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1. Introduction 

1.1. Origin, uses and breeding of canola / rapeseed  

Canola / rapeseed is the leading oilseed crop in Canada, Australia, China, and Europe, and second 

in global production. Rapeseed has diverse uses, as edible vegetable oil for human consumption, 

as animal feed due to the protein rich meal, as industrial feedstock, and as renewable energy 

source, for example for the production of biodiesel (Lu et al., 2011). Brassica napus belongs to the 

large eudicotyledon family of the Brassicaceae consisting of about 3,000 plant species, including 

cabbage, cauliflower, kale (all B. oleracea), turnip (B. rapa), black (B. nigra) and oriental mustard 

(B. juncea), and the model plant Arabidopsis thaliana. Rapeseed is a natural allopolyploid hybrid 

(Brassica napus L., AACC, 2n = 4x = 38) of B. oleracea (contributed the C subgenome) and B. rapa 

(contributed the A subgenome) that emerged approx. 7,500 years ago (Chalhoub et al., 2014). 

Allopolyploidy is not considered as a natural steady state, but as an evolutionary snapshot and 

intermediate condition after hybridization or genome duplication events (Doyle and Sherman-

Broyles, 2017). In plant breeding polyploidy has often been induced in diploids to obtain desirable 

characteristics like seedless fruits or a higher seed yield (Sattler et al., 2016). The Brassica genus 

has a propensity for genome duplications and genome merging as illustrated by the ‘triangle of U’ 

(Figure 1; Nagaharu, 1935) which illustrates that combinations of the genomes of three ancestral 

diploid Brassica species B. oleracea, B. rapa and B. nigra result in the three common tetraploid 

vegetable and oilseed crop species B. carinata, B. juncea and B. napus.  

Historical remnants suggest that rapeseed was already cultivated 2000 B.C. in India. It has 

undergone a short, but intense breeding history since the 19th century (Hannoufa et al., 2014; 

Mason and Snowdon, 2016) resulting in diverse high quality oilseed rape varieties, including 

‘double-low’ varieties free of erucic acid and with a low content of seed oil glucosinolates, high 

oleic / low linolenic acid (HOLLi) varieties, and high erucic acid rapeseed (HEAR) whose oil  

(colza oil) is used for production of plastics, lubricants, lacquers and detergents, while their meal 

can be used as a livestock feed, as seed glucosinolate levels have been reduced.  

Modern rapeseed breeding is focused primarily on three main targets: seed yield, seed quality and 

disease resistance. The yield potential of rapeseed depends to a large extent on flowering time, 

and flowering time adaptation (Wang et al., 2011a). Based on these characteristics, three main 
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subgroups / primary gene pools can be distinguished: European winter-type oilseed rape, Asian 

semi-winter-type rapeseed and North American spring-type canola (Wang et al., 2011a). Through 

gene transfer and mutagenesis, breeders have developed canola that is tolerant to herbicides, 

such as triazine-tolerant or glyphosate-tolerant canola, allowing for effective control of weeds in 

the field (Stanton et al., 2010). In addition, breeding efforts have been focused to develop 

varieties resistant against clubroot (Chen et al., 2016; Mei et al., 2019) and other pathogens 

(Mitrousia et al., 2018). 

 

 

Figure 1. Relationship between members of the Brassica genus 

Shown is the Brassica triangle of species as described by Nagaharu U (1935) with the A, B and C genomes 
and their respective amphidiploids (tetraploids). These species originated from spontaneous chromosome 
doubling via meiotic nondisjunction after interspecific hybridization events in regions where the respective 
diploid progenitors had an overlapping geographical distribution. This figure is a modified version of a 
figure published by Snowdon (2007). 
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Although rapeseed breeding is still mostly done using classical techniques, new biotechnological 

methods have been incorporated, such as the use of cytoplasmic male-sterility (Thompson, 1972; 

Wei et al., 2019) and anther and microspore cultures (Keller et al., 1975; Custers, 2003) to 

generate double haploids (Prem et al., 2012), which have shortened the breeding process by 

years. The use of glasshouses and laboratories also boosted breeding, as now more than one 

generation per year is possible. In particular ‘speed breeding’ may hold the potential to shorten 

breeding cycles and to develop new varieties faster (Ghosh et al., 2018). Future breeding will also 

further focus on N-efficiency, frost tolerance, improved nutrient use efficiency and resistance / 

tolerance to drought stress. Hybrid varieties are forecasted to be ‘the future’ of rapeseed breeding 

due to their outstanding heterotic features. Commercial varieties of oilseed rape are 

predominantly hybrids all over the world (Liu et al., 2018a), for instance more than 80 % of 

cultivated rapeseed in Germany are hybrid varieties at the present day. These varieties perform 

better than open-pollinated varieties, in particular under stressful environmental conditions. 

Hybrid oilseed rape plants can be sown later, show higher disease resistance, and have enormous 

vitality and compensation ability, securing high, stable and consistent yield (Qian et al., 2007; 

Zhang et al., 2017a; Liu et al., 2018b).  

 

1.2. Recent advances in high-throughput phenotyping (HTP) 

The phenotype of a plant is defined as the set of observable characteristics resulting from the 

complex interactions of its genotype with the environment, and the amount by which the 

expression of an individual genotype can be modified is termed its plasticity (Bradshaw, 1965). 

Phenomics, which studies the variety of phenotypic plant traits, is a key to understand genetic 

functions and the impact of environmental effects on plants. Crop plant performance is affected 

by the plant’s genetic constitution and the characteristics of the surrounding environment. Many 

environmental factors, such as temperature, light, the weather and soil characteristics, along with 

biotic factors, for example weeds, diseases, insects and agricultural management, affect plant 

growth, quality and productivity. Several plant phenotyping platforms have been developed to 

study quantitative polygenic (complex) traits including biomass, plant colouration, growth-related 

traits, seed yield, the responses / resilience to biotic or abiotic stresses, as well as architectural 

traits. However, with the rapid development of genomics, the ability to acquire phenotypic data 
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has become the bottleneck in many plant genomic studies and crop breeding, as the phenotyping 

technologies were slow, labour-intensive, inaccurate in measurements of traits and often 

destructive (Furbank and Tester, 2011). 

In recent years, technological advances have resulted in the availability of high-throughput 

phenotyping (HTP) offering non-invasive, image-based methods to analyse complex plant traits 

(Barabaschi et al., 2016). With the increased throughput such systems allow to analyse effectively 

many plants (genotypes and replicates), necessary to provide power for genetic studies, in a 

reasonable amount of time. Consequently, many aspects of plant growth and morphological traits 

have been studied in depth for diverse model and crop plants, including Arabidopsis (Granier et 

al., 2006; Hartmann et al., 2011; Tisné et al., 2013), maize (Junker et al., 2015; Cabrera-Bosquet et 

al., 2016; Muraya et al., 2017; Zhang et al., 2017b), rice (Yang et al., 2014; Hairmansis et al., 2014; 

Schilling et al., 2015), barley (Honsdorf et al., 2014; Neumann et al., 2015) and rapeseed 

(Fanourakis et al., 2014; Hatzig et al., 2015; Kjaer and Ottosen, 2015) using mapping populations 

and natural accessions. The development of new platforms and techniques (Yang et al., 2013; Li et 

al., 2014b; Rahaman et al., 2015; Roitsch et al., 2019) for HTP allowed the efficient generation of 

measurements and to assess multiple traits at the same time, including plant growth and 

developmental traits, in a high-throughput manner at multiple time points. Examples include 

applications of visible light imaging for shoot biomass estimation (Walter et al., 2007; Vanhaeren 

et al., 2015), fluorescence sensing to quantitatively analyse photosynthesis (Tschiersch et al., 

2017), multispectral / hyperspectral imaging (Matsuda et al., 2012; Sun et al., 2019), near infrared 

spectroscopy for identifying physiological changes (Kuroki et al., 2019) and thermal imaging to 

detect water stress (Munns et al., 2010; Prashar and Jones, 2016). In addition, 3D imaging 

technologies, such as 3D laser scanning or light detection and ranging (Jimenez-Berni et al., 2018; 

Rebetzke et al., 2019) are emerging. However, they have not found wide applications in plant 

breeding yet due to the huge amount of complex data (‘big data’ issues, Zhao et al., 2019) and 

high acquisition costs.  

Although field phenotyping, manually, or by aerial or ground-based vehicles, constitutes an 

important category of phenotyping (Li et al., 2014b; Chawade et al., 2019), phenotyping under 

controlled, adjustable and reproducible conditions is a key requirement to effectively dissect 

genetic and environmental variances and to identify causal genetic determinants. Various types of 
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stationary (Walter et al., 2007), vehicle-based (Tanger et al., 2017; Chen et al., 2019), self-

propelled (Kicherer et al., 2015; Salas Fernandez et al., 2017), or portable phenotyping platforms 

(Ecarnot et al., 2013) have been developed. Some of these platforms are fully automated facilities 

(Granier et al., 2006; Golzarian et al., 2011; Junker et al., 2015) that allow precise control of the 

environment, and also include sensing equipment to log environmental changes such as light 

intensity, air humidity or soil water content.  

Crop traits can be classified into three categories: morphological, physiological, and pathological. 

Traits such as shape, colour (spectral reflectance), texture, pattern and size are classified as 

morphological traits as they are direct measures of the forms and structures of the plant or their 

organs. Photosynthesis, respiration, nutrition, hormone responses, stress resistance and plant 

water relations are classified as physiological traits. Pathological traits as measures of plant 

diseases caused by pathogens or environmental conditions are often difficult to quantify directly 

and therefore predominantly assessed indirectly by morphological measurements (Fang and 

Ramasamy, 2015; Zhang and Zhang, 2018). Besides the above ground shoot part, plant roots are 

critical for plant growth and development. Plant roots are often complex, three-dimensional 

systems. Many traits such as root length, root density, number of roots, total surface, lateral root 

number, solidity or root convex area can be derived from imaging data obtained by scanning of 

washed roots (‘shovelomics’), rhizotrons or nuclear magnetic resonance (NMR) imaging systems 

(Pflugfelder et al., 2017; Shi et al., 2018; Atkinson et al., 2019; Arifuzzaman et al., 2019). However, 

root analysis is even more challenging than the analysis of the aerial parts of plants.  

At the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, several high-

throughput phenotyping facilities (Junker et al., 2015) have been established and are continuously 

improved and enhanced. These systems have been previously used for the analysis of Arabidopsis 

(Junker et al., 2015; Arend et al., 2016; Tschiersch et al., 2017), rice (Schilling et al., 2015), barley 

(Chen et al., 2014; Neumann et al., 2015), maize (Muraya et al., 2017), and rapeseed 

(Pommerrenig et al., 2018). In addition to the generation of raw phenotyping data, the 

subsequent image processing and analysis require versatile tools and pipelines. HTPheno 

(Hartmann et al., 2011), IAP (Klukas et al., 2014), PlantCV (Fahlgren et al., 2015; Gehan et al., 

2017) or Deep Plant Phenomics (Ubbens and Stavness, 2017) are just a few examples of such 

recently developed tools and software packages.  
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1.3. Rapeseed / canola genomics and genome-wide association studies 

The availability of the Brassica napus reference genome sequence (Chalhoub et al., 2014) and 

development of the high-density 60K (Clarke et al., 2016; Mason et al., 2017) and 15K 

(TraitGenetics internal development, currently unpublished) single nucleotide polymorphism (SNP) 

genotyping arrays have enabled genomic studies that greatly improved our understanding of the 

genetic basis underlying key agronomic traits in Brassica napus. With advances in sequencing and 

genotyping technologies, including genotyping by sequencing (GBS, Bayer et al., 2015; Lees et al., 

2016) and array technologies, it has been feasible to generate genotype information for many 

lines in a high-throughput and cost-efficient manner as shown in recent studies (Wu et al., 2016b; 

Stein et al., 2017; Li et al., 2018a; Zhang et al., 2019a; Zhao et al., 2019a). However, as SNP 

identification in polyploid genomes is complex and challenging, SNP discovery and array 

development has been seriously slowed in rapeseed (You et al., 2018). A milestone boosting 

genomic analyses in rapeseed was the sequencing, annotation and publication of the 

Brassica napus genome of European winter oilseed cultivar Darmor-bzh (2n = 38, AACC), which has 

a size of approximately 1,130 Mb (Chalhoub et al., 2014). In total, 101,040 gene models were 

estimated, which is roughly four-times the number of genes of its close relative A. thaliana.  

In addition to SNPs, copy number variation (CNV) and presence-absence variation (PAV) can 

provide complementary information (Stein et al., 2017) for genetic analyses. In oilseed rape, in 

particular segmental deletions caused by widespread homoeologous exchanges (Samans et al., 

2017; Hurgobin et al., 2018) were shown to be associated with trait variation (Qian et al., 2016; 

Schiessl et al., 2017; Stein et al., 2017; Hatzig et al., 2018). However, in contrast to its close relative 

A. thaliana, genetic analyses in rapeseed are complicated by the redundancy of genes due to the 

evolutionary recent ‘collision’ of the A and C subgenomes, their high homology and an extensive 

linkage disequilibrium, especially in the C subgenome (Wu et al., 2016a).  

With advances in high-throughput sequencing technologies, transcriptome sequencing (RNA-Seq) 

became available as frequently used omics-technology (Guo et al., 2017; Shah et al., 2018; Shahid 

et al., 2019). However, transcriptomic approaches in rapeseed are challenged by the high 

similarity between the two subgenomes. Still, transcriptomic and associative-transcriptomic 

approaches (Harper et al., 2012) have been used to study several aspects and traits of B. napus 

including the genetic architecture of erucic acid content and variation of tocopherol isoforms 
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(Havlickova et al., 2018), lipid biosynthesis (Chen et al., 2015) or freezing stress (Pu et al., 2019).  

In addition, studies focus on traits relevant for breeding, including lodging resistance (Miller et al., 

2018), seed glucosinolates (Lu et al., 2014), several yield-determining traits (Lu et al., 2017), oil 

accumulation (Wan et al., 2017) or thousand-seed weight (Geng et al., 2018). The epigenome as 

additional omics layer has also been addressed in rapeseed, including genome-wide DNA 

methylation analyses using genome bisulfite sequencing and studies of small RNA expression 

(Takahashi et al., 2018).  

The metabolome constitutes another important layer of the omics-cascade. Almost all metabolic 

processes in living cells need enzyme catalysis in order to facilitate fast reaction rates to sustain 

life processes. Metabolic pathways depend on enzymes to catalyse individual reaction steps.  

The metabolome refers, similar as the term transcriptome, to the entire set of low molecular-

weight compounds (metabolites) at a certain time point in a biological sample, which can either be 

a single cell, an organ or an entire organism (Jordan et al., 2009). Profiling of metabolites provides 

a snapshot of the physiological status of a plant. Metabolites are defined as the intermediates or 

end products of metabolism and represent a dynamic system that can change rapidly.  

The metabolome comprises a huge range of very heterogeneous classes of chemical substances 

such as alcohols, amino acids, carbohydrates, lipids, nucleotides or organic acids. In general, the 

plant metabolism can be subdivided into primary metabolism, directly involved in the normal 

growth, development, and reproduction, and specialised metabolism including pigments, 

antibiotics or other compounds with functions that help plants to survive in specialised ecological 

niches (Mithen et al., 1995) and under changing environmental conditions (Del Carmen Martínez-

Ballesta et al., 2013; Yang et al., 2018). Metabolite levels can be regarded as the penultimate 

response of biological systems to genetic or environmental changes (Fiehn, 2002) and are most 

closely linked to the (morphological) phenotype of a plant. Moreover, metabolites in turn can 

influence gene expression and protein functions (Saito and Matsuda, 2010), or the metabolome 

can act as a buffer to changing environmental conditions (Gibon et al., 2006). In particular mass 

spectrometric approaches, like gas chromatography-mass spectrometry (GC-MS) and liquid 

chromatography-mass spectrometry (LC-MS), but also nuclear magnetic resonance (NMR) 

approaches, allow in a targeted or untargeted way to simultaneously detect and quantify a wide 

range of small molecules in a high-throughput manner (Zampieri et al., 2017). Owing to the 
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complexity of the metabolome and the diverse properties of metabolites, no single analytical 

platform is capable to detect all metabolites (Zhang et al., 2012).  

Beside phenotype information lines need to be characterised genetically to relate phenotypes to 

genes and their variation. For the successful identification of causal loci and genetic variants, 

besides a sufficient marker density, a sufficient degree of phenotypic variation in the traits of 

interest and a sufficient number of genotypes to provide the statistical power for the analysis are 

essential. Quantitative traits like seed yield, vegetative plant growth, early plant height and 

biomass production in rapeseed are under complex genetic control and are strongly influenced by 

the environment (Shi et al., 2009; Zhao et al., 2016). Dissecting the genetic basis of such traits is of 

high relevance to fundamental research and to crop improvement strategies alike.  

Previous studies applied quantitative trait locus (QTL) mapping and genome-wide association 

analyses using natural variation in populations to identify QTL / alleles for growth (Yong et al., 

2015), seed yield (Radoev et al., 2008; Luo et al., 2017b) and yield-related traits (Chen et al., 2007; 

Yang et al., 2012; Cai et al., 2016; Dong et al., 2018) in rapeseed. In some cases, genes underlying 

these QTL were also identified (Zeng et al., 2011; Liu et al., 2015a; Li et al., 2018c). These GWAS 

analyses applied mixed linear models (MLM) or generalised linear models (GLM) to link phenotypic 

and genetic variation. However, these models have been shown to suffer from a trade-off 

between detection power and type I errors (false-positive results). Recently, a new method for 

genome-wide association studies, FarmCPU (Fixed and random model Circulating Probability 

Unification) has been proposed by Liu et al. (2016). The method iteratively performs marker tests 

with pseudo quantitative trait nucleotides (QTNs) as covariates in a fixed effects model and 

optimization on pseudo QTNs in a random effects model, which controls false positives and 

effectively reduces false negatives. The method was successfully applied in several studies and 

various species (Li et al., 2016c; Hu et al., 2017; Ravelombola et al., 2017; Martinez et al., 2018; 

Wang et al., 2018a; Ward et al., 2019).  

The ultimate goal for breeders is to identify favourable lines in breeding populations according to 

their genotypes, and ideally, to stack multiple beneficial alleles for different genes in one 

genotype. Most of these studies however, have focused so far only on a limited number of 

phenotypic traits, and metabolic (mQTL) and expression (eQTL) studies in canola are rare (Qu et 

al., 2016; Li et al., 2018b; Yu et al., 2018a). More importantly, in most studies only single time 



Introduction 

9 
 
 

points were hitherto analysed, although gene expression patterns are known to change during 

developmental progression.  

In Arabidopsis, previous studies on projected leaf area at 12 different time points, on parameters 

derived from growth models, and on end-point biomass data revealed time-specific and general 

QTL affecting growth dynamics (Bac-Molenaar et al., 2015). Similar observations were made 

regarding temporal patterns of biomass accumulation in barley (Neumann et al., 2017), plant 

development and height in triticale (Busemeyer et al., 2013; Würschum et al., 2014b,a) and 

temporal expression of tiller number in wheat (Ren et al., 2018). Dynamic QTL for plant height and 

for stress-responsive and several root traits at different developmental stages were also reported 

in upland cotton (Liang et al., 2014; Pauli et al., 2016; Shang et al., 2016). In triticale, genetic 

dynamics underlying biomass yield were assessed in three developmental stages (Liu et al., 2014). 

Interestingly, besides detecting QTL active in all stages, some QTL contributed to biomass 

development only in one or two of the stages. A recent study in maize assessed the genetics of 

growth dynamics at 11 different developmental time points and reported main-effect QTL and 

epistatic interactions with different patterns of expression and reversing allele effects (Muraya et 

al., 2017). In B. napus, dynamic QTL for plant height were described that showed opposite genetic 

effects in different periods / stages and experiments (Wang et al., 2015). However, multiple time 

point analyses to uncover the genetic basis for biomass and growth as dynamic traits have so far 

not been addressed in canola. The studies mentioned above highlight the need to investigate  

QTL / allele effects by time-series data to efficiently elucidate growth processes and to detect 

stage-specific loci that would likely be missed by analysing single or end-point data only. 

 

1.4. Molecular genetics of vegetative plant growth and biomass accumulation 

Early plant growth and biomass formation are crucial traits for productivity and seed yield, and 

early plant biomass (and heterosis) has been shown to be correlated with canola seed yield at the 

mature stage (Basunanda et al., 2010; Zhao et al., 2016). Moreover, early stage growth is of 

special importance for young seedlings to provide efficient ground coverage and to avoid 

competition with weeds in the fields. Growth-related heterosis manifests at a very early stage of 

seedling development in Arabidopsis (Meyer et al., 2004, 2012) and in canola (Basunanda et al., 

2010), and plays a key role in field establishment. A recent study also linked early changes of gene 
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activity in developing seedlings of hybrids relative to parents to hybrid vigour in Arabidopsis  

(Zhu et al., 2016). Hence, a better understanding of early plant growth is of great importance for 

breeding.Biomass accumulation in plants has been shown to be a complex trait, regulated and 

affected by various intrinsic developmental programmes / networks and environmental cues  

(Lima et al., 2017). Plant growth can be defined as an irreversible increase in size of the plant that 

involves both, cell proliferation and cell expansion, whereby the timing of their transition has been 

shown to be of crucial importance (Gonzalez et al., 2009, 2012). Increased biomass production can 

be achieved by two strategies, first by improvements of agricultural practices and second by 

genetic modifications that would increase plant growth and produce augmented plant dry matter.  

For instance plant cell wall features have been altered to increase the efficiency of biofuel 

production (Furtado et al., 2014; Allwright and Taylor, 2016). Moreover, the nutrient supply, 

environmental stresses and also plant growth-promoting rhizobacteria (PGPR), a group of 

microorganisms that colonise the rhizosphere and roots of many plant species, have been shown 

to affect plant growth (Saghafi et al., 2019).  

Plant growth is influenced greatly by external environmental factors, still it appears that the size of 

plant organs is intrinsically determined by internal developmental factors. Intrinsic plant organ 

size, e.g. the petal size of A. thaliana, has been shown to be remarkably constant within individuals 

of a species (Mizukami and Fischer, 2000). A very large number of genes is involved in the control 

of plant growth and productivity in agriculture and many different pathways have been reported 

to be involved in biomass production. In Arabidopsis more than 70 growth promoting genes have 

hitherto been identified as reviewed by Lima et al. (2017). 

One major determinant of plant growth is the cell cycle. It is, together with cell division, directly 

responsible for the number of cells which determines growth rate and overall organ size.  

Many of its molecular components have been shown to be conserved, like the cyclin-dependent 

kinases (CDKs), the cyclins (CYCs) and the multi-subunit E3 ubi-quitin ligase anaphase-promoting 

complex / cyclosome (APC/C, Inzé and De Veylder, 2006; Lima et al., 2010; Inagaki and Umeda, 

2011). In plants one major regulator of CDK activity are the inhibitor of CDK/KIP-related proteins 

(ICK/KRP, Verkest et al., 2005), and down-regulation of ICK genes increased CDK activity and 

stimulated cell proliferation ultimately resulting in larger organs in A. thaliana (Cheng et al., 2013). 

Moreover it has been shown that the S-phase regulating transcription factor E2F acts as positive 
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regulator of cell division (Vandepoele et al., 2005). Overexpression of the APC/C, an E3 ubiquitin 

ligase that controls cell cycle transitions, accelerated plant growth and increased biomass 

production (Rojas et al., 2009; de Freitas Lima et al., 2013). SAMBA mutants, affected in a negative 

regulator of the Arabidopsis APC10, produced larger seeds and leaves (Eloy et al., 2012).  

Also mutants of other cell cycle regulators like DA1-1 and EOD1-2 / BIG BROTHER have been 

reported to be significantly altered in plant organ size and biomass accumulation (Vanhaeren et 

al., 2014, 2016, 2017). 

Plant development and growth integrates many endogenous and environmental signals, whereby 

several growth regulating hormones including abscisic acid (ABA), auxins, brassinosteroids (BRs), 

cytokinins, ethylene and gibberellins (GAs) have been shown to be essential (Vanstraelen and 

Benková, 2012). In particular, GAs and BRs were linked to an increase of shoot biomass. GAs play 

an important role in the regulation of seed germination, flower and fruit development, stem 

elongation and leaf expansion (Hedden and Sponsel, 2015). The overexpression of the enzyme 

gibberellin 20-oxidase (GA 20-OX), which is rate-limiting in GA biosynthesis, resulted in increased 

biomass in poplar and maize (Voorend et al., 2016; Jeon et al., 2016), however, with negative side 

effects (significantly decreased leaf area or more slender stems). BRs are plant steroid hormones 

that regulate stem and root growth, floral initiation and fruit development (Zhu et al., 2013).  

Two types of proteins, brossinosteroid-insensitive 1 (BRI1) receptor kinase, and brassinosteroid-

associated kinase 1 (BAK1), a co-repressor, have been shown to be involved in BR perception (Li et 

al., 2002). In rice, a bri1 mutant has been reported to produce 35 % higher biomass compared to 

control plants at high planting density (Morinaka et al., 2006). DWARF4 is another important 

player catalysing a rate-limiting step in BR biosynthesis. Plants showed upon overexpression of 

DWARF4 larger leaves and a higher number of branches (Choe et al., 2001; Sahni et al., 2016). 

Transcription initiation is the initial step in which genes are selected for expression and 

modulation of expression levels (Joshi et al., 2016) and several transcription factors have been 

shown to enhance growth when ectopically overexpressed, as reviewed by Gonzalez et al. (2009). 

Well studied examples from Arabidopsis include growth-regulating factor 5 (GRF5), its interacting 

protein angustifolia 3 (AN3/GIF1, Horiguchi et al., 2005), the NAM/CUC transcription activator 

NAC1 (Xie et al., 2000), aintegumenta (ANT, Mizukami and Fischer, 2000) and the At-hook 

transcription factor HRC1 (Century et al., 2008). On the other side, several transcription factors, 
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such as auxin response factor 2 (ARF2, Okushima et al., 2005), the HDZip transcription factor 

ATHB16 (Wang et al., 2003) or the WD-40 transcriptional repressor (RON2, Cnops et al., 2004) 

appear to repress plant growth. The overexpression of the heterosis-associated 

apetala2/ethylene-responsive element binding protein (AP2/EREBP) class transcription factor 

AP2L1 in Arabidopsis led to enlarged organs, increased biomass, and improved seed production  

(Li et al., 2013b). Also manipulation of WRKY TFs like WRKY76 (Raineri et al., 2015), NAC TFs 

(Grover et al., 2014) that control growth of secondary cell walls, and basic helix-loop-helix TFs 

(bHLH, Noh et al., 2015) resulted in increased biomass production. In addition, the homodomain-

leucine zipper (HD-Zip) and GRAS TF families are important in cellular processes, causing 

morphophysiological alterations in plants (Hirsch and Oldroyd, 2009; Brandt et al., 2014).  

Beside these regulators, also photosynthesis and energy metabolism and involved genes may be 

targets to improve plant growth and biomass accumulation. For example, in rice, CO2 assimilation 

was strongly correlated with the expression of the transcription factor gene Higher Yield Rice 

(HYR) and a high expression enabled enhancing the photosynthesis capacity and biomass 

accumulation of different organs (Ambavaram et al., 2014). However, structural components of 

light reaction centres are highly conserved among plants (Rosado-Souza et al., 2015) and several 

strategies to improve CO2 assimilation and plant biomass failed due to the limited capacity of 

some species to utilise the photosynthesis products (Kirschbaum, 2011). Moreover, it has been 

suggested that the increase of biomass in A. thaliana hybrids, compared to parental lines, is not 

related to the photosynthetic rates, but rather attributable to an increase in the number of 

chloroplasts per cell and a higher chlorophyll content (Fujimoto et al., 2012).  

To provide energy for vital processes and to synthesise new organic material, all plants maintain 

sophisticated and complex metabolic networks. The two most essential nutrients thereby are 

carbon (C) and nitrogen (N), and keeping of the C/N ratio balance is essential for plant growth 

(Zheng, 2009). In Arabidopsis, overexpression of the nin-like protein 7 (NLP7) which modulates 

nitrate sensing and metabolism, enhances N assimilation and growth (Yu et al., 2016). Another key 

enzyme of nitrogen metabolism, the glutamine synthetase (GS) has been overexpressed in pea 

resulting in high increases in plant fresh and dry weight (Oliveira et al., 2002). Starch and soluble 

sugars play a central role in carbon metabolism and regulation of cellular physiology. Notably, the 

starch content at the end of the light period has been shown to be negatively correlated with 



Introduction 

13 
 
 

biomass and to be under circadian control (Sulpice et al., 2009; Graf et al., 2010). Substitution of 

mutants of the endogenous Arabidopsis isoform of starch branching enzyme (SBE) by a maize 

endosperm-enzyme significantly increased shoot dry weight of transgenic plants (Liu et al., 2016c).  

Plant productivity also depends on source-sink relationships. Hence, it is not surprising that also 

the manipulation of genes involved in sugar transport and metabolism, like the sucrose synthase 

(SUS), the sucrose phosphate synthase (SPS) or the sucrose-phosphatase phosphatase (SPP) 

directly affect plant growth (Flügge et al., 2011; Maloney et al., 2015).  

As additional factors, hybridity and ploidy (Fort et al., 2016), as well as epigenetic regulation by 

miRNAs such as miR156 (Schwab et al., 2005) have been reported to be involved in biomass 

accumulation. Also the size of the shoot apical meristem (SAM), in whose central zone cells divide 

to maintain a pluripotent stem cell population and at whose peripheral zone cells competent to 

differentiate are generated, has been considered to influence final leaf area and biomass 

(Gonzalez et al., 2012). For instance, the clavata1 mutant has been shown to have a larger SAM 

and an increased leaf initiation rate (Kwon et al., 2005). Furthermore, the number of cells 

recruited to the leaf primordium has been shown to play a role in final organ size. In the 

struwwelpeter (swp) mutant, which shows an altered expression of an RNA polymerase II 

transcription mediator, smaller leaves containing fewer cells were produced (Autran et al., 2002). 

Considering all the examples of transgenic modifications causing severe effects mentioned above, 

it is likely that also natural variation in these genes and pathways affects growth and biomass 

accumulation. However, the analysis of subtle changes of complex biomass-related phenotypic 

traits like the projected leaf area (PLA), plant height or the estimated volume of a plant, have been 

challenging, as they require precise, repeated and often time-consuming measurements.  

This challenge has been addressed by the emergence of new high-throughput phenotyping 

technologies that allow a reliable, non-invasive and versatile acquisition of diverse phenotypic 

traits. 

 

1.5. Heterosis – the genetic basis of hybrid vigour 

Heterosis, or hybrid vigour, is an important, intensely studied but still poorly understood genetic 

phenomenon. The term heterosis was introduced by Shull in 1914 (Shull, 1948). It refers to the 

advantage of heterozygous offspring over their homozygous parents with regard to fitness-related 
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traits, such as seed yield. However, despite the high agronomic value, the genetic basis of 

heterosis, its mechanistic understanding and its prediction for improved efficiency of crop 

breeding still remains an elusive goal (Chen, 2013). As the heterotic effects peak in the F1 and are 

lost during inbreeding, it is generally thought that heterosis is based on the contributions of 

numerous genetic factors, each only with a small effect and that, at least to some extent, the 

combined action of heterozygous alleles is involved. Moreover, a positive and highly significant 

correlation between the genetic distance of cultivars and mid-parent heterosis has been described 

in canola (Lefort-Buson et al., 1987; Ali et al., 1995). Three main classic hypotheses, dominance, 

overdominance and pseudo-overdominance, which try to explain the phenomenon at the genetic 

level have been proposed, and experimental evidence has been obtained for all of them (Lippman 

and Zamir, 2007). In addition, partial dominance, epistatic interactions (Shi et al., 2011), co-

regulated gene networks (Basunanda et al., 2010) and epigenetic factors were also found to 

contribute to heterosis (Kawanabe et al., 2016; Shen et al., 2017; Fujimoto et al., 2018). A model 

of physiological dominance has been proposed by Sewall Wright suggesting that heterosis of plant 

performance is an intrinsic property of nonlinear relationships between traits (Wright, 1934; 

Fiévet et al., 2018; Vasseur et al., 2019). According to a metabolic heterosis model, the gene 

expression in hybrids at the mid-parent level generates hybrid vigour by counterbalancing 

opposing detrimental expression levels in the parental lines on a genome-wide scale (Kacser and 

Burns, 1981; Springer and Stupar, 2007). An optimal distribution of enzyme quantities may 

approach maximal metabolic fluxes in hybrids, while in inbred lines several enzymes may be 

expressed at non-optimal amounts (de Vienne et al., 2001; Fiévet et al., 2010). 

In the model crucifer A. thaliana, biomass heterosis is established early during vegetative 

development (three to six days after sowing). However, depending on which accession is used as 

crossing partner, is not already present in the seed (Meyer et al., 2004, 2012). In winter oilseed 

rape, significant biomass heterosis was also observed during early seedling development, and 

these hybrids also showed significant yield heterosis at later developmental stages (Basunanda et 

al., 2010). Given these similarities, and due to the small genome, the fast generation cycle and the 

evolutionary close distance to rapeseed, A. thaliana constitutes an ideal system for heterosis 

research. Knowledge gained in the model plant Arabidopsis might be transferred in a 

straightforward manner into the crop plant canola.  
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The most important element in implementing hybrid breeding is the recognition of a heterotic 

pattern that supports high-yielding lines (Zhao et al., 2015). In oilseed rape, hybrids today already 

make up the major share of the international seed market (Stahl et al., 2017). However, in 

comparison to other important hybrid crops like maize, canola displays relatively low levels of F1 

heterosis (for example MPH of approx. 30 % for grain yield) as reported by Radoev et al. (2008). 

