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Zusammenfassung

Diese Arbeit untersucht das Gebiet der optimalen Versuchsplanung im Sinne der alge-
braischen Statistik sowie Grenzwertsätze für eine zweiseitige Teststatistik auf Coxeter-
Gruppen. Optimale Versuchsplanung für verallgemeinerte lineare Modelle (GLM) ist
durch die zunehmende Verbreitung von GLM in den Anwendungen ein wichtiges Thema.
Aufgrund ihrer nichtlinearen Struktur gibt es vielfältige Probleme bei der Berechnung
von optimalen Versuchsplänen für GLM, insbesondere da die Optimalität in der Regel
nur lokal im Parameterraum gegeben ist. Diese Arbeit soll zeigen, wie durch Anwen-
dung von algebraischen und geometrischen Methoden die Komplexität der Berechnung
von optimalen Versuchsplänen für GLM verringert werden kann. Die Arbeit steht damit
in der Tradition anderer Arbeiten auf dem Gebiet der algebraischen Statistik.

Im ersten Teil der Arbeit werden die notwendige Notation eingeführt und die rele-
vanten mathematischen Grundlagen der statistischen Versuchsplanung, GLM und ins-
besondere der statistischen Versuchsplanung für GLM erläutert. Nach dieser Einführung
beschreiben wir optimale Versuchspläne bezüglich des D-Kriteriums für zwei spezielle
GLM. Dabei handelt es sich zunächst um das Bradley–Terry Paarvergleichsmodell, in
dem die Präferenz zwischen zwei Alternativen durch eine binäre Zufallsvariable model-
liert wird, sodass eine statistische Rangordnung zwischen den Alternativen ersichtlich
wird. Wir erhalten eine kombinatorische Beschreibung von D-optimalen Versuchsplänen
mit minimalem Träger für das Modell mit beliebig vielen Alternativen und untersuchen
die semi-algebraische Geometrie für optimale Versuchspläne für das Modell mit 4 Alter-
nativen. Danach betrachten wir ein spezielles lineares Regressionmodell mit zufälligen
Koeffizienten, für welches die Berechnung von optimalen Versuchsplänen durch die Sym-
metrie und Invarianz des Modells vereinfacht wird. Darauf aufbauend definieren wir die
neue Familie der rhombischen Designs und zeigen, dass die D-Optimalität dieser Ver-
suchspläne direkt von der Korrelationsmatrix der zufälligen Koeffizienten abhängt.

Im zweiten Teil der Arbeit präsentieren wir Ergebnisse aus dem Bereich der probabilis-
tischen Kombinatorik. Wir beweisen den zentralen Grenzwertsatz für eine zweiseitige
Teststatistik auf Coxeter-Gruppen, also für eine Abbildung, die jedem Gruppenelement
und seiner Inverse einen ganzzahligen Wert zuordnet. Die untersuchte Statistik bildet
dabei ein Elemtent w aus einer Coxeter-Gruppe W auf die Anzahl der Descents in w plus
die Anzahl der Descents in seiner Inversen w−1 ab. Wir zeigen, dass für eine zufällige
Folge von Gruppenelementen, welche gleichverteilt aus einer Folge von Coxeter-Gruppen
gezogen werden, die Statistik genau dann dem zentralen Grenzwertsatz genügt, wenn
die Varianz der Stastik gegen unendlich läuft.
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Abstract

This thesis investigates the design of experiments from the perspective of algebraic statis-
tics as well as limit theorems for a two-sided test statistic on Coxeter groups. Design of
experiments for generalized linear models (GLM) is a recurring topic for practitioners
and statisticians, which is of growing importance due to the widespread application of
GLM throughout the sciences. Unfortunately, optimal designs for GLM are often hard
to obtain and complicated to apply, as optimality can in general only be achieved locally
in the parameter space. This thesis aims at showing a path on how to apply tools from
algebra and geometry to reduce the complexity of computing experimental designs for
GLM in the tradition of previous research conducted in this branch of the field known
as algebraic statistics.

In the first part of the thesis, we introduce the notational and mathematical founda-
tions of optimal design, GLM and optimal design for GLM. Based on this introduction,
we find designs that are optimal with respect to the special but very important D-
criterion for two particular models. The first model we investigate is the Bradley–Terry
paired comparison model. In this model, each participant voices a preference for one al-
ternative over another, which reveals a statistical ranking among the alternatives in the
experiment. We obtain a combinatorial description of D-optimal designs with minimal
support for an arbitrary number of alternatives and study the semi-algebraic geometry
of optimality regions for the case with 4 alternatives. Afterwards, we present a special
random coefficient model and exploit the symmetry of the model to reduce the com-
plexity of computing optimal designs. We introduce the notion of rhombic designs that
suffices to the symmetry of the model and show that the conditions on these designs to
be optimal depend directly on the correlation matrix of the random coefficients.

In the second part of the thesis, we present results of a different flavor that belong to
the field of probabilistic combinatorics. We show a central limit theorem for a two-sided
statistic on Coxeter groups, that is a map from a group element and its inverse to the
integers. The statistic we study assigns to an element w of a finite Coxeter group W
the number of descents of w plus the number of descents of its inverse w−1. Our main
result is that the statistic evaluated at a random sequence of group elements uniformly
chosen from Coxeter groups of growing rank satisfies the central limit theorem if and
only if the variance of the statistic goes to infinity.
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1. Introduction

In the introduction, we give a short overview over the history and current situation of
design of experiments for generalized linear models and its connection with algebraic
statistics, as well as a draft of the discussed topics of this thesis.

The thought of statistical planning develops naturally in any statistician conducting
an experiment. Early systematic investigations on how to plan experiments developed
into the field of design of experiments, which is also known as optimal design or exper-
imental design in the literature. Various authors contributed to the theory in the first
half of the 20th century, for example Kirstine Smith in 1918 [Smi18], before Ronald
Fisher published his monograph The design of experiments in 1935 [Fis35], which is pre-
dominantly named as the foundational book of the field. Fisher worked from 1919-1933
at Rothamsted Experimental Station in one of the oldest agricultural research facilities
in the world, where he investigated design of experiments for crop studies. Until today,
agricultural experiments, together with medical and pharmaceutical studies as well as
trials in psychology or marketing, are among the most important applications for the
theory.

The basic concept of optimal design is the following: A practitioner is planning an
experiment and needs to decide how to collect the data in the experiment with respect
to a chosen statistical model, so how many observations to draw at each experimen-
tal setting. The way the observations are distributed among the possible experimental
settings is called an experimental design. Obviously, the experimenter is interested in
maximizing the statistical information that can be obtained by the experiment that is
conducted according to the selected design. The information of some experiment is not
an abstract concept, but was formalized by Fisher as the variance of the score-function,
which is the derivative of the likelihood function. Consequently, the information is also
known as Fisher information. The definition is justified by the fact that the covari-
ance matrix of suitable estimators like the maximum likelihood estimator coincides with
the inverse of the Fisher information. Now, the information of the experiment varies
among the possible experimental designs. In an experiment with only one parameter,
the optimal design that maximizes the information would therefore be the one with the
highest information, but for multiparametric problems, the Fisher information is a ma-
trix (cf. Definition 2.12). To define a maximum, the typical approach of the theory of
optimal design is to maximize some functional which is mapping the information matrix
to the real line instead. Such a functional is called an optimality criterion. Two of the
standard examples are listed in Section 2.8.

Following the work of Fisher, the theory was pushed forward in the second half of the
20th century by researchers like Rao, Elfving, Chernoff, Kiefer, Wolfowitz and many oth-
ers. Kiefer and Wolfowitz proved the first equivalence theorem in 1960 [KW60]. It shows
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1. Introduction

the equivalence of D-optimality (cf. Section 2.8.1) and G-optimality (cf. Section 2.8.2)
in linear models. In this thesis, we restrict ourselves to the case of D-optimality, which
means that a design is denoted as optimal when it maximizes the logarithm of the de-
terminant of the information matrix. Because of the asymptotic relation between the
inverse information matrix and the covariance of the maximum likelihood estimator,
the D-criterion corresponds to minimizing the volume of the confidence ellipsoid. As
the set of information matrices is convex and the D-criterion is concave, the process
to find an optimal design with respect to the D-criterion is in principle a convex op-
timization problem. This enabled Kiefer and Wolfowitz to apply the toolset of convex
optimization theory to experimental design. Further developments of the theory lead to
the general equivalence theorem proven by Whittle in [Whi73], which shows a duality
result for a general optimality criterion under certain assumptions. We introduce the
generalized Kiefer–Wolfowitz equivalence theorem, adapted to our application, in Sec-
tion 2.10. Among the standard references for design of experiments are the books of
Fedorov [Fed72], Pukelsheim [Puk93] and Silvey [Sil80], to which we will refer frequently
throughout the thesis.

In the last decades, a new branch of statistics developed: Algebraic statistics. The
leitmotif of this field is the application of techniques from commutative algebra, alge-
braic geometry and computer algebra to problems in statistics. One of the first fields
in statistics where this approach was picked up is design of experiments. Consequently,
the term algebraic statistics was coined by Riccomagno, Pistone and Wynn in [PRW00].
In their book they study, aside of other questions of algebraic statistics, the question
of identifiability of regression models via experimental designs. A regression model is
identifiable by an experimental design, when the corresponding information matrix is
non-singular. In particular, Riccomagno et al. investigate the identifiability of polyno-
mial regression models with techniques from computer algebra. For this question, they
do not consider the actual proportion of observations at each design point, but only the
support (thus the design points) of a design. This means that in their definition, a design
is a finite set of points in Kd. The design corresponds to the set of all polynomials in
K[x1, . . . , xd] that evaluate to zero in all of the design points. Such a set of polynomials is
called a (polynomial) ideal. Each ideal can be represented by a finite set of polynomials
which is referred to as a basis. A special type of basis that exhibits useful properties for
computational approaches is a Gröbner basis. Pistone et al. show how to derive whether
a polynomial regression model is identifiable by a chosen design from its corresponding
Gröbner basis [PRW00, Theorem 27].

An overview over the history of algebraic statistics is [Ric09]. According to this article,
the first publications in the field of algebraic statistics are the articles of Pistone–Wynn
[PW96] and Diaconis–Sturmfels [DS98], although some algebraic statisticians consider
the article of Pearson from 1894 [Pea94] as the origin of algebraic statistics. Pearson
showed that the empirical distribution of the ratio between the forehead- and body-
length of crabs in the bay of Naples can be explained with a Gaussian mixture. To
do this, he had to use the method of moments to compute a polynomial of degree
9, see [ARS17] for a detailed overview. The article of Pistone–Wynn [PW96] studies
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the identifiability of models given a particular design, see also [PRW00], as outlined
above. Diaconis and Sturmfels introduce a new algorithm for Markov chain sampling
that relies on computations over polynomial rings and therefore requires methods from
computational algebra. Today, among the standard references in algebraic statistics are
the books of Sullivant [Sul18] and the lecture notes of Drton, Sturmfels and Sullivant that
arose from an Oberwolfach seminar [DSS09]. In [Sul18] there is a survey of results from
design-flavored algebraic statistics in Chapter 12. Drton et al. [DSS09] do not discuss
design of experiments. Further recent references for algebraic statistics in experimental
design are [PWZ17, RKR16, MSW13, AHT12, BMO+10, GRRW10, BLM+07].

Generalized linear models (GLM) are a generalization of linear regression models. As
they are highly relevant in modern statistics, there is a significant interest in optimal
designs for such models. For GLM, the Fisher information depends non-linearly on the
unknown parameter of interest. Therefore, D-optimal designs are only locally optimal,
which means that the optimality of a design depends on the parameter. Furthermore,
through the non-linearity, the computational complexity to find an optimal design in-
creases quickly in the dimension. We introduce GLM in Section 2.2 and exhibit design
of experiments for GLM in Section 2.6. Local optimality is explained in Section 2.9.
We study optimal designs for a specific GLM in Chapter 3 in form of the Bradley–Terry
paired comparison model, which is a logistic regression model with a specific structure
of the experimental settings. An introduction to Chapter 3 follows in Section 1.2.

As we exhibited before, the problem to find a D-optimal design translates into a
convex optimization problem. In Section 2.11, we formalize this approach for GLM.
We show that the optimality region of a locally D-optimal design in the parameter
space for GLM under the assumption of a discrete design region as well as polynomial
entries in the regression function is given as a semi-algebraic set, that is a set defined by
polynomial inequalities and equations (see Definition 2.36). If a design has a positive
weight on each design point in the design region, the corresponding optimality region in
the parameter space is the non-negative real part of an affine variety, so the zero set of
a finite collection of polynomials (see Definition 2.35). This follows from the fact that
if we choose the correct variables, the entries of the information matrix of a design for
a GLM are polynomials. Via Cramer’s rule and the adjugate matrix, the polynomial
structure in the optimization problem follows (see (2.11.1)).

This thesis is based on four articles: [KRS19, GHRS20, Röt20] and [BR19]. The
structure of the thesis is as follows: Chapter 2 introduces the theory of generalized
linear models, optimal design and basics from algebra that are necessary to study the
geometry of optimal design. In Chapter 3 we exhibit the geometry of the Bradley–
Terry paired comparison model, which is summarized in Section 1.2. Chapter 3 was
published as [KRS19]. Afterwards, we discuss local optimality for a special type of linear
regression with random coefficients in Chapter 4, which was published as [GHRS20]. An
introduction to this chapter is Section 1.3. In the second part of the thesis, we present
the results of [Röt20] and [BR19], which show the central limit theorem for a two-sided
statistic on Coxeter groups, in Chapter 5. An introduction is given in Section 1.4.
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1. Introduction

1.1. Design of experiments in data science

In this section, we give a short introduction to the connection of experimental design to
recent topics in statistics and their applications.

A growing topic in the intersection of statistics and computer science is a field that is,
in general, called “big data”. The name is somewhat self-explanatory: Through modern
technology, data is collected and analyzed automatically on a large scale. This leads to
the problem that standard statistical methods are not of reasonable computation time
due to the sheer size of the data set. This is one of the problems that sparks the interest
in the field of machine learning as a tool to deal with the computational and statistical
challenges that go along with large data sets.

Large data sets are often obtained as a byproduct or at least without direct control of
the covariates in the data acquisition. Therefore, the importance of design of experiments
for these problems is not directly visible. It is revealed while handling the data itself. An
example is presented in the paper of Drovandi et al. [DHM+17], where they discuss the
application of design of experiments for model selection in large data sets. Their idea is
to choose a subsample with respect to some sampling design and choose the model from
this subsample. This can also be applied sequentially with a sequential design if there
is a “continuous” inflow of data.

A common problem of passively obtained large data sets is bias, as potentially hidden
confounders may influence the observations. Pesce et al. [PRW19] discuss this problem
and suggest to embed the model into a larger model with an added bias term that
represents the hidden confounders. By the means of the randomization the bias can be
modeled as a block effect. Pesce et al. propose a game-theoretic approach to minimize
the covariance of the maximum likelihood estimator for the parameter of the model while
balancing the potential bias.

Another field with connections to optimal design is the study of bandit problems,
which are a standard topic in machine learning. Already in 1960, Vogel [Vog60] intro-
duced sequential allocation designs for two-armed bandit experiments. A recent con-
tribution to this problem is the article of Zhang and Lee [ZL10], where they apply
computational methods and empirical priors to optimize sequential allocation designs
for bandit models.

The field of design of experiments studies statistical models via the corresponding
Fisher information. A related field that generalizes the investigation of statistical mod-
els with a perspective from information theory and differential geometry is known as
information geometry. A recent textbook is [AJLS17] and a short introduction is [Pis19].
A prime example discussed in [Pis19] is the probability simplex (cf. Definition 2.25) for
discrete statistical models. For example, say that we study an experiment with two
binary random variables X1, X2. This is parameterized by

p11 = P(X1 = 1, X2 = 1), p10 = P(X1 = 1, X2 = 0), p01 = P(X1 = 0, X2 = 1).

with p00 = P(X1 = 0, X2 = 0) = 1 − p11 − p10 − p01. The corresponding probability
simplex is a convex set in R3 spanned by the origin and the three unit vectors. Now,
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1.2. Introduction to the chapter on the Bradley–Terry paired comparison model

when we impose constraints on the model, we see that these constraints correspond to
subsets of the probability simplex. For example, when we require X1 and X2 to be
independent, the resulting model corresponds to a surface in the probability simplex
defined by

p00p11 = p10p01.

This is a twisted square inside the simplex where the corners coincide with the vertices.

A formalized approach to the study of statistical models is the definition of a statistical
manifold. A statistical manifold is a Riemannian manifold where each point corresponds
to a probability distribution. A Riemannian metric that links information geometry
with design of experiments is the Fisher metric, introduced by Rao in 1945 [Rao45].
The Fisher metric defined on a smooth statistical manifold is, if seen as a matrix, the
Fisher information matrix (see Definition 2.12 and [AJLS17, Def. 2.1]). For example,
the interior of the probability simplex is a smooth statistical manifold. For a study of
the boundary of statistical manifolds like the probability simplex, see [Kah10].

In the example above, the joint density of X1 and X2 parameterizes the probability
simplex. This makes it possible to obtain general formulas for the information matrix
and its properties, see [Pis19, Prop. 13]. For example, the inverse information matrix
is zero only on the vertices of the probability simplex. Furthermore, the determinant of
the inverse of the information matrix is computed, which shows that it equals zero on
the borders of the probability simplex and is positive on the inside. This approach gen-
eralizes from the submanifold that is the interior of the probability simplex to statistical
manifolds, see [AJLS17].

In this thesis, we study a geometric perspective on topics in optimal design for GLM,
which is a contribution to integrate this particular aspect into data science. For example,
learning deep neural networks can be interpreted as the iterated application of GLM.
The analysis of large data sets creates the necessity for automated approaches in the
theory. Further collaboration between algebra, geometry and statistics may provide new
methods for such problems in modern statistics.

1.2. Introduction to the chapter on the Bradley–Terry
paired comparison model

Consider an experiment to evaluate the preferences among m alternatives in which par-
ticipants choose one preferred item when presented two of the alternatives. Thus, the
choices of the participants are binary replies. This setting can be studied with the
Bradley–Terry paired comparison model, which was introduced in [BT52] to analyze
taste testing results for pork depending on different feeding patterns. The model has
proven popular in different areas of statistics. Hastie and Tibshirani [HT98] developed
a coupling model similar to the Bradley–Terry model to study class probabilities for
pairs of classes. Simons and Yao [SY99] discussed the asymptotics of the model when
the number of potential alternatives tends to infinity. Algorithms for Bradley–Terry
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1. Introduction

models are discussed, for example, in [Hun04], and asymptotics of algorithms, for ex-
ample, in [DMJ13]. Besides marketing or transportation, another popular application
area for the Bradley–Terry model is the world of professional sports such as American
football, car racing, matching in tournaments, card games or strategies for sport bets,
see [CMP07, GRF03, BMS04, KKT06]. The Bradley–Terry model is part of a broader
class of models that describe statistical rankings. Specifically, it arises from marginal-
ization of the Plackett–Luce model, see [SW12].

We are interested in optimal designs for the Bradley–Terry model, that is, a scheme
how to assign a fixed number of measurements to different experimental settings, such
that the experiment is most informative. Optimal experimental designs for the Bradley–
Terry model were first investigated by Torsney [Tor04], who gave an algorithmic ap-
proach to fit the parameters of the model. Graßhoff and Schwabe [GS08] completely
analyzed the case of three alternatives. They gave symbolic solutions for the design
problem depending on the parameters and described the optimality areas of these de-
sign classes in the parameter space. We extend the results of Graßhoff and Schwabe in
two directions. We discuss the case of four alternatives in detail and characterize optimal
saturated designs, that is designs with minimal support size, for an arbitrary number
of alternatives. Section 3.1 gives the general setup. Section 3.4 contains an almost
complete analysis of the case of 4 alternatives. Only one very challenging polynomial
inequality system remains open (Problem 3.10). In Sections 3.2 and 3.3 we discuss sat-
urated optimal designs for an arbitrary number of alternatives. Our main result is an
easy, combinatorial polynomial inequality description of regions in the parameter space,
where a given saturated design is optimal. We include the information for which designs
these region of optimality are empty (Theorem 3.6).

Theorem 1.1 (Simplified version of Theorem 3.6). For the Bradley–Terry paired com-
parison model, a design with minimal support is D-optimal if and only if the graph,
where the nodes correspond to the alternatives and the edges to the comparisons that
appear in the design, is a path.

Polynomial inequality constraints in experimental design are a recurring topic. In
[KOS16], Kahle et al. discuss the optimality of saturated designs for the Rasch Poisson
counts model, which is an example for Poisson regression. They explain for a special
case, where the information matrix polytope (cf. Definition 2.22) equals the correlation
polytope, how to relax the problem to find a D-optimal design by passing over to the
linear matrix inequality relaxation of the information matrix polytope. This means
that instead of optimizing over the information matrix polytope, one optimizes over
the corresponding spectahedron that arises as an intersection of the cone of positive
semidefinite matrices and the affine space spanned by the information matrix polytope
[KOS16, Section 4]. As Poisson regression is a GLM, their results can be discussed in
the setting of Section 2.6.

Knowledge about the optimality regions can be very helpful in designing experiments.
For example, a pilot study could reveal that the estimate of the parameters are all
within one region of optimality. In such a situation it is then clear which design to use.
See [DMP+04] for a general class of models where local optimality is studied. In the
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1.3. Introduction to the chapter on optimality regions for random coefficient models

discussion in Section 3.5 we compare the efficiency of our tailored designs versus uniform
designs as the parameters grow in magnitude. Furthermore, we outline open problems
and further research directions.

1.3. Introduction to the chapter on optimality regions in
multiple regression with correlated random
coefficients

Hierarchical regression models with random coefficients enjoy growing importance in bi-
ological and psychological applications, whenever there is a variation with respect to the
observed subjects. In a random coefficient model, one assumes that the parameters are
random variables instead of deterministic values. This is applied to for example capture
individual differences among the participants of an experiment that cannot be explained
by a fixed parameter. We often cannot expect the random coefficients to be uncorre-
lated. Hence, we assume that the random coefficients are e.g. normally distributed with
a population mean and a non-diagonal covariance matrix. A special model that will
be the topic of this chapter are random effects models for linear regression with single
responses. This means that we obtain only one observation per unit. This particular
model was motivated by Freund and Holling in [FH08] and Patan and Bogacka in [PB07].
One wants to find optimal experimental designs for these models with respect to some
optimality criterion. Graßhoff et al. determined D-optimal designs that maximize the
determinant of the corresponding information matrix, for a couple of different covari-
ance structures in [GHS09] and [GDHS12]. They found that in contrast to fixed effects
models for multiple linear regression optimal settings may, surprisingly, occur in the
interior of the design region under certain conditions on the covariance structure of the
random coefficients. We assume that the random coefficients are distributed with equal
variances and are equi-correlated as well as uncorrelated with the random coefficients
of the linear effects. Now, we investigate conditions on the covariance structure to dis-
criminate situations in which optimal designs are completely supported on the extreme
points of the design region as in fixed effects models and situations in which optimal
designs must have additional support points in the interior. This discrimination is done
for the special class of rhombic designs, which are invariant with respect to permutations
of the regressors and simultaneous sign change. We introduce rhombic designs in Section
4.2. Section 4.3 studies via the Kiefer–Wolfowitz equivalence theorem (Theorem 2.33)
for which parameter regions a D-optimal rhombic design has interior support points.
Said parameter regions are described by semi-algebraic sets. Furthermore, we discuss
how the optimality depends on the covariance structure. Additionally, we show that for
the assumed covariance structure of the random coefficients, the D-optimality of designs
with interior support points translates to a simple matrix equation for the information.
Let D = diag(d0, D1) be the (K + 1) × (K + 1)-dimensional covariance matrix of the
random coefficients, so that d0 > 0 and D1 is a positive semidefinite K×K-dimensional
completely symmetric matrix (cf. Eq. (4.2.3)). Furthermore, let M(ξ) denote the infor-
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1. Introduction

mation matrix of some experimental design ξ.

Theorem 1.2 (Simplified version of Theorem 4.5). A rhombic design ξ∗ that is supported
only on the vertices of the hypercube is D-optimal if and only if D− (K + 1)M(ξ∗)−1 is
a diagonal matrix with vanishing trace and non-negative first entry.

Theorem 1.3 (Simplified version of Theorem 4.8). A design ξ∗ with a design point in
the interior of the hypercube is D-optimal if and only if (K + 1)M(ξ∗) = D−1.

We show as a consequence of the results in Section 4.3 that the distinction, whether
a D-optimal rhombic design requires interior support points or not, can be made by
evaluating a polynomial that only depends on the covariance matrix of the random
coefficients.

Corollary 1.4 (Simplified version of Corollary 4.6 and Corollary 4.9). A rhombic design
supported (not) only on the vertices of the hypercube can only be D-optimal when the
first diagonal entry of D−1 is (smaller) larger or equal to the second diagonal entry of
D−1.

Based on these results, we are able to compute optimal designs and their optimality
regions explicitly for small to moderate dimensions in Section 4.4 and we conjecture
results for arbitrary dimensions in Section 4.5.

1.4. Introduction to the chapter on the central limit
theorem for a two-sided statistic on Coxeter groups

Statistical and probabilistic methods are powerful tools for the investigation of combi-
natorial and algebraic objects. They reveal deeply rooted connections between those
fields. Of greatest importance in probabilistic asymptotics is the central limit theorem
(CLT), that is the convergence in distribution of a sequence of random variables, nor-
malized by its mean and its standard deviation, towards the standard Gaussian. The
main result of the chapter is an equivalent formulation of the central limit theorem for a
sequence of random variables that arises from a statistic on sequences of finite Coxeter
groups. Chatterjee–Diaconis [CD17] denominate the statistical relevance of the CLT for
the two-sided descent statistic to be for permutation tests. In a permutation test, we
are interested in certificates for “non-randomness” of a sample. The research of Chat-
terjee and Diaconis regarding the two-sided descent statistic was motivated by defining
a metric from descents to use as test statistic. As the descent statistic is not symmetric,
the two-sided descent statistic is preferred (although it also does not define a metric,
cf. [CD17]).

Finite Coxeter groups or reflection groups are a recurring topic in (algebraic) statistics
and probabilistic combinatorics. Beside the research on asymptotics, the importance of
reflection groups is well known in many fields of statistics. In the last decades, this
extended from the symmetric group to other reflection groups, especially to the infinite
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1.4. Introduction to the chapter on the CLT for a two-sided statistic on Coxeter groups

irreducible families such as the signed permutation groups. A standard example, as
in this thesis, is the theory of design of experiments, where invariance and symmetry
considerations are a useful tool (see e.g. Chapters 3 and 4). This goes back at least
to Kiefer [Kie74]. In algebraic statistics, recent examples are the paper of Francis et
al. [FSW17], where they discuss the construction of exact confidence nets via finite
reflection groups and the work of Boege et al. [BDKS19, Section 3], where the geometry
of gaussoids reveals a symmetry imposed by the signed permutation group.

In the symmetric group Sym(n), which is the Coxeter group of type An−1, the descent
statistic is defined as follows: Write the elements of Sym(n) in their one-line notation.
Then, the number of descents des(π) of an element π ∈ Sym(n) is the number of posi-
tions in the corresponding one-line notation where an entry is larger than its successor.
This concept generalizes to arbitrary finite Coxeter groups, the necessary definitions are
presented in Section 5.3.

Fixing such a Coxeter group W , choosing an element of W uniformly at random and
evaluating the descent statistic gives rise to a random variable DW . Kahle and Stump
recently showed that for sequences (Wn)n of finite Coxeter groups of growing rank, the
sequence DWn satisfies the CLT if and only if its variance tends to infinity, see [KS20].
They asked [KS20, Problem 6.10] whether for the random variable TW associated to the
statistic t(w) := des(w) + des(w−1), a similar statement holds true. The statistic t also
has a geometric interpretation in terms of a two-sided analogue of the Coxeter complex
introduced by Petersen [Pet18], for details see [BR19, Appendix A].

