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1 INTRODUCTION 
Membrane structures are one of the current trends in civil engineering and architecture. 

They are fascinating in both aspects, their appearance and physical behaviour. When 
considering the first aspect, we can describe them as lightweight structures of beautifully 
curved shapes. As broadly known, those shapes cannot be chosen freely since they must be 
physically suitable because the material used for tensile structures can withstand no bending 
or compression, and thus shapes under tension have to be used. This is the first task to solve 
when designing membrane structures, involving both the architectural requirements 
and physical principles. In that way, membrane structures take shapes that have to be in 
accordance with nature. This task to find a beautiful and physically suitable shape is known 
as form-finding. 

After the form-finding is performed, it is necessary to check the load-bearing capacity and 
other code-specific or investor’s requirements in structural analysis. The structural response 
of such structures is strongly nonlinear in terms of both the impact of geometry changes 
and material behaviour. 

If all the requirements are fulfilled, the structure can be fabricated. To make this step 
possible, it is necessary to generate cutting patterns as membrane structures exhibit double 
curvature and therefore, they have to be approximated by a certain amount of planar patterns. 

The presented work will focus on all those steps. A theoretical introduction will be 
presented in the first part of each chapter, then practical examples will be shown 
to demonstrate the mentioned statements. The presented examples were created using the 
RFEM software, including the new add-on modules RF-FORM-FINDING and RF-
CUTTING-PATTERN for the design and analysis of membrane structures, that were 
developed recently by the cooperating companies Dlubal Software s.r.o. [I] and FEM 
Consulting s.r.o. [II]. 
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2 FORM-FINDING 
The form-finding process is an essential part of tensile structures designing. This 

indispensable shape analysis has been the subject of many research works and as a result, 
many methods have been proposed. The physical principle of the form-finding process will be 
described in the first part of this chapter Form-Finding. The second part will be focused 
on the practical examples, which complete and illustrate the described topics. 

2.1 Theory 
The methods that have been proposed and implemented into software as tools for the form-

finding process can be divided into many categories, such as Force Density Method (FDM), 
Dynamic Relaxation (DR), Updated Reference Strategy (URS), Natural Force Density 
Method (NFDM), etc. [1-18]. When calculating the shape of a membrane structure, there 
is a great difference between the classic FDM and the other methods listed above, since 
the FDM replaces the membrane by a cable mesh, while the other methods use surface finite 
elements for the membrane. In addition to this great difference, there are some smaller 
differences between the methods using 2D FE. The difference is that the form-finding process 
can be assumed as a static or dynamic task or even as a specially formulated form-finding 
task, for example. Regardless the particular method, the goal is always to find the equilibrium 
shape for the surface prestress field that is an input. The particular method is more or less 
the way how to reach this target. The further important difference can be seen in the 
generality of the methods or the way of implementation since the interaction of the 
membranes and cables subjected to the shape finding with the substructure is highly desirable 
and can influence the whole design. This general concept will be described later. 

2.1.1 Physical Essence of Form-Finding 

The general form-finding task is to find the equilibrium shape for the given prestress field 
in the membrane/cable while considering the boundary conditions and external loads, if they 
are required. No dependence on material exists here. In contrary to structural analysis, the 
stresses are not the result, but the input and deformations are driven by that way. This causes 
singularities as described later, which has to be overcome. 

The shape resulting from the form-finding process is the prestressed reference 
configuration for further nonlinear analysis. However, the patterns are practically the absolute 
reference (initial) configuration because they are the unstrained (reference/initial) shapes 
forming the real construction (Fig. 1). 

 

Fig. 1 – Comparison of static analysis and form-finding [19] 
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2.1.2 General Finite Element Approach 

Regardless the differences described above, the equilibrium state of the structure subjected 
to the form-finding process can be written in the same manner as the equilibrium state of the 
body in FE analysis. Searching for the shape can be formulated as searching for the minimum 
of the potential energy � = ���� + ���� of internal and external forces in the body 	. The 
shape is in equilibrium if the derivative of the potential energy corresponding with the 
deformation is zero 
�/
 = 0. The principle of the FE analysis will be described later 
(3.1.1 Principles of FEM Analysis). 

���� = �����
�� + �����

�� = � � ∶ �� �� � − � " ∙ � �� � = � $ ∶ �% � � − � " ∙ � � � = 0  (1) 

Where  are deformations, & and ' are 2nd Piola-Kirchhoff stress tensor and Cauchy stress 
tensor, ( and ) are Green-Lagrange strain tensor and Euler-Almansi strain tensors, �� is the 
reference configuration, and � is the actual configuration. As stated in the following chapter 
(3.1.1 Principles of FEM Analysis), the equilibrium of the body can be described in both the 
reference and the actual configurations. 

However, it is not possible to directly solve the new shape due to its unknown position. 
Even though the normal direction of the membrane/cable is clear, the tangential redistribution 
of nodes is unclear  as the infinite number of different positions can satisfy the same 3D shape 
(Fig. 2). 

 

Fig. 2 – Arbitrarily deformed meshes for the same surface geometry ([6] with modification) 

A way how to overcome this ambiguity is to define the problem with respect to the known 
(initial) position of the body. By solving the system of equations, we obtain the new 
geometry. This new geometry is closer to the equilibrium shape than the previous one and we 
use it for the next step (Fig. 3). Continuing in this process will lead to the shape improvement, 
which is closer to the required equilibrium position with each further iteration. This 
philosophy is related to the nonlinear analysis, where we assess the balance of the new shape 
after each calculated iteration. From  a physical point of view, it thus does not make 
a difference whether we choose to use the nonlinear analysis, the updated reference strategy 
or the dynamic relaxation as a specific method for solving the task. 
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Fig. 3 – Iterations of the form-finding process ([20] with modifications) 

This general finite element approach of the form-finding process allows us to combine 
searching the unknown equilibrium shapes with the nonlinear analysis of the supporting 
structure loaded by the prestress in membranes or cables. Even though the membranes 
and cables were only mentioned as the subjects of form-finding, the shapes can also be 
searched for shells and beams, as discussed later. 

2.1.3 Force-Finding as Part of Form-Finding 

In the previous text, the only task was solving the equilibrium shape for already defined 
spatial prestress in equilibrium. However, the only equilibrium prestress which can be defined 
in advance is actually the isotropic prestress. Constant orthotropic prestress is only 
in equilibrium if the Gaussian curvature is equal to zero * = 0, which is not the case of the 
double-curved shapes of tensile structures. 

* = +, ∙ +- = ,./∙.0              (2) 
Where +,, +- are the principal curvatures, and 2,, 2- are radii in this directions at the given 

point of the surface. 

As a consequence of this fact, the membrane structures require general orthotropic 
prestress if the isotropic one is not applicable for some reason. However, it is virtually not 
possible to define the general orthotropic prestress in equilibrium. Therefore, the task of the 
form-finding process is not only to find the shape for the given prestress but also to find the 
prestress in equilibrium itself that approximates the required values in the warp and weft 
directions, which are defined by an engineer or an architect. There is no need to mention that 
the closest possible approximation of the defined values is required since the smooth prestress 
in the membrane without concentrations, if they are not necessary, is the most desirable. 

2.1.4 Unstable Equilibrium Position of Elements Under Compression 

There is one interesting phenomenon when comparing the shape calculation of a structure 
or structural parts under tension and under compression. While the structure under tension 
takes the stable equilibrium position, the structure under compression takes the unstable 
equilibrium position (Fig. 4).  
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Fig. 4 – Stable and unstable equilibrium position 

As a result of that fact, the tensioned structures converge to the equilibrium position if the 
required prestress is physically realizable. The compressed structures suffer instabilities, 
which has to be overcome during the calculation. The well-known way of solving this 
difficulty is to inverse the compression into the tension and to invert the load acting 
on the structure. This way, used on physical models already in the ancient time, may solve 
the calculation stability for structures subjected exclusively to the compression. However, 
when the form-finding deals with a combined structure where both the parts under the tension 
and the compression are used, this method is not sufficient. Such an inversion would solve 
the required parts under the compression which would be inverted into the tension; however, 
the parts under the tension would be inverted into the compression and the same problem with 
calculation divergence remains. Therefore, a local stabilisation of the parts under 
the compression has to be designed and implemented in order to solve the phenomenon 
described above. The example of such a structure will be presented later. 

2.2 Practice 
The practical part of the Form-Finding chapter will be focused on the presentation 

of several examples of both tensioned and inflated structures. The full integration 
of a supporting structure as well as examples focused on the previously described phenomena 
will be shown. 

