
Modeling and Simulation of Enzyme
Controlled Metabolic Networks Using

Optimization Based Methods

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von
Henning Lindhorst

geboren am 10.April 1985 in Paderborn

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik der
Otto-von-Guericke-Universität Magdeburg

Gutachter:
Prof. Dr.-Ing. Joachim Kienle
Prof. Dr.-Ing. Steffen Waldherr

Prof. Dr.rer.nat. Alexander Bockmayr

eingereicht am 14. April 2019
Promotionskolloquium am 22. Januar 2020

Contents

Abstract I

Deutsche Kurzfassung III

1 Introduction 1
1.1 Metabolic networks . 2
1.2 Modeling metabolism . 5

1.2.1 Dynamic models . 5
1.2.2 Constraint-based methods . 7

1.3 Goals and contributions . 9
1.4 Structure of this work . 10

2 Resource allocation methods 13
2.1 Resource allocation in a self-replicator 13
2.2 Resource Balance Analysis . 17

2.2.1 ME models . 20
2.3 deFBA . 22

2.3.1 Species . 23
2.3.2 Reactions . 24
2.3.3 Time-scale separation . 24
2.3.4 Enzyme capacity constraint . 26
2.3.5 Biomass composition constraints 28
2.3.6 Objective functional . 29
2.3.7 Optimization problem . 31
2.3.8 Conditional FBA . 31

2.4 Conclusion . 32

3 Building, exchanging and evaluating deFBA models 35
3.1 Extending the deFBA formalism . 35

3.1.1 Refining the macromolecules . 35
3.1.2 Maintenance reactions . 36
3.1.3 Extended dynamics and lumped reactions 37
3.1.4 Objective biomass . 39
3.1.5 Optimization problem . 40

Contents

3.2 SBML extension - Resource Allocation Modeling 40
3.2.1 SBML header . 41
3.2.2 The model . 41
3.2.3 Compartmentalization . 42
3.2.4 Parameters . 42
3.2.5 Species . 43
3.2.6 Encoding genetic information 45
3.2.7 Reactions . 47
3.2.8 Naming conventions . 49
3.2.9 Future of RAM . 49

3.3 Generating deFBA models . 50
3.3.1 Prerequisites . 50
3.3.2 Building enzyme production . 50
3.3.3 Setting up quota . 52
3.3.4 Determining turnover numbers 54
3.3.5 Molecular weights & objective weights 55
3.3.6 Model validation . 56

3.4 deFBA-Python package . 56
3.4.1 Linopt class . 57
3.4.2 DefbaModel class . 57
3.4.3 RAM interface . 59

3.5 Conclusion . 61

4 Short-term deFBA 63
4.1 Why using a receding prediction horizon? 63

4.1.1 Enzymatic-growth model . 64
4.2 Implementing the receding time horizon 66
4.3 Choosing the prediction horizon . 68

4.3.1 Improving on the boundaries for the growth rates 74
4.4 Choosing the iteration time . 75
4.5 Short-term deFBA in deFBA-Python 78
4.6 Numerical examples . 80

4.6.1 Enzymatic growth model revisited 80
4.6.2 Carbon-core model . 81

4.6.2.1 Carbon source switch 83
4.6.2.2 Aerobic - anaerobic switching 86

5 Robust deFBA 89
5.1 Multi-stage MPC . 89
5.2 Constructing a single optimization problem 91
5.3 Uncertainty in the environment . 94

5.4 Implementing the robust deFBA . 97
5.5 Solving rdeFBA with deFBA-Python 98
5.6 Numerical examples . 100

5.6.1 Carbon-core model . 101
5.6.1.1 Carbon source switching 101
5.6.1.2 Aerobic-anaerobic switching 102

5.6.2 Yeast model . 103
5.7 Conclusion . 109

6 Conclusions 111

A Models 115
A.1 Resalloc model . 115

B Results for deFBA_yeast model 119

Bibliography 121

List of symbols and abbreviations 131

Abstract

This PhD thesis contributes to the modeling and the numerical simulation of
metabolic reaction networks coupled with gene expression via the inclusion of gene
products as catalysts for the reactions. These networks describe the foundation of all
(bio-)chemical processes in any living cell.

A widespread method for modeling and analyzing these networks is the Flux Balance
Analysis, which uses a stoichiometric description of the network and experimentally
determined reaction rates to predict pathway usage, growth rates and by-products.
This method helps in understanding the inner workings of metabolic networks but is
restrained to static environments and relies on experimentally measured reaction rates.

The basis for this work is an extension of this method called dynamic enzyme-
cost Flux Balance Analysis (deFBA). It models the metabolism as a resource
allocation problem with the goal to maximize biomass accumulation in a dynamic
environment. As this method is quite young, we start this work by introducing new
standards for the deFBA with regards to the creation, saving and evaluation of the
models. A result of this standardization is a software package in Python allowing
simple access and evaluation to the models.

The deFBA is limited by its reliance on a deterministic description of the en-
vironmental dynamics. But single-celled organisms have learned to prepare for
unforeseen and sudden shifts in the availability of nutrients. To be able to model this
robustness we developed a new simulation environment using a combination of the
deFBA with the multi-stage Model Predictive Control. This shifts the objective of
the modeled cells from optimal adaptation to the known environment to the more
general goal of survival while retaining as much growth rate as possible. We expect
this method to support the identification of the mechanisms leading to the robustness
against environmental changes.

I

Deutsche Kurzfassung

Diese Doktorarbeit beschäftigt sich mit der Modellierung und numerischen Simulation
von metabolischen Netzwerken, welche die (bio-)chemischen Vorgänge innerhalb von
einzelligen Organismen beschreiben.

Eine weit verbreitete Modellierungsmethode für diese Netzwerke ist die Flux
Balance Analysis, welche alleine über eine grundlegende stoichiometrische Beschrei-
bung des Netzwerks und experimentell gesessene Reaktionsraten Aussagen über
Wachstumsraten und Nebenprodukte treffen kann. Während diese Methodik bereits
tiefe Einblicke in die Struktur und Funktionsweise von metabolischen Netzwerken
geben kann, ist sie beschränkt auf statische Umgebungen und die Ergebnisse sind
stark von den eingesetzten Reaktionsraten abhängig.

Die Grundlage dieser Arbeit ist eine Erweiterung dieser Methode namens dyna-
mic enzyme-cost Flux Balance Analysis (deFBA). Diese versteht den Metabolismus
als ein Ressourcenallokations-Problem mit dem Ziel die Akkumulation von Biomasse
in einer dynamischen Umgebung zu maximieren. Da dieser Ansatz noch sehr jung ist,
beginnt unseren Beitrag damit die Handhabe dieser neuen Methodik zu standardisie-
ren in Bezug auf Erstellung, Speicherung und Evaluation der Modelle. Das Resultat
dieser Vereinheitlichungen ist unter anderem ein Software Paket in Python, welches
einen einfachen Zugang zu diesen Modellen bereit stellt.

Der Nachteil der deFBA liegt darin, dass die durch mathematische Optimie-
rung erzielten Ergebnisse sehr genau auf die aktuelle Nahrungssituation zugeschnitten
sind. Tatsächlich sehen wir allerdings in Wildtypen von Einzellern, dass ein großer
Anteil der verfügbaren Ressourcen in die Vorbereitung auf mögliche Störungen in der
Nährstoffversorgung investiert werden. Um diese sogenannte Robustheit zu model-
lieren, entwickeln wir in dieser Arbeit eine neue Simulationsumgebung, welche die
deFBA mit der multi-stage Model Predictive Control kombiniert. Diese neue Methode
erlaubt es Vorherzusagen, wie sich Einzeller an unsichere Nährstoffverfügbarkeiten
anpassen, und kann uns dabei helfen zu verstehen wie diese Robustheit durch die
Regelung der Genexpression umgesetzt wird.

III

1 Introduction

It seems to me that the view toward which we are tending is that the specificity in gene
action is always a chemical specificity, probably the production of enzymes which guide
metabolic processes along particular channels. A given array of genes thus determines
the production of a particular kind of protoplasm with particular properties - such, for
example, as that of responding to surface forces by the formation of a special sort of
semipermeable membrane, and that of responding to trivial asymmetries in the play of
external stimuli by polarization, with consequent orderly quantitative gradients in all
physiologic processes. Different genes may now be called into play at different points in
this simple pattern, either through the local formation of their specific substrates for
action, or by activation of a mutational nature. In either case the pattern becomes more
complex and qualitatively differentiated. Successive interactions of differentiated regions
and the calling into play of additional genes may lead to any degree of complexity of
pattern in the organism as a largely self-contained system. The array of genes,
assembled in the course of evolution, must of course be one which determines a highly
self regulatory system of reactions. On this view the genes are highly specific chemically,
and thus called into play only under very specific conditions; but their morphological
effects, if any, rest on quantitative influences of immediate or remote products on growth
gradients, which are resultants of all that has gone on before in the organism.

Sewall Wright, in ’Genetics of Abnormal Growth in the Guinea Pig’, Cold Spring Harbor
Symposia on Quantitative Biology (1934)

When reading the words of Mr. Wright roughly 90 years later, it is fascinating to see
how the understanding of the genome and its expression in all living cells has evolved.
Of course, Mr. Wright was mostly hypothesizing at this point as the experimental
methods to prove his words were simply not invented yet. Nowadays, we access to
modern methods to analyze the genome including high data throughput methods like
whole genome sequencing. These allow us to study the deoxyribonucleic acid (DNA)
of individual cells quickly and at a low cost per experiment. Following the words from
Mr. Wright, all gene actions follow a ”chemical specificity” and are called into play at
a ”simple pattern”. Therefore, it should easily be possible to derive a full set of the
cellular reactions for a cell to any outside disturbances just from its DNA alone.
Unfortunately, the more we learned about how gene expression works, what the

gene products are, and which role they play in the metabolism of cell, the more we
faced how little we really know about the process. While it is true that many of
these gene products are enzymes, which enable or regulate specific metabolic reactions
inside the cell, there exists whole families of proteins Mr. Wright could have never
known of. There are, for example, chaperone proteins working to stabilize and fold
other synthesized proteins. They regulate enzymes such that reaction products only

1

1 Introduction

are created where wanted. Other proteins are merely transporters tasked with the
transport of metabolites and other proteins to their destination. Membrane proteins
regulate the uptake or secretion of chemicals. Others are used as messages which
can be sent to other cells via the medium the cells live in. And these are just some
examples of functions of gene products inside the cells.
Even if we knew all functions of the products, we still could not state with full

certainty how the cells regulate themselves completely as other factors like epigenetics
and the existence of phenotypes are not included yet. While there exist projects to
include every detail of a single cell into very sophisticated Whole-Cell models [54], the
creation of the models takes years and large amounts of manpower to even have a
chance of being successful.
In this work, we want to present and develop methods, which bypass the problem

of unknown regulations inside the cell. Instead these methods assume that the in-
ternal regulation of cells has evolved over millennia to optimize certain aspects, like
achieving maximal growth rates under specific conditions or surviving in very dynamic
environments. The idea is to translate this assumption into a mathematical optimiza-
tion problem and predict the cells’ behavior via the solution of the optimization. We
place a focus on dynamic environments in this work, meaning availability of nutrients
can change quickly with or without the influence of the cells. Our final goal is to
predict how cells adapt to these rapidly changing environments and locate the cellular
functions making the cells robust against the constant pressure to adapt.
At the core of these constraint based methods lies always a metabolic network and

the chemical reactions enabling the cell to live. We give a short introduction into these
in the next section.

1.1 Metabolic networks
The metabolism of a cell can be explained via metabolic networks which are di-
rected hyper-graphs describing all reactions between the metabolites. We consider
(bio-)chemical reactions in the stoichiometric form, e.g. the formation of water

2 H + 1 O2 ↔ 1 H2O, (1.1)

where the given amounts of each species are called the stoichiometric coefficients of the
reaction. For easier reading coefficients with value 1 are usually omitted. The Figure
1.1 depicts a simple metabolic network and the transport of matter along the system
border. The corresponding reaction system is given as A↔Aext, B↔Bext, C↔Cext,
Dext →D, F↔Fext, G→Gext, A→B+C, B↔E, C→D, D→E, E↔F, E→G with the
external metabolites Aext, Bext, Cext, Dext, Fext, Gext and the internal metabolites A, B,
C, D, E, F, G. We distinguish between exchange reactions transporting matter along
the system border and internal reactions only involving internal metabolites.

2

1.1 Metabolic networks

Aext A

B

Bext

C

Cext

E

D

Dext

F Fext

G Gext

system border

external metabolite

internal metabolite

reversible reaction

exchange reaction

irreversible reaction

internal reaction

V1

V2

V3 V4

V5

V6

V7

V8

V9

V10

V11

V
12

1
Figure 1.1: Simple representation of a metabolic network.

With the given stoichiometry, we can translate the information about the structure
of the metabolic network to the stoichiometric matrix S ∈ R13,12 as

S =

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12

Aext 1 0 0 0 0 0 0 0 0 0 0 0
Bext 0 1 0 0 0 0 0 0 0 0 0 0
Cext 0 0 1 0 0 0 0 0 0 0 0 0
Dext 0 0 0 −1 0 0 0 0 0 0 0 0
Fext 0 0 0 0 1 0 0 0 0 0 0 0
Gext 0 0 0 0 0 1 0 0 0 0 0 0
A −1 0 0 0 0 0 −1 0 0 0 0 0
B 0 −1 0 0 0 0 1 −1 0 0 0 0
C 0 0 −1 0 0 0 1 0 −1 0 0 0
D 0 0 0 1 0 0 0 0 1 −1 0 0
E 0 0 0 0 0 0 0 1 0 1 −1 −1
F 0 0 0 0 −1 0 0 0 0 0 1 0
G 0 0 0 0 0 −1 0 0 0 0 0 1

, (1.2)

which reflects the incidence matrix of the underlying graph with the rows of S cor-
responding to the species (nodes) and columns to reactions (edges). But instead of
being limited to the entries si,j ∈ {−1, 0, 1} the stoichiometric coefficients are used as

3

1 Introduction

entries, e.g. reaction (1.1) has the stoichiometric matrix

S =

V

H −2
O2 −1
H2O 1

. (1.3)

For a general notion we collect metabolites in the vector X ∈ Rnx
≥0 and the external

species in Y ∈ Rny

≥0, [X] = [Y] = mol. We address the reaction rates or fluxes of the
network as V ∈ Rm, [V] = mol/h. The reactions are either defined as irreversible with
Virr ≥ 0 or reversible without additional bounds. To differentiate between different
biological functions of the fluxes we use the index sets y for exchange reactions as
Vy ∈ Rmy and x for metabolic fluxes Vx ∈ Rmx acting only on metabolites inside the
cell.
In the same manner, we introduce the sets Y , X to identify individual species types.

This way we can easily access submatrices of S, e.g., the example network consists of
the submatrices

S =

SY,y SY,x

SX ,y SX ,x

 . (1.4)

Additionally, we use a dot (·) to access all rows (columns) at once, e.g., the matrix
SY,· ∈ R7,12 describes all rows of S with respect to the external species. During this
work we will gradually introduce more variables and according index sets. A complete
list can be found in Appendix B.
This work mainly uses variables expressed in molar amounts, but in rare cases we

will also use molar concentrations. They are depicted in bold fonts, e.g. X, [X] =
mol/L and resp. [V] = mol/(L h). Please note, that the formulation of fluxes in
molar concentrations should usually be avoided, especially if multiple compartments
are involved. As this is not the case in our applications, we stick to this simple
formulation.
The main concern of this work is the dynamic modeling of metabolic networks. Time

is depicted as t, [t] = h and we refer to single points of trajectories for species and
reactions via X(t) ∈ Rnx. Time slices are written as X([t0, t1]) = {X(t) |t ∈ [t0, t1]} ⊂
Rnx. For time intervals we use square brackets for closed sets [t0, t1] = {t | t0 ≤ t ≤ t1},
rounds ones for open sets (t0, t1) = {t | t0 < t < t1}, and a mix for half-open sets
(t0, t1] = {t | t0 < t ≤ t1}.
The rate of change for metabolites is then defined by the difference of the reactions

4

1.2 Modeling metabolism

producing and depleting them

d
dtX(t) = Ẋ(t) = Vproduction − Vconsumption (1.5)

Combining this with the known stoichiometry of the reactions we can simplify the
dynamics for metabolites to

Ẋ(t) = SX ,·V (t). (1.6)

For all models of metabolic networks the first and foremost problem is how we can
determine the reaction rates V (t). In the following section we look at some possible
answers for this question, before we present the solution we are using in Chapter 2.

1.2 Modeling metabolism

1.2.1 Dynamic models

Focus in this work is on kinetic and constrained based modeling, other approaches and
their relation have been reviewed recently in the book of Ramkrishna [88]. The most
widespread model for the reaction rates V (t) is using Michaelis-Menten kinetics [72].
These are given for an enzymatic reaction as

E + S
kf

−−−⇀↽−−−
kb

ES
kcat
−−−→ E + P, (1.7)

with the enzyme E, substrate S, product P, complex ES and the positive rate constants
kf (forward rate), kb (reverse or backward rate) and kcat (catalytic rate). This model
assumes that the binding between substrate and enzyme is a reversible process with
the respective rates, while the formation of the product is irreversible. The enzyme is
not depleted during the formation of P and is simply released again.
Using the law of mass action [31] we get four ODEs to define the dynamics of the

involved species

dE
dt = −kfE · S + kbES + kcatES (1.8)
dS
dt = −kfE · S + kbES (1.9)

dES
dt = kfE · S− kbES− kcatES (1.10)
dP
dt = kcatES, (1.11)

with the forward rate constant kf and the backward constant kb. As the enzyme
is neither depleted nor produced in this example the total concentration E + ES

5

1 Introduction

stays constant E(t) = E(t=0) = E0 and we can express the relation between free and
bounded enzyme as

E + ES = E0. (1.12)

Michaelis and Menten assumed in their original analysis [72] that substrate and com-
plex are in chemical equilibrium kfE · S = kbES. This leads directly to

kf (E0 − ES) · S = kbES⇔ ES = E0S
Kd + S

, (1.13)

with the dissociation constant Kd = kb/kf . The rate of product formation can be
described as

V(t) = dP(t)(t)
dt = Vmax

S(t)
Kd + S(t) = kcatE0

S(t)
Kd + S(t) , (1.14)

with the maximum rate achievable Vmax = kcatE0.
An alternative formulation was derived by Briggs [14] using the quasi stady-state

assumption instead of the chemical equilibrium

kfE · S = kbES + kcatES. (1.15)

Combining this with (1.12) yields a quite similar result

V(t) = dP(t)(t)
dt = Vmax

S(t)
KM + S(t) = kcatE0

S(t)
KM + S(t) , (1.16)

but uses the Michaelis constant KM = (kb + kcat)/kf instead of the dissociation con-
stant. For the rest of this work we will focus on the Michaelis constant.
Depending on the concentration of the substrate, equation (1.16) can be further

simplified. At very low concentrations S � KM , we can assume first-order kinetics
are sufficiently accurate and write

V(t) = Vmax
S(t)
KM

. (1.17)

If S reaches saturation S >> KM the reaction rate also converges to Vmax and we can
substitute (1.16) even with zero-order kinetics

V(t) = Vmax = kcatE0. (1.18)

Translating this equation means all enzyme is bound to the substrate and higher rates
can only be achieved by an increase in available enzyme.
So far we only discussed single substrate reactions and have shown under which

conditions their kinetics can be simplified. In genome-scale networks, we must deal

6

1.2 Modeling metabolism

with multi-substrate reaction, which rely on complex non-linear dynamics for modeling
[45]. Using these non-linear dynamics in large scale metabolic networks has proven to
be challenging in application. Combining this with the simple fact that the reaction
and enzyme specific values for the Michaelis constant are usually not available, makes it
in most cases not viable or even impossible to use Michaelis-Menten kinetics in genome-
scale models. Nevertheless, there exist large-scale non-linear metabolic models, like k-
ecoli457 [56], but their creation relies heavily on parameter fitting and can usually only
be used in very specific scenarios. To simplify the model creation process and minimize
the amount of experimental data needed a different approach called constraint-based
modeling was invented.

1.2.2 Constraint-based methods

An alternative approach to the kinetic modeling are the constraint-based methods [11].
Their idea is to determine the unknown reaction rates by applying large amounts of
biological and physical constraints to the networks and use a mathematical optimiza-
tion to determine a flux distribution maximizing a biological objective like growth rate.
Most of these methods assume metabolites are kept at steady-state, meaning produc-
tion and depletion of all metabolites is balanced and their overall concentration levels
stay constant. This assumption is motivated by the vast differences in the time-scales
of cellular processes [105]. Nutrient uptake and metabolic reactions run very fast in
comparison to gene expression and creation of biomass. A time-scale separation [110]
then leads to a quasi steady-state constraint on the metabolic rates in the form

SV(t) = 0 ⇔ V(t) ∈ ker(S), (1.19)

with the ker(S) being the kernel of S ∈ Rn,m. This constraint can be translated into
the need for an effective metabolism as (1.19) prevents unnecessary accumulation of
metabolites inside the cell. The cells basically implement a just-in-time production
to minimize the space requirements for the metabolites. We will show a rigorous
mathematical derivation of this explanation in Section 2.3.3.
But just constraining the fluxes to the kernel of the stoichiometric matrix will usually

not yield a unique flux distribution as dim(ker(S)) > 1. The Flux Balance Analysis
(FBA) [105] tries to identify the correct flux distribution by assuming the metabolism
optimizes itself to maximize the rate of a biomass producing reaction. Because biomass
components, such as enzymes, cell wall, etc., are not explicitly modeled so far, we
introduce a single pseudo-reaction Vbio : Rn → ∅ consuming the metabolites needed
for growth like amino acids, ATP, fatty acids, etc. The flux through this reaction is
to be maximized. We can infer additional constraints by enforcing the reaction flux
through irreversible reactions to be positive Virr ≥ 0 and present the mathematical

7

1 Introduction

description of the FBA as

max
V∈Rm

Vbio (1.20)

s.t. SV = 0 (1.21)
Virr ≥ 0 (1.22)
vmin ≤ V ≤ vmax, (1.23)

with the upper and lower reaction bounds vmin and vmax. While it is not necessary to
infer these bounds on all reactions in the system, key reactions must be constrained,
e.g. the uptake of nutrients VY <∞, to limit the rate of the biomass reaction to finite
levels. On the other hand, one can include data on active reactions from experiments
via the flux bounds.
This method can bring insight to some of the basic workings of the metabolism. For

example it is possible to identify necessary nutrients to enable growth [30] or predict
by-products during growth [80]. But at the same time this method is very limited as it
can only determine a single flux distribution for the given reaction bounds. This means
we can not directly model changes in e.g. the nutritional situation. Furthermore, the
biomass reaction Vbio can only approximate the real need for nutrients as the biomass
composition varies over time due to e.g. the cell cycle. This methods also completely
neglects the necessity to translate the enzymes to even realize the reactions. This might
lead to infeasible solutions if enzymes can not be translated in the given environment.
An obvious advantage of the FBA is that we only have to solve a linear program (LP)
for which fast and efficient solvers are available. Over the course of this work and
especially in Chapter 2, we will present more advanced resource allocation methods
which address the shortcomings of the FBA while sticking to the simple problem
description via an LP.
Another point to discuss with the FBA is the assumption that the metabolism purely

tries to maximize the biomass reaction or, more general, the growth rate. While this
might be applicable to strains grown over a large number of generations under perfect
laboratory conditions, we can not assume this to be true for wild types which are used
to changes in their environment. Studies like [37] have investigated different objective
functions for the FBA, e.g. maximization of ATP yield, minimization of reaction steps,
minimization of byproduct yield or the regular maximization of biomass production.
Unfortunately, the results strongly depend on the used model. While maximizing the
biomass seems a reasonable approach for most cases for some models the results are
very disappointing. Therefore, newer studies like [81] develop automated methods
to determine model-specific objective functions. But these automatically generated
objectives are calculated using experimental data and can loose their physical meaning
up to a point that we can not understand what is even optimized.
Another approach is to find a formulation for the objective which reflects the overall

8

1.3 Goals and contributions

goal of survival for the cell population. But it seems to be impossible to reduce this to a
single objective as some aspects of survival might contradict each other. For example,
a wild-type cell must be capable to grow as fast as possible in a given environment
to be able to outgrow possible competitors for the nutrients. At the same time this
wild-type must be able to react to changes in the environment, which means preparing
some enzymes to enable pathways which are not used in the current environment.
But this lowers the growth rate in the given environment. It usually does not make
sense to compress these very different objectives into a single objective function with
multiple weighted terms. While this combination might result in unique solutions,
these will rely heavily on the chosen weights as these determine the relevance of the
individual terms. Instead we can investigate contradicting objectives with tools from
multi-objective optimization [27]. When using multiple objectives we do not investigate
a single optimal solution anymore but look at the Pareto frontier (or Pareto set) of the
problem. This is the set of Pareto optimal solutions, meaning no further improvements
to any given objective can be made without harming another one. An application of
this idea to a model of the bacterium E.coli can be found in [99]. The result of this
study shows that the metabolism of E.coli works close to the Pareto frontier determined
by three objectives: Minimizing the total flux, maximizing ATP yield, and maximizing
the biomass yield. But the problem sustains that these objectives have to be chosen
by hand and results are highly dependent on the ones chosen.

1.3 Goals and contributions
The basis for this work is one of the latest constrained-based modeling methods called
the dynamic enzyme-cost Flux Balance Analysis (deFBA) [110], which we will present
fully in Section 2.3. We strive to achieve two major objectives in this work: Extending
the functionalities of the deFBA and making it easy for user to utilize the method.
A derivative of the deFBA, called the constrained Flux Balance Analysis, was already

successfully applied to a genome-scaled model for cyanobacteria in the work [90]. The
model in this work was created without underlying guidelines and is only available in a
MATLAB specific data format. To enable users to easier create this type of model, we
present systematic way to create deFBA models starting from gene-annotated FBA
models, which was created in cooperation with A. Reimers and S. Waldherr [91].
To further enable the user to save and share the resulting models, we also devised
an extension to the widely used Systems Biology Markup Language (SBML) called
Resource Allocation Modeling (RAM). This new format can be used to save and load
deFBA models, while ensuring a minimum of encoding errors to be present.
For the analysis of deFBA models we implemented a Python toolbox deFBA-Python

which collects multiple simulation methods and supports import and export to RAM.
A focus in the development of deFBA-Python was to keep the computational cost as

9

1 Introduction

low as possible to ensure that simulations can be performed on a regular personal
computer. We implemented support for multiple linear solvers, namely CPLEX [102],
Gurobi [43], SoPlex [114], and cvxopt [2], which all provide free academical licenses.
The need for low computational cost is also reflected in the introduction of a new

deFBA method, called the short-term deFBA. This methods shifts the original ap-
proach of the deFBA with a single large optimization problem to a series of smaller
optimization problems. Another benefit of this method that it decouples the opti-
mization from a given end-time as this has proven to impact the quality of simulation
results [109].
A downside of the optimization based approach used in deFBA methods is the

need to operate these models in well-defined environmental conditions. The predicted
enzyme-levels and growth rates can therefore only be compared to data collected under
very strictly controlled conditions. In nature, microorganism can not rely on closely
monitored growth conditions and have developed complex regulatory interactions to
ensure that a sudden shift in growth conditions does not prove fatal. We are very
interested in the study of the mechanisms making the cells robust against variations in
the nutrient supply and developed an extension to the deFBA, which takes uncertain
availability of nutrients into account. The resulting robust deFBA allows us to study
how microorganisms adapt in unsteady conditions by shifting the stiff mathematical
objective of the regular deFBA in the direction of general survivability.

1.4 Structure of this work
To formulate this new method, we introduce the reader in more detail to the history
and the currently used resource allocation models. We do this in Chapter 2. This
historical overview shows a direct path from the presented Flux Balance Analysis
to the dynamic enzyme-cost Flux Balance Analysis (deFBA), which we will use and
enhance for the rest of the work.
In the third chapter we present our work on the creation deFBA models and the

introduction of new elements to the formalism. Furthermore, we discuss guidelines on
how these models should be formulated to make it more easy to share them via an
extension to the Systems Biology Markup Language we devised. We end the chapter
with an introduction to the deFBA-Python package, which is a main result of our work.
It contains tools to handle deFBA models and implementations of the new methods
we present during this work. We will end each chapter to highlight the functions of
deFBA-Python with respect to the presented methods.
Chapter 4 connects the deFBA formalism to possible applications in Model Predic-

tive Control. This is done by the introduction of a receding prediction horizon to the
resulting numerical problems. Because the results of deFBA models can vary with the
considered time frame, we also device a systematic procedure to minimize the influence

10

1.4 Structure of this work

of this prediction horizon in the short-term deFBA. This is the first step in making
the deFBA viable to be used in a robust optimization environment.
The final results of this work are explained in Chapter 5, which introduces the

robust dynamic enzyme-cost FBA which enables us to consider sudden shifts in the
nutritional situation in our models. This allows us to emulate possible future conditions
and shift the objective in the mathematical model from simply optimizing in a given
deterministic future to a more realistic setting in which survivability may be more
important.

11

2 Resource allocation methods

This chapter gives an overview on the history of resource allocation models and its
current state. To clarify the evolution and the differences of the individual methods,
we follow the introductory chapter of [92] and use a single leading example and present
it in the different methods.

2.1 Resource allocation in a self-replicator
In the introduction of constraint based methods the networks were presented as self-
optimizing with the goal to maximize certain objectives by attaining an optimal steady
state flux distribution. Another view on metabolic networks was established over
the last decades postulating that metabolic networks are solving a resource allocation
problem. This means the cell decides to funnel available nutrients into different cellular
function, like producing biomass (ribosome, enzymes, etc.), storing energy in some
form (starch, cellulose, etc.) or doing maintenance (repair of DNA damages, etc.). At
the same time the cells must decide how to optimally utilize the available enzymes and
how to adapt these to the given environmental situation.
These ideas were introduced to metabolic networks over a very limited time span.

One of the first studies to include the limitation of the proteome are [15] and [58].
These works are connecting optimal flux distribution calculated via FBA with the
proteome by assuming the cells maintain the minimal enzyme concentration possible
to realize this flux distribution. But this constraint is only applied to the metabolic
fluxes, while in reality the proteome constrains all cellular functions [75]. This means
any growth strategy advised by the cells must be planned around the production
of more enzymatic biomass and especially the ribosome as core of the reproductive
machinery.
The study [75] is built around a minimal toy model for a self-replicating structure

as given in Figure 2.1. This model consists of a single external species Y = [Sout]
representing the substrate and two internal metabolites X = [Sin, G]; the uptaken
substrate Sin and processed precursors G. Cellular subsystems are represented via
a new species type: the macromolecules P , which are addressed by the index set
P . We collect in P all species with any enzymatic function, which in this model
are the transporters T , enzymes E needed for the processing of the substrate, the
machinery L to synthesize membrane lipids M and ribosomes R producing the above
and itself. For the synthesis of these components are only the precursors G needed,
P = [E,L,R, T]T . The membrane lipids M play a special role in this model as they

13

2 Resource allocation methods

Substrateout

Substratein Precursor

Membrane lipids

Tr
an

sp
or

te
r

Metabolic pathway

Ribosome Lipid synthesis

1
Figure 2.1: A minimal self-replicator as suggested by [75]. Biochemical species are

shown in green circles, specialized enzymes are shown in blue boxes. Matter
transport is depicted by a black arrow. A blue arrow means synthesis.

Table 2.1: Details on the reactions in the self-replicator model.