For the case where Wn = Sym(n + 1), the irreducible Coxeter group of type An,
Vatutin [Vat96] showed that TW satisfies the CLT. This was later, with different methods,
reproven by Chatterjee–Diaconis [CD17] and Özdemir [Ö19]. To obtain a similar result
for the group Wn = Bn, so for signed permutations, we follow the approach of Chatterjee–
Diaconis. They generated a random permutation and its inverse from a vector of random
variables that are uniformly distributed on the square (cf. Section 5.7) and applied the
method of interaction graphs, which is shortly introduced in Section 5.5. We modified
this approach by adding a random sign in the right way (see Section 5.8). The result in
Section 5.9 is the CLT for TW where Wn = Bn. Consequently, in Section 5.10 we derive
the CLT for TW where Wn = Dn by exploiting the similarities between Bn and Dn.

Theorem 1.5 (Simplified version of Theorems 5.11 and 5.12 ). Let Wn = Bn or Wn = Dn.
Then, TW satisfies the CLT.

Section 5.15.1 generalizes the above result to a broader class of statistics. Sec-
tion 5.15.2 shows via the Cramér-Wold device that Theorem 1.5 implies a two-dimen-
sional CLT for the statistic (des(w), des(w−1)).

Our main result is a positive answer to the question of Kahle–Stump under an addi-
tional hypothesis on the sequence of Coxeter groups:

Theorem 1.6 (Simplified version of Theorem 5.37). Let (Wn)n be a well-behaved se-
quence of finite Coxeter groups such that rk(Wn)→∞ and let Tn be the random variable
associated to the statistic t on Wn. Then the following are equivalent:

1. (Tn)n satisfies the CLT.
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2. The variance of Tn goes to infinity.

3. The maximal size maxn of a dihedral parabolic subgroup in Wn does not grow too
fast (This is in particular the case if maxn is bounded).

We give a precise statement of the result as Theorem 5.37 in Section 5.14 but would
like to remark that we were not able to construct a sequence of Coxeter groups that is not
well-behaved in the above sense. After posting our results to the arXiv, V. Féray [Fé20]
provided a proof for Theorem 5.37 that does not require the sequence to be well-behaved,
see also Remark 5.39.

In order to obtain the result above, we take an approach similar to the one used by
Kahle–Stump [KS20] for the descent statistic. In particular, this involves an application
of Lindeberg’s theorem for triangular arrays. There is however a major difference be-
tween their approach and ours: The generating function of the descent statistic is given
by the Eulerian polynomial which factors over the reals and has only negative roots,
see [Bre94] and [SV15]. Kahle and Stump heavily used this in order to deduce their
result. In contrast to that, the generating function of the statistic t is the two-sided
Eulerian polynomial as studied e.g. in [CRS66], [Pet13] and [Vis13]. It does not have
such a nice factorization, even in the setting of symmetric groups. In order to resolve
the additional difficulties arising from this, we are led to compute higher moments of
the random variables TW in Section 5.11. For this, we use and generalize the work of
Özdemir [Ö19]. A list of moments that we computed is in Appendix A. We use the
results for the higher moments to apply the Lindeberg theorem for triangular arrays
in Section 5.13. Together with the result on a CLT for weighted sums of converging
sequences presented in Section 5.12, we obtain the main result. The chapter ends with
a discussion of possible future research directions and a generalization of Theorem 1.5
as well as a two-dimensional CLT via the Theorem of Cramér–Wold.
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2. Generalized Linear Models and
Optimal Design Theory

This chapter introduces definitions and notations for exponential families and generalized
linear models following the textbooks of Alsmeyer [Als09] and Shao [Sha03], and the
publication of Fahrmeir and Kaufmann [FK85]. Afterwards, we establish the concepts
of optimal design of experiments as described in [Sil80] while focusing on generalized
linear models and outline a geometric perspective on the corresponding optimization
problem.

2.1. Natural Exponential Families

We begin with the basic concept of a statistical experiment:

Definition 2.1. A statistical experiment is a triple

(S,F , (Wθ)θ∈Θ),

consisting of an non-empty set S, a σ-algebra F on S and a family (Wθ)θ∈Θ of probability
measures on (S,F), which is parameterized by elements of a parameter space Θ.

Before we introduce exponential families, we remind the reader of the notions of
dominated measures and dominated statistical experiments:

Definition 2.2. Let ν̃ and ν be two measures defined on the same measurable space.
Then we say that ν̃ is dominated by ν, if ν̃(A) = 0 for every set A where ν(A) = 0.

Definition 2.3. Let (S,F , (Wθ)θ∈Θ) be a statistical experiment. We say that the ex-
periment is dominated, if there exists a σ-finite measure ν on (S,F), so that Wθ is
dominated by ν for all θ ∈ Θ.

By the Theorem of Radon-Nikodym(see for example [Bil95]), it follows that if a sta-
tistical experiment is dominated there exist ν-densities

pθ :=
dWθ

dν

for all θ ∈ Θ. Now, we are able to define exponential families:
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2. Generalized Linear Models and Optimal Design Theory

Definition 2.4 (One-parametric exponential family). Let (S,F , (Wθ)θ∈Θ) be a domi-
nated statistical experiment with dominating measure ν. The family (Wθ)θ∈Θ of prob-
ability measures is a one-parametric exponential family, if the ν-densities pθ = dWθ

dν
are

of the following form: There are maps C : Θ → R, Q : Θ → R as well as measurable
functions h : S → R, T : S → R so that for every θ ∈ Θ it holds that

pθ = C(θ)h exp(Q(θ)T ), ν − a.s. (2.1.1)

In applications, it is often the case that we are given a family (Wθ)θ∈Θ via a density
pθ of the form described in (2.1.1) and then confirm that it is dominated by a σ-finite
measure. Usually, this measure is either the counting measure or the Lebesgue measure.

Example 2.5. Many of the standard distributions are exponential families, we state a
few one-parametric examples below:

• Bernoulli distribution with Q(θ) = log
(

θ
1−θ

)
, C(θ) = 1−θ, T (y) = y and h(y) = 1

with the counting measure as the dominating measure and Θ = [0, 1],

• Poisson distribution with Q(θ) = log (θ), C(θ) = e−θ, T (y) = y and h(y) = 1
y!

with
the counting measure as the dominating measure and Θ = R>0,

• Exponential distribution with Q(θ) = −θ, C(θ) = θ, T (y) = y and h(y) = 1 with
the Lebesgue measure as the dominating measure and Θ = R>0,

• Normal distribution with mean θ, assuming known variance σ2, with Q(θ) = θ
σ2 ,

C(θ) = e−
θ2

2σ2 , T (y) = y and h(y) = 1√
2πσ

e−
y2

2σ2 with the Lebesgue measure as the
dominating measure and Θ = R.

We see from the structure of the density in Eq. (2.1.1) that C(θ) is the scaling factor
which guarantees that the density pθ integrates to one with respect to ν. Therefore we
write

C(θ) =

(∫
h(y) exp (Q(θ)T (y)) ν(dy)

)−1

.

This implies that pθ only depends on θ via Q(θ), which allows us to reparameterize the
exponential family in terms of ζ = Q(θ):

Definition 2.6 (Natural Exponential Family). An one-parametric exponential family
with a ν-density of the form

pζ = C(ζ)h exp (ζ T )

with ζ = Q(θ) is called a natural exponential family with natural parameter ζ. Let

Z := {ζ ∈ R | 0 <

∫
h exp (ζT ) dν <∞}

be the natural parameter space.
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Z is a convex subset of R that contains the set Q(Θ). For many models, it holds that
Q(Θ) = Z = R. Another analytical simplification of exponential families is obtained
by passing over to the pushforward measure W T

θ := Wθ ◦ T−1, which is a probability
measure on the measurable space (R,B(R)).

Theorem 2.7. Let (Wθ)θ∈Θ be an exponential family in Q and T . Then, the pushforward
measure (W T

θ )θ∈Θ is an exponential family in Q and the identity.

The Theorem enables us to study natural exponential families with T as the iden-
tity. Let Y be a random variable with ν-density pθ(y) = C(θ)h(y) exp (θy) for θ ∈ Θ.
Assuming that Θ has interior points, all moments of Y exist for θ ∈ Θ◦. Additionally
assuming C(θ) > 0, we define

µ(θ) := Eθ(Y ) =
∂

∂θ
(− log(C(θ))), Σ(θ) := Covθ(Y ) =

∂2

∂θ2
(− log(C(θ))).

To visualize this, we exemplify the case of a one-parametric exponential family dom-
inated by the Lebesgue measure. From [Leh86, Theorem 9 in Section 2.7] it follows
that the integration with respect to y and the derivative with respect to θ commute.
Therefore, it holds that

Eθ(Y ) =

∫
y C(θ)h(y) exp (θy) dy

=

∫
C(θ)h(y)

∂

∂θ
exp (θy) dy

=

∫
∂

∂θ
(C(θ)h(y) exp (θy))−

(
∂

∂θ
C(θ)

)
h(y) exp (θy) dy

= −
∫ (

∂

∂θ
C(θ)

)
h(y) exp (θy) dy

= −
∂
∂θ
C(θ)

C(θ)
= − ∂

∂θ
log(C(θ)).

It is common to use the convenient notation b(θ) := − log(C(θ)), so that

pθ(y) = h(y) exp
(
θTy − b(θ)

)
.

Let Θ◦ denote the interior of the parameter space Θ. The positive definiteness of Σ(θ)
for θ ∈ Θ◦ implies that µ(θ) is injective on Θ◦ [FK85]. Therefore, a value µ(θ) only
corresponds to at most one parameter value θ ∈ Θ◦.

2.2. Generalized linear models

With the definition of a natural exponential family, we can introduce generalized linear
models. From now on, θ denotes the natural parameter of a one-parametric exponential
family. We will restrict ourselves to the case of one-parametric exponential families.
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2. Generalized Linear Models and Optimal Design Theory

Definition 2.8 ([FK85, Section 2.1]). A generalized linear model is defined as follows:
Let Yi, 1 ≤ i ≤ n be independent random variables that are distributed according to a
natural one-parametric exponential family with density

pθ(y) = h(y) exp (θy − b(θ)) .

Let f : X → Rp be a p-dimensional regression vector. We say that f(xi) with xi ∈ X
relates to Yi via a linear combination with a parameter β ∈ B ⊆ Rp such that γi =
f(xi)

Tβ. The linear predictor γi connects to the mean µ(θ) of Yi via the injective link
function

g : µ(Θ◦)→ R,

such that γi = g(µ(θ)).

Instead of using the link function g(γ), Fahrmeir and Kaufmann claim that it is more
convenient for theoretical purposes to introduce an injective function u = (g◦µ)−1. This
implies that θ = u(f(x)Tβ). Of special importance are natural link functions :

Definition 2.9 (Natural link functions). The link function g = µ−1 is called a natural
link function. This implies u = id and we obtain a linear regression model θ = f(x)Tβ
for the natural parameter.

A classical example for a generalized linear model is logistic regression:

Example 2.10 (Logistic Regression for binary responses). The model consists of binary
random variables Y1, . . . , Yn with

Epi(Yi) = P(Yi = 1) = pi, P(Yi = 0) = 1− pi. (2.2.1)

Therefore, the distribution of Yi with respect to the counting measure is a natural
exponential family with natural parameter θ = Q(p) = log

(
p

1−p

)
, h(y) = 1, T (y) = y,

b(θ) = log(1 + eθ) and Θ◦ = R. This implies that µ(θ) = ∂
∂θ
b(θ) = eθ

1+eθ
. Now, the

natural link function g = µ−1 implies

θ = f(x)Tβ,

so a linear regression for the natural parameter θ. This is equivalent to

log

(
p

1− p

)
= f(x)Tβ ⇔ p = µ(θ) =

ef(x)T β

1 + ef(x)T β
.

The function g(p) = log
(

p
1−p

)
is also known as the logit link function. The terms p

1−p
are sometimes denoted as odds and consequently log

(
p

1−p

)
as log-odds.
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2.3. Regularity assumptions and the information matrix

Let f : X → Rp be a regression vector. Before we are able to introduce the information
matrix for GLM, we need to make certain regularity assumptions. Let β0 denote the true
but unknown parameter, where β is any parameter in some B ⊆ Rp. Usually, B = Rp.
We assume the following:

1. B is open and, for natural link functions, convex.

2. f(x)Tβ ∈ g(µ(Θ◦)) for all β ∈ B.

3. u is twice continuously differentiable.

4. Let (xi)i be a sequence on X . The matrix
∑n

i=1 f(xi)f(xi)
T has full rank for all

n ≥ n0 for some n0 ∈ N.

We will restrict ourselves to natural link functions and refer to Section 4 of [FK85,
p. 360] for the situation with non-natural link functions. For natural link functions, it
holds that u = id. When the observations in a generalized linear model are distributed
with respect to some natural exponential family with density pθ(y), the log-likelihood of
an independent sample Y1 = y1, . . . , Yn = yn observed at x1, . . . , xn is

ln(y1, . . . , yn, β) =
n∑
i=1

(f(xi)
Tβ yi − b(f(xi)

Tβ)) + c, (2.3.1)

where c =
∑n

i=1 log(h(yi)) does not depend on β. The likelihood function gives rise to
the maximum likelihood estimator [Sha03, Definition 4.3]:

Definition 2.11 (Maximum likelihood estimator). Let β̂ be a measurable function of
some random variables Y1, . . . , Yn. If the corresponding log-likelihood ln(y1, . . . , yn, β)
attains a local maximum over the parameter space B in β̂, we say that β̂ is a maximum
likelihood estimator (MLE).

Definition 2.12 (Information matrix). Let Y1, . . . , Yn be some random variables and
ln(y1, . . . , yn, β) the corresponding log-likelihood function. This yields the score function
sn(y1, . . . , yn, β) and the information matrix M(x1, . . . , xn, β):

sn(y1, . . . , yn, β) :=
∂

∂β
ln(y1, . . . , yn, β),

M(x1, . . . , xn, β) := Covβ(sn(Y1, . . . , Yn, β)).

The information matrix of a vector of independent observations is the sum of infor-
mation matrices of single observations [Sha03, Prop. 3.1]:

Proposition 2.13. Let Y = (Y1, . . . , Yn) be a vector of independent random variables
observed at x1, . . . , xn. Then,

M(x1, . . . , xn, β) =
n∑
i=1

M(xi, β), (2.3.2)

where M(xi, β) is the information matrix of Yi for 1 ≤ i ≤ n.
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We define µi(β) = µ(f(xi)
Tβ) and Σi(β) = Σ(f(xi)

Tβ). Then, we see that

sn(y1, . . . , yn, β) =
n∑
i=1

f(xi)(yi − µi(β)),

M(x1, . . . , xn, β) =
n∑
i=1

f(xi)Σi(β)f(xi)
T .

2.4. Cramér–Rao bound

In this section, we use the notation M(θ) for the information matrix of a random variable
Y = (Y1, . . . , Yn), as this section does not require Y to be distributed according to an
exponential family. The parameter θ is chosen from a parameter space Θ ∈ Rp such
that the information matrix is a p × p-matrix. The information matrix yields a strong
implication for unbiased estimators in the form of the information inequality known as
the Cramér–Rao bound. It states, that the covariance of an unbiased estimator Ψ̂(Y ) for
a function ψ(θ) of the parameter can be bounded below by the inverse of the information
matrix [Sha03, Theorem 3.3]. Note that for matrices M1,M2, the notation M1 ≥ M2

corresponds to the Loewner order, such that M1 ≥M2 means that M1 −M2 is positive
semidefinite.

Theorem 2.14 (Cramér–Rao bound). Let Y = (Y1, . . . , Yn) be distributed according to
a probability measure Wθ where θ is chosen from the parameter space Θ ⊂ Rp. Let Ψ̂(Y )
be an unbiased estimator for Ψ(θ) where Ψ : Rp → Rp is a differentiable function. Given
a probability density pθ = dWθ

dν
with respect to a dominating measure ν for all θ ∈ Θ that

satisfies
∂

∂θ

∫
κ(y)pθ(y)ν(dy) =

∫
κ(y)

∂

∂θ
pθ(y)ν(dy)

for κ(y) = 1 and κ(y) = T (y) for all θ ∈ Θ and assuming Θ◦ to be non-empty, it holds
that

Cov(Ψ̂(Y )) ≥
(
∂

∂θ
Ψ(θ)

)T
M(θ)−1 ∂

∂θ
Ψ(θ).

If Ψ(θ) = θ, this simplifies to

Cov(θ̂) ≥M(θ)−1.

The Cramér–Rao bound was the first information inequality that was discovered and
is therefore one of the origins of information theory and information geometry. [AJLS17,
Theorem 5.7] displays a general Cramér–Rao bound in the terminology of information
geometry that also holds for biased estimators, see also [AJLS17, Section 5.2.3]. For
some special but important cases as for example linear models, the Cramér–Rao bound
is realized as an equation for the least squares estimator (which is identical to the MLE
for linear regression if we assume Gaussian errors). In these cases, the covariance of the
MLE is therefore given as the inverse of the corresponding information matrix:
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Example 2.15 (Linear regression realizes the Cramér–Rao bound). Let yi = f(x)T θ+εi
be a linear regression model with normally distributed errors εi ∼ N(0, 1), regression
vector f(x) = (1, x1, . . . , xp−1) and parameter θ ∈ Θ ⊆ Rp. Then, the least-squares

estimator θ̂ equals the MLE and realizes the Cramér-Rao bound as an equation:

Cov(θ̂) = M(θ)−1.

Unfortunately, the equality above does not hold in general. Furthermore, for gener-
alized linear models the MLE is not always unbiased, so Theorem 2.14 does not apply.
Nevertheless, we will see in the following section that, under the right assumptions, the
covariance of the MLE coincides asymptotically with the inverse information matrix.

2.5. Consistency and asymptotic normality of the MLE
for GLM

This section gives a brief overview of the results on consistency and asymptotic normality
of the MLE for GLM that were proved by Fahrmeir and Kaufmann in [FK85]. An
estimator Ψ̂(Y ) for a function Ψ of the parameter β0 to be estimated from data Y =
(Y1, . . . , Yn) in an experiment is consistent when it converges towards Ψ(β0) for n→∞.
If the convergence is in probability this is denoted as weak consistency while almost sure
convergence corresponds to strong consistency.

Theorem 2.16 ([FK85, Theorem 1]). Under certain regularity assumptions, there is a
sequence (β̂n)n of random variables with

1. P(sn(Y1, . . . , Yn, β̂) = 0)→ 1,

2. β̂
P→ β0.

The theorem shows the weak consistency of β̂n, so the convergence in probability
of the estimator towards the true parameter. Furthermore, it is obtained that the
score function converges in probability towards zero. With a slight modification of
the regularity assumptions (see [FK85]), Fahrmeir and Kaufmann obtained almost sure
convergence:

Theorem 2.17 ([FK85, Theorem 2]). Under certain regularity assumptions, there is a
sequence (β̂n)n of random variables and some random integer N2 with

1. P(sn(Y1, . . . , Yn, β̂) = 0 for all n ≥ N2)→ 1,

2. β̂
a.s.→ β0.

The almost sure convergence of β̂ towards β0 is called strong consistency.
The following lemma provides the foundation for the result in Theorem 2.19.
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Lemma 2.18 ([FK85, Lemma 1]). Under certain regularity assumptions, the normed
score function is asymptotically normal:

M(x1, . . . , xn, β0)−
1
2 sn(Y1, . . . , Yn, β0)

D→ N(0, I).

Theorem 2.19 ([FK85, Theorem 3]). Under the regularity assumptions of [FK85,
Lemma 1], the normed MLE is asymptotically normal:

M(x1, . . . , xn, β0)
1
2 (β̂ − β0)

D→ N(0, I).

Additionally assuming the convergence of 1
n
M(x1, . . . , xn, β) towards a limiting infor-

mation matrix M̃(β0), we obtain

√
n(β̂ − β0)

D→ N(0, M̃(β0)−1).

Therefore, the covariance of the MLE is asymptotically equal to the inverse of the
information matrix. This allows us to make similar statements regarding the theory of
design of experiments for GLM as for linear regression. For linear regression, an optimal
design that “maximizes” the information matrix equivalently “minimizes” the covariance
of the corresponding estimator. Now, with the results on consistency and asymptotic
normality of the MLE for GLM, we can say that asymptotically, this is also true for
GLM in the sense that the covariance of the asymptotic distribution is minimized. We
are therefore able to introduce experimental designs for GLM in the following section.

2.6. Experimental design for generalized linear models

Section 2.4 established the connection between the information matrix and the covari-
ance of an unbiased estimator. Section 2.5 shows that asymptotically, the inverse covari-
ance of the MLE for GLM coincides with the information matrix. Now, it is customary
to rate the MLE by the value of a risk function. Conveniently, the most common risk
function is the covariance. In this setting, this means that the quality of the estimator in
the sense of minimizing its covariance is related to finding an experiment with maximal
information. Furthermore, studying the information matrix instead of the covariance
has some advantages. For example, the information matrix of a vector of independent
observations Y = (Y1, . . . , Yn) is the sum of the corresponding information matrices of
Yi for 1 ≤ i ≤ n (cf. Proposition 2.13). This allows us to apply methods from convex
optimization, as we will see later.

We assume a generalized linear model with observations Y1, . . . , Yn distributed accord-
ing to a one-parametric natural exponential family and a natural link function g, such
that

Eβ(Yi) = g−1(f(xi)
Tβ). (2.6.1)

Now, f(xi) is a p-dimensional regression vector whose entries determine the mean of Yi.
The corresponding coordinates xi which determine the entries of f(xi) are called design
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2.6. Experimental design for generalized linear models

points, while the set X of all possible design points is the design space. Let λβ(x) denote
the intensity function such that Σ(f(x)Tβ) = λβ(x)Ip, where Ip is the p × p identity
matrix. This holds as we assumed the corresponding natural exponential family to be
one-parametric. Let fβ(x) =

√
λβ(x)f(x) denote the rescaled regression vector.

Definition 2.20 ((Induced) design space). The set of all possible design points is the
design space X . In a generalized linear model with a regression function f(x) and
intensity λβ(x) for x ∈ X , we call U = fβ(X ) the induced design space.

The optimization procedure in optimal design is to assign proportions of observations
to each design point, so that the resulting experiment maximizes the information matrix.
In other words, we define a discrete probability measure ξ on X , where n ξ(x) is a non-
negative integer. ξ is then called an experimental design, which is often abbreviated to
design.

Definition 2.21 (Experimental design). An experimental design of sample size n is a
discrete probability measure ξ on some design space X , so that ξ(x) ∈ N0

n
for all x ∈ X .

We call ξ(x) the design weight at design point x ∈ X .

This means that a design of sample size n can be described by a finite set of mutually
distinct settings xi, i = 1, ...,m, for the explanatory variable and the corresponding
numbers ni ∈ N of replications at xi, where xi is chosen from the design region X of
potential settings. This means that we can write ξ(xi) = ni

n
.

The information of a single design point x ∈ X is

M(x, β) = λβ(x)f(x)f(x)T .

We call M(x, β) the elemental information matrix [AFHZ14] at design point x. With
Proposition 2.13, we say that the information matrix of a design ξ is given as the sum
of the elemental information matrices normalized by the number of observations, that is

M(ξ, β) =
∑
x∈X

ξ(x)M(x, β).

The information matrix of a design is a convex combination of elemental information
matrices. This leads to the definition of the information matrix polytope:

Definition 2.22 (Information matrix polytope). The convex hull

M(β) = conv{M(x, β) : x ∈ X}

is called the information matrix polytope.

We continue the example on logistic regression (cf. Example 2.10):

Example 2.23 (Logistic regression for binary responses, continued). For the logistic
regression, we obtain

λβ(x) = Σ(f(x)Tβ)
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2. Generalized Linear Models and Optimal Design Theory

=
∂2

∂θ2
b(θ)|θ=f(x)T β

=
eθ

(1 + eθ)2
|θ=f(x)T β

=
ef(x)T β

(1 + ef(x)T β)2

Therefore, the information matrix of a design ξ is

M(ξ, β) =
∑
x∈X

ξ(x)λβ(x)f(x)f(x)T .

2.7. Approximate designs

Motivated from applications, we defined an experimental design to be a probability
measure ξ, so that n ξ(x) is a non-negative integer for all x ∈ X . While this is convenient
and necessary in applications, it has some analytical disadvantages for the theoretical
approach, as the discontinuity is problematic. Therefore it is customary to drop the
requirement for n ξ(x) to be a non-negative integer and instead allow ξ to be any discrete
probability measure with finite support on X . This concept is known as approximate
design [Kie74]:

Definition 2.24 (Approximate Design). A discrete probability measure ξ with finite
support on a design space X is an approximate experimental design.

Naturally, every point in the information matrix polytope corresponds to some design
ξ and vice versa. The transition to approximate designs allows to apply methods from
convex optimization to the problems in the theory of optimal design, as we replaced
variables of the form N

n
with continuous variables. This is the standard approach in design

of experiments. In practice, an optimal design is derived from an optimal approximate
design via careful rounding. Unfortunately, in some cases this might not provide the
optimal design among the exact designs, that is those designs that satisfy n ξ(x) ∈ N for
all x ∈ X . If X is a finite set, the set Ξ containing all approximate designs is the subset
of Rp known as the probability simplex:

Definition 2.25 (Probability Simplex). The set of all designs on a given finite design
space X is the probability simplex (or design simplex)

Ξ =

ξ ∈ R|X |≥0 :

|X |∑
i=1

ξi = 1

 .

2.8. Optimality criteria

As we established before, the optimization step of experimental design is to maximize
the information matrix. To do this, the experimenter chooses a criterion, which usually
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2.8. Optimality criteria

is a map from the information matrix polytope to the real line, and searches for the
design that maximizes the chosen criterion. This section, following [Sil80, Section 2.2],
provides a brief introduction to two of the most common criteria with special attention
to the D-criterion, which we will later use in this work.

Definition 2.26 (Optimality criterion). An optimality criterion φ is a monotonic in-
creasing functional φ : M → R that maps from the information matrix polytope to
the real line. The monotonicity is with respect to the Loewner order where M1 ≥ M2

means that M1 − M2 is positive semidefinite. An optimality criterion then suffices
φ(M1) ≥ φ(M2) for M1 ≥ M2. If the information matrix depends on the parameter β,
we write φβ for the criterion function. We say that a criterion is homogeneous when for
every M ∈M and a ∈ R it holds that φ(aM) = aφ(M).

The definition leads to the introduction of “quality measures” for designs, as one is
interested in rating the optimality of a design.

Definition 2.27 (Efficiency). Let ξ∗ denote the optimal approximate design with respect
to some homogeneous criterion φ. Then,

eff(ξ, β) =
φβ(ξ)

φβ(ξ∗)

defines the efficiency of a design ξ [Sil80, p. 58].

It is customary to choose the homogenized versions of the functional φβ(ξ) in the
efficiency. This is done, as the resulting number is the inverse of the factor of the number
of observations needed to achieve the same information as for the optimal design. For
example, if the efficiency of some design is 1

2
, we need twice as many observations to

obtain the same information as in the optimal case.

2.8.1. D-criterion

We introduce the D-criterion by choosing the logarithm of the determinant of the in-
formation matrix as the functional to maximize. The logarithm is taken to simplify
computations.

Definition 2.28. An experimental design ξ∗ is (locally) D-optimal, if

log det(M(ξ∗, β)) ≥ log det(M(ξ, β))

for all ξ ∈ Ξ.

The functional log det(M(ξ, β)) is a suitable choice for an optimality criterion, as the
determinant displays properties of the maximum likelihood estimator. For example,
the volume of a confidence ellipsoid corresponds to the determinant of the covariance
of the estimator. Due to the inverse relation between the covariance of the MLE and
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2. Generalized Linear Models and Optimal Design Theory

the information matrix, maximizing the information coincides with minimizing the vol-

ume of confidence ellipsoid. The homogeneous D-criterion is φβ(ξ) = (det(M(ξ, β)))
1
p .

Therefore, the efficiency with respect to a D-optimal design ξ∗ of some design ξ with
p = dim(M(ξ∗)), assuming that the regression functions are linearly independent on X ,
is given as

effD(ξ, β) =

(
det(M(ξ, β))

det(M(ξ∗, β))

) 1
p

. (2.8.1)

2.8.2. G-criterion

For a fixed c ∈ Rp, it holds that the variance of the least-squares estimator of cTβ
associated to a design ξ is proportional to cTM(ξ, β)−1c. A criterion would therefore be
established by choosing some C ⊂ Rp, so that a design ξ∗ is optimal when it minimizes

max
c∈C

cTM(ξ, β)−1c.