2.2.1 Form-Finding of Mechanically Prestressed Membrane 

Two basic shapes will be presented here: a hypar and a cone-shaped structure (Fig. 5, 
Fig. 14). The hypar membrane will be presented for two different prestress tasks. The first 
one is the isotripic prestress, where 34 =  35 = 1.00 +8/9. The force in boundary cables 
is defined as 8 = 10.00 +8. As mentioned before, this prestress can be reached exactly 
as presented bellow (Fig. 7 - Fig. 9).  

 

Fig. 5 – Initial shape of a hypar membrane structure with the x/y (warp/weft) orientation displaying (left), FE 
mesh (right) 
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Fig. 6 – Global deformations : in the form-finding 

 

Fig. 7 – Basic internal forces 34, 35 , 345 and the principal internal forces 3,, 3- 

 

Fig. 8 – Vectors of the principal internal forces 3,, 3- 

 

Fig. 9 – Normal forces 8 in the cables and beams 

The second task is the orthotropic prestress, where 34 =  2.00 +8/9, and 35 =1.00 +8/9. The force in boundary cables is defined as 8 = 15.00 +8. Such a requirement 
cannot be fulfilled exactly as it is not possible because of the physical reasons as mentioned 
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previously. A prestress field that aproximates those values as close as possible should be 
calculated (Fig. 11 - Fig. 13). 

 

Fig. 10 – Global deformations : in the form-finding 

 

 

Fig. 11 – Basic internal forces 34, 35, 345 in the membrane normal force 8 in the cables and beams 

 

Fig. 12 – Principal internal forces 3,, 3- 
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Fig. 13 – Vectors of the principal internal forces 3,, 3- 

As already mentioned, concentrations should be avoided, if possible (Fig. 7, Fig. 8, Fig. 11 
- Fig. 13). However, there are shapes that cannot avoid the high forces in some regions. This 
is the case of the high/low points of conical structures (Fig. 16 - Fig. 18). The concentrations 
near the top ring are necessary because of physical reasons. 

 

Fig. 14 – Initial shape of a conical membrane structure with the x/y (warp/weft) orientation displaying (left), 
FE mesh (right) 

 

Fig. 15 – Global deformations : in the form-finding 
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Fig. 16 – Basic internal forces 34, 35, 345 

 

 

Fig. 17 – Principal internal forces 3,, 3- 

 

Fig. 18 – Vectors of the principal internal forces 3,, 3- 
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When deciding whether the concentrations are necessary or not, the following formula 
is useful. It states the equilibrium in the node of the surface,  =/./ + =0.0 − > = 3, ∙ +, + 3- ∙ +- − > = 0            (3) 
where +,, +- are the principal curvatures, 2,, 2- are the radii in these directions, 3,, 3- are the 
forces in these directions, and > is the external load. It is obvious that the forces 
and curvatures are interconnected. Now, the case of anticlastic shapes (hypar, cone, etc.) will 
be considered, where forces in warp and weft act in opposite directions. If there is no need 
to change the curvatures of the surface, there is no need for concentrations as it is the case 
of hypar structures, for example (Fig. 7, Fig. 8, Fig. 11 - Fig. 13). If there is a need to change 
the curvatures rapidly in order to reach the required geometry, the concentrations are natural. 
This is the case of the cone structures (Fig. 16 - Fig. 18) where the tangential curvatures must 
be increased and the radial curvatures must be decreased when  reaching the top ring (as we 
can imagine, the circles that will be created when the cone is intersected by horizontal planes, 
or the curved lines that will be created when the cone is intersected by a vertical plane). 

The form-finding analysis exhibits some phenomena, such as the independence on the 
material, or the independence of the initial position of the model, for example. This 
is consistent with the statements in the theoretical part of this chapter that the shape 
in equilibrium is given by the internal forces, boundary conditions and the external load, 
if considered. The independence of the initial position will be proved by the following 
example of a hypar structure with two different initial geometries. 

 

Fig. 19 – First initial shape of the hypar membrane structure with the x/y (warp/weft) orientation displaying 
(left), FE mesh (right) 

 

Fig. 20 – Second initial shape of the hypar membrane structure with the x/y (warp/weft) orientation 
displaying (left), FE mesh (right) 
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Fig. 21 – Global deformations : in the form-finding of the first (above) and the second (below) membrane 
structure 

 

 

Fig. 22 – Vectors of the principal internal forces 3,, 3- of the first (above) and the second (below) membrane 
structure 

2.2.2 Pneumatic Structures 

There are many different inflated structures types, such as those shown below. These 
structures are usually subjected to the overpressure; however, the cases with the inside 
pressure lower than the outside pressure are also possible (Fig. 23). 

 

Fig. 23 – Pneumatic prestressed and stabilized structures (+ overpressure, − low pressure) [21] 

An example of an air supported cushion will be presented below. This cushion is a part 
of the membrane structure presented in the subchapter 2.2.3 Full Interaction with Supporting 
Structures. The input data for the form-finding process are the isotropic prestress 
of magnitude 34 =  35 = 1.00 +8/9 and the overpressure >? = 250.00 @A. 
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Fig. 24 – ETFE cushion with the axis orientation displaying (left), FE mesh of the layers (middle), FE mesh 
of the air chamber (right) 

 

Fig. 25 – Global deformations : 

 

Fig. 26 – Basic internal forces 34, 35, 345 
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Fig. 27 – Main internal forces 3,, 3- and vectors of the main internal forces 

 

Fig. 28 – Total pressure > = >B + >? (>B...atmospheric pressure + >?...overpressure) 

The presented pressure is the overall pressure, and it is a summation of the atmospheric 
pressure and the overpressure defined for the form-finding. In this example, the atmospheric 
pressure is >B = 100 000.00 @A. 

It is not a problem to create any other example of the pneumatic structure and use the 
positive or the negative overpressure without any problems. The input for the gas chamber 
can be defined as the pressure or the required volume. The pneumatic structures will be 
described by two further subchapters 3.2.3 Pneumatic Structures and 3.2.4 Analysis 
of Pneumatic Structure, presenting other possibilities and behaviour. 

2.2.3 Full Interaction with Supporting Structures 

As mentioned in the theoretical part of this chapter Form-finding, the full interaction 
of structural parts subjected to the form-finding with the parts, which are usual structural 
elements, is possible in the global nonlinear analysis. Such examples for both, the pneumatic 
and tensioned membrane structures, will be presented below. 

The first example to be presented is a greenhouse made of steel arches, ETFE cushion 
of two layers and wooden shells. The internal overpressure is >� = 250.00 @A, the prestress 
of ETFE layers is 34 =  35 = 1.00 +8/9. The greenhouse geometry is presented below (Fig. 
29, Fig. 30) as well as some results of the form-finding process (Fig. 31 - Fig. 39), which 
takes into account the entire structure. 
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Fig. 29 – Geometry of the greenhouse structure 

 

Fig. 30 – FE model of the greenhouse structure (1221 1D elements, 16508 2D elements, 20172 3D elements) 

 

Fig. 31 – Global deformations : 

 

Fig. 32 – Total pressure > = >B + >? (>B...atmospheric pressure + >?...overpressure) 
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As well as in the previous subchapter 2.2.2 Pneumatic Structures, the presented pressure 
is an overall pressure. The atmospheric pressure is >B = 100 000.00 @A here. The values 
in the figure (Fig. 32) approximate the required value > = 100 250.00 @A. The higher 
precision can be used for closer approximation of the required values. 

 

Fig. 33 – Basic internal forces 34 in the ETFE layers 

 

Fig. 34 – Basic internal forces 35 in the ETFE layers 

 

Fig. 35 – Basic internal forces 345 in the ETFE layers 

 

Fig. 36 – Basic internal forces 34 in the wooden shells 



2  FORM-FINDING
 

 

17 

 

Fig. 37 – Basic internal forces 94 in the wooden shells 

 

Fig. 38 – Normal forces 8 

 

Fig. 39 – Bending moments C5 

As presented above, the complex structure of the greenhouse can be subjected to the form-
finding analysis and at the same time, the nonlinear analysis of the supporting structure 
is performed. The resulting internal forces in the ETFE foils and wooden parts were presented 
separately since higher values of normal forces appear in the wooden shells than in the ETFE 
foil, and the mixed display would not be very clear. 