This can be attributed to the fact that in contrast to outcrossing crops like maize, hybrid breeding 

in self-pollinating crops like rapeseed began only a few decades ago after suitable hybrid seed 

production systems, for example cytoplasmic male-sterility, were developed, and therefore, large 

and well defined heterotic pools as in maize have not been established yet (Melchinger and 

Gumber, 1998; Kole, 2007). However, several attempts were made to broaden the genetic 

diversity and to develop heterotic gene pools for rapeseed hybrid breeding (Qian et al., 2007; 

Girke et al., 2012; Jesske et al., 2013; Li et al., 2014c). Thus, the breeding industry has considerable 

interest in utilisation of heterosis to improve plant performance, under optimal and stressful 

conditions. The identification of new superior hybrids among the millions of possible crosses 

requires extensive breeding programmes, involving the generation of various testcrosses between 

breeding material, extensive multi-location / multi-year field trials to generate phenotypic data 

and to test hybrid performance. As such programmes are both work and cost intensive (Desta and 

Ortiz, 2014) the prediction of hybrid performance is highly desirable. A straight-forward 

preselection of a few hundred, most favourable hybrids with high success rate, could substantially 

reduce the volume of the labour-intensive and time-consuming field trials (Xu et al., 2016; Kadam 

et al., 2016) and greatly impact the efficiency of hybrid breeding (Longin et al., 2015). 

 

1.6. Genomic selection and prediction of hybrid performance 

In the past, individual plants with desirable phenotypic characteristics were selected and used as 

progenitors of the next generation. In contrast, modern plant breeding is based on the discoveries 

of Darwin and Mendel about evolution and inheritance (Borlaug, 1983), shifting the breeding from 

a parent-oriented to an offspring-oriented way. With the Green Revolution in the 1960’s, this 

development reached a peak resulting in many new varieties and increased food production. 

The overall aim of plant breeding is to improve crops by fixing and improving phenotypic traits. 

Quantitative (complex) phenotypic traits are determined by many genes of small effect and their 
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interactions with the environment (Lander and Schork, 1994; Heino, 2014). Knowledge about the 

underlying genetic architecture of traits is of crucial importance to support breeders because 

parental lines with the best phenotypes, in particular regarding seed yield and other heterotic 

traits, are not necessarily the best progenitors for a breeding programme (Melchinger and 

Gumber, 1998). Hence, breeders aim to detect quantitative trait loci (QTL), genomic regions that 

are associated with such traits, by linkage mapping and/or association mapping. With the help of 

markers in proximity and genetically linked to traits of interest, such traits can be selected 

indirectly by marker-assisted selection (MAS). In this way, beneficial genes can be selectively 

introduced in populations or genotypes, and ideally also stacked, or detrimental genes excluded 

(Collard and Mackill, 2008). Marker-assisted breeding and its variants such as marker-assisted 

recurrent selection (MARS, Lande and Thompson, 1990), a two-step approach involving the 

selection of significant markers and combination with phenotypic information in a selection index, 

and marker-assisted backcrossing (MABC) found implementation in plant breeding for a series of 

crop plants (Collard and Mackill, 2008; Jiang, 2015). However, MAS relies on available information 

from QTL mapping studies that often identify only few QTL with overestimated effects (Xu, 2003; 

Schön et al., 2004). The relative efficiency of MAS decreases with an increasing number of QTL and 

decreasing trait heritability (Moreau et al., 1998), which makes it less effective for complex 

polygenic traits such as seed yield. 

A more recent method in plant breeding is genomic selection (GS) in which marker data are 

combined with pedigree information and phenotypic data to build a model that accurately 

predicts the performance of individuals with the aim to select progenitors in a breeding 

programme (Crossa et al., 2010). Bernardo (1994) proposed to use a genomic relationship matrix 

estimated from DNA. The matrix defines the covariance between individuals based on observed 

similarity at the genomic level, rather than on the expected similarity based on pedigree 

information. Furthermore, Meuwissen et al. (2001) suggested to estimate all marker effects 

simultaneously. This approach is referred to as genomic best linear unbiased prediction (gBLUP). 

For prediction of traits with genetic markers, phenotypic and genotypic data need to be collected. 

Marker effects are estimated in a training population using a statistical model describing the 

relationship between marker and phenotype data with genotypic data as predictors for the 

phenotype. Next, new individuals of a validation population are genotyped and the phenotypes 
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are predicted (genomic estimated breeding values, GEBVs) with the previously established model, 

and promising genotypes are then selected for a breeding programme. Advantages hereby are 

that in contrast to many phenotypic data, the genotype of plants can be evaluated in a very early 

developmental stage and the genotyping costs are constantly decreasing (Zhao et al., 2015).  

For the prediction of hybrid performance, not the hybrids themselves are genotyped, but rather 

the parental (inbred) lines. With the help of testcrosses, the average performance of an inbred line 

in hybrid combinations (general combining ability, GCA), the relative performance of certain 

combinations compared to the average performance of the lines (specific combining ability, SCA) 

of the parental lines or the hybrid performance itself can be estimated (Sprague and Tatum, 1942). 

In order to evaluate the quality of the predictions, phenotypic data of the predicted individuals 

from the validation population are collected and correlated with the predicted values (prediction 

accuracy). The accuracy of predictions has been shown to be dependent on the statistical model 

applied, the type and density of genetic markers, the size, composition and ratio between training 

and validation population (Akdemir and Isidro-Sánchez, 2019). In addition, the overall genetic 

relatedness of the population (Albrecht et al., 2014), the genetic architecture and the heritability 

of the trait which is to be predicted play major roles (Morgante et al., 2018; Wang et al., 2018b).  

Gene effects and the distribution of linkage disequilibrium (LD) between genetic markers, 

genotype × environment interactions and quantitative trait loci (QTL) have also been shown to be 

of importance (Windhausen et al., 2012; Desta and Ortiz, 2014; Dan et al., 2016). Hence, a major 

disadvantage and limitation of this approach is that good predictions are only achieved for highly 

similar populations and application to other gene pools / varieties might result in lower accuracies 

of the model. 

Genome-wide regression / prediction is a powerful tool to analyse and predict quantitative 

polygenetic traits (Meuwissen et al. 2001) and various genome-wide prediction approaches for 

hybrid prediction have been explored and applied for plant populations over the last decades 

(Crossa et al., 2014; Heslot et al., 2015; Mangin et al., 2017; Hickey et al., 2017). Models include 

gBLUP and its equivalent ridge regression BLUP (RR-BLUP, de Vlaming and Groenen, 2015), but 

they are restricted to the incorporation of additive effects only. To overcome this limitation, 

advanced models have been proposed, including extended gBLUP (eGBLUP) which includes 

epistatic marker effects into the model (Jiang and Reif, 2015). Taking epistasis into account can 
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increase prediction accuracies as previously shown (Wang et al., 2012; Muñoz et al., 2014; He et 

al., 2016). The assumption made by RR-BLUP that genetic effects are evenly spread across the 

genome (homoscedastic marker variances) was not satisfactory and Meuwissen et al. (2001) tried 

to relax it using Bayesian models. This led to the development of various constantly improved 

Bayesian implementations such as BayesA, BayesB, BayesCπ, BayesDπ, Bayesian LASSO 

(Meuwissen et al., 2001; Park and Casella, 2008; Habier et al., 2011). However, these models have 

a high computational demand (Lorenz et al., 2011) and pose the difficulty to choose an 

appropriate prior distribution of the marker effects (Piepho, 2009). Haploblock-based genome-

wide prediction models have been developed as well and reported to outperform marker-based 

models in some scenarios (Calus et al., 2008; Jiang et al., 2018; Jan et al., 2019).  

In addition, kernel-based methods like reproducing kernel Hilbert space regression (RKHS) have 

been exploited for predictions (Gianola and van Kaam, 2008). They contain a great deal of 

flexibility and no assumptions of linearity, which may render them superior in their ability to 

capture nonadditive genetic effects. However, studies have shown that there is no universally best 

prediction model (Momen et al., 2018). Hence, in addition to superior predictive models and 

algorithms, also alternative sets of predictors have been addressed. There is evidence that 

genomic prediction may not be capable to capture all complex gene interactions and downstream 

regulatory processes, even with complete sequence information available (Zhu et al., 2012; Ritchie 

et al., 2015). Hence, the utilisation of endophenotypes such as metabolite abundances and gene 

expression was proposed to improve the prediction of complex trait, as they are expected to 

reflect more closely the variability across genotypes than genomic data per se (Mackay et al., 

2009; Patti et al., 2012; Civelek and Lusis, 2014).  

Previous studies in maize (Riedelsheimer et al., 2012a; Feher et al., 2014), rice (Dan et al., 2016, 

2018; Xu et al., 2016; Wang et al., 2019) and Arabidopsis (Meyer et al., 2007; Gärtner et al., 2009; 

Steinfath et al., 2010) have shown that metabolite levels also may have high predictive power and 

can in some, but not all, cases (Zhao et al., 2015) improve prediction accuracies. Recent studies 

illustrate the predictive value of transcriptome data (Swanson-Wagner et al., 2006; Fu et al., 2012; 

Zenke-Philippi et al., 2016), including small RNAs (Seifert et al., 2018). Compared to genomic data, 

transcripts have the advantage that they are independent of marker LD and are therefore better 

suited for prediction across heterotic pools (Frisch et al., 2010). Consequently, downstream -omics 
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data, including expression data and metabolite profiles, are expected to integrate interactions 

within and between biological layers, thus they may capture physiological epistasis (Westhues et 

al., 2017). With the examples mentioned above, it has been shown that endophenotypes provide 

reasonable predictive abilities relative to those of genetic markers and their integration with 

genetic markers can significantly improve predictive abilities (Guo et al., 2016; Westhues et al., 

2017; Schrag et al., 2018; Wang et al., 2019). 

 

1.7. Aims of this work 

Based on previous work on biomass and heterosis prediction in Arabidopsis (Meyer et al., 2007; 

Steinfath et al., 2010) and maize (Riedelsheimer et al., 2012), this work is built on the hypothesis 

that specific allelic combinations of regulatory genes, their downstream gene expression, as well 

as elicited metabolite profiles, are associated with improved vegetative growth, hybrid 

performance and seed yield in hybrids. The project featured three main goals: first, to evaluate 

omics-based models for prediction of hybrid performance in spring-type oilseed rape that can be 

effectively implemented in a commercial breeding programme; second, to elucidate links between 

vegetative growth, transcript and metabolite levels; and third, to identify candidate genetic loci / 

genes causing trait variation.  

To address these goals, prior to this work, a hybrid population of 950 genotypes had been 

generated and evaluated in the field at multiple locations across Europe, analysing various 

agronomic traits. Complementarily, at the Leibniz Institute of Plant Genetics and Crop Plant 

Research (IPK), detailed phenotyping data should be generated by growing 475 diverse pollinators 

from a commercial canola breeding programme and two elite male-sterile tester lines, comprising 

the parental lines of the hybrids, in the IPK automated high-throughput phenotyping platform 

(Junker et al., 2015). Image data obtained at an early vegetative state should be complemented by 

endophenotypes, polar metabolite and global transcriptome (RNA-Seq) profiles, from the same 

plants. These extensive data sets should be utilised for correlation analyses, and in combination 

with array-derived SNP and CNV data for genome-wide-association studies (GWAS) to identify 

genetic loci associated with trait variation and candidate genes. As phenotypic data covering the 

early vegetative growth would be generated as a time series, this study should allow temporal 

analyses of genetic determinants contributing to growth-related traits.  
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2.  Materials and methods 

2.1. Genetic material and generation of an F1 hybrid population 

The experimental materials consisted of a total of 479 genotypes with double-low seed quality 

(low erucic acid, low glucosinolate content) from a spring-type B. napus (canola) breeding 

programme (Data S1) that showed contrasting patterns of general combining ability (GCA).  

The materials were carrying introgressions from the diploid progenitors of B. napus. The largest 

proportion, 475 lines, comprised genetically diverse pollinator lines that could be attributed to 

three breeding pools (denoted as breeding pools 1, 2, and 3). Some of the lines exhibited a high 

degree of heterozygosity. Two elite male-sterile testers (MS1 and MS2) from a pool of testers 

carrying the Male Sterility Lembke (MSL) sterility system (NPZ Lembke, Hohenlieth, Germany), and 

two commercial elite genotypes, ‘Achat’ and ‘Campino’ (CR 3430) were included. An F1 hybrid 

population with 950 genotypes was generated by the commercial partners in this project by 

crossing all 475 pollinators to the two male-sterile testers. 

  

2.2. Field experiments by commercial partners and agronomic traits 

Field trials were performed in the year 2012 in a nested design by commercial partners NPZi and 

DSV whereby the 950 hybrids were evaluated at eight different locations across Denmark 

(Abildgard, Dyngby), Germany (Roßleben, Hohenlieth), Poland (Słupia, Krzyżewo), Latvia (Jelgava) 

and Estonia (Viljandi) at commercial plant breeding testing sites. A total of nine trials were 

performed with 35 trial ~ location combinations. Each trial evaluated plants at three to four 

individual locations and each tested hybrid had four replicates across all trials / locations.  

Four commercial lines (‘Achat’, ‘Osorno’, ‘Mirakel’ and ‘DLE 1108’) were included as standards in 

all trials at each location and tested either unreplicated or as duplicates in each trial. Various traits 

of commercial importance were assessed including the content of total seed glucosinolate  

(GSL; μmol/g seed), the days to onset of flowering (DTF; measured as number of days from sowing 

until 50 % flowering plants per plot), the seed oil yield (dt/ha), the trait seedling emergence  

(visual observation ranging from a minimum value of 0 to maximum 10), the seed oil content  
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(% volume per seed dry weight), the seed protein content (% volume per seed dry weight) and 

seed yield (dt/ha). 

 

2.3. Plant cultivation under controlled conditions and experimental design 

Prior to the main experiments three smaller pilot experiments were performed to optimise the 

cultivation and phenotyping of rapeseed in the glasshouse containing the phenotyping platform. 

The first pilot experiment addressed the questions of the substrate to be used, possible unequal 

germination rates of different lines, the adequate number of plants per pot for effective 

phenotyping, and suitable environmental conditions. In the second the growth speed of plants 

under the selected conditions was monitored, and the third experiment was performed to sample 

plant material for an initial metabolic analysis to address the question whether early (14 days after 

sowing, DAS) or later (28 DAS) plant material should be sampled. In these experiments, a set of 

commercial breeding lines and hybrids were used (Data S1). The results of these experiments led 

to the conditions and final experimental design as described below. 

Plants were cultivated under controlled environmental conditions in an incomplete randomised 

block design (Data S2) in four glasshouse experiments (1413RCM, 1419RCM, 1442RCM and 

1447RCM) in spring and winter 2014. An additional experiment (1504RCM) with a selection of 120 

hybrids was performed in spring 2015 and data were included in the calculation of the BLUEs, but 

not in the GWAS, as no array data for the hybrids are available.  

Experiments were carried out in the IPK phenotyping facility for large plants (Junker et al., 2015) 

comprising a cultivation, transportation and imaging system with 396 mobile carriers. Each 

genotype was replicated three times. A container with nine plants comprised one replicate.  

Four reference lines were included as ‘Checks’ in higher replication (‘Achat’ n=12, ‘Campino’  

(CR 3430) n=12, and the two male sterile testers ‘M1’ and ‘M2’ each n=6 per experiment, 

respectively) in all cultivations. Plants were grown in large 25 litre square containers (Bamaplast 

S.r.l., Massa e Cozzile, Italy) in red substrate 2 (Klasmann-Deilmann GmbH, Geeste, Germany)  

to provide enough space for the plants to grow and to avoid pot size effects (Poorter et al., 2012), 

and covered with a blue rubber mat to facilitate image analysis. Before sowing, seeds were 

stratified for three days at 4 °C on moist filter paper in Petri dishes to trigger uniform germination. 

To ensure homogenous plant density, two seeds per position were sown, but were thinned to one 
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seedling per position at 5 DAS. A controlled climate regime was applied, on the one hand in 

consideration of natural field-like conditions and on the other hand to ensure consistency of 

conditions among the experiments. Temperatures were kept constant with 10 °C (dark phase) and 

15 °C (light phase) during the entire growth period and the natural radiation was supplemented by 

additional illumination of 205–245 μmol m−2s−1 PAR using SonT Agro high pressure sodium lamps. 

The light period was set to 16 h light from 06:00 h to 22:00 h. These conditions correspond to a 

typical spring scenario in central Europe. Relative air humidity was set to a target value of 65 %. 

Watering was performed with an automated balance / watering station by target weight of the 

containers to maintain 80 % field capacity, pH 5.5. Containers were shuffled each day by one row 

and every second day by one block (eleven neighbouring plants in one row) in the system to 

minimise position effects. Initially, nine plants per container were cultivated (Figure S1 and S2). 

At 14 DAS four plants per container were sampled to provide enough material for subsequent 

molecular / biochemical analyses resulting in approximately 7,920 plant samples. The remaining 

five plants were grown until 28 DAS.  

 

2.4. Extraction and analysis of image-derived phenotypic data 

Over a duration of three weeks (between 6 DAS and 28 DAS), plants were subjected to a daily 

imaging routine involving automated capturing of top and side-view images. Three types of 

illumination and camera systems in the IPK automated non-invasive plant phenotyping system for 

large plants were used as described in Junker et al. (2015). Visible light (VIS), static fluorescence 

(FLUO) and near-infrared (NIR) image data were acquired. Each carrier was imaged with two 

cameras within each system with one top view and four / three side-views taken at (0°, 45°, 180°, 

225°) from 6 to 13 DAS and (0°, 45°, 135°) from 15 to 27 DAS, resulting in more than 84,000 

individual images per experiment.  
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2.4.1. Automated high-throughput plant phenotyping and image analysis 

Automated image analysis was performed using the IPK Integrated Analysis Platform, IAP Version 

2.07 (Klukas et al., 2014) implementing a customised pipeline combining top and side view images, 

and including image pre-processing, segmentation and feature extraction resulting in a total of 

1,194 image-derived phenotypic traits. The pipeline comprised the following steps: 01 ‘Load 

images’, 02 ‘Filter images by angle’, 03 ‘Rotate images’, 04 ‘Align camera images’, 05 ‘Colour 

balancing VIS’, 06 ‘Background correction FLUO’, 07 ‘Circular colour balancing’, 08 ‘Copy image set 

to mask’, 09 ‘Crop sides’, 10 ‘Auto-tune FLUO-segmentation’, 11 ‘Median filter FLUO’, 12 ‘Colour 

segmentation Lab’, 13 ‘Colour segmentation HSV’, 14 ‘Colour Segmentation HSB’, 15 ‘Auto-tuning 

VIS-segmentation (k-means)’, 16 ‘Morphological operations’, 17 ‘Auto-tuning small noise removal’, 

18 ‘Adaptive NIR-segmentation’, 19 ‘Auto-tuning FLUO-derived masking of other images’,  

20 ‘Morphological operations’, 21 ‘Separate objects’, 22 ’Skeletonize’, 23 ‘Skeletonize NIR’,  

24 ‘Calculate colour- and intensity-histograms’, 25 ‘Calculate colour intensities’, 26 ‘Calculate 

convex hull’, 27 ‘Calculate areas’, 28 ‘Calculate width and height (side)’, 29 ‘Calculate texture 

features’, 30 ‘Detect leaf centre points’, 31 ‘Calculate volume estimations’, 32 ‘Run post-

processors’, 33 ‘Move mask set to image set’, 34 ‘Highlight null images’, 35 ‘save result images’. 

Setting for all steps were empirically determined and optimised for the experimental setup, 

whereby different settings for the early and late phases and for top and side view images were 

combined in one pipeline. Small adjustments were performed for each individual experiment.  

The extracted traits comprised 128 (10.7 %) geometric traits giving insights into general plant 

morphology, 930 (77.9 %) plant colouration-related traits corresponding to pigmentation, 104  

(8.7 %) fluorescence-related traits, mainly associated with chlorophyll fluorescence and 32 (2.7 %) 

near-infrared-related traits linked to water content and water dynamics. As these traits were 

partially redundant and inter-correlated, a two-step procedure was applied to filter them to a 

meaningful core set for further analysis. First, traits were filtered for broad-sense heritability 

higher than 0.7 for at least one day, reducing the set of phenotypic traits to 571. Second, stepwise 

variable selection using variance inflation factors (until VIF ≤ 10) was applied to minimize the 

multi-collinearity (Chen et al., 2014), further reducing the number of traits. In total, 123 traits, 

including a subset of 32 manually selected traits of particular interest, were kept for subsequent 

analysis. In particular, four traits were focused on: the estimated biovolume, ´combined geometry 
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vis volume iap (voxel)´ which was estimated by combining information from top- and side-view 

(Junker et al., 2015), projected leaf area ´top geometry vis area (px2)´ which was derived from VIS 

top-view, early plant height ´side geometry fluo height (px)´ derived from FLUO side view, and 

plant colour uniformity ´side intensity vis lab a stddev´ extracted from VIS side-view images, 

respectively. Colour uniformity is given as the standard deviation of the a-values in the L*a*b* 

colour space of the plant pixels. The lower this value, the more uniform is the plant colour.  

Leaf colour differs between young and old leaves and therefore this trait may act as a proxy for 

the range of maturation stages of leaves within a given plant and thus of its rate of development. 

Traits represent information obtained from the analysis of whole containers, including nine plants 

at early and five plants at later stages, respectively. Shoot fresh weight (g) was determined on the 

basis of all five plants by cutting the shoots directly above ground level and by weighing using a 

medium-scale balance at 28 DAS. Dry weight was measured after drying the plant material for  

3 days at 80 °C. Approximately 9,900 samples were collected and analysed during the five 

glasshouse experiments. 

 

2.4.2. Post-processing and statistical analyses of phenotypic data 

All statistical analyses were performed in the R software environment for statistical computing 

version 3.4.2 (R Core Team, 2019) and graphics and RStudio Version 1.1.419. Image derived traits 

were obtained from 6 DAS to 13 DAS and from 15 DAS to 27 DAS. An outlier-correction was 

performed in a combined approach of manual exclusion (carriers with insufficiently germinated 

plants) and a threshold-based filtering procedure (median ± 3 standard deviations) for each 

experiment, day and trait separately. A single-step analysis of the phenotypic data was performed. 

Best linear unbiased estimators (BLUEs, Data S3) were estimated using the ‘lme4’ package in R 

(Bates et al., 2015) based on a linear mixed model for each image-derived phenotypic trait and 

each day separately (Eq. 1) or in case of end-point biomass data (Eq. 2). In the models, � denotes 

the phenotypic value of a trait for each genotype, � represents the fixed effect of the Genotype, 

� the random effect of the Experiment, ��� the Genotype-Experiment-Interaction, � the random 

effect of the included ‘Checks’, ��� the Check-Experiment-Interaction, � the Position in the pot, 

��� the Position-Experiment-Interaction and 	 the residual error (errors were assumed to be 

normally, independently, and identically distributed). Broad-sense heritabilities (H2) for each trait 
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were estimated by Eq. 3, where 
� 
� and 


� denote the variance components of the genotype and 

the residual variance, respectively, which were estimated using and �� the number of experiments 

or in case of the end-point biomass data the number of plant replicates per genotype (Nakagawa 

and Schielzeth, 2010; He et al., 2016). Variance components 
� 
� and 


�  were estimated by 

restricted maximum likelihood (REML) and extracted from the mixed linear models (Eq. 1 or Eq. 2) 

in R ‘lme4’ assuming that all effects were random effects. 

 

Eq. 1:  � = � + � + ��� + � + ��� + 	 

 

Eq. 2:  � = � + � + � + ��� + � + ��� + ��� + 	 

 

Eq. 3:  �� =  
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2.4.3. Calculation of relative growth and absolute change rates 

Absolute change rates (ACRs) and relative growth rates (RGRs) were calculated using previously 

published procedures (Hunt, 1990). Relative growth rates were determined for the estimated 

biovolume, projected leaf area, and early plant height (Eq. 4). To compensate for a potential 

growth bias due to the applied plant rotation / shift in image acquisition, growth rates were 

calculated with minute precision, as image acquisition date and time were documented.  

In addition, absolute change rates were calculated (Eq. 5) for plant colour uniformity. BLUEs for 

ACR and RGRs were subsequently estimated as described above (Eq. 1). 

 

Eq. 4:  ��� =
����  !� " ���  !�#

�$� " $�#
 

 

Eq. 5:  %�� =
�!� "  !�#

�$� " $�#
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2.5. Sampling of early vegetative shoot material and post-processing 

Shoot material (mainly leaves) of the four inner plants of each container was sampled at 14 DAS, 

starting seven hours after onset of illumination (Figure S3). Plant material was immediately shock-

frozen in liquid nitrogen to quench the sample. Sampling of all 396 carriers was accomplished 

within three hours to minimise effects of diurnal rhythm. Deep frozen plant material was 

homogenised for 2 min using two 8 mm steel balls and a cryogenic plant grinder and dispensing 

system (Labman Automation Ltd., Stokesley, United Kingdom) at -60 °C. The four replicates per 

carrier were combined and the material was mixed by shaking the vial for one minute. Equal 

amounts of plant material of all replicates from the different experiments were pooled and mixed 

by shaking the vial for one minute. Samples from the first experiment were omitted, as due to the 

breakdown of the cooling system in the glasshouse deviant temperatures and an altered 

developmental speed might have biased the data. Subsequently, three aliquots of 15 mg (± max. 

1.5 mg) fresh weight were generated by the dispensing system and filled in 1.4 ml Micronic 

storage tubes for extraction of polar metabolites. From the very same pooled material two 50 mg 

(± max. 1.5 mg) fresh weight aliquots were generated manually for subsequent total RNA 

extraction. Material was stored at -80 °C until use. Total RNA and polar metabolites were isolated 

from the same material. 

 

2.6. Metabolite profiling in early vegetative tissue 

The metabolite profiling analyses were performed in collaboration with Dr. David Riewe, a former 

colleague from the IPK who performed the annotation of polar primary metabolites and 

subsequent initial normalization procedures. The analytical work was performed jointly. 

 

2.6.1. Extraction of polar leaf metabolites 

Metabolite extraction was conducted in six batches with 96 samples each, via a previously 

described liquid–liquid extraction protocol (Lisec et al., 2006; Riewe et al., 2012, 2016) that was 

adjusted to 96 tubes / rack format and smaller volumes. The protocol was implemented on a liquid 

handling system (Biomek® FXP, Beckman Coulter GmbH, Krefeld, Germany; see Figure S10).  
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Polar metabolites were extracted from 15 mg deep frozen homogenised plant material in 0.625 ml 

chilled extraction buffer (2.5:1:1 v/v MeOH/CHCl3/H2O; plus internal standards L-Valine-d8, 

98 atom %, Campro Scientific GmbH, https://campro-webshop.eu and L-Alanine-2,3,3,3-d4,  

98 atom %, Isotec Inc., https://www.sigmaaldrich.com, each 1:1,000). Sample racks were inverted, 

briefly shaken using a vortex mixer, and incubated under shaking conditions for 15 min using a 

mixer mill (RETSCH, 20 Hz, 4 °C), followed by ultrasonication for 15 min at 4 °C. After the 

incubation, samples were briefly centrifuged and 250 μl of water were added. Samples were 

inverted, again briefly shaken, centrifuged at 2,000 g for 5 min, and sealed with aluminium foil and 

‘Parafilm M’ to avoid evaporation during the automated aliquotation. Three aliquots of 50 μl of 

the supernatant of the upper polar phase were transferred into glass vials (CZT Klaus Trott, Kriftel, 

Germany). The polar phase was dried in a vacuum concentrator, vials were filled with argon, 

capped, and stored in sealed plastic bags containing silica desiccant at -80 °C. 

 

2.6.2. Gas chromatography – mass spectrometry analyses (GC-MS) 

Aliquots of the polar phases were in-line derivatised directly prior to injection according to Erban 

et al. (2007) in a Gerstel MPS2-XL autosampler (Gerstel, Muehlheim/Ruhr, Germany) and analysed 

in split mode (1:4) using a LECO Pegasus HT time-of-flight mass spectrometer (LECO, St. Joseph, 

MI, USA) hyphenated with an Agilent 7890 gas chromatograph (Agilent, Santa Clara, CA, USA) as 

previously described by Riewe et al. (2012, 2016). Samples were analysed in four larger batches 

and blocks of 20 samples. A total of 27 quality control pools (pooled material from all samples),  

36 carrier replicates (pools of plants from one individual carrier) and 8 negative controls 

(extraction procedure with empty vials; ‘blanks’) were included in the analysis for quality control. 

Analyte mass spectra were deconvoluted using the LECO ChromaTOF software including the 

Statistical Compare package, and peaks were annotated by querying the electron impact spectra 

library provided by the Golm Metabolome Database (GMD, http://gmd.mpimpgolm.mpg.de). 

Quantitative peak information was extracted using the R and the ‘TargetSearch’ package  

(Cuadros-Inostroza et al., 2009). After filtering for contaminations (sample to blank ratio > 2) and 

redundant analytes, 154 analytes of tentative biological origin, 64 of known and 90 of unknown 

chemical structure, were quantified.  
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2.6.3. Normalization of metabolite data 

Metabolite intensities were normalised regarding sample weight, measurement day and median 

of the respective metabolite per analysed batch. Metabolite intensities were not normalised using 

the internal standards as this increased the standard deviation in the pooled samples. 

Furthermore, outliers were removed (median ±4× SD), and metabolite data were power 

transformed to ensure an approximate normal distribution (Box and Cox, 1964). The full list of 

annotated metabolite peaks (raw data and processed data) is provided as Data S4. A principal 

component analysis (PCA) was performed on the centred and scaled metabolite data using the pca 

function in R using the ‘pcaMethods’ package (Stacklies et al., 2007).  

 

2.7. Transcriptome analyses 

The following analyses were performed in collaboration with Dr. Axel Himmelbach, who is in 

charge of the IPK sequencing facility, and with Prof. Dr. Andrea Bräutigam, the former group 

leader of the ‘Network analysis and modelling’ research group who performed the initial mapping 

of transcript sequences from the pilot experiment with Kallisto, the analysis of differentially 

expressed genes (DEGs), the pathway analysis using MapMan, and advised on data analyses. 

 

2.7.1. RNA-extraction and quality assessment 

To optimise the extraction procedure of total RNA from rapeseed shoot tissue, extraction tests 

with various commercially available kits (GeneJET RNA Purification Kit, RNeasy Plant Mini Kit,  

The InviTrap Spin Plant RNA Mini Kit, NucleoSpin RNA Plant Kit and the SurePrep Plant/Fungi Total 

RNA Purification Kit) and two extraction protocols (TRIzol method / Hot Borat method) were 

performed and the quantity and quality of extracted RNA was evaluated. Four replicates per 

method were extracted with 50-100 mg of pooled plant material (Achat & Campino) as input. 

Quality and quantity of extracted total RNA was assessed using a NanoDrop Spectrophotometer, 

an RNA-agarose gel (1.5 % Agarose; Figure S4), Qubit 2.0 and Bioanalyzer measurements. 

For the main experiments, total RNA was isolated from each sample (aliquots of the same pooled 

shoot material as used for the metabolite extraction) using the GeneJET Plant RNA Purification 
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Mini Kit (Thermo Fischer Scientific Inc., Waltham, USA) according to the manufacturer’s protocol 

and eluted in 50 µl nuclease-free water. The ERCC RNA Spike-In Mix (Thermo Fischer Scientific, 

Waltham, Massachusetts, USA) was added as internal standard with 2 µl in a 1:100 dilution into 

the extraction buffer for subsequent normalization. One µl of total RNA was used to initially assess 

quantity and quality after extraction using both, a NanoDrop ND-1000 and a NanoDrop One 

Microvolume UV-Vis Spectrophotometer. The ratio of absorbance at 260 nm and 280 nm was used 

to assess the purity of RNA. A ratio appreciably lower than 2.0 might indicate the presence of 

protein, phenol or other contaminants that absorb strongly at or near 280 nm. The ratio of 

absorbance at 260 nm and 230 nm was used as a secondary measure to assess RNA purity. 

Extraction of samples with a 260/280 ratio or 260/230 ratio < 2.0 and/or a low concentration 

(< 500 ng/µl) was repeated. Subsequently, 10 µl aliquots of each RNA sample were taken and 

extracted total RNA was stored at -80 °C. These aliquots were split and diluted for further quality 

checks and precise fluorometric quantification using the Quant-iT™ RNA Assay Kit, broad range 

(Thermo Fischer Scientific, Waltham, Massachusetts, USA) adapted to plate format, according to 

manufacturer’s instructions and a TECAN plate photometer. RNA integrity number (RIN) was 

checked for each fourth RNA sample. To this end, RNA was diluted (volume of 5 µl; concentration 

of 300 ng/µl) and 1 µl was analysed using a Bioanalyzer 2100 following the manufacturer’s 

instructions. All tested RNAs had a RIN > 8.0. After final quantification and quality assessment 

frozen RNA stocks were thawed and diluted (volume of 30 µl; concentration of 100 ng/µl). 

