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ABSTRACT

This thesis considers structure-preserving system-theoretic model order reduction for
certain structured input-output systems, particularly network systems. In the first part,
our focus lies on the clustering-based approach to reduce network systems. Therein, we
begin by considering clustering-based model order reduction for linear multi-agent sys-
tems. This approach finds a reduced model whose dynamics evolve over a smaller net-
work. To measure the reduction error, we use theH2-norm and consider theH2-optimal
clustering problem. Since clustering is generally a difficult combinatorial problem, we
propose a framework based on relaxing the discrete problem to find an H2-suboptimal
clustering. Following on this, we directly extend the framework to a class of nonlinear
multi-agent systems.
Next, we derive upper bounds for H2 and H∞ clustering-based reduction errors

for linear multi-agent systems based on almost equitable partitions. These results
generalize work for multi-agent systems with single-integrator agents. Using a similar
approach for power systems, which are a special class of nonlinear multi-agent systems,
we find conditions for exact clustering-based reduction.
Additionally, we study subsystem reduction for network systems. We propose a

balancing-based approach that guarantees stability preservation under a small-gain
condition. Furthermore, we consider the H2-optimal subsystem reduction problem.
We derive Gramian-based first-order necessary H2-optimality conditions and use a
gradient-based optimization method to fulfill them.
Finally, we apply the structure-preserving H2-optimal model reduction approach for

network systems to other structured systems. In particular, we consider H2-optimal
model order reduction of second-order systems, port-Hamiltonian systems, time-delay
systems and H2 ⊗ L2-optimal model order reduction of parametric systems. Here, we
also derive Gramian-based H2-optimality conditions and use an optimization approach
to construct a reduced model. For some structured systems, we also derive interpolatory
H2-optimality conditions under additional assumptions on the reduced model.

iii





ZUSAMMENFASSUNG

Diese Arbeit beschäftigt sich mit der strukturerhaltenden systemtheoretischen Model-
lordnungsreduktion für bestimmte strukturierte Input-Output-Systeme, insbesondere
Netzwerksysteme. Im ersten Teil liegt unser Fokus auf dem clusterbasierten Ansatz
zur Reduktion von Netzwerksystemen. Zunächst betrachten wir dabei die cluster-
basierte Modellreduktion für lineare Multiagentensysteme. Dieser Ansatz findet ein
reduziertes Modell, dessen Dynamik sich über ein kleineres Netzwerk entwickelt. Zum
Messen des Reduktionsfehlers verwenden wir die H2-Norm und betrachten das H2-
optimale Clustering-Problem. Da das Clustering im Allgemeinen ein schwieriges kom-
binatorisches Problem ist, schlagen wir ein Framework vor, welches darauf basiert,
das diskrete Problem zu relaxieren, um ein H2-suboptimales Clustering zu finden. Im
Anschluss daran erweitern wir das Framework direkt auf eine Klasse nichtlinearer Mul-
tiagentensysteme.
Als nächstes leiten wir obere Schranken für H2 und H∞ clusterbasierte Reduktions-

fehler für lineare Multiagentensysteme her, basierend auf nahezu gerechten Partition-
ierungen. Diese Ergebnisse verallgemeinern die Arbeit für Multiagentensysteme mit
Single-Integrator-Agenten. Unter Verwendung eines ähnlichen Ansatzes für Energiesys-
teme, die eine spezielle Klasse nichtlinearer Multiagentensysteme darstellen, finden wir
Bedingungen für eine genaue clusterbasierte Reduktion.
Zusätzlich untersuchen wir die Subsystemreduktion für Netzwerksysteme. Wir schla-

gen einen balancierenden Ansatz vor, der die Erhaltung der Stabilität unter Small-Gain-
Bedingungen gewährleistet. Weiterhin betrachten wir das H2-optimale Subsystemre-
duktionsproblem. Wir leiten gramschenbasierte notwendige H2-Optimalitätsbedingun-
gen erster Ordnung her und verwenden eine gradientenbasierte Optimierungsmethode
um diese zu erfüllen.
Schließlich wenden wir die strukturerhaltende H2-optimale Modellreduktion für Net-

zwerksysteme auf andere strukturierte Systeme an. Insbesondere betrachten wir H2-
optimale Modellordnungsreduktion von Systemen zweiter Ordnung, Port-Hamiltonscher
Systeme, zeitverzögerter Systeme und H2⊗L2-optimale Modellordnungsreduktion von
parametrischen Systemen. Auch hier leiten wir gramschenbasierte H2-Optimalitäts-
bedingungen her und verwenden einen Optimierungsansatz um ein reduziertes Modell
zu konstruieren. Für einige strukturierte Systeme leiten wir auch interpolatorische
H2-Optimalitätsbedingungen unter zusätzlichen Annahmen an das reduzierte Modell
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CHAPTER 1

INTRODUCTION

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Motivation

Large-scale dynamical systems, consisting of many ordinary differential equations (ODEs),
appear often in applications. Such systems typically arise from detailed discretizations
of partial differential equations (PDEs). Another source are interconnected systems,
forming large-scale network systems, see, e.g., [New10, EFHO10, BFF+14] for applica-
tions in complex networks, smart-grids, distributed systems, transportation networks,
biological networks, and networked multi-agent systems. Due to the increasing demand
for computational resources to analyze, simulate, or control such large-scale systems,
there is an interest in using model order reduction (MOR) methods. The idea be-
hind MOR is to find a reduced-order model (ROM) with a much smaller number of
ODEs, making it easier to simulate, while reproducing the original model sufficiently
accurately.
Direct application of established MOR techniques, such as balanced truncation,

Hankel-norm approximation, and Krylov subspace methods, see, e.g., [Ant05, BMS05,
BOCW17], to structured models generally leads to a loss of structure. Additionally,
for multi-agent systems, properties such as consensus and synchrony are important
to preserve in the reduced model (see [Mor05, OSM03, LDCH10, MZ10]). Structure-
preserving MOR methods allow preserving the physical interpretation of the model,
which can also improve accuracy. Additionally, analysis or optimization methods tai-
lored to specific model structures allows reusing them for the reduced model.
MOR techniques specifically for networked multi-agent systems with first-order agents

have been proposed in [IKIA14, IKG+15, CKS16]. Extensions to second-order agents
have been considered in [II15, CKS17] and to more general higher-order agents in [IKI16a,
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1 Introduction

BSJ16, MTC13]. Some of these methods are based on clustering nodes in the network.
With clustering, the idea is to partition the set of nodes in the network graph into
disjoint sets called clusters, and to associate with each cluster a single, new, node
in the reduced network, thus reducing the number of nodes and connections and the
complexity of the network topology.
Complementarily, methods for subsystem reduction in more general network systems

have been proposed in [RS07, RS08b, VVD08, SM09], with applications in, e.g., multi-
body systems. There, the network in the reduced model stays the same and only parts
of the system in the nodes are reduced.

1.2 Outline of the thesis

This thesis is structured as follows. In Chapter 2, we review different topics used
throughout the thesis. We begin with the necessary topics from linear algebra, particu-
larly properties of eigenvalues and the Kronecker product. Then we give an overview of
some topics from functional analysis. In particular, we will need differentiability con-
cepts for functions between arbitrary Hilbert spaces in Chapter 5 and Chapter 6. Since
the considered MOR methods are based on systems theory, we review system properties
such as stability, controllability, and observability. Additionally, we cover Hardy spaces,
particularly the H2 space. Next, we provide overview for some projection-based MOR
methods, including balanced truncation and interpolatory methods. For multi-agents
systems, we revise some basic concepts from graph theory. Then, we cover modeling
and some properties of linear multi-agent systems used in Chapter 3 and Chapter 4.
In Chapter 3, we study clustering-based MOR of multi-agent systems. The goal is to

find good partitioning of the nodes of the graph over which the dynamics is evolving.
Clustering then produces a multi-agent system evolving over a smaller graph. First, we
focus on linear multi-agent systems and consider the problem of H2-optimal clustering-
based MOR. Since clustering is generally a very difficult combinatorial problem, we
relax the discrete problem to a continuous H2-optimal MOR problem. To recover a
discrete solution, we interpret it as a problem of approximating a subspace. We propose
using a clustering algorithm over the sets of rows of a matrix used to project the original
model. Then, we generalize this to a framework of combining a projection-based method
with a clustering algorithm and apply it to nonlinear multi-agent systems. The results
for linear multi-agent systems with single-integrator agents are published in

P. Mlinarić, S. Grundel, and P. Benner, Efficient Model Order Reduction
for Multi-Agent Systems Using QR Decomposition-Based Clustering, Pro-
ceedings of the 54th IEEE Conference on Decision and Control (CDC), pp.
4794–4799, December 2015.

An extension for linear multi-agent systems with more general agents is published in

P. Mlinarić, S. Grundel, and P. Benner, Clustering-Based Model Order
Reduction for Multi-Agent Systems with General Linear Time-Invariant
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1.2 Outline of the thesis

Agents, Proceedings of the 22nd International Symposium on Mathematical
Theory of Networks and Systems (MTNS), pp. 230–235, July 2016.

The results for nonlinear multi-agent systems will be published in a forthcoming paper.
In Chapter 4, we turn to more theoretical consideration of error due to clustering.

First, we look at linear multi-agent systems and derive H2 and H∞ error bounds when
using an almost equitable partition (AEP), extending known H2-error expressions for
multi-agent systems with single-integrator agents. We also propose an extension to
arbitrary partitions using the distance to a graph for which the partition becomes
almost equitable. These results are published in

H.-J. Jongsma, P. Mlinarić, S. Grundel, P. Benner, and H. L. Trentelman,
Model Reduction of Linear Multi-Agent Systems by Clustering with H2 and
H∞ Error Bounds, Mathematics of Control, Signals, and Systems, vol. 30,
April 2018.

Next, we consider power systems, which are a type of nonlinear multi-agent systems.
There, we derive equivalent conditions for clustering with zero error. These conditions
involve graph symmetries and equitable partitions. The results are published in

P. Mlinarić, T. Ishizaki, A. Chakrabortty, S. Grundel, P. Benner, and
J. Imura, Synchronization and Aggregation of Nonlinear Power Systems
with Consideration of Bus Network Structures, Proceedings of the European
Control Conference (ECC), pp. 2266–2271, June 2018.

In Chapter 5, we study the problem of subsystem reduction for linear network sys-
tems. This is a complementary approach to clustering, where the underlying graph
is preserved and only the subsystems at the nodes are reduced. In the first part, we
extend a balancing-based MOR method which preserves stability for network systems
satisfying a certain small-gain condition. Using the known a priori H∞ error bound,
it allows automatic choice of the order of the reduced subsystems. The results are
published in

P. Benner, S. Grundel, and P. Mlinarić, Stability Preserving Model Reduc-
tion for Linearly Coupled Linear Time-Invariant Systems, Proceedings in
Applied Mathematics and Mechanics, vol. 16, pp. 817–818, October 2016.

The second part is about H2-optimal subsystem reduction. Using the Gramian-based
formulation of the H2-error, we derive gradients with respect to matrices defining the
ROM. Therefore, we also obtain Wilson-type necessary optimality conditions. These
results are subject of a forthcoming article.
In Chapter 6, we use the ideas from the second part of Chapter 5 to other structure-

preserving H2-optimal MOR problems. In particular, we consider structure-preserving
MOR for second-order systems, port-Hamiltonian systems, and time-delay systems.
Additionally, we also considerH2⊗L2-optimal MOR for parametric systems. We derive
Wilson-type necessary optimality conditions and for some systems also the interpolatory
optimality conditions. The preliminary results for parametric systems are published in
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1 Introduction

M. Hund, P. Mlinarić, and J. Saak, An H2 ⊗ L2-Optimal Model Order
Reduction Approach for Parametric Linear Time-Invariant Systems, Pro-
ceedings in Applied Mathematics and Mechanics, vol. 18, pp. e201800084,
December 2018.

Finally, in Chapter 7 we summarize the results of the thesis and discuss possible
future directions.
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2 Mathematical Preliminaries

2.1 Linear algebra

Here, we recall some definitions and properties related to eigenvalues and matrix equa-
tions.

2.1.1 Eigenvalues and eigenvectors of matrices and matrix pairs

We begin with the definition of eigenvalues, right and left eigenvectors, spectrum, and
spectral radius of a matrix.

Definition 2.1 ([GV13, Section 7.1.1]):
A scalar λ ∈ C is an eigenvalue of a matrix A ∈ Cn×n if there exists a nonzero
vector x ∈ Cn such that Ax = λx. The vector x is called a (right) eigenvector of
A corresponding to the eigenvalue λ. A nonzero vector y ∈ Cn is a left eigenvector
of A corresponding to the eigenvalue λ if y∗A = λy∗. The set of eigenvalues of A is
called the spectrum and is denoted by σ(A). The spectral radius of the matrix A is
ρ(A) := maxλ∈σ(A) |λ|. ♦

Next, we continue with diagonalizability of a matrix and simultaneous diagonaliz-
ability of two or more matrices.

Definition 2.2 ([HJ85, Definition 1.3.6]):
The matrix A ∈ Cn×n is said to be diagonalizable if there exists an invertible T ∈ Cn×n

such that T−1AT is a diagonal matrix. ♦

Definition 2.3 ([HJ85, Definition 1.3.11, 1.3.18]):
Two matrices A,B ∈ Cn×n are said to be simultaneously diagonalizable if there exists
an invertible T ∈ Cn×n such that T−1AT and T−1BT are both diagonal matrices.
A simultaneously diagonalizable family F ⊆ Cn×n is a family for which there is a

single invertible matrix T ∈ Cn×n such that T−1AT is diagonal for every A ∈ F. ♦

The following theorem gives necessary and sufficient conditions for simultaneous diag-
onalizability. Recall that two matrices A and B are said to commute if AB = BA. A
family F ⊆ Cn×n of matrices is a commuting family if every pair of matrices from F

commute [HJ85, Definition 1.3.16].

Theorem 2.4 ([HJ85, Theorem 1.3.12, 1.3.19]):
Let A,B ∈ Cn×n be diagonalizable. Then A and B commute if and only if they are
simultaneously diagonalizable.
Let F ⊆ Cn×n be a family of diagonalizable matrices. Then F is a commuting family

if and only if it is a simultaneously diagonalizable family. ♦

Next definition is for eigenvalues and eigenvectors of a matrix pencil A − λB (or
matrix pair (A,B)) with invertible B matrix.
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2.1 Linear algebra

Definition 2.5 ([GV13, Section 7.7]):
A scalar λ ∈ C is an eigenvalue of a matrix pencil A− λB, A,B ∈ Cn×n, B invertible,
if there exists a nonzero vector x ∈ Cn such that Ax = λBx. The vector x is called
a (right) eigenvector of A − λB corresponding to the eigenvalue λ. A nonzero vector
y ∈ Cn is a left eigenvector of A−λB corresponding to the eigenvalue λ if y∗A = λBy∗.
The set of eigenvalues of A− λB is denoted by σ(A,B). ♦

Notice that σ(A,B) = σ(B−1A).
The following result gives bounds for the eigenvalues of a “projected” symmetric ma-

trix, where we use that the eigenvalues of a symmetric are real ([HJ85, Theorem 2.5.6])
to label them in increasing order.

Theorem 2.6 (Interlacing property, [MN99, Section 11.10]):
Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1(A) 6 λ2(A) 6 · · · 6 λn(A),
P ∈ Rn×r a matrix with orthonormal columns, and B = PTAP . Then the eigenvalues
λ1(B) 6 λ2(B) 6 · · · 6 λr(B) of B satisfy

λi(A) 6 λi(B) 6 λn−r+i(A),

for i = 1, 2, . . . , r. ♦

2.1.2 Kronecker product, vectorization, and matrix equations

We start with the definition of the Kronecker product and vectorization operator.

Definition 2.7 ([GV13, Section 1.3.6]):
For A = [aij] ∈ Rm×n and B ∈ Rp×q, the Kronecker product A ⊗ B ∈ Rmp×nq and
vectorization vec(A) ∈ Rmn are defined by

A⊗B :=



a11B · · · a1nB
... . . . ...

am1B · · · amnB


 , vec(A) :=




A:,1

A:,2
...

A:,n


 . ♦

Next, we state some properties of the Kronecker product and its relation to the vector-
ization operator.

Proposition 2.8 ([GV13, Sections 1.3.6 and 1.3.7]):
We have for any scalar α and all matrices A,B,C,D of compatible dimensions:

1. (A⊗B)⊗ C = A⊗ (B ⊗ C),

2. (αA)⊗B = A⊗ (αB) = α(A⊗B),

3. (A+B)⊗ C = A⊗ C +B ⊗ C,

4. A⊗ (B + C) = A⊗B + A⊗ C,
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2 Mathematical Preliminaries

5. (A⊗B)(C ⊗D) = (AC)⊗ (BD)

6. (A⊗B)T = AT ⊗BT,

7. (A⊗B)−1 = A−1 ⊗B−1 (for invertible A and B),

8. vec(ABC) = (CT ⊗ A) vec(B),

9. σ(A⊗B) = {λµ | λ ∈ σ(A), µ ∈ σ(B)} (for square matrices A and B). ♦

Note that the Kronecker product is not commutative, but the result is equal up to a
permutation of rows and columns.
We will be interested in matrix equations of the form

AXBT + CXDT + E = 0, (2.1)

where A,C ∈ Rn×n, B,D ∈ Rm×m, X,E ∈ Rn×m, and B and C are invertible. Vector-
ization of (2.1) gives

(B ⊗ A+D ⊗ C) vec(X) = − vec(E) .

Clearly, the above equation has a unique solution if and only if the matrix B⊗A+D⊗C
is invertible. The following theorem gives the equivalent condition.

Theorem 2.9 ([Chu87, Theorem 1]):
The matrix equation (2.1) has a unique solution if and only if λ + µ 6= 0 for all
λ ∈ σ(A,C) and µ ∈ σ(D,B). ♦

Notice that if σ(A,C) ⊂ C− and σ(D,B) ⊂ C−, then the condition in Theorem 2.9 is
satisfied.

2.2 Functional analysis

Here, we give necessary basics of calculus in Banach spaces. In particular, we present
differentiability, implicit function theorem, and Lagrange multiplier method. We base
the presentation on the textbooks [Zei85a, Col12].

2.2.1 Fréchet and Gateaux differentiability

We only consider vector spaces over the field of real numbers R. For normed vector
spaces X, Y , we use B(X, Y ) to denote the space of bounded linear operators A : X →
Y . The dual space of X is denoted X∗ := B(X,R).
We begin with the definition of Fréchet differentiability.
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2.2 Functional analysis

Definition 2.10 ([Col12, Section 2.2], [Zei85a, Definition 4.5]):
Let X and Y be normed vector spaces with norms ‖·‖X and ‖·‖Y , respectively, and
f : U → Y a function, where U is an open subset of X and x an element of U .
The function f is Fréchet differentiable at x if there exists an operator A ∈ B(X, Y )

such that

lim
h→0

‖f(x+ h)− f(x)− Ah‖Y
‖h‖X

= 0.

If it exists, this A is called the Fréchet differential of f at x and is denoted by Df(x).♦

It can be seen that the operator A in the above definition is unique (see [Col12, Propo-
sition 2.2]), which justifies using the notation Df(x).
For a function r : U ⊆ X → Y , defined on some open neighborhood of zero, we write

r(h) = o(‖h‖n) to mean

lim
h→0

r(h)

‖h‖n = 0.

Then, for a function f which is Fréchet differentiable at x, we can write

f(x+ h) = f(x) + Df(x)h+ o(‖h‖).

Similar properties as for finite-dimensional spaces hold here.

Proposition 2.11 ([Col12, Proposition 2.7], [Zei85a, Proposition 4.9]):
Let X and Y be normed vector spaces, U an open subset of X, and x an element of
U . If f, g : U → Y are Fréchet differentiable at x, then f + g is differentiable at x, as
is αf , for any α ∈ R, and

D(f + g)(x) = Df(x) + Dg(x), D(αf)(x) = αDf(x). ♦

Proposition 2.12 ([Col12, Theorem 2.1], [Zei85a, Proposition 4.10]):
Let X, Y, Z be normed vector spaces, U an open subset of X, V an open subset of Y , x
an element of U , and f : U → Y and g : V → Z functions such that f(U) ⊆ V . If f is
Fréchet differentiable at x and g is Fréchet differentiable at f(x), then g ◦ f is Fréchet
differentiable at x and

D(g ◦ f)(x) = Dg(f(x)) Df(x). ♦

The following is the extension of continuously differentiability to functions between
normed vector spaces.

Definition 2.13 ([Col12, Section 2.4], [Zei85a, Definition 4.22]):
Let X and Y be normed vector spaces and f : U → Y a function, where U is an open
subset of X. The function f is of class C1 if it is Fréchet differentiable at every x ∈ U
and Df : U → B(X, Y ) is continuous. ♦
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Next is the extension of directional derivatives.

Definition 2.14 ([Col12, Section 2.1], [Zei85a, Definition 4.5]):
Let X and Y be normed vector spaces and f : U → Y a function, where U is an open
subset of X containing x ∈ X.

1. For h ∈ X, if the limit

lim
t→0

f(x+ th)− f(x)

t

exists, we call it the directional derivative of f at x in direction h and denote it
by df(x;h).

2. The function f is Gateaux differentiable at x if df(x;h) exists for all h ∈ X and
there exists an operator A ∈ B(X, Y ) such that df(x;h) = Ah for all h ∈ X. If it
exists, the operator A is called the Gateaux differential of f at x and is donated
by DGf(x). ♦

Similarly as for Fréchet differential, the Gateaux differential of a function is unique if
it exists.
The following result gives the relation between Fréchet and Gateaux differentials.

Proposition 2.15 ([Zei85a, Proposition 4.8]):
Let X and Y be normed vector spaces and f : U → Y a function, where U is an open
subset of X containing x ∈ X. Then,

1. if f is Fréchet differentiable at x, then it is also Gateaux differentiable at x and
Df(x) = DGf(x),

2. if f is Gateaux differentiable in some neighborhood of x and DGf is continuous
at x, then f is Fréchet differentiable at x and Df(x) = DGf(x). ♦

This result provides an alternative way of proving a function is Fréchet differentiable
and finding its differential. In particular, assuming t 7→ f(x + th) is continuously
differentiable, we have that

df(x;h) = lim
t→0

f(x+ th)− f(x)

t
=

d

dt
f(x+ th)

∣∣∣∣
t=0

.

Therefore, methods for computing derivatives of functions of a real variable can be used
to find a candidate for the Fréchet differential.
Notice that if Y = R, then Df(x) ∈ B(X,R) = X∗. Therefore, ifX is a Hilbert space,

functional Df(x) can be identified with an element of X by the Riesz representation
theorem ([Col12, Theorem 6.4]).
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Definition 2.16 ([Col12, Section 6.4]):
Let X be a Hilbert space with inner product 〈·, ·〉X , U an open subset of X, and
f : U → R a function. Let f be Fréchet differentiable at x ∈ U . The element a ∈ X,
such that Df(x)h = 〈a, h〉X for all h ∈ X, is called the gradient of f at x and is denoted
by ∇f(x). ♦

Next is the extension of partial differentials.

Definition 2.17 ([Zei85a, Definition 4.13]):
Let X, Y , Z be Banach spaces, U and open subset of X × Y , (x0, y0) an element of U ,
and f : U → Z a function.
Define an open subset Uy0 = {x ∈ X : (x, y0) ∈ U} ⊆ X and a function g : Uy0 → Z

with g(x) = f(x, y0) for all x ∈ Uy0 . Let g be Fréchet differentiable at x0. Then Dg(x0)
is called the partial Fréchet differential of f at (x0, y0) with respect to the first variable
x and is denoted by Dxf(x0, y0). ♦

The differential Dyf(x0, y0) is defined similarly.
The following result states the relation between Fréchet and partial Fréchet differen-

tials.

Proposition 2.18 ([Zei85a, Proposition 4.14]):
Let X, Y , Z be Banach spaces, U and open subset of X × Y , (x0, y0) an element of U ,
and f : U → Z a function.

1. If f is Fréchet differentiable at (x0, y0), then its partial Fréchet differentials
Dxf(x0, y0) and Dyf(x0, y0) also exist and

Df(x0, y0)(h, k) = Dxf(x0, y0)h+ Dyf(x0, y0)k,

for all h ∈ X and k ∈ Y .

2. If f has partial Fréchet differentials Dxf and Dyf in some neighborhood of (x0, y0)
and if these are continuous at (x0, y0), then f is Fréchet differentiable at (x0, y0).

3. The function f is continuously Fréchet differentiable in a neighborhood of (x0, y0)
if and only if all partial Fréchet differentials are continuous in a neighborhood of
(x0, y0). ♦

Partial differential of a function of more variables f(x1, x2, . . . , xn) are defined similarly
and the above result can be directly extended. Furthermore, partial Gateaux differ-
ential, partial directional derivatives, and partial gradients can be defined in a similar
way.

2.2.2 Implicit function theorem

We can now state the implicit function theorem.
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Theorem 2.19 ([Zei85a, Theorem 4.B], [Col12, Theorem 8.2]):
Let X, Y , Z be Banach spaces, U an open subset of X × Y , (x0, y0) an element of U ,
and f : U → Z a function. Suppose that

1. f(x0, y0) = 0,

2. Dyf exists on U and Dyf(x0, y0) is bijective,

3. f and Dyf are continuous at (x0, y0).

Then there exist open subsets UX ⊆ X and UY ⊆ Y and a bijection g : UX → UY such
that x0 ∈ UX , y0 ∈ UY , g(x0) = y0, and f(x, g(x)) = 0 for all x ∈ UX .
Additionally, if f is of class C1 on a neighborhood of (x0, y0), then g is of class C1

on a neighborhood of x0 and Dg(x0) = −Dyf(x0, g(x0))−1 Dxf(x0, g(x0)). ♦

2.2.3 Constrained optimization and Lagrange multipliers

We conclude with the theorem about Lagrange multipliers. First, we need to define
when is a function a submersion [Zei85b, Definition 43.15].

Definition 2.20:
Let X, Y be Banach spaces, U an open subset of X, x0 an element of U , and g : U → Y
a function. The function g is a submersion at x0 if

1. g is of class C1 in a neighborhood of x0,

2. Dg(x0) : X → Y is surjective,

3. the null space ker(Dg(x0)) splits X, i.e., there exists a continuous projection
operator P of X on ker(Dg(x0)). ♦

Note that the third condition is immediately satisfied if X is a Hilbert space.
Next is the theorem about constrained local minima.

Theorem 2.21 ([Zei85b, Theorem 43.D]):
Let X, Y be real Banach spaces, U an open subset of X, x0 an element of U , f : U → R
and g : U → Y functions.
Suppose f is Fréchet differentiable at x0 and g is a submersion at x0, and that f has

a constrained local minimum at x0 with respect to {x ∈ U : g(x) = 0}. Then there
exists λ ∈ Y ∗ such that

Df(x0)h− λ(Dg(x0)h) = 0,

for all h ∈ X. ♦

For Hilbert spaces, we can use gradients.
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Corollary 2.22:
Let X, Y be real Hilbert spaces, U an open subset X, x0 an element of U , f : U → R
and g : U → Y functions.
Suppose f is Fréchet differentiable at x0, g is of class C1 in a neighborhood of x0,

Dg(x0) is surjective, and that f has a constrained local minimum at x0 with respect to
{x ∈ U : g(x) = 0}. Then there exists λ ∈ Y such that

〈∇f(x0), h〉 − 〈λ,Dg(x0)h〉 = 0,

for all h ∈ X. ♦

2.3 Linear time-invariant systems

We consider finite-dimensional, continuous-time, linear time-invariant (LTI) systems of
the form

Eẋ(t) = Ax(t) +Bu(t), x(0) = x0,

y(t) = Cx(t) +Du(t),
(2.2)

with system matrices E,A ∈ Rn×n, input matrix B ∈ Rn×m, output matrix C ∈ Rp×n,
and feedthrough matrix D ∈ Rp×m. Furthermore, t ∈ R is time, x0 ∈ Rn is the initial
condition, while x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp are respectively the state, input,
and output of the system. We call dimension n of the state x(t) the order of the
system (2.2). Throughout this thesis, we assume E to be invertible. Thereby, the state
equation in (2.2) is a system of ODEs after multiplying from the left by E−1.
If there is only one input and one output, i.e., if m = p = 1, we will refer to such

a system as a single-input single-output (SISO) system. Otherwise, we will call it a
multiple-input multiple-output (MIMO) system.
We will use (E;A,B,C,D) to denote the system (2.2). If D is a zero matrix, we

will also use (E;A,B,C). Furthermore, we will use (A,B,C,D) and (A,B,C) to mean
(In;A,B,C,D) and (In;A,B,C), respectively.
In this thesis, we focus on continuous-time systems. Results for discrete-time systems

Ex(k + 1) = Ax(k) +Bu(k), x(0) = x0,

y(k) = Cx(k) +Du(k),

should be directly extendable due to similarities to continuous-time systems (see [Ant05]
for more details).
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2.3.1 Solutions and stability

It can be verified that, for given initial condition x0 and input u, the state and output
of the system (2.2) satisfy

x(t) = etE
−1Ax0 +

∫ t

0

eτE
−1AE−1Bu(t− τ) dτ ,

y(t) = CetE
−1Ax0 +

∫ t

0

CeτE
−1AE−1Bu(t− τ) dτ +Du(t).

The system (2.2) can also be solved in the frequency-domain. Assuming X, U , and
Y exist as Laplace transforms of x, u, and y, by applying Laplace transform to the
system (2.2), we find that

sEX(s)− Ex0 = AX(s) +BU(s),

Y (s) = CX(s) +DU(s).

After eliminating X(s), we obtain

Y (s) = C(sE − A)−1Ex0 +
(
C(sE − A)−1B +D

)
U(s).

The function H(s) = C(sE − A)−1B + D is called the transfer function, and it char-
acterizes the input-output relationship when x0 = 0.
For any pair of invertible matrices S, T ∈ Rn×n, if we define a new state x̃(t) =

T−1x(t), we obtain an equivalent system

SET ˙̃x(t) = SAT x̃(t) + SBu(t), x̃(0) = T−1x0,

y(t) = CTx̃(t) +Du(t),

in the sense that the input and output remain the same. Notice that also the transfer
function H is independent of the choice of S and T . It is of interest to see which other
system properties are invariant under this transformations.
Important properties of LTI systems are stability and asymptotic stability.

Definition 2.23 ([Ant05, Section 5.8]):
The autonomous system Eẋ(t) = Ax(t) is called stable if all of its solutions x are
bounded for positive time, i.e., the set {x(t) | t > 0} is bounded. If additionally
limt→∞ x(t) = 0, it is called asymptotically stable.
The system (E;A,B,C,D) is (asymptotically) stable if the corresponding autonomous

system Eẋ(t) = Ax(t) is (asymptotically) stable. ♦

It is known that the system (E;A,B,C,D) is

• asymptotically stable if and only if σ(A,E) ⊂ C−.

• stable if and only if σ(A,E) ⊂ C− and all purely imaginary eigenvalues are semi-
simple (their geometric multiplicity and algebraic multiplicity are equal).
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2.3 Linear time-invariant systems

We call a matrix A (a matrix pair (A,E)) asymptotically stable or Hurwitz if σ(A) ⊂ C−
(σ(A,E) ⊂ C−). Additionally, we call a transfer function H(s) = C(sE − A)−1B + D
asymptotically stable or Hurwitz if its poles are all in C−.
Notice that if the system (E;A,B,C,D) is asymptotically stable, then its transfer

function is also asymptotically stable, but the converse does not hold (e.g., if B or C
is a zero matrix).

2.3.2 Controllability, observability, and Gramians

Further important properties are reachability and observability. We first discuss reach-
ability and controllability (see [DP00, Section 2.2] and [Ant05, Section 4.2.1]).

Definition 2.24:
Let (E;A,B,C,D) be a system with A ∈ Rn×n and B ∈ Rn×m. A state x1 ∈ Rn is
reachable by time t > 0 if there exists an input u ∈ L2(0, t) and a trajectory x such
that x(0) = 0, x(t) = x1, and Eẋ(τ) = Ax(τ) +Bu(τ) for almost all τ ∈ (0, t).
The set R(t) ⊆ Rn of all reachable states by time t > 0 is called the reachable set at

time t.
The n× nm matrix

C(E;A,B) = C(E−1A,E−1B) =
[
E−1B E−1AE−1B · · · (E−1A)

n−1
E−1B

]

is called the controllability matrix.
For t > 0, the controllability Gramian is the n× n matrix

P (t) =

∫ t

0

eE
−1AtE−1BBTE−TeA

TE−Tt dt. ♦

We have the following result relating the reachable set, controllability matrix, and
controllability Gramian.

Proposition 2.25 ([DP00, Theorem 2.2]):
For all t > 0, equality

R(t) = im(C(E;A,B)) = im(P (t))

holds. ♦

Since C(E;A,B) does not depend on t, we have that R(t) and im(P (t)) are also con-
stant.

Definition 2.26:
The system (E;A,B,C,D) is reachable if R(t) = Rn, for some t > 0. ♦

For continuous-time systems, reachability is equivalent to controllability in the following
sense (see [Ant05, Theorem 4.18]).
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Definition 2.27:
The system (E;A,B,C,D) is controllable if for any pair of states x0, x1 ∈ Rn there exist
a time t > 0, an input u ∈ L2(0, t), and trajectory x such that x(0) = x0, x(t) = x1,
and Eẋ(τ) = Ax(τ) +Bu(τ) for almost all τ ∈ (0, t). ♦

Thus, we will use both terms. The following theorem gives equivalent conditions for
controllability.

Theorem 2.28 ([Ant05, Theorem 4.15]):
The following are equivalent:

1. The system (E;A,B,C,D) is controllable.

2. The controllability matrix is of full rank: rank(C(E;A,B)) = n.

3. The controllability Gramian P (t) is positive definite for all t > 0.

4. If v is a left eigenvector of (A,E), then v∗B 6= 0.

5. rank
([
λE − A B

])
= n for all λ ∈ C. ♦

The following proposition gives an interesting property of the controllability matrix.

Proposition 2.29 ([DP00, Proposition 2.11]):
Suppose E,A ∈ Rn×n and B ∈ Rn×m. Then im(C(E;A,B)) is invariant under E−1A.♦

In particular, we can see that im(C(E;A,B)) is the smallest subspace which contains
im(E−1B) and is invariant under E−1A.
Next, we discuss observability (see [DP00, Section 2.4] and [Ant05, Section 4.2.2]).

Definition 2.30:
Let (E;A,B,C,D) be a system with A ∈ Rn×n and C ∈ Rp×n. A state x0 ∈ Rn is
unobservable if CetE−1Ax0 = 0 for all t > 0.
The set N ⊆ Rn of all unobservable states is called the unobservable set. If N = {0},

the system is called observable.
The np× n matrix

O(E;A,C) = C(E−1A,C) =




C
CE−1A

...
C (E−1A)

n−1




is called the observability matrix.
For t > 0, the observability Gramian is the n× n matrix

Q(t) =

∫ t

0

E−TeA
TE−TtCTCeE

−1AtE−1 dt. ♦
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Here is a result relating the unobservable set and observability matrix.

Proposition 2.31 ([DP00, Theorem 2.20]):
The unobservable set satisfies

N = ker(O(E;A,C)) . ♦

The following gives equivalent conditions for observability. Notice the analogy with
Theorem 2.28.

Theorem 2.32 ([Ant05, Theorem 4.26]):
The following are equivalent:

1. The system (E;A,B,C,D) is observable.

2. The observability matrix is of full rank: rank(O(E;A,C)) = n.

3. The observability Gramian Q(t) is positive definite for all t > 0.

4. If v is a right eigenvector of (A,E), then Cv 6= 0.

5. rank
([
λET − AT CT

])
= n for all λ ∈ C. ♦

We introduced controllability and observability Gramians which depend on a finite
time t. Important concepts are infinite Gramians [MS05, Section 3.2.4].

Definition 2.33:
For an asymptotically stable system (E;A,B,C,D) the (infinite) controllability Gramian
is

P :=

∫ ∞

0

eE
−1AtE−1BBTE−TeA

TE−Tt dt

and the (infinite) observability Gramian is

Q :=

∫ ∞

0

E−TeA
TE−TtCTCeE

−1AtE−1 dt. ♦

They can also be represented in the frequency domain.

Proposition 2.34 ([Ant05, Section 4.3], [MS05, Section 3.2.4]):
Under the assumptions of Definition 2.33, the Gramians satisfy

P =
1

2π

∫ ∞

−∞
(ıωE − A)−1BBT(−ıωE − A)−T dω,

Q =
1

2π

∫ ∞

−∞
(−ıωE − A)−TCTC(ıωE − A)−1 dω. ♦

Solving Lyapunov equations can be used to find the Gramians.
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Proposition 2.35 ([Ant05, Proposition 4.27]):
Under the assumptions of Definition 2.33, the Gramians are the unique solutions to the
following Lyapunov equations:

APET + EPAT +BBT = 0,

ATQE + ETQA+ CTC = 0. ♦
Compared to Definition 2.33 or Proposition 2.34, Proposition 2.35 provides an approach
to efficient computation of Gramians (see surveys [BS13, Sim16]).

2.3.3 Hardy spaces and system norms

The transfer function H(s) = C(sE − A)−1B+D is a rational matrix function. Under
some assumptions, H is an element of Hardy spaces Hp×m

2 and/or Hp×m
∞ .

Definition 2.36 ([Ant05, Section 5.1.3]):
Hardy space H

p×m
2 :

H
p×m
2 :=

{
H : C+ → Cp×m

∣∣∣∣
H is analytic and
supξ>0

∫∞
−∞ ‖H(ξ + ıω)‖2

F dω <∞

}
,

with norm

‖H‖H2
:=

√
sup
ξ>0

∫ ∞

−∞
‖H(ξ + ıω)‖2

F dω.

Hardy space Hp×m
∞ :

Hp×m
∞ :=

{
H : C+ → Cp×m

∣∣∣∣
H is analytic and
sups∈C+

‖H(s)‖2 <∞

}

with norm

‖H‖H∞ := sup
s∈C+

‖H(s)‖2. ♦

For simplicity, we will often write H2 and H∞ instead of Hp×m
2 and Hp×m

∞ .
It can be seen that if the system is asymptotically stable, then H is an element of

H∞. If additionally D = 0, then H is also an element of H2.
Remark 2.37:
Functions from Hardy spaces can be extended to the imaginary axis. Furthermore, H2

can be shown to be a Hilbert space with inner product

〈H,G〉H2
:=

1

2π

∫ ∞

−∞
tr(H(ıω)∗G(ıω)) dω

and H∞ a Banach space with norm

‖H‖H∞ := sup
ω∈R
‖H(ıω)‖2.

