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ABSTRACT III

Abstract

This dissertation discusses a tubular setup with regard to its potential for continuous
crystallization of narrow crystal size distributions. This application of tubular setups is
motivated by a demand for new devices and strategies for continuous crystallization on
a small scale. Among the continuous crystallizers is the helically coiled flow tube, which
combines the advantages of high mass and heat transfer rates for cooling crystallization.

The dissertation is divided into three main parts. First, residence time distributions
and crystal growth are determined experimentally in straight tubes and in helically coiled
flow tubes. Next, a momentum balance model is developed to validate the measured
particle residence time distributions. Finally, the evolution of crystal size distributions in
helically coiled flow tubes is modeled and simulated with a coupled population balance
equation system.

This study shows in crystallization experiments that an improved radial mixing and
more uniform residence time distributions are reached by using helically coiled flow tubes
rather than straight tubes. In helically coiled flow tube crystallizers, flow rates in the
transient and turbulent regimes are neither necessary nor beneficial. The operation at
laminar flow rates enables relatively long residence times and large final crystal sizes after
crystal growth, even at short tube lengths. For this reason, helically coiled flow tube
crystallizers can be realized with low pressure loss.

The residence times of non-neutrally buoyant spherical particles and angular crystals
are measured experimentally in straight and helically coiled flow tubes. In both setups,
large particles are faster than small particles, a finding observed for the first time, here,
for crystals in helically coiled flow tubes. The observation can be explained, in a first
approximation, by a newly developed model. The movement of single particles in straight
tubes is modeled with a momentum balance. Forces dominating particle residence time
are identified, and the experimental size dependency of the residence time distribution is
reproduced. The residence time distribution is independent of the wall material, which
allows the material to be chosen depending on the application. Moreover, the findings of
this study can also be applied to other solid-liquid processes with spherical and irregular
particles.

The population balance equation system is parameterized from seeded batch experi-
ments. Subsequently, continuous growth-dominated crystallization in helically coiled flow
tubes is simulated. Though plug flow is not reached, a size-dependent residence time is
advantageous because small crystals have more time to grow than large ones. Therefore,
helically coiled flow tubes offer the potential to narrow crystal size distributions. For
potash alum, independent of seed crystal size distributions, the width of crystal size dis-
tributions remains nearly constant despite growth rate dispersion. It is shown that narrow
crystal size distributions can be produced in the device, during cooling crystallization, at
laminar flow rates. Furthermore, a large product mass flow of large crystals and a high
yield can be reached simultaneously, in helically coiled flow tubes. Hence, the dissertation
is an important step towards the industrial application of continuous crystallization for
narrowly distributed size-specific crystals.



IV KURZZUSAMMENFASSUNG

Kurzzusammenfassung

In dieser Arbeit wird das Potential eines Strömungsrohres für die Kristallisation unter-
sucht. In der kontinuierlichen Kristallisation wurden zuletzt vermehrt neue kontinuier-
liche Apparate und Konzepte für kleinvolumige Produkte entwickelt. Darunter befinden
sich Wendelrohrkristaller, die hohe Stoff- und Wärmetransportraten ermöglichen und so
Vorteile für die Kühlungskristallisation bieten.

Die Arbeit gliedert sich in drei Teile. Zuerst werden Verweilzeitverteilungen und Wachs-
tumsraten experimentell in geraden Rohren und in Wendelrohren gemessen. Um die
Verweilzeitverteilungen zu validieren, wird die Partikelbewegung basierend auf einer Mo-
mentenbilanz modelliert. Schließlich wird die Entwicklung der Kristallgrößenverteilung in
Wendelrohren mit einem gekoppelten Populationsbilanzsystem modelliert und simuliert.

Für die Kristallisation sollten Wendelrohre gegenüber geraden Rohren bevorzugt wer-
den, da sie eine bessere radiale Vermischung und engere Verweilzeitverteilungen ermög-
lichen. Es wird gezeigt, dass in den Wendelrohren dafür keine instationären oder tur-
bulenten Strömungsgeschwindigkeiten notwendig sind. Der Betrieb bei laminaren Be-
dingungen ermöglicht somit auch in kurzen Rohren lange Verweilzeiten zur Erzeugung
großer Kristalle durch Wachstum. Dadurch können Wendelrohrkristaller mit niedrigem
Druckverlust betrieben werden.

Die Partikelverweilzeit wird für übliche kugelförmige Partikel und auch für eckige
Kristalle experimentell bestimmt. Sowohl in geraden Rohren als auch in Wendelrohren
sind große Partikel schneller als kleine Partikel. Für Kristalle wurde diese partikelgrößen-
abhängige Verweilzeit das erste Mal im Wendelrohr beobachtet und sie kann mit einem
neu entwickelten Impulsbilanzmodell in erster Näherung erklärt werden. Das Modell
beschreibt die Bewegung eines einzelnen Partikels in einem geraden Rohr. Dadurch
können die Kräfte identifiziert werden, die die partikelgrößenabhängige Verweilzeit verur-
sachen. Die Verweilzeitverteilung ist unabhängig vom Wandmaterial. Bei der Implemen-
tierung eines Wendelrohrkristallers kann das Wandmaterial daher je nach Anwendung
frei ausgewählt werden. Die Verweilzeitergebnisse können auch für andere Fest-Flüssig-
Prozesse in Wendelrohren mit kugelförmigen und unregelmäßigen Partikeln relevant sein.

Das Populationsbilanzsystem wird basierend auf Batch-Experimenten unter Zugabe
von Saatkristallen parametrisiert. Dies ermöglicht die Simulation der kontinuierlichen
wachstumsdominierten Kristallisation im Wendelrohr. Auch wenn keine ideale Pfropfen-
strömung erreicht wird, ist eine partikelgrößenabhängige Verweilzeit vorteilhaft, da kleine
Kristalle mehr Zeit zum Wachsen haben als große Kristalle. Dadurch haben Wendel-
rohre das Potential Kristallpopulationen mit einer engen Größenverteilung zu erzeugen.
Für Kalialaun bleibt die Breite der Kristallgrößenverteilung trotz Wachstumsratendis-
persion, unabhängig von der Anfangsverteilung, nahezu konstant. Es wird gezeigt, dass
mittels Kristallwachstum in Wendelrohren enge Kristallgrößenverteilungen bei laminaren
Strömungsgeschwindigkeiten erzeugt werden. Gleichzeitig können große Massenströme,
große Kristalle und hohe Ausbeuten erreicht werden. Damit stellt die Arbeit einen wichti-
gen Schritt zur kontinuierlichen Kristallisation von engen Kristallgrößenverteilungen für
industrielle Anwendungen dar.
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NOTATION VII

Notation

Latin Symbols

Symbol Unit Definition
a m s−2 acceleration vector
a m s−2 acceleration
b m tube wall thickness
cD − drag coefficient
d m diameter
dp m sphere volume equivalent particle diameter
D m2 s−1 dispersion coefficient
De − Dean number
ec − collision elasticity coefficient
f m−1 number density distribution

ḟ m−1 s−1 number density distribution flow rate
fD − correction factor of the Stokes drag force
fG − Goldman correction factor of the drag force
fM − correction factor of the Magnus force
fS − correction factor of the Saffman force
F m kg s−2 force vector in Cartesian coordinates
F m kg s−2 absolute value of a component of the force
g m s−2 gravity of Earth
G m s−1 growth and dissolution rate vector
G m s−1 growth and dissolution rate of one crystal face
h m vector of perpendicular distances of crystal faces from crys-

tal center
h m perpendicular distance of a crystal face from crystal center
∆h m width of a control volume in h
i − index of finite control volume along the h-coordinate
j − index of finite control volume along the z-coordinate
kV − volumetric shape factor
l m tube length
m kg mass
ṁ kg s−1 mass flow rate
M kg mol−1 molar mass
nt − index of the current time step
N − number of control volumes
p m screw pitch
p1 m s−1 pre-exponential factor of the growth and dissolution kinet-

ics
p2 J mol−1 activation energy of the growth kinetics



VIII NOTATION

Symbol Unit Definition
p3 − exponent of the growth and dissolution kinetics
∆p Pa pressure drop
P − dimensionless pitch
r − the ratio of successive gradients on the grid of finite control

volumes
r m Cartesian coordinate vector
R m tube radius
Rm J mol−1 K−1 molar gas constant
Re − Reynolds number
Recritical − critical Reynolds number
Rer − Reynolds number of rotation
Res − shear Reynolds number
St − Stokes number
tc − torsion parameter
t s time
∆t s time step
T K temperature
v m s−1 linear velocity vector
v m s−1 absolute value of a component of the linear velocity
vf m s−1 average fluid velocity
V m3 volume
w kg hydrate per

kg added H2O
mass loading in the fluid

x m horizontal coordinate in the circular cross-section of the
tube

y m vertical coordinate in the circular cross-section of the tube
∆z m width of a control volume in z in finite volume method (in

Chapter 6); step size in z in forward implementation (in
Appendix A)

z m axial tube coordinate



NOTATION IX

Greek Symbols

Symbol Unit Definition
α ° azimuth
βRe − dimensionless shear rate

β °
angle between particle velocity and its component perpendicular to
the wall before wall collision

δ m shortest distance between tube wall and sphere hull
ε − small parameter to avoid zero division
η % yield
ηf kg m−1 s−1 dynamic viscosity of the fluid
ϑ °C temperature
κ S m−1 conductivity
λ − curvature ratio

λfriction − Darcy friction coefficient
µ m arithmetic mean of the seed size h
µc − collision friction coefficient
ρ kg m−3 density
σ − relative supersaturation
τ s residence time
Φ − slope limiter function
χanh − fraction of the molar masses of the anhydrate to the hydrate
ω rad s−1 angular velocity vector
ω rad s−1 angular velocity of a component



X NOTATION

Subscripts

Symbol Definition
a setup a

anh anhydrate
batch batch seeding

b setup b
c coil

conti continuous seeding
D drag

down downward flow
elastic perfectly elastic collision

f fluid
GB gravity and buoyancy
high high flow rate
hyd hydrate
in inlet (seed addition point)

inlet tube section before the seed addition point
I first quadrant

low low flow rate
M Magnus

min minimum (internal or external coordinate)
max maximum (internal or external coordinate, Hagen-Poiseuille velocity)

n normal
out outlet
p particle (phase)

parallel movement parallel to a wall
rel relative velocity between fluid and particle
sat equilibrium saturation at a given temperature

seed seed crystals
seed,small seed crystals of the small fraction
seed,mix seed crystals of the mixed fraction

S Saffman
tracer total tube section from reservoir to outlet

up upward flow
w water

w,added free or added water
wall wall collision

Superscripts

Symbol Definition
a next time step after a wall collision
b current time step before a wall collision



ABBREVIATIONS XI

Abbreviations

CFD computational fluid dynamics

CFI coiled flow inverter

CSD crystal size distribution

CSSD crystal size and shape distribution

DEM discrete element method

HCT helically coiled flow tube

KDP potassium dihydrogen phosphate

FVM finite volume method

MSMPR mixed suspension mixed product removal

MSMPRC mixed suspension mixed product removal crystallizer

ODE ordinary differential equation

PDE partial differential equation

PBE population balance equation

PF plug flow

RT residence time

RTD residence time distribution



1 1. INTRODUCTION

1 Introduction

Motivation

The first industrial crystallizers emerged about 150 years ago (Hofmann and Melches,
2013). In the 1960s, continuous units for large tonnage bulk commodity products were
developed. In the following decades, new strategies for the production of specialty-effect
chemicals on a smaller scale were required, and batch and semibatch crystallizers were
manufactured (Tavare, 1995). Around the millennium, research on continuous crystalliza-
tion intensified again. Research and industry consortia emerged, such as the Novartis-MIT
center for Continuous Manufacturing in the U.S., which was launched in 2007, and the
CMAC Future Manufacturing Research Hub in the UK, which started in 2011. Further
initiatives in pharmaceutical crystallization are listed by Khinast and Rantanen (2017).
Researchers have been trained in the network CORE (Continuous Resolution and Der-
acemization of Chiral Compounds by Crystallization) since 2016. In 2018, the European
Research Council assigned an ERC Advanced Grant in this area, for studying secondary
nucleation for the intensification of continuous crystallization (SNICC). The development
and application of continuous processes were also encouraged by regulatory authorities.
The U.S. Food and Drug Administration (2004) recommended that: “gains in quality,
safety and/or efficiency [. . . ] are likely to come from: [. . . ] Facilitating continuous pro-
cessing to improve efficiency and manage variability. For example, use of dedicated small-
scale equipment (to eliminate certain scale-up issues)”.

Crystallization is usually but one step in long process chains and is therefore part of
many production chains for solid chemicals. In the pharmaceutical industry, most produc-
tion lines contain at least one, but usually several, crystallization steps (ter Horst et al.,
2015). When these chains become continuous (Khinast and Rantanen, 2017), this also
applies to the integration of crystallization steps. Further, measures for containment con-
strain pharmaceutical production (Khinast and Rantanen, 2017). Fully connected chains
facilitate inherent containment for employee protection. To this end, the development of
continuous crystallization processes is necessary. They must be characterized, in order to
identify possible applications and limitations. New strategies, like preferential continuous
crystallization and periodic seeding, have been developed, e.g., by Qamar et al. (2013).
On the one hand, traditional tools can be applied to these new strategies, or to devices
that are new in the field, such as helically coiled flow tubes (HCTs) and coiled flow invert-
ers (CFIs). On the other hand, improved tools for simulation, measurement and control
can be applied.

One of the first reports on fluid flow in curved tubes was published by Dean (1927).
Later, computational power permitted the simulation of fluid flow in curved tubes, which
was intensely studied by Nigam and his co-researchers since the 1980s (Saxena and Nigam,
1983). The complexity of simulations increased in conjunction with numerical capacity,
to study complete fluid flow and heat fields in coiled tubes (Kumar and Nigam, 2005;
Wiedmeyer et al., 2017a). The particle phase was modeled (Cheng et al., 2005) and,
then, also simulated, e.g., for fibers (Redlinger-Pohn et al., 2016b) in coiled tubes.

From an experimental perspective, crystallization is a traditional purification technique
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and well established. This allows focus to be directed on secondary goals, next to purifi-
cation. Some of these goals are related to crystal size distribution (CSD) and crystal size
and shape distribution (CSSD) since these influence the effectiveness of downstream steps
(Winn and Doherty, 2000) and the product quality (Hofmann and Melches, 2013). With
respect to downstream processing, crystal compactness and width of the CSD impact the
efficiency of solid-liquid separation, flowability influences transport, and dusting, and the
CSD is relevant for storage in silos. In terms of product features, crystal faces determine
the dissolution rate and the bioavailability of pharmaceuticals in the body (Variankaval
et al., 2008), whereas reactive faces influence the performance of catalysts (Yang et al.,
2008). To analyze the CSD and CSSD, several tools are available, e.g., in-situ and in-line
single and dual projection imaging devices, off-line laser diffraction, Coulter counter, and
in-situ focused beam reflectance measurement. The research of de Albuquerque et al.
(2016) concluded that among these principles, only imaging techniques are able to re-
produce the concentration profile and average length exactly. Considering imaging, the
resolution and the limit of frame rates have also risen with the increase in computational
power. This improvement allows online imaging and control (Eisenschmidt et al., 2016)
based on crystal shape estimation with high accuracy (Borchert et al., 2014).

Uniform CSDs are often desired in crystallization. In the mixed suspension mixed prod-
uct removal (MSMPR) concept, the residence time distribution (RTD) and the resulting
CSD are broad. This is countered industrially by the classification of different crystals in
a suitable crystallizer geometry, e.g., on a large scale, in the Oslo crystallizer (Hofmann
and Melches, 2013). Another approach is to approximate plug flow in tubes for which one
tubular arrangement is the HCT. HCTs have a wide application area. They facilitate
high heat transfer rates and are therefore typically applied for heat exchange. The po-
tential of HCTs for chemical reaction engineering was recognized in the 1950s (Jokiel and
Sundmacher, 2019). In the area of food processing, the transport of spherical particles in
coiled tubes has been studied experimentally. In crystallization, studies with pharmaceu-
tical application have been published in the last years, of which one of the earliest was
that of Eder et al. (2010).

Aim of the Dissertation

In crystallization processes, several crystallization phenomena occur simultaneously. The
mechanisms of these phenomena, the affecting parameters, and how to model the phe-
nomena are still not fully understood. To study the phenomena separately, process design
can suppress some phenomena to a certain extent. Hydrodynamics affect not only the
mixing of the liquid phase, thus, crystallization, but also the movement of populations
of angular crystals. Hence, the flow influences some crystallization phenomena directly.
The development of crystallizers requires an understanding of different scales. This dis-
sertation shall contribute to the exploration of the process unit scale. Which is why the
potential of HCTs for application in cooling crystallization is investigated. Using a tubu-
lar device, crystal breakage by crystal-stirrer collisions of high impact can be avoided.
This is advantageous since breakage broadens the CSD. The aim of this dissertation is
to identify the potential of the device to achieve narrow product CSDs and to prevent
broadening of the initial CSD. A final crystal size after crystal growth is determined by
the time for crystal growth, which is the crystal residence time. This study demonstrates
the effect of fluid and crystal RTD on the width of the CSD. Maintaining a high yield is
set as a secondary goal. Novel imaging tools and postprocessing are applied for accurate
estimation of crystal size from crystal shape. The characterization of the device is ex-
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perimentally performed in batch mode. Predictions for continuous operation are derived
from modeling and simulations.

The present dissertation investigates the following questions:

1. What forces determine the particle RTD in HCTs?

2. How do wall material and flow direction affect the RTD of fluid and particles?

3. Is the mixing sufficient for crystallization experiments?

4. How do tube length, flow rate, as well as mass and width of the CSD affect RTD,
CSD, product mass and yield for batch and steady seeding?

5. Can crystal populations of narrow CSD be produced in HCTs?

Numerous scientifically connected research topics lie beyond the scope of this study.
Some of the closely related ones are listed as follows: This dissertation is limited to laminar
flow, to keep tube lengths short. In the turbulent regime, mixing would change completely.
The characteristic dimensions of the HCT such as ratios of particle to tube diameter,
particle to coil diameter, and inner tube to coil diameter are similar in all experimental
setups. Experiments with continuous seeding were not performed. Instead, batch seeding
led to low suspension densities. Purity and the influence of additives are not discussed.
This study assumes that crystal growth prevails and focuses only on this crystallization
phenomenon. Additionally, the influence of aggregation might be significant for other
substances and conditions. Dissolution was not applied although it is a powerful control
variable to further change the CSD in the device. Growth rates are not parameterized,
but kinetics from literature are selected. Imaging is applied to estimate crystal shapes, to
calculate a measure of crystal size and a CSD. Existing imaging algorithms are adapted
to the substance, whereas imaging itself is not a topic of this dissertation. A multivariate
shape distribution is not considered. Variations of the liquid phase in the circular cross-
section of the tubes are not taken into account. Advanced numerical methods are not
applied to simulate the particle flow. Process control and optimization, for example of
the temperature profile, are no matter of concern either.

Outline of the Dissertation

First, residence time (RT) and, in a second step, crystallization experiments are per-
formed. Regarding the setup, reference RT measurements are conducted with spherical
particles in straight tubes. These experiments had been performed before RT experiments
in HCTs, since a more complex flow profile is expected for HCTs. The forces determining
the particle RTD are identified for, in terms of momentum balances “simpler”, straight
tubes. Third, modifications for HCTs are discussed. Last, crystallization in HCTs is
modeled and simulated.

In Chapter 2, requirements and applications of continuous crystallizers are stated.
Among these types of crystallizers, HCTs are classified in terms of mixing and RT. To
this end, characteristic measures of the device are introduced and the state-of-the-art in
flow field characterization is presented. Current applications of HCTs, in particular in
crystallization, are reviewed.

In Chapter 3, RT experiments with glass beads of varying sizes are described for straight
tubes of different wall materials.
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In Chapter 4, various implemented HCT setups are presented. The results of fluid and
crystal RT measurements are analyzed before conducting crystal growth experiments.
The effect of the variation of several parameters like flow direction, wall material, fluid
flow rates, and crystal size on the RTDs is evaluated.

In Chapter 5, a momentum balance model is implemented for the spherical glass beads
in the straight tubes from Chapter 3. The trajectory of single particles is simulated. The
RTs are calculated for the conditions in the experimental part. Finally, the transferability
to HCTs is discussed.

In Chapter 6, a population balance model is developed for those HCTs presented in
Chapter 4. The model is discretized via finite volume method (FVM) and then imple-
mented. The fluid and crystal flow is simulated firstly without growth to determine the
RTDs, next, with crystal growth. The simulation results are compared to the findings
of the experiments. Continuously seeded crystallization in an HCT is also modeled and
predicted via simulations.

In Chapter 7, the dissertation is summarized and concluded.
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2 Selection of a Continuous HCT
Crystallizer

In order to generate supersaturation, the method of cooling crystallization from solution
is applied. Regarding substances, inorganic salts are analyzed in the solvent water. Crys-
tallization is induced by the seeding of crystals. The setup is an HCT crystallizer. From
a process view, tubular setups are an option to realize continuous crystallization. In this
section, the setup is classified by the extent of mixing, by the mode of operation, and by
the crystallizer model. Common deviations from ideal models are stated.

2.1 Process Goals

The choice of the crystallizer type depends on the priority of the main goals of the crys-
tallization process. The main goal is solidification or purification. Further goals relate to
the product specifications.

An overview of product properties is given by Wieckhusen (2013). Those that can be
influenced directly are purity, yield, crystal size and shape distributions, and the crystal
form (polymorph, solvate). Properties that can indirectly be influenced are downstream
properties, such as filterability, drying ability, flowability, and bulk density. Additionally,
there might be constraints on the process that have to be considered, like process inte-
gration, safety aspects related to heating or to the containment for employee protection,
the ability for an expected scale-up, and economic aspects. Additional demands may
focus on a wide operation window, concerning substance systems and flow rates (Klutz
et al., 2015). The amount of supplied feed liquor and the production rate may be limited
(Tavare, 1995). Low pressure drop, a sufficient fluidization of the particles, a practical
realizable cooling profile (Hohmann et al., 2016a), and a compact design (Klutz et al.,
2015) are desired.

The present study strives to fulfill purity requirements. The primary goal is to reach
a defined CSD. The CSD influences product properties, such as the dissolution rate,
related to, e.g., bioavailability and downstream processes. Downstream steps can be
milling, transportation, storage, and solid liquid separation like filtration, washing, and
drying. It is assumed that a narrow distribution is desired for improved downstream
processing, concerning, among others, filterability and flowability (Sparks and Chase,
2016). In general, for a narrow product CSD, it is advantageous to have a process with a
narrow RTD. In special cases, the statement needs to be modified since initially mono-
disperse crystal distributions may broaden in any process, due to growth rate dispersion,
independent of the RTD. Classification of crystals of certain sizes may be superior to a
crystallization process with uniform RTDs.
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2.2 Types of Mixing

Crystallizers can be classified by their type of mixing. Howell et al. (2004) divide mi-
crofluidic devices into active and passive mixers. Active mixers are based on an external
force or field. Passive mixers rely on the movement of the fluid on or over stationary
structures. On the one hand, a division of the inlet stream and the merging at injection
or mixing points may cause passive mixing. On the other hand, an apparatus geometry
may perturb the flow, for example by ridges, troughs, bends, or herringbone construc-
tions. Active mixers are effective but expensive to fabricate, complicated to operate, and
more error-prone than passive mixers (Howell et al., 2004). Consequently, passive mixers
are advantageous, provided that the increased surface area does not lead to fouling issues.
A design that is based on passive mixing is chosen in the present study. The selection of
the specific setup is discussed in the following sections.

Depending on the mixing concept, different hydrodynamic profiles result, which may
be characterized by the extent of spatial inhomogeneities and by varying velocities during
crystal collisions, for example with a stirrer. This type of crystal collision is usually of
high energy impact. Good mixing results in a homogeneous profile of the state variables
of interest. Hence, mixing affects all crystallization phenomena, especially breakage, ag-
gregation, and nucleation. Nucleation, growth, and dissolution may also be influenced by
local differences in supersaturation. In general, when narrow product CSDs are intended
during crystal growth, good mixing is desired, but crystal collisions shall be avoided.

2.3 Mode of Operation

There are three modes of operation for crystallizers: batch, fed batch, and continuous.
Batch crystallizers are flexible and simple to clean. Therefore, they are applied for mul-
tipurpose crystallizers. They are preferred for difficult materials that are prone to en-
crustation or have high viscosities. Batch crystallizers are used when small amounts of
product are required, because of low capital investments and process development costs.
Lewis et al. (2015) state that they are more economical for 1 m3 of product per day and
less and for up to 5× 106 kg per year. For a production of up to 20× 106 kg per year,
they are economically comparable to other crystallizers; hence, batch crystallizers are also
applied in this range. They are used for expensive substances since the amount of off-spec
product is low, but down times lead to quality variations. The product CSDs are narrow.

Fed batch crystallizers, which are also called semi batch crystallizers, offer similar fea-
tures as batch crystallizers. They are designed to deal with strong heat effects, or to
prevent the formation of by-products. Continuous crystallizers are operated in fed batch
mode during dynamic periods: the start-up and the shut-down phase of a process.

Continuous crystallizers are operated at steady state where they deliver constant prod-
uct quality. They have fewer down times than batch crystallizers. Hence, they are ap-
plied in continuous process chains. In those, containment risks, resulting from the further
transport of the product suspension to a downstream process, are decreased. Continuous
crystallizers are operated at a desired supersaturation, so that small nucleation rates can
often be realized. The operation and labor costs are low, compared with batch crystalliz-
ers. Small amounts of products cause small flow rates and require small pipe diameters
to realize high velocities and to prevent sedimentation. Consequently, continuous crystal-
lizers are applied for large scale production. Lewis et al. (2015) mention that continuous
crystallizers are not economical below a production of 5× 104 kg per day. Consequently,
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they are applied to at least 5× 106 kg per year and they are preferable from an economic
point of view above 20× 106 kg per year.

2.4 Types of Ideal Continuous Crystallizers

There are two ideal models for continuous crystallizers, namely the plug flow (PF) and the
MSMPR crystallizer. The MSMPR model is based on complete mixing. The attributes
of the suspension in the crystallizer are identical to those of the exit stream. Hence, the
product withdrawal is unclassified and the RTD and the CSD are broad. The PF assumes
complete radial, but no longitudinal, mixing. Therefore, the RTD is the narrowest of all
continuous crystallizers. In practice, back mixing occurs and the RTD of the PF model
widens as shown in Fig. 2.1 (solid dark line) in which τ is the mean RT of a pulse tracer,
thus of the suspension. The CSD of an ideal PF is narrow and comparable to that of a
batch (Hohmann et al., 2018). The batch and steady state PF description match when
the batch time variable is exchanged by the axial PF coordinate. Compared with the
MSMPR, the PF has a higher space-time yield (Hohmann et al., 2016a).
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Figure 2.1: A scheme of the cumulative RT for a liquid pulse tracer for an ideal MSMPR,
for an ideal plug flow, and for a Hagen-Poiseuille flow through an annular
pipe.

2.5 Implementations of Continuous Crystallizers

Some crystallizer implementations approximate the continuous crystallizer models. In
small-scale processes, MSMPR is often approached by strongly stirred crystallizers. The
stirring leads to secondary nucleation, which may increase the width of the CSD, but may
act as self-seeding and lead to a constant product CSD (Hohmann et al., 2018). There are
designs that deviate from the MSMPR principle to reach narrower distributions. These
setups separate the RT of mother liquor and crystals to influence yield and size. One ex-
ample for such a separation is the classified product withdrawal (Tavare, 1995). MSMPR
crystallizers are approximated by the main continuous industrial crystallizers, namely the
circulation, the draft tube baffled, and the fluidized bed crystallizer. Devices approximat-
ing PF allow higher heat transfer rates than a batch or a single mixed suspension mixed
product removal crystallizer (MSMPRC) due to higher surface-to-volume ratios. Hence,
temperature and saturation can be adjusted faster. The PF model can be approximated
by a series of MSMPRCs. For implementation the number of MSMPRCs is practically
and economically limited (Hohmann et al., 2018). PF can also be approximated by a Cou-
ette flow device, an oscillatory baffled crystallizer, a Kenics static mixer, and by tubes.
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Figure 2.2: A scheme of the cumulative fluid residence time distribution in different
tubes for an inner tube diameter d of 3× 10−3 m, a coil tube diameter dc
of 6.3× 10−2 m, a volume flow rate of 5.0× 10−5 m3 s−1, and a Reynolds
number Re of 24. The residence time distribution of a helically coiled flow
tube is expected to lay between those of a straight tube and a coiled flow
inverter.

Source: Reprinted with permission from Klutz et al. (2015), Copyright 2015, with permission from
Elsevier. Modifications: Exemplary images of setups added.

It was discussed in Section 2.2 that passive mixers are advantageous regarding the design
demands. Considering passive mixers, tubes offer the advantage of avoiding large surface
areas and air bubble trapping resulting from additional internal structures. As passive
mixers there are straight tubes, HCTs, and CFIs. Their typical fluid RTDs are shown
in Fig. 2.2. Passive radial mixing increases with coiling and results in increased heat
and mass transfer without requiring additional external energy. The fluid RTD width
decreases from the straight tube to the HCT to the CFI. A narrow fluid RTD curve also
indicates good radial mixing and low axial dispersion for particles. According to Kout-
sky and Adler (1964), back mixing is significantly reduced compared with straight tubes
for Reynolds numbers from Re ≈ 300 or Re ≈ 400 to Re ≈ 3000, but always remains
below that of a straight tube. The flow in CFIs has been studied especially in liquid
systems in several reports by Nigam. One of the first studies was published by Saxena
and Nigam (1984). The parabolic laminar flow profile of straight tubes leads to broad
RTDs. For a better mixing in turbulent flow, long straight tubes are required which leads
to an increased loss of pressure. In helical coils, a secondary flow appears, which increases
radial mixing and narrows the RTD (Castelain and Legentilhomme, 2006). Helical coils
are compact, easy to fabricate and operate, and scale up is possible (Klutz et al., 2015).
The CFI has the narrowest RTD of the coiled tubes providing long RTs. The CFI is
built from bent HCTs. The bends change the direction of the centrifugal force, for which
90°-bends are optimal for mixing. This can be explained as follows. Behind a bend, the
cross-sectional region of highest axial velocity becomes the area of the lowest axial veloc-
ity and vice versa (Klutz et al., 2015). The mean solid RT equals the mean fluid RT in
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a CFI and the CSD of a batch crystallizer can be approached (Hohmann et al., 2018).
To realize long RTs, long tubes are required or low Reynolds numbers can be applied, as
long as sufficient fluidization is maintained. Special implementations exist to narrow the
RTD, e.g., two liquid phases. However, this variation leads to longer tubes and scale-up
issues (Hohmann et al., 2016a). For all PF implementations, the axial temperature con-
trol is challenging, and multiple thermostats may be required. Settling and, subsequently,
clogging issues may occur.

There is a variety of curved tube geometries, which were reviewed by Vashisth et al.
(2008), e.g., spiral tubes (Figueiredo and Raimundo, 1996) and chaotic tubes (Castelain
and Legentilhomme, 2006). Helically coiled flow tubes provide narrow RTs and offer the
advantage of passive mixing. The CFI is superior to the HCT regarding mixing, but the
HCT is the basic unit of the CFI and should, therefore, be characterized.

