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Polycythemia vera (PV) is a slow-growing type of blood cancer, where the production of

red blood cells (RBCs) increase considerably. The principal treatment for targeting the

symptoms of PV is bloodletting (phlebotomy) at regular intervals based on data derived

from blood counts and physician assessments based on experience. Model-based

decision support can help to identify optimal and individualized phlebotomy schedules

to improve the treatment success and reduce the number of phlebotomies and thus

negative side effects of the therapy. We present an extension of a simple compartment

model of the production of RBCs in adults to capture patients suffering from PV.

We analyze the model’s properties to show the plausibility of its assumptions. We

complement this with numerical results using exemplary PV patient data. The model

is then used to simulate the dynamics of the disease and to compute optimal treatment

plans. We discuss heuristics and solution approaches for different settings, which include

constraints arising in real-world applications, where the scheduling of phlebotomies

depends on appointments between patients and treating physicians. We expect that

this research can support personalized clinical decisions in cases of PV.

Keywords: polycythemia vera, optimal control, modeling, numerical simulation, therapy scheduling, mixed-integer

non-linear optimization, cancer, decision support

1. INTRODUCTION

The disease polycythemia vera (PV) belongs to chronicmyeloproliferative neoplasms, meaning that
an excess of blood cells are produced. In particular, red blood cells (RBCs) are affected (Lichtman
et al., 2006). With an increasing number of RBCs in the human body, there is increased risk of
thromboembolic events (Marchioli, 2005). To prevent patients from suffering serious events, such
as strokes, heart attacks, or pulmonary embolisms, the density of the blood must be reduced. In
moderate cases of the disease, this can be achieved with blood-letting (phlebotomy) at regular
intervals (Tefferi et al., 2018).

In those cases, therapy schedules based on blood image data are proposed by physicians.
However, those schedules might not be optimal for each individual (Finazzi and Barbui, 2007).
These patients benefit considerably from a therapeutic strategy, that is able to predict the optimal
treatment time for the next phlebotomy. In this paper, therefore, the data-driven model for
erythropoiesis by Tetschke et al. (2018), verified for use on the data of healthy subjects, is extended
to include amplified cell production by PV. Model analysis is applied to derive properties that

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2020.00328
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2020.00328&domain=pdf&date_stamp=2020-04-17
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:patrick-marcel.lilienthal@ovgu.de
https://doi.org/10.3389/fphys.2020.00328
https://www.frontiersin.org/articles/10.3389/fphys.2020.00328/full
http://loop.frontiersin.org/people/797169/overview
http://loop.frontiersin.org/people/797173/overview
http://loop.frontiersin.org/people/768860/overview


Lilienthal et al. Optimized Phlebotomy Schedules for PV

emphasize the model’s plausibility for this disease. Clinical
data from PV patients and in silico data derived from healthy
subjects are used to evaluate and compare different optimization
strategies for computing individual patient treatment schedules.
Such strategies are for the most part capable of including
constraints that appear in clinical applications, including
reasonable clinical treatment times.

Using our results, it might be possible to enable physicians
to schedule therapies individually based on a set of parameters
unique to each patient. Thus, on the one hand, the probability of
severe complications will decrease, when the time until the next
measurement is assumed to be too long. On the other hand, in
cases where the frequency of two consecutive measurements is
assumed to be too low, the patient will benefit from not needing
to go to a hematologist and the patient will be spared additional
blood withdrawals.

To our knowledge there is neither a published mathematical
model of erythropoiesis, that considers the disease PV, nor a
study discussing optimal treatment schedules for PV patients
by phlebotomy.

The paper is organized as follows: first, in chapter 2, we present
the materials and methods used for this research. In chapter
3 we display the results of the modeling and the optimization
approaches. Finally, we summarize and discuss our findings in
chapter 4. Given the interdisciplinary nature of this research
project, literature surveys are included in the corresponding
subsections of this paper.

