 0 such that the ball
Bε(t− s) ··= {r ∈ R : ‖r− (t− s)‖ < ε} is a subset of K. #

For example, consider R = R with its usual order cone K, then we have intK = (0,∞)
and thus s � t if and only if s < t. In case R = RN, we have intK = {s : si > 0} and
thus s� t implies s < t, but not vice versa.

76 3 Measure Theory



3.23 Proposition Let R be an ordered normed space with proper order cone K. Then
� is a strict partial order (i.e. � is irreflexive and transitive) and the following
assertions hold true:

(i) If s� s ′ and t 6 t ′, then s+ t� s ′ + t ′.

(ii) If s� t and α > 0, then αs� αt.

(iii) If s 6 t� r or s� t 6 r, then s� r.

Proof: We first prove that � is irreflexive. To this end, suppose r � r for some r ∈ R.
Then 0 ∈ intK, that is, Bε(0) ⊂ K for some ε > 0, and thus R ⊂ K, since every s ∈ R is
of the form s = αs ′ for some α > 0 and some s ′ ∈ Bε(0). This contradicts K 6= R, thus
r� r does not hold.

Furthermore, � is transitive (see (iii)), and thus a strict partial order.
Now, assume s� s ′, then Bε(s

′ − s) ⊂ K for some ε > 0, and thus for every t ∈ R it
follows Bε(s

′ + t− (s+ t)) ⊂ K, that is, s+ t� s ′ + t. Assertion (i) follows by (iii).
To prove (ii), suppose Bε(t − s) ⊂ K and α > 0. Since y ∈ Bε(t − s) if and only if

αy ∈ Bαε(α(t− s)), it follows Bαε(α(t− s)) ⊂ K, and thus αs� αt.
At last, assume s 6 t and Bε(r− t) ⊂ K for some ε > 0. Then

Bε(r− s) = Bε(r− t+ t− s) = Bε(r− t) + t− s ⊂ K,

since t − s ∈ K and K is closed under addition. Thus, s � r. If s � t 6 r, then s � r

follows similarly and (iii) is proved. #

3.24 Definition Let R be an ordered normed space with proper order cone K. Then
R is said to be order-separable if there is some countable set Q ⊂ R such that for all
x,y ∈ R such that x� y there is some q ∈ Q such that x 6 q 6 y. #

3.25 Remark There are various variants of defining order-separable posets, see, e.g.,
[16] for the definitions of order-separable posets in the sense of Cantor, Debreu, Jaffray
and Birkhoff, respectively. However, our natural notion seems not to be standard. #

3.26 Proposition Let R be an order-separable ordered normed space with proper
order cone, and suppose that the norm is normal, i.e. there is some cK > 0 such that
0 6 x 6 y in R implies ‖x‖ 6 cK‖y‖. Then R has property (Q).

Proof: Let e ∈ intK, let U ⊂ R be open and consider some x ∈ U and some r > 0 such
that Br(x) ⊂ U. Then, for every ε > 0, we have εe � 0 and x − εe � x � x + εe,
and therefore there are α,β ∈ Q such that x − εe 6 α 6 x 6 β 6 x + εe. For every
z ∈ [α,β] we conclude 0 6 z − x + εe 6 2εe and thus ‖z − x‖ 6 (2cK + 1)ε‖e‖. Thus,
we have x ∈ [α,β] ⊂ Br(x) ⊂ U if ε is sufficiently small. Consequently, U is the union of
countably many such order-intervals [α,β]. #

3.27 Corollary Let X be a measurable space, let R be an order-separable ordered
normed space with proper order cone and normal norm, and let F : X → P∅(R) be a
multifunction such that F−1

− ([α,β]) is measurable for all α,β ∈ R. Then F is measurable.
#
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3.28 Example Besides Rn there are other order-separable ordered normed spaces
with proper order cone and normal norm. Consider, e.g., the set R = C(I) of continuous
real functions over a compact interval I ⊂ R. Equipped with the usual sup-norm ‖ · ‖∞
and ordered point-wise, R is clearly an ordered normed space with proper order cone and
normal norm. Further, it is order-separable: Assume f� g, then (g− f)(x) > 2ε > 0 for
all x ∈ I and some rational ε. As there is a polynomial p with rational coefficients such
that ‖f− p‖∞ < ε, we have f 6 p+ ε 6 g. #

3.1.3 Measurable Selections

In applications, often the question arises if a given multifunction has a measurable se-
lection. Depending on what we know about the underlying space, we have two slightly
different definitions:

3.29 Definition Let X be a measurable space, let R be a topological space, let
F : X→ P(R) be a multifunction, and let f : X→ R be a single-valued measurable function.

(i) f is called a measurable selection of F if f ⊂ F, i.e. f(x) ∈ F(x) for all x ∈ X.

Now let X be a complete measure space, i.e. a measurable space (X,A) endowed with
a measure µ : A→ [0,+∞] such that each subset of a null-set is measurable.

(ii) f is called a measurable selection of F if f(x) ∈ F(x) for a.e. x ∈ X (where,
as usual, ‘a.e.’ stands for ‘almost every’, meaning that the set of exception is a
null-set). In this case, we also write f ⊂ F. #

3.30 Remark This abuse of notation makes no trouble. Indeed, if f is a measurable
selection of F in the sense of (ii), there is a measurable selection g of F in the sense
of (i) such that f(x) = g(x) for a.e. x ∈ X, since we can redefine f on the null-set
{x ∈ X : f(x) /∈ F(x)} without losing measurability. Thus, when identifying functions
which differ only on a null-set, f is a measurable selection of F in the sense of (i). This
result simplifies some arguments for complete measure spaces. #

In the following, let us present a few results guaranteeing the existence of measur-
able selections. To this end, first let us connect measurability of multifunctions with
measurability of its envelopes, in the spirit of Propositions 1.26 and 2.47.

3.31 Proposition Let X be a measurable space, let R be an ordered topological space
with property (Q), and suppose that the values F(x) of the multifunction F : X → P(R)
have greatest elements F∗(x) ∈ F(x).

(i) If F is weakly measurable and measurable, then F∗ is measurable.

Additionally, suppose that F(x) = [F∗(x), F
∗(x)] for all x ∈ X, and suppose that R is a

sup-semilattice or an inf-semilattice.

(ii) If F∗ and F∗ are measurable, then F is weakly measurable.
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Proof: Recall that for all α,β ∈ R it holds

(F∗)−1(α↑) = F−1
− (α↑) and (F∗)−1(β↓) = F−1

+ (β↓).

Thus, measurability of F implies that (F∗)−1(α↑) is measurable, and weak measurability
of F implies that (F∗)−1(β↓) is measurable. Since the order-intervals α↑ and β↓ generate
B(R), F∗ is measurable. In view of the proof of Theorem 3.19 and the dual equations for
F∗, we easily deduce assertion (ii). #

From Proposition 3.31 we have especially the result that F has the measurable selec-
tion F∗. If we have no partial order, we have the following result which shows that it
is not hard to find measurable selections of a measurable multifunction F with closed
values. To this end, recall that a Polish space is a topological space whose topology is
generated by a metric d such that (R,d) is a complete separable metric space.

3.32 Theorem Let X be a measurable space, and let R be a Polish space, and let
F : X → P(R) be a multifunction with closed values. Then F is measurable if and only
if F admits a measurable exhaustion (fn), that is, a sequence of measurable functions
fn : X→ R such that, for all x ∈ X, F(x) equals the closure of {fn(x) : n ∈ N}.

Proof: See [53, Prop. II.2.3] or [51, Theorem 5.6]. #

Theorem 3.32 is a very useful result. However, in the applications in Part II we do
not seek simply for measurable selections of a mere multifunction, but for measurable
selections f of a multifunction x 7→ F(x,u(x), v(x)), where u : X→ R1 and v : X→ R2 are
measurable functions and F : X×R1×R2 → P(R3) is a bifunction defined on the product
space X× R1 × R2, equipped with the product σ-algebra A⊗B(R1)⊗B(R2).

In order to apply Theorem 3.32 to this case, we would have to make sure that the
multifunction x 7→ F(x,u(x), v(x)) is measurable—but we will see in Remark 3.36 and
Example 3.46 that this is not always the case in our targeted application. Thus, we are
going to introduce more notions of measurability, which extend those introduced in Def-
inition 3.12. To emphasize the main ideas and in order to avoid too much technicalities,
let us restrict our considerations to the case of R1 × R2 = Rn and R3 = R, and let, in
view of the following applications, Ω ⊂ RN be an open set equipped with its Lebesgue
σ-algebra L(Ω) and its Lebesgue measure µ, so that (Ω,L(Ω),µ) is a complete measure
space.

3.33 Definition Let F : Ω× Rn → P∅(R) be a multifunction.

(i) F is called (weakly) product-measurable if it is (weakly) measurable with re-
spect to the product σ-algebra L(Ω)⊗B(Rn).

(ii) F is called graph-measurable if its graph gr F is measurable with respect to the
product σ-algebra L(Ω)⊗B(Rn+1).

(iii) F is called superpositionally measurable if, for any measurable single-valued
function u : Ω→ Rn, the multifunction x 7→ F(x,u(x)) is measurable.

(iv) F is called weakly superpositionally measurable if, for any measurable function
u : Ω→ Rn, the multifunction x 7→ F(x,u(x)) has a measurable selection. #
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There are various connections between the several types of measurability. In our
setting and if F : Ω× Rn → P(R) has closed values, we have the following implications:

product-measurable

⇐⇒ weakly product-measurable

=⇒ graph-measurable

=⇒ superpositionally measurable

=⇒ weakly superpositionally measurable.

The equivalence was provided in Proposition 3.14 (which is why we do not need to differ-
entiate between weak and strong measurability in the following), and the last implication
follows from Theorem 3.32. Next, let us provide results for the other implications. We
start with the following result from [3, Lemma 7.2] (see also [125]):

3.34 Lemma Let F : Ω × Rn → P∅(R) be a multifunction. If F is (weakly) product-
measurable, then F is superpositionally measurable.

Proof: Let u : Ω → Rn be any measurable function and define û : Ω → Ω × Rn by
û(x) = (x,u(x)). Then, for any A ∈ L(Ω) and any B ∈ B(Rn) one has

û−1(A× B) = {x : x ∈ A,u(x) ∈ B} = A ∩ u−1(B) ∈ L(Ω).

Since the set {C ⊂ Ω×Rn : û−1(C) ∈ L(Ω)} is a Dynkin system (even a σ-algebra) that
contains L(Ω) × B(Rn), it contains also L(Ω) ⊗ B(Rn), and thus û−1(M) ∈ L(Ω) for
all M ∈ L(Ω)⊗B(Rn). So, if U ⊂ R is open, we have for the multifunction F(·,u(·))

F(·,u(·))−1
− (U) = {x ∈ Ω : F(x,u(x)) ∩U 6= ∅} = û−1(F−1

− (U)) ∈ L(Ω),

since F−1
− (U) ∈ L(Ω)⊗B(Rn). Consequently, F is superpositionally measurable. #

3.35 Remark There is also a converse of Lemma 3.34: If F is compact-valued, su-
perpositionally measurable and upper Carathéodory (see Definition 3.45 below), then F
is product-measurable. As for the proof, we note that Ω has the projection property,
i.e. the projection projΩ(M) of every M ∈ L(Ω)⊗B(Rn) to Ω belongs to L(Ω). Using
this, the proof can be done as in [3, Lemma 7.3]. #

3.36 Remark It may be a difficult task to prove the product-measurability of some
multifunction F : Ω × Rn → P∅(R). Unfortunately, it is not enough that x 7→ F(x, t) is
measurable and that t 7→ F(x, t) is increasing. To see this, consider the following example
from [4]: Let N ⊂ [0, 1] be not Lebesgue measurable and define the function

f : [0, 1]× R→ R, (x, t) 7→ f(x, t) =

{
1 if x < t, or x = t and x ∈ N,

0 if x > t, or x = t and x /∈ N.

Then, x 7→ f(x, x) equals the non-measurable characteristic function of N. Corollary 3.21
shows that no such problem occurs if f does not depend on x ∈ Ω. #
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Next, let us give two conditions which imply that a given multifunction with closed
values is graph-measurable:

3.37 Proposition Let F : Ω× Rn → P(R) be a multifunction. If F has closed values
and is product-measurable, or if F has compact values and both F∗ and F∗ are product-
measurable, then F is graph-measurable.

Proof: Let us set X = Ω × Rn and A = L(Ω) ⊗ B(Rn). Then, the first part of this
proposition is proven in, e.g., [51].

Suppose now that both F∗ : X → R and F∗ : X → R exist and are measurable with
respect to A. Due to Proposition 3.31 and the first part of this proposition, F is graph-
measurable. But let us give another proof: We have

gr F = {(x, t) ∈ X× R : F∗(x) 6 t 6 F
∗(x)} = epi F∗ ∩ hypo F∗,

where epi F∗ ··= {(x, t) : F∗(x) 6 t} is the epigraph of F∗ and hypo F∗ ··= {(x, t) : F∗(x) > t}
its hypograph. Since both the epigraph and the hypograph of a measurable function are
measurable, we are done. #

Finally, following [68, Prop. 2.3], let us show that graph-measurable multifunctions
are indeed superpositionally measurable.

3.38 Proposition Let F : Ω × Rn → P∅(R) be a graph-measurable multifunction.
Then F is superpositionally measurable.

Proof: Let u : Ω → Rn be any measurable function, and let U ⊂ R be any open set.
Then we have

F(·,u(·))−1
− (U) = {x ∈ Ω : F(x,u(x)) ∩U 6= ∅} = projΩ(M(F,u,U)),

where

M(F,u,U) = {(x, s, r) ∈ Ω× Rn × R : s = u(x), r ∈ F(x, s) ∩U}
= (gr(u)× R) ∩ gr(F) ∩ (Ω× Rn ×U) .

Since u is measurable, it is graph-measurable, and thus M(F,u,U) ∈ L(Ω)⊗B(Rn+1).
By Theorem 3.8, projΩ(M(F,u,U)) belongs to L(Ω) and the assertion follows. #

At the end of this subsection, let us illuminate the gap between product-measurable
and graph-measurable multifunctions by inspecting some more technical results:

Multifunctions with non-closed values If F is not closed-valued, measurability
needs not to imply graph-measurability, as the following simple example (which is [53,
Example II.1.38]) illustrates.
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3.39 Example Let Ω = R = [0, 1] ⊂ R be equipped with the Lebesgue σ-algebra
L(Ω). Let A ⊂ [0, 1] be a non-measurable set, and define F : Ω→ P(R) by

F(x) =

{
R if x ∈ A,

R \ {x} if x /∈ A.

Then F is measurable, as large pre-images are of the form Ω or Ω \ {x}, but not graph-
measurable. Indeed, if we suppose otherwise, then we have gr F ∈ L(Ω)×B(R) and thus
gr(F) ∩ ∆ ∈ L(Ω)× B(R) with ∆ = {(x, x) : x ∈ [0, 1]}, so A = projΩ(gr(F) ∩ ∆) ∈ L(Ω)
by Theorem 3.8, contradicting the choice of A. #

Complete Measure Spaces We know that a measurable multifunction F with closed
values is graph-measurable, see Proposition 3.37. If the domain of F is a complete measure
space, the converse holds true, which is a consequence of Theorem 3.8. To be more precise,
we have the following theorem (see [53, Theorem II.1.35]):

3.40 Theorem Let (X,A,µ) be a complete measure space, let R be a Polish space,
and let F : X → P(R) be a multifunction with closed values. Then F is graph-measurable
if and only if F−1

− (D) ∈ A for all D ∈ B(R). #

However, this result can not be applied to a multifunction F : Ω× Rn → P(R), since
B(Rn) is not complete with respect to the Borel measure.

Souslin Sets and Standard Borel Spaces To present deeper results about measur-
able functions, we have to recall a few more definitions:

(i) A topological space R is called Hausdorff if for any two distinct points x,y ∈ R
there are distinct open sets U,V ⊂ R such that x ∈ U and y ∈ V.

(ii) A Hausdorff space is called Souslin if it is the image of a Polish space under a
continuous mapping. A subset M of a topological space is called Souslin if M is
a Souslin space with respect to its induced topology.

(iii) A measurable space (X,A) is called standard Borel space if it is isomorphic to
(Y,B(Y)) for some Polish space Y, i.e. if there is a bijection f : X → Y such that
both f and f−1 are measurable.

Souslin sets, which are more general than Borel sets, relate measurable functions with
measurable graphs. The first result in this direction can be found in [12, Lemma 6.7.1]
and reads as follows:

3.41 Lemma Let R and S be Souslin spaces. Then the graph of any Borel measurable
function f : R → S (where R and S are equipped with their Borel σ-algeba) is a Borel,
hence Souslin, subset of the Souslin space R × S. Conversely, if f : R → S has a Souslin
graph, then f is Borel measurable. #
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A similar result about standard Borel spaces is [59, Theorem 14.12], which reads a
follows:

3.42 Lemma Let X and Y be standard Borel spaces, and let f : X→ Y be a function.
Then f is measurable if and only if gr f is measurable. #

In order to apply this result, we need to know which sets are standard Borel spaces.
The following proposition (which is [59, Corollary 13.4]) gives a result in this direction:

3.43 Proposition Let (X,A) be a standard Borel space and Y ∈ A. Then (Y,A|Y) is
also a standard Borel space (where A|Y = {A ⊂ Y : A ∈ A}, since Y ∈ A).

Proof: We can assume that X is a Polish space with topology T and A = B(T). Then,
Y is a Borel set, and thus there is a topology S on X such that (X, S) is a Polish space,
T ⊂ S, σ(S) = σ(T), and such that Y is clopen (i.e. both closed and open) with respect
to S (see [59, Theorem 13.1]). Thus, (Y, S|Y) is a Polish space, and since B(X)|Y = B(Y),
(Y,B(X)|Y) is a standard Borel space. #

Especially, (Ω,B(Ω)) is a standard Borel space, and so is (Ω×Rn,B(Ω)⊗B(Rn)).

For multifunctions, we have a similar result. To this end, recall that the Vietoris
topology V on the set Cp(R) of all non-empty, compact subsets of a topological space
R is generated by the sets

U− = {C ∈ Cp(R) : C ∩U 6= ∅}, U+ = {C ∈ Cp(R) : C ⊂ U}

for U open in R. Thus, for a mapping F : X→ Cp(R) we have, for any open subset U of
R,

F−1
− (U) = {x ∈ X : F(x) ∩U 6= ∅} = {x ∈ X : F(x) ∈ U−} = F−1(U−),

where on the left F is treated as a multifunction whose values are subsets of R, and on the
right F is treated as a single-valued function whose values are elements of the codomain
Cp(R). Consequentely, if F is Borel measurable with respect to the Vietoris topology,
then F is weakly measurable in our usual sense. With this in mind, we can appreciate
the next result, which is [59, Theorem 28.8]:

3.44 Theorem Let X be a standard Borel space, let R be a Polish space, and let
F : X → Cp(R). Then F is measurable (with respect to the Vietoris topology) if and only
if gr F ⊂ X× R is measurable. #

Finally, let us apply Theorem 3.44 to our setting: If F : Ω × Rn → P(R) is product-
measurable and compact-valued, its graph belongs to L(Ω) ⊗ B(Rn+1) (due to Propo-
sition 3.37). If even gr F ∈ B(Ω) ⊗ B(Rn+1), then F is measurable with respect to the
product σ-algebra B(Ω) ⊗ B(Rn+1) ⊂ L(Ω) ⊗ B(Rn+1) and thus product-measurable.
Thus, when restricting our considerations to product-measurable multifunctions instead
of graph-measurable ones, we exclude only such multifunctions whose graph is con-
tained in L(Ω)⊗B(Rn+1) \B(Ω)⊗B(Rn+1) and which have at least one non-product-
measurable envelop. It would be interesting to know such a multifunction.
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3.2 Multivalued Bifunctions

In the applications in Part II, a bifunction is a multifunction F : Ω × R × R → P(R),
where, as above, Ω ⊂ RN is an open set equipped with its Lebesgue algebra L(Ω) and
its Lebesgue measure, R is equipped with its Borel σ-algebra B(R), and all sets are
equipped with the usual componentwise ordering and the Euclidean metric.

The interesting part is that F depends on various arguments, but differently. To be
more clear, we impose the following hypotheses on F:

(i) For fixed x and s, the mapping t 7→ F(x, s, t) is of isotone type as defined in
Definition 1.22, such that the developed order-theoretical methods apply.

(ii) For fixed s, the mapping (x, t) 7→ F(x, s, t) is product-measurable, and for fixed
x and t, the mapping s 7→ F(x, s, t) is upper semicontinuous, such that measure-
theoretical and topological methods apply.

This section provides the theoretical background which is needed to treat multivalued
variational inequality problems with nonsmooth bifunctions. To this end, we combine
some known results concerning various kinds of measurability, and then we present ex-
amples of bifunctions that satisfy requirements (i) and (ii).

3.2.1 Upper Carathéodory Multifunctions

Recall that a single-valued function f : Ω × R → R is called Carathéodory if the
mapping x 7→ f(x, s) is measurable for all s ∈ R, and if the mapping s 7→ f(x, s) is
continuous for a.e. x ∈ Ω. This notion generalizes to multifunctions as follows:

3.45 Definition A multifunction F : Ω×Rn → P(R) is called upper Carathéodory
if, for all s ∈ Rn, x 7→ F(x, s) is measurable and if, for a.e. x ∈ Ω, s 7→ F(x, s) is upper
semicontinuous. #

Upper Carathéodory multifunctions may not be superpositionally measurable, as the
following example ([3, Example 7.1]) illustrates:

3.46 Example Let Ω = [0, 1], let D ⊂ Ω be a non-measurable subset, and define
F : Ω× R→ P(R) by

F(x, s) ··=

{
[0, 1] if s = x and x ∈ D,

{1} otherwise.

Then F is obviously upper Carathéodory and compact-valued, but not superpositionally
measurable. Indeed, F maps the function u : x 7→ x into the multifunction G : Ω→ P(R)
defined by

G(x) ··=

{
[0, 1] if x ∈ D,

{1} otherwise,

which is not measurable. #
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However, note that G in Example 3.46 has a measurable selection, therefore F is
weakly superpositionally measurable. The forthcoming Theorem (which is [3, Lemma
7.1]) shows that this is true for all upper Carathéodory multifunctions with compact
values (which is a result we will apply frequently in the applications).

3.47 Theorem Let F : Ω × Rn → P(R) be upper Carathéodory and compact-valued.
Then F is weakly superpositionally measurable.

Proof: Let u : Ω → Rn be any measurable function. Then there is a sequence (un) of
simple functions (i.e. finite linear combinations of measurable characteristic functions)
which converges a.e. to u. Then, all multifunctions Fn : x 7→ F(x,un(x)) are measur-
able, as we have, per definition of a simple function, un =

∑
jajχAj , where each Aj is

measurable and Ω =
⋃
jAj is a disjoint union, and thus, for each open set U,

(Fn)
−1
− (U) = {x ∈ Ω : F(x,

∑
jajχAj(x)) ∩U 6= ∅} =

⋃
j
F(·,aj)−1

− (U) ∩Aj ∈ L(Ω).

Hence, also the multifunction

G : Ω→ P∅(R), x 7→
⋂
k>1

cl
⋃
n>k

Fn(x)

(where cl denotes the closure) is measurable (since the intersection of measurable closed-
valued multifunctions is measurable, see [51, Corollary 4.2]).

Further, we claim G ⊂ F(·,u). To see this, suppose y /∈ F(x,u(x)) for some x ∈ Ω
for which un(x)→ u(x) and for which s 7→ F(x, s) is upper semicontinuous. Then, since
F(x,u(x)) is closed, we have y /∈ F(x,u(x))+Bε for ε ··= dist(y, F(x,u(x))/2 > 0. Because
s 7→ F(x, s) is upper semicontinuous, we have F(x,un(x)) ⊂ F(x,u(x))+Bε for all n > k0,
where k0 is chosen appropriately. Hence, y /∈ cl

⋃
n>k0 Fn(x), and hence y /∈ G(x). This

implies G(x) ∈ F(x,u) for a.e. x ∈ Ω.
Consequentely, if G has a measurable selection, also F(·,u) has. In view of Theorem

3.32 we only have to show that G(x) 6= ∅ for a.e. x ∈ Ω (note that G is also measurable
on the measurable space Ω\N for any null-set N ⊂ Ω). To this end, we recall that F has
bounded values and deduce similar as above that

⋃
n>k Fn(x) is bounded for a.e. x ∈ Ω.

Thus, for a.e. x ∈ Ω, (cl
⋃
n>k Fn(x)) is a decreasing sequence of non-empty compact

sets, which implies G(x) 6= ∅. #

3.48 Remark In the last two lines of the above proof we used that bounded and
closed sets in R are compact. We currently don’t know if Theorem 3.47 can be generalized
to topological spaces without this property. #

3.49 Remark An analogous result for a lower Carathéodory multifunction (defined
analogous to upper Carathéodory multifunctions) does not hold. To see this, consider
the following example, which is [3, Example 7.2]:

Let Ω = [0, 1], let D ⊂ Ω be a non-measurable subset, and let F : Ω× R → P(R) be
defined by

F(x, s) ··=


{0} if s = x and x ∈ D,

{1} if s = x and x ∈ Ω \D,

[0, 1] otherwise.
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Then F is lower Carathéodory, but not weakly superpositionally measurable, since F
maps the function u : x→ x into the multifunction G : Ω→ P(R) defined by

G(t) ··=

{
{0} if x ∈ D,

{1} if x ∈ Ω \D,

which has no measurable selection. #

3.2.2 General Bifunctions

Now, let us consider bifunctions F : Ω×R×Rn → P(R) with compact values. From what
we have proved so far, we have at once the following result about measurable selections:

3.50 Corollary Let F : Ω× R× Rn → P(R) be a multifunction with compact values
such that (x, t) 7→ F(x, s, t) is superpositionally measurable or product-measurable for all
s ∈ R, and such that s 7→ F(x, s, t) is upper semicontinuous for a.e. x ∈ Ω and all
t ∈ Rn. Then F is weakly superpositionally measurable.

Proof: Let u : Ω→ R and v : Ω→ Rn be measurable functions. Then, for all s ∈ R, the
multifunction x 7→ F(x, s, v(x)) is measurable due to Lemma 3.34. Thus, by definition,
the multifunction (x, s) 7→ F(x, s, v(x)) is upper Carathéodory. Due to Theorem 3.47,
x 7→ F(x,u(x), v(x)) has a measurable selection, that is, F is weakly superpositionally
measurable. #

Corollary 3.50 gives an applicable criterion for a bifunction to be weakly superposi-
tionally measurable. However, it does not make use of order-theoretical considerations
(except the elementary result that bounded and closed subsets of R are compact). It
would be convenient to use that t 7→ F(x, s, t) is of isotone type in order to provide the
product-measurability of (x, t) 7→ F(x, s, t). But there is no simple answer, as we have
seen in Remark 3.36. Thus, we are going to provide a criterion (M) which guarantees
that (x, t) 7→ F(x, s, t) is product-measurable if it is measurable in x and increasing in t.
This generalizes a finding for single-valued functions (see [55]).

To make the proof more lucid, we use the notion of permanent multifunctions and a
technical proposition. To this end, let us slightly extend Definition 1.64:

3.51 Definition Let D be a poset, let Y be a set, and let F : D → P∅(Y) be a
multifunction.

(i) F is called permanent upward if x 6 y implies F(x) ⊂ F(y).

(i)d F is called permanent downward if x 6 y implies F(y) ⊂ F(x). #

3.52 Proposition Let (X,A) be a measurable space, and let m : R→ A be a perma-
nent upward multifunction. Then the function g : X→ R ∪ {−∞,+∞}, defined by

g(x) ··= inf{t : x ∈ m(t)},

is measurable.
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Proof: Let (εn) be a sequence of real numbers εn > 0 converging to 0. Then for each
s ∈ R, g(x) 6 s is equivalent to x ∈ m(s + εn) for all n ∈ N, since m is permanent
upward. Thus, we have

g−1(s↓) = g−1([−∞, s]) =
⋂
n
m(s+ εn) ∈ A.

Since the sets s↓ generate the Borel algebra on R ∪ {−∞,+∞}, g is measurable. #

After this preparation, let us prove the main result of this subsection:

3.53 Theorem Let F : Ω × R → P(R) be a multifunction whose values F(x, t) have
the greatest element F∗(x, t), and assume that

(i) for all t ∈ R the multifunction x 7→ F(x, t) is measurable on Ω,

(ii) for a.e. x ∈ Ω the multifunction t 7→ F(x, t) is increasing upward.

Then, for α ∈ R, F−1
− (α↑) is product-measurable if and only if the set

M∗(α) = {(x, t) ∈ Ω× R : min F∗(x, ·)−1(α↑) = t}

is product-measurable.

Proof: Let α ∈ R be arbitrary and consider the pre-image

M ··= F−1
− (α↑) = {(x, t) ∈ Ω× R : F(x, t) ∩ α↑ 6= ∅} = {(x, t) ∈ Ω× R : F∗(x, t) > α}.

We are going to reveal a connection between M and M∗(α). To this end, define the
multifunction m : R→ P∅(Ω) by

m(t) ··= F(·, t)−1
− (α↑),

such that (x, t) ∈M if and only if x ∈ m(t). Due to (i), m : R→ P∅(Ω) has measurable
values, and due to (ii), m is permanent upward. To show the latter, assume x ∈ m(t) and
t 6 t ′. Then α 6 F∗(x, t) 6 F∗(x, t ′), which implies x ∈ m(t ′). Thus, from Proposition
3.52 we know that the function g : Ω→ R ∪ {−∞,+∞}, defined by

g(x) ··= inf{t ∈ R : (x, t) ∈M} = inf{t ∈ R : x ∈ m(t)},

is measurable. Furthermore, consider the set

M ′ ··= {(x, t) ∈ Ω× R : g(x) < t},

which is a subset of M. Indeed, for all (x, t ′) ∈M ′ there is some t such that t 6 t ′ and
(x, t) ∈ M; since m is permanent upward, we deduce (x, t ′) ∈ M. Therefore, we have
the representation M =M ′ ∪ (M \M ′). Further, we have

M \M ′ = {(x, t) ∈ Ω× R : (x, t) ∈M and g(x) > t}

= {(x, t) ∈ Ω× R : F∗(x, t) > α and inf{s : F∗(x, s) > α} > t}

= {(x, t) ∈ Ω× R : min F∗(x, ·)−1(α↑) = t},

that is, M \M ′ =M∗(α) and M =M ′ ∪M∗(α). Since the functions (x, t) 7→ g(x) and
(x, t) 7→ t are L(Ω) ⊗ B(R)-measurable, the set M ′ is product-measurable, and thus
M = F−1

− (α↑) is product-measurable if and only if M∗(α) is product-measurable. #
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3.54 Corollary Let F : Ω × R → P(R) be a multifunction with compact and convex
values such that

(i) for all t ∈ R the multifunction x 7→ F(x, t) is measurable on Ω,

(ii) for a.e. x ∈ Ω the multifunction t 7→ F(x, t) is increasing.

Then, F is product-measurable if and only if for every α ∈ R the sets

M∗(α) ··= {(x, t) ∈ Ω× R : min F∗(x, ·)−1(α↑) = t},

M∗(α) ··= {(x, t) ∈ Ω× R : max F∗(x, ·)−1(α↓) = t}

are product-measurable.

Proof: Suppose first that for every α ∈ R both M∗(α) and M∗(α) are measurable.
Then, by Theorem 3.53, F−1

− (α↑) is product-measurable, and the some holds by duality
for F−1

− (α↓). By Lemma 3.17 and Corollary 3.27, F is product-measurable.
Conversely, if F is product-measurable, for all α ∈ R the pre-images F−1

− (α↑) and
F−1
− (α↓) are product-measurable and thus, again by Theorem 3.53 and its dual, M∗(α)

and M∗(α) are product-measurable, too. #

3.55 Remark The proof of Corollary 3.54 simplifies slightly if one incorporates
Proposition 3.31 and proves Theorem 3.53 only for single-valued functions. However,
the conditions remain the same. #

3.56 Remark In the setting of Corollary 3.54, one has that M ··= F∗(x, ·)−1(α↑) is
an increasing set in R and thus M = R, M = t↑, M = t↑↑ or M = ∅.

To simplify the condition that M∗(α) is product-measurable, let us define the set Ω∗

and the function t∗ : Ω∗ → R via

Ω∗ ··= {x ∈ Ω : F∗(x, ·)−1(α↑) has a minimum}, t∗(x) ··= min F∗(x, ·)−1(α↑).

