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Vorwort 

Die vorliegende Arbeit wurde vom Juli 2016 bis Juni 2019 an der Martin-Luther-Universität 

am Institut für Chemie, Fachbereich Lebensmittelchemie und Umweltchemie im Arbeitskreis 

von Prof. Dr. Marcus A. Glomb angefertigt. 

 

Die Arbeit wurde über die gesamte Zeit durch das DFG Graduiertenkolleg 2155 

Proteinmodifikationen: Schlüsselmechanismen des Alterns (ProMoAge) gefördert. 

 

Die erhaltenen Forschungsergebnisse wurden in international anerkannten Fachzeitschriften 

publiziert. 

 

Die Dissertation wurde in kumulativer Form angefertigt. Die Darstellung von experimentellen 

Daten, deren Einordnung, Bewertung und Diskussion erfolgte dabei in den beigefügten 

Publikationen. 

 

Das Ziel der vorliegenden Arbeit war es, die wissenschaftlichen Einzelaspekte aus den 

Veröffentlichungen zusammenzufassen und in den Kontext des Titels „Synthesis, 

Characterization and Detection of Novel Protein Modifications in vitro and in vivo― 

einzuordnen. 
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1 Introduction 

The demographic change is one of the most urgent problems in Germany and compared to 

2005 the population is expected to decrease about 16 % until 2050. At the same time persons 

aged over 65 years will increase by 38 % and persons aged over 80 years will increase by 

156 %. Currently, about half of health care costs account for elderly patients above 65 years 

of age. Assuming comparable disease prevalence these costs and age-related diseases like 

diabetes, atherosclerosis, cancer, and dementia will increase tremendously.
1
 

Several of these diseases are caused or at least mediated by posttranslational protein 

modifications (PTMs).
2–5

 In comparison to biosynthesis of new proteins, PTMs are formed at 

much faster rates and facilitate rapid adaption of metabolism to environmental changes.
6
 

Thus, the number of about 70000 human proteins is increased to several million protein 

species  by PTMs.
7
  

Acetylation of proteins was one of the first PTMs discovered in histones by Phillips in 1963.
8
 

It has to be differentiated between N-terminal acetylation of proteins during translation
9
 and 

posttranslational N
6
-acetylation of lysine residues. Due to the high complexity the present 

thesis focuses solely on PTMs. Acetylation is considered a major regulatory mechanism in 

epigenetics and metabolism. The modification is formed by acetyltransferases (―writers‖), 

removed by deacetylases (―erasers‖) and detected by several ―reader‖ domains.
2
 In recent 

years metabolic intermediates like reactive acyl-CoA thioesters (RACS) and α-dicarbonyls 

were identified as precursors for structurally related non-enzymatic lysine acylation. 

Acetylation and acylation are competing for lysine residues and influence each other.
10

 Based 

on their individual structure they share several functions in metabolism but can cause very 

distinct and unique reactions as well.
11

 While acetylation is mainly an enzymatic process, 

acylation is generally considered a non-enzymatic reaction. Consequently, fundamental 

important enzymatic regulatory pathways are paralleled by non-enzymatic acylation by 

RACS
12

 and Maillard-mediated acylation by α-dicarbonyl intermediates.
13

 This fact is 

discussed in the present thesis as a potential molecular mechanism leading to impairment of 

tissues and metabolism observed in the aging process. Finally, our experimental data are 

compared to the currently available literature about acetylation, acylation by RACS and 

Maillard processes in the following chapters with an emphasis on mechanisms of 

modification, potential enzymatic and non-enzymatic regulation as well as metabolic 

consequences for aging and disease. 
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2 Theoretical background 

2.1 Acetylation 

2.1.1 Lysine acetyltransferases 

Lysine acetyltransferases (KATs) are ―writers‖ of acetylation and catalyze the transfer of 

acetyl groups from acetyl-CoA to N
6
-amino functions of lysine residues. The human 

proteome contains 22 putative KATs (Table 1). Based on catalytic mechanism and homology 

to yeast proteins KATs are categorized into the three major groups GCN5-related 

N-acetyltransferase (GNAT), p300/CREB-binding protein (p300/CBP), and the MOZ, Ybf2, 

Sas2, and Tip60 (MYST) family. In addition, several proteins outside of this categorization 

show acyltransferase activity, e.g., steroid receptor coactivators (SRCs) and α-tubulin 

acetyltransferase (αTAT1).
2
 

 

 Putative lysine acetyltransferases.
2
 Table 1:

 

Name Aliases Subfamily Cellular localization 

KAT1 HAT1 GNAT Nucleus, Cytoplasm 

KAT2A GCN5 GNAT Nucleus 

KAT2B PCAF GNAT Nucleus 

ATF2 CREB2 GNAT Nucleus 

KAT3A CBP p300/CBP Nucleus, Cytoplasm 

KAT3B P300 p300/CBP Nucleus, Cytoplasm 

KAT4 TAF1, TAFII250 TAFII250 Nucleus 

KAT5 TIP60 MYST Nucleus, Cytoplasm 

KAT6A MYST3, MOZ MYST Nucleus 

KAT6B MYST4, MORF MYST Nucleus 

KAT7 MYST2, HBO1 MYST Nucleus 

KAT8 MYST1, MOF MYST Nucleus, Mitochondria 

KAT9 ELP3 ELP3 Nucleus, Cytoplasm 

GCN5L1 BLOS1 - Nucleus, Mitochondria 

ACAT1 - - Mitochondria 

αTAT1 MEC17 - Cytoplasm 

KAT12 GTF3C4 - Nucleus, Cytoplasm 

KAT13A NCoA-1, SRC1 SRC Nucleus, Cytoplasm 

KAT13B NCoA-3, TRAM1 SRC Nucleus, Cytoplasm, Exosome 

KAT13C NCoA-2, TIF2, SRC3 SRC Nucleus, Cytoplasm 

KAT13D CLOCK SRC Nucleus, Cytoplasm 

KAT14 CSR2B - Nucleus, Cytoplasm 

 

Most KATs contain a characteristic and highly conserved α/β fold (Motif A) as the 

acetyl-CoA binding site.
14

 While primary structures of KATs are similar within members of 

the same family, KATs of distinct families show little to no structural similarity. This 
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sequence variability between subfamilies is considered to be responsible for different 

substrate recognition. For example GNATs prefer acetylation of histone H3 while members of 

MYST preferentially acetylate histone H4.
15

  

KATs of the GNAT and MYST subfamilies share the same catalytic mechanism (Figure 1) 

and use an active site glutamate to deprotonate the N
6
-amino functions of lysine residues.

2
 

This facilitates the nucleophilic attack of the amino function at the activated carbonyl function 

of acetyl-CoA. Collapse of the transient tetrahedral intermediate leads to lysine acetylation 

and coenzyme A.
16,17

 A previously reported MYST mechanism by active site acetyl cysteine 

intermediate
18

 was proven wrong by site-directed mutagenesis of the respective cysteine, 

which had no effect on enzyme activity while depletion of glutamate caused complete loss of 

acetyltransferase activity.
16

   

 

 

 

 Proposed reaction mechanisms for GNAT and MYST acetyltransferases.
2,17

 Figure 1:

 

In contrast to GNAT and MYST, a ―hit and run‖ (Theorell-Chance) mechanism is utilized by 

p300/CBP (Figure 2).
2
 Instead of glutamate this reaction is catalyzed by aromatic amino 

acids, which steer the nucleophilic attack of the lysine substrate at acetyl-CoA. Finally, 

tyrosine protonates the sulfhydryl group of coenzyme A. In this ordered and rapid mechanism, 

the ternary complex formed is kinetically irrelevant.
19

 This alternative reaction mechanism 

may partially explain the relative substrate promiscuity observed for p300/CBP compared to 

GNAT and MYST KATs.
20

 

 

 

 

 Proposed reaction mechanisms for p300/CBP acetyltransferases.
21

 Figure 2:



Theoretical background           4 

 

2.1.2 Lysine deacetylases 

Reversibility of lysine acetylation by ―erasers‖ is mandatory for metabolic regulation. The 

existence of lysine deacetylases (KDACs) was postulated in 1978 after treatment of 

erythroleukemic cells with n-butyrate and Trapoxin resulted in histone hyperacetylation.
22

 

The inhibitor Trapoxin was used to generate an affinity phase for isolation of the first 

KDAC.
23

 In total, 11 Zn
2+

 dependent KDACs were discovered using sequence homology 

analyses (Table 2).
2
 

 

 Zn
2+

 dependent lysine deacetylases.
2
 Table 2:

 

Name Subfamily Cellular localization 

KDAC1 I Nucleus, Cytoplasm 

KDAC2 I Nucleus, Cytoplasm 

KDAC3 I Nucleus, Cytoplasm 

KDAC8 I Nucleus, Cytoplasm 

KDAC4 IIA Nucleus, Cytoplasm 

KDAC5 IIA Nucleus, Cytoplasm 

KDAC7 IIA Nucleus, Cytoplasm, Mitochondria 

KDAC9 IIA Nucleus, Cytoplasm 

KDAC6 IIB Nucleus, Cytoplasm 

KDAC10 IIB Nucleus, Cytoplasm 

KDAC11 IV Nucleus, Cytoplasm 

 

In the deacetylation process Zn
2+

 forms a charge relay network with histidine, aspartic acid 

residues, and water. The substrate N
6
-acetyl lysine interacts with this catalytic triad and Zn

2+
 

polarizes the carbonyl bond. In the next step water is deprotonated by histidine and attacks the 

activated carbonyl carbon.  The resulting tetrahedral intermediate is stabilized by tyrosine and 

finally the amide bond is cleaved by proton transfer from histidine yielding acetate and 

deacetylated lysine (Figure 3).
24

 

 

 

 

 Proposed reaction mechanism for Zn
2+

 dependent lysine deacetylases.
25

 Figure 3:
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2.1.3 Recognition domains 

Acetylation is recognized by several ―reader‖ domains translating the acetylation code into 

various phenotypes. The bromodomain was discovered in 1992 and is by far the best 

characterized recognition module of N
6
-acetyl lysine. In total, 61 bromodomains are encoded 

by 46 proteins (Table 3).
2
 

 

 Bromodomain containing proteins.
2
 Table 3:

 

Localization Proteins 

Nucleus KAT2A (GCN5), KAT2B (PCAF), CECR2, BRDT, BRD4, BRD3, BRD2, 

BAZ1A, BRD8B, BAZ1B, BRD9, BRD7, BRPF3, BRD1, ATAD2B, TRIM33, 

SP110, SP140, SP140L, BAZ2B, BAZ2A, KMT2A, TAF1L, TAF1, ZMYND8, 

PBRM1, BRG1, SMARCA2 

Nucleus / Cytoplasm IBPTF, KAT3A (CBP), KAT3B (p300), BRWD1, PHIP, BRPF1, TRIM24, 

SP100, KAP1, ZMYND11 

Nucleus / Extracellular BRWD3 

Nucleus / Exosome ATAD2 

Nucleus/ Tight junctions ASH1L 

 

The bromodomain is approximately 110 amino acids in length and structurally conserved 

from yeast to humans. A hydrophobic cleft is formed by four left-handed α-helices (αZ, αA, 

αB, and αC) connected by two loops (ZA and BC loops). The carbonyl function of N
6
-acetyl 

lysine is bond in the center of this cleft by asparagine via a hydrogen bond. Tyrosine residues 

play an important role in ligand positioning via π−π stacking and hydrogen bond formation 

with critical water molecules.
26

  

Interestingly, many KATs contain bromodomain motifs and nearly all bromodomain 

containing proteins are nuclear factors binding to chromatin and changing its conformation. In 

most cases, this leads to activation of transcription, e.g., KAT3B (p300), but inhibitory 

―readers‖ are known as well, e.g., BAZ2A. 

Beside bromodomain the YEATS domain (named after founding members Yaf9, ENL, AF9, 

Taf14, and Sas5) and tandem plant homodomain (PHD) are important ―readers‖ of acetylation 

and known for binding and remodeling chromatin structures. The N
6
-acetyl lysine ligand is 

bond by aspartic acid in PHD
27

 and several hydrogen bonds in YEATS.
28

 In contrast to 

bromodomain, tandem PHD as well as YEATS, unmodified lysine residues are selectively 

recognized by SET proteins (Su(var)3-9 Enhancer-of-zeste and Trithorax). These proteins 

bind to non-acetylated lysine rich substrates like tumor suppressor p53 via their acidic 

domains.
29
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2.1.4 Acetylation in metabolism 

Acetylation‘s pivotal role in gene regulation was proposed by Allfrey in 1964, who 

discovered that acetylated histones were less inhibitory for RNA polymerase.
30

 Later, the 

same group identified weakened interaction between negatively charged DNA and histones 

due to neutralization of positively charged lysine moieties via acetylation as a molecular 

mechanism of gene activation.
31

 Notably, gene regulation by acetylation is not limited to 

modification of histones. Acetylation of transcription factors and proteins of the basal 

transcription machinery are alternative regulatory pathways. Mechanistically, acetylation 

activates transcription factors by nuclear translocation, protein stabilization, enhanced 

chromatin binding, or modification of molecular complex composition.
2
 As an example 

nuclear factor ―kappa-light-chain-enhancer‖ of activated B-cells (NF-κB), which is a major 

regulator for immune response and apoptosis, is located inactive in the cytoplasm and is 

activated by acetylation mediated translocation to the nucleus.
32

 On the other hand, stability of 

tumor suppressor p53 is increased by acetylation counteracting ubiquitination and subsequent 

proteasomal degradation.
33

 In case of positive transcription factor b (P-TEFb) acetylation is 

needed to modify the complex structure and activate basal transcription machinery of RNA 

polymerase II complex.
2
 

Beside the important role in nuclear transcription processes, acetylation regulates the 

aggregation and stability of proteins in the cytoplasm. As an example acetylation of 

non-histone proteins was discovered in cytoskeletal α-tubulin. It is unclear whether 

acetylation is a cause or consequence of high α-tubulin stability, but acetylation is generally 

considered as a marker of protein longevity.
34

  While increased stability of cytoskeletal 

proteins may be beneficial, acetylation of microtubule-associated proteins like Tau possibly 

facilitates   dementia and Alzheimer‘s disease pathogenesis.
2
 

Proteomic studies revealed that every single protein involved in central mitochondrial 

metabolism like citric acid cycle, lipid β-oxidation and urea cycle is potentially acetylated. 

Because of the correlation with acetyl-CoA concentrations, acetylation and deacetylation of 

lysine residues may serve as a sensor and regulator of metabolic state in mitochondria.
35

 

Despite acetylation‘s ubiquitous abundance in metabolic regulation its role in aging remains 

poorly understood. Several contrary trends are reported in literature depending on organism, 

tissue, subcellular location and site-specific position in proteins.
36–38

 Consequently, (site-

specific) quantitation of acetylation remains a compelling task to understand the aging 

process. 
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2.2 Acylation by reactive acyl-CoA species 

2.2.1 Novel lysine acylation structures 

Progress in analytical chemistry and improved instruments like highly sensitive mass 

spectrometers resulted in discovery of several novel N
6
-acyl lysine modifications, which are 

structurally closely related to traditional acetylation (Table 4). 

 

 Novel N
6
-acyl lysine modifications. Table 4:

 

Modification Year Discovered in 

Myristoylation 1992 Monocyte  tumor necrosis factor alpha precursor
39

 

Formylation 2006 TK6 cell histones
40

 

Propionylation 2007 HeLa cell histones
41

 

Butyrylation 2007 HeLa cell histones
41

 

Succinylation 2010 E. Coli isocitrate dehydrogenase
42

 

Crotonylation 2011 HeLa cell histones
43

 

Malonylation 2011 HeLa whole-cell lysate
44

 

Glutarylation 2014 HeLa whole-cell lysate
45

 

2-Hydroxyisobutyrylation 2014 Mouse testis histones
46

 

3-Hydroxybutyrylation 2016 HEK293 cell histones
47

 

3-Hydroxy-3-methylglutarylation 2017 Mouse liver lysate
48

 

3-Methylglutarylation 2017 Mouse liver lysate
48

 

3-Methylglutaconylation 2017 Mouse liver lysate
48

 

Benzoylation 2018 HepG2 cell histones
49

 

 

Fatty acylation of lysine residues was first described in 1992. At this time, the proteome was 

mainly analyzed by 2D-gel electrophoresis and myristoylation was detected by incorporation 

of radioactive [
3
H] myristate.

39
  Proteomic approaches using mass spectrometry were 

established in the 1990s.
50

 This innovation was a big step towards discovery of short-chain 

lysine acylation, e.g., formylation, propionylation, and butyrylation of histone proteins in 

2006 and 2007.
40,41

 The first unsaturated acylation detected was crotonylation of histones in 

2011. Acidic modifications succinylation, malonylation and glutarylation were detected in 

several metabolic pathways between 2010 and 2014.
42,44,45

 The spectrum of lysine acylation 

was expanded by polar modifications 2-hydroxyisobutyrylation and 

3-hydroxybutyrylation.
46,47

 In analogy to the mechanism of glutarylation formation of several 

branched-chain derivatives was verified by mass spectrometry.
48

 Aromatic lysine 

benzoylation is the most recently proven acylation in histones and links acylation to the food 

preservative sodium benzoate.
49
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2.2.2 Reactive acyl-CoA species 

Reactive acyl-CoA species (RACS) are activated thioesters and precursors of lysine 

acylation.
12,51

 They are essential intermediates in cellular metabolism (Table 5) reaching 

concentrations up to 100 μmol/g wet weight depending on tissue and metabolic status.
52

  

 

 Reactive acyl-CoA species and their metabolic pathways. Table 5:

 

Structure Metabolic pathways 

Formyl-CoA α-Oxidation
53,54

 

Acetyl-CoA Citric acid cycle, metabolism of fatty acids, carbohydrates, and 

amino acids, synthesis of steroids and acetylcholine
55

 

Propionyl-CoA Odd-chain fatty acid oxidation,
56

 amino acid catabolism,
57

 bile 

acid synthesis
58

  

Butyryl-CoA Lipid metabolism
41

 

2-Methylbutyryl-CoA Isoleucine metabolism
59

 

Isovaleryl-CoA Leucine metabolism
60

 

Crotonyl-CoA Metabolism of lysine and tryptophan
61

 

Tiglyl-CoA Isoleucine metabolism
59

 

Acetoacetyl-CoA Ketogenesis,
62 cholesterol biosynthesis,

63
 mevalonate pathway

64
 

3-Hydroxybutyryl-CoA Ketogenesis
65,47

 

Malonyl-CoA Lipogenesis
44

 

Succinyl-CoA Citric acid cycle,
66

 amino acid metabolism
42

 

Glutaryl-CoA Metabolism of lysine and tryptophan
61

 

3-Hydroxy-3-methyl-glutaryl-CoA Ketogenesis,
62

 mevalonate pathway
64

 

Medium-chain acyl-CoA (C6-12 acyl-CoA) Lipid metabolism
67

 

Long-chain acyl-CoA (C14-22 acyl-CoA) Lipid metabolism
68

 

 

Acetyl-CoA as the most abundant thioester structure is a central molecule in energy 

metabolism of carbohydrates, lipids, and amino acids in mitochondria.55 The mitochondrial 

membrane is impermeable for acetyl-CoA and mitochondrial concentrations are estimated to 

be 20 – 30-fold higher compared to concentrations found outside of mitochondria. Anyhow, 

transfer to cytoplasm and nucleus is possible in form of citrate and reformation of acetyl-CoA 

by ATP citrate lyase.
69

 

Beside acetyl-CoA several linear and even-numbered C4-C22 RACS are generated by lipid 

metabolism, e.g., β-oxidation in mitochondria and lipogenesis in cytoplasm.41,67,68 The latter 

pathway requires malonyl-CoA as the first building block.44
 Catabolism of odd-numbered 

fatty acids or α-oxidation of 3-methylated fatty acids results in propionyl-CoA56 and 

formyl-CoA,53,54 respectively. 

