THE DESIGN OF VISITOR'S SHED IN DHAKA ZOO: "GOLDEN FIBER" JUTE AS TENSILE MEMBRANE

Master-Thesis

A thesis submitted in partial fulfillment of the requirements for the degree of

Master Membrane Structures

submitted to

Anhalt University of Applied Sciences

Faculty of Architecture, Facility Management and Geo Information

by

Golam Morsalin, Choudhury Rana 31-December-1985, Laxmipur, Bangladesh

4053857

Submission date: 24-2-1985

First Tutor: Prof. Dr. Ing. Robert Off

Second Tutor: M.Eng. Atisit Sabmeethavorn

Statement

I hereby declare that the work presented in this Master thesis, entitled

The Design of Visitor's shed In Dhaka Zoo: "Golden Fiber" Jute as Tensile Membrane,

is entirely my own and that I did not use any sources or auxiliary means other than those referenced.

Dhaka, Bangladesh, 24-2-2013

Golam Morsalin Choudhury Rana

1

Acknowledgement

I would like to thank all the people who helped me in preparation of this thesis work. First of all I would like to mention Prof. Dr. Robert Off for his continuous support throughout the course. I would like to thank him for his dedication and passion in handling entire course work at Institute for Membrane and Shell Technologies, IMS e.V.

I would like to my gratitude to Atisit Sabmeethavorn for his guidance and support throughout the thesis work. I will always remember his dedication and kind behavior through the course.

I would like to express my special thanks to Prof. Dr. Shabbir Ahmed, Department of Architecture, Bangladesh University of Engineering and Technology, BUET for his inspiration, encouragement and support throughout the course.

I would like to thank following individual:

Md. Moslem Uddin from Textile Physics Division of Bangladesh Jute Research Institute, BJRI for his continuous untiring support and guidance on my thesis work.

Prof. Dr. Abdul Jabbar Khan, Department of Civil Engineering, Bangladesh University of Engineering and Technology, BUET for his guidance on material testing.

Heike Kleine, Assistant IMS e. V. for her support, patience and providing license key whenever author needed.

Architect Amandus VanQuaille, Nomad Concept Belgium for his technical support.

Finally this thesis is whole heartedly dedicated to my parents for their relentless support, love and affection.

Golam Morsalin Choudhury Rana Dhaka, 24 February 2013

Table of Contents

Statement	1
Acknowledgement	- 2
Table of Contents	- 3
Abstract	. 4
Chapter01: Introduction	
1.1 Introduction	- 5
1.2 Objectives	- 5
1.3 Scope and Limitations	. 5
1.4 Approach	· 6
1.5 Thesis Structure	· 6
References	. 6
Chapter 02: Tensile membrane structures and history of fabric structures in Banglades	sh
2.1 Tensile membrane structures	7
2.2.1 Qualities of Membrane Structures	7
2.2 History of Fabric Structures in Bangladesh	9
References	10
Chapter03: Jute	
3.1 Introduction of Jute	11
3.2 Properties of Jute	12
3.3 Jute Fabrics	13
3.3.1 Jute Geotextiles	13
3.3.2 Jute Cotton Union Fabrie	14
3.4 Strength Test	14
3.5 Cost Comparison	15
3.6 Review of Recent Research and Developments	15
Chapter04: Design Development	
4.1 Project Background	18
4.1.1 Project Requirements	19
4.1.2 Site Description	19
4.2 Conceptual Development	20
4.3 Physical Model Stud y	22
4.4 Formfinding	23
4.5 Shadow Study	24
4.6 Membrane Analysis	25
4.6.1 Wind Load	25
4.6.2 Snow Load	26
4.6.3 Load Combinations	26
4.6.4 Maximum Stress and Membrane Selection	28
4.6.5 Displacement of the Membra ne	28
4.7 Patterning	29
4.8 Detail Design	32
4.8.1 Cable Dimensioning	32
4.8.2 Membrane Corner Design	34
4.8.3 Connection Design	35
4.8.4 Mast Design	38
4.8.5 Anchorage Design	39

Chapter05: Fabrication

5.1 Cost Estimation	40
5.2 Time Schedule	40
5.3 Erection Procedure	41
Chapter06: Conclusion	
Conclusion	42
Bibliography	43
List of Figures and Table s	44
Appendix01: Tensile Strength Lab Test Results	46
Appendix02: Cost Estimation	49
Appendix03: Membrane Stresses in Different Load Combinations	51
Appendix04: Forten Analys is Report	58
Appendix04: Foundation Detail Drawing	66
Appendix05: Structural Calculation	67

Abstract

This paper explores the opportunity of using Jute fabric as an alternative material for tensile membrane structures. Jute has many environmental benefits. It is biodegradable, nontoxic and has high tensile strength. Application of Jute based product is green, sustainable and reduces carbon footprint.

Jute cord, ropes, bags are being used for centuries, and Bangladesh is the natural home of the best quality Jute. Bangladesh is the largest Jute exporter in the world. Wide range of products is made from Jute. Technical textiles such as Jute geotextiles (JGT) made from Jute are being used in road construction, river bank erosion control, filtration etc. Many researches are being undertaken to improve the quality and longevity of Jute. One study indicates that chemically treated Jute fabric can last upto 20yrs.

Tensile fabric structures are special type of structures where roofs or canopies were loaded only in tension. Tensile fabric structures are lightweight, translucent, flexible, and have sculptural quality comparing to traditional structures. These qualities tensile membrane structures match the requirements of visitor's shed design in Dhaka zoo.

Since Jute is an indigenous material, locally available, low cost, ecofriendly and has good tensile strength, so Jute fabric is selected to be used as an experimental tensile fabric material for the proposed shed structure in Dhaka Zoo. The combination of Jute fabric and support structure will add sculptural quality and lightweightedness in zoo environment. This study will open up possibilities of Jute fabric to become an alternative for tensile fabric structures.

4

Chapter 01:

Introduction

1.1 Introduction

Tensile membrane structures are very lightweight and require minimum supporting structures to be built¹. Sculptural forms & shapes of them attract people. They can be temporary & mobile and require less hard surfaces. These advantages are suitable for a visitor shade. So, tensile membrane structure is selected to design a visitor shade in Dhaka Zoo.

Prestressed membrane is used for structural stability in tensile membrane structures. The materials used for membranes are generally consisting of artificial woven fabric coated with polymeric resin². Natural fabric such as fabric made of Jute fiber has huge potential to become an alternative membrane material. As Jute fiber has good tensile strength. Jute ropes and bags are widely used to carry loads. Jute has many ecological benefits. It is environment friendly, nontoxic and biodegradable. Recent study shows that treated Jute fabric can last upto 20yrs³.

Selecting natural fiber based products rather than synthetic fibers can reduce CO_2 emission. Thereby reducing greenhouse effect caused by CO_2 . Increasing awareness in this issue leads to more in depth research on natural resources. The industrial and natural life cycles of a product made from renewable resources shown in Fig. 01. CO_2 produced by incineration at the end of technical cycle is compensated through photosynthesis during growth making total CO_2 balance is zero⁴.

Figure 1: Interaction between natural and industrial cycles. (Reported by Loan, 2006)

Jute is an indigenous material of Bangladesh. Bangladesh is the natural home of best Jute in the world. Jute is readily available and cheap. Bangladesh is the largest exporter of raw Jute in the world⁵. Jute is related with development of economy and poor rural communities in Bangladesh. Govt. of Bangladesh is encouraging diversified uses of Jute. Technical textiles produced from Jute fabric such as Jute Geotextiles (JGT) are one of the diversified uses of Jute, which are now used in road construction, preventing soil erosion, filtration etc⁶.

1.2 Objectives

This paper investigates the potential of Jute fabric to be used as tensile membrane for visitor shade at Dhaka Zoo. It will enhance the applicability of Jute fabric and lead the way to future in depth study on Jute fabric as a membrane material.

1.3 Scope and Limitations

This study is mainly focused on Jute fabric available in local market. Among them one side laminated hessian type Jute fabric and Jute-cotton 50:50 union fabric tested in BUET lab. Double side coated fabric is not available but it can be produced in factory only for large quantities.

Testing of the Jute fabrics have been done in the labs of Bangladesh University Engineering & Technology (BUET) and Bangladesh Jute Research

Institute (BJRI).

Jute fabrics which are selected in this study are not UV protected and weldable. Researches are going on to make Jute fabric UV protected. There are possibilities to make it weldable, but it is out of the scope of this study.

1.4 Approach

The approach to design a visitor shed using Jute fabric will be divided into two phases. In study phase a suitable Jute fabric will be selected based on literature review and market survey. Then in design phase after loadcase analysis, strength of the fabric will be checked if its strength is above the required safety level than the fabric will be selected for detail design.

1.5 Thesis Structure

After introduction in chapter01, background of the thesis work will be discussed in chapter 02. A short overview on tensile membrane structures and a short history of fabric structures in Bangladesh will be discussed. And then project description and site location will be presented.

In chapter 03 Jute, properties of Jute yarn, Jute geotextiles, Jute cotton union fabrics will be studied thoroughly and a fabric will be selected based on tensile strength for design phase.

Then in chapter 04 design will be developed and form finding will be done. Membrane will be analyzed for different load cased. Then strength of the fabric will be evaluated. If it is ok then detail design will be done.

The fabrication process will be discussed in chapter 05. Cost estimation, time schedule will be presented. A guideline for erection procedure will be given.

Conclusive remarks and evaluation of the findings will be discussed in chapter 06

References:

- 1. Brian Forster, Marijke Mollaert; Engineering Fabric Architecture, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 2. Rainer Blum, Heidrun Bogner, Guy Nemoz; Material Properties and Testing, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 3. Dr. A.B.M. Abdullah, Jute Geotextiles and Their Applications, Jute Diversification and Promotion Center (JDPC), Dhaka 2008.
- 4. Doan, Thi Thu Loan, Investigation on Jute fibers and their composites based on polypropylene and epoxy matrices, Technischen Universität Dresden, May 2006.
- 5. World Export report of raw Jute, Kenaf and allied fibers from 2003/2004 to 2009/2010, Food and Agriculture Organization (FAO)
- 6. Dr. A. B. Jabbar Khan, Technical Assessment of Jute Geotextiles for Civil Engineering Applications, Department of Civil Engineering, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh, June 2008

Chapter 02:

Tensile membrane structures and history of fabric structures in Bangladesh

2.1 Tensile Membrane Structures

Tensile membrane structures are generally composed of lightweight membrane or fabric and primary structure, where membrane is loaded only in tension supported by primary structure. Tensile membrane structures are lightweight, flexible and more stable than conventional structures¹. Modern tensile fabric structures have relation and similarities with traditional and nomadic tents. The materials of old nomadic tents were hand woven wool with wooden stakes as primary structure. But the modern tensile membrane structure uses steel masts, arches, semi-grid support as primary structure and membrane with associated cables as secondary structures².

The art of modern lightweight membrane structure started from 1950's. 'Minimal surface' concept of modern membrane structures are based on Frei Otto's soap film experiments. Minimal surface requires least amount of potential energy within a set of boundary. With minimally shaped surfaces varieties of sculptural shapes and spaces can be produced. They can be translucent and provide shade from sun, rain, wind. So with minimally shaped surfaces more can be achieved with less, in other words- less is more³.

2.1.1 Qualities of Membrane Structures

Tensile membrane structures have some advantages over traditional structures. The major advantage of tensile membrane structures is its lightweightness. Prestessed shapes of the membrane, low mass and wide span provide opportunity to express lightness and stability³.

Figure 3: Fountain Tent Starwave, Cologne, Germany, rebuilt 2000, Architekturbüro Rasch + Bradatsch with Frei Otto.

Translucency is one of the great qualities of tensile membrane structures. It offers aesthetic opportunity to design with natural and artificial light. Translucency depends on the type, coating and color of membrane material. Translucency can vary from 10% to 40%³.

Figure 4: Assembly Tent, Malaysia, 1997, SL Rasch

Tensile membrane structures are not rigid. Membrane shape deforms in response to snow and wind load. It finds efficient shape for different loading conditions which offers better flexibility. Unique sculptural shapes can be achieved through membrane structures. It offers a floating quality defying gravity. With the help of artificial lighting it offers an opportunity to design a tensile membrane structure into a sculpture of light³.

Figure 5: Julianus Shopping Mall, Tongeren, Belgium, 2007, The Nomad Concept

Membrane material with open structure can be used for shading and stimulate natural ventilation. The open air feeling and impression of lightness of tensile membrane structures are reinforced by the translucency of membrane material³.

Figure 6: Fort 4 Mortsel, Antwerp, Belgium, 2002, The Nomad Concept

Tensile membrane structures can be the synthesis of nomad tent and permanent settlement. Flexibility and lightness of materials make them to be built again and again in different places. They can be erected again and again at different places. For these mobility and flexibility tensile membrane structures can be used in case of emergency situations and also they can be served for various open public events, which in turn save urban open spaces.

1.2 History of Fabric Structures in Bangladesh

Bangladesh has a long tradition of fabric structures, which has been influenced by many traditions and cultures in this region. Traditional fabric structures like Pandal and Shamiana are being erected throughout the history as temporary shelters for different festivals and ceremonies. Pandals are generally erected as temporary shed for different religious festivals & weddings especially by Hindus and Buddhist from ancient times. Hindu community in Bangladesh set up large puja pandals during *Durga Puja* to venerate the goddess Durga⁴. Traditional ceremonial tent Shamiana was introduced by Mughal regime in India⁵. Shamiana was richly decorated fabric hanged in Mughal and Rajput courts. It's a temporary structure erected on different royal or public events.

Figure 7: Mughal Shamiana in front of Divan-i Khass in the Palace of the Delhi Fort, water color by Ghulam Ali Khan, 1817

Figure 8: Durga puja pandal, author Mukerjee, October 2008

Figure 9: A Pandel gateway in Dhaka.(Author Pro. Dr. Shabbir Ahmed, 2011)

Figure 10: 10th convocation pandel of Bangladesh University of Engineering & Technology (BUET), 3rd February 2011

Shamiana or pandals are still being erected during various religious festivals, public events, parties, marriage ceremonies etc. One of the biggest examples is 'Bisho Ijtema'. Largest tent structure using jute fabric is erected over an area of 160 acres⁷. 'Bisho Ijtema' is an Islamic religious congregation held on the bank of river Turag in Tongi, Gazipur each year. Porous hessian Jute fabric is used as fabric material to shade the area.

Figure 11: Bisholjtema on the bank of river Turag, Tongi, Gazipur.(source: www.thedailystar.net)

Figure 12: Inside view of Bisho Ijtema tent. (Author Rocky S. Hossain, 2010)

References:

- 1. Brian Forster, Marijke Mollaert; Engineering Fabric Architecture, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 2. Erik Moncrieff, Brian Forster; Glossary, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 3. Jurgen Bradatsch, Peter Patzold, Cristiana Saboia de Freitas, Rudi Scheuermann, Juan Monjo, Marijke Mollaert; Form, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 4. Rabindranath Trivedi, The Durga puja and Minority Rights of Bangladesh, Asian Tribune, 19 October 2012.
- 5. Shireen Akbar, Shamiana: The Mughal Tent, Victoria & Albert Museum, January 1999
- 6. The Divan-i Khass in the Palace in the Delhi Fort,

http://www.bl.uk/onlinegallery/onlineex/apac/addorimss/t/019addor0004694u00000000.html Accessed on 13-11-12

7. All set for Biswa Ijtema from Saturday, The Daily Star, 22 December, 2003

Chapter 03:

Jute

3.1 Introduction of Jute

Jute is a natural plant. Jute fiber is collected from the bark of the plant and is yellowish golden in color. Jute is called the golden fiber of Bangladesh. Bangladesh is the natural home of best quality Jute. Jute is related with development of economy and poor rural communities in Bangladesh. Jute genome sequencing is decoded by a team of Bangladeshi scientists which opens up huge potentials for Jute development¹.

Figure 13: Jute plant.Figure 14: Jute collection from field.(source left image http://www.thejutecompany.com/images/juteplant.jpg)(source right image http://media.lonelyplanet.com/lpi/2994/2994-27/681x454.jpg)

Bangladesh is the largest exporter of raw Jute in the world². But export growth of Jute and Jute items has sharply deceased from 1970's³. There was a negative growth rate in 80's. The Govt. of Bangladesh has taken initiative to curb the export growth rate of Jute and Jute. For that purpose diversified use of Jute have been motivated and given incentives.

Table 1: Growth Performance of Jute and Jute Goods Export by Bangladesh (reported in Mustafizur Rahman, Nafisa Khaled, 2011)

Item	FY1973 –	FY1981 –	FY1991 –	FY2001 –	FY1973 –
	FY1981	FY1991	FY2001	FY2010	FY2010
Raw jute	1.0	-1.2	-1.2	13.3	-0.4
Jute goods	9.7	-1.5	-1.4	6.4	0.7
Total raw jute	6.8	-1.4	-1.4	8.3	0.4
and jute goods					
Total export	10.3	9.9	13.6	12.4	10.9
from Bangladesh					
					(in Per cent)

Jute ranks second only to cotton in amount produced. Traditionally Jute has been used as packing materials such as hessian, sacking, ropes, twines, carpet backing cloth etc. Nowadays Jute is being used in producing of various types of products. Diversified Jute products are being developed such as home textiles, technical textiles, geotextiles, agrotextiles, jute nonwovens, jute reinforced composites, pulp & paper, particle boards, shopping bags, handicrafts, fashion accessories, apparels etc⁴.

Figure 15: Jute fiber extraction (source left image author Shahnewaz Karim, 2011)

(source right image author Auyon , 2011)

Figure 16: Jute fiber is dried in Sun

There are two Jute types in trade white (*Chorchorus capsularis*) and Tossa (*Chorchorus olitorius*). Tossa Jute is softer, silkier, and stronger than white Jute. It is also known as *Paat* in Bangladesh. Jute fiber is collected from the bast or skin of the Jute plant. That's why Jute fiber falls into bast fiber category. Jute plant grows in hot humid rainy alluvial lands. Jute plant is photo reactive, it harvests within 120 days⁴. It grows upto six to ten feet high. Matured Jute plants are cut, tied in bundle and put into slow flowing water for several weeks for fermentation. Jute fibers are pulled off from the bark, washed carefully and then dried in the sun.

Jute has huge ecological benefits. Jute plants purify air by assimilating CO₂. One hector of Jute plants can absorb 15 MT of carbon dioxide CO₂ and deliver 11 MT of fresh oxygen O₂ during 100days of Jute growing period. Studies reveal that CO₂ absorption rate of Jute is much higher than normal trees. Production of Jute is much less harmful compared to the production of synthetic fibers. Jute cropping enhance soil organic matter through leaf shedding during growing season. Jute cropping can be rotated with other food crops. Jute based multiple cropping enhance agricultural production. Rice, cereals, oilseeds, vegetables are benefitted from Jute cropping. Jute is a biologically efficient plant. Jute grows very fast within 4 to 5 months it matures and yields 8 to 12MT per hectare per annum. Jute requires very little quantity of fertilizer to grow. 7-53kg chemical fertilizers are used per hectare which is insignificant compared to other crops. Jute plant sheds 5-6tons of green leaves per hectare while growing which fertilize the soil⁵.

Jute has thermal insulation properties as it has high specific heat. Ignition temperature of Jute is 193°C. Jute fiber does not melt while charring or burning. Jute has also good resistance to electricity⁶.

There are some disadvantages of Jute, which include poor drapability and crease resistance, brittleness, fiber shedding. Jute fiber becomes yellow in sunlight and decreases mechanical strength, due to the presence of higher lignin contents in Jute⁷. Due to the presence of hemicellulose in Jute fibers, it is hydroscopic. Jute fiber swells on absorption of water, decreasing tenacity of the fiber6. Jute fiber becomes subject to microbial attack in humid climates. Jute fiber strength and durability can be increased various levels through different surface treatments such as alkali treatment, silane treatment, isocyanate treatment, latex coating, permanganate treatment, acetylation, monomer grafting under UV radiation etc⁸.

3.2 Properties of Jute.

Jute is a cellulose based material. It is stiff and yellowish in color due to the presence of hemicellulose and lignin. Each Jute fiber is composed of smaller units known as fibrils. They are arranged in right handed spirals and make closely held molecular chains which known as micells⁹. The chemical composition of jute is as follows—

Alpha Cellulose	58-63%
Hemicellulose	21-24%
Lignin	12-14%
Pectin	0.2-0.5%
Fat & Wax	0.4-0.8%
Protein	0.8-1.5%
Mineral Materials	0.6-1.1% (Abdullah 2008)

Table 2: Typical Properties of Jute Fiber (Ramaswamy and Aziz 1982)

	•
Fibre length, mm	180 - 800
Fibre diameter, mm	0.10-0.20
Specific gravity	1.02- 1.04
Bulk density, kg/m ³	120 - 140
Ultimate tensile	250 - 350
strength, N/mm ²	
Modulus of elasticity, kN/mm ²	26-32
Elongation at break, (%)	2-3
Water absorption, (%)	25-40

Jute is relatively stiff and has high strength than other natural fibers.

Table 3: Properties of jute fibre in comparison with other fibres (reported in Doan Thi Thu Loan, 2006)

Fibre	Density (g/cm3)	Tensile Strength (MPa)	Young's Modulus (GPa)	Elongation At break (%)	Specific Tensile Strength (MPa/ g.cm-3)	Specific Young's Modulus (GPa/g.cm-3)
Jute	1.3-1.45	393-773	13-26.5	1.16-1.5	286-562	9-19
Flax	1.5	345-1100	27.6	2.7-3.2	230-773	18
Ramie	1.5	400-938	61.4-128	1.2-3.8	267-625	41-85
Sisal	1.45	468-640	9.4-22.0	3-7	323-441	6-15
Coir	1.15	131-175	4-6	15-40	114-152	3-5
E-glass	2.5	2000-3500	70	2.5	800-1400	28
S-glass	2.5	4570	86	2.8	1828	34

1. Mudassir Rashid, "Bangladesh decoded Jute's genome sequencing 'Golden fiber to redeem the lost glory'", Bangladesh Textile Today, Jul-Aug 2010.

2. World Export report of raw Jute, Kenaf and allied fibers from 2003/2004 to 2009/2010, Food and Agriculture Organization (FAO)

3. Mustafizur Rahman, Nafisa Khaled "Global Market Opportunities In Export of Jute", CPD, 2011, Dhaka

4. Dr A.B.M. Abdullah,"Jute Geotextiles and Their Applications", Jute Diversification Promotion Centre (JDPC), Dhaka, June 2008.