2.6 The HCT

Compared with straight tubes, a radial fluid velocity appears in curved tubes. The char-
acteristics of the fluid flow field in HCTs are explained in the following section. Typical
dimensionless numbers, setup features, and operation modes that characterize a HCT are
given with reference to literature applying HCTs in crystallization.

Fluid Flow Field and Dean Vortices

The flow field in the HCT is characterized by a secondary flow. Dean (1927) has shown
analytically that a double vortex, which was later called “Dean vortex”, develops in curved
tubes. Adler (1934) and others extended the theoretical investigation of Dean for higher
Re that were still below Recritical. The extent of the secondary flow can be described
by the Dean number. The Dean number is proportional to the Reynolds number and
inversely proportional to the curvature ratio. Literature on the influence of curvature on
secondary flow, pressure loss, and further transport processes was reviewed by Jokiel and
Sundmacher (2019). For low Dean numbers, the fluid flow profile equals that of a straight
tube. For increasing Dean numbers, the maximum axial velocity is shifted towards the
outer side of the coiled tube (Vashisth et al., 2008).

A large number of simulations of the fluid flow in different geometries of curved tubes
was performed by Nigam and co-workers (Kumar and Nigam, 2005; Mridha and Nigam,
2008; Saxena and Nigam, 1983; Singh et al., 2013; Vashisth and Nigam, 2009) and also
by Palazoglu and Sandeep (2001). For one of the HCT setups that are investigated in
the present study, the fluid flow was simulated by Wiedmeyer et al. (2017a). A direct
numerical simulation of the fluid flow was carried out for two coils with 1 259 520 tetra-
hedral mesh cells as shown in Fig. 2.3. The resulting flow field is shown in Fig. 2.4a. As
described by Vashisth et al. (2008), a higher velocity was observed in main flow direction
at the outer wall and a Dean vortex developed. There is some instationarity in time in
the fluid flow according to Fig. 2.4b,c, while the vortices stabilize the flow. The non-zero
radial fluid velocity with its characteristic vortices is also referred to as “secondary flow”.
It enhances the radial mixing of the fluid at laminar flow regimes compared with straight
tubes, and decreases the axial dispersion along the tube (Kurt et al., 2015). When par-
ticles are exposed to this flow field, it is expected that very small particles might easily
follow the secondary flow. Large particles might stay in areas of higher axial velocity.
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a b

Figure 2.3: Geometry and mesh of two coils for the fluid flow field simulation. (a) A
cross sectional slice is marked in red (top left) at half of the length of the
second coil where the flow field is investigated; (b) magnified view of the
tetrahedral mesh at the inlet.

Source: Reprinted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.
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Figure 2.4: Velocity profile at the cross section that was marked in Figure 2.3 at half
the length of the second coil. Forward axial flow is in the negative direction.
The profile was calculated for an inner tube diameter d of 6× 10−3 m, a
distance p between two coil turns of 9× 10−3 m, a coil tube diameter dc of
114.5× 10−3 m, a Reynolds number Re of 1280, and a Dean number De
of 293. (a) Fluid flow field averaged over time in the cross section. The
outer coil wall is at the right-hand side of the cross section. Color shows
the temporal mean of the axial velocity in cm s−1, arrows show the cross-
sectional velocity; (b) cross section with two marked points; (c) temporal
evolution of the axial velocity at the points marked in part b of this figure.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

Spherical and food particles in HCTs were investigated experimentally by Chakra-
bandhu and Singh (2006); Palazoglu and Sandeep (2004); Sandeep et al. (1997) and the-
oretically and numerically by Cheng et al. (2005); Sandeep et al. (2000); Tiwari et al.
(2006). All in all, the fluid RTD in HCTs is well studied. Some research on solid-liquid
flow has been performed. Here, the solid-liquid investigation of spherical particles is
experimentally extended by angular crystals.
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Characteristic Dimensionless Quantities

A HCT configuration can be described by measures that are depicted in Figure 2.5. The

Figure 2.5: Scheme of measures of an HCT setup at the tube cross sections for a full
coil with pitch p.

diameter d is the inner diameter of the tube and b describes the tube wall thickness. The
pitch p and the coil diameter dc are the vertical and horizontal distance from tube center
to tube center where the pitch describes the height of one full coil.

The following scaled variables typically characterize the geometry of the setup and its
transport properties

λ =
dc
d

P =
p

πdc

Re =
dvfρf
ηf

De =
Re√
λ

tc =
P

Re

where λ is the curvature ratio (Vashisth et al., 2008), P is the dimensionless pitch (Jokiel
and Sundmacher, 2019), Re is the Reynolds number, De is the Dean number, and tc is
the torsion parameter (Hohmann et al., 2016a; Saxena and Nigam, 1983). The Reynolds
number characterizes the flow conditions, where vf is the average fluid velocity, ρf is
the fluid density, and ηf is the dynamic viscosity of the fluid. Different correlations
are available for the Dean number where the given one is used, e.g., by Adler (1934).
Additionally, the Bodenstein number can be used to estimate the dispersion (Jokiel and
Sundmacher, 2019) as performed by Klutz et al. (2015); Kurt et al. (2015) for CFIs for
Re ≤ 150. Further, the Stokes number St describes how a particle responds when the
fluid flow field changes.

According to Vashisth et al. (2008), curvature affects the critical velocity and stabilizes
the flow. They state that the secondary flow and mixing increase with decreasing cur-
vature. The critical Reynolds number Recritical in HCTs exceeds that of straight tubes
since the secondary flow stabilizes the flow field. Recritical is inversely proportional to the
curvature ratio λ. Vashisth et al. (2008) give an overview of correlations from literature to
calculate the critical Reynolds number indicating the transition from laminar to turbulent
flow. They recommend among others the correlation of Kubair and Varrier (1961)

Recritical = 12730λ−0.32 (2.1)
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for 10 < λ < 2000 and that of Schmidt (1967)

Recritical = 2300
(
1 + 8.6λ−0.45

)
for λ < 200, which is also suggested by Gnielinski (2013).

Helically Coiled Flow Tubes in Crystallization

Coiled tubes are traditionally used as heat exchangers. In chemical reaction engineering,
coiled tubes have been proposed since the 1950s because of their good mixing properties
(Jokiel and Sundmacher, 2019). Jokiel and Sundmacher (2019) give examples for the
industrial use of coiled tubes in liquid-phase polymerization, virus deactivation, multi-
phase reactions, and crystallization.

Llano-Restrepo (2005) worked with a vertical continuous cooling crystallizer, which is
a tower where only the cooling was realized by horizontal coils. Vashisth et al. (2008) re-
viewed the application of curved geometries in industry but do not mention crystallization
applications. Since then, research on curved tubes for crystallization has been reported.
Exemplary studies are cited below to introduce common setups and operation modes of
HCTs, but it is not intended to give a complete review of all reports on crystallization in
HCTs.

Khinast and co-workers (Besenhard et al., 2014a,b, 2015, 2017; Eder et al., 2010, 2011,
2012; Neugebauer and Khinast, 2015; Neugebauer et al., 2018) have investigated phar-
maceutical substances and applied growth and dissolution cycles to dissolve fine particles
experimentally and by modeling. Kockmann and colleagues (Bittorf et al., 2019; Hohmann
et al., 2016a,b, 2018, 2019) studied the influence of dimensionless numbers and, hence,
the coil design on the flow with a focus on CFIs. Sundmacher and colleagues (Wiedmeyer
et al., 2017a,b) characterized the RTD in HCTs in the laminar regime and its effect on
the CSD during growth. Further reports relate to seeding (Furuta et al., 2016; Rimez
et al., 2019) and clogging (Chen et al., 2015).

Apart from the previously mentioned characteristic numbers, the setups may vary in
further features, among which one is the coil orientation. Eder et al. (2011) crystallized in
HCTs of vertical and horizontal orientations and, for their conditions, the orientation had
no influence on the segregation and similar product qualities were achieved. Hohmann
et al. (2018) mention that horizontal coils may be advantageous in reaching similar crystal
and slurry RTs. Here, horizontal setups are applied to reduce the risk of settling of crystals
in the lower part of coils.

Cooling of the tubes can be implemented by different approaches, e.g., one (Wiedmeyer
et al., 2017a) or multiple (Neugebauer et al., 2018) baths, cooling with pressurized gas in
an enclosure box (Hohmann et al., 2016a), tube-in-tube cooling, and segmented jackets.
Here, water cooling is applied and two setups with a cooling bath as well as a setup with
a double jacket for all coils are presented.

Combinations of particles and wall materials were reviewed by Hohmann et al. (2016a)
for different tubes. Chen et al. (2015) reported that particle deposition was independent
of the tube materials in their HCT setup.

Regarding the operation, Hohmann et al. (2018) state that spontaneous nucleation
must be avoided by seeding or by inducing primary nucleation. Hohmann et al. (2016a)
observed fast clogging during unseeded operation whereas Rimez et al. (2019) performed
unseeded crystallization and invoked spontaneous nucleation in an HCT. Eder et al.
(2012) used ultrasound in coiled tubes to generate seed crystals, before further growing
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them in coiled tubes. Frequently, seeded cooling crystallization is performed to enable
controlled crystallization (Bittorf et al., 2019; Hohmann et al., 2018; Neugebauer et al.,
2018; Wiedmeyer et al., 2017a,b). The present study also applies seeded crystallization.

The number of fluid phases may exceed a single continuous phase. Two-phase seg-
mented flow with air was realized by Eder et al. (2012); Hohmann et al. (2018); Neugebauer
et al. (2018). The creation of stable bubbles may be tedious, but offers the advantage of
good mixing within the slugs and uniform RTs. Liquid-liquid flows are also possible, but
require an additional separation step. The present dissertation deals with one continuous
phase.

Furthermore, all HCT-setups may be prone to non-ideal effects to a certain degree.
Fouling may occur for some substances, and may lead to the necessity of regular cleaning
of tubes. Fouling is discussed in Section 3.2. Strong supersaturation at cold tube walls
should be avoided to prevent crystal growth on the walls. Although high cooling rates can
be achieved compared with large vessels, the speed of cooling via surface area is finite. As
discussed in Section 2.5, the mixing in HCTs deviates from plug-flow. Spatial variations
in fluid concentration or in particle concentration may occur.
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3 Residence Time Experiments in
Straight Tubes

An aim of this study is to produce narrow CSDs continuously. The RT of crystals de-
termines their time for crystal growth and therefore the crystal size. In the continuous
PF model, perfect radial mixing, but no back mixing are assumed such that all crystals
have the same RT. Hence, widening of the CSD is avoided. To obtain large crystals,
the RT must be sufficiently high. PF is often associated with a tube. For tubes, the
RT can be manipulated by the tube length and the crystal velocity, of which the latter
is controlled by the fluid flow rate. In practice, the length of a straight tube is limited.
To achieve RTs that are sufficient for crystallization at a limited tube length, the fluid
flow rate can be reduced, but fluid flow in the laminar and transient flow regime deviates
from the ideal PF and the RT of the crystals is distributed. This chapter investigates
experimentally whether the mixing in an implemented straight tube setup is still close to
PF and sufficient for crystallization.

The questions to be answered in this chapter:

1. Is the RTD of glass beads in the applied tube narrow?

2. Is the RT of glass beads equal to the mean fluid RT?

3. Is there a qualitative difference in the RTD for flow rates in the laminar and transient
flow region?

4. Is there a difference in the RT for particles of varying size?

5. Do particles of varying size affect each other’s RTs?

6. Does the wall material affect the RTD of the particles? If yes, how?

7. Is the mixing in the tube sufficient for crystallization experiments?

3.1 Setup and Procedure

The main part of the setup is a straight horizontal tube. The tube is located on the dis-
charge side of a peristaltic pump (PD 5206 SP vario, Heidolph) as illustrated in Figure 3.1.
There is a three-way valve between the pump and the tube for glass bead addition. The
third nozzle is filled with glass beads and closed with a plug. For particle addition, the
third inlet is opened. At the end of the tube, the suspension is imaged by a flow-through
video microscope (QICPIC/R02, Sympatec). The cuvette of the microscope is located
0.4 m above the tube level. The total tube length, measured from the three-way valve to
the cuvette of the microscope, is 20.5 m. It consists of two parts, a straight section of
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Figure 3.1: Piping and instrumentation diagram of the straight tube setup: 1 water
reservoir, 2 peristaltic pump, 3 three-way cock, 4 straight tube, 5 cuvette of
the flow-through microscope.

20 m length and an inclined section of 0.5 m length, which are connected by a hose cou-
pling made of polyethylen. The last 0.5 m of the tube consist of silicone and this section
inclines towards the level of the cuvette. It was not observed visually through the tube
walls that beads sediment in this section or get slower. For the first straight part of the
tube, two different tube materials are used, either silicone or glass. In case of silicone, the
straight tube is made of a single piece. The straight part of the glass setup consists of
several pieces of straight glass tubes of approximately 1.4 m length. They are connected
by hollow silicone tubes wrapped around connecting glass tubes. The connectors are of
a few centimeters length and a diameter that equals that of the glass tubes. Both setups
are of the same total length. All tubes have the same radius of 2.5× 10−3 m.

In the experiments, double-distilled water at room temperature is continuously pumped
through the system. Two different pump speeds, called low and high, are applied. The
measured mass flow rates are (7.1± 0.1)× 10−3 kg s−1 and (10.9± 0.2)× 10−3 kg s−1 for
the silicone tube and (7.2± 0.2)× 10−3 kg s−1 and (11.0± 0.2)× 10−3 kg s−1 for the glass
tube. For mass flow rates of 7.2× 10−3 kg s−1 and 11× 10−3 kg s−1, for the given tube
radius, and for water at room temperature, the resulting Reynolds numbers are Re = 1830
and Re = 2796. Hence, the lower mass flow rate is in the laminar region whereas the
higher mass flow rate is in the transition region, according to the discussion on Recritical
in Section 2.6.

A RT measurement starts when the glass beads are added. An amount of 0.1 g to 0.4 g of
three different glass bead fractions of sizes 100µm to 200µm, 200 µm to 300µm, 300 µm to
400µm, and a mix thereof is applied. The glass beads (Silibeads type S, Sigmund Lindner)
are spherical and have a density of 2500 kg m−3. Their density is 2.5 times higher than
that of the fluid.

Imaging

The flow-through microscope records binary videos with 20 frames per second and their
image resolution is 2048 pixel × 2048 pixel for a field of view of 0.005 m× 0.005 m. The
2D projections of the glass beads are recorded when they pass the window of the flow-
through cell, which has an optical path length of 0.002 m. The postprocessing of the
images includes a background subtraction, a single object identification, and an object
quantification, for example to determine the sphere equivalent diameter of each projected
glass bead. The image post processing is based on algorithms that were reported previ-
ously (Borchert and Sundmacher, 2011; Eisenschmidt, 2018).
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3.2 Experimental Results
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Figure 3.2: Average RT of glass beads of varying sphere diameter dp (solid curve, mark-
ers shown for class widths of 8µm) for several experiments with a small
(magenta), medium (gray), large (blue), and mixed (green) size fraction and
average fluid RT (dotted, black). Straight tubes consist of (a,c) silicone or
(b,d) glass. Experiments at (a,b) low or (c,d) high average fluid mass flow
with average fluid RT τf,low/high.

The results of the RT experiments are shown in Figure 3.2. Regarding the first three
questions of this chapter, there are the following findings. At the high fluid flow rate, the
particle RTD varies from 0.5 to 5 times the average fluid RT (see Figure 3.2c,d). The
particle RTD is broader at the low fluid flow rate where it varies from 6 to 33 times the
average fluid RT (see Figure 3.2a,b). Hence, the RTD of the glass beads is broad in the
straight tubes, where most particles are slower than the fluid. For transient flow, the mean
fluid RT agrees with the RT of the large glass beads as depicted in Figure 3.2c,d. For
laminar flow, the mean fluid RT is nearly 60 s, and it is considerably lower than that of the
fastest glass beads as shown in Figure 3.2a,b. For laminar flow, the smallest investigated
glass beads are the slowest. Whereas for transient fluid flow, 120 µm glass beads have the
highest RT. Glass beads that are even smaller approach the RT of the fluid. Very small
glass beads might be small enough to follow the fluid flow, and may thus approach the
fluid velocity.

In Figure 3.2a,b, for the mass flow rate in the laminar region, the largest glass beads of
400µm size have a RT of approximately 140 s in the silicone tube, and of approximately
250 s in the glass tube. The smallest glass beads have a considerably longer RT of ap-
proximately 1300 s in the silicone tube, and of approximately 1600 s in the glass tube. For
transient flow in Figure 3.2c,d, the large glass beads have a RT of approximately 40 s, and
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they are again faster than the small glass beads, with a RT of up to approximately 150 s.

The RT of particles of varying size, which is the focus of the fourth question, has
also been reported. Baptista et al. (1996b) experimentally investigated single particles
in a slightly inclined horizontal tube, with particles of a density which was 6 % or 42 %
higher than that of the fluid. They also observed larger RTs for smaller particles, which
they contributed to a smaller drag force for small particles compared with large ones.
Additionally, they found that larger particles roll more than small ones. Furthermore, the
particle rotation became more important for larger particles and for particles of higher
density. Baptista’s observations considering the RT dissimilarity of particles according to
their size can be confirmed, here, in a setup with slightly higher density differences and
for a particle collective.

Segré and Silberberg (1961) carried out experiments that analyzed the radial particle
location in the tube. Their setup consisted of a straight vertical tube with particles of
the same density as the fluid. At sufficiently high velocities, further down the tube, they
observed a tubular pinch effect, where particles arrange in a certain radius in the tube.
They found that the emergence of the effect is among others proportional to the particle-
to-tube radius. Hence, the pinch effect might lead to a size-dependent particle RT. The
Segré–Silberberg effect cannot explain the (same) behavior in the horizontal setup in the
present dissertation. Here, gravity plays an important role because the particle density
is considerably higher than that of the fluid, consequently, the particles sediment quickly.
Whereas in a vertical tube, the particles accumulate at a certain tube radius in the cross
section, which causes the RT effects.

A comparison of the RT of glass beads in a mix of size fractions and in separate
experiments in Figure 3.2 shows that the RT is not affected when small and large glass
beads are mixed.

Now, the sixth question is addressed. Considering the wall material, for transient flow,
the RTs are similar in the glass and in the silicone tube (compare Figure 3.2a,c with
Figure 3.2b,d). For laminar flow, the glass beads are slightly slower in the glass tube. At
both flow rates, larger variations in the RTD are visible in the glass tube. This might
be a result of the glass tube connections. Some glass beads may be trapped in the gap
before they come free and reenter the main flow, or beads may be disturbed in their flow
by the glass tube edges. Apart from these variations, no difference in the qualitative RT
profile is observed between the tube materials.

From a practical perspective, the fabrication and geometrical stability of a long tube
of a fixed bent geometry may be challenging. Flexible silicone tubes may be moved
unintentionally, but silicone is cheap, very flexible in geometry, and less fragile than
glass. Singh et al. (2013) use polyvinyl chloride for the tubing of a CFI. This material
has a limited flexibility after fabrication, but it is transparent, stable, and cheap and
can therefore also be considered as suitable wall material. They mention that during
fabrication of polyvinyl chloride tubes, rough walls should be prevented. This holds for
all wall materials. In general, smooth walls should be applied to prevent fouling. Bent
glass tubes are fragile, but glass might be advantageous when inert tubing is required for
food, biochemistry or pharmaceutical applications. Further, glass is transparent, which
allows crystal observation and a wide temperature operating regime. Another option are
metal tubes because metal constructions are less fragile and sensitive to deformation. Kazi
et al. (2012) compared the deposition of calcium sulphate on different metals and found
that fouling increases with the surface roughness and with the thermal conductivity of
the metal, where stainless steel has shown the least fouling. For microbial biofilms, Hyde
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et al. (1997) observed that stainless steel developed the most tenacious biofilms among
their materials. Removal became easier from stainless steel to polypropylene, glass, and
new fluorinated polymers. This is confirmed by the studies of Ferguson et al. (2013).
They found stronger fouling on the stainless steel construction of their probes than on the
quartz vessel walls. In a preliminary setup of the present study, blocking was frequently
observed and may have been caused by metal temperature sensors that were introduced
by T-type connectors. One reason may be that the metal sensors acted as cold bridges.

Care is necessary when implementing connectors. They should not have a larger di-
ameter than the tubes, to prevent sedimentation and fouling. Connectors of smaller
diameters are unproblematic because they are short and their overall effect on the RT is
negligible. In any case, dead zones in front of, or behind, connectors should be prevented.
Especially for glass constructions, connections are difficult to produce with a constant
diameter everywhere. Sections of varying connector or tube diameters may appear or be
used intentionally. When wider tubes are used, higher fluid mass flow rates are required
to stay in the same laminar region.

The observations and discussions are summarized to respond to the last question. Over-
all, the RTD is very broad in the laminar region, and still rather broad in the transient
region. For laminar flow, the small glass beads stay six to nine times longer in the tube
than the large ones. For transient flow, they stay up to four times longer in the tube.
Thus, mixing in the straight tube setup is far from plug flow. The current setup and
operation conditions are not suited for crystallization experiments, because the RTD is
very broad. A further increase of the fluid flow rate towards turbulent flow rates might
improve the mixing but would decrease the mean particle RT. Longer tubes are required
for higher RT, but the tube length is limited for practical reasons, for example limited
space, and an increase in pressure loss. For materials with strong growth rates, which
lead to significant growth in the time scale of seconds, sufficient crystallization would be
possible. Another option to extend the tube, in spite of limited space, is a bent geometry.
A well-defined compact crystallizer may be realized by helical coils. Further, helical coils
may also improve the mixing, and by that means, narrow the RTD of the particles as
discussed in Section 2.5.
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4 Residence Time and Crystallization
Experiments in the HCT

Figure 2.4 in Chapter 2 has shown that a complex flow profile with secondary flow develops
in HCTs. These simulations were carried out for the fluid phase. In the present chapter,
the influence of the profile on solid crystals is investigated by experiments. This chapter
demonstrates that crystal growth can be realized in the novel HCT crystallizer. The
aim is to grow crystals of a narrow size distribution by cooling crystallization. Narrow
product CSDs may be desired for downstream processing in process chains, for example
for solid-liquid separation during filtration, and for an improved flowability of the product.

The same questions are answered as in Chapter 3. Additional questions regarding the
RTD and crystal growth are given below.

The new questions to be answered in this chapter are:

1. How well does the fluid approach PF?

2. How does the upward or downward flow direction affect the RTD?

3. How does cooling affect crystal growth?

4. Does the seed mass affect the concentration during crystal growth?

5. Do nucleation, aggregation, breakage or growth rate dispersion occur?

6. Is the product CSD narrow?

Before the results of crystal growth experiments are shown, the appearing phenomena
are investigated separately. The HCT is characterized in view of fluid RTD, crystal RTD,
and potential for crystal growth. Practical advice is given for the implementation of an
HCT crystallizer, and for crystallization experiments in the HCT.

4.1 Experimental Materials and Size Estimation

Potash Alum

Potassium aluminium sulphate dodecahydrate (KAl(SO4)2·12H2O) with the trivial name
potash alum (Merck CAS No. 7784-24-9, purity ≥ 99 %) was used for all experiments. For
the solution, potash alum was dissolved in deionized water (LaboStar 2-UV, Evoqua). The
initial CSD was analyzed in 86 wt % ethanol. Potash alum is nearly insoluble in ethanol
(Mullin and Sipek, 1981). Hence, it is used to measure the seed CSD in the tube because
a change of the CSD might affect the RTD.
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Imaging

Potash alum crystals have a compact shape. Their description by one size coordinate, for
example a sphere equivalent diameter, should be sufficient to describe the size of potash
alum. The sphere equivalent diameter can be calculated from the projection of a crystal
in an image, by estimating the diameter of a circle of the same projection area. The
estimated size coordinate can be applied to calculate the crystal volume. To improve the
accuracy of the estimation of the crystal volume, the 3D crystal shape is reconstructed
from 2D projections as depicted in Figure 4.1, assuming that all crystals are perfectly
symmetric octahedra. Potash alum predominantly crystallizes as an octahedron, where
the faces have a {111} Miller index, under the chosen conditions (Buckley, 1930). Faces
corresponding to the cube {100} and the rhombic-dodecahedron {110} may also appear,
but only to a slight extent. Hence, the crystal shape of potash alum can be characterized
by the perpendicular distance h from the crystal center to an octahedral face as illustrated
in Figure 4.1.

The same imaging algorithms are applied, as was explained in Chapter 3.1. The images
are binarized by background subtraction. For grayscale videos with a frame rate of 10 im-
ages per second, a thresholding is necessary for the binarization. Additional steps appear
for shape reconstruction. The boundary of the identified objects is extracted. The objects
are quantified and their 3D shape is estimated via a database comparison as described by
Borchert et al. (2014). The database was generated with octahedral crystals. An object
is categorized as aggregate when its solidity is below 0.9, where the solidity is the ratio
of the projection area of an object to the area of the convex hull of the object (Ferreira
and Rasband, 2012). An object that is not classified as aggregate is classified as bubble
when its elliptic eccentricity (Zeidler, 2013) is smaller than 0.3, otherwise it is categorized
as primary crystal. Small objects that consist only of a few pixels cannot be reliably
assigned to one of these categories, instead they are classified as nuclei when their sphere
equivalent diameter dp is below 50µm.

When the perpendicular distance h is used as size coordinate, the univariate description
of potash alum can easily be extended for bivariate or multivariate substances where two
or more different face types are present. In the shape estimation algorithms, the database
has to be replaced for the corresponding substance.

Figure 4.1: (a) Potash alum crystal projections; (b) an ideal octahedral potash alum
crystal with its perpendicular face distance h.
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Seed Crystal Generation

For the crystallization experiments in the HCT, similar material parameters are chosen
as in the straight tube. In both cases, the particle density is larger than that of the fluid.
Here, the particle-to-fluid density ratio is 1.6 whereas it was 2.5 for the glass beads in the
straight tube. As in the straight tube experiments, the crystal size is in the µm range.
The seed crystals were sieved for 60 min to 75 min with a vibratory sieve shaker (AS 200
control, Retsch). Less than 1× 10−4 kg of crystals were seeded at once. The chosen mesh
sizes were 150 µm, 200 µm, 212 µm, 300 µm and 400 µm. The resulting fractions are labeled
A to D in Figure 4.2. The initial size fractions were measured in preliminary experiments
in the antisolvent ethanol. Additional small crystals are observed at perpendicular face
distances below 50µm. Hence, they are categorized as nuclei in the postprocessing image
algorithms when they are smaller than 50µm.
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Figure 4.2: Number density distribution f over crystal size h of potash alum seed crystal
fractions of varying sieve size, measured in the antisolvent ethanol for sepa-
rate fractions of increasing mesh sizes and for a mix of the smallest and the
largest fraction. The particle number density is calculated for bins of 8µm
width in h. Mean bin sizes are shown for selected size classes for visibility.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

Sieving may cause defects in a crystals’ surface and structure. The sieved material is not
perfectly spherical and deviations from the mesh size limit are anticipated. Defects may
cause growth rate dispersion. Small abraded crystals may attach to the surface of larger
crystals during sieving and cause initial breeding in experiments. Deviations in the initial
CSD may occur because the bulk crystal material may be heterogeneously distributed in
the storage container.

Saturation Concentration

Supersaturation and supercooling are expressed using the driving force for crystallization.
In this study, the “solution concentration” (Mullin, 2001) is formulated as a mass fraction.
The mass fraction w is expressed as the ratio between the mass of dissolved hydrate mhyd

and the mass of added water mw,added via

w =
mhyd

mw,added

(4.1)
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which can be easily calculated from the solution which was prepared for the experiments.
At a given temperature T , wsat is the equilibrium saturation. The applied empirical
correlation (Kovačević et al., 2017) for the saturation concentration wsat in kg of dissolved
hydrate to kg of added water is

wsat = 0.180× 10−3T 2 − 0.102726T + 14.7607 (4.2)

where T is the temperature in K. The correlation in Eq. (4.2) is based on measurements
from 293 K to 323 K. Some experiments that are presented in this chapter are simulated
in Chapter 6. For the simulations, various kinetics from literature are tested. For the
kinetics that were parameterized by Temmel et al. (2016) also their solubility is used,
which is

wsat = 4.86× 10−8ϑ4 − 2.43× 10−6ϑ3 + 7.76× 10−5ϑ2 + 2.3× 10−3ϑ+ 0.0506 (4.3)

where ϑ is the temperature in °C.
The absolute supersaturation, which is also called relative supersaturation, is

σ =
w − wsat

wsat

(4.4)

4.2 Experimental Setups and Procedures

4.2.1 Setups

For the HCT setup, a geometry similar to that of the straight tube is chosen. The inner
tube diameter is identical or similar with 0.005 m to 0.006 m. The tubes of the HCT
incline only slightly because of coiling and are still nearly horizontal. Hence, the pitch,
which was introduced in Figure 2.5, is low. The tube length can be increased for crystal
growth because there are no spatial limitations, but it is kept in a comparable range and
it is approximately one and a half times the straight tube length. All peripheral tubes
consist of polysiloxane such as also applied for one of the straight tubes.

A schematic of the experimental setup is depicted in Figure 4.3. The solution for the
experiments is prepared in a 5 L-vessel (position 1), which is equipped with a jacket for
heating, with a diagonal four-blade stirrer operated at a speed of 200 rpm, which corre-
sponds to a tip speed of 0.73 m s−1, and with a platinum resistance thermometer (PT100).

Figure 4.3: Piping and instrumentation diagram of the HCT crystallizer setup with tem-
perature sensors (TI) and mass flow rate sensor (FI): 1 reservoir for solution,
2 gear pump, 3 debubbler, 4 three-way cock, 5 HCT, 6 cuvette of the flow-
through microscope.
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A gear pump (4030-280-DM, Scherzinger Pump Technology) sucks in the solution that
passes a Coriolis type mass flow sensor (CORI-FLOW, Bronkhorst, position 2). The
pump is followed by a degasifier (position 3), which is typically filled with a volume of
3× 10−5 m3 solution to remove air bubbles. A three-way valve (position 4) serves to add
the seed crystals. The suspension enters the HCT (position 5). The product suspension
that leaves the HCT passes the cuvette of a video flow-through microscope (position 6).
The microscope serves to measure the RT of the crystals and their dimensions to re-
construct the CSD. Behind the cuvette, there is a type K thermocouple. The limiting
deviation of the type K thermocouple is ±1.5 K, whereas that of the aforementioned plat-
inum resistance thermometer is ±0.5 K. Throughout this study, temperatures are given
with higher accuracy to illustrate relative differences in temperature.

In a pilot setup, several type K thermocouples were introduced into the HCT with
T-shaped tube connectors. This construction led to frequent blocking of the setup. The
metallic sensors probably became cold bridges where material crystallized. Hence, in the
setup shown in Fig 4.3, temperature sensors were only applied in the reservoir and near
the tube outlet, where potential large crystals would not be trapped and grow within the
setup. Similarly, the concentration measurement along the tube is difficult. Consequently,
only small suspension densities were applied, to avoid strong changes in the concentration
along the tube.

