Behandlung von Polynomen – Teil 5*

Stichwörter:

Polynom, HP-BASIC, Laplace-Transformation, Approximation, Ausgleichsrechnung

Hardware:

HP 9845 B mit SP ROM

9 Polynome und LAPLACE-Transformation

An dieser Stelle sollen nun nicht die Grundlagen der LAPLACE-Transformation niedergelegt werden. Darüber existiert viel Literatur, z.B. [13 - 15]. Hier soll auch eine Beschränkung auf die Fälle erfolgen, in denen im Bildbereich ganzrationale und insbesondere gebrochenrationale Funktionen entsprechend GI. (43) auftreten. Trotz dieser Einschränkung wird aber damit bereits ein großer Teil der praktisch bedeutsamen Funktionen eingeschlossen, so alle ganzrationalen Polynome, die trigonometrischen, Hyperbelund Exponentialfunktionen im Zeitbereich und auch bestimmte Kombinationen davon.

9.1 Transformation aus dem Zeit- in den Bildbereich

Die Transformation aus dem Zeitbereich in den Bildbereich der LAPLACE-Transformation bereitet i.allg. die wenigsten Schwierigkeiten. Mit Hilfe von Tafelwerken, die die Korrespondenzen $F(p) \bullet - \circ$ f(t) enthalten, kann man die Transformation einfach durchführen. Dies sei an einem wichtigen Beispiel erläutert. Im ersten Teil dieser Serie wurden SUB-Programme für die rationalen Operationen mit Polynomen abgeleitet, der zweite Teil beinhaltete die Nullstellenbestimmung von Polynomen und im dritten Teil wurden Algorithmen zur Berechnung des größten gemeinsamen Teilers von zwei Polynomen und einige Bemerkungen zur Datensicherung angegeben. Der vierte Teil behandelte das HORNER'sche Schema und seine Implementationen. Während in den ersten drei Teilen dieser Serie einige Grundlagen zur Bearbeitung und Bestimmung der Eigenschaften von Polynomen abgeleitet wurden, soll nun weiter auf die Anwendung dieser SUB-Programme eingegangen werden. Wie bereits im Abschnitt 1 erwähnt, werden die Polynome in den hier zu besprechenden Anwendungsfällen als Approximations- und Ausgleichsfunktionen verwendet. Kommt dabei direkt eine Polynomaproximation zum Einsatz, so genügen i.allg. die bereits abgeleiteten SUB-Programme zur weiteren Verarbeitung. Anders sieht es aus, wenn die Polynome im Bildbereich der LAPLACE-Transformation verwendet werden.

Untersucht man das thermische Verhalten von Halbleiterbauelementen bei einer Erregung durch einen Leistungssprung, so müssen meist Messungen über einen großen Zeitbereich durchgeführt werden (> 1:1000). Die dabei erhaltenen Meßergebnisse werden punktweise (zu definierten Zeitpunkten) gespeichert. Aus diesen Stützstellen werden dann geeignete Ausgleichskurven errechnet. Als Ansatz haben sich Exponentialsummen

$$f(t) = R_0 + \sum_{i=1}^{m} R_i (1 - e^{-t/\tau_i})$$
(77)

bewährt. Dieser Ansatz hat mehrere Vorteile. Zuerst verhält er sich "gutartig". Weil sich die einzelnen Terme streng monoton verhalten, sind zufällige Extremwerte, wie sie bei Polynomansätzen häufig auftreten, i.allg. auszuschließen. Ein weiterer Vorteil ist darin zu sehen, daß der Ansatz auch für große Zeitbereiche geeignet ist und ohne weiteres Extrapolationen über die Meßgrenzen hinaus gestattet. Für große Zeiten strebt er gegen einen festen Endwert. Außerdem entspricht der Ansatz auch der Theorie der Wärmeleitung. Wird die Wärmeleitungsgleichung in Ortsrichtung diskretisiert, dann sind die Lösungen Gleichungen der Art von Gl. (77) [16]. Auch bei der Anwendung des BEUKEN-Modells [17] trifft dies zu. Außer

der bereits zitierten Arbeit [2] seien mit [18–19] noch zwei Arbeiten aus der deutschsprachigen Literatur zitiert, die sich mit der Exponentialsummenzerlegung nach GI. (77) befassen.

Zur Transformation von GI. (77) in den Bildbereich notieren wir zuerst drei erforderliche Korrespondenzen [15]

$$c_1 f_1(t) + c_2 f_2(t)$$

 $c_1 F_1(p) + c_2 F_2(p)$ (78)

$$\epsilon(t) = \begin{cases} 0 \text{ für } t < 0 \\ 1 \text{ für } t > 0 \end{cases} \circ \underbrace{- \bullet}_{p} (79)$$

Nach Umschreiben von GI. (77) in

$$\dot{h}(t) = (R_0 + \sum_{i=1}^m R_i) - \sum_{i=1}^m R_i e^{-t/\tau_i}$$
 (81)

ergibt sich für F(p)

$$F(p) = (R_0 + \sum_{i=1}^m R_i) \frac{1}{p} - \sum_{i=1}^m \frac{R_i}{p - \frac{1}{\tau_i}}$$

(82)

^{*}Teil 4: s. CAL-Comp. Anw. Lab. 3 (1985) 224. Jürgen Schwarz, Wiesbadener Straße 59 C, 1000 Berlin 33

FRIF

Diese Gleichung kann durch Erweitern mit r, und Zusammenfassen der Elemente, die Ri enthalten, in

$$F(p) = \frac{1}{p} \left[R_0 + \sum_{i=1}^m \frac{R_i}{1 + p \tau_i} \right]$$
(83)

umgewandelt werden.

Im allgemeinen ist es zweckmäßig, zur Berechnung der Ausgleichsfunktion nach GI. (77) nicht direkt die gemessenen Temperaturen heranzuziehen. Günstiger ist es, den gemessenen Temperaturverlauf auf eine Bezugstemperatur T_A und den bereits erwähnten Leistungssprung P., mit der Gleichung

$$T_{XA}^{*}(t) = \frac{T_{X}(t) - T_{A}}{P_{J}} \begin{vmatrix} (84) \\ T_{A}, P_{J} = \text{const.} \end{vmatrix}$$

zu beziehen. T_{XA}^* hat dann die Dimension eines thermischen Widerstandes [K/W]. Auch die Elemente R_i von Gl. (77) haben dann diese Einheit. F(p) stellt demzufolge den bezogenen Temperaturverlauf bei einem Verlustleistungssprung P_{J} bei t=0dar. Wird dieser Sprung bei t = 0 auch aus GI. (83) "herausgekürzt", so entspricht die verbleibende Summe

$$Z_{GA}(p) = \frac{Z_{GA}(p)}{n_{GA}(p)} = R_0 + \sum_{i=1}^m \frac{R_i}{1 + p \tau_i}$$
(85)

der thermischen Impedanz einer Ersatzschaltung nach Bild 4.

Zur Berechnung von $Z_{GA}(p)$ dient das SUB-Programm Rc_zp_pb (Listing 17). Zum Verständnis wird GI. (85) ausmultipliziert

$$Z_{GA}(p) = (86)$$

$$\frac{R_0 \prod_{i=1}^{m} (1+p \tau_i) + \sum_{i=1}^{m} R_i \prod_{\substack{j=1 \ j\neq i}}^{m} (1+p \tau_i)}{\prod_{i=1}^{m} (1+p \tau_i)}$$

In den Zeilen 480 bis 530 erfolgt die Berechnung des Nennerpolynoms von Gl. (86) mit Hilfe von GI. (6), hier speziell mit $m = \text{const.} = 1, b_0 = 1 \text{ und } b_1 = \tau_i$, wobei insgesamt n-mal multipliziert wird. Die Berechnung des Zählerpolynoms erfolgt in den Zeilen 550 bis 680 konsequent nach Gl. (86).

Bild 4: Elektrisches Ersatzschaltbild für die Ausgleichskurve eines gemessenen thermischen Verhaltens.

p

In das Programm wurde eine Fallunterscheidung eingearbeitet, die vorab prüft, ob R_0 vorhanden ist (Ch\$ = "C") oder nicht (Ch\$ = "H"), da dies entscheidend für den Grad des Zählerpolynoms und damit auch für die Rücktransformation ist. Auch wird vorab geprüft, ob die Ersatzschaltung nach Bild 4 kanonisch ist, d.h. ob nicht zufällig zwei (oder mehr) Zeitkonstanten gleich groß sind. Ohne diese Prüfung könnten sich für $z_{GA}(p)$ und $n_{GA}(p)$ gleiche Wurzeln ergeben, was entsprechend den Ausführungen von Abschnitt 6 nach Möglichkeit vermieden werden sollte.

9.2 Transformation aus dem Bild- in den Zeitbereich in einfachen Fällen

Gegeben sei eine gebrochen rationale Funktion

$$F(p) = \frac{Z(p)}{N(p)}$$
, $gr(Z) < gr(N) = n$ (87)

im Bildbereich der LAPLACE-Transformation, die in den Zeitbereich transformiert werden soll. Allgemein soll der Grad des Zählerpolynoms kleiner als der des Nennerpolynoms sein, sonst ließe sich von F(p) ein ganzrationaler Anteil abspalten, der in den Zeitbereich transformiert, den DIRAC-Impuls und seine Ableitungen ergeben würde. Diese Fälle sollen hier ausgeschlossen sein, können aber mit dem Divisionsprogramm nach Listing 8 gelöst werden (siehe Abschnitt 9.5).

Zunächst sei außerdem vorausgesetzt, daß das Nennerpolynom nur einfache reelle Nullstellen besitze, die mit pi bezeichnet werden sollen. Bekanntlich läßt sich dann die Gl. (87) in Partialbrüche

$$F(p) = \frac{Z(p)}{N(p)} = \frac{R_1}{p - p_1} + \frac{R_2}{p - p_2} + \dots + \frac{R_n}{p - p_n} = \sum_{i=1}^n \frac{R_i}{p - p_i}$$
(88)

zerlegen. Zur Berechnung der Konstanten R, multipliziert man die Gl. (88) mit $(p - p_i)$ und erhält den Ausdruck

$$(p - p_i) F(p) =$$

 $R_i + (p - p_i) \sum_{\substack{j=1 \ j \neq j}}^n \frac{R_j}{p - p_j}$ (89)

Bestimmt man jetzt den Wert dieses Ausdrucks für $p = p_i$, so wird der rechte Term null und es bleibt der unbestimmte Ausdruck

$$R_{i} = (p - p_{i}) F(p) = (p - p_{i}) \frac{Z(p)}{N(p)} \quad (90)$$

Mit Hilfe der Regel von l'HOSPITAL läßt sich

$$\lim_{p \to p_i} (p - p_i) \frac{Z(p)}{N(p)} = \frac{\frac{d}{dp} \left[(p - p_i) Z(p) \right]}{\frac{d}{dp} N(p)} = \frac{Z(p_i)}{N'(p_i)} \quad (91)$$

ableiten, womit sich für die Koeffizienten R, die Gleichung

$$R_i = \frac{Z(p_i)}{N'(p_i)} \tag{92}$$

aufschreiben läßt. Mit Hilfe der Korrespondenzbeziehungen nach den Gln. (78 - 80) folgt daraus der "Entwicklungssatz von HEAVISIDE"

$$F(p) = \frac{Z(p)}{N(p)} \bullet o f(t) =$$

$$\sum_{i=1}^{n} \frac{Z(p_i)}{N'(p_i)} e^{p_i t}, \quad n = \operatorname{gr}(N) \quad . \quad (93)$$

