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Application layer multicast shows its efficiency when it is necessary to transmit enormous amount of data to 
many nodes. One of the most important issues for such kind of transmission is ”what is the criteria for path 
construction?”. In the global networks, when the distance between nodes becomes a significant f actor, the 
time delay between nodes seems self-evident. However, in the presence of cross-traffic in the c hannel, the 
minimum spanning tree based on the delay might construct the tree which provides the lower data rate than 
possible alternative. The point of this work is to study how available bandwidth estimation techniques might 
solve such kind of challenges, how to adopt available bandwidth as a metric to construct data distribution paths 
and the cases when it gives higher performance in comparison with delay as a metric.

1 INTRODUCTION

In the current time, there is a possibility to create a 
global high bandwidth network infrastructure using 
cloud services for a relatively low cost. Cloud ser-
vices provide the possibility to anyone to deploy own 
intercontinental network on top of the Internet or cre-
ate own Content Delivery Network (CDN). However, 
dealing with the global network, it is necessary to 
deal with its properties, such as the high delay be-
tween nodes, the possibility of packet loss, interfer-
ing traffic ( so-called c ross-traffic) in th e li nks, for-
bidden network features such as multicast. To make 
high-speed data transmissions over WAN possible, 
the RMDT [1] transport protocol was used, since it 
can overcome challenges described above: it proto-
col provides WAN acceleration service, which makes 
network packet losses and latency up to 1 second 
nearly negligible. It can serve up to 10 receivers in 
parallel within a single session without fairness is-
sues meaning that available bandwidth will be shared 
evenly. It has a centralized congestion control, which 
allows the coexistence with the cross-traffic in IP 
WANs. The multicast functionality has been im-
plemented and studied during the previous work [2] 
using the Minimal Spanning Tree (MST) algorithm.

Previous work shows the efficiency of RMDT in con-
junction with the MST algorithm using delay or RTT 
values between hosts as a metric in the global net-
work. However, the presence of the cross-traffic in 
the global links is more than possible. Nevertheless 
that with the delay metric, the MST algorithm can 
construct the optimal tree, cross-traffic can negatively 
affect the bandwidth along a constructed path. This 
means that cross-traffic as a  significant factor should 
be taken into account.

This paper studies the performance of application 
layer multicast in combination with high-bandwidth 
data transport applications using available bandwidth 
(AvB) metric and where and how it can outperform 
the delay metric.

The remainder of this paper is structured as fol-
lows. Section 2 provides an overview of related re-
searches and methods. Section 3 gives the AvB met-
ric description, how it can be obtained and adopted to 
the MST algorithm. Section 4 reviews the testing en-
vironment and software equipment that was used for 
the experimental setup. Section 5 is devoted to the re-
trieved results of experiments with application layer 
multicast implementation using RTT and AvB met-
rics. Interpretation and discussion of the results and 
future work can be found in Section 6.
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2 RELATED WORK

An analysis of application layer multicast in the Wide 
Area Network has been made in the previous work 
[2]. It shows the efficiency of ALM in conjunction 
with Reliable Multi-Destination Transport Protocol 
(RMDT) in the global networks between hosts spaced 
across continents. In the research, the delay was used 
as a metric for the tree-first application layer multi-
cast. The system has been tested in the AWS infras-
tructure.

The available bandwidth estimation research has 
been provided by Kirova, et. al [3, 4]. These 
researches introduce the Kite2 application for 
available bandwidth estimation, which is used in the 
given work.

The ALM model as a service implemented on the 
top of Hierarchical Peer to Peer Architecture, in order 
to give media streaming based applications or confer-
encing applications [5].

A multicast framework for point-to-multipoint 
and multipoint-to-point-to-multipoint video stream-
ing from drones presented in the work [6]. The 
proposed rate-adaptive approach outperforms legacy 
multicast in terms of goodput, delay, and packet loss.