Then M∗(α) is measurable if and only if the set {(x, t) ∈ Ω × R : x ∈ Ω∗, t = t∗(x)} is
measurable, that is if the graph of t∗ is measurable. This is the case if Ω∗ and t∗ are
both measurable, which is a fairly simple criterion. #

3.57 Remark In the setting of Corollary 3.54, if F is constant with respect to its
first argument, then we have for every α ∈ R

M∗(α) = {(x, t) ∈ Ω× R : min F∗(x, ·)−1(α↑) = t} = Ω×A(α),

where either A(α) is the singleton {min F∗(x0, ·)−1(α↑)} for a fixed x0 ∈ Ω (if there is
such a minimum), or A(α) = ∅. In both cases, M∗(α) is product-measurable. With dual
reasoning, M∗(α) is product-measurable, too. Thus, we obtain as a special case again
Corollary 3.21. #

3.58 Remark Finally, let us also mention a related result from [4, Th. 1.9]:
Let f : Ω × R → R be a function such that x 7→ f(x, s) is measurable for all s ∈ R

and such that s 7→ f(x, s) is increasing for a.e. x ∈ Ω. Then the following assertions are
equivalent:
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(i) f is superpositionally measurable;

(ii) f is a Shragin function, i.e. there exists a null-set N ∈ L(Ω) such that, for any
B ∈ B(R), the set f−1(B) \ (N× R) belongs to L(Ω)⊗B(R).

Note also that all Shragin functions are superpositionally measurable ([4, Th. 1.1]). #

3.2.3 Construction of Bifunctions

In [22, 27], bifunctions f : (s, t) 7→ ∂1g(s, t), were considered, where ∂1g(s, t) denotes
Clarke’s generalized gradient (see Definition 2.62) with respect to the first argument of
a function g : R×R→ R. The following corollary provides the properties of f under the
assumptions used in [22, 27].

3.59 Corollary Let g : R × R → R be locally Lipschitz in the first argument and
assume that t 7→ g◦(s, t, 1) is decreasing, and that t 7→ g◦(s, t,−1) is increasing for all
s ∈ R. Then f = ∂1g is upper semicontinuous in the first and decreasing in the second
argument.

Proof: This follows readily from Propositions 2.64 and 3.31 and Corollary 1.27. #

In the following, we present two ways to construct various examples of multifunctions
F : R×R→ P(R) that are upper semicontinuous in the first and increasing upward in the
second argument. This extends the examples given in [22], where Clarke’s generalized
gradient ∂g of a locally Lipschitz function g : R→ R and an increasing function h : R→ R
were combined to generate bifunctions as follows:

(s, t) 7→ ∂g(s) + h(t) and (s, t) 7→ ∂g(s)h(t)

(with the requirement ∂g ⊂ [0,∞) in the second case).

3.60 Proposition Let F : R×R→ P(R) and G,H : R→ P(R) be multifunctions and
suppose one of the following conditions:

(i) G is single-valued and continuous, H is single-valued and increasing upward, and F
is upper semicontinuous in the first and increasing upward in the second argument.

(ii) G is compact-valued and upper semicontinuous, the values of H and F are compact
intervals, H is increasing upward, and F is continuous in the first and increasing
upward in the second argument.

Then the composition

F ◦ (G,H) : R× R→ P(R), (s, t) 7→ H(G(s),H(t)) = {H(x,y) : x ∈ G(s),y ∈ H(t)}

is upper semicontinuous in the first and increasing upward in the second argument.
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Proof: Let us first assume that (i) holds and set g ··= G and h ··= H. Then, for all
s0, t0 ∈ R and any open set U ⊂ R such that F(g(s0),h(t0)) ⊂ U it follows from the
upper semicontinuity of F(·,h(t0)) that F(g(s),h(t0)) ⊂ U if only g(s) is near g(s0). Since
g is continuous, this holds for all s near s0 and thus F ◦ (g,h) is upper semicontinuous
in the first argument.

Further, let t1 ∈ R be such that t0 6 t1. Then, for any b0 ∈ h(t0) there is some
b1 ∈ h(t1) such that b0 6 b1, and thus for all a ∈ g(s0) and c0 ∈ F(a,b0) there is some
c1 ∈ F(a,b1) such that c0 6 c1. This implies that F ◦ (g,h) is increasing upward in the
second argument.

Now, let us assume that conditions (ii) holds and let again s0, t0 ∈ R be fixed. The
proof of F ◦ (G,H) being increasing upward in the second argument goes exactly as
above, so that we only have to prove that F ◦ (G,H) is upper semicontinuous in the first
argument. To this end, note that for a ∈ R we have

F(a,H(t0)) = [F∗(a,H∗(t0)), F
∗(a,H∗(t0))]

(where as usual F∗ and F∗ are the envelopes of F, and H∗ and H∗ those of H). Further,
the continuity of F implies (thanks to Proposition 2.47) the continuity of F∗ and F∗ in
the first argument and thus, for any s0 ∈ R, there are a∗ and a∗ in the compact set
G(s0) such that

F(G(s0),H(t0)) = [F∗(a∗,H∗(t0)), F
∗(a∗,H∗(t0))]. (3.3)

Now let U ⊂ R be an open set such that F(G(s0),H(t0)) ⊂ U. In view of (3.3) and the
continuity of F∗ and F∗ we conclude F(G(s),H(t0)) ⊂ U if G(s) ⊂ G(s0)+ [0, ε) for some
ε > 0. By means of the upper semicontinuity of G, this holds for all s near s0, thus
F(G(·),h(t0)) is upper semicontinuous. #

3.61 Example There are elementary functions f : R×R→ R satisfying the conditions
in (ii) above. One can define f(s, t) to be equal to, e.g,

s+ t, |s| · t, s∧ t, s∨ t, (|s|+ 1)t, sgn(t)|t||s|.

Further, in the terms above any s can be replaced by f1(s), where f1 is a continuous real
function, and any t can be replaced by f2(t), where f2 is an increasing real function. Let
us give the following illuminating example (that closely resembles the one given in [22]):

g(x) ··=


−x+ 1 if x < 0,

[0, 1] if x = 0,

0 if x > 0,

h(x) ··=

{
−2 if x 6 0,

x if x > 0.

As one sees, g + h is neither upper semicontinuous (nor lower semicontinuous) nor in
some way increasing or decreasing. #
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3.3 Spaces of Measurable Functions

In applications, the spaces we will work with are mostly the well-known Sobolev spaces
W1,p(Ω) over a bounded domain Ω ⊂ RN with Lipschitz boundary. In this section,
we collect some basic facts. The stated notations and results are standard. For more
information, we refer, e.g., to [11, 12, 40, 96, 119].

To avoid technicalities, we confine our considerations mostly to the Sobolev space
W

1,p
0 (Ω) whose elements have zero boundary in the sense of traces. Note, however, that

most of the results can be generalized to more general function spaces, e.g. spaces of
Sobolev functions with non-trivial boundary values, Sobolev spaces with respect to vari-
able exponents, or Orlicz-Sobolev spaces. Consequently, most of the methods developed
in this thesis can be applied also to the more general case. For further information, we
refer, e.g., to [36, 49, 101].

3.3.1 Spaces of Merely Measurable Functions

Let RN, N > 1, and let Ω ⊂ RN be a domain, i.e. an open and connected subset of
RN. We equip Ω with its Lebesgue σ-algebra and its Lebesgue measure λ, such that
Ω = (Ω,L(Ω), λ) becomes a complete measure space. For a set M ∈ L(Ω), we denote
by |M| ··= λ(M) its measure. As usual, we identify functions u, v : Ω → R with each
other if u(x) = v(x) for a.e. x ∈ Ω. If we refer to some value u(x) of a class u, we mean
the value of an arbitrary representative of the class u.

3.62 Definition Let Ω ⊂ RN be a bounded domain. We denote by L0 = L0(Ω) the
space of (equivalence classes of) measurable functions u : Ω → R (where R is equipped
with its Borel σ-algebra). We equip L0 (and all its subspaces) with the partial order 6
defined via

u 6 v :⇐⇒ u(x) 6 v(x) for a.e. x ∈ Ω.

Addition and scalar multiplication are defined analogously. Further, for M ⊂ L0 we set

M+ ··= 0↑M = {u ∈M : 0 6 u},

and for u ∈ L0 we define functions |u| : Ω→ R, u+ : Ω→ R and u− : Ω→ R via

|u| : x 7→ |u(x)|, u+ : x 7→ u(x)∨ 0, and u− : x 7→ (−u(x))∨ 0. #

3.63 Proposition Let Ω ⊂ RN be a bounded domain. Then L0 = (L0,6,+, ·) is an
ordered linear space with lattice structure (and thus a distributive lattice). For u, v ∈ L0
the function u∨ v is given by u∨ v : x 7→ u(x)∨ v(x), u∧ v is given by duality. Further,
|u| ∈ L0, u+ ∈ L0 and u− ∈ L0. #

If u1, . . . ,un ∈ L0, then

u : Ω→ Rn, x 7→ (u1(x), . . . ,un(x))

is a measurable vector-valued function (where Rn is equipped with its Borel σ-algebra).
By abuse of notation, we write u ∈ L0 instead of u ∈ (L0)n. We will use the same
convention for all subspaces of L0.
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3.3.2 Lebesgue Spaces

Although L0 has good order-theoretical properties, its topological properties are not
good enough. Thus, the following normed subspaces of L0 are welcome. We construct
them by use of the usual Lebesgue integration. Note, however, that we usually write∫
Ω u instead of

∫
Ω u dλ or

∫
Ω u(x) dλ(x) or

∫
Ω u(x) dx.

3.64 Definition Let Ω ⊂ RN be a bounded domain, and let 1 6 p <∞.

(i) For a measurable function u ∈ L0 we define ‖u‖p via

‖u‖pp ··=
∫
Ω

|u|p.

We denote by Lp = Lp(Ω) the space of functions u ∈ L0 satisfying ‖u‖p <∞.

(ii) Let u1, . . . ,un ∈ Lp be given. Then, for the measurable vector-valued function

u : Ω→ Rn, x 7→ (u1(x), . . . ,un(x)),

we define ‖u‖p via ‖u‖pp ··=
∑n
i=1 ‖ui‖

p
p.

(iii) We denote by Lploc = L
p
loc(Ω) the space of functions u ∈ L0 such that

∫
K |u|p <∞

for every compact subset K of Ω.

(iv) For a measurable function u ∈ L0, we put

‖u‖∞ ··= inf{α ∈ R : |{x ∈ Ω : |u(x)| > α}| = 0}.

We denote by L∞ = L∞(Ω) the space of functions u ∈ L0 satisfying ‖u‖∞ < ∞.
L∞loc is defined analogously to Lploc. #

We have the following structural properties of the Lebesgue spaces Lp and L∞:

3.65 Proposition Let Ω ⊂ RN be a bounded domain, and let 1 6 p 6∞.

(i) Lp is a sublattice and a linear subspace of L0 and Lp = (Lp, ‖ · ‖p) is an ordered
Banach space with normal order cone.

(ii) Denote by p ′ ∈ [1,∞] the Hölder conjugate of p defined via 1/p + 1/p ′ = 1.
Then for u ∈ Lp and v ∈ Lp ′ it holds ‖uv‖1 6 ‖u‖p‖v‖p ′. [Hölder’s Inequality]

(iii) Let 1 < p < ∞, u ∈ Lp and v ∈ Lp ′, and ε > 0. Then ‖uv‖1 6 ε‖u‖pp + cε‖v‖p
′

p ′

with cε = (εp)p
′/p/p ′. [Young’s Inequality with Epsilon]

(iv) If 1 6 p < ∞, then there is an isometric bijection i : (Lp) ′ → Lp
′

such that
〈ϕ,u〉 =

∫
Ω i(ϕ)u for all ϕ ∈ (Lp) ′ and u ∈ Lp. We thus identify (Lp) ′ with Lp

′
.

(v) If 1 < p <∞, then Lp is reflexive. #
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Concerning different types of convergence, we have the following results:

3.66 Theorem Let Ω ⊂ RN be a bounded domain, and let (un) ⊂ L1, u ∈ L0 and
g ∈ L1.

(i) If u(x) = limn un(x) for a.e. x ∈ Ω and if |un| 6 g for all n, then u ∈ L1 and
un → u in L1. [Lebesgue]

(ii) If un → u in L1, then, up to a subsequence, un(x) → u(x) for a.e. x ∈ Ω (i.e.
there is a subsequence (vn) of (un) such that vn(x)→ u(x) for a.e. x ∈ Ω).

(iii) If g 6 un for all n, then
∫
Ω lim infn un 6 lim infn

∫
Ω un. [Fatou] #

Concerning mappings between Lebesgue spaces, Carathéodory functions play an im-
portant role:

3.67 Proposition Let Ω ⊂ RN be a bounded domain, let f : Ω × R → R be a
Carathéodory function, and suppose there are p,q ∈ [1,∞), a function a ∈ Lq and
a constant b > 0 such that

|f(x, s)| 6 |a(x)|+ b|s|p/q for a.e. x ∈ Ω and all s ∈ R.

Then the superposition operator (the so called Nemitskij operator)

Nf : L
p → Lq, u 7→ [x 7→ f(x,u(x))]

is well-defined, bounded and continuous. #

Upper Carathéodory multifunctions play an important role, too. They allow to take
limits under weak conditions. The proof of the following proposition follows the ideas
presented in [116, Th. 3.1.2]).

3.68 Proposition Let Ω ⊂ RN be a bounded domain, and let G : Ω× R→ P(R) be
an upper Carathéodory multifunction with closed and convex values and such that G(x, s)
is bounded for almost every x ∈ Ω and all s ∈ R. Suppose furthermore gn ⇀ g in L1

and un → u in L0 pointwise a.e. If

(i) gn ⊂ G(·,un) or (ii) gn ⊂ (τn(G))(·,un),

where τn : s→ max(−n, min(s,n)) is the truncation at level n, then g ⊂ G(·,u).

Proof: Since closed convex sets are weakly closed, we have g ∈ cl cv{gn,gn+1, . . . },
where cl denotes the closure and cv the convex hull. Take hn ∈ cv{gn,gn+1, . . . } such
that ‖hn − g‖1 6 1/n, then we have hn → g in L1 and thus hnk → g pointwise a.e. as
k→∞ for some subsequence (hnk) ⊂ (hn).

Let Ω0 be the set of all x ∈ Ω such that G(x, ·) is upper semicontinuous, G(x, s) is
bounded for all s ∈ R, hnk(x) → g(x), un(x) → u(x), gn(x) ∈ G(x,un(x)) in case (i)
and gn(x) ∈ τn(G(x,un(x))) in case (ii) for all n. Clearly, Ω \Ω0 is a null-set.
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Now suppose x ∈ Ω0 and let E be an arbitrary bounded open convex set with
G(x,u(x)) ⊂ E. Since G(x, ·) is upper semicontinuous and un(x) → u(x), there is some
smallest nE ∈ N with G(x,un(x)) ⊂ E provided n > nE.

In case (i), we have for all nk > nE

hnk(x) ∈ cv
⋃
n>nk

G(x,un(x)) ⊂ E. (3.4)

In case (ii), we have for all nk > nE

hnk(x) ∈ cv{gnk(x),gnk+1(x), . . . },

where gn = τn(g̃n) for some g̃n with g̃n(x) ∈ G(x,un(x)). We claim that in fact
τn(g̃n(x)) = g̃n(x) for n large enough, that is, gn(x) ∈ G(x,un(x)). Otherwise, we
would have |g̃n(x)| > n for infinitely many n ∈ N and thus E wouldn’t be bounded.
Thus, (3.4) holds also in case (ii) for all sufficiently large nk.

In both cases it follows that g(x) ∈ clE. Since the closed, bounded and convex set
G(x,u(x)) is the intersection of all such E (to see this, consider the open and convex sets
G(x,u(x)) + Bε), we obtain g(x) ∈ G(x,u(x)) and thus g ⊂ G(·,u) as desired. #

Finally, let us introduce an important example of a pseudomonotone operator. The
basic idea is written down in [65, Lemma 3.6]; note, however, that we do not need any
knowledge about Hausdorff upper semicontinuous multifunctions.

3.69 Lemma Let Ω ⊂ RN be a bounded domain, and let g : Ω × R → P(R) be an
upper Carathéodory multifunction with closed and convex values. Further, let L = Lq

′

for some q ∈ (1,∞), and let W be a normed space such that the embedding i : L ↪→ W ′

is compact, and suppose that there is some b ∈ L such that g satisfies, for a.e. x ∈ Ω,

sup{|y| : y ∈ g(x, s), s ∈ R} 6 b(x). (3.5)

Then the selection mapping G : W → P(W ′), defined by

G(u) ··= {iη : η is a measurable selection of g(·,u)},

is well-defined, pseudomonotone and bounded, and has closed and convex values.

Proof: Let u ∈ W be given. Due to Theorem 3.47, there are measurable selections of
g(·,u), and due to the growth condition (3.5), we see that the measurable selections of
g(·,u) are uniformly bounded in L independent of u. Since i : L ↪→ W ′ is a compact
embedding, we conclude that G(u) is well-defined and uniformly bounded in W ′, again
independent of u. Further, G(u) is convex and closed in W ′, since g has convex and
closed values. Indeed, let (ηn) ⊂ g(·,u) be some sequence such that the sequence (iηn)
converges in W ′. Since g(·,u) is bounded in the reflexive space L, we conclude, up to a
subsequence, ηn ⇀ η in L for some η, and due to Proposition 3.68, we have η ⊂ g(·,u).
Because i is linear and bounded, it follows iηn ⇀ iη in W ′ and we infer that G(u) is
closed.
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Now, let us apply Proposition 2.54 to ensure that G is pseudomonotone; we only have
to verify that grG is sequentially weakly closed and that the duality pairing is (w×w)-
continuous on grG. To this end, let (un) ⊂ W and (iηn) ⊂ W ′ be sequences such that
ηn ⊂ g(·,un) for all n, and, for some u ∈W, η∗ ∈W ′, un ⇀ u in W and iηn ⇀ η∗ in
W ′. Since also the embedding W ↪→ L ′ is compact, and since (ηn) is bounded in L, we
have, up to a subsequence, un → u in L ′, un(x)→ u(x) for a.e. x ∈ Ω, and ηn ⇀ η in L
for some η ∈ L. We apply once more Proposition 3.68 to conclude η ⊂ g(·,u). Since i is
linear and bounded, we infer iηn ⇀ iη, and thus η∗ = iη ∈ G(u). Further, we apply the
identity 〈iθ, v〉W = 〈θ, v〉L ′ (for θ ∈ L, v ∈W) and the triangle-inequality to conclude

0 6 |〈η∗n,un〉W − 〈η∗,u〉W | 6 ‖ηn‖L‖un − u‖L ′ + |〈ηn − η,u〉L ′ |→ 0.

Thus, G fulfills the requirements of Proposition 2.54 and is thus pseudomonotone. #

3.3.3 Sobolev Spaces

To introduce Sobolev spaces, we have first to define weak derivatives. To this end, we
denote by C∞c = C∞c (Ω) the space of infinitely often differentiable functions ϕ : Ω→ R
with compact support in Ω. For ϕ ∈ C∞c we denote by Diϕ ··= ∂

∂xi
ϕ, i = 1, . . . ,N, the

usual partial derivatives of ϕ.

3.70 Definition Let Ω ⊂ RN be a bounded domain, and let u,w ∈ L1loc. If∫
Ω

uDiϕ = −

∫
Ω

wϕ for all ϕ ∈ C∞c (Ω),

then we define Diu ··= w and call w weak derivative of u. #

3.71 Proposition Let Ω ⊂ RN be a bounded domain, and let u ∈ L1loc.

(i) If Diu exists, it is uniquely defined in L1loc.

(ii) If u ∈ C∞c , then both definitions of Diu coincide. #

3.72 Definition Let Ω ⊂ RN be a bounded domain, and let 1 6 p <∞.

(i) We denote by W1,p =W1,p(Ω) the space of all u ∈ Lp such that Diu ∈ Lp for all
i = 1, . . . ,N.

(ii) For u ∈W1,p we define ∇u : Ω→ RN via (∇u)(x) ··= (D1u(x), . . . ,DNu(x)).

(iii) On W1,p we define ‖ · ‖1,p via ‖u‖p1,p = ‖u‖pp + ‖∇u‖pp.

(iv) ByW1,p
0 =W1,p

0 (Ω) we denote the closure of C∞c inW1,p with respect to ‖·‖1,p. #

We have the following structural properties of the Sobolev spaces W1,p and W1,p
0 :

3.73 Proposition Let Ω ⊂ RN be a bounded domain, and let 1 6 p <∞.
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(i) Let 1 6 p < ∞. Then W1,p and W1,p
0 are partial ordered subsets and subspaces

of L0, and W1,p = (W1,p, ‖ · ‖1,p) and W1,p
0 = (W1,p

0 , ‖ · ‖1,p) are ordered Banach
spaces.

(ii) On W1,p
0 , u 7→ ‖∇u‖p is an equivalent norm of ‖ · ‖1,p, which is a consequence of

the Poincaré-Friedrichs Inequality.

(iii) Let 1 < p <∞. Then W1,p and W1,p
0 are reflexive. #

In order to have more structural properties of W1,p, in the following we restrict our
considerations to bounded domains Ω with Lipschitz boundary ∂Ω, i.e. ∂Ω is locally
the graph of a Lipschitz continuous function. (See, e.g., [28, Definition 2.71] for a more
detailed definition.)

3.74 Lemma (Chain Rule) Let Ω ⊂ RN be a bounded domain with Lipschitz bound-
ary, and let 1 6 p <∞. Let f : R→ R be a Lipschitz continuous function and u ∈W1,p.
Then f ◦ u ∈W1,p and

Di(f ◦ u) = (fB ◦ u)Diu,

where fB : R→ R is a Borel measurable function such that fB = f ′ a.e. in Ω. #

3.75 Corollary Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, and let
1 6 p <∞. Then W1,p and W1,p

0 are sublattices of L0, and it holds, e.g.,

(Diu
+)(x) =

{
Diu(x) if u(x) > 0,

0 if u(x) 6 0,
(Di(u∧ v))(x) =

{
Diu(x) if u(x) > v(x),

Div(x) if u(x) 6 v(x). #

We furthermore have not only W1,p ⊂ Lp as ordered sets, but there is also a compact
embedding:

3.76 Theorem Let Ω ⊂ RN be a bounded domain with Lipschitz boundary, and let
1 6 p <∞. Then we denote by p∗ the criticial Sobolev exponent, defined via

p∗ ··=
Np

N− p
if p < N and p∗ ··=∞ if p > N.

Then, for q ∈ [1,∞], the embedding W1,p(Ω) ↪→ Lq(Ω) is continuous if q 6 p∗, and
compact if q < p∗.

Especially, we have the compact embedding W1,p ↪→ Lp. #

3.77 Remark Recall that for a linear and continuous operator A : X→ Y on Banach
spaces its dual operator A ′ : Y ′ → X ′ is defined via 〈A ′ϕ,u〉 = 〈ϕ,Au〉 for all ϕ ∈ Y ′.
As a matter of fact, A ′ is linear and continuous, too, with norm ‖A ′‖ = ‖A‖, and if A
is compact, then so is A ′.

Thus, Theorem 3.76 gives us, by this version of duality, compact embeddings on the
duals of various Lebesgue and Sobolev spaces. #

Now, as promised on Page 64, let us introduce an important second-order quasilinear
differential operator on Sobolev spaces of Leray-Lions type:
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3.78 Theorem Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω, let
1 < p <∞, and let functions ai : Ω×R×RN → R, i = 0, . . . ,N, be given satisfying the
following conditions:

(A1) Each ai is a Carathéodory function, i.e. x 7→ ai(x, s, ξ) is measurable for all
(s, ξ) ∈ R× RN and (s, ξ) 7→ ai(x, s, ξ) is continuous for a.e. x ∈ Ω.

(A2) The vector-valued function a = (a1, . . . ,aN) is p-coercive in the last argument,
i.e. there is a constant α2 > 0 and a function k2 ∈ L1 such that

N∑
i=1

ai(x, s, ξ)ξi > α2|ξ|
p − k2(x)

for a.e. x ∈ Ω and for all (s, ξ) ∈ R× RN.

(A3) There exists a constant α3 > 0 and a function k3 ∈ Lp
′

such that each ai satisfies
the growth condition

|ai(x, s, ξ)| 6 α3(|s|
p−1 + |ξ|p−1) + k3(x).

(A4) Either the vector-valued function a = (a1, . . . ,aN) is strictly monotone with
respect to its last argument, i.e.

N∑
i=1

(ai(x, s, ξ) − ai(x, s, ξ
′))(ξi − ξ

′
i) > 0

for a.e. x ∈ Ω, all (s, ξ) ∈ R× RN and all ξ ′ ∈ RN with ξ 6= ξ ′,

or there are functions ã0 : Ω × R → R or a0 : Ω × R → RN such that, for a.e.
x ∈ Ω and all (s, ξ) ∈ R× RN, a0(x, s, ξ) = ã0(x, s) or a0(x, s, ξ) = a0(x, s)ξ.

Further, let V be a closed subspace of W1,p such that W1,p
0 ⊂ V ⊂ W1,p, define the

operators A0,A1 : V → V ′ via

〈A0u, v〉 ··=
∫
Ω

a0(·,u,∇u)v and 〈A1u, v〉 ··=
N∑
i=1

∫
Ω

ai(·,u,∇u)Div

for all u, v ∈ V, and let A = A0 + A1. Then the second-order quasilinear differential
operator A : V → V ′ is continuous, bounded, pseudomonotone and coercive. #

For a proof, we refer to [98, Chapter 2], where also slightly more general conditions
are presented for A to be pseudomonotone. Note also that A1 is only pseudomonotone
if a is monotone with respect to its last argument, see [9].
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3.3.4 Radon Measures

In this final subsection, let us shortly inspect a very useful connection between Functional
Analysis and Measure Theory. To this end, let us define the following spaces of continuous
functions:

3.79 Definition Let X be an open subset of RN (or, more generally, a Hausdorff
space which is locally compact, i.e. every point x ∈ X has a compact neighborhood).

(i) The support supp f is the closure of the set {x ∈ Ω : f(x) 6= 0}.

(ii) By Cc(X) we denote the space of all continuous functions f : X→ R with compact
support, equipped with the norm ‖ · ‖∞ : f 7→ sup{|f(x)| : x ∈ X}.

(iii) By C0(X) we denote the space of all continuous functions f : X→ R such that, for
any ε > 0, {x ∈ X : |f(x)| > ε} is compact, equipped with ‖ · ‖∞. #

As we know, continuous functions on a topological space X are Borel measurable. This
gives rise to linear functionals on C0(X) and its dense subspace Cc(X) which are defined
via integration against Borel measures, i.e. measures µ : B(X)→ [0,∞]. The study of
such functionals reveals an isometric isomorphism between C0(X)

′ and the space Mb(X)
of signed Radon measures. To be more precise, let us give some definitions and results
(for more information, we refer, e.g., to [42, Chapter 7]).

3.80 Definition Let X be an open subset of RN (or, more generally, a locally compact
Hausdorff space), and let µ be a Borel measure on X.

(i) µ is called inner regular on A ∈ B(X) if

µ(A) = sup{µ(K) : K ⊂ A,K is compact}.

(ii) µ is called outer regular on A ∈ B(X) if

µ(A) = inf{µ(U) : A ⊂ U,U is open}.

(iii) µ is called Radon measure if it is finite on compact sets, inner regular on open
sets and outer regular on B(X). #

Those definitions can be extended to signed Borel measures on X, i.e. σ-additive
functions µ : B(X)→ R. To this end, let us recall the Jordan decomposition: For a signed
Borel measure µ we define two measures µ+ and µ− on B(X) via

µ+(A) ··= sup{µ(B) : B ∈ B(X),B ⊂ A}, µ−(A) ··= sup{−µ(B) : B ∈ B(X),B ⊂ A}.

Then it holds µ = µ+ − µ− and we define:

3.81 Definition Let X be an open subset of RN (or, more generally, a locally compact
Hausdorff space), and let µ be a signed Borel measure over X.
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(i) µ is called signed Radon measure if µ+ and µ− are Radon measures. We denote
by Mb(X) the set of all signed Radon measures over X.

(ii) The measure |µ| ··= µ+ + µ− is called total variation of µ.

(iii) On Mb(X) we define a norm via ‖µ‖ ··= |µ|(X), which makes Mb(X) to a Banach
space.

(iv) If u : X→ R is integrable with respect to |µ|, we define∫
X

u dµ ··=
∫
X

u dµ+ −

∫
X

u dµ−,

from which it follows especially |
∫
X u dµ| 6

∫
X |u|d|µ|. #

Finally, we have the Riesz Representation Theorem:

3.82 Theorem Let X be an open subset of RN (or, more generally, a locally compact
Hausdorff space). Then for each bounded and linear functional f ∈ C0(X)

′ there is a
unique signed Radon measure µ ∈Mb(X) such that

〈f,ϕ〉 =
∫
X

ϕdµ for all ϕ ∈ C0(X).

Further, we have ‖µ‖ = |µ|(X) = ‖f‖. #

The representation as integral against a Borel measure is especially useful in combi-
nation with Fubini’s or Tonelli’s theorem. The latter is given as follows:

3.83 Theorem Let (X,A,µ) and (Y,B,ν) be σ-finite measure spaces (i.e. they are
the union of countably many subsets with finite measure), and let f : X × Y → [0,∞] be
product-measurable. Then it holds∫

X

∫
Y

f(x,y) dµ(x) dν(y) =

∫
Y

∫
X

f(x,y) dν(y) dµ(x). #

We will use this representation in order to treat variational equations whose right-
hand sides are given by measures.
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Introduction to Part II

In Part I, we have demonstrated the interplay between order theory, topology and mea-
sure theory on a theoretical level. Now, the goal of Part II is to demonstrate how Theorem
2.33 and the knowledge about multivalued bifunctions can be applied to solve a wide
range of multivalued variational inequalities. This study provides a unifying framework
for known, recently developed, and future existence and enclosure results.

Variational Inequality Problems

Although there is no precise definition of what exactly a variational inequality is, math-
ematicians will surly agree if a given problem is of variational nature or not. Let us give
two illustrating examples from [62] (we also refer to [115]), which illustrate the evolution
of this notion.

II.1 Example Let f : [0, 1] ⊂ R → R be a smooth function. Then there surely is
x0 ∈ [0, 1] such that

f(x0) = min{f(x) : x ∈ [0, 1]}. (II.1)

Since f is smooth, it is elementary to deduce that from (II.1) it follows

f ′(x0)(x− x0) > 0 for all x ∈ [0, 1] (II.2)

(but unfortunately not vice versa), which is a basic variational inequality. #

II.2 Example Let Ω ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω and
closure Ω, and let ϕ : Ω→ R be a function such that max{ϕ(x) : x ∈ Ω} > 0 and ϕ 6 0
on ∂Ω. Define further the convex set

K ··= {u ∈ C1(Ω) : u > ϕ in Ω and u = 0 on ∂Ω}.

Let us assume that K 6= ∅ and that there is u ∈ K such that∫
Ω

|∇u|2 = min{

∫
Ω

|∇v|2 : v ∈ K}.

Then, the function

f : [0, 1]→ R, t 7→
∫
Ω

|∇(u+ t(v− u))|2

attains its minimum at t = 0. It follows f ′(0) > 0, i.e.∫
Ω

∇u∇(v− u) > 0 for all v ∈ K, (II.3)

which is a more general variational inequality than (II.2). #
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Equations (II.2) and (II.3) can be generalized in several aspects. To this end, note
that Equation (II.3) makes sense if K is a subset of the Sobolev space W ··= W

1,2
0 (Ω).

Thus, let us define the operator

A : W →W ′, u 7→ [v 7→
∫
Ω

∇u∇v]

and let us formulate the following problem:

Find u ∈ K ⊂W s.t. 〈Au, v− u〉 > 0 for all v ∈ K. (II.4)

This problem is our prototype of a variational inequality problem, and it is solved
by application of Corollary 2.56.

By using more involved deductions, one can show that Problem (II.4) has solutions
if A, W and K are specified in the following way:

II.3 Theorem Let X be a reflexive Banach space, let K be a non-empty, closed and
convex subset of X, and let A : K→ X ′ be monotone, and continuous on finite dimensional
subspaces. If K is bounded or if A is coercive, then there exists a solution of (II.4).

Proof: See [62, Theorem 1.4, Corollary 1.8]. #

The basic variational problem can be generalized further. For instance, if the feasible
set K is not constant, but depends on u, we obtain quasi-variational inequalities,
and if the operator A is multivalued, we obtain multivalued variational inequalities.
Further, the solutions u and the test functions v ∈ K may not belong to the same space,
leading to variational inequalities with measures.