SUB Rc_zp_pb(INTEGER N,N_stern,Kan,Ch\$,REAL Rp(*),Taup(*),Z_ga(*),N_ga(*)) 10 20 30 SUB-Programm Rc_zp_pb zur Berechnung der Impedanzfunktion 40 eines Zweipoles aus RC-Gliedern in Partialbruchschaltung 50 60 Eingabedaten: 70 ... Anzahl der RC-Glieder n 80 Ch\$ "C" für Modell "case-ambient" ... Emit Rp(0)] "H" für Modell "heatsink-ambient" [ohne Rp(0)] 90 100 Rp(*) ... Widerstände der Partialbruchschaltung (0:n) für Ch\$="C" bzw. (1:n) für Ch\$="H" 110 120 taup(1:n) ... Zeitkonstanten der Partialbruchschaltung 130 140 Ergebnis: 150 n stern ... charakteristischer Wert der Polynomgrößen der 160 Impedanz: n-1 für Ch\$="H" bzw. n für Ch\$="C" 170 kan ... 1 für eine kanonische Partialbruchschaltung. 180 sonst 0 (und ohne Lösung) 190 Z_ga(0:n_stern) ... Zählerpolynom des Impedanz 200 N ga(0:n) ... Nennerpolynom der Impedanz 210 220 (c) 1985 by Jürgen Schwarz Sprache: HP-BASIC E Datum: 25.04.85 File-Name: RC_ZPP 230 Speichermedium: Kassetten 57/58 E Version: 1.3 240 250 INTEGER I, J, K 260 REAL Taup_stern(1:N+1),Z_ga_stern(0:N) 270 280 IF (Ch\$="c") OR (Ch\$="C") THEN 290 REDIM Rp(0:N) 300 N stern=N IF N>0 THEN REDIM Taup(1:N) 310 ! Für n=0 kein tau vorhanden 320 ELSE 330 REDIM Rp(1:N), Taup(1:N) 340 N_stern=N-1 ENDIF 350 360 MAT Z_ga=ZER 370 MAT N_ga=ZER 380 REDIM Z_ga(0:N_stern),N ga(0:N) 390 MAT Taup_stern=Taup MAT SORT Taup_stern 400 410 420 Kan=1 430 FOR I=2 TO N 440 Kan=Kan AND (Taup_stern(I-1)<>Taup_stern(I)) 450 NEXT I 460 IF NOT Kan THEN SUBEXIT ! die Partialbruchschaltung ist nicht kanonisch 470 N_ga(0)=1 FOR I=1 TO N 480 490 500 FOR J=I TO 1 STEP -1 510 N_ga(J)=N_ga(J)+N_ga(J-1)*Taup(I) NEXTJ 520 ! Parameter des Nennerpolynoms der Impedanz 530 NEXT I 540 IF (Ch\$="c") OR (Ch\$="C") THEN MAT Z_ga=(Rp(0))*N_ga 550 MAT Taup_stern=Taup FOR I=N TO 1 STEP -1 560 570 580 IF I(N THEN Taup_stern(I)=Taup(I+1) 590 MAT Z_ga_stern=ZER(0:N stern) Z_ga_stern(0)=1 FOR J=1 TO N-1 600 610 FOR K=J TO 1 STEP -1 620 Z_ga_stern(K)=Z_ga_stern(K)+Z_ga_stern(K-1)*Taup_stern(J) 630 640 NEXT K 650 NEXT J 660 MAT Z_ga_stern=(Rp(I))*Z_ga_stern

SERIEN

Listing 17: SUB-Programm zur Transformation gemessener Verläufe in den Bildbereich der Laplace-Transformation.

! Parameter des Zählerpolynoms der Impedanz

MAT Z_ga=Z_ga+Z_ga_stern

670

680

690

NEXT I

SUBEND

Bei der Durchführung der Transformation in den Bildbereich mit Hilfe der GI. (85) wurde der Anteil 1/p aus formalen Gründen weggelassen. Er muß natürlich bei der Rücktransformation wieder einfließen. Liegt also eine Funktion

$$F(p) = \frac{Z(p)}{p N(p)}$$
(94)

vor, die entsprechend zu behandeln ist, so ergibt GI. (93) mit $N^*(p) = p N(p)$ und

$$\frac{d}{d\rho} N^{*}(\rho) = \frac{d}{d\rho} \rho N(\rho)$$

$$= N(\rho) + \rho N'(\rho)$$
(95)

sowie Abtrennen der Nullstelle $p_0 = 0$ die Lösung

$$F(p) = \frac{Z(p)}{p N(p)} \bullet o f(t) = (96)$$
$$\frac{Z(0)}{N(0)} + \sum_{i=1}^{n} \frac{Z(p_i)}{p_i N'(p_i)} e^{p_i t}, n = gr(N) .$$

SERIE

Ist hier gr(Z) < gr(N) so gilt wegen des Grenzwerttheorems [15]

$$\lim_{t \to 0} f(t) = \lim_{p \to \infty} p F(p) = 0$$
 (97)

und damit

$$\frac{Z(0)}{N(0)} + \sum_{i=1}^{n} \frac{Z(p_i)}{p_i N'(p_i)} = 0 \quad . \tag{98}$$

Unter dieser Bedingung läßt sich die Korrespondenz (96) auch in der Form

$$F(\rho) = \frac{Z(\rho)}{\rho N(\rho)} \bullet o f(t) =$$

$$\sum_{i=1}^{n} \frac{-Z(\rho_i)}{\rho_i N'(\rho_i)} (1 - e^{-t/\tau_i}),$$

$$gr(Z) < gr(N) = n, \ \tau_i = -\frac{1}{\rho_i}$$
(99)

aufschreiben.

Dieser Rücktransformationsalgorithmus ist im Listing 18 implementiert, weil er in vielen Fällen die Lösung liefert. Selbstverständlich kann man auf praktisch analoge Weise die Korrespondenzbeziehungen (93) und (96) implementieren. Die Berechnung der Nullstellen erfolgt zweckmäßig mit dem SUB-Programm Newton_mod analog zu Listing 5 [8]. In den Zeilen 400

10 SUB Rc_t0_pb(INTEGER N,REAL Z(*),N(*),N_0(*),R_p(*),Tau_p(*)) 20 30 SUB-Programm Rc t0 pb zur Durchführung einer Transformation 40 aus dem Bildbereich der Laplace-Transformation in den Zeitbereich 50 bei gegebenen Zähler- und Nennerpolynomen der zu berechnenden Größe 60 und den bereits vorab berechneten Nullstellen des Nenners und 70 Anregung durch einen Einheitssprung (1/p) 80 90 Anwendung des Entwicklungssatzes von Heaviside bei einfachen, rellen 100 Nullstellen auf der negativen reellen Achse 110 120 Eingabedaten: ... Grad des Nennerpolynoms n ... Zählerpolynom im Bildbereich (Max.: 0:n-1) 130 Z(0:*) 140 $N(\theta;n)$... Nennerpolynom im Bildbereich 150 ... Nullstellen des Nennerpolynoms N_0(1:n) 160 ... Parameter der Lösung im Zeitbereich Ergebnis: R_p(1:n) 170 tau_p(1:n) ... Parameter der Lösung im Zeitbereich 180 190 n 200 Lösung: $f(t) = Summe R_p * (1 - exp(-t/tau_p))$ 210 i = 1 220 Sprache: HP-BASIC 230 (c) 1985 by Jürgen Schwarz Datum: 25.04.85 Speichermedium: Kassetten 57/58 240 File-Name: RC_th0 Version: 1.3 250 260 INTEGER I,J 270 REAL N_0,R_zaehler,R_nenner,Z_stern(0:N-1) 280 290 MAT Z_stern=Z 300 MAT R p=ZER 310 MAT Tau p=ZER 320 REDIM Z_stern(0:N-1),N(0:N),N_0(1:N),R_p(1:N),Tau_p(1:N) 330 340 Zerlegung mit dem "Entwicklungsatz von Heaviside" 350 360 FOR I=1 TO N 370 N 0=N 0(I) 380 Tau p(I)=-1/N 0 R_nenner=R_zaehler=0 FOR J=N-1 TO 0 STEP -1 390 400 R_zaehler=Z_stern(J)+N_0*R_zaehler 410 420 R nenner=(J+1)*N(J+1)+N 0*R nenner NEXT J 430 _p(I)=-R_zaehler/(N_0*R_nenner) 440 R 450 NEXT I ! Bewertung der jeweiligen Zeitkonstante 460 SUBEND

Listing 18: Einfaches Rücktransformations-SUB-Programm für Nennerpolynome mit einfachen reellen Nullstellen.

bis 430 erfolgt die Funktionsberechnung des Zählerpolynoms und die der Ableitung des Nennerpolynoms N'(p_i) mit dem einfachen HORNER'schen Schema. Sonst zeigt das SUB-Programm keine Besonderheiten.

9.3 Rücktransformation beim Auftreten konjugiert komplexer Nullstellen des Nennerpolynoms

Die Korrespondenzbeziehung (96) gilt selbstverständlich auch beim Auftreten komplexer, einfacher Nullstellen des Nennerpolynoms. Die Nullstellen treten paarweise konjugiert

$$p_{i} = \sigma + i \omega$$

$$p_{i+1} = \sigma - i \omega$$
(100)

auf und mit Hilfe der EULER'schen Formel [12]

$$e^{i\omega t} = \cos \omega t + i \sin \omega t$$
 (101)

erhält man

$$\frac{Z(p_i)}{p_i N'(p_i)} e^{p_i t} + \frac{Z(p_{i+1})}{p_{i+1} N'(p_{i+1})} e^{p_{i+1} t} = e^{\sigma t} (A \cos \omega t + B \sin \omega t)$$
(102)

mit

$$Z(\sigma + i\omega) = r_{Z} + ii_{Z} \qquad | Z(\sigma - i\omega) = r_{Z} - ii_{Z} (\sigma + i\omega) N'(\sigma + i\omega) = r_{N} + ii_{N} | (\sigma - i\omega) N'(\sigma - i\omega) = r_{N} - ii_{N}$$
(103)

(107)

und daraus unter Verwendung der GI. (74)

$$A = 2 \frac{r_{Z} r_{N} + i_{Z} i_{N}}{r_{N}^{2} + i_{N}^{2}}$$

$$B = 2 \frac{r_{Z} i_{N} - i_{Z} r_{N}}{r_{N}^{2} + i_{N}^{2}} .$$
(104)

Durch die Tatsache, daß die zwei Funktionswerte eines Polynoms mit zwei konjugiert komplexen Argumenten ebenfalls konjugiert komplex sind (Gl. (103)), was man durch Betrachten der Gl. (69) sofort einsieht, ergibt sich, daß die Lösung (102) reell ist. Diese läßt sich leicht in die gewünschte Form

$$R_i e^{-t/\tau_i} \cos(\omega_i + \varphi_i) \tag{105}$$

bringen, wobei hier

$$R_i = \sqrt{A^2 + B^2}$$
 (106)

und

$$\varphi_i = -\arctan\frac{B}{A}$$

SERIEN

sind. Bei GI. (107) sind zusätzlich die Beziehungen zu den einzelnen Quadranten zu beachten.

