
Available Bandwidth Metrics for Application-Layer Reliable Multicast in
Global Multi-Gigabit Networks

Kirill Karpov1,2, Maksim Iushchenko1,2, Nikolai Mareev1,2, Dmytro Syzov1, Eduard Siemens1 and
Viatcheslav Shuvalov2

1 Future Internet Lab Anhalt, Anhalt University of Applied Sciences, Bernburger Str. 57, Köthen, Germany
2 Department of Transmission of Discrete Data and Metrology, Siberian State University of Telecommunications and

Information Sciences, Kirova Str. 86, Novosibirsk, Russia
{kirill.karpov, maksim.iushchenko, nikolai.mareev, dmytro.syzov, eduard.siemens}@hs-anhalt.de, shvp04@mail.ru

Keywords:

Abstract:

Application Layer Multicast, Point-to-Multipoint, Available Bandwidth, Minimum Spanning Tree,
Networking, High Bandwidth.

Application layer multicast shows its efficiency when it is necessary to transmit enormous amount of data to
many nodes. One of the most important issues for such kind of transmission is ”what is the criteria for path
construction?”. In the global networks, when the distance between nodes becomes a significant f actor, the
time delay between nodes seems self-evident. However, in the presence of cross-traffic in the c hannel, the
minimum spanning tree based on the delay might construct the tree which provides the lower data rate than
possible alternative. The point of this work is to study how available bandwidth estimation techniques might
solve such kind of challenges, how to adopt available bandwidth as a metric to construct data distribution paths
and the cases when it gives higher performance in comparison with delay as a metric.

1 INTRODUCTION

In the current time, there is a possibility to create a
global high bandwidth network infrastructure using
cloud services for a relatively low cost. Cloud ser-
vices provide the possibility to anyone to deploy own
intercontinental network on top of the Internet or cre-
ate own Content Delivery Network (CDN). However,
dealing with the global network, it is necessary to
deal with its properties, such as the high delay be-
tween nodes, the possibility of packet loss, interfer-
ing traffic (so-called c ross-traffic) in th e li nks, for-
bidden network features such as multicast. To make
high-speed data transmissions over WAN possible,
the RMDT [1] transport protocol was used, since it
can overcome challenges described above: it proto-
col provides WAN acceleration service, which makes
network packet losses and latency up to 1 second
nearly negligible. It can serve up to 10 receivers in
parallel within a single session without fairness is-
sues meaning that available bandwidth will be shared
evenly. It has a centralized congestion control, which
allows the coexistence with the cross-traffic in IP
WANs. The multicast functionality has been im-
plemented and studied during the previous work [2]
using the Minimal Spanning Tree (MST) algorithm.

Previous work shows the efficiency of RMDT in con-
junction with the MST algorithm using delay or RTT
values between hosts as a metric in the global net-
work. However, the presence of the cross-traffic in
the global links is more than possible. Nevertheless
that with the delay metric, the MST algorithm can
construct the optimal tree, cross-traffic can negatively
affect the bandwidth along a constructed path. This
means that cross-traffic as a significant factor should
be taken into account.

This paper studies the performance of application
layer multicast in combination with high-bandwidth
data transport applications using available bandwidth
(AvB) metric and where and how it can outperform
the delay metric.

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of related re-
searches and methods. Section 3 gives the AvB met-
ric description, how it can be obtained and adopted to
the MST algorithm. Section 4 reviews the testing en-
vironment and software equipment that was used for
the experimental setup. Section 5 is devoted to the re-
trieved results of experiments with application layer
multicast implementation using RTT and AvB met-
rics. Interpretation and discussion of the results and
future work can be found in Section 6.

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

1

2 RELATED WORK

An analysis of application layer multicast in the Wide
Area Network has been made in the previous work
[2]. It shows the efficiency of ALM in conjunction
with Reliable Multi-Destination Transport Protocol
(RMDT) in the global networks between hosts spaced
across continents. In the research, the delay was used
as a metric for the tree-first application layer multi-
cast. The system has been tested in the AWS infras-
tructure.