Reaction name Reaction Catalyzed by Turnover rate
Vin Sout → Sin T 7
Vmet Sin → G E 5
VM G→M L 5
VR G→ R R 3
VL G→ L R 3
VT G→ T R 3
VE G→ E R 3

do not serve any auto-catalytic purpose. Instead the cell must produce enough to keep
its boundary membrane intact during growth. We call this type of macromolecules
quota components and use the letter Q = [M] to collect them and address them via
the index set Q. We collect all the internal species in the vector Z = [X,Q, P].
As the model is formulated in concentrations we use bold fonts for the species to

clarify their units. The self-replicator is assumed to operate in balanced growth [50]

dZ
dt = µZ., (2.1)

This means all components are growing at the same growth rate µ ∈ R≥0. Or in other
words, the composition of the biomass remains constant.
While in the work itself, the growth rate is motivated and defined by the volume

change over time, it is unnecessary to go into more detail at this point. For a more
rigorous derivation please see the supplements of [75]. It is assumed that the main
objective of the cell is to maximize the growth rate µ(Sout) depending on the concen-

14

2.1 Resource allocation in a self-replicator

tration of the external substrate.
In the supplements of [75] the numerical analysis is described as a nonlinear opti-

mization problem constructed in the following way. As shown in Figure 2.1 we must
regard 7 reactions V = [Vin, Vmet, VM , VR, VL, VT , VE] in the model. These are given
in Table 2.1. While the concentration of the species will change by the difference of
production and consumption as explained in Section 1

d
dtZ(t) = Vproduction −Vconsumption, (2.2)

in this dynamic setting we must also consider the dilution due to increase in cell volume
V . Given the balanced growth constraint on the system we can explain the increase
in volume as

V(t) = V0 exp(µt) = V0e
µt, (2.3)

with the initial volume V0. The dilution due to volume increase is added to the
dynamics (2.2) with another consumption term as

dZ
dt = Vproduction −Vconsumption − µZ (2.4)

= SV(t)− µZ, (2.5)

with the stoichiometric matrix as given by Table 2.1. This way we do not need to
consider the volume explicitly in the model.
Furthermore, we can express the synthesis rates of E, L, R, and T via the catalytic

rate of the total ribosome pool Vrib via the non-negative weights αj as

Vj = αjVrib,
∑
j

αj = 1, j ∈ {E,L,R, T}. (2.6)

These weights are the main decision factor in this resource allocation problem as they
determine the concentrations of the catalytic machinery. To determine the rates in the
model the authors use Michaelis-Menten kinetics (cf. Section 1.2.1) with the turnover
numbers as given in Table 2.1 as

Vin = 7 ·T · Sout

K + Sout
(2.7a)

Vmet = 5 ·M · Sin

K + Sin
(2.7b)

VM = 5 · L ·G
K + G

(2.7c)

Vrib = 3 ·R ·G
K + G

, (2.7d)

and the Michaelis constant K chosen as 1 for all reactions.

15

2 Resource allocation methods

The membrane lipids M have no direct benefit in the model as producing them can
not increase the growth rate µ. To ensure stability of the membrane, we enforce the
production of M via a constraint in the form

M ≥ T. (2.8)

As we will later see this must be done for all structural macromolecules without cat-
alytic functions in optimization methods.
Finally, we need to limit the maximal concentration of enzymes in the cell as space

is limited. In [75] this is done via

E + L + R + T ≤ 1. (2.9)

Combining the steady-state constraint with these dynamics and the constraints we
end with this nonlinear optimization problem

max
µ,Z,α

µ (2.10a)

s.t. Vj = αjVrib ∀j ∈ {E,L,R, T} (2.10b)
SV− µZ = 0 (2.10c)∑
j∈{E,L,R,T}

αj = 1 j ∈ {E,L,R, T} (2.10d)

Vin = 7 ·T · Sout

K + Sout
(2.10e)

Vmet = 5 ·M · Sin

K + Sin
(2.10f)

VM = 5 · L ·G
K + G

(2.10g)

Vrib = 3 ·R ·G
K + G

(2.10h)

M ≥ T (2.10i)
E + L + R + T ≤ 1 (2.10j)
Z ≥ 0 , (2.10k)

with given and fixed external substrate concentration Sout. In the study this is solved
using GAMS [24] with the KNITRO solver [17], which guarantees at least locally op-
timal solutions for the problem. Afterwards a check for global optimality is performed
using LINDOGlobal [63]. While using a solver for Non-Linear Problems (NLP) (and
especially a global one) for such a small example can be feasible, the size of genome
scale models with hundreds of reactions, enzymes and metabolites makes it impossible
to use this approach.
Even if the model is small it is very interesting to see that it can replicate some

behaviors observed in experiments which are not replicable with FBA. In [75] the model

16

2.2 Resource Balance Analysis

shows that the size of the ribosome pool increases with increasing growth rate while
the uptake capacity for nutrients decreases. It is also shown that with small extensions
the model is also able to predict overflow metabolism at high glucose concentrations,
a growth strategy in which substrates are incompletely oxidized and therefore partly
wasted [78]. Especially the reproduction of these kind of growth strategies on multiple
substrates as trade-off between cost and benefit of proteome allocation gave rise to a
variety of resource allocation model approaches. We will go into detail on the Resource
Balance Analysis (RBA) [39], Metabolism and gene Expression models (ME-Models)
[82] and the dynamic enzyme-cost Flux Balance Analysis (deFBA).

2.2 Resource Balance Analysis
The work of Moleenar et al. [75] sparked an increased interest in resource allocation
models and in turn a variety of new modeling methods were published. Following these
chronologically the next impactful publication is [39] in which the Resource Balance
Analysis was firstly presented. At its core, it kept the idea of the self-replicator as
presented in the last section, but reduces the numerical complexity of the problem to
be applicable to genome-scale problems.
This was mostly done by three major changes in the approach:

1. Relaxation of steady-state constraint.
The steady-state constraint as given by (2.10c) is mainly relaxed by neglecting
the dilution terms for all non-macromolecules and allowing accumulation (over-
production) of macromolecules and metabolic precursors. This translates to the
new form of (2.10c) as

SSin,·V = 0 (2.11a)
SP,·V ≥ 0 (2.11b)

SQ,·V− µZQ ≥ 0 (2.11c)
SP,·V− µZP ≥ 0, (2.11d)

with the index sets as explained in Section 1.1. We assume the error due to the
relaxation can be neglected as the optimization will keep any accumulation to a
minimum. Please note, that µ is an optimization variable and (2.11c), (2.11d)
still present a quadratic constraint.

2. Replacing nonlinear kinetics with linear ones.
Assuming all enzymes are near their respective saturation levels in the cell we
can simplify the non-linear kinetics (2.10f-g) with a simple linear approximation

17

2 Resource allocation methods

as

|Vmet| = kcat,EE, |VM | = kcat,LL. (2.12)

The absolute value is necessary to handle reversibility of reactions. This equality
claim is supported for steady-state growth [39] and other experimental work show
that saturation of the enzyme is in most cases given. The study [7] measured
absolute metabolite and enzyme concentrations in Escherichia coli and compared
those to the respective KM values. The results show that 83% of the measured
enzymes are at least 50% saturated with substrate. Additionally, 59% of the
substrates have a concentration more than 10-fold higher than the KM value.
Therefore, one can even speak of a trend towards over saturation.
The equality claim is quite strong and may force fluxes to be larger than observed.
This problem is addressed in combination with the absolute value in (2.12) via
another simplification. We substitute the constraint with two linear constraints
handling both possible directions of the reaction with

Vmet ≤ kcat,E E, −Vmet ≤ kcat,E E,
VM ≤ kcat,L L, −VM ≤ kcat,L L.

(2.13)

This allows for reaction fluxes to be zero even in the presence of the enzyme.
This simplification of the reaction kinetics has an even larger impact on the form
of the optimization problem. In the form of [75] all reaction fluxes were given
by the kinetics (2.10e-h). Instead the RBA handles them as free variables with
enzyme dependent bounds (2.13). The only exception are uptake reactions from
the environment to the cells inside as substrate concentrations are usually not
given at saturation levels. Hence, for the self-replicator example we keep

Vin = 7 ·T · Sout

K + Sout
. (2.14)

With the fluxes as free variables we can also omit the complex allocation of the
ribosome capacity via the αi weights. Instead we can simplify the constraint to

VL + VE + VR + VT ≤ kcat,ribR = 3R. (2.15)

This means to handle the ribosome as you would any enzyme capable of catalyzing
multiple distinct reactions.

3. Using density constraints instead of volume constraints.
The work [75] does not model the volume explicitly as it uses concentration
variables, the supplements of the paper contain an elaborate approximation of cell
volume based on membrane surface. This is then used to derive the membrane-

18

2.2 Resource Balance Analysis

to-transporter ratio, which is 1 for the example (2.10i), and a total concentration
limit, which is also 1 (2.10j). The RBA utilizes instead density constraints to
limit the total concentration of macromolecules to the mean density D̃

ρT

ZQ
ZP

 ≤ D̃, (2.16)

with the density vector ρ, [ρ] = 1/M containing the density of the macromolecules.
While using this formulation instead of the volume based derivation in [75] does
not yield a numeric benefit, it is simpler to generate as the density of each type
of molecules can be experimentally measured.
Please note, that this only limits the proteome concentration as the metabolites
are still modeled in steady state.

The mathematical formulation of the new quadratic optimization problem is then
given as

max
µ,Z,V

µ (2.17a)

s.t. SNin,·V = 0 (2.17b)
SP,·V ≥ 0 (2.17c)SQ,·
SP,·

− µ
ZQ

ZP

 ≥ 0 (2.17d)

Vmet ≤ 5E (2.17e)
VM ≤ 5L (2.17f)

Vin = 7 ·T · Sout

K + Sout
(2.17g)

VL + VE + VR + VT ≤ 3R (2.17h)
M ≥ T (2.17i)

ρT

ZQ
ZP

 ≤ D̃ (2.17j)

Z ≥ 0, V ≥ 0 (2.17k)

where we assumed all reactions can only operate in positive direction and use a fixed
substrate concentration Sout.

This problem formulation is only quadratic in the growth rate µ and [39] suggests
using a bisection algorithms utilizing half-interval search over µ in combination with
a simple feasibility test to determine the solution of (2.17a). This means we test for a
fixed value of µ if (2.17a) has a solution. If this is the case we double µ as long as the

19

2 Resource allocation methods

problem stays feasible. Once the problem becomes infeasible a typical binary search is
applied to find the maximal feasible value for µ between the last feasible value and its
infeasible double. Without going into detail, in [39] it is proven that RBA problems
have a unique maximal solution µ∗ ≥ 0 and we can find flux distributions V leading
to all values µ ∈ [0, µ∗]. Therefore, we do not have to worry about local maxima while
using the binary search and can identify µ∗ for any initial guess of the growth rate.
Even if we have to check very often for feasibility, this is quite easy for a purely

linear problem and is numerically very efficient. Hence, we can use the RBA even
for very large problems and especially for genome-scale problems. In [39] the RBA is
successfully applied to a model of Bacillus subtilis consisting of 358 metabolic reactions,
342 genes, 277 enzymes and 54 transporters.
The results of this analysis were able to reproduce behaviors observed in experi-

ments. For example, the RBA predicts an increase in the growth rate if constraint
(2.17i) is relaxed and the cell needs to produce less non-catalytic proteins. This was
experimentally proven in [33] by the creation of a knock-out mutant strain of Bacillus
subtilis deleting part of the chemotaxis machinery not needed in laboratory conditions.
The mutant was growing faster than the original wild-type.

2.2.1 ME models

Depending on the objective of the model it may be necessary to add more detail to
some processes in the cell, for example, compartmentalization and transport inside
the cell, repair processes of DNA, cell division, etc. One prominent model type called
Metabolism and gene Expression models (ME-Model) [61, 82] focuses on the transcrip-
tion and translation of genes and cell division. This means the ME-Models explicitly
incorporate RNA as mRNA, rRNA, and tRNA and add some coupling-constraints rep-
resenting production, usage, degradation and dilution of enzymes and RNA. While the
resulting model are quite similar to the RBA model type from a perspective of model
development they showcase how different objectives shape the modeling methods.
We do not want to discuss the different functions of RNA types here in detail and

refer to well known books on this topic like [1]. But for the model of the self-replicator
this means we have to include species representing the messenger RNA (mRNA) for all
types of enzymes mRNAL, mRNAE, mRNAR, and mRNAT . Furthermore, we need for
each mRNA a set of reactions representing the synthesis of the mRNA VmRNAj ,synth,
dilution VmRNAj ,dil, utilization of mRNA for enzyme translation VmRNAj ,trans, and a
degradation process VmRNAj ,degrad, j ∈ {E,L,R, T} in which the mRNA is decon-
structed into its base components which can be reused. The concentration of mRNA
limits the possible reaction rate of the synthesis of the enzyme in the same fashion as
the ribosome

VmRNAj ,trans ≤ kcat,max,jmRNAj, j ∈ {E,L,R, T}. (2.18)

20

2.2 Resource Balance Analysis

Because the translation reactions for the enzymes are already included in the model,
we must add another constraint

Vj = VmRNAj ,trans, j ∈ {E,L,R, T}. (2.19)

For easier reading we omit the dependency on the enzymes for the rest of this section.
More interesting are the coupling constraints to connect these new reactions to

one another. The dilution reaction is mostly motivated by a maximum of lifecycles
(synthesis - degradation - resynthesis) for each mRNA amax. It is approximated as

amax = td
τmRNA

, (2.20)

with the mean lifetime τmRNA and the doubling time of the cell td. The doubling time
of the cell can be easily converted into the growth rate via µ = log(2)/td. Following
the supplemental material of [61] the coupling constraint

VmRNA,dil ≥ amaxVmRNA,degrad (2.21)

can then be understood as ”Remove one mRNA from the cell for every amax times it
is degraded”.
Synthesis of the mRNA and the degradation reaction are coupled via another con-

straint given as

VmRNA,degrad ≥ bmaxVmRNA,trans, (2.22)

with the coupling constant bmax. This constant is derived from the maximum trans-
lation rate kcat,max, which in term can be derived from the length of the mRNA and
the enzyme it is encoding. Here is an example calculation for an approximation of
kcat,max taken from [61]. Assuming the mRNA is 1000 nucleotides long and a ribo-
somes footprint is 20 nucleotides, we can fit 50 ribosomes on the mRNA. Using the
translation rate of 20 amino acids per second [115] for the ribosomes and assume the
protein length to be 333 amino acids, we can calculate

kcat,max = 50 ribosomes
mRNA

20 amino acids
ribosome sec

1 protein
333 amino acids = 3 proteins

sec mRNA . (2.23)

The authors state that this is just an upper bound and that translation is expected to
be much slower. The translation constant is then derived as bmax = (kcat,maxτmRNA)−1.
Thus, the meaning of this constraint translates to ”Degrade one mRNA every bmax
times it is translated”.
As the mRNAs are assumed to operate in steady-state, we must introduce one more

constraint

VmRNA,synth = VmRNAj ,degrad + VmRNAj ,dil. (2.24)

21

2 Resource allocation methods

For the enzymes in the model, we also add a dilution reaction Vdil which is coupled
to the reaction Vusage the enzyme catalyzes as

Vdil ≥ cmaxVusage. (2.25)

The coupling parameter in this case is chosen as

cmax = 1
kcat,usagetd

, (2.26)

with the turnover number kcat,usage for the reaction Vusage and the doubling time td.
The meaning of this constraint can be interpreted as "One enzyme must be removed
for every kcat,usagetd it is used to catalyze a reaction".
As the enzymes are assumed to operate in steady-state we also have to couple the

production of the enzyme to the dilution

Vj = Vj,dil, j ∈ {E,L,R, T} (2.27)

to keep the concentration of enzyme fixed.
Overall, comparing the ME-Models to RBA models, we have to add for each en-

zyme at least one mRNA species, two reactions, four constraints and two new param-
eters utilizing the equality constraints to eliminate as many new reactions as possible.
While this increases the complexity of the problem quite a lot, the predictive power
of the model stays roughly the same. The authors of [82] state ”ME-Models produce
experimentally testable predictions for: (1) the cell’s maximum growth rate (µ∗) in
the specified environment, (2) substrate uptake/by-product secretion rates at µ∗, (3)
metabolic fluxes at µ∗, and (4) gene product expression levels at µ∗.” This is identical
to the assertions that can be made with an RBA model. Currently, there exist no
direct comparison between the results of an RBA model and an ME-Model. Hence,
it is unclear whether the inclusion of mRNA influences the results in terms of growth
rate and flux distribution.

2.3 deFBA
The previously presented methods all have in common that they model the network
at steady-state and under fixed environmental conditions. While this allows to make
strong predictions on metabolic pathway usage and gene expression levels, cells rarely
live under fixed laboratory conditions. Instead they are faced with the need to con-
stantly adapt and prepare to changes in the nutritional conditions. To study these
adaptation processes we model the environment and the proteome dynamically.
The first methods to model dynamic environments were published in the early 2000s,

starting with the dynamic FBA [70]. In the so-called static optimization-based dynamic
FBA an FBA problem for a given environment is used to predict the current metabolic

22

2.3 deFBA

fluxes, uptake rates, etc. These rates are then used to update the bounds and the envi-
ronment composition by assuming these rates stay constant over small time steps. This
process is repeated until a given end-time tend is reached. The results of these meth-
ods are metabolic fluxes and uptake rates over the whole time course. But this simple
approach suffers from the limitations of the FBA. For example, it has been shown that
the large flux variability in FBA calls for the need of lexicographic optimization [93]
to guarantee unique solutions. The choice and the order of these objectives can have
a very large impact on the solutions [41]. But still the method was successful utilized
to model a wide variety of species, e.g. the green microalgae Dunaliella salina [34].

But the biggest downside is the missing inclusion of genetic information and the
detail level as provided by the RBA. So we opted to base our work on the dynamic
enzyme-cost Flux Balance Analysis (deFBA), which we present in this section as in-
troduced in [110]. As the rest of this work is based on the deFBA we will go into more
detail in comparison to the previous methods. We will not only showcase the notation
for the deFBA in terms of the self-replicator example but also present the universal
notation. In this section, we will restrain ourselves to reviewing the content of [110],
to distinguish our changes in the upcoming chapters.
The first thing comparing the deFBA to its predecessors is that does not model

species and reaction rates in concentration based units but instead measures them in
molar amounts. We label this by using regular font for these variables instead of the
bold font (cf. Supplement B). All variables are now to be understood as mappings from
the time to their respective ranges, e.g. metabolic species t 7→ X(t) ∈ Rnx or reaction
rates t 7→ V (t) ∈ Rm. To differentiate, we address the value at a given time point
t always via the mapping X(t) and time slices via X([t0, t1]) = {X(t) | t ∈ [t0, t1]}.
Usually, the deFBA is defined on a finite time interval [t0, tend] with initial time t0 and
the final time tend <∞. Hence, we write shortly X(·) = X([t0, tend]).

2.3.1 Species

In the formulation of the deFBA as given by [110], the n species are categorized as
either: External species Y ∈ Rny

≥0, metabolic species X ∈ Rnx
≥0, or macromolecules

P ∈ Rnp

≥0. Quota elements as M in the self-replicator model are included in the
macromolecule category.
The deFBA allows us to track the growth by observing the molecular mass or simply

biomass present in the system. To measure this we assign each macromolecule species
Pi their molecular weight wi, with a unit of g/mol. The total biomass B at time t in
the system is then computed as

B(t) = wTP (t), (2.28)

with w ∈ Rnp

≥0. The biomass corresponds to the dry weight of the cell.
The biomass allows us also to introduce the instantaneous growth rate µ to the

23

2 Resource allocation methods

deFBA as

µ(t) = 1
B(t)

dB(t)
dt . (2.29)

With regards to the self-replicator model the species used in the model are Y = [Sout],
X = [Sin, G]T , and P = [E,M,L,R, T]T . Because all macromolecules in this are
constructed from the same amount of precursor (cf. Table 2.1), we choose the molecular
weight for all species as wi = 1g/mol, i ∈ {E,M,L,R, T}.

2.3.2 Reactions

The reactions in the model are classified into three categories as well: Exchange re-
actions Vy ∈ Rmy exchanging matter with the outside, metabolic reactions Vy ∈ Rmy

converting metabolic species into one another, reactions Vp ∈ Rmp producing biomass
from metabolites or deconstructing biomass into them. The reaction vector is con-
structed as V = [Vy, Vx, Vp]T ∈ Rm. A priori, we assume the reactions to be indepen-
dent variables whose trajectories will be defined by the solution of an optimization
problem.
Additionally, direction for the fluxes is defined with biomass independent flux con-

straints

vmin ≤ V ≤ vmax. (2.30)

with vmin ∈ {0,−∞}, vmax ∈ {0,∞}. Information on the direction of the fluxes can be
gathered from e.g. thermodynamic constraints [47]. Of course, the constraint (2.30)
can also be used to enforce arbitrary independent flux constraints, but in deFBA we
usually do not encounter these as the formulation in molar amounts allows for arbitrary
large reaction fluxes given enough reactants and enzymes are present. The direction
of the fluxes is chosen in a way such that irreversible reactions always transpire into
the positive direction with vmin = 0.
In the self-replicator model , we use the same reactions as in the RBA version (2.17a)

and can categorize them as Vy = [Vin], Vx = [Vmet], and Vp = [VE, VM , VL, VR, VT]T . All
reactions are assumed to operate in positive direction only V ≥ 0.

2.3.3 Time-scale separation

As we are handling a dynamic problem we must deal with different time-scale on which
the processes happen. Following [110] we can distinguish two major time-scales; the
metabolite amounts are assumed to change very fast in comparison to the nutrient
concentration outside the cell and the changes in macromolecule amounts. This is
reflected in three major assumptions.

24

2.3 deFBA

1. The macromolecules are composed of large amounts of small metabolites.
Genome-scale models contain enzymes, ribosome, etc. as macromolecules which
consist of hundreds up to thousands of amino acids. This means we can express
biomass reactions in a form Vp : αX → P with a large stoichiometric coefficient
α >> 0.

2. Production reactions Vp become proportionally slower with increasing α. This
assumption holds also true for genome-scale models as the speed of enzyme trans-
lation is fixed to roughly 20 amino acids per second. Hence, the production
reactions become slower, if the size of the enzymes increases. This property is
included by scaling the biomass reaction fluxes with a small factor ε.

3. A very large extracellular volume in comparison to the volume of the cell popu-
lation Vext >> Vint.

The dynamics of the system can then be described as

Ẏ (t) = SY,yVy(t) (2.31a)
Ẋ(t) = SX ,yVy(t) + SX ,xVx(t) + αεSX ,p(t) (2.31b)
Ṗ (t) = εSP,pVp(t), (2.31c)

with the submatrices of the stoichiometric matrix S ∈ Rn,m given as described in
Section 1.1.
Without going into detail, this model can be transferred to a long time scale T = εt

resulting into a standard form to apply a singular perturbation method by Tikhonov’s
theorem [55]. If the theorems’ conditions are met, one can approximate the fast dy-
namics in the metabolites with the quasi-steady assumption Ẋ = 0. It also follows,
that the quasi steady-state is locally unique and exponentially stable. Unfortunately,
is quite complex to check whether the conditions are met. While the existence of the
steady-state can be determined via fixed conditions (cf. [38], [85]), a stability analysis
using a kinetic model is also needed, which is usually not available. Hence, we are
limited to arguing with biological insight that the quasi steady-state assumption is
applicable.
Nevertheless, we will use the boundary layer condition in all following models as

0 = SX ,yVy(t) + SX ,xVx(t) + αεSX ,pVp(t), ∀t ≥ t0. (2.32)

For the self-replicator model we set α = ε = 1 the dynamics can then be described

25

2 Resource allocation methods

as

Ż(t) =

Ẏ (t)
Ṗ (t)

 =

Ṡin(t)
Ė(t)
Ṁ(t)
L̇(t)
Ṙ(t)
Ṫ (t)

=

−Vin(t)
VE(t)
VM(t)
VL(t)
VR(t)
VT (t)

, t ≥ t0 (2.33)

with initial conditions Z(t0) = Z0. The boundary layer conditions read

Vin(t) = Vmet(t) (2.34)
Vmet(t) = VE(t) + VM(t) + VL(t) + VR(t) + VT (t) + VM(t), ∀t ≥ t0. (2.35)

which allows us to effectively delete Vmet from the model.

2.3.4 Enzyme capacity constraint

The deFBA assumes all enzymes operate at saturation levels meaning the linear ap-
proximation used in the RBA (2.13) can be applied as well. But let us formalize this
idea in a bit more detail. There exist enzymes capable of catalyzing different reac-
tions. This fact and the inclusion of translational machinery like the ribosome in the
deFBA means we can not assume the existance of one-to-one mappings from reactions
to enzymes. Instead we use the set

cat(i) = {j | Pi catalyzes Vj} (2.36)

to collect all reaction indices for the reactions catalyzed by a specific macromolecule.
Please note that this set can be empty for some elements of P if the macromolecule
has no catalytic effect in the model, e.g. the quota element Q in the self-replicator
model.
The constraint for the reaction rates translates to

∑
j∈cat(i)

∣∣∣∣∣ Vj(t)kcat,±j

∣∣∣∣∣ ≤ Pi(t),∀t ≥ t0. (2.37)

Here we distinguish between the forward constant kcat,+j and the reverse one kcat,−j.
We assume here that a reaction is only catalyzed by a single macromolecule. Thus,

we can write (2.37) in vector form

hTc,iV (t) ≤ 1Ti Pi(t), ∀t ≥ t0, (2.38)

26

2.3 deFBA

with the canonical unit vector 1i having a 1 only at the i-th position and zeros else-
where. The components of hc,i are given by the inverse turnover numbers

(hc,i)j =

 ±k
−1
cat,±j if j ∈ cat(i)

0 otherwise.
(2.39)

Depending on the reversibility of the reactions catalyzed by Pi we need to account for
all possible sign combinations in the kcat values. We collect all combinations in the
rows of the matrix Hc,i and extend the canonical unit vector to a unit matrix Ei whose
rows equal 1Ti .
To clarify here is a minimal example. The enzyme P1 catalyzes V1, V2 reversible

with the respective constants kcat,+1, kcat,−1, kcat,+2, kcat,−2, while P2 has no catalytic
function. The constraint regulating the enzymatic capacity of P1 is then written as

Hc,1V =

1
kcat,+1

1
kcat,+2

− 1
kcat,−1

1
kcat,+2

1
kcat,+1

− 1
kcat,−2

− 1
kcat,−1

− 1
kcat,−2

V1

V2

 ≤

1 0
1 0
1 0
1 0

P1

P2

 = F1P. (2.40)

We call this constraint on the network level the enzyme capacity constraint

HcV ≤ HfP, (2.41)

where Hc and Hf are the vertical concatenations of the matrices Hc,i and Fi, i ∈
{1, . . . , np}.
The enzyme capacity constraint plays a central role in limiting the growth rate of the

network as we usually rarely expect to encounter biomass independent flux constraints
(2.30).
In the example of the self-replicator we have four macromolecules with catalytic

function L,M, T,R as shown in Table 2.1. Using the turnover rates from the table
and assuming all reactions can only happen in positive direction the enzyme capacity

27

2 Resource allocation methods

constraint reads

1
7 0 0 0 0 0 0
0 1

5 0 0 0 0 0
0 0 0 1

5 0 0 0
0 0 1

3 0 1
3

1
3

1
3

Vin(t)
Vmet(t)
VE(t)
VM(t)
VL(t)
VR(t)
VT (t)

≤

T (t)
E(t)
L(t)
R(t)

=

0 0 0 0 1
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0

E(t)
M(t)
L(t)
R(t)
T (t)

. (2.42)

2.3.5 Biomass composition constraints

Another important fact to model is the inclusion of known constraints on the com-
position of the biomass. A natural example would be enforcing the production of
non-catalytic macromolecules, which do not increase the auto-catalytic capacity, like
cell walls, DNA, etc. We have already seen this in the self-replicator example in form
of the membrane lipids.
While the dry weight of the cells typically fluctuate during environmental changes,

we quite often find measurements to enforce at least some minimal quota for most
macromolecule types. The study [59] for example analyzed the dry composition of
the yeast strain Saccharomyces cerevisiae and found out that at least 34.5 % of the
biomass are made up from proteins. We include these kind of constraints via fractions
ψs ∈ [0, 1) of the total biomass B (2.28), e.g. for a structural component Ps

ψsB(t) ≤ wsPs(t) (2.43)

⇔
(
wT − ws

ψs
1Ts

)
P (t) ≤ 0, ∀t ≥ t0, (2.44)

with the molecular weight ws of Ps and the canonical unit vector 1s having a 1 at the
s-th position and zeros elsewhere.
As with the enzyme capacity we lift this constraint on the network level as

HbP (t) ≤ 0, ∀t ≥ t0, (2.45)

where the rows of Hb correspond to ψswT −ws1Ts . We refer to constraint (2.45) as the
biomass composition constraint.
In the self-replicator example we encounter only the quota constraint

M ≥ T, (2.46)

which might be useful for a static problem but is not reasonable in the dynamic deFBA

28

2.3 deFBA

setting. As the amount of membrane lipids M directly corresponds to the surface of
the cells it is necessary to keep on producing M even if the amount of transporter
enzyme T stays constant. Otherwise, we would allow solution curves which are not
physically feasible. The need to formulate biomass composition constraints as given
by (2.45) is based on the lack of volume or density constraints in the deFBA.
For the self-replicator model we change (2.46) to a need that 20% of the total biomass

must consist of membrane lipids

0.2B(t) ≤M(t)⇔ E(t)− 4M(t) + L(t) +R(t) + T (t) ≤ 0, (2.47)

with Hb = (1,−4, 1, 1, 1). Of course, it is possible to keep constraints like (2.46)
additionally, if such close connections between individual biomass components are
known.

2.3.6 Objective functional

To define a complete linear optimization problem we are still missing an objective
functional in the form

max
V (t),P (t)

J(Y (t), P (t), V (t)), ∀t ∈ [t0, tend]. (2.48)

The original work [110] compares three functionals and its effects on the flux variability
and the biophysical meaning of the solution via a minimal example taken from [76]:

1. Maximize biomass amount at end-time tend

J1 = wTP (tend) = B(tend). (2.49)

2. Discounted maximization of biomass accumulation

J2 =
tend∫
t0

B(t) exp(−ϕt) dt, (2.50)

with the discount parameter ϕ ∈ R≥0.

3. Minimize time to metabolize all nutrients

J3 = −
tend∫
t0

dt = −tend, Y (tend) = 0. (2.51)

The first functional J1 is commonly used in the dynamic FBA with an dynamic op-
timization approach. Unfortunately, the results show that using this objective results
in non-unique solutions and therefore a quite high flux variability as proven by a Flux

29

2 Resource allocation methods

Variability Analysis [16]. Because we want a method which can reliable be used to
reproduce results, we refrain from using this type of objective for the deFBA.
The second objective J2 in comparison has zero flux variability for the presented

Monod example and delivers results identical to predictions from a kinetic model
taken from literature. The interpretation of this objective is also nearly identical to the
growth rate maximization we have seen in the RBA and ME-models as the discounted
integral favors solutions growing as fast as possible; especially in the beginning of the
predicted time. At the same time the dynamic formulation allows for solutions which
do not optimize the growth rate at any given time. For example, the deFBA allows
solution which start slowly, e.g. an adaption phase due to changed environmental
conditions, but pay out after some time. The newly introduced discount factor ϕ
plays a large role in the shaping the optimal solution. Choosing larger values for ϕ
favors the early stage of the optimization further and maybe detrimental to long-term
effects. Hence, we set without loss of generality the value to zero as we miss a reliable
method to choose it.
Lastly, the solutions using J3 are identical in quality to ones from J2. We can

still not use this objective in general. For example, it is quite obvious that the end-
time condition Y (tend) = 0 is not applicable to any problem as we can not restrict
ourselves to batch processes in which the nutrients run out. Furthermore, it might
even be hard to identify which external species are even supposed to be nutrients.
E.g. yeast produces alcohol during fermentation, thus in most cases we would see
alcohol as a side-product and not a carbon source for the yeast. But experiments
have shown that ethanol can and will be metabolized in the yeast under the right
conditions (temperature, pH-value, ethanol concentration, etc.) [111]. This would
make it necessary to invest a lot of knowledge a priori into the objective functional
and we want to keep the method as accessible as possible.
Hence, we will only use objective J = J2 without the discount for the rest of this

work.

30

2.3 deFBA

2.3.7 Optimization problem

We can now formulate the full dynamic enzyme-cost Flux Balance Analysis as a dy-
namic linear optimization problem

max
V (t),P (t)

tend∫
t0

B(t) dt (2.52a)

s.t. Z(t0) = Z0 (2.52b)
Ẏ (t) = SY,yVy(t) (2.52c)
Ṗ (t) = εSP,pVp(t) (2.52d)
SX ,yVy(t) + SX ,xVx(t) + αεSX ,pVp(t) = 0 (2.52e)
HbP (t) ≤ 0 (2.52f)
HcV (t) ≤ HfP (t) (2.52g)
vmin ≤ V (t) ≤ vmax (2.52h)
Z(t) ≥ 0, ∀t ∈ [t0, tend], (2.52i)

with short-notation Z = (Y T , P T)T and the given initial values Z0.
The optimization problem (2.52a) can be solved by a multitude of methods [107],

but we stick for this work to a collation method based on a time discretization of the
dynamic variables Y (t), P (t), and V (t) [10], [108], [89]. In Section 4.5 we will present
the discretization in a bit more detail and showcase a collocation based on the implicit
midpoint rule [92] for quadrature in Section 5.5.