Listing 19 zeigt ein entsprechendes SUB-Programm. Die z. B. mit SILJAK (Listing 6) berechneten Nullstellen des Nennerpolynoms werden bei Aufruf des Programms mit angefordert. Diese Verfahrensweise ist zweckmäßig, wenn Berechnungen mit mehreren Zählerpolynomen und gleichem Nennerpolynom durchgeführt werden sollen (siehe Listing 22). Sonst kann der Aufruf von SILJAK auch innerhalb von Pb_he erfolgen.

Da SILJAK die Lösung in unregelmäßiger Folge liefert, werden diese in den Zeilen 600 bis 720 erst nach der Größe ihres Realteiles sortiert. In den Zeilen 740 bis 930 wird geprüft, ob die berechneten komplexen Wurzeln auch konjugiert auftreten. Die Wurzeln mit negativem Imaginärteil werden "gelöscht". Anschließend werden die Koeffizienten des Nennerpolynoms p N'(p) berechnet. Dann erfolgt die Abarbeitung nach dem oben abgeleiteten Al-

vorgestellte Verfahren verwendet. Die Wertzuweisung an die Matrizen erfolgt hier unter Verwendung von zwei Matrizen Real(*) und Imag(*), die jeweils die reelle Einheit 1 und die imaginäre Einheit i repräsentieren. Die Addition der mit den Real- und Imaginärteilen bewerteten Matrizen X(*) und Y(*) in den Zeilen 1440 bis 1460 führt schließlich zu der Repräsentation der komplexen Nullstelle. Die Division des Wertes des Zählerpolynoms durch den Wert des Nennerpolynoms wird hier durch Inversion nach GI. (76) vorgenommen. Nach Ausgabe der Anteile der Kosinus- und der Sinusanteile erfolgt die Abarbeitung völlig analog zu Listing 19.

Bei einer konjugiert komplexen Nullstelle

wird zur Berechnung das im Abschnitt 8.4

9.4 Rücktransformation bei mehrfachen (reellen und komplexen) Nullstellen

Beim Auftreten von mehrfachen Nennernullstellen in Gl. (87) versagen die bisher abgeleiteten Gleichungen, da dann die Ableitung des Nennerpolynoms an der Nullstelle ebenfalls null ist. Das Nennerpolynom kann nach Gl. (10) in der Form

$$N(p) = (108)$$
$$(p - p_1)^{\nu_1} (p - p_2)^{\nu_2} \dots (p - p_n)^{\nu_n}$$

dargestellt werden. Die Partialbruchzerlegung von Gl. (87) hat hier folgende Form:

$$\frac{Z(p)}{N(p)} = \frac{C_{11}}{(p-p_1)} + \frac{C_{12}}{(p-p_1)^2} + \dots + \frac{C_{1v_1}}{(p-p_1)^{v_1}} + \dots + \frac{C_{n1}}{(p-p_1)^{v_n}} + \dots + \frac{C_{nv_n}}{(p-p_n)^{v_n}} = \sum_{i=1}^n \sum_{j=1}^{v_i} \frac{C_{ij}}{(p-p_i)^j} .$$
 (109)

Zur Berechnung der unbekannten Konstanten C_{ij} multipliziert man die Gleichung mit $(p - p_i)^{v_i}$ und untersucht die gewonnene Beziehung an der Stelle $p = p_i$. Analog zu der Ableitung nach Gl. (90) bleibt nur der Term C_{iv_i} auf der rechten Seite stehen und eine entsprechende Grenzwertbetrachtung liefert schließlich

302

gorithmus. Zur Berechnung der Funktionswerte der Polynome werden die Programme FNHorner (Listing 11) und Komplex_horner (Listing 15) eingesetzt.

Gestattet der einzusetzende Rechner den Einsatz von Funktionsunterprogrammen und SUB-Programmen nicht, so kann man das in Listing 20 ausschnittsweise gezeigte äquivalente Programm ohne SUB-Programmaufruf einsetzen. Bei einer reellen Nullstelle arbeitet es wie das in Listing 18 vorgestellte Programm und bei einer rein imaginären Nullstelle wird die Tatsache berücksichtigt, daß die einzelnen Terme der Polynome rein reelle oder rein imaginäre Glieder liefern, je nachdem, ob die Potenz des Arguments gerade oder ungerade ist:

j0 ⇒ reellen Teil j1 ⇒ imaginären Teil j2 ⇒ negativen reellen Teil jЗ ⇒ negativen imaginären Teil i4 ⇒ reellen Teil usw.

Listing 19: Rücktransformationsprogramm mit Berücksichtigung aller einfachen Nullstellen (reell und komplex).

10 SUB P5 he(Z(*),N(*),R 0(*),I 0(*),R(*),Tau(*),Om(*),Phi(*),Ep,INTEGER N,M) 20 зй 1 SUB-Programm Pb_he zur Durchführung der Laplace-Rücktransformation 40 aus dem Bildbereich in den Originalbereich 50 Gegeben: gebrochen rationale Bildfunktion F(p) = Z(p)/N(p), 60 1 70 die mit einem Sprung (1/p) angeregt wird 80 90 1 Verfahren: 100 Partialbruchzerlegung und Anwendung des Entwicklungssatzes von Heaviside 110 ! bei bereits berechneten, einfachen Nullstellen des Nenners 120 130 Eingangsgrößen: L 140 ... Grad des Nennerpolynoms (ohne Sprung) n ... Koeffizienten des Zählerpolynoms (Max.: 0:n) 150 Z(0:*) 160 N(0:n)... Koeffizienten des Nennerpolynoms (ohne Sprung) 170 R Ø(1:n) ... Realteile der Nullstellen des Nennerpolynoms 180 I_0(1:n) ... Imaginärteile der Nullstellen des Nennerpolynoms ... Größe für die Genauigkeit der Nullstellen bei 190 еp der Prüfung auf konjugiert komplexe Nullstelleh 200 210 220 Form des Ergebnisses: 230 f(t) = R_0 + Summe [R_i * exp(-t/tau_i)] + ...
... + Summe [R_i * exp(-t/tau_i) * cos(om_i*t + phi_i)] 240 1 250 260 270 Ausgangsgrößen: 280 ... Grad des Nennerpolynoms (ohne Sprung) n 290 ... Anzahl der Elemente im Zeitbereich (m < n) m (0:m) ... Proportionalanteile der Lösuna 300 P 310 tau(1:m) ... Zeit- bzw. Dämpfungskonstanten der Lösung 320 om (1:m) ... Kreisfrequenzen der Lösuna 330 phi(1:m) ... Phasenlagen der Lösung 340 Datum: 01.06.85 350 (c) 1985 by Jürgen Schwarz Sprache: HP-BASIC 1 360 ! Speichermedium: Kassetten 73/74 File-Name: Heavis Version: 1.1 370 1 $\label{eq:integration} \begin{array}{l} \text{INTEGER Boo}_r, Boo_i, Dround, I, J\\ \text{REAL A_cos, A_sin, R_0, I_0, R_zaeh]er, R_nenner, I_zaeh]er, I_nenner\\ \text{REAL Z_st(0:N), N_st(0:N), R_0_st(1:N), I_0_st(1:N) \end{array}$ 380 390 400 410 420 IF (N<=0) OR (Ep<=0) THEN PAUSE ! widersprüchliche Eingabedaten MAT Z_st=Z 430 440 REDIM_Z st(0:N),N(0:N),R 0(1:N),I 0(1:N) 450 MAT R=ZER 460 MAT Tau=ZER 470 MAT Om=ZER 480 MAT Phi=ZER 490 REDIM R(0:N), Tau(1:N), Om(1:N), Phi(1:N) 500 510 M=N R(0)=Z_st(0)/N(0) IF N=1 THEN 520 530 540 R(1)=Z st(1)/N(1)-Z st(0)/N(0) Tau(1)=N(1)/N(0) 550 560 Om(1)=Phi(1)=0 ! Bewertung so, daß cos(0*t+phi)=1 ist 570 SUBEXIT 580 END IF 590 MAT R_0_st=R_0 MAT I_0_st=ZER 600 610 MAT SORT R_0_st 620 ! Sortierung nach aufsteigenden Zeitkonstanten 630 MAT Tau=R 0 FOR I=1 TO N 640 650 J=0 660 REPEAT 670 J=J+1UNTIL R_0_st(I)=Tau(J) 680 Tau(J)=9.999999999995599 690 700 IF ABS(I_0(J))>=Ep#ABS(R_0_st(I)) THEN I_0_st(I)=I_0(J) 710 IF ABS(R_0_st(I))(Ep*ABS(I_0_st(I)) THEN R_0_st(I)=0 720 NEXT I 730 ł

Listing 19, Fortsetzung

Г

	740	Debund=INT(LCT(En))	
1	140	broand=Initeditep//	
	750	I=0	
	760	PEPEAT	
	100		
	770	I=I+1	
	780	IF I $\Omega = t(I) \langle \rangle \Omega$ THEN	
	100		
	790	IF I+1>M THEN Un konj	
	900	BOD $n=(\text{DROUND}(\text{R} \overline{\text{A}} \circ (1)))$	(nd) = DROUND(R 0 st(I+1) Decued))
	000	500_1 - (5K00H5KK_6_3((1),5))	
	810	Boo i=(DROUND(I 0 st(I),Dro	und)=-DROUND(I 0 st(I+1),Dround))
	020		IEN Un koni
	020	1, 401 (200_1 HH2 200_1) H	ich on_konj
	830	M=M-1	
	840	P = 0 + (1) = 5 + (P = 0 + (1) + P = 0	L =+ (I+1))
	040		
	850	I 0 st(I)=ABS(.5*(I 0 st(I)	-I Ø st(I+1)))
	960		
	000	10K 3-111 10 H	
	870	$R_0 st(J) = R_0 st(J+1)$	
	880	I = 0 = t (I) = I = 0 = t (I+1)	
	890	NEXT J	
	900	REDIM R 0 st(1:M). T 0 st(1:	MD
	910	END IF	·
	920	UNTIL I>=M	
	000	DEDIM DOOMS Tourisms outside the	LEZZENNS .
	930	<pre>kepim k(0:m), (au(1:m), 0m(1:M), P</pre>	n1(110)
	940		
	050	N ++ (0)-0	
	900	N_ST(0)=0	
	960	FOR I=1 TO N	
	070		I Development of a state of the state
	970	N_ST(I)=I*N(I)	! Berechnung von p * d N(p)/d p
	980	NEXT I	
	000		
	990	FUR I=1 IU M	
	1000	$R \Theta = R \Theta st(I)$! Realteil der Nullstelle
	1010		
	1010	UM(I)=1_0=1_0_st(I)	! Imaginartei: der Nulisteile
	1020	IF I 0=0 THEN	! rein reelle Nullstelle
	1020		
	1030	K(I)=FNHOrher(N,K_0,Z_st(*)	J/FNHorner(N,K_0,N_St(*))
l	1040	Tau(I)=-1/R 0	
	1050	$O_{m}(I) = Phi(I) = O$	L Reventure on deC cos(Oxtabli)el ist
1	1000	OM(I)-Phi(I)-0.	: bewentung so, das coste*t+phi/-1 ist
	1060	ELSE	! konjugjerte komplexe Nullstelle
	1070	On (I) - I O	
·	10/0	Um(I)=I_0	
1.16	1080	IF R 0=0 THEN	! rein imaginäre Nullstelle
20.0	1000	Teu/Time 00000000000000	
4 1 4	1090	lau(1)=7.97999999999999599	! tau strebt gegen unendlich
	1100	ELSE	! konjugjert komplexe Nullstelle
1	1110	Tau/I)=-1/P 0	
1 .	1110	Taux1/=1/R_0	
	1120	END IF	
	1120	COLL Kannley hannan/H D A I	0.7 st(X) = 0 modulos I modulos)
	1130	CHEL KOmplex_normer(h,K_0,1	aenter,aenter,
	1140	CALL Komplex horner(N,R 0,I	0,N st(*),R nenner,I nenner)
1. A.	1150	A cos=2#(P zeebler#P nenner	+I zachlen#I nennen)
	1100	n_cos-z*(K_zaenier*K_nenner	
	1160	H_sin=2*(R_zaehler*I_nenner	-I_zaehler*R_nenner)
	1170	IF A COS THEN	
	1100		
	1190	IF H_COS2=0 IHEN	
	1190	Phi(I)=ATN(-A sin/A cos	>
	1000	TE DESCRIPTION DESCRIPTION	-Dhi/I)+9xDT
	1200	IF FRICING THEN FRICIN	
	1210	ELSE	
	1220	Phi(I)-OTM/-O cin/O cin)+PI
	1220	FULLER HINGER SUNA COS	27F #
	1230	END IF	
· · · ·	1240	FISE	
	1210		
	1250	Phi(I)=PI*(1+.5*SGN(A_sin	
	1260	END IF	
	1200		
	1270	R(I)=SUR(H_COS*H_COS+H_Sin*	H_SIN/
· ·	1280	R(I) = R(I)/(R nenner*R nenner	r+I nenner*I nenner)
1	1000		
	1520	END IF	
	1300	NEXT I	
	1010	CUDEVIT	
	1310	SUBEXII	
	1320		
l	1000	In have I	
	1330	on_konj: !	
	1340	PRINT "Fehler bei der Nullstell	enbestimmung."
	1250	PDINT "Fe light sins unberiver	nt komplovo Nullstalla vord"
1	1300	EKINI ES Hegt eine unkonjugie	ne kompieze nulistelle oont.
	1360	PAUSE	
	1370	SUBEND	
	1010	SOBERD	
1			