2. MATERIALS AND METHODS

In this section, we present the concepts and methods for
modeling PV and for computing optimal treatment schedules.
First, biological properties necessary for the modeling process
are summarized. Then, a published compartment model for
erythropoiesis in healthy subjects is reviewed. Afterwards, the
acquisition of data from real and artificial patients is presented.
Finally, computational methods for verifying the proposedmodel
and for generating treatment schedules are discussed.

2.1. Biological Background
Understanding the relevant biological processes is crucial for
the following modeling process. To this end, basic information
about the physiological processes of erythropoiesis and of PV are
summarized in this section.

2.1.1. Summary of Erythropoiesis
The supply of oxygen from the lungs to tissues and the transport
of carbon dioxide back from tissues is central for themaintenance
of vital functions in the human body. This exchange of substances
is realized by erythrocytes (i.e., RBCs), which are biconcave
discoid cells in the blood stream containing the protein complex

Abbreviations: B&B, branch and bound; BFU-E, blast forming unit-

hematopoietic; CFU-E, colony forming unit-hematopoietic; DP, dynamic

programming; EPO, erythropoietin; Hct, hematocrit; MCH, mean corpuscular

hemoglobin; MIOCP, mixed-integer optimal control problem; OCP, optimal

control problem; PV, polycythemia vera; RBC, red blood cell; SUR, sum up

rounding; tHb, total hemoglobin mass.

hemoglobin. This protein complex binds the substances and
enables the RBCs to their part. At any given time, a healthy
adult human has a total of 2–3·1013 erythrocytes, with men and
women having about 5–6 million and 4–5 million erythrocytes
per microliter of blood, respectively.

Erythropoiesis is the process by which RBCs are produced
in the bone marrow. Beginning with stem cells, multi-potent
stem cells are matured through several levels of erythroid
progenitor cells, i.e., the Blast Forming Unit-Erythroid (BFU-
E) and Colony Forming Unit-Eryhroid (CFU-E), and several
levels of erythroblasts to bone marrow reticulocytes. These are
then released into the blood circulation as blood reticulocytes,
which then quickly grow into mature erythrocytes. During this
process, which takes ∼20 days, the cell undergoes major changes
including the removal of nuclei, organelles, and mitochondria to
provide more room for hemoglobin. This process is displayed in
Figure 1 in a simplified scheme. The mature RBC has no nucleus,
and it is incapable of cell division and regeneration of cell tissue.
Damaged cells are removed by phagocytes to prevent clogging.
This determines the mean life expectancy of RBCs in the blood
stream, which is ∼120 days in healthy adults (Jandl, 1987).
Sufficient iron concentration in the blood stream is necessary for
successful erythropoiesis.

The hormone erythropoietin (EPO) is mainly responsible for
the response of the body to changes in the amount of RBCs. It
acts like a negative feedback mechanism for erythropoiesis. The
EPO concentration in the blood circulation is inversely related
to the concentration of hemoglobin. High EPO concentrations
result in an increase to the RBC proliferation rate in the bone
marrow. Several precursor cell types are affected, especially CFU-
E production. This short summary can be complemented by
a more detailed overview of erythropoiesis in Lichtman et al.
(2006).

2.1.2. The Disease Polycythemia Vera
Polycythemia vera, also called primary polycythemia, is a
chronic myeloproliferative neoplasm. That is, the production of
blood cells increase to pathological levels. Most prominently,
erythrocytes (i.e., RBCs) are affected. This causes the main
symptoms of the patients: if the ratio of erythrocytes to the total
blood volume—which, in medical terms, is called the hematocrit
(Hct)—exceeds a certain threshold, the blood cells can clot. This
can cause thromboembolic events, which can lead to strokes,
myocardial infarctions, vein/arterial thrombosis, or pulmonary
embolisms. These events can also often be located in atypical
sides (Kiladjian et al., 2008; Dentali et al., 2014). While RBCs
are mainly responsible for the clotting, also leukocytes and
platelets as well as inflammatory mechanisms have an impact
on the thromboembolic events (Falanga and Marchetti, 2014;
Koschmieder et al., 2016).

