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Abstract

Particle formation processes in spray fluidized beds are widely applied in chemical in-
dustries to produce particulate materials with designed properties. These processes are
very complex by the presence of multi-phase transport phenomena at multiscales, and
by the coupling of an array of sub-processes (spraying, wetting, drying and solidifying).
The understanding of mesoscale phenomena between the individual particle scale and
the process unit is critical to achieving efficient operation and improved particle product
quality.

In this thesis, the experimental technique of particle tracking velocimetry (PTV) and
the numerical approach that combines computational fluid dynamics with the discrete
element method (CFD-DEM) are used to investigate mesoscale particle dynamics re-
lated to particle formation processes in gas-solid fluidized beds.

Motion of non-spherical particles is conveniently studied by DEM. The rebound be-
havior of irregularly shaped particles is predicted by DEM simulations using the multi-
sphere and superquadric models, in terms of the distributions of total and normal
coefficients of restitution and corresponding relationships with the rotation speed after
collision and the absolute difference of incidence angle and rebound angle. Compared
with PTV measurements, the multi-sphere model well predicts the macroscopic particle-
wall collision behavior of irregular non-convex particles.

In pseudo-2D fluidized beds, PTV is used to measure dynamics of mono-disperse and
poly-disperse particles by means of new methods for particle segmentation and parti-
cle tracking. Using synthetic images generated from CFD-DEM simulation, the entire
PTV methodology can be comprehensively verified with respect to segmentation bias,
segmentation ratio, recovery ratio and error ratio. The collision event is determined by
the variation of measured trajectories of individual particles. Compared to the theo-
retical collision model in the kinetic theory of granular flow, the experimental collision
frequency tends to be relatively constant or even decrease after exceeding a critical
solid volume fraction. The average collision velocity correlates linearly with the average
square root of particle granular temperature. The mixing degree of differently sized par-
ticles is measured by color-PTV. Additionally, CFD-DEM simulations are performed
according to the PTV measurements in pseudo-2D fluidized beds. The simulation
results are in agreement with measurements in terms of volumetric flux of particles,
granular temperature, particle collision velocity and mixing degree. The correction
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for the size dispersity effect in the drag model is essential to improve the accuracy of
CFD-DEM simulations of poly-disperse particle systems.

CFD-DEM simulations are applied to investigate the particle circulation and residence
times in different zones in a Wurster fluidized bed. Simulated ideal cycle times and
residence times are in good agreement to the available positron emission particle track-
ing measurement data. Moreover, a coupled CFD-DEM and Monte Carlo approach
is developed to investigate inter- and intra-particle coating uniformity in the Wurster
fluidized bed. On the basis of the spherical centroidal Voronoi tessellation, the Monte
Carlo approach can model the deposition and splashing of spray droplets on the surface
of individual particles. The intra-particle layer thickness distributions predicted by the
simulation are in good agreement with X-ray micro-computed tomography measure-
ments.



Zusammenfassung

Partikelbildungsprozesse in Sprühwirbelbetten werden in der chemischen Industrie häu-
fig angewendet, um partikuläre Materialien mit definierten Eigenschaften herzustellen.
Diese Prozesse sind sehr komplex durch das Vorhandensein von Mehrphasentransport-
vorgängen auf mehreren Skalen und die Kopplung einer Reihe von Teilprozessen (Sprü-
hen, Benetzen, Trocknen und Erstarren). Das Verständnis mesoskaliger Phänomene
zwischen der Einzelpartikelebene und der Prozesseinheit ist entscheidend für einen effi-
zienten Betrieb und eine verbesserte Produktqualität.

In diese Arbeit werden die
”
Partikel-Tracking-Velocimetry“ (PTV) und ein gekoppelter

Ansatz von Methoden der numerischen Strömungsmechanik und der diskreten Element-
methode (CFD-DEM) verwendet, um die mesoskalige Partikeldynamik bei Partikelbil-
dungsprozessen in Gas-Feststoff-Wirbelschichten zu untersuchen.

Das Rückprallverhalten unregelmäßig geformter Partikel wird durch DEM-Simulationen
unter Verwendung der Multi-Sphere- und Superquadric-Modelle vorhergesagt. Das un-
tersuchte Verhalten umfasst die Verteilung der Gesamt- und Normalwerte des Restitu-
tionskoeffizienten sowie die entsprechenden Beziehungen zur Rotationsgeschwindigkeit
nach der Kollision und zur absoluten Differenz von Einfallswinkel und Rückprallwinkel.
Im Vergleich zu PTV-Messungen sagt das Mehrkugelmodell das makroskopische Kolli-
sionsverhalten von Partikelwänden unregelmäßiger, nichtkonvexer Partikel gut voraus.

In Pseudo-2D-Wirbelschichten wird PTV eingesetzt, um die Dynamik von monodi-
spersen und polydispersen Partikeln mithilfe neuer Methoden zur Partikelsegmentie-
rung und Partikelverfolgung zu erfassen. Unter Verwendung synthetischer Bilder, die in
CFD-DEM-Simulationen erzeugt wurden, kann die gesamte PTV-Methodik hinsicht-
lich Segmentierungsverzerrung, Segmentierungsverhältnis, Wiederherstellungsverhält-
nis und Fehlerverhältnis umfassend verifiziert werden. Das Kollisionsereignis wird durch
die Variation der gemessenen Trajektorien individueller Partikeln bestimmt. Im Ver-
gleich zum theoretischen Kollisionsmodell in der kinetischen Theorie des granularer
Materialien (KTGF) ist die experimentelle Kollisionsfrequenz nach Überschreiten eines
kritischen Feststoffvolumenanteils relativ konstant oder nimmt sogar ab. Die mittlere
Kollisionsgeschwindigkeit korreliert linear mit der mittleren Quadratwurzel der gra-
nularen Partikeltemperatur. Der Mischungsgrad von Partikeln unterschiedlicher Grö-
ße wird durch Farb-PTV gemessen. Zusätzlich werden CFD-DEM-Simulationen ge-
mäß den PTV-Messungen in Pseudo-2D-Wirbelschichten durchgeführt. Die Simulati-
onsergebnisse stimmen mit Messungen hinsichtlich des Volumenflusses der Partikel, der
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granularen Temperatur, der Partikelkollisionsgeschwindigkeit und des Mischungsgrades
überein. Die Korrektur des Größendispersitätseffekts im Widerstandsmodell ist wich-
tig, um die Genauigkeit von CFD-DEM-Simulationen polydisperser Partikelsysteme
zu verbessern. CFD-DEM-Simulationen werden eingesetzt, um die Partikelzirkulation
und Verweilzeiten in verschiedenen Zonen in einem Wurster-Apparat zu untersuchen.
Die simulierten idealen Zykluszeiten und Verweilzeiten stimmen gut mit den verfügba-
ren Messdaten aus der Positronenemissionspartikelverfolgung überein. Darüber hinaus
wird ein gekoppelter CFD-DEM- und Monte-Carlo-Ansatz entwickelt, um die Gleich-
mäßigkeit der Beschichtung zwischen und innerhalb von Partikeln im Wurster-Prozess
zu untersuchen. Auf der Grundlage der sphärischen Schwerpunkt-Voronoi-Tessellation
kann der Monte-Carlo-Ansatz die Ablagerung und das Ausbreitung von Sprühtröpfchen
auf der Oberfläche einzelner Partikel modellieren. Die durch die Simulation vorherge-
sagten Schichtdickenverteilungen innerhalb der Partikel stimmen gut mit Daten aus
Röntgenmikrocomputertomographie-Messungen überein.
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Nomenclature

In this thesis, the symbols used in the chapters are defined chapter-wise.

Chapter 2
A, B constants in relaxation method [−]
d diameter [m]
ddd displacement vector between two particles [pixel]
I, Ī intensity and mean intensity of pixels in raw

image
[−]

Lb bias of the segmentation location [pixel]
Lminor, Lmajor lengths of major and minor axes [pixel]

Pij, P̃ij normalized matching probability, non-
normalized matching probability

[−]

Qij contribution of neighboring particles to match-
ing probability

[−]

rrr particle centroid (vector) [pixel]
Re error ratio [−]
Rr recovery ratio [−]
Rs segmentation ratio [−]
s, s̄ intensity and mean intensity of pixels in tem-

plate particle
[−]

Sf scale factor [pixel/mm]
t, ∆t time, time step [s]
T searching radius in relaxation method [pixel]
rrr particle velocity (vector) [pixel]
x, y, z Cartesian coordinates [m]

Greek symbols
γ normalized cross-correlation coefficient [−]
θo orientation [°]

Subscripts
i, j, k, l, m indices
p particle, order
q order



2 Nomenclature

Chapter 3
A, B, C constants to calculate capillary force [−]
d diameter [m]
dinter inter-particle distance [m]
d32 Sauter mean diameter [m]
Dr rupture distance [m]
e coefficient of restitution [-]
E Young’s modulus [Pa]
fff ′′ sum of non-dominant forces (vector) [N]
fff capillary capillary force (vector) [N]
fff c particle-particle interaction force (vector) [N]
fffd drag force (vector) [N]
fff i local mean value of force on particle due to

particle-fluid interaction (vector)
[N]

fff ′i force due to variations of fluid stress (vector) [N]
fffpf particle-fluid interaction force (particle level,

vector)
[N]

fff vis viscous force (vector) [N]
fff∇p pressure gradient force (vector) [N]
fff∇·τ viscous force due to fluid shear stress tensor

(vector)
[N]

FFF pf particle-fluid interaction force (cell level, vector) [N]
ggg gravity vector [m/s2]
G shear modulus [Pa]
k stiffness (elastic) coefficient [N/m]
kr rolling friction coefficient [−]
m mass [kg]
nnn unit vector [−]
r radial distance [m]
rrr position vector [m]
R radius of particle [m]
SSS Reynolds stress for solids [Pa]
Scube constant factor in BPM [−]
t, ∆t time, time step [s]
Tt tangential torque (vector) [N · s]
Tr rolling torque (vector) [N · s]
uuu fluid velocity (vector) [m/s]
vvv, vvvp particle velocity (vector) [m/s]
vc,max maximum collision velocity [m/s]
Vp volume of particle [m3]
Umf minimum fluidization velocity [m/s]
Ug superficial gas velocity [m/s]
Vp volume of particle [m3]
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Vl volume of liquid bridge [m3]
x, y, z Cartesian coordinates [m]

Greek symbols
αd damping ratio [−]
βpf momentum exchange coefficient [kg/(m3 · s)]
γ normalized cross-correlation coefficient [−]
δ overlap between two particles [m]
ε volume fraction [−]
η damping coefficient [(N · s)/m]
θ contact angle [°]
Θ particle granular temperature [m2/s2]
µf fluid dynamic viscosity [Pa · s]
µg gas dynamic viscosity [Pa · s]
µfc friction coefficient [−]
ξξξ fluid stress tensor [Pa]
ξξξs solid stress tensor [Pa]
ρ density [kg/m3]
σf surface tension of fluid [N/m]
σ Poisson’s ratio [Pa · s]
τH Hertzian collision time [s]
τf fluid stress tensor [Pa]
ϕ polar angle [°]
ΦΦΦ local mean value of particle-particle interaction

force
[N]

ψ azimuthal angle [°]
ωωω particle angular velocity (vector) [rad/s]

Subscripts
eq equivalent
f fluid
i, j, k indices
l liquid
n normal direction, time step
p particle
d droplet
r relative
s solid
t tangential direction

Chapter 4
AI area of particle image [pixel]
CI circumference of particle image [pixel]



4 Nomenclature

A,B,C constants in the capillary force [−]
d32 Sauter mean diameter [m]
dp diameter of particle [m]
dcell diameter of cell [m]
Dr rupture distance [m]
e coefficient of restitution [−]
E Young’s modulus [Pa]
k stiffness coefficient [N/m]
m mass of particle [kg]
Sf scale factor [pixel/mm]
SPHT sphericity of particle [−]
Umf minimum fluidization velocity [m/s]
vc,max maximum impact velocity [m/s]
V volume [m3]
x, y, z Cartesian coordinates [m]

Greek symbols
α damping ratio [−]
ε overlap [m]
η damping coefficient [N · s/m]
µfc friction coefficient [−]
ρp particle density [kg/m3]
ρsolid solid density [kg/m3]
σ Poisson’s ratio [Pa · s]

Subscripts
2D two dimensional
l liquid
eq equivalent
p particle

Chapter 5
AI area of particle image [pixel]
CI circumference of particle image [pixel]
d32 Sauter mean diameter [m]
ds diameter of sphere [m]
e coefficient of restitution [−]
eee unit axis of rotation (vector) [−]
E Young’s modulus [Pa]
fff c particle-particle interaction force (vector) [N]
FFF sum total force (vector) [N]
GGG coordinate vector of centroid of gravity [m]
I intensity in raw image [−]
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Ii moment of inertia in space-fixed system [kg ·m2]

Îi principal moments of inertia [kg ·m2]
Lminor, Lmajor lengths of major and minor axes [m]
k stiffness coefficient [N/m]
m mass of particle [kg]
Ns number of spheres [−]
Ns,c number of spheres in individual contact [−]
nnn unit vector of contact force [−]
qqq quaternion (vector) [−]
rrr particle centroid (vector) [m]
rs,c radius of sphere in individual contact [m]
R particle radius [s]
RA aspect ratio [−]
Sf scale factor [pixel/mm]
SPHT sphericity of particle [−]
Stv viscous Stokes number [−]
T threshold intensity [−]
TTT sum of all torques acting on particle i in space-

fixed frame
[N ·m]

t, ∆t time, time step size [s]
vvv particle velocity (vector) [m/s]
V volume [m3]
w weighted mean of intensity [−]
WWW angular velocity in body-fixed system (vector) [rad/s]
x, y, z Cartesian coordinates [m]

Greek symbols
α damping ratio [−]
ε overlap [m]
η damping coefficient [N · s/m]
θ angle between velocity vector and vertical axis [°]
θe Euler angle [°]
θo orientation [°]
Λ transformation matrix [−]
µfc friction coefficient [−]
ρp particle density [kg/m3]
ρsolid solid density [kg/m3]
σ Poisson’s ratio [Pa · s]
ω rotational speed [1/s]

Subscripts
0 initial condition
1, 2 different time steps, before or after collision



6 Nomenclature

2D, 3D two dimensional, three dimensional
b background, body-fixed
eq equivalent
i, j, k indices
n normal direction
opt optimal
p particle
s space-fixed
t tangential direction

Chapter 6
A,B constants in relaxation method [−]
dp particle diameter [mm]
ddd displacement vector between two particles [pixel]
fc particle and average particle collision frequency [1/s]
g0 radial distribution function [−]
I, Ī intensity and mean intensity in the matrix of

raw image
[−]

Lc distance of two particle centers [m]
Li distance to the front wall [m]
n particle number concentration [1/m3]
nnn unit vector between two particles [pixel]
ṅc particle collision rate [1/(m3 · s)]
mc total number of candidate particles [−]
Nc number of particle collisions [−]
Np number of particles [−]

Pij, P̃ij normalized matching probability, non-
normalized matching probability

[−]

Qij contribution of neighboring particles to match-
ing probability

[−]

Rr recovery ratio [−]
s, s̄ intensity and mean intensity in the matrix of

template particle
[−]

Sf scale factor [pixel/mm]
St Stokes number [−]
Stv viscous Stokes number [−]
T searching radius in relaxation method [pixel]
t, ∆t time, time step size [s]
uc magnitude of impact velocity (scalar) [m/s]
uuuf fluctuation particle velocity (vector) [m/s]
uuup particle velocity (vector) [m/s]
uuur,c impact velocity (vector) [m/s]
Umf minimum fluidization velocity [m/s]
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U superficial gas velocity [m/s]
x, y, z Cartesian coordinates [m]

Greek symbols
γ normalized cross-correlation coefficient [−]
δ contact threshold value [pixel]
εs solid volume fraction [−]
εs,max maximum solid volume fraction [−]
θ angle between two velocity vectors [°]
Θ granular temperature [m2/s2]
ρp particle density [kg/m3]
τp life time of particle [s]
Φ volume flux of solid particles [m3/(s ·m2)]
χ collision model parameter [1/s]

Subscripts
1, 2 different particles, or time steps
2D two dimensional space
c imaginary collision moment
i, j, k indices
p particle
fit fitting curve

Chapter 7
c volume fraction of the smallest particle in each

sample
[−]

dp particle diameter [mm]
d32 Sauter mean diameter [mm]
e coefficient of restitution [−]
E Young’s modulus [Pa]
k stiffness coefficient [−]
kr rolling coefficient [−]
m mass of particle [kg]
Ne equivalent number of particles in each sample [−]
Ns number of samples [−]
Ps global volume fraction of the smallest particle

in a mixture
[−]

Sf scale factor [pixel/mm]
S2 actual variance of particle volume fraction of the

smallest particle
[−]

x, y, z Cartesian coordinates [m]

Greek symbols
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α damping ratio [−]
βpf momentum exchange coefficient [kg/(m3 · s)]
η damping coefficient [−]
µg gas dynamics viscosity [Pa · s]
µfc friction coefficient [−]
ρ density [kg/m3]
σ Poisson’s ratio [Pa · s]
τH Hertzian collision time [s]

Subscripts
eq equivalent
i, j, k indices
n normal direction
p particle
t tangential direction

Chapter 8
a scale constant [−]
d diameter [m]
d32 Sauter mean diameter [mm]
e coefficient of restitution [−]
E Young’s modulus [Pa]
L length ratio [−]
m mass [kg]
Nd number of droplet [−]
rn number ratio of ideal cycles to overall cycles %
Rd droplet deposition rate [mg/s]
Scube the constant factor [−]
t time [s]
vc collision (impact) velocity [m/s]

Greek symbols
τH Hertzian collision time [s]
ϕ volume ratio of different zones [%]

Subscripts
c cycle
d droplet
eq equivalent
i, j indices
ic ideal cycle
s spray
t tube
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Chapter 9
A area [m2]
A,B,C dimensionless regression parameters in the cap-

illary force
[−]

d diameter [m]
dinter inter-particle distance [m]
Dr rupture distance [m]
e coefficient of restitution [−]
E Young’s modulus [Pa]
F normalized drag force [−]
fffpf particle-fluid interaction force (particle level,

vector)
[N]

fff c particle-particle interaction force (vector) [N]
fff capillary capillary force (vector) [N]
fffd drag force (vector) [N]
FFF pf particle-fluid interaction force (cell level, vector) [N]
g constant probability density function [−]
ggg acceleration due to gravity (vector) [m/s2]
G shear modulus [Pa]
h layer thickness [m]
I moment of inertia [kg ·m2]
IAc indicator function [−]
k stiffness coefficient [N/m]
kr rolling coefficient [−]
Lmin minimum orthodromic distance [m]
m,M mass [kg]
ṁ drying rate [kg/(m2 · s)]
Ṁ mass flow rate [kg/s]
N1 number of particles in interactions [−]
N2 number of liquid bridges [−]
N3 number of particles in a CFD cell [−]
Ndep number of deposition panels [−]
Np number of particles in the bed [−]
Np,MC number of particles in Monte Carlo domain [−]
p pressure [Pa]
r1, r2, r3 random numbers in Monte Carlo simulations [−]
R particle radius [m]
Ric number ratio of ideal to total cycles [−]
Re Reynolds number [−]
s cumulative sum of weights [−]
Sp size of high porosity region [−]
Sc Schmidt number [−]
Sh Sherwood number [−]
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t, ∆t time, time step [s]
Tt tangential torque (vector) [N · s]
Tr rolling torque (vector) [N · s]
vvvp particle velocity (vector) [m/s]
vc,max maximum collision velocity [m/s]
vrel normal impact velocity between particle and

droplet
[m/s]

V volume [m3]
Vi Voronoi region [−]
Vs volume swept by moving particle [m3]
We Weber number [−]
x, y, z Cartesian coordinates [m]
Y moisture content of gas [kg/kg]

Greek symbols
αd damping ratio [−]
αl volume ratio of liquid bridge to two particles [−]
β mass transfer coefficient of gas side [m/s)]
βpf momentum exchange coefficient [kg/(m3 · s)]
γ droplet surface tension [N/m]
δ diffusion coefficient between water and air [m2/s]
ε volume fraction, porosity [−]
ε overlap between particles [m]
η damping coefficient [N · s/m]
θ contact angle [°]
µf gas dynamic viscosity [Pa · s]
µfc friction coefficient [−]
ρ density [kg/m3]
σ Poisson’s ratio [Pa · s]
τH Hertzian collision time [s]
τf fluid stress tensor [Pa]
Ψ coating coverage [−]
ωωω particle angular velocity (vector) [rad/s]
ωωωr relative particle angular velocity (vector) [rad/s]

Subscripts
1, 2 different time steps
2D two-dimensional space
Ac start of a new cycle
c coupling
con conservative
d droplet
dis dissipative



11

eq equivalent
f fluid
g gas
i, j, k indices
l liquid solution
m Monte Carlo, mean
n normal direction
p particle
s spray zone
sat saturation
t tangential direction, Wurster tube

Abbreviations of all chapters.

Abbreviations
API active pharmaceutical ingredient
BPM big particle method
CFD computational fluid dynamics
CoV coefficient of variation
COR coefficient of restitution
CPU central processing unit
CVT centroidal Voronoi tessellation
DE dextrose equivalent
DEM discrete element method
DIA digital image analysis
DPVM divided particle volume method
FOV field of view
HSD Hertzian spring-dashpot
KTGF kinetic theory of granular flow
LBM lattice Boltzmann method
LSD Linear spring-dashpot
MBVK mono-disperse Beetstra drag model
MC Monte Carlo
MCC microcrystalline cellulose
MPIA micro particle interaction analyzer
MS multi-sphere
PBM population balance modeling
PBVK poly-disperse Beetstra drag model
PCM particle centroid method
PEPT positron emission particle tracking
PIV particle imaging velocimetry
PISO pressure-implicit split-operator
PMF probability mass function
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PTV particle tracking velocimetry
RGB red-green-blue color space
RTD residence time distribution
SEM scanning electron microscope
SD standard deviation
SQ superquadric



Chapter 1

Introduction

1.1 Motivation

Fluidized beds are encountered in many important industrial operations that involve
multiphase flow. Due to the fluidization of solid particles, fluidized beds can offer unique
features such as large interfacial area between fluid (gas or liquid) and the particles,
excellent heat and mass transfer, uniformity of temperature, and the ability to design a
wide range of particle properties and a large quantity of particulate materials. The term
“fluidization”reflects the conferment of fluid-like properties onto the solid particles when
the fluid rises through the bed of particles with a sufficient flow rate [1, 2]. Fluidized
beds are applied for many physical processes, such as mixing, drying, particle formation
(coating, layering granulation and agglomeration), heating and cooling of bulk solids;
and many chemical processes, such as coal gasification, combustion, water purification,
catalytic reactions. In most applications of fluidized beds, the fluidizing medium is a
gas, rather than a liquid.

Particle formation in spray fluidized beds

Particle formation processes in spray fluidized beds are used in a wide range of in-
dustries, including pharmaceutics, foods, fertilizers, detergents, mineral processing and
specialty chemicals [3]. Particle formation processes can enhance the flowability, com-
pressibility, stability and dissolution of materials. Spray fluidized bed processes are
considerably complex, caused by the integration of a number of sub-processes, includ-
ing spraying, wetting, drying and solidifying; by the presence of different process zones
with different controlling parameters; and by the presence of multiphase transport at
multi-scale level. Owing to the complexity, various definitions and names are used for
spray fluidized bed processes and their products in the literature and industrial ap-
pilcations. Tsotsas and Mujumdar [4] clarify the terminology in spray fluidized bed
processes. Figure 1.1 distinguishes agglomeration, granulation and coating by means
of basic principles and product structures. Agglomeration is a process of aggregating
smaller particles (powders) to larger and semipermanent structures (snowball). Gran-
ulation is a process of successive layering solidified shells on particles (seeds) by means
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of orderly spreading, drying and solidifying atomized liquid. The final granule has an
onion structure. Coating is essentially the same as layering, with the difference of thin
layer of another material on particles (carriers). A spray droplet can dry after deposi-
tion on the particle surface; or form a liquid bridge, when interacting with more than
one particle. Indeed, agglomeration competes with granulation and coating to acquire
more droplets that can form liquid bridges.

a) Agglomeration 

b) Granulation (layering) 

c) Coating 

solid droplet new solid 

agglomerate 

grain 

coated particle 

Product structure Drying Wetting Spraying 

Figure 1.1: Basic principles of spray fluidized bed processes: a) agglomeration, b)
granulation (layering), c) coating [4].

Spray fluidized bed equipment is mainly composed of the gas inlet chamber, the gas
distributor, the process chamber, the spray system and the exhaust chamber. The crit-
ical process option can be characterized by the spray nozzle orientation, for instance,
top-spray processing (in or on bed), bottom-spray processing (with or without inserts)
and tangential-spray processing [5]. Additional opportunities of new product structures
and high product quality require manipulation of the gas distributor, the process cham-
ber and the spray system [4]. Two successful examples of such combinations are the
Wurster equipment [6–8] and the horizontal fluidized bed [9, 10].
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Mesoscale phenomena

As pointed out in “Towards Engineering Mesoscience” (a joint virtual special issue of
Chemical Engineering Science, Powder Technology and Particuology) [11], an under-
standing of mesoscale phenomena that take place between single element scale and
system scale is a grand challenge not only for chemical engineering, but also for the
whole spectrum of science and engineering. It has been gradually recognized that an
upgraded knowledge of mesoscale phenomena is necessary in order to increase our ca-
pability to resolve main tasks of chemical engineering including the design of materials,
scaling-up reactors, and system optimization.

As shown in Figure 1.2, particle formation in spray fluidized beds is a multi-scale pro-
cess in both space and time involving multi-phase flow (solid particles, spray droplets
and carrier gas), in which the particle scale and the process unit (spray fluidized bed)
constitute a kind of boundaries. At the particle scale, we can understand flow and
the transport of single particles based on fundamentals of transport phenomena [1, 12];
and we can characterize properties (such as size, shape and morphology) of both, sin-
gle primary particles and single product particles, by means of different measurement
techniques, for instance, scanning electron microscopy (SEM), white light interferome-
try, X-ray micro-computed tomography (µ-CT) [13, 14]. At the system scale, we have
accumulated knowledge to change the overall performance of particle formation in the
desired direction by adjusting gas flow rate, spray rate, binder content in sprayed liq-
uid, atomization pressure, drying conditions and composition of suspension, equipment
design and so on [4, 15–18].

However, the knowledge about what happens at the mesoscale between single particles
and the whole process unit is still very limited, which is the main gap that needs to
be closed to achieve efficient operations in industry. In order to further improve a
spray particle formation process, we must answer the questions: How do the particles
and the droplets interact in the real system? How do these interactions correlate to
the performance of particle formation processes and influence final product properties?
How to understand the transition from phenomena that govern the formation of the
solid phase at the microscale to the macroscale behavior of particle systems in industrial
equipment? [19].

In spray fluidized beds, the motion of particles is not only influenced by aerodynamic
transport and turbulent effects, but is also significantly affected by particle-particle
(droplet) interactions. Moreover, the particle-particle and particle-droplet collisions
are the prerequisites to form new particles. Particle collision is an important mesoscale
phenomenon, which can be characterized by collision frequency, collision (impact) ve-
locity and coefficient of restitution. The particle collision frequency, defined as the
number of collisions of one single particle per unit time, measures the possibility for
the single particle to form a new structure with other particles or to break the exist-
ing unstable structures. Supposed that the viscous and capillary forces due to liquid
bridges are the only cohesion sources, collisions occurring at dry contact points cannot
form new structures; but they can transfer the momentum between particles. However,
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not all collisions occurring at wet spots enable coalescence. As shown in the SEM im-
age of an agglomerate in Figure 1.2, there are some obvious positions with different
sizes covered by dried liquid binder (relatively dark color) due to particle-particle colli-
sions with different intensities (impact velocities). These positions imply that: i) some
particle-particle collisions that happened at wet spots failed to result in coalescence and
ii) some particle-particle collisions led to the breakage of previously formed unstable
agglomerates. In wet two-body collisions, Ennis et al. [20] modelled the first case by
assuming that successful coalescence occurs if the kinetic energy of impact is entirely
dissipated by viscous forces in the fluid and elastic losses in the solid phase. Most of
numerical and experimental studies of wet collisions focused on the two-body system,
where the only two possible outcomes are agglomeration and rebound affected by par-
ticle sizes, the impact velocity and angle, and wetting properties of liquid layer [21–24].
For the three-body system, Donahue et al. [25] measured the outcome of normal col-
lisions between an incoming striker particle and two initially agglomerated particles
(due to liquid bridge) by observing Stoke’s cradle via high-speed imaging. Liu et al.
[26] investigated the outcome of collisions between a primary particle and a small un-
stable agglomerate (predefined by a constant cohesive force) in various pre-collisional
configurations by DEM simulations. The understanding of the dynamics of collisions
between primary particles and small unstable agglomerates is required to well control
wet particle formation processes. Note that most particles used in industry are non-
spherical and irregular, which makes the investigation of particle-particle interactions
more complex and challenging.

As shown in Figure 1.2, there are typically at least one dry zone and one wet zone
in the spray fluidized bed to successively achieve the processes of wetting, drying and
solidification. Therefore, the precise control of the residence times in different zones and
the total cycle time are critical for the final product quality. Particle residence time
distributions were experimentally measured in different configurations, for instance in
Wurster fluidized beds using positron emission particle tracking and particle image
velocimetry combined with conductivity probes [27, 28], and in horizontal fluidized
beds using colored tracer particles [9, 10]. The residence time distribution (RTD) is
the model parameter required in Monte Carlo modeling [29] and population balance
modeling [6, 8, 16] of particle formation in spray fluidized beds. Meanwhile, the non-
uniform distribution of spray droplets is influenced by the location of spray nozzle,
the bed geometry, and particle motion in the bed; and the droplet size distribution
influenced by both liquid properties (surface tension, density and viscosity) and gaseous
(stream) flow properties (velocity, density and viscosity) [30], which makes the study of
droplet deposition on particles and cohesive particle-particle interactions more complex
in real applications. Experiments of single droplet impact on dry or wet flat surfaces [31]
and dry particles [32–34] were conducted to investigate droplet impact hydrodynamics
such as deposition, spreading, recoiling, splashing and rebound.

In order to further improve spray fluidized bed processes, different experimental tech-
niques are essential to measure the particle-scale and mesoscale quantities; and accord-
ingly, a multi-scale numerical approach for particulate system should be developed and
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applied to reveal particle dynamics in the fluidized beds that are difficult to measure
by current techniques; and (or) to directly predict the spray fluidized bed process.

Particle tracking techniques for fluidized beds

Although the use of fluidized beds is extensive, their operation is very complex; and an
improved understanding of fundamental particle dynamics from advanced experimen-
tal techniques is always necessary to develop process improvements and optimization,
as well as develop and validate fundamental models for their operation. With this
information, more economical processes can be achieved yielding high quality products.

Generally, advanced experimental systems for multiphase flow in fluidized beds should
have: i) high spatial and temporal resolution for local phase velocity field measurement
as well as local phase fraction measurement, and ii) the capabilities to provide instanta-
neous and time history of granular flow field. Obviously, it is impossible to use one mea-
surement technique to capture all detailed meso-scale phenomena in the fluidized beds,
including particle collision velocity (distribution), particle collision frequency (distribu-
tion), solid volume fraction (distribution), particle velocity (distribution), and residence
time (distribution).

The principal difficulty in characterizing, quantifying and tracking granular flows in flu-
idized beds is the fact that the systems are typically opaque, which requires either the
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Figure 1.3: Elements and procedure of particle tracking velocimetry (PTV) for the
measurement of granular flow.
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use of invasive measurement probes or special noninvasive methods. The weakness of in-
vasive probes is that they can change the flow field and interfere with the real processes.
Noninvasive particle tracking techniques mainly include particle tracking velocimetry
(PTV), magnetic particle tracking (MPT), positron emission particle tracking (PEPT),
magnetic resonance imaging (MRI) and X-ray particle tracking velocimetry (XPTV).
The advantages and disadvantages of these techniques, and corresponding quantities
that can be measured are summarized in Table 1.1.

Appilcations of particle tracking velocimetry (PTV) technique for the measurement of
particulate flows originated from the powerful particle-image velocimetry (PIV) tech-
nique, which has became a standard tool for experimental fluid mechanics in the last
three decades [35]. For tracking the motion of particles in the visualized beds, PTV
consists of a light source to illuminate particles in the field of view, a high-speed camera
(or high-speed color camera) to record images of particle motion, and a computer for
data storage and further post-processsing, as shown in Figure 1.3. Signals from lighting
system and fluid flow system are synchronized. In addition, particle tracking algo-
rithms need to be developed according to different target quantities of measurement,
such as, particle collision frequency, particle collision velocity and mixing or segregation
of particles.

The positron emission particle tracking (PEPT) technique requires tracer particles (up
to three) labelled with a radionuclide, a positron camera together with two position-
sensitive detectors, and algorithms to calculate the position of particle based on the
intersection of several γ-trajectories pairing by the two detectors [36]. However, PEPT
cannot separate the trajectories of two particles which are closer than the intrinsic
spatial resolution of the positron camera (about 6 mm for most systems); in other
words, PEPT is unlikely to reveal details of inter-particle collisions even though more
than one tracer particle are used.

The magnetic particle tracking (MPT) technique involves a magnetic marked particle,
a magnetic monitoring system and the algorithm to reconstruct the position and the
orientation of particle based on the analysis of quasi-static magnetic field around the
marked particle [37].

The magnetic resonance imaging (MRI) technique is performed with special particles
containing liquid-like centers (such as poppy seeds), a spectrometer operated at different
frequencies for gas and liquid, a birdcage radio-frequency coil to excite and detect signals
from particles and gas, and the algorithms to calculate motions by the sine-shaped
encoding gradients of magnetic resonance pulse sequence [38].

The X-ray particle tracking velocimetry (XPTV) technique comprises a X-ray stereo-
graphy imaging system (including two X-ray sources, and two X-ray detectors connected
with CCD cameras) and tracer particles (with inserted small pieces of high density
material). The algorithms to identify particle locations and track one and the same
particle in two successive image frames are similar to those used in normal PTV [39].
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Table 1.1: Overview of five noninvasive particle tracking techniques used in fluidized beds (particle tracking
velocimetry (PTV), positron emission particle tracking (PEPT), magnetic particle tracking (MPT), magnetic
resonance imaging (MRI), X-ray particle tracking velocimetry (XPTV)).

Technique Obtained quantity Advantage and disadvantage Reference

PTV

� translational particle velocity
� volume fraction
� collision behavior
� mixing and segregation
� cycle time (distribution)

(+) spatial resolution; (+) temporal resolution

[40–45]
(++) a large number of particles
(−) 2D near wall, visualization configuration
(−) tracking time
(+) cost; (+) operation; (+) interpretation

PEPT

� translational particle velocity
� residence time (distribution)
� cycle time (distribution)

(+) spatial resolution; (o) temporal resolution

[27, 36, 46–50]
(++) tracking time
(−) maximum 3 radio-active tracer particles
(−) cost; (−) operation; (+) interpretation

MPT

� translational particle velocity
� rotational particle speed
� residence time (distribution)
� cycle time (distribution)

(o) spatial resolution; (o) temporal resolution

[37, 51, 52]
(++) particle orientation; (++) tracking time
(−−) single particle, large size of tracer particle
(+) cost; (+) operation; (+) interpretation

MRI
� translational particle velocity
� fluid velocity
� volume fraction

(+) spatial resolution; (+) temporal resolution
[38, 53–55](−) particles must contain a liquid-like center

(−) cost; (−) operation; (+) interpretation

XPTV

� translational particle velocity
� residence time (distribution)
� cycle time (distribution)

(+) spatial resolution; (−) temporal resolution
[39, 56–58](o) tracking time; (o) particle number

(−) cost; (−) operation; (+) interpretation

* ++ very good; + good; o moderate; − poor; −− very poor.
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Numerical simulation of fluidized bed processes

In addition to experimentation, numerical modeling of particulate flow in fluidized beds
is an alternative approach to study mesoscale phenomena.

The Eulerian-Eulerian (EE) framework is used to denote simulation and modeling tech-
niques, in which both solids and the carrier phase are treated as inter-penetrating con-
tinuous media. The phase volume fractions are introduced in the governing equations
for the sake of dividing volume occupied by different phases. Since the trajectories of
individual particles are not tracked in EE approach, it is affordable to perform simula-
tions on the pilot or industrial scale. For example, EE approach can be used to predict
residence time distribution in industrial scale horizontal fluidized bed by the species
method and the multi-solid method [59]. However, the accuracy of EE approach heav-
ily depends on the sub-models associated with particle-scale processes, such as particle-
particle collisions and drag forces. The kinetic theory of granular flow and friction flow
theory are often used to provide constitutive or closure relations for the solid phase [60].

The Lagrangian-Eulerian (LE) framework is used to denote simulation and modeling
techniques, in which the particles (droplets) are represented in a Lagrangian reference
frame while the carrier phase is represented in a Eulerian reference frame. Subrama-
niam [61] gives a comprehensive review of foundation, modeling issues, and numerical
implementation of different LE methods for multiphase flows. In the area of particulate
flows in fluidized beds, the LE approach consisting of computational fluid dynamics
(CFD) and the discrete element method (DEM) has become more and more popular
due to its inherent advantage in accurately modeling particle-fluid and particle-particle
interactions. In CFD-DEM, the continuum fluid is modeled by the volume-averaged
Navier–Stokes equations in the Eulerian framework; simultaneously, the motion of each
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individual dispersed particle is governed by Newton’s second law of motion in the La-
grangian framework accounting for particle-particle (wall) interactions and particle-
fluid interactions. Compared with the traditional two-fluid EE method closed by the
kinetic theory of granular flow, the main advantage of CFD–DEM is that it can provide
particle-scale information in the complex granular flow associated with, for instance,
non-spherical particle shape, cohesion model, and mixing or segregation of poly-disperse
systems.

Table 1.2: Summary of popular topics of CFD-DEM publications in Figure 1.4.

Topics Number of publications Typical references
Mixing/segregation behavior 17 [62–66]
Heat and mass transfer 15 [67–71]
Non-spherical particles 12 [63, 72–76]
Coarse-grain model 12 [66, 77–80]
Cohesion model 12 [81–85]
Liquid fluidized bed 10 [86–90]
Circle and residence time 10 [91–95]

According to a survey of literatures from 2009 to 2019 (as shown in Figure 1.4), the
number of publications using CFD-DEM approach to investigate particle behavior in
fluidized beds has gradually increased, as a result of, on the one hand, requirements to
employ discrete particle simulation to reveal detailed information on multi-scale nec-
essary for improvements of various processes in fluidized beds but difficult to obtain
experimentally; on the other hand, rapid development of open source codes (such as
CFDEM Project and MFIX) on the basis of advanced computer science. The publi-
cations in Figure 1.4 cover various popular topics, including mixing and segregation
behavior, heat and mass transfer, non-spherical particle system, coarse-grain model,
cohesion model, liquid fluidized bed, circle and residence time; as summarized in Ta-
ble 1.2.

Some featured works associated with wet particle formation processes in fluidized beds
are listed in Table 1.3. The great challenge of CFD-DEM simulation is the huge com-
putational cost that exponentially increases with increasing the number of particles in
large-scale systems. If non-spherical particles, cohesion forces (van der Waals force,
electrostatics, capillary force and viscous force), or heat and mass transfer are taken
into account, the computational effort further increases. The storage and further post-
processing of CFD-DEM simulation data face the same problem. Currently, for a per-
sonal computer or a workstation, the number of particles in three-dimensional simula-
tions is limited to 105 [96], however, the number of particles in a lab-scale spray fluidized
bed often surpasses 109 that is much beyond the capacity of common computers.
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Table 1.3: Selected CFD-DEM simulations from open literature associated with particle formation processes in fluidized beds.

Paper Configuration Variables Remarks
Askarishahi et al.
(2017) [70]

Top-spray bed
Packed bed
Particles: 0.14 mm, 6 × 104

and 106

Droplets: 20 µm (only in
CFD)

Particle and gas temperature
Liquid content of particles
Liquid and vapor mass loading

� A framework for tracking different species and the
temperature in the gas phase � Models for droplet
deposition on particles (rate of deposition), evap-
oration of liquid from free droplets and deposited
droplets on particles � Identification of character-
istic droplet-in-suspension time (fast deposition or
over-spray)

Lichtenegger et al.
(2017) [97]

Bubbling fluidized bed
Particles: 1 mm, 5.7 × 104

and 9.5× 104

Particle temperature
Recurrence plots

� Employ recurrence nature of bubbling bed in
CFD-DEM for modeling heat transfer � Extrapolate
fields from recurrence process without the need to
continuously solve the dynamic equations � The
new approach requires 1/300 of the runtime of
conventional CFD-DEM to model heat transfer �

Particle temperatures are compared with infrared
thermography measurements

Sutkar et al.
(2016) [98]

Spout fluidized bed (with and
without draft plates)
Particles: 1 mm, 8.2× 104

Droplets: 60 µm, 7.2×105 1/s

Particle and gas temperature
Moisture content

� Assumption that particle-droplet collisions gen-
erate an uniform liquid layer around the individual
particles � Varied coefficient of restitution that de-
pends on Stokes number is used to model wet parti-
cle collisions � Particle temperatures are compared
with infrared thermography measurements

Fries et al.
(2013) [91]

Top-spray granulator
Wurster coater
Spouted bed
Particles: 2 mm, 1.5× 105

Residence time
Collision frequency and velocity
Particle rotation
(in different zones)

� CFD-DEM was used to investigate particle colli-
sion dynamics � Comparisons between different con-
figurations � DEM model can offer large potential
for process intensification

Hillton et al.
(2013) [99]

Wurster coater
Particles: 2 mm, 7× 103

Droplets: 20 µm (normal
distribution, treated as soft
spheres)

Coating coverage
Deposited droplet volume
Coefficient of variation

� Spray droplets are modelled as individual Stoke-
sian particles � The radially symmetric Gaussian
shape is used to model droplet and particle impact �
Coating coverage was mapped over individual parti-
cles based on the spherical harmonic formulation
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One solution to this problem is the DEM coarse grain model, in which several real
particles are lumped into a computational parcel for the sake of reducing computational
cost while retaining essential dynamics of the granular system. Accordingly, the drag
force and contact force need to be scaled based on the coarse graining ratio. The coarse
grain method can be applied to both mono-disperse and poly-disperse systems [66, 77].
Note that in some literature, coarse graining also refers to the method to map (average)
from particle-scale quantities (DEM) to macroscopic quantities (CFD) [100].

Recently, DEM/CFD-DEM based on graphical processing units (GPUs), instead of
traditional central processing units (CPUs), has been increasingly applied to various
systems with spherical or non-spherical particles and moving wall boundaries [96, 101].
Besides, GPU simulation can be extended to other cases of discrete modeling, for in-
stance, the simulation of particle breakage by time-driven constant-number Monte Carlo
method [102]. The GPU-based parallel simulation and computation is one of the most
promising techniques to accelerate simulation of granular systems [103].

1.2 Objective and outline

The aim of the present work is to investigate some important mesoscale phenomena
for particle formation in spray fluidized beds, including coefficient of restitution of
irregularly shaped particles, particle-particle collision frequency and impact velocity,
mixing degree of poly-disperse particle system, residence time in Wurster fluidized bed,
droplet deposition events, cohesion collisions, by means of PTV measurements and
DEM/CFD-DEM simulations. These mesoscale phenomena are essential to directly or
indirectly improve product quality in particle formation processes, but are not clearly
understood by experimental or numerical approaches so far.

In Chapter 2, the detailed experimental algorithms used in the particle segmentation
procedure and the particle tracking procedure are first described. Then, the entire
PTV method is thoroughly verified based on synthetic images generated from CFD-
DEM simulation of a poly-disperse particle system. In Chapter 3, the suitable set of
formulations in CFD-DEM (LE) for the simulation of fluidized beds is clarified, starting
from the derivation of traditional two-fluid method (EE). The sub-models of CFD-DEM
used in this thesis, including drag models for mono- and poly-disperse systems, the
mapping model, contact model, cohesion model and rolling model, are described. The
experimental and simulation studies are mainly conducted in two pseudo-2D fluidized
beds and a Wurster fluidized bed. In Chapter 4, all experimental and simulation setups
are systemically introduced.

In Chapter 5, the collision behavior between irregular maltodextrin particles and hor-
izontal substrates is experimentally measured by PTV method. In addition, the mea-
surement data is compared with DEM simulations using the multi-sphere model and
the superquadric model, regarding the distributions of total and normal coefficients of
restitution and corresponding relationships with the rotational speed after collision and
the absolute difference of incidence angle and rebound angle.
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In Chapter 6, PTV method is used to measure complex granular flows in a pseudo-2D
fluidized bed. The particle granular temperature, particle collision frequency and im-
pact velocity are systematically investigated under various operation conditions. Colli-
sion events are identified by a self-developed algorithm based on the variation of individ-
ual particle trajectories. Measurement data are compared with CFD-DEM simulations.
In Chapter 7, an extended color-PTV method is used to measure velocities of indi-
vidual particles in poly-disperse particle systems. Experimental results are compared
with CFD-DEM simulations using different drag models, in terms of the mixing index,
time-averaged volumetric particle flux, distributions of individual particle velocity as
well as distributions of particle granular temperature.

In Chapter 8, CFD-DEM is applied to investigate the residence time and collision
velocity in different processing zones of a Wurster fluidized bed. Ideal and nonideal cir-
culating motions of particles are distinguished to evaluate distributions of cycle times.
Solid-like droplets are injected and simulated inside a predefined spray zone to study
the droplet deposition rate. In Chapter 9, a coupled CFD-DEM-Monte Carlo approach
is developed to investigate intra- and inter-particle coating uniformity in a Wurster
fluidized bed by considering gas flow, particle motion, droplet deposition, and the dry-
ing and solidifying of droplets on particle surfaces. Based on the spherical centroidal
Voronoi tessellation (CVT), the Monte Carlo approach can model the deposition and
splashing of spray droplets on the surface of individual particles. The capillary force
induced by liquid bridges between particles is accounted for in the DEM to investigate
its influence on the coating and agglomeration behavior.

In Chapter 10, the main results of the thesis are summarized and an outlook to future
studies is given.