Randomised samples in 96 well plates were forwarded to the IPK sequencing facility. 

 

2.7.2. RNA-sequencing and data analysis 

RNA-sequencing was performed by the IPK’s internal sequencing facility with two pilot 

experiments and a partitioned main experiment. For the first pilot experiment, six TruSeq RNA 

libraries (Illumina, San Diego, USA) were generated. For the second pilot and the main experiment, 

cDNA libraries were constructed using the Lexogen SENSE mRNA-Seq Library Prep Kit V2 (Lexogen 

GmbH, Vienna, Austria). All were sequenced using 100 bp single end (SE) reads on a HiSeq 2500 

platform (Illumina, San Diego, USA). For the different runs, either 20 or 96 samples were 

multiplexed per flowcell lane aiming for an output of approximately 7 million reads per sample. 

For samples with a low number of reads, additional sequencing runs were performed or new 
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libraries were generated. In total, 27 flow cell lanes on 5 (high-output and rapid-run) flow cells 

were sequenced, resulting in a total of approximately 520 Gbases / 4.8 billion single-end reads. 

Adapter-trimmed raw reads were obtained from the sequencing facility and were further quality 

trimmed using the Trimmomatic software v0.36 (Bolger et al., 2014) with the following options: 

SE, HEADCROP:6, LEADING:20, TRAILING:20, SLIDINGWINDOW:4:15, and MINLEN:50. Sequence 

quality (Phred score) was exemplarily assessed for raw and trimmed data by the fastQC software 

(Figure S5). The HEADCROP option of Trimmomatic was only applied for reads obtained from the 

Lexogen libraries due to reduced base quality (Phred score) at the 5’-end of the reads.  

Read normalization using the internal standard (ERCC Spike-in Mix) was not performed, as it 

decreased the quality of the data set. For the first pilot experiment, adapter sequences were 

removed by cutadapt v1.8.1 (Martin, 2011) and reads trimmed and mapped with clc-assembly-cell 

v4.3.0 (CLC bio, Aarhus, Denmark) to the ERCC Spike-in Mix sequences. For the second pilot 

experiment, reads were mapped with Kallisto (Bray et al., 2016) to the coding sequence of  

B. napus (CDS, Darmor-bzh v4.1) using default settings. Differentially expressed genes (DEGs) were 

identified using R and the ‘edgeR’ package (Robinson et al., 2010) with Bonferroni correction  

(q < 0.01). Reads of the main experiment were exemplarily mapped to ribosomal DNA sequences 

(5S, 5.8S, 18S, and 25S rRNA gene sequences of Arabidopsis thaliana obtained from the TAIR10 

database) and organellar genomes (mitochondrial [NC_008285.1] and chloroplast genomes 

[NC_016734.1] obtained from the NCBI database).  

Trimmed high-quality sequences were concatenated and aligned to the Darmor-bzw NRGene 

reference assembly (.fasta) file using Hisat2 v2.0.4 (Kim et al., 2015) using default settings.  

The assembly and annotation data were provided by the project partners (Lab of Prof. Dr. Rod 

Snowdon) at the Justus-Liebig University (JLU) Gießen. On average, 70-85 % of the reads could be 

mapped to the reference genome. The mean overall alignment rate was 82.2 %, whereby 67.3 % 

of the reads could be uniquely aligned and 14.9 % multiple times. Counting of features was 

performed using HTSeq software v0.6.1p1 (Anders et al., 2015) and the NRGene annotation (.gff3) 

file with information about 126,667 annotated genes and the following settings: -t exon, -i Parent, 

and -s no. In the sampled shoot tissue approx. 78 % of the transcripts were detectable (> 0 counts 

in at least one sample) with the applied sequencing depth at the examined time point 14 DAS.  
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Subsequently, raw counts were normalised for sequencing depths and transcript length using the 

‘tpm’ procedure in R statistical software. 15.4 % and 9.2 % of the transcripts could be detected at 

a level of more than 5 and 10 tpm (median across all samples), respectively. Filtered tpm data 

(cutoff: median tpm ≥ 5) was transcript-wise filtered for outliers (median ±4× SD) was used for 

follow up analyses. Filtered tpm data (Data S13) were subjected to GWAS analyses and 

predictions. A principal component analysis of transcript data was performed on the centred and 

scaled tpm data in R using the pca function of the ‘pcaMethods’ package (Stacklies et al., 2007). 

 

2.7.3. Gene network inference with ensemble of trees (GENIE3) 

A gene regulatory network (in the form of a weighted adjacency matrix) was inferred from 

expression data, using ensembles of regression trees. For this purpose, the GENIE3 function from 

the eponymous R package (Huynh-Thu et al., 2010) was utilised. The function was parallelised 

using 60 cores on a Linux server. All transcripts (median tpm ≥ 5) in the form of an expression 

matrix (gene x samples) were treated as candidate regulators and as targets were restricted to 

biomass (FW) for which potential regulators were calculated. Random Forests (RF) was selected as 

tree-method and the number of trees in an ensemble the target was set to 10,000. The number of 

candidate regulators randomly selected at each tree node (for the determination of the best split) 

was the square root of the total number of candidate regulators (default setting). As output a 

weighted adjacency matrix of the inferred network is obtained. In this particular case, the 

weighted adjacency matrix was a vector with gives the importance of the link from regulatory 

gene to the target trait (FW). This vector with the weights of the regulatory links was further 

filtered for the 100 top-ranked links. 

 

2.7.4. GO term enrichment analyses 

Gene ontology (GO) term enrichment was performed using the ‘agriGO’ webtool 

(http://bioinfo.cau.edu.cn/agriGO/) with the option singular enrichment analysis (SEA) and default 

settings. The top loadings with GO terms and an absolute value ≥ |0.02| from the 4th principal 

component (PC) of the principal component analysis (PCA), which separates the genotypes by 

biomass (n= 152) were extracted. The filtered subsets of negative (n= 74) and positive  
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(n= 78) loadings, and a customised annotated Brassica napus reference used as input  

files (Data S14). Gene ontology (GO) information was obtained from Genoscope 

(http://www.genoscope.cns.fr/brassicanapus/). Results were visualised with the same tool, using 

the display category ‘Biological Process’, a minimal number of mapping entries (n= 5), the 

statistical test method ‘hypergeometric’, the multi-testing adjustment method ‘Yekutieli (FDR 

under dependency)’ and a significance level of 0.01. The top 100 candidates for FW and DW, 

respectively, identified by the GENIE3 network analysis, were extracted and duplicated entries 

were filtered. The resulting 69 unique genes with GO terms (Data S14) were subjected to a GO 

term enrichment analysis using the ‘agriGO’ v2.0 (http://systemsbiology.cau.edu.cn/agriGOv2/) 

with the same settings as described for the loadings of the 4th PC.  

 

2.8. Genotype data 

Genotype calls, copy-number variations and the reference genome with annotations were kindly 

provided by the project partners from the Justus-Liebig University (JLU) Gießen, Dr. Fabian 

Grandke, Dr. Birgit Samans and Prof. Dr. Rod Snowdon. 

 

2.8.1. Reference genome and gene annotations 

To ensure the unique positioning of as many markers as possible, an enhanced version of the 

Brassica napus cv. Darmor v4.1 reference genome assembly (Chalhoub et al., 2014) was used, 

generated by incorporating long read information (NRGene, DeNovoMAGIC™; unpublished data 

from Prof. Dr. David Edwards, University of Western Australia) into the pseudomolecules.  

Genes were predicted de novo using a MAKER pipeline with AUGUSTUS and SNAP. Subsequently 

the transcriptome was annotated by mapping the transcript sequences on: 1) the B. napus 

Darmor-bzh v.4.1, 2) a concatenated Brassica AC-genome assembly comprising the B. rapa v1.5 

(Wang et al., 2011b) and the B. oleracea TO1000 (Parkin et al., 2014), and 3) the A. thaliana 

TAIR10 transcriptomes, respectively, using the basic local alignment search tool (BLASTn). 

Transcripts were counted as hit if they reached a minimum similarity of 80 % over 40 % of  

the target transcript. If annotations in multiple genomes were obtained, they were prioritised  

in the order B. napus, B. oleracea / rapa, A. thaliana. The B. napus Darmor-bzh v.4.1, B. rapa 
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Chiifu-401–42 and B. oleracea TO1000 transcriptomes were functionally annotated using Blast2GO 

(Conesa et al., 2005) version 3.0.8 with default settings. The Arabidopsis TAIR transcriptome 

annotations were downloaded from the TAIR homepage (https://www.arabidopsis.org/). 

 

2.8.2. Array data analysis and calling of genotypes 

The 477 genotypes (pollinators and male-sterile lines) were genotyped using the Brassica Infinium 

60k genotyping array that was developed based on Brassica oleracea and rapa genome sequences 

(Illumina Inc., San Diego, CA; USA), as described previously by Jan et al. (2016). Raw data were 

initially filtered to exclude SNPs without positional information in the Brassica rapa and Brassica 

oleracea genomes. SNP genotypes were called using R and the ‘gsrc’ package (Grandke et al., 

2017). Subsequently, probe oligonucleotide sequences were mapped to the enhanced  

Brassica napus cv. Darmor reference genome assembly using the basic local alignment search tool 

(BLASTn) with 95 % similarity over a length of 50 bp. Markers showing multiple BLASTn hits in the 

genome were removed. For genome-wide association studies (GWAS) SNPs were coded in 

numerical format (0=AA, 1=AB, 2=BB) using the ‘GAPIT’ R package (Lipka et al., 2012; Tang et al., 

2016). Furthermore, markers with minor allele frequencies (MAF) smaller than 0.01 and markers 

with more than 10 % missing values or more than 25 % heterozygous calls were removed. 

To identify copy-number variations (CNVs), the SNP positions together with the signal intensity 

values were used to define blocks of similar intensity. If the blocks' values exceeded the applied 

thresholds, they were classified as deletions or duplications. This set of copy-number variations, 

also generated with the R package ‘gsrc’, complemented the obtained SNP data. CNVs were 

included as 0=normal, 2=deletion or duplication. Deletions and duplications were separately 

tested against the normal state and the other events (reciprocally, either the duplications or the 

deletions) were treated as missing values. For CNVs, positions were shifted by ±1 bp to avoid 

identical marker positions. A total of 16,311 markers comprising 13,201 unique, single-copy SNPs, 

3,106 deletions and 4 duplications remained after filtering and were used for subsequent analyses 

(Data S5). 
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2.8.3. Analysis of population structure 

Population structure was analysed using the programme STRUCTURE, version 2.3.4 (Pritchard et 

al., 2000), marker data of all 477 lines and the ‘admixture’ model. Population clustering for K= 1 to 

10 was performed with a burn-in period of 10.000, 10.000 MCMC replications and three iterations 

per K. The lambda parameter was inferred and adjusted to λ= 0.304. The mean Ln probability 

[ L(K) ] and population clustering for K= 2 to 5 is shown in Figure S6. 

 

2.8.4. Analysis of linkage disequilibrium (LD) and decay 

Pairwise linkage disequilibrium (LD) was analysed for each chromosome in R using the 

‘LDheatmap’ package (Shin et al., 2006) for the SNP marker data across all 477 canola lines.  

LD-decay was calculated in R for both subgenomes separately (Hill and Weir, 1988; Remington et 

al., 2001; Marroni et al., 2011), as considerable differences between the A and C subgenome have 

previously been reported (Wu et al., 2016a). 

 

2.9. Genome-wide association studies (GWAS) 

Recently, a new method for genome-wide association studies, FarmCPU (Fixed and random model 

Circulating Probability Unification) has been proposed by Liu et al. (2016), which controls false 

positives and effectively reduces false negatives. The method iteratively performs marker tests 

with pseudo quantitative trait nucleotides (QTNs) as covariates in a fixed effects model and 

optimization on pseudo QTNs in a random effects model. To some extent, this process is capable 

to remove the confounding between testing markers and kinship, to prevent overfitting of the 

model, and to control false positives simultaneously. Genome-wide association analyses (GWAS) 

were conducted in R version 3.4.3 ‘FarmCPU’ on BLUEs of the traits of the 477 canola lines using 

the filtered set of 16,111 numerically coded SNP (n= 13,201) and CNV (n= 3,110) markers.  

Analyses were performed in Rstudio on a CentOS 7.2 Linux server (HP ProLiant DL580 Gen9 with 

HP D3600 Array, 4x Intel Xeon E7-8880v3@2.3 GHz processors, 144 cores, 1TB RAM, 2x480 GB 

SSD, 2x 600GB SAS, 12x 8TB SAS). As the programme does not allow for missing marker 

information in the numeric genotype input file, missing data were replaced by heterozygous 
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states. Kinship was calculated using the FARM-CPU algorithm. Principal component analysis was 

performed on the centred genotype data using the pca function of the ‘pcaMethods’ package in R 

(Stacklies et al., 2007). The first ten principal components (PCs) were calculated and the first four 

PCs were included into the GWAS model to correct for hidden population structure. The maxLoop 

parameter was increased to 100 and the optimal threshold for p-value selection of the model in 

the first iteration was estimated by the FarmCPU.P.Threshold function and set to 0.00001 for all 

traits. Subsequently, p-values of marker-trait associations were adjusted for multiple comparisons 

using FDR (Benjamini and Hochberg, 1995). Only associations with adjusted p-values smaller 0.1 

were considered as statistically significant and used for further analyses. The phenotypic variance 

explained (PVE%) by a significant marker was estimated in R (Eq. 6). The sum of squares (&&) and 

residuals (	) were extracted from the ANOVA fitted with a linear model incorporating the 

phenotypic values and all significant markers in decreasing order of their p-value. 

 

Eq. 6:   �'�% )*�.,-./0. = �&& )*�.,-./0. / && -�� )*�.,-./0.) + 	# ∗ 100 

 

2.10. Co-localisation of associations and permutation analyses 

QTL from each omics-layer were binned in overlapping intervals of 1 Mb to identify potential 

clustering and QTL hotspots. In addition, co-localisation of associations for metabolites, transcripts 

and combined image-derived traits and end-point biomass were investigated. In a stringent 

approach, associations were treated as co-localised when exactly the same marker was reported 

to be significant for at least two traits. As the number of markers was limited and the number of 

detected associations (metabolites, n= 206, transcripts, n= 26,391, image-derived traits, n= 4,613; 

at p-value (FDR) ≤ 0.05; with PVE ≥ 2 %) was higher than the number of markers (n= 16,311), a  

co-localisation of traits by random chance is expected. To estimate the degree of random  

co-localisation, permutation analyses were performed, distributing the detected associations 

randomly to all markers. This procedure was repeated 10,000 times and the maximum number of 

co-localised traits extracted from each iteration. From the obtained distribution, the 95 % quantile 

was calculated and compared with the actual number of co-localisations detected for each of the 

three significance levels tested (p-value (FDR) ≤ 0.05, ≤ 0.01 and ≤ 0.001).  
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2.11. Correlation analyses between data sets 

Pearson correlations between data sets (phenotypic traits of the parental lines and the hybrids, 

parental metabolite levels, parental transcript expression levels, agronomic traits of the hybrids, 

and calculated mid- and best-parent heterosis) were performed using the cor.test function from 

the ‘stats’ package, followed by a multiple testing correction of p-values using FDR procedure 

(p.adjust function from ‘stats’ package) in R. Pearson correlation analyses were parallelised using 

60 cores on a Linux server. 

 

2.12. Regions of interest and identification of candidate genes 

Candidate gene regions were defined as LD blocks harbouring a significant trait-associated marker 

in which flanking markers had strong LD (r2 > 0.6), and were extended to the left and right 

unrelated marker, respectively. All genes within the respective LD-block were considered for 

candidate gene identification. For significant markers outside of LD blocks, the 100 kb flanking 

regions on either side were searched for candidate genes as suggested by Zhou and Han et al. 

(2017). Candidate genes were prioritised according to their annotation and gene ontology (GO).  

A comprehensive list of all genes within the intervals and selected candidate genes for all 

evaluated traits can be found in Data S6.  

 

2.13. Genomic and omics-based prediction models and model evaluation 

Two types of prediction methods were employed: first, (genomic) best linear unbiased prediction  

(gBLUP; Eq. 7; Whittaker et al., 2000; Meuwissen et al., 2001), which only considers additive 

marker effects using a marker-based relationship matrix, and second, reproducing kernel Hilbert 

space regression (RKHS; Eq. 7; Gianola and van Kaam, 2008), a non-linear regression model which 

captures both the additive and non-additive effects using a marker-based distance matrix.  

The gBLUP as well as the RKHS models were implemented using R (R Core Team, 2019) and the 

mmer2 function from ‘sommer’ package (Covarrubias-Pazaran, 2016) to solve the mixed model 

equations. For RKHS, two more packages were employed: the ‘AlphaMME’ package 

(https://bitbucket.org/hickeyjohnteam/alphamme) to transform Euclidean distance-matrices into 
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Gauss-matrices, and the ‘rrBLUP’ package (Endelman, 2011) to estimate the corresponding tuning 

(bandwidth) parameters. 

The general gBLUP model was defined by (Eq. 7) in which 5 is an n × 1 vector of phenotypic values 

(BLUEs), n the number of hybrids, μ a vector of fixed effects that represent the overall mean.  

In the model 78, 79 and 7: are n × 1 vectors of random effects, and ;8, ;9 and ;:  are the design 

matrices assigning genetic values to hybrids using markers (78), transcripts (79), and metabolites 

(7:), respectively. Marker-based genetic values, transcriptomic values and metabolic values of the 

hybrids were modelled as random effects with  78 ~ ?�0, �8
8
�# ,  79 ~ ?�0, �9
9

�# 

and 7: ~ ?�0, �:
:
�#, respectively. The term 
8

� denotes the genomic variance estimated using 

SNP markers, 
9
� the transcriptomic variance and 
:

� the metabolic variance and �8, �9 and �: 

were the realised additive relationship matrices calculated based on VanRaden (2008).  

The residuals 	 follow a normal distribution 	 ~ ?�0, A
�#, where A is the identity matrix. 

Analogously to the previously described approach, the general statistical model for Reproducing 

Kernel Hilbert Space Regression (RKHS) was defined by (Eq. 7) where  78 ~ ?�0, B8
8
�# , 

79 ~ ?�0, B9
9
�# and 7: ~ ?�0, B:
:

�# are random effects meassured by the genetic markers, 

transcriptome and metabolome data, respectively. B8, B9 and  B: denote the Gaussian Kernels 

based on SNP, transcriptomic- and metabolic markers, respectively. For the RKHS regression, 

marker matrices were first transformed into Euclidean distance matrices. Gaussian Kernels were 

subsequently calculated using Euclidean distance matrices between individuals based on the 

respective marker types and a bandwidth parameter h. The bandwidth parameters were 

estimated from the respective log-likelihood profile generated using the kin.blup function of  

the ‘rrBLUP’ R package. 

 

Eq. 7:   5 =  1μ +  ;878 +  ;979 +  ;:7: + 	 

 

Predictions were performed for the seven agronomic traits (BLUEs) calculated for the set of 950 

hybrids. Three sets of predictors (G = genomic, T = transcriptomic and M = metabolic data) were 

generated for the parental lines (475 pollinators and 2 male-sterile testers). Parental lines were 

‘crossed’ in silico by combining the two respective parental matrices to extrapolate hybrid profiles 

(Werner et al., 2017). The resulting matrices had the dimension ‘number of hybrids’ (n= 950) times 
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‘number of features’ (nG = 13,201, nT = 19,479, nM = 154). Columns of the predictor matrices were 

centred and standardised to result in values between 0 and 2 (G) and 0 and 1 (T and M), 

respectively. Predictions were performed for each set of predictors (G, T, M) separately, and in 

combinations of two or three (G+T, G+M, T+M; G+T+M). A cross-validation (cv) scheme with 100 

cv-cycles was applied, separating the data set in a training set (75 %) and a validation set (25 %), 

where the phenotypes (BLUEs) of the validation set were masked and predicted.  

Prediction accuracies were obtained as average Pearson product-moment correlation coefficients 

between predicted (ŷ) and observed phenotypes (y). 

 

2.14. Hybrid performance and heterosis 

Hybrid performance and heterosis, mid-parent heterosis (MPH) and best-parent heterosis (BPH), 

respectively, were examined and compared with regard to group assignment of the respective 

male-sterile parental tester (MS1 and MS2). MPH was calculated as difference between hybrid 

performance (F1) and the mean value of the two parents [MP = (P1 + P2) / 2] for end-point 

biomass, projected leaf area and estimated biovolume at all time points with available data (Eq. 8). 

BPH was calculated as difference between hybrid performance (F1) and the better performing 

parent (Eq. 9). To investigate potential heterotic patterns between parental components from the 

two different subsets, within-group and between-group crosses were tested for significant 

differences using a Student’s t-test. 

 

Eq. 8:   C�� =  
�DE"FG#

FG
 × 100 

 

Eq. 9:   CI� =  
�DE"JG#

JG
 × 100 



Results 

39 
 
 

3. Results 

The work presented here pursued three main objectives. On the one hand, the predictive power 

of genetic, molecular (transcriptome) and biochemical (metabolome) markers / factors and their 

combinations in hybrid performance prediction models should be evaluated. Data for a population 

of 950 hybrids that had been evaluated in the field for agronomically important traits like seed 

yield, seed oil content and flowering time was available for this work. The 477 parental lines of the 

hybrids should be grown under controlled conditions in a climatized glasshouse and data from 

different -omics layers should be gathered and used individually and in combination in the 

predictive models. On the other hand, genome-wide association studies (GWAS) should be carried 

out using the extensive -omics data sets to identify candidate genetic loci and genes for 

quantitative traits. In addition, co-localisation and correlation studies should be performed to 

elucidate links between vegetative growth, gene expression and metabolite levels. 

 

3.1. Generation of -omics data sets 

Complementarily to the field data for the set of 950 hybrids, extensive data sets were generated 

for the parental lines, 475 diverse pollinator lines and two male-sterile testers, which had been 

used to create the hybrids. Array-derived genotype data (SNPs and CNVs) for the parental lines 

were provided by the project partners from the Justus-Liebig University (JLU) Gießen.  

The genotype information was complemented by extensive -omics data sets including global 

transcriptome (RNA-Seq) profiles, polar primary metabolite (GC-MS) profiles, as well as detailed 

image-derived phenotyping data. The following chapter describes the generation of the individual 

data sets and gives an overview about the scale and complexity of the phenotypic and the 

molecular data. 

 

3.1.1. Field experiments and statistical evaluation of agronomic traits 

Field trials were performed during the 2012 growing season by the commercial partners NPZi and 

DSV at plant breeding testing sites. An F1 hybrid population with 950 genotypes was generated by 

the commercial partners by crossing two male-sterile testers (MS1 and MS2) with the 475 
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genetically diverse pollinators that could be attributed to three breeding pools (denoted as 

breeding pools 1, 2, and 3). The resulting 950 hybrids were evaluated in nine trials at eight 

different locations across Denmark, Germany, Poland, Latvia, and Estonia, whereby each line was 

replicated four times in the nested design with 35 trial ~ location combinations. Seven traits of 

agronomic / commercial importance were assessed: the content of total seed glucosinolates  

(GSL; μmol/g seed), the days to onset of flowering (DTF; measured as number of days from sowing 

until 50 % of the plants per plot flowered), seed oil yield (dt/ha), seedling emergence 

 (visual observation ranging from a minimum value of 0 to a maximum of 10), seed oil content  

(% volume per seed dry weight), seed protein content (% volume per seed dry weight) and seed 

yield (dt/ha). However, none of the traits with the exception of seed yield was scored at all 

locations. Calculation of adjusted values (BLUEs) was necessary, as in particular raw data for the 

traits seed oil yield, DTF and seedling emergence showed a bimodal distribution due to location 

effects. The BLUEs of all seven traits followed an approximate normal distribution (Figure 2), but 

due to missing data BLUEs could be calculated only for 929 of the 950 hybrids. The coefficients of 

variation ranged from 0.84 % for DTF to 20.82 % for total seed GSL content, which was the 

phenotypic trait (BLUEs) with the highest variability. Broad sense heritability values (H2) for all 

traits were estimated across the different trials / field locations. H2 values ranged from 0.34 for the 

trait seedling emergence to 0.92 for total seed GSL content (Table 1). 

 

Table 1. Summary statistics for agronomic traits evaluated in field trials at eight locations 

Trait a Minimum 1st quartile Median Mean 3rd quartile Maximum CV (%) H2 (%) 

         
Days to onset of flowering (DTF) 167.34 170.11 171.05 171.18 172.05 176.20 0.84 85 
         
Seedling emergence (good = 9 to 10) 4.10 6.10 6.41 6.39 6.68 8.96 7.33 34 
         
Seed GSL (µmol/g)  4.43 7.77 9.13 9.15 10.42 17.23 20.82 92 
         
Seed oil yield (dt/ha) 9.85 13.72 14.44 14.34 15.07 17.74 7.47 82 
         
Seed oil content (%) 43.81 47.25 48.20 48.22 49.13 53.03 2.92 90 
         
Seed protein (%) 18.17 20.86 21.51 21.48 22.18 24.30 4.72 82 
         
Seed yield (dt/ha) 23.22 29.92 31.13 31.04 32.29 37.64 5.89 62 
         

a Best linear unbiased estimators (BLUEs) were calculated across the field trials conducted at eight different locations across Europe in 2012 
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Figure 2. Overview of agronomic trait correlations 

The matrix panel plot shows an overview of the agronomic traits analysed in the field trials. Shown are 
BLUEs of the seven agronomic traits. The upper triangle displays the Pearson correlation coefficients and 
significance of the correlations (alpha: * = 0.05; ** = 0.01 and *** = 0.001). The lower triangle displays the 
corresponding bivariate scatter plots of the relations. The red dot and the red line correspond to the ellipse 
centre point and the linear regression fit. The diagonal displays the histograms of the trait distribution.  
The blue solid line and the dashed red lines correspond to the median and the 1st and 3rd quantile of the 
data distribution, respectively. 

 

3.1.2. Genomic data, copy number variations and population structure 

Genotyping of the 477 parental lines was performed on the Brassica 60k SNP Infinium consortium 

array (Illumina Inc., San Diego, CA; USA) as described previously by Jan et al. (2016). Beyond single 

nucleotide polymorphisms (SNPs), copy number variation (CNV) and presence-absence variation 

(PAV) can provide complementary genetic information (Stein et al., 2017). SNPs and CNVs were 

called in a combined approach from the array data as previously described (Grandke et al., 2017). 

A total of 16,311 markers comprising 13,201 unique, single-copy SNPs, 3,106 deletions and  
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4 duplications (Data S5) were jointly used in the subsequent genome-wide association study.  

Some of the genotypes exhibited a high degree of heterozygosity (median= 11.2 %; max= 61.8 %). 

Pairwise marker LD-matrices (R2) were calculated individually for each chromosome. LD-decay was 

derived for both subgenomes (A & C) separately, based only on the SNP marker data (Figure S7). 

The CNV markers were excluded from the calculation as they were not necessarily linked with SNP 

marker-derived LD blocks. A faster LD-decay was detected in the A subgenome compared to the  

C subgenome, with half decay values of approximately 400 kb and 3.9 Mb determined for  

the A and C subgenome, respectively. Multiple larger genomic regions of high LD (R2 > 0.6) were 

detected, especially on the C-subgenome chromosomes (Data S7). 

 

 

Figure 3. Visualisation of breeding pools by principal component analysis (PCA) 

PCA was performed on 477 canola lines using a panel of 13,201 SNP and 3,110 CNV markers. Data were 
centred and the calculation was done by singular value decomposition (svd) of the data matrix. Proportions 
of explained variance of principal components (PCs) 1, 2 and 3 are indicated on the axes. Different colours 
indicated in the key correspond to canola breeding pools from which the investigated lines were selected. 

 

A principal component analysis (PCA) of the population was performed using the combined SNP 

and CNV data sets (Figure 3). The first ten principal components explain a cumulative variance of 

approx. 40% (PC1: 16.9 %, PC2: 4.4 %, PC3: 3.6 %, PC4: 3.3 %, PC5: 2.8 %, PC6: 2.0 %, PC7: 1.8 %, 
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PC8: 1.8 %, PC9: 1.6 % and PC10: 1.5 %). The genotypes cluster into three larger groups 

corresponding to the three breeding pools. In addition, the STRUCTURE programme (Pritchard et 

al., 2000) was used to assess the population structure. This analysis indicated the presence of two 

larger population groups and several potential subpopulations (Figure S6). The first three clusters 

coincided to a substantial degree with the breeding pools, but many genotypes showed 

pronounced admixture. As a consequence, the first four principal components, each accounting 

for more than 3 % of the total variance, were included as covariates into the GWAS analyses, as 

recommended by the developers of the ‘FarmCPU’ R package (Liu et al., 2016a). 

 

3.1.3. High-throughput phenotyping and image-derived traits 

For a period of 21 days (between 6 DAS and 27 DAS) image data were obtained daily from three 

different camera systems and different views (Figure 4). These camera systems operate using 

visible light (VIS), static fluorescence (FLUO) and near-infrared (NIR). In total, five phenotyping 

experiments were performed and approximately 420,000 individual raw images were obtained.  

In the first four experiments (1413RCM, 1419RCM, 1442RCM and 1447RCM) the 477 parental lines 

were analysed in an incomplete randomised block design with three replicates per genotype, 

whereby each replicate comprised one pot with nine plants each. In a fifth experiment (1504RCM) 

a selection of 120 hybrids, 60 high and 60 low performers according to their seed yield in the field 

trials, was phenotyped with three replicates (pots with nine plants each) per genotype. As this 

large amount of data cannot be handled manually, automated image analysis was performed 

using the IPK Integrated Analysis Platform, IAP Version 2.0.7 (Klukas et al., 2014) implementing a 

customised pipeline combining top and side view images. A total of 1,194 image-derived 

phenotypic traits could be derived from this analysis, including 128 (10.7 %) geometric traits giving 

insights into general plant morphology, 930 (77.9 %) traits related to plant colouration, 104 (8.7 %) 

traits related to static chlorophyll fluorescence and 32 (2.7 %) traits related to water content and 

water dynamics (Figure 4). Using a linear mixed model approach, best linear unbiased estimators 

(BLUEs) for all genotypes across the different phenotyping experiments, as well as estimations of 

broad-sense heritability (H2) were calculated. As many of the traits were partially redundant and 

inter-correlated, a two-step procedure was applied to limit them to a core set for further analyses. 

Firstly, traits were filtered for broad-sense heritability higher 0.7 for at least one day, reducing the 
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phenotypic traits to 571. Secondly, stepwise variable selection (VIF) was applied as described by 

Chen et al. (2014) reducing the number of traits to 123 (Figure S8).  

 

 

 

Figure 4. High-throughput phenotyping and image analysis 

High-throughput plant phenotyping was performed in the IPK phenotyping platform for large plants during 
early vegetative growth. For a period of 21 days (6 DAS to 27 DAS) plants were imaged daily.  
Raw images were obtained from three different camera systems (VIS, FLUO and NIR) from top and  
side views with different angles. Automated image analysis was performed using IAP Version 2.0.7  
(Klukas et al., 2014) and a customised pipeline. ‘n’ refers to the number of traits analysed. 

 
A subset of 32 traits related to plant growth and biomass including plant height, area, volume and 

compactness estimates was removed by the stepwise VIF function. As these traits were of 

particular interest for this study, they were manually retained for further analyses.  

Four phenotypic traits with high heritability (projected leaf area, estimated biovolume, early plant 
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height and colour uniformity) were selected for a detailed analysis as they reflect plant growth and 

biomass accumulation particularly well. In addition, for these four traits relative growth (RGRs) or 

absolute change rates (ACRs) were calculated over fifteen three-day intervals, for example  

8-11 DAS, to assess effects over time, as described in the materials and methods section.  

 

 

  

Figure 5. Trait heritabilities at different time points 

The heritabilities of individual image-derived traits (H2) were calculated separately for each time point 
during the experiment. The colour gradient (red to green) corresponds to H2 values between 0 and 1.  
Traits were listed according to a hierarchical clustering with the dendrogram displayed on the left side.  
Only the subset of 74 traits without missing data is displayed. At 14 DAS and 28 DAS (grey colour) no 
imaging of the plants was performed, therefore heritabilities were not calculated.  

 

Analysing the change of heritability of individual phenotypic traits over time, in general three 

types of behaviour can be discriminated (Figure 5). Some traits display an overall high heritability 

throughout the whole time period (for example projected leaf area, estimated biovolume and 

compactness), while other traits display a high heritability at early stages and reduced heritability 

at later stages (for example hull fill grade and the brown to green ratio) and vice versa  



Results 

46 
 
 

(for example branch point count and leaf width). At two time points (14 DAS and 28 DAS) no 

imaging of the plants was performed. At 14 DAS, the time point when most plants had observable 

epicotyls, the four inner plants around the central plant (Figure S1 b) were removed and sampled 

for molecular / biochemical analyses. At 28 DAS the remaining five plants in each pot were 

harvested to assess shoot fresh and dry weight. 