Further, the example of mechanically prestressed structure will be shown. This structure 
is composed of four conical parts, which are complemented by eight saddle shaped parts. The 
conical parts are supported by four columns fixed on the ground, the columns supporting the 
hypar parts are pin-jointed to the ground and each of them is fixed by two cables (Fig. 40, 
Fig. 41). The prestress in warp and weft is 34 =  35 = 1.00 +8/9. The stabilization 
of conical parts is used to obtain the necessary concentrations near the top rings. Only those 
positions need concentrations, which cannot be avoided. Other parts do not need 
any concentrations, so the smooth prestress is the result of the form-finding process as can be 
seen below (Fig. 43 - Fig. 48). 
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Fig. 40 – Initial shape of the membrane structure with the warp/weft orientation displaying 

 

Fig. 41 – FE mesh of the membrane structure in the initial position 

 

Fig. 42 – Global deformations : in the form-finding 

 

Fig. 43 – Basic internal forces 34 
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Fig. 44 – Basic internal forces 35 

 

Fig. 45 – Basic internal forces 345 

 

Fig. 46 – Principal internal forces 3, 

 

Fig. 47 – Principal internal forces 3- 
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Fig. 48 – Vectors of principal internal forces 3,, 3- 

The prestress values that are close to the prescribed ones can be seen when moving away 
from the top rings. 

 

Fig. 49 – Normal forces 8 

 

Fig. 50 – Bending moments C5 

The last three figures show the shape of the membrane structure after the form-finding 
process as contour lines and slopes. These values could be of use when loading the structure, 
for example in the case of the snow accumulation in the blue parts of the figure Slopes of the 
surface (Fig. 52, Fig. 53) since the surface has really low inclinations in these positions. 
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Fig. 51 – Contour lines on the surface 

 

Fig. 52 – Slopes of the surface 

 

Fig. 53 – Vectors of the slopes of the surface 

The membrane structure was created in its initial position (Fig. 40, Fig. 41) and the form-
finding process deformed the mesh into a new/equilibrium position according to the defined 
prestress. This new position is an initial state for further structural analysis. Since the loads 
are placed on the surfaces/beams and then transferred to the mesh, the difference between the 
initial position of the model and the new/real position of the mesh can be confusing 
for an engineer or architect. Because of this fact, the function of NURBS transformation was 
developed in the RFEM software. This feature transfers the model in the initial position into 
the new position according to the mesh deformation. Then, the FE mesh is regenerated and 
a new form-finding is calculated. The resulting shape will be the same as well as the prestress. 
The calculation with/without the use of the NURBS transformation makes no difference in the 
physical meaning of the task. However, it is really helpful to unify the model with 
the equilibrium position in order to facilitate the loading process. There is only one limitation: 
the surfaces to be transformed can have 3 or 4 boundary lines as it is a limitation according to 
the mathematical definition of the surface, which defines a NURBS surface for 4 boundary 
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lines. If one of them is degenerated into a node, it is also possible to have 3 boundary lines. 
This transformation was used for the presented example and the final geometry of the model 
can be seen below (Fig. 54, Fig. 55). 

 

Fig. 54 – Transformed shape of the membrane structure with the warp/weft orientation displaying (NURBS 
surfaces/lines) 

 

Fig. 55 – FE mesh of the membrane structure after the transformation (NURBS surfaces/lines) 

2.2.4 Shell Structures 

In the following, the shell structure with boundary beams (Fig. 56) will be subjected to the 
form-finding process. The required normal forces of the shell are 34 =  35 = −4.00 +8/9 
and 8 = −40.00 +8 for the beams. The self-weight is considered in the form-finding process 
as the structure is subjected to virtually pure compression under this permanent load. 

As you can see below, the values of the normal forces approximate the prescribed values, 
while bending moments and shear perpendicular to the surface are near to zero. The same can 
be observed for the beams, where the normal forces approximate the required values while the 
bending moment is near to zero. 
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Fig. 56 – Initial shape of a shell structure with the axis orientation displaying, FE mesh 

 

Fig. 57 – Two views of global deformations : in the form-finding 

 

Fig. 58 – Basic internal forces 34 

 

Fig. 59 – Basic internal forces 35 

 

Fig. 60 – Basic internal forces 345 
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Fig. 61 – Basic internal forces 94 

 

Fig. 62 – Basic internal forces 95 

 

Fig. 63 – Basic internal forces 945 

 

Fig. 64 – Basic internal forces E4 

 

Fig. 65 – Basic internal forces E5 
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Fig. 66 – Normal forces 8 

 

Fig. 67 – Bending moments C5 

2.2.5 Combined Structures 

In the previous text, the form-finding process of tensioned structures was shown for both 
mechanically prestressed membranes and pneumatic structures. Further, the possibility of the 
form-finding analysis for a structure under compression was presented, and the shell structure 
with boundary beams was shown. In the theoretical part, there is mentioned that the form-
finding process of the structures under compression is susceptible to instability as the unstable 
equilibrium position of the structure is searched for. Any deviation causes pushing the 
structure away from the steady state that should be found (Fig. 4). A well-known stabilization 
of inverting the negative input values for shells into positive forces with simultaneous load 
reversal is only applicable to compression-only constructions (Fig. 56). However, a combined 
structure (Fig. 68) with both positive and negative forces entered for the shape analysis cannot 
use this stabilization. Based on that fact, the local stabilization of the unstable part was 
developed in the RFEM software in order to find the equilibrium shape of such structures. 
However, unstable cases for such an analysis can still appear due to the complexity and the 
physical sensitivity of the task described above. 

In the following, a membrane structure with orthotropic prestress with magnitudes in warp 34 =  2.50 +8/9 and weft 35 = 2.00 +8/9 is analysed. The requirements for cables are the 
sag magnitudes F = 10.0 %, as both the force and the geometry (sag/length) can be the form-
finding input. The geometrical input was also used for the two steel arches, where the 
unchanged length is required. The structure is subjected to the form-finding process 
and compared to the structure, where the shape of steel arches is not analysed but given. The 
differences of shapes and internal forces in the beams are obvious (Fig. 70, Fig. 72 - Fig. 74). 
While the arches with given shapes are subjected to the bending moments and shear forces, 
those quantities are almost zero in the case of arches with the shape according to the form-
finding analysis. By this way, the combined structure can be optimized to be subjected axial 
forces for specific load assumption only. 
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Fig. 68 – Initial shape of the membrane structures displayed with the x/y (warp/weft) orientation and beam 
axes, the structure with (above) and without (bellow) the analysis of the shape of steel arches 

 

Fig. 69 – FE mesh of the membrane structures in the initial position, the structure with (above) and without 
(bellow) the analysis of the shape of steel arches 

 

Fig. 70 – Global deformations : during the form-finding, the structure with (above) and without (bellow) the 
analysis of the shape of steel arches 
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Fig. 71 – Vectors of the principal internal forces 3,, 3-, the structure with (above) and without (bellow) the 
analysis of the shape of steel arches 

 

Fig. 72 – Normal forces 8, the structure with (above) and without (bellow) the analysis of the shape of steel 
arches 

 

Fig. 73 – Shear forces H5, the structure with (above) and without (bellow) the analysis of the shape of steel 
arches 
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Fig. 74 – Bending moments CI, the structure with (above) and without (bellow) the analysis of the shape of 
steel arches 

The combined structures exhibit a specific phenomenon that more than one equilibrium 
position can exist for them (Fig. 75 - Fig. 77). In the example presented below, the 
requirements for the arches are to increase their lengths of ΔK = 30.0 %. Four possible 
equilibrium positions can be reached (Fig. 77), and each initial shape converges to the closest 
one. 

 

Fig. 75 – Different initial shapes of the membrane structures with the warp/weft orientation displayed 

 

Fig. 76 – FE mesh of the membrane structures in the initial position 
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Fig. 77 – Global deformations : in the form-finding 
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3 STRUCTURAL ANALYSIS 
The structural analysis of tensile structures exhibits significant nonlinearities. These are 

caused by both the geometrical changes of the structure during its loading and the non-
proportional changes of the internal forces depending on the strains of material because 
it is necessary to consider at least zero compression resistance. The basic principles of this 
analysis and FEM will be described in the first part of this chapter Structural Analysis. The 
second part will be focused on practical examples which will complete and illustrate the 
discussed topics. 

3.1 Theory 
In the following text, the fundamentals of FEM and nonlinear structural analysis 

of structures will be described. 

3.1.1 Principles of FEM Analysis 

When speaking about a general concept of the finite element method, the mathematical 
nature inheres in what is termed discretisation of the problem. Searching for unknown 
functions in domain 	 with boundary M is replaced by searching for a finite number of values 
of these functions or displacement parameters N, which can be used to formulate 
an approximate solution. The decomposition of the unknown function is closely related to the 
division of the domain 	 into subdomains 	�, briefly called finite elements, and base 
functions of these finite elements [22]. 