For more details, see [Ant05] and [ZDG96]. ♦
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The following results states that the Gramians can be used to compute the H2-norm.

Proposition 2.38 ([Ant05, Section 5.5.1]):
For an asymptotically stable system (2.2),

‖H‖2
H2

= tr
(
CPCT) = tr

(
BTQB

)
. ♦

2.4 Model order reduction

2.4.1 Projection-based model reduction

We consider the system (2.2). Here, we assume homogeneous initial conditions, i.e.,
x0 = 0. For some recent work on MOR approaches for inhomogeneous initial conditions,
see [HRA11, BGM17].
We can write the system (2.2) in variational form (see [ABG10, Section 2.2]):

Find x(t) contained in Rn such that

Eẋ(t)− Ax(t)−Bu(t) ⊥ Rn.

Then the associated output is y(t) = Cx(t) +Du(t).

Petrov-Galerkin projection consists of choosing two r-dimensional subspaces V,W ⊂
Rn, where r < n is the reduced order, and defining the ROM by

Find v(t) contained in V such that

Ev̇(t)− Av(t)−Bu(t) ⊥W.

Then the associated output is ŷ(t) = Cv(t) +Du(t).

Choosing V,W ∈ Rn×r such that im(V ) = V and im(W ) = W, we have v(t) = V x̂(t)
for some x̂(t) ∈ Rr and WT(EV ˙̂x(t)−AV x̂(t)−Bu(t)) = 0. A state-space form of the
ROM is

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), x̂(0) = 0,

ŷ(t) = Ĉx̂(t) + D̂u(t),

with

Ê = WTEV, Â = WTAV, B̂ = WTB, Ĉ = CV, D̂ = D.

In the following sections, we give an overview of some particular projection-based meth-
ods.
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2.4.2 Balanced truncation

This method is based on the controllability and observability energy functionals

Ec(x0) := inf
{
‖u‖2

L2(−∞,0)

∣∣∣Eẋ(t) = Ax(t) +Bu(t), x(−∞) = 0, x(0) = x0

}
,

Eo(x0) :=
∥∥∥CetE−1Ax0

∥∥∥
2

L2(0,∞)
.

We can interpret Ec(x0) as the energy necessary to reach state x0 and Eo(x0) as the
observed energy from the system when it starts from state x0. The following result
relates energy functionals to Gramians.
Proposition 2.39:
For a controllable system (E;A,B,C,D), we have

Ec(x0) = xT
0 P
−1x0 and Eo(x0) = xT

0E
TQEx0. ♦

For a controllable and observable system, it is possible to transform the system such
that P̃ and ẼTQ̃Ẽ become equal to a matrix Σ = diag(σ1, σ2, . . . , σn) where σ1 > σ2 >
· · · > σn > 0 (see [Ant05, Lemma 7.3]). If there exists an r such that σr � σr+1,
then we say that, in the new coordinate system, the states e1, . . . , er are easy to reach
and easy to observe, while the states er+1, . . . , en are difficult to reach and difficult to
observe. The idea is then to truncate the latter states. Balanced truncation (BT), using
the balancing-free square root method, is described in Algorithm 2.1. The following
theorem gives the a priori error bound which allows automatic choice of the reduced
order.
Theorem 2.40 ([Ant05, Theorem 7.9]):
Let (E;A,B,C,D) be an asymptotically stable, controllable, and observable system of
order n and (Ê; Â, B̂, Ĉ, D̂) a ROM obtained by BT of order r < n. If σr 6= σr+1, then
the ROM is asymptotically stable, controllable, observable, and

‖H − Ĥ‖H∞ 6 2
n∑

i=r+1

σi,

where H and Ĥ are the transfer functions of the two systems. ♦

2.4.3 Rational interpolation

MOR using rational interpolation, also called moment matching or Krylov methods, is
described here. The main idea is formulated in the following theorem.

Theorem 2.41 ([ABG10, Theorem 2]):
Let H(s) = C(sE − A)−1B +D and Ĥ(s) = Ĉ(sÊ − Â)

−1
B̂ + D̂ be two transfer func-

tions with Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV , and D̂ = D. Furthermore,
let σ, µ ∈ C be such that sE −A and sÊ − Â are invertible for s = σ, µ. If b ∈ Cm and
c ∈ Cp are fixed nontrivial vectors, then
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Algorithm 2.1: Balancing-free square root balanced truncation method
Input: Asymptotically stable system (E;A,B,C,D) of order n, reduced order

r.
Output: Reduced-order model (Ê; Â, B̂, Ĉ, D̂).

1 For Gramians P and Q solving Lyapunov equations

APET + EPAT +BBT = 0,

ATQE + ETQA+ CTC = 0,

find Cholesky decompositions P = ZPZ
T
P and Q = ZQZ

T
Q, with ZP , ZQ ∈ Rn×n,

or low-rank approximations ZP ∈ Rn×rP , ZQ ∈ Rn×rQ , with r 6 min(rP , rQ).
2 Compute a singular value decomposition

ZT
QEZP =

[
U1 U2

] [Σ1 0
0 Σ2

] [
V T

1

V T
2

]

where Σ1 ∈ Rr×r.
3 Use thin QR decompositions to find V,W ∈ Rn×r with orthonormal columns

such that im(V ) = im(ZPV1) and im(W ) = im(ZQU1).
4 Project to get reduced matrices

Ê = WTEV, Â = WTAV, B̂ = WTB, Ĉ = CV, D̂ = D.

1. if

(
(σE − A)−1E

)i
(σE − A)−1Bb ∈ im(V ) for i = 0, 1, . . . , N − 1, (2.3)

then
H(k)(σ)b = Ĥ(k)(σ)b for k = 0, 1, . . . , N − 1,

2. if
(

(µE − A)−TET
)j

(µE − A)−TCTc ∈ im(W ) for j = 0, 1, . . . ,M − 1, (2.4)

then
cTH(k)(µ) = cTĤ(k)(µ) for k = 0, 1, . . . ,M − 1,

3. if both (2.3) and (2.4) hold and σ = µ, then

cTH(k)(σ)b = cTĤ(k)(σ)b for k = 1, 2, . . . ,M +N − 1. ♦
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In particular, if

im(V ) = im
([

(σ1E − A)−1Bb1 (σ2E − A)−1Bb2 · · · (σrE − A)−1Bbr
])
,

im(W ) = im
([

(µ1E − A)−TCTc1 (µ2E − A)−TCTc2 · · · (µrE − A)−TCTcr
])
,

then we have

H(σi)bi = Ĥ(σi)bi and cTi H(µi) = cTi Ĥ(µi), for i = 1, 2, . . . , r.

If additionally σi = µi, then also

cTi H
′(σi)bi = cTi Ĥ

′(σi)bi, for i = 1, 2, . . . , r.

This case is particularly relevant for H2-optimal MOR, where the ROM necessarily
satisfies such interpolatory conditions. More details follow in the next section.

2.4.4 H2-optimal model order reduction

There are a few approaches for H2-optimal MOR of first-order systems. We will in
particular focus on two: interpolation-based and Gramian-based.
Meier and Luenberger [ML67] derived interpolatory necessary optimality conditions

for SISO systems. Gugercin, Beattie, and Antoulas [GAB08, ABG10] generalized this
to MIMO systems and proposed iterative rational Krylov algorithm (IRKA).
Wilson [Wil70] developed Gramian-based optimality conditions in form of coupled

matrix equation. Xu and Zeng [XZ11] used this to propose two-sided iteration algo-
rithm (TSIA). The same algorithm was proposed in parallel by Van Dooren, Gallivan,
and Absil [VDGA08, VDGA10]. Benner, Köhler, and Saak [BKS11] investigate some
implementation issues in TSIA related to Sylvester equations and orthonormalization.
Let us take the first-order system (2.2) as the full-order model, with E invertible

and λE − A an asymptotically stable matrix pencil. The H2-optimal MOR problem
is finding a ROM (Ê; Â, B̂, Ĉ, D̂) with transfer function Ĥ(s) = Ĉ(sÊ − Â)

−1
B̂ + D̂,

such that the H2-error ‖H − Ĥ‖H2
is locally minimized. Here, Ê, Â ∈ Rr×r, B̂ ∈ Rr×m,

Ĉ ∈ Rp×r, and D̂ ∈ Rp×m, with r < n. For the H2-error to be defined, it is necessary
that D̂ = D. In particular, we can assume D = D̂ = 0.

2.4.4.1 Interpolation-based approach

The motivation for the interpolation-based approach are the interpolatory necessary
optimality conditions, given in the following theorem. A transfer function H is called
real if (H(s)) = H(s) for all s in the domain of H.
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Algorithm 2.2: Iterative rational Krylov algorithm (IRKA)
Input: System (E;A,B,C), initial shifts σi and tangential directions bi, ci,

i = 1, 2, . . . , r.
Output: Reduced-order model (Ê; Â, B̂, Ĉ).

1 while not converged do
2 Find V,W ∈ Rn×r with orthonormal columns such that

im(V ) = im
([

(σ1E − A)−1Bb1 · · · (σrE − A)−1Bbr
])
,

im(W ) = im
([

(σ1E − A)−TCTc1 · · · (σrE − A)−TCTcr
])
.

3 Project Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV .
4 Compute diag(λi) , X, Y ∈ Cr×r such that Y TÂX = diag(λi) and

Y TÊX = I.
5 Update interpolation points and tangential directions:

σi = −λi, bi = B̂TY ei, ci = ĈXei, for i = 1, 2, . . . , r.

Theorem 2.42 ([ABG10, Theorem 5]):
Suppose H ∈ H2 and Ĥ(s) =

∑r
i=1

cib
T
i

s−λi , with λi pairwise distinct, are real transfer
functions. Let Ĥ be a locally H2-optimal ROM of order r. Then

H(−λi)bi = Ĥ(−λi)bi, (2.5a)

cTi H(−λi) = cTi Ĥ(−λi), (2.5b)

cTi H
′(−λi)bi = cTi Ĥ

′(−λi)bi, (2.5c)

for i = 1, 2, . . . , r. ♦

This results states that the transfer function Ĥ of a locally H2-optimal ROM is a
bitangential Hermite interpolant, at the reflected poles of Ĥ, of the full-order model’s
transfer function H.
For given λi, bi, ci, the interpolation conditions in (2.5) can be achieved by a Petrov-

Galerkin projection (see Theorem 2.41) where V andW span tangential rational Krylov
subspaces

im(V ) = im
([

(−λ1E − A)−1Bb1 · · · (−λrE − A)−1Bbr
])
,

im(W ) = im
([

(−λ1E − A)−TCTc1 · · · (−λrE − A)−TCTcr
])
.

The difficulty is that λi, bi, ci are not given in advance. Gugercin et al. [GAB08, ABG10]
proposed IRKA (see Algorithm 1 in [ABG10]). The pseudocode is presented in Algo-
rithm 2.2.
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2.4.4.2 Gramian-based approach

We use P̂ and Q̂ to denote the controllability and observability Gramians of (Ê; Â, B̂, Ĉ),
which solve reduced Lyapunov equations

ÂP̂ ÊT + ÊP̂ ÂT + B̂B̂T = 0, (2.6a)

ÂTQ̂Ê + ÊTQ̂Â+ ĈTĈ = 0. (2.6b)

Furthermore, we have that the controllability and observability Gramians of the error
system

[
E 0

0 Ê

]

︸ ︷︷ ︸
Eerr

[
ẋ(t)
˙̂x(t)

]
=

[
A 0

0 Â

]

︸ ︷︷ ︸
Aerr

[
x(t)
x̂(t)

]
+

[
B

B̂

]

︸︷︷︸
Berr

u(t),

y(t)− ŷ(t) =
[
C −Ĉ

]

︸ ︷︷ ︸
Cerr

[
x(t)
x̂(t)

]
,

are

Perr =

[
P P̃

P̃T P̂

]
and Qerr =

[
Q Q̃

Q̃T Q̂

]
,

where P̃ , Q̃ ∈ Rn×r solve Sylvester equations

AP̃ ÊT + EP̃ ÂT +BB̂T = 0, (2.7a)

ATQ̃Ê + ETQ̃Â− CTĈ = 0. (2.7b)

Gramian-based approach uses Wilson conditions [Wil70], given in the following theo-
rem. We include a proof because the result is generalized to include invertible matrices
E and Ê. Additionally, the proof uses Lagrange multiplier method, instead of com-
puting the derivatives directly as in [Wil70] or [VDGA08]. We will use the following
lemma in the proof.

Lemma 2.43:
Let A ∈ Rn×m, B ∈ Rn×n, C ∈ Rm×m, and f, g : Rn×m → R such that f(X) = tr

(
AXT

)

and g(X) = tr
(
BXCXT

)
. Then ∇f(X0) = A and ∇g(X0) = BX0C + BTX0C

T for
arbitrary X0 ∈ Rn×m. ♦

Proof. We have

f(X0 +H) = tr
(
A(X0 +H)T

)
= tr

(
AXT

0

)
+ tr

(
AHT) = f(X0) + 〈A,H〉 ,

from which it directly follows that f is Fréchet differentiable at X0 and ∇f(X0) = A.

24



2.4 Model order reduction

For g we have

g(X0 +H) = tr
(
B(X0 +H)C(X0 +H)T

)

= tr
(
BX0CX

T
0

)
+ tr

(
BX0CH

T)+ tr
(
BHCXT

0

)
+ tr

(
BHCHT)

= g(X0) +
〈
BX0C +BTX0C

T, H
〉

+ o(‖H‖),
so g is also Fréchet differentiable at X0 and ∇g(X0) = BX0C +BTX0C

T.

Theorem 2.44:
Let (Ê; Â, B̂, Ĉ) be a locally H2-optimal ROM for (E;A,B,C). Then

Q̃TEP̃ + Q̂ÊP̂ = 0,

Q̃TAP̃ + Q̂ÂP̂ = 0,

Q̃TB + Q̂B̂ = 0,

CP̃ − ĈP̂ = 0.

(2.8)
♦

Proof. The proof consists of applying the Lagrange multiplier method to the optimiza-
tion problem

minimize tr
(
CerrPerrC

T
err

)
,

subject to (2.7a), (2.6a).

The Lagrange function is

L(Ê, Â, B̂, Ĉ, P̃ , P̂ , Λ̃, Λ̂) = tr
(
CPCT − 2CP̃ ĈT + ĈP̂ ĈT

)

+ tr
(

Λ̃T
(
AP̃ ÊT + EP̃ ÂT +BB̂T

))

+ tr
(

Λ̂T
(
ÂP̂ ÊT + ÊP̂ ÂT + B̂B̂T

))
,

where Λ̃ ∈ Rn×r and Λ̂ ∈ Rr×r are the Lagrange multipliers. The gradients of L with
respect to the Gramians are

∇P̃L = −2CTĈ + ATΛ̃Ê + ETΛ̃Â,

∇P̂L = ĈTĈ + ÂTΛ̂Ê + ÊTΛ̂Â.

From ∇P̃L = 0 and ∇P̂L = 0 it follows that Λ̃ = 2Q̃ and Λ̂ = Q̂. The Lagrange
function now simplifies to

L = tr
(
CPCT − 2CP̃ ĈT + ĈP̂ ĈT

)

+ tr
(

2Q̃TAP̃ ÊT + 2Q̃TEP̃ ÂT + 2Q̃TBB̂T
)

+ tr
(

2Q̂ÂP̂ ÊT + Q̂B̂B̂T
)
.
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Algorithm 2.3: Two-sided iteration algorithm (TSIA)

Input: System (E,A,B,C) and initial reduced-order model (Ê, Â, B̂, Ĉ).
Output: Reduced-order model (Ê, Â, B̂, Ĉ) approximately satisfying (2.8).

1 while not converged do
2 Solve AP̃ ÊT + EP̃ ÂT +BB̂T = 0 and ATQ̃Ê + ETQ̃Â− CTĈ = 0.
3 Find V,W ∈ Rn×r with orthonormal columns such that im(V ) = im(P̃ ) and

im(W ) = im(Q̃).
4 Project Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV .

Finally, the gradients of the Lagrange function with respect to the reduced matrices
are

∇ÊL = 2Q̃TAP̃ + 2Q̂ÂP̂ ,

∇ÂL = 2Q̃TEP̃ + 2Q̂ÊP̂ ,

∇B̂L = 2Q̃TB + 2Q̂B̂,

∇ĈL = −2CP̃ + 2ĈP̂ ,

which completes the proof.

Based on these optimality conditions, Xu and Zeng [XZ11] proposed TSIA, given in
Algorithm 2.3.
Let (Â, Ê) be diagonalizable and Λ, X, Y ∈ Cr×r such that Y TÊX = Ir and Y TÂX =

Λ. Then also Âxi = λiÊxi and ÂTyi = λiÊ
Tyi, where Λ = diag(λ1, λ2, . . . , λr), X =[

x1 x2 · · · xr
]
, and Y =

[
y1 y2 · · · yr

]
. Then we have

AP̃ ÊTyi + EP̃ ÂTyi +BB̂Tyi = 0,

ATQ̃Êxi + ETQ̃Âxi − CTĈxi = 0,

which implies

(A+ λiE)P̃ ÊTyi +BB̂Tyi = 0,

(AT + λiE
T)Q̃Êxi − CTĈxi = 0.

Therefore,

P̃ ÊTyi = (−λiE − A)−1BB̂Tyi,

Q̃Êxi = −(−λiE − A)−TCTĈxi,

which shows the connection to IRKA. This can also be used to prove interpolatory
conditions in Theorem 2.42 using the Wilson conditions from Theorem 2.44, as given
in the following theorem (see [VDGA08, Theorem 4.1]).
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2.4 Model order reduction

Theorem 2.45:
Let Ĥ(s) = Ĉ(sÊ − Â)

−1
B̂ =

∑r
i=1

cib
T
i

s−λi , with λi pairwise distinct, STÊT = Ir,
STÂT = Λ = diag(λ1, λ2, . . . , λr), bTi = sT

i B̂, si = Sei, ci = Cti, and ti = Tei.
Then

(
CP̃ − ĈP̂

)
ÊTsi =

(
H(−λi)− Ĥ(−λi)

)
bi,

−tTi ÊT
(
Q̃TB + Q̂B̂

)
= cTi

(
H(−λi)− Ĥ(−λi)

)
,

tTi Ê
T
(
Q̃TEP̃ + Q̂ÊP̂

)
ÊTsi = cTi

(
H ′(−λi)− Ĥ ′(−λi)

)
bi,

tTi Ê
T
(
Q̃TEP̃ + Q̂ÊP̂

)
ÊTsj = cTi

(
H(−λi)−H(−λj)

(−λi)− (−λj)
− Ĥ(−λi)− Ĥ(−λj)

(−λi)− (−λj)

)
bj,

tTi Ê
T
(
Q̃TAP̃ + Q̂ÂP̂

)
ÊTsi = cTi

(
[sH(s)]′

∣∣
s=−λi − [sĤ(s)]′

∣∣
s=−λi

)
bi,

tTi Ê
T
(
Q̃TAP̃ + Q̂ÂP̂

)
ÊTsj = cTi

(
(−λi)H(−λi)− (−λj)H(−λj)

(−λi)− (−λj)

− (−λi)Ĥ(−λi)− (−λj)Ĥ(−λj)
(−λi)− (−λj)

)
bj,

for i, j = 1, 2, . . . , r, i 6= j. ♦
Proof. From STÊT = Ir and STÂT = Λ, we get Âti = λiÊti and sT

i Â = λis
T
i Ê. Next,

from

AP̃ ÊTsi + EP̃ ÂTsi +BB̂Tsi = 0,

ÂP̂ ÊTsi + ÊP̂ ÂTsi + B̂B̂Tsi = 0,

ATQ̃Êti + ETQ̃Âti − CTĈti = 0,

ÂTQ̂Êti + ÊTQ̂Âti + ĈTĈti = 0,

we find

P̃ ÊTsi = (−λiE − A)−1Bbi,

P̂ ÊTsi =
(
−λiÊ − Â

)−1

B̂bi,

Q̃Êti = −(−λiE − A)−TCTci,

Q̂Êti =
(
−λiÊ − Â

)−T
ĈTci.

Now it follows that
(
CP̃ − ĈP̂

)
ÊTsi = C(−λiE − A)−1Bbi − Ĉ

(
−λiÊ − Â

)−1

B̂bi

=
(
H(−λi)− Ĥ(−λi)

)
bi,
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and

−tTi ÊT
(
Q̃TB + Q̂B̂

)
= cTi C(−λiE − A)−1B − cTi Ĉ

(
−λiÊ − Â

)−1

B̂

= cTi

(
H(−λi)− Ĥ(−λi)

)
.

From

H ′(s) = −C(sE − A)−1E(sE − A)−1B,

H(s1)−H(s2) = −(s1 − s2)C(s1E − A)−1E(s2E − A)−1B,

[sH(s)]′ = −C(sE − A)−1A(sE − A)−1B,

s1H(s1)− s2H(s2) = −(s1 − s2)C(s1E − A)−1A(s2E − A)−1B,

we find

tTi Ê
T
(
Q̃TEP̃ + Q̂ÊP̂

)
ÊTsi

= −cTi C(−λiE − A)−1E(−λiE − A)−1Bbi + cTi Ĉ(−λiÊ − Â)
−1
Ê(−λiÊ − Â)

−1
B̂bi

= cTi

(
H ′(−λi)− Ĥ ′(−λi)

)
bi,

tTi Ê
T
(
Q̃TEP̃ + Q̂ÊP̂

)
ÊTsj

= −cTi C(−λiE − A)−1E(−λjE − A)−1Bbj + cTi Ĉ(−λiÊ − Â)
−1
Ê(−λjÊ − Â)

−1
B̂bj

= cTi

(
H(−λi)−H(−λj)

(−λi)− (−λj)
− Ĥ(−λi)− Ĥ(−λj)

(−λi)− (−λj)

)
bj,

tTi Ê
T
(
Q̃TAP̃ + Q̂ÂP̂

)
ÊTsi

= −cTi C(−λiE − A)−1A(−λiE − A)−1Bbi + cTi Ĉ(−λiÊ − Â)
−1
Â(−λiÊ − Â)

−1
B̂bi

= cTi

(
[sH(s)]′

∣∣
s=−λi − [sĤ(s)]′

∣∣
s=−λi

)
bi,

tTi Ê
T
(
Q̃TAP̃ + Q̂ÂP̂

)
ÊTsj

= −cTi C(−λiE − A)−1A(−λjE − A)−1Bbj + cTi Ĉ(−λiÊ − Â)
−1
Â(−λjÊ − Â)

−1
B̂bj

= cTi

(
(−λi)H(−λi)− (−λj)H(−λj)

(−λi)− (−λj)
− (−λi)Ĥ(−λi)− (−λj)Ĥ(−λj)

(−λi)− (−λj)

)
bj,

which concludes the proof.

2.4.4.3 Comparison of the two approaches

The interpolation-based and Gramian-based approaches differ in two important ways.
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2.4 Model order reduction

The first is the assumption of diagonalizability. Notice that Theorem 2.42 has
the assumption that the ROM has pairwise distinct poles, while Theorem 2.44 does
not. Diagonalizability of Ê−1Â is a generic property, in the sense that the set of
non-diagonalizable matrices forms a set of measure zero in the set of all matrices,
which justifies this assumptions for unstructured first-order systems. But for struc-
tured systems, where the assumption of simultaneous diagonalizability of two or more
matrices appears, will no longer be a generic property. Additionally, as illustrated by
Van Dooren, Gallivan, and Absil [VDGA10], even in the case of first-order systems, if
the optimal ROM has a higher-order pole, this can cause numerical issues in IRKA,
while TSIA will still converge. The difference in the algorithms is in solving sparse-
dense Sylvester equations, where the (generalized) Schur decomposition of Â and Ê is
sufficient (details in [BKS11]).
The second difference is that the Gramian-based approach gives necessary optimality

conditions which are equations that the reduced matrices need to satisfy. In particular,
for first-order systems, it is clear from Theorem 2.44 that the ROM is necessarily
obtained by Petrov-Galerkin projection, assuming P̂ and Q̂ are invertible. This is not
immediately clear from Theorem 2.42, where the interpolatory necessary optimality
conditions do not explicitly give the equations for the reduced matrices.
One advantage of the interpolation-based approach is its direct application to MOR

of infinite-dimensional systems where it is possible to evaluate the transfer function
and its derivative. This was used to develop the transfer function IRKA in [BG12]. In
the Gramian-based approach, access to matrices E,A,B,C is necessary. One possibil-
ity could be to extend these results to infinite-dimensional systems where E,A,B,C
become operators. Then the corresponding Sylvester equations could be solved in a
similar way as Lyapunov equations in [ORW13], but this is outside the scope of this
thesis.

2.4.5 Model order reduction of unstable systems

So far, we assumed the system to be asymptotically stable. Since we will also need to
consider systems which are not asymptotically stable, we need to see if and how the pre-
viously discussed MOR methods could be applied to such systems. Therefore, here we
consider a system (E;A,B,C,D) with an invertible E, but which is not asymptotically
stable. We will not assume minimality (i.e., both controllability and observability),
which means that its transfer function H may be asymptotically stable.
In the following chapters, we will be interested in finding ROMs for which the H2-

error ‖H − Ĥ‖H2
or the H∞-error ‖H − Ĥ‖H∞ are small. Particularly, for these quan-

tities to be defined, it is necessary that the transfer function H − Ĥ is asymptotically
stable. This implies that the ROM’s transfer function Ĥ needs to have the same un-
stable part as the original H. Therefore, we will consider additive decomposition into
the asymptotically stable and unstable part as in [Enn85].
There are works ([YCDAGX93, Zil91, BNBG10]) about MOR for unstable systems
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using shifting, but this approach does not guarantee preservation of unstable poles.
The work in [ZSW99] gives an extension for BT, assuming there are no poles on the
imaginary axis. There is also work extending H2-optimal MOR to unstable systems
([MBG10, BBG19]), which also assumes there are no poles on the imaginary axis or
cannot preserve unstable poles.
Let H = H− + H+, where H− has poles in C− and H+ in C+. Furthermore, let S

and T be such that

STET =

[
E− 0
0 E+

]
, STAT =

[
A− 0
0 A+

]
, STB =

[
B−
B+

]
, and CT =

[
C− C+

]
,

where

T =
[
T− T+

]
∈ Cn×n and S =

[
S− S+

]
∈ Cn×n,

with σ(A−, E−) ⊂ C− and σ(A+, E+) ⊂ C+. Notice that H−(s) = C−(sE− − A−)−1B−
and H+(s) = C+(sE+ − A+)−1B+. To find a ROM Ĥ = Ĥ− + H+, we can apply
Petrov-Galerkin projection to the asymptotically stable part (E−;A−, B−, C−) to get
(Ê−; Â−, B̂−, Ĉ−) with

Ê− = WT
−E−V−, Â− = WT

−A−V−, B̂− = WT
−B−, Ĉ− = C−V−.

Then we have

Ê =

[
Ê− 0
0 E+

]

=

[
WT
− 0

0 I

] [
S− S+

]T
E
[
T− T+

] [V− 0
0 I

]

=
[
S−W− S+

]T
E
[
T−V− T+

]
.

In a similar way, we find Â = WTAV , B̂ = WTB, Ĉ = CV for V =
[
T−V− T+

]
and

W =
[
S−W− S+

]
. Therefore, Petrov-Galerkin projection of (E−;A−, B−, C−) can be

represented as a Petrov-Galerkin projection of (E;A,B,C). BT can also be applied to
the asymptotically stable part and the H∞-error bound will hold since ‖H − Ĥ‖H∞ =

‖H− − Ĥ−‖H∞ . Alternatively, IRKA can be applied to H− to find Ĥ− which is a local
minimum for ‖H− − Ĥ−‖H2

. This implies that Ĥ = Ĥ− + H+ is a local minimum for
‖H − Ĥ‖H2

. Notice that H − Ĥ = H−− Ĥ−, which can be used to compute the H2 or
H∞ error.

2.5 Graph theory

Parts of this thesis are about systems defined over networks. Thus, we present some
basic concepts from graph theory here. Notation is based on [ME10] and [GR01].
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2.5.1 Basic concepts

A graph G consists of a vertex set V and an edge set E encoding the relation between
vertices. Undirected graphs are those for which the edge set is a subset of the set of all
unordered pairs of vertices, i.e., E ⊆ {{i, j} : i, j ∈ V, i 6= j}. On the other hand, a
graph is directed if E ⊆ {(i, j) : i, j ∈ V, i 6= j}. We think of an edge (i, j) as an arrow
starting from vertex i and ending at j.

Remark 2.46:
Notice that we exclude graphs with multiple copies of the same edge, i.e., multigraphs.
Furthermore, we exclude graphs containing self-loops, i.e., edges of the form {i} or (i, i).
Therefore, we will only consider simple graphs. ♦

We will only consider finite graphs, i.e., graphs with a finite number of vertices n := |V|.
Without loss of generality, let V = {1, 2, . . . , n}.
For an undirected graph, a path of length ` is a sequence of distinct vertices i0, i1, . . . , i`

such that {ik, ik+1} ∈ E for k = 0, 1, . . . , ` − 1. For a directed graph, a directed path
of length ` is a sequence of distinct vertices i0, i1, . . . , i` such that (ik, ik+1) ∈ E for
k = 0, 1, . . . , `−1. An undirected graph is connected if there is a path between any two
distinct vertices i, j ∈ V. A directed graph is strongly connected if there is a directed
path between any two distinct vertices i, j ∈ V.
We can associate weights to edges of a graph by a weight function w : E → R. If

w(e) > 0 for all e ∈ E, the tuple G = (V,E,w) is called a weighted graph. In the
following, we will focus on weighted graphs. In particular, we will directly generalize
concepts for unweighted graphs from [ME10, GR01], as was done in [MTC14].
The adjacency matrix A = [aij]i,j∈V ∈ Rn×n of an undirected graph is defined

component-wise by

aij :=

{
w({i, j}), if {i, j} ∈ E,

0, otherwise,

and for a directed graph as

aij :=

{
w((j, i)), if (j, i) ∈ E,

0, otherwise.

For every vertex i ∈ V, its in-degree is di :=
∑n

j=1 aij. The diagonal matrix D :=
diag(d1, d2, . . . , dn) is called the in-degree matrix. Notice that D = diag(A1).
Let e1, e2, . . . , e|E| be all the edges of G in some order. The incidence matrix R ∈

Rn×|E| of a directed graph G is defined component-wise

[R]ik :=





−1, if ek = (i, j) for some j ∈ V,

1, if ek = (j, i) for some j ∈ V,

0, otherwise.
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1 2

3

4

52

3

1

1

3

2

2

Figure 2.1: An undirected, weighted, connected graph

If G is undirected, we assign some orientation to every edge to define a directed graph
Go, and define the incidence matrix of G to be the incidence matrix of Go. The weight
matrix is defined as W := diag

(
w(e1),w(e2), . . . ,w(e|E|)

)
.

The (in-degree) Laplacian matrix L is defined by L := D−A. For undirected graphs,
it can be checked that L = RWRT, using

RWRT =
∑

{i,j}∈E
aij(ei − ej)(ei − ej)T,

which is independent of the order of edges defining R and W or the orientation of edges
in Go. From the definition of L, it directly follows that the sum of each row in L is
zero, i.e., L1 = 0. From L = RWRT, we immediately see that, for undirected weighted
graphs, the Laplacian matrix L is symmetric positive semidefinite.

Example 2.1:
For the graph in Figure 2.1, the adjacency matrix is

A =




0 2 3 1 0
2 0 1 3 0
3 1 0 0 2
1 3 0 0 2
0 0 2 2 0



,

degree matrix D = diag(6, 6, 6, 6, 4), Laplacian and incidence matrix

L =




6 −2 −3 −1 0
−2 6 −1 −3 0
−3 −1 6 0 −2
−1 −3 0 6 −2

0 0 −2 −2 4



, R =




−1 −1 −1 0 0 0 0
1 0 0 −1 −1 0 0
0 1 0 1 0 −1 0
0 0 1 0 1 0 −1
0 0 0 0 0 1 1



,

and weight matrix W = diag(2, 3, 1, 1, 3, 2, 2). ♦

The following theorem states that connectedness of a graph is related to the spectral
properties of L.
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Theorem 2.47 ([ME10, Theorem 2.8]):
Let G = (V,E,w) be an undirected weighted graph, L its Laplacian matrix, and
0 = λ1 6 λ2 6 · · · 6 λn the eigenvalues of L. Then the following statements are
equivalent:

1. G is connected,

2. λ2 > 0,

3. ker(L) = im(1). ♦

2.5.2 Graph partitions

A nonempty subset C ⊆ V is called a cluster or cell of V. A graph partition π is a
partition of the vertex set V. Vertices i and j are called cellmates in π if they belong
to the same cell of π. The characteristic vector of a cluster C ⊆ V is the n-dimensional
column vector p(C) defined as

[p(C)]i =

{
1 if i ∈ C,

0 otherwise.

The characteristic matrix of a partition π = {C1,C2, . . . ,Cr} of the graph G is the
matrix P ∈ Rn×r defined by

P =
[
p(C1) p(C2) · · · p(Cr)

]
.

For a given vertex i ∈ V and a cluster Cq ∈ π, we define the in-degree of vertex i with
respect to cluster Cq by

d(i,Cq) =
∑

k∈Cq
aik.

The partition π is an equitable partition if d(i,Cq) = d(j,Cq) for all vertices i, j ∈ Cp
and any two clusters Cp,Cq ∈ π (they can be the same cluster). The partition π is
an AEP if d(i,Cq) = d(j,Cq) all vertices i, j ∈ Cp and for any two different clusters
Cp,Cq ∈ π.
Example 2.2:
For the partition π = {{1, 2}, {3, 4}, {5}}, the characteristic matrix is

P =




1 0 0
1 0 0
0 1 0
0 1 0
0 0 1



.

Notice that π is an equitable partition for the graph in Figure 2.1. Furthermore, notice
that {{1, 2, 5}, {3, 4}} is an AEP, but not an equitable partition. ♦
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The following theorem gives necessary and sufficient conditions for equitableness and
almost-equitableness (see [ME10, Lemma 2.24], [MTC14, Lemma 5], and [CDR07,
Proposition 1]).

Lemma 2.48:
Let G be an undirected weighted graph with adjacency matrix A and Laplacian matrix
L. Furthermore, let π be a partition of the graph G. Then,

• π is equitable if and only if im(P) is A-invariant,

• π is almost equitable if and only if im(P) is L-invariant. ♦

Notice that {V} and {{1}, {2}, . . . , {n}} are always AEPs. We will refer to them as
trivial AEPs.

Remark 2.49:
To the best of our knowledge, there is no known polynomial-time algorithm for finding
nontrivial AEPs of a given graph. There is a polynomial-time algorithm for finding
the coarsest AEP which is finer than a given partition (see [ZCC14]), but there is no
guarantee that it will find a nontrivial AEP.
Furthermore, it is not clear whether a given graph has any nontrivial AEPs at all.

On the other hand, a graph can have many AEPs, e.g., every partition of a complete
unweighted graph is an AEP. ♦

2.6 Linear multi-agent systems

2.6.1 System description

Our goal here is to unify definitions from Besselink et al. [BSJ16], Cheng et al. [CKS16,
CKS18], Ishizaki et al. [IKIA14, IKG+15, IKI16a], and Monshizadeh et al. [MTC13,
MTC14]. In particular, we focus on LTI multi-agent systems. Additionally, we restrict
to multi-agent system on a undirected, weighted, and connected graph G = (V,E,w).
We base the derivation on [BSJ16] and [CKS18]. The dynamics of the ith agent, for

i ∈ V = {1, 2, . . . , n}, is

Eẋi(t) = Axi(t) +Bvi(t),

zi(t) = Cxi(t),

with system matrices E,A ∈ Rn×n, input matrix B ∈ Rn×m, output matrix C ∈ Rp×n,
state xi(t) ∈ Rn, input vi(t) ∈ Rm, and output zi(t) ∈ Rp. We assume the matrix E to
be invertible. The interconnections are

mivi(t) = K

n∑

j=1

aij(zj(t)− zi(t)) +
m∑

k=1

bikuk(t),
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for i = 1, 2, . . . , n, with inertia mi > 0, coupling matrix K ∈ Rm×p, external inputs
uk(t) ∈ Rm, k = 1, 2, . . . ,m, where A = [aij] is the adjacency matrix of the graph
G. Here, we allow m and p to be different, and for this reason also need a (possibly
non-square) coupling matrix K. The outputs are

y`(t) =
n∑

j=1

c`jzj(t)

for ` = 1, 2, . . . , p. Define

M := diag(mi) ∈ Rn×n, B := [bik] ∈ Rn×m, C := [c`j] ∈ Rp×n,

x(t) := col(xi(t)) ∈ Rnn, v(t) := col(vi(t)) ∈ Rnm, z(t) := col(zi(t)) ∈ Rnp,

u(t) := col(uk(t)) ∈ Rmm, and y(t) := col(y`(t)) ∈ Rpp.

Then the agent dynamics can be rewritten as

(In ⊗ E)ẋ(t) = (In ⊗ A)x(t) + (In ⊗B)v(t),

z(t) = (In ⊗ C)x(t),

interconnection as

(M⊗ In)v(t) = (−L⊗K)z(t) + (B⊗ Im)u(t),

and output as

y(t) = (C⊗ Ip)z(t).

Therefore, we have

(M⊗ E)ẋ(t) = (M⊗ A− L⊗BKC)x(t) + (B⊗B)u(t),

y(t) = (C⊗ C)x(t).

This can be generalized further by replacing B in the input matrix B⊗B or C in the
output matrix C⊗C. For example, output y(t) = (C⊗ In)x(t) is used in [IKI16a], with
C = In. We can consider

(M⊗ E)ẋ(t) = (M⊗ A− L⊗BKC)x(t) + (B⊗ F )u(t),

y(t) = (C⊗G)x(t),
(2.9)

where F and G can be different from B and C respectively (including the dimensions).
Of particular interest are leader-follower multi-agent systems where only some agents

(leaders) receive external input, while other agents (followers) receive no inputs. Let
m ∈ {1, 2, . . . , n} be the number of leaders, VL = {v1, v2, . . . , vm} ⊆ V the set of
leaders, and VF = V \VL the set of followers. Then, with B defined by

bij :=

{
1, if i = vj,

0, otherwise,
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the system (2.9) becomes a leader-follower multi-agent system. One important class are
multi-agent systems with single-integrator agents, i.e., with n = 1, A = 0, B = C = 1,
and K = 1. Thus, system (2.9) becomes

Mẋ(t) = −Lx(t) + Bu(t),

y(t) = Cx(t).
(2.10)

In particular, [MTC14] uses M = In and C = W
1
2RT, while [IKG+15] and [CKS16] use

C = In.
The property of interest for multi-agent systems is synchronization.