5. "Environmental Impact of Jute Agriculture", International Jute Study Group (IJSG), http://www.jute.org/ecology.htm accessed on 14-11-12

3.3 Jute Fabrics

Different types of Jute fabrics are manufactured in in spinning and composite mills with conventional spinning and looms. Depending on drafts, twists, dollop weight, design such as plain, twill, basket, satin/steen with closed, dense and open structure wide range of fabrics can be produced with different strength, thickness, porosity and permeability. Composite types of fabrics such as Jute-cotton union fabric are also produced with different ratio.

Figure 20: Jute Double Warp (D.W.)

Figure 20: 50:50 Jute-cotton union

Following Jute fabrics are commonly used and available in market hessian, canvas, D.W twill, Jute-cotton blend. Hessian is the most porous; canvas is very closely woven with flat type yarn and least porous. Double warp (D.W.) twill is also known as A-twill, which is a 2/1 twill weighing 750 g/m² and widely used for packaging purposes¹⁰.

3.3.1 Jute Geotextiles (JGT)

High strength Jute fabrics are now used as geotextiles. Jute geotextiles (JGT) are applied in various civil engineering projects. For example Rokeya shoroni link road was constructed in December 2008 in Dhaka¹¹. Jute geotextiles are now becoming strong alternative to synthetic geotextiles. Though Jute geotextiles (JGT) are quickly biodegradable, but their life span can be extended up to 20yrs through proper treatment and blendings¹². JGTs are anionic, harmless, and soil fertilizer. They are used in different purposes such as erosion control, soil filtration and drainage, soil stabilization and fertilization etc. A comparison is presented in the table between various types of untreated, bitumen treated JGT and synthetic geotextiles.

		-			•	•••	•		•
Product	Condition	Mass per	Thickness	Wide	Grab	CBR	Burst	Permitivit	AOS (mm)
		unit area	(mm)	width	tensile	puncture	strength	У	
		(g/m2)		tensile	strength	resistance	(kPa)	(S—1)	
				strength	(N)	(N)			
				(kN/m)	MD/XMD				
Jute	Treated	1600	3.5	15/18	800/700	4000	1500	0.06	0.0 to
	Untreated	800	2.8	10/12	400/220	1500	1250	0.28	0.28
C	Turneted	1200	2.5	27/45	1100/700	1000	1000*	0.0	0.0.4.5

Table 4: Test result of treated JGT, untreated JGT and synthetic geotextiles (reported by Jabbar, 2008)

	Untreated	500	1.3	23/14	850/400	1700	2400	0.03	0.09
DW Twill	Treated	1400	3.1	25/32	1000/900	1700*	2600	0.21	<0.075
	Untreated	750	2.4	23/26	900/750	4500	2400	0.25	0.8
Hessian	Untreated	300	1.5	12/14	210/220	1500	1400	1.19	1.0
Synthetic	Non-Woven	240-640	2.0-4.5	[18-48]	[1160-	2660-	3800-	0.4-1.8	
	Geotextiles			/[15-31]	2590]	5450	4500		

- 6. Tapobrata Sanyal, "Jute & Jute Geotextiles", http://www.jute.com:8080/c/document_library/get_file?uuid=87c9f7ad-ddc6-4b36-9cae-ecf4edd456ec&groupId=22165 Accessed on 14-11-2012
- 7. Capucine Korenberg, "The effect of ultraviolet-filtered light on the mechanical strength of fabrics", The British Museum Technical Research Bulletin, Volum 1 2007.
- 8. Doan Thi Thu Loan, "Investigation on Jute fibers and their composites based on polypropylene and epoxy matrices", Technischen Universität Dresden, May 2006.
- 9. Md. Milon Hossain, Rumpa Karmaker, Sudipta Bain, M. A. Jalil and Joykrishna Saha, "Investigation of Influence of Twill Structures on Jute-Cotton Union Fabric Physical Properties", IJASETR, Volume 1, Issue 2, Article #06, April 2012

3.3.2 Jute-Cotton Union fabrics

In Jute-cotton union fabric, cotton yarn is normally used in warp direction and Jute is used in weft direction. Jute-cotton union fabrics are cheaper than 100% cotton fabric because of Jute in it. It has a great potential to replace 100% cotton fabric. Jute-cotton union fabrics are now used as carpets, rugs, floor covering.

3.4 Strength Test

For tensile strength testing purposes, one side Polypropylene (PP) laminated untreated hessian Jute 13x13, 15x15 and 50:50 Jute-cotton union fabric have been collected from Jute Diversification Promotion Center (JDPC) Dhaka. And they have been tested in Geotech Lab of Dept. of Civil Engineering, Bangladesh University of Engineering & Technology. Strip tensile strength was done according to ASTM D4595. Report is attached in appendices.

Figure 23: One side laminated (13x13) Jute-fabric Figure 23: 50:50 Jute-cotton blend

Figure 23: One side laminated (15x15) Jute-fabric

Table 5: Tensile strength test result

Fabric	Chemical	Weave	Average	Yarn	Thickness,	Strip tensile	Strip tensile
sample	treatment	construction	mass per	count	mm	strength	elongation
			unit area	Jute tex		MD/XMD	MD/XMD %
			gm/m2			kN/m	
(13x13) Jute	untreated	Plain weave	376	256	.88	15.4/16.7	10/10
fabric natural							
(15x15) Jute	untreated	Plain weave	331	150	.756	14/12	12/8
fabric natural							
Jute-Cotton	untreated	Plain weave	2213	95	1.025	18.1/15.2	4/22
50:50 union							

From the strength test it is found that one side laminated (13x13) Jute fabric has more tensile strength than (15x15) Jute fabric. Tensile strength of Jute-cotton fabric is the highest among three fabrics, since it has cotton in it.

.

(15x15) Jute fabric has more elongation in MD than (13x13) Jute fabric but less elongation in XMD direction. On the other hand Jute-cotton fabric elongation in XMD is the highest and in MD is the lowest, because of the use Jute in XMD direction and cotton in MD direction. Jute-cotton union fabric has the highest mass per unit area and thickness among the three fabric tested.

- 10. Jute products: sacking, http://www.jute.org/jute_prod_sac.htm accessed on 16-11-12
- 11. Prof. Dr. Abdul Jabbar Khan, Major Md Masudur Rahman, "A JGT Reinforced Road Subgrade In Bangladesh", http://www.fibre2fashion.com/industryarticle/21/2028/a-jgt-reinforced-road-subgrade-in-bangladesh1.asp accessed on 14-11-12
- 12. Dr A.B.M. Abdullah," Jute Geotextiles and Their Applications", Jute Diversification Promotion Centre (JDPC), Dhaka, June 2008.

3.5 Cost Comparison

Cost comparison of laminated Jute, Jute-cotton union fabric, Canvas, DW twill in €/m² is given below.

Table 6: Recent market cost comparison of different Jute fabrics €/m²

From the above chart we can see that cost of Type I PES is almost 14 times higher than one side laminated Jute 13x13 in local market, because of the local production and availability of Jute fabric. Prices of Jute fabrics are collected from JDPC (Jute Diversification and Promotion Center) of BJRI (Bangladesh Jute Research Institute).

3.6 Review of Recent Research and Developments

Diverse Jute based products are now produced. New researches and technologies are being developed to enhance the quality of Jute products. Some recent research and developments in this field are mentioned below.

A group of Bangladeshi scientists led by Dr. Prof. Dr. Maqsudul Alam have successfully disclosed Jute genome sequencing. It is a great leap for Jute development. Jute plants are affected by flood, saline soil and different types of pest and diseases that harm cultivation. By developing Jute genome it is possible to develop high yielding, flood resistant, saline soil and pest tolerant Jute.

Jute is now used in housing sector, replacing traditional material. Research group of Bangladesh Atomic Energy Commission (BAEC) has developed JUTIN, which is produced from jute (hessian cloth), and resin. JUTIN is durable, rustproof, saline-resistant, lightweight, heat-resistant, and environment friendly. It is 40.2% cheaper than existing alternatives. It may replace traditional corrugated iron (CI) sheets. JUTIN will play a major role in housing sector of Bangladesh¹³.

Figure 24: Jutin (Md Saimum Hossain, Energy Efficient and Low cost Housing Material, 2010)

Figure 24: Jutin (Ivid Salmum Hossain, Energy Efficient and Low-cost Housing Material, 2010)

Jute fiber is also used in ecofriendly boat making. A 9m long eco-friendly boat ecofriendly boat made of 40% jute and 60% fiber glass is built Taratari shipyard near Dhaka. It is designed by French naval architect Marc Van. Corentin de Chatelperron set sail on this boat from Bangladesh to France in September 2010¹⁴.

Due to biodegradability of Jute, durability of Jute products is short. But recent study show that latex treated Jute can last upto 20yrs¹⁵.

- 13. "Local researchers develop jute-made substitute for CI sheet", http://www.thefinancialexpress-bd.com/more.php?news_id=97298&date=2010-04-10 accessed on 14-11-12
- 14. http://tibotaratari.wordpress.com/2010/09/15/taratari-corentin-voiles-et-voiliers-video/ accessed on 14-11-12
- 15. Dr. A. B. Jabbar Khan, "Quality Control of Jute Geotextiles & Development of Testing Facilities", http://www.jute.com:8080/c/document_library/get_file?uuid=f1d0dc40-69a9-490c-89c8-ca05dede6918&groupId=22165 accessed on 14-11-12

Туре	Composition	Poss. durability	Biodegradability	Moisture content	Wt./unit gm
Woven Jute in different structure/ design	All Jute (untreated)	6-9 month	Quick	12-14%	220-800
Woven Jute in different design/ Construction	Jute treated with coir	9-12 month	Slow	7-10%	220-800
Woven Jute but treated composite	Jute treated with Bitumin carbon	9-48 month	Long run	3-8%	Var. wt.
Woven Jute in different Construction/ design	Jute treated with Latex	5-20 years	Long run	5-7%	≥ 800

Table 7: Summary of jute blended with different materials at BJRI (reported in Jabbar, 2008)

Jute fiber becomes brittle and loses its strength in prolonged exposure to sun. To protect it from UV radiation several treatments and dyes have been developed. One example is monochlorotriazinyl reactive dye with cyanuric chloride nucleus, such as Cibacron Red FAL which is found to be effective in UV protection. Simultaneous dyeing and finishing with Cibacron Red FAL and Cibatex UPF provides higher UV protection. The treatment of jute/cotton fabric with titanium dioxide also provides satisfactory protection against UV rays¹⁶.

Due to hydroscopic behavior of Jute, it attracts water. Water uptake can significantly reduce tenacity. Water uptake of Jute fiber can be significantly reduced through treating fiber surfaces by NaOH/(3-Aminopropyl-triethoxy-silane + Epoxy dispersion XB 3791) and NaOH/3-Phenylaminopropyl-trimethoxy-silane¹⁷.

There is a growing interest on Jute reinforced polymer matrix composites, due to ecological aspects of Jute such as biodegradability, renewability, low energy, non-toxic, non-health hazardous as well as good thermal and electrical insulations, toughness, and market availability at low cost. Jute polymer composites such as Jute fiber reinforced polypropylene or epoxy, Jute-glass fiber hybrid composite, Jute fabric-Reinforced PVC-based composite, Jute viscose/polyester and cotton blended fabric, jute fabric-reinforced polyester composites are now used as panels, false ceiling, partition boards, wall, floor, window and door frames, roof tiles, furniture, electric devices, automobile and railway coach interior, boat, Toys etc.

A green Architectural membrane, based on Kenaf bast fiber has been developed by Taiyo Kogyo Crop. Kenaf is a natural fiber and have similar characters as Jute. KenafineTM, developed by Taiyo Kogyo Crop., is made by weaving Kenaf fiber with polyester fiber. This bas fabric is coated on top with photocatalyst TiO_2 and at bottom coated with antibacterial agent of silver. This environment friendly green membrane can be recycled to make paper product¹⁸. Thus it is a carbon-neutral product than 100% polyester based fabrics. Test result of Kenafine is given below.

Figure 25: Kenaf plant. (source http://fabricarchitecturemag.com/repository/4/15396/full_1112_np9_1.jpg)

- 16. Ghosh S. B., Bajaj P., Kothari V. K. "Effect of dyes and finishes on UV protection of jute/cotton fabrics", Indian journal of fibre & textile research, vol. 28, no4, pp. 431-436, 2003
- 17. Doan Thi Thu Loan, "Investigation on Jute fibers and their composites based on polypropylene and epoxy matrices", page-112, Technischen Universität Dresden, May 2006.

Items	Test method	Measurement value
Mass (g/m²)	ЛЅ К 6404-2-2 ISO 2286-2	904
Thickness (mm)	ЛЅ К6404-2-3	0.82
Flame retardancy	NFPA 701	M2(pass)
Flame retardancy	ЛS A 1322 method B	grade2 (pass)
Tensile strength (N/3cm)	ЛS L 1096	2470 x 2340
Tensile strength (N/5cm)	ISO 1421	3979 x 3734
Lap joint of tensile strength (%)	JIS L 1096	100
Tear strength (N)	ЛS L 1096	229.6 x 271.7
Tear strength (N/mm)	DIN 53363	355 x 427
Tear strength (N)	ASTM D 751-06	156.1 x 193.8
Resistance to accelerated and outdoor exposure weathering	After UV irradiance for 416h	98 x 87
Decomposition activity index (nmol/L/min)	ЛS R1703-2 Decomposition of wet methylene blue	20.9
Antibacterial activity	ЛS Z 2801 Staphylococcus aureus Escherichia coli	>5.0 >6.0

Table 8: Test result of KenafineTM

(Source http://fabricarchitecturemag.com/articles/1112_np9_material_research.html)

Figure 26: Structure of Kenafine[™] (Source http://fabricarchitecturemag.com/articles/1112_np9_material_research.html)

18. H. Toyoda, "Recyclable coated fabric using kenaf fiber for architectural membrane structure applications", Fabric Architecture, November 2012, http://fabricarchitecturemag.com/articles/1112_wp_kenaf_fiber.html accessed on 16-11-12.

Chapter 04:

Design development

4.1 Project background

Dhaka Zoo is situated in north eastern part of Dhaka. It was established in June 1974. It is the largest zoo in Bangladesh. It has an area of 75.53 hector with north and south lakes¹. Dhaka zoo holds 4th position in the world considering the land area of other zoos². About 4 million visitors visit Dhaka zoo each year¹. It is operated by Ministry of Fisheries and Livestock. To raise the standard of the zoo to an international level Ministry has taken initiatives for renewal and redevelopment plan for Dhaka zoo. Ministry is sponsoring Dhaka zoo modernization project from July 2010 to June 2015. It will be executed by Department of Livestock Services. The modernization project includes construction of 20 new visitor's shed in Dhaka zoo with an area of 25 sqm for each³.

Figure 27: Dhaka zoo satellite image. Source: Google earth

Figure 28: Existing visitor's shed in Dhaka zoo.

4.1.1 Project Requirement

20 visitors's shed design in Dhaka zoo. Area of each shed will be approx. 25sqm.

4.1.2 Site Description

Site locations for proposed visitor's sheds have been identified based on their locations, which are close to walkaways, lakes and cases.

Figure 29: Site location for a prototype visitor's shed.

References:

- 1. History of Dhaka zoo, http://www.dhakazoo.org/history.html accessed on 13-11-12
- 2. BUET finalises clauses for zoo renovation master plan, Dilara Hossain, Bangladesh Sangbad Sangstha (BSS), 6 April 2012.
- 3. Dhaka & Rangpur Zoo Modernization Project, Development Project Proposal (DPP), Ministry of Fisheries and Livestock, July 2010

4.2 Conceptual Development

A prototype shed is developed which can be repeated in various sites with minor changes. Several ideas are sketched. Simplicity, lightweight structure, attractive sculptural quality and functionality are considered while designing visitors shed.

Figure 30: Some sketches of design development phases

A simple sculptural light form has been developed which gives good shadow. The fabric is supported mainly by two high masts, two low masts and cables. Masts are connected by safety cables. At the low points water will be collected and collection points will be designed.

Figure 31: Perspective view

Figure 33: South Elevation

Figure 34: West Elevation

4.3 Physical Model Study

A physical model 1:50 scale has been made to study the surface shape, though achieving good shape is time consuming and laborious. It was made using cotton vest fabric, bamboo sticks and polyester thread.

Figure 35: Physical model scale 1:50

4.4 Formfinding

Formfinding is a unique process for tensile membrane structures compared to traditional structures. It is finding basic static surface geometry of a tensile membrane structure within a given boundary configuration, before detail structural analysis. Concept of formfinding is based on 'minimal surface'. With minimal surface potential energy is a minimum, the shape configuration is stable. The ideal example of minimal surface with constant surface stress in nature is soap-films⁴. Because of the minimal shape any discontinuity or lack of tension will produce wrinkling, deformation and reduce life expectancy⁵.

Numerical formfinding of the proposed structure was done by ixForten4000⁶ software and boundary was drawn in Rhino⁷. A Jute fabric material is created in ixForten4000 using tensile strength 16.7kN/m in warp and 15.4kN/m in weft with elongation 10% in warp and weft which is based on test result in BRTC, BUET lab. Materials and properties of different elements during formfinding are given below.

		Tesnso Group		Membrane		
	Stay cables	Safety cables	Mast	Fabric	Edge cables	
C values	NA	NA	NA	0.7	1.4-0.7	
Seed	cable 16	cable 6	R100t13	Jute fabric	cable6	
Material	Steel Cables	Steel Cables	S235		Steel Cables	
Туре	Cable	Cable	Truss	Membrane	Cable	
	NL-	NL-	NL-			
Deformability	Deformable	Deformable	Deformable	FDM-Deformable	FDM-Deformable	
Behavior	Non-Linear	Non-Linear	Non-Linear	Non-Linear	Non-Linear	

 Table 9: Properties of different elements in formfinding

Figure 36: S-11 stresses after formfinding

- 4. W J Lewis, Tension structures: Form and Behavior, Thomas Telford, London, 2003
- 5. Jurgen Bradatsch, Peter Patzold, Cristiana Saboia de Freitas, Rudi Scheuermann, Juan Monjo, Marijke Mollaert, Form, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 6. ixForten4000 version R 4.2.6, developed and copyrighted by Gerry D'Anza
- 7. Rhinoceros 4, Education version, developed and copyrighted by Robert McNeel and Associates

Overall sigma 11 stress, after formfinding is found to be 1.47 kN/m. Stress in corners is higher. Sigma 22 stresses are comparatively lower than sigma 11 stresses.

Figure 37: Sigma 22 stresses after formfinding

4.5 Shadow study

Shadow study has been made using Google Sketchup⁸. Geo location has been entered for Dhaka 23.7000° North, 90.3833° East. Since Dhaka is situated in tropic of cancer summer solstice June 21 is chosen to study shadow. During this period temperature is relatively higher and shadow becomes smaller. Shadows are studied for each hour from 8am to 4pm and juxtaposed to see the shadow patterns.

Figure 38: Juxtaposed shadows from 8am to 4pm

4.6 Membrane analysis

Non-Linear analysis of the membrane using different load combinations was done using ixForten4000⁶.

4.6.1. Wind Load

Dhaka Zoo is located in Northwest part of Dhaka. Latitude and longitude of Dhaka is 23.7 and 90.38 respectively. Average annual wind flow is 2⁸ (Beaufort scale). But Dhaka often experiences storms. Storms with 50-60 km/h are most frequent⁹. Basic wind speed 22.6 or Beaufort scale 9 is considered for the proposed membrane structure.

Basic wind speed V_b=22.6 m/s

Resulting wind pressure $q_b = \frac{Vb^2}{1600} \text{ kN/m}^2 = 0.32 \text{ KN/m}^2$

According to eq. 4.8 of Eurocode 1991-1-4: Wind loads, Peak velocity pressure $q_p(z) = c(z)^*q_p$ For a height (z) of 6m and terrain category III or suburban settings the exposure factor c (z) is 1.3 Then the peak velocity pressure $q_p(z) = 0.42$ KN/m²

According to eq. 5.1 of Eurocode 1991-1-4: Wind loads, Wind pressure on surfaces $w_e = q_p(z) * c_{pe}$ Where, c_{pe} is external pressure coefficient. Pressure coefficient c_{pe} has been determined according to European Design Guide for saddle structure.

	Сре	Wind pressure KN/m2	Resulting pressure KN/m2
Zones	values		
А	1.45	0.42	0.61
В	0.90	0.42	0.38
С	0.95	0.42	0.40
D	1.00	0.42	0.42
E	1.50	0.42	0.63
F	1.80	0.42	0.76
G	1.20	0.42	0.50
Н	1.10	0.42	0.46
I	1.20	0.42	0.50
J	0.65	0.42	0.27
К	0.85	0.42	0.36

Table 10: Pressure coefficients for proposed membrane structure

Figure 39: Cp Zone definitions for wind X direction

- 8. http://www.dhaka.climatemps.com/ accessed on 6-12-12
- 9. Samarendra Karmakar, Md. Mahbub Alam, Development Of Statistical Techniques For The Forecasting Of Nor'westers And Associated Maximum Gusty Wind And Rainfall Over Bangladesh, Journal of Bangladesh Academy of Sciences, Vol. 35, No. 2, 125-140, 2011

Figure 40: Cp Zone definitions for wind Y direction

4.6.2. Snow Load

Since there is no snow in Dhaka, therefore no snow load is considered.

4.6.3. Load Combinations

Load combinations are assumed according to DIN EN 1990

SLS SLS-01: 1.0g+1.0v₀ SLS-02: 1.0g+1.0v₀+1.0w SLS-03: 1.0g+1.0 v₀+1.0w+1.0s ULS ULS-01: 1.35g+1.35v₀ ULS-02: 1.35g+1.35v₀+1.5w ULS-03: 1.35g+1.35v₀+1.35w+1.35s

Where, g = self-weight v₀ = prestress w = wind load (acting downwards or uplift) s = snow load

In Serviceability Limit State (SLS) structure remains functional for its intended use under routine conditions or everyday use. In Ultimate Limit State (ULS) structure will not collapse, buckle or twist when it is subjected to maximum design load¹⁰.