For the HCT (position 5), three configurations were investigated, which are depicted in
Figure 4.4. The setup in part a of Figure 4.4 has a compact design and the smallest height.
The HCT in part b serves to compare upward and downward flow. Both HCT setups are
composed of silicone tubes whereas the HCT in part c consists of glass, to compare wall
effects. All configurations have a vertical coil axis and can be operated with upward or
downward flow. In upward flow, the inlet is at the bottom of the vertical HCT. Hence, a
change in flow mode leads to changes in the lengths of the tubes connecting the HCT to
the adjacent experimental equipment. The relevant lengths are given in Table 4.1.

Figure 4.4: Different setups for the HCT in Figure 4.3. (a) Setup with silicone tubing
coiled up and down (Wiedmeyer et al., 2017b); (b) setup with silicone tubing
coiled up in a cooling bath (Wiedmeyer et al., 2017a); (c) photograph of the
jacketed glass HCT with enlarged view.

Source: (a) Reprinted with permission from Wiedmeyer et al. (2017b). Copyright 2017 Wiley-VCH. Mod-
ification: parts of the figure were moved, printed in color; (b) reprinted with permission from Wiedmeyer
et al. (2017a). Copyright 2017 American Chemical Society.
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The first HCT configuration is illustrated in Figure 4.4a. For this configuration, the
degasifier (position 3) had not yet been installed. Experiments in Section 4.3.1 led to
the recommendation of using a degasifier. Consequently, it was introduced for the other
configurations. The tube in this setup can be divided in three parts. The first part is
coiled upward around a cylindrical pipe from its bottom. This part is inside a cooling bath
during the process. The second part is attached to the first tube with a tube connector.
It is further coiled upward until the top of the cylinder is reached. The tube is then again
coiled down on top of the coiled tubes of the second part, which creates the third tube
part. The tube material is polysiloxane.

The second HCT configuration is created by a single tube that is coiled upward on a
cylindrical pipe. The tube material is again polysiloxane. The cylindrical pipe is immersed
in a barrel. The barrel with a volume of 200 L is filled with water, such that the whole
HCT is submerged in the water. The barrel is isolated with rock wool and aluminum,
and with floating pellets on the water surface. Inside the barrel there is a copper helix
with a diameter of 0.24 m, which serves as cooling coil. The cylindrical pipe, on which the
crystallizer tubes are located, is perforated to improve the heat exchange. Air bubbles
enter the water barrel from the bottom, to increase the mixing of the cooling water, and to
supply a homogeneous temperature profile in all heights of the barrel. During operation,
the temperature difference in the barrel is 1 K with a higher temperature at the top.

The third HCT configuration is a jacketed glass helix (Gebr. Rettberg GmbH). Includ-
ing the jacket, the glass setup has a height of 1.2 m whereby the HCT has a height of
1.13 m. Three platinum resistance thermometers (PT100) are located in a 120° distance in
the jacket. They are located in three different heights −0.01 m, 0.53 m, and 1.02 m, where
the center of the lowermost coil at the inlet is used as reference height, and is assumed
to have a height of 0 m. The cooling water in the jacket is supplied from the bottom and
leaves the jacket at the top. The peripheral tubes are connected to the glass construction
by a glass adapter with olive tubing connectors (Gebr. Rettberg GmbH).

The values of the geometric measures of the three configurations according to Figure 2.5
are given in Table 4.1. The values indicate that the setups are of similar dimension,
and they are the basis for dimensionless numbers that are typically used to characterize
HCT setups. The dimensionless numbers are given in Section 4.2.3, and may serve for a
comparison to HCTs at a different scale.

4.2.2 Procedures

A batch-wise operation is suited to characterize the setup in terms of crystal RT. Hence,
all experiments were performed in batch mode. First, the fluid RT and its dispersion were
investigated. Second, the RT of the dispersed phase was measured and, third, growth
experiments were conducted. Continuously seeded experiments were not performed. In
order to seed continuously, a change in the experimental setup is required, and wet seeding
should be applied instead of dry seeding. The RTD should not be affected significantly by
a switch to continuous seeding, but the increase in crystal size during crystal growth may
change depending on the fluid to crystal residence time ratio. Later on, in Chapter 6,
a model of the process is developed and the performed batch-seeded experiments are
simulated. Additionally, continuously seeded processes are predicted via simulations.
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Table 4.1: Dimensions of the coiled tubes in the setups shown in Figure 4.4. The tube
length l is measured from position 4 to position 6 in Figure 4.3. The coil
diameter dc is measured at the tube center. For Figure 4.4a, dimensions are
given for the three successive tube sections (Wiedmeyer et al., 2017b).

Figure 4.4a Figure 4.4b Figure 4.4c
Dimension Section 1 Section 2 Section 3
l4−5,up in m 0.9 2.0 1.2
l4−5,down in m - 1.3 1.2
lc in m 7.1 13 10.4 29 32
l5−6,up in m 1.6 2.8 1.4
l5−6,down in m - 3.8 1.4
d in m 0.005 0.006 0.006 0.006 0.006
dc in m 0.118 0.119 0.127 0.115 0.114
w in m 0.0015 0.0015 0.0015 0.0015 0.0015
p in m 0.008 0.009 0.009 0.009 0.013
height in m 0.15 0.31 0.23 0.73 1.13

Fluid Phase Experiments

The average mass flow rates of the low and high pump rate were determined by weighing
measurements for 30 s to 120 s. The fluid flow in the HCT deviates from PF, due to
hydrodynamic dispersion. Hence, deviations from the average RT appear for the fluid
elements. The resulting fluid RT distributions were measured by flow tracer experiments
in the absence of particles.

Here, the tracer was a pulse of potash alum solution. The setup in Figure 4.3 was
modified, such that the reservoir at position 1 was filled with water and that the inlet
was equipped with a three-way valve to connect a second reservoir containing the tracer
solution. During the tracer test, water was continuously pumped through the system. For
the test, the inlet was switched for the initial 15 s from water to a potash alum solution.
A conductivity probe (FYA641LFP1, Ahlborn) was located at position 6 where the size
of the product crystals would usually be measured. This position is named “outlet”.
The conductivity probe had a small probe volume of 2.7× 10−6 m3, which increases the
RT of fluid elements in the probe, and slightly broadens the measured tracer signal.
Furthermore, the measured axial dispersion resulting from the growth section of the tube
between positions 4 and 6 is increased by the first tube section between positions 1 and 4,
and again the real axial dispersion is actually smaller than the measured one. The offset
RT was measured in additional conductivity measurements at position 4. This position
is referred to as the “inlet”. The distance from the tube inlet in the vessel at position 1
to the seed crystal valve at position 4 was measured. This distance was added when the
average fluid RT τf was determined from Coriolis-type mass flow measurements. The
experiments were conducted representatively for upward and downward flow in the HCT
of setup b. In the upward experiments, the degasifier had not yet been installed.

The water and solution temperature varied between 295 K and 300 K but were corrected
for by the automatic temperature compensation of the conductivity probe. The solution
was prepared at least one day before the measurements, to provide sufficient time for
dissolution and re-cooling to room temperature. The initial mass fraction w of the tracer
was (0.07± 0.01) kg of hydrate/kg of added water where the conductivity κ is at the
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upper end of the measurement range of the conductivity probe (0.001 S m−1 to 2 S m−1)
with a value of (1.7± 0.1) S m−1. A change in the conductivity of the solution was caused
by the tracer. The correlation between conductivity and mass fraction was measured
in additional experiments in the same temperature range. The resulting second-order
polynomial least squares fit for the conductivity κ in S m−1 with a variance of 0.004 S2 m−2

is

κ = 3.6w − 150w2

where w is given in kilograms of hydrate per kilograms of added water.

Particle Phase Experiments

In the previous experiments to characterize the RT of the liquid phase, the fluid was a
potash alum solution in water at a low concentration at room temperature. To measure
the RT of the crystal phase, a potash alum solution of similar concentration and tem-
perature as in the following growth experiments is used to create comparable conditions.
The growth experiments will be performed in a temperature range of 303 K to 313 K. For
this range, the density and the dynamic viscosity of the potash alum solution are only
10 % and 29 % higher than that of water, and hence, comparable to the experiments de-
scribed in the previous section. To avoid growth and dissolution, the RT experiments are
performed at saturation concentration at isothermal conditions. Apart from the applied
temperature profile, the experimental procedures for the RT measurements and for the
growth experiments of the crystal phase are the same. As in the characterization experi-
ments for the fluid RT, low and high mass flow rates are applied. For each setup, RT and
growth experiments are shown. An overview of the experiments is given in Table 4.2.

For a growth experiment, 5 L of solution were prepared in the reservoir (position 1),
heated until all crystals were dissolved and cooled to 1 K to 2 K above the saturation
temperature, to keep all crystals dissolved. Before each set of experiments, the HCT was
cleaned with water. Although the water in the HCT was removed with pressurized air,
some water remained in the tubes. The water amounted to a few percent of the reservoir
content. When the prepared solution was pumped from the vessel through the system,
the initial concentration reduced slightly because of the remaining water. Hence, three
samples were taken from the reservoir during each experiment and air dried for several
days to measure the actual concentration of the solution. The saturation temperature
was between 38 °C and 40 °C. The saturation temperature is illustrated schematically by
the starting point of the trajectory on the right-hand side in Figure 4.5. The solution was
sucked by the pump (position 2 as depicted in Figure 4.3) at one of two different flow
rates called “low” and “high”. The corresponding mass flow rates were (7.5± 0.3) g s−1

and (10.9± 0.3) g s−1. For practical reasons, the product suspension was recycled into
the storage vessel (position 1). As there was only a small amount of crystals in the
experiments, the influence on the concentration in the reservoir was negligible.

Before the start of an experiment, the solution was pumped through the system until
the temperature in the reservoir and behind the HCT were in steady state. While the
solution was pumped to the three-way valve (position 4), it cooled down slightly, as shown
schematically in Figure 4.5, by the movement of the trajectory at a constant concentration
to lower temperatures. An experiment started when dry seed crystals were added within
less than 10 s. The seed mass was measured prior to its addition, and it was in the range
of 1× 10−4 kg to 3× 10−4 kg. For seed addition, the third nozzle of the valve was turned
upward, filled with seed crystals, sealed with a plug, and it was opened to be flushed for
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Table 4.2: Overview of experiments for which the RT distributions are shown visually in
Section 4.3. Seed fractions according to Figure 4.2. All crystal RT figures are
based on several experiments over the whole range of seed size fractions except
for setup c at downward flow and a low mass flow rate. ϑsat and σout refer to
the initial conditions where σout applies at the outlet before crystallization.
Arabic letters in brackets indicate the part of the figure.

Type of ex-
periment

Setup Seed frac-
tion

Experimental details (no. of experi-
ments, mass flow rate, continuous phase
characteristics, flow direction, no. of ob-
served crystals)

Figure

fluid RT b - low down; low up; high down; high up 4.6
crystal RT a several (a) low, 5389; (b) high, 3292 4.8
crystal RT b several (a) low, up, 4278; (b) high, up, 3807; (c)

low, down, 1921; (d) high, down, 3035
4.9

crystal RT c (c) B;
(a,b,d)
several

(a) low, up, 3502; (b) high, up, 5719; (c)
low, down, 112; (d) high, down, 1029

4.10

crystal
growth

c A all up, ϑsat =40 °C; (a) low, σout =4 %,
148; (b) low, σout =4 %, 169; (c) high,
σout =2 %, 1117; (d) high, σout =4 %,
1312

4.11

crystal
growth

a A all low, ϑsat =40 °C; (a) σout =4 %, 1185;
(b) σout =14 %, 1788; (c) σout =19 %,
2208

4.12

crystal
growth

b A+D all low, up, ϑsat =41 °C; (a) σout =1 %,
859; (b) σout =10 %, 941; (c) σout =14 %,
827

4.13

the seed addition. Afterwards, the third nozzle was closed again and rinsed with water.
The volume of the nozzle was 1.1× 10−6 m3. The plug took up 0.3× 10−6 m3 of the nozzle
volume. During seeding, air could enter the system, but the nozzle volume amounted only
to approximately 0.1 % of the HCT volume.

The suspension cooled down in the HCT (position 5). In the HCT, the concentration
of the continuous phase decreased by crystal growth. The point of time when the seed
crystals passed the flow-through microscope (position 6) after seed addition at the three-
way valve was the RT τp of the crystals. The outlet suspension temperature was measured
directly behind the cuvette of the flow-through microscope. At the HCT outlet, the
suspension temperature reached its lowest value. The jacket temperature of the HCT
should not fall below a minimum value to keep the suspension in the metastable zone
during the whole process and to prevent nucleation. Barrett and Glennon (2002) identified
the metastable zone of potash alum to be 4 K to 8 K wide. Hence, the suspension at the
HCT outlet was at most 5 K colder than the saturation temperature.

The pulsation of the gear pump affects the RTD of the fluid. A high pulsation causes
axial backmixing. The pulsation can be compared to that of a similar gear pump with
a higher displacement (4030-450, Scherzinger Pump Technology). For water at 12.5 Hz
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Figure 4.5: Scheme of the metastable zone width of potash alum. The central area is the
metastable supersaturated zone where growth of crystals occurs, but primary
nucleation is unlikely (Mullin, 2001). The inset of primary nucleation is
adapted from Barrett and Glennon (2002) for a cooling rate of 0.7 K/min
and illustrated by the upper supersolubility curve. An exemplary process
route is depicted starting in the undersaturated region with a saturation
concentration of 40 °C, cooling to 39 °C, addition of seed crystals and further
cooling to 35 °C.

and 2× 105 Pa, the peak amplitude in the 4030-450 model was 4× 104 Pa. In further
measurements at 2× 105 Pa and 5× 105 Pa, the peak amplitude was 20 % of the mean
pressure. For these conditions, the pump speed was three times higher than that which
was applied in the present dissertation with the 4030-280 model. For a decrease in pump
speed, the pulsation increases. Hence, a considerable pulsation can be expected at the
operation point in this study.

4.2.3 Dimensionless Quantities

Dimensionless numbers to classify an HCT setup and its flow were introduced in Sec-
tion 2.6. The Reynolds number is based on material parameters. These parameters
depend on the concentration and temperature of the solution. The fluid density of a
potash alum water solution varies with the saturation temperature and the current tem-
perature. Following Kubota et al. (1985), for a saturation temperature of 313.15 K and a
process temperature from 309.15 K to 313.15 K, the fluid density ρf is from 1111 kg m−3

to 1094 kg m−3. For a saturation temperature and current temperature of 313.15 K,
the dynamic viscosity of the fluid ηf is 1.118× 10−3 kg m−1 s−1 following Mullin et al.
(1965) and 1.110× 10−3 kg m−1 s−1 following Kubota et al. (1985). When the process
temperature sinks to 309.15 K for a constant saturation temperature, the viscosity is
1.210× 10−3 kg m−1 s−1 following Kubota et al. (1985). For the calculations, a constant
intermediate value of 1.150× 10−3 kg m−1 s−1 is assumed for the dynamic viscosity ηf ,
and a constant value of 1100 kg m−3 for the fluid density ρf . The resulting dimensionless
numbers are listed in Table 4.3 for setup a and in Table 4.4 for the other two setups.

An increase in the mass flow rate leads to an increase in Reynolds number and Dean
number and to a decrease in the torsion parameter. On the one hand, high Reynolds
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Table 4.3: Dimensionless numbers for the setup in Figure 4.4a for the three tube sections
and the given density, dynamic viscosity and mass flow rates of 7.5 g s−1 and
10.9 g s−1.

Symbol Low mass flow rate High mass flow rate
Section 1 Section 2 Section 3 Section 1 Section 2 Section 3

λ 24 20 21 24 20 21
P 0.0216 0.0241 0.0226 0.0216 0.0241 0.0226
Re 1661 1384 1384 2414 2011 2011
De 342 311 301 497 452 437
tc × 104 0.13 0.17 0.16 0.09 0.12 0.11

Table 4.4: Dimensionless numbers for the setup in Figure 4.4b,c for the given density,
dynamic viscosity and low and high mass flow rates of 7.5 g s−1 and 10.9 g s−1.

Symbol Setup in part b Setup in part c
Low High Low High

λ 19 19
P 0.025 0.035
Re 1384 2011 1384 2011
De 317 460 318 461
tc × 104 0.18 0.12 0.26 0.18

numbers are desired to achieve a good mixing. On the other hand, low Reynolds numbers
decrease the necessary tube length to realize a desired minimum RT and to reach a
required growth. For the low mass flow rate, the Reynolds number is 1384 for all tubes of
6 mm diameter and 1661 for the first section in the HCT setup a of 5 mm diameter. For the
high mass flow rate, the Reynolds numbers are 2011 and 2414. Several correlations for the
critical Reynolds number were given in Section 2.6. Among the correlations that were cited
in the review of Vashisth et al. (2008), the lowest critical Reynolds number is reached with
the correlation of Kubair and Varrier (1961), which was stated in Eq. (2.1). The lowest
value is reached in the first section of the first setup, and it amounts to Recritical = 4629.
Hence, all Reynolds numbers are in the laminar region. The tube of larger diameter is the
main part in all of the setups. Thus, hereafter, only the corresponding Reynolds number
is mentioned when differentiating between the two flow modes low and high.

For all setups, the curvature ratio λ is between 19 and 24. These ratios are similar to
those in the setups of Redlinger-Pohn et al. (2016b); Vashisth and Nigam (2009). The
dimensionless pitch is between 0.022 and 0.035. For the upper limit, the dimensionless
pitch confirms the lower limit of the investigated values of the pitch in the setup of Vashisth
and Nigam (2009). They found that a more complex asymmetrical flow profile develops
for larger values of the dimensionless pitch. The Dean number is between 301 and 342 at
the low Reynolds number and between 437 and 497 at the higher one. It is a measure
for the strength of the secondary flow. Here, the values are above those of Klutz et al.
(2015), in the range of those of Tiwari et al. (2006) and below those of Redlinger-Pohn
et al. (2016b). The torsion is between 0.13× 10−4 and 0.26× 10−4 at the low Reynolds
number and between 0.09× 10−4 and 0.18× 10−4 at the higher one. Following Saxena and
Nigam (1984), the torsion has no significant effect on the RTD below a torsion of 10−3.
Another dimensionless expression is the particle diameter to tube diameter ratio. For
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particles of a sphere equivalent diameter in the range of 50µm to 500 µm, in a tube of a
diameter of 0.005 m or 0.006 m, the ratio is between 0.8 % and 10 %. High ratios would
increase the pressure gradient in the tube (Michaelides, 2006).

4.3 Experimental Results

4.3.1 Fluid Residence Time

The experimental setup and procedures to measure the fluid RT were described in Sec-
tion 4.2.2. The results are depicted in Figure 4.6. As expected, the RT and the width
of the RTD increase with decreasing Reynolds numbers in Figure 4.6. The average fluid
RT from weighing and Coriolis mass flow measurements is located at the beginning of the
tracer RT curves, but the average τf has still to be increased by the delay of the inlet sig-
nal. Then, the average τf may approach the peak of the tracer and it may still be located
slightly before the peak of the tracer response. Comparing the inlet and outlet RTDs,
the RTDs widen until they reach the outlet and the peak heights decrease. Consequently,
there is axial fluid dispersion, which leads to deviations from PF, which is stronger for
lower Reynolds numbers. There is an exception for the high mass flow rate in upward flow,
where the peak height stays approximately constant. This exception can be explained by
the missing degasifier. All curves belonging to the upward flow display fluctuations that
were caused by air bubbles. The fluctuations increase with the Reynolds number, because
the pump draws more air at higher pump speeds. As a result, the degasifier was installed
for experiments in the next sections. For the inlet measurement at the high flow rate,
strong fluctuations can be seen when the peak of the RTD is approached. At the same
time, the inlet RTD is narrow. Hence, the peak of the inlet measurement is too low. Fur-
ther comparing upward and downward flow highlights that the first tracer elements reach
the inlet and outlet position at the same time. Nevertheless, the RTD curves at upward
flow are narrower than those at downward flow. This behavior can be explained by the
degasifier, in which a small volume of fluid collects and mixes. It is installed in downward
flow and leads to a broadening of the RTD. The Coriolis average RTs for upward flow are
higher and, thus, the mass flow in upward flow is slightly lower. This can be explained
by an increased pressure loss in upward flow. The difference is small, and does not lead
to a visible effect.

In setup b, the results for upward and downward flow were similar. Hence, considering
the other setups, a small variation of the pitch should not have an impact on the fluid RT.
Also, the other dimensions of the setups, such as tube and coil diameter and tube length,
are similar and the same flow rates were applied. Consequently, the main difference is the
wall material in setup c. It is not expected to significantly affect the liquid flow for the
used material and flow rates.

Summing up, the fluid RTDs are similar for upward and downward flow. There is con-
siderable axial dispersion for the lower Reynolds numbers and a small but still measurable
axial dispersion for the higher Reynolds numbers. A degasifier should be installed, espe-
cially for high flow rates, to avoid air bubbles, and thus to reduce flow disturbances and
axial dispersion.
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Figure 4.6: Tracer measurements indicating the fluid RT in the HCT setup in Figure 4.4b
for low and high mass flow rates: (a) Reup/down = 1534/1627; (b) Reup/down =
2163/2294. Average RT as determined by the Coriolis-type mass flow sensor
(vertical lines). Inlet signal, as measured at the seed addition position 4, and
outlet signal, as measured at the cuvette position 6 in Figure 4.3.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

4.3.2 Crystal Residence Time

This section characterizes the HCT in view of its crystal RTD before crystal growth is
analyzed in the subsequent section. The results in this section serve to derive the potential
of the HCT for crystal growth.

Hence, the structure of this section is as follows. First, it is verified that the saturation
temperatures were met and that the CSDs remained constant in the experiments. Next,
the experimental results are stated. The questions that were mentioned in the beginning
of Chapter 4 and that relate to the RTD are answered, by stating which results were
anticipated and, thirdly, the experimental results are discussed. Last, practical advice is
derived for future experiments.

It is validated whether isothermal conditions were successfully realized by comparing
the outlet CSDs from the isothermal experiments to the inlet CSDs for the crystal size
fractions that were measured in ethanol. Figure 4.7 indicates that the outlet distributions
are in the same crystal size range as the inlet distributions and that isothermal conditions
were successfully reached. For the antisolvent and isothermal experiments that are shown
in Figure 4.7, the ratio of the total number of aggregates to the total number of candidates
was calculated for comparison to the growth experiments in the next section. Within each
seed fraction, the aggregate to primary crystal ratio decreases with crystal size. As listed
in Table 4.5, for the larger size fractions C and D, the aggregate ratios are especially

Table 4.5: Ratio of total number of aggregates to total number of candidates for the
experiments in Figure 4.7 for all crystals with a sphere equivalent diameter
between 50 µm to 500µm. The aggregate ratios from the isothermal experi-
ments were averaged.

Experiment type Seed fraction
A B C D A+D

Ethanol 0.2 0.5 2.9 6.0 0.8
Isothermal 1.9 2.0 1.7 1.8 1.6
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Figure 4.7: Number density distribution of potash alum seed crystal fractions of varying
sieve size. Comparison of distributions measured in the antisolvent ethanol
(darkest curve with circle markers) where the curves are identical to those
in Figure 4.2 to those measured in isothermal experiments (cross markers,
different colors for different experiments). The subfigure labels A, B, C, D,
and A+D refer to the seed size fractions as labeled in Figure 4.2.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

high for crystal sizes below 170 µm and 250 µm and lead to high ratios for the ethanol
experiments. In the isothermal experiments, the ratios are approximately two for all size
fractions. Some small dust crystals may aggregate in the isothermal experiments to form
small aggregates. Nevertheless, the aggregation rate is low enough, such that the overall
number distributions remain qualitatively identical to the antisolvent distributions.

The RTDs were determined with a kernel density estimator as explained by Wiedmeyer
et al. (2017a). The experimental results for the three different HCT setups are shown in
Figures 4.8, 4.9, and 4.10.

Comparing the crystal RT τp to the mean fluid RT τf in Figures 4.8b, 4.9b,d, and
4.10b,d, the crystal RT is in average one to three times higher than the fluid RT for the
higher Reynolds number. For the lower Reynolds number in Figures 4.8a, 4.9a,c, and
4.10a,c, the deviation is larger and the crystals are in average three to six times slower
than the fluid. When the liquid phase is faster than the dispersed phase, the crystals are
fed with fresh solution of higher concentrations for a larger distance. This is advantageous
because crystal growth is increased compared with identical RTs, i.e., shorter tube lengths
are necessary to reach a desired final crystal size. The deviation in the fluid and crystal
RTD may result from the density difference between both phases. Gravitation moves
the crystals closer to the bottom tube wall, where the no-slip condition applies and, as
a result, the crystals become slower than the fluid. It can be expected that this effect is
stronger for a lower Reynolds number, in other words, for a decreasing fluid velocity and
for higher crystal to fluid density ratios. Hence, low laminar Reynolds numbers should be
avoided to prevent sedimentation.
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Figure 4.8: Normed number density distribution over RT ratio of crystals for experi-
ments in the setup in Figure 4.4a. Mean RTs (orange markers) are shown
for size classes with more than 10 crystals. (a) Low Reynolds number with
τf = 117 s; (b) high Reynolds number with τf = 81 s.

Source: Reprinted with permission from Wiedmeyer et al. (2017b). Copyright 2017 Wiley-VCH. Modifi-
cations: mean value curves added, smaller crystals considered in the data, x-axis scaled by fluid residence
time, limits of y-axis changed, and names of symbols adjusted.

For the fluid, the RTD widens from inlet to outlet, in Figure 4.6, by at least 23 % (high
flow rate, downward flow) to maximum 92 % (high flow rate, upward flow). These values
are based on the ratio of the width of the outlet to the inlet signal. The width is defined
as the time period when a mass loading of at least 0.3 kg hydrate per kg added H2O
was detected. The RT difference between 90 % of the outlet signal and the inlet signal
is 9 % to 13 % larger than the average τf . The crystal RTDs widen to a larger extent.
Comparing the values when 90 % of the crystal mass leave the crystallizer, in Table 4.6,
to the corresponding τf of 117 s, the RTs more than double and are 2.5 to 5.1 times higher
than τf . The fluid RT experiments evince that there is axial dispersion, which might
increase for the crystals.

Apart from the stretching towards larger RT ratios for the smaller Reynolds number,
the RTDs look qualitatively similar for both Reynolds numbers. It can be expected that
the distributions are similar because both Reynolds numbers are in the laminar region.
The previously mentioned deviations can be anticipated as the mixing improves with an
increasing Reynolds number.

There is a dissimilarity in the RT for crystals of varying size although no difference was
expected. On the one hand, Section 4.3.1 demonstrated that there is a good mixing of the
fluid. On the other hand, the crystals are slower than the fluid, which may be caused by
the density difference between fluid and crystals. This may have different consequences
for crystals of varying shape, size and thus mass. Similar observations were made by
Redlinger-Pohn et al. (2016b) for elongated fibers where the mixing and τp increased for
smaller fibers and by Sandeep et al. (1997) for buoyant spherical particles in a HCT.
There, an increase in particle size led to a slight decrease in mean τp and a significant
decrease in the minimum τp and standard deviation of τp. Other particle shapes that
are less compact might align with the axial flow and might then travel less rapidly in
radial direction, due to their hydrodynamic resistance. There, the size dependency is
probably less strong, but it was also observed for elongated fibers (Redlinger-Pohn et al.,
2016b). In the present study, the mean RT increased with decreasing crystal size and it
reached a maximum between 60 µm and 120 µm. A reason might be that the secondary
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Figure 4.9: Normed number density distribution over RT ratio of crystals for experi-
ments in the setup in Figure 4.4b. Mean RTs (orange markers) are shown
for size classes with more than 10 crystals. (a,b) Upward flow; (c,d) down-
ward flow; (a,c) low Reynolds number with τf = 141 s; (b,d) high Reynolds
number with τf = 97 s.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

flow moves the small crystals to regions of lower axial velocity, e.g., directly at the wall.
Simulations for spherical particles in a setup of similar dimensionless numbers by Tiwari
et al. (2006) demonstrated, indeed, that the particle-settling zone is at the inner bend of
the horizontal helical tube. For even smaller sizes, the mean RT decreases again. The
smallest crystals might easily follow the fluid flow and, thus, approach the fluid RT. In
the figures, the standard deviation in RT exhibits a similar behavior as the mean RT and
increases for small crystals. This observation can be confirmed by Tiwari et al. (2006)
who observed in simulations that the secondary flow distributes particles in the HCT cross
section especially for small particles. Small crystals might follow the secondary flow more
easily and a wider RTD might be anticipated for the small crystals. For an increasing
Reynolds number, the mixing increases and the RT of the small crystals approaches that
of the large ones. Saxena and Nigam (1984) investigated curvatures that are slightly below
those in the present dissertation. They found that a narrower RTD can be achieved when
the curvature of the setup is increased. The Dean number is proportional to the Reynolds
number and inversely proportional to the curvature. Hence, the uniformity of the RT
can be improved by increasing the Dean number. This is confirmed by Sandeep et al.
(1997); Tiwari et al. (2006) for setups of Dean numbers in the same range. It is expected
that the influence of the size-dependent RT on the product CSD is very small in growth
experiments for the high Reynolds number, and negligible when the Reynolds number is
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Figure 4.10: Normed number density distribution over RT ratio of crystals for experi-
ments in the setup in Figure 4.4c. Mean RTs (orange markers) are shown
for size classes with more than 10 crystals. (a,b) Upward flow; (c,d) down-
ward flow; (a,c) low Reynolds number with τf = 143 s; (b,d) high Reynolds
number with τf = 99 s. The RTD for downward flow at the low Reynolds
number is based on one experiment with seed size fraction B, all other
RTDs are based on several experiments over the whole range of seed size
fractions.

further increased to the transient region.

The RT of a mix of size fractions is compared to separate experiments in Table 4.6.
In the mixed experiments, the RTD is slightly wider than in the separate experiments.
One reason for the difference may be the increase in seed crystal mass for the mixed
experiments. The seed crystal mass was (0.115± 0.003) g in the separate experiments and
(0.209± 0.006) g for the mixed experiments. The suspension densities are still low and
a mix of different sizes should not increase the viscosity or change other fluid properties.
For a higher suspension density, the size-dependent RT effect should be smaller because
the larger particles might hinder small ones to pass and inter-particulate forces increase.
In this case, the crystal RT is expected to be more homogeneous but larger because of a
higher fluid viscosity and more crystal collisions. In the experiments, the small seed size
fraction A and the large seed size fraction D were used. Crystals of a selected size that
is close to the peak size of each size fraction are considered, in particular, (80± 5) µm for
the small crystals and (160± 5)µm for the large crystals. Comparing crystals of these
sizes for both experiment types, the RT is slightly larger in the mixed experiments. The
RT deviation between the separate and the mixed experiments is the same for both size
fractions. Hence, the mixing does not affect crystals of varying sizes differently.

The crystallization phenomena may change the CSD during the experiments and distort
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Table 4.6: Mean RT in separate and mixed-fraction experiments at a low flow rate in the
setup in Figure 4.4a. The fractions are A, D and a mix thereof as depicted
in Figure 4.2.

Source: Reprinted with permission from Wiedmeyer et al. (2017b). Copyright 2017 Wiley-VCH.