If C = f(X ) is chosen as the induce design region such that

ξ∗ = arg min
ξ∈Ξ

max
x∈X

f(x)TM(ξ, β)−1f(x),

we say that ξ∗ is G-optimal. G-optimality is a standard example of a minimax criterion
(see also [Fed72, p. 63]).

2.9. Local optimality and maximin designs

The optimality of an experimental design ξ is determined by the optimality criterion that
is applied to the information matrix M(ξ, β) of the design. In general, the optimality
is hereby not only depending on the design itself but also on the parameter vector β.
We therefore say that an experimental design ξ is locally optimal with respect to β
and some optimality criterion. In special but important cases, the information matrix
M(ξ, β) does not depend on β, which means that an optimal design is globally optimal,
i.e. optimal for all β. An example for this are linear models. The dependence on β has
severe consequences on the process of finding an optimal design, as we need to choose
a parameter to fix the optimal design. As the information varies throughout the β-
space, the efficiency of a design is also dependent on β. This means that without prior
knowledge of the true β, a practitioner is often interested in a design that is considered
to be maximin-optimal. The term maximin-optimality, in different notions, is widely
used in the theory of optimal design, so we fix the definition for this work:

Definition 2.29 (Maximin design). A design ξr is a maximin-design, when it maximizes
the minimal efficiency in a subset B′ of the parameter space B ⊆ Rp, so

ξr = arg max
ξ∈Ξ

min
β∈B′

eff(ξ, β).
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2.10. Equivalence theorems

The choice of the parameter for the design can be done in various ways. The most
common are the following: Make a pilot study according to a maximin-design (in many
models for example a uniform design) to find a rough estimate for β. Alternatively, it is
common to use expert knowledge to select β. This approach can also be implemented
as a sequential method, that adapts the design based on the gained information. Unfor-
tunately, this means that the observations are not independent anymore, such that the
definition for the information matrix changes. These problems has been researched since
at least 1953 [Che53] and is an ongoing research topic. We refer the reader to [DMP+04]
for further details and references.

2.10. Equivalence theorems

Section 2.8 introduced the various optimality criteria, which may be applied to find op-
timal experimental designs. This section displays an equivalence theorem that connects
D-optimality to convex optimization. The description as equivalence theorem stems
from the fact that it shows the equivalence of D-optimality and G-optimality (see Sec-
tion 2.8.2 and Eq. (2.10.1)). For a general introduction, see [Puk93, Sil80]. Now, let
φ(M) = log det(M) denote the D-criterion. The following definition is taken from [Sil80,
Section 3.5.2].

Definition 2.30 (Directional derivative). The directional derivative (Fréchet derivative)
of the D-optimality criterion at M1 in the direction of M2 for some (m− 1)× (m− 1)-
matrices M1,M2 is

FD(M1,M2) = lim
ε↘0

1

ε
(log det((1− ε)M1 + εM2)− log det(M1)) .

It holds for M1,M2 ∈ M that (1 − ε)M1 + εM2 ∈ M, as the information matrix
polytope M is convex. Therefore, log det((1 − ε)M1 + εM2) is defined. Through the
concavity of log det it follows that

1

ε
(log det((1− ε)M1 + εM2)− log det(M1))

is a non-increasing function of ε in 0 < ε ≤ 1 and therefore FD(M1,M2) always exists if
we allow for FD(M1,M2) = +∞ [Sil80, Section 3.5.2 (ii)].

As the D-criterion is a concave function on a convex set (the information matrix
polytope), its maximum can be interpreted as the “top of the hill”, which means that
a design is D-optimal, when its directional derivative to all matrices in the information
matrix polytope is non-positive. Now, if the hill is smooth, the problem may be reduced
to only the directional derivatives towards the elemental information matrices [Sil80,
Theorem 3.7]:

Theorem 2.31 (Kiefer–Wolfowitz equivalence theorem). ξ∗ is D-optimal if and only if
FD(M(ξ∗), f(x)f(x)T ) ≤ 0 for all x ∈ X .
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2. Generalized Linear Models and Optimal Design Theory

The following corollary is a consequence of the Kiefer–Wolfowitz equivalence theorem:

Corollary 2.32 ([Sil80, Corollary 3.10]). For a D-optimal design ξ∗ it holds that
FD(M(ξ∗), f(x)f(x)T ) = 0 for all x ∈ X with ξ∗(x) > 0.

This means that for a D-optimal design the directional derivatives towards the ele-
mental information matrices is zero for support points of the design. Silvey derives the
following simplification for the directional derivative for the D-criterion:

log det((1− ε)M1 + εM2)− log det(M1) = log det((1− ε)I + εM2M
−1
1 )

= log(1 + ε tr(M2M
−1
1 − I)) +O(ε2)

= ε tr(M2M
−1
1 − I) +O(ε2).

Here, tr(M) denotes the trace of some matrix M . These considerations imply that

FD(M1,M2) = tr(M2M
−1
1 − I)

= tr(M2M
−1
1 )− dim(M1).

For the directional derivatives in Theorem 2.31 it follows that

FD(M(ξ∗), f(x)f(x)T ) = f(x)TM(ξ∗)−1f(x)− p. (2.10.1)

Theorem 2.31 is only formulated for linear models. To extend this to GLM as intro-
duced in Section 2.6, we transfer the information matrix

M(ξ, β) =
∑
x∈X

ξ(x)λβ(x)f(x)f(x)T

into a pointwise linear model with the rescaled regression function fβ(x) =
√
λβ(x)f(x).

We write
Mβ(ξ) = M(ξ, β) =

∑
x∈X

ξ(x)fβ(x)fβ(x)T

and obtain the extended Kiefer–Wolfowitz equivalence theorem:

Theorem 2.33 (Extended Kiefer–Wolfowitz equivalence theorem, see [Fed72, Theo-
rem 2.2.1]). ξ∗ is locally D-optimal in β if and only if FD(Mβ(ξ∗), fβ(x)fβ(x)T ) ≤ 0 for
all x ∈ X .

The following corollary is a consequence of the extended Kiefer–Wolfowitz equivalence
theorem:

Corollary 2.34 ([Sil80, Corollary 3.10]). It holds that FD(Mβ(ξ∗), fβ(x)fβ(x)T ) = 0 for
all x ∈ X with ξ(x) > 0.

As a consequence of Eq. (2.10.1), it follows that

FD(Mβ(ξ∗), fβ(x)fβ(x)T ) = FD(M(ξ∗, β), λβ(x)f(x)f(x)T )

= λβ(x)f(x)TM(ξ∗, β)−1f(x)− p. (2.10.2)

Therefore, the result of Theorem 2.33 is that a design ξ∗ is locally D-optimal in β if and
only if λβ(x)f(x)TM(ξ∗, β)−1f(x) ≤ p for all x ∈ X .
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2.11. Semi-algebraic geometry of D-optimal experimental designs for GLM

2.11. Semi-algebraic geometry of D-optimal
experimental designs for GLM

To explain the algebraic perspective on optimal design, we begin by introducing some
basic definitions from algebraic geometry [CLO15, BCR13]. Let R = K[x1, . . . , xn] be a
polynomial ring in the variables x1, . . . , xn over some field K. A monomial is a product
of the form

xα1
1 x

α2
2 · · ·xαnn

with exponents α1 . . . αn ∈ N0. A polynomial f is a finite linear combination of mono-
mials with coefficients aα ∈ K, so

f =
∑
α

aαx
α.

The zero set of a collection of polynomials is an affine variety :

Definition 2.35 (Affine variety). Let f1, . . . , fs be polynomials in R. The set

V(f1, . . . , fs) = {a ∈ Kn : fi(a) = 0 for all 1 ≤ i ≤ s}

is the affine variety of f1, . . . , fs.

In experimental design, the equivalence theorem often translates the optimization
problem into a set of polynomial inequalities and equations. As varieties only include
polynomial equations, the addition of inequalities needs a new definition. A subset of
Kn defined by polynomial inequalities and equations is a semi-algebraic set :

Definition 2.36 (Semi-algebraic set, see [BCR13, Def. 2.1.4]). Let fij be polynomials
in R and ∗ij be either < or = for 1 ≤ i ≤ s and 1 ≤ j ≤ ri with s, ri ∈ N. A subset of
Kn of the form

s⋃
i=1

ri⋂
j=1

{x ∈ K : fij ∗ij 0}

is a semi-algebraic set.

A useful property of semi-algebraic sets is that there always exists a certificate to
determine if they are empty by the Positivstellensatz from real algebraic geometry (see
[BCR13]). This means that if the inequality system has no solution, then one can com-
bine the inequalities to produce an explicit contradiction. There are computational tools
to search for such certificates. These separate into numerical and exact approaches. An
example for a numerical tool is SOStools [PAV+13], which approximates the correct con-
tradiction via semidefinite programming. A symbolic approach is quantifier elimination
(QE), which is a symbolic algorithm that finds a quantifier-free description of any semi-
algebraic set. QE is a direct consequence of the Tarski–Seidenberg theorem, see [BCR13,
Section 5.2]. Unfortunately, QE is of doubly-exponential computation time, therefore
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2. Generalized Linear Models and Optimal Design Theory

the problems where we can apply QE cannot be “too big”. QE is for example imple-
mented in the Reduce functionality of Mathematica. Examples for the application
QE can be found in Chapter 3.

The Kiefer–Wolfowitz equivalence theorem shows that a design ξ∗ is D-optimal if
and only if all directional derivatives of its information matrix towards the elemental
information matrices are negative. In (2.10.2), the directional derivatives towards the
elemental information matrices are given as

λβ(x)f(x)TM(ξ∗, β)−1f(x)T − p ≤ 0,

where p = dim(M(ξ∗, β)). If a matrix is invertible, its inverse can be computed via the
adjugate matrix:

Definition 2.37 (Adjugate matrix). Let M be a m×m-matrix. The adjugate adj(M)
of M is the transpose of the cofactor matrix

adj(M)T =
(
(−1)i+jM ij

)
1≤i,j≤m ,

where M ij denotes the (i, j)-minor of M , so the determinant of the submatrix of M
generated by eliminating the i-th row and j-th column. By Cramér’s rule, it follows
that

M−1 =
adj(M)

det(M)
.

For generalized linear models, under the assumption that the entries of f(x) are poly-
nomials, the term f(xi)

TM(ξ∗, β)−1f(xi)
T − p is a rational function in the variables

xi, wi := ξ(xi) and λi := λβ(xi), as it holds that

M(ξ∗, β)−1 =
adj(M(ξ∗, β))

det(M(ξ∗, β))
,

where the adjugate matrix entries consist only of polynomials in said variables. Assuming
that det(M(ξ∗, β)) 6= 0, as otherwise ξ∗ could not be D-optimal, this implies that the
region in the parameter space where ξ∗ is D-optimal is a semi-algebraic set.

For a discrete design space X , a design ξ∗ is therefore D-optimal if and only if

λβ(x)f(x)Tadj(M(ξ∗, β))f(x)T − p det(M(ξ∗, β)) ≤ 0 (2.11.1)

for all x ∈ X . If ξ∗(x) > 0, the inequality in (2.11.1) is realized as an equation (cf. Corol-
lary 2.34). This implies that the optimality region of a design ξ∗ with ξ∗(x) > 0 for all
x ∈ X is an affine variety intersected with the constraints imposed by the model on the
parameters and by ξ∗ being a design.
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3. The semi-algebraic geometry of the
Bradley–Terry model

This chapter discusses optimal designs and the geometry of their optimality regions in the
parameter space for the Bradley–Terry paired comparison model. Section 3.1 introduces
the model. Our main result is presented in Section 3.2. Furthermore, we exhibit the
geometry of designs with minimal support for an arbitrary number of alternatives in
Section 3.3 and study the special case for four alternatives in Section 3.4. The chapter
ends with a discussion in Section 3.5.

3.1. General setup

We consider pairs (i, j) of alternatives i, j = 1, . . . ,m. The preference of i over j is mod-
eled by a binary variable Y (i, j) taking the value Y (i, j) = 1 if i is preferred over j and
Y (i, j) = 0 otherwise. We do not consider any order effects here. The main assumption
of the Bradley–Terry model is that there is a hidden ranking of the alternatives accord-
ing to some numerical preference value πi > 0, i = 1, . . . ,m. When presented with the
pair (i, j), the probability of preferring i over j is

P(Y (i, j) = 1) =
πi

πi + πj
.

The model can be transformed into a logistic regression model using βi := log(πi). Then

P(Y (i, j) = 1) =
1

1 + exp(−(βi − βj))
= g−1(βi − βj)

with g−1(z) = (1 + exp(−z))−1 as the inverse logit link function (cf. Example 2.10).
Scaling all πi with a constant factor leaves the preference probabilities invariant.

Therefore one can without loss of generality assume that πm = 1 or βm = 0. This
means that the number of parameters of the Bradley–Terry model is m− 1. The num-
ber of alternatives minus 1 is the main measure of complexity of the design theory for
the Bradley–Terry model as it equals the dimension of the induced design space. The
remaining parameters can be identified and βm = 0 is known as control coding. We de-
note by ei the i-th standard unit vector in Rm−1. To exhibit our model as a generalized
linear model, the regression vector for a pair (i, j) is

f(i, j) =


ei − ej, for i, j 6= m,

ei, for i < j, j = m,

0 for i = j = m.
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3. The semi-algebraic geometry of the Bradley–Terry model

With βT = (β1, . . . , βm−1) this yields P(Y (i, j) = 1) = g−1(f(i, j)Tβ) where f(i, j)Tβ is
the linear predictor. The design space of the Bradley–Terry paired comparison model is

X = {(i, j) : i, j = 1, ...,m, i < j}.

It consists of all pairs of ordered alternatives. The pairs (i, j) and (j, i) bear the same
information, and the comparison (i, i) of two identical alternatives does not have any
information at all (as can be seen easily later). Therefore, whenever there are two
alternatives i, j ∈ {1, . . . ,m} we assume i < j. An experimental design ξ as introduced
in Section 2.6 is an assignment of a weight wij := ξ(i, j) ≥ 0 to each point (i, j) ∈ X ,
such that

∑
ij wij = 1. We assume the designs to be approximate (see Section 2.7). The

information gained from one observation of Y (i, j) is encoded in the information matrix

M((i, j), β) = λijf(i, j)f(i, j)T ∈ R(m−1)×(m−1),

where λij := λβ(i, j) = eβi−βj

(1+eβi−βj )2
is referred to as the intensity in [GS08], see also

Example 2.23. It holds that M((i, j), β) = M((j, i), β) and M((i, i), β) = 0. Assuming
independent observations, the information matrix for a design ξ with weights wij is the
(m− 1)× (m− 1)-matrix

M(ξ, β) =
∑
(i,j)

wijM((i, j), β) =
∑
(i,j)

wijλijf(i, j)f(i, j)T . (3.1.1)

As explained in Section 2.9, one speaks of local optimality, if the optimal choice of
a design depends on the unknown parameters that one wants to learn about, see also
[Che53]. The methods of convex optimization suggest to study the directional derivatives
of the target function, cf. Definition 2.30. It is shown in [Sil80, Sections 3.8 and 3.11]
(see Eq. (2.10.2)) that

FD(M(ξ, β),M((i, j), β)) = λijf(i, j)TM(ξ, β)−1f(i, j)− (m− 1). (3.1.2)

Theorem 2.33 yields that a design ξ∗ is locally D-optimal if and only if

λijf(i, j)TM(ξ∗, β)−1f(i, j) ≤ m− 1 (3.1.3)

for all 1 ≤ i < j ≤ m. Corollary 2.34 states that for design points (i, j) with positive
weight in ξ∗, the inequalities (3.1.3) in Theorem 2.33 hold with equality. One of our
main observations about the Bradley–Terry model is that it is useful to represent pairs
(i, j) with positive weights wij as the edges of an undirected graph on the vertex set
{1, . . . ,m}.

Definition 3.1. A graph representation of a design ξ for the Bradley–Terry model is the
undirected simple graph with vertex set {1, . . . ,m}, and edge set E = {(i, j) : wij > 0}.

Using standard notions from graph theory, a tree is a connected graph with no cycles.
A path is a tree in which every vertex is connected to at most two other vertices.
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3.2. Saturated designs and graph-representation

We exploit the symmetry of the model. The symmetric group Sym(m) of all bijective
self-maps of {1, . . . ,m} permutes the alternatives. The permutation action extends to
ordered pairs by acting on both entries of the pair simultaneously (and changing the
order if necessary). The action also extends naturally to designs ξ on pairs (i, j) by
putting, for any σ ∈ Sym(m), (ξσ)(i,j) = ξσ−1(i,j). A graph representation of an entire
orbit under this action is simply the unlabeled graph. Proposition 3.2 below expresses
that for properties of the model it is irrelevant which alternative is alternative 1, which is
alternative 2 and so on. One only needs to take care that upon relabeling the parameters,
regression vectors, etc. are relabeled accordingly.

In our setup we have singled out the last alternative m and set βm = 0 to have
identifiable parameters. This changes the symmetry and needs to be accounted for. The
concepts of this chapter, however, are compatible with this. For example the value of
the determinant of a design is invariant:

Proposition 3.2. Let σ ∈ Sym(m) and let ξ be any design. Then ξ is D-optimal for the
parameters β = (β1, . . . , βm−1, 0) if and only if ξσ is D-optimal for Q−Tσ β, where σ 7→ Qσ

is a group homomorphism from Sym(m) to the group of invertible (m − 1) × (m − 1)-
matrices satisfying f(σ(i), σ(j)) = Qσf(i, j) for all σ ∈ Sym(m).

Proof. By [RS16, Section 2], the design ξσ is locally optimal for the parameter Q−Tσ β
if and only if there exist matrices Qσ as in the statement. As transpositions generate
all permutations, it suffices to show the existence of such a Qσ for all transpositions.
For transpositions of i < m and j < m, let Qσ be the usual permutation matrix. For a
transposition (im), let Qσ equal an identity matrix, with the i-th row replaced by the
row (−1 . . . ,−1). Then, for an arbitrary permutation σ, it holds that f(σ(i), σ(j)) =
Qσf(i, j).

3.2. Saturated designs and graph-representation

An experimental design is saturated if its support has cardinality equal to the number
of free parameters of the model. In our case of D-optimality, if a design has support size
strictly smaller than m−1, then the determinant of the information matrix vanishes and
optimality is impossible. A useful result about saturated designs is that their weights
are completely rigid: they are all equal (see [Sil80, Lemma 5.1.3]). We first study which
saturated designs can be D-optimal. A saturated design has a quite restrictive structure
on the observations, now expressed in terms of its graph representation. The following
simple fact is reminiscent of the connectedness of block designs with block length two in
[SS89, p.2].

Lemma 3.3. For any D-optimal saturated design ξ of the Bradley–Terry paired com-
parison model, the graph representation of the support is a tree.

Proof. A saturated design consists of m− 1 equally weighted comparisons. If there is a
cycle i1, . . . , ik in the graph representation of the design, then there is at least one alter-
native that does not appear in the design and therefore represented by a disconnected
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3. The semi-algebraic geometry of the Bradley–Terry model

vertex in the graph representation. Now, the (m− 1)× (m− 1)-information matrix of a
saturated design is a sum of m− 1 rank one matrices of the form λijf(i, j)f(i, j)T . For
1 ≤ i < j ≤ m − 1, these rank one matrices only have entries in the i-th and j-th row
and column. For j = m, there is only one entry λim in the intersection of the i-th row
and i-th column. Thereby, if a saturated design contains a cycle and thus misses one
alternative, the information matrix has no non-zero entries in either the corresponding
row or the corresponding column. Therefore the determinant of the information matrix
is zero, and the design can never be optimal. By Proposition 3.2, this holds for all
saturated designs that contain cycles.

Based on this fact we can determine the saturated optimal designs for the Bradley–
Terry model.

Theorem 3.4. In the Bradley–Terry paired comparison model with m alternatives, every
saturated optimal design’s graph representation is a path on [m] := {1, 2, . . . ,m}.

Proof. Let ξ be a saturated design for the Bradley–Terry model with m alternatives.
Without loss of generality, we assume that ξ has exactly one comparison that contains
m. This holds, as an optimal saturated design is a tree. Let F be the (square) matrix
of the transposed regression vectors of the design points

F =


f(i1, j1)T

f(i2, j2)T

f(im−2, jm−2)T

f(im−1,m)T

 ,

and define Q = diag(λi1,j1 , . . . , λim−1,m) as a diagonal matrix of intensities and corre-
spondingly W = diag(wi1,j1 , . . . , wim−1,m) for the weights of the design points. Then, the
information matrix is M(ξ, β) = F TWQF, and inserting this into (3.1.2), we obtain the
directional derivatives for every 1 ≤ i < j ≤ m− 1 as

λijf(i, j)TF−1Q−1W−1F−Tf(i, j)− (m− 1).

If the design is D-optimal, this formula is non-positive for every 1 ≤ i < j ≤ m − 1.
Since all weights are equal to 1

m−1
this is equivalent to

λijf(i, j)TF−1Q−1F−Tf(i, j) ≤ 1.

The proof is by downward induction. To this end, we remove one alternative and its
associated design point and show that the reduced design ξ̄ is optimal on the reduced
design space. Without loss of generality we can assume that the optimal design has only
one comparison (1, v) in which alternative 1 is involved. We can also assume that v = 2
using the Sym(m) symmetry and Proposition 3.2. We remove alternative 1. Consider
the Bradley–Terry model on the alternatives {2, . . . ,m}. Its information matrix is a
product F̄ W̄ Q̄F̄ T , where W̄ and F̄ are the lower-right (m − 2) × (m − 2)-submatrices
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3.2. Saturated designs and graph-representation

of m−1
m−2

W and F , respectively, and Q̄ is the diagonal matrix of the reduced model’s

intensities λ̄ij. Through our assumptions,

F =


1 −1 0 0
0

F̄
0

 .

We show the implication

λijf(i, j)TF−1Q−1F−Tf(i, j) ≤ 1 for all 2 ≤ i < j ≤ m

⇒ λ̄ij f̄(i, j)T F̄−1Q̄−1F̄−T f̄(i, j) ≤ 1 for all 2 ≤ i < j ≤ m.

This implies that the design ξ̄ with equal weights 1
m−2

on E \ {1, 2} is optimal for the

reduced model. Since λ̄ij = λij, we only have to show

f̄(i, j)T F̄−1Q̄−1F̄−T f̄(i, j) ≤ f(i, j)TF−1Q−1F−Tf(i, j) (3.2.1)

for all 2 ≤ i < j ≤ m. Now let

F−1 =

(
a11 aT12

a21 A1

)
for some (m− 2)× (m− 2)-matrix A1. This leads to F̄−1 = A1 − 1

a11
a21a

T
12. One checks

a21 = 0, so that

F−1 =

(
1 aT12

0 A1

)
.

This means, that F̄−1 = A1. Now, as f(i, j)T = (0, f̄(i, j)T ),

f(i, j)TF−1Q−1F−Tf(i, j) =
(
0 f̄(i, j)T

)(1 aT12

0 A1

)(
1
λ12

Q̄−1

)(
1 0
a12 AT1

)(
0

f̄(i, j)

)
=
(
0 f̄(i, j)TA1

)( 1
λ12

Q̄−1

)(
0

AT1 f̄(i, j)

)
= f̄(i, j)TA1Q̄

−1AT1 f̄(i, j)

= f̄(i, j)T F̄−1Q̄−1F̄−T f̄(i, j).

In fact, (3.2.1) is realized as an equation and the reduced saturated design is optimal.
Now, if ξ was not a path, iterating this procedure eventually leads to an optimal saturated
design for Bradley–Terry model on four alternatives that is also not a path. Such a
design does not exist by the explicit computations in Section 3.4. Hence, the graph
representation of an optimal saturated design is a path.
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3.3. Optimality regions of saturated designs

We now describe the sets of parameters for which a given saturated design from Theo-
rem 3.4 is optimal. We call such a set the region of optimality of the design. Knowing
these regions simplifies the experimental design problem since it can be combined with
prior knowledge about the parameters (e.g. from a pilot study). Also, knowing if the
regions are big or small yields information about the maximin-optimality of designs.

Exploiting the symmetry in Proposition 3.2, it suffices to study a single design repre-
senting all saturated designs. This is the path (1, 2), (2, 3), . . . , (m− 1,m).

Lemma 3.5. The optimality region of the design (12, 23, 34, . . . , (m − 1)m) is defined
by the inequalities

g(i, j) = λij

j−1∑
k=i

1

λk(k+1)

≤ 1, 1 ≤ i < m, i < j ≤ m.

Furthermore, this region is not empty.

Proof. We apply Theorem 2.33 to find the optimality regions of the saturated design
(12, 23, 34, . . . , (m − 1)m). Therefore, one has to analyze the directional derivatives
f(i, j)TF−1Q−1F−Tf(i, j) − (m − 1), where f(i, j) are the regression vectors, Q is a
diagonal matrix of the design intensities λ12,λ23, . . . , λ(m−1)m and F is the matrix of the
transposed regression vectors. So,

F =


1 −1

1 −1
1

 and F−1 =

1 1

1

 .

For i < j < m, f(i, j) = ei − ej. This leads to

f(i, j)TF−1 = (1{i=1},1{i≤2<j},1{i≤3<j}, . . . ,1{i≤m−2<j}, 0).

For i < j = m, f(i,m) = ei. Therefore

f(i,m)TF−1 = (1{i=1},1{i≤2},1{i≤3}, . . . ,1{i≤m−2}, 1).

This means that the directional derivative in the direction (i, j) for j < m is

λij(m− 1)(1{i≤1},1{i≤2<j}, . . . ,1{i≤m−2<j}, 0)


1
λ12

1
λ23

1
λ(m−1)m




1{i≤1}
1{i≤2<j}

1{i≤m−2<j}
0


= λij(m− 1)

m−2∑
k=1

1{i≤k<j}

λk(k+1)

= λij(m− 1)

j−1∑
k=i

1

λk(k+1)
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3.3. Optimality regions of saturated designs

and for j = m

λim(m− 1)(1{i≤1},1{i≤2}, . . . ,1{i≤m−2}, 1)


1
λ12

1
λ23

1
λ(m−1)m




1{i≤1}
1{i≤2}

1{i≤m−2}
1


= λim(m− 1)

m−1∑
k=1

1{i≤k}

λk(k+1)

= λim(m− 1)
m−1∑
k=i

1

λk(k+1)

.

For j = i+ 1 the directional derivatives are 0 by (3.1.2) and Corollary 2.34. Let

g(i, j) = λij

j−1∑
k=i

1

λk(k+1)

.

By Theorem 2.33 the optimality region of the design (12, 23, 34, . . . , (m− 1)m) is given
by {g(i, j) ≤ 1 : 1 ≤ i < j ≤ m}. To exhibit a point in the optimality region, let
βi = iβ1 and thus πi = πi1. This implies

λij =
πj−i1

(1 + πj−i1 )2
,

and therefore

g(i, j) =
πj−i1

(1 + πj−i1 )2

j−1∑
k=i

(1 + π1)2

π1

=
(j − i)πj−i−1

1 (1 + π1)2

(1 + πj−i1 )2
,

which is at most 1 for all 1 ≤ i < j ≤ m if just π1 is sufficiently large.

Theorem 3.6. The optimality regions of all saturated designs corresponding to paths,
i.e. of all optimal saturated designs, are in the Sym(m)-orbit of the saturated design for
(12, 23, 34, . . . , (m− 1)m). The optimality regions are defined by the inequalities

{g(σ(i), σ(j)) ≤ 1 : 1 ≤ i < m, i < j ≤ m}.

where σ ∈ Sym(m) is a permutation turning (12, 23, 34, . . . , (m − 1)m) into the given
path.

Proof. Theorem 3.4 shows that the saturated optimal designs correspond to paths. By
Proposition 3.2, we can choose any representative for the orbit of path designs. We
choose (12, 23, 34, . . . , (m− 1)m) and plug in the results from Lemma 3.5.
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3. The semi-algebraic geometry of the Bradley–Terry model

3.4. Explicit solutions for four alternatives

This section studies the optimal designs for the Bradley–Terry paired comparison model
with four alternatives. We first deal with the case of saturated designs, i.e. optimal
designs whose supports consist of only 3 design points. The unsaturated case with 4, 5
or 6 support points follows in Section 3.4.2.