In the appendices, supplementary measurement data and simulation results are sum-
marized.





Chapter 2

Particle tracking velocimetry (PTV)
methodology

Parts of this chapter are based on Jiang et al. [104], Jiang et al. [45] and Jiang et al.
[105].

The granular flow in fluidized beds is characterized by three features: i) high solid
volume fraction, ii) strong fluctuation velocity generated by particle-particle, particle-
wall collisions and non-spherical shapes, and iii) high flow gradient on the scale of
several particle diameters due to bubble motion, which raises issues in both particle
segmentation and particle tracking procedures [40, 106]. Thus, reliable and accurate
algorithms of particle segmentation and particle tracking are required to accurately
measure complex granular flows in fluidized beds.

Based on sequences of images acquired from a high-speed imaging system, particle
tracking velocimetry (PTV) consisting of the particle segmentation and particle tracking
procedures can be used to recover the trajectories of all individual particles in the
field of view, as depicted in Figure 2.1. The main task of the particle segmentation
procedure is to detect the centroids of individual particles in each frame. Besides, other
particle information such as the area, size and orientation can also be identified in this
procedure. Then, the particle tracking procedure pairs identical particles in different
frames using the particle centroids in two or multiple subsequent frames. After these two
procedures, the trajectories of all individual particles, encompassing both centroids and
velocity vectors, can be reconstructed. The algorithms of the procedures schematically
represented in Figure 2.1 will be elaborated in this chapter.

2.1 Particle segmentation algorithms

2.1.1 Particle-mask correlation method

For relatively large spherical particles with a certain size, the particle-mask correlation
method, proposed by Takehara and Etoh [107], can detect accurately their geometric
centers, which correspond to the locations of the cross-correlation coefficient peaks. The
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Table 2.1: Summary of equations used in the particle segmentation procedure.

Particle-mask cross-correlation + intensity filtering (spherical particles)
Normalized cross-correlation

γ(x, y) =

x+m/2∑
i=x−m/2

y+m/2∑
j=y−m/2

[I(i, j)− Ī][s(i, j)− s̄]√
x+m/2∑
i=x−m/2

y+m/2∑
j=y−m/2

[I(i, j)− Ī]2
x+m/2∑
i=x−m/2

y+m/2∑
j=y−m/2

[s(i, j)− s̄]2
(2.1)

Intensity filtering

Īp,k ≥ Ithres, Īp,k =

Np,k∑
i

I(i)/Np,k (2.2)

Image moment (non-spherical particles in dilute systems)
Raw image moment

Mpq =
∑
x

∑
y

xpyqI(x, y) (2.3)

Centroid

(x̄, ȳ) = (
M10

M00

,
M01

M00

) (2.4)

Normalized central moment

µpq =
∑
x

∑
y

(x− x̄)p(y − ȳ)qI(x, y)/M00 (2.5)

Covariance matrix

cov(I(x, y)) =

[
µ20 µ11

µ11 µ02

]
(2.6)

Orientation

θo =
1

2
arctan

(
2µ11

µ20 − µ02

)
(2.7)

Lengths of major and minor axes

Lmajor =
√

2

√
µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11 (2.8)

Lminor =
√

2

√
µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11 (2.9)



30 Particle tracking velocimetry (PTV) methodology

intensity pattern of this type of particles always has a clear peak in the center, and the
intensity concentrically decreases as the distance from the central location increases.
The merits of this segmentation approach are: (i) only particles with complete contour
are identified, even when intensity peaks do not coincide with particle centers, (ii) the
effects of linear elements and background elements on segmentation performance are
avoided automatically [108].

The normalized cross-correlation coefficient γ of the template particle (m × m pixels)
with any interrogation region of the same size in the raw image, centered at (x, y), can
be calculated by Eq. (2.1) in Table 2.1. The quantity I(i, j) is the intensity in the matrix
of the interrogation region in the raw image, s(i, j) is the intensity in the matrix of the
template particle. Ī and s̄ are the spatially averaged intensities of the interrogation
region of the raw image and the template particle, respectively. The template particle
matrix is a square matrix with the edge size m equal to

√
2dp · Sf/2 pixel (spherical

particles).

For each measurement, several complete and smooth particles are required to be man-
ually selected from the raw image, and the intensity fields of these particles are used to
average the intensity field of the template particle in a way that eliminates the influence
of random noise. The obtained template particle is used to scan the entire raw image
pixel by pixel, which produces a matrix of the normalized cross-correlation coefficient.
Then, the locations of qualified peaks in the coefficient matrix correspond to particle
centers rrrk(xk, yk). The locations of peaks are identified by a peak finder approach,
including the evaluations of 2-D median filtering, convolution and local maxima.

Particles that depart from the first layer, still having similar intensity distribution
but much lower intensity value, will be recognized by the particle-mask correlation
method. Most of these particles are found in the dilute region, in which particles rarely
overlap with neighboring particles, and thus, show the complete intensity distribution.
Therefore, the threshold mean intensity Ithres, obtained from the intensity calibration
(detailed method given in Section 4.2.1), is used to re-check the mean intensity of each
detected individual particle Īp,k, expressed as Eq. (2.2) in Table 2.1. Np,k is the number
of pixels that belong to particle k. This procedure filters the out-of-focus particles
identified by intensity value. Contrary, there is a high probability that an optical
overlap with neighboring particles will occur when particles in the dense region depart
from the first layer. As a consequence, the intensity distributions of these particles
deviate from that of the template particle, and they cannot be detected by the particle-
mask correlation segmentation approach. Hence, the particle-mask correlation method
together with intensity filtering enable to adapt to different solid volume fractions.

2.1.2 Thresholding, watershed segmentation and image mo-
ment

For non-spherical particles, even though owning a certain particle geometry (for exam-
ple, tablets in Figure 2.2a), the performance of the mask correlation method rapidly



2.1. Particle segmentation algorithms 31

            

             

  

     

    

    

 
 
 
 
  
 
  
  
  
  
 
  
 
 
  
  

              

     

                             

background

particles

a) b)

c) d)

watershed line

catchment basin 1

catchment basin 2

e) f)

Figure 2.2: Illustration of the binarization by the automatic thresholding and the wa-
tershed segmentation: a) original gray-scale image (with tablets), b) determination of
the threshold intensity by analysis of the pixel intensity distribution, c) binary image
of tablets, d) distance transformation based on the binary image and an example of
catchment basins and watershed line of two slightly overlapping tablets, e) connected
regions after the watershed segmentation, f) particle centroids and equivalent ellipses
owning the same normalized second order image moments as the segmented regions.
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decreases due to the orientation of particles. The problem becomes even worse for irreg-
ularly shaped particles with wider size and shape distributions (for instance, maltodex-
trin particles in Figure 4.2a). Indeed, selection and segmentation of irregular objects
within the image is an important prerequisite for most measurements and analyses.
In this thesis, the segmentation of non-spherical particles is achieved by binarization,
distance transformation and watershed processes; then, the image moment is used to
get important properties related to particle shape.

Binarization by thresholding

The objective of binarization is to separate features representing particles from the
background, so that further counting and measurement can be performed. The bina-
rization can be achieved by the thresholding intensity value, or combining different color
channels (RGB or HSV, discussion in Section 7.2). After binarization, the regions of
particles and background are assigned values of unity and zero, respectively. For each
image, the threshold intensity was estimated by the analysis of density distribution of
pixel intensities, as shown in Figure 2.2b. Normally, two peaks exist in the profile of
density distribution; one belongs to the background with a relatively narrow width, the
other is the result of the particle regions with a larger width. The intensity located at
the midpoint of these two peaks is selected as the threshold intensity. The result of
binarization by thresholding is shown in Figure 2.2c. However, the binary image is not
perfect to identify the features of every individual particle, due to the difficulty arising
from overlapping particles.

Distance transformation and watershed segmentation

The distance transformation is a tool that gives new features to the binary image to
reproduce a gray-scale image, as shown in Figure 2.2d. The definition of distance
transformation is simple enough: each pixel in the foreground is assigned a brightness
value equal to its straight line distance to the nearest pixel in the background. The
distance transformation can enhance the convex features of touching particles, which
is a benefit in efficiently performing the watershed segmentation. Imagining that the
brightness values of each pixel after the distance transformation correspond to a physical
elevation; then the features appear as mountain peaks or sometimes the distances need
to be negated to change mountains to catchment basins. As shown in Figure 2.2d,
after distance transformation, two slightly overlapping particles are converted into two
adjacent basins separated by a watershed line. The placement of the watershed line
depends on the relative depth and area of the adjacent basins. The detailed algorithm
was proposed by Meyer [109]. As shown in Figure 2.2e, overlapping particles can be
separated by watershed segmentation; and each color stands for one individual particle
reckoned as a connected region.

Image moment

After having identified the connected regions of individual particles, the image moment,
related to well known algebraic invariants, can be used to calculate important geomet-
rical properties based on the intensity of segmented pixels. Hu [110] published the first
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significant paper on the use of image moment invariants for two-dimensional pattern
recognition applications. For a two-dimensional digital image with intensity I(x, y) of
individual pixels, raw image moments Mpq with of order p + q can be calculated by
Eq. (2.3) in Table 2.1. I(x, y) of particles equals to unity in a binary image. The
centroid (x̄, ȳ) of the particle can be evaluated using raw image moments according to
Eq. (2.4), in which M00 is the area of particle (total number of pixels).

In addition, the normalized central moment, defined by Eq. (2.5), can be used to further
analyze the covariance matrix, giving the orientation, and the major and minor axes of
particles. Indeed, if only the second order (p+ q = 2) central moments are considered,
the particle is completely equivalent to an ellipse centered at the particle centroid (x̄, ȳ)
with a certain size and orientation [111]. The orientation of a particle calculated by
Eq. (2.7) can be evaluated from the covariance matrix calculated by Eq. (2.6). In
this way, the orientation specifies the angle in a range from −90° to 90° between the
horizontal axis and the major axis of the covariance matrix. It is constructed from the
second central moments µ11, µ02 and µ20. The expressions for Lmajor and Lminor are
given by Eq. (2.8) and Eq. (2.9), respectively.

2.2 Particle tracking algorithms

The objective of particle tracking is to pair particles between frames based on the two
sets of particle centroids rrri,1 and rrrj,2 obtained from particle segmentation procedure.
The pairing {i(k), j(k)} means that particle Pi on the first frame and particle Pj on the
second frame are the same physical particle k. Considering a time interval ∆t between
two subsequent frames, the individual particle velocity can be calculated by

vvvk =
rrri(k),2 − rrrj(k),1

∆t
. (2.10)

Different algorithms can be used to track particles depending on the solid volume frac-
tion and the features of motion.

2.2.1 Minimum displacement tracking method

If the time interval between two frames is short enough and the mean free paths between
particles are large enough, it is reasonable to match each particle in the first frame
to the nearest particle in the second frame. This simple algorithm is the minimum
displacement tracking, which is a good choice to track individual particles in the dilute
region, especially when the general motion of particles is predictable. The best global
match of all particles Pi in the second frame can be achieved by minimizing the objective
function

n1∑
k=1

disp(Pi(k),1, Pj(k),2), (2.11)

where the particle displacement disp(Pi(k),1, Pj(k),2) is the standard Euclidean distance
of two paired particles corresponding to physical particle k between first and second
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frame. In two-dimensional Cartesian coordinates, the Euclidean distance of particles
Pa and Pb is given by

disp(Pa, Pb) =

√
(xa − xb)2 + (ya − yb)2. (2.12)

The sum over the displacements of all matching pairs is calculated to find the best
global matching. If the motion of a particle is predictable, the number of candidate
particles Pj,2 can be narrowed by introducing a search circle with diameter estimated
from the maximum detected particle velocity.

2.2.2 Voronoi tracking method

However, it is challenging to simultaneously track a large number of individual particles
in the dense region of a fluidized bed, where the particles undergo a complex motion
that is caused by traveling bubbles and particle-particle or particle-wall interactions.
To address these problems, Capart et al. [40] and Hagemeier et al. [42] used tracking
methods with favorable features of Voronoi structures (generated from centroids of
detected particles) to pair particles in two consecutive frames with short interval. The
Voronoi star is a matching token assembled by the target particle (center of star) and
corresponding natural neighboring particles (endpoints of the extremities of the star),
which is relatively stable even in complex granular flows. Thus, the discrepancy of
Voronoi stars in two subsequent frames is considered as the measure of identification.

Consider a set of particles Pi that occupy positions rrri(xi, yi) in the plane (i = 1, ..., n).
The Voronoi diagram designates the tiling of the plane into n polygonal regions such
that each polygon encompasses the region which is closer to particle Pi than to any
other particle, as shown in Figure 2.1. The particles characterized by Voronoi diagram
sharing an edge are termed natural neighbors of each other; and the graph that connects
natural neighbors defines the Delaunay triangulation. The Voronoi first star Si of Pi
is defined as the set of natural neighbors including itself, which can be visualized as a
“star of spokes”.

The applicability and detailed Voronoi algorithm for tracking particles in the fluidized
bed have been well explained by [40, 42], mainly including the estimation of candidate
particles and calculation of the discrepancy of Voronoi first stars. Briefly, the match
candidate particles j in the second frame are selected as the four nearest natural neigh-
bors of target particle i in the first frame. Expressed as Eq. (2.13) in Table 2.2, the
discrepancy of Voronoi first stars disS(Si, Sj) reflects the degree of deviation between
the patterns formed by two stars. Three steps are included in Eq. (2.13): i) a linear
translation is conducted to coincide the centers of two stars, in which the subscript 0
of rrr means the center of star; ii) an inner loop, based on the minimum Euclidean norm,
to find the nearest extremity of S2 for each extremity rrrk1,1 of S1; iii) an outer loop
based on the median norm, whereby the median value obtained from the inner loop is
adopted as an overall measure of the discrepancy of Voronoi first stars. This method
allows comparisons between any two stars, without the requirement of them having the
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Table 2.2: Summary of equations used in the integrated particle tracking algorithm.

Voronoi tracking method
Discrepancy of Voronoi first stars

disS(S1, S2) = median
k1=1...N1

[
min

k2=1...N2

|(rrrk1,1 − rrr0,1)− (rrrk2,2 − rrr0,2)|
]

(2.13)

match(Pi,1) = min(disS(Si,1, Sj,2))) (2.14)

Probability relaxation method
Quasi-rigidity condition

|dddij(i) − dddk(i)l(k)| < Tq, (2.15)

mc(i)∑
j(i)=1

Pij(i) + P∗i = 1, (2.16)

Q(n−1)
ij(i) =

mn(i)∑
k(i)=1

mc(k)∑
l(k)=1

P(n−1)
k(i)l(k), (2.17)

P̃(n)
ij(i) = A · P(n−1)

ij(i) +B ·Q(n−1)
ij(i) (2.18)

P(n)
ij(i) =

P̃(n)
ij(i)∑mc(i)

j(i)=1 P̃
(n)
ij(i) + P∗(n−1)

i

(2.19)

P∗(n)
i =

P∗(n−1)
i∑mc(i)

j(i)=1 P̃
(n)
ij(i) + P∗(n−1)

i

(2.20)

match(Pi) = max(Pij(i)) (2.21)

Integrated method

MIT = MV TM ∪MPRM (2.22)
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same number of extremities. The best match of target particle i thus is the candidate
with the minimum discrepancy of Voronoi first star, expressed as Eq. (2.14). Identifiers
(IDs) are assigned to the two particles of each pair and all information related to shapes,
locations and velocities is stored in the set MV TM .

2.2.3 Probability relaxation method

Alternatively, the probability relaxation method has been widely used to track particles
in complex fluid flows [106, 108, 112–114]. The underlying concept of the probabil-
ity relaxation method is to iteratively match the target particle to one of its candidate
particles in the second image based on the total probability of neighboring particles sat-
isfying the quasi-rigidity condition. It assumes that the motion of neighboring particles
is similar and the corresponding velocity gradients are relative small in short enough
time intervals. As a result of successful iteration, the matching probability of correct
pairs approaches almost unity while others tend to zero. Developed for motion analysis
in the field of image recognition and computer vision [115], the original implementation
of the probability relaxation method in fluid mechanics was proposed by Baek and Lee
[112]. Because the original approach provided satisfactory recovery ratio, it has been
used in the present work aiming at both accuracy of measurements and global recon-
struction speed of particle trajectories. The basic scheme of the probability relaxation
method is described in Figure 2.1, whereas detailed procedures employed here follow
the study of Baek and Lee [112].

Three selecting radii

There are three special radii in the probability relaxation method. The maximum
displacement radius Tm is predefined to search candidate particles (j) of target particle
(i) in the second frame. The neighboring radius Tn is applied to find neighboring
particles (k) of target particle (i) in the first frame. Similarly, candidate particles of
neighboring particles k (referred as l) are limited by the same maximum displacement
radius Tm in the second frame. Further, the quasi-rigidity radius Tq is selected to
determine which neighboring particles can be used to update the matching probability
Pij(i) of each candidate particle j to the target particle Pi. The quasi-rigidity condition
can be expressed as Eq. (2.15) in Table 2.2; where dddij(i) is the displacement vector from
target particle (i) to its candidate particles (j), and dddk(i)l(k) is that from neighboring
particles (k) to their candidate particles (l). Generally, the matching probability Pij(i)
has to satisfy Eq. (2.16), in which mc(i) is the total number of candidate particles (j) of
target particle (i), and non-matching probability P∗i is the probability of target particle

(i) to have no matching particle. The initial value of Pij(i)(0) and P∗(0)
i can be given as

1/(mc(i) + 1).

Iteration formulation

Then, the matching probability Pij(i) is iterated by the sum probabilities of neighbor-
ing particles (k) meeting the quasi-rigidity condition (Eq. (2.15)), which is represented
as Eq. (2.17). mn(i) is the total number of neighboring particles (k) of target particle
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(i), and mc(k) is the number of candidate particles (l) of neighboring particle (k). The
superscript n − 1 denotes the iteration step. Further, the contribution of neighboring
particles Q(n−1)

ij(i) can be included in the iteration formulation for updating the matching

probability Pij(i) by Eq. (2.18), in which P̃(n)
ij(i) is the non-normalized probability that

needs to be normalized before the next iteration step, by the expressions of Eqs. (2.19)
and (2.20). In the iteration equation (Eq. (2.18)), A(> 1) and B(< 1) are constants and
affect the convergence speed of the iteration. Note that the non-matching probability
P∗(n)
i is not directly considered in the iteration equation, but iterated in the normal-

ization process. Finally, the most probable matching particle for the objective particle
(i) is chosen as the one with the largest matching probability Pij(i) approaching unity,
expressed as Eq. (2.21). Identifiers (IDs) are assigned to the two particles of each pair
and all information related to shapes, locations and velocities is stored in the set MPRM .

The integrated tracking data MIT is based on the set union (∪) of pairing information
in two matrices MV TM and MPRM . If the same particle (with a certain particle center)
possesses different pairing information, the pairing with minimum velocity is retained.

2.3 Verification by synthetic images

2.3.1 Principle

The accuracy of measurement is a quantitative performance characteristic, expressing
the agreement between a measurement result and the value of the quantity to be mea-
sured. With regards to the PTV measurements in fluidized beds, the measured quantity
is the velocity distribution of a large number of individual particles under different flu-
idization conditions. According to Figure 2.3, the uncertainty sources associated with
the PTV methodology include individual particle locations (related to the particle seg-
mentation algorithm) and the performance of particle pairing in two consecutive frames
(related to both the particle segmentation algorithm and the integrated particle track-
ing algorithm). Whether particles can be identified and further tracked affects, the
global performance of PTV. After successful tracking, the evaluation of single particle
velocity is directly influenced by the biases of particle location segmentation.

Hence, suitable criteria are essential for quantitatively evaluating the performance of
the algorithms used in the proposed PTV methodology. First, the bias of individual
location of segmented particle was used to identify the uncertainty of evaluation of
individual particle velocity; this is defined as

Lb,i =
√

(xi − xi,t)2 + (yi − yi,t)2, (2.23)

where (xi, yi) is the location vector of segmented particle i, and (xi,t, yi,t) is its true
location vector. Following the works of Baek and Lee [112] and Hassan et al. [116],
the segmentation ratio, the recovery ratio and the error ratio were used as criteria to
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verify the global performance of the particle segmentation algorithm and the integrated
particle tracking algorithm. Specifically, the segmentation ratio Rs is defined as

Rs =
number of segmented particles

total number of particles
; (2.24)

the recovery ratio Rr is defined as

Rr =
number of accurate vectors

total number of recovered vectors
; (2.25)

and the error ratio Re is defined as

Re =
number of error vectors

total number of recovered vectors
. (2.26)

However, it is difficult to directly acquire all quantities necessary in order to apply cri-
teria from a large number of particles with complex motion by experiments. Therefore,
data from CFD-DEM simulations, performed according to the experimental configura-
tion and operating conditions, were instead used to verify the PTV methodology in the
present work. The basic idea was similar to the synthetic (standard) images approach
for evaluating PIV algorithms [117–119]. The main advantages in using CFD-DEM
simulation data are:

1. As a well established simulation method, CFD-DEM can properly describe the
motion of particles in granular systems (discussed in Chapter 3).

2. CFD-DEM simulation data can represent particle motion under different fluidiza-
tion conditions.

3. All required variables in Eq. (2.23) to Eq. (2.26) can be easily retrieved from
CFD-DEM data.

Therefore, the use of CFD-DEM simulation data is complementary to real experimen-
tal images because it is a powerful approach to investigate the effects of associated
parameters (such as solid volume fraction, particle velocity, granular temperature, etc.)
on the accuracy of particle velocity measurement, as well as to estimate the intrinsic
limitations of the methodology.

Figure 2.3 shows the flow chart of verification of the color-PTV methodology based
on synthetic images generating from simulation data, including block A for particle
segmentation and block B for integrated particle tracking. After verification, the color-
PTV methodology can be used to evaluate particle dynamics and mixing behavior based
on color images acquired from fluidization measurements in the pseudo-2D fluidized
bed. In addition, measurement data can be used to validate corresponding CFD-DEM
simulations of poly-disperse particle systems. The detailed numerical setup of the CFD-
DEM simulation is given in Section 4.3.3.
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Corresponding to block A, synthetic images were generated to evaluate the performance
of the segmentation algorithm by means of the bias Lb and the segmentation ratio Rs.
In order to be close to pseudo-2D conditions, only particles in the first layer were se-
lected from three-dimensional CFD-DEM simulation data to generate two-dimensional
synthetic images, which means that the normal distances from the centers of selected
particles to the front wall were smaller than 3 mm. According to the descending order of
the distances to the front wall, contours of individual particles with different sizes were
created in each image based on the corresponding relative intensity distribution (details
in Section 7.2). By this approach, the overlap between particles that is encountered in
measurement images was intentionally introduced to inspect its effect on the particle
segmentation. According to the analysis of measurement images, 0.1 % noisy pixels were
randomly introduced to fit the real image quality. In terms of spatial resolution, the
gray-scale synthetic image was the same as the raw image from measurements. Based
on the particle-mask correlation segmentation, three template particles were separately
used to process each synthetic image and to obtain the segmented locations of particles
with different sizes. Then, the bias Lb and the segmentation ratio Rs were evaluated
by the comparison of individual particles.

Corresponding to block B, the integrated particle tracking algorithm was verified by
means of the recovery ratio Rr and the error ratio Re. Using a unique ID for each
particle in the DEM solver, particle velocities can be easily evaluated from the location
of each individual particle before and after a time step (Eq. (2.10)). However, a se-
quential labeling process was required to extract the pairing information obtained from
integrated PTV method. In the first frame, unique IDs were assigned to all segmented
particles. After successful pairing, each matched candidate particle in the second frame
received the same ID as in the first frame. Candidate particles without a valid partner
received a new ID. Then, tracked particle velocities can be also evaluated by Eq. (2.10).
The process was repeated for all image sequences to obtain the trajectories of all indi-
vidual particles. In order to gain the numerators in Eq. (2.25) and Eq. (2.26), particle
velocities in the same time step obtained from PTV and CFD-DEM were compared one
by one according to the locations and the lengths of vectors.

The thorough analysis of segmentation ratio, recovery ratio and error ratio with respect
to particle velocity, solid volume fraction and granular temperature can be further
conducted to assess the applicability of the PTV method to measure the dynamics of
poly-disperse particle systems in different fluidization conditions.

2.3.2 Verification of segmentation algorithm

Figure 2.4 shows the cumulative distribution of bias Lb,i of individual segmented loca-
tions according to analysis of approximately 2.5 × 107 particles. Due to the discrete
nature of digital images, possible bias values were 0, 1,

√
2, 2,

√
5,
√

8, and 3 pixels.
When the segmented particle location coincides with the corresponding particle location
in DEM data, the bias Lb,i is zero. Generally, the particle-mask correlation segmen-
tation algorithm shows good performance for particles with different sizes. More than
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Figure 2.4: Cumulative distribution of the bias of particle-mask correlation segmenta-
tion (analysis of approximately 2.5× 107 particles).

89 % of all particles can be identified without any error. The cumulative distribution
for all particles reaches unity at

√
8 pixels, which indicates the high precision of parti-

cle segmentation. Smaller particles are more accurately located compared with larger
particles. The mean values of bias Lb,i of all particles, red particles, green particles and
white particles were 0.11, 0.31, 0.13, and 0.07 pixel, respectively.

For the particle-mask correlation approach, the segmentation ratio was mainly influ-
enced by the solid volume fraction that was calculated as the ratio of the total particle
volume to the volume of the investigation region. To this end, the full image was di-
vided into small investigation regions with a size of 75 × 75 pixels, and an overlap of
2/3 was set between two neighboring regions to obtain better spatial resolution. The
Sauter mean diameter d32 was considered as the depth of investigation region in this
study. This method of partitioning the investigation region will be used in all following
post-processing. For the case of the verification study, the mean value of solids volume
fraction was 0.136 with a standard deviation of 0.120 for all data from 30 s simulation
time.

Figure 2.5a shows the segmentation ratio Rs for all three sizes of particles with respect
to solid volume fraction εs. The points are averages, where the two dash lines define
the region covered by the standard deviation of data. Globally, the segmentation ratio
for all particles is close to unity when the solid volume fraction is lower than 0.2. Then,
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Figure 2.5: Segmentation ratio Rs: a) all particles with standard deviation, b) particles
of different sizes (colors).
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there is a decreasing tendency of the segmentation ratio when the solid volume fraction
increases from 0.2 to 0.5. The standard deviation of segmentation ratio experiences
a similar tend: it is small when the solid volume fraction is smaller than 0.2 and
gradually increases after the solid volume exceeds 0.2. In fact, the standard deviation
can be considered as a quantification of precision in respect to the random errors of
measurements. Reasonably, the inevitable overlap of particles in the dense region led
to a decrease of segmentation ratio and an increase of the corresponding standard
deviation, since the segmentation algorithm depends on intensity distribution on the
surface of individual particles.

Figure 2.5b shows the influence of different sizes (colors) on the segmentation ratio.
The smaller the particle size (white), the better the performance of particle segmen-
tation, because the gray-scale intensity distribution on the surface of small particles is
more pronounced compared to other particles. In other words, the more pronounced
the intensity distribution, the less is the interference of overlap of particles with the
segmentation algorithm.

Nevertheless, the particle segmentation algorithm shows very good accuracy and preci-
sion in the primary range of solid volume fraction. For the largest solid volume fraction,
the lowest value of segmentation ratio of red particles is still larger than 0.75. Notably,
the intensity of individual particles is also affected by the shadowing effect of neighbor-
ing particles and the motion blur effect in real fluidization measurements, which were
not included in the current verification study of particle segmentation. There should be
a certain decrease in segmentation ratio to take account of these two negative effects in
real measurements.

2.3.3 Verification of integrated tracking algorithm

Figure 2.6 shows the influence of different tracking algorithms on the recovery ratio
with respect to solid volume fraction. The Voronoi method is more suitable in the dense
region, in terms of both accuracy and precision. However, if the solid volume fraction
is lower than 0.2, there is a large decrease in recovery ratio. In the dilute region, the
mean free paths of neighboring particles (the extremities of Voronoi first order stars) are
relatively large. Hence, the loss of single particles in the dilute region, caused by motion
in third direction vertically to the front wall, can generate relatively large discrepancies
of several nearby Voronoi first order stars, compared to the discrepancies generated by
the in-plane motion of particles. This instability of Voronoi first order stars may cause
erroneous pairing of target particles in the dilute region. However, the negative effect
of this instability is very small in the dense region due to the naturally shorter mean
free paths.

In case of the relaxation probability tracking method, the recovery ratio decreases grad-
ually with increasing solid volume fraction, whereas the standard deviation is larger than
that of the Voronoi method for most solid volume fractions. Remarkably, the Voronoi
method and the relaxation method are complementary in terms of the recovery ratio, es-
pecially in the dilute region (solid volume fraction smaller than 0.1). As a consequence,
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Figure 2.6: Comparison of recovery ratio Rr from the integrated tracking method, the
Voronoi tracking method and the relaxation probability tracking method (standard
deviations for the different methods are labeled by two dashed lines of corresponding
colors).

the final recovery ratio obtained by the integrated tracking method is very close to unity
in almost the entire range of solid volume fractions. Moreover, the standard deviation
of the integrated tracking method is smaller than that of either single tracking method.
Hence, use of the integrated particle tracking helps to achieve high performance for all
solid volume fractions. For all three tracking methods, the error ratio was lower than
0.005 and had no apparent dependence on the solid volume fraction.

It should be noted that the recovery ratio and error ratio were not only influenced by the
solid volume fraction, but were also significantly affected by the local particle dynamics
such as particle velocity and particle granular temperature. For the parameters of the
verification study, the mean value of particle velocity was 0.311 m/s with a standard
deviation of 0.206 m/s; and the mean value of the square root of particle granular
temperature was 0.132 m/s with a standard deviation of 0.084 m/s.

Figure 2.7a shows the recovery ratio (left y axis) and the error ratio (right y axis) with
respect to the local average particle velocity (magnitude) from the integrated method.
When the particle velocity exceeds approximately 0.7 m/s, the recovery ratio evaluated
by the integrated method deviates from desired value of unity and becomes more scat-
tered. The error ratio slowly increases to a maximum value of approximately 0.006 as
the particle velocity increases from 0 to 0.7 m/s. Figure 2.7b shows the recovery ratio
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Figure 2.7: Recovery ratio Rr and error ratio Re: a) influence of particle velocity, b)
influence of particle granular temperature.
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and the error ratio with respect to the local average square root of particle granular
temperature. When the square root of particle granular temperature increases from 0
to 0.6 m/s, the recovery ratio decreases from unity to 0.95; and the error ratio increases
from 0 to 0.012. As the square root of particle granular temperature further increases,
large fluctuations appear in both the recovery ratio and error ratio due to the low num-
ber of samples in this range. Based on statistical analysis, less than 1 % of particles
in the investigation regions can experience velocity larger than 0.7 m/s or square root
of granular temperature larger than 0.6 m/s. In total, the integrated particle track-
ing algorithm was able to achieve very good recovery ratio in most of the considered
operating conditions. The increase of error ratio with increasing local particle velocity
and granular temperature can be explained by the decrease of stability of neighboring
structures associated with the mean free path (solid volume fraction).

According to the verification results, the PTV methodology can identify and track par-
ticles of different sizes with high accuracy and precision. Remarkably, the final recovery
ratio obtained by the integrated tracking method is very close to unity for all solid
volume fractions due to the good complementarity of Voronoi and relaxation probabil-
ity tracking. Since the well-established CFD-DEM simulation can provide very similar
fluidization conditions as observed in real measurements, including the solid volume
fraction, the local velocity and the local particle granular temperate, measurements of
poly-disperse particle dynamics using the PTV methodology are expected to be reason-
ably trustworthy. Moreover, CFD-DEM simulation data can be very useful in designing
experiments and optimizing the parameters of the segmentation and the tracking algo-
rithms. In order to achieve high segmentation ratio and low bias, the size of template
particle in the segmentation can be adjusted according to the characteristics of intensity
distribution. The frame rate of the high-speed camera has to be increased when insuf-
ficient recovery ratio appears in the primary ranges of solid volume fraction, particle
velocity and granular temperature.

Based on the verified methodology, PTV will be applied to measure key aspects related
to the particle formation process in fluidized beds. The collision velocity and collision
frequency can be investigated based on the variations of particle trajectories, which
will be described in Chapter 6. If colors of different particles in the system are distin-
guished, the mixing behavior can be studied based on color classification before particle
segmentation, which will be discussed in Chapter 7. The measurement of irregularly
shaped particles impacting on horizontal substrates will be presented in Chapter 5.



Chapter 3

CFD-DEM methodology

Parts of this chapter are based on Jiang et al. [120], Jiang et al. [45] and Jiang et al.
[121].

3.1 Governing equations

3.1.1 Origin of models in two-fluid method

Since the fluid flow in CFD-DEM is still modelled on a macroscopic local level, it is
necessary to start the discussion of CFD-DEM formulations from the two-fluid method
(TFM). With the help of the local average method, Anderson and Jackson [122] di-
rectly derived the governing equation for the fluid phase on the basis of Navier-Stokes
equations; and the governing equation for the solid phase on the basis of motion of a
single solid particle, expressed as:

εfρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
= ∇ · ξξξ − nfff i + εfρfggg (3.1)

εsρs

[
∂vvv

∂t
+∇ · (vvvvvv)

]
= nΦΦΦ−∇ ·SSS + nfff i + εsρsggg (3.2)

where εf and εs = 1 − εf are, respectively, volume fractions of fluid and particles; uuu is
fluid velocity, ξξξ is fluid stress tensor, fff i is the local mean value of force on particle i
due to particle-fluid interactions, n is the number of particles per unit volume [1/m3].
vvv is particle velocity, ΦΦΦ is the local mean value of particle-particle interaction force, SSS
is the tensor representing ‘Reynolds stress’ for solid particles. Comparing Eq. (3.1) and
Eq. (3.2), the particle-fluid interaction force fff i is in the same form but with opposite
sign, guaranteeing that Newton’s third law is satisfied. The important precondition of
the local average is that point variations can be decomposed into two contributions,
of scales much smaller and much larger than the radius of weighting function. Then,
constitutive equations relating ξξξ, fff i, ΦΦΦ and SSS to volume fractions, pressure and local
mean velocity fields are required to determine the motion of fluid and particles.
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When particles are fluidized, they can support the compressive stress by momentum ex-
change through particle-particle collisions without further motion, and simultaneously,
any shear can generate a motion as long as the stress is maintained. Based on these
features, Anderson and Jackson [122] introduced a solid stress tensor ξξξs by lumping
‘Reynolds stress’ for solid particles with particle-particle interactions, expressed as

∇ · ξξξs = nΦΦΦ−∇ ·SSS.

ξξξs contains an isotropic term representing the elastic resistance of the particle assembly
to compression, together with terms related to the rate of strain tensor representing the
fluid-like behavior of the particle assembly. Both fluid stress tensor ξξξ and solid stress
tensor ξξξs can be given by expressions analogous to the stress tensor of a Newtonian
fluid, as follows (in Einstein notation):

ξij = pδij + λ(εf )
∂um
∂xm

δij + µ(εf )

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂um
∂xm

]
;

ξsij = ps(εs)δij + λs(εs)
∂vm
∂xm

δij + µs(εs)

[
∂vi
∂xj

+
∂vj
∂xi
− 2

3
δij
∂vm
∂xm

]
;

where p is the local mean fluid pressure, ps represents the inter-particle pressure relating
to εs; λ and µ are effective bulk and shear viscosities which take account of Reynold
stress and mechanical stress; λs and µs are effective bulk and shear viscosities for the
particle assembly; δij is Kronecker delta.

A single particle moving in the fluid was used to introduce the particle-fluid interactions.
The total force due to particle-fluid interaction on a single particle in the fluid can be
simply expressed as:

f = fd(u)− Vp
dp

dx
,

where fd represents the forces of surface friction and form drag arising from small scale
distortions of fluid streamlines in the neighborhood of the particle; and −Vp(dp/dx)
represents the force generated by the large scale pressure gradients in the fluid. The
buoyancy force, a result of the vertical pressure gradient induced by the gravitational
body force, has been included in the second term. Accordingly, the total particle-
fluid interaction forces nfff i can be decomposed into a component due to macroscopic
variations in fluid stress tensor on a scale larger than the particle spacing, together with
a component representing the interaction force due to variations of fluid stress tensor
induced by fluctuations in velocity as the fluid passes around individual particles and
through interstices between particles. That is,

nfff i = n(Vp∇ · ξξξ)/V + nfff ′i = εs∇ · ξξξ + nfff ′i. (3.3)

With the considerations of ∇ · ξξξs = nΦΦΦ −∇ · SSS and Eq. (3.3), Eq. (3.1) and Eq. (3.2)
become

εfρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
= εf∇ · ξξξ − nfff ′i + εfρfggg (3.4)
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εsρs

[
∂vvv

∂t
+∇ · (vvvvvv)

]
= εs∇ · ξξξ + nfff ′i + εsρsggg +∇ · ξξξs (3.5)

To further eliminate the fluid stress tensor term ∇ · ξξξ, an equation was obtained by
multiplying Eq. (3.4) with εs/εf and subtracting from Eq. (3.5). This gives

εsρs

[
∂vvv

∂t
+∇ · (vvvvvv)

]
=
nfff ′i
εf
− εsρfggg + εsρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
+ εsρsggg +∇ · ξξξs. (3.6)

Comparing Eq. (3.6) and Eq. (3.2), the total particle-fluid interaction force nfff i can be
written as:

nfff i =
nfff ′i
εf
− εsρfggg + εsρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
. (3.7)

If the term εsρf [∂uuu/∂t+∇ · (uuuuuu)] approaches zero or becomes much smaller than
nfff ′i/εf − εsρfggg, the total particle-fluid interaction force can be simplified to

nfff i =
nfff ′i
εf
− εsρfggg. (3.8)

This restrictive assumption indicates that the fluid flow through the particle phase
should be steady and uniform. Using this simplified equation, two alternative equations
can be obtained based on Eq. (3.1) and Eq. (3.2), namely [123],

εfρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
= ∇ · ξξξ −

(
nfff ′i
εf
− εsρfggg

)
+ εfρfggg (3.9)

εsρs

[
∂vvv

∂t
+∇ · (vvvvvv)

]
= ∇ · ξξξs +

(
nfff ′i
εf
− εsρfggg

)
+ εsρsggg (3.10)

In the literature, there has been a lot of discussion on the precision of different forms
of governing equations. The classification of governing equations related to previous
derivations is given in Table 3.1. Gidaspow [60] distinguished model A and model B,
mainly depending on whether the pressure gradient is shared by both phases (model
A) or only contributes to the fluid phase (model B). Based on the work of Anderson
and Jackson [122], Zhou et al. [123] proposed recommendations on the proper classi-
fication and usage of different models. They defined equation sets I, II, and III. Set
I is the original model directly from the local average of Navier-Stokes equations and
Newton’s second law. Set II is derived by splitting the particle-fluid interaction force
to a component of marcoscopic pressure gradient and a component of friction and drag
contributions (virtual mass force and drag force). Set III is obtained from some math-
ematical manipulations of set I and set II, however a restrictive assumption that flow
around particles is steady and uniform is required. According to the principle of Gi-
daspow to classify models A and B, set I should be an original model B. The model
A is commonly used in commercial software Fluent (ANSYS) and CFX (ANSYS) to
simulate bubbling fluidized beds and circulating fluidized beds.
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Table 3.1: A summary of classifications of governing equations used in the two fluid
method for fluidized beds.

Equation
Classification

Gidaspow [60] Zhou et al. [123]
Eqs. (3.1) and (3.2) - set I (original model B)
Eqs. (3.4) and (3.5) model A set II
Eqs. (3.9) and (3.10) model B set III

After clarifying the governing equations in the two-fluid approach for fluidized beds,
the remaining chanllenge is to develop closure laws to determine solid flow parameters
including particle pressure, effective bulk and shear viscosities for particles; and mo-
mentum transfer between particles and fluid. The most popular approach to solve this
task is the kinetic theory of granular flow [60], in which particle pressure, effective bulk
and shear viscosities for particles are expressed as a function of granular temperature.
One additional equation is required to balance the granular temperature (a measure
of the random kinetic energy per unit mass), which is analogous to the usual thermal
temperature in kinetic theory of dense gases [124]. The detailed discussion of the deter-
mination of solid flow parameters in the two-fluid method is out of focus of this thesis,
but coincidentally, the CFD-DEM approach provides a new angle to view this difficulty
in the traditional method.

3.1.2 CFD-DEM formulations

Particle phase

The main difference between CFD-DEM and two-fluid method is the treatment of the
particle phase. In original DEM proposed by Cundall and Strack [125], the motion
of the individual particle i with mass mi and moment of inertia Ii is calculated in a
Lagrangian frame by Newton’s laws of motion:

mi
dvvvp,i
dt

= fffpf,i +

N0∑
j=1,j 6=i

(fffnc,ij + fff tc,ij) +miggg, (3.11)

Ii
dωωωi
dt

=

N0∑
j=1,j 6=i

(TTT t,ij + TTT r,ij). (3.12)

vvvp,i and ωωωi are, respectively, the transitional and angular velocities of the individual
particle i, and N0 is the number of particles in interaction with particle i. fffpf,i is the
particle-fluid interaction force on the particle scale, fffnc,ij and fff tc,ij are the particle-particle
interaction forces in the normal and tangential directions, and miggg is the gravitational
force. The torque acting on particle i by the particle j includes two components: TTT t,ij
generated by the tangential force fff tc,ij, and TTT r,ij generated by the rolling friction.

The particle-fluid interaction force on individual particle fffpf,i mainly includes drag force
fffd,i, pressure gradient force fff∇p,i, viscous force fff∇·τ,i due to fluid shear stress tensor
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and some other non-dominant forces fff ′′ (such as virtual mass force, Magnus force and
Basset force [1]), expressed as

fffpf,i = fffd,i + fff∇p,i + fff∇·τ,i + fff ′′.

As pointed out by Zhou et al. [123], one important aspect of CFD-DEM implementation
is how to couple the particle-fluid interaction force at the particle scale for solid phase
(fffpf,i) and the particle-fluid interaction force at the CFD cell for fluid phase (nfff i or
FFF pf ). Due to the particle oriented feature, first, the fffpf,i for all individual particles in
the CFD cell were calculated; and then the volumetric particle-fluid interaction force
in the CFD cell was calculated by summation of all individual forces and dividing by
the volume of the CFD cell ∆V . This coupling scheme can be described by

nfff i =
1

∆V

N1∑
j=1

(fffpf,i) =
1

∆V

N1∑
j=1

(fffd,i + fff∇p,i + fff∇·τ,i + fff ′′) , (3.13)

where N1 is the total number of particles in the CFD cell.

Fluid phase

The mass conservation for fluid phase is expressed by

∂

∂t
(εfρf ) +∇ · (εfρfuuu) = 0. (3.14)

For most cases in gas fluidized beds, the fluid compressibility is not essential. The
divergence of fluid stress tensor in Eq. (3.1) can be expressed as

∇ · ξξξ = −∇p+∇ · τττ f , (3.15)

where viscous stress τττ f is

τττ f = µf
[
∇uuu+ (∇uuu)T

]
− 2

3
µf (∇ · uuu)III.

Accordingly, Eq. (3.3) can be rewritten as

nfff i = −εs∇p+ εs∇ · τττ f + nfff ′i. (3.16)

Keeping the consistency with Eq. (3.13) and Eq. (3.16),

nfff ′i =
1

∆V

N1∑
j=1

(fffd,i + fff ′′) . (3.17)

Introducing Eq. (3.15) into the equations of fluid phase in equation-sets I, II and III
for the two-fluid method, three different governing equations of the fluid phase for the
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Table 3.2: Different momentum equations and corresponding fluid-particle interaction
forces used in the CFD-DEM simulation for solid-fluid multiphase flow according to
three sets in the two-fluid method.

Momentum conservation
set I

∂

∂t
(εfρfuuu) +∇ · (εfρfuuuuuu) = −∇p+∇ · τττ f −FFF pf + εfρfggg (3.18)

FFF pf = nfff i =
1

∆V

N1∑
j=1

(fffd,i + +fff∇p,i + fff∇·τ,ifff
′′) (3.19)

fffpf,i = fffd,i + fff∇p,i + fff∇·τ,i + fff ′′ (3.20)

set II (model A)

∂

∂t
(εfρfuuu) +∇ · (εfρfuuuuuu) = −εf∇p+∇ · (εfτττ f )−FFF pf + εfρfggg (3.21)

FFF pf = nfff ′i =
1

∆V

N1∑
i=1

(fffd,i + fff ′′) (3.22)

fffpf,i = fffd,i + fff∇p,i + fff∇·τ,i + fff ′′ (3.23)

set III (model B)

∂

∂t
(εfρfuuu) +∇ · (εfρfuuuuuu) = −∇p+∇ · τττ f −FFF pf + εfρfggg (3.24)

FFF pf = nfff ′i/εf − εsρfggg =
1

εf∆V

N1∑
i=1

(fffd,i + fff ′′)− 1

∆V

N1∑
i=1

(Vp,iρfggg) (3.25)

fffpf,i = (fffd,i + fff ′′)/εf − Vp,iρfggg (3.26)

Only valid under the condition that the fluid flow through the particle phase is
steady and uniform.
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CFD-DEM approach can be derived, as summarised in Table 3.2. As emphasized by
Zhu et al. [126], the coupling of the particle-fluid interaction force acting on particles
fffpf,i and volumetric particle-fluid interaction force in the CFD cell FFF pf must obey
Netwon’s third law of motion. Note that in set II, the pressure gradient force −εs∇p
and the viscous force εs∇ · τττ f on particles have been separated from FFF pf in momentum
balance Eq. (3.21). However, the application of set III is only valid if the fluid flow is
steady, that is

εsρf

[
∂uuu

∂t
+∇ · (uuuuuu)

]
= 0. (3.27)

As suggested by Zhou et al. [123], Tsuji et al. [127], Goniva et al. [128], for the CFD-
DEM simulations of fluidized beds, the model A (set II), given by Eqs. (3.21) to (3.23),
together with the mass conservation Eq. (3.14) will be used in this thesis.