If untreated, the mean life expectancy of patients suffering
from PV is only ∼18 months (Marchioli, 2005; Lichtman et al.,
2006). On the other hand, with treatment, a normal life span can
be assumed (c.f. Rozman et al., 1991).

Other symptoms of the disease are not fatal, but can strongly
reduce the quality of life of the patient. Most prominently,
aquagenic pruritus, a severe itching that patients experience from
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FIGURE 1 | Simplified schematic view of erythropoiesis. Certain cell stages over the age of the cell in days are displayed with a corresponding cell partition based on

the model by Tetschke et al. (2018).

contact with water, is observed in up to 70% of cases (Siegel et al.,
2013). Furthermore, patients suffer from headaches, hypertonia,
fatigue, weight loss, and night sweats (Policitemia, 1995; Scherber
et al., 2011). Also splenomegaly can be observed in PV patients.
As described in Marchioli (2005), PV patients have a higher risk
of developing other types of blood cancer over time, such as acute
myeloid leukemia or myelofibrosis. This risk is associated with
the age of the patient and the duration of the disease. After eight
years, the disease evolves into secondary post-polycythaemic
myelofibrosis in 15% of the cases (35% after 15 years, c.f. Alvarez-
Larrán et al., 2009). In 20% of these cases, the patients develop
acute myeloid leukemia (Mesa et al., 2005).

In low-risk cases, the basic therapy for PV is blood-letting
(phlebotomy):∼500 ml of blood on a regular basis (Tefferi et al.,

2018). As the body is compensating for blood loss through blood
plasma within a short amount of time yet requires several weeks

to produce new RBCs, the Hct can be temporarily reduced using

this treatment. In severe cases, this procedure is insufficient and
there is the need for cytoreductive therapy (or a combination of

both). It is currently unknown, how the frequency and volume

of phlebotomies should be calculated to give an optimal outcome

for the patient (Marchioli, 2005).
The most important clinical parameter for the planning of the

treatment ist Hct. Additionally, counts of leukocytes, platelets,
size of the spleen and other symptoms are taken into account
(Barbui et al., 2011, 2018). In clinical practice, a phlebotomy is
executed in a PV patient if the Hct is above 45% (Lichtman et al.,
2006). According to Finazzi and Barbui (2007), this threshold
might be inappropriate, because these findings were based on
retrospective studies with small sample sizes and methodological
shortcomings. They were unable to associate severe implications
withHct values between 40 and 55% in a larger prospective study.

Contrarily, in a more recent study (Marchioli et al., 2013) showed
that the rate of major thromboembolic events was significantly
higher, if a target Hct of 45–50% was used. They recommend
a target Hct of below 45%. Due to these conflicting results, the
complementation of the Hct treatment criterion by additional
information regarding individual patients might yield additional
insights. To the best of our knowledge, no such approach to doing
so exists.

The regulation of erythropoiesis no longer works in patients
suffering from PV. The underlying process has yet to be fully
understood, although there are plausible assumptions about it.
In the investigation by Eaves and Eaves (1978), it was observed
that in PV patients there is a partition in the CFU-E population.
In the first fraction of cells, EPO exerts a normal influence
when controlling the population, and in the second fraction,
the cells proliferate unbounded, even at extremely low levels
of EPO. In most (but not all) PV patients, a mutation of the
JAK2V617F gene is present (Pardanani et al., 2007). This is
associated with an uncontrolled proliferation of the progenitor
cells (Lichtman et al., 2006). However, the direct influence of the
mutation on erythropoiesis in PV is not fully understood. The
JAK2V617F allele burden, i.e., the fraction of genes affected by
that mutation, can be measured. More thorough understanding
of JAK mutations has recently led to an increasing influence on
therapy decisions in other hematopoietic diseases (Vainchenker
et al., 2008). However, it does not seem to have a direct impact on
Hct or the number of treatments (Silver et al., 2011).