The available bandwidth estimation research has
been provided by Kirova, et. al [3, 4]. These
researches introduce the Kite2 application for
available bandwidth estimation, which is used in the
given work.

The ALM model as a service implemented on the
top of Hierarchical Peer to Peer Architecture, in order
to give media streaming based applications or confer-
encing applications [5].

A multicast framework for point-to-multipoint
and multipoint-to-point-to-multipoint video stream-
ing from drones presented in the work [6]. The
proposed rate-adaptive approach outperforms legacy
multicast in terms of goodput, delay, and packet loss.

Adaptable, ISP-friendly multicast overlay net-
work proposed in [7]. The system is adaptable to
different conditions and easily reconfigurable in the
construction and management of the multicast over-
lay distribution tree. The ALM tested has been tested
in a network emulation tool.

There is an ALM based on an encoding-free non-
dominated sorting genetic algorithm (EF-NSGA) [8].
The approach aimed to construct a tree based on
multi-objective criteria: minimization transmission
delay and instability simultaneously.

3 METRIC DESCRIPTION

The used AvB metric is based on Probing Rate Model
(PRM) of the active probing measurement and uses
analysis of inter-packet interval deviation on the re-
ceiver side (IpIr) in order to detect whether the send-
ing rate of probe packets meets the available band-
width limits of the link between the sender and the
receiver.

Figure 1 illustrates the active probing model. Sn
is an n-th probe packet, isn is the sending inter-packet
interval and irn is the inter-packet interval on the re-
ceiver side. The main principle of this method is
to find the inter-packet interval, which is dependent
on timing operations precision. The accurately cho-
sen inter-packet interval on the sender side allows

achieving the actual available bandwidth of the net-
work path. The goal of the AvB algorithm is to find
the minimal value is after which the difference ir− is
is minimal.

SE
ND
ER

RE
CE
IV
ER

WANS1S2S3 S3 S2 S1

is1is2 ir1ir2

The instances are distributed all over the world in
the AWS regions, which shown in Figure 2. The re-
gions are highlighted by colors here and further.
US West (Oregon) - orange, EU (Frankfurt) - blue,
EU (London) - red, Asia Pacific (Singapore) - cyan,
Canada (Central) - green.

Figure 1: AvB active probing model [4].

 Since the given ALM system uses the tree-first ap-
proach, the available bandwidth estimation values are
collected only once as a first step. Collected metrics
are formed into adjacency matrix A and inverted by
Hadamard inverse rule as A◦－1 because the MST
algorithm calculates the shortest tree where the mini-
mal weight of an edge is preferable. The A◦－1 matrix
passed to the MST or DCMST algorithm then. The
resulted tree is treated as optimal from the perspec-
tive of the available bandwidth of the link.

4 EXPERIMENTAL SETUP

The section provides a detailed description of the test-
ing infrastructure and software, which is used during
the experiments.

4.1 Testing Environment

As an experimental environment, Amazon AWS has
been chosen. It provides the virtual infrastructure
in selected continents and regions. Cascade network
transmission infrastructure based on c5.xlarge virtual
instances, the configuration provided in Table 1.

Table 1: c5.xlarge host configuration.
Name Parameters

Operating system Ubuntu 18.04

CPU model Intel Xeon Platinum 8000

(Cascade Lake)

CPU Frequency 3.6 GHz

Number of vCPUs 4

RAM 8 GB

Bandwidth up to 10 Gbps

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

2

In each region, three c5.xlarge virtual instances
have been deployed. The regions have been chosen to
get different variations of network conditions, such as
long and short distances, international and interconti-
nental links. The RTT probing results shown in
Figure 3. The index rows and columns of the matrix
are rep-resented each host by the first letter of its
region and the number of the virtual machine in the
region. Left indexes are output nodes, top indexes are
input nodes. The matrix colored as a heatmap, where
the cells with the highest values have more saturated
color.