$$C_{i_{V_{i}}} = \frac{(\rho - \rho_{i})^{v_{i}} Z(\rho)}{N(\rho)} | \rho = \rho_{i}$$

$$= v_{i}! \frac{Z(\rho_{i})}{N^{(v_{i})}(\rho_{i})}$$
(110)

Zur Berechnung der anderen Konstanten wird GI. (109) ebenfalls mit $(p - p_i)^{v_i}$ multipliziert und *j*-mal differenziert. Dann werden für $p = p_i$ alle Glieder der rechten Seite außer *j* ! $C_{i, v_i - j}$ null. Es gilt also

$$C_{i, v_i - j'} = \frac{1}{j!} \frac{d^{j}}{d\rho^{j}} \frac{(\rho - \rho_i)^{v_i} Z(\rho)}{N(\rho)} | \rho = \rho_i$$

(111)

Eine Vereinfachung bringt die Einführung des mit der aktuellen Nullstelle gewonnenen Deflationspolynoms

$$N^{*}(\rho) = \frac{N(\rho)}{(\rho - \rho_{i})^{v_{i}}}$$
(112)

in die obigen Gleichungen. Hier ergibt sich mit

$$C_{i, v_{i-j}} = (113)$$

$$\frac{1}{j!} \frac{d^{j}}{dp^{j}} \frac{Z(p_{i})}{N^{*}(p_{i})}, \quad j = 0(1)v_{i} - 1$$

eine einheitliche Darstellung zur Berechnung der Konstanten C_{ij} .

Dabei ist zu berücksichtigen, daß N^{*}(p) für komplexes p_i komplexe Koeffizienten hat. Jetzt muß noch eine geeignete Gleichung zur Berechnung der Ableitungen der rationalen Funktion bereitgestellt werden. Für die erste Ableitung gilt

$$\frac{d}{d\rho} \frac{Z(\rho)}{N^{*}(\rho)} = \frac{N^{*}(\rho) Z'(\rho) - Z(\rho) N^{*'}(\rho)}{N^{*2}(\rho)}$$
(114)

Wird dieser Ausdruck ein zweites Mal nach p abgeleitet, dann erhält man mit

$$\frac{d^2}{dp^2} \frac{Z(p)}{N^*(p)} = \frac{N^{*2}Z'' - N^*(2Z'N^{*'} + ZN^{*''}) + 2Z(N^{*'})^2}{N^{*3}(p)}$$

einen Ausdruck, dessen Nenner sich durch einfache Multiplikation von N*(*p*) aus dem Nenner der nächstniedrigeren Ableitung ergibt. Aus dieser Erkenntnis läßt sich die Rekursionsformel

$$\frac{d^{j}}{dp^{j}} \frac{Z(p)}{N^{*}(p)} = \frac{Z_{j}(p)}{[N^{*}(p)]^{j+1}}$$
(116)

mit

$$z_{j+1}(\rho) =$$
(117)

 $N^{*}(\rho) z_{i}'(\rho) - (j + 1) N^{*'}(\rho) z_{j}(\rho)$

und

$$z_0(p) = Z(p)$$
 (118)

ableiten (Methode der vollständigen Induktion).

Abschließend werden mit

$$\frac{1}{p^n} \bullet 0 \frac{1}{(n-1)!} t^{n-1}$$
(119)

$$\frac{1}{(p-p_i)^n} \stackrel{\bullet}{\longrightarrow} \frac{1}{(n-1)!} t^{n-1} e^{p_i t}$$
(120)

CAL 6/85

zwei Korrespondenzbeziehungen [15] notiert, mit deren Hilfe die einzelnen Partialbrüche nach Gl. (105) in den Zeitbereich transformiert werden können. Zusammenfassend gelten hier die Korrespondenzen

SERIEN

Zeitbeen. Zu-Korre-Zu diesem Zweck werden die Halbleiterbauelemente, wie beim späteren Einsatz

bei den Messungen verwendeten Kühl-

einrichtung [21]. Sollen jetzt andere Küh-

$$F(p) = \frac{Z(p)}{N(p)} \bullet of(t) = \sum_{i=1}^{n} \sum_{j=1}^{v_i} \frac{t^{v_i-j-1} e^{p_i t}}{j! (v_i-j-1)!} \frac{d^j}{dp^j} \frac{Z(p_i)}{N^*(p_i)}$$
(121)

$$F(p) = \frac{Z(p)}{p N(p)} \bullet - \circ f(t) = \frac{Z(0)}{N(0)} + \sum_{i=1}^{n} \sum_{j=1}^{v_i} \frac{t^{v_i - j - 1} e^{p_i t}}{j! (v_i - j - 1)!} \frac{dj}{dp^j} \frac{Z(p_i)}{p_i N^*(p_i)} .$$
(122)

(115)

Listing 21 zeigt das SUB-Programm Hea. mit dessen Hilfe gebrochen rationale Bildfunktionen auch bei mehrfachen Nullstellen des Nennerpolynoms in den Zeitbereich transformiert werden können. Der Anfang ist analog zu dem Listing 19 aufgebaut. In den Zeilen 1140 bis 1420 wird das ursprüngliche Nennerpolynom N(p) zu N*(p) abdividiert und anschließend wird es mit der "unterschlagenen" Nullstelle bei Null multipliziert und seine Ableitung bereitgestellt. In der folgenden LOOP-Schleife erfolgt zunächst die Berechnung der Koeffizienten nach Gl. (113) und danach die Berechnung der Ableitung mit Hilfe der Rekursionsformel nach den Gln. (116) und (117). Das in den Zeilen 1710 und 1880 aufgerufene Funktionsunterprogramm FNN__fak dient zur

Berechnung von n !, ist in den Zeilen 2240 bis 2410 wiedergegeben und bedarf keiner weiteren Erklärung. Bei dem in den Zeilen 2030, 2040 und 2070 verwendeten SUB-Programm K_p handelt es sich um das in Listing 3 abgedruckte Programm Komplex_produkt, dessen Name gekürzt wurde, um mit 80 Zeichen pro Zeile auszukommen und die Variablenbezeichnungen möglichst anschaulich gestalten zu können.

9.5 Anwendungsbeispiel

Eine entscheidende Größe beim Einsatz von Halbleiterbauelementen ist die Temperatur der Sperrschicht. Leider ist der Aufwand zur Bestimmung der Sperrschichttemperatur sehr hoch [20], so daß solche Messungen im allgemeinen nur bei den Herstellern der Halbleiterbauelemente durchgeführt werden. Die Ergebnisse dieser Messungen werden den Anwendern dieser Bauelemente in Form von transienten Wärmewiderständen bekannt gemacht. Diese gelten aber nur in Zusammenhang mit einer bestimmten, vorgesehen, auf den Kühlern montiert. Am Übergang Halbleiterbauelement – Kühleroberfläche wird ein Temperaturfühler (i.allg. ein Thermoelement) befestigt und es wird der Verlauf der Temperatur an diesem Punkt bei einem Sprung der Verlustleistung in der Sperrschicht gemessen. Aus diesem Temperaturverlauf soll nun der Verlauf der Sperrschichttemperatur und der Verlauf der Leistung über den Übergang berechnet werden.

Das thermische Verhalten der Halbleiterbauelemente kann mit der Gleichung

$$\begin{pmatrix} T_{J}(p) \\ P_{G}(p) \end{pmatrix} = (123)$$
$$\begin{pmatrix} H_{11}(p) & H_{12}(p) \\ H_{21}(p) & H_{22}(p) \end{pmatrix} \begin{pmatrix} P_{J}(p) \\ T_{G}(p) \end{pmatrix}$$

vollständig beschrieben werden [22]. Dabei ist $T_J(p)$ die Sperrschichttemperatur, $P_G(p)$ die über den Übergang Halbleiterbauelement—Kühler fließende Leistung, $P_J(p)$ der Verlustleistungsverlauf in der Sperrschicht und $T_G(p)$ der am Übergang gemessene Temperaturverlauf, jeweils dargestellt im Bildbereich der LAPLACE-Transformation. Die Matrix mit den Hybridparametern charakterisiert die thermischen Eigenschaften des Halbleiterbauelementes.