It is the goal of the current research (see, e.g., [5, 27, 60, 68, 84, 89, 90]) to extend
Theorem II.3 to a wide range of variational problems.

Sub-Supersolution Method

A mathematical problem occurs if the feasible set K is unbounded and if the operator A is
non-coercive. One way to handle such problems is given by the famous sub-supersolution
method (see [104] for “historical highlights of the theory of sub-supersolutions”). It
depends on the existence of subsolutions and supersolutions which are appropriately
defined in such a way that the following principle holds true:

Let u be a subsolution and let u be a supersolution such that u 6 u.
Then there is a solution u such that u 6 u 6 u.

In [28] the application of the sub-supersolution method to a wide range of variational
problems is presented and systematically studied. There, the following basic case is given:

II.4 Example Let Ω ⊂ RN, W = W
1,2
0 (Ω), K ⊂ W non-empty, closed and convex,

and consider the following variational inequality problem:

Find u ∈ K s.t.

∫
Ω

∇u∇(v− u) > 0 for all v ∈ K.
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Then, u ∈W is called a subsolution if∫
Ω

∇u∇(v− u) > 0 for all v ∈ u∧ K,

and, as a dual notion, u ∈W is called a supersolution if∫
Ω

∇u∇(v− u) > 0 for all v ∈ u∨ K. #

In proofs, it is often useful—if not even required—that each solution of a variational
problem is both a subsolution and a supersolution. To this end, the convex set K is
assumed to be a lattice, which holds true in many applications. We have the following
examples from [28]:

(i) K =W, then K is a lattice due to Corollary 3.75.

(ii) K = {u ∈W : u > ψ} = ψ↑W for given ψ ∈ L0.

(iii) K = {u ∈W : ψ1 6 u 6 ψ2} = [ψ1,ψ2]W for given ψi ∈ L0.

(iv) K = {u ∈W : |∇u(x)| 6 c for a.e. x ∈ Ω} for given c > 0.

(v) K = {u ∈W : Diu 6 ψi, i = 1, . . . ,n} for given ψi ∈ L0.

The main idea of the sub-supersolution method is to reduce the variational problem
to an auxiliary problem whose operator is coercive. This is achieved by truncating the
involved operators in such a way that only their behaviour on the order-interval [u,u] is
of relevance. Then, in a second step, it is shown that solutions of the auxiliary problem are
solutions of the original problem, located between the given pair of sub-supersolutions.

Of course, the disadvantage of this approach is that one has to find a pair of sub-
supersolutions in order to apply the developed theory. However, such pairs of sub-
supersolutions can often be constructed as solutions of appropriately defined auxiliary
problems which are known to have solutions beforehand. In this thesis, we do not treat
this question in full generality. However, we will present two particular approaches in
Section 5.5 and Subsection 8.3.4.

Framework for Variational Inequalities with Multivalued Bifunctions

Although the order-theoretical fixed point theorems of Chapter 1 and their topological
corollaries of Chapter 2 are not restricted in their applications, the general framework
presented in Theorem 2.33 was developed to be eventually applied to multivalued vari-
ational problems with bifunctions. The basic idea goes as follows:

Let X be a reflexive Banach space, let K ⊂ X be a subset of X, let A : K × X → X ′

be an operator and let sub-supersolutions u ∈ X and u ∈ X be given. Then, define the
multivalued operator

S : [u,u] ⊂ X→ P(X), v 7→ {u ∈ K : 〈A(u, v),w− u〉 > 0 for all w ∈ K},
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and prove that S has a fixed point u∗. Then, from u∗ ∈ S(u∗) we have

u∗ ∈ K and 〈A(u∗,u∗),w− u∗〉 > 0 for all w ∈ K.

In order to carry out this plan, we have three tasks:

(i) Understand, for all v ∈ [u,u], the following problem:

Find u ∈ K such that 〈A(u, v),w− u〉 > 0 for all w ∈ K.

(ii) Choose some fixed point theorem that seems suitable for finding a fixed point of
S. (Unsurprisingly, we will use Theorem 2.33. We refer to, e.g., [60] for another
approach which is not order-theoretical.)

(iii) Provide all properties needed for the application of the chosen fixed point theorem.
In case of Theorem 2.33, we will define the suboperator S in such a way that its fixed
points are subsolutions of the variational problem (so that, e.g., u ∈ S(u)). Further,
it is often useful to introduce, as the dual counterpart of S, the superoperator S,
whose fixed points are supersolutions.

Above all, point (iii) of the plan is by no means trivial and involves the usage of spe-
cialized analytic tools. We will present them in the rest of this thesis while implementing
the sub-supersolution method for the following variational problems:

• multivalued variational inequalities with bifunctions in Chapter 4,

• multivalued quasi-variational inequalities with bifunctions in Chapter 5,

• multivalued inclusions with measures in Chapter 6,

• multivalued inclusions with measures and bifunctions in Chapter 7,

• systems of the before mentioned variational problems in Chapter 8.

Many more applications of the general framework and real-world applications are
possible, see Chapter 9.
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4 Multivalued Variational Inequalities
with Nonsmooth Bifunctions

4.1 Introduction

In the last years, Carl and Le, among others, have developed an approach that covers
a wide range of variational problems, see, e.g., [20, 22, 23, 24, 27, 28, 68]. They built
on theorems presented in [50], see Lemma 1.58 above, and combined them with the
theory of multivalued pseudomonotone operators, see Theorem 2.57, and the concept of
sub-supersolutions. This was the starting point of this thesis.

Indeed, the origin of the ideas presented in this section is the effort to extend existence
theorems for the following multivalued variational inequality problem: Find u ∈ K such
that

〈Au,w− u〉+
∫
Ω

η(w− u) > 0 for all w ∈ K and some η ⊂ f(·,u), (4.1)

where W is some Sobolev space of functions with zero boundary values in the sense of
traces, A : W → W ′ an elliptic differential operator of Leray-Lions type, Ω ⊂ RN a
bounded domain with Lipschitz boundary, K ⊂W a convex set and f : Ω×R→ P(R) an
upper Carathéodory multifunction. If one allows f in (4.1) to depend on a further real
argument, one obtains the following multivalued variational inequality problem: Find

u ∈ K s.t. 〈Au,w−u〉+
∫
Ω

η(w−u) > 0 for all w ∈ K and some η ⊂ f(·,u,u), (4.2)

that has a solution if t 7→ f(x, s, t) is a decreasing multifunction in the sense of Definition
1.22. (This setting allows, e.g., for a treatment of generalized gradients of a locally
Lipschitz function.)

As a matter of fact, the methods used to provide the existence theorem for Problem
(4.2) are order-theoretical ones that can be formulated in more generality, which gave
rise to an early form of the general framework presented in Theorem 2.33. As we will
see in the following Chapters 5, 7 and 8, this framework can be used to obtain existence
results for more complicated variational inequalities. It is very likely that this holds also
for a wide range of problems not considered in this thesis.

The goal of the current chapter is to demonstrate how Theorem 2.33 leads to an
existence theorem for a multivalued variational inequality. In order to emphasize the
main ideas, we confine us to Problem (4.2) (which is rather simple, but, nevertheless,
covers many special cases studied in the past) and skip some analytic details which will
be presented along other applications in the forthcoming chapters.
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Before we start, let us give a few comments about the data of this problem and the
connection to the theory presented in Part I of this mathematical endeavour:

(i) The operator A is a single-valued Leray-Lions operator as considered in Theorem
3.78, which is pseudomonotone and thus allows for an application of Theorem
2.57. In this thesis, we will not change this setting dramatically, but it would be
interesting to study multivalued leading terms, as is was done very recently in
[69, 70, 71, 72].

(ii) The set K is convex, which allows for a reformulation of the variational problem in
the spirit of Example 2.60. We will see in Chapter 5 that there is room for a more
general formulation involving convex functionals.

(iii) The multifunction f : Ω×R×R→ P(R) is chosen such that a few properties hold.
For instance, we need that the values of the solution operator S are weakly closed,
for which we need some closure property as presented in Proposition 3.68, and we
need S to be increasing upward, for which it is needed that, for each u, v ∈ L0,
the function x 7→ f(x,u(x), v(x)) has at least one measurable selection, whence
Corollary 3.50 comes into play. It is kind of lucky that all those properties hold if
f satisfies only a few assumptions, namely:

(i) (x, t)→ f(x, s, t) is superpositionally measurable,

(ii) s 7→ f(x, s, t) is upper semicontinuous,

(iii) t 7→ f(x, s, t) is decreasing,

(iv) f satisfies some local growth condition to ensure integrability of its selectors.

We currently do not know if the assumptions on f can be further relaxed so that,
e.g., the variational problem has only maximal solutions between each given pair
of sub-supersolutions, but not a greatest one.

(iv) The functions of the Sobolev space W have zero boundaries in the sense of traces,
that is W = W

1,p
0 (Ω) for some p ∈ [1,∞). This is by no means a necessary

condition: We could incorporate boundary value conditions at the cost of some
more involved calculations (cf. [27]). However, we decided to confine ourselves to
zero boundary values in order to present the main ideas.

(v) The test functions w belong to K ⊂ W, so that it is possible to take solutions
or subsolutions themselves as test functions, which simplifies some arguments. We
will see in Chapters 6 and 7 how to deal with the more general case in which test
functions belong to a function space with higher regularity.

Let us formulate the precise conditions on the data in the next section, followed by
the abstract formulation of Problem (4.2) and the detailed application of our framework.
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4.2 Setting

Let Ω ⊂ RN, N > 1, be a bounded domain with Lipschitz boundary, and let p ∈ (1,∞)
and q ∈ [1,p∗) be fixed, where p∗ denotes the critical Sobolev exponent associated
with p and the dimension N. Recall that we denote the norm of the Lebesgue space
Lr = Lr(Ω) by ‖ · ‖r. Further, we introduce the following abbreviations:

L ··= Lq
′
, V ··= Lp

∗
, W ··=W1,p

0 ,

where q ′ is the Hölder conjugate of q and W
1,p
0 the usual Sobolev space with zero

boundary values in the sense of traces. Note that the embedding W ↪→ V is continuous,
that the embedding L ↪→ W ′ is compact, and that u 7→ ‖∇u‖p is an equivalent norm
on W. Recall further that L0 and all its subspaces are equipped with the natural partial
order 6, defined by u 6 v if u(x) 6 v(x) for a.e. x ∈ Ω, by which L0 is known to be a
lattice-ordered linear space with sub-lattices L, V and W (which are all ordered Banach
spaces and reflexive provided q ∈ (1,p∗)).

Throughout this chapter, we impose the following conditions on the data:

4.1 Assumption We call a pair (u,u) of a subsolution u and a supersolution u
(which will be defined in Definition 4.8 below) ordered pair of sub-supersolutions
if u 6 u. We assume:

(S) There is an ordered pair (u,u) of sub-supersolutions. #

4.2 Assumption Let a : Ω×RN → RN be a function defining the (single-valued) dif-
ferential operator A of Leray-Lions type via Au = −diva(·,∇u). The following standard
assumptions on a are meant to hold for a.e. x ∈ Ω and all ξ ∈ RN.

(A1) a is a Carathéodory function, i.e. x 7→ a(x, ξ) is measurable and ξ 7→ a(x, ξ) is
continuous.

(A2) a is p-coercive in the second argument, i.e. there is a constant α2 > 0 and a
function k2 ∈ L1(Ω) such that a(x, ξ)ξ > α2|ξ|

p − k2(x).

(A3) There exists a constant α3 > 0 and a function k3 ∈ Lp
′
(Ω) such that a satisfies

the growth condition |a(x, ξ)| 6 α3|ξ|
p−1 + k3(x).

(A4) a is monotone in the second argument, i.e. it holds, for all ξ, ξ ′ ∈ RN,

(a(x, ξ) − a(x, ξ ′))(ξ− ξ ′) > 0. #

4.3 Remark From Theorem 3.78 we know that under conditions (A1)—(A4) the
elliptic differential operator A : W →W ′, defined by

〈Au,w〉 ··=
∫
Ω

a(·,∇u)∇w, u,w ∈W =W1,p
0 ,
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is continuous, bounded, pseudomonotone, and coercive. An example is given by the
famous p-Laplacian defined by a(x, ξ) = |ξ|p−2ξ. See, e.g., [98, Sec. 2.4] for an exhaustive
treatment. #

4.4 Assumption Let f : Ω × R × R → P(R) be a multifunction whose values are
compact intervals. The following conditions are meant to hold for a.e. x ∈ Ω and all
s, t ∈ R.

(F1) The function (x, t) 7→ f(x, s, t) is superpositionally measurable, i.e. for all
v ∈ L0 the multivalued function x 7→ f(x, s, v(x)) is measurable.

(F2) The function s 7→ f(x, s, t) is upper semicontinuous on R, i.e. for each open
U ⊂ R from f(x, s, t) ⊂ U it follows f(x, s ′, t) ⊂ U for all s ′ near s.

(F3) The function t 7→ f(x, s, t) is decreasing on R, i.e. f(x, s, t) 6∗∗ f(x, s, t
′) for t ′ 6 t.

(F4) There is some k4 ∈ L = Lq
′
(Ω) such that f satisfies the growth condition

sup{|y| : y ∈ f(x, s, t), s, t ∈ [u(x),u(x)]} 6 k4(x). #

4.5 Remark Assumption (F1) implies that the function x 7→ f(x, s, t) is measurable
on Ω. Thanks to this and to (F2), (x, s) 7→ f(x, s, t) is upper Carathéodory, which is
together with (F4) the set of standard assumptions in the case that f is not a bifunction
but only a function on Ω× R.

In our case, f is weakly superpositionally measurable, as we have seen in Corollary
3.50, and we would like to stress that no continuity in the last argument is assumed. #

4.6 Assumption Let K ⊂W be a non-empty, closed and convex subset and suppose
the following lattice condition:

(K) K is a sub-lattice of W, i.e. for all u, v ∈ K one has u∨ v ∈ K and u∧ v ∈ K. #

4.7 Remark This assumption allows us to establish a sub-supersolution method
for variational inequalities. It is shared by many convex sets of interest, especially by
order-intervals, the order cone, and the whole space. #

Finally, let us state Problem (4.2) in more detail: Find

u ∈ K ⊂W1,p
0 (Ω), η ∈ Lp∗(Ω) s.t. η(x) ∈ f(x,u(x),u(x)) for a.e. x ∈ Ω,

〈Au,w− u〉+
∫
Ω

η(w− u) > 0 for all w ∈ K.
(4.3)

In the next section, we will reformulate Problem (4.3) with the help of abstract
operators, and then we will apply the framework of Theorem 2.33 in order to prove that
Problem (4.3) has a greatest solution in [u,u].
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4.3 Abstract Formulation

We are now in a position to formulate precise definitions for solutions, sub- and super-
solutions in a unifying framework. To this end, we use the bifunction F : W×V → P(L0)
that assigns to each pair (u, v) the set of measurable selectors

F(u, v) ··= {η ∈ L0 : η ⊂ f(·,u, v)},

which is due to Corollary 3.50 non-empty. Further, for all functions u ∈ W, v ∈ V and
each subset M ⊂W we say a function η ∈ L is associated to (u, v) with respect to M
if

η ∈ F(u, v) and 〈Au,w− u〉+
∫
Ω

η(w− u) > 0 for all w ∈M.

We write η ∼ (u, v,M) for short. Further, by abuse of notation, u is called associated
to v with respect to M if there is at least one function η ∼ (u, v,M). We write u ∼ (v,M)
for short.

With help of these abbreviations, we finally define the following mappings on the
domain D ··= [u,u]V = [u,u] ∩ V (whose values are subsets of D):

S : D→ P∅(W), v 7→ S(v) ··= {u ∈ D ∩ K : u ∼ (v,K)},

S(v) : D→ P∅(W), v 7→ S(v) ··= {u ∈ D ∩W : u∨ K ⊂ K and u ∼ (v,u∧ K)},

S(v) : D→ P∅(W), v 7→ S(v) ··= {u ∈ D ∩W : u∧ K ⊂ K and u ∼ (v,u∨ K)}.

4.8 Definition We call u ∈W a solution, subsolution or supersolution of Prob-
lem (4.3) if u ∈ FixS, u ∈ FixS or u ∈ FixS, respectively. #

4.9 Remark Subsolutions and supersolutions are related by duality, but their defi-
nitions are not a result of purly order-theoretical abstract arguments, but emerged from
a long history of similar definitions for other analytic problems. Thus, Definition 4.8 ex-
tends the definitions of solutions, sub- and supersolutions of special cases, as is pointed
out, e.g., in [24, 28]. #

4.4 Existence of Solutions

As said before, we are going to apply Theorem 2.33. To this end, we will provide several
propositions that are of interest in their own right, but to keep the presentation simple,
we will refer to Chapter 5 for some sophisticated proofs.

Recall that we have to provide the following analytic and order-theoretical properties
to conclude that S has a greatest fixed point in D:

(i) D is bounded in V and it holds u ∈ S(u).

(ii) S(D) is bounded in W and the values of S are weakly sequentially closed in W.

(iii) S is permanent upward, its values are directed upward and for all v ∈ D it holds
S(v) ⊂ S(v) 6∗ S(v).

4.3 Abstract Formulation 111



First of all, let us check the monotonicity of S and S:

4.10 Proposition The operator S : D → P∅(W) is permanent upward, whereas the
operator S : D→ P∅(W) is permanent downward.

Proof: Let v1, v2 ∈ D be such that v1 6 v2, and let u ∈ S(v1) be given. Then there is
some η1 ∼ (u, v1,u ∧ K), and since f is weakly superpositionially measurable, there is
some η2 ∈ F(u, v2), which belongs to L due to (F4). Consequently, η3 ··= η1∧η2 ∈ L and
we claim that η3 ∼ (u, v2,u∧ K), by which u ∈ S(v2) is readily seen.

Let us first prove that η3 ∈ F(u, v2), i.e. η3(x) ∈ f(x,u(x), v2(x)) for a.e. x ∈ Ω. To
this end, recall that for a.e. x ∈ Ω we have

η1(x) ∈ f(x,u(x), v1(x)), η2(x) ∈ f(x,u(x), v2(x)) and v1(x) 6 v2(x).

Due to (F3), f is decreasing upward in the last argument and thus there is some element
α ∈ f(x,u(x), v2(x)) such that α 6 η1(x). This implies

α∧ η2(x) 6 η1(x)∧ η2(x) 6 η2(x).

Since the values of f are order-convex downward, it follows η3(x) ∈ f(x,u(x), v2(x)), i.e.
η3 ∈ F(u, v2).

To conclude the proof of η3 ∼ (u, v2,u∧ K), it suffices to note that

〈A(u),w− u〉+
∫
Ω

η3(w− u) > 〈A(u),w− u〉+
∫
Ω

η1(w− u) > 0, w ∈ u∧ K,

where we have used that η3 6 η1 and w− u 6 0 for all w ∈ u∧ K.
Consequently, S is permanent upward. By duality and since f is also decreasing down-

ward in the last argument, S : D→ P∅(W) is seen to be permanent downward. #

In particular, we conclude u ∈ S(v) for all v ∈ D. This means, we have u ∈ W and
there is η ∈ L such that η ⊂ fv(·,u) ··= f(·,u, v) and

〈Au,w− u〉+
∫
Ω

η(w− u) > 0 for all w ∈ u∧ K,

which is the natural definition of a subsolution in case the bifunction f is replaced by
the multifunction fv : Ω × R → P(R). Since fv is upper Carathéodory and (F4) holds,
we can use the ideas of [27, 30] to prove that for all v ∈ D there is u ∈ S(v) such that
u 6 u 6 u. However, the proof of this existence result uses sophisticated truncation
techniques that rely on the ordered pair of sub-supersolutions. Thus, we present only
the following condensed proposition and refer for a proof to Theorem 5.13 below.

4.11 Theorem Let v ∈ D be arbitrary, and let ui ∈ S(v) and ui ∈ S(v), i = 1, 2, be
such that

u1 ∨ u2 6 u1 ∧ u2.

Then there is u ∈ S(v) such that u1 ∨ u2 6 u 6 u1 ∧ u2. #
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From Theorem 4.11 it follows the crucial relation S(v) 6∗ S(v). Since (K) implies
easily S(v) ⊂ S(v) ∩ S(v), we conclude also that the values of S are directed upward.

Next, let us provide some topological properties of S.

4.12 Proposition The operator S : D→ P(W) has uniformly bounded values.

Proof: Let v ∈ D = [u,u]V and any u ∈ S(v) be given and suppose η ∼ (u, v,K). Then
it holds, where w ∈ K is any fixed element,

〈Au,w〉+
∫
Ω

η(w− u) > 〈Au,u〉. (4.4)

Estimating both sides in (4.4) by use of (A3), Hölder’s inequality and (A2) gives

(α3‖∇u‖p−1
p + ‖k3‖p ′)‖∇w‖p + ‖η‖q ′(‖w‖q + ‖u‖q) > α2‖∇u‖pp − ‖k2‖1. (4.5)

Since η ∈ F(u, v) and u, v ∈ [u,u], ‖η‖q ′ is bounded by ‖k4‖q ′ due to (F4), and we have
‖u‖q 6 ‖u‖q + ‖u‖q. Further, w is some fixed element, so that from (4.5) we deduce

‖∇u‖pp 6 c(‖∇u‖p−1
p + 1)

for some c > 0 not depending on u or v, which implies ‖∇u‖p 6 2c+ 1. #

We finally have to check the topological properties of the values of S, which are even
better than demanded.

4.13 Proposition The operator S : D→ P(W) has weakly compact values.

Proof: Suppose v ∈ [u,u]V and (un) ⊂ S(v) ⊂ K. Due to Proposition 4.12, (un) is
bounded, and sinceW is reflexive and compactly embedded in V, we can assume un ⇀ u

in W and un → u in V for some u ∈ W, and as K is weakly closed, we obtain u ∈ K.
Furthermore, there exists a sequence (ηn) ⊂ L such that ηn ∼ (un, v,K) and we can
assume ηn ⇀ η in L for some η ∈ V since (ηn) is bounded in L due to (F4). Thanks to
Proposition 3.68, we have η ∈ F(u, v) and we claim η ∼ (u, v,K). To this end, note that
u ∈ K and ηn ∼ (un, v,K) imply

〈Aun,u− un〉+
∫
Ω

ηn(u− un) > 0. (4.6)

Passing to the limit in (4.6) yields lim supn〈Aun,un − u〉 6 0 and since A is pseu-
domonotone, we infer 〈Au,w− u〉 > lim supn〈Aun,w− un〉 for all w ∈W. Since (4.6)
holds also if u is replaced by any w ∈ K, it follows

〈Au,w− u〉+
∫
Ω

η(w− u) > lim supn〈Aun,w− un〉+ limn

∫
Ω

ηn(w− un) > 0,

which proves η ∼ (u, v,K) and thus u ∈ S(v). #

This said, we can apply Theorem 2.33 to the multifunctions S and S to deduce the
main result of this chapter:
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4.14 Theorem Suppose (S), (A1)—(A4), (F1)—(F4) and (K). Then Problem (4.3)
has the greatest (and by duality the smallest) solution in [u,u]. #

4.15 Remark The ideas presented in this section can be extended to a number of
related problems.

(i) Problem (4.3) can be written equivalently as

Au+ F(u,u) + ∂IK(u) 3 0,

where IK is the indicator function of the closed convex set K and ∂IK its subdif-
ferential in the sense of Convex Analysis. In [68] this problem was generalized by
replacing ∂IK with the subdifferential of a general convex functional Ku = K(·,u),
such that the problem reads as

Au+ F(u,u) + ∂Ku(u) 3 0.

By means of the abstract framework presented here, one can drop some technical
conditions while obtaining the same conclusion as in [68]. This will be the content
of the next chapter.

(ii) The abstract framework can be used to extend results concerning differential equa-
tions with measures presented in Chapter 6, where we approximate the main prob-
lem with well-behaving classical auxiliary problems such that solutions are limits
of classical solutions. This extension will be the content of Chapter 7.

(iii) The bifunctions can be extended to formulate and to solve systems of multivalued
variational inequalities such as

Aiui + Fi(ui,u1,u2) + ∂IKi(ui) 3 0, i = 1, 2.

To this end, consider the multifunction S that maps pairs (v1, v2) to solutions
(u1,u2) of

Aiui + Fi(ui, v1, v2) + ∂IKi(ui) 3 0, i = 1, 2.

Again, a fixed point of S is the desired solution. As a consequence, some results of
[20] can be extended to nonsmooth systems. We will provide details in Chapter 8.

(iv) There exist more applications and generalizations not covered in this thesis. We
refer to the final Chapter 9 for some inspiration for further work. #
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5 Multivalued Quasi-Variational
Inequalities with Bifunctions

5.1 Introduction

The combination of order-theoretical fixed point theorems, surjectivity results for pseu-
domonotone operators and the concept of sub-supersolutions generates a very power-
ful method to solve a wide range of variational inequality problems, as presented in
[24, 27, 68]. In [68], the following multivalued quasi-variational inequality problem (that
generalizes the problem treated in Chapter 4) was considered:

Find u ∈W such that for some η ⊂ f(·,u,u) it holds

〈Au,w− u〉+
∫
Ω

η(w− u) + K(w,u) − K(u,u) > 0 for all w ∈W.
(5.1)

There, as in the last chapter, W = W
1,p
0 is the usual Sobolev space over a bounded

Lipschitz domain Ω ⊂ RN, A : W →W ′ is a Leray-Lions operator, f : Ω×R×R→ P(R)
is a multivalued bifunction and K(·,u) : W → R ∪ {+∞} is a convex functional for each
u ∈ W, which allows especially for the functional ∂IK(u) : W → R ∪ {+∞} and so for a
treatment of quasi-variational inequalities.

The key feature in these problems are the weak assumptions on f and K such that
a wide range of applications is covered. For example, f is assumed to be upper semi-
continuous in the second and increasing in the third argument, so that the mapping
s 7→ f(x, s, s) is in general neither upper semicontinuous nor lower semicontinuous nor
monotone. The lack of continuity allows the solution set to be not compact, but still one
can show that there are extremal (i.e. smallest and greatest) solutions between every
ordered pair of sub-supersolutions.

Problem (5.1) was considered in [68] (which bases on the ideas of [65, 66, 67]). How-
ever, in [68] no fixed point theorem was used but a more direct proof for the existence of
solutions of the quasi-variational inequality was presented. This inspired us to raise the
question whether this problem could be solved with direct use of a multivalued order-
theoretical fixed point theorem. Our study gave rise to an abstract framework for solving
variational inequalities with multivalued bifunctions, which is Theorem 2.33 presented
above. The aim of this chapter is to apply this framework in order to provide a system-
atic and unified exposition of an existence theory for Problem (5.1). As a bonus, it turns
out that, thanks to the powerful order-theoretical fixed point theorem, we can get rid of
some technical assumptions used in [68].

We would like to mention that the method developed here can be used to treat the
following even more general problem: Find u ∈ W1,p(Ω) such that there are selections
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η ⊂ f(·,u,u) and ξ ⊂ f̂(·,γu,γu) such that

〈Au,w− u〉+
∫
Ω

η(w− u)dx+

∫
∂Ω

ξ(γw− γu)dσ

+ K(w,u) − K(u,u) + K̂(γw,γu) − K̂(γu,γu) > 0 for all w ∈W1,p(Ω),

where γu denotes the trace of u, σ the boundary measure on the boundary ∂Ω of Ω,
and where f̂ : ∂Ω × R × R → P(R) and K̂ : Lp(∂Ω) × Lp(∂Ω) → R ∪ {+∞} have similar
properties as f and K. (For further inspiration, see [27].)

5.2 Setting

In this section, we will use the same notations as presented in Subsection 4.2. Especially,
Ω ⊂ RN, N > 1, is a bounded domain with Lipschitz boundary, p ∈ (1,∞) and q ∈
(1,p∗) are fixed, and we we use the abbreviations

L = Lq
′
, V = Lp

∗
, W =W1,p

0 .

Further, we will work with functionals of

Γ ··= {k : W → R ∪ {+∞} : D(k) = {u ∈W : k(u) <∞} 6= ∅}.

In what follows, we equip Γ with the relation 4∗∗ defined in Definition 1.32, and al-
though 4∗∗ is not a partial order, we will use the notions K↓ ··= {k ∈ Γ : k 4∗∗ K} and
K↑ ··= {k ∈ Γ : K 4∗∗ k}.

Next, let us give precise assumptions on the data, which will guarantee that all condi-
tions of Theorem 2.33 are fulfilled, so that Problem (5.1) has extremal solutions between
each ordered pair of sub-supersolutions. To this end, we will restrict our considerations
to the set D ··= [u,u]V , where u is a subsolution and u is a supersolution as defined
below in Definition 5.9. Since we do not provide them, we have to assume:

5.1 Assumption (S) There is an ordered pair (u,u) of sub-supersolutions. #

5.2 Remark See Proposition 5.24 below for a way to find an ordered pair of sub-
supersolutions under appropriate conditions. #

5.3 Assumption Let a : Ω×RN → RN be a function that satisfies conditions (A1)—
(A4) given in Subsection 4.2, and let the operator A : W →W ′ be defined via

〈Au,w〉 ··=
∫
Ω

a(·,∇u)∇w. #

5.4 Assumption Let f : Ω×R×R→ P(R) be a multifunction that satisfies conditions
(F1)—(F4) given in Subsection 4.2. #

5.5 Assumption Let K : W×V → R∪ {+∞} be a functional satisfying the following
conditions:

116 5 Quasi-Variational Inequalities



(K1) For all v ∈ V the function Kv ··= K(·, v) : W → R∪ {+∞} is proper (i.e. D(Kv) 6= ∅,
thus Kv ∈ Γ), convex and lower semicontinuous.

(K2) The mapping v 7→ Kv is lattice-increasing, i.e. v1 6 v2 in V implies Kv1 4
∗
∗ Kv2 .

(K3) There is some constant c3 > 0 such that for all v ∈ V there is some wv ∈ D(Kv)
such that ‖∇wv‖p 6 c3 and Kv(wv) 6 c3 and such that for all u ∈ W it holds
Kv(u) > −c3(‖∇u‖p−1

p + 1). #

5.6 Remark From Proposition 2.49 and (K1) we have that Kv is weakly sequentially
lower semicontinuous and from Theorem 2.61 we have that ∂Kv is maximal monotone.

As an example, we have Kv = IK(v), the indicator function of a non-empty closed
convex set K(v) ⊂W. In this case, D(Kv) = K(v) and (K2) becomes K(v1) 4∗∗ K(v2) for
v1 6 v2. (K3) holds if, e.g., all K(v), v ∈ V, have a common element, or if all K(v) are
contained in a bounded subset of W. #

5.7 Remark Instead of (K3) we could use the following more general condition that
combines order and topology (see Remark 5.17 below):

(K3’) There is some constant c ′3 > 0 such that for all increasing or decreasing sequences
(vn), (un) ⊂ [u,u]V there is some sequence (wn) ⊂W such that, for all n,

‖∇wn‖p 6 c ′3, Kvn(wn) 6 c
′
3, Kvn(un) > −c ′3(‖∇u‖p−1

p + 1). #

5.8 Remark Note, that in (F4) and (K3) we have no global growth condition but
only a local growth condition between sub-supersolutions u and u. It is often possible
to verify such a local growth even if u and u are not known explicitly. #

5.3 Abstract Formulation

The aim of this chapter is to provide extremal solutions of the following multivalued
quasi-variational inequality problem:

Find u ∈W such that there is η ⊂ f(·,u,u) such that for all w ∈W it holds

〈Au,w− u〉+
∫
Ω

η(w− u) + K(w,u) − K(u,u) > 0.
(5.2)

By use of the embedding operator i∗q : L ↪→ W ′, the multifunction F : L0 × L0 → P∅(L),
defined by

F(u, v) ··= {η ∈ L : η ⊂ f(·,u, v)},

and the subdifferential ∂Ku(u) of the functional Ku = K(·,u), we can rewrite Problem
(5.2) as a multivalued operator equation in W ′:

Find u ∈W such that Au+ i∗qF(u,u) + ∂Ku(u) 3 0 in W ′.

If f and K do not depend on their last argument, we can find solutions by means of
Theorem 2.57. Further, in this case the solution set has good properties and the method
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of sub-supersolutions applies. Thus, we can apply our fixed point result if we formulate
Problem (5.2) as a fixed point problem with help of the following notations:

For any sets L0 ⊂ L, Γ0 ⊂ Γ and W0 ⊂W, we define the set R(L0, Γ0,W0) as consisting
of those functions u ∈W such that there are η ∈ L0 and k ∈ Γ0 such that

〈Au,w− u〉+
∫
Ω

η(w− u) + k(w) − k(u) > 0 for all w ∈W0. (5.3)

(Note, that (5.3) can only hold if u ∈ D(k).)