Adaptable, ISP-friendly multicast overlay net-
work proposed in [7]. The system is adaptable to 
different conditions and easily reconfigurable in the 
construction and management of the multicast over-
lay distribution tree. The ALM tested has been tested 
in a network emulation tool.

There is an ALM based on an encoding-free non-
dominated sorting genetic algorithm (EF-NSGA) [8]. 
The approach aimed to construct a tree based on 
multi-objective criteria: minimization transmission 
delay and instability simultaneously.

3 METRIC DESCRIPTION

The used AvB metric is based on Probing Rate Model 
(PRM) of the active probing measurement and uses 
analysis of inter-packet interval deviation on the re-
ceiver side (IpIr) in order to detect whether the send-
ing rate of probe packets meets the available band-
width limits of the link between the sender and the 
receiver.

Figure 1 illustrates the active probing model. Sn
is an n-th probe packet, isn is the sending inter-packet 
interval and irn is the inter-packet interval on the re-
ceiver side. The main principle of this method is 
to find the inter-packet interval, which is dependent 
on timing operations precision. The accurately cho-
sen inter-packet interval on the sender side allows

achieving the actual available bandwidth of the net-
work path. The goal of the AvB algorithm is to find
the minimal value is after which the difference ir− is
is minimal.
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The instances are distributed all over the world in 
the AWS regions, which shown in Figure 2. The re-
gions are highlighted by colors here and further.       
US West (Oregon) - orange, EU (Frankfurt) - blue, 
EU (London) - red, Asia Pacific (Singapore) - cyan, 
Canada (Central) - green.

Figure 1: AvB active probing model [4].

     Since the given ALM system uses the tree-first ap-
proach, the available bandwidth estimation values are 
collected only once as a first step. Collected metrics 
are formed into adjacency matrix A and inverted by 
Hadamard inverse rule as A◦－1 because the MST 
algorithm calculates the shortest tree where the mini-
mal weight of an edge is preferable. The A◦－1 matrix 
passed to the MST or DCMST algorithm then. The 
resulted tree is treated as optimal from the perspec-
tive of the available bandwidth of the link.

4 EXPERIMENTAL SETUP

The section provides a detailed description of the test-
ing infrastructure and software, which is used during 
the experiments.

4.1 Testing Environment

As an experimental environment, Amazon AWS has 
been chosen. It provides the virtual infrastructure 
in selected continents and regions. Cascade network 
transmission infrastructure based on c5.xlarge virtual 
instances, the configuration provided in Table 1. 

Table 1: c5.xlarge host configuration.
Name Parameters 

Operating system Ubuntu 18.04 

CPU model Intel Xeon Platinum 8000 

(Cascade Lake)  

CPU Frequency 3.6 GHz 

Number of vCPUs 4 

RAM 8 GB 

Bandwidth up to 10 Gbps 
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In each region, three c5.xlarge virtual instances 
have been deployed. The regions have been chosen to 
get different variations of network conditions, such as 
long and short distances, international and interconti-
nental links. The RTT probing results shown in 
Figure 3. The index rows and columns of the matrix 
are rep-resented each host by the first letter of its 
region and the number of the virtual machine in the 
region. Left indexes are output nodes, top indexes are 
input nodes. The matrix colored as a heatmap, where 
the cells with the highest values have more saturated 
color.

Figure 2: The map of AWS hosts location.