2.3.8 Conditional FBA

Like the RBA with ME models, there also methods around which are very closely
related to the deFBA. A parallel development to the deFBA is the conditional FBA
(cFBA) [95], which was developed with specifically phototropic organisms in mind,
e.g., cyanobacteria capable of photosynthesis and transforming sunlight and CO2 into
organic carbon. Their metabolism follows hence a strong diurnal lifestyle in which
energy storage, usually starch, is produced during daylight and consumed during the
night.
While being mostly identical in formulation to the deFBA in formulation and con-

straints, the cFBA adds a periodic constraint to reflect on the diurnal strategies of the
cyanobacteria

P (tend) = βP (t0), (2.53)

with β > 1. This can be understood as balanced growth on the interval tend − t0.
For an interval length of 24 hours this constraint reflects that the bacteria may not
maximize their growth rate at all times but instead maximize their growth over a

31

2 Resource allocation methods

complete day-night cycle. Mathematically this translates to an objective functional
maximizing β, meaning gain as much possible biomass during the given time. Of
course, it is necessary to make the initial biomass composition P (t0) a free variable
when formulating the optimization problem.
The work [90] uses the cFBA to evaluate a genome-scale model of the cyanobacteria

Synechococcus elongatus PCC 7942 and adds a new form of constraints to the cFBA
formulation: Maintenance. While deFBA and cFBA contain the possibility to enforce
the production of non-catalytic biomass in form of the biomass composition constraint,
this does not contain the necessary prolonged energy expenditures to recycle these
components constantly. In this work, the maintenance is modeled by adding a flux
hydrolyzing ATP at a rate of 0.13 mmol per gram dry weight.
Lastly, we have to state that due to the constraint (2.53) the cFBA becomes a

quadratically constrained program, but is linear for any fixed β. The most efficient
way to solve this kind of problem is using a binary search in β comparable to RBA.
As a cFBA problem is multiple times the size of a corresponding RBA problem, the
computation time is also hugely increased in comparison.

2.4 Conclusion
In this chapter we presented the most common resource allocation models to introduce
the user into this model class and give an overview on their development. The static
methods like RBA and ME-models are very interesting for the analysis of cells growing
under fixed environmental conditions. They can predict the necessary gene expressions
to survive under the given conditions and the achievable growth rate. From an en-
gineering perspective this can also be inverted and used e.g. to determine optimal
feeding strategies to maximize certain byproducts [34].
Nevertheless, these methods are incapable to generate data under a dynamic envi-

ronment. For example a lot bioproduction processes are run as batch-processes as the
biomass must be harvested in the end. It can be quite cumbersome to predict the
results or choose an ideal runtime with the static methods. The deFBA on the other
hand fits ideally into these kinds of situations as the dwindling resource availability
due to the uptake of the cells is a core feature.
The deFBA has been successfully used to predict an optimal switching time in a

two-step process and improved on the yield and quality of the desired product, see
[51].
From a more research motivated perspective the deFBA can substitute expensive

experiments or be used for experimental design applications. For example, multiple
groups are currently working on methods to generate regulatory networks from snap-
shot data, e.g. [83], [20]. But looking at these studies they always assume the data
originating in error-prone measurements from either single-cells or whole populations.

32

2.4 Conclusion

We believe it would be very beneficial to generate deFBA models for the different
organisms instead and utilize these to speed up the process and make it more efficient.
The deFBA as presented in [110] can be further improved on to make it viable in

more applications. We will also see that the deFBA can produce biological infeasible
predictions, due to inherent issues with the optimization approach. We will address
these over the course of this work and do our best to improve the deFBA.
As a first step we implement a complete deFBA workflow starting with generating

the model itself, formulating a way to share the model, and finally introducing a closed
software environment for the evaluation and simulation.

33

3 Building, exchanging and evaluating deFBA
models

This chapter is based on the joined publication [91] with Alexandra Reimers within the
European project ROBUSTYEAST. The approach on building deFBA models from
FBA models was refined by A. Reimers. H. Lindhorst was in charge for the SBML
extension Resource Allocation Modeling (RAM) which was also published individually
as an SOP [65]. The deFBA-Python package was developed solely by H. Lindhorst,
based on the collocation class LinOpt by Steffen Waldherr.

This chapter presents the reader with a full pipeline from the creation to the
utilization of deFBA models. We start with some extensions to the deFBA standard
presented in Section 2.3. Using deFBA becomes simpler for modelers if we add
components which are often used in other model setting. A good example is adding
maintenance reactions as used in the cFBA (cf. Section 2.3.8).
Afterwards, we present a systematic way to encode a deFBA model in the Systems

Biology Markup Language. The Section 3.3 discusses how we can extend existing
FBA models to deFBA models. We close this chapter with an introduction to the
deFBA-Python toolbox and its core functions.

3.1 Extending the deFBA formalism
The deFBA formalism as presented in (2.52a) is very general and can be applied in
almost every situation. But the open presentation might make it difficult for modelers
to utilize it to its full extent. We decided therefore, to present in this section slight
modification to the formalism to make it easier to understand the functions of some
components and enable new constraint types. Furthermore, these changes make it
easier to prepare models for the export to SBML as we will discuss in Section 3.2.

3.1.1 Refining the macromolecules

We want to further classify the types of macromolecules we can handle with the deFBA
to make it easier for modelers to map desired functionality to a species in the model.
We already mentioned storage species during the introduction to the cFBA. While

storage plays a secondary role for laboratory species living under constant and adequate
nutrient supply, we want to model species in highly dynamic environments, which
might also include starvation periods. We enable the cells to prepare for these occasions

35

3 Building, exchanging and evaluating deFBA models

by creating an energy storage, e.g., in the form of starch. We identify storage species
in the model as C ∈ Rnc

≥0, nc ≤ np and consider them as part of the macromolecules
P . We assign the storage a new variable as they are clearly different to the other types
of macromolecules we have introduced so far. Because these storage components can
accumulate in the model, they must be included into the total biomass B (cf. (2.28)).
Hence, we assign each storage species their molecular weights wC as with the other
macromolecules.
In connection to the storage species we also introduce a new class of reaction used to

synthesize the energy storage or to deplete them. These storage reactions are addressed
as VC ∈ Rmc and are regarded as a subclass of the macromolecules producing reactions
VP .
Furthermore, we have already seen quota components with no catalytic value, c.f.

membrane lipids in Section 2.1. Because their fundamental difference to the enzymatic
part of the biomass and the storage, we address them with the variable Q ∈ Rnq

≥0, nq ≤
np. As with storage they are a subclass of all macromolecules and we assign them
their individual molecular weights via wQ ≥ 0 to include them in the total biomass.
The reactions producing quota components are called quota reactions Vq ∈ Rmc and

are a subclass of the macromolecule producing reactions Vp. We will look at the effects
on the dynamics of the model once we introduced the other extensions to the deFBA.
All macromolecules which have a enzymatic function are collected under the en-

zymatic molecules identifier E ∈ Rne with molecular weights we and the respective
production reactions are identified as Ve ∈ Rme.
Therefore, we can express the respective identifiers as

P =

C

Q

E

 , Vp =

Vc

Vq

Ve

 , and w =

wc

wq

we

 . (3.1)

It is quite obvious that this increases the complexity of the notation a lot. Hence,
we stick to using P for all macromolecules and only differentiate the subclasses if
necessary.
Using these subclasses can become an issue as the attributes of each subclass are

not mutually exclusive. So it is possible to enforce a quota constraint on an enzyme
or a storage species. The hierarchy of the attributes will be clarified in Section 3.2.

3.1.2 Maintenance reactions

Maintenance reactions are necessary energy expenditures from the cell, which are not
modeled directly in enzyme or quota production reactions. A typical example for
maintenance is the upkeep of ion pumps to create the necessary membrane potential.
We address maintenance reactions as Va ∈ Rma and assume that their rates scale with

36

3.1 Extending the deFBA formalism

the total biomass. Because we want to keep the complexity of these reactions simple,
we assume they are in the simple form

Va : ATP ⇀ ADP + Pi. (3.2)

Depending on the resolution of the model it is also possible to include other metabo-
lites, e.g. amino acids, in the maintenance reaction, but this might violate mass
balance constraints. Maintenance reactions should operate only on the metabolites
level. Therefore, we count them to the metabolic reactions Va ⊂ Vx. Unless important
we will include the maintenance reactions in Vx without explicitly mentioning them.
To enforce certain rates on the maintenance reactions scaling with biomass we in-

troduce a new constraint

φiB(t) ≤ Va,i(t), ∀t ≥ t0, (3.3)

with the maintenance coefficient φi ∈ R≥0. On the network level we use the matrix
form

HaP (t) ≤ HgV (t), (3.4)

with the rows of Ha corresponding to φiwT and the rows of Hg are 1i. Please note,
that we do not limit the constraint to the maintenance reactions Va to enable the
modeler to enforce biomass related flux constraints on any flux. At the same time we
warn the reader that this might quickly lead to infeasible optimization problems and
should only be used with a certain awareness.

3.1.3 Extended dynamics and lumped reactions

With three new subclasses of the macromolecules and three additional reaction types
the system dynamics become quite complex. Additionally, we have to consider the
scaling factor α representing the mean macromolecules length. The purpose of scaling
the biomass producing reactions was done in [110] to be able to proof the meaningful-
ness of the time-scale separation. From a numerical perspective it is also very useful
because it equalizes the magnitude of fluxes in the model. But α was introduced as
a single scalar value and it would be more useful to scale each biomass reaction inde-
pendently as the size of the biomass components P can vary a lot. We do not go into
more detail into optimal scaling for the stoichiometric matrix and biomass production
fluxes as we usually leave the scaling to our numerical tools. Hence, from here on we
set the scaling to α = 1.

37

3 Building, exchanging and evaluating deFBA models

This way the extended dynamics for the deFBA read

Ẏ (t) = SY,yVy(t) (3.5a)

Ṗ (t) =

Ċ(t)
Q̇(t)
Ṗ (t)

 =

SC,c SC,q SC,e

SQ,c SQ,q SQ,e

SE ,c SE ,q SE ,e

Vc(t)
Vq(t)
Ve(t)

 = SP,pVp(t), ∀t ≥ t0 (3.5b)

and the boundary layer condition reads

SX ,yVy(t) + SX ,xVx(t) + SX ,cVc(t) + SX ,qVq(t) + SE ,eVc(t) = 0. (3.6)

In an ideal model all of the new submatrices of SP,p except the ones on the main
diagonal are equal to zero as we assume no direct conversion from one biomass type
to another

SP,p =

SC,c 0 0
0 SQ,q 0
0 0 SE ,e

 . (3.7)

But this shows a crucial problem with the stoichiometry as shown so far. The work
[110] assumes implicitly that every in-between step of a reaction is modeled. For
example we can look at a non-branching pathway from nutrient to biomass in the
form

Y E1→ Yin
E2→ X E3→ P , (3.8)

with nutrients Y, internal nutrient Yin, precursor X and biomass P. The reactions are
catalyzed by the respective enzymes Ei and the catalytic constants kcat,i, i ∈ {1, 2, 3}.
We can lump this reaction to a single reaction

Y Es→ P , (3.9)

catalyzed by the ”super”-enzyme Es consisting of all three previous enzymes.

Es =
∑

i∈{1,2,3}
kcat,iEi, (3.10)

with the new catalytic constant kcat,s = 1. This kind of lumping can only be used
to non-branching pathways in which all in-between states are metabolites. Another
example would be the already mentioned direct conversion of biomass types in which
we do not model the dismantling process. To include this reaction in the very specific
dynamics given (3.5a) we need to add another matrix SY,p and VP .
Instead of using column specific slices of the stoichiometric matrix in all places we

38

3.1 Extending the deFBA formalism

simplify (3.5) and (3.6) to

Ẏ (t) = SYV (t) (3.11a)

Ṗ (t) =

Ċ(t)
Q̇(t)
Ṗ (t)

 =

SC

SQ

SE

V (t) = SPV (t) (3.11b)

0 = SXV (t), ∀t ≥ t0, (3.11c)

with the short-notation Si = Si,· for all submatrices.
At the moment it is still unclear how to assign the lumped reactions to a reaction

class as they might produce external species and biomass components at the same time.
But using the row-based notation as presented in (3.11) makes this quite irrelevant. As
we will see later in Section 3.2 reaction types are even unnecessary to encode deFBA
models in SBML.

3.1.4 Objective biomass

So far we have identified the objective functional with the integral of the total biomass
B over time. But studies as [110], [109] show that including biomass species with-
out catalytic capabilities into the objective functional can lead to artificial solutions
in which the whole network focuses on the production of quota/storage components.
This can often be explained by a higher biomass yield of the quota components and
especially storage species in comparison to costly enzymes. From a biological perspec-
tive an increased production of these components is usually useless; unless storage is
created with a starvation period in mind.
Hence, we avoid these problems preemptively by introducing a new concept: Objec-

tive biomass

Bo(t) = wTo P (t) = wTC,oC(t) + wTQ,oQ(t) + wTE ,oE(t), (3.12)

with the objective weights wo, [wo] = g/mol. The objective weights are identical to the
molecular weights for the catalytic part wE ,o = wE , but we recommend to set these to
zero for storage wC = 0 and quota wQ = 0. This ensures that these two components are
handled as just means to enable growth but slowing it if too much of these components
are produced. The new objective functional for the deFBA is then given as

J =
tend∫
t0

Bo(t) dt. (3.13)

Please note, that we only change the weights for the objective biomass. The total
biomass B is still used for constraints scaling with biomass, such as maintenance

39

3 Building, exchanging and evaluating deFBA models

reactions (3.4) or the biomass composition constraint (2.45).

3.1.5 Optimization problem

With the extended notation, we can redefine the formulation of a deFBA problem as

max
V (t),P (t)

tend∫
t0

Bo(t) dt (3.14a)

s.t. Z(t0) = Z0 (3.14b)

Ż(t) =

SY
SP

V (t) (3.14c)

SXV (t) = 0 (3.14d)
HaZ(t) ≤ HgV (t) (3.14e)
HbZ(t) ≤ 0 (3.14f)
HcV (t) ≤ HfZ(t) (3.14g)
vmin ≤ V (t) ≤ vmax (3.14h)
Z(t) ≥ 0, ∀t ∈ [t0, tend], (3.14i)

where we also adapted the constraint matrices Ha, Hb, Hc to the new state vector

Z = (Y T , P T)T = (Y T , CT , QT , ET)T . (3.15)

Any further reference to the continuous deFBA problem refers to (3.14a).

3.2 SBML extension - Resource Allocation Modeling
Finding a suitable way to digitally save a deFBA model proofed to be quite a problem
as we are faced with a multitude of specialized data formats, software and interfaces
between those. We chose to utilize the Systems Biology Markup Language (SBML)
[48] as basis for the exchange. It is a representation format, based on XML [13], for
storing computational models of biological processes.
We chose SBML for its easy accessibility and extendability. There exist a software

library called libSBML [12], which is available for the most prominent programming
languages, e.g. C++, Python, MATLAB. This makes it quite easy to design import/export
interfaces from and to SBML in the respective language. Furthermore, a multitude of
extensions are already available for SBML. The most relevant one is the Flux Balance
Constraint (FBC) extension [84], which enables SBML to include information on which
enzyme is catalyzing which reactions.
Because the community using SBML focuses mostly on classical FBA models, the

40

3.2 SBML extension - Resource Allocation Modeling

language is currently lacking possibilities to encode all information necessary for the
construction of deFBA models. While some information might also be encoded us-
ing existing extensions like the groups-package [49], these were often designed with
another usage in mind. So to keep our solution focused and compatible with exist-
ing SBML formats, we choose to instead design our own extension called Resource
Allocation Modeling (RAM) [91], [65].
In this section we explain RAM in every detail and highlight how the chosen format

supports the creation and debugging of deFBA models. To be inline with documen-
tation documents for SBML we use bold font with a capital letter for XML nodes
(resp. elements) and bold font with small letters for attributes of the elements, e.g.
Species is a node representing a species in the network and one of its attributes is
name containing additional information on the species’ chemical name.
The additional data encoded via RAM are placed inside Annotation nodes. Each

and every element can be annotated so we can add on any component. To make sure
the annotations can still be used for other information we create a new namespace RAM
as

<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">

with the URL of the specification documents included.
For a full example of all functions of RAM, please see the resalloc model in Section

A.1.

3.2.1 SBML header

The header is very important for SBML files as it declares which SBML level and
its respective version is used. The current one is SBML Level 3 Version 2 Release
1 (L3V2) and its documentation is available online at 1. The RAM extension was
designed to work with L3V2, but due to the minimal changes for the components we
are using should be working with Level 3 Version 1 as well. Furthermore, the header
also clarifies which extensions are used in the file.
The typical header for RAM looks like this:

<sbml xmlns="http://www.sbml.org/sbml/level3/version2/core"
level="3" version="2" fbc:required="false"
xmlns:fbc="http://www.sbml.org/sbml/level3/version1/fbc/version2">

Please note, that the FBC package was not yet novelized for Level 3 Version 2.

3.2.2 The model

An SBML file contains one or more Model elements containing all data to construct
the respective model. Any data outside of the Model-declaration can not be included

1http://sbml.org/Documents/Specifications

41

http://sbml.org/Documents/Specifications

3 Building, exchanging and evaluating deFBA models

while reading it in libSBML. This ensures that models can not cross define to one
another.
We recommend putting only a single model in each SBML file. The only attributes

that must be added to the Model is a unique id and the fbc:strict flag, e.g.

<model id="example" fbc:strict="false">.

3.2.3 Compartmentalization

Usually, the first entry in a Model is the listOfCompartments, including all Com-
partments of the model. Compartments represent a bounded space in which the
species are located. In SBML they do not actually have to correspond to actual struc-
tures in or outside the cells, but it is recommended to use them this way. We have to
stress at this point that compartments are only to be used for physical location and
not to map model related functions to the species.
Because the deFBA does not contain explicit modeling of compartments in SBML,

we do not enforce the usage of compartments. Later we will see that due to a required
attribute in the species, we must include at least one ”default” compartment. But we
highly recommend to use compartments as they can help in verification and debugging
of models. Take for example ATP, which is produced in the mitochondria but used
throughout the cell. Without modeling the compartmentalization the model would
only include a single ATP species and thus neglecting the need for transport processes.
It is surely possible to create an ATP species for each compartment without using the
Compartments provided by SBML but these would only differ in their id, which
might be misleading. Later on, we will also suggest some conventions for choosing ids
based on compartments. This will make it easier to check for correctness, e.g., if all
species involved in a reaction are in the same compartment.
For examples using Compartments see Supplements A. For more detail on Com-

partments please see the SBML documentation [49].

3.2.4 Parameters

The listOfParameters contains the Parameters, which are used to define a symbol
associated with a value. They can be used at any point in the model in place of
a numerical value. Additionally, they can be used in mathematical formulas in the
model, e.g., to define kinetic rate laws.
Parameters need a unique2 id and must specify whether the Parameter is con-

stant. If the constant attribute is set to ’false’ nothing in the SBML file except
InitialAssignment can change the value attribute. Interestingly, the value of a

2When talking about unique ids we always mean unique in their respective type. For example there may
exist a Parameter and a Species with identical ids. SBML also makes use of metaids, which must be
unique among all model components, but we do not use these in RAM.

42

3.2 SBML extension - Resource Allocation Modeling

Parameter needs not to be set, but we strongly suggest to define all parameters in
the SBML file. In SBML L3V2 parameters can now also be used for logic statements
and boolean values can be used. Additionally, one can include a unit attribute here
pointing to a Unit element. It might also be helpful to add an sbo term [25] to clarify
the meaning of the parameter inside the model.
The deFBA uses four major parameter types: Forward catalytic constants kcat,+,

reverse catalytic constants kcat,−, molecular weights w and objective weights wo. While
it is possible to give the numerical value for each of these constants at their respective
position, we decided that in RAM all these parameters must be given via a Parameter
element using the value attribute. This way, we can distinguish parameters even if
they share the same numerical value and we can easily change their values. We also
introduce a zero Parameter, which we will use to ensure value correctness in certain
places and to avoid division-by-zero errors. Inside zero, we set the value to zero and
use this more as another chance to check whether the user forgot to set something or
put it to zero on purpose.

3.2.5 Species

Another list inside the model is the listOfSpecies. Every Species element in it
contains at least these five required attributes.

• id (string) Unique identifier for the species. We suggest to add the id of the
Compartment to avoid duplicate ids We elaborate on this problem later in
this section.

• compartment (string) An inconsistency of SBML, whileCompartments them-
selves must not be included in the model, this is a strictly required attribute for
each species and the value must be a valid id of a Compartment in the listOf-
Compartments.

• constant (boolean) Specifies whether the species is regarded as a ”fixed” species.
If this is set to ’true’ the amount of the species can not be changed after initial
assignment. Limiting external species and biomass components must have this
set to ’false’.

• boundaryCondition (boolean) Specifies, whether a species is at the systems
boundary. The amounts of a boundary species can not be changed by any re-
action, but by rules, e.g. AssignmentRule, RateRule. Non-limiting external
species, marked with boundaryCondition=’true’ and constant=’true’ are con-
sidered to be available in unlimited amounts. Hence, they can be deleted from
the optimization. As example consider oxygen as non-limiting external species.
Then we substitute the corresponding uptake reaction VO : O2 → O2,internal with
VO : ∅ → O2,internal.

43

3 Building, exchanging and evaluating deFBA models

• hasOnlySubstanceUnits (boolean) This flag indicate whether the species is
modeled in molar amounts or concentrations.

Additionally, a Species element can have the relevant optional attributes.

• name (string) Additional information about the species; usually the scientific
name.

• initialAmount (double) If the model provides initial values, these can be set
here. Fixed species should not be given a value. To ensure correctness of the
values, this attribute must be set for all external species and biomass species.
Otherwise, none of the given values are imported into the deFBA model.

While these attributes, and other optional ones we did not mention, suffice for the
construction of an FBA model, we need to construct some new attributes. We save
these in a RAM node as explained earlier. An example is provided at the end of this
section.
Inside the RAM node, we place a ram:species element, with the following attributes

• ram:speciesType (string) This attribute does not point to Parameter but can
only be chosen from a list of species types. In the current version 1.0.1, we distin-
guish between ’extracellular’, ’metabolite’, ’enzyme’, ’storage’, and ’quota’. They
represent the classes of species as explained in Section 2.3.1 and Section 3.1.1.
This attribute is used to determine whether a species is modeled dynamically or
in quasi steady-state. Furthermore, we use this attribute to check if all necessary
attributes are given for the species type.

• ram:molecularWeight (string) This entry points to the id of a Parameter
containing the molecular weight w of the species. This attribute must only be
given for macromolecules P , meaning species with ram:speciesType ’enzyme’,
’storage’, or ’quota’. While we allow this element to be zero, a warning is issued
to the user in this case.

• ram:objectiveWeight (string) Containing the id of a Parameter. The re-
spective values determines how the species enters the objective biomass as wo,
see Section 3.1.4. For enzymatic species this should be identical to the molecular
weight w defined in the attribute ram:molecularWeight. If a macromolecule
species is not to be included in the objective set this to the zero parameter.

• ram:biomassPercentage (string) Points to the id of a Parameter correspond-
ing to the biomass percentage ψ ∈ (0,] used for the construction of the biomass
composition constraint (2.45). A biomass composition constraints must be active
for quota species Q and can be for other macromolecules. To ensure correctness
of the entry, we recommend setting this to the zero parameter if no constraint
should be active for this species.

44

3.2 SBML extension - Resource Allocation Modeling

As the handling of the RAM attributes can be a bit confusing, we clarify the optionality
of attributes based on the ram:speciesType in Table 3.1.

Table 3.1: Defining possible values ram attributes for different species types. The
symbol for empty set ∅ means the value can left out, a plus + means only positive
values are allowed, and the slash / represents an or relation.

extracellular metabolite storage quota enzyme
molecularWeight ∅/zero ∅/zero + + +
objectiveWeight ∅/zero ∅/zero +/zero +/zero +
biomassPercentage ∅/zero ∅/zero +/zero + +/zero

An example for a species is taken from the resalloc model, which can be found in
the appendix A.1.

<species id="Emetab1" name="Generic metabolic enzyme" compartment="bio"
initialAmount="1.1" constant="false" hasOnlySubstanceUnits="true"
boundaryCondition="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:speciesType="enzyme ram:biomassPercentage="zero"
ram:objectiveWeight="weight_12" ram:molecularWeight="weight_2"/>

</ram:RAM>
</annotation>

</species>

3.2.6 Encoding genetic information

Before we go into detail on how to handle reactions, we explain how the FBC extension
is used to encode genetic information. Genetic information contains of two parts;
composition of macromolecules and the relation between enzymes and the reactions
they are catalyzing.
In terms of complexity, we look at two types of macromolecules: These are either

complexes made from several genes or they are the direct result of a single gene, e.g., the
Gal1 promoter is the product of the Open Reading Frame YBR020W. Complexes can
also be the combination of multiple gene products from the same type. These are then
called dimers, trimers, etc. An example would be the enzyme isocitrate dehydrogenase
in yeast, composed of the gene products YOR136W and YNL037C, where both gene
products participate as dimers. For both complexes and gene products it is unnecessary
to create a new species for each gene as we are only interested in the final product.
Hence, we use the genetic information given for the creation of the biomass producing
reactions but do not model each gene product individually.

45

3 Building, exchanging and evaluating deFBA models

If the composition of a macromolecule is available we add the information to the
SBML file via the fbc:GeneProduct elements.
Each of the macromolecules is also present as a species and additionally we create

an fbc:GeneProduct element for each one of them. An fbc:GeneProduct has the
following attributes:

• fbc:id (string) Because the id of the macromolecule species is unique, we can
reuse it as it is also unique among the gene products. To reflect the meaning of
the gene product a bit more, we also suggest using the gene identifier as id for
monomers and using ’complex_counter’ for complexes and multimers.

• fbc:associatedSpecies (string) The id of the macromolecule Species associated
to the gene product is placed here.

• fbc:label (string) The label is currently not well defined. The documentation of
FBC simply lists this as a field for ”additional information on the gene product”.
Hence, we do not violate existing rules, when we enter the full gene composition
of the macromolecule at this position. We encode them as ”number*gene id AND
number*gene id AND ...” to an easily parsable format. Please see the resalloc
model for examples.

People who have already worked with the FBC package might find
the use of fbc:label unnecessary as FBC provides fbc:and inside
fbc:geneProductAssociation to state which genes are necessary to catalyze a
reaction, e.g.

<reaction id="reaction_2" reversible="false">
<fbc:geneProductAssociation fbc:id="reaction2">
<fbc:and>
<fbc:geneProductRef fbc:geneProduct="YVR173" />
<fbc:geneProductRef fbc:geneProduct="YKT009W" />

</fbc:and>
</fbc:geneProductAssociation>

</reaction>

While this states which genes are involed, we are forced to repeat the
fbc:geneProductRef inside the fbc:and to reflect if a gene product enters a macro-
molecule multiple times. As this can easily lead to misunderstandings, we have chosen
to save the gene composition for the enzyme in fbc:label. Please note, that this in-
formation is necessary for the construction of the protein producing reactions. Once
these are defined it is possible, yet inadvisable, to forget the genetic information of the
protein.

46

3.2 SBML extension - Resource Allocation Modeling

So far we have not talked about isoenzymes in this context. Isoenzymes are enzymes
differing in amino acid sequence but catalyzing the same reaction. Consider the re-
action V1 to be catalyzed by either E1,1 or E1,2 with the respective turnover numbers
kcat,1,1 and kcat,1,2. While for most cases it would be possible to change the format of
the capacity constraint to

|V1| ≤ kcat,±1,1E1,1 + kcat,±1,2E1,2, (3.16)

we must consider situations in which at least one of the isoenzymes catalyzes more
than one reaction, e.g., V2 being catalyzed by E1,2. This can only be clearly expressed
if each reaction is maximally catalyzed by a single enzyme. We realize this by copying
the reaction in the amount of present isoenzymes. This means for the example we
transform (3.16) to ∣∣∣∣∣ V1,1

kcat,±1,1

∣∣∣∣∣ ≤ E1,1 (3.17)∣∣∣∣∣ V1,2

kcat,±1,2

∣∣∣∣∣ +
∣∣∣∣∣ V2

kcat,±2

∣∣∣∣∣ ≤ E1,2, (3.18)

with V1,1 and V1,2 sharing their stoichiometry. This also makes it easier to assign the
kcat values as each reaction can maximally have a single pair of forward and reverse
constants.

3.2.7 Reactions

The Reaction elements are collected in the listOfReactions. As with species we
want to present the relevant attributes of a Reaction starting with the required ones.

• id (string) The id must be unique among the reactions. Reactions are solely
addressed via their id.

• reversible (boolean) This flag decides whether a reaction is reversible or not.
In a lot of FBA models we encountered this was used as slack flag and allowing
for the reaction flux to assume negative values. SBML L3V2 clearly states, that
reversible=’false’ means that the flux must be larger or equal zero during the
simulation. We use this to define the flux reversibility via box constraints, see
Equation (2.30).

• fast (boolean) Removed in SBML L3V2. We keep it for compatibility to older
versions in the code, but do not use it to convey any information.

• listOfReactants This list of SpeciesReferences contains the id and stoi-
chiometry for species consumed during the reaction. The list can be empty.

47

3 Building, exchanging and evaluating deFBA models

• listOfProducts This list contains SpeciesReferences with the id and stoi-
chiometry for species created during the reaction.

As with the Species, Reactions have optional arguments as well. The name at-
tribute can be used for the scientific name of the reactions. If there is an enzyme
catalyzing the reaction, we add a fbc:geneProductAssociation as shown in the last
section to encode this.
We add three more attributes to each reaction by using another ram:RAM node

in the Annotation. The specialized ram:reaction elements provide the attributes
for that

• ram:maintenanceScaling (string) Points to a Parameter containing the value
for the construction of the maintenance Ha, see (3.4). If the Reaction has no
maintenance constraint attached, this must be set to zero.

• ram:kcatForward (string). Points to a Parameter containing
the forward turnover number kcat,+. Reaction elements without a
fbc:geneProductAssociation can leave this attribute empty. For all
other reactions, the parameters value must be positive.

• ram:kcatBackward (string) Analog to the forward value but instead
containing the respective reverse constant. Reversible reactions with
fbc:geneProductAssociation must have a non-zero reverse constant. Irre-
versible reactions, on the other hand, must have this parameter set to zero.

By enforcing values for catalytic constants depending on the existence of an as-
sociated gene product, we add a simple way to check for errors in the SBML file.
We suggest issuing warnings to the user if turnover numbers are assigned without an
associated enzyme.
The example for a typical biomass producing reaction is taken from the resalloc

model, see Appendix A.1.

<reaction id="PMetab1" reversible="false" fast="false">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcatR3" ram:kcatBackward="zero"
ram:maintenanceScaling="zero"/>

</ram:RAM>
</annotation>
<fbc:geneProductAssociation fbc:id="Ribosome">
<fbc:geneProductRef fbc:geneProduct="R" />

</fbc:geneProductAssociation>
<listOfReactants>

48

3.2 SBML extension - Resource Allocation Modeling

<speciesReference species="AA" stoichiometry="200" constant="true"/>
<speciesReference species="ATP" stoichiometry="800" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="Emeta1" stoichiometry="1" constant="true"/>

</listOfProducts>
</reaction>

3.2.8 Naming conventions

We already hinted at a possible connection between compartments and ids for species
and reactions. From our experience, it can be very challenging to find errors based
on misinterpretation of metabolite or reaction locations in deFBA models as deFBA
does not model compartments explicitly. Instead, we should utilize existing knowledge
from the FBA model at base as these often include compartments. To transfer this
knowledge over to the deFBA model, we suggest adding a compartment code to each
species and reaction in the model. This means, if the species originally has the id
’atp’, we add the id from the compartment it is located in as ’atp_cytoplasm’. As we
will use the ids from the SBML as the identifiers in the deFBA model, we can see the
location of the species at first glance.
Basically, the same goes for reactions, but we have to distinguish between metabolic,

transport, and production reactions. Metabolic reactions only acting in a single com-
partment can be clarified by adding the compartment code. Transporters always act
between two compartments. Hence, we simply suggest adding both codes in the form
’transport_external_cytosol’. Production locations can be handled like metabolic re-
actions, but we suggest even adding an ’synth_’ at the beginning of the id. This way,
the user can immediately see, that this reaction is not part of the original FBA model.

3.2.9 Future of RAM

The RAM extension was tailored to save and manipulate deFBA models. But while
designing the different components we always had other resource allocation problems
like the RBA or ME models in mind. This is why we called it Resource Allocation
Modeling instead of DEFBA modeling. Talks to the developers of RBA and SBML
have proven that the functions we have integrated are asked for by several groups.
We are hoping to gather these people and use RAM as foundation to find a shared
standard. This would make it possible to create single model files which include all
data necessary to evaluate a model with the different methods. We strongly believe
that the community and the end-user would highly benefit from that.

49

3 Building, exchanging and evaluating deFBA models

3.3 Generating deFBA models
Equipped with the means to save and exchange deFBA models via SBML, we want to
explain how we can generate models starting with gene annotated FBA models. It is
not a focus of this work to explain this protocol in every detail, hence we advise the
reader to study [91], before applying the protocol to create a model on their own.