Further, we define the mappings S,S,S : D→ P∅(W) as follows:

S(v) ··= {u ∈ D : u ∈ R(F(u, v), {Kv},W)},

S(v) ··= {u ∈ D : u ∈ R(F(u, v),K↓v,u∧D(Kv))},

S(v) ··= {u ∈ D : u ∈ R(F(u, v),K↑v,u∨D(Kv))}.

Then, clearly, fixed points of S are solutions of Problem (5.2) located in D and vice
versa. Furthermore, we can finally define sub- and supersolutions:

5.9 Definition We call fixed points of S and S subsolution and supersolution of
Problem (5.2), respectively. #

5.4 Existence of Solutions

In the following, we provide the properties needed to apply Theorem 2.33. The proofs
are inspired by [27, 67, 68] and use new ideas presented in [30, 110]. In particular, we
don’t assume that (x, s) 7→ f(x, s, t) is superpositionally measurable as in [68], but only
(by (F1) and (F2)) that (x, s) 7→ f(x, s, t) is weakly superpositionally measurable.

First, let us inspect the monotone dependence of S on the data f and K. To this
end, we write Sf,K instead of S, and for given mappings g : Ω × R × R → P(R) and
J : W × V → R ∪ {+∞} (which do not need to satisfy the same conditions as f and K),
we write Sg,J for the corresponding subsolution operator of Problem (5.2) with f and K
replaced by g and J, respectively, i.e.

Sg,J : D→ P∅(W), v 7→ {u ∈ D : u ∈ R(G(u, v), J↓v,u∧D(Jv))},

where G : L0 × L0 → P∅(L) and Jv : W → R ∪ {+∞} are defined analogous to F and Kv.

5.10 Proposition Let u, v1, v2 ∈ D be given such that v1 6 v2, and suppose that the
data f, g, K and J satisfy the following relations:

(i) It holds f(x, s, t) 6∗ g(x, s, t) for a.e. x ∈ Ω and all s, t ∈ [u(x),u(x)],

(ii) it holds Jv 4∗∗ Kv for all v ∈ V.

Suppose further D(Jv) 6= ∅ and Jv 4∗∗ Jv for all v ∈ V. Then Sg,J(v1) ⊂ Sf,K(v2).
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Proof: Let u ∈ Sg,J(v1) be given. Then there are η1 ∈ G(u, v1) and k ∈ J↓v1 such that

〈Au,w− u〉+
∫
Ω

η(w− u) + k(w) − k(u) > 0 for all w ∈ u∧D(Jv1). (5.4)

Let further η2 ∈ F(u, v2) be arbitrary (such η2 exists, since f is superpositionally mea-
surable and satisfies (F4)).

First, we claim that η3 ··= η1 ∧ η2 belongs to F(u, v2). To this end, recall that for a.e.
x ∈ Ω we have

η1(x) ∈ g(x,u(x), v1(x)), η2(x) ∈ f(x,u(x), v2(x)) and v1(x) 6 v2(x).

From (F3) and (i) we have f(x,u(x), v2(x)) 6∗ f(x,u(x), v1(x)) 6∗ g(x,u(x), v1(x)) and
thus there is β ∈ f(x,u(x), v2(x)) such that

β∧ η2(x) 6 η1(x)∧ η2(x) 6 η2(x).

Since the values of f are order-convex downward, it follows η3(x) ∈ f(x,u(x), v2(x)), i.e.
η3 ∈ F(u, v2).

Second, we have k 4∗∗ Jv1 4
∗
∗ Kv1 4

∗
∗ Kv2 , thus by Proposition 1.33 it follows k ∈ K↓v2 .

Third, we finally claim that it holds

〈Au,w− u〉+
∫
Ω

η(w− u) + k(w) − k(u) > 0 for all w ∈ u∧D(Kv2).

To deduce this from (5.4), two comments are in order: On the one hand, we have∫
Ω

η3(w− u) >
∫
Ω

η1(w− u) for all w ∈ u∧D(Jv1),

for which we have used that η3 6 η1 and w−u 6 0 for all w ∈ u∧D(Jv1). On the other
hand, we have u∧D(Kv2) ⊂ u∧D(Jv1), which follows readily from the relations

u∧w2 = u∧ ((u∨w1)∧w2) and D(k) 4∗ D(Jv1) 4∗ D(Kv2).

Consequently, we have u ∈ Sf,K(v2). #

This result can be used to find subsolutions of Problem (5.2) as solutions of simpler
auxiliary problems (see Corollary 5.22). Furthermore, if f = g and K = J, it provides the
needed monotonicity of S:

5.11 Corollary The operator S : D → P∅(W) is permanent upward, whereas (by
duality) the operator S : D→ P∅(W) is permanent downward. #

5.12 Remark To prove by duality that S is permanent downward, we only need
D(Kv1) 4

∗ D(Kv2) 4∗ D(k). That means, that in Corollary 5.11 we have used D(Kv1) 4
∗
∗

D(Kv2), but only D(k) 4∗ D(Kv1)) and D(Kv2) 4∗ D(k). Those relations alone are
enough to prove some transitiveness. But we don’t currently know if this can be used
to weaken the definition of sub- and supersolutions, since the full inequality k 4∗∗ Kv is
needed in the proof of the next theorem. #
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In particular, from Corollary 5.11 we conclude that u ∈ S(v) and u ∈ S(v) for all
v ∈ D = [u,u]V . This is why we only need one pair (u,u) of sub-supersolutions to prove
that all values of S and S are non-empty. Next, let us illuminate the interplay between
the operators S, S and S (from which it follows that also S has non-empty values):

5.13 Theorem Let v ∈ D be arbitrary, and let vi ∈ S(v) and vi ∈ S(v), i = 1, 2, be
such that

u 6 v ··= v1 ∨ v2 6 v1 ∧ v2 =·· v 6 u.

Then there is u ∈ S(v) such that v 6 u 6 v.

Proof: Step 1: Auxiliary functions We are going to define an auxiliary problem
whose solutions will be the desired elements of S(v). To this end, recall that, by definition,
for i = 1, 2 there are η

i
∈ F(vi, v) and ki ∈ Γ as well as ηi ∈ F(vi, v) and ki ∈ Γ such

that we have the relations

vi ∈ D(ki) and ki 4
∗
∗ Kv, and Kv 4

∗
∗ ki and D(ki) 3 vi

and such that the following inequalities hold:

〈Avi,w− vi〉+
∫
Ω

η
i
(w− vi) + ki(w) − ki(vi) > 0 for all w ∈ vi ∧D(Kv), (5.5)

〈Avi,w− vi〉+
∫
Ω

ηi(w− vi) + ki(w) − ki(vi) > 0 for all w ∈ vi ∧D(Kv). (5.6)

Define the functions η,η on Ω pointwise a.e. by

η(x) ··=

{
η
1
(x) if v1(x) > v2(x),

η
2
(x) if v1(x) < v2(x),

η(x) ··=

{
η1(x) if v1(x) 6 v2(x),

η2(x) if v1(x) > v2(x),

and note that η ∈ F(v, v) and η ∈ F(v, v). Further, we need three auxiliary functions d,
g and h, which will be introduced subsequently.

First, let us introduce the cut-off function d : Ω× R→ R, defined pointwise by

d(x, s) ··=


−(v(x) − s)p−1 if s < v(x),

0 if v(x) 6 s 6 v(x),

(s− v(x))p−1 if v(x) < s.

Obviously, d is a Carathéodory function and satisfies the growth condition

|d(x, s)| 6 d0
(
|v(x)|p−1 + |s|p−1 + |v(x)|p−1

)
(5.7)

for some constant d0 > 0. Hence, the Nemytskij operator v 7→ d(·, v) is known to be
continuous and bounded from Lp(Ω) to its dual space. Thanks to the compact embedding
W ↪→ Lp(Ω) we conclude that the composed mapping D : W →W ′, defined by

〈Dv,w〉 ··=
∫
Ω

d(·, v)w,
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is bounded and completely continuous, thus pseudomonotone. For further use, let us
note that there are constants d1,d2 > 0 such that both −(t − s)p−1s for s 6 t and
(s − t)p−1s for s > t are bounded below by d1|s|

p − d2|t|
p−1|s|. One may take d1 = 1

and d2 = 22−p if p 6 2 and d1 = 22−p and d2 = 1 if p > 2. By these estimates and by
use of Young’s Inequality with Epsilon, we obtain for all v ∈W

〈Dv, v〉 > d3‖v‖pp − d3(‖v‖pp + ‖v‖pp), (5.8)

where d3 > 0 is some constant not depending on v.

Second, let us truncate f in the following sense, to define the multivalued function
g : Ω× R→ P(R) by

g(x, s) ··=


{η(x)} if s < v(x),

f(x, s, v(x)) if v(x) 6 s 6 v(x),

{η(x)} if v(x) < s.

From (F1) and (F2) we have that (x, s) 7→ f(x, s, v(x)) is upper Carathéodory and it is
readily seen (by invoking η ⊂ f(·, v, v) and η ⊂ f(·, v, v)) that g is upper Carathéodory,
too. Since g has closed and convex values, and due to (F4) and Theorem 3.69, the
mapping G : W → P(W ′), defined by

G(u) ··= {i∗qη : η is a measurable selection of g(·,u)}

has closed and convex values, is well-defined, pseudomonotone and bounded.

Third, in order to define h, let us introduce the following notation: For any real
numbers x1 < x2 and y1,y2, denote by

l =
[
(x1,y1) (x2,y2)

]
the continuous piecewise linear function l : R → R that satisfies l(x) = y1 for x 6 x1,
l ′(x) = (y2 − y2)/(x2 − x1) for x1 < x < x2, and l(x) = y2 for x > x2.

This said, we introduce the functions θi, θi : Ω× R→ R, i = 1, 2, defined by

θi(x, ·) ··=
[(
vi(x),η(x) − ηi(x)

)
 
(
v(x), 0

)]
,

θi(x, ·) ··=
[(
v(x), 0

)
 
(
vi(x),ηi(x) − η(x)

)]
.

It is easy to check that θi and θi are measurable in the first argument and, of course,
continuous in the second. Let us combine them in order to form the Carathéodory
function h : Ω× R→ R, defined by

h(x, s) ··= |θ1(x, s)|+ |θ2(x, s)|− |θ1(x, s)|− |θ2(x, s)|.

We have constructed h in such a way, that, for all u ∈ L0, i = 1, 2, the inequalities

η− η
i
− h(·,u) 6 0 on {u < vi}, ηi − η+ h(·,u) 6 0 on {vi < u} (5.9)

5.4 Existence of Solutions 121



hold true. Indeed, if, e.g., v(x) < vi(x) 6 v(x) for some x ∈ Ω, then we obtain per
definition θi(x, v(x)) = η(x) − ηi(x) and θi(x, v(x)) = 0, i = 1, 2, which implies the first
pair of inequalities in (5.9). Moreover, h(x, s) = 0 if v(x) 6 s 6 v(x).

Further, h(x, ·) is obviously bounded by some function η ∈ L, so that the Nemytskij
operator v 7→ h(·, v) is known to be continuous and bounded from L to its dual space.
Thanks to the compact embedding W ↪→ L we conclude that the composed mapping
H : W →W ′, defined by

〈Hv,w〉 ··=
∫
Ω

h(·, v)w,

is bounded and completely continuous, thus pseudomonotone.

Step 2: Solutions of auxiliary problem Let us consider the multivalued operator

A+D+G−H+ ∂Kv : W → P(W ′),

which is the sum of the bounded, pseudomonotone single-valued operators A, D and −H,
the bounded, pseudomonotone operator G with closed and convex values, and the max-
imal monotone operator ∂Kv. Further, A is coercive with respect to any u0 ∈ D(∂Kv),
since by (A2) and (A3) we have for all u,u0 ∈W

〈Au,u− u0〉 > α2‖∇u‖pp − ‖k2‖1 − (α3‖∇u‖p−1
p + ‖k3‖p ′)‖∇u0‖p, (5.10)

which implies
〈Au,u− u0〉
‖u‖W

→∞ as ‖u‖W →∞
(note that ‖∇u‖p defines an equivalent norm on W). Further, for all u,u0 ∈W and any
η ⊂ g(·,u) we have, since the selections of g(·,u) and Hu are uniformly bounded,

〈i∗η−Hu,u− u0〉W > −‖η−Hu‖L‖u− u0‖L ′ > −c0‖u‖W − c1 (5.11)

for some constants c0, c1. In addition, estimates (5.7) and (5.8) imply

〈Du,u− u0〉 > −d3(‖v‖pp + ‖v‖pp) − d0(‖v‖p−1
p + ‖u‖p−1

p + ‖v‖p−1
p ) > d4 − d5‖u‖p−1

W

(5.12)
for constants d4,d5 > 0. From (5.10), (5.11) and (5.12) it follows that the operator
A+D+G−H : W → P(W ′) is coercive with respect to u0.

Taken together, all conditions of Theorem 2.57 are fulfilled, and thus there is some
u ∈ W such that (A +D + G − H + ∂Kv)(u) 3 0. This means, u ∈ D(Kv) and there is
η ⊂ g(·,u) such that, for all w ∈W,

〈Au,w−u〉+
∫
Ω

d(·,u)(w−u)+

∫
Ω

(η− h(·,u)) (w−u)+Kv(w)−Kv(u) > 0. (5.13)

Step 3: Solution of the MQVIP In this last step, let us check that for any
u ∈W and η ⊂ g(·,u) with (5.13) we have v 6 u 6 v. To this end, for i = 1, 2, take

w = vi − (vi − u)
+ = vi ∧ u ∈ vi ∧D(Kv)
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as test function in (5.5), take

w = u+ (vi − u)
+ = vi ∨ u ∈ D(ki)∨D(Kv) ⊂ D(Kv)

as test function in (5.13), and add the resulting inequalities to obtain

〈Au−Avi, (vi − u)
+〉+

∫
Ω

d(·,u)(vi − u)+ +

∫
Ω

(
η− η

i
− h(·,u)

)
(vi − u)

+

+Kv(vi ∨ u) − Kv(u) + ki(vi ∧ u) − ki(vi) > 0.

(5.14)

By (A4) and the identity ∇(vi − u)+ = χ{vi>u}∇(vi − u) (where χM denotes the char-
acteristic function of a set M) we deduce

〈Au−Avi, (vi − u)
+〉 6 0. (5.15)

Further, it follows from (5.9)∫
Ω

(
η− η

i
− h(·,u)

)
(vi − u)

+ 6 0, (5.16)

and vi ∈ D(ki), u ∈ D(Kv) and ki 4
∗
∗ Kv imply

Kv(vi ∧ u) − Kv(u) + ki(vi ∨ u) − ki(vi) 6 0. (5.17)

Combining (5.14)—(5.17), we deduce∫
Ω

d(·,u)(vi − u)+ > 0. (5.18)

By definition of d, (5.18) implies ‖(vi−u)+‖
p
p 6 0, which in turn implies vi 6 u, i = 1, 2.

Since v = v1 ∨ v2, we have v 6 u.
By dual reasoning, we conclude u 6 v by taking w = vi + (u− vi)

+ = vi ∨ u as test
function in (5.6) and w = u− (u− vi)

+ = u∧ vi as test function in (5.13).
In view of v 6 u 6 v, (5.13) reduces to

〈Au,w− u〉+
∫
Ω

η(w− u) + Kv(w) − Kv(u) > 0 for all w ∈W,

and as η ⊂ g(·,u) = f(·,u, v), we have u ∈ S(v). #

The results of Theorem 5.13 immediately imply the following corollary:

5.14 Corollary Let v ∈ D. Then S(v) is directed upward, S(v) is directed downward
and it holds

S(v) ⊂ S(v) 6∗ S(v) and S(v) 6∗ S(v) ⊃ S(v). #

5.15 Remark Let v be the supremum of finitely many vi ∈ S(v) and let v be the
infimum of finitely many vi ∈ S(v). Then the above proof can be easily modified to show
that under the same conditions as in Theorem 5.13 there is a solution u ∈ S(v) between
v and v provided v 6 v. (See [67] for inspiration.) #
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The next two propositions provide topological properties of S.

5.16 Proposition The operator S : D→ P(W) has uniformly bounded values.

Proof: Let v ∈ [u,u]V and any u ∈ S(v) be given. Then it holds, for some η ∈ F(u, v)
and wv ∈ D(Kv) as given by (K3),

〈Au,wv〉+
∫
Ω

η(wv − u) + Kv(wv) − Kv(u) > 〈Au,u〉. (5.19)

By (K3) we have Kv(wv) 6 c3, and −Kv(u) 6 c3(‖∇u‖p−1
p + 1). Combining these

estimates with (A3), Hölder’s inequality and (A2) gives from (5.19) the estimate

(α3‖∇u‖p−1
p + ‖k3‖p ′)‖∇wv‖p + ‖η‖q ′(‖wv‖q + ‖u‖q) + c3(‖∇u‖p−1

p + 2)

> α2‖∇u‖pp − ‖k2‖1.
(5.20)

The terms ‖∇wv‖p and ‖wv‖q can be estimated due to (K3), ‖η‖q ′ is bounded due to
(F4), and we have ‖u‖q 6 ‖u‖q + ‖u‖q, since u ∈ [u,u]. Thus, from (5.20) we deduce

‖∇u‖pp 6 c(‖∇u‖p−1
p + 1)

for some c > 0 not depending on u or v, which implies ‖∇u‖p 6 2c+ 1. #

5.17 Remark We note that the estimates above are valid if (K3) is replaced by the
weaker assumption (K3’), but not for any v ∈ [u,u]V , but only for each member v = vn
of an increasing sequence (vn) ⊂ [u,u]V . This boundedness was considered in Remark
2.32. #

5.18 Proposition The operator S : D→ P(W) has weakly compact values.

Proof: Suppose v ∈ [u,u]V and (un) ⊂ S(v). Due to Proposition 5.16, (un) is bounded,
and since W is reflexive and compactly embedded in V, we can assume un ⇀ u in W
and un → u in V (and thus un → u in L ′) for some u ∈W. Recall that, thanks to (K1),
Kv is weakly sequentially lower semicontinuous. Thus we have from (un) ⊂ D(Kv) that
u ∈ D(Kv).

Now, let (ηn) ⊂ L be a sequence such that ηn ∈ F(un, v) and

〈Aun,w− un〉+
∫
Ω

ηn(w− un) > Kv(un) − Kv(w) for all w ∈W. (5.21)

We can assume ηn ⇀ η in L for some η ∈ V since (ηn) is bounded in L due to (F4), and
thanks to Proposition 3.68, we have η ∈ F(u, v). Letting w = u in (5.21) and passing to
the limit yields, using again that Kv is weakly sequentially lower semicontinuous,

lim supn〈Aun,un − u〉 6 0.
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Since A is pseudomonotone, we infer 〈Au,w − u〉 > lim supn〈Aun,w − un〉 for all
w ∈W. Using again (5.21), it follows, for all w ∈W,

〈Au,w− u〉+
∫
Ω

η(w− u) + Kv(w) − Kv(u)

> lim supn〈Aun,w− un〉+ limn

∫
Ω

ηn(w− un) + Kv(w) − lim infnKv(un)

> lim supn

(
〈Aun,w− un〉+

∫
Ω

ηn(w− un) + Kv(w) − Kv(un)

)
> 0,

which proves u ∈ S(v). #

Finally, the main theorem of this chapter follows from Theorem 2.33:

5.19 Theorem Suppose (S), (A1)—(A4), (F1)—(F4) and (K1)—(K3). Then Prob-
lem (5.2) has both the smallest and the greatest solution in [u,u]V .

5.20 Remark The same conclusion holds if (K3) is replaced by (K3’). If (K3’) holds
only for increasing sequences, then we can only prove that Problem (5.2) has a greatest
solution (or a smallest solution if (K3’) holds for decreasing sequences). Note, however,
that it is not an option to restrict the monotonicity of f to f(x, s, t) 6∗ f(x, s, t ′) or to
f(x, s, t) 6∗ f(x, s, t ′) (for t ′ 6 t), since we need both of those properties to provide the
required monotonicity of S and S, respectively. #

5.21 Remark In view of the preceding proofs, we could restrict some conditions to
hold with respect to [u,u]V (which is useful if u and u or at least some properties of
them are explicitly known).

Another modification would be to restrict our considerations to [u,u]Y ∩ B, where
Y ⊂ W is a non-empty, weakly closed lattice containing u and u, and B ⊂ W is an
appropriately large closed ball. In this case, we would apply Theorem 2.33 and its dual
with V =W.

Finally, we could set W = W1,p(Ω) at the cost of some slightly more complicated
calculations. (See [68] for inspiration.) #

5.5 Construction of Subsolutions

If mappings f and K are given explicitly, one may construct appropriate auxiliary prob-
lems whose solutions are subsolutions of Problem (5.2). In the following, let us present
abstract results in this direction, which are inspired by the results of [68] for more con-
crete examples.

To this end, from Proposition 5.10 we have at once the following special case (for
u = v1 = v2):

5.22 Corollary Let the assumptions of Proposition 5.10 hold true. Then it holds
FixSg,J ⊂ FixSf,K. #
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5.23 Remark In the proof of Proposition 5.10 we used the growth condition (F4)
which holds true only in the order-interval [u,u] generated by the given sub-supersolutions
u and u. However, the proof does not use that u and u are sub-supersolutions, so that
we may assume in this section that u and u are only some functions belonging to W. #

Now, the idea is to find particular simple mappings g and J such that some elements
Sg,J (or even solutions of the corresponding problem) can be found more easily than
elements of Sf,K. Especially, this is the case if g and J depend on fewer arguments:

5.24 Proposition Let mappings g : Ω×R→ R and J : W → R∪ {+∞} be given such
that the following hypotheses are satisfied:

(i) It holds f(x, s, s) 6∗ g(x, s) for a.e. x ∈ Ω and all s ∈ [u(x),u(x)].

(ii) J is decreasing, it holds D(J) 6= ∅, and J 4∗∗ J 4
∗
∗ Kv for all v ∈ V.

Let furthermore u ∈W be given such that g(·,u) ∈ L and such that one of the following
hypotheses holds true:

(a) u∨D(J) ⊂ D(J) and

〈Au,w− u〉+
∫
Ω

g(·,u)(w− u) > 0 for all w ∈ u∧D(J) (5.22)

(b) u ∈ D(J)↓, D(J) is order-convex upward in W, and

〈Au,w〉+
∫
Ω

g(·,u)w 6 0 for all w ∈W+. (5.23)

Then u is a subsolution of Problem (5.2).

Proof: Define the functional j ··= Iu∧D(J). Then we have j 4∗∗ J, i.e.

j(v1 ∧ v2) + J(v1 ∨ v2) 6 j(v1) + J(v2) for all v1, v2 ∈W. (5.24)

Indeed, we may assume v1 ∈ D(j) = u ∧ D(J) and v2 ∈ D(J). From J 4∗∗ J we have
D(J) 4∗ D(J) and thus v1∧v2 ∈ u∧D(J) = D(j). Thus, (5.24) reads as J(v1∨v2) 6 J(v2),
which is true since J is decreasing.

Now assume that (b) holds true. Then (a) holds true, too. Indeed, there is v ∈ D(J)
such that u 6 v. Thus, for each w ∈ D(J) it follows u ∨ w ∈ [w, v ∨ w]W , and since
D(J) is order-convex upward, we have u∨w ∈ D(J), and consequently u∨D(J) ⊂ D(J).
Further, from (5.23) we infer readily (5.22), since for w ∈ u∧D(J) we have u−w ∈W+.

Thus, we may assume (a). Then from u∨D(J) ⊂ D(J) it follows (for any w ∈ D(J))
u = u ∧ (u ∨ w) ∈ u ∧ D(J). Thus, we have j(u) = 0, and likewise j(w) = 0 for
w ∈ u∧D(J), so that from g(·,u) ∈ L, j 4∗∗ J and (5.22) it follows u ∈ FixSg,J (where
we have interpreted g as a multifunction on Ω×R×R and J as a functional on W×V).

It now follows from Corollary 5.22 that u is a subsolution of Problem (5.2). #
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6 Variational Inclusions with Measures

6.1 Introduction

Let us study the multivalued quasilinear elliptic problem

Au+G(·,u) 3 f in Ω, u = 0 on ∂Ω, (P)

where A : W → W ′ is a quasilinear elliptic divergence form operator of Leray-Lions
type on a Sobolev space W, and s 7→ G(·, s) is an upper semicontinuous multifunction,
such that (x, s) 7→ G(x, s) becomes upper Carathéodory. The right-hand side f of (P)
is assumed to be a signed Radon measure, which makes the study of solutions of (P)
rather involved. We will overcome this difficulty by use of an approximation scheme. To
this end, we will consider (P) with a more regular right-hand side f which belongs to
the dual space of W1,p

0 (Ω). Existence and comparison results for this regular case have
been obtained recently in [27].

It should be noted that the multifunction s 7→ G(·, s) includes as a special case the
generalized gradient s 7→ ∂j(·, s) of some locally Lipschitz function s 7→ j(·, s). This is
because any generalized gradient s 7→ ∂j(·, s) is an upper semicontinuous multifunction.
Thus, in this case (P) reduces to a hemivariational inequality with measure right-hand
side of the form

Au+ ∂j(·,u) 3 f in Ω, u = 0 on ∂Ω. (6.1)

First attempts for dealing with the special case (6.1) can be found in [26].
The main goals and the novelties of this chapter are as follows: First, in Section 6.2,

we develop an existence theory for the above multivalued elliptic problem with measure
right-hand side. To this end, we provide notations and assumptions, present a precise
formulation for Problem (P), and state, in Subsections 6.2.3 and 6.2.4, various prepara-
tory lemmas, some of which are of interest in its own right. Then, we prove existence
of solutions. Second, in Section 6.3, we propose concepts of sub-supersolutions for this
problem and establish an existence and comparison principle. Third, we topologically
characterize the solution set enclosed by sub-supersolutions.

6.2 Coercive Case

6.2.1 Setting

Let Ω ⊂ RN, N > 2, be a bounded domain with Lipschitz boundary ∂Ω. As usual, for
every p ∈ [1,∞], Lp(Ω) denotes the Lebesgue space of p-integrable (for p = ∞: essen-
tially bounded) functions, and in this chapter we use the abbreviation Vp ··= W1,p

0 (Ω).
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Recall further that p ′ denotes the Hölder conjugate of p, and p∗ denotes its critical
Sobolev exponent, which is given by p∗ = Np/(N−p) for p < N. In particular, we have
1∗ = N/(N− 1).

As for the data, let us suppose that f ∈ Mb(Ω), where Mb(Ω) denotes the set of
all signed Radon measures on Ω (see Subsection 3.3.4), let a : Ω × R × RN → RN be
a function defining the (single-valued) differential operator Au = − diva(·,u,∇u) of
Leray-Lions type, and let G : Ω× R→ P(R) be a multifunction.

6.1 Assumption Let p ∈ (2 − 1/N,N] be a fixed constant, p ′ = p/(p − 1). The
following assumptions are meant to hold for all (s, ξ) ∈ R× RN and a.e. x ∈ Ω and are
standard assumptions on the Leray-Lions operators A.

(A1) The function a : Ω× R× RN → RN is a Carathéodory function, i.e.

x 7→ a(x, s, ξ) is measurable on Ω,

(s, ξ) 7→ a(x, s, ξ) is continuous on R× RN.

(A2) The function ξ 7→ a(x, s, ξ) is p-coercive, in the sense that there is α > 0 with

a(x, s, ξ)ξ > α|ξ|p.

Together with (A1), this implies a(x, s, 0) = 0.

(A3) There exists a function b1 ∈ Lp
′
(Ω) and a constant b2 > 0 such that

|a(x, s, ξ)| 6 b1(x) + b2(|s|
p−1 + |ξ|p−1).

(A4) For every ξ, ξ ′ ∈ RN, ξ ′ 6= ξ, it holds the strict monotonicity

(a(x, s, ξ) − a(x, s, ξ ′))(ξ− ξ ′) > 0. #

6.2 Assumption Let δ > 1 be such that there is q0 ∈ [1, (p−1)1∗) with δ = q∗0 . (Such
a q0 exists, since 2−1/N < p.) This is equivalent to δ < (p−1)N/(N−p) = ((p−1)1∗)∗.
The following assumptions are meant to hold for all s ∈ R and a.e. x ∈ Ω.

(G1) The multifunction G is upper Carathéodory, i.e. s 7→ G(x, s) is upper semicon-
tinuous and x 7→ G(x, s) is measurable, and has closed and convex values.

(G2) There exist β1 ∈ L1loc(Ω) and β2 ∈ L∞loc(Ω) such that

sup{|y| : y ∈ G(x, s)} 6 β1(x) + β2(x)|s|
δ.

(G3) For all y ∈ G(x, s) one has the sign condition

ys > 0

and furthermore there is some β3 ∈ L1(Ω) such that

sup{|y| : y ∈ G(x, 0)} 6 β3(x). #
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6.2.2 Formulation of the Problem

The main purpose of this chapter is to prove existence and comparison results of the
following problem, which includes the lower order multivalued upper Carathéodory op-
erator G. Inspired by [10], we denote by C∞c (Ω) the linear space of infinitely often
differentiable functions ϕ : Ω → R with compact support, and define a solution as fol-
lows:

6.3 Definition A pair (u,g) is called solution of Problem (P) if

u ∈ V1 with a(·,u,∇u) ∈ L1loc(Ω),

g ⊂ G(·,u) with g ∈ L1loc(Ω),∫
Ω

a(·,u,∇u)∇ϕ+

∫
Ω

gϕ =

∫
Ω

ϕdf for all ϕ ∈ C∞c (Ω). (6.2)

Since the integrals (6.2) define linear mappings L : C∞c (Ω) → R, we sometimes will
shorten (6.2) as

〈Au,ϕ〉+ 〈g,ϕ〉 = 〈f,ϕ〉. #

6.4 Remark To emphasize the main ideas, we have restricted our considerations to
parameters p ∈ (2−1/N,N]. For p > N, we have the continuous embedding Vp ⊂ C0(Ω)
(where C0(Ω) denotes the space of continuous functions onΩ with zero boundary), thus,
for every f ∈Mb(Ω), the mapping ϕ 7→

∫
Ωϕdf belongs to V ′p and the methods of [27]

apply. For p 6 2 − 1/N, distributional solutions of (6.2) may not belong to L1(Ω) and
one has to generalize the notion of solutions (see, e.g., [35]). #

To prove existence of solutions, we proceed as follows:

(i) We approximate f by a sequence (fn) ⊂ C∞c (Ω) and truncate the multivalued non-
linearity G to obtain a sequence of multivalued operators (Gn). Then we consider
the auxiliary problems (Pn), where f and G are replaced by fn and Gn, respec-
tively, and ensure the existence of a solution (un,gn) without taking the growth
(G2) into account.

(ii) We investigate convergence properties of the sequences (un) and (gn).

(iii) We take limits in the distributional equation Aun+gn = fn to obtain Au+g = f.
Since g ⊂ G(·,u), (u,g) is the desired solution of (P).

This procedure will lead to our first main theorem:

Main Theorem (Coercive Case) Let hypotheses (A1)—(A4) and (G1)—(G3) be
satisfied. Then Problem (P) has a solution (u,g) which satisfies even u ∈ Vq for all
q ∈ [1, (p − 1)1∗), a(·,u,∇u) ∈ Lr(Ω) for all r ∈ [1, 1∗) and g ∈ L1(Ω). Furthermore,
the defining equation (6.2) holds for all ϕ ∈ Vr ′, r ′ > N.

Our second main result is formulated in terms of appropriately defined sub-super-
solutions (u,g) and (u,g), respectively, see subsection 6.3.3. To this end we strengthen
the hypotheses on f and a as follow: we assume f ∈ L1(Ω) and let a be independent of
its second argument. We then provide the following result:
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Main Theorem (Sub-supersolution) Assume f ∈ L1(Ω) and let hypotheses (S),
(A5) and (G4) (see below) be satisfied. Then there is a solution (u,g) of (P ′) which is
located in the order-interval [u,u] and has regularity u ∈ Vq for all q ∈ [1, (p − 1)1∗),
a(·,∇u) ∈ Lr(Ω) for all r ∈ [1, 1∗) and g ∈ Lq ′0(Ω).

To prove our main results, next we are going to provide various preparatory lemmas,
which are also of interest in its own right. These lemmas are concerned with existence
results for regular multivalued equations Au + G(·,u) 3 f and some a priori estimates
and compactness results of solutions of unperturbated, single-valued problems Au = f.

6.2.3 Auxiliary Problems

Let us define some auxiliary problems by approximating f and truncating G. For the
readers’ convenience, let us recall and prove the following lemma, which can be found
among others in [95, Lemma 3.4].