In analogy to acetyl-CoA the citric acid cycle is a major source of succinyl-CoA. In addition, 

succinyl-CoA is generated by amino acid metabolism.70
 Further RACS are formed in 
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metabolism of leucine (isovaleryl-CoA),60 isoleucine (2-methylbutyryl-CoA and tiglyl-CoA),59 

and lysine/tryptophan (crotonyl-CoA and glutaryl-CoA).61
 

Alternative pathways leading to RACS like 3-hydroxybutyryl-CoA, 3-hydroxy-3-methyl-

glutaryl-CoA, and acetoacetyl-CoA are ketogenesis and mevalonate pathway.62,64 

Additionally, RACS can be formed in vivo by activation of their corresponding carboxylic 

acids via acyl-CoA synthetases.
11

 

 

2.2.3 Acylation mechanisms 

RACS are highly reactive due to polarization of the carbonyl carbon of the thioester moiety 

and the excellent leaving group coenzyme A. Especially under the conditions found in 

mitochondria with elevated pH of 8.0 and high acyl-CoA concentrations non-enzymatic 

acylation of lysine residues is facilitated. The reaction is initiated by nucleophilic attack of the 

N
6
-amino function of lysine at acyl-CoA and proceeds via a transient tetrahedral intermediate 

to N
6
-acetyl lysine and coenzyme A (Figure 4).

12
 

 

 

 

 Mechanism of non-enzymatic acylation.
12

 Figure 4:

 

Dicarboxylic acyl-CoA compounds with four- or five-carbon backbones, e.g., succinyl-CoA, 

glutaryl-CoA, and 3-hydroxy-3-methyl-glutaryl-CoA undergo intramolecular catalysis and 

anhydride formation (Figure 5). These anhydrides are the reactive species acylating lysine 

residues without tetrahedral intermediate formation. Compared to acetylation by acetyl-CoA 

reactivity is increased by a factor of up to 150.
51

 

 

 

 

 Mechanism of non-enzymatic acylation by succinyl-CoA.
48

 Figure 5:
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The concept of non-enzymatic lysine acylation is generally accepted and incubations of 

proteins as well as denatured mitochondrial lysates with various RACS under physiological 

conditions indeed proved the concept of non-enzymatic acylation.
12,48,51

 

Nevertheless, recent publications suggested additional enzymatic pathways especially for 

nuclear acylation.
11

 Specific acyltransferases are currently unknown, but several lysine 

acetyltransferases were shown to have an expanded repertoire of promiscuous acyltransferase 

activities (Table 6).  

 

 Potential acyltransferases.  Table 6:

 

Name Catalytic activity 

KAT3B (p300) Acetylation, propionylation, butyrylation, crotonylation
71

 

KAT2A (GCN5) Acetylation, propionylation, butyrylation 
72

 

KAT2B (PCAF) Acetylation, propionylation, butyrylation
73

 

KAT5 (TIP60) Acetylation, propionylation
74

 

KAT8 (MOF) Acetylation, propionylation
75

 

 

Kinetic analysis of the most promiscuous KAT3B (p300) confirmed catalysis of acylation but 

revealed progressively slower rates with increasing chain length, e.g., efficiency of 

butyrylation decreased by a factor of 45 compared to acetylation.
71

 

Acetylation, propionylation, and butyrylation activities were reported for GNATs KAT2A 

and KAT2B.
73,72

 In case of KAT2A propionylation and butyrylation efficiencies equaled 

75 % and 1 % of acetylation rates, respectively.
72

 Values for KAT2B catalyzed propionylation 

equaled 10 % and butyrylation equaled 0.2 % of acetylation. These KAT2B values and 

propionylation of histone H4 by KAT5 were determined by 5,5'-dithiobis-(2-nitrobenzoic 

acid) (DTNB) assay.
74

 However, DTNB is only an indicator of free thiols, but these groups 

are formed by RACS via hydrolysis and non-enzymatic acylation as well. In order to exclude 

false-positive results acylation specific detection and a blank using inactivated KAT are 

mandatory. This essential information was unfortunately not reported in studies cited above. 

A positive example is the propionylation activity of KAT8 (MOF) reported by Han et al.
75

 In 

this study propionylation activity was validated in vitro and by MOF overexpression in cell 

culture. These results are especially interesting, because KAT8 (MOF) is one of only three 

reported acetyltransferases in mitochondria, in which acylation was previously postulated as 

an exclusively non-enzymatic mechanism.
 2,12
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2.2.4 Sirtuins 

NAD
+
 dependent sirtuins were originally discovered as deacetylases, but several members of 

this enzyme class have an expanded repertoire of deacylase activities.
76

 The 7 mammalian 

sirtuins have characteristic subcellular localization i.e. SIRT1/6/7 in the nucleus, SIRT2 in 

cytoplasm, and SIRT3-5 in mitochondria (Table 7).
77

 

 

 NAD
+
 dependent sirtuins.

 77,78 
 Table 7:

 

Name Primary localization Catalytic activities 

SIRT1 Nucleus Deacylase (acetylation and medium-chain acylation)
76

 

SIRT2 Cytoplasm Deacylase (acetylation and medium-chain acylation),
76

 ADP 

ribosyltransferase
79

 

SIRT3 Mitochondria Deacylase (aliphatic acylation)
80

 

SIRT4 Mitochondria Deacylase (branched-chain acylation),
81

 ADP ribosyltransferase,
82

 

Lipoamidase,
82

 Biotinidase
82

  

SIRT5 Mitochondria Deacylase (acidic acylation)
80

 

SIRT6 Nucleus Deacylase (acetylation and long-chain acylation),
83

 ADP 

ribosyltransferase
84

 

SIRT7 Nucleus Deacetylase
85

 

 

SIRT1 is a nuclear deacetylase with high deacylase activity for C6-C12 medium-chain 

acylation and mediocre affinity for propionylation and butyrylation in vitro.
76

 It is the best-

studied sirtuin and mediates lifespan extension effects observed in caloric restriction. 

Important mechanisms of SIRT1 are reduction of inflammation by NF-κB deacetylation, 

regulation of lipid metabolism via peroxisome proliferator-activated receptor gamma 

coactivator 1-alpha (PGC1α), activation of key transcription factors, e.g., forkhead box 

(FOXO), and tumor suppression by preserving genomic integrity.  Consequently, enhancing 

SIRT1 is a promising target to improve health during aging.
86,87

 

The only sirtuin primarily located in cytoplasm is SIRT2.
77

 This excellent deacetylase has 

only average affinity for C8-C10 acylation and very low depropionylation, debutyrylation, 

and decrotonylation activity in vitro.
76

 In addition, SIRT2 has ADP ribosyltransferase activity 

and a broad spectrum of target proteins.
79

 Due to especially high concentrations in brain an 

important role in neuronal development is postulated for SIRT2.
78

 

SIRT3 is a deacetylase located in mitochondria with very low in vitro activities for 

depropionylation and desuccinylation.
76

 As a classical regulator of mitochondrial energy 

metabolism SIRT3 knock-out in mice leads to impaired maintenance of energy balance during 

stress.
87
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In contrast to SIRT3 mitochondrial sirtuin SIRT4 has very low deacetylation activity. On the 

other hand SIRT4 is an excellent branched-chain deacylase for, e.g., 3-hydroxy-3-methyl-

glutarylation. This modification occurs in branched-chain amino acid metabolism, which is 

regulated by SIRT4.
81

 Moreover, SIRT4 has an expanded repertoire of ADP 

ribosyltransferase, lipoamidase, and biotinidase activities.
82

 

In analogy to SIRT4 mitochondrial SIRT5 has low affinity for acetylation but is an 

outstanding deacylase for acidic modifications, e.g., malonylation, succinylation, and 

glutarylation.
76

 These modifications are formed by important mitochondrial intermediates and 

knock-out of SIRT5 leads to mitochondrial dysregulation, e.g., defects in the urea cycle.
87

 

Deacetylase activity of nuclear SIRT6 is below average, medium-chain deacylase activity is 

mediocre and ADP ribosyltransferase activity very weak.
81

 Nevertheless, SIRT6 is a good 

deacylase for long-chain C14-C16 acylation and plays an important role in maintaining both 

lifespan and healthspan by promoting genomic stability and telomere integrity.
88

 

To be correct SIRT7 is not just another nuclear sirtuin, but mainly found in the nucleolus.
77

 

Very little is known about SIRT7 specificity except average deacetylation activity.
76

 Despite 

rare literature about SIRT7 the enzyme is vitally important. Mice lacking SIRT7 are prone to 

hypertrophic inflammatory cardiomyopathy, fatty liver disease, age related hearing loss, and 

reduced mean and maximal lifespan.
76

 On the other hand, SIRT7 knock-down in cancer cell 

lines inhibits tumor growth.
89

 

Sirtuins catalyze deacylation by nucleophilic addition of acyl oxygen to the anomeric (C1′) 

carbon of the nicotinamide ribose resulting in the formation of a C1′-O-alkylamidate 

intermediate and nicotinamide (Figure 6). In the next step a bicyclic intermediate is formed by 

histidine catalyzed abstraction of an electron from the 2′-hydroxyl group of the NAD
+
 ribose, 

which then attacks the C1′-O-alkylamidate carbon. Base catalyzed deprotonation of water and 

subsequent hydrolysis of the bicyclic intermediate deacylates lysine and generates 2′-O-acyl-

ADP-ribose.
90,91

  

 

 

 

 

 Proposed reaction mechanism for NAD
+
 dependent sirtuins.

91
 Figure 6:
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2.2.5 Acylation in metabolism 

Aliphatic acylations like propionylation, butyrylation, and crotonylation are very similar to 

acetylation regarding their structure. Consequently, these acylations have similar effects on 

chromatin structure and activation of transcription in vitro and in vivo.
92,93

 In analogy to 

histone acetylation ―reader‖ proteins can detect acylation and subsequently induce gene 

expression.
11

  In an assay of 49 bromodomains for their binding of acylated peptides, all 49 

bromodomains bound propionylated peptides, while only three bound butyrylated and one 

crotonylated peptides. To sum it up, bromodomains generally detect propionylation, but 

butyrylation  and crotonylation are only detected by very few bromodomains and affinity 

decreases with chain length.
94

 In contrast, YEATS domains have higher binding affinity 

towards propionylation and butyrylation compared to acetylation and highest affinity for 

crotonylation.
95

 Tandem PHD has highest binding efficiency for crotonylation followed by 

acetylation, butyrylation, and propionylation.
96

  

During fasting 3-hydroxybutyrate is formed via ketogenesis and transformed to 

3-hydroxybutyryl-CoA by an acyl-CoA synthetase. Increased 3-hydroxybutyrylation of 

chromatin results in up-regulation of genes involved in starvation response pathways. Thus, 

acylation effectively couples metabolism to gene expression.
47

 Recently discovered aromatic 

lysine benzoylation links the food preservative sodium benzoate to chromatin activation.
49

 

Mitochondrial acylation, especially by acidic acylation, e.g., malonylation, succinylation, 

glutarylation, and 3-hydroxy-3-methylglutarylation, is another emerging regulatory 

mechanism in metabolism. Currently, available studies mainly focus on hyperacylation 

induced by knock-out of mitochondrial sirtuins.
66,80,97

 Exemplary, hypersuccinylation 

activates succinate dehydrogenase leading to increased mitochondrial respiration
98

 and 

hypermalonylation of glyceraldehyde 3-phosphate dehydrogenase is an efficient inhibitor of 

glycolytic flux.
99

 Another example is inhibition of enzymes in leucine catabolism via 

3-hydroxy-3-methylglutarylation after SIRT4 knock-out. As a result of this inhibition more 

insulin is secreted and age-dependent insulin resistance accelerates.
81

 

Beside regulatory functions acylation is considered as a form of stress in aging and disease.
3
 

Mitochondrial acylation is significantly increasing with age in organisms lacking 

mitochondrial sirtuins, e.g., C. elegans. On the other hand acylation is not correlating with 

aging in rats, possibly explaining the gain of longevity in higher organisms.
100

 In addition, 

sirtuins are important targets for treatment of age related diseases like cancer and 

neurodegeneration, hence, acylation may be involved in these pathologies.
4
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2.3 Acylation by Maillard reaction 

2.3.1 Initial phase and α-dicarbonyl formation 

The Maillard reaction or non-enzymatic browning was discovered in 1912 by Louis-Camille 

Maillard as the reaction between reducing sugars and amines such as proteins, peptides, or 

amino acids. The reaction cascade can be separated into three phases, namely initial phase, 

formation of α-dicarbonyls and finally formation of advanced glycation endproducts (AGEs) 

as well as browning structures (melanoidins).
101

 First step of the initial phase is the 

nucleophilic attack of an amine at the carbonyl carbon atom of a reducing sugar, e.g., glucose 

and formation of an imine. This imine rearranges via an 1,2-enaminol intermediate to the 

Amadori product (Figure 7).
102

 If fructose is the reducing sugar the equivalent Heyns product 

is formed.
103

 In the second phase central α-dicarbonyl intermediates like 3-deoxyglucosone 

are formed via the 1,2-enaminol by β-elimination and glucosone from oxidation of Amadori 

product. Further keto-enol tautomerization of the Amadori product and β-elimination finally 

leads to 1-deoxyglucosone and Lederer glucosone (Figure 7).
13

  

 

 

 

 Initial phase of amine induced glucose degradation and α-dicarbonyl formation.
13

 Figure 7:
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2.3.2 Fragmentation 

Keto-enol tautomerism of α-dicarbonyls, e.g., 1-deoxyglucosone results in formation of 

β-dicarbonyls 1-deoxy-2,4-hexodiulose, 1-deoxy-3,5-hexodiulose, and 1-deoxy-4,6-hexo-

diulose. These intermediates readily react with nucleophiles and, thus, carboxylic acids and 

highly reactive short-chain carbonyls are formed by hydrolytic β-dicarbonyl cleavage. As an 

example hydration of 2,4-deoxyglucosone induces scission to acetic acid and a C4-enediol 

intermediate, which further isomerizes to tetruloses and tetrosones.
104

 

Alternatively, an amine induced β-dicarbonyl cleavage mechanism generates amide AGEs 

like N
6
-acetyl, N

6
-glycerinyl, N

6
-lactoyl, and N

6
-formyl lysine as well as their α-hydroxy 

carbonyl counterparts in incubations of 1-deoxyglucosone and lysine (Figure 8).
105

 

 

 

 

 Amine induced β-dicarbonyl cleavage of 1-deoxyglucosone.
105

 Figure 8:

 

Another mechanism leading to lysine acylation by amide AGEs is amine induced oxidative 

α-dicarbonyl cleavage. Exemplary, ascorbic acid is reversibly oxidized to dehydroascorbic 

acid and irreversibly hydrolyzed to 2,3-diketogulonic acid. This α-dicarbonyl is attacked by 

activated oxygen, which is incorporated into the carbon backbone forming an asymmetric 

carboxylic acid anhydride intermediate via a single-electron transfer reaction and subsequent 

Baeyer-Villiger type rearrangement.
106

  The mechanism of oxygen incorporation was 

unequivocally verified by isotopic labeling experiments using 
18

O-dioxygen.
107

 Carboxylic 

acid anhydrides are highly reactive and the intermediate is cleaved into either N
6
-oxalyl or 

N
6
-threonyl lysine as well as their respective carboxylic acid counterparts (Figure 9).

106
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 Amine induced oxidative α-dicarbonyl cleavage of 2,3-diketogulonic acid.
106

  Figure 9:

 

2.3.3 Isomerization 

Fragmentation processes during Maillard reaction and a plethora of different metabolic 

pathways result in highly reactive short-chain α-dicarbonyls like glyoxal (GO) and 

methylglyoxal (MGO) (Table 8).
108

 

 

 Pathways of short-chain α-dicarbonyl formation.
108

 Table 8:

 

Dicarbonyl Formation 

Glyoxal Lipid peroxidation
109

 

 Degradation of glycated proteins
108

 

 Oxidative degradation of serine via glycolaldehyde oxidation
110,111

 

 Monosaccharide degradation
112

 

 Disaccharide degradation
113

 

 Degradation of nucleotides
114,115

 

 Food and beverages
116

 

Methylglyoxal Degradation of glyceraldehyde-3-phosphate and dihydroxyacetonephosphate in anaerobic 

glycolysis, gluconeogenesis, glyceroneogenesis, and photosynthesis
117

 

 Ketone body metabolism
118

 

 Lipid peroxidation
109

 

 Threonine metabolism
119

 

 Degradation of glycated protein
108

 

 Monosaccharide degradation
112

 

 Disaccharide degradation
113

 

 Food and beverages
116
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Isomerization of lysine adducts with short-chain dicarbonyls, e.g., GO and MGO were 

initially discovered as an important source of carboxyalkyl AGEs like N
6
-carboxymethyl 

lysine (CML) and N
6
-carboxyethyl lysine (CEL), respectively.

120
 But CML and CEL are not 

the only endproducts in these isomerization cascades of GO and MGO. Alternatively, a 

plethora of acylated lysine species including α-hydroxyamide, α-oxoamide, and bivalent 

amide crosslink AGEs are formed (Figure 10).
 13,121,122

 

 

 

 

 Isomerization cascades.
13,121,122

 Figure 10:

 

In case of nucleophilic addition of water at the imine group under deaeration, isomerization 

leads to α-hydroxyamide AGEs N
6
-glycoloyl lysine (GALA) by GO and N

6
-lactoyloyl lysine 

by MGO.
 122,123

  Under aeration, oxidation of the electron rich enaminol intermediate yields 

α-oxoamides N
6
-glyoxylyl lysine or N

6
-pyruvoyl lysine, respectively.