 

3.1.4. Untargeted metabolome analyses via GC-MS 

Global metabolite profiles were recorded by GC-MS analysis from pooled shoot material of three 

different phenotyping experiments sampled at 14 DAS. The time point of 14 DAS had been 

determined in a pilot experiment, as material sampled at 14 DAS showed an overall lower 

variation between genotype replicates and hence potentially more discriminative power than the 

material sampled at 28 DAS (Table 2). A complete separation of genotypes by their profiles was 

not achieved as indicated in the PCA plot (Figure S9), but a multifactorial ANOVA indicated a 

higher number of significantly altered metabolites discriminating genotypes in the earlier sampled 

material (69 vs. 52 metabolites with p-value Bonferroni ≤ 0.05, at 14 DAS and 28 DAS, respectively). 

Plant material from three phenotyping experiments was pooled and polar metabolites were 

extracted using a liquid-liquid extraction protocol (Lisec et al., 2006; Riewe et al., 2012, 2016) that 

was implemented during this work on a robotic liquid handling system (Figure S10).  

In total 154 metabolites, 64 of known and 90 of unknown chemical structure, passed all quality 

filters (see materials and methods) and were quantified relatively. As expected, in the negative 

controls without plant material nearly no metabolites were detectable. After removal of potential 

outliers and Box-Cox power transformation, metabolite data were subjected to subsequent 

analyses. To assess data quality, a PCA analysis was performed. The first four PC groups contribute 

23 %, 8.4 %, 5.8 %, and 4.9 % to the metabolic variance, respectively. Although no separation of 

groups (breeding pools 1, 2, and 3; quality control pools; negative controls; reference lines) in the 

first two PC groups was observed (Figure S11 b), the third PC partially separates lines of ‘breeding 

pool 2’ and ‘breeding pool 3’ from the other samples (Figure S11 c). Comparing the overall 

metabolite intensities (total ion count) between groups, no substantial differences between the 

breeding pools could be detected. Quality control pools, which had been included to assess the 

stability of measurements across the long GC-MS analysis with many samples, display the lowest 
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metabolic variance among all groups (Figure S11 d) and cluster in the centre of the PCA plots 

(Figure S11 b-c). The four reference lines (‘Achat’, ‘Campino’, ‘MS1’ and ‘MS’) were analysed in 

higher replication as pools of plants from individual pots / experiments. Reference lines displayed 

no difference in the overall metabolite intensities (total ion count) in comparison to the other 

samples. However, they indicated substantial metabolic variation between the replicates (data not 

shown). 

 

Table 2. Standard deviations for the metabolomics pilot experiment 

Line H7 L13 L4 L7 Total 

      SD at 14 DAS 24.50 % 17.45 % 19.19 % 17.21 % 27.95 % 
      SD at 28 DAS 27.50 % 27.26 % 27.06 % 21.06 % 32.33 % 

      Median standard deviations (SD) across all relatively quantified metabolites in percent. Four canola lines (H7, L13, L4 and L7) provided by the 
commercial project partners (NPZi & DSV) were analysed at two time points, 14 and 28 days after sowing (DAS). Standard deviations are given for 
the four lines individually and across all genotypes (total). The data shown represent eight replicates per genotype / time point combination. 

 

3.1.5. Transcriptome analyses by RNA-sequencing 

In an RNA-Seq pilot experiment, a comparative analysis of four genotypes contrasting in biomass 

was performed. The pilot experiment was also used to answer the question, whether pooling of 

samples from the different phenotyping experiments might be feasible. To this end, four 

genotypes, ‘Pol 229’ (low biomass), ‘Pol 396’ and ‘Pol 467’ (medium biomass), and ‘Pol 419 (high 

biomass) were analysed with three ‘replicates’ (pools of four plants from a single pot / a single 

phenotyping experiment) and as one ‘pool’ (twelve plants pooled from different pots / different 

phenotyping experiments) for each genotype (Figure S12 a). A principal component analysis 

indicated one sample as outlier in the first principal component (Figure S12 b). In the second 

principal component, it was possible to at least partially separate the genotypes. In addition,  

a hierarchical clustering analysis showed a clustering of genotypes and indicated that the ‘pools’ 

and ‘replicates’ of each genotype cluster together (Figure S12 c). Based on the results of the pilot 

experiment, it was concluded that it was appropriate to analyse pooled material from different 

phenotyping experiments.  

In the main RNA-sequencing experiment, total RNA was extracted from aliquots of the same 

pooled shoot material sampled 14 DAS that was used for the analysis of polar metabolites.  
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After quality and quantity assessment, total RNA was submitted to the IPK sequencing facility for 

library generation and sequencing using an Illumina HiSeq 2500 System. Combined for all 

sequenced lines, a total of approx. 520 Gb (approx. 4.8 billion reads) were generated, covering 

each genotype with on average approx. 9.5 million reads. More than 96 % of all 477 samples could 

be covered with at least 7 million reads (Figure S5 a). Generated raw data showed an overall good 

quality as indicated in the plot of the Phred quality scores (a property which is logarithmically 

related to the base-calling error probabilities; Ewing and Green, 1998) per position in a 

representative example (Figure S5 b). A slight decrease of read quality (reduced base-quality) 

could be observed to some degree at the 5’-end and in particular at the 3’-end of reads of the 

reads compared to TruSeq RNA libraries used in the first pilot experiment. After quality-trimming, 

data were concatenated for each line and mapped using Hisat2 to the NRGene Darmor-bzh 

reference genome assembly that had been used to anchor the array-derived SNP markers.  

Overall, 82.2 % of the reads could be aligned to the NRGene Darmor-bzh reference genome, 

67.3 % of them uniquely, which is approx. 5 % higher than the alignment rate using the published 

Darmor-bzh v4.1 reference genome version, as exemplarily determined using the sequencing read 

data of Pollinator 211. Reads were exemplarily mapped to ribosomal DNA sequences  

(5S, 5.8S, 18S, and 25S rRNA gene sequences of Arabidopsis thaliana obtained from the  

TAIR10 database) and organellar genomes (mitochondrial [NC_008285.1] and chloroplast 

genomes [NC_016734.1] obtained from the NCBI database). On average, 9 % of reads mapped to 

ribosomal sequences and 8 % to organellar sequences. Raw counts per transcript were obtained 

with HTSeq and normalised by sequencing depth and transcript length (tpm, Wagner et al., 2012).  

In total, 54,521 genes (43 % of all 126,667 de novo annotated genes) were expressed  

(detected with median tpm > 0, Figure S5 c) in the sampled shoot material. The 19,479 transcripts 

(15.38 %) that were quantified at a median level ≥ 5 tpm across all samples were used for 

subsequent analyses. 

 

3.2. Omics-based prediction of hybrid performance in canola 

The following chapter covers the applied objective of the ‘Predict’ project. The aim was to 

evaluate the potential of omics-based data sets gathered from the parental lines to be employed 

in effective prediction of hybrid performance in field and in glasshouse cultivations, and to 
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investigate whether prediction accuracies achieved with genomic (marker) data can be improved 

through combinations with -omics data. Aspects of this work were performed in collaboration with 

Dr. Christian R. Werner (The Roslin Institute, The University of Edinburgh, UK). 

 

3.2.1. Prediction of hybrid performance using individual and combined data sets 

Using the best linear unbiased estimators (BLUEs) of all seven agronomic traits, (genomic) best 

linear unbiased predictions (gBLUP) were performed with different -omics data sets, comprising 

molecular markers (n= 13,201; unique single-copy SNPs), transcripts (n= 19,479; ≥ 5 tpm) and 

metabolites (n= 154). These data sets were used individually and in all possible combinations for 

prediction analyses. Prediction accuracies, the correlation between predicted and observed 

values, for the tested traits across 100 cycles of cross-validations (3 : 1 = training : validation 

population) are illustrated in Figure 6. Across all models and traits, prediction accuracies ranged 

from 0.245 for the trait seedling emergence using all available data sets to 0.72 for total seed GSL 

content using transcript data only. In all cases prediction accuracies strongly depended on the 

heritability of the traits with the trait seedling emergence (H2= 0.34) showing the lowest prediction 

accuracies followed by seed yield (H2= 0.62), seed oil yield and seed protein content (H2= 0.82), 

DTF (H2= 0.85), seed oil content (H2= 0.90) and GSL (H2= 0.92) with the highest prediction 

accuracies (Table 1). No significant differences between the prediction accuracies of any of these 

data sets / combinations were observed for the trait seedling emergence using an Analysis of 

Variance (ANOVA), followed by a post-hoc Tukey test. For all other traits, the prediction models 

solely based on metabolite data showed significantly lower prediction accuracies.  

Other than that, average values of the prediction models with different data sets and 

combinations thereof were similar for a given trait. Only for the trait total seed GSL content 

additional significant differences were detected. The model using the genotype data only 

displayed lower mean prediction accuracy than the other models (except metabolites only). 

Models including the transcriptome data yielded the highest accuracies for GSL. Thus, in case of 

the trait total seed GSL content, a significant increase in prediction accuracy could be achieved by 

adding transcriptome data to the predictive models. For all other traits, using this particular 

population and data sets, no significant increase in prediction accuracy could be achieved by  

multi-omics-based predictions. 
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Figure 6. Prediction of hybrid performance by gBLUP models using -omics data sets 

A summary of (genomic) best linear unbiased predictions (gBLUP) of hybrid performance is given as 
boxplots. Seven agronomic traits, assessed in multi-location field trials, were analysed. The prediction 
accuracies of the models were defined as the correlation between the true and the predicted phenotypic 
values. A cross-validation scheme with 100 cycles was applied, separating the data set in a training set 
(75 %) and a validation set (25 %). The different -omics data sets (predictors) were obtained from the 
parental lines and are denoted as: G, genomic data; T, transcriptomic data; M, metabolite data and their 
respective combinations G+T, G+M, M+T and G+T+M. The paternal -omics data sets (T & M) were obtained 
from plants cultivated in the glasshouse. Letters beside the boxes indicate significant differences between 
predictor sets determined by a one-way ANOVA followed by a post-hoc Tukey’s multiple comparison test. 
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3.2.2. Comparison of the predictive abilities of gBLUP and RKHS models 

In addition to gBLUP prediction (Habier et al., 2007, 2013; Goddard, 2009), which has routinely 

been used as a base-line model in numerous other studies, a second method class, reproducing 

kernel Hilbert space regression (RKHS; Gianola and van Kaam, 2008) was employed for prediction 

of hybrid performance (Figure S13).  

In contrast to gBLUP, RKHS exploits both the additive and to some extent additive × additive 

epistatic effects among markers. In general, prediction accuracies for the RKHS models followed a 

similar pattern than the gBLUP models. The lowest prediction accuracies were obtained for the 

trait seedling emergence. Prediction accuracies clearly correlated with trait heritability.  

 

 
 

Figure 7. Comparison of Reproducing Kernel Hilbert Space (RKHS) and gBLUP models 

A comparative analysis of gBLUP and RKHS models for hybrid prediction is shown as black and red boxplots, 
respectively. The prediction accuracies were defined as the correlation between the true and the predicted 
phenotypic values. A cross-validation scheme with 100 cycles was applied, separating the data set in a 
training set (75 %) and a validation set (25 %). Exemplarily, only the combination of all three -omics data 
sets as predictors (genomic, transcriptomic and metabolite data; G+T+M) is shown. Asterisks above the 
plots indicate significant differences between gBLUP and RKHS models determined by Welch’s two sample 
t-test (alpha: * = 0.05; ** = 0.01 and *** = 0.001). The broad-sense heritability (H2) for each of the seven 
analysed traits is indicated at the bottom of the figure. 
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In the RKHS models the metabolite data individually also yielded the lowest prediction accuracies. 

Two traits, total seed GSL content and seed oil content showed significantly higher prediction 

accuracies for RKHS models (T, G+T, T+M, G+T+M) including transcriptome data compared to 

models not including transcripts (G, M, G+M; data not shown). In direct comparison, RKHS models 

were able to outperform gBLUP for the traits seed yield, seed oil yield, seed protein content and 

seed oil content (Figure 7). Substantial increases in prediction accuracy of up to 3.6 % for seed oil 

yield, 3.0 %, for protein content, and 5.5% for seed oil content could be achieved by RKHS.  

No significant improvement of prediction accuracies was obtained for the trait seedling 

emergence. Although prediction accuracy could not be improved for all traits, RKHS models were 

in no case inferior to the gBLUP models. 

 

3.2.3. Hybrids display strong mid- and best-parent heterosis 

A fifth phenotyping experiment was performed in the glasshouse with a selection of 120 of the 

950 hybrids analysed before. These hybrids were selected by the breeders with respect to their 

seed yield in the field trials whereby the 60 lines with highest overall seed yield and the 60 lines 

with lowest seed yield were selected. The collection of phenotypic data for these hybrids in 

combination with the data of the 477 parental lines from the previous four experiments provided 

the basis to calculate best-parent heterosis (BPH) and mid-parent heterosis (MPH) values.  

For this purpose, end-point biomass (fresh weight and dry weight), projected leaf area and 

estimated biovolume were chosen because of their high heritability values (Figure S14).  

Overall, far more positive than negative mid-parent heterosis was detected, and even for BPH a 

trend towards positive heterosis was observed (Figure 8). For projected leaf area and estimated 

biovolume, calculations have been performed for all 21 days individually on the basis of BLUEs 

across all five phenotyping experiments. In the investigated population, strong positive, as well as 

negative MPH could be detected ranging from -38.8 % to 138.5 % for projected leaf area  

(Figure 8 a-b) and from -37.7 % to 135.4 % for estimated biovolume (Figure 8 e-f).  
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Figure 8. Hybrids display strong heterosis for biomass and growth-related traits 

Overview figure of mid-parent (MPH) and best-parent (BPH) heterosis for four selected traits: projected 
leaf area (PLA), estimated biovolume (VOL), fresh weight (FW) and dry weight (DW). The panels a, e, i and 
m display barplots of MPH and the panels b, f, j and n show MPH values as histograms with hybrids 
distinguished by ‘good’ and ‘bad’ seed yield in the field trials, indicated by partially transparent dark and 
light grey, respectively. The panels c, g, k and o diplay the BPH values calculated for the same hybrids and 
traits. The panels d, h, l and p show the histograms for BPH traits. FW and DW were determined at 28 DAS. 
The MPH and BPH values for projected leaf area and estimated biovolume are shown combined for all 21 
days of phenotyping (6 to 27 DAS). 
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Determined BPH values ranged from -54.8 % to 70.0 % for projected leaf area (Figure 8 c-d) and 

from -54.8 % to 68.2 % for estimated biovolume (Figure 8 g-h). MPH values ranged from -27.21 % 

to 72.27 % for FW (Figure 8 i-j) and from -23.21 % to 73.01 % for DW, respectively (Figure 8 m-n). 

BPH values ranged from -39.56 to 41.25 % for FW (Figure 8 k) and from -32.66 to 45.06 % for DW 

(Figure 8 o-p), respectively. 

Comparing the ratio of positive to negative heterosis (MPH and BPH) at the individual time points, 

a shift over time towards more positive values was observed (data not shown). Notably, grouping 

the 120 lines into ‘good’ and ‘bad’ hybrids with respect to seed yield data from the field trials, 

distinct differences in their distributions were detected. The set of ‘good’ hybrids displayed 

significantly higher MPH (Figure 8 b, f, j and n), as well as BPH values (Figure 8 d, h, l and p) for all 

four traits (Welch Two Sample t-test, two-sided, p-value < 2.2e-16) compared to the set of ‘bad’ 

hybrids. Significant differences between the two groups of hybrids originating from the crosses 

either with MS1 or MS2 as mother line were detected. Crosses with MS1 displayed substantially 

higher MPH values for leaf area and MPH for biovolume than crosses with MS2. In addition,  

BPH for leaf area and biovolume were substantially higher for crosses with MS1 at the earlier time 

points up to 13 DAS (data not shown). However, no significant differences for end-point biomass 

heterosis (FW and DW; MPH and BPH) were detected at 28 DAS between hybrids originating from 

crosses with MS1 or MS2, respectively. 

 

3.2.4. Prediction of early vegetative growth of hybrids in the glasshouse 

Although the set of 120 hybrids grown in the glasshouse represents only 13 % of the whole set of 

950 hybrids, and the power might be reduced in comparison to the whole data set, end-point 

biomass data (FW & DW) of the hybrids was used to perform prediction analyses. As parental lines 

and selected hybrids were grown in the same facilities under the same controlled environmental 

regime, it was hypothesised that end-point biomass might reflect more closely the parental data 

sets than the hybrid yield data from the field. Prediction analyses were performed with the same 

models and predictor sets (G, T, and M), and their combinations as described above.  

For the combined predictor sets (G+T+M), prediction accuracies (gBLUP) of 0.62 and 0.66 were 

achieved for FW and DW, respectively (Figure S15). Notably, in contrast to the predictions of the 

seven agronomic traits evaluated in the field trails, the metabolites as predictors achieved 
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substantially higher prediction accuracies for plant biomass assessed in the glasshouse.  

The prediction accuracies using the metabolite data were comparable to those using the transcript 

data as predictors (Figure S15). In addition, the time series data for projected leaf area and 

estimated biovolume (6 to 27 DAS) were analysed using gBLUP models and the combined data sets 

(G+T+M). Prediction accuracies are low for early time points, but increase over time and reach 

saturation at a value of approx. 0.6 for both traits (Data S8). Prediction of MPH and BPH values for 

both traits yielded overall low prediction accuracies (≤ 0.4). In contrast to the per se value 

predictions, the highest prediction accuracies, for BPH (median: leaf area = 0.39; biovolume = 0.4), 

were determined at the first measuring day (6 DAS), with a second peak observed around 14 DAS, 

the time point when material of the parental lines was sampled for transcriptome and 

metabolome analyses (Data S8). 

 

3.3. Comprehensive analyses of the -omics data sets 

The extensive multi-level -omics data sets that were generated for the parental lines were utilised 

to perform correlation analyses to identify potential links between the omics-layers.  

In combination with the array-derived genotype data, genome-wide association (GWA) and  

co-localisation studies were performed to identify candidate genetic loci and genes potentially 

underlying these loci. The focus was placed on the functional interrelationship between biomass, 

vegetative growth, gene expression and metabolite profiles. 

 

3.3.1. Correlation analyses between -omics data sets 

Pairwise Pearson correlation analyses were performed between the different -omics data sets, 

with 154 polar metabolites, 19,479 transcripts and 2,691 phenotypic traits (including individual 

traits at 21 days, the growth rates described earlier, and end-point biomass). In total,  

532 significant pairwise correlations between transcripts and phenotypic traits, 331 between 

metabolites and transcripts and only 22 between metabolites and phenotypic traits, with 

moderate correlation coefficients |r| ≥ 0.4 and p-values FDR ≤ 0.05 were recorded (Data S9;  

Figure S16). Three questions were addressed, (i) is there a linear relationship between molecular 

traits and end-point biomass, (ii) can molecular traits be linked to projected leaf area and 
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estimated biovolume at the days shortly before or after the sampling time point, and (iii) is it 

possible to derive significant features related to biomass and growth by analysing the intersections 

of pair-wise relations between all three data sets? 

Only weak correlations (|r| ~  0.3) between biomass (FW or DW) and polar metabolites  

(for example ‘2-hydroxy-Glutaric acid’, ‘Indole-3-acetonitrile’ and ‘Unknown MST 68’), and only 

seven correlated transcripts with |r| ~ 0.4 could be detected: ‘BnaC02g08760D’, an elongation 

factor 1b α-subunit protein; ‘maker-scaffold124-snap-gene-8.174’ showing homology to ATPAP18, 

a purple acid phosphatase; ‘maker-scaffold296-snap-gene-35.40’, which shows homology to  

the Arabidopsis EGY3; ‘BnaC02g16010D’ encoding a nucleic acid- ob-fold-like protein; 

‘BnaC06g28700D’ annotated as signal recognition particle signal 72 kDa; ‘BnaC02g04720D’,  

a peptidyl-prolyl cis-trans isomerase; and ‘BnaA07g19110D’, a putative protein kinase family 

protein.  

As levels of only few transcripts displayed linear relationships with FW or DW, a complementary 

approach was applied to detect potential regulators of biomass. Expression data (median ≥ 5 tpm) 

were subjected to a gene network inference analysis using a Random Forests (RF) based method 

(GENIE3 algorithm, Huynh-Thu et al., 2010) while restricting the targets to biomass (FW and DW) 

only. The ten highest ranked potential regulatory transcripts of fresh and dry weight are described 

in Table 3 and are shown in Figure S17. Among them were ‘BnaC06g28700D’ (positively 

correlated), ‘BnaC02g04720D’ (negatively correlated), and ‘maker-scaffold124-snap-gene-8.174’ 

(negatively correlated), which were also mentioned above with correlations (|r| ≥ 0.4) to  

end-point biomass (FW or DW). Five of the candidates were shared between the ten top-ranked 

transcripts of fresh and dry weigh (Table 3, displayed in bold font). The other five candidates in 

each of the two data sets were found among the top 50 candidates of the reciprocal data set  

(data not shown). The output of the analysis was restricted to the 100 top-ranked regulatory links 

between transcripts and end-point biomass (fresh weight, Data S10) and the candidates were 

subjected to a Singular gene ontology (GO) term Enrichment Analysis (SEA) using the ‘agriGO’ v2.0 

web tool (http://systemsbiology.cau.edu.cn/agriGOv2/). The terms ‘translation’ (GO:0006412), 

‘peptide biosynthetic process’ (GO:0043043), ‘ribosome’ (GO:0005840), and ‘structural 

constituent of ribosome‘ (GO:0003735) were found among the most significantly enriched  

GO terms.  
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Eleven candidates (Data S15), ten encoding ribosomal proteins and one, ‘BnaC06g28700D’ 

encoding the ‘signal recognition particle 72 kDa’, were annotated with the GO term ‘intracellular 

ribonucleoprotein complex’ (GO:0030529), which showed the most significant enrichment  

(p-value = 1.2e-5; FDR = 0.00038). 

Regarding the time points close to the sampling day (14 DAS +/- 3 days), only few significant 

correlations between transcripts and growth-related traits (|r| ~  0.4) were detected: 

‘BnaC02g08760D’ negatively correlated with projected leaf area at 17 DAS, ‘BnaC02g01040D’ also 

negatively correlated with projected leaf area at 16 and 17 DAS, and ‘Bra000292’ and 

‘BnaC07g05770D’ positively correlated with early plant height at 11 DAS. Broadening the time 

frame and filtering for correlations at multiple days, for early plant height (between 6 and 11 DAS) 

two transcripts, one with homology to ‘Bra000292’, a gene putatively involved in cell wall 

organization, and ‘BnaC07g05770D’, a peroxidase (PER64) involved in stem lignification and mainly 

expressed in the shoot in Arabidopsis (Yi Chou et al., 2018), were significantly correlated.  

One transcript (‘BnaC06g28700D’, signal recognition particle 72 kDa) showed positive and three 

other transcripts (‘BnaC02g08760D’, translation elongation factor EF1B/ribosomal protein S6 

family protein; ‘BnaC02g01040D’, a putative mitochondrial ATP synthase β-subunit, and ’maker-

scaffold124-snap-gene-8.174’), negative correlations with projected leaf area in a later phase 

(Data S9). 

Due to the low correlation between metabolic and phenotypic traits, no significant triangular 

relations between all three data sets (metabolites, transcripts, and growth-related traits) could be 

detected. However, 141 correlations between the metabolite and transcript layers (|r| ≥ 0.4, 

involving metabolites of known structure) were detected (Data S9). Among the highest ranking 

correlations with metabolites of known chemical structure were ‘BnaA06g01540D’ (β-glucosidase 

18) ~  indole-3-acetonitrile (r= -0.582); ‘Bra022161’ (JASMONATE RESPONSIVE 1) ~  indole-3-

acetonitrile (r= 0.544), ‘BnaC01g00550D’ (a putative aminotransferase) ~ β-alanine (r= -0.574); 

‘BnaC03g39190D’ (GO: response to sucrose stimulus) ~ sucrose (r= -0.572); and ‘BnaC07g45200D’ 

(an arginine decarboxylase) ~ putrescine (r= 0.536). Moreover, correlations of transcripts with 

multiple metabolites were detected, including ‘maker-scaffold19-snap-gene-11.66’ (11 correlated 

metabolites, mostly with amino acids or derivatives; displays homology to the Arabidopsis AILP1; 

annotated as N-terminal nucleophile aminohydrolase), ‘BnaC01g05300D’ (11 correlated 
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metabolites; annotated as α-vacuolar processing enzyme; GO terms related to proteolysis and  

lytic vacuole) or ‘BnaC04g41510D’ (seven correlated metabolites; annotated as glutathione  

S-transferase). In addition, correlations between paternal transcript levels in the pollinators and 

agronomic traits in the hybrids were performed. Three correlations (|r| ≥ 0.4) were identified: 

‘BnaA07g19110D’, a protein kinase family protein, was positively (r= 0.414), and ‘maker-

scaffold296-snap-gene-35.40’ (r= -0.4067) and ‘BnaA07g21340D‘ (r= -0.4091), encoding an auxin 

efflux carrier family protein, were negatively correlated with seed oil content of the hybrids.  

Lower correlations (0.3 ≤|r| ≤ 0.4) were also detected for the traits seed oil content, seed protein 

content, seed oil yield, seed glucosinolate content and days to onset of flowering (Data S9). 

 

3.3.2. The expression of the Brassica subgenomes and biomass accumulation 

An explorative principal component analysis of the transcriptome data indicated a clustering of 

genotypes in the 4th principal component corresponding to the breeding pools underlying the 

population investigated (Figure 9 a). In addition, the same PC group discriminated lines by  

end-point biomass. Two subsets, one with overall higher and one with overall lower biomass were 

partially separated (Figure 9 b). To further explore this observation, the scaled, centred and  

Log2 transformed loadings (transcripts with median ≥ 5 tpm) of the 4th principal component were 

extracted and subjected to a deeper analysis. First, the top ranking positive (n= 78) and 

negative (n= 74) loadings with an absolute loading value > |0.02| were separately subjected  

to a gene ontology (GO) term enrichment analysis using the ‘agriGO’ web tool 

(http://bioinfo.cau.edu.cn/agriGO/). The analysis revealed significant enrichments, among others 

for the GO terms ‘biosynthetic process’ (GO: 0009058), ‘gene expression’ (GO: 0010467) and 

‘translation’ (GO: 0006412) in the negative loadings (Figure 10 a). In the positive loadings, ‘cellular 

biosynthetic process’ (GO: 0044249), ‘cellular metabolic process’ (GO: 0044237), ‘generation of 

precursor metabolites and energy’ (GO: 0006091), ‘proton transport’ (GO: 0015992) and again 

‘translation’ (GO: 0006412) were found among the enriched terms (Figure 10 b).  

Another interesting observation was that the subgenome contribution differed between the top 

negative and positive loadings. For the negative loadings (direction of lower biomass),  

28 transcripts were contributed from genes of the A subgenome and 46 transcripts from genes of 

the C subgenome, respectively.  



Results 

60 
 
 

 

 

Figure 9. Transcript profiles separate genotypes according to biomass and breeding pools 

Principal component analysis was performed on filtered transcript data (median tpm ≥ 5) for all 477 
genotypes. Transcript data were centred and scaled (z-scores). The PCA calculation was done by singular 
value decomposition (svd) of the data matrix. The first four PCs explained 18 %, 9.7 %, 3.8 % and 3.1 % of 
variance, respectively. a Scatter plot of PC1 and PC4 with samples coloured according to their biomass 
(fresh weight BLUEs) using a gradual scale (colour gradient blue, low biomass to yellow, high biomass). 
b The same PCA plot with genotypes coloured according to their affiliation to one of the breeding pools.  

 

In contrast, the top positive loadings (direction of higher biomass) contained 51 transcripts from 

genes of the A subgenome and 27 transcripts from genes of the C subgenome, respectively.  

The hypothesis that a higher expression of particular classes of genes from the A subgenome is 

associated with higher biomass production is also supported by the RNA-Seq pilot experiment. 

Here a set of genotypes were analysed including four lines selected based on their overall biomass 

production (FW 28 DAS) during the phenotyping experiments. The four lines ‘Pol 229’  

(low biomass), ‘Pol 396’ and ‘Pol 467’ (medium biomass), and ‘Pol 419’ (high biomass) were 

sequenced as individual replicates (pool of four individuals from one experiment) and as pools of 

material from all experiments. Two of these lines (‘Pol 229’ and ‘Pol 419’) were picked for a 

detailed biological analysis. First, differentially expressed genes (DEGs) between the two lines 

were identified. In total, 1,153 coding sequences (CDS, 1.1 %) were higher expressed in the high 

biomass line ‘Pol 419’, 658 derived from the A subgenome (1.4 %) and 489 from the C subgenome 

(0.9 %), respectively.  

a b 
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In the low biomass line ‘Pol 229’, 1,503 CDS were higher expressed with 612 attributed to the  

A subgenome (1.4 %) and 890 to the C subgenome (1.6 %). Thus, the line ‘Pol 229’ displayed an 

even distribution between the subgenomes, as expected from the ratio of transcripts encoded by 

the A and C subgenomes, while ‘Pol 419’, the high biomass line, had relatively more genes from 

the A than the C subgenome significantly higher expressed. This observation is consistent with the 

results of the top positive PCA loadings reported in the previous paragraph. Moreover, an analysis 

of gene ontology terms was performed. In both lines GO terms related to translation were found 

in the top enriched CDS which is consistent with the observations from the analysis of PC4 in the 

main experiment. Both lines also display enrichment for separate terms, for instance terms related 

to α-amino acid metabolism and nucleosome assembly for ‘Pol 229’ and terms related to purine 

biosynthesis for ‘Pol 419’. In addition to the GO term enrichment analysis, transcripts were 

mapped to pathways using Mapman (Figure S18). Transcripts of ‘Pol 229’ were significantly 

enriched in protein biosynthesis and glucosinolate synthesis, while those of ‘Pol419’ were 

enriched in photosynthesis and light reaction. 

 

3.3.3. Candidate genes putatively affecting biomass heterosis in canola 

Early biomass heterosis is an agronomically important trait, but difficult to predict by the parental 

per se performance (Gärtner et al., 2009; Steinfath et al., 2010). Thus, to identify molecular factors 

associated with superior hybrid performance (heterosis), BPH and MPH values for projected leaf 

area and estimated biovolume calculated for different days (6 to 27 DAS), as well as MPH and BPH 

values for end-point biomass (28 DAS) were correlated with the expression data of the pollinators 

(male parental lines). Overall, only low to moderate correlation coefficients (|r| ≤ 0.5) were 

observed. Moreover, due to the high number of statistical tests and the relatively low number of 

samples (n= 120), p-values would not pass a multiple-testing correction. Still these correlations 

might reflect biological links between individual transcripts and biomass heterosis. For end-point 

biomass the highest correlation (|r| = 0.42) has been observed between dry weight MPH and 

transcript ‘maker-scaffold378-snap-gene-2.74’ which was not annotated, but shows homology to 

the Arabidopsis AGG3 (AT5G20635) encoding an atypical heterotrimeric G-protein gamma-

subunit. In contrast, substantially higher correlations were observed between the parental 

transcript data and the per se hybrid biomass values (Data S9). The highest correlation (r = 0.55) 
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was found for the parental expression of ‘BnaA01g31350D’, annotated as ‘superoxide dismutase’ 

and hybrid fresh weight.  

Analysing the correlations for all time points, leaf area MPH and biovolume MPH were highest 

correlated with the transcripts ‘maker-scaffold378-snap-gene-2.74’, ‘BnaC04g13490D’ annotated 

as ‘cdt1-like protein chloroplastic-like’ and ‘BnaCnng47650D’ encoding a FANTASTIC FOUR-like 

protein. However, no significant correlations (|r| ≥  0.3) of these three transcripts with  

growth-related traits (estimated biovolume, projected leaf area or end-point biomass) in the 

parent were determined.  

Notably, when samples were grouped by their origin from crosses with MS1 or MS2, 

‘BnaCnng47650D’ shows substantially higher correlation for the MS1 subset than for the  

MS2 subset. This is exemplarily shown for ‘BnaCnng47650D’ at the time point with the highest 

correlation coefficient at 9 DAS (Figure 11 a). The differences were most distinctive at earlier time 

points (Figure 11 b). If the two subsets are further divided into ‘good’ and ‘bad’ hybrids regarding 

their seed yield in the field, significant differences in leaf area MPH can be determined 

(Figure 11 c). Although no significant differences could be detected regarding the expression  

of ‘BnaCnng47650D’ in the grouped pollinators, a tendency towards higher expression of 

‘BnaCnng47650D’ in the ‘good / MS1’ subset could be observed (Figure 11 d).  

Moreover, MS1 plants themselves showed a higher expression of the gene compared to MS2 

plants. Similar differences between the MS1 and the MS2 subsets were also observed for the 

other two transcripts ‘maker-scaffold378-snap-gene-2.74’ and ‘BnaC04g13490D’ (data not shown). 