The basis of numerical software used in practical statics is the deformation variant of the 
FEM. This method produces well-conditioned equation systems. The core of this method lies 
in the energetic concept of the problem, generally in the variational formulation of the 
problem, where we search for an extreme of an operator � that is of additive nature. This 
means, the value for the whole system (domain) is equal to the sum of values in the 
subdomains (finite elements) of the system. This nature is characteristic especially for all 
equations defined by means of any bounded integral in the domain. Thus, as an example, the 
total potential energy � = ���� + ���� of the internal and external forces in the body 
is minimal just for the real state of the body (N, ), '), in accordance with the Lagrange 
variational principle. In this particular situation, the FEM equation can be obtained through 
the differentiation of the total potential energy � with respect to the individual deformation 
parameters ,, -, … , Q, … , R, where 8 is the number of degrees of freedom. Here, the m-th 
equations can be written as [22]. 

����S = �������S + �������S = *Q − TQ = * (,,R)  (R,,) − TQ = 0         (4) 
We can use the addition theorem as the energy is a scalar, and the energy derivations. The 

m-th equation parts can be rewritten as follows. 

�����
��S = � ∑ �����W�X/��S = ∑ ������

��S
YZ[, = *Q = * (,,R)  (R,,)          (5) 

�����
��S = � ∑ �����W�X/��S = ∑ ������

��S
YZ[, = −TQ            (6) 

The great advantage of this method lies in the fact, that there is no problem to combine 
elements of different dimensions. In one system, there can be beams, shells and 3D elements 
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combined. Each element is considered in the global stiffness matrix \ by its contribution 
of the \], and the vector of nodal forces ^ is composed of the elements contributions ^]. The 
global stiffness matrix is assembled by merging the elements stiffness matrixes \] into the 
global stiffness matrix according to the global code numbers, in other words, by the explicit 
position of the element contributions in the whole structure. 

���� = �����
�� + �����

�� = * − T = * (R,R)  (R,,) − T (R,,) = 0          (7) 
This formula can be rewritten into the well-known form * = T                (8) 

or in the matrix notation * (R,R)  (R,,)= T (R,,)              (9) 
3.1.2 Nonlinear Analysis 

Since the material used for tensile structures is characterized by its load resistance 
practically only in tension, these structures have to change their shapes significantly to find 
the equilibrium positions. Such a shape change has a great influence on the stiffness *() 
and the force T() redistribution, and this fact has to be considered in the structural analysis. 
This behaviour is well known as a geometric nonlinearity. Since the material itself does not 
withstand the compression, the stress-strain diagram exhibits the nonlinear nature. This 
Material nonlinearity has to be considered as well. The formula mentioned above will obtain 
its dependency on the deformation. *() = T()              (10) 

The stiffness matrix is composed of components as written in following formula, *() = *_()+*`()            (11) 
where *_() is the constitutive stiffness matrix and *`() is the geometric stiffness 

matrix. *_() depends on the constitutive low, i.e. the stress-strain diagram, and on the 
change of the spatial shape of the structure as the changes of the structural parts size 
and orientation leads to the changes of their spatial constitutive stiffness. For membrane 
and cable elements, *_() represents the in-plane stiffness (although it represents the general 
stiffness for a general element). *`() can also be called the stress stiffness matrix, which 
is dependent on the stress state in the elements. For membrane and cable elements, *`() 
represents the out-of-plane stiffness and it helps to make the tensile structures solvable, 
as they would tend to singularities without this term. 

3.1.3 Geometric Nonlinearity 

At the beginning of this part, it is necessary to define two essential configurations of the 
body. First, the reference configuration that represents the initial state of the structure, 
and second, the current configuration that represents the state of the structure after the 
deformation. 
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Fig. 78 – Reference (X,Ω0) and the current (x,Ω) configuration of the body 

The state of the body in the reference configuration �� is described by the 2nd Piola-
Kirchhoff stress � and the Green-Lagrange strain � while the state of the body in actual 
configuration is described by the Cauchy stress $ and the Euler-Almansi strain %, which are 
intuitive measures as they are actually the description of the state we observe in reality. These 
stresses and strains form the energetically conjugated couples, and we can describe the 
derivatives of the total potential energy as follows. 

���� = �����
�� + �����

�� = � � ∶ �� �� � − � " ∙ � �� � = � $ ∶ �% � � − � " ∙ � � � = 0(12) 
When the structure is calculated, its physical description (the stiffness matrix  * and the vector of forces T) is created on the initial (current) configuration. After the system 

of equations is solved, the structure takes a new (actual) configuration that can be described as a = b + . 

If the deformations  are small enough, the differences between those configurations can 
be neglected and we assume the initial and new configurations as the same. Thus, we do not 
recalculate the strains and stresses according to the new configuration but assume that $ ≈ � 
and % ≈ �. This approximation is precise enough for the most of the engineering tasks 
and is well known as the geometrically linear analysis, the small deformation analysis, or the 
first order analysis.  

However, the analysis described above cannot be sufficient for large deformations. The 
considerable differences between the initial and the new configurations (which can be 
described by deformation gradient d = 
a 
b⁄ ) require recalculation of the stress state in the 
structure according to the new geometry. The stress state in the actual configuration $ cannot 
be approximated by the stress state calculated in consideration of the initial configuration � 
anymore. Whenever the structure undergoes the deformation, a new stress/strain state 
is recalculated according to the new configuration, and a new stiffness matrix * and vector 
of nodal forces T is assembled. This new configuration of the first iteration becomes the initial 
configuration of the second iteration. After solving the second iteration, the new configuration 
for this iteration is obtained, which is the initial configuration of the third iteration. This 
process continues until the convergence criteria are reached. This process is well known as the 
geometrically nonlinear analysis, the large deformation analysis, or the third order analysis. 

The large deformation analysis is performed by the sequence of linear steps/iterations, 
which approximate the nonlinear nature of the structure response *() = T(). Both parts 
of the global stiffness matrix *() = *_()+*`() as well as the nodal force vector T() 
are changing during the iterations. However, each step is considered as linear. This solving 
of the nonlinear equation system by the sequence of the linear equation system can be 
performed using many iterative methods., The Newton-Raphson method is the most common 
one. 
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Fig. 79 – Diagram of the Newton-Raphson iterative method a) and its three modifications b),c),d) 

3.1.4 Material Nonlinearity 

As the material resistance of membrane or cable elements in the structure is considered 
to withstand only in tension, these structures are also subjected to significant material 
nonlinearity. The material behaviour in the tensile part of the stress-strain diagram can be 
approximated by the linear elastic, non-linear elastic, elastic-plastic or even general material 
response (Fig. 80). 

 

Fig. 80 – Elastic, non-linear elastic, elastic-plastic and general material models 

Regardless the particular material model, the stress state of the membrane or cable element 
has to satisfy that only the tension occurs. For the membrane, the stress state of each element 
($4, $5, f45) has to be transformed into the main directions ($,, $-) to eliminate the possible 
occurrence of the compression. This transformation can be performed by the Mohr circle 
analogy, or by the eigenvalue problem. 
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Fig. 81 – Stress state: stresses in the planar axis direction, main stresses in the main directions ([19] with 
modifications) 

 

Fig. 82 – Mohr circle 

$,,- = g`�h`ij- ± lg`�m`ij0
- + f45-          (13) 

%n($ − $�o) = 0            (14) 
The material nonlinearity influences the global stiffness matrix *(), which is therefore 

nonlinear as well. The influence on the material part of the global stiffness matrix *_() 
is direct while the influence on the geometric part *`() is indirect. However, the nonlinear 
material response has nonlinear influence on the stress state, which affects this geometric part 
of the global stiffness matrix (if the geometric nonlinearity is considered in the analysis). 

3.2 Practice 
This part of the Structural Analysis chapter will be focused on practical demonstrations 

of the calculation of mechanically prestressed membrane structures as well as the calculation 
of pneumatic structures. 

3.2.1 Analysis of Membrane Structure 

The first structure to be presented has a hypar shape. The horizontal distance between the 
low points as well as between the high points is 10.0 9. The material used for the membrane 
is the woven fabric, whose mechanical properties are approximated by the orthotropic linear 
elastic material model with consequent characteristics. 