6.5 Lemma Suppose f ∈ Mb(Ω). Then there is a sequence (fn) ⊂ C∞c (Ω) which
converges to f in the distributional sense (i.e. 〈fn,ϕ〉 → 〈f,ϕ〉 for all ϕ ∈ C∞c (Ω))
and satisfies ‖fn‖L1(Ω) 6 ‖f‖Mb(Ω).

Proof: Via 〈f,ϕ〉 ··=
∫
Ωϕdf, each f ∈ Mb(Ω) is a continuous linear functional on the

space of continuous real functions with compact support in Ω, that is, f ∈ Cc(Ω) ′.
Especially, f is a distribution and the real-valued functions

fn = (ξnf) ∗ϕn ∈ C∞c (Ω) (6.3)

approximate f in the distributional sense, where (ξn) ⊂ C∞c (Ω) is a sequence of non-
negative real cut-off functions which are pointwise bounded by 1, and (ϕn) ⊂ C∞c (Ω) is a
sequence of non-negative functions of integral 1 which defines, via convolution, a mollifier
(see, e.g., [38, Cor. 11.7]). It remains to prove the estimate ‖fn‖L1(Ω) 6 ‖f‖Mb(Ω). Since
we have ‖f‖Mb(Ω) = |f|(Ω), where |f| is the total variation of f, this is, however, a direct
consequence of (6.3) and Tonelli’s theorem:

‖fn‖L1(Ω) =

∫
Ω

∣∣∣∣∫
Ω

ξn(y)ϕn(x− y) df(y)

∣∣∣∣dx 6 ∫
Ω

∫
Ω

ϕn(x) dxd|f| = |f|(Ω). #

6.6 Definition Using the usual truncations τn : s 7→ max(−n, min(s,n)) at level n,
n ∈ N, we define the multivalued truncated operator

Gn ··= τn(G) : Ω× R→ P(R), (x, s) 7→ {τn(y) : y ∈ G(x, s)}.

That is, we can evaluate Gn pointwise as

Gn(x, s) =


{n} if y > n for all y ∈ G(x, s),
{−n} if y < n for all y ∈ G(x, s),
G(x, s) ∩ [−n,n] otherwise.

#
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6.7 Definition Let (fn) be some fixed sequence converging to f in distributional
sense provided by Lemma 6.5. The auxiliary problem is to find some pair (un,gn) that
solves

Aun +Gn(·,un) 3 fn in Ω, u = 0 on ∂Ω (Pn)

in the sense that

un ∈ Vp, gn ⊂ Gn(·,un),∫
Ω

a(·,un,∇un)∇ϕ+

∫
Ω

gnϕ =

∫
Ω

fnϕ for all ϕ ∈ Vp (6.4)

(where the test functions ϕ are allowed to have lower regularity than in (6.2) since the
solutions (un,gn) have higher regularity). #

To provide the existence of solutions of the auxiliary Problems (Pn), we need to know
the mapping properties of the multivalued operator Gn.

6.8 Proposition For each n ∈ N, Gn : Ω×R→ P(R) has closed and convex values, is
upper Carathéodory, and satisfies (G3). Furthermore, Gn has uniformly bounded values.

Proof: Since τn(s)s > 0 and |τn(s)| 6 |s|, (G3) is fulfilled for Gn. Furthermore, Gn
has non-empty, closed and convex values, as G has, and all values are bounded by n. It
remains to prove the upper Carathéodory property.

Let x ∈ Ω be such that G(x, ·) is upper semicontinuous, and let U ⊂ R be some open
set such that Gn(x, s) ⊂ U. Then there is some open set U ′ such that G(x, s) ⊂ U ∪U ′
and U ′ ∩ [−n,n] = ∅. Since G(x, ·) is upper semicontinuous, one has G(x, s ′) ⊂ U ∪ U ′
and Gn(x, s

′) ⊂ U for all s ′ near s. Thus, Gn(x, ·) is upper semicontinuous, too.
Now, fix s ∈ R and let U ⊂ R be open. Then the pre-image

Gn(·, s)−1
− (U) = {x ∈ Ω : Gn(x, s) ∩U 6= ∅}

equals, depending on the structure of U, the union of some of the pre-images

G(·, s)−1
− (U ∩ (−n,n)), G(·, s)−1

− ((−∞,−n]) and G(·, s)−1
− ([n,∞)),

which are all measurable. (Note that R is σ-compact and that G has non-empty and
closed values, which is why weak and strong measurability of G(·, s) coincide.) Conse-
quently, Gn is upper Carathéodory. #

Following [27], we next formulate Problem (Pn) as a multivalued operator equation
in order to apply abstract surjectivity results. To this end, we introduce the following
operator:

6.9 Definition We define the multivalued Nemytskij operator NGn by

NGn : Vp → P(L0(Ω)), u 7→ {g ∈ L0(Ω) : g ⊂ Gn(·,u)},

that is, NGn(u) is the set of measurable selections of Gn(·,u). #
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Due to Theorem 3.47, Gn is weakly superpositionally measurable, thus the operator
NGn is well-defined. Furthermore, Gn has uniformly bounded values, so that we have
NGn(u) ⊂ L∞(Ω) for every u ∈ Vp. Therefore, the next definition makes sense.

6.10 Definition We define the multivalued Nemytskij operator NGn by

NGn : Vp → P(V ′p), u 7→ i∗NGn(u) = {i∗g : g ∈ NGn(u)},

where i∗ : Lp
′
(Ω) → V ′p is the linear and compact adjoint operator to the compact

embedding i : Vp → Lp(Ω). #

Now, Problem (Pn) reads as follows: Find a function un ∈ Vp satisfying

Aun +NGn(un) 3 fn in V ′p, (6.5)

which means that there is some i∗gn ∈ NGn(un) such that

Aun + i∗gn = fn in V ′p.

Then (un,gn) is a solution of (Pn).
Such a solution un with corresponding selection gn exists if A+NGn is surjective in

the sense that
⋃
u∈Vp(A+NGn)(u) = V

′
p. But this is the case:

6.11 Proposition The operator A + NGn : Vp → P(V ′p) is surjective, thus Problem
(Pn) has a solution (un,gn) with un ∈ Vp.

Proof: Due to (A1)—(A4), A is known to be a single-valued continuous, bounded and
pseudomonotone mapping. Furthemore, we readily apply Proposition 3.69 to conclude
that NGn : Vp → P(V ′p) is a well-defined pseudomonotone multifunction with closed
and convex values. Thus, the sum A+NGn is pseudomonotone, too. Furthermore, A is
coercive and NGn has uniformly bounded values, so their sum is a coercive multifunction
with respecto to u0 ··= 0. Since M : u 7→ {0} is maximal monotone on Vp, A + NGn is
surjective due to Theorem 2.57. #

6.2.4 Compactness Results

Suppose f ∈ V ′p ∩ L1(Ω) and let us consider the problem

Au = f in V ′p, u ∈ Vp (Pf)

under conditions (A1)—(A4). We will assume that solutions un with respect to various
right-hand sides fn are given and are interested in proving the compactness of (un) in
a suitable Sobolev space. The proofs follow the ideas given in [10] and [8], modified as
proposed there.

6.12 Lemma Let (fn) ⊂ V ′p∩L1(Ω) be bounded in L1(Ω) and let un be a solution of
(Pf) with right-hand side fn, n ∈ N. Then, for every q ∈ [1, (p− 1)1∗), (un) is bounded
in Vq.
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Proof: For each t > 0 let us define the following cut-off functions τt and σt by

τt(s) ··=


t if s > t,

s if s ∈ [−t, t],

−t if s < −t,

σt(s) ··=


sgn(s) if |s| > t+ 1,

sgn(s)(|s|− t) if |s| ∈ [t, t+ 1],

0 if s ∈ (−t, t),

where sgn denotes the usual sign function. Clearly, both τt and σt are increasing,
bounded and Lipschitz. Furthermore, define for each u ∈ Vp the corresponding sets

Ωτt (u) ··= {x ∈ Ω : |u(x)| < t}, Ωσt (u) ··= {x ∈ Ω : t 6 |u(x)| < t+ 1}.

In this setting, τt(un) belongs to Vp with gradient ∇τt(un) = τ ′t(un)∇(un) and thus

〈Aun, τt(un)〉 =
∫
Ω

a(·,un,∇un)∇τt(un) =
∫
Ωτt (un)

a(·,un,∇un)∇un, (6.6)

since τ ′t(un) = 1 on Ωτt (un) and τ ′t(un) = 0 otherwise. Likewise, σt(un) ∈ Vp and

〈Aun,σt(un)〉 =
∫
Ω

a(·,un,∇un)∇σt(un) =
∫
Ωσt (un)

a(·,un,∇un)∇un. (6.7)

Now, let (fn) be bounded in L1(Ω) by c. Then we have for any t > 0

〈Aun, τt(un)〉 = 〈fn, τt(un)〉 6 ct. (6.8)

Combining (6.6) with (6.8), (A2) and Hölder’s inequality with conjugates p/q > 1 (note:
p 6 N) and p/(p− q) easily gives∫

Ωτt (un)
|∇un|q 6

(
ct

α

)q/p
|Ωτt (un)|

(p−q)/p. (6.9)

Taking into account t 6 |un| on Ωσt (un), we obtain likewise from 〈Aun,σt(un)〉 6 c
and (6.7) the useful estimate∫

Ωσt (un)
|∇un|q 6

( c
α

)q/p(∫
Ωσt (un)

|un|
q∗

tq
∗

)(p−q)/p

. (6.10)

Now, let us specialize t as natural numbers k,k + 1, . . . corresponding to the disjoint
partition Ω = Ωτk(un) ∪ Ωσk(un) ∪ Ωσk+1(un) ∪ . . . This partition and the vectorial
Hölder’s inequality along with (6.9) and (6.10) give

‖∇un‖qLq(Ω) 6 c1(k) + c2(k)‖un‖
q∗(p−q)/p

Lq
∗
(Ω)

,

where c1(k) and c2(k) satisfy

c1(k)
p/q =

ck

α
|Ω|(p−q)/q, c2(k)

p/q =
c

α

∞∑
m=k

m−q∗(p−q)/q.

Since ‖un‖Lq∗(Ω) 6 c3‖∇un‖Lq(Ω) for some embedding constant c3, we deduce under
the given hypotheses on p and q that ‖un‖Vq is bounded by a constant depending
neither on un nor fn but only on c, q and the data p, α and |Ω|. #
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The proof of Lemma 6.15 is far more involved. For this purpose, first let us state a
trivial auxiliary result and the convergence theorem of Vitali for a finite measure space
(cf., e.g., [96, Th. 11]).

6.13 Lemma Let (fn) be bounded in Lq(Ω), q > 1, and let (Ωn) ⊂ Ω be a sequence
of sets with |Ωn|→ 0. Then∫

Ωn

|fn| 6 |Ωn|
1/q ′‖fn‖Lq(Ω) → 0 as n→∞. #

6.14 Theorem (Vitali) Let S = (X,A,µ) be a finite measure space, 1 6 p < ∞,
(fn) ⊂ Lp(S), f ∈ L0(S) and fn → f a.e. Then f ∈ Lp(S), and we have the convergence
‖fn − f‖Lp(S) → 0 if and only if (fn) is p-equi-integrable, that is (since S is a finite
measure space), limµ(A)→0

∫
A |fn|

p dµ = 0 uniformly in n. #

6.15 Lemma Let (fn) ⊂ V ′p ∩ L1(Ω) be bounded in L1(Ω) and let un be a solution
of (Pf) with right-hand side fn, n ∈ N. Then there is a function u such that for every
q ∈ [1, (p− 1)1∗) and every r ∈ [1, 1∗) there is a subsequence of (un) (we do not relabel)
for which un → u in Vq and a(·,un,∇un)→ a(·,u,∇u) in Lr(Ω) hold.

Proof: Step 1. Setting
Let (fn) ⊂ V ′p ∩ L1(Ω) be bounded in L1(Ω) by c and fix q ∈ (1, (p − 1)1∗). By

Lemma 6.12, (un) is bounded in Vq, thus, up to a subsequence, ∇un ⇀ ∇u in Lq(Ω),
un → u ∈ Lq(Ω) and un → u a.e. We shall prove that even ∇un → ∇u in Lq(Ω). To
this end, we consider Fn ∈ L1(Ω), defined by

Fn ··= [a(·,un,∇un) − a(·,un,∇u)][∇un −∇u]. (6.11)

Note that Fn > 0 due to (A4). Furthermore, we will need the truncated function τk(u),
where τk is the usual truncation at level k. Taking τk(un) as test function in Aun = fn,
we obtain, since τ ′k(s) ∈ {0, 1},∫

Ω

α|∇τk(un)|p =

∫
Ω

α|∇un|pτ ′k(un)

6
∫
Ω

a(·,un,∇un)∇unτ ′k(un)

=

∫
Ω

a(·,un,∇un)∇τk(un) =
∫
Ω

fnτk(un) 6 ck

(6.12)

and thus the boundedness of (τk(un)) in Vp. Therefore, we have τk(unl) ⇀ τ in Vp
and τk(unl) → τ a.e. for some subsequence (unl) of (un) and some τ ∈ Vp. Since
also τk(unl) → τk(u) a.e., we have τ = τk(u) and thus τk(u) ∈ Vp (and of course
τk(u) ∈ L∞(Ω)). Since the limit is independent of the chosen subsequence, it follows
τk(un) ⇀ τk(u) in Vp. Similar, one proves τε(un − τk(u)) ⇀ τε(u − τk(u)) in Vp for
every ε > 0 by using ∇τε(un − τk(u)) = τ

′
ε(un − τk(u))∇(τε+k(un) − τk(u)).
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Step 2. limn
∫
Ω F

s
n = 0 for some s ∈ (0, 1)

We will splitΩ two times in two complementary subsets which are constructed first by
considering |u| and second by considering |un−τk(u)|. This will give rise to an estimate

0 6
∫
Ω

Fsn 6
∫
Ωku

Fsn +

∫
Ωεn,k

Fsn,k +

∫
Ω\Ωεn,k

Fsn,k, (6.13)

where the sets of integration and the integrand Fn,k are defined as below. These three
integrals will be estimated separately and the conclusion will be limn

∫
Ω F

s
n = 0.

First, consider for all k ∈ N the set

Ωku ··= {x ∈ Ω : |u(x)| > k},

whose measure tends to 0 as k→∞. By this, (6.14) below follows, but we need uniform
convergence with respect to n. To this end, employ Hölder’s inequality to obtain∫

Ωku

Fsn 6

(∫
Ωku

|a(·,un,∇un) − a(·,un,∇u)|sq ′
)1/q ′ (∫

Ωku

|∇un −∇u|sq
)1/q

.

Since (un) is bounded in Vq, (a(·,un,∇un)) is bounded in Lr(Ω) for all r which satisfy
r 6 q/(p−1) < p ′ due to (A3), and so we can apply Lemma 6.13 if both sq ′ < q/(p−1)
and sq < q. Thus, for all s < (q− 1)/(p− 1) < 1, we obtain

limkJ(n,k) = 0, where J(n,k) ··=
∫
Ωku

Fsn, (6.14)

the convergence being uniform in n.
By (A4) the remaining integral satisfies∫
Ω\Ωku

Fsn 6
∫
Ω

([a(·,un,∇un) − a(·,un,∇τk(u))] [∇un −∇τk(u)])s =··
∫
Ω

Fsn,k.

Now, for fixed ε > 0 and all n ∈ N consider the sets

Ωεn,k ··= {x ∈ Ω : |un(x) − τk(u(x))| > ε}.

Thanks to Lemma 6.13 and the boundedness of the sequences involved, we obtain in the
same way as before the following estimate:

K(n,k, ε) ··=
∫
Ωεn,k

Fsn,k 6 c1|Ω
ε
n,k|

r

for some constants c1 > 0 and r > 0. The right-hand side depends on all ε, n and k,
but can, by considering sets Ωm ··= {x ∈ Ω : |u(x) − τk(u(x))| > ε − 1/m} and the
convergence un → u in measure, easily be estimated in the following way:

lim supnK(n,k, ε) 6 c1 | {x ∈ Ω : |u(x) − τk(u(x))| > ε} |
r . (6.15)
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Indeed, from |un(x) − τk(u(x))| > ε it follows

x ∈ Ωm or x ∈ {x ∈ Ω : |un(x) − u(x)| > 1/m}. (6.16)

Since un → u in measure, the second set in (6.16) has measure less any given δ > 0
provided n is sufficiently large, so that lim supn |Ωεn,k 6 |Ωm|. Furthermore, we have

Ω0 ··= {x ∈ Ω : |u(x) − τk(u(x))| > ε} =
⋂
m
Ωm,

and since (Ωm) is a decreasing sequence (with respect to inclusion), we conclude finally
lim supn |Ωεn,k| 6 limm |Ωm| = |Ω0|.

It remains the integral L(n,k, ε), defined as∫
Ω\Ωεn,k

Fsn,k =

∫
Ω\Ωεn,k

([a(·,un,∇un) − a(·,un,∇τk(u))] [∇un −∇τk(u)])s .

Since τ ′ε(un − τk(u)) = 1 on CΩεn,k and τ ′ε(un − τk(u)) = 0 on Ωεn,k, we can write

L(n,k, ε) =

∫
Ω

(
[a(·,un,∇un) − a(·,un,∇τk(u))] [∇(un − τk(u))] τ

′
ε(un − τk(u))

)s
,

and since ∇τε(un − τk(u)) = τ
′
ε(un − τk(u))∇(un − τk(u)), we can simplify L(n,k, ε)

further. By employing Hölder’s inequality and by taking τε(un − τk(u)) ∈ Vp ∩ L∞(Ω)
as test function in Aun = fn, we obtain

L(n,k, ε)

6

(∫
Ω

[a(·,un,∇un) − a(·,un,∇τk(u))]∇τε(un − τk(u))

)s
|Ω|1−s

=

(∫
Ω

fnτε(un − τk(u)) −

∫
Ω

a(·, τk+ε(un),∇τk(u))∇τε(un − τk(u))

)s
|Ω|1−s.

(6.17)

To justify the last line in (6.17), note that un = τk+ε(un) on {x ∈ Ω : |un| 6 k+ ε} and
that ∇τε(un− τk(u)) = 0 on {x ∈ Ω : |un| > k+ ε}. Now, letting n→∞ in (6.17) leads
to

lim supnL(n,k, ε) 6

(
cε−

∫
Ω

a(·, τk+ε(u),∇τk(u))∇τε(u− τk(u))

)s
|Ω|1−s.

Since a(·, s, 0) = 0 for all s ∈ R, we immediately infer

lim supnL(n,k, ε) 6 csεs |Ω |
1−s , (6.18)

the right-hand side of which is independent of k.
Now we are able to prove limn

∫
Ω F

s
n = 0 by using estimate (6.13), which reads now

as

0 6
∫
Ω

Fsn 6 J(n,k) + K(n,k, ε) + L(n,k, ε),
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and carefully combining it with (6.14), (6.15) and (6.18): Let ε̃ > 0 be given and let ε > 0
be so small that csεs|Ω|1−s < ε̃. By (6.14), J(n,k) 6 ε̃ if k is sufficiently large. We may
choose k so large that |{x ∈ Ω : |u(x)| > k}|r < ε̃/c1. As {x ∈ Ω : |u(x)−τk(u(x))| > ε} is
a subset of {x ∈ Ω : |u(x)| > k}, (6.15) implies K(n,k, ε) 6 ε̃ if n is sufficiently large. We
may choose n so large that, by (6.18), L(n,k, ε) 6 ε̃. Inserting these estimates in (6.13),
we arrive at 0 6

∫
Ω F

s
n 6 3ε̃ for all sufficiently large n.

Step 3. Applying Leray-Lions theory
The following is standard, see, e.g., [74, Lemme 3.3] or [106, Lemma 6.3].
Due to Step 2, we have Fsn → 0 in L1(Ω), and so, up to a subsequence, Fsn → 0 a.e.,

and thus Fn → 0 a.e. Furthermore, for a.e. x ∈ Ω we have un(x)→ u(x) (thus (un(x))
is bounded) and b1(x) <∞, and due to (A3) there is a constant cx such that

Fn(x) > a(x,un(x),∇un(x))∇un(x) − cx(1 + |∇un(x)|p−1 + |∇un(x)|). (6.19)

Combining (6.19)) with (A2), we derive boundedness of (∇un(x)) and thus we have
∇unk(x) → ξ(x) ∈ RN for some subsequence (unk(x)) ⊂ (un(x)). Taking limits in
(6.11) at the point x, we obtain

0 = [a(x,u(x), ξ(x)) − a(x,u(x),∇u(x))][ξ(x) −∇u(x)]

and, due to (A4), ξ(x) = ∇u(x). Since the limit ∇u(x) is independent of the chosen
subsequence (unk), we have in fact ∇un → ∇u a.e. Since (∇un) is uniformly bounded
in Lq̃(Ω) for all q̃ ∈ (q, (p − 1)1∗), we have due to Vitali’s convergence theorem and
Lemma 6.13 ∇un → ∇u in Lq(Ω).

As regards other exponents q̃ ∈ (q, (p−1)1∗), one can repeat the proof while starting
with the current sequence (un) (which is a subsequence of the original given one) to
obtain, up to a subsequence, ∇un → ∇u in Lq̃(Ω).

Due to A3, (a(·,un,∇un)) is uniformly bounded in Lr(Ω), r < 1∗, and since (A1)
holds, we have for each r < 1∗, again due to Vitali’s convergence theorem and up
to a subsequence, the strong convergence a(·,un,∇un) → a(·,u,∇u) in Lr(Ω). This
completes the proof. #

6.2.5 Existence of Solutions

We are in a position now to prove the first main result of this chapter. Its proof will
follow the path outlined in Subsection 6.2.2.

6.16 Theorem Let hypotheses (A1)—(A4) and (G1)—(G3) be satisfied. Then Prob-
lem (P) has a solution (u,g) which satisfies even u ∈ Vq for all q ∈ [1, (p − 1)1∗),
a(·,u,∇u) ∈ Lr(Ω) for all r ∈ [1, 1∗) and g ∈ L1(Ω). Furthermore, the defining equa-
tion (6.2) holds for all ϕ ∈ Vr ′, r ′ > N.

Proof: Let (un,gn) be a solution of the auxiliary problem (Pn), n ∈ N, which exists due
to Proposition 6.11. By definition, un ∈ Vp, gn ⊂ Gn(·,un) and

〈Aun,ϕ〉+ 〈gn,ϕ〉 = 〈fn,ϕ〉 for all ϕ ∈ Vp. (6.20)
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To take limits in (6.20), we want to apply Lemma 6.15, hence, we have to ensure that
both (fn) and (gn) are bounded in L1(Ω). Concerning (fn), this holds by Lemma 6.5,
and concerning (gn), this holds true due to the following procedure:

Since gn ⊂ Gn(·,un), the sign condition (G3) ensures

|gn(x)| = gn(x) sgn(un(x)) for a.e. x ∈ Ωn ··= {x ∈ Ω : un(x) 6= 0}.

By considering test functions ϕk(un) in (6.20), where the increasing Lipschitz functions
ϕk : R→ R are defined by

ϕk(s) ··= sgn(s)
[
1 − (|s|+ 1)−k

]
∈ [−1, 1],

considering (A2) together with ∇ϕk(un) = ϕ ′k(un)∇un, and passing to the limit as
k→∞, we obtain∫

Ωn

|gn| =

∫
Ω

gn sgn(un) 6
∫
Ω

fn sgn(un) 6
∫
Ω

|fn| 6 ‖f‖Mb(Ω). (6.21)

Combining estimate (6.21) with the second statement of (G3) yields

‖gn‖L1(Ω) 6 ‖f‖Mb(Ω) + ‖β3‖L1(Ω),

that is, (gn) is uniformly bounded in L1(Ω) as demanded.
Thanks to Lemma 6.15, there is some function u such that for all q ∈ [1, (p − 1)1∗)

and r ∈ [1, 1∗), up to a subsequence, un → u in Vq and a(·,un,∇un)→ a(·,u,∇u) in
Lr(Ω). Due to the continuous embedding Vq ⊂ Lq

∗
(Ω), for all s ∈ [1, ((p − 1)1∗)∗) we

can also assume un → u in Ls(Ω). Fix now such q and r.
To take limits in (6.20), it remains to prove some convergence of (gn). This step

depends on the growth of G. Since |τn(s)| 6 |s|, we can use condition (G2): There is
some q0 ∈ [1, (p − 1)1∗) and δ = q∗0 such that for every compact set Ωk ⊂ RN with
Ωk ⊂ Ω one has ∫

Ωk

|gn| 6
∫
Ωk

β1 + ‖β2‖L∞(Ωk)

∫
Ωk

|un|
δ.

Since for all s ∈ [1, ((p− 1)1∗)∗), (un) can be chosen to be convergent in Ls(Ω) and
so in Ls(Ωk) as well, (un) is δ-equi-integrable by Vitali’s convergence theorem, thus
(gn) is equi-integrable in L1(Ωk). By the well-known Dunford-Pettis theorem, (gn) has
a weakly convergent subsequence in L1(Ωk).

Let (Ωk) be a sequence of compact subsets of RN such that Ωk ⊂ intΩk+1 (where
int denotes the interior) for all k ∈ N and

⋃∞
k=1Ωk = Ω. For each k, we select by means

of the calculations we have just done inductively a weakly convergent subsequence (gkn)
of (gn) with weak limit gk ∈ L1(Ωk) such that

gkn ⇀ gk in L1(Ωk) and (g(k+1)n) ⊂ (gkn) for all k ∈ N.

Observe that for each k both g(k+1)n |Ωk ⇀ gk and g(k+1)n |Ωk ⇀ gk+1|Ωk in L1(Ωk)

and thus gk+1|Ωk = g
k. By extending each gk trivially to a function on Ω, the pointwise

limit g = limk→∞ gk is well-defined, measurable and we have by Fatou’s lemma

‖g‖L1(Ω) 6 lim infk

∫
Ωk

|gk| 6 ‖f‖Mb(Ω) + ‖β3‖L1(Ω),
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since (gn) is bounded in L1(Ω) by ‖f‖Mb(Ω) + ‖β3‖L1(Ω). Thus, g ∈ L1(Ω) and, by

Lebesgue’s convergence theorem, gk → g in L1(Ω).

Up to a subsequence, we have ensured the following convergence properties:

fn → f in distributional sense,

un → u in Vq for some q ∈ [1, (p− 1)1∗) and a.e.,

a(·,un,∇un)→ a(·,u,∇u) in Lr(Ω) for some r ∈ [1, 1∗),

gkn ⇀ gk in L1(Ωk), k ∈ N,

gk → g in L1(Ω).

Furthermore, we have gkn ⊂ Gkn(·,ukn) for all n,k ∈ N. By Proposition 3.68, we obtain
gk(x) ∈ G(x,u(x)) for a.e. x ∈ Ωk (clearly, G : Ωk × R→ P(R) is upper Carathéodory)
and thus, since g = gk on Ωk, g ⊂ G(·,u). Passing to the limit as n → ∞ in (6.20)
yields, for fixed k ∈ N,

〈Au,ϕ〉+ 〈gk,ϕ〉 = 〈f,ϕ〉 for all ϕ ∈ C∞c (Ω) with suppϕ ⊂ Ωk.

Since each ϕ ∈ C∞c (Ω) is supported in some Ωk, we have in fact

〈Au,ϕ〉+ 〈g,ϕ〉 = 〈f,ϕ〉 for all ϕ ∈ C∞c (Ω), (6.22)

that is, (u,g) is a solution of (P) with better regularity.

Since a(·,u,∇u) ∈ Lr(Ω) for all r ∈ [1, 1∗), we have Au ∈ V ′r ′ for all r ′ > N (note
that (1∗) ′ = (N/(N − 1)) ′ = N). Now take ϕ ∈ Vr ′ arbitrary, let (ϕn) ⊂ C∞c (Ω) be
some sequence with ϕn → ϕ in Vr ′ and consider (6.22) for those ϕn. Since we have the
continuous embedding Vr ′ ⊂ C0(Ω) and since f ∈ Mb(Ω) induces a linear, continuous
functional on C0(Ω), we can take limits and obtain

〈Au,ϕ〉+ 〈g,ϕ〉 = 〈f,ϕ〉 for all ϕ ∈ Vr ′ , r ′ > N.

This completes the proof. #

6.17 Remark Instead of the sign condition (G3), every condition that ensures uni-
formly boundedness of (gn) would be enough. For instance, we could assume that in
(G2) one has β2 = 0 and β1 ∈ L1(Ω). #

6.3 Sub-Supersolution Method

6.3.1 New Setting

Let us restrictively assume in the following that the measure f has regularity f ∈ L1(Ω)
and that the generating function a ofA does not depend on its second argument. Problem
(P) now reads as follows:
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6.18 Definition A pair (u,g) is a solution of the problem

Au+G(·,u) 3 f in Ω, u = 0 on ∂Ω, (P ′)

if and only if for all q ∈ [1, (p− 1)1∗) and all r ∈ [1, 1∗)

u ∈ Vq with a(·,∇u) ∈ Lr(Ω),

g ⊂ G(·,u) with g ∈ L1(Ω),∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

gϕ =

∫
Ω

fϕ for all ϕ ∈ Vr ′ .

(Note that r < 1∗ implies r ′ > N and thus Vr ′ ⊂ L∞(Ω).) #

The regularity f ∈ L1(Ω) will be needed to use truncated sub-supersolutions as test
functions. Those sub-supersolutions are appropriately defined as follows with respect to
some parameter q0 which depends on G (see condition (G4) below).

6.19 Definition A pair (u,g) is called subsolution of (P ′) with respect to some
parameter q0 if and only if

u ∈ Vp with a(·,∇u) ∈ Lp ′(Ω),

g ⊂ G(·,u) with g ∈ Lq ′0(Ω),∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

gϕ 6
∫
Ω

fϕ for all ϕ ∈ Vp ∩ L∞+ (Ω). (6.23)

Similarly, (u,g) is called supersolution of (P ′) with respect to q0 if and only if

u ∈ Vp with a(·,∇u) ∈ Lp ′(Ω),

g ⊂ G(·,u) with g ∈ Lq ′0(Ω),∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

gϕ >
∫
Ω

fϕ for all ϕ ∈ Vp ∩ L∞+ (Ω). (6.24)

(Recall that L∞+ (Ω) denotes the set of all functions u ∈ L∞(Ω) with u > 0.) #

Throughout this section, we will assume the following conditions:

(S) There are a subsolution (u,g) and a supersolution (u,g) of (P ′) with respect to
some parameter q0 ∈ [1,p∗) which are ordered in the sense that u 6 u.

(A5) Conditions (A1)—(A4) hold with a = a(x, s, ξ) independent of its second argument
s.

(G4) Condition (G1) holds. Furthermore, there exists β1 ∈ Lq
′
0(Ω), q0 given by (S),

such that
sup{|y| : y ∈ G(x, s)} 6 β1(x)

for a.e. x ∈ Ω and all s ∈ [u(x),u(x)].
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Note that, due to (A3), u ∈ Vp and u ∈ Vp immediately imply a(·,∇u) ∈ Lp ′(Ω) and
a(·,∇u) ∈ Lp ′(Ω), respectively, and that we dropped the sign condition on G. Thanks
to the sub-supersolutions, we will get a solution u of (P ′), located even in the order-
interval [u,u], that is, u 6 u 6 u. To prove this, we will follow roughly the same path
as in the previous section, but modify the auxiliary problems as in [26] to carry out the
well-known sub-supersolution method.

6.3.2 Auxiliary Problems

Let us introduce the Carathéodory function

d(x, s) ··=


(s− u(x))p−1 if s > u(x),

0 if s ∈ [u(x),u(x)],

−(u(x) − s)p−1 if s < u(x).

From
|d(x, s)| 6 c

(
|u(x)|p−1 + |u(x)|p−1 + |s|p−1

)
(6.25)

and by use of the compact embedding Vp → Lp(Ω), we have that the Nemytskij operator
D : Vp → V ′p, defined by 〈Du,ϕ〉 ··=

∫
Ω d(·,u)ϕ, is bounded and completely continuous,

thus pseudomonotone.
Furthermore, consider the truncated multivalued operator

G̃ : Ω× R→ P(R), (x, s) 7→


{g(x)} if s > u(x),

G(x, s) if s ∈ [u(x),u(x)],

{g(x)} if s < u(x).

Obviously, one has for every u ∈ L0(Ω) and all g ⊂ G̃(·,u)

|g(x)| 6 |g(x)|+ |β1(x)|+ |g(x)| for a.e. x ∈ Ω. (6.26)

Furthermore, it is readily seen that G̃ is upper Carathéodory and has closed and convex
values. The only question that arises is, whether the inclusion G̃(x, s) ⊂ U for some
open set U ⊂ R implies G̃(x, s ′) ⊂ U for a.e. x ∈ Ω and all s ′ near s if s = u(x) or
s = u(x). However, this holds true because g ⊂ G(·,u), g ⊂ G(·,u) and G(x, ·) is upper
semicontinuous for a.e. x ∈ Ω.

