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Abstract: Leukopenia is one of the most harmful side effects during chemotherapy treatment,
since leukocytes (L) are crucial in protecting patients against bacteria and fungi. A personalized
mathematical model of dynamics of L would allow a glimpse into the future and the initiation
of tailored countermeasures.
We propose such a mathematical model and calibrate it based on a parameter estimation with
real world data. For our study we used data of L during and after consolidation chemotherapy
treatment (cytarabine) of six patients contracting acute myeloid leukemia.
We compare two different ways to treat the unknown initial values of the system of ordinary
differential equations, discuss patient-specificity of parameter values, and different scalings of the
least squares formulation. These three comparisons are necessary considerations for all modeling
approaches to biomedicine, and have thus a methodological scope beyond the specific case of
leukopenia.
In summary, we show that our approach is able to simulate L dynamics in response to
chemotherapy treatment and allows to take patient-specific characteristics into account.
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1. INTRODUCTION

Leukocytes (L) are white blood cells, circulating the blood
stream as a part of the immune system, and therefore cru-
cial in protecting humans against bacteria and fungi. Their
standard range varies for adults between 4 and 10 thou-
sands cells per microliter. Acute myeloid leukemia (AML)
is a common type of leukemia in adults. It is originating in
the bone marrow and associated with hematopoiesis, i.e.,
the process where mature blood cells (MC) differentiate
from hematopoietic stem cells (HSC). These HSCs have
the capability to proliferate generating either HSCs or
precursor cells (PC). There are two lineages of PCs - the
myeloid and the lymphoid line - both differentiate through
several stages into diverse MCs which are released into the
bloodstream as L. AML is characterized by degeneration
of cells in early stage within the myeloid line resulting
in a rapid increase of so called myeloid blasts, i.e., non-
differentiating cells that interfere with the hematopoiesis.
Without any therapy, AML is lethal within a few months.
Therefore, the initiation of a therapy is usually realized
immediately.

� This research was supported by a research grant of the “nterna-
tional Max Planck Research School (IMPRS) for Advanced Methods
in Process and System Engineering (Magdeburg)” and from the
European Research Council via the Consolidator Grant MODEST-
647573.

The chemotherapy treatment schedule is usually divided
into two phases, induction and consolidation, consisting
of repeated administrations of chemotherapy infusions.
The first usually involves about one or two cycles of
induction therapy with complete remission on target.
During the last decades, plenty of studies dealt with
improving the outcomes of induction, but none of them
was able to identify suitable alternatives to the current
practice (cf. Eigendorff and Hochhaus (2015)). Therefore,
we focus on consolidation therapy, the second period of
the treatment schedule.

To maintain complete remission of the induction, it is
followed by consolidation with two to four cycles of cy-
tarabine (AraC, ≥ 1000 mg/m2). AraC acts in a two-step
process: Firstly it is transformed to AraCTP and, secondly,
after being incorporated into DNA leads to cell death
(cf. Hamada et al. (2002) for the metabolic pathway). This
incorporation into DNA can only take place during the
proliferation phase while cells without active DNA repli-
cation remain unaffected. AraC operates non-specifically,
thus affecting the blasts as well as the HSCs. This can
lead to severe hematopoiesis suppression, a real and seri-
ous side effect called Leukopenia. As a consequence, the
immune system is not capable to adequately react which
can result in life threatening infections. Leukopenia is
characterized by absolute L counts below one thousand
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stream as a part of the immune system, and therefore cru-
cial in protecting humans against bacteria and fungi. Their
standard range varies for adults between 4 and 10 thou-
sands cells per microliter. Acute myeloid leukemia (AML)
is a common type of leukemia in adults. It is originating in
the bone marrow and associated with hematopoiesis, i.e.,
the process where mature blood cells (MC) differentiate
from hematopoietic stem cells (HSC). These HSCs have
the capability to proliferate generating either HSCs or
precursor cells (PC). There are two lineages of PCs - the
myeloid and the lymphoid line - both differentiate through
several stages into diverse MCs which are released into the
bloodstream as L. AML is characterized by degeneration
of cells in early stage within the myeloid line resulting
in a rapid increase of so called myeloid blasts, i.e., non-
differentiating cells that interfere with the hematopoiesis.
Without any therapy, AML is lethal within a few months.
Therefore, the initiation of a therapy is usually realized
immediately.