3.3.1 Prerequisites

The process of metabolic reconstruction is a scientific field its own and we will not
venture into it here. For the interested reader we recommend [35] for a detailed dis-
cussion of the problem. Instead we want to utilize existing metabolic reconstructions
and show how we can use these to our advantage. To this day, roughly 2600 draft
reconstructions for a multitude of organisms are freely available on the internet via
databases like BioModels [21], [62], [60] and BiGG Models [57]. If no metabolic re-
construction but a full genome-sequence of the organism is available, the protocol of
Thiele and Palsson [104] can be applied to generate a metabolic reconstruction.
But even if a metabolic reconstruction is available, not any model is suitable to be

extended to a deFBA model. First off, it is necessary that all genes used in the model
are given, e.g., as fbc:geneProductAssociation (cf. Section 3.2.6). Additionally,
amino acid compositions for these genes are needed. Otherwise, it becomes nearly
impossible to construct the enzyme producing reactions. Of course, this makes it also
necessary for the model to include amino acids at all. Model with lower detail on the
metabolite level can not be extended to deFBA models.
Secondly, full genome scale models might be simply too large to be simulated with

deFBA as the resulting linear programs grow increasingly complex to solve. This
is especially true if the time scale on which the model is to be evaluated is very
large. In Chapter 4, we will present a new approach for handling deFBA models
which effectively lowers the computational cost. Yet, the limit for deFBA models is
roughly at 500 metabolic reactions at the moment. Networks of this size have been
successfully simulated as shown in [90]. If the size of the starting network is already
too large, we suggest using tools like the minimal network finder [94], redGEM [4],
or NetworkReducer [32]. While these methods differ vastly, they share the concept
to preserve some functions of the model, like growing under specific conditions or
retaining some pathways, and minimize the network size from there.
For the rest of this section, we assume to have a reconstruction on the FBA level

available and explain how to amend the additional deFBA components.

3.3.2 Building enzyme production

As explained in Section 3.2.6 we have to make some changes in the model if isoenzymes
are present. In these cases we copy the respective reactions until each reaction is

50

3.3 Generating deFBA models

exactly catalyzed by a single enzyme. At this point, we want to include all isoenzymes
in the model, as we can not decide which of these will be expressed during simulation.
For the construction of enzyme producing reactions, we need the amino acid compo-

sition for them. These can usually be obtained in the FASTA format [87] from online
databases such as Genbank [8] or UniProt [3]. We must highlight that UniProt cur-
rently has a superior API, which does allow the user not only to gather data on a the
gene sequence, but at the same time gives access to the Enzyme Commission (E.C.)
number [112] and more importantly the subunit stoichiometry for enzyme complexes.
If these more general databases do not have the data available, we suggest searching

for organism specific databases. In our own experience we could obtain a complete
FASTA file on S. cerevisiae from the Saccharomyces Genome Database [22].

Constructing the production reaction for a simple monomer enzyme is done by
summing up the amino acids cost from the FASTA file and setting these as reactants for
the reaction. For the initiation of the peptide chain a single 10-formyltetrahydrofolate
(fTHF) is converted into tetrahydrofolate (THF) [79]. Additionally, the energy cost
for the elongation of chain must be paid: Per amino acid AAi added to the chain, a
single ATP is hydrolyzed into AMP and PPi, and two GTP are hydrolyzed into two
GDP and two Pi [79].

When handling an enzyme complex (or multimer), we calculate the cost for each
subunit and add those up with respect to the subunit stoichiometry. While the stoi-
chiometric information for multimers can often be found on UniProt, data on enzyme
complexes is usually not easily available and it is necessary to do a literature search
by hand. We must stress the relevance of this step. Wrong enzyme compositions can
vastly change the trade-off of single enzymes immensely.
The prototype for all biomass reactions can be constructed as

VP :
20∑
i=1

Si,pAAi + n1ATP + 2n1GTP + n2fTHF

−→ E + n1AMP + n1PPi + 2n1GDP + 2n1Pi + n2THF,
(3.19)

with Si,p being the amount of amino acid AAi needed, the count of chain elongations
n1 = ∑20

i=1 Si,p and n2 being the number of subunits.
Depending on the data available to the user, it might be useful to also add the cost of

mRNA to the synthesis of the enzymes directly, as we have seen with the ME-models
(cf. Section 2.2.1). In such a case, we will add RNA cost via quota constraints as
explained in Section 3.3.3.
We must also point out that translational machinery, such as the ribosome, is han-

dled identically to very large enzyme complexes. This means a single production
reaction describes the full translation and assembly process. The composition for the
ribosomes are usually easy to find in comparison to single enzymes. We suggest look-
ing for these in the Kyoto Encyclopedia of Genes and Genomes (KEGG) [53], or the

51

3 Building, exchanging and evaluating deFBA models

Ribosomal Protein Gene Database [77]. We are aware, that using a single reaction
for the creation of the ribosome is very restrictive. Using this formulation, all genes
associated to the ribosome must be expressed to construct ribosome. In reality, the
ribosome is very robust and can retain full or limited functionality even if multiple
subunits are missing [101]. But with the current sparse availability of data on ribo-
some subunit functionality in different organisms, we will usually have to rely on a
single ribosome producing reaction.

3.3.3 Setting up quota

We are mostly interested in the quota species as we expect that non-catalytic species
will not be produced in an optimal solution unless enforced via constraints. Typical
examples are DNA, membranes, cell wall and RNA, if not directly attached to the
production rates of macromolecules. These serve no catalytic function in the deFBA
model. Hence, we must enforce their production via the biomass composition con-
straint (3.14f) as we would otherwise neglect a significant part of the resource cost
while growing. As explained in Section 2.3.5, we assume the amount of any quota
species is connected to the amount of total biomass via fixed scaling factor, e.g., 10%
of total biomass must consist of DNA at any given time.
While in some cases the ratio of a biomass product will be directly available in the

literature, we can not expect to find exact values for all types of quota components.
Instead, we can have a look at the objective from the original FBA model (1.20). This
objective is a single biomass creating flux, which represents the typical composition
of the organisms’ biomass, from which we can derive the desired constraints. Unfor-
tunately, this process is a bit abstract, so we use an example taken from the Yeast
6.06 model to explain the process. The biomass reaction from this model is shown in
Table 3.2. Looking at the reactants of the reaction we can group these as: proteins
(charged transfer RNAs), cell wall (mannan and β-D-glucan), storage components
(glycogen and trehalose), DNA (dAMP, dCMP, dGMP, dTMP), RNA (AMP, CMP,
GMP, UMP), membrane (lumped lipid), small molecules, and the ATP requirements
for polymerization. We condense the reaction to∑

i∈Reac
SiZi → 1biomass +

∑
i∈Bipr

SiZi, (3.20)

with the index sets Reac representing the reactants and Bipr being the byproducts.
The stoichiometries in the biomass reaction are chosen in a way that weighting the
stoichiometries with the respective molecular weights will add up to one to make the
construction of the quota elements easier, i.e.,∑

i∈Reac
Siwi −

∑
i∈Bipr

Siwi = 1, (3.21)

52

3.3 Generating deFBA models

Table 3.2: Biomass reaction of the Yeast 6.06 model.

Reactants Stoichiometry Products Stoichiometry
Ala-tRNA(Ala) 0.4588 tRNA(Ala) 0.4588
Arg-tRNA(Arg) 0.1607 tRNA(Arg) 0.1607
Asn-tRNA(Asn) 0.1017 tRNA(Asn) 0.1017
Asp-tRNA(Asp) 0.2975 tRNA(Asp) 0.2975
Cys-tRNA(Cys) 0.0066 tRNA(Cys) 0.0066
Gln-tRNA(Gln) 0.1054 tRNA(Gln) 0.1054
Glu-tRNA(Glu) 0.3018 tRNA(Glu) 0.3018
Gly-tRNA(Gly) 0.2904 tRNA(Gly) 0.2904
His-tRNA(His) 0.0663 tRNA(His) 0.0663
Ile-tRNA(Ile) 0.1927 tRNA(Ile) 0.1927
Leu-tRNA(Leu) 0.2964 tRNA(Leu) 0.2964
Lys-tRNA(Lys) 0.2862 tRNA(Lys) 0.2862
Met-tRNA(Met) 0.0507 tRNA(Met) 0.0507
Phe-tRNA(Phe) 0.1339 tRNA(Phe) 0.1339
Pro-tRNA(Pro) 0.1647 tRNA(Pro) 0.1647
Ser-tRNA(Ser) 0.1854 tRNA(Ser) 0.1854
Thr-tRNA(Thr) 0.1914 tRNA(Thr) 0.1914
Trp-tRNA(Trp) 0.0284 tRNA(Trp) 0.0284
Tyr-tRNA(Tyr) 0.1020 tRNA(Tyr) 0.1020
Val-tRNA(Val) 0.2646 tRNA(Val) 0.2646
ATP 59.2760 ADP 59.2760
H2O 59.2760 phosphate 58.70001
(1→3)-β-D-glucan 1.1348 H+ 59.3050
(1→6)-β-D-glucan 1.1348 biomass 1
mannan 0.8079
glycogen 0.5185
trehalose 0.0234
riboflavin 0.00099
lipid 1
sulphate 0.0200
dAMP 0.0036
dCMP 0.0024
dGMP 0.0024
dTMP 0.0036
AMP 0.0460
CMP 0.0447
GMP 0.0460
UMP 0.0599

53

3 Building, exchanging and evaluating deFBA models

with the molecular weight wi. The percentage of the biomass consisting of certain
components can easily be calculated from here. For example we can determine the
percentage for protein components

φprot = 1 +
∑

i∈Bipr
Siwi −

∑
i∈Reac,i/∈Prot

Siwi =
∑

i/∈Prot
Siwi, (3.22)

with Prot being the index set containing all charged transfer RNAs. The production
reaction for the protein species can be determined as

∑
i∈Prot

Si
φprot

Zi + SATP

φprot
ATP + SH2O

φprot
H2O (3.23)

→ 1 prot +
∑

i∈tRNA

Si
φprot

Zi + SADP
φprot

ADP + Sphosphate

φprot
phosphate + SH+

φprot
H+, (3.24)

with the index set tRNA containing all protein products.

3.3.4 Determining turnover numbers

10-6 10-4 10-2 100 102 104 106

median k
cat

 of enzyme from other organisms

10-6

10-4

10-2

100

102

104

106

k
ca

t o
f

e
n
zy

m
e
 i
n

 S
.
ce

re
v
is

ia
e

Figure 3.1: Turnover rates in yeast versus the median kcat values from other organisms.
The Figure is taken from [91].

One of the biggest challenges in the construction of a deFBA model is to acquire
the catalytic constants kcat needed for the enzyme capacity constraint (3.14g). While
it is possible to derive these from experiments as shown in [40], we are relying on

54

3.3 Generating deFBA models

the turnover numbers obtained from online databases as these have proven to be
sufficient approximations to in vivo turnover numbers [26]. The main sources for
the kcat values are BRENDA [97] and SABIO-RK [113]. SABIO-RK is special in
comparison to other databases as it is completely hand-curated. We believe that this
is superior to automatic data gathering as these can easily lead to misinterpretation of
the measurements. As the enzyme capacity is very important to whether a pathway
is used in the simulation, we recommend to check automatically acquired values for
feasibility.
Please note, that databases often enable the user to filter for different organisms,

mutant strain, pH-value, etc. From our experience looking for wild-type data taken at
a physiological pH should be the way to use those filters. If no data from the modeled
organism is available, one should use data from other organisms. In fact, using the
median of all values available is the way to go as shown in [91]. To visualize this result,
we have taken Figure 3.1 from this work, which compares the turnover numbers in S.
cerevisiae with the mean values obtained from other organisms found in BRENDA. If
possible, the modeler should make a sensitivity analysis of the final model, to check
the impact of the turnover numbers taken from other organisms.
A final warning for gathering values for isoenzymes: In many cases the user will use

the E.C. number as search string, but E.C. numbers are reaction and not enzyme
specific. This might lead to shared turnover numbers for isoenzymes, which in reality
is rarely the case.

3.3.5 Molecular weights & objective weights

The molecular weights wP for macromolecules and storage species can be looked up
in databases like BioNumbers [73]. If these are not available, we can approximate
the molecular weight for biomass components via the amino acid composition. This
is done by summing the weights of the individual amino acids. Due to the different
bonding mechanisms between the amino acids in the molecules, we can not calculate
the exact weights without having knowledge on each individual bond. Therefore, the
sum of amino acid weights gives an upper approximation to the correct weight.
As stated in the first section of this chapter, we extended the deFBA formalism to

operate with special objective to measure the objective value of a species instead of
just using their molecular weight. As we will later see in Chapter 4, the deFBA can
produce artificial results if some macromolecules have a very good objective yield in
comparison to their resource cost. To eliminate this kind of behavior, species can be
”deleted” from their objective by setting their objective weight to zero. While these
objective values are in fact a tuning parameters to counter unusual behavior of the
model, we suggest to chose the objective weights identical to the molecular weights for
all enzymatic species E and set these to zero for all quota Q and storage species S.

55

3 Building, exchanging and evaluating deFBA models

3.3.6 Model validation

While it is impossible to validate the model with absolute certainty without numerous
experiments to measure the gene expression levels, one can often find growth rates in
different environments. The growth rate µ in the deFBA model can be determined as

µ(t) = 1
B(t)

dB(t)
dt , (3.25)

with the total biomass B(t). Given a non-limiting environment the growth-rate will
plateau at some point, when the model reaches balanced growth with constant biomass
composition. We can use this plateau value to compare against growth rates from the
literature. If the simulated value is too small µ ≤ µliterature, one should check the kcat
values again, as these are likely the cause for a bottleneck in a core pathway.
If the simulated values are too large, this usually hints at the lack of maintenance

or quota requirements. The easiest solution is to enforce a maintenance flux, e.g.
hydrolysis of ATP into ADP, to lower the growth rate, but the construction of any
biomass composition constraints should also be checked.

3.4 deFBA-Python package
The final step in the deFBA pipeline is the simulation of the model. We implemented a
software toolbox in Python 2.7 using the scipy toolbox [52] and the LinOpt class cre-
ated by Steffen Waldherr as basis. We call the result deFBA-Python package, which is
freely available at https://bitbucket.org/hlindhor/defba-python-package. Our
goal with this software is comparable to the ones we have with RAM: Lay down a
foundation for a unified framework for different kinds of resource allocation problems.
In this section we want to give a basic overview on the core functions of deFBA-Python
and explain difficulties during the development.
Over the course of this work, we will further extend and adapt the deFBA formalism.

All these extensions are also included deFBA-Python and we will talk these in the
respective chapters.

56

https://bitbucket.org/hlindhor/defba-python-package

3.4 deFBA-Python package

3.4.1 Linopt class

We started with the existing LinOpt class, which provides methods to input linear
time-invariant optimization problems (LTI) in the standard form

min
u

∫ tend

t0
(Cx(t) +Du(t) + E) dt+ Fx(tend) (3.26a)

s.t. x(t0) = x0 (3.26b)
ẋ = Ax+Bu+ u0 (3.26c)
Gxx(t) +Guu(t) +Gk ≤ 0 (3.26d)
Kuu(t) +Kk = 0 (3.26e)
Hxx(tend) +Hk ≤ 0. (3.26f)

Providing also a class to collocate the trajectories it is possible to transform this
problem to a linear program, which can be solved by the linear solvers Gurobi [43]
and cvxopt [2]. In the collocation, Lagrange polynomials are used as basis functions
and the user can choose from different schemes for setting the collocation points;
Lobatto-, Radau-, and reverse Radau-collocation.
We extended the existing code such that the matrices are stored in a more efficient

sparse matrix format called ’list-of-lists’ [103]. Furthermore, we added interfaces to
two more linear solvers CPLEX [102] and SoPlex [114], which are both freely available
for academic use. The specialties of SoPlex are an iterative refinement procedure,
which allows to compute high-precision solution, and a compile option to allow for
80bit extended precision, which is very beneficial for numerically difficult problems.

3.4.2 DefbaModel class

The package is build around the DefbaModel class, which contains the full deFBA
model and provides all methods to work with the model. We store the model in
its matrix form as (3.14a) via numpy matrices. Additional information on the model
needed for the export to SBML, like compartments and mapping from reactions to their
catalyzing enzymes, are kept in dictionaries, which are not used for the simulation. To
make the class as accessible as possible we added multiple ways for the initialization
of a model. At its core the model must only consist of the stoichiometric matrix,
the molecular weights for macromolecules and a list containing the numbers for the
different model elements, e.g., 10 external species, 12 metabolites, 5 macromolecules,
10 uptake reactions, 3 metabolic reactions, and 5 biomass producing reactions.
While the software accepts the model by giving the matrices directly, see the carbon

core model from the examples folder, the software is centered around the import from
SBML and RAM. Nevertheless, the extended format (3.14a) allows for additional

57

3 Building, exchanging and evaluating deFBA models

system dynamics which are not part of the original SBML model

Ż(t) = RZ(t) +

SY
SP

V (t) + q, (3.27)

with the dilution matrix R ∈ Rn,n, [R] = 1/h and the constant input vector q ∈ Rn,
[q] =mol/h. We added a method to add these dynamics via R and q directly or via
dictionaries. The software currently only supports constant inputs q, but we plan to
include time-dependent inputs in the future.
The two most important functions related to the regular deFBA are the two methods

DefbaModel.deFBA and DefbaModel.RBA. The latter method is an adaption of the
static RBA approach (cf. Section 2.2) to identify an optimal enzyme distribution for
balanced growth using deFBA constraints. This problem is defined as

max
V,P,µ

µ(vintake, B0, Y0) (3.28a)

s.t. SPV = µP (3.28b)
SXV = 0 (3.28c)
Ha,PP ≤ HgV (3.28d)
Hb,PP ≤ 0 (3.28e)
HcV ≤ Hf,PP (3.28f)
vmin ≤ V ≤ vmax (3.28g)
P ≥ 0 (3.28h)
wTPP = B0 (3.28i)
VY ≤ vintake(Y0). (3.28j)

This might seem like a regular RBA, but we keep the formulation in molar amounts
for this problem, which changes the handling a bit. First off, the result depends on
the uptake limits vintake(Y0) ∈ Rmy . Due to the formulation in molar amounts, we use
this constraint to a check whether a nutrient type is available with vintake ∈ {0,∞}my .
The value is chosen as ∞ for available nutrients and zero otherwise. This definition
of the constraint is only correct, if all exchange reactions are pointing to the inside.
Otherwise, the constraint must be adapted such that only uptake of present species is
allowed. At the same time, the secretion of all species must be allowed. The software
checks automatically in which direction the transport reaction are defined and adapts
the constraint accordingly. We discuss this in more detail in Section 4.3.
The balanced growth constraint is enforced by substitution of the dynamics with

(3.28b). Finally, we must add a constraint for the biomass amount in the system
(3.28i) to get a well defined optimization problem.
Because (3.28) is quadratic in µ as discussed in Section 2.2, we apply a binary

58

3.4 deFBA-Python package

search algorithm to determine the maximal achievable growth rate. Depending on the
problem size, this is much quicker than solving the quadratic problem itself. The user
has full control over the algorithm as it is possible to insert an initial guess for µ and
determine the accuracy of the calculation by setting a fixed tolerance for the binary
search.
Solving problem (3.28) is simple in comparison to a full deFBA and we use it

for two main applications in deFBA-Python: Firstly, we calculate initial values for
deFBA simulations with it. Secondly, if we are only interested in the maximal achiev-
able growth rate for, e.g., model validation we can use DefbaModel.RBA instead of
DefbaModel.deFBA.
The DefbaModel.deFBA method on the other hand presents the regular deFBA as

described in (3.14a). Parameters are the linear solver, step size h, the end-time tend,
and initial values Y0, P0. If no initial values are given, the method automatically
calls DefbaModel.RBA for the given environment and uses the results to initialize the
simulation.
After the simulations the calculated values for all species and reactions can be ex-

ported to comma-seperated-values files (CSV) and/or be plotted in Python using the
matplotlib library.

3.4.3 RAM interface

The interface between DefbaModel and SBML files in RAM format is a core feature of
deFBA-Python. During the implementation of the sbmlimport module, we focused on
an automatic check to ensure the model is encoded correctly. For example, SBML and
RAM allow that a metabolite is equipped with a non-zero ram:objectiveWeight
attribute. In a deFBA model this does not make any sense and hints at an error.
These warning are either issued directly on the terminal to the user or collected in an
error log.
Factual errors, like a biomass species P missing the ram:molecularWeight at-

tribute, will immediately stop the parsing of the model and inform the user about the
error via the terminal.
Difficult parts in the implementation of the import were the correct identification

of the reaction type and construction of the enzyme capacity constraint matrix Hc.
The problem with the reactions arises mostly from lumped reactions. Strong lumping
might lead to reactions using external species to directly produce biomass components.
Hence, we can not simply look at the reactants of a reaction but the products as well.
We came up with the following hierarchy for the reactions

• Macromolecule reaction: Must contain at least one macromolecule species as ei-
ther product or reactant; does not matter if this is a storage, enzyme or quota
component. May contain any other species types as well. Because most biomass
species are assembled by the ribosome or complementary biological machinery,

59

3 Building, exchanging and evaluating deFBA models

these reactions must usually be irreversible with the macromolecule being a prod-
uct. We log reactions for which this is not the case and issue a warning; unless
the macromolecule is storage.

• Exchange reaction: Must contain an external species as reactant and may not
contain any biomass species. If a reversible reaction contains external species as
products, but no external species as reactants, it is classified as exchange reaction
and its direction is automatically reversed. This way we guarantee the reaction is
in agreement with the convention that exchange reactions are pointing inwards.
Problematic are currently reversible reactions with external species as reactants
and products at the same time and their directions are set arbitrarily.

• Metabolic reactions: We simply collect all reactions not fitting into the other
groups.

The construction of the enzyme capacity constraint is quite complex as we need to
cover all possible sign combinations for reversible reactions. In the construction of Hc

(2.41), we must divide by the kkat values. Therefore, we ensured that no kkat value
used in the model can be zero, cf. Section 3.2.7.
With further extensions of the package in mind, we added a management system for

all parameters used in the model. If the user followed our guideline for using RAM,
all parameters have an individual identifier and we store all their occurrences in the
model. This makes it easy to manipulate model parameters and implement parameter
estimation methods in the future.
The export via sbmlexport module is in comparison very simple. If the above

mentioned parameter structure is present, it will be used to generate the listOfPa-
rameters and link all parameters respectively. Otherwise, the parameters are directly
taken from the system matrices and are just given a running number code. At this
time the export is only very rudimentary in its function as we do not expect the user to
construct a genome-scale model by inserting the system matrices but instead encode
them directly in SBML.
Finally, we added a sbmltricks module aimed at the modification of SBML files.

Currently, it provides a method to easily create knockout mutants from the current
model in which certain gene codes and all according reactions and macromolecules are
deleted. In the next release of deFBA-Python we plan to include the code, we used for
automatic data gathering here. Unfortunately, these methods are very dependent on
the format of the original FBA file, the organism and the according databanks. This
makes it hard to write code, which can be applied to as many FBA models as possible.

60

3.5 Conclusion

3.5 Conclusion
In this chapter, we presented the complete pipeline to create and analyze deFBA
models. While this pipeline in itself is already very useful in predicting how gene
expressions and the respective enzyme levels change in a dynamic environment, the
method of the deFBA itself can be further improved. This will lead us in the next
chapters to two new methods, based on the presented results.

61

4 Short-term deFBA

The short-term deFBA was published in the joined publication [66] with Alexandra
Reimers within the European project ROBUSTYEAST. Idea, concept and manuscript
were developed by H.L. while A.R. supported in the proofs of Theorem 1 and Theorem
2. In addition to the published results, we refined the calculation of time horizons by
including the current environment and present a new mixed-integer problem to make
these calculations more accurate.
This chapter presents the first functional extension to the regular deFBA. As
the problem size gets very large when using a small stepsize in combination with a
large end-time tend it can become beneficial to transform the arising single optimiza-
tion problem with a series of smaller ones. This is done by combining the deFBA
with the idea of a receding prediction horizon as is used in model predictive control
(MPC) [18]. This will allow us to counter the huge computational cost of genome
scale models and prepare to utilize the deFBA in control applications.

4.1 Why using a receding prediction horizon?
Most readers will wonder why we introduce a receding prediction horizon to the deFBA.
Our first reason can be seen as a bit philosophical because using a prediction horizon
mimics the limited knowledge on the future in real biological systems. Single-cell
organisms have developed a wide array of mechanisms to react and predict changes
in the nutrient situation, like catabolite repression in the presence of better suited
energy sources [96] or sensing of metabolic intermediates to control the metabolism
[23]. While most of these structures must still be further investigated they implicitly
result in a time frame for which the cells plans ahead. Of course, this is the result
of complex interactions in the internal regulation of the cell. Nevertheless, we believe
that the implementation of a limited prediction horizon will improve the accuracy of
deFBA predictions.
The second reason for using the prediction horizon is a possible decrease in compu-

tational cost as deFBA problems become increasingly harder to solve with increasing
end-time. This is not only due to the size of the problem but also to the exponential
growth on larger time frames, which makes solving them even more numerically de-
manding due to changes in the size of the states in multiple orders of magnitude. By
segmenting the problem into multiple sub-problems, we can lower the computational
cost and solve the problem faster.

63

4 Short-term deFBA

Another problem with the fixed end-time might occur if starvation takes place.
Assuming the model includes maintenance reactions this might lead to an overall
infeasible problem. But if we use a receding horizon, we can derive a solution until
nutrients and/or storage species deplete.
Additionally, we can eliminate an inherent problem with the deFBA as the results of

this method may depend on the chosen end-time tend. To illustrate this, we introduce
a simple academical example and show how the end-time effects results.

4.1.1 Enzymatic-growth model

We call the minimal example the enzymatic-growth model, which is available in the
deFBA-Python package as an example. It consists of only three reactions, one nutrient,
one metabolite and two biomass products. The irreversible reactions are given as

VA : 1 N → 1 A (4.1a)
VE : 1 N + 1 A → 1 E (4.1b)
VC : 1 N + 1 A → 1 C. (4.1c)

The external nutrient N represents a collection of components necessary for growth,
such as carbon, nitrogen, etc. Further processed components made from these nutrients
are collected as the internal metabolite A. We differentiate the macromolecules into the
group of enzymes E, collecting the whole enzymatic machinery needed for growth, and
non-enzymatic macromolecules C. These can be interpreted as storage components
such as lipids, starch, or glycogen.
We analyzed the model very detailed in [109] in terms of the influence of end-times,

initial conditions and parameters of the system. As we are only interested in the end-
time, we fix the parameters as shown in Table 4.1. The molecular weights wC and wE
are chosen in a way to make its biomass yield for C better than for the production of
E, meaning the same amount of N can be transformed into more biomass if the cell
focuses on the production of storage. This is also reflected in the turnover numbers as
the production of storage is also faster kC > kE.

Table 4.1: Parameter values used in the enzymatic-growth model.

wC [g
mol] wE [g

mol] kA [h−1] kC [h−1] kE [h−1]

15 10 1.45 2 1

64

4.1 Why using a receding prediction horizon?

Therefore, the deFBA model is given as

max
V

tend∫
t0

wTZ(t) dt =
tend∫
t0

wCZC(t) + wEZE(t) dt (4.2a)

s.t. ZN(t0) = N0, ZE(t0) = E0, ZC(t0) = C0 (4.2b)
VE(t) + VC(t) = VA(t) (4.2c)
˙YN(t) = −VA(t) (4.2d)
ŻE(t) = VE(t) (4.2e)
ŻC(t) = VC(t) (4.2f)∑
i∈{A,C,E}

1
ki
Vi(t) = 1

kA
VA(t) + 1

kC
VC(t) + 1

kE
VE(t) ≤ ZE(t) (4.2g)

YN(t) ≥ 0, ZE(t) ≥ 0, ZM(t) ≥ 0, ∀t ∈ [t0, tend]. (4.2h)

While minimal in its size, the model highlights the core of all resource allocation
models as the network has to decide to invest the nutrients N either in self-replication
by producing more E or in storage C, which has no direct application but is easy to
produce (kC > kE) and has a better objective yield (wC ≥ wE). This decision process
is also impacted by nutritional stress, meaning N running out before the end-time tend
is reached. To eliminate this influence in the simulation as well, we assume unlimited
access to nutrients with N0 =∞ in (4.2b).
From a biological perspective, we expect a solution of the problem to predict either

only investment in the enzymatic part E or a mixed strategy favoring E while keeping
a small percentage of the biomass as C. Interestingly, the results are neither. We
observe two different types of solution curves depending on the chosen end-time as
shown in Figure 4.1. For both plots we used identical initial values ZE(0)=ZC(0)=0.1
mol (4.2b) and used a discretization step size h = 3 min=0.05 h for the numerical
solution (cf. Section 4.5). On the left side using an end-time of 10 hours we see
a mixed solution in which for the first 8 hours the system only invests in enzymatic
machinery and afterwards focuses on producing the storage component with the better
yield. The solution depicted in the right plot by contrast shows that only producing
C is indeed optimal for an end-time of tend = 1.4 h.
This can be explained by looking at the objective values for the different solutions

at t=1.4 h. While production of E yields an objective value of roughly 3.07 g at 1.45
h, the linear increase in C yields a value of 3.65 g at the same time. Therefore, we can
deduce that there exists a switching time ts, after which all solutions are a mix as seen
in Figure 4.1 (Left) and all solutions for an end-time tend ≤ ts are of the linear form.
As calculated in [109] this switching time is for the chosen parameter values given as
ts ≈ 1.45 h.

This example clearly shows the dependency on the end-time. But at the same time

65

4 Short-term deFBA

0 2 4 6 8 10
0

2

4

6

8

10

12

14

16

18

20

t[h]

[m
o
l]

C

E

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.1

0.12

0.14

0.16

0.18

0.2

0.22

t[h]

[m
ol
]

C

E

1

Figure 4.1: Results for the enzymatic growth model. For the simulation we choose
initial values as E0=C0=0.1 mol (4.2b). Left: End-time was chosen as 10 h.
Right: End-time was chosen as 1.45 h.

it highlights the fragments of the optimization approach as the hard-switch (Figure
4.1 (Left)) is usually not observed in biological systems. But with the receding time
horizon we can eliminate this problem as well.

4.2 Implementing the receding time horizon
The implementation of the receding time horizon is straightforward. We just need to
introduce two parameters to fully define the new approach: The iteration time ti and
the prediction horizon tp ≥ ti (cf. [18]). The time scale t ≥ t0 is split into intervals
[tk, tk+1] by using the time grid

∆t(ti) = {tk = kti + t0 | k ∈ N}, (4.3)

defined by the iteration time ti on which the solutions are piece-wise defined. The
goal is to solve a single deFBA starting at the nodes of ∆t and determine the optimal
solution over the prediction horizon tp.
These individual problems are regular deFBA problem but definitions for initial

66

4.2 Implementing the receding time horizon

Initialize:
set tk = t0
set Zk = Z0

Solve optimization problem (4.4)
with initial values Z(tk) = Zk

with t ∈ [tk, tk + tp]

Save part of solution
in Z∗(t), V ∗(t),
t ∈ [tk, tk + ti]

tk + ti > tend?
set Zk = Z∗(tk+ ti)
set tk = tk + ti

break loop

yes

no

1

Figure 4.2: Flowchart to explain the iterative scheme. After solving each individual
optimization problem, the current time and the current state are updated. The
overall solution is saved in Z∗ and V ∗.

values and end-times are adapted to the time grid ∆t

max
V (t),P (t)

tk+tp∫
tk

Bo(t) dt (4.4a)

s.t. Z(tk) = Zk (4.4b)

Ż(t) =

SY
SP

V (t) (4.4c)

SXV (t) = 0 (4.4d)
HaZ(t) ≤ HgV (t) (4.4e)
HbZ(t) ≤ 0 (4.4f)
HcV (t) ≤ HfZ(t) (4.4g)
vmin ≤ V (t) ≤ vmax (4.4h)
Z(t) ≥ 0, ∀t ∈ [tk, tk + tp]. (4.4i)

The individual problems in the form (4.4) are connected as shown in the flowchart
given by Figure 4.2. The problem is initialized via the initial values Z0 for the states.
After solving (4.4), we save the parts of the calculated trajectories between [tk, tk+1 =
tk + ti] to the overall solution trajectories V ∗([tk, tk+1]) = V ([tk, tk+1]), Z∗([tk, tk+1]) =
Z([tk, tk+1]). As we choose the initial values Zk+1 for the next problem as the final
ones Z(tk+1) from the current one (4.4b), we can guarantee that the overall solution
is continuous, but it might be not smooth. If smoothness is a concern, this can be

67

4 Short-term deFBA

enforced via additional constraints on the state derivatives.
The iteration stops once a given condition is reached. In Figure 4.2 a simple check

for a given end-time is used, but is also possible to stop once the nutrients deplete
or a certain amount of biomass is reached. We call this iterative process the short-
term deFBA (sdeFBA). Some readers might find it easier to follow this explanation by
looking at the discrete pseudo-code formulation of the sdeFBA presented in Section
4.5.
A huge benefit within the sdeFBA is, that we can manipulate the problem after

each iteration, e.g. change the nutrient situation or the biomass to emulate external
influences. It is also possible to change the optimization problem to emulate gene-
knockouts or other discrete events.
The most natural application of the sdeFBA would be inside a model predictive

controller. A possible application is depicted in [34]. Here the objective is to control
the light and the nutrient feeds for a tank containing microalgae to maximize the
production of beta-carotene. But we have yet to find an experimental partner for
testing these kind of applications with our framework.
The problem in using sdeFBA is choosing suitable values for ti and tp. From a

numerical view we want to minimize the prediction horizon to minimize the size of
each individual problem (4.4). At the same time we must choose tp large enough such
that we do not experience problems with artificial behavior as seen with the enzymatic
growth model. With the iteration time we face the inverse problem. We want to choose
the iteration time maximally to decrease the number of necessary iterations, but we
have to choose it small enough such that we keep the artificial solution parts near the
prediction horizon (cf. Figure 4.1 (Left) hours 8-10) from entering the overall solution.
We discuss a systematic approach in the next section.