The following auxiliary problem plays a crucial role in the proof of the main result of
this section: Find a pair (u,g) that solves

Au+ G̃(·,u) +Du 3 f, u = 0 on ∂Ω (P̃)

in the sense of Definition 6.18.
Similarly as in the preceding section, we will find a solution of (P̃) by approximation.

The approximating sequences (un) and (gn) will be of importance in proving that a
solution of (P̃) is in fact a solution of the original Problem (P ′), so we state:
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6.20 Proposition For each fn ∈ V ′p, there is a pair (un,gn) ∈ Vp × Lq
′
0(Ω) such

that ∫
Ω

a(·,∇un)∇ϕ+

∫
Ω

gnϕ+

∫
Ω

d(·,un)ϕ =

∫
Ω

fnϕ for all ϕ ∈ Vp, (6.27)

where gn ⊂ G̃(·,un) is the corresponding selection.

Proof: Due to estimate (6.26), the values of N
G̃
(u) are uniformly majorized in Lq

′
0 by

|g|+ β1 + |g|, thus, the operator

N
G̃
: Vp → P(V ′p), u 7→ {i∗q0

g : g ∈ Lq ′0(Ω), g ⊂ G̃(·,u)},

is well-defined, where i∗q0
denotes the adjoint operator of the compact embedding oper-

ator iq0 : Vp → Lq0(Ω). Since Lemma 3.69 holds true also for G̃, we have that N
G̃

is
pseudomonotone. Thus, as in the proof of Proposition 6.11, we obtain the existence of
the solution (un,gn) we looked for. #

To make up for the absent sign condition, we provide one last preliminary result.

6.21 Proposition Let u ∈ Vp and h ∈ V ′p ∩ L1(Ω) be such that∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

d(·,u)ϕ =

∫
Ω

hϕ for all ϕ ∈ Vp. (6.28)

Then ‖d(·,u)‖L1(Ω) 6 ‖h‖L1(Ω) + c, where c is independent of u and h.

Proof: Consider the function w ∈ Lp ′(Ω), defined by

w(x) ··=


−(u−(x))p−1 if u(x) > u(x),

0 if u(x) ∈ [u(x),u(x)],

(u+(x))p−1 if u(x) < u(x).

We have ‖w‖p
′

Lp
′
(Ω)
6 ‖u‖p

Lp(Ω) + ‖u‖
p
Lp(Ω), so ‖w‖L1(Ω) 6 c. Furthermore,

|d(x,u(x)) +w(x)| = (d(x,u(x)) +w(x)) sgn(u(x)) for a.e. x ∈ Ω. (6.29)

For k > 0, let ϕk be the increasing Lipschitz function, defined by

ϕk(s) = sgn(s)
[
1 − (|s|+ 1)−k

]
.

Obviously, |ϕk| 6 1 and (ϕk) converges pointwise to the sign function sgn as k → ∞.
Let us take the function vk ··= ϕk(u) ∈ Vp as a test function in (6.28). In view of
∇vk = ϕ ′k(u)∇u and (A2), we obtain∫

Ω

(d(·,u) +w)ϕk(u) 6
∫
Ω

(h+w)ϕk(u). (6.30)

Passing to the limit in (6.30) as k→∞ and combining the result with (6.29), we get∫
Ω

|d(·,u) +w| 6
∫
Ω

(h+w) sgn(u) 6 ‖h+w‖L1(Ω).

By this, the assertion follows. #
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6.3.3 Existence of Solutions

We are now in the position to prove the second main theorem of this chapter. This will
be done in two steps: First, we show, with the same methods as in the preceding section,
that (P̃) has a solution u. Second, we verify that, due to the special structure of G̃ and
D, u is actually a solution of (P ′).

6.22 Theorem Assume f ∈ L1(Ω) and let hypotheses (S), (A5) and (G4) be satisfied.
Then there is a solution (u,g) of (P ′) which is located in [u,u] and has regularity u ∈ Vq
for all q ∈ [1, (p− 1)1∗), a(·,∇u) ∈ Lr(Ω) for all r ∈ [1, 1∗) and g ∈ Lq ′0(Ω).

Proof: Let (fn) ⊂ C∞c (Ω) be a sequence with fn → f in L1(Ω) and let un and gn be
the functions derived in Proposition 6.20 with respect to fn, n ∈ N. Obviously, (fn) is
bounded in L1(Ω), and since gn ⊂ G̃(·,un), (gn) is bounded in Lq

′
0(Ω) due to estimate

(6.26). Employing Proposition 6.21 with h = fn − gn shows that also the sequence
(d(·,un)) is bounded in L1(Ω).

Fix r ∈ [1, 1∗) and q ∈ [1, (p − 1)1∗) such that q∗ > p − 1, then thanks to Lemma
6.15 we have, up to a subsequence, the following convergences:

un → u in Vq and a.e.,

a(·,∇un)→ a(·,∇u) in Lr(Ω).

Further, due to (6.25) and (6.26) and up to a subsequence, we get

gn ⇀ g in Lq
′
0(Ω),

d(·,un)→ d(·,u) in L1(Ω).

Taking limits in (6.27) yields∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

gϕ+

∫
Ω

d(·,u)ϕ =

∫
Ω

fϕ for all ϕ ∈ Vr ′ ,

that is Au + G̃(·,u) +Du 3 f. Again by Proposition 3.68 we see that g ⊂ G̃(·,u) and
thus (u,g) is a solution of the auxiliary Problem (P̃).

We will see in the sequel that (u,g) is even a solution of Problem (P ′). For this
to come true, we only have to show u ∈ [u,u], which implies G̃(·,u) = G(·,u) and
d(·,u) = 0. Let us only show u 6 u; the proof for u 6 u is quite similar.

Subtracting the corresponding inequality (6.24) for the supersolution u from equation
(6.27) corresponding to (un,gn) yields∫

Ω

[a(·,∇un) − a(·,∇u)]∇ϕ+

∫
Ω

[gn − g]ϕ+

∫
Ω

d(·,un)ϕ 6
∫
Ω

[fn − f]ϕ, (6.31)

which holds for all ϕ ∈ Vp ∩ L∞+ (Ω). For all ε > 0, let ψε be the increasing Lipschitz
function defined by

ψε(s) ··=


0 if s 6 0,

ε−1s if s ∈ (0, ε),

1 if s > ε.
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Taking ϕ = ψε(un − u) as test function in (6.31), we obtain by involving (A4)∫
Ω

[gn − g]ψε(un − u) +

∫
Ω

d(·,un)ψε(un − u) 6
∫
Ω

[fn − f]ψε(un − u). (6.32)

We have ψε(un − u) → ψε(u − u) in Lq0(Ω) as n → ∞, and we can assume that
(d(·,un)) and (fn) are majorised in L1(Ω) and converge pointwise a.e. Therefore, the
derived convergence properties and Lebesgue’s convergence theorem allow us to pass to
the limit in (6.32) as n→∞, which yields∫

Ω

[g− g]ψε(u− u) +

∫
Ω

d(·,u)ψε(u− u) 6 0.

Again be applying Lebesgue’s theorem we may pass to the limit as ε→ 0 and obtain∫
{u>u}

g− g+

∫
{u>u}

d(·,u) 6 0.

Since G̃(x, s) = {g} for s > u(x) and by definition of d, we obtain∫
Ω

|(u− u)+|p−1 6 0

and thus u 6 u as desired. #

6.3.4 Properties of the Solution Set

If the right-hand side f is more regular, say, f ∈ Lp ′(Ω), then the set S of all solutions
u ∈ [u,u] ∩ Vp of Problem (P ′) is non-empty, compact and directed, see, e.g., [28,
Sec. 4.2.2]. The usual proof relies on the fact that solutions itself can be used as test
functions in their defining equations and that solutions and sub-supersolutions have the
same regularity. However, this is not the case if we only have f ∈ L1(Ω), as solutions
u are only guaranteed to satisfy u ∈ Vq. Still, by approximation like in the preceding
subsection, we are able to prove at least compactness and thanks to Zorn’s lemma the
existence of maximal and minimal solutions. As for smallest and greatest solutions within
the order-intervall [u,u], we refer to the next chapter.

6.23 Definition Let S be the set of all u ∈ [u,u] such that there is a solution (u,g)
of problem (P ′) which can be approximated in the sense we did above, i.e. there are, for
all q ∈ [1, (p−1)1∗), sequences (un) ⊂ Vp, (gn) ⊂ Lq

′
0(Ω) and (fn) ⊂ C∞c (Ω) such that

equation (6.27) is satisfied, gn ⊂ G̃(·,un) for all n, un → u in Vq, gn ⇀ g in Lq
′
0(Ω)

and fn → f in L1(Ω). #

6.24 Lemma For each q ∈ [1, (p− 1)1∗), S is a compact subset of Vq

Proof: Fix some q ∈ [1, (p−1)1∗) such that q∗ > p−1, let (un) ⊂ S be some sequence in
Vq, and let (un,k), (gn,k) and (fn,k) be sequences of functions associated to un, n ∈ N,
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in the sense of Definition 6.23 with un,k → un in Vq as k→∞. Further, let ϕ ∈ Vr ′ be
some test function, r ′ > N.

Up to a subsequence, we may assume ‖un − un,n‖Vq 6 1/n, ‖d(·,un,n)‖L1(Ω) 6 1/n
(since d(·,un) = 0), and ‖fn,n − f‖L1(Ω) 6 1/n. Since gn,n ⊂ G̃(·,un,n), the sequence
(gn,n) is bounded in Lq

′
0(Ω) and thus, up to a subsequence, gn,n ⇀ g in Lq

′
0(Ω).

By definition, we have∫
Ω

a(·,∇un,n)∇ϕ+

∫
Ω

gn,nϕ+

∫
Ω

d(·,un,n)ϕ =

∫
Ω

fn,nϕ (6.33)

for all n and the sequences (gn,n), (d(·,un,n)) and (fn,n) are bounded in L1(Ω). Due
to Lemma 6.15, we have, up to a subsequence, un,n → u in Vq, and for any other
q̃ ∈ (q, (p− 1)1∗), there is a subsequence (unk,nk) with unk,nk → u in Vq̃. Let us take
limits as n→∞ in (6.33) to obtain∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

gϕ+

∫
Ω

d(·,u)ϕ =

∫
Ω

fϕ.

Since d(·,un,n) → d(·,u) and d(·,un,n) → 0 in L1(Ω), we have d(·,u) = 0 and thus
u ∈ [u,u]. Furthermore, Proposition 3.68 guaranties g ⊂ G̃(·,u) = G(·,u). Altogether,
(u,g) is a solution of (P ′) which can be approximated in the demanded sense, thus
u ∈ S. Since un → u in Vq, the proof is completed. #

6.25 Corollary The set S contains a maximal element and a minimal element, and
for every u ∈ S, the sets {v ∈ S : u 6 v} and {v ∈ S : v 6 u} contain a maximal and a
minimal element.

Proof: Let C ⊂ S be a chain. Since S ⊂ Vq is compact for all q ∈ (1, (p − 1)1∗), C
is bounded in Vq. Since Vq is a reflexive ordered Banach space, there is an increasing
sequence (un) ⊂ C that converges weakly to supC in Vq. As S ⊂ Vq is compact, we
conclude supC ∈ S, that is, every chain in S has an upper bound in S. Thanks to the
Lemma of Zorn, there is a maximal element of S.

The remaining assertions are proved similarly. #

6.26 Remark By inspecting the proofs of this chapter, one realizes that some of the
results have generalizations for variational inequalities∫

Ω

a(·,∇u)∇(ϕ− u) +

∫
Ω

g(ϕ− u) =

∫
Ω

f(ϕ− u) for all ϕ ∈ K,

provided the set K ⊂ Vp is defined appropriately. For instance, in order to take trun-
cations as test functions in the proofs of Lemmas 6.12 and 6.15, one could choose
K = [a,b]Vp with a,b ∈ Vp such that a 6 0 6 b, and if ϕ − u ∈ L∞, then

∫
Ω f(ϕ − u)

is well-defined. #
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7 Variational Inclusions with Measures
and Nonsmooth Bifunctions

7.1 Introduction

In Chapter 6, we considered quasilinear multivalued elliptic equations with right-hand
sides f ∈Mb(Ω) of the form

Au+G(·,u) 3 f,

where A is an elliptic operator in divergence form and where G is upper Carathéodory.
The novelty was the combination of a measure right-hand side with rather general mul-
tivalued terms. The obtained existence of maximal and minimal solutions between each
ordered pair of sub-supersolutions extended the existing literature with a new class of
differential inclusions.

In contrast, in Chapter 5, we considered multivalued quasi-variational inequalities of
the form

Au+ F(u,u) + ∂Ku(u) 3 0, (7.1)

where the interesting part is the twofold dependence of both terms F(u,u) and ∂Ku(u) on
the solution u and, notably, that t 7→ f(x, s, t) was only assumed to be a (multivalued)
decreasing function, which is possibly nonsmooth. Proceeding from pioneering works
[24, 68], we developed an abstract framework for such problems that merged the famous
concept of sub-supersolutions with an order-theoretical fixed point theorem. As a result,
we were able to solve Problem (7.1) under weak assumptions and we even found smallest
and greatest solutions between in each interval [u,u] formed by sub-supersolutions.

The aim of the current chapter is to combine the approximation methods of Chapter
6 with the abstract framework of Theorem 2.33 in order to deal with multivalued elliptic
equations with bifunctions of the form

Au+ f(·,u,u) 3 µ, (P)

where A is an elliptic Leray-Lions operator, (x, s) 7→ f(x, s, t) is upper Carathéodory and
t 7→ f(x, s, t) is a decreasing, possibly nonsmooth multifunction, and µ ∈ L1.

Since the solutions considered in Chapter 6 are (due to regularity issues) in general
neither sub- nor supersolutions—which is a key element in the abstract framework—, we
are going to extend the concept of limit-solutions, considered at the end of Chapter 6,
to the new concept of limit-subsolutions. Then, the abstract framework applies to limit-
problems and we can prove as our main result that there exist smallest and greatest
limit-solutions between each ordered pair of sub-supersolutions.
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The rest of this chapter is organized as follows: First, we recall concepts and re-
sults that are used to deal with nonsmooth differential equations with L1-functions.
Second, we introduce the notion of limit-subsolutions and prove with help of the ab-
stract framework that Problem (P) has extremal limit-solutions between each ordered
pair of sub-supersolutions.

7.2 Setting

This section serves as a reference for notations, definitions and assumptions used in the
rest of the chapter. The exact formulation of the considered problem and some prelimi-
nary results will be given hereafter in Section 7.3.

Let, as in Chapter 6, Ω ⊂ RN, N > 2, be a bounded domain with Lipschitz boundary
and let p ∈ (2 − 1/N,N] and q ∈ (1,p∗) be fixed, where p∗ denotes the critical Sobolev
exponent associated with p and the dimension N, which is given by p∗ = Np/(N − p)
for p < N and can be chosen arbitrarily large if p = N. In particular, 1∗ = N/(N− 1).

Now, we set Wr ··= W
1,r
0 (Ω), and furthermore we use the following abbreviations

(where q ′ is the Hölder conjugate of q):

L ··= Lq
′
, V ··= Lp

∗
, W ··=

⋂
{Wr : 1 6 r < (p− 1)1∗}.

Thus, the embedding Wp ↪→ V is continuous and the embedding L ↪→W ′p is compact.
Concerning W, we say a subset M ⊂ W is bounded if it is bounded in every Wr,

r ∈ [1, (p − 1)1∗), and a sequence (un) ⊂ W is said to converge (weakly) to u ∈ W
(we write un → u (un ⇀ u)) if un → u (un ⇀ u) in every Wr, r ∈ [1, (p− 1)1∗).

Next, let us state the conditions on the data used later.

7.1 Assumption From the right-hand side µ, we assume only the following:

(M) µ ∈ L1(Ω). #

7.2 Assumption Let a : Ω × RN → RN be a function. The following standard
assumptions on a are meant to hold for a.e. x ∈ Ω and all ξ ∈ RN.

(A1) The function a is a Carathéodory function.

(A2) There is a constant α2 > 0 such that a(x, ξ)ξ > α2|ξ|
p.

(A3) There exists a constant α3 > 0 and a function a3 ∈ Lp
′
(Ω) such that a satisfies

the growth condition |a(x, ξ)| 6 a3(x) + α3|ξ|
p−1.

(A4) The function a is strictly monotone in the second argument. #

7.3 Remark Under conditions (A1)—(A4), A : Wp →W ′p, defined by

〈Au,ϕ〉 ··=
∫
Ω

a(·,∇u)∇ϕ,

is known to be bounded, coercive, monotone, continuous, and pseudomonotone. #

7.2 Setting 147



7.4 Assumption The following assumption refers to the notion of sub-supersolutions
that will be introduced in Definition 7.7 below.

(S) There is a subsolution u and a supersolution u of problem (P) such that u 6 u. #

7.5 Assumption Let f : Ω × R × R → P(R) be a multifunction whose values are
compact intervals. The following conditions are meant to hold for a.e. x ∈ Ω and all
s, t ∈ R.

(F1) The function (x, t) 7→ f(x, s, t) is superpositionally measurable.

(F2) The function s 7→ f(x, s, t) is upper semicontinuous on R.

(F3) The function t 7→ f(x, s, t) is decreasing on R.

(F4) There is some b4 ∈ L+ such that f satisfies the growth condition

sup{|y| : y ∈ f(x, s, t), s, t ∈ [u(x),u(x)]} 6 b4(x). #

7.6 Remark It follows that (x, s) 7→ f(x, s, t) is upper Carathéodory for all t ∈ R,
and that f is weakly superpositionally measurable (see Proposition 3.50). Further, we
emphasize again that no continuity in the last argument of f is assumed, and that (F4)
assumes only a local growth condition between sub-supersolutions u and u. Such a
condition is often easily checked, even if u and u are not explicitly known. #

7.3 Preliminary Results

Similar as in the preceding chapters, a solution of Problem (P) is a function u ∈ W,
i.e.

u ∈W1,r
0 (Ω) for all r ∈ [1, (p− 1)1∗),

such that there is a corresponding measurable selection η ⊂ f(·,u,u) for which it holds∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ =

∫
Ω

µϕ for all ϕ ∈Wr, r > N. (7.2)

(Note that Wr ⊂ L∞ for r > N, so that the right-hand side in (7.2) is well-defined.)
This problem extends the problem considered in Chapter 6 to the case of bifunctions f.
Our main result states that there is a smallest and a greatest solution of Problem (P)
between each given pair of sub-supersolutions. These semi-solutions are given as follows:

7.7 Definition A function u ∈Wp is called subsolution of Problem (P) if there is
some measurable η ⊂ f(·,u,u) such that∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ 6
∫
Ω

µϕ for all ϕ ∈Wp ∩ L∞+ . (7.3)
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Similar, a function u ∈ Wp is called supersolution of Problem (P) if there is some
measurable η ⊂ f(·,u,u) such that∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ >
∫
Ω

µϕ for all ϕ ∈Wp ∩ L∞+ . (7.4)

(Note, that from (A3) and (F4) we obtain that all terms in (7.3) and (7.4) are well-
defined.) #

Those definitions of solutions, sub- and supersolutions are a straightforward general-
ization of those of the problem considered in Chapter 6. Thus, it comes by no surprise
that results of Chapter 6 can be applied if we fix one argument of f. To be more precise,
let any v ∈ [u,u]L0 be given and define the function

fv : Ω× R→ P(R), (x, s) 7→ f(x, s, v(x)).

Then, let us consider the following problem:

Au+ fv(·,u) 3 µ, (P(v))

whose solutions are u ∈W such that there is η ⊂ fv(·,u) for which it holds∫
Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ =

∫
Ω

µϕ for all ϕ ∈Wr, r > N. (7.5)

One readily checks that the results of Section 6.3 apply to Problem (P(v)). One only has
to make sure that u and u are sub-supersolutions of (P(v)) (according to Definition 6.19).
However, this can be proved with the same idea used in Proposition 7.23 below. Thus,
Problem (P(v)) has a solution u that is located in [u,u]. This solution is obtained as the
limit of solutions of appropriately defined auxiliary problems. For further reference let us
state the existence result for solutions of the auxiliary problem in a slightly more general
form (which is easily seen to be true by considering the original result Proposition 6.20).

7.8 Proposition Let g : Ω×R→ P(R) be an upper Carathéodory multifunction with
closed and convex values such that all of its measurable selections are majorized in L, let
B : Wp →W ′p be bounded and completely continuous and such that 〈Bv, v〉Wp

is bounded
from below, and let h ∈W ′p be given. Then there is u ∈Wp and η ⊂ g(·,u) such that∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ+ 〈Bu,ϕ〉 =
∫
Ω

hϕ for all ϕ ∈Wp. #

In order to define auxiliary problems, we specify both g and B. Concerning g, truncate
fv in the following way with respect to the given sub-supersolutions u and u and fixed
associated selections η and η:

g ··= gv : Ω× R→ P(R), (x, s) 7→


{η(x)} if s > u(x),

f(x, s, v(x)) if s ∈ [u(x),u(x)],

{η(x)} if s < u(x).

(7.6)
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Then g = gv has closed and convex values, is readily seen to be upper Carathéodory,
and all its measurable selections are majorized by |η|+ b4 + |η| ∈ L.

Concerning B, one defines the cut-off function b : Ω× R→ R pointwise by

b(x, s) ··=


−(u(x) − s)p−1 if s < u(x),

0 if u(x) 6 s 6 u(x),

(s− u(x))p−1 if u(x) < s

(7.7)

and B : Wp → W ′p via 〈Bv,ϕ〉 ··=
∫
Ω b(·, v)ϕ. By standard arguments (see, e.g., [28]),

B is readily seen to be bounded and completely continuous, and there are constants
b1,b2 > 0 such that 〈Bv, v〉 > b1|v|pp − b2 for all v ∈Wp.

Now, for given h ∈ L, we consider the following auxiliary problem:

Au+ gv(·,u) + Bu 3 h, (Qh(v))

whose solutions are u ∈ Wp such that there is some measurable selection η ⊂ gv(·,u)
for which it holds∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ+

∫
Ω

b(·,u)ϕ =

∫
Ω

hϕ for all ϕ ∈Wp. (7.8)

By Proposition 7.8 there is a solution of Problem (Qh(v)). Furthermore, from Lemma
6.12 and Proposition 6.21 we deduce the following a priori bound:

7.9 Proposition Let v ∈ [u,u]L0 and c > 0 be given, and let u be a solution of
(Qh(v)) for some h ∈ L with ‖h‖L1 6 c. Then for each r ∈ [1, (p − 1)1∗) there is a
constant cr > 0 depending only on c and the data of the problem, but neither on v nor
on u or h, such that ‖u‖Wr

6 cr. #

To establish the existence of solutions of (P(v)), one takes a sequence (hn) ⊂ L that
approximates µ in L1(Ω), chooses solutions un of (Qhn(v)) and shows, via the crucial
compactness result Lemma 6.15, the following variant of Theorem 6.22:

7.10 Proposition Let v ∈ [u,u]L0 be given, let (hn) ⊂ L be a sequence that approx-
imates µ in L1(Ω), and let un be a solution of (Qhn(v)) with corresponding selection
ηn ⊂ g(·,un). Then there are a solution u of (P(v)) located in [u,u] and a corresponding
measurable selection η ⊂ f(·,u, v) such that, for a sequence (nk), unk → u in W and
ηnk ⇀ η in L. #

7.11 Remark Because of the low regularity of the right-hand side µ, one can only
show that the limit u belongs to W. If µ has higher regularity, one can show that also
u has higher regularity, but if µ does not belong to W ′p, u will not belong to Wp, in
general. #

7.12 Remark The mentioned crucial compactness result Lemma 6.15, which is also
an important tool in proving Proposition 7.16 below, only states that for a specified
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sequence (un) there is u ∈ W such that, for every r ∈ [1, (p − 1)1∗), there is a subse-
quence of (un) that converges weakly in Wr to u. However, it follows by the convergence
principle that the subsequence can be chosen independently of r, meaning that there is
u ∈W and a subsequence of (un) which converges weakly to u in Wr, r ∈ [1, (p−1)1∗),
and thus in W. (See Proposition 2.28.) #

7.13 Remark In the proof of Proposition 7.10 one has to show that the limit of the
auxiliary solutions lies in the interval [u,u] (by which it follows that g(·,u) = f(·,u, v)
and d(·,u) = 0). To this end, one chooses special test functions in (7.8) which only
belong to Wp if also u and u belong to Wp. This explains why sub-supersolutions have
by definition a higher regularity than solutions. #

Proposition 7.10 motivates the following notion:

7.14 Definition Let v ∈ [u,u] be given. Then a function u ∈ W is called limit-
solution of (P(v)) if there are (hn) ⊂ L and solutions un of (Qhn(v)) such that hn → µ

in L1 and un → u in W. #

From Propositions 7.8 and 7.10 we conclude the following:

7.15 Corollary Let v ∈ [u,u] be given. Then there is at least one limit-solution of
(P(v)) and each limit-solution of (P(v)) is a solution of (P(v)) located in [u,u]. #

Further, we have the following compactness result, which can be proven essentially
like Lemma 6.24 via a diagonal argument.

7.16 Proposition Let v ∈ [u,u] be given. Then the set S(v) of limit-solutions with
respect to v is sequentially compact in W. #

In this chapter, let us make use of a slightly more general version of Theorem 2.33.
There, both V and W were assumed to be reflexive ordered Banach spaces such that
W ⊂ V as ordered sets. However, by inspecting the proof, we see that the assertions
hold also for W as defined in this chapter as the intersection of Wr, r ∈ [1, (p − 1)1∗).
One only has to use that each weakly convergent subsequence of an increasing sequence
(un) ⊂ W converges weakly against the supremum of (un), and that each bounded
sequence (un) ⊂ W has a subsequence converging weakly in W. (Those properties
follow readily from the corresponding properties of the spaces Wr.) Thus, we have the
following theorem (with the notions of this chapter):

7.17 Theorem Let S : D ⊂ V → P(D∩W) and S : D→ P(V) be multifunctions such
that the following conditions are satisfied:

(i) D is a lattice, bounded and weakly sequentially closed in V, and there is u ∈ D
such that u 6∗ S(u).

(ii) S(D) is bounded in W and S has weakly sequentially closed values in W.

(iii) S is permanent upward, its values are directed upward, and for all v ∈ D it holds
S(v) ⊂ S(v) 6∗ S(v).

Then S has a greatest fixed point u∗ and it holds u 6 u∗. #
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7.18 Remark It is readily seen that W is a Fréchet space with topology defined
by the norms ‖ · ‖Wr

. For such spaces, a general theory holds true, and it might be
interesting to formulate Theorem 7.17 in this setting or an even more general one. #

7.4 Abstract Formulation

In this section, we are going to show that Problem (P), as defined in Section 7.3, has,
under the conditions provided in Section 7.2, a solution u in the interval [u,u] generated
by the given sub-supersolutions. That is, there is u ∈ [u,u]W and a corresponding
measurable selection η ⊂ f(·,u,u) such that∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ =

∫
Ω

µϕ for all ϕ ∈W1,r
0 (Ω), r > N.

Inspired by the notions so far, the straightforward approach to show existence of
at least one solution would be to define operators S and S such that fixed points of S
coincide with solutions of (P) and such that fixed points of S are subsolutions of (P).
Unfortunately, we face the problem that solutions of (P) may be less regular than sub-
supersolutions, so that an inclusion S(v) ⊂ S(v) is not guaranteed to hold. Further, as far
as we know, not even S(v) 6∗ S(v) holds (which would be a good enough replacement).
This is the reason why we restrict our considerations to the following kind of limit-
solutions of (P):

7.19 Definition A function u ∈ W is called limit-solution of (P) if there are
(hn) ⊂ L and solutions un of (Qhn(u)) such that hn → µ in L1 and un → u in W. #

This means, that a limit-solution u of (P) is a limit-solution of (P(u)), and since the
latter is known to be a solution of (P(u)), we obtain that u is a solution of (P).

In the following we are going to show that (P) has not only a limit-solution, but even
that there is a greatest limit-solution u∗ of (P) located in [u,u], meaning that for each
limit-solution u ′ of (P) in [u,u] one has u ′ 6 u∗.

The key idea is to generalize the notion of limit-solutions to the notion of limit-
subsolutions. To this end, for given h ∈ L, we consider subsolutions of Problem (Qh(v)),
which are functions u ∈ Wp such that there is some measurable selection η ⊂ gv(·,u)
for which it holds∫

Ω

a(·,∇u)∇ϕ+

∫
Ω

ηϕ+

∫
Ω

b(·,u)ϕ 6
∫
Ω

hϕ for all ϕ ∈ (Wp)+.

Then, we proceed analogously to Definition 7.14:

7.20 Definition Let v ∈ [u,u] be given. Then a function u ∈ W is called limit-
subsolution of (P(v)) if there are (hn) ⊂ L and subsolutions un of (Qhn(v)) such that
hn → µ in L1 and un → u in W. #

A few comments are in order:
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(i) Each limit-solution of (P(v)) is a limit-subsolution of (P(v)). Thus we know by
Corollary 7.15 that limit-subsolutions exists. We only have to assume the existence
of one ordered pair (u,u) of sub-supersolutions of (P) (see Condition (S)).

(ii) We don’t have a convergence result about a sequence (un) of subsolutions un of
(Qhn(v)) like Proposition 7.10. Thus, it is difficult to construct limit-subsolutions
per hand. However, in the sequel there is no need for such a construction.

(iii) Due to regularity issues, a limit-subsolution of (P(v)) is in general no subsolution
of (P(v)).

The concept of limit-subsolutions is a theoretical one that we use to bring Problem
(P) in a form that goes well with Theorem 7.17. The set D ⊂ V is given by D ··= [u,u]V
and the operators S and S are defined in the following simple way:

S : [u,u]V → P([u,u]W), v 7→ {u ∈ [u,u]W : u is a limit-solution of (P(v))}

S : [u,u]V → P([u,u]W), v 7→ {u ∈ [u,u]W : u is a limit-subsolution of (P(v))}.

Obviously, the fixed points u ∈ S(u) of S are exactly the limit-solutions of Problem
(P) which are located in [u,u]W . Thus, with help of Theorem 7.17, we can prove our
main existence theorem, which will be done in the next section.

7.5 Existence of Solutions

In order to apply Theorem 7.17, let us first provide some properties of S and S. To this
end, we use results for the auxiliary problems (Qh(v)) and ideas presented in [28]. How-
ever, due to the new notions of limit-solution and limit-subsolution, a careful treatment
is needed.

7.21 Proposition The operator S : [u,u]V → P(W) is uniformly bounded.

Proof: Let v ∈ [u,u]V be arbitrary and take any u ∈ S(v). Then, by definition of
limit-solutions, there are a sequence (hn) ⊂ L and solutions un of (Qhn(v)) such that
hn → µ in L1 and un → u in W. W.l.o.g. we can assume ‖hn‖L1 6 ‖µ‖L1 + 1. Now, by
Proposition 7.9 there is, for each r ∈ [1, (p− 1)1∗), a constant cr > 0 (independent of v,
un and hn) such that ‖un‖Wr

6 cr. Since un → u in Wr, also ‖u‖Wr
6 cr. #

7.22 Proposition The operator S : [u,u]V → P(W) has weakly sequentially closed
values.

Proof: From Proposition 7.16 we know that the values of S are even sequentially compact
in W. #

7.23 Proposition The operator S : [u,u]V → P(W) is permanent upward.
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Proof: Let v, v ′ ∈ [u,u]V be given, suppose v 6 v ′ and take any u ∈ S(v). Then there
are, according to Definition 7.20, sequences (un) ⊂ Wp, (ηn) ⊂ L and (hn) ⊂ L such
that un → u in W, ηn ⊂ gv(·,un), hn → µ in L1, and∫

Ω

a(·,∇un)∇ϕ+

∫
Ω

ηnϕ+

∫
Ω

b(·,un)ϕ 6
∫
Ω

hnϕ for all ϕ ∈ (Wp)+. (7.9)

Let, for every n, η ′n ⊂ gv ′(·,un) be arbitrary given and set η ′′n ··= ηn ∧ η ′n. We claim
that η ′′n ⊂ gv ′(·,un). To this end, recall first that for a.e. x ∈ Ω we have

ηn(x) ∈ gv(x,un(x)), η ′n(x) ∈ gv ′(x,un(x)) and v(x) 6 v ′(x).