� This research was supported by a research grant of the “nterna-
tional Max Planck Research School (IMPRS) for Advanced Methods
in Process and System Engineering (Magdeburg)” and from the
European Research Council via the Consolidator Grant MODEST-
647573.

The chemotherapy treatment schedule is usually divided
into two phases, induction and consolidation, consisting
of repeated administrations of chemotherapy infusions.
The first usually involves about one or two cycles of
induction therapy with complete remission on target.
During the last decades, plenty of studies dealt with
improving the outcomes of induction, but none of them
was able to identify suitable alternatives to the current
practice (cf. Eigendorff and Hochhaus (2015)). Therefore,
we focus on consolidation therapy, the second period of
the treatment schedule.

To maintain complete remission of the induction, it is
followed by consolidation with two to four cycles of cy-
tarabine (AraC, ≥ 1000 mg/m2). AraC acts in a two-step
process: Firstly it is transformed to AraCTP and, secondly,
after being incorporated into DNA leads to cell death
(cf. Hamada et al. (2002) for the metabolic pathway). This
incorporation into DNA can only take place during the
proliferation phase while cells without active DNA repli-
cation remain unaffected. AraC operates non-specifically,
thus affecting the blasts as well as the HSCs. This can
lead to severe hematopoiesis suppression, a real and seri-
ous side effect called Leukopenia. As a consequence, the
immune system is not capable to adequately react which
can result in life threatening infections. Leukopenia is
characterized by absolute L counts below one thousand
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cells per microliter blood. The longer this state lasts the
higher the mortality. The susceptibility to leukopenia due
to chemotherapy shows a large variability among patients.

Mathematical modeling can form a basis for advanced
patient-specific analysis and decision support tools. Such
a mathematical model must be able to reproduce and in
a later stage also predict qualitatively and quantitatively
patterns of L during chemotherapy treatment. This retro-
spective study with the presented mathematical model is a
promising start towards advanced patient-specific leukope-
nia treatment and decision support tools.

2. MATERIALS AND METHODS

2.1 Clinical data

Measurement data of L and therapy plans for six AML
patients (denoted by P1, . . . , P6) are provided by the De-
partment of Hematology and Oncology of the University
Hospital in Magdeburg (Figure 1 and Table 1).

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45

#
L
eu
ko

cy
te
s
[1
09
/l
]

Time [day]

Patient 1
Patient 2
Patient 3
Patient 4
Patient 5
Patient 6

Fig. 1. Measurement data of the six patients, periods
ranging from 32 to 43 days.

Here, the first consolidation cycle is considered in which
AML was prevented by administer AraC. One consolida-
tion cycle consists of two AraC infusions at day one, three
and five. The two infusions last three hours each with a
12 hours in between. The values for the body surface are
calculated using DuBois formula (cf. DuBois et al. (2013)).

Table 1. Patient-specific physiological proper-
ties, cytarabine application per infusion and

numbers of measurements.

Sex Age Height Weight BSA∗ Cyt. per inf. Meas.
- (year) (cm) (kg) (m2) (mg/m2) (#)

P1 F 61 175 92 1.92 3000 29
P2 M 67 176 74 1.89 1000 20
P3 F 74 170 81 1.81 1000 23
P4 F 49 170 71 1.83 3000 31
P5 F 30 166 75 1.72 3000 22
P6 M 64 190 80 2.00 3000 21

∗ BSA = body surface area

2.2 Mathematical model

Since we are focusing on leukopenia during consolidation
therapy, we exclusively simulate the dynamics of the

Bone Marrow Blood

Proliferation (x3) Transition (x4) Circulation (x5)
ktr ktr

kcirc

ktr

cell death (due to chemo)

Feedback = (Base
x5

)γ

Fig. 2. Schematic model of leukocyte cells’ dynamics

Central (x1) Tissue (x2)

Drug Dosage

k10

k12

k21

Fig. 3. Two-compartment model describing the pharma-
cokinetics of the drug cytarabine.

healthy immune cells (L) within the blood stream. The
drug impact is accounted for by additional states for
pharmacokinetics (PK) and a pharmacodynamic (PD)
function.