For leaf area and biovolume BPH values at different time points, the highest correlated transcript  

(|r| ≥ 0.4) was ‘BnaAnng16580D’ described as ‘tata-associated factor ii 58’, which was positively 

correlated with leaf area BPH 19 DAS to 24 DAS and volume BPH 20 DAS to 24 DAS. 
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Figure 11. BnaCnng47650D as a candidate gene for biomass heterosis 

In panel a, the correlation between MPH values for projected leaf area at 9 DAS and the abundance of the 
‘BnaCnng47650D’ transcript in the parental pollinators is shown (grey dashed line; r= 0.396,  
p-value= 8.388e-6, n= 120). Higher and lower correlations were observed when analysing the MS1  
(green line; r= 0.574, p-value= 1.586e-6, n= 61) and MS2 (black line; r= 0.290, p-value= 0.026, n=59) subsets 
individually. The gene ‘BnaCnng47650D’ encodes a FANTASTIC FOUR-like protein. b Pearson correlation 
coefficients of MPH values for projected leaf area ~ ‘BnaCnng47650D’ for all 21 days from 6 DAS to 27 DAS. 
Green (background) and black colours (foreground) indicate the MS1 and MS2 subset, respectively. 
c Boxplots for MPH values for projected leaf area for the subsets further grouped into ‘good’ (high seed 
yield) and ‘bad’ (low seed yield) hybrids. Different letters indicate significant differences between grouped 
samples (‘bad / MS1’ ‘good / MS1’, ‘bad / MS2’, ‘good / MS2’) determined by a one-way ANOVA followed 
by a post-hoc Tukey’s multiple comparison test. d Boxplots of ‘BnaCnng47650D’ expression in the parental 
pollinator lines in tpm. Same letters indicate no significant differences between all four sets. The dashed 
green and black horizontal lines correspond to the expression levels of ‘BnaCnng47650D’ in the male-sterile 
lines MS1 and MS2, respectively.  
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3.4. Multi-omics genome-wide association studies 

The generation of extensive omics data sets (time-resolved phenotypes, transcripts and 

metabolite profiles) for a large and diverse set of rapeseed lines provided the opportunity to study 

the genetic basis of trait variation at different omics-levels. To further this goal, all traits were 

subjected to genome-wide association analyses. Detected marker-trait associations were analysed 

for enrichment in particular regions of the genome for each of the data sets and compared for  

co-localisations between the different omics-layers. The results of these analyses are summarised 

in the following section.  

 

3.4.1. Identification of phenotypic, expression and metabolite QTL 

Extensive -omics data sets were generated for 2,691 phenotypic traits (including individual 

phenotypic traits at 21 days, growth rates for a selection of four traits calculated over three-day 

intervals and end-point biomass), 154 polar metabolites and expression data for 19,479 transcripts 

(expressed at ≥ 5 tpm). For all phenotypic traits combined, a total of 15,789 marker-trait 

associations / quantitative trait loci (QTL) were detected at a p-value FDR ≤ 0.05 (Data S11).  

For 2,150 (80 %) of the phenotypic traits at least one associated locus could be identified.  

On average, detected associations explain only a minor proportion of phenotypic variance  

(mean of 1.8 %), but large effects were identified too, for example a deletion at marker  

‘Bn-scaff_15877_1-p293578_del’ was associated with the leaf width mean at 16 DAS and 

explained 41,9 % of phenotypic variance. In summary, 77 QTL (0.5 %) explain more than 10 %, 

8,570 QTL (54.3 %) between 10 % and 1 %, and 5,236 QTL (33.2 %) less than 1 % of phenotypic 

variance (PVE). If too many QTL were fitted into the ANOVA model, no sum of squares could be 

extracted for the least significant QTL. Thus, for 1,906 QTL (12 %) no PVE values were obtained 

due to errors in the model fit. Notably, the most significant associations were detected with a 

series of deletion markers covering nearly the complete chromosome C03 and the trait yellow to 

green ratio. A total of 2,255 associations, 1,925 of them deletions, were detected for this 

particular trait at various days. 
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Likewise, data for all 19,479 transcripts (expressed at ≥ 5 tpm) were individually subjected to 

GWAS analyses to identify expression-QTL (eQTL). For 14,683 transcripts (75.4 %) at least one 

eQTL was identified. In total, 86,013 associations were detected with a p-value FDR ≤ 0.05.  

PVE of these eQTL ranged between < 0.1 % and > 70 %. The highest percentage of 71.7 % PVE was 

found for a cis-eQTL on chromosome A07 for ‘BnaC07g36930D’ annotated as ‘peptide methionine 

sulfoxide reductase b2’. In summary, 6,012 eQTL (7.4 %) explain more than 10 %, 43,789 eQTL 

(50.1 %) between 10 % and 1 %, 26,323 eQTL (32.5 %) between 1 % and 0.1 % and 4,844 eQTL 

(6 %) less than 0.1 % of phenotypic variance. Notably, 26.3 % of associations were detected with a 

deletion as genetic marker, with a deletion on chromosome C02 associated with ‘BnaC02g01750D’ 

coding for a ‘putative proline-rich family protein’ showing the highest explained variance  

(49.6 % PVE). The eQTL were classified either as cis-eQTL or trans-eQTL. As there is no universal 

definition, cis-eQTL were defined as associated markers within an interval of ± 500 kb  

(or alternatively ± 1 Mb) of the transcription start of the gene itself and trans-eQTL as associations 

outside of this interval or on another chromosome. Overall, a higher number of trans-eQTL than 

cis-eQTL was detected. In total, 8,140 (10,007) cis-eQTL and 77,873 (76,006) trans-eQTL were 

identified for both intervals, respectively. Cis-eQTL explained substantially more phenotypic 

variance than trans-eQTL (Figure 12 a). Cis-eQTL defined by either a ± 500 kb or a ± 1 Mb interval 

did not show any substantial differences in their distribution of explained phenotypic variance. 

Approximately 40 % of the cis-eQTL exhibited more than 10 % PVE, and approx. 50 % between 1 % 

and 10 % PVE. On the other side, only around 3 % of the trans-eQTL showed more than 10 % PVE 

and around 40 % less than 1 % PVE. For many transcripts associated with multiple eQTL, the most 

significant eQTL represents a cis-eQTL likely corresponding to the gene locus itself as indicated 

exemplarily for ‘BnaA04g27920D’ encoding a potential ribulose bisphosphate carboxylase small 

chain 2b precursor on chromosome A04 (Figure 12 b). 

For all polar primary metabolites, a total of 544 marker-trait associations, 257 for metabolites of 

known and 287 for metabolites of unknown chemical structure, were detected at a  

p-value FDR ≤ 0.05. In summary, for 102 (66 %) of the 154 metabolites, at least one QTL could be 

detected. The average mQTL explained 2.2 % of phenotypic variance. Eleven mQTL (2 %) explain 

more than 10 %, 352 mQTL (64.7 %) between 10 % and 1 % and 181 mQTL (33.3 %) less than 1 % 

of phenotypic variance. The highest PVE, 31.9 %, was detected for the marker-trait association 
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(MTA) between ‘Bn-scaff_16361_1-p506447’ and a metabolite of unknown chemical structure. 

The highest PVE for a metabolite of known structure was observed for marker ‘Bn-scaff_16361_1-

p439309’ on chromosome C08 and the amino acid proline, explaining 14.7 % of the metabolite’s 

variance.  

 

 
 
Figure 12. Detection of cis- and trans-eQTL 

Panel a shows an overview of detected expression QTL (eQTL) and explained phenotypic variance (PVE%). 
The leftmost bar shows the distribution of PVE% for all 80,965 eQTL with a p-value FDR ≤ 0.05.  
The blue colour code refers to the PVE% of the eQTL grouped by: > 10 %, 1-10 %, 0.1-1 % and < 0.1 % PVE. 
The four other bars group the eQTL in cis- and trans-eQTL, defined by either ± 500 kb or ± 1 Mb intervals 
around the transcription start of the respective gene. Panel b shows the Manhattan plot of the transcript 
‘maker-scaffold184-augustus-gene-48.19’ annotated as ‘BnaA04g27920D’. Three significant marker-trait 
associations (MTAs) on chromosomes A4, A3 and A9 are indicated by red dots (p-value FDR ≤ 0.05).  
One MTA was classified as cis-eQTL and two MTAs as trans-eQTL.  
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3.4.2. QTL for phenotypic, expression and metabolite traits cluster in hotspots 

For a subsequent analysis, associations were filtered for eQTL that explain more than 2 % of 

phenotypic variance, reducing the number of associations to 26,391 (14.2 %). These eQTL  

(8,610 cis-eQTL and 17,781 trans-eQTL) were binned in overlapping intervals of ± 1 Mb and tested 

for their distribution. The eQTL were not equally distributed across the 19 chromosomes.  

Some chromosomal regions were depleted of QTL while others show substantial 

overrepresentation (hotspots) compared to the average of the chromosome (Figure S19).  

The highest number of eQTL was detected on chromosome C03 (n= 2,760) and the lowest number 

on chromosome C07 (n= 415). Moreover, pronounced hotspots with more than 150 co-localised 

eQTL could be detected on chromosomes A02, A03, C02, C03, C05, C06, C08, and C09 (Figure 

S19 a). The largest number of co-localised eQTL was detected in an interval (2 to 3 Mb) on 

chromosome C05. In this region a high overrepresentation of trans-eQTL was found (16 cis-eQTL 

vs. 453 trans-eQTL). In general, for the A subgenome eQTL seem to be more evenly distributed, 

while for the C subgenome eQTL tend to cluster more often in hotspot regions. Similar patterns 

were observed for metabolite QTL (mQTL, (Figure S19 b), as well as for phenotypic QTL (Figure 

S19 c), but the hotspot regions were not identical. For phenotypic traits, pronounced  

co-localisation of QTL was observed on chromosomes A02, A03, C02, C03, C05, C06 and C09 with a 

notable hotspot of more than 150 QTL in a small region of chromosome C02. Regions with  

a particular high density of mQTL were observed on chromosomes A03, A05, C03, C06 and C08. 

However, in total, much fewer mQTL than phenotypic or expression QTL were detected due to the 

overall much lower number of traits. 

 

3.4.3. QTL co-localisation analyses across the three omics-layers 

Genome-wide association analyses were performed for all generated data sets. A total of 102,346 

marker-trait associations (MTAs) were detected with a p-value FDR ≤ 0.05 (Table 4). Co-localisation 

of associations was investigated between the three omics-layers of transcriptome, metabolome 

and phenome (including end-point biomass and growth rates; Figure 13 a). As the medians of PVE 

for these mQTL, eQTL and QTL were 1.41 %, 1.31 % and 1.37 %, respectively, and the median 

significant p-values FDR were in all cases around 0.01, in a first step associations were filtered for  
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p-values FDR ≤ 0.01 and PVE ≥ 2 %, and a co-localisation analysis was performed with the selected 

MTAs. Traits were regarded as co-localised when significant associations with the very same 

marker were detected. This threshold combination resulted in a total of 16 markers with  

co-localised mQTL, eQTL and QTL. Furthermore, different p-values FDR and PVE combinations were 

tested. The combination of PVE ≥ 5 % and p-values FDR ≤ 0.05 resulted in no co-localisation at all, 

while a filter with the thresholds p-values FDR ≤ 0.001 and PVE ≥ 1 % yielded a total of 9 markers 

with co-localising traits of the different omics-layers. Taking these results into account, the  

p-values FDR threshold was loosened to ≤ 0.05 and associations of all three sets were pre-filtered 

for PVE ≥ 2 %, resulting in 31,264 associations (n QTL = 4,667, n eQTL = 26,391 and n mQTL = 206).  

With these thresholds, at 32 markers co-localisation between all three omics layers were 

observed. As the number of quantitative traits analysed, in particular the number of transcripts, is 

higher than the number of markers used for the genome wide-association analyses, it is likely that 

co-localisation of traits might be found by random chance. To quantify the degree of random  

co-localisation, permutation analyses were performed. To this end, detected associations were 

randomly shuffled over all marker positions and the 95 % quantile was calculated and compared 

to the actual number of detected co-localisations. Under the assumption of a random and equal 

distribution of QTL over the whole genome, substantially more co-localised QTL were detected  

(n= 32), than expected by random chance (n= 13, Figure 13 b). 

 

Table 4. List of marker-trait associations for each data set at different significance levels 

Data set Number of 
traits 

MTAs at                  
p-value FDR  ≤ 0.05 

MTAs filtered for  
p-value FDR  ≤ 0.05 
and ≥ 2 PVE% d 

MTAs filtered for 
p-value FDR  ≤ 0.01 
and ≥ 2 PVE% d 

MTAs filtered for 
p-value FDR  ≤ 0.001 
and ≥ 1 PVE% d 

MTAs filtered for 
p-value FDR  ≤ 0.05 
and ≥ 5 PVE% d 

       
Metabolites (M) 154 n= 544 n= 206 n= 132 n= 106 n= 38 
       
Transcripts (T) a 19,479 n= 86,013 n= 26,391 n= 20,966 n= 19,659 n= 11,346 
       
Phenotypic traits (P) b 2,689 n= 15,770 n= 4,659 n= 2,786 n= 1,927 n= 778 
       
End-point biomass (P) 2 n= 19 n= 8 n= 6 n= 4 n= 4 
       
       
Co-localizations (T, M, P)    n= 32 n= 16 n= 9 n= 0 
       
Permutation threshold c    n= 13    
       

a filtered for median over all samples ≥ 5 tpm  
b including image-derived traits for 21 time points (6-27 DAS) and calculated relative growth / absolute change rates 
c estimated number of random co-localisations obtained by 10,000 permutations of the data set 
d estimated percentage of phenotypic variance explained by the genetic marker 
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Notably, the deletion marker ‘Bn-scaff_28509_1-p33495_del’, which is likely part of a larger 

deletion, co-localised with a hotspot of 153 eQTL (filtered by p-values FDR ≤ 0.05 and PVE ≥ 2 %) on 

chromosome C03 (position 26.6 Mb). Furthermore, this hotspot co-localised with an mQTL for 

glucose and six QTL for colour-related traits based on visible-light top view images. The deletion 

(‘Bn-scaff_28509_1-p33495_del’) was only detected in ten closely related lines. These lines display 

severely reduced transcript levels for many genes within the approx. 32 Mb large region  

(nearly 40 % of chromosome C03), confirming the large (potentially heterozygous) deletion or a 

series of deletions. Moreover, these lines display a significantly higher glucose level (Welch Two 

Sample t-test; p-value= 4.668e-07, Figure S20). In an attempt to prioritise the transcripts within 

the eQTL hotspot, correlations between transcripts and metabolites were used. For the transcripts 

within the eQTL hotspot no significant correlation to glucose could be detected. However, some 

genes were annotated with GO terms related to glucose metabolism (‘BnaA03g27500D’,  

a putative v-type proton ATPase subunit and ‘BnaC09g39650D’, a probable galactose-1-phosphate 

uridyltransferase) or response to glucose stimulus (‘BnaC03g37820D’, a putative phosphoglycerate 

kinase). Another co-localisation was detected for SNP marker ‘Bn-scaff_19244_1-p313887’  

on chromosome C01 (position 492 kb). This hotspot includes an mQTL for β-Alanine, 11 eQTL and 

another QTL for a colour-related trait. The highest correlated (r= -0.574) among the transcripts 

was ‘BnaC01g00550D’, encoding an alanine-glyoxylate aminotransferase. Another notable 

example is the deletion marker ‘Bn-scaff_19026_1-p369147_del’ on chromosome C03 (position 

36.3 Mb) including mQTL for fructose-6-phosphate, glucose-6-phosphate, sucrose and three 

metabolites of unknown structure, 44 eQTL forming a smaller hotspot and two QTL, one for a 

colour-related trait and one for the 'skewness' of the brightness values of the plant pixels 

(Figure 13 a). The highest correlated transcript within this hotspot (r= -0.5716) was 

‘BnaC03g39190D’, which is correlated with sucrose and annotated with the GO terms ‘response to 

sucrose stimulus’ and ‘response to fructose stimulus’. The transcript shows homology to the 

Arabidopsis gene AT3G15630 encoding a protein of unknown function. 

Focusing only on mQTL and eQTL, a total of 127 markers with co-localisations, 68 involving 

metabolites of known chemical structure, were identified. Among them are examples with clear 

links between metabolism and transcript function like ‘Bn-A04-p16744035_del’ linking mQTL for 

leucine and isoleucine to an eQTL of BnaA04g29360D, encoding a putative amino acid transporter 
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family protein, or ‘Bn-A06-p9119114’ linking an mQTL for valine to an eQTL for ‘BnaA06g15650D’, 

encoding a potential branched-chain-amino-acid aminotransferase, but also many other  

co-localisations with no obvious link between transcripts and metabolism. When broadening the 

co-localisation analysis to all QTL for biomass (FW) regardless of the explained phenotypic variance 

and filtered eQTL, eight markers with co-localised eQTL and biomass QTL were detected.  

Notably, among them were two transcripts (‘BnaA07g23560D’ and ‘BnaCnng17010D‘) with eQTL 

on chromosome C02 (deletion marker ‘Bn-scaff_16116_1-p487063_del’) that were also detected 

among the ten top-related transcripts in the network analysis with GENIE3. 

 

 

Figure 13. Co-localisation of marker-trait associations across the omics-cascade 

Panel a displays an example for QTL co-localisation across different omics-layers, including the 
transcriptome, metabolome and phenome. Associations were filtered for p-values FDR ≤ 0.05 and PVE ≥ 2 % 
prior to analysis. The genetic marker ‘Bn-scaff_19026_1-p369147_del’, a deletion on chromosome C03,  
was found to be associated with 6 metabolites, 44 transcripts and two phenotypic traits. Exemplarily shown 
are the Manhattan plots for the transcript of ‘BnaC03g39190D’ (top), the metabolite sucrose (middle) and 
the colour-related trait ‘top.intensity.vis.hsv.h.histogram.v_avg.bin.14.165_178’ at 23 DAS (bottom).  
HSV represents a colour model defined by Hue, Saturation and Value. The trait describes the average colour 
intensity derived by dividing the HSV hue by the HSV value of the 14th colour bin. The histogram in panel  
b shows the distribution of the maximum number of co-localisations, obtained from a permutation analysis 
with 10,000 iterations. The blue and the green vertical lines correspond to the determined number of 
random (0.95 quantile of the distribution; n= 13) and observed (n= 32) co-localisations, respectively. 
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3.5.  Strong temporal dynamics of QTL action on plant growth in canola 

A major challenge of plant biology is to unravel the genetic basis of quantitative (complex) traits. 

Taking advantage of recent technical advances in high-throughput phenotyping in conjunction 

with genome-wide association studies, genotype-phenotype relationships were elucidated at high 

temporal resolution. The following chapter is a revised version of the results and discussion part of 

the research article ‘Strong temporal dynamics of QTL action on plant growth progression revealed 

through high-throughput phenotyping in canola’ published in Plant Biotechnology Journal,  

May 24th 2019. 

 

3.5.1. Capturing of dynamic growth by high-throughput phenotyping 

The diverse spring-type canola breeding population consisting of 477 genotypes with ‘double-low’ 

seed quality (low erucic acid, low glucosinolate content), was investigated at an early vegetative 

growth phase. Automated high-throughput phenotyping was applied daily using the previously 

described IPK phenotyping platform for large plants (Junker et al., 2015), and image analysis was 

performed with the in-house image analysis pipeline (IAP) to derive estimations of growth related 

traits at multiple time points (Klukas et al., 2014). Examples of acquired raw plant images are 

provided in Figure S2. The following section focuses on the detailed analysis of a sub-selection of 

four growth-related traits, over the time course of the whole experiment. After quality checks, 

estimates of biovolume, projected leaf area, early plant height as well as colour uniformity were 

obtained for 21 consecutive time points from 6 to 27 DAS, covering approximately the first growth 

phase of rapeseed development from completely unfolded cotyledons to four or more unfolded 

leaves. All four traits showed broad phenotypic variation resulting in medium to high coefficients 

of variation (Data S3), with highest values for biovolume and lowest values for colour uniformity. 

Biovolume and projected leaf area displayed exponential increases over time, while early plant 

height increased in a linear manner. Colour uniformity increased during the first days, but 

remained at an almost constant level during the later phase (Figure S21 a-d). Image derived 

phenotypes were complemented by manually determined end-point fresh weight (FW) and dry 

weight (DW) values at 28 DAS (Figure S22 a). Both, fresh and dry weight were strongly correlated 

(r= 0.969, Figure S22 b) and highly correlated with the image-derived biovolume estimates at the 
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latest time point (27 DAS), with r= 0.929 and r= 0.926 for FW and DW, respectively (Figure S22 c-d 

and Data S9). These high correlations indicate that biovolume estimates can serve as a suitable 

proxy for the actual plant biomass. To assess the repeatability and quality of the phenotypic data, 

broad-sense heritabilities (H2) were estimated (Figure S14, Data S3). Over the whole experiment, 

H2 for image-derived phenotypes ranged between 0.528 (early plant height at 15 DAS) and 0.874 

(projected leaf area at 26 DAS). High H2 values of 0.895 and 0.878 were also obtained for fresh and 

dry weight, respectively, facilitating the temporal analysis of trait relationships and forming a solid 

basis for genetic analyses. 

 

3.5.2. Predominantly minor and medium effect QTL contribute to growth 

BLUEs of image-derived phenotype data for projected leaf area, estimated biovolume, early plant 

height and colour uniformity at 21 time points, as well as manually determined biomass (FW and 

DW) at 28 DAS were used for genome-wide association studies using Fixed and Random Model 

Circulating Probability Unification, implemented in the ‘FarmCPU’ R package (Liu et al., 2016).  

For manually determined biomass, 22 significant marker-trait associations (MTAs) were detected 

at a p-value (FDR) ≤ 0.1 (Figure 14 and Table 5), with thirteen and nine MTAs for fresh weight 

(Figure 14 a) and dry weight (Figure 14 b), respectively. This moderate p-value threshold was 

applied for comparability between QTL for end-point biomass and time-resolved traits.  

Despite the high phenotypic correlation (r=0.969), only three shared MTAs for FW and DW, one on 

chromosome A10 and two on C02, were identified.  

Genome-wide association analyses performed for data measured at all 21 time points with the 

moderate threshold (p-value (FDR) ≤ 0.1) revealed a total of 787 MTAs, including 191 associations 

for estimated biovolume, 200 MTAs for projected leaf area, 182 MTAs for early plant height, and 

192 MTAs for colour uniformity. A moderate p-value threshold was chosen in the first step, as 

subsequently another filter was applied to enrich for QTL of interest. There were no substantial 

differences in the number of associations between the A and the C subgenomes. The majority of 

detected associations could be attributed to unique, single-copy SNP markers (84 % of all 

associations). A substantial number of CNVs (deletions and duplications) also showed trait 

associations independently of the two SNP alleles (Grandke et al., 2017; Mason et al., 2017).  

To reduce the list to robust candidate regions, detected MTAs were further filtered to retain only 
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loci showing significant associations for at least three consecutive time points (Data S11).  

Most of the detected MTAs explained only a small percentage of phenotypic variance (< 5 PVE%, 

Figure S23) and were equally distributed over the subgenomes. Only 40 (3.8 %) marker-trait 

associations with larger effects (> 5 PVE%) were detected, for example Bn-A04-p4409752 

explaining up to 8.64 % phenotypic variance of biomass (fresh weight). 

 

Table 5. Information about markers associated with end-point biomass 

Trait Marker ID Chromosome Position (bp) MAF p-value p-value (FDR) Effect PVE% a 

fresh weight Bn-A04-p4409752 A04 5,462,587 0.4937 1.89E-08 0.0002 1.0762 8.64 

fresh weight Bn-A01-p7850092 A05 1,595,585 0.0430 8.62E-07 0.0028 -2.6757 4.01 

fresh weight Bn-A07-p9632473 A07 15,644,870 0.2715 1.05E-05 0.0191 -0.9127 5.07 

fresh weight Bn-A07-p5114831 A08 5,664,005 0.3637 5.54E-08 0.0003 0.9170 1.75 

fresh weight Bn-A08-p16771030 A08 26,455,071 0.2966 4.72E-09 0.0001 -1.2357 1.37 

fresh weight Bn-A10-p10672359 A10 10,601,845 0.3019 9.28E-06 0.0191 0.8144 0.02 

fresh weight Bn-A10-p13343454 b A10 12,120,357 0.2117 1.48E-07 0.0006 -1.1502 2.16 

fresh weight Bn-scaff_16116_1-p487063_del C02 25,078,453 0.0629 3.01E-05 0.0377 -0.8749 0.33 

fresh weight Bn-scaff_18702_1-p589589 C02 27,593,710 0.0639 8.45E-06 0.0191 -1.4439 1.21 

fresh weight Bn-scaff_16545_1-p862530 b C02 50,263,120 0.4874 1.05E-05 0.0191 -0.8823 1.51 

fresh weight Bn-scaff_21705_1-p175010 b C02 54,034,064 0.3344 1.60E-05 0.0261 0.8604 1.33 

fresh weight Bn-scaff_16200_1-p503123 C07 17,183,655 0.3176 2.52E-05 0.0342 1.5186 0.57 

fresh weight Bn-scaff_16197_1-p3022518 C08 41,613,071 0.2809 1.92E-05 0.0285 0.7434 0.44 

dry weight Bn-A04-p9426523 A04 13,935,829 0.1908 1.71E-05 0.0466 -0.0705 2.11 

dry weight Bn-A10-p11817272 A07 2,411,921 0.2002 1.63E-06 0.0066 -0.0755 4.85 

dry weight Bn-A10-p13343454 b, c A10 12,120,357 0.2117 3.05E-05 0.0709 -0.0623 3.56 

dry weight Bn-scaff_16804_1-p178142 C02 9,108,149 0.1122 1.07E-07 0.0009 -0.1186 5.08 

dry weight Bn-scaff_16545_1-p862530 b, c C02 50,263,120 0.4874 4.81E-05 0.0872 -0.0411 0.00 

dry weight Bn-scaff_21705_1-p175010 b C02 54,034,064 0.3344 4.03E-07 0.0022 0.0736 1.48 

dry weight Bn-scaff_21312_1-p895326 C03 11,220,963 0.0398 8.64E-09 0.0001 0.2735 5.91 

dry weight Bn-scaff_15766_1-p117110 C07 14,697,010 0.2904 6.13E-06 0.0200 0.1230 1.47 

dry weight Bn-A10-p10083397_del c C09 59,994,601 0.0273 3.70E-05 0.0755 0.1283 0.89 

a estimated percentage of phenotypic variance explained by the genetic marker 
b common marker-trait associations (MTAs) shared between fresh & dry weight 
c  p-value (FDR) ≤ 0.1 
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Figure 14. Genome-wide marker-trait associations for end-point biomass 

a Manhattan plot (left) and quantile-quantile plot (right) for fresh weight (FW) at 28 days after sowing 
(DAS). b Manhattan plot (left) and quantile-quantile plot (right) for dry weight (DW) at 28DAS. GWAS was 
performed in R ‘FarmCPU’ on BLUEs estimated using three replicates (carriers) with five plants each. 
Significant marker-trait-associations (MTAs) are shown with marker-IDs. MTAs with p-values FDR ≤ 0.05 or 
0.1 are indicated by red and orange dots, respectively. 

 

3.5.3. Identification of dynamic growth QTL in canola 

The time-resolved design of the phenotyping experiments enabled the tracking of the effects of 

individual markers over the course of 21 days of early growth between six and 27 DAS.  

In summary, 14, nine, four and thee MTAs for projected leaf area, estimated biovolume, early 

plant height and colour uniformity were detected to be significant at three consecutive days, 

respectively (Figure 15, Data S11). To further address the dynamic nature of these traits, relative 

growth rates (RGRs) for projected leaf area, estimated biovolume and early plant height, as well as 

absolute change rates (ACRs) for colour uniformity were calculated over 15 intervals of three days 

to integrate the effects over longer periods (Figure S21 e-f).  
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Figure 15. Dynamic associations detected during cultivation from 6 to 27 days after sowing 

GWAS was performed on BLUEs of a projected leaf area, b estimated biovolume, c early plant height and d 
plant colour uniformity in R / package ‘FarmCPU’. Different colours indicate markers with p-value (FDR) ≤ 0.1 
at three consecutive days, with the colour gradient corresponding to the temporal pattern. DAS denotes 
days after sowing. BLUEs were estimated using three replicates (carriers) with nine and five plants for 6 to 
13 DAS and 15 to 27 DAS, respectively. No data were recorded at 14 DAS due to sampling of shoot material. 
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Highest relative growth rates, especially for plant height, were detected at the beginning of the 

cultivation with a decreasing trend over time attributable either to an actual decrease in growth or 

to a bias due to overlapping leaves. Absolute change rates for colour uniformity were more stable 

than the relative growth rates during development. Growth rates were subsequently mapped with 

the same approach as the single time point data. Moreover, GWAS was successfully applied to 

RGR traits of multiple successive time intervals resulting in the detection of a total of 268 

significant marker-trait associations (MTAs). In summary, 100 MTAs for biovolume RGRs, 76 MTAs 

for leaf area RGRs, 73 MTAs for plant height RGRs, and 19 MTAs for the colour uniformity changes 

were detected for the individual intervals.  

To focus on particularly robust MTAs, the growth rate associations were further filtered for at 

least two consecutive significant intervals, as done previously for the per se traits at individual 

time points. For colour uniformity ACRs, no consecutive significant associations were found.  

Two MTAs for leaf area RGRs at intermediate growth intervals, four MTAs for biovolume RGRs 

distributed evenly over the entire examined growth period, and two MTAs for plant height at a 

very early phase were detected (Figure 16). Allelic effects of loci did not only increase and 

decrease with time, tending to diminish after a certain interval, but for a substantial fraction of 

MTAs (16/30 for per se trait MTAs and even 8/8 for RGR MTAs), allele effects reversed over time 

(Figure S24 and S25). 

 

3.5.4. Shared associations and novel candidate genes for growth dynamics 

Among the 36 identified markers displaying temporal dynamic patterns, nine were shared 

between different traits. In particular ‘Bn-A10-p13343454’ showed association with projected leaf 

area, estimated biovolume and early plant height, as well as with fresh weight and dry weight.  

The marker ‘Bn-scaff_21312_1-p895326’ was associated with projected leaf area, biovolume and 

dry weight, while ‘Bn-scaff_16804_1-p178142’ was shared between projected leaf area and  

dry weight. The other six SNP and CNV markers: ‘Bn-A02-p24543172_del’, ‘Bn-A04-p2218115’,  

‘Bn-scaff_15911_1-p571842’, ‘Bn-scaff_16361_1-p2350469’, ‘Bn-scaff_17831_1-p292580_del’ and 

‘Bn-scaff_20947_1-p146783_del’ were associated with both, projected leaf area and biovolume. 
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Figure 16. Dynamic associations detected for relative growth rates 

GWAS was performed on BLUEs of a relative growth rates for projected leaf area, b relative growth rates 
for estimated biovolume and c relative growth rates for early plant height in R / package ‘FarmCPU’. 
Different colours indicate markers with p-value (FDR) ≤ 0.1 at two consecutive intervals. DAS denotes days 
after sowing. BLUEs were estimated using three replicates (carriers) with nine and five plants for 6 to 13 
DAS and 15 to 27 DAS, respectively. No data were recorded at 14 DAS due to sampling of shoot material. 
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From these nine markers, a subset of five was selected based on the number of associations and 

traits for detailed analysis. Candidate genes were identified in the corresponding regions on 

chromosomes A04, A10, C02, C03 and C08 (Table 6, Figure S26) by an LD-based confidence 

interval approach. Genes were selected within LD blocks (r2 ≥ 0.6) as shown for candidate region 5 

on chromosome C08 (Figure 17), where the significantly associated marker ‘Bn-scaff_16361_1-

p2350469’ forms an LD block with four of its neighbouring SNPs. The block spans a region of 368 

kb and contains 72 genes, of which seven were selected as putative candidates based on their 

annotation: the citrate synthase CSY2; the MADS-box transcription factor SHP1; PAR2 involved in 

the brassinosteroid mediated signalling pathway; the pectinesterase PME35 implicated in cell wall 

modification; the bHLH transcription factor PIF5; the tetrapyrrole-binding protein GUN4 which 

regulates chlorophyll synthesis; and the flowering time control protein FPA also annotated to be 

involved in cell differentiation. In case of the absence of detectable LD, genes were selected in the 

100 kb flanking regions on either side of the significant marker as suggested by Zhou and  

Han et al. (2017). A comprehensive list of all thus identified candidate genes for all evaluated traits 

can be found in Data S6.  