Mean τp in s w of 10 wt % h of 155 µm h of 75 µm w of 90 wt %
to 165 µm to 85 µm

Large fraction 252 276 - 287
Large fraction in mix 244 300 - 318
Small fraction 367 - 485 561
Small fraction in mix 339 - 510 591

the RTD. There is no supersaturation in isothermal experiments, which prevents growth
and nucleation, but nuclei result from initial breeding during dry seeding. Breakage is
not anticipated because there are neither stirring nor strong shear rates. The suspension
densities are low and, hence, aggregation is not expected.

Contrasting the HCTs in parts b and c of Figure 4.4, setup c has slightly higher torsion
and pitch, but the Reynolds and Dean numbers and the total tube length are nearly
identical. Hence, the RTDs, also, are qualitatively identical in Figures 4.9 and 4.10. The
setups differ in the wall material, but glass and silicone are both smooth and no deviation
in the RTD should be anticipated. Nevertheless, the hardness of the materials varies, and
wall collisions might be different for the two materials. Glass is harder, and reflections
might be stronger, which might lead to better mixing but might affect crystals of varying
sizes differently. Figures 4.9 and 4.10 indicate a crystal-size-dependent RT in both setups,
which is therefore not a result of special properties of one of the wall materials. Chen
et al. (2015) compare tubes of different material regarding particle deposition. They also
found no wall material difference regarding clogging. Overall, the tube wall material has
a low effect on the RTD. The wall material was already discussed for the straight tube
in Section 3.2. Compared with the straight glass tube, the glass HCT is integrated in a
cooling jacket for stability and protection and can therefore not be changed in geometry
after fabrication.

Comparing the upward and the downward flow direction, there is no difference in the
mean RT and the RTD in Figures 4.9 and 4.10. The pitch was small in all setups.
For a higher pitch, the impact of gravitation might be stronger, and the crystal RT
might be larger in upward flow. A different RT behavior is expected for HCTs with
horizontally coiled axes. There, all crystals have to move nearly vertically with and
against gravitation. Jokiel and Sundmacher (2019) state that sufficient kinetic energy is
required to lift particles by the height of a coil, while energy is consumed by friction.
Higher Reynolds numbers are necessary to avoid sedimentation, which in turn requires
longer tubes to provide similar RTs. Under those conditions, a size-dependent crystal RT
is not anticipated because the particles locate in other radial flow regions.

There are no differences in the RTDs of the three setups, which can be expected because
all setups are characterized by similar dimensionless numbers. Contrasting the HCT with
the straight tube, in both setups, the largest particles are nearly as fast as the fluid, and a
decrease in particle size leads, at first, to an increase in the RT, before it decreases again
for very small particles. In both setups, particles of varying size are characterized by a
similar qualitative behavior with regard to the RT. In the straight tube, at the transient
flow rate, the ratio of the particle-to-fluid RT is similar to the values for the high flow rate
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in the HCT, but for the laminar flow rate, the ratio is 23 to 28 and hence much larger
than that in the HCT. Consequently, in the laminar region, mixing is much better for
crystals of smaller density in the HCT, than for heavy glass beads in the straight tube.
As anticipated, a large density difference with heavier particles and lower flow rates in the
laminar regime lead to faster sinking and higher particle-to-fluid RT ratios. Both, straight
tube and HCT have the potential to grow crystals of narrow RTDs. All in all, the HCT
should be preferred to the straight tube, due to its compact design. Both configurations
can be used in a different context to separate particles by size, when operated in batch
mode.

All setups have crystal RTDs in the order of minutes, which is appropriate for growth
crystallization experiments. One of the aims of this chapter was to produce crystals of a
narrow CSD. Fluid and crystal dispersion were observed, which are expected to widen
the CSD in growth experiments, due to resulting RT differences. For the higher flow rate,
the mixing is sufficient and the RTD is still narrow. For the lower flow rate, small crystals
are significantly slower than large crystals. Consequently, small crystals have higher RTs
than large crystals and the small crystals have more time to grow. Hence, the HCT has
the potential to narrow the CSD during growth in the laminar flow regime.

4.3.3 Crystal Growth

The aim of this section is to demonstrate that crystal growth can be realized in the HCT,
and that crystals of a narrow CSD can be produced in the crystallizer.

In the previous section, isothermal experiments in the HCT were presented for similar
operating conditions. Here, the inlet concentration is chosen, such that the solubility is
reached at 313 K. The HCT is cooled below this temperature to establish a supersatura-
tion that enables crystal growth.

The product CSDs of growth experiments of varying flow rate are shown in Figure 4.11.
The focus is to identify differences in the product CSD due to a flow rate variation. There
are two experiments for both, the low and the high mass flow rate. The conditions are
identical, except that the supersaturation at the outlet is slightly lower in part c. In
this case, a slightly lower growth is expected and observed, compared with part d. For
both flow rates, the RTDs agree well. For the low flow rate, the product CSD is readily
reproducible. The product density distribution of the small size seed fraction A reaches
its highest density at approximately 125 µm for the low flow rate, and at 95µm for the
high flow rate. This confirms what can be anticipated: a larger product size is reached at
the low flow rate, as the crystal RT is higher.

In Figure 4.12, the product CSDs are presented for experiments of identical inlet con-
ditions, but increasing outlet supersaturation. As expected, the median crystal size in-
creases with the supersaturation, from initially 85 µm to 96 µm, 132µm and 137 µm. At
the same time, with increasing product crystal size, the median crystal to fluid RT ratio
decreases from 3.9 to 3.3, 3.2 and 2.6. The decrease in the RT can be anticipated for
enlarging crystals due to their size-dependent velocity in the HCT. In Figure 4.12, the
interquartile range related to the crystal number increased from initially 16 µm to 19 µm,
23µm and 63µm although the interquartile range related to the crystal volume remained
nearly unchanged, with 18 µm at the start and 21 µm, 23µm and 23µm after the growth
experiments. Hence, there is a considerable broadening of the number distribution in
the experiment of the highest supersaturation, while the volume distribution width stays
approximately constant for all experiments. The outlier can be explained by the small
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Figure 4.11: Normalized measured number density distribution at the HCT outlet in
the setup in Figure 4.4c for upward flow, for the small seed size fraction A,
for similar outlet percentage supersaturations: (a,b) both 4 % at the low
flow rate; (c,d) 2 % and 4 % and both at the high flow rate.
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Figure 4.12: Normalized measured number density distribution at the HCT outlet in the
setup in Figure 4.4a at a saturation temperature of 313 K for the small-
est size fraction A at the low flow rate for increasing outlet percentage
supersaturations from (a) to (c): 4 %, 14 % and 19 %.

Source: Reprinted with permission from Wiedmeyer et al. (2017b). Copyright 2017 Wiley-VCH. Mod-
ifications: smaller crystals considered in the data, x-axis scaled by fluid residence time, limits of y-axis
changed, and names of symbols adjusted.
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crystals that are visible in Figure 4.12c.

For the experiment at the highest supersaturation, the first quartile of the crystal num-
ber increases from 78 µm to 87µm, whereas the first decile decreases from 71 µm to 58µm.
The smallest crystals may result from nucleation, and may be able to grow into the an-
alyzed crystal size range at the highest supersaturation. Barrett and Glennon (2002)
found primary nucleation of potash alum for a saturation temperature of 313 K at a per-
centage supersaturation of 18 % and 39 % for cooling rates of 0.003 K s−1 and 0.012 K s−1.
Here, the cooling rate is stronger and the supersaturation of 19 % should be well in the
metastable zone of primary nucleation. For secondary nucleation, the metastable zone
width is smaller. Here, there is initially no clear solution, but seed crystals are used.
Hence, secondary nucleation may be caused by the seeds. To estimate the influence of
nucleation, the mass of nuclei in the product is calculated, when also taking into con-
sideration particles from 17 µm to 50 µm. In experiment a, 1.0 % of the mass of crystals
was smaller than 26 µm, and 2.7 % were smaller than 50 µm. In experiment b, 1.2 % were
smaller than 75 µm. In experiment c, 5.9 % were smaller than 100 µm. Consequently, as
observed before, there was considerable nucleation in the experiment at the highest super-
saturation. For the other experiments, too, there were small crystals that cannot originate
from primary nucleation, but must come from secondary nucleation. Overall, the mass
percentage of the small crystals in the product was small, and had only a minor effect
on the reduction of the supersaturation. Besenhard et al. (2017) reduce the influence of
nuclei on the CSD by growth-dissolution cycles. In their HCT, the cycles are realized by
sectional cooling and heating. The nuclei are dissolved in the dissolution cycle, while the
desired larger crystals do not dissolve completely. Furthermore, the induction times in
the growth cycle are short, which prevents nucleation in the first place. Another crys-
tallization phenomenon, which may be enhanced in growth experiments, is aggregation.
The aggregate-to-primary-crystal number ratio averaged over the growth experiments in
Figure 4.12 is 0.9. The ratio was 0.2 in the ethanol experiments, and 1.9 in the isothermal
experiments in Table 4.5. Therefore, the aggregate ratio after growth is within the range
of the no-growth experiments. Consequently, significant aggregation of the seed fractions
was not observable in the growth experiments. Breakage is not expected to occur, be-
cause the same flow rates and suspension densities as in the isothermal experiments were
applied.

Variations in the crystal growth rate are described, using two concepts: growth rate
dispersion and size-dependent growth (Garside et al., 2002). Growth rate dispersion was
observed for potash alum, e.g., by Girolami and Rousseau (1985), Wang et al. (1990), and
Tanneberger et al. (1996). The effect of growth rate dispersion is that a CSD broadens,
and its mode decreases, during growth. Hence, the growth rate dispersion should increase
the interquartile range in Figure 4.12, whereas the interquartile range related to the crystal
volume stays approximately constant during the experiments. This can be explained with
the size-dependent crystal RT, which counteracts the broadening of the CSD. Growth
rate dispersion can be analyzed, considering bimodal experiments, with a small and a
large crystal fraction, as illustrated in Figure 4.13. Growth rate dispersion does not
affect the difference between the modes of two separate size fractions, whereas the size-
dependent crystal velocity should lead to approaching modes for bimodal distributions.
When only crystals with a minimum h of 50µm are considered, in Figure 4.13, the distance
of the mean sizes of the large and small fraction is initially 76 µm, and after growth it
is 83 µm, 90 µm and 85 µm, and it remains approximately constant. The reason for the
constant mode distance might be nucleation, which lowers the mean size of the small
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crystal fraction during growth. Furthermore, Tanneberger et al. (1996) observed smaller
growth rates for very small crystals up to a sieve range of 60 µm, compared with larger
crystals of up to 500 µm. A sphere equivalent diameter of 60µm to 500 µm corresponds to
a value for the perpendicular face distance h of 25µm to 211µm. Their size range matches
the size range in the present study. Hence, their observation might explain why the mode
distance does not decrease in the present dissertation. Garside et al. (2002) mention three
possible causes of size-dependent growth, which are mass transfer limitations, the Gibbs-
Thomson or Ostwald-Freundlich effect, and size-dependent surface integration kinetics.
They mention that permanent growth rate dispersion may also result from differences in
surface-integration.

In the following, the effect of the seed mass on the concentration of the liquid phase
during growth is estimated. In all growth experiments, the seed mass was approximately
0.1 g for the small-size seed fraction, and 0.3 g for the seeds from a mix of fractions.
On the basis of a seed mass of 0.1 g, where the seeds are of a monodispersed size h at
85µm, a monodispersed product size h of 140µm is presumed. In this case, the crystal
mass increases to 0.4 g. Provided that the low flow rate is applied, the corresponding
crystal RT of 493 s is at its lower limit for the large product crystals and for isothermal
experiments. While a total mass of 3.7 kg solution is fed, the fluid mass reduces by
only 0.01 % by crystallization, and the reduction is negligible in terms of supersaturation.
Locally, there may still be lower concentrations when the mixing is not sufficient. The
figures indicate that the crystal-to-fluid RTD ratio exceeds one. The fluid is actually
faster than the crystals, and the crystals are constantly fed with fresh solution of the
initial concentration. Especially the slow small crystals are fed with fresh solution, which
again offers a potential to approach the size of the large crystals during growth. Hence,
the applied seed crystal mass does not affect growth by a reduction in the concentration
of the fluid phase. For experiments with continuous seeding, the suspension density has
to be limited, when a desired minimum mean crystal size shall be reached at a fixed tube
length. Furthermore, in practice, the supersaturation should remain in the metastable
zone, and seeded operation should be chosen to avoid wall fouling and nucleation.

One aim of this chapter was to grow crystals with a narrow CSD. The interquartile
range regarding the crystal number increased during growth. This increase is caused by
secondary nuclei, which result from seeding and were observed at the lower size bound.
Nevertheless, the interquartile range regarding the crystal volume increased only slightly,
from 18 µm at the start to (22± 1)µm, whereas the crystal median size increased from
85µm to 96µm, 132µm and 137µm, for experiments of an increasing supersaturation in
the HCT setup a. On the one hand, potash alum is prone to growth rate dispersion,
which widens the CSD. Insufficient mixing and broad RTDs lead, also, to an increase of
the CSD width. On the other hand, the size-dependent crystal velocity can narrow the
CSD. The experiments have shown that the effects balance out, and that the width of
the CSD with regard to the crystal volume remained constant during crystal growth.

4.4 Summary of the Chapter

Three different HCTs with different wall material, flow mode, and cooling strategies
but of similar dimensionless numbers were implemented and investigated experimentally.
The wall material, flow direction of the suspension and cooling strategy did not lead to
qualitative deviations in the RTD and CSD, between the setups. The mixing of the fluid
in the HCTs deviated from PF for laminar inlet flow rates, and, here, axial dispersion
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Figure 4.13: Normalized measured number density distribution at the HCT outlet in
the setup in Figure 4.4b for the mix of a small seed size fraction A and a
large seed size fraction D. The fractions are separated by an orange line for
which the slope was adjusted by visual inspection. Experiments at the low
flow rate for increasing outlet percentage supersaturations from (a) to (c):
1 %, 10 % and 14 %.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

occurs. The crystal RT was larger than the fluid RT, but it approached the fluid RT
for the higher laminar flow rate. All RTs were in the order of minutes. Large crystals
were faster than small crystals for the chosen conditions, where the crystals have a higher
density than the fluid. A size-dependent velocity was observed in the HCTs of small pitch
and for heavy spherical glass beads in a straight horizontal tube. During crystallization,
small crystals had a larger RT in the crystallizer and thus more time to grow. Hence,
there was a potential to narrow the CSD during growth. The narrowing was balanced by
an imperfect mixing and by growth rate dispersion. Aggregation and breakage were not
observed, but secondary nucleation was observed for a high supersaturation. Secondary
nucleation affected the number distribution, but not the volume distribution. All in all,
the CSD stayed approximately constant during growth in the setup. Potash alum crystals
were grown successfully by cooling crystallization. A size-dependent RT was observed in
the horizontal straight tube experiments, in the HCT experiments, and in literature, but
has not yet been explained. The next chapter seeks to explain the size dependency based
on a single particle force model.

Outlook to Size and Shape Distributions

Potash alum crystals were modeled here as octahedra. The shape of an octahedron can be
described with one size coordinate. For other substances, it may be necessary to consider
multiple internal size coordinates to describe the crystal shape. A multivariate CSSD
results. For example, needle-forming compounds, like potassium dihydrogen phosphate
(KDP), can be described with a bivariate size coordinate vector (Borchert et al., 2014). In
this case, the width of the product CSSD is not only influenced by the mixing and the RTD
of the crystals, but can also be influenced by choosing an appropriate supersaturation.
A shape modification can be achieved during crystal growth, if the face-specific crystal
growth rates are different. When the difference varies with the supersaturation, the
attainable region in the internal coordinate space increases further. The attainable region
can be further increased when growth and dissolution cycles are combined, presuming that
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the dissolution rates deviate from the negative growth rates as for KDP (Eisenschmidt
et al., 2015). For KDP, the CSSD was changed successfully by Eisenschmidt et al. (2016),
in batch experiments. For multivariate crystals of higher dimension, a stereo-microscope
may be necessary for shape estimation, and crystals may be approximated by polytopes
(Schorsch et al., 2012, 2014). Batch experiments can, in theory, be transferred to plug flow
experiments when the time coordinate is realized along space in a tube. For univariate
distributions, Besenhard et al. (2017) narrowed a CSD by dissolution of fine particles in
growth and dissolution cycles for a segmented flow in an HCT crystallizer.
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5 Model and Simulations of a Single
Particle in a Straight Tube

A size-dependent RT was observed in the tubular experiments in Chapters 3 and 4.
This chapter shall explain the observation. The straight horizontal setup is modeled and
simulated as representative for both tubular setups, as it is less complex from a modeling
perspective.

In literature, a size-dependent RT was observed and explained for buoyant particles in
a slightly different setup with a vertical tube. Segré and Silberberg (1961) experimentally
measured a tubular pinch effect, which means that particles are located in a thin annular
region. Cheng et al. (2005) ascribe the Segré–Silberberg effect to the combination of the
nonlinear influence of inertia, wall effects, velocity profile curvature, and shear force.

Matas et al. (2004) mention the same reasons for horizontal configurations. Their
theoretical results of simulations in a channel are based on the asymptotic theory that is
limited to small Rep and to particles that do not move close to the wall. For slightly non-
neutrally buoyant particles, they state that, in addition, Saffman’s lift force is relevant to
explain the migration of particles. They have also observed the effect in experiments in a
horizontal tube.

Baptista et al. (1996b) evaluated experiments with non-neutrally buoyant spheres in
a straight, nearly horizontal tube, with a replicated full factorial design at two levels.
They found that particle density and fluid velocity affect the normalized linear velocity
the most, and that particle diameter as well as tube inclination are still significant. The
mean particle RT increased with particle density, and decreased with flow rate and particle
diameter. They concluded that larger particles experience a higher drag force. In their
report, the particle-to-tube diameter ratio was approximately one third for small particles
and almost equal to one half for large particles. Here, the ratio is much smaller. The
largest particles have a diameter equal to 8 % of the tube diameter.

A size dependency was also observed in coiled tubes. Redlinger-Pohn et al. (2016b)
performed experiments and computational fluid dynamics (CFD)-discrete element method
(DEM) simulations with fibers of suspension mass concentrations in the range of 0.25 %
to 0.5 % in a coiled tube, which is coiled around a vertical axis. The tube is usually used
as a tube flow fractionator. They also found that longer fibers had a shorter mean RT.
They state two possible reasons: first, a change in the effective density of flocculating
fibers, and second, a difference in alignment of the fibers, with the fluid where longer
fibers align better with the axial stream. Both reasons do not apply to glass beads.

For transportation, tubes shall be as short as possible. For heat exchange, very short
tubes are usually also sufficient. In contrast, for cooling crystallization, large RTs and
long tubes may be desired. Considering straight tubes, simulations and experiments were
often conducted in short tubes from 1 m to 2 m length (Cheng et al., 2005; Segré and
Silberberg, 1961; Baptista et al., 1996b). Matas et al. (2004) performed experiments in
a 2.6 m tube, and simulations in a channel of 5 m length, which corresponds to 15 % of
the duct length to diameter ratio, compared with the present dissertation. They show
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in simulations that non-neutrally buoyant particles accumulate at the lower wall, where
the particles get closer to the lower wall with an increasing pipe length to diameter ratio.
Matas et al. (2004) state that particles assemble at a single point of the cross-section near
the tube bottom for infinitely large ratio. Longer straight tubes and HCTs, which are of
length similar to the ones in the present dissertation, were used by Chakrabandhu and
Singh (2006). They investigated the influence of different flow rates and food particle
concentrations. Because of the use for food processing, their tube had a larger particle-
to-tube diameter ratio of 26 %, and their particles were nearly neutrally-buoyant.

The mentioned investigations focused on measuring RT, and identifying the main pa-
rameters affecting it. Simulations of coiled tubes apply advanced flow models with mul-
tidimensional equations and extensive force models (Tiwari et al., 2006; Redlinger-Pohn
et al., 2016b). They focus on the prediction of the distribution of particles along the tube
radius and axis, which results from the complex secondary motion of the fluid. It is not
the aim of the present study to simulate the particle RT with perfect agreement between
simulation and experiment. This could be done better with the aforementioned advanced
numerical methods and extended models. However, this level of complexity might not
be necessary to explain the cause of a size-dependent RT, which was also observed in
straight tubes. The aim is to identify the dominating forces causing the effect from first
principles. The forces are the basis of a single particle linear momentum balance model,
which is developed in the following.

The questions to be answered in this chapter are:

1. Does a single particle model, which is based on a momentum balance, reproduce
size-dependent RTs for the parameter range that corresponds to the experiments?

2. What are the dominant forces that cause the size-dependent particle RT?

3. How to choose material and process parameters, in particular collision coefficients,
particle density, fluid velocity, and tube length, to induce or avoid a size-dependent
particle RT?

4. What parameter adaptions and model extensions might improve the agreement be-
tween model and experimental results?

5.1 Model

The particle movement is modeled in Cartesian coordinates r =

xy
z

. It is assumed that

the origin is in the middle of the tube inlet, as illustrated in Figure 5.1. For the fluid, a
Hagen-Poiseuille flow is assumed

vf,z = vf,max

(
1− x2 + y2

R2

)
(5.1)
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Figure 5.1: Schematic of the straight tube with Cartesian coordinates. The particle is
located at the circle marker at position r.

where vf,z is the fluid velocity in the z-direction, vf,max is its maximum, and R is the tube
radius. The change in the particle position r equals the particle velocity vector

d

dt

xy
z

 =

vp,xvp,y
vp,z

 = vp (5.2)

The change in the particle velocity vp is described by

d

dt

vp,xvp,y
vp,z

 =

ap,xap,y
ap,z

 = ap (5.3)

where ap is the vector of the acceleration of a particle and ap,x/y/z are its components.
The motion of a sphere falling in a quiescent fluid can be modeled by the Basset-

Boussinesq-Oseen equation, as stated by Crowe et al. (2012); Groll (2015). Maxey and
Riley (1983) derived an equation of motion for a sphere in nonuniform unsteady flow.
They include the body force due to gravity, undisturbed flow, steady state drag, virtual
(also added or apparent) mass term, and the Basset (also history) term (as cited in
Crowe et al. (2012)). Their correlation is valid for Stokes flow, that is, for small Reynolds
numbers Re � 1 (Michaelides et al., 2017). Crowe et al. (2012) rewrite the equation
and additionally consider Saffman lift and Magnus lift. Zhu et al. (2007) review the
particle-fluid interaction forces, and the corresponding models that are typically used in
discrete particle simulations. They state drag force, pressure gradient force, virtual mass
force, Basset force, Saffman force, and Magnus force. Here, a simplified model is applied.
The drag force FD, the gravity and buoyancy force FGB, and the Saffman force FS are
considered in the momentum balance

dvp

dt
=

1

mp

(FD + FGB + FS) (5.4)

where it is assumed that the particle has a constant mass mp. The neglected forces are
further discussed in Section 5.6.

Drag Force

In general, the drag force FD is defined over the cross sectional area of a particle, perpen-
dicular to the relative flow direction. For a sphere, the drag force is

FD = 3πηfdpvrelfD (5.5)
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where ηf is the dynamic viscosity of the fluid and the correction factor of the Stokes drag
force fD is

fD =
RepcDfG

24
(5.6)

where cD is the drag coefficient, fG is the Goldman correction factor, and the relative
linear velocity is

vrel = vf − vp

For Hagen-Poiseuille flow, the relative velocity is

vf − vp =

 0− vp,x
0− vp,y
vf,z − vp,z


and the magnitude of the relative velocity is

|vf − vp| =
√
v2p,x + v2p,y + (vf,z − vp,z)2

The particle Reynolds number is the ratio of inertial to viscous forces

Rep =
ρfdp |vf − vp|

ηf
(5.7)

For low Reynolds numbers Rep < 1, Stoke’s law applies and the drag force becomes

FD = 3πηfdp (vf − vp) fG

In the range 1 < Rep < 800, a drag coefficient, which is calculated following Schiller and
Naumann (1933), is valid and the drag force becomes

FD = 3πηfdp (vf − vp)
(
1 + 0.15Re0.687p

)
fG (5.8)

For smaller Rep, Eq. (5.8) approaches Stoke’s law. Hence, Eq. (5.8) is applied for all Rep.
The drag coefficient increases if a particle moves near a wall, which can be considered

by a correction factor fG, which is depicted in Figure 5.2 for small wall distances. The
distance δ between tube wall and sphere hull in the cross-section of the tube is

δ = R− dp
2
−
√
x2 + y2

In case of a sphere moving parallel to a wall, for large gap width and for the Stokes
regime, Goldman et al. (1967), Schäffer et al. (2007) and Happel and Brenner (1983) use
an expression by Faxén

fG,parallel =

(
1− 9

16

(
dp

2δ + dp

)
+

1

8

(
dp

2δ + dp

)3

− 45

256

(
dp

2δ + dp

)4

− 1

16

(
dp

2δ + dp

)5
)−1
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Figure 5.2: Goldman correction factor of the drag force over the ratio of gap width to
particle radius for a particle moving parallel (orange solid, Eq. (5.1)) and
normal (black dotted, Eq. (5.1)) to a wall.

Faxén’s expression is employed for 2δ
dp
≤ 100. For larger values of 2δ

dp
, fG,parallel < 1.01

and no correction is applied, that is, fG,parallel is set to one. The correlation is applied
for movement parallel to a wall, which is in this case parallel to the axial direction z.
For fG,n in the normal direction, there is an exact solution by Brenner (1961). Schäffer
et al. (2007) derived a 12th order approximation, which deviates less than 0.3 % from
Brenner’s exact formula over the whole range of δ. To reduce the numerical effort a 5th
order approximation of this correlation

fG,n =

(
1− 9

8

(
dp

2δ + dp

)
+

1

2

(
dp

2δ + dp

)3

− 57

100

(
dp

2δ + dp

)4

− 1

5

(
dp

2δ + dp

)5
)−1

is used for 2δ
dp
≤ 100, whereas for larger values fG,n is set to one. The correlation is applied

in the x- and y-direction.

Gravity and Buoyancy Force

The sum of the force induced by gravity and buoyancy FGB acts only in vertical y-direction
and it is

FGB,y = (ρf − ρp)Vpg (5.9)

where g is the magnitude of the gravity of Earth, and Vp is the volume of a particle.

Saffman Lift Force

The Saffman lift force FS is given by Zhu et al. (2007) in a general formulation, and for
Hagen-Poiseuille flow it becomes

FS = −1.615d2p

√
2vf,maxηfρf

R2
√
x2 + y2

x (vf,x − vp,x)
y (vf,x − vp,x)
xvp,x + yvp,y

 fS

In the center of the cross section of the tube, there is zero division, which should be
avoided. Consequently, FS is set to zero at the tube center. Furthermore, there is no
Saffman force when there is neither particle movement in the circular cross-section nor
relative velocity in the x-coordinate. Crowe et al. (2012); Sommerfeld (2013) propose
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to use the correlation of Mei (1992) to describe the Saffman force for higher Reynolds
numbers where a correction factor is used. The correction factor for Rep ≤ 40 is

fS =
(

1− 0.3314
√
βRe

)
exp

(
−Rep

10

)
+ 0.3314

√
βRe

and for Rep ≥ 40, here applied for Rep > 40, it is

fS = 0.0524
√
βReRep

where the dimensionless shear rate βRe is

βRe = 0.5
Res
Rep

where zero division occurs for Rep ≤ 40 when |vf − vp| = 0, which means that the particle
does not move in the cross section, that is to say, vp,y = 0 and vp,x = 0, and simultaneously
the particle velocity equals the fluid velocity in z-direction vf,z − vp,z = 0. Thus, FS is
set to zero if |vf − vp| = 0 for Rep ≤ 40. For Hagen-Poiseuille flow, the shear Reynolds
number (Crowe et al., 2012; Sommerfeld, 2013) is

Res = d2p
ρf
ηf

√(
∂vf,z
∂x

)2

+

(
∂vf,z
∂y

)2

5.2 Model Assumptions

The assumptions, which were applied in the derivation of the model in Section 5.1, are
given below. It is discussed how the simulation results might be affected, if the assump-
tions were dropped. The relative importance of the assumptions is estimated.

a) The particle mass is constant. This assumption applies for glass beads that are not
brittle.

b) Particles are spherical. This assumption is reasonable because the manufacturer
(Sigmund Lindner) states that the roundness, which is defined as ratio of minimal
to maximal diameter, is at least 0.95.

c) The tube is horizontal. This is the case for the main part of the tube, where the
last 0.5 m show an inclination of 53°. An inclination of the tube can be included in
Eq. (5.9). The force should be divided into a y- and a z-component, by considering
the cosine and sine of the angle of inclination. Looking at the tube, sedimentation
was not observed in the inclined part.

d) Several forces were neglected in the momentum balance compared with the Basset-
Boussinesq-Oseen equation. An overview of correlations and coefficients for tran-
sient flow in the Stokes regime, and for small and high Reynolds numbers is given
by Michaelides et al. (2017). They state that unsteady forces should be included
when the characteristic time of the fluid and the particle response time are of the
same order. This is the case here for larger particles as explained in Section 5.4.1.
Another force is the Magnus force, which is discussed in Section 5.6.1.
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The rolling resistance force was disregarded. Related friction coefficients can be
found for example for dry glass beads on steel (Mader-Arndt et al., 2017), but
may vary strongly under wet conditions. The results may not be transferable to
angular crystals. Friction results, also, in a pressure gradient along the tube. The
pressure-induced buoyancy force can be formulated following Groll (2015) as

FGB,z = −Vp∆p

Estimates of the pressure drop in axial direction caused by the fluid are given in
the following. According to Glück (1988), the pressure drop, which originates from
tubular friction, is

∆p = λfriction
lρf
4R

v2f,max

4

where λfriction is the friction factor. For laminar flow, Glück (1988) derives the
friction factor

λfriction =
64

Re

For the straight tube at vf,low, a pressure drop ∆p =1× 104 Pa results when the
parameters, which will be introduced in Section 5.4, are applied. For turbulent
flow, empirical friction factors are available. Following Kast et al. (2013), the Blasius
friction factor for 3000 < Re < 105 is

λfriction = 0.316Re−0.25

and at vf,high in the straight tube, the pressure drops by 2.8× 104 Pa. As vf,high is
in the transient flow regime, Eq. (5.2) leads to undervaluation and the turbulent
correlation should be used for estimation. In coiled tubes, higher losses are caused
by the secondary motion of the fluid towards the wall. An additional pressure loss
due to friction is induced by the particles. Correlations for this additional term are
given by Muschelknautz (2013).

e) There is no particle rotation. Section 5.6.1 examines this assumption.

f) The fluid follows a Hagen-Poiseuille profile. This is a typical assumption for laminar
straight tubes. The fluid velocity vf,low is laminar, and for the HCT, both fluid
velocities are in the laminar regime. The fluid velocity vf,high in the straight tube is
not yet turbulent but in the transient region. Deviations from the Hagen-Poiseuille
flow may occur. The fluid profile may further be disturbed at the tube connectors
in the glass tube. The experimental results in Figure 3.2 confirm this, because there
are larger deviations in the glass tube, but the mean RTs for glass and silicone tubes
still agree well.