SLS								
	Self-							
	weight	Wind X	Wind Y					
SLS 01	1	0	0					
SLS 02	1	1	0					

SLS 03	1	0	1
--------	---	---	---

ULS									
	Self-								
	weight	Wind X	Wind Y						
ULS 01	1.35	0	0						
ULS 02	1.35	1.5	0						
ULS 03	1.35	0	1.5						

10. Prof Dr.-Ing. Lars Schiemann, Dr.-Ing. Karsten Moritz, Structural Design Concepts, IMS, September 2011

4.6.4. Maximum Stress and Membrane Selection

Maximum overall stress is found 4.45 KN/m in loadcase ULS03. Maximum stress 12.07 KN/m is located in corner where double layer of membrane is required.

Figure 41: S-11 stress in loadcase ULS-3

Strength of the membrane degrades due to environmental conditions, temp., age, joining methods, creasing etc. Reduction factors for membrane material according to DIN 4134

		A fac	Resulting reduction factor		
Loads	A ₀	A ₁	A ₂	A ₃	A _{res}
Permanent	1.2	1.6	1.2	1.2	2.76
Wind	1.2		2 1.2		1.44

Material safety factor for membrane Y_m=1.4

Then allowable strength $f_d = f_{tk} / (Y_m x A_{res})$

Where f_{tk} = Tensile strength of the membrane

Allowable tensile strength of the laminated Jute membrane for permanent load

Direction	Tensile strength KN/m	Safety factor γm	Reduction factor Ares Prestress	Allowable strength KN/m
Warp	16.7	1.4	2.94	4.1
Weft	15.4	1.4	2.94	3.7

Which is ok, since overall stress after formfinding is 1.47KN/m

Allowable tensile strength of the laminated Jute membrane for wind load

Direction	Tensile strength KN/m	Safety factor γm	Reduction factor Ares wind	Allowable strength KN/m
Warp	16.7	1.4	1.44	8.3
Weft	15.4	1.4	1.44	7.6

Which is ok, since overall maximum stress found in loadcase ULS03 is 4.45KN/m.

So the laminated Jute fabric which has been selected as membrane material can withstand wind load and permanent load.

4.6.5. Displacement of The Membrane

There is a displacement of 28.73cm is found in loadcase SLS02. But no ponding area has been observed.

Figure 42: Displacement in loadcase SLS02

There is a displacement of 36.25cm is found in loadcase SLS03. But no ponding area has been observed.

Figure 43: Displacement in loadcase SLS03

4.7 Patterning

To fabricate the membrane using 1.32m wide Jute 13x13 fabric, geodesic cutting lines are introduced on the surface of the membrane considering curvature of the surface, main load carrying paths, aesthetic reasons, fabric width. For avoiding wrinkling, material economy and accuracy geodesic cutting lines are generated on the surface of the membrane using ixForten4000. Geodesic lines on a curved surface are equivalent to straight lines on a plane. (Bletzinger 2008)

Patterns are made aligning warp of the fabric in hanging direction to take dynamic wind load while weft in arching direction. There are nineteen patterns ranging from 0.12m to 1.17m in width and 0.51m to 5.45m in length. A compensation of 0.3% corresponding test result has been taken into account in warp and weft.

Figure 45: East View

Figure 46: South view

Since Jute 13x13 fabric is not weldable, double backing run stitched seam is introduced. To protect seam from water penetration, water proof UV stabilized polyethylene transparent tape is used to cover seams.

Figure 48: Section AA

Figure 49: Section CC

DOUBLE BACKING RUN STITCHED SEAM

Figure 50: Section BB

Patterns are nested on 1.32m wide Jute 13x13 fabric. Minimisation of the fabric has been considered while nesting

Figure 51: Single pattern

Figure 52: Nesting of the patterns on the Jute 13x13 fabric

4.8 Detail Design

Detail design is an important feature for a membrane structure. Detailing not only helps to flow forces through structural systems easily, but also through detailing beauty and elegance of a structure can be expressed.

4.8.1. Cable dimensioning

Dimensioning of the cables is given below.

Figure 53: Edge cables

Cable	Maximum	Cable	Cable	Cable	Characteristic	Safety	Material	Limit
Position	force	Length	type	diameter	breaking load	factor	Safety	Tension
	Fd kN	m		mm	Fuk kN	γr	Factor	FRd kN
							γm	
E01	10.153	5.56	PE03	6.1	26	1.1	1.5	15.8
E02	2.901	4.1	PE03	6.1	26	1.1	1.5	15.8
E03	2.127	3.9	PE03	6.1	26	1.1	1.5	15.8

Table 12: Stay cables

Cable	Maximum	Cable	Cable	Cable	Characteristic	Safety	Material	Limit
Position	force	Length	type	diameter	breaking load	factor	Safety	Tension
	Fd kN	m		mm	Fuk kN	γR	Factor	FRd kN
							γm	
A/B	9.8	7.4	PE03	6.1	26	1.1	1.5	15.8
C/D	10.23	4	PE03	6.1	26	1.1	1.5	15.8
E/F	5.23	2	PE03	6.1	26	1.1	1.5	15.8

Length of the safety cable S01 is 7.6m and S02 is 6.7m. Cable type for the safety cables is PE03 and diameter is 6.1mm.

4.8.2. Membrane Corner Design

To transfer forces from cables and tangential forces from doubly curved membrane surface corner plates are designed. Minor adjustment and fine tuning can be done through nut and turnbuckle. There are three types of corner plates CP01, CP02, CP03. Location of these corner plates shown below

Figure 56: Corner Plate CP01 detail

Figure 58: Corner Plate CP03 detail
4.8.3. Connection Design

Connections are designed in a way to facilitate flexibility and displacement of the membrane structure under dynamic conditions. Connections with mast 01 and mast 02 are given below.

Figure 59: Connection with Mast01

4.8.4. Masts design

Mast has been designed according to AISC/LRFD method. Mast01 and mast02 is made of A36 steel. Mast01 is 5.9m long and 89.1mm in diameter 2.5mm thick. Mast02 is 3.4m long and 60.3mm in diameter 2.0mm thick. Detail calculation has been provided in appendices.

4.8.5. Anchorage design

Light foundation is designed to prevent wind uplift and to facilitate connection of masts and stay cables to the ground. Detail of the foundation is provided in appendices.

Figure 63: Foundation layout

Chapter 05:

Fabrication

5.1 Cost Estimation

Estimation of the cost is based on local market price. Estimation is given below.

STATISTICAL VALUES

all values are given to the surface of the construction -x/SUR

Confection M	cost confection /m ² SUR	€/m2	13.60
Steel Weight total STAHL		kg kg/m²	132.00 3.52
Total cost without planning and VAT		€/m²	87.61
Overall cost including 10% General C	contractor	€/m2	251.42
STATISTICAL VALUE PLANNING	Planning /m2	€/m2	26.28
		%	30

Statistical Values in % of the Membrane Project

<i>without approva</i> total Sum in €	l cost and On site tasks	7071 €		
1.	MEMBRANE			
2.	STEEL	510	€	7.21%
3.	CABLES	697	€	9.86%
4.	TRANSPORT	1,383	€	19.56%
5.	FOUNDATION	300	€	4.24%
6.	ERECTION	2,800	€	39.6%
_		395	€	5.6%
7.	PLANNING COST ENGINEERING	985.61	€	14%

From the statistical values of cost calculation, it can be seen that because of using Jute fabric cost of membrane is only around 7.21%. Around 50% of the cost is spent on transportation, foundation and erection process. Cost of steel masts and cables are around 30%. Consultation and planning will cost 14%.

5.2 Time Schedule

The purpose of time schedule is to reduce time wastage as well as enhance work efficiency. It clarifies working steps and links different steps until completion of a project. The time schedule for the membrane cover for visitor shed in Dhaka zoo comprises 19 steps from concept preparation to handover. Approximately 12 weeks will require upto the handover of the project.

	-									
15	Foundation Construct	ion 7 days	Wed 5/8/13 Thu 5	/16/13 8						
16	Deliveries	1 day	Sun 5/12/13 Sun 5	/12/13 13						1
17	Steel Erection	1 day	Mon 5/13/13 Mon 5	5/13/13 16						ĭ_ ∣
18	Rope/ Membrane Ere	ction 1 day	Tue 5/14/13 Tue 5	/14/13 17						ŭ
19	Handover/ Acceptenc	e 1 day	Wed 5/15/13 Wed 9	5/15/13 18						ă
		Task		External Tasks		Manual Task	c)	Finish-only	3	
		Solit		. External Mileston	ie III 🔶	Duration-only		Deadline		
		Spire		Enternarineston		Duradon only		Deadline	•	
Project: Me	Membrane Cover in Ethio	Milestone	•	Inactive Task		Manual Summary Rollup		Progress	•	-
Project: M Date: We	Membrane Cover in Ethio ed 2/20/13	Milestone Summary	÷	Inactive Task	e \$	Manual Summary Rollup Manual Summary		Progress		-
Project: N Date: We	Membrane Cover in Ethio ed 2/20/13	Milestone Summary Project Summary	÷	Inactive Task Inactive Mileston Inactive Summary	e ¢	Manual Summary Rollup Manual Summary Start-only		Progress		-

Figure 66: Time schedule

5.3 Erection procedure

Erection process consists of different activities it include unloading of the material, site set-up, erection preparation, preassembly, lifting, hanging and preassembly¹.

Erection procedure will follow three steps. First step begins with setting up the membrane with masts and insertion of edge cables into the pockets. The unpacked membrane laid-out on ground, cables are slid in pockets and then corner plates are assembled at the corners. Masts are connected with base plates through pins and then stay cables as well as corner plates are connected with it. The membrane structure is then ready to be erected.

In second steps the membrane structure is erected pivoting the masts at the base one by one with the help of three men. Then stay ropes are then connected with the anchorage plates and masts. Mechanical griphoist will be used to connect and to provide sufficient tension in stay cables.

In step three minor adjustment and rigging are done. For that purpose lightweight scaffolds made of bamboo will be used. Fine tuning of the membrane is achieved through rigging edge cables.

Figure 67: Erection steps for membrane cover

1. Michael Seidel, Tensile surface structures: A practical guide to cable and membrane construction, Ernst & Sohn, 2009

Chapter 06: Conclusion

In conclusion it can be deduced from previous chapters that one side laminated Jute fabric which is available in the market can be used as membrane cover for visitor shed design, it is the main objective of this study. Jute 13x13 fabric has highest tensile strength. It can withstand wind loads of Dhaka. Though both side laminated Jute fabric is not currently available in market, but it can be ordered from BJRI for large quantities, which is more suitable for Jute as Polypropylene lamination will protect it from humid climate of Dhaka.

The great advantage of this material is that it is cheaper, readily available and environment friendly. But major disadvantage is its durability and relatively weaker strength than conventional fabrics. Further study should be done to make Jute fabric weather proof, durable and higher tensile strength.

Jute fabric may open up as a new potential environment friendly green fabric for tensile membrane structures and it eventually can contribute in economic growth of Bangladesh.

Bibliography

- 1. The Divan-i Khass in the Palace in the Delhi Fort, http://www.bl.uk/onlinegallery/onlineex/apac/addorimss/t/019addor0004694u00000000.html Accessed on 13-11-12
- 2. Tapobrata Sanyal, "Jute & Jute Geotextiles", http://www.jute.com:8080/c/document_library/get_file?uuid=87c9f7ad-ddc6-4b36-9cae-ecf4edd456ec&groupId=22165 Accessed on 14-11-2012
- 3. Prof. Dr. Abdul Jabbar Khan, Major Md Masudur Rahman, "A JGT Reinforced Road Subgrade In Bangladesh", http://www.fibre2fashion.com/industry-article/21/2028/a-jgt-reinforced-road-subgrade-in-bangladesh1.asp accessed on 14-11-12
- 4. Jute products: sacking, http://www.jute.org/jute_prod_sac.htm accessed on 16-11-12
- 5. "Local researchers develop jute-made substitute for CI sheet", http://www.thefinancialexpressbd.com/more.php?news_id=97298&date=2010-04-10 accessed on 14-11-12
- 6. http://tibotaratari.wordpress.com/2010/09/15/taratari-corentin-voiles-et-voiliers-video/ accessed on 14-11-12
- Dr. A. B. Jabbar Khan, "Quality Control of Jute Geotextiles & Development of Testing Facilities", http://www.jute.com:8080/c/document_library/get_file?uuid=f1d0dc40-69a9-490c-89c8-ca05dede6918&groupId=22165 accessed on 14-11-12
- 8. History of Dhaka zoo, http://www.dhakazoo.org/history.html accessed on 13-11-12
- 9. http://www.dhaka.climatemps.com/ accessed on 6-12-12
- 10. Brian Forster, Marijke Mollaert; Engineering Fabric Architecture, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 11. Erik Moncrieff, Brian Forster; Glossary, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 12. Jurgen Bradatsch, Peter Patzold, Cristiana Saboia de Freitas, Rudi Scheuermann, Juan Monjo, Marijke Mollaert; Form, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 13. Rabindranath Trivedi, The Durga puja and Minority Rights of Bangladesh, Asian Tribune, 19 October 2012.
- 14. Shireen Akbar, Shamiana: The Mughal Tent, Victoria & Albert Museum, January 1999
- 15. "All set for Biswa Ijtema from Saturday", The Daily Star, 22 December, 2003
- 16. Brian Forster, Marijke Mollaert; Engineering Fabric Architecture, European Design Guide for Tensile Surface Structures, Tensinet, 2004.
- 17. Dr. A.B.M. Abdullah, Jute Geotextiles and Their Applications, Jute Diversification and Promotion Center (JDPC), Dhaka 2008.
- 18. Doan, Thi Thu Loan, Investigation on Jute fibers and their composites based on polypropylene and epoxy matrices, Technischen Universität Dresden, May 2006.
- 19. World Export report of raw Jute, Kenaf and allied fibers from 2003/2004 to 2009/2010, Food and Agriculture Organization (FAO)
- 20. Dr. A. B. Jabbar Khan, Technical Assessment of Jute Geotextiles for Civil Engineering Applications, Department of Civil Engineering, Bangladesh University of Engineering & Technology (BUET), Dhaka, Bangladesh, June 2008
- 21. Mudassir Rashid, "Bangladesh decoded Jute's genome sequencing 'Golden fiber to redeem the lost glory'", Bangladesh Textile Today, Jul-Aug 2010.
- 22. World Export report of raw Jute, Kenaf and allied fibers from 2003/2004 to 2009/2010, Food and Agriculture Organization (FAO)
- 23. Mustafizur Rahman, Nafisa Khaled "Global Market Opportunities In Export of Jute", CPD, 2011, Dhaka
- 24. Capucine Korenberg, "The effect of ultraviolet-filtered light on the mechanical strength of fabrics", The British Museum Technical Research Bulletin, Volum 1 2007.
- 25. Md. Milon Hossain, Rumpa Karmaker, Sudipta Bain, M. A. Jalil and Joykrishna Saha, "Investigation of Influence of Twill Structures on Jute-Cotton Union Fabric Physical Properties", IJASETR, Volume 1, Issue 2, Article #06, April 2012
- 26. Ghosh S. B., Bajaj P., Kothari V. K. "Effect of dyes and finishes on UV protection of jute/cotton fabrics", Indian journal of fibre & textile research, vol. 28, no4, pp. 431-436, 2003
- 27. H. Toyoda, "Recyclable coated fabric using kenaf fiber for architectural membrane structure applications", Fabric Architecture, November 2012, http://fabricarchitecturemag.com/articles/1112_wp_kenaf_fiber.html accessed on 16-11-12.
- 28. Dilara Hossain, BUET finalises clauses for zoo renovation master plan, Bangladesh Sangbad Sangstha (BSS), 6 April 2012.
- 29. Dhaka & Rangpur Zoo Modernization Project, Development Project Proposal (DPP), Ministry of Fisheries and Livestock, July 2010
- 30. W J Lewis, Tension structures: Form and Behavior, Thomas Telford, London, 2003
- 31. Samarendra Karmakar, Md. Mahbub Alam, Development Of Statistical Techniques For The Forecasting Of Nor'westers And Associated Maximum Gusty Wind And Rainfall Over Bangladesh, Journal of Bangladesh Academy of Sciences, Vol. 35, No. 2, 125-140, 2011
- 32. Prof. Dr.-Ing. Lars Schiemann, Dr.-Ing. Karsten Moritz, Structural Design Concepts, IMS, September 2011
- 33. Michael Seidel, Tensile surface structures: A practical guide to cable and membrane construction, Ernst & Sohn, 2009

List of Figures and Tables

Figure 01	Interaction between natural and industrial cycles	5
Figure 02	Structure of the work	6
Figure 03	Fountain tent starwave, colonge, Germany, rebuilt 2000	7
Figure 04	Assembly tent Malaysia,1997, SL Rash	7
Figure 05	Julianus Shopping Mall, Tongeren, Belgium, 2007, The Nomad Concept	8
Figure 06	Fort 4 Mortsel, Antwerp, Belgium, 2002, The Nomad Concept	8
Figure 07	Mughal Shamiana in front of Diwan I Khass in the palace of the	
	Delhi Fort, Water color by Ghulam Ali khan	9
Figure 08	Durga puja pandal, author Mukerjee, October 2008	9
Figure 09	A Pandel gateway in Dhaka.	
	(Author Pro. Dr. Shabbir Ahmed, 2011)	9
Figure 10	10th convocation pandel of Bangladesh University of Engineering & Technology (BUET), 3rd February 2011	10
Figure 11	Bisholjtema on the bank of river Turag, Tongi, Gazipur.(source:	
	www.thedailystar.net)	10
Figure 12	Inside view of <i>Bisho ljtema</i> tent. (Author Rocky S. Hossain, 2010)	10
Figure 13	Jute plant (source http://www.thejutecompany.com/images/juteplant.jpg)	11
Figure 14	Jute collection from field (source	
	http://media.lonelyplanet.com/lpi/2994/2994-2//681x454.jpg)	11
Figure 15	Jute fiber extraction (source author Shahnewaz Karim, 2011)	11
Figure 16	Jute fiber is dried in Sun (source right image author Auyon , 2011)	11
Figure 17	Hessian Jute rabric	13
Figure 18	Jute Canvas fabric.	13
Figure 19	Jute Double warp (D.w.) twill	13
Figure 20	50:50 Jute-cotton union fabric	13
Figure 21	One side laminated (13x13) Jule-labric	14
Figure 22	SU:SU Jule-collon biend	14
Figure 23	Une side laminated (ISXIS) Jule-labilic	14
	2010)	15
Figure 25	Kenaf plant (source	10
Figure 26	Structure of Kenafine [™] (Source	16
	http://fabricarchitecturemag.com/articles/1112_np9_material_research.html)	17
Figure 27	Dhaka zoo satellite image. Source: Google earth	18
Figure 28	Existing visitor's shed in Dhaka zoo.	18
Figure 29	Site location for a prototype visitor's shed.	19
Figure 30	Some sketches of design development phases	20
Figure 31	Perspective view	20
Figure 32	Plan South Elementaria	21
Figure 33	South Elevation	21
Figure 34	West Elevation	21
Figure 35	Physical model scale 1:50	22
Figure 36	S-11 stresses after formfinding	23
Figure 37	Signa 22 stresses after forminiting	24
Figure 38	Juxiaposed shadows from 8am to 4pm	24
Figure 39	Cp Zone definitions for wind X direction	23
Figure 40	S-11 stress in loadcase LILS-3	20 27
Figure 41	Displacement in loadcase SLS02	27
Figure 12	Displacement in loadcase \$1502	20 20
Figure 43	Ton view of the pattern	20 20
Figure 15	Fast View	29 20
Figure 16	South view	29
Figure 17	Final natterns	30
Figure 48	Section AA	30
Figure <u>4</u> 9	Section BB	31
Figure 50	Section CC	31

Figure 51	Single pattern	32
Figure 52	Nesting of the patterns on the Jute 13x13 fabric	32
Figure 53	Edge cables	32
Figure 54	Stay cables and safety cables	33
Figure 55	Location of the corner plates	34
Figure 56	Corner Plate CP01 detail	34
Figure 57	Corner Plate CP02 detail	35
Figure 58	Corner Plate CP03 detail	35
Figure 59	Connection with Mast01	36
Figure 60	Connection with Mast02	37
Figure 61	Mast01	38
Figure 62	Mast02	38
Figure 63	Foundation layout	39
Figure 64	Mast01 footing	39
Figure 65	Mast02 footing	39

44

Figure 66	Time schedule
Figure 67	Erection steps for membrane cover

Appendices

Appendix 01: Tensile Strength Lab Test Results

	DEPARTMEN Mobile: 01819 5:	T OF CIVIL E 57964; PABX: 966 56	NGINEERING 50-80 Ext. 7226	377	
	GEOTECHNICA	L ENGINEERING	G LABORATORY	Testing & Const	ultation
	TESTING OF	LAMINATED JUT	ETEXTILE		Page: 1/
BRTC No: Sent by:	110035364/ CE/ 12-13 Mr. Golam Mursalin Chowdhury 85/A R K. Mission Road, Dhaka-1203	Date: 06/11/1	2 Specimen ID: Colour:	BRTC35364(L0 Brown	G)
Reference: Proiect:	Letter	Date: 06/11/1	2		
Date of Test:	07/11/12	est Method: ASTM/ E	DIN		
	TE	EST RESULTS			
	Test Parameter	Direction	Test Standard	Unit	Test Result
Average Ma	ss per unit Area	-	ASTM D5261	gm/m ²	376
Average Thi	ckness (under a Pressure of 2 kPa)		ASTM D5199	mm	
Apparent/ Ef	fective Opening Size		ASTM D4751 ⁺	micron	
Average Horizontal Permeability at 20 °C			ASTM D4716/DIN	x10 ⁻³ m/sec	
Average Ho	rizontal Permeability at 20 °C	0.000	ALL DESCRIPTION OF ALL DAMA ALL DESCRIPTIONS OF		
Average Hoi Average Ver	tical Permeability at 20 °C	-	DIN	x10 ⁻³ m/sec	
Average Hor Average Ver Average Pe	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C		DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec	
Average Hoi Average Ver Average Pe	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C	 MD/ Direction X*	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N	
Average Hor Average Ver Average Pe Average Gra	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT)	MD/ Direction X*	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N	
Average Hor Average Ver Average Pe Average Gra	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT)	MD/ Direction X ⁴ XMD/ Direction X ⁴ MD/ Direction X ⁴	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N %	
Average Hoi Average Ver Average Pe Average Gra Average Gra	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT)	MD/ Direction X* XMD/ Direction X* MD/ Direction X* XMD/ Direction X*	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N %	
Average Hor Average Ver Average Pe Average Gra Average Gra	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) rip Tensile Strength at 20 °C (RT)	MD/ Direction X ⁴ XMD/ Direction X ⁴ XMD/ Direction X ⁴ XMD/ Direction X ⁴ XMD/ Direction X ⁴	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m	 15.4
Average Hor Average Ver Average Pe Average Gra Average Gra	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) rip Tensile Strength at 20 °C (RT)	MD/ Direction X* XMD/ Direction X* XMD/ Direction X* XMD/ Direction X* XMD/ Direction X* XMD/ Direction X*	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m kN/m	 15.4 16.7
Average Hor Average Ver Average Pe Average Gra Average Gra Average Stri Average Stri	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) rip Tensile Strength at 20 °C (RT) p Tensile Elongation at 20 °C (RT)	MD/ Direction X ⁴ XMD/ Direction X ⁴	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m kN/m %	 15.4 16.7 10
Average Hor Average Ver Average Pe Average Gra Average Gra Average Stri	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) ip Tensile Strength at 20 °C (RT) p Tensile Elongation at 20 °C (RT)	MD/ Direction X ⁴ XMD/ Direction X ⁴	DIN ASTM D4491	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m kN/m %	 15.4 16.7 10 10
Average Hor Average Ver Average Pe Average Gra Average Gra Average Str Average Str Average Str	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) rip Tensile Strength at 20 °C (RT) p Tensile Elongation at 20 °C (RT) uncture Resistance °C (RT)	MD/ Direction X* XMD/ Direction X* XMD/ Direction X MD/ Direction X XMD/ Direction X MD/ Direction X XMD/ Direction X* XMD/ Direction X*	DIN ASTM D4491 ASTM D4632 ASTM D4632	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m kN/m % % N	 15.4 16.7 10 10
Average Hor Average Ver Average Pe Average Gra Average Gra Average Stri Average Stri Average Stri	rizontal Permeability at 20 °C tical Permeability at 20 °C rmitivity at 20 °C ab Tensile Strength °C (RT) ab Tensile Elongation °C (RT) ip Tensile Elongation at 20 °C (RT) p Tensile Elongation at 20 °C (RT) uncture Resistance °C (RT) e of Bag at 20 °C (RT)	MD/ Direction X ⁴ XMD/ Direction Y MD/ Direction Y 	DIN ASTM D4491 ASTM D4632 ASTM D4632 ASTM D4595 ASTM D4595	x10 ⁻³ m/sec x 10 ⁻² / sec N N % % kN/m kN/m % % N N	 15.4 16.7 10 10 10 1150 x 79

+ Sand fractions were used in place of glass beads. RT = Room Temperature

* Machine Direction (MD) and Cross Machine Dirrection (XMD) were not identifiable. Instead, arbitrarily X and Y directions were chosen **Samples were received in unsealed condition**

Countersigned by:

w

Dr. Md. Abdur Rouf Professor, Civil Engg. Dept.