3.2 Drag model

On the basis of different drag models, the momentum exchange coefficient βpf can be
calculated to account for the interaction forces between particles and fluid phase. There-
fore, accurate drag force models are of great importance in achieving high simulation
accuracy.

Before discussion of different drag models, the definition of drag force has to be clar-
ified. Generally, when a fluid percolates through assemblies of particles, each particle
experiences two main forces from the fluid phase, namely a buoyancy force due to aver-
age pressure gradient fff∇p,i and a force resulting from the local frictional losses (friction
between fluid and particle surface) fffd,i. In literature, both fffd,i [60, 129] and fffd,i +fff∇p,i
[130] are sometimes referred as the drag force. The two definitions for the drag force
differ by a factor of 1 − εs. According to the discussion of Eq. (3.3) and Eq. (3.13),
only the friction-caused force was considered as the drag force in this work. The drag
models discussed in this chapter were derived for spherical particles. Drag models for
non-spherical particles can be found in papers of Hölzer and Sommerfeld [131] and
Zastawny et al. [132], and references therein.

3.2.1 Gidaspow drag model

The relation between pressure drop and momentum exchange coefficient βpf , also named
as friction coefficient, can be simply derived from one-dimensional momentum balance
for the fluid phase without acceleration, wall friction and gravity, expressed as

− εf
∂p

∂x
− βpf (u− vi) = 0, (3.28)

where vi is the velocity of particles and εf is fluid volume fraction. Based on experimen-
tal studies with packed beds, Ergun [133] suggested an expression that described the
effects of volume fractions (εf , εs) and superficial gas velocity UUU on the pressure drop in
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the dense regions (fixed dense bed of spherical particles). Wen and Yu [134] derived an
expression for pressure drop prediction in dilute regions by fluidization experiments, in
which they measured the terminal velocity of sedimenting spherical particles. Gidaspow
[60] proposed a drag model based on the Ergun equation for the dense region and the
Wen-Yu correlation for the dilute region, as follows

βpf =


(

150
ε2s
εf

+ 1.75
εs
εf
Rep

)
µf
d2
p

, εs > 0.2

3

4
RepCD

µfεs
d2
p

ε−2.65
f , εs ≤ 0.2

, (3.29)

where the particle Reynolds number Rep and superficial gas velocity can be expressed
as

Rep =
εfρf |uuu− vvvi| dp

µf
=
ρf |UUU | dp
µf

, UUU = εf · (uuu− vvvi). (3.30)

The expression for the drag coefficient is

CD =

24

(
1 + 0.15Re0.687

p

Rep

)
, Rep < 1000

0.44, Rep ≥ 1000

(3.31)

After having obtained the momentum exchange coefficient βpf , the drag force fffd,i can
be calculated by

fffd,i =
Vp,i
εs
βpf (uuu− vvvi). (3.32)

3.2.2 Beetstra drag model

In addition to experiments, fully resolved simulations have been considered as a promis-
ing tool to derive drag models, in which the inter-phase interaction is not modeled via
empirical assumptions but follows from boundary conditions at the surface of the parti-
cles. Koch and Hill [130] first performed lattice Boltzmann method (LBM) simulations
over a range of particle Reynolds numbers and solid volume fractions, and proposed a
functional representation which could precisely fit to the simulation data. Different ex-
pressions were used for different ranges of particle Reynolds numbers and solid volume
fractions. Note that two points in their original work were different from the convention
in literature of fluidization dynamics: 1) the particle radius, rather than the particle
diameter, was used to calculate particle Reynolds number; and 2) the buoyancy force
was accounted in the drag force. The drag model proposed by Koch and Hill [130] only
covers parts of the ranges of solids volume fraction or Reynolds number encountered in
fluidized beds.

Based on the work of Hoef et al. [135] for low particle Reynolds numbers, extensive
LBM simulations were performed by Beetstra et al. [136, 137] to propose a drag model
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(referred to as MBVK) for mono-disperse systems in a wider range of solid volume frac-
tions, εs ∈ [0.1, 0.6], and particle Reynolds numbers Rep ∈ [20, 1000]. Their expression
is given by

F (εs, Rep)mono =
10εs
ε2f

+ε2f (1+1.5ε0.5s )+
0.413Rep

24ε2f

[
ε−1
f + 3εsεf + 8.4Re−0.343

p

1 + 103εs ·Re−(1+4εs)/2
p

]
. (3.33)

Under the assumption of laminar flow with an isolated single particle, the Stokes
(Stokes-Einstein) drag fffd,s is defined as the force of viscous fluid exerted on a small
sphere (friction force on single particle), that is

fffd,s = 3πdpµfUUU. (3.34)

It is natural to use this expression to normalize the drag force obtained from LBM
simulations at arbitrary packing fractions and flow velocities, expressed as

F (εs, Rep) =
fffd,i

3πdpµfUUU
. (3.35)

Comparing Eqs. (3.32) and (3.35), the relationship between normalized drag force
F (εs, Rep) and momentum exchange coefficient βpf can be written as

βpf =
18µfεsεf

d2
p

F (εs, Rep). (3.36)

An accurate drag model is of great importance for the performance in the prediction
of complex particle-fluid flows, especially in poly-disperse systems. In the example of
a binary system, if the volume fraction of small particles is somewhat smaller than
the averaged solid volume fraction (including both large and small particles), then an
over-prediction of the drag force on small particles results. Inversely, the drag force is
under-predicted for the large particles. Beetstra et al. [136, 137] found that a correction
for the effect of poly-dispersity was essential to improve the accuracy of simulations.
The correction factor Fp depends on the solid and fluid volume fractions (εs and εf ),
and on the diameter ratio yi of the diameter of a certain class of particles dp,i and
the Sauter mean diameter d32 of the entire particle system. The detailed poly-disperse
Beetstra drag model (PBVK) can be written as

F (εs, Rep)poly = Fp · F (εs, Rep)mono, (3.37)

Fp = εfyi + εsy
2
i + 0.064εfy

3
i , (3.38)

in which, the Sauter mean diameter d32 instead of dp was used in Eq. (3.30) to calculate
particle Reynolds number. The expressions of the Sauter mean diameter d32 and the
diameter ratio yi are

d32 =

∑c
i=1Nid

3
p,i∑c

i=1 Nid2
p,i

, (3.39)

yi =
dp,i
d32

. (3.40)
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3.2.3 Tang drag model

More recently, Tang et al. [138] further improved the drag model using an iterative
immersed boundary method coupled with LBM, which is almost independent of the
grid resolution. The Tang drag correlation combining the existing drag correlations
for low-Re flows and single-sphere flows (from MBVK) fits the entire dataset with an
average relative deviation of 4 %, with the form of

F (εs, Rep) =
10εs
ε2f

+ ε2f (1 + 1.5ε0.5s )

+

[
0.11εs (1 + εs)−

0.00456

ε4f
+ (0.169εf +

0.0644

ε4f
)Re−0.343

p

]
Rep.

(3.41)

This correlation is so far the best possible expression for the drag force in monodisperse
static arrays of spheres, and is the most accurate basis to simulate particle motion

Figure 3.1: Normalized drag force F (εs, Rep) [-] as a function of solid volume fraction
εs under conditions of different relative velocities |uuu− vvvi| (0.1 m/s with color blue and
2 m/s with color red).
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in fluidized beds. Figure 3.1 summarizes the normalized drag forces predicted by the
different drag models discussed in Section 3.2 under different operation conditions.

3.3 Mapping model

In CFD-DEM, the effects of particle-fluid interactions on the fluid phase are mainly
accounted in continuity and momentum equations, through the presence of the following
two terms: solid volume fraction εs and particle-fluid interaction forces FFF pf (εs, uuu, vvvi).
Based on the CFD cells, these quantities are obtained from positions, sizes, shapes and
velocities of each individual particle as well as local mean fluid velocity. Therefore,
the mapping from particle-scale quantities to macroscopic quantities can profoundly
influence the accuracy of CFD-DEM simulations. The mapping procedure should ideally
conserve relevant physical quantities and handle particles both in the interior cells and
the cells near boundaries (including processing boundaries in parallel simulation).

The simplest mapping method is the particle centroid method (PCM), where only the
particles, the centroids of which fall within a cell are counted for calculating continuum
quantities. The main drawback of this method is that non-physical values are generated
if the particle centroid is located near interfaces of neighboring cells, leading to a non-
smooth solid particle volume field with large gradients.

Instead of counting the entire particle volume to the cell containing the centroid of the
particle, the divided particle volume method (DPVM) equally distributes the volume of
the particle among all cells overlapped by the particle. In this work, each particle is
first divided into 29 sub-regions of equal volume. As shown in Figure 3.2, the volumes
of center sphere, first spherical shell and second spherical shell are Vp/29, (14Vp)/29,
and (14Vp)/29, respectively. The radial distances rs,1, rs,2 of the centroids of sub-regions
in the spherical shells can be calculated by

rs,1 =
3

4

r2
4 − r1

4

r2
3 − r1

3
, rs,2 =

3

4

R4 − r2
4

R3 − r2
3
. (3.42)

In each shell, 14 sets of azimuthal angle ψ and polar angle ϕ are selected to determine
the centroids of 14 sub-regions. Then, the centroids of all 29 sub-regions are used to
distribute the volume of the particle into all involved cells in a manner similar to the
particle centroid method.

From the numerical point of view, fine CFD cells (much smaller than the particle size)
are desirable to be used in some special regions, to obtain the details of gas flow and
guarantee grid-independent solution, for example, in the spray zone of a Wurster bed. In
such cases, the big particle model (BPM) was used on the basis of the work of Link et al.
[139]. A constant factor Scube was used to calculate an effective porous cube representing
the influence of a single particle on neighboring CFD cells, i.e. dcube = dp · Scube. The
porosity of the porous cube representing the particle can be easily calculated as

εcube = 1− Vp
Vcube

= 1− π

6 · S3
cube

. (3.43)
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Different from the real particles, the effective cubes were allowed to overlap in CFD
cells. The solid volume fraction in each cell can be expressed as

εs,cell = (1− εcube) ·Ncube, (3.44)

in which Ncube is the number of effective cubes covering the cell. In this way, grid
refinement will not lead to a non-smooth solid particle volume field with large gradients.
Note that the total volume of all particles is kept constant in the entire simulation
domain.

3.4 Contact model

Generally, there are two types of contact models to deal with the interactions between
particles. In the hard-sphere model, the interactions between particles are treated in-
stantaneously in a pair-wise manner. The collisions are processed one by one according
to the order in which the events occur. For the simulation of dilute systems, the hard-
sphere model is very efficient. However, the adaptability of the hard-sphere model to
dense systems is poor due to the occurrence of multiple collisions [140]. The soft-sphere
model, originally proposed by Cundall and Strack [125], assumes that a slight overlap is
existent between the particles during the collision period to represent the deformation
at the contacting surface. This phenomenon can be simulated by different contact force
models in which physical laws are more or less simplified. Tsuji et al. [127] firstly applied
a soft-sphere model to compute the motion of particles in a fluidized bed, in which the
linear spring and dashpot model was used. DEM simulations rely on realistic contact
force models, however, too many details make both implementation and interpretation
prohibitively difficult. The contact forces discussed in this section focus on particles
with sizes larger than 10 µm. For powders with sizes in the range of 0.1 to 10 µm,
the review of Luding [141] and references therein provide comprehensive discussion of
issues related to cohesion and friction.

Two spherical particles are in mechanical contact if (Ri +Rj − |rrri − rrrj|) > 0, i.e. the
sum of radii of the two particles exceeds the distance of the two centers of particles, as
shown in Figure 3.3. The overlap δij can be expressed as

δij = max [0, (Ri +Rj − |rrri − rrrj|)] . (3.45)

The detection of contacts is much more complicated for irregularly shaped particles.
The normal and tangential components of contact force can be written in the form of

fffnc,ij = fnc,ij · nnnn, fff tc,ij = f tc,ij · nnnt; (3.46)

where nnnn and nnnt are unit vectors. The normal force fnc,ij changes the translational
motion of particles, whereas the tangential force f tc,ij changes the rotational motion of
particles. Both components of the contact force are related to the relative position of
particles rrri−rrrj and the relative velocity of particles vvvi−vvvj + (Riωωωi×nnnn +Rjωωωj ×nnnn).
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Figure 3.3: Soft-sphere particle-particle contact model.

3.4.1 Hertzian spring-dashpot model

Normal direction

The non-linear damped Hertzian spring-dashpot (HSD) model was developed to phe-
nomenologically describe the inelastic collision of two particles (with a ‘loss’ of kinetic
energy) in normal direction. For simplicity of the notation, the indices ij of forces are
omitted. The normal contact force fnc consists of a conservative force and a dissipative
force, expressed as

fnc (δ, δ̇) = −fcons(δ)− fdis(δ, δ̇) = min(0, −knδ − ηnvr,n). (3.47)

The normal stiffness coefficient (or elastic coefficient) kn and the normal damping co-
efficient (or dissipative coefficient) ηn can be written as

kn =
4

3
Eeq
√
Reqδ, (3.48)

ηn = αd(e)
√
knmeq. (3.49)

The relative velocity in normal direction at the contact point vr,n can be calculated by

vr,n = (vvvi − vvvj)nnnn, (3.50)

in which nnnn = (rrri − rrrj)/|rrri − rrrj|. The expressions for equivalent properties of the pair
of particles are listed in Table 3.3.
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Table 3.3: The expressions for equivalent properties in the contact model.

Young’s modulus

Eeq =

(
1− σ2

i

Ei
+

1− σ2
j

Ej

)−1

(3.51)

Radius

Req =

(
1

Ri

+
1

Rj

)−1

(3.52)

Shear modulus

Geq =

(
1− σi
Gi

+
1− σj
Gj

)−1

, Gi =
Ei

2(1 + σi)
(3.53)

Mass

meq =

(
1

mi

+
1

mj

)−1

(3.54)

The minimum operator in Eq. (3.47) is used to cut off the artificially attractive force
(−knδ − ηnδ̇ is a positive value) between two particles as δ > 0, δ̇ < 0, as shown in
Figure B.1.

Different from the work of Cundall and Strack [125], the contribution of the coefficient
of restitution e (the ratio of relative velocities of particles before and after collisions) is
used in the determination of normal damping coefficient ηn by introducing the damping
ratio αd(e). The analytical expression for the damping ratio is given in the work of Tsuji
et al. [142] based on linear spring–dashpot (LSD) model. The analytical expression for
αd(e) based on Hertzian spring-dashpot (HSD) model is [143]

αd(e) =


−
√

5
ln e√

(ln e)2 + π2
, e > 0,

−
√

5, e = 0.

(3.55)

Tangential direction

Considering the Coulomb frictional limit, the tangential contact force f tc can be written
as [128]

f tc =

{
−ktδt − ηtvr,t, f tc < µfc|fnc |,
−µfc|fnc |, f tc > µfc|fnc |,

(3.56)

where the tangential stiffness coefficient kt and the tangential damping coefficient ηt
can be written as

kt = 8Geq

√
Reqδ, (3.57)
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ηt =

√
2

3
αd
√
ktmeq. (3.58)

Moreover, vr,t is the relative tangential velocity (slip velocity) at the contact point,
expressed as

vvvr,t = (vvvi − vvvj)− vr,nnnnn + (Riωωωi × nnnn +Rjωωωj × nnnn). (3.59)

The unit vector in tangential direction is

nnnt =
vvvr,t
|vvvr,t|

. (3.60)

The tangential deformation of the particle surfaces δt since the time when two particles
came into contact, tc,0, can be expressed as

δt =

∫ t

tc,0

vr,tdt. (3.61)

3.4.2 Rolling model

A slight non-sphericity of particles can be considered by the rolling model, which in-
troduces an additional torque even when the relative tangential velocity at the contact
point is zero. According to the work of Ai et al. [144], rolling friction torque TTT r,ij can
be modelled by

TTT r = −krknδ
ωωωr
|ωωωr|

Req; (3.62)

in which kr is a model parameter; and the relative angular velocity is defined as

ωωωr =
Riωωωi +Rjωωωj
Ri +Rj

. (3.63)

3.4.3 Cohesion model

Cohesive forces between particles, including capillary force and viscous force (liquid
induced), electrostatic force, and van der Waals force, may significantly affect particle
dynamics in the system. The effects become more pronounced in the case of fine particle
system (diameter less than 100 µm) [145, 146].

Two forces induced by liquid bridges are considered in this work. The static capillary
force fcapillary, associated with the liquid bridge, can be considered as the sum of two
components: 1) the surface tension acting on the three-phase contact line; and 2)
the pressure difference ∆p across the gas-liquid interface [147]. Besides, wet particles
encounter a viscous force resisting motion, which can be derived from lubrication theory
[148].
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Figure 3.4: Cohesion forces induced by liquid bridge.

Limited to spherical particles, the equation for calculating the capillary force in a
particle-pair geometry was obtained by fitting the set of discrete solutions of the Laplace
equation [149], expressed as:

fcapillary = πσf
√
RiRj

[
C + exp

(
A

dinter
max(Ri, Rj)

+B

)]
, (3.64)

where Ri and Rj are radii of the two particles, dinter is the inter-particle distance, and
σf is the surface tension, as shown in Figure 3.4. By means of numerical solutions, the
coefficients A, B and C can be expressed as functions of liquid volume Vl, contact angle
θ (radian) and larger particle radius Rmax = max(Ri, Rj):

A = −1.1

(
Vl

R3
max

)−0.53

, (3.65)

B =

[
−0.148 ln

(
Vl

R3
max

)
− 0.96

]
θ2 − 0.0082 ln

(
Vl

R3
max

)
+ 0.48, (3.66)

C = 0.0018 ln

(
Vl

R3
max

)
+ 0.078. (3.67)

The liquid volume of the bridge is assumed to be evenly distributed between the two
particles when the inter-particle distance becomes larger than the rupture distance

Dr = (1 + 0.5θ) · V 1/3
l . (3.68)
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The viscosity force fvis in the normal and tangential direction can be calculated as [148]:

fvis,n = 6πµf Reqvr,n
Req

dinter
, (3.69)

fvis,t = 6πµf Reqvr,t(
8

15
ln

Req

dinter
+ 0.9588); (3.70)

where µf is the fluid viscosity, Req is the equivalent radius; and vr,n and vr,t are relative
velocities of the two particles in normal and tangential direction, respectively. In the
simulation, the capillary force and the viscous force are included into the contact forces
fffnc,ij and fff tc,ij in Eqs. (3.11) and (3.12) to solve the motion of each individual particle.
Although Eq. (3.69) and Eq. (3.70) predict an unbounded magnitude of the viscous force
with infinitely small particle separation gaps, in DEM simulations, the surface roughness
limits the approach of the spheres. Hence, a minimum value for dinter, corresponding to
an average asperity height of particle surface ha, is used, and the viscous force remains
constant below this cutoff value.

3.5 Summary
Figure 3.5 summarizes the coupling routine of CFD-DEM with following steps:

1) DEM solver calculates particle positions, velocities (both translational and rota-
tional) based on the governing equations for solid phase (Section 3.1.2); and all possible
forces (Section 3.4). The coupling simulations start from the DEM solver.

2) DEM data are passed to the CFD solver and mapped to corresponding CFD cells.
The solid volume fraction and mean local particle velocity are calculated in each cell
(Section 3.3).

3) The momentum exchange coefficient and the drag force on each particle are calculated
based on solid volume fraction (Section 3.2). The volumetric particle-fluid interaction
force is calculated by ensemble averaging over all particles in a CFD cell (Section 3.1.2).
The solid-fluid interaction forces on individual particles are passed back to the DEM
solver.

4) CFD solver calculates fluid velocity based on the governing equations for fluid phase
(Section 3.1.2). In addition, other scalar transport equations can be calculated, for
instance, the liquid content and species concentration [70].

5) Routine repeats from step 1.

In the step 1, the integration of Newton’s equations of motion (Eqs. (3.11) and (3.12))
for granular particle systems is achieved by velocity-Verlet method. The implementation
scheme of this algorithm is: 1) calculate the velocity at t+ 1/2∆t by the force at t, 2)
calculate the location at t+ ∆t by the velocity at t+ 1/2∆t, 3) update force at t+ ∆t,
and 4) update the velocity at t + ∆t by the force at t + ∆t. The Verlet integration
provides numerical stability without significant extra computation cost compared with
the simple Euler method [150]. In step 4, the pressure-implicit split-operator (PISO)
algorithm, following one predictor (velocity) and two corrector procedures, was used to
solve the governing equations for the fluid phase [128].
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Figure 3.5: CFD-DEM coupling routine.





Chapter 4

Experimental and simulation setups

This chapter is based on parts of Jiang et al. [104], Jiang et al. [45], Jiang et al. [105],
Jiang et al. [120] and Jiang et al. [121].

In this thesis, single collisions between irregular or spherical particles and horizontal
substrates were measured using high-speed imaging and a vibratory feeder. Different
pseudo-2D fluidized beds were applied to investigate important mesoscale phenom-
ena in mono-disperse and poly-disperse particle systems by PTV measurements and
CFD-DEM simulations. The residence time distribution and inter- and intra-particle
coating uniformity in the Wurster fluidized bed were studied by CFD-DEM simula-
tions. All associated experimental and simulation setups are presented in this chapter.

4.1 Single particle collision

A range of applications in the chemical, pharmaceutical, food and power industries
involve the transportation and the processing of particles, where particle interactions
are of great importance to particle motion and the overall performance of the processes.

The coefficient of restitution (COR, also e) is defined as the ratio of relative veloci-
ties of particles before and after a collision event, which is widely used to characterize
the energy dissipation during individual particle-particle or particle-wall interactions.
As a major particle property, the COR is required in multi-scale modeling of complex
granular flows with strong solid phase interactions, such as two-fluid CFD simulations
closed by the kinetic theory of granular flow (KTGF) [60], discrete element method
(DEM) using the hard-sphere [140] or Hertzian spring-dashpot (HSD) or linear spring-
dashpot (LSD) model [103, 125, 143, 145, 151], and coupled CFD-DEM simulations
[103, 127, 140]. The COR is essential in predictions of particle formation processes
in spray fluidized beds by Monte Carlo and population balance modeling (PBM) ap-
proaches [20, 152–155]. As a liquid layer is present on the surface of particles during
the particle formation process, Ennis et al. [20] used the viscous Stokes number Stv to
predict whether a particle-particle collision will result in coalescence. The COR is the
key parameter to determine the critical viscous Stokes number. However, the COR is
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not a physical material property, instead, it is a function of the material parameters
of particles, the masses and radii of particles, the impact velocities, and angular orien-
tations (irregular sharped particles) [156]. Therefore, the measurement of COR is the
basis for experimental and simulation study of complex fluidized bed systems.

4.1.1 High-speed imaging and vibratory feeder

The collision behavior between different particles and horizontal substrates was mea-
sured using a high-speed imaging system and a vibratory feeder. Besides, the PTV
method was improved to reconstruct the trajectories of individual particles. The rota-
tion speeds of individual particles can be evaluated for irregular shapes.

As shown in Figure 4.1a, the motion of particles was observed with a Photron high-
speed camera (LaVision, CMOS chip, 1024 × 1024 pixel) that is located in front of
the target substrate. The effective spatial resolution of this camera decreased when
the frame rate was larger than 1000 fps. It was operated at a frame rate of 5000 fps
and the corresponding spatial resolution was 384× 384 pixels. The high-speed imaging
system was fixed on optical rails; in addition, two linear stages were used to precisely
control the relative position between the high-speed camera and target substrates in
both vertical and horizontal directions. The system was controlled by the DaVis image
acquisition software (LaVision). As summarized in Table 4.1, an optical lens with 60 mm
focal length was employed to obtain a suitable field of view (FOV). Two continuously
illuminating 400 W halogen lamps were utilized as light sources; and the exposure time
was selected as 1/10000 s. The f-number, relative focal length to effective aperture, was
set at the minimum value of 2.8, which yields a minimum depth of field and a maximum
light exposure. In order to capture the entire impact process, the FOV was adjusted
to about 13.5 × 13.5 mm2, which corresponds to an approximate scale factor of 28.4
pixel/mm. This value was obtained from the standard geometry calibration process in
the DaVis software.

The vibratory feeder with a V-shaped channel (Fritsch, Germany) was used to con-
tinuously release a group of particles from the tip of the channel, which was exactly
located on top of the effective region of the camera. The release rate of particles was
controlled by the vibration frequency of the feeder (50 to 80 Hz). The height from the
tip of the channel to the substrate was set to 150 mm in all measurements. As depicted
in Figure 4.1b, the impact process can be a normal impact or an oblique impact due to
the vibratory release approach and irregular particle features.

4.1.2 Material properties

The experimental setup and corresponding PTV algorithms are flexible enough to mea-
sure irregular or spherical particles with characteristic lengths ranging from 100 µm to
several mm. Irregular maltodextrin particles with a characteristic size of approximately
100 µm were the smallest particles in measurements. Therefore, measurements with
maltodextrin are discussed in detail.
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Table 4.1: Parameters of the imaging system and maltodextrin particles.

Parameter Value Unit
Imaging system
CMOS size 384× 384 pixel
frame rate 5000 fps
exposure time 1/10 000 s
scale factor 28.4 pixel/mm
dynamic range 10 bit
local length 60 mm
f-number 2.8 −
depth of FOV 0.1 mm
halogen lamp 400 W
Material
bulk density 500 kg/m3

particle density ρp 900 kg/m3

solid density ρsolid 1500 kg/m3

sphericity SPHT 0.783 −
DE value 5-8 −
Sauter mean diameter d32 137 µm
Young’s modulus E 107 Pa
Poisson ratio σ 0.21 −
friction coefficient µfc 0.5 −

100 μm

a) b)

non-convex

Figure 4.2: Material and substrate: a) SEM of angular, irregular, and non-convex
maltodextrin (DE 6) particles, and b) picture of a maltodextrin tablet.
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The maltodextrin shown in Figure 4.2a (Glucidex IT, Roquette, France) is a carbo-
hydrate mixture that is produced by hydrolysis of starch and can be characterized by
dextrose equivalent (DE). This material was widely used to study particle agglomer-
ation in spray fluidized bed [155, 157]. Material properties are listed in Table 4.1.
The particle size was measured by a Camsizer (Retsch Technology, Germany), which
is a photo-optical system acquiring the images of freely falling irregularly shaped par-
ticles. For individual particles, the area AI and the circumference CI in pixels can
be obtained by image processing. The diameter of an individual particle refers to the
diameter of a circle with the same area. The Sauter mean diameter d32 was calculated
based on the normalized size distribution related to particle number. The sphericity
of irregularly shaped particles was estimated based on particle area and circumference
(SPHT = 4πAI/CI

2). The density of the solid maltodextrin without pore volume ρsolid
was measured by a helium pycnometer (Grabner Instruments, Austria, type: Minidens
TCO).

The substrates used in the measurements were maltodextrin tablets and a microscopy
slide made of glass. As shown in Figure 4.2b, the tablet used as the substrate was
made of maltodextrin powder by a hydraulic press (pressure 1.3 MPa). The mass
of the tablets ranges from 226 to 268 mg. The microscope slide is a thin flat piece of
soda–lime glass (75×26×1 mm3). The maltodextrin tablet and the glass slide were fixed
on the rigid support base. To guarantee stationary conditions, the temperature and
relative humidity of environment were adjusted to relatively constant values before all
experiments. The mean temperature and mean relative humidity during all experiments
were 20.2 °C and 46.2%, respectively.

The improvements of PTV algorithms for irregular particles, measurement results and
the detailed comparisons with non-spherical DEM simulations will be given in Chap-
ter 5.

4.2 Pseudo-2D fluidized bed with mono-disperse par-

ticle system

As studied by Hagemeier et al. [42, 43], the pseudo-2D fluidized is a favorable con-
figuration to conduct PTV measurements. Collision dynamics are the focus of PTV
measurements in mono-disperse system.

4.2.1 Pseudo-2D fluidized bed

Experiments were conducted using γ-alumina particles with a mean diameter of dp =
1.8 mm and an apparent density of ρp = 945 kg/m3 (Geldart class D). The minimum
fluidization velocity Umf for these particles is 0.56 m/s [134]. A total mass of 0.5
kg particles (static height of 145 mm) was fluidized in a pseudo-2D fluidized bed, as
depicted schematically in Figure 4.3. The parameters of the pseudo-2D fluidized bed and
the imaging system are listed in Table 4.2. The dimensions of the process chamber were
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300 mm, 1000 mm and 20 mm in width, height and depth, respectively. The maximum
solid volume fraction (packed bed) was εs,max ≈ 0.61. The ratio between depth and
particle diameter dp is very important for the particle flow behavior in the chamber.
The depth has to be sufficiently small to present pseudo-2D flow of particles, but large
enough to avoid extreme particle-wall collisions and attrition [158, 159]. A depth-width
ratio of 1/15 and a depth-diameter ratio of 11 were realized in this configuration. The
front and back walls were made of shatter-proof glass. Special surface treatment (plastic
film) was made to protect the glass from abrasion by particle contacts. The side walls
were made of aluminum. Pressurized air was used as the fluidization gas. Accurate
control of the inlet gas flow rate was achieved by application of a calibrated mass flow
controller. A 3 mm porous plate distributor with a mean pore size of 10 µm was used
to generate a relatively homogeneous gas distribution over the entire bed bottom. The
same configuration has been used to conduct fiber optical probe (FOP), laser Doppler
velocimetry (LDV) and particle tracking velocimetry (PTV) measurements by Börner
et al. [28], Hagemeier et al. [43] and Meyer et al. [44].

Table 4.2: Parameters of the pseudo-2D fluidized bed and imaging system for the mono-
disperse system.

Parameter Value Unit
Pseudo-2D fludized bed
chamber size (x× y × z) 300× 1000× 20 mm3

particle diameter dp 1.8 mm
particle density ρp 945 kg/m3

particle sphericity 0.96 −
minimum fluidization velocity Umf 0.56 m/s
superficial gas velocity U 3.0Umf/2.5Umf/2.0Umf m/s
total mass 0.5 kg
static bed height 145 mm
Imaging system
CMOS size 1024× 1024 pixel
frame rate 1000 fps
exposure time 1/10 000 s
dynamic range 10 bit
local length 60 mm
f-number 2.8 −
halogen lamp 400 W

4.2.2 Imaging system

Motion of particles was observed with the Photron high-speed camera (LaVision, CMOS
chip, 1024 × 1024 pixel). It was operated at full spatial resolution with a frame rate of
1000 fps, an exposure time of 1/10000 s and a dynamic range of 10 bit. The light sources,
optical lens and imaging control system are the same as those used in measurements of
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COR (Section 4.1.1). The f-number was set at the minimum value of 2.8. The depth of
field was approximately 10 mm in measurements. In order to satisfy the requirement
of high spatial resolution for PTV algorithms and the evaluation of particle collisions,
the field of view was adjusted to 80 × 80 mm2, which corresponds to an approximate
spatial resolution scale factor Sf of 12.8 pixel/mm. This value was obtained from the
standard geometry calibration process in the DaVis software.

For each gas velocity, the camera was positioned at eight locations on two height levels,
namely “high-level” and “low-level”, as shown in Figure 4.3. Specifically, the “low-level”
ranges from y = 130 mm to y = 210 mm (center height ym = 170 mm), and the
“high-level” ranges from y = 220 mm to y = 300 mm (center height ym = 260 mm).
There is a small overlap between two adjacent FOVs at the same level and both side
walls are included in the adjoining FOVs. The four horizontal locations are named as
“left”, “left-center”, “right-center” and “right” from left to right in order, respectively.
The detailed center position of each measurement location is listed in Table 4.3 in
terms of the aspect ratio of the height ym and the distance to the left wall xm. Two
typical features of particle movement in fluidized beds were observed in these regions:
the upwards oriented transport of particles by rising gas bubbles in the center, and
particles sliding down the side walls. Three different target superficial gas velocities U
were selected as 2.0Umf , 2.5Umf and 3.0Umf . For each measurement, the gas flow rate
and the corresponding superficial gas velocity are also given in Table 4.3. Since only
one camera was used, the measurement data of these eight positions for each operation
condition cannot be acquired at the same time. The maximum number of images stored
in each measurement was 5000 (5 s measurement time), which was sufficient to represent
the periodicity of particle flow in the pseudo-2D fluidized bed [43].

Table 4.3: Measurement locations and inlet conditions.

Case Aspect ratio [-] Gas flow rate [kg/h] Gas velocity [m/s]
Low left 1:0.229 28.65 35.75 42.92 1.123 1.401 1.682
Low left-center 1:0.665 28.48 35.62 42.69 1.116 1.396 1.673
Low right-center 1:1.100 28.39 35.77 42.76 1.113 1.402 1.676
Low right 1:1.535 28.66 35.59 42.70 1.123 1.395 1.674
High left 1:0.150 28.52 35.64 42.80 1.118 1.397 1.678
High left-center 1:0.434 28.69 35.78 42.71 1.124 1.403 1.674
High right-center 1:0.719 28.53 35.80 42.96 1.118 1.403 1.684
High right 1:1.004 28.44 35.68 42.93 1.115 1.399 1.683

4.2.3 CFD-DEM simulation setup

In addition to PTV measurements, CFD-DEM simulations were performed for the
pseudo-2D bed to study collision dynamics. The physical properties and simulation
parameters are summarized in Table 4.4. Particle interactions were calculated by the
Hertzian contact model (HSD) with tangential history tracking (Section 3.4.1). In this
soft-sphere contact model, the effects of spring and dashpot appear through stiffness k
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Table 4.4: Physical properties and simulation parameters.

Parameter Value Unit
Simulation chamber
Dimensions in x, y, z directions 300× 1000× 20 mm
Grid numbers in x, y, z directions 60× 300× 4 −
Size ratio dcell/d32 2.42 −
Particle phase
Contact model: hertzian, inelastic, with friction, rolling and tangential history
Particle diameter dp 1.8 mm
Particle density ρp 945 kg/m3

Coefficient of restitution e 0.79 −
Young’s modulus E 108 Pa
Poisson ratio σ 0.25 −
Friction coefficient µf 0.1 −
Rolling coefficient kr 0.1 −
Gas phase
Gas density 1.2 kg/m3

Dynamic viscosity 1.84× 10−5 Pa · s
Superficial gas velocity 1.68 m/s
Boundary condition Slip −
Coupling simulation parameters
CFD time step ∆tCFD 5× 10−5 s
DEM time step ∆tDEM 10−6 s
Simulation time tsim 10 s

and damping coefficient η, which were determined by the physical material properties of
Poisson ratio σ, Young’s modulus E and the COR. The COR of γ-alumina particles was
measured by the method used in Section 4.1. The COR for particle-particle interaction
and particle-wall interaction were considered identical in the simulation. The γ-alumina
particles were assumed to be less stiff than they are in reality, in order to avoid the
requirement to use excessively small DEM time steps. A Young’s modulus of 108 Pa
was used, which provided negligible differences as compared to simulation with the
typical Young’s modulus of 1010 Pa of γ-alumina particles [160]. Artificial softening of
particles is universally used in CFD-DEM simulations of gas-solid flow in fluidized beds.
Coulomb’s friction law was applied to account for particle sliding, in which the friction
coefficient µf was taken from Fries et al. [91]. The rolling coefficient kr in the directional
constant rolling friction model (Section 3.4.2) was taken from Goniva et al. [128]. The
drag force of individual particles was calculated by Tang et al. [138] (Section 3.2).

The chamber was divided into 60 × 300 × 4 cells in x, y and z direction, respectively.
The cuboid grids used in CFD-DEM simulation are depicted in Figure 4.3. The size
ratio dcell/d32 was approximately 2.42. The divided particle volume mapping method
was used according to Section 3.3. The time step should be set smaller than a critical
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value to conform with physical laws and guarantee stability of the DEM and CFD
solvers. The CFD time step was set to 5 × 10−5 s, which ensured that the maximum
Courant number was less than 0.5. The collision time τH can be estimated based on
Hertz contact theory [161], expressed as:

τH = 2.87
( m2

eq

ReqE2
eqvc,max

)0.2

. (4.1)

Assuming a maximum collision velocity vc,max of 1.5 m/s in the whole bed [104], the
estimated collision time τH for two particles is approximately 2.6× 10−5 s. Hence, the
DEM time step was selected as 10−6 s, less than τH/20 for the entire granular system, to
ensure an accurate performance of the contact model. In the CFD, the pressure-implicit
with split-operator (PISO) pressure-velocity coupling algorithm was used to solve the
Navier-Stokes equations for unsteady flow. The k-ε model was applied to simulate mean
flow characteristics for turbulent conditions. The coupling interval between DEM and
CFD solvers was 50 times the DEM time step. Besides, different investigation regions
for the spatial averages of PTV measurement data and CFD-DEM simulation data were
also demonstrated in Figure 4.3.

The intensity calibration and determination of collision events used in PTV to evaluate
particle collision dynamics and detailed comparisons with CFD-DEM simulations will
be given in Chapter 6.

4.3 Pseudo-2D fluidized bed with poly-disperse par-

ticle system

Poly-disperse systems (with particles of different sizes, different densities, or both dif-
ferent sizes and densities) are commonly encountered in practical applications. As
an important phenomenon in poly-disperse fluidization, the segregation and mixing of
particles strongly influences particle formation processes. The PTV technique for the
mono-disperse system can be readily extended to poly-disperse systems of particles with
different sizes marked by distinguishable colors. Using a relatively small pseudo-2D flu-
idized bed, the mixing index was studied by color-PTV measurements in binary and
ternary mixture systems.

4.3.1 Pseudo-2D fluidized bed

As shown schematically in Figure 4.4, the dimensions of the laboratory fluidized bed
are 100 mm, 340 mm and 14 mm in width, height and depth, respectively. The front
and side walls were made of acrylic glass and the back wall was made of aluminum.
Pressurized air was used as fluidization gas. Accurate control of inlet gas flow rate
was achieved by application of a calibrated mass flow controller. A 3 mm porous plate
distributor with a mean pore size of 10 µm was used to generate a relatively uniform
gas distribution.
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Figure 4.4: Sketch of laboratory-scale pseudo-2D fluidized bed configuration for poly-
disperse systems with apparatus dimensions and initial mixture characteristics.

Three different fractions of γ-alumina particles with diameter dp of 3.0 mm, 2.5 mm and
1.8 mm (Geldart class D) were used in measurements, and detailed particle properties
and operation conditions for two cases are summarized in Table 4.5. The size and
sphericity of particles were measured by Camsizer (Retsch GmbH). The density of
particles was measured by a pycnometer (GeoPyc 1360, Micromeritics GmbH). The
COR of particles was, again, measured by the method used in Section 4.1. The minimum
fluidization velocities Umf of different particles were calculated using the correlation of
Wen and Yu [134]. Regarding the initial conditions, different particles are vertically
layered with equal volume of 20 cm3 in Case 1, and horizontally layered with equal
mass of 10.6 g in Case 2, as also shown in Figure 4.4. The static height in both
cases was approximately 28.5 mm. The Sauter mean diameter d32 in both cases was
approximately 2.15 mm. In each case, the gas flow rate was manually increased from
zero to a superficial gas velocity of 2.8 m/s in approximately 1 s. The gas flow velocities
experienced fluctuations of 0.02 m/s during the measurements.

4.3.2 Imaging system

Motion of particles in the poly-disperse particle systems was observed with a high-speed
color camera (Phantom Micro-310, CMOS chip, 1280 × 800 pixels). It was operated
at full spatial resolution with a frame rate of 1000 fps, an exposure time of 1/8000 s
and a dynamic range of 12 bit. The imaging system was controlled by the DaVis image
acquisition software (LaVision).

To capture the whole bed width, the FOV was adjusted to 100× 170 mm2, which cor-
responds to an approximate spatial resolution scale factor Sf of 7.5 pixel/mm. This
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Table 4.5: Particle properties, characteristics of mixtures and operation conditions.

dp [mm] ρp [kg/m3] Sphericity [-] e [-] Umf [m/s] Color

Particle properties

3.0 1478 0.97 0.79 1.05 Red
2.5 1450 0.97 0.81 0.91 Green
1.8 985 0.96 0.81 0.53 White

Case
Bed mass [g]

Height [mm] Ug [m/s]3.0 mm 2.5 mm 1.8 mm

Characteristics of mixtures and operating conditions

1 - 20.2 13.5 28.5 2.8± 0.02
2 10.6 10.6 10.6 28.5 2.8± 0.02

factor was obtained from the standard geometry calibration process in the DaVis soft-
ware. Note that only 170 mm bed height can be observed by the imaging system, as
marked in Figure 4.4. However, most of fluidization characteristics can be observed in
this field of view. The depth of field was approximately 8 mm using the same light
sources, optical lens, f-number as those used in Section 4.1.1.

The raw color images acquired from the high-speed camera are in the red-green-blue
(RGB) space, which is defined by the three chromatic levels of red, green and blue
additive primaries. The number of images stored in each measurement was 5000 (5 s
measurement time), which included the initial (start-up) period.

4.3.3 CFD-DEM simulation setup

As mentioned in the verification of PTV methodology by synthetic images in Sec-
tion 2.3, CFD-DEM simulations are performed for poly-disperse systems. The physical
properties and simulation parameters are listed in Table 4.6. Particle interactions were
also calculated by the Hertzian contact model with tangential history tracking (Sec-
tion 3.4.1). The setups of Young’s modulus E, COR, Poisson ratio σ, friction coefficient
µf and rolling coefficient kr are the same as in Section 4.2.3. The drag model MBVK
for mono-disperse system and PBVK for poly-disperse system are applied according to
descriptions in Section 3.2.

Cuboid grids were used in the simulations. The chamber was divided into 20× 100× 3
cells in x, y and z direction, respectively. The size ratio dcell/d32 was approximately
2.3 for both simulated cases, where dcell = 3

√
Vcell was an effective length based on the

volume of each CFD cell. For the purpose of examination of grid independence (results
shown in section Section 7.3.1), two further CFD grids with size ratios of 2.0 (finer
grid) and 2.7 (coarser grid) were also built. The accurate simulation of granular flow
in fluidized beds is very sensitive to the correct calculation of cell solid volume fraction
[162]. The divided particle volume mapping method was used according to Section 3.3,
which is able to generate smooth solid volume fraction fields for poly-disperse particle
systems.
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Table 4.6: Physical properties and simulation parameters.

Parameter Value Unit
Simulation chamber
Dimensions in x, y, z directions 100× 340× 14 mm
Grid numbers in x, y, z directions 20× 100× 3 −
Size ratio dcell/d32 2.3 −

2.0, 2.7 (independence study) −
Particle phase
Contact model: hertzian, inelastic, with friction, rolling and tangential history
Particle diameter dp Table 4.5 mm
Particle density ρp Table 4.5 kg/m3

Coefficient of restitution e Table 4.5 −
Young’s modulus E 108 Pa
Poisson ratio σ 0.25 −
Friction coefficient µf 0.1 −
Rolling coefficient kr 0.1 −
Gas phase
Gas density 1.2 kg/m3

Dynamic viscosity 1.84× 10−5 Pa · s
Superficial gas velocity 2.8 m/s
Boundary condition Slip −
Coupling simulation parameters
CFD time step ∆tCFD 5× 10−5 s
DEM time step ∆tDEM 10−6 s
Simulation time tsim 30 s

∆t is 1 ms according to the frame rate of the imaging system.

The PISO algorithm and k-ε model were used in the CFD solver. The CFD time step
was set to 5× 10−5 s, which ensured that the maximum Courant number was less than
0.5. The collision time τH can be estimated based on Eq. (4.1). Assuming a maximum
collision velocity vc,max of 1.5 m/s in the whole bed [104], the estimated collision time τH
for two 1.8 mm particles (the smallest objects occurring in the system) is approximately
2.6× 10−5 s. Hence, the DEM time step was selected as 10−6 s, less than τH/20 for the
entire granular system, to ensure an accurate performance of the contact model. The
coupling interval between DEM and CFD solvers was 50 times the DEM time step.

The algorithm of color-classification in PTV and detailed comparisons of different drag
models used in CFD-DEM simulations of poly-disperse systems will be given in Chap-
ter 7.

4.4 Wurster fluidized bed

An important characteristic of the Wurster fluidized bed is that particles continuously
circulate in different zones to experience sub-processes of droplet deposition, drying
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and solidification. Based on motion of individual particles, residence time distributions
(RTDs) are investigated by CFD-DEM simulations in a Wurster fluidized bed.

4.4.1 Geometry of bed

The geometry of the Wurster fluidized bed was built according to the positron emission
particle tracking (PEPT) experiments of Li et al. [27]. The configuration with detailed
dimensions and structured meshes is illustrated in Figure 4.5. The diameter and length
of the concentric cylindrical Wurster tube are 50 mm and 150 mm, respectively. There
is a 15 mm partition gap between tube bottom and the distributor plate. A circular
symmetric spray zone with inflection boundaries [28] was pre-defined in the simulation,
where the maximum penetration was 75 mm and spray angle was about 52.5 degree,
as plotted with red lines in Figure 4.5. The tip of the spray nozzle was located 10 mm
higher than the distributor plate. The volumes of the spray zone and the Wurster tube
were 0.19× 10−3 m3 and 1.18× 10−3 m3, respectively. A relatively large nozzle (5 mm
diameter) was purposely used in the PEPT measurements [27], which is a benefit in
avoiding numerical difficulties caused by the high speed atomization gas flow in CFD-
DEM simulation.

150 mm

15 mm

Wurster tube

340 mm

Nozzle

Internal annulus

External annulus

5 mm

50 mm

120 mm

35 mm

220 mm

250 mm

Spray zone
75 mm

Figure 4.5: Geometry and structured grids of the Wurster fluidized bed together with
specific dimensions (boundaries of the pre-defined axisymmetric spray zone are plotted
as red lines).
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4.4.2 Operation conditions and material properties

Poly-disperse particle system

The CFD-DEM simulation was conducted for the binary mixture system according to
the runs number 11 and 12 in Li et al. [27]. The main objective of this simulation
is to evaluate RTDs and interactions between particles and solid-like droplets, which
will be fully discussed in Chapter 8. The total batch mass of 1.75 mm and 2.67 mm
microcrystalline cellulose (MCC) particles was 200 g with equal mass fractions. The
numbers of small particles and large particles inserted into the bed were 25000 and 7400,
respectively. The detailed material properties of microcrystalline cellulose particles
[93, 128, 163, 164], and operation conditions [27, 93] are listed in Table 4.7. The
atomizer gas flow rate is 4.32 m3/h; and the fluidization gas flow rate is 80.3 m3/h.
Only one tracer particle was used in each run of PEPT measurement. Therefore, the
RTDs were evaluated from the long trajectory of a single particle (about 1.5 hours)
based on the principle of ergodicity.