Alle diese Parameter sind gebrochene rationale Funktionen. Die Hybridmatrix hat folgenden Aufbau

$$\|H\| = \frac{1}{\ell(p)} \begin{pmatrix} h_{11}(p) & 1 \\ 1 & h_{22}(p) \end{pmatrix}^{(124)},$$

kann also mit drei charakteristischen Polynomen $h_{11}(p)$, $h_{22}(p)$ und $\ell(p)$ beschrieben werden. Wird der zur Messung erzeugte Leistungssprung

$$P_{\rm J}(p) = \frac{P_{\rm J}}{p} \tag{125}$$

10	SUB Hea_e(Z(*),N(*),R_0(*),I_0(*),R(*),Tau(*),Om(*),Phi(*),Ep,INTEGER N,M)
360 370	! (c) 1984 by Jürgen Schwarz
430 440	REAL Zaehler(1:2,1:2),Nenner(1:2,1:2),Real(1:2,1:2),Imag(1:2,1:2) REAL Null_st(1:2,1:2),X(1:2,1:2),Y(1:2,1:2)
990 1000 1010 1020 1030 1040	DATA 1,0,0,1, 0,-1,1,0 ! Repräsentation der rellen und der MAT READ Real,Imag ! imaginären Einheit (1 bzw. i) FOR I=1 TO M R_0=R_0_st(I) ! Realteil der Nullstelle I_0=I_0_st(I) ! Imaginärteil der Nullstelle IF I_0=0 THEN ! rein reelle Nullstelle
1050	Tau(I)=-178_0 Om(I)=Phi(I)=0 ! Bewertung so, daß cos(0*t+phi)=1 ist
1140 1150 1160 1170 1180 1190 1200 1210	ELSE ! konjugierte komplexe Nullstelle Om(I)=I_0 IF NOT R_0 THEN ! rein imaginäre Nullstelle Tau(I)=9.9999999999999999 ! tau strebt gegen unendlich R_zaehler=I_zaehler=R_nenner=I_nenner=0 FOR J=N TO 0 STEP -1 SELECT J MOD 4 CASE 0 ! J = 0, 4, 8, 12,
1220 1230 1240 1250	R_zaehler=Z_st(J)+R_zaehler*I_0*I_0 IF J<=N-1 THEN I_nenner=(J+1)*N(J+1)+I_nenner*I_0*I_0 CASE 1
1260 1270 1280 1290 1300	IF J<=N-1 THEN R_nenner=(J+1)*N(J+1)+R_nenner*I_0*I_0 CASE 2
1310 1320 1330 1340 1350	I_zaehler=-Z_st(J)+I_zaehler*I_0*I_0 IF J<=N-1 THEN R_nenner=-(J+1)*N(J+1)+R_nenner*I_0*I_0 END SELECT NEXT J I zaehler=I zaehler*I 0
1360 1370 1380 1390	R_nenner=-R_nenner*I_0*I_0 I_nenner=I_nenner*I_0 A_cos=2*(R_zaehler*R_nenner+I_zaehler*I_nenner) A_cos=A_cos/(R_nenner*R_nenner+I_nenner*I_nenner) 9.cos=A_cos/(R_nenner*R_nenner+I_nenner*I_nenner)
1400 1410 1420 1430 1440	A_sin=A_sin/(R_nenner*A_nenner*I_nenner*I_nenner) ELSE ! R_0 AND I_0: konjugiert komplexe Nullstelle Tau(I)=-1/R_0 MAT X=(R 0)*Real ! Realteil der komplexen Nullstelle
1450 1460 1470 1480	MAT Y=(I_0)*Imag ! Imaginärteil der komplexen Nullstelle MAT Null_st=X+Y ! Repräsentation der komplexen Nullstelle ! MAT Zaehler=(Z_st(N))*Real ! Repr. der reellen Zählerkoeffizienten
1490 1500 1510 1520	MAT Nenner=ZER FOR J=N-1 TO Ø STEP -1 MAT X=(Z_st(J))*Real / Repr. der reellen Zählerkoeffizienten MAT Y=Zaehler*Null_st MAT Zaehler*Y=Y
1530 1540 1550 1560 1570	MAT Zaenter-Aft MAT X=((J+1)*N(J+1))*Real ! Repr. der Ableitung der Nennerkoeff. MAT Y=Nenner*Null_st MAT Nenner=X+Y NEXT J
1580 1590 1600 1610 1620 1630	<pre>MAT Y=Nenner*Null_st ! = N_0*Nenner MAT Nenner=INV(Y) ! = 1/(N_0*Nenner) MAT Y=Zaehler*Nenner ! = Zähler/(N_0*Nenner] A_cos=2*Y(1,1) ! = 2*Re[Zähler/(N_0*Nenner)] A_sin=2*Y(1,2) ! = -2*Im[Zähler/(N_0*Nenner)] END IF X_0 == XVEN</pre>
1640 1650	IF H_COS THEN IF A_COS>=0 THEN

Listing 20: Ausschnitt aus einem SUB-Programm mit denselben Aufgaben wie Listing 19 ohne SUB-Programmaufruf.

Listing 21: SUB-Programm zur Rücktransformation aus dem Bildbereich der Laplace-Transformation beim Auftreten auch mehrfacher Nullstellen des Nennerpolynoms.

10 SUB Hea(Z(*),N(*),R(*),I(*),C(*),Tau(*),Om(*),Phi(*),Ep,INTEGER N,M,V(*)) 20 30 1 SUB-Programm Hea zur Durchführung der Laplace-Rücktransformation 40 aus dem Bildbereich in den Originalbereich 50 Gegeben: gebrochen rationale Bildfunktion F(p) = Z(p)/N(p), 60 70 die mit einem Sprung (1/p) angeregt wird 80 90 1 Verfahren: 100 Partialbruchzerlegung und Anwendung des Entwicklungssatzes von Heaviside 1 bei bereits berechneten Nullstellen des Nenners R(*) und I(*). Mehr-110 1 120 fache Nullstellen werden in R(*) und I(*) nicht mehrfach wiedergegeben. 130 140 1 Eingangsgrößen: 150 ... Anzahl der Nullstellen des Nennerpolynoms 1 n (ohne Sprung und mehrfache Nullstellen) 160 1 170 Z(0:*) ... Koeffizienten des Zählerpolynoms (Max.: 0:SUM(v)) 180 N(0:SUM(v)) ... Koeffizienten des Nennerpolynoms (ohne Sprung) 1 ... Realteile der Nullstellen des Nennerpolynoms 190 R(1:n) I ... Imaginärteile der Nullstellen des Nennerpolynoms 200 1 I(1:n)210 v(1:n)... Vielfachheit der Nullstellen des Nennerpolynoms ţ ... Größe für die Genauigkeit der Nullstellen bei 220 еp 230 der Prüfung auf konjugiert komplexe Nullstellen 240 250 ! Form des Ergebnisses: 260 v_i^_1 270 D) $f(t) = C_00 + Summe Summe [C_ij * t^j * EXP(-t/tau_i)] * ...$ 280 1 ... * COS(om_i*t + phi_ij)] 290 j=0 i = 1 300 310 1 Ausgangsgrößen: ... Anzahl der Elemente im Zeitbereich (m ≤ n) 320 . - M 330 C(0:m,0:MAX(v)-1) ... Proportionalanteile I. der Lösung 340 tau(1:m) ... Zeit- bzw. Dämpfungskonstanten der Lösung 1 350 om (1:m) . . Kreisfrequenzen der Lösuna 360 phi(1:m,0:MAX(v)-1) ... Phasenlagen der Lösung 1 370 u(1:m)... Anzahl der Elemente mit gleichem tau(ï) 380 390 I (c) 1985 by Jürgen Schwarz Sprache: HP-BASIC Datum: 01.06.85 Speichermedium: Kassetten 73/74 400 File-Name: Heavis Version: 1.1 410 ļ INTEGER Boo_m,Boo_r,Boo_i,Dround,D,I,J,K,V_0,N_poly,N_nenner,N_zaehler 429 430 INTEGER N_max,N_stern,V_st(1:N) 440 450 REAL C_re,C_im,R_0,I_0,R_zaehler,R_nenner,U,V,X,Y REAL R_st(1:N), I_st(1:N) 460 470 480 490 ! Feld: (0:n max) 500 REAL M_r_strich(0:SUM(V)-1),M_i_strich(0:SUM(V)-1) 510 520 530 IF (N<=0) OR (SUM(V)<N) OR (Ep<=0) THEN PAUSE ! widersprüchliche Daten 540 M=N 550 N_poly=SUM(V) ! Grad des Nennerpolvnoms 560 MAT C=ZER 570 MAT Tau=ZER MAT Om=ZER 580 590 MAT Phi=ZER REDIM Z(0:ROW(Z)-1),N(0:N poly),R(1:N),I(1:N),V(1:N) 600 610 IF SUM(V)<>N poly THEN PAUSE ! widersprüchliche Daten 620 MAT R = t = R630 640 MAT SORT R_st 650 MAT Tau=R 660 MAT I st=ZER FOR I=1 TO N 670 680 $I = \Theta$ 690 REPEAT 700 J = J + 1UNTIL R st(I)=Tau(J) 710 Tau(J)=9.999999999999599 720 730 $\forall st(I) = \forall (J)$ IF ABS(I(J))>=Ep*ABS(R_st(I)) THEN I_st(I)=I(J) 740 750 IF ABS(R st(I))(Ep*ABS(I st(I)) THEN R st(I)=0