Definition 2.50:
The system (M⊗ E)ẋ(t) = (M⊗ A− L⊗B)x(t) is synchronized if

lim
t→∞

(xi(t)− xj(t)) = 0,

for all i, j ∈ V and all initial conditions x(0) = x0. ♦

For system (2.10), this is equivalent to (L ⊗ In)x(t) → 0, because the multi-agent
system is defined on a connected graph. The following results gives another equivalent
condition.

Proposition 2.51 ([LDCH10, Theorem 1], [MTC13, Lemma 4.2]):
The system (M⊗E)ẋ(t) = (M⊗A−L⊗B)x(t) is synchronized if and only if (A−λB,E)
is Hurwitz for all nonzero eigenvalues λ of (L,M). ♦

2.6.2 Clustering-based model order reduction

By choosing some matrices V,W ∈ Rn×r, we get the ROM for (2.10)

WTMV ˙̂x(t) = −WTLV x̂(t) +WTBu(t),

ŷ(t) = CV x̂(t),
(2.11)

or, for (2.9),
(
WTMV ⊗ E

)
˙̂x(t) =

(
WTMV ⊗ A−WTLV ⊗BKC

)
x̂(t) +

(
WTB⊗ F

)
u(t),

ŷ(t) = (CV ⊗G)x̂(t),
(2.12)

which is not necessarily a multi-agent system. Different projection methods are sug-
gested in literature:

1. V = P, W = P
(
PTP

)−1 ([MTC14]),

2. V = W = P
(
PTP

)− 1
2 ([IKIA14]),

3. V = W = P ([CKS16]),
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2.6 Linear multi-agent systems

where P is a characteristic matrix of a partition π of the vertex set V. Since im(V ) =
im(W ) = im(P) in all cases, all methods give equivalent ROMs. They each have
their advantages. The first preserves structure when M = In, in the sense that the
ROM represents a multi-agent system defined on a directed, symmetric graph [MTC14].
The second gives the realization for which it is easy to apply the interlacing property
(Theorem 2.6), from which it follows that all these methods preserve synchronization.
The third preserves the structure in the general case.
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CHAPTER 3

SUBOPTIMAL CLUSTERING-BASED MODEL ORDER
REDUCTION
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3.1 Introduction

In this chapter, we study methods for clustering-based MOR for multi-agent systems
(see Section 2.6 for an overview). Clustering was proposed in the literature as a way to
preserve the multi-agent structure. Here, we will be interested in finding optimal (in a
specific error measure) partitions. Since clustering is generally a difficult combinatorial
problem (see, e.g., [Sch07]), we will propose a heuristic approach for finding suboptimal
partitions.
References [MEB08, RJME09, MEB10] introduce leader-invariant equitable partitions

and corresponding quotient graphs, which can be used for eliminating some uncontrol-
lable states, thus performing no model reduction error. Reference [CM11] proposes
leader partitions, which introduce “only small model errors”. The authors of [IKIA14]
develop a clustering-based H∞ MOR method based on positive tridiagonalization and

39



3 Suboptimal Clustering-Based Model Order Reduction

θ-reducible clusters, applicable to LTI systems with asymptotically stable and symmet-
ric dynamics matrices.
In [MTC14], the authors focus on leader-follower linearly diffusively coupled multi-

agent systems with agents having single-integrator dynamics. In particular, these sys-
tems have Laplacian-based dynamics, which means they are not asymptotically stable.
The authors demonstrate how using partitions for MOR can be transformed to using
Petrov-Galerkin projections, while preserving network structure and consensus in the
ROM. Further, they derive a simple expression for the relative H2-error when using an
AEP and establish a lower bound based on AEPs when using any partition.
The authors of [BSJ16] study networks of identical passive systems over weighted

and directed graphs, but confine to interconnections with tree structures. Otherwise,
these systems would be more general then those in [MTC14]. They present a clustering
method relying on the analysis of the corresponding edge system to find adjacent sub-
systems to cluster. Furthermore, they prove that this method preserves the consensus
property. Nonetheless, clustering only adjacent subsystems might be restrictive.
The paper [IKG+12] presents an efficient clustering-based method for H2 MOR of

positive networks, which include systems with Laplacian-based dynamics. Similarly
to [IKIA14], the method is based on θ-reducible clusters and an H2-error bound. How-
ever, it is not clear how the ROMs resulting from this method compare to the H2-
optimal ones.
To the best of our knowledge, there is no efficient method for finding an H2-optimal

ROM using graph partitions. In Section 3.2, we propose an efficient H2-suboptimal
method, originating from the H2-optimal MOR problem for LTI systems, and illustrate
it on an example. Results indicate that the method finds a partition close to the optimal.
In Section 3.3, we extend the approach to a class of nonlinear multi-agent systems.

3.2 H2-suboptimal clustering

The outline of the section is as follows. In Section 3.2.2, we motivate and describe
our MOR method, together with the issue of computing the H2-error for systems with
Laplacian-based dynamics. We illustrate the method on an example in Section 3.2.6
and conclude with Section 3.4.

3.2.1 Single-integrator agents

We first consider multi-agent systems with single-integrator agents as in (2.10). Let

H(s) = C(sM + L)−1B,

Ĥ(s) = CV
(
sWTMV +WTLV

)−1
WTB
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3.2 H2-suboptimal clustering

be the transfer functions of systems (2.10) and (2.11), respectively. We consider the
following H2-optimal MOR problem:

minimize
V,W∈Rn×r

‖H − Ĥ‖H2
, (3.1a)

subject to V = P, (3.1b)
W = P, (3.1c)
π ∈ Π, |π| = r, (3.1d)

where Π is a set of all partitions of the vertex set V.
To the best of our knowledge, there is no efficient method to exactly solve the op-

timization problem (3.1). Additionally, since many graph clustering problems are NP-
hard (see [Sch07]), we assume the same is true for the above problem.
The problem (3.1) is actually a discrete optimization problem over the set of parti-

tions of the set {1, 2, . . . , n} with r clusters. Thus, our idea is to solve a relaxed, contin-
uous optimization problem, and use that solution to find a feasible solution for (3.1).
We hope that this feasible solution is then close to the optimal solution as it is close to
the optimal solution of the relaxed problem.
We relax the problem (3.1) by dropping all constraints (3.1b), (3.1c), and (3.1d).

Thus, we obtain the H2-optimal MOR problem for an LTI system. Note that the
system (2.10) is not asymptotically stable. See also Section 3.2.4 below for some elab-
oration on the technicalities associated to this problem.
Applying an H2-optimal method, such as IRKA, to (2.10) will not in general solve

the original problem (3.1). Therefore, IRKA will return as a result matrices V and
W which will not (in general) satisfy the constraints. However, note that in Petrov-
Galerkin projection, the subspaces V and W are enough to determine the transfer
function of the ROM. Therefore, the constraints (3.1b) and (3.1c) can be replaced by

im(V ) = im(P) , (3.2a)
im(W ) = im(P) , (3.2b)

without changing Ĥ and the cost (3.1a). The expressions (3.2) motivate us to look for
a partition π such that im(P) is “close” to im(V ) and/or im(W ).

3.2.2 QR decomposition-based clustering

We know that the condition (3.2a) is equivalent to the existence of a invertible matrix
Z such that V = PZ. In general, condition (3.2a) will not be satisfied, so there
will be an error ∆ such that V = PZ + ∆. A very similar problem of finding a
partition π was encountered in [ZHD+01, §3], where a proposed solution is a clustering
algorithm based on the QR decomposition with column pivoting. Algorithm 3.1 outlines
the procedure. The motivation behind it is the result of the following lemma, which
says that if V = PZ, the procedure will return the correct result. Therefore, the idea is
that if the error ∆ is small, then Algorithm 3.1 should still return the correct partition.
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3 Suboptimal Clustering-Based Model Order Reduction

Algorithm 3.1: Clustering using QR decomposition with column pivot-
ing [ZHD+01, §3]
Input: Matrix V ∈ Rn×r of rank r.
Output: Partition π such that im(P) ≈ im(V ).

1 Compute QR decomposition with column pivoting for the matrix V T, i.e., find
orthogonal Q ∈ Rr×r, upper-trapezoidal R ∈ Rr×n, and a permutation matrix
P ∈ Rn×n such that V TP = QR.

2 Partition R as
[
R11 R12

]
, with R11 ∈ Rr×r upper-triangular and R12 ∈ Rr×(n−r).

3 Solve the triangular system R11X = R12.
4 Compute Y = P

[
Ir X

]T
= [yij] ∈ Rn×r.

5 Find a partition π = {C1,C2, . . . ,Cr} such that i ∈ Cj if and only if
j = argmaxk |yik|.

Lemma 3.1:
Algorithm 3.1 returns π with PZ as input, for an arbitrary partition π and a invertible
matrix Z. ♦

Proof. Let the number of clusters in π be r, i.e., |π| = r. Let us denote the rows of
Z with zT

1 , z
T
2 , . . . , z

T
r . Furthermore, without loss of generality we can assume that

P = diag
(
1|C1|,1|C2|, . . . ,1|Cr|

)
, where 1k ∈ Rk is a vector of all ones (this structure

can be achieved by relabeling the vertices of the graph). Then we have

ZTPT =
[
z11

T
|C1| z21

T
|C2| · · · zr1

T
|Cr|
]
. (3.3)

Therefore, ZTPT has repeating columns in blocks. If we perform the QR decomposition
with column pivoting on (3.3) (ignoring the orthogonal matrix) and then undo the
permutation of columns, the result is

[
z̃11

T
|C1| z̃21

T
|C2| · · · z̃r1

T
|Cr|
]
, (3.4)

where a permutation of the columns of
[
z̃1 z̃2 · · · z̃r

]
gives the upper-triangular

matrix R11 from Algorithm 3.1. We see that multiplying (3.4) on the left by R−1
11 (PZ

having full rank implies that R11 is invertible) and transposing produces P, possibly
with permuted columns. Thus we conclude that Algorithm 3.1 returns the partition
π.

Furthermore, note that the number of floating point operations in Algorithm 3.1
is O(nr2) and the size of additional storage is O(nr). Therefore, it is efficient in the
large-scale setting if r is small compared to n.

3.2.3 Clustering by k-means algorithm

The motivation for using the k-means algorithm ([HW79]) is the following result about
how a change in the Petrov-Galerkin subspaces affects the ROM.
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3.2 H2-suboptimal clustering

Theorem 3.2 ([BGW12, Theorem 3.3]):
Let V1, V2,W1,W2 ∈ Rn×r,

Vi = im(Vi) , Wi = im(Wi) , Ĥi(s) = CVi
(
sWT

i EVi −WT
i AVi

)−1
WT
i B,

for i = 1, 2. Then

‖Ĥ1 − Ĥ2‖H∞
1
2
(‖Ĥ1‖H∞ + ‖Ĥ2‖H∞)

6M max(sin Θ(V1,V2), sin Θ(W1,W2)),

where

M = 2 max(M1,M2) ,

M1 =
maxω∈R ‖C‖2

∥∥∥V1

(
ıωWT

1 EV1 −WT
1 AV1

)−1
WT

1 B
∥∥∥

2
‖Ĥ1(ıω)‖−1

2

minω∈R cos Θ(ker
(
WT

2 (ıωE − A)−1)⊥ ,V2)
,

M2 =
maxω∈R

∥∥∥CV2

(
ıωWT

2 EV2 −WT
2 AV2

)−1
WT

2

∥∥∥
2
‖B‖2 ‖Ĥ2(ıω)‖−1

2

minω∈R cos Θ(im
(
(ıωE − A)−1 V1

)
,W1)

,

and Θ(M,N) is the largest principal angle between subspaces M,N ⊆ Rn. ♦
The angle between two subspaces V1,V2 ⊆ Rn is defined by (see [BGW12, Section 3.1])

sin Θ(V1,V2) := sup
v1∈V1

inf
v2∈V2

‖v2 − v1‖2

‖v1‖2

.

If dimV1 = dimV2, then we have

sin Θ(V1,V2) = sin Θ(V2,V1) =
∥∥(I − V1V

T
1

)
V2

∥∥
2
,

where V1 = im(V1), V2 = im(V2), and both V1 and V2 have orthonormal columns. If
additionally V1 = P

(
PTP

)− 1
2 and V2 = V from IRKA, then

(sin Θ(V1,V2))2 6
∥∥∥
(
I −P

(
PTP

)−1
PT
)
V
∥∥∥

2

F

=

∥∥∥∥∥∥∥


I −

[
p(C1) · · · p(Cr)

]


|C1|−1

. . .
|Cr|−1






p(C1)T

...
p(Cr)

T





V

∥∥∥∥∥∥∥

2

F

=

∥∥∥∥∥

(
I −

r∑

i=1

1

|Ci|
p(Ci)p(Ci)

T

)
V

∥∥∥∥∥

2

F

=
r∑

i=1

∥∥∥∥VCi,: − p(Ci)
1

|Ci|
1T
|Ci|VCi,:

∥∥∥∥
2

F

=
r∑

i=1

∑

p∈Ci

∥∥∥∥∥Vp,: −
1

|Ci|
∑

q∈Ci
Vq,:

∥∥∥∥∥

2

F

,
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3 Suboptimal Clustering-Based Model Order Reduction

which is equal to the k-means cost functional. Therefore, applying the k-means algo-
rithm to the rows of V will minimize an upper bound on the largest principal angle
between im(V ) and im(P).
The advantage of using k-means compared to QR decomposition-based in that the

latter can only, given V ∈ Rn×r, return a partition with r clusters. On the other hand,
k-means clustering can return a partition with any number of clusters, which makes it
more efficient if the number of clusters is relatively large.

3.2.4 Computing the H2-error

When using an AEP, the relative H2-error can be computed directly [MTC14, Theo-
rem 6]. In other cases, we need to solve Lyapunov equations to compute the H2-norms.
As discussed in Section 2.4.5, we can use the eigenspaces to find the asymptotically

stable part of the system and use it to compute the H2-norm. We are looking for an
invertible matrix T such that

TTMT =

[
M− 0

0 M+

]
and TTLT =

[
L− 0
0 L+

]
,

where σ(−L−,M−) ⊂ C− and σ(−L+,M+) ⊂ C+. We see that if

T =
[
T− 1n

]
,

then

TTMT =

[
TT
−MT− TT

−M1n

1T
nMT− 1T

nM1n

]
and TTLT =

[
TT
−LT− 0

0 0

]
.

To have TT
−M1n = 0, we need for the columns of T− to be orthogonal to M1n. Addi-

tionally, T− should be such that both TT
−MT− and TT

−LT− are sparse. We choose

T− =




α1

−β1 α2

−β2
. . .
. . . αn−1

−βn−1




for some αi, βi > 0, i = 1, 2, . . . , n− 1, which we determine next. From eTi T
T
−M1n = 0,

we find αimi = βimi+1. If we additionally set α2
i + β2

i = 1, we get

αi =
mi+1√

m2
i + m2

i+1

and βi =
mi√

m2
i + m2

i+1

.
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3.2 H2-suboptimal clustering

Algorithm 3.2: QR decomposition with column pivoting for matrices with
block-columns
Input: Matrix X ∈ Rnr×nn of full rank and r < n.
Output: Orthogonal matrix Q, upper-triangular matrix R, and permutation

matrix P such that XP = QR
1 Denote X =

[
X1 X2 · · · Xn

]
, where Xi ∈ Rnr×n.

2 Find a block-column Xi with the largest Frobenius norm and swap it with X1.
3 Perform QR decomposition with column pivoting on X1, i.e. find an orthogonal

Q1 ∈ Rnr×nr, an upper-triangular R1 ∈ Rnr×n, and a permutation matrix
P1 ∈ Rn×n such that X1P1 = Q1R1.

4 Multiply all block-columns in X from the right by P1.
5 Multiply X from the left by QT

1 .
6 Repeat the procedure for Xn+1:nr,n+1:nn, which computes the matrices Qi, Ri,

and Pi, for i ∈ {2, 3, . . . , r}.
7 Return Q = Q1Q2 · · ·Qr, R = X, and P with all of the column permutations

recorded.

3.2.5 Extension to higher-order agents

For multi-agent systems (2.9) with agents of order n, the constraints (3.2) become

im(V ) = im(P⊗ In) , (3.5a)
im(W ) = im(P⊗ In) . (3.5b)

QR decomposition-based clustering can then be extended as in Algorithm 3.2 by clus-
tering the block-columns of V T (or WT). For the k-means algorithm, we can show in
a similar way as in the single-integrator case that clustering the block-rows leads to
minimizing an upper bound of the largest principal angle. Therefore, k-means can be
directly applied to the vectorized block-rows of V or W .
Additionally, we need to consider synchronization preservation. In the single-integrator

case, clustering using any partition preserves synchronization. In the general case, us-
ing Proposition 2.51, we need that (A− λ̂, E) is Hurwitz for all nonzero eigenvalues λ̂
of (L̂, M̂). This is true for AEP because σ(L̂, M̂) is a subset of σ(L,M). Note that
if (A − λ,E) is Hurwitz for all λ ∈ [λ2, . . . , λn], where 0 = λ1 < λ2 6 · · · 6 λn are
the eigenvalues of (L,M), then from Theorem 2.6 we get that every partition preserves
synchronization.

3.2.6 Numerical example

We use the example from [MTC14]. It is a leader-follower multi-agent system, defined
on a undirected, weighted, connected graph with 10 vertices, shown in Figure 3.1.
Agents 6 and 7 are the leaders of the multi-agent system. The Laplacian and input
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Figure 3.1: The undirected, weighted graph from [MTC14]

matrices are

L =




5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0
−5 −2 −3 0 −2 25 −6 −7 0 0

0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1




, B =




0 0
0 0
0 0
0 0
0 0
1 0
0 1
0 0
0 0
0 0




.

We chose an edge ordering and orientation such that the incidence and edge-weights
matrices are

R =




−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 −1 −1 −1 0 0 0 0 0
1 0 1 0 0 1 0 1 0 0 −1 −1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




and W = diag(5, 3, 2, 1, 2, 3, 5, 2, 6, 7, 6, 7, 1, 1, 1).
For this example, we focus on partitions with five clusters. There are in total 42, 525

such partitions. Table 3.1 shows the best 20 partitions of size 5 and their relative
H2-errors. Figure 3.2 shows all relative H2-errors for all partitions with five clusters.
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3.2 H2-suboptimal clustering

Table 3.1: Top 20 partitions with 5 clusters for reducing the multi-agent system in
Figure 3.1

Rank Relative H2-error Partition

1 0.128053 {{1, 8}, {2, 3, 4, 9, 10}, {5}, {6}, {7}}
2 0.131311 {{1, 2, 3, 4}, {5, 8}, {6}, {7}, {9, 10}}
3 0.137466 {{1, 2, 3, 4, 9, 10}, {5}, {6}, {7}, {8}}
4 0.137473 {{1, 3, 8}, {2, 4, 9, 10}, {5}, {6}, {7}}
5 0.143700 {{1, 5, 8}, {2, 3, 4}, {6}, {7}, {9, 10}}
6 0.145900 {{1, 2, 3}, {4, 9, 10}, {5, 8}, {6}, {7}}
7 0.146196 {{1, 8}, {2, 3, 4, 9}, {5, 10}, {6}, {7}}
8 0.146196 {{1, 8}, {2, 3, 4, 10}, {5, 9}, {6}, {7}}
9 0.147022 {{1, 2, 3, 8}, {4, 9, 10}, {5}, {6}, {7}}
10 0.149240 {{1, 8, 9}, {2, 3, 4, 10}, {5}, {6}, {7}}
11 0.149240 {{1, 8, 10}, {2, 3, 4, 9}, {5}, {6}, {7}}
12 0.149654 {{1, 8}, {2, 4, 9, 10}, {3, 5}, {6}, {7}}
13 0.150440 {{1, 5}, {2, 3, 4, 9, 10}, {6}, {7}, {8}}
14 0.150654 {{1, 3}, {2, 4, 9, 10}, {5, 8}, {6}, {7}}
15 0.151684 {{1, 2, 8}, {3, 4, 9, 10}, {5}, {6}, {7}}
16 0.153100 {{1, 2, 3, 4, 9}, {5, 8}, {6}, {7}, {10}}
17 0.153100 {{1, 2, 3, 4, 10}, {5, 8}, {6}, {7}, {9}}
18 0.153819 {{1}, {2, 3, 4, 9, 10}, {5, 8}, {6}, {7}}
19 0.154374 {{1, 3, 8, 9}, {2, 4, 10}, {5}, {6}, {7}}
20 0.154374 {{1, 3, 8, 10}, {2, 4, 9}, {5}, {6}, {7}}

The partition

{{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} (3.6)

is an AEP of the graph in Figure 3.1 (see Figure 3.3) used in [MTC14]. It has five
clusters, so we compare the relative H2-errors of different ROMs of order r = 5. The
partition (3.6) is actually the only AEP with five clusters, among the total of five AEPs
of the graph in Figure 3.1.
From [MTC14, Theorem 6], it follows that for the AEP in (3.6), the relative H2-error

is

‖H − ĤAEP‖H2

‖H‖H2

=

√(
1− 1

2

)
+
(
1− 1

1

)

2
(
1− 1

10

) ≈ 0.527046, (3.7)

where ĤAEP is the transfer function of the ROM using the graph partition (3.6).
Next, we used IRKA to find a ROM of order r = 5. It found a ROM with relative
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Figure 3.2: Relative H2-errors for all partitions with five clusters

H2-error of

‖H − Ĥ IRKA‖H2

‖H‖H2

≈ 0.0330412, (3.8)

which is almost 16 times better than (3.7).
The partition resulting from Algorithm 3.1 applied to IRKA’s V matrix is

{{1, 3}, {2, 4, 9, 10}, {5, 8}, {6}, {7}}, (3.9)

and is shown in Figure 3.4. The relative H2-error of a ROM using partition (3.9) is

1
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Figure 3.3: Graph with partition
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Figure 3.4: Graph partition (3.9) with five clusters. The assignment of vertices to
clusters is represented with different patterns.

‖H − ĤV ‖H2

‖H‖H2

≈ 0.150654, (3.10)

which is more than 4 times worse than (3.8), but 3 times better than (3.7).
We notice by (3.2b) thatW can also be used to find a good partition. In this example,

Algorithm 3.1 returns the partition

{{1, 2, 3, 9, 10}, {4, 8}, {5}, {6}, {7}}. (3.11)

The relative H2-error when using the partition (3.11) is

‖H − ĤW‖H2

‖H‖H2

≈ 0.179746,

which is worse than (3.10).
We notice that partition (3.9) is the 14th partition and that the best partition pro-

duces about 1.18 times better error. Table 3.1 does not show that partition (3.11) is
192nd and partition (3.6) is 5996th. Thus, the new method gets a lot closer to the op-
timal partition than the AEP in this example. Using the k-means algorithm to cluster
the rows of V and W results in the 6th and 27th partition, respectively, which is in
this case an improvement over QR decomposition-based clustering.
Furthermore, from Table 3.1 we see that, in all of the top 20 partitions, leaders 6

and 7 appear in singletons. This makes sense, because this way no input is diffused
over more agents. However, further research is needed to see if, in general, the best
partition has leaders appearing in singletons.

3.3 Clustering for nonlinear multi-agent systems

In this section, we extend the approach from the previous section to certain nonlinear
multi-agent systems. We describe the class of multi-agent systems in Section 3.3.1.
Next, in Section 3.3.2, we extend clustering by projection to this class of systems.
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3 Suboptimal Clustering-Based Model Order Reduction

3.3.1 Nonlinear multi-agent systems

Here, we consider a class of nonlinear multi-agent systems. In particular, let the dy-
namics of the ith agent, for i = 1, 2, . . . , n, be

ẋi(t) = f(xi(t)) + g(xi(t))vi(t),

zi(t) = h(xi(t)),

with functions f : Rn → Rn, g : Rn → Rn×m, h : Rn → Rp×n, state xi(t) ∈ Rn, input
vi(t) ∈ Rm, and output zi(t) ∈ Rp. The interconnections are

vi(t) =
n∑

j=1

aijk(zj(t)− zi(t)) +
m∑

`=1

bi`u`(t),

for i = 1, 2, . . . , n, with coupling k : Rp → Rm, external input u`(t) ∈ Rm, ` =
1, 2, . . . ,m, where A = [aij] is the adjacency matrix of the graph G, and B = [bi`].
Additionally, let the external output be

yi(t) =
n∑

j=1

cijzj(t),

with C = [cij]. We assume functions f, g, h, k are continuous and that there is a unique
global solution x(t) = col(x1(t), x2(t), . . . , xn(t)) for any admissible u(t).

3.3.2 Clustering by projection

We want to find the form of the reduced order model obtained from Galerkin projection
with V = P⊗ In. We can write

ẋ(t) = F (x(t), u(t)),

y(t) = G(x(t)),

for some functions F and G. The reduced model is

(
PTP⊗ In

)
˙̂x(t) =

(
PT ⊗ In

)
F ((P⊗ In)x̂(t), u(t)),

ŷ(t) = G((P⊗ In)x̂(t)).
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3.4 Conclusions

Premultiplying the first equation with eTp ⊗ In, we find

|Cp| ˙̂xp(t) =
∑

i∈Cp

(
f(x̂p(t)) + g(x̂p(t))

(
n∑

j=1

aijk(h(x̂C(j)(t))− h(x̂p(t))) +
m∑

`=1

bi`u`(t)

))

= |Cp| f(x̂p(t))

+ g(x̂p(t))


∑

i∈Cp

n∑

j=1

aijk(h(x̂C(j)(t))− h(x̂p(t))) +
∑

i∈Cp

m∑

`=1

bi`u`(t)




= |Cp| f(x̂p(t))

+ g(x̂p(t))




r∑

q=1

∑

i∈Cp

∑

j∈Cq
aijk(h(x̂q(t))− h(x̂p(t))) +

m∑

`=1

∑

i∈Cp
bi`u`(t)




= |Cp| f(x̂p(t))

+ g(x̂p(t))

(
r∑

q=1

âpqk(h(x̂q(t))− h(x̂p(t))) +
m∑

`=1

b̂p`u`(t)

)
,

for

âpq =
∑

i∈Cp

∑

j∈Cq
aij, b̂p` =

∑

i∈Cp
bi`.

Defining Â := [âpq] and B̂ := [b̂p`], we see that Â = PTAP and B̂ = PTB. For the
output we have

ŷi(t) =
n∑

j=1

cijh(x̂C(j)(t)) =
r∑

j=1

∑

j∈Cq
cijh(x̂q(t)) =

r∑

j=1

ĉiqh(x̂q(t)),

where

ĉiq =
∑

j∈Cq
cij.

Thus, for Ĉ := [̂ciq], we have Ĉ = CP. Therefore, we showed how to construct a ROM
of the same structure as the original multi-agent system. Based on this, to find a good
partition, we can apply any projection-based MOR method for nonlinear systems (e.g.,
proper orthogonal decomposition [HV05]) and cluster the (block-)rows of the matrix
used to project the system.

3.4 Conclusions

In Section 3.2, we presented our method, combining IRKA and a clustering algorithm,
for MOR of multi-agent systems using graph partitions. It seems heuristically that
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3 Suboptimal Clustering-Based Model Order Reduction

this method is able to create a partition whose H2-error is small. We furthermore
elaborated that this method is scalable to large-scale systems. Our numerical test for a
small network shows that, among 42 525 partitions, our algorithm found the 14th best
approximation whose error is of the same order of magnitude as the error of the best
partition. A theoretical foundation that the algorithm always finds a partition in some
sense close to optimal remains an open problem for future work.
In Section 3.3, we showed how to extend the approach to nonlinear multi-agent

systems by combining a projection-based method and a clustering algorithm.
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4 Graph Symmetries and Equitable Partitions in Clustering-Based Model Order
Reduction

4.1 Introduction

Here, we consider theoretical aspects of clustering-based MOR, using graph symmetries
and equitable partitions.
The work in [MTC14] showed upper bounds for H2 model reduction error using AEP

for leader-follower multi-agent systems with single-integrator agents. In Section 4.2, we
extend these results to more general agents, including also upper bounds for H∞ error
and arbitrary partitions.
The results of [RJME09] on clustering using graph symmetries and equitable parti-

tions for linear mutli-agent systems are extended in Section 4.3 nonlinear power systems.

4.2 Error bounds for clustering-based model order
reduction of linear multi-agent systems

4.2.1 Introduction

In [MTC14], MOR by clustering was put in the context of MOR by Petrov-Galerkin
projection. The results in [MTC14] provide explicit expressions for the H2 model
reduction error if a leader-follower network with single integrator agent dynamics is
clustered using an almost equitable partition of the graph. Here, our aim is to generalize
and extend the results in [MTC14] to networks where the agent dynamics is given by
an arbitrary multivariable input-state-output system. We also aim at finding explicit
formulas and a priori upper bounds for the model reduction error measured in the
H∞-norm. Finally, we will consider the problem of clustering a network according to
arbitrary, not necessarily almost equitable, graph partitions. The main contributions
of this section are the following:

1. We derive an a priori upper bound for the H2 model reduction error for the case
that the agents are represented by an arbitrary input-state-output system.

2. We extend the results in [MTC14] for single integrator dynamics by giving an
explicit expression for the H∞ model reduction error in terms of properties of the
given graph partition.

3. We establish an a priori upper bound for the H∞ model reduction error for the
case that the agents are represented by an arbitrary but symmetric input-state-
output system.

4. We establish some preliminary results on the model reduction error in case of
clustering using an arbitrary, possibly non almost equitable, partition.

The outline of this section is as follows. In Section 4.2.3, we formulate our problem
of MOR of leader-follower multi-agent networks. Section 4.2.4 reviews some theory on
graph partitions and MOR by clustering, and relates this method to Petrov-Galerkin
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systems

projection of the original network. Also preservation of synchronization is discussed
here. In Section 4.2.5, we provide a priori error bounds on the H2 model reduction
error for networks with arbitrary agent dynamics, clustered using almost equitable
partitions. In Section 4.2.6, we complement these results by providing upper bounds
on the H∞ model reduction error. In Section 4.2.7, the problem of clustering networks
according to general partitions is considered and the first steps towards a priori error
bounds on both the H2 and H∞ model reduction errors are made. Numerical examples
for which we compare the actual errors with the a priori bounds established here are
presented in Section 4.2.8.

4.2.2 Preliminaries

In this section, we briefly discuss some basic facts on finite-dimensional linear systems
and how they extend to unstable systems.
Consider the input-state-output system

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(4.1)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, and transfer function H(s) = C(sI − A)−1B. If
A is Hurwitz, then the H2-norm can be computed as

‖H‖2
H2

= tr
(
BTXB

)
,

where X is the unique positive semi-definite solution of the Lyapunov equation

ATX +XA+ CTC = 0. (4.2)

For the purposes of the work in this part, we also need to deal with the situation when
A is not Hurwitz. Let X+(A) denote the unstable subspace of A, i.e., the direct sum
of the generalized eigenspaces of A corresponding to its eigenvalues in the closed right
half plane. We state the following proposition.
Proposition 4.1:
Assume that X+(A) ⊆ ker(C). Then the Lyapunov equation (4.2) has at least one pos-
itive semi-definite solution. Among all positive semi-definite solutions, there is exactly
one solution, say X, with the property X+(A) ⊆ ker(X). For this particular solution
X, we have ‖H‖2

H2
= tr

(
BTXB

)
. ♦

Proof. Without loss of generality, assume that

A =

[
A− 0
0 A+

]
, B =

[
B−
B+

]
, C =

[
C− 0

]
,

where A− is Hurwitz, and A+ has all its eigenvalues in the closed right half plane. Let
X− be the unique solution to the reduced Lyapunov equation

AT
−X− +X−A− + CT

−C− = 0. (4.3)
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Then X− =
∫∞

0
eA

T
−tCT

−C−e
A−t dt < 0. Obviously then, X = diag(X−, 0) is a positive

semi-definite solution of (4.2). Now, let X be a positive semi-definite solution to (4.2)
with the property that X+(A) ⊆ ker(X). Then X must be of the form X = diag(X1, 0),
and X1 must satisfy the reduced Lyapunov equation (4.3). Thus X = diag(X−, 0).
Finally, H is asymptotically stable since X+(A) ⊆ ker(C). Moreover,

‖H‖2
H2

= tr

(
BT
∫ ∞

0

eA
TtCTCeAt dt B

)

= tr

(
BT
−

∫ ∞

0

eA
T
−tCT

−C−e
A−t dt B−

)

= tr
(
BT
−X−B−

)

= tr
(
BTXB

)
.

We will now deal with computing the H∞-norm. The result is a generalization of
Lemma 4 in [IKIA14].

Lemma 4.2:
Consider the system (4.1). Assume that its transfer function H has all its poles in the
open left half plane. If there exists X ∈ Rp×p such that X = XT and CA = XC, then
‖H‖H∞ = ‖H(0)‖2. ♦

Proof. For the first part of the proof, let us assume that (A,B,C) is minimal. Then,
in particular, A is Hurwitz and (A,B) is controllable.
Clearly, the inequality ‖S‖H∞ > ‖S(0)‖2 is always satisfied. We will prove that
‖S‖H∞ 6 ‖S(0)‖2 using the bounded real lemma [Ran96], which states that ‖S‖H∞ 6 γ
if and only if there exists P ∈ Rn×n such that P = PT and

ATP + PA+ CTC +
1

γ2
PBBTP 4 0.

Let us take γ = ‖S(0)‖2 = ‖CA−1B‖2. This implies that

CA−1BBTA−TCT 4 γ2Ip. (4.4)

Defining P := −A−TCTXCA−1 and using (4.4) yields

ATP + PA+ CTC +
1

γ2
PBBTP

= −CTXCA−1 − A−TCTXC + CTC

+
1

γ2
A−TCTXCA−1BBTA−TCTXCA−1

4 −CTXCA−1 − A−TCTXC + CTC + A−TCTXXCA−1

=
(
XCA−1 − C

)T (
XCA−1 − C

)

= 0.
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From the bounded real lemma, we conclude that ‖S‖H∞ 6 ‖S(0)‖2.
For a non-minimal representation (A,B,C), applying the Kalman decomposition, let

T be a invertible matrix such that

T−1AT =




A1 0 A6 0
A2 A3 A4 A5

0 0 A7 0
0 0 A8 A9


 , T−1B =




B1

B2

0
0


 , CT =

[
C1 0 C2 0

]
,

where (A1, B1, C1) is a minimal representation of (A,B,C) with A1 Hurwitz. From,

(CT )
(
T−1AT

)
= CAT = XCT = X(CT ),

(CT )
(
T−1AT

)
=
[
C1 0 C2 0

]



A1 0 A6 0
A2 A3 A4 A5

0 0 A7 0
0 0 A8 A9




=
[
C1A1 0 C1A6 + C2A7 0

]
,

X(CT ) = X
[
C1 0 C2 0

]
=
[
XC1 0 XC2 0

]
,

we find that C1A1 = XC1. Therefore, the minimal representation satisfies the sufficient
condition and using the result obtained above the proof is completed.

Continuing our effort to compute the H∞-norm, we now formulate a lemma that will
be instrumental in evaluating a transfer function at the origin. Recall that for a given
matrix A, its Moore-Penrose inverse is denoted by A+.

Lemma 4.3:
Consider the system (4.1). If A is symmetric and ker(A) ⊆ ker(C), then 0 is not a pole
of the transfer function H and we have H(0) = −CA+B. ♦

Proof. If A is invertible, then the conclusion follows immediately. Otherwise, let A =
UΛUT be an eigenvalue decomposition with orthogonal U and Λ = diag(0,Λ2), where
Λ2 ∈ Rr×r and r is the rank of A. We denote U =

[
U1 U2

]
, with U2 ∈ Rn×r. Then

A+ = UΛ+UT =
[
U1 U2

] [0 0
0 Λ−1

2

] [
UT

1

UT
2

]
= U2Λ−1

2 UT
2 .

Note that CU1 = 0. We have

H(s) = CU(sI − Λ)−1UTB

= C
[
U1 U2

] [s−1I 0

0 (sI − Λ2)−1

] [
UT

1

UT
2

]
B

= CU2(sI − Λ2)−1UT
2 B.

Hence, H(s) is defined at s = 0 and H(0) = −CU2Λ−1
2 UT

2 B = −CA+B.
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4.2.3 Problem formulation

We consider leader-follower multi-agent systems of the form

ẋ(t) = (In ⊗ A− L⊗B)x(t) + (B⊗ F )u(t), (4.5a)
y(t) = (L⊗ In)x(t), (4.5b)

defined on an undirected, weighted, connected graph G = (V,E,w) with vertex setV =
{1, 2, . . . , n}, adjacency matrix A, Laplacian matrix L, leader setVL = {v1, v2, . . . , vm} ⊆
V, and follower set VF = V \VL. Furthermore, xi(t) ∈ Rn is the state of agent i, and
u`(t) ∈ Rm is the external input to the leader v`. Finally, A ∈ Rn×n, B ∈ Rn×n,
and F ∈ Rn×m are real matrices. Denote x(t) = col(x1(t), x2(t), . . . , xn(t)) and u(t) =
col(u1(t), u2(t), . . . , um(t)).
The goal of this section is to find a reduced order networked system, whose dynamics

is a good approximation of the networked system (4.5a). Following [MTC14], the idea
to obtain such an approximation is to cluster groups of agents in the network, and to
treat each of the resulting clusters as a vertex in a new, reduced order, network. The
reduced order network will again be a leader-follower network, and by the clustering
procedure, essential interconnection features of the network will be preserved. We
will also require that the synchronization properties of the network are preserved after
reduction. We assume that the original network is synchronized, meaning that if the
external inputs satisfy u` = 0 for ` = 1, 2, . . . ,m, then for all i, j ∈ V, we have

xi(t)− xj(t)→ 0

as t→∞. We impose that the reduction procedure preserves this property.
Being a measure for the disagreement between the states of the agents in (4.5a), we

choose y(t) = (L⊗ In)x(t) as the output of the original network. Indeed, this output y
can be considered a measure of the disagreement in the network, in the sense that y(t)
is small if and only if the network is close to being synchronized.
Note that the state space dimension of (4.5) is equal to nn, its number of inputs

equals mm, and the number of outputs is nn.
Here, we will use clustering to obtain a reduced order network, i.e., a network with

a reduced number of agents, as an approximation of the original network (4.5).