In order to describe the cell dynamics, we use a compart-
ment model based on Friberg et al. (2002). Referring to
the cell differentiation process, the cell-line consists of (i)
a proliferating compartment PC sensitive to chemother-
apy, (ii) transit compartments TC representing diverse
differentiation states and (iii) a compartment with mature,
circulating blood cells MC. Savic et al. (2007) showed that
the number of transition compartments models the delay
between the proliferating cells and circulating cells. As the
intermediate maturation steps are of no interest in our
setting, and the numerical results indicate that the delay
is well captured by using one compartment, we simplified
Friberg’s model by using one instead of three transition
compartments (Figure 2).

Cells mature with a transition rate ktr from the precursor
compartment. MCs (x5) are removed from the blood
stream with a death rate of kcirc. In order to respond to
cell decline, matured cells influence the proliferation rate
of proliferating cells by a feedback loop.

A two-compartment model is used for PK (Figure 3). The
PD is modeled by a log-linear function E.

The five differential states of our mathematical model are
the amounts x1, x2 of AraC in two compartments, and
the numbers x3, x4, x5 of L in three compartments. The
external input is the dose of AraC u(t). The mathematical
model is defined by the following equations:
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Pharmacokinetics: (1)

ẋ1(t) = −k10 · x1(t)− k12 · x1(t) + k21 · x2(t)

+
u(t) · BSA

duration
, (2)

ẋ2(t) = k12 · x1(t)− k21 · x2(t), (3)

Pharmacodynamics:

E = slope · ln
(
1.0 +

x1(t)

V ·MMcyt

)
, (4)

Leukopenia Model:

ẋ3(t) = ktr · x3(t) · (
(
Base

x5(t)

)γ

− 1)− E · x3(t), (5)

ẋ4(t) = ktr · (x3(t)− x4(t)), (6)

ẋ5(t) = ktr · x4(t)− kcirc · x5(t), (7)

Initial Values:

x1(0) = 0.0, (8)

x2(0) = 0.0, (9)

x3(0) =
Base · kcirc

ktr
, (10)

x4(0) =
Base · kcirc

ktr
, (11)

x5(0) = Base0. (12)

Note that we used two approaches to cope with the initial
values: (i) to use (1-12) with two different parameters Base
and Base0, as in Nock (2013) and (ii) to enforce equality
between the two via

Base = Base0 (13)

as suggested by Quartino et al. (2012) (leading to equilib-
rium. We will refer to (1-13) as I1 and to (1-12) as I2.

A summary of model parameters, constants and the con-
trol within (1-12) are listed in Table 2. Furthermore, the
system is summarized as ẋ(t) = f(x(t), p), where the
external stimulus and some fixed constants become part
of the function f(·).

Table 2. Model parameters (p) and control u(t)
with units

p ktr kcirc γ Base / Base0 slope u(t)

Unit 1/day 1/day - # · 109/l l/mol mg/m2

2.3 Parameter estimation

Let a set of one-dimensional measurements η1, . . . , ηm and
known variances σ2

i at time points t1, . . . , tm be given.
Assume that the measurements can be described by a
nonlinear regression

ηi = h(x∗(ti), p
∗) + εi (14)

with the model response function h of the true but un-
known states x∗ and parameters p∗ and the indepen-
dent and identically distributed measurement errors εi ∼
N (0, σi).

Solving the nonlinear weighted least squares problem

min
p

1

2

m∑
i

(ηi − h(x(ti), p))
2

σ2
i

(15a)

s.t. ẋ(t) = f(x(t), p) (15b)

x(t0) = x0, (15c)

with different approaches to determine the variances

σi =




1,

ηi,

if (ηi ≥ 1) :
√
ηi, else : ηi

2.

(W1)

(W2)

(W3)

yields parameters p̂ which fit the model response to the
data. The dynamic process described by a system of
ordinary differential equations is formulated as an implicit
constraint.