Figure 2: The map of AWS hosts location.

l1 l2 l3 f1 f2 f3 c1 c2 c3 o1 o2 o3 s1 s2 s3

l1 0 0.1 0.1 13.4 14.3 14.2 89.1 85.6 88.8 134 137.4 133.7 184.8 181.2 171.4
l2 0.1 0 0.1 13.3 15.3 13 85.6 86.9 87.3 139 133.7 137.8 185.2 181.2 184.7
l3 0.1 0.1 0 13.1 13.7 13.6 88.8 88.8 86.8 137 139 139.9 180.7 181.2 171.9
f1 13.4 13.3 13.1 0 0.1 0.1 100.4 100.4 98.9 159 161.1 164.3 177.7 169.6 173.7
f2 14.3 15.3 13.7 0.1 0 0.1 99.3 99.7 99.2 159 162.6 162.7 173.3 173.4 173.7
f3 14.2 13 13.6 0.1 0.1 0 100.4 99.3 98.9 163 158.3 163.9 173.6 174 173
c1 89.1 85.6 88.8 100.4 99.3 100.4 0 0.1 0.1 66.5 66.6 65.1 219.8 219.9 219.8
c2 85.6 86.9 88.8 100.4 99.7 99.4 0.1 0 0.1 65.6 66.6 67.1 219.9 219.7 219.7
c3 88.8 87.3 86.8 98.9 99.2 98.9 0.1 0.1 0 67.4 66.6 66.7 219.9 219.6 219.6
o1 133.6 138.6 137.1 158.5 159.1 163.2 66.5 65.6 67.4 0 0.3 0.3 163.2 162.5 162.6
o2 137.4 133.7 139 161.2 162.6 158.2 66.6 66.6 66.6 0.3 0 0.3 163.1 162.9 162.8
o3 133.7 137.8 139.9 164.3 162.7 163.8 65.1 67.1 66.6 0.3 0.3 0 163.5 163.1 162.6
s1 184.8 185.2 180.7 177.7 173.3 173.6 219.7 219.9 219.9 163 163.1 163.5 0 0.1 0.1
s2 181.2 181.2 181.2 169.6 173.4 174 219.9 219.7 219.6 163 162.9 163.1 0.2 0 0.1
s3 171.4 184.7 171.9 173.7 173.7 173 219.8 219.7 219.6 163 162.8 162.6 0.1 0.1 0

Figure 3: Matrix of RTT metric values between hosts in
milliseconds.

The experiments with additional cross-traffic are
provided with the network load which can be seen in
the matrix in Figure 4. The matrix is generated in
the way to let MST algorithm construct the path,
based on the AvB metric, which is similar to the
RTT-based tree, but with two swapped branches:
frankfurt and singapore hosts. Such configuration
aimed to confuse RTT probing and tree construction
process, which re-turn the non-optimal tree from the
AvB perspective.