4.2.4 Graph partitions and reduction by clustering

We consider networks whose interaction topologies are represented by weighted graphs
G with vertex set V. The graph of the original network (4.5a) is undirected, however,
our reduction procedure will lead to networks on directed graphs.
Next, we will construct a reduced order approximation of (4.5) by clustering the

agents in the network using a partition of G. Extending the main idea in [MTC14], we
take as reduced order system the Petrov-Galerkin projection of the original system (4.5),
with the following choice for the matrices V and W :

W = P
(
PTP

)−1 ⊗ In ∈ Rnn×rn, V = P⊗ In ∈ Rnn×rn.

58



4.2 Error bounds for clustering-based model order reduction of linear multi-agent
systems

The dynamics of the resulting reduced order model is then given by

˙̂x(t) = (Ir ⊗ A− L̂⊗B)x̂(t) + (B̂⊗ F )u(t),

ŷ(t) = (LP⊗ In)x̂(t),
(4.6)

where
L̂ =

(
PTP

)−1
PTLP ∈ Rr×r,

B̂ =
(
PTP

)−1
PTB ∈ Rr×m.

It can be seen by inspection that the matrix L̂ is the Laplacian of a weighted directed
graph with vertex set {1, 2, . . . , r}, with r equal to the number of clusters in the partition
π, and adjacency matrix Â = [âpq], with

âpq =
1

|Cp|
∑

i∈Cp,j∈Cq
aij,

where |Cp| the cardinality of Cp. In other words: in the reduced graph, the edge from
vertex q to vertex p is obtained by summing over all j ∈ Cq the weights of all edges to
i ∈ Cp and dividing this sum by the cardinality of Cp. The row sums of L̂ are indeed
equal to zero since L̂1r = 0. The matrix B̂ ∈ Rr×m satisfies

[B̂]pj =

{
1
|Cp| if vj ∈ Cp,

0 otherwise,

where v1, v2, . . . , vm are the leader vertices, p = 1, 2, . . . , r, and j = 1, 2, . . . ,m.
Clearly, the state space dimension of the reduced order network (4.6) is equal to rn,

whereas the dimensions mm and nn of the input and output have remained unchanged.
Thus we can investigate the error between the original and reduced order network by
looking at the difference of their transfer functions. In the sequel, we will investigate
both the H2-norm as well as the H∞-norm of this difference.
Before doing this, we will now first study the question whether our reduction pro-

cedure preserves synchronization. It is important to note that since, by assumption,
the original undirected graph is connected, it has a directed spanning tree. It is easily
verified that this property is preserved by our clustering procedure. Then, since the
property of having a directed spanning tree is equivalent with 0 being a simple eigen-
value of the Laplacian (see [ME10, Proposition 3.8]), the reduced order Laplacian L̂
has again 0 as a simple eigenvalue.
Now assume that the original network (4.5) is synchronized. It is well known, see

e.g. [TTM13], that this is equivalent with the condition that for each nonzero eigenvalue
λ of the Laplacian L the matrix A−λB is Hurwitz. Thus, synchronization is preserved
if and only if for each nonzero eigenvalue λ̂ of the reduced order Laplacian L̂ the matrix
A− λ̂B is Hurwitz.
Unfortunately, in general A − λB Hurwitz for all nonzero λ ∈ σ(L) does not imply

that A− λ̂B Hurwitz for all nonzero λ ∈ σ(L̂). An exception is the ‘single integrator’
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case A = 0 and B = 1, where this condition is trivially satisfied, so in this special case
synchronization is preserved. Also if we restrict ourselves to a special type of graph
partitions, namely almost equitable partitions, then synchronization turns out to be
preserved.
As an immediate consequence, the reduced Laplacian L̂ resulting from an AEP satis-

fies LP = PL̂. Indeed, since im(P) is L-invariant we have LP = PX for some matrix
X. Obviously, we must then have X =

(
PTP

)−1
PTLP = L̂. From this, it follows

that σ(L̂) ⊆ σ(L). It then readily follows that synchronization is preserved if we cluster
according to an AEP:
Theorem 4.4:
Assume that the network (4.5) is synchronized. Let π be an AEP. Then the reduced
order network (4.6) obtained by clustering according to π is synchronized. ♦

4.2.5 H2-error bounds

In this section, we will formulate the first main theorem. The theorem gives an a priori
upper bound for the H2-norm of the approximation error in the case that we cluster
according to an AEP. After formulating the theorem, in the remainder of this section
we will establish a proof.
Before stating the theorem, we will now first discuss some important ingredients.

Let H and Ĥ denote the transfer functions of the original (4.5) and reduced order
network (4.6), respectively. We will measure the approximation error by the H2-norm
‖H − Ĥ‖H2

of these transfer functions. An important role will be played by the n− 1
auxiliary input-state-output systems

ẋ(t) = (A− λB)x(t) + Fd(t),

z(t) = λx(t),
(4.7)

where λ ranges over the n − 1 nonzero eigenvalues of the Laplacian L. Let Hλ(s) =
λ(sIn − A+ λB)−1F be the transfer matrices of these systems. We assume that the
original network (4.5) is synchronized, so that all of the A − λB are Hurwitz. Let
‖Hλ‖H2

denote the H2-norm of Hλ. Recall that the set of leader vertices is VL =
{v1, v2, . . . , vm}. Vertex vi will be called leader i. This leader is an element of cluster
Cki for some ki ∈ {1, 2, . . . , r}. We now have the following theorem.
Theorem 4.5:
Assume that the network (4.5) is synchronized. Let π be an AEP of the graph G. The
absolute approximation error when clustering G according to π then satisfies

‖H − Ĥ‖2
H2
6 H2

max,H2

m∑

i=1

(
1− 1

|Cki |

)
,

where Cki is the cluster containing the leader i, and

Hmax,H2
:= max

λ∈σ(L)\σ(L̂)
‖Hλ‖H2

.
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Furthermore, the relative approximation error satisfies

‖H − Ĥ‖2
H2

‖H‖2
H2

6
(
Hmax,H2

Hmin,H2

)2

m∑
i=1

(
1− 1

|Cki |

)

m
(
1− 1

n

) ,

where
Hmin,H2

:= min
λ∈σ(L)\{0}

‖Hλ‖H2
. ♦

Remark 4.6:
We see that, with fixed number of agents and fixed number of leaders, the approximation
error is equal to 0 if in each cluster that contains a leader, the leader is the only vertex
in that cluster. In general, the upper bound increases if the numbers of cellmates of the
leaders increase. The upper bound also depends multiplicatively on the maximal H2-
norm of the auxiliary systems (4.7) over all Laplacian eigenvalues in the complement
of the spectrum of the reduced Laplacian L̂. The relative error in addition depends on
the minimal H2-norm of the auxiliary systems (4.7) over all nonzero eigenvalues of the
Laplacian L. ♦

Remark 4.7:
For the special case that the agents are single integrators (so n = 1, A = 0, B = 1,
and F = 1) it is easily seen that Hmax,H2 = 1

2
max{λ : λ ∈ σ(L) \ σ(L̂)} and Hmin,H2 =

1
2

min{λ : λ ∈ σ(L), λ 6= 0}. Thus, in the single integrator case the corresponding a
priori upper bounds explicitly involve the Laplacian eigenvalues. As already noted in
Section 4.2.1, the single integrator case was also studied in [MTC14] for the slightly
different set up that the output equation in the original network (4.5) is taken as
y(t) = (W

1
2RT⊗In)x(t) instead of y(t) = (L⊗In)x(t). Here, R is the incidence matrix

of the graph and W the diagonal matrix with the edge weights on the diagonal (in
other words, L = RWRT). It was shown in [MTC14] that in that case the absolute
and relative approximation errors even admit the explicit formulas

‖H − Ĥ‖2
H2

=
1

2

m∑

i=1

(
1− 1

|Cki |

)
,

and

‖H − Ĥ‖2
H2

‖H‖2
H2

=

m∑
i=1

(
1− 1

|Cki |

)

m
(
1− 1

n

) . ♦

In the remainder of this section, we will establish a proof of Theorem 4.5. As a
first step, we establish the following lemma (see also [MTC14], where only the single
integrator case was treated).
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Lemma 4.8:
Let π be an AEP of the graph G. The approximation error when clustering G according
to π then satisfies

‖H − Ĥ‖2
H2

= ‖H‖2
H2
− ‖Ĥ‖2

H2
. ♦

Proof. First, note that the columns of P are orthogonal. We construct a matrix T =[
P P⊥

]
, where the n× (n− r) matrix P⊥ is chosen such that the columns of T form

an orthogonal basis for Rn. In this case, we have PTP⊥ = 0. Next, we apply the state
space transformation x(t) = (T⊗ In)x̃(t) to system (4.5). We obtain

[
˙̃x1(t)
˙̃x2(t)

]
= Ã

[
x̃1(t)
x̃2(t)

]
+ B̃u(t),

y(t) = C̃

[
x̃1(t)
x̃2(t)

]
,

(4.8)

where the matrices Ã, B̃, and C̃ are given by

Ã =

[
Ir ⊗ A−

(
PTP

)−1
PTLP⊗B −

(
PTP

)−1
PTLP⊥ ⊗B

−
(
PT
⊥P⊥

)−1
PT
⊥LP⊗B In−r ⊗ A−

(
PT
⊥P⊥

)−1
PT
⊥LP⊥ ⊗B

]
,

B̃ =

[ (
PTP

)−1
PTB⊗ F(

PT
⊥P⊥

)−1
PT
⊥B⊗ F

]
, C̃ =

[
LP⊗ In LP⊥ ⊗ In

]
.

Obviously, in (4.8) the transfer function from u to y is equal to H. Furthermore, if
the state component x̃2 is truncated from (4.8), what we are left with is the reduced
order model (4.6). Since π is an AEP of G, by Lemma 2.48, im(P) is invariant under
L. From this, it follows that not only PT

⊥P = 0, but also

PT
⊥LP = 0 and PT

⊥L
2P = 0. (4.9)

It is easily checked that
H(s) = Ĥ(s) +Herr(s),

where Herr(s) is given by

Herr(s) = (LP⊥ ⊗ In)
(
sI −

(
In−r ⊗ A−

(
PT
⊥P⊥

)−1
PT
⊥LP⊥ ⊗B

))−1

·
((

PT
⊥P⊥

)−1
PT
⊥B⊗ F

)
.

(4.10)

From (4.9) and (4.10), we have Ĥ(−s)THerr(s) = 0. Thus, we find that

‖H‖2
H2

= ‖Ĥ‖2
H2

+ ‖Herr‖2
H2
,

which concludes the proof.
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Recall that, since π is an AEP, we have σ(L̂) ⊆ σ(L). Label the eigenvalues of L
as 0, λ2, λ3, . . . , λn in such a way that 0, λ2, λ3, . . . , λr are the eigenvalues of L̂. Also,
without loss of generality, we assume that π is regularly formed, i.e., all ones in each of
the columns of P are consecutive. One can always relabel the agents in the graph in
such a way that this is achieved. Consider now the symmetric matrix

L :=
(
PTP

) 1
2 L̂
(
PTP

)− 1
2 =

(
PTP

)− 1
2 PTLP

(
PTP

)− 1
2 . (4.11)

Note that the eigenvalues of L and L̂ coincide. Let Û be an orthogonal matrix that
diagonalizes L. We then have

ÛTLÛ = diag(0, λ2, . . . , λr) =: Λ̂. (4.12)

Next, take U1 = P
(
PTP

)− 1
2 Û . The columns of U1 are orthonormal:

UT
1 U1 = ÛT (PTP

)− 1
2 PTP

(
PTP

)− 1
2 Û = ÛTÛ = I.

Furthermore, we have that
UT

1 LU1 = ÛTLÛ = Λ̂.

Now choose U2 such that U =
[
U1 U2

]
is an orthogonal matrix and

Λ := UTLU =

[
Λ̂ 0
0 Λ

]
, (4.13)

where Λ = diag(λr+1, . . . , λn). It is easily verified that the first column of U1, and thus
the first column of U , is given by 1√

n
1n, a fact that we will use in the remainder of this

section.
Using the above, we will now first establish explicit formulas for the H2-norms of H

and Ĥ separately. The following lemma gives a formula for the H2-norm of the original
transfer function H.

Lemma 4.9:
Let U be as in (4.13). For i = 2, . . . , n, let Xi be the observability Gramian of the
auxiliary system (A − λiB,F, λiI) in (4.7), i.e., the unique solution of the Lyapunov
equation (A− λiB)TXi +Xi(A−λiB) +λ2

i I = 0. Then the H2-norm of H is given by:

‖H‖2
H2

= tr
((
UTBBTU ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXnF
))
. (4.14)

♦

Proof. It can be verified, using the fact that A−λiB is Hurwitz for i = 2, 3, . . . , n, that

X+(I ⊗ A− L⊗B) = 1n ⊗ X+(A).
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This immediately implies that X+(I ⊗ A− L⊗ B) ⊆ ker(L⊗ I). As a consequence of
Proposition 4.1, we have

‖H‖2
H2

= tr
((
BT ⊗ FT)X(B⊗ F )

)
,

where X is the unique positive semi-definite solution to the Lyapunov equation
(
I ⊗ AT − L⊗BT)X +X(I ⊗ A− L⊗B) + L2 ⊗ I = 0 (4.15)

with the property that X+(I ⊗ A − L ⊗ B) ⊆ ker(X). In order to compute this
solution X, premultiply (4.15) by UT ⊗ I and postmultiply by U ⊗ I, and substitute
Z = (UT ⊗ I)X(U ⊗ I) to obtain

(
I ⊗ AT − Λ⊗BT)Z + Z(I ⊗ A− Λ⊗B) + Λ2 ⊗ I = 0. (4.16)

Solving (4.16), we take Z as

Z = diag(0, X2, . . . , Xn) ,

where Xi, for i = 2, . . . , n, is the observability Gramian of the auxiliary system (A −
λiB,F, λiI) in (4.7). Next, X := (U⊗I)Z(UT⊗I) is a solution of the original Lyapunov
equation, and it is easily verified that indeed X+(I ⊗ A− L⊗ B) ⊆ ker(X). Thus, we
obtain the following expression for the H2-norm of H:

‖H‖2
H2

= tr
((
BTU ⊗ FT) diag(0, X2, . . . , Xn)

(
UTB⊗ F

))

= tr
((
UTBBTU ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXnF
))
.

We proceed with finding a formula for the H2-norm for the reduced system. This
will be dealt with in the following lemma.

Lemma 4.10:
Let Û be as in (4.12) above. For i = 2, . . . , r, let Xi be the observability Gramian of
the auxiliary system (A−λiB,F, λiI) in (4.7), i.e., the unique solution of the Lyapunov
equation (A− λiB)TXi +Xi(A−λiB) +λ2

i I = 0. Then the H2-norm of Ĥ is given by

‖Ĥ‖2
H2

= tr
((
ÛT (PTP

) 1
2 B̂B̂T (PTP

) 1
2 Û ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXrF
))
.

(4.17)
♦

Proof. Firstly, it can be verified that

X+(I ⊗ A− L̂⊗B) = 1r ⊗ X+(A).

This implies that X+(I⊗A− L̂⊗B) ⊆ ker(LP⊗ I). By Proposition 4.1, we then have

‖Ĥ‖2
H2

= tr
((

B̂T ⊗ FT
)
X̂
(
B̂⊗ F

))
,
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where X̂ is the unique positive semi-definite solution to the Lyapunov equation
(
I ⊗ AT − L̂T ⊗BT

)
X̂ + X̂(I ⊗ A− L̂⊗B) + PTL2P⊗ I = 0 (4.18)

satisfying the property that X+(I ⊗ A − L̂ ⊗ B) ⊆ ker(X̂). In order to compute this
solution, pre- and postmultiply (4.18) by

(
PTP

)− 1
2 ⊗ I and substitute

Ŷ =
((

PTP
)− 1

2 ⊗ I
)
X̂
((

PTP
)− 1

2 ⊗ I
)

to obtain
(
I ⊗ AT − L⊗BT) Ŷ + Ŷ

(
I ⊗ A− L⊗B

)
+
(
PTP

)− 1
2 PTL2P

(
PTP

)− 1
2 ⊗ I = 0.

(4.19)
Recall from Section 4.2.4 that LP = PL̂. From this it follows that

(
PTP

)− 1
2 PTL2P

(
PTP

)− 1
2 = L

2
.

Consequently, we can diagonalize the corresponding term in (4.19) by premultiplying
by ÛT ⊗ I and postmultiplying by Û ⊗ I, where Û is as in (4.12). Next, we denote
Ẑ = (ÛT ⊗ I)Ŷ (Û ⊗ I) so that (4.19) reduces to

(
I ⊗ AT − Λ̂⊗BT

)
Ẑ + Ẑ

(
I ⊗ A− Λ̂⊗B

)
+ Λ̂2 ⊗ I = 0,

which can be solved by taking

Ẑ = diag(0, X2, . . . , Xr) ,

where again Xi, for i = 2, . . . , r, is the observability Gramian of the auxiliary system
(A− λiB,F, λiI) in (4.7). Next,

X̂ =
((

PTP
) 1

2 Û ⊗ I
)
Ẑ
(
ÛT (PTP

) 1
2 ⊗ I

)

then satisfies (4.18), and it can be verified that X+(I ⊗ A − L̂ ⊗ B) ⊆ ker(X̂). Thus,
the H2-norm of Ĥ is given by

‖Ĥ‖2
H2

= tr
((

B̂T (PTP
) 1

2 Û ⊗ FT
)

diag(0, X2, . . . , Xr)
(
ÛT (PTP

) 1
2 B̂⊗ F

))

= tr
((
ÛT (PTP

) 1
2 B̂B̂T (PTP

) 1
2 Û ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXrF
))
.

We will now combine the previous lemmas, and give a proof of Theorem 4.5.
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Proof of Theorem 4.5. Using Lemma 4.8, and formulas (4.14) and (4.17), we compute

‖H − Ĥ‖2
H2

= tr
((
UTBBTU ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXnF
))

− tr
((
ÛT (PTP

) 1
2 B̂B̂T (PTP

) 1
2 Û ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXrF
))

= tr

(([
UT

1 BBTU1 UT
1 BBTU2

UT
2 BBTU1 UT

2 BBTU2

]
⊗ I
)

diag
(
0, FTX2F, . . . , F

TXnF
))

− tr
((
UT

1 BBTU1 ⊗ I
)

diag
(
0, FTX2F, . . . , F

TXrF
))

= tr
((
UT

2 BBTU2 ⊗ I
)

diag
(
FTXr+1F, . . . , F

TXnF
))
,

(4.20)
where the second equality follows from the fact that

B̂T (PTP
) 1

2 Û = BTP
(
PTP

)−1 (
PTP

) 1
2 Û

= BTP
(
PTP

)− 1
2 Û

= BTU1.

Next, observe that (4.20) can be rewritten as

‖H − Ĥ‖2
H2

= tr
((
UT

2 BBTU2 ⊗ I
)

diag
(
FTXr+1F, . . . , F

TXnF
))

= tr
((
UT

2 BBTU2

)
diag

(
tr
(
FTXr+1F

)
, . . . , tr

(
FTXnF

)))

= tr
((
UT

2 BBTU2

)
diag

(∥∥Hλr+1

∥∥2

H2
, . . . , ‖Hλn‖2

H2

))
,

where Hλi for i = r+ 1, . . . , n is the transfer function of the auxiliary system (4.7). An
upper bound for this expression is given by

tr
((
UT

2 BBTU2

)
diag

(∥∥Hλr+1

∥∥2

H2
, . . . , ‖Hλn‖2

H2

))
6 H2

max,H2
tr
(
UT

2 BBTU2

)
,

where Hmax,H2 = maxr+16j6n
∥∥Hλj

∥∥
H2
. Furthermore, we have

tr
(
UT

2 BBTU2

)
= tr

(
UTBBTU

)
− tr

(
UT

1 BBTU1

)

= m− tr
(
P
(
PTP

)−1
PTBBT

)
.

Since, by assumption, the partition π is regularly formed, P
(
PTP

)−1
PT is a block

diagonal matrix of the form

P
(
PTP

)−1
PT = diag(P1,P2, . . . ,Pk) .

It is easily verified that each Pi is a |Ci| × |Ci| matrix whose elements are all equal to
1
|Ci| . The matrix BBT is a diagonal matrix whose diagonal entries are either 0 or 1.

We then have that the ith column of P
(
PTP

)−1
PTBBT is either equal to the ith
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column of P
(
PTP

)−1
PT if agent i is a leader, or zero otherwise. It then follows that

the diagonal elements of P
(
PTP

)−1
PTBBT are either zero or 1

|Cki | if i is part of the
leader set, where Cki is the cluster containing agent i. Hence, we have

tr
(
UT

1 BBTU1

)
=

m∑

i=1

1

|Cki |
,

and consequently

tr
(
UT

2 BBTU2

)
= m−

m∑

i=1

1

|Cki |
.

In conclusion, we have

‖H − Ĥ‖2
H2
6 H2

max,H2

m∑

i=1

(
1− 1

|Cki |

)
,

which completes the proof of the first part of the theorem.
We now prove the statement about the relative error. For this, we will establish a

lower bound for ‖H‖2
H2
. By (4.14), we have

‖H‖2
H2

= tr
((
UTBBTU ⊗ I

)
diag

(
0, FTX2F, . . . , F

TXnF
))

= tr
((
UTBBTU

)
diag

(
0, tr

(
FTX2F

)
, . . . , tr

(
FTXnF

)))
.

(4.21)

The first column of U spans the eigenspace corresponding to the eigenvalue 0 of L and
hence must be equal to u1 = 1√

n
1n. Let U be such that U =

[
u1 U

]
. It is then easily

verified using (4.21) that

‖H‖2
H2

= tr
((
U

T
BBTU

)
diag

(
tr
(
FTX2F

)
, . . . , tr

(
FTXnF

)))

= tr
((
U

T
BBTU

)
diag

(
‖Hλ2‖2

H2
, . . . , ‖Hλn‖2

H2

))
.

Finally, since

tr
(
U

T
BBTU

)
= tr

(
BTUU

T
B
)

= tr
(
BT (UUT − u1u

T
1

)
B
)

= m− m

n
,

we obtain that ‖H‖2
H2
> m

(
1− 1

n

)
(Hmin,H2)

2. This then yields the upper bound for
the relative error as claimed.

Remark 4.11:
Note that by our labeling of the eigenvalues of L, in the formulation of Theorem 4.5,
we have that σ(L) \ σ(L̂) is equal to {λr+1, . . . , λn} used in the proof. We stress that
this should not be confused with the notation often used in the literature, where the
λi’s are labeled in increasing order. ♦
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4.2.6 H∞-error bounds

Whereas in the previous section we studied a priori upper bounds for the approximation
error in terms of theH2-norm, the present section aims at expressing the approximation
error in terms of the H∞-norm. This section consists of two subsections. In the first
subsection, we consider the special case that the agent dynamics is a single integrator
system. Here we obtain an explicit formula for the H∞-norm of the error. In the second
subsection, we find an upper bound for the H∞-error for symmetric systems.

4.2.6.1 The single integrator case

Here we consider the special case that the agent dynamics is a single integrator system.
In this case, we have A = 0, B = 1, and F = 1 and the original system (4.5) reduces
to

ẋ(t) = −Lx(t) + Bu(t),

y(t) = Lx(t).
(4.22)

The state space dimension of (4.22) is then simply n, the number of agents. For a given
partition π = {C1,C2, . . . ,Cr}, the reduced system (4.6) is now given by

˙̂x(t) = −L̂x̂(t) + B̂u(t),

ŷ(t) = LPx̂(t),

where P is again the characteristic matrix of π and x̂(t) ∈ Rr. The transfer functions
H and Ĥ, of the original and reduced system respectively, are given by

H(s) = L(sIn + L)−1B,

Ĥ(s) = LP (sIr + L̂)−1 B̂.

The first main result of this section is the following explicit formula for the H∞ model
reduction error. It complements the formula for the H2-error obtained in [MTC14] (see
also Remark 4.7).

Theorem 4.12:
Let π be an AEP of the graph G. If the network with single integrator agent dynam-
ics (4.22) is clustered according to π, then the H∞-error is given by

‖H − Ĥ‖2
H∞

=





max
16i6m

(
1− 1

|Cki |

)
if the leaders are in different clusters,

1 otherwise,

where, for some ki ∈ {1, 2, . . . ,m}, Cki is the cluster containing the leader i. Further-
more, ‖H‖H∞ = 1, hence the relative and absolute H∞-errors coincide. ♦
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Remark 4.13:
We see that the H∞-error lies in the interval [0, 1]. The error is maximal (= 1) if
and only if two or more leader vertices occupy one and the same cluster. The error is
minimal (= 0) if and only if each leader vertex occupies a different cluster, and is the
only vertex in this cluster. In general, the error increases if the number of cellmates of
the leaders increases. ♦

Proof of Theorem 4.12. To simplify notation, denote Herr(s) = H(s)−Ĥ(s). Note that
both H and Ĥ have all poles in the open left half plane. We now first show that, since
π is an AEP, we have

‖Herr‖H∞ = ‖Herr(0)‖2 . (4.23)

First note that Ĥ(s) = LP
(
PTP

)− 1
2 (sIr + L)

−1 (
PTP

) 1
2 B̂, where the symmetric

matrix L is given by (4.11). Thus, a state space representation for the error system is
given by

ẋe(t) =

[−L 0

0 −L

]
xe(t) +

[
B(

PTP
) 1

2 B̂

]
u(t),

e(t) =
[
L −LP

(
PTP

)− 1
2

]
xe(t).

(4.24)

Next, we show that (4.23) holds by applying Lemma 4.2 to system (4.24). Indeed, with
X = −L, we have

[
L −LP

(
PTP

)− 1
2

] [−L 0

0 −L

]
=
[
−L2 LP

(
PTP

)− 1
2 L

]

=
[
−L2 LPL̂

(
PTP

)− 1
2

]

=
[
−L2 L2P

(
PTP

)− 1
2

]

= X
[
L −LP

(
PTP

)− 1
2

]
,

and from Lemma 4.2 it then immediately follows that ‖Herr‖H∞ = ‖Herr(0)‖2. To
compute ‖Herr(0)‖2, we apply Lemma 4.3 to system (4.24). First, it is easily verified
that

ker

[−L 0

0 −L

]
⊆ ker

[
L −LP

(
PTP

)− 1
2

]
.

By applying Lemma 4.3 we then obtain

Herr(0) =
[
L −LP

(
PTP

)− 1
2

] [L 0

0 L

]+
[

B(
PTP

) 1
2 B̂

]

= L
(
L+ −P

(
PTP

)− 1
2 L

+ (
PTP

)− 1
2 PT

)
B.

(4.25)
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Recall that Û in (4.12) is an orthogonal matrix that diagonalizes L and that U1 =

P
(
PTP

)− 1
2 Û . Then L

+
= Û Λ̂+ÛT. Thus, we have

P
(
PTP

)− 1
2 L

+ (
PTP

)− 1
2 PT = U1Λ̂+UT

1 .

Next, we compute
LL+ = UΛUTUΛ+UT

= UΛΛ+UT

= In −
1

n
1n1

T
n ,

(4.26)

where the last equality follows from the fact that the first column of U is 1√
n
1n. Now

observe that
LU1Λ̂+UT

1 = UΛUTU1Λ̂+UT
1

= U1Λ̂Λ̂+UT
1

= U1U
T
1 −

1

n
1n1

T
n

= P
(
PTP

)−1
PT − 1

n
1n1

T
n .

(4.27)

Combining (4.26) and (4.27) with (4.25), we obtain

Herr(0) =
(
In −P

(
PTP

)−1
PT
)
B.

From (4.23) then, we have that the H∞-error is given by

‖H − Ĥ‖2
H∞

= λmax

(
Herr(0)THerr(0)

)

= λmax

(
BT

(
In −P

(
PTP

)−1
PT
)2

B

)

= λmax

(
Im −BTP

(
PTP

)−1
PTB

)

= 1− λmin

(
BTP

(
PTP

)−1
PTB

)
.

(4.28)

All that is left is to compute the minimal eigenvalue of BTP
(
PTP

)−1
PTB. Again,

let {v1, v2, . . . , vm} be the set of leaders and note that B satisfies

B =
[
ev1 ev2 · · · evm

]
.

As before, without loss of generality, assume that π is regularly formed. Then the
matrix P

(
PTP

)−1
PT is block diagonal where each diagonal block Pi is a |Ci| × |Ci|

matrix whose entries are all 1
|Ci| . Let ki ∈ {1, 2, . . . , r} be such that vi ∈ Cki . If all the

leaders are in different clusters, then

BTP
(
PTP

)−1
PTB = diag

(
1

|Ck1|
,

1

|Ck2|
, . . . ,

1

|Ckm|

)
,
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and so
λmin

(
BTP

(
PTP

)−1
PTB

)
= min

16i6m

1

|Cki |
. (4.29)

Now suppose that two leaders vi and vj are cellmates. Then we have

BTP
(
PTP

)−1
PTB(ei − ej) = BTP

(
PTP

)−1
PT(evi − evj) = 0.

which together with BTP
(
PTP

)−1
PTB < 0 implies

λmin

(
BTP

(
PTP

)−1
PTB

)
= 0. (4.30)

From (4.28), (4.29), and (4.30), we find the absolute H∞-error. To find the relative
H∞-error, we compute ‖H‖H∞ by applying Lemma 4.2 and Lemma 4.3 to the original
system (4.22). Combined with (4.26), this results in the H∞-norm of the original
system:

‖H‖2
H∞

= λmax

(
H(0)TH(0)

)
= λmax

(
BT

(
In −

1

n
1n1

T
n

)
B

)
= 1.

This completes the proof.

4.2.6.2 The general case with symmetric agent dynamics

In this subsection, we return to the general case that the agent dynamics is given by an
arbitrary multivariable input-state-output system. Thus, the original and reduced net-
works are again given by (4.5) and (4.6), respectively. As in the proof of Theorem 4.12,
we will rely heavily on Lemma 4.3 to compute the H∞-error. Since Lemma 4.3 relies
on a symmetry argument, we will need to assume that the matrices A and B are both
symmetric, which will be a standing assumption in the remainder of this section.
We will now establish an a priori upper bound for the H∞-norm of the approximation

error in the case that we cluster according to an AEP. Again, an important role is played
by the n− 1 auxiliary systems (4.7) with λ ranging over the nonzero eigenvalues of the
Laplacian L. Again, let Hλ(s) = λ(sI − A+ λB)−1F be their transfer functions. We
assume that the original network (4.5) is synchronized, so that all of the A − λB are
Hurwitz. We again use H, Ĥ, and Herr to denote the relevant transfer functions.
The following is the second main theorem.

Theorem 4.14:
Assume the network (4.5) is synchronized and that A and B are symmetric matrices.
Let π be an AEP of the graph G. The H∞-error when clustering G according to π
then satisfies

‖H − Ĥ‖2
H∞
6




H2

max,H∞
max
16i6m

(
1− 1

|Cki |

)
if the leaders are in different clusters,

H2
max,H∞

otherwise,
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and

‖H − Ĥ‖2
H∞

‖H‖2
H∞

6





(
Hmax,H∞
Hmin,H∞

)2

max
16i6m

(
1− 1

|Cki |

)
if the leaders are in different clusters,

(
Hmax,H∞
Hmin,H∞

)2

otherwise,

where
Hmax,H∞ := max

λ∈σ(L)\σ(L̂)
‖Hλ‖H∞ , (4.31)

and
Hmin,H∞ := min

λ∈σ(L)\{0}
σmin (Hλ(0)) , (4.32)

with Hλ the transfer functions of the auxiliary systems (4.7). ♦

Remark 4.15:
The absoluteH∞-error thus lies in the interval [0, Hmax,H∞ ] withHmax,H∞ the maximum
over the H∞-norms of the transfer functions Hλ with λ ∈ σ(L) \ σ(L̂). The error is
minimal (= 0) if each leader vertex occupies a different cluster, and is the only vertex
in this cluster. In general, the upper bound increases if the number of cellmates of the
leaders increases. ♦

Proof of Theorem 4.14. First note that the transfer function Ĥ of the reduced net-
work (4.6) is equal to

Ĥ(s) =
(
LP

(
PTP

)− 1
2 ⊗ In

) (
sI − Ir ⊗ A+ L⊗B

)−1
((

PTP
) 1

2 B̂⊗ F
)
, (4.33)

with the symmetric matrix L given by (4.11). Analogous to the proof of Theorem 4.12,
we first apply Lemma 4.2 to the error system

ẋe(t) =

[
In ⊗ A− L⊗B 0

0 Ir ⊗ A− L⊗B

]
xe(t) +

[
B⊗ F(

PTP
) 1

2 B̂⊗ F

]
u(t),

e(t) =
[
L⊗ In −LP

(
PTP

)− 1
2 ⊗ In

]
xe(t),

with transfer function Herr. Take X = In ⊗ A− L⊗B. We then have

[
L⊗ In −LP

(
PTP

)− 1
2 ⊗ In

] [In ⊗ A− L⊗B 0

0 Ir ⊗ A− L⊗B

]

= X
[
L⊗ In −LP

(
PTP

)− 1
2 ⊗ In

]
.

From Lemma 4.2, we thus obtain that

‖Herr‖H∞ = ‖Herr(0)‖2 = λmax

(
Herr(0)THerr(0)

) 1
2
.
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In the proof of Lemma 4.8, it was shown that

Ĥ(−s)THerr(s) = Ĥ(−s)T(H(s)− Ĥ(s)) = 0.

Since all transfer functions involved are asymptotically stable, in particular this holds
for s = 0. We then have that Ĥ(0)T(H(0)− Ĥ(0)) = 0, i.e., Ĥ(0)TH(0) = Ĥ(0)TĤ(0).
By transposing, we also have H(0)TĤ(0) = Ĥ(0)TĤ(0). Therefore,

Herr(0)THerr(0) = (H(0)− Ĥ(0))T(H(0)− Ĥ(0))

= H(0)TH(0)−H(0)TĤ(0)− Ĥ(0)TH(0) + Ĥ(0)TĤ(0)

= H(0)TH(0)− Ĥ(0)TĤ(0).

By applying Lemma 4.3 to system (4.5), we obtain

H(0)TH(0) =
(
BT ⊗ FT) (In ⊗ A− L⊗B)+ (L2 ⊗ In

)
(In ⊗ A− L⊗B)+(B⊗ F )

=
(
BT ⊗ FT) (U ⊗ In)(In ⊗ A− Λ⊗B)+ (Λ2 ⊗ In

)

· (In ⊗ A− Λ⊗B)+ (UT ⊗ In
)

(B⊗ F )

=
(
BTU ⊗ FT) diag

(
0, λ2

2(A− λ2B)−2, . . . , λ2
n(A− λnB)−2) (UTB⊗ F )

=
(
BTU ⊗ Im

)
diag

(
0, Hλ2(0)THλ2(0), . . . , Hλn(0)THλn(0)

) (
UTB⊗ Im

)
,

(4.34)
whereHλ is again given by (4.7). Recall that B̂ =

(
PTP

)−1
PTM and U1 = P

(
PTP

)− 1
2 Û .

Now apply Lemma 4.3 to the transfer function (4.33) of the system (4.6):

Ĥ(0)TĤ(0) =
(
BTP

(
PTP

)− 1
2 ⊗ FT

) (
In ⊗ A− L⊗B

)+

·
((

PTP
)− 1

2 PTL2P
(
PTP

)− 1
2 ⊗ In

)

·
(
In ⊗ A− L⊗B

)+
((

PTP
)− 1

2 PTB⊗ F
)

=
(
BTP

(
PTP

)− 1
2 ⊗ FT

)(
Û ⊗ In

)(
In ⊗ A− Λ̂⊗B

)+

·
(

Λ̂2 ⊗ In
)(

In ⊗ A− Λ̂⊗B
)+

·
(
ÛT ⊗ In

)((
PTP

)− 1
2 PTB⊗ F

)

=
(
BTU1 ⊗ FT) diag

(
0, λ2

2(A− λ2B)−2, . . . , λ2
r (A− λrB)−2) (UT

1 B⊗ F
)

=
(
BTU1 ⊗ Im

)
diag

(
0, Hλ2(0)THλ2(0), . . . , Hλr(0)THλr(0)

) (
UT

1 B⊗ Im
)
.

Combining the two expressions above, it immediately follows that

Herr(0)THerr(0) = H(0)TH(0)− Ĥ(0)TĤ(0)

=
(
BTU2 ⊗ Im

)
diag

(
Hλr+1(0)THλr+1(0), . . . , HλN (0)THλN (0)

)

·
(
UT

2 B⊗ Im
)
.
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By taking Hmax,H∞ as defined by (4.31) it then follows that

Herr(0)THerr(0) 4
(
BTU2 ⊗ Im

)
diag

(
H2

max,H∞Im, . . . , H
2
max,H∞Im

) (
UT

2 B⊗ Im
)

= H2
max,H∞

(
BTU2U

T
2 B⊗ Im

)

= H2
max,H∞

(
BT(In − U1U

T
1 )B⊗ Im

)

= H2
max,H∞

((
Im −BTP

(
PTP

)−1
PTB

)
⊗ Im

)
.

Continuing as in the proof of Theorem 4.12, we find an upper bound for the H∞-error:

‖Herr‖2
H∞
6 H2

max,H∞λmax

(
Im −BTP

(
PTP

)−1
PTB

)
.

To compute an upper bound for the relative H∞-error, we bound the H∞-norm of
system (4.5) from below. Again, let U be such that U =

[
u1 U

]
and let Hmin,H∞ be

as defined by (4.32). From (4.34) it now follows that

H(0)TH(0) =
(
BTU ⊗ Im

)
diag

(
Hλ2(0)THλ2(0), . . . , Hλn(0)THλn(0)

)(
U

T
B⊗ Im

)

<
(
BTU ⊗ Im

)
diag

(
H2

min,H∞Im, . . . , H
2
min,H∞Im

) (
U

T
B⊗ Im

)

= (Hmin,H∞)2
(
BTUU

T
B⊗ Im

)

= (Hmin,H∞)2

(
BT

(
In −

1

n
1n1

T
n

)
B⊗ Im

)
.

Again using Lemma 4.3, we find a lower bound to the H∞-norm of H:

‖H‖2
H∞

= λmax

(
H(0)TH(0)

)
> H2

min,H∞ ,

which concludes the proof of the theorem.