On the experimental side, air bubbles are difficult to distinguish via imaging from
spherical glass beads, which are distributed in size. Blind experiments may be used
to estimate their number and size. Preferably, bubbles should be avoided a priori.
At large values of vf , a debubbler may be used. In the experiments, the system was
operated under pressure, and not via suction. Water was initially not completely
degassed. It was pumped through the pipe for several minutes at higher flow rates,
to flush the system and to remove air bubbles. Experiments were started when no
air bubbles were visible at the outlet. Small air bubbles in the straight tube may
change the fluid velocity locally, and disturb the particle trajectories, or may attach
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to glass beads. Air bubbles may reduce the RT, by lifting particles in regions of
higher velocity in the cross section of the tube. For glass beads and crystals of high
density, the effect on the RT is expected to be small as they sediment again quickly.
Resulting changes in the glass bead model properties, such as size or density, may be
expected to affect the RT similarly for both fluid velocities. This would not improve
the agreement between simulations and experiments for both velocities.

To account for a change in the fluid velocity profile in the single particle model, the
Hagen-Poiseuille profile may be varied, or a random force may be added to represent
disturbances of the fluid flow, similar to diffusion. With implemented disturbances,
it is expected that the simulated particle RT reduces, especially for small particles.
The maximum RT in Figure 5.4 would decrease, which would lead to a smaller
difference to the experimental results. Alternatively, a direct numerical simulation
may be applied, including a two-way-coupling and a resolution of the boundary layer
of the spheres.

g) A single particle was modeled. Hence, it was assumed that there are no particle-
particle interaction effects, and the fluid is not influenced by the particles. In ex-
periments and simulations with particle clouds, particles may move faster in the
shadow of other particles, and because of additional random movement. Baptista
et al. (1996a) studied particles of larger particle-to-tube diameter ratio, smaller
density difference, and larger suspension density compared with the present study.
They found experimentally that the mean residence of clouds increases, compared
with single particles at low particle concentrations of 1 vol%. When particles of var-
ious sizes are mixed, the mean RT reduces in most cases. Legrand et al. (2007) also
consider density effects of non-neutrally buoyant particles. Again, the particles are
of larger particle-to-tube diameter ratio and smaller density difference, and there
is a high suspension density compared with this dissertation. They found that for
horizontal ducts, high particle concentrations are necessary to form a uniform bed.
At low particle concentrations, as applied here, the flow regime dominates the sus-
pension behavior. Regarding the mixing of particles, further quite recent studies are
available for neutrally buoyant particles, especially in food industries and biological
physics (Chakrabandhu and Singh, 2006; Prohm et al., 2012; Rusconi et al., 2014;
Gao et al., 2019; Schaaf et al., 2019).

5.3 Implementation

To avoid numerical issues due to frequent wall collisions, the model is implemented via a
forward simulation scheme, the first-order Euler method, to be precise. A Taylor series
approximation is used to calculate the particle position r following Eq. (5.2) and the
particle velocity vp following Eq. (5.3). The implemented approach is

ap (nt) =
F (nt)

m
(5.10)

r (nt + 1) = r (nt) + vp (nt) ∆t (nt) (5.11)

vp (nt + 1) = vp (nt) + ap (nt) ∆t (nt) (5.12)

where nt is the index of the current time step. The next time step results from

t (nt + 1) = t (nt) + ∆t (nt)
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The implemented equation system is similar to the implementation of a spiral air classifier
by Sommerfeld (2013). The resulting force F contains the single forces mentioned in the
momentum balance in Eq. (5.4).

When a particle touches the wall during a time step, the particle is reflected. The
boundary of a particle impacts a wall when√

x2 + y2 = R− dp
2

After collision, the particle moves with a new velocity for the remainder of the time step.
In forward implementation, it may happen that a particle leaves the tube in the radial
direction within a time step. Then, the point of wall contact, the corresponding wall
impact velocity vbp and the elapsed time must be identified. A detailed description of the
corresponding algorithms is given in Appendix B where the velocity after collision va

p,elastic

is calculated for a perfectly elastic wall reflection.
To account for wall elasticity, the particle wall collision model of Groll (2015) is applied

to va
p,elastic. It gives correlations for the velocities after collision for a movement parallel

and normal to a plane. The velocities in the cross section after an elastic collision are
formulated according to the normal velocity

vap,x = ecv
a
p,x,elastic (5.13a)

vap,y = ecv
a
p,y,elastic (5.13b)

and the axial velocity is calculated according to Groll’s parallel velocity

vap,z

(
vbp,z
−vbp,n

> µc (1− ec)

)
= vbp,z + µc (1− ec) vbp,n (5.13c)

where µc is the collision friction coefficient, where ec is the collision elasticity coefficient,
which varies between zero and one, and where the normal velocity before collision

vbp,n = − cos (β)
√
vbp,x

2 + vbp,y
2 (5.14)

is negative. In Eq. (5.14), β is the angle between the radial orientation and the velocity
vector in the circular cross section, as illustrated in Figure B.1. The right-hand side of

Eq. (5.13c) may vanish or become negative after collision when
vbp,z
−vbp,n

≤ µc (1− ec). In

this case, the axial velocity remains unchanged

vap,z

(
vbp,z
−vbp,n

≤ µc (1− ec)

)
= vbp,z

For particles with a diameter below 100µm and time steps ∆t smaller than 1× 10−5 s,
memory issues appeared when preallocating the forward implementation. Results includ-
ing particles smaller than 100µm were calculated with an explicit fifth-order Runge-Kutta
“ode45” solver (MATLAB). Nevertheless, this fifth-order solver was not applied for all
simulations. The forward implementation is advantageous for particles that do not start
at the origin and, hence, collide with the wall at a position with a non-zero x-coordinate,
as further explained in Appendix A.
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5.4 Process and Model Parameters

The applied simulation parameters are listed in Table 5.1. Two different pump speeds,
called “low” and “high”, were applied in the experiments. Measured mass flow rates
were used to calculate corresponding average fluid velocities. The velocities vf,max were
calculated from these average velocities assuming a Hagen-Poiseuille flow profile. Initially,
the particles start with zero velocity at the tube origin.

Table 5.1: Geometrical parameters, process parameters, and material parameters.

Symbol Value Unit
ec 0.94 −
µc 0.325 −
g 9.81 m s−2

l 20.5 m
R 2.5× 10−3 m
vf,max,low 0.734 m s−1

vf,max,high 1.122 m s−1

ηf 1002×10−6 kg m−1 s−1

ρf 998 kg m−3

ρp 2500 kg m−3

For a particle that reaches the upper limit of typical crystal sizes of 400µm, and for
a large relative velocity, which is obtained when a particle is initially at rest in the tube
center, Rep in Eq. (5.7) reaches 292 and 447 for vf,max,low and vf,max,high. These values are
well inside the validity region of Eq. (5.8).

5.4.1 Stokes Number

The Stokes number St, which is related to the particle velocity, describes how well a
particle can follow the fluid when the fluid flow field changes. It is defined as

St =
τp
τf

where τf is a time characteristic of the flow field and τp is the relaxation time or momentum
response time. The momentum balance in Eq. (5.4) describes the movement of a particle.
Disregarding body forces for particles of a high density compared with the fluid, Crowe
(2006) assumes that the Stoke drag force determines the particle motion. Applying only
the drag force, which was defined in Eq. (5.5), in the momentum balance in Eq. (5.4), the
equation becomes

dvp

dt
=

18ηf

dp
2ρp

fD (vf − vp)

Provided that the correction factor of the Stokes drag force fD is one, the Stokes τp is
achieved. The first factor on the right-hand side is the reciprocal of τp

τp =
dp

2ρp
18ηf

In general,
dvp

dt
=
fD
τp

(vf − vp) (5.15)
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as stated for example by Sommerfeld (2013). Following Eq. (5.15), τp is the time a
particle needs to accelerate from rest to 63 % of the fluid velocity (Crowe et al., 2012)
after a step-wise change in the relative velocity.

The characteristic time of the fluid τf is the ratio of a characteristic length to the
relevant fluid velocity. Following Michaelides et al. (2017), the characteristic length can
be the diameter dp of spherical particles, which is often assumed for turbulent flows
(Crowe, 2006). According to Kleinstreuer (2017), the tube diameter may be the key
length supposing steady laminar particle suspension flow in a pipe, while, for a moving
environment, it may be the tube length. Tsai and Pui (1990) apply the tube radius
of bends as characteristic dimension and the average velocity as characteristic velocity.
Here, the average fluid velocity and tube diameter are considered as characteristic, and
the following correlation is applied

τf =
4R

vf,max

For particles of a diameter of 20 µm, 50µm, 100µm and 400µm, St in the Stokes regime
is 0.004, 0.03, 0.1 and 1.6 for vf,low, and 0.006, 0.04, 0.2 and 2.5 for vf,high.

For St � 1, τp is much smaller than τf , and a particle responds quickly to changes
in the fluid velocity. The particle velocity approaches the fluid velocity (Crowe et al.,
2012). This is the case for particles of a size below approximately 50µm. For St � 1, a
particle does not respond or responds only slowly to changes in the fluid velocity. In this
case, the particle movement is dominated by the convective flow and gravity following
Kleinstreuer (2017). Here, even the largest particles do not reach these values, and they
are still affected by the fluid through drag.

5.4.2 Variation of the Initial Particle Position

In the experiments, the glass bead fraction was distributed in the cross section of the tube.
Therefore, in the single particle simulations, five different initial particle positions are
compared, as depicted in Figure 5.3c. As visible in Figure 5.3a, an exemplary simulation
at vf,max,low reveals that, for a fixed particle size from 100 µm to 400 µm, and for different
initial positions, the RTs deviate less than 1 % from the RT at the tube origin. Comparing
initial positions in the upper half of the tube to the origin, as may be expected, the time
until the first wall collision is longer, as illustrated in Figure 5.3b. For initial positions
at the same vertical height like the origin, the first wall contact happens earlier. The
difference is below 1 s, which is negligible compared to the overall RT. Hereafter, only
the origin is considered as initial position. Hence, no horizontal particle movement in
x-direction can be observed.

5.4.3 Variation of the Wall Collision Coefficients

In this section, the sensitivity of the RT to variations in the wall collision coefficients
µc and ec is discussed. The RT is determined by vp,z, which depends on the collision
coefficients according to Eq. (5.13c). In Eq. (5.13c), the second term is always negative
or zero. After wall collision, the largest reduction in vp,z occurs when ec is zero, in other
words inelastic, and µc is large.

Typical values for the coefficients were listed in Table 5.1 and were taken from Groll
(2015) for glass particles. The coefficients vary over a large range, not only depending on
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Figure 5.3: (a) RT and (b) time until first wall contact for particles of different size and
initial position for vf,max,low and no initial particle velocity; (c) schematic of
the cross section of the straight tube with initial particle positions (triangles
or x-mark), tube wall (solid line), and position of particle center at wall
contact (dotted line).

the material itself, but also on the surface roughness, which may change with material
age. A typical value for the friction coefficient for soft glass on soft glass in air is one
(Buckley, 1981). Lide (2004) gives a similar maximum value between glass and glass of
0.94 for the static coefficient of friction, and of 0.4 for the dynamic coefficient. For a
rubber hemisphere sliding on glass, the sliding friction coefficient for dry conditions is
about 2, for wet conditions it is about 0.8, and for elasto-hydrodynamic lubrication it
is below 0.2 (Roberts and Richardson, 1981). Between polystyrene and polystyrene, a
maximum value of 0.5 is reached for the static coefficient of friction (Lide, 2004). In
general, the collision friction coefficient may also exceed one, but for the substances used
here, and wet conditions, a limiting value of one is assumed.

Different combinations of values for the collision coefficients ec and µc can be assumed
as limiting cases. That is to say, ec = 0 and µc = 1 for perfectly elastic collisions, ec = 0.94
and µc = 0 for no friction collisions, ec = 0 and µc = 1 for inelastic high friction collisions,
and ec = 0.94 and µc = 0.325 for typical collisions. For all these combinations of ec
and µc, simulations were performed with particles of 100 µm to 400 µm diameter. In all
these cases, the second term in Eq. (5.13c) attributed to less than 1 % of the sum of the

equation. The ratio
∣∣∣vp,nvp,z

∣∣∣ was also smaller than 1 %. Therefore, the direct effect of the
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collision coefficients on the horizontal velocity in Eq. (5.13c) is negligible.
The elasticity coefficient influences the cross-sectional velocity in Eqs. (5.13a) and

(5.13b). It might be expected that perfect elasticity leads to higher bounces after collision
and extends the overall RT, but this effect is, also, negligible. The RTs are shortened by
less than 1 % from that for the selected coefficients in case of perfectly elastic collisions
or no friction conditions. For the opposite limiting case of inelastic collisions and high
friction, it may be expected that particles do not reflect from the wall but stay near the
wall in regions of small fluid velocities, immediately after first wall contact. In this case,
the RT increases by 12 % for 400µm particles and by 5 % for 100 µm particles at vf,max,high,
and, at vf,max,low, by 22 % for 400 µm particles and by 8 % for 400µm particles.

5.5 Simulation Results

In this section, the simulated particle RTs are shown for different particle sizes and for
both average fluid velocities, and they are compared to experiments. In the simulations, a
decrease in particle size leads to an increase in RT for large particles of a size from 400 µm
to 30 µm (see Figure 5.4). The opposite trend is observed for smaller particles. Very small
particles of 5µm diameter approach vf,max, which is the fluid velocity at the center of the
cross section of the tube. The center is also the initial position of the particles. The RT
of the largest particles approaches the average fluid velocity, where the RT of particles of
400µm size is still three times as much as the average fluid RT. These qualitative trends
appear for both average fluid velocities. Quantitatively, larger RTs are observed at vf,low,
as expected. At vf,low, the maximum RT is observed between 12µm and 20µm as visible
in Figure 5.4a, and, at vf,high, it is reached between 14 µm and 30µm. In this range, the
RTs were calculated for particles of 12µm, 14 µm, 20 µm and 30µm diameter.

Comparing experiments to simulations, the curves in Figure 5.4 are qualitatively similar
and the RT of the glass beads also reaches a maximum. The glass bead size at which the
maximum is reached is larger in the experiments. It is between 92 µm and 116 µm at vf,low
and between 108µm and 132 µm at vf,high. The simulations overestimate the maximum
RT. Considering the large particles, at vf,high, the particle RT is overestimated, whereas
at vf,low, the RT is underestimated.

In all curves in Figure 5.4, a maximum RT was observed at intermediate sizes and very
large and small crystals approached the fluid RT. In the following, this section discusses
what kind of particle movement leads to this behavior, while the next sections investigate
the forces causing this trend.

Particle trajectories near the tube inlet are shown in Figure 5.5a. They indicate that
the overall residence time is a sum of the duration of a first phase, in which a particle
approaches the wall and, a second phase, in which a particle travels directly along the
wall. Comparing particles of large size with particles of smaller size, large particles sink
to the wall more quickly. Large particles spend less time in the first phase and travel
for a smaller axial distance near the tube center. In the straight tube, Hagen-Poiseuille
flow was assumed and the axial fluid velocity decreases from tube center to tube wall.
At the wall, the center of gravity of the larger particles is further away from the wall
where higher fluid velocities prevail. Hence, in the second phase, large particles travel
with higher velocities than small particles (see Figure 5.5b). For both, large and small
size particles in the size range that was considered in the experiments, the first phase is
short, which means below a few seconds, and the overall residence time is determined by
the duration of the second phase. In the second phase, large particles are faster and their
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Figure 5.4: Simulated particle RT (orange with circle markers) and experimental RT
of glass beads (dark blue and black, solid curves) with standard deviation
(bright blue and gray, solid). Straight tubes consisting of silicone (dark
and bright blue, solid) or glass (black and gray, solid). Shown for different
average fluid RTs (black, dotted, vertical): (a) vf,low and (b) vf,high. For each
tube material, the experimental results are averaged over all beads that were
observed in all experiments in Figure 3.2. The beads were classified in bins
of 8µm width in sphere diameter dp to calculate the average and standard
deviation of the RT for each bin.

residence time is lower. This explains the experimental observations. The simulations
indicate, in Figure 5.4, that, for even smaller particles, below the experimental sizes,
the residence time decreases further. When the particles are sufficiently small, they do
not reach the second phase or, in other words, the wall before leaving the tube. This is
confirmed by the Stokes number of these very small particles, which suggests that they
follow the fluid flow easily. Particles that are 8 µm in size or smaller for vf,low, and 10 µm
in size or smaller for vf,high do not touch the lower wall before leaving the tube. The RT
of a particle of 8µm diameter is 33 s for vf,low, and 19 s for vf,high. The ratio of the RTs
is similar to the inverse of the average fluid velocities. This is comprehensible, since the
force of gravity is identical in both cases, but the distance, which a particle travels in a
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Figure 5.5: Simulated particle movement along the tube axis z for particles starting
with zero velocity at the tube origin in a fluid at vf,low. Particles with a dp
of 400µm (black), 200µm (gray), and 100 µm (bright gray). (a) Trajectory
in the yz-plane; (b) axial particle velocity.
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certain time, changes because of the difference in the velocity field.

Although the tube length was not varied in the simulations, some conclusions can still
be derived. All particles that have a diameter of at least 50µm reach the lower tube wall
within 1.5 s and within an axial distance z =1 m at both fluid velocities. Their traveled
distance until wall contact is short. They reach a constant vp,z quickly. For those large
particles the RT should increase approximately linearly with tube length. For smaller
particles, the increase will exceed the linear one because the particles need a significant
time to sink to vertical positions of lower fluid velocity.

The results confirm the findings of Matas et al. (2004) for smaller density differences,
smaller tube length to diameter ratios, and similar pipe to particle diameter ratios, for
particles of a diameter of 100 µm to 400µm. The particles that were heavier than the
fluid assembled at the bottom of their ducts.

5.5.1 Effect of the Saffman Force and the Correction Factors

In this section, the effect of the Saffman force and of the Saffman and Goldman correction
factors on the particle RT and on the particle movement is investigated. First, it analyzes
what effect fG in Eq. (5.8) has, compared to setting it to one. When the Goldman
correction is not considered for the drag coefficient, the particle bounces much higher
after the first wall collision than in the full model, where fG is applied, as visible in
Figure 5.6a. It bounces up by less than 0.01 % of the tube radius when fG is used, and by
less than 4.4 % when fG is set to one. For smaller particles, the bounce is even lower. The
Goldman correlation leads to an increased drag coefficient, and to an increased drag force
near the wall. When a particle approaches the lower wall during sinking, it experiences
attenuation and its absolute velocity decreases as shown in the beginning of the orange
curve in Figure 5.6b,c. When the Goldman correction is applied, the time and traveled
distance until first wall contact increase. Nevertheless, the influence on the overall RT is
negligible. For both models, vp,z already reaches a similar value after approximately 0.1 s,
in Figure 5.6c. The figure also illustrates that the axial velocity in the z-coordinate is not
increased after a wall contact, but the decrease in vp,z indicates it is only slowed down
slightly. For particles in the range of 50 µm to 400 µm, the deviation in the RT between
the two models increases with a decrease in the particle size. For the smallest particle,
the deviation is 0.1 % at both fluid velocities.

Compared to the full model, when the Saffman correction is set to one, the difference
in RT is below 0.02 % for all investigated particle sizes. When the Saffman force is
completely disregarded, the deviation is also very small, and still below 0.1 % at both
fluid velocities. Overall, the inclusion of the Saffman force and the Saffman and Goldman
correction factors does not have a significant influence on the RT. The simulated RT is
mainly determined by gravitation and drag force. This confirms the importance of the
interplay of drag force and velocity profile curvature, which was already highlighted by
Matas et al. (2004) for their horizontal tube. They further suspected an effect of the
Saffman’s lift force for non-neutrally buoyant particles, which was, by contrast, negligible
here.

The following sections analyze how different simulation parameters affect the particle
RTs.



5. MODEL AND SIMULATIONS OF A SINGLE PARTICLE IN A STRAIGHT
TUBE 58

a

0.03 0.035

 z in m

-2.3

-2.2

-2.1

 y
 i
n
 m

m
b

0.05 0.1

t in s

-0.05

0

0.05

v
p

,y
 i
n
 m

/s

c

0.05 0.1

t in s

0.2

0.3

0.4

v
p
,z

 i
n
 m

/s

Figure 5.6: Movement of a particle of 400µm diameter starting at the tube origin at
vf,low for the full model (orange, solid) and for the model without Goldman
correction of the drag force (blue, markers): (a) vertical cross section of the
tube at x = 0 for a range of z close to the location of the first wall contact;
(b) vertical velocity and (c) horizontal velocity for the same time range as
in part a of this figure.

5.5.2 Variation of the Fluid Velocity

The values for vf,max in Table 5.1 were calculated from mass flow measurements based on
the tube geometry. The measurements were taken during running experiments; hence,
the values should be rather accurate. Predictions for further fluid velocities are shown
in Figure 5.7. As expected, the fluid velocity has a negative effect on the particle RT.
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Figure 5.7: Simulated particle RTs for different vf,max of the Hagen-Poiseuille profile, as
illustrated in the legend. Maximum fluid velocities decrease from dark to
bright gray.

When the maximum fluid velocity is halved, the particle RT is increased by a factor of
approximately two, for all particle sizes in Figure 5.7. The factor of increase is a little
higher for larger particles and small values of vf,max. To be more precise, when vf,max is
decreased from 1 m s−1 to 0.5 m s−1 for a particle of 400µm diameter, the RT increases
by a factor of 2.42. For vf,max decreasing from 4 m s−1 to 2 m s−1 for a particle of 100 µm
diameter, the RT increases by a factor of 2.05. Hence, the change in particle RT is nearly
inversely proportional to the change in vf,max in the considered range of particle sizes
and fluid velocities. This is the case because the considered, rather large, particles move
near the wall for almost their entire RT. Close to the wall, the fluid velocity may be
approximated linearly.
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The particle-to-fluid RT ratio becomes smaller, the higher the fluid velocity. For ex-
ample, for large particles with a dp of 400 µm, the ratio is 3.3 at vf,max =4 m s−1 whereas
it is 4.5 at 0.5 m s−1 and at a dp of 100µm, the ratio is 12.4 at vf,max =4 m s−1 whereas it
is 14.2 at 0.5 m s−1. On the one hand, the smallest difference in RT and the best mixing
is observed at higher fluid velocities. On the other hand, a size-dependent particle RT is
observed at all fluid velocities with a vf,max from 0.5 m s−1 to 4 m s−1, such that the fluid
velocity should be selected on the basis of the required time for crystal growth, assuming
that the tube length is fixed.

5.5.3 Variation of the Particle Density

The model can be applied for predictions of the RT of further substances. In this case, a
different particle-to-fluid density ratio may apply. Predictions for further particle densities
at fixed fluid density and viscosity are depicted in Figure 5.8. Similar effects are observed
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Figure 5.8: Simulated particle size over RT for varying particle density ρp at fixed fluid
density and viscosity: (a) vf,low and (b) vf,high. The legend in part b of the
figure applies for both parts and shows ρp. The ode45 MATLAB solver was
used to calculate all RTs.

when ρf is varied at a fixed ρp. For the given setup, the values for ρf and ρp in the model
may deviate slightly from the assumed values, due to temperature variations or due to
deviations in the fabrication of the glass beads. Small differences do not significantly
influence the RT. Even if larger differences appeared, a variation of the particle density
would not improve the agreement of the simulated data with the experiments.

In crystallization most density ratios are in the depicted range. For example, for potash
alum in water, the density difference and, hence, the particle RTs are between the two
curves for the largest densities in Figure 5.8. For other substances and solvents, the
dynamic viscosity may change significantly. In this case, the kinematic viscosity could be
taken into account, instead of the particle density. During crystallization, the change in
the fluid density should be negligible in most applications.

A limiting case occurs when the fluid and particle density are identical, in particular,
when ρ is 998 kg m−3 in Figure 5.8. The particles are neutrally buoyant and no vertical
movement is caused by gravitational force. When a particle starts from the center of
the circular cross-section of the tube, or in other words x and y are zero, the particle
remains at a radius of zero and it moves with the maximal fluid velocity vf,max. Hence,
the lowest RT is reached, compared with other density ratios in Figure 5.8. When the
density ratio increases, the particle size at which the maximum RT is reached decreases,
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and the limiting size of the small particles at which the fluid RT is reached decreases.
The RT of larger particles remains nearly unchanged. A deviation of ρp from ρf by the
same absolute value above and below the original ρp leads to the same RT. The same
qualitative behavior is observed for vf,low and for vf,high.

A crystal population is initially distributed in the cross section of the tube. For a density
ratio approaching zero and perfect Hagen-Poiseuille flow in a straight tube, neutrally
buoyant particles remain at their initial radial position. Very heterogeneous RTs result,
which depend more on the initial position than on the particle size.

In a HCT, radial forces appear and the dependence on the initial position disappears.
Particles move to different radial locations, depending on their size, and remain there.
These radial positions may depend on the density difference. The dependence is probably
nonlinear, because of the complex radial fluid velocity profile. The radial positions are
correlated with different axial velocities and particle RTs.

The simulations agree qualitatively with literature. Baptista et al. (1996b) reported a
settling effect, where denser particles move closer to the tube wall when the fluid velocity
is lower. Simulations by Matas et al. (2004) confirmed the particle movement towards
the lower part of the tube. For a particle density deviating less than 0.1 % from the
fluid density, they found that particles moved towards the tube bottom for low Reynolds
numbers of Re = 170, but not for higher Reynolds numbers of Re = 390. For a slight
increase of the particle-to-fluid density difference to 0.2 %, they could not observe the
difference with Reynolds number anymore, and the particles assembled mainly at the
tube bottom in both cases.

5.6 Model Extensions

The applied model assumptions were listed in Section 5.2. The influence of unsteady
forces seemed to be significant, but exceeds the scope of this study. The discussion also
suggested that the rotation of the particles may cause a significant lift. In the following,
the effect of the lift force on the particle RT is estimated. It is calculated which angular
velocities are required to change the simulation results and it is assessed whether that
change would improve the agreement between experiments and simulations in Figure 5.4.
Furthermore, the application of the model and the simulation results to an HCT are
reviewed.

5.6.1 Limits of the Angular Velocity

The change in the angular particle velocity can be modeled by an angular momentum
balance. Such a balance describes the torque acting on a particle resulting from friction
forces, when a particle rotates with an angular velocity relative to the surrounding fluid.
The torque can change by interaction with the fluid, or by collisions, for example with
the wall. For Stokes flow, Happel and Brenner (1983) describe the torque of a sphere.
Redlinger-Pohn et al. (2016a) use a splitting technique of the coupling forces and torques
in an open-source CFD-DEM implementation of fibers. They state the implemented
Newton’s equation of the rotational motion. A wall reflection model is proposed by Crowe
et al. (2012), which describes the limit of rolling and sliding, after a particle reaches a flat
wall. Their conditions and coefficients for elastic collisions differ from a reflection model
proposed by Groll (2015). The implementation of the wall reflection model, including
directions of the linear and angular velocity, becomes complex when transferring it to
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a tubular wall. If a particle is not reflected upon collision, wall friction may have a
major effect on the sliding or rolling behavior of particles. When the tube walls become
rough or the particles become angular, as is the case for crystals, the results may not
be transferable. An angular momentum balance is not implemented, because it would
require a reliable wall collision model.

Rolling and sliding on a wet tube wall might not strongly affect the axial particle
velocity directly, but may lead to large deviations in the Magnus lift force. A rotating
particle carries along some part of the surrounding fluid. Because of the relative particle
movement, the entrained fluid moves with or against the fluid, at the outer sides of the
particle. In Figure 5.9a, the entrained fluid at the upper part of the particle moves against
the surrounding fluid, and pressure increases locally. At the lower part, the entrained fluid
flows with the bulk fluid, and the local pressure is reduced. A lift force towards the lower
pressure, that is to say, towards the bottom, results. When the particle turns the other
way around, the particle is lifted upward as shown in part b of the figure. The resulting
force acts perpendicular to the relative linear velocity of the particle, and to the axis of
the relative angular velocity.

�rel vrel
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vrel
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Higher pressure
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Figure 5.9: Direction of the Magnus force for a spherical particle in dependence of its
relative linear velocity and its relative angular velocity.

Following Rubinow and Keller (1961), the Magnus force is based on the cross product
of the relative rotational velocity and the relative linear velocity

FM =
π

8
d3pρffMωrel × vrel (5.16)

where the relative angular velocity is

ωrel =
1

2
∇× vf − ωp

and where ωp is the angular velocity of the particle. Another typical form of the Magnus
force equation can be derived when the angular fluid velocity is disregarded as typically
assumed in stagnant fluid (Crowe et al., 2012). For Hagen-Poiseuille flow, Eq. (5.16)
becomes

FM =
π

8
d3pρffM


−vp,yωp,z + (vp,z − vf,z)

(
1
2

∂vf,z
∂x

+ ωp,y

)
vp,xωp,z + (vp,z − vf,z)

(
1
2

∂vf,z
∂y
− ωp,x

)
vp,y

(
ωp,x − 1

2

∂vf,z
∂y

)
+ vp,x

(
−1

2

∂vf,z
∂x
− ωp,y

)
 (5.17)

In Eqs. (5.16) and (5.17), fM is the correction factor of the Magnus lift force for higher
Reynolds numbers. Rubinow and Keller (1961) derived the equation for small Reynolds
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numbers, where fM is one. Sommerfeld (2013); Michaelides et al. (2017) suggest to use an
expression for the correction factor fM of the Magnus force at higher Reynolds numbers
that was derived by Oesterlé and Dinh (1998)

fM = 0.45
Rep
Rer

+

(
1− 0.45

Rep
Rer

)
exp

(
−0.057Re0.4r Re0.3p

)
(5.18)

where the Reynolds number of rotation is

Rer =
ρfd

2
p

∣∣1
2
∇× vf − ωp

∣∣
ηf

The expression is based on their own measurements, for Rep up to a value of 140. Fol-
lowing their comparison with experiments from literature, the correlation is applicable
for values up to 2000. The correction factor from Eq. (5.18) is shown in Figure 5.10.
As expected, for small Rep, fM approaches one, and the correlation by Rubinow and
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Figure 5.10: Magnus force correction factor fM for different ratios of the particle
Reynolds number Rep to the rotational Reynolds number Rer and for vary-
ing Rep at vf,low.

Keller (1961) is fulfilled. In the transient and turbulent regime, different reported experi-
ments determining the lift coefficient in dependence of the angular velocity do not agree,
according to Crowe et al. (2012).

The Magnus force is implemented in the linear momentum balance. The particle move-
ment is simulated, including the Magnus force for different constant angular particle
velocities. It is assumed that particles touch the tube wall close to the tube bottom, and
that this collision causes, mainly, a rotation around the x-axis. The results are shown in
Figure 5.11. Figure 5.11a shows that the particle RT is affected significantly, as soon as
the constant angular velocities around the x-axis exceed an absolute value of 1000 rad s−1.
The threshold of the angular velocity is similar for both particle sizes. When the Mag-
nus force is included, the particles need more time to reach the tube bottom, due to
the lift, and travel a larger distance before they reach the tube bottom, as illustrated in
Figure 5.11b,c. As soon as particles collide with the lower wall, their angular velocity
becomes negative, and the left part of Figure 5.11 applies.