The Bradley–Terry paired comparison model with 4 alternatives has 3 identifiable
parameters β1, β2, β3. As above we use βi := log(πi) and β4 = 0. Our goal is to cover all
of R3 with regions of optimality of specific explicit designs. The regression vectors for
four alternatives are

f(1, 2) = (1,−1, 0)T , f(1, 3) = (1, 0,−1)T , f(1, 4) = (1, 0, 0)T ,

f(2, 3) = (0, 1,−1)T f(2, 4) = (0, 1, 0)T , f(3, 4) = (0, 0, 1)T .

3.4.1. Saturated Designs

For saturated designs with non-singular information matrix, the optimality criterion in
Theorem 2.33 yields a system of inequalities in the intensities λij. We find these first.
According to [Sil80, Lemma 5.1.3], a saturated design has three positive weights whose
values are all 1

3
, the remaining weights being zero. There are

(
6
3

)
= 20 possible saturated

designs. Exactly 16 of them have a non-singular information matrix. Among the 16,
only 12 have a non-empty region of optimality. We find that they are in bijection with
the paths on 4 vertices. The following theorem is the base case to which the proof of
Theorem 3.4 is reducing.

Theorem 3.7. For the Bradley–Terry model with four alternatives there are 20 saturated
designs. Among those

• 8 have an empty region of optimality.

• 12 have optimal experimental designs.

The 12 designs with non-empty region of optimality correspond to the 12 labelings of the
path P4. The region of optimality of the path 1− 2− 3− 4 is constrained by

λ14(λ12 + λ24)− λ12λ24 ≤ 0,

λ23(λ12 + λ13)− λ12λ13 ≤ 0, (3.4.1)

λ34(λ12λ24 + λ12λ13 + λ13λ24)− λ12λ13λ24 ≤ 0.

The regions of optimality for other paths arise from this by relabeling.

Since the D-optimality criterion is invariant under the Sym(4) action by Proposi-
tion 3.2, it suffices to study one labeling for each unlabeled graph with three edges on
four vertices. The proof of Theorem 3.7 is split into a discussion of information matrices
for the three graphs in Fig. 3.1.
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1 2

3 4

1 2

3 4

1 2

3 4

Figure 3.1.: Graph representations of different 3-point designs.

Paths

Consider the path in Fig. 3.1. Its edge set is {(1, 2), (1, 3), (2, 4)}. A corresponding
saturated design can only be optimal if its weights are w12 = w13 = w24 = 1

3
and

w14 = w23 = w34 = 0. The information matrix of this design is

M =
1

3
(λ12f(1, 2)f(1, 2)T + λ13f(1, 3)f(1, 3)T + λ24f(2, 4)f(2, 4)T )

=
1

3

 λ12 + λ13 −λ12 −λ13

−λ12 λ12 + λ24 0
−λ13 0 λ13

 .

We apply Theorem 2.33. The directional derivatives are

gij(λ) := λijf(i, j)TM−1f(i, j)− 3.

The region of optimality is

{λ ∈ RX>0 : gij(λ) ≤ 0, 1 ≤ i < j ≤ 4}.

This region is a semi-algebraic set (cf. Definition 2.36). Corollary 2.34 simplifies the
description because it says that for design points with positive weights the conditions
become equations, and those equations have no free variables, as the weights in a satu-
rated design are fixed. Using Mathematica’s Reduce functionality we derived (3.4.1).

The inequalities in (3.4.1) can be compared to [GS08, Theorem 2]. The structure is
similar, but for four alternatives a cubic inequality appears. For m alternatives there are
inequality constraints of degree m according to Theorem 3.6. These conditions can be
expressed in β-coordinates. The resulting regions of optimality are displayed in Fig. 3.2
on the left.

The claw graph K1,3

We now show that the graph in the middle of Fig. 3.1, sometimes known as a claw,
leads to an empty region of optimality. After symmetry reduction it suffices to show
that the design (12, 13, 14) cannot be D-optimal. This design would be optimal in the
following region given by the three directional derivatives corresponding to the non-edges
(23, 24, 34):

λ23 ≤
λ12λ13

λ12 + λ13

∧ λ24 ≤
λ12λ14

λ12 + λ14

∧ λ34 ≤
λ13λ14

λ13 + λ14

.
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3. The semi-algebraic geometry of the Bradley–Terry model

Figure 3.2.: Optimality region for the saturated design on (12, 13, 24).

Plugging in the formulas for the λij in terms of the πi this becomes

(π2 + π3)
(
π2

1 + π2π3

)
≤ π1(π2 − π3)2,

(π2 + 1)
(
π2

1 + π2

)
≤ π1(π2 − 1)2,

(π3 + 1)
(
π2

1 + π3

)
≤ π1(π3 − 1)2.

Using Mathematica, we find that these conditions are incompatible with the con-
straints π1 > 0, π2 > 0, π3 > 0. An open problem is to find a short certificate for the
infeasibility of this system (cf. Section 2.11). An attempt with SOStools [PAV+13] was
not successful.

Singular designs

Designs corresponding to the rightmost graph in Fig. 3.1 have singular information matri-
ces and can thereby not be D-optimal, as information matrices are positive semidefinite
by definition.

Proof of Theorem 3.7. Since there are 12 distinct labelings of the path on four vertices,
the theorem follows from the computations in the subsections on paths, the claw graph
and singular designs in Section 3.4.1.
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3.4.2. Unsaturated Designs

We now examine the designs whose support contains at least four pairs. In this case the
weights wij of an optimal design are not necessarily uniform. Instead we find formulas
that express the weights in terms of the parameters. These formulas might look com-
plicated, but they are very symmetric and can easily be handled by computer algebra
systems. Our approach is again via Theorem 2.33: optimality of a design ξ∗ is equivalent
to

λijf(i, j)TM(ξ∗, β)−1f(i, j)− 3 ≤ 0, 1 ≤ i < j ≤ 4. (3.4.2)

Furthermore, by Corollary 2.34, there is equality for any pair i, j such that wij > 0 in
ξ∗. We distinguish cases according to the size of the support.

Full support

Full support means that all weights of a design are positive. Then all inequalities (3.4.2)
hold with equality and we have a system of 6 equations in the variables wij, λij for
1 ≤ i < j ≤ 4. We used Mathematica to solve the system and to express the weights
wij as functions of the intensities λij:

wij =
1

A
(λikλilλjkλjl(λijλikλilλjkλjl − λijλikλilλjkλkl − λijλikλilλjlλkl

− λijλikλjkλjlλkl + λijλikλjkλ
2
kl − λijλikλjlλ2

kl − λijλilλjkλjlλkl − λijλilλjkλ2
kl

+ λijλilλjlλ
2
kl + 2λikλilλjkλjlλkl)),

where (i, j, k, l) is any permutation of (1, 2, 3, 4). The term A is the normalization that
ensures

∑
i<j wij = 1. It is therefore invariant under Sym(4) acting on the indices.

A = 3(λijλ
2
ikλ

2
ilλ

2
jkλ

2
jl + λijλikλ

2
ilλjkλ

2
jlλ

2
kl − λijλikλ2

ilλ
2
jkλjlλ

2
kl − λ2

ijλikλ
2
ilλjkλjlλ

2
kl

− λijλikλ2
ilλ

2
jkλ

2
jlλkl − λijλ2

ikλ
2
ilλjkλ

2
jlλkl − λijλ2

ikλ
2
ilλ

2
jkλjlλkl − λ2

ijλikλ
2
ilλ

2
jkλjlλkl

+ λ2
ijλ

2
ikλ

2
ilλjkλjlλkl − λijλ2

ikλilλjkλ
2
jlλ

2
kl − λ2

ijλikλilλjkλ
2
jlλ

2
kl + λijλ

2
ikλilλ

2
jkλjlλ

2
kl

− λ2
ijλikλilλ

2
jkλjlλ

2
kl − λ2

ijλ
2
ikλilλjkλjlλ

2
kl − λijλ2

ikλilλ
2
jkλ

2
jlλkl + λ2

ijλikλilλ
2
jkλ

2
jlλkl

− λ2
ijλ

2
ikλilλjkλ

2
jlλkl + λ2

ijλikλ
2
ilλ

2
jkλ

2
kl + λ2

ijλ
2
ikλilλ

2
jlλ

2
kl + λ2

ijλ
2
ikλjkλ

2
jlλ

2
kl

+ λ2
ijλ

2
ilλ

2
jkλjlλ

2
kl + λ2

ikλ
2
ilλ

2
jkλ

2
jlλkl).

This design is locally optimal for some β when wij > 0 for all 1 ≤ i < j ≤ 4. Fig. 3.3
shows the optimality region of 6-point-designs.

Example 3.8. A simple example for a design with full support arises when βi = 0 for
all 1 ≤ i ≤ 4. Then λij = 1

4
for all 1 ≤ i < j ≤ n and therefore wij = 1

6
, that is,

assigning the same number of repetitions to each comparison, is optimal. Fig. 3.3 and
the continuity of the formulas for wij illustrate that, whenever all βi are sufficiently small,
an optimal design will assign almost equal number of repetitions to each pair (i, j).

Remark 3.9. When working with polynomial equations, Gröbner bases are a powerful
tool. The expressions of the wij in terms of the λij can also be found using elimination
theory, for example in Macaulay2 [GS].
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Figure 3.3.: Optimality regions for 6-point designs.

5-point-designs

We now discuss optimal designs where one weight is zero. There is one orbit under the
action of Sym(4), that is, a permutation of the alternatives transforms any given five-
point-design to the one that does not use comparison (1, 2). Therefore we discuss the
design with w12 = 0 and the remaining weights positive. Then the optimality conditions
become

w13 =
2λ14λ34 (λ14λ34 − λ13 (λ14 + λ34))

3 (λ2
13 (λ14 − λ34) 2 − 2λ13λ14λ34 (λ14 + λ34) + λ2

14λ
2
34)
,

w14 =
2λ13λ34 (λ13 (λ34 − λ14)− λ14λ34)

3 (λ2
13 (λ14 − λ34) 2 − 2λ13λ14λ34 (λ14 + λ34) + λ2

14λ
2
34)
,

w23 =
2λ24λ34 (λ24λ34 − λ23 (λ24 + λ34))

3 (λ2
23 (λ24 − λ34) 2 − 2λ23λ24λ34 (λ24 + λ34) + λ2

24λ
2
34)
,

w24 =
2λ23λ34 (λ23 (λ34 − λ24)− λ24λ34)

3 (λ2
23 (λ24 − λ34) 2 − 2λ23λ24λ34 (λ24 + λ34) + λ2

24λ
2
34)
,

and with

B = 3
(
λ2

13λ
2
14 − 2λ2

13λ14λ34 − 2λ13λ14λ
2
34 − 2λ13λ

2
14λ34 + λ2

13λ
2
34 + λ2

14λ
2
34

)
·
(
λ2

23λ
2
24 − 2λ2

23λ24λ34 − 2λ23λ24λ
2
34 − 2λ23λ

2
24λ34 + λ2

23λ
2
34 + λ2

24λ
2
34

)
,
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we obtain

w34 =
1

B

(
3λ2

13λ
2
14λ

2
23λ

2
24 − 4λ13λ14λ23λ24λ

4
34 − 2λ13λ14λ

2
23λ

2
24λ

2
34 + 4λ13λ

2
14λ23λ

2
24λ

2
34

+ 4λ2
13λ14λ23λ

2
24λ

2
34 + 4λ13λ

2
14λ

2
23λ24λ

2
34 + 4λ2

13λ14λ
2
23λ24λ

2
34 − 2λ2

13λ
2
14λ23λ24λ

2
34

− 4λ13λ
2
14λ

2
23λ

2
24λ34 − 4λ2

13λ14λ
2
23λ

2
24λ34 − 4λ2

13λ
2
14λ23λ

2
24λ34 − 4λ2

13λ
2
14λ

2
23λ24λ34

+ 2λ13λ14λ
2
23λ

4
34 + λ2

13λ
2
14λ

2
23λ

2
34 + 2λ13λ14λ

2
24λ

4
34 + λ2

13λ
2
14λ

2
24λ

2
34 + 2λ2

13λ23λ24λ
4
34

+ λ2
13λ

2
23λ

2
24λ

2
34 − λ2

13λ
2
23λ

4
34 − λ2

13λ
2
24λ

4
34 + 2λ2

14λ23λ24λ
4
34 + λ2

14λ
2
23λ

2
24λ

2
34

− λ2
14λ

2
23λ

4
34 − λ2

14λ
2
24λ

4
34

)
.

These designs are optimal if the directional derivative in (1, 2)-direction is smaller
than or equal to zero, which is equivalent to

λ12(λ13(λ14(λ23(λ24 − λ34)− λ24λ34) + λ34(λ23(λ34 − λ24)− λ24λ34))

− λ14λ34(λ23(λ24 + λ34)− λ24λ34)) ≥ −2λ13λ14λ23λ24λ34.

This inequality together with the formulas for the weights and the condition, that all
the weights except w12 are positive, gives the design region. This region is non-empty.
A plot in β-coordinates is in Fig. 3.4.

Figure 3.4.: Optimality region of the 5-point-designs with w12 = 0.
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4-point-designs

We now discuss designs whose support contain exactly four points. There are
(

6
4

)
= 15

possibilities for such designs which each have two zero weights, wij = wkl = 0. The
four point designs form two orbits under the action of Sym(4), distinguished by whether
the two non-edges in the graph representation share a vertex or not, that is, whether
|{i, j, k, l}| = 4, that is, i, j, k, l are all distinct, or |{i, j, k, l}| = 3, that is, exactly two
are equal. In the first case, there are three different design classes. We believe that
these designs cannot be D-optimal, as the condition wij = wkl = 0 with |{i, j, k, l}| = 4
implies that a third weight is zero, which would lead to a saturated design. A proof of
this statement eludes us so far. Using Mathematica, it follows from the equivalence
theorem that such a design satisfies

λikwik(3wik − 1) = λilwil(3wil − 1) = λjkwjk(3wjk − 1) = λjlwjl(3wjl − 1), (3.4.3)

with w.. <
1
3

for all nonzero weights, and additionally the inequalities

λij(3(wil + wjl)− 2)(3(wil + wjl)− 1)

λjlwjl(3wjl − 1)
≤ 3, (3.4.4)

λkl(3(wjk + wjl)− 2)(3(wjk + wjl)− 1)

λjlwjl(3wjl − 1)
≤ 3. (3.4.5)

Among the solutions of (3.4.3) there are the saturated designs. If one of the weights
equals 1/3, then (3.4.3) implies that another weight is zero, i.e. the design is saturated.
Since saturated designs contradict the inequalities (3.4.4) and (3.4.5), we only look for
solutions where all of the weights lie in the open interval (0, 1/3). There are solutions
of (3.4.3) that satisfy this, for example, if the weights and corresponding intensities are
equal. In all the cases we examined, the inequalities (3.4.4) and (3.4.5) are not satisfied.

Problem 3.10. Show that independent of the λij, a simultaneous solution of (3.4.3),
(3.4.4), and (3.4.5) is a saturated design.

Finally we analyze the orbit of four-point-designs assuming wij = wkl = 0 where
|{i, j, k, l}| = 3. Consider the representative with w12 = w13 = 0. Then,

w14 =
1

3
,

w23 =
2λ24λ34 (−λ23λ24 − λ23λ34 + λ24λ34)

3 (λ2
23λ

2
24 − 2λ2

23λ24λ34 − 2λ23λ24λ2
34 − 2λ23λ2

24λ34 + λ2
23λ

2
34 + λ2

24λ
2
34)
,

w24 =
2λ23λ34 (−λ23λ24 + λ23λ34 − λ24λ34)

3 (λ2
23λ

2
24 − 2λ2

23λ24λ34 − 2λ23λ24λ2
34 − 2λ23λ2

24λ34 + λ2
23λ

2
34 + λ2

24λ
2
34)
,

w34 =
2λ23λ24 (λ24λ24 − λ23λ34 − λ24λ34)

3 (λ2
23λ

2
24 − 2λ2

23λ24λ34 − 2λ23λ24λ2
34 − 2λ23λ2

24λ34 + λ2
23λ

2
34 + λ2

24λ
2
34)
.

This design is optimal if the directional derivatives along (1, 2) and (1, 3) are smaller
than 3, so if

3λ12(λ14 + λ24)

λ14λ24

≤ 3 ∧ 3λ13(λ14 + λ34)

λ14λ34

≤ 3.
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3.5. Discussion and outlook

This optimality region for this 4-point design is visualized in Fig. 3.5. For each point in
the optimality region, the specific weights are computed by the equations above.

Figure 3.5.: Optimality region for the 4-point design with w12 = w13 = 0.

Having discussed all cases, it suffices to apply the symmetry to each of these regions
and then R3 can be pieced together. Fig. 3.6 gives an idea of this puzzle. The boundaries
between the regions always belong to one region. For example, the orange amoeba is
open, the red regions for saturated designs are closed (by the non-strict inequalities in
Theorem 3.7), and all other regions have both open and closed boundaries.

Remark 3.11. Figures 3.3, 3.4 and 3.5 are reminiscent of the amoebas in tropical
geometry. It would be interesting to investigate, if the logarithmic algebraic geometry
that arises in β-space from the polynomial constraints in λ-space offers new insights.

3.5. Discussion and outlook

This chapter discussed the parameter regions of optimality for experimental design of
the Bradley–Terry model, with the strongest results for 4 alternatives. In practical
applications this knowledge can be put to use as follows: First, with a pilot study, initial
knowledge of approximate parameters is attained. The initial guess lies in one of the full-
dimensional regions illustrated in Fig. 3.6. Depending on which region it is, one can use
specific knowledge about the optimal design weights wij. For example, there are explicit
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3. The semi-algebraic geometry of the Bradley–Terry model

Figure 3.6.: Assembling optimality regions for the Bradley–Terry model.

polynomial formulas for how the optimal weights depend on the location in parameter
space. Section 3.4 contains explicit such formulas for the case of 4 alternatives.

In the case that a pilot study reveals parameters in a region where saturated designs
are optimal, the solution becomes particularly pleasant: One only needs to assign equal
weights to m− 1 of the pairs. The characterization of regions of optimality of saturated
designs is complete, for any number of alternatives (Theorem 3.6).

We illustrate the effect of choosing the right design by computing the efficiency
(cf. Eq. (2.8.1)) of the uniform design (assigning equal weights to all pairs) in the case
of four alternatives. Consider the line in parameter space that is specified by 2β2 = β1,
4β3 = 5β1. Fig. 3.7 shows the efficiency of the uniform design along that line. At
β = (β1, β2, β3) = (0, 0, 0) the uniform design is optimal. As β grows, the efficiency
decreases. First the weights should be adjusted and starting at approximately 1.4 a
5-point design would be optimal. Around 2.1 a 4-point design becomes optimal and
finally, from 2.9, a saturated design is optimal. Clearly, working with a uniform design
in the case that the support should be smaller is inefficient. In the limit β → ∞ the
uniform design requires twice as many observations as the optimal saturated design.
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Figure 3.7.: Efficiency of the uniform design along a line in β-space.

3.5.1. Further research directions

We outline some further research directions now. As was pointed out before, the
Bradley–Terry model is an example for a generalized linear model. We saw above that
if one is interested in precise symbolic solutions for the optimal designs, for example
for the D-criterion, it is very useful to apply the Kiefer–Wolfowitz equivalence theorem
and study the semi-algebraic geometry of the problem. As explained in Section 2.6, this
should apply for a larger class of generalized linear models. Therefore, a natural next
step would be an extension of these results to other models, so that afterwards it is pos-
sible to formulate a general methodology to find symbolic solutions for locally optimal
designs for generalized linear models with a finite design space, see also Section 2.11.

For unsaturated designs, we only discussed the case for four alternatives in this chap-
ter. The most promising and important class of designs suitable for further research are
those with full support, as for those by Corollary 2.34 the region of optimality is given
by the equations

λijf(i, j)TM(ξ∗, β)−1f(i, j) = (m− 1)

and positivity constraints λij > 0. We hope that tools from real algebraic geometry can
shed further light on such semi-algebraic sets, especially for designs with full support, as
their semi-algebraic sets contain no complicated inequalities. We state some observations
of the combinatorial structure of full-support designs in Remark 3.13 below.

The Bradley–Terry model considered here is only for the m levels of one attribute
and an extension to more attributes is conceivable. The computational challenges of
finding optimal designs are formidable and a nice geometry as in the present case is not
expected.

In the case of optimality, the equations above express the weights of ξ in terms of the
parameters. We conjecture that the equations can be solved in the following sense for
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3. The semi-algebraic geometry of the Bradley–Terry model

m ≥ 5.

Conjecture 3.12. The
(
m
2

)
weights of a fully supported D-optimal design are rational

functions in the intensities and of numerator degree
(
m
2

)
+m− 1.

An example of such expressions are the degree 9 equations in Section 3.4.2.

Remark 3.13. The solution for the four-dimensional case reveals that the numerator
of a weight wij is a sum of 10 monomials. These monomials can be described combi-
natorially as follows. For simplicity, let i = 1 and j = 2. Then 8 of the 10 monomials
are products of the squarefree monomial λ12λ13λ14λ23λ24λ34 with monomials of the form
λijλikλkl, where (ij, ik, kl) are edges of the 8 graphs that are either paths or trees on
four vertices and that do not contain the edge 1–2. Furthermore, the monomials that
come from a graph with a node of degree 3 have a positive sign, while the monomials
from paths have a negative sign. The remaining two monomials do not show such an
easy structure and it remains open, why they are of the form λ2

13λ
2
14λ

2
23λ

2
24(λ12 + 2λ34).

The complete design is generated by permutations acting on the indices of the numer-
ator described above, while the denominator of the weights is just the sum of all the
numerators, that is, a normalization.

Remark 3.14. For the case of 3 alternatives, the solutions for the fully-supported
design are also rational functions in the intensities, but only of degree 4. The numerator
polynomial of w12 is λ13λ23(λ13λ23 − λ12(λ13 + λ23)). If we multiply this with λ12, we
obtain a similar structure as described in Remark 3.13. It is a product of the squarefree
polynomial λ12λ13λ23 with λijλik, where (ij, ik) are edges of the 3 graphs that correspond
to saturated designs. If the graph contains the edge 1–2, the sign of the polynomial is
negative, otherwise it is positive.

From the structure in the case of 4 alternatives, one can at least partially conjecture the
structure of a solution in higher dimensions. In the case of 5 alternatives, we conjecture
that for full support designs the function that expresses wij in the intensities λij satisfies
the following rules: It is quotient of a polynomial divided by a normalization. The
numerator polynomial is of degree

(
m
2

)
+ m − 1 (i.e. 14 for m = 5) and composed as

follows. Start with the monomial λ12λ13 · · ·λm−1,m. To construct the weight for the
comparison 1–2, multiply it with a square-free product of m − 1 of the variables λij,
where ij is an edge in a spanning tree on [m] which does not contain 1–2. Sum these
monomials over all trees that do not contain 1–2. For n=5, only 50 out of the 125
trees qualify. In this summation, trees of maximal degree 2 receive a negative sign, the
others a positive sign. Additionally, we may have to add monomials of a still unknown
structure as in Remark 3.13 above. We expect a similar structure in the denominator for
5 alternatives as for four, so that there is a sum of monomials in the denominator that
is multiplied with 4. As there are 125 trees, this would make 500 monomials from the
tree-structure. This coincides with having 50 monomials from trees in the numerator,
as there are 10 weights for 5 alternatives. In comparison, for 4 alternatives, there are
3 · 22 = 66 monomials in the denominator, but only 6 · 8 = 48 come from the described
graph structure. The implications of these observations are still unknown.
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4. Optimality regions for designs in
multiple linear regression models
with correlated random coefficients

The chapter is structured as follows: We begin with the setup of the model in Section 4.1
and introduce rhombic designs for multiple linear models in Section 4.2. We study
optimality regions for rhombic designs in Section 4.3 and present examples in Section 4.4.
The chapter ends with a discussion in Section 4.5.

4.1. General setup

We consider a random coefficient regression model Yi(xi) = f(xi)
T bi + εi, i = 1, . . . n for

observations Yi at experimental settings xi where f(x) is a p-dimensional vector of lin-
early independent regression functions, bi is a p-dimensional vector of random coefficients
and εi are additional observational errors. The random coefficients are assumed to be
distributed with unknown mean vector β and prespecified dispersion matrix D, whereas
the error terms εi are distributed with zero mean and equal variance σ2

ε . Moreover the
random coefficients and the error terms are assumed to be uncorrelated. In this chapter
we assume that all observations Yi are independent, i.e. only one observation is made
for each realization bi of the random coefficients. Furthermore, we assume here that an
intercept is included in the model (f1(x) ≡ 1) such that the additive observational error
εi may be subsumed into the random intercept. This can be achieved by substituting
the first entry bi1 in the random coefficient vector by bi1 + εi and the first entry d0 in the
dispersion matrix D by d0 + σ2

ε . The model can hence be rewritten as a heteroscedastic
linear fixed effects model,

Yi(xi) = f(xi)
Tβ + εi, (4.1.1)

where now εi = f(xi)
T (bi − β) with mean zero and the variance function defined by

σ2(x) = f(x)TDf(x). Within this heteroscedastic linear model for each single setting
x in a design region X the elemental information matrix [AFHZ14] equals M(x) =
f(x)f(x)T/σ2(x), assuming that σ2(x) > 0 for all x ∈ X . Then for a design ξ as
introduced in Section 2.6, the standardized (per observation) information matrix is given
by M(ξ) =

∑m
j=1 ξ(xj)M(xj), which is proportional to the finite sample information

matrix with a normalizing constant 1
n
. Note that the covariance matrix for the weighted

least squares estimator β̂, which is the best linear unbiased estimator for β is proportional
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4. Optimality regions in multiple regression with correlated random coefficients

to the inverse of the information matrix. Hence, maximizing the information matrix is
equivalent to minimizing the covariance matrix of β̂.

To compare different designs we consider the most popular criterion, the D-criterion,
see Section 2.8.1 for an introduction. As discrete optimization on the set of exact
designs is generally to complicated we relax the condition on the weights ξ(xj) be-
ing multiples of 1

n
and consider approximate designs as explained in Section 2.7. In

the setting of approximate designs, for which the proportions ξ(x) are not necessar-
ily multiples of 1/n, where n denotes the sample size, the D-optimality of a design ξ∗

can be established by Theorem 2.31. It holds that a design ξ∗ is D-optimal on X , if
and only if f(x)TM(ξ∗)−1f(x)/σ2(x) ≤ p, uniformly in x ∈ X . When we substitute
σ2(x) = f(x)TDf(x) into this relation and rearrange terms, we define

ψ(x; ξ) := f(x)T (pD −M(ξ)−1)f(x)

as the suitably transformed sensitivity function. Now, D-optimality is achieved, if

ψ(x; ξ∗) ≥ 0 (4.1.2)

for all x ∈ X . Furthermore, it follows from Corollary 2.34 that equality is attained in
(4.1.2) for design points in the support of an optimal design ξ∗. Therefore it holds that
ψ(x; ξ∗) = 0 for all x ∈ X with ξ∗(x) > 0. For notational convenience we define

Γ(ξ) := pD −M(ξ)−1,

such that ψ(x; ξ) = f(x)TΓ(ξ)f(x).

4.2. Multiple linear regression

In the following we consider the situation of a multiple linear regression model with K
factors where we have n observations

Yi(xi) = β0 +
K∑
k=1

βkxik + εi (4.2.1)

with xi = (xi1, ..., xiK)T ∈ X = [−1, 1]K and variance V(εi) = σ2(xi) = f(xi)
TDf(xi).

Here we assume that we can choose the design points from the symmetric standard
hypercube. The vector of regression functions is given by f(x) = (1, x1, ..., xK)T , such
that the model contains an intercept by the first component of f . Note that now p =
K + 1 and β = (β0, . . . , βK)T .