4.2.7 Towards a priori error bounds for general graph partitions

Up to now, we have only dealt with establishing error bounds for network reduction by
clustering using almost equitable partitions of the network graph. Of course, we would
also like to obtain error bounds for arbitrary, possibly non almost equitable, partitions.
In this section, we present some ideas to address this more general problem. We will
first study the single integrator case. Subsequently, we will look at the general case.

4.2.7.1 The single integrator case

Consider the multi-agent network

ẋ(t) = −Lx(t) + Bu(t),

y(t) = Lx(t).
(4.35)
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As before, assume that the underlying graph G is connected. The network is then
synchronized. Let π = {C1,C2, . . . ,Cr} be a graph partition, not necessarily an AEP,
and let P ∈ Rn×r be its characteristic matrix. As before, the reduced order network is
taken to be the Petrov-Galerkin projection of (4.35), and is represented by

˙̂x(t) = −L̂x̂(t) + B̂u(t),

ŷ(t) = LPx̂(t),
(4.36)

Again, let H and Ĥ be the transfer functions of (4.35) and (4.36), respectively. We will
address the problem of obtaining a priori upper bounds for ‖H − Ĥ‖H2

and ‖H − Ĥ‖H∞ .
We will pursue the following idea: as a first step we will approximate the original Lapla-
cian matrix L (of the original network graph G) by a new Laplacian matrix, denoted
by LAEP (corresponding to a ‘nearby’ graph GAEP) such that the given partition π is an
AEP for this new graph GAEP. This new graph GAEP defines a new multi-agent system
with transfer function HAEP(s) = LAEP(sIn + LAEP)−1B. The reduced order network
of HAEP (using the AEP π) has transfer function ĤAEP(s) = LAEPP (sIr + L̂AEP)−1 B̂.
Then using the triangle inequality, both for p = 2 and p =∞, we have

‖H − Ĥ‖Hp = ‖H −HAEP +HAEP − ĤAEP + ĤAEP − Ĥ‖Hp
6 ‖H −HAEP‖Hp + ‖HAEP − ĤAEP‖Hp + ‖ĤAEP − Ĥ‖Hp .

(4.37)

The idea is to obtain a priori upper bounds for all three terms in (4.37). We first propose
an approximating Laplacian matrix LAEP, and subsequently study the problems of
establishing upper bounds for the three terms in (4.37) separately.
In the following, denote P := P

(
PTP

)−1
PT. Note that P is the orthogonal projector

onto im(P). As approximation for L, we compute the unique solution to the convex
optimization problem

minimize
LAEP

‖L− LAEP‖2
F ,

subject to (In − P)LAEPP = 0,

LAEP = LT
AEP,

LAEP < 0,

LAEP1n = 0.

(4.38)

In other words, we want to compute a positive semi-definite matrix LAEP with row sums
equal to zero, and with the property that im(P) is invariant under LAEP (equivalently,
the given partition π is an AEP for the new graph). We will show that such an LAEP may
correspond to an undirected graph with negative weights. However, it is constrained
to be positive semi-definite, so the results of Sections 4.2.4 to 4.2.6 in this section will
remain valid.
Theorem 4.16:
The matrix LAEP := PLP + (In − P)L(In − P) is the unique solution to the convex
optimization problem (4.38). If L corresponds to a connected graph, then, in fact,
ker(LAEP) = im(1n). ♦
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Proof. Clearly, LAEP is symmetric and positive semi-definite since L is. Also, (In −
P)LAEPP = 0 since (In − P)P = 0. It is also obvious that LAEP1n = 0 since P1n = 1n.
We now show that LAEP uniquely minimizes the distance to L. Let X satisfy the
constraints and define ∆ = LAEP −X. Then we have

‖L−X‖2
F = ‖L− LAEP‖2

F + ‖∆‖2
F + 2 tr((L− LAEP)∆) .

It can be verified that L− LAEP = (In − P)LP + PL(In − P). Thus,

tr((L− LAEP)∆) = tr((In − P)LP∆) + tr(PL(In − P)∆) .

Now, since both X and LAEP satisfy the first constraint, we have (In − P)∆P = 0.
Using this we have

tr((In − P)LP∆) = tr(P∆(In − P)L) = tr(L(In − P)∆P) = 0.

Also,

tr(PL(In − P)∆) = tr(L(In − P)∆P) = 0.

Thus, we obtain
‖L−X‖2

F = ‖L− LAEP‖2
F + ‖∆‖2

F ,

from which it follows that ‖L−X‖F is minimal if and only if ∆ = 0, equivalently,
X = LAEP.
To prove the second statement, let x ∈ ker(LAEP), so xTLAEPx = 0. Then both

xTPLPx = 0 and xT(In − P)L(In − P)x = 0. This clearly implies LPx = 0 and
L(In−P)x = 0. Since L corresponds to a connected graph, we must have Px ∈ im(1n)
and (In − P)x ∈ im(1n). We conclude that x ∈ im(1n), as desired.

As announced above, LAEP may have positive off-diagonal elements, corresponding to
a graph with some of its edge weights being negative. For example, for

L =




1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1



, P =




1 0
1 0
1 0
0 1
0 1



,

we have

LAEP =




11
9
−7

9
−1

9
0 −1

3

−7
9

20
9
−10

9
0 −1

3

−1
9
−10

9
14
9
−1

2
1
6

0 0 −1
2

3
2
−1

−1
3
−1

3
1
6
−1 3

2



,
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Figure 4.1: A path graph on 5 vertices and its closest graph such that the partition
{{1, 2, 3}, {4, 5}} is almost equitable.

so the edge between vertices 3 and 5 has a negative weight. Figure 4.1 shows the
graphs corresponding to L and LAEP. Although LAEP is not necessarily a Laplacian
matrix with only nonpositive off-diagonal elements, it has all the properties we associate
with a Laplacian matrix. Specifically, it can be checked that all results in this section
remain valid, since they only depend on the symmetric positive semi-definiteness of the
Laplacian matrix.
Using the approximating Laplacian LAEP = PLP + (In − P)L(In − P) as above, we

will now deal with establishing upper bounds for the three terms in (4.37). We start
off with the middle term ‖HAEP − ĤAEP‖Hp in (4.37).
According to Remark 4.7, for p = 2 this term has an upper bound depending on the

maximal λ ∈ σ(LAEP) \ σ(L̂AEP), and on the number of cellmates of the leaders with
respect to the partitioning π. For p =∞, in Theorem 4.12 this term was expressed in
terms of the maximal number of cellmates with respect to the partitioning π (noting
that it is equal to 1 in case two or more leaders share the same cluster).
Next, we will take a look at the first and third term in (4.37), i.e., ‖H −HAEP‖Hp

and ‖Ĥ − ĤAEP‖Hp . Let us denote ∆L = L− LAEP. We find

H(s)−HAEP(s) = L(sIn + L)−1B− LAEP(sIn + LAEP)−1B

= L(sIn + L)−1B

− LAEP
[
(sIn + L)−1 + (sIn + LAEP)−1∆L(sIn + L)−1]B

= L(sIn + L)−1B− LAEP(sIn + L)−1B

− LAEP(sIn + LAEP)−1∆L(sIn + L)−1B

= ∆L(sIn + L)−1B− LAEP(sIn + LAEP)−1∆L(sIn + L)−1B

=
[
In − LAEP(sIn + LAEP)−1]∆L(sIn + L)−1B.

Thus, both for p = 2 and p =∞, we have

‖H −HAEP‖Hp 6
∥∥In − LAEP(sIn + LAEP)−1

∥∥
H∞

∥∥∆L(sIn + L)−1B
∥∥
Hp

Using
∥∥In − LAEP(sIn + LAEP)−1

∥∥
H∞

=
∥∥s(sIn + LAEP)−1

∥∥
H∞

= sup
ω∈R

∥∥ıω(ıωIn + LAEP)−1
∥∥

2
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= sup
ω∈R

|ω|√
λmin(ω2In + L2

AEP)
= 1,

we get
‖H −HAEP‖Hp 6

∥∥∆L(sIn + L)−1B
∥∥
Hp
. (4.39)

It is also easily seen that L̂AEP =
(
PTP

)−1
PTLAEPP =

(
PTP

)−1
PTLP = L̂ and

LAEPP = P
(
PTP

)−1
PTLP = PL̂. Therefore,

Ĥ(s)− ĤAEP(s) = LP
(
sIn + L̂

)−1

B̂− LAEPP
(
sIn + L̂AEP

)−1

B̂

= LP
(
sIn + L̂

)−1

B̂−PL̂
(
sIn + L̂

)−1

B̂

=
(
LP−PL̂

)(
sIn + L̂

)−1

B̂.

Since (LP−PL̂)
T

(LP−PL̂) = PT(∆L)2P, for p = 2 and p =∞, we obtain

‖Ĥ − ĤAEP‖Hp =
∥∥∥∆LP(sIn + L̂)

−1
B̂
∥∥∥
Hp

. (4.40)

Finally, combining (4.37), (4.39) and (4.40), we get

‖H − Ĥ‖Hp 6
∥∥∆L(sIn + L)−1B

∥∥
Hp

+‖HAEP − ĤAEP‖Hp+
∥∥∥∆LP(sIn + L̂)

−1
B̂
∥∥∥
Hp

.

Thus, both in (4.39) and (4.40) the upper bound involves the difference ∆L = L−LAEP

between the original Laplacian and its optimal approximation in the set of Laplacian
matrices for which the given partition π is an AEP. In a sense, the difference ∆L
measures how far π is away from being an AEP for the original graph G. Obviously,
∆L = 0 if and only if π is an AEP for G. In that case only the middle term in (4.37)
is present.

4.2.7.2 The general case

In this final subsection, we will put forward some ideas to deal with the case that
the agent dynamics is a general linear input-state-output system and the given graph
partition π, with characteristic matrix P, is not almost equitable. In this case, the
original network is given by (4.5) and the reduced network by (4.6). Their transfer
functions are H and Ĥ, respectively. Let LAEP and L̂AEP as in the previous subsection
and let

HAEP(s) = (LAEP ⊗ In)(sI − In ⊗ A+ LAEP ⊗B)−1(B⊗ F )

and
ĤAEP(s) = (LAEPP⊗ In)

(
sI − Ir ⊗ A+ L̂AEP ⊗B

)−1

(B̂⊗ F ).

78



4.2 Error bounds for clustering-based model order reduction of linear multi-agent
systems

As before, we assume that (4.5) is synchronized, so H is asymptotically stable. How-
ever, since the partition π is no longer assumed to be an AEP, the reduced transfer
function Ĥ need not be asymptotically stable anymore. Also, HAEP and ĤAEP need
not be asymptotically stable. We will now first study under what conditions these are
asymptotically stable. First note that, using Proposition 2.51, Ĥ is asymptotically sta-
ble if and only if A− λ̂B is Hurwitz for all nonzero eigenvalues λ̂ of L̂. Moreover, HAEP

and ĤAEP are asymptotically stable if and only if A − λB is Hurwitz for all nonzero
eigenvalues λ of LAEP. In the following, let λmin(L) and λmax(L) denote the smallest
nonzero and largest eigenvalue of L, respectively. We have the following lemma about
the location of the nonzero eigenvalues of L̂ and LAEP.

Lemma 4.17:
All nonzero eigenvalues of L̂ and of LAEP lie in the closed interval [λmin(L), λmax(L)].♦

Proof. The claim about the eigenvalues of L̂ follows from Theorem 2.6. Next, note that
P = Q1Q

T
1 , with Q1 = P

(
PTP

)− 1
2 . Since the columns of Q1 are orthonormal, there

exists a matrix Q2 ∈ Rn×(n−r) such that
[
Q1 Q2

]
is an orthogonal matrix. Then, we

have In − P = Q2Q
T
2 and we find

LAEP = PLP + (In − P)L(In − P)

= Q1Q
T
1 LQ1Q

T
1 +Q2Q

T
2 LQ2Q

T
2

=
[
Q1 Q2

] [QT
1 LQ1 0

0 QT
2 LQ2

] [
QT

1

QT
2

]
.

It follows that σ(LAEP) = σ(QT
1 LQ1) ∪ σ(QT

2 LQ2). By Theorem 2.6, both the eigen-
values of QT

1 LQ1 and QT
2 LQ2 are interlaced with the eigenvalues of L, so in particular

we have that all eigenvalues λ of LAEP satisfy λ 6 λmax(L). In order to prove the lower
bound, note that QT

1 LQ1 is similar to L̂, for which we know that its nonzero eigenvalues
are between the nonzero eigenvalues of L. As for the eigenvalues of QT

2 LQ2, note that
‖Q2x‖2 = ‖x‖2 for all x ∈ Rn−r and 1TQ2 = 0 (since Q1

(
PTP

) 1
2 1 = 1). Thus, we

find

min
‖x‖2=1

xTQT
2 LQ2x > min

1Ty=0
‖y‖2=1

yTLy = λmin(L).

Therefore, the smallest eigenvalue of QT
2 LQ2 is larger than the smallest positive eigen-

value of L. We conclude that indeed λ > λmin(L) for all nonzero eigenvalues λ of
LAEP.

Using this lemma, we see that a sufficient condition for Ĥ, HAEP, and ĤAEP to be
asymptotically stable is that for each λ ∈ [λmin(L), λmax(L)], the strict Lyapunov in-
equality

(A− λB)X +X(A− λB)T ≺ 0
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has a positive definite solution X. This sufficient condition can be checked by verifying
solvability of a single linear matrix inequality, whose size does not depend on the
number of agents, see [OP05]. After having checked this, it would then remain to
establish upper bounds for the first and third term in (4.37). This can be done in an
analogous way as in the previous subsection. Specifically, it can be shown that for p = 2
and p =∞ we have

‖H −HAEP‖Hp 6
(

1 +
∥∥(LAEP ⊗ In)(sI − In ⊗ A+ LAEP ⊗B)−1(In ⊗B)

∥∥
H∞

)

·
∥∥(∆L⊗ In)(sI − In ⊗ A+ L⊗B)−1(B⊗ F )

∥∥
Hp

and

‖Ĥ − ĤAEP‖Hp =

∥∥∥∥(∆LP⊗ In)
(
sI − Ir ⊗ A+ L̂⊗B

)−1

(B̂⊗ F )

∥∥∥∥
Hp

.

4.2.8 Numerical examples

To illustrate the error bounds we have established in this section, consider the graph
with 10 vertices taken from [MTC14], as shown in Figure 3.1. Its Laplacian matrix is

L =




5 0 0 0 0 −5 0 0 0 0
0 5 0 0 −3 −2 0 0 0 0
0 0 6 −1 −2 −3 0 0 0 0
0 0 −1 6 −5 0 0 0 0 0
0 −3 −2 −5 25 −2 −6 −7 0 0
−5 −2 −3 0 −2 25 −6 −7 0 0

0 0 0 0 −6 −6 15 −1 −1 −1
0 0 0 0 −7 −7 −1 15 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 −1 0 0 1



,

with spectrum (rounded to three significant digits)

σ(L) ≈ {0, 1, 1.08, 4.14, 5, 6.7, 8.36, 16.1, 28.2, 33.5}.

First, we illustrate the H2 and H∞ error bounds from Theorems 4.5 and 4.14. We
take π = {{1, 2, 3, 4}, {5, 6}, {7}, {8}, {9, 10}} and

A =
[

0.5 0
0 0.5

]
, B = F =

[
1 0
0 1

]
.

Note that, indeed, π is an AEP. Also, in order to satisfy the assumptions of Theo-
rem 4.14, we have taken A and B symmetric. Note that A − λB is Hurwitz for all
nonzero eigenvalues λ of the Laplacian matrix L. Therefore, the multi-agent system
is synchronized. It remains to choose the set of leaders VL. For demonstration, we
compute the H2 and H∞ upper bounds and the true errors for all possible choices
of VL. Since the sets of leaders are nonempty subsets of V, it follows that there are
210− 1 = 1023 possible sets of leaders. Figure 4.2 shows all the ratios of upper bounds
and corresponding true errors, where we define 0

0
:= 1. We see that in this example,
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Figure 4.2: Ratios of H2 (left) and H∞ (right) upper bounds and corresponding true
errors, for a fixed almost equitable partition and all possible sets of leaders.
In both figures, the sets of leaders are sorted such that the ratio is increasing
(in particular, the ordering of the sets of leaders is not the same).

Figure 4.3: True H2 (left) and H∞ (right) errors and upper bounds, for a fixed set of
leaders and all partitions with five clusters. In each figure, partitions were
sorted such that the true errors are increasing.

all true errors and upper bounds are within one order of magnitude, and that in most
cases the ratio is below 2.
Next, we compare the true errors with the triangle inequality-based error bounds

from (4.37) for a fixed set of leaders and all possible partitions consisting of five clusters.
For the set of leaders, we take VL = {6, 7}, as was also used in [MTC14]. With this
choice of leaders, the systems norms are ‖S‖H2

≈ 6.4 and ‖S‖H∞ ≈ 1.03 (rounded
to three significant digits). Figure 4.3 shows true errors and upper bounds for all
partitions of V with five clusters (there are 42 525 such partitions). We observe that
the upper bounds vary significantly as the true error increases, but the ratio is still
less than one order of magnitude. Additionally, we notice that partitions giving small
H2 errors give smaller upper bounds, as seen more clearly in the left subfigure of
Figure 4.4. Furthermore, we observe a jump after the 966th partition. In fact, the 966
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Figure 4.4: First 1000 true errors and upper bounds from Figure 4.3.

Figure 4.5: Relative error of L by LAEP in Frobenius norm for all partitions with five
clusters. The partitions are ordered such that the errors are increasing.

partitions giving the smallest H2 error are all those partitions where the leaders are
the only members in their cluster. For the H∞ error this is not the case, i.e., there are
partitions with leaders sharing a cluster with more agents that give a smaller H∞ error
then a partition with leaders not sharing a cluster. On the other hand, partitions with
the smallest H2 or H∞ upper bound are close to the optimal true error.

In the following, we also compute the errors ‖L− LAEP‖F for all partitions with five
clusters. Figure 4.5 shows the relative approximation errors ‖L−LAEP‖F

‖L‖F
. We see that

only a few (six, to be precise) partitions give a relative error less than 0.1. Irrespective
of this, a small triangle inequality-based error bound (4.37) seems to indicate good
partitions.

Finally, we compare the bound (4.37) with those from Ishizaki et al. [IKIA14, IKG+15,
IKI16a]. There are also error bounds developed in [CKS16] and [BSJ16], but they de-
pend on the proposed MORmethods and cannot be evaluated for an arbitrary partition.
The H2 and H∞ error bounds from Ishizaki et al. are based on the decomposition (see
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Figure 4.6: Comparison with error bounds from Ishizaki et al. [IKIA14, IKG+15,
IKI16a]. The first column shows the H2 errors and bounds, the second
column the H∞ errors and bounds. The first row contains values for all
partitions with five clusters, the second row only the first 1000 best ones.

equation (31) in [IKIA14], (20) in [II15], or (17) in [IKI16a])

H(s)− Ĥ(s) = Ξ(s)QQTX(s),

where

X(s) =
(
sI − In ⊗ A+ PTLP ⊗B

)−1
(B⊗ F ),

Ξ(s) = (LP ⊗ In)
(
sI − In ⊗ A+ PTLP ⊗B

)−1 (
PT ⊗ A− PTL⊗B

)
+ L⊗ In,

P = P
(
PTP

)−1, and Q is such that
[
P Q

]
is orthogonal. The error bounds are then

‖H − Ĥ‖Hp 6 ‖Ξ‖H∞
∥∥QQTX

∥∥
Hp

= ‖Ξ‖H∞
∥∥QTX

∥∥
Hp
,

for p = 2 and p = ∞. Figure 4.6 shows the comparison between these bounds, the
triangle inequality-based bound (4.37), and the true errors. In this example, our bounds
are, for most partitions, lower than those from Ishizaki et al. Yet, they do share some
qualitative properties: both vary significantly as the true error increases and those
partitions with the small bounds are close to the optimal.
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4.3 Exact clustering-based model order reduction for
nonlinear power systems

4.3.1 Introduction

A power system is a network of electrical generators, loads, and their associated control
elements. Each of these components may be thought of as vertex of a graph, while
the transmission lines connecting them can be regarded as the edges of the graph.
The vertices are modeled by physical laws that typically lead to a set of differential
equations. These differential equations are coupled to each other across the edges. One
question that has been of interest to power engineers over many years is how do the
graph-theoretic properties of these types of electrical networks impact system-theoretic
properties of the grid model [AA13].
Here, we study synchronization properties of power systems (see [DB14] for an

overview) using graph-theoretic tools. Specifically, we show relations to graph sym-
metry and equitable partitions [RJME09], extending the work in [IKI16b] for linear
systems to nonlinear power systems. Additionally, based on our results about syn-
chronization, we propose a structure-preserving, clustering-based MOR framework for
nonlinear power systems. Further, we show that for certain partitions this reduction is
exact. In general, the dynamics of the reduced system can be used to approximate the
dynamics of the original power system.
The motivation for clustering, in addition to reducing simulation time, is the possi-

bility to simulate or control only a certain part of the grid, or a certain phenomenon
that happens only over a certain time-scale. Some recent work on clustering of linear
network systems can be found in [IKIA14, IKG+15, MGB15, CKS16, XC16, CKS17].
In Section 4.3.2, we describe the system we analyze. Next, we introduce synchro-

nization for a pair of generators and prove necessary and sufficient conditions in Sec-
tion 4.3.3. In Section 4.3.4, we continue in a similar way with two notions of synchro-
nization with respect to a partition. We discuss clustering-based MOR in Section 4.3.5.
Finally, we demonstrate our results in Section 4.3.6.

4.3.2 System description

We use the power system example in Figure 4.7 to introduce the type of system we
analyze and to illustrate our results. As in the example in Figure 4.7, we consider
power systems consisting of generators and buses, where each generator is connected
to exactly one bus and buses can be classified into generator buses (those connected
to one generator and some buses) and non-generator buses (those connected only to
other buses). We follow the classical model of a synchronous generator [Kun94], which
means that the generators’ voltage amplitude is constant over time t.
Let G := {1, 2, . . . , n} and G := {n + 1, n + 2, . . . , n + n} denote the label sets of

generator and non-generator buses. In the example in Figure 4.7, we have n = 5 and
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E1∠δ1

E2∠δ2

E3∠δ3

E4∠δ4

E5∠δ5

V1∠θ1

V2∠θ2

V3∠θ3

V4∠θ4

V5∠θ5

V6∠θ6
V7∠θ7

χ1

χ2

χ3

χ4

χ5

χ16

χ26

χ34
χ37

χ47

χ57

χ67

Figure 4.7: Power system consisting of generators (circles) and buses (vertical bars),
where the ith generator is only connected to the ith bus. See Table 4.1 for
the notation.

n = 2. The vector of currents from generators to generator buses is given as

IG(t) =
1

ı
LD (EG(t)− VG(t)) , (4.41)

where the vectors of voltages of generators and generator buses are denoted as

EG(t) := [Ei(cos δi(t) + ı sin δi(t))]i∈G ∈ Cn,

VG(t) := [Vi(t)(cos θi(t) + ı sin θi(t))]i∈G ∈ Cn,

and LD is a positive diagonal reactance matrix given as

LD := diag
([
χ−1
i

]
i∈G

)
,

where χi is the reactance between the ith generator and its bus (see Figure 4.7). We
assume the generator voltage amplitudes Ei and reactances χi are given constants.
Additionally, we assume the line resistances to be negligible.
The relation between the currents and voltages is given as

[
IG(t)

0

]
=

1

ı

[
L11 L12

LT
12 L22

] [
VG(t)
VG(t)

]
, (4.42)

where the voltage vector of non-generator buses is denoted as

VG(t) := [Vi(t)(cos θi(t) + ı sin θi(t))]i∈G ∈ Cn

and L = [Lij] ∈ R(n+n)×(n+n) denotes the weighted graph Laplacian of the reactance
network. In particular, the (i, j)-th element of L is −χ−1

ij if the ith and jth buses are
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Table 4.1: Notation
Symbol Description

[ai]i∈S vector (ai1 , ai2 , . . . , ain), if S = {i1, i2, . . . , in}
sin, cos functions applied element-wise to a vector or a matrix
G label set of generator buses
G label set of non-generator buses
EG(t) voltages of the generators at time t
Ei voltage amplitude of the ith generator
δi(t) voltage phase of the ith generator at time t
VG(t) voltages of the generator buses at time t
VG(t) voltages of the non-generator buses at time t
Vi(t) voltage amplitude of the ith bus at time t
θi(t) voltage phase of the ith bus at time t
IG(t) currents from generators to generator buses at time t
χi reactance between the ith generator and its bus
χij reactance between the ith and jth bus
LD reactance matrix, diag

(
[χ−1i ]i∈G

)

L [Lij ]i,j∈{1,2}, weighted graph Laplacian of the reactance network
δ(t) [δi(t)]i∈G
M diagonal matrix of inertias Mi of the generators
D diagonal matrix of dissipativies Di of the generators
f vector of powers fi to the generators
X (LD + L11 − L12L

−1
22 L

T
12)
−1
LD

Γ LD(LD + L11 − L12L
−1
22 L

T
12)
−1
LD

γij [Γ]
−1
ij

E [Ei]i∈G
VG(t) [Vi(t)]i∈G
θG(t) [θi(t)]i∈G
Xij subspace of synchronism {x ∈ Rn : xi = xj}
Πij permutation matrix that swaps ith and jth components
Sij set of symmetrical matrices {A ∈ Rn×n : AΠij = ΠijA}
Xcl

⋂
`∈Ĝ

⋂
i,j∈C`

Xij

Scl
⋂

`∈Ĝ
⋂

i,j∈C`
Sij

connected (see Figure 4.7) and the ith diagonal element is
∑

j 6=i χ
−1
ij . In the following,

we assume that the reactance network is connected, i.e., L is irreducible. This assump-
tion can be made without loss of generality because the same arguments can be applied
to each connected component. For the example in Figure 4.7 with χij = 1 for all i, j,
we have

L =




1 0 0 0 0 −1 0
0 1 0 0 0 −1 0
0 0 2 −1 0 0 −1
0 0 −1 2 0 0 −1
0 0 0 0 1 0 −1
−1 −1 0 0 0 3 −1

0 0 −1 −1 −1 −1 4


.
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The dynamics of generators is given by

Mδ̈(t) +Dδ̇(t) = f −
[
EiVi(t)

χi
sin(δi(t)− θi(t))

]

i∈G
, (4.43a)

with voltage phases δ(t) := [δi(t)]i∈G, inertia constants M := diag
(
[Mi]i∈G

)
, Mi > 0,

damping constants D := diag
(
[Di]i∈G

)
, Di > 0, and input powers f ∈ Rn [Kun94].

Eliminating IG(t) from (4.41) and (4.42), we obtain
[
LD (EG(t)− VG(t))

0

]
=

[
L11 L12

LT
12 L22

] [
VG(t)
VG(t)

]
, (4.43b)

The set of equations (4.43) forms a differential-algebraic system. We can remove the
algebraic constraints to find an equivalent set of differential equations using Kron re-
duction [Kro39]. First, from (4.43b), we find

VG(t) = −L−1
22 L

T
12VG(t),

VG(t) = XEG(t), (4.44)

where

X :=
(
LD + L11 − L12L

−1
22 L

T
12

)−1
LD. (4.45)

It follows that

Γ := LD
(
LD + L11 − L12L

−1
22 L

T
12

)−1
LD = LDX

is a positive definite matrix with positive elements, since LD + L11 − L12L
−1
22 L

T
12 is

positive definite and an irreducible M -matrix [BP94, pp. 141]. We denote its elements
by γ−1

ij := [Γ]ij. Then, multiplying (4.44) from the left by LD, we find
[
Vi(t)

χi
cos θi(t)

]

i∈G
= Γ [Ei cos δi(t)]i∈G ,

[
Vi(t)

χi
sin θi(t)

]

i∈G
= Γ [Ei sin δi(t)]i∈G ,

which, when inserted in (4.43a), gives us

Mδ̈(t) +Dδ̇(t) = f −
[
EiVi(t)

χi
(sin δi(t) cos θi(t)− cos δi(t) sin θi(t))

]

i∈G

= f −
(

diag
(
[Ei sin δi(t)]i∈G

) [Vi(t)
χi

cos θi(t)

]

i∈G

− diag
(
[Ei cos δi(t)]i∈G

) [Vi(t)
χi

sin θi(t)

]

i∈G

)

= f −
(
diag

(
[Ei sin δi(t)]i∈G

)
Γ [Ei cos δi(t)]i∈G

− diag
(
[Ei cos δi(t)]i∈G

)
Γ [Ei sin δi(t)]i∈G

)
.
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Thus, now by using sin δi(t) cos δj(t) − cos δi(t) sin δj(t) = sin(δi(t) − δj(t)), the Kron-
reduced system of (4.43) is given as

Miδ̈i(t) +Diδ̇i(t) = fi −
n∑

k=1

EiEk
γik

sin(δi(t)− δk(t)), (4.46a)

with generator buses’ voltages and phases satisfying

LDVG(t) = ΓEG(t). (4.46b)

Denoting E := [Ei]i∈G, VG(t) := [Vi(t)]i∈G, and θG(t) := [θi(t)]i∈G, we can write (4.43a)
and (4.46a) more compactly as

Mδ̈(t) +Dδ̇(t) = f − LD (E ◦ VG(t) ◦ sin(δ(t)− θG(t))) , (4.47)

and

Mδ̈(t) +Dδ̇(t) = f −
(

Γ ◦ EET ◦ sin
(
δ(t)1T

n − 1nδ(t)
T
))

1n.

4.3.3 Synchronization of generator pair

Let us denote the subspace of the synchronism between the ith and jth elements by

Xij := {x ∈ Rn : xi = xj}.
In this notation, we introduce the following notion of synchronism for the power sys-
tem (4.43).

Definition 4.18:
Consider the power system (4.43). The ith and jth generators are said to be synchro-
nized if

δ(t) ∈ Xij and VG(t) ∈ Xij, for all t > 0

and for any initial condition δ(0), δ̇(0) ∈ Xij. ♦
To characterize this generator synchronism in an algebraic manner, let us define a set
of symmetrical matrices with respect to the permutation of the ith and jth columns
and rows by

Sij := {A ∈ Rn×n : AΠij = ΠijA}, (4.48)

where Πij denotes the permutation matrix associated with the ith and jth elements,
i.e., all diagonal elements of Πij other than the ith and jth elements are 1, the (i, j)-th
and (j, i)-th elements are 1, and the others are zero. Note that Sij is not the set of usual
symmetric (Hermitian) matrices; the condition in (4.48) represents the invariance with
respect to the permutation of the ith and jth columns and rows, i.e., ΠT

ijAΠij = A.
The following lemma gives necessary and sufficient conditions for a symmetric matrix
to be symmetrical.
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Lemma 4.19:
Let A ∈ Rn×n be a symmetric matrix and i, j ∈ {1, 2, . . . , n} such that i 6= j. Then
A ∈ Sij if and only if aii = ajj and aik = ajk for all k 6= i, j. ♦

Proof. From the definition, it can be seen that A ∈ Sij is equivalent to aii = ajj,
aij = aji, aik = ajk, and aki = akj for all k 6= i, j. Using that A is symmetric, the
conditions of the lemma follow.

Some basic properties of symmetrical matrices are given in the following lemma.

Lemma 4.20:
Let A,B ∈ Sij for some i, j ∈ {1, 2, . . . , n} such that i 6= j and α, β ∈ R. Then,

1. αA+ βB ∈ Sij,

2. AB ∈ Sij, and

3. if A is invertible, then A−1 ∈ Sij. ♦

Proof. Follows directly from the definition of Sij in (4.48).

We state the main result about synchronization of a pair of generators and prove it
in the remainder of this section.

Theorem 4.21:
Consider the power system (4.43). The following two statements hold.

1. Let n = 2 and M1 = M2. Then the two generators are synchronized if and only
if D1 = D2, f1 = f2, and E1 = E2.

2. Let n > 3 and M ∈ Sij. Then the ith and jth generators are synchronized if and
only if D ∈ Sij, f ∈ Xij, E ∈ Xij, and Γ ∈ Sij. ♦

Remark 4.22:
Essentially, this result shows that the ith and jth generators are synchronized when
the system equation are invariant under swapping the ith and jth label. ♦

We arrange the proof of Theorem 4.21 into a sequence of propositions in this section.
We begin by analyzing the equations of the system (4.43) without assumptions on n
and M .

Proposition 4.23:
The ith and jth generators are synchronized if and only if

Di

Mi

=
Dj

Mj

, (4.49a)
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fi
Mi

=
fj
Mj

, (4.49b)

Ei
Miγik

=
Ej

Mjγjk
, for k 6= i, j, (4.49c)

χi
γik

=
χj
γjk

, for k 6= i, j, and (4.49d)

χiEi
γii

+
χiEj
γij

=
χjEi
γji

+
χjEj
γjj

. (4.49e)
♦

Proof. From (4.46a), we get

δ̈i− δ̈j = −Di

Mi

δ̇i+
Dj

Mj

δ̇j +
fi
Mi

− fj
Mj

−
n∑

k=1

(
EiEk
Miγik

sin(δi − δk)−
EjEk
Mjγjk

sin(δj − δk)
)
.

It is clear that, if (4.49a), (4.49b), and (4.49c) are true, then δ, δ̇ ∈ Xij implies δ̈ ∈ Xij.
For the other direction, let us assume that the ith and jth generators are synchronized.
Then we necessarily have

−
(
Di

Mi

− Dj

Mj

)
δ̇i +

(
fi
Mi

− fj
Mj

)
−

n∑

k=1

((
EiEk
Miγik

− EjEk
Mjγjk

)
sin(δi − δk)

)
= 0,

for any δi, δ̇i, and δk, k 6= i, j. Choosing δ̇i = 0 and δk = δi, condition (4.49b) follows.
Taking δ̇i = 1 and δk = δi, we find condition (4.49a). Lastly, with δi − δk = π

2
for some

k 6= i, j and δi − δ` = 0 for ` 6= i, j, k, condition (4.49c) follows for the chosen k.
From (4.46b), we have

Vi cos θi − Vj cos θj =

(
χiEi
γii
− χjEi

γji

)
cos δi +

(
χiEj
γij
− χjEj

γjj

)
cos δj

+
n∑

k=1
k 6=i,j

(
χi
γik
− χj
γjk

)
Ek cos δk,

Vi sin θi − Vj sin θj =

(
χiEi
γii
− χjEi

γji

)
sin δi +

(
χiEj
γij
− χjEj

γjj

)
sin δj

+
n∑

k=1
k 6=i,j

(
χi
γik
− χj
γjk

)
Ek sin δk.

Similarly, if we assume conditions (4.49d) and (4.49e) to be true, then δi = δj implies
Vi cos θi = Vj cos θj and Vi sin θi = Vj sin θj, which in turn implies that VG ∈ Xij.
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Conversely, we have

0 =

(
χiEi
γii

+
χiEj
γij
− χjEi

γji
− χjEj

γjj

)
cos δi +

n∑

k=1
k 6=i,j

(
χi
γik
− χj
γjk

)
Ek cos δk,

0 =

(
χiEi
γii

+
χiEj
γij
− χjEi

γji
− χjEj

γjj

)
sin δi +

n∑

k=1
k 6=i,j

(
χi
γik
− χj
γjk

)
Ek sin δk,

for arbitrary δi and δk for k 6= i, j. By appropriate choices of δi and δk, condi-
tions (4.49d) and (4.49e) follow.

The following lemma gives an important property of the matrix X.

Lemma 4.24:
For X as in (4.45), we have X1 = 1. ♦

Proof. Recalling the definition of X from (4.45), after some algebraic manipulation, it
is clear that X1 = 1 is equivalent to

(
L11 − L12L

−1
22 L

T
12

)
1 = 0,

which follows from L1 = 0.

Let us now assume that Ei 6= Ej and find what follows from conditions of Proposi-
tion 4.23. From (4.49d) and Lemma 4.24, it follows that χi

γii
+ χi

γij
=

χj
γji

+
χj
γjj

. Then,
by (4.49e) and Ei 6= Ej, it is necessary that χi

γii
=

χj
γji

and χi
γij

=
χj
γjj

. This, together
with (4.49d), means that the ith and jth rows in X are equal, which is a contradiction
with X being invertible. Therefore, for ith and jth generators to be synchronized, it is
necessary that Ei = Ej. This allows us to simplify the statement of Proposition 4.23.
We can simplify it further by assumingMi = Mj, which gives us the following corollary.

Corollary 4.25:
Let Mi = Mj. Then the ith and jth generators are synchronized if and only if

Di = Dj,

fi = fj,

Ei = Ej,

γik = γjk, for k 6= i, j, (4.50a)
χi
γik

=
χj
γjk

, for k 6= i, j, and (4.50b)

χi
γii

+
χi
γij

=
χj
γji

+
χj
γjj

. (4.50c)
♦

In the following, we separate the n = 2 and n > 3 cases. First, we use Corollary 4.25
to prove part 1 of Theorem 4.21.
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Proof of Theorem 4.21, part 1. This is true since (4.50a) and (4.50b) are empty state-
ments, while (4.50c) follows immediately from Lemma 4.24.

Finally, to prove part 2 of Theorem 4.21, we simplify the statement of Corollary 4.25
for the case of n > 3. This gives us the following corollary.

Corollary 4.26:
Let n > 3 and Mi = Mj. Then the ith and jth generators are synchronized if and only
if

Di = Dj,

fi = fj,

Ei = Ej,

γik = γjk, for k 6= i, j, (4.51a)
χi = χj, and (4.51b)
γii = γjj. (4.51c)

♦

Proof. Condition (4.51b) follows from (4.50a) and (4.50b), using that there are at least
three generators. Then (4.51c) follows from (4.50c), (4.51b), and symmetry γij = γji.

Corollary 4.26, together with the following lemma allows us to complete the proof of
Theorem 4.21.
Lemma 4.27:
Let i, j ∈ {1, 2, . . . , n} be such that i 6= j. We have Γ ∈ Sij if and only if LD ∈ Sij and
L11 − L12L

−1
22 L

T
12 ∈ Sij. ♦

Proof. ⇐ Follows from Lemma 4.20.
⇒ First we show that LD ∈ Sij. Using Γ = LDX, Πij1 = 1, and X1 = 1, from

ΓΠij1 = ΠijΓ1 it follows that LD1 = ΠijLD1. Since LD is a diagonal matrix, from this
we see that LD ∈ Sij. Now L11 − L12L

−1
22 L

T
12 ∈ Sij follows from Lemma 4.20.