The parameter estimations are performed with three dif-
ferent weighting techniques W1–W3 for σi (as suggested
above). W1 is an unweighted least square, a standard
method in parameter estimation. Thereby, measurements
close to zero are less influential on the objective. Since
our focus is on leukopenia (i.e. values below one), we
introduced two more weighting methods W2 and W3. W2
can be seen as a scaling method, whereby the squared
deviations are scaled by the original values of ηi leading
to higher weighting of low ηi. To make values between
one and zero more influential on the objective but without
loosing too much informations of higher values of L, we
differentiate weigthings of measurements below and above
one (W3). Please notice, the value of one refers to our unit
of L, i.e. 109 cells per µl.

As the measurement error ε is a random variable, also
the solution p̂ is a random variable which is in first order
normally distributed with mean p∗ (true but unknown
value) and variance-covariance matrix C = (JTJ)−1 with
J as the derivative of the objective of (15) with respect to
p. The confidence regions of the parameters in which the
true parameter values are located to a certain probability
1 − α are nonlinear and thus difficult to compute. So,
linearized confidence regions are computed

CR(p̂, α) = {p : (p− p̂)TC(p− p̂) ≤ χ2
np
(1− α)} (16)

with χ2
np

as the χ2 distribution with np degrees of freedom.
We obtain estimates for standard deviations from entries
on the main diagonal of C.

Theoretically, all unknowns in (1-13) can be used in a
parameter estimation. However, based on measurements
of MCs alone, certain parameters can not be identified.
Therefore we fix some of them to constant values. This
concerns the parameters (constants) k10, k12, k21 and V
from PK. We used published data from Kern et al. (1997)
in order to estimate these PK parameters by ordinary least
squares (Table 3).

Table 3. Values of the constant parameters of
the PK model (k10, k12, k21 and Volume (V)),
molar mass of cytarabine (MM) and duration

of cytarabine infusion (d).

Constants k10 k12 k21 V MM d

Value 98.64 2.69 1.29 37.33 243.217 3/24
Unit 1/day 1/day 1/day liter g/mol day

We gratefully acknowledge the use of the parameter esti-
mation software tool PAREMERA from Körkel and col-
leagues, c.f. Kircheis (2015). It is implemented in VPLAN
(c.f. Körkel (2002)) and is based on a Gauß-Newton ap-
proach. VPLAN provides an all-at-once solution to solve
parameter estimation problems with Internal Numerical
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u(t) · BSA

duration
, (2)
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E = slope · ln
(
1.0 +

x1(t)

V ·MMcyt

)
, (4)
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− 1)− E · x3(t), (5)
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x2(0) = 0.0, (9)

x3(0) =
Base · kcirc

ktr
, (10)

x4(0) =
Base · kcirc

ktr
, (11)

x5(0) = Base0. (12)

Note that we used two approaches to cope with the initial
values: (i) to use (1-12) with two different parameters Base
and Base0, as in Nock (2013) and (ii) to enforce equality
between the two via

Base = Base0 (13)

as suggested by Quartino et al. (2012) (leading to equilib-
rium. We will refer to (1-13) as I1 and to (1-12) as I2.

A summary of model parameters, constants and the con-
trol within (1-12) are listed in Table 2. Furthermore, the
system is summarized as ẋ(t) = f(x(t), p), where the
external stimulus and some fixed constants become part
of the function f(·).

Table 2. Model parameters (p) and control u(t)
with units

p ktr kcirc γ Base / Base0 slope u(t)

Unit 1/day 1/day - # · 109/l l/mol mg/m2

2.3 Parameter estimation

Let a set of one-dimensional measurements η1, . . . , ηm and
known variances σ2

i at time points t1, . . . , tm be given.
Assume that the measurements can be described by a
nonlinear regression

ηi = h(x∗(ti), p
∗) + εi (14)

with the model response function h of the true but un-
known states x∗ and parameters p∗ and the indepen-
dent and identically distributed measurement errors εi ∼
N (0, σi).

Solving the nonlinear weighted least squares problem

min
p

1

2

m∑
i

(ηi − h(x(ti), p))
2

σ2
i

(15a)

s.t. ẋ(t) = f(x(t), p) (15b)

x(t0) = x0, (15c)

with different approaches to determine the variances

σi =




1,

ηi,

if (ηi ≥ 1) :
√
ηi, else : ηi

2.