l1 l2 l3 f1 f2 f3 c1 c2 c3 o1 o2 o3 s1 s2 s3

l1 0 0 0 11,21 10,99 10,4 5,41 5,19 5,38 8,1 8,33 8,11 0 0 0
l2 0 0 0 11,23 10,99 11,2 0 5,27 5,29 8,4 8,11 8,35 0 0 0
l3 0 0 0 10,95 10,99 10,42 5,39 5,38 5,26 8,32 8,43 8,49 0 0 0
f1 11,21 11,23 10,95 0 0 0 13,33 13,33 13,33 9,89 9,89 9,91 10,77 10,51 10,53
f2 10,99 10,99 10,99 0 0 0 13,33 13,32 13,32 9,85 9,88 9,89 10,29 10,52 10,55
f3 10,4 11,2 10,42 0 0 0 13,33 13,32 13,32 9,86 9,87 9,86 10,53 10,53 10,49
c1 5,41 5,19 5,39 13,33 13,33 13,33 0 0 0 4,04 4,04 0 6,09 6,02 6,09
c2 5,19 5,27 5,38 13,33 13,33 13,32 0 0 0 3,98 4,04 4,07 6,09 6,05 6,02
c3 5,38 5,29 5,26 13,33 13,32 13,32 0 0 0 4,09 4,04 4,04 6 6,02 6
o1 8,1 8,4 8,32 9,9 9,85 9,86 4,04 3,98 4,09 0 0 0 9,61 9,65 9,89
o2 8,33 8,11 8,43 9,89 9,88 9,88 4,04 4,04 4,04 0 0 0 9,77 9,86 9,59
o3 8,11 8,35 8,48 9,91 9,89 9,86 3,95 4,07 4,04 0 0 0 9,96 9,87 9,94
s1 0 0 0 10,77 10,28 10,53 6,09 6,09 6 9,61 9,77 9,96 0 0 0
s2 0 0 0 10,51 10,52 10,53 6,02 6,05 6,02 9,64 9,86 9,87 0 0 0
s3 0 0 0 10,53 10,55 10,49 6,09 6,02 6 9,9 9,6 9,94 0 0 0

Figure 4: Matrix of the amount of cross-traffic values
between hosts in Mbps.

4.2 Software Equipment

For the experiments, the following software and
technologies have been used:

1) RMDT — Reliable Multi-Destination Transport
Protocol is a C++ software library, developed at
the Future Internet Lab Anhalt at Anhalt Univer-
sity of Applied Sciences. It provides point to mul-
tipoint data transport functionality [1] using UDP.
It uses BQL congestion control [9] which is toler-
ant of big delays and dramatic packet loss rates.

2)

3)

4)

Dataclone — is the transfer application based on
RMDT. In the experiments, it is configured to al-
locate 100 MB of RAM for both send and receive
buffers. For the experiments, Dataclone has been
set to the third CPU core. The most actual v1.0.5
version has been used.
Kite2 — is a software application, written in C++,
developed at the Future Internet Lab Anhalt at An-
halt University of Applied Sciences. It is an im-
plementation of the modified AvB active probing
algorithm which can work in 10 Gbps links [4, 3].
Cascade — is a client-server application, writ-
ten in Python, developed at the Future Internet
Lab Anhalt at Anhalt University of Applied Sci-
ences.. Cascade provides ALM functionality, it
collects metrics such as RTT, using ICMP packets
and AvB, using Kite2. Based on collected met-
rics it calculates transmission routes using MST or
DCMST. In the client mode, it orchestrates Dat-
aclones as transport software and communicates
between other server instances.

5) tc — an open-source utility, which is used to con-
figure Traffic Control in the Linux kernel. With
this tool, the bandwidth of the interface is shaped
down to 100 Mbps. Traffic Control configured as
follows:

qqdisc cbq 1: root refcnt 2 rate 10Mbit \
(bounded,isolated) prio no-transmit
qdisc sfq 30: parent 1:30 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc sfq 10: parent 1:10 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc sfq 20: parent 1:20 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc ingress ffff: parent ffff:fff1 ----------------

class cbq 1: root rate 10Mbit (bounded,isolated) \
prio no-transmit

class cbq 1:1 parent 1: rate 100Mbit (bounded,isolated) \
prio 5

class cbq 1:10 parent 1:1 leaf 10: rate 100Mbit prio 1
class cbq 1:20 parent 1:1 leaf 20: rate 90Mbit prio 2
class cbq 1:30 parent 1:1 leaf 30: rate 80Mbit prio 2

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

3

6) iperf − is an open-source utility for performing
network throughput measurements. For the exper-
iments, iperf has been set to the second CPU core.
The cross-traffic between hosts has been created
with the following command:
// the process attached to core 2 with taskset 0x1
// the client started as
taskset 0x1 iperf -c DESTINATION_IP -b 10M -u -t 1000000
// the server started as
taskset 0x1 iperf -s