Listing 21, Fortsetzung

	760	NEXT I	
	770	1	
	780	I = D = Ø	
	790	Dround=INT(LGT(Ep))	
	800	REPEAT	
	810	I = I + 1	
	820	D=MAX(D,V_st(I)) ! maximale Vielfachheit einer Nullstelle	
	830	IF I_st(I)<>0 THEN	
	840	IF I+1>M THEN UN_KONJ	
	850	BOO ME(V_St(I)=V_St(I+1)) Destructions(Destruction)=DBO(ND/P_st(I+1)) Destruction	
	070	Boo r=(DROUND(R_St(1),Dround)=DROUND(R_St(1+1),Dround))	
	070 880	IE NOT (Room NUM ROD P AND Room) THEN UP KODI	
	890	M=M-1	
	900	R st(I)=.5*(R st(I)+R st(I+1))	
	910	I = t(I) = ABS(.5*(I = t(I) - I = t(I+1)))	
	920	FOR J=I+1 TO M	
	930	\forall st(J)= \forall st(J+1)	
	940	R_st(J)=R_st(J+1)	
	950	I_st(J)=I_st(J+1)	
	960	NEXT J	
	970	REDIM V_st(1:M),R_st(1:M),I_st(1:M)	
	980	END IF	
	990	UNTIL I>=M	
	1000	REDIM C(0:m,0:D-1), lau(1:m), Om(1:m), Phi(1:m,0:D-1)	
	1010	N_max=MHX(D*(N_poly=D+1),N_poly+(D=1)*(N_poly=D)) i Grad des grobben	
	1020	: autorecenter Forynoms (mas kreiner als zor senn)	
	1030	FOR I=1 TO M	
	1050	V Ø=V st(I) / Vielfachheit der Nullstelle	
	1060	R Ø=R st(I) / Realteil der Nullstelle	
	1070	I @=Om(I)=I st(I) ! Imaginärteil der Nullstelle	
	1080	IFR Ø=Ø THEN ! rein imaginäre Nullstelle	
	1090	Tau(I)=9.99999999999999999999999999999999999	
	1100	ELSE	
	1110	Tau(I)=-1/R_0	
	1120	END IF	
	1130	1	
	1140	MOT N MEZED/DIN MENN	
	1140		
	1150	MAT N_i=ZER(0:N_max)	
Ŀ	1150	MAT N_F=ZER(0:N_max) MAT N_F=N MAT M_F=N	
	1150 1160 1170 1180	MAT N_F=ZER(0:N_max) MAT N_F=N MAT M_F=N MAT M_i=ZER(0:N_poly) IF I 0=0 THEN	
•	1150 1160 1170 1180 1190	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN FOR J=1 TO V 0	
	1150 1160 1170 1180 1190 1200	MAT N_F=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN FOR J=1 TO V_0 U=M r(N poly-J+1)	
	1150 1160 1170 1180 1190 1200 1210	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN FOR J=1 TO V_0 U=M_r(N_poly-J+1) M r(N_poly-J+1)=0	
	1150 1160 1170 1180 1190 1200 1210 1220	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1	
•	1150 1160 1170 1180 1190 1200 1210 1220 1230	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K)	
•	1150 1160 1170 1180 1190 1200 1210 1220 1230 1240	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1)	
•	1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250	MAT N_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X V=V	
•	1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1250	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K WEXT K	
•	1150 1160 1170 1180 1190 1200 1210 1220 1230 1240 1250 1250 1260 1260	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle FISE	
•	1150 1160 1170 1180 1200 1210 1220 1230 1230 1250 1250 1250 1250 1250 1250	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! komplexe Nullstelle FOR J=1 TO V 0	
•	1150 1160 1170 1180 1200 1210 1220 1230 1240 1250 1250 1260 1270 1280 1290	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! ! komplexe Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)	
•	1150 1160 1170 1180 1200 1210 1220 1230 1240 1250 1250 1260 1270 1280 1290 1310	<pre>MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN</pre>	
•	1150 1160 1170 1180 1200 1210 1220 1230 1240 1250 1240 1250 1260 1270 1280 1290 1310 1320	<pre>MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN</pre>	
•	1150 1160 1170 1180 1200 1210 1220 1240 1250 1240 1250 1260 1270 1280 1270 1280 1310 1320 1330	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT K NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! komplexe Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) V=M_i(N_poly-J+1)=M_i(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1	
•	1150 1160 1170 1200 1200 1210 1220 1240 1250 1240 1250 1260 1270 1280 1270 1280 1310 1320 1330 1340	MAT N_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT K NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! komplexe Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) V=M_i(N_poly-J+1)=M_i(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K)	
•	1150 1160 1170 1180 1200 1210 1220 1220 1240 1250 1240 1250 1260 1270 1280 1310 1320 1330 1340 1350	<pre>MAIL M_PH2ER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_poly) IF I_0=0 THEN</pre>	
•	1150 1160 1170 1180 1200 1210 1220 1220 1240 1250 1240 1250 1260 1270 1280 1310 1320 1330 1340 1350	<pre>MAIL M_F-2EK(0:N_max) MAT M_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN</pre>	
•	1150 1160 1170 1180 1200 1210 1220 1220 1220 1240 1250 1250 1250 1250 1250 1250 1250 125	<pre>MAT M_i=2ER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I_0=0 THEN FOR J=1 T0 V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J+1)=0 FOR K=N_poly-J T0 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE FOR J=1 T0 V_0 U=M_r(N_poly-J+1) V=M_i(N_poly-J+1) M_r(N_poly-J+1)=M_i(N_poly-J+1)=0 FOR K=N_poly-J T0 0 STEP -1 X=M_r(K) Y=M_i(K) Y=M_i(K) M_r(K)=U+R_0*M_r(K+1)-I_0*M_i(K+1) M_i(K)=V+R_0*M_i(K+1)+I_0*M_r(K+1) </pre>	
•	1150 1160 1170 1180 1200 1210 1220 1220 1220 1220 122	MAT M_i=2ER(0:N_max) MAT M_i=2ER(0:N_max) MAT M_i=2ER(0:N_poly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! komplexe Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) V=M_i(N_poly-J+1) M_r(N_poly-J+1)=M_i(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) Y=M_i(K) M_r(K)=U+R_0*M_r(K+1)-I_0*M_i(K+1) M_i(K)=U+R_0*M_i(K+1)+I_0*M_r(K+1) U=X U=X	
	1150 1160 1170 1180 1200 1210 1220 1220 1220 1220 122	MAT M_r=2ER(0:N_max) MAT M_i=2ER(0:N_max) MAT M_i=2ER(0:N_moly) IF I_0=0 THEN ! rein reelle Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) M_r(K)=U+R_0*M_r(K+1) U=X NEXT K NEXT K NEXT J ! v-fache Division des Nenners durch die aktuelle Nullstelle ELSE ! komplexe Nullstelle FOR J=1 TO V_0 U=M_r(N_poly-J+1) V=M_i(N_poly-J+1) M_r(N_poly-J+1)=0 FOR K=N_poly-J TO 0 STEP -1 X=M_r(K) Y=M_i(K) Y=M_i(K) M_r(K)=U+R_0*M_r(K+1)-I_0*M_i(K+1) M_i(K)=U+R_0*M_i(K+1)+I_0*M_r(K+1) U=X V=Y U=Y V=Y	
	1150 1150 1160 1170 1200 1210 1220 1220 1220 1220 1250 125	<pre>MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_moly) IF I_0=0 THEN</pre>	
	1150 1150 1160 1170 1200 1210 1220 1220 1220 1220 122	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
	1150 1150 1160 1170 1200 1210 1220 1220 1220 1220 122	<pre>MAT M_i=ZER(0:N_max) MAT M_i=ZER(0:N_max) MAT M_r=N MAT M_i=ZER(0:N_poly) IF I @=0 THEN</pre>	
	1150 1150 1160 1170 1200 1210 1220 1220 1220 1220 1230 1250 1250 1250 1250 1250 1250 1250 125	<pre>MAT M_i=2EK(0:N_max) MAT M_i=2ER(0:N_poly) IF I_0=0 THEN MAT M_i=2ER(0:N_poly) IF I_0=0 THEN IF</pre>	
	1150 1150 1160 1170 1200 1210 1220 1220 1230 1240 1250 1250 1250 1260 1270 1280 1310 1320 1310 1320 1340 1350 1360 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1370 1380 1380 1380 1380 1380 1380 1380 138	<pre>MAT M_i=2ER(0:N_max) MAT M_i=2ER(0:N_max) MAT M_i=2ER(0:N_poly) IF I_0=0 THEN</pre>	
	1150 1150 1160 1170 1200 1210 1220 1220 1230 1240 1250 1250 1250 1260 1270 1280 1310 1320 1310 1320 1340 1350 1360 1370 1380 1370 1380 1370 1380 1390 1400 1410 1450 1450 1450	<pre>MAT M_T=ZER(0:N_max) MAT M_T=ZER(0:N_max) MAT M_T=N MAT M_T=N MAT M_T=N MAT M_T=N MAT M_T=R MAT M_T=ZER(0:N_poly) IF I @=0 THEN FOR J=1 T0 V_0 U=M_r(N_poly-J+1)=0 FOR K=N_poly-J T0 0 STEP -1 X=M_r(K) MEXT K NEXT K NEXT K NEXT K NEXT K NEXT K NEXT K V=M_i(N_poly-J+1) V=M_i(N_poly-J+1)=0 FOR K=N_poly-J+1)=0 FOR K=N_poly-J+1]=0 FOR K=N_poly-Y=0+1 FOR K=N_poly-Y=0 FOR K=N_poly-Y=0 FOR K=N_poly-Y=0 FOR K=N_poly-Y=0 FOR K=N_poly-Y=0+1 FOR K=N_poly-Y=0+1 FOR K=N_poly-Y=0 FOR K=N_poly-Y=0+1 FOR K=N_poly-Y=0 FOR K=N_poly-Y=</pre>	
	1150 1150 1160 1170 1200 1200 1220 1230 1240 1250 1250 1250 1250 1260 1270 1280 1310 1320 1310 1320 1340 1350 1350 1360 1370 1380 1370 1380 1390 1400 1410 1420 1450 1450 1450 1450 1450 1450 1450 145	<pre>MRT M_T=ZER(0:N_max) MRT M_T=N MAT M_T=ZER(0:N_max) MRT M_r=N MAT M_T=ZER(0:N_max) IF I 0=0 THEN IF I 0=0 THE</pre>	
	1150 1150 1160 1170 1200 1210 1220 1220 1220 1220 122	<pre>MAT M i=2ER(0:N_max) MAT M r=N MAT M r=N</pre>	
	1150 1150 1160 1170 1200 1210 1220 1240 1250 1240 1250 1260 1270 1280 1290 1310 1310 1320 1310 1350 1360 1350 1360 1370 1380 1390 1400 1420 1430 1440 1450 1450 1450	<pre>MAT M _ i=2ER(0:N_max) MAT M _ i=2ER(0:N_max) IF I_0=0 THEN</pre>	

Listing 21, Fortsetzung

1510	M_i strich(K-1)=K*M_i(K) Ableitung des Nennerpolynoms
1520	9 NEXT K – ! Multiplikation mit der Sprungfunktion 1/p
1539	$M \sim (0) = M i (0) = 0$
1540	BEDIM M. (City perpend) M. (City perpend)
1546	Kebin H_F(0.4_henner), n_f(0.4_henner)
1006	MHIN_r=m_r
1560	MAT N_i=M_i
1570	
1588	MAT $7 r = 7 \text{FR}(0: \text{N} \text{ max})$
1590	$Met = 2 \left(-2 E P \left(0 + N \right) \right)$
1000	
1606	MHI 2_r_strich=2ER(0:N_max-1)
1610	MAT Z_i_strich=ZER(0:N_max-1)
1620	MAT Z r=Z
1630	N zaehler=N polu
1640	PERIM 7 p(0:N polu) 7 (0:N polu)
1040	En z_res.n_perys,z_res.n_perys
1656	
1660	J=0
1670	b LOOP
1680) IF I 0=0 THEN ! rein reelle Nullstelle
1690	P Tachlen=ENHonnen(N Tachlen P 0 7 $n(x)$)
1700	
1766	K_nenner=FNHorner(N_nenner,K_0,N_r(*))
1710	C(I,V_0-J-1)=R_zaehler/(FNN_fak(J)*FNN_fak(V_0-J-1)*R_nenner)
1720) ELSE ! komplexe Nullstelle
1730) CALL Komplex polynom(N zaehler.R 0.I 0.Z r(*).Z i(*).U.V)
1740	$(BUL Kompley nolunom(N nennen, R \overline{A}, \overline{L}, \overline{A}, N, \overline{P}(*), N, \overline{I}(*), X, \overline{Y})$
1750	
1750	$\mathbf{C} = \mathbf{C} + $
1766	$U_1 m = -(X + V - U + Y) / (X + X + Y + Y) \qquad (\text{ komplexe Division -Im}((u + jv) / (X + jy))$
1770) IF C_re<>0 THEN
1780	IFC re>=0 THEN
1790	Phi(I,V, θ -I-1)= θ TN(-C, im/C, re)
1900	TE PHILT U ALT-1)/A THEN PHILT U ALT-1)-PHILT U ALT-1)+2*PT
1000	
1816	1 ELSE
1820	Phi(I,V_0-J-1)=ATN(-C_im/C_re)+PI
1830	END IF
1840	ELSE
1850	$Pbi(I, V, O = I = 1) = PI \neq (1 + 5 + SCN(C, im))$
1000	
1000	
1876) C(I,V_0-J-1)=2*SQR(C_re*C_re+C_im*C_im)
1880) C(I,V_0-J-1)=C(I,V_0-J-1)/(FNN_fak(J)*FNN_fak(V_0-J-1))
1890	
1900	EXIT IF J=V 0-1
1910	T = 1 = 1
1916	Berechnung der J-ten hörertung
1926	REDIM 2_r_strich(0:N_zaehler=1),2_i_strich(0:N_zaehler=1)
1930) FOR K=1 TO N_zaehler
1940) Z'r strich(K-1)=K*Z r(K) ! Ableitung des Zählerpolynoms
1950	Zistrich(K-1)=K*Zi(K) Ableitung des Zählernolynoms
1960	
1970	IF I_0=0 IHEN ! rein reelle Nullstelle
1980	CALL Produkt(N_stern,N_zaehler-1,M_r(*),Z_r_strich(*),P_r(*))
1990	CALL Produkt(N_stern-1,N_zaehler,M_r_strich(*),Z_r(*),Z_r(*))
2000	CALL Addition(1.P r(*)J.Z r(*).Z r(*))
2010	(ALL Produkt(N nennen, N stern N n(*), M n(*), N n(*))
2010	FIGE TO SERVICE THE STATE OF THE STATE TO TH
2020	COLL K W/M W/VN M 2/VN 7 W 2/ VN 7 W 2/VN 7 W 2/VN 7 W 2/VN 7
2030	$\mathbf{v}_{\text{FIL}} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} $
2040	U UHLL K_p(M_n_strich(*),M_i_strich(*),Z_r(*),Z_i(*),Z_r(*),Z_i(*))
2050	$CALL Addition(1,P_r(*),-J,Z_r(*),Z_r(*))$
2060	CALL Addition(1,P_i(*)J.Z_i(*).Z_i(*))
- 2070	CALL K $p(M, r(*), M, i(*), N, r(*), N, i(*), N, i(*), N, i(*))$
2000	
2000	
2090	N_zaenier=N_zaenier+N_stern-1
2100	N_nenner=N_nenner+N_stern
2110	PEDIM Z r(0:N zachler) Z i(0:N zachler)
0100	
2120	
2130	
2140	NEXT Í
2150	MAT V=ZER
2169	MAT V=V st
2170	SUBEXIT
21/0	
2180	
2190	Un_konj: !
2200	PRINT "Fehler bei der Nullstellenberechnung."
2210	PRINT "Es liegt eine unkonjugiert komplexe Nullstelle vor!"
2220	PAUSE
2220	CUEEND
2230	Description of the second s
2240	UEF FNN_fak(INTEGER N)
1 2250	