4.3 Choosing the prediction horizon
Before we can fully discuss how to choose the prediction horizon, we must define some
new concepts we use in the calculation. We start by differentiating between active
and passive biomass. Active biomass Pact describes the enzymes that are actively
catalyzing any reactions under the given environment. Additionally, we regard all
quota components as active biomass as they are necessary for the overall function of
the cell. The passive biomass Ppas collects all biomass components not part of the
active biomass, meaning storage and enzymes not utilized in the current environment.
We use these to define the possible growth phases in a deFBA solution, where we set
t0 = 0 for easier reading.

• Balanced growth While we already presented the concept of balanced growth
(2.1), we repeat the definition here for sake of completeness. During this growth
mode, the biomass composition stays constant, meaning the percentage share of

68

4.3 Choosing the prediction horizon

the individual components stays the same. The biomass increases with a fixed
exponential growth rate µ ∈ R≥0. The mathematical definition is given as

Ṗ (t) = µP (t), ⇒P (t) = P (0)eµt

B(t) = B(0)eµt.
(4.5)

While this growth mode is suitable for static methods, like RBA, in a dynamic
setting this growth mode is only achieved if the initial biomass composition P (0)
is suited for the current nutrient situation. Any changes in the composition of
the environment will make it impossible to achieve this growth mode again.

• Generalized balanced growth While the idea is identical to the classical bal-
anced growth, we differentiate between active and passive biomass components
in this definition. The growth rate is termed µbal in this case and the dynamics
under generalized balanced growth read

Ṗact(t) = µbalPact(t), ⇒ Pact(t) = Pact(0)eµbalt,

Ṗpas(t) = 0, ⇒ Ppas(t) = Ppas(0).
(4.6)

The objective biomass still increases exponentially

Bo(t) = Bo,act(t)eµbalt +Bo,pas(0). (4.7)

We will refer to this growth mode simply as an exponential phase.

• Linear Growth During a linear growth phase the cell invest only in a single or
multiple biomass components which have a good short-term yield. As this growth
mode usually does not increase all components necessary for exponential growth,
these phases even harm the long-term goal of biomass increase. Mathematically,
we define this via the objective biomass with the constant linear growth rate
λ > 0

Ḃo(t) = λ, ⇒ Bo(t) = λt+Bo(0). (4.8)

• Adaptation phases In these phases the growth rate ν(t) ≥ 0 will be varying
with time as the cell gradually shifts resources to the production of a new set of
enzyme.

Ḃo(t) = ν(t)Bo(t) (4.9)

These phases take place if a nutrient source runs out or a new one becomes
available. An example is presented in Section 4.6.2.

• Starvation or zero-growth During starvation the biomass stays either constant
or the system even experiences a loss thereof. As the presence of maintenance

69

4 Short-term deFBA

reactions, storage capabilities and the capabilities to deconstruct biomass com-
ponents back into metabolites can be hugely varying for model types, we can
not specify the existence of the phases further. In most cases prolonged star-
vation will lead to infeasible optimization problems in deFBA as maintenance
constraints might not be satiable anymore, which coincides with cell death.

Experience has shown that solutions for regular deFBA problems are concatenations
of these phases and we use this to determine the prediction horizon. The objective is
to choose tp sufficiently large to avoid having linear growth phases as we regard them
merely as mathematical artifacts from the optimization. A simple way to ensure a
suitable value is sketched in Figure 4.3. This plot shows the development of a linear
solution in comparison to a balanced growth solution and an optimal one. While
the linear solution with the linear rate λ clearly grows faster on the short run, any
balanced solution in the discussed form overtakes the linear solution given enough
time. We have shown that the form of an optimal solution depends on the chosen
end-time. But due the optimality these must reach a higher - or at least identical
- objective value compared to balanced or linear solutions. Following this idea, we
choose the prediction horizon after the time where the linear and balanced curves
meet. When using an upper bound on linear growth and a lower bound on balanced
growth, the chosen prediction horizon must lead to a solution which grows at least
partially exponentially (c.f. Figure 4.3).
The value for tp depends on the availability of nutrients. In cases where a nutrient

source depletes and the system is forced to enter an adaptation phase we are unable
to apply this simplified approach as we can not predict values for ν(t) (4.9) a priori.
To get rid of this problem during the determination of a suitable magnitude of the
prediction horizon, we make the following assumption.

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

tp

t

∫
B

o
(t
)
d
t

linear
balanced
optimal

1

.
Figure 4.3: Illustration for choosing the prediction horizon. Upper bound on linear

growth shown in red (◦), balanced growth in blue (�), and optimal solution in
brown (x).

70

4.3 Choosing the prediction horizon

Assumption 1. For the determination of the prediction horizon we assume all exter-
nal species Yinit = Y (t0) available at the initial time will stay available for all times.

This assumption allows us to omit nutrient dynamics for the calculation of the
prediction horizon. Instead, we enforce uptake reactions to zero if their nutrients are
not present via

vmax,i(Yinit) =

 0, if Yi(t0) = 0 ∧ vi is an uptake reaction
∞, else.

, ∀i ∈ Y . (4.10)

In the same way, we must enforce reversible secretion reactions to be positive

vmin,i(Yinit) =

 0, if Yi(t0) = 0 ∧ vi is a seceretion reaction
−∞, else.

, ∀i ∈ Y . (4.11)

For a shorter notation we introduce the initial biomass amount as

Binit = wTP (0) (4.12)

and the initial objective biomass as

Bo,init = wTo P (0). (4.13)

The linear growth rate λ ∈ R≥0 is calculated as

λ = wTo
dPinit

dt = wTo SPVlin, (4.14)

with the constant fluxes Vlin ∈ Rm. Please note, that λ is calculated with the objective
weights, while Binit presents the total biomass.
We can now calculate an upper bound on the linear growth rate by solving the

optimization problem

λs(Binit, Yinit) = max
Vlin,Plin

wTo SPVlin (4.15a)

s.t. SXVlin = 0 (4.15b)
Ha,PPlin ≥ HgVlin (4.15c)
Hb,PPlin ≤ 0 (4.15d)
HcVlin −Hf,PPlin ≤ 0 (4.15e)
wTPlin = Binit (4.15f)
vmin(Yinit) ≤ Vlin ≤ vmax(Yinit), (4.15g)

with Plin ∈ Rnp

≥0. Comparing this to a static deFBA, we have three major changes:
The objective is different as we want to optimize the slope of the objective trajectory

71

4 Short-term deFBA

as shown in Figure 4.3. Furthermore, we omit the dynamics for external species as
explained by Assumption 1 and use the new box constraints (4.15g). Finally, we only
constrain the biomass via (4.15d) and (4.15f).
The growth phase determined by the specific linear growth rate λs is constructed as

P (t) = Pinit + SPVlint. (4.16)

The fluxes Vlin can usually not be used to construct feasible trajectories for deFBA
problems. The resulting trajectories will violate the biomass composition constraints
and/or the maintenance constraints as the fluxes do not scale with the increase in
biomass. Still it is beneficial to include the constraint (4.4f) in the calculation as it
lowers the value of λs(Binit, Yinit). The specific linear growth rate λs depends on the
initial biomass amount. Due to the way Binit enters the optimization problem (4.15f)
it acts merely as a multiplier for the growth rate

λs(Binit, Yinit) = |Binit|λs(1, Yinit), (4.17)

with the unitless multiplier |Binit| = Binit g−1.
Hence, we use the regularized linear rate

λr(Yinit) = λs(Binit, Yinit)
Binit

. (4.18)

While the initial amount of biomass is enforced in the constraint (4.15f), the com-
position of Pinit is part of the optimization. This emulates the possibility that the cell
might adapt rather quickly to the linear growth mode and ensures the quality of λr as
a rigorous upper bound.
We still miss a suitable balanced growth rate µbal to determine the prediction hori-

zon. At this point we will use the regular balanced growth definition from (4.5), but
refine this in Section 4.3.1. A simple approach for finding the growth rate is realized
with an adapted form of the RBA [39]. As we are interested in any balanced solution,
we fix the initial biomass composition and simplify the dynamics to

d
dtPinit = µbalPinit. (4.19)

72

4.3 Choosing the prediction horizon

The balanced growth rate µbal is then determined via the optimization problem

µbal(Pinit, Yinit) = max
Vbal,µ

µ (4.20a)

s.t. SPVbal = µPinit (4.20b)
SXVbal = 0 (4.20c)
HaPinit ≥ HgVbal (4.20d)
HcVbal −Hf,PPinit ≤ 0 (4.20e)
vmin(Yinit) ≤ Vbal ≤ vmax(Yinit). (4.20f)

We assume the initial biomass composition Pinit satisfies the biomass composition con-
straint (4.4f). As with the previous problem, we rely on Assumption 1 and substitute
any nutrient dynamics with the fixed upper bound on the uptake fluxes via vmax(Yinit).
As the biomass is fixed, we can directly solve for µbal without the necessity for a binary
search as this problem was designed with minimal computational cost in mind.
Another benefit from this simple approach is, the possibility to derive feasible, yet

sub-optimal, trajectories from the results

P (t) = Pinite
µbalt, (4.21)

V (t) = Vbale
µbalt, (4.22)

if Pinit satisfies (4.4f) and Assumption 1 holds.
Unlike the linear rate λr(Yinit), the growth rate µbal(Pinit, Yinit) is highly dependent

on the biomass composition Pinit. Hence, if the biomass composition changes this rate
needs to be recalculated. Depending on the amount of passive biomass this might be
necessary after each iteration step in the sdeFBA.
With the exponential and the linear growth rate, we can calculate the values of the

objective functional as shown in Figure 4.3. For the balanced growth solution the
objective is given as

Jbal(t, µbal(Yinit, Pinit)) =
t∫

0
wTo P (τ) dτ (4.23)

= Bo,init

µbal
(eµbalt − 1). (4.24)

and for the hypothetical value for the linear solution is

Jlin(t, λr(Yinit), Binit) =
t∫

0
Bo,init + λs(Binit, Yinit)τ dτ (4.25)

= λrBo,init

2 t2 +Bo,initt. (4.26)

73

4 Short-term deFBA

We set the prediction horizon at the time where these objectives meet by solving

Jbal(tp, µbal(Yinit, Pinit))− Jlin(tp, λr(Yinit), Binit) = 0 (4.27)

for tp ≥ 0.
By looking at the slopes of the biomass curves at time zero, we can deduce that

tp > 0 exists if, and only if, λr > µbal. Otherwise, the model favors exponential
solutions even on short time scales and tp can not be determined via this method. For
the rest of the chapter, we make the following assumption.

Assumption 2. The linear growth rate is larger than the balanced growth rate λr >

µbal.

An optimal solution of (4.4) on [0, tp] can only produce an objective value equal or
larger than Jbal(tp), otherwise it would contradict the optimality principle. Hence, we
conclude that any optimal solution must contain a super-linear (typically exponential)
arc as shown in Figure 4.3. The length of this arc will be the topic of Section 4.4.

4.3.1 Improving on the boundaries for the growth rates

The presented method so far highly depends on the current environment Yinit and
biomass composition Pinit. The horizon should therefore be recalculated after every
iteration step. This can become quite costly, especially if we are dealing with ill-posed
problems in (4.20a) or (4.15). Therefore, the presented optimization problems are
simplified as far as possible. A way to improve the quality of the prediction horizon
is by finding an exponential growth rate instead of a balanced growth rate. The
exponential rates are larger than the balanced one, especially if the system has just
undergone a transition and a lot of passive biomass is present. Therefore, we must
differentiate between active and passive biomass in the problem formulation to be able
to predict a smaller prediction horizon. Unfortunately, identifying the passive biomass
leads to a mixed-integer optimization problem, which is numerically more demanding.
To construct this problem we use the definition for generalized exponential growth

as presented in the previous section and implement this into (4.20a). We introduce a
integer decision vector g ∈ {0, 1}np and define a component wise vector multiplication
as c = a� b, with ci = aibi. If the value of gi is 1, the component Pi is regarded as an

74

4.4 Choosing the iteration time

active biomass component. The nonlinear mixed-integer program then reads:

µexp(Pinit, Yinit) = max
Vbal,µ,g

µ (4.28a)

s.t. SPVbal = µg � Pinit (4.28b)
SXVbal = 0 (4.28c)
HaPinit ≥ HgVbal (4.28d)
HcVbal −Hf,PPinit ≤ 0 (4.28e)
gquota = 1 (4.28f)
vmin(Yinit) ≤ Vbal ≤ vmax(Yinit), (4.28g)

with the new constraint (4.28f) expressing that quota components are always regarded
as active biomass. If Pi has a biomass composition constraint attached the value of
gi must be 1. The new formulation in (4.28b) proclaims that only the active biomass
components are to be produced. This problem is nonlinear as (4.28b) contains a
product of µ and g We can again use a binary search to eliminate this.
The resulting optimization is called mixed integer linear program (MILP) or in this

special case a mixed zero-one linear program. We are not going into detail in solving
these, but refer exemplary to a branch-and-bound method as described in [71]. As
MILPs are already NP-hard and we must include the binary-search for µ. This means
the new approach is computationally very costly, as we have to repeatedly solve the
MILP after every sdeFBA iteration. Therefore, it is left to the user to decide whether
the possible decrease in the calculated prediction horizon is worth the increased com-
putational cost to determine µexp.

Some characteristics of the solution for (4.28a) can be stated without solving the
problem. If Pinit was calculated with an RBA, meaning Pinit is optimal for balanced
growth, the solutions of both methods are identical µexp(Pinit, Yinit) = µbal(Pinit, Yinit).
Otherwise, µexp(Pinit, Yinit) ≥ µbal(Pinit, Yinit) holds true.

Furthermore, we learn which components of Pinit can be regarded as active Pact by
looking at the results for the decision variable g∗. We can exploit this to improve on
the estimate for the linear growth rate, by using only the active biomass to determine
the specific growth rate λact = λrBact, with Bact = wTg∗�Pinit ≤ Binit. Therefore, the
value for the prediction horizon calculated with µexp and λact must also be smaller.
But the problem remains, whether the additional cost of solving the complex MILP
after each iteration pays out.

4.4 Choosing the iteration time
So far, we have only determined a prediction horizon guaranteeing the existence of a
superlinear arc in the biomass trajectory. We have not proven that the initial part of

75

4 Short-term deFBA

the trajectory is of this form. Therefore, it might be possible that an optimal solution
starts with a linear arc and finishes with the exponential one. We will proof the correct
order of the different arcs and determine the length of the exponential one, which we
will use to determine the iteration time.
We start by showing that an optimal trajectory starting with a single linear arc stays

in this growth mode. We construct a hypothetical solution starting in a linear growth
phase and use balanced growth after the switching time ts ∈ [0, tp]. The objective
biomass can then be described as

Bmix(t) =

 Bo,initλrt+Bo,init 0 ≤ t ≤ ts

Bo,init(λrts + eµbal(t−ts)) ts < t ≤ tp,
(4.29)

with the balanced growth rate µbal. In fact, the following calculations can be done
with any rate µ as long as µ ≤ λr.

Theorem 1. If Assumption 2 holds, any optimal solution curve Bmix (4.29) consists
only of a single linear phase with ts = tp.

Proof. We identify the optimal switching time by solving

max
ts

∫ tp

0
Bmix(t) dt (4.30)

analytically by finding local extrema via the first order derivative with respect to ts

0 = d
dts

∫ tp

0
Bmix(t) dt

= Bo,init(λr(tp − ts) + 1− eµbal(tp−ts)),
(4.31)

with the obvious zero t̄s = tp. Evaluating the second derivative at this point gives

d2

dt2s

∫ tp

0
Bmix(t) dt

∣∣∣∣∣
t̄s

= Bo,init(µbal − λr) < 0, (4.32)

with the last inequality following Assumption 2. Hence, t̄s = tp is a local maximum and
any solution of the form Bmix does not include an exponential arc. For the sake of com-
pleteness, we must also mention that there exists another zero of (4.31) t̄s,2 ∈ [0, tp),
which cannot be given in closed form. But, due to continuity and the intermediate
value theorem, t̄s,2 is a local minimum of (4.30). Hence, it presents the worst-case
switching time.

Due to the way we have chosen tp, an optimal solution to (4.4) on [0, tp] can not
start with a linear phase as this would be suboptimal. Hence, the Theorem 1 implicitly
states that an optimal solution must start with a super-linear phase, which grows at
least as fast as the balanced growth curve. We formalize this by constructing a solution

76

4.4 Choosing the iteration time

as

Bopt(t) =

 Bo,inite
µbalt, 0 ≤ t ≤ ts,

Bo,inite
µbalts(λr(t− ts) + 1), ts < t ≤ tp.

(4.33)

Here, we allow a balanced growth phase to be followed up by a linear one. We have
seen this behavior in Section 4.1.1. The question we want to answer with this is simple:
At what time ts does the solution switch to linear growth?

Theorem 2. If Assumption 2 holds, an optimal solution Bopt (4.33) of the sdeFBA
(4.4) is growing exponentially on the time frame [0, ti), with

0 < ti < tp − 2
(1
µbal
− 1
λr

)
. (4.34)

Proof. As in the previous proof, we identify the optimal switching time ts by solving
the optimization problem

max
ts

∫ tp

0
Bopt(t) dt. (4.35)

The zeros of the first order derivative are given by

d
dts

∫ tp

0
Bopt(t) dt = 0

⇔ λrµbalt
2
s + 2 (λr − µbal − λrµbaltend) ts + λrµbalt

2
end + 2(µbal − λr)tend = 0

(4.36)

⇒ t̂s,1 = tp − 2
(1
µbal
− 1
λr

)
, t̂s,2 = tp. (4.37)

Please note, that the extreme values only depend on the interplay between growth
rates, switching time and end-time. To determine whether the extrema are maxima
or minima we calculate the second-order derivatives as

d2

dt2s

∫ tp

0
Bopt(t) dt =eµbalts

(
λrµ

2
bal

2 t2s + (2λrµbal −−µ2
balBo,init − λrµ

2
baltp)ts

+
µ2

balλrt
2
p

2 + µ2
balBo,inittp − 2λrµbaltp + λr − µbalBo,init

 . (4.38)

Evaluating these at the extrema gives

d2

dt2s

∫ tp

0
Bopt(t) dt

∣∣∣∣∣
t̂s,1

= (µbal − λr)Binite
µbaltp < 0,

d2

dt2s

∫ tp

0
Bopt(t) dt

∣∣∣∣∣
t̂s,2

= (λr − µbal)Binite
µbaltp > 0.

(4.39)

77

4 Short-term deFBA

Hence, t̂s,1 maximizes (4.35) and the solution is of exponential form until t̂s,1.

We recommend choosing the iteration time ti a bit smaller than given in (4.34)
to compensate for possible numerical inaccuracies during the simulation. As (4.34)
depends on the growth rates, the iteration time should also be recalculated together
with the prediction horizon. The interplay between these values is very important and
should always be checked if sdeFBA solution yield unexpected results.

4.5 Short-term deFBA in deFBA-Python

The sdeFBA is fully implemented in the deFBA-Python package [64] using the colloca-
tion method provided by the LinOpt package. Instead of presenting the full collocation,
we explain the implementation of the sdeFBA by simple time discretization and sub-
stitution of the dynamics (4.4c) with a forward Euler scheme. We do not recommend
using such simple approximations to the dynamics, but present these here for easier
readability. A simple collocation scheme applicable to the deFBA problem class is
presented in Section 5.5. The discretization uses an equidistant time grid

∆t(h) = {tk = kh+ t0}, (4.40)

with step size h ∈ R>0. States and reactions are approximated on this time grid as
Zk ≈ Z(tk), Vk ≈ V (tk). To clarify the connections between initial values and the
resulting predictions during an sdeFBA run we extend this notation to

Vk|i ≈ V (tk), Zk|i ≈ Z(tk), k ≥ i. (4.41)

This means the approximation of derivatives and states at time tk, with given Zi as
initial values for the current simulation. The discrete prediction horizon p and the
discrete iteration time q are calculated as

p =
⌈
tp
h

⌉
, q =

⌊
ti
h

⌋
, (4.42)

with the ceiling function d·e and the floor function b·c. To give an idea how the
sdeFBA is implemented, we present the algorithm as pseudo-code.
procedure DefbaModel.shortterm(Y 0, P0, tend, h, r, p)

Initialize empty solution trajectories Z∗, V ∗
i := 0
Z∗0 := [Y 0, P0]
t := 0
calculate p, q via DefbaModel.calcPredictionHorizon(Z∗0)
while t < tend do
K := {i+ 1, . . . , i+ p}

78

4.5 Short-term deFBA in deFBA-Python

solve:

max
(Vk|i), k∈K

∑
k∈K

Bk|i (4.43a)

with given Zi|i = Z∗i , (4.43b)
subject to: Zk|i = Zk−1|i + hSVk−1|i (4.43c)

SXVk|i = 0 (4.43d)
HaZk|i −HfVk|i ≤ 0 (4.43e)
HbZk|i ≤ 0 (4.43f)
HcVk|i −HeZk|i ≤ 0 (4.43g)
HdVk|i ≤ Ck|i (4.43h)
Zk|i ≥ 0 (4.43i)
Vmin ≤ Vk|i ≤ Vmax,∀k ∈ K (4.43j)

for k ∈ {i, . . . , i+ q − 1} do
Z∗k+1 := [Yk+1|i, Pi+1|i]
V ∗k := Vk|i
i := i+ 1
t := t+ h

Additional break conditions can be placed here
end for
update p, q via DefbaModel.calcPredictionHorizon(Z∗i)

end while
return Z∗, V ∗

end procedure
The pseudo-code only represents the basic functions of the method. Of course, we
included the same comfort functions as we did with the regular deFBA. This includes
automatic calculation of initial biomass via an RBA, detection of initial values from
the SBML file containing the model, etc. Additionally, we allow the user to specify
whether the horizons tp, ti should be recalculated after each step or to simply use given
values.
The method DefbaModel.calcPredictionHorizon() contains the presented way to

calculate the time horizons. It needs the current biomass composition as parameter and
can optionally include the current environment as explained before. If no environment
is defined, the algorithm assumes all possible nutrients are available. To this point, the
implementation does not support the more accurate version using the mixed integer
program (cf. Section 4.3.1).

79

4 Short-term deFBA

4.6 Numerical examples
The following numerical examples were solved with the DefbaModel.shortterm()
method using a Radau collocation. They are also included in the web release 1 of
deFBA-Python [64] as examples.

4.6.1 Enzymatic growth model revisited

0 2 4 6 8 10
0

5

10

15

20

25

30

35

t[h]

[m
ol
]

C

E

1

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

t[h]

[m
ol
]

C

E

1

Figure 4.4: Results for the enzymatic growth model. For the simulation we choose
initial values as E0=C0=1 mol. Left: Overall sdeFBA solution with tp = 3.25 h,
ti = 1.45 h. Right: Faulty solution with tp = 2.5 h, ti = 1.5 h. With the chosen
iteration time each part of the solution consists of an exponential phase, followed
by a short linear one.

With the short-term deFBA fully explained, we want to revisit the enzymatic growth
model from Section 4.1.1. We had seen in Figure 4.1 (left) that the regular deFBA
produces a linear growth section near the end-time tp. The sdeFBA on the other
hand stays in a exponential growth phase all the time as shown in Figure 4.4 (left).
In this simulation we started with the identical initial values E0=C0=1 mol and used
the identical step size d = 0.1 h. For the prediction horizon and iteration time, we
followed the described procedure and calculated tp ≈ 3.25 h and ti = 1.45 h. This
was translated to 3.3 h as the discrete prediction horizon and 1.4 h for the discrete
iteration time.
To showcase the effects of using faulty horizon values, we did another simulation

with tp = 2.5 h and ti = 1.5 h. The results are shown in Figure 4.4 (right). Here
every sub-solution on the time grid ∆t(ti) is of the form we have seen with the regular

1https://bitbucket.org/hlindhor/defba-python-package

80

https://bitbucket.org/hlindhor/defba-python-package

4.6 Numerical examples

deFBA: Each exponential arc is followed by a linear part. This showcases that a smaller
prediction horizon might still produce an exponential growth phase in the beginning,
but combining this horizon with an over sized iteration time might prove fatal for the
quality of the solution.

4.6.2 Carbon-core model

Table 4.2: Exchange and metabolic reactions in the carbon-core model. Catalytic con-
stants kcat are true for both directions for reversible reactions. Enzyme coloumn
describes which biomass species is needed to catalyze the reaction.

Reaction stoichiometry Enzyme kcat/min−1

Exchange reactions

Vy,C1 : Carb1 → A TC1 3000
Vy,C1 : Carb2 → A TC2 2000
Vy,F : Fext → F TF 3000
Vy,H : Hext → H TH 3000
Vy,O2 : O2ext → O2 S 1000
Vy,D : Dext ↔ D S 1000
Vy,E : Eext ↔ E S 1000

Metabolic reactions

Vx,1 : A + ATP → B EB 1800
Vx,2 : B → C + 2 ATP + 2 NADH EC 1800
Vx,3 : C ↔ 2ATP + 3D ED 1800
Vx,4 : C + 4NADH ↔ 3E EE 1800
Vx,5 : B → F EF 1800
Vx,6 : C → G EG 1800
Vx,7 : G + ATP + 2NADH ↔ H EH 1800
Vx,8 : G → 0.8C + 2NADH EN 1800
Vx,9 : O2 + NADH → ATP ET 1800

In this section we present another academic model, which was already used in [110]
to present the features of the deFBA. We further verify the short-term deFBA by
comparing their results for this model with the original ones using the standard deFBA.
We call it the carbon-core model and its exchange and metabolic reactions are presented
in Table 4.2. Additionally, this table shows which enzyme catalyzes the respective
reaction and the used turnover numbers. The reversibility of each reaction is depicted

81

4 Short-term deFBA

Table 4.3: Biomass producing reactions in carbon-core model. All reactions are cat-
alyzed irreversible by the ribosome R. Molecular weights w relate to the products
of the reactions. Initial biomass compositions are given by the rows P0 and Pswitch.

Biomass reaction w/ g
mol k/min−1 P0/mol Pswitch/mol

Vp,TC1 : 400H + 1600 ATP → TC1 4 2.5 2.0474E-05 6.3039E-3
Vp,TC2 : 1500H + 6000ATP → TC2 15 0.67 0.0 0.0
Vp,TF : 400H + 1600 ATP → TF 4 2.5 0.0 0.0
Vp,TH : 400H + 1600ATP→ TH 4 2.5 0.0 0.0
Vp,EB : 500H + 2000ATP→ EB 5 2 3.4123E-05 10.5065E-3
Vp,EC : 500H + 2000ATP→ EC 5 2 3.1457E-05 10.0354E-3
Vp,ED : 1000H + 4000ATP→ ED 10 1 1.1967E-05 2.8901E-3
Vp,EE : 1000H + 4000ATP→ EE 10 1 0.0 3.6913E-3
Vp,EF : 2000H + 8000ATP→ EF 20 0.5 2.6665E-06 4.7100E-4
Vp,EG : 500H + 2000ATP→ EG 5 2 1.4722E-05 2.6528E-3
Vp,EH : 4000H + 16000ATP→ EH 40 0.25 1.4723E-05 2.6528E-3
Vp,EN : 500H + 2000ATP→ EN 5 2 0.0 0.0
Vp,ET : 500H + 2000ATP→ ET 5 2 3.3467E-05 0.0
Vp,R : 4500H + 1500C + 21000ATP→ R 60 0.2 3.0621E-05 5.4538E-3
Vp,S : 250H + 250C + 250F + 1500ATP→ S 7.5 3 2.3333E-04 46.6976E-3

by the choice of arrows in the stoichiometric description. Please note, that we are
following the convention that all reversible exchange reactions and irreversible uptake
reactions are pointing inwards. The reaction Vy,H is a pure secretion process and is
thus chosen to point outwards.
The biomass producing reactions are shown in Table 4.3. All these reactions are

catalyzed by the ribosome R with the given catalytic constants. Furthermore, the
table depicts the molecular weights for all species.
The model itself is a very reduced take on the central carbon metabolism in single-cell

organisms. The exchange with the outside is modeled for oxygen and the fermentation
products D, E via the transporter S. The other external species are taken up or secreted
via specialized transporters TC1, TC1, TF, TH. The amount of the transporter S is
scaling with the biomass. Therefore, we must infer a biomass composition constraint
on S, which is chosen as 35% of all biomass in this example.
The turnover numbers for the exchange processes and metabolic reactions are ori-

ented on values typical observed in metabolism [6], [98], [74]. The kcat values for the
transcription of the biomass products on the other hand are derived from the measured
translation rate of 17 amino acids per second in E.coli [115].
Firstly, the cell can decide which carbon source to utilize. The parameters are chosen

in a way, that the active transport of Carb1 via the enzyme TC1 needs less investment
and is more efficient than its counter-part TC2. Furthermore, if the species Fext, Hext
are available it is more efficient to invest into their respective transporters in compar-

82

4.6 Numerical examples

ison to enabling their biosynthesis via B → F and G → H. Very important for our
second example is the utilization of oxygen as the model can grow both anaerobically
and aerobically. Under aerobic conditions the cells can completely metabolize the car-
bon sources due to the cyclic reactions Vx,6 - Vx,8. If oxygen is present, the external
versions of the fermentation products Dext, Eext can even be taken up to enable further
growth. Under anaerobic conditions this is not possible and D, E must be secreted.
The model was designed this way to force multiple decisions in resource allocation at
once.
We will use this model for two examples. First we will repeat one of the experiments

from [110] to prove that the sdeFBA can reproduce results created with the original
deFBA and further investigate the interplay between prediction horizon and iteration
time during adaptive growth phases. Afterwards, we investigate how the model reacts
to sudden shifts in the environment.

4.6.2.1 Carbon source switch

Table 4.4: Initial values used for the carbon source switch experiment given in molar
amounts.

Carb1 Carb2 O2ext Dext Eext Fext Hext

2 30 50 0 0 0 0

In this experiments we mimic a batch process in which the nutrients are limited and
will deplete. We define the initial state of the environment as the values given in Table
4.4. The initial biomass state is calculated via an RBA using the given environment.
They are printed in Table 4.3 column P0. As Carb1 is easier to import, the RBA
(3.28) predicts no investment into the transporter TC2 and a high investment into
ET to enable the utilization of the oxygen. The amount of the external oxygen is
influenced by a fixed inflow VO and a ventilation process leading to the full dynamics
as

d
dtO2ext = −Vy,O2 + VO − γOO2ext, (4.44)

with the ventilation rate γO. For this scenario we use the values VO = 20 mol min−1

and γO = 0.4 min−1 We set the end-time for the regular deFBA simulation as tend = 70
min. We recreated the results from [110] with the deFBA-Python toolbox and plotted
these in Figure 4.5. In the left plot the trajectories for the external dynamics are
shown. We marked three major events: At t = 19 min the preferred carbon source
Carb1 runs out, at t =56 min the second carbon source depletes, and at t =60 min
all the fermentation waste D, which was secreted until t = 45 min, is used up and the

83

4 Short-term deFBA

solution enters a starvation phase. As this model does not include any maintenance,
starvation means simple zero growth.
But the analysis gets more interesting, when we look at the development of the

biomass shown in the right plot of Figure 4.5. The plot shows the biomass distribution,
not the actual amount, and we can learn a lot from this depiction. We can see, that
the cell stays in balanced growth until t = 9 min. Then it starts production of the
transporter TC2 and starts metabolizing Carb2. This production spikes directly before
Carb1 depletes, to keep the growth rate roughly constant. Very interestingly during
this adaptation phase the cell refrains from keeping the production of R and reaches
a new exponential growth phase starting at t = 19 min. This last until 30 min at
which time more oxygen is needed to start the internal metabolization of D. We can
see this in the increase in the enzyme ET and the increase in oxygen uptake. At t =45
min we reach a linear phase in which all resources are used to produce the structural
component S, which has the best biomass yield if carbon is available. Afterwards,
when the carbon source depletes and only the fermentation product D is available, the
cell focuses on the production of the ribosome as the production does not require the
species C and F.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t[min]

[m
ol
]

Dext

O2ext
Carb1

Carb2

1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t[min]

%
of

b
io
m
as
s

R

S

ET

TC2

1

Figure 4.5: Results for regular deFBA model. (Left) These are the trajectories for the
external species. Additionally are the times at which a nutrient source depletes
marked. (Right) Biomass composition over time. We only picked the relevant
macromolecules to clarify when different growth phases start.