2.2. Data-Driven Model for Erythropoiesis
in Healthy Subjects
A mathematical model of erythropoiesis in healthy adults was
developed in Tetschke et al. (2018). This simple compartment
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model focuses on the system dynamics after blood loss, and
it should be capable of capturing the relevant mechanisms in
the case of a phlebotomy in a PV patient. Using the model, a
suitable choice of model parameters was made such that the
model reflected the subjects individually. The simulation results
using this parameter set were verified using high-quality clinical
data. In addition, the identifiability of the model parameters was
positively investigated.

Basically, the model consists of three ordinary differential
equations, that characterize the maturation and differentiation of
a stem cell into an RBC until its death. Instead of incorporating
EPO directly, the model uses an indirect approach with the help
of the feedback function Fb(·). Thus, a decrease in the number of
RBCs in x3 results in an increased proliferation in x1.

The three compartment model for erythropoiesis by Tetschke
et al. (2018) is given by

ẋ1(t) = β ·
(

X0 − k1 · x1(t)
)

+ Fb(x3(t)) · x1(t)

ẋ2(t) = β ·
(

k1 · x1(t)− k2 · x2(t)
)

(1)

ẋ3(t) = β ·
(

k2 · x2(t)− α · x3(t)
)

Fb(x3(t)) = γ ·

(

1−
x3(t)

B

)

with the following model components:

• The compartments x1 [1] and x2 [1] reflect certain precursor
cells in the bonemarrow, that are committed to the erythrocyte
lineage. x1 includes CFU-E and early erythroblasts, which are
highly affected by EPO in the blood circulation. x2 denotes late
erythroblasts and reticulocytes, which are unaffected or only
slightly affected by EPO.

• The compartment x3 [g] contains the mass of mature
erythrocytes in the blood stream.

• X0 [d−1] denotes a constant inflow from the stem cell
compartment into the erythroid lineage.

• β [1] is a factor for EPO-independent proliferation. This is
assumed to be unique to the patient.

• γ [d−1] is a factor for EPO-dependent proliferation of early
precursor cells. This is also assumed to be unique to the
patient.

• k1 [d−1], k2 [d−1] and α [(gd)−1] are the transition and
apoptosis rates given by the literature (Tetschke et al., 2018). It
remains unclear whether these transition rates are dependent
on EPO. Here, they are assumed to be EPO-independent and
set to 1

8 ,
1
6 , and

1
120 , respectively, based on the literature values.

• In the case of healthy erythropoiesis, the existence of an
average normal erythrocyte level can be assumed, when
environmental conditions do not change drastically. The
average value is denoted by B [g].

• Fb(·) [1] is a negative feedback function based on the
fractional loss in x3 , meaning, that the function decreases
with increasing values of x3 and vice versa. This indirectly
incorporates the EPO dependency of the first compartment.
By only using this function as a feedback, it was implicitly
assumed that this is the only proliferation amplification factor
from blood loss. This assumption is reasonable, provided that
the blood loss is not too high, as, for example, in the case of

severe where anemia emergency reactions like the release of
stress reticulocytes (Lichtman et al., 2006) occur.

Blood removal of at most Vmax ml of blood can be realized
in a discrete way by removing u(t) · Vmax

Vpat
· x3 from the third

compartment or in a continuous way by modifying the equation
for ẋ3:

ẋ3(t) = β ·
(

k2 · x2(t)− α · x3(t)
)

− u(t) ·
Vmax

Vpat
· x3(t) (2)

Here, Vpat is the subject’s total blood volume in ml, and u(t) ∈

[0, 1] accounts for the application of (fractional) blood removal.
The unique steady state of (1) was shown to be

x̄ : = (x̄1, x̄2, x̄3) =

(

k1

α
,
k2

α
, 1

)

· B (3)

given that x1, x2 and x3 are positive and X0 : = α · B.
The model was verified using data from Pottgiesser et al.