Due to (F3), f is decreasing in the last argument and thus there is some α ∈ gv ′(x,un(x))
such that α 6 ηn(x). This implies

α∧ η ′n(x) 6 ηn(x)∧ η
′
n(x) 6 η

′
n(x).

Since the values of gv ′ are closed real intervals, it follows η ′′n(x) ∈ gv ′(x,un(x)), i.e.
η ′′n ⊂ gv ′(·,un).

Furthermore, we have∫
Ω

η ′′nϕ 6
∫
Ω

ηnϕ, for all ϕ ∈ (Wp)+,

and thus, from (7.9),∫
Ω

a(·,∇un)∇ϕ+

∫
Ω

η ′′nϕ+

∫
Ω

b(·,un)ϕ 6
∫
Ω

hnϕ for all ϕ ∈ (Wp)+.

Consequently, un is a subsolution of (Qhn(v
′)), and u ∈ S(v ′). #

7.24 Proposition Let v ∈ [u,u]V be arbitrary, and let ui ∈ S(v), i = 1, 2, be given.
Then there is u ∈ S(v) such that u1 ∨ u2 =·· u3 6 u.

Proof: Step 1: Setting According to Definition 7.20 there are, for i = 1, 2, sequences
(un,i) ⊂ Wp, (ηn,i) ⊂ L and (hn,i) ⊂ L such that un,i → ui in W, ηn,i ⊂ gv(·,un,i),
hn,i → µ in L1, and∫
Ω

a(·,∇un,i)∇ϕ+

∫
Ω

ηn,iϕ+

∫
Ω

b(·,un,i)ϕ 6
∫
Ω

hn,iϕ for all ϕ ∈ (Wp)+. (7.10)

Since ∫
Ω

hn,iϕ 6
∫
Ω

(hn,1 ∨ hn,2)ϕ for all ϕ ∈ (Wp)+,

hn,1 ∨ hn,2 ∈ L and hn,1 ∨ hn,2 → µ in L1, we can assume hn,1 = hn,2 =·· hn so that
un,i is a subsolution of (Qhn(v)), i = 1, 2.
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Further, set un,1 ∨ un,2 ··= un,3 ∈ Wp and let us define the measurable selections
ηn,3 ⊂ gv(·,un,3) by

ηn,3(x) ··=

{
ηn,1(x) if un,1(x) > un,2(x),

ηn,2(x) if un,1(x) < un,2(x).

In the following, we are going to prove that there is, for each n, some solution (un)
of (Qhn(v)) such that un,3 6 un, and it will follow that (un) generates the desired
limit-solution of (P(v)).

Step 2: Auxiliary Problem In order to define the sequence (un), we rely on
Proposition 7.8 and appropriately adapted mappings g and B.

Concerning g, recall the defining equation (7.6) of gv and set

gv,n : Ω× R→ P(R), (x, s) 7→

{
gv(x, s) if s > un,3(x),

{ηn,3(x)} if s < un,3(x).
(7.11)

Then gv,n has closed and convex values, is upper Carathéodory like gv, and all its
measurable selections are majorized in L.

Further, recall the notation
[
(x1,y1)  (x2,y2)

]
introduced at Page 121, and define

functions θn,i : Ω× R→ R, i = 1, 2, by

θn,i(x, ·) ··=
[(
un,i(x),ηn,3(x) − ηn,i(x)

)
 
(
un,3(x), 0

)]
.

By this construction, for all u ∈ L0 it holds, for i = 1, 2,

ηn,3 − ηn,i − |θn,1(·,u)|− |θn,2(·,u)| 6 0 on {x ∈ Ω : u(x) < un,i(x)}. (7.12)

Furthermore, it is easy to check that θn,i is measurable in the first argument, continuous
in the second, and bounded in L. Thus, the function

g ··= gv,n − |θn,1|− |θn,2| (7.13)

fulfills the requirements of Proposition 7.8.
Concerning B, let us define the cut-off function bn : Ω×R→ R analogously to (7.7),

now with respect to un,3:

bn(x, s) ··= −
[
(un,3(x) − s)

+
]p−1

=

{
0, if s > un,3(x),

−(un,3(x) − s)
p−1 if s < un,3(x).

Clearly, bn is a Carathéodory function, and it is known that it satisfies the growth
conditions

|bn(x, s)| 6 d0
(
|un,3(x)|

p−1 + |s|p−1
)

, bn(x, s)s > −d0|un,3(x)|
p

for some constant b0 > 0. Since we have the analogous growth conditions for b, defined
in (7.7), the Nemtytskij operator v 7→ (bn + b)(·, v) is known to be continuous and
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bounded from Lp to its dual space. Thanks to the compact embedding Wp ↪→ Lp we
conclude that the mapping

B : Wp →W ′p, defined via 〈Bv,ϕ〉 ··=
∫
Ω

(bn + b)(·, v)ϕ,

is bounded and completely continuous. Due to the second growth condition, we have
that 〈Bv, v〉Wp

is bounded from below.
Consequently, from Proposition 7.8 we know that there are functions un ∈ Wp and

ηn ⊂ g(·,un) such that∫
Ω

a(·,∇un)∇ϕ+

∫
Ω

ηnϕ+

∫
Ω

(bn + b)(·,un)ϕ =

∫
Ω

hnϕ for all ϕ ∈Wp. (7.14)

Step 3: Comparison In this step, we are going to show that un,3 6 un. To this
end, take the special test function ϕ = (un,i − un)

+ ∈ (Wp)+, i = 1, 2, in (7.10) and
(7.14) and combine them to obtain∫

Ω

(a(·,∇un) − a(·,∇un,i))∇(un,i − un)+ +

∫
Ω

(ηn − ηn,i)(un,i − un)
++∫

Ω

(bn(·,un) + b(·,un) − b(·,un,i))(un,i − un)+ > 0.

(7.15)

Next, let us estimate the terms of (7.15) separately: By (A4), we deduce∫
Ω

(a(·,∇un) − a(·,∇un,i))∇(un,i − un)+ 6 0. (7.16)

Further, on {x ∈ Ω : un(x) < un,i(x)} we have un(x) < un,3(x) and thus it follows from
(7.11) and (7.13)

ηn = ηn,3 − |θn,1(·,un)|− |θn,2(·,un)|.

Consequently, it follows from (7.12)∫
Ω

(ηn − ηn,i)(un,i − un)
+ 6 0. (7.17)

Finally, note that s 7→ d(x, s) is increasing. Thus, it follows readily∫
Ω

(b(·,un) − b(·,un,i))(un,i − un)+ 6 0. (7.18)

Combining (7.15)—(7.18), we deduce∫
Ω

bn(·,un)(un,i − un)+ > 0. (7.19)

By definition of bn, (7.19) implies ‖(un,i − u)+‖pp 6 0, which in turn implies un,i 6 u,
i = 1, 2, and thus un,3 6 u.
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Step 4: Conclusion Since un,3 6 un, we have ηn ⊂ gv,n(·,un) = gv(·,un) and
bn(·,un) = 0. Thus, from (7.14) we know that un is a solution of (Qhn(v)). Now, by
Proposition 7.10 there is a solution u of (P(v)) located in [u,u]W such that un → u

in W, and thus we have u ∈ S(v). Since un,1 ∨ un,2 = un,3 6 un, it follows further
u1 ∨ u2 = u3 6 u, which concludes the proof. #

The results of Proposition 7.24 immediately imply the following corollary.

7.25 Corollary The values of S : [u,u]V → P(W) are directed upward and for all
v ∈ [u,u]V it holds S(v) ⊂ S(v) 6∗ S(v).

Finally, we are in the position to prove the main theorem of this chapter:

7.26 Theorem Suppose (M), (A1)—(A4), (S) and (F1)—(F4). Then Problem (P)
has the greatest limit-solution in [u,u]V .

Proof: By Corollary 7.15 both S and S are well-defined and we have u 6∗ S(u). Further,
D = [u,u]V ⊂ V is readily seen to be a bounded, weakly sequentially closed lattice.
Thus, by Propositions 7.21, 7.22, 7.23 and Corollary 7.25, all conditions of Theorem
7.17 are fulfilled, and it follows that S has the greatest fixed point in D, which is the
greatest limit-solution of (P) in [u,u]V . #

7.27 Remark By duality, one can introduce limit-supersolutions, which can be used
to prove that Problem (P) has, under the same conditions, also a smallest limit-solution.

Note, however, that we do not need limit-supersolutions (but only a supersolution of
(P)) to provide the existence of greatest limit-solutions. This shows that, in Theorem
7.17, D needs not to be defined with help of S (although there is a connection). Further,
we have seen an application of Theorem 7.17 in which we have u 6∗ S(u), but in general
not u ∈ S(u). This justifies the general formulation of Theorems 2.33 and 7.17. #
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8 Systems of Variational Inclusions

8.1 Introduction

In Chapter 4 we combined the method of sub-supersolutions with a multivalued order-
theoretical fixed point theorem to obtain a general framework for the study of multival-
ued differential inclusions with nonsmooth bifunctions of the type

A(u) + F(u,u) 3 0, (8.1)

where A : W →W ′ is a differential operator on a Sobolev space W, and the elements of
F(u,u) are, roughly speaking, selections of some multivalued function f(·,u,u).

In Chapter 5 we generalized those results to multivalued quasi-variational inequalities
of the form

A(u) + F(u,u) + ∂Ku(u) 3 0 in W ′. (8.2)

In (8.2), a nonsmooth term is given by ∂Ku, and in both inclusion (8.1) and (8.2) the
multivalued term

F(u,u) = {η : η is a measurable selection of x 7→ f(x,u(x),u(x)}

is, in general, nonsmooth, because the multifunction t 7→ f(x, s, t) is only assumed to
be decreasing. Further, (x, s) 7→ f(x, s, t) is only assumed to be upper Carathéodory, so
that (8.1) and (8.2) cover a wide range of special problems, e.g. problems with Clarke’s
generalized gradient like variational-hemivariational inequalities.

In Chapter 7 we combined the ideas of Chapter 4 and 6 to treat nonsmooth elliptic
inclusion with L1-measure right-hand sides over a bounded Lipschitz domain Ω ⊂ RN.
To be more precise, we provided an existence and enclosure result for inclusions of the
form

A(u) + F(u,u) 3 µ (8.3)

with µ ∈ L1(Ω).
Now, we are going to extend all those results to systems of elliptic inclusions, in

which the single inclusions are coupled via the vector-valued multivalued operator F.
This results, e.g., in the problem of finding ui ∈W, i = 1, 2, such that

A1(u1) + F1(u1,u1,u2) 3 0, (8.41)

A2(u2) + F2(u2,u1,u2) 3 0, (8.42)

where Ai : W → W ′ are differential operators on a Sobolev space W, and the elements
of Fi(ui,u1,u2) are selections of fi(·,ui,u1,u2). The leading terms Ai(ui) depend only
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on ui (which means that we have there a diagonal structure), and the coupling of the
inclusions is established via the multivalued terms Fi(ui,u1,u2). Like in the scalar case,
the multifunction (t1, t2) 7→ fi(x, s, t1, t2) is only assumed to be decreasing, whereas
(x, s) 7→ fi(x, s, t1, t2) has to be upper Carathéodory.

The idea for solving such systems is to fix the last two arguments in Fi(ui,u1,u2)
and to find fixed points of the operator S : W ×W → P(W ×W) which maps each pair
(v1, v2) to solutions (u1,u2) of the decoupled inclusions

A1(u1) + F1(u1, v1, v2) 3 0,

A2(u2) + F2(u2, v1, v2) 3 0.

Clearly, a fixed point of the multifunction S, i.e. a pair u = (u1,u2) such that u ∈ S(u),
is a solution of System (8.4). In order to solve those fixed point problems, we are going
to apply the basic framework of Theorem 2.33 to the special case of product spaces and
vector-valued multifunctions.

The rest of this chapter is organized as follows: First, we recall some definitions and
the basic framework—and extend it to systems. Second, we present the application of the
new framework to a general model problem and to systems of inclusions like (8.2) and
(8.3). Many more applications are possible whenever the method of sub-supersolutions
applies.

8.2 Framework for Systems

Recall the general framework given in Theorem 2.33:

Theorem Let V and W be reflexive ordered Banach spaces such that W ⊂ V as
posets, and let S : D ⊂ V → P∅(D ∩W) and S : D → P∅(V) be multifunctions such that
the following conditions are satisfied:

(i) D is a lattice, bounded and weakly sequentially closed in V, and there is u ∈ D
such that u 6∗ S(u).

(ii) S(D) is bounded in W and S has weakly sequentially closed values in W.

(iii) S is permanent upward, its values are directed upward (i.e. for all a,b ∈ S(v) there
is c ∈ S(v) such that a,b 6 c) and for all v ∈ D it holds S(v) ⊂ S(v) 6∗ S(v).

Then S has the greatest fixed point u∗ and it holds u 6 u∗.

In order to solve systems of differential inclusions, we are going to apply this basic
framework to the special case of product spaces and vector-valued multifunctions. Since
there is no need to restrict our considerations on just two equations, let us introduce
and note the following basics. In what follows, the index i will always range between 1
and a natural number n.

(i) For sets Mi let
∏
iMi denote the usual Cartesian product. We will take the bold

letters M and u to denote
∏
iMi and its elements (u1, . . . ,un), respectively.
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(ii) If Di are posets, D =
∏
iDi is partially ordered via u 6 v if ui 6 vi for all i. If

all Di are lattices, then so is D.

(iii) If Vi are reflexive Banach spaces, V =
∏
i Vi is a reflexive Banach space with norm

given by ‖u‖ =
∑
i ‖ui‖Vi . Further, it is known that

J :
∏
iV
′
i → V ′, η = (η1, . . . ,ηn) 7→ [u 7→

∑
i〈ηi,ui〉].

is an isometric isomorphism, where 〈ηi,ui〉 denotes the duality pairing on (V ′i ,Vi).

(iv) For multifunctions Fi : V → P∅(Wi), we use the following product-function:

F =
∏
iFi : V → P∅(W), u 7→

∏
iFi(u).

Now, from Theorem 2.33 we deduce the following theorem as a special case (since all
relevant topological and order-theoretical properties used there are inherited to Cartesian
products).

8.1 Theorem Let Vi and Wi, i = 1, . . . ,n, be reflexive ordered Banach spaces such
that Wi ⊂ Vi as posets, and let Di ⊂ Vi be lattices which are bounded and weakly
sequentially closed in Vi. Suppose further that, for all i, the multivalued mappings

Si : D→ P∅(Di ∩Wi) and Si : D→ P∅(Vi)

satisfy the following conditions:

(i) There is u ∈ D such that ui 6
∗ Si(u).

(ii) Si(D) is bounded in Wi and Si has weakly sequentially closed values in Wi.

(iii) Si is increasing upward, its values are directed upward and for all v ∈ D it holds
Si(v) ⊂ Si(v) 6∗ Si(v).

Then the multifunction S : D→ P∅(D ∩W) has the greatest fixed point u∗ and it holds
u 6 u∗.

Proof: We are going to apply Theorem 2.33. As noted before, V and W are ordered
reflexive Banach spaces, and we have V ⊂W as ordered sets. Further, D ⊂ V is readily
seen to be a lattice which is bounded and weakly sequentially closed in V. Further, from
(i) it follows u 6∗ S(u), and from (ii) it follows that S(D) is uniformly bounded in
W and that S has weakly sequentially closed values in W. Finally, we conclude easily
from (iii) that S is increasing upward, that the values of S are directed upward, and
S(v) ⊂ S(v) 6∗ S(v) for all v ∈ D. Thus, all assumptions of Theorem 2.33 hold true
and thus S has a greatest fixed point u∗ and it holds u 6 u∗. #

In Theorem 8.1 we considered the case in which the suboperator S and thus, due
to the compatibility condition (iii), the main operator S are increasing upward. The
question arises, if there are similar fixed point results for operators which are increasing
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downward, decreasing or mixed-monotone. In the following, we will give some partial
answers to this question.

First, let us formulate the dual assertion to Theorem 8.1 for increasing downward
operators. That is, let us replace the partial order 6 with its dual partial order > and
let us introduce the super-operator S to obtain the following corollary:

8.2 Corollary Let Di, Vi and Wi given as in Theorem 8.1 and suppose that the
mappings Si : D→ P∅(Di ∩Wi) and Si : D→ P∅(Vi) satisfy the following conditions:

(i) There is u ∈ D such that Si(u) 6∗ ui.

(ii) Si(D) is bounded in Wi and Si has weakly sequentially closed values in Wi.

(iii) Si is increasing downward, its values are directed downward, and for all v ∈ D it
holds Si(v) 6∗ Si(v) ⊃ Si(v).

Then S has the smallest fixed point u∗ and it holds u∗ 6 u. #

In the applications below, we will use Corollary 8.2 together with Theorem 8.1 and
the set D = [u,u]. Therefore, we will obtain smallest and greatest solutions within the
interval [u,u].

Note, however, that all operators Si are increasing upward, and all operators Si are
increasing downward (from which it follows that all operators Si are increasing). If we
dualize the order only in some spaces Vi, we obtain the following more general result,
which allows to treat some mixed-monotone systems.

8.3 Corollary Let Di, Vi and Wi given as in Theorem 8.1 and suppose that the
mappings Si : D→ P∅(Di∩Wi) and Si,Si : D→ P∅(Vi) satisfy the following conditions
with respect to some index r > 0:

(i) There are u,u ∈ D such that

ui 6
∗ Si(v) and Si(v) 6∗ ui if i 6 r,

ui 6
∗ Si(v) and Si(v) 6∗ ui if i > r,

where v, v ∈ D are given by

vi ··= ui and vi ··= ui if i 6 r,

vi ··= ui and vi ··= ui if i > r.

(ii) Si(D) is bounded in Wi and Si has weakly sequentially closed values in Wi.

(iii) If i 6 r, Si is increasing upward in the first r arguments and decreasing downward
in the other ones. If i > r, Si is decreasing downward in the first r arguments and
increasing upward in the other ones. In both cases, the values of Si are directed
upward and for all v ∈ D it holds Si(v) ⊂ Si(v) 6∗ Si(v).
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(iv) If i 6 r, Si is increasing downward in the first r arguments and decreasing upward
in the other ones. If i > r, Si is decreasing upward in the first r arguments and
increasing downward in the other ones. In both cases, the values of Si are directed
downward and for all v ∈ D it holds Si(v) 6∗ Si(v) ⊃ Si(v).

Then S has fixed points u∗ and u∗ that are extremal in the sense that for all fixed points
u of S it holds

u∗i 6 ui 6 u
∗
i if i 6 r, u∗i 6 ui 6 u∗i if i > r.

In particular, u is located in [u∗ ∧ u
∗,u∗ ∨ u

∗].

Proof: We are going to apply both Theorem 8.1 and Corollary 8.2. To this end, let us
define posets

Vi ··= (Vi,6) if i 6 r, Vi ··= (Vi,>) if i > r.

The subsets Wi and Di of Vi are defined analogously. Further, let us define operators
T i, T i : D→ P(Vi) via

T i ··= Si and T i ··= Si if i 6 r,

T i ··= Si and T i ··= Si if i > r.

Then it is readily seen that all conditions of Theorem 8.1 and Corollary 8.2 hold true
(where we use the sets Di, Vi and Wi in place of Di, Vi and Wi, the operators T and T
in place of S and S, and the sub-supersolutions v and v in place of u and u, respectively).

Indeed, first, from (i) we obtain

vi 6
∗ Si(v) = T i(v) and T i(v) = Si(v) 6∗ vi if i 6 r,

vi >
∗ Si(v) = T i(v) and T i(v) = Si(v) >∗ vi if i > r.

Second, the topological properties are independent of the chosen partial order, so
Si(D) is bounded in Wi and Si has sequentially closed values.

Third, T i is increasing upward with respect to the given order. To see this, let v, v′ ∈
D be given such that they only differ in their j-th component, and suppose vj 6 v ′j if
j 6 r and vj > v ′j if j > r. Then it follows from (iii) and (iv)

T i(v) = Si(v) 6
∗ Si(v

′) = T i(v
′) if i 6 r,

T i(v) = Si(v) >
∗ Si(v

′) = T i(v
′) if i > r.

Since both 6∗ and >∗ are transitive, the claim follows. Analogously, one shows that T i
is increasing downward: Let v, v′ ∈ D be given such that they only differ in their j-th
component, and suppose v ′j 6 vj if j 6 r and v ′j > vj if j > r. Then

T i(v) = Si(v) >
∗ Si(v

′) = T i(v
′) if i 6 r,

T i(v) = Si(v) 6
∗ Si(v

′) = T i(v
′) if i > r.
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Fourth, the values of T i are directed upward and that of T i are directed downward
and it holds

T i(v) = Si(v) 6
∗ Si(v) and Si(v) 6∗ Si(v) = T i(v) if i 6 r,

T i(v) = Si(v) >
∗ Si(v) and Si(v) >∗ Si(v) = T i(v) if i > r.

All in all, all conditions of Theorem 8.1 and Corollary 8.2 are fulfilled. Thus it follows
that S : D→ P∅(D∩W) has both a smallest fixed point u∗ and a greatest one u∗ with
respect to the order in V. That means, for every fixed point u of S we have u∗i 6 ui 6 u∗i
if i 6 r, and u∗i 6 ui 6 u∗i if i > r. #

8.4 Remark Due to the compatibility condition, the operator Si has the same mono-
tonicity properties as Si and Si. Due to the symmetry in conditions (iii) and (iv),
vj 7→ Si(v) is either increasing or decreasing. One can represent the monotonicity of
the operators Si by a matrix A = (aij) ∈ {0, 1}n×n that is interpreted in such a way
that Si is increasing in the j-th argument if aij = 0, and decreasing otherwise.

If we allow for renaming of the arguments v1, . . . , vn, then a short algebraic calculation
reveals that Corollary 8.3 covers the case of all matrices that a generated by any vector
a ∈ {0, 1}n and the rule aij ≡2 ai + aj. Possible matrices are

(
0
)

,

(
0 0
0 0

)
,

(
0 1
1 0

)
,

0 0 1
0 0 1
1 1 0

 ,


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 .

Note that we always have aii = 0 and that we have a special block structure. It would
be interesting to study the case in which the monotonicity-matrix has not such a special
form. #

In the following, let us consider three special cases of Corollary 8.3.
First, by letting n = 1 and r = 0 or r = 1 in Corollary 8.3, we reobtain Theorem

2.33 in which S = S1 is an increasing operator. That is, even with dualization we have
no assertion about a decreasing operator S = S1. Furthermore, there are simple single-
valued functions S : [0, 1] ⊂ R→ R which are decreasing and have no fixed points, e.g. the
characteristic function of the set [0, 1/2]. We currently do not know if methods similar
to those used in the proof of Theorem 8.3 can be used to provide a fixed point result for
a class of purely decreasing operators.

Next, let n = 2 and r = 1 and assume that vi 7→ Si(v1, v2) is constant (and thus
increasing). Then, from Corollary 8.3 we obtain the following corollary, which we will
use in the next section.

8.5 Corollary Let n = 2, and let Di, Vi and Wi given as in Theorem 8.1. Suppose
furthermore that the mappings Ri : D→ P∅(Di∩Wi) and Ri,Ri : D3−i → P∅(Vi) satisfy
the following conditions:

(i) There are u,u ∈ D such that

u1 ∈ R1(u2), u2 ∈ R2(u1), u1 ∈ R1(u2), u2 ∈ R2(u1).
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(ii) Ri(D) is bounded in Wi and Ri has weakly sequentially closed values in Wi.

(iii) Ri is decreasing downward, its values are directed upward, and for all v ∈ D it
holds Ri(v) ⊂ Ri(v3−i) 6∗ Ri(v).

(iv) Ri is decreasing upward, its values are directed downward and for all v ∈ D it holds
Ri(v) 6∗ Ri(v3−i) ⊃ Ri(v).

Then R : D→ P∅(D ∩W) has fixed points u∗ and u∗ such that for all fixed points u of
R it holds u∗1 6 u1 6 u∗1 and u∗2 6 u2 6 u∗2. #

Finally, by letting n = 2, r = 1 and S1 = S2, we obtain from Corollary 8.3 the
existence of a coupled fixed point of a multivalued bifunction F, that is, a pair (u, v)
such that u ∈ F(u, v) and v ∈ F(v,u).

8.6 Corollary Let V and W be reflexive ordered Banach spaces such that W ⊂ V
as ordered sets, let D ⊂ V be a bounded and weakly sequentially closed lattice, and let
F : D × D → P∅(D ∩ W) and F, F : D × D → P∅(V) be multifunctions such that the
following hypotheses are satisfied:

(i) There are u,u ∈ V such that u 6∗ F(u,u) and F(u,u) 6∗ u.

(ii) F(D×D) is bounded in W and F has weakly sequentially closed values in W.

(iii) F is increasing upward in the first argument and decreasing downward in the second,
its values are directed upward, and it holds F(u1,u2) ⊂ F(u1,u2) 6∗ F(u1,u2).

(iv) F is increasing downward in the first argument and decreasing upward in the second,
its values are directed downward and it holds F(u2,u1) 6∗ F(u2,u1) ⊃ F(u2,u1).

Then F has an ordered coupled fixed point (u∗,u
∗) that is extremal in the sense that for

all coupled fixed points (v,w) of F it holds v,w ∈ [u∗,u
∗].

Proof: Let us set S1 ··= F, S1 ··= F and S1 ··= F, and let us define three multifunctions
S2 : D×D→ P(D ∩W) and S2,S2 : D×D→ P(V) via

S2(u1,u2) ··= F(u2,u1), S2(u1,u2) ··= F(u2,u1), S2(u1,u2) ··= F(u2,u1).

Evidently, a fixed point of S is a coupled fixed point of F and vice versa, so it suffices
to understand the fixed points of S. To this end, let us apply Corollary 8.3 with n = 2,
r = 1, Di = D, Vi = V, Wi = W, u1 = u2 = u, and u1 = u2 = u. One readily verifies
that all assumptions are fulfilled, and thus there is (u∗,u

∗) ∈ D×D which is the smallest
fixed point of S with respect to the partial order defined via

u 6V v ⇐⇒ u1 6 v1 and v2 6 u2.

That is, we have
u∗ ∈ F(u∗,u∗) and u∗ ∈ F(u∗,u∗)

and for each coupled fixed point (v,w) of F it holds u∗ 6 v and w 6 u∗. Since (w, v) is
a coupled fixed point of F, too, we infer even v,w ∈ [u∗,u

∗], and we notice that (u∗,u∗)
is the greatest fixed point of S with respect to 6V . #
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Let us conclude this section with a simple example that illustrates the application of
Corollary 8.6 to real-valued functions:

8.7 Example Let g,h : [0, 1]→ [0, 1/2] be increasing functions and define

f : [0, 1]× [0, 1]→ [0, 1], (s, t) 7→ g(s) − h(t) + 1/2.

Then f is well-defined, increasing in the first and decreasing in the second argument.
Since 0 6 f(0, 1) and f(1, 0) 6 1, there is, due to Corollary 8.6, an extremal coupled
fixed point of f.

If g and h are continuous, then s 7→ f(s, s) is continuous, too, and has a fixed point
s∗, such that (s∗, s∗) is a coupled fixed point (which is only extremal if there are no
other coupled fixed points). However, consider the case

g(s) =

{
0 if s 6 1/2,

1/2 if s > 1/2,
h(t) =

{
0 if t < 1/2,

1/2 if x > 1/2.

Then f(s, s) = 1/2 if s 6= 1/2, and f(1/2, 1/2) = 0. Thus, s 7→ f(s, s) has no fixed point.
However, due to Corollary 8.6, there are at least ordered coupled fixed points (s∗, s

∗).
In this example, the only two such pairs are (s∗, s

∗) = (0, 1/2) and (s∗, s
∗) = (0, 1), and

the second one is extremal. #

In the next sections, we will present applications of the developed framework to dif-
ferent systems of multivalued variational inequalities and to systems of elliptic inclusions
with L1-measure right-hand side, which extends the study done so far in the last chap-
ters. Similar applications are possible for a wide range of differential inclusions (or a mix
of them) for which the method of sub-supersolutions is established.

8.3 Systems of Variational Inequalities

In this section, we consider a basic model problem that can be generalized in various
ways. It reads as follows: Find u ∈W such that

Ai(ui) + Fi(ui,u) + ∂IKi(ui) 3 0 in W ′i, (8.5i)

where i = 1, . . . ,n, Ai : Wi → W ′i are differential operators of Leray-Lions type from a
Sobolev space Wi to its dual space W ′i, and W =

∏
iWi. The elements of Fi(ui,u) are

selections of some multivalued function fi(·,ui,u) (with fi : Ω × R × Rn → P(R)) and
∂IKi denotes the subdifferential (in the sense of Convex Analysis) of a nonempty, closed
and convex set Ki ⊂ Wi. That means, u ∈ K is a solution of System (8.5) if there are
measurable selections ηi ⊂ fi(·,ui,u) such that∫

Ω

ai(·,∇ui)∇(ϕi − ui) +
∫
Ω

ηi(ϕi − ui) > 0 for all ϕi ∈ Ki.

The emphasis in this thesis lies on the perturbations fi: We assume that s 7→ f(x, s, t) is
upper semicontinuous and that t 7→ f(x, s, t) is decreasing (in particular, no continuity in
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the last arguments is assumed). Furthermore, we only assume a local growth condition
between given sub-supersolutions.

The exact setting will be given in the next subsection. We also refer to Chapter 4 for
a more detailed treatment of the case n = 1.

8.8 Remark To simplify the notations, we are going to formulate the most general
results only for the case in which all mappings t 7→ fi(x, s, t) are decreasing. Special
mixed-monotone systems can be treated analogously by use of Corollary 8.3. #

8.9 Remark In [20, 21], a special case of System (8.5) with n = 2 and single-valued
fi was considered. There, no monotonicity assumptions on fi were used, but, in order to
apply variational methods, the functions fi were considered to be smooth. The novelty
of the approach presented here is twofold: First, we deal with a multivalued problem.
Second, we replace the smoothness-condition by the weak conditions (F1)—(F4) below,
which allow for nonsmooth perturbations while allowing for the construction of sub-
supersolutions as presented in a special application in [20]. We will provide more details
in Subsection 8.3.4 below.

In comparison of the methods of [20] and our approach, one sees that there is a
trade-off between monotonicity and smoothness. We refer further to [25, 57], were also
monotone and mixed-monotone systems were considered, but with a slightly different
approach and under more restrictive conditions. #

8.10 Remark By use of the operator J :
∏
iW

′
i →W ′, we can define the diagonal

operator
JA : W →W ′, u 7→ [ϕ 7→

∑
i〈Aiui,ϕi〉]

and the selection operator

JF : W →W ′, u 7→ {η ∈W ′ : ∃ηi ⊂ fi(·,ui,u),ηi ∈ Li s.t. 〈η,ϕ〉 =
∑
i〈ηi,ϕi〉},

where ηi acts on ϕi via 〈ηi,ϕi〉 ··=
∫
Ω ηiϕi. Using them, we can write System (8.5) in

compact form as

u ∈W : JA(u) + JF(u) + ∂IK(u) 3 0 in W ′

or, equivalently,

u ∈ K : ∃η ∈ JF(u) : 〈JA(u),ϕ− u〉+ 〈η,ϕ− u〉 > 0 for all ϕ ∈ K.

Note, that by letting ϕj = uj for all j 6= i one recovers that ui is indeed a solution of
the single inclusion (8.5i). #

8.3.1 Setting

Let Ω ⊂ RN, N > 1, be a bounded domain with Lipschitz boundary. If not otherwise
stated, the following holds for all i = 1, . . . ,n. Let pi ∈ (1,∞) and qi ∈ [1,p∗i ) be fixed,
where p∗i denotes the critical Sobolev exponent associated with p and the dimension N.
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We use the abbreviations

Li ··= Lq
′
i(Ω), Vi ··= Lp

∗
i (Ω), Wi ··=W1,pi

0 (Ω) and V ··=
∏
iVi etc.

Let Ki ⊂Wi be a non-empty, closed and convex lattice, and suppose that the following
conditions on the data hold true:

8.11 Assumption With reference to Definition 8.15 we assume the following:

(S) There is a pair (u,u) of sub-supersolutions of System (8.5) such that u 6 u. #

8.12 Assumption Let ai : Ω×RN → RN be a function defining the (single-valued)
differential operator Ai of Leray-Lions type via Ai(ui) = −divai(·,∇ui). The following
standard assumptions on a are meant to hold for a.e. x ∈ Ω and all ξ ∈ RN.

(A1) ai is a Carathéodory function.

(A2) There are α2 > 0 and k2,i ∈ L1(Ω) such that ai(x, ξ)ξ > α2|ξ|
pi − k2,i(x).