l1 l2 l3 f1 f2 f3 c1 c2 c3 o1 o2 o3 s1 s2 s3

l1 0 0.1 0.1 13.4 14.3 14.2 89.1 85.6 88.8 134 137.4 133.7 184.8 181.2 171.4
l2 0.1 0 0.1 13.3 15.3 13 85.6 86.9 87.3 139 133.7 137.8 185.2 181.2 184.7
l3 0.1 0.1 0 13.1 13.7 13.6 88.8 88.8 86.8 137 139 139.9 180.7 181.2 171.9
f1 13.4 13.3 13.1 0 0.1 0.1 100.4 100.4 98.9 159 161.1 164.3 177.7 169.6 173.7
f2 14.3 15.3 13.7 0.1 0 0.1 99.3 99.7 99.2 159 162.6 162.7 173.3 173.4 173.7
f3 14.2 13 13.6 0.1 0.1 0 100.4 99.3 98.9 163 158.3 163.9 173.6 174 173
c1 89.1 85.6 88.8 100.4 99.3 100.4 0 0.1 0.1 66.5 66.6 65.1 219.8 219.9 219.8
c2 85.6 86.9 88.8 100.4 99.7 99.4 0.1 0 0.1 65.6 66.6 67.1 219.9 219.7 219.7
c3 88.8 87.3 86.8 98.9 99.2 98.9 0.1 0.1 0 67.4 66.6 66.7 219.9 219.6 219.6
o1 133.6 138.6 137.1 158.5 159.1 163.2 66.5 65.6 67.4 0 0.3 0.3 163.2 162.5 162.6
o2 137.4 133.7 139 161.2 162.6 158.2 66.6 66.6 66.6 0.3 0 0.3 163.1 162.9 162.8
o3 133.7 137.8 139.9 164.3 162.7 163.8 65.1 67.1 66.6 0.3 0.3 0 163.5 163.1 162.6
s1 184.8 185.2 180.7 177.7 173.3 173.6 219.7 219.9 219.9 163 163.1 163.5 0 0.1 0.1
s2 181.2 181.2 181.2 169.6 173.4 174 219.9 219.7 219.6 163 162.9 163.1 0.2 0 0.1
s3 171.4 184.7 171.9 173.7 173.7 173 219.8 219.7 219.6 163 162.8 162.6 0.1 0.1 0

Figure 3: Matrix of RTT metric values between hosts in 
milliseconds.

The experiments with additional cross-traffic are 
provided with the network load which can be seen in 
the matrix in Figure 4. The matrix is generated in 
the way to let MST algorithm construct the path, 
based on the AvB metric, which is similar to the 
RTT-based tree, but with two swapped branches: 
frankfurt and singapore hosts. Such configuration 
aimed to confuse RTT probing and tree construction 
process, which re-turn the non-optimal tree from the 
AvB perspective.

l1 l2 l3 f1 f2 f3 c1 c2 c3 o1 o2 o3 s1 s2 s3

l1 0 0 0 11,21 10,99 10,4 5,41 5,19 5,38 8,1 8,33 8,11 0 0 0
l2 0 0 0 11,23 10,99 11,2 0 5,27 5,29 8,4 8,11 8,35 0 0 0
l3 0 0 0 10,95 10,99 10,42 5,39 5,38 5,26 8,32 8,43 8,49 0 0 0
f1 11,21 11,23 10,95 0 0 0 13,33 13,33 13,33 9,89 9,89 9,91 10,77 10,51 10,53
f2 10,99 10,99 10,99 0 0 0 13,33 13,32 13,32 9,85 9,88 9,89 10,29 10,52 10,55
f3 10,4 11,2 10,42 0 0 0 13,33 13,32 13,32 9,86 9,87 9,86 10,53 10,53 10,49
c1 5,41 5,19 5,39 13,33 13,33 13,33 0 0 0 4,04 4,04 0 6,09 6,02 6,09
c2 5,19 5,27 5,38 13,33 13,33 13,32 0 0 0 3,98 4,04 4,07 6,09 6,05 6,02
c3 5,38 5,29 5,26 13,33 13,32 13,32 0 0 0 4,09 4,04 4,04 6 6,02 6
o1 8,1 8,4 8,32 9,9 9,85 9,86 4,04 3,98 4,09 0 0 0 9,61 9,65 9,89
o2 8,33 8,11 8,43 9,89 9,88 9,88 4,04 4,04 4,04 0 0 0 9,77 9,86 9,59
o3 8,11 8,35 8,48 9,91 9,89 9,86 3,95 4,07 4,04 0 0 0 9,96 9,87 9,94
s1 0 0 0 10,77 10,28 10,53 6,09 6,09 6 9,61 9,77 9,96 0 0 0
s2 0 0 0 10,51 10,52 10,53 6,02 6,05 6,02 9,64 9,86 9,87 0 0 0
s3 0 0 0 10,53 10,55 10,49 6,09 6,02 6 9,9 9,6 9,94 0 0 0

Figure 4: Matrix of the amount of cross-traffic values 
between hosts in Mbps.