Test Performed by: 14.11.12 Dr. Md. Zoynul Abedin

Professor, Civil Engg. Dept.

Important Notes:

Samples as supplied to us have been tested in our laboratory. As such, BRTC does not have any responsibility as to the representativeness the samples required to be tested. It is recommended that samples are sent in a secured cover/ packet/ container duly sealed and signed by competent authority. In order to avoid fradulent fabrication of test results, it is recommended that the test reports be collected by an authority person, and not by the contractor/ Supplier.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET)

Colour : Brown

Sample seal condition : Unsealed

TEST RESULTS ON LAMINATED JUTE FABRIC

Parameter	Test Standard	Unit	Test Result
Mass per Unit Area	ASTM D3776	gm/m ²	331
Wide Width (Strip) Tensile Strength at 20°C	ASTM D4595	kN/m	14/12
Wide Width (Strip) Tensile Elongation at 20°C	ASTM D4595	%	12/8

Note: Where two values are provided, they refer to two perpendicular directions

3

Countersigned by:

Test performed by: 11/12/12

Dr. Abu Siddique Professor Department of Civil Engineering Bangladesh University of Engineering and Technology, Dhaka, Bangladigh

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET)

DEPARTMENT OF CIVIL ENGINEERING Mobile: 01819 557964; PABX: 966 5650-80 Ext. 7226

GEOTECHNICAL ENGINEERING LABORATORY

Date: 06/11/12

Date: 06/11/12

Specimen ID: BRTC35364(LG)

Colour: Brown

TESTING OF JUTE COTTON BLEND TEXTILE

Page: 2/2

110035364/ CE/ 12-13 BRTC No: Mr. Golam Mursalin Chowdhury Sent by: 85/A R.K. Mission Road, Dhaka-1203 Reference: Letter

Project: Date of Test: 07/11/12

Test Method: ASTM/ DIN

TEST RESULTS

Test Parameter	Direction	Test Standard	Unit	Test Result
Average Mass per unit Area		ASTM D5261	gm/m ²	2213
Average Thickness (under a Pressure of 2 kPa)	-	ASTM D5199	mm	
Apparent/ Effective Opening Size		ASTM D4751 ⁺	micron	
Average Horizontal Permeability at 20 °C		ASTM D4716/DIN	x10 ⁻³ m/sec	
Average Vertical Permeability at 20 °C		DIN	x10 ⁻³ m/sec	
Average Permitivity at 20 °C		ASTM D4491	x 10 ⁻² / sec	I
Average Crab Tensile Strength	MD/ Direction X*	ASTM D4632	N	
Average Grab Tensile Strength C (RT)	XMD/ Direction Y*		N	
Average Creb Tappile Elegantian	MD/ Direction X*	ASTIVI D4032	%	
Average Grab Tensile Elongation C (RT)	XMD/ Direction Y*		%	
Average Strip Topsile Strongth at 20 °C (DT)	MD/ Direction X*		kN/m	18.1
Average Surp rensile Strength at 20 C (RT)	XMD/ Direction Y*		kN/m	15.2
Automa Chin Tanaila Elegation at 20, 80 (BT)	MD/ Direction X*	ASTM D4595	%	4
Average Strip Tensile Elongation at 20 °C (RT)	XMD/ Direction Y*	(M)	%	22
Avg. CBR Puncture Resistance °C (RT)	5. 	ASTM D6241	N	
Average Size of Bag at 20 °C (RT)				1150 x 798
Average Seam Strength at 20 °C (RT)	· · · ·	ASTM D4884	N	·

+ Sand fractions were used in place of glass beads. RT = Room Temperature

* Machine Direction (MD) and Cross Machine Dirrection (XMD) were not identifiable. Instead, arbitrarily X and Y directions were chosen Samples were received in unsealed condition

Countersigned by

Dr. Md. Abdur Rouf Professor, Civil Engg. Dept.

Test Performed by: - H-11-12 (2)

Dr. Md. Zoynul Abedin Professor, Civil Engg. Dept.

Important Notes:

Samples as supplied to us have been tested in our laboratory. As such, BRTC does not have any responsibility as to the representativenes the samples required to be tested. It is recommended that samples are sent in a secured cover/ packet/ container duly sealed and signed is competent authority. In order to avoid fradulent fabrication of test results, it is recommended that the test reports be collected by an authority.

person, and not by the contractor/ Supplier.

Appendix 02: Cost Estimation

Target price calculation for

1. MEMBRANE

Cost Membrane PVC MEM	IBRANE	total€	510		
		00.00	.200	0.00	
confection price	m²	85.00	425€	5.00	Conf €/m²
Sales Price Material			85€	1.00	Mat Preis€/m2
total consumption	m²		85.00		
additional consumption	m²		25		
	m²		60.00		
wastage factor		FACTOR	1.60		
Surface (SUR)	m²	25.00	37.50		
surface factor		FACTOR	1.50		
covered floor are	m²	25.00			
			check		
Type Jute 13x13					

2. STEEL

2.1	Fittings/ small parts	pieces		€ total	kg total	kg/piece	€/kg
	membrane corners	6		54.00	9.00	1.50	6.00
	SUBTOTAL FITTINGS		€	54.00			

2.2	MASTS (High Point) galvanised	pieces	length/piece	€ total	kg tota
	diameter 89 mm	2	6.00	300.00	60.00
	diameter 60 mm	2	3.50	175.00	35.00
	SUBTOTAL MASTS (High Point)		€	475.00	

total	kg/m	€/kg
0.00	5.00	5.00
5.00	5.00	5.00

2.3	STEEL FITTINGS	pieces		€ total	kg total	
	for masts-footing-cable plates	14		168.36	28.00	
	SUBTOTAL GENERAL STEEL FITTINGS			168.36		

kg/piece	€/kg
2.00	6.01

TOTAL STEEL

TOTAL € 697

3. CABLES

3.1	MEMBRANE EDGE CABLES	Piece	length/piece	€ total	m	€/m
	diameter 6.1mm	2	5.60	56.00	11.20	5.00
		4	4.20	84.00	16.80	5.00
		Piece	x2	€ total	Piece	€/Piece
	thread fitting for 6.1 mm	6	12.00	240	12.00	20
	SUBTOTAL MEMBRANE EDGE CABLES		€	380		
					-	
3.2	STAY CABLES	pieces	m/piece	€ total	m	€/m

		pieces	x2	€ total	piece	€/piece
			2.00	20.00	4.00	5.00
		4	4.00	80.00	16.00	5.00
	diameter 6.1 mm	4	7.40	148.00	29.60	5.00
3.2	STAY CABLES	pieces	m/piece	€ total	m	€/m

3.3	LINK CABLES	pieces	m/piece	€total	m	€/m
	diameter 6.1 mm	2	1.00	10.00	2.00	5.00
	diameter 8.1 mm	2	0.55	5.50	1.10	5.00
		pieces	x2	€ total	Piece	€/Piece
	thread fitting for 6.1 mm	2	4.00	80	4.00	20
	thread fitting for 8.1mm	2	4.00	100	4.00	25
	SUBTOTAL LINK CABLES		(€ 110		

3.4	SAFETY CABLES	pieces	m/piece	€total	m	€/m
	diameter 6.1 mm	2	8.50	85.00	17.00	5.00
		2	7.50	75.00	15.00	5.00
		pieces	x2	€ total	Piece	€/Piece
_	thread fitting for 6.1 mm	4	8.00	160	8.00	20
	SUBTOTALSAFETY CABLES		€	245		

TOTAL CABLES total € 1,383

	WHOLE 1-3 SUBTOTAL	€	2,590
--	--------------------	---	-------

4	TRANSPORT		
1		ka	
. I	WEIGHT	ky €/kg	
2	VOLUME	m ³	
		€/m³	
3	PACKING	€	
	SUBTOTAL TRANSPORT	€ lump sum	300
5	ERECTION		
-	Working	man-	

5.1	man-days	days	Mann	days	€/day	
	1worker/1day	3	3	9.00	20.00	
				_	€ total	180.00
5.2	TRAVEL		3	€/travel	5.00	
					€ total	15.00
5.3	Scaffolding			€ total	on site	200.00
	SUBTOTAL ER	ECTION		€		395.00

6	FOUNDATION					
				Unit price		
	Amount	7	m³	400.00	€/m³	2,800.00
	FOUNDATION TOTAL					2,800.00

7 Planning cost Engineering

	of building		
about 30%	cost		
SUBTOTAL PLANNING CO	OST ENGINEERING	€	985.61
TOTAL, INCLUDED PLAN	NING WITHOUT VAT	€	7,071

8	Approval membrane				
8.1	fees government structural verificat	ion		_	Client
8.2	fees government structural verificat	ion in siı	ngle case		Client
8.3	testing membrane				
				€ total	1000
9.	ON SITE TASKS				
	SURVEYING	€	500.00		
10	General Contractor addition		0.10	857.1	
Gra	and Total		€	9428	

0.0847			
membrane sigma 22 stresses (KN/m)			

membrane sig	ma 22 stres	ses (KN/m	ð		\frown		с – – н		
					 7	1			

membrane	sigma 22 stre	sses (KN/m)	e	\frown	1	c		
						1			

0.1520		
0.0000		
a second s		
membrane sigma 22 stresses (KN/m)		

ULS 03

0.3241	\sim		/		-		\sum
0.0000	\sim	\mathbf{x}					
membrane sigma 22 stresses (KN/m)		\nearrow					
	7						

Appendix 04: Forten Analysis Report

Figure 68: Mast Position

Mast M01 Report

work	SLS01:element	Wed Jan 9 2013				
WORK	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-5.362	0	0	0	0	0
407	-5.362	0	0	0	0	0
work	SLS02:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-17.345	0	0	0	0	0
407	-17.345	0	0	0	0	0
work	SLS03:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-17.657	0	0	0	0	0
407	-17.657	0	0	0	0	0
work	ULS01:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-5.479	0	0	0	0	0
407	-5.479	0	0	0	0	0
work	ULS02:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-22.74	0	0	0	0	0
407	-22.74	0	0	0	0	0
work	ULS03:element results	Wed Jan 9 2013				
	Ν	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
407	-23.05	0	0	0	0	0
407	-23.05	0	0	0	0	0

Mast M02 Report

work	SLS01:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
405	-3.664	0	0	0	0	0
405	-3.664	0	0	0	0	0
work	SLS02:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
405	-12.068	0	0	0	0	0
405	-12.068	0	0	0	0	0
work	SLS03:element results	Wed Jan 9 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
405	-12.552	0	0	0	0	0
405	-12.552	0	0	0	0	0
work	ULS01:element results	Wed Jan 9 2013				
	Ν	\/2	\/3	-	M2	M2
N°		V Z	٧J		1112	IVIS
	KN	KN	KN	ı KN m	KN m	KN m
405	KN -3.72	KN 0	KN 0	KN m 0	KN m 0	KN m
405 405	KN -3.72 -3.72	KN 0 0	KN 0 0	KN m 0 0	KN m 0 0	KN m 0 0
405 405 work	KN -3.72 -3.72 ULS02:element results	KN 0 0 Wed Jan 9 2013	KN 0 0	KN m 0 0	KN m 0	KN m 0 0
405 405 work	KN -3.72 -3.72 ULS02:element results N	KN 0 0 Wed Jan 9 2013 V2	KN 0 0 V3	T	KN m 0 0	M3 KN m 0 0
405 405 work	KN -3.72 -3.72 ULS02:element results N KN	KN 0 0 Wed Jan 9 2013 V2 KN	V3 KN	KN m 0 0 T KN m	KN m 0 0 0 KN m	M3 KN m 0 0 KN m
405 405 work N° 405	KN -3.72 -3.72 ULS02:element results N KN -15.819	KN 0 0 Wed Jan 9 2013 V2 KN 0	KN 0 0 0 V3 KN 0	KN m 0 0 0 V KN m 0	KN m 0 0 0 0 KN m	M3 KN m 0 0 0 KN m 0
405 405 work N° 405 405	KN -3.72 -3.72 ULS02:element results N KN -N -15.819	KN 0 0 Wed Jan 9 2013 V2 KN 0 0	KN 0 0 0 0 V3 KN 0 0	KN m 0 0 0 0 0 0	M2 KN m 0 0 0 0 0	M3 KN m 0 0 0 0 KN m 0 0
405 405 work N° 405 405 work	KN -3.72 -3.72 ULS02:element results N KN -15.819 -15.819 ULS03:element results	KN 0 0 Wed Jan 9 2013 V2 KN 0 0 0 0 Wed Jan 9 2013	KN 0 0 0 0 KN 0 0	KN m 0 0 0	M2 KN m 0 0 0 0	M3 KN m 0 0 0 0
405 405 work N° 405 405 work	KN -3.72 -3.72 -3.72 ULS02:element results N KN -15.819 -15.819 ULS03:element results	KN 0 0 Wed Jan 9 2013 V2 KN 0 0 0 Wed Jan 9 2013 V2	KN 0 0 0 0 V3 KN 0 0 0 0	KN m 0 0 0 0	M2 KN m 0 0 0 0 KN m 0 0 0	M3 KN m 0 0 0 0 KN m 0 0 0
405 405 work N° 405 405 work	KN -3.72 -3.72 -3.72 ULS02:element results N -15.819 -15.819 ULS03:element results N KN	KN 0 0 Wed Jan 9 2013 V2 KN 0 0 0 Wed Jan 9 2013 V2 KN	KN 0 0 0 0 V3 KN 0 0 0 0	KN m 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 KN m 0 0 0	M3 KN m 0 0 0 0 0 0 0 0
405 405 work <u>N°</u> 405 405 work <u>N°</u>	KN 3.72 3.72 ULS02:element results N KN 15.819 15.819 ULS03:element results N KN KN	KN 0 0 Wed Jan 9 2013 V2 KN 0 0 0 0 Wed Jan 9 2013 V2 KN V2 KN	KN 0 0 0 V3 KN 0 0 0 0 V3 KN 0	KN m 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0

Stay Cable Type A Report

work	SLS01:element results	Mon Jan 7 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
415	1.994	0	0	0	0	0
416	1.708	0	0	0	0	0
work	SLS02:element results	Mon Jan 7 2013				
	N	\/2	1/2	Ŧ	140	
		٧Z	٧J		IVIZ	M3
N°	KN	KN	v 3 KN	ı KN m	™∠ KN m	M3 KN m
<mark>N°</mark> 415	KN 4.878	KN 0	v3 KN 0	KN m 0	KN m	M3 KN m 0
N° 415 416	KN 4.878 7.157	V2 KN 0 0	V3 KN 0 0	KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
N° 415 416 work	KN 4.878 7.157 SLS03:element results	KN 0 0 Mon Jan 7 2013	V3 KN 0	KN m 0 0	M2 KN m 0	M3 KN m 0 0
N° 415 416 work	KN 4.878 7.157 SLS03:element results N	KN 0 0 Mon Jan 7 2013 V2	V3 KN 0 0	KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
N° 415 416 work	KN 4.878 7.157 SLS03:element results N KN	KN 0 0 Mon Jan 7 2013 V2 KN	V3 KN 0 0 V3 KN	KN m 0 0 0 KN m	M2 KN m 0 0 0 KN m	M3 KN m 0 0 V 0

416	7.335	0	0	0	0	0
work	ULS01:element results	Mon Jan 7 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
415	1.982	0	0	0	0	0
416	1.698	0	0	0	0	0
work	ULS02:element	Mon Jan 7 2013				
WORK	results	2010				
work	N	V2	V3	Т	M2	M3
N°	N KN	V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
N° 415	N KN 6.06	V2 KN 0	V3 KN 0	T KN m 0	M2 KN m 0	M3 KN m 0
N° 415 416	N KN 6.06 9.556	V2 KN 0	V3 KN 0 0	T KN m 0	M2 KN m 0	M3 KN m 0 0
N° 415 416 work	N KN 6.06 9.556 ULS03:element results	V2 KN 0 0 Mon Jan 7 2013	V3 KN 0 0	T KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
N° 415 416 work	N KN 6.06 9.556 ULS03:element results N	V2 KN 0 0 Mon Jan 7 2013 V2	V3 KN 0 0	T KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
N° 415 416 work	N KN 6.06 9.556 ULS03:element results N KN	V2 KN 0 0 Mon Jan 7 2013 V2 KN	V3 KN 0 0 V3 KN	T KN m 0 0	M2 KN m 0 0	M3 KN m 0 0 0 0
N° 415 416 work N° 415	N KN 6.06 9.556 ULS03:element results N KN 5.649	V2 KN 0 0 Mon Jan 7 2013 V2 KN 0	V3 KN 0 0 0 V3 KN 0	T KN m 0 0 0	M2 KN m 0 0 0 0	M3 KN m 0 0 0 0 8 8 KN m 0

Stay Cable Type C Report

work	SLS01:element results	Jan 8 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
410	2.025	0	0	0	0	0
409	1.794	0	0	0	0	0
work	SLS02:element results	Tue Jan 8 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
410	5.446	0	0	0	0	0
409	7.619	0	0	0	0	0
work	SLS03:element results	Tue Jan 8 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
410	6.048	0	0	0	0	0
409	7.718	0	0	0	0	0
work	ULS01:element results	Tue Jan 8 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
410	2.009	0	0	0	0	0
409	1.784	0	0	0	0	0
work	ULS02:element results	Tue Jan 8 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
410	6.891	0	0	0	0	0
409	10.138	0	0	0	0	0
work	ULS03:element results	Tue Jan 8 2013				
	Ν	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m

410	7.749	0	0	0	0	0
409	10.235	0	0	0	0	0

Stay Cable Type E Report

work	SLS01:element	Tue Jan 8 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
417	2.671	0	0	0	0	0
work	SLS02:element results	Tue Jan 8 2013				
N°	N KN	V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
417	4.319	0	0	0	0	0
work	SLS03:element results	Tue Jan 8 2013				
N°	N KN	V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
417	4.593	0	0	0	0	0
work	ULS01:element results	l ue Jan 8 2013				
N°	N KN	V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
417	2.663	0	0	0	0	0
work	ULS02:element results	Tue Jan 8 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
417	4.884	0	0	0	0	0
work	ULS03:element results	Tue Jan 8 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
417	5.233	0	0	0	0	0

Edge Cable Type E01 Repot

work	SLS01:element results	Mon Jan 7 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
369	0.539	0	0	0	0	0
370	0.403	0	0	0	0	0
371	0.344	0	0	0	0	0
372	0.312	0	0	0	0	0
373	0.296	0	0	0	0	0
374	0.295	0	0	0	0	0
375	0.313	0	0	0	0	0
376	0.355	0	0	0	0	0
377	0.456	0	0	0	0	0
work	SLS02:element results	Mon Jan 7 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
369	7.262	0	0	0	0	0
370	6.377	0	0	0	0	0