122
 Another option is 

nucleophilic attack of a second lysine at the imine resulting in crosslinking via bivalent GO 

lysine amide (GOLA) or MGO lysine amide (MOLA). 
13,121
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2.3.4 Regulation of glycation 

Early stage modifications like protein‐bound Amadori products can be cleaved 

enzymatically.
102

 One example is fructosamine-3-kinase (FN3K), which selectively 

phosphorylates the hydroxyl group at C‐3 position under ATP consumption. The instable 

phosphate ester decomposes in a non-enzymatic way into recovered protein and 

3-deoxyglucosone (Figure 11).
124

 This mechanism is considered a major source of 

3-deoxyglucosone in vivo.
108

 

 

 

 

 Mechanism of fructosamine-3-kinase.
102

 Figure 11:

 

Several enzymes are involved in the limitation of glycation by detoxification of potential 

precursors like α-dicarbonyls. The cytosolic glyoxalase system is the major regulator of 

cellular GO and MGO concentrations. In the first step a hemithioacetal intermediate is formed 

by non-enzymatic reaction of a α-dicarbonyl, e.g., MGO and glutathione (GSH). Glyoxalase I 

catalyzes the intramolecular redox reaction (disproportionation) to the thioester, e.g., 

lactoylglutathione. Finally, glyoxalase II hydrolyzes the thioester resulting in the α-hydroxy 

carboxylic acid (e.g., lactic acid) and regeneration of GSH (Figure 12).
125

 

 

 

 

 Detoxification of MGO by the glyoxalase system.
126

 Figure 12:

 

An alternative minor pathway are enzymes of the aldo-keto reductase family, e.g., 

aldoreductase isoforms 1B1, 1B3, and 1B8 for GO and isoforms 1A4, 1B1, and 1B3 for MGO 

degradation.
127

 Nevertheless, in tissues with low glyoxalase activity, e.g., renal medulla and 

for glucosones like 3-deoxyglucosone, which are not targeted by glyoxalase,
125

 enzymes of 

aldo-keto reductase type are the primary detoxification mechanism.
128,129

  The catalytic 

reduction of α-dicarbonyls by aldo-keto reductases is NADPH dependent. However, the 

product distribution is glutathione dependent, because the enzymes use either unhydrated 
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carbonyls or glutathione hemithioacetals.  Acetol is the major product of enzymatic reduction 

of free MGO, while the hemithioacetal forms lactaldehyde. Both structures are possibly 

further reduced by aldo-keto reductases to propanediol (Figure 13). 
130

 

 

 

 

 Detoxification of MGO by aldo-keto reductases.
130

 Figure 13:

 

In addition, MGO dehydrogenases (aldehyde dehydrogenases E1, E2, and E3)
131

 and 

3-deoxyglucosone dehydrogenase (aldehyde dehydrogenase 1A1)
132

 are described in literature 

as minor degradation mechanisms.
108

 MGO and 3-deoxyglucosone dehydrogenases catalyze 

NAD or NADP dependent oxidation of unhydrated α-dicarbonyls (Figure 14).
130

 

 

 

 

 Detoxification of MGO by aldehyde dehydrogenases.
130

 Figure 14:

 

Recently, DJ-1 was described as a novel regulator of glycation in human metabolism. DJ-1 

was originally discovered as an oncogene and a factor in Parkinson‘s disease, but was later 

linked to protection against oxidative stress and cell death.
133

 The exact biochemical 

mechanism of DJ-1 remains unclear, but several studies report low glyoxalase-like 

activity
133,134

 and deglycase activity for GO/MGO derived AGEs.
135–138

  In contrast, some 

studies start to question catalytic activity and relevance of DJ-1 for regulation of glycation in 

vivo.
139,140

 

Chemicals like bardoxolone methyl, which is a nuclear factor erythroid 2-related 

factor 2 (NRF2) activator, are an effective way to stimulate expression of glyoxalase, 

aldo-keto reductases, and aldehyde dehydrogenases. This increases dicarbonyl detoxification, 

which is especially beneficial in diabetic patients with chronic renal disease.
141

 Unfortunately, 
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bardoxolone methyl has serious heart-related adverse effects including heart failure and 

clinical trials were stopped.
142

 Combination of NRF2 activators trans-resveratrol and 

hesperidin is an improved method currently under development.
143

 

Another strategy to prevent carbonyl stress is activation of transketolase by thiamine or its 

monophosphate derivative benfotiamine. Thus, formation of triosephosphates and 

subsequently α-dicarbonyls is reduced.
144

 An additional factor may be the recently reported 

enzymatic conversion of glycolaldehyde to less reactive erythrulose via transketolase, which 

decreased glycation up to 70 % in vitro.
145

 

Beside activation of enzymatic regulatory pathways the scavenging of α-dicarbonyls is one of 

the oldest approaches to reduce dicarbonyl stress. The prototype compound is 

aminoguanidine, which reacts with dicarbonyls to form 3-amino-1,2,4-triazine derivatives 

(Figure 15).
146

 Despite aminoguanidine is an excellent α-dicarbonyl scavenger in vitro it is not 

applicable in vivo due to toxicity problems at clinical relevant concentrations.
147

 Alternatively, 

carbonyl scavenging by thiols is of central interest,
148

 e.g., by cysteine derivatives like 

N-acetylcysteine
149

 and penicillamine (3,3-dimethyl-cysteine).
150

 

 

 

 

 Scavenging of α-dicarbonyls by aminoguanidine.
146

 Figure 15:

 

The chemical ―breaking‖ of AGE crosslinks by N-phenacylthiazolium bromide (PTB) and its 

analogue alagebrium (ALT-711) was another idea to treat glycation. However, studies 

indicate ambiguous results and various alternative mechanisms. Consequently, the concept of 

crosslink breakers is controversial at best.
151

 

In recent years, food-derived phenolic compounds gained interest as potential carbonyl 

scavengers.
152

 Several flavonoids like luteolin, rutin, quercetin, and epigallocatechin-3-gallate 

(EGCG) inhibit MGO mediated AGE formation in vitro by 82.2 %, 77.7 %, 65.5 % and  

69.1 %, respectively.
153

 EGCG is the major flavonoid in green tea and traps about 90 % of 

MGO in 10 min under physiological conditions. Due to sterically reasons positions 6 and 8 of 

the A-ring show highest nucleophilicity and mixtures of 6-mono-MGOEGCG, 
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8-mono-MGOEGCG, and 6,8-di-MGOEGCG adducts are formed depending on reaction 

conditions (Figure 16).
154

  

 

 

 Scavenging of MGO by EGCG.
154

 Figure 16:

 

Scavenging of dicarbonyls by flavonoids in vivo is more complex because of factors like 

bioavailability, metabolic processing, oxygen pressure, pH, and presence of competing 

compounds.
152

 Nevertheless, dicarbonyl scavenging by soybean genistein, which shares the 

A-ring motif with EGCG and a MGO trapping efficiency of up to 97.7 %,
155

 was extensively 

researched in mice. In contrast to in vitro experiments, only mono-MGO adducts as well as 

their metabolites were detected in mouse urine. Interestingly, except of 6-hydroxygenistein 

and 8-hydroxygenistein all genistein metabolites are comparable efficient scavengers, 

highlighting the importance of the A-ring motif.
156

   

 

2.3.5 Glycation in aging and disease 

Glycation is a potential biomarker of aging
157

 and was made responsible as a potential cause 

of aging (glycation hypothesis of aging).
158

 Especially in extracellular proteins with low 

turnover like collagen
121

 and α‐crystalline
159

 levels of AGEs correlate with aging and several 

studies identified glycation as a molecular mechanism leading to age related tissue 

stiffening
121,160

  and cataract formation.
161,162
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Glycation is not limited to extracellular proteins and modification of intracellular proteins is 

influencing several hallmarks of aging like loss of proteostasis, epigenetic alteration, 

mitochondrial dysfunction, and inflammation.
163

  As an example AGEs cause reduced 

efficiency of the ubiquitin-proteasome system,
164

 compete with ubiquitination sites
165

 and 

prevent accessibility of substrates by aggregation and crosslinking.
166

 Thus, regular protein 

homeostasis is readily impaired by glycation leading to serious complications, e.g., reduction 

of life span and contribution to pathologies like Alzheimer‘s disease.
166,167

  Moreover, 

histones are highly modified by glycation with an increase in aging and diabetes.
168

 Glycation 

changes the histone structure
169

 and possibly competes with sites of acetylation, thus AGEs 

interfere with epigenetic regulation.
138

 Aged mitochondria are characterized by a decrease of 

respiration and ATP production. Similar effects are inducible by glycation of, e.g., glutamate 

dehydrogenase and isolated mitochondria in vitro and in vivo.
170–172

 But decrease of 

respiration is only one side of mitochondrial dysfunction induced by AGEs, as on the other 

side production of reactive oxygen species increases.
173

 These reactive intermediates mediate 

acute inflammatory response.
174

  In addition, proteins modified by CML and other AGEs are 

discussed as potential ligands binding to the receptor for AGE (RAGE).
175

 RAGE was 

discovered in 1985
176

 and characterized in 1992.
177

 Binding to RAGE triggers intracellular 

signaling cascades leading to activation of NF‐κB, which induces molecular mechanisms of 

inflammation reactions.
178 

These RAGE mediated processes are involved in etiology of 

vascular diseases
179

 and potentially explain late stage complications of diabetes and uremia.
179

 

Diabetes was first linked to glycation by detection of HbA1c, which is hemoglobin with an 

Amadori product at the N-terminal valine residue, as an important biomarker to assess long-

term blood glucose concentrations.
180

 Later, elevated concentrations of glucose and 

α-dicarbonyls
181

 resulting in higher AGE concentrations were postulated as major causes for 

diabetic complications like atherosclerosis, neuropathy, and nephropathy.
182

 Atherosclerosis is 

the most serious consequence of diabetes and the major cause of death in these patients. It is 

characterized by formation and deposition of atherosclerotic plaques in arterial walls, 

narrowing of blood vessels, and finally myocardial infarction.
5
 Pathogenesis of 

atherosclerosis is facilitated by glycation because glycated low-density lipoprotein (LDL) is 

not recognized by LDL receptor but uptake by macrophages is enhanced.
183

 In contrast, 

glycation of high-density lipoprotein (HDL) increases its turnover and reduces its efficiency 

during reverse cholesterol transport.
184

 Thus, glycation of lipoproteins results in 

hyperlipidemia and accelerated foam cell formation.
5
 As mentioned above, crosslinking of 

structure proteins, e.g., collagen
185

 and activation of RAGE are additional triggers of diabetic 
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atherosclerosis.
186

 Diabetic neuropathy is characterized by demyelination and axonal 

degeneration of peripheral neurons.
5
 Glycated myelin stimulates macrophages to excrete 

proteases and is prone to phagocytosis.
187

 Additionally, demyelination of neurons can be 

caused by AGEs binding to immunoglobulins.
188

 Severity of diabetic nephropathy correlates 

with AGEs found in renal tissues.
189

 In analogy to atherosclerosis, modification of collagen 

by AGEs thickens the basement membrane and impairs glomerular filtration. This effect is 

exaggerated by AGE mediated activation of transforming growth factor-β (TGF-β) which in 

turn stimulates synthesis of collagen.
190

 Ultimately, loss of glomerular function causes renal 

failure and uremia.
5
 Patients with chronic renal failure accumulate dicarbonyls and AGE free 

adducts, because these substances are not excreted via urine anymore.
191

 The accumulation of 

dicarbonyl and oxidative stress damages DNA and interacts with RAGE, which possibly 

explains the higher incidence of cancer in chronic kidney disease.
192

 RAGE is typically 

overexpressed in cancer and AGE induced proinflammatory RAGE-NF‐κB signaling is 

considered as an important mechanism in development of cancer.
193

 Moreover, AGE 

treatment of breast
194

 and prostate
195

 cancer cell lines promotes cell growth, migration, and 

invasion. Last but not least, glycation is a potential mechanism in Alzheimer‘s disease (AD). 

Hallmarks of this disease are formation of intracellular tau protein aggregates called 

neurofibrillary tangles (NFTs) and extracellular amyloid‐β (Aβ) plaques.
196

 In AD high 

sucrose diet increases Aβ concentrations,
197

 while insulin improves performance in cognitive 

tasks.
198

 AGEs upregulate production of the amyloid-β precursor protein
199

 and levels of 

AGEs are 3 times higher in plaques extracted from AD brains compared to preparations from 

healthy and age‐matched controls. Hence, glycation possibly stabilizes and promotes 

aggregation of Aβ and tau.
200

 In addition, glycation increases neurotoxicity of Aβ plaques, 

which could be prevented by dicarbonyl scavenger aminoguanidine.
201
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3 Objectives 

The central aim of this work was to elucidate mechanisms of non-enzymatic acylation in 

vitro, detect novel acylation structures and highlight the importance of acylation in vivo using 

models of aging and disease. 

First of all, acylation by Maillard reaction in GO and MGO isomerization cascades was 

researched in N
2
-Boc-lysine model incubations. Authentic reference standards of N

6
-glyoxylyl 

and N
6
-pyruvoyl lysine were synthesized and used to detect and quantitate these α-oxoamide 

AGEs for the first time using a novel HPLC-MS/MS method. The effects of aeration and pH 

on product spectrum of the complex GO/MGO isomerization cascades were extensively 

studied.  Findings from incubations were transferred to rat liver models to establish 

α-oxoamide AGEs as markers of aging and oxidative stress. 

To access acylation by RACS, a novel HPLC-MS/MS multimethod for simultaneous 

detection and quantitation of 14 acylation structures was developed including synthesis of 

authentic reference standards and structure elucidation. The method was validated and an 

optimized enzymatic hydrolysis protocol was developed. Levels of acylation were quantitated 

in a screening of mice liver, kidney, heart, and brain. Specific modification patterns were 

detected and liver was identified as a local ―hotspot‖ of acylation. Enrichment of analytes by 

repetitive fractionation and pooling of samples resulted in the identification of 4 novel 

acylation structures in vivo. 

Finally, 20 PTMs derived by glycation, acylation, oxidative stress, and citrullination were 

analyzed on a quantitative basis using HPLC-MS/MS analysis. A fractionation protocol was 

developed to extract and purify histone, mitochondrial, and cytosolic proteins from mouse 

liver. Changes of PTMs in subcellular compartments were correlated to aging and discussed 

comprehensively. 

The results were published and discussed in international renowned peer-reviewed journals. 

Detailed experimental procedures were given in the attached publications. The following 

chapters aimed to further enhance the discussion by embedding the results in the context of 

currently available literature.  
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4 Discussion 

4.1 Acylation by isomerization of short-chain α-dicarbonyls 

Short-chain α-dicarbonyls like glyoxal (GO) and methylglyoxal (MGO) are reactive 

intermediates produced in vivo (chapter 2.3.3).
108

 According to literature the relative reactivity 

of glucose compared to GO and MGO towards glycation is about 1:6000:20000.
127

 This 

explains why short-chain α-dicarbonyls are the most relevant glycating structures in vivo 

despite blood plasma concentrations of GO (491 pmol/mL) and MGO (61 pmol/mL)
202

 are 

magnitudes below glucose concentration (6100 pmol/mL).
203

 Beside individual structure, the 

glycating potential of dicarbonyls in vivo depends on steady state concentration of reactive 

dicarbonyl form and reversible side reactions with cysteine residues.
127

  

GO exists mainly in dihydrate form and only 0.002 % is in the highly reactive dicarbonyl 

form in aqueous solutions (Figure 17A). The half time for conversion of dihydrate form to 

dicarbonyl form is 35 s. Methylglyoxal is a mixture of 1 % dicarbonyl, 70 % monohydrate, 

and 29 % dihydrate form in aqueous solutions (Figure 17B). The half time for conversion is 

20 s. Consequently, dicarbonyl forms of GO and MGO are rapidly regenerated after 

dicarbonyl consumption by glycation.
127

 

 

 

 

 Equilibrium of GO (A) and MGO (B) hydration in aqueous solution.
127

 Figure 17:

 

After the discovery of N
6
-carboxymethyl lysine (CML) and N

6
-carboxyethyl lysine (CEL) as 

two of the most abundant AGEs in vivo,
204

 GO
120

 and MGO
205

 were identified as their 

potential precursors, respectively. In 2001, Glomb and Pfahler discovered the formation of 

amide AGEs, e.g., N
6
-glycoloyl lysine (GALA) as alternative endproducts in the complex 

isomerization cascade of GO.
123

 A similar isomerization mechanism of MGO leads to 

formation of N
6
-lactoyl lysine.

206
 

In the present thesis the modulation of the complex GO and MGO isomerization cascades was 

investigated.  At first, formation of AGEs over time was quantitated in vitro using incubations 
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of 40 mM N
2
-Boc-lysine and either 40 mM GO or 40 mM MGO under physiological 

conditions (100 mM phosphate buffer, pH 7.4, 37 °C) and aeration (Table 9).  

 

 Formation of AGEs in N
2
-Boc-lysine incubations under physiological conditions Table 9:

(pH 7.4, 37 °C) and aeration (mean ± standard deviation, n = 3).
122

 

 

AGEs [mmol/mol lysine] 

 24 h 48 h 72 h 96 h 168 h 

GO incubation      

N
6
-Carboxymethyl  lysine 30  ± 9 54  ± 6 61 ± 7 73 ± 1 112 ± 14 

N
6
-Glycoloyl lysine 0.3 ± 0.1 2.0 ± 0.1 3.5 ± 0.4 4.3 ± 0.4 7.3 ± 0.5 

N
6
-Glyoxylyl lysine 0.4 ± 0.1 1.3 ± 0.2 2.1 ± 0.1 3.0 ± 0.2 4.8 ± 0.4 

MGO incubation      

N
6
-Carboxyethyl  lysine 0.4 ± 0.1 0.6 ± 0.1 0.82 ± 0.02 0.9 ± 0.1 1.10 ± 0.02 

N
6
-Lactoyl  lysine 0.23 ± 0.04 0.29 ± 0.01 0.32 ± 0.01 0.33 ± 0.02 0.39 ± 0.01 

N
6
-Pyruvoyl  lysine 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.07 ± 0.02 

 

After 168 h CML reached 112 mmol/mol lysine and GALA 7.3 mmol/mol lysine in GO 

incubations. CML levels were in the same magnitude as previously reported for incubations 

containing 40 mM ribose with 91 mmol/mol lysine and more than 4 times higher for GALA 

(1.7 mmol/mol lysine). In 40 mM GO incubations far more CML and GALA were formed 

than in incubations of 200 mM glucose with 0.85 and 0.13 mmol/mol lysine, respectively.
123

 

Thus, isomerization of GO has to be considered as a major pathway leading to CML and 

lysine acylation by GALA. The ratio between CML and GALA was 100:1 after 24 h and 

continuously dropped to 15:1 after 168 h. 

In MGO incubations CEL reached 1.10 mmol/mol lysine and N
6
-lactoyl lysine 

0.39 mmol/mol lysine after 168 h. Similar concentrations of N
6
-lactoyl lysine were previously 

published.
206

 Compared to incubations containing 42 mM 1-deoxyglucosone about twice as 

much N
6
-lactoyl lysine was formed by MGO after 72 h indicating the importance of MGO 

isomerization for lysine acylation.
105

 In contrast to GO incubations, ratio between CEL and 

N
6
-lactoyl lysine was constant between 2 and 3 in MGO incubations.  

Comparing carboxyalkyl structures it was strikingly clear that about a factor of 100 more 

CML was formed than CEL, because N
2
-Boc-lysine had to attack at the aldehyde function of 

GO and at the less reactive keto function of MGO, respectively (Figure 10). In case of 

α-hydroxyamide AGEs both structures required the attack of N
2
-Boc-lysine at the respective 

aldehyde function of GO or MGO. This reduced the inductive effect (+I) of the additional 

methyl group of MGO and resulted in a factor of 15 between GALA and N
6
-lactoyl lysine.   
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A novel HPLC-MS/MS method was developed using synthesized standards of N
6
-glyoxylyl 

lysine and N
6
-glyoxylyl lysine. Thus, formation of N

6
-glyoxylyl lysine in aerated GO 

incubations and N
6
-pyruvoyl lysine in aerated MGO incubations was detected for the first 

time. Putative direct oxidation of α-hydroxyamide AGEs to α-oxoamide AGEs was excluded 

by aerated incubations of GALA and N
6
-lactoyl lysine. In addition, α-oxoamide AGEs were 

not detected in N
2
-Boc-lysine incubations containing glyoxylic acid, pyruvic acid, ascorbic 

acid, maltose, or the Amadori product of glucose and N
2
-Boc-lysine. Corresponding 

carboxylic acids are the main products of α- and β-dicarbonyl cleavages in aqueous 

systems.
106

 Neither glyoxylic nor pyruvic acid were detected in GO and MGO incubations by 

GC-MS. Consequently, cleavage of a putative condensation product was ruled out and 

oxidation of an intermediate in the CML/CEL isomerization cascade was identified as the 

precursor of α-oxoamide AGEs. 

This notion was further supported by incubations of either GO or MGO and N
2
-Boc-lysine 

under aeration versus deaeration proving exclusive α-oxoamide AGE formation under 

aeration. In contrast to α-oxoamides no significant changes of carboxyalkyl and 

α-hydroxyamide AGEs were detected between aerated versus deaerated conditions 

confirming the non-oxidative pathways of their formation (Table 10).  