�4 = 1000.0 pRQ , �5 = 800.0 pRQ , r45 = 100.0 pRQ , s45 = 0.10, s54 = 0.08     (15) 
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The constitutive matrix of this material is: 

t = u t,,   t,- t,vt-- t-vFw9. tvv
x = ut4444   t4455 t4445t5555 t5545Fw9. t4545

x = y1008.06   80.65      0.00806.45      0.00Fw9. 100.00{ pRQ
               (16) 

The high points of the membrane structure are supported by the columns fixed by cables, 
and the low pints are supported by single cables as displayed below (Fig. 83). The triangle FE 
were used for the membrane since they are not as susceptible to deplanation as quadrangles. 

 

Fig. 83 – Hypar membrane structure with the x/y (warp/weft) orientation displayed, FE mesh 

The form-finding results are used as an initial equilibrium state for the further analysis. The 
isotropic prestress 1.00 +8/9 is used for the membrane, 10.00 +8 is used as a prestress of 
the boundary cables (Fig. 84). 

 

 

Fig. 84 – The membrane prestress as the result of form-finding 
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For the structure, eight load cases are considered: self-weight, four different wind loads, 
and three different snow loads (Fig. 88 - Fig. 91). For the wind load, the maximal dynamic 
pressure is "Y(|) = 0.61 +8/9, and tY values are used according to Appendix A1 
of European Design Guide [35] (Fig. 86, Fig. 87). The characteristic value of the snow load 
is Fp = 0.80 +8/9. 

 

Fig. 85 – Definition of load cases 

 

Fig. 86 – tY zones definition on the hypar structure [35] 

 

Fig. 87 – External tY values for the hypar structure [35] 

 

Fig. 88 – Load cases LC2 (Wind A-) and LC3 (Wind A+) 
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Fig. 89 – Load cases LC4 (Wind B-) and LC5 (Wind B+) 

 

Fig. 90 – Load case LC6 (Snow full) 

 

Fig. 91 – Load cases LC7 (Snow 1/2) and LC8 (Snow 2/2) 



3  STRUCTURAL ANALYSIS
 

 

38 

The loads described above belong to three different Actions (Fig. 92). For the consequent 
structural analysis, the combination expressions for Ultimate Limit State (ULS) 
and Servicability Limit State (SLS) are used (Fig. 93). The combinations of Action types 
(Fig. 94) as well as the final Load combinations (Fig. 95) are generated automatically. For 
this structure, there are 32 ULS combinations and 32 SLS combinations to be calculated. 

 

Fig. 92 – Actions (types of loads) 

 

Fig. 93 – Combination Expressions (ULS and SLS) 

 

Fig. 94 – Action types combinations (ULS and SLS) 

 

Fig. 95 – Load combinations (ULS and SLS) 

If the following, the results of the combination CO18 with the maximal snow load 
(1.35 ∙ }t1 + 1.50 ∙ }t6) will be presented as an example (Fig. 96 - Fig. 101). The envelope 
of the results of all ULS combinations will be presented as well (Fig. 102 - Fig. 107). First, 
the deformation will be presented, then the internal forces, and finally the contour lines 
and slopes of the membrane surface after the deformation, as an information for estimation 
of ponding occurrence. 
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Fig. 96 – Global deformations : (CO18) 

 

 

Fig. 97 – Basic internal forces 34, 35, 345 in the membrane, normal force 8 in cables and beams (CO18) 

 

Fig. 98 – Main internal forces 3,, 3- (CO18) 
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Fig. 99 – Vectors of main internal forces 3,, 3- (CO18) 

 

Fig. 100 – Contour lines on the surface after deformation (CO18) 

 

Fig. 101 – Slopes of the surface after deformation (CO18) 

The envelope of the results of all ULS considers the critical value in each position on the 
membrane, therefore the displayed values are not as smooth as the results of the particular 
load cases in general (Fig. 104, Fig. 105). 

 

Fig. 102 – The envelope of the maximal positive and negative deformations : (ULS) 
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Fig. 103 – The envelope of the basic internal forces 34, 35 , 345 in the membrane, the envelope of the normal 
forces 8 in cables and beams (ULS) 

 

Fig. 104 – The envelope of the main internal forces 3,, 3- (ULS) 

 

Fig. 105 – The envelope of the vectors of the main internal forces 3,, 3- (ULS) 
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Fig. 106 – The envelope of the contour lines on the surface after the deformation (ULS) 

 

Fig. 107 – The envelope of the maximal slopes of the surface after the deformation (ULS) 

3.2.2 Warp/Weft Orientation 

The structure presented above will be further analysed with respect to the influence of the 
warp/weft orientation setting. The same geometry, construction elements and materials 
are used. The only difference between these two examples is the change of the axis (fibre) 
orientation (Fig. 108). The nonlinear analysis will be performed for the load combination 
CO18. 

 

Fig. 108 – Axes (fibres) orientation of Model 1 and Model 2 
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Fig. 109 – Global deformations : of Model 1 and Model 2 (CO18) 

 

Fig. 110 – Main internal forces 3, of Model 1 and Model 2 (CO18) 

 

Fig. 111 – Vectors of main internal forces 3,, 3- of Model 1 and Model 2 (CO18) 

 

Fig. 112 – Shear forces 345 of Model 1 and Model 2 (CO18) 
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Fig. 113 – Shear deformations ~45 of Model 1 and Model 2 (CO18) 

The orthotropy orientation has a considerable influence on the structural behaviour. The 
maximal deformation of Model 1 is :QB4,_, = 204.6 99, and the maximal deformation 
of Model 2 is :QB4,_- = 348.0 99. Even though the maximal principal forces of Model 2 
(3,,_- = 9.13 +8/9 ) are of lower value than the maximal principal forces of Model 1 
(3,,_, = 10.41 +8/9), the disadvantage of the Model 2 axis orientation can 
be seen in comparison with the shear forces/deformations, where the force values are 345,_, = 1.31 +8/9 and 345,_- = 4.37 +8/9, and the shear deformation values are ~45,_, = 1.31 % and ~45,_, = 4.37 %. Such a great shear deformation may cause 
undesirable wrinkles. 

3.2.3 Pneumatic Structures 

The following picture shows the selection of the pneumatic structures according to the air 
management as they can be with or without air supply (Fig. 114). Different numbers 
of layers/chambers are also an option to be designed by an engineer (Fig. 114, Fig. 115). 

 

Fig. 114 – Air management of pneumatic stabilized and prestressed cushions (on the left) and air behaviour 
of enclosed cushions (on the right): a) 2-layer system, b) 3-layer system, flat middle layer (mechanically 

prestressed) and c) 3-layer system, curved middle layer (pneumatically prestressed) [21] 
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In the structural analysis, it is possible to consider different gas modes, which simulate the 
desired structural response during the loading process. Generally, there are two basic types 
of gas behaviour. The first one is the gas low. 

Y∙�� = +�3F.             (17) 
This assumption is appropriate for enclosed cushions or for fast processes acting on air 

supplied structures, if the compressor is not able to quickly change the amount of the air 
inside the cushion. The gas low is usually considered as an isothermal process. > ∙ H = +�3F.              (18) 

The change of the temperature that has an influence on enclosed cushions during the 
seasons can be considered in the calculation by using the temperature load. 

The second general option is the simulation of the air supply/compressor. In this case, you 
can consider different requirements, such as resulting overpressure, overpressure increment, 
resulting volume, or volume increment. 

 

Fig. 115 – Common formation of ETFE layers in a foil cushions [23] 

The collapse of the cushion can occur (Fig. 116). This situation can be simulated by the 
options described above when the resulting overpressure or the resulting volume is set to zero.  

 

Fig. 116 – The function of the cushion drainage: a) cushion with regular internal pressure, b) breakdown of 
the operating system, the collected water is emptied through the drainage pipe [23] 

Note: The software tool for calculating the behaviour described above is currently in the 
development process, and will be included in the RFEM software in the near future. Below, 
the analysis of a pneumatic structure performed in this tool is presented. 
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3.2.4 Analysis of Pneumatic Structure 

The second structure to be presented is a greenhouse made as a pneumatic structure. The 
inflated cushions consist of two ETFE layers with a thickness n = 300.0 �9 (light-blue parts 
in Fig. 117, Fig. 118). The linear isotropic material model is considered for this material, 
where consequent characteristics are used. � = 900.0 C@A, r = 310.0 C@A, s = 0.452         (19) 

The constitutive matrix of this material is: 

t = u t,,   t,- t,vt-- t-vFw9. tvv
x = ut4444   t4455 t4445t5555 t5545Fw9. t4545

x = y339.18 153.18   0.00339.18   0.00Fw9. 93.00{ pRQ     (20) 
The cushions are supported by steel arches (steel S355, Fig. 117, Fig. 118). The 

composition of the steel and the foil is completed by wooden parts (glulam timber GL 28h; 
brown parts in Fig. 117, Fig. 118). The length of the structure is K ≈ 35 9, the width and high 
are � ≈ ℎ ≈ 10 9. 

