This is the Enhanced Reader view. For maximum accessibility screen reader users should use the HTML format which is available on the article page for most content.
Cited by
Expand menu
1
/
6
Previous
PDF
Next
PDF
Article start
IFAC-PapersOnLine 49-26 (2016)
344–349
ScienceDirect
Available online at
www.sciencedirect.com
2405-8963
©
2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.12.150
©
2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
FelixJost
KristineRinke
ThomasFischer
EnricoSchalk
SebastianSager
Felix Jost et al. / IFAC-PapersOnLine 49-26 (2016)
344
–
349
345
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
OptimumExperimentalDesignforPatient
SpecificMathematicalLeukopeniaModels
FelixJost
∗
KristineRinke
∗
ThomasFischer
∗∗
EnricoSchalk
∗∗
SebastianSager
∗
∗
InstituteofMathematicalOptimization,Otto-von-Guericke
University,Magdeburg,39106Germany(e-mail:felix.jost@ovgu.de).
∗∗
DepartmentofHematologyandOncology,Otto-von-Guericke
University,Magdeburg,39120Germany.
Abstract:
Mathematicalmodelsareessentialforsimulation-drivendecisionsupportforclinicaldoctors.
Foranestimationofparametersforpatientspecificmodels,valuessuchasthenumberofcertain
bloodcellsneedtobemeasured.Inthispaperwefocusonleukopenia,aclinicallyimportantside
effectarisingfromthetreatmentofleukemiawithchemotherapy.Amathematicalleukopenia
modelispresenteddescribingthedynamicsofleukocytesandweshowthatthestandard
deviationsoftheparameterestimatesdependstronglyonthetimingofthemeasurements.
Wediscusstheissueofmeasurementtimepointsfortwopatientsbeingintheconsolidation
phaseofacutemyeloidleukemiaandprovideoptimalsolutions.Optimizedmeasurementtime
pointsandthethusenabledaccuratesimulationshavealargeimpact:drugtreatmentscanbe
adaptedindividuallyandpatientsmaysafelyleavethehospitalforlongerandmoreconvenient
timeintervals.
Thedynamicsofleukocytesaremodeledbyasystemofordinarydifferentialequationsandthe
chemotherapywithcytarabineisdescribedbyapharmacokinetics/pharmacodynamicsmodel
consistingoftwocompartmentsandalog-linearfunctionrepresentingthedrugeffect.The
measurementtimepointsareoptimizedbyoptimalexperimentaldesign.
Withoptimalexperimentaldesignanaverageparameteruncertaintyreductionof57%(
Pa-
tient1
)and80%(
Patient2
)canbeachievedcomparedtotheclinicalexperimentaldesigns,with
thesametotalnumberofmeasurements.Theseencouragingresultsmotivatefurtherresearch
andanextensionofthedatabasistomorepatients.
Keywords:
Leukopenia,acutemyeloidleukemia,parameterestimation,optimumexperimental
design,samplingdecision.
1.INTRODUCTION
Aclinicallyimportantsideeffectarisingfromthetreat-
mentofleukemiawithchemotherapyisleukopenia.
Inthispaper,wefocusonacutemyeloidleukemia(AML),
acancerofthemyeloidstem/progenitorcellcompartment
ofthebonemarrow.Immatureneoplasticmyeloidblasts
proliferaterapidlyandsuppressanynormal,matured
leukocytecells(c.f.Arellanoetal.(2011)).Theoverpro-
ductionofimmaturedneoplasticwhitebloodcellsharms
thefunctionoftheimmunesystemandofotherorgans
eventuallyleadingtodeath,seee.g.Panoskaltsisetal.
(2003).Thechemotherapyregimenisdividedintotwo
phases(inductionandconsolidationphase),eachconsist-
ingofseveralcycles.Themaingoaloftheinductionphase
istheeliminationofcancercells(immaturedblastcells
andneoplasticstem/progenitorcells).Aftertheinduction
phasethenumberofcancercellsisreducedtoalowlevel,
butfurtherchemotherapycyclesintheconsolidationphase
ThisprojecthasreceivedfundingfromtheEuropeanResearch
Council(ERC)undertheEuropeanUnion’sHorizon2020research
andinnovationprogramme(grantagreementNo647573),whichis
gratefullyacknowledged.
areneededtopreventarelapseofthedisease.However,
thechemotherapyapplieddoesnotonlystopthegrowth
ofcancercells,butalsothegrowthofhealthyleukocytes.