(W1)

(W2)

(W3)

yields parameters p̂ which fit the model response to the
data. The dynamic process described by a system of
ordinary differential equations is formulated as an implicit
constraint.

The parameter estimations are performed with three dif-
ferent weighting techniques W1–W3 for σi (as suggested
above). W1 is an unweighted least square, a standard
method in parameter estimation. Thereby, measurements
close to zero are less influential on the objective. Since
our focus is on leukopenia (i.e. values below one), we
introduced two more weighting methods W2 and W3. W2
can be seen as a scaling method, whereby the squared
deviations are scaled by the original values of ηi leading
to higher weighting of low ηi. To make values between
one and zero more influential on the objective but without
loosing too much informations of higher values of L, we
differentiate weigthings of measurements below and above
one (W3). Please notice, the value of one refers to our unit
of L, i.e. 109 cells per µl.

As the measurement error ε is a random variable, also
the solution p̂ is a random variable which is in first order
normally distributed with mean p∗ (true but unknown
value) and variance-covariance matrix C = (JTJ)−1 with
J as the derivative of the objective of (15) with respect to
p. The confidence regions of the parameters in which the
true parameter values are located to a certain probability
1 − α are nonlinear and thus difficult to compute. So,
linearized confidence regions are computed

CR(p̂, α) = {p : (p− p̂)TC(p− p̂) ≤ χ2
np
(1− α)} (16)

with χ2
np

as the χ2 distribution with np degrees of freedom.
We obtain estimates for standard deviations from entries
on the main diagonal of C.

Theoretically, all unknowns in (1-13) can be used in a
parameter estimation. However, based on measurements
of MCs alone, certain parameters can not be identified.
Therefore we fix some of them to constant values. This
concerns the parameters (constants) k10, k12, k21 and V
from PK. We used published data from Kern et al. (1997)
in order to estimate these PK parameters by ordinary least
squares (Table 3).

Table 3. Values of the constant parameters of
the PK model (k10, k12, k21 and Volume (V)),
molar mass of cytarabine (MM) and duration

of cytarabine infusion (d).

Constants k10 k12 k21 V MM d

Value 98.64 2.69 1.29 37.33 243.217 3/24
Unit 1/day 1/day 1/day liter g/mol day

We gratefully acknowledge the use of the parameter esti-
mation software tool PAREMERA from Körkel and col-
leagues, c.f. Kircheis (2015). It is implemented in VPLAN
(c.f. Körkel (2002)) and is based on a Gauß-Newton ap-
proach. VPLAN provides an all-at-once solution to solve
parameter estimation problems with Internal Numerical
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Fig. 4. Calculation of the error variances between model response after parameter estimation and observations. Initial
approach I1 in black, I2 in red. Vartotal = error variances calculated with all measurments, Varobs<1 = error
variances calculated with measurements below 1.

Differentiation, c.f. Bock (1987) and automatic differenti-
ation of model functions via ADIFOR, c.f. Bischof et al.
(1996).

3. NUMERICAL RESULTS

We started our analysis by treating all six AML pa-
tients as a population (P0) resulting in 146 measurements.
Therewith sets of parameter values are computed for
the two different initial value approaches I1, I2 and the
different weighting techniques W1–W3. Afterward, these
population-based parameters were used as initial values
(Table 4) for estimating an individual set of parameters
for each patient (P1–P6).

Table 4. Initial parameter values (M) with
their absolute standard deviations (SD) for the

two initial value approaches I1 and I2.