We assume that the random coefficients bi1, ..., biK associated with the components
x1, ..., xK of the regressor are homoscedastic with variance d1 and equi-correlated with
covariance d2. Furthermore, let the random intercept bi0 be uncorrelated with the other
random coefficients. To be more precise we consider a p × p-dimensional dispersion
matrix

D =

(
d0 0
0 D1

)
, (4.2.2)
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4.2. Multiple linear regression

where D1 is a completely symmetric K ×K-dimensional matrix

D1 = (d1 − d2)IK + d21K1
T
K . (4.2.3)

Here, Ik defines the K × K identity matrix and 1K the vector of length K where all
entries equal 1.

Definition 4.1 (Model cone). We define

CK :=

{
(d0, d1, d2)T ∈ R3

∣∣∣∣ d0 > 0, d1 > 0,− d1

K − 1
≤ d2 ≤ d1

}
as the model cone, so the values of (d0, d1, d2)T where D is positive semidefinite.

4.2.1. Diagonal dispersion matrix

To start we first assume additionally that d2 = 0 which means that all components of
the random coefficients are uncorrelated, so that the dispersion matrix

D =

(
d0 0
0 d1IK

)
of the random coefficients bi is a diagonal matrix. Hence, the variance of each design
point is equal to σ2(x) = d0 + d1

∑K
j=1 x

2
j . In [GDHS12] it is shown that uniform full

factorial 2K-designs supported on the points (±x1, ....,±xK) are D-optimal. It holds
that x1 = . . . = xK = x∗ is optimal and it depends on the values of d0 and d1 if x∗ = 1
or x∗ < 1. The designs constitute the orbit generated by (x1, ...., xK) with respect
to the (finite) group of transformations of both sign changes within the factors and
permutations of the factors themselves. For more details see [GDHS12].

4.2.2. Non-diagonal dispersion matrix

We now assume that d2 6= 0. To reduce the complexity of the system of polynomial
equations and inequalities given by the equivalence theorem, one can apply various
methods. One of these methods is to assume a certain design structure. A standard
approach is the assumption of symmetry in the design under some group action and
a restriction of the design region. This is motivated from the symmetry of D-optimal
designs for the situation with d2 = 0 as described above in Section 4.2.1. This applies as
the D-criterion log det(M(ξ)) is not affected by these transformations g as det(M(ξg)) =
det(M(ξ)). Hence, by convexity the class of invariant designs constitutes an essentially
complete class such that search may be restricted to invariant designs. A particular class
of invariant designs are rhombic designs. Let Sym(K) denote the permutation group
on K elements and {±1} the permutation group with respect to a global sign change,
which is therefore isomorphic to Sym(2).
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4. Optimality regions in multiple regression with correlated random coefficients

Definition 4.2. Let a design ξ for the given model with support on the space diagonals
without the origin and at most two points per space diagonal be a rhombic design if it
is invariant under the action of Sym(K)× {±1} on the design points.

This means that we study designs on [−1, 1]K , that are invariant under permutations
among the entries of each design point and a global sign change with support on the
diagonals of maximal length without the origin. There are bK

2
c + 1 different orbits

under this group action, where bzc denotes the integer part of some z ∈ R. We define
K̃ := bK

2
c. Now, let x` for ` ∈ {0, 1, . . . , K̃} denote the location parameter of each orbit

O`(x`) with 0 < x` ≤ 1 and either ` or K − ` negative signs. The location parameter
denotes the absolute value of the entries of the design points in O`(x`) as the design
points of a rhombic design are restricted to the space diagonals. Let N` = 2

(
K
`

)
for

` 6= K
2

and N` =
(
K
`

)
for ` = K

2
.

Rhombic designs can be characterized as follows: Let xj for j ∈ {0, 1, . . . , K̃} be a
design point with entries of the same absolute value, i.e. xj lies on a space diagonal of
X . Let Oj be the orbit of xj under the action of Sym(K) × {±1} and let ξ̄j be the
uniform design on Oj that assigns the proportion 1

Nj
to each x ∈ Oj. If every orbit Oj

is attributed with a weight wj ≥ 0 such that
∑K̃

j=0wj = 1, then
∑K̃

j=0 wj ξ̄j is a rhombic
design.

To formalize the invariance considerations, let g denote the group action that generates
rhombic designs. Then, there exists a matrix Qg so that f(g(x)) = Qgf(x).

Figures 4.1 and 4.2 exemplify the two different rhombic design classes that will be
studied separately. This distinction is made on the location of the design points. With
rhombic vertex designs we refer to rhombic designs, where the support is restricted to
the vertices of the hypercube, while non-vertex designs are allowed to have points on
both the vertices and the interior or in the interior only. In Fig. 4.1, the blue points
denote the orbit of (x0, x0), with 0 < x0 ≤ 1, while the red points denote the orbit of
(x1,−x1), with 0 < x1 ≤ 1. Similarly, in Fig. 4.2, the blue points denote the orbit of
(x0, x0, x0), with 0 < x0 ≤ 1, while the red points denote the orbit of (x1, x1,−x1), with
0 < x1 ≤ 1. We chose the name rhombic designs due to the structure of the design
points in Fig. 4.1.

The usefulness of rhombic design is mainly due to the complexity reduction that comes
from its definition: Instead of finding K+1 design points each with K location variables
for the entries and a variable for the design weight, we restrict the problem to K̃ + 1
orbits with one weight variable and one location variable per orbit.

Lemma 4.3. The variance function σ2(x) = f(x)TDf(x) is equal for all x in one orbit.

Proof. Let g be the group action from above that generates rhombic designs. By the
form of D in (4.2.2), it holds for σ2(x) that

σ2(g(x)) = f(g(x))TDf(g(x))

= f(x)TQT
gDQgf(x).

As QT
gDQg = D, it follows that σ2(x) = σ2(g(x)).
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Figure 4.1.: Examples for design points for K = 2.

The information matrix of a rhombic design is

M(ξ) =
K̃∑
`=0

w`
N`σ2(x`)

∑
x∈O`

f(x)f(x)T . (4.2.4)

To compute the matrix
∑

x∈O` f(x)f(x)T , see that the information matrix is for each
orbit structured into a scalar entry in the upper left corner and a K × K lower right
completely symmetric block matrix. This leads to the following Lemma:

Lemma 4.4. In the setting of Section 4.2, a rhombic design ξ has an information matrix
of the form

M(ξ) =

(
m0(ξ) 0

0 M1(ξ)

)
,

where m0(ξ) =
∑K̃

`=0
w`

σ2(x`)
and

M1(ξ) =
K̃∑
`=0

w`
N`σ2(x`)

∑
x∈O`

xxT = (m1(ξ)−m2(ξ))IK +m2(ξ)1K1
T
K

is a completely symmetric K ×K matrix.

Proof. As for every x ∈ [−1, 1]K , −x lies in the same orbit as x. Therefore, as

f(x)f(x)T + f(−x)f(−x)T = 2

(
1 0
0 xxT

)
,

M(ξ) is of the form

M(ξ) =

(
m0(ξ) 0

0 M1(ξ)

)
,
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4. Optimality regions in multiple regression with correlated random coefficients

(a) Vertex rhombic design (b) Non-vertex rhombic design

Figure 4.2.: Examples for design points for K = 3.

where

M1(ξ) =
K̃∑
`=0

w`
N`σ2(x`)

∑
x∈O`

xxT

is a K ×K symmetric matrix and

m0(ξ) =
K̃∑
`=0

w`
σ2(x`)

.

Now,
∑

x∈O` xx
T is completely symmetric, because of the permutation invariance of

the orbit O`. As the (weighted) sum of completely symmetric matrices is completely
symmetric itself, the Lemma follows.

We defined Γ(ξ) as the matrix in the quadratic form in (4.1.2) coming from the
equivalence theorem. By Lemma 4.4, denoting the lower right K ×K-submatrix of D
by D1,

Γ(ξ) =

(
(K + 1)d0 −m0(ξ)−1 0

0 (K + 1)D1 −M1(ξ)−1

)
.

Γ(ξ) has the same block structure as D and M(ξ) with completely symmetric lower right
block of dimension K ×K, so

Γ(ξ) =

(
γ0 0
0 (γ1 − γ2)IK + γ21K1

T
K

)
with γ0 = (K + 1)d0 −m0(ξ)−1.

We remind the reader of the following fact: The inverse of a completely symmetric
K ×K matrix A with

A =(a1 − a2)IK + a21K1
T
K
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is

A−1 =
1

a1 − a2

IK −
a2

(a1 − a2)(a1 + (K − 1)a2)
1K1

T
K .

With these preparatory results, we are able to investigate the optimality of rhombic
designs.

4.3. Rhombic Designs and the Equivalence Theorem

4.3.1. Rhombic Vertex Designs

This section studies rhombic designs with all design points on the vertices of the hy-
percube. We will use the Kiefer–Wolfowitz equivalence theorem to investigate how the
D-optimality of a rhombic vertex design depends on D. The investigation leads to the
following theorem:

Theorem 4.5. For the given model 4.2.1 with a dispersion matrix as defined in 4.2.2,
let ξ∗ be a rhombic vertex design. If either

1. K is even or

2. K is odd and ξ∗ has support not only on OK̃,

then ξ∗ is D-optimal if and only if the matrix Γ(ξ∗) = pD−M(ξ∗)−1 is a diagonal matrix

Γ(ξ∗) =

(
γ0 0
0 γ1IK

)
,

with γ0 ≥ 0 and γ1 = −γ0
K

.

Proof. “⇐ ” Assuming γ0 ≥ 0, γ1 = −γ0
K

and γ2 = 0, it follows that

ψ(x; ξ∗) = f(x)TΓ(ξ∗)f(x)

= γ0 + γ1||x||2

= γ0

(
1− ||x||

2

K

)
.

Hence ψ(x; ξ∗) ≥ 0 for all x ∈ [−1, 1]K , as ||x||2 ≤ K. Therefore, the D-optimality
follows from Theorem 2.33.
“⇒ ” According to (4.1.2) and Theorem 2.33, a design ξ∗ is D-optimal if and only if

ψ(x; ξ∗) = f(x)TΓ(ξ∗)f(x) ≥ 0

for all x ∈ X . Furthermore, by Corollary 2.34, we know that

ψ(x; ξ∗) = 0 (4.3.1)

51



4. Optimality regions in multiple regression with correlated random coefficients

for all support points of ξ∗. Now, by (4.3.1), it follows for any design point x` ∈ O`(1),
that

ψ(x`, ξ
∗) = γ0 +Kγ1 + (K(K − 1)− 4`(K − `))γ2 = 0. (4.3.2)

Assuming that the design is supported on at least two different orbits, this directly
implies that γ2 equals zero, as (K(K−1)−4`(K−`)) is strictly monotone for 0 ≤ ` ≤ K̃.

Now, say that ξ∗ is only supported on a single orbit O` with 0 ≤ ` ≤ K̃ for even K and
0 ≤ ` < K̃ for odd K. If ` = 0, it is easy to see that the information matrix is singular,
therefore such a design cannot be D-optimal. The same is true for even K when ` = K̃
using the same argument as in [FHS20]. It holds that ψ(x`, ξ

∗) = 0 for all x` ∈ O`(1).
From the D-optimality of ξ∗ it follows that ψ(x`−1, ξ

∗) ≥ 0 for x`−1 ∈ O`−1(1) and
ψ(x`+1, ξ

∗) ≥ 0 for x`+1 ∈ O`+1(1), so in the orbits with one less or one more negative
entry in the vector. If γ2 6= 0, this would imply ψ(x`−1, ξ

∗) > ψ(x`, ξ
∗) > ψ(x`+1, ξ

∗) or
ψ(x`+1, ξ

∗) > ψ(x`, ξ
∗) > ψ(x`−1, ξ

∗). This contradicts the assumed D-optimality of ξ∗,
therefore γ2 = 0 holds. It follows from (4.3.2) and γ2 = 0 that

γ1 = −γ0

K
.

This implies that

ψ(x; ξ∗) = γ0

(
1− ||x||

2

K

)
.

and therefore γ0 ≥ 0 when the design on the vertices is D-optimal.

Note that ψ(x, ξ∗) = 0 for all vertices x of the hypercube as for those it holds that
||x||2 = K.

Corollary 4.6. A rhombic vertex design with support on either at least two orbits or
an orbit O`(1) with 1 ≤ ` < K̃ can only be D-optimal when

(d1 − d2)(d1 + (K − 1)d2)− d0(d1 + (K − 2)d2) ≤ 0.

Proof. From Theorem 4.5 we obtain that

γ0 ≥ 0, γ1 = −γ0

K
, γ2 = 0

is equivalent to the D-optimality of a rhombic vertex design with support on at least
two orbits or an orbit O`(1) with 1 ≤ ` < K̃. The equation system {γ1 = −γ0

K
, γ2 = 0}

has two solutions m0(ξ)± for m0(ξ) in dependence of d0, d1, d2 and p that we obtained
with Mathematica:

m±0 (ξ) =
d0(p+ 1) + (p− 1) (d1p+ d1 + d2p

2 − 3d2p)

2p (d2
0 + d0(p− 1)(2d1 + d2(p− 3)) + (p− 1)2(d1 − d2)(d1 + d2(p− 2)))

±

√
d2

0 + 2d0(d1(p− 1) + d2p(p− 3)) + p(p− 1)2
(
d21
p

+ 2d1d2
p−3
p−1

+ d2
2
p2−5p+8
p−1

)
2 p
p−1

(d2
0 + d0(p− 1)(2d1 + d2(p− 3)) + (p− 1)2(d1 − d2)(d1 + d2(p− 2)))

.
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4.3. Rhombic Designs and the Equivalence Theorem

Now, with γ0 = pd0 − 1
m0(ξ)

we see that

⇔ 0 ≥
(
pd0 −

1

m+
0 (ξ)

)(
pd0 −

1

m−0 (ξ)

)
⇔ 0 ≥ p2d2

0m
+
0 (ξ)m−0 (ξ)− (m+

0 (ξ) +m−0 (ξ)) + 1

⇔ 0 ≥ (d1 − d2)(d1 + (K − 1)d2)− d0(d1 + (K − 2)d2).

To derive the corollary, check that pd0 − 1
m−0 (ξ)

is always negative on CK , so that

0 ≤ pd0 −
1

m0(ξ)

⇔ 0 ≤ pd0 −
1

m+
0 (ξ)

⇔ 0 ≥
(
pd0 −

1

m+
0 (ξ)

)(
pd0 −

1

m−0 (ξ)

)
on CK . This implies the corollary.

Remark 4.7. Theorem 4.5 gives a semi-algebraic description of the optimality region
of rhombic vertex design in the design weights and the coefficients d0, d1 and d2. This
means that {

γ0 ≥ 0, γ1 = −γ0

K
, γ2 = 0

}
can be interpreted as a semi-algebraic set if one takes into account the constraints that
ξ is a design and (d0, d1, d2)T ∈ CK . This allows us to obtain symbolic solutions for the
design weights ξ∗` := ξ∗(O`(1)) in dependence of the coefficients d0, d1 and d2.

4.3.2. Non-vertex (rhombic) designs

Instead of restricting to rhombic designs we will discuss a broader class of designs, namely
designs with a design point in the interior of the hypercube. This design class naturally
includes non-vertex rhombic designs.

Theorem 4.8. A design ξ∗ with at least one design point in the interior of the hypercube
is D-optimal if and only if M(ξ∗) = 1

K+1
D−1, which means that Γ(ξ∗) = (K + 1)D −

M(ξ∗)−1 is zero.

Proof. “⇐ ” M(ξ∗) = 1
K+1

D−1 implies the D-optimality of ξ∗ by Theorem 2.33.
“⇒ ” By Theorem 2.33 and Corollary 2.34, ξ∗ is D-optimal if and only if

ψ(x; ξ∗) = f(x)T ((K + 1)D −M(ξ∗)−1)f(x) ≥ 0

for all x ∈ [−1, 1]K and

ψ(x; ξ∗) = 0,
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4. Optimality regions in multiple regression with correlated random coefficients

if x is a design point of ξ∗. Now, with Γ(ξ∗) = (K + 1)D −M(ξ∗)−1,

ψ(x; ξ∗) = f(x)TΓ(ξ∗)f(x) = γ0 + γ1||x||2 + 2γ2

∑
1≤`<j≤K

x`xj

is a quadratic polynomial. It holds that

γ0 + γ1||x||2 + 2γ2

∑
1≤`<j≤K

x`xj = 0 (4.3.3)

for design points x of ξ∗. As ξ∗ is a non-vertex design there is an interior point x1 and
additionally K further design points x2, ...xK+1 such that x1, ..., xK+1 span RK because
the information matrix M(ξ∗) is non-singular. Fix the affine subspace generated by x1

and x2. It holds that ψ(x1, ξ
∗) = ψ(x2, ξ

∗) = 0 and ψ(λx1 + (1 − λ)x2, ξ
∗) ≥ 0 for all

λ ∈ [0, 1] and additionally for some λ < 0 because x1 is an interior point of [−1, 1]K .
On the affine subspace generated by x1 and x2, ψ(x; ξ∗) is a quadratic polynomial in λ.
The only quadratic polynomial that is zero on at least two points and non-negative on
at least one point on the line segment between these points as well as for at least one
point on the line outside this segment is the zero polynomial. Recursively, this can be
extended to higher dimensions. Therefore,

f(x)T ((K + 1)D −M(ξ∗)−1)f(x) ≥ 0

for all x ∈ [−1, 1]K can only be achieved as an equation, so

(K + 1)D −M(ξ∗)−1 = 0.

Hence, the Theorem follows.

Corollary 4.9. An invariant design ξ∗ with a design point in the interior of the hyper-
cube can only be D-optimal if the first diagonal entry of D−1 is larger than the second,
which means that

(d1 − d2)(d1 + (K − 1)d2)− d0(d1 + (K − 2)d2) > 0.

Proof. According to Theorem 4.8, an invariant design ξ∗ with a design point in the
interior of the hypercube is D-optimal if and only if Γ(ξ∗) = 0. Now, this implies that
M(ξ∗) = 1

K+1
D−1 and therefore

m0(ξ∗) =
1

(K + 1)d0

, m1(ξ∗) =
d1 + (K − 2)d2

(K + 1)(d1 − d2)(d1 + (K − 1)d2)
,

where m1(ξ∗) denotes the diagonal entries of M1(ξ∗). It is easy to see that m0(ξ∗) >
m1(ξ∗) for all designs with interior design points, so we obtain

m0(ξ∗) > m1(ξ∗)

⇔ (d1 − d2)(d1 + (K − 1)d2)− d0(d1 + (K − 2)d2) > 0.
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4.4. Rhombic Designs for K ∈ {2, 3, 4, 5}

Remark 4.10. Theorem 4.8 describes the semi-algebraic structure of the optimality
area of designs with interior support points. We see that this structure is given by the
non-negative real part of an algebraic variety, so the vanishing set of a collection of
polynomials under the constraints of the model cone CK and the design simplex. This
means that we can obtain symbolic solutions for the optimal designs weights and design
points in dependence of the coefficients d0, d1 and d2 by studying the set {Γ(ξ) = 0}
under the imposed constraints.

4.4. Rhombic Designs for K ∈ {2, 3, 4, 5}
This section investigates for which values d0, d1 and d2 we find a vertex or non-vertex
rhombic design for 2 ≤ K ≤ 5.

4.4.1. The case K = 2

The results of this section where first calculated by hand and later confirmed with a
Mathematica implementation of Theorems 4.5 and 4.8. For K = 2, it is

D =

d0 0 0
0 d1 d2

0 d2 d1

 (4.4.1)

where |d2| < d1 and the variance of each design point is equal to

σ2(x) = f(x)T Df(x) = d0 + d1(x2
0 + x2

1) + 2d2x0x1.

The symmetric properties of the covariance structure with respect to the random ef-
fects of the two attributes, V(b1) = V(b2) = d1, motivates us to consider as can-
didates for the D-optimal designs the following rhombic designs ξx0♦x1,w consisting
of the four design points (x0, x0), (−x0,−x0), (−x1, x1) and (x1,−x1) for x0, x1 ∈
[−1, 1] which form a centered rhombus within the design region. Therefore we have
O0(x0) = {(x0, x0), (−x0,−x0)} and O1(x1) = {(−x1, x1), (x1,−x1)}, so that we obtain
σ2(x0, x0) = σ2(−x0,−x0) and σ2(−x1, x1) = σ2(x1,−x1). It follows that we can deal
with two distinct weights w0 = ξ(O0(x0)) and w1 = ξ(O1(x1)). Since the sum of the
weights of all orbits is equal to 1 we can set w0 = w and w1 = 1− w. The information
matrix for ξx0♦x1,w results in

M(ξx0♦x1,w) =


w

σ2(x0,x0)
+ 1−w

σ2(−x1,x1)
0 0

0
wx20

σ2(x0,x0)
+

(1−w)x21
σ2(−x1,x1)

wx20
σ2(x0,x0)

− (1−w)x21
σ2(−x1,x1)

0
wx20

σ2(x0,x0)
− (1−w)x21

σ2(−x1,x1)

wx20
σ2(x0,x0)

+
(1−w)x21
σ2(−x1,x1)


with determinant

det(M(ξx0♦x1,w)) = 4
(w σ2(−x1, x1) + (1− w)σ2(x0, x0))w (1− w)x2

0 x
2
1

(σ2(x0, x0)σ2(−x1, x1))2 .
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4. Optimality regions in multiple regression with correlated random coefficients

Maximizing the determinant with respect to the variables x0, x1 and w leads to the
following results. Note that d2 = 0 is excluded as this was already settled in [GDHS12].

Theorem 4.11. In the heteroscedastic model of two-factorial multiple regression on
[−1, 1]2 with dispersion matrix (4.4.1) it follows:

(i) If d0 ≤ d1 − |d2|, the design ξx∗0♦x∗1;0.5 is D-optimal with

x∗0 =
√

d0
d1+d2

x∗1 =
√

d0
d1−d2

(ii) If d1 − |d2| ≤ d0 ≤ d21−d22
d1

the design ξx∗0♦x∗1,w∗ is D-optimal with

w∗ =
2

3
− d0

6(d1 − d2)
, x∗0 =

√
d1 − d2

d1 + d2

· d0

2(d1 − d2)− d0

, x∗1 = 1, if d2 > 0,

w∗ =
1

3
+

d0

6(d1 + d2)
, x∗0 = 1, x∗1 =

√
d1 + d2

d1 − d2

· d0

2(d1 + d2)− d0

, if d2 < 0

(iii) If
d21−d22
d1
≤ d0 the vertex design ξ1♦1,w∗ is D-optimal where w∗ solves the equation

2
(
d2

(
6w2 − 6w + 1

)
+ d1(1− 2w)

)
+ d0(1− 2w) = 0.

Proof. Check with Theorems 4.5 and 4.8, that the designs are optimal.

(i) and (ii) describe non-vertex rhombic designs, while (iii) describes the rhombic
design with support on the vertices of the square. The Theorem shows that there is a
D-optimal rhombic design for all (d0, d1, d2)T ∈ C2. Figures 4.3 and 4.4 visualize the
different optimality regions in Theorem 4.11 for d0 = 1. Note that the region only
depends on the quotients d1

d0
and d2

d0
, so the choice of d0 is arbitrary.

4.4.2. The case K = 3

The following Theorem results from a Mathematica implementation of Theorems 4.5
and 4.8.

Theorem 4.12. For the setting from Section 4.2 with K = 3, so

D =


d0 0 0 0
0 d1 d2 d2

0 d2 d1 d2

0 d2 d2 d1

 ,

where −d1
2
< d2 < d1 it follows:
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4.4. Rhombic Designs for K ∈ {2, 3, 4, 5}

0.0 0.5 1.0 1.5 2.0

-2

-1

0

1

2

d1

d
2

(a) Regions (i), (ii)
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(b) Region (iii)

Figure 4.3.: Parameter regions for K = 2: Figure (a) shows parameter regions where
rhombic non-vertex designs are D-optimal, while Figure (b) shows parame-
ter regions where rhombic vertex designs are D-optimal.
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Figure 4.4.: Assembling the parameter regions of rhombic designs for K = 2.
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4. Optimality regions in multiple regression with correlated random coefficients

(i) If either d0 < d1 + d2 ∧ 0 < d2 <
d1
2

or d0 <
(d1+2d2)2

d1−2d2
∧ d2 < 0, the design with

w∗ = 1
4

and

x∗0 =

√
d0(d1 − 2d2)

d1 + 2d2

, x∗1 =

√
d0

d1 − 2d2

,

is D-optimal.

(ii) If d2 <
d1
2
∧ d0 <

(d1−d2)(d1+2d2)
d1+d2

, it holds that the design with

w∗ =
3d0 − 7d1 + 10d2

−16(d1 − d2)
, x∗0 =

√
d0(−d1 + 2d2)

(d1 + 2d2)(3d0 − 4d1 + 4d2)
, x∗1 = 1,

is D-optimal.

(iii) If d2 <
d1
2
∧ d0 <

(d1−d2)(d1+2d2)
d1+d2

, it holds that the design with

x∗0 = 1, x∗1 =

√
3d0(d1 + 2d2)

2d0d2 − d0d1 − 8d2
2 + 4d2d1 + 4d2

1

,

w∗ =
(d1 − 2d2)(d0 + 3d1 + 6d2)

16(d1 − d2)(d1 + 2d2)
,

is D-optimal.

(iv) If d2 6= 0 and
(
d0(d1 + d2) ≥ (d1 − d2)(d1 + 2d2) ∧ d2 ≤ d1

2

)
∨(d1

2
< d2∧3d0+9d1 >

22d2), then the design with x∗0 = x∗1 = 1 and

w∗ =
3d2

0 + 22d0d2 + 18d0d1 − 120d2
2 + 66d2d1 + 27d2

1

64d2(d0 − 3d2 + 3d1)

− 3
√

(d0 − 2d2 + 3d1)2 (d2
0 + 8d0d2 + 6d0d1 + 48d2

2 + 24d2d1 + 9d2
1)

64d2(d0 − 3d2 + 3d1)

is D-optimal.

Proof. For the cases (i), (ii), (iii) check that the equation 1
4
D−1 = M(ξ∗) holds and the

model constraints are satisfied. For the fourth case, check that m0(ξ∗) ≥ 1
4d0

and that
the model constraints are satisfied.

Note that not all settings of (d0, d1, d2) are covered by Theorem 4.12 and that the
described design areas are not disjoint. (ii) and (iii) describe the same optimality area
that also contain area (i). Figures 4.5 and 4.6 show the optimality area for d0 = 1 in the
(d1, d2)-space. Again, the region only depends on the quotients d1

d0
and d2

d0
, so the choice

of d0 is arbitrary. The area where we did not find an optimal rhombic design is given
by d1

2
< d2 ∧ 3d0 + 9d1 ≤ 22d2.
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4.4. Rhombic Designs for K ∈ {2, 3, 4, 5}
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(b) Region (iv)

Figure 4.5.: Parameter regions for K = 3: Figure (a) shows parameter regions where
rhombic non-vertex designs are D-optimal, while Figure (b) shows parame-
ter regions where rhombic vertex designs are D-optimal
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Figure 4.6.: Assembling the parameter regions for K = 3.
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(a) Parameter regions for K = 4.
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(b) Parameter regions for K = 5.

Figure 4.7.: Assembling the optimality regions for K = 4 and K = 5.

4.4.3. The cases K = 4 and K = 5

For K = 4 and K = 5 there are up to three orbits for rhombic designs. To compute an
optimal rhombic vertex design, we let O`(x`) denote the orbits of rhombic design points
and choose x0 = x1 = x2 = 1, such that the weights are w` = ξ(O`(1)) and check the
conditions in Theorem 4.5 for optimality. The different optimality areas are shown in
Fig. 4.7. Again, in the red region, a rhombic design with interior points is D-optimal,
while in the yellow area, a rhombic vertex design is D-optimal. The separating line
is again given by the equality of the first and the second diagonal entry of D−1, see
Corollary 4.6 and Corollary 4.9. We see a similar structure as for K = 2 and K = 3. For
K = 4, there is a D-optimal rhombic design for every point in C4, while for K = 5, in the
region above d2 = d1

2
there is only a small area where rhombic designs are D-optimal,

similar to the case for K = 3.

Remark 4.13. The optimality regions shown in the figures for K ∈ {2, 3, 4, 5} are given
in the (d1, d2)-space while d0 = 1. As before, the region only depends on the quotients
d1
d0

and d2
d0

, so the choice of d0 = 1 is arbitrary. D-optimal designs and the corresponding
parameter regions where they are optimal can be found by studying the semi-algebraic
sets as described in Remark 4.10 and Remark 4.7. A convenient way to generate the
images showing the optimality regions is therefore to use the Resolve and RegionPlot
commands of Mathematica to compute and plot these regions. This was done for
K ∈ {2, 3, 4, 5}.