In a real coating process, fine coating droplets are generated by a two-fluid nozzle,
involving complex break-ups from the liquid sheet to ligaments and droplets [30, 165].
From the perspective of numerical simulation, the modeling of the real droplets spray is
beyond the scope of this study. Instead, solid-like droplets (without serious deformation)

Table 4.7: The detailed material properties of MCC particles and solid-like droplets
and simulation parameters.

Parameter Value Unit
MCC particle
Particle diameter 1.75, 2.67 mm
Particle density 1420, 1387 kg/m3

Poisson ratio 0.3 −
Young’s modulus 106 Pa
Coefficient of restitution 0.69 −
Friction coefficient 0.53 −
Rolling coefficient 0.1 −
Solid-like droplet
Droplet diameter 0.1 mm
Droplet density 1000 kg/m3

Coefficient of restitution 0.1 −
Fluidization gas
Density 1.2 kg/m3

Dynamic viscosity 1.84× 10−5 Pa · s
Number of structured CFD cells 81600 −
CFD time step ∆tCFD 5× 10−5 s
DEM time step ∆tDEM 10−6 s
CFD-DEM coupling ∆tc,1 5× 10−5 s
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with diameter of 0.1 mm were injected into the bed with a liquid flow rate of 10−3 m3/h.
The initial velocity of droplets was set to zero and they are accelerated by the high
velocity gas (without swirl) generated by the spray nozzle. The main material properties
of the solid-like droplets were considered to be the same as those of the real particles,
except of the COR which was set to 0.1 to take account of high energy dissipation
due to particle-liquid interactions. Because of the small mass of solid-like droplets,
the influence of droplets on the particle motion was very limited and did not affect
the comparisons with PEPT measurement results. Furthermore, it was assumed that
the droplets can be deleted when they pass through the spray zone boundaries, which
limited the life-time of droplets and the total number of droplets in the simulation
domain.

Mono-disperse particle system

The CFD-DEM simulation was conducted for the mono-disperse system according to
the run number 16 in Li et al. [27]. The droplet deposition on individual particles
was accounted for in the CFD-DEM simulation by a Monte Carlo approach, which
will be thoroughly explained in Chapter 9. The total batch mass of 1.75 mm MCC
particles is 200 g (about 50000 particles). The atomizer gas flow rate is 3.5 m3/h; and
the fluidization gas flow rate is 80.3 m3/h. No solid-like droplets were used in this
simulation.

4.4.3 Simulation parameters

Poly-disperse particle system

The HSD model and rolling model were used to calculate the particle-particle interac-
tions (Section 3.4). The Young’s modulus E and the friction coefficient µf were taken
from Li et al. [93]. The Poisson ratio σ was measured by Roberts et al. [166]. The
rolling coefficient kr in the directional constant rolling friction model was taken from
Goniva et al. [128].

The Gidaspow drag model was applied using the Sauter mean diameter d32 (Section 3.2).
Assuming a maximum collision velocity of 1.5 m/s in the Wurster coater, the estimated
collision time τH for two solid-like droplets (the smallest bodies occurring in the system)
is about 1.5× 10−5 s by Eq. (4.1). Therefore, the DEM time step was selected as 10−6

s, less than τH/15 for the entire granular system, to ensure an accurate performance of
the Hertz contact model. The PISO algorithm and k-ε model were used in the CFD
solver. The CFD time step was set to 5 × 10−5 s, which ensured that the maximum
Courant number was less than 0.5. The coupling interval between the DEM and CFD
solvers tc,1 was set to 50 times the DEM time step, i.e. 50 µs.

The DEM simulation was firstly performed to insert particles into the simulation do-
main, and this preliminary DEM simulation ended when all particles were almost static.
Initially, large and small particles were separated, with large particles at the bottom.
After particle insertion, the CFD-DEM simulation started and the flow rates of flu-
idization gas and atomization gas were linearly increased from 0 to the target values
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in 2 s time. The insertion of solid-like droplets started from the time mark 2 s of the
CFD-DEM simulation. In order to accurately analyze cycle time and RTDs, at least
30 seconds simulation time had to be completed based on Li et al. [93], while the first
5 s simulation results were not used in the analysis to avoid an influence of initial sep-
aration on the circulation motion of particles. In DEM, the impact (collision) velocity
is defined as the relative velocity of two particles at their first moment of contact. The
impact velocity can significantly affect the appearance of particle agglomeration in the
Wurster coater.

Mono-disperse particle system

Assuming a maximum collision velocity vc,max of 1.5 m/s in the whole bed, the estimated
collision time τH for two 1.75 mm particles is approximate 2.6 × 10−5 s. Hence, the
DEM time step was set as 10−6 s, less than τH/20. The CFD time step and coupling
interval are the same as those for poly-disperse particle system. The drag model MBVK
was used in this simulation (Section 3.2). The setup of contact model is similar to the
poly-disperse system.

To investigate the effect of cohesion forces on particle circulation in the Wurster bed,
the capillary force induced by liquid bridge, Eq. (3.64), was also taken into account in
the DEM simulation. The capillary force was related to the separation (inter-particle)
distance dinter, the surface tension of the liquid σf , and the dimensionless regression
parameters A, B, C, Eqs. (3.65) to (3.67), obtained from the solution of the Laplace-
Young equation [149]. Liquid bridges appear if the inter-particle distance between two
particles is shorter than the rupture distance Dr (Eq. (3.68)) or during the collision of
two particles. Note that the inter-particle distance was considered zero in the latter
case, where the magnitude of capillary force had a constant value. Moreover, the
capillary force disappears when the separation distance increases to the point of bridge
rupture. When implementing the liquid bridge force model into DEM simulations, some
assumptions are used: i) the capillary force only exists in the Wurster tube and spray
zone; ii) the volume of all individual liquid bridges is equal and constant (without effects
of drying and bridge rupture); and iii) there is no capillary force during particle-wall
interactions. The parameter αl, which defines the ratio of the volume of liquid bridge
Vl and the total volume of two primary particles 2Vp (mono-disperse), was a model
parameter to calculate the volume of liquid bridge.

It is important to note that the drag force acting on the solid phase might be reduced due
to the decrease of inter-phase surface for relatively large agglomerate [167]. Normally,
the drag force can be scaled by a constant factor or a dynamic factor related to the
structure of the agglomerate and the number of primary particles in the agglomerate
[84]. In the present work, no scaling of the drag force was attempted in consideration
of the relatively small size and instability of the agglomerates induced by the liquid
bridge.
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4.4.4 Mesh independence

Since a structured grid is important for the mapping procedure, the orthogonal grid
method was used to build hexahedral grids. The grid was relatively fine near the center
axis, in which the gas experiences high velocity due to the influence of the spray. The
detailed orthogonal grid method using the built-in OpenFOAM function blockMesh is
given in Section B.5.

The first 5 s of CFD-DEM simulation were performed for the three different sets of
computational grids (numbers of cells 81600, 122400, 163200, respectively). The average
velocity of gas in the axial direction was evaluated in the circular plane 15 mm above the
bottom distributor for the time range 4 s to 5 s, as shown in Figure 4.6. Clearly, only
little differences exist for the three sets of grids. The spray nozzle generates high gas
velocity close to the axis; then the gas velocity gradually decreases to almost zero when
reaching the Wurster tube; and the axial gas velocity keeps a relative constant value
in the horizontal transport zone except the regions close to the walls. Based on these
results, the set with smallest cell number (81600) was used in all CFD-DEM simulations.
From the numerical point of view, fine CFD cells (smaller than the particle size) are
desirable to be used in some special regions, in order to obtain the details of gas flow
and guarantee grid-independent solution, for example in the spray zone. However, fine
CFD cells will pose the problem of accurate evaluation of local solid volume fraction.

Figure 4.6: Grid independence with respect to average gas velocity in the axial direction
(for a circular cross-section located at 15 mm above the bottom distributor).
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Thus, the big particle model (Section 3.3) was used in the fine grid region, in which the
constant factor Scube was set to 3.

All experiments and simulations conducted in this thesis are summarized in Table A.1
and Table B.1, respectively.





Chapter 5

PTV experiments and DEM simulations of
the coefficient of restitution for irregular
particles impacting on horizontal
substrates

This chapter is based on Jiang et al. [105].

5.1 Coefficient of restitution

Due to its significance, there are a lot of results about the measurement of the coefficient
of restitution (COR) for spherical particles in cases of normal impacts [24, 168, 169] or
oblique impacts [170–173] at both dry and wet conditions.

However, particles are almost always irregular in real applications. Reported exper-
imental studies with irregularly shaped particles are relatively limited, for instance,
for pharmaceutical tablets [164], polyethylene pellets [174, 175], polyethylene glycol
flakes [176], maize grains [177, 178] and coke particles [175]. Most measurements of
the COR use high-speed imaging systems to capture the particle drop and the subse-
quent rebound, since the early work of Labous et al. [179]. The measurement accuracy
with irregular particles is influenced by the out-of-plane motion of particles that results
from various particle properties (such as, the shape and the surface roughness) and the
method to initialize the particle movement. The out-of-plane motion of particles can be
captured by two synchronized high-speed cameras [173, 180] or one high-speed camera
with an additional mirror [174], on account of narrowing the distribution of measured
COR. In order to detect the complete impact process, a high enough temporal resolu-
tion must be used, resulting in an inevitable decrease of the spatial resolution. Besides,
the COR can be measured by, for example, the analysis of sound-sensor signals obtained
from a piezoelectric sensor [181], the micro particle interaction analyzer (MPIA) [169],
or the stroboscopic illumination technique [182].

Moreover, recent years have seen a substantial increase of interest in DEM simulations
of particulate systems with non-spherical particles, in which the contact force is quite
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complicated and closely related to the contact geometry including the contact area and
the specific geometry of overlap region. Comprehensive reviews about the theoretical
development and applications of non-spherical DEM simulations are given by Zhong
et al. [103] and Lu et al. [183]. Despite a range of methods having been proposed for
representing the shapes of non-spherical particles, for instance, the composite multi-
sphere model [184, 185] and the continuous superquadric model [185, 186], and for de-
tecting the contacts of non-spherical particles, big challenges still exist to efficiently and
accurately handle particles involving the aspects of non-convex shapes, heterogeneous
sizes and multiple contacts. The evidence on the validity of the multi-sphere model is
limited. Kruggel-Emden et al. [184] and Höhner et al. [187] approximated a spherical
particle by the multi-sphere model together with a roughness factor; and studied the
particle-wall collision behavior. Markauskas and Kačianauskas [188] and Santos et al.
[189] compared the discharge time, the angle of repose, and the coefficient of friction
obtained from multi-sphere DEM simulations with experiments for rice grains.

Experiment data for highly angular, lowly spherical, irregular and even non-convex
particles (similar to maltodextrin in Figure 4.2a) is very scarce. A particle is non-convex
if there exist two points inside the particle such that the line segment connecting these
two points does not lie entirely inside the particle [190]. Due to the complex behavior of
such irregular particles after collision, the coefficient of restitution should be expected
to be distributed depending on the geometry. Thus, experiments that enable to obtain
the distributions of characteristics associated with collisions of non-spherical particles
are essential for the comparison and the improvement of different non-spherical DEM
algorithms.

The objective of this chapter is to evaluate the performance of the improved particle
tracking velocimety (PTV) in tracking irregular particles with a characteristic size of
100 µm. Moreover, the distributions of COR and properties associated with particle-
wall collision behavior, including the rotational speed after impacting and the difference
of incidence angle and rebound angle, can be evaluated from individual particle trajec-
tories. The measurement data can be further used to validate DEM simulations of the
collisions between irregular particles and horizontal substrates.

The structure of this chapter is: Section 5.2 introduces the improvement of PTV for
the COR of irregular particles. Section 5.3 briefly describes the multi-sphere (MS)
model and the superquadric (SQ) model used in DEM simulations of non-spherical
particles, together with the representation of irregular particles based on scanning elec-
tron microscope (SEM) images. Section 5.4 presents and discusses the measurement
results about characteristics of particle-wall collisions, including distributions of total
and normal coefficients of restitution, the rotation speed after collision, the absolute
difference of incidence angle and rebound angle. In addition, detailed comparison of
collision characteristics is performed with data from DEM simulations using two models
of representation.
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5.2 Tracking of non-spherical particles

5.2.1 Iterative thresholding

Based on the setup of measurements given in Section 4.1, the PTV method described
in Chapter 2 was improved to reconstruct trajectories of irregular particles.

The raw image acquired by the high-speed camera is a gray level image, the intensity
I of which ranges from 0 to 210. Provided that an image contains target particles and
the background occupying different average intensity (gray) levels, the histogram-based
iterative thresholding provides a simple and effective technique to automatically select
the optimal threshold Topt to target particles [191], expressed as

Topt = lim
n→∞

wb(Tn) + wp(Tn)

2
. (5.1)

The histogram was used to estimate the probability mass function (PMF) p(I) of the
raw image. With a threshold intensity T , the probability mass functions of the target
particle and the background are pp(I), T + 1 < I < Imax and pb(I), Imin < I < T ,
respectively. According to Eq. (5.1), a new threshold Tn is calculated by the average
of weighted mean of the background wb(Tn) and the target particle wp(Tn) for each
iteration n [192]. The weighted mean of the background wb(Tn) and the target particle
wp(Tn) can be, respectively, calculated by

wb(Tn) =
Tn∑
I=0

I · pb(I), (5.2)

wp(Tn) =
Imax∑

I=Tn+1

I · pp(I). (5.3)

The initial threshold is T0 = (Imax− Imin)/2; and the termination criterion for the iter-
ation is |Tn+1 − Tn|/Tn < 0.05. After the iterative thresholding process, the raw image
was transformed into a binary image, i.e. regions of particles and the background were
assigned values of unity and zero, respectively. The method of image moment was then
used to get the centroid rrr, orientation θo, aspect ratio Lminor/Lmajor and area AI of each
individual irregular particle (from Eq. (2.3) to Eq. (2.9)). The minimum displacement
algorithm was used to reconstruct the trajectory of each individual irregular particle
(Eq. (2.11)).

If the irregularly shaped particle experiences a translational motion in the out-of-plane
direction, the area AI of the particle obviously varies due to the small depth of the field
of view (approximately 0.1 mm). If the irregularly shaped particle experiences rotations
around axis x and axis y (space-fixed), the aspect ratio RA = Lminor/Lmajor can vary
depending on the detailed particle geometry. Hence, the coefficients of variation cv of
area and aspect ratio of the tracked particles were used to filter particles with out-
of-plane motion and rotations around axis x and axis y. Only if cv(AI,i) < 10% and
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cv(RA,i) < 10%, the particle was considered as qualified for the analysis of coefficient
of restitution and other collision properties. The total number of variables in the data
sets of AI and RA was determined by the length of the individual particle trajectory.
In order to avoid the influence of rotation of particles before collision, only the particles
without rotation before collision are considered in the post-processing.

5.2.2 Particle-wall collision behavior

The trajectory obtained from PTV was used to analyze the particle-wall collision be-
havior for each individual particle. As shown in Figure 4.1b, the total coefficient of
restitution e for particle-wall collisions is defined from the impact velocity v1 and re-
bound velocity v2, expressed by

COR = e =
|v2|
|v1|

. (5.4)

The normal and tangential coefficients of restitution can be further evaluated using the
normal and tangential components of impact and rebound velocities, respectively, as

CORn = en =
|vn,2|
|vn,1|

, CORt = et =
|vt,2|
|vt,1|

. (5.5)

Assuming that the variation of orientations in two subsequent frames is not larger than
π/2, the angular velocity of the particle around the z axis (in space-fixed system) can
be obtained by

ω =
min(π − |θo,2 − θo,1|, |θo,2 − θo,1|)

∆t
, (5.6)

in which the subscripts 1 and 2 stand for the subsequent frames. The numerator is the
shortest difference of two angles, as θo ∈ [−π/2, π/2]. Furthermore, the incidence angle
θ1 and the rebound angle θ2 are defined as the angles between velocity vectors and the
vertical axis,

θ1 = arctan

(∣∣∣∣ v1,t

v1,n

∣∣∣∣) , θ2 = arctan

(∣∣∣∣ v2,t

v2,n

∣∣∣∣) . (5.7)

These two angles are in the range of 0 to 90°. The absolute difference of the two angles
∆θ equals to |θ2 − θ1|.

5.3 DEM simulation of non-spherical particles

5.3.1 Equation of motion

In order to handle the rotational motion of irregularly shaped particles, two coordi-
nate systems, i.e. the space-fixed (or laboratory, global) system Ss and the body-fixed
(local) system Sb, must be clearly defined. The space-fixed coordinate system is not
moving with the particle but fixed in the global space. Newton’s equations of mo-
tion are formulated in the space-fixed system. Therefore, it is the native system of
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the DEM simulation; and other coordinates and other variables describing the state of
particles must be finally expressed in this system. However, in the space-fixed system,
the moment of inertia tensor Ii contains off-diagonal elements which change with the
orientation of irregularly shaped particles. This problem is solved by introducing the
body-fixed system that has the centroid of an individual particle as its origin and axes
which are coinciding with the principle axes of inertia of this particle. Note that any
physical parameter can be transformed from the space-fixed axes Φs into the body-fixed
axes Φb and vice versa by the transformation matrix Λi, as follows:

Φb = Λ−1
i · Φs, Φs = Λi · Φb. (5.8)

The translational motion governed by Newton’s second law of motion in the space-fixed
system, is expressed by

mi
dGGG2

i

d2t
= FFF sum, (5.9)

in which mi and GGGi are the total mass and the coordinates of the centroid of gravity of
the non-spherical particle i, respectively. The term FFF sum is the sum of forces acting on
particle i in the space-fixed system, including normal and tangential particle-particle
contact forces and other external forces. The Hertzian spring-dashpot (HSD) model
was used to calculate the contact force and detailed equations are given in Section 3.4.

The rotational motion is affected by the particle shape, which can be obtained from the
Euler equations in the body-fixed frame. It follows:

Îi
dWWW i

dt
+WWW i ×

(
ÎiWWW i

)
= Λ−1

i TTT sum,WWW i =
dθθθi
dt
, (5.10)

whereWWW i is the angular velocity in the body-fixed system, TTT sum is the sum of all torques
acting on the particle i in the space-fixed frame; and the Îi is the principal moment
of inertia calculated by the principal axis transformation from inertia tensor Ii in the
space-fixed system. Accordingly, the transformation is required to convert the moments
TTT sum from the space-fixed frame to the body-fixed frame, via the transformation matrix
Λi. Different algorithms can be used to deal with the problems caused by the orientation
of irregularly shaped particles, depending on different approaches to represent irregular
particle shapes [103, 183].

5.3.2 Representation of irregular shapes of particles

As shown in Figure 5.1, the multi-sphere model and the superquadric model were used
to represent the irregularly shaped maltodextrin particles according to the scanning
electron microscope (SEM) measurements.

Multi-sphere model

In the composite multi-sphere model, the irregularly shaped particle can be approxi-
mated by a certain number of rigidly connected primary spheres with different sizes.
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Binary image from SEM MSM
Superquadric

(ellipsoid)
Parameter

Major axis: 199 𝜇m

Minor axis: 148 𝜇m

Aspect ratio: 1.35

Porosity in MS: 0.395

DE 6-P1

Major axis: 150 𝜇m

Minor axis: 98 𝜇m

Aspect ratio: 1.53

Porosity in MS: 0.398

DE 6-P2

Major axis: 119 𝜇m

Minor axis: 98 𝜇m

Aspect ratio: 1.22

Porosity in MS: 0.396

DE 6-P3

Sphericity: 0.75

Sphericity : 0.82

Sphericity : 0.77

Nr. of spheres: 51

Nr. of spheres: 48

Nr. of spheres: 33

Figure 5.1: Representations of irregular and non-convex maltodextrin (DE 6) particles
by means of the multi-sphere model and the superquadric model based on scanning
electron microscope (SEM) images.

During the DEM simulation, the relative distances between spheres will remain fixed.
The contact force between multi-sphere particles is calculated from primary spheres us-
ing the sphere-sphere contact detection model and the HSD contact force model. Then,
the forces and torques acting on all primary spheres are accumulated to the center
of mass of the multi-sphere particle. Specifically, for an irregular particle i assembled
from spheres with the same density, the total mass mi, the coordinate of the centroid
of gravity GGGi, and the inertia tensor Ii can be calculated by Eq. (5.11), Eq. (5.12), and
Eq. (5.13), respectively, in Table 5.1. Ns is the number of spheres in the multi-sphere
particle i; mi,k and Ii,k are the mass and moment of inertia of the individual sphere k,
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respectively, and Gx,k, Gy,k and Gz,k are the distances from the principal axes of the
multi-sphere particle i to the centroid of sphere k.

The detailed multi-sphere representation is achieved by the clustering method [193] ac-
cording to the 2D geometry of individual particles from SEM. As indicated in Figure 5.1,
the steps of the clustering method include:

1 Obtain the surface of an irregular particle from a SEM image. The original SEM
image was first binarized by the iterative thresholding method (Section 5.2.1).
Then, it is easy to generate primary circles inside the boundary of the 2D irregular
particle.

2 Expand all primary circles to the boundary of the 2D particle; the one with the
largest diameter is recorded as S1. The centroid of S1 locates at (xs,1, ys,1), and
the diameter of S1 is ds,1.

3 Expand the 2D surface in the third direction with a depth of ds,1 to generate
the 3D structure of the irregular particle. The centroid of S1 is adjusted to
(xs,1, ys,1, ds,1/2).

4 Generate primary spheres inside the boundary of the 3D particle and remove the
primary spheres the centroids of which are located inside the boundary of S1. The
boundary of S1 is considered to constrain the expansion of other primary spheres.

5 Expand the remaining primary spheres to the boundaries of the 3D particle and
S1, and record the one with the largest diameter as S2. Remove the primary
spheres the centroids of which are located inside the boundary of S2. The bound-
ary of S2 is added as a new constraint.

6 Repeat step 5 to find the sphere Sn. The termination criterion used in this work
is ε =

∑n Vs,i/VP ≤ (ρp/ρsolid).

7 Generate the 3D multi-sphere irregular particle according to the centroids and
the diameters of S1 to Sn.

The entire clustering representation is accomplished by a self-developed algorithm in
MATLAB. Figure 5.1 shows three typical multi-sphere maltodextrin particles gener-
ated by this method. The aspect ratios of P3, P1, P2 are 1.22, 1.35 and 1.53, which,
receptively, corresponds to the RA,10, RA,50 and RA,90 measured by the Camsizer. The
ratios of smallest to largest sphere diameter of P1, P2, P3 are 0.092, 0.117 and 0.154;
and the numbers of spheres of P1, P2, P3 are 51, 48, 33, respectively. The density of
each sphere is the solid density of maltodextrin ρsolid. By this presentation method, the
relative differences between the centroid of gravity GGGi (Eq. (5.12)) and the centroid of
S1 are less than 5 %. Moreover, the non-convex feature of the particles can be partly
preserved. Obviously, the shape of particles can be better represented with increasing
number of spheres, but the simulation expenses are also significantly increased.
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In case of 3D geometries of irregular particles obtained from X-ray tomography [157,
194], the clustering method can start from step 4. Notably, the multi-sphere model
can be further modified into the bonded-particle model [195] to formulate clusters with
arbitrary shapes; in which the bonds between particles are possible to deform and break.

Superquadric model

The superquadric model is a continuous functional approach to smoothly represent
non-spherical particles, given as follows

fsuper(XXX) =
(∣∣∣x
a

∣∣∣n2

+
∣∣∣y
b

∣∣∣n2
)n1/n2

+
∣∣∣z
c

∣∣∣n2

− 1 = 0, (5.17)

where a, b, c are the half-lengths of the particle along its principal axes, and n1 and
n2 are blockiness parameters. The contact detection of superquadric model can be
achieved by analytically or iteratively resolving the interactions between functions of
different particles, or by the discrete function representation [183]. Equation (5.17)
defines the surface of superquadric particles in the body-fixed coordinate system. If a
certain XXX makes fsuper < 0, then the point XXX is located inside the superquadic particle.
If fsuper > 0, the point XXX is outside the particle. If fsuper = 0, the point XXX lies on
the surface of the particle. In the superquadric model, the transformation matrix can
be calculated by the method of quaternions. A rotation by angle θe around the unit
axis of rotation eeeb can be represented by a rotation quaternion with the help of an
extension of Euler’s formula (Eq. (5.15)). The quaternions must satisfy the constraint
of q2

0 + q2
1 + q2

2 + q2
3 = 1. Then, the rotation matrix Λ = Λ(qqq) can be constructed from

the quaternion components according to Eq. (5.16). The analytical expressions for the
volume and inertia tensor of superquadric particle follow the work of Jaklic et al. [196];
and the detailed particle-particle and particle-wall contact detection algorithms have
been described in the paper of Podlozhnyuk et al. [186].

Supposing that the shape of irregular particles can be represented by a 3D ellipsoid
(as shown in Figure 5.1), the blockiness parameters n1 and n2 in Eq. (5.17) are both
set to 2 and the parameters a and b representing half the lengths of the principal axes
are set to be equal. Then, the values of a, b, c are measured from the SEM image
by evaluation of image moments (Eq. (2.8) and Eq. (2.9)), i.e. a = b = Lminor/2 and
c = Lmajor/2. By the SQ method, all non-convex features of maltodextrin particles are
lost and particle surfaces are smooth.

For impacts between maltodextrin particles (DE 6) and the maltodextrin tablet sub-
strate, the DEM simulations were performed using the built-in multi-sphere model or
the superquadric model in the DEM package LIGGGHTS [197]. For each approach of
the shape representation, 1000 irregular particles with random initial orientations were
dropped onto the substrate from different heights to finally achieve the normal distri-
butions of normal and tangential impact velocities. The required means and standard
deviations were evaluated from PTV measurements (Table 5.2). The initial rotational
speed of all particles was set to zero. As listed in Table 4.1, the Young’s modulus and
Poisson ratio of maltodextrin particles were obtained from published experimental data
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[198]. The mean value of the COR from measurements was used as the input parameter
of the HSD contact model. A simple inclined plane experiment was used to estimate
the particle-wall sliding friction coefficient. Maltodextrin particles were placed on a
maltodextrin tablet and the tablet was then gradually tilted. The angle at which the
maltodextrin particles started to slide down was recorded by the high-speed imaging
system and was used to calculate sliding friction coefficient. The measurement was
repeated 10 times and the average sliding friction coefficient was about 0.5.

5.4 Results and discussion

5.4.1 Analysis for sample particle

Figure 5.2a shows the trajectory of a sample maltodextrin (DE 6) particle before and
after impacting on the maltodextrin (DE 6) tablet. Due to the complex contact geom-
etry of the irregular particle, the trajectories of the sample particle before and after the
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Figure 5.2: Analysis for sample particle: a) particle trajectory (with incidence angle θ1
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collision with the substrate are both located at the right-hand side of the vertical axis.
The rebound angle is larger than the incidence angle, resulting in an absolute difference
of two angles of 25.5 degrees.

Considering the entire trajectory of the sample particle (320 time steps), the mean value
of the area AI is 53.07 with a CV of 3.16%; and the mean value of the aspect ratio
RA is 1.38 with a CV of 1.78%, as shown in Figure 5.2b. Thus, the sample particle is
a qualified particle, in which the effects of the motion in z direction and the rotations
around x, y axes on the particle tracking are very small.

Figure 5.2c shows both the total velocities and the normal velocities before and after the
collision with the tablet. Before the collision, the total velocity has reached a relatively
constant value and the normal velocity almost coincides with the total velocity. Whereas
the motion after the collision is a process of gradual deceleration due to the effect of
aerodynamic and gravity forces. The difference of absolute values of total velocity
and normal velocity implies an increased tangential velocity. Moreover, there are some
fluctuations of velocity, especially in the range near the contact point, which are caused
by big variations of particle orientation. In order to reduce the negative influence of
velocity fluctuations and constrain the effect of aerodynamic forces and gravity, the
means of total and normal velocities in the time span of 25 time steps (5 ms) before
and after the collision were used to evaluate the respective coefficients of restitution.
A similar method was used in the experiments of Sutkar et al. [24] and Crüger et al.
[173]. For this sample particle, e = 0.512 and en = 0.421. However, the tangential
coefficient of restitution of this sample particle attains a value larger than 100 due
to the small incidence angle and the large absolute difference of incidence angle and
rebound angle. It is predictable that the tangential coefficient of restitution will be
distributed in a very wide range due to the irregular shape of particles. Therefore,
the analysis of tangential coefficient of restitution will not be included in the following
results, but could be performed in general.

Figure 5.2d shows the rotational speeds of the particle before and after the collision
with the tablet. Different from the unit rad/s for angular velocity (angular frequency),
the unit of rotation in the results is the ordinary frequency ω/2π (1/s, revolutions
per second). The rotational speed before the collision is nearly zero, whereas it is
rapidly increased to the peak value of approximately 250 1/s after the collision. The
very low but finite value of rotational speed before the collision does not result from
real particle rotation; indeed, it comes from the slight variations of orientation in the
particle segmentation process. The rotational speed after the collision was averaged by
the same method as the translational velocity.

The measured trajectories of all irregular particles before and after collision in a time
period of 100 ms are shown in Figure A.1.

5.4.2 Measurement data of the COR

The described analysis was applied to evaluate each particle-wall collision, including
total and normal coefficients of restitution, rotational speed after collision, and the
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incidence and rebound angles. In total, the number of qualified particles for the mal-
todextrin tablet and the glass slide substrate are 808 and 395, respectively. For the
current experimental configuration, the mean impact velocity is approximately 0.65
m/s with a low CV, as listed in Table 5.2. In this range, the dependence of the co-

efficient of restitution on the impact velocity, i.e. the v
−1/4
1 dependence, is very weak

according to the theoretical model of Johnson [199] and the simulation results of Wu
et al. [200]. Moreover, the thickness of the glass substrate and the maltodextrin tablet
used in this work is large enough to eliminate the effect of plate support on the coeffi-
cient of restitution, as proposed by Sondergaard et al. [182].

For each set of data, the mean (average), the coefficient of variation (CV), the median
(x50), and the span ((x90 − x10)/x50) are reported to describe both the central point
and the relative width of distribution (Table 5.2). In terms of means and medians, the
total and normal coefficients of restitution on the DE 6 tablet are smaller than those
on the glass substrate, while the rotational speed after collision and the absolute angle
difference of the DE 6 tablet are larger than those of the glass substrate. The observation
that a more elastic substrate (larger Young’s modulus) has a larger mean coefficient of

Table 5.2: Measurement data of maltodextrin (DE 6) particles impacting on maltodex-
trin tablets or on glass substrate.

Maltodextrin (DE 6) tablet Glass substrate
Parameter mean CV [%] x50

x90−x10
x50

mean CV [%] x50
x90−x10
x50

e [-] 0.536 15.71 0.523 0.382 0.651 14.77 0.633 0.356
en [-] 0.386 39.44 0.382 1.023 0.487 35.98 0.479 0.837
ω2/2π [1/s] 261 55.23 233 1.657 237 49.12 214 40.66
∆θ [°] 20.56 71.97 18.28 2.143 18.73 63.75 17.69 2.079
v1 [m/s] 0.64 3.21 - - 0.66 2.79 - -
v1,n [m/s] 0.635 3.33 - - 0.656 2.83 - -
v1,t [m/s] 0.078 1.25 - - 0.071 1.08 - -

Table 5.3: Supplementary measurement data.

Material d50 [µm] Sphericity [-] v̄1 [m/s] ē [-] CV [%] ēn [-] CV [%]
DE 47 155 0.82 0.66 0.64 26.7 0.49 29.3
Glass 227 0.93 1.12 0.74 16.7 0.71 18.9
MCC 314 0.87 1.36 0.69 11.2 0.61 17.5
γ-Alumina 604 0.97 1.61 0.79 8.3 0.78 9.1
Rapeseed 2140 0.94 1.79 0.68 10.3 0.65 13.6
ABS 6012 0.99 1.66 0.57 4.8 0.57 5.0
1 DE 47: dried glucose syrup; MCC: microcrystalline cellulose; ABS: acrylonitrile

butadiene styrene.
2 The data of particle size and sphericity were measured by the Camsizer (Retsch

GmbH).
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restitution is in accordance with the measurement studies by Bharadwaj et al. [164]
and Gibson et al. [175]. Due to the irregular shapes of particles and irregular contact
geometries, all measured properties related to the macroscopic particle-wall collisions
are scattered. According to the coefficients of variation and spans, the measured data
on the DE 6 tablet are scattered more than those on the glass substrate. For each
substrate, the mean and the median of the normal coefficient of restitution are smaller
than those of the total coefficient of restitution; and the data of normal coefficient of
restitution is more spreading. The difference between normal and total coefficients of
restitution resulted from the tangential velocity of the particle after collision, which is
largely affected by the rebound angle and the rotational speed.

The experimental method and the PTV algorithms used in this work are flexible enough
to measure irregular or spherical particles with characteristic lengths ranging from
100 µm to several mm. The measurement results of 6 different particles are sum-
marized in Table 5.3. Some of these results will be used in Chapter 6 and Chapter 7 to
study the granular flow in fluidized beds.

5.4.3 Comparison with DEM simulations

COR of irregular particles

Figure 5.3 shows the comparison of distributions of total and normal coefficients of
restitution from measurements and non-spherical DEM simulations with the multi-
sphere model and the superquadric model. The medians, spans, means and coefficients
of variation of all distributions shown in Figure 5.3 are given in Table 5.4. The MS
model predicts the global distribution of the coefficient of restitution e better than the
SQ model, even though the mean and the median of the SQ model are closer to the
measurement data. In particular, the profiles of the measurement and the MS model
almost coincide when the coefficient of restitution is less than 0.5; and the deviation
increases only slightly as the coefficient of restitution increases from 0.5 to 0.7. Contrary,
the width of the distribution of the coefficient of restitution predicted by the SQ model
is much narrower compared with the measurement data. Referring to the span and
the coefficient of variation, the distribution of the SQ model is too concentrated. The
influence of particle shape on the distribution of the coefficient of restitution is nearly
negligible for both the MS and the SQ models.

Compared with the measurement data of normal coefficient of restitution, the MS model
slightly underestimates the mean and the median normal coefficient of restitution; in-
versely, the SQ model overestimates those value. The discrepancies in the coefficient of
variation and the span of the MS model are much lower than those of the SQ model.
Some deviation between measurement and the MS model is observed at cumulative fre-
quency higher than 0.5. The normal coefficient of restitution is sensitive to the shape
of irregular particles; and the influence of aspect ratio is more pronounced for the SQ
method. With increasing aspect ratio, the means and medians predicted by P3, P1,
and P2 decrease and the corresponding coefficients of variation and the spans increase.
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Figure 5.3: Comparison of distributions of total and normal coefficients of restitu-
tion: a), b) e from measurements, the multi-sphere simulations and the superquadric
simulations, and c), d) en from measurements, the multi-sphere simulations and the
superquadric simulations.

Nevertheless, all distributions of the normal coefficient of restitution obtained by the
SQ model quite strongly differ from the measurement data.

For the MS model, there is no clear dependency of the coefficients of restitution on the
aspect ratio. This is because the influence of irregular shape on particle-wall collisions
is more complex and not limited to the aspect ratio. In addition to the geometry prop-
erties like the number of sub-spheres NS, the aspect ratio RA and the ratio of smallest
sphere diameter to largest sphere diameter ds,min/ds,max, the contact properties includ-
ing the number of spheres involved in the individual contact and the corresponding radii
of involved spheres rs,c, are also important to measure the influence of irregular particle
shape, as listed in Table 5.5. The means and coefficients of variation of Ns,c are close for
the three investigated particles, which may explain the relatively compact arrangement
of distribution curves in Figure 5.3. The average rs,c of P1 is much larger than that
of P2 and P3, due to the larger size of sphere S1, the smaller ds,min/ds,max, and the
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Table 5.4: Total and normal coefficients of restitution of maltodextrin (DE 6) particles
impacting on maltodextrin tablets.

Exp.
Multi-sphere (MS) model Superquadric (SQ) model

Parameter P1 P2 P3 All P1 P2 P3 All
e
e50 0.523 0.496 0.492 0.506 0.498 0.525 0.526 0.525 0.526
e90−e10
e50

0.382 0.323 0.316 0.280 0.309 0.051 0.072 0.027 0.048

mean 0.536 0.488 0.487 0.493 0.489 0.523 0.531 0.529 0.529
CV 15.71 14.79 12.62 13.47 13.61 11.01 5.48 4.56 7.39
en
en,50 0.382 0.315 0.303 0.346 0.323 0.485 0.437 0.512 0.489
en,90−en,10

en,50
1.023 1.116 1.208 0.936 1.079 0.313 0.563 0.154 0.373

mean 0.386 0.311 0.300 0.339 0.317 0.466 0.423 0.504 0.465
CV 39.44 41.44 44.58 35.32 40.51 19.54 23.09 9.72 18.91

Table 5.5: Contact properties and geometry properties of multi-sphere particles.

Multi-sphere (MS) model
Parameter P1 P2 P3 All
Contact property
mean Ns,c [-] 1.506 1.489 1.522 1.515
CV [%] 35.3 29.5 31.6 33.8
mean rs,c [µm] 21.6 11.8 11.5 18.3
CV [%] 71.8 52.5 19.3 75.5
Geometry property
Ns [-] 51 48 33
ds,min/ds,max [-] 0.092 0.117 0.154
RA [-] 1.35 1.53 1.22

higher probability of S1 to collide with the substrate. The coefficient of variation of
rs,c is mainly affected by the ratio of smallest sphere diameter and largest sphere di-
ameter involved in individual multiple contacts. Kruggel-Emden et al. [184] found that
artificial multiple contacts may lead to large deviations from the experimental results
when attempting to approximate smooth spherical particles in the DEM. The increase
in number of spheres to form smooth particles had no direct effects on improving the
accuracy of the numerical predictions [184, 188]. Whereas the MS model approximates
the irregular shape of non-convex particles, multiple contacts in individual collision
may be essential to represent the non-convex features. Unfortunately, the microscopic
particle contact geometry cannot be measured by the current experimental configura-
tion. Further increase in the spatial resolution of the imaging system would require to
combine an additional long distance microscope with the high-speed camera.
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Generally, the total and normal coefficients of restitution numerically obtained by the
MS model are in good agreement with the experimental data. The performance of the
MS model is better than that of the SQ model due to the capability to represent the
non-convex features.

Rotational speed after collision ω2

In the post-processing of measurement data, particles with rotation before collision
were manually filtered. The initial rotational speed was set to zero for all particles
in DEM simulations. Thereby, only the rotational speed after collision was used as
a characteristic of particle-wall collision behavior. For particles with irregular shape,
the rotational motion after collision is generated at the contact point, mainly result-
ing from plastic–elastic deformation, frictional effects and irregular contact geometries.
Figure 5.4 shows the comparison of distributions of the rotational speed after colli-
sion from measurements and DEM simulations with the multi-sphere model and the
superquadric model. The medians, spans, means and coefficients of variation of all
distributions in Figure 5.4 are given in Table 5.6. The prediction by the MS model was
more accurate than that by the SQ model, which severely underestimated the rotational
speed after collision. The simulations with the SQ model are very sensitive on the as-
pect ratio, i.e. the mean and median of rotational speed after collision increase as the
aspect ratio grows. There is no clear dependence of ω2 on contact properties, but the
rotational speed after collision increases with decreasing Ns and increasing ds,min/ds,max
(by referring to Table 5.5).

Figure 5.5 shows the relationships between total and normal coefficients of restitution
and the rotational speed after collision, in terms of mean values and error bars. For mea-
surement data, the relationship between mean normal coefficient of restitution and the
rotational speed after collision can be fitted by a simple linear equation en = k1ω2 + k2,
in which k1 = −7.2 × 10−4 s and k2 = 0.581. The coefficient of determination (R-
square) of the fitting is about 0.966. The linearly decreasing trend can also be found
in simulations by both the MS and SQ models. Strong scattering was observed in both
measurements and simulations, which is expectable due to the irregular shape of parti-
cles. The results of total coefficient of restitution exhibit no regular dependence on the
rotational speed after collision. The total coefficient of restitution in both measurements
and simulations fluctuates around the approximate mean values listed in Table 5.4.

Absolute angle difference ∆θ

Although the tangential velocity of most qualified particles before collisions is relatively
small compared to the normal velocity, its contribution to the incidence angle cannot
be neglected. Hence, the absolute difference of incidence angle and rebound angle
was evaluated as another measure of particle-wall collision behavior. Figure 5.6 shows
comparisons of distributions of the absolute difference of incidence angle and rebound
angle from measurements and DEM simulations with the multi-sphere model and the
superquadric model. The medians, spans, means and coefficients of variation of all
distributions in Figure 5.6 are given in Table 5.6. Deviations of cumulative distributions
are observed for both the MS model and the SQ model. The MS model overestimates the
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value of ∆θ and the SQ model underestimates the value of ∆θ. Again the simulations
with the SQ model are heavily dependent on the aspect ratio; accordingly, the mean
and the median of ∆θ increase with increasing aspect ratio. For the MS model, there

a) b)

a) b)

Figure 5.4: Comparison of rotational speed after collision ω2: a) measurements and the
multi-sphere simulations, and b) measurements and the superquadric simulations.
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is a weak increase of the mean and the median of ∆θ with increasing aspect ratio; in

a) b)

a) b)

Figure 5.5: Comparison between measurements and simulations: a) normal coefficient
of restitution and b) coefficient of restitution, as a function of the rotational speed after
collision ω2.
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contrast, the mean and the median of ∆θ increase when the mean number of spheres
involved in individual contact is decreased (by referring to Table 5.5).

Figure 5.7 shows the relationships between total and normal coefficients of restitution
and the absolute angle difference, in terms of mean values and error bars. The measured
relationship between normal coefficients of restitution and the absolute angle difference
can be fitted by a simple linear equation en = k1∆θ2 + k2, where k1 = −9.8 × 10−3

1/deg and k2 = 0.620. The coefficient of determination (R-square) of the fitting is
about 0.975. A decrease in normal coefficient of restitution with increasing ∆θ was
also observed in the experiment of Hastie [174] for irregular particles. No clear relation
can be obtained for the total coefficients of restitution. For both normal and total
coefficients of restitution, strong scatter is found in all data sets due to the irregular
shape of particles. It is noticeable that there are several outliers in the data of the
SQ simulations as the absolute angle difference exceeds 40°, which occurred when the
corner points (the ends of principal axes) of the 3D ellipsoid were the impact points
and the angles between the impact velocity and the principal axes were exactly 0° and
90° as also reported by Podlozhnyuk et al. [186].

The computational efficiency of the multi-sphere model depended on both the number
of spheres for a single irregular particle and the radius of the smallest sphere. The
number of spheres mainly affected the search of neighbor particles and potential con-
tacts, while the radius of sphere influenced the largest time step allowed for accurately
modeling the particle contacts. The computational efficiency of the superquadric model
is influenced by the aspect ratio. Furthermore, the blockiness parameters n1 and n2 do
not affect the computational time significantly, however, numerical stability decreases
with increasing particle blockiness and particle aspect ratios deviating from unity [186].
The relative CPU time τrel is defined as the ratio of the time spent by the multi-sphere
model to the time spent by the superquadric model for the same number of irregular

Table 5.6: Rotational speed after collision and absolute difference of incidence angle and
rebound angle for maltodextrin (DE 6) particles impacting on maltodextrin tablets.

Exp
Multi-sphere (MS) model Superquadric (SQ) model

Parameter P1 P2 P3 All P1 P2 P3 All
ω2

ω2,50/2π 233 223 288 324 213 143 270 116 147
ω2,90−ω2,10

ω2,50
1.657 1.293 1.239 1.319 1.498 1.577 1.449 1.538 1.734

mean 261 343 305 331 223 154 295 123 168
CV 55.23 42.98 44.44 47.25 53.11 54.74 49.73 54.53 60.58
∆θ = θ2 − θ1

∆θ50 18.28 29.38 31.28 28.09 29.40 8.59 14.70 4.18 7.77
∆θ90−∆θ10

∆θ50
2.143 1.182 1.166 1.209 1.177 2.554 2.017 2.974 3.019

mean 20.56 29.96 30.87 27.05 29.23 10.88 15.84 6.05 10.82
CV 71.97 42.36 43.91 46.45 44.66 86.76 67.75 89.95 89.23
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particles and same number of contacts. The relative CPU times τrel of the three dif-
ferent shapes (P1, P2, P3) were, respectively, 10.81, 8.96 and 5.45. The τrel is reduced

a) b)

a) b)

Figure 5.6: Comparison of the absolute difference of incidence angle and rebound angle
∆θ = |θ2−θ1|: a) measurements and the multi-sphere simulations, and b) measurements
and the superquadric simulations.
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with decreasing number of spheres in the non-spherical particle. In the case with 51
spheres (P1), the CPU time necessary to perform the multi-sphere simulations is about

a) b)

a) b)

Figure 5.7: Comparison between measurements and simulations: a) normal coefficient
of restitution and b) coefficient of restitution, as a function of the absolute difference
of incidence angle and rebound angle ∆θ = |θ2 − θ1|.
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one order of magnitude higher than that required to perform the superquadric simu-
lations. Thus, the computational cost (requirements of CPU and memory resource),
especially for modeling industrial scale problems, must be reckoned when selecting ei-
ther the multi-sphere model or the superquadric model. When using the multi-sphere
model, a reasonable number of spheres and minimum sphere size should be chosen as a
compromise between acceptable accuracy and computational cost.



Chapter 6

PTV measurements and CFD-DEM
simulations of particle dynamics in
mono-disperse particle systems

Parts of this chapter are based on Jiang et al. [104].