371	5.48	0	0	0	0	0
372	4.859	0	0	0	0	0
373	4.517	0	0	0	0	0
374	4.449	0	0	0	0	0
375	4.673	0	0	0	0	0
376	5.244	0 0		0	0	0
377	6.043	0	0	0	0	0
		Mon				
	SI S03 element	Jan 7				
work	results	2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
369	7.374	0	0	0	0	0
370	6.429	0	0	0	0	0
371	5.491	0	0	0	0	0
372	4.825	0	0	0	0	0
373	4.483	0	0	0	0	0
374	4.429	0	0	0	0	0
375	4.657	0	0	0	0	0
376	5.202	0	0	0	0	0
377	5.918	0 Mon	0	0	0	0
		Jan				
work	ULS01:element	7 2013				
WOIK	N	2013	110			
	N	V2	V3	T	M2	M3
N°	KN	V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
N° 369	N KN 0.545	V2 KN 0	V3 KN 0	T KN m 0	M2 KN m 0	M3 KN m 0
N° 369 370	N KN 0.545 0.409	V2 KN 0 0	V3 KN 0 0	T KN m 0 0	M2 <u>KN m</u> 0 0	M3 KN m 0 0
N° 369 370 371	N KN 0.545 0.409 0.35	V2 KN 0 0	V3 KN 0 0	T KN m 0 0 0	M2 KN m 0 0	M3 KN m 0 0 0
N° 369 370 371 372	N KN 0.545 0.409 0.35 0.317	V2 KN 0 0 0	V3 KN 0 0 0	T KN m 0 0 0	M2 KN m 0 0 0	M3 KN m 0 0 0 0
N° 369 370 371 372 373	N KN 0.545 0.409 0.35 0.317 0.301	V2 KN 0 0 0 0	V3 KN 0 0 0 0	T KN m 0 0 0 0	M2 KN m 0 0 0 0	M3 KN m 0 0 0 0 0
N° 369 370 371 372 373 374	N KN 0.545 0.409 0.35 0.317 0.301 0.301	V2 KN 0 0 0 0 0	V3 KN 0 0 0 0 0	T KN m 0 0 0 0 0	M2 KN m 0 0 0 0 0	M3 KN m 0 0 0 0 0 0
N° 369 370 371 372 373 374 375	N KN 0.545 0.409 0.35 0.317 0.301 0.3 0.3	V2 KN 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0	T KN m 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0	M3 <u>KN m</u> 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376	N KN 0.545 0.409 0.35 0.317 0.301 0.3 0.317 0.36	V2 KN 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377	N KN 0.545 0.409 0.35 0.317 0.301 0.3 0.317 0.36 0.462	V2 KN 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.36	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
 № 369 370 371 372 373 374 375 376 377 	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377 work	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element results	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377 work	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.301 0.317 0.36 0.462 ULS02:element results N	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377 work N° 369	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377 work N° 369 370	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN 10.035 8 920	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
N° 369 370 371 372 373 374 375 376 377 work N° 369 370	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN KN 10.035 8.929 7 726	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 370	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN 10.035 8.929 7.726 6.855	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 370 371 375 376 377 work N° 369 370 371 372 373	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN 10.035 8.929 7.726 6.855 6.361	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 370 371 375 376 377 work N° 369 370 371 372 373 374	N KN 0.545 0.409 0.35 0.317 0.301 0.301 0.317 0.36 0.462 ULS02:element results N KN 10.035 8.929 7.726 6.855 6.361 6.255	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 370 371 375 376 377 work N° 369 370 371 372 373 374 375	N KN 0.545 0.409 0.35 0.317 0.301 0.302 0.303 0.301 0.301 0.302 0.303 0.301 0.302 N KN 10.035 8.929 7.726 6.855 6.361 6.255 6.361	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 377 work N° 369 370 371 372 373 371 372 373 374 375 370 371 372 373 374 375 376	N KN 0.545 0.409 0.35 0.317 0.301 0.302 0.462 VLS02:element results N KN 10.035 8.929 7.726 6.855 6.361 6.255 6.559 7.328	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
№ 369 370 371 372 373 374 375 376 377 work N° 369 370 371 375 376 377 work N° 369 370 371 372 373 371 372 373 371 372 373 374 375 376 371 372 373 374 375 376 376 376 376	N KN 0.545 0.409 0.35 0.317 0.301 0.462 N KN 10.035 8.929 7.726 6.855 6.361 6.255 6.559 7.328 8.348	V2 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0

work	ULS03:element results	7 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
369	10.159	0	0	0	0	0
370	8.971	0	0	0	0	0
371	7.718	0	0	0	0	0
372	6.784	0	0	0	0	0
373	6.295	0	0	0	0	0
374	6.212	0	0	0	0	0
375	6.525	0	0	0	0	0
376	7.258	0	0	0	0	0
377	8.162	0	0	0	0	0

Stay Cable Type E02 Report

NomeNo	work	SLS01:element	Jan 7 2013				
NNNNNNNNIIINNIIINNIIINNIIINNIIINNIIINNIIINNIIINNIIINNIIINNIII3871.00000000003880.651000000003910.462000000003920.451000000003930.629000000003940.611000000003950.6290000000003940.62900 <th>NIO</th> <th>N</th> <th>V2</th> <th>V3</th> <th>T</th> <th>M2</th> <th>M3</th>	NIO	N	V2	V3	T	M2	M3
3880.10000003880.65000003900.547000003910.462000003930.659000003940.514000003950.629000003960.512000003977.8127M2M3M33872.155000003881.728000003910.965000003920.881000003930.867000003940.925000003951.165000003940.925000003951.165000003961.16500000397NKNKNKNKNKN3981.165000003991.165000003911.64000003930.65100000 <td< td=""><td>N 387</td><td>1.09</td><td></td><td></td><td></td><td></td><td></td></td<>	N 387	1.09					
abic 389abic 300abic 300abic 300abic 300abic 300abic 300abic 300abic 300abic 	388	0.811	0	0	0	0	0
1000 3000.0547 0.00000003910.4820000003920.4510000003940.5420000003950.6290000003860.6290000003872.1550000003881.7280000003910.9660000003920.8810000003930.8670000003940.9260000003930.8670000003940.9260000003951.1650000003961.1270000003971.16500000003981.16500000003991.16500000003981.46300000003991.647000000 <td>389</td> <td>0.65</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	389	0.65	0	0	0	0	0
1000 0 0 0 0 0 0 0 391 0.452 0 0 0 0 0 0 393 0.459 0 0 0 0 0 0 394 0.514 0 0 0 0 0 0 0 395 0.629 0 0 0 0 0 0 0 395 0.629 0 0 0 0 0 0 0 395 0.629 0 0 0 0 0 0 0 387 7.2155 0	390	0.547	0	0	0	0	0
1000000000000000000000000000000000000	391	0.482	0	0	0	0	0
333 0.459 0 0 0 0 0 0 394 0.514 0 0 0 0 0 0 395 0.629 0 0 0 0 0 0 395 0.629 0 0 0 0 0 0 SLS02/element 7 results 2013 N KN KN KN KN KN KN KN M MN	392	0.451	0	0	0	0	0
3940.514000003950.629000003950.629000003872.155000003881.728000003911.362000003920.965000003930.965000003940.965000003951.165000003940.925000003951.165000003961.46000003972.273000003881.482000003951.165000003961.484000003981.483000003991.246000003911.647000003930.963000003941.647000003951.457000003961.64700000 <td>393</td> <td>0.459</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	393	0.459	0	0	0	0	0
3950.6.2900000Mon resultsMon 7 2013NMon 7 2013NMon NNMon N	394	0.514	0	0	0	0	0
Man results Man 2013 Man 2013 N N N V2 V3 T M2 M3 N° KN KN KN KN KN KN KN N	395	0.629	0	0	0	0	0
N V2 V3 T M2 M3 N° KN KN KN KN KN KN 387 2.155 0 0 0 0 0 388 1.728 0 0 0 0 0 0 389 1.332 0 0 0 0 0 0 0 391 0.965 0 0 0 0 0 0 0 392 0.861 0 0 0 0 0 0 0 0 393 0.867 0 0 0 0 0 0 0 393 0.867 0	work	SLS02:element	Mon Jan 7 2013				
N°KNKNKNKNKNKN3872.155000003881.728000003901.127000003910.965000003920.881000003930.867000003940.925000003951.165000003961.16200000397results2037M2M3N°KNKNKNKNKNKN3872.273000003931.4830000003941.4810000003951.4820000003961.4830000003971.4830000003981.6470000003930.6530000003941.0320000003951.6410000003960.65200000		N	V2	V3	Т	M2	M3
3872.155000003881.728000003901.132000003910.966000003920.881000003930.867000003940.925000003951.165000003961.165000003972.273000003881.842000003941.483000003951.165000003981.483000003911.047000003930.963000003941.032000003951.311000003960.540000003960.540000003971.3110000003980.6520000003990.5480000003990.5480	N°	KN	KN	KN	KN m	KN m	KN m
3881.728000003991.3820000003910.9650000003920.8810000003930.8670000003940.9250000003951.1650000003961.165000000397SLS03:element results2013TM2M3N°KNKNKNKNKN03881.842000003991.483000003911.047000003920.961000003930.953000003941.032000003951.311000003951.3110000003960.6520000003950.6520000003960.6540000003960.6270000003970.652 <td< td=""><td>387</td><td>2.155</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></td<>	387	2.155	0	0	0	0	0
3891.382000003901.1270000003910.9650000003920.8810000003930.8670000003940.9250000003951.1650000003961.1650000003972.2730000003881.8420000003901.2160000003911.0470000003920.9610000003930.9530000003941.0320000003951.3110000003960.510000003971.0960000003980.6520000003990.6540000003910.4830000003930.65200	388	1.728	0	0	0	0	0
3901.1270000003910.965000003920.881000003930.867000003940.925000003951.165000003951.165203003951.165000003961.165203MM3972.273000003881.842000003901.216000003911.047000003920.961000003930.953000003941.032000003951.311000003961.311000003971.096000003980.652000003990.654000003910.483000003930.654000003940.65400000 <td>389</td> <td>1.382</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	389	1.382	0	0	0	0	0
3910.965000003920.881000003930.867000003940.925000003951.165000003951.165000003951.165000003951.165000003872.273000003881.842000003891.483000003911.047000003920.961000003930.953000003941.032000003951.311000003941.032000003951.311000003951.311000003960.51000003971.311000003980.652000003990.548000003910.465200000 <td>390</td> <td>1.127</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>	390	1.127	0	0	0	0	0
3920.881000003930.867000003940.925000003951.165000003951.165000003951.165000003951.165737100003951.1657371001001003961.2273000003881.842000003901.216000003911.047000003930.953000003941.032000003930.953000003941.032000003871.096000003880.815000003940.548000003950.627000003930.652000003940.548000003950.627000003960.6270000 <t< td=""><td>391</td><td>0.965</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	391	0.965	0	0	0	0	0
3930.867000003940.9250000003951.1650000003951.1650000003961.16520135555workKNKNKNKNKNKN63872.2730000003881.8420000003901.2160000003911.0470000003930.9530000003941.0320000003951.3110000003951.3110000003961.311000000397KNKNKNKNKNKNKN3980.6520000003951.31100000003960.3110000000397KNKNKNKNKNKNKNKN3980.652000000039	392	0.881	0	0	0	0	0
3940.0925000003951.165000003961.16500000397SLS03:element 7 results2013TM2M3N°KNKNKNKNKN63872.273000003881.842000003931.483000003941.047000003930.953000003941.032000003951.311000003951.311000003961.31100000397KNKNKNKNKNKN3980.652000003951.311000000395000000003960.6520000003971.0960000003980.6520000003990.5480000003910.54800000 <t< td=""><td>393</td><td>0.867</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	393	0.867	0	0	0	0	0
3951.16500000SLS03:element 7 resultsVV2V3TM2M3N°KNKNKNKNKNKNM33872.273000003881.8420000003891.483000003901.216000003911.047000003920.961000003930.953000003941.032000003951.311000003961.62120000003970.518000003980.652000003991.034000003911.035000003920.451000003930.815000003940.652000003930.459000003940.513000003950.627000003950.627 <t< td=""><td>394</td><td>0.925</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	394	0.925	0	0	0	0	0
Mon results Non results Non results N° N V2 V3 T M2 M3 N° KN KN KN KN KN KN M3 387 2.273 0 0 0 0 0 0 388 1.842 0 00 0 0 0 0 389 1.483 0 00 0 0 0 0 390 1.216 0 0 0 0 0 0 391 1.047 0 0 0 0 0 0 392 0.961 0 0 0 0 0 0 0 393 0.953 0 <th< td=""><td>395</td><td>1.165</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	395	1.165	0	0	0	0	0
N°NAV2V3TM2M3N°KNKNKNKNKNKN3872.273000003881.842000003891.4830000003901.2160000003911.0470000003920.9610000003930.9530000003941.0320000003951.3110000003961.311000000397NortKNKNKNKNKNKN3980.652000003990.6520000003910.4830000003930.6520000003940.5130000003950.6270000003950.627000000395NXNKNKNKNKNKN395NXNKNKNKNKN <th>work</th> <th>SLS03:element results</th> <th>Jan 7 2013</th> <th></th> <th></th> <th></th> <th></th>	work	SLS03:element results	Jan 7 2013				
N° KN KN KN m KN m KN m KN m 387 2.273 0 0 0 0 0 388 1.842 0 0 0 0 0 389 1.483 0 0 0 0 0 390 1.216 0 0 0 0 0 391 1.047 0 0 0 0 0 392 0.961 0 0 0 0 0 393 0.953 0 0 0 0 0 394 1.032 0 0 0 0 0 395 1.311 0 0 0 0 0 395 1.311 0 0 0 0 0 396 KN KN KN KN KN KN M 393 0.652 0 0 0		Ν	V2	V3	T	M2	140
367 2.2.73 00 <	N19	IZNI.	IZNI	IZNI.	KNm		IVI3
380 1.842 0<	<mark>N°</mark> 387	KN 2 273	KN	KN	KN m	KN m	KN m
No No<	N° 387 388	KN 2.273 1 842	KN 0	KN 0	KN m 0	KN m 0	KN m 0
391 1.047 0 </td <td>N° 387 388 389</td> <td>KN 2.273 1.842 1.483</td> <td>KN 0 0</td> <td>KN 0 0</td> <td>KN m 0 0</td> <td>KN m 0 0</td> <td>KN m 0 0</td>	N° 387 388 389	KN 2.273 1.842 1.483	KN 0 0	KN 0 0	KN m 0 0	KN m 0 0	KN m 0 0
392 0.961 0 </td <td>N° 387 388 389 390</td> <td>KN 2.273 1.842 1.483 1.216</td> <td>KN 0 0 0</td> <td>KN 0 0 0</td> <td>KN m 0 0 0</td> <td>KN m 0 0 0</td> <td>KN m 0 0 0</td>	N° 387 388 389 390	KN 2.273 1.842 1.483 1.216	KN 0 0 0	KN 0 0 0	KN m 0 0 0	KN m 0 0 0	KN m 0 0 0
393 0.953 0 0 0 0 0 394 1.032 0 0 0 0 0 0 395 1.311 0 0 0 0 0 0 395 1.311 0 0 0 0 0 0 work ULS01:element results 7 2013 V2 V3 T M2 M3 N° KN KN KN KN KN MN M M M M M M3 M3 387 1.096 0	N° 387 388 389 390 391	KN 2.273 1.842 1.483 1.216 1.047	KN 0 0 0 0	KN 0 0 0 0	KN m 0 0 0 0	KN m 0 0 0 0	KN m 0 0 0 0
394 1.032 0 0 0 0 0 395 1.311 0 0 0 0 0 0 395 1.311 0 0 0 0 0 0 0 work VLS01:element 7 2013 2013 T M2 M3 N° KN KN KN KN KN KN KN M3 387 1.096 0 0 0 0 0 0 388 0.815 0 0 0 0 0 0 0 389 0.652 0 <td>N° 387 388 389 390 391 392</br></td> <td>KN 2.273 1.842 1.483 1.216 1.047 0.961</td> <td>KN 0 0 0 0 0</td> <td>KN 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0</td>	N° 387 388 	KN 2.273 1.842 1.483 1.216 1.047 0.961	KN 0 0 0 0 0	KN 0 0 0 0 0	KN m 0 0 0 0 0 0	KN m 0 0 0 0 0	KN m 0 0 0 0 0 0
3951.31100000Jan Jan VerJan 7 results77777workN2013TM2M3N°KNKNKNKNmKNmKNm3871.096000003880.815000003890.652000003900.548000003910.483000003930.459000003940.627000003950.62770000100JanJanJanJanJanJan101N°KNKNKNKNKNKNKNN°KNKNKNKNKNKNKNKN	N° 387 388 389 390 391 392 393	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953	KN 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0
Mon Jan 7 2013 Mon 2013 Work N V2 V3 T M2 M3 N° KN KN KN KN KN M0 M3 387 1.096 0 0 0 0 0 0 388 0.815 0 0 0 0 0 0 389 0.652 0 0 0 0 0 0 390 0.548 0 0 0 0 0 0 391 0.483 0 0 0 0 0 0 392 0.452 0 0 0 0 0 0 393 0.459 0 0 0 0 0 0 394 0.513 0 0 0 0 0 0 395 0.627 0 0 0 0 0 0 work	№ 387 388 389 390 391 392 393 394	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032	KN 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0
N° N (N) V2 V3 T M2 M3 N° KN KN KN KN KN KN KN 387 1.096 0 0 0 0 0 0 388 0.815 0 0 0 0 0 0 389 0.652 0 0 0 0 0 0 390 0.548 0 0 0 0 0 0 391 0.483 0 0 0 0 0 0 392 0.452 0 0 0 0 0 0 393 0.459 0 0 0 0 0 0 394 0.513 0 0 0 0 0 0 0 0 395 0.627 0 0 0 0 0 0 0 0 0 0	N° 387 388 389 390 391 392 393 393 394 395	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311	KN 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0
N° KN KN KN m KN m KN m KN m KN m 387 1.096 0 0 0 0 0 0 388 0.815 0 0 0 0 0 0 389 0.652 0 0 0 0 0 0 390 0.548 0 0 0 0 0 0 391 0.483 0 0 0 0 0 0 392 0.452 0 0 0 0 0 0 393 0.459 0 0 0 0 0 0 394 0.513 0 0 0 0 0 0 395 0.627 0 0 0 0 0 0 work KN KN KN KN KN KN KN KN	N° 387 388 389 390 391 392 393 394 395	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0
387 1.096 0 0 0 0 0 388 0.815 0 0 0 0 0 389 0.652 0 0 0 0 0 390 0.548 0 0 0 0 0 391 0.483 0 0 0 0 0 392 0.452 0 0 0 0 0 393 0.459 0 0 0 0 0 394 0.513 0 0 0 0 0 0 395 0.627 0 0 0 0 0 0 0 work V2 V3 T M2 M3 N° KN	N° 387 388 389 390 391 392 393 394 395 work	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0
388 0.815 0 </td <td>N° 387 388 389 390 391 392 393 394 395 work N°</td> <td>KN 2.273 1.842 1.216 1.216 0.961 0.953 1.032 1.311 ULS01:element results N KN</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	N° 387 388 389 390 391 392 393 394 395 work N°	KN 2.273 1.842 1.216 1.216 0.961 0.953 1.032 1.311 ULS01:element results N KN	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
389 0.652 0 </td <td>N° 387 388 390 391 392 393 394 395 Vork N° 387</td> <td>KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	N° 387 388 390 391 392 393 394 395 Vork N° 387	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
390 0.548 0 </td <td>№ 387 388 389 390 391 392 393 394 395 work N° 387</td> <td>KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096 0.815</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	№ 387 388 389 390 391 392 393 394 395 work N° 387	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096 0.815	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
391 0.483 0 </td <td>N° 387 388 389 390 391 392 393 394 395 work N° 387 388 393 394 395 395 395 395 395 395 395 395</td> <td>KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096 0.815 0.652</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	N° 387 388 389 390 391 392 393 394 395 work N° 387 388 393 394 395 395 395 395 395 395 395 395	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 1.096 0.815 0.652	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
392 0.452 0 </td <td>№ 387 388 389 390 391 392 393 394 395 work N° 388 389 393 394 395 Work N° 387 388 389 390</td> <td>KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.9652 0.652 0.548</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	№ 387 388 389 390 391 392 393 394 395 work N° 388 389 393 394 395 Work N° 387 388 389 390	KN 2.273 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.9652 0.652 0.548	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
393 0.459 0 </td <td>N° 387 388 389 390 391 392 393 394 395 work N° 388 389 394 395 394 395 394 395 394 395 394 395 395 396 397 388 389 390 391 392 393 393 391</td> <td>KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.953 0.815 0.652 0.548 0.483</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	N° 387 388 389 390 391 392 393 394 395 work N° 388 389 394 395 394 395 394 395 394 395 394 395 395 396 397 388 389 390 391 392 393 393 391	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.953 0.815 0.652 0.548 0.483	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
394 0.513 0 0 0 0 0 395 0.627 0 0 0 0 0 395 0.627 0 0 0 0 0 0 395 0.627 0 0 0 0 0 0 395 0.627 0 0 0 0 0 Work VLS02:element 7 2013 N° KN KN KN KN KN	№ 387 388 389 390 391 392 393 394 395 work N° 388 389 391 392 393 394 395 394 395 394 395 394 395 395 388 388 388 388 388 388 389 391 392 391 392	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.815 0.652 0.548 0.452	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S95 0.027 0 </td <td>№ 387 388 389 390 391 392 393 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 388 389 390 391 392 393 391 392 393 392 393 392 393 392 393 393</td> <td>KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 VLS01:element results N KN 0.953 0.452 0.452 0.459</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	№ 387 388 389 390 391 392 393 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 394 395 388 389 390 391 392 393 391 392 393 392 393 392 393 392 393 393	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 VLS01:element results N KN 0.953 0.452 0.452 0.459	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WorkULS02:element results7 2013N°KNKNKNKNN°KNKNKNKN	N° 387 388 389 390 391 392 393 394 395 Work N° 388 389 394 395 394 395 394 395 394 395 394 395 387 388 389 390 391 392 393 394 395 391 392 393 394 395	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.815 0.652 0.548 0.452 0.452 0.453	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N° KN KN KN KN KN KN KN	№ 387 388 389 390 391 392 393 394 395 394 395 388 394 395 394 395 394 395 394 395 394 395 388 389 388 389 391 388 389 391 392 393 391 392 393 391 392 393 394 395	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.815 0.652 0.548 0.459 0.513 0.627	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	N° 387 389 389 390 391 392 393 394 395 Work 387 388 389 394 395 Work 387 388 389 390 391 387 388 389 390 391 392 393 394 395 Work 395 work	KN 2.273 1.842 1.842 1.483 1.216 1.047 0.961 0.953 1.032 1.311 ULS01:element results N KN 0.953 0.652 0.652 0.453 0.452 0.452 0.452 0.452 0.453 0.513 0.627	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MS KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