4.5. Discussion and outlook

In the preceding sections, optimality regions have been investigated for certain invariant
designs in a multiple linear regression model on the hypercube with invariant correlation
structure of the random coefficients. It has been shown that for the introduced class of
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4.5. Discussion and outlook

rhombic designs, it is possible to decide whether a D-optimal design is either supported
on the vertices of the hypercube or has interior design points by evaluating a quadratic
polynomial depending on the covariance matrix of the random coefficients. This result
relies on the Kiefer–Wolfowitz equivalence theorem. The equation separating the two
optimality regions is given as the equality of the diagonal entries of D−1.

The results of Theorem 4.8 hold not only for rhombic designs but for all designs with
an interior design point, independently of invariance considerations. This means that the
D-optimality of designs with interior points is equivalent to the equation M(ξ∗) = 1

p
D−1.

An important observation is the apparent non-existence forD-optimal rhombic designs
for certain values of the entries in D. For small dimensions, we have observed that for
even K, we could always find a D-optimal rhombic design for any D, while this has not
been true for odd K. With respect to our findings, we conjecture the following:

Conjecture 4.14. For even K, there is a D-optimal rhombic design for all (d0, d1, d2)T ∈
CK. For odd K, there is a D-optimal rhombic design for all (d0, d1, d2)T ∈ CK with
d2 ≤ d1

2
.

In addition to certifying that Conjecture 4.14 is correct, there are several further
research directions. A subsequent problem to the conjecture is to show which designs
are D-optimal for d2 > d1

2
for odd K. A more general question is the extension to

less restricted covariance structures for the random coefficients. For example, what
happens when the covariance matrix of the random coefficients associated with the
components x1, . . . , xK is a Hankel matrix (e.g. for an AR(1) process) instead of a
completely symmetric matrix?
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5. The central limit theorem for a
two-sided statistic on Coxeter
groups

The structure of the chapter is as follows: Section 5.1 introduces central limit theorems,
Wasserstein distances and the little-o-notation. Section 5.2 establishes some basic no-
tations and finite Coxeter groups, so that subsequently, Section 5.3 defines the descent
statistic as an example of Coxeter statistics, followed by the descent statistics for the non-
dihedral unbounded irreducible types in Section 5.4. The method of interaction graphs,
as introduced by Chatterjee [Cha08], is summarized in Section 5.5. We remind the reader
of the result of Chatterjee–Diaconis [CD17] in Section 5.6. Section 5.7 and Section 5.8
explain how to generate permutations and signed permutations and their inverses from
one vector of random variables, so that the CLT for the statistic t(π) = des(π)+des(π−1)
where π is a random signed permutation follows in Section 5.9. Based on these results,
Section 5.10 derives the CLT for this statistic for a sequence of Coxeter groups of type D.
A generalization to certain statistics of local dependence is presented in Section 5.15.1
and a two-dimensional CLT for the statistic (des(π), des(π−1)) in Section 5.15.2. Sec-
tion 5.11 explains how to recursively derive higher moments of the descent statistic and
the statistic t. This is done using conditional expectations and a recursion solver. In
Section 5.12, we give sufficient conditions for establishing the CLT for weighted sums
of sequences of random variables which all individually satisfy the CLT. Afterwards, we
apply the Lindeberg Theorem in Section 5.13 to obtain the asymptotic normality of TWn

for sequences of Coxeter groups Wn which either all are products of dihedral groups
or all have only irreducible components of non-dihedral type that satisfy the maximum
condition. Combining these results, Section 5.14 delivers the main theorem. In the
appendix we present a table of moments of DWn and TWn for Coxeter groups of type A

and B.

5.1. Central limit theorems and o-notation

We say that a sequence of integrable random variables (Xn)n with finite variance satisfies
the central limit theorem (CLT), if it holds that

Xn − E(Xn)√
V(Xn)

D→ N(0, 1).
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5. The central limit theorem for a two-sided statistic on Coxeter groups

This means that (Xn)n, normalized by its mean and its standard deviation, converges
in distribution towards the standard Gaussian. The following will become useful for
establishing CLTs later on:

Lemma 5.1. Let (Xn)n be a sequence of integrable random variables with finite variance.
Then (Xn)n satisfies the CLT if and only if every subsequence of (Xn)n has a subsequence
which satisfies the CLT.

Proof. This follows from the following elementary fact: Let (an)n be a sequence in a
topological space A and let a ∈ A. Then if every subsequence of (an)n has a subsequence
which converges to a, then (an)n converges to a.

An approach to show convergence in distribution is to study the Wasserstein distance
between a sequence of random variables and some proposed limit. The Wasserstein
distance is a distance function on the space of probability measures [AGS05, Chapter 7].

Definition 5.2 (Wasserstein distance, also known as Kantorovich–Rubinstein metric).
Let (M,d) be a metric space where every probability measure is a Radon measure and
let Pp(M) be the collection of probability measures on M with finite p-th moments. The
Lp-Wasserstein distance between X ∼ µ ∈ Pp(M) and Y ∼ ν ∈ Pp(M) is defined as

δp(µ, ν) = (inf E [d(X, Y )p])
1
p ,

where the infimum is taken over all joint distributions of (X, Y )T on M × M with
marginals µ and ν.

In fact, a bound on the Wasserstein distance that converges towards zero is a stronger
result than convergence in distribution. This follows as shrinking Wasserstein distance
always implies convergence in distribution, independent of the convergence rate.

We require the definition of the rank statistic. Note that this is not related to the
group-theoretic notion that is the rank of a Coxeter group, which we will define later.

Definition 5.3. Let Y = (Y1, . . . , Yn) be a vector of real-valued random variables
distributed according to a continuous distribution. The rank statistic is defined as
R(Yi) =

∑n
j=1 1{Yi≥Yj}, where 1{·} denotes the indicator function. The value of R(Yi)

gives the position of Yi when Y is sorted in ascending order.

In this work, we use little-o and big-O notation. The definitions vary in the literature,
we use the following conventions: Let f and g be maps from N+ to R≥0. We say that

f(n) = o(g(n)), if it holds that limn→∞
f(n)
g(n)

= 0. Furthermore, we write f(n) = O(g(n)),

if there is a constant C > 0 and N ∈ N such that for all n ≥ N , one has f(n) ≤ Cg(n).

5.2. Introduction to finite Coxeter groups

We start with recalling some background about Coxeter groups. For further details, we
refer the reader to [BB05].
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5.2. Introduction to finite Coxeter groups

Let S be a set. A matrix m : S × S → N ∪ {∞} is a Coxeter matrix, if for all
(s, s′) ∈ S × S, the following holds true:

m(s, s′) = m(s′, s) ≥ 1,

m(s, s′) = 1⇔ s = s′.

A group W is a Coxeter group, if there is a set S ⊆ W and a Coxeter matrix m : S×S →
N ∪ {∞} such that a presentation of W is given by

W =
〈
S
∣∣∣ (ss′)m(s,s′) = 1 for all (s, s′) ∈ S × S

〉
.

In this setting, the pair (W,S) is a Coxeter system and S the set of simple reflections.
Instead of representing m with a matrix, one can equivalently display m with a Coxeter
graph, which is defined with a node set S and edges ss′ where m(s, s′) ≥ 3. Hereby
edges with m(s, s′) ≥ 4 are labeled with m(s, s′). The size of S is the rank of (W,S),
abbreviated by rk(W ). In what follows, when we talk about a Coxeter group W , we
assume that it comes with a fixed generating set S, which makes (W,S) a Coxeter
system. Also, if we write W as a product of Coxeter groups W = W1 ×W2 × · · · ×Wn,
we assume that S = S1 ∪ S2 ∪ . . . ∪ Sn, where Si is the set of simple reflections of Wi.

A Coxeter group W is irreducible if it cannot be written as a non-trivial product of
Coxeter groups W = W1 ×W2. This is equivalent to the corresponding Coxeter graph
being connected. By the classification of finite reflection groups (cf. [Cox35]), every finite
irreducible Coxeter group falls into one of the four infinite families An, Bn, Dn, I2(m) or is
isomorphic to one of seven finite reflection groups of exceptional type. For combinatorial
descriptions of the groups of type An, Bn, Dn, see [BB05, Chapter 8]. A Coxeter group W
is a dihedral group or of dihedral type if rk(W ) = 2. If W is irreducible, this is equivalent
to W ∼= I2(m) for some m ≥ 3. Any finite Coxeter group W can be written as a product

W = W1 ×W2 × · · · ×Wk,

where each Wi is an irreducible Coxeter group. This decomposition is unique up to
permutation of the factors and the Wi are the irreducible components of W .

The finite reflection groups of infinite type An, Bn, Dn and the dihedral family I2(m)
are introduced below.

5.2.1. Type An

The Coxeter group of type An is generated from the symmetries of the n-simplex. There-
fore, the corresponding set S contains all simple reflections in the n-simplex. An is iso-
morphic to the symmetric group Sym(n+1), also known as the permutation group. The
symmetric group Sym(n) is isomorphic to the group of all bijective automorphisms on
a set [n] = {1, . . . , n}. This fact gives rise to the common notation for a permutation as
a bijective map π : [n] → [n]. It is common to write a permutation π ∈ Sym(n) in its
one-line notation π(1)π(2) . . . π(n). The Coxeter graph of An is displayed in Fig. 5.1.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

· · ·

Figure 5.1.: Coxeter graph of type An.

5.2.2. Type Bn

The Coxeter group of type Bn is the symmetry group of the n-hypercube. It is isomorphic
to the signed permutation group of rank n, which is the subgroup of all permutations on
{±1, . . . ,±n} with the antisymmetric constraint −π(i) = π(−i). In a one-line notation
we write π = (π(1), . . . , π(n)) where π(i) ∈ {±1, . . . ,±n} and {|π(1)|, . . . , |π(n)|} = [n].
The Coxeter graph of Bn is displayed in Fig. 5.2.

· · · 4

Figure 5.2.: Coxeter graph of type Bn.

5.2.3. Type Dn

The Coxeter group of type Dn is the symmetry group of the n-demicube. It is isomorphic
to the subgroup of the signed permutation group of rank n that consist of all signed
permutation with an even number of negative signs. This means, that

Dn = {π ∈ Bn :
n∏
i=1

π(i) > 0}.

The Coxeter graph of Dn is displayed in Fig. 5.3.

· · ·

Figure 5.3.: Coxeter graph of type Dn.

5.2.4. Type I2(m)

The Coxeter group of type I2(m) is the symmetry group of the regular m-gon. It is also
known as the dihedral group. The dihedral group of rank m has 2m elements, as the
regular m-gon has m rotational and m reflectional symmetries.The corresponding set S
consists of two simple reflections. The Coxeter graph of I2(m) is displayed in Fig. 5.4.
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5.3. Coxeter statistics

m

Figure 5.4.: Coxeter graph of type I2(m).

5.3. Coxeter statistics

Fix a finite Coxeter group W with a set S of simple reflections. Given an element
w ∈ W , the descent set of w is defined by

Des(w) := {s ∈ S | lS(ws) < lS(w)} , (5.3.1)

where lS(w) is the length of w with respect to S, i.e. the smallest number n such that
w = s1s2 · · · sn, where si ∈ S for all i. The number of descents gives rise to a statistic
des : W → N0 on W defined by des(w) := |Des(w)|. Choosing an element of W
uniformly at random and evaluating this statistic yields a random variable D on N.

The aim of this article is to study the behavior of the statistic t defined by

t : W → N0

w 7→ des(w) + des(w−1).

Just like des, this statistic gives rise to a random variable on N which is denoted by T .
The statistic t was discussed in the case where W = Sym(n) by Chatterjee–Diaconis
[CD17]. They were motivated by the attempt of defining a metric using descents. It
also arises in the context of the two-sided analogue of the Coxeter complex recently
introduced by Petersen [Pet18].

We also write desW , DW , tW or TW if we want to emphasize the ambient Coxeter
group corresponding to these statistics and random variables.

Lemma 5.4. Assume that W decomposes as a product W1 ×W2 of Coxeter groups W1

and W2. Then TW can be written as a sum of independent random variables TW =
TW1 + TW2.

Proof. Let S1 and S2 be the set of simple reflections of W1 and W2, respectively. By
assumption, we have S = S1 ∪ S2. Every w ∈ W can be uniquely written as w =
w1w2 = w2w1, where wi ∈ Wi and one has lS(w) = lS1(w1) + lS2(w2). Consequently,
desW (w) = desW1(w1) + desW2(w2) and tW (w) = tW1(w1) + tW2(w2). The claim now
follows because choosing an element of W uniformly at random is equivalent to choosing
uniformly at random w1 from W1 and independently w2 from W2.

Theorem 5.5. Let W be a finite Coxeter group and T as above.

1. E(T ) = rk(W ).

2. If W is a product of dihedral groups, W =
∏k

i=1 I2(mi), then the variance of T is

V(T ) =
∑k

i=1
1
mi

.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

3. If Wn is a sequence of finite Coxeter groups such that for all n, every irreducible
component of Wn is of non-dihedral type, then V(TWn) is of order rk(Wn).

Proof. Kahle–Stump computed the variance of T for all types of finite irreducible Coxeter
groups in [KS20, Corollary 5.2] . Using Lemma 5.4 and additivity of the variance for
independent random variables, the result above follows immediately.

5.4. Descents on type An, Bn or Dn

As introduced in Section 5.2, elements of the families An, Bn and Dn allow a one-line no-
tation. Given an element π from either An, Bn or Dn, we now explain how to equivalently
describe the set Des(π) in the one-line notation (in comparison to Eq. (5.3.1)). This
allows us to obtain the statistic des(π) = |Des(π)| as a sum of indicator functions that
depend only on the one-line notation, see also [KS20, Section 2.1]. Subsequently, this
shows that the random variable D equals a sum of binary random variables.

5.4.1. Type An−1

As the Coxeter group of type An−1 is isomorphic to Sym(n), the notation for the descents
of some permutation π ∈ Sym(n) simplifies to

Des(π) = {1 ≤ i < n : π(i) > π(i+ 1)}.

This allows us to write

desAn−1(π) = |Des(π)| =
n−1∑
i=1

1{π(i)>π(i+1)}, (5.4.1)

where 1{·} denotes the indicator function, for the descent statistic.

Example 5.6. Let π = 45213 be an element in A4 in one-line notation. We obtain
Des(π) = {2, 3}, as there are descents in the second and third positions in π, as 5 > 2
and 2 > 1. Therefore, des(π) = 2.

5.4.2. Type Bn

Following [BB05, Proposition 8.1.2], it holds that the descents in some signed permuta-
tion π ∈ Bn in the one-line notation are

Des(π) = {0 ≤ i < n : π(i) > π(i+ 1)},

where π(0) = 0. We write for π ∈ Bn

desBn(π) = |Des(π)| = 1{0>π(1)} +
n−1∑
i=1

1{π(i)>π(i+1)}. (5.4.2)
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5.5. Method of interaction graphs

Example 5.7. Let π = (4,−5, 2,−1, 3) be an element in B5 in one-line notation. We
obtain Des(π) = {1, 3}, as there are descents in the first and third position in π, as
4 > −5 and 2 > −1. Note that there is no descent in the zeroth position, as π(1) = 4 > 0.
Therefore, des(π) = 2.

5.4.3. Type Dn

For some π ∈ Dn, it holds that

Des(π) = {0 ≤ i < n : π(i) > π(i+ 1)},

where π(0) = −π(2) [BB05, Proposition 8.2.2]. We write for π ∈ Dn

desDn(π) = |Des(π)| = 1{−π(2)>π(1)} +
n−1∑
i=1

1{π(i)>π(i+1)}. (5.4.3)

Example 5.8. It holds that π = (4,−5, 2,−1, 3) is an element of D5, as
∏5

i=1 π(i) > 0.
As −π(2) = 5 > 4 = π(1), it follows that Des(π) = {0, 1, 3} and des(π) = 3.

5.5. Method of interaction graphs

We give a short overview over the method of interaction graphs as it is presented in
[CD17]. Let (X ,A) be a measurable space and f : X n → R a measurable map. Consider
a function G(x), which maps every x ∈ X n to a simple graph on [n] := {1, 2, . . . , n}.
This graphical rule is symmetric, if for a permutation π the graph G(xπ(1), . . . , xπ(n)) has
the edge set

{(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}.

For m ≥ n, let G′(x) for x ∈ Xm be a symmetric graphical rule on Xm. G′(x) is
an extension of G(x), if G(x) = G(x1, . . . , xn) is the induced subgraph of G′(x) =
G′(x1, . . . , xm) for all x ∈ Xm. To define an interaction rule, let for x, x′ ∈ X n

xi := (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn).

Furthermore, let xij be the vector x with replacements in the i-th and j-th position.
Then, i and j are non-interacting with respect to f , if

f(x)− f(xj) = f(xi)− f(xij).

A graphical rule G is an interaction rule for a function f , if for any x, x′ ∈ X n and any
i, j, it follows from (i, j) not being an edge of either G(x), G(xi), G(xj) or G(xij) that
i and j are non-interacting with respect to f . We later apply the following theorem
from [Cha08] (see also [CD17, Theorem 4.1]) to signed permutations. The theorem
gives a bound on the Wasserstein distance between a normalized statistic that admits a
graphical interaction rule and the standard normal distribution.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Theorem 5.9 (Chatterjee). Let f : X n → R be a measurable map that admits a sym-
metric interaction rule G(x). Let X1, X2, . . . be independent and identically distributed
X -valued random variables and let X := (X1, . . . , Xn). Let F := f(X) and σ2 := V(F ).
Let X ′ = (X ′1, . . . , X

′
n) be an independent copy of X. For each j, define

∆jf(X) = F − f(X1, . . . , Xj−1, X
′
j, Xj+1, . . . , Xn)

and let M := maxj |∆jf(X)|. Let G′(x) be an extension of G(x) to X n+4 and define

δ := 1 + degree of the vertex 1 in G′(X1, . . . , Xn+4).

Then the L1-Wasserstein distance δF between F−E(F )
σ

and a random variable that is
distributed with respect to the standard Gaussian distribution N(0, 1) satisfies

δF ≤
C
√
n

σ2
E(M8)

1
4E(δ4)

1
4 +

1

2σ3

n∑
j=1

E|∆jf(X)|3

for some constant C independent of n.

Chatterjee and Diaconis used the theorem above to show a central limit theorem for
statistics of the form F1(π) +F2(π−1), where both F1 and F2 have bounded local degree
and their local components’ absolute values are bounded by 1. Hereby π denotes a
permutation, hence an element of a Coxeter group of type An. We apply the same proof
scheme to statistics on signed permutation by modifying their model.

5.6. The CLT for the two-sided descent statistic for
type An

Given a sequence of Coxeter groups Wn = An, so a sequence of permutation groups, the
statistic TAn satisfies the CLT. This result was first shown in 1996 by Vatutin via generat-
ing functions [Vat96]. Chatterjee and Diaconis recently generalized this result in [CD17]
to a larger class of locally dependent statistics with a new method that was introduced
by Chatterjee in [Cha08]. This method of interaction graphs (see Section 5.5) provides a
bound on the Wasserstein distance between some normalized statistic that satisfies the
method’s requirements and the standard normal distribution, see Theorem 5.9. For the
statistic TAn , the following theorem implies the CLT:

Theorem 5.10 (Chatterjee and Diaconis [CD17]). The Wasserstein distance between
TAn−E(TAn )√

V(TAn )
and the standard normal distribution is O

(
n−

1
2

)
.

The bound in Theorem 5.10 follows from Theorem 5.9 and V(TAn) = O(n).
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5.7. Permutations and their inverse from a square

0

1

1

X2

U(3)

V (2)

X1

U(1)

V (4)

X4

U(2)

V (5)

X3

U(4)

V (1)

X5

U(5)

V (3)

Figure 5.5.: Example for π = 45213 and σ = 43512, such that t(π) = 4.

5.7. Permutations and their inverse from a square

To apply the method of interaction graphs to the statistic

TAn−1 =
n−1∑
i=1

1{π(i)>π(i+1)} +
n−1∑
i=1

1{π−1(i)>π−1(i+1)}, (5.7.1)

Chatterjee and Diaconis generated both a permutation and its inverse from one set of
random variables, namely a vector of uniformly drawn points out of the standard square
[0, 1]2. Let X := [0, 1]2 and X1, X2, . . . be independent and identically distributed of the
form (Ui, Vi) with (Ui, Vi) ∼Unif([0, 1]2). Let X := (X1, . . . , Xn) and let the x-rank of
Xi be the rank statistic of Ui (cf. Definition 5.3) among (U1, . . . , Un) and the y-rank of
Xi the rank statistic of Vi among (V1, . . . , Vn). Then, let X(1), . . . , X(n) denote the Xi

ordered with respect to their x-ranks and X(1), . . . , X(n) with respect to their y-ranks.
Let

π(i) := y-rank of X(i), σ(i) := x-rank of X(i),

so that π and σ are random permutations with σ = π−1, as X(i) = X(σ(i)) and X(i) =
X(π(i)). For an example see Fig. 5.5.

With this construction, Chatterjee and Diaconis were able to apply the method of
interaction graphs to prove Theorem 5.10.

5.8. Signed permutations and their inverses from a
square

To apply the method of interaction graphs to signed permutations, one has to con-
struct signed permutations similarly to permutations from a set of independent random
variables. Now, let X := [0, 1]2 × {−1, 1} and X1, X2, . . . be independent and identi-
cally distributed of the form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2) and Bi ∼Ber(1

2
) on
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5. The central limit theorem for a two-sided statistic on Coxeter groups

0

1

1

X2

U(3)

V (2)

X1

U(1)

V (4)

X4

U(2)

V (5)

X3

U(4)

V (1)
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Figure 5.6.: Example for π = (4,−5, 2,−1, 3) and σ = (−4, 3, 5, 1,−2) with t(π) = 5.
The blue nodes represent a positive sign and the red nodes a negative sign.

{−1, 1} and independent of (Ui, Vi). Again, let X := (X1, . . . , Xn) and let the x-rank of
Xi be the rank statistic of Ui among (U1, . . . , Un) and the y-rank of Xi the rank statistic
of Vi among (V1, . . . , Vn), so that as before X(1), . . . , X(n) denote the Xi ordered with
respect to their x-ranks and X(1), . . . , X(n) with respect to their y-ranks. This means
that π(i) = y-rank of X(i) is a random permutation and σ(i) = x-rank of X(i) is its
inverse. Now, to see that

π̃(i) := B(|i|)sign(i)π(|i|), σ̃(i) := B(|i|)sign(i)σ(|i|)

define random signed permutations, just check that π̃(−i) = −π̃(i) and σ̃(−i) = −σ̃(i)
and that π̃(i) and σ̃(i) are injective. Furthermore it follows that σ̃ = π̃−1, as B(σ(|i|)) =
B(|i|) and

π̃(σ̃(i)) = B(|σ̃(i)|)sign(σ̃(i))π(|σ̃(i)|) = B(σ(|i|))sign(B(|i|)sign(i))π(σ(|i|)) = i.

An example is displayed in Fig. 5.6.

5.9. The CLT for the two-sided descent statistic on
signed permutations

As explained above, Chatterjee and Diaconis modeled elements of the symmetric group
Sym(n) and their inverses by ranking functions on series of uniformly distributed random
variables on the unit square. We slightly modified this model by additionally introduc-
ing a random sign, see Section 5.8. In the following Theorem, we study the asymptotic
behavior of the statistic TBn , which is the sum of the descents in a random signed permu-
tation and its inverse. We show the central limit theorem for said statistic, normalized
by its expected value and its variance by adapting the proof of Theorem 1.1 in [CD17]
for the modified model.
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5.9. The CLT for the two-sided descent statistic on signed permutations

Theorem 5.11. Let Wn be a sequence of growing rank of Coxeter groups of type B.
Then, TWn satisfies the central limit theorem, if n tends to infinity.

Proof. As explained in Section 5.8, if π and σ are random permutations with π−1 = σ
(cf. Section 5.7), π̃(i) = B(|i|)sign(i)π(|i|) and σ̃(i) = B(|i|)sign(i)σ(|i|) define random
signed permutations. It follows that the number of descents in the signed permutation
π̃ and its inverse σ̃ is given by:

TBn := f(X) =
n−1∑
i=0

1{π̃(i)>π̃(i+1)} +
n−1∑
i=0

1{σ̃(i)>σ̃(i+1)}

= 1{0>B(1)π(1)} +
n−1∑
i=1

1{B(i)π(i)>B(i+1)π(i+1)} + 1{0>B(1)σ(1)} +
n−1∑
i=1

1{B(i)σ(i)>B(i+1)σ(i+1)}

For x ∈ X n with X = [0, 1]2 × {−1, 1} (see Section 5.8), define a simple graph G(x)
on [n] as follows: For any 1 ≤ i 6= j ≤ n, let {i, j} be an edge if and only if the
x-rank of xi and the x-rank of xj or the y-rank of xi and the y-rank of xj differ by
at most 1. To check that this graphical rule is symmetric, see that the edge set of a
relabeled Graph G(xπ(1), . . . , xπ(n)), where π is an arbitrary permutation, has the edge
set {(π(i), π(j))| (i, j) is an edge of G(x1, . . . , xn)}. This is true, since the x-ranks or the
y-ranks of xπ(i) are equal to the respective ranks of xi. Hence this graph is invariant under
relabeling of the indices and it is therefore a symmetric graphical rule. Given x, x′ ∈ X n,
xi is the vector (x1, . . . xi−1, x

′
i, xi+1, . . . , xn), so the vector x in which the i-th entry is

replaced by the i-th entry of x′. Furthermore, xij is the vector with replacements in the
i-th and the j-th entry. Now, suppose that (i, j) is not an edge in G(x), G(xi), G(xj) or
G(xij). Then, the equation

f(x)− f(xj) = f(xi)− f(xij)

holds, as j is not a neighbor of i in either of the four graphs. To better visualize this,
check that

f(x) = f(xi) + f(xj)− f(xij). (5.9.1)

Any indicator function in f(x), that is not dependent of either xi or xj, appears in
f(xi), f(xj) and f(xij), as it is left unchanged by the replacements in xi, xj or xij.
Those indicator functions, that depend on xi but not on xj, are unchanged in f(xj). As
i and j are no neighbors in all four graphs, these indicator functions, that depend on
xi but not on xj, appear in both f(xi) and f(xij). Therefore, the indicator functions
that either depend on xi or on xj turn up exactly once on both sides of the equation.
Hence Eq. (5.9.1) holds, since there cannot be any indicator functions that depend on
both xi and xj, as i and j are no neighbors in all four graphs. This means, that G(x)
is a symmetric interaction rule for f . Now, we construct an extension G′(x) of G(x) on
X n+4. For any 1 ≤ i 6= j ≤ n+ 4, let {i, j} be an edge in G′(x) if and only if the x-rank
of xi and the x-rank of xj or the y-rank of xi and the y-rank of xj, differ by at most 5.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

As this graph is invariant under relabeling of the indices, it is a symmetric graphical
rule. Obviously, every edge in G(x) is also an edge in G′(x), as the distance between two
connected nodes in G(x) can be 5 at most through the insertion of four additional nodes.
Therefore G′(x) is an extension of G(x). As F and f(X1, . . . , Xj−1, X

′
j, Xj+1, . . . , Xn)

can differ in at most 4 summands, |∆jf(X)| ≤ 4. Furthermore, the degree of any node
in G′(x) is bounded by 20, as either the difference in the x-ranks or in the y-ranks has
to be smaller or equal to 5. This means, that |δ| ≤ 21. Then, by Theorem 5.9,

δTBn ≤
C
√
n

σ2
+
Cn

σ3

for some constant C. As [KS20] shows, σ2 = V(TBn) = n+3
6

. Therefore, TBn satisfies the
central limit theorem.