6.1 Particle collision dynamics

Fluidized bed spray granulation, coating and agglomeration are widely utilized in the
industry to produce, for example, food, pharmaceuticals, fertilizers, powder catalysts
and cosmetics, as a result of excellent heat and mass transfer between solid parti-
cles and fluid phase [3, 4]. In typical applications, particles are fluidized by hot gas
through the bottom distributor, which mainly controls the global circulation and par-
ticle formulation process. Meanwhile, a spray zone containing solid material is formed
by the atomization process, and particles are wetted in the spray zone. The shape
and location of the spray zone depend on the specific sub-process and the apparatus
configuration. Obviously, in a fluidized bed, the motion of particles is not only influ-
enced by aerodynamic transport and turbulent effects, but is also significantly affected
by particle-particle interactions [1]. In agglomeration processes, for instance, primary
particles randomly collide and may stick at wet spots due to the formation of liquid
bridges that are subsequently solidified by evaporation, whereas the global motion of
all particles is governed by the macroscopic aerodynamic transport effect. Since the
wet granulation process is highly complex, it is often operated inefficiently in industrial
applications. The enhanced understanding of underlying mesoscale particle dynamics
is required to improve the efficiency of processes and to achieve high product quality
[15, 19].

As a well-established macroscopic approach to describe product quality, population
balance models (PBM) are usually used to investigate particle formation processes in
industrial scale [201]. Additionally, the Monte-Carlo method is another useful approach
to model particle formation based on mesoscale events and processes [19, 202]. Nev-
ertheless, the accuracy of both approaches relies on model parameters associated with
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mesoscale particle dynamics and collision dynamics, such as the residence time, the
impact velocity and the collision frequency. For example, the so-called viscous Stokes
number Stv [203], strongly depending on the impact velocity, can be used as the coales-
cence criterion and provides the critical condition for the dissipation of kinetic energy
by a given thickness of viscous layer [154, 204]. The particle collision frequency, a main
parameter in the aggregation kernel of the population balance models, dominates the
agglomeration process [205, 206]. Therefore, a sound understanding of mesoscale par-
ticle dynamics and collision dynamics in gas-solid fluidized beds is important in order
to design and scale-up new equipment, as well as to control the product quality.

Due to the industrial significance and experimental difficulty of mesoscale particle dy-
namics and collision dynamics of both mono- and poly-disperse systems, the accurate
measurement of these quantities has been the objective of many experimental studies of
particulate flows in different configurations. Based on elaborate particle segmentation
and particle tracking algorithms, the PTV technique can be utilized to simultaneously
track a large number of particles for a relatively short period, and hence has the poten-
tial to evaluate particle collision characteristics in complex granular flows [42]. However,
the PTV technique is limited to pseudo-2D fluidized beds [43].

Compared with the general measurement of particle dynamics, the measurement of col-
lision dynamics requires much higher spatial and temporal resolution, and much higher
sensitivity of the measurement techniques. Thus, the experimental investigations about
collision dynamics in different configurations are very limited. Buffière and Moletta
[207] measured the collision frequency and the particle pressure with a flush-mounted
hydrophone in a three-phase fluidized bed and proposed an empirical relation between
collision frequency, superficial gas velocity U and local solid volume fraction εs. This
empirical correlation was applied to macroscopic modeling by Terrazas-Velarde et al.
[154] and Hussain et al. [206]. You et al. [41] used PTV measurements to estimate par-
ticle collision rate ṅc in a vertical duct, which was further compared with that obtained
from theoretical collision models. However, the manual count of particle collision num-
ber Nc restricted the estimation in a very dilute flow region. The first improvement for
measuring collision dynamics is to develop a new algorithm in PTV to automatically
count particle collisions using individual particle trajectories obtained. The new PTV
can analyze particle collision dynamics at different heights of the fluidized bed under
various operation conditions.

Many theoretical collision models have been developed in the past decades to improve
the understanding of the underlying physics of particle collision behavior. Generally,
there exist two limiting boundaries for investigations of particle-particle collisions char-
acterized by the Stokes number St, which is defined as the ratio of the particle response
time to the characteristic time scale of the turbulence. The lower limit corresponds
to small particles perfectly following the turbulence (St → 0) [208] and the upper
limit corresponds to large particles moving almost without response to the turbulence
(St → ∞) [209]. Highly massive particles encountered in gas-solid fluidized beds have
large particle response time and belong to the latter case [1]. Detailed critical reviews
on the theoretical collision models are given by Wang et al. [210] and Meyer and Deglon
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[211]. Based on the kinetic theory of granular flow (KTGF), Gidaspow [60] proposed
a particle collision model in fluidized beds, which is associated with the solid volume
fraction and the granular temperature. As an extension of classical kinetic theory of
dense gases, the KTGF is commonly used as the constitutive or closure relation for the
solid phase and momentum exchange between phases in two-fluid computational fluid
dynamics (CFD) simulations of multiphase granular flows.

As an important quantity in KTGF, the granular temperature is defined as the mean
of the squares of the instantaneous particle velocity fluctuation, which is a measure of
the random particle kinetic energy per unit mass. The granular temperature provides
the relative velocity of particles that drives the collision of particles (collision mecha-
nism), and the diffusive mixing of particles (streaming mechanism) [212]. Note that the
fluctuation velocity refers to the difference between the instantaneous particle velocity
and the mean particle velocity. In the theoretical analysis, the ensemble average is used
to calculate average particle velocity [60], which is not possible in real experimental
measurements. Thus, Jung et al. [213] identified two kinds of granular temperatures:
i) particle granular temperature, and ii) bubble granular temperature, which are based
on different definitions of average velocity and the corresponding fluctuation velocity.
For the particle granular temperature, the mean particle velocity is an instantaneous
spatial-averaged velocity and the fluctuation velocity represents the oscillations in small
regions for a short time period. For the bubble granular temperature, the mean particle
velocity is a time-averaged velocity for certain particles and the fluctuation velocity is
caused by the formation and traveling of bubbles. As pointed out by Tang et al. [214],
both definitions of granular temperature are reasonable, depending on different mea-
surement techniques and investigation objectives using the granular temperature. If
the investigation of instantaneous particle collision dynamics is the target, the particle
granular temperature is more meaningful. Due to the effect of traveling bubbles on
particle motion in fluidized beds, the value of bubble granular temperature is usually
higher than particle granular temperature [213]. Most of the published techniques in-
volving the granular temperature actually measure the bubble granular temperature, or
a granular temperature reflecting the coupling of bubbles and particles, such as PEPT,
MPT as well as magnetic resonance (MR) [215–217]. In terms of particle granular
temperature representing particle collision dynamics, Hagemeier et al. [42] evaluated
the particle granular temperature based on the instantaneous particle velocity of all
individual particles. According to the cross-covariance and assumption of Gaussian
distribution of particle velocity, Dijkhuizen et al. [218] extended the standard particle
imaging velocimetry (PIV) method to calculate particle granular temperature using the
standard deviation of the correlation peak attributed to the particle velocity distribu-
tion.

Despite the importance of the collision model in KTGF, there exist very few prior studies
on experimental validation, especially for high solid volume fraction regions. Therefore,
taking full advantages of PTV measurements, experimental collision dynamics can be
compared with the theoretical collision model by directly measuring the relationship
between the particle collision frequency, the particle granular temperature and the solid
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volume fraction. In addition, experimental data on impact velocity, particle granular
temperature and collision frequency measured systematically at different locations can
be used to validate the corresponding CFD-DEM simulation in the same fluidized bed
and operation condition.

Section 6.2 illustrates improvements of PTV for particle dynamics, including the inten-
sity calibration and the determination of collision events. In addition, the fundamentals
of particle granular temperature and theoretical collision models are briefly introduced.
Section 6.3 presents and discusses the experimental results on particle granular tem-
perature, particle collision frequency and impact velocity, as well as the comparisons
with the CFD-DEM simulation and the theoretical collision model. Section 6.4 offers a
summary of experiments and simulations.

6.2 Method to track particle collisions

6.2.1 Intensity calibration

The PTV experiments and CFD-DEM simulations in the pseudo-2D fluidized bed with
a mono-disperse particle system are conducted according to Section 4.2. The scale factor

Figure 6.1: The intensity calibration for particles with different distances to the front
glass wall (insert figure: a schematic of particle arrangements and single particle inten-
sity matrix).
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Table 6.1: Parameters used in particle segmentation and particle tracking algorithms.

Parameters Value Unit
Segmentation method

sample matrix size
√

2dp · Sf/2 pixel
mean intensity threshold 482 (“high-level”) −

453 (“low-level”) −
Voronoi method
maximum displacement filter U · Sf ·∆t pixel
Probability relaxation method
maximum displacement radius Tm U · Sf ·∆t pixel
neighboring radius Tn 1.5 · U · Sf ·∆t pixel
quasi-rigidity radius Tq 0.2 · U · Sf ·∆t pixel
constant A 0.3 −
constant B 4.0 −
iteration steps 50 −
threshold matching probability Pij(i) 0.95 −

∆t is 1 ms according to the frame rate of the imaging system.

from the geometry calibration gives an accurate ratio of real size to pixel size in the
focus plane, which is assumed to have a depth of one particle diameter from the front
wall. When particles move out of the focus plane towards the third direction, which
happens especially in dilute regions, the scale factor and intensity of particles in the
image will decrease with the distance to the focus plane. The measured velocity of such
particles that have significantly departed from the first layer region is inaccurate. In
addition, the accuracy of evaluation of quantities involving investigation volume, such
as solid volume fraction and collision frequency, will be influenced by the out-of-plane
motions. Therefore, an intensity calibration is needed for filtering these particles.

The particle-mask correlation method (discussed in Section 2.1) was used in this chap-
ter. The detailed parameters are listed in Table 6.1. As an enhancement of the particle
segmentation process relying on the intensity distribution, the targets of this intensity
value calibration process are particles with completely visible contour (without any over-
lap with other particles in front), which can be recognized by the particle segmentation
process even when they have moved away from the focus plane.

The intensity calibration was conducted for static particles. On a substrate, six particles
were fixed with different distances to the front edge of the substrate. Then, the front
edge of the substrate was fitted at 20 evenly distributed locations of the internal side
of the front glass at heights 170 mm and 260 mm, which are the center heights of the
“high-level” and “low-level”. Keeping the same illumination condition and parameters
of camera system as in the real fluidization measurements, the intensity of six particles
at different locations was measured to calibrate the relationship between the mean
intensity of particles and the distance to the focus plane. As shown in Figure 6.1, Li
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is the distance from the particle center to the front glass. The ratios of distance Li to
particle diameter dp of the six particles are 0.5, 1, 2, 3, 5, 7, respectively.

When a superficial gas velocity of 3.0Umf was used in the measurements, some particles
could move by more than 2.0 pixels during one exposure (1/10 000 s). The pixel
intensities along the periphery of the particle are then influenced by the negative effect
of motion blur. Therefore, only the square matrix with edge size equal to

√
2dp · Sf/2

pixel was considered as the effective region for the intensity calibration and the particle
segmentation process. Most of pixels affected by the motion blur can be excluded by
this method. Then, the mean intensity of each single particle was calculated based on
all pixel intensities in the effective region, and the mean intensity of particles at each
height was calculated using the mean intensities of 20 different particles.

It is important to note that the mean intensity of particles in the fluidization measure-
ments was influenced by factors such as the shade effect of neighboring particles and
the non-uniform intensity distribution of illumination:

� The intensity of particles was inevitably influenced by the shade effect of other
particles in fluidization measurements by our configuration of illumination. Com-
pared to the intensity calibration, the mean intensity of particles decreased due
to shade effects.

� As shown in Figure 6.1, red squares and blue circles refer to the mean intensity
of particles at height 170 mm and 260 mm, respectively. The maximum and
minimum intensities of a single particle are also given for each ratio Li/dp. The
differences of mean intensity and relatively large scatter at the center heights of
the two levels imply a non-uniform intensity distribution of illuminating; due to
two halogen lamps illuminating the bed from positions higher than the camera
positions.

For each level, only a single threshold value was used to filter the out-of-focus particles
that were identified based on the template particle intensity distribution. Thus, rela-
tively relaxed threshold values should be applied to consider all relevant factors. To
this end, the minimum mean intensity of particles with the ratio Li/dp = 1 was chosen
as the threshold value. In this study, the threshold intensity was set as 482 and 453 for
the “high-level” and the “low-level”, respectively.

6.2.2 Determination of collision events

Measurement of particle collision dynamics requires a high temporal resolution, due to
very short collision duration depending on material properties and impacting velocity.
Buffière and Moletta [207] mentioned a maximum duration of 50 to 60 µs for their
measurements. Based on Hookean model [219] or Hertzian model [161], the estimated
contact duration was in the range from 10 to 50 µs in our measurement conditions. In
the frame of our measurements, additional experiments with an imaging frame rate of
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Figure 6.2: Determination of particle-particle collisions based on individual particle
trajectories reconstructed by PTV.
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10 000 fps were conducted to estimate the collision duration and time interval between
two collisions. Due to the high frame rate, the size of FOV decreases to 128×128 pixels.
It was found that the collision duration is smaller than 100 µs, but most of the time
intervals between two particle-particle interactions are larger than 1 ms. Therefore,
the occurrence of particle collision events can be captured depending on the geometric
variation of individual particle trajectories, as shown in Figure 6.2a.

After particle segmentation, the pairing of identical particles can be achieved by the
integrated particle tracking method (Section 2.2). The detailed parameters related to
PTV are listed in Table 6.1. For the 2-D case, the location vectors of two particles are
rrr1 = (xc,1, yc,1) and rrr2 = (xc,2, yc,2), subscripts 1 and 2 refer to different particles. Lc
is the distance between the two particle centers at the “imaginary” contact moment tc,
which can be expressed as

Lc = |rrr1 − rrr2| =
√

(xc,1 − xc,2)2 + (yc,1 − yc,2)2. (6.1)

The corresponding normal unit vector nnn12 is defined as nnn12 = (rrr1 − rrr2)/|rrr1 − rrr2|. The
location vectors of individual particles can be obtained by the particle-mask correlation
method (Section 2.1).

The term “imaginary” means that even when no collision happens at exactly this mo-
ment, there could be a collision within the next time step (∆t = 1 ms). The particle
size is uniform in the measurements. Consequently, a threshold value δ = 2 pixel, about
10% of dp · Sf , is defined for the difference between Lc and dp, as the criterion for a
possible particle-particle collision event

|Lc − dp| 6 δ. (6.2)

In case |Lc − dp| = 0, a collision takes place at the imaginary contact moment. In the
case 0 < |Lc − dp| < δ, the relative velocity of the two particles at tc, reconstructed
by the integrated tracking method (Section 2.2), should be estimated to decide if it
is possible to finish a collision before the end of the next time step, i.e. until time
tc+1. Firstly, the angle θ between the relative velocity vector uuur,c = uuup,c,1 − uuup,c,2 and
the normal unit vector nnn12 is used to check if the two particles have an approaching
tendency, calculated as

θ = arccos

(
uuur,c · nnn12

|uuur,c| · |nnn12|

)
. (6.3)

If the angle is larger than 90 degree, the two particles move towards each other. Then,
if |uuur,ccos(π − θ)| ·∆t > (Lc − dp), the two particles are considered to really collide in
the time between tc and tc+1. The relative velocity of the two particles uuur,c is considered
as their impact velocity.

From the viewpoint of physics, collision and contact do not differ significantly. Collision
is essentially a contact with a very short time duration. In this study, the evaluation of
collision duration is out of the scope due to limitations of the measurement technique.
Instead, the relative velocity at the end of the time step after contact detection (uuur,c+1 =
uuup,c+1,1 − uuup,c+1,2) is analyzed to distinguish contact from real collision.
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� Particle contact means |uuur,c+1| = 0. This may occur for static conditions when
particles are not fluidized or for instance when two particles keep pace with each
other for a long time.

� Particle collision is characterized by a subsequent relative motion of the contact
partners, hence |uuur,c+1| 6= 0.

Note the focus is on real particle collisions only. The number of particle collisions Nc

is used to evaluate the experimental particle collision frequency fc.

In image post-processing, only particle trajectories longer than 3 ms were analyzed by
this approach, because most of the short particle trajectories are generated by motions
out of plane. This filter operation may lead to a minor under-prediction of collision
number but ensured that only true collisions are detected. Figure 6.2b shows examples
of collisions between a target particle and two neighboring particles determined by the
variations of particle trajectories.

6.2.3 Granular temperature

The granular temperature is perhaps one of the dominant quantities to understand the
behavior of granular flows with strong particle-particle collisions [212]. Note that the
granular temperature measured here is the particle granular temperature representing
instantaneous relative motion between particles according to the definition by Jung
et al. [213], which is usually applied in KTGF and CFD-DEM simulations. Although
PTV can be used to evaluate the macroscopic movement of bubbles, the estimation of
the bubble granular temperature is beyond the scope of this study.

The particle velocity upupup can be decomposed into a local mean particle velocity and an
instantaneous fluctuation velocity ufufuf . Accounting for independence of velocity compo-
nents, Θ3D can be defined as one-third of the mean square of ufufuf for a three-dimensional
space [60]

Θ3D =
1

3
〈ufufufufufuf〉, (6.4)

where the bracket denotes instantaneous local spatial average. Based on the individ-
ual particle velocity from PTV measurements, the granular temperature for a two-
dimensional space Θ2D can be calculated as

Θ2D = (Θx + Θy)/2; (6.5)

Θj =
1

Np

Np∑
i=1

(up,j(i, t)− 〈up,j(t)〉)2, j = x, y; (6.6)

〈up,j(t)〉 =
1

Np

Np∑
i=1

up,j(i, t). (6.7)
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Np is the number of particles in the interrogation region used for calculating the spatial
average; up,j(i, t) is component j of the instantaneous velocity of individual particle i
and 〈up,j(t)〉 is the instantaneous spatial average velocity in direction j. The value and
distribution of granular temperature are strongly affected by the choice of interrogation
region size, which actually determines the level of the influence of macroscopic bub-
ble motion on the local microscopic particle velocity distribution. However, too small
interrogation region size may introduce large statistical errors from the measurements
[214].

6.2.4 Particle collision frequency

Before proceeding, several quantities concerning particle collisions need to be defined
clearly. In any dispersed particulate system, the collision rate ṅc is defined as the total
number of particle-particle collisions per unit time per unit volume, and the collision
frequency fc is related to the number of collisions for one single particle per unit time.
The relation between them is given by

fc =
ṅc
2n
, (6.8)

where n is the particle number density that refers to the number of particles per unit
volume. The factor 1/2 corrects the double counting issue in most theoretical collision
models, which ensures that each collision pair is counted only once and the calculated
collision frequency fc is rigorous according to the definition [60, 207].

The solid volume fraction εs is defined as the ratio of the volume of solid particles Vp
and the total volume Vtotal in the investigation region. In a mono-disperse system, it
can be expressed as

εs =
Vp
Vtotal

=
Np · 1

6
πd3

p

Vtotal
. (6.9)

Since particle number density n is the number of particles by the total volume, this
relation can be rearranged to give

n =
6εs
πd3

p

. (6.10)

Recalling the theoretical collision model proposed by [60] in the KTGF, the collision
rate ṅc can be written as

ṅc = 4n1n2d
2
12g0

√
πΘ, (6.11)

where the subscripts 1 and 2 refer to colliding particles from different size classes, d12 is
the distance of the mass centers of the collision partners and g0 is a radial distribution
function. The role of this function in KTGF is to correct the probability of collision for
the effect of the volume occupied by particles. Assuming that the bed is quasi-isotropic,
the radial distribution function only depends on εs and g0 can be written as

g0 =
3

5

(
1−

( εs
εs,max

) 1
3)−1

, (6.12)
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where εs,max is the maximum solid fraction for a random packing [220].

The equation for ṅc simplifies in the case of particle collisions in a 2D mono-dispersed
system to

ṅc = 4n2d2
pg0

√
πΘ2D. (6.13)

Then, the corresponding collision frequency fc can be expressed as

fc = 2nd2
pg0

√
πΘ2D. (6.14)

Taking into account Eq. (6.10) and Eq. (6.12), this equation can be rewritten as

fc =
36

5
√
πdp
· εs

√
Θ2D(

1− (εs/εs,max)
1/3
) . (6.15)

Note that, when solid volume fraction approaches εs,max, the value of radial distribution
function tends to infinity and granular temperature approaches to zero, leaving the
collision frequency undefined at this point.

Based on the definition of the collision rate ṅc, the experimental collision rate ṅc,e of
the investigation region in a certain time interval ∆t is given as

ṅc,e =
Nc

Ai · dp ·∆t
, (6.16)

where Ai is the area of investigation region. For the solid volume fraction, Eq. (6.9)
can be rearranged as

εs =
Np · 1

6
πd3

p

Ai · dp
. (6.17)

The particle density n can be calculated by

n =
Np

Ai · dp
. (6.18)

As a result, the experimental collision frequency fc is obtained as

fc =
ṅc,e
n

=
Nc

Np ·∆t
. (6.19)

Different from the collision ratio ṅc in theoretical collision models, the two colliding
particles are distinguished when measuring the particle collision number Nc in the
determination of collision events, i.e. ṅc,e = ṅc/2. The scale factor 1/2 is not needed
in Eq. (6.19) to correct the double counting.

It is important to note that although the 3-dimensional velocities can be obtained from
the CFD-DEM simualtion, only x and y components are used in all evaluations of
collision dynamics to better compare with the 2-dimensional PTV measurements.



120 PTV and CFD-DEM of mono-disperse systems

Figure 6.3: Comparison of tracking performance of the Voronoi method and the proba-
bility relaxation method (for 3.0 ·Umf = 1.68 m/s at the “left” location of the “low-level”
height).

6.3 Results and discussion

Results from PTV measurements are presented in form of instantaneous particle ve-
locity, time-averaged volumetric flux of particles, granular temperature, particle colli-
sion frequency and impact velocity. The PTV measurements will be compared with
CFD-DEM simulations in terms of time-averaged volumetric flux of particles, granular
temperature, impact velocity and collision frequency.

For particles in the group D of the Geldart classification that were used in measurements,
bubbling regime begins as soon as the superficial gas velocity exceeds the minimum
fluidization velocity. Based on visual observations of particle motion in the whole bed
using the high speed camera, the flow regime of all three superficial gas velocities (2.0,
2.5, 3.0 times Umf ) was identified as the slugging regime, in which separated slugs
(bullet-shaped voids) and bubbles filled the entire cross-section of the pseudo-2D bed.
The turbulent fluidization flow regime was not observed even at the highest gas velocity.
This is because the transition from slugging regime to turbulent fluidization regime is
very gradual for group D particles due to intermittent periods of slug-like and turbulent
characteristics [221]. Although 24 measurements from 8 different locations under 3
operation conditions were evaluated in the study, only the results for 3.0·Umf = 1.68 m/s
from the “left” region of “low-level” (sample case) are given in detail. Nevertheless, all
granular temperatures and main indices of particle collision dynamics are summarized
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in Table A.2, Table A.3 and Table A.4. The CFD-DEM simulation was only performed
for 3.0 · Umf = 1.68 m/s.

6.3.1 Instantaneous velocity

The primary result from PTV measurements is the instantaneous velocity of all individ-
ual particles in each time step. Figure 6.3 shows an example time step for 3.0·Umf = 1.68
m/s, in which black vectors are vectors that matched by both methods, while blue and
green vectors refer to particular vectors that only matched by either the Voronoi method
or the probability relaxation method, respectively. Black circles represent particles de-
tected by the segmentation algorithm but not successfully matched in two consecutive
frames. The number of identified particles is 1258 in this time step, corresponding to
approximate solid volume fraction of 0.33. Figure 6.3 represents a group of particles
that slides down along the left side wall, which interacts with another group of parti-
cles driven by traveling bubbles or slugs from the right side. Due to the integration of
Voronoi and probability relaxation tracking method, the time-averaged recovery ratio
〈Rr〉 of the sample case is 89.2 % with a coefficient of variation (CV) 7.1 % in the 5 s
measurement time. The error ratio is less than 1 %. Further, instantaneous velocities of
the same particle in consecutive time steps can be connected to construct the particle’s
trajectory. The recorded lifetime τp of an individual particle results from the sum of
the time steps of this particle’s visible trajectory. If the particle moves out of the focus
plane, it cannot be recognized by the particle segmentation process anymore, and the
trajectory of this particle is considered as terminated. The average lifetime of particles
〈τp〉 in the sample case is 11.5 ms with a CV of 91.3 %.

Average recovery ratios 〈Rr〉 and average lifetimes 〈τp〉 for all cases are listed in Ta-
ble A.2. The minimum average recovery ratio is 86.1 % and the average lifetime is about
10 ms, while particles have longer lifetime in the dense regions (the “low-level” or close
to side walls). The large coefficient of variation of lifetime implies a wide distribution
caused by the open boundaries of the FOVs and the intentional restriction to study
particles only in the first layer by the intensity calibration and particle segmentation
algorithm. Compared to the preliminary studies by a single algorithm in Figure 6.3
(Voronoi or probability relaxation), PTV measurements coupling the Voronoi method
and the probability relaxation method demonstrate very good performance, which can
be effectively applied to analyze granular temperature and particle collision dynamics.

More results of the instantaneous velocities obtained using integrated tracking method
can be found in Figure A.3 for the low-level left at 1.68 m/s (with an interval of 20
ms). In the investigation region (c) (as shown in Figure 4.3), the average velocity
field, similar to PIV results, and the solid volume fraction can be evaluated, which are
depicted, respectively, in Figure A.4 and Figure A.6.

6.3.2 Global circulation

In spite of the superior ability of PTV measurement to reveal instantaneous particle in-
formation, a representation of global particle circulation patterns may also be desirable
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Figure 6.4: Profiles of volumetric flux of particles for 1.68 m/s at the “low-level” height
(overlaps between different measurement locations are indicated by red rectangles; the
vectorial scale is plotted on the top left).

in order to show the ‘big picture’ of particle motion in the slugging fluidization flow
regime. To study time-averaged particle circulation patterns based on instantaneous
velocity of individual particles, the field of view was divided into small investigation
regions [42], similarly to the approach used in standard PIV measurements. The de-
tails of different investigation regions used in the post-processing of measurement and
simulation data have been depicted in Figure 4.3. The size of the small investigation
region (named as region (c)) is about 6 · dp with a 75 % overlap to obtain better spatial
resolution. For each time step, the spatial-averaged velocity in each such interrogation
region is calculated by Eq. (6.7) and the corresponding solid volume fraction follows
from Eq. (6.17). Then, a time-averaging was performed for a total of 5 s measurement
time. Sometimes, however, the time-averaged particle velocity profiles can be spurious
to describe particle circulation patterns, because the contribution of several particles
with really high velocity to the global motion of particles is overestimated in the dilute
region. For instance, the particles rain from the top surface of each slug or bubble.
Therefore, the volumetric flux of particles Φ, i.e. the volume flow rate of particles per
unit area (m3/(m2 · s)), is evaluated to accurately reveal particle circulation patterns.
Based on PTV measurement data, the volumetric flux of particles can be calculated as
the product of particle velocity and solid volume fraction.

As shown in Figure 6.4, two symmetric vortices can be observed for the sample case gas
velocity 1.68 m/s at the “low-level” bed height, although the data from different mea-
surement locations were obtained at different times. In other words, 5 s measurement
time is enough to investigate the circulation motions in this pseudo-2D fluidized bed.
There are still little deviations, especially in the overlapping regions indicated by red
rectangles. The center of the left vortex is located at a bed height of about 130 mm, and
that of the right vortex is at about 145 mm. The top boundaries of the two vortices
start to form at a height of about 200 mm, which is the height of stable dense bed
surface. Bubbles or slugs erupt after exceeding the dense bed surface, resulting in hori-
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Figure 6.5: Comparison of time-averaged particle volumetric flux of particles at height
ranges of 240 to 250 mm and 290 to 300 mm for 1.68 m/s from PTV measurements
and CFD-DEM simulations: a) horizontal direction and b) vertical direction.

zontal transport by accelerating particles into the freeboard and towards the side walls.
In the global circulation pattern, particles are transported upwards in the center of the
bed and slide downwards close to the side walls, which is associated with the inception,
coalescence and eruption of traveling bubbles or slugs at different heights of the flu-
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idized bed. This result of particle circulation pattern corresponds well to the published
observations using PIV measurements [43, 158, 214]. However, it is important to note
that instantaneous pattern may differ significantly from the time-averaged circulation
pattern. At lower superficial gas velocity (U = 2.0Umf or U = 2.5Umf ), the circulation
patterns were not so pronounced, and the centers of the vortices disappeared from the
field of view. The average volumetric flux of particles and the average particle velocity
from all measurement cases, calculated by means of region (c), are listed in Table A.2.

Figure 6.5 shows comparison of time-averaged particle volumetric flux of particles in
both vertical and horizontal directions over 5 s. The data points of “250 mm” and “300
mm” are averaged from investigation regions in height ranges of 240 to 250 mm and
290 to 300 mm, respectively. For the simulation results, the “first layer” in legends
means that the depth of the investigation regions for post-processing CFD-DEM data
is one particle diameter. Generally, the CFD-DEM simulation can well predict the
time-averaged particle volumetric flux in these two height ranges according to the PTV
measurement data. The simulation results obtained in the first layer are closer to the
2D PTV measurements in both horizontal and vertical directions.

6.3.3 Particle granular temperature

Approaching the particle granular temperature, the size of investigation region was
firstly selected as the full field of view (about 45 ·dp, named as region (a)) to investigate
the granular temperature of the slugging flow regime on the macroscopic scale. Fig-
ure 6.6 shows the square root of 2D granular temperature by the investigation region
(a) over measurement time, including components in x and y directions. The cases
of “left” and “left-center” are compared here to represent the effect of spatial location
on the granular temperature. The calculation of Θ2D and Θj follows Eq. (6.5) and
Eq. (6.6), respectively. In both fields, the square root of granular temperature Θ2D,
Θx and Θy fluctuates with the measurement time in the range from 0.05 to 0.65 m/s.
Generally, the fluctuations of granular temperature are caused by the motion of bubbles
or slugs in the investigation region. When a bubble (slug) or part of a bubble (slug)
enters the investigation region with a velocity different from the local mean velocity
of particles, the granular temperature increases due to the random addition of particle
kinetic energy. By ongoing particle-particle collisions and diffusive mixing of particles,
this kinetic energy is dissipated and granular temperature gradually decreases until the
appearance of new bubbles (slugs). It is interesting to observe that granular temper-
ature is anisotropic (directionally dependent) in both the “left” and the “left-center”
locations on the macroscopic scale. And, obviously, the peaks of the square root of the
axial granular temperature

√
Θy in Figure 6.6b can reach higher positions compared

to those in Figure 6.6a, representing the heterogeneous (spatially dependent) feature
of granular temperature. The ratio of

√
Θy/
√

Θx can be applied as a measure of the

anisotropy of the granular temperature. The averaged value of
√

Θy/
√

Θx is about 1.30
with a CV of 38.5 % for the“left” case, while it is about 1.45 with a CV of 43.2 % for the
“left-center” case. But the ratio

√
Θy/
√

Θx is not larger than unity in every time step,
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which implies that relatively large fluculation velocities can also appear in the horizon-
tal direction. From the view of macroscopic motion of particles, the axial fluctuation
velocity of particles in the “ left ” case is relatively small due to the manner of sliding
motion of particles in the relatively dense region. On the other hand, large number of
bubbles (slugs) are vertically accelerated and transported through the center region of
the bed, together with coalescence and eruptions, which can provide large axial fluctu-
ation velocity of particles in the “left-center” case. The observations of the anisotropy
of granular temperature on the macroscopic scale arising from the motion of bubbles
(slugs) are in accordance with the measurement studies by Tang et al. [214], Müller
et al. [216], Holland et al. [217].

As addressed above, the size of the investigation region influences the evaluation of
the granular temperature. Actually, the granular temperature is usually used to char-
acterize the fluctuation velocity of particles on the microscopic (particle) scale in real
applications, for example in the KTGF. Thus, sizes of 15 · dp (region (b)) and 6 · dp
(region (c)) were further used to analyze the micro-scale characteristics of the gran-
ular temperature. The smallest region (c) with size 6 · dp is, on the one hand, small
enough to expose particle scale information in the granular temperature and, on the
other hand, sufficiently large to base the evaluation on enough particles, avoiding large
statistical measurement errors. Figure 6.7a shows the influence of region size on the
granular temperature Θ2D and Figure 6.7b indicates the influence on the anisotropy
of the granular temperature, both for the sample case “low-level left” 1.68 m/s. For
each time step, the average value calculated from all individual investigation regions is
plotted. Notably, the granular temperatures from different sizes of investigation region
fluctuate with similar frequency, but the amplitudes of fluctuations depend strongly on
the size of the investigation region. Data concerning granular temperature are listed
in Table A.3. In the sample case, the mean value of the square root of granular tem-
perature 〈

√
Θ2D〉 decreases by more than 50 % from 0.219 to 0.092 m/s, when the size

of region varies from 45 · dp to 6 · dp. The large CV of 86.7 % in region (c) implies that
the granular temperature calculated in regions of size (c) becomes more chaotic and is
distributed in a wider range. Meanwhile, the anisotropy of the granular temperature
gradually disappears, as a result of the reduction of the influence from macroscopic
bubble motion. The average ratio 〈

√
Θy/
√

Θx〉 decreases with decreasing investigation
region size to 1.05 for the sample case, which means the granular temperature is almost
isotropic on the particle scale.

Figure 6.8 shows the comparison of the square root of granular temperature for “low-
level left” and “low-level left-center” at 1.68 m/s using region (c). As shown in Fig-
ure 6.8a and Figure 6.8b, results from the CFD-DEM simulation fluctuate in compara-
ble frequencies with the PTV measurements for both “low-level left” and “low-level left-
center”. But the amplitudes of fluctuations evaluated from the CFD-DEM simulation
are wider than those from PTV measurements, especially for the case of “low-level left-
center”. Comparing results of the CFD-DEM using different regions for post-processing,
the general fluctuations of granular temperature are similar; but, in some time steps,
particles in the “first layer” can reach much higher square root of granular temperature
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than the particles in the entire bed. The mean values of granular temperature pre-
dicted by CFD-DEM simulations using different regions for post-processing are about
30 % larger than that measured by the PTV measurement for the case of “low-level
left-center”.

Figure 6.9a and Figure 6.9b show that the CFD-DEM simulation can well predict
the anisotropy of granular temperature for both “low-level left” and “low-level left-
center”. For results of the CFD-DEM simulation, the variations of anisotropy of granular
temperature are similar using different depths for post-processing. The average ratios
〈
√

Θy/
√

Θx〉 obtained from CFD-DEM simulations in the “first layer” and the entire
bed are close to unity for both cases, which implies that the granular temperature is
isotropic on the particle scale.

These observations from both measurements and simulations agree with the assump-
tion that velocities of particles are isotropically and independently distributed, and the
further deduced Maxwellian velocity distributions in the KTGF [60].

Figure 6.10: Profiles of the square root of granular temperature at different heights of
the fluidized bed (1.68 m/s; y = 260, 200, 140 mm; region (c)).

Figure 6.10 depicts profiles of the square root of granular temperature Θ2D at differ-
ent bed heights, based on the investigation region (c). The average square root of
granular temperature first increases with bed height, then reaches a maximum, and
finally decreases again. The maximum appears near the height of the dense bed surface
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(200 mm), where particles are expelled into the freebroad by the eruptions of bubbles.
At each bed height, granular temperature close to the side walls is smaller than in the
center region, due to the sliding motion of particles along the side walls.

In addition, some general tendencies of the variation of the granular temperature can
be drawn from the detailed measurement data listed in Table A.3:

1. The average granular temperature increases for all investigation region sizes used
and in all measurement locations when the superficial gas velocity increases. In
other words, the increase of the time-averaged fluctuation velocity of particles
by more intensive fluidization is independent of the spatial location, on both the
macroscopic and the microscopic scale. However, the value of granular tempera-
ture does depend on the spatial location, and is larger near the dense bed surface.

2. When the investigation region varies from the macroscopic to the particle scale,
the anisotropy of granular temperature is significantly decreased due to the re-
duction of the influence of bubble or slug motion at all measurement locations.

3. The large CV of the average of the square root of granular temperature indicates
the wide distribution of granular temperature at single particle scale.

6.3.4 Particle-particle collision frequency

Based on the number of collision events Nc obtained from the analysis of individual
particle trajectories, the experimental particle collision frequency can be calculated
by Eq. (6.19). Figure 6.11 shows the experimental collision frequency with respect to the
measurement time for the sample case “low-level left” 1.68 m/s. Similarly to Figure 6.7,
the average collision frequency of investigation regions with different sizes, regions (a),
(b), (c), is plotted for each time step. The experimental collision frequency varies
in the range from about 100 to 500 1/s. In clear contrast to variations of granular
temperature, the collision frequency is rather independent of the size of the investigation
region, which may be a consequence of the combined effect of granular temperature
and local solid volume fraction on the particle collision frequency. The fluctuations in
the collision frequency can be further analyzed based on the Fourier transformation,
as a useful tool to study the period tp,fit of variations with time or space. Fourier
transformation with 3 terms was able to fit well the frequency of the fluctuation of the
collision frequency, which gives a period tp,fit of approximately 0.77 s. The specific data
about average collision frequency, average solid volume fraction and fitted period tp,fit
are listed in Table A.4. The average collision frequency at the “high-level” height is
much smaller compared with that at the “low-level” height, due to significantly smaller
average solid volume fraction. In some time steps, even no particle exists in the FOVs at
“high-level” height under low superficial gas velocity. However, the collision frequency
and solid volume fraction in individual investigation regions in some time steps can reach
high values, which corresponds to large CVs obtained for both collision frequency and
solid volume fraction at the“high-level”. In other words, there existed large fluctuations
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in the region exceeding the stable dense bed surface. At the “low-level” height and gas
velocity 1.68 m/s, at least 5 entire periods are completed in the 5 s of measurement
time, leading to the pronounced symmetric flow pattern of particles shown in Figure 6.4
and Figure 6.5. Inversely, the periods at “high-level” height or low gas velocity are
longer, depending on relative position between the stable dense bed surface and the
measurement location during the experiments.

From another point of view, experimental collision frequencies acquired in individual
investigation regions can be commonly represented with respect to the corresponding
solid volume fraction to enable comparison with the theoretical collision model. Because
data from particle scale are more meaningful for comparison with KTGF, we focus
on the analysis based on the investigation region of size (c) in the following study.
Figure 6.12 shows the particle collision frequency with respect to solid volume fraction
for the four measurement locations at “low-level” height under 1.68 m/s gas velocity.
Individual black squares represent the experimental collision frequencies measured in
each investigation region (c) volume and each time step. Compared with Figure 6.11,
the collision frequency is distributed in a wider range from 0 to 700 1/s. Only 10 % of
the randomly selected data are plotted for better visualization (total number of discrete
data points is more than 5 millions). Comparing collision frequency at solid volume

Figure 6.11: Particle collision frequency (evaluated for regions (a), (b), (c)) over mea-
surement time for 1.68 m/s at the “low-level left”, together with three-term Fourier fit
(the period approximately equals to 0.77 s).
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fraction 0.4 for all locations, the maximum value of the collision frequency can reach
about 700 1/s in the center locations, but only 500 1/s for the side locations. If the large
granular temperature in the center locations is taken into account, this observation is
reasonable according to the collision model.

For each measurement location, the theoretical collision frequency is plotted based
on Eq. (6.15) with a constant square root of granular temperature, which equals to the
average square root of granular temperature 〈

√
Θ2D〉(c) from PTV measurement (red

solid line). Using the experimental collision frequency in all individual investigation
regions and all time steps, an average square root of granular temperature 〈

√
Θ2D〉fit

can be fitted from Eq. (6.15) (blue dash line). Generally, 〈
√

Θ2D〉(c) is only slightly
larger than 〈

√
Θ2D〉fit, meaning that the collision model can predict the overall features

of the experimentally observed collision frequency relatively well. However, a significant
difference is observed in the dense region (at approximately, εs > 0.3) for all locations,
in which the collision model overestimates the collision frequency. From the model view
point, the value of the radial distribution function g0 (Eq. (6.12)) will rapidly increase
when the solid volume fraction approaches εs,max, which might yield the overestimation.
More accurate analysis would require use of the corresponding granular temperature in
the dense region. From the experimental perspective, many particle-particle interactions
did not show a clear rebound behavior, due to the serious decrease of the mean free path
of particles in dense regions. This part of particle-particle interactions is not considered
as real collisions in our algorithm (Section 6.2.2). The 〈

√
Θ2D〉fit values obtained for

all cases are listed in Table A.4. Referring to 〈
√

Θ2D〉(c) in Table A.3, all values of
〈
√

Θ2D〉fit are smaller than the corresponding values of 〈
√

Θ2D〉(c), and the relative
difference ranges from 3 to 23 %, depending on operation conditions and measurement
location. The largest differences in collision frequency between measurements and model
occur in dense regions for all cases.

Clearly, particle collision frequency is influenced by the combined effect of solid volume
fraction and granular temperature. Both these variables can be evaluated from PTV
measurements in each investigation region and each time step. To further compare with
the Gidaspow collision model, a new variable χ with unit [1/s] is defined from Eq. (6.15):

χ =
εs
√

Θ2D(
1− (εs/εs,max)

1/3
)
· dp

. (6.20)

Then, Eq. (6.15) can be rearranged to a linear form

fc =
36

5
√
π
χ, (6.21)

in which the collision frequency increases directly proportionally with the model variable
χ and the slope is a constant 36/(5

√
π). Due to the huge number of experimental data,

the average values of collision frequency and granular temperature corresponding to a
certain solid volume fraction range are meaningful for model comparison by Eq. (6.21).
Specifically, solid volume fraction from 0 to 0.5 is divided into 50 intervals. For each
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solid volume fraction interval k, the average collision frequency 〈fc〉 is calculated by
averaging the collision frequency fc(k) from each individual investigation region (c) with
the corresponding solid volume fraction located in the interval k. The same approach
is used to calculate the average square root of 2D granular temperature 〈

√
Θ2D〉. Then,

the average 〈χ〉 can be calculated together with the median value of each solid volume
fraction interval.

Figure 6.13 represents the average collision frequency 〈fc〉 with respect to the average
model parameter 〈χ〉 for all cases, compared to the Gidaspow collision model. Each
sub-figure contains four measurement locations at one bed height for one gas velocity.
Similarly to the analysis according to Figure 6.12, the Gidaspow collision model overes-
timates the collision frequency at 〈χ〉 > 130 for the “low-level” and at 〈χ〉 > 100 for the
“high-level”. The approximate critical solid volume fraction is also labeled in each plot.
After the critical solid volume fraction, collision frequencies from the black solid line
(model predicted collision frequency) will be always larger than the experimental data.
When the value of the average model variable 〈χ〉 increases beyond 130 or 100, the ex-
perimental average collision frequency reaches a relatively constant value or even shows
a decreasing tendency in some cases. This may be due to the opposing contributions of
increasing solid volume fraction, which facilitates the particle-particle interactions, and
decreasing of the granular temperature.

The critical solid volume fraction of the “high-level” is smaller than that of the “low-
level”. This shift in different heights may arise from the different bubble or slug motion
at the “low-level” and at the “high-level”, especially for the gas velocities 1.40 and 1.12
m/s. Most bubbles or slugs have erupted and the particles are not able to obtain new
random kinetic energy from the irregular motion of bubbles or slugs at the “high-level”,
resulting in a strong reduction of granular temperature. Whereas, the “low-level” is still
well below the dense bed surface, so that active bubble or slug motion in both horizontal
and vertical directions generates a relatively large granular temperature compared to
the same particle density at the “high-level”. Interestingly, the experimental average
collision frequency 〈fc〉 displays a large increase with 〈χ〉 in the range 0 < 〈χ〉 <
25 compared to the Gidaspow collision model for almost all cases. This can also be
observed in Figure 6.12. Note that the first data point corresponds to the solid volume
interval 0 to 0.01, where the average collision frequency 〈fc〉 is not equal to zero. The
average model parameter 〈χ〉 = 25 corresponds to a solid volume fraction of about
0.1. Moreover, the experimental average collision frequency 〈fc〉 once again exceeds the
model predicted value in, approximately, the range of 50 < 〈χ〉 < 130 in Figure 6.13a
and Figure 6.13b.

When the collision frequency was evaluated from the CFD-DEM simulations, the num-
ber of collisions between two particles Nc was directly calculated by the DEM data for
individual collision events (as depicted in Figure B.1), instead of using the algorithm
based on the trajectories of particles (Section 6.2.2). The calculation of model parameter
〈χ〉 is the same as when evaluating PTV measurement data. For the cases of “low-level”
and “high-level” at 1.68 m/s, Figure 6.14 shows the average collision frequency 〈fc〉
with respect to the average model parameter 〈χ〉 from the CFD-DEM simulations in
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a)

b)

c)

d)

e)

f)

Figure 6.13: Comparison of average collision frequency from PTV measurements and
the Gidaspow collision model for different locations under different superficial gas ve-
locities: left side for the “low-level” and right side for the “high-level” (theoretical lines
are plotted based on Eq. (6.21)).
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the “first layer”, compared to the Gidaspow collision model. In the approximate range

a)

b)

Figure 6.14: Comparison of average collision frequency from CFD-DEM simulations in
“first layer” and the Gidaspow collision model for different locations at gas velocity of
1.68 m/s (theoretical lines are plotted based on Eq. (6.21)).
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of 50 < 〈χ〉 < 130, the average collision frequency 〈fc〉 predicted by the CFD-DEM
simulation is obviously lower than that measured by the PTV method. The increase
of average collision frequencies 〈fc〉 predicted by the CFD-DEM simulation is faster
than that measured by the PTV method when 〈χ〉 is larger than 130. Consequently,
the maximum average frequencies 〈fc〉 from simulations and measurements are compa-
rable. The values for “low-level” and “high-level” are about 600 and 550, respectively.
The tendency of staying relatively constant or even decreasing with increasing 〈χ〉 is
not observed from the CFD-DEM simulations.

6.3.5 Particle-particle collision velocity

In measurements, the particle-particle collision velocity uuur,c of all individual particle-
particle interactions can be acquired during the determination of the collision events.
The average magnitude of impact velocity 〈|uuur,c|〉 has been calculated based on the
data from 5 s measurement time, and is listed in Table A.4 together with corresponding
CV. The average magnitude of impact velocity 〈|uuur,c|〉 differs with operation conditions
and spatial location. The maximum detected value of magnitude of impact velocity for
an individual collision was about 0.6 m/s. In spray fluidized beds, the magnitude of
impact velocity |uuur,c| significantly affects the coalescence of particles. Based on Ennis
et al. [203], the collision of two particles will result in coalescence if the viscous Stokes
number Stv is less than the critical viscous Stokes number. Indeed, the viscous Stokes
number Stv is the ratio of kinetic energy of two approaching particles to the viscous
dissipation by the liquid film. Taking typical conditions (liquid viscosity of 10 mPa · s
and a ratio between liquid thickness and the characteristic height of surface asperities
of 10) from investigations of spray agglomeration [154, 154], the critical magnitude of
impact velocity |uuur,c| for coalescence is 0.124 m/s for the used particles with 1.8 mm
diameter. Therefore, the particle formation process associated with the coalescence of
particles needs to be accurately controlled by adjustment of operation gas velocity and
arrangement of the spray zones.