The software testbed configuration is shown in
Figure 5. Cascade represents the ALM system. It
orchestrates the probing software, such as Kite2 in
case of AvB metric, or sends ICMP packets in
case of RTT. It configures Dataclone as a sender,
receiver, or relay node. It defines the source and
destination for the data, which needs to be
transmitted. The iperf utility is used as a cross-
traffic generator. The tc util-ity restricts the
datarates within 100 Mbps, to neglect the CPU and
NIC as the bottleneck and to reduce the spendings
for AWS traffic.

iperf
Traffic

generation

ALM Orchestration
Probing

Transmission

Cascade

Dataclone

RMDT lib

Kite2

icmp

in
t
er
fa
c
e

tc shaper

1
00
 M

bp
s

c5.xlarge

Figure 5: Software equipment scheme.

5 EXPERIMENTAL RESULTS

Experiments have been made in two scenarios: net-
work with generated cross-traffic, d escribed i n sec-
tion 4.1, and without interfering traffic, this scenario
called pure network. Both RTT and AvB metrics
have been tested in these conditions. Each test case
has been repeated in 10 trials.

5.1 RTT Metric

In both cases, with and without cross-traffic, the cas-
cade has built the same data distribution tree, which
is shown in Figure 6. The tree constructed based
on the metrics collected during the probing state of
the cascade work. The delay matrix is shown
in Figure 3. Cells with red bold values are
related to paths built with RTT metrics.

The experiment without additional cross-traffic in
the links given the transmission paths configuration
provides 45.81 Mbps.

0.13ms 0.11ms
13ms 0.1ms

0.1ms

0.09ms 0.09ms85.6ms

65ms

0.26ms

0.27ms

162ms 0.14ms 0.13ms

1 3 2
london
frankfurt

canada 1
2 3

oregon

singapore

3
2

1

3
2

1 2 1 3162ms

Figure 6: The tree generated by MST algorithm in the AWS
network cloud infrastructure using RTT as a metric (in
milliseconds).

In the presence of cross-traffic i n t he l inks, the
same tree provides 34.89 Mbps. The cross-traffic
generated for the test is shown in Figure 4. Cells with
red bold values are related to paths built with RTT
met-rics.

5.2 AvB Metric

In the case of links without additional traffic, AvB
metric shows it’s inefficiency. Since the l inks in the
network are relatively pure from the interfering
traffic, the AvB estimation probing returns s imilar
met-rics, e.g 100 Mbps for all edges. This leads to
uncertainty in the tree construction. The trees
obtained during all 10 trials of an experiment with a
”pure” network, were completely different and
gained from 15 - 24 Mbps, the average data rate of
the experiments is 23.65 Mpbs. The Figure 7
demonstrates one of the given trees.

1 3

2

3

1

21
3

2

2 1 3

1

3

london
frankfurt

canada

oregon

singapore2

99Mb

99Mb

99Mb

99Mb

99Mb

99Mb

99Mb

99Mb

99Mb

99Mb 99Mb

99Mb

99Mb

99Mb

Figure 7: The tree generated by MST algorithm in the
pure network cloud infrastructure using AvB as a metric (in
Mbps).

 However, in the presence of cross-traffic, shown
in Figure 4, the edges of the tree, obtained with MST

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

4

highlighted with red borders. The tree constructed
us-ing the AvB metric is shown in Figure 8. The
data rate achieved in the test is 44.65 Mbps, which is
similar to the result of an experiment with the RTT
metric with-out cross-traffic.

57Mb 49Mb
99Mb 47Mb

47Mb

38Mb 37Mb99Mb

99Mb

78Mb

78Mb

59Mb 57Mb99Mb

3
2

1

2 1 3

1 3 2
london
frankfurt

canada 1
2 3

oregon

singapore

3
2

1

Figure 8: The tree generated by MST algorithm in the
AWS network cloud infrastructure in the presence of
cross-traffic using AvB as a metric (in Mbps).