 

 Effect of aeration and deaeration on formation of AGEs in N
2
-Boc-lysine incubations Table 10:

under physiological conditions (pH 7.4, 37 °C) after 168 h (mean ± standard deviation, 

n = 3).
 122

 

 

AGEs [mmol/mol lysine] 

 GO MGO 

 Aeration Deaeration Aeration Deaeration 

N
6
-Carboxymethyl  lysine 112 ± 14 118 ± 5 - - 

N
6
-Glycoloyl lysine 7.3 ± 0.5 6.2 ± 0.2 - - 

N
6
-Glyoxylyl lysine 4.8 ± 0.4 < LOD - - 

N
6
-Carboxyethyl  lysine - - 1.10 ± 0.02 1.17 ± 0.03 

N
6
-Lactoyl  lysine - - 0.39 ± 0.01 0.31 ± 0.06 

N
6
-Pyruvoyl  lysine - - 0.07 ± 0.02 < LOD 

 

Last but not least, the effects of pH variation between 4.5, 7.4, and 9.6 on product spectrum of 

the CML/CEL isomerization cascades were examined in vitro (Table 11). 
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 Effect of pH on formation of AGEs in N
2
-Boc-lysine incubations under aeration at Table 11:

37 °C after 168 h (mean ± standard deviation, n = 3).
 122

 

 

 

AGEs [mmol/mol lysine] 

 GO MGO 

 pH 4.5 pH 7.4 pH 9.6 pH 4.5 pH 7.4 pH 9.6 

N
6
-Carboxymethyl  lysine 0.6 ± 0.3 127 ± 6 150 ± 15 - - - 

N
6
-Glycoloyl lysine < LOD 5.8 ± 0.1 24.4 ± 0.6 - - - 

N
6
-Glyoxylyl lysine < LOD 3.1 ± 0.8 12.1 ± 0.9 - - - 

N
6
-Carboxyethyl  lysine - - - 0.12 ± 0.04 0.99 ± 0.04 0.98 ± 0.07 

N
6
-Lactoyl  lysine - - - < LOD 0.38 ± 0.01 1.37 ± 0.06 

N
6
-Pyruvoyl  lysine - - - < LOD 0.04 ± 0.01 0.14 ± 0.01 

 

As expected, virtually no AGEs were detected at pH 4.5, because at this pH the N
6
-amino 

function of N
2
-Boc-lysine was protonated. Protonation decreased nucleophilicity of the amino 

function and the initial attack at the dicarbonyl was inhibited. At pH 7.4 the amino function 

was sufficiently deprotonated and after nucleophilic attack Schiff base adducts were formed 

and isomerized to yield AGEs. Interestingly, increase of pH from 7.4 to 9.6 had little to no 

effects on carboxyalkyl AGEs CML with 127 versus 150 mmol/mol lysine and CEL with 0.99 

versus 0.98 mmol/mol lysine. On the other hand concentrations of α-hydroxyamide and 

α-oxoamide AGEs increased by a factor of 4 at pH 9.6 compared to pH 7.4, e.g., GALA 

increased from 5.8 to 24.4 mmol/mol lysine and N
6
-glyoxylyl lysine from 3.1 to 

12.1 mmol/mol lysine. Obviously, mechanism of isomerization and driving force were 

different for carboxyalkyl and amide AGEs. CML and CEL formation were pH independent, 

possibly because of the high thermodynamic stability of the carboxyalkyl AGEs. In contrast, 

pH-related changes in the kinetics of rearrangement prevailed in α-hydroxyamide and 

α-oxoamide formation. A possible explanation was stabilization of the central enaminol 

intermediate in amide AGE formation as described by Hofmann et al., who proved higher 

stability of acid labile enaminols at higher pH.
207

 

Taking all data under consideration, a mechanism of α-oxoamide AGE formation was 

developed. As mentioned above, artifacts and cleavage mechanisms were excluded as 

possible sources. Hence, isomerization of GO and MGO lysine adducts remained as the only 

pathways. The pH variation indicated a similar pathway for α-oxoamides and 

α-hydroxyamides, but a mechanism distinct from carboxyalkyl isomerization. Compared to 

α-hydroxyamide AGEs an oxidation step was required by definition. Because direct oxidation 

of α-hydroxyamide AGEs GALA and N
6
-lactoyl lysine was not observed, the central 

enaminol intermediate in the isomerization leading to amide AGEs remained as the most 
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promising candidate. Enaminols are electron rich intermediates and are readily oxidized as 

reported previously for the formation of acids in the Strecker degradation of amino acids. 

Isotopic labeling experiments ruled out direct oxidation of Strecker aldehydes to Strecker 

acids and supported our hypothesis. Under food related conditions at high temperatures ratio 

of Strecker aldehyde to acid shifted from 4:1 under deaeration to almost 1:2 under aeration.
207

 

A formation mechanism was postulated for α-oxoamides N
6
-glyoxylyl lysine and N

6
-pyruvoyl 

lysine (Figure 18A), which is very similar to the oxidative Strecker acid formation 

(Figure 18B). 

 

 

 

 Mechanism of α-oxoamide AGE (A) and Strecker acid (B) formation.
122,207

  Figure 18:

 

Prior to detection of N
6
-glyoxylyl lysine and N

6
-pyruvoyl lysine in vivo, the HPLC-MS/MS 

method had to be modified. Due to equilibrium between free α-oxoamide AGEs and their 

hydrated forms, chromatographic separation resulted in very broad peaks with up to 5 min 

peak width and very low signal to noise ratio. Limit of detection (LOD) and quantitation 

(LOQ) were significantly improved by derivatization using NaBD4 prior to chromatographic 

separation. As indicated in Figure 19, N
6
-glyoxylyl and N

6
-pyruvoyl lysine were detected as 

their corresponding derivatives N
6
-glycoloyl lysine-d1 and N

6
-lactoyl lysine-d1, respectively. 

This required correction of α-oxoamide AGE concentrations by subtraction of interfering 

isotope peaks of GALA (10.16 %) and N
6
-lactoyl lysine (11.17 %). 

 

 

 

 Stabilization of α-oxoamide AGEs by NaBD4 reduction. Figure 19:
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As mentioned above AGE precursors like α-dicarbonyls are mainly cleared by kidney via 

urinary excretion. The same mechanism is used to eliminate degradation products of AGE 

modified proteins, e.g., AGE free adducts.
208

 However, the presumed size cut-off in the 

kidney filtration apparatus is approximately 45 kDa and glycated proteins exceeding this 

molecular mass are not directly excreted by urine.
209,210

 In radioactive labeling studies with 

injection of glycated bovine serum albumin (BSA, 67 kDa) about 90 % of radioactivity 

accumulated in liver and only 2 – 3 % in kidney after 60 min. Uptake of AGE modified BSA 

in liver sinusoidal endothelial, Kupffer, and parenchymal cells was 60 %, 25 %, and 10 ± 15 %, 

respectively.211 Hence, liver is potentially the primary organ for degradation of large AGE 

modified proteins in the blood circulation prior to urinary excretion of degradation 

products.
209

 

On the basis of the extraordinary high importance of liver in AGE metabolism, cytosolic 

proteins were extracted from livers of 3 month old healthy, 3 month old cirrhotic, and 

22 month old healthy rats. Extracted proteins were reduced by NaBD4 and hydrolyzed. 

Finally, enzymatic hydrolysates were analyzed by HPLC-MS/MS and concentrations of 

CML, GALA, N
6
-glyoxylyl lysine, CEL, N

6
-lactoyl lysine, and N

6
-pyruvoyl lysine were 

quantitated using standard addition calibration (Table 12). 

 

 AGEs in cytosolic proteins from rat liver (mean ± standard deviation, n = 5).
 122

 Table 12:

 

AGEs  [µmol/mol leucine-eq]  

 3 month old 

(healthy) 

3 month old 

(cirrhosis) 

22 month old 

(healthy) 

N
6
-Carboxymethyl lysine 5.22 ± 3.34 5.40 ± 3.83 10.07 ± 7.01** 

N
6
-Glycoloyl lysine 0.73 ± 0.07 0.70 ± 0.09 1.36 ± 0.32** 

N
6
-Glyoxylyl lysine 0.37 ± 0.03 0.57 ± 0.16* 0.58 ± 0.03* 

N
6
-Carboxyethyl lysine 11.73 ± 2.32 8.34 ± 2.52 17.27 ± 4.35** 

N
6
-Lactoyl lysine 0.28 ± 0.06 0.34 ± 0.09 0.55 ± 0.06** 

N
6
-Pyruvoyl lysine 0.11 ± 0.04 0.23 ± 0.05* 0.27 ± 0.07* 

Significant differences (t-test) compared to AGE levels in 3 month old healthy rats: * p < 0.05, ** p < 0.001. 

 

In general, the mean level of glycation approximately doubled comparing 3 and 22 month old 

rats, e.g., acylation by GALA increased from 0.73 to 1.36 µmol/mol leucine-eq and 

N
6
-lactoyl lysine increased from 0.28 to 0.55 µmol/mol leucine-eq. The accumulation of 

AGEs in aging was significant with p-values below 5 % for α-oxoamide AGEs and p-values 

below 0.1 % for CML, CEL, GALA, and N
6
-lactoyl lysine. Mechanisms like reduced 

glyoxalase activity,
125

 decreased degradation of glycated proteins
166

 and impaired excretion of 

AGE degradation products
209

 potentially caused accumulation of AGEs observed in aged 



Discussion          31 

 

liver. At first, ratio between CML and CEL in vivo was quite unexpected considering the 

much higher formation of CML in vitro and additional pathways leading to CML, e.g., 

oxidative fragmentation of Amadori product.
204

 Unfortunately, AGE levels were never 

quantitated by HPLC-MS/MS in cytosolic proteins of liver before, but similar concentrations 

of CML (269 µmol/mol lysine) and CEL (329 µmol/mol lysine) were reported for rat 

kidney.
212

 The accumulation of CML was previously reported for rat liver mitochondria
213

 

and human extracellular tissue of aged heart and kidney.
214

  

Liver cirrhosis is the end-stage pathology of various chronic liver diseases. A pivotal 

mechanism in its pathogenesis is the activation of hepatic stellate cells and subsequent 

transforming growth factor β (TGF-β) mediated fibrosis, i.e., infiltration of hepatic tissue by 

collagen.
215

 TGF-β is considered as the key regulator of fibrosis and can be activated by 

AGEs via RAGE signalling.
216,217

 Consequently, involvement of AGEs in liver diseases was 

postulated.
218

 This notion was supported by studies of Sebekova et al., who used a CML 

specific antibody to detect increased CML levels in plasma proteins of cirrhotic patients.
219

 

This study led to the development of a test for cirrhosis by analyzing CML concentrations in 

blood serum proteins via ELISA.
220

 

In our model liver cirrhosis was induced in rats by inhalation of tetrachloromethane as 

described previously.
221

 The pathogenesis of cirrhosis was verified by histological sirius red 

staining of collagen in liver (Table 13). Collagen increased from 0.5 % in healthy animals to 

23 % in cirrhotic animals indicating severe fibrosis, which is characteristic for liver 

cirrhosis.
222

 In addition, Western blotting of specific markers like TGF-β and α-smooth-

muscle actin (α-SMA) were used to determine severity of cirrhosis.
223,224

 Intensities of TGF-β 

and α-SMA were referenced as 100 % in Western blots from young and healthy rats and 

increased to 947 and 1995 % in cirrhotic liver, respectively. Collagen, TGF-β, and α-SMA 

increased in aging as well, but the increases in cirrhosis were up to 10-fold higher (Table 13). 

 

 Markers of cirrhosis in rat liver (mean ± standard deviation, n = 5).
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 Table 13:

 

Markers of cirrhosis  [%]  

 3 month old 

(healthy) 

3 month old 

(cirrhosis) 

22 month old 

(healthy) 

Sirius red staining 0.5 ± 0.1 23 ± 3* 1.7 ± 0.4* 

TGF-β 100 ± 26 947 ± 661* 478 ± 143* 

Smooth muscle antigen 100 ± 31 1995 ± 1057* 453 ± 192* 

Significant differences (Mann-Whitney) compared to markers of cirrhosis in 3 month old healthy rats: 

* p < 0.05. 
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Ahmed et al. used HPLC-MS/MS for AGE quantitation in hepatic blood of cirrhotic patients. 

They detected elevated levels of free and protein-bound CML in plasma but constant levels of 

CEL.
225

 In our cirrhosis model levels of CML, CEL, and α-hydroxyamide AGEs remained 

constant in cytosolic liver proteins compared to healthy rats. The only exception were 

α-oxoamide AGEs (Table 12). N
6
-glyoxylyl lysine significantly increased from 0.37 to 

0.58 µmol/mol leucine-eq and N
6
-pyruvoyl lysine from 0.11 to 0.27 µmol/mol leucine-eq. 

Apparently, accumulation of α-oxoamide AGEs was not exclusively caused by aging but 

additional factors as well. Considering the exclusive formation of α-oxoamide AGEs under 

aeration the elevated oxidative stress in liver cirrhosis was the most likely factor. Indeed, 

elevated production of superoxide in cirrhosis was reported in literature.
226

 Whereas the 

average N
6
-glyoxylyl lysine/GALA and N

6
-pyruvoyl lysine/N

6
-lactoyl lysine ratios 

were constant at 0.5 in healthy young and aged rat livers, the ratios in cirrhotic livers 

increased to 0.8 for N
6
-glyoxylyl lysine/GALA and 0.7 for N

6
-pyruvoyl lysine/N

6
-lactoyl 

lysine. Thus, the ratio between oxidation of enaminol precursor to α-oxoamide AGEs and 

oxidation independent isomerization to α-hydroxyamide AGEs is possibly an excellent 

marker to measure long-term oxidative stress in vivo. While elevated CML concentration in 

serum proteins is a validated predictor of cirrhosis,
220

 CML levels in cytosolic liver protein 

were not changed in cirrhosis. In contrast, α-oxoamide AGE levels increased in cytosolic liver 

proteins of cirrhotic animals. Consequently, α-oxoamide AGEs seem to be a more sensitive 

marker of cirrhosis and oxidative stress than CML. A possible explanation is that several 

oxidative and non-oxidative pathways generate CML,
111

 but α-oxoamide AGEs are 

exclusively formed by oxidative pathways. 
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4.2 Quantitation of acylation by HPLC-MS/MS 

Acetylation of histone proteins was discovered in 1963
8
 and the modification‘s pivotal role in 

epigenetic regulation was postulated by Allfrey in 1964.
30

 Prior to detection of the first 

histone acetyltransferase in 1995 lysine acetylation was considered as a non-enzymatic 

mechanism,
227

 because Paik et al. measured incorporation of radioactivity in isolated histones 

incubated with 
14

C-labeled acetyl-CoA.
228

 Recently, the concept of non-enzymatic 

modification of lysine was established for several additional reactive acyl-CoA species 

(RACS) and a plethora of novel acylated lysine modifications was quantitated in the present 

thesis (Figure 20).
3,12,48,51

  

 

 

 

 Lysine acylations by RACS quantitated in the present study (red = novel Figure 20:

modification). 

 

The traditional way to measure and detect novel acyl lysine modifications is the proteomic 

approach. Therefore, isolated proteins are incubated with trypsin and the resulting peptides 

are analyzed using HPLC-MS/MS. After detection of acylation specific mass shifts the 

identity must be verified by high resolution MS/MS spectra and coelution with synthetic 

(modified) peptides.
11,229

 This approach is limited to high abundant modifications, e.g., 

formylation
230

 and succinylation.
42

 Modifications with lower abundance, e.g., butyrylation
41

 

and glutarylation
45

 require additional enrichment by immunoprecipitation prior to mass 
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spectrometry. Depending on availability of specific antibodies immunological methods like 

Western blotting are useful tools to analyze acylation. Both methods detect site-specific and 

relative changes in the acylome. However, absolute quantitation and monitoring of more than 

one type of acylation at a time is not possible using this approach.
80,100

  

A novel HPLC-MS/MS method in combination with quantitative enzymatic hydrolysis of 

proteins was developed to overcome these drawbacks and measure acylation in mice liver, 

brain, kidney, and heart (Table 14). 

 

 Acylated lysine modifications in mouse organ lysates (mean ± standard deviation, Table 14:

n = 7).
 231

 

 

Modification [µmol/mol leucine-eq] 

 Liver Kidney Heart Brain 

N
6
-Formyl lysine 9.61 ± 1.68 10.60 ± 3.05 14.11 ± 1.20 6.15 ± 1.35 

N
6
-Malonyl lysine 2.11 ± 0.20 1.11 ± 0.20 0.69 ± 0.15 0.50 ± 0.12 

N
6
-Acetyl lysine 37.31 ± 3.60 15.01 ± 1.19 16.11 ± 3.16 34.62 ± 8.10 

N
6
-Succinyl lysine 6.12 ± 0.60 5.53 ± 0.70 4.73 ± 0.75 3.22 ± 0.53 

N
6
-Propionyl lysine 0.36 ± 0.05 0.29 ± 0.10 0.66 ± 0.12 0.13 ± 0.02 

N
6
-Glutaryl lysine 0.81 ± 0.19 0.42 ± 0.06 0.34 ± 0.10 0.40 ± 0.13 

N
6
-Butyryl lysine 0.13 ± 0.03 0.05 ± 0.04 0.38 ± 0.06 0.22 ± 0.04 

N
6
-Crotonyl lysine 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 

Total 56.47 33.03 37.04 45.25 

 

Liver was identified as the local hotspot of acylation with total acylation levels of 

56.47 µmol/mol leucine-eq and lowest concentrations were measured in kidney with 

33.03 µmol/mol leucine-eq. Acetylation is formed by several acetyl-CoA dependent 

enzymatic pathways
2
 as well as non-enzymatic reactions like Maillard catalyzed degradation 

of 1-deoxyglucosone.
105

 As expected, acetylation was the most abundant modification in all 

organs. Concentrations reached up to 37.31 µmol/mol leucine-eq in liver, which equaled 

roughly 65 % of total acylation measured in this organ. Second highest N
6
-acetyl lysine 

concentrations were detected in brain with 34.62 µmol/mol leucine-eq, which equaled 75 % 

of total acylation. This highlighted the previously described  pivotal role of acetylation in 

brain development and neuropathies.
235

 In kidney and heart acetylation was responsible for 

about 50 % of total acylation. Conversely, this means that 25 % of total acylation in brain, 

35 % in liver, as well as 50 % in kidney and heart were not caused by enzymatic acetylation, 

but RACS mediated acylation. Obviously, these acyl lysine modifications are quite high 

abundant, which justifies the question for their functions in metabolism.   
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Formylation was the second most abundant modification detected in our screening. 

Concentrations were especially high in heart with 14.11 µmol/mol leucine-eq, which was 

nearly equivalent to levels of acetylation in the same organ.  In vitro formation of N
6
-formyl 

lysine by formaldehyde was first described in 1985.
236

 More than 20 years later formylation 

was discovered in histones.
40

 Modification sites in core and linker histones as well as other 

nuclear proteins, e.g., high-mobility-group proteins, lamins, and calgizzarin were identified by 

mass spectrometry.
230

 In contrast to all other acyl lysine modifications detected, 

corresponding formyl-CoA is probably not the major source of formylation. Formate was not 

activated as formyl-CoA by acyl-CoA synthetase  and the only described minor pathway 

leading to formyl-CoA in vivo was α-oxidation of β-substituted fatty acids, e.g., phytanic 

acid.
53

 The group around Dedon linked formylation to reactive formyl phosphate generated by 

oxidative DNA degradation. As a proof of concept neocarzinostatin was  used to catalyze 

5‘-oxidation of deoxyribose in DNA and subsequently induced lysine formylation.
40

 Later, 

the same group identified formaldehyde as an alternative source of formylation by 

experiments with isotopically labeled [
13

C, 
2
H]-formaldehyde in cell culture

237
 and rats.