The experimental measurement of impact velocity is actually even more difficult than
the measurement of granular temperature. Figure 6.15 reveals the relationship between
the average square root of 2D granular temperature and the average magnitude of im-
pact velocity at the“low-level left”and the“high-level left”under different gas velocities.
In each investigation region (c), an average magnitude of impact velocity 〈|uuur,c|〉 and a
square root of 2D granular temperature

√
Θ2D can be calculated for particle collisions

that happen in this region. Then, the magnitude of impact velocity is divided to in-
tervals of 0.001 m/s and the corresponding square roots of 2D granular temperature
located in each such interval are averaged to get the average square root of 2D granular
temperature 〈

√
Θ2D〉. Large gas velocity increases the granular temperature and leads

to a large impact velocity, but it does not appear to act in another way than via 〈
√

Θ2D〉.
This holds for both heights, though the data are more scattered at the “high-level”. The
experimental data can be fitted by a simple linear equation f(x) = p1x+ p2; the values
of p1 and p2 for different measurement locations are given in Table A.4. The coefficients
of determination for all locations at the “low-level” are close to about 0.9, and about 0.7
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a) b)

a) b)

Figure 6.15: Correlations between average square root of 2D granular temperature and
average magnitude of impact velocity: a) “low-level left” and b) “high-level left”. Curve
fits are based on the linear equation: f(x) = p1x+ p2; and superficial gas velocity does
not play a separate role.

for the “high-level”. The y-intercepts are very similar for all locations, but the slopes
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Figure 6.16: Comparison of correlations between average square root of granular tem-
perature and average magnitude of impact velocity obtained from PTV and CFD-DEM.
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of the linear fitting for the “low-level” are smaller than those for the “high-level”, which
can be explained by the fact that particles at the “high-level” have larger mean free
paths to achieve stronger particle-particle interactions compared with particles at the
“low-level” with the same granular temperature. The fitting parameters can be used to
estimate the impact velocity based on the granular temperature.

From the side of CFD-DEM simulations, the impact velocity uuur,c equals to the rela-
tive velocity of two particles at the first contact instant (as depicted in Figure B.1).
Figure 6.16 shows the comparison of relationships between the average square root of
2D granular temperature and the average magnitude of impact velocity obtained from
PTV and CFD-DEM (for the“low-level left”and the“high-level left”at 1.68 m/s). Note
that the minimum velocity of particles measured by PTV was affected by the scale fac-
tor and frame rate of imaging system, resulting in the corresponding shifts of impact
velocity and granular temperature from zero. However, these shifts are not existent
in results of the CFD-DEM simulation. Generally, the relationships evaluated using
the CFD-DEM data in the “first layer” and in the entire bed depth are very similar
when only the x and y components of velocity are considered. The simulation data are
roughly in accordance with the linear increase observed from the measurement data,
but more scattered. The increase of the impact velocity with the granular temperature
that is predicted by the CFD-DEM simulations is faster than that measured by the
PTV measurements, even though the range of 〈

√
Θ2D〉 < 0.04 is not considered. The

increase rate of the “high-level left” is faster than that of the “low-level left”.

Note that proper scaling-up of experimental data from the laboratory to industrial
scales is still challenging due to the inherent scale dependence of many of the essen-
tial operating and design parameters. Generally, the scale-up methodology is based
on matching dimensionless groups in terms of combinations of the physical properties
(such, as particle size and density, fluid density, and fluid viscosity), in order to achieve
hydrodynamic similarity when the geometry and the operation conditions are varied
in different processes [222]. However, inter-particle forces other than mechanical forces
are neglected in the scaling-up. As pointed out by Efhaima and Al-Dahhan [223], the
method of matching dimensionless groups is not sufficient to maintain similarity in the
local hydrodynamics and particle dynamics according to non-invasive measurement re-
sults obtained by radioactive particle tracking and gamma-ray computed tomography.
Hence, the scaling-up of the collision frequency and the impact velocity, which are dom-
inated by particle-scale interactions, needs a reliable method, not only considering the
similarity of global hydrodynamics, but also identifying key parameters that indicate
the similarity of local particle dynamics such as the solid volume fraction and granular
temperature.

6.4 Summary

In a pseudo-2D fluidized bed, the granular temperature, the collision frequency and
the impact velocity were investigated using an optimized PTV method and CFD-DEM.
Together with the filter process based on the intensity calibration, the combination
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of Voronoi and probability relaxation tracking can simultaneously track thousands of
particles with a high average recovery ratio. On the basis of the variations of related
particle trajectories, the particle-particle collision events were recognized by a self-
developed algorithm. The relative velocity of the pair of involved particles was evaluated
to identify real collisions. Key conclusions are:

1. The global particle circulation pattern of slugging flow regime, two reversely sym-
metric vortices, could be well represented by PTV measurements. The negative
effect of large particle velocity in the dilute regions (freeboard, bubbles and slugs)
on the evaluation of global motion was avoided using the time-averaged volume
flux of particles instead of time-averaged particle velocity. The CFD-DEM simu-
lation can well predict the time-averaged flux of particles.

2. The magnitude and anisotropy of the granular temperature were significantly
reduced as the size of investigation region decreased from 45·dp to 6·dp. Since, the
size of investigation region actually reflected the level of influence of macroscopic
motions on the particle scale relative velocity. The magnitude and anisotropy of
the granular temperature predicted by the CFD-DEM simulation agree with PTV
using investigation region (c).

3. Within the range of studied experimental conditions, the average granular temper-
ature increased with the increase in superficial gas velocity at any measurement
location regardless of the investigation region size. Hence, the time-averaged fluc-
tuation velocity of particles on both the macroscopic and microscopic scale is
essentially dependent on energy input. Moreover, the magnitude of granular tem-
perature depends on the local flow regime, and was larger close to the dense bed
surface.

4. Compared with the Gidaspow collision model, there was a significant difference of
collision frequency in dense regions for all experimental cases. The experimental
average collision frequency tended to be constant or even decrease after exceed-
ing a critical solid volume fraction. It can be postulated that the contribution
of increasing of solid volume fraction to facilitate particle-particle interactions is
overrated by the restraint of decreasing granular temperature. Critical solid vol-
ume fractions depend on the global bubble or slug motion. The average collision
frequency evaluated from the CFD-DEM simulation data is lower than that from
PTV measurements.

5. The measured average impact velocity could be correlated with the average square
root of granular temperature by a simple linear equation. The relationships pre-
dicted by CFD-DEM are roughly in accordance with measurement data. The
intercept of the correlation was nearly the same for all experimental cases, but
the slope increased with increasing distance from the distributor plate, meaning
that particles had larger mean free paths.



Chapter 7

Color-PTV measurements and CFD-DEM
simulations of particle dynamics in
poly-disperse particle systems

This chapter is based on Jiang et al. [45].

7.1 Mixing of poly-disperse system

In Chapter 6, the dynamics of the mono-disperse particle system were investigated by
PTV measurment and CFD-DEM simulations. However, poly-disperse systems (with
particles of different sizes, different densities, or both different sizes and densities) are
commonly encountered in practical applications. As an important phenomenon in poly-
disperse fluidization, the segregation of particles strongly influences particle formation
processes; for instance, it is essential to guarantee that smaller drug particles can be
uniformly blended into larger granules in fluidized bed granulation [224]. Due to their
industrial importance, the segregation and the mixing behavior have been experimen-
tally studied using various techniques, such as digital image analysis (DIA) [225, 226],
and frozen bed sieving [227, 228]. On the one hand, the segregation state is determined
by several competing factors associated with particle dynamics and hydrodynamics, in-
cluding drag force, turbulence of gas-phase, particle granular temperature and particle
collisions [228]. On the other hand, particle dynamics and hydrodynamics are strongly
affected by the size-ratio and the density-ratio of different particles. However, pub-
lished experimental studies on particle dynamics in poly-disperse systems are lacking
due to inherent difficulties in measurement, especially in tracking individual particles
with different sizes in fluidized beds.

The CFD-DEM approach can capture the majority of macro-scale and micro-scale
characteristics of multi-phase flow, simultaneously providing an insight into under-
lying physics at particle-scale. As mentioned, some aspects that are difficult to be
captured in the traditional continuum description of the solid phase by the two-fluid
method closed by the kinetic theory of granular flow [60, 140], such as poly-dispersity,
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cohesion and non-spherical particles, can be readily incorporated in DEM. With the
help of the CFD-DEM approach, the segregation and the mixing behavior in fluidized
beds, characterized by the mixing index that indicates the overall segregation state of
mixture [225, 229], have been numerically studied and compared with measurements
[230–233]. It was found that the drag model for poly-disperse systems is important
for the accuracy of predictions of the mixing degree. Beetstra et al. [232] proposed a
correction factor, integrated diameter ratio and porosity, based on lattice-Boltzmann
simulations, which gives a significant improvement over drag models for mono-disperse
systems. Notably, the comparison of mixing index is not enough for the comprehensive
validation of CFD-DEM simulations of poly-disperse systems, since particle dynamics
are not directly included in the mixing index.

As a well established macroscopic approach to predict particle formation processes, the
population balance modeling (PBM) has been widely used in investigations at industrial
scale [201, 234, 235]. When mesoscale particle dynamics from CFD-DEM simulations
are further integrated with the population balance modeling, a multi-scale model can be
created to predict wet particle granulation processes, leading to a better understanding
of the effects of process parameters and particle properties on critical quality attributes
[236–238]. The performance of the multi-scale coupling approach depends on the ac-
curacy of CFD-DEM simulations of poly-disperse particle systems, which have to be
validated not only with regard to segregation (or mixing) behavior, but also to detailed
particle dynamics.

The objective of this chapter is to use color-PTV method to study particle dynamics
and mixing behavior of poly-disperse systems in a pseudo-2D fluidized bed. The struc-
ture is: Section 7.2 illustrates the color classification algorithm. Section 7.3 presents
and discusses the color-PTV measurement results of one binary mixture case and one
ternary mixture case. Furthermore, detailed comparisons are performed with CFD-
DEM simulations using drag models with or without the correction of poly-disperse
effect.

7.2 Color classification in PTV

The color-PTV experiments and CFD-DEM simulations in the pseudo-2D fluidized bed
with poly-disperse particle systems are conducted according to Section 4.3.

Based on the study of Olaofe et al. [226], classification of colored particles in the hue-
saturation-value (HSV) space is easier and more accurate compared with classification
in the RGB space, because the HSV representation rearranges the geometry of RGB
(Cartesian) space to cylindrical-coordinate space in an attempt to be more intuitive
and perceptual. Thus, raw images in the RGB space were firstly transformed into the
HSV space based on standard function in MATLAB. After space transformation, the
intensity in each channel of the HSV space ranged from 0 to unity.

To find the characteristic of each color, statistical analysis of the three HSV channels
was conducted in sampling regions with only particles of a single color (red, green or
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Figure 7.1: The image properties of colored particles: a) histograms of HSV channels
for particles of different colors and the background; b) mean intensity distributions in
gray-scale space along radii of different color particles (Curve fits are based on the sine
equation: f(x) = a · sin(bx+ c)).
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white). In this study, the size of sampling region was 100× 100 pixels, and 10 different
sampling regions were manually selected for each color from raw images. A similar
approach was applied for the color of the background. Figure 7.1a shows histograms of
the three channels of the HSV space for different colors. In each histogram, the vertical
axis relates to pixel number density and the horizontal axis is pixel intensity. It can
be seen that the intensity peaks of different colors are separated. The criteria of color
classification (range of thresholds) used in this chapter are listed in Table 7.1. The color
red can be obviously distinguished by the saturation channel (S); whereas the colors
green and white can be distinguished by the hue channel (H). Further, the information
in the value channel (V) was mainly applied to distinguish the background color. After
the color classification, a label matrix was generated to store flags representing four
colors for each pixel of a raw image. The label matrix is important to accurately and
quickly extract intensity information for different colors in the particle segmentation
and tracking process.

Figure 7.2: Typical example of color classification (Case 1 ), including colors of white,
green and background.

Figure 7.2 shows an example for the classification of three relatively similar colors
(green, white and background) from Case 1, in which pixels belonging to white par-
ticles and green particles were respectively extracted from the raw image using the
label matrix. Obviously, different colors are successfully distinguished and shapes of
particles are completely retained based on the criteria spans, which is favorable to the
segmentation process using particle-mask correlation method (Section 2.1). After par-
ticle segmentation, the pairing of identical particles can be achieved by the integrated
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particle tracking method (Section 2.2). The detailed parameters related to PTV are
listed in Table 7.1.

Table 7.1: Main parameters used in Color-PTV method.

Parameter Value Unit
Color classification method
Thresholds of pixel intensity in three channels (H: hue, S: saturation, V: value)
Red H ∈ (0, 0.1), S ∈ (0.5, 1), V ∈ (0, 0.5) −
Green H ∈ (0.25, 0.5), S ∈ (0.2, 0.5), V ∈ (0, 0.6) −
White H ∈ (0, 0.2), S ∈ (0.2, 0.5), V ∈ (0.5, 1) −
Background H ∈ (0.1, 0.25), S ∈ (0.1, 0.25), V ∈ (0.1, 0.3) −
Particle segmentation method

Template particle size
√

2 · dp · Sf/2 pixel
Voronoi tracking method
Maximum displacement radius Ug/2 · Sf ·∆t pixel
Relaxation probability method
Maximum displacement radius Ug/2 · Sf ·∆t pixel
Neighboring radius 0.5 · Ug · Sf ·∆t pixel
Quasi-rigidity radius 0.1 · Ug · Sf ·∆t pixel
constant A 0.3 −
constant B 4.0 −
iteration steps 50 −
Threshold matching probability 0.95 −

∆t is 1 ms according to the frame rate of the imaging system.

7.3 Results and discussion

We will present results from color-PTV measurements of Case 1 (binary mixture) and
Case 2 (ternary mixture), in form of the time-averaged particle volumetric flux, dis-
tributions of individual particle velocity, distributions of particle granular temperature
and the mixing index. In addition, comparisons with CFD-DEM simulations using
two drag models: 1) poly-disperse Beetstra drag model (PBVK) with the correction
for poly-dispersity (Eq. (3.37)), and 2) mono-disperse Beetstra drag model (MBVK)
without correction (Eq. (3.33)), will be conducted.

It is noted that only particles in the first layer were extracted from simulation data to be
close to pseudo-2D conditions of measurements. Specifically, the normal distances from
the centers of particles to the front wall were smaller than 3 mm. On the basis of visual
observations, the flow in both investigated cases can be assigned to the slugging regime,
with separated slugs (bullet-shaped voids) and bubbles filling the entire cross-section
of the pseudo-2D fluidized bed. Turbulent fluidization flow regime was not observed in
either of the two cases.
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7.3.1 Particle volumetric flux

As discussed in Chapter 6, the time-averaged particle velocity profiles can be spurious
to describe particle circulation pattern, because the contribution of few particles with
really high velocity to the global motion of particles is overestimated in the dilute re-
gion. Therefore, the volumetric flux of particles, i.e. the volume flow rate per unit area
m3/(m2 · s), was evaluated to accurately reveal the global particle circulation motion.
With regard to PTV measurements, the volumetric flux of particles was calculated by
the product of solid volume fraction and average particle velocity in each investiga-
tion region. The size and arrangement of investigation regions is the same as in the
verification study.

The size of CFD grid may affect the mapping and evaluation of solid volume fraction
field and the numerical solution of turbulent gas flow with solid particles. Clearly,
grid independence needs to be established, before one can conduct the qualitative or
quantitative analysis of CFD-DEM simulations in confidence.

The study of grid independence was performed using the drag model with correction
for size dispersity in Case 1. Figure 7.3a shows the time-averaged particle volumetic
flux profiles over 5 s from the measurement and simulations with three sets of CFD
grid. The data points are averaged from investigation regions in a height range of 450
to 525 pixels and are assigned to the right boundary of the investigation region in the
x axis. The simulations with three different grid sizes predict almost the same profiles
of volumetric particle flux in both the vertical and the horizontal direction. Therefore,
the CFD grid with size ratio dcell/d32 of 2.3 was used together with the “divided” void-
fraction approach in this study.

Figure 7.3c shows the results of time-averaged particle circulation for Case 1, and the
vector for time-averaged particle volumetric flux is assigned to the bottom right corner
of each investigation region. Obviously, two nearly symmetric vortices can be observed
in the results of both the experiment and the simulation (using Eq. (3.37)), which
implies that 5 s time is enough to investigate the circulation motion in this pseudo-2D
fluidized bed. Only minor difference exists between the heights of the centers of the
two vortices obtained from the experiment and the simulation. The center of the left
hand-side vortex is located at a height of about 240 pixels, and the center of the right
hand-side vortex is located at about 220 pixels. The top boundary of the two vortices
starts to form at a height of about 450 pixels, which is also the stably fluctuating height
of the dense bed surface. Bubbles or slugs erupt at this surface, accelerating particles
into the freeboard and resulting in horizontal transport towards the side walls. Globally,
particles are transported upwards in the center of bed and slide downwards close the
side walls, which is associated with the inception, coalescence and eruption of traveling
bubbles or slugs at different heights of the fluidized bed. However, it is important to
note that instantaneous flow patterns may differ significantly from the time-averaged
circulation pattern due to the strongly chaotic motion of bubbles and particles. This
result for particle circulation is very similar to published observations for mono-disperse
systems using PIV and PTV measurements [104, 158, 214] and results in Chapter 6.
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Figure 7.3: Time-averaged particle volumetric flux: a) profiles in vertical and horizontal
directions for Case 1 at a height range of 450 to 525 pixels, together with the results of
grid independence study for three CFD grids, b) profiles for Case 2 at a height range
of 450 to 525 pixels and c) global circulation patterns for Case 1 from the experiment
and the simulation (Eq. (3.37)).



150 Color-PTV and CFD-DEM of poly-disperse systems

The global particle circulation for Case 2 also shows two nearly symmetric vortices,
but their centers were located lower compared to Case 1 (not shown in the figure).

The results from PBVK and MBVK in Figure 7.3a show that the accuracy of simulation
is improved by correction for size poly-dispersity, especially in the horizontal direction.
Obviously, the simulation using MBVK underestimates the horizontal transport of par-
ticles due to eruptions of bubbles or slugs near the dense bed surface. In this context,
it should be noted that the height range of 450 to 525 pixels was somewhat higher
than the upper surface of the fluidized bed. The variation trend in the horizontal direc-
tion of all methods indicates the approximate reflection symmetry of the two vortices.
However, the simulation with MBVK underestimates the motion of particles sliding
downwards the side walls. As shown in Figure 7.3b, the general shapes of profiles are
similar with Case 1. The decrease of particle volumetric fluxes in both horizontal and
vertical directions was caused by the reduction of height of the two vortices.

7.3.2 Distributions of velocity and granular temperature

The superiority of color-PTV measurement lies in its ability to reconstruct instanta-
neous velocities of particles with different sizes. Hence, comparisons of density distri-
butions of the individual velocities of particles with different sizes were performed in
both vertical and horizontal directions, as shown in Figure 7.4. The density distribu-
tions were evaluated by particles appearing at heights ranging from 450 to 525 pixels
at all time steps. The total number of time steps is 5000 for both experiments and
simulations. From the measurement results, the transport of all particles in the vertical
direction is stronger than that in the horizontal direction at this bed height. The den-
sity distributions are approximately symmetric with respect to the vertical center line.
In this height range, the velocities of small particles are slightly larger than those of
large particles in the vertical direction; and, inversely, the velocities of small particles
are slightly lower in horizontal direction. The differences of particle velocities in both
vertical and horizontal directions are relatively small at this height range, compared
with the profiles of volumetric flux in Figure 7.3a and Figure 7.3b. Most of results from
simulations using PBVK are more conform to the measurement results, compared with
the drag model without correction for the effect of size poly-dispersity. This correction
improved the agreement with measurement results by avoiding the over-estimation of
drag force for small particles and the under-estimation of drag force for large particles.

On the basis of Eqs. (6.5) to (6.7) the color-PTV measurement can also provide distin-
guishable information about particle granular temperature for particles with different
sizes. The particle granular temperature corresponds to the relative velocity of particles
that may drive diffusive mixing and particle collisions. Figure 7.5a shows the compar-
ison of cumulative distributions of the square root of particle granular temperature of
different particles for Case 1. Different to Figure 7.4, the cumulative distributions were
obtained from all investigation regions in the field of view at all time steps. According
to the color-PTV measurement, the granular temperature of small particles is higher
than that of large particles. Compared to the result from MBVK, the correction for size



7.3. Results and discussion 151

C
ol

or
P

T
V

 V
er

tic
al

P
B

V
K

 V
er

tic
al

M
B

V
K

 V
er

tic
al

C
ol

or
P

T
V

 H
or

iz
on

ta
l

P
B

V
K

 H
or

iz
on

ta
l

M
B

V
K

 H
or

iz
on

ta
l

1.
5

1
0.

5
0

0.
5

1
1.

5
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

P
ar

tic
le

 v
el

oc
ity

 [m
/s

]

Density distribution [s/m]

G
re

en
 p

ar
tic

le
s 

(C
as

e 
1)

1.
5

1
0.

5
0

0.
5

1
1.

5
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

P
ar

tic
le

 v
el

oc
ity

 [m
/s

]

Density distribution [s/m]

W
hi

te
 p

ar
tic

le
s 

(C
as

e 
1)

1.
5

1
0.

5
0

0.
5

1
1.

5
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

P
ar

tic
le

 v
el

oc
ity

 [m
/s

]

Density distribution [s/m]

R
ed

 p
ar

tic
le

s 
(C

as
e 

2)

1.
5

1
0.

5
0

0.
5

1
1.

5
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

P
ar

tic
le

 v
el

oc
ity

 [m
/s

]

Density distribution [s/m]
G

re
en

 p
ar

tic
le

s 
(C

as
e 

2)

1.
5

1
0.

5
0

0.
5

1
1.

5
0

0.
050.

1

0.
150.

2

0.
250.

3

0.
350.

4

P
ar

tic
le

 v
el

oc
ity

 [m
/s

]

Density distribution [s/m]

W
hi

te
 p

ar
tic

le
s 

(C
as

e 
2)

a)
b)

c)
d)

e)

F
ig

u
re

7.
4:

C
om

p
ar

is
on

s
of

d
en

si
ty

d
is

tr
ib

u
ti

on
s

of
th

e
in

d
iv

id
u
al

p
ar

ti
cl

e
ve

lo
ci

ty
(i

n
cl

u
d
in

g
ve

rt
ic

al
an

d
h
or

iz
on

ta
ld

ir
ec

ti
on

s)
at

a
h
ei

gh
t

ra
n
ge

of
45

0
to

52
5

p
ix

el
s:

a)
w

h
it

e
p
ar

ti
cl

es
of

C
as

e
1,

b
)

gr
ee

n
p
ar

ti
cl

es
of

C
as

e
1

;
c)

w
h
it

e
p
ar

ti
cl

es
of

C
as

e
2,

d
)

gr
ee

n
p
ar

ti
cl

es
of

C
as

e
2

an
d

e)
re

d
p
ar

ti
cl

es
of

C
as

e
2.



152 Color-PTV and CFD-DEM of poly-disperse systems

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Square root of granular temperature [m/s]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[
]

Case 1

Color PTV white
Color PTV green
PBVK white
PBVK green
MBVK white
MBVK green

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Square root of granular temperature [m/s]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[
]

Case 2

Color PTV white
Color PTV green
Color PTV red
PBVK white
PBVK green
PBVK red
MBVK white
MBVK green
MBVK red

a) b)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Square root of granular temperature [m/s]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[
]

Case 1

Color PTV white
Color PTV green
PBVK white
PBVK green
MBVK white
MBVK green

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Square root of granular temperature [m/s]

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

[
]

Case 2

Color PTV white
Color PTV green
Color PTV red
PBVK white
PBVK green
PBVK red
MBVK white
MBVK green
MBVK red

a) b)

Figure 7.5: Comparisons of cumulative distributions of the square root of granular
temperature for different classes of particles in the entire field of view: a) white and
green particles for Case 1 and b) white, green and red particles for Case 2.
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dispersity reduces the difference between the curves for small and large particles, which
is in good accordance with measurement data. Figure 7.5b shows the results for Case
2. The experimental data for red and green particles almost coincide. The prediction
using PBVK is, again, better than that with MBVK.

7.3.3 Mixing behavior

In this chapter, the mixing degree of particles was investigated by the improved Lacey
index that was proposed by Feng et al. [231]. This index is based on the statistical
analysis of variances of volume fraction of different particles in different samples, which
can be given as

M =
S2

0 − S2

S2
0 − S2

r

, (7.1)

where S2 is the actual variance; S2
0 = Ps(1− Ps) and S2

r = Ps(1− Ps)/Ne, respectively,
represented the variances for the completely segregated state (maximum) and the well
mixed state (minimum). The variable Ps is the global volume fraction of the smallest
particles in a mixture. The original index was used for mono-disperse systems [229]. In
the poly-disperse system, the concept of the equivalent number Ne is used. To keep the
same total particle volume in the sample, the equivalent number Ne can be evaluated
based on the number of particles in each size class and the corresponding ratio of the
volume of single particle in this size class to the volume of single smallest particle. The
size of the sample is fixed, while the contribution of the sample to the variance S2 is
weighted according to the equivalent number of particles. If ci is defined as the volume
fraction of the smallest particles in each sample i and Ns is the number of samples, the
variance S2 can be expressed as

S2 =
1

kt

Ns∑
i=1

ks,i · (ci − Ps)2, (7.2)

kt =
Ns∑
i=1

ks,i (7.3)

where ks,i is the weighting factor in the sample i and kt is the total weighting factor.
ks,i can be calculated as the ratio of the equivalent number of particles in the sample
i to the maximum equivalent number of particles for all samples at each time step
(Ne,i/Ne,max). The mixing index obtained from Equation (7.1) is by definition zero for
a completely segregated mixture and increases to unity for a fully random mixture.

Based on a sensitivity study, sample size was set equal to the size of the investigation
region, which can satisfy the conditions that the mixing index should be close to one
for the well-mixed state and close to zero for the fully segregated state. However, due
to interlaced arrangements in the interface of different layers of particles, the mixing
indices in the initial states of both the measurement and the simulation are slightly
larger than zero in the results, as shown in Figure 7.6. The maximum mixing index is
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Figure 7.6: Comparisons of mixing index: a) Case 1, and b) Case 2 (snapshots at 2 s
are included to visualize characteristic results of the different methods).

lower than unity, meaning that the perfect mixing state cannot be reached under the
measurement conditions.

Figure 7.6a shows comparisons of mixing index for Case 1 in the time period from zero
to 5 s. According to the color-PTV measurement, the mixing index gradually increases
from 0.15 to an equilibrium state with a mean value of approximately 0.9. The duration
of the increasing stage of mixing index is approximately 1.5 s. After that, the maximum
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fluctuation of mixing index remains within 0.1. The simulation using PBVK predicts
qualitatively and quantitative comparable results with the color-PTV experiment. The
inserted snapshots from color-PTV and CFD-DEM with PBVK at time 2 s show the
particle distributions at the corresponding mixing indices. The simulation using MBVK
gives relatively large deviations of both, the mean value and the fluctuations of mixing
index, especially after the increasing mixedness stage. Compared with the cumulative
distribution of the square root of particle granular temperature (Figure 7.5a), the large
difference of particle granular temperature between small and large particles by MBVK
implied strong relative motions between particles of different sizes, resulting in the
decrease and the fluctuation of mixing index.

For Case 2, red particles and green particles were considered as one component when cal-
culating the volume fraction of white particles in the mixture. As shown in Figure 7.6b,
the final mixing state for Case 2 is much different from that of Case 1, although they
have very similar initial bed height, Sauter mean diameter, bed mass, and the same
superficial gas velocity. According to the color-PTV measurement, the mean value of
mixing index after 1.5 s is approximately 0.75; and the maximum spread is larger than
0.2. The final mixing index is, thus, affected by the initial packing state. The ternary
system is more difficult to be brought and kept at a relatively stable equilibrium than
the binary system under the same fluidization conditions. The simulation using PBVK
still shows better performance than that based on MBVK. As shown in the snapshot for
MBVK, it is difficult for small particles to enter into and stay in the void space between
large particles in the corresponding CFD-DEM, leading to the under-estimation and
the large fluctuation of the mixing index.





Chapter 8

CFD-DEM study of the particle behavior
in a Wurster fluidized bed

This chapter is based on Jiang et al. [120].

8.1 Wurster fluidized bed

Particle coating is widely applied in the pharmaceutical, food, cosmetic, and fertilizer
industry. As an efficient device for film coating of particles, the Wurster coater has
been commonly used as a batch or continuous fluidized bed to precisely coat pellets
and tablets (deposit drug substances or functional films on particles) in pharmaceutical
industries [6, 165, 239].

During a typical coating process in batch Wurster fluidized beds, coating material is
atomized into droplets by a two-fluid nozzle located on the distributor plate under the
bottom of the Wurster tube. Particles are wetted by the droplets in the spray zone and
dried when subsequently passing the Wurster tube, fountain zone, down bed and hori-
zontal zone (as illustrated in Figure 8.1). Single circulation is accomplished when parti-
cles enter to the spray zone again through the partition gap, which is repeated until the
desirable total amount of coating material has been deposited on the particles. Indeed,
the individual particle spends its time in various regions with different solid volume
fraction, moisture content and temperature, which are influenced by the combined ef-
fects of the motion of gas and the spray of coating material. Moreover, particle-particle
or particle-wall collisions sometimes generate non-ideal circulations (recirculation) in
the Wurster tube, which considerably affect the individual particle residence time and
cycle time.

The mass of coating material received by an individual particle in each cycle plays a
critical role in achieving a stable particle formation process and the required coating
thickness, which is closely associated with the residence time of the particle in the
spray zone [29, 240]. While particles pass through the spray zone, the distance to
the spray nozzle and the particle-to-particle sheltering effect are also considered to
influence the mass of coating per cycle [29, 241]. In addition, the cycle time of the
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particle determines the total amount of obtained coating material, but contributes less
to the coating uniformity compared with the mass of coating per cycle [240, 242]. From
another point of view, the agglomeration of particles should be avoided in the coating
process to achieve high product quality.

Due to the industrial significance of particle circulation behavior and spray character-
istics in coating processes, there have been some experimental investigations of these
quantities in different configurations. Shelukar et al. [240] and Cheng and Turton [242]
applied magnetic particle tracking (MPT) to measure particle circle time in Wurster
coaters. Further, Shelukar et al. [240] measured the coating per cycle by a dye trac-
ing technique. Depypere et al. [243] used positron emission particle tracking (PEPT)
to visualize the circulating motion of particles in a Wurster coater. With the same
technique, Li et al. [27] studied the cycle time and the residence time of poly-disperse
particles in a laboratory-scale Wurster coater. Note that only a single tracer particle is
used in the MPT and PEPT measurements [244]. Thus, it is essential to benefit from
the principle of ergodicity in the probability theory for processing the particle residence
time distribution (RTD) and the particle cycle time distribution (CTD), which is re-
quired for Monte Carlo modeling [29] or population balance modeling [6, 245] of the
Wurster coating process. Börner et al. [28] used conductivity probes to map the bound-
aries of the spray zone in top-spray fluidized beds. The cycle time and residence time
distributions in different zones were estimated combining particle imaging velocimetry
and digital image analysis technologies.

Nevertheless, it is very difficult to directly measure the spray characteristics and res-
idence time distributions in different processing zones. Conversely, the CFD-DEM
simulation approach has great potential to evaluate residence time and even the parti-
cle collision dynamics in different zones. Fries et al. [91] investigated particle collision
dynamics in different processing zones of a top-spray fluidized bed, Wurster coater and
spouted bed using CFD-DEM simulations. Hilton et al. [99] developed an approach to
model particle motion and gas flow by CFD-DEM simulation, and mapped Stokesian
solid-like droplets on individual particles based on the spherical harmonic formulation,
which can be used to predict the coating quality at the intra-particle level. Li et al. [93]
used CFD-DEM simulation to estimate the cycle time and residence time distributions
in a Wurster coater corresponding to the PEPT experiments [27].

The main objective of this chapter is to evaluate the particle residence time distribu-
tion, the particle cycle time distribution, and the particle collision velocity in a binary
(two different particle sizes) Wurster coater by the CFD-DEM simulation. In order
to validate the simulation, the geometry of the Wurster coater and operation condi-
tions follow the experimental work of Li et al. [27]. The details of simulation setup
are given in Section 4.4.1. Different from the simulations of Li et al. [93], solid-like
droplets are included in the simulation to directly investigate the droplet deposition
rate in the spray zone, which implies the coating-per-cycle characteristic. Moreover,
the ideal and the non-ideal cycles are distinguished to analyze the particle circulating
time distribution. Accurate results from the CFD-DEM simulation will help optimiza-
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tion of macroscopic modeling, including drying, and provide a more reliable prediction
of the particle formation process in Wurster coaters.

8.2 Results and discussion

8.2.1 Cycle time and residence time distribution

As shown in Figure 8.1, the global circulating flow in the Wurster coater is that particles
move upwards into the tube from the spray zone, lose momentum in the fountain zone,
fall downwards into the external annulus (down bed), are transported in the horizontal
zone in plug flow manner, and re-enter the spray zone through the partition gap at the
bottom of the internal annulus. Note that droplets only exist in the predefined spray
zone in the simulation. In other words, particles can only receive coating material in

Droplet deposition

Figure 8.1: Snapshot representing the global circulating flow of particles (large particles
colored by red and small particles colored by green) in the Wurster coater, which is
divided into (1) Spray zone; (2) Wurster tube; (3) Fountain zone (only part of fountain
zone depicted for a better visualization); (4) Down bed; and (5) Horizontal zone. The
droplets (colored by blue) are injected into the pre-defined spray zone for the evaluation
of droplet deposition characteristics.
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the spray zone. However, recirculation of particles may occur when particles recirculate
within the Wurster tube without having passed through the down bed zone. When a
cycle does not have any recirculation, it is defined as an ideal cycle by Li et al. [27];
otherwise it is a non-ideal cycle.

The trajectory of a sample particle from the CFD-DEM simulation is illustrated in
Figure 8.2a. On the one hand, when blue crosses are higher than the tube height,
particles move into the fountain zone. On the other hand, when red circles are lower
than the tube radius, particles travel into the Wurster tube. In order to distinguish
ideal and non-ideal cycles, the location of each particle in each time step of 0.01 s was
labeled with a zone number (as shown in Figure 8.1) in the post-processing of CFD-
DEM simulation data. The identification of an ideal cycle is relatively simple, in which
the particles travel through zone 1 to zone 5 in this order without any recirculation,
as shown in the left side of Figure 8.2b. To identify non-ideal cycles, three types of
recirculation in the Wurster tube must be first clearly defined: a) the particle falls
to the Wurster tube from the fountain zone (zone 3 to zone 2 in the trajectory); b)
the particle re-enters into the spray zone from the Wurster tube (zone 2 to zone 1 in
the trajectory); c) the particle moves backward to the horizontal transport zone from
the spray zone (zone 1 to zone 5 in the trajectory). As an example, the right-hand
side of Figure 8.2b represents the recirculation type b). Apparently, the appearance
of the recirculation increases the risk of particle agglomeration and gives a broader
film thickness distribution. Compared to the PEPT measurements without the spray
zone [27], the two definitions of recirculation are not exactly the same but comparable.
In a non-ideal cycle of this study, the particle experiences one or more recirculations
before completing an entire circulation that includes all five zones. Further, the cycle
times and the residence times in different zones can be evaluated based on the numbers
of zone labels. The cycle times of ideal and non-ideal cycles are denoted by tic and
tnc, respectively. The overall cycle time (including both ideal and non-ideal cycles) is
denoted by tc. In the ideal cycle of Figure 8.2b, the sample particle slides continually
along the Wurster tube in the horizontal zone and enters the spray zone from the lower
edge of the tube, which leads to a short cycle time. Sometimes, however, particles
slide along the chamber wall and spend a longer time in the horizontal transport zone,
which obviously results in a longer cycle time. Therefore, the cycle time distribution is
considerably influenced by the ratio of ideal and non-ideal cycles and the detailed flow
behavior in each cycle.

Based on the analysis of ideal cycles of all 32400 particles from 5 s to 30 s, the cumulative
distribution of ideal cycle time tic has been obtained for both large and small particles,
as depicted in Figure 8.3. From the cumulative distribution curve, the median ideal
cycle time of large particles is 2.95 s, shorter than 3.31 s of small particles. The relative
spans of the ideal cycle time ((tic,90 − tic,10)/tic,50) are 0.94 and 0.91 for large and small
particles, respectively. In the experimental work of Li et al. [27], the mean value and
the coefficient of variation (CV) were used to represent the characteristics of ideal cycle
time distribution and overall cycle time distribution. The comparison of results for
mean ideal cycle time tic and mean overall cycle time tc, together with the corresponding
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a)

b)

Tube height

Tube radius

Figure 8.2: Sample particle trajectory: a) axial distance (blue crosses) and radial dis-
tance (red circles) with respect to time; b) ideal cycle (left) and non-ideal cycle (right)
in subsequent time ranges (the spray zone is located inside the blue dashed lines).
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Figure 8.3: Cumulative distributions of ideal cycle time for large and small particles.

Table 8.1: Comparison of ideal cycle time and overall cycle time distributions.

Variable
CFD-DEM PEPT [27]

small large small large

t̄ic [s] 3.46 3.09 3.22 2.74
CV (tic) [%] 38.9 44.8 50.5 44.3
t̄c [s] 4.32 5.18 4.95 5.95
CV (tc) [%] 62.2 83.1 73.0 96.3
rn [%] 72.3 53.1 46.9 33.1

t̄ic =
∑Nic

j tic,j/Nic, Nic is total number of ideal cycles, tic,j is time of each ideal
cycle.
t̄c =

∑Nc

j tc,j/Nc, Nc is total number of cycles, tic,j is time of each cycle.

CVs are listed in Table 8.1. There is a good agreement with the PEPT measurements
in terms of mean ideal cycle time and the corresponding coefficient of variation for
both sizes. However, some discrepancies in the number ratio of ideal cycles to total
cycles rn exist. Obviously, the CFD-DEM simulation underestimates the number of
non-ideal cycles for both large and small particles. Further research on the possible
reasons requires more information about particle-particle and particle-wall interactions
from both CFD-DEM simulation and PEPT measurements. Nevertheless, the number
ratio rn for small particles is higher than that for large particles in both simulation and
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experiment, which results in a longer mean cycle time of large particles. Meanwhile,
the high coefficients of variation of overall cycle time imply broad distributions of cycle
time, which are undesirable to reach uniformity in the coating product.

Based on the length of trajectory (number of zone labels) within the spray zone and
the Wurster tube zone of each cycle, the residence time distributions can be evaluated
and compared to the PEPT measurements and the simulations of Li et al. [93]; the
results are listed in Table 8.2. Our simulation predicts well the mean residence time in
the Wurster tube tr,t for both small and large particles. Note that the residence time
in the Wurster tube also has a large coefficient of variation, due to the influence of the
recirculation. In terms of the residence time in the spray zone, the mean values of tr,s
for both small and large particles are shorter than those of Li et al. [93], in other words,
the mean particle velocities in the spray zone of our simulation are somewhat higher.

Table 8.2: Comparison of residence time distributions in the spray zone and the Wurster
tube.

Variable
CFD-DEM PEPT Li et al. [27] Simulation Li et al. [93]

small large small large small large
t̄r,t [s] 0.89 0.97 0.93 1.02 0.99 1.13
CV (tr,t) [%] 32.7 41.2 - - - -
t̄r,s [s] 0.09 0.12 - - 0.11 0.17
CV (tr,s) [%] 18.5 24.1 - - - -
ϕ [%] 2.1 2.3 - - - -

t̄r,t =
∑Nc

j tr,t,j/Nc, tr,t,j is residence time in the Wurster tube in each cycle.

t̄r,s =
∑Nc

j tr,s,j/Nc, tr,s,j is residence time in the spray zone in each cycle.
ϕ = t̄r,t/t̄c.

To model the particle growth by the two-zone population balance model approach
[6, 246], the ratio of the volume of the spray zone to the volume of the process chamber ϕ
is an important model parameter relating to process stability [7]. The model parameter
ϕ can be evaluated by setting the volume ratio equal to the ratio of average residence
times tr,s/tc, which, respectively, gives values of 2.1 % and 2.3 % for small and large
particles. From the view of geometry of process apparatus, the model parameter ϕ can
also be calculated using the expression for the Wurster coater proposed by Bück et al.
[7], given as

ϕ =

(
Dt

Deq

)2
1

L
. (8.1)

Where Dt is diameter of Wurster tube, Deq is the effective diameter of the Wurster
coater, and L is the ratio of fluidized bed height to the length of the spray zone. In
this work, Deq equals to 161 mm and L equals to 4.53. Then, ϕ equals to 2.1 %,
which is in good accordance to the value obtained from the mean residence time in
the spray zone and the mean cycle time. In addition, CFD-DEM simulation provides
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further features of particle dynamics, which are important to design a stable particle
coating process, such as the solid volume fraction, particle velocity, and the distance
of particles from the spray nozzle. Based on the locations of individual particles, the
solid volume fraction can be calculated by the ratio of total volume of particles in a
certain zone to the volume of this zone. The mean solid volume fraction in the Wurster
tube is 0.0148, which means that particle motion in the tube belongs to the pneumatic
conveying flow region. This value is similar to the mean value of 0.0143 evaluated
from the corresponding CFD cells, which implies that solid volume fraction is well
computed during the coupled CFD-DEM simulation, which is important to accurately
evaluate the momentum exchange coefficient βpf . The mean values of particle velocity
magnitude in the Wurster tube are 0.53 m/s and 0.45 m/s for large and small particles,
with coefficients of variation 67.0 % and 67.8 %, respectively. However, the widths of
the distributions of velocity are relatively large due to the effects of particle-particle
interactions and particle-wall interactions in the Wurster tube. Moreover, a shorter
distance of the particle to the spray nozzle represents a higher probability to receive
more coating material. The mean distance of large particles to the spray nozzle is 46.2
mm and shorter than that of small particles, which experience a mean distance of 48.3
mm.

8.2.2 Droplet deposition rate

The droplet deposition rate is referred to the total mass of coating droplets deposited on
the surface of a particle per unit time, which is normally related to spray rate, residence
time in the spray zone, and the proximity of particles to the spray nozzle in the coating
equipment. In this study, with the injection of mono-disperse solid-like droplets in the
spray zone, it is possible to directly evaluate the droplet deposition rate based on the
number of particle-droplet interactions Nd,j in each cycle and the residence time in the
spray zone tr,s,j. The droplet deposition rate Rd,j in a cycle j can be defined as

Rd,j =
Nd,j ·md

tr,s,j
, (8.2)

where md is the mass of single droplet (5.24 × 10−4 mg). On the basis of all cycles
experienced by small or large particles in the time period 5 s and 30 s, the cumu-
lative distributions of droplet deposition rate can be obtained and represented as in
Figure 8.4. The median deposition rates of large and small particles are 0.125 mg/s
and 0.103 mg/s, respectively. The larger particles with a larger cross-sectional area
and a shorter average distance to the spray nozzle had a higher possibility to come in
contact with droplets. Due to the high fraction of non-ideal cycles of large particles,
the droplet deposition rate of large particles is distributed in a relatively wider range
with relative span 1.09 (small particles with relative span 0.78), which finally affects the
distribution of coating thickness. Considering only droplet deposition rates and particle
sizes, coating thicknesses can be calculated. The resulting ratio of the median coating
thickness between large and small particles is 0.52.
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Figure 8.4: Cumulative distributions of droplet deposition rate for large and small
particles (relative span refers to (Rd,90 −Rd,10)/Rd,50).

8.2.3 Particle collision velocity

The collision velocity significantly affects the probability of coalescence of two colliding
particles, based on the work of Ennis et al. [20]. The collision of two particles will
result in coalescence if the viscous Stokes number is less than a critical value. Actually,
the viscous Stokes number, determined by the collision velocity, is the ratio of kinetic
energy of the two approaching particles to viscous dissipation by the liquid film. In the
DEM simulation, the collision velocity can be modeled by the contact model and the
cumulative distribution of collision velocity in each zone was estimated on the basis of
all individual collision events in the zone in the time range of 5 s to 30 s (as shown
in Figure 8.5). According to the definition, only the relative velocity of two particles
at the first contact moment was considered as collision velocity. The median collision
velocities in the spray zone, the Wurster tube and the horizontal zone are 0.212 m/s,
0.192 m/s and 0.054 m/s, with relative spans of 1.63, 1.92 and 2.72, respectively. As
an illustration, the critical magnitude of collision velocity for two small particles would
be 0.18 m/s, assuming typical conditions used in the investigations of spray fluidized
bed agglomeration (liquid viscosity of 25 mPa · s and a ratio of thickness of the liquid
layer to the characteristic height of surface asperities of value 10) [154]. Clearly, the
relatively high collision velocity in the spray would prevent the appearance of particle
agglomeration in the Wurster coater process, despite of high moisture content in this
zone. The low fluidization gas velocity and high solid volume fraction in the horizontal
zone lead to relative low collision velocities, which would mean agglomeration between
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Figure 8.5: Cumulative distributions of collision velocity in spray zone, Wurster tube
and horizontal zone (relative span refers to (vc,90 − vc,10)/vc,50).

wet particles in this zone. It is therefore important to provide enough drying capacity
of the fluidization gas, so that particles are dry in the horizontal zone. Note that a
maximum collision velocity of 1.32 m/s appeared in the spray zone, which is smaller
than the 1.5 m/s used in Equation 10 to estimate the DEM time step.