(2008). There, blood loss of 500 ml in healthy adult subjects
with sufficient iron concentrations was taken into account. In
Tetschke et al. (2018), sufficient data from one re-saturation cycle
after a blood donation could personalize the variables β and γ of
themodel. The estimation of B further improves the quality of the
estimations, but in most cases this was not possible, as more data
was needed. Details regarding model assumptions, clinical data,
and numerical results can be found in Tetschke et al. (2018).

2.3. Data
The clinical parameterHct, which is used to determine necessary
treatment in clinical practice, suffers from serious drawbacks in
measurements. This is mainly from plasma volume deviations,
which can be significant in short amounts of time (Pottgiesser
et al., 2008; Otto et al., 2017). Further, Hct only reflects a relative
amount of solid blood particles. Rather, absolute values are
needed to compute the effect of phlebotomies.

Indeed, our models need to take into account the absolute
amount of erythrocytes in the body. As blood counts only provide
information relative to the withdrawn amount, the total blood
volume is needed for this computation. As described by Ertl
et al. (2007), most measurement techniques for blood volume
are invasive, and formulae for such estimations are imprecise.
Thus, in Tetschke et al. (2018) the total hemoglobin mass
(tHb) was used, which indirectly reflects the absolute amount of
erythrocytes. This is advantageous insofar as muchmore accurate
measurements can be made. In what follows, we use tHb, rather
than Hct or the number of erythrocytes.

2.3.1. Clinical Data
In cooperation with the Department of Hematology and
Oncology at the University Hospital Magdeburg, Germany,
we retrospectively collected data from patients suffering from
PV. The institutional ethics committee at the University of
Magdeburg endorsed the study procedures. Each subject gave
written informed consent before participation in this study.
Unfortunately, the data were gathered according to routine
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TABLE 1 | Details about three clinical patients used in 2.3.1.

ID Sex Age Time since

diagnosis (years)

Treatment

01 Male 45 6 Phlebotomy, chemotherapy since 5 years

02 Female 45 9 Phlebotomy only

03 Female 79 15 Phlebotomy, chemotherapy since 3 years

clinical practice, meaning the quality of the data for use in an
optimization study was poor: when treating patients, physicians
aim to see patients only when necessary. Thus, the density of
the data was quite low. Moreover, only standard blood counts
are regularly conducted. Such data suffers the effect of plasma
volume deviations and corresponding measurement errors,
as described above. Another problem arises with treatment.
Phlebotomy is the method of choice, as long as the disease
is not too severe. In severe cases, additional therapies with
drugs are adopted. For specific medication, a model of the
pharmacokinetics and pharmacodynamics of the drug would be
helpful. This is beyond the scope of this study, however.

Ultimately, we were able to identify three patient data sets
with a reasonable data density and quantity. In Table 1 details
about the three patients are displayed. Available data included
the relative number of erythrocytes (Ery in

[

Tpt/l
]

), the mean
corpuscular hemoglobin (MCH in

[

pg
]

), and covariates like the
height, weight, and sex of the patient. With the help of Nadler’s
formula (Nadler et al., 1962) an (error-prone) estimation of the
total blood volume in

[

l
]

was made. Then, tHb was computed
as the product of Ery, MCH, and the total blood volume. We
excluded data gathered in cases where the patient started a
complementary therapy with drugs.

As many patients are treated for several years, two of the three
data sets cover more than five years. One of the assumptions of
the model in Tetschke et al. (2018) was that subject-individual
parameters are only valid for a certain amount of time. Thus,
entire data sets should not be inspected. Instead, we identified
periods of time during which there were no drastic changes.
This was achieved with change-point analysis and the so-called
moving-sum approach by Cho et al. (2018).