SERIEN

Listing 21, Fortsetzung

2260 2270	! Funktions-Unterprogramm zur Berech	nnung von n-Fakultät	
2280	! (c) 1985 by Jürgen Schwarz	Sprache: HP-BASIC	Datum: 01.06.85
2290	! Speichermedium: Kassetten 73/74	File-Name: Heavis	Version: 1.0
2300			
2310	INTEGER I		
2320	REAL N_fak		
2330	!		
2340	IF N<0 THEN RETURN 0	! nicht defi	iniertes Ergebnis
2350	IF (N=0) OR (N=1) THEN RETURN 1		
2360	N_fak=1		
2370	FOR I=2 TO N		
2380	N_fak=I*N_fak		
2390	NEXT I		
2400	RETURN N_fak		
2410	FNEND		-

Listing 22: Ausschnitt aus einem Programm zur Berechnung des Sperrschichttemperaturverlaufes von Halbleiterbauelementen aus dem Gehäusetemperaturverlauf.

10 20 1 ! * Programm ZHe_eK zur Berechnung des transienten Wärmewiderstandes und * ! * damit des Temperaturverlaufes in der virtuellen Sperrschicht in * 30 40 × einem einseitig gekühlten Halbleiterbauelement gegebenen 50 1 1 ÷ Temperaturverlauf am Case des Halbleiterbauelementes bei einem 60 70 ¥ Leistungssprung in der Sperrschicht 1 80 1 ÷ 90 1 × Anwendung der Zweitortheorie und des Heavisideschen Entwicklungssatzes ¥ 100 110 1 * 120 130 1 ¥ 140 ! * (c) 1985 by Jürgen Schwarz Sprache: HP-BASIC Datum: 01.07.85 ¥ ! * Speichermedium: Kassetten 73/74 File-Name: ZHe_eK Version: 1.0 150 160 I ¥ 170 1490 ! * Beginn der Berechnungen 1500 1510 1 ¥ ! * 1. Berechnung der Vierpolparameter des Thyristor-Ersatzschaltbildes 1520 × und Transformation der Meßwerte der Temperatur am Übergang 1530 ! * in den Bildbereich I ¥ 1540 1550 1560 CALL Rc_up_h(N_th,N_th_stern,Ch\$,Rk_th(*),Ck_th(*),H_11(*),H_22(*),L(*)) 1570 H_12(0)=1 = H 21 1580 CALL Rc_zp_pb(M_kd,M_kd_stern,Kan,"H",R_kd(*),Tau_kd(*),Z_ga(*),N_ga(*)) 1590 1600 1610 1620 ! * 2. Berechnung der Sprungantworten (H-Parameter) 1630 1640 1650 DISP "2.1 Berechnung des transienten Wärmewiderstandes [H_11(t)]" N th h=N th stern 1660 1670 CALL Newton mod(N_th_h,L(*),N_0(*),5E-8) ! Pole der H-Matrix CALL Rc_t0_pb(N_th_h,H_11(*),E(*),N_0(*),H_th_11(*),Gamma_th(*)) 1680 1770 DISP "2.2 Berechnung der Sprungantwort H_12(t) [= H_21(t)]" CALL Rc_t0_pb(N_th_h,H_12(*),L(*),N_0(*),H_th_12(*),Gamma_th(*)) 1780 DISP "2.3 Berechnung der Sprungantwort H_22(t)" 1860 1870 CALL Rest_division(N_th,N_th_stern,I,H_22(*),L(*),Hf1(*),R_22(*),1E-6) REDIM Hf1(0:1) 1880 1890 D_th_22=Hf1(1) S_th_22=Hf1(0) 1900 1910 CALL Rc_t0_pb(N_th_h,R_22(*),L(*),N_0(*),H_th_22(*),Gamma_th(*))

Listing 22, Fortsetzung

```
2310
      2320
      ! * 4. Rechnung mit dem speziellen Temperaturverlauf
2330
      2340
2350
      DISP "4.1 Berechnung des Verhalten des Systems"
2360
2370
      N_sy=N th h+M kd
                                      ! vorläufige Anzahl der Systemzeitkonstanten
      REDIM R_ja(1:N_sy,0:1),K_pg(1:N_sy,0:1),Tau_sy(1:N_sy),N_0(1:N_sy)
2380
      REDIM Gamma_th(1:N_th_h+1), Tau_kd(1:M_kd+1)
2390
      MAT V_sy=CON(1:N_sy)
2400
2410
      Gamma_th(N_th_h+1)=Tau_kd(M_kd+1)=1E99
2420
      I = 0
      I_th=I_kd=1
2430
2440
      REPEAT
2450
        I = I + 1
2460
        Tau_sy(I)=MIN(Gamma_th(I_th),Tau_kd(I_kd))
2470
        N_0(I)=-1/Tau_sy(I)
2480
2490
        Boolean_th=(DROUND(Tau_sy(I),6)=DROUND(Gamma_th(I_th),6))
2500
        Boolean_kd=(DROUND(Tau_sy(I),6)=DROUND(Tau_kd(I_kd),6))
2510
        IF Boolean th THEN I theI th+1
2520
        IF Boolean_kd THEN I_kd=I_kd+1
2530
        IF Boolean_th AND Boolean_kd THEN
2540
2550
          V_sy(1)=2
2560
          N_sy=N_sy-1
                                                  ! zwei Zeitkonstanten sind gleich
          REDIM R_ja(1:N_sy,0:1),K_pg(1:N_sy,0:1)
2570
2580
          REDIM Tau_sy(1:N_sy),N_0(1:N_sy),V_sy(1:N_sy)
        END IF
2590
2600
      UNTIL I=N_sy
      MAT I_0=ZER(1:N_sy)
2610
      REDIM Om(1:N_sy), P(1:N_sy,0:1)
2620
2630
      REDIM Gamma_th(1:N_th_h), Tau_kd(1:M_kd)
2640
      :
CALL Produkt(0,0,H_11(*),N_ga(*),Hf1(*))
CALL Addition(1,Hf1(*),1,Z_ga(*),Z_ja(*))
CALL Produkt(0,0,H_22(*),Z_ga(*),Hf1(*))
CALL Addition(1,Hf1(*),1,N_ga(*),Z_pg(*))
CALL Addition(1,Hf1(*),1,N_ga(*),Z_pg(*))
2650
                                                        ! Zählerpolynom der
2660
                                                        ! Sperrschichttemperatur
2670
                                                        ! Zählerpolvnom des
2680
                                                        ! Leistungsverlaufes
2690
      CALL Produkt(0,0,L(*),N_ga(*),N_sy(*))
                                                        ! Nennerpolynom des Systems
2700
     CALL Hea(Z_ja(*),N_sy(*),N_0(*),I_0(*),R_ja(*),Tau(*),Om(*),P(*),1E-6,N_sy
2710
,M_sy,V_sy(*))
2720 CALL Hea(Z_pg(*),N_sy(*),N_0(*),I_0(*),K_pg(*),Tau(*),Om(*),P(*),1E-6,N_sy
,M_sy,V_sy(*))
3440 Z th: ! Unterprogramm zur Berechnung des transienten Widerstandes 3450 \overline{Z} th=C(0,0)
      FOR P=1 TO N
3460
        Z_th=Z_th+C(P,0)*EXP(-T/Tau(P))
3470
        IF
           V_sy(P)=2 THEN Z_th=Z_th+C(P,1)*T*EXP(-T/Tau(P))
3480
      NEXT P
3490
      RETURN
3500
```

SERIE

entsprechend den Voraussetzungen von GI. (85) "herausgekürzt", so bleibt von ihm nur noch 1 und mit GI. (85) für den bezogenen Temperaturverlauf am Übergang ergibt sich für die bezogene Sperrschichttemperatur über

$$T_{\rm JA}^{\star}(\rho) = H_{11}(\rho) + H_{12}(\rho) Z_{\rm GA}(\rho)$$
 (126)

die Lösung bei Verwendung der Einzelpolynome aus GI. (124) zu

$$T_{JA}^{*}(\rho) = \frac{h_{11}(\rho) n_{GA}(\rho) + h_{12}(\rho) z_{GA}(\rho)}{\ell(\rho) n_{GA}(\rho)}$$
(127)

mit $h_{12}(p) = 1$. Für den bezogenen Verlauf der Leistung am Übergang ergibt sich entsprechend

$$P_{\rm G}^{\star}(p) = \frac{h_{21}(p) n_{\rm GA}(p) + h_{22}(p) z_{\rm GA}(p)}{\ell(p) n_{\rm GA}(p)}$$

mit
$$h_{21}(p) = 1.$$
 (128)

Die mit den Gln. (127) und (128) gewonnenen Ausdrücke müssen nun zurück in den Zeitbereich transformiert werden. Da sich nicht ausschließen läßt, daß einzelne Eigenzeitkonstanten des Halbleiterbauelementes (Nullstellen von $\ell(p)$) gleich mit einzelnen Zeitkonstanten der Exponentialsummenzerlegung des gemessenen Verlaufes sind, muß zur Rücktransformation das Programm nach Listing 21 zur Anwendung kommen, da nur dieses SUB-Programm mehrfache (hier höchstens doppelte) Nennernullstellen verarbeiten kann. Konjugiert komplexe Nullstellen sind hier allerdings auszuschließen.