As discussed above, the angular velocity of a particle can change when a torque is
acting. Following Sommerfeld (2013), the torque depends on the density of the fluid, the
particle diameter, and on the Reynolds number of rotation, which again depends on the
dynamic viscosity of the fluid. These are also the parameters on which the Magnus force
depends. Baptista et al. (1996b) performed experiments in straight tubes. The parameters
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Figure 5.11: Simulation results for the particle movement including the Magnus force
relative to simulations without the Magnus force for varying constant angu-
lar velocity ωp,x illustrated on a logarithmic scale. Particles of a diameter of
100µm (black) and 400µm (gray) start at the tube origin with zero linear
velocity and zero angular velocity around the y, z-axes at vf,low: (a) RT;
(b) time of the first wall contact; (c) axial location of the first wall contact.

that affected the particle rotational velocity most significantly in their investigations were
particle diameter, fluid viscosity, and particle density. While a particle moves towards the
tube bottom, it travels through a fluid velocity gradient, which may change its angular
velocity. At the very latest, when a particle collides with the tube wall, its angular velocity
will change. A constant angular velocity is probably far from reality for most initial values
of the angular velocities. Nevertheless, the effect of different constant angular velocities
was simulated, to identify what speed the particle rotation has to reach, to have a bearing
on the particle RT in the tube.

On the one hand, the Magnus force increases with the cross-sectional area of a particle.
On the other hand, according to Sommerfeld and Kussin (2003), the angular velocity
caused by a wall collision is inversely proportional to the particle diameter. They state
that near a wall, the angular velocities are higher for smaller particles. Baptista et al.
(1996b) also found that larger particles slide more than smaller particles.

Sommerfeld and Kussin (2003) simulated particles in a similar size range, but of large
Stokes numbers, in a relatively wide horizontal channel. In a smooth tube, they observed
angular velocities as low as −10 000 rad s−1, as simulated here. In rough tubes they
observed angular velocities in the range of −20 000 rad s−1 to 15 000 rad s−1, depending on
the vertical location of the particles and on the mass loading.

In this range of angular velocities, the Magnus force had a significant effect on the RT
in this study. The effect was relatively larger for particles of a diameter of approximately
100µm, compared with 400µm. Especially in the intermediate particle size range, the
simulations without the Magnus force overestimated the RT (see Figure 5.4). It can be
expected that the addition of an angular momentum balance and the Magnus lift force
improves the agreement in the RT between experiments and simulation.

5.6.2 Extensions for the HCT

In this chapter, a straight tube was modeled and simulated. The same forces may cause
particle-size-dependent RTDs in an HCT. In HCTs, too, different axial velocities exist at
different positions in the circular-cross section. For HCTs, Tiwari et al. (2006) observed
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that particles locate near the inner bend of the tubes. Further, the radial particle location
changes with the Dean number, where the Dean number again depends on the particle
size.

For an HCT, the fluid velocity profile is more complex, and a large radial velocity
component develops. The fluid velocity profile was simulated by Wiedmeyer et al. (2017a).
To extend the model that was developed in this chapter to HCTs, the velocity profile can
be averaged over a certain range of the axial coordinate z, or it can be represented by the
cross-sectional profile at a selected z. Wiedmeyer et al. (2017a) simulated the fluid flow
in two coils. The selected axial position should be far from inlet and outlet. There, the
selected location was at half the axial length of the second coil. A time average of such a
simulated fluid velocity profile could be applied in an HCT model.

When a cylindrical coordinate system is applied, additional body forces, in particular
the centrifugal force and the Coriolis force, must be considered (Sommerfeld, 2013).

Tiwari et al. (2006) simulate a two-phase flow, in full three-dimensional helical curved
conduits, with a flow computer code. They state that the drag is usually dominant for
particles of a size below 100µm in dilute flows. Next to the drag force, they identify
two main forces. In axial direction, they model the virtual mass force, and in radial
direction they consider the lift force. According to them, for very small particles, of a size
below 20µm, the virtual mass force is negligible, compared with the drag force for fully
developed laminar flow.

Following Crowe et al. (2012), the drag coefficient in Eq. (5.6) depends, inter alia, on
particle shape, roughness of the surface, and compressibility and rarefaction of the fluid.
Spherical particles were assumed, which is reasonable for glass beads. If the model had
to be adjusted for octahedral potash alum crystals in the HCT, correlations are available.
Gurel et al. (1955) performed experiments with octahedra and derived the settling velocity
and an empirical correlation for the resistance of motion. Haider and Levenspiel (1989)
give a correlation for non-spherical particles, based on the particle sphericity. Hölzer
and Sommerfeld (2008) review several correlations for non-spherical drag coefficients, and
compare them to experimental data. They propose to use the correlation of Haider and
Levenspiel (1989) for octahedra. When the correlation for cD by Haider and Levenspiel
(1989) for octahedra is used, instead of the applied one by Schiller and Naumann (1933)
for spheres, the drag coefficient increases by 55 % for the upper limit of Rep = 447, which
was calculated in Section 5.4, and by 4 % for Rep = 0.1 in the Stokes regime. The order of
deviation agrees with the order of deviation from experimental data, for the correlations
that were reviewed by Hölzer and Sommerfeld (2008). The accuracy is especially good
for the Stokes regime. This is the case if the particle velocity is close to fluid velocity.
As this is assumed for most of the process time, the correlation of Schiller and Naumann
(1933) in Eq. (5.8) would be appropriate for potash alum crystals.

One of the aims of the present study was to identify and parameterize a setup that
can grow crystals of a narrow size. To avoid a broadening of the CSD of a crystal
population during the process, a narrow particle RTD is often advantageous. A uniform
particle RT can also be achieved by other means, for instance when the fluid velocity
is increased, when the particle size range is narrow, or by a change in the experimental
setup. Besenhard et al. (2014b) experimentally realized a slug flow operation mode to
employ a constant crystal RT. Saxena and Nigam (1984); Klutz et al. (2015); Hohmann
et al. (2016a) implemented a CFI that consists of bent HCTs to improve mixing and to
approach plug flow.
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5.7 Summary of the Chapter

The movement of a single particle was modeled in a straight tube, to improve the physical
understanding of the size dependency of the particle RT. A momentum balance model re-
produced size-dependent RTs. The dominant forces causing the size dependency were the
gravity and buoyancy force and the drag force in combination with the Hagen-Poiseuille
fluid velocity profile. The Saffman lift force had only a minor effect on the RT.

One aim of this chapter was to understand how parameters enhance or impede a size
dependency of the particle RT. The collision coefficients and, hence, the wall material
have a minor effect on the RT. This is supported by the experiments, where similar results
were observed in glass and silicone pipes. The effect of the applied particle material was
also estimated by the density difference between particle and fluid. Buoyant particles
follow the flow, as expected. Nevertheless, their RTD is not uniform, but depends on
their radial starting position in Hagen-Poiseuille flow, for a straight tube. For an HCT, it
is expected that the RTs are rather uniform for neutrally-buoyant particles independently
of their initial position. In HCTs, there is a radial motion that leads to an accumulation of
particles at similar radial positions. As soon as the particles are non-neutrally buoyant, the
RT of the largest particles is independent of a density difference. The RT of intermediate-
size and small particles increases with the density difference. From a density ratio of 1.5
on, the increase in the RT becomes minor. Another parameter, which is related to the
operation, is the average fluid velocity. When the average fluid velocity was doubled,
the particle RT nearly halved. The decrease in the RT was stronger for intermediate-size
particles, than for the largest particles. This means that the RT becomes more uniform
with an increase in the average fluid velocity.

Qualitatively, the simulations agreed with the experiments where large and very small
particles have small RTs, and intermediate-size particles have large RTs. Quantitatively,
the RT of particles of intermediate size was overestimated in the simulations. For the
large particles, the simulations underestimated the RT at a low fluid flow rate, but over-
estimated the RT at a high fluid flow rate. For a better agreement between experiments
and simulations, model adaptions have been proposed. The addition of an angular mo-
mentum balance seemed promising for single particle simulations. In the experiments, a
whole particle population was used. Experiments have shown some small change in the
RT, depending on the type of the particle distribution for dilute suspensions. To extend
this dissertation, particle populations could be studied with advanced numerical methods
considering two-way or even four-way coupling in a CFD simulation. It seems that this
is still missing in literature, for non-neutrally buoyant particle populations, in circular
channels of similar dimensions, especially for a range of a particle-to-tube diameter of 1 %
to 10 %.
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6 Model and Simulations of a Crystal
Population in an HCT

In Chapter 5, the movement of a single particle was derived from first principles. Here,
a phenomenological model is derived to describe the movement and crystallization of a
whole population in the HCT.

The model provides insight into the HCT along the tube, while experimental measure-
ments are limited to certain tube positions. Model simulations can be used for process
design. Downstream processes, product quality, and yield are influenced by the product
CSD and also by the product crystal mass. Hence, the simulation results are evaluated
regarding these criteria. The criteria are influenced by parameters, inlet and boundary
conditions, e.g., flow rates, size-dependent crystal RT, seed distribution, and tempera-
ture. Their effect is estimated from simulations. Furthermore, simulations allow to make
predictions for conditions that were not tested experimentally. Conditions that are closer
to industrial applications are identified and limits can be tested, for example for higher
suspension densities, for continuous crystallization with continuous seeding, and for a
dynamic start up.

The questions to be answered in this chapter are:

1. Is a simplified model for the particle velocity, where all crystals have an identical
velocity, sufficient to predict the product CSD?

2. Which geometry and process parameters lead to large product crystals, narrow
CSDs, a high product mass, and a high yield? In particular:

a) How much should the tube be extended?

b) When should lower and higher flow rates be preferred, respectively?

c) How does the seed mass and the width of the seed distribution affect crystal
growth?

d) How does cooling affect crystal growth?

3. What can be expected for continuous seeding?

The structure of this chapter is as follows. Relevant crystallization phenomena and
parameter ranges are identified from the experiments in Chapter 4. A population balance
equation (PBE) system is developed and discretized via the finite volume method (FVM).
The resulting model and its empirical relationships are parameterized on the basis of these
experiments and literature. For that purpose, the dispersion coefficient of the fluid phase
is determined, a correlation for the size-dependent crystal velocity is derived from no-
growth conditions at selected flow rates, and an appropriate growth kinetic for potash
alum is identified from literature. Next, growth simulations are shown and validated
by experiments. Finally, results of continuous crystallization processes are predicted as
mentioned above.
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6.1 Population Balance Equation System

In the HCT, crystals are distributed in a multidimensional space. The independent vari-
ables are the time t, the external spatial coordinate vector r, and the internal property
coordinate vector h. In the model, which is developed in this chapter, the movement of the
crystals along the axial coordinate z of the vector r is investigated. The internal property
coordinate vector h comprises the perpendicular distances of the different types of faces
of a crystal from the crystal center, as depicted in Figure 4.1. For potash alum, only one
internal coordinate h is considered, but the framework of equations can be analogously
applied for multivariate substances.

One aim of this chapter is to predict the dynamic evolution of the CSD in the HCT.
It can be modeled with a PBE. The dimension of the PBE is increased compared with
the continuous phase balances due to the internal coordinate. The method of moments
(Hulburt and Katz, 1964) can be used to reduce the dimension of the PBE and the
complexity of the solution. There are constraints under which moment equations can
be obtained and problems appear when the equations are unclosed (Ramkrishna, 2000).
The equations do not close when the growth rate is nonlinearly dependent on the crystal
size (Ramkrishna, 2000; Myerson, 2002) or when destruction of fine particles appears
(Myerson, 2002). The reduction is often applied when information on average particle
number, size, their variance, and skewness are sufficient. If the internal coordinates appear
in the equations of motion, the method of moments is no longer exact (Hulburt and Katz,
1964). Here, the method of moments is not applied, but the PBE is used to describe the
evolution of the entire CSD.

The model couples a PBE for the dispersed phase and mass balance equations for the
continuous phase. The PBE includes spatial convection and growth. Aggregation and
breakage are not considered in the source term as they were negligible in the experi-
ments, which were shown in Section 4.3.3. Nucleation is also neglected as the nuclei
were distinguishable by their size from grown seed crystals and nucleation was limited
for experiments at low supersaturation in Section 4.3.3. Furthermore, nucleation is not
supposed to influence the supersaturation to a large extent. The structure of the terms
for the convection in the external coordinate space and for the growth and dissolution
term in the internal coordinate space are identical. Growth rate dispersion is not taken
into account, but could be modeled as hydrodynamic dispersion in the h-coordinate. The
general multivariate formulation of the PBE is

∂f

∂t
+∇h · (Gf) +∇r · (vpf) = 0

where f (h, r, t) is the crystal number density, G (r, t) is the growth or dissolution rate,
and vp (h) is the crystal velocity. For size-independent growth of univariate potash alum
and a location-independent particle velocity along the length z of the HCT, the PBE
becomes

∂f

∂t
+G

∂f

∂h
+ vp

∂f

∂z
= 0 (6.1)

Initially, there are no crystals in the HCT for continuous seeding

fconti (h, z, t = 0) = 0 (6.2a)
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whereas there are initially crystals for batch seeding, and at the tube inlet zmin, the initial
condition is nonzero

fbatch (h, z > zmin, t = 0) = 0 (6.2b)

fbatch (h, zmin, t = 0) = fin (6.2c)

In the external coordinate space, the Dirichlet boundary condition at the inlet for contin-
uous seeding is

fconti (h, zmin, t) = fin (6.3a)

For a batch-wise addition of seeds, initially, the same condition applies, but no crystals
are fed for t > 0

fbatch (h, zmin, t0) = fin (6.3b)

fbatch (h, zmin, t > 0) = 0 (6.3c)

The following condition applies in the internal coordinate space at the lower bound for
growth conditions

f (hmin, z, t) = 0 (6.4a)

In case of dissolution, the following boundary condition applies

f (hmax, z, t) = 0 (6.4b)

assuming that all crystals are of size hmin ≤ h ≤ hmax.
For the applied conditions, potash alum crystallizes as dodecahydrate. Hence, two

mass balances are required for the continuous phase, in particular, one for the anhydrous
potash alum and one for water. The fluid phase is transported in z by convection and
dispersion. The continuous and dispersed phases are coupled by growth and dissolution.
The term corresponding to the mass transfer is

dmp

dt
=

∫ hmax

hmin

dmcrystal

dt
f dh

where mcrystal is the mass of a single crystal. Applying the crystal density and volume,
the equation becomes

dmp

dt
=

∫ hmax

hmin

ρp
d (kV h

3)

dt
f dh

= kV ρp

∫ hmax

hmin

3h2
dh

dt
f dh

= 3kV ρp

∫ hmax

hmin

h2Gf dh

The term has to be divided into a part for the anhydrate in solution and a part for the
water in solution. In case of growth, an increase in crystal mass reduces the mass in the
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continuous phase and for dissolution it is vice versa. Hence, the term is modeled as a
sink. The resulting continuous phase mass balance equations are

∂mf,anh

∂t
= −vf

∂mf,anh

∂z
+D

∂2mf,anh

∂z2
− 3χanhkV ρp

∫ hmax

hmin

Gh2f dh (6.5)

∂mf,w

∂t
= −vf

∂mf,w

∂z
+D

∂2mf,w

∂z2
− 3 (1− χanh) kV ρp

∫ hmax

hmin

Gh2f dh (6.6)

where mf,anh is the mass of the anhydrate and mf,w is the total mass of water in the
fluid phase, vf is the average velocity of the fluid phase, D is the dispersion coefficient of
the fluid phase assuming that water and potash alum can be characterized by the same
coefficient, χanh is the molar mass ratio of the anhydrate (KAl(SO4)2) in the crystalline
phase (KAl(SO4)2 · 12H2O)

χanh =
Manh

Mhyd

and kV is the volume shape factor of the perpendicular face distance of an octahedral
potash alum crystal

kV = 4
√

3

The volume shape factor kV can be derived from the edge length of an octahedron
which is

√
6h or from the radius of a sphere with equivalent volume where the radius

is (3
√

3/π)1/3h. At the HCT inlet, the following Dirichlet boundary conditions apply

mf,anh (z = zmin, t) = mf,anh,in (6.7a)

mf,w (z = zmin, t) = mf,w,in (6.7b)

Initially, the mass of anhydrate and water in the HCT is

mf,anh (z, t = 0) = mf,anh,0 (6.8a)

mf,w (z, t = 0) = mf,w,0 (6.8b)

6.2 Discretization of the PBE System

To solve the PBE system, the FVM is applied to Eqs. (6.1), (6.5), and (6.6), as suggested
by Patankar (1980), in order to derive a semi-discrete PBE system. In the FVM, the
partial differential equations (PDEs) are evaluated at discrete points on a mesh. These
discrete points are surrounded by finite control volumes. The differential equations are
integrated over each control volume. Between the mesh points, the variables are ap-
proximated by piecewise defined profiles. Fluxes entering one control volume leave an
adjacent control volume. Hence, the FVM is conservative, but numerical diffusion occurs.
Here, both the internal and external coordinate are discretized as displayed in Figure 6.1
where i is the index of the Ni control volumes in h and j is the index of the Nj con-
trol volumes in z. The nodes of the control volumes are located at integer values of the
indices. For each coordinate, the interval widths, which are called ∆z or ∆h, and the
corresponding distances between the midpoints of the control volumes are identical. The
internal coordinate is discretized on the domain

[
h1/2 = hmin, hNi+1/2 = hmax

]
where the
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Figure 6.1: Discretization of f with control volumes of equal size and equidistant dis-
crete points. (a) Internal property coordinate space; (b) external property
coordinate space.
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Figure 6.2: Discretization of f in the internal and external property coordinate space
with the notation of f on the discretization grid.

limits should be chosen, such that all crystals remain in this size range during the whole
process. The interval boundaries are located at hi±1/2 for all intervals i = 1, . . . , Ni and
analogously for the external coordinate. The external coordinate is discretized on the do-
main

[
z1/2 = zmin, zNj+1/2 = zmax

]
where zmin = 0 m is the HCT inlet and zmax = l is the

HCT outlet. The resulting ordinary differential equation (ODE) system on this domain
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is

dfi,j
dt

= −
Gj

(
fi+1/2,j − fi−1/2,j

)
∆h

−
vp,i
(
fi,j+1/2 − fi,j−1/2

)
∆z

(6.9)

where Gj is the growth rate in the control volume j of the tube and vp,i is the velocity
of a crystal of size hi. To evaluate Eq. (6.9), the values of f are required on the grid in
one coordinate and in the control volume center in the other coordinate as depicted in
Figure 6.2.

The Mass Balance Eqs. (6.5) and (6.6) are discretized via FVM, analogously to the
crystal number density f , in the z-coordinate, as depicted in Figure 6.1b. The resulting
ODEs are

dmf,anh,1

dt
=− vf

mf,anh,3/2 −mf,anh,in

∆z
+D

mf,anh,2 − 3mf,anh,1 + 2mf,anh,in

∆z2

− 3χanhkV ρp

Ni∑
i=1

G1h
2
i fi,1∆h (6.10a)

dmf,anh,j

dt
=− vf

mf,anh,j+1/2 −mf,anh,j−1/2

∆z
+D

mf,anh,j+1 − 2mf,anh,j +mf,anh,j−1

∆z2

− 3χanhkV ρp

Ni∑
i=1

Gjh
2
i fi,j∆h, j = 2, 3, . . . , (Nj − 1) (6.10b)

dmf,anh,Nj

dt
=− vf

mf,anh,Nj+1/2 −mf,anh,Nj−1/2

∆z
+D

mf,anh,Nj−1 −mf,anh,Nj

∆z2

− 3χanhkV ρp

Ni∑
i=1

GNj
h2i fi,Nj

∆h (6.10c)

dmf,w,1

dt
=− vf

mf,w,3/2 −mf,w,in

∆z
+D

mf,w,2 − 3mf,w,1 + 2mf,w,in

∆z2

− 3 (1− χanh) kV ρp

Ni∑
i=1

G1h
2
i fi,1∆h (6.11a)

dmf,w,j

dt
=− vf

mf,w,j+1/2 −mf,w,j−1/2

∆z
+D

mf,w,j+1 − 2mf,w,j +mf,w,j−1

∆z2

− 3 (1− χanh) kV ρp

Ni∑
i=1

Gjh
2
i fi,j∆h, j = 2, 3, . . . , (Nj − 1) (6.11b)

dmf,w,Nj

dt
=− vf

mf,w,Nj+1/2 −mf,w,Nj−1/2

∆z
+D

mf,w,Nj−1 −mf,w,Nj

∆z2

− 3 (1− χanh) kV ρp

Ni∑
i=1

GNj
h2i fi,Nj

∆h (6.11c)

A detailed derivation of the discretized Eqs (6.9), (6.10), and (6.11) is given in Ap-
pendix C.

A slope limiter avoids numerical oscillations for higher-order discretizations of PBEs.
Oscillations may occur because of steep gradients, discontinuities, and opposite slopes
in the solution (Griffiths, 2016). Here, sharp wave fronts may appear when simulating
batch seeding or the start-up of the crystallizer. For sharp gradients, a slope limiter
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restricts the derivatives to realistic values and the states are represented by a lower-order
resolution scheme. For smooth gradients, the slope limiter does not take effect and the
higher-order resolution scheme applies. A slope limiter is applied following Qamar et al.
(2006) for convection of f , mf,anh, and mf,w along z and for growth and dissolution of f
in h. The resulting equations are exemplified for f discretized into i finite volumes along
the h-coordinate and the equations are analog for the other states and coordinate.

f1/2 = f (hmin)

f3/2 = f1

fi+1/2 = fi +
1

2

(
Φ
(
ri+1/2

))
(fi − fi−1) , i = 2, . . . , Ni − 2 (6.12)

fNi−1/2 = fNi−1

fNi+1/2 = fNi

Equation (6.12) results from an upwind scheme and is valid for growth, whereas for
dissolution, the downwind scheme is applied, as given in the following

f1/2 = f1

f3/2 = f2

fi+1/2 = fi+1 +
1

2

(
Φ
(
ri+1/2

))
(fi+1 − fi+2) , i = 2, . . . , Ni − 2

fNi−1/2 = fNi

fNi+1/2 = f (hmax)

Following Koren (1993), as cited in Qamar et al. (2006), the slope limiter function Φ (r)
is

Φ
(
ri+1/2

)
= max

(
0,min

(
2ri+1/2,min

(
1

3
+

2

3
ri+1/2, 2

)))
(6.13)

and r is the ratio of successive gradients on the grid, that is

ri+1/2 =
fi+1 − fi + ε

fi − fi−1 + ε

where ε is introduced to avoid zero division. Qamar (2008); Sweby (1984) illustrate that
the values of the original high order scheme and the limited values for the slope ratio
in Eq. (6.13) agree well for ri+1/2 ≈ 1. For dissolution, the ratio of successive gradients
becomes

ri+1/2 =
fi − fi+1 + ε

fi+1 − fi+2 + ε

For the non-discretized formulation, the initial condition on f was given in Eq. (6.2).
The boundary condition in z, f (zmin), was given in Eq. (6.3). The boundary condition
in h, f (hmin), was given in Eq. (6.4). After discretization, the initial condition for batch-
wise seeding becomes

fbatch (h, z1, t = 0) = fi,1 (t = 0) = fin, i = 1, 2, . . . , Ni

fbatch (h, z > z1, t = 0) = fi,j (t = 0) = 0, i = 1, 2, . . . , Ni, j = 2, . . . , Nj
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For continuous seeding, the initial condition is

fconti
(
h, z > z1/2, t = 0

)
= fi,j (t = 0) = 0, i = 1, 2, . . . , Ni, j = 1, 2, . . . , Nj

The boundary condition in z for batch seeding is

fbatch
(
h, z1/2, t

)
= fi,1/2 (t) = 0, i = 1, 2, . . . , Ni

and for continuous seeding, it is

fconti
(
h, z1/2, t

)
= fi,1/2 (t) =

ḟin∆z

vp
, i = 1, 2, . . . , Ni

where ḟin is given in kg s−1. The lower boundary condition in h is

f
(
h1/2, z, t

)
= f1/2,j (t) = 0, j = 1, 2, . . . , Nj

and for dissolution the upper boundary condition is

f
(
hNi+1/2, z, t

)
= fNi+1/2,j (t) = 0, j = 1, 2, . . . , Nj

After discretization, the boundary condition on the mass of the continuous phase in
Eq. (6.7) becomes

mf,anh (zmin, t) = mf,anh,1/2 (t) = mf,anh,in (6.15a)

mf,w (zmin, t) = mf,w,1/2 (t) = mf,w,in (6.15b)

and the initial condition in Eq. (6.8) becomes

mf,anh,j (t = 0)= mf,anh,0, j = 1, 2, . . . , Nj (6.16a)

mf,w,j (t = 0) = mf,w,0, j = 1, 2, . . . , Nj (6.16b)

6.3 Model Parameterization

The material, geometry, and numerical parameters that were used for the HCT simula-
tions, if not stated otherwise, are given in Table 6.1. The total tube length l that the
crystals pass can be calculated from the lengths of the tube sections from the seeding
valve to the flow-through microscope in Table 4.1. For the setup that was depicted in
Figure 4.4a the diameter of the last 25 m tube length is assumed for the whole tube, and
an average fluid velocity is calculated for this diameter (refer to Table 4.1). The total
number of finite volumes Nj in z refers to a tube length l = 33 m as in setup a. Nj is
adjusted for the other setups to a finite number of control volumes to create a comparable
numerical diffusion.

A constant value is assumed for the fluid density ρf , as discussed in Section 4.2.3. It is
used to calculate the average fluid velocities vf,low and vf,high, applying the mass flow rates
that were given in Section 4.2.2, to calculate the initial mass inside the crystallizer, and
to calculate the mass at the inlet. The initial mass in each control volume and the mass
at the inlet are identical.

For ε, the same value is chosen as by Qamar et al. (2006). The ODEs 6.9, 6.10, and
6.11 are solved with the Runge-Kutta solver ode45 in Matlab. The dispersion coefficient
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Table 6.1: Parameters for the simulation of the potash alum system in the HCT.

Symbol Value Unit
Material parameters
χanh 0.5443 −
ρp 1757 kg m−3

ρf 1100 kg m−3

Numerical parameters
hmin 25× 10−6 m
hmax 275× 10−6 m
Ni 25 −
Nj 220 per 33 m tube length −
ε 10−10 −
Geometry parameters
d 6× 10−3 m
la 33 m
lb,up 33.8 m
lb,down 34.1 m
Process parameters
vf,low 0.24 m s−1

vf,high 0.35 m s−1

mseed,small 1× 10−4 kg
mseed,mix 3× 10−4 kg
ṁseed,low mseed per second kg s−1

ṁseed,high ṁseed,low
vf,high
vf,low

kg s−1

of the continuous phase, the crystal velocity, and the crystal growth rate are estimated
from experiments.

An overview of the process conditions, which are specific for each of the experiments
in the subsequent sections, are given in Table 6.2. The size-dependent crystal velocity
was measured at average fluid velocities of vf,low = 0.24 m s−1 and vf,high = 0.35 m s−1.
For the experiments that are simulated in the following, vf deviates up to 4 % from these
values. The feed masses mf,anh/w,in and the initial masses mf,anh/w,0 were identical. The
seed distributions fin were shown in Figure 4.2. The seed mass mseed was 1× 10−4 kg
for the smallest size fraction and 3× 10−4 kg for the mixed size fraction. For the crystal
supply rate ḟin during continuous seeding, it is assumed that fin was supplied once per
second.

6.3.1 Dispersion Coefficient

The dispersion coefficient is determined from a comparison of conductivity tracer simu-
lations to experiments, which were described for setup b in Section 4.3.1. Additionally,
tracer experiments were conducted in setup a at 309 K and are now compared to simula-
tions.

For the simulations, the total tube length has to be known. The tube length la of
setup a, which was measured from the seed addition position to the outlet, was given in
Table 6.1. In the tracer experiments, the tracer passes an additional tube section before
the seed addition valve including the pump and, for downward experiments, including the
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Table 6.2: Experimental parameters for the experiments in Sections 6.3.2 and 6.3.3. Su-
persaturation calculated on the basis of Eq. (4.2) for the given initial masses
in the continuous phase, which correspond to initial and feed saturation tem-
peratures from T =313 K to 314 K.

Experiment σin σout mf,anh,in mf,w,in

Figure 6.7 -4 % 1 % 5.1× 10−4 kg 4.26× 10−3 kg
Figure 6.8a,b -10 % 10 % 5.1× 10−4 kg 4.26× 10−3 kg
Figure 6.8c,d -12 % 2 % 5.2× 10−4 kg 4.38× 10−3 kg
Figure 6.9a -4 % 4 % 4.9× 10−4 kg 4.17× 10−3 kg
Figure 6.9b -8 % 14 % 4.9× 10−4 kg 4.17× 10−3 kg
Figure 6.9c -5 % 19 % 4.9× 10−4 kg 4.17× 10−3 kg

debubbler. The length of this section is called linlet and is determined in the following.

To calculate the tube length, the mass flow rate is required. The conductivity experi-
ments were carried out at four different pump speeds. To measure the conductivity, the
flow-through microscope was replaced by a probe. This may influence the mass flow rate.
For upward flow, the mass flow rate was determined once at the four different pump
speeds by averaged weighing measurements. For downward flow, the mass flow rate was
measured for each experiment by mass flow measurements with a Coriolis type mass flow
sensor. Then, the mass flow rate was applied to calculate the average fluid velocity vf
using the known tube diameter.

For each tracer experiment, the offset additional length linlet is the product of the
average fluid velocity vf and the mean fluid RT τf,inlet of the tracer signal. τf,inlet was
calculated from the conductivity signal of the experiments at the seed addition position,
as depicted as “inlet” in Figure 4.6. For each experiment, the calculated vf and linlet
are illustrated in Figure 6.3 by a marker. A simple linear regression model was fitted
minimizing least-squares for the upward and downward tracer experiments at the inlet
position. The resulting linear polynomials are also shown. For the experiments at the
outlet position, linlet was calculated from these polynomials. The resulting ltracer, which is
the sum of linlet and la, is given in Table 6.3. For setup a, the additional tube length linlet
is set to 4 m. As explained in Section 6.3, Nj increases proportionally to the increase in
tube length. For all tracer simulations, a fluid density ρf of water at room temperature of

0.2 0.25 0.3 0.35

vf in m/s

4

6

8

10

l in
le

t in
 m

upward

downward

Figure 6.3: Tracer measurements at the seed-addition valve in the HCT setup in Fig-
ure 4.4b (Wiedmeyer et al., 2017a) for upward (orange) and downward
(black) flow.
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Table 6.3: Values of dynamic viscosity, average fluid velocity, Reynolds number, tracer
tube length, and inlet pulse duration in the tracer simulations.