Base gamma ktr slope Base0

INIT M SD M SD M SD M SD M SD

I1 10.00 0.27 0.18 0.02 0.50 0.04 0.91 0.06 - -

I2 10.00 0.37 0.18 0.02 0.50 0.05 0.91 0.05 10.00 1.17

A comparison of simulated vs. observed values illustrated
the major differences between the different weighting tech-
niques (Figure 4). The two alternative weighting tech-
niques W2 and W3 showed an improved fit at low values
of observed L concentrations (e.g. below 1). This was
also illustrated by calculating the error variances (i.e. the
variance VAR of the paired differences between simulated
and observed values) for the different trajectories. While
W1 necessarily showed the lowest overall error variances,
W2 and W3 appeared to have much lower error variances
at low L concentrations (Lobs < 1). In summary, W1 is the
best overall fit, whereas W2 is the best fit for L below one
(Figure 4). From a practical point of view, however, W3 is
a very powerful compromise combining the advantages of
both with a still good overall fit (better than W2) and a
comparatively good fit for L below one (better than W1).
This pattern was even independent of the used initial value
approach. Furthermore, we calculated the unweighted sum
of squares for the I1–I2 and W1–W3 (see Table 5) for
assessing overall model performance. As mentioned above,
W3 appeared to be superior to W2 and is a good choice for
estimating parameters in leucopenia models. Therefore, we
are focusing the following analysis on W3 as it constitutes
the most promising weighting technique in our setting.

I2 shows for all three weighting methods lower error
variances comparing to I1 (Figure 4). This is a matter
of fact given the addition degree of freedom provided by
the addition parameter Base0 in I2.

Table 5. Squared values for the six individual
patients P1–P6 for I1–I2 and W1- W3.

P1 P2 P3 P4 P5 P6

I1 W1 25.10 8.27 11.43 7.58 24.28 14.39
W2 43.41 23.61 35.07 15.87 46.54 22.54
W3 32.98 11.43 25.11 16.59 35.24 19.90

I2 W1 9.33 6.63 1.76 6.83 22.84 13.18
W2 12.48 14.90 2.75 13.94 44.18 20.67
W3 11.28 8.74 2.44 14.38 20.67 17.11

Table 6 shows the resulting estimated parameter values
with their absolute standard deviations. One observes
significant differences between the individuals P1–P6. Also
the values of the population fit P0 differ significantly, and
lead to different dynamics as shown in Figures 5 and
6. The difference between individual and population fits
illustrates the potential error that may arise from ignoring
individual properties.

Table 6. Parameter values (M) with their ab-
solute standard deviations (SD) for the popu-
lation estimate P0 and the six individual esti-
mates P1–P6, for both initial approaches I1–I2

and the weighting method W3.

Base gamma ktr slope Base0

I1 M SD M SD M SD M SD M SD

P0 6.90 0.27 0.40 0.03 0.26 0.02 3.09 0.45 - -
P1 6.34 0.58 0.71 0.15 0.16 0.03 1.59 0.34 - -
P2 8.23 0.77 0.26 0.07 0.29 0.05 2.63 0.82 - -
P3 5.69 0.77 0.44 0.18 0.20 0.05 1.55 0.42 - -
P4 7.51 0.55 0.12 0.05 0.46 0.12 0.89 0.19 - -
P5 7.37 0.65 0.24 0.09 0.33 0.08 0.93 0.22 - -
P6 11.83 0.67 0.16 0.04 0.36 0.05 1.39 0.30 - -

I2 M SD M SD M SD M SD M SD

P0 6.64 0.36 0.36 0.04 0.26 0.02 2.03 0.27 13.0 1.42
P1 5.40 0.74 0.87 0.26 0.14 0.03 1.64 0.37 22.8 3.50
P2 9.66 1.23 0.23 0.06 0.31 0.06 1.95 0.59 2.96 3.32
P3 4.16 1.06 0.76 0.48 0.15 0.06 1.59 0.52 19.5 3.00
P4 7.95 0.67 0.11 0.04 0.47 0.12 0.90 0.19 2.30 3.26
P5 6.18 0.87 0.34 0.16 0.27 0.08 0.94 0.27 17.3 3.98
P6 12.71 0.98 0.15 0.04 0.37 0.06 1.40 0.30 5.64 4.42
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Fig. 5. Dynamics of circulating leukocytes x5 (y axis: # of leukocytes [109/l]) over time (x axis: time [day]) with initial
value approach I1 and our weighting technique W3 ( ) for all six patients P1–P6. As a reference the trajectories
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Fig. 6. As Figure 5, but with initial value approach I2. Note how the additional degree of freedom Base0 for the initial
value x5(0) is used to obtain overall better fits compared to Figure 5.