Listing 22 zeigt Ausschnitte aus einem Rechenprogramm zur Abarbeitung der abgeleiteten Algorithmen. In den Zeilen 1570 und 1580 erfolgt die Berechnung der Hybridparameter des Halbleiterbauelementes aus den Daten des thermi-

	Berlin, den 02. Juli 1985		Berlin, den 02. Juli 1985
Berechnung des Temperaturverlau von einseitig gekühlten Hal	fes in der Sperrschicht bleiterbauelementen	Berechnung des Temperaturverl von einseitig gekühlten H	aufes in der Sperrschicht albleiterbauelementen
Berechnung mit dem Heaviside'schen Ent⊎ Temperaturverlaufes am Überga	icklungssatzes bei Vorgabe des ng zur Kühleinrichtung	Berechnung mit dem Heaviside'schen En Temperaturverlaufes am Über	twicklungssatzes bei Vorgabe des gang zur Kühleinrichtung
ZHe_eK - Kassetten 73/7	4 - Version 1.0 - 01. Juli 1985 - Sz	ZHe_eK - Kassetten 73.	/74 - Version 1.0 - 01. Juli 1985 - Sz
Bauelement: Thyristor T 270 N 2000 2600 Modell: Modell "junction-heatsink" [J-H] Meßstelle: Anlageflächen des Kühlelementes	(REG AG) (heatsink)	Bauelement: Thyristor T 270 N 2000 260 Modell: Modell "junction-heatsink" [J-] Meßstelle: Anlageflächen des Kühlelemente: Kühlung: Blumium-Kühlkörner bei verst	00 (AEG AG) H] s (heatsink) Sekten Luftkühlung
		Kühlmittel: Luft mit einem Volumenstrom vol	n 150 m^3/h
<u>Jaten der Ersatzschaltung des Halbleiterbaue</u> R_k_TH (01) = 4070.515 μK/W	C_k_TH (01) = 557.913 mJ/K	Daten des gemessenen Verlaufs der (bezogen am Übergang Halbleiterbauelement - Kül	en) Temperatur hleinrichtung:
R_k_TH (02) = 7855.402 µK/W R_k_TH (03) = 20,908 mK/W R_k_TH (04) = 47.166 mK/W	C_k_TH (02) = 606.904 mJ/K C_k_TH (03) = 2437.699 mJ/K C_k_TH (04) = 17.615 J/K	Verlustleistungssprung Kühlmittelzuflußtemperatur	P_J = 300.0 W %_R = 40.0 °C
R_k_TH (05) = 18.000 mK/W Summe: R_k_TH = 98.000 mK/W	C_k_TH (05) = 76.365 J∕K	Z_11_HA [×] (01) = -6254.525 μK/W Z_11_HA [×] (02) = 55.425 mK/W Z_11_HA [×] (03) = 23.007 mK/W Z_11_HA [×] (04) = 77.823 mK/W	$\tau_11_H R^{x}(01) = 661.397 \text{ ms}$ $\tau_11_H R^{x}(02) = 7928.398 \text{ ms}$ $\tau_11_H R^{x}(03) = 29.649 \text{ s}$ $\tau_11_H R^{x}(04) = 130.488 \text{ s}$
Parameter der Sprungantwort H 11(t):		Summe: Z_11_HA ^x = 150.000 mK/W	
H 11_JH (01) = 721.732 μ K/W H_11_JH (02) = 5064.302 μ K/W H_11_JH (03) = 18.720 mK/W H_11_JH (04) = 19.332 mK/W H_11_JH (05) = 54.162 mK/W Summe: H_11_JH = 98.000 mK/W Parameter der Sprungantwort H 12(t) [= H 21($\begin{array}{llllllllllllllllllllllllllllllllllll$	Parameter der Hntwort des Systems an der Si C_th_JA (00,0) = 248.000 mK/W MK/W	$\frac{v_{errschicht:}}{v_{e}th_JA}(01) = 1035.274 \ \mu s$ $v_{e}th_JA(02) = 6744.398 \ \mu s$ $v_{e}th_JA(03) = 64.671 \ m s$ $v_{e}th_JA(04) = 661.397 \ m s$ $v_{e}th_JA(05) = 2110.162 \ m s$ $v_{e}th_JA(05) = 7928.398 \ m s$ $v_{e}th_JA(05) = 29.649 \ s$ $v_{e}th_JA(07) = 29.649 \ s$
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{rcrcrc} C_{1}(n_{0}, 0, 0) &=& -79.349 \text{ mK/W} \\ \hline \\ \hline \\ Parameter des Leistungsverlaufes am Übergan \\ \hline \\ C_{1}pg_{-}H & (00, 0) &=& 1000.000 \\ model 0 & 0 & 0 \\ \hline \\ C_{1}pg_{-}H & (01, 0) &=& -2270.214 \\ model 0 & 0 & 0 \\ \hline \\ C_{1}pg_{-}H & (02, 0) &=& 4543.492 \\ model 0 & 0 & 0 \\ \hline \\ C_{1}pg_{-}H & (03, 0) &=& -3887.746 \\ model 0 & 0 & 0 \\ \hline \\ C_{1}pg_{-}H & (04, 0) &=& 210.357 \\ model 0 & 0 & 0 \\ \hline \\ C_{1}pg_{-}H & (04, 0) &=& 210.357 \\ model 0 & 0 & 0 \\ \hline \\ \end{array}$	t_tn_SH (00) = 130.400 s ng [H]: τ_pg_H (01) = 1035.274 μs τ_pg_H (02) = 6744.398 μs τ_pg_H (03) = 64.671 ms τ_pg_H (04) = 661.397 ms
Parameter der Sprungantwort H 22(t):		C_pg_H (04,1) = 128.238 ±0-3/s C_pg_H (05,0) = -153.681 ±0-3	$\tau_{pg}H$ (05) = 2110.162 ms
S_22_JH = -55.556 e(t) * W/K H_22_JH (01) = -268.678 pW/K H_22_JH (02) = 4591.579 pW/K H_22_JH (03) = 807.354 µW/K H_22_JH (04) = 13.561 W/K H_22_JH (05) = 41.994 W/K Summe: H_22_JH = 55.556 W/K	χ_{22} JH (01) = 1035.274 µs χ_{22} JH (02) = 6744.398 µs χ_{22} JH (03) = 64.671 ms χ_{22} JH (04) = 661.397 ms χ_{22} JH (05) = 2110.162 ms	C_pg_H (07,0) = -911.131 <u>10</u> -3 C_pg_H (08,0) = -81.148 <u>10</u> -3 C_pg_H (08,0) = -59.095 <u>10</u> -3	с_рд_Н (07) = 129.649 s τ_рд_Н (07) = 29.649 s τ_рд_Н (08) = 130.488 s

CAL 6/85

reich.

Übergang und numerische Darstellung der Lösung.

schen Ersatzschaltbildes nach den Ausführungen in [21] und [22]. Anschließend wird das Ergebnis der Exponentialsummenzerlegung (nach [18] und [19]) in den Bildbereich transformiert. In Zeile 1670 werden die Pole der H-Matrix (Nullstellen von $\ell(p)$) errechnet und anschließend werden die H-Parameter zur Demonstration in den Zeitbereich transformiert. Da H₂₂(p) eine unechtgebrochene rationale Funktion ist, wird der ganzrationale Anteil mit Hilfe des SUB-Programmes Rest_division abgespalten. Der Wert von Hf1(1) entspricht dabei dem DIRAC-Impuls $\delta(t)$ und der von Hf1(0) dem Einheitssprung $\epsilon(t)$. In den Zeilen 2370 bis 2630 erfolgt eine Prüfung auf das Auftreten gleicher Nullstellen in den Polynomen $\ell(p)$ und nGA(p). Dabei ist vorausgesetzt, daß die Zeitkonstanten in den Vektoren Gamma_th(*) und Tau_kd(*) aufsteigend sortiert vorliegen. Die eigentliche Berechnung erfolgt in den Zeilen 2650 und 2720 konsequent nach den Gln. (127) und (128). Anschließend ist noch ein Unterprogramm zur konkreten Berechnung der Ergebnisse im Zeitbereich dargestellt. Die in dem Listing 22 fehlenden Zeilen dienen der Ein- und Ausgabe der Ergebnisse und zur Steuerung der Graphik.

Die Bilder 5 bis 7 zeigen konkrete Rechenergebnisse. Im Bild 5 sind die thermischen Eigenschaften des betrachteten Halbleiterbauelementes dargestellt. Die gemessenen und ausgewerteten Ausgangsdaten sowie die Lösung in ihrer numerischen Form sind im Bild 6 abgedruckt, während Bild 7 die entsprechenden graphischen Darstellungen zeigt.

10 Zusammenfassung

In der nun vollständig vorliegenden Arbeit wurden einige Möglichkeiten zur Anwendung von Polynomen aufgezeigt. Dabei wurde weniger Wert auf mathematische Exaktheit und mehr Wert auf praktische Brauchbarkeit und leichtes Verständnis der Abhandlungen gelegt. Die meisten skizzierten Anwendungsfälle wurden mit praktisch erprobten BASIC-Programmen in strukturiertem HP-BASIC, dessen Sprachumfang mit normalem BASIC kaum vergleichbar ist und mehr an AL-GOL oder PASCAL erinnert, unterstützt.

Die Programme sind für die konkrete Arbeit im Labor entstanden und sind deshalb in bezug auf Rundungseigenschaften und Fehlerbehandlung nur soweit optimiert worden, wie es für die Anwendungsfälle nötig war. Es sind sicher Aufgabenstellungen denkbar, bei denen Verbesserungen erforderlich sind. Aber die-

Bild 7: Graphische Darstellung der berechneten Verläufe der Temperatur in der Sperrschicht und des Leistungsverlaufes am Übergang und des gemessenen Temperaturverlaufes am Übergang.

se Serie sollte ja in erster Linie Anregungen zur Weiterarbeit und keine Rezepte liefern. Der Autor hofft, daß die Arbeit auch so verstanden und benutzt wird.

SERIEN

Literatur

- [13] G. DOETSCH: "Handbuch der Laplace-Transformation", Bd. I, II, III. Birkhäuser Verlag, Basel, Stuttgart (1950 – 56).
- [14] G. DOETSCH: "Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation". Oldenbourg-Verlag München, Wien (1967).
- [15] K. SIMONYI: "Theoretische Elektrotechnik". Dtsch. Vlg. Wissenschaften, Berlin (1977).
- [16] U. GRIGULL und H. SANDNER: "Wärmeleitung". Springer-Verlag Berlin, Heidelberg, New York (1979).

- [17] C. L. BEUKEN: "Wärmeverluste bei periodisch betriebenen elektrischen Öfen." Dissertation Sächsische Bergakademie Freiberg (1936).
- [18] W. KÖCHLI: "Identifikation des thermischen Verhaltens einer Hochleistungsdiode". Dissertation ETH Zürich (1969).
- [19] W. BÜTTNER: "Ein numerisches Verfahren zur Exponentialapproximation von transienten Wärmewiderständen". Archiv für Elektrotechnik 59 (1977) 351 – 359.
- [20] H. MÜLLER: "Berechnung des transienten thermischen Verhaltens von Halbleiterventilen im Bereich kurzer Zeiten". Dissertation RWTH Aachen (1972).
- [21] J. SCHWARZ: "Kühlung von Leistungshalbleitern". Elektronik Journal 20 (1985) 13/14, 38-43
- [22] J. SCHWARZ: "Junction- und Case-Temperatur". Elektronik Journal 20 (1985) 17, 60 – 66

Abstract

Jürgen Schwarz **298 Behandlung von Polynomen – Teil 5** In diesem letzten Teil der Serie geht es um konkrete Anwendungen der bisher betrachteten SUB-Programme.