238
 

Formaldehyde was found at high concentrations in blood ranging between 10 – 87 µM
239

 and 

is detoxified by mitochondrial aldehyde dehydrogenase 2 or glutathione dependent alcohol 

dehydrogenase 3. The latter one oxidizes S-hydroxymethyl glutathione, i.e., the 

non-enzymatic adduct of formaldehyde and glutathione, to S-formyl glutathione.
240

 Attempts 

to establish N
6
-formyl lysine as a biomarker of chronic low-dose formaldehyde exposure were 

only successful in nasal epithelium and to some extent in trachea, but not in distant tissues of 

lung, bone marrow, or white blood cells.
241

 An alternative pathway of formylation is the 

Maillard reaction. Lysine induced degradation of glucosone under aeration and deaeration in 

vitro resulted in N
6
-formyl lysine formation of 2.60 and 0.89 mmol/mol lysine, 

respectively.
206

 The deacetylase class I and II inhibitor suberoylanilide hydroxamic acid had 

no effect on formylation in vitro
237

 and deformylase activity of SIRT1 corresponded only to 

10 % of deacetylase activity.
237,242

 Despite the high abundance of formylation no literature 

about metabolic effects of the modification is available. Consequently, further research is 

mandatory to access the metabolic significance of this modification. 

Aliphatic acylations propionylation and butyrylation were quantitative less important and 

concentrations were about a factor of 100 below acetylation levels. In analogy to formylation, 

highest concentrations of propionylation (0.66 µmol/mol leucine-eq) and butyrylation (0.38 

µmol/mol leucine-eq) were measured in heart protein. Both modifications were discovered in 

2007 after immunoprecipitation of histones using a N
6
-acetyl lysine antibody.

41
 Later, 
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modification sites in non-histone proteins, e.g., p53 were identified by proteomic 

approaches.
243

 Propionylation and butyrylation were formed in a non-enzymatic way by their 

corresponding RACS in vitro. Compared to acetyl-CoA the acylation efficiency was 3 times 

lower for propionyl-CoA and 5 times lower for butyryl-CoA.
51

 Acylation activity of KAT3B 

(p300) was confirmed in vitro, but revealed progressively slower rates with increasing chain 

length, e.g., efficiency of butyrylation decreased by a factor of 45 compared to acetylation.
71

 

In addition, acetylation, propionylation, and butyrylation activities were reported for GNATs 

KAT2A and KAT2B in vitro.
 72,73

  In case of KAT2A propionylation and butyrylation 

efficiencies equaled 75 % and 1 % of acetylation rates, respectively.
72

 The only prove of 

acylation activity in vivo was the decrease of propionylation after MOF knock-out in cell 

culture.
75

 Propionylation and butyrylation were described as potential targets of reader 

proteins. While compared to acetylation a reduced affinity was reported for bromodomains,
94

 

affinity increased for YEATS domains.
95

 Both modifications were targeted by deacylases 

SIRT1, 2, and 3 in vitro.
244

 Propionylation of Salmonella enterica propionyl-CoA synthetase 

resulted in 70 % loss of specific activity, which may serve as a metabolic sensor of 

propionyl-CoA levels.
245

 Butyrylation was up to 10 times increased in the pathology of 

short-chain acyl‐CoA dehydrogenase deficiency and increased in neuroblastoma after 

treatment with anti-cancer drug suberoylanilide hydroxamic acid.
246,247

 

Crotonylation was another order of magnitude below propionylation and butyrylation 

modifications with maximum concentrations of 0.02 µmol/mol leucine-eq in liver, kidney, 

and heart. This unsaturated acylation was originally reported as an enhancer of transcription.
43

 

The catalysis of p300 mediated crotonylation was higher than acetylation in vitro.
93

 SIRT1-3 

as well as histone deacetylases 1, 2, 3, and 8 were identified as decrotonylases.
248

 

Crotonylation was downregulated in liver, stomach and kidney carcinomas
249

 and several 

effects on important pathways like regulation of spermatogenesis
250

 and telomere 

maintenance
251

 were previously reported. 

Acidic acylation by malonylation, succinylation, and glutarylation was quantitatively more 

important. The most abundant acidic acylation was N
6
-succinyl lysine with concentrations 

between 6.12 µmol/mol leucine-eq in liver and 3.22 µmol/mol leucine-eq in brain. With brain 

as the only exception succinylation reached between 20 – 30 % of acetylation in all organs. 

Succinylation was first discovered in 2010
42

 and was shown to modify the chromatin 

structure.
252

 The precursor succinyl-CoA formed a cyclic anhydride intermediate in vitro 

explaining the much higher reactivity compared to acetyl-CoA.
48

 The strong overlap between 

acetylation and succinylation sites was postulated as a metabolic switch.
253

 As an example 
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ethanol induced hyposuccinylation and hyperacetylation in mice liver.
254

 Succinylation was 

increased in breast
255

 and gastric cancer.
256

 First studies identified succinylation as an 

activator of chaperone activity in the eye lens
257

 and a regulator of respiration by modification 

of pyruvate dehydrogenase and succinate dehydrogenase.
98

 Mitochondrial SIRT5 was 

previously described as a weak deacetylase but an excellent desuccinylase.
80

 Another target of 

SIRT5 is malonylation,
80

 which reached up to 2.11 µmol/mol leucine-eq in liver. Lowest 

concentration was measured in brain with 0.50 µmol/mol leucine-eq. Elevated levels of 

protein malonylation were recently observed in human fibroblasts
247

 and  malonylation of 

glyceraldehyde-3-phosphate dehydrogenase was postulated as an inducer of inflammation.
258

 

The malonyl-CoA synthetase ACSF3 was identified as a mandatory enzyme in protein 

malonylation.
259

 The least abundant target of SIRT5
80

 was glutarylation. Concentrations of 

glutarylation were in the range of about 0.4 µmol/mol leucine-eq, except for liver in which 

levels were about twice as high. The role of glutarylation in metabolism is currently unknown, 

but mitochondrial glutarylation was significantly elevated in a mouse model of glutaric 

acidemia, an inborn error of metabolism caused by a deleterious mutation in glutaryl-CoA 

dehydrogenase.
45

 

After enrichment by repetitive HPLC fractionation 6 additional acyl lysine modifications were 

quantitated including 4 novel structures N
6
-acetoacetyl lysine, N

6
-(2-methylbutyryl) lysine, 

N
6
-tiglyl lysine, and N

6
-isovaleryl lysine (Table 15).  

 

 Additional acylated lysine modifications in pooled mouse organ lysates quantitated Table 15:

after enrichment.
 231

 

 

Modification [µmol/mol leucine-eq] 

 Liver Kidney Heart Brain 

N
6
-(3-Hydroxybutyryl) lysine 0.19 0.33 0.19 0.22 

N
6
-(3-Hydroxy-3-methylglutaryl) lysine 0.10 0.17 0.06 0.12 

N
6
-Acetoacetyl lysine 0.29 0.20 0.10 0.04 

N
6
-(2-Methylbutyryl) lysine 0.26 0.07 0.03 0.01 

N
6
-Tiglyl lysine 0.04 0.04 0.05 0.06 

N
6
-Isovaleryl lysine 0.03 0.03 0.05 0.05 

 

One of the most abundant modifications quantitated after enrichment was 

3-hydroxybutyrylation with concentrations up to 0.33 µmol/mol leucine-eq in kidney. 

Hydroxybutyrate was established as a precursor for hydroxybutyrylation. It is formed in 

ketogenesis, activated by acyl-CoA synthetase and finally promotes gene activation of 

starvation response, e.g., amino acid catabolism.
47

 In addition, hydroxybutyrylation was 
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reported to attenuate p53 activity and as a potential target of SIRT3.
260,261

 Another 

modification previously described in literature was N
6
-(3-hydroxy-3-methylglutaryl) lysine 

with concentrations between 0.17 µmol/mol leucine-eq in kidney and 0.06 µmol/mol 

leucine-eq in heart. In analogy to succinylation the corresponding acyl-CoA thioester formed 

a cyclic anhydride, which acylated lysine residues with high efficiency.
48

 While most acidic 

acylation structures were reported as targets of SIRT5, N
6
-(3-hydroxy-3-methylglutaryl) 

lysine was targeted by SIRT4.
81

 Both 3-hydroxybutyryl-CoA and 3-hydroxy-3-

methylglutaryl-CoA are important intermediates in ketogenesis. The third reactive 

intermediate involved in ketogenesis is acetoacetyl-CoA.
262

 Corresponding acetoacetylation 

was detected for the first time using our novel HPLC-MS/MS approach. Concentrations 

reached up to 0.29 µmol/mol leucine-eq, but very low concentrations were measured in brain 

and heart with 0.04 and 0.10 µmol/mol leucine-eq, respectively. Although 

3-hydroxybutyrylation, 3-hydroxy-3-methylglutarylation, and acetoacetylation are rather low 

abundant, their corresponding RACS are highly specific for ketogenesis. Consequently, these 

modifications are potential markers of metabolic regulation and nutrient sensing by acylation. 

Similarly, 2-methylbutyryl-CoA, tiglyl-CoA, and isovaleryl-CoA are important intermediates 

in branched-chain amino acid metabolism.
263

 The corresponding acyl lysine modifications 

were detected and quantitated for the first time in the present thesis. Extraordinary high 

concentrations of 0.26 µmol/mol leucine-eq were detected for 2-methylbutyrylation in liver. 

N
6
-tiglyl lysine and N

6
-isovaleryl lysine were generally rather low abundant in a range 

between 0.03 and 0.07 µmol/mol leucine-eq. The modifications are highly specific for 

branched-chain amino acid metabolism and may serve as potential regulators in this pathway. 

One of the biggest problems to correlate acylation levels and RACS was inconsistent data 

reported in the literature (Table 16). As an extreme example concentrations of acetyl-CoA in 

mouse liver ranged between 4 nmol/g reported by Abranko et al.
264

 and 100 nmol/g reported 

by King et al.
265

 This huge variation by a factor of 25 was caused by differences in the 

methods used for quantitation, e.g., sample preparation, enrichment, separation, and detection.  

Abranko et al. added isotopically labeled malonyl-CoA as isotope dilution standard to the 

organ lysates, enriched by solid phase extraction and quantitated by UHPLC-ESI-MS/MS.
264

 

King on the other hand did no enrichment and analyzed the lysates directly after protein 

precipitation via HPLC-UV.
265

 In addition, data about RACS were incomplete, e.g., formyl-, 

crotonyl-, tiglyl-, and glutaryl-CoA concentrations were never published. Consequently, the 

development of a robust analytical method for quantitation of RACS in vivo remains one of 

the most urgent tasks to access the mechanisms underlying lysine acylation processes. 
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 Concentrations of acylation precursors reported in literature. Table 16:

 

Structure Concentration in tissue 

Acetyl-CoA 4 nmol/g liver (mouse)
264

 

36 nmol/g liver (mouse)
266

 

110 nmol/g liver (mouse)
267

 

44 nmol/g liver (human)
52

 

9 nmol/g liver (rat)
268

 

100 nmol/g liver (rat)
265

 

28 nmol/g liver (rat)
269

 

30 nmol/g heart (mouse)
270

 

5 nmol/g heart (rat)
268

 

0.6 nmol/g heart (rat)
269

 

5 nmol/g kidney (rat)
268

 

6.9 nmol/g kidney (rat)
269

 

7.6 nmol/g brain  (rat)
271

 

Propionyl-CoA 3.9 nmol/g liver (rat)
266

 

< 2 nmol/g liver (human)
52

 

109 nmol/g liver (rat)
269

 

52.9 nmol/g heart (rat)
269

 

62.6 nmol/g kidney (rat)
269

 

Butyryl-CoA 6 nmol/g liver (mouse)
264

 

8 nmol/g liver (mouse)
270

 

< 2 nmol/g liver (human)
52

 

1.5 nmol/g liver (rat)
272

 

0.8 nmol/g heart (mouse)
270

 

30.6 nmol/g brain (rat)
271

 

2-Methylbutyryl-CoA 4 nmol/g liver (mouse)
264

 

< 2 nmol/g liver (human)
52

 

Isovaleryl-CoA 4 nmol/g liver (mouse)
264

 

< 2 nmol/g liver (human)
52

 

Acetoacetyl-CoA 0.5 nmol/g liver (mouse)
267

 

1.0 nmol/g liver (rat)
266

 

3-Hydroxybutyryl-CoA 0.8 nmol/g liver (mouse)
264

 

3.5 nmol/g liver (mouse)
270

 

1.1 nmol/g heart (mouse)
270

 

Malonyl-CoA 0.1 nmol/g liver (mouse)
264

 

0.8 nmol/g liver (mouse)
270

 

1.9 nmol/g liver (rat)
266

 

1.5 nmol/g liver (rat)
265

 

32 nmol/g liver (rat)
269

  

2.7 nmol/g heart (mouse)
270

 

10.6 nmol/g heart (rat)
269

 

4.5 nmol/g kidney (rat)
269

 

Succinyl-CoA 22 nmol/g liver (mouse)
270

 

45 nmol/g liver (mouse)
267

 

42 nmol/g liver (human)
52

 

13.5 nmol/g liver (rat)
265

 

5.4 nmol/g liver (rat)
269

 

1.2 nmol/g heart (rat)
269

 

10 nmol/g heart (mouse)
270

 

5.3 nmol/g kidney (rat)
269

 

3-Hydroxy-3-methyl-glutaryl-CoA 1.7 nmol/g liver (rat)
266

 

22 nmol/g liver (human)
52

 

7 nmol/g liver (rat)
265

 

2.7 nmol/g brain (rat)
271
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4.3 Posttranslational protein modifications in aging 

After identification of liver as a local ―hotspot‖ of acylation and detection of novel 

α-oxoamide AGEs the interactions between different posttranslational protein modifications 

and their characteristic changes in the aging process of subcellular compartments were of 

special interest. A fractionation protocol was developed for mouse liver, which combined 

protocols for isolation of histones,
273,274

 mitochondria,
275

 and cytosolic proteins.
122

 The 

method was validated by (fluorescence) microscopy, proteomics, and Western blotting.276  

The amount of protein isolated by the fractionation protocol was determined by Lowry assay, 

referenced to the wet weight of weighed-in liver, and compared to methods previously 

reported in the literature (Table 17). 

 

 Yield of protein extraction from liver. Table 17:

 

Fraction Protein 

Mean (minimum – maximum) 

[mg/g liver] 

Literature 

Mean 

[mg/g liver] 

Histones 2.5 (0.7 – 6.6) 1.6
277

 

Mitochondria 14.8 (8.7 – 23.7) 10 – 20
278,279

 

Cytosol 42.5 (21.2 – 57.4) 30
280

 

 

After successful extraction of histones, mitochondrial, and cytosolic protein from livers of 10 

young (3 month old) and 10 old (24 month old) mice, proteins were digested by enzymatic 

and acid hydrolysis. Levels of protein acylation were determined by HPLC-MS/MS 

(Table 18).  

 

 Protein acylation in subcellular compartments of mice liver (mean ± standard Table 18:

deviation, n = 10). Significant differences (t-test, p < 0.05) between young and old 

animals are indicated by an asterisk.
 276

 

 

Modifications  [µmol/mol leucine-eq]  

 Histones Mitochondria Cytosol 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

N6-Formyl lysine 57.8 ± 44.5 126.1 ± 44.4* 35.3 ± 13.0 35.6 ± 9.2 17.1 ± 1.7 22.4 ± 4.9* 

N6-Acetyl lysine 350.5 ± 119.1 304.5 ± 142.2 43.9 ± 6.9 44.4 ± 13.0 40.1 ± 3.6 44.1 ± 6.3 

N6-Propionyl lysine 1.0 ± 0.5 1.7  ± 0.4* 0.7 ± 0.2 0.7 ± 0.3 0.4 ± 0.1 0.7 ± 0.1* 

N6-Butyryl lysine 0.3 ± 0.3 0.8 ± 0.3* 0.2 ± 0.1 0.3 ± 0.1* 0.1 ± 0.1 0.3 ± 0.1* 

N6-Malonyl lysine < LOD < LOD 2.6 ± 0.4 2.3 ± 0.4 2.9 ± 0.4 3.5 ± 0.6* 

N6-Succinyl lysine 2.1 ± 0.3 2.7 ± 0.4* 4.2 ± 0.7 4.2 ± 1.9 0.4 ± 0.1 0.6 ± 0.1* 
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The most abundant protein acylation was N
6
-acetyl lysine with mean concentrations reaching 

up to 350.5 µmol/mol leucine-eq in histones, which was nearly ten times higher compared to 

44.4 µmol/mol leucine-eq in mitochondria and 44.1 µmol/mol leucine-eq in cytosol. Previous 

studies reported below 1 % stoichiometry of acetylated lysine residues
10,281

 in mice liver 

proteins with a median stoichiometry of 0.05 %,
282

 which was supported by our results. 

Acetylation is a fundamental important regulatory mechanism and is controlled by a plethora 

of acetyltransferases and deacetylases.
2
 The presence of this modification is highly dynamic 

with half-times between 1 – 2 h in histones.
283

 Hence, no correlation with aging was detected. 

This was in line with previously published results in aging mitochondria extracted from rat 

liver.
100

 Inconsistent trends were previously reported for histone acetylation.
36,37,284

 The 

second most abundant acyl lysine modification was N
6
-formyl lysine with up to 

126 µmol/mol leucine-eq in histones. In mitochondrial and cytosolic proteins mean N
6
-formyl 

lysine concentrations were between 17.1 and 35.6 µmol/mol leucine-eq. Similar results of 

about 1 – 4 formylated amino acids per 10
4
 lysine residues were reported by Edrissi et al.

237
 

Formylation increased significantly by 120 % in histones (p = 0.002) and 31 % in cytosolic 

proteins (p = 0.005), but concentrations were not changed in aging mitochondria. Literature 

about a potential regulation of formylation by mitochondrial sirtuins like SIRT3 is currently 

unavailable. The only known enzyme potentially targeting formylation is nuclear SIRT1, 

which had a weak deformylase activity in vitro.
242

 Several sources of formylation were 

postulated including oxidative DNA degradation,
40

 Maillard reaction,
206

 and formaldehyde 

metabolism.
237

 The question which of these pathways is the major source in vivo needs to be 

addressed in future research. Aliphatic acylations N
6
-propionyl lysine and N

6
-butyryl lysine 

were quantitative less important and were generally concentrated below 2 % of N
6
-acetyl 

lysine levels. This low abundance was in full agreement with literature, because 

propionylation and butyrylation were exclusively detectable by proteomic approaches after 

antibody enrichment.
41

 However, propionylation and butyrylation significantly correlated 

with aging (p < 0.005) and increased between 40 and 150 %. Again, mitochondria were the 

single exception, because mitochondrial SIRT3 limited propionylation in aging.
80

 Acidic 

acylations N
6
-malonyl lysine and N

6
-succinyl lysine were relatively high abundant in 

mitochondria with average concentrations up to 4.2 and 2.6 µmol/mol leucine-eq, 

respectively. Due to enzymatic regulation by mitochondrial SIRT5 no correlation with aging 

was detected, which is in line with literature.
100

 In contrast, acidic acylation increased about 

25 % in the aging process of histones and cytosolic proteins. The present thesis is the first 
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quantitative and comprehensive study of acyl lysine modifications in subcellular 

compartments and our results may provide a novel molecular mechanism of aging. 

As mentioned above, Maillard induced fragmentations of glucosone and 1-deoxyglucosone 

were reported as alternative pathways leading to N
6
-formyl lysine and N

6
-acetyl lysine, 

respectively.
206

 In addition, several Maillard derived AGEs were quantitated in subcellular 

compartments of mice liver (Table 19). 