Chapter 9

Modeling of inter- and intra-particle
coating uniformity in a Wurster fluidized
bed by a coupled CFD-DEM-Monte Carlo
approach

This chapter is based on Jiang et al. [121].

9.1 Coating uniformity

In Chapter 8, motion of particles in the Wurster fluidized bed was simulated by CFD-
DEM to investigate the residence time in different zones. In this chapter, the CFD-
DEM will be coupled with a Monte Carlo method to directly predict the inter- and
intra-particle coating uniformity.

Coating of particulate materials is widely applied in the pharmaceutical, food, cosmetic,
and fertilizer industries. In pharmaceutical applications, polymer-based film coating
is critical to control and prolong the release of active ingredients [247]. For instance,
minimum thickness and the absence of cracks of the functional coating film are required
to protect the active pharmaceutical ingredient (API) against the acid environment in
the stomach. Besides, the amount of API is directly correlated to the coating layer
thickness in the active coating process. In the food industries, potential applications of
coating include the protection of ingredients from the environment, the stabilization of
the core during processing, the improvement of flowability and compression properties,
and many more [248].

Spray fluidized beds and rotating drum (perforated pan) coaters are mainly used to
conduct particle coating [202]. The Wurster fluidized bed is an efficient device for
film coating of particles, which has been widely used in batch or continuous mode to
precisely coat pellets and pharmaceutical tablets [6–8, 249, 250]. The high gas velocity
in the internal annulus generates pneumatic transport of particles in the Wurster tube,
resulting in relatively narrow residence time distributions (RTDs) in the spray zone
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and the Wurster tube, respectively. As discussed in Chapter 8, the particles move in
Wurster fluidized beds by means of circulation in five different zones. In addition to
imposing a circulation motion on the particles, the drying capacities of the gases in
different regions can be adjusted to control the overall coating performance [4].

The uniformity of the coating layer among particles (inter-particle) and on a single par-
ticle (intra-particle), the integrity, and the porosity of the coating layer are important
attributes of the final product quality, especially in the pharmaceutical coating process.
The end point and (average) coating layer thickness can be estimated. As reviewed by
Knop and Kleinebudde [251], experimental techniques to characterize coating attributes
include visual imaging analysis, near infrared and Raman spectroscopy, terahertz pulsed
imaging, and X-ray microtomography. Near-infrared and Raman spectroscopy rely on
calibration models that require ongoing maintenance support. Sondej et al. [13, 194] in-
vestigated intra-particle coating layer morphology, the inter-particle coating thickness
distribution and the porosity of coating layer by X-ray micro-computed tomography
(µ-CT). By means of the same technique, Rieck et al. [16] found a linear expression
for the relationship between layer porosity and drying potential representing drying
conditions in the fluidized bed. Laksmana et al. [252] quantified the pore size distri-
bution using confocal laser scanning microscopy. Schmidt et al. [14] proposed a simple
method to estimate layer porosity of particles coated with aqueous suspensions based
on the size distribution (measured by a Camsizer, Retsch GmbH) and moisture con-
tent (measured by a drying oven) of particles before and after coating. Lin et al. [253]
reported the in-line measurement of intra-particle coating uniformity and inter-particle
coating thickness distribution (in the range of 20 µm to above 300 µm) using combined
terahertz and optical coherence tomography.

Coupling computational fluid dynamics (CFD) with DEM can be used to simulate
particle-fluid systems in fluidized beds, cyclones, pneumatic conveying and channels
[123], involving non-spherical particles [103] and dense particulate system reactions
[254]. So far, most of CFD-DEM or DEM studies about wet coating and granulation
processes investigated the residence time distributions (RTDs) in different zones of
different configurations [88, 93, 94, 120, 255, 256], which then can be used as the input
parameters for macroscopic population balance modeling.

An essential part of wet particle formation processes is the generation of droplets by a
nozzle (one or two-fluid), in which a liquid jet disintegrates into unstable sheets, then
ligaments and finally droplets due to the combined effects of the turbulent (or cavita-
tion) flow inside the nozzle, the high shear force induced by the interactions with the
second fluid outside the nozzle, and the surface tension force and the viscosity force
of the liquid [30, 257]. Owing to its great importance in environmental, chemical or
medical applications and the inherently complex underlying physics, the modeling of
the spraying and atomization process has always been at the leading edge of numerical
simulations of multiphase flow [258, 259]. Nevertheless, there is still no efficient numer-
ical method to couple droplets into CFD-DEM accounting for the phenomena of, for
instance, aggregation and breakage, the droplet deposition on particles, and drying and
solidifying of droplets on particles or in the gas flow. As a common compromise, the
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droplets are treated as a type of solid discrete elements in CFD-DEM simulations, with
the assumption that droplets are spherical, no aggregation and breakage occur, and cer-
tain simplified droplet coalescence and death criteria apply [94, 99, 120, 247, 255, 260].
Hilton et al. [99] developed a method to map Stokesian solid-like droplets on indi-
vidual particles based on the spherical harmonic formulation, which can predict the
coating coverage and deposition volume at both intra-particle and inter-particle levels.
The intra-particle coating variability of differently shaped particles was investigated by
DEM simulations coupled with a graphical processing unit (GPU) based image analysis
method in horizontal rotating pans [261, 262]. Specifically, as the particle appears in
the predefined spray zone, the pixels in the image that are rendering the correspond-
ing areas of the particles are considered to be coated. Askarishahi et al. [70] used
scalar transport equations to model the interaction between droplets and particles, and
evaporation from the droplet in both, the spray and on the particle surface using an
Euler-Lagrange approach. Moreover, the Monte-Carlo approach can be used to model
particulate processes in which a sequence of discrete events, e.g., droplet deposition, ag-
gregation of particles, and breakage of particles, are applied to the particle population
[153–155, 263–269].

In this chapter, a coupled CFD-DEM-Monte Carlo approach was developed to study
the inter- and intra-particle coating coverage and layer thickness distributions in a
Wurster fluidized bed. The deterministic CFD-DEM method was used to predict the
circulation motion of particles in different processing zones. Based on the particle
positions and particle velocities obtained from CFD-DEM simulations, the stochastic
Monte Carlo approach was used to model the deposition, the splashing and the drying
of droplets on the surface of each individual particle. Then, variations of particle size
due to deposition and drying were given back to the CFD-DEM solver. The outline
of this contribution is as follows. Section 9.2 gives a detailed description of the Monte
Carlo approach for microscopic processes and events on individual particles. Section 9.3
presents and discusses simulation results of one case with cohesion forces in the DEM
and one case without cohesion forces. Furthermore, detailed comparisons in terms of the
residence time distribution, coating coverage and coating layer thickness are performed
with experiment data and analytic models.

9.2 Monte Carlo methodology

An overview of the integration of the Monte Carlo with CFD-DEM is given in Figure 9.1.
The details of simulation setup are given in Section 4.4.1. In each Monte Carlo time step
∆tm, one event of droplet deposition is guaranteed to occur on the single particle in the
Monte Carlo domain. Particle dynamics in the CFD-DEM simulation are used in the
stochastic Monte Carlo approach to model microscopic processes including deposition
and splashing of droplets and drying of droplets, as shown in Figure 9.2. The time step
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Figure 9.2: Flowchart of the coupled CFD-DEM-Monte Carlo approach.

∆tm can be calculated from the number flow rate of droplets sprayed into the spray
zone, expressed by:

∆tm = − ln r1

(
6Ṁl

πρdd3
d

)−1

(9.1)

where Ṁl is the mass flow rate of solution and r1 is a uniformly distributed random
number from the interval ∈ (0, 1). The initial diameter of droplets dd and mass density
of droplets ρd are constant in the model. Once total Monte Carlo process time tm has
become larger than ∆tc,2 (Table 9.1), the new particle diameters dp are given back to
the CFD-DEM solver; and the CFD-DEM simulation is conducted for another time
period of duration ∆tc,2. Accordingly, the particles in the Monte Carlo domain are
updated based on the new CFD-DEM data.
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9.2.1 Particle selection and surface discretization

The Monte Carlo domain was set according to the geometry of the spray zone, as
shown in Figure 9.1. The number of particles in the Monte Carlo domain, Np,MC , was
evaluated from the positions of individual particles in CFD-DEM simulations.

The probability of particle i to receive liquid droplets was related to the volume swept
by this moving particle in the spray zone, which can be calculated by Vs,i = π(dp,i/2 +
dd/2)2vp,i∆tm. In other words, the particles were weighted by the swept volumes and
the probability of each particle to be selected was determined by its relative weight. Fig-
ure 9.3 shows a straightforward algorithm: 1) calculate the cumulative sum of weights
for each particle s(i) =

∑
i Vs,i (particles are arranged in a sequence of 1 to Np,MC), 2)

select a random number r2 from the interval (0,
∑Np,MC

i=1 Vs,i), and 3) find the particle i
that has a sum of weight larger than r2, i.e. s(i)− r2 > 0.

0 𝑠 1 = 𝑉𝑠,1 𝑠 2 = 𝑉𝑠,1 + 𝑉𝑠,2

𝑉𝑠,1= 
π

4
𝑑𝑝,1 + 𝑑𝑑

2
𝑣𝑝,1∆𝑡𝑚

𝑉𝑠,2 𝑉𝑠,3 𝑉𝑠,𝑖

𝑠 𝑛𝑝,𝑀𝐶 =

𝑖

𝑉𝑠,𝑖

Figure 9.3: The weighted random selection of particles based on the volumes swept by
the moving particles.

The surface of each individual particle was divided into labeled panels with the same
area that can be used to receive droplets. Supposed that droplets do not overlap, the
number of panels per particle Ndep was calculated based on the surface area of each
primary particle Ap and the mean contact area of single droplet deposition Acontact;
formed as

Ndep,i =
Ap,i

Acontact
, i = 1, ..., Np,MC . (9.2)

The calculated number of panels per particle was then rounded to the next integer
value. If the shape of deposited droplet is approximated as a truncated spherical cap
and the ratio of particle diameter and droplet diameter is large enough, the diameter
of contact area is given by [31, 270]

dcontact = 2dd

[
sin3 θ

2(1− cos θ)(2− cos θ − cos2 θ)

]1/3

, (9.3)

in which θ is the contact angle between the liquid droplet and the solid particle. For the
sake of simplicity, variations of contact angle depending on the surface wettability [270]
in the spreading period were not considered and a constant contact angle was used in
the model.

By spherical centroidal Voronoi tessellation (CVT) [271], a set of Ndep points (centroids
of panels) can be uniformly distributed on the surface of individual spherical particle.
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b)

a)
50 iterationsinitial

Figure 9.4: Centroidal Voronoi tessellation of a spherical particle: a) the set of 500
points (red points) generated via the proposed approach and corresponding Voronoi
diagrams (at initial condition and after 50 iteration steps), and b) the normalized
maximum and minimum areas of Voronoi tessellations (normalized by πd2

contact/4) and
the coefficient of variation of areas with respect to the number of iterations. The Voronoi
first star structure is also depicted using the red lines.

This problem is of great importance in many scientific and engineering applications
[272]. The main idea of centroidal Voronoi tessellation is that the points used as gener-
ators of Voronoi regions coincide with the mass centroids of those regions. In this work,
the construction of spherical centroidal Voronoi tessellation was conducted by Lloyd
iteration [273], as follows:

Step 1: Select a set of Ndep points rrr
(0)
cvt,i on the surface of a unit sphere based on the

standard normal distribution.
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Step 2: Construct the Voronoi diagrams associated to the set of points rrrcvt,i, as shown
in Figure 9.4a. The Voronoi regions Vi of RN corresponding to the generators rrrcvt,i are
defined by

Vi =
{
xxx ∈ RN , |xxx− rrrcvt,i| < |xxx− rrrcvt,j|, j = 1, ..., k, j 6= i

}
, (9.4)

in which | · | denotes the Euclidean norm.

Step 3: Determine the mass centroids of all Voronoi polygonal regions rrr∗cvt,i. Given a
constant probability density function g(xxx) in Voronoi regions Vi, the mass centroids are
calculated by

rrr∗cvt,i =

∫
Vi
g(xxx)dxxx∫
Vi
xxxdxxx

. (9.5)

Then, these centroids rrr∗cvt,i are used to form the new set of points rrrcvt,i and the corre-
sponding Voronoi regions Vi.

Step 4: Check the coefficient of variation of areas of Voronoi polygonal regions, as
depicted in Figure 9.4b. If the Voronoi polygonal regions Vi generated by rrrcvt,i meet
criterion that the coefficient of variation of areas is less than 10%, the iteration is
terminated; otherwise, return to step 2.

After the spherical centroidal Voronoi tessellation, the centroids of the labeled panels
are rrrcvt,i, and the area of every labeled panel is approximately πd2

contact/4. Figure 9.4b
shows that the discrepancy between the normalized maximum and minimum areas of
Voronoi tessellations is very small when satisfying the termination criterion. Given that
the probability for each panel to get the droplet is the same in this work, a random
integer r3 from the interval (1,Ndep) can be generated to select the deposition panel
for each droplet. Moreover, all information about droplet deposition is stored in the
labeled panels on each individual particle.

9.2.2 Droplet deposition

The droplet deposition on each individual panel is affected by both the impact energy
of a single droplet and the wetting condition of each individual panel. According to
the method used by Jiang et al. [120], solid-like droplets with a diameter of 40 µm
and a coefficient of restitution of 0.1 were injected in the spray zone of the CFD-DEM
simulation to estimate the impact velocity between the particle and the droplet. The
computational cost of this simulation is very high due to the required small DEM time
step and the large number of particles and solid-like droplets. Based on the results of
about 2 s CFD-DEM simulation, the distribution of normal impact velocity vrel between
the particle and the droplet was assumed as a normal distribution with a mean of 13.13
m/s and a standard deviation of 3.58 m/s in the Monte Carlo model.

The impact of droplets on the dry particle surface can exhibit very complex flow pat-
terns, such as deposition, splash (radial ejection of secondary droplets due to breakup)
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or rebounding (partly or fully), which is affected by the droplet size, the impact en-
ergy of droplet and the wettability and roughness of the surface [31, 274]. The Weber
number and Reynolds number characterizing the droplet impact dynamics are

We =
ρdddv

2
rel

γ
, (9.6a)

Re =
ρdddvrel
µd

; (9.6b)

in which ρd is the mass density of liquid droplet, γ is the surface tension of droplet,
vrel is the normal relative velocity between the particle surface and the droplet, dd
is the diameter of droplet, and µd is the dynamic viscosity of droplet. Regardless of
surface roughness, the well-known parameter Kd = We1/2Re1/4 was used in this work
to characterize the transition from deposition to splashing with a threshold value of
Kd,s = 57.7 [275].

If Kd < Kd,s, the impact was considered to result in normal deposition of the entire
volume of the droplet on the deposition panel. If Kd > Kd,s, splashing of the droplet
occurred. The prompt or corona splashing of suspension droplets on the particle surface
and the influence of drying during the impact are very complex. Droplets will break
up, redistribute and reshape on the particle surface, and eject small secondary droplets
to the surrounding [274]. Therefore, the splashing of droplets was regarded as a source
of non-uniformity of porosity in the coating layer. In this work, only half of the droplet
was assumed to deposit on the considered position, according to the measurement of
the number and size distribution of secondary droplets by Yarin and Weiss [276]. The
contribution of fine secondary droplets generated by the splashing to the neighboring
panels has been neglected.

9.2.3 Droplet drying

A relatively simple drying model has been used in this work, in which the drying rate
ṁdrying (in kg ·m−2 · s−1) of the first drying period was applied to evaluate the total
drying time. The drying rate during the first period is dependent only on the conditions
of drying in the Wurster tube, formed as

ṁdrying = βρg (Ysat − Y ) , (9.7)

in which Ysat is the adiabatic saturation moisture content of the gas, and Y is the
moisture content of the bulk gas. Given that, at any time, the amount of evaporated
water should be equal to the amount of sprayed water, Y can be calculated by

Y = Yinlet +
Ṁl

Ṁg,dry

, (9.8)

in which Yinlet is the moisture content at the inlet, Ṁl is the mass flow rate of the spray
liquid, and Ṁg,dry is the mass flow rate of the dry fluidization gas. As for a spherical
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particle, the gas side mass transfer coefficient β can be calculated by the correlation
[277]:

β =
Sh · δ
dd

, (9.9)

Sh = 2 +
√
Sh2

1 + Sh2
2, (9.10)

Sh1 = 0.664Re
1/2
d Sc1/3, (9.11)

Sh2 =
0.037Re0.8

d Sc

1 + 2.443Re−0.1
d (Sc2/3 − 1)

. (9.12)

Sherwood number Sh represents the ratio of convective mass transfer to the rate of
diffusive mass transport and δ is the binary diffusion coefficient of water in air. Sc =
µf/(ρgδ) denotes the Schmidt number, and the Reynolds number of the droplet is given
by

Red =
εfρf |uuu− vvvi| dd

µf
. (9.13)

The magnitude of relative velocity between the gas and the particle that received the
droplet |uuu− vvvi| and the volume fraction of gas εf obtained from the CFD-DEM simu-
lation were used to calculate Red.

Then, the drying time ∆tdrying can be calculated using the drying rate ṁdrying and the
liquid mass of a single deposited droplet Mdrop,l to

∆tdrying =
Mdrop,l

Adrop · ṁdrying

, (9.14)

where Adrop = πd2
contact/(2 + 2cosθ) is the surface area of the deposited droplet in

contact with the gas [278]. The drying of the liquid droplet was assumed to start after
its deposition on the particle at the instant tdeposition. The following criterion determined
whether a droplet on the deposition panel had been dried:

tm ≥ tdeposition + ∆tdrying. (9.15)

If the Monte Carlo simulation time tm was larger than the sum of the deposition time
and the drying time of the droplet, the deposition panel was considered dry. In the
current model, a droplet can only be deposited on dry or empty panels. Empty panels
are either initial panels or new panels generated due to the increase of dp,i. If a panel
with a wet droplet was selected, a new one was chosen randomly until the surface of
selected panel was dry or empty.

9.2.4 Intra-particle coating properties update

According to the method used by Rieck et al. [267], the layer thickness of the ith

individual panel on the jth particle hlayer,i,j can be evaluated from the volume of the
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complete coating layer Vlayer,i,j assuming every droplet to possess the same solid mass
Mdrop,s,i,j. Hence,

Vlayer,i,j =
Mdrop,s,i,j

(1− εlayer,i,j)ρs
Ndep,j, (9.16)

hlayer,i,j =

(
d3
core

8
+

3

4

Vlayer,i,j
π

)1/3

− dcore
2

, (9.17)

where dcore is the diameter of the core particle. In the current work, the porosity of
layer εlayer,i,j for normal deposition was a constant model parameter according to the
X-ray micro-computed tomography experiments (εlayer,i,j = 0.3, Table 9.1, Sondej et al.
[194]). Splashing is not considered to affect layer thickness; instead, layer porosity
increases compared with normal droplet deposition. Keeping the factor Mdrop,s,i,j/(1−
εlayer,i,j) constant for both, normal and splashing deposition results in a higher porosity
of ε∗layer,i,j = 0.65 for splashing deposition.

Moreover, the average layer thickness (intra-particle) and the diameter of each particle
can be written as:

hm,j =
1

Ndep,j

Ndep,j∑
i

hlayer,i,j

 , (9.18)

dp,j = dcore + 2hm,j. (9.19)

The diameter of each particle was given back to the DEM solver. The mean layer
thickness in the particle population (inter-particle) was calculated by

hm =
1

Np

(
Np∑
j

hm,j

)
. (9.20)

To evaluate the coating coverage of each particle, the number of initial deposition panels
Ndep,j and the number of deposition panels that have received droplets (dry or wet)
Ncoat,j were counted. Then, the following equation was used to calculate the coating
coverage of each particle Ψj in each time step:

Ψj =
Ncoat,j

Ndep,j

. (9.21)

If the coating coverage of the particle reaches 100 %, a full closed coating layer has
formed around the particle. The average inter-particle coating coverage is

Ψm =
1

Np

(
Np∑
j

Ψj

)
. (9.22)
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9.2.5 Monte Carlo setup

All models, boundary conditions, and numerical techniques used in CFD-DEM simu-
lations had previously been published. The entire CFD-DEM method, including the
governing equations for the solid particles and the gas phase [123], the drag model for
the particle-fluid momentum exchange [136, 137], the Hertzian spring-dashpot contact
model (soft-sphere) [143], the rolling model [144], and the cohesion model for capillary
force [149], as given in Chapter 3.

CFD-DEM simulations of two cases were performed using four-way coupling by the code
OpenFOAM and LIGGGHTS [128]. The first case without capillary forces between
particles can be directly compared to the PEPT measurement at dry condition by Li
et al. [27]. The second case with capillary forces was designed to investigate the influence
of wetting and agglomeration in the Wurster tube on the residence time distribution.
The liquid bridges were assumed to be formed by sodium benzoate (NaB) solution with
a mass fraction of approximately 30 %. The surface tension of the liquid is γ = 6.98×102

N/m, which was measured by the pendant drop method. As measured by Zhu et al.
[279], the motion of particles in spouted beds was significantly influenced by the effects
of cohesion as αl exceeded 10−3. Therefore, the parameter αl was set as 0.1% in order to
investigate the effects of cohesion on particle circulation. In other words, the parameter
αl was purposely enlarged, compared with the value of 6×10−6 calculated by the volume
of a single droplet used in the Monte Carlo model (Table 9.1).

A relatively large tc,2 = 0.005 s, about 1/200 of the mean residence time in the tube
and 1/30 of the mean residence time in the spray zone, was used to avoid excessively
high computational cost because of too frequent communication between CFD-DEM
code and Monte Carlo method.

Sondej et al. [13, 194] measured both the intra-particle and inter-particle distributions
of coating layer thickness in a top-spray fluidized bed. In their experiment series A,
the diameter of the core particles was 1.8 mm which is similar to the value of 1.75 mm
used in the current simulations. In order to compare with their experiment, the mass
flow rate of spray solution Ṁl used in the Monte Carlo model was scaled according to
the numbers of primary particles in the different beds, which leads to similar values of
the mean layer thickness and mean coating mass per particle. Although the coating
performances of the top-spray fluidized bed and the Wurster fluidized bed are not
exactly the same, the comparison of intra-particle layer thickness distribution is still
meaningful when the mean coating mass received by individual particles is the same.
The coating material is sodium benzoate, which has an antibacterial effect and is used
as a preservative in the food industry. The mass fraction of sodium benzoate solution
is about 30 %. The viscosity of the solution was measured by a Höppler viscosimeter;
and the density of the liquid was measured by a density meter (DMA 58, Anton Paar).
Other properties associated with the spray droplets and gas flow were set same as in
the corresponding experiment series A [13]. Detailed parameters of the Monte Carlo
model and the experiment are listed in Table 9.1.
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Table 9.1: Monte Carlo simulation parameters.

Parameter Monte Carlo Experiment
Configuration Wurster bed Top-spray bed
Particle material MCC γ-Al2O3

Coating material NaB NaB
Initial bed mass [kg] 0.2 0.4
Initial particle diameter dp,0 [mm] 1.75 1.80
Initial particle density [kg/m3] 1420 1040
Number of particles [−] 50000 125000
Solid density of coating material ρs [kg/m3] 1440 1440

Mass flow rate of solution Ṁl [kg/h] 0.048 0.12
Droplet diameter dd [µm] 40 40
Viscosity of droplet µd [Pa · s] 4.18× 10−3 4.18× 10−3

Surface tension of droplet γ [N/m] 6.98× 10−2 6.98× 10−2

Density of droplet ρd [kg/m3] 1125 1125
Contact angle θ [°] 40 40
Solid mass fraction of solution [%] 30 30
Porosity of the coating layer [%] 30 30
Inlet temperature of gas [◦C] 75 75
Inlet moisture content of gas Yinlet [g/kg] 1 1

Mass flow rate of gas Ṁg,dry [kg/h] 96 120

9.2.6 Recurrence of particle circulation

In this work, the CFD-DEM takes about 5 h to simulate 1 s real time (with 8 CPUs),
while the Monte Carlo only needs about 0.05 h. If the simulation had to be performed,
for example, for 1 h to predict a real coating process, it would take more than 750 days,
which is not acceptable.

In the CFD-DEM-Monte Carlo model, the coating of particles is largely determined by
the cycle time distribution and residence time distribution in the spray zone obtained
from the CFD-DEM, with the details of droplets deposition, drying and solidifying
being modeled by the Monte Carlo. It was found that the distributions of cycle time
and residence times are almost constant after 60 s. As listed in Table 9.2, the deviations
of mean cycle time, mean ideal cycle time, mean residence times in the tube and the
spray zone, as well as the corresponding coefficients of variation are very small between
60 s and 180 s. Based on the circulation characteristics of particles, it is thus reasonable
to use the database of particle dynamics obtained from a relative short duration to
reconstruct the recurring motion of particles in a long-term period. In this work, a
simple approach was used to recur the particle circulation motion, as follows:

First, a database of 50000 individual particles was generated using the full CFD-DEM-
Monte Carlo simulation data in the duration of 180 s, including particle positions rrri,
particle velocities vvvp,i, relative velocities between particles and the fluid phase uuu− vvvp,i,
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𝐼𝐴𝑐 𝑡 = 1, the start point of a new cycle

Figure 9.5: Recurrence algorithm for the circulation motion of individual particles in
the Wurster fluidized bed.

particle diameter dp,i and the indicator IAc,i. Based on the trajectory of each individual
particle, the indicator function was defined to indicate the occurrence of event Ac that
the particle entered into the spray zone through the partition gap at instant t, expressed
as

IAc(t) =

{
1, if t ∈ Ac,
0, if t /∈ Ac.

(9.23)

In other words, the instant t corresponds to the start point of a new cycle as IAc(t) = 1.

Second, for each individual particle, the particle dynamics after the last instant tlast
satisfying IAc,i(t) = 1 in the full simulation can be recurred by repeatedly extrapolating
the particle dynamics in the range of (tr,j, tr,j+1] from the database. The instant tr,j
was a randomly selected instant that corresponds to IAc(tr,j) = 1; and tr,j+1 was the
next instant that made the indicator function equal to unity. As listed in Table 9.2,
the relative deviations of mean cycle time, mean ideal cycle time, mean residence times
in the tube and the spray zone as well as the corresponding coefficients of variation
are all almost negligible (less than 1%) between the full simulation results of 180 s and
recurring results of 1 h by this method.

It is emphasized that this simple approach to recur the particle circulation only repro-
duces the circulating motion. However, if the database obtained from the full simula-
tions is large enough, this simple method is statistically reliable and can well predict
the distributions of cycle time and residence times in the Wurster fluidized bed with
negligible computation cost compared with the CFD-DEM. Therefore, the CFD-DEM
simulation was terminated after 180 s in this work; subsequently, the particle dynamics
required in the Monte-Carlo model were extrapolated from the database. It should be
noted that the influence of increasing particle diameter dp,i on the particle dynamics



9.3. Results and discussion 181

cannot be captured in this way. However, this influence is very limited for particles
with very thin coating layers considered in this work.

9.3 Results and discussion

The results obtained from the coupled CFD-DEM-Monte Carlo method will be pre-
sented in form of the residence and cycle time distributions, and the intra-particle
and inter-particle coating properties. Residence and cycle time distributions are com-
pared with PEPT measurement data [27]; and the intra-particle coating layer thickness
distribution is compared with experimental data gained by X-ray micro-computed to-
mography (µ-CT) [13, 194].

9.3.1 Residence and cycle time distributions

The particle oriented features of the CFD-DEM simulation environment were advan-
tageous to investigate the circulation of particles in the Wurster fluidized bed. As
depicted in Figure 9.1, the chamber of the Wurster fluidized bed is divided into: (1)
spray zone, (2) Wurster tube (without overlap with the spray zone), (3) fountain zone
(only a part of the fountain zone is depicted for better visualization), (4) down bed,
and (5) horizontal zone. In each ideal cycle, particles move upward into the tube from
the spray zone, lose momentum in the fountain zone, fall down into the external annu-
lus, are transported in the horizontal zone in plug flow manner, and re-enter the spray
zone through the partition gap at the bottom of the internal annulus. Particles can
recirculate within the Wurster tube without passing the partition gap, including the
motion from zone 2 to zone 1 and from zone 3 to zone 2. The recirculation influences
the distributions of cycle time and residence time in the spray zone and Wurster tube.
In this work, ideal cycles and nonideal cycles were distinguished by the determination
of the appearance of recirulation based on particle trajectories [120]. The cycle time of
particles related to the number of passes through the spray zone and the residence time
in the spray zone related to the amount of the obtained coating material per cycle are
two significant parameters for the uniformity of the coating process.

Simulation results associated with distributions at different processing times are sum-
marized in Table 9.2. Data for 10 s, 60 s and 180 s come from the full simulations,
and data for 1 h was evaluated based on the recurrence of particle circulation, as dis-
cussed in Section 9.2.6. Comparing the data of 180 s and 1 h for dry condition without
capillary forces in the DEM shows that the recurrence method well reconstructs the
long-term circulation of particles in terms of mean values of cycle time tc, ideal cycle
time tic, residence time in the spray zone tr,s and residence time in the Wurster tube
tr,t as well as the corresponding coefficients of variation. However, if the database is
not big enough for the recurrence process (for instance after only 10 s), large deviations
will be introduced into the recurring data and final coating properties. To apply the
recurrence method for the Wurster fluidized bed, the full CFD-DEM simulation must
be performed at least until stabilization of the mean cycle time of particles has been
achieved.
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Table 9.2: Comparison of ideal cycle time, overall cycle time, and residence times
in the Wurster tube and the spray zone obtained from CFD-DEM simulations
for dry conditions as well as with cohesion forces (αl = 0.1%); and the PEPT
measurement [27].

Variable
CFD-DEM simulations PEPT

dry
(10 s)

dry
(60 s)

dry
(180 s)

dry
(1 h)

αl = 0.1%
(1 h)

dry
(1 h)

t̄ic [s] 4.76 4.97 4.98 4.98 4.75 4.84
Cv(tic) [%] 68.7 53.3 52.5 52.8 43.5 99.0
t̄c [s] 5.63 5.80 5.83 5.82 6.02 6.14

Cv(tc) [%] 88.3 61.4 62.0 61.5 70.3 90.0
t̄r,t [s] 0.891 0.958 0.965 0.963 0.925 1.00

Cv(tr,t) [%] 51.6 33.0 34.3 33.7 54.6 -
t̄r,s [s] 0.136 0.156 0.158 0.158 0.153 -

Cv(tr,s) [%] 47.8 23.7 22.5 22.1 42.3 -
Ric [%] 69.3 77.3 78.4 78.3 60.2 55.3

1 t̄ic =
∑Nic

j tic,j/Nic, Nic is total number of ideal cycles, tic,j is time of each
ideal cycle.

2 t̄c =
∑Nc

j tc,j/Nc, Nc is total number of cycles, tic,j is time of each cycle.
3 t̄r,t =

∑Nc

j tr,t,j/Nc, tr,t,j is residence time in the Wurster tube in each cycle.
4 t̄r,s =

∑Nc

j tr,s,j/Nc, tr,s,j is residence time in the spray zone in each cycle.
5 Ric = Nic/Nc.
6 Cv is the coefficient of variation.

Comparing the data of simulation for dry condition with the PEPT measurement [27],
the mean of ideal cycle time obtained from the simulation is found to be slightly higher;
inversely, the mean of total cycle time is under-predicted, which is due largely to a
high fraction of ideal cycles in the simulation. In the simulation, most of the non-
ideal cycles were caused by intensive interactions with the Wurster tube wall and other
particles. Further discussion on the possible reasons would require more information
about particle-particle and particle-wall interactions from the PEPT measurements.
Moreover, the distributions of total cycle time and ideal cycle time were found to be
fairly broad for the PEPT measurement, the spreads predicted by the simulation being
somewhat smaller. These observations are similar to those made on simulations for
binary particle mixtures [120]. The mean residence times in the Wurster tube were
found to be in good agreement with experimental data. The mean residence time in
the spray zone is 0.158 s (about 1/6 t̄r,t) based on the geometry of the predefined
spray zone. Note that only a single tracer particle was used in PEPT measurement.
According to the concept of ergodicity, the distribution of circulations was evaluated
by the motion of this tracer particle in a long tracking period of about 1 h.
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a)

b)

Figure 9.6: Snapshot of particle motion in the Wurster fluidized bed: a) without cohe-
sion force, b) with cohesion force (αl = 0.1%).

Additionally, the influence of capillary forces in the Wurster tube on the circulation
motion was investigated by the cohesion DEM model. Figure 9.6 shows snapshots of
particle motion for conditions with and without capillary force. The global circulation
of particles with capillary forces (αl = 0.1 %) is very similar to that at dry condition;
however, the particles tend to be agglomerated by liquid bridges when inter-particle
distances are shorter than the rupture distance. Because no drying and solidification
of liquid bridges were considered in CFD-DEM simulations, the agglomerates formed
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by liquid bridges were not stable, and could break up as the relative distances between
particles in the agglomerate varied due to collisions with the tube wall or other particles
(or agglomerates). Comparing the simulation results of the two cases in Table 9.2, the
capillary force decreases the mean ideal cycle time as well as the mean residence times
in the Wurster tube and in the spray zone. Since agglomeration of particles increased
the local solid volume fractions εs in Eq. (3.32), momentum exchange between particles
and the gas in these regions and the mean velocities in vertical direction in the Wurster
tube were increased. Nevertheless, the capillary force decreases the fraction of ideal
cycles Ric due to more complex interactions between temporary agglomerates and the
tube wall. As a consequence of this decrease, the capillary force further scatters the
distributions of total cycle time, and residence times in the Wurster tube and the spray
zone. This effect is more obvious in the Wurster tube. It is therefore important to
provide enough drying capacity of the fluidization gas, so that particles are dry before
re-entering the spray zone. The influence of the capillary force is expected to be more
pronounced in coating of fine particles, and is subject of further investigations.

9.3.2 Coating properties of a sample particle

Figure 9.7 illustrates the coating properties of a random sample particle predicted by the
simulation without capillary forces. The intra-particle coating coverage is an important
property for functional coatings especially in pharmaceutical film coating applications.
The variations of coating coverage from 20 s to 100 s are shown in Figure 9.7a. Droplets
on the deposition panels can be dried (gray color) or wet (blue color) depending on
Eq. (9.15). The coating coverage Ψ increases from 9.24 % to 33.51 % in a duration of
80 s, which is affected by both the cycle time and residence time of this particle in the
spray zone.

At process times of 500 s, 1500 s and 3000 s, the coating layer thickness and the splash-
ing positions along a great-circle of the spherical particle are depicted in Figure 9.7b.
The layer thickness on each panel on the single particle was calculated by Eq. (9.17).
The information on layer thickness of each panel can be further used to evaluate the
uniformity of coating by, for instance, the mean layer thickness hm,j (Eq. (9.18)), the
standard deviation, the coefficient of variation and the arithmetic average roughness.

In the current Monte-Carlo model, the porosity of splashing panels was assumed to
increase, due to lower volume of received droplets, changes in droplet shapes, as well as
droplet drying and solidification during the impact. The splashing panel is drawn with a
relatively light color, which implies a relatively high porosity. For an individual splash-
ing position, the orthodromic distance to its nearest neighboring splashing position on
the same layer was defined as Lmin, which can be further normalized by the particle
radius rp. For the sample particle at 3000 s, the mean and the coefficient of variation
of Lmin/rp are 0.224 and 45.2 % in the 3D space, respectively. In addition, the size of
individual high porosity regions Sp was defined by the number of connected splashing
positions. If several splashing positions with the same radial distance belonged to the
same Voronoi star, these positions were considered as a connected high porosity region
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a)

wet droplet

dry droplet

depositionsplasing

b)

Figure 9.7: Coating quality of single sample particle: a) coating coverage (2D front
elevation), b) coating layer thicknesses and splashing positions along a great-circle of
the spherical particle.
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at this radial distance. The Voronoi star was assembled by the centroid (the center
of star) and corresponding natural neighboring points (endpoints of the extremities of
the star) in the Voronoi diagram [104], as shown in Figure 9.4. If several high porosity
regions at different radial distances were overlapping, these high porosity regions were
merged. For the sample particle at 3000 s, the mean and the coefficient of variation of
Sp are 1.21 and 42.8 % in the 3D space, respectively. Usually, the risk to form cracks
and large pores in the coating layer increases with decreasing Lmin and increasing Sp.

At 500 s, all deposition panels along the chosen great-circle have been coated. How-
ever, this does not imply complete coating in all great-circles. Actually, the time to
accomplish the 100% coating coverage tcover,100 for this sample particle is about 880 s.

9.3.3 Coating layer thickness

Figure 9.8 shows intra-particle cumulative distributions of coating layer thickness. The
individual particles correspond to 0.1, 0.5, and 0.9 of the property value in the popu-
lation. Besides the plotted distributions, the mean values and coefficients of variation
of intra-particle and inter-particle coating properties are listed in Table 9.3 to further
characterize the distributions.

Table 9.3: Summary of intra-particle (10%, 50%, 90%) and inter-particle coating prop-
erties obtained from simulations without and with capillary force.

Coating properties
without cohesion with cohesion αl = 0.1%

10% 50 % 90 % inter 10% 50% 90% inter
mean(h) [µm] 24.28 26.17 29.86 26.03 21.75 26.94 32.25 26.77
Cv(h) [%] 26.8 27.0 27.1 7.7 27.3 26.5 26.0 12.4
mean(Sp) [%] 1.13 1.34 1.58 1.36 1.13 1.36 1.62 1.39
Cv(Sp) [%] 20.7 32.3 44.7 6.9 22.8 34.1 46.0 7.7
mean(Lmin/rp) [−] 0.177 0.206 0.248 0.215 0.173 0.209 0.261 0.219
Cv(Lmin/rp) [%] 40.7 47.4 55.7 12.9 41.0 47.3 54.6 15.5
mean(tcover,100) [s] 898 1213 1621 1245 882 1284 1997 1258
Cv(tcover,100) [%] - - - 22.7 - - - 27.5

It can be seen that the predicted results of MC-50 for both conditions are close to
the measurement data. The distance between the curves of MC-10 and MC-90 for the
condition with capillary forces is much larger than that for simulation without capillary
forces, corresponding to a wider distribution of residence time in the spray zone with
comparable mean value (Table 9.2). Compared with the Monte Carlo modeling of
[267] (Exp. 3), the deviations of mean layer thickness between different single particles
are much larger, as a result of the non-uniformity of residence times and cycle time
predicted by the CFD-DEM. However, the coefficients of variation of all single particles
for both conditions are very close, since the probability for each panel to receive droplets
was similar and only affected by the number Ndep in the Monte-Carlo model. If layer
thickness of the particle is 30 µm, then there will be about 6.9 % increase in Ndep due
to growth of a 1.75 mm core particle.
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a)

b)

Figure 9.8: Comparison of cumulative distributions of layer thickness on single particles
obtained from the measurement and the CFD-DEM-Monte Carlo simulations at 1 h
processing time: a) without cohesion force, and b) with cohesion force (αl = 0.1%).
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In addition to the intra-particle scale, the distribution of mean layer thickness per single
particle in the population (inter-particle) can also be extracted from the simulations
(Table 9.3). It is interesting to observe that the coefficient of layer thickness varia-
tion in the particle population is much smaller than the values for the single particles
(Table 9.3). The predicted value of 7.7 % is comparable to the value of 5.1 % for
the particle population in the experimental data for top-spray coating of Sondej et al.
[194]. Information about the RTDs in the coupled CFD-DEM-Monte Carlo approach
can better represent the situation in experimental equipment under different operation
conditions than the spatially concentrated, single compartment Monte Carlo approach
by Rieck et al. [267].

9.3.4 Coefficient of variation of coating layer thickness

When the same amount of material is deposited on each particle for each pass through
the spray zone, the coefficient of variation of the inter-particle coating mass distribution
is given by [241]

Cv,inter,m = Cv(tc)

√
t̄c
tcoat

, (9.24)

Figure 9.9: Comparison of the coefficients of variation of inter-particle and intra-particle
layer thickness distributions obtained from the simulation without capillary forces, inter-
particle analytic model of coating mass distribution [241], and intra-particle analytic
model of layer thickness distribution [265].
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in which Cv(tc) is the coefficient of variation of cycle time (Table 9.2), t̄c is the mean
cycle time and tcoat is the total coating time. The coefficient of variation of the intra-
particle layer thickness is proportional to the number of coating passes raised to the
−1/2 power [265]. When every deposition panel has an equal opportunity of being
coated and only one deposition panel can receive the droplet in each Monte Carlo time
step, Eq. 28 in Freireich and Wassgren [265] can be rewritten as

Cv,intra,l =

√
1

Ndrop

[Ndep + (Ndrop − 1)]− 1, (9.25)

where Ndrop is the number of droplets deposited on the certain particle.

According to simulation data, the coefficients of variation of intra-particle and inter-
particle layer thickness distribution can be directly calculated based on Eq. (9.17) and
Eq. (9.18), respectively. Figure 9.9 depicts the coefficients of variation from the simu-
lation without capillary forces and from analytic models as functions of coating time.
It can be seen that the coefficients of variation of intra-particle coating layer thickness
predicted by the simulation (MC-10, MC-50 and MC-90) almost coincide with that of
the analytic model after about 1500 s. In the simulation, the amount of material that is
deposited on each particle in each pass is affected by the volume swept by the moving
particle and residence time in the spray zone. As a result, the inter-particle coefficient
of the coating mass distribution predicted by the simulation is larger than that of the
analytic model. The inter-particle coefficient of the coating mass distribution predicted
by the simulation is very similar to that of the coating layer thickness. However, the
difference between the two curves gradually becomes distinct, since the distribution of
Ndep spreads with increasing coating time. Generally, the trend is that the coefficient
of variation quickly decreases in the initial stage and then it gradually asymptotes to
zero as time increases. The reduction of the value of the coefficient of variation on the
inter-particle scale is faster than that on the intra-particle scale.

9.3.5 Coating coverage and uniformity

Figure 9.10 shows the changes of mean coating coverage Ψm of all individual particles
with coating time. It takes more than 1600 s to achieve a completely closed coating
layer on every individual particle in both simulation cases. The rate of increase of
coating coverage incrementally decreases as the coating time increases. The mean coat-
ing coverage of the simulation without capillary forces is slightly larger than that of
the simulation with capillary forces, which can be traced back to the influence of the
capillary force on the RTDs in the Wurster coater. Figure 9.11 shows the density dis-
tributions of coating coverage Ψj obtained from the simulation without capillary forces
for different processing times. The coating coverage can be seen to experience a highly
peaked distribution at 50 s, flat distributions at 100 s and 200 s, and a highly skewed
distribution towards 100 % at 500 s. Note that 100 % is the maximum value that can be
achieved according to Eq. (9.21). The shape of the distribution of coating coverage was
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Figure 9.10: Mean coating coverage Ψm obtained from simulations with (αl = 0.1%)
and without capillary forces with respect to coating time.

mainly affected by the RTDs in the bed. It is found that the distributions of coating
coverage closely follow the Weibull distribution

fw(x) =


k1

k2

(
x

k2

)k1−1

e−(x/k2)k1 , x ≥ 0,

0, x < 0.

(9.26)

The shape parameter k1 and scale parameter k2 are used to fit the simulation data given
in Figure 9.11. Furthermore, information about the time to achieve 100 % coverage is
also listed in Table 9.3. The difference of tcover,100 at 90 % of the cumulative distribution
with and without capillary force is longer than 6 minutes, due to the wider RTDs
predicted by the simulation with capillary forces.

Figure 9.12 shows the cumulative distributions of Lmin/rp and Sp for the particle pop-
ulation. When capillary force is taken into account in the DEM, the spreads of distri-
butions of Lmin/rp and Sp slightly increase due to the effect on RTDs. According to
the related data listed in Table 9.3, the coefficients of variation are again much smaller
than the values obtained for the single particles.
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a)

b)

Figure 9.12: Cumulative distributions of inter-particle properties associated with high
porosity regions induced by droplet splashing: a) Lmin/rp, and b) Sp (αl = 0.1% in the
capillary force model).



Chapter 10

Summary and outlook

10.1 Summary

The particle formation processes in spray fluidized beds produce various particulate
products, which play a major role in many industries. An improved understanding of
mesoscale phenomena between individual particles and the processing unit is critical to
improve the efficiency of particle formation process and to achieve high product quality.

The methodologies associated with PTV measurements and CFD-DEM/DEM simu-
lations used in this thesis were introduced in Chapter 2 and Chapter 3, respectively.
On the basis of four quantitative criteria, the PTV methodology, including both parti-
cle segmentation algorithm and particle tracking algorithm, is comprehensively verified
using synthetic images obtained from CFD-DEM simulations. All experimental and
simulation setups related to the mesoscale phenomena in fluidized beds are systemati-
cally described in Chapter 4.

In Chapter 5, the COR of irregularly shaped maltodextrin particles impacting on hori-
zontal substrates is measured by the PTV method. The behavior of collisions is further
compared with non-spherical DEM simulations by means of the multi-sphere (MS) and
superquadric (SQ) models. A decrease of the normal coefficient of restitution with
increasing rotational speed after collision and increasing absolute difference of inci-
dence angle and rebound angle is observed in all measurements and simulations. The
predictions of irregular non-convex particles by the multi-sphere model are in better ac-
cordance with the measurement data, in terms of the distributions of total and normal
coefficients of restitution, as well as of rotational speed after collision.

In Chapter 6, the granular temperature, collision frequency and impact velocity are in-
vestigated by the PTV method and CFD-DEM simulation in the mono-disperse system.
The algorithms of intensity calibration and determination of collisions are implemented
in the PTV method for evaluation of collision dynamics. The global particle circula-
tion pattern of slugging flow regime, two reversely symmetric vortices, could be well
represented by PTV measurements and the CFD-DEM simulation. The negative ef-
fect of large particle velocity in the dilute regions (freeboard, bubbles and slugs) on
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the evaluation of global motion is successfully avoided by means of the time-averaged
volume flux of particles instead of time-averaged particle velocity. The magnitude and
anisotropy of the granular temperature are significantly reduced as the size of investi-
gation region is decreased from 45 · dp to 6 · dp. The magnitude and anisotropy of the
granular temperature predicted by the CFD-DEM simulation agree well with PTV re-
sults using the small investigation region (c). Within the range of studied experimental
conditions, the average granular temperature increased with the increase in superficial
gas velocity at any measurement location regardless of the investigation region size.
Hence, the time-averaged fluctuation velocity of particles on both the macroscopic and
microscopic scale is essentially dependent on energy input. Moreover, the magnitude
of granular temperature depends on the local flow regime, and was larger close to the
dense bed surface. The experimental average collision frequency tended to be constant
or even decrease after exceeding a critical solid volume fraction. It can be postulated
that the contribution of increasing solid volume fraction to facilitate particle-particle
interactions is overrated by the restraint of decreasing granular temperature. Critical
solid volume fractions depend on the global bubble or slug motion. The average colli-
sion frequency evaluated from the CFD-DEM simulation data is lower than that from
PTV measurements. The measured average impact velocity could be correlated with
the average square root of granular temperature by a simple linear equation. The rela-
tionships predicted by CFD-DEM are roughly in accordance with measurement data.