The form-finding was performed with the isotropic prestress 34 = 35 = 1.00 +8/9 of the 
ETFE foil layers and the internal overpressure >? = 250.0 @A of the gas in chambers. The 
resulting shape is the initial equilibrium state for the nonlinear structural analysis. 

 

Fig. 117 – Geometry of the greenhouse structure 

 

Fig. 118 – The FE model of the greenhouse structure (1221 1D elements, 16508 2D elements, 20172 3D 
elements) 
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The form-finding was performed for the resulting overpressure requirement with the value 
described above. The structural analysis applies different combinations with different gas 
behaviour requirements. As an example, the analysis of the structure subjected to the load 
combination t�2 (t�2 = 1.35 ∙ }t1 + 1.50 ∙ }t5, where }t1 is the self-weight and }t5 
is the wind load) is presented, considering the isothermal gas low. For estimation of the wind 
load, the following tY values redistribution is used (Fig. 119). The load of t�2 is presented 
below (Fig. 120, Fig. 121). 

 

Fig. 119 – Recommended values of the external pressure coefficients tY for vault roofs with the rectangular 
ground plan (EN 1991-1-4) 

 

Fig. 120 – Load combination t�2 = 1.35 ∙ }t1 + 1.50 ∙ }t5 

 

Fig. 121 – Load combination t�2 = 1.35 ∙ }t1 + 1.50 ∙ }t5 
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In particular, results of the nonlinear structural analysis are presented. First, the global 
deformations (Fig. 122) and second, the resulting pressure (Fig. 123). It is important to note 
that this pressure is the absolute pressure, not an overpressure. The atmospheric (outside) 
pressure was considered as >B = 100 000.0@A. Most of the cushions are subjected to the 
overpressure after the analysis; however, the dark-blue parts are subjected to the inside 
pressure that is lower than the outside pressure. The reason for this unusual behaviour is that 
the lower layer is double-curved and therefore, it does not move upwards without 
accumulating internal forces. This situation may occur when the wind lifts up the outer layer 
and the lower layer does not significantly deform  (Fig. 123). 

 

Fig. 122 – Global deformations : (CO2) 

 

Fig. 123 – Total pressure (atmospheric pressure + change of pressure) 

Further, the main internal forces are presented (Fig. 124 - Fig. 127) separately for the 
ETFE layers and the wooden shells as the magnitude is very different and the common result 
would not be very clear. Finally, the bending moments in the wooden shell (Fig. 128), the 
normal force and the bending moments in steel beams (Fig. 129 - Fig. 130) are shown. 

 

Fig. 124 – Main internal forces 3, in ETFE layers (CO2) 
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Fig. 125 – Main internal forces 3- in ETFE layers (CO2) 

 

Fig. 126 – Vectors of the main internal forces 3,, 3- in ETFE layers (CO2) 

 

Fig. 127 – Main internal forces 3- in wooden shells (CO2) 

 

Fig. 128 – Bending moments 94 in wooden shells (CO2) 
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Fig. 129 – Normal forces 8 (CO2) 

 

Fig. 130 – Bending moments C5 (CO2) 
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4 GENERATION OF CUTTING PATTERNS 
In addition to the form-finding process, the cutting pattern generation is inherently 

connected to the membrane structure design, where the goal is to divide the spatial shape into 
a set of patterns, and to find their closest equivalent in the plane by the flattening. This is the 
consequence of the double curvature of membrane shapes that cannot be flattened without 
compromises and thus, the curved patterns have to be approximated by flat patterns. There are 
many methods developed for the flattening process, where some of them understand this 
process as a mathematical task while the other consider it as a physical process. The 
theoretical part of the Generation of Cutting Patterns chapter describes the various 
approaches from both groups. The second part will be focused on the presentation of several 
examples calculated by the developed tool. 

4.1 Theory 
The generation process of cutting patterns can be divided into two main parts. First, 

it is the separation of a spatial surface into a set of spatial patterns, and second, flattening 
these spatial patterns into the patterns in the plane. While the first task does not cause any 
distortions as there is no change of the shape, the second task causes unavoidable distortions 
as the flat pattern is always the approximation of the spatial one, which was double-curved. 
However, although the separation does not cause any distortions (pattern area, boundary lines 
length, etc.) because the shape does not change, choosing a specific cutting line has 
considerable influence on the quality of the resulting pattern. This quality can be understood 
in both the physical and the aesthetic meaning because the cutting lines define the seam lines 
layout whose appearance is an important architectural element of the whole structure 
(Fig. 131). The physical impact of the cutting lines on the patterns quality is in cutting 
differently curved spatial patterns and therefore, in the measure of the necessary distortion 
during the flattening process as a result. 

 

Fig. 131 – Aesthetic aspect of cutting lines (Center Chodov, Praha, Czech Republic, 
http://archtex.cz/en/realizace.html) 

4.1.1 Cutting Lines 

Generally, any line can be used to split the surface into smaller parts as will be shown later. 
However, as described above, the cutting line shape has a considerable influence on the 
resulting pattern quality. There are two different line types used broadly: the geodesic and the 
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planar cuts. However, the geodesic cut type is usually the preferred one [19, 24, 25]. The 
reason for this preference is the relatively straight pattern after flattening, as shown in the 
practical part of this chapter. This leads to the minimisation of both the material wastage 
and the distortion. 

The geodesic line can be described as a straight line in the tangential direction of a curved 
surface in any point. It is often considered as the shortest connection between two points 
on the curved surface. This is partially the truth because the shortest possible connection 
between two nodes across the curved surface is always the geodesic line. However, in order 
to describe the general situation rigorously, more geodesic lines can exist as shown below 
(Fig. 132). These lines represent the global and the local minimum of the distance between 
two points. However, this case is not frequent in the membrane structure. 

 

Fig. 132 – Possible existence of several geodesic lines [19] 

Since the geodesic line is the straight line in the tangential direction of the curved surface, 
this line is relatively straight after flattening double-curved surfaces (non-zero Gaussian 
curvature) and absolutely straight when the Gaussian curvature is zero (e.g. cone 
and cylinder). 

The way how to create geodesic line over the FE mesh is displayed below (Fig. 133), 
where two points are defined to be connected (left), the geodesic line on the spatial shape 
is found (middle), and the flattening process is performed (right). 

 

Fig. 133 – The geodesic line on the FE mesh before and after flattening ([19] with modifications) 

4.1.2 Flattening Methods 

As already mentioned, many methods were proposed for the flattening process, where the 
goal is to find the planar approximation of the spatial patterns. Some of them consider the 
process as a mathematical task while the other methods see it as a physical task. The different 
approaches will be described below, starting from the simplified methods and continuing 
to the general methods [19, 20, 26-34]. 
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a) Simple Triangulation Method 

The first flattening method to be presented is the simple triangulation technique. This 
method is based on modifying the FE mesh that was used for both the form-finding and the 
structural analysis. This modification is performed in such a way that the surface is obtained, 
which can be simply developed into plain by rotating the elements according to their edges 
(Fig. 134). It is obvious that the double curvature of the pattern is absolutely lost by such 
a modification. This geometric approach for the flattening process is characterised by simple 
implementation and fast calculation but also by low precision. While the FE model can 
be divided into a finer mesh for the form-finding and structural analysis purposes in order 
to reach more accurate interpretation of the spatial structure, this will not lead to the 
improvement of the patterns as the loss of the double curvature is inevitable disadvantage 
of this method. 

 

Fig. 134 – The basis of the simple triangulation method (from the left: the spatial shape, the FE mesh of the 
spatial model used for form-finding and structural analysis purposes, the modified mesh for flattening purposes, 

the flattened pattern) [19] 

b) Mathematical Squashing by Least Square Approach 

The second method presented in this thesis is also based on the mathematical approach; 
however, there is no modification of the FE mesh before the flattening process. This method 
is searching for the most precise geometric interpretation of the spatial mesh in the plane 
by minimizing the squares of the defined parameter [29]. 

d(a, w) = ,- E�@E            ���� 9�3.            (21) 
Whered is the objective function to be minimized, E is the vector residuals and @ is the 

matrix of weights >. 