6 CONCLUSIONS

The results of experiments allow to conclude the
fol-lowing:

1) There are cases when available bandwidth as
a metric for ALM can achieve higher performance
for data transmission than using delay between hosts
as a metric.

2) AvB gives insufficient results in the case of a
”pure” network.

3) Even in the modest presence of cross-traffic,
the given transport system based on the RTT
metric loses about 20 % of the data rate. This can be
seen in the resulting Table 2.

4) For the AvB, as well as for delay metric it’s
not necessary to be as precise as possible, it’s only
necessary to establish the right relation between all
edges of the network graph.

Table 2: Results of the data transmission experiments in
Mbps.

Since there are cases where one metrics is
prefer-able than others to get the higher
performance of the system, it makes sense to find
criteria for the decision which metric should be
used in the given situation. Finding such criteria is
a preferable approach for the ongoing work. These
criteria will be helpful in the process of
developing the metric which will take into account
both factors at once RTT and AvB.

ACKNOWLEDGMENTS

This work has been funded by Volkswagen Foun-
dation for trilateral partnership between scholars
and scientists from Ukraine, Russia and Germany
within the CloudBDT project: “Algorithms and
Methods for Big Data Transport in Cloud
Environments”.

REFERENCES

[1] A. V. Bakharev, E. Siemens and V. P. Shuvalov, “Anal-
ysis of performance issues in point-to-multipoint data
transport for big data,” in 2014 12th International Con-
ference on Actual Problems of Electronics
Instrument Engineering (APEIE). IEEE, 2014,
pp. 431-441.

[2] K. Karpov, D. Kachan, N. Mareev, V. Kirova, D.
Syzov, Siemens and V. Shuvalov, “Adopting
Minimum Spanning Tree Algorithm for Application-
Layer Reli-able Mutlicast in Global Mutli-Gigabit
Networks,” in Proceedings of the 7th International
Conference on Ap-plied Innovations in IT, 2019.

[3] V. Kirova, E. Siemens, D. Kachan, O. Vasylenko
and K. Karpov, “Optimization of Probe Train Size
for Available Bandwidth Estimation in High-speed
Net-works,” in MATEC Web of Conferences, vol. 208.
EDP Sciences, 2018, p. 02001.

[4] V. Kirova, K. Karpov, E. Siemens, I. Zander, O.
Va-sylenko, D. Kachan and S. Maksymov, “Impact
of Modern Virtualization Methods on Timing
Precision and Performance of High-Speed
Applications,” Future Internet, vol. 11, no. 8, p. 179,
2019.

[5] M. Amad, A. Boudries and L. Badis, “Application
Layer Multicast Based Services on Hierarchical Peer to
Peer Architecture,” Applied Mechanics and Materials,
vol. 892, pp. 64-71, June 2019.

[6] R. Muzaffar, E. Yanmaz, C. Raffelsberger, C.
Bettstet-ter and A. Cavallaro, “Live multicast video
stream-ing from drones: an experimental study,”
Autonomous Robots, vol. 44, no. 1, pp. 75–91,
January 2020.

[7] A. Sampaio and P. Sousa, “An adaptable and ISP-
friendly multicast overlay network,” Peer-to-Peer Net-
working and Applications, vol. 12, no. 4, pp. 809-829,
July 2019.

[8] Q. Liu, R. Tang, H. Ren and Y. Pei, “Optimizing mul-
ticast routing tree on application layer via an encoding-
free non-dominated sorting genetic algorithm,”
Applied Intelligence, vol. 50, no. 3, pp. 759-777,
March 2020.

[9] N. Mareev, D. Kachan, K. Karpov, D. Syzov and
E. Siemens, “Efficiency of BQL Congestion Control
under High Bandwidth-Delay Product Network Condi-
tions,” in Proceedings of the 7th International Confer-
ence on Applied Innovations in IT, 2019.

AvB RTT

Cross Traffic 44.65 34.89

Pure Network 23.65 45.81

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020

6