5.10. The CLT for the Coxeter group of type Dn

This section reproduces the previous section’s result for elements of Coxeter groups of
type Dn. These elements are signed permutations with the constraint to have an even
number of negative signs. Therefore, we can reuse the model from the proof of Theorem
5.11, with a slight modification: One sign-generating random variable is set to be the
product of all the others. Therefore, the number of negative signs is always even. Of
course it is not possible to directly apply the method of interaction graphs, as the local
dependency structure is destroyed by one random variable being dependent of all the
others. This problem is solved via an application of Slutsky’s Theorem.

Theorem 5.12. Let Wn be a sequence of growing rank of Coxeter groups of type D.
Then, TWn satisfies the central limit theorem, if n tends to infinity.

Proof. Let X := [0, 1]2 × {−1, 1} and X1, X2, . . . , Xn−1 be independent and identi-
cally distributed of the form (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2) and Bi ∼Ber(1

2
)

on {−1, 1}. Furthermore, set Xn = (Un, Vn,
∏n−1

i=1 Bi) with (Un, Vn) ∼Unif([0, 1]2) and
Bn =

∏n−1
i=1 Bi. The product of independent Ber(1

2
)-distributed random variables on

{−1, 1} is again Ber(1
2
)-distributed on {−1, 1}. Let X := (X1, . . . , Xn) and let the x-

rank and the y-rank of X be defined as in the proof of Theorem 5.11. X(1), . . . , X(n)

denote the Xi ordered in respect to their x-ranks and X(1), . . . , X(n) in respect to their
y-ranks. Then, as in (5.4.3), if π̃ ∈ Dn and π̃−1 = σ̃, with π̃(0) = −π̃(2) we obtain

TDn =
n−1∑
i=0

1{π̃(i)>π̃(i+1)} +
n−1∑
i=0

1{σ̃(i)>σ̃(i+1)}

= 1{−B(2)V(2)>B(1)V(1)} +
n−1∑
i=1

1{B(i)V(i)>B(i+1)V(i+1)}

+ 1{−B(2)U(2)>B(1)U(1)} +
n−1∑
i=1

1{B(i)U(i)>B(i+1)U(i+1)}.
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5.11. Fourth moments of T

Now, remove all the indicator functions from TDn where B(i), B
(i), B(i+1) or B(i+1) equal

Bn and add indicator functions, so that the resulting random variable is distributed as
TBn−1 . Then, as E(TDn) = n and E(TBn−1) = n− 1 (see for example in [KS20]),

TDn − E(TDn)√
V(TDn)

=
TBn−1 + Yn − n√

V(TDn)
,

where Yn = TDn − TBn−1 is a random variable with |Yn| ≤ c for some positive constant c
and all n, so

TDn − E(TDn)√
V(TDn)

=

√
V(TBn−1)√
V(TDn)

TBn−1 − (n− 1)√
V(TBn−1)

+
Yn − 1√
V(TDn)

. (5.10.1)

We know from Theorem 5.11 that
TBn−1−(n−1)√

V(TBn−1 )
converges in distribution to a standard

normal distribution. Yn is bounded, as it is a finite sum of indicator functions. Therefore,

lim
n→∞

Yn−1√
V(TDn )

= 0 almost surely and lim
n→∞

√
V(TBn−1 )√
V(TDn )

= 1 (compare [KS20, Corollary 5.2]).

Therefore, TDn satisfies the central limit theorem (see Slutsky’s theorem, for example in
[Leh98, Theorem 2.3.3]).

5.11. Fourth moments of T

As defined in Section 5.3, let DW be the random variable associated to the statistic desW
and let TW be the random variable associated to the statistic tW for a finite Coxeter
group W . The aim of this section is to prove the following theorem:

Theorem 5.13. Let W be an irreducible Coxeter group of type An, Bn or Dn. Then the
fourth centered moment E

(
(TW − E (TW ))4) of TW is of order n2.

In order to show this, we follow and extend the ideas of Özdemir. In [Ö19], he
formulated the recursive formulas

E
(
DAn+1|DAn

)
= DAn

DAn + 1

n+ 2
+ (DAn + 1)

n+ 1−DAn

n+ 2
=
n+ 1

n+ 2
DAn +

n+ 1

n+ 2
(5.11.1)

and

E
(
DBn+1|DBn

)
= DBn

2DBn + 1

2n+ 2
+ (DBn + 1)

n+ 1− 2DBn

2n+ 2
=

2n− 1

2n+ 2
DBn +

2n+ 1

2n+ 2
.

(5.11.2)

Here E (X|Y ) denotes the conditional expected value where X is conditioned on Y .
Özdemir used these formulas to compute higher moments of DAn and DBn . An important
tool for his computations is the smoothing theorem (also known as the the law of total
expectation) which can be stated as follows:
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Theorem 5.14 (Smoothing Theorem, cf. [Bil95, Theorem 34.4]). Let X and Y be inte-
grable random variables. Then, it holds that

E (E (X|Y )) = E (X) .

Our approach for proving Theorem 5.13 is to inductively compute higher moments
of TW and DW for the different families of Coxeter groups separately. We start in
Section 5.11.1 by computing the fourth centered moment of DW in the case where W
is irreducible and of type A or B. These computations serve as an illustration of the
methods we use and the results will be needed for our inductive method of computing
the fourth centered moments of TW later on. Building on this, we prove Theorem 5.13
for W of type A and B in Section 5.11.2 and Section 5.11.3, respectively. We finish the
proof in Section 5.11.4.

5.11.1. Fourth moment of D

Özdemir showed that the fourth centered moment of the random variable DAn is of order
n2 [Ö19, p. 3]. Using the RSolve function of Mathematica, we are able to give an
explicit formula for this moment:

Lemma 5.15. Let Dn be the random variable associated to the statistic des on the
Coxeter group An, n ≥ 3. Then we have:

E
(
(Dn − E (Dn))4) =

1

240
(n+ 2) (5n+ 8) .

Proof. From Eq. (5.11.1), we derive the recursion formula

E
(
(Dn+1 − E (Dn+1))4 |Dn

)
=

(n− 2) (Dn − E (Dn))4

n+ 2
+

(3n+ 4) (Dn − E (Dn))2

2 (n+ 2)
+

1

16
.

(5.11.3)

By applying E on both sides of Eq. (5.11.3), the smoothing theorem leads to

E
(
(Dn+1 − E (Dn+1))4) =

(n− 2)E
(
(Dn − E (Dn))4)
n+ 2

+
(3n+ 4)V (Dn)

2 (n+ 2)
+

1

16

and with the formula for the variance found for example in [KS20, Corollary 5.2], we
obtain a recursive formula for a[n] = E

(
(Dn − E (Dn))4):

a[n+ 1] =
(6n+ 11)

48
+

(n− 2) a[n]

n+ 2
,

which was solved by computing the value a[3] = 23
48

with Sage and using the RSolve
function of Mathematica.

Using the same method and Eq. (5.11.2), we compute the same moment in type B:
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5.11. Fourth moments of T

Lemma 5.16. Let Dn be the random variable associated to the statistic des on the
Coxeter group Bn, n ≥ 4. Then we have:

E
(
(Dn − E (Dn))4) =

1

240
(n+ 1) (5n+ 3) . (5.11.4)

Proof. From Eq. (5.11.2), we derive the recursion formula

E
(
(Dn+1 − E (Dn+1))4 |Dn

)
=

(n− 3) (Dn − E (Dn))4

n+ 1
+

(3n+ 1) (Dn − E (Dn))2

2 (n+ 1)
+

1

16
.

(5.11.5)

This is the same recursion formula as for type An−1 in Eq. (5.11.3), so we obtain a
recursive formula for a[n] = E

(
(Dn − E (Dn))4):

a[n+ 1] =
(6n+ 5)

48
+

(n− 3) a[n]

n+ 1
, (5.11.6)

which was also solved by computing the starting value a[4] = 23
48

with Sage and using
the RSolve function of Mathematica.

5.11.2. Moments of T for type An

Throughout this subsection, let Tn = TAn , Dn = DAn and let D′n be the random variable
associated to the statistic

An → N
w 7→ des

(
w−1

)
.

Clearly, we have Tn = Dn + D′n, but Dn and D′n are not independent. In order to
compute the fourth centered moment of Tn, we want to inductively determine mixed

moments of the form E
(
Dk
nD
′
n
l
)

. To compute these moments recursively, we use the

following two-dimensional conditional expectation for (Dn, D
′
n) introduced by Özdemir:

Lemma 5.17 (see [Ö19, p. 18]). In type An, the random variable (Dn, D
′
n) satisfies the

following:

E((Dn+1, D
′
n+1)|(Dn, D

′
n)) =


(Dn, D

′
n) with prob. P1 = (Dn+1)(D′n+1)+n+1

(n+2)2
,

(Dn + 1, D′n) with prob. P2 = (n+1−Dn)(D′n+1)−n−1
(n+2)2

,

(Dn, D
′
n + 1) with prob. P3 = (Dn+1)(n+1−D′n)−n−1

(n+2)2
,

(Dn + 1, D′n + 1) with prob. P4 = (n+1−Dn)(n+1−D′n)+n+1
(n+2)2

.

We remark that in comparison to this, there is a shift of indices in [Ö19, p. 18] as
there, Dn corresponds to the descent statistic on Sym (n) = An−1. Özdemir used this
conditional expectation in order to compute the asymptotics of E

(
(Dn−E(Dn))2(D′n−

E(D′n))2
)
, see [Ö19, Lemma 5.1]. We obtain his results and generalizations of it in the

proof of the following proposition.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Proposition 5.18. In type An, n ≥ 3, the fourth centered moment of Tn is given by

E
(
(Tn − E (Tn))4) =

1

60

(
5n2 + 79n+ 258

)
− 5n+ 2

n (n+ 1)
.

Proof. Define Un := Dn − E (Dn) = Dn − n and U ′n := D′n − E (D′n). Our goal is to
compute

E
(
(Tn − E (Tn))4) = E

(
(Un + U ′n)4

)
.

Multiplying out the right hand side of this equation and using linearity of the expected
value, we see that it suffices to compute E(Uk

nU
′l
n) for all 0 ≤ k, l ≤ 4 with k + l = 4.

Using the smoothing theorem and Lemma 5.17, we derive the following recursion formula
for fixed k and l:

E(Uk
n+1U

′l
n+1) = E(Uk

nU
′
n
l
P1 + (Un + 1)kU ′n

l
P2 + Uk

n(U ′n + 1)lP3 + (Un + 1)k(U ′n + 1)lP4),

where P1, P2, P3 and P4 are as in Lemma 5.17. The right hand side of this equation only
depends on E(U i

nU
′
n
j) with i ≤ k and j ≤ l. Hence, inductively computing E(U i

nU
′
n
j) for

all pairs (i, j) with i ≤ k, j ≤ l and where at least one of this inequalities is strict, we
obtain a recursion formula for E(Uk

nU
′
n
l).

To obtain the claimed result, we computed the starting values with Sage and solved
the recursion with the RSolve command of Mathematica, just as in Section 5.11.1.
The intermediate results of these computations can be found in Appendix A.1.

5.11.3. Moments of T for type Bn

We now turn to type Bn. Let Dn := DBn , Tn := TBn and let D′n be the random variable
associated to

Bn → N
w 7→ des

(
w−1

)
.

To compute the fourth centered moment of Tn = Dn + D′n, we want to take the same
approach as in Section 5.11.2. For this, we first need an analogue of Lemma 5.17. We
start by setting

Bn,i,j :=
∣∣{w ∈ Bn

∣∣ des (w) = i and des
(
w−1

)
= j}

∣∣ .
These numbers are the coefficients of the type Bn two-sided Eulerian polynomial

Bn (s, t) :=
∑
w∈Bn

sdes(w)tdes(w−1),

as studied by Visontai in [Vis13]. We clearly have

P
(

(Dn, D
′
n) = (i, j)

)
=
Bn,i,j

|Bn|
.
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5.11. Fourth moments of T

Lemma 5.19. The numbers Bn,i,j satisfy the following recursion formula:

nBn,i,j = (n+ i+ j + 2ij)Bn−1,i,j

+ (1− i+ (2n+ 1) j − 2ij)Bn−1,i−1,j

+ (1− j + (2n+ 1) i− 2ij)Bn−1,i,j−1

+ (n (2n+ 3)− (2n+ 1) i− (2n+ 1) j + 2ij)Bn−1,i−1,j−1.

(5.11.7)

Proof. In [Vis13, Theorem 15], Visontai shows that the type Bn two-sided Eulerian
polynomial satisfies

nBn (s, t) =
(
2n2st− nst+ n

)
Bn−1 (s, t)

+ (2nst (1− s) + s (1− s) (1− t)) ∂

∂s
Bn−1 (s, t)

+ (2nst (1− t) + t (1− s) (1− t)) ∂
∂t
Bn−1 (s, t)

+ 2st (1− s) (1− t) ∂2

∂s∂t
Bn−1 (s, t) .

From this, Eq. (5.11.7) follows by computing the derivatives and comparing the coeffi-
cients on both sides.

Using this, we obtain the following analogue of Lemma 5.17:

Lemma 5.20. In type Bn, the random variable (Dn, D
′
n) satisfies the following:

E
((
Dn+1, D

′
n+1

)
| (Dn, D

′
n)
)

=


(Dn, D

′
n) with prob. P1 = n+1+Dn+D′n+2DnD′n

2(n+1)2
,

(Dn + 1, D′n) with prob. P2 = −Dn+(2n+1)D′n−2DnD′n
2(n+1)2

,

(Dn, D
′
n + 1) with prob. P3 = (2n+1)Dn−D′n−2DnD′n

2(n+1)2
,

(Dn + 1, D′n + 1) with prob. P4 = (2n+1)(n+1−(Dn+D′n))+2DnD′n
2(n+1)2

.

Proof. Dividing both sides of Eq. (5.11.7) by n2nn!, we obtain

Bn,i,j

|Bn|
=
n+ i+ j + 2ij

2n2

Bn−1,i,j

|Bn−1|

+
1− i+ (2n+ 1) j − 2ij

2n2

Bn−1,i−1,j

|Bn−1|

+
1− j + (2n+ 1) i− 2ij

2n2

Bn−1,i,j−1

|Bn−1|

+
n (2n+ 3)− (2n+ 1) i− (2n+ 1) j + 2ij

2n2

Bn−1,i−1,j−1

|Bn−1|
,

where we used that |Bn| = 2nn!. From this, the result follows because, as noted above,
we have

Bn,i,j

|Bn|
= P

(
(Dn, D

′
n) = (i, j)

)
and

Bn−1,k,l

|Bn−1|
= P

(
(Dn−1, D

′
n−1) = (k, l)

)
.
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Proposition 5.21. In type Bn, n ≥ 4, the fourth centered moment of Tn is given by

E
(
(Tn − E (Tn))4) =

1

60

(
5n2 + 39n+ 79

)
+

2n− 1

4n (n− 1)
.

Proof. The proof is completely analogous to the one of Proposition 5.18. Again, set
Un := Dn−E (Dn) and U ′n := D′n−E (D′n) such that Tn−E (Tn) = Un +U ′n and observe

that it suffices to compute E
(
Uk
nU
′l
n

)
for all 0 ≤ k, l ≤ 4 with k + l = 4.

This can now inductively be done using the recursion formula

E(Uk
n+1U

′
n+1

l
) = E(Uk

nU
′
n
l
P1 + (Un + 1)kU ′n

l
P2 + Uk

n(U ′n + 1)lP3 + (Un + 1)k(U ′n + 1)lP4),

where P1, P2, P3 and P4 are as in Lemma 5.20. We solved the corresponding recursions
with the RSolve command of Mathematica. Intermediate results can be found in
Appendix A.2.

5.11.4. Proof of Theorem 5.13

We are now able to formulate a proof for Theorem 5.13 by deriving the order of the fourth
moment of TDn from the corresponding moment of TBn via the Minkowski inequality:

Proof of Theorem 5.13. For type An and Bn, we obtained the result in Proposition 5.18
and Proposition 5.21, respectively. For type Dn, we exploit the similarity of Bn and Dn
to bound the difference between the respective fourth moments. The group Bn has a
more combinatorial description as a group of signed permutations (for further details,
see Section 5.2.2 or [BB05, Chapter 8]). Choosing an element of Bn uniformly at random
hence is equivalent to choosing a random permutation π ∈ Sym (n) together with a
tuple (b1, . . . , bn) ∈ {±1}n. We then obtain π̃ ∈ Bn by setting π̃ (i) := bi · π (i) as
explained in Section 5.8. In this description, Dn is the subgroup of Bn given by all signed
permutations π̃ such that |{i ∈ {1, . . . , n} | π̃ (i) < 0}| is an even number. Choosing an
element of π̃ ∈ Dn uniformly at random is equivalent to choosing a random permutation
π ∈ Sym (n) together with a tuple (b1, . . . , bn−1) ∈ {±1}n−1 and setting

π̃ (i) :=

{
bi · π (i) , 1 ≤ i ≤ n− 1,(∏n−1

j=1 bj

)
· π (i) , i = n.

These considerations imply that we can write

TDn
d
= TBn + Yn,

where Yn is a bounded random variable (cf. proof of Theorem 5.12). Using the Minkowski
inequality, we obtain

E
(
(TDn − E (TDn))4) ≤ ((E (TBn − E (TBn))4) 1

4 +O (1)
)4

= E
(
(TBn − E (TBn))4

)
+O

(
n

3
2

)
.

The result now follows from Proposition 5.21.
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5.12. CLTs for weighted sums of converging sequences

Remark 5.22. The results of this section show the convenience of the conditional ex-
pectation to compute the expected value: Instead of a combinatorial approach as for
example in the proof of [KS20, Proposition 5.7], one derives a recursion formula and
uses a recursion solver like RSolve to find the solution. Of course, this approach is only
possible if one can find a conditional expectation as for example in Lemma 5.20.

Remark 5.23. In [Ö19, Section 5.7] it is shown how to derive the CLT for T when
(Wn)n = (An)n via the martingale convergence theorem and the recursive formulation of
Lemma 5.17. This is an alternative proof of [CD17, Theorem 1.1] (see Theorem 5.10)
and one should be able to find an alternative proof for Theorem 5.11, i.e to prove the
CLT for T when (Wn)n = (Bn)n with the given formulas for the moments of TB.

5.12. CLTs for weighted sums of converging sequences

This section explains how to derive the asymptotic normality of a sequence of random

variables (Xn)n, where Xn =
∑kn

i=1 an,iXn,i, under the assumption that (Xn,i)n
D→ N(0, 1)

for all i. The main idea is to use Lévy’s continuity theorem via the pointwise convergence
of the characteristic function of Xn towards the characteristic function of the standard
normal distribution. We begin with some preparations:

Definition 5.24. The characteristic function of a random variable X is defined as
ψX(t) := E

(
eitX

)
for t ∈ R.

For a detailed introduction to characteristic functions, see for example in [Bil95]. Now,
Lévy’s continuity theorem states the following:

Theorem 5.25 (Lévy). For a sequence of random variables (Xn)n, it holds that Xn
D→ X

for some random variable X if and only if lim
n→∞

ψXn(t) = ψX(t) for every t ∈ R.

Characteristic functions of sums of independent random variables exhibit the following
useful property:

Lemma 5.26. Let X and Y be real-valued random variables. If X and Y are independent
and a, b ∈ R, it holds that ψaX+bY (t) = ψX(at)ψY (bt) for every t ∈ R.

Using the preceding results, one obtains the following lemma, which describes when
a weighted sum of converging sequences satisfies the CLT.

Lemma 5.27. Let Xn =
∑kn

i=1 an,iXn,i, where for every n, the Xn,i are independent

centered random variables with V(Xn,i) = 1 and an,i ∈ R≥0 such that
∑kn

i=1 a
2
n,i = 1.

Then if for each i, we have Xn,i
D→ N(0, 1) and

lim
k→∞

sup
n

(
kn∑
i=k

a2
n,i

)
= 0, (5.12.1)

it follows that Xn
D→ N(0, 1).
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Before we prove this statement, we give some comments on Eq. (5.12.1). Let Xk
n :=∑min(k,kn)

i=1 an,iXn,i be the random variable consisting of the first k summands of Xn. We

have V(Xn) =
∑kn

i=1 a
2
n,i = 1 and

V(Xk
n) =

min(k,kn)∑
i=1

a2
n,i = 1−

kn∑
i=k

a2
n,i.

Hence, Eq. (5.12.1) is equivalent to

lim
k→∞

sup
n

(
V(Xn)− V(Xk

n)
)

= 0.

This means that the statement of Lemma 5.27 can roughly be phrased as follows: If all
the columns of the array (Xn,i)n,i satisfy the CLT and furthermore, the initial summands
of Xn asymptotically contain all of the variance of Xn, then (Xn)n satisfies the CLT.

Proof of Lemma 5.27. The characteristic function of the standard normal distribution
is e−

1
2
t2 . To prove the asymptotic normality of Xn, we therefore show that for all t ∈ R

and any δ > 0, there is an N ∈ N so that |ψXn(t)− e− 1
2
t2| < δ for all n ≥ N . Now,

|ψXn(t)− e−
1
2
t2| = |ψXn(t)− ψ∑k

i=1 an,iXn,i
(t) + ψ∑k

i=1 an,iXn,i
(t)− e−

1
2
t2|

≤ |ψXn(t)− ψ∑k
i=1 an,iXn,i

(t)|+ |ψ∑k
i=1 an,iXn,i

(t)− e−
1
2
t2 |.

Eq. (5.12.1) guarantees that for any ε > 0, there is a finite k such that for all n, one
has

∑kn
i=k+1 a

2
n,i ≤ ε. We conclude for the first summand with Jensen’s inequality and

|eiα − 1| ≤ |α|, that

|ψXn(t)− ψ∑k
i=1 an,iXn,i

(t)| = |E(eitXn − eit
∑k
i=1 an,iXn,i)|

≤ E|eit
∑∞
i=k+1 an,iXn,i − 1|

≤ E|t
∞∑

i=k+1

an,iXn,i|

≤ |t|

E

(
∞∑

i=k+1

an,iXn,i

)2
 1

2

≤ |t|

(
∞∑

i=k+1

a2
n,i

) 1
2

≤ |t|ε
1
2 .

For the second summand, with the uniform convergence of characteristic functions on
compact intervals and the asymptotic normality of (Xn,i)n, i.e. ψXn,i(t) → e−

1
2
t2 , we

obtain for some positive constants C1, C2

|ψ∑k
i=1 an,iXn,i

(t)− e−
t2

2 | = |ψ∑k
i=1 an,iXn,i

(t)− e−
∑k
i=1 a

2
n,i

t2

2 + e−
∑k
i=1 a

2
n,i

t2

2 − e−
t2

2 |

≤ |
k∏
i=1

ψXn,i(an,it)−
k∏
i=1

e−a
2
n,i

t2

2 |+ |e−
∑k
i=1 a

2
n,i

t2

2 − e−
t2

2 |
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≤ C1ε+ |e−
t2

2 (e−(1−
∑k
i=1 a

2
n,i)

t2

2 − 1)|

≤ C1ε+ |e−
t2

2 (e−ε
t2

2 − 1)| ≤ C2ε.

These considerations imply that for any ε > 0 and some positive constant C3(t), there

is an N ∈ N so that for all n ≥ N it holds that |ψXn(t)− e− 1
2
t2| ≤ C3(t)ε = δ.

The following lemma is a consequence of Lemma 5.27 when kn is globally bounded,
but additionally allows for summands that converge in probability towards zero, instead
of converging in distribution to the standard normal distribution.

Lemma 5.28. Let (Xn)n be a sequence of centered random variables and suppose that
there is k ∈ N such that for each n, Xn can be written as a sum Xn = Xn,1 + · · ·+Xn,k of
independent random variables Xn,i. Assume that for every 1 ≤ i ≤ k, the following holds

true: Either (Xn,i)n satisfies the CLT or
Xn,i√
V(Xn)

P→ 0. Then if at least one sequence

(Xn,i)n satisfies the CLT and V(Xn)→∞, the sequence (Xn)n satisfies the CLT.

Proof. Without loss of generality, we can assume that there is a k′ ≥ 1 such that
for 1 ≤ i ≤ k′, the sequence (Xn,i)n satisfies the CLT while for all i > k′, we have
Xn,i√
V(Xn)

P→ 0. This implies that

Zn :=
Xn,k′+1 + · · ·+Xn,k√

V(Xn)

P→ 0

Using Slutsky’s Theorem [Leh98, Theorem 2.3.3], we see that Xn satisfies the CLT if
the remaining sum X ′n = Xn − Zn = Xn,1 + · · ·+Xn,k′ satisfies the CLT. We write

X ′n√
V(X ′n)

=
k′∑
i=1

an,i
Xn,i√
V(Xn,i)

, where an,i =

√
V(Xn,i)

V(X ′n)
.

Now, we have

k′∑
i=1

a2
n,i =

∑k′

i=1 V(Xn,i)

V(X ′n)
= 1,

so the claim follows from Lemma 5.27. Furthermore, Eq. (5.12.1) is trivially satisfied.

Lemma 5.29. In the setting of Lemma 5.28,
Xn,i√
V(Xn)

P→ 0 holds if
V(Xn,i)

V(Xn)
→ 0.

Proof. The Chebyshev inequality shows that

P

(
|Xn,i|√
V(Xn)

≥ ε

)
≤ V(Xn,i)

ε2V(Xn)
,

which implies the convergence in probability of
|Xn,i|√
V(Xn)

towards zero if
V(Xn,i)

V(Xn)
→ 0.
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5.13. CLTs via the Lindeberg Theorem

A collection (Xn,i)
1≤i≤kn
n≥1 of random variables is a triangular array if for each n, all Xn,i

are independent of each other. A triangular array is centered if E(Xn,i) = 0 for all n
and i. Given such a triangular array, we set

Xn :=
kn∑
i=1

Xn,i, s2
n,i := V(Xn,i) and s2

n := V(Xn) =
kn∑
i=1

s2
n,i.

The array (Xn,i)n,i satisfies the maximum condition if

lim
n→∞

max
1≤i≤kn

s2
n,i

s2
n

= 0.

It satisfies the Lindeberg condition if for every ε > 0,

1

s2
n

kn∑
i=1

E
(
X2
n,i1{|Xn,i|>εsn}

)
→ 0.

The importance of these conditions for us is as follows:

Theorem 5.30 (Lindeberg). Let (Xn,i)n,i be a centered triangular array. Then (Xn,i)n,i
satisfies the Lindeberg condition if and only if it satisfies the maximum condition and
the sequence (Xn)n satisfies the CLT.

To apply this to our setting, let (Wn)n be a sequence of finite Coxeter groups and let

Wn =
kn∏
i=1

Wn,i,

be the decomposition of Wn into its irreducible components. Now, let Tn be the random
variable associated to the statistic t on Wn. By Lemma 5.4, we have

Tn =
kn∑
i=1

Tn,i,

where Tn,i is the random variable associated to the statistic t on Wn,i. From this, we
obtain a centered triangular array by setting Xn,i := Tn,i − E(Tn,i). By the arguments
above, we have Xn = Tn − E(Tn).

As a first application of the Lindeberg Theorem, we obtain a CLT for products of
dihedral groups:

Lemma 5.31. Let (Wn)n be a sequence of finite Coxeter groups such that for each n,
every irreducible component of Wn is of dihedral type. Write

Wn =
kn∏
i=1

I2(mn,i)

and let Tn be the random variable associated to the statistic t on Wn. Then if
∑kn

i=1
1

mn,i
→

∞, the sequence (Tn)n satisfies the CLT.
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5.13. CLTs via the Lindeberg Theorem

Proof. Define the triangular array (Xn,i)n,i associated to the sequence (Wn)n as explained
above. We want to show that this array satisfies both the maximum condition and the
Lindeberg condition.

By Theorem 5.5, we have for all n and i

s2
n,i = V(Xn,i) = 4/mn,i ≤ 4/3

and s2
n =

∑kn
i=1 4/mn,i. Thus, it follows immediately from the assumption that the

maximum condition is satisfied.
It is easy to verify that for all n and i and all w ∈ I2(mn,i), one has

0 ≤ t(w) = des(w) + des(w−1) ≤ 4

as this is true for all dihedral groups. We have rk(I2(mn,i)) = 2, so by Theorem 5.5, one
has

|Xn,i| = |Tn,i − E(Tn,i)| ≤ 2.

By assumption, sn →∞, so for every ε > 0, the indicator function 1{|Xn,i|>εsn} is trivial
for n sufficiently large. This implies that Xn,i satisfies the Lindeberg condition.