Among the 361 genes in the intervals 1 to 5, 30 genes were selected as particularly interesting 

candidates based on their annotation and gene ontology (GO). Nine of these genes have 

annotations related to meristem development and cell growth, including Sepallata1 

(BnaA10g18480D), Longifolia1 (BnaA10g18650D), Squamosa promoter binding 3 

(BnaC03g18800D) and Shatterproof1 (BnaC08g29530D). Several other genes are putatively 

involved in flowering time or cell wall biogenesis and modification, or were annotated as 

transcription factors. Further examination of the associated markers of the five candidate regions 

revealed that the allele distribution differs between the three breeding pools: for example, for 

‘Bn-A04-p2218115’ the minor allele is underrepresented in breeding pool 2 and completely absent 

in breeding pool 3. In contrast, the minor allele of ‘Bn-scaff_21312_1-p895326’ is nearly absent in 

breeding pools 1 and 2, but although only present in the heterozygous state, is highly 

overrepresented in breeding pool 3. 
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Figure 17. Manhattan plot for a representative marker-trait association in the candidate region 5 

on Chr. C08 with selected candidate genes and correlations between markers 

The Manhattan plot describes the marker-trait associations for the candidate region 5 on chromosome C08.  
The trait ‘projected leaf area at 21 DAS’ is shown as a representative trait for the 14 traits associated with 
the marker ‘Bn-scaff_16361_1-p2350469’ (Data S11). The significant associated SNP is indicated by a red 
dot. Grey dots represent surrounding non-significant markers in the region. Please note that the FarmCPU 
GWAS method, which iteratively uses fixed and random effect models and pseudo QTN as covariates, 
results in a different appearance of the Manhattan plots. Significant associations are illustrated  
by ‘helicopters’ rather than ‘skyscrapers’, see materials and methods. For reasons of clarity and 
comprehensibility, the zoom-in of the candidate region was extended to the next flanking SNP markers  
(‘Bn-A04-p1895018’ and ‘Bn-A04-p2094818’). Red triangles indicate the positions of selected candidate 
genes (Table 6). The LD heatmap in the bottom section shows the correlations (r2) between surrounding 
SNP markers. The markers ‘Bn-scaff_16361_1-p2350469’, ‘Bn-scaff_16361_1-p2354073’, ‘Bn-scaff_16361_1-
p2400621’, ‘Bn-scaff_16361_ 1-p2401475’ and ‘Bn-scaff_16361_1-p2402567’ form an LD block (r2 ≥ 0.6). 
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4. Discussion 

Based on previous work on biomass and heterosis prediction in maize (Riedelsheimer et al., 

2012a) and the model crucifer and close Brassica relative Arabidopsis thaliana (Meyer et al., 2007; 

Steinfath et al., 2010), the study was built on the hypothesis that specific allelic combinations of 

regulatory genes, the gene expression of their targets, as well as elicited metabolite profiles, are 

associated with variation in vegetative growth and seed yield in hybrids. The study pursued three 

goals: first, to evaluate models for hybrid prediction in spring oilseed rape by using and combining 

information of multiple omics-layers; second, to relate vegetative growth to gene expression and 

metabolite content levels by correlation analyses; and third to perform genome-wide association 

(GWAS) and co-localisation studies to identify candidate genetic loci / genes associated with trait 

variation, in particular vegetative growth and biomass accumulation. 

 

For this purpose, a hybrid population with 950 hybrid lines had been established and evaluated in 

field trials. Complementarily, detailed phenotyping data were generated by growing the parental 

lines of the hybrids (475 diverse pollinators from a commercial canola breeding programme and 

two elite male-sterile tester lines), as well as selected hybrids in the IPK automated  

high-throughput non-invasive phenotyping platform (Junker et al., 2015). Image-derived trait data 

obtained at an early vegetative stage were complemented by polar metabolite and global 

transcriptome (RNA-Seq) profile data from the same individual plants. The extensive -omics data 

sets gathered from the parental lines were used individually and in combination for prediction of 

hybrid performance to evaluate if additional omics-information can be utilised to further improve 

genomic predictions. Two types of prediction methods were employed and compared, (genomic) 

best linear unbiased predictions (gBLUP) and reproducing kernel Hilbert space regression (RKHS). 

Furthermore, prediction of hybrid performance was broadened to data gathered from the 

glasshouse for a subset of hybrids and the extent of hybrid vigour (heterosis) was analysed.  

The comprehensive data sets generated were further utilised for correlation analyses, and in 

combination with array-derived SNP and CNV data for genome-wide-association studies (GWAS) 

to identify genetic loci associated with trait variation and candidate genes.  
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4.1. Generation of extensive -omics data sets 

Prior to this work, an F1 hybrid population with 950 hybrid lines had been generated and 

evaluated in extensive field trials for multiple agronomically important traits by the commercial 

project partners in the growing season of 2012. These experiments were designed as unreplicated 

nested field trials and were performed at eight different locations across Europe to test the 

hybrids under diverse environmental conditions. Each genotype was tested at three to four 

locations across Europe. This type of experimental design is common for commercial field studies 

of rapeseed, as it would be too expensive for the breeding companies to test all hybrid 

combinations in all environments. However, the same set of four reference lines (Achat’, ‘Osorno’, 

‘Mirakel’ and ‘DLE 1108’) was included in all field trials at all locations to compare and relate the 

different trials, to dissect the genotypic and the environmental components of trait variation, and 

to calculate BLUEs across the different field experiments.  

 

Multiple traits of agronomic importance were scored in the different environments. However, not 

all traits were consistently scored in all trials and in all environments, resulting in missing values 

within the entire data set. Traits of particular interest to the breeders were scored at multiple 

locations including seed yield, the content of total seed glucosinolate, the days to onset of 

flowering, the seed oil yield, seedling emergence, the seed oil content and the seed protein 

content. Seed yield was the only trait scored at all locations. Additional less replicated traits 

including Alternaria (Alternaria brassicae) and Sclerotinia (Sclerotinia sclerotiorum and S. minor) 

resistance, moisture content, standability, straw length, linolenic or oleic acid content were scored 

in a single or only few of the environments and therefore excluded from the subsequent analyses. 

The calculation of adjusted values (BLUEs) was necessary, as raw data showed location effects.  

In particular the traits seed oil yield, days to flowering and seedling emergence displayed a 

bimodal data distribution. BLUEs of the seven traits followed an approximate normal distribution 

(Figure 13), displayed moderate to high coefficients of variation (CV: 0.84 % to 20.82 %) and 

heritability (H2: 0.34 to 0.92) making the data suitable for the follow-up analyses.  

Substantial variation in flowering time has been previously described between different years 

(Wang et al., 2011a). Hence, differences in flowering time and seedling emergence between the 

different test locations across Europe with varying climate conditions were expected.  
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Moreover, the content of seed GSL has been shown to be largely regulated by environmental 

factors in rapeseed, and to be correlated with flowering time (Fu et al., 2015; He et al., 2018). 

 

Complementary to the agronomic traits recorded for the hybrids in the field, extensive -omics data 

sets for the 477 parental lines were generated. These data included array-derived genotype data 

(SNPs and CNVs), global transcriptome (RNA-Seq) profiles, polar primary metabolite (GC-MS) 

profiles, as well as detailed high-throughput image-derived phenotyping data. The population 

used in this study featured two characteristics, on the one side a reasonable size and diversity 

making it suitable for genome-wide association studies, and on the other side it constituted 

heterogeneous breeding material, including F3 to F6 lines, BC1F4 lines, open pollinated DH lines and 

elite lines, making results transferable to ongoing breeding programmes. However, in contrast to 

pure inbred lines, one disadvantage of the material is its complexity and high heterozygosity 

impeding genetic analyses. The STRUCTURE analyses indicated the presence of population 

structure. The three major clusters coincide to a substantial degree with the breeding pools, but 

many individuals show pronounced admixture. These results are consistent with the finding that 

breeding pools do not necessarily fully reflect the genetic structure of a population, especially if 

they are not yet firmly established and have only undergone very few cycles of diversifying 

selection. Given the ambiguous results of the STRUCTURE analyses, the explained phenotypic 

variance was considered in addition and the first four PCs (> 3 % explained variance) were 

incorporated in the GWAS analyses.  

 

The parental lines were genotyped using the Brassica Infinium 60k genotyping array (Clarke et al., 

2016; Mason et al., 2017) and genotype data for 19,674 SNP markers were obtained and further 

filtered to 13,201 unique, single-copy SNPs (MAF ≥ 0.01 and less than 10 % missing calls). Although 

SNP markers cover all chromosomes, marker hotspots, for example on chromosome C05, and 

larger monomorphic regions (without SNPs), e.g. on chromosome A06 (18.7 Mb), were detectable. 

The former might be due to the design of the array, e.g. by an unequal distribution of the oligo-

nucleotide probes across the B. napus genome. The latter can be attributed to the fact that the 

new B. napus cv. Darmor-bzh reference gene assembly (NRGene, assembly size of approx. 1,047 

Mb) used for the positioning of the SNPs most likely contains larger repetitive regions not included 
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in the previous Darmor-bzh v4.1 reference (Chalhoub et al., 2014, assembly size of approx.  

850 Mb). This notion is supported by the fact that the shorter reference sequence covered only 

79 % of the 1,130 Mb Brassica napus genome and included 95.6 % of Brassica expressed sequence 

tags (ESTs). In addition to single nucleotide polymorphisms (SNPs), copy number variation (CNV) 

and presence-absence variation (PAV) can provide complementary information, as they potentially 

show associations with phenotypic changes (Stein et al., 2017). In consequence, the genotyping 

data was also used to derive CNV markers using R and the ‘gsrc’ package (Grandke et al., 2017). 

The data analysis yielded 3,106 deletions and 4 duplications (Figure S27), additionally used as 

genetic markers for the subsequent analyses. Notably, a higher number of deletions relative to 

only a few duplications were detected, which is consistent with previous studies in canola  

(Cao and Schmidt, 2013; Zou et al., 2018), and a CNV hotspot was observed on chromosome C03 

for a set of ten related genotypes from an F6 generation. Although resequencing of genotypes or 

genotyping by sequencing (GBS) would have resulted in a substantially higher number of detected 

polymorphisms that could be used as markers to increase the resolution of the GWAS analyses, 

the array-based genotyping was the method of choice, in particular with respect to the  

cost-benefit-ratio, at the time the data were generated. The transcriptome data might have been 

used to call additional SNPs, but for this purpose the sequencing depth was not high enough.  

 

Plants were grown and phenotyped for a period of 21 days (from 6 to 27 DAS). Each of the 477 

genotypes was replicated as three pots with 9 individual plants to provide enough replicates to 

reach sufficient statistical power and sufficient plant material for subsequent analyses. Previous 

studies using the IPK phenotyping facilities analysed only individual or a few traits. Schilling et al. 

(2015) for instance analysed projected side-view convex hull area in rice. Muraya et al. (2017) 

focused on estimated biovolume and derived growth rates in maize. They reported high broad-

sense heritability values (0.71 to 0.81) for this particular trait, which is comparable to the finding in 

this study. Neumann et al. (2015) analysed multiple traits including biovolume estimates,  

plant height and compactness, and colour-based traits such as the average hue or the yellow to 

green ratio in barley plants using a drought stress scenario. In this study, comparably high H2 

values were reported. In a recent study, Pommerrenig et al. (2018) analysed 12 biomass-, 

architectural and colour-related traits obtained from the IAP image analysis pipeline in rapeseed. 
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In the present study, a total of 1,194 image-derived, mostly colour-related, phenotypic traits 

related to general plant morphology, plant colouration, static chlorophyll fluorescence and water 

content and dynamics were obtained and filtered to a core set of 123 traits for further analyses. 

The core set included in particular growth and biomass related traits such as plant height, area, 

volume and compactness estimates.  

 

To cope with environmental differences between experiments and ��� interactions, adjusted 

means (BLUEs) for each phenotypic trait across the different experiments were calculated.  

The phenotypic traits displayed varying patterns of heritability over the phenotyping time interval. 

While some traits had an overall high heritability at all days, some displayed low heritability values 

at earlier or later stages, respectively. These temporarily low heritability values might be 

attributed to technical and/or environmental bias at the particular time points, or difficulties to 

correctly estimate certain parameters, for instance the leaf number at a very early stage.  

Plant material was harvested at two time points: At 14 DAS four plants per pot were harvested for 

subsequent molecular analyses, and at 28 DAS the remaining five plants were harvested to assess 

end-point biomass (FW & DW). This early time point at 14 DAS has been chosen as previous 

studies had shown that data obtained at an early stage harbour important information that could 

be utilised for the prediction of hybrid performance (Riedelsheimer et al., 2012a). Moreover, the 

pilot GC-MS experiment described in this study yielded evidence that the earlier sampling time 

point results in more discriminative metabolite profiles than a later time point (28 DAS).  

Polar metabolites and total RNA were extracted from aliquots of the very same pooled plant 

material, sampled at 14 DAS, to derive closely related profiles that could be used effectively in the 

subsequent analyses. Due to a breakdown of the cooling system in the glasshouse during 

phenotyping experiment 1413RCM, higher temperatures during the first days of growth resulted 

in a faster growth of the plants and an advanced developmental stage compared to the other 

experiments (Figure S28). Notably, this bias did not negatively affect the calculation of the 

phenotypic traits as BLUEs as including experiment 1413RCM resulted in higher heritability values 

and a higher detection power for QTL compared to the situation when omitting these data (data 

not shown). This observation can most likely be attributed to the higher number of replicates and 

an effective correction of the environmental effect component by the mixed linear model.  
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In contrast, pooling of plants of different developmental stages could lead to biases in the 

transcriptome and metabolome data. Consequently, sample material from phenotyping 

experiment 1413RCM was omitted and only material of the three other phenotyping experiments 

(1419RCM, 1442RCM and 1447RCM) was pooled. This, however, results in a different number of 

plants per genotype (n= 4 to 12) that are represented in the pooled material.  

 

Polar primary metabolites were analysed by gas chromatography–mass spectrometry (GC-MS).  

In total 154 metabolites, 64 of known and 90 of unknown chemical structure were quantified. 

Although these few metabolites cover only a sub-fraction of the whole rapeseed metabolome, the 

detected metabolites include key substances of the primary metabolism. Among the detected 

metabolites were substrates of the TCA cycle, multiple amino acids, organic acids, sugars and 

sugar alcohols. Due to the high number of samples analysed, samples had to be measured in four 

GC-MS experiments over a period of several days. An explorative data analysis (PCA) of the raw 

data indicated measurement day effects (Figure S11 a). Consequently, batch-normalisation of raw 

data for the day of measurement was performed. In addition, normalisation according to sample 

weight adjusted for the exact amount of plant material used for metabolite extraction.  

An additional normalisation using the internal standards (L-Valine-d8 and L-Alanine-2,3,3,3-d4) was 

not performed as this increased the standard deviation in the pooled samples, which indicates a 

reduction in overall quality of the data. Nearly no metabolites in the negative controls and the 

clustering of the quality control pools in the centre of the PCA plot indicated that there were no 

substantial contaminations due to the metabolite extraction or issues with the analytical 

procedure. Notably, a partial separation of genotypes according to the breeding pools in the third 

PC indicated that also the polar metabolite profiles to some extent reflect the genetic differences 

between the pools. Four genotypes (‘Achat’, ‘Campino’, ‘MS1’ and ‘MS2’) were included in a 

higher replication, and their results indicated substantial, but metabolite specific, variation 

between the replicates (data not shown). Instead of analysing pooled material replicated samples 

for each genotype could have been analysed. However, this would have greatly increased the 

number of samples and costs of the experiment. A reduction in sample size by reducing the 

number of genotypes was also inadvisable as this would have drastically reduced the statistical 

power of follow-up analyses, in particular for the GWAS analyses. 
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Two RNA-Seq pilot experiments were performed. The first focused on the implementation of a 

data normalisation method using the ERCC RNA spike-in mix. Two genotypes (‘MS1’ and 

‘Campino’) were analysed with different dilutions (1:100; 1:1,000; 1:10,000) of the spike-in mix in 

the extraction buffer. However, the normalisation procedure was not applied for the main 

experiment, as the different spike-in RNAs were not correlated across samples (data not shown). 

The results of the second pilot transcriptome analysis (PCA and HCA, Figure S12) indicated that it 

was feasible to analyse pooled material from different phenotyping experiments. Moreover, a 

better separation of genotypes in a PCA analysis using only centred data, in which large expression 

values contribute more, compared to a PCA analysis with centred and scaled data, where only 

expression patterns matter, suggests that the highly expressed genes make a large contribution to 

the observed differences (data not shown). Total RNA was used to generate Lexogen SENSE 

mRNA-Seq Libraries that were sequenced on an Illumina HiSeq 2500 System. Raw data showed an 

overall good quality as indicated by the Phred quality scores. However, a fraction of 9 % of the 

reads could be mapped to ribosomal sequences, indicating that even after poly-A selection / 

ribosomal RNA depletion during the library preparation a substantial proportion of rRNA remained 

in the samples. In addition, 8 % of the reads map to organellar (chloroplastic and mitochondrial) 

sequences. A certain proportion of these reads may map to nuclear sequences that have been 

transferred from the organellar genomes to the nuclear genome during evolution (Bock and 

Timmis, 2008; Bock, 2017). Using the de novo annotated NRGene reference genome version, 

transcripts of 54,521 genes (43 % of all 126,667 genes) could be detected as expressed in the 

shoot tissue. This is comparable to what has been observed in A. thaliana (Tian et al., 2019). 

19,479 transcripts (15.38 %) were quantified at a median expression level ≥ 5 tpm across all 

samples and used for subsequent analyses. This is less in percentage, but is approximately the 

same number of genes that are expressed in Arabidopsis shoot tissue. Transcript data (tpm), which 

had been concatenated from the different sequencing runs for each genotype, were subjected to 

an explorative principal component analysis to derive an overview about the data structure of the 

477 samples. In the first two principal components, samples clustered in one main group and a 

smaller subgroup, which was not explainable by any population or design-based factors 

(Figure S29 a). For this reason, a separate mapping was performed, using all generated data files 

separately. The separated groups of samples could be traced back to two particular library batches 
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during library preparation (Figure S29 b). As it was not clear which transcripts and to which degree 

individual transcripts were affected by this bias, no further normalisation was performed, to avoid 

further bias in the data. Alternatively, subsequent analyses were performed with both, the data 

set including and excluding the affected library batches (see below).  

 

4.2. Omics-based hybrid prediction and potential applications in breeding 

Rapeseed is one of the leading oilseed-crops worldwide. Hence, breeding companies are 

interested in constant improvement of the agronomical performance of rapeseed cultivars.  

Since the late 1980s there has been an increasing proportion of hybrid rapeseed grown and 

nowadays hybrid plants dominate the rapeseed fields worldwide due to their superior 

performance (heterosis effect, Gehringer et al., 2007; Liu et al., 2018). For example, according to 

breeders’ information, on more than 80 % of Germany’s rapeseed acreage hybrid varieties are 

grown. Also, in Canada and China, two of the world’s most important producers of 

rapeseed/canola, predominately hybrid varieties are cultivated. However, for the development  

of new superior hybrids extensive and expensive breeding programmes are necessary.  

Hundreds of parental inbred lines have to be crossed and the F1 progeny needs to be evaluated in 

field studies over multiple locations (and years). This limitation was partially overcome by the 

introduction of genomic prediction, which allows to estimate the performance of hybrids based on 

genetic marker information of the parental lines. 

 

One main goal of this work was to evaluate if omics-based data sets gathered from the parental 

lines can be employed to effectively predict hybrid performance in the field and in the glasshouse. 

The hypothesis based on previous work in maize (Riedelsheimer et al., 2012b) and Arabidopsis 

(Meyer et al., 2007; Steinfath et al., 2010) was that integration of different sets of predictors 

(genotype data, transcriptome profiles and metabolite profiles) can improve prediction accuracies. 

To further this goal, extensive data sets for the 477 parental lines were generated and used 

individually and in combinations to fit best linear unbiased prediction (gBLUP) and Reproducing 

Kernel Hilbert Space (RKHS) models. The different -omics data sets comprised molecular markers 

(n= 13,201; single-copy SNPs), transcripts (n= 19,479; ≥ 5 tpm) and metabolites (n= 154). The polar 

metabolite profiles constituted by far the smallest set of predictors, but was comparable in size to 
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previous studies in Arabidopsis by Steinfath et al. (2010) with 181 metabolites, maize by 

Riedelsheimer et al. (2012a) with 130 leaf metabolites, Feher et al. (2014) with 112 root 

metabolites, or Westhues et al. (2017) with 92 leaf and 283 root metabolites, respectively. 

However, other studies in rice reported the use of 525 (Dan et al., 2016) or even 1,000 leaf and 

root metabolites (Xu et al., 2016) quantified by GC-MS or LC-MS approaches. Xu et al. (2016) also 

reported poor prediction accuracies when using only a subset of 100 metabolites compared to the 

full set of 1,000 metabolites. For the seven agronomic traits analysed in the present study, 

seedling emergence, seed yield, seed oil yield, seed protein content, days to onset of flowering 

(DTF), seed oil content and seed glucosinolate content (GSL), BLUEs were calculated to adjust for 

environmental effects and predictions were performed. Although it was possible to effectively 

predict hybrid performance in oilseed rape, prediction accuracies were strongly dependent on the 

trait heritability, the genetic complexity of the trait, and the quality of the input phenotype data, 

e.g. field data assessed at multiple locations and different environments in sufficiently high 

replication. Phenotypic traits of low heritability like seedling emergence (H2 = 0.34) or seed yield 

(H2 = 0.62) could only be predicted with low to moderate prediction accuracy, while traits with a 

high heritability like seed oil content (H2 = 0.90) and total glucosinolate content (H2 = 0.92) were 

predictable with high accuracy. The median prediction accuracies ranged between 0.25  

(seedling emergence) and 0.72 (GSL). This observation likely reflects the genetic complexity of the 

traits. Seed yield is known to be a highly polygenic trait heavily influenced by ��� interactions 

(Marjanović-Jeromela et al., 2011; Escobar et al., 2011). GSL content on the other side, although 

noticeably influenced by environmental factors (He et al., 2018), is assumed to be controlled by a 

core set of biosynthesis and degradation genes as well as regulators (Grubb and Abel, 2006; 

Halkier and Gershenzon, 2006; Ishida et al., 2014). In particular the genome and the transcriptome 

data showed a high predictive ability. Another observation was that also the number of predictors 

is likely an important factor that affects prediction accuracy because the metabolite data sets with 

the smallest number of predictors yielded the lowest prediction accuracies. The genotypic data set 

and the transcriptome data, both comparable in the number of predictors, yielded mostly 

comparable results. The transcripts provided approximately 6,000 more predictors than the 

molecular markers, but did not result in significantly higher prediction accuracies for most traits. 

These results indicate that with a certain number of predictors the largest part of the genome and 
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most causative genes and their effects are covered by the data set. This was also observed when 

including the CNV data into the predictive models did not increase prediction accuracies  

(data not shown). Hence only SNP data were used. 

 

The principal component analysis of the transcriptome data had indicated a bias due to library 

preparation. For this reason, predictions were performed with both, the full data set including 

data of the two biased libraries, and with a reduced data set excluding them from the analysis of 

transcript data. Full and partial exclusion of data for 89 genotypes and 15 genotypes, respectively, 

resulted in consistently lower prediction accuracies (Figure S30), most likely due to the resulting 

reduced statistical power. In case of best linear unbiased prediction models, transcript data as 

predictors yielded significantly higher prediction accuracies for GSL compared to genetic markers 

alone. Moreover, combinations of multiple omics-layers incorporating transcript profiles increased 

prediction accuracies for GSL to the same level. This indicates that biological information, 

potentially by posttranscriptional regulation like RNA-processing, in addition to regulation of 

transcription per se, is covered by the transcriptome that is not reflected by the genotype (SNP) 

data. Alternatively, genes affecting the GLS content might be covered insufficiently by the set of 

genetic markers used. Further stacking of -omics data sets as predictors had no additional positive 

effect. Hence, the initial hypothesis that the integration of additional transcriptome and 

metabolite profiles in the prediction models can increase prediction accuracies could only be 

supported partially. These observations are in accordance with a recent study in maize (Westhues 

et al., 2017) in which a trait-dependent increase of prediction accuracy was observed and leaf 

metabolites also yielded overall poor prediction accuracies. Similarly, Riedelsheimer et al. (2012a) 

reported prediction accuracies ranging from 0.6 to 0.8 for metabolites, which was on average 

6.7 % lower compared to SNP data. Also Zhao et al. (2015) reported in a study in wheat that 

integration of metabolomic data did not result in superior predictions for grain yield compared to 

genomic prediction. However, they integrated only a very small number of 35 metabolites in their 

predictive models.  

 

Genomic predictions are already in practical use by breeders since decades and have considerably 

advanced trait prediction over traditional pedigree-based BLUP, hence representing a well-
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established alternative to large numbers of test crosses. Although omics-based (transcriptomic) 

predictions have shown only an increase of prediction accuracies for the trait GSL in the present 

rapeseed population with the obtained data sets, they still might be beneficial for other species, 

traits or other populations. However, it can be concluded that genomic data, which represent the 

most cost-effective data sets used in this study, are in most cases and for many traits sufficient to 

effectively predict hybrid performance. A recent study in semi-winter rapeseed demonstrated that 

already low-density marker sets comprising a few hundred to thousand markers enable high 

prediction accuracies in breeding populations with long-range LD (Werner et al., 2018). 

 

Beside best linear unbiased prediction (gBLUP) models, reproducing kernel Hilbert space 

regression (RKHS; Gianola and van Kaam, 2008), which in contrast to gBLUP is at least partially able 

to exploit additive × additive epistatic effects among markers, was employed for prediction of 

hybrid performance. In direct comparison to gBLUP models, the usage of RKHS could substantially 

improve (up to 5.5 % in case of seed coil content) the prediction accuracies for multiple agronomic 

traits, including seed yield, oil yield, seed protein content and oil content. A major role of epistasis 

influencing rapeseed yield was revealed (Luo et al., 2017a) and it was shown that epistasis, 

together with heterozygous loci, plays an important role in yield heterosis (Radoev et al., 2008). 

Epistatic interactions of loci, especially additive x additive epistasis, accounting for a high 

proportion of variance were also described for a number of yield-related traits in rapeseed, 

including biomass yield, flowering time, plant height, branch number, harvest index, seed oil 

content and seed protein content (Zhao et al., 2006; Shi et al., 2011; Li et al., 2012; Würschum et 

al., 2013). Dominant effects, on the other side, were found to account only for a small proportion 

of variance (Shi et al., 2011). Notably, clustering of both, QTL and epistatic interactions in several 

chromosomes was observed. However, both individual QTL and epistatic interactions explained on 

average < 10 % of PVE, and as only two epistatic interactions of seed yield in different 

environments were detected, Shi and colleagues suggested that epistatic interactions of yield-

correlated traits are extremely sensitive to the environmental variation. For the other four 

phenotypic traits, seedling emergence, days to flowering and total seed GSL, no statistically 

significant improvement could be observed in the present study. Interestingly, RKHS was in no 

case inferior to gBLUP, indicating that for some of the agronomic traits epistatic interactions 
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contribute to trait manifestation. However, these observed differences were in most cases only 

subtle compared to differences observed between different traits indicating that the trait 

heritability, the genetic complexity of the traits, and the quality and size of input phenotype data 

are more important than the prediction model, as previously reported by Werner et al. (2017). 

Nevertheless, RKHS or other models incorporating non-additive / epistatic effects like EGBLUP 

(Jiang and Reif, 2015) or Bayesian models (Meuwissen et al., 2001; Habier et al., 2011; Yang and 

Tempelman, 2012; Werner et al., 2017; Fikere et al., 2018) constitute for some traits a valuable 

alternative to gBLUP to predict hybrid performance. In addition to the prediction of agronomic 

traits obtained from the field trials, it was also possible to predict hybrid biomass and growth-

related traits for the subset of 120 hybrids (only 13 % of the whole set of hybrids) grown under 

controlled conditions in the glasshouse. Prediction accuracies of 0.62 and 0.66, which is in the 

range of the prediction accuracies obtained for the agronomic traits from the field, were achieved 

using a combination of all available predictors (G+T+M) for FW and DW, respectively. 

Unfortunately, no direct comparisons between the predictability of field and glasshouse derived 

data was possible as no common traits were available. Prediction accuracies for biomass 

accumulation were highest for models including molecular markers (SNPs) and lower for the 

models using transcriptome profiles, metabolite profiles or a combination of both (Figure S15). 

These results are in contrast to what has been described in maize (Westhues et al., 2017; Schrag et 

al., 2018) where a set of 1,323 array-derived gene expression profiles showed excellent 

performance in the prediction of dry matter yield. Notably, metabolites yielded substantially 

higher prediction accuracies as predictors for biomass, assessed in the glasshouse, than for the 

agronomic traits from the field trials (Figure 6; Figure S15). However, further analyses are needed 

to dissect whether the differently sized and structured data sets and/or different growing 

conditions affect the prediction accuracies. Furthermore, it should be considered that the hybrids 

analysed in the glasshouse comprise only 120 selected lines and that both, metabolites and plant 

biomass are affected strongly by the environment. 

 

Similar to end-point biomass, projected leaf area and estimated biovolume could be predicted at 

several time points. Prediction accuracies were relatively low for early time points, but increased 

over time and reached saturation at a value of approx. 0.6 for both traits. This observation may 
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reflect maternal effects in the earlier phases of plant growth and/or environmental effects during 

seed establishment, while the effects diminish as soon as plants establish new leaves and the shift 

from drawing nutrients released from the storage tissue to own photosynthesis occurs, as 

observed in Arabidopsis seeds and young seedlings (Meyer et al., 2012). Alternatively, a high 

dispersion of data or an inaccurate registration of the features in the early phase might explain the 

low prediction accuracy at early time points. A general collinearity of prediction accuracies and 

trait heritability values seems not to be present, as projected leaf area and estimated biovolume 

show high heritability at early time points and changes follow a different trend (Figure 5; Data S3).  

 

The parental lines, and a selection of hybrids in a separate experiment, were grown under 

comparable conditions and phenotyped for the same traits in the same way, which allowed the 

estimation of heterosis. For a selection of phenotypic traits (fresh weight, dry weight, projected 

leaf area and estimated biovolume) mid- and best-parent heterosis values were calculated.  

High heterosis was observed for end-point biomass, ranging from -39.56 to 41.25 % for FW and 

from -32.66 to 45.06 % for DW, respectively. Similarly, high mid-parent heterosis values were 

observed for growth-related traits. As previously found in Arabidopsis (Meyer et al., 2004) MPH 

values for all four traits were mostly positive (Figure 8) and already detectable at early stages of 

development. Hybrid FW was overall only moderately correlated with the FW of the parental 

pollinators (r = 0.48). Substantial differences in this correlation were observed when grouping the 

hybrids into ‘good’ (r = 0.62) and ‘bad’ (r = 0.21) with respect to their seed yield in the field trials, 

indicating that there is a link between the per se performance of parental lines and biomass for at 

least a subset of the hybrids. Furthermore, these findings and the positive correlation between 

hybrid seed yield and hybrid biomass (r = 0.52) indicate that there is a link between biomass 

production and seed yield in canola, which is in concordance with previous studies (Basunanda et 

al., 2010; Zhao et al., 2016). Moreover, this relationship could be confirmed by a significant effect 

of the male-sterile mother lines. Hybrids with MS1 as female parent, which displayed significantly 

higher biomass than MS2, produced overall larger plants in comparison to hybrids originating from 

crosses with MS2. In addition, candidate genes identified by the correlation of the transcript data 

with leaf area and biovolume MPH displayed substantially higher correlations for hybrids from the 

MS1 than for the MS2 subset. This might be attributed to beneficial genetic determinants in MS1 
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compared to MS2, a higher general combining ability (GCA) or cytoplasmic effects. There must be 

specific interactions (epistasis) between the identified genes and factors in MS1 and/or MS2 that 

are not or at least rarely present in the parents. Another potential explanation are negative 

epistatic effects, e.g. the functions of genes that negatively affect growth are suppressed in the 

hybrids by factors from MS1 or MS2. However, for the three afore-mentioned transcripts that 

were highest correlated with estimated biovolume MPH, projected leaf area MPH or end-point 

biomass MPH, no significant correlations (|r| ≥ 0.3) with growth-related traits in the parent were 

determined. Causative polymorphisms within the genes or in regulatory elements need to be 

identified and substantial differences in expression levels between MS1 and MS2, as observed for 

the transcript of ‘BnaCnng47650D’, need to be verified by additional experiments. The two  

male-sterile lines had originally been selected for the generation of male-sterile testers, as they 

represent two subgroups of the breeding pool 1. Such heterotic pools with genetically different, 

less related parental genotypes are an important prerequisite to exploit heterosis in hybrid 

breeding. However, in oilseed rape such heterotic groups (Melchinger and Gumber, 1998) are not 

yet well established and genetic diversity is not as broad (Qian et al., 2007; Rincent et al., 2014) as 

for instance in maize, with the flint and dent pools and the stiff-stalk and non-stiff-stalk heterotic 

groups within the dent pool (Younas et al., 2012; Liu et al., 2019). This can be attributed in 

particular to a less intensive and shorter breeding history of canola compared to maize  

(Chalhoub et al., 2014; Hu et al., 2019). However, (semi)-resynthesised B. napus can be used to 

increase genetic diversity and to develop new heterotic gene pools that may harbour the potential 

for the development of new hybrid cultivars (Girke et al., 2012; Zou et al., 2018; Szała et al., 2019). 