The residuals between the 3D and 2D shape can be defined as a difference of the edge 
lengths, changes of angles or element areas as defined by the following equations, or they can 
be even combined with the different weights >. E = K-�  − Kv�               (22) E = �-� − �v�              (23) E = �-� − �v�              (24) 

c) Physical Squashing by Least Square Approach 

The most advanced methods derived for the flattening process are based on the physical 
interpretation of this task. These methods does not only allow for the consideration of the 
shape change due to pressing the pattern into the plane, but also the material characteristics. 
The material can be defined as isotropic or orthotropic without any problem. One of the 
alternatives is to minimize the squares of the stress differences as presented by the equation. 
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d(a, w) = d(a-�) = ,- � ($v�→-� + $Y.Z) ∶ ($v�→-� + $Y.Z)�-� �0�
           ���� 9�3.     (25) 

Where d is the objective function to be minimized, a-� is the Euler coordinates, $v�→-� +$Y.Z is the Cauchy stress caused by flattening and prestress, �-� is the actual configuration of 
the pattern in 2D. 

d) Physical Squashing with Energy Minimization 

The second physical access represents the most natural way of flattening that minimize the 
potential energy of the pattern caused by its pressing into the plane. This method follows the 
essential principle of the FE analysis as it is finding the equilibrium shape of the planar 
pattern in accordance with the Lagrange variational principle. 

� = ��=� = �v�→-��=� + �Y.Z�=�            (26) 
Since no external forces are present here, the equilibrium shape of the pattern is given 

by the minimization of the internal potential energy, and its derivation is described 
by following equation. 

���� = �����
�� = �(���→0���� h�W����� )�� = � (�v�→-� + �Y.Z) ∶ ��v�→-� �v� ��� =          � ($v�→-� + $Y.Z) ∶ �%v�→-� �-� �0� = 0        (27) 

Here, the spatial patterns cut out of the membranes shape after the form-finding are 
considered as the initial (reference) configuration �v� = ��, and the unknown planar patterns 
are considered as the current (actual) configuration �-� = � (Fig. 135). �v�→-� + �Y.Z 
and $v�→-� + $Y.Z are the 2nd

 Piola-Kirchhoff stresses and the Cauchy stresses caused by the 
flattening and the prestress of the membrane. ��v�→-� and �%v�→-� are derivatives of the 
Green-Lagrange and Euler-Almansi strains caused by the flattening as well. 

The prestressed spatial shape is the actual configuration for the form-finding but the 
reference configuration for the flattening process. Therefore, the final prestress represented 
by the Cauchy stresses after the form-finding is identified with the 2nd Piola-Kirchhoff 
stresses here. 

 

Fig. 135 – The flattening process ([20] with modifications) 

It is also possible to combine the different methods in order to find the optimal solution 
for the implementation into the software. The mathematical squashing can be used to estimate 
the preliminary planar shape as this method is really fast, and the physical analysis can then 
be performed in order to improve the initial estimation and to reach the energetically 
optimized patterns with regard to the material used. This combination provides advantages 
of both methods, i.e. the increased speed compared to the pure physical access while the same 
precision is preserved. 
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4.1.3 Construction Requirements 

In addition to the above-described optimization of the pattern from the physical point 
of view, there are the other requirements to be satisfied, specifically the construction 
requirements, which are necessary due to manufacturing. The most common requirement 
is to guarantee the same lengths of the adjacent pattern edges for welding (Fig. 136). Another 
requirement is the utilization of the specific compensation for the boundary line, also known 
as decompensation. 

 

Fig. 136 – Ensuring the same lengths of the boundary lines of the adjacent patterns ([20] with modifications) 

This restriction can be implemented into the flattening process without any problems. 
However, if we consider the energetic optimization of the pattern as the selected method, the 
reached equilibrium shape will have a higher potential energy with these restrictions than 
without them. However, this is an inevitable and natural consequence of inserting the required 
restrictions for any flattening method type. 

4.1.4 Compensation 

The compensation is the strain caused by prestress, and it usually leads to shortening the 
pattern, although it is also possible to elongate it, as you can see in the figure below (Fig. 
138). The compensation values are investigated by the biaxial testing, taking into 
consideration the specific load diagram where the loading is repeated several times in both 
directions. The first loading cycle is strongly nonlinear in the case of the woven fabric. The 
achieved values are used for generating the patterns. 

 

Fig. 137 – Biaxial test: load history [35] 
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Fig. 138 – Biaxial test: measured strains [35] 

It is usual that the compensation is applied after the flattening. However, in order to reach 
the best solution, both the flattening process and the compensation should be generally 
performed in one optimization process. This process can be performed using the advanced 
flattening methods. 

The woven fabric is usually approximated by the linear orthotropic material model for the 
structural analysis according to the values obtained from the testing or production sheet. Such 
a material can be used in the generation of cutting patterns, where the compensation values 
obtained are considered at the same time the flattening is performed. 

The compensation is used as strain values since the application of stresses would require 
the precise material model. As you can see in the picture below (Fig. 139), the orthotropic 
plastic material model is generally the most appropriate interpretation of the woven fabric. 

 

Fig. 139 – Biaxial test: stress-strains diagram [36] 

If using such a material model, the automatic compensation is possible. However, it would 
be necessary to define the prestress value as well as the stress under the load to be able to find 
the magnitude of the strain under prestress after the plastification as this is the required value 
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to guarantee the designed prestress after the loading cycles. To demonstrate this statement, 
the green line was drawn in the enclosed figure (Fig. 139). We need to satisfy the prestress 2.4 +8/9 in the warp direction after the loading cycles. However, as you can see, the 
prestress will reach higher values during the erection process because the prestress 
of 20.5 +8/9 is equivalent to the same strain before the plastification caused by loading 
cycles, which will follow. This is already considered in the compensation values, which 
are obtained by the diagrams presented above (Fig. 137, Fig. 138). 

To develop the automatic compensation, further investigation and research are needed. It is 
also necessary to have wide experience with experiments, which will verify the algorithms 
to be implemented. 

4.2 Practice 
In the practical part of this chapter, several examples are presented, using various cutting 

lines. First, the impact of the cutting lines to the planar patterns will be presented, and second, 
the evaluation of the pattern quality will be discussed. Finally, the complex structure will 
be divided into patterns. The pattern quality mentioned here is not considered in the 
theoretical meaning but in the practical one since even the most precise flattening method 
is always working with the given spatial pattern. If this one is too wide and curved, too high 
distortions are necessary, which make the patterns not usable from the practical point of view 
even though it is a good planar interpretation of the spatial pattern from the theoretical point 
of view. 

On the basis of the advantages described above, the combination of two flattening 
methods, i.e. the mathematical squashing and the distortion energy minimization, were 
implemented into the RF-CUTTING-PATTERN add-on module of the RFEM software. 
Displaying results for pattern evaluation is currently under development and will be released 
soon. 

4.2.1 Utilization of Different Cutting Lines 

The utilization of different cutting lines was mentioned in the theoretical part and it will be 
presented now in a practical example. Three types of lines are used for the hypar structure: 
arbitrary lines, geodesic lines, and planar sections (Fig. 140, Fig. 141). 

 

Fig. 140 – Using different cutting lines to split the membrane; arbitrary lines (left), geodesic lines (right top) 
and planar sections (right bellow) 
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Fig. 141 – Using different cutting lines to split the membrane; arbitrary lines (left), geodesic lines (right top) 
and planar sections (right bellow) 

 

Fig. 142 – Resulting patterns using the arbitrary lines (top), geodesic lines (middle) and planar sections 
(bellow) 

The well-known experience is that the geodesic lines produce straight patterns while 
minimizing the material wastage. On the other hand, planar sections produce patterns with 
more or less curved shape, usually called banana shapes. Such a shape leads to a higher 
material waste. The arbitrary lines produce really strangely shaped patterns as illustrated 
in the figure above (Fig. 142). 

4.2.2 Evaluation of Pattern Quality 

The patterns quality will be evaluated using the results of the nonlinear analysis, which 
is used to minimise the potential energy of flattened patterns. The presented patterns will 
be calculated on rhombus-shaped cushions consisting of two ETFE layers (Fig. 143) with the 
thickness n = 300.0 �9, even though the thickness has no impact on the strain due to the 
flattening process. The longer diagonal is A = 10.0 9, the shorter one is � = 4.0 9. The 
linear isotropic material model is considered for this material, with the properties described 
below. � = 900.0 C@A, r = 310.0 C@A, s = 0.452         (28) 
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The constitutive matrix of such a material is: 

t = u t,,   t,- t,vt-- t-vFw9. tvv
x = ut4444   t4455 t4445t5555 t5545Fw9. t4545

x = y339.18 153.18   0.00339.18   0.00Fw9 93.00{ pRQ     (29) 
The form-finding process was performed with the isotropic prestress 34 = 35 =0.40 +8/9 of the ETFE foil layers and the internal overpressure >? = 250.0 @A of the gas 

in chambers. The final shape (Fig. 143) will be flattened; in this case, the first cushion is not 
divided, the second one is divided into four patterns, and the third one is divided into eight 
patterns. 