387	2.821	0	0	0	0	0
388	2.305	0	0	0	0	0
389	1.852	0	0	0	0	0
390	1.5	0	0	0	0	0
391	1.268	0	0	0	0	0
392	1.144	0	0	0	0	0
393	1.108	0	0	0	0	0
394	1.171	0	0	0	0	0
395	1.479	0	0	0	0	0
	ULS03:element	Jan 7				
work	results	2013				
work	results N	2013 V2	V3	Т	M2	M3
work N°	results N KN	2013 V2 KN	V3 KN	T KN m	M2 KN m	M3 KN m
work N° 387	results N KN 2.901	2013 V2 KN 0	V3 KN 0	T KN m 0	M2 KN m 0	M3 KN m 0
work N° 387 388	results N KN 2.901 2.387	2013 V2 KN 0 0	V3 KN 0 0	T KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
work N° 387 388 389	results N KN 2.901 2.387 1.929	2013 V2 KN 0 0	V3 KN 0 0	T KN m 0 0	M2 KN m 0 0	M3 KN m 0 0
work N° 387 388 389 390	results N KN 2.901 2.387 1.929 1.571	2013 V2 KN 0 0 0	V3 KN 0 0 0	T KN m 0 0 0	M2 KN m 0 0 0	M3 KN m 0 0 0
work N° 387 388 389 390 391	results N KN 2.901 2.387 1.929 1.571 1.339	2013 V2 KN 0 0 0 0	V3 KN 0 0 0 0	T KN m 0 0 0 0	M2 KN m 0 0 0 0	M3 KN m 0 0 0 0 0
work N° 387 388 389 390 391 392	results N KN 2.901 2.387 1.929 1.571 1.339 1.217	2013 V2 KN 0 0 0 0 0	V3 KN 0 0 0 0 0 0	T KN m 0 0 0 0 0 0	M2 KN m 0 0 0 0 0	M3 KN m 0 0 0 0 0 0
work N° 387 388 389 390 391 392 393	results N KN 2.901 2.387 1.929 1.571 1.339 1.217 1.194	2013 V2 KN 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0
work N° 387 388 389 390 391 392 393 393	results N KN 2.901 2.387 1.929 1.571 1.339 1.217 1.194 1.284	2013 V2 KN 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0	T KN m 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0 0 0 0 0

Stay Cable Type E03 Report

work	SLS01:element results	Jan 7 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
351	0.921	0	0	0	0	0
352	0.679	0	0	0	0	0
353	0.547	0	0	0	0	0
354	0.476	0	0	0	0	0
355	0.452	0	0	0	0	0
356	0.466	0	0	0	0	0
357	0.519	0	0	0	0	0
358	0.612	0	0	0	0	0
359	0.763	0	0	0	0	0
work	SLS02:element results	Mon Jan 7 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
351	1.514	0	0	0	0	0
352	1.197	0	0	0	0	0
353	0.969	0	0	0	0	0
354				v	0	0
001	0.833	0	0	0	0	0
355	0.833 0.787	0	0 0	0	0	0
355 356	0.833 0.787 0.807	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
355 356 357	0.833 0.787 0.807 0.877	0 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
355 356 357 358	0.833 0.787 0.807 0.877 0.999	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
355 356 357 358 359	0.833 0.787 0.807 0.877 0.999 1.302	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
355 356 357 358 359 work	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results	0 0 0 0 0 0 0 0 0 0 0 0 7 2013	0 0 0 0 0			
355 356 357 358 359 work	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results N	0 0 0 0 0 0 0 0 0 0 0 0 0 2013	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0
355 356 357 358 359 work	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results N KN	0 0 0 0 0 0 0 0 0 0 0 2013 2013	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
355 356 357 358 359 work N° 351	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results N KN 1.708	0 0 0 0 0 0 0 0 0 0 2013 2013 2013	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
355 356 357 358 359 work N° 351 352	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results N KN 1.708 1.374	0 0 0 0 0 0 0 0 0 2013 2013 2013 2013 20	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	M2 KN m 0 0	M3 KN m 0 0
355 356 357 358 359 work N° 351 352 353	0.833 0.787 0.807 0.877 0.999 1.302 SLS03:element results N KN 1.708 1.374 1.129	0 0 0 0 0 0 0 0 0 2013 2013 2013 2013 20	0 0 0 0 0 0 0 0 0 0 0	С 0 0 0 0 0 0 0 0 0 0 0 0 0	M2 KN m 0 0 0 0 0 0 0	M3 KN m 0 0 0 0 0

355	0.919	0	0	0	0	0
356	0.932	0	0	0	0	0
357	1.001	0	0	0	0	0
358	1.131	0	0	0	0	0
359	1.461	0	0	0	0	0
work	ULS01:element results	Mon Jan 7 2013				
	N	V2	V3	Т	M2	M3
N°	KN	KN	KN	KN m	KN m	KN m
351	0.922	0	0	0	0	0
352	0.679	0	0	0	0	0
353	0.547	0	0	0	0	0
354	0.476	0	0	0	0	0
355	0.451	0	0	0	0	0
356	0.465	0	0	0	0	0
357	0.517	0	0	0	0	0
300	0.61	0	0	0	0	0
309	0.761	Mon	0	0	0	0
work	ULS02:element results	Jan 7 2013				
	N	V2	V3	т	M2	M3
N°	KN	KN	KN	KN m	KN m	IZNL mo
351	1.88	0	0	0	0	0
351 352	1.88 1.509	0	0	0	0	0 0
351 352 353	1.88 1.509 1.226	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
351 352 353 354	1.88 1.509 1.226 1.051	0 0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0 0
351 352 353 354 355	1.88 1.509 1.226 1.051 0.986	0 0 0 0 0		0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356	1.88 1.509 1.226 1.051 0.986 1.005	0 0 0 0 0 0		0 0 0 0 0 0	0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357	1.88 1.509 1.226 1.051 0.986 1.005 1.086	0 0 0 0 0 0 0		0 0 0 0 0 0 0	0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231					N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593	0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0
351 352 353 354 355 356 357 358 359	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	T	N III 0 0 0 0 0 0 0 0 0 0 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N°	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN	0 0	M2 KN III 0 0 0 0 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351 351 352	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	M1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 359 work N° 351 352 353	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351 352 353 354	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434 1.241	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0	N 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351 352 353 354 355	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434 1.241 1.16	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 <	M2 KN m 0 0 0 0 0 0 0 0 0 0 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 359 work N° 351 352 353 354 355 356	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434 1.241 1.16 1.168	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 <td< td=""><td>N 0 0 0</td><td>KN m 0 0 0 0 0 0 0 0 0 0 0 0 0</td></td<>	N 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351 352 353 354 355 356 357	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434 1.241 1.168 1.244	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0	N 0 0 0	KN III 0 0 0 0 0 0 0 0 0 0 0 0 0
351 352 353 354 355 356 357 358 359 work N° 351 352 353 354 355 356 355 356 357 358	1.88 1.509 1.226 1.051 0.986 1.005 1.086 1.231 1.593 ULS03:element results N KN 2.127 1.738 1.434 1.241 1.168 1.244 1.395	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V3 V3 KN 0 0 0 0 0 0 0 0 0 0 0 0 0	N 0 0 0	N 0 0 0	KN m 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix 05: Foundation Detail Drawing

66

Appendix 05: Structural Calculation

	Design	of the Corn	er Plate Cl	P01					Λ		
	Plate si	ze							/ \		
	Here								/ \		
	F _v =	24.5	KN/cm ²	For A36	steel				\backslash		
	φ _b =	0.75							V		
	I=	15.28	cm								
	w=	0.121	KN/cm	for fabrio	с						
	P=	15	KN	for edge	cables						
	M1=	wl²/8									
	=	3.53	KN-cm				<u>3 Ø5mm A307</u>	BOLT			
	M ₂ =	PI/4							— 153 —		
	=	57.30	KN-cm						123		
	M=	$M_1 + M_2$							20 0		DE2 090
	=	60.83	KN-cm				PE3 98	9 30 60	-14		PE3 909
	Z=	M/F _v						19	$- \frac{O_{12}^{9}}{12}$		
		2.48	cm ³				<u>30mm E60 W</u>	ELD	\sim		SUMM E60 WELD
	Z=	bh²/6						\bigvee	(@)	N	
	Assume	e thichness o	of the plate	e 6mm					M		
	b=	0.6	cm .								
				Use 6cm					ĬĬ	DE5 081	
Then	h=	4.98	cm	Plate						FL3 901	
									Щ		
	Clampi	ng plate size	e								
	F _y =	24.5	KN/cm ²	For A36	steel						
	I=	5	cm								
	w=	0.121	KN/cm								
	M _n =	wl²/8									
		0.38	KN-cm								
	Z=	M _n /F _y	2								
		0.01543	cm³								
	Z=	bh²/6									
	Assume	e thichness o	of the plate	e 3mm							
	b=	0.3	cm								
Then	h=	0.56	cm								
	use 2 cr	n plate									
	Design	of bolts in c	lamping p	late							
	besign 	0 75									
	Ψ^{-}	0.75		For A30	7						
	F _v =	16 5	KN/cm ²	holts	,						
	\ A /=	0 121	KN/cm	boits							
		12 3	cm								
	R, =	μ* F *Δ	CIII								
	Δςςιμηε	a 3 holts									
	Load or	holts= wxl		15	KN						
	Load or	each holts	=	0.50	KN						
	Then			0.50							
	men	Δ =	0.04	cm ²							
	Require	-v.v =h cib be	0.04	cm							
	use 5m	m holts	0.25	CIII							
	use sin	in boits									
	Design	of weld on	arms	Fillet typ	e weld						
	ф=	0.75									
	$F_{E60} =$	42	KN/cm ²								
	F _w =	$0.6*F_{E60}$									
	Design	strength pe	r cm for .3	cm of weld	d=	0.75*0.6*F _{E60} *0.707	*0.3				
					=	4.0 KN/cm					
	Load or	n weld=	13	KN							
	No. of v	veld=	2								
	Load pe	er weld=	6.5	KN							
	Require	ed weld leng	th=	1.62	cm						

use 3cm weld

Design of the tube for edge cable

 $\begin{array}{ccccccc} \text{Load} = & 13 & \text{KN} \\ \text{F}_{\text{y}} = & 24.5 & \text{KN/cm}^2 \\ \text{Area required to resist A} = & 0.53 & \text{cm}^2 \\ \text{Inner dia of the tube for cable end PE03 is} & 1.2 & \text{cm} \\ \text{Then, outer area- inner area} = 0.48 & \text{cm}^2 \\ \text{Thickness t} = & 0.25 & \text{cm} \\ \text{use 0.35cm thick tube} \end{array}$

Design of the pin in double shear

Design load Then Area of the p Dia of the pin use 1.2cm pi	A _{sf} = = oin= n d= n	15 P _d /(\$\$0. 0.83 0.42 0.73 PE 5	KN 6* F _u) cm ² cm ² cm		
Design of the	e pin ir	n bearing			
φ=	0.75				
F _y =	24.5	KN/cm ²	ultimate	stren	gth
Area in shear	r	d _b *t			
		P.=	φ*1.8* I	Fy*	
Design load		۰a	d _b *t		
Design load		15	KN		
d _b =	1.2	cm			
Thickness t=		0.38	ст		
use 0.6cm th	ick pla	te			
Design of th	e plate	e in tensio	n		
Design of th φ=	e plate 0.75	e in tensio	n		
Design of th φ = F _u =	e plate 0.75 40	e in tensio KN/cm ²	n		
Design of th φ= F _u = Thickeness t	e plate 0.75 40 =	e in tension KN/cm ² 0.6	n cm		
Design of th ϕ = F_u = Thickeness t= Dia of pin d=	e plate 0.75 40 =	e in tension KN/cm ² 0.6 1.2	n cm cm		
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load	e plate 0.75 40 =	e in tension KN/cm ² 0.6 1.2 15	n cm cm KN		
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load	e plate 0.75 40 =	e in tension KN/cm ² 0.6 1.2 15 P _t =	n cm cm KN φ* F _v *A	e .	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi	e plate 0.75 40 = =	KN/cm ² 0.6 1.2 15 P _t = A _e =	n cm cm KN φ* F _v *A, P _t /(φ* F	≘) 2	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi	e plate 0.75 40 = =	E in tension KN/cm ² 0.6 1.2 15 P _t = A _e = =	n cm KN φ* F _v *A P _t /(φ* F 0.5	°√) cm²	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Area in tensi Gross Area	e plate 0.75 40 = =	KN/cm ² 0.6 1.2 15 P _t = A _e = = A _g =	n cm KN φ* F _v *A P _t /(φ* F 0.5 A _e +(d+.1	e √) cm² .5)*t	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi Gross Area	e plate 0.75 40 = = on	E in tension KN/cm ² 0.6 1.2 15 Pt= A _e = = A _g = =	n cm KN φ* F _v *A _t P _t /(φ* F 0.5 A _e +(d+.1 1.31	cm ² .5)*t cm ²	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi Gross Area Length in ter	e plate 0.75 40 = = on	E in tension KN/cm ² 0.6 1.2 15 Pt= Ae= = Ag= = Lt= -	n cm cm KN $\phi^* F_v^* A_v^*$ $P_t/(\phi^* F_v^* A_v^*)$ $A_e^+(d+.1)$ 1.31 A_g/t 2.18	cm ² .5)*t cm ²	
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi Gross Area Length in ter	e plate 0.75 40 = = on nsion	E in tension KN/cm ² 0.6 1.2 15 Pt= A _e = = A _g = = L _t = = =	n cm cm KN $\phi^* F_v^* A_d$ $P_t/(\phi^* F_v^* A_d)$ $P_t/(\phi^* F_v^* A_d)$ $A_e^+(d+.1)$ 1.31 A_g/t 2.18 1.5*d	cm ² .5)*t cm ² cm ²	
Design of th φ= F _u = Thickeness t: Dia of pin d= Tension load Tension load Area in tensi Gross Area Length in ter Edge distanc	e plate 0.75 40 = on nsion e of th	e in tension KN/cm ² 0.6 1.2 15 Pt= Ae= = Ag= = Lt= = e pin= -	n cm cm KN $\phi^* F_v^* A_0$ $P_t/(\phi^* F_v^* A_0)$ $P_t/(\phi^* F_v^* A_0)$ $A_e^+(d+.1)$ 1.31 A_g/t 2.18 1.5^*d 1.8	cm ² .5)*t cm ² cm	use 1.9 cm
Design of th ϕ = F_u = Thickeness t= Dia of pin d= Tension load Tension load Area in tensi Gross Area Length in ter Edge distanc Edge distanc	e plate 0.75 40 = = on nsion e of th	e in tension KN/cm ² 0.6 1.2 15 Pt= Ae= = Ag= = Lt= = e pin= = oth side=	n cm cm KN $\phi^* F_v^* A_0$ $P_t/(\phi^* F_v^* A_1)$ $A_e^+(d+.1)$ 1.31 A_g/t 2.18 1.5^*d 1.8	cm ² .5)*t cm ² cm cm 3.6	use 1.9 cm

OK

Design of bolts in clamping plate

$R_b = \phi^* F_v^*$	Av					
Assume 3 bolts						
Load on bolts=	wxl			0.9	KN	
Load on each b	olts=			0.30	KN	
Then			2			
A _v =		0.02	cm²			
Required dia d=	=	0.18	cm			
use 5mm bolts						
Design of weld	on arm	าร	Fillet	type w	eld	
φ=	0.75					
F _{E60} =	42	KN/cm ²				
$F_{w} = 0.6*F_{E}$	60					
Design strength	n per cn	n for .3cm o	of weld	1 =		0.75*0.6*F _{E60} *0.707*0.3
					=	4.0 KN/cm
Load on weld=		12.3	KN			
No. of weld=		2				
Load per weld=		6.15	KN			
Required weld	length=	:		1.53	cm	
use 3cm weld						
Design of the t	ube for	edge cable	9			
Load=	12.3	KN				
F _v =	24.5	KN/cm ²				
Area required t	o resist	: A=		0.50	cm ²	
Inner dia of the	tube f	or cable en	d PEO3	is		1.2 cm
Then, outer are	a- inne	r area= 0.4	8		cm ²	
Thickness t=		0.24	cm			
use 0.35cm thic	ck tube					
Design of the n	in in de	uublo shoar				
d=	0.75					
Ψ^{-}	0.75	2	ultim	ate		
F _u =	40	KN/cm ²	stren	gth		
Area in shear	-	A _{sf}		0-		
Design load		P _d =	φ*0.6	5* F.,* A	A _{sf}	
Design load		12	KN			
Then	A _{sf} =	P _d /(φ*0.6	* F _u)			
	=	0.67	cm ²			
Area of the pin	=	0.33	cm ²			
Dia of the pin d	=	0.65	cm			
use .9cm pin		PE 3				
Design of the m	in in h	aring				
d-	0.75	anng				
Ψ-	0.75	2	ultim	ate		
F _y =	24 5	KN/cm ²	stren	gth		
Area in shear	21.5	d⊾*t	Streng	5		
Design load		P _d =	ሐ *1.8	3* F.,* d	և*t	
Design load		12	KN	y y	.0.	
d _b =	1.05	cm				
Thickness t=		0.35	cm			
use 0.6cm thick	plate					
Docian of the		toncion				
		tension				
Ψ- F -	0.75 //	KN/cm ²				
Thickeness t-	40		cm			
Dia of nin d=		0.0 N Q	cm			
		0.9	0111			
lension load =		12	KN			

	=		1.03	cm ²	
Length in tension	L _t =	A _g /t			
	=		1.72	cm	
Edge distance of the pin=		1.5*d			
	=	1.35		cm	use 1.5cm
Edge distance on both side=			2.7	cm	
			2.7	>	1.72