Using the best- and mid-parent heterosis values as quantitative traits for prediction resulted only 

in low to moderate prediction accuracies, highlighting the complexity of heterosis. This outcome is 

to some degree expected, as heterosis is the difference between the better parent (BPH) or mid-

parent value (MPH) and the hybrids. These values are smaller than the per se hybrid performance 

and much more affected by the dispersion of both (parental and hybrid) values and potential 

measurement errors. Candidate genes for biomass heterosis could be identified by correlative 

approaches, although only weak to moderate correlations between individual features were 

detected. One candidate gene ‘BnaCnng47650D’ on chromosome C09 was deemed to be 

particularly interesting. Its Arabidopsis homolog (AT5G22090) encodes a FANTASTIC FOUR-like 
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protein (FAF) which is putatively involved in regulation of the shoot meristem size by modulating 

the CLAVATA3- WUSCHEL feedback loop (Wahl et al., 2010). Experiments with FAF overexpressing 

lines indicated that the FAF proteins can repress WUSCHEL, which ultimately leads to an arrest of 

meristem activity and a marked reduction of meristem size. This finding is consistent with the 

hypothesis that meristem size may influence final leaf area due to variation in the number of 

founder cells recruited to form the leaf initial (Gonzalez et al., 2012). It is conceivable that 

meristem size and genes associated with meristem activity may also play a role in the regulation of 

vegetative growth and the establishment of biomass heterosis. 

 

4.3. The Brassica subgenomes contribute differently to biomass accumulation 

As a first step, more than 55 million pair-wise Pearson correlations, were performed between the 

traits from the different -omics data sets (polar metabolites, n = 154; transcripts, n = 19,479 and 

phenotypic traits, n = 2,691). These analyses yielded 532 significant pairwise correlations between 

transcripts and phenotypic traits, 331 correlations between metabolites and transcripts and  

22 correlations between metabolites and phenotypic traits (|r| ≥ 0.4 and a p-value FDR ≤ 0.05), 

respectively. Comparing correlations between the different data sets, the transcripts and 

metabolites data sets yielded above average and by far the highest correlations. This might be 

attributed to the close link between the transcriptome, in particular for enzyme encoding genes, 

and the metabolome that represents an interface for gene-environment interactions and which is 

commonly seen as the closest link to the observable phenotype differences (Pinu et al., 2019). 

Many of the highest correlations for metabolites of known chemical structure include genes that 

are annotated to be involved in related pathways (e.g. enzymes), as shown for example for 

sucrose and ‘BnaC03g39190D’ annotated with the gene ontology term ‘response to sucrose 

stimulus’, or β-Alanine and ‘BnaC01g00550D’ encoding a putative aminotransferase. Although only 

few correlations between polar metabolites and phenotypic traits were detected and correlations 

between transcripts and phenotypes (restricted to biomass and growth-related traits) were mostly 

low, the correlation analyses and the network analysis using GENIE3 yielded some interesting 

candidate genes like ‘BnaA07g21340D’ encoding a putative auxin efflux carrier family protein, 

‘Bra000292’ putatively involved in cell wall organization, or ‘BnaC07g05770D’, a peroxidase 

(PER64) involved in stem lignification. Moreover, a potential link between biomass production and 
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the structural constituents of ribosomes and differences in translation could be identified that are 

worth investigating in follow-up studies. 

 

Another main finding was the observation that the biomass accumulation of the canola lines could 

be related to global differences in their transcriptomes. An explorative principal component 

indicated a clustering of genotypes in the fourth PC separating them into lines with overall higher 

and overall lower early biomass production (Figure 9). Notably, this clustering also coincided with 

the affiliation of genotypes to the breeding pools. Lines from breeding pool 1 displayed an overall 

lower biomass accumulation than lines originating from the breeding pools 2 and 3.  

A gene ontology (GO) term enrichment analysis using the loadings (negative and positive 

separately) of PC4 was performed. The analysis indicated an overrepresentation of genes 

involved in biosynthetic processes and gene expression in the negative loadings, and cellular 

biosynthetic processes, cellular metabolic processes, generation of precursor metabolites and 

energy and proton transport in the positive loadings. The term ‘translation’ was found to be 

enriched in both, negative and positive loadings. This finding is in line with the results from  

the network analysis. Similar results were also obtained from the pilot experiment  

(GO term enrichment and MapMan analyses) where two genotypes (‘Pol 229’, breeding pool 1, 

low biomass; and ‘Pol 419’, breeding pool 3, high biomass) were analysed. Differentially expressed 

genes (DEGs) with a potential function in protein biosynthesis were enriched in ‘translation’  

(GO: 0006412) between the two lines. Previous findings in Arabidopsis showed that growth is 

associated with ribosome number and polysome loading (Piques et al., 2009; Pal et al., 2013; 

Czedik-Eysenberg et al., 2016), and that growth rates are negatively correlated with protein 

turnover (Ishihara et al., 2017). Moreover, enrichment in photosynthesis and light reaction was 

observed for ‘Pol 419’, the genotype with higher biomass production. Another observation was 

that the A and C subgenomes differed in their influence on biomass accumulation. Already in the 

analysis of differentially expressed genes (DEGs) in the pilot study, a tendency towards a higher 

contribution of genes from the A subgenome was observed in the genotype ‘P419’  

(higher biomass), while the genotype ‘Pol 229’ (low biomass) showed a rather balanced ratio of 

the two subgenomes. This tendency could be confirmed by the results of the PCA analysis, where 

the top positive loadings (direction of higher biomass) comprised significantly more transcripts 
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from the A subgenome. The reverse situation was observed for the negative loadings (direction of 

lower biomass) including significantly more transcripts from the C than from the A subgenome. 

This does not necessarily imply that in general a higher expression of the A subgenome is 

associated with higher biomass production, but rather particular classes of genes with a difference 

in expression. However, the observed differences might also be attributed to the unique nature of 

the breeding population. This study included, besides many spring-type rapeseed lines, also lines 

derived from crosses with ‘exotic’ material. Among others, germplasm of the diploid progenitor 

genomes was included in the breeding programme by marker-assisted introgression. Moreover, 

crosses between spring-type and winter-type rapeseed were performed and exotic, genetically 

distant gene pools were utilised to facilitate the development of new heterotic pools within 

adapted germplasm. Previous studies reported different contributions from the two subgenomes 

to the transcriptome of B. napus (Higgins et al., 2012; Wu et al., 2018). In a resynthesised B. napus 

approximately one-third of the expressed gene pairs displayed an expression bias with a slight 

preference towards the A subgenome (Wu et al., 2018). Another study described that partitioning 

of homeolog gene expression is largely established in B. napus with patterns of both genome 

dominance and genome equivalence, but with the absence of significant bias toward either 

subgenome (Chalhoub et al., 2014). In this study, the A and C homeologs contributed similarly to 

gene expression for 17,326 (58.3%) of the gene pairs. In case of the remaining gene pairs (41.7 %), 

either the A or the C homeologs showed higher expression. However, differences between the 

subgenome contributions may occur in a developmental or tissue specific manner, as shown by 

Chalhoub et al. (2014), and also for other species (Zhang et al., 2015; Liu et al., 2015b).  

The findings in the present study highlight the important role of translation for biomass 

accumulation. Moreover, the differences in the contributions of the Brassica subgenomes to 

biomass production might be utilised to selectively optimise line performance and to boost future 

breeding programmes. To further this goal, additional in-depth analyses of differentially expressed 

candidate genes and the transcripts comprising the top loadings of PC 4 are necessary. 

 

4.4. Association analyses and regions with effect on different -omics layers 

A major challenge of plant biology is to unravel the genetic basis of quantitative (complex) traits 

and the underlying molecular mechanism. Phenotypic data and molecular data were used in 
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combination with array-derived genotype data for genome-wide association studies (GWAS), as 

well as in correlation analyses to link phenotypic and molecular traits, focusing in particular on 

vegetative growth and biomass accumulation.  

 

Using the different -omics data sets, thousands of individual associations were detected by the 

genome-wide association studies using Fixed and random model Circulating Probability Unification 

(Liu et al., 2016) at a p-value FDR ≤ 0.05. Compared to generalised linear model (GLM) and mixed 

linear model (MLM) approaches, this method features a low rate of false positive associations and 

a fast runtime, which, in combination with parallelization, allows the analysis of multiple 

phenotypic traits in a reasonable period of time. Although relatively new, the method was already 

applied successfully in several different studies, for example to identify genetic loci for drought 

tolerance in maize (Li et al., 2016c), plant height in maize (Hu et al., 2017), salt tolerance in 

cowpea (Ravelombola et al., 2017), seed traits in soybean (Wang et al., 2018a), or tolerance to 

pre-harvest sprouting and low falling numbers in wheat (Martinez et al., 2018).  

 

In summary, 15,789 QTL for 2,691 phenotypic traits (individual traits at 21 days, growth rates and 

end-point biomass), 86,013 eQTL for 19,479 transcripts (≥ 5 tpm) and 544 mQTL for 154 polar 

metabolites were identified. Most QTL in relation to the number of traits were detected for the 

phenotypic data set, with at least one QTL for 80 % of all traits, followed by the transcript data 

(75.4 %) and the metabolite data set (66 %). However, the average explained variance for eQTL 

(3.1 %) and mQTL (2.2 %) was higher than for the phenotypic QTL (1.8 %). Notably, 7.4 % of  

eQTL explained more than 10 % of PVE compared to 2 % for mQTL and only 0.5 % for the 

phenotypic QTL, indicating that transcript variation is at least to some degree controlled by a 

combination of larger effect and small effect loci. Metabolite variation and in particular 

phenotypic trait variation, on the other hand seem in most cases to be controlled by many small 

effect loci. Most associations were observed for SNP markers, but a substantial proportion of 

deletions were found to be associated with phenotypic trait variation, for example the deletions 

on chromosome C03. This is consistent with previous studies that showed that in particular 

segmental deletions caused by widespread homoeologous exchanges (Samans et al., 2017; 

Hurgobin et al., 2018) were associated with trait variation (Qian et al., 2016; Schiessl et al., 2017; 
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Stein et al., 2017; Hatzig et al., 2018). However, the number of associations with deletion markers 

is surprisingly high. In some cases, traits display dozens to more than a hundred associated CNV 

markers at a particular chromosome like the trait ‘yellow to green ratio’ at 23 DAS with 410 

associated deletion markers on chromosome C03. These may indicate one or multiple larger 

deletions (see Figure S27), as groups of CNV markers are highly linked and map to large regions. 

Hence, in such cases the focus should first be placed on the highest significantly associated 

deletion markers in the particular regions, second taking the entire potentially deleted regions 

into account for a candidate gene search. As groups of deletion markers associated with particular 

traits were also found to be interspersed with SNP markers not associated with this trait, it  

will be important to determine whether other chromosomal rearrangements rather than  

(potentially heterozygous) deletions may be causal for these observations. In this work CNV 

markers were partitioned into deletion and duplication markers. The impact of this partitioning on 

the GWAS results needs further in-depth analysis and verification in order to assess its effect. 

Deletion markers yielded on average slightly more PVE than SNP markers (3.24 % vs. 2.83 %),  

as expected as they often cause more severe changes in the DNA sequence than point mutations. 

The eQTL were classified in either cis- or trans-eQTL, whereby nearly eight times more trans-eQTL 

than cis-eQTL were identified, which is substantially higher that in a previous QTL mapping study 

by Li et al. (2018a), but comparable to what has been reported in soybean (Bolon et al., 2014).  

The cis-eQTL contributed a substantially higher percentage of explained phenotypic variance. 

However, the numbers of cis- and trans-eQTL and hence the attributed variances might be slightly 

biased due to the applied definition by size (500 kb or 1 Mb), potential shifts or errors in the 

genome annotation, or mix up homologous and/or homeologous genes. Moreover, it has been 

shown that QTL mapping in small to moderate populations were underpowered to detect QTL 

with small effects, resulting in a substantial overestimation of the effects of large QTL  

(the so-called ‘Beavis effect’; Xu, 2003). With increasing size and power of QTL mapping 

experiments, large-effect QTL were often shown to fractionate into many, closely linked QTL with 

smaller effects (Ingvarsson and Street, 2011). Often, alleles of adjacent small-effect QTL  

have opposite effects as shown in a study on growth rate in A. thaliana (Kroymann and Mitchell-

Olds, 2005).  

 



Discussion 

101 
 
 

Previous studies described an unequal distribution of eQTL across the genome (Kliebenstein, 2009; 

Fu et al., 2009; Li et al., 2013a, 2018b; van Muijen et al., 2016) and mQTL hotspots (Schauer et al., 

2006; Joosen et al., 2013; Alseekh et al., 2015; Wen et al., 2015; Knoch et al., 2017) in various 

species. As previously described, QTL were found to be unevenly distributed across chromosomes 

and chromosomal positions. Regions depleted in QTL as well as regions with a substantial 

overrepresentation of QTL (hotspots) were detected for all data sets. In the A subgenome, eQTL 

seem to be more evenly distributed than in the C subgenome where they more often tend to 

cluster in hotspots. Similar patterns were observed for the mQTL and phenotypic QTL, but 

hotspots did not or only partially overlap between the sets. Fewer and less pronounced mQTL 

hotspots were found compared to the phenotypic or expression QTL, which can most likely be 

attributed to the overall much lower number of analysed features. Although different hotspots for 

the different sets were observed, the general QTL density seems to follow the gene density,  

as illustrated by Chalhoub et al. (2014). It has been hypothesised that the observation of clustered 

QTL could be explained by master regulating factors, like transcription factors, influencing  

the expression of various downstream targets and hence ultimately affecting trait variation  

(Lisec et al., 2008). 

 

To identify potential links through the different omics layers a co-localisation analysis for traits of 

the different omics-layers was performed. As many more QTL were detected than markers were 

used for the GWAS analysis, in particular many eQTL, stochastic co-localisations between 

phenotypic QTL, eQTL and mQTL should be expected. For this reason, a permutation approach was 

applied to estimate the number of co-localisations that might be expected by random chance.  

The observed number of 32 markers with co-localisation between all three omics-layers is much 

higher than the estimated threshold of 13 markers obtained from the permutation analysis. 

However, this number might still be biased as an equal distribution of QTL over the genome was 

assumed. Several interesting candidate links between the omics-layers were observed.  

For example, the deletion marker ‘Bn-scaff_28509_1-p33495_del’ coincided within a hotspot of 

153 eQTL on chromosome C03 (position 26.6 Mb). Notably, ‘Bn-scaff_28509_1-p33495_del’ is 

likely part of a larger deletion, which was only detected in a narrow, related subset of genotypes 

(see Figure S27). This potential large deletion spans a region of approx. 12.8 Mb (from  
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‘Bn-scaff_27881_1-p15080_del’ to ‘Bn-scaff_18917_1-p472625_del’) and likely affects more than 

1,800 putative genes. The eQTL hotspot further co-localised with an mQTL for glucose and six QTL 

for colour-related traits. Co-localisations were used in combination with the correlations to 

prioritise candidate genes. In this way, another region on chromosome C01 (position 492 kb) could 

be linked to changes in the abundance of β-Alanine, a stress-related compound (Parthasarathy et 

al., 2019), the expression of the transcript of ‘BnaC01g00550D’, encoding an alanine-glyoxylate 

aminotransferase and changes in plant colour intensity. Moreover, the deletion marker  

‘Bn-scaff_19026_1-p369147_del’ on chromosome C03 (position 36.3 Mb), which is likely part of 

the same large deletion mentioned above, could be linked to sugar metabolism, a transcript 

(‘BnaC03g39190D’) annotated with response to sugar stimuli and changes in a colour-related trait. 

In cases of genes encoding enzymes or transporters, which can directly affect the abundance of 

metabolites, a correlation between the transcript and the metabolite, as well as co-localisation of 

mQTL and eQTL is likely (Brotman et al., 2011). This notion is confirmed for example by the co-

localisation of an mQTL for amino acids and a cis-eQTL coinciding with a gene encoding a putative 

amino acid transporter protein. Moreover, an mQTL for valine and an eQTL corresponding to a 

potential branched-chain-amino-acid aminotransferase were co-localised. However, for many 

other co-localisations it was not possible to find a direct link between metabolites and transcripts 

using their gene annotations. The interpretation of the results may be complicated by an 

incomplete genome annotation and homology-based functional characterisation of the NRGene 

Darmor-bzh reference genome assembly. In addition, the incomplete coverage of the 

transcriptome with only 15.38 % of all B. napus genes quantified at ≥ 5 tpm in the sampled tissue / 

at the analysed time point may hamper the interpretation of the results as relevant genes, for 

instance low abundant transcription factors, might have not been covered. A deeper RNA-

sequencing analysis might have been beneficial, but would have increased the sequencing costs 

disproportionately. 

 

In concordance with previous studies (Wu et al., 2016a; Zhou et al., 2017b), a faster LD-decay was 

detected in the A subgenome (half decay of approx. 400 kb) compared to the C subgenome  

(half decay of approx. 3.9 Mb). The large LD blocks and a long-range LD decay especially in the  

C subgenome increase the number of potential candidate genes. The multiple larger genomic 
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regions of high LD (R2 > 0.6), especially in the C-subgenome, possibly reflect regions that were 

preferentially selected or recently introgressed by breeders, or indicate the presence of larger 

structural variations within the population compared to the reference genome. Another limiting 

factor is that the metabolome and transcriptome was analysed only at a single time point.  

Only a fraction of genes is expressed at certain time point or in a certain tissue (Chan et al., 2016; 

Wan et al., 2017). Hence, it might be difficult to elucidate the complex and time-dependent 

interactions underlying traits like plant growth (Ni et al., 2009; Farré, 2012). In particular growth 

and biomass accumulation are highly complex polygenetic traits (Gonzalez et al., 2012; González 

and Inzé, 2015) that are affected by various different pathways and environmental influences 

(Lima et al., 2017; Elferjani and Soolanayakanahally, 2018). As various different gene functions 

might have an impact on growth, it is difficult to prioritise genes by their annotation.  

Nevertheless, the analyses including the network analysis using GENIE3 pointed to candidate 

genes potentially associated with biomass production like ‘BnaA07g23560D’ and 

‘BnaCnng17010D‘, both putatively encoding for serine hydroxymethyl-transferases which had 

been associated with photorespiration (Jamai et al., 2009). Notably, there are associations of 

candidates genes related to biomass accumulation identified in the present study and candidate 

genes identified in the study on growth dynamics in maize by Muraya et al. (2017).  

In the present study, ‘BnaC02g08760D’, the B. napus homolog of the Arabidopsis AT5G19510, 

described as encoding a ‘translation elongation factor EF1B/ribosomal protein S6 family protein’ 

was identified as negatively correlated with biomass and leaf area. Muraya et al. (2017) identified 

a functionally closely related protein (both involved in translational elongation), 

‘GRMZM2G029559’ the maize homolog of AT1G09640, described as ‘translation elongation factor 

EF1B gamma chain’ as candidate affecting biomass accumulation. Moreover, both studies 

identified purple acid phosphatases among candidate genes, GRMZM2G138698 the maize 

homolog of the Arabidopsis PAP27 (AT5G50400) by Muraya et al. (2017) and ‘maker-scaffold124-

snap-gene-8.174’ with homology to the Arabidopsis PAP18. Despite the obstacles mentioned 

above, the data sets generated in this work constitute a broad and extensive basis for follow up 

analyses. The candidates inferred in this study provide a basis for further in-depth analysis to 

validate associations and to carefully validate observed links, e.g. by virus-induced gene silencing 

(VIGS) approaches (Álvarez-Venegas et al., 2014; Yu et al., 2018b), or by characterisation of 
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mutants from TILLING populations (Wang et al., 2008; Gilchrist et al., 2013), or by CRISPR cas9 

mutagenesis (Zhang et al., 2019b; Zhai et al., 2019; Zheng et al., 2019). Subsequent detailed 

studies should focus on a time-series analysis with sampling and analysis of plant material at 

multiple time points to address this issue. This might be in particular interesting with respect to 

the analysis of biomass heterosis as it has been hypothesised that different alleles of genes might 

be beneficial only at particular developmental stages and in combination may contribute over 

time to the superior performance of hybrids / heterosis (principle of heterochrony; Cong et al., 

2002; Guo et al., 2003; Sang et al., 2019). The unique combination of data sets generated in this 

study and especially the detected eQTL provide an excellent entry-point for a follow up network 

analysis. In a first step the focus should be placed on the relation between transcripts and 

metabolites. Later information of biomass production could be integrated as an additional layer to 

the network. 

 

4.5. Temporal dynamics of QTL action on early growth 

The following chapter includes revised parts of the research article ‘Strong temporal dynamics of 

QTL action on plant growth progression revealed through high-throughput phenotyping in canola’ 

published in Plant Biotechnology Journal, May 24th 2019.  

 

A main part of the study was the daily high-throughput phenotyping of the 477 diverse spring-type 

canola genotypes, originating from a breeding programme, using the IPK phenotyping system for 

large plants. Phenotypic traits related to general plant morphology, plant colouration, static 

chlorophyll fluorescence and water content and dynamics were obtained for a 21-day period from 

6 to 27 DAS, covering an early vegetative stage of rapeseed development. Four phenotypic traits 

that reflect plant growth (projected leaf area, estimated biovolume, early plant height, and colour 

uniformity), with high heritability, as well as end-point biomass accumulation (FW & DW), were 

selected for a detailed analysis. The temporally resolved data for 21 days were used to calculate 

BLUEs that were subjected to genome-wide association studies to address the following questions: 

(i) Which key genomic regions are associated with growth-related traits and relative growth rates 

in the early phase of vegetative plant development? (ii) To what extent do identified regions 
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contribute to trait variance? (iii) Can dynamic, stage-specific contributions of loci for early growth 

be resolved by a time course analysis? (iv) Is it possible to nominate candidate genes that might be 

causal for the observed marker-trait associations?  

 

For all analysed time points, a total of 809 associations for end-point biomass and the four 

selected phenotypic traits were detected at a p-value (FDR) ≤ 0.1. Most of the detected MTAs 

explained only a small percentage of phenotypic variance (< 5 PVE%, Figure S23). In total, only 40 

(3.8 %) marker-trait associations with larger effects (> 5 PVE%) were detected, like marker  

‘Bn-A04-p4409752’ explaining up to 8.64 % PVE of biomass (fresh weight). These findings are 

consistent with the hypothesis that biomass accumulation and growth-related traits are mostly 

governed by small effect loci and their interactions (Muraya et al., 2017). No substantial 

differences in the number of associations were detected between the A subgenome and the  

C subgenome. The 22 significant MTAs identified for fresh weight and dry weight were compared 

to a list of 771 previously described QTL obtained from 13 publications analysing 45 growth, seed 

yield and quality-related traits (Li et al., 2011, 2014a; Luo et al., 2015; Tang et al., 2015; Körber et 

al., 2015, 2016; Liu et al., 2016b; Lu et al., 2016; Sun et al., 2016; Wang et al., 2016; Li et al., 

2016a, 2017; Zheng et al., 2017). The marker ‘Bn-scaff_18702_1-p589589’ has been shown to be 

associated with plant height (Tang et al., 2015). Seven other MTAs were in proximity (± 500 kb, 

based on NRGene marker positions) to previously described QTL: ‘Bn-A04-p4409752’ close to a 

QTL for stem dry weight (Lu et al., 2016); ‘Bn-A10-p11817272’ close to a QTL for plant height  

(Sun et al., 2016) and QTL for branch angle (Li et al., 2017); ‘Bn-A07-p9632473’ co-localised with a 

QTL for flowering time (Wang et al., 2016); “Bn-A08-p16771030” close to QTL for biomass yield 

and stem dry weight (Lu et al., 2016) and a QTL for branching angle (Li et al., 2017);  

“Bn-A10-p10672359” in proximity to a QTL for biomass yield, a QTL for stem dry weight (Lu et al., 

2016) and a QTL for plant height (Sun et al., 2016); ‘Bn-A10-p13343454’ close to another QTL for 

branching angle (Li et al., 2017); ‘Bn-scaff_21312_1-p895326’ close to QTL for stem dry weight, a 

QTL for biomass yield (Lu et al., 2016) and a QTL for plant height (Li et al., 2016a). Notably, despite 

the high phenotypic correlation between biomass values (r=0.969), only three shared MTAs for FW 

(13 MTAs) and DW (9 MTAs) were identified (Table 5). This highlights the fact that fresh weight is 

not identical to dry weight, as a similar FW may be reached by varying contributions of its 
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individual components, such as the content of cellulose, hemicellulose or lignin, and the water 

content. Moreover, this finding also suggests that for the other phenotypic traits some associated 

loci might be missed by filtering highly correlated traits in the previous step of stepwise variable 

selection using variance inflation factors. 

 

The time-resolved design of the phenotyping experiments enabled the analysis of the temporal 

dynamics of detected growth QTL. To further this goal, a two-filter procedure was applied with a 

first moderate threshold (p-value (FDR) ≤ 0.1) filter for associations. Subsequently, a second filter 

was applied to enrich for robust QTL. Only markers that displayed sequentially significant 

association with measured phenotypic traits for three consecutive time points were considered 

and evaluated in more detail. In summary, 14, nine, four and three such persistent associations 

were detected for projected leaf area, estimated biovolume, early plant height and colour 

uniformity, respectively. Previous studies in Arabidopsis (Moore et al., 2013; Bac-Molenaar et al., 

2015), rice (Al-Tamimi et al., 2016), Setaria (Feldman et al., 2017) and maize (Muraya et al., 2017) 

addressed the dynamics of growth and time-dependent QTL mapping, but they did not provide 

such a high temporal resolution at a daily basis. A recent study in barley applied daily plant 

imaging for the time span of 32 to 59 days after planting, but focused on derived growth rates and 

end-point traits including fresh and dry weight, tiller number and plant height (Pham et al., 2019). 

In accordance with the findings of developmental geneticists that genes are expressed selectively / 

differentially at different developmental stages and in different tissues (Nakabayashi et al., 2005; 

Schmid et al., 2005; Kudapa et al., 2018; Lee et al., 2019), the data generated in this study 

indicated that plant growth is the cumulative result of the interaction of various different genes 

and that the contributing sets of factors change during plant development. In contrast to a 

previous genome-wide association study in Arabidopsis, which revealed time-specific and 

general / constitutive QTL affecting growth dynamics (Bac-Molenaar et al., 2015), in the present 

study in canola no constitutive QTL, but only time-specific associations were detected. The longest 

interval of consecutive significant effects was found in the present study for marker  

‘Bn-scaff_16361_1-p2350469’ on chromosome C08 associated with projected leaf area between 

16 to 27 DAS. Notably, one marker, ‘Bn-scaff_16804_1-p178142’ on chromosome C02, was found 

to be associated with both, the late projected leaf area at 25 to 27 DAS, and with end-point dry 

weight assessed at 28 DAS. The time-specific patterns observed suggest that QTL are under the 
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control of dynamic genetic regulation. The beneficial effect of an allele of an early QTL might lose 

its benefit with progression of development and another allele of a later QTL might take up the 

beneficial effect. The dynamic nature of the identified QTL implies that many associations with 

effects at earlier time points would likely not have been identified if biomass-associated traits had 

only been evaluated as integrated effects at the end of the experiment. Consequently, underlying 

genes might not be uncovered or the genetic value of the loci might be underestimated. 

 

To further address the dynamic QTL effects, relative growth rates (RGRs) for projected leaf area, 

estimated biovolume and early plant height, as well as absolute change rates (ACRs) for colour 

uniformity were calculated integrating the effects over longer periods, and also subjected to a 

GWAS analysis. Different interval sizes, day-to-day intervals and intervals spanning two and three 

days were tested. Larger intervals were assumed to accumulate the effects over a longer period of 

time and hence are expected to show less scatter / less variation than shorter intervals.  

This assumption was confirmed by the observation that overall fewer significant MTAs and also 

fewer MTAs with consecutively significant effects were detected for shorter intervals  

(data not shown). Hence, the focus was placed on the three-day intervals. In total, 268 significant 

associations for relative growth rates and absolute change rates calculated for the 15 overlapping 

three-day intervals were detected. To enrich particularly interesting MTAs, the growth rate 

associations were further filtered to be significant for at least two consecutive significant intervals. 

Although no consecutive significant associations for colour uniformity ACRs were observed,  

such MTAs were detected for leaf area, plant height and biovolume RGRs (Figure 16).  

The detection of such dynamic growth rate QTL can also be attributed to the statistical power 

achieved in the present study through the large dimension and the setup of the experiments 

assessing each of the 477 analysed genotypes replicated in three large scale glasshouse 

experiments performed under controlled environmental conditions with nine (6 to 13 DAS) or five 

(15 to 27 DAS) individuals per replicate, respectively. The substantially lower number of RGR QTL 

active at two consecutive intervals vs. the total number of RGR MTAs may indicate that the 

majority of effects are restricted to very narrow time windows. Since RGR MTAs address the acute 

action of the genetic loci at the assessed time point, while the MTAs of per se traits reflect the 

cumulative effects of the loci that happened during the entire growth period up to the time point 
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of measurement, it is not surprising that the number of detected RGR MTAs is generally lower 

than the number of MTAs of per se traits and that there is only minor overlap between the MTAs 

of the two types of traits. A recent study analysed the genetic architecture of biomass 

accumulation in spring barley (Neumann et al., 2017) by image analysis, and described temporal 

patterns similar to the findings for per se trait and growth rate MTAs in the present study.  

Muraya et al. (2017) detected MTA effects on RGR for a subset of the strongest per se trait MTAs 

and described the reversal of allelic effects over time for markers associated with relative growth 

rates. Similar observations were made in the present study on canola. In addition, reversal of allele 

effects over time was observed for a substantial fraction of MTAs (Figure S24 and S25).  

 

As most dynamic growth / biomass-associated QTL actions tended to persist for periods of only a 

few days during early growth, it might be hypothesised that these QTL are associated with the 

initiation or development of new leaves. A particularly remarkable pattern with four dynamic QTL 

for early, intermediate and late time points was observed for the RGR of estimated biovolume 

(Figure 16 b). A manual analysis of leaf number for a subset of 30 lines at the different time points 

indicated that new leaves emerge on average in three to four-day intervals, coinciding with the 

observed pattern of dynamic growth QTL. However, to verify this observation, more in-depth 

analyses will be necessary that will require robust high-throughput quantification of leaf number 

in the acquired images. While promising advances in image analyses have been achieved in this 

direction, for instance by ‘CVPPP challenges’ (Pape and Klukas, 2015; Scharr et al., 2016), further 

developments will be necessary to use automated image analyses towards this goal.  

If the hypothesis of different QTL being involved in initiation and development of successive leaves 

can be supported, it indicates the exciting possibility that formation of each leaf (or more 

generally every organ) may be controlled by a distinct genetic programme triggered through 

certain leaf-specific loci. The time resolved genome-wide association analyses revealed temporal 

dynamics of QTL for early growth–related traits and growth rates. These findings highlight the 

need for stage-specific investigations in future studies to identify genes operating at different 

developmental phases. Muraya et al. (2017) proposed that genes corresponding to dynamic QTL 

are either selectively expressed at different growth stages or their functions are required or 

growth-limiting only in certain developmental phases. 
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For a selection of five candidate regions sharing dynamic associations for multiple growth traits, 

candidate genes were evaluated by an LD-based approach and prioritised based on their 

annotation. For example, nine of these genes are related to meristem development, vegetative 

phase change and cell growth in Arabidopsis, including Sepallata1 (AT5G15800; Pelaz et al., 2000; 

Li et al., 2016b); BnaA10g18480D), Longifolia1 (AT5G15580; Lee et al., 2006; BnaA10g18650D), 

Squamosa promoter binding 3 (AT2G33810; Wu and Poethig, 2006; BnaC03g18800D) and 

Shatterproof1 (AT3G58780; Favaro et al., 2003; Battaglia et al., 2006; BnaC08g29530D).  

Several other genes are putatively involved in flowering time or cell wall biogenesis and 

modification, or were annotated as transcription factors. A comparable previous genome-wide 

mapping study by Bac-Molenaar et al. (2015) in Arabidopsis identified candidate genes which were 

annotated to be involved in the determination of cell number and size, seed germination, embryo 

development, developmental phase transition, or senescence. Due to the large LD-blocks it is of 

pivotal importance that candidate genes identified in this study will be further analysed and 

validated in follow-up studies. For example, qRT-PCR approaches involving temporally and 

spatially resolved assessment of gene activity might be performed. Despite this limitation, the 

described dynamic QTL represent a well exploitable resource to deepen the knowledge of early 

plant growth and biomass accumulation.  

 

A previous study in a doubled-haploid (DH) population derived from a cross between ‘KenC-8’ 

(spring-type B. napus), and ‘N53-2’ (winter-type B. napus) described a high positive correlation 

(r = 0.83) between seed yield and biomass yield (Zhao et al., 2016). In addition, another study 

identified a weak, but significant correlation between heterosis for shoot weight and heterosis for 

seed yield in two large DH mapping populations and two corresponding sets of backcrossed test 

hybrids (Basunanda et al., 2010). Hence, the introgression of beneficial alleles underlying dynamic 

growth-QTL, absent or underrepresented in conventional breeding pools, on the one side, as well 

as selection and stacking of beneficial alleles on the other side might help to enhance genetic gain 

for complex traits towards further improvement of yield performance in canola breeding. 

Moreover, it broadens the selection basis by introducing the factor temporal dynamics, facilitating 

marker-assisted selection to breed high-vigour cultivars. 
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5. Summary 

Hybrid plants are gaining more and more importance in plant breeding due to heterosis, the 

superior performance of progeny compared to their inbred parents. Since the development of 

new superior hybrids requires work and cost intensive breeding programmes, the prediction  

of hybrid performance is of utmost interest to breeders. One objective of this work was to test the 

effectiveness of prediction models for hybrid performance in spring-type oilseed rape (canola) by 

using different omics profiles, individually or in combination. The basis of this study was an F1 

hybrid population consisting of 950 genotypes that had been evaluated for seed yield and six 

other breeding-relevant traits at multiple locations across Europe in commercial field trials.  