If we instead use the short-term deFBA to simulate this model, we get nearly iden-
tical results, but the choices in prediction horizon and iteration time can have quite
an impact. Firstly, we want to simulate with the horizons determined as described
in Section 4.3 and Section 4.4. This results in the series of prediction horizons and
iterations times as given in Table 4.5. Using these for the simulation with the sdeFBA
yields the results presented in Figure 4.6. While the left side plot showing the external

84

4.6 Numerical examples

species is nearly identical, we can observe, that the fermentation product Dext takes
longer to be fully consumed in comparison to the previous results. Furthermore, the
biomass percentages shown on the right are quite jittery as each iterative solution
seems to include a phase in which unnecessarily more structure components S are pro-
duced. This means either the prediction horizon is chosen too small or the iteration
time is too large. In this case, we believe the prediction horizon is chosen to small as
Assumption 1 is violated due to the early depletion of Carb1. This means, the cells
must adapt to another nutrient source in the considered time frame. Because these
investments in TC2 in the beginning are expensive, the solution shows an early focus
on the production of S. When the system has adapted, between t = 20 min and t = 40
min, we still get a little bit of false investment into S due to a slightly over-sized iter-
ation time. Using the values shown in Table 4.6 in which we multiplied the calculated
values for tp with 1.5, we can perfectly reproduce the original deFBA results. We
refrain from plotting these as the pictures look identical to the ones from Figure 4.5.
For completeness, we must also state that using the method for the calculation of tp
in combination with a minimal iteration time of ti = 0.5 min will also reproduce the
original results. But in this case, the number of necessary iteration steps increases
from roughly 9 to over 120, which makes this numerically too costly.
The possibility to reproduce the deFBA results teaches us two important things

about the short-term deFBA. Firstly, the prediction horizon calculation as explained
in this chapter gives a good idea on the size of the prediction horizon. But to be able
to utilize this method better, we must find a better way to formulate the nutritional
constraints vmin(Y), vmax(Y) (cf. (4.10), (4.11)) in dependency on the current biomass,
growth rate, and amount of nutrient available.
Secondly, under nutritional stress results from short-term and regular deFBA are

identical as both solutions predict an increase in structural molecules S after t = 45 min

Table 4.5: Prediction horizons and iteration times used for the simulation shown in
Figure 4.6. All times are given in minutes.

actual time 0 4.5 10 16.5 23.5 30.5 36.5 43.5 55
prediction horizon 14.5 16.5 18.5 20.0 17.5 19.5 16.5 29.5 77.0
iteration time 4.5 5.5 6.5 7.0 6.0 7.0 5.5 11.5 37.5

Table 4.6: Prediction horizons and iteration times capable of reproducing the origi-
nal deFBA results shown in Figure 4.5. Values are calculated by the discussed
methods, but prediction horizon is multiplied by a factor of 1.5.

actual time 0.0 4.5 9.0 14.0 19.0 24.0 29.0 34.0 39.0 45.0
prediction horizon 21.5 21.0 21.0 23.5 24.0 23.5 23.5 23.5 26.5 57
iteration time 4.5 4.5 4.5 5.0 5.0 5.0 5.0 5.0 6.0 16.0

85

4 Short-term deFBA

0 10 20 30 40 50 60 70
0

10

20

30

40

50

t[min]

[m
o
l]

Dext

O2ext
Carb1

Carb2

1

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

t[min]

%
of

b
io
m
a
ss

R

S

ET

TC2

1

Figure 4.6: Results for short-term deFBA model. (Left) These are the trajectories for
the external species. Additionally are the times at which a nutrient source depletes
marked. (Right) Biomass composition over time. In comparison to the original
deFBA results shown in Figure 4.5 we see mostly identical behavior; but most of
the individual iteration times seems a bit long for the respective prediction horizon
and we get unnecessary production of S at the end of each iteration step.

to maximize the objective value. Therefore, we suggest using the sdeFBA primarily to
conserve computational cost for very large models and/or applications with very large
end-times or in situation with plenty nutrients. Solving problems like the one we just
presented are more efficiently solved with a single deFBA problem.
But in the next section we present another problem class better suited for the

sdeFBA.

4.6.2.2 Aerobic - anaerobic switching

We use the carbon-core model for another experiment. Imagine a cell population living
in a very dynamic environment in which the conditions can change very rapidly, like
near a drainage system, a bioreactor for biogas production, etc. To test whether we
can use the short-term deFBA to reliable predict how the population adapts to these
sudden changes, we construct another in silicio experiment. The environment during
this experiment switches from aerobic to anaerobic conditions every 30min. During
the aerobic phase we assume oxygen is limitlessly available O2ext = ∞. Additionally,
we set the amount of Carb1 to infinity Carb1=∞ to ensure the carbon dynamics do
not interfere with the switching between aerobic and anaerobic growth phases.
The initial biomass composition is calculated via an RBA with B0 = wTP0 = 1 g in

an anaerobic environment containing only Carb1. The initial amount for the enzymes
are depicted in Table 4.7. The initial phase of the experiment takes place in the

86

4.6 Numerical examples

Table 4.7: Initial biomass values in molar amounts for the switching experiment. Un-
listed species are set to zero.

Species Eb Ec Ed Ee Ef Eg
Amount 1.05·10−2 1.00·10−2 2.89·10−3 3.69·10−3 4.71·10−4 2.65·10−3

Species Eh Et R S Tc1 Tc2
Amount 2.65·10−3 0 5.45·10−3 4.67·10−2 6.30·10−3 0

presence of oxygen as shown in the plots of Figure 4.7 with a blue background. Then
we simulate the cells for half an hour using a prediction horizon tp = 32 min, which
was calculated via the algorithm described in Section 4.3 using the initial values. As
we are working in a highly dynamic environment we want to ensure maximal flexibility
in the solution and use a minimal iteration time ti = 2 min as dictated by the step size
of the discretization h = 2 min. We keep these values fixed for the whole experiment.
At the end of this aerobic growth we use the values for the external species Y (30 min)
and the current biomass composition P (30 min) as as initials for the next simulation
part in anaerobic conditions. Every 30 min we switch the conditions and repeat the
simulation until the gene expression rates stabilize and the biomass trajectories become
periodic. For the example this already happens after a single cycle, meaning we can
extend the plots (C) and (D) from Figure 4.7 over arbitrary time scales by repeating
the trajectory of the interval [60 min, 120 min].
Evaluating the results from this experiments yields the following. While the overall

growth rate stays nearly constant during the simulation, we observe a short drop
after the switch from aerobic to anaerobic conditions. This can be explained by a
lack of enzyme EE, which is necessary for anaerobic growth and not produced in an
aerobic environment. Therefore, the capability for anaerobic growth dwindles during
these phases. If the switch happens in the other direction, the model can sustain
its anaerobic growth mode and retains full flexibility to restart the production of ET
to increase the metabolization of oxygen. Hence, the growth rate can only increase
when oxygen becomes available again. Lastly, we must stress the fact, that the model
always depletes the external reservoir of the fermentation product E, if oxygen becomes
available. This is due to the fact that the model does not need a specific transporter
for the uptake and can use it to boost growth.
Overall, we see very rapid responses from the model after the switches. Especially,

the sudden increase in production of the secretion product Eext after the anaerobic
are unrealistic as the whole ribosome focuses on the production of a single enzyme
EE in these times. In a biological system we usually expect a longer lag-phases if the
conditions change so rapidly. Additionally, we can not observe an adaptation process
going on as the model only optimizes for its current environment and not for a possible
switch in the future.

87

4 Short-term deFBA

0 30 60 90 120

100

101

102

103

104

(A)

t/min

B
o
/g

short-term

1

0 30 60 90 120
100

101

102

103

104

105

106

(B)

t/min

E
e
x
t
/
m
ol

1

0 30 60 90 120
0

1

2

3

4

5

(C)

t/min

E
E
/%

o
f
B

o

1

0 30 60 90 120
0

1

2

3

4

5

(D)

t/min

E
T
/%

of
B

o

1

Figure 4.7: Results for short-term deFBA in the aerobic - anaerobic switching condi-
tions. The solution stabilizes after a runtime of 120min. This means the biomass
composition becomes periodic afterwards. (A) shows the objective value over time
on a logarithmic scale. We can see small decreases of the growth rate when switch-
ing to anaerobic conditions as the system run into a bottleneck due to the absence
of enough EE, but for most of the time the system experience exponential growth.
(B) shows the development of the fermentation product Eext. While at the start
of aerobic phases still a bit E is secreted the system quickly starts taking this up
again until its external amount goes to zero. (C) present the biomass share of the
enzyme EE which is needed for anaerobic growth. While its production is neglected
during aerobic growth, after the switch the model focuses on the production of
this component. (D) The enzyme ET is needed for the respiratory cycle, presented
as reaction VX ,9. It reaches a peak after 10min in aerobic growth to balance out
the additional energy cost for the uptake of Eext but returns to a fixed value in the
presence of oxygen. Otherwise, it is not produced.

88

5 Robust deFBA

As we have shown in the previous example the short-term deFBA is unable to generate
predictive solutions estimating how cells adapt in rapid changing environments. Of
course, the problem lies in the optimality of the solutions for a deterministic environ-
ment. This means, we need to extend the sdeFBA to include some form of uncertainty
in the availability of nutrients. Because the sdeFBA was already planned to be used in
model predictive control applications we started looking for robust optimization tech-
niques in Model Predictive Control (MPC) to adapt to the deFBA formalism. While
a comparative review of all possible ways to include uncertainties in an optimization
problem would be to much for this work, we refer to these review papers on the topic
[9], [36].
We chose a method called multi-stage Model Predictive Control (msMPC) [68] as

basis for our work due to its straightforward implementation using only deterministic
modeling. We will discuss the method in more detail after formally introducing it.

5.1 Multi-stage MPC
The msMPC was introduced in [68], [69], and [67] as a new way to ensure robustness
of the solutions of nonlinear MPC problems. When talking about robustness, we mean
that the model contains some parameters d ∈ [dmin, dmax], d ∈ Rnd for which the exact
values are unknown or might change over time. One type of uncertainty can affect
model parameters due to measurement errors, model approximations, etc. For our
cellular models, we are more interested in a type of uncertainty used to describe limited
knowledge of the environment and the future thereof, e.g., changes in temperature,
pressure, or the availability of nutrients. A third type is the unknown behavior of
counter-acting agents, e.g., other microorganisms in the medium. Competing with
other species for nutrients might hugely impact the decision for our modeled organism,
but we will leave this topic for subsequent studies.
A solution to an optimization problem including these kind of uncertainties is called

robust in the uncertainty d if the solution is feasible for all values d can assume.
This concept is sketched in Figure 5.1, which depicts a possible solution to a nominal
problem with a fixed value for d in a continuous black line. These solutions often
tend to be on the boundaries of the solution space and therefore ”touch” constraints,
meaning if the constraint is given as a less-or-equal constraint, the solution trajectory
fulfills the constraint as equality. But for other values of d the calculated controls
might lead to all values inside the shown tube of states, depicted via the dashed lines.

89

5 Robust deFBA

constraint

time

st
a
te

nominal

with noise

1

Figure 5.1: This sketches the meaning of robustness. On the y-axis the state space is
shown and we assume there exists a constraint on the feasible state space given as
the red line. The continuous black line shows an optimal solution to the attached
problem using a fixed value for the uncertainty. But in reality all values inside
the dashed tube might be the true state for the system using identical controls
but other values of d. Hence, the solution is infeasible for the robust optimization
problem.

In this case, the solution is obviously not robust as there exist d values for which the
trajectory is infeasible and violates the constraint.
The best known approach to ensure this kind of robustness is the min-max MPC

[19], which optimizes in a worst-case scenario setting. This method is a two-stage
optimization problem in which an inner problem calculates the optimal objective value
in dependency of the uncertainty value. The outer problem works opposing to the inner
problem and chooses the value of the uncertainty to minimize the objective. This
approach suffers at two fronts, these optimization problems are usually quite hard to
solve and the predictions from min-max approaches are often very conservative. This
originates in the fact that min-max approaches do not take the receding prediction
horizon and the increase in information on future states into account. In some cases
this might even lead to infeasible trajectories [100]. While extensions to closed-loop
min-max MPC exist [42], [44] the resulting problems are even harder to solve and
require some additional restrictions for the controls to be applicable.
The msMPC takes a different approach to this problem by assuming that the effects

of an uncertainty can be represented via a scenario tree. The idea of these trees is
shown in Figure 5.2. In this sketch the system starts in the state Z0 and the model
contains a single uncertainty d, which can assume three values d1, d2, and d3. We
assume that the values stay constant during the time step. Each of these values
creates a branch in the tree, allowing for different inputs V 1

1 , V 2
1 , V 3

1 leading to the
new system states Z1

1 , Z2
1 , Z3

1 . At this time point the uncertainty might change value
and from each of the three new states another set of three branches springs. This
continues on until the chosen prediction horizon is reached. We call a path starting at
the root Z0 to a final leaf scenario.
This kind of construction for a scenario tree is only possible, if the uncertainties

90

5.2 Constructing a single optimization problem

Z0

Z1
1

Z2
1

Z3
1

Z1
2

Z2
2

Z3
2

Z4
2

Z5
2

Z6
2

Z7
2

Z8
2

Z9
2

•••

•••

•••

•••
•••
•••

••
•

••
•

•••

V
1
1
(d
1)

V 2
1 (d

2)

V 31 (d 3
)

V
1
2
(d

1)

V 2
2 (d2)

V 3
2 (d3

)

V
4
2
(d

1)

V 5
2 (d2)

V 6
2 (d3

)

V
7
2
(d

1)

V 8
2 (d2)

V 9
2 (d3

)

1

Figure 5.2: Scenario tree branching in every node.

assume only discrete values. We can elude this problem by substituting continuous
uncertainties with sampled values from their range and thus approximating the contin-
uous problem. Unfortunately, robust constraint satisfaction might not be guaranteed
in this case [69].
The problem with the scenario based approach is to construct a single optimiza-

tion problem dealing with all possible scenarios at once. The size of this resulting
optimization problem grows exponentially with the prediction horizon, the number
of uncertainties, and the number of values each uncertainty can attain. Hence, it is
necessary to simplify the tree, which we will present in the next section.

5.2 Constructing a single optimization problem
Contrary to most applications of msMPC we are not directly interested in a model
predictive application of our cellular models. Instead, we want to emulate the decision
process behind the robust expression of enzymes necessary to survive in the uncertain
environment. This means, we must prepare scenarios representing all possible changes
in the environment. Without loss of generality we can assume the nutrient situation
will only change once on the prediction horizon. This can be assumed as we will only
apply a short part of the calculated trajectories as we did in the sdeFBA. Therefore,
possible further changes in the environment are modeled in a later iteration.
This assumption alone simplifies the scenario tree immensely as it limits the branch-

ing process to a single event at the root. The example tree in Figure 5.3 was generated
by three uncertain values d1, d2, and d3, which can assume the discrete values 0 or 1.
Thus, we have a total of eight possible realizations of the uncertainty vector d ∈ {0, 1}3

and each of these realizations corresponds to a single scenario in the tree. To distin-
guish the scenarios, we will use upper indices starting at zero. This means if the model
contains nd uncertain external species, we distinguish 2nd realizations dj ∈ {0, 1}nd,

91

5 Robust deFBA

Zi|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+1|i

Zi+2|i

Zi+2|i

Zi+2|i

Zi+2|i

Zi+2|i

Zi+2|i

Zi+2|i

Zi+2|i

Z0
i+3|i

Z1
i+3|i

Z2
i+3|i

Z3
i+3|i

Z4
i+3|i

Z5
i+3|i

Z6
i+3|i

Z7
i+3|i

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Z0
i+p|i

Z1
i+p|i

Z2
i+p|i

Z3
i+p|i

Z4
i+p|i

Z5
i+p|i

Z6
i+p|i

Z7
i+p|i

Vi+1|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

Vi+2|i(d)

V 0
i+3|i(d

0)

V 1
i+3|i(d

1)

V 2
i+3|i(d

2)

V 3
i+3|i(d

3)

V 4
i+3|i(d

4)

V 5
i+3|i(d

5)

V 6
i+3|i(d

6)

V 7
i+3|i(d

7)

V 0
i+4|i(d

0)

V 1
i+4|i(d

1)

V 2
i+4|i(d

2)

V 3
i+4|i(d

3)

V 4
i+4|i(d

4)

V 5
i+4|i(d

5)

V 6
i+4|i(d

6)

V 7
i+4|i(d

7)

V 0
i+p|i(d

0)

V 1
i+p|i(d

1)

V 2
i+p|i(d

2)

V 3
i+p|i(d

3)

V 4
i+p|i(d

4)

V 5
i+p|i(d

5)

V 6
i+p|i(d

6)

V 7
i+p|i(d

7)

tp
tr

1

Figure 5.3: Reduced scenario tree only branching once. The constraint (5.3) enforces
all reaction rates to be identical on the robust horizon, meaning they are feasible
for all values of d. Hence, the first two sets of rates depend on d instead of the
individual values. This also means that the first two calculated sets of states are
also identical for each scenario Zki+1|i = Zji+1|i, Z

k
i+2|i = Zji+2|i, ∀j, k.

j ∈ {0, . . . , 2nd − 1}. We write shortly

J = {0, . . . , 2nd − 1}. (5.1)

For a unique identification of the scenarios we use binary mapping of the values to their
respective vector dj. For example, we can determine the value of d6 via the binary
representation of 6 as 110. Therefore, d6 = [1, 1, 0]. This way d0 always corresponds
to the scenario in which all uncertainties assume the value zero. We call this the zero
scenario and use it to represent the real current environment, while all other branches
are "might-be" scenarios.
Due to the discrete nature of the scenario tree, we use the discrete formulation for

all variables as presented in Section 4.5. The decision variables V j
k|i, with the discrete

notation as introduced in (4.41), are assumed to be independent from each other in
the different scenarios. Additionally, Figure 5.3 depicts a new time variable tr < tp
called the robust horizon. We calculate the discrete robust horizon r ∈ N in the same
way as we did with the iteration time depending on the step size h as

r = btr
h
c, r ≥ 1. (5.2)

Choosing the size of the robust horizon strongly depends on the step size h. From our

92

5.2 Constructing a single optimization problem

experience, setting tr = h, resp. r = 1, is usually a good choice, but for very small
values of h this might lead to unexpected results. Therefore, we see tr currently as a
tuning parameter.
The robust horizon is related to the iteration time ti we encountered during the

definition of the sdeFBA, as it defines the length of the trajectories which are assumed
to be robust, meaning feasible for all scenarios. We do this by enforcing a new type of
constraint on the reaction rates called the nonanticipativity constraint [28]

V g
i+k|i = V j

i+k|i = Vi+k|i, ∀g, j ∈ J , k ∈ {1, . . . , r}. (5.3)

The constraint (5.3) is the direct reason for the robustness of the solution as it enforces
that the reaction rates on the robust horizon must be feasible for all scenarios at once.
If the rates are feasible the associated states Zji+k|i are as well and the solution is

robust in the sense from Figure 5.1. Please note, that this form of the nonanticipativity
constraint is a bit weakened in comparison to the one used in the original msMPC
introduction [69], which reads:

V g
k|i = V j

k|i, if Z
g
k−1|i = Zjk−1|i, ∀g, j ∈ J , k ∈ K = {1, . . . , p}. (5.4)

For our application this would mean that the reaction rates must be identical if the
parent states are identical. We do not plan to introduce uncertainty to the dynamics
of our models, hence, a nonanticipativity constraint like (5.4) would force all reaction
rates to be identical for all scenarios. The weakened formulation allows the rates to
deviate after the robust horizon, meaning the rates can be chosen freely for t > tr.
While the nonanticipativity constraint guarantees robustness, we still have to define

a coupling of the objective values of the different scenarios. We introduce a shared
objective function defined as

J =
∑
j∈J

ojwB
j
o(t), (5.5)

with the objective biomass Bj
o for each scenario and their probability weights owj ∈

R≥0, ow ∈ R2nd

≥0 . While in our case each scenario utilizes the same objective biomass
functional (3.12)

Bg
o = Bj

o = Bo, ∀g, j ∈ J , (5.6)

it is possible to include uncertainty in the objectives as well; meaning uncertainty in the
molecular/objective weights of the species. The probability weights for the objectives
are very useful in this case, as they enable us to include the probability of a scenario
happening. We enforce the weights to add up to one∑

j∈J
ojw = 1. (5.7)

93

5 Robust deFBA

Therefore, each weight directly reflects the probability of a scenario occurring. The
beauty in this approach lies in the fact that we can make these dependent on the current
time ojw(t) to emulate progression in the knowledge of the cell on their environment.
Consider as an example a population of bacteria living on a beach and thus being

influenced by the tides. After the sea level changes the bacteria ”knows” that the
environment will stay this way for roughly the next six hours. This can simply be
translated into mappings from time to scenario probability. But, to really implement
this an extensive knowledge about the environmental changes and their timing is nec-
essary. Nevertheless, these timed behaviors can be observed in most kinds of cells and
are synchronized via the circadian clocks of the respective species, e.g., cyanobacteria
[90], mammalian cells [86], or yeast [29].

5.3 Uncertainty in the environment
So far, we have explained the meaning of ”robustness” as attribute of robust optimiza-
tion techniques to ensure that no constraints are violated regardless of the uncertainty.
While this is important for our application to ensure physical feasibility, we are more
interested in robust cell cultures. This means the population has developed an inherit
ability to survive regardless of sudden changes in their living conditions. We want to
exploit the robust optimization to predict how this robust adaptation looks like. We
approach this by introducing uncertainty in the environment which forces our models
to anticipate the possible change in the environment and prepare for it.
For the construction of these uncertain environments, we orient ourselves at the

setup for switching experiment described in Section 4.6.2.2 using the carbon core model.
We consider an identical setting with sudden switches from aerobic to anaerobic growth
conditions.
To model the robust decision process in this case the model can not be constraint

to the current availability of oxygen but also on the possibility that this might change.
We have to distinguish between two problem classes:

1. A nutrient Nu is unavailable but might become available again.

2. A nutrient source Na is currently available and might run out.

In both cases, we express the uncertainty via a new constraint in the form

dVin(t) ≤ climit(t), (5.8)

with the uncertainty d ∈ {0, 1}, the uptake reaction Vin, and the time dependent
uptake limit climit(t) ≥ 0. Using this kind of constraint conveys multiple benefits:
The constraint is inactive for d = 0, the nutrient dynamics are not interfered with,
existing limitations to the nutrient uptake stay intact, and modifying the uptake limit

94

5.3 Uncertainty in the environment

climit(t) ≥ 0 is easy. When using this kind of constraint, we want to ensure that d = 0
reflects the current situation, while d = 1 encodes the possibility for change to keep
the notation with the zero scenario intact.
This translates in situations in which a nutrient source Nu might become available

again to the following scenarios. In the first one with du = 0 no uptake of Nu is
possible. We can express this by forcing the uptake reaction Vin,u of Nu to zero, via
an adapted form of (5.8)

(1− du)Vin,u(t) ≤ 0, du ∈ {0, 1}. (5.9)

Due to the nonanticipativity constraint (5.3), the uptake rate of Nu will be zero in
all scenarios on the robust horizon V j

in,u(t) ≤ 0, t ∈ [0, tr], ∀j ∈ J . Therefore, the
question is how we construct the scenario in which the nutrient becomes available
again. There are a multitude of possible formulations but trial and error showed us
that the formulation (5.9) is sufficient with a minimal adaptation of the model.
We assume the model can grow without the supply of Nu at its current state.

Without this assumption the model is currently in a starvation period and we might
run into an infeasible problem during the simulation; independent from the uncertainty
in the availability of Nu. The addition of Nu under this assumption can only enrich
the environment and might increase the achievable growth rate. Assuming the uptake
of Nu, or another reaction down the pathway metabolizing it, is constrained by an
enzyme or transporter, we can delete the dynamic species Nu from the model without
risking any impact on the solution of the zero scenario. We realize this by substituting
the uptake reaction

Vin,u : Nu → Nu,internal (5.10)

with

Vin,u : ∅ → Nu,internal. (5.11)

This way, in the scenario in which (5.9) is inactive, uptake of Nu is possible after the
robust horizon. This formulation is very simple and does not depend on the current
state of the model. But due to our assumption the model must still invest in enzymes
to be able to metabolize Nu. Therefore, we have created exactly the situation we were
looking for: The model can decide whether it is reasonable to invest some nutrients to
prepare for the possibility that Nu becomes available again. As the model can grow
without Nu and the zero scenario will not benefit from investments done on the robust
horizon, the possible growth gain from Nu must be very large to make this investment
reasonable. Of course, this decision depends on the models state and the chosen robust
horizon.
This approach can become a bit more complicated if Nu is also an secretion product

95

5 Robust deFBA

or can become available from other deterministic sources. In these cases we suggest to
create a copy Vin,u,2 with the suggested stoichiometry and enforce the robust constraint
only on this reaction. Please note that enzyme capacity constraints must then be
adapted as well.
For the second case, in which a nutrient might deplete we are facing a different

challenge. While we will again be using a constraint in the form (5.8), we must ensure
that the scenario in which the uptake of Na is constrained does not become infeasible.
A simple approach would be to utilize the same idea from the inverse situation. Allow
uptake of Na over the robust horizon with additional constraints and then cut off the
supply completely for scenarios with da = 1. Unfortunately, we encountered cases in
which this is not possible. Consider a model containing distinct pathways for aerobic
and anaerobic growth, which utilize independent enzymes. If the model is grown
exclusively under aerobic conditions, the enzymes for anaerobic growth will never be
expressed and the model is unable to grow without oxygen. This situation further
deteriorates, if the model contains maintenance reactions.
Using this way to construct the scenarios, the model can only express enzymes

necessary to survive under the anaerobic conditions on the robust horizon. Depending
on the models state, this is simply not enough time to generate enough enzyme to
satiate maintenance constraints. Instead, we use an additional ramp function in the
construction of the uptake limit as

climit(t) =

∞, t ∈ [0, tr]

(1− t
tb−tr)vin,r, t ∈ (tr, tb]

0, t ≥ tb,

(5.12)

with the new parameter preparation time tb ∈ R≥0, tb ∈ (tr, tp] and the robust uptake
limit vin,r. We want to emulate the total depletion of Na with this formulation. With
the preparation time we can give the model more time to adapt the cessation of Na
supply. A suitable value for the robust uptake limit can be calculated from previous
values of the uptake rate

vin,r = vin,old · eµmaxtr. (5.13)

This means, we simply approximate the maximal uptake rate for Na from the previous
values of the uptake reaction under the assumption that the model grows exponen-
tially. The old value for the uptake can either be taken from an RBA solution for the
current environment or from a previous iteration during the run-time. The maximal
exponential growth rate µmax can also be determined by an RBA in a rich environment
containing all possible nutrients in surplus.
The tuning parameter tb is harder to determine and must either be guessed or fitted

with experimental data. From the perspective of the robust optimization its impact

96

5.4 Implementing the robust deFBA

is even larger than the robust horizon. A longer preparation time might enable the
cells to fully adapt to the changed environment, but at the same time this lowers the
adaptation stress. The faster the cells must adapt the bigger this stress becomes and
the more likely, the cells will start adapting on the robust horizon. Choosing tb too
small might lead to the infeasible scenario we wanted to avoid in the first place.
We must distinguish between different types of stress. Preventing an infeasible

scenario has always the highest priority as this means cell death. Therefore, this
causes immediate adaptation. If other kinds of nutrients are available to substitute
the uncertain source Na, the robust formulation can only infer minor adaptation stress.
Most likely in these cases, the optimal robust behavior is to utilize Na only if necessary
and focus on more reliable food sources.

5.4 Implementing the robust deFBA
With the uncertain environments in place, we can formalize the robust dynamic
enzyme-cost Flux Balance Analysis (rdeFBA) as a discrete iteration scheme on the
discretized time ∆t(h) with the step size h, cf. Section 4.5. As before we will use
the forward Euler to simplify the dynamics for easier reading. As the computational
cost increases in comparison to the sdeFBA we lowered these by implementing a new
discretization scheme presented in Section 5.5. The rdeFBA reads in pseudo code:
procedure Robust deFBA(Y 0, P0, tend, h, p, r)

Initialize empty solution trajectories Z∗, V ∗
i = 0
Z∗0 = [Y 0, P0]
t = 0
while t < tend do

solve:

max
(V j

k|i),j∈J , k∈K

∑
j∈J

ojw
∑
k∈K

Bj
k|i (5.14a)

with given Zji|i = Z∗i , ∀j ∈ J (5.14b)
subject to: Zjk|i = Zjk−1|i + hSV j

k−1|i (5.14c)
SXV

j
k|i = 0 (5.14d)

HaZ
j
k|i −HfV

j
k|i ≤ 0 (5.14e)

HbZ
j
k|i ≤ 0 (5.14f)

HcV
j
k|i −HeZ

j
k|i ≤ 0 (5.14g)

Hj
dV

j
k|i ≤ Cj

k|i (5.14h)
Zjk|i ≥ 0 (5.14i)

97

5 Robust deFBA

Vmin ≤ V j
k|i ≤ Vmax,∀(k, j) ∈ (K × J) (5.14j)

and V g
k|i = V j

k|i = Vk|i, ∀g, j ∈ J , k ∈ {i, . . . , i+ r}, (5.14k)

Z∗i+1 = Yi+1|i, Pi+1|i
V ∗i = Vi|i
i+ = 1
t+ = h

Additional break conditions can be placed here
end while
return Z∗, V ∗

end procedure
with K = {i, i+ 1, . . . , i+ p− 1|hp = tp}, the discrete horizons p and r. This scheme
is very similar to the short-term deFBA as it also utilizes the receding prediction
horizon, but beside the extension to the different scenarios we also included the newly
introduced uncertainty constraint (5.14h).
This constraint uses a new filter matrix Hd ∈ {0, 1}nd,m and the discrete approxima-

tion of the continuous Climit(t) vector which entries correspond either to climit (5.12)
or zero (5.9).
As the dynamics are not subject to any uncertainty (5.14c) the nonanticipativity

constraint (5.14k) leads to identical states

Zjk|i = Zgk|i = Zk|i, k ∈ {i+ 1, . . . , i+ r}. (5.15)

Therefore, it would be possible to utilize the robust horizon in the same sense we
used the iteration time in the short-term deFBA. However, we assumed during the
construction of the scenario tree, that only a single environmental change happens
during the prediction horizon. To keep the influence of this assumption minimal and
allow the model to react more quickly, we usually use a minimal robust horizon r = 1,
respectively tr = h.