ОК

$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \underline{\text{Design of the Corner Plate CP03} \\ \hline \\ \hline \\ \hline \\ \hline \\ \text{Here size} \\ \hline \\ $										Λ_{1}		
Telesing of the Corner Plate 5003Plate siteHere F_{re} 2.4.5M. =2.5.71.51.62.5.8M. =2.5.8M. =2.5.9N. CmMay =M. =2.5.9N. CmMay =M. =2.5.9N. CmMay =M. =2.5.9N. CmMay =2.5.9N. Cm2.5.92.5.9N. Cm2.5.92.62.7.9<								$\langle \rangle$				/ ,
Plete size Here Fr 24.5 KN/cm ² For A36 steel ϕ_{h}^{2} 0.75 1 18.6 cm $w = 0.06$ KN/cm for fabric 19 h^{2} 0.05 KN/cm for fabric h^{2} 12.8 KN for edge cables h^{2} FV/d K 10 h^{2} FV/d 10 10 h^{2} FV/d 10 10 h^{2} KVr,f cm ² 10 h^{2} 2.38 cm ² 10 11 h^{2} 2.38 cm ² 10 10 10 h^{2} 4.2 cm 10		Design	of the Corne	er Plate CP	03			-				
Here Free P_{e} 24.5 KN/cm ³ For A36 steel 0^{h}_{e} 0.75 P_{e} 12 KN for for fobric P_{e} 12 KN for degreables M_{e} w//8 = 25.9 KN cm M_{e} P//4 = 55.80 KN-cm Z_{e} 55.80 KN/cm Z_{e} 5		Plate si	ze									
$ \begin{array}{rcl} F_{\mu}^{2} & 2.4.5 & \text{KN/cm} & \text{For AB steel} \\ \phi_{\mu}^{2} & 0.75 & \text{cm} \\ \text{is} & 18.6 & \text{cm} \\ \text{w} & 0.06 & \text{KN/cm} & \text{for fabric} \\ \text{p} & 12 & \text{KN} & \text{for clapsc cables} \\ \text{m} & \text{w/VB} & \text{ss.} \\ \text{ss.} & 2.53 & \text{KN-cm} \\ \text{M} & \text{w/VB} & \text{ss.} \\ \text{ss.} & 2.53 & \text{KN-cm} \\ \text{M} & \text{w/VA} & \text{ss.} \\ \text{ss.} & 3.33 & \text{KN-cm} \\ \text{m} & \text{M} & \text{M} & \text{M} \\ \text{ss.} & 10^{2} & \text{ss.} \\ \text{2.33 & \text{cm}^{3}} \\ \text{2.34 & \text{cm}^{3}} \\ \text{2.35 & \text{cm}^{3}} \\ 2.35 & \text{$		Here			_					V		
		F _y =	24.5	KN/cm ²	For <i>I</i>	A36 ste	el					
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Φ _b =	0.75									
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		=	18.6	cm					\backslash			
M = w/12 KN cm for edge cables M = w/12 KN cm for edge cables M = w/14 for edge cab		W=	0.06	KN/CM	tor t	abric	b l a a		\backslash			
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		P=	12	KN	for e	edge ca	bles				/	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$M_1 =$	WF/8								\sim	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		=	2.59	KN-cm				4 Ø5mm A307 BOLT		186	/ 】	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$IVI_2 =$	PI/4							150		
		=	55.80	KN-CM						150 —		
$ \begin{array}{c} z = 58.39 \\ z = 50^{17}/6 \\ z = 50^{17$		1/1=	IVI ₁ +IVI ₂							200 0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		=	58.39	KN-CM				DE2 000		60 11		
2.36 Cm 2.5 b ² /5 Assume thichness of the plate 6mm b = 0.6 cm hen h = 4.88 cm Use 6cm Plate Clamping plate size F, = 2.45 KN/cm ² I = 4.2 cm w = 0.06 KN/cm M _s = w ² /8 0.13 KN-cm Z = M _s /F _s 0.0054 cm ³ Z = b ¹ /5 Assume thichness of the plate 3mm b = 0.3 cm use 2 cm plate Design of bolts in clamping plate ϕ = 0.75 F, = 16.5 KN/cm ³ For A307 bolts w = 0.06 KN/cm I = 15.8 cm R _a = ϕ * F,*A, Assume 3 bolts Load on bolts= wid 0.18 cm use 5 mm bolts Design of weld on arms Fillet type weld ϕ = 0.75 F _{max} ⁻ 42 KN/cm ³ F _{max} ⁻ 42 KN/cm ³ I = 0.03 cm ² Required dia d= 0.18 cm use 5 mm bolts Design of weld on arms Fillet type weld ϕ = 0.75°0.6*F _{max} °0.707°0.3 = 4.0 KN/cm Load on weld= 6 KN No, of weld= 2 Load one weld= 5 KN Required weld length= 0.75 cm we weld		Z=						PE3 989	30		30	PE3 989
Assume thichness of the plate 6mm b = 0.6 cm h = 4.88 cm Use 6cm Plate Clamping plate size $F_{\pi^{2}} = 24.5 \text{ KN/cm}^{2}$ I = 4.2 cm w = 0.06 KN/cm $M_{\pi^{2}} wi^{2}/8$ 0.13 KN-cm $Z = M_{\pi}/F_{\pi}$ 0.0054 cm ³ $Z = bh^{2}/6$ Assume thichness of the plate 3mm b = 0.3 cm use 2 cm plate Design of bolts in clamping plate $\phi = 0.75$ $F_{\pi^{2}} = 1.65 \text{ KN/cm}^{3}$ For A307 bolts w = 0.06 KKV/cm I = 15.8 cm $R_{\pi^{2}} \phi^{+} F_{\pi}^{+} A_{\pi}$ Assume 3 bolts Load on bolts= wxl $A_{\pi} = 0.03 \text{ cm}^{2}$ Required dia $d = 0.18 \text{ cm}$ use 5 cm fillet type weld $\phi = 0.75$ $F_{\pi^{2}} = 0.67 \text{ from}$ Design strength per cm for .3cm of weld = 0.75*0.6* F_{\pi\pi^{0}} 0.707*0.3 = 4.0 KN/cm Load on weld = 6 KN No. of weld = 2 Load on weld = 6 KN No. of weld = 2 Load per weld = 3 KN Required weld length= 0.75 cm we will		-	2.38	cm					19	<u> </u>	19	1
be 0.6 cm hen h= 4.88 cm Use 6cm Plate Clamping plate size $F_{r} = 24.5 \text{ KM/cm}^2$ I = 4.2 cm w = 0.06 KM/cm $M_{\pi} = wl^2/8$ 0.13 KN-cm $2 = M_{\pi}F_{r}$ 0.0054 cm^3 $2 = bh^2/6$ Assume thichness of the plate 3mm be 0.3 cm b = 0.3 cm b = 0.33 cm use 2 cm plate Design of bolts in clamping plate $\varphi = 0.75$ $F_{\pi} = 16.5 \text{ KM/cm}^2$ For A307 bolts w = 0.06 KM/cm I = 15.8 cm $R_{g} = \varphi^+ \Gamma_{\pi}^+ A_{\Lambda}$ Assume 3 bolts Load on bolts = 0.32 KN Then $A_{\pi} = 0.03 \text{ cm}^2$ Required id a = 0.18 cm use 5 sm bolts Design fined on arms Fillet type weld $\varphi = 0.75^{+}F_{ma}^{-} 0.32 \text{ KN}$ Then $A_{\pi} = 0.03 \text{ cm}^2$ Required id a = 0.18 cm use 5 sm bolts Design strength per cm for .3cm of weld= 0.75^{+}F_{ma}^{+}0.707^{+}0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 \text{ cm}		Z=	DN /6	fthe plate	C 1999 1999			30mm E60 WELD	\bigvee			30mm E60 WE
here here here here here here here here		Assume		or the plate	6000				7			\mathbf{N}
The interval of the interval	han	D=	0.0	cm			a ta	V		N		
Clamping plate size $F_{r}^{=} 24.5 \text{ KN/cm}^{2}$ I = 4.2 cm w = 0.06 KN/cm $M_{e} = w^{1}/8$ 0.13 KN-cm $Z = M_{e}/F_{e}$ 0.0054 cm^{3} $Z = bh^{1}/6$ Assume thichness of the plate 3mm b = 0.3 cm b = 0.3 cm use 2 cm plate Design of bolts in clamping plate $\phi = 0.75$ $F_{e} = 16.5 \text{ KN/cm}^{2}$ For A307 bolts w = 0.06 KN/cm I = 15.8 cm $R_{e} \phi^{+} F_{e}^{*}A_{e}$ Assume 5 bolts Load on bolts= 0.32 KN Then $A_{e} = 0.03 \text{ cm}^{2}$ Required dia $d = 0.18 \text{ cm}$ use 5 cm bolts Design of weld on ams Fillet type weld $\phi = 0.75^{\circ} 0.6^{\circ} F_{E00}^{\circ} 0.707^{\circ} 0.3$ $F_{e0}^{\circ} = 42 \text{ KN/cm}^{2}$ $F_{e0}^{\circ} = 42 \text{ KN/cm}^{2}$ $F_{e0}^{\circ} = 0.75^{\circ} F_{E00}^{\circ} 0.707^{\circ} 0.3$ Load on weld = 6 KN No. of weld = 2 Load on weld = 6 KN No. of weld = 3 KN Required weld length = 0.75 \text{ cm}	nen	n=	4.88	CIII	Use	OCIII PI	ale			\bowtie	<	
$F_{r} = 24.5 \text{ KN/cm}^{2}$ $I = 4.2 \text{ cm}$ $W = 0.06 \text{ KN/cm}$ $M_{n} = wF/8$ 0.13 KN-m $Z = M_{n}/F_{r}$ 0.032 cm^{3} $Z = bh'/6$ Assume thichness of the plate 3mm b= 0.33 \text{ cm} $Use 2 \text{ cm plate}$ $Design of bolts in clamping plate \varphi = 0.75 F_{r} = 16.5 \text{ KN/cm}^{2} \text{ For A307 bolts} W = 0.06 \text{ KN/cm} I = 15.8 \text{ cm} R_{e} = \varphi^{4} F_{r} A_{e} Assume 3 boltsLoad on bolts=Wal 0.9 \text{ KN} Load on each bolts = 0.32 \text{ KN} Then A_{r} = 0.03 \text{ cm}^{2} Required dia d = 0.18 \text{ cm} Use 5 \text{ rm bolts} Design of weld on arms \qquad Fillet type weld \varphi = 0.75^{4} F_{E00}^{4} 0.75^{7} F_{E00}^{2} 0.75^{4} 0.75^{4} 0.70^{4} 0.3 I = 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.75^{4} 0.75^{4} 0.70^{4} 0.3 I = 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.70^{4} 0.3 I = 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.70^{4} 0.3 I = 0.75^{4} 0.5^{4} F_{E00} 0.75^{4} 0.5^{4} F_{E0} 0.5^{4} F_{E0} 0.5^{4} 0.5^{4} F_{E0} 0.5^{4} $		Clampi	ng plate size	2							\mathbf{i}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		F _y =	24.5	KN/cm ²							PE3 98	31
$w = 0.06 \text{ KN/cm}$ $M_{a} = wi^{2}/8$ 0.13 KN-cm $Z = M_{a}/F_{a}$ 0.0054 cm^{3} $Z = bh^{2}/6$ Assume thichness of the plate 3mm $b = 0.3 \text{ cm}$ $b = 0.75 \text{ fr}_{c} = 1.65 \text{ KN/cm}^{2} \text{ For A307 bolts}$ $w = 0.06 \text{ KN/cm}$ $b = 0.32 \text{ cm}$ $R_{a} = \phi^{a} \text{ F}_{a}^{*} \text{ A}_{a}$ Assume 3 bolts Load on bolts = 0.32 \text{ KN} Then $A_{c} = 0.03 \text{ cm}^{2}$ Required dia d = 0.18 cm use Smm bolts $Design of weld on arms \qquad Fillet type weld$ $\phi = 0.75 \text{ fr}_{cm} = 0.75 \text{ Freco}^{+}0.707^{+}0.3$ $e = 0.75^{+}6.6^{+}F_{coo}^{+}0.707^{+}0.3$ $E = 0.75^{+}6.6^{+}6.6^{-}0.707^{+}0.3$ $E = 0.75^{+}6.6^{+}6.6^{-}0.707^{+}0.3$ $E = 0.75^{+}6.6^{-}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{+}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}6.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}0.707^{+}0.3$ $E = 0.75^{-}0.6^{-}0.75^{-}0.6^{-}0.707^$		I=	4.2	cm								
$M_{n} = wl^{2}/8$ 0.13 KN-cm $Z = M_{n}/F_{n}$ 0.0054 cm^{3} $Z = bh^{2}/6$ Assume thichness of the plate 3mm b = 0.3 cm use 2 cm plate Design of bolts in clamping plate $\Phi^{\pm} = 0.75$ $F_{r} = 16.5 \text{ KN/cm}^{2}$ For A307 bolts w = 0.06 KN/cm i = 15.8 cm $R_{q} = \Phi^{*}F_{r}^{*}A_{q}$ Assume 3 bolts Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 KN Then $A_{r} = 0.03 \text{ cm}^{2}$ Required dia d = 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\Phi^{\pm} = 0.75$ $F_{wc} = 0.6^{*}F_{tco}$ Design strength per cm for .3cm of weld = 0.75^{*}0.6^{*}F_{tco}^{*}0.707^{*}0.3 = 4.0 KN/cm Load on weld = 6 KN No. of weld = 2 Load per weld = 3 KN		w=	0.06	KN/cm						Щ		
$Z = M_{v}/F_{v}$ $0.0054 cm^{3}$ $Z = bh^{3}/6$ Assume thichness of the plate 3mm $b = 0.3 cm$ $b = 0.3 cm$ $use 2 cm plate$ $Design of bots in clamping plate \Phi^{=} 0.75 F_{v} = 1.65 KN/cm^{2} For A307 bolts w = 0.06 KN/cm l = 15.8 cm R_{0} = \Phi^{+}F_{v}A_{v} Assume 3 bolts Load on bolts = wkl 0.9 KN Load on each bolts = 0.32 KN Then A_{v} = 0.03 cm^{2} Required dia d = 0.18 cm use 5mm bolts Fillet type weld \Phi^{=} 0.75 F_{rea0} = 42 KN/cm^{2} F_{w} = 0.6^{+}F_{rea0} Design strength per cm for 3cm of weld = 0.75^{+}0.6^{+}F_{rea0}^{+}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{+}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{+}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{+}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{-}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{-}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{-}0.6^{+}F_{rea0}^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{-}0.6^{+}F_{rea0}^{-}0.75^{-}0.75^{-}0.707^{+}0.3 Eosign strength per cm for 3cm of weld = 0.75^{-}0.7$		M _n =	wl ² /8	KN-cm								
$ \begin{array}{c} 0.0054 \ \text{cm}^3 \\ Z = \ bh^3/6 \\ \text{Assume thichness of the plate 3mm} \\ b = \ 0.3 \ \text{cm} \\ b = \ 0.3 \ \text{cm} \\ b = \ 0.3 \ \text{cm} \\ \text{is 2 cm plate} \\ \hline \begin{array}{c} \textbf{Design of bolts in clamping plate} \\ \phi = \ 0.75 \\ F_{v} = \ 16.5 \ \text{KN/cm}^2 \ \text{ For A307 bolts} \\ w = \ 0.06 \ \text{KN/cm} \\ i = \ 15.8 \ \text{cm} \\ \text{Res } \phi^* F_{v}^* A_v \\ \text{Assume 3 bolts} \\ \text{Load on bolts} \\ \text{wxl} \\ \text{O.9 \ KN} \\ \text{Load on bolts} \\ \text{wxl} \\ \text{od on bolts} \\ \text{bolts} \\ \text{od on bolts} \\ \text{use 5rm bolts} \\ \hline \begin{array}{c} \textbf{Design of well on arms} \\ \text{Fillet type welld} \\ \phi = \ 0.75 \\ F_{rso} = \ 4.2 \ \text{KN/cm}^2 \\ F_{rso} = \ 4.2 \ \text{KN/cm} \\ \text{Design strength per cm for .3cm of welle} \\ \hline \begin{array}{c} 0.75^*0.6^*F_{F60}^*0.707^*0.3 \\ = \ 4.0 \ \text{KN/cm} \\ \text{No. of welle} \\ 2 \\ \text{Load on weld} \\ \text{Required well length} = \ 0.75 \ \text{cm} \\ \text{Required well length} = \ 0.75 \ \text{cm} \\ \end{array}$		Z=	M _n /F _v									
$Z = bh^{2}/6$ Assume thichness of the plate 3mm b = 0.3 cm hen h = 0.33 cm use 2 cm plate $ \begin{array}{rcl} Design of bots in clamping plate $			0.0054	cm ³								
Assume thickness of the plate 3mm b = 0.3 cm b = 0.3 cm use 2 cm plat= Pesign of bolts in clamping plate $\varphi = 0.75$ $F_{v} = 16.5$ KN/cm ² For A307 bolts w = 0.06 KN/cm I = 15.8 cm $R_{0} = \varphi + F_{v} A_{v}$ Assume 3 bolts Load on bolts= wxl 0.9 KN Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 KN Then $A_{v} = 0.03$ cm ² Required dia d= 0.18 cm use 5mm bolts Pesign of weld on arms Fillet type weld $\varphi = 0.75 - F_{reco} 42$ KN/cm ² $F_{v} = 0.6^{+}F_{reco}$ Design strength per cm for .3cm of weld = 0.75*0.6*F_{reco}*0.707*0.3 = 4.0 KN/cm		Z=	bh²/6									
b = 0.3 cm hen h = 0.33 cm use 2 cm plate $\varphi = 0.75$ $F_v = 16.5 KN/cm^2$ For A307 bolts w = 0.06 KN/cm H = 15.8 cm $R_0 = \varphi * F_v * A_v$ Assume 3 bolts Load on bolts = 0.32 KN Load on each bolts = 0.32 KN Then $A_v = 0.03 cm^2$ Required dia d = 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\varphi = 0.75$ $F_{te0} = 42 KN/cm^2$ $F_{va} = 0.6^*F_{reo}$ Design strength per cm for .3cm of weld = 0.75*0.6*F_{reo}*0.707*0.3 = 4.0 KN/cm		Assume	e thichness c	of the plate	3mm							
hen h= 0.33 cm use 2 cm plate Design of bolts in clamping plate $\phi = 0.75$ F,= 16.5 KN/cm ² For A307 bolts w= 0.06 KN/cm I= 15.8 cm R,= ϕ^{+} F,*A, Assume 3 bolts Load on bolts= wal 0.9 KN Load on each bolts= 0.32 KN Then A,= 0.03 cm ² Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\phi = 0.75$ F ₆₀₀ 42 KN/cm ² F ₆₀₀ 542 KN/cm ² F ₆₀₀ 642 KN/cm ² F ₆₀₀ 50 CT5 ⁴ C.5 ⁴ F ₆₀₀ ⁴⁰ C.75 ⁴⁰ C.75 ⁴⁰ C.75 ⁴⁰ C.707 ⁴⁰ C.3 = 4.0 KN/cm		b=	0.3	cm .								
use 2 cm plate Design of bolts in clamping plate $\varphi = 0.75$ $F_{r} = 16.5$ KN/cm ² For A307 bolts w = 0.06 KN/cm l = 15.8 cm $R_{r} = \varphi * F_{r}^{*} A_{r}$ Assume 3 bolts Load on bolts wxl 0.9 KN Load on bolts wxl 0.9 KN Load on each bolts= 0.32 KN Then $A_{r} = 0.03$ cm ² Required dia d = 0.18 cm use Smm bolts Design of weld on arms Fillet type weld $\varphi = 0.75$ $F_{too} = 42$ KN/cm ² $F_{w} = 0.6^{*} F_{to0}$ Design strength per cm for .3cm of weld = 0.75*0.6* F_{to0}*0.707*0.3 = 4.0 KN/cm Load on weld = 6 KN No. of weld = 2 Load op r weld = 3 KN Required weld length = 0.75 cm we 3 m weld	hen	h=	0.33	cm								
Design of bolts in clamping plate $\phi = 0.75$ $F_{r} = 16.5 \text{ KM/cm}^2$ for A307 bolts $w = 0.06 \text{ KN/cm}$ for A307 bolts $w = 0.06 \text{ KN/cm}$ for A307 bolts $u = 15.8 \text{ cm}$ $R_{0} = \phi^{2} \text{ F}_{v} \text{ A}_{v}$ Assume 3 boltsLoad on bolts=wxl0.9 KNLoad on each0.32 KNbolts=0.32 cm²Required dia d=0.18 cmuse 5mm boltsscm²Fress= 42 KN/cm² $F_{co0} = 0.75$ $F_{co0} = 0.6^{\circ} F_{co0}$ Design of weld on armsFillet type weld $\phi = 0.75$ $6.6^{\circ} F_{co0}^{\circ} 0.707^{\circ} 0.3$ $= 4.0 \text{ KN/cm}$ Load on weld=6 KNNo. of weld=2Load on weld=3 KNRequired weld length=0.75 cmwe ad m weld0.75 cm		use 2 ci	m plate									
besign to bus in changing place $\varphi = 0.75$ $F_v = 16.5 \text{ KN/cm}^2$ For A307 bolts w = 0.06 KN/cm l = 15.8 cm $R_b = \varphi^* F_v^* A_v$ Assume 3 bolts Load on bolts= wxl 0.9 KN Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 \text{ KN} Then $A_v = 0.03 \text{ cm}^2$ Required dia d = 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\varphi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^2$ $F_w = 0.6^* F_{E60}$ Design strength per cm for .3cm of weld= 0.75*0.6* F_{E60}*0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm we a 3 cm weld		Docign	of bolts in c	lamning nl	ato							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Design		iamping pi	ale							
$w = 0.06 \text{ KV/cm}$ $I = 15.8 \text{ cm}$ $R_{B} = \phi^{+} F_{*}^{*} A_{v}$ Assume 3 bolts Load on bolts= $wxl \qquad 0.9 \text{ KN}$ Load on each bolts= 0.32 KN Then $A_{v} = 0.03 \text{ cm}^{2}$ Required dia d= 0.18 cm use 5mm bolts $Design of weld on arms \qquad Fillet type weld$ $\phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^{2}$ $F_{w} = 0.6^{+}F_{E00}$ Design strength per cm for .3cm of weld= $0.75^{+}0.6^{+}F_{E60}^{+}0.707^{+}0.3$ $= 4.0 \text{ KN/cm}$ Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm		Ψ- ⊑-	16 5	KN/cm ²	For	A207 h	olte					
		г _v -	10.5	KN/cm	FUI	A307 U	ons					
$R_{b} = \Phi^{*} F_{v}^{*} A_{v}$ Assume 3 bolts Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 KN Then $A_{v} = 0.03 \text{ cm}^{2}$ Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\Phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^{2}$ $F_{w} = 0.6^{*} F_{E60}$ Design strength per cm for .3cm of weld= 0.75*0.6* F_{E60} *0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm usa 5 cm weld		- vv	15.00	cm								
Assume 3 bolts Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 KN Then A_v = 0.03 cm ² Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld ϕ = 0.75 F_{E60} = 42 KN/cm ² F_w = 0.6*F _{E60} Design strength per cm for .3cm of weld= 0.75*0.6*F _{E60} *0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm usa 3 cm weld		і— Р. —	۲٦.0 ۳.۲ ۲	CIII								
Load on bolts= wxl 0.9 KN Load on each bolts= 0.32 KN Then A_v = 0.03 cm ² Required dia d= 0.18 cm use Smm bolts Design of weld on arms Fillet type weld ϕ = 0.75 F_{E60} = 42 KN/cm ² F_{w} = 0.6* F_{E60} Design strength per cm for .3cm of weld= 0.75*0.6* F_{E60} *0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm usa 3m weld		ν _b –	$\Psi \Gamma_V A_V$									
wxl 0.9 KN Load on each bolts= 0.32 KN Then A_v = 0.03 cm ² Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld Φ = 0.75 F_{E60} = 42 KN/cm ² F_w = 0.6* F_{E60} Design strength per cm for .3cm of weld= 0.75*0.6* F_{E60} *0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3 cm weld		Assume	bolte-									
wki 0.3 KN Load on each bolts= 0.32 KN Then A_v = 0.03 cm ² Required dia d= 0.18 cm use 5mm bolts 0 Design of weld on arms Fillet type weld ϕ = 0.75 F_{E60} = 42 KN/cm ² F_w = 0.6*F _{E60} Design strength per cm for .3cm of weld= 0.75*0.6*F _{E60} *0.707*0.3 $=$ 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld 0.75 cm			100113-			0 0	KN					
bolts= 0.32 KN Then $A_v = 0.03 \text{ cm}^2$ Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\Phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^2$ $F_w = 0.6^*F_{E60}$ Design strength per cm for .3cm of weld= 0.75*0.6*F_{E60}*0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld			n each			0.5	KIN					
Then $A_v = 0.03 \text{ cm}^2$ Required dia d= 0.18 cm use 5mm bolts Design of weld on arms Fillet type weld $\phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^2$ $F_w = 0.6^*F_{E60}$ Design strength per cm for .3cm of weld= 0.75*0.6*F_{E60}*0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld		bolts-	reach			032	КN					
A _v =0.03cm²Required dia d=0.18cmuse 5mm bolts Design of weld on arms Fillet type weld ϕ =0.75 F_{E60} =42 KN/cm² F_w =0.6*F _{E60} Design strength per cm for .3cm of weld =0.75*0.6*F _{E60} *0.707*0.3=4.0 KN/cmLoad on weld =66KNNo. of weld =2Load per weld =38KNRequired weld length =0.75 cmuse 3cm weld		Thon				0.52	KIN					
V_{V}^{-} 0.03 cmRequired dia d=0.18 cmuse 5mm bolts Design of weld on arms Fillet type weld ϕ =0.75 F_{E60} =42 KN/cm² F_{w} =0.6*F _{E60} Design strength per cm for .3cm of weld=0.75*0.6*F _{E60} *0.707*0.3=4.0 KN/cmLoad on weld=6 KNNo. of weld=2Load per weld=3 KNRequired weld length=0.75 cmuse 3cm weld		men	Δ =	0 02	cm^2							
Required dia d0.18 cmuse 5mm boltsDesign of weld on armsFillet type weld $\phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^2$ $F_{w} = 0.6^*F_{E60}$ $F_{w} = 0.75^*0.6^*F_{E60}^*0.707^*0.3$ Design strength per cm for .3cm of weld = 0.75*0.6*F_{E60}*0.707*0.3 $= 4.0 \text{ KN/cm}$ Load on weld = 6 KNNo. of weld = 2Load per weld = 3 KNRequired weld length = 0.75 cmuse 3cm weld0.75 cm		Poquire	Av- - dia d-	0.03	cm							
Design of weld on armsFillet type weld $\phi = 0.75$ $F_{E60} = 42 \text{ KN/cm}^2$ $F_{w} = 0.6^*F_{E60}$ $0.75^*0.6^*F_{E60}^*0.707^*0.3$ Design strength per cm for .3cm of weld = $0.75^*0.6^*F_{E60}^*0.707^*0.3$ $= 4.0 \text{ KN/cm}$ Load on weld = 6 KN No. of weld = 2 Load per weld = 3 KN Required weld length = 0.75 cm		use 5m	m bolts	0.10	CIII							
besign of weid on arms Fillet type weid		Design	of wold on a		Filler	+ + 1 / 1 = - 1	vold					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Design		11115	Fille	t type v	veiu					
$F_{w} = 0.6^{*}F_{E60}$ Design strength per cm for .3cm of weld= 0.75*0.6*F_{E60}*0.707*0.3 = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld		φ-	12	KN/cm ²								
Design strength per cm for .3cm of weld= $0.75*0.6*F_{E60}*0.707*0.3$ = 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld		г _{Е60} -	42 06*E	KN/CIII								
= 4.0 KN/cm Load on weld= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3 cm weld		r _w − Design	strength per	cm for .3c	m of v	veld=		0.75*0.6*F _{E60} *0.707*0.3				
Load on weid= 6 KN No. of weld= 2 Load per weld= 3 KN Required weld length= 0.75 cm		1		-	1/8 1		=	4.0 KN/cm				
No. of weige 2 Load per weld= 3 KN Required weld length= 0.75 cm use 3cm weld 0.75 cm		Load or	1 Weld=	6	KN							
Load per weid= 3 KN Required weld length= 0.75 cm use 3 cm weld		INO. Of N	vela=	2	12.8.1							
required weld leftglit= 0.75 cm			er weid=	3 +h-	KIN		0.77					
			n weld	ui-		0.75	CIII					