A subset of the hybrids was also evaluated in the glasshouse regarding early biomass production. 

Predictors for hybrid performance were generated from the 477 parental lines, including 13,201 

single nucleotide polymorphisms (SNPs), 154 polar primary metabolites and 19,479 transcripts 

assessed at 14 days after sowing. Both, SNP marker and transcriptome data were similarly 

effective in predicting hybrid performance using (genomic) best linear unbiased prediction (gBLUP) 

models for the agronomic traits analysed. Exploiting transcriptome data alone or in combination 

resulted in significantly higher prediction accuracies for only one out of seven traits, seed 

glucosinolate content, compared to SNP markers only. Reproducing Kernel Hilbert Space 

regression models significantly outperformed gBLUP for four out of the seven agronomic traits, 

seed yield, seed oil yield, seed protein content and seed oil content, probably by capturing 

epistatic genetic effects. Prediction accuracies strongly depended on the trait, its underlying 

genetic architecture and heritability, no universally best prediction model was identified. 

A major challenge of plant biology is to unravel the genetic basis of complex traits. In the second 

part of this study, the generated omics-profiles for the parental lines of the hybrid population,  

two male-sterile lines and 475 pollinators, were analysed in conjunction with high-throughput 

non-invasive phenotyping data that had been established for plants cultivated under controlled 

conditions in the glasshouse. The plants were imaged on a daily basis during the first four weeks of 

early vegetative development, and 123 traits, together with end-point biomass, were selected for 

a detailed analysis. Notably, an unequal contribution of transcripts from the two Brassica napus 

subgenomes to biomass formation was uncovered and gene ontology term enrichment analysis 

provided hints that differences in ‘translation’ may play a prominent role in biomass production. 
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Array-derived genome-wide SNP and copy-number variation marker data provided the framework 

for multi-omics genome-wide association analyses. A total of 31,264 quantitative trait loci (QTL), 

each explaining more than 2 % of phenotypic variance, were detected at a p-value (FDR)  

≤ 0.05, including 206 metabolite-QTL (mQTL), 26,391 expression-QTL (cis- and trans-eQTL), and 

4,667 phenotypic QTL. An uneven distribution of these QTL across the genome with pronounced 

hotspots was observed. Moreover, co-localisations of QTL across the different data sets, more 

than expected by random chance, were detected. As these co-localisations may correspond to key 

loci with effects on multiple omics-layers, candidate genes in these regions were prioritised  

by correlating transcript and metabolite features. Capitalising on the daily temporal resolution of 

phenotyping for four growth-related traits and derived growth rates, an in-depth and  

time-resolved analysis was performed. In total, 96 robust main effect marker-trait associations, 

significant for at least two consecutive days, were detected. Based on a linkage disequilibrium-

based approach, candidate genes were identified at five selected loci with dynamic behaviour and 

effect on multiple traits. The candidates were involved in meristem development, cell wall 

modification and transcriptional regulation. The results of the temporal analysis highlight that 

early plant growth is a highly complex trait governed by several medium and many small effect 

loci, most of which act only during short developmental phases. 
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6. Zusammenfassung 

Hybridpflanzen gewinnen in der Pflanzenzüchtung aufgrund des Heterosis-Effekts, der 

überlegenen Leistung der Nachkommen im Vergleich zu ihren Inzucht-Eltern, immer mehr an 

Bedeutung. Da die Entwicklung neuer überlegener Hybride jedoch arbeits- und kostenintensive 

Zuchtprogramme erfordert, ist die Vorhersage der Hybridleistung für Züchter von höchstem 

Interesse. Ein Ziel dieser Arbeit war es, die Effektivität von Vorhersagemodellen für Hybridleistung 

in Sommerraps (Canola) zu testen, indem verschiedene Omics-Profile, einzeln oder in 

Kombination, zur Vorhersage genutzt wurden. Grundlage dieser Studie war eine F1-Hybrid-

population bestehend aus 950 Genotypen, die in kommerziellen Feldversuchen an mehreren 

Standorten in ganz Europa auf Saatgutertrag und sechs weitere züchterisch relevante Merkmale 

untersucht wurden. Eine Auswahl der Hybriden wurde zudem auch im Gewächshaus auf 

Biomasseertrag zu einem frühen Zeitpunkt untersucht. Prädiktoren für die Hybridleistung, 

darunter 13.201 genetische Marker (SNPs), 154 polare Primärmetabolite und 19.479 Transkripte, 

wurden 14 Tage nach der Aussaat von den 477 Elternlinien erhoben. Sowohl SNP-Marker als auch 

Transkriptomdaten waren ähnlich effektiv bei der Vorhersage der Hybridleistung für die 

analysierten agronomischen Merkmale unter Verwendung von (genomic) best linear unbiased 

prediction (gBLUP) Modellen. Die Nutzung von Transkriptomdaten, allein oder in Kombination mit 

anderen Datensätzen, führte für nur eines von sieben Merkmalen, den Gehalt an Samen-

Glukosinolaten, zu einer signifikant höheren Vorhersagegenauigkeit im Vergleich zu reinen  

SNP-Markern. Durch RKHS-Modelle (Reproducing Kernel Hilbert Space regression) konnte die 

Vorhersagekraft der gBLUP-Modelle für vier der sieben agronomischen Merkmale, Samenertrag, 

Samenausbeute, Samenölertrag, Samenproteingehalt und Samenölgehalt übertroffen werden. 

Dies ist wahrscheinlich auf die Erfassung epistatischer genetischer Effekte zurückzuführen.  

Die Vorhersagegenauigkeiten hängen stark von dem jeweiligen Merkmal, der zugrunde liegenden 

genetischen Architektur und der Heritabilität ab. Es wurde kein universell bestes Vorhersage-

modell identifiziert. 

Eine große Herausforderung der Pflanzenbiologie besteht darin, die genetische Grundlage 

komplexer Merkmale zu entschlüsseln. Im zweiten Teil dieser Arbeit wurden die generierten 

Omics-Profile für die Elternlinien der Hybridpopulation, zwei männlich-sterilen Mutterlinien und 

475 Bestäubern, in Verbindung mit nicht-invasiven Hochdurchsatz-Phänotypisierungsdaten 
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analysiert, die für Pflanzen erstellt wurden, welche unter kontrollierten Bedingungen im 

Gewächshaus angezogen wurden. Die Pflanzen wurden in den ersten vier Wochen der frühen 

vegetativen Entwicklung täglich aufgenommen und 123 Merkmale sowie die Endpunktbiomasse 

wurden für eine detaillierte Analyse ausgewählt. Insbesondere wurde ein ungleicher Beitrag der 

Transkripte aus den beiden Brassica napus Subgenomen zur Biomassebildung aufgedeckt.  

Eine Genontologie (GO) Anreicherungsanalyse lieferte Hinweise darauf, dass Unterschiede in der 

Translation eine wichtige Rolle bei der Biomasseproduktion spielen könnten. Array-basierte 

genomweite SNP- und Kopienzahlvariationsmarkerdaten bildeten den Rahmen für multi-omics 

genomweite Assoziationsanalysen. Insgesamt konnten 31.264 Quantitative Trait Loci (QTL), die 

jeweils mehr als 2 % der phänotypischen Varianz erklären, mit einem p-Wert (FDR) ≤ 0,05 

nachgewiesen werden, darunter 206 Metaboliten-QTL (mQTL), 26,391 Expression-QTL (cis- und 

trans-eQTL) und 4.667 phänotypische QTL. Eine ungleichmäßige Verteilung dieser QTL über das 

Genom mit ausgeprägten Hotspots wurde beobachtet. Darüber hinaus wurden Kolokalisierungen 

von QTL (mehr als zufällig erwartet) über die verschiedenen Datensätze hinweg festgestellt.  

Da diese Kolokalisationen Schlüsselpunkten mit Auswirkungen auf mehrere Omics-Schichten 

entsprechen können, wurden die Kandidatengene in diesen Regionen durch Korrelation von 

Transkript- und Metabolitenmerkmalen priorisiert. Ausgehend von der tageweisen zeitlichen 

Auflösung der Phänotypisierung wurde für vier wachstumsrelevante Merkmale und abgeleitete 

Wachstumsraten eine detaillierte und zeitaufgelöste Analyse durchgeführt. Insgesamt wurden 96 

robuste Haupteffekt-Marker-Merkmals-Assoziationen, die für mindestens zwei aufeinander 

folgende Tage signifikant waren, identifiziert. Durch einen Kopplungsungleichgewicht-basierenden 

Ansatz wurden Kandidatengene an fünf ausgewählten Genloci mit dynamischem Verhalten und 

Wirkung auf mehrere Merkmale identifiziert. Die Kandidatengene waren an der 

Meristementwicklung, der Zellwandmodifikation und der transkriptionellen Regulation beteiligt. 

Die Ergebnisse der zeitaufgelösten Analyse zeigen, dass das frühe Pflanzenwachstum ein 

hochkomplexes Merkmal ist, von mehreren Genloci mit mittleren und vielen kleinen genetischen 

Effekten gesteuert wird, von denen die meisten nur in kurzen Entwicklungsphasen wirken. 
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8. Supplementary data 

   

Figure S1. The IPK phenotyping platform for large plants 

The upper photo shows the view across the IPK phenotyping facility for large plants with 396 mobile 
carriers on a conveyor belt system, an automated watering station and balance (arrow), and three imaging 
chambers. The chambers harbour camera systems for top and side views for static fluorescence (FLUO, ①), 
visible light (VIS, ②) and near infrared (NIR, ③). The system is located inside a glasshouse with 
illumination and semi-controlled climate conditioning. The lower photo shows one carrier (replicate) with a 
25 l square pot and initially nine plants per genotype. The pot surface was covered by a blue mat for 
subsequent image background correction. 
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Figure S3. Flow chart of sampling and sample post-processing  

The flowchart illustrates the sample collection and processing. Plants were sown and grown until 28 DAS in 
the phenotyping facility. The four inner plants around the central plant were sampled at 14 DAS, 
immediately quenched in liquid nitrogen and stored at -80 °C (7,920 individual plant samples).  
The remaining five plants per pot were grown until 28 DAS and sampled to analyse plant biomass (fresh and 
dry weight; 9,900 individual plants). The earlier sampled plants were homogenised using a cryogenic 
grinding robot and the four plants per genotype / pot were pooled. Subsequently, equal amounts of 
material from the different phenotyping experiments were pooled and mixed. The first phenotyping 
experiment (1413RCM) was omitted due to technical issues and higher temperatures during the early 
growth phase compared to the other experiments. Three 15 mg (± max. 1.5 mg) and two 50 mg  
(± max. 1.5 mg) aliquots of homogenised plant material were generated using the robot and manual 
weighing, respectively. The 15 mg aliquots were subjected to polar metabolite extraction and GC-MS 
analysis, while the 50 mg aliquots were used to extract total RNA for whole transcriptome profiling using 
RNA-sequencing.  
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Figure S4. RNA-agarose gel (1.5 %) in Tris-Acetat-EDTA (TAE) buffer 

Shown is a 1.5 % agarose electrophoresis gel to analyse the amount and purity of total RNA extracted by 
different commercial kits and methods from Brassica napus shoot material sampled at 14 DAS.  
Nucleic acids were separated in in Tris-Acetat-EDTA (TAE) buffer, 100 V, 300 mA, 50 W. The gel was stained 
with ethidium bromide (0.5 μg/ml gel) and the nucleotides visualised under ultraviolet (UV) light.  
Two genotypes, Achat and Campino (Camp.), were used for these tests. 1 µl of the 1 kb DNA ladder were 
loaded to the gel on the outermost right and left slots. The used extraction procedures were: the GeneJET 
RNA Purification Kit, the InviTrap Spin Plant RNA Mini Kit, NucleoSpin RNA Plant Kit, the RNeasy Plant Mini 
Kit, and the SurePrep Plant/Fungi Total RNA Purification Kit) and two extraction protocols: the TRIzol 
method and the Hot Borat method, as indicated above the loading slots. Intact total RNA in overall good 
quality and without visible degradation could be extracted by all methods. The two larger bands 
correspond to the 28S and 18S rRNAs. Genomic DNA contaminations are only visible for the RNA extracted 
with the InviTrap Spin Plant RNA Mini Kit (bottom row, 8-9 slots from the left). 
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Figure S5. Overview of transcriptome data and quality 

Subfigure a shows the distribution of the average number of reads generated for each sample (genotype). 
The y-axis displays the frequency (number of samples) and the x-axis the average number of reads in 
million reads. The green vertical line indicates the threshold of 7 million reads per sample anticipated for 
the experiment. Subfigure b displays the sequencing read quality of a representative sample extracted with 
the Lexogen SENSE mRNA-Seq Library Prep Kit V2 kit. The Phred quality score (0 to 40) is indicated on the  
y-axis, and the base position in the read on the x-axis (left to right: 1 to 108 bp). The green, orange and red 
colour correspond to Phred quality score ranges of 28-40 (high), 20-28 (medium) and 0-20 (low), 
respectively. The plot was generated using fastQC tool. Subfigure c shows the distribution of the median 
transcripts per million (tpm) values over all 477 genotypes with the x-axis on a logarithmic scale.  
The vertical red line represents the applied filtering threshold of 5 tpm. All transcripts expressed ≥ 5 tpm 
(on the right side of the red line) were used for further analyses. 
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Figure S6. Population structure analysis  

Population structure for all 477 Brassica napus genotypes subjected to GWAS was analysed using the 
programme STRUCTURE, version 2.3.4 (Pritchard et al., 2000). Population clustering for K= 1 to 10 was 
performed using the ‘admixture’ model with a burn-in period of 10.000, 10.000 MCMC replications and 
three iterations per K. The lambda parameter was set to λ= 0.304. Subfigure a shows plots for K= 2 to 5. 
Genotypes were sorted by their ancestry vector (Q). Each genotype is represented by a thin vertical line. 
Each colour represents a population, and the colour of individual genotypes represents their proportional 
membership in the different populations. Populations: red, pop1; green, pop2; blue, pop3; yellow, pop4; 
pink, pop5. In the subfigures b-e statistics used to select K are shown as described by Evanno et al. (2005): 
b mean Ln probability L(K); c mean difference between successive likelihood values of K, L′(K) and standard 
deviations for K= 1 to 10; d absolute value of the difference between successive values of L′(K), |L′′(K)| and 
standard deviations; e ∆K as the mean of the absolute values of L′′(K) averaged over the three runs divided 
by the standard deviation of L(K).  
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Figure S7. LD-decay in the A and C subgenomes 

Pairwise marker linkage disequilibrium (LD) was calculated as r2 values from the SNP data and plotted 
against the physical marker distances on the B. napus A and C subgenomes, separately. The blue line 
represents a rolling mean of LD of 100 markers. The purple line shows the LD decay calculated according to 
Hill and Weir (1988) using a non-linear model. The horizontal solid and dashed lines correspond to an LD of 
0.6 and 0.2, respectively. The vertical green line indicates the distance where the rolling mean drops below 
a LD value of 0.6, and the vertical purple line the half-decay, the distance at which half of the maximum 
(short range) LD has decayed, respectively. Both the half-decay position and the position at LD 0.6 were 
substantially higher in the C subgenome than in the A subgenome. 
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Figure S8. Trait selection and reduction of multi-collinearity 

The figure displays the results of the phenotypic trait selection. The upper part of the figure shows the 
correlogram of the 571 image-derived traits after filtering for broad-sense heritabilities higher than 0.7 for 
at least one day. The colour scale on the right side corresponds to the Pearson correlation coefficients 
ranging from dark red (-1) over white (0) to dark blue (1). Several blocks of highly intercorrelated traits are 
visible. The lower part of the figure shows the correlogram after the stepwise variable selection using 
variance inflation factors (until VIF ≤ 10) was applied. The number of phenotypic traits was reduced to 123 
traits. Traits from highly correlated blocks of traits were removed by the approach, indicated by the 
brighter colours and the less pronounced blocks.  

filtering 
selection 

N traits = 571 

N traits = 123 

H2 ≥ 0.7 

VIF ≤ 10 
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Figure S9. Optimization of experimental design – metabolite profiling 

Principal component analysis was performed on normalised and outlier-corrected (median ± 2x SD) polar 
primary metabolite data obtained from a GC-MS analysis. In total, 190 metabolites, 81 of known and 109 of 
unknown chemical structure were quantified relatively (ion counts). Metabolite levels were Pareto scaled 
and centred prior to analysis. PCA calculation was performed by an iterative method using a Bayesian model 
to handle missing values. The first four principal components were calculated and scatter plots of PC1 and 
PC2 are shown with the proportion of explained variance, 36 % for PC1 and 24 % for PC2, given on the 
corresponding axes. Samples in the left figure are coloured by sampling day: 28 DAS (red) and 14 DAS 
(black). At least eight replicates per genotype / time point combination were analysed. Samples in the right 
figure are coloured by genotypes, as indicated in the legend.  



Supplementary data 

152 
 
 

 
Figure S10. Automated extraction of polar metabolites using a liquid handling system 

The figure shows the automated liquid handling system used to establish the (semi-)automated extraction 
of polar primary metabolites. a The system is composed of a Biomek FXP laboratory automation 
workstation, with four temperate shakers, an automated rack capper/decapper, a labware storage module, 
a plate centrifuge, self-filling reservoirs, a plate sealer and a TECAN plate reader Infinite 200 PRO.  
b The extraction procedure, as described in materials and methods, was implemented using the Biomek 
software and the SAMI EX 4.0 software. c Liquid handling and labware movement was realised with the two 
multichannel pipettors (96 channel head plus gripper and a flexible 8 channel head). The polar phase of 
each sample was transferred from the Micronic screw cap rack with 96 individual 1.4 ml tubes into GC-MS 
glass vials. d A total of three 50 µl aliquots were generated for each sample. 
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Figure S11. Quality control of polar primary metabolite data after normalisation 

Principal component analyses were performed on weight (and measurement day) normalised polar primary 
metabolite data obtained from a GC-MS analysis. Metabolites were centred and scaled and z-scores for 
each metabolite were generated (negative controls were excluded from the PCA). PCA calculations were 
performed by an iterative method using a Bayesian model to handle missing values. a Scatter plot of PC1 
and PC2 before ‘measurement day’ (GC-MS run; see colour key) normalisation with the proportions of 
explained variance given on the axes. Scatter plots of b PC1 and PC2, and c PC2 and PC3 after data 
normalisation (see materials and methods) with the proportions of explained variance given on the axes. 
 d Boxplots of total ion counts for each sample. The colour key refers to negative controls (n= 8); the quality 
control pools of all samples (n= 27); the four reference lines (‘Achat’, ‘Campino’, ‘MS1’, ‘MS2’, each n= 7), 
and the 477 pollinators grouped by the three breeding pools (‘breeding pool 1, ‘breeding pool 2, and 
‘breeding pool 3), respectively.  
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Figure S12. RNA-Seq pilot experiment 

Subfigure a illustrates the behaviour of the four genotypes selected for the pilot experiment: Pol 229  
(red, low biomass), Pol 396 (cyan, medium biomass), Pol 469 (green, medium biomass), and Pol 419  
(dark blue, high biomass) in the context of biomass production of all 477 genotypes. Subfigure b shows the 
scatterplot of a principal component analysis using centred and Pareto scaled transcript data (tpm) with the 
first two principal components explaining 31 % and 15 % of the variance, respectively. The PCA calculation 
was done by singular value decomposition (svd) of the data matrix with all 38,590 annotated transcripts 
expressed > 0 tpm in all samples. Each genotype was replicated four times: three samples (a mix of four 
plants from one single pot from each respective phenotyping experiment) and one combined pool of plants 
from all phenotyping experiments. Genotypes were coloured as indicated in the figure legend.  
Note: four randomly selected other genotypes (black colour) were also included in the analysis. Subfigure c 
shows the results of a hierarchical clustering analysis (HCA) of scaled transcript data (tpm) with Euclidean 
distance and method ‘complete distance’. The pools (denoted by a ‘_p’ suffix in the sample name) group 
near or within the constituent samples. 
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Figure S13. Prediction accuracies for RKHS models 

Predictions based on reproducing kernel Hilbert space regression (RKHS) models are summarised for the 
seven agronomic traits as boxplots. The prediction accuracies were defined as the correlation between the 
true and the predicted phenotypic values. The different -omics data sets as predictors are denoted as:  
G, genomic data; T, transcriptomic data; M, metabolite data and their respective combinations G+T, G+M, 
M+T and G+T+M. Letters beside the boxes indicate significant differences between predictor sets 
determined by a one-way ANOVA followed by a post-hoc Tukey’s multiple comparison test. 
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Figure S14. Heritability of selected phenotypic traits over time 

Broad-sense heritability values (H2) of the four image-derived traits (estimated biovolume, projected leaf 
area, early plant height, colour uniformity) and end-point biomass are shown as a heatmap over time  
(6 to 28 DAS). H2 for end-point biomass was estimated based on 15 individual plants grown in an 
incomplete randomised block design. H2 values for the four image-derived traits were estimated for each 
time point individually, based on three replicates (carriers). Grey colour indicates missing values. 
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Figure S15. Prediction accuracies for hybrid biomass (FW & DW) in the glasshouse 

The summary of best linear unbiased predictions (BLUPs) for early plant biomass of the 120 hybrids is given 
as boxplots: fresh weight (left) and dry weight (right). The biomass data was obtained from the 5th 
glasshouse phenotyping experiment at 28 DAS. The prediction accuracies were defined as the correlation 
between the true and the predicted phenotypic values. The different -omics data sets as predictors are 
denoted as: G, genomic data; T, transcriptomic data; M, metabolite data and their respective combinations 
G+T, G+M, M+T and G+T+M. Letters beside the boxes indicate significant differences between predictor 
sets determined by a one-way ANOVA followed by a post-hoc Tukey’s multiple comparison test. 
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Figure S16. Correlation analyses within and between the -omics data sets 

The correlogram displays the Pearson correlation matrix between the three -omics data sets. Only features 
with significant correlations (|r| ≥ 0.4; p-value FDR ≤ 0.05) between sets are plotted (n transcripts= 193,  
n phenotypes= 179, n metabolites= 42). Features were clustered for each data set individually using a hierarchical 
clustering analysis (HCA) with the agglomeration method ‘complete linkage’. Black boxes separate the 
individual sets of correlations. The correlation matrix and raw values are given in Data S12. 
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Figure S17. GENIE3 network analysis for biomass using transcript data 

The figure shows candidate genes with effects on early plant biomass identified by a gene network 
inference analysis using tree-based ensemble methods in GENIE3. a The graph shows the top ten candidate 
genes associated with fresh weight. b The graph shows the top ten candidate genes associated with dry 
weight. The colours indicate if the transcripts are positively (orange) or negatively (blue) correlated with 
biomass. Grey colour indicates non-significant Pearson correlation. The sizes of the vertices correspond  
to the weight of the association. Five genes, including ‘BnaC06g28700D’, encoding the 72 kDa signal 
recognition particle, were found among the top ten candidates for both, fresh and dry weight.  
Gene annotation details can be obtained from Table 3. 
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Figure S18. Pathway analysis in lines with contrasting biomass 

Subfigure a shows the Mapman representation of all coding sequences (CDS, including non-significant) in 
the selected pathways (customised overview). Pollinator 229 (low biomass) is enriched in protein synthesis, 
as indicated by the high number of more blue dots in bottom box; Wilcoxon sum rank test, BH corrected:  
p-value < 10-20). Pollinator 419 (high biomass) is enriched in photosynthesis / light reaction, as indicated by 
the red dots in the top left box (Wilcoxon sum rank test, BH corrected: p-value < 10-20). Subfigure b shows 
the Mapman representation of all CDS (including non-significant) in selected pathways of the secondary 
metabolism. Pollinator 229 (low biomass) is enriched in glucosinolate synthesis (Wilcoxon sum rank test, BH 
corrected: p-value < 10-8).  
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Figure S19. QTL-hotspots for eQTL, mQTL and phenotypic QTL 

The composite figures display a the expression QTL (eQTL) distribution b the metabolite QTL (mQTL) 
distribution and c the phenotypic QTL distribution on all 19 Brassica napus chromosomes. The QTL were 
binned into overlapping 1 Mb intervals (transparent green and grey colour, e.g. 0-500 kb and 250-750 kb, 
respectively) for representation. The number of QTL per bin is indicated on the vertical axis, the 
chromosomal position in Mb is shown on the horizontal axis. The axes were locked at maximum values of 
neQTL= 500, nmQTL= 10, nQTL= 200 and 90 Mb, respectively, to allow cross-comparison between chromosomes 
within the sets.  
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Figure S20. Differences in glucose content in lines with deletion on chromosome C03 

The figure shows the glucose content relatively quantified by GC-MS. The left boxplot represents the 
overall distribution of glucose content in the 477 analysed genotypes. The right boxplot shows a subset of 
ten genotypes carrying a deletion on chromosome C03. These genotypes display a significantly higher 
glucose content compared to the population mean (Welch Two Sample t-test; p-value= 4.668e-7). 
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Figure S21. Overview of selected phenotypic data 

Boxplots represent BLUEs across experiments of a projected leaf area, b estimated biovolume, c early plant 
height and d plant colour uniformity over time. Colour uniformity is given as the standard deviation of the 
a-values in the L*a*b* colour space of the plant pixels. The lower this value, the more uniform is the plant 
colour. BLUEs for relative growth rates (RGRs) of e projected leaf area, f estimated biovolume, g early plant 
height and absolute change rates (ACRs) of h colour uniformity were calculated over three days. 
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Figure S22. Biomass distribution and correlation with image-derived traits 

a End-point biomass data as fresh weight (FW, in green) and dry weight (DW, in orange) were manually 
determined at 28 DAS. BLUEs for both traits were estimated based on 15 individual plants grown in an 
incomplete randomised block design over four experiments. Data are displayed as boxplots.  
b Pearson correlation of fresh weight (FW) and dry weight (DW) c Pearson correlations of fresh weight (FW) 
with image-derived traits. d Pearson correlations of dry weight (DW) with image-derived traits. 
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Figure S23. Phenotypic variance explained (PVE%) by detected MTAs 

Histogram of phenotypic variance explained (PVE%) of all 1,055 marker-trait associations (MTAs) for growth 
and biomass-related traits with a p-value (FDR) ≤ 0.1 detected in this study for projected leaf area (n=200), 
estimated biovolume (n=191), early plant height (n=182), colour uniformity (n=192), end-point fresh (n=13) 
and dry weight (n=9), as well as relative growth rates for area (n=76), volume (n=100) and height (n=73), 
and absolute change rates for colour uniformity (n=19). On average markers explained 1.72 PVE%. 
Individual markers explained up to 9.05 PVE% of particular traits. A comprehensive list of all MTAs is 
provided as Data S11.  
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Figure S24. Allele effects of dynamic associations for growth-related traits  

The figures display the allele effects of dynamic associations for the traits a projected leaf area, b estimated 
biovolume, c early plant height and d plant colour uniformity. GWAS analyses were performed on BLUEs in 
R / package ‘FarmCPU’. Different colours indicate markers with p-value (FDR) ≤0.1 at three consecutive days, 
with the colour gradient corresponding to the temporal pattern. DAS denotes days after sowing.  
BLUEs were estimated using three replicates (carriers) with nine and five plants for 6 to 13 DAS and 15 to 
27 DAS, respectively. No data were recorded at 14 DAS due to sampling of shoot material. Allele effects 
were normalised by dividing the effects by the median of the phenotypic trait of each day.  
For simplification, predominantly negative allele effects were inversed.  
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Figure S25. Allele effects of dynamic associations for relative growth rates 

GWAS was performed on BLUEs of a RGR - projected leaf area, b RGR - estimated biovolume and c RGR - 
early plant height in R / package ‘FarmCPU’. Different colours indicate markers with p-value (FDR) ≤0.1 at two 
consecutive intervals. DAS denotes days after sowing. BLUEs were estimated using three replicates 
(carriers) with nine and five plants for 6 to 13 DAS and 15 to 27 DAS, respectively. No data were recorded at 
14 DAS due to sampling of shoot material. Allele effects were normalised by dividing the effects by the 
median of the phenotypic trait of each day. For simplification, predominantly negative allele effects were 
inversed. 
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Figure S26. Manhattan plots for representative associations in the candidate regions  

The Manhattan plots describe genome-wide marker-trait associations for four of the five candidate regions 
(Table 6). a Interval 1 on chromosome A04. The trait ‘estimated biovolume at 27 DAS’ is shown as a 
representative trait for the 14 traits associated with the marker ‘Bn-A04-p2218115’. b Interval 2 on 
chromosome A10. The trait ‘estimated biovolume at 22 DAS’ is shown as a representative trait for the 16 
traits associated with the marker ‘Bn-A10-p13343454’. c Interval 3 on chromosome C02. The trait  
‘colour uniformity at 27 DAS’ is shown as a representative trait for the 9 traits associated with the marker  
‘Bn-scaff_16804_1-p178142’. The CNV markers are usually not in LD with the SNP markers and therefore 
disrupt the structure of the LD blocks. Hence, the two SNP markers ‘Bn-scaff_16804_1-p178142’ and  
‘Bn-scaff_16804_1-p203519’ should be regarded as LD block. d Interval 4 on chromosome C03. The trait 
‘estimated biovolume at 21 DAS’ is shown as a representative trait for the 16 traits associated with the 
marker ‘Bn-scaff_21312_1-p895326’. The significantly associated SNPs are indicated by red dots. Grey and 
blue dots represent surrounding non-significant SNP and CNV markers, respectively. Please note that the 
FarmCPU GWAS method, which iteratively uses fixed and random effect models and pseudo QTN as 
covariates, results in a different appearance of the Manhattan plots. Significant associations are illustrated 
by ‘helicopters’ rather than ‘skyscrapers’, see materials and methods. For reasons of clarity and 
comprehensibility, the zoom-in of the candidate regions was extended to the next flanking SNP markers. 
Red triangles indicate the positions of selected candidate genes (Table 6). The LD heatmaps in the bottom 
sections show the correlations (r2) between surrounding SNP markers. 
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Figure S27. Overview of copy number variation polymorphisms (CNVs) 

Subfigure a shows the genome-wide SNP marker distribution across the 19 B. napus chromosomes. 13,201 
unique, single-copy SNPs were binned in 1 Mb intervals. Subfigure b shows the genome-wide CNV marker 
distribution. A total of 3,106 deletions and 4 duplications were binned in 1 Mb intervals. The marker 
density is indicated by the colour legend (green to red) on the right side. Grey colour indicates regions 
without SNPs. Subfigure c shows all detected deletions and duplications for the 477 spring-type canola 
genotypes, with an exemplary detailed zoomed-in region on the right side. Rows refer to the genotypes. 
Columns show chromosome-wise sorted markers. The colours red and green indicate deletion and 
duplication events, respectively. 
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Figure S28. Differences in growth speed due to breakdown of cooling system 

A technical failure of the cooling system in the glasshouse occurred during the first phenotyping 
experiment (1413RCM). The higher temperatures during the first days of plant growth resulted in a 
substantially increased developmental speed and higher end-point biomass of the plants in comparison to 
the other phenotyping experiments. This is indicated in the four photos in subfigure a showing typical 
images of the reference genotype ‘Campino’ from the four phenotyping experiments with the parental 
lines (1413RCM, 1419RCM, 1442RCM and 1447RCM) and the fifth experiment with the selected hybrids 
(1504RCM) at 13 DAS. Subfigure b displays the overall distribution of biomass (fresh weight; raw values in 
g) for all genotypes determined at 28 DAS for the five corresponding phenotyping experiment. As the plants 
in the fifth experiment comprise hybrids, they were expected to display larger biomass compared to plants 
of the other four experiments. 
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Figure S29. Bias in transcript data due to library preparation 

Subfigure a shows the principal component analysis scatter plot for all 477 genotypes with concatenated 
transcriptome data from the individual sequencing runs. PCA was performed on filtered transcript data 
(median tpm ≥ 5). Transcript data were centred and scaled (z-scores). The PCA calculation was done by 
singular value decomposition (svd) of the data matrix. PC1 and PC2 explained 18 % and 9.7 % of variance, 
respectively. The red circle frames samples that separate from the main cluster of samples. The separation 
was not immediately explainable by any technical or biological grouping. Consequently, a second mapping 
and PCA analysis was performed using all generated data files from the different sequencing runs 
separately. As indicated in subfigure b, the separation of samples could be explained by systematic 
differences between batches during library preparation. The red coloured samples belong to the affected 
libraries (LG6 and LG7). 
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Figure S30. Prediction accuracies for the reduced data set 

A summary of (genomic) best linear unbiased predictions (gBLUP) for the seven agronomic traits is given as 
boxplots. The analysis war performed with a reduced transcriptomics data set, excluding samples from two 
library batches (LG6 and LG7) and only 388 genotypes. The prediction accuracies were defined as the 
correlation between the true and the predicted phenotypic values. The different -omics data sets as 
predictors are denoted as: G, genomic data; T, transcriptomic data; M, metabolite data and their respective 
combinations G+T, G+M, M+T and G+T+M. Letters beside the boxes indicate significant differences 
between predictor sets determined by a one-way ANOVA followed by a post-hoc Tukey’s multiple 
comparison test. 
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