5.5 Solving rdeFBA with deFBA-Python

When we started implementing the robust deFBA into the deFBA-Python toolbox we
quickly ran into two problems. The increased problem size for the rdeFBA made the
use of the complex collocation used by the LinOpt class very costly. Furthermore,
it turned out to be very complex to include all features of the rdeFBA with varying
robust horizons, probability weights, and the new environmental constraints (5.14h) in
the existing collocation. Thus, we were forced to implement a new collocation method,
which results in a simpler linear program to solve and which we can control more easily
at the same time.
We chose to adapt a collocation based on the implicit midpoint method as presented

98

5.5 Solving rdeFBA with deFBA-Python

Zk−1

tk−1

Zk

tktk−1 + 0.5h

Żk
Vk

tk + 0.5h

Żk+1
Vk+1

tk+1

Zk+1

Figure 5.4: Visualization of the location for the discrete approximations. States are
evaluated on the time grid and derivatives, fluxes are evaluated in between the
grid points.

in [92] for the discretization of the ODEs. The idea is to solve an initial value problem
in the form

d
dty(t) = f(t, y(t)), y(t0) = y0, (5.16)

via the approximation

yk+1 = yk + hf

(
tk + h

2 ,
1
2(yk+1 + yk)

)
. (5.17)

As presented in [92] this translates for deFBA models to different evaluation points
for states and reaction rates on the time grid ∆t(h). This is visualized in Figure 5.4.
While the states are evaluated at the grid points tk, the fluxes and derivatives are
evaluated at tk +h/2. Applying this as a collocation method to the deFBA we end up
with the following LP

max
(Zk,Żk,Vk)k∈K

∑
k∈K

wTo Zk (5.18a)

s.t. Zk = Zk−1 + hŻk (5.18b)

Żk = SVk + 1
2(Zk−1 + Zk) (5.18c)

SXVk = 0 (5.18d)

− 1
2Ha(Zk−1 + Zk) +HfVk ≤ 0 (5.18e)

HbZk ≤ 0 (5.18f)

HcVk −
1
2He(Zk−1 + Zk) ≤ 0 (5.18g)

Zk ≥ 0 (5.18h)
vmin ≤ Vk ≤ vmax,∀k ∈ K, (5.18i)

with K = {1, . . . , N}, Nh = tend and given Z0 as initial values. While it is possible to
eliminate the state derivatives Żk completely by substituting (5.18c) into (5.18b), we
keep them for simpler implementation and easier modification of the method.
In the collocated problem we encounter three types of constraints: Path constraints

99

5 Robust deFBA

(5.18c), (5.18g), (5.18e); control constraints (5.18d), (5.18i); and state constraints
(5.18f), (5.18h). We also have to consider the update rule (5.18b), of course.
To utilize the midpoint collocation in the robust setting we must handle two addi-

tional constraint types: Contemporary constraints acting only on parts of the trajec-
tories to handle the nonanticipativity constraint (5.14k) and control constraints with
time dependent right hand sides for the scenario based constraints. The numerical
implementation of these features was realized in the MidOpt class, which we designed
in a way to be compatible with the existing code using the LinOpt class. Therefore,
it is possible to utilize the midpoint collocation scheme in the regular deFBA and
the short-term deFBA as well. As the midpoint collocation is not as sophisticated
as the midpoint rule, it might be necessary to reduce the step size h when using this
method. Even when using the smaller step size, the midpoint collocation very effec-
tively decreased computing times in our examples. The results in these cases are nearly
identical to the ones we calculated with the LinOpt class using larger step sizes. We
present an example in the upcoming section.
The robust deFBA can be accessed from the DefbaModel class via the method

DefbaModel.robust(). While the options are basically identical to the ones from short-
term deFBA, the important addition is the necessary attribute uncertain_values. In
the current version of Python-deFBA it is possible to enter either model parameters in
form of kcat values, objective values wo, biomass fractions φ, or maintenance coefficients
ϕ. The identifiers for the parameters are derived from the SBML containing the model.
It is possible to enter an arbitrary amount of possible values for each parameter and
the system generates the according scenario tree. While we have not discussed this
function in this text, we feel it might be very useful for some users.
In the software the scenario trees are generated based on uncer-

tainties in these parameters. To include uncertain scenarios in this
workflow, the user has to generate a pseudo parameter by running
DefbaModel.addUncertainEnvironment(Reaction_name, decreasing = Boolean).
Here the Reaction_name must correspond to the name of a exchange reaction and
decreasing defines whether the nutrient source transported by the reaction will run
out or might become available again. The user might then call the robust deFBA
via DefbaModel.robust(uncertain_environment), with uncertain_environment
being a dictionary defining the uncertain environment and containing the prepa-
ration time as fraction of the prediction horizon, e.g. uncertain_environment =
{environment:[0.5]} represents a preparation time tb = 0.5tp.

5.6 Numerical examples
In the following sections we will showcase results from the robust deFBA and compare
them to results obtained with regular short-term deFBA. This way we validate the

100

5.6 Numerical examples

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

t[min]

V
[m

ol
/
m
in
]

Carb1-uptake

Carb2-uptake

1

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

t[min]

%
o
f
b
io
m
a
ss

Tc1

Tc2

1

Figure 5.5: Results for the robust carbon switching experiment. (left) Uptake rates
over time. After an initial focus to increase the uptake capabilities for Carb2, the
rates stabilize after t = 2.5min and increase both exponentially. (right) Biomass
percentage for carbon transporters over time. After the initial focus on the pro-
duction of Tc2 and a bit of adaptation afterwards, the system enters balanced
growth after 20min in which the biomass percentages for the transporters stay
constant.

robust deFBA and show how robust modeling affects the simulations.

5.6.1 Carbon-core model

In this section we will use the carbon core model from Section 4.6.2. We will inves-
tigate how the availability of the two carbon Sources Carb1 and Carb2 influence the
results and repeat the switching experiment from Section 4.6.2 with the robust deFBA
afterwards.

5.6.1.1 Carbon source switching

Focusing on the availability of the carbon sources, we can construct a very simply but
interesting problem setting. As Carb1 is the preferred carbon source, the model will
never utilize Carb2 as long as enough Carb1 is present. Hence, we want to investigate
the effects of the robust method by assuming Carb1 might suddenly run out. In reality
both Carb1 and Carb2 are present in excess, but we create a scenario as described
before. For the numerical solution we use the following parameter values: discretization
step size h = 0.5min, prediction horizon tp = 30min, robust horizon tr=1.5min, and
preparation time tb = 2min. The preparation time was chosen very small as the model
does not contain maintenance and it can adapt very quickly to changes as shown in the

101

5 Robust deFBA

switching experiment with the sdeFBA (cf. Section 4.6.2.2). We also supply oxygen
in limitless quantities and calculated the initial values shown in Table 5.1 via an RBA.
The initial biomass amount was chosen as 1g. The RBA ran in the deterministic
setting, which means that the necessary transporter Tc2 is missing from the initial
values.
The results are shown in the plots in Figure 5.5. Immediately, the model starts

focusing on the production of Tc2 to be able to consume Carb2 and continue to grow
in the Carb1-limiting scenario. This means in the first 2.5 minutes, the share of Tc1 in
the biomass decreases and the uptake rates for Carb1 stay roughly level. Afterwards,
the cell must equalize the amounts of the other enzymes again which leads to small
variations in the Tc2 share of the biomass. But after just 19 min, the model enters a
new balanced growth phase, which stills favors the usage of Tc1 as carbon source, but
also utilizes Carb2 and thus be prepared for a sudden depletion of Carb1.
This result is quite sensitive to the robust horizon and the preparation time. Larger

preparation times for example can lead to results without any expression of Tc2. This
can easily be explained by the lack of starvation penalty in the model. The fast growth
on Carb1 makes it sub-optimal to invest in Tc2 in this case; even under the zero-growth
phase at the end of the limiting scenario.
On the other hand, a combination of a small robust horizon and short preparation

time can make any prolonged utilization of Carb1 sub-optimal and the model focuses
solely on the uptake of Carb2, which is fully available in both scenarios.
This example already shows that we have to investigate the impact of these param-

eters in more detail and find a way to choose the values systematically as we did with
the iteration time in the previous chapter. At the same time these results proof our
concept, as the rdeFBA predicted results fit to a robust population, exchanging some
growth rate for the ability to cope with sudden changes.

5.6.1.2 Aerobic-anaerobic switching

In this example, we repeat the switching experiment from Section 4.6.2.2 in the robust
setting and compare the results to the ones from the sdeFBA. As a reminder, in this
experiment we have ’pregrown’ the cells under anaerobic conditions and transfer them
suddenly into an oxygen rich environment. After 30 min we switch the environment

Table 5.1: Initial values for the simulation in which Carb1 supply is uncertain. Unlisted
species are set to zero. Quantities are given in molar amounts.

Species Eb Ec Ed Ee Ef Eg
Amount 6.82·10−3 6.29·10−3 2.39·10−3 2.96·10−7 5.33·10−4 2.94·10−3

Species Eh Et R S Tc1 Tc2
Amount 2.94·10−3 6.69·10−3 6.12·10−3 4.67·10−2 4.10·10−3 0

102

5.6 Numerical examples

from one oxygen state to the other. To ensure comparability between the results, we
recalculated the sdeFBA solution with the midpoint collocation and use an identical
step size. Furthermore, we use the same initial values for the robust deFBA as for the
short-term solution, cf. Table 4.7. The parameters for the simulation are chosen as:
Step size h = 0.5 min, prediction horizon tp = 33 min, robust horizon tr = 1.5 min,
and preparation time during aerobic growth tb = 16.5 min.

The results are presented in Figure 5.6. First, we see an identical periodicity of the
solutions for the robust deFBA as we do with the sdeFBA solutions. This means, the
solutions curves for the biomass percentage for the time 60 min to 120 min will repeat
afterwards.
We are very interested into the performance of the robust solution and how it differs

from the deterministic model. As we can see in plot (A), the overall biomass increase
is larger for the robust solution because the lag phase after entering the anaerobic
phase is shorter. This is due a less aggressive investment into the aerobic pathways
during the aerobic phases. Therefore, the robust optimization handles the possible
loss of oxygen by being more careful during investment.
However, the robust simulation does not contain large deviations from the short-

term behavior during anaerobic growth. While we include a scenario in which oxygen
becomes available again the model predicts no investment into ET before oxygen be-
comes available again. This shows, that a possible return of a nutrient is only relevant,
if expression of the necessary transporter is cheap and metabolization is simple.
The biggest deviation between the solutions is depicted in (B) and (D) of Figure

5.6. While the sdeFBA solution produces increased amounts of ET to metabolize the
previously secreted fermentation product Eext, the robust solution excretes it contin-
uously even if oxygen is available. With the possibility that the oxygen might deplete
again, it is infeasible to invest into the restructuring needed to metabolize E.
In this example the growth modes differ stronger than in the previous example.

This decreases the impact of the parameters tr and tb and makes it much easier to find
suitable values. At the same time, the anaerobic growth mode is still a backup growth
mode, which can be used in all scenarios. But a test has shown, that just staying in
the anaerobic growth mode yields worse results than the short-term solution. While
the robust solution predicts an oxygen consumption due to the increase in growth rate,
it does not overshoot in the production of ET. Instead of ’wasting’ nearly 10 minutes
of most production capacity on ET just for a short growth burst in the sdeFBA, the
robust solution even increases it auto catalytic capacity in the early phase of aerobic
growth. Therefore, it can keep up with the sdeFBA solution even without using Eext.

5.6.2 Yeast model

One of the major results in the ROBUSTYEAST project was the creation of a
new model called deFBA_yeast for the organism Saccharomyces cerevisiae by A.-M.

103

5 Robust deFBA

0 30 60 90 120 150

100

101

102

103

104

105

(A)

t/min

B
o
/g

short-term

robust

1

0 30 60 90 120 150
100

101

102

103

104

105

106

107

(B)

t/min

E
e
x
t
/m

ol

1

0 30 60 90 120 150
0

1

2

3

4

5

(C)

t/min

E
E
/%

of
B

o

1

0 30 60 90 120 150
0

1

2

3

4

5

(D)

t/min

E
T
/%

of
B

o

1

Figure 5.6: Comparison between short-term and robust results for the aerobic-
anaerobic switching experiment. Phases with oxygen have a blue background.
(A) Shows the development of total biomass over time. While the growth rates
for both methods is nearly identical for both methods. The robust solution out-
grows the regular one in the long run. This is due to the shortened lag phase
when entering the anaerobic conditions. (B) The most relevant difference between
the solutions is the consumption of Eext. While the sdeFBA takes it up again
as quickly as possible to speed up growth, the robust solution secretes excess of
internal E and does not take any up again. (C) The enzyme EE is essential for
anaerobic growth. While both solutions neglect the production after entering the
aerobic phases. The robust solution is more reluctant in building it up again af-
ter entering the anaerobic phase. (D) The production of ET spikes in the blue
parts to enable the utilization of the previously secreted fermentation product E
for the sdeFBA. The robust solution reaches the same level at the end of the
growth phase but slowly builds to it. Both solutions do not produce it during the
anaerobic growth phases.

104

5.6 Numerical examples

Reimers and H. Lindhorst. The model was first published in the thesis [92]. The
current version of the model in SBML using the RAM extension can be found at 1.
We refer to the thesis for a detailed explanation on how the model was constructed
and model verification via the reproduction of published experimental results.
The deFBA_yeast model is derived from the Yeast 6.06 model [46] using the protocol

presented in Section 3.3. As the size of Yeast 6.06 was too large for dynamic resource
allocation methods, the minimal network finder [94] was applied to reduce the network
size. It was ensured that the reduced model can attain at least 99% of the original
biomass flux in the following environmental conditions:

• aerobic glucose

• aerobic galactose

• anaerobic glucose

• anaerobic galactose.

Additionally, all fermentation pathways were retained to enable the study of ethanol
production. The resulting FBA model has 454 metabolites, 438 reactions, and 429
genes; which is a suitable size for deFBA applications.
To ensure the possibility that the model can also consume by-products like ethanol,

some reactions from Yeast 7 [5] were included by hand to the reduced model. Start-
ing with this reduced model, available at 2, the deFBA_yeast model was created by
following the protocol described in Section 3.3. The final deFBA model contains

• 3 dynamic external species (glucose, galactose, ethanol)

• 26 exchange reactions

• 421 metabolic species

• 514 metabolic reactions

• 2 storage species

• 4 artificial quota species

• 378 enzymatic species

• 386 biomass producing reactions

• and zero maintenance reactions.

1https://doi.org/10.15490/fairdomhub.1.model.555.1
2https://ndownloader.figshare.com/files/8653207

105

https://doi.org/10.15490/fairdomhub.1.model.555.1
https://ndownloader.figshare.com/files/8653207

5 Robust deFBA

At this network size, we can simulate the model using a regular personal computer. To
clearly address species and reactions in the model, we use their ids given by the SBML
file, e.g. external glucose has the id ”s_0565_c06” and the oxygen uptake reaction is
called ”r_1979”. Oxygen is not modeled as a dynamic species in this version of the
model and the possibility to utilize it is controlled by constraining reaction r_1979.
For the numerical simulation of the model with sdeFBA, we could not utilize the

automatic way to choose the prediction horizon as described in Section 4.3. The model
has a strong affinity to exponential growth, meaning that any calculated linear growth
rates for the given environments are smaller than the respective exponential growth
rates λr ≤ µexp. Therefore, we determined suitable values for the prediction horizon
by looking for a balance of the prediction horizon and step size, which can reproduce
experimental results presented in [92] while keeping the individual problem size small
enough to effectively be able to produce results for the robust deFBA. Choosing the
discretization step-size h = 20min and the prediction horizon tp = 300min= 5h fulfilled
these conditions for the robust deFBA but the short-term solutions were not reaching
appropriate growth rates.
We simulate the model in an aerobic environment containing both glucose and galac-

tose in excess. For the sdeFBA we set the iteration time to minimum ti = 20min and
determined the initial biomass composition again via RBA with an initial biomass
amount of 1g. The solution for the external species shown in Figure 5.7 (left) are
qualitatively comparable to the experimental results. This means that glucose is the
preferred carbon source and even though oxygen is available the yeast cells produce
ethanol, which is called overflow metabolism [106] as it is a very wasteful growth mode.
Nevertheless, the short-term deFBA predicts a constant growth rate of µ = 0.308 h−1

while experimental results show a growth rate of µ = 0.32 h−1 in this medium. The
influence of the step size and the chosen was prediction horizon was investigated,
but we could eliminate this as the reason for the mismatch. Therefore, it should be
experimentally verified, whether all predicted gene expression do take place in vivo.
The mismatch in the achieved growth rates becomes even more interesting, when in-

vestigating the results from the robust deFBA. For this simulation we assumed oxygen
might become unavailable again and constrained the reaction r_1979 as described in
Section 5.3 with a robust horizon of tb = 20 min and a preparation time of tb = 90 min.
This solution has increased glucose uptake, ethanol secretion and growth rates com-
pared to the short-term solution. The growth rate closely matches the experimental
predictions with µ = 0.32 h−1 at all times.
Due to these large differences in effectiveness, we also generated a solution using

the regular deFBA using the same step size and an end-time tend = 20h. The regular
deFBA matches the growth rate of the robust solutions as well as the predictions for
the external species. The difference in biomass accumulation for the different methods
is shown in Figure 5.7 (right). As the short-term solution depicts a smaller biomass
yield, we decided to compare the enzyme levels of the robust solution with the ones

106

5.6 Numerical examples

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

·104

t[h]

[m
ol
]

glucose (short)

galactose (short)

ethanol (short)

glucose (robust)

galactose (robust)

ethanol (robust)

1

0 2 4 6 8 10 12 14 16 18
0

100

200

300

400

500

t[h]

B
io
m
a
ss

[g
]

short-term deFBA
regular deFBA
robust deFBA

1

Figure 5.7: Results for external species using the short-term deFBA. (Left) Total
amount of nutrients and fermentation products in the medium. Galactose is only
marginally utilized. (Right) Comparison between biomass yield for different sim-
ulation methods. While the amounts of the regular and robust deFBA are nearly
identical, short-term results show a reduced growth rate.

from deFBA.
Due to the complexity of the network, we can only compare the results by numbers

and must refrain from a detailed analysis as with the carbon core network. First, we
investigate the difference between enzyme predictions in RBA and the dynamic results.
We find 7 enzymes used in both the regular and robust deFBA which were not predicted
by the RBA. A single predicted enzyme was utilized in the robust deFBA solution and
not in the regular deFBA. Additionally, the robust deFBA solution utilizes 8 enzymes
not predicted by RBA and not used in the regular deFBA solution. Of these enzymes
E_r_1172_c03 stands out, which is needed for the uptake of glycerol (s_0765_c03).
Thus, only the robust deFBA solution utilizes glycerol, while the regular deFBA so-
lution growths completely without it. Accordingly, the enzyme E_r_0489_1_c03 cat-
alyzing a glycerol phosphatase is also only produced in the robust deFBA solution.
The other enzymes unique to the robust deFBA solution can be explained by a shift
in the choice of isoenzymes. For a complete list of the mentioned enzymes we refer to
Table B.2.
To analyze the difference between the two dynamic solutions, we define a multiplier

xi =

Er,i

Ed,i
, Edi > 0.

0, Ed,i = 0,
(5.19)

with the amount of an enzyme in the robust solution as Er,i and using the regular

107

5 Robust deFBA

deFBA solution as reference Ed,i. For almost all biomass species this multiplier ranges
between 0.85 and 1.15, which we mostly appoint to numerical difference in the so-
lutions. But there a few very interesting outliers. We find three enzymes, whose
expression rates are noticeable larger in the rdeFBA compared to the sdeFBA:

• The multiplier for E_r_0491_2_c03 reaches values around 350, meaning the ro-
bust solution heavily relies on reaction r_0491, which is a glycerol-3-phosphate
dehydrogenase, while the regular solution uses this only marginally. There exist
an isoenzyme in this case, which is not utilized in either solution.

• The rates for threonine aldolase r_1040 are slightly increased in the robust solu-
tion with the multiplier reaching 1.21 for the enzyme E_r_1040_c03.

• The enzyme E_r_0216_c03 has an attached multiplier of x = 2.242, which cat-
alyzes an aspartate transaminase in the cytoplasm.

While the change in the rate of r_0491 shows a clear shift in the dynamic strategy
of the robust solution, the overall impact of the other two is not obvious. Especially,
the utilization of the aspartate transaminase is interesting as we can find an opposing
strategy in the deFBA solution, as we will show later in the text.
Looking at smaller multipliers with x < 0.85, we find 17 enzymes. Of these, seven

enzymes are isoenzymes corresponding in function to seven of the enzymes only ex-
pressed in the robust solution. Thus, this proves that the solutions are mostly using
identical reaction pathways but using different enzymes to realize those. Why this
difference occurs is yet to be investigated.
From the remaining enzymes with small multipliers, the enzyme E_r_0217_c11

stands out as it catalyzes an aspartate transaminase in the mitochondrion. The robust
solution prefers therefore the production of L-aspartate in the cytoplasm, while the
regular deFBA focuses on the production inside the mitochondrion coupled with a
transport reaction. The other 9 enzymes are all connected to the energy production
using the respiratory cycle in the mitochondrion. We listed all enzymes discussed in
Table B.3.
As the solutions mainly differentiate in the oxygen consumption, we plotted the

oxygen uptake flux r_1979 over time in Figure 5.8. To be able to compare the different
methods, we weigh the rates of the uptake reaction with the current biomass. The
robust method clearly decreases the utilization of oxygen until reaching a new steady
state after 3 hours. The non-robust methods on the other hand keep up the oxygen
uptake predicted by the RBA. The minor variations of the uptake rate in the regular
deFBA predictions can be traced back to numerical inaccuracies leading to minimal
variations in the biomass composition.
To summarize, we have identified a strategy for robust growth using less oxygen than

the predictions from regular deFBA. Interestingly, the output of ethanol is very much
the same for both solutions so they are indistinguishable from the outside without

108

5.7 Conclusion

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

1.2

t[h]

r
1
97

9/
b
io
m
a
ss

[m
o
l/
g
h
]

regular
robust

short-term

1

Figure 5.8: Oxygen uptake rate for the different methods weighted by their biomass.
While the robust solution slowly decreases the oxygen uptake until it reaches a
new equilibrium, the non-robust solution sustain the oxygen uptake predicted by
the RBA.

measuring either glycerin uptake or the oxygen transfer rate. To verify which strategy
is implemented by wild-type yeast, we will have to conduct in vitro experiments and
measure the gene expressions in the cells.

5.7 Conclusion
The robust deFBA in its current form is a very powerful tool, but we still have to get
our hands on experimental results generated in a very dynamic environment to compare
these to our predictions. Our colleagues at the chair of Frank Bruggeman at the VU
Amsterdam are currently working on experiments with yeast using a sudden switch
from aerobic to anaerobic conditions. Very much alike to our presented example in
the carbon core model. We are looking forward to compare these experimental results
to the ones generated with the robust deFBA.
Furthermore, we must further investigate the impact of robust horizon and prepa-

ration time on the quality of results. Currently, we interpret these as pure tuning
parameters, which have to be determined by hand. But some inherit qualities must
exist in robust solutions, which we can exploit to choose these values systematically
as with the prediction horizon in the short-term deFBA.
On the more technical side, we have experienced some problems with running the

robust deFBA on genome-scale models as the problem size explodes in comparison to
a regular sdeFBA. While the simplified midpoint collocation method helps to keep the
computational cost low, the linear programs themselves can be very bad conditioned.

109

5 Robust deFBA

In the simulations for the deFBA_yeast model for example a single iteration step in
the short-term deFBA took on average 10min, while a robust iteration step took on
average 30 min with some iterations taking over an hour to solve. We believe this is
to some factor caused by us using a local solver, gurobi [43] in this case, and having
multiple local solutions in close vicinity to each other. A possible solution might
be using SoPlex [114], which provides the possibility to increase the accuracy of the
solution at the cost of an increased number of calculations needed.
In the future we plan also plan to investigate how the models behave if we delete all

but one isoenzyme in the network, which is a likely reason for the existence of closely
neighboring local solutions.

110

6 Conclusions

This study is dedicated to the simulation of metabolic networks as encountered in
single cell organisms. As presented in the second chapter, metabolic networks are
intensively studied under the lens of resource allocation since the work [75] in 2009.
Two major methods for the simulation of metabolic networks coupled with protein
expression arose from these investigations: Firstly, we have the RBA [39] optimizing
the reaction rates and gene expression levels for a maximal growth under given external
conditions. While the RBA allows to predict growth rates, preferred carbon sources,
byproducts of metabolism, and enzyme levels it is limited to a fixed environment.
The second class of methods are dynamic resource allocation methods like the dy-

namic FBA [70] and the deFBA [110], which presents the foundation for this thesis.
These lift the resource allocation problem to a dynamic setting and allow therefore to
study the adaptation process inside the cells when the nutritional situation changes.
Therefore, we can observe at which point the cells start adapting to the new situation
and how the enzyme levels change over time. The dynamic nature of deFBA allows
for new applications not previously possible. For example, the work [51] implements a
bi-level optimization problem with deFBA at its core to maximize the product yield.
But with the deFBA still being very new, guidelines for the creation and evaluation of

these kinds of models had been established yet. We focused in the third chapter of this
work, to fully formalize the handling of deFBA models by introducing a set of model
standards on the creation, exchange and simulation of the models. For the creation of
the model, we rely on existing metabolic reconstructions containing gene annotations
for metabolic reactions. Typically, the user will be able to find FBA models as a
starting point for the construction of deFBA models. While most of this construction
process is quite straightforward, like the addition of enzymes and enzyme producing
reactions by interpretation of the gene annotations, two aspects are indeed complex to
realize: The construction of biomass composition constraints derived from the original
biomass reactions from the FBA model and the collection of catalytic constants or
turnover numbers. We were able to identify a systematic approach for the biomass
constraints as discussed in Chapter 3. The data collection problem was only partially
solved as we could identify suitable databases like BRENDA [97] and BioNumbers [74],
but failed to implement a fully automatic data gathering tool so far. The problem is
centered around two facts: Firstly, automatically generated entries in BRENDA can
not be fully trusted as they might contain a mixture of experimentally determined
parameter values under vastly diverging conditions. Secondly, to our knowledge there
exists no unique identifier mapping isoenzymes and their catalytic constants to the

111

6 Conclusions

corresponding reactions. From our perspective the problem originates in the E.C.
numbers, which do not take the existence of isoenzymes into account. Yet, E.C.
numbers are widely used to order the databases. Secondly, a full text search for reaction
names instead is very challenging as reaction names do not follow a set standard.
These issues must be solved in the future by either establishing suitable conventions
or developing advanced methods for text search in online databases.
To enable the user to share their models, we also introduced a new extension to

SBML [48] called the Resource Allocation Modeling (RAM) extension [65]. This stan-
dard is sufficient to guarantee that models can be imported and exported to SBML in
every detail. The way we encode model data was chosen to easily check for model or
encoding errors. In the future we hope to extend this standard further, to be able to
represent more types of resource allocation problems in RAM.
Another large contribution of this thesis is the introduction of the software package

deFBA-Python [64]. This package contains every tool needed to successfully analyze
deFBA models starting from import/export to RAM and ending with the newest
extension for robust optimization. In the near future we plan to publish the automatic
generation of deFBA models from FBA models as a new component in deFBA-Python.
In this thesis we extend the regular deFBA problem in two major ways. In Chapter

4, we introduce the short-term deFBA, which adapts the idea of a receding prediction
horizon from MPC. It was necessary to adapt this as we encountered two flaws in the
regular deFBA. The problem size for deFBA class problems can become so large that
regular personal computers can not solve them. This is especially true for application in
need of large end-times. Therefore, we are able to drastically lower the computational
cost by introducing a small prediction horizon. The other flaw is cased by the fixed
end-time in the objective of the deFBA as the chosen end-time can have an impact on
the quality of the solution (cf. Section 4.1.1).
This problem directly translates to the impact of the chosen prediction horizon in

the short-term deFBA. We derived a systematic way to calculate a prediction horizon
which ensures, that the solutions can experience exponential growth phases.
The final contribution is the introduction of the robust deFBA, which extends the

short-term deFBA to include uncertainties in the availability of nutrients. We adapt
in this new method the ideas of the multi-stage Model Predictive Control [68], which
describes the effects of the uncertainties on the model by a set of deterministic scenar-
ios. As this formulation is quite simple and can be presented in the form of a scenario
tree, the challenge in applying this method is choosing a suitable way to model the un-
certain environment. We present ways to include two kinds of uncertain environments
to predict how a population adapts if nutrients availability suddenly shifts: Either a
nutrient is available and might suddenly be unavailable or a nutrient is not available
and might become available again.
The problem with formulating these cases, is that they must keep the optimization

problem feasible in the presence of maintenance reactions. Hence, our solutions might

112

seem unnecessary complicated. Nevertheless, we apply this method in a situation
where the availability of oxygen is highly dynamic and show that the results from
the robust deFBA present a evolutionary advantage compared to regular short-term
deFBA results. Therefore, we conclude that the robust deFBA will be beneficial in
studying wild-types and understanding how the internal regulation of the metabolism
expedites robustness.

113

A Models

The deFBA models used in this work are available as SBML files using the RAM
extension. These files can be obtained via two ways. Firstly, they are part of the
defba-Python package [64] and can be found in the examples folder. Secondly, we
uploaded public copies of the model files to Fairdom HUB1 and obtained digital object
identifier (doi) numbers for each model. The respective numbers are listed in Table
A.1. Additionally, we print the resalloc model in the next section as example for the
usage of SBML and RAM.

Table A.1: List of models used in this work and the doi numbers linking to the SBML
files containing the models.

Model name doi address

carbon-core https://doi.org/10.15490/fairdomhub.1.model.557.1

enzymatic-growth https://doi.org/10.15490/fairdomhub.1.model.556.1

resalloc https://doi.org/10.15490/fairdomhub.1.model.558.1

Yeast_deFBA https://doi.org/10.15490/fairdomhub.1.model.555.1

A.1 Resalloc model
The resource allocation model, resalloc for short, was created to showcase all functions
of the RAM [65] extension for SBML.

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level3/version1/core" level="3"
version="2" xmlns:fbc="http://www.sbml.org/sbml/level3/version1/fbc/version2"
fbc:required="false">
<model id="resalloc" name="A resource allocation model" fbc:strict="false">

<listOfCompartments>
<compartment id="external" name="extracellular compartment. nutrients,
waste, etc." spatialDimensions="3" size="1" constant="true"/>

<compartment id="cytosol" name="cytosol. Collecting all non external
components" spatialDimensions="3" size="1" constant="true"/>

</listOfCompartments>

1fairdomhub.org

115

https://doi.org/10.15490/fairdomhub.1.model.557.1
https://doi.org/10.15490/fairdomhub.1.model.556.1
https://doi.org/ 10.15490/fairdomhub.1.model.558.1
https://doi.org/10.15490/fairdomhub.1.model.555.1

A Models

<listOfSpecies>
<species id="N" compartment="external" initialAmount="2000"
constant="false" boundaryCondition="true" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="zero" ram:objectiveWeight="zero"
ram:biomassPercentage="zero" ram:speciesType="extracellular"/>

</ram:RAM>
</annotation>

<species id="A" compartment="cytosol" initialAmount="0"
constant="false" boundaryCondition="false" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="zero" ram:objectiveWeight="zero"
ram:biomassPercentage="zero" ram:speciesType="metabolite"/>

</ram:RAM>
</annotation>

<species id="M" compartment="cytosol" initialAmount="0.1" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weighM" ram:objectiveWeight="oWeightM"
ram:biomassPercentage="zero" ram:speciesType="storage"/>

</ram:RAM>
</annotation>

</species>
<species id="E" compartment="cytosol" initialAmount="0.1" constant="false"
boundaryCondition="false" hasOnlySubstanceUnits="true">
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:species ram:molecularWeight="weighE" ram:objectiveWeight="oWeightE"
ram:biomassPercentage="zero" ram:speciesType="enzyme"/>

</ram:RAM>
</annotation>

</species>
</listOfSpecies>

<listOfParameters>
<parameter constant="true" id="zero" value="0" />
<parameter constant="true" id="weighM" value="150" />
<parameter constant="true" id="weighE" value="100" />
<parameter constant="true" id="oWeightM" value="150" />
<parameter constant="true" id="oWeightE" value="100" />
<parameter constant="true" id="kcatA" value="150" />
<parameter constant="true" id="kcatE" value="1" />
<parameter constant="true" id="kcatM" value="2" />

</listOfParameters>

<fbc:listOfGeneProducts>
<fbc:geneProduct fbc:id="E" fbc:label="enzymes" fbc:associatedSpecies="E"/>

116

A.1 Resalloc model

</fbc:listOfGeneProducts>

<listOfReactions>
<reaction id="VA" reversible="false" fast="false">
<fbc:geneProductAssociation fbc:id="Enzymes">

<fbc:geneProductRef fbc:geneProduct="E" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="1" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="A" stoichiometry="1" constant="true"/>

</listOfProducts>
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcatA" ram:kcatBackward="zero"
ram:maintenanceScaling="zero"/>

</ram:RAM>
</annotation>

</reaction>
<reaction id="VE" reversible="false" fast="false">
<fbc:geneProductAssociation fbc:id="Enzymes">

<fbc:geneProductRef fbc:geneProduct="E" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="100" constant="true"/>
<speciesReference species="A" stoichiometry="100" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="E" stoichiometry="1" constant="true"/>

</listOfProducts>
<annotation>
<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcatE" ram:kcatBackward="zero"
ram:maintenanceScaling="zero"/>

</ram:RAM>
</annotation>

</reaction>
<reaction id="VM" reversible="false" fast="false">
<fbc:geneProductAssociation fbc:id="Enzymes">

<fbc:geneProductRef fbc:geneProduct="E" />
</fbc:geneProductAssociation>
<listOfReactants>
<speciesReference species="N" stoichiometry="100" constant="true"/>
<speciesReference species="A" stoichiometry="100" constant="true"/>

</listOfReactants>
<listOfProducts>
<speciesReference species="M" stoichiometry="1" constant="true"/>

</listOfProducts>
<annotation>

117

A Models

<ram:RAM xmlns:ram="https://www.fairdomhub.org/sops/304">
<ram:reaction ram:kcatForward="kcatM" ram:kcatBackward="zero"
ram:maintenanceScaling="zero"/>

</ram:RAM>
</annotation>

</reaction>
</listOfReactions>

</model>
</sbml>

118

B Results for deFBA_yeast model

Here we collect the detailed analysis of the results from the deFBA_yeast model.