Hence,thereisacriticaltimeforpatientsinwhichthe
numberofleukocytesisverylowandtheriskofbacterial
infectionsishigh(c.f.Malkaetal.(2012)).
Webelieveinmathematicalmodeling,simulationandopti-
mizationbeingtheenablingtechnologyforindividualized
medicine,whereriskassessmentandtiminganddosage
ofdrugtreatmentsarebasedondecisionsupport.Inthis
particularscenarioweuseittopredictthedynamicsof
leukocytesandtheinfluenceofchemotherapytowards
healthycells.Withanappropriatemodelinsilicosimu-
lationsandforecastsofthediseaseandpredictionsabout
theleukocytes’nadircanbemadeforeachpatient.The
onsetanddurationofnadir,definingthelowestnumberof
leukocytesafterchemotherapy,isanindicatorfortherisk
ofinfections.
1.1Contribution
Eachpatienthasadifferentresponsetowardschemother-
apyandthusalsodifferentdynamicsandrecoveryrates
6th IFAC Conference on
Foundations of Systems Biology in Engineering
October 9-12, 2016. Magdeburg, Germany
Copyright © 2016 IFAC
1
ofleukocytes.Fortheidentificationofpatient-specificpa-
rameterswecomparedifferentmeasurementtimepoints
concerningtheassociateduncertaintyoftheparameter
estimate.Theoptimalchoicecanbedeterminedusing
optimumexperimentaldesign(OED),K ̈orkel(2002).In
systemandcellbiology,themethodologyofOEDbecomes
morevisibleandstandardindesigningexperimentscom-
paredtomedicalapplications.AsareviewseeKreutzand
Timmer(2009)andforapplicationexamplesseeBanga
andBalsa-Canto(2008)andBandaraetal.(2009).Toour
knowledge,applyingOEDtomedicalapplicationsisonly
investigatedbyafewpublishedpapers(c.f.Kiranand
Samavedham(2013)andAaronsandOgungbenro(2010)).
Duetoitslargebenefits,morestudiesarerequiredto
transferthesemethodintoclinicalpractice.
2.MATHEMATICALMODELINGOFLEUKOPENIA
Severalmathematicalmodelshavebeenpublishedthat
describethedynamicsofleukocytesduringchemotherapy,
e.g.,inShochatetal.(2007)thedynamicsofneutrophils
(partoftheleukocytes)inthecirculatingbloodaremod-
eled,andinR ̆adulescuetal.(2016)asystemofdelay
differentialequationsisproposed.
Ourmodelisbasedonasemi-mechanisticpopulation
pharmacokinetics(PK)/pharmacodynamics(PD)model
formyelosuppressionpublishedbyFribergetal.(2002).
Themodelconsistsofonecelllinerepresentingleucocytes
modeledbyseveralcompartments(Fig.1).Thecellmat-
urationinthebonemarrowismodeledbyoneprolifer-
ationcompartmentandseveraltransitioncompartments.
Onecompartmentdescribesthecirculationofcellsinthe
blood.DifferingfromFribergetal.(2002),wedescribe
theleukopoiesiswithtwocompartments,onerepresenting
theproliferationphaseandtheotheronerepresentingthe
wholematurationphase.Aftermaturationtheleukocytes
migratetotheperipheralblooddescribedbyathird
compartment.Afeedbackdependingonthesteadystate
valueofcirculatingleukocytesdenotedby
Base
andthe
numberofleukocytesattime
t
isintroduced,triggering
theproliferationofleukocytes.