Chapter 7 quantifies the dynamics of poly-disperse particle systems in a pseudo-2D
fluidized bed by the PTV method and CFD-DEM simulations. The algorithm of color-
classification is implemented in the PTV method. Similarly to observations in the
mono-disperse system, two reversely turning but nearly symmetric vortices support
the vertical and horizontal transport of particles. The change in mixing state, from
the stage of increasing mixedness to quasi-equilibrium, can be quantitatively evaluated
by the improved Lacey index for poly-disperse systems. The difference in granular
temperature for particles of different sizes may lead to deviations of mixing index from
unity and corresponding fluctuations. The final mixing state is influenced by the initial
mixture conditions, even for cases with very similar Sauter mean diameter, bed height,
bed mass; and with the same superficial gas velocity. CFD-DEM simulations with
correction for the size dispersity effect agree better with the measurements in terms
of time-averaged profiles of volumetric flux, density distributions of particle velocity,
cumulative distributions of particle granular temperature and mixing index. Therefore,
correction for the size dispersity effect in the drag model is essential to improve the
accuracy of CFD-DEM simulations of poly-disperse particle systems in fluidized beds.

In Chapter 8, the cycle time distribution and residence time distributions in the spray
zone and the Wurster tube obtained from post-processing of CFD-DEM simulation data
are found to be in good agreement with PEPT measurement results for both small and
large particles. However, the probability of appearance of non-ideal particle circulation
cycles is underestimated for both particle sizes, which might be caused by the particle-
particle and particle-wall interactions. The droplet deposition rate is evaluated based
on particle-droplet collisions and the residence time in the spray zone. The median
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deposition rate on large particles is relatively high, due to their large cross-section and
short average distance from the spray nozzle. The high fraction of non-ideal cycles
for both particle sizes resulted in broad distributions of droplet deposition rate. Note
that relatively high collision velocities in the spray zone prevent the appearance of
agglomeration in the Wurster coating process.

Chapter 9 presents a coupled CFD-DEM-Monte Carlo approach together with the
spherical centroidal Voronoi tessellation (CVT) for predicting particle dynamics as well
as the inter-particle and intra-particle morphology of coating layers. When the capillary
force induced by liquid bridges between particles is included in the DEM, the spread of
the RTDs in the spray zone and in the Wurster tube increases significantly. According
to the circulation features in the Wurster fluidized bed, the cycle time distribution is
used as the most important criterion in this work to recur the long-term circulation of
individual particles using particle dynamics obtained from a relatively short duration
of full CFD-DEM simulations. On the intra-particle scale, the layer thickness distribu-
tions are in accordance with available data on particles from coating experiments that
had been characterized by X-ray micro-computed tomography (µ-CT); the change of
coefficient of variation with time is close to an existing analytic model. The value of the
coefficient of variation of layer thickness over the particle population is much smaller
than the values of individual particles. The capillary force makes the layer thickness
distributions broader due to its influence on RTDs. The density distributions of coating
coverage at different times are nearly Weibull. The required tcover,100 to achieve a com-
pletely closed coating layer on every individual particle is much longer for the simulation
with capillary force. With the postulate that splashing of droplets characterized by the
dimensionless number Kd = We1/2Re1/4 would produce high porosity on deposition
panels, the model can predict the uniformity of porosity in the coating layer in terms
of distributions of the minimum orthodromic distance Lmin and the size of individual
high porosity regions Sp. The simulation with capillary forces predicted slightly higher
non-uniformity of high porosity regions for the particle population. In summary, it is
important to reduce the negative effects of capillary forces on the coating process by
providing enough drying capacity of the fluidization gas and by accurate control of the
size distribution of spray droplets. The new numerical method allows to manipulate
particles in the Wurster fluidized bed towards desired product properties.

10.2 Outlook

The further development of CFD-DEM simulation of solids-fluid flow without chemical
reactions should focus on the aspects of non-spherical shape, heat and mass transfer
and small particle size (cohesive forces). The non-spherical DEM/CFD-DEM modeling
using the composite multi-sphere model and/or the continuous functional approach has
a bright future as it provides a new way to upgrade the understanding of industrial pro-
cesses with realistic non-spherical particle shapes in different configurations (fluidized
beds, rotating drums and grinding mills), although there are still some issuses related
to model development that need to be improved: 1) accurately detect contacts and
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evaluate contact forces and cohesive forces depending on complex particle shapes, 2)
find appropriate shape factors to derive general correlation on drag coefficient, and 3)
efficiently consider the effects of particle shape on heat transfer characteristics based
on current thermal DEM for spherical particles [280].

a)

b) c)

Figure 10.1: Dynamics of singlet-doublet collisions during agglomeration: a) four possi-
ble outcomes of singlet-doublet collisions: agglomeration, transfer, rebound and break-
age, b) regime maps for different impact angles α, and c) probabilities of different
outcomes fitted from 3D regime map.

The mesoscale phenomena obtained from CFD-DEM simulations can support the macro-
scopic modeling approach for particle formation processes in spray fluidized beds. For
instance, the ratios of collision outcome with respect to the impact velocity can be
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implemented into the kernels of agglomeration and breakage used by McGuire et al.
[269], Hussain et al. [281] in population balance modeling, and the breakage algorithm
used by Rieck et al. [155] in Monte Carlo modeling.

Similarly to the pre-collision conditions of Liu et al. [26], the outcome of singlet-doublet
collisions, including agglomeration, transfer, rebound and breakage, can be studied ac-
counting for the capillary force and viscous force induced by liquid bridges with different
wetting conditions, as shown in Figure 10.1a. The singlet-doublet collision pairs cover
the pre-collision configurations: impact angle α ∈ (−90◦, 90◦) with an interval of 1°,
incidence angle γ ∈ [0, 90◦] with an interval of 1°, and magnitude of impact velocity
vim ∈ [0.005, 1] with an interval of 0.005 m/s. Figure 10.1b shows regime maps of
different impact angles. By counting numbers of different outcome in all regime maps,
the probabilities of a certain outcome can be evaluated with respect to the normalized
impact velocity, as shown in Figure 10.1c. The ratio of agglomeration Ra and the ratio
of breakage Rb can be fitted as:

Ra(x) =


1, 0 < x ≤ vm,a

vc,a
,

e
−
(
x− vm,a

vc,a

)A

,
vm,a
vc,a

< x ≤ 5,
(10.1)

Rb(x) =


0, 0 < x ≤ vm,b

vc,a
,

1− e−B
(
x−

vm,b
vc,a

)
,

vm,b
vc,a

< x ≤ 5.
(10.2)

In the equations, x is the ratio of relative collision velocity vr,c and the critical agglom-
eration velocity vc,a predicted using the Ennis model [20]; vm,a is the maximum velocity
to retain completely agglomeration; vm,b is the minimum velocity to produce breakage.
The values of vm,a and vm,b can be directly extracted from regime map. In the consid-
ered wetting conditions of liquid bridge, constant values of A = 1.6 and B = 0.45 have
been obtained.

To reduce the computational effort, several coarse-grain models have been developed
and validated in CFD-DEM to deal with mechanical particle-particle contact force and
particle-fluid interaction force. However, a new coarse-grain model related to heat
(mass) transfer is required to be developed for temperature sensitive granular flow
systems. The mesh-free smoothed particle hydrodynamics (SPH) method has been
used to study the droplet behavior (deposition, splashing and solidification) [282–284].
An SPH method coupled with DEM method [285] has the potential to investigate
individual droplet-particle interactions in spray fluidized beds.
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evaluate the elastic impact of spheres on thin plates, Chemical Engineering Science
138 (2015) 689–697.

[172] J. Ma, D. Liu, X. Chen, Normal and oblique impacts between smooth spheres
and liquid layers: Liquid bridge and restitution coefficient, Powder Technology
301 (2016) 747–759.
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nen, Modeling continuous high-shear wet granulation with DEM-PB, Chemical
Engineering Science 142 (2016) 190–200.

[257] S. Poozesh, N. Setiawan, N.K. Akafuah, K. Saito, P.J. Marsac, Assessment of
predictive models for characterizing the atomization process in a spray dryer’s
bi-fluid nozzle, Chemical Engineering Science 180 (2018) 42–51.



References 219

[258] X. Jiang, G.A. Siamas, K. Jagus, T.G. Karayiannis, Physical modelling and ad-
vanced simulations of gas–liquid two-phase jet flows in atomization and sprays,
Progress in Energy and Combustion Science 36 (2) (2010) 131–167.

[259] K. Luo, M. Shao, C.and Chai, J. Fan, Level set method for atomization and
evaporation simulations, Progress in Energy and Combustion Science 73 (2019)
65–94.

[260] P. Kieckhefen, T. Lichtenegger, S. Pietsch, S. Pirker, S. Heinrich, Simulation of
spray coating in a spouted bed using recurrence CFD, Particuology 42 (2019)
92–103.

[261] B. Freireich, R. Kumar, W. Ketterhagen, K. Su, C. Wassgren, J.A. Zeitler, Com-
parisons of intra-tablet coating variability using DEM simulations, asymptotic
limit models, and experiments, Chemical Engineering Science 131 (2015) 197–
212.

[262] C. Pei, J.A. Elliott, Asymptotic limits on tablet coating variability based on cap-
to-band thickness distributions: A discrete element model (DEM) study, Chemical
Engineering Science 172 (2017) 286–296.

[263] A. Maisels, F. Einar Kruis, H. Fissan, Direct simulation Monte Carlo for simulta-
neous nucleation, coagulation, and surface growth in dispersed systems, Chemical
Engineering Science 59 (11) (2004) 2231–2239.

[264] H. Zhao, A. Maisels, T. Matsoukas, C. Zheng, Analysis of four Monte Carlo
methods for the solution of population balances in dispersed systems, Powder
Technology 173 (1) (2007) 38–50.

[265] B. Freireich, C. Wassgren, Intra-particle coating variability: Analysis and Monte-
Carlo simulations, Chemical Engineering Science 65 (3) (2010) 1117–1124.

[266] W. Zhang, C. You, Numerical approach to predict particle breakage in dense
flows by coupling multiphase particle-in-cell and Monte Carlo methods, Powder
Technology 283 (2015) 128–136.

[267] C. Rieck, A. Bück, E. Tsotsas, Monte Carlo modeling of fluidized bed coating
and layering processes, AIChE Journal 62 (8) (2016) 2670–2680.

[268] A.D. McGuire, S. Mosbach, K.F. Lee, G. Reynolds, M. Kraft, A high-dimensional,
stochastic model for twin-screw granulation, Part 2: Numerical methodology,
Chemical Engineering Science 188 (2018) 18–33.

[269] A.D. McGuire, S. Mosbach, K.F. Lee, G. Reynolds, M. Kraft, A high-dimensional,
stochastic model for twin-screw granulation, Part 1: Model description, Chemical
Engineering Science 188 (2018) 221–237.



220 References

[270] R. Rioboo, M. Marengo, C. Tropea, Time evolution of liquid drop impact onto
solid, dry surfaces, Experiments in Fluids 33 (1) (2002) 112–124.

[271] Q. Du, V. Faber, M. Gunzburger, Centroidal voronoi tessellations: Applications
and algorithms, SIAM Review 41 (4) (1999) 637–676.

[272] C.G. Koay, Analytically exact spiral scheme for generating uniformly distributed
points on the unit sphere, Journal of Computational Science 2 (1) (2011) 88–91.

[273] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information
Theory 28 (2) (1982) 129–137.

[274] C. Josserand, S.T. Thoroddsen, Drop Impact on a Solid Surface, Annual Review
of Fluid Mechanics 48 (1) (2016) 365–391.

[275] C. Mundo, M. Sommerfeld, C. Tropea, Droplet-wall collisions: Experimental stud-
ies of the deformation and breakup process, International Journal of Multiphase
Flow 21 (2) (1995) 151–173.

[276] A.L. Yarin, D. Weiss, Impact of drops on solid surfaces: Self-similar capillary
waves, and splashing as a new type of kinematic discontinuity, Journal of Fluid
Mechanics 283 (1995) 141–173.

[277] V. Gnielinski, G9 Fluid-Particle Heat Transfer in Flow Through Packed Beds of
Solids, in: VDI Heat Atlas, Springer, Berlin, Heidelberg, 743–744, 2010.

[278] R.A. Meric, H.Y. Erbil, Evaporation of sessile drops on solid surfaces: Pseudo-
spherical cap geometry, Langmuir 14 (7) (1998) 1915–1920.

[279] R. Zhu, S. Li, Q. Yao, Effects of cohesion on the flow patterns of granular materials
in spouted beds, Physical Review E 87 (2) (2013) 022206.

[280] E. Tsotsas, Particle-particle heat transfer in thermal DEM: Three competing
models and a new equation, International Journal of Heat and Mass Transfer 132
(2019) 939–943.

[281] M. Hussain, J. Kumar, E. Tsotsas, Modeling aggregation kinetics of fluidized bed
spray agglomeration for porous particles, Powder Technology 270 (2015) 584–591.

[282] H.S. Fang, K. Bao, J.A. Wei, H. Zhang, E.H. Wu, L.L. Zheng, Simulations of
droplet spreading and solidification using an improved SPH model, Numerical
Heat Transfer, Part A: Applications 55 (2) (2009) 124–143.

[283] Z. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu, S. Li, An overview of smoothed
particle hydrodynamics for simulating multiphase flow, Applied Mathematical
Modelling 40 (23) (2016) 9625–9655.



References 221

[284] X. Yang, L. Dai, S. Kong, Simulation of liquid drop impact on dry and wet surfaces
using SPH method, Proceedings of the Combustion Institute 36 (2) (2017) 2393–
2399.

[285] M. Robinson, M. Ramaioli, S. Luding, Fluid–particle flow simulations using two-
way-coupled mesoscale SPH–DEM and validation, International Journal of Mul-
tiphase Flow 59 (2014) 121–134.





Appendices





Appendix A

Measurement data

A.1 List of all experiments

The summary of all experiments in this thesis is given in Table A.1.

Table A.1: List of all PTV experiments.

Experiments
Number of images Measured variablesChapter Case

Chapter 5

DE 6 - DE 6 2000×10 Particle trajectory
DE 6 - glass 2000×10 Coefficient of restitution
DE 47- glass 1000×5 Rotation speed
glass - glass 1000×5
MCC - glass 1000×5
Alumina - glass 1000×4
Rapeseed - glass 1000×4
ABS - glass 1000×4

Chapter 6

Low-level left 5000×3 Collision frequency
Low-level left-center 5000×3 Collision velocity
Low-level right-center 5000×3 Granular temperature
Low-level right 5000×3 Particle trajectory
High-level left 5000×3
High-level left-center 5000×3
High-level right-center 5000×3
High-level right 5000×3

Chapter 7
Binary mixture 5000 Granular temperature
Ternary mixture 5000 Mixing degree
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A.2 Particle trajectories of irregular particle rebound

The measured trajectories of irregular particles before and after collision in a time
period of 100 ms are shown in Figure A.1.

Figure A.1: Measured trajectories of irregular particles before and after collision in a
time period of 100 ms.

A.3 PTV measurement of particle dynamics data

Instantaneous data

The raw image, instantaneous velocity field, average velocity field, granular temperature
and solid volume fraction in the low-level left at 1.68 m/s (with an interval of 20 ms) are
given in Figure A.2, Figure A.3, Figure A.4, Figure A.5 and Figure A.6, respectively.

Time-average data

The time-average solid volume fraction and isoline of time-average granular temperature
obtained from region c) at 1.68 m/s are shown in Figure A.7 and Figure A.8. All
granular temperatures and main indices of particle collision dynamics are summarized
in Table A.2, Table A.3 and Table A.4.
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Figure A.2: Raw images.
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Figure A.3: Instantaneous particle velocity fields.
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Figure A.4: Average particle velocity fields.
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Figure A.5: Particle granular temperature fields.
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Figure A.6: Solid volume fraction distributions.
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Figure A.7: Time-averaged solid volume fraction obtained from region c) at a gas
velocity of 1.68 m/s.

Figure A.8: Isolines of time-averaged granular temperature obtained from region c) at
a gas velocity of 1.68 m/s.
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Table A.2: Performance of PTV measurement and particle dynamics for different
locations under different superficial gas velocities.

Case PTV performance Particle dynamics

Location
U

[m/s]
〈Rr〉
[%]

CV
[%]

〈τp〉
[ms]

CV
[%]

〈Φ〉
[m3/(s ·m2)]

CV
[%]

〈|uuup|〉(c)
[m/s]

CV
[%]

Low-level left (1)
1.68 89.2 7.1 11.5 91.3 0.048 6.0 0.223 31.2
1.40 88.5 9.5 12.3 89.7 0.041 5.4 0.179 29.2
1.12 90.5 9.7 12.1 77.5 0.031 4.8 0.134 24.3

Low-level left-center
(2)

1.68 87.6 6.9 9.2 92.1 0.062 5.8 0.279 25.5
1.40 88.1 8.4 9.6 79.8 0.059 4.4 0.252 18.4
1.12 89.1 9.2 9.9 87.5 0.044 4.7 0.186 19.2

Low-level
right-center (3)

1.68 88.3 9.3 8.8 96.7 0.058 4.8 0.276 21.4
1.40 90.1 8.4 9.2 88.2 0.056 4.4 0.242 19.2
1.12 89.7 9.5 9.1 82.3 0.038 3.5 0.168 14.8

Low-level right (4)
1.68 90.5 7.2 12.5 99.0 0.047 4.8 0.194 25.9
1.40 89.3 8.3 12.7 85.7 0.043 4.3 0.179 24.1
1.12 91.0 8.6 11.9 93.4 0.031 3.4 0.137 19.4

High-level left (5)
1.68 86.5 8.7 10.8 86.1 0.083 10.3 0.396 38.5
1.40 87.5 9.0 11.7 91.0 0.059 8.8 0.279 29.4
1.12 87.7 8.5 11.5 82.7 0.019 9.7 0.095 39.9

High-level left-center
(6)

1.68 86.1 9.8 8.9 90.6 0.071 6.9 0.296 24.4
1.40 87.7 8.5 9.1 86.3 0.061 7.5 0.279 26.4
1.12 87.9 7.9 9.7 84.9 0.025 8.5 0.117 33.1

High-level
right-center (7)

1.68 88.2 8.3 8.7 91.3 0.067 5.4 0.302 22.9
1.40 89.3 7.8 9.3 88.2 0.052 5.8 0.268 23.3
1.12 88.4 8.8 8.8 87.5 0.024 5.3 0.105 21.2

High-level right (8)
1.68 87.5 8.9 12.4 97.2 0.083 8.5 0.373 27.5
1.40 88.1 7.8 12.0 95.5 0.058 9.0 0.261 30.9
1.12 87.9 9.1 12.1 89.2 0.023 10.5 0.111 41.2

1 〈Rr(t)〉 =
Nt∑
t=1

(Rr(t)), where Nt is the number of time steps.

2 〈τp(j)〉 =
Np∑
j=1

(τp(j)), where Np is the number of particles.

3 Particle dynamics are evaluated based on region (c). 〈Φ(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(Φ(i, t))), where

Ni is the number of investigation regions. Similarly, 〈|uuup|(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(|uuup|(i, t))).
4 CV refers to the coefficient of variation of corresponding individual values of Rr(t),
τp(j), Φ(i, t)) or |uuup|(i, t).
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Table A.3: Particle granular temperature for different locations under different super-
ficial gas velocities, based on different sizes of the investigation region.

Case Region (a) Region (b) Region (c)

Nr.
U

[m/s]
〈
√

Θ2D〉
[m/s]

CV
[%]

〈
√

Θy√
Θx
〉

[−]

CV
[%]

〈
√

Θ2D〉
[m/s]

CV
[%]

〈
√

Θy√
Θx
〉

[−]

CV
[%]

〈
√

Θ2D〉
[m/s]

CV
[%]

〈
√

Θy√
Θx
〉

[−]

CV
[%]

(1)
1.68 0.219 36.4 1.30 38.5 0.132 63.6 1.14 28.3 0.092 86.7 1.05 24.9
1.40 0.185 43.9 1.36 47.2 0.113 67.8 1.20 36.1 0.077 89.3 1.07 28.2
1.12 0.150 46.5 1.40 58.7 0.093 74.4 1.23 38.6 0.063 93.9 1.08 32.9

(2)
1.68 0.245 32.4 1.45 43.2 0.156 49.5 1.22 31.6 0.104 74.3 1.03 24.5
1.40 0.229 28.2 1.46 44.0 0.147 54.2 1.25 33.5 0.099 80.6 1.07 26.6
1.12 0.191 33.9 1.48 45.1 0.119 62.9 1.26 38.5 0.081 87.5 1.05 29.8

(3)
1.68 0.246 28.3 1.47 40.4 0.158 50.2 1.25 28.8 0.107 80.5 1.03 24.5
1.40 0.221 27.4 1.45 43.3 0.145 49.3 1.23 32.1 0.097 76.1 1.05 24.6
1.12 0.200 29.5 1.47 43.3 0.126 58.5 1.28 35.9 0.082 84.1 1.02 28.9

(4)
1.68 0.203 33.9 1.31 44.2 0.125 61.7 1.23 34.7 0.084 82.3 1.05 27.1
1.40 0.181 36.9 1.32 38.8 0.111 63.2 1.25 31.4 0.075 84.5 1.07 26.1
1.12 0.159 51.2 1.37 59.2 0.095 72.8 1.27 43.7 0.064 90.1 1.05 34.9

(5)
1.68 0.279 32.1 1.39 51.1 0.169 57.3 1.25 38.9 0.113 87.4 1.05 27.8
1.40 0.215 38.6 1.37 39.1 0.143 61.2 1.23 37.3 0.078 91.5 1.09 38.2
1.12 0.117 75.3 1.37 50.9 0.102 55.8 1.19 36.7 0.057 94.2 1.06 46.2

(6)
1.68 0.263 30.9 1.47 60.1 0.170 47.2 1.31 33.1 0.127 70.9 1.02 27.1
1.40 0.209 38.5 1.43 52.6 0.135 56.2 1.28 39.1 0.088 81.4 1.07 34.6
1.12 0.155 39.3 1.41 63.9 0.105 55.9 1.27 53.5 0.070 91.5 1.06 50.5

(7)
1.68 0.273 34.1 1.49 43.6 0.172 47.9 1.27 33.6 0.124 75.1 1.08 28.5
1.40 0.231 38.5 1.49 50.1 0.146 57.4 1.28 36.5 0.087 81.3 1.05 34.2
1.12 0.156 48.0 1.44 62.2 0.099 67.6 1.31 47.7 0.068 94.3 1.05 43.0

(8)
1.68 0.252 27.7 1.46 51.6 0.170 45.7 1.23 35.3 0.112 71.9 1.04 27.7
1.40 0.213 34.4 1.40 46.9 0.143 52.8 1.17 39.1 0.077 82.1 1.09 33.9
1.12 0.154 69.4 1.39 48.1 0.102 62.1 1.22 46.4 0.060 93.5 1.08 48.5

1 The sizes of regions (a), (b) and (c) are 45 · dp, 15 · dp, and 6 · dp, respectively.

2 〈
√

Θ2D(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(
√

Θ2D(i, t))), Nt is the number of investigation regions, Ni is the

number of time steps. Similarly, 〈
√

Θy√
Θx

(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(

√
Θy√
Θx

(i, t))).

3 CV refers to the coefficient of variation of corresponding individual values of
√

Θ2D(i, t))

or

√
Θy√
Θx

(i, t) in each region and each time step.
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Table A.4: Particle collision dynamics and impact velocities for different locations
under different superficial gas velocities.

Case Region (a) Region (c) Collision velocity (c)

Nr.
U

[m/s]
〈fc〉
[1/s]

CV
[%]

〈εs〉
[−]

CV
[%]

tp,fit
[s]

〈
√

Θ2D〉fit
[m/s]

〈|ur,cur,cur,c|〉
[m/s]

CV
[%]

p1 p2

(1)
1.68 357.9 22.1 0.274 20.3 0.77 0.082 0.124 17.9
1.40 386.1 19.0 0.289 19.2 0.93 0.070 0.111 13.0 0.687 0.060
1.12 380.3 16.7 0.267 11.7 1.15 0.061 0.104 10.9

(2)
1.68 359.0 28.2 0.245 21.2 0.99 0.091 0.134 17.2
1.40 390.1 23.6 0.252 18.0 1.63 0.089 0.126 14.1 0.606 0.067
1.12 441.7 25.0 0.264 17.9 2.34 0.078 0.114 12.8

(3)
1.68 355.8 30.1 0.240 25.5 1.00 0.087 0.138 17.9
1.40 396.2 24.3 0.257 25.9 1.53 0.083 0.128 14.2 0.718 0.059
1.12 424.4 21.9 0.263 21.9 2.28 0.077 0.117 12.7

(4)
1.68 370.6 24.0 0.274 20.5 0.82 0.075 0.119 17.6
1.40 392.1 24.3 0.267 21.7 0.89 0.069 0.117 14.5 0.686 0.063
1.12 398.4 27.0 0.285 18.1 1.01 0.058 0.106 10.7

(5)
1.68 294.1 36.3 0.194 34.9 1.52 0.092 0.159 27.1
1.40 245.4 38.4 0.167 43.9 2.31 0.074 0.147 32.4 1.030 0.056
1.12 169.1 81.0 0.064 97.3 3.68 0.049 0.140 33.6

(6)
1.68 280.6 31.5 0.204 19.8 1.84 0.098 0.177 20.1
1.40 263.7 40.2 0.187 38.9 2.59 0.076 0.159 21.4 1.015 0.059
1.12 234.4 43.4 0.098 75.1 2.70 0.061 0.144 33.1

(7)
1.68 281.5 33.4 0.203 20.6 1.93 0.089 0.181 20.9
1.40 262.3 40.4 0.179 31.6 2.43 0.079 0.165 23.1 1.082 0.053
1.12 231.9 45.2 0.118 53.0 2.86 0.062 0.132 28.0

(8)
1.68 299.9 32.3 0.214 25.7 2.01 0.090 0.170 22.0
1.40 247.1 32.9 0.178 42.1 2.97 0.070 0.149 23.9 1.087 0.051
1.12 180.1 72.3 0.082 99.1 3.45 0.055 0.142 32.4

1 The sizes of regions (a) and (c) are 45 · dp and 6 · dp, respectively.

2 〈fc(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(fc(i, t))), Ni is the number of investigation regions, Nt is the number

of time steps. Similarly, 〈εs(i, t)〉 =
Nt∑
t=1

(
Ni∑
i=1

(εs(i, t))). Differently, 〈|ur,cur,cur,c|〉 is averaged

over the individual impact velocities of individual collision events.
3 CV refers to the coefficient of variation of corresponding individual values of fc(i, t))

and εs(i, t) in each region and each time step, or |ur,cur,cur,c| of each collision event.
4 All Fourier transformations used to fit period tp,fit with 3 items.
5 Eq. (6.15) was used to fit average square root of 2D granular temperature 〈

√
Θ2D〉fit.

6 The relationship between 〈
√

Θ2D〉 and 〈|ur,cur,cur,c|〉 is fitted based on the linear function
(f(x) = p1x+ p2).
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Simulation data

B.1 List of all simulations

The summary of all simulations in this thesis is given in Table B.1.

B.2 Solving governing equations of fluid phase by

PISO algorithm

The PISO algorithm consists of two steps, as shown in List B.1. The velocity is first
predicted using the momentum predictor. Then, the pressure and the velocity are
corrected until a predefined number of iterations is reached. Afterwards, the transport
equations of the turbulence model are solved.

B.3 Solutions of HSD models

The equation of motion describing the collision of two particles with the equivalent
mass meq can be written in the form

meqε̈+ fdis(ε, ε̇) + fcons(ε) = 0. (B.1)

Considering a collision between two particles (ρp = 1420 kg/m3, dp = 0.36 mm, E =
106 Pa, σ = 0.3, e = 0.7 and an impact velocity of 1 m/s), Figure B.1 shows change of
the overlap and the possible artifact attractive force during an entire collision period.
The impact velocity mentioned in this thesis is the relative velocity of two particles at
the initial contact instant.
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Listing B.1: Predictor in PISO algorithm.

0 // Momentum predictor
// Class particleCloud contains parameters from DEM
// Define the equation for velocity (Eq. 3.21)

fvVectorMatrix UEqn
(

5 fvm::ddt(voidfraction ,U) - fvm::Sp(fvc::ddt(voidfraction)
,U)

+ fvm::div(phi ,U) - fvm::Sp(fvc::div(phi),U)
+ particleCloud.divVoidfractionTau(U, voidfraction)
==
- fvm::Sp(Ksl/rho ,U)

10 + fvOptions(U)
);

UEqn.relax();
fvOptions.constrain(UEqn);

15 //Solve the momentum predictor
solve(UEqn == - voidfraction*fvc::grad(p) + Ksl/rho*Us);

fvOptions.correct(U);

repulsive (positive) force 

artifact attractive (negative) force

impact velocity

𝒗𝑖

𝒗𝑗

𝒗𝑖 − 𝒗𝑗

Figure B.1: Sketch of a collision event in DEM simulation by soft-sphere model.
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B.4 Typical values of various forces

The typical values of various forces (as discussed in Chapter 3) on individual particles
with different sizes are listed in Table B.2 (ρp = 1420 kg/m3, E = 106 Pa, σ = 0.3 and
e = 0.7).

Table B.2: Typical drag force, contact force, capillary force, and viscous force of indi-
vidual particles with different sizes.

Normalized force dp = 2 mm dp = 0.2 mm
fd/(mpg) [−] 0.015 0.015

|u− v| = 0.5 m/s, εs = 0.2, air
fc,n/(mpg) [−] 0.67 12.01

ε = 1 µm, vr,n = 0.05 m/s
fcapillary/(mpg) [−] 3.69 159

dinter = 5 µm, dd/dp = 0.1, 2 wt% HPMC
fvis,n/(mpg) [−] 6.47 64.7
fvis,t/(mpg) [−] 0.22 14.1

dinter = 5 µm, vr,n = vr,t = 0.05 m/s, dd/dp = 0.1, 2 wt% HPMC

B.5 Orthogonal grid of Wurster fluidized bed

The blockMesh utility was used to generate structured grids in the Wurster fluidized bed.
According to Figure 4.5, the domain geometry was decomposed into several blocks with
straight lines and arcs. The details of vertices, lines, blocks and patches are described
in Listing B.2. The vertices arranged in inner, middle and outer regions correspond
to the nozzle, internal annulus and external annulus in the Wurster coater. By this
method, the final points, surfaces, hexahedra cells in the simulation domain are 84525,
249072 and 81600, respectively. The Wurster tube was inserted into the domain by the
createBaffles utility, which makes the internal faces into boundary faces.

Listing B.2: O-grid of the Wurster fluidized bed by blockMesh.

0 FoamFile
{
version 2.3;
format ascii;
class dictionary;

5 object blockMeshDict;
}
convertToMeters 1;
// Geometry of the Wurster fluidized bed by 48 vertices in five layers;
vertices

10 (
// in the first layer
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( 0.0028 0.0028 0.0) // Vertex inner = 0
( -0.0028 0.0028 0.0) // Vertex inner = 1
( -0.0028 -0.0028 0.0) // Vertex inner = 2

15 ( 0.0028 -0.0028 0.0) // Vertex inner = 3
( 0.0177 0.0177 0.0) // Vertex middle = 4
( -0.0177 0.0177 0.0) // Vertex middle = 5
( -0.0177 -0.0177 0.0) // Vertex middle = 6
( 0.0177 -0.0177 0.0) // Vertex middle = 7

20 ( 0.0424 0.0424 0.015) // Vertex outer = 8
( -0.0424 0.0424 0.015) // Vertex outer = 9
( -0.0424 -0.0424 0.015) // Vertex outer = 10
( 0.0424 -0.0424 0.015) // Vertex outer = 11

// in the second layer
25 ( 0.0028 0.0028 0.035) // Vertex inner = 12

( -0.0028 0.0028 0.035) // Vertex inner = 13
( -0.0028 -0.0028 0.035) // Vertex inner = 14
( 0.0028 -0.0028 0.035) // Vertex inner = 15
( 0.0177 0.0177 0.035) // Vertex middle = 16

30 ( -0.0177 0.0177 0.035) // Vertex middle = 17
( -0.0177 -0.0177 0.035) // Vertex middle = 18
( 0.0177 -0.0177 0.035) // Vertex middle = 19
( 0.0424 0.0424 0.035 ) // Vertex outer = 20
( -0.0424 0.0424 0.035) // Vertex outer = 21

35 ( -0.0424 -0.0424 0.035) // Vertex outer = 22
( 0.0424 -0.0424 0.035) // Vertex outer = 23

// in the third layer
( 0.0028 0.0028 0.255) // Vertex inner = 24
( -0.0028 0.0028 0.255) // Vertex inner = 25

40 ( -0.0028 -0.0028 0.255) // Vertex inner = 26
( 0.0028 -0.0028 0.255) // Vertex inner = 27
( 0.0177 0.0177 0.255) // Vertex middle = 28
( -0.0177 0.0177 0.255) // Vertex middle = 29
( -0.0177 -0.0177 0.255) // Vertex middle = 30

45 ( 0.0177 -0.0177 0.255) // Vertex middle = 31
( 0.0884 0.0884 0.255) // Vertex outer = 32
( -0.0884 0.0884 0.255) // Vertex outer = 33
( -0.0884 -0.0884 0.255) // Vertex outer = 34
( 0.0884 -0.0884 0.255) // Vertex outer = 35

50 // in the fourth layer
( 0.0028 0.0028 0.34) // Vertex inner = 36
( -0.0028 0.0028 0.34) // Vertex inner = 37
( -0.0028 -0.0028 0.34) // Vertex inner = 38
( 0.0028 -0.0028 0.34) // Vertex inner = 39

55 ( 0.0177 0.0177 0.34) // Vertex middle = 40
( -0.0177 0.0177 0.34) // Vertex middle = 41
( -0.0177 -0.0177 0.34) // Vertex middle = 42
( 0.0177 -0.0177 0.34) // Vertex middle = 43
( 0.0884 0.0884 0.34) // Vertex outer = 44

60 ( -0.0884 0.0884 0.34) // Vertex outer = 45
( -0.0884 -0.0884 0.34) // Vertex outer = 46
( 0.0884 -0.0884 0.34) // Vertex outer = 47

);
// Build 3 blocks using 48 vertices
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65 // Set the grid number and grid grading in each line
blocks
(
// first block

hex (2 3 0 1 14 15 12 13) (12 12 7) simpleGrading (1 1 1)
70 hex (1 0 4 5 13 12 16 17) (12 10 7) simpleGrading (1 1 1)

hex (6 2 1 5 18 14 13 17) (10 12 7) simpleGrading (1 1 1)
hex (6 7 3 2 18 19 15 14) (12 10 7) simpleGrading (1 1 1)
hex (3 7 4 0 15 19 16 12) (10 12 7) simpleGrading (1 1 1)
hex (4 8 9 5 16 20 21 17) (12 12 7) simpleGrading (1 1 1)

75 hex (10 6 5 9 22 18 17 21) (12 12 7) simpleGrading (1 1 1)
hex (10 11 7 6 22 23 19 18) (12 12 7) simpleGrading (1 1 1)
hex (7 11 8 4 19 23 20 16) (12 12 7) simpleGrading (1 1 1)

// second block
hex (14 15 12 13 26 27 24 25) (12 12 44) simpleGrading (1 1 1)

80 hex (13 12 16 17 25 24 28 29) (12 10 44) simpleGrading (1 1 1)
hex (18 14 13 17 30 26 25 29) (10 12 44) simpleGrading (1 1 1)
hex (18 19 15 14 30 31 27 26) (12 10 44) simpleGrading (1 1 1)
hex (15 19 16 12 27 31 28 24) (10 12 44) simpleGrading (1 1 1)
hex (16 20 21 17 28 32 33 29) (12 12 44) simpleGrading (1 1 1)

85 hex (22 18 17 21 34 30 29 33) (12 12 44) simpleGrading (1 1 1)
hex (22 23 19 18 34 35 31 30) (12 12 44) simpleGrading (1 1 1)
hex (19 23 20 16 31 35 32 28) (12 12 44) simpleGrading (1 1 1)

// third block
hex (26 27 24 25 38 39 36 37) (12 12 17) simpleGrading (1 1 1)

90 hex (25 24 28 29 37 36 40 41) (12 10 17) simpleGrading (1 1 1)
hex (30 26 25 29 42 38 37 41) (10 12 17) simpleGrading (1 1 1)
hex (30 31 27 26 42 43 39 38) (12 10 17) simpleGrading (1 1 1)
hex (27 31 28 24 39 43 40 36) (10 12 17) simpleGrading (1 1 1)
hex (28 32 33 29 40 44 45 41) (12 12 17) simpleGrading (1 1 1)

95 hex (34 30 29 33 46 42 41 45) (12 12 17) simpleGrading (1 1 1)
hex (34 35 31 30 46 47 43 42) (12 12 17) simpleGrading (1 1 1)
hex (31 35 32 28 43 47 44 40) (12 12 17) simpleGrading (1 1 1)

);
// Create 32 quarter circles

100 edges
(

arc 5 6 ( -0.025 0 0.0)
arc 6 7 (0.0 -0.025 0.0)
arc 7 4 (0.025 0.0 0.0)

105 arc 4 5 (0.0 0.025 0.0 )
arc 17 18 ( -0.025 0 0.035)
arc 18 19 (0.0 -0.025 0.035)
arc 19 16 (0.025 0.0 0.035)
arc 16 17 (0.0 0.025 0.035 )

110 arc 28 29 (0.0 0.025 0.255)
arc 29 30 ( -0.025 0 0.255 )
arc 30 31 (0.0 -0.025 0.255)
arc 31 28 (0.025 0.0 0.255)
arc 40 41 (0.0 0.025 0.34)

115 arc 41 42 ( -0.025 0 0.34 )
arc 42 43 (0.0 -0.025 0.34)
arc 43 40 (0.025 0.0 0.34)
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arc 8 9 (0.0 0.06 0.015)
arc 9 10 (-0.06 0 0.015)

120 arc 10 11 (0.0 -0.06 0.015)
arc 11 8 (0.06 0.0 0.015)
arc 20 21 (0.0 0.06 0.035 )
arc 21 22 (-0.06 0 0.035)
arc 22 23 (0.0 -0.06 0.035)

125 arc 23 20 (0.06 0.0 0.035)
arc 32 33 (0.0 0.125 0.255)
arc 33 34 ( -0.125 0 0.255)
arc 34 35 (0.0 -0.125 0.255)
arc 35 32 (0.125 0.0 0.255)

130 arc 44 45 (0.0 0.125 0.34)
arc 45 46 ( -0.125 0 0.34)
arc 46 47 (0.0 -0.125 0.34)
arc 47 44 (0.125 0.0 0.34)

);
135 // Generate patches for inlets , outlets and walls

patches
(

patch inlet0
(

140 (0 1 2 3)
)
patch inlet1
(
(3 7 4 0)

145 (0 4 5 1)
(2 1 5 6)
(3 2 6 7)

)
patch inlet2

150 (
(7 11 8 4)
(4 8 9 5)
(5 9 10 6)
(7 6 10 11)

155 )
patch outlet
(
(36 37 38 39)
(39 43 40 36)

160 (36 40 41 37)
(37 41 42 38)
(38 42 43 39)
(43 47 44 40)
(40 44 45 41)

165 (41 45 46 42)
(42 46 47 43)

)
wall walls
(

170 (9 8 20 21)
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(9 21 22 10)
(10 22 23 11)
(11 23 20 8)
(21 20 32 33)

175 (21 33 34 22)
(22 34 35 23)
(23 35 32 20)
(33 32 44 45)
(33 45 46 34)

180 (34 46 47 35)
(35 47 44 32)

)
);
mergePatchPairs

185 (
);
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Systeme und Prozesse, Trocknungstechnik, Lebensmittelverfahrenstechnik und
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Mehrphasenströmungen, Würzburg (DE), May, 2019 (Poster)

15. Z. Jiang, K. Chen, A. Bück, E. Tsotsas, Novel algorithm for particle tracking
velocimetry (PTV) of non-spherical particles, In: 9th International Granulation
Workshop, Lausanne (CH), June, 2019 (Poster)



Student theses

1. A.K. Singh, Influence of drag models on CFD-DEM simulations of a poly-disperse
fluidized bed, Master thesis, Otto von Guericke University Magdeburg, Germany,
2017

2. D. Li, DEM investigation of the dynamics of singlet-doublet collisions during
agglomeration, Master thesis, FAU Erlangen-Nuremberg, Germany, 2019

3. K. Lou, Influence of thermal conduction models on particle temperature in ro-
tating drums by thermal DEM, Bachelor thesis, FAU Erlangen-Nuremberg, Ger-
many, 2019




	Contents
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Objective and outline

	2 Particle tracking velocimetry (PTV) methodology
	2.1 Particle segmentation algorithms
	2.1.1 Particle-mask correlation method
	2.1.2 Thresholding, watershed segmentation and image moment

	2.2 Particle tracking algorithms
	2.2.1 Minimum displacement tracking method
	2.2.2 Voronoi tracking method
	2.2.3 Probability relaxation method

	2.3 Verification by synthetic images
	2.3.1 Principle
	2.3.2 Verification of segmentation algorithm
	2.3.3 Verification of integrated tracking algorithm


	3 CFD-DEM methodology
	3.1 Governing equations
	3.1.1 Origin of models in two-fluid method
	3.1.2 CFD-DEM formulations

	3.2 Drag model
	3.2.1 Gidaspow drag model
	3.2.2 Beetstra drag model
	3.2.3 Tang drag model

	3.3 Mapping model
	3.4 Contact model
	3.4.1 Hertzian spring-dashpot model
	3.4.2 Rolling model
	3.4.3 Cohesion model

	3.5 Summary

	4 Experimental and simulation setups
	4.1 Single particle collision
	4.1.1 High-speed imaging and vibratory feeder
	4.1.2 Material properties

	4.2 Pseudo-2D fluidized bed with mono-disperse particle system
	4.2.1 Pseudo-2D fluidized bed
	4.2.2 Imaging system
	4.2.3 CFD-DEM simulation setup

	4.3 Pseudo-2D fluidized bed with poly-disperse particle system
	4.3.1 Pseudo-2D fluidized bed
	4.3.2 Imaging system
	4.3.3 CFD-DEM simulation setup

	4.4 Wurster fluidized bed
	4.4.1 Geometry of bed
	4.4.2 Operation conditions and material properties
	4.4.3 Simulation parameters
	4.4.4 Mesh independence


	5 PTV experiments and DEM simulations of the coefficient of restitution for irregular particles impacting on horizontal substrates
	5.1 Coefficient of restitution
	5.2 Tracking of non-spherical particles
	5.2.1 Iterative thresholding
	5.2.2 Particle-wall collision behavior

	5.3 DEM simulation of non-spherical particles
	5.3.1 Equation of motion
	5.3.2 Representation of irregular shapes of particles

	5.4 Results and discussion
	5.4.1 Analysis for sample particle
	5.4.2 Measurement data of the COR
	5.4.3 Comparison with DEM simulations


	6 PTV measurements and CFD-DEM simulations of particle dynamics in mono-disperse particle systems
	6.1 Particle collision dynamics
	6.2 Method to track particle collisions
	6.2.1 Intensity calibration
	6.2.2 Determination of collision events
	6.2.3 Granular temperature
	6.2.4 Particle collision frequency

	6.3 Results and discussion
	6.3.1 Instantaneous velocity
	6.3.2 Global circulation
	6.3.3 Particle granular temperature
	6.3.4 Particle-particle collision frequency
	6.3.5 Particle-particle collision velocity

	6.4 Summary

	7 Color-PTV measurements and CFD-DEM simulations of particle dynamics in poly-disperse particle systems
	7.1 Mixing of poly-disperse system
	7.2 Color classification in PTV
	7.3 Results and discussion
	7.3.1 Particle volumetric flux
	7.3.2 Distributions of velocity and granular temperature
	7.3.3 Mixing behavior


	8 CFD-DEM study of the particle behavior in a Wurster fluidized bed
	8.1 Wurster fluidized bed
	8.2 Results and discussion
	8.2.1 Cycle time and residence time distribution
	8.2.2 Droplet deposition rate
	8.2.3 Particle collision velocity


	9 Modeling of inter- and intra-particle coating uniformity in a Wurster fluidized bed by a coupled CFD-DEM-Monte Carlo approach
	9.1 Coating uniformity
	9.2 Monte Carlo methodology
	9.2.1 Particle selection and surface discretization
	9.2.2 Droplet deposition
	9.2.3 Droplet drying
	9.2.4 Intra-particle coating properties update
	9.2.5 Monte Carlo setup
	9.2.6 Recurrence of particle circulation

	9.3 Results and discussion
	9.3.1 Residence and cycle time distributions
	9.3.2 Coating properties of a sample particle
	9.3.3 Coating layer thickness
	9.3.4 Coefficient of variation of coating layer thickness
	9.3.5 Coating coverage and uniformity


	10 Summary and outlook
	10.1 Summary
	10.2 Outlook

	References
	Appendices
	A Measurement data
	A.1 List of all experiments
	A.2 Particle trajectories of irregular particle rebound
	A.3 PTV measurement of particle dynamics data

	B Simulation data
	B.1 List of all simulations
	B.2 Solving governing equations of fluid phase by PISO algorithm
	B.3 Solutions of HSD models
	B.4 Typical values of various forces
	B.5 Orthogonal grid of Wurster fluidized bed