Table B.2: Enzyme usage comparing predictions from the static RBA to the regular
and robust deFBA.

Not predicted by RBA but used
in regular and robust solution only robust solution
E_r_0525_c03 E_r_1038_2_c03
E_r_1052_c03 E_r_0489_1_c03
E_r_0337_c03 E_r_1135_1_r_1166_7_c03_c06
E_r_0842_c03 E_r_0486_2_c03
E_r_0326_c03 E_r_1172_c03
E_r_1014_2_c03_c09 E_r_0565_1_c03
E_r_0243_c03 E_r_0570_1_r_0912_1_c03

E_r_0883_1_c03

Predicted but not used
regular robust
E_r_0438_1_c03_c11 ∅

119

B Results for deFBA_yeast model

Table B.3: Enzymes with extreme multipliers xi = Er,i/Ed,i greater 1.15 or less then
0.85 at time t = 16.333h.

Enzyme Multiplier
E_r_0491_2_c03 341.29
E_r_0216_c03 2.242
E_r_1040_c03 1.21

E_r_0226_1_co3_c11 0.681
E_r_0439_1_c03_c11 0.676
E_r_0438_3_c03_c11 0.676

E_r_0773_c11 0.676
E_r_1110_2_c03_c11 0.661
E_r_E_r_0569_c11 0.643

E_r_1099_1_r_2131_1_c03_c11 0.579
E_r_1118_r_1194_c03_c11 0.495

E_r_0714_c03 0.472
E_r_0713_c11 0.458
E_r_0217_c11 0.195

E_r_0486_3_c03 0.029
E_r_1135_5_c03_c06 0.014
E_r_0883_2_c03 0.009
E_r_1038_3_c03 0.008

E_r_0570_2_r0912_c03 0.005
E_r_0565_3_c03 0.005.

120

Bibliography

[1] Bruce Alberts, Alexander Johnson, Julian Lewis, Peter Walter, Martin Raff, and
Keith Roberts. Molecular biology of the cell 4th edition, 2002.

[2] M.S. Andersen, J. Dahl, and L. Vandenberghe. CVXOPT: A Python package
for convex optimization, version 1.1.9., 2016. Available at http://cvxopt.org/
index.html.

[3] Rolf Apweiler, Amos Bairoch, Cathy H Wu, Winona C Barker, Brigitte Boeck-
mann, Serenella Ferro, Elisabeth Gasteiger, Hongzhan Huang, Rodrigo Lopez,
Michele Magrane, et al. Uniprot: the universal protein knowledgebase. Nucleic
acids research, 32(suppl_1):D115–D119, 2004.

[4] Meric Ataman, Daniel F Hernandez Gardiol, Georgios Fengos, and Vassily Hatzi-
manikatis. redgem: Systematic reduction and analysis of genome-scale metabolic
reconstructions for development of consistent core metabolic models. PLoS com-
putational biology, 13(7):e1005444, 2017.

[5] Hnin W Aung, Susan A Henry, and Larry P Walker. Revising the representation
of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus
model of yeast metabolism. Industrial biotechnology, 9(4):215–228, 2013.

[6] Arren Bar-Even, Elad Noor, Yonatan Savir, Wolfram Liebermeister, Dan Davidi,
Dan S Tawfik, and Ron Milo. The moderately efficient enzyme: evolutionary and
physicochemical trends shaping enzyme parameters. Biochemistry, 50(21):4402–
4410, 2011.

[7] Bryson D Bennett, Elizabeth H Kimball, Melissa Gao, Robin Osterhout,
Stephen J Van Dien, and Joshua D Rabinowitz. Absolute metabolite concen-
trations and implied enzyme active site occupancy in escherichia coli. Nature
chemical biology, 5(8):593, 2009.

[8] Dennis A Benson, Mark Cavanaugh, Karen Clark, Ilene Karsch-Mizrachi,
David J Lipman, James Ostell, and Eric W Sayers. Genbank. Nucleic acids
research, 41(D1):D36–D42, 2012.

[9] Hans-Georg Beyer and Bernhard Sendhoff. Robust optimization–a comprehen-
sive survey. Computer methods in applied mechanics and engineering, 196(33-
34):3190–3218, 2007.

[10] Lorenz T Biegler. An overview of simultaneous strategies for dynamic optimiza-
tion. Chemical Engineering and Processing: Process Intensification, 46(11):1043–
1053, 2007.

121

http://cvxopt.org/index.html
http://cvxopt.org/index.html

Bibliography

[11] Aarash Bordbar, Jonathan M Monk, Zachary A King, and Bernhard O Palsson.
Constraint-based models predict metabolic and associated cellular functions. Na-
ture Reviews Genetics, 15(2):107, 2014.

[12] Benjamin J Bornstein, Sarah M Keating, Akiya Jouraku, and Michael Hucka.
LibSBML: An API library for SBML. Bioinformatics, 24(6):880–881, 2008.

[13] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François
Yergeau. Extensible markup language (xml). World Wide Web Journal, 2(4):27–
66, 1997.

[14] George Edward Briggs and John Burdon Sanderson Haldane. A note on the
kinetics of enzyme action. Biochemical journal, 19(2):338, 1925.

[15] Guy C Brown. Total cell protein concentration as an evolutionary constraint
on the metabolic control distribution in cells. Journal of theoretical biology,
153(2):195–203, 1991.

[16] Anthony P Burgard, Shankar Vaidyaraman, and Costas D Maranas. Minimal
reaction sets for escherichia coli metabolism under different growth requirements
and uptake environments. Biotechnology progress, 17(5):791–797, 2001.

[17] Richard H Byrd, Jorge Nocedal, and Richard A Waltz. K nitro: An integrated
package for nonlinear optimization. In Large-scale nonlinear optimization, pages
35–59. Springer, 2006.

[18] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control. Springer
Science & Business Media, 2013.

[19] Peter J Campo and Manfred Morari. Robust model predictive control. In Amer-
ican Control Conference, 1987, pages 1021–1026, 1987.

[20] Thalia E Chan, Michael PH Stumpf, and Ann C Babtie. Gene regulatory network
inference from single-cell data using multivariate information measures. Cell
systems, 5(3):251–267, 2017.

[21] Vijayalakshmi Chelliah, Nick Juty, Ishan Ajmera, Raza Ali, Marine Dumousseau,
Mihai Glont, Michael Hucka, Gaël Jalowicki, Sarah Keating, Vincent Knight-
Schrijver, Audald Lloret-Villas, Kedar Nath Natarajan, Jean-Baptiste Pettit,
Nicolas Rodriguez, Michael Schubert, Sarala M. Wimalaratne, Yangyang Zhao,
Henning Hermjakob, Nicolas Le Novère, and Camille Laibe. BioModels: ten-year
anniversary. Nucl. Acids Res., 43:D542–D548, 2015.

[22] J Michael Cherry, Caroline Adler, Catherine Ball, Stephen A Chervitz, Selina S
Dwight, Erich T Hester, Yankai Jia, Gail Juvik, TaiYun Roe, Mark Schroeder,
et al. Sgd: Saccharomyces genome database. Nucleic acids research, 26(1):73–79,
1998.

[23] Michaela Conrad, Joep Schothorst, Harish Nag Kankipati, Griet Van Zeebroeck,
Marta Rubio-Texeira, and Johan M Thevelein. Nutrient sensing and signaling in
the yeast saccharomyces cerevisiae. FEMS microbiology reviews, 38(2):254–299,

122

Bibliography

2014.
[24] GAMS Development Corporation. General Algebraic Modeling System (GAMS)

Release 24.2.1. Washington, DC, USA, 2013.
[25] Mélanie Courtot, Nick Juty, Christian Knüpfer, Dagmar Waltemath, Anna

Zhukova, Andreas Dräger, Michel Dumontier, Andrew Finney, Martin
Golebiewski, Janna Hastings, et al. Controlled vocabularies and semantics in
systems biology. Molecular systems biology, 7(1):543, 2011.

[26] Dan Davidi, Elad Noor, Wolfram Liebermeister, Arren Bar-Even, Avi Flamholz,
Katja Tummler, Uri Barenholz, Miki Goldenfeld, Tomer Shlomi, and Ron Milo.
Global characterization of in vivo enzyme catalytic rates and their correspon-
dence to in vitro kcat measurements. Proceedings of the National Academy of
Sciences, 113(12):3401–3406, 2016.

[27] Kalyanmoy Deb. Multi-objective optimization. In Search methodologies, pages
273–316. Springer, 2005.

[28] Tao Ding, Yuan Hu, and Zhaohong Bie. Multi-stage stochastic programming
with nonanticipativity constraints for expansion of combined power and natural
gas systems. IEEE Transactions on Power Systems, 33(1):317–328, 2018.

[29] Zheng Eelderink-Chen, Gabriella Mazzotta, Marcel Sturre, Jasper Bosman, Till
Roenneberg, and Martha Merrow. A circadian clock in saccharomyces cerevisiae.
Proceedings of the National Academy of Sciences, page 200907902, 2010.

[30] Steven Eker, Markus Krummenacker, Alexander G Shearer, Ashish Tiwari, In-
grid M Keseler, Carolyn Talcott, and Peter D Karp. Computing minimal nutrient
sets from metabolic networks via linear constraint solving. BMC bioinformatics,
14(1):114, 2013.

[31] Péter Érdi and János Tóth. Mathematical models of chemical reactions: theory
and applications of deterministic and stochastic models. Manchester University
Press, 1989.

[32] Philipp Erdrich, Ralf Steuer, and Steffen Klamt. An algorithm for the reduction
of genome-scale metabolic network models to meaningful core models. BMC
systems biology, 9(1):48, 2015.

[33] Eliane Fischer and Uwe Sauer. Large-scale in vivo flux analysis shows rigidity
and suboptimal performance of bacillus subtilis metabolism. Nature genetics,
37(6):636, 2005.

[34] Robert J Flassig, Melanie Fachet, Kai Höffner, Paul I Barton, and Kai Sund-
macher. Dynamic flux balance modeling to increase the production of high-value
compounds in green microalgae. Biotechnology for biofuels, 9(1):165, 2016.

[35] Marco Fondi and Pietro Liò. Genome-scale metabolic network reconstruction.
In Bacterial Pangenomics, pages 233–256. Springer, 2015.

[36] Virginie Gabrel, Cécile Murat, and Aurélie Thiele. Recent advances in robust op-

123

Bibliography

timization: An overview. European journal of operational research, 235(3):471–
483, 2014.

[37] Carlos Eduardo García Sánchez and Rodrigo Gonzalo Torres Sáez. Compari-
son and analysis of objective functions in flux balance analysis. Biotechnology
progress, 30(5):985–991, 2014.

[38] Anne Goelzer and Vincent Fromion. Towards the modular decomposition of the
metabolic network. In A Systems Theoretic Approach to Systems and Synthetic
Biology I: Models and System Characterizations, pages 121–152. Springer, 2014.

[39] Anne Goelzer, Vincent Fromion, and Gérard Scorletti. Cell design in bacteria as
a convex optimization problem. Automatica, 47(6):1210–1218, 2011.

[40] Anne Goelzer, Jan Muntel, Victor Chubukov, Matthieu Jules, Eric Prestel, Rolf
Nölker, Mahendra Mariadassou, Stéphane Aymerich, Michael Hecker, Philippe
Noirot, et al. Quantitative prediction of genome-wide resource allocation in
bacteria. Metabolic engineering, 32:232–243, 2015.

[41] Jose A Gomez, Kai Höffner, and Paul I Barton. Dfbalab: a fast and reliable
matlab code for dynamic flux balance analysis. BMC bioinformatics, 15(1):409,
2014.

[42] P. Goulart, E. C. Kerrigan, and J. M. Maciejowski. Optimization over state
feedback policies for robust control with constraints. Automatica, 42:523–533,
2006.

[43] Inc. Gurobi Optimization. Gurobi optimizer reference manual, 2016.
[44] Michael J Hadjiyiannis, Paul J Goulart, and Daniel Kuhn. An efficient method to

estimate the suboptimality of affine controllers. IEEE Transactions on Automatic
Control, 56(12):2841–2853, 2011.

[45] Arno J Hanekom. Generic kinetic equations for modelling multisubstrate reac-
tions in computational systems biology. PhD thesis, Stellenbosch: University of
Stellenbosch, 2006.

[46] Benjamin D Heavner, Kieran Smallbone, Nathan D Price, and Larry P Walker.
Version 6 of the consensus yeast metabolic network refines biochemical coverage
and improves model performance. Database, 2013, 2013.

[47] Andreas Hoppe, Sabrina Hoffmann, and Hermann-Georg Holzhütter. Including
metabolite concentrations into flux balance analysis: thermodynamic realizabil-
ity as a constraint on flux distributions in metabolic networks. BMC systems
biology, 1(1):23, 2007.

[48] Michael Hucka, Andrew Finney, Herbert M Sauro, Hamid Bolouri, John C Doyle,
Hiroaki Kitano, Adam P Arkin, Benjamin J Bornstein, Dennis Bray, Athel
Cornish-Bowden, et al. The systems biology markup language (sbml): a medium
for representation and exchange of biochemical network models. Bioinformatics,
19(4):524–531, 2003.

124

Bibliography

[49] Michael Hucka and Lucian P Smith. Sbml level 3 package: Groups, version 1
release 1. Journal of integrative bioinformatics, 13(3):8–29, 2016.

[50] John L Ingraham, Ole Maaløe, Frederick Carl Neidhardt, et al. Growth of the
bacterial cell. Sinauer Associates, 1983.

[51] Banafsheh Jabarivelisdeh and Steffen Waldherr. Improving bioprocess produc-
tivity using constraint-based models in a dynamic optimization scheme. IFAC-
PapersOnLine, 49(26):245–251, 2016.

[52] Eric Jones, Travis Oliphant, and Pearu Peterson. {SciPy}: open source scientific
tools for {Python}, 2014.

[53] Minoru Kanehisa and Susumu Goto. Kegg: kyoto encyclopedia of genes and
genomes. Nucleic acids research, 28(1):27–30, 2000.

[54] Jonathan R Karr, Jayodita C Sanghvi, Derek N Macklin, Miriam V Gutschow,
Jared M Jacobs, Benjamin Bolival Jr, Nacyra Assad-Garcia, John I Glass, and
Markus W Covert. A whole-cell computational model predicts phenotype from
genotype. Cell, 150(2):389–401, 2012.

[55] Hassan K Khalil. Nonlinear systems, 3rd. Pearson, 2002.
[56] Ali Khodayari and Costas D Maranas. A genome-scale escherichia coli kinetic

metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Na-
ture communications, 7:13806, 2016.

[57] Zachary A King, Justin Lu, Andreas Dräger, Philip Miller, Stephen Federowicz,
Joshua A Lerman, Ali Ebrahim, Bernhard O Palsson, and Nathan E Lewis.
Bigg models: A platform for integrating, standardizing and sharing genome-
scale models. Nucleic acids research, 44(D1):D515–D522, 2015.

[58] Edda Klipp and Reinhart Heinrich. Competition for enzymes in metabolic path-
ways:: Implications for optimal distributions of enzyme concentrations and for
the distribution of flux control. Biosystems, 54(1-2):1–14, 1999.

[59] HC Lange and JJ Heijnen. Statistical reconciliation of the elemental and molec-
ular biomass composition of saccharomyces cerevisiae. Biotechnology and bio-
engineering, 75(3):334–344, 2001.

[60] Nicolas Le Novère, Benjamin Bornstein, Alexander Broicher, Mélanie Courtot,
Marco Donizelli, Harish Dharuri, Lu Li, Herbert Sauro, Maria Schilstra, Bruce
Shapiro, Jacky L. Snoep, and Michael Hucka. BioModels Database: a free, cen-
tralized database of curated, published, quantitative kinetic models of biochemi-
cal and cellular systems. Nucleic Acids Research, 34(Database issue):D689–D691,
Jan 2006.

[61] Joshua A Lerman, Daniel R Hyduke, Haythem Latif, Vasiliy A Portnoy,
Nathan E Lewis, Jeffrey D Orth, Alexandra C Schrimpe-Rutledge, Richard D
Smith, Joshua N Adkins, Karsten Zengler, et al. In silico method for modelling
metabolism and gene product expression at genome scale. Nature communica-

125

Bibliography

tions, 3:929, 2012.
[62] Chen Li, Marco Donizelli, Nicolas Rodriguez, Harish Dharuri, Lukas Endler,

Vijayalakshmi Chelliah, Lu Li, Enuo He, Arnaud Henry, Melanie I. Stefan,
Jacky L. Snoep, Michael Hucka, Nicolas Le Novère, and Camille Laibe. BioMod-
els Database: An enhanced, curated and annotated resource for published quan-
titative kinetic models. BMC Systems Biology, 4:92, Jun 2010.

[63] Youdong Lin and Linus Schrage. The global solver in the lindo api. Optimization
Methods & Software, 24(4-5):657–668, 2009.

[64] Henning Lindhorst. deFBA-Python: A toolbox for simulating enzyme controlled
metabolic networks. Institute for Automation Engineering, Otto-von-Guericke-
Universität, Magdeburg, Germany, 2017.

[65] Henning Lindhorst, Alexandra-M. Reimers, Alexander Bockmayr, and Steffen
Waldherr. RAM: An annotation standard for SBML Level 3, 2017.

[66] Henning Lindhorst, Alexandra-M. Reimers, and Steffen Waldherr. Dynamic
modeling of enzyme controlled metabolic networks using a receding time hori-
zon. Proceedings on 10th IFAC International Symposium on Advanced Control
of Chemical Processes, 51(1):203–208, July 2018.

[67] S. Lucia, J. Andersson, H. Brandt, M. Diehl, and S. Engell. Handling uncer-
tainty in economic nonlinear model predictive control: a comparative case-study.
Journal of Process Control, 24:1247–1259, 2014.

[68] Sergio Lucia, T Finkler, Dahn Basak, and Sebastian Engell. A new robust nmpc
scheme and its application to a semi-batch reactor example. IFAC Proceedings
Volumes, 45(15):69–74, 2012.

[69] Sergio Lucia, Tiago Finkler, and Sebastian Engell. Multi-stage nonlinear model
predictive control applied to a semi-batch polymerization reactor under uncer-
tainty. Journal of Process Control, 23(9):1306 – 1319, 2013.

[70] Radhakrishnan Mahadevan, Jeremy S Edwards, and Francis J Doyle. Dynamic
flux balance analysis of diauxic growth in Escherichia coli. Biophysical Journal,
83(3):1331–1340, 2002.

[71] George Mavrotas and Danae Diakoulaki. A branch and bound algorithm for
mixed zero-one multiple objective linear programming. European Journal of
Operational Research, 107(3):530–541, 1998.

[72] Leonor Menten and MI Michaelis. Die kinetik der invertinwirkung. Biochem Z,
49:333–369, 1913.

[73] Ron Milo, Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer.
Bionumbersâ€”the database of key numbers in molecular and cell biology. Nu-
cleic acids research, 38(suppl_1):D750–D753, 2009.

[74] Ron Milo, Paul Jorgensen, Uri Moran, Griffin Weber, and Michael Springer.
BioNumbers - the database of key numbers in molecular and cell biology. Nucleic

126

Bibliography

Acids Research, 38(suppl 1):D750–D753, 2010.
[75] Douwe Molenaar, Rogier Van Berlo, Dick De Ridder, and Bas Teusink. Shifts

in growth strategies reflect tradeoffs in cellular economics. Molecular systems
biology, 5(1):323, 2009.

[76] Jacques Monod. The growth of bacterial cultures. Annual Reviews in Microbi-
ology, 3(1):371–394, 1949.

[77] Akihiro Nakao, Maki Yoshihama, and Naoya Kenmochi. Rpg: the ribosomal
protein gene database. Nucleic acids research, 32(suppl_1):D168–D170, 2004.

[78] OM Neijssel and DW Tempest. The role of energy-spilling reactions in the
growth ofklebsiella aerogenes nctc 418 in aerobic chemostat culture. Archives of
microbiology, 110(2-3):305–311, 1976.

[79] David L Nelson, Albert L Lehninger, and Michael M Cox. Lehninger principles
of biochemistry. Macmillan, 2008.

[80] ChiamYu Ng, Moo-young Jung, Jinwon Lee, and Min-Kyu Oh. Production of 2,
3-butanediol in saccharomyces cerevisiae by in silico aided metabolic engineering.
Microbial cell factories, 11(1):68, 2012.

[81] Ali Nikdel, Richard D Braatz, and Hector M Budman. A systematic approach
for finding the objective function and active constraints for dynamic flux balance
analysis. Bioprocess and biosystems engineering, 41(5):641–655, 2018.

[82] Edward J O’brien, Joshua A Lerman, Roger L Chang, Daniel R Hyduke, and
Bernhard Ø Palsson. Genome-scale models of metabolism and gene expres-
sion extend and refine growth phenotype prediction. Molecular systems biology,
9(1):693, 2013.

[83] Andrea Ocone, Laleh Haghverdi, Nikola S Mueller, and Fabian J Theis. Recon-
structing gene regulatory dynamics from high-dimensional single-cell snapshot
data. Bioinformatics, 31(12):i89–i96, 2015.

[84] Brett G Olivier and Frank T Bergmann. The systems biology markup language
(sbml) level 3 package: Flux balance constraints. Journal of integrative bioin-
formatics, 12(2):660–690, 2015.

[85] Diego A Oyarzún and Guy-Bart V Stan. Synthetic gene circuits for metabolic
control: design trade-offs and constraints. Journal of The Royal Society Inter-
face, 10(78):20120671, 2013.

[86] Satchidananda Panda, Marina P Antoch, Brooke H Miller, Andrew I Su, An-
drew B Schook, Marty Straume, Peter G Schultz, Steve A Kay, Joseph S Taka-
hashi, and John B Hogenesch. Coordinated transcription of key pathways in the
mouse by the circadian clock. Cell, 109(3):307–320, 2002.

[87] WR Pearson. Rapid and sensitive sequence comparison with fastp and fasta.
Methods in enzymology, 183(183):63–98, 1990.

[88] Doraiswami Ramkrishna and Hyun-Seob Song. Cybernetic Modeling for Biore-

127

Bibliography

action Engineering. Cambridge University Press, 2018.
[89] M Razzaghi, J Nazarzadeh, and KY Nikravesh. A collocation method for optimal

control of linear systems with inequality constraints. Mathematical Problems in
Engineering, 3(6):503–515, 1998.

[90] Alexandra-M. Reimers, Henning Knoop, Alexander Bockmayr, and Rald Steuer.
Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal
growth. Proceedings of the National Academy of Sciences, 114(31):E6457–E6465,
2017.

[91] Alexandra-M Reimers, Henning Lindhorst, and Steffen Waldherr. A protocol for
generating and exchanging (genome-scale) metabolic resource allocation models.
Metabolites, 7(3):47, 2017.

[92] Alexandra-Mirela Reimers. Understanding metabolic regulation and cellular re-
source allocation through optimization. PhD thesis, Freie Universität Berlin,
2017.

[93] Mark J Rentmeesters, Wei K Tsai, and Kwei-Jay Lin. A theory of lexicographic
multi-criteria optimization. In Engineering of Complex Computer Systems, 1996.
Proceedings., Second IEEE International Conference on, pages 76–79. IEEE,
1996.

[94] Annika Röhl and Alexander Bockmayr. A mixed-integer linear programming
approach to the reduction of genome-scale metabolic networks. BMC bioinfor-
matics, 18(1):2, 2017.

[95] Marco Rügen, Alexander Bockmayr, and Ralf Steuer. Elucidating temporal
resource allocation and diurnal dynamics in phototrophic metabolism using con-
ditional fba. Scientific reports, 5:15247, 2015.

[96] Milton H Saier Jr. Multiple mechanisms controlling carbon metabolism in bac-
teria. Biotechnology and bioengineering, 58(2-3):170–174, 1998.

[97] Ida Schomburg, Antje Chang, Sandra Placzek, Carola Söhngen, Michael Rother,
Maren Lang, Cornelia Munaretto, Susanne Ulas, Michael Stelzer, Andreas Grote,
et al. Brenda in 2013: integrated reactions, kinetic data, enzyme function data,
improved disease classification: new options and contents in brenda. Nucleic
acids research, 41(D1):D764–D772, 2012.

[98] Ida Schomburg, Antje Chang, and Dietmar Schomburg. BRENDA, enzyme data
and metabolic information. Nucleic Acids Research, 30(1):47–49, 2002.

[99] Robert Schuetz, Nicola Zamboni, Mattia Zampieri, Matthias Heinemann, and
Uwe Sauer. Multidimensional optimality of microbial metabolism. Science,
336(6081):601–604, 2012.

[100] Pierre OM Scokaert and DQ Mayne. Min-max feedback model predictive con-
trol for constrained linear systems. IEEE Transactions on Automatic control,
43(8):1136–1142, 1998.

128

Bibliography

[101] Shinichiro Shoji, Corey M Dambacher, Zahra Shajani, James R Williamson, and
Peter G Schultz. Systematic chromosomal deletion of bacterial ribosomal protein
genes. Journal of molecular biology, 413(4):751–761, 2011.

[102] IBM Software Solutions. IBM ILOG CPLEX Optimizer. http://www-01.ibm.
com/software/integration/optimization/cplex-optimizer/, Last 2010.

[103] Reginald P Tewarson and P Reginald. Sparse matrices (part of the mathematics
in science & engineering series), 1973.

[104] Ines Thiele and Bernhard Ø Palsson. A protocol for generating a high-quality
genome-scale metabolic reconstruction. Nature protocols, 5(1):93, 2010.

[105] Amlt Varma and Bemhard Palsson. Metabolic Flux Balancing: Basic Concepts,
Scientific and Practical Use. Nature Biotechnology, 12(10):994–998, 1994.

[106] Alexei Vazquez. Overflow metabolism: from yeast to Marathon runners. Aca-
demic Press, 2017.

[107] Carlos Vilas, Eva Balsa-Canto, Maria-Sonia G García, Julio R Banga, and An-
tonio A Alonso. Dynamic optimization of distributed biological systems using
robust and efficient numerical techniques. BMC systems biology, 6(1):79, 2012.

[108] Oskar Von Stryk. Numerical solution of optimal control problems by direct
collocation. In Optimal Control, pages 129–143. Springer, 1993.

[109] Steffen Waldherr and Henning Lindhorst. Optimality in cellular storage via the
Pontryagin Maximum Principle. Preprints of the 20th IFAC World Congress,
20:10305–10311, 2017.

[110] Steffen Waldherr, Diego A Oyarzún, and Alexander Bockmayr. Dynamic opti-
mization of metabolic networks coupled with gene expression. Journal of Theo-
retical Biology, 365:469–485, 2015.

[111] Kowda M Wasungu and Ronald E Simard. Growth characteristics of bakers’
yeast in ethanol. Biotechnology and bioengineering, 24(5):1125–1134, 1982.

[112] Edwin C Webb et al. Enzyme nomenclature 1992. Recommendations of the
Nomenclature Committee of the International Union of Biochemistry and Molec-
ular Biology on the Nomenclature and Classification of Enzymes. Number Ed. 6
in . Academic Press, 1992.

[113] Ulrike Wittig, Renate Kania, Martin Golebiewski, Maja Rey, Lei Shi, Lenneke
Jong, Enkhjargal Algaa, Andreas Weidemann, Heidrun Sauer-Danzwith, Saqib
Mir, et al. Sabio-rkâ€”database for biochemical reaction kinetics. Nucleic acids
research, 40(D1):D790–D796, 2011.

[114] Roland Wunderling. Soplex: The sequential object-oriented simplex class library,
1997.

[115] R Young and Hans Bremer. Polypeptide-chain-elongation rate in Escherichia coli
B/r as a function of growth rate. Biochemical Journal, 160(2):185–194, 1976.

129

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

List of symbols and abbreviations

Table B.4: Variables used in deFBA. Domain of all variables is R. Each variable has
a concentration based equivalent in bold font, e.g., X has the unit M = mol/L
and Vx has M/h = mol/(L s). Elements of matrices are addressed via a small
character, e.g. Hc = (hc)i,j.

Variable Dimension Unit Meaning
S n×m 1 stoichiometric matrix
R n× n 1/h dilution matrix
q n mol/h fixed input vector
V m mol/h Reaction rates, resp. fluxes m = my +mx+mc+

mp

Vy my mol/h Exchange reactions
Vx mx mol/h Purely metabolic reaction
Vc mc mol/h Storage producing/depleting reactions
Vp mp mol/h Protein producing/depleting reactions
Va ma mol/h Maintenance reactions
Y ny mol External species, e.g. oxygen, carbon sources
X nx mol Metabolites in quasi-steady-state, e.g. ATP,

NADH
C nc mol Storage components, e.g. starch.
Q nq mol Quota components with no catalytic function
P np mol Enzymatic macromolecules, enzymes, ribosome,

etc.
B 1 g Total biomass in the system B = wTP

Bo 1 g Objective biomass B = wTo P

131

List of symbols and abbreviations

Table B.6: Matrices used in deFBA. Elements of matrices are addressed via a small
character, e.g. Hc = (hc)i,j.

Matrix Dimension Unit of entries Meaning
Hc ? ×m 1/h Enzyme capacity matrix containing the

inverse kcat values; number of con-
straints depends on reversibility of re-
actions.

Hf ? ×n 1 Filter matrix to determine which macro-
molecule catalyzes the reactions.

Hb ? ×np g/mol Biomass composition constraint matrix;
rows correspond to percentage of total
biomass

Ha ? ×n 1/mol h Maintenance matrix
Hg ? ×m 1 Filter matrix to find correct mainte-

nance flux

Table B.8: Index sets used to adress different types of species, reactions, etc.

Identifier Meaning
Y Set associated to external species
X Set associated to metabolic species
C Set associated to storage
Q Set associated to quota components
P Set associated to macromolecules
a Set associated to maintenance reactions
y Set associated to exchange reactions
x Set associated to metabolic reactions
c Set associated to storage production
q Set associated to quota component production
p Set associated to macromolecule production

132

Table B.10: Parameters

Identifier Unit Meaning
kcat 1/ h Catalytic constant or turnover numbers. Defines effectiveness

of enzymes.
φ mol/g h Maintenance coefficient scaling the maintenance reactions with

regards to the total biomass.
vmin mol/h Lower bounds for flux rates. Assumes only values 0 or −∞.
vmax mol/h Upper bounds for flux rates. Assumes only values 0 or ∞.
w g/mol Molecular weight of macromolecules
wo g/mol Objective weight of macromolecules

133

	Abstract
	Deutsche Kurzfassung
	Introduction
	Metabolic networks
	Modeling metabolism
	Dynamic models
	Constraint-based methods

	Goals and contributions
	Structure of this work

	Resource allocation methods
	Resource allocation in a self-replicator
	Resource Balance Analysis
	ME models

	deFBA
	Species
	Reactions
	Time-scale separation
	Enzyme capacity constraint
	Biomass composition constraints
	Objective functional
	Optimization problem
	Conditional FBA

	Conclusion

	Building, exchanging and evaluating deFBA models
	Extending the deFBA formalism
	Refining the macromolecules
	Maintenance reactions
	Extended dynamics and lumped reactions
	Objective biomass
	Optimization problem

	SBML extension - Resource Allocation Modeling
	SBML header
	The model
	Compartmentalization
	Parameters
	Species
	Encoding genetic information
	Reactions
	Naming conventions
	Future of RAM

	Generating deFBA models
	Prerequisites
	Building enzyme production
	Setting up quota
	Determining turnover numbers
	Molecular weights & objective weights
	Model validation

	deFBA-Python package
	Linopt class
	DefbaModel class
	RAM interface

	Conclusion

	Short-term deFBA
	Why using a receding prediction horizon?
	Enzymatic-growth model

	Implementing the receding time horizon
	Choosing the prediction horizon
	Improving on the boundaries for the growth rates

	Choosing the iteration time
	Short-term deFBA in deFBA-Python
	Numerical examples
	Enzymatic growth model revisited
	Carbon-core model
	Carbon source switch
	Aerobic - anaerobic switching

	Robust deFBA
	Multi-stage MPC
	Constructing a single optimization problem
	Uncertainty in the environment
	Implementing the robust deFBA
	Solving rdeFBA with deFBA-Python
	Numerical examples
	Carbon-core model
	Carbon source switching
	Aerobic-anaerobic switching

	Yeast model

	Conclusion

	Conclusions
	Models
	Resalloc model

	Results for deFBA_yeast model
	Bibliography
	List of symbols and abbreviations