BoneMarrow
Blood
Proliferation(
x
3
)
Transition(
x
4
)
Circulation(
x
5
)
ktr
ktr
kcirc
ktr
celldeath(duetochemo)
Feedback=(
Base
x
5
)
γ
Fig.1.Schematicmodelofleukocytecells’dynamics
Inadditiontothemodelingofproliferation,maturation
andcirculationofleukocytesweincludethechemotherapy
anditsinfluenceonthecellcycles.Firstly,wetherefore
modeledthePKoftheusedagent(herecytarabine)
usingatwo-compartmentmodel(e.g.PilariandHuisinga
(2010);Figure2).Sincewehadnoinformationaboutthe
cytarabineconcentrations,weusedpublisheddata(Kern
etal.(1997)).Secondly,theinfluenceofchemotherapy
onthenumberofleukocytesismodeledbyalog-linear
functionwiththeslopevaluefromPefanietal.(2014).
Central(
x
1
)
Tissue(
x
2
)
DrugDosage
k
10
k
12
k
21
Fig.2.Two-compartmentmodeldescribingthepharma-
cokineticsofthedrugcytarabine.
Themathematicalmodelisdefinedbythefollowingequa-
tions,with
x
1
and
x
2
theamountofcytarabineinthetwo
compartmentsofFigure2,and
x
3
to
x
5
thenumberof
leukocytesinthethreecompartmentsofFigure1.
Pharmacokinetics:
̇
x
1
(
t
)=
−
k
10
·
x
1
(
t
)
−
k
12
·
x
1
(
t
)+
k
21
·
x
2
(
t
)
+
u
(
t
)
·
BSA
duration
,
(1)
̇
x
2
(
t
)=
k
12
·
x
1
(
t
)
−
k
21
·
x
2
(
t
)
,
(2)
Pharmacodynamics:
E
=
slope
·
ln
(
1
.
0+
x
1
(
t
)
V
·
MM
cyt
)
,
(3)
LeukopeniaModel:
̇
x
3
(
t
)=
ktr
·
x
3
(
t
)
·
(
(
Base
x
5
(
t
)
)
γ
−
1
.
0)
−
E
·
x
3
(
t
)(4)
̇
x
4
(
t
)=
ktr
·
(
x
3
(
t
)
−
x
4
(
t
))
,
(5)
̇
x
5
(
t
)=
ktr
·
x
4
(
t
)
−
kcirc
·
x
5
(
t
)
.
(6)
Themodelparameters,constantsandcontrolswithinthe
modelandtheirunitsarelistedinTable1.
Table1.Modelparameters,constantsandcon-
trolwithunits
Parameters
p
Unit
Constants
Unit
ktr
1
/day
k
10
1
/day
kcirc
1
/day
k
12
1
/day
γ
-
k
21
1
/day
Base
#
·
10
9
/liter
Volume
liter
slope
liter/mol
BodySurfaceArea(BSA)
m
2
Control
u
(
t
)
Unit
MolecularMass(
MM
cyt
)
g/mol
cytarabinedose
mg/m
2
Duration
day
ForamoredetailedmodelanalysisanddiscussionseeRinke
etal.(2016).Forfurtherinvestigationsthesystemissum-
marizedas ̇
x
(
t
)=
f
(
x
(
t
)
,u
(
t
)
,p
).
3.PARAMETERESTIMATION
Letasetofone-dimensionalmeasurements
η
1
,...,η
m
and
knownvariances
σ
2
i
attimepoints
t
1
,...,t
m
begiven.
Assumethatthemeasurementscanbedescribedbya
nonlinearregression
η
i
=
h
i
(
x
∗
(
t
i
)
,p
∗
)+
ε
i
(7)
withthemodelresponse
h
i
containingthetruestates
x
∗
andtruebutunknownparameters
p
∗
andtheinde-
pendentandidenticallydistributedmeasurementerrors
ε
i
∼N
(0
,σ
i
/w
i
).Theadditionalvariables
w
i
∈
[0
,
1]are
2016 IFAC FOSBE
October 9-12, 2016. Magdeburg, Germany
2
Previous
PDF
Next
PDF
To print this document, select the Print icon
or use the keyboard shortcut,
Ctrl + P
.