 

 Protein glycation in subcellular compartments of mice liver (mean ± standard Table 19:

deviation, n = 10). Significant differences (t-test, p < 0.05) between young and old 

animals are indicated by an asterisk.
276

 

 

Modifications  [µmol/mol leucine-eq]  

 Histones Mitochondria Cytosol 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

CML 13.5 ± 3.9 22.1 ± 7.0* 4.5 ± 0.7 7.2 ± 2.1* 6.1 ± 1.1 7.5 ± 1.3* 

GALA 1.2 ± 0.3 1.8 ± 0.4* 0.4 ± 0.1 0.5 ± 0.2* 0.3 ± 0.1 0.4 ± 0.1* 

G-H 15.7 ± 4.8 22.6 ± 8.5* 14.9 ± 4.3 24.1 ± 11.6* 23.4 ± 10.6 40.9 ± 6.4* 

CEL 2.7 ± 0.4 3.4 ± 0.6* 3.1 ± 0.6 4.1 ± 0.6* 13.0 ± 2.8 15.6 ± 3.3* 

N6-Lactoyl lysine < LOD < LOD 0.2 ± 0.1 0.3 ± 0.1* 0.1 ± 0.1 0.2 ± 0.1* 

MG-H 6.7 ± 2.4 8.6 ± 2.1* 5.6 ± 0.7  7.0 ± 1.0* 15.0 ± 3.9 24.3 ± 13.2* 

Furosine 2.5 ± 0.2 3.1 ± 1.1* 0.6 ± 0.5 0.9 ± 0.9 2.9 ± 0.7 2.7 ± 0.7 

 

Glycation increased about 50 % in aging of subcellular compartments with furosine as the 

single exception. Furosine is no AGE in the classical way, but formed from the Amadori 

product after acid hydrolysis. Consequently, furosine is a marker of early stage Maillard 

reaction between glucose and lysine residues.
101

 The Amadori product precursor is no stable 

endproduct and is additionally degraded by enzymes like fructosamine-3-kinase,
124

 which 

potentially explains the observed steady-state levels in mitochondrial and cytosolic proteins 

while furosine accumulated in aging histones. Furosine was one of the first markers of 

glycation and increased in diabetes.
285

 The GO specific lysine modifications CML and GALA 

were especially high abundant in histones and increased by approximately 60 % in aging to 

22.1 and 1.8 µmol/mol leucine-eq, respectively. Obviously, the reported degradation of DNA 

was a major source of their precursor GO in vivo.
114

 On the other hand, levels of MGO 

specific lysine modifications CEL and N
6
-lactoyl lysine were highest in cytosolic proteins, 

because their precursor MGO was mainly generated by cytosolic triosephosphate 

metabolism.
108

 Similar trends were detected for GO specific arginine modification G-H and 
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MGO specific arginine modification MG-H. Concentrations of up to 40.9 µmol/mol 

leucine-eq G-H and 24.3 µmol/mol leucine-eq MG-H were higher compared to corresponding 

lysine modifications, because the guanidine function of arginine has a higher reactivity 

towards α-dicarbonyls under physiological conditions compared to the amino function of 

lysine.
111

 Reported values for CML (0.5 - 1 mmol/mol lysine) and CEL (0.2 - 0.5 mmol/mol 

lysine) concentrations in rat liver mitochondria were in the same magnitude as measured by 

our analysis.
286

 In cytosolic proteins extracted from mice liver concentrations of carboxyalkyl 

AGEs CML and CEL were in the same range and slightly lower for amide AGEs GALA and 

N
6
-lactoyl lysine compared to our previously published data in rat liver.

122
 Our results are the 

first quantitative data about glycation in histones, thus no comparable values are available in 

the literature. Total levels of all detected AGEs were highest in cytosolic proteins (88.9 

µmol/mol leucine-eq) followed by histones (61.6 µmol/mol leucine-eq) and mitochondria 

(43.2 µmol/mol leucine-eq). In full agreement with literature about CML in aging 

mitochondria, AGE levels increased about 50 % in all compartments.
213

  

Novel α-oxoamide AGEs N
6
-glyoxylyl and N

6
-pyruvoyl lysine are formed by glycation and 

additional oxidative stress.
122

 They were quantitated along with other oxidative stress markers 

and citrullination (Table 20).  

 

 Protein oxidation and citrullination in subcellular compartments of mice liver Table 20:

(mean ± standard deviation, n = 10). Significant differences (t-test, p < 0.05) between 

young and old animals are indicated by an asterisk.
 276

 

 

Modifications  [µmol/mol leucine-eq]  

 Histones Mitochondria Cytosol 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

N6-Glyoxylyl lysine 0.4 ± 0.2 0.8 ± 0.2* < LOQ < LOQ < LOQ < LOQ 

N6-Pyruvoyl lysine 0.8 ± 0.3 1.5 ± 0.3* < LOQ < LOQ < LOQ < LOQ 

o-Tyrosine 0.7 ± 0.2 1.1 ± 0.3* 4.4 ± 0.8 5.8 ± 0.9* 3.6 ± 1.0 6.1 ± 1.4* 

o,o-Dityrosine 2.1 ± 0.4 4.7 ± 2.4* < LOQ < LOQ < LOQ < LOQ 

Methionine sulfoxide 704.9±323.2 595.8±251.0 2454.9±1084.2 1449.3±767.0 1200.4±777.7 1845.1±770.3* 

Methionine sulfone 64.8 ± 42.6 104.9 ± 27.7* 41.3 ± 22.1 40.9 ± 21.1 20.9 ± 16.6 39.0 ± 21.5* 

Citrulline 37.6 ± 13.9 55.2 ± 16.2* 27.9 ± 16.4 30.0 ± 12.4 5.3 ± 1.8 5.7 ± 1.3 

 

Although α-oxoamide AGEs were rather low abundant, they were excellent markers of aging 

in histone proteins and increased about 85 %. Another important oxidative stress marker in 

histones was o,o-dityrosine, which is generated by oxidative cross-linking of tyrosine via 
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hydroxyl or tyrosyl radicals and approximately doubled in aging.
287

 In contrast, the monomer 

o-tyrosine is formed by reaction of phenylalanine residues with hydroxyl radicals.
287

 The 

modification was an excellent marker of aging with p-values below 0.008 and was rather high 

abundant in mitochondrial and cytosolic proteins with 5.8 and 6.1 µmol/mol leucine-eq, 

respectively. The methionine oxidation product methionine sulfoxide was the most abundant 

modification and concentrations reached up to 2500 µmol/mol leucine-eq in mitochondria, 

which was 50-times higher compared to lysine modification by acetylation. Similar 

concentrations were reported in kidney cells.
288

 Methionine sulfoxide was described as a 

regulator of the cellular redox status by operating as an oxidative sink. While the oxidation 

requires no enzymes, the reduction is catalyzed by methionine sulfoxide reductases.
289

 

Methionine sulfoxide reductases A, B, and several isoforms are ubiquitous located in the 

nucleus, mitochondria, and cytosol.
290

 Low methionine oxidation is reversed by the enzymatic 

regulatory system and oxidative stress exceeding the repair capacity results in further 

non-enzymatic oxidation of methionine sulfoxide to methionine sulfone.
288

 The sulfone is not 

targeted by methionine sulfoxide reductases and has to be considered as a stable modification. 

Consequently, increased levels of methionine sulfone in aging histones and cytosol were 

detected for the first time in the present thesis, while contradicting trends were measured in 

different compartments for instable methionine sulfoxide. The most abundant arginine 

modification in histones and mitochondria was citrullination with concentrations of 

55.2 µmol/mol leucine-eq and 30.0 µmol/mol leucine-eq, respectively. This is the first time 

protein-bound citrulline was quantitated in liver. Citrullination is formed enzymatically by 

peptidyl arginine deiminases.
291

 No changes in aging were detected in mitochondrial and 

cytosolic proteins, but citrullination of histone proteins correlated with aging (p = 0.01). This 

is especially dramatic, because citrullination is closely associated with inflammatory 

processes and DNA damaging pathways leading to carcinogenesis.
292

  The increase of several 

oxidative stress marker structures indicated elevated levels of oxidative stress in aging of 

liver, which was supported by previously published studies.
293

 

In general, accumulation of non-enzymatic PTMs was observed in aging liver (Table 21). 

This trend was especially strong in histones in which levels of protein acylation, glycation, 

and oxidation elevated about 115 %, 45 %, and 65 %, respectively. Increase of enzymatic 

citrullination by up to 50 % was exclusively detected in histones. Protein acylation increased 

only by 30 % in cytosol, while glycation increased by 50 % and oxidation increased 85 % in 

the aging process. Most PTMs were not accumulating in aged mitochondria, but AGEs 

accumulated by 50 %. 
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 PTMs in aging of subcellular mouse liver compartments.
 276

  Table 21:

 

Modifications  [µmol/mol leucine-eq]  

 Histones Mitochondria Cytosol 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

Young 

(3 month) 

Old 

(24 month) 

Acetylation 350.5 304.5 43.9 44.4 40.1 44.1 

Acylation 61.2 131.3 43.0 43.1 20.9 27.5 

Glycation 42.3 61.6 29.3 44.1 60.8 91.6 

Oxidationa 69.0 113.0 45.7 46.7 24.5 45.1 

Citrullination 37.6 55.2 27.9 30.0 5.3 5.7 

       aMethionine sulfoxide excluded 

 

Levels of modifications depend on protein turnover, enzymatic regulation and precursor 

concentration. As an example subcellular location has a huge impact on protein half-life. 

Histones are extraordinary long-lived with a half-time of 127 days.
294

 In contrast, half-life 

between 12 min and 6 days is magnitudes lower for most cytosolic proteins.
295

 Mitochondrial 

proteins are in the same range with a turnover between 20 min and 5 days.
296

 Next to 

canonical proteasomal degradation, about 20 – 25 % of whole mitochondria are degraded by 

an additional pathway via lysosomal autophagy in rat liver.
297

 The huge variation between 

protein half-times in different subcellular organelles potentially caused the extraordinary high 

accumulation of modifications in histones compared to cytosolic and mitochondrial proteins. 

Another important factor is enzymatic regulation of PTMs, e.g., acidic acylation increased in 

histones and cytosolic proteins during aging, but SIRT5 limited accumulation of N
6
-malonyl 

lysine and N
6
-succinyl lysine in mitochondria.

80
 A particular interesting observation was 

aliphatic acylation in histones. These modifications were targeted by nuclear SIRT1, which 

has very high affinity for acetylation and significantly lower affinity towards propionylation 

and butyrylation.
76

 Decreased SIRT1 expression
298

 and enzyme activity were reported in 

aging liver.
299

 This explained increased N
6
-propionyl lysine and N

6
-butyryl lysine levels in 

histones extracted from old animals. On the other hand, acetylation levels remained constant, 

possibly due to the high affinity of SIRT1 and the 11 additional Zn
2+

 dependent KDACs. 

Similar processes may be involved by SIRT2 mediated regulation of aliphatic acylation in the 

cytosol. Last but not least, the concentrations of precursors facilitate formation of PTMs. As 

an example concentrations of RACS are estimated approximately 3 – 50 times higher in 

mitochondria compared to other cellular compartments,
12

 which explains high abundance of 

acylation in mitochondria despite deacylase activities of mitochondrial sirtuins. Moreover, 
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reactive oxygen species (ROS) are generated primarily by the respiratory chain complex in 

the mitochondria.
300

 Resulting ROS like the  superoxide  anion (O2
•-
),  hydrogen  peroxide  

(H2O2),  and  the  hydroxyl  radical (
•
OH)

301
 were responsible for the high methionine 

oxidation detected in mitochondria. The glycolytic metabolism is located in the cytosol and 

generates triosephosphates, which are the major source of MGO in vivo.
108

 Consequently, 

MGO specific modifications CEL and MG-H were especially high abundant in cytosolic 

proteins. The cytosolic glyoxalase system detoxifies α-dicarbonyls like MGO and links 

enzymatic regulation to availability of precursors.
302

 The reported decrease of glyoxalase I 

and II activity in aging liver
303

 results in an increase of α-dicarbonyls,
108

 which explains 

accumulation of glycation in aging. 

In summary, most previous studies focused on a single stressor like protein oxidation by ROS 

(oxidative stress),
304

 glycation by α-dicarbonyls (dicarbonyl stress),
108

 or acylation by RACS 

(RACS stress) as potential molecular mechanisms underlying aging and disease. The present 

study combined the concepts of oxidative, dicarbonyl, and RACS stress for the first time by 

comprehensive and quantitative analysis of their corresponding PTMs. This step was 

necessary, because potential interactions between the different stressors were reported 

(Figure 21). 

 
 

 Connection between protein oxidation by oxidative stress, protein glycation by Figure 21:

dicarbonyl stress, and protein acylation by RACS stress. 

 

 

Oxidative stress 

→ Protein oxidation  

RACS stress 

→ Protein acylation 

Dicarbonyl stress 

→ Protein glycation 

 

decreases SIRT1 expression 

modulates glycolytic flux 
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The most important source of oxidative stress in vivo is ROS production by the mitochondrial 

respiratory chain.
300

 The majority of electrons precedes through mitochondrial respiratory 

complexes I – IV and finally reduce molecular oxygen to water. However, a small percentage 

of electrons prematurely leak out of the transport chain and generate the superoxide 

anion (O2
•-
). This anionic radical is detoxified by superoxide dismutase (SOD) and hydrogen 

peroxide (H2O2) is formed. Enzymes like catalase,  glutathione  peroxidase,  and  the  

peroxiredoxins  reduce  H2O2  to  H2O  and  O2.  Unfortunately, transition   metal-catalyzed   

cleavage of H2O2 can produce highly reactive hydroxyl radicals (
•
OH). The hydroxyl radicals 

react with several small molecules and damage proteins, which is the end-stage of oxidative 

stress.
301

 Hydroxyl radicals facilitate lipid peroxidation and subsequently α-dicarbonyl 

formation.
109

 Additionally, experiments in cell culture proved ROS mediated reduction in 

GSH concentration decreased glyoxalase activity and impaired dicarbonyl detoxification.
305

 

Thus, oxidative stress enhanced dicarbonyl stress. Vice versa, dicarbonyl stress potentially 

induced oxidative stress. As an example  production of ROS was increased via glycation of 

respiratory chain proteins by α-dicarbonyls
173

 and detoxification of ROS by SOD and catalase 

was impaired by glycation.
306

 Protein acylation is quite a novel research field and interactions 

between dicarbonyl stress and RACS stress are less understood, but some studies connected 

glycation and acylation. First of all α-dicarbonyls GO and MGO are potential precursors of 

non-enzymatic acylation by formation of amide AGEs, hence, dicarbonyls are an alternative 

pathway to non-enzymatic acylation by RACS.
206

 Moreover, diet enriched with AGEs by 

MGO treatment caused lower expression of SIRT1 and increased acylation.
307

 On the other 

hand, acidic acylation by enhanced RACS stress was identified as a modulator of glycolytic 

flux.
99

 Glycolysis is a major source of dicarbonyl stress
108

 and the effect of acylation on 

dicarbonyl production is a particular interesting topic for further research. Acylation is 

controlling cellular antioxidative stress response,
301

 e.g., only deacetylated SOD detoxifies 

ROS.
308

 In return, glyoxalase and GSH, which are closely linked to oxidative stress and 

dicarbonyl stress, play an important role in controlling non-enzymatic lysine acylation.
309

 The 

described interactions between oxidative stress, dicarbonyl stress, and RACS stress influenced 

the formation of oxidized, glycated, and acylated proteins. This highlighted the importance of 

comprehensive analysis of PTMs in vivo to elucidate the molecular mechanisms of aging.  
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6 Summary 

The enzymatic acylation of lysine is a major regulatory mechanism in epigenetics and 

metabolism. Recent studies discovered structural related non-enzymatic acylation of lysine by 

highly reactive α-dicarbonyls and acyl-CoA thioesters. The aim of the present thesis was the 

development and validation of a robust analytical method to elucidate the causes and 

consequences of these novel acyl lysine modifications in aging and disease. 

Model incubations of N
2
-Boc-lysine with α-dicarbonyls glyoxal and methylglyoxal were used 

to enhance understanding of non-enzymatic acylation by formation of amide advanced 

glycation endproducts via complex isomerization cascades. Authentic reference standards of 

N
6
-glyoxylyl lysine and N

6
-pyruvoyl lysine were synthesized and structures verified by NMR 

and HR-MS. A sensitive HPLC-MS/MS method was developed to prove the formation of 

N
6
-glyoxylyl lysine by glyoxal and N

6
-pyruvoyl lysine by methylglyoxal in vitro for the first 

time. The formation of these novel acyl lysine modifications was highly dependent on pH and 

α-oxoamide advanced glycation endproducts were exclusively formed under aeration. 

Consequently, the oxidation of the central enaminol intermediate was postulated as the key 

mechanistic step and α-oxoamides were suggested as potential oxidative stress markers. In 

support of this hypothesis, N
6
-glyoxylyl lysine and N

6
-pyruvoyl lysine were detected in rat 

liver and indeed increased by approximately 100 % in cirrhosis and aging. 

Western blotting and proteomics are established analytical methods to measure acylation of 

lysine residues by reactive acyl-CoA species. However, they lack the ability to measure 

different acylation structures simultaneously in a quantitative manner. Authentic reference 

standards of 14 acylated lysine species were synthesized and used to develop a 

HPLC-MS/MS method for the quantitation of all 14 modifications in a single run. An 

enzymatic hydrolysis protocol with about 85 % efficiency of hydrolysis compared to acid 

hydrolysis was established for proteins to measure acylation in biological samples. The 

method was validated and had recovery rates between 75 – 93 % with LODs in the nanomolar 

range. Without further enrichment 8 acylation structures were quantitated in mouse liver, 

kidney, heart, and brain. Liver was identified as a hotspot for lysine acylation with acetylation 

(37.31 µmol/mol leucine-eq), formylation (9.61 µmol/mol leucine-eq), and succinylation 

(6.12 µmol/mol leucine-eq) as the quantitative most abundant modifications. Enrichment of 

analytes by repetitive HPLC fractionation enabled quantitation of 6 additional modifications 

including 4 novel acylation structures N
6
-acetoacetyl lysine, N

6
-isovaleryl lysine, N

6
-(2-

methylbutyryl) lysine, and N
6
-tiglyl lysine. The existence of these novel modifications was 

verified by collision induced dissociation spectra and co-elution with synthesized standards. 
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Finally, the concepts of oxidative, dicarbonyl, and RACS stress were combined using a mouse 

cohort. A protocol for the extraction of histone, cytosolic, and mitochondrial proteins from 

mouse liver was developed and validated. Posttranslational modifications in subcellular 

compartments were quantitated by a novel HPLC-MS/MS method and changes in the aging 

process were monitored. Characteristic patterns were observed for 7 advanced glycation 

endproducts, 6 oxidative stress markers, 6 lysine acylation structures, and citrullination. 

Accumulation of non-enzymatic modifications was observed in all subcellular compartments 

during the aging process. This correlation was especially strong in histones in which protein 

acylation, glycation, and oxidation increased about 115 %, 45 %, and 65 %, respectively. 

Hence, non-enzymatic modification of proteins was suggested as a potential mechanism in 

hallmarks of aging. 
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7 Zusammenfassung 

Die enzymatische Acetylierung von Lysinseitenketten ist ein etablierter Mechanismus in der 

Regulation der Epigenetik und des Metabolismus. Neueste Studien konnten strukturell 

verwandte nicht-enzymatische Acylierung von Lysin durch reaktive α-Dicarbonyle und 

Acyl-CoA Thioester identifizieren. Das Ziel der vorliegenden Dissertation war die 

Entwicklung und Validierung einer robusten Analytik, um die Mechanismen und Funktionen 

dieser neuartigen Lysinacylierungen in Alterungs- und Krankheitsprozessen aufzuklären. 