Now we can complete the proof of Theorem 4.21.

Proof of Theorem 4.21, part 2. Conditions (4.51a) and (4.51c), by Lemma 4.19, are
equivalent to Γ ∈ Sij, which, by Lemma 4.27, is in turn equivalent to LD ∈ Sij and
L11 − L12L

−1
22 L

T
12 ∈ Sij. Therefore, (4.51a) and (4.51c) imply (4.51b).

4.3.4 Synchronization of generator partition

Let π = {C`}`∈Ĝ be a partition of the set G, where Ĝ = {1, 2, . . . , n̂} and n̂ 6 n. Let us
denote

Xcl :=
⋂

`∈Ĝ

⋂

i,j∈C`
Xij, Scl :=

⋂

`∈Ĝ

⋂

i,j∈C`
Sij.
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and P the characteristic matrix of the partition π. Notice that Xcl = im(P).
We define two notions generalizing the synchronization of two generators to a parti-

tion of generators.
Definition 4.28:
The system (4.43) is said to be strongly synchronized with respect to partition π if the
ith and jth generators are synchronized for all i, j ∈ C` and all ` ∈ Ĝ, i.e., δ(t) ∈ Xij

and VG(t) ∈ Xij for all t > 0 and for any δ(0), δ̇(0) ∈ Xij, i, j ∈ C`, and ` ∈ Ĝ.
The system (4.43) is said to be weakly synchronized with respect to partition π if, for

arbitrary δ(0), δ̇(0) ∈ Xcl, there exist functions δ̂ : [0,∞) → Rn̂ and V̂
Ĝ

: [0,∞) → Cn̂

such that δ(t) = Pδ̂(t) and VG(t) = PV̂
Ĝ
(t), i.e., δ(t) ∈ Xcl and VG(t) ∈ Xcl for all t > 0

and for any δ(0), δ̇(0) ∈ Xcl. ♦
Remark 4.29:
Notice that strong synchronization is equivalent to Xij × Xij × Xij being an invariant
set for (δ, δ̇, V̂

Ĝ
) for any i, j ∈ C` and ` ∈ Ĝ, while weak synchronization is equivalent

to an invariant set being Xcl × Xcl × Xcl. This means that, if the power system is
strongly synchronized, when two generators and their buses in the same cluster have
equal state, they will remain equal. If the power system is weakly synchronized, then
when the states of every generator and its bus are equal to all others in the same
cluster, they will stay equal. From this, we see that that if the system (4.43) is strongly
synchronized with respect to π, then it is also weakly synchronized with respect to π,
since Xcl × Xcl × Xcl ⊆ Xij × Xij × Xij, for all i, j ∈ C` and all ` ∈ Ĝ.
Further, the ith and jth generators are synchronized if and only if (4.43) is either

strongly or weakly synchronized with respect to {{i, j}} ∪ {{k} : k 6= i, j}.
Finally, notice that (4.43) is always both strongly and weakly synchronized with

respect to {{i} : i ∈ G}. ♦

In the following, we show necessary and sufficient conditions for the two synchronization
notions. To start, in the next proposition, we present cases when the structure of Γ has
no influence. It also illustrates the relation between strong and weak synchronization.
Proposition 4.30:
Let π = {G},M,D ∈ Scl, and f, E ∈ Xcl. Then the system (4.43) is weakly synchronized
with respect to {G}. If additionally n = 2, then (4.43) is also strongly synchronized
with respect to {G}. ♦

Proof. From the assumptions, it follows that M = m̂I, D = d̂I, f = f̂1, and E = Ê1,
for some m̂ > 0, d̂ > 0, and f̂ , Ê ∈ R. Notice that for π = {G}, we have P = 1.
Let us assume that δ(0), δ̇(0) ∈ im(1). To prove weak synchronization, we need

to show that δ(t) ∈ im(1) and VG(t) ∈ im(1). For the former, it is enough to show
that δ̈(t) ∈ im(1) if δ(t), δ̇(t) ∈ im(1), which is clear, since then δ̈(t) = −M−1Dδ̇(t) +

M−1f = − d̂
m̂
δ̇(t) + f̂

m̂
1. For the latter, we see that VG = L−1

D ΓEG ∈ im(1) whenever
EG ∈ im(1), which is equivalent to δ ∈ im(1).
The second part follows from part 1 of Theorem 4.21.
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We continue with the first main result of this section—the necessary and sufficient
conditions for strong synchronization. Here, symmetrical conditions for Γ are relevant.

Theorem 4.31:
Let n > 3, π arbitrary, and M ∈ Scl. Then the system (4.43) is strongly synchronized
with respect to π if and only if D ∈ Scl, f ∈ Xcl, E ∈ Xcl, and Γ ∈ Scl. ♦

Proof. Follows from applying part 2 of Theorem 4.21 for every ith and jth generator
where i, j ∈ C` and ` ∈ Ĝ.

We conclude this section with the second main result—the necessary and sufficient
conditions for weak synchronization. Instead of symmetrical conditions, Xcl being Γ-
invariant is one of the conditions. Since Xcl = im(P), this actually means that π is an
equitable partition for a graph whose adjacency matrix is Γ (see Lemma 2.48).

Theorem 4.32:
Let |π| > 2, M,D ∈ Scl, and f, E ∈ Xcl. Then the system (4.43) is weakly synchronized
with respect to π if and only if

LD ∈ Scl and Xcl is Γ-invariant. (4.52)
♦

Proof. From the definition, we see that (4.43) is weakly synchronized with respect to
π if and only if

(
∀δ, δ̇ ∈ Xcl

)
M−1

(
−Dδ̇ + f −

(
Γ ◦ EET ◦ sin

(
δ1T

n − 1nδ
T))1n

)
∈ Xcl (4.53)

and

(∀δ ∈ Xcl) L−1
D ΓEG ∈ Xcl. (4.54)

Since M,D ∈ Scl and f ∈ Xcl, condition (4.53) is equivalent to

(∀δ ∈ Xcl)
(
Γ ◦ EET ◦ sin

(
δ1T

n − 1nδ
T))1n ∈ Xcl.

Using δ = Pδ̂, E = PÊ, 1n = P1n̂, and that v ∈ Xcl is equivalent to Πijv = v for all
i, j ∈ C` and ` ∈ Ĝ, we find that the above condition is equivalent to

(
∀δ̂ ∈ Rn̂

)(
∀` ∈ Ĝ

)
(∀i, j ∈ C`)

(
(ΓP− ΠijΓP) ◦PÊÊT ◦P sin

(
δ̂1T

n̂ − 1n̂δ̂
T
))

1n̂ = 0.
(4.55)

In a similar way, we find that the condition (4.54) is equivalent to
(
∀Ê

Ĝ
∈ Cn̂

)(
∀` ∈ Ĝ

)
(∀i, j ∈ C`) L−1

D ΓPÊ
Ĝ

= ΠijL
−1
D ΓPÊ

Ĝ
,
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or, more simply,
(
∀` ∈ Ĝ

)
(∀i, j ∈ C`) L−1

D ΓP = ΠijL
−1
D ΓP. (4.56)

It is straightforward to check that (4.52) implies (4.55) and (4.56). For the other
direction, choosing δ̂ = e`2 for `2 6= ` in (4.55), we find from the ith row that

(
∀`, `2 ∈ Ĝ, `2 6= `

)
(∀i, j ∈ C`)

∑

k∈C`2

1

γik
=
∑

k∈C`2

1

γjk
. (4.57)

The ith row and `2th column in condition (4.56) gives
(
∀`, `2 ∈ Ĝ

)
(∀i, j ∈ C`) χi

∑

k∈C`2

1

γik
= χj

∑

k∈C`2

1

γjk
. (4.58)

Since the assumption is that there are at least two clusters in π, from (4.57) and (4.58)
we find that χi = χj, for all i, j ∈ C` and all ` ∈ Ĝ, i.e., LD ∈ Scl. This, together
with (4.58), gives

(
∀`, `2 ∈ Ĝ

)
(∀i, j ∈ C`)

∑

k∈C`2

1

γik
=
∑

k∈C`2

1

γjk
,

which is equivalent to im(ΓP) ⊆ Xcl, i.e., ΓXcl ⊆ Xcl.

4.3.5 Clustering of power systems

Let us assume that the system (4.43) is weakly synchronized with respect to a partition
π. Let also the initial condition satisfy δ(0), δ̇(0) ∈ Xcl. Then there exist δ̂ and V̂

Ĝ

such that δ(t) = Pδ̂(t) and VG(t) = PV̂
Ĝ
(t), which also gives us VG(t) = PV̂

Ĝ
(t) and

θG(t) = Pθ̂
Ĝ
(t). Inserting this into (4.43) with dynamics rewritten as in (4.47), we find

MP
¨̂
δ(t) +DP

˙̂
δ(t) = f − LD

(
E ◦PV̂

Ĝ
(t) ◦ sin

(
Pδ̂(t)−Pθ̂

Ĝ
(t)
))

,
[
LD

(
EG(t)−PV̂

Ĝ
(t)
)

0

]
=

[
L11 L12

LT
12 L22

] [
PV̂

Ĝ
(t)

VG(t)

]
.

Assuming additionally that E ∈ Xcl, i.e., E = PÊ for some Ê ∈ Rn̂, and premultiplying
the above dynamics and first block-row of the constraint by PT, we obtain

M̂
¨̂
δ(t) + D̂

˙̂
δ(t) = f̂ − L̂D

(
Ê ◦ V̂

Ĝ
(t) ◦ sin

(
δ̂(t)− θ̂

Ĝ
(t)
))

, (4.59a)
[
L̂D

(
Ê

Ĝ
(t)− V̂

Ĝ
(t)
)

0

]
=

[
L̂11 L̂12

L̂T
12 L22

][
V̂

Ĝ
(t)

VG(t)

]
, (4.59b)
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where M̂ = PTMP, D̂ = PTDP, f̂ = PTf , L̂D = PTLDP, L̂11 = PTL11P, L̂12 =

PTL12. Moreover, from δ(t) = Pδ̂(t) follows that δ̂(0) =
(
PTP

)−1
PTδ(0) and ˙̂

δ(0) =(
PTP

)−1
PTδ̇(0).

Notice that the reduced model (4.59) is again a power system of the same form
as (4.43). In particular, we have that M̂ , D̂, and L̂D are positive definite diagonal
matrices and that L̂ is a Laplacian matrix. Additionally, note that this projection-
based MOR can be done for arbitrary power system and arbitrary partition. In general,
we can take (4.59) with δ̂(0) =

(
PTP

)−1
PTδ(0), ˙̂

δ(0) =
(
PTP

)−1
PTδ̇(0), and Ê =(

PTP
)−1

PTE. We can also apply Kron reduction to this reduced model.

4.3.6 Illustrative example

For the example in Figure 4.7, let χi = 1 and χij = 1 for all i, j. Then we have

Γ =
1

32

[
21 5 2 2 2
5 21 2 2 2
2 2 16 8 4
2 2 8 16 4
2 2 4 4 20

]
.

Additionally, let M = D = I5, f = 0, and E = 15. Then, using Theorem 4.21, we see
that the first and second generators are synchronized, and that the same is true for the
third and fourth. By definition, this implies that the system is strongly synchronized
with respect to {{1, 2}, {3, 4}, {5}}. On the other hand, from Theorem 4.32 and

Γ

[
1 0
1 0
0 1
0 1
0 1

]
=

1

16

[
13 3
13 3
2 14
2 14
2 14

]
=

[
1 0
1 0
0 1
0 1
0 1

](
1

16
[ 13 3

2 14 ]

)
,

we see that the system is weakly synchronized with respect to {{1, 2}, {3, 4, 5}}, but not
strongly. Using the partition π = {{1, 2}, {3, 4, 5}} for clustering, we find the following
reduced quantities: M̂ = D̂ = [ 2 0

0 3 ], f̂ = 0, Ê = 12, L̂D = L̂11 = [ 2 0
0 3 ], L̂12 =

[ −2 0
0 −3

]
,

Γ̂ = 1
8
[ 13 3

3 21 ]. The Figure 4.8 shows the partition and Figure 4.9 the associated reduced
power system. From the definition of weak synchronization, we know that this reduced
power system exactly reproduces the initial value response of the original system for
any initial condition δ(0), δ̇(0) ∈ Xcl, taking the initial condition of the reduced model
to be δ̂(0) =

(
PTP

)−1
PTδ(0) and ˙̂

δ(0) =
(
PTP

)−1
PTδ̇(0).

To demonstrate the possibility to cluster using any partition, including those with
respect to which the power system is not weakly synchronized, and any initial condition,
we show simulation result for partition {{1, 2, 3}, {4, 5}} in Figure 4.10. We see that, in
this case, the reduced model matches the steady state and approximates the transient
behavior. Finding sufficient conditions for matching the steady state and deriving error
bounds is a possible topic of future research.
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1
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Figure 4.8: Partition {{1, 2}, {3, 4, 5}} applied to the original power system in Fig-
ure 4.7 with χi = χij = 1 for all i, j.

Ê1∠δ̂1 Ê2∠δ̂2V̂1∠θ̂1 V̂2∠θ̂2V̂3∠θ̂3 V̂4∠θ̂4
1
2

1
3

1
2

1
31

Figure 4.9: Reduced power system obtained by clustering the system in Figure 4.8 with
M = D = I5, f = 0, and E = 15.

4.4 Conclusion

In Section 4.2, we have extended results on MOR of leader-follower networks with sin-
gle integrator agent dynamics from [MTC14] to leader-follower networks with arbitrary
linear multivariable agent dynamics. We have also extended these results to the case
that the approximation error is measured in the H∞-norm. The proposed MOR tech-
nique reduces the complexity of the network topology by clustering the agents. We
have shown that clustering amounts to applying a specific Petrov-Galerkin projection
associated with the graph partition. The resulting reduced order model can be inter-
preted as a networked multi-agent system with a weighted, directed network graph. If
the original network is clustered using an almost equitable graph partition, then its
consensus properties are preserved. We have provided a priori upper bounds on the
H2 and H∞ model reduction errors in this case. These error bounds depend on an
auxiliary system related to the agent dynamics, the eigenvalues of the Laplacian ma-
trices of the original and the reduced network, and on the number of cellmates of the
leaders in the network. Finally, we have provided some insight into the general case
of clustering according to arbitrary, not necessarily almost equitable, partitions. Here,
direct computation of a priori upper bounds on the error is not as straightforward as
in the case of almost equitable partitions. We have shown that in this more general
case, one can bound the model reduction errors by first optimally approximating the
original network by a new network for which the chosen partition is almost equitable,
and then bounding the H2 and H∞ errors using the triangle inequality.
In Section 4.3, we analyzed power systems consisting of generators and buses. We

introduced a notion of synchronization for a pair of generators and two for a partition of
the set of generators. We proved equivalent conditions depending on the Kron-reduced
system being symmetrical or equitable. This additionally gives a relation between
symmetrical matrices and equitable partitions. We showed how a synchronized power
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δ(t)

δ̂(t)

0 5 10 15
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VG(t)

V̂
Ĝ
(t)
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t

θG(t)

θ̂
Ĝ
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Figure 4.10: Initial value response of the original power system from Figure 4.7 and
a reduced system obtained by clustering with partition {{1, 2, 3}, {4, 5}}.
Original system’s parameters are χi = χij = 1 for all i, j, M = D = I5,
f = 0, and E = 15. The initial value is δ(0) = (0, 0.1, 0.2, 0.3, 0.4) and
δ̇(0) = 0.

system can be exactly approximated with a reduced system by clustering generators and
their buses. Furthermore, this provides a clustering-based MOR method for arbitrary
power systems, although finding bounds for the approximation error remains an open
problem.
These results give motivation for further research into efficient clustering methods

for linear and nonlinear multi-agent systems.
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CHAPTER 5

SUBSYSTEM REDUCTION FOR INTERCONNECTED
SYSTEMS
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5.1 Introduction

Here, we consider MOR of interconnected systems, in particular of LTI systems linearly
interconnected through their inputs and outputs. Moreover, we want to preserve the
interconnection structure by only reducing the subsystems, while also preserving the
stability of the coupled system. This is a complementary approach to clustering-based
methods discussed in previous chapters.
Several approaches were investigated in the literature. Reis and Stykel [RS07, RS08b]

proposed using BT for each subsystem and proved a sufficient condition for stability
of the interconnected system. Furthermore, they developed an a priori error bound of
the network system based on the error bounds for the individual subsystems. Vanden-
dorpe and Van Dooren [VVD08] showed sufficient conditions for transfer function inter-
polation of the interconnected system while preserving the interconnection structure.
Sandberg and Murray [SM09] used block-diagonal generalized Gramians to extend BT
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for unstructured LTI systems to interconnected systems. Monshizadeh et al. [MTC13]
proposed methods preserving stability or synchronization for multi-agent systems.
We consider balancing-based and H2-optimal MOR of interconnected systems in

Section 5.2 and Section 5.3, respectively.

5.2 Stability-preserving balancing-based model order
reduction

5.2.1 Preliminaries

We extend the stability-preserving MOR method, based on bounded real balanced trun-
cation (BRBT), for multi-agent systems from [MTC13] to coupled systems considered
in [RS07]. More information about BRBT is in the following section.
Reis and Stykel [RS07] study systems of n coupled LTI subsystems

Eiẋi(t) = Aixi(t) +Biui(t),

yi(t) = Cixi(t),
(5.1a)

with interconnections and external input

ui(t) = Ki1y1(t) + · · ·+Kinyn(t) + Fiu(t), (5.1b)

and external output

y(t) = G1y1(t) + · · ·+Gnyn(t), (5.1c)

where i ∈ {1, 2, . . . , n}, Ei, Ai ∈ Rni×ni , Bi ∈ Rni×mi , Ci ∈ Rpi×ni , xi(t) ∈ Rni is the
state, ui(t) ∈ Rmi is the internal input, yi(t) ∈ Rpi is the internal output, Kij ∈ Rmi×pj ,
Fi ∈ Rmi×m, u(t) ∈ Rm is the external input, Gi ∈ Rp×pi , and y(t) ∈ Rp is the external
output. Here, we assume the matrices Ei are invertible and that the matrix pencils
Ai − λEi are asymptotically stable. The LTI system (5.1) can be written (see [RS07])
as

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(5.2)

with E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x(t) = col(x1(t), x2(t), . . . , xn(t)) ∈ Rn,
where

E = ED, A = AD +BDKCD, B = BDF, C = GCD, (5.3)
ED = diag(E1, E2, . . . , En) , AD = diag(A1, A2, . . . , An) ,

BD = diag(B1, B2, . . . , Bn) , CD = diag(C1, C2, . . . , Cn) ,

K =




K11 K12 · · · K1n

K21 K22 · · · K2n
...

... . . . ...
Kn1 Kn2 · · · Knn


 , F =




F1

F2
...
Fn


 , G =

[
G1 G2 · · · Gn

]
.
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5.2 Stability-preserving balancing-based model order reduction

Algorithm 5.1: Bounded real balanced truncation [OJ88]
Input: Asymptotically stable system (E;A,B,C) and γ > 0 such that

‖H‖H∞ < γ.
Output: ROM (Ê; Â, B̂, Ĉ).

1 Compute the maximal solutions P and Q of

APET + EPAT +BBT +
1

γ2
EPCTCPET = 0,

ATQE + ETQA+ CTC +
1

γ2
ETQBBTQE = 0.

2 Proceed as in Algorithm 2.1 using the obtained P and Q.

Denote Hi(s) = Ci(sEi − Ai)−1Bi and H(s) = C(sE−A)−1
B the transfer functions of

the subsystems and the interconnected system respectively. Furthermore, let HD(s) =
CD(sED − AD)−1BD = diag(H1(s), H2(s), . . . , Hn(s)). Then, we have

H(s) = G(I −HD(s)K)−1HD(s)F = GHD(s)(I −KHD(s))−1F.

5.2.2 Bounded real balanced truncation

BRBT is a modification of the standard BT method, originally developed to preserve
strict bounded realness, or equivalently the bound ‖H‖H∞ < 1, of the original sys-
tem [OJ88]. Algorithm 5.1 describes a straightforward extension of BRBT which pre-
serves the bound ‖H‖H∞ < γ, for any given γ > 0. The following theorem presents
some properties of BRBT and an H∞-error bound, and is also a straightforward exten-
sion of results in [OJ88].

Theorem 5.1:
Let H(s) = C(sE − A)−1B be an LTI system of order n such that ‖H‖H∞ < γ and

Ĥ(s) = Ĉ(sÊ − Â)
−1
B̂ its ROM of order r < n obtained by BRBT. Then Ĥ is asymp-

totically stable, ‖Ĥ‖H∞ < γ, and

‖H − Ĥ‖H∞ 6 2
n∑

i=r+1

ξi,

where ξi are the bounded real characteristic values (square roots of eigenvalues of
PETQE in Algorithm 5.1). ♦
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5 Subsystem Reduction for Interconnected Systems

5.2.3 Stability-preserving model order reduction

In the above setting, the multi-agent systems studied by Monshizadeh et al. [MTC13]
can be represented with

Ei = In, Ai = A1, Bi = B1, Ci = C1, for i = 1, 2, . . . , n,

K = −L⊗ Im1 , m1 = p1,
(5.4)

where L is the Laplacian matrix of an undirected interconnection graph. For these
systems, the following sufficient condition for asymptotic stability was proven.

Lemma 5.2 ([MTC13, Lemma 3.1]):
If ‖L‖2 ‖H1‖H∞ < 1, then the multi-agent system (5.2) with (5.4) is asymptotically
stable. ♦

Based on this, they propose using BRBT to reduce the subsystem (A1, B1, C1) to
(Â1, B̂1, Ĉ1) with transfer function Ĥ1 such that ‖Ĥ1‖H∞ < 1

‖L‖2
. Since the inter-

connection structure is preserved in the reduced network system, i.e., the Laplacian
matrix L remains the same for the reduced multi-agent system, asymptotic stability is
also preserved.
On the other hand, Reis and Stykel [RS07] prove the following sufficient condition

for asymptotic stability of the interconnected system (5.2).

Theorem 5.3 ([RS07, Corollary 2.3]):
Let Φ2 ∈ Rn×n be given by

Φ2 =




‖K11‖2 ‖K12‖2 · · · ‖K1n‖2

‖K21‖2 ‖K22‖2 · · · ‖K2n‖2
...

... . . . ...
‖Kn1‖2 ‖Kn2‖2 · · · ‖Knn‖2




and Ψ ∈ Rn×n by

Ψ = Φ2 diag
(
‖H1‖H∞ , ‖H2‖H∞ , . . . , ‖Hn‖H∞

)
.

If ρ(Ψ) < 1, then the system (5.2) is asymptotically stable. ♦

The similarity between the conditions in Lemma 5.2 and Theorem 5.3 motivates us to
extend the use of BRBT from multi-agent systems to general interconnected systems.
Notice that in the case of multi-agent systems, we have Φ2 = |L|, Ψ = |L| ‖H1‖H∞ ,
and ρ(Ψ) = ρ(|L|) ‖H1‖H∞ . Next, from [HJ85, Theorem 8.1.18], we have ρ(|L|) >
ρ(L). Since L is positive semi-definite, we have ρ(L) = ‖L‖2 and thus ρ(|L|) > ‖L‖2.
Therefore, ρ(Ψ) > ‖L‖2 ‖H1‖H∞ .
The following result allows us to extend the idea from [MTC13] for preserving the

sufficient condition for asymptotic stability by applying BRBT to subsystems of the
interconnected system (5.1).
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5.2 Stability-preserving balancing-based model order reduction

Proposition 5.4:
Let ρ(Ψ) < 1 and

‖Ĥ i‖H∞ <
1

ρ(Ψ)
‖Hi‖H∞ , for i = 1, 2, . . . , n.

Then ρ(Ψ̂) < 1. ♦
Proof. We see that there must exist α ∈ (0, 1) such that

‖Ĥ i‖H∞ 6 α
1

ρ(Ψ)
‖Hi‖H∞ , for i = 1, 2, . . . , n.

It follows that

ρ(Ψ̂) = ρ
(
Φ2 diag

(
‖Ĥ1‖H∞ , ‖Ĥ2‖H∞ , . . . , ‖Ĥn‖H∞

))

6 ρ

(
Φ2 diag

(
α

ρ(Ψ)
‖H1‖H∞ ,

α

ρ(Ψ)
‖H2‖H∞ , . . . ,

α

ρ(Ψ)
‖Hn‖H∞

))

=
α

ρ(Ψ)
ρ(Φ2 diag

(
‖H1‖H∞ , ‖H2‖H∞ , . . . , ‖Hn‖H∞

)
)

< 1,

where we used that ρ is increasing on nonnegative matrices ([HJ85, Corollary 8.1.19])
and homogeneous.

Clearly, ‖Hi‖H∞ < 1
ρ(Ψ)
‖Hi‖H∞ when ρ(Ψ) < 1. Thus, the idea is to apply BRBT to

Hi with γi = 1
ρ(Ψ)
‖Hi‖H∞ . Using Theorem 5.1, we find that

‖Hi − Ĥ i‖H∞ 6 2

ni∑

j=ri+1

ξ
(i)
j (γi), (5.5)

where ri is the order of Ĥi and ξ
(i)
1 (γi), ξ

(i)
2 (γi), . . . , ξ

(i)
ni (γi) are the bounded real char-

acteristic values of Hi. From Corollary 4.2 in [RS07], we find the upper bound for the
H∞-error from reducing subsystems by BRBT in the interconnected system (5.1).
Theorem 5.5:
Denote

δ := max
i=1,2,...,n

2

ni∑

j=ri+1

ξ
(i)
j (γi),

the maximum of the bounds from (5.5). Furthermore, let

g =
∥∥K(I −HK)−1

∥∥
H∞

, g1 =
∥∥G(I −HK)−1

∥∥
H∞

, g2 =
∥∥(I −KH)−1F

∥∥
H∞

,

c1 = g1(‖F‖2 + g ‖HF‖H∞), and c2 = g2(‖R‖2 + g ‖GH‖H∞).
(5.6)

If gδ < 1, then

‖H − Ĥ‖H∞ 6 min{c1, c2}
δ

1− gδ . (5.7)
♦
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5 Subsystem Reduction for Interconnected Systems

Algorithm 5.2: Balancing method for network systems preserving stability and
structure
Input: Network system (E;A,B,C) from (5.2) with ρ(Ψ) < 1, tolerance ε > 0.
Output: Asymptotically stable reduced network system (Ê; Â, B̂, Ĉ) with

‖H − Ĥ‖H∞ 6 ε.
1 Compute γi = 1

ρ(Ψ)
‖Hi‖H∞ for i = 1, 2, . . . , n.

2 Compute bounded real characteristic values ξ(i)
j (γi) for i = 1, 2, . . . , n,

j = 1, 2, . . . , ni.
3 Compute g, c1, and c2 from (5.6).
4 Find minimal ri such that

2

ni∑

j=ri+1

ξ
(i)
j (γi) 6

ε

min{c1, c2}+ gε

for i = 1, 2, . . . , n.
5 Reduce the ith subsystem to order ri using BRBT with γ = γi (see

Algorithm 5.1), for i = 1, 2, . . . , n.

Theorem 5.5 enables us to adaptively choose reduced orders r1, r2, . . . , rn of the subsys-
tems. To see this, let ε > 0 be a tolerance for the error ‖H − Ĥ‖H∞ . From (5.7), we
see that the bound ‖H − Ĥ‖H∞ 6 ε can be achieved by enforcing

min{c1, c2}
δ

1− gδ 6 ε,

which is equivalent to

δ 6 ε

min{c1, c2}+ gε
.

Finding minimal ri such that the right hand side in (5.5) is less than or equal to
ε

min{c1,c2}+gε guarantees that ‖H − Ĥ‖H∞ 6 ε. Note that g · ε
min{c1,c2}+gε < 1, which is

the assumption in Theorem 5.5.

5.2.4 Numerical example

We use the interconnected string-beam example from [RS07, Section 6], illustrated
in Figure 5.1. After discretizing the associated partial differential equation by finite
differences, the string subsystem has n1 = 1006 states, m1 = 3 inputs, and p1 = 2
outputs, while the beam subsystem has n2 = 1006 states, m2 = 2 inputs, and p2 = 2
outputs. The interconnected system has n = n1 + n2 = 2012 states, m = 1 input, and
p = 2 outputs. The left figure in Figure 5.2 shows magnitude plots of the subsystems
and the interconnected system.
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5.3 H2-optimal subsystem reduction

Figure 5.1: Interconnected string-beam example from [RS07]
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Figure 5.2: Magnitude plot of the full-order and error systems

For this system, we have ρ(Ψ) = 0.9157 < 1, which guarantees the interconnected
system is asymptotically stable by Theorem 5.3. Furthermore, this allows us to use the
method described in the previous section.
Let us set the reduction error tolerance for the coupled system to ε = 10−3. From this,

we find that the error tolerance for each of the subsystems is ε
min{c1,c2}+gε = 8.5821·10−5.

Applying BRBT from Algorithm 5.1, with γi =
‖Hi‖H∞
ρ(Ψ)

and adaptive reduced order
decision, we determine reduced orders to be r1 = 30 and r2 = 14 for the string and beam
subsystems respectively. We find that ‖H1 − Ĥ1‖H∞ = 1.2001 · 10−5, ‖H2 − Ĥ2‖H∞ =
3.544 · 10−6, and ‖H − Ĥ‖H∞ = 2.3893 · 10−5 6 10−3. The right figure in Figure 5.2
shows magnitude plots of error systems.

5.3 H2-optimal subsystem reduction

Here, we are interested in subsystem reduction for interconnected systems (5.1) which
minimizes the H2-error of the overall network system. We also consider multi-agent
systems, where the additional constraint is that all subsystems are equal.
Notice that one special case of subsystem reduction for interconnected systems is

weighted MOR [VVD08, Section 4], for which there are interpolatory H2-optimality
conditions [ABGA13, BBG15]. We will focus on the general case.
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5 Subsystem Reduction for Interconnected Systems

5.3.1 Interconnected systems

We use the same notation as in the previous section. We want to find a reduced model
with reduced subsystems

Êi ˙̂xi(t) = Âix̂i(t) + B̂iûi(t),

ŷi(t) = Ĉix̂i(t),
(5.8a)

but preserved interconnections and external input

ûi(t) = Ki1ŷ1(t) + · · ·+Kinŷn(t) + Fiu(t), (5.8b)

and external output

ŷ(t) = G1ŷ1(t) + · · ·+Gnŷn(t), (5.8c)

where Êi, Âi ∈ Rri×ri , B̂ ∈ Rri×mi , Ĉ ∈ Rpi×ri , for some ri < ni, i = 1, 2, . . . , n.
Similarly as for the original system, the reduced system (5.8) can be represented by

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(5.9)

with x̂(t) = col(x̂1(t), x̂2(t), . . . , x̂n(t)) and

Ê = Ê, Â = Â+ B̂KĈ, B̂ = B̂F, Ĉ = GĈ, (5.10)

Ê = diag
(
Ê1, Ê2, . . . , Ên

)
, Â = diag

(
Â1, Â2, . . . , Ân

)
,

B̂ = diag
(
B̂1, B̂2, . . . , B̂n

)
, Ĉ = diag

(
Ĉ1, Ĉ2, . . . , Ĉn

)
.

To find Gramian-based optimality conditions, we need to find gradients of the squared
H2-error

J(Êi, Âi, B̂i, Ĉi) = ‖H −H‖2
H2
. (5.11)

With the Gramian-based formulation of the H2-norm, we can think of J as a function
f : X → R given implicitly by f(x) = g(x, y), where h(x, y) = 0 and Dyh(x, y) is
bijective for all x and y. Here, x would represent the matrices of the ROM and y the
Gramians. The following lemma states that we can use Lagrange multiplier method to
compute Df(x).
Lemma 5.6:
Let X, Y, Z be Banach spaces, U an open subset of X, x0 an element of X, and f : U →
Z, g : U × Y → Z, h : U × Y → Y functions. Furthermore, suppose there exists y0 ∈ Y
such that h(x0, y0) = 0, g is Fréchet differentiable at (x0, y0), Dyh exists on U × Y ,
Dyh(x0, y0) is bijective, and h is of class C1 in a neighborhood of (x0, y0). Additionally,
let L : U × Y ×B(Y, Z)→ Z be such that L(x, y, λ) = g(x, y)− λ(h(x, y)).
Then f is Fréchet differentiable at x0 and

Df(x0) = DxL(x0, y0, λ0)

where λ0 is such that DyL(x0, y0, λ0) = 0. ♦
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5.3 H2-optimal subsystem reduction

Proof. Using Theorem 2.19 on h, we get that there exists an open subset Ux0 of U
and a function k : Ux0 → Y such that k(x0) = y0, h(x, k(x)) = 0 for x ∈ Ux0 , and
Dk(x0) = −Dyh(x0, y0)−1 Dxh(x0, y0). Then

Df(x0) = Dxg(x0, y0) + Dyg(x0, y0) Dk(x0)

= Dxg(x0, y0)−Dyg(x0, y0)Dyh(x0, y0)−1 Dxh(x0, y0).

On the other hand, we have

DxL(x0, y0, λ0) = Dxg(x0, y0)− λ0 Dxh(x0, y0), (5.12a)
DyL(x0, y0, λ0) = Dyg(x0, y0)− λ0 Dyh(x0, y0). (5.12b)

Therefore, from (5.12b) we get λ0 = Dyg(x0, y0)Dyh(x0, y0)−1 and inserting it into (5.12a),
we find

DxL(x0, y0, λ0) = Dxg(x0, y0)−Dyg(x0, y0)Dyh(x0, y0)−1 Dxh(x0, y0),

which completes the proof.

The following theorem gives the gradients of the squared H2-error (5.11).

Theorem 5.7:
Let (5.2) and (5.9) be an asymptotically stable systems. Then

∇Êi
J = 2

n∑

j=1

Q̃T
jiAjP̃ji + 2

n∑

j,k=1

Q̃T
jiBjKjkCkP̃ki

+ 2
n∑

j=1

Q̂ijÂjP̂ji + 2
n∑

j,k=1

Q̂ijB̂jKjkĈkP̂ki,

∇Âi
J = 2

n∑

j=1

Q̃T
jiEjP̃ji + 2

n∑

j=1

Q̂ijÊjP̂ji,

∇B̂i
J = 2

n∑

j,k=1

Q̃T
jiEjP̃jkĈ

T
k K

T
ik + 2

n∑

j=1

Q̃T
jiBjFjF

T
i

+ 2
n∑

j,k=1

Q̂ijÊjP̂jkĈ
T
k K

T
ik + 2

n∑

j=1

Q̂T
jiB̂jFjF

T
i ,

∇Ĉi
J = −2

n∑

j=1

GT
i GjCjP̃ji + 2

n∑

j=1

GT
i GjĈjP̂ji

+ 2
n∑

j,k=1

KT
jiB̂

T
j Q̃

T
kjEkP̃ki + 2

n∑

j,k=1

KT
jiB̂

T
j Q̂

T
kjÊkP̂ki. ♦
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5 Subsystem Reduction for Interconnected Systems

Proof. We proceed as in the proof of Theorem 2.44. We find similarly that the Lagrange
function is

L = tr
(
CPCT − 2CP̃ĈT + ĈP̂ĈT

)

+ tr
(

2Q̃TAP̃ÊT + 2Q̃TEP̃ÂT + 2Q̃TBB̂T
)

+ tr
(

2Q̂ÂP̂ÊT + Q̂B̂B̂T
)
,

and after inserting (5.3), (5.10),

L = tr
(
GCPCTGT − 2GCP̃ĈTGT +GĈP̂ĈTGT

)

+ tr

(
2Q̃T(A+BKC)P̃ÊT + 2Q̃TEP̃

(
Â+ B̂KĈ

)T
+ 2Q̃TBFFTB̂T

)

+ tr
(

2Q̂
(
Â+ B̂KĈ

)
P̂ÊT + Q̂B̂FFTB̂T

)
.

Now we find the gradients

∇Êi
L = 2

n∑

j=1

Q̃T
jiAjP̃ji + 2

n∑

j,k=1

Q̃T
jiBjKjkCkP̃ki

+ 2
n∑

j=1

Q̂ijÂjP̂ji + 2
n∑

j,k=1

Q̂ijB̂jKjkĈkP̂ki,

∇Âi
L = 2

n∑

j=1

Q̃T
jiEjP̃ji + 2

n∑

j=1

Q̂ijÊjP̂ji,

∇B̂i
L = 2

n∑

j,k=1

Q̃T
jiEjP̃jkĈ

T
k K

T
ik + 2

n∑

j=1

Q̃T
jiBjFjF

T
i

+ 2
n∑

j,k=1

Q̂ijÊjP̂jkĈ
T
k K

T
ik + 2

n∑

j=1

Q̂T
jiB̂jFjF

T
i ,

∇Ĉi
L = −2

n∑

j=1

GT
i GjCjP̃ji + 2

n∑

j=1

GT
i GjĈjP̂ji

+ 2
n∑

j,k=1

KT
jiB̂

T
j Q̃

T
kjEkP̃ki + 2

n∑

j,k=1

KT
jiB̂

T
j Q̂

T
kjÊkP̂ki.

Using Lemma 5.6 completes the proof.