As already mentioned, the pattern quality to be presented is considered from the practical 
point of view, not from the theoretical one. From the theoretical point of view, there 
is no difference in the quality because all of the presented patterns are the shapes of minimal 
potential energy. However, the bigger patterns need higher distortion while pressing down. 
This distortion is described by the strains caused by this process (Fig. 145 - Fig. 150). 
However, these proportional strains will influence the stress state of the cushions in the 
construction process where they will have the opposite values as the erection process 
is inverse to the flattening. When too high values of the strain occur, the prestress can be 
overcome and wrinkles appear as a result, or the opposite situation can happen as too high 
stresses arise. From the practical point of view, the patterns have a higher quality when the 
strain caused by flattening is smaller. The smaller is the pattern, the smaller strain is reached. 
However, it is not possible to divide the structure into too many too small patterns so it is 
necessary to opt for a compromise in order to find a good solution that will satisfy the 
requirement of a well-prestressed structure. 

 

Fig. 143 – ETFE cushions with the x/y (warp/weft) orientation displaying, FE mesh 

 

Fig. 144 – Spatial patterns (3D) with the information that the mathematical squashing was performed 
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Fig. 145 – Strains �4 in 2D patterns caused by flattening (displayed on spatial (3D) patterns for having 
compact model of all patterns) 

 

Fig. 146 – Strains �5 in 2D patterns caused by flattening 

 

Fig. 147 – Strains �45 in 2D patterns caused by flattening 
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Fig. 148 – Strains �, in 2D patterns caused by flattening 

 

Fig. 149 – Strains �- in 2D patterns caused by flattening 

 

Fig. 150 – Vectors of strains �,, �- in 2D patterns caused by flattening 
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Fig. 151 – Flattened (2D) patterns with the information that the distortion energy minimization was 
performed 

The purple edges of the patterns suggest that the preliminary shapes were calculated using 
the mathematical squashing (Fig. 144) while the blue edges suggest that the nonlinear 
analysis was performed to find the patterns by using the distortion energy minimization 
(Fig. 145 - Fig. 151). Planar patterns can be displayed in a dialogue box (Fig. 151) 
or exported to draw the structural details. The strain is displayed on the user-defined structure 
in the main software's environment. It is also possible to display the stress changes due to the 
flattening. As mentioned above, strain/stress will have inverse values in the erection process. 
When considering the big pattern, the compression can be observed in the middle and the 
tension at the edges during the flattening process while the overstress will appear in the 
middle and the low stresses at the edges in the erection process. 

4.2.3 Structural Requirement 

The last structure presented here is a composition of four cone-shaped membranes (or five, 
if counted the small one in the middle) and eight hypar shaped membranes. The diameters 
of the cone membranes are approximately  ≈ 20.0 9, the heights are ℎ = 8.0 9. The 
ground plan dimensions of the hypar membranes are approximately A ≈ � ≈ 10.0 9 and the 
heights are ℎ = 3.0 9. The entire system is subjected to the form-finding process 
and afterwards, patterns are calculated on the resulting shape. The widths of the patterns at the 
bottom of the cones are approximately � ≈ 2.0 9, to have an overview of the structure 
dimensions. 

Again, the first round of the cutting pattern generation process is the mathematical 
squashing, the second one is the distortion energy minimization. In the following, some 
details of the input data for this analysis will be described. The input data can be entered 
in the dialogue box in four categories: Compensation, Compensation by Boundary Line, 
Allowances, Line Type (Fig. 152).The compensation can be defined as a constant or linear 
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value in the warp/weft directions in the second tab of the dialogue box. The specific 
compensation for the boundary lines can be defined in third tab of the dialog box, if required. 
In the fourth tab, it is possible to define the allowances for the welding/boundary lines as well 
as the individual allowances for the selected line, if required. In the last tab, the line category 
is specified, and there are two possible types: boundary line and welding line. The default 
setting is that boundary lines are the lines that do not touch any other pattern or patterns (lines 
a/c in Fig. 152). On the other hand, welding lines are the lines that do touch the other pattern 
or patterns (since more than two patterns can meet in one line although this is not common) 
(lines b/d in Fig. 152). It is guaranteed that the welding lines of the neighbouring patterns 
have the same length after the calculation. If it is required to freely flatten the patterns without 
any interaction between them, it is possible to change the welding line to the boundary line 
and such a requirement will not be taken into account in the pattern optimization process. 
As can be seen in the figure (Fig. 152) bellow, it is possible to Consider material from model 
in the pattern calculation since there are quite big differences between the isotropic materials 
such as ETFE and the orthotropic materials such as woven fabrics, and these properties can be 
taken into account. If it is not intended to use a specific material in the pattern calculation, it is 
possible to use the Isotropic material (��B.Y/��Z�� = 1; s = 0) as this material guarantees 
the same behaviour in the warp/weft direction and no interaction between them through the 
Poisson's ratio. 

The separate patterns are flattened in the mathematical squashing without considering the 
options described above. Such shapes are an initial estimation or patterns used for the 
consequent analysis applying the distortion energy minimization where all the patterns are 
calculated together to find the global energy minimum. All above-described possibilities are 
taken into account and the interaction between the patterns is guaranteed, if the welding lines 
are present. 

 

Fig. 152 – Dialogue box for generating cutting patterns (RF-CUTTING-PATTERN) 
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The material used for the presented membrane structure is the woven fabric. The 
mechanical properties are approximated by the orthotropic linear elastic material model, 
which is used in both the structural analysis and the cutting pattern generation. 

�4 = 1000.0 pRQ , �5 = 800.0 pRQ , r45 = 100.0 pRQ , s45 = 0.10, s54 = 0.08     (30) 
The thickness of the membrane is n = 1.0 99 and the resulting constitutive matrix is: 

t = u t,,   t,- t,vt-- t-vFw9. tvv
x = ut4444   t4455 t4445t5555 t5545Fw9. t4545

x = y1008.06   80.65      0.00806.45      0.00Fw9. 100.00{ pRQ
               (31) 

The structure division (Fig. 153, Fig. 154) can be seen bellow (Fig. 155, Fig. 156). The 
purple colour suggests that the preliminary calculation was performed, the blue colour means 
that the FE-based calculation of the planar patterns was done, applying the distortion energy 
minimization. 

 

Fig. 153 – Membrane structure with the x/y (warp/weft) orientation displayed 

 

Fig. 154 – FE mesh of the membrane structure 
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Fig. 155 – Spatial patterns (3D) with the information that the mathematical squashing was performed 

 

Fig. 156 – Spatial patterns (3D) with the information that the distortion energy minimization was performed 

As in the case of the structural analysis, the more precise results are reached with a finer 
FE mesh. 
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5 CONCLUSION 
The intention of this work was to summarize the principles of three basic steps when 

designing membrane structures, and to demonstrate the practical examples described in the 
chapters Form-Finding, Structural Analysis, and Generation of Cutting Patterns. The 
examples shown here present basic principles of the form-finding analysis as well as some 
important differences compared to the structural analysis, and also the nonlinear behaviour 
of these structures, including the specific task of flattening the membrane, which has to be 
divided into a set of patterns. The evaluation of the patterns using the nonlinear analysis 
results can be an important tool in the designing process. It is unquestionable that the 
membrane structures are fascinating topic for many specialists since their architectural 
expression, structural specifics and, of course, really complex physical behaviour provides 
a wide space for many new concepts and researches. 

The examples presented here were created in the RFEM software [III], including the tools 
for the essential designing steps described above that were developed and implemented in the 
last years. Form-finding of the membrane and cable structures as well as the structures under 
compression, as presented in this work, can be performed using the RF-FORM-FINDING 
add-on module. The structural analysis can be done in the main program RFEM and the RF-
CUTTING-PATTERN add-on module allows for flattening the spatial structure into the plain 
as a set of patterns. The challenging development resulted in the release of these tools; 
however, it is certain that the further development is an amazing and endless journey and 
many new tools are in the process of development or planning. For example, there are two 
new improvements that will be released soon: the first one is a tool for the calculation 
of pneumatic structures, and the second one is the display of strains/stresses caused by the 
flattening process, which can be used for the pattern evaluation. The examples created 
by using both tools were presented in this work. 
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