Modellinkubationen von N
2
-Boc-Lysin mit den α-Dicarbonylen Glyoxal und Methylglyoxal 

wurden benutzt um die zugrundeliegenden Mechanismen der nicht-enzymatischen Acylierung 

durch die Bildung von Amid Advanced Glycation Endproducts in komplexen 

Isomerisierungskaskaden aufzuklären. Synthesen der authentische Referenzstandards 

N
6
-Glyoxylyllysin und N

6
-Pyruvoyllysin wurden entwickelt und die Strukturen mittels NMR 

und HR-MS verifiziert. Eine sensitive HPLC-MS/MS Methode wurde entwickelt, um die 

Bildung von N
6
-Glyoxylyllysin durch Glyoxal und N

6
-Pyruvoyllysin durch Methylglyoxal in 

vitro erstmals nachzuweisen. Die Bildung dieser neuartigen Lysinacylierungen war stark vom 

pH abhängig und die α-Oxoamid Advanced Glycation Endproducts wurden ausschließlich 

unter aeroben Bedingungen gebildet. Daraufhin wurde die Oxidation des 

Enaminolintermediats als zentraler mechanistischer Schritt sowie α-Oxoamide als potentielle 

oxidative Stressmarker postuliert. Diese Hypothese wurde durch den Nachweis von 

N
6
-Glyoxylyllysin und N

6
-Pyruvoyllysin in Leber sowie den Anstieg um ca. 100 % in 

zirrhotischen sowie alten Tieren bestätigt. 

Western blotting und Proteomics sind bewährte analytische Methoden um Lysinacylierung 

durch Acyl-CoA Thioester zu messen. Allerdings können sie nicht die ganze Bandbreite der 

Modifikationen in einer einzigen Analyse detektieren und eine absolute Quantifizierung ist 

kaum möglich. Authentische Referenzstandards von 14 acylierten Lysinderivaten wurden 

synthetisiert und genutzt, um eine HPLC-MS/MS Methode zur simultanen Detektion und 

Quantifizierung aller 14 Modifikationen zu entwickeln. Ein enzymatisches 

Hydrolyseprotokoll mit ca. 85 % Hydrolyseeffizienz im Vergleich zur sauren Hydrolyse 

wurde für Proteine etabliert, um die Acylierung in biologischen Proben messen zu können. 

Die Wiederfindungsraten lagen bei 75 – 93 % und die Nachweisgrenzen lagen im 

nanomolaren Bereich. Somit konnten 8 Acylierungsstrukturen in Leber, Niere, Herz und 

Gehirn von Mäusen quantifiziert werden. Die höchsten Konzentrationen wurden in Leber 

gemessen. Acylierung (37.31 µmol/mol Leucin-Eq), Formylierung (9.61 µmol/mol Leucin-

Eq) und Succinylierung (6.12 µmol/mol Leucin-Eq)  waren die quantitativ bedeutendsten 
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Modifikationen. Aufkonzentrierung durch mehrmalige HPLC-Fraktionierung führte zu der 

Quantifizierung von 6 weiteren Acylierungsstrukturen, darunter die 4 neuartigen Strukturen 

N
6
-Acetoacetyllysin, N

6
-Isovaleryllysin, N

6
-(2-Methylbutyryl)-lysin und N

6
-Tiglyllysin. Die 

Strukturen der neuen Modifikationen wurden durch kollisionsinduzierte 

Dissoziationsspektren verifiziert. 

Abschließend wurden die Konzepte von oxidativem Stress, Dicarbonylstress und RACS 

Stress durch Untersuchung einer Mauskohorte kombiniert. Änderungen der 

posttranslationalen Modifikationen im Alterungsprozess wurden verfolgt und Muster 

identifiziert. Ein Protokoll zur Extraktion von Histonen, cytosolischen und mitochondrialen 

Proteinen aus Mausleber wurde entwickelt und validiert. Zusammenfassend wurden 6 

Acylierungen, 7 Glykierungen, 6 oxidative Stressmarker und Citrullinierung in den 

subzellulären Kompartimenten mittels HPLC-MS/MS quantifiziert. Histonproteine waren 

besonders stark modifiziert. Methioninsulfoxid (595.8 µmol/mol Leucin-Eq), N
6
-Acetyllysin 

(304.5 µmol/mol Leucin-Eq), N
6
-Formyllysin (126.1 µmol/mol Leucin-Eq) und 

Citrullinierung (55.2 µmol/mol Leucin-Eq) waren die quantitative bedeutendsten Strukturen. 

Nicht-enzymatische Modifikationen akkumulierten im Alterungsprozess in allen subzellulären 

Kompartimenten. Besonders stark ausgeprägt war diese Korrelation in Histonen, in welchen 

Proteinacylierung um 115 %, Proteinglykierung um 45 % und Proteinoxidation um 65 % 

anstiegen. Daher wurde die nicht-enzymatische Modifikation von Proteinen als möglicher 

Mechanismus im Alterungsprozess postuliert.   
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Synthesis routes of authentic reference standards 

N
2
-Boc-N

6
-propionyl lysine t-butyl ester. Propionic acid (392 mg, 5.3 mmol) and 

hydroxybenzotriazole (HOBt) (590 mg, 4.37 mmol) were dissolved in 10 mL dry 

tetrahydrofuran (THF) under argon atmosphere at 0 °C. After 10 minutes 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide (EDC) (904 mg, 5.8 mmol) was added. A solution of 

N
2
-t-Boc-lysine t-butyl ester (1.319 g, 5.3 mmol) in 5 mL dry THF was added dropwise after 

20 minutes.  The reaction mixture was allowed to warm up to room temperature and was 

stirred for 16 h. The solvent was evaporated by rotary evaporation, the residue dissolved in 

10 mL ethyl acetate (EtOAc) and washed with 10 mL each of saturated NaHCO3 solution and 

1 M HCl. The organic layer was evaporated with a rotary evaporator and the crude product 

was purified by column chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). 

Fractions with positive ninhydrin detection (TLC: Rf 0.35 in hexane/acetone 3/1) were 

collected, evaporated and dried under high vacuum. Yield: 680 mg (36 %); 
1
H NMR (400 

MHz, CDCl3): δ 6.28 (br s, 1H, CONH), 5.06 (br s, 1H, NH-Boc), 4.11 (m, 1H, CH), 3.24 (m, 

2H, CH2), 2.24 (q, J = 7.6 Hz, 2H, CH2), 1.74 (m, 2H, CH2), 1.57 (m, 2H, CH2), 1.43 (s, 9H, 

3xCH3), 1.41 (s, 9H, 3xCH3) 1.35 (m, 2H, CH2), 1.14 (t, J = 7.6 Hz, 3H, CH3); 
13

C  NMR 

(100 MHz, CDCl3): δ 174.6 (CONH), 171.8 (COOtBu), 155.5, 81.8, 79.6, 53.6, 39.4, 32.6, 

29.3, 28.8, 28.3, 27.9, 22.5, 10.3; HRMS (ESI+) m/z: [M + H]
+
  calcd for C18H35O5N2 

359.2540, found 359.2531. 

N
6
-propionyl lysine. N

2
-Boc-N

6
-propionyl lysine t-butyl ester (189 mg, 0.5 mmol) was 

dissolved in 10 mL each of acetone and 6 M HCl. After stirring for 30 minutes the mixture 

was diluted by 50 mL water and concentrated to a volume of approximately 2 mL by rotary 

evaporation. The crude product was purified by column chromatography on Lichroprep RP 

C18 (water/methanol = 9/1, v/v). Fractions with positive ninhydrin detection (RP C18 TLC: 

Rf 0.94 in water/methanol (9/1)) were collected, evaporated and lyophilized. Yield: 101 mg 

(95 %); 
1
H NMR (400 MHz, D2O): δ 3.96 (t, J = 6.4 Hz, 1H, CH), 3.07 (t, J = 6.8 Hz, 2H, 

CH2), 2.11 (q, J = 7.6 Hz, 2H, CH2), 1.84 (m, 2H, CH2), 1.44 (m, 2H, CH2), 1.33 (m, 2H, 

CH2), 0.97 (t, J = 7.6 Hz, 3H, CH3); 
13

C NMR (100 MHz, D2O): δ 177.9 (CONH), 171.9 

(COOH), 52.6, 38.6, 29.2, 29.1, 27.7, 21.4, 9.6; HRMS (ESI+) m/z: [M + H]
+

 calcd for 

C9H19O3N2 203.1396, found 203.1385. 

N
2
-Boc-N

6
-butyryl lysine t-butyl ester. Butyric acid (88 mg, 1.0 mmol) was coupled with 

N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 mmol) and EDC 

(186 mg, 1.2 mmol). Reaction parameters and processing was as above. Column 

chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.10 in hexane/acetone 
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3/1 with ninhydrin detection. Yield: 122 mg (33 %); 
1
H NMR (400 MHz, CDCl3): δ 5.72 (br 

s, 1H, CONH), 5.07 (br s, 1H, NH-Boc), 4.12 (m, 1H, CH), 3.23 (m, 2H, CH2), 2.14 (q, J = 

7.8 Hz, 2H, CH2), 1.76 (m, 2H, CH2), 1.63 (m, 2H, CH2), 1.51 (m, 2H, CH2), 1.44 (s, 9H, 

3xCH3), 1.43 (s, 9H, 3xCH3), 1.37 (m, 2H, CH2), 0.92 (t, J = 7.4 Hz, 3H, CH3); 
13

C  NMR 

(100 MHz, CDCl3): δ 173.1 (CONH), 171.8 (COOtBu), 155.5, 81.8, 79.6, 53.7, 39.1, 38.6, 

32.7, 30.9, 28.3, 28.0, 22.5, 19.2, 13.8; HRMS (ESI+) m/z: [M + H]
+

 calcd for C19H37O5N2 

373.2702, found 373.2693.  

N
6
-butyryl lysine. N

2
-Boc-N

6
-butyryl lysine t-butyl ester (100 mg, 0.27 mmol) was processed 

as above. Column chromatography on Lichroprep RP C18 (water/methanol = 9/1, v/v). TLC: 

Rf 0.23 in butanol/acetic acid/water 8/1/1 with ninhydrin detection. Yield: 34 mg (58 %); 
1
H 

NMR (400 MHz, D2O): δ 3.70 (t, J = 6.2 Hz, 1H, CH), 3.09 (t, J = 6.9 Hz, 2H, CH2), 2.09 (t, 

J = 7.4 Hz, 2H, CH2), 1.78 (m, 2H, CH2), 1.49 (m, 2H, CH2), 1.45 (m, 2H, CH2), 1.32 (m, 2H, 

CH2), 0.78 (t, J = 7.4 Hz, 3H, CH3); 
13

C NMR (100 MHz, D2O): δ 177.0 (CONH), 174.0 

(COOH), 54.2, 38.8, 37.7, 29.9, 28.0, 21.7, 19.0, 12.7; HRMS (ESI+) m/z:  [M + H]
+ 

calcd for 

C10H21O3N2 217.1552, found 217.1543.                                                                                                                                                                                                                                                

N
2
-Boc-N

6
-(2-methylbutyryl) lysine t-butyl ester. 2-Methylbutyric acid (102 mg, 1.0 mmol) 

was coupled with N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 

mmol) and EDC (186 mg, 1.2 mmol). Reaction parameters and processing was as above. 

Column chromatography on silica gel 60 (hexane/acetone = 4/1, v/v). TLC: Rf 0.26 in 

hexane/acetone 4/1 with ninhydrin detection. Yield: 69 mg (18 %); 
1
H NMR (400 MHz, 

CDCl3): δ 5.79 (br s, 1H, CONH), 5.09 (br s, 1H, NH-Boc), 4.07 (m, 1H, CH), 3.21 (m, 2H, 

CH2), 2.06 (m, 1H, CH), 1.78 (m, 2H, CH2), 1.61 (m, 2H, CH2), 1.51 (m, 2H, CH2), 1.42 (s, 

9H, 3xCH3), 1.40 (s, 9H, 3xCH3), 1.33 (m, 2H, CH2), 1.08 (d, J = 6.9 Hz, 3H, CH3), 0.85 (t, 

J = 7.4 Hz, 3H, CH3); 
13

C  NMR (100 MHz, CDCl3): δ 176.6 (CONH), 171.9 (COOtBu), 

155.5, 81.7, 79.5, 53.7, 43.1, 38.9, 32.5, 29.1, 28.3, 28.0, 27.2, 22.5, 17.5, 11.9; HRMS 

(ESI+) m/z:  [M + H]
+ 

calcd for C20H39O5N2 387.2859, found 387.2840. 

N
6
-(2-methylbutyryl) lysine. N

2
-Boc-N

6
-(2-methylbutyryl) lysine t-butyl ester (69 mg, 

0.18 mmol) was processed as above. Column chromatography on Lichroprep RP C18 

(water/methanol = 9/1, v/v). Fractions with positive ninhydrin detection were collected, 

evaporated and lyophilized. Yield: 24 mg (56 %); 
1
H NMR (400 MHz, D2O): δ 3.96 (t, J = 

6.4 Hz, 1H, CH), 3.09 (m, 2H, CH2), 2.14 (m, 1H, CH), 1.85 (m, 2H, CH2), 1.45 (m, 2H, 

CH2), 1.35 (m, 2H, CH2), 0.95 (d, J = 6.9 Hz, 3H, CH3), 0.72 (t, J = 7.4 Hz, 3H, CH3); 
13

C 

NMR (100 MHz, D2O): δ 180.3 (CONH), 172.0 (COOH), 52.7, 42.6, 38.5, 29.3, 27.9, 26.7, 
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21.5, 16.8, 11.1; HRMS (ESI+) m/z: [M + H]
+

 calcd for C11H23O3N2 231.1709, found 

231.1693. 

N
2
-Boc-N

6
-isovaleryl lysine t-butyl ester. Isovaleric acid (102 mg, 1.0 mmol) was coupled 

with N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 mmol) and EDC 

(186 mg, 1.2 mmol). Reaction parameters and processing was as above. Column 

chromatography on silica gel 60 (hexane/acetone = 4/1, v/v). TLC: Rf 0.15 in hexane/acetone 

4/1 with ninhydrin detection. Yield:162 mg (42 %); 
1
H NMR (400 MHz, CDCl3): δ 5.80 (br s, 

1H, CONH), 5.07 (br s, 1H, NH-Boc), 4.12 (m, 1H, CH), 3.24 (m, 2H, CH2), 2.03 (d, J = 7.4 

Hz, 2H, CH2), 1.75 (m, 1H, CH), 1.61 (m, 2H, CH2), 1.53 (m, 2H, CH2), 1.45 (s, 9H, 3xCH3), 

1.43 (s, 9H, 3xCH3), 1.37 (m, 2H, CH2), 0.93 (d, J = 6.6 Hz, 6H, 2xCH3); 
13

C  NMR (100 

MHz, CDCl3): δ 172.7 (CONH), 171.8 (COOtBu), 155.5, 81.9, 79.6, 53.6, 46.0, 39.2, 32.7, 

29.0, 28.3, 28.0, 26.1, 22.5, 22.4; HRMS (ESI+) m/z:  [M + H]
+ 

calcd for C20H39O5N2 

387.2859, found 387.2840. 

N
6
-isovaleryl lysine. N

2
-Boc-N

6
-isovaleryl lysine t-butyl ester (100 mg, 0.26 mmol) was 

processed as above. Column chromatography on Lichroprep RP C18 (water/methanol = 9/1, 

v/v). Fractions with positive ninhydrin detection were collected, evaporated and lyophilized. 

Yield: 33 mg (55 %); 
1
H NMR (400 MHz, D2O): δ 3.66 (t, J = 6.4 Hz, 1H, CH), 3.08 (t, J = 

7.0 Hz, 2H, CH2), 1.98 (d, J = 7.4 Hz, 2H, CH2), 1.86 (m, 1H, CH), 1.76 (m, 2H, CH2), 1.45 

(m, 2H, CH2), 0.80 (d, J = 6.6 Hz, 6H, 2xCH3); 
13

C NMR (100 MHz, D2O): δ 176.3 (CONH), 

174.2 (COOH), 54.4, 45.0, 38.8, 30.0, 28.0, 26.1, 21.8, 21.5; HRMS (ESI+) m/z: [M + H]
+

 

calcd for C11H23O3N2 231.1709, found 231.1694. 

N
2
-Boc-N

6
-crotonyl lysine t-butyl ester. Crotonic acid (86 mg, 1.0 mmol) was coupled with 

N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 mmol) and EDC 

(186 mg, 1.2 mmol). Reaction parameters and processing was as above. Column 

chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.12 in hexane/acetone 

3/1 with ninhydrin detection. Yield: 48 mg (13 %); 
1
H NMR (400 MHz, CDCl3): δ 6.80 (m, 

1H, HC=C), 5.86 (br s, 1H, CONH), 5.79 (d, J = 15.2 Hz, 1H, HC=C), 5.09 (br s, 1H, NH-

Boc), 4.11 (m, 1H, CH), 3.28 (m, 2H, CH2), 1.81 (d, J = 6.9 Hz, 3H, CH3), 1.73 (m, 2H, 

CH2), 1.56 (m, 2H, CH2), 1.43 (s, 9H, 3xCH3), 1.42 (s, 9H, 3xCH3), 1.36 (m, 2H, CH2); 
13

C  

NMR (100 MHz, CDCl3): δ 171.8 (COOtBu), 166.1 (CONH), 139.5 (C=C), 125.1 (C=C), 

155.5, 81.8, 79.6, 53.6, 39.1, 32.7, 28.9, 28.3, 28.0, 22.5, 17.6; HRMS (ESI+) m/z:  [M + H]
+ 

calcd for C19H35O5N2 371.2546, found 371.2540.  

N
6
-crotonyl lysine. N

2
-Boc-N

6
-crotonyl lysine t-butyl ester (48 mg, 0.13 mmol) was 

processed as above. Column chromatography on Lichroprep RP C18 (water/methanol = 9/1, 
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v/v). TLC: Rf 0.22 in butanol/acetic acid/water 8/1/1 with ninhydrin detection. Yield: 21 mg 

(75 %); 
1
H NMR (400 MHz, D2O): δ 6.66 (m, 1H, HC=C), 5.85 (d, J = 15.3 Hz, 1H, HC=C), 

3.64 (t, J = 6.1 Hz, 1H, CH), 3.14 (t, J = 6.9 Hz, 2H, CH2), 1.78 (m, 2H, CH2), 1.74 (d, J = 6.8 

Hz, 3H, CH3), 1.47 (m, 2H, CH2), 1.31 (m, 2H, CH2); 
13

C NMR (100 MHz, D2O): δ 174.5 

(COOH), 168.9 (CONH), 141.5 (C=C), 123.8 (C=C), 54.6, 38.8, 30.0, 28.0, 21.7, 17.1; 

HRMS (ESI+) m/z:  [M+H]
+ 

calcd for C10H19O3N2 215.1396, found 215.1386. 

N
2
-Boc-N

6
-tiglyl lysine t-butyl ester. Tiglic acid (100 mg, 1.0 mmol) was coupled with 

N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 mmol) and EDC 

(186 mg, 1.2 mmol). Reaction parameters and processing was as above. Column 

chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.33 in hexane/acetone 

3/1 with ninhydrin detection. Yield: 77 mg (20 %); 
1
H NMR (400 MHz, CDCl3): δ 6.36 (q, 

J = 7.0 Hz ,1H, HC=C), 5.90 (br s, 1H, CONH), 5.09 (br s, 1H, NH-Boc), 4.09 (m, 1H, CH), 

3.25 (m, 2H, CH2), 1.78 (s, 3H, CH3), 1.69 (d, J = 7.0 Hz, 3H, CH3), 1.58 (m, 2H, CH2), 1.52 

(m, 2H, CH2), 1.41 (s, 9H, 3xCH3), 1.39 (s, 9H, 3xCH3), 1.33 (m, 2H, CH2); 
13

C  NMR (100 

MHz, CDCl3): δ 171.9 (COOtBu), 169.6 (CONH), 131.8 (C=C), 130.3 (C=C), 155.5, 81.7, 

79.5, 53.7, 39.3, 32.5, 29.1, 28.3, 27.9, 22.5, 13.8, 12.3; HRMS (ESI+) m/z:  [M + H]
+ 

calcd 

for C20H37O5N2 385.2702, found 385.2683.  