The following corollary gives Wilson-type necessary optimality conditions for H2-
optimal subsystem reduction for interconnected systems.
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5.3 H2-optimal subsystem reduction

Corollary 5.8:
Let (5.9) be an H2-optimal reduced network systems for (5.2). Then

0 =
n∑

j=1

Q̃T
jiEjP̃ji +

n∑

j=1

Q̂ijÊjP̂ji,

0 =
n∑

j=1

Q̃T
jiAjP̃ji +

n∑

j=1

Q̂ijÂjP̂ji

+
n∑

j,k=1

Q̃T
jiBjKjkCkP̃ki +

n∑

j,k=1

Q̂ijB̂jKjkĈkP̂ki,

0 =
n∑

j=1

Q̃T
jiBjFjF

T
i +

n∑

j=1

Q̂T
jiB̂jFjF

T
i

+
n∑

j,k=1

Q̃T
jiEjP̃jkĈ

T
k K

T
ik +

n∑

j,k=1

Q̂ijÊjP̂jkĈ
T
k K

T
ik,

0 = −
n∑

j=1

GT
i GjCjP̃ji +

n∑

j=1

GT
i GjĈjP̂ji

+
n∑

j,k=1

KT
jiB̂

T
j Q̃

T
kjEkP̃ki +

n∑

j,k=1

KT
jiB̂

T
j Q̂

T
kjÊkP̂ki. ♦

5.3.2 Multi-agent systems

Here, we consider multi-agent systems of the form

Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(5.13a)

with

E = M⊗ E, A = M⊗ A− L⊗BKC, B = B⊗B, C = C⊗ C, (5.13b)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and K ∈ Rm×p. We want to find a ROM
with reduced agents

Ê ˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t),
(5.14a)

with

Ê = M⊗ Ê, Â = M⊗ Â− L⊗ B̂KĈ, B̂ = B⊗ B̂, Ĉ = C⊗ Ĉ, (5.14b)

where Ê, Â ∈ Rr×r, B̂ ∈ Rr×m, and Ĉ ∈ Rp×r for some r < n.
We proceed similarly to the previous section.
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5 Subsystem Reduction for Interconnected Systems

Theorem 5.9:
Let (5.13) and (5.14) be asymptotically stable systems. Then for the squared H2-error,
we have

∇ÊJ = 2
n∑

i,j=1

mimjQ̃
T
jiAP̃ji + 2

n∑

i,j=1

mimjQ̂ijÂP̂ji

− 2
n∑

i,j,k=1

mi[L]jkQ̃
T
jiBKCP̃ki − 2

n∑

i,j,k=1

mi[L]jkQ̂ijB̂KĈP̂ki,

∇ÂJ = 2
n∑

i,j=1

mimjQ̃
T
jiEP̃ji + 2

n∑

i,j=1

mimjQ̂ijÊP̂ji,

∇B̂J = −2
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jkĈ

TKT − 2
n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jkĈ
TKT

+ 2
n∑

i,j=1

[BBT]jiQ̃
T
jiB + 2

n∑

i,j=1

[BBT]jiQ̂ijB̂,

∇ĈJ = −2KB̂T
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jk − 2KB̂T

n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jk

− 2C
n∑

j,k=1

[CTC]jkP̃jk + 2Ĉ
n∑

j,k=1

[CTC]jkP̂jk. ♦

Proof. As in the proof of 5.8, the Lagrange function is

L = tr
(

(C⊗ C)P
(
CT ⊗ CT)− 2(C⊗ C)P̃

(
CT ⊗ ĈT

)
+
(
C⊗ Ĉ

)
P̂
(
CT ⊗ ĈT

))

+ tr
(

2Q̃T(M⊗ A− L⊗BKC)P̃
(
M⊗ ÊT

))

+ tr
(

2Q̃T(M⊗ E)P̃
(
M⊗ ÂT − LT ⊗ ĈTKTB̂T

))

+ tr
(

2Q̃T(B⊗B)
(
BT ⊗ B̂T

))

+ tr
(

2Q̂
(
M⊗ Â− L⊗ B̂KĈ

)
P̂
(
M⊗ ÊT

)
+ Q̂

(
B⊗ B̂

)(
BT ⊗ B̂T

))
.

The gradients are

∇ÊL = 2
n∑

i,j=1

mimjQ̃
T
jiAP̃ji + 2

n∑

i,j=1

mimjQ̂ijÂP̂ji

− 2
n∑

i,j,k=1

mi[L]jkQ̃
T
jiBKCP̃ki − 2

n∑

i,j,k=1

mi[L]jkQ̂ijB̂KĈP̂ki,
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5.3 H2-optimal subsystem reduction

∇ÂL = 2
n∑

i,j=1

mimjQ̃
T
jiEP̃ji + 2

n∑

i,j=1

mimjQ̂ijÊP̂ji,

∇B̂L = −2
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jkĈ

TKT − 2
n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jkĈ
TKT

+ 2
n∑

i,j=1

[BBT]jiQ̃
T
jiB + 2

n∑

i,j=1

[BBT]jiQ̂ijB̂,

∇ĈL = −2KB̂T
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jk − 2KB̂T

n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jk

− 2C
n∑

j,k=1

[CTC]jkP̃jk + 2Ĉ
n∑

j,k=1

[CTC]jkP̂jk.

As a direct consequence of the previous theorem, we get the Wilson-type necessary
optimality conditions for H2-optimal MOR of multi-agent systems.

Corollary 5.10:
Let (5.14) be an H2-optimal reduced multi-agent system for (5.13). Then

0 =
n∑

i,j=1

mimjQ̃
T
jiAP̃ji +

n∑

i,j=1

mimjQ̂ijÂP̂ji

−
n∑

i,j,k=1

mi[L]jkQ̃
T
jiBKCP̃ki −

n∑

i,j,k=1

mi[L]jkQ̂ijB̂KĈP̂ki,

0 =
n∑

i,j=1

mimjQ̃
T
jiEP̃ji +

n∑

i,j=1

mimjQ̂ijÊP̂ji,

0 = −
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jkĈ

TKT −
n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jkĈ
TKT

+
n∑

i,j=1

[BBT]jiQ̃
T
jiB +

n∑

i,j=1

[BBT]jiQ̂ijB̂,

0 = −KB̂T
n∑

i,j,k=1

mj[L]ikQ̃
T
jiEP̃jk −KB̂T

n∑

i,j,k=1

mj[L]ikQ̂ijÊP̂jk

− C
n∑

j,k=1

[CTC]jkP̃jk + Ĉ
n∑

j,k=1

[CTC]jkP̂jk. ♦
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5 Subsystem Reduction for Interconnected Systems

5.4 Conclusion

In Section 5.2, we developed a stability-preserving method consisting of applying BRBT
to subsystems. The preservation of asymptotic stability is based on a sufficient condi-
tion. As such, the method can only be applied to asymptotically stable interconnected
systems which additionally satisfy this sufficient condition. On the other hand, it could
be possible in practical applications to design the interconnected systems to satisfy this
condition. This would not only allow the use of the developed method, but also give an
a priori guarantee for the asymptotic stability of the original interconnected system.
In Section 5.3, we derivedWilson-type necessary optimality conditions forH2-optimal

subsystem reduction of interconnected and multi-agent systems. These conditions can
be used with a gradient-based optimization, with backtracking line search to ensure
asymptotic stability of the ROM, to find locally H2-optimal ROMs.
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CHAPTER 6

H2-OPTIMAL MODEL ORDER REDUCTION OF
FURTHER STRUCTURED SYSTEMS
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6.1 Introduction

In this chapter, we discuss H2-optimal MOR of structured systems which are not rep-
resented using networks as in the previous chapters. Just as before, we are interested
in structure-preserving MOR, which can be beneficial for preserving the physical inter-
pretation of the system. Additionally, simulation and optimization methods tailored
for specific system structures can be used for the ROMs.
Second-order systems are considered in Section 6.2, port-Hamiltonian systems in

Section 6.3, parametric systems in Section 6.4, and time-delay systems in Section 6.5.
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6 H2-Optimal Model Order Reduction of Further Structured Systems

6.2 Second-order systems

Here, we consider LTI second-order systems

Mẍ(t) + Eẋ(t) +Kx(t) = Bu(t),

y(t) = Cpx(t) + Cvẋ(t),
(6.1)

where M,E,K ∈ Rn×n, B ∈ Rn×m, Cp, Cv ∈ Rp×n, x(t) ∈ Rn, u(t) ∈ Rm, and
y(t) ∈ Rp. We assume that M is invertible and that the matrix pencil λ2M + λE +K
is asymptotically stable. These systems appear, e.g., when analyzing mechanical or
electrical systems. We want to find a ROM of the same structure

M̂ ¨̂x(t) + Ê ˙̂x(t) + K̂x̂(t) = B̂u(t),

ŷ(t) = Ĉpx̂(t) + Ĉv ˙̂x(t),
(6.2)

where M̂, Ê, K̂ ∈ Rr×r, B̂ ∈ Rr×m, and Ĉp, Ĉv ∈ Rp×r, with r � n, such that
‖H − Ĥ‖H2

is minimized. In particular, the matrix pencil λ2M̂ + λÊ + K̂ should
be asymptotically stable.
There is some work towards H2-optimal MOR of second-order systems. Beattie

and Gugercin [BG09] showed it is possible to find a structured ROM which interpo-
lates the original model. Wyatt [Wya12] proposed several iterative methods based on
IRKA using the result from [BG09], but H2-optimality was not investigated. Beattie
and Benner [BB14] derived interpolation-based necessary H2-optimality conditions for
second-order systems, but the ROM was restricted to be modally-damped, i.e., such
that M̂−1Ê and M̂−1K̂ are simultaneously diagonalizable. Additionally, finding an
algorithm which would achieve the interpolation conditions remains an open problem.
Sato [Sat17] developed a method based on Riemannian optimization for H2-optimal
MOR of second-order systems with symmetric positive definite mass, damping, and
stiffness matrices. We consider a more general setting here.
There are several balancing-based methods which preserve the second-order struc-

ture [MS96, CLVVD06, RS08a]. They can also find ROMs with small H2-errors, but
there is no a priori error bound as for the standard BT.
We derive Wilson-type necessary H2-optimality conditions for second-order systems

in Section 6.2.1 and corresponding interpolatory conditions in Section 6.2.2.

6.2.1 Wilson-type conditions

In [BB14, Section 5], the authors focus on interpolation-based necessary optimality
conditions for H2-optimal MOR of second-order systems. Here, we use the Gramian-
based approach to derive H2-optimality conditions similar to Wilson conditions for
first-order systems. In the next section, we derive interpolatory conditions and compare
them to the results from [BB14, Section 5].

114



6.2 Second-order systems

As is well known, the second-order system (6.1) has an equivalent first-order repre-
sentation

[
I 0
0 M

]

︸ ︷︷ ︸
E

ż(t) =

[
0 I
−K −E

]

︸ ︷︷ ︸
A

z(t) +

[
0
B

]

︸︷︷︸
B

u(t),

y(t) =
[
Cp Cv

]
︸ ︷︷ ︸

C

z(t),

where z(t) = col(x(t), ẋ(t)), E,A ∈ R2n×2n, B ∈ R2n×m, and C ∈ Rp×2n. Let P ∈ R2n×2n

and Q ∈ R2n×2n be the controllability and observability Gramians of this system, i.e.,
solutions to the following Lyapunov equations:

APET + EPAT + BBT = 0,

ATQE + ETQA + CTC = 0.

An equivalent first-order representation of (6.2) is
[
I 0

0 M̂

]

︸ ︷︷ ︸
Ê

˙̂z(t) =

[
0 I

−K̂ −Ê

]

︸ ︷︷ ︸
Â

ẑ(t) +

[
0

B̂

]

︸︷︷︸
B̂

u(t),

ŷ(t) =
[
Ĉp Ĉv

]

︸ ︷︷ ︸
Ĉ

ẑ(t),

with Ê, Â ∈ R2r×2r, B̂ ∈ R2r×m, Ĉ ∈ Rp×2r, and Gramians P̂, Q̂ ∈ R2r×2r satisfying

ÂP̂ÊT + ÊP̂ÂT + B̂B̂T = 0, (6.3a)

ÂTQ̂Ê + ÊTQ̂Â + ĈTĈ = 0. (6.3b)

The error system is
[
E 0

0 Ê

]

︸ ︷︷ ︸
Eerr

[
ż(t)
˙̂z(t)

]
=

[
A 0

0 Â

]

︸ ︷︷ ︸
Aerr

[
z(t)
ẑ(t)

]
+

[
B

B̂

]

︸︷︷︸
Berr

u(t)

y(t)− ŷ(t) =
[
C −Ĉ

]

︸ ︷︷ ︸
Cerr

[
z(t)
ẑ(t)

]
,

with Gramians

Perr =

[
P P̃

P̃T P̂

]
, Qerr =

[
Q Q̃

Q̃T Q̂

]
,
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6 H2-Optimal Model Order Reduction of Further Structured Systems

where P̃ ∈ R2n×2r and Q̃ ∈ R2n×2r satisfy Sylvester equations

AP̃ÊT + EP̃ÂT + BB̂T = 0, (6.4a)

ATQ̃Ê + ETQ̃Â− CTĈ = 0. (6.4b)

We denote

P̃ =

[
P̃pp P̃pv
P̃vp P̃vv

]
, P̂ =

[
P̂pp P̂pv
P̂vp P̂vv

]
, Q̃ =

[
Q̃pp Q̃pv

Q̃vp Q̃vv

]
, Q̂ =

[
Q̂pp Q̂pv

Q̂vp Q̂vv

]
,

where P̃ij, Q̃ij ∈ Rn×r and P̂ij, Q̂ij ∈ Rr×r for i, j ∈ {p, v}.
We find the squared H2-error as in Theorem 5.7.

Theorem 6.1:
Consider the second-order system (6.1). Let (6.2) be asymptotically stable. Then for
the squared H2-error J, we have

∇M̂J = −2Q̃T
vvKP̃pv + 2Q̃T

pvP̃vv − 2Q̃T
vvEP̃vv − 2Q̂vvK̂P̂pv + 2Q̂T

pvP̂vv − 2Q̂vvÊP̂vv,

∇ÊJ = −2Q̃T
pvP̃pv − 2Q̃T

vvMP̃vv − 2Q̂T
pvP̂pv − 2Q̂vvM̂P̂vv,

∇K̂J = −2Q̃T
pvP̃pp − 2Q̃T

vvMP̃vp − 2Q̂T
pvP̂pp − 2Q̂vvM̂P̂vp,

∇B̂J = 2Q̃T
vvB + 2Q̂vvB̂,

∇Ĉp
J = −2CpP̃pp − 2CvP̃vp + 2ĈpP̂pp + 2ĈvP̂vp,

∇Ĉv
J = −2CpP̃pv − 2CvP̃vv + 2ĈpP̂pv + 2ĈvP̂vv. ♦

Proof. Similar to the proof of Theorem 5.7, the Lagrange function is

L = tr
(
CPCT − 2CP̃ĈT + ĈP̂ĈT

)

+ tr
(

Λ̃TAP̃ÊT + Λ̃TEP̃ÂT + Λ̃TBB̂T
)

+ tr
(

Λ̂TÂP̂ÊT + Λ̂TÊP̂ÂT + Λ̂TB̂B̂T
)
,

where Λ̃ ∈ R2n×2r and Λ̂ ∈ R2r×2r are the Lagrange multipliers. From (6.4b), (6.3b),
and

∇
P̃
L = −2CTĈ + ATΛ̃Ê + ETΛ̃Â,

∇
P̂
L = ĈTĈ + ÂTΛ̂Ê + ÊTΛ̂Â,
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6.2 Second-order systems

it follows that Λ̃ = 2Q̃ and Λ̂ = Q̂. Inserting this into the Lagrange function, we find

L = tr

(
CPCT − 2

[
Cp Cv

]
P̃
[
Ĉp Ĉv

]T
+
[
Ĉp Ĉv

]
P̂
[
Ĉp Ĉv

]T)

+ tr

(
2Q̃T

[
0 I
−K −E

]
P̃

[
I 0

0 M̂

]T

+ 2Q̃T
[
I 0
0 M

]
P̃

[
0 I

−K̂ −Ê

]T
)

+ tr

(
2Q̃T

[
0
B

] [
0

B̂

]T
)

+ tr

(
2Q̂

[
0 I

−K̂ −Ê

]
P̂

[
I 0

0 M̂

]T

+ Q̂

[
0

B̂

] [
0

B̂

]T
)

= tr
(
CPCT − 2CpP̃ppĈ

T
p − 2CpP̃pvĈ

T
v − 2CvP̃vpĈ

T
p − 2CvP̃vvĈ

T
v

)

+ tr
(
ĈpP̂ppĈ

T
p + 2ĈpP̂pvĈ

T
v + ĈvP̂vvĈ

T
v

)

+ tr
(
−2Q̃T

vpKP̃pp + 2Q̃T
ppP̃vp − 2Q̃T

vpEP̃vp

)

+ tr
(
−2Q̃T

vvKP̃pvM̂
T + 2Q̃T

pvP̃vvM̂
T − 2Q̃T

vvEP̃vvM̂
T
)

+ tr
(

2Q̃T
ppP̃pv + 2Q̃T

vpMP̃vv

)

+ tr
(
−2Q̃T

pvP̃ppK̂
T − 2Q̃T

pvP̃pvÊ
T − 2Q̃T

vvMP̃vpK̂
T − 2Q̃T

vvMP̃vvÊ
T
)

+ tr
(

2Q̃T
vvBB̂

T
)

+ tr
(
−2Q̂T

vpK̂P̂pp + 2Q̂T
ppP̂vp − 2Q̂T

vpÊP̂vp

)

+ tr
(
−2Q̂T

vvK̂P̂pvM̂
T + 2Q̂T

pvP̂vvM̂
T − 2Q̂T

vvÊP̂vvM̂
T
)

+ tr
(
Q̂T
vvB̂B̂

T
)
.

Therefore,

∇M̂L = −2Q̃T
vvKP̃pv + 2Q̃T

pvP̃vv − 2Q̃T
vvEP̃vv − 2Q̂vvK̂P̂pv + 2Q̂T

pvP̂vv − 2Q̂vvÊP̂vv,

∇ÊL = −2Q̃T
pvP̃pv − 2Q̃T

vvMP̃vv − 2Q̂T
pvP̂pv − 2Q̂vvM̂P̂vv,

∇K̂L = −2Q̃T
pvP̃pp − 2Q̃T

vvMP̃vp − 2Q̂T
pvP̂pp − 2Q̂vvM̂P̂vp,

∇B̂L = 2Q̃T
vvB + 2Q̂vvB̂,

∇Ĉp
L = −2CpP̃pp − 2CvP̃vp + 2ĈpP̂pp + 2ĈvP̂vp,

∇Ĉv
L = −2CpP̃pv − 2CvP̃vv + 2ĈpP̂pv + 2ĈvP̂vv.

The statement follows from Lemma 5.6.

As a direct consequence, we obtain the Wilson-type necessary optimality conditions.
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6 H2-Optimal Model Order Reduction of Further Structured Systems

Corollary 6.2:
Consider the second-order system (6.1). Let (6.2) be its locally H2-optimal ROM. Then

[
Q̃pv

Q̃vv

]T [
I 0
0 M

]
P̃ +

[
Q̂pv

Q̂vv

]T [
I 0

0 M̂

]
P̂ = 0,

[
Q̃pv

Q̃vv

]T [
0 I
−K −E

][
P̃pv
P̃vv

]
+

[
Q̂pv

Q̂vv

]T [
0 I

−K̂ −Ê

][
P̂pv
P̂vv

]
= 0,

[
Q̃pv

Q̃vv

]T [
0
B

]
+

[
Q̂pv

Q̂vv

]T [
0

B̂

]
= 0,

[
Cp Cv

]
P̃−

[
Ĉp Ĉv

]
P̂ = 0. ♦

We can also consider second-order systems (6.1) with Cv = 0, where one would then
want enforce Ĉv = 0 in (6.2).

Corollary 6.3:
Consider the second-order system (6.1) with Ĉv = 0. Let (6.2) be its locally H2-optimal
ROM with Ĉv = 0. Then

[
Q̃pv

Q̃vv

]T [
I 0
0 M

]
P̃ +

[
Q̂pv

Q̂vv

]T [
I 0

0 M̂

]
P̂ = 0,

[
Q̃pv

Q̃vv

]T [
0 I
−K −E

][
P̃pv
P̃vv

]
+

[
Q̂pv

Q̂vv

]T [
0 I

−K̂ −Ê

][
P̂pv
P̂vv

]
= 0,

Q̃T
vvB + Q̂T

vvB̂ = 0,

CpP̃pp − ĈpP̂pp = 0. ♦

Proof. Following the proof of Theorem 6.1, we see that it is enough to ignore ∇Ĉv
L

and replace Cv and Ĉv with zero.

Similarly, we can consider the case of Cp = 0 and Ĉp = 0 and the results can be obtained
as in Corollary 6.3.

6.2.2 Interpolatory conditions

The following theorem shows how to derive interpolatory conditions using Wilson-type
conditions, similar to Theorem 2.45. As in [BB14, Section 5], we assume that the ROM
is such that M̂−1Ê and M̂−1K̂ are simultaneously diagonalizable. This is the case for
second-order, modally damped dynamical systems.
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6.2 Second-order systems

Theorem 6.4:
Consider the second-order system (6.1). Let (6.2) be a locally H2-optimal ROM, such
that M̂−1Ê and M̂−1K̂ are simultaneously diagonalizable, i.e., there exist invertible
S and T such that STM̂T = Ir, STÊT = −(Λ1 + Λ2), STK̂T = Λ1Λ2, where Λ1 =
diag(λ1,i) and Λ2 = diag(λ2,i). Additionally, let all λ1,i and λ2,j be pairwise distinct.
Denote ti = Tei, cp,i = Ĉpti, cv,i = Ĉvti, si = Sei, and bTi = sT

i B̂, which gives us

Ĥ(s) =
r∑

i=1

(cp,i + scv,i)b
T
i

(s− λ1,i)(s− λ2,i)
.

Then,

(H(−λ1,i)−H(−λ2,i)) bi =
(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
bi,

(λ1,iH(−λ1,i)− λ2,iH(−λ2,i)) bi =
(
λ1,iĤ(−λ1,i)− λ2,iĤ(−λ2,i)

)
bi,

(cp,i + λ1,icv,i)
T (H(−λ1,i)−H(−λ2,i)) = (cp,i + λ1,icv,i)

T
(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
,

(cp,i + λ1,icv,i)
TH ′(−λ1,i)bi = (cp,i + λ1,icv,i)

TĤ ′(−λ1,i)bi,

(cp,i + λ2,icv,i)
TH ′(−λ2,i)bi = (cp,i + λ2,icv,i)

TĤ ′(−λ2,i)bi,

for i = 1, 2, . . . , r. ♦
Proof. From the assumptions, we have Êti = −(λ1,i + λ2,i)M̂ti, sT

i Ê = −(λ1,i +

λ2,i)s
T
i M̂ , K̂ti = λ1,iλ2,iM̂ti, and sT

i K̂ = λ1,iλ2,is
T
i M̂ . Postmultiplying (6.4a) by

[
M̂Tsi 0

0 si

] [
−λ2,i −λ1,i

1 1

]

and using
[
0 −λ1,iλ2,i

1 λ1,i + λ2,i

] [
−λ2,i −λ1,i

1 1

]
=

[
−λ2,i −λ1,i

1 1

] [
λ1,i 0
0 λ2,i

]
,

we find

AP̃

[
−λ2,iM̂

Tsi −λ1,iM̂
Tsi

M̂Tsi M̂Tsi

]
+ EP̃

[
−λ2,iM̂

Tsi −λ1,iM̂
Tsi

M̂Tsi M̂Tsi

][
λ1,i 0
0 λ2,i

]

+ B
[
bi bi

]
= 0.

This gives us

−λ2,i

[
P̃pp
P̃vp

]
M̂Tsi +

[
P̃pv
P̃vv

]
M̂Tsi = (−λ1,iE−A)−1

Bbi,

−λ1,i

[
P̃pp
P̃vp

]
M̂Tsi +

[
P̃pv
P̃vv

]
M̂Tsi = (−λ2,iE−A)−1

Bbi,

119



6 H2-Optimal Model Order Reduction of Further Structured Systems

which implies

(λ1,i − λ2,i)

[
P̃pp
P̃vp

]
M̂Tsi = (−λ1,iE−A)−1

Bbi − (−λ2,iE−A)−1
Bbi,

(λ1,i − λ2,i)

[
P̃pv
P̃vv

]
M̂Tsi = λ1,i (−λ1,iE−A)−1

Bbi − λ2,i (−λ2,iE−A)−1
Bbi.

(6.5)

Similarly, we find

(λ1,i − λ2,i)

[
P̂pp
P̂vp

]
M̂Tsi =

(
−λ1,iÊ− Â

)−1

B̂bi −
(
−λ2,iÊ− Â

)−1

B̂bi,

(λ1,i − λ2,i)

[
P̂pv
P̂vv

]
M̂Tsi = λ1,i

(
−λ1,iÊ− Â

)−1

B̂bi − λ2,i

(
−λ2,iÊ− Â

)−1

B̂bi.

(6.6)

Analogously, postmultiplying (6.4b) by
[
ti 0
0 ti

] [
1 1
λ1,i λ2,i

]

and using
[

0 1
−λ1,iλ2,i λ1,i + λ2,i

] [
1 1
λ1,i λ2,i

]
=

[
1 1
λ1,i λ2,i

] [
λ1,i 0
0 λ2,i

]
,

we find

ATQ̃

[
ti ti

λ1,iM̂ti λ2,iM̂ti

] [
ti 0

0 M̂ti

]
+ ETQ̃

[
ti ti

λ1,iM̂ti λ2,iM̂ti

] [
λ1,i 0
0 λ2,i

]

− CT [cp,i + λ1,icv,i cp,i + λ2,icv,i
]

= 0.

This in turn gives us
[
Q̃pp

Q̃vp

]
ti + λ1,i

[
Q̃pv

Q̃vv

]
M̂ti = −(−λ1,iE−A)−TCT(cp,i + λ1,icv,i),

[
Q̃pp

Q̃vp

]
ti + λ2,i

[
Q̃pv

Q̃vv

]
M̂ti = −(−λ2,iE−A)−TCT(cp,i + λ2,icv,i),

which implies

(λ1,i − λ2,i)

[
Q̃pv

Q̃vv

]
M̂ti = −(−λ1,iE−A)−TCT(cp,i + λ1,icv,i)

+ (−λ2,iE−A)−TCT(cp,i + λ2,icv,i).

(6.7)
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6.2 Second-order systems

We similarly find

(λ1,i − λ2,i)

[
Q̂pv

Q̂vv

]
M̂ti =

(
−λ1,iÊ− Â

)−T
ĈT(cp,i + λ1,icv,i)

−
(
−λ2,iÊ− Â

)−T
ĈT(cp,i + λ2,icv,i).

(6.8)

Now we use the Wilson-type conditions from Corollary 6.2 to derive the interpolatory
conditions. Postmultiplying

[
Cp Cv

]
P̃−

[
Ĉp Ĉv

]
P̂ = 0,

by diag
(
M̂Tsi, M̂

Tsi

)
and using (6.5) and (6.6), we get

C (−λ1,iE−A)−1
Bbi − C (−λ2,iE−A)−1

Bbi

= Ĉ
(
−λ1,iÊ− Â

)−1

B̂bi − Ĉ
(
−λ2,iÊ− Â

)−1

B̂bi,

λ1,iC (−λ1,iE−A)−1
Bbi − λ2,iC (−λ2,iE−A)−1

Bbi

= λ1,iĈ
(
−λ1,iÊ− Â

)−1

B̂bi − λ2,iĈ
(
−λ2,iÊ− Â

)−1

B̂bi,

i.e.,

(H(−λ1,i)−H(−λ2,i)) bi =
(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
bi,

(λ1,iH(−λ1,i)− λ2,iH(−λ2,i)) bi =
(
λ1,iĤ(−λ1,i)− λ2,iĤ(−λ2,i)

)
bi,

which are exactly the first two optimality conditions. Premultiplying

[
Q̃pv

Q̃vv

]T [
0
B

]
+

[
Q̂pv

Q̂vv

]T [
0

B̂

]
= 0,

by tTi M̂T and using (6.7) and (6.8), we get

(cp,i + λ1,icv,i)
TC (−λ1,iE−A)−1

B− (cp,i + λ2,icv,i)
TC (−λ2,iE−A)−1

B

= (cp,i + λ1,icv,i)
TĈ
(
−λ1,iÊ− Â

)−1

B̂− (cp,i + λ2,icv,i)
TĈ
(
−λ2,iÊ− Â

)−1

B̂,

i.e.,

(cp,i + λ1,icv,i)
T (H(−λ1,i)−H(−λ2,i)) = (cp,i + λ1,icv,i)

T
(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
,
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which is the third optimality condition. From
[
Q̃pv

Q̃vv

]T [
I 0
0 M

]
P̃ +

[
Q̂pv

Q̂vv

]T [
I 0

0 M̂

]
P̂ = 0,

we get
(
(cp,i + λ1,icv,i)

TC (−λ1,iE−A)−1 − (cp,i + λ2,icv,i)
TC (−λ2,iE−A)−1)

· E
(
(−λ1,iE−A)−1

Bbi − (−λ2,iE−A)−1
Bbi
)

=

(
(cp,i + λ1,icv,i)

TĈ
(
−λ1,iÊ− Â

)−1

− (cp,i + λ2,icv,i)
TĈ
(
−λ2,iÊ− Â

)−1
)

· Ê
((
−λ1,iÊ− Â

)−1

B̂bi −
(
−λ2,iÊ− Â

)−1

B̂bi

)
,

(
(cp,i + λ1,icv,i)

TC (−λ1,iE−A)−1 − (cp,i + λ2,icv,i)
TC (−λ2,iE−A)−1)

· E
(
λ1,i (−λ1,iE−A)−1

Bbi − λ2,i (−λ2,iE−A)−1
Bbi
)

=

(
(cp,i + λ1,icv,i)

TĈ
(
−λ1,iÊ− Â

)−1

− (cp,i + λ2,icv,i)
TĈ
(
−λ2,iÊ− Â

)−1
)

· Ê
(
λ1,i

(
−λ1,iÊ− Â

)−1

B̂bi − λ2,i

(
−λ2,iÊ− Â

)−1

B̂bi

)
,

thus

(cp,i + λ1,icv,i)
TH ′(−λ1,i)bi + (cp,i + λ2,icv,i)

TH ′(−λ2,i)bi

= (cp,i + λ1,icv,i)
TĤ ′(−λ1,i)bi + (cp,i + λ2,icv,i)

TĤ ′(−λ2,i)bi,

λ1,i(cp,i + λ1,icv,i)
TH ′(−λ1,i)bi + λ2,i(cp,i + λ2,icv,i)

TH ′(−λ2,i)bi

= λ1,i(cp,i + λ1,icv,i)
TĤ ′(−λ1,i)bi + λ2,i(cp,i + λ2,icv,i)

TĤ ′(−λ2,i)bi,

i.e., since λ1,i 6= λ2,i,

(cp,i + λ1,icv,i)
TH ′(−λ1,i)bi = (cp,i + λ1,icv,i)

TĤ ′(−λ1,i)bi,

(cp,i + λ2,icv,i)
TH ′(−λ2,i)bi = (cp,i + λ2,icv,i)

TĤ ′(−λ2,i)bi,

which are the final two interpolatory optimality conditions.

Here are the interpolatory conditions with additional assumptions that Cv = 0 and
Ĉv = 0, as derived in [BB14, Section 5] using a different approach.
Corollary 6.5:
Let the assumptions in Theorem 6.4 hold. Additionally, let Cv = 0 and Ĉv = 0. Then,

(H(−λ1,i)−H(−λ2,i)) bi =
(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
bi,

cTp,i (H(−λ1,i)−H(−λ2,i)) = cTp,i

(
Ĥ(−λ1,i)− Ĥ(−λ2,i)

)
,

cTp,iH
′(−λ1,i)bi = cTp,iĤ

′(−λ1,i)bi,

cTp,iH
′(−λ2,i)bi = cTp,iĤ

′(−λ2,i)bi,
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6.3 Port-Hamiltonian systems

for i = 1, 2, . . . , r. ♦

Proof. Proceed as the proof of Theorem 6.4, using the Wilson-type conditions from
Corollary 6.3.

6.3 Port-Hamiltonian systems

We consider LTI, input-state-output port-Hamiltonian systems (see [vdSJ14]) without
algebraic constraints of the form

ẋ(t) = (J −R)Sx(t) +Bu(t),

y(t) = BTSx(t),
(6.9)

where, J,R, S ∈ Rn×n, B ∈ Rn×m, JT = −J , R < 0, and S � 0. Matrix S is called the
energy matrix and R the dissipation matrix.

Remark 6.6:
The standard notation in literature for the energy matrix is Q. Since we use Q for the
observability Gramian, we decided to use S to denote the energy matrix. ♦

The Hamiltonian 1
2
x(t)TSx(t) defines the total energy of the system. The state x(t) ∈

Rn are called the energy variables, while u(t), y(t) ∈ Rm the power variables. The inner
product of the power variables u(t)Ty(t) is the power supplied to the system. The
system is passive, i.e., the rate of increase of total energy is bounded by the power
provided to the system, as seen from

d

dt

(
1

2
x(t)TSx(t)

)
= u(t)Ty(t)− x(t)TSRSx(t) 6 u(t)Ty(t).

We are looking for a ROM

˙̂x(t) =
(
Ĵ − R̂

)
Ŝx̂(t) + B̂u(t),

ŷ(t) = B̂TŜx̂(t),
(6.10)

which preserves the port-Hamiltonian structure in (6.9) (in particular, such that ĴT =

−Ĵ , R̂ < 0, Ŝ � 0) and minimizes the H2-error ‖H − Ĥ‖H2
, where H and Ĥ are

respectively the transfer function of (6.9) and (6.10). Additionally, we assume (J−R)S
is Hurwitz, which is guaranteed when R � 0.
An equivalent form of the port-Hamiltonian system (6.9) is using the co-energy vari-

ables e(t) = Sx(t), given by

S−1ė(t) = (J −R)e(t) +Bu(t),

y(t) = BTe(t).
(6.11)
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6 H2-Optimal Model Order Reduction of Further Structured Systems

From this, we see that a system is port-Hamiltonian if it has an equivalent representa-
tion (Ẽ; Ã, B̃, B̃T) with Ẽ � 0 and Ã+ÃT 4 0. Clearly, applying a Galerkin projection
to (6.11) with some full-rank matrix V ∈ Rn×r will preserve the structure, since

(
V TJV

)T
= −V TJV, V TRV < 0, and

(
V TS−1V

)−1 � 0.

In [GPBvdS12], the authors propose projecting the matrices by

Ĵ = WTJW, R̂ = WTRW, Ŝ = V TSV, and B̂ = WTB,

where W = SV (V TSV )
−1, giving the ROM

((
WTJW −WTRW

)
V TSV, WTB, BTWV TSV

)
. (6.12)

It can be seen that system (6.12) is equivalent to projecting (6.11) by Galerkin projec-
tion VG = SV and to projecting (6.9) by Petrov-Galerkin projection

VPG = V = V
(
V TSV

)−1
V TSV,

WPG = SV
(
V TSV

)−1
,

also showed in the proof of [GPBvdS12, Theorem 7].
If V is chosen such that

im(V ) = im
([

(σ1I − (J −R)S)−1Bb1 · · · (σrI − (J −R)S)−1Bbr
])
,

then, according to Theorem 2.41, we have

H(σi)bi = Ĥ(σi)bi, i = 1, 2, . . . , r.

Based on this, [GPBvdS12] proposes an iterative algorithm similar to IRKA, called
IRKA-PH, which finds a ROM with a transfer function

Ĥ(s) =
r∑

i=1

cib
T
i

s− λi

which, upon convergence, satisfies

H(−λi)bi = Ĥ(−λi)bi, i = 1, 2, . . . , r.

This is one of the interpolatory necessary H2-optimality conditions for unstructured
first-order systems (see Theorem 2.42). The idea is that IRKA-PH should give a ROM
which is close to H2-optimal. But, it is not clear a priori how close it will be.
Theorem 1 in [BB14] shows the following interpolatory necessary H2-optimality con-

ditions.
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Theorem 6.7 ([BB14, Theorem 1]):
Suppose that Ĥ is an H2-optimal ROM with R̂ � 0, has r distinct poles, and is
represented as Ĥ(s) =

∑r
i=1

cib
T
i

s−λi . Then

cTi (H(−λi)−H(−λj))bj = cTi

(
Ĥ(−λi)− Ĥ(−λj)

)
bj,

cTi H
′(−λi)bi = cTi Ĥ

′(−λi)bi,

for i, j = 1, 2, . . . , r. ♦

Similar to the interpolatory necessary optimality conditions for second-order systems,
an algorithm which would satisfy these conditions is not known.
In the following sections, we will find Wilson-type optimality conditions and derive

interpolatory conditions as in Theorem 6.7.

6.3.1 Wilson-type conditions

Similar to Section 6.2.1, we first derive gradients of the squared H2-error.

Theorem 6.8:
Let (6.10) be asymptotically stable, with Ŝ = I, Ĵ = Ĵ2 − ĴT

2 , and R̂ = R̂2R̂
T
2 . Then

for the squared H2-error J, we have

∇Ĵ2
J = 2Q̃TP̃ − 2P̃TQ̃+ 2Q̂P̂ − 2P̂ Q̂,

∇R̂2
J = −2Q̃TP̃ R̂2 − 2P̃TQ̃R̂2 − 2Q̂P̂ R̂2 − 2P̂ Q̂R̂2,

∇B̂J = −2P̃TSB + 2P̂ B̂ + 2Q̃TB + 2Q̂B̂. ♦

Proof. As in the proof of Theorem 2.44, we find the Lagrange function is

L = tr
(
BTSPSB − 2BTSP̃ B̂ + B̂TP̂ B̂

)

+ tr
(

2Q̃T(J −R)SP̃ + 2Q̃TP̃
(
ĴT

2 − Ĵ2 − R̂2R̂
T
2

)
+ 2Q̃TBB̂T

)

+ tr
(

2Q̂
(
Ĵ2 − ĴT

2 − R̂2R̂
T
2

)
P̂ + Q̂B̂B̂T

)
.

Gradients with respect to the reduced matrices are

∇Ĵ2
L = 2Q̃TP̃ − 2P̃TQ̃+ 2Q̂P̂ − 2P̂ Q̂,

∇R̂2
L = −2Q̃TP̃ R̂2 − 2P̃TQ̃R̂2 − 2Q̂P̂ R̂2 − 2P̂ Q̂R̂2,

∇B̂L = −2P̃TSB + 2P̂ B̂ + 2Q̃TB + 2Q̂B̂.

The result follows from Lemma 5.6.
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6 H2-Optimal Model Order Reduction of Further Structured Systems

As a consequence, we get the Wilson-type necessary optimality conditions for H2-
optimal structure-preserving MOR of port-Hamiltonian systems.

Theorem 6.9:
Let (6.10), with Ŝ = I, be an H2-optimal ROM for (6.9) with R̂ � 0. Then

Q̃TP̃ + Q̂P̂ = 0,

sym
(
Q̃T(J −R)SP̃ + Q̂T

(
Ĵ − R̂

)
P̂
)

= 0,
(
Q̃T − P̃TS

)
B +

(
Q̂+ P̂

)
B̂ = 0. ♦

Proof. From Theorem 6.8, we have

0 = Q̃TP̃ − P̃TQ̃+ Q̂P̂ − P̂ Q̂,
0 = Q̃TP̃ R̂2 + P̃TQ̃R̂2 + Q̂P̂ R̂2 + P̂ Q̂R̂2,

0 = −P̃TSB + P̂ B̂ + Q̃TB + Q̂B̂.