4. DISCUSSION AND CONCLUSION

Our results show differences in the patient-specific param-
eters and therewith in the quality of L dynamics com-
pared to P0 as well as compared to each other. Generally,
patients respond differently to the same amount of an ad-
ministered drug. Therefore, patient-specific diagnosis and
therapy are becoming more and more established. In order
to account for such an individualized treatment, knowledge
about individual physiological characteristics is essential.
In vivo measurements of patients-specific agent concen-
trations in relevant compartments (e.g., blood plasma)

will help to generate individual PK profiles and therewith
provide tools for the prediction of agent concentration
dynamics at the side of action. In vitro measurements of
agent toxicity, can similarly be used for developing cor-
responding (PD) profiles (e.g. Bennett et al. (2014)) and
therewith provide cytotoxic profiles for the applied agent.
A combination of in vivo and in vitro measurements linked
with in silico modeling will provide a powerful methodol-
ogy (Fuentes et al. (2009)) to generate the required infor-
mation about individualized physiological properties and
the corresponding treatment adaptations, requirements,
and risks. Moreover, models can help to identify optimized
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value approach I1 and our weighting technique W3 ( ) for all six patients P1–P6. As a reference the trajectories
for the population fit P0 ( ) with I1 and W3 are shown.
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Fig. 6. As Figure 5, but with initial value approach I2. Note how the additional degree of freedom Base0 for the initial
value x5(0) is used to obtain overall better fits compared to Figure 5.

4. DISCUSSION AND CONCLUSION

Our results show differences in the patient-specific param-
eters and therewith in the quality of L dynamics com-
pared to P0 as well as compared to each other. Generally,
patients respond differently to the same amount of an ad-
ministered drug. Therefore, patient-specific diagnosis and
therapy are becoming more and more established. In order
to account for such an individualized treatment, knowledge
about individual physiological characteristics is essential.
In vivo measurements of patients-specific agent concen-
trations in relevant compartments (e.g., blood plasma)

will help to generate individual PK profiles and therewith
provide tools for the prediction of agent concentration
dynamics at the side of action. In vitro measurements of
agent toxicity, can similarly be used for developing cor-
responding (PD) profiles (e.g. Bennett et al. (2014)) and
therewith provide cytotoxic profiles for the applied agent.
A combination of in vivo and in vitro measurements linked
with in silico modeling will provide a powerful methodol-
ogy (Fuentes et al. (2009)) to generate the required infor-
mation about individualized physiological properties and
the corresponding treatment adaptations, requirements,
and risks. Moreover, models can help to identify optimized
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sampling protocols for clinical practise, e.g. as proposed by
Jost et al. (2016). Such modeling tools are required for pro-
jections of therapy success, recovery progress as well as the
corresponding personalized optimization of therapy sched-
ules. We therefore conclude that patient-specific measure-
ments and parameter estimations are definitely necessary
to come up with optimized individual treatments. A larger
cohort of patients would improve our ability to estimate
parameter variation among individuals and will enable
statistical analysis (e.g. parameter depending sensitivity
against leukopenia) as well as the opportunity to predict
patient-specific reactions on chemotherapy treatment.

Concerning the different approaches to incorporate initial
values I1 and I2, there is no clear winner. Whereas the
additional degree of freedom Base0 in approach I2 is used
to fit the steep decline of L better (and also a short increase
which is plausible because of delays of the chemotherapy),
approach I1 guarantees the start from a steady state,
which seems biologically more plausible. However, the
initial values have a deep impact on parameter values (e.g.
Base0 correlates with ktr, γ and Base). Therefore, more
detailed studies on this and a larger cohort of patients are
required.

With respect to the three different weighting strategies
W1–W3, we prefer W3, as it highlights the crucial and
relevant time horizon when the number of L is down and a
leukopenia may occur but also take higher values of L into
account, when recovering from leukopenia. The resulting,
more conservative underestimation x5(t) has an intrinsic
safeguard against model uncertainty.

In summary, the resulting simulations give a good fit to
the measurements and would be an adequate basis for
clinical decision support. Future work needs to evaluate
the prospective prediction accuracy, based on parameter
estimates from previous treatment cycles and applied in a
real-time context.
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