4.2 Software Equipment

For the experiments, the following software and 
technologies have been used:

1) RMDT — Reliable Multi-Destination Transport
Protocol is a C++ software library, developed at
the Future Internet Lab Anhalt at Anhalt Univer-
sity of Applied Sciences. It provides point to mul-
tipoint data transport functionality [1] using UDP.
It uses BQL congestion control [9] which is toler-
ant of big delays and dramatic packet loss rates.

2)

3)

4)

Dataclone — is the transfer application based on
RMDT. In the experiments, it is configured to al-
locate 100 MB of RAM for both send and receive
buffers. For the experiments, Dataclone has been
set to the third CPU core. The most actual v1.0.5
version has been used.
Kite2 — is a software application, written in C++,
developed at the Future Internet Lab Anhalt at An-
halt University of Applied Sciences. It is an im-
plementation of the modified AvB active probing
algorithm which can work in 10 Gbps links [4, 3].
Cascade — is a client-server application, writ-
ten in Python, developed at the Future Internet
Lab Anhalt at Anhalt University of Applied Sci-
ences.. Cascade provides ALM functionality, it
collects metrics such as RTT, using ICMP packets
and AvB, using Kite2. Based on collected met-
rics it calculates transmission routes using MST or
DCMST. In the client mode, it orchestrates Dat-
aclones as transport software and communicates
between other server instances.

5) tc — an open-source utility, which is used to con-
figure Traffic Control in the Linux kernel. With
this tool, the bandwidth of the interface is shaped
down to 100 Mbps. Traffic Control configured as
follows:

qqdisc cbq 1: root refcnt 2 rate 10Mbit \
(bounded,isolated) prio no-transmit
qdisc sfq 30: parent 1:30 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc sfq 10: parent 1:10 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc sfq 20: parent 1:20 limit 127p quantum \
1514b depth 127 divisor 1024 perturb 10sec
qdisc ingress ffff: parent ffff:fff1 ----------------

class cbq 1: root rate 10Mbit (bounded,isolated) \
prio no-transmit

class cbq 1:1 parent 1: rate 100Mbit (bounded,isolated) \
prio 5

class cbq 1:10 parent 1:1 leaf 10: rate 100Mbit prio 1 
class cbq 1:20 parent 1:1 leaf 20: rate 90Mbit prio 2 
class cbq 1:30 parent 1:1 leaf 30: rate 80Mbit prio 2

Proc. of the 8th International Conference on Applied Innovations in IT, (ICAIIT), March 2020 

3 



6) iperf − is  an open-source  utility  for  performing
network throughput measurements. For the exper-
iments, iperf has been set to the second CPU core.
The cross-traffic between hosts has been created
with the following command:
// the process attached to core 2 with taskset 0x1
// the client started as
taskset 0x1 iperf -c DESTINATION_IP -b 10M -u -t 1000000
// the server started as
taskset 0x1 iperf -s

The software testbed configuration is shown in
Figure 5. Cascade represents the ALM system. It 
orchestrates the probing software, such as Kite2 in 
case of AvB metric, or sends ICMP packets in 
case of RTT. It configures Dataclone as a sender, 
receiver, or relay node. It defines the source and 
destination for the data, which needs to be 
transmitted. The iperf utility is used as a cross-
traffic generator. The tc util-ity restricts the 
datarates within 100 Mbps, to neglect the CPU and 
NIC as the bottleneck and to reduce the spendings 
for AWS traffic.

iperf
Traffic

generation

ALM Orchestration
Probing

Transmission

Cascade

Dataclone

RMDT lib
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in
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c
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Figure 5: Software equipment scheme.