2.3.2. Generation of in silico Test Data
Owing to the described problems arising from the collection
of clinical data, we used data from Pottgiesser et al. (2008)
and the resulting parameter sets β and γ obtained in Tetschke
et al. (2018), based on a prospective study with 29 healthy adult
male subjects using a measurement technique for obtaining tHb
measurements. Of the data, 28 data sets were used, as one set was
excluded in Tetschke et al. (2018).

For the artificial generation of parameters for PV patients
from those of healthy subjects, the rejection sampling method
(von Neumann, 1963) was used to obtain suitable λPV. These
λPV are suitable, if treatments are necessary and possible with
reasonable frequency. For that, a random λPV was drawn from
a uniform distribution on [0, 1]. With the heuristic approach
without constraints 2.4.2, a number of necessary treatments

TABLE 2 | Parameter sets of subjects from Tetschke et al. (2018) with five in silico

parameters λPV = λi for each subject as detailed in Section 2.3.2.

ID γ β B Vpat λ1 λ2 λ3 λ4 λ5

01 0.769 1.650 865.45 5530.04 0.405 0.418 0.512 0.513 0.521

02 0.388 0.867 885.42 4666.08 0.385 0.498 0.558 0.706 0.709

03 0.510 1.617 863.97 5265.93 0.326 0.393 0.413 0.480 0.549

04 0.323 0.424 854.15 5984.70 0.522 0.544 0.604 0.878 0.888

05 0.061 1.381 971.67 7734.16 0.192 0.321 0.334 0.367 0.419

06 0.590 2.615 1001.42 5096.65 0.290 0.331 0.343 0.354 0.415

07 0.262 1.518 964.59 7270.17 0.343 0.349 0.370 0.424 0.480

08 0.324 2.676 704.42 4091.19 0.216 0.243 0.340 0.371 0.433

09 0.356 0.891 958.55 9282.78 0.366 0.555 0.559 0.602 0.605

10 0.089 2.557 851.70 4588.62 0.199 0.207 0.298 0.391 0.396

11 0.243 0.925 1006.45 4610.27 0.384 0.385 0.533 0.615 0.652

12 1.003 1.409 932.51 6127.49 0.528 0.541 0.567 0.581 0.631

13 0.057 0.879 647.98 4017.69 0.198 0.369 0.428 0.506 0.583

14 0.762 0.460 1081.34 8260.98 0.639 0.743 0.767 0.787 0.845

15 0.344 2.132 939.61 6778.40 0.289 0.334 0.387 0.397 0.408

16 0.141 1.661 753.24 7102.67 0.226 0.339 0.349 0.350 0.379

17 0.470 0.544 900.53 5832.50 0.514 0.541 0.691 0.705 0.758

18 0.525 0.631 841.61 4872.18 0.529 0.661 0.689 0.695 0.847

19 0.423 1.525 786.47 5109.69 0.393 0.401 0.451 0.512 0.540

20 0.661 2.798 765.99 8486.20 0.328 0.334 0.341 0.342 0.360

21 0.686 1.943 908.60 5725.97 0.345 0.389 0.404 0.408 0.463

22 0.613 3.142 893.06 5438.46 0.278 0.303 0.305 0.337 0.342

23 0.421 1.528 695.05 4989.05 0.318 0.502 0.518 0.533 0.563

24 0.863 2.078 768.83 6182.47 0.435 0.454 0.469 0.476 0.479

25 0.414 1.172 687.85 5733.62 0.408 0.559 0.575 0.600 0.625

26 0.635 0.836 925.62 6168.52 0.659 0.681 0.682 0.708 0.746

27 0.952 1.596 869.00 6351.31 0.440 0.444 0.466 0.490 0.555

28 0.805 1.486 809.18 5987.13 0.472 0.497 0.507 0.527 0.551

Patient-specific parameters γ and β are given, along