Now by Theorem 5.30, the sequence (Xn)n = (Tn − E(Tn))n satisfies the CLT and
hence so does (Tn)n.

We obtain the following result for sequences of Coxeter groups with no dihedral irre-
ducible components:

Lemma 5.32. Let (Wn)n be a sequence of finite Coxeter groups such that for each n,
every irreducible component Wn,i of Wn is of non-dihedral type and we have rk(Wn,1) ≥
. . . ≥ rk(Wn,kn). Then if rk(Wn,1) = o(rk(Wn)), the random variable Tn associated to
the statistic t on Wn satisfies the CLT.

Proof. As above, let (Xn,i)n,i be the triangular array associated to the sequence (Wn)n.
By Theorem 5.5, we know that s2

n is of the order of rk(Wn) and s2
n,i is of order rk(Wn,i).

Therefore, the maximum condition is satisfied, as max1≤i≤kn rk(Wn,i) = rk(Wn,1) =
o(rk(Wn)). With the Cauchy–Schwarz inequality, the Chebyshev inequality and the
results for the fourth moment from Theorem 5.13, we see that

E
(
X2
n,i

s2
n,i

1{|Xn,i|>εsn}

)
≤

√
E(X4

n,i)

s4
n,i

P(|Xn,i| > εsn)

= O

(
sn,i
sn

)
.

The factors Wn,i which are of exceptional type can be neglected here since for them,
|Xn,i| is globally bounded. This implies

1

s2
n

kn∑
i=1

E
(
X2
n,i1{|Xn,i|>εsn}

)
= O

(
1

s2
n

kn∑
i=1

s2
n,i

sn,i
sn

)
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= O

(
sn,1
sn

kn∑
i=1

(
sn,i
sn

)2
)

= O

sn,1
sn

(
kn∑
i=1

sn,i
sn

)2
 = O

(
sn,1
sn

)
,

where we assumed that, without loss of generality, for each n, we have sn,1 =
√

V(Tn,1) ≥
sn,i for all i. The CLT now follows because, as observed above, we have sn,1 = o(sn).

5.14. Proof of the main theorem

Throughout this section, let (Wn)n be a sequence of finite Coxeter groups such that
rk(Wn)→∞, let

Wn =
kn∏
i=1

Wn,i

be the decomposition of Wn into its irreducible components and assume that for all n,
we have rk(Wn,1) ≥ . . . ≥ rk(Wn,kn). As above, let Tn := TWn and Tn,i := TWn,i

.
In the previous section, we proved the CLT for sequences where either every Wn,i is of

dihedral type (Lemma 5.31) or where every Wn,i is of non-dihedral type and rk(Wn,i) =
o(rk(Wn)) (Lemma 5.32). The proofs required a maximum condition: We used that
in both cases, the variance of Tn,i was of smaller magnitude than the variance of Tn.
However, this need not be the case in general. If the Wn,i are of non-dihedral type,
it is possible that for some i, the rank of Wn,i is of the same order as the rank of
Wn. An easy example of this is given by setting Wn := Akn for some k ∈ N. Here, we
have V(Tn)/V(Tn,i) = k for all n. An example with a growing number of irreducible

components is the sequence Wn =
∏dlog(n)e

i=1 Ad n
2i
e, so that V(Tn)/V(Tn,i) = 2i. In order

to extend our results to these cases, we need to separate the irreducible components that
do not satisfy the maximum condition from the remaining ones. For this, we make the
following definition:

An irreducible component Wn,i of Wn is δ-small for some δ > 0, if rk(Wn,i) ≤
rk(Wn)1−δ. Let mn := min{i ∈ N : Wn,i+1 is δ-small}. Define M δ

n :=
∏mn

i=1Wn,i

and W δ
n :=

∏kn
i=mn+1 Wn,i. For all n, we can write Wn = M δ

n ×W δ
n . By Lemma 5.4, we

have

Tn = TMδ
n

+ TW δ
n

=
mn∑
i=1

Tn,i +
kn∑

i=mn+1

Tn,i.

We note that if everyWn,i is of non-dihedral type and for some δ, one has limn→∞mn = 0,
the maximum condition is satisfied.

Remark 5.33. Every dihedral group has rank 2 and every finite irreducible Coxeter
group of exceptional type has rank smaller than 9. Hence, for every 0 < δ < 1, there
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5.14. Proof of the main theorem

is N ∈ N such that for all n ≥ N , every irreducible components of Wn is either of type
A, B or D or it is δ-small.

As was shown by Chatterjee–Diaconis [CD17] (see Theorem 5.10) and Röttger [Röt20]
(see Theorem 5.11 and Theorem 5.12), the sequences TAn , TBn and TDn satisfy the CLT.
This allows us to apply Lemma 5.27 if the sequence (Wn)n satisfies the following property:

Definition 5.34. Let Wn = M δ
n ×W δ

n as defined above. The sequence (Wn)n is well-
behaved, if there exists some δ > 0, so that

lim
k→∞

sup
n

(
mn∑
i=k

V(Tn,i)

V(TMδ
n
)

)
= 0. (5.14.1)

While the definition seems to be rather technical, we have failed to construct a se-
quence of finite Coxeter groups that is not well-behaved. Some examples to illustrate
this are listed in Example 5.38.

Remark 5.35. For all J ⊆ N, we obviously have

sup
n∈J

(
mn∑
i=k

V(Tn,i)

V(TMδ
n
)

)
≤ sup

n∈N

(
mn∑
i=k

V(Tn,i)

V(TMδ
n
)

)
for all k.

Thus, every subsequence of a well-behaved sequence is well-behaved again.

Proposition 5.36. If (Wn)n is well-behaved, and all Wn,i are of non-dihedral type, then
the sequence (Tn)n satisfies the CLT.

Proof. Choose δ such that Eq. (5.14.1) is satisfied. As noted above, we have Tn =
TMδ

n
+ TW δ

n
. From Theorem 5.5, we know that V(TMδ

n
) is of order rk(M δ

n) and V(TW δ
n
) is

of order rk(W δ
n). By assumption, we have rk(Wn) = rk(M δ

n) + rk(W δ
n)→∞.

By Lemma 5.1, it suffices to show that every subsequence of (Tn)n has a subsequence
which satisfies the CLT. For any J ⊆ N, the subsequence (Wn)n∈J satisfies all condi-
tions of the proposition: (Wn)n∈J is a sequence of finite Coxeter groups which have no
irreducible factors of dihedral type and such that (rk(Wn))n∈J tends to infinity. Further-
more, this subsequence is well-behaved as noted in Remark 5.35. Thus, we can assume
that J = N, i.e. it suffices to show that (Tn)n∈N has a subsequence which satisfies the
CLT.

If rk(M δ
n) = o(rk(Wn)) then rk(W δ

n) must be of the same order as rk(Wn). Hence,
as every irreducible factor of W δ

n =
∏kn

i=mn+1Wn,i is δ-small, we have rk(Wn,mn+1) =
o(rk(W δ

n)). This allows us to apply Lemma 5.32 to see that (TW δ
n
)n satisfies the CLT.

The CLT for (Tn)n now follows, even without passing to a subsequence, from Lemma 5.28
and Lemma 5.29 because V(TMδ

n
)/V(Tn)→ 0.

Next assume that rk(M δ
n) 6= o(rk(Wn)). In this case, there is J ⊆ N such that

(rk(M δ
n))n∈J → ∞. The subsequence (M δ

n)n∈J is again well-behaved and as noted in
Remark 5.33, we can assume that every irreducible component of M δ

n is of type A, B or
D. Thus, it follows from [CD17],[Röt20] and Lemma 5.27 that the sequence (TMδ

n
)n∈J
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satisfies the CLT. There are two cases to consider: If rk(W δ
n) = o(rk(Wn)), we have

V(TW δ
n
)/V(Tn) → 0. If this is not the case, it follows from Lemma 5.32 that, after

possible passing to a further subsequence, TW δ
n

satisfies the CLT. In both cases, the
asymptotic normality of (Tn)n∈J follows from Lemma 5.28 and Lemma 5.29.

We are now ready to prove our main theorem. Each Wn decomposes uniquely as

Wn = Gn × In,

where no irreducible component of Gn is of dihedral type and

In =
ln∏
i=1

I2(mn,i).

Note that by Remark 5.33, the sequence (Wn)n is well-behaved if and only if (Gn)n is.
We use this decomposition in order to combine the results obtained so far and show:

Theorem 5.37. Let Tn be the random variable associated to the statistic t on Wn.
Assume that (Wn)n is well-behaved. Then the following are equivalent:

1. (Tn)n satisfies the CLT.

2. V(Tn)→∞.

3. rk(Gn) +
∑ln

i=1
1

mn,i
→∞.

Proof. By Lemma 5.4, the random variable Tn decomposes as a sum of independent
random variables Tn = TGn + T In , where TGn = TGn and T In = TIn . Let rn := rk(Gn) and
dn :=

∑ln
i=1

1
mn,i

. By Theorem 5.5, rn is of order V(TGn ) and dn is of order V(T In). Using

additivity of the variance, it follows immediately that Item 2 is equivalent to Item 3.
Now assume that Item 2 and Item 3 hold. We want to show that this implies Item 1.

By Lemma 5.1, it suffices to show that every subsequence of (Tn)n has a subsequence
which satisfies the CLT. For any J ⊆ N, the subsequence (Wn)n∈J satisfies all conditions
of the theorem and Item 2: (Wn)n∈J is a sequence of finite Coxeter groups such that
both (rk(Wn))n∈J and (V(Tn))n∈J tend to infinity. Furthermore, this subsequence is
well-behaved as noted in Remark 5.35. Thus, we can assume that J = N and have to
show that (Tn)n∈N has a subsequence which satisfies the CLT. If neither rn nor dn are
bounded, there is J ⊆ N such that (rn)n∈J →∞ and (dn)n∈J →∞. By Proposition 5.36,
rn → ∞ implies that TGn satisfies the CLT and by Lemma 5.31, dn → ∞ implies that
T In satisfies the CLT. Hence in this case, both (TGn )n∈J and (T In)n∈J satisfy the CLT, so
the subsequence (Tn)n∈J satisfies the CLT by Lemma 5.28. If rn is bounded, dn must be
unbounded. Thus, we can find J ⊆ N such that (dn)n∈J → ∞. It follows that (T In)n∈J
satisfies the CLT and that (

V(TGn )

V(Tn)

)
n∈J
→ 0,
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so we can use Lemma 5.28 and Lemma 5.29 to see that (Tn)n∈J satisfies the CLT. The
case where dn is bounded works the same.

Lastly, as Tn − E(Tn) takes only values in Z, the sequence (Tn)n can only satisfy a
CLT if its variance tends to infinity [KS20, Proposition 6.15]. This shows that Item 1
implies Item 2.

Example 5.38. The following list of examples illustrates Theorem 5.37. To simplify
the notation, we omit the rounding of the ranks of the irreducible components.

• Wn =
∏log(n)

i=1 A n

2i
× (B√n)

√
n satisfies the CLT, as

∏log(n)
i=1 A n

2i
is well-behaved, as

V(TWn,i )

V(T
Mδ
n

)
does not depend on n, and (B√n)

√
n satisfies the maximum condition.

• Bn × (An1−δ)n
δ

for any 0 < δ < 1 satisfies the CLT, as mn = 1 is bounded and
(An1−δ)n

δ
satisfies the maximum condition.

• Wn =
∏n

i=1 I2(i) satisfies the CLT, as the harmonic series diverges.

• Wn =
∏n

i=1 I2(i2) does not satisfy the CLT.

• Wn = An3 × Dn5 × Fn4 × I2(n2) satisfies the CLT.

Remark 5.39. After posting Theorem 5.37 to the arXiv (see [BR19]), V. Féray an-
nounced to us that the condition of the sequence of finite Coxeter groups to be well-
behaved can indeed be dropped [Fé20]. For this, he employs a result of Mallows [Mal72]
that allows him to use the L2 Wasserstein distance to derive the CLT for those irre-
ducible components that are of large variance. This is similar to our approach where we
separate the irreducible components that are not δ-small. Féray’s approach leads to a
shorter proof of Theorem 5.37 without requiring the well-behaved condition.

5.15. Further results and outlook

There are different directions to extend the results that are presented in this chapter. For
a start, it still remains to show that every sequence of finite Coxeter groups of growing
rank is well-behaved or alternatively find a sequence that is not. A general question is to
obtain a similar result for other statistics as we found for the two-sided descent statistic.
Following Chatterjee and Diaconis [CD17], we show in Section 5.15.1 that the results of
Section 5.9 and Section 5.10 extend to a class of statistics with bounded local degree.
Furthermore, we show in Section 5.15.2 that a two-dimensional CLT for the statistic
(Dn, D

′
n) follows with the Theorem of Cramér–Wold for the irreducible types Bn and Dn.

A follow-up problem is the extension of Theorem 5.37 to a wider class of statistics, or,
to specify when it may be extended and where our methods do not apply. A starting
point is the peaks statistic, which should show a similar behavior as descents. A direct
reproduction of Theorem 5.37 would require similar results on the fourth moments of
other statistics as we found them for the two-sided descent statistic. If this cannot
be done recursively, these will require new methods and ideas. As the more general
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5. The central limit theorem for a two-sided statistic on Coxeter groups

proof found by Féray [Fé20] only requires the variance instead of the fourth moments,
his proof should apply to all two-sided statistics that satisfy the structure described in
Section 5.15.1. An open problem of a different flavor suggested by Alperen Özdemir are
Berry-Esseen bounds for the two-sided descent statistic. An interesting question is if it
is possible to reproduce the bound for Wasserstein distance that hold for the irreducible
types to arbitrary sequences of Coxeter groups. We were asked by Kyle Petersen if there
is a two-dimensional CLT for the statistic (Dn, D

′
n) for arbitrary sequences of Coxeter

groups. We believe that this should follow from a careful application of the Cramér–Wold
device to the proof of Theorem 5.37.

5.15.1. Generalization to a class of statistics with local degree k

As in [CD17], it is possible to generalize the proof of Theorem 5.11 to a wider class of
statistics of local degree k. These statistics are of the form

F1(π) + F2(π−1),

where the local components’ absolute value is bounded by 1. If π is a signed permutation,
a bound for the Wasserstein distance between the normalized statistic and the standard
normal distribution follows. Therefore the central limit theorem for these statistics
holds, if the variance of the statistics is of order O(n

1
2

+ε) for an ε > 0. The Theorem is
implied from a generalization of the proof of Theorem 5.11 by constructing the symmetric
interaction rule in the right way.

Theorem 5.40. Let Wn be a sequence of growing rank of Coxeter groups of type B and
let F1, F2 be statistics of local degree k, with the absolute value of their local components
bounded by 1. The statistic F1(π) + F2(π−1) gives rise to a random variable F . The
Wasserstein distance between F , normalized by its mean and variance, and the standard
normal distribution satisfies

δF ≤ C(k)

(√
n

s2
+
n

s3

)
for s2 := V(F1(π) + F2(π−1)) and some constant C(k).

Proof. If the statistics F1 and F2 are of local degree k and their local components’
absolute value is bounded by 1, let {i, j} be an edge in G(x) if and only if the x-ranks
or the y-ranks differ by at most k − 1. For the extension G′(x), we say that {i, j} is an
edge if and only if the ranks differ by at most k + 3. Then, Theorem 5.9 applies, and
the Wasserstein distance is bounded:

δF ≤ C(k)

(√
n

s2
+
n

s3

)
.

Here, C(k) is a large enough constant.
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To see that the bound in Theorem 5.40 also holds when π is an element of a Coxeter
group of type Dn, we use the same technique as in the proof of Theorem 5.12. Hence,
we decompose the statistic into a part that is the same statistic depending on a signed
permutation on {±1, . . . ,±(n− 1)} and a finitely bounded random variable.

Theorem 5.41. Let Wn be a sequence of growing rank of Coxeter groups of type D and
let F1, F2 be statistics of local degree k, with the absolute value of their local components
bounded by 1. The statistic F1(π) + F2(π−1) gives rise to a random variable F . Then,
if we assume that V(F ) → ∞, the Wasserstein distance between F , normalized by its
mean and variance, and the standard normal distribution satisfies

δF ≤ C(k)

(√
n− 1

s2
+
n− 1

s3

)
+ o(1)

for s2 := V(F1(π) + F2(π−1)) and some constant C(k).

Proof. Let F = F1(π1) + F2(π−1
1 ) = f(X) where π1 is a uniformly chosen element of

the Coxeter group of type Dn. Let X = (X1, . . . , Xn) be generated as in the proof of
Theorem 5.12, so Xi = (Ui, Vi, Bi) with (Ui, Vi) ∼Unif([0, 1]2). Bi is an independent
random sign for 1 ≤ i ≤ n − 1 and Bn =

∏n−1
i=1 Bi. Then, F ′ is the statistic where we

remove all local components that depend on Bn. Subsequently we add local components,
so that the resulting statistic is F ′ = F1(π2) + F2(π−1

2 ), where π2 is a random signed
permutation on {±1, . . . ± (n − 1)} generated by (X1, . . . , Xn−1). Then, as the local
degree is k, F − F ′ = O(1) and therefore E(F − F ′) = O(1) and V(F − F ′) = O(1),
which implies that V(F ′) = V(F ) + O(1). Now, see that Eq. (5.10.1) from the proof of
Theorem 5.12 generalizes to

F − E(F )√
V(F )

=

√
V(F ′)√
V(F )

F ′ − E(F ′)√
V(F ′)

+
F − F ′ − E(F − F ′)√

V(F )
,

which immediately shows that the Wasserstein distance between F and F ′ tends to zero,
as lim

n→∞
V(F ′)
V(F )

= 1 and lim
n→∞

F−F ′−E(F−F ′)√
V(F )

= 0. Therefore it holds that δF ≤ δF ′ + o(1)

and the theorem follows.

5.15.2. The Statistic (des(π), des(π−1))

This section derives a two-dimensional central limit theorem for the vector statistic
(des(π), des(π−1)) for π being either an element of a Coxeter group of type Bn or Dn.
This is achieved with the Cramér–Wold device and a slight modification of the proofs
of Theorems 5.11 and 5.12. The Cramér–Wold device shows the equivalence of the
convergence in distribution between a random vector and every linear combination of its
elements. It is also known as the Theorem of Cramér–Wold (see for example in [Bil95,
Theorem 29.4]).
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5. The central limit theorem for a two-sided statistic on Coxeter groups

Theorem 5.42 (Cramér–Wold). Let X̄n = (Xn1, . . . , Xnk) and X̄ = (X1, . . . , Xk) be

random vectors of dimension k. Then, X̄n
D→ X̄, if and only if

k∑
i=1

tiXni
D→

k∑
i=1

tiXi

for each t = (t1, . . . , tk) ∈ Rk and for n→∞.

We use the short-hand notation (Dn, D
′
n) for the random variable that rises from

(des(π), des(π−1)) as explained in Section 5.3. Therefore, we can show the convergence
of (Dn, D

′
n) by studying linear combinations of the form t1Dn + t2D

′
n. It is sufficient to

only check linear combinations with t ∈ S1, since the investigated statistic is normalized
by the square root of the variance V(t1Dn + t2D

′
n). This leads to the following theorem:

Theorem 5.43. Let Wn be a sequence of Coxeter groups of growing rank of either type
Bn or Dn. Then, the statistic (Dn, D

′
n) satisfies a two-dimensional central limit theorem

of the form

Σ
− 1

2
n

(
Dn − E(Dn)
D′n − E(D′n)

)
D→ N2(0, I)

for n → ∞, where I denotes the two-dimensional identity matrix and Σn is the covari-
ance matrix of (Dn, D

′
n).

Proof. Via the Theorem of Cramér–Wold, we can study the convergence of (Dn, D
′
n) by

studying t1Dn + t2D
′
n for tT = (t1, t2) ∈ S1. We derive a convergence

tT
1√

V(Dn)

(
Dn − E(Dn)
D′n − E(D′n)

)
D→ N(0, 1) (5.15.1)

to show the Theorem via an application of Slutsky’s Theorem. (5.15.1) is equivalent to

1√
V(Dn)

(t1Dn + t2D
′
n − (t1 + t2)E(Dn))

D→ N(0, 1), (5.15.2)

as E(Dn) = E(D′n). Now, since t ∈ S1, the proofs of the Theorems 5.11 and 5.12 apply,
which means that

t1Dn + t2D
′
n − (t1 + t2)E(Dn)√

V(t1Dn + t2D′n)

D→ N(0, 1).

This convergence is also a consequence of Theorem 5.40 or Theorem 5.41, as the local
components of t1Dn + t2D

′
n are still bound by 1 and the local dependency structure

is not changed by multiplying the sum of indicator functions that model Dn and D′n
with constants. Furthermore, the variance V(t1Dn + t2D

′
n) is of order n and therefore,

the Wasserstein distance to the standard normal distribution is bound by a vanishing
function in n. Now, by Slutsky’s Theorem, (5.15.2) and therefore (5.15.1) is satisfied as

V(t1Dn + t2D
′
n)

V(Dn)

a.s→ 1.
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5.15. Further results and outlook

This results from the fact that V(Dn) = V(D′n)) and Cov(Dn, D
′
n) = O(1) (see [KS20])

and that t21 + t22 = 1. Because of the convergence in (5.15.1), the theorem follows via
another application of Slutsky’s Theorem, as

1

V(Dn)
Σn =

1

V(Dn)

(
V(Dn) Cov(Dn, D

′
n)

Cov(Dn, D
′
n) V(D′n)

)
a.s.→ I,

since Cov(Dn, D
′
n) = O(1) and V(Dn) = V(D′n).

Remark 5.44. Theorem 5.43 can be generalized to certain statistics (F1(π), F2(π−1)),
if F1 and F2 meet the constraints of Theorem 5.40 or Theorem 5.41, V(F1(π)) =
V(F2(π−1)) holds and V(F1(π)) is big enough so that the constraint to the Wasserstein
distance in Theorem 5.40 or Theorem 5.41 converges to zero for n going to infinity.
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A. Moments of T

This section contains the moments up to degree 4 of the random variables which where
described in the proofs of Proposition 5.18 and Proposition 5.21.

Let Dn = DWn , Tn = TWn , let D′n be the random variable associated to the statistic

Wn → N
w 7→ des(w−1)

and define Un := Dn−E(Dn) and U ′n := D′n−E(D′n). For the proofs of Proposition 5.18
and Proposition 5.21, one needs to inductively compute E(Uk

nU
′
n
l) for all 0 ≤ k, l ≤ 4

where Wn = An and Wn = Bn, respectively. Note that E(Uk
nU
′
n
l) = E(U l

nU
′
n
k). For the

sake of completeness, we also list the mixed moments of (Dn, D
′
n), which can be computed

similarly, although they are not needed to prove Proposition 5.18 and Proposition 5.21.

A.1. Type A

If Wn = An, we obtain the following list of (joint) moments up to degree 4. The result for
E(U4

n) corresponds to Lemma 5.15 and the result for E((Tn−E(Tn))4) to Proposition 5.18.
The moments in boldface were already known before and can be found in [KS20].

E(·)

Un 0

U2
n

n+2
12

UnU′n
n

2(n+1)

U3
n 0

U2
nU
′
n 0

U3
nU
′
n

n(n+2)
8(n+1)

U4
n

1
240

(n+ 2)(5n+ 8)

U2
nU
′
n

2 1
144

(n2 + 4n+ 76)− 2n+1
3n(n+1)

(Tn − E(Tn))2 n+2
6

+ n
n+1

(Tn − E(Tn))3 0

(Tn − E(Tn))4 1
60

(5n2 + 79n+ 258)− 5n+2
n(n+1)
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A. Moments of T

E(·)

Dn
n
2

D2
n

n+2
12

+ n2

4

DnD′n
n2

4
+ n

2n+2

D3
n

n(n2+n+2)
8

D2
nD
′
n

1
24

(3n3 + n2 + 14n− 12) + 1
2(n+1)

D3
nD
′
n

1
16

(n4 − 4n3 + 15n2 − 36n+ 56)− 4
(n+1)

D4
n

1
240

(15n4 + 30n3 + 65n2 + 18n+ 16)

D2
nD
′
n

2 1
144

(9n4 + 6n3 + 85n2 − 68n+ 148)− 7n+2
6n(n+1)

T2
n n2 + n+2

6
+ n

n+1

T 3
n n3 + n2

2
+ 4n− 3 + 3

n+1

T 4
n n4 + n3 + 97n2

12
− 281n

60
+ 103

10
− 11n+2

n(n+1)

A.2. Type B

If Wn = Bn, we obtain the following list of (joint) moments up to degree 4. The result for
E(U4

n) corresponds to Lemma 5.16 and the result for E((Tn−E(Tn))4) to Proposition 5.21.
The moments in boldface were already known before and can be found in [KS20].

E(·)

Un 0

U2
n

n+1
12

UnU′n
1
4

U3
n 0

U2
nU
′
n 0

U3
nU
′
n

n+1
16

U4
n

1
240

(n+ 1)(5n+ 3)

U2
nU
′
n

2 1
144

(n2 + 2n+ 19) + 2n−1
24n(n−1)

(Tn − E(Tn))2 n+4
6

(Tn − E(Tn))3 0

(Tn − E(Tn))4 1
60

(5n2 + 39n+ 79) + 2n−1
4n(n−1)
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A.2. Type B

E(·)

Dn
n
2

D2
n

n+1
12

+ n2

4

DnD′n
n2+1

4

D3
n

n(n2+n+1)
8

D2
nD
′
n

1
24
n(7 + n+ 3n2)

D3
nD
′
n

1
16

(1 + n+ 4n2 + n3 + n4)

D4
n

1
240

(15n4 + 30n3 + 35n2 + 8n+ 3)

D2
nD
′
n

2 1
144

(9n4 + 6n3 + 43n2 + 2n+ 19) + 2n−1
24n(n−1)

T2
n n2 + n+4

6

T 3
n n(n2 + n

2
+ 2)

T 4
n n4 + n3 + 49n2

12
+ 13n

20
+ 79

60
+ 2n−1

4n(n−1)

97





Bibliography

[AFHZ14] A. C. Atkinson, V. V. Fedorov, A. M. Herzberg, and R. Zhang. Elemental
information matrices and optimal experimental design for generalized regression
models. Journal of Statistical Planning and Inference, 144:81 – 91, 2014. Inter-
national Conference on Design of Experiments.

[AGS05] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and
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ume 64 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series
of Modern Surveys in Mathematics [Results in Mathematics and Related Areas.
3rd Series. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2017.

[Als09] G. Alsmeyer. Mathematische Statistik. Skripten zur mathematischen Statistik.
Inst. für Math. Statistik, Universität Münster, third edition, 2009.

[ARS17] C. Améndola, K. Ranestad, and B. Sturmfels. Algebraic Identifiability of Gaus-
sian Mixtures. International Mathematics Research Notices, 2018(21):6556–6580,
04 2017.

[BB05] A. Björner and F. Brenti. Combinatorics of Coxeter groups, volume 231 of
Graduate Texts in Mathematics. Springer, New York, 2005.

[BCR13] J. Bochnak, M. Coste, and M. Roy. Real algebraic geometry, volume 36.
Springer, New York, 2013.

[BDKS19] T. Boege, A. D’Al̀ı, T. Kahle, and B. Sturmfels. The geometry of gaussoids.
Foundations of Computational Mathematics, 19(4):775–812, Aug 2019.

[Bil95] P. Billingsley. Probability and Measure. Wiley Series in Probability and Statistics.
Wiley, 1995.

[BLM+07] Y. Berstein, J. Lee, H. Maruri-Aguilar, S. Onn, E. Riccomagno, R. Weisman-
tel, and H. P. Wynn. Nonlinear matroid optimization and experimental design.
SIAM Journal on Discrete Mathematics, 22, 08 2007.

99



Bibliography

[BMO+10] Y. Berstein, H. Maruri-Aguilar, S. Onn, E. Riccomagno, and H. P. Wynn.
Minimal average degree aberration and the state polytope for experimental de-
signs. Annals of the Institute of Statistical Mathematics, 62(4):673–698, Aug 2010.

[BMS04] D. R. Berman, S. C. McLaurin, and D. D. Smith. Ranking whist players.
Discrete Mathematics, 283(1-3):15–28, 2004.
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