Symbol and Unit Setup b Setup a
Figure 6.4a-d Figure 6.5a-b

Flow direction upward upward downward downward upward upward
ηf × 104 [kg m−1 s−1] 8.992 8.992 8.693 8.891 7.058 7.058
vf [m s−1] 0.23058 0.32518 0.23649 0.34095 0.2564 0.2564
Re [−] 1534 2163 1627 2294 2173 2173
ltracer [m] 37.6 38.6 40.7 42.0 37 37
tin [s] 15 15 15 15 19 20

997 kg m−3 is assumed. Regarding the simulation, no crystals are added, fin is zero, and
the PBE in Eq. (6.9) remains zero during the simulation. In the mass balance Eqs. (6.10)
and (6.11), the same dispersion coefficient is assumed. Initially, the tube is filled with
water and the initial condition in Eq. (6.16) for each control volume is

mf,anh,0 = 0

mf,w,0 = ρf∆zπR
2 = 4.35× 10−3 kg

where ρf = 997 kg m−3 and ∆z = 0.15 m. For the tracer mass fraction, which is given in
Section 4.3.1, the boundary condition at the inlet in Eq. (6.15) becomes

mf,anh,in = 1.6× 10−4 kg

mf,w,in = 4.20× 10−3 kg

For a dispersion coefficient D = 0.015 m2 s−1, a good agreement between experiments
and simulations can be achieved as displayed in Figures 6.4 and 6.5. The dispersion co-
efficient is seven to eight magnitudes larger than the diffusion coefficient of potash alum
solutions (Mullin et al., 1965), hence, the diffusion coefficient is not further discussed. For
setup b, the same tracer outlet signals are depicted in Figure 6.4 as in Figure 4.6 in the
experimental section. In Section 4.3.1, only the tube section that is relevant for crystal
growth, which starts at the seed-addition valve, was considered to calculate τf . The inlet
signal, also, was measured at the seed addition position a few seconds after the start of
an experiment. Here, the whole tube section is considered to calculate τf . The inlet signal
illustrates the mass fraction of the tracer solution and the duration of tracer addition at
the reservoir position. The axial dispersion coefficient influences the width of the tracer
signal at the outlet. The width agrees well for experiments and simulations in Figure 6.4.
At downward flow, the simulations show slightly narrower curves, but because the peak
height agrees well, the axial dispersion coefficient is not adjusted further. In Figure 6.5 for
setup a, the simulations and experiments also agree well. The noise in the second exper-
iment results from air bubbles that disturb the conductivity signal, but the overall peak
height and width are in accordance. Hence, the axial dispersion coefficient was validated
in setup a. In simulations, axial dispersion results from the dispersion term in Eqs. (6.10)
and (6.11) as well as from numerical diffusion. Therefore, the axial dispersion coefficient,
which is used for the simulations, is smaller than the physical dispersion coefficient. The
extent of the numerical diffusion depends on the grid refinement of the FVM. For compa-
rability of simulations of varying tube length, the number of finite volumes is scaled with
the tube length, as noted in Table 6.1. The hydrodynamic axial dispersion coefficient can
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Figure 6.4: Tracer measurements in the HCT setup in Figure 4.4b for (a,b) upward and
(c,d) downward flow. (a,c) Low Reynolds numbers Reup/down = 1534/1627;
(b,d) high Reynolds numbers Reup/down = 2163/2294. Average RT as deter-
mined by the Coriolis-type mass flow sensor (dashed vertical lines). Exper-
imental outlet signal as in Figure 4.6 (solid) and outlet signal determined
from simulations (dotted).

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

a

0 100 200

 in s

0

20

40

60

w
 in

 g
 h

yd
ra

te
 p

er
kg

 a
dd

ed
 H

2O

inlet outlet

f
b

0 100 200

 in s

0

20

40

60

w
 in

 g
 h

yd
ra

te
 p

er
kg

 a
dd

ed
 H

2O

inlet outlet

f

Figure 6.5: Tracer measurements indicating the fluid RT in the HCT setup in Figure 4.4a
(Wiedmeyer et al., 2017b) for similar conditions atReup = 2173. Average RT
as determined by the Coriolis-type mass flow sensor (dashed vertical lines).
Experimentally measured outlet signal (solid) and outlet signal determined
from simulations (dotted).

be derived from the Bodenstein number (Klutz et al., 2015). The Bodenstein number is
estimated from a minimization of least squares of the dimensionless tracer concentration,
which is estimated from Figures 6.4 and 6.5. The resulting Bodenstein number is 330± 92
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and the hydrodynamic axial dispersion coefficient is (0.036± 0.017) m2 s−1.

6.3.2 Size-Dependent Crystal Velocity

In the experimental section 4.3.2, a size-dependent crystal RT was observed. In a PBE
model, the particle-size-dependent velocity can be derived from the measured RT in sev-
eral ways. The RT measurements can be used directly, if the whole range of particle sizes
was covered. Outside this range, extrapolations have to be applied, whereas inside inter-
polations can be used. For the whole size range, two overlapping transformed exponential
functions may approximate the relation. Figure 5.4 illustrates that for large crystals, the
RT is inversely proportional to the crystal size. A quadratic polynomial fit was applied
for the large crystals in setup a (Wiedmeyer et al., 2017b). For small crystals, the RT is
proportional to the crystal size. The increase is similar to a positive logarithmic function
or a negative inverse hyperbolic cotangent. As discussed in Section 5.5, considering small
particles, their initial position becomes important. They leave the tube before sinking to
the tube bottom. When they start at a random tube position, their velocity approaches
that of the fluid at the corresponding cross-sectional location. The original cross-sectional
position in the experiments is unknown. When the particle velocity is modeled in depen-
dence of particle size, the average fluid velocity may be a good assumption for the particle
velocity for very small particles.

For the following simulations, the experimental data is used to calculate a size-dependent
crystal velocity. The crystal RT was strongly dependent on the average fluid velocity and
evinced minor variations with setup and flow direction in the coils. A functional rela-
tionship could be derived on the basis of the average fluid velocity. As there were only
four different fluid velocities tested in setup b and only two average fluid velocities were
applied in all setups, too few data points are available to identify a functional relation-
ship. Instead, for each combination of setup, flow direction, and average fluid velocity, as
presented in Figures 4.8, 4.9, and 4.10, a look-up table was generated for the simulations.
Each of the crystals that was observed in the experiments was sorted into a size class. The
size classes were discretized in 8µm wide bins starting from 0µm. The average RT of all
crystals in the same size class was marked in the aforementioned figures. The respective
tube length is applied to calculate the average crystal velocity from the average RT, which
is assumed to be valid in the center of the respective size class. Velocities are interpolated
via a cubic spline (Matlab 2018b) on a grid of 1 µm bin width.

For the simulations, any discretization in crystal size may be chosen. The average
crystal velocity is required at the center of the current grid hi for all i. For crystals, as
observed in the isothermal experiments, e.g., from 50 µm to 220µm in setup b, the average
crystal velocity is linearly interpolated at the required grid points. During the growth
experiments, crystals are likely to grow and to reach larger sizes. It is assumed that
crystals that approach the tube diameter, as well as very small crystals, reach the average
velocity of the fluid. Hence, a linear extrapolation is applied for crystals from 0 µm to
50µm and from 220µm to 1000µm. For setup b, the results are shown in Figure 6.6. For
the other setups, the profiles are similar.

Applying the size-dependent velocity, exemplary simulation results are depicted in Fig-
ure 6.7. The experiment was carried out in setup b at a nearly constant temperature. At
the inlet, the solution is slightly undersaturated, but the inlet section before the cooled
HCT is short and dissolution is negligible. The seeds were a mixed fraction, as illustrated
in Figure 4.2. For the simulation, it was assumed that h > 50 µm. The surface and vol-
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Figure 6.6: Size-dependent crystal velocity values in the setup in Figure 4.4b based on
the experimental data shown in Figure 4.9. x for interpolated values and
o for extrapolated values. (a,b) Upward flow; (c,d) downward flow; (a,c)
vf,low = 0.24 m s−1; (b,d) vf,high = 0.35 m s−1.

a b

Figure 6.7: Simulation under conditions as in the experiment in Figure 4.13a in the
setup in Figure 4.4b at upward flow and low Reynolds number. (a) Seed
distribution adapted (h > 50 µm) from the mixed fraction in Figure 4.2; (b)
experimental (gray) and simulated (light blue) product distribution with
highlighted first decile, median, and ninth decile.

Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.

ume percentage of the small neglected crystals are 8 % and 1 %. Because the percentage
is small, the contribution to the supersaturation depletion is small, and the small crystals
can be neglected. The resulting distribution is shown in Figure 6.7a. For this simulation
and all the following ones, the initial distribution was scaled to agree with the experimen-
tal seed mass. In Figure 6.7b, each size h should be considered with its associated τp. The
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mean RTs agree well in experiment and simulation. In the simulation, all inserted crystals
were observed at the outlet. Hence, the variance is small compared with the experiments.
In the experiments, not all crystals were observed, because of a limited frame rate, and
because of a limited size of the imaging window of the cuvette.

6.3.3 Growth and Dissolution Kinetics

To select one of different growth rate expressions for potash alum from literature, an
appropriate experiment has to be selected for comparison to growth simulations. Ideally
that experiment fulfills the following features. A high supersaturation is applied for a large
increase in the crystal size, but nucleation is avoided. For the same reason, a large RT and,
hence, a small Reynolds number is favorable. For validation, an additional experiment at
a large Reynolds number can be selected. The average fluid velocity should be similar to
the velocity at which the corresponding crystal-size-dependent velocity was determined.

When the growth kinetic with the best agreement between experiment and simulation
has been selected, a dissolution kinetic is added, and experiments and simulations can be
compared for further parameter variations. Considering the seed crystal fraction, a small
size may be favored to stay in the size range where the size-dependent crystal velocity
was measured. A large seed crystal size may be applied to test the extrapolation.

The investigated growth and dissolution rates G have the following form

G = p1 exp

(
−p2
RmT

)
σp3 (6.17)

and the unit of m s−1 where Rm is the molar gas constant. Growth occurs for a positive
supersaturation σ and dissolution occurs for negative values. The kinetic parameters are
listed in Table 6.4. For the simulations with the kinetics by Temmel et al. (2016) also
their solubility, which was given in Eq. (4.3), is applied to calculate the supersaturation.
The supersaturation σ was defined in Eq. (4.4). It depends on the mass fraction w, which
was defined in Eq. (4.1). In Section 4.1, the mass fraction w and the supersaturation σ
were defined from an experimental point of view, via the mass of the added solid hydrate,
which was dissolved, and the mass of the added liquid water. Here, the continuous phase
equations are defined in terms of the anhydrate and water in solution. The anhydrate
mass fraction in kg anhydrate per kg solution is

wf,anh =
mf,anh

mf,anh +mf,w

(6.18)

Table 6.4: Kinetic parameter values for Eq. (6.17) for growth and dissolution. The
kinetics by Temmel et al. (2016) are multiplied by a correction factor of 1√

6
to recalculate the different shape factor.

Reference Kinetic p1 [m s−1] p2 [kJ mol−1] p3 [−]
Ma et al. (2008) growth 7.52× 10−6 0 1.6
Ma et al. (2012) growth 19.27× 10−6 0 2.24
Temmel et al. (2016) growth 1.7√

6
× 10−6 5.7× 10−9 1.04

Temmel et al. (2016) dissolution 4.3√
6
× 10−6 0 1
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The mass fraction w was defined in units of hydrate per kg free water in Eq. (4.1). For
conversion, w can be calculated in dependence of mf,anh and mf,w applying wf,anh, as
defined in Eq. (6.18)

w =
wf,anh

χanh − wf,anh

As illustrated in Figure 4.3, the temperature was measured at the inlet and outlet of
the setup. For the simulations, an interpolation between these temperatures along the
tube is required to determine ϑ(z). It is assumed that the temperature profile is

ϑ(z) = ϑout + (ϑin − ϑout) exp

(
−z
2

)
(6.19)

This correlation was derived from outlet temperature measurements in preliminary setups
of shorter tube length. Half of the temperature difference between ϑin and ϑout is reached
at 1.39 m. No sensors were introduced in the setups in this study and ϑout was approached
within a very short tube distance. Hence, the thermal decay was not specified further.
If cooling was slow, the thermal decay might be defined on the basis of l, d, vf , cooling
medium flow rate, and specific heat capacity of the cooling medium.

First, different growth kinetics are compared for the experiment that was depicted in
Figure 4.13b. The best agreement between experiment and simulation is achieved with
the growth kinetic by Temmel et al. (2016) in Figure 6.8a,b. Second, dissolution is taken
into account as well. Applying the temperature profile that was given in Eq. (6.19),
dissolution has no significant effect on the product distribution according to Figure 6.8b.
In both, simulation and experiment, the large crystals in the mixed seed population grow
by approximately 40µm and reach a peak of 190 µm. The distance between the peaks
of the small and large fraction widens slightly from 73µm to 84 µm in the experiment,
although it narrows to 60µm in the simulation. As small crystals spend more time in the
HCT, it can be expected that the small crystals grow stronger in the simulation than the
large ones. The widening in the experiment may be caused by growth rate dispersion,
which was not included in the model.

Another experiment at a high average flow rate was simulated. In this experiment,
vf was 4 % lower than vf,high, at which vp was determined. Hence, vp may be too high
in the simulation and the crystal RT and the growth may be slightly underestimated
in the simulation. This agrees with the small difference in the CSD in Figure 6.8d.
Again, the best agreement with the experiment is achieved for the growth kinetic by
Temmel et al. (2016). Consequently, this kinetic growth expression is used in the following.
Further experiments in setup a are simulated with the selected growth rate. Here, in
contrast to the before-mentioned experiment, the measured average fluid velocities were
between 3 % to 4 % higher than the low average fluid velocity at which the crystal-size-
dependent velocity was determined. Hence, the crystal RT is slightly overestimated in the
simulations. The final crystal size seems to be larger in the experiments. There, the actual
tube diameter is smaller than the assumed one in the simulations in the first part of the
tube. Therefore, in the experiments, the crystals spend more time in the second part of
the tube, and they experience cold conditions for a larger ratio of their residence time and
grow stronger. Nevertheless, the deviations between the deciles of the experimental and
the simulated final product size are small in Figure 6.9. In Figure 6.9b,c, nuclei appear
in the experimental product distribution for a high σout, as discussed in Section 4.3.3.
As nucleation is not included in the model, the simulations lead to narrower product
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Figure 6.8: Product distributions for the experiment in (a,b) Figure 4.13b and (c,d)
Figure 4.11c (gray) and for simulations (color) for various kinetics. (a,c)
Growth kinetics by Ma et al. (2008), Ma et al. (2012), and Temmel et al.
(2016) (orange with increasing darkness). Simulation contours show where
85 % of the crystal population are located; (b,d) product number density
distribution normed by the total crystal number for experiment (black solid),
growth simulations (orange solid) with the same kinetics as in (a), and a
simulation with growth and dissolution kinetics by Temmel et al. (2016)
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Source: Adapted with permission from Wiedmeyer et al. (2017a). Copyright 2017 American Chemical
Society.
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Figure 6.9: Experimental (gray) and simulated (bold light blue) product distribution
with highlighted first decile, median, and ninth decile. Experiments as in
Figure 4.12.

Source: Reprinted with permission from Wiedmeyer et al. (2017b). Copyright 2017 Wiley-VCH. Modifi-
cations: simulated deciles added, smaller crystals considered in the data, x-axis scaled by fluid residence
time, limits of y-axis changed, and names of symbols adjusted.
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CSDs. Hence, there is a considerable difference in the first decile, but larger deciles agree
well. In all growth simulations, the product distributions are slightly narrower than in
the experiments. This may be expected, because growth rate dispersion was not included
in the model and is only partly accounted for by numerical diffusion.

6.4 Crystal Growth Simulations

Below, the model and process parameters are as described in the previous sections where
mseed = 1× 10−4 kg, mf,anh,in = 4.8× 10−4 kg, mf,w,in = 4.2× 10−3 kg, Tout = 309 K, and
Tin = 313 K, such that the initial and feed solution are at saturation. These parameters
and vp are identical to the values that were measured in the HCT setup in Figure 4.4b
at upward flow, as displayed in Figure 6.6a,b. The conditions are fixed in all simulations,
unless otherwise stated, for comparability, but the discussion is kept general.

6.4.1 Simulations for Batch Seeding

In this section, the effect of the fluid velocity, particle velocity, and tube length on the
product CSD is studied via simulations for batch-seeded experiments. First, the effect
of the size-dependent crystal velocity is estimated. The size-dependent velocity model
and a simplified model are compared. It is assumed that in simplified models, the same,
in other words constant, crystal velocity is used for all crystals, which is equal to the
velocity of the mean crystal size of an initial distribution under no growth conditions.
In this case, the RT, especially of the large growing crystals, does not reduce. Hence,
in the simplified model, the RT and the mean product crystal size are overestimated,
as illustrated in Figure 6.10. It shows outlet distributions that result from the growth
of a normally distributed seed crystal fraction. The width of the CSD broadens, but it
is similar for both particle velocity models. The product width of initially very broad
CSDs would also be overestimated by the simplified model. In this case, this effect would
be amplified by the fluid for batch seeding. The fluid is faster than the crystals. In
the size-dependent velocity model, the fluid supplies fresh solution of high concentration
to the slow small crystals, which lets them grow stronger than the large ones. Hence,
a broad inlet CSD is narrowed further. Another parameter that is varied is the tube
length. As expected, the product crystal size increases with tube length. Comparing the
constant velocity simulations to the size-dependent velocity simulations in Figure 6.10,
the deviation in the estimated RT gets more pronounced with increasing tube length.
Summing up, the predictions of the RT and CSD evince good accuracy for low growth
conditions, for the simplified model, and for the size-dependent velocity model. For the
selected conditions, discernible deviations appear for a tube length above approximately
50 m in Figure 6.10.

In the following, the size-dependent fluid velocity is applied. As depicted in Fig-
ure 6.11a, the standard deviation of the mean crystal size increases only slightly with
tube length. Comparing different flow rates, at the same tube length, the mean product
size is larger for the low flow rate. In this case, the crystals have more time to reduce the
supersaturation. At both flow rates, the product CSD stays narrow. Comparing the ve-
locities regarding the space-time yield, in Figure 6.11b, at vf,low, there is a higher product
to seed mass ratio. A lower feed rate for the solution is required, but the RT is longer.

Next to tube length, the mean product crystal size is strongly influenced by the tem-
perature profile. Faster cooling along the tube by higher cooling medium flow rates or
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(blue, dotted) and vf,high (orange, dashed). Conditions as in Figure 6.10.
(a) Number based mean size and standard deviation; (b) product to seed
crystal mass.

a different choice of cooling medium may increase the growth. The initial supersatura-
tion is already high, such that Tout should not be decreased further to avoid nucleation.
Operating at different inlet and saturation temperatures is possible but limited. There is
an upper temperature limit for tubing and equipment at approximately 330 K. For the
solvent water, the freezing point of 273.15 K is a natural lower temperature bound. For a
fixed supersaturation, the growth rate increases with temperature. Hence, a low temper-
ature range is not advisable from a yield perspective. For a fixed temperature difference,
stronger growth is reached at higher temperatures. Operation at higher temperatures
may be costly since it requires more heat to heat up the feed solution and it requires
better insulation along the tube, but it increases the growth rate and yield.

6.4.2 Simulations for Continuous Seeding

As pointed out in the previous sections, tubular crystallizers offer the advantage of rather
homogeneous residence time distributions. Hence, they are especially suitable for contin-
uous operation with a continuous supply of seeds. In this section, the effect of different
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geometry and operation parameters on the CSD and yield is studied via simulations. The
same parameters as in Section 6.4.1 are applied, where the seed distribution is fed once
per second. Three process options are considered that differ in the average fluid velocity
and in the crystal seed mass flow rate, as listed in Table 6.5. Process 1 can be considered
as reference case. When the average fluid flow rate is increased, two process options may
come into effect. Process 2 occurs when a solution of constant concentration is fed at a
higher flow rate, but a separate stream of seed suspension at a high suspension density
is supplied at an unchanged rate. In process 3, a suspension is produced in upstream
processes and is fed directly to the HCT. In this process, the increase in the seed crystal
mass flow rate is proportional to the raise of the average fluid velocity, compared with
process 1.

The tube length is discussed. As expected, increasing the tube length increases the
mean product crystal size, as illustrated in Figure 6.12a. Simultaneously, there is a
slight increase in the width of the initial normal distribution. The distribution width
is considered as the standard deviation of the CSD in Figure 6.12b. Compared with
batch seeding, the product crystal size attains saturation at increasing tube length in
Figure 6.12a. From a certain tube length on, exceeding the length further does not lead
to an increase in the product size, because the supersaturation is depleted, as illustrated
in Figure 6.12c.

Now, the effect of vf is evaluated. The largest mean crystal size is reached for vf,low, when
the tube has a length below 87 m, as depicted in Figure 6.12a. As the suspension is slower
at vf,low, the supersaturation is depleted within a shorter length of the tube, compared with
vf,high. For longer tubes, the largest mean crystal size is reached in process 2. Comparing
process options 2 and 3, a higher seed mass of the same distribution leads to a higher
surface area for growth, to a stronger depletion of the supersaturation (see Figure 6.12c),
and to smaller product crystals (see Figure 6.12a). The same could be observed for a
different process with the same seed mass flow rate, but smaller crystals. The width of
the product CSD is similar in all processes (see Figure 6.12b). Comparing the process
options with regard to the product to seed mass ratio, which is shown in Figure 6.12d, the
qualitative trends are the same as for the mean crystal size. The product to seed mass
ratio does not consider the amount of supplied solution. Hence, another yield expression
is applied. The yield η is defined as the ratio of crystallized mass flow rate to the mass
flow rate of hydrate that was fed to the system

η =

∫ hmax

hmin
kV ρpḟouth

3 − ṁseed

ṁf,anh,in

χanh
+ ṁseed

where ḟout is the rate of the crystal distribution that leaves the HCT at steady state.
In the denominator, solid and liquid feed are added up. The boundary conditions for
the liquid phase remain as in the previous section. At different average fluid velocities,

Table 6.5: Process options that are shown in Figure 6.12. The values of the process
parameters can be found in Table 6.1.

Process vf ṁseed Linestyle
Process 1 vf,low ṁseed,low

Process 2 vf,high ṁseed,low

Process 3 vf,high ṁseed,high
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Figure 6.12: Growth simulation for continuous seeding of a normal seed distribution of
the mass flow rate ṁseed,small, for size-dependent vp, and for varying tube
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standard deviation of the number based mean product size; (c) supersatu-
ration at the tube outlet; (d) product to seed crystal mass flow ratio; (e)
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different amounts of hydrate are fed in the liquid phase. The resulting mass flow rates at
vf,low are ṁf,anh,in = 7.7× 10−4 kg s−1, ṁf,w,in = 6.7× 10−3 kg s−1, and at vf,high they are
ṁf,anh,in = 1.1× 10−3 kg s−1, ṁf,w,in = 9.8× 10−3 kg s−1. Hence, qualitatively, the yield
curves are similar to the product to seed mass ratio curves, but they are scaled differently
in Figure 6.12e. When a loss of hydrate mass needs to be kept as low as possible, vf,low
should be preferred up to approximately 200 m tube length (see Figure 6.12e). For very
long tubes (l ≥ 200 m), the yield reaches 14 % in all process options. For these long tubes,
more absolute mass can be crystallized at vf,high and it should be preferred, as illustrated
in Figure 6.12f. When only the mass of crystals at the outlet is of interest, process 3 is
superior for very short and very long tubes, as depicted in Figure 6.12f. For intermediate
tube lengths, process 1 delivers a slightly higher crystal mass. For a tube length of 200 m,
the total product crystal mass leaving the tube in 24 h is 27 kg in process 1, 34 kg in
process 2, and 38 kg in process 3.

The results are summarized in Table 6.6. For the given temperature profile, a tube
of approximately 50 m length operated at a low fluid flow rate fulfills most process goals
very well. The highest product mass flow rate can be reached with process option 3. The
rate is just slightly larger than that for process 1, and process 1 is optimal regarding all
the other criteria. Hence, process 1 should be selected.

The pressure loss increases with tube length according to Eq. (5.2), hence, shorter tubes
should be preferred. Mishra and Gupta (1979) give a correlation for the friction factor
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Table 6.6: Process goals and selected process in dependence of the tube length.

Best process
Process goal Process 1 Process 2 Process 3
Largest crystals l ≤ 87 m l > 87 m −
Highest ṁout 12 m < l ≤ 43 m − l ≤ 12 m; l > 43 m
Highest ratio ṁout

ṁseed
l ≤ 85 m l > 85 m −

Highest yield η for all l − −

that is valid in case of laminar flow, for 1 < Re
√

2R/dc in a coiled tube. Transforming
their Fanning friction coefficient to the Darcy friction coefficient, the correlation is

λfriction =
64

Re

1 + 0.033

(
log10Re

√
2R

dc

)4


At vf,low, the loss caused by the fluid in HCTs of 50 m and 200 m length would attribute to
3× 104 Pa and 1.1× 105 Pa. The experimental setups in Chapter 4 have a length between
33 m to 35 m. Regarding those setups, the maximum pressure loss is reached in setup a
where ∆p is 2× 104 Pa at vf,low, and 4× 104 Pa at vf,high. The pressure drop was measured
with a differential pressure transmitter based on a piezoresistive stainless steel sensor (IDM
331 with an IPA 430 display, ICS Schneider Messtechnik GmbH, Hohen Neuendorf) in the
HCT, without particles in water at room temperature. The pressure drop between the
seed position and directly behind the Qicpic reached values from 2× 104 Pa to 3× 104 Pa
for mass flow rates from 6.5 g s−1 to 9.2 g s−1. The range of mass flow rates comprises the
mass flow rate of potash alum at vf,low, and it is slightly below the rate corresponding to
vf,high.

Regarding the setups in Chapter 4, all process goals can be reached best by process op-
tion 1. Although process 1 at vf,low is preferable here, there is a lower limit of Re to avoid
crystal sedimentation and fouling. Hohmann et al. (2018) report different regimes of par-
ticle fluidization in vertical tubes. They differentiate stagnant sediment, moving sediment
flow, and homogeneous suspension flow. They confirm that segregation increases with the
solid-to-liquid density ratio. Hohmann et al. (2016a) presented a short-cut method to cal-
culate a cut-size diameter as a limit to keep crystals fluidized. Their correlation is valid
for small Rep and should be applied, especially to vertical HCTs, where gravitational
settling may be severer.

Farias et al. (2019) simulated nucleation and growth in a combined cooling/antisolvent
crystallization of Lovastatin in a continuous coaxial mixer. Different types of product
distributions resulted. Depending on the inlet feed velocity, they observed unimodal or
bimodal distributions. Also for potash alum, different distributions may be produced in
upstream crystallization. These distributions can be applied as seed crystals and can be
grown further in a HCT.

So far, a narrow normal distribution of seeds was applied in the simulations. Now,
the growth of a broader bimodal seed distribution is investigated, regarding the mean
and the width of the product CSD. As before, the tube is fed with 1× 10−4 kg s−1 of
a normal seed distribution with a mean of 75µm and a standard deviation of 10µm,
and additionally with 2× 10−4 kg s−1 of a normal distribution with a mean of 150 µm
and a standard deviation of 10 µm, as illustrated in Figure 6.13a. The inflow rate of the
unimodal number density distribution of seed crystals in the previous simulations agrees
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with the first peak of the curves in the figure.
For long tubes, the product mean size is again the highest in process 2, as illustrated in

Figure 6.13b. For a tube length of 200 m, the mean size increases by 22 µm in process 3,
by 23 µm in process 1, and by 30µm in process 2. For all process options, the standard
deviation of the bimodal initial distribution decreased slightly from 32 µm, whereas the
standard deviation of the CSD increased slightly during growth for the narrow unimodal
normal distribution in Figure 6.12b. Hence, as expected for the size-dependent particle
velocity, there is a slight narrowing of the CSD for a broad initial distribution.

Next to the tube length and the seed distribution at the inlet, the temperature profile
can be adjusted to influence the product CSD. When the temperature of the cooling
medium and all other parameters are fixed, the product size is limited by the solubility
of the material. As shown in Figures 6.12c, saturation was nearly reached by extending
the tube length in the previous simulations. The supersaturation and, thus, the driving
force for crystal growth can be maintained when the outlet temperature is lower for longer
tubes. In this case, nucleation should be avoided during the start up of the device and
the outlet temperature should be lowered slowly. This increases the time until the steady
state is reached and reduces the overall yield if the start up is included. In the previous
simulations, for a tube length of 200 m, 21 min to 22 min were required to reach steady
state at vf,high and 71 min were required at vf,low. The transient time was similar to the
residence time of the slowest crystals. For the same tube length, the crystal residence time
was 18 min to 21 min at vf,high and 55 min to 70 min at vf,low depending on the crystal size.

6.5 Summary of the Chapter

The first question, which was raised in the introduction of this chapter, addressed the
necessity of a size-dependent particle velocity in the model. A simplified model for the
particle velocity can predict the residence time well, when there is negligible growth. For
growth conditions, the size-dependent crystal velocity should be measured and applied
in the model. The range of measured crystal velocities should cover not only the initial
crystal sizes, but also the large product sizes. When a preliminary measurement is not
possible, the average fluid velocity can be an estimate for the lower and upper bound.

Especially for very short tubes, a tube extension is useful to increase the mean prod-
uct size, product mass, and yield. For the presented conditions, a considerable increase
was observed for tube lengths of at least 20 m. For batch seeding, an increase in tube
lengths is always advantageous regarding final mean size and product mass, whereas it is
disadvantageous regarding yield and pressure drop.

The results for continuous seeding are summarized in the following. An increase of the
tube length above 50 m for the low fluid flow rate or above 200 m for the high flow rate
is not reasonable. At these lengths, the supersaturation is depleted and the mean crystal
size and product mass are approximately constant. The given values for the tube length
increase when the same inlet temperature, but a lower cooling temperature, is applied.
Comparing the fluid flow rates qualitatively, the same trends should be observed for lower
cooling temperatures. Broad distributions may be narrowed when different temperature
profiles, for example temperature cycles, are applied. Regarding the fluid flow rates, the
low flow rate should be preferred for short tubes up to tube lengths of approximately
85 m. For longer tubes, the achievable mean product size and product mass are higher
when only the fluid flow rate is increased. Nevertheless, the tube length should only be
increased further if a high product mass is desired. Increasing tube length, the gain in
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Figure 6.13: Growth simulation for continuous seeding of a bimodal seed distribution,
for size-dependent vp, and for varying tube length. Process 1 (blue, dotted),
process 2 (orange, solid), and process 3 (brown, dashed) at steady state.
(a) Inflow rate of the number density distribution of seed crystals for the
mass flow rates ṁseed,mix,low (black solid) and ṁseed,mix,high (brown dashed);
(b) number based mean product size; (c) standard deviation of the number
based mean product size.

mean size is small, the yield is similar, and practical issues like pressure drop, cleaning,
and clogging issues may worsen. All in all, a lower fluid flow rate should be preferred
in most cases, but it should be sufficiently high to avoid sedimentation of the product
crystals.

At high fluid flow rates, a simultaneous increase in the seed mass leads to a faster decay
of the supersaturation. For very short tubes this is advantageous and a higher yield can
be achieved. For tube lengths above approximately 50 m at vf,high, an increase in seed
mass is disadvantageous for most objectives. Even though the yield is slightly higher, the
mean product size and the product mass decrease.

The width of the CSD stayed approximately constant in all simulations. It broadened
slightly for narrow initial distributions and narrowed slightly for broad initial distributions.
In particular, it increased by up to 4µm and decreased by up to 2 µm, which is 6 % to
9 % of the increase in the mean size. This effect is expected to be outweighed by growth
rate dispersion in experiments.

In Section 4.4, an outlook was given to the extension of the study to multivariate CSSDs.
From a modeling point of view, the starting point is the multivariate PBE in Eq. (6.1) and
an identical framework of multivariate equations can be derived. A challenge is that the
particle-size dependent velocities have to be interpolated and extrapolated for the whole
internal coordinate space from experiments. Virtual faces have to be dealt with. The
solution of the system becomes numerically expensive as the number of states increases
strongly upon discretization.