(A3) There are α3 > 0 and k3,i ∈ Lp
′
i(Ω) such that |ai(x, ξ)| 6 α3|ξ|

pi−1 + k3,i(x).

(A4) For all ξ, ξ ′ ∈ RN, it holds (ai(x, ξ) − ai(x, ξ
′))(ξ− ξ ′) > 0. #

8.13 Assumption Let fi : Ω×R×Rn → P(R) be a multifunction whose values are
compact intervals. The following conditions are meant to hold for a.e. x ∈ Ω, all s ∈ R
and all t ∈ Rn.

(F1) The function (x, t) 7→ fi(x, s, t) is superpositionally measurable.

(F2) The function s 7→ fi(x, s, t) is upper semicontinuous.

(F3) The function t 7→ fi(x, s, t) is decreasing.

(F4) There is k4,i ∈ Li such that fi satisfies

sup{|y| : y ∈ fi(x, s, t), s ∈ [ui(x),ui(x)], t ∈ [u(x),u(x)]} 6 k4,i(x). #

8.14 Remark Recall that fi is called weakly superpositionally measurable if for any
measurable function u : Ω → Rn+1 the multifunction x 7→ fi(x,u(x)) has a measurable
selection η ⊂ fi(·,u). Now, according to Theorem 3.47 it follows from (F1) and (F2)
that fi is weakly superpositionally measurable, and we would like to stress that upper
semicontinuity is only assumed in one argument of fi, but not in the other ones. #
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8.3.2 Abstract Formulation

We adopt the notation from Chapter 4 to systems. To this end, set D ··= [u,u]V and let
Fi : Di ×D→ P(Li) be the selection mapping defined by

Fi(ui, v) = {ηi ∈ Li : ηi ⊂ fi(·,ui, v)}.

(Since fi is weakly superpositionally measurable and due to (F4), Fi is well-defined.)
Further, for all functions ui ∈ Wi ∩ Di, v ∈ V and each subset Ti ⊂ Wi we write
ui ∼ (v, Ti) if and only if there is a function ηi ∈ Fi(ui, v) such that

〈Aiui,ϕ− ui〉+
∫
Ω

ηi(ϕi − ui) > 0 for all ϕi ∈ Ti.

With help of this abbreviation, we define the operators Si,Si,S : D→ P∅(Di ∩Wi) via

Si(v) ··= {ui : ui ∈ Ki and ui ∼ (v,Ki)},

Si(v) ··= {ui : ui ∨ Ki ⊂ Ki and ui ∼ (v,ui ∧ Ki)},

Si(v) ··= {ui : ui ∧ Ki ⊂ Ki and ui ∼ (v,ui ∨ Ki)}.

Recall that S : D → P∅(D ∩W) is given by S(v) =
∏
i Si(v). Then it is clear that

the fixed points of S coincide with the solutions of System (8.5) which are located in the
interval D = [u,u]V generated by the given sub-supersolutions. These semi-solutions
are, finally, defined as follows:

8.15 Definition We call u ∈W subsolution or supersolution of System (8.5) if
u ∈ S(u) or u ∈ S(u), respectively. #

8.3.3 Existence of Solutions

The following Propositions are straight forward generalizations of the results of Chapter
4. We thus omit the proofs.

8.16 Proposition The operator Si : D → P∅(V) is permanent upward, whereas the
operator Si : D→ P∅(V) is permanent downward. In particular it follows that Si and Si
have non-empty values. #

8.17 Proposition Let v ∈ D be arbitrary, and let vi,wi ∈ Si(v) and vi,wi ∈ Si(v)
be such that

vi ∨wi 6 vi ∧wi.

Then there is ui ∈ Si(v) such that vi ∨ wi 6 ui 6 vi ∧ wi. In particular, S has
non-empty values, Si(v) is directed upward, Si(v) is directed downward, and it holds
Si(v) 6

∗ Si(v) 6∗ Si(v). #

8.18 Proposition The operator Si : D→ P(W) is uniformly bounded and has weakly
compact values. #

Now, from Theorem 8.1 and Corollary 8.2 we have the following existence theorem:

8.19 Theorem Suppose (S), (A1)—(A4) and (F1)—(F4). Then System (8.5) has
both the smallest and the greatest solution in [u,u]V . #

Next, let us investigate a concrete example.
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8.3.4 Example

The monotonicity imposed in (F3) allows for discontinuous behavior of fi. However,
without monotonicity, in general, smoothness as well as a more restrictive definition of
sub-supersolutions are required. Then, as demonstrated in [20, 21], variational methods
can be used to find solutions. In what follows, we are going to inspect the applicability
of our approach to the following special case of (8.5) which was treated in [20]: Find
ui ∈ Ki ⊂Wi such that

〈−∆piui + fi(·,ui,u),ϕi − ui〉 > 0 for all ϕi ∈ Ki, (8.6i)

where n = 2, ∆pi is the pi-Laplacian and fi : Ω×R×R2 → R is a single-valued function.
To be more precise, in [20] functions gi : R2 → R were given such that

f1(x, s, t1, t2) = −g1(s, t2) and f2(x, s, t1, t2) = −g2(t1, s).

Thus, System (8.6) reads as

ui ∈ Ki : 〈−∆piui − gi(u),ϕi − ui〉 > 0 for all ϕi ∈ Ki. (8.7i)

In [20, 21], the main assumption on (g1,g2) was that it has a potential in C2(R2).
In particular, no monotonicity was assumed. However, this resulted in a more involved
definition of sub-supersolutions (u,u). For example, u is a subsolution of System (8.7)
in the sense of [20, Def. 2.1] if ui ∨ Ki ⊂ Ki and

〈−∆p1u1 − g1(u1,w2),ϕ1 − u1〉 > 0 for all ϕ1 ∈ u1 ∧ K1, w2 ∈ [u2,u2], (8.81)

〈−∆p2u2 − g2(w1,u2),ϕ2 − u2〉 > 0 for all ϕ2 ∈ u2 ∧ K2, w1 ∈ [u1,u1]. (8.82)

As long as no monotonicity is assumed, one has to make sure that inequalities (8.81)
and (8.82) hold not only for a special choice of w, but for all w ∈ [u,u]. This task is
much easier if v2 7→ g1(v) and v1 7→ g2(v) are monotonous. With a view to the example
below, let us assume in the sequel that g1 is decreasing in the second argument and g2
is decreasing in the first. Then from

〈−∆p1u1 − g1(u1,u2),ϕ1 − u1〉 > 0 for all ϕ1 ∈ u1 ∧ K1, (8.91)

〈−∆p2u2 − g2(u1,u2),ϕ2 − u2〉 > 0 for all ϕ2 ∈ u2 ∧ K2, (8.92)

we easily deduce (8.81) and (8.82). Since analogous deductions can be made for the
supersolution u, we arrive at a simpler definition for sub-supersolutions. To formu-
late it in abstract terms, take any v ∈ D = [u,u]V and let us define the operators
Ri,Ri : D3−i → P∅(Vi) via

R1 ··= S1(v1, ·), R2 ··= S2(·, v2), R1 ··= S1(v1, ·), R2 ··= S2(·, v2).

Evidently, (u,u) is a pair of sub-supersolutions in the sense of [20, Def. 2.1] if and only
if

u1 ∈ R1(u2), u2 ∈ R2(u1), u1 ∈ R1(u2), u2 ∈ R2(u1),
which is exactly condition (i) of Corollary 8.5. Thus, our approach allows for a treatment
of the systems considered in [20] if they are not as smooth as required while building on
the same kinds of sub-supersolutions.
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8.20 Theorem Suppose that there is an ordered pair u,u ∈W of sub-supersolutions
of System (8.7) in the sense of [20, Def. 2.1] and suppose that gi : R2 → R satisfy the
following conditions:

(G1) The functions t2 7→ g1(s, t2) and t1 7→ g2(t1, s) are decreasing.

(G2) The functions s 7→ g1(s, t2) and s 7→ g2(t1, s) are continuous.

(G3) There is k4,i ∈ Li such that |gi(t1, t2)| 6 k4,i(x) for all (t1, t2) ∈ [u(x),u(x)].

Then System (8.7) has solutions u∗ and u∗ located in [u,u] which are extremal in the
sense that for all solutions u of System (8.7) located in [u,u] it holds u∗1 6 u1 6 u∗1
and u∗2 6 u2 6 u∗2.

Proof: We are going to apply Corollary 8.5, and we have already seen that condition
(i) holds true. Moreover, it follows easily that Ri is decreasing downward and that Ri is
decreasing upward. For instance, suppose u1 ∈ R1(v2) and v ′2 6 v2. Then we have

〈−∆p1u1−g1(u1, v
′
2),ϕ1−u1〉 > 〈−∆p1u1−g1(u1, v2),ϕ1−u1〉 > 0 for all ϕ1 ∈ u1∧K1

and thus u1 ∈ R1(v ′2), which means that R1 is even permanent downward. Since Ri(u3−i)
and Ri(u3−i) are non-empty, it follows that Ri and Ri have non-empty values. The
remaining conditions hold true due to Propositions 8.17 and 8.18, since the proofs of
them are independent of the monotonic behaviour of t 7→ fi(x, s, t) and conditions
(A1)—(A4), (F1), (F2) and (F4) hold true. #

8.21 Example In [20], the following example was given: Let α > p1, β > p2, λ > 0,
µ > 0, and set

g1(s, t2) ··= λ|s|p1−2s− α|s|α−2s(1 + h1(t2)),

g2(t1, s) ··= µ|s|p2−2s− β|s|β−2s(1 + h2(t1)),

where h1(t2) ··= |t2|
β and h2(t1) ··= |t1|

α. Set furthermore Ki ··= Wi, then System (8.7)
results in the following Dirichlet problem for systems: Find ui ∈Wi such that∫

Ω

|∇ui|pi−2∇ui∇ϕi =
∫
Ω

gi(u1,u2)ϕi for all ϕi ∈Wi. (8.10i)

Since u1 = u2 = 0 is a solution of System (8.10), the question arises if there are non-trival
solutions, e.g. positive ones. To this end, we recall [20, Corollary 2.3]:

8.22 Proposition Let ψi be the (normalized, positive) eigenfunction corresponding
to the first eigenvalue λi > 0 of −∆pi on Wi, and let hi ∈Wi be the unique solution of
−∆pihi = 1 in W ′i. Suppose further λ > λ1, µ > λ2. Then

u ··= (cψ1, cψ2) and u ··= (Mh1,Mh2)

form an ordered pair of positive sub-supersolutions of System (8.10) in the sense of [20,
Def. 2.1] provided c > 0 is small and M > 0 is large. #

170 8 Systems of Variational Inclusions



By inspecting the proof of [20, Corollary 2.3] one realizes that the result holds not
only for the special choice h1(t2) = |t2|

β and h2(t1) = |t1|
α, but for all hi : R → R

satisfying the following condition:

(H) hi is increasing on R+ and satisfies hi(t) = 0 for t 6 0.

In [20], the special choice of hi was needed in order to find a potential of (g1,g2). Since
we do not build on variational methods, we have more freedom. Since one easily deduces
from (H) that g satisfies (G1)—(G3) with respect to (u,u) given by Proposition 8.22,
we have the following corollary of Theorem 8.20:

8.23 Corollary Suppose (H) and λ > λ1, µ > λ2. Then System (8.10) has at least
one non-trivial, positive solution. #

This concludes the example. #

8.4 Systems of Quasi-Variational Inequalities

In Chapter 5, we applied the general framework to multivalued quasi-variational inequal-
ities. In this section, we are going to use the results established there in order to treat
the following problem: Find u ∈W such that

Ai(ui) + Fi(ui,u) + ∂Ki,u(ui) 3 0 in W ′i, (8.11i)

where W, Ai and Fi are defined as in Section 8.3 above, and where ∂Ki,u is the sub-
differential in the sense of Convex Analysis of the functional Ki,u = Ki(·,u), which is
assumed to be proper, convex and lower semicontinuous.

8.24 Remark Problem (8.11) specializes to Problem (8.5) if Ki,u equals the indicator
function of a non-empty, closed and convex set Ki as considered in Section 8.3. #

8.25 Remark We are going to formulate the results only for the case in which
t 7→ fi(x, s, t) is decreasing and v 7→ Ki,v is increasing. Special mixed-monotone systems
can be treated analogously by use of Corollary 8.3. #

8.4.1 Setting

In this section, we use the same setting and assumptions (S), (A1)—(A4) and (F1)—(F4)
as in Subsection 8.3.1. In particular, we set D ··= [u,u]V for an ordered pair (u,u) of
sub-supersolutions. However, we redefine the operators S, S and S in the next subsection
(and so we redefine sub- and supersolutions), and Ki denotes no more a convex lattice,
but a functional Ki : Di ×D→ R ∪ {+∞}.

In order to compare functionals, we introduce the spaces

Γi ··= {k : Di → R ∪ {+∞} with D(k) 6= ∅},

and like in Chapter 5, we equip Γi with the relation 4∗∗.
On Ki, we impose the following assumptions:
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8.26 Assumption Let Ki : Di×D→ R∪{+∞} be a functional such that the following
conditions hold:

(K1) For all v ∈ D the function Ki,v : Di → R ∪ {+∞}, defined by Ki,v(ui) = K(ui, v),
is proper, convex and lower semicontinuous.

(K2) The mapping v 7→ Ki,v is increasing, i.e. v 6 v′ in D implies Ki,v 4∗∗ Ki,v′ .

(K3) There is some constant c3 > 0 such that for all v ∈ V there is some ϕi,v ∈ D(Ki,v)
such that for all ui ∈Wi it holds

‖∇ϕi,v‖pi 6 c3, Ki,v(ϕi,v) 6 c3, Ki,v(ui) > −c3(‖∇ui‖pi−1
pi

+ 1). #

8.4.2 Abstract Formulation

We generalize the notion of Subsection 8.3.2 along the lines of Chapter 5: For all functions
ui ∈Wi∩Di, v ∈ D, and all subsetsW0,i ⊂Wi and Γ0,i ⊂ Γi, we write ui ∼ (v, Γ0,i,W0,i)
if there is a function ηi ∈ Fi(ui, v) and a functional ki ∈ Γ0,i such that

〈Ai(ui),ϕi − ui〉+
∫
Ω

ηi(ϕi − ui) + ki(ϕi) − ki(ui) > 0 for all ϕi ∈W0,i.

In this section, let us define the operators Si,Si,Si : D→ P(D ∩W) as follows:

Si(v) ··= {ui : ui ∼ (v, {Ki,v},Wi)},

Si(v) ··= {ui : ui ∼ (v,K↓i,v,ui ∧D(Ki,v))},

Si(v) ··= {ui : ui ∼ (v,K↑i,v,ui ∨D(Ki,v))}.

Like above, u ∈W is a solution, sub- or supersolution of System (8.11) if u is a fixed
point of S =

∏
i Si, S =

∏
i Si or S =

∏
i Si, respectively.

8.4.3 Existence of Solutions

From the results in Chapter 5 we deduce that Propositions 8.16—8.18 also hold true
in the setting of this section. Thus, from Theorem 8.1 and Corollary 8.2 we have the
following existence and enclosure theorem:

8.27 Theorem Suppose (S), (A1)—(A4), (F1)—(F4) and (K1)—(K3). Then System
(8.11) has both the smallest and the greatest solution in [u,u]W. #

8.5 Systems with Measures

With reference to Chapter 7, let us consider finally the following problem: Find u ∈W
such that

Ai(ui) + Fi(ui,u) 3 µi. (8.12i)
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Here, Ai and Fi are defined as in Section 8.3, and the right-hand side µi belongs to
L1(Ω). Thus, as in the scalar case n = 1, the regularity of solutions will be lower and
that of test functions will be higher than in Sections 8.3 and 8.4. To be more precise, u
belongs to W if ui ∈ W1,r

0 (Ω) for all r ∈ [1, (pi − 1)1∗) (recall: i∗ = N/(N − 1)), and
u ∈W is a solution of System (8.12) if there are measurable selections ηi ⊂ fi(·,ui,u)
for which it holds∫

Ω

ai(·,∇ui)∇ϕi +
∫
Ω

ηiϕi =

∫
Ω

µiϕi for all ϕi ∈W1,r
0 (Ω), r > N.

The investigation of this problem is more involved than in the previous applications,
since solutions are only obtained via an approximation procedure. However, we will see
that the results of Chapter 7 for the scalar case together with our general fixed point
result allow to treat the system case.

8.28 Remark As before, we will formulate the results only for the case in which
t 7→ fi(x, s, t) is decreasing. Special mixed-monotone systems can be treated analogously
by use of Corollary 8.3. #

8.5.1 Setting

We use the setting of Chapter 7, generalized to the system case, which differs in some
crucial details from the setting used in Sections 8.3 and 8.4.

Let Ω ⊂ RN, N > 2, be a bounded domain with Lipschitz boundary, and let the
constants pi ∈ (2 − 1/N,N] and qi ∈ (1,p∗i ) be fixed. In this section, let us use the
following abbreviations:

Li ··= Lq
′
i , Vi ··= Lp

∗
i , Wi ··=

⋂
{W

1,r
0 : 1 6 r < (pi − 1)1∗}.

As we noted in Chapter 7, our fixed point results remain valid for the Fréchet spaces
Wi. The same argumentation holds for the product space W =

∏
iWi. In the following,

we will use this without further notice. Besides L ··=
∏
i Li, V ··=

∏
i Vi and W, we will

further use the space Wp ··=
∏
iW

1,pi
0 .

8.29 Assumption Like in Assumption 8.12 above, we define Aiu = − divai(·,∇u)
for a function ai : Ω × RN → RN satisfying (A1) and (A3) and the following slightly
more restrictive variants of (A2) and (A4), which are meant to hold for a.e. x ∈ Ω and
all ξ, ξ ′ ∈ RN.

(A2’) There are α2 > 0 such that ai(x, ξ)ξ > α2|ξ|
pi .

(A4’) It holds (ai(x, ξ) − ai(x, ξ
′))(ξ− ξ ′) > 0. #

Further, we suppose in the following that fi satisfies conditions (F1)—(F4) as above
and that (S) holds with respect to the redefinition of sub-supersolutions below, such that
we can define D ··= [u,u]V .
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8.5.2 Abstract Formulation

The natural concept of sub-supersolutions of System (8.12) is the following one:

(i) A function u ∈Wp is called subsolution of System (8.12) if there are measurable
selections η

i
⊂ fi(·,ui,u) such that∫

Ω

ai(·,∇ui)∇ϕi+
∫
Ω

η
i
ϕi 6

∫
Ω

µiϕi for all ϕi ∈W1,pi
0 (Ω)∩L∞+ (Ω). (8.13i)

(ii) A function u ∈Wp is called supersolution of System (8.12) if there are measur-
able selections ηi ⊂ fi(·,ui,u) such that∫
Ω

ai(·,∇ui)∇ϕi+
∫
Ω

ηiϕi >
∫
Ω

µiϕi for all ϕi ∈W1,pi
0 (Ω)∩L∞+ (Ω). (8.14i)

As pointed out in Chapter 7, this concept of sub-supersolutions is to broad to be
combined with the abstract framework. Thus, we have to extend the concepts of solu-
tions and subsolutions to limit-solutions (which are, as a matter of fact, also solutions)
and limit-subsolutions (which are, in general, no subsolutions due to regularity issues),
respectively. In order to do so, we introduce the following functions with respect to the
given pair of sub-supersolutions (u,u) and fixed corresponding selections η and η:

For any given v ∈ V, we truncate fi to obtain gi,v : Ω× R→ P(R), which is defined
by

gi,v(x, s) ··=


{η
i
(x)} if s < ui(x),

fi(x, s, v(x)) if s ∈ [ui(x),ui(x)],

{ηi(x)} if s > ui(x).

Further, we define the cut-off function di : Ω× R→ R by

di(x, s) ··=


−(ui(x) − s)

pi−1 if s < ui(x),

0 if s ∈ [ui(x),ui(x)],

(s− ui(x))
pi−1 if s > ui(x).

By use of these functions, let us introduce Problem (Qi,hi(v)): Find, for given v ∈ V
and hi ∈ Li, a function ui ∈ W1,pi

0 (Ω) such that there is some measurable selection
ηi ⊂ fi(·,ui, v) for which it holds∫

Ω

ai(·,∇ui)∇ϕi +
∫
Ω

ηiϕi +

∫
Ω

di(·,ui)ϕi =
∫
Ω

hiϕi for all ϕi ∈W1,pi
0 (Ω).

(8.15i)
As usual, a subsolution of Problem (Qi,hi(v)) is a function ui ∈ W1,pi

0 (Ω) such that
there is some measurable selection ηi ⊂ fi(·,ui, v) for which it holds∫

Ω

ai(·,∇ui)∇ϕi +
∫
Ω

ηiϕi +

∫
Ω

di(·,ui)ϕi 6
∫
Ω

hiϕi for all ϕi ∈W1,pi
0 (Ω)+.

(8.16i)
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This said, let us define the operators Si,Si : D→ P(W ∩D) as follows:

Si(v) ··= {u : there are a sequence (hi,k) ⊂ Li and solutions ui,k of (Qi,hi,k(v))

such that hi,k → µi in L1 and ui,k → ui in Wi},

Si(v) ··= {u : there are a sequence (hi,k) ⊂ Li and subsolutions ui,k of (Qi,hi,k(v))

such that hi,k → µi in L1 and ui,k → ui in Wi}.

Consequently, a limit-solution of System (8.12) is defined to be a fixed point of S.
That is, a function u ∈W is called limit-solution of System (8.12) if there is a sequence
(hk) ⊂ L and solutions ui,k of (Qi,hi,k(u)) such that hk → µ in L1(Ω)N and uk → u in
W. From the results of Chapter 7 it follows that such limit-solutions are indeed solutions
of System (8.12) as defined at the beginning of this section.

Our main result states that there is a largest limit-solution between each ordered pair
(u,u) of sub-supersolutions as defined above. In particular, note that sub-supersolutions
are not defined to be fixed points of S, but solutions of System (8.13) and (8.14), respec-
tively. However, like in the sections above, the operator S plays a crucial role in the proof
of our main theorem, and its fixed points are called limit-subsolutions. Let us also
mention that, in general, u ∈ S(u) does not hold, but that it holds trivially u 6∗ S(u)
provided S has non-empty values.

8.5.3 Existence of Solutions

From the results in Chapter 7 we deduce that Propositions 8.16—8.18 hold true in the
setting of this section. Thus, from Theorem 8.1 and Corollary 8.2 we have the following
existence theorem:

8.30 Theorem Suppose (S), (A1), (A2’), (A3), (A4’) and (F1)—(F4). Then System
(8.12) has the greatest limit-solution (which is a solution of System (8.12)) in [u,u]V .

8.31 Remark In [94] it was demonstrated that the method of sub-supersolutions
might fail if the right-hand side of a differential equation is a general bounded measure,
e.g. the Dirac delta function. In order to avoid technical difficulties, we restricted our
considerations to L1 right-hand sides.

However, it is possible to use our approach to generalize the existence results of [94]
for systems of the form

− ∆ui + gi(u) = µi in Ω, ui = 0 on ∂Ω (8.17i)

with n = 2, where µi is even allowed to be a so called diffuse measure. For more
information, we refer to [94]. Here, let us only sketch the approach used there: System
(8.17) is formulated as a fixed point problem, which is solved by Schauder’s fixed point
theorem. However, to apply this special fixed point theorem, gi : R2 → R is assumed to be
continuous in both arguments and to be increasing in one argument. Then, the monotone
behavior of gi guarantees that a certain auxiliary problem has unique solutions, which
in turn implies that the fixed point operator is continuous.
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Though the presentation in [94] is sophisticated, the approach is limited by the use of
Schauder’s fixed point theorem, so that a trade-off between smoothness and monotonicity
is not possible. However, we are positive that our approach can be used to obtain far
reaching generalizations of the results in [94]. #
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9 Further Improvements

In this thesis, we have provided a unifying framework for the study of multivalued non-
smooth variational inequalities, which we have applied to various examples. For future
work, there are three topics which allow for decades of research.

9.1 Improvements in Theory

In Chapter 1, we have tried our best to state a general order-theoretical fixed point theo-
rem for multifunctions. This study can be extended to answer strongly related questions
about

(i) coupled fixed points (see Corollary 8.6 for a first result),

(ii) common fixed points of a family of multifunctions {Fi : i ∈ I}, i.e. some u such
that u ∈ Fi(u) for all i ∈ I,

(iii) and fixed sets of a multifunction F, i.e. sets S such that S = F(S).

The theory of fixed sets is in particular interesting, since on the power set P∅(X) of any
set X, we have a natural partial ordering via A 6 B if and only if A ⊂ B. If we call, in
analogy to subpoints and by extending the usual definition of a subset, a set S ∈ P∅(X)
a subset of a multifunction F : X→ P∅(X) if S ⊂ F(S), then we have the following result,
which is essentially [93, Proposition 1.2]:

9.1 Proposition Let X be a set, let F : X → P∅(X) be a multifunction, and let S be
the greatest subset of F. Then S is the greatest fixed set of F.

Proof: First, let us note that F has indeed a greatest subset which is given by

S ··=
⋃

{A ∈ P∅(X) : A is a subset of F}.

Now, assume that S is not a fixed set of F. Then there is x ∈ F(S) \ S. But then,
S∪ {x} is a subset of F which is greater than S (with respect to set inclusion), which is a
contradiction. Thus, S is a fixed set of F. Since every fixed set of F is also a subset of F,
S is indeed the greatest fixed set of F. #

Note, however, that the greatest fixed set of a multifunction F : X → P∅(X) could be
∅ (which is always a fixed set). But if F has a fixed point u ∈ F(u), then {u} is a subset
of F and from Proposition 9.1 we have that F has a non-trivial fixed set. Since there are
plenty of multifunctions which have a fixed set but no fixed point, the question arises
which multifunctions have a non-trivial fixed set (which satisfies a given property). For
further information, see [93].
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In Chapter 2, we used topological methods to find a general fixed point theorem on
reflexive ordered Banach spaces. As we have noted in Theorem 7.17, this framework can
be extended to reflexive Fréchet spaces. The question arises if there are other connections
between order-theory and topology which can be of use. The theory of Riesz spaces
presented in [120] and the theory of convergence structures in [6] are a good starting
point for future research.

In [6], also generalizations of well-known results in Functional Analysis are given.
Maybe this gives rise to a more general formulation of Theorem 2.57 for pseudomono-
tone operators. Furthermore, it would be interesting to find connections between order-
theoretical and topological results (like the connection between 2.38 and 2.39) which can
be used to unify and extend different fixed point and existence results. In the epilog, we
will give a first simple result in this direction.

In Chapter 3, we introduced the concept of ordered measurable spaces, but we gave
only a few simple results. The question arises if there are deeper results and in particular
such ones that can be used in the study of variational inequalities.

9.2 Improvements in Applications

Our general framework of Theorem 2.33 is designed in such a way that it can be applied
to a wide range of variational problems. Whenever the method of sub-supersolutions
can be applied, a next possible step in the study is to introduce bifunctions to allow for
nonsmooth multifunctions. Even if the variational problem is very general, it should be
possible to adjust the framework so that it can be applied (like we have done in Chapter
7). For inspiration, let us state a few possible generalizations:

In Chapters 4 and 5, we have provided an application of Theorem 2.33 to multivalued
variational and quasi-variational inequalities whose leading term is a single-valued dif-
ferential operator. Those results can be extended to multivalued leading terms. We refer
to the recent papers [69, 70, 71, 72] for information about such multivalued problems.

Furthermore, there is no need to confine our considerations to the Sobolev space
W

1,p
0 (Ω). Most of the results can be generalized to more general function spaces, e.g.

spaces of Sobolev functions with non-trivial boundary values, Sobolev spaces with re-
spect to variable exponents, or Orlicz-Sobolev spaces.

In Chapters 6 and 7, we studied variational problems with measures on the right-hand
side. Our study was inspired by [10], so that we considered bounded Radon measures
and p > 2− 1/N in order to obtain solutions in Sobolev spaces. The restriction of p can
be dropped if one generalizes the notion of solutions to so called entropy solutions, as
done in [7, 35]. In such spaces, truncation methods are possible, and so the open question
remains, if we can extend the results to bifunctions.

Another approach for problems involving a Radon measure µ comes into play if a
problem has no solution. Then there might be a largest measure µ∗ 6 µ such that the
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problem with µ∗ instead of µ has a solution. We refer to [15] for details and pose the
question if this approach can be combined with our general framework.

In Chapter 8, we considered systems of variational problems. By fixing some argu-
ments, we decoupled the system, then we used that there are solutions for the case
n = 1, and finally we applied our fixed point theorem to find a solution of the whole
system. This approach works also if we generalize the case n = 1 as descriped above.
But there is another approach: If we know that a system without bifunctions has solu-
tions (e.g. by application of topological results like in [29, 90, 91]) and the method of
sub-supersolutions applies, then we may extend the results to the case of bifunctions.

Furthermore, we could extend our results to nonsmooth multivalued evolutionary
problems or even to Banach-valued differential equations. See [24] for more information
in this direction. Also the case of unbounded Ω is open.

Finally, it would be interesting to extend our results to variable set relations as
described in [39] to treat problems of vector-valued optimization.

9.3 Real-World Applications

An important aspect not covered in this thesis is the application of the results to problems
in Mechanics and Engineering and the numerical treatment. However, this is beyond the
scope of this thesis, thus we refer the interested reader to the detailed introduction in
[92] and the more recent expositions in [1, 19, 43, 73].
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Epilog

What is provable will be proved. Why? Because I am here!
— All Math, My Hero Mathematica

Whereof one cannot speak, thereof one must be silent.
— Ludwig Wittgenstein, Tractatus Logico-Philosophicus 7

A long, long time ago ...

... there was a function f : R → R, watching over a sleeping curious mind. Suddenly—
another basic question pushed the curious mind back into the mathematical realm:

Does the equation f(x) = x have a solution?

Zeros and Fixed Points

One could argue that this question is even more basic than the first one, especially in case
the curious mind has temporarily forgotten about the special role of 0 in R—but there
is a more interesting and moreover well-defined issue: the stunning isomorphy between
the underlying mathematics of the two basic questions.

Indeed, if we map each real function f to the function s, defined by

s(x) ··= x− f(x),

then it is readily seen that x is a zero of f if and only if x is a fixed point of s. Further,
f satisfies (C∗) and (C∗) if and only if s has the following properties, respectively:

(M∗) If (xn) ⊂ R is an increasing sequence converging to x and if xn 6 s(xn) for all n,
then x 6 s(x).

(M∗) If (xn) ⊂ R is a decreasing sequence converging to x and if s(xn) 6 xn for all n,
then s(x) 6 x.

Furthermore, x is a subsolution of f if and only if x is a subpoint of s, analogously for
supersolutions and superpoints. Thus, we have the following corollary from our celebrated
Theorem A:
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Corollary Let s : R → R be an increasing function, and let x, x ∈ R be such that
x 6 s(x) 6 s(x) 6 x. Then s has the greatest and the smallest fixed point in [x, x]. #

Note, however, that this corollary is nothing more than Tarski’s fixed point theorem.
This points to some underlying structure for all those elementary results.

Theorem of Everything

Indeed, if we generalize the ideas used in the proofs so far, we obtain the following
framework:

Definition Let X be a set, and let S, S and S be subsets of X. Then (S,S,S) is called
a Sub-Super-Problem on X (SSP for short).

(i) If (S,S,S) is an SSP, then the elements of S are called solutions, the elements of
S are called subsolutions, and the elements of S are called supersolutions.

(ii) An SSP (S,S,S) on X is called natural if S ∪ S = X and S ∩ S = S. #

Of course, even if (S,S,S) is a natural SSP, there might be no solution. But we want
to find them! Thus, we build a trap:

Definition Let X be an ordered topological space.

(i) A setA ⊂ X is called closed upward if for each converging and increasing sequence
(xn) ⊂ A one has limn xn ∈ A.

Let (S,S,S) be an SSP on X.

(ii) If x ∈ S and x ∈ S, then [x, x] is called a trap.

(iii) A trap T is called good if S∩T is closed upward and if S∩T is closed downward
(defined by duality). #

Now, it is readily seen that the search for zeros of a continuous function and the search
for fixed points of an increasing function both can be modelled as an SSP. Furthermore,
the ideas so far give us at once the following theorem:

Theorem Let P be a natural SSP on R. Then each non-empty good trap T contains
a solution, and there are even smallest and greatest solutions in T . #

Thus, order-theoretical fixed point results and topological existence results which we
have treated as if they belong to separated fields of mathematics, are in fact two sides
of the same coin. Naturally, the following question arises:

To what extend can this connection be generalized?

That was a Question ...

... that neither the curious mind nor any of his friends could answer. And so they thought,
and thought, and—lived happily ever after.
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