N
6
-tiglyl lysine. N

2
-Boc-N

6
-tiglyl lysine t-butyl ester (77 mg, 0.2 mmol) was processed as 

above. Column chromatography on Lichroprep RP C18 (water/methanol = 9/1, v/v). Fractions 

with positive ninhydrin detection were collected, evaporated and lyophilized. Yield: 13 mg 

(29 %); 
1
H NMR (400 MHz, D2O): δ 6.27 (q, J = 7.0, 1H, HC=C), 3.74 (t, J = 6.1 Hz, 1H, 

CH), 3.15 (t, J = 6.8 Hz, 2H, CH2), 1.80 (m, 2H, CH2), 1.69 (s, 3H, CH3), 1.64 (d, J = 7.0 Hz, 

3H, CH3), 1.49 (m, 2H, CH2), 1.32 (m, 2H, CH2); 
13

C NMR (100 MHz, D2O): δ 173.8 

(COOH), 173.0 (CONH), 132.6 (C=C), 130.8 (C=C), 54.0, 39.0, 29.8, 28.0, 21.7, 13.2, 11.6; 

HRMS (ESI+) m/z: [M+H]
+

 calcd for C11H21O3N2 229.1552, found 229.1537. 

N
2
-Boc-N

6
-(mono-t-butyl malonyl) lysine t-butyl ester. Mono-t-butyl malonate (570 mg, 

3.6 mmol) was coupled with N
2
-t-Boc-lysine t-butyl ester (1087 mg, 3.6 mmol) by HOBt 

(486 mg, 3.6 mmol) and EDC (775 mg, 5.0 mmol). Reaction parameters and processing was 

as above. Column chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.18 

in hexane/acetone 3/1 with ninhydrin detection. Yield: 987 mg (62 %); 
1
H NMR (400 MHz, 

CDCl3): δ 7.33 (br s, 1H, CONH), 5.05 (br s, 1H, NH-Boc), 4.15 (m, 1H, CH), 3.28 (m, 2H, 

CH2), 3.23 (s, 2H, CH2), 1.75 (m, 2H, CH2), 1.59 (m, 2H, CH2), 1.47 (s, 9H, 3xCH3), 1.46 (s, 

9H, 3xCH3), 1.44 (s, 9H, 3xCH3), 1.27 (m, 2H, CH2); 
13

C  NMR (100 MHz, CDCl3): δ 171.8 

(COOtBu), 169.0 (COOtBu), 165.7 (CONH), 155.4, 82.5, 81.8, 79.6, 53.8, 41.8, 39.3, 32.6, 
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29.0, 28.3, 28.0, 27.9, 22.6; HRMS (ESI+) m/z: [M + H]
+

 calcd for C22H41O7N2 445.2908, 

found 445.2896. 

N
6
-malonyl lysine. N

2
-Boc-N

6
-(mono-t-butyl malonyl) lysine t-butyl ester (201 mg, 

0.45 mmol) was processed as above. Column chromatography on Lichroprep RP C18 

(water/methanol = 9/1, v/v). TLC: Rf 0.05 in butanol/acetic acid/water 8/1/1 with ninhydrin 

detection. Yield: 80 mg (76 %); 
1
H NMR (400 MHz, D2O): δ 3.97 (t, J = 6.3 Hz, 1H, CH), 

3.27 (s, 2H, CH2), 3.12 (t, J = 6.8 Hz, 2H, CH2), 1.84 (m, 2H, CH2), 1.46 (m, 2H, CH2), 1.34 

(m, 2H, CH2); 
13

C NMR (100 MHz, D2O): δ 171.9 (COOH), 171.7 (COOH), 168.6 (CONH), 

52.7, 42.0, 39.0, 29.2, 27.6, 21.4; HRMS (ESI+) m/z: [M+H]
+

 calcd for C9H17O5N2 233.1132, 

found 233.1125. 

N
2
-Boc-N

6
-(mono-t-butyl succinyl) lysine t-butyl ester. Mono-t-butyl succinate (348 mg, 

2.0 mmol) was coupled with N
2
-t-Boc-lysine t-butyl ester (604 mg, 2.0 mmol) by HOBt 

(270 mg, 2.0 mmol) and EDC (372 mg, 2.4 mmol). Reaction parameters and processing was 

as above. Column chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.25 

in hexane/acetone 3/1 with ninhydrin detection. Yield: 197 mg (36 %); 
1
H NMR (400 MHz, 

MeOH-d4): δ 3.93 (m, 1H, CH), 3.16 (t, J = 6.8 Hz, 2H, CH2), 2.50 (t, J = 6.8 Hz, 2H, CH2), 

2.40 (t, J = 6.8 Hz, 2H, CH2), 1.74 (m, 2H, CH2), 1.51 (m, 2H, CH2), 1.46 (s, 9H, 3xCH3), 

1.44 (s, 9H, 3xCH3), 1.43 (s, 9H, 3xCH3), 1.35 (m, 2H, CH2); 
13

C  NMR (100 MHz, MeOH-

d4): δ 172.9 (COOtBu), 172.4 (COOtBu), 172.2 (CONH), 156.7, 81.0, 80.3, 79.0, 54.4, 38.6, 

30.9, 30.4, 30.3, 28.5, 27.3, 27.0, 26.9, 22.8; HRMS (ESI+) m/z: [M + H]
+

 calcd for 

C23H43O7N2 459.3070, found 459.3058. 

N
6
-succinyl lysine. N

2
-Boc-N

6
-(mono-t-butyl succinyl) lysine t-butyl ester (197 mg, 

0.43 mmol) was processed as above. Column chromatography on Lichroprep RP C18 

(water/methanol = 9/1, v/v). TLC: Rf 0.15 in butanol/acetic acid/water 8/1/1 with ninhydrin 

detection. Yield: 60 mg (57 %); 
1
H NMR (400 MHz, D2O): δ 3.98 (t, J = 6.2 Hz, 1H, CH), 

3.10 (t, J = 6.5 Hz, 2H, CH2), 2.86 (t, J = 6.3 Hz, 2H, CH2), 2.53 (t, J = 6.3 Hz, 2H, CH2), 

1.97 (m, 2H, CH2), 1.58 (m, 2H, CH2), 1.47 (m, 2H, CH2); 
13

C NMR (100 MHz, D2O): δ 

176.9 (COOH), 174.6 (COOH), 172.0 (CONH), 52.7, 38.7, 30.3, 29.3, 27.8, 21.4; HRMS 

(ESI+) m/z: [M+H]
+

 calcd for C10H19O5N2 247.1293, found 247.1283. 

N
2
-Boc-N

6
-(mono-t-butyl glutaryl) lysine t-butyl ester. Mono-t-butyl glutarate (376 mg, 2.0 

mmol) was coupled with N
2
-t-Boc-lysine t-butyl ester (604 mg, 2.0 mmol) by HOBt (270 mg, 

2.0 mmol) and EDC (372 mg, 2.4 mmol). Reaction parameters and processing was as above. 

Column chromatography on silica gel 60 (hexane/acetone = 3/1, v/v). TLC: Rf 0.15 in 

hexane/acetone 3/1 with ninhydrin detection. Yield: 563 mg (60 %); 
1
H NMR (400 MHz, 
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MeOH-d4): δ 3.93 (m, 1H, CH), 3.17 (t, J = 6.8 Hz, 2H, CH2), 2.25 (t, J = 7.5 Hz, 2H, CH2), 

2.18 (t, J = 7.5 Hz, 2H, CH2), 1.85 (m, 2H, CH2), 1.62 (m, 2H, CH2), 1.51 (m, 2H, CH2), 1.46 

(s, 9H, 3xCH3), 1.45 (s, 9H, 3xCH3), 1.44 (s, 9H, 3xCH3), 1.35 (m, 2H, CH2); 
13

C  NMR (100 

MHz, MeOH-d4): δ 173.8 (COOtBu), 172.8 (COOtBu), 172.3 (CONH), 156.7, 81.1, 80.1, 

79.0, 54.4, 38.6, 34.6, 34.2, 28.6, 27.3, 27.2, 27.0, 26.9, 22.8, 21.0; HRMS (ESI+) m/z: [M + 

H]
+

 calcd for C24H45O7N2 473.3226, found 473.3226. 

N
6
-glutaryl lysine. N

2
-Boc-N

6
-(mono-t-butyl glutaryl) lysine t-butyl ester (210 mg, 

0.44 mmol) was processed as above. Column chromatography on Lichroprep RP C18 

(water/methanol = 9/1, v/v). TLC: Rf 0.14 in butanol/acetic acid/water 8/1/1 with ninhydrin 

detection. Yield: 86 mg (72 %); 
1
H NMR (400 MHz, D2O): δ 3.98 (t, J = 6.2 Hz, 1H, CH), 

3.10 (t, J = 6.5 Hz, 2H, CH2), 2.30 (t, J = 7.3 Hz, 2H, CH2), 2.19 (t, J = 7.3 Hz, 2H, CH2), 

1.88 (m, 2H, CH2), 1.78 (m, 2H, CH2), 1.46 (m, 2H, CH2), 1.35 (m, 2H, CH2); 
13

C NMR (100 

MHz, D2O): δ 177.8 (COOH), 175.8 (COOH), 172.1 (CONH), 52.8, 38.7, 34.8, 32.8, 29.3, 

27.8, 21.5, 20.7; HRMS (ESI+) m/z: [M+H]
+

 calcd for C11H21O5N2 261.1450, found 261.1447. 

N
6
-(3-hydroxy-3-methyl) glutaryl lysine. 4-Hydroxy-4-methyl-dihydro-pyran-2,6-dione 

(144 mg, 1.0 mmol) and diisopropylethylamin (129 mg, 1.0 mmol) were dissolved in 5 mL 

dry THF and a solution of N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) in 5 mL dry THF 

was added at 0 °C.  The reaction mixture was allowed to warm up to room temperature and 

stirred for 16 h. The solvent was evaporated by rotary evaporation, the residue dissolved in 

10 mL EtOAc and washed with 10 mL each of saturated NaHCO3 solution and 1 M HCl. The 

organic layer was evaporated with a rotary evaporator. The residue was dissolved in 10 mL 

each of acetone and 6 M HCl. After stirring for 30 minutes the mixture was diluted by 50 mL 

water and concentrated to a volume of approximately 2 mL by rotary evaporation. The crude 

product was purified by column chromatography on Lichroprep RP C18 (water/methanol = 

9:1, v/v). Fractions with positive ninhydrin detection were collected, evaporated and 

lyophilized. Yield: 11 mg (4 %); 
1
H NMR (400 MHz, D2O): δ 3.95 (t, J = 6.3 Hz, 1H, CH), 

3.11 (t, J = 6.8 Hz, 2H, CH2), 2.54 (s, 2H, CH2), 2.45 (s, 2H, CH2), 1.85 (m, 2H, CH2), 1.47 

(m, 2H, CH2), 1.35 (m, 2H, CH2), 1.26 (s, 3H, CH3); 
13

C NMR (100 MHz, D2O): δ 174.9 

(COOH), 172.9 (CONH), 172.1 (COOH), 70.2, 52.8, 46.7, 45.4, 38.7, 29.3, 27.8, 26.3, 21.6; 

HRMS (ESI+) m/z: [M+H]
+

 calcd for C12H23O6N2 291.1556, found 291.1540. 

2-(2-methyl-1,3-dioxolan-2-yl) acetic acid. Ethyl (2-methyl-1,3-dioxolan-2-yl) acetate (500 

mg, 2.87 mmol) was dissolved in 5 mL acetone and 5 mL 1 M NaOH. The solution was 

stirred at room temperature for 1 h. The acetone was removed under reduced pressure, 

aqueous phase was washed with 5 mL EtOAc and pH adjusted to 2. After extraction with 
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3x10 mL EtOAc the organic layers were combined, evaporated and dried under high vacuum. 

Yield: 271 mg (41 %);  
1
H NMR (400 MHz, CDCl3): δ 10.70 (br s, 1H, COOH), 3.99 (s, 2H, 

2xCH2), 2.71 (s, 2H, CH2), 1.50 (s, 3H, CH3); 
13

C NMR (100 MHz, CDCl3): δ 174.9 

(COOH), 107.4, 64.8, 44.0; HRMS (ESI-) m/z: [M-H]
-
 calcd for C6H9O4 145.0501, found 

145.0504. 

N
6
-acetoacetyl lysine. 2-(2-methyl-1,3-dioxolan-2-yl) acetic acid (146 mg, 1.0 mmol) was 

coupled with N
2
-t-Boc-lysine t-butyl ester (302 mg, 1.0 mmol) by HOBt (135 mg, 1.0 mmol) 

and EDC (186 mg, 1.2 mmol). Reaction parameters and processing was as above. Column 

chromatography on silica gel 60 (hexane/acetone = 2/1, v/v). TLC: Rf 0.27 in hexane/acetone 

2/1 with ninhydrin detection. The intermediate was dissolved in 10 mL each of acetone and 

6 M HCl. After stirring for 30 minutes the mixture was diluted by 50 mL water and 

concentrated to a volume of approximately 2 mL by rotary evaporation. The crude product 

was purified by column chromatography on Lichroprep RP C18 (water/methanol = 9:1, v/v). 

Fractions with positive ninhydrin detection were collected, evaporated and lyophilized. Yield: 

19 mg (8 %); 
1
H NMR (400 MHz, D2O): δ 3.96 (t, J = 6.2 Hz, 1H, CH), 3.54 (s, 2H, CH2), 

3.12 (t, J = 6.6 Hz, 2H, CH2), 2.15 (s, 3H, CH3), 1.85 (m, 2H, CH2), 1.46 (m, 2H, CH2), 1.32 

(m, 2H, CH2); 
13

C NMR (100 MHz, D2O): δ 207.9 (C=O), 172.1 (COOH), 169.0 (CONH), 

132.6 (C=C), 62.5, 52.8, 38.8, 29.7, 29.3, 27.6, 21.4; HRMS (ESI+) m/z: [M+H]
+

 calcd for 

C10H19O4N2 231.1345, found 231.1331. 

3-acetoxybutyric acid. Acetic anhydride (3 mL) was cooled to 15 °C and 67 % HClO4 (400 

mg, 4 mmol) was added. 3-Hydroxybutyric acid (260 mg, 2.5 mmol) was slowly added to the 

mixture and the temperature was maintained below 40 °C. The mixture was allowed to warm 

up to room temperature until a homogenous solution was obtained. The reaction was 

quenched by addition of ice and extracted with chloroform (2x10 mL). Water (5 mL) and 

trimethylamine (400 µL) were added to the organic phase and stirred at room temperature for 

16 h. The organic phase was washed with 1 M HCl (10 mL), evaporated and dried under high 

vacuum. Yield: 200 mg (54 %);  
1
H NMR (400 MHz, CDCl3): δ 8.70 (br s, 1H, COOH), 5.25 

(m, 1H, CH), 2.61 (m, 2H, CH2), 2.02 (s, 3H, CH3), 1.31 (d, J = 6.3 Hz, 3H, CH3); 
13

C NMR 

(100 MHz, CDCl3): δ 176.0 (COOH), 170.4 (C=O), 67.0, 40.4, 21.1, 19.8; HRMS (ESI-) m/z: 

[M-H]
-
  calcd for C6H9O4 145.0501, found 145.0504. 

N
2
-Boc-N

6
-(3-acetoxy) butyryl lysine t-butyl ester. 3-Acetoxybutyric acid (36 mg, 0.25 

mmol) was coupled with N
2
-t-Boc-lysine t-butyl ester (76 mg, 0.25 mmol) by HOBt (34 mg, 

0.25 mmol) and EDC (47 mg, 0.3 mmol). Reaction parameters and processing was as above. 

Column chromatography on silica gel 60 (hexane/acetone = 1/1, v/v). TLC: Rf 0.16 in 
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hexane/acetone 1/1 with ninhydrin detection. Yield: 38 mg (36 %); 
1
H NMR (400 MHz, 

CDCl3): δ 5.86 (br s, 1H, CONH), 5.20 (m, 1H, CH), 5.07 (br s, 1H, NH-Boc), 4.11 (m, 1H, 

CH), 3.23 (m, 2H, CH2), 2.40 (m, 2H, CH2), 2.01 (s, 3H, CH3), 1.60 (m, 2H, CH2), 1.50 (m, 

2H, CH2), 1.44 (s, 9H, 3xCH3), 1.42 (s, 9H, 3xCH3) 1.35 (m, 2H, CH2), 1.29 (t, J = 6.3 Hz, 

3H, CH3); 
13

C  NMR (100 MHz, CDCl3): δ 171.8 (COOtBu), 170.3, 169.4 (CONH), 155.5, 

81.8, 79.6, 68.3, 53.7, 43.2, 39.2, 32.7, 29.0, 28.3, 28.0, 22.5, 21.2, 19.9, 13.8; HRMS 

(ESI+) m/z: [M + H]
+

 calcd for C21H39O7N2 431.2752, 431.2764.  

N
6
-(3-hydroxy) butyryl lysine. N

2
-Boc-N

6
-(3-acetoxy) butyryl lysine t-butyl ester (38 mg, 

0.09 mmol) was processed as above. Column chromatography on Lichroprep RP C18 

(water/methanol = 9/1, v/v). Fractions with positive ninhydrin detection were collected, 

evaporated and lyophilized. Yield: 8.5 mg (42 %); 
1
H NMR (400 MHz, D2O): δ 4.06 (m, 1H, 

CH), 3.95 (t, J = 6.2 Hz, 1H, CH), 3.11 (t, J = 6.8 Hz, 2H, CH2), 2.28 (t, J = 7.4 Hz, 2H, 

CH2), 1.83 (m, 2H, CH2), 1.47 (m, 2H, CH2), 1.35 (m, 2H, CH2), 1.10 (d, J = 6.2 Hz, 3H, 

CH3; 
13

C NMR (100 MHz, D2O): δ 173.8 (CONH), 172.2 (COOH), 65.0, 52.8, 44.9, 38.7, 

29.3, 27.8, 21.9, 21.5; HRMS (ESI+) m/z: [M +  H]
+

 calcd for C10H21O4N2 233.1457, found 

233.1488. 
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Figure S1. Full-length blotting images of fractionation control. Antibodies against cytosolic 
β‐actin (a), mitochondrial COX IV (b), and histone H3 (c) were used. 
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Figure S2. Structural formulas of analytes. 
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Figure S3. Chromatographic separation of analytes by HPLC-MS/MS in enzymatic (a) and 

acid (b) hydrolysates (1 citrulline; 2 N
6
-glycoloyl/glyoxylyl lysine; 3 N

6
-formyl lysine; 

4 N
6
-malonyl lysine; 5 N

6
-lactoyl/pyruvoyl lysine; 6 N

6
-acetyl lysine; 7 N

6
-succinyl lysine; 

8 N
6
-propionyl lysine; 9 methylglyoxal hydroimidazolone; 10 N

6
-butyryl lysine; 

11 methionine sulfone; 12 methionine sulfoxide; 13 N
6
-carboxymethyl lysine, 

14 N
6
-carboxyethyl lysine, 15 glyoxal hydroimidazolone; 16 furosine; 17 o-tyrosine; 

18 o,o-dityrosine). 
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