5 EXPERIMENTAL RESULTS

Experiments have been made in two scenarios: net-
work with generated cross-traffic, d escribed i n sec-
tion 4.1, and without interfering traffic, this scenario 
called pure network. Both RTT and AvB metrics 
have been tested in these conditions. Each test case 
has been repeated in 10 trials.

5.1 RTT Metric

In both cases, with and without cross-traffic, the cas-
cade has built the same data distribution tree, which 
is shown in Figure 6. The tree constructed based 
on the metrics collected during the probing state of 
the cascade work. The delay matrix is shown 
in Figure 3. Cells with red bold values are 
related to paths built with RTT metrics.

The experiment without additional cross-traffic in 
the links given the transmission paths configuration 
provides 45.81 Mbps.

0.13ms 0.11ms
13ms 0.1ms

0.1ms

0.09ms 0.09ms85.6ms

65ms

0.26ms

0.27ms

162ms 0.14ms 0.13ms

1 3 2
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frankfurt

canada 1
2 3

oregon

singapore

3
2

1

3
2

1 2 1 3162ms

Figure 6: The tree generated by MST algorithm in the AWS 
network cloud infrastructure using RTT as a metric (in 
milliseconds).

In the presence of cross-traffic i n t he l inks, the 
same tree provides 34.89 Mbps. The cross-traffic 
generated for the test is shown in Figure 4. Cells with 
red bold values are related to paths built with RTT 
met-rics.

5.2 AvB Metric

In the case of links without additional traffic, AvB 
metric shows it’s inefficiency. Since the l inks in the 
network are relatively pure from the interfering 
traffic, the AvB estimation probing returns s imilar 
met-rics, e.g 100 Mbps for all edges. This leads to 
uncertainty in the tree construction. The trees 
obtained during all 10 trials of an experiment with a 
”pure” network, were completely different and 
gained from 15 - 24 Mbps, the average data rate of 
the experiments is 23.65 Mpbs. The Figure 7 
demonstrates one of the given trees.
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99Mb 99Mb
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Figure 7: The tree generated by MST algorithm in the 
pure network cloud infrastructure using AvB as a metric (in 
Mbps).

    However, in the presence of cross-traffic, shown 
in Figure 4, the edges of the tree, obtained  with  MST
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highlighted with red borders. The tree constructed 
us-ing the AvB metric is shown in Figure 8. The 
data rate achieved in the test is 44.65 Mbps, which is 
similar to the result of an experiment with the RTT 
metric with-out cross-traffic.
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Figure 8: The tree generated by MST algorithm in the 
AWS network cloud infrastructure in the presence of 
cross-traffic using AvB as a metric (in Mbps).

6 CONCLUSIONS

The results of experiments allow to conclude the 
fol-lowing:

1) There are cases when available bandwidth as
a metric for ALM can achieve higher performance 
for data transmission than using delay between hosts 
as a metric.

2) AvB gives insufficient results in the case of a
”pure” network. 

3) Even in the modest presence of cross-traffic,
the given transport system based on the RTT 
metric loses about 20 % of the data rate. This can be 
seen in the resulting Table 2.

4) For the AvB, as well as for delay metric it’s
not necessary to be as precise as possible, it’s only 
necessary to establish the right relation between all 
edges of the network graph.

Table 2: Results of the data transmission experiments in 
Mbps.

Since there are cases where one metrics is 
prefer-able than others to get the higher 
performance of the system, it makes sense to find 
criteria for the decision which metric should be 
used in the given situation. Finding such criteria is 
a preferable approach for the ongoing work. These 
criteria will be helpful in the process of 
developing the metric which will take into account 
both factors at once RTT and AvB.
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