Further questions, which could be answered via simulations, but were out of the scope
of the analysis, are:

� When constructing a HCT for batch-seeded experiments at a given RT, it could be
determined beforehand whether to prefer higher flow rates in a longer tube or lower
flow rates.

� What is the maximum inlet temperature to avoid dissolution? For predictions, the
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feed was close to saturation.

� Growth of another substance, such as the bivariate KDP, could be simulated with
the existing model and corresponding solubility and kinetics.

� A comparison to other crystallizers would be possible but requires additional mod-
eling.
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7 Summary

In the following summary the seven main achievements of this dissertation are presented
and explained.

1. In straight tubes, large particle-to-fluid residence time ratios were observed for lami-
nar flow. Mixing is not sufficient for crystallization at laminar conditions in straight
tubes. It is recommended to apply helically coiled flow tubes to improve the mixing.

Residence time distributions of particles were measured in straight and coiled tubes (see
Chapters 3 and 4). Experiments were performed with spherical particles and angular
crystals at varying laminar flow rates. Particles were always slower than the fluid. As
expected from the fluid flow field, the particle residence time distribution was more narrow
in coiled tubes than in straight tubes, due to improved radial mixing. Straight tubes have
broad fluid residence time distributions, which narrow for helically coiled flow tubes, and
nearly approach plug flow in coiled flow inverters. In curved tubes, local differences in
the solution concentration are avoided by radial mixing. Mixing further improves with
the average fluid velocity.

2. The residence time distribution of particles in helically coiled flow tubes was charac-
terized. The emergence of a particle-size-dependent residence time at laminar flow
in tubes was observed, explained, and responsible forces were identified.

Experiments have shown for all aforementioned setups and operation conditions that large
spherical particles and angular crystals were faster than smaller ones. Experiments had
been performed with particles of higher density when compared with the solution. In
Chapter 5, a momentum balance model was developed for a straight tube to validate the
experiments. Single particle simulations confirmed that, as soon as a density dissimilarity
between particles and fluid exists, a difference in residence time between particles of
varying sizes appears. In the simulations, also, large particles spent less time in the
tube than small particles. The simulations indicated that, for small particles below the
experimental sizes of 100 µm, the residence time decreases again. This is confirmed by
the Stokes number of these very small particles, which suggests that they follow the fluid
flow easily.

The model can also be deployed to identify forces causing the observed size-dependent
residence time. The momentum balance was derived for spherical particles in a straight
tube. The relevant forces were the drag as well as the gravitation and buoyancy forces,
whereas the Saffman lift was insignificant. The residence time distribution is a result of
the forces acting on particles in a fluid. For this kind of residence time distribution to
occur, the fluid has to be characterized by variations of the axial velocity in the cross-
section of the tube. Because of the observation of a size dependency in both tube types, it
is assumed that the same forces determine the residence time distribution in the helically
coiled flow tube.

Qualitatively, the model-based simulations reproduced the size-dependent residence
time that had been observed experimentally. Quantitatively, there were still differences
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between the residence time distribution in the experiments and in the simulations. The
agreement may be improved by an angular momentum balance in the model. At high
angular velocities, particle rotation lifts particles. Consequently, they reach regions of
higher axial fluid velocity affecting their residence time distribution.

For validation in helically coiled flow tubes, the existing fluid velocity profile, which was
averaged in time and along the tube axis, could be applied to the model of an inclined
straight tube. A general functional dependence of the particle velocities contingent on the
average fluid velocity has not been derived. Instead, more advanced numerical simulations
including an angular momentum balance and particle-particle collisions could also be
applied for validation.

This was not the first effort to measure and simulate particle residence times in hori-
zontal helically coiled flow tubes. However, not only spherical particles, but also angular
crystals, have been studied. In addition, the results may be relevant to other solid-liquid
processes in which irregular particles appear, such as food particle transport. The new
observation of a size-dependent residence time is usually not recognized in population
balance models and has not yet been studied for crystals, neither experimentally nor by
advanced numerical simulations. Redlinger-Pohn et al. (2016b) reported a size-dependent
residence time for fibers in experiments and simulations with helically coiled flow tubes,
but they attributed it to flocculation of the fibers.

3. The wall material of the helically coiled flow tubes had no significant influence on
the crystalline product. The flow direction, that is, upward or downward flow, was
neither a significant parameter, as the tubes were nearly horizontal in both cases.

Different tube wall materials, in particular glass and silicone, were used for the straight
tubes and the helically coiled flow tubes. A size dependency of the residence time was
observed experimentally for both materials. Simulations with the model from Chapter 5
confirmed that a change in the wall collision coefficients for different wall materials had a
negligible effect on the wall collisions; thus, on the particle residence time.

4. The particle-size-dependent residence time has the potential to decrease the width
of crystal size distributions that are initially broad.

Plug flow is not reached in helically coiled flow tubes, nonetheless, this may be advanta-
geous for crystal growth. The particle-size-dependent residence time offers the potential
to narrow the crystal size distribution during crystal growth, because small crystals stay
in the tubes longer and have more time to grow.

5. The width of the applied initial crystal size distributions increased from inlet to
outlet by maximum 9 % with regard to the increase in the mean size.

As long as no nucleation occurred, batch experiments in tubes of lengths from 33 m to
35 m confirmed that the width of the crystal size distribution stayed nearly constant
although potash alum exhibits growth rate dispersion. Thus, the residence time differ-
ence outweighed the growth rate dispersion experimentally as verified by simulations in
Chapter 6.

When a substance tends to aggregate or to exhibit growth rate dispersion the distribu-
tion cannot be narrowed, but at least broadening of the crystal size distribution is reduced.
Simulations have shown that very small, compared to intermediate size, particles are fast
and follow the flow. This observation is important in case of nucleation. As a consequence,
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small nuclei do not grow sufficiently; they grow even less the farther away they nucleate
from the tube inlet. Consequently, they broaden the crystal size distribution. Nucleation
should be avoided or fine particles should be dissolved intermittently.

6. During continuous crystallization in helically coiled flow tubes, several process goals
are reached simultaneously. Broadening of the crystal size distribution is possible
to be prevented, while producing a high mass of crystals at a high yield, considering
the solute in the liquid phase.

Suitable conditions for continuous crystallization in helically coiled flow tubes were iden-
tified in Chapter 6. For this purpose, a model was developed, which is premised on the
experimentally observed crystallization phenomena. It was parameterized on the basis of
experimental measurement data and it relied on kinetics from literature. The full crystal
size distribution information was obtained from a population balance equation. It was
coupled to the continuous phase balances. The growth simulations and the growth ex-
periments for batch seeding agreed well. Simulations of continuous seeding demonstrated
that an operation at low average fluid velocities is advantageous to produce a large mass
of large crystals with high yield.

7. It was estimated how different operation parameters affect the product crystal size
distribution, product mass, and yield for batch and continuous seeding.

The longer the tube, the better the supersaturation can be depleted, but the higher the
pressure drop. For laminar flow rates in the given setups, a tube length of approximately
50 m was identified as a productive dimension resulting in large crystals, product mass
and yield. The width of a normal seed crystal size distribution increased only slightly
with the final mean crystal size, independent of the flow rate. For a bimodal seed crystal
size distribution, there was a slight decrease in the width of the crystal size distribution
during growth. In terms of flow rates, low flow rates should be preferred to realize short
tubes and to deplete the supersaturation. The lower limit of the tube length is determined
by the sedimentation of crystals. It is unnecessary to apply flow rates in the transient or
turbulent regime. When the seed mass is varied, the cooling profile and the tube length
should be adjusted. For suspension densities outside of the dilute regime, the residence
time distribution is affected according to Legrand et al. (2007) and uniform beds may form
at high suspension densities. For high suspension densities, studies have been performed
in the area of food processing.

Outlook

The experimental workflow that was applied in this study is recommended for the charac-
terization of devices that are new to crystallization. For model parameterization, a setup
should be investigated experimentally, starting with the fluid residence time distribution
and the particle residence time distribution without growth before crystallization. Next,
pure growth conditions should be approached before studying further phenomena. These
phenomena may be aggregation at high suspension densities or secondary nucleation at
high supersaturations.

The findings in this dissertation are intended to provide guidance to prevent clogging
in tubes during crystallization. For liquid-solid phase transport in tubes at low flow rates,
priority should be given to horizontal coils over vertical coils. This is supported by a
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report of Hohmann et al. (2019). They studied flow regimes in nearly vertical tubes and
observed that a stagnant sediment may occur and lead to blocking of tubes when particles
are too slow. Furthermore it is mentioned that vertical coils may be advantageous for
substances that tend to aggregate at higher velocities in the homogeneous suspension flow
regime.

In preliminary setups, which were tested for the present dissertation, the following two
parts caused clogging: First, cold zones and cold bridges. They appeared where measure-
ment tools had been used, e.g., at the flow-through cell and at metal temperature sensors.
Second, internal structures like connectors. They led to dead zones that may have trapped
crystals. Nevertheless, there are options available to measure the temperature profile or
to parameterize an energy balance. A duplicate setup with temperature sensors may be
built and tested without crystals. Using flexible tube material, the outlet temperatures
may be measured repeatedly for tubes of different lengths. While a detailed discussion
would exceed the scope of this dissertation, the possibility to optimize the temperature
profile by modeling the heat transfer shall be mentioned.

In future, the setup might be applied for the crystallization of other substances, e.g.,
feedstuff like methionine and pharmaceuticals like paracetamol. For some substances in
food industries, only a small number of crystals of a defined crystal size distribution are
required. In particular, Hartel (2002) mentions refined salt and sugars, such as sucrose
and lactose, and the crystallization of organic acids, such as citric acid. In these cases,
a helically coiled flow tube could be applied to crystallize foods, when their production
involves a cooling crystallization step.

To further change the crystal size distribution, alternating growth and dissolution sec-
tions in helically coiled flow tubes could be applied. Besenhard et al. (2017) changed
crystal size distributions dissolving fine particles in an helically coiled flow tube that was
immersed in a hot and a cold cooling bath. In future simulations, the lengths of the heated
and cooled helically coiled flow tubes sections could be optimized to reach a desired crys-
tal size distribution. Even crystal size and shape distributions can be changed exploiting
shape-specific growth and dissolution rates. In a batch crystallizer, Eisenschmidt et al.
(2016) performed growth and dissolution cycles to change the shape of a bivariate potas-
sium dihydrogen phosphate crystal population. In this case, an optimal saturation was
applied and controlled to reach a desired average crystal shape. The same saturation
profiles could be applied in helically coiled flow tubes along the tube length. As faster
cooling is possible in tubes, the profiles could be further optimized to enable shorter tube
lengths.

Helically coiled flow tubes were applied as tube flow fractionators for fibers (Redlinger-
Pohn et al., 2016b) and may also be applied as fractionators for crystals. In future
research, the residence time distribution and hydrodynamics of crystals of different shapes
in helically coiled flow tubes could be analyzed experimentally or via advanced numerical
simulations at varying laminar flow rates. If residence times differ with shape, the device
could be applied as a classifier. Further, there are polymorphs with varying shapes, such
as α and β L-glutamic acid, and the anhydrous CaCO3 polymorphs vaterite and calcite.
In this case, the separation of polymorphs or enantiomers of different shapes might be
intensified. Fractionation could be realized during or after a crystallization step in helically
coiled flow tubes by intermittent seeding of a helically coiled flow tube.

The first continuous crystallizers were developed for large-scale production. Later,
small-scale production led to the increased use of batch and semi-batch crystallizers. Since
the turn of the millenium, interest in continuous crystallizers for small-scale applications
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has increased. However, if a scale-up is desired, tube bundle crystallizers might be applied
with several parallel helically coiled flow tubes.
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A Solver Selection and Time Step
Adjustment in the Straight Tube
Force Model

Regarding the time step, simulations were performed for different fixed time steps and for
an adjusted time step. Without adjustment, the time step remained unchanged

∆t (nt + 1) = ∆t (nt)

Considering simulations with fixed time steps, time steps of 2× 10−4 s, 1× 10−4 s, 5× 10−5 s,
2× 10−5 s and 1× 10−5 s were tested subsequently for each particle size. Large time steps
allow faster computation. Consequently, the largest time step, at which convergence
could be reached, was selected. When reducing the time step even further, the difference
in the resulting particle RT was maximum 1 %. The time step ∆t, where convergence was
reached, was 1× 10−4 s for particles of a diameter of 400µm, 350µm, 250µm and 200 µm,
5× 10−5 s for particles of a diameter of 250 µm, 2× 10−5 s for particles of a diameter of
200µm, 150 µm and 125µm, and 1× 10−5 s for particles of a diameter of 100 µm.

In the forward simulations with adjustment, the time step was reduced after a wall
contact to prevent the normal velocity from becoming too large. In particular, when a
particle touches the wall, the current time step is interrupted at the moment of the wall
touch. The velocity in the moment of reflection is used to calculate the velocity for the
moment directly after reflection by reversing the sign and applying Eq. (5.13). This leads
to a very high normal velocity at the next wall collision. To avoid this, the time step is
reduced if not only a wall collision had appeared in the second last time steps but also
∆z (nt) < 0.25∆z (nt − 1). For the second condition, different factors were tested and the
factor of 0.25 was selected. The new time step is

∆t (nt + 1) = ∆t (nt)
∆z (nt)

∆z (nt − 1)

where

∆z (nt) = z (nt + 1)− z (nt)

∆z (nt − 1) = z (nt)− z (nt − 1)

and where nt − 1 is the previous time step, nt is the current time step, and so forth.
The flexible algorithm reduced the step size only for those ∆t where no convergence was
reached with a fixed step size. The value of ∆t at the end of the simulations with the
adjustable time step did not fall below 1× 10−5 s for the mentioned particle sizes.

To validate the choice of the time step, the RTs that were achieved with the forward
implementation from Eqs. (5.10) to (5.12) were compared to results achieved with an
explicit fifth-order Runge-Kutta “ode45” solver (MATLAB), for particles starting at the
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origin. For the adjustable time step, the RT calculated with the forward implementation
exceeded that of the ode45 solver by maximum 1.1 %, and for a fixed ∆t of 1× 10−5 s the
RT increased by maximum 0.4 %. In either case, the simulations were performed at vf,low,
which was specified in Section 5.4. All in all, the deviations are small and the results with
both solvers can be considered as identical.
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B Algorithm for the Wall Collision in
the Straight Tube Force Model

In the following, the velocities after wall collision are described for a particle movement in
normal direction to the tube wall. Then, the movement in a random direction is described
for particles that touch the wall in the first quadrant of the xy-plane.

The absolute value of the velocity remains unchanged before (b) and after (a) collision
and it is

|vp| =
∣∣vap∣∣ =

∣∣vbp∣∣ =
√
vbp,x

2 + vbp,y
2

In all cases, the azimuth αp of the particle position is derived using

αp = arccos
x

R

Negative angles are transformed by

αp = αp + 2π

The azimuth αv of the velocity before collision is

αv = arccos
vbp,x
|vp|

A wall contact with a radial particle velocity vbp before collision appears when
vbp,x
vbp,y

= x
y
.

Then, the particle velocity vap after collision is

vap,x,elastic = −vbp,x
vap,y,elastic = −vbp,y

The angle β between the radial orientation and the velocity vector vanishes. The azimuths
of the particle position αp and the velocity vector αv are identical. When the velocity vbp is
not radial, there are four different cases, depending on the direction of vbp, which are shown
in Figure B.1 for the first quadrant. For particles in the other quadrants, a transformation
to the first quadrant is applied before the case-by-case analysis. To discriminate the four
cases, sufficient conditions and the resulting velocities after collision vap are given in Table
B.1. The transformation to the first quadrant for the other quadrants is shown in Table
B.2.

Correction Algorithm When a Particle Leaves the Tube

The algorithm for the correction of the new position and velocity is given for the case that
the particle leaves the tube within a time step, and the point of wall touch is identified.
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Figure B.1: Types of velocity vector orientations before collision in the first quadrant.

Table B.1: Conditions for each case and velocity components after collision in the first
quadrant. The additional conditions on the azimuth of the velocity vector in
the headlines discriminate vectors below (cases a and b) and above (cases c
and d) the radial vector orientation.

Case Condition Angle Velocity components

αp < αv ≤ αp + π/2

a vbp,x ≤ 0 β = π − αp − arcsin
|vbp,y|
|vp| vap,x,elastic = − |vp| cos (αp − β)

vap,y,elastic = − |vp| sin (αp − β)

b vbp,x > 0, vbp,y > 0, β = −αp + arcsin
|vbp,y|
|vp| vap,x,elastic = − |vp| cos (αp − β)

|vbp,x|
|vbp,y |

< x
y

vap,y,elastic = − |vp| sin (αp − β)

αp − π/2 ≤ αv < αp

c vbp,x > 0, vbp,y > 0, β = αp − arcsin
|vbp,y|
|vp| vap,x,elastic = − |vp| cos (αp + β)

|vbp,x|
|vbp,y |

> x
y

vap,y,elastic = − |vp| sin (αp + β)

d vbp,y ≤ 0 β = αp + arcsin
|vbp,y|
|vp| vap,x,elastic = − |vp| cos (αp + β)

vap,y,elastic = − |vp| sin (αp + β)
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Table B.2: Transformation of coordinates and velocities to the first quadrant (I).

2nd Quadrant 3rd Quadrant 4th Quadrant
π
2
< αp ≤ π π < αp ≤ 3

2
π 3

2
π < αp ≤ 2π

The angle of the velocity is corrected if

αv < −π/2 αv < 0 αv < π/2

Then, αv = αv + 2π for all quadrants.

The transformed azimuth αp,I and αv,I in the first quadrant are

αp,I = αp − π
2

αp,I = αp − π αp,I = αp − 3
2
π

αv,I = αv − π
2

αv,I = αv − π αv,I = αv − 3
2
π

The transformed particle velocities are

vbp,x,I = vbp,y vbp,x,I = −vbp,x vbp,x,I = −vbp,y
vbp,y,I = −vbp,x vbp,y,I = −vbp,y vbp,y,I = vbp,x
The case-by-case analysis following Table B.1 is applied.

Analogous to the first transformation, the coordinates are transformed back.

vap,x,elastic = −vap,y,I vap,x,elastic = −vap,x,I vap,x,elastic = vap,y,I
vap,y,elastic = vap,x,I vap,y,elastic = −vap,y,I vap,y,elastic = −vap,x,I
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C Detailed Derivation of the
Discretized Population Balance
Equation System

Discretization of the Population Balance Equation

The semi-discrete form of the PBE was stated in Eq. (6.9) and it was derived from the
continuous Eq. (6.1). A detailed derivation is given in the following. Integration of
Eq. (6.1) over control volume j ∈ 1 . . . Nj yields∫ zj+1/2

zj−1/2

∂f

∂t
dz︸ ︷︷ ︸

I

+

∫ zj+1/2

zj−1/2

G(z)
∂f

∂h
dz︸ ︷︷ ︸

II

+

∫ zj+1/2

zj−1/2

vp(h)
∂f

∂z
dz︸ ︷︷ ︸

III

= 0 (C.1)

For the accumulation term I, Leibniz’s rule for differentiation under the integral sign is
applied. Next, it is assumed that f is piecewise constant on

[
zj−1/2, zj+1/2

]
I =

d

dt

∫ zj+1/2

zj−1/2

f dz =
dfj
dt

∆z (C.2a)

For the convection in the internal coordinate in term II in Eq. (C.1), it is assumed that
G(z) is piecewise constant on

[
zj−1/2, zj+1/2

]
. Then, it is again assumed that f is piecewise

constant on
[
zj−1/2, zj+1/2

]
II = Gj

∫ zj+1/2

zj−1/2

∂f

∂h
dz = Gj

∂fj
∂h

∆z (C.2b)

In the convection in the external coordinate in term III in Eq. (C.1), it is considered that
vp(h) depends only on the particle size. Then, for the convection term in z, the second
fundamental theorem of calculus is applied

III = vp(h)

∫ zj+1/2

zj−1/2

∂f

∂z
dz = vp(h) [f ]zj+1/2

zj−1/2
= vp(h)

(
fj+1/2 − fj−1/2

)
(C.2c)

Summarizing Eqs. (C.1) and (C.2) leads to

dfj
dt

+Gj
∂fj
∂h

+
vp(h)

∆z

(
fj+1/2 − fj−1/2

)
= 0 (C.3)

The solution domain of f(h, z, t) is discretized along the internal coordinate via the FVM.
Equation (C.3) is integrated over one control volume i ∈ 1 . . . Ni.∫ hi+1/2

hi−1/2

dfj
dt

dh︸ ︷︷ ︸
I

+

∫ hi+1/2

hi−1/2

Gj
∂fj
∂h

dh︸ ︷︷ ︸
II

+

∫ hi+1/2

hi−1/2

vp(h)

∆z

(
fj+1/2 − fj−1/2

)
dh︸ ︷︷ ︸

III

= 0 (C.4)
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For the accumulation term I, Leibniz’s rule for differentiation under the integral sign is
applied. Then, it is assumed that f is piecewise constant on

[
hi−1/2, hi+1/2

]
I =

d

dt

∫ hi+1/2

hi−1/2

fj dh =
dfi,j
dt

∆h (C.5a)

For the convection in the internal coordinate in term II in Eq. (C.4), it is considered that
growth and dissolution are size-independent. Then, the second fundamental theorem of
calculus is applied

II = Gj

∫ hi+1/2

hi−1/2

∂fj
∂h

dh = Gj [fj]
i+1/2
i−1/2 = Gj

(
fi+1/2,j − fi−1/2,j

)
(C.5b)

For the convection in the external coordinate in term III in Eq. (C.4), it is assumed
that vp(h) is piecewise constant on

[
hi−1/2, hi+1/2

]
. Then, it is again assumed that f is

piecewise constant on
[
hi−1/2, hi+1/2

]
III =

vp,i
∆z

∫ hi+1/2

hi−1/2

(
fj+1/2 − fj−1/2

)
dh =

vp,i
∆z

(
fi,j+1/2 − fi,j−1/2

)
∆h (C.5c)

Insertion of Eqs. (C.5a), (C.5b), and (C.5c) into Eq. (C.4) leads to Eq. (6.9).

Discretization of the Continuous Phase Mass Balances

The continuous forms of the mass balances of dissolved anhydrate and water were given in
Eqs. (6.5) and (6.6). The result after discretization was stated in Eqs. (6.10) and (6.11). A
detailed derivation is given below for the anhydrate. Integration of Eq. (6.5) over control
volume j ∈ 1 . . . Nj yields∫ zj+1/2

zj−1/2

∂mf,anh

∂t
dz︸ ︷︷ ︸

I

=−
∫ zj+1/2

zj−1/2

vf
∂mf,anh

∂z
dz︸ ︷︷ ︸

II

+

∫ zj+1/2

zj−1/2

D
∂2mf,anh

∂z2
dz︸ ︷︷ ︸

III

−
∫ zj+1/2

zj−1/2

3χanhkV ρp

∫ hmax

hmin

Gh2f dh dz︸ ︷︷ ︸
IV

(C.6)

For the accumulation term I, Leibniz’s rule for differentiation under the integral sign is
applied. Next, it is assumed that mf,anh is piecewise constant on

[
zj−1/2, zj+1/2

]
I =

d

dt

∫ zj+1/2

zj−1/2

mf,anh dz =
dmf,anh,j

dt
∆z (C.7)

For convection in term II in Eq. (C.6), it is considered that vf is constant and the second
fundamental theorem of calculus is applied

II = vf [mf,anh]zj+1/2

zj−1/2
= vf

(
mf,anh,j+1/2 −mf,anh,j−1/2

)
(C.8)
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For dispersion in term III in Eq. (C.6), it is considered that D is constant and the second
fundamental theorem of calculus is applied.

III = D

[
∂mf,anh

∂z

]zj+1/2

zj−1/2

= D

(
∂mf,anh

∂z

∣∣∣∣
zj+1/2

− ∂mf,anh

∂z

∣∣∣∣
zj−1/2

)

For j = 1, the equation becomes

III = D

(
∂mf,anh

∂z

∣∣∣∣
z3/2

− ∂mf,anh

∂z

∣∣∣∣
z1/2

)

It could be assumed that there was no dispersion over the inlet. Whereas here, it is
assumed that mf,anh is piecewise linear on

[
z1/2, z1

]
and on [z1, z2]. With the boundary

condition from Eq. (6.7a) it results that

III = D

(
mf,anh,2 −mf,anh,1

∆z
− mf,anh,1 −mf,anh,in

∆z/2

)
= D

mf,anh,2 − 3mf,anh,1 + 2mf,anh,in

∆z
(C.9a)

approximating the profile again piecewise linearly on [zj, zj+1], for j ∈ 2 . . . Nj−1

III = D
mf,anh,j+1 −mf,anh,j

∆z
−Dmf,anh,j −mf,anh,j−1

∆z

= D
mf,anh,j+1 − 2mf,anh,j +mf,anh,j−1

∆z
(C.9b)

and for j = Nj

III = D

(
∂mf,anh

∂z

∣∣∣∣
zNj+1/2

− ∂mf,anh

∂z

∣∣∣∣
zNj−1/2

)

and assuming that there is no dispersion over the outlet

III = −D ∂mf,anh

∂z

∣∣∣∣
zNj−1/2

and assuming again that mf,anh is piecewise linear on
[
zNj−1, zNj

]
III = −D

mf,anh,Nj
−mf,anh,Nj−1

∆z
(C.9c)

Assuming again that f and G are piecewise constant on
[
zj−1/2, zj+1/2

]
, the source and

sink term IV in Eq. (C.6) becomes

IV = 3χanhkV ρp

∫ hmax

hmin

Gjh
2fj dh

∫ zj+1/2

zj−1/2

dz

= 3χanhkV ρpGj∆z

∫ hmax

hmin

h2fj dh
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Assuming a piecewise constant f on
[
hi−1/2, hi+1/2

]
IV = 3χanhkV ρpGj∆z

Ni∑
i=1

h2i fi,j∆h (C.10)

Inserting Eqs. (C.7), (C.8), (C.9), and (C.10) into Eq. (C.6) and applying again the
boundary condition from Eq. (6.7a) yields for j = 1

dmf,anh,1

dt
∆z =− vf

(
mf,anh,3/2 −mf,anh,in

)
+D

mf,anh,2 − 3mf,anh,1 + 2mf,anh,in

∆z

− 3χanhkV ρpG1∆z

Ni∑
i=1

h2i fi,1∆h

for j ∈ 2 . . . Nj−1

dmf,anh,j

dt
∆z =− vf

(
mf,anh,j+1/2 −mf,anh,j−1/2

)
+D

mf,anh,j+1 − 2mf,anh,j +mf,anh,j−1

∆z

− 3χanhkV ρpGj∆z

Ni∑
i=1

h2i fi,j∆h

for j = Nj

dmf,anh,Nj

dt
∆z =− vf

(
mf,anh,Nj+1/2 −mf,anh,Nj−1/2

)
+D

mf,anh,Nj−1 −mf,anh,Nj

∆z

− 3χanhkV ρpGNj
∆z

Ni∑
i=1

h2i fi,Nj
∆h

Division by ∆z leads to Eq. (6.10). The derivation for water in the continuous phase was
carried out analogously to the one for anhydrate.
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Oesterlé, B. and Dinh, T. B. (1998). Experiments on the lift of a spinning sphere in a
range of intermediate Reynolds numbers. Experiments in Fluids, 25(1):16–22.

Palazoglu, T. K. and Sandeep, K. P. (2001). Computational fluid dynamics modeling of
fluid flow in helical tubes. Journal of Food Process Engineering, 25:141–158.

Palazoglu, T. K. and Sandeep, K. P. (2004). Effect of tube curvature ratio on the resi-
dence time distribution of multiple particles in helical tubes. LWT - Food Science and
Technology, 37(4):387–393.

Patankar, S. V. (1980). Numerical heat transfer and fluid flow. Series in computational
methods in mechanics and thermal sciences. Hemisphere Publ. Co., New York.

Prohm, C., Gierlak, M., and Stark, H. (2012). Inertial microfluidics with multi-particle
collision dynamics. The European Physical Journal E, 35(8):80.

Qamar, S. (2008). Modeling and simulation of population balances for particulate pro-
cesses. Habilitationsschrift, Otto-von-Guericke University Magdeburg, Germany.

Qamar, S., Elsner, M., Angelov, I., Warnecke, G., and Seidel-Morgenstern, A. (2006).
A comparative study of high resolution schemes for solving population balances in
crystallization. Computers & Chemical Engineering, 30(6):1119–1131.

Qamar, S., Galan, K., Peter Elsner, M., Hussain, I., and Seidel-Morgenstern, A. (2013).
Theoretical investigation of simultaneous continuous preferential crystallization in a
coupled mode. Chemical Engineering Science, 98:25–39.

Ramkrishna, D. (2000). Population Balances: Theory and Applications to Particulate
Systems in Engineering. Academic Press, San Diego.

Redlinger-Pohn, J., König, L. M., Kloss, C., Goniva, C., and Radl, S. (2016a). Modeling
of non-spherical, elongated particles for industrial suspension flow simulation. In Pa-
padrakakis, M., Papadopoulos, V., Stefanou, G., and Plevris, V., editors, Proceedings
of ECCOMAS Congress 2016, pages 586–599, Crete Island, Greece.

Redlinger-Pohn, J. D., Jagiello, L. A., Bauer, W., and Radl, S. (2016b). Mechanistic
understanding of size-based fiber separation in coiled tubes. International Journal of
Multiphase Flow, 83:239–253.

Rimez, B., Septavaux, J., and Scheid, B. (2019). The coupling of in-flow reaction with
continuous flow seedless tubular crystallization. Reaction Chemistry & Engineering,
4(3):516–522.

Roberts, A. and Richardson, J. (1981). Interface study of rubber-ice friction. Wear,
67(1):55–69.

Rubinow, S. I. and Keller, J. B. (1961). The transverse force on a spinning sphere moving
in a viscous fluid. Journal of Fluid Mechanics, 11(3):447–459.

Rusconi, R., Guasto, J. S., and Stocker, R. (2014). Bacterial transport suppressed by
fluid shear. Nature Physics, 10:212–217.



BIBLIOGRAPHY 112

Sandeep, K., Zuritz, C., and Puri, V. (1997). Residence time distribution of particles
during two-phase non-Newtonian flow in conventional as compared with helical holding
tubes. Journal of Food Science, 62(4):647–652.

Sandeep, K., Zuritz, C. A., and Puri, V. M. (2000). Modelling non-Newtonian two-phase
flow in conventional and helical-holding tubes. International Journal of Food Science
and Technology, 35:511–522.

Saxena, A. K. and Nigam, K. (1983). Effect of coil pitch and cross-sectional ellipticity on
RTD for diffusion-free laminar flow in coiled tubes. Chemical Engineering Communi-
cations, 23(4-6):277–289.

Saxena, A. K. and Nigam, K. D. P. (1984). Coiled configuration for flow inversion and
its effect on residence time distribution. AIChE Journal, 30(3):363–368.

Schaaf, C., Rühle, F., and Stark, H. (2019). A flowing pair of particles in inertial mi-
crofluidics. Soft Matter, 15:1988–1998.
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