Design of the tube for edge cable Load= 6 KN 24.5 KN/cm² F_y= Area required to resist A= 0.24 cm² Inner dia of the tube for cable end PE03 is 1.2 cm Then, outer area- inner area= 0.48 cm² Thickness t= 0.12 cm use 0.35cm thick tube

Design of the pin in double shear

φ=	0.75		
F _u =	40	KN/cm ²	ultimate strength
Area in shear		A_{sf}	
Design load		P _d =	φ*0.6* F _u * A _{sf}
Design load		12	KN
Then	A _{sf} =	P _d /(φ*0.6	5* F _u)
	=	0.67	cm ²

Area of the pin= Dia of the pin d= use .9cm pin	0.33 0.65 PE 3	cm ² cm
Design of the pin in	bearing	
φ= 0.75		
F _y = 24.5	KN/cm ²	ultimate strength
Area in shear	d _b *t	
Design load	P _d =	$\phi^{*}1.8^{*}F_{y}^{*}d_{b}^{*}t$
Design load	12	KN
d _b = 1.05	cm	
Thickness t=	0.35	cm
use 0.6cm thick plat	te	
Design of the plate	in tension	
φ= 0.75		
F _u = 40	KN/cm ²	
Thickeness t=	0.6	cm
Dia of pin d=	0.9	cm
Tension load =	12	KN
Tension load	P _t =	$\phi^* F_v^* A_e$
Area in tension	A _e =	P _t /(φ* F _v)
	=	0.4 cm ²
Gross Area	A _g =	A _e +(d+.15)*t
	=	1.03 cm ²
Length in tension	L _t =	A _g /t
	=	1.72 cm
Edge distance of the	e pin=	1.5*d
	=	1.35 cm use 1.5cm
Edge distance on bo	oth side=	2.7 cm
		2.7 > 1.72

Design	of the	plate	connecting	cp01	with	mast	01

Design of wel	d on a	rms	Fillet type weld
φ=	0.75		
$F_{E60} =$	42	KN/cm ²	
F _w = 0.6*F	E60		
Design strengt	th per	cm for .3cm o	of weld= $0.75*0.6*F_{E60}*0.707*0.3$
			= 4.0 KN/cm
Load on weld=	=	15	KN
No. of weld=		2	
Load per weld	=	7.5	KN
Required weld	d lengt	h=	1.87 cm
8cm weld will	be pro	ovided	
Design of the	pin in	double shear	r
φ=	0.75		
F _u =	40	KN/cm ²	ultimate strength
Area in shear		A _{sf}	
Design load		P _d =	φ*0.6* F _u * A _{sf}
Design load		15	KN
Then	A _{sf} =	P _d /(φ*0.6*	F _u)
	=	0.83	cm ²
Area of the pi	n=	0.42	cm ²
Dia of the pin	d=	0.73	cm
use 1.2cm pin		PE 5	
Design of the	pin in	bearing	
φ=	0.75	_	
F _y =	24.5	KN/cm ²	ultimate strength
Area in shear		d⊳*t	

ОК

/ i cu ili slicul			upi				
Design load			P _d =	φ*1.8* F _y * d _b *t			
Design load			15	KN			
d _b =	1.2	cm					
Thickness t=			0.38	cm			
use 0.6cm thick plate							

Design of the plate in tension

φ=	0.75							
F _u =	40	KN/cm ²						
Thickeness t=		0.6	cm					
Dia of pin d=		1.2	cm					
Tension load	=	15	KN					
Tension load		P _t =	$\phi^* F_v^* A_e$					
Area in tensio	n	A _e =	P _t /(φ* F _v)					
		=	0.5	cm ²				
Gross Area		A _g =	A _e +(d+.15)*t					
			=		1.31	cm ²		
---------------------------------	-------------------	--------------------	-------------------	-------------------	------------------	-----------------	------------------------------	----------
Length in tensi	on		L _t =	A _g /t				
	6		=		2.18	ст		
Edge distance	of the	pin=		1.5*d				
Edgo distanco	on hot	h cido-	_ =	1.8		cm 2 G	use 1.9 cm	
Euge distance		II side-	-		36	5.0 >	2 18	ОК
	_				5.0		2.10	ÖK
Design of the p	olate c	onnec	ting m	ast 01 a	nd stay	cable		
Design of weld	1 on ar	ms		Fillet ty	pe wei	a		
φ= E=	0.75 12	KN/cr	n ²					
$F_{\rm E60} = 0.6 * F_{\rm E}$	42	KIN/ CI						
Design strengt	h per o	m for	.3cm d	of weld=			0.75*0.6*F _{F60} *0	.707*0.3
0 0	•					=	4.0 KN/cm	
Load on weld=			10	KN				
No. of weld=			2					
Load per weld	=		5	KN				
Required weld	length	1=			1.25	cm		
7cm weld will l	be pro	vided						
Design of the p	oin in d	double	shea	r				
ф=	0.75							
F _u =	40	KN/cr	n²	ultimat	e stren	gth		
Area in shear			A_{sf}					
Design load			P _d =	ф*0.6*	$F_u^* A_{sf}$			
Design load			10	KN				
Then	A _{sf} =	Р _d /(ф	*0.6*	F _u)				
A	=		0.56	cm ²				
Area of the pin	ר ו=		0.28	cm-				
Dia of the pin t	בן=		0.59	cm				
use .9cm pm		PES						
Design of the p	oin in l	pearing	g					
φ=	0.75		2					
F _y =	24.5	KN/cr	n ⁻	ultimat	e stren	gth		
Area in shear			d _b ≁t	1 * 1 0 *	- * - *			
Design load			$P_d =$	φ*1.8*	Fy* ab*	ť		
Design Ioau	1 2	cm	10	KIN				
ub- Thickness t-	1.2	CIII	0 25	cm				
use 0 6cm thic	k nlate		0.25	CIII				
use otoern the	k plate							
Design of the	plate i	n tens	ion					
φ= -	0.75		. 2					
F _u =	40	KN/Cr	n O C					
Dia of nin d=			0.0	cm				
Tension load -			10					
Tension load			D	ли 				
Area in tension	ı		$A_{1}=$	Ψ'vァ P./(ሐ*	∿e F…)			
	•		, .e	0.33	33333	cm ²		
Gross Area			A _a =	A_+(d+.	15)*t			
			ъ ты	0.96	53333	cm ²		
Length in tensi	on		L+=	A₂/t		-		
			=	0.	1.61	cm		
Edge distance	of the	pin=		1.5*d				
			=	1.35		cm	use 1.5 cm	
Edge distance	on bot	h side	=			2.7	cm	
					2.7	>	1.61	OK

Design of the bottom plate of mast 01

Design of weld Fillet type weld 0.75 φ= 42 KN/cm² F_{E60}= $F_{w} = 0.6*F_{E60}$ $0.75^* 0.6^* F_{E60}^* 0.707^* 0.3$ Design strength per cm for .3cm of weld= = 4.0 KN/cm Load on weld= 23.05 KN No. of weld= 2 Load per weld= 11.525 KN Required weld length= 2.88 cm 8.9cm weld will be provided

Design of the pin in double shear

φ=	0.75		
F _u =	40	KN/cm ²	ultimate strength
Area in shear		A _{sf}	
Design load		P _d =	φ*0.6* F _u * A _{sf}
Design load		23.05	KN

Then	A _{sf} =	P _d /(φ*0.6 ³	* F _u)			
	=	1.28	cm ⁻			
Area of the pi	n=	0.64	cm			
Dia of the pin	a=	0.90	cm			
use 1.2cm pin						
Design of the	pin in	bearing				
φ=	0.75					
F _y =	24.5	KN/cm ²	ultima	te stren	gth	
Area in shear		d _b *t				
Design load		P _d =	φ*1.8	* F _y * d _b *	*t	
Design load		23.05	KN			
d _b =	1.2	cm				
Thickness t=		0.58	cm			
use 0.8cm thi	ck plat	е				
Design of the	plate	in tension				
φ=	0.75					
F _u =	40	KN/cm ²				
Thickeness t=		0.8	cm			
Dia of pin d=		1.2	cm			
Tension load	=	23.05	KN			
Tension load		P _t =	φ* F _v *	A _e		
Area in tensio	n	A _e =	P _t /(φ*	* F _v)		
		=		0.768	cm ²	
Gross Area		A _g =	A _e +(d+	·.15)*t		
		=		1.848	cm ²	
Length in tens	sion	L _t =	A _g /t			
		=		2.31	ст	
Edge distance	of the	pin=	1.5*d			
		=	1.8		cm	use 1.9 cm
Edge distance	on bo	th side=		3.6	cm	
				3.6	>	2.31

ОК

ОК

Design of the anchorage plate for mast 01

Design of the pin in double shear									
φ=	0.75								
F _u =	40	KN/cm ²	ultimate strength						
Area in shear		A _{sf}							
Design load		P _d =	φ*0.6* F _u * A _{sf}						
Design load		23.05	KN						
Then	A _{sf} =	P _d /(φ*0.6*	F _u)						
	=	1.28	cm ²						
Area of the pi	n=	0.64	cm ²						
Dia of the pin	d=	0.90	cm						
use 1.2cm pin									

Design of the pin in bearing

ф=	0.75					
F _y =	24.5	KN/	cm ²	ultimate stre	ngth	
Area in shear			d _b *t			
Design load			P _d =	φ*1.8* F _y * d	₀*t	
Design load			23.05	KN		
d _b =	1.2	cm				
Thickness t=			0.58	cm		
Thickness of ea	ach pla	te t=		0.29	cm	
use 0.6cm thick plate						

Design of the plate in tension

φ= 0.75				
F _u = 40	KN/cm ²			
Thickeness t=	0.6	cm		
Dia of pin d=	1.2	cm		
Tension load =	23.05	KN		
Tension load	P _t =	$\phi^* F_v^* A_e$		
Area in tension	A _e =	P _t /(φ* F _v)		
	=	0.768	cm ²	
Gross Area	A _g =	A _e +(d+.15)*t		
	=	1.578	cm ²	
Length in tension	L _t =	A _g /t		
	=	2.63	cm	
Edge distance of the p	oin=	1.5*d		
	=	1.8	cm	use 1.9 cm
Edge distance on both	n side=	3.6	cm	
		3.6	>	2.63

73

Design	of weld			Fillet t	ld		
φ=	().75					
$F_{E60} =$		42	KN/cm ²				
F _w =	0.6*F _{E6}	0					
Design	strength	per c	m for .3cm o	f weld=		0.75*0.6*F = 4	E _{E60} *0.707*0.3 4.0 KN/cm
Load or	n weld=		23.05	KN			
No. of v	veld=		2				
Load pe	er weld=		11.525	KN			
Require	d weld l	ength	=		2.88	cm	
8.9cm v	veld will	be pr	ovided				

Design of the anchorage plate for mast 02

Design of the p	oin in c	double shear			
φ=	0.75				
F _u =	40	KN/cm ²	ultimate stre	ngth	
Area in shear		A _{sf}			
Design load		P _d =	ф*0.6* F _u * А	sf	
Design load		16.5	KN		
Then	A _{sf} =	P _d /(φ*0.6*	F _u)		
	=	0.92	cm ²		
Area of the pin	=	0.46	cm²		
Dia of the pin d	=	0.76	cm		
use 1.2cm pin					
Design of the p	oin in b	pearing			
φ=	0.75	U			
F _v =	24.5	KN/cm ²	ultimate stre	ngth	
Area in shear		d _b *t			
Design load		P _d =	φ*1.8* F _y * d	_b *t	
Design load		16.5	KN		
d _b =	1.2	cm			
Thickness t=		0.42	cm		
Thickness of ea	ich pla	te t=	0.21	cm	
use 0.6cm thick	< plate	!			
Design of the	plate i	n tension			
φ=	0.75				
F _u =	40	KN/cm ²			
Thickeness t=		0.6	cm		
Dia of pin d=		1.2	cm		
Tension load =		23.05	KN		
Tension load		P _t =	$\varphi F_v A_e$		
Area in tension		A _e =	P _t /(φ* F _v)	2	
		=	0.768	cm²	
Gross Area		A _g =	A _e +(d+.15)*t	2	
		=	1.578	cm²	
Length in tension	on	L _t =	A _g /t		
	C 11	=	2.63	cm	
Edge distance d	of the	pin=	1.5*d		
Edgo distanco d	on hat	= h cido-	1.8	cm	use 1.9 cm
Euge distance (זסמ חכ	n side=	3.0	CIII N	2 62
			5.0	>	2.05
Design of weld			Fillet type we	eld	
ф=	0.75	-			
F _{E60} =	42	KN/cm ²			

 F_w = 0.6*F_{E60} Design strength per cm for .3cm of weld=

 $0.75*0.6*F_{E60}*0.707*0.3$ = 4.0 KN/cm

ОК

Load on weld=	16.5	KN		
No. of weld=	2			
Load per weld=	8.25	KN		
Required weld length=		2.06	cm	
8.9cm weld will be provid	ed			

Design of the plate connecting corner plate 02 with mast 02

Design of weld	on arn	าร	Fillet type weld				
φ=	0.75						
F _{E60} =	42	KN/cm ²					
$F_{w} = 0.6*F_{EG}$	50						
Design strength	per cr	n for .3cm of w	veld=		0.75*0).6*F _{E60} *0.707	*0.3
				=	4.0	KN/cm	
Load on weld=		12	KN				

No. of weld= 2 6 KN Load per weld= Required weld length= 1.50 cm 7cm weld will be provided Design of the pin in double shear φ= 0.75 F_u= 40 KN/cm^2 ultimate strength Area in shear A_{sf} Design load $P_{d} = \phi^{*} 0.6^{*} F_{u}^{*} A_{sf}$ Design load 12 KN $A_{sf} = P_d / (\phi^* 0.6^* F_u)$ Then 0.67 cm² = Area of the pin= 0.33 cm² 0.65 cm Dia of the pin d= use .9cm pin PE 3 Design of the pin in bearing 0.75 φ= 24.5 KN/cm² ultimate strength F_y= d_b*t Area in shear Design load $P_{d} = \phi^{*} 1.8^{*} F_{y}^{*} d_{b}^{*} t$ Design load 12 KN d_b= 0.9 cm Thickness t= 0.40 cm use 0.6cm thick plate Design of the plate in tension φ= 0.75 40 KN/cm² $F_u =$ Thickeness t= 0.6 cm Dia of pin d= 0.9 cm Tension load = 12 KN Tension load P_t= $\phi^* F_v^* A_e$ Area in tension $A_e = P_t / (\phi^* F_v)$ 0.4 cm^2 = Gross Area $A_{g} = A_{e} + (d+.15)*t$ 1.03 cm² = Length in tension A_g/t L_t= = 1.72 cm Edge distance of the pin= 1.5*d = 1.35 use 1.9 cm cm Edge distance on both side= 2.7 cm 2.7 1.72 > Design of the plate connecting mast 02 and stay cable Design of the pin in double shear φ= 0.75 40 KN/cm² ultimate strength

 $F_u =$ Area in shear A_{sf} Design load $P_{d} = \phi^{*} 0.6^{*} F_{u}^{*} A_{sf}$ Design load 11 KN $A_{sf} = P_d / (\phi^* 0.6^* F_u)$ Then 0.61 cm² = Area of the pin= 0.31 cm² 0.62 cm Dia of the pin d= use .9cm pin PE 3

ОК

Design of the pin in bearing

φ=	0.75		
F _y =	24.5	KN/cm ²	ultimate strength
Area in shear		d _b *t	
Design load		P _d =	φ*1.8* F _y * d _b *t
Design load		11	KN

 d_b = 1.2 cm Thickness t= 0.28 cm use 0.6cm thick plate

Design of the plate in tension

φ=	0.75		
F _u =	40	KN/cm ²	
Thickeness t=		0.6	cm
Dia of pin d=		0.9	cm
Tension load =		11	KN
Tension load		P _t =	$\phi^* F_v^* A_e$
Area in tension		A _e =	P _t /(φ* F _v)
		=	0.366667
Gross Area		A _g =	A _e +(d+.15)*t
		=	0.996667
Length in tensio	n	L _t =	A _g /t

cm²

cm²

		=		1.66	cm		
Edge distance	of the p	oin=	1.5*d				
		=	1.35		cm	use 1.5 cm	
Edge distance	on both	n side=			2.7	cm	
-				2.7	>	1.66	ОК
							
Design of weld	d on arr	ns	Fillet ty	/pe weld			
φ=	0.75						
F _{E60} =	42	KN/cm²					
F _w = 0.6*F	E60						
Design strengt	h per ci	m for .3cm of	weld=			0.75*0.6*F _{E6}	₀ *0.707*0.3
					=	4.0 KN/0	cm
Load on weld=	:	11	KN				
No. of weld=		2					
Load per weld	=	5.5	KN				
Required weld	length	=		1.37	cm		
8cm weld will	be prov	vided					
Design of the	h	alata of mos	+ 02				
Design of the	octom	plate of mas					
Design of the	pin in d	ouble shear					
ф=	0.75						
F _u =	40	KN/cm ²	ultimat	te streng	th		
Area in shear		A _{sf}		-			
Design load		P _d =	φ*0.6*	[•] F _u * A _{sf}			
Design load		16.5	KN				
Then	A _{sf} =	P _d /(φ*0.6*	F _u)				
	=	0.92	cm ²				
Area of the pir	ו=	0.46	cm ²				
Dia of the pin (d=	0.76	cm				
use 1.2cm pin							
Design of the		earing					
φ= -	0.75	1/11/2	. 1.2		4 In		
⊢ _y =	24.5	KIN/CM ⁻	ultimat	te streng	n		
Area in shear		d _b *t	144 24				
Jesign load		$P_d =$	φ*1.8*	⁻⊦ _y * d _b *t			
Design load		16.5	KN				
d _b =	1.2	cm					
Thickness t=		0.42	cm				
use 0.8cm thic	k plate						
Design of the	plate in	n tension					
 	0 75						
Ψ ⁻ F =	0.75 ۸۸	KN/cm ²					
Thickeness +-	40		cm				
Dia of nin d-		0.0 1 ว	cm				
Tension load -		1.∠ 22 ∩⊑	KN				OK
		23.U3 – ח	ки • * = *	٨			UK
	.	ν _t =	Ψ΄ F _V ″/ D // ±*	н _е г)			
Area in tensior	1	A _e =	Р _t /(Ф*	rv)			
.		=		U./68	cm		
Gross Area		A _g =	A _e +(d+	.15)*t	2		
		=		1.848	cm		
Length in tensi	ion	L _t =	A _g /t	- -			
		=		2.31	cm		
Edge distance	of the p	pin=	1.5*d				
		=	1.8		cm	use 1.9 cm	
Edge distance	on botł	n side=		3.6	cm		
				3.6	>	2.31	
Design of wold	4		Fillot to	ine wold			
	, 0.75		rinet (y	vhe weig			
Ψ-	0.75	KN/cm^2					
FE60=	42	KIN/CITI					
r _w = U.6*⊦	E60						

Design strength p	r cm for .3cm of weid=
-------------------	------------------------

 $0.75*0.6*F_{E60}*0.707*0.3$ = 4.0 KN/cm

Load on weld=16.5KNNo. of weld=2Load per weld=8.25KNRequired weld length=27cm weld will be provided2

2.06 cm

Design of Masts M01

Forces F= 23.05 KN Length L= 600cm Section Property Dia 89.1mm, Thk 2.5mm Material A53 grade B(pipe)

Gross Area A_g = 6.79cm² Moment of Inertia I= 63.37cm⁴ Radius of Gyration r= 3.06cm

K= 1

Design of Masts M02

Forces F= 16.46 KN Length L= 350cm Section Property Dia 60.3mm, Thk 2mm Material A53 grade B(pipe)

Gross Area A_g= 3.66cm² Moment of Inertia I= 15.58cm⁴ Radius of Gyration r= 2.06cm

 $\begin{array}{l} \mbox{K= 1} \\ \mbox{KL/r= 169.7} \\ \mbox{Slenderness parameter } \lambda_c = (\mbox{KL/r\pi})\mbox{Sqrt}(\mbox{F}_{\mbox{y}}/\mbox{E}) \\ &= 1.848289 \ (\mbox{F}_{\mbox{y}} = 24\mbox{KN/cm}^2, \mbox{E} = 20500\mbox{KN/cm}^2) \\ \mbox{Since, } \lambda_c \mbox{>} 1.5 \\ \mbox{Then, Critical Stress F}_{cr} \mbox{ material side} = (0.877/\ \lambda_c^2)\mbox{F}_{\mbox{y}} \\ &= 6.16\ \mbox{KN/cm}^2 \\ \mbox{Resistance factor } \varphi_c \mbox{=} 0.85 \\ \mbox{Design Strength P}_{\mbox{n}} \mbox{=} A_g\ \mbox{F}_{cr} \\ &= 22.57\ \mbox{KN} \\ \mbox{Factored Strength } \varphi_c\ \mbox{P}_{\mbox{n}} \mbox{=} 19.18\ \mbox{KN > 16.46\ \mbox{KN} \ \ \mbox{OK} \end{array}$

Uplift resistance capacity of the Foundation Unit weight of soil (fill) and concrete= Pressure of this material at 80cm=

19.6375 KN/m3 15.71 KN/m2

	0.001571	KN/cm2	
Assume allowable soil pressure=	3.45	KN/cm2	
Available bearing			
pressure=	3.44843	KN/cm2	
Load on			
footing=	23.05	KN	
Required area for			Mast02
footing=	6.6842	cm2	1113(02
A footing base 76x76cm2 is			
provided			