Using that R̂2 is invertible, it follows that

Q̃TP̃ + Q̂P̂ = 0, (6.13)(
Q̃T − P̃TS

)
B +

(
Q̂+ P̂

)
B̂ = 0. (6.14)

Summing

Q̃T
(

(J −R)SP̃ + P̃
(
ĴT

2 − Ĵ2 − R̂2R̂
T
2

)
+BB̂T

)
= 0,

Q̂
((
Ĵ2 − ĴT

2 − R̂2R̂
T
2

)
P̂ + P̂

(
ĴT

2 − Ĵ2 − R̂2R̂
T
2

)
+ B̂B̂T

)
= 0,

P̃T
(
S(−J −R)Q̃+ Q̃

(
Ĵ2 − ĴT

2 − R̂2R̂
T
2

)
− SBB̂T

)
= 0,

P̂
((
ĴT

2 − Ĵ2 − R̂2R̂
T
2

)
Q̂+ Q̂

(
Ĵ2 − ĴT

2 − R̂2R̂
T
2

)
+ B̂B̂T

)
= 0,

and using (6.13) and (6.14) gives

sym
(
Q̃T(J −R)SP̃ + Q̂

(
Ĵ2 − ĴT

2 − R̂2R̂
T
2

)
P̂
)

= 0.

6.3.2 Interpolatory conditions

Here, we derive interpolatory conditions using Theorem 6.9. Assuming diagonalizability
of Ĵ−R̂, we obtain results about bitangential interpolation from [BB14, Theorem 1] (see
Theorem 6.7). Under an additional assumption, we derive a tangential interpolation
condition.
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Theorem 6.10:
Let the assumptions in Theorem 6.9 hold. Furthermore, let T be an invertible matrix
such that T−1(Ĵ − R̂)T = Λ = diag(λi), where λi-s are pairwise distinct. Denote
ti = Tei, sT

i = eTi T
−1, ci = B̂Tti, and bTi = sT

i B̂ so that Ĥ(s) =
∑r

i=1
cib

T
i

s−λi . Then

cTi (H(−λi)−H(−λj)) bj = cTi

(
Ĥ(−λi)− Ĥ(−λj)

)
bj,

cTi H
′(−λi)bi = cTi H

′(−λi)bi,

for i, j = 1, 2, . . . , r.
Additionally, if T can be chosen to be unitary, which is equivalent to Ĵ − R̂ being

normal and to Ĵ and R̂ commuting, then Ĥ(s) =
∑r

i=1
bib

T
i

s−λi and also

(H(−λi) +H(−λi)∗) bi =
(
Ĥ(−λi) + Ĥ(−λi)

∗)
bi,

for i = 1, 2, . . . , r. ♦

Proof. From the assumptions, we have (Ĵ − R̂)ti = λiti and sT
i (Ĵ − R̂) = λis

T
i . From

(J −R)SP̃si + P̃
(
−Ĵ − R̂

)
si +BB̂Tsi = 0,

we get

(J −R)SP̃si + λiP̃ si +BB̂Tsi = 0,

and then

P̃ si = (−λiI − (J −R)S)−1Bbi,

P̂ si =
(
−λiI −

(
Ĵ − R̂

))−1

B̂bi,

Q̃ti = −(−λiI − (J −R)S)−TSBci,

Q̂ti =
(
−λiI −

(
Ĵ − R̂

))−T
B̂ci.

From this and proceeding as in the proof of Theorem 2.45, we find

tTi

(
Q̃TP̃ + Q̂P̂

)
si = cTi (H ′(−λi)−H ′(−λi))bi,

tTi

(
Q̃TP̃ + Q̂P̂

)
sj = cTi

(
H(−λi)−H(−λj)

(−λj)− (−λj)
− Ĥ(−λi)− Ĥ(−λj)

(−λj)− (−λj)

)
bj.

Let additionally T−1 = T ∗, which is possible if and only if Ĵ − R̂ is normal. We can
see that (Ĵ − R̂)(Ĵ − R̂)T = (Ĵ − R̂)T(Ĵ − R̂) is equivalent to ĴR̂ = R̂Ĵ , i.e., Ĵ and R̂
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commute. From T−1 = T ∗, we have si = ti and ci = bi. Then

tTi

(
Q̃T − P̃TS

)
B + tTi

(
Q̂+ P̂

)
B̂

= tTi Q̃
TB − s∗i P̃TSB + tTi Q̂B̂ + s∗i P̂ B̂

= −cTi BTS(−λiI − (J −R)S)−1B − b∗iBT (−λiI − (J −R)S
)−T

SB

+ cTi B̂
T
(
−λiI −

(
Ĵ − R̂

))−1

B̂ + b∗i B̂
T
(
−λiI −

(
Ĵ − R̂

))−T
B̂

= −b∗i (H(−λi) +H(−λi)∗) + b∗i

(
Ĥ(−λi) + Ĥ(−λi)∗

)
.

6.4 Linear parametric systems

Consider a parameterized LTI (PLTI) system

E(p)ẋ(t, p) = A(p)x(t, p) +B(p)u(t),

y(t, p) = C(p)x(t, p),
(6.15)

where p ∈ P is the parameter, P ⊂ Rd is a compact set, and E(p), A(p) ∈ Rn×n,
B(p) ∈ Rn×m, C(p) ∈ Rp×n are continuous matrix-valued functions. We assume E(p)
is invertible and σ(A(p), E(p)) ⊂ C−, for all p ∈ P.

6.4.1 H2 ⊗ L2-optimal model order reduction

Following [BBBG11], we define the H2 ⊗ L2-norm of (6.15) with

‖H‖2
H2⊗L2(P) :=

1

2π

∫

P

∫ ∞

−∞
‖H(ıω, p)‖2

F dω dp =

∫

P

‖H(·, p)‖2
H2

dp,

where H is the parameterized transfer function of (6.15):

H(s, p) = C(p)(sE(p)− A(p))−1B(p).

The norm is well-defined since ‖H(·, p)‖2
H2

is continuous with respect to p and P is
compact.
We are interested in finding an H2 ⊗ L2-optimal ROM

Ê(p) ˙̂x(t, p) = Â(p)x̂(t, p) + B̂(p)u(t),

ŷ(t, p) = Ĉ(p)x̂(t, p),
(6.16)

with a parameterized transfer function Ĥ, where Ê(p), Â(p) ∈ Rr×r, B̂(p) ∈ Rr×m,
Ĉ(p) ∈ Rp×r. But, clearly, ‖H − Ĥ‖H2⊗L2(P) is minimized if and only if ‖H(·, p)− Ĥ(·, p)‖H2

is minimized for all p ∈ P. This would mean that, in this setting, H2 ⊗ L2-optimal
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MOR would consist of performing H2-optimal MOR for every parameter value p ∈ P,
which is a bottleneck if the ROM (6.16) needs to be computed for many parameter
values.
To overcome this, we need to restrict the structure of the ROM (6.16). One possible

approach is to take that the parametric matrices are separable (see [Haa17, Defini-
tion 2.6])

Ê(p) =

q
Ê∑

i=1

θÊi (p)Êi, Â(p) =

q
Â∑

i=1

θÂi (p)Âi,

B̂(p) =

q
B̂∑

i=1

θB̂i (p)B̂i, Ĉ(p) =

q
Ĉ∑

i=1

θĈi (p)Ĉi.

(6.17)

where θÊi , θÂi , θB̂i , θĈi : P → R are given continuous functions, and then to optimize the
non-parametric matrices Êi, Âi, B̂i, Ĉi. Clearly, with the form (6.17), if additionally qÊ,
qÂ, qB̂, qĈ are small and functions θÊi , θÂi , θB̂i , θĈi are easy to compute, the ROM (6.16)
can be computed for many parameter values in an efficient manner.
Parameter separability is a beneficial property for full-order matrices in projection-

based methods. To see this, let A(p) =
∑qA

i=1 θ
A
i (p)Ai. Then, when using a Petrov-

Galerkin projection to find reduced matrices, we haveWTA(p)V =
∑qA

i=1 θ
Â
i (p)WTAiV .

Therefore, after precomputing matrices WTAiV , the matrix WTA(p)V can be assem-
bled for any parameter value p ∈ P with time complexity which is independent of the
order of the original model. If the assumption of parameter separability is not satisfied,
an approximation is done, e.g., using the empirical interpolation method [BMNP04]
(see also [Haa17, Section 2.3.7]). Here, we will only assume that the ROM has separa-
ble parametric matrices. This enables structure preservation when full-order matrices
are separable and otherwise avoids an intermediate approximation step.
The following theorem gives the gradients of the squared H2 ⊗ L2-error.

Theorem 6.11:
Let (6.16) be of the form (6.17) and asymptotically stable for all p ∈ P. Then for the
the squared H2 ⊗ L2-error, we have

∇Êi
J = 2

∫

P

θÊi (p)
(
Q̃(p)TA(p)P̃ (p) + Q̂(p)Â(p)P̂ (p)

)
dp,

∇Âi
J = 2

∫

P

θÂi (p)
(
Q̃(p)TE(p)P̃ (p) + Q̂(p)Ê(p)P̂ (p)

)
dp,

∇B̂i
J = 2

∫

P

θB̂i (p)
(
Q̃(p)TB(p) + Q̂(p)B̂(p)

)
dp,

∇Ĉi
J = 2

∫

P

θĈi (p)
(
−C(p)P̃ (p) + Ĉ(p)P̂ (p)

)
dp. ♦
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Proof. Since P̃ and P̂ are continuous functions over a compact set P, we have P̃ ∈
L2(P;Rn×r) and P̂ ∈ L2(P;Rr×r). Similar to Theorem 2.44, we find the Lagrange
function is

L =

∫

P

tr
(
C(p)P (p)C(p)T − 2C(p)P̃ (p)Ĉ(p)T + Ĉ(p)P̂ (p)Ĉ(p)T

)
dp

+

∫

P

tr
(

Λ̃(p)TA(p)P̃ (p)Ê(p)T + Λ̃(p)TE(p)P̃ (p)Â(p)T + Λ̃(p)TB(p)B̂(p)T
)

dp

+

∫

P

tr
(

Λ̂(p)TÂ(p)P̂ (p)Ê(p)T + Λ̂(p)TÊ(p)P̂ (p)Â(p)T + Λ̂(p)TB̂(p)B̂(p)T
)

dp.

We see that the gradients with respect to P̃ and P̂ are

∇P̃L = −2CTĈ + ATΛ̃Ê + ETΛ̃Â ∈ L2(P;Rn×r),

∇P̂L = ĈTĈ + ÂTΛ̂Ê + ÊTΛ̂Â ∈ L2(P;Rr×r).

Equating with zero, it follows that Λ̃ = 2Q̃ and Λ̂ = Q̂. Therefore, the Lagrange
function simplifies to

L =∫

P

tr
(
C(p)P (p)C(p)T − 2C(p)P̃ (p)Ĉ(p)T + Ĉ(p)P̂ (p)Ĉ(p)T

)
dp

+

∫

P

tr
(

2Q̃(p)TA(p)P̃ (p)Ê(p)T + 2Q̃(p)TE(p)P̃ (p)Â(p)T + 2Q̃(p)TB(p)B̂(p)T
)

dp

+

∫

P

tr
(

2Q̂(p)Â(p)P̂ (p)Ê(p)T + Q̂(p)B̂(p)B̂(p)T
)

dp.

Finally, the gradients with respect to reduced matrices are

∇Êi
L = 2

∫

P

θÊi (p)
(
Q̃(p)TA(p)P̃ (p) + Q̂(p)Â(p)P̂ (p)

)
dp,

∇Âi
L = 2

∫

P

θÂi (p)
(
Q̃(p)TE(p)P̃ (p) + Q̂(p)Ê(p)P̂ (p)

)
dp,

∇B̂i
L = 2

∫

P

θB̂i (p)
(
Q̃(p)TB(p) + Q̂(p)B̂(p)

)
dp,

∇Ĉi
L = 2

∫

P

θĈi (p)
(
−C(p)P̃ (p) + Ĉ(p)P̂ (p)

)
dp.

The claim follows from Lemma 5.6.

Directly, we obtain the Wilson-type necessary optimality conditions forH2⊗L2-optimal
MOR.
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Corollary 6.12:
Let (6.16) be an H2 ⊗ L2-optimal ROM with the form (6.17) for (6.15). Then

∫

P

θÂi (p)
(
Q̃(p)TE(p)P̃ (p) + Q̂(p)Ê(p)P̂ (p)

)
dp = 0, i = 1, 2, . . . , qÂ,

∫

P

θÊi (p)
(
Q̃(p)TA(p)P̃ (p) + Q̂(p)Â(p)P̂ (p)

)
dp = 0, i = 1, 2, . . . , qÊ,

∫

P

θB̂i (p)
(
Q̃(p)TB(p) + Q̂(p)B̂(p)

)
dp = 0, i = 1, 2, . . . , qB̂,

∫

P

θĈi (p)
(
C(p)P̃ (p)− Ĉ(p)P̂ (p)

)
dp = 0, i = 1, 2, . . . , qĈ . ♦

6.4.2 Interpolatory conditions

Using Corollary 6.12, we derive interpolatory necessary optimality conditions. To have
the pole-residue form of the ROM, we assume Â(p) and Ê(p) can be diagonalized using
parameter-independent transformation matrices. Note that we also assumed diago-
nalizability for second-order systems in Theorem 6.4 and port-Hamiltonian systems in
Theorem 6.10.
Theorem 6.13:
Let (6.16) be an H2 ⊗ L2-optimal ROM with the form (6.17) for (6.15). Assume that
{Ê−1

1 Ê2, . . . , Ê
−1
1 Êq

Ê
, Ê−1

1 Â1, . . . , Ê
−1
1 Âq

Â
} is a simultaneously diagonalizable family of

matrices. Let S and T be invertible matrices such that STÊiT = ΛÊi = diag
(
λÊij

)
and

STÂiT = ΛÂi = diag
(
λÂij

)
, with ΛÊi = Ir. Furthermore, let

tj = Tej, sT
j = eTj S,

λÂj (p) =

q
Â∑

i=1

θÂi (p)λÂij , λÊj (p) =

q
Ê∑

i=1

θÊi (p)λÊij , λj(p) =
λÂj (p)

λÊj (p)
,

bj(p) =
1

λÊj (p)
B̂(p)Tsj, and cj(p) =

1

λÊj (p)
Ĉ(p)tj,

where λj(p) are pairwise distinct for almost all p ∈ P. Then Ĥ(s, p) =
∑r

j=1 λ
Ê
j (p)

cj(p)bj(p)T

s−λj(p)

and ∫

P

θĈi (p) ·H(−λj(p), p)bj(p) dp =

∫

P

θĈi (p) · Ĥ(−λj(p), p)bj(p) dp, i ∈ [qĈ ],
∫

P

θB̂i (p) · cj(p)TH(−λj(p), p) dp =

∫

P

θB̂i (p) · cj(p)TĤ(−λj(p), p) dp, i ∈ [qB̂],
∫

P

θÂi (p) · cj(p)TH ′(−λj(p), p)bj(p) dp =

∫

P

θÂi (p) · cj(p)TĤ ′(−λj(p), p)bj(p) dp, i ∈ [qÂ],

for j = 1, 2, . . . , r, where [k] := {1, 2, . . . , k}. ♦
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Proof. We have Êitj = λÊij Ê1tj, Âitj = λÂij Ê1tj, sT
j Êi = λÊij s

T
j Ê1, sT

j Âi = λÂij s
T
j Ê1.

Therefore, we also have Ê(p)tj = λÊj (p)Ê1tj, Â(p)tj = λÂij (p)Ê1tj, sT
j Êi(p) = λÊij (p)sT

j Ê1,
sT
j Âi(p) = λÂij (p)sT

j Ê1. From

A(p)P̃ (p)Ê(p)Tsj + E(p)P̃ (p)Â(p)Tsj +B(p)B̂(p)Tsj = 0,

it follows that
(
λÊj (p)A(p) + λÂj (p)E(p)

)
P̃ (p)ÊT

1 sj +B(p)B̂(p)Tsj = 0.

Then

P̃ (p)ÊT
1 sj = (−λj(p)E(p)− A(p))−1B(p)bj(p),

and similarly

P̂ (p)ÊT
1 sj =

(
−λj(p)Ê(p)− Â(p)

)−1

B̂(p)bj(p),

Q̃(p)Ê1tj = (−λj(p)E(p)− A(p))−TC(p)Tcj(p),

Q̂(p)Ê1tj =
(
−λj(p)Ê(p)− Â(p)

)−T
Ĉ(p)Tcj(p).

From
∫

P

θĈi (p)
(
C(p)P̃ (p)− Ĉ(p)P̂ (p)

)
ÊT

1 sj dp = 0,
∫

P

θB̂i (p)tTj Ê
T
1

(
Q̃(p)TB(p) + Q̂(p)B̂(p)

)
dp = 0,

∫

P

θÂi (p)tTj Ê
T
1

(
Q̃(p)TE(p)P̃ (p) + Q̂(p)Ê(p)P̂ (p)

)
ÊT

1 sj dp = 0,

we find the statement of the theorem.

6.5 Linear time-delay systems

We consider a linear time-delay (LTD) system with a single delay

Eẋ(t) = A0x(t) + Aτx(t− τ) +Bu(t),

y(t) = Cx(t),
(6.18)

where E,A0, Aτ ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, with E invertible. Additionally,
we assume the system to be exponentially stable.
The transfer function of this system is

H(s) = C
(
sE − A0 − e−τsAτ

)−1
B.
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As shown in [JVM11], the H2-norm ‖H‖H2
can be computed using the Gramians

similarly as for LTI systems without delay. The Gramians of the system (6.18) are
solutions to a boundary value problem involving a delay differential Lyapunov equation:

Ṗ (t)ET = P (t)AT
0 + P (t− τ)AT

τ , t > 0, (6.19a)
P (−t) = P (t)T, (6.19b)
−BBT = A0P (0)ET + EP (0)AT

0 + AτP (τ)ET + EP (−τ)AT
τ , (6.19c)

and

Q̇(t)E = Q(t)A0 +Q(t− τ)Aτ , t > 0, (6.20a)
Q(−t) = Q(t)T, (6.20b)
−CTC = AT

0Q(0)E + ETQ(0)A0 + AT
τ Q(τ)E + ETQ(−τ)Aτ . (6.20c)

The H2-norm can then be computed as (see [JVM11, Theorem 1])

‖H‖2
H2

= tr
(
CP (0)CT) = tr

(
BTQ(0)B

)
.

The system (6.19) can be solved analytically, as done in [JVM11, Section III.A]. First,
notice that differentiating (6.19b) gives us −Ṗ (−t) = Ṗ (t)T. Now, transposing (6.19a),
substituting t with −t+ τ and using the previous expression, we find

EṖ (t− τ) = −A0P (t− τ)− AτP (t), t 6 τ.

Defining z(t) = col(vec(P (t)) , vec(P (t− τ))) gives us a system of ODEs with a bound-
ary value condition

[
E ⊗ I 0

0 I ⊗ E

]
ż(t) =

[
A0 ⊗ I Aτ ⊗ I
−I ⊗ Aτ −I ⊗ A0

]
z(t), t ∈ [0, τ ],

[
− vec

(
BBT

)

0

]
=

[
A0 ⊗ E Aτ ⊗ E

I 0

]
z(0) +

[
E ⊗ Aτ E ⊗ A0

0 −I

]
z(τ),

which can be used to find the analytic solution. Therefore, an equivalent form of (6.19)
is

Ṗ (t)ET = P (t)AT
0 + P (t− τ)AT

τ , t ∈ [0, τ ], (6.21a)

EṖ (t− τ) = −A0P (t− τ)− AτP (t), t ∈ [0, τ ], (6.21b)
−BBT = A0P (0)ET + EP (0)AT

0 + AτP (τ)ET + EP (−τ)AT
τ , (6.21c)

and similarly, system (6.20) is equivalent to

Q̇(t)E = Q(t)A0 +Q(t− τ)Aτ , t ∈ [0, τ ], (6.22a)

ETQ̇(t− τ) = −AT
0Q(t− τ)− AT

τ Q(t), t ∈ [0, τ ], (6.22b)
−CTC = AT

0Q(0)E + ETQ(0)A0 + AT
τ Q(τ)E + ETQ(−τ)Aτ . (6.22c)

We will prefer this form in the following.
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6.5.1 Wilson-type conditions

We want to find H2-optimality conditions for the ROM

Ê ˙̂x(t) = Â0x̂(t) + Âτ x̂(t− τ) + B̂u(t),

ŷ(t) = Ĉx̂(t).
(6.23)

with Ê, Â0, Âτ ∈ Rr×r, B̂ ∈ Rr×m, and Ĉ ∈ Rp×r, where Ê is invertible. Just as for the
full-order model (FOM), the Gramians of the ROM (6.23) satisfy

˙̂
P (t)ÊT = P̂ (t)ÂT

0 + P̂ (t− τ)ÂT
τ , t ∈ [0, τ ],

Ê
˙̂
P (t− τ) = −Â0P̂ (t− τ)− Âτ P̂ (t), t ∈ [0, τ ],

−B̂B̂T = Â0P̂ (0)ÊT + ÊP̂ (0)ÂT
0 + Âτ P̂ (τ)ÊT + ÊP̂ (−τ)ÂT

τ ,

and
˙̂
Q(t)Ê = Q̂(t)Â0 + Q̂(t− τ)Âτ , t ∈ [0, τ ],

ÊT ˙̂
Q(t− τ) = −ÂT

0 Q̂(t− τ)− ÂT
τ Q̂(t), t ∈ [0, τ ],

−ĈTĈ = ÂT
0 Q̂(0)Ê + ÊTQ̂(0)Â0 + ÂT

τ Q̂(τ)Ê + ÊTQ̂(−τ)Âτ .

We can define the error system as
[
E 0

0 Ê

] [
ẋ(t)
˙̂x(t)

]
=

[
A0 0

0 Â0

] [
x(t)
x̂(t)

]
+

[
Aτ 0

0 Âτ

] [
x(t− τ)
x̂(t− τ)

]
+

[
B

B̂

]
u(t),

y(t)− ŷ(t) =
[
C −Ĉ

] [x(t)
x̂(t)

]
.

We find the Gramians of the error system have the form
[
P (t) P̃ (t)

P̃ (−t)T P̂ (t)

]
,

[
Q(t) Q̃(t)

Q̃(−t)T Q̂(t)

]
,

where
˙̃
P (t)ÊT = P̃ (t)ÂT

0 + P̃ (t− τ)ÂT
τ ,

E
˙̃
P (t− τ) = −A0P̃ (t− τ)− Aτ P̃ (t),

−BB̂T = A0P̃ (0)ÊT + EP̃ (0)ÂT
0 + Aτ P̃ (τ)ÊT + EP̃ (−τ)ÂT

τ ,

and
˙̃
Q(t)Ê = Q̃(t)Â0 + Q̃(t− τ)Âτ ,

ET ˙̃
Q(t− τ) = −AT

0 Q̃(t− τ)− AT
τ Q̃(t),

CTĈ = AT
0 Q̃(0)Ê + ETQ̃(0)Â0 + AT

τ Q̃(τ)Ê + ETQ̃(−τ)Âτ .
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Theorem 6.14:
Let (6.23) be asymptotically stable. Then for the squared H2-error J, we have

∇ÊJ = −2

∫ τ

0

Q̃(τ − t)TAτ
˙̃
P (t) dt+ 2Q̃(0)TA0P̃ (0) + 2Q̃(0)TAτ P̃ (τ)

− 2

∫ τ

0

Q̂(τ − t)TÂτ
˙̂
P (t) dt+ 2Q̂(0)Â0P̂ (0) + 2Q̂(0)Âτ P̂ (τ),

∇Â0
J = 2

∫ τ

0

Q̃(τ − t)TAτ P̃ (t) dt+ 2Q̃(0)TEP̃ (0)

+ 2

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t) dt+ 2Q̂(0)ÊP̂ (0),

∇Âτ
J = 2

∫ τ

0

Q̃(τ − t)TAτ P̃ (t− τ) dt+ 2Q̃(0)TEP̃ (−τ)

+ 2

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t− τ) dt+ 2Q̂(0)ÊP̂ (−τ),

∇B̂J = 2Q̃(0)TB + 2Q̂(0)B̂,

∇ĈJ = −2CP̃ (0) + 2ĈP̂ (0). ♦

Proof. We proceed similar to the proof of Theorem 5.7. The H2-error is given by

‖H − Ĥ‖2
H2

= tr

([
C −Ĉ

] [ P (0) P̃ (0)

P̃ (0)T P̂ (0)

][
CT

−ĈT

])

= tr
(
CP (0)CT − 2CP̃ (0)ĈT + ĈP̂ (0)ĈT

)
.

Therefore, we consider the optimization problem

minimize
Ê,Â0,Âτ ,B̂,Ĉ,P̃ ,P̂

tr
(
CP (0)CT − 2CP̃ (0)ĈT + ĈP̂ (0)ĈT

)
,

subject to
˙̃
P (t)ÊT = P̃ (t)ÂT

0 + P̃ (t− τ)ÂT
τ , t ∈ [0, τ ],

E
˙̃
P (t− τ) = −A0P̃ (t− τ)− Aτ P̃ (t), t ∈ [0, τ ],

−BB̂T = A0P̃ (0)ÊT + EP̃ (0)ÂT
0 + Aτ P̃ (τ)ÊT + EP̃ (−τ)ÂT

τ ,

˙̂
P (t)ÊT = P̂ (t)ÂT

0 + P̂ (t− τ)ÂT
τ , t ∈ [0, τ ],

Ê
˙̂
P (t− τ) = −Â0P̂ (t− τ)− Âτ P̂ (t), t ∈ [0, τ ],

−B̂B̂T = Â0P̂ (0)ÊT + ÊP̂ (0)ÂT
0 + Âτ P̂ (τ)ÊT + ÊP̂ (−τ)ÂT

τ ,

where we have P̃ ∈ H1([−τ, τ ];Rn×r) and P̂ ∈ H1([−τ, τ ];Rr×r). The Lagrange func-
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tion is

L = tr
(
CP (0)CT − 2CP̃ (0)ĈT + ĈP̂ (0)ĈT

)

+

∫ τ

0

tr
(

Λ̃1(t)T
(

˙̃
P (t)ÊT − P̃ (t)ÂT

0 − P̃ (t− τ)ÂT
τ

))
dt

+

∫ τ

0

tr
(

Λ̃2(t)T
(
E

˙̃
P (t− τ) + A0P̃ (t− τ) + Aτ P̃ (t)

))
dt

+ tr
(

Λ̃T
3

(
A0P̃ (0)ÊT + EP̃ (0)ÂT

0 + Aτ P̃ (τ)ÊT + EP̃ (−τ)ÂT
τ +BB̂T

))

+

∫ τ

0

tr
(

Λ̂1(t)T
(

˙̂
P (t)ÊT − P̂ (t)ÂT

0 − P̂ (t− τ)ÂT
τ

))
dt

+

∫ τ

0

tr
(

Λ̂2(t)T
(
Ê

˙̂
P (t− τ) + Â0P̂ (t− τ) + Âτ P̂ (t)

))
dt

+ tr
(

Λ̂T
3

(
Â0P̂ (0)ÊT + ÊP̂ (0)ÂT

0 + Âτ P̂ (τ)ÊT + ÊP̂ (−τ)ÂT
τ + B̂B̂T

))
,

where Λ̃1, Λ̃2 ∈ H1([0, τ ];Rn×r), Λ̃3 ∈ Rn×r, Λ̂1, Λ̂2 ∈ H1([0, τ ];Rr×r), and Λ̂3 ∈ Rr×r

are Lagrange multipliers.

Directional derivatives with respect to P̃ and P̂ , in directions D̃ and D̂, are

dP̃L(D̃) =

∫ τ

0

tr
((
−ÊT ˙̃

Λ1(t)T − ÂT
0 Λ̃1(t)T + Λ̃2(t)TAτ

)
D̃(t)

)
dt

+

∫ τ

0

tr
((
−ÂT

τ Λ̃1(t)T − ˙̃
Λ2(t)TE + Λ̃2(t)TA0

)
D̃(t− τ)

)
dt,

+ tr
((
−2ĈTC − ÊTΛ̃1(0)T + Λ̃2(τ)TE + ÊTΛ̃T

3A0 + ÂT
0 Λ̃T

3E
)
D̃(0)

)

+ tr
((
ÊTΛ̃1(τ)T + ÊTΛ̃T

3Aτ

)
D̃(τ)

)

+ tr
((
−Λ̃2(0)TE + ÂT

τ Λ̃T
3E
)
D̃(−τ)

)

dP̂L(D̂) =

∫ τ

0

tr
((
−ÊT ˙̂

Λ1(t)T − ÂT
0 Λ̂1(t)T + Λ̂2(t)TÂτ

)
D̂(t)

)
dt

+

∫ τ

0

tr
((
−ÂT

τ Λ̂1(t)T − ˙̂
Λ2(t)TÊ + Λ̂2(t)TÂ0

)
D̂(t− τ)

)
dt

+ tr
((
ĈTĈ − ÊTΛ̂1(0)T + Λ̂2(τ)TÊ + ÊTΛ̂T

3 Â0 + ÂT
0 Λ̂T

3 Ê
)
D̂(0)

)

+ tr
((
ÊTΛ̂1(τ)T + ÊTΛ̂T

3 Âτ

)
D̂(τ)

)

+ tr
((
−Λ̂2(0)TÊ + ÂT

τ Λ̂T
3 Ê
)
D̂(−τ)

)
.
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6.5 Linear time-delay systems

Equating with zero, it follows that
˙̃
Λ1(t)Ê = −Λ̃1(t)Â0 + AT

τ Λ̃2(t), for a.e. t ∈ [0, τ ],

ET ˙̃
Λ2(t) = AT

0 Λ̃2(t)− Λ̃1(t)Âτ , for a.e. t ∈ [0, τ ],

2CTĈ = AT
0 Λ̃3Ê + ETΛ̃3Â0 − Λ̃1(0)Ê + ETΛ̃2(τ),

Λ̃1(τ) = −AT
τ Λ̃3,

Λ̃2(0) = Λ̃3Âτ ,

and
˙̂
Λ1(t)Ê = −Λ̂1(t)Â0 + ÂT

τ Λ̂2(t), for a.e. t ∈ [0, τ ],

ÊT ˙̂
Λ2(t) = ÂT

0 Λ̂2(t)− Λ̂1(t)Âτ , for a.e. t ∈ [0, τ ],

−ĈTĈ = ÂT
0 Λ̂3Ê + ÊTΛ̂3Â0 − Λ̂1(0)Ê + ÊTΛ̂2(τ),

Λ̂1(τ) = −ÂT
τ Λ̂3,

Λ̂2(0) = Λ̂3Âτ .

The solution is

Λ̃1(t) = −2AT
τ Q̃(τ − t), Λ̃2(t) = 2Q̃(−t)Âτ , Λ̃3 = 2Q̃(0),

Λ̂1(t) = −ÂT
τ Q̂(τ − t), Λ̂2(t) = Q̂(−t)Âτ , Λ̂3 = Q̂(0).

Gradients with respect to reduced matrices are

∇ÊL =

∫ τ

0

Λ̃1(t)T ˙̃
P (t) dt+ Λ̃T

3

(
A0P̃ (0) + Aτ P̃ (τ)

)

+

∫ τ

0

Λ̂1(t)T ˙̂
P (t) dt+

∫ τ

0

Λ̂2(t)
˙̂
P (t− τ)T dt

+ Λ̂T
3 Â0P̂ (0) + Λ̂3Â0P̂ (0)T + Λ̂T

3 Âτ P̂ (τ) + Λ̂3Âτ P̂ (−τ)T

= −2

∫ τ

0

Q̃(τ − t)TAτ
˙̃
P (t) dt+ 2Q̃(0)TA0P̃ (0) + 2Q̃(0)TAτ P̃ (τ)

− 2

∫ τ

0

Q̂(τ − t)TÂτ
˙̂
P (t) dt+ 2Q̂(0)Â0P̂ (0) + 2Q̂(0)Âτ P̂ (τ),

∇Â0
L = −

∫ τ

0

Λ̃1(t)TP̃ (t) dt+ Λ̃T
3EP̃ (0)

−
∫ τ

0

Λ̂1(t)TP̂ (t) dt+

∫ τ

0

Λ̂2(t)P̂ (t− τ)T dt

+ Λ̂3ÊP̂ (0)T + Λ̂T
3 ÊP̂ (0)

= 2

∫ τ

0

Q̃(τ − t)TAτ P̃ (t) dt+ 2Q̃(0)TEP̃ (0)

+ 2

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t) dt+ 2Q̂(0)ÊP̂ (0),
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∇Âτ
L = −

∫ τ

0

Λ̃1(t)TP̃ (t− τ) dt+ Λ̃T
3EP̃ (−τ)

−
∫ τ

0

Λ̂1(t)TP̂ (t− τ) dt+

∫ τ

0

Λ̂2(t)P̂ (t)T dt

+ Λ̂3ÊP̂ (τ)T + Λ̂T
3 ÊP̂ (−τ)

= 2

∫ τ

0

Q̃(τ − t)TAτ P̃ (t− τ) dt+ 2Q̃(0)TEP̃ (−τ)

+ 2

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t− τ) dt+ 2Q̂(0)ÊP̂ (−τ),

∇B̂L = Λ̃T
3B + Λ̂3B̂ + Λ̂T

3 B̂

= 2Q̃(0)TB + 2Q̂(0)B̂,

∇ĈL = −2CP̃ (0) + 2ĈP̂ (0).

From the previous theorem, we directly find the Wilson-type necessary optimality con-
ditions for H2-optimal MOR of LTD systems.
Corollary 6.15:
Let (6.23) be an H2-optimal ROM for (6.18). Then

0 = Q̃(0)TEP̃ (0) +

∫ τ

0

Q̃(τ − t)TAτ P̃ (t) dt

+ Q̂(0)ÊP̂ (0) +

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t) dt,

0 = Q̃(0)TEP̃ (−τ) +

∫ τ

0

Q̃(τ − t)TAτ P̃ (t− τ) dt

+ Q̂(0)ÊP̂ (−τ) +

∫ τ

0

Q̂(τ − t)TÂτ P̂ (t− τ) dt,

0 = Q̃(0)TA0P̃ (0) + Q̃(0)TAτ P̃ (τ)−
∫ τ

0

Q̃(τ − t)TAτ
˙̃
P (t) dt

+ Q̂(0)Â0P̂ (0) + Q̂(0)Âτ P̂ (τ)−
∫ τ

0

Q̂(τ − t)TÂτ
˙̂
P (t) dt,

0 = Q̃(0)TB + Q̂(0)B̂,

0 = CP̃ (0)− ĈP̂ (0). ♦

6.6 Conclusion

We derivedWilson-type necessary optimality conditions forH2-optimal MOR of second-
order systems, port-Hamiltonian systems, LTD systems with a single delay, andH2⊗L2-
optimal MOR of PLTI systems. Similar approach can be taken for, e.g., H2-optimal
MOR of linear time-varying (LTV) systems and L2-optimal MOR of stationary para-
metric systems.
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CHAPTER 7

CONCLUSIONS AND OUTLOOK

Contents
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Future research perspectives . . . . . . . . . . . . . . . . . . . . . . . . 140

7.1 Summary

In this thesis, we have investigated structure-preserving MOR problems for different
types of structured systems, mainly network systems.
In Chapter 3, we studied clustering-based MOR of multi-agent systems. In the first

part, we have focused on linear multi-agent systems and considered the problem of H2-
optimal clustering-based MOR. Based on the relaxation of the discrete optimization
problem, we have proposed combining IRKA with a clustering algorithm. Next, we
have generalized this to a framework of combining a projection-based method with a
clustering algorithm and applied it to nonlinear multi-agent systems.
In Chapter 4, we have considered more theoretically the error due to clustering. First,

we have looked at linear multi-agent systems and derivedH2 andH∞ error bounds when
using an AEP. We have also proposed an extension to arbitrary partitions using the
distance to a graph for which the partition becomes almost equitable. Next, we have
considered nonlinear power systems, a type of nonlinear multi-agent systems. There, we
derive equivalence conditions for clustering with zero error based on graph symmetries
and equitable partitions.
In Chapter 5, we have studied the problem of subsystem reduction for linear network

systems. In the first part, we extend a balancing-based MOR method which preserves
stability for network systems satisfying a certain small-gain condition. Using the known
a priori H∞ error bound, it allows automatic choice of the order of the reduced sub-
systems. In the second part, we considered H2-optimal subsystem reduction. Using
the Gramian-based formulation of the H2-error, we have derived gradients with respect
to matrices defining the ROM. Thereby, we have also obtained Wilson-type necessary
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7 Conclusions and Outlook

optimality conditions.
In Chapter 6, we have used the ideas from Chapter 5 to other structure-preserving

H2-optimal MOR problems. In particular, we have considered structure-preserving
MOR for second-order systems, port-Hamiltonian systems, and time-delay systems.
Additionally, we have also considered H2 ⊗ L2-optimal MOR for parametric systems.
We have derived Wilson-type necessary optimality conditions and for some systems
also the interpolatory optimality conditions.

7.2 Future research perspectives

We considered different aspects of structure-preserving MOR, which motivate future
research in new methods for network systems and other structured systems.
In Chapter 3, we have found on a small-scale example that combining a projection-

based method and a clustering algorithms gives a partition close to the optimal one.
However, it is not clear whether this is true in general. Deriving an error bound for
this approach would be an interesting goal for future research. Furthermore, comparing
different clustering algorithms and with a theoretical analysis would be a worthwhile.
Additionally, extending the framework to multi-agent system evolving over directed
graphs should be possible.
In Chapter 4, we have derived error bounds for clustering-based MOR of certain

linear multi-agent systems. Extending the results to more general multi-agent systems,
e.g., with different output functions or with directed underlying graph, would be an
interesting problem. Finding easy to compute error bounds for non-almost equitable
partitions remains an open problem. For power systems, we have focused on reduction
with zero error. Deriving general error bounds remains an open problem.
In the first part of Chapter 5, we have considered subsystem reduction for network

systems satisfying a particular small-gain condition. Relaxing this condition, e.g., by
dissipativity, would extend the applicability of this approach. In the second part, we
have derived Wilson-type necessary H2-optimality conditions. Finding interpolatory
conditions and developing an interpolatory method could be an interesting problem.
In Chapter 6, as in the previous, finding interpolatory conditions for H2-optimal

MOR of time-delay systems would be an interesting research question. Additionally,
efficient implementation for large-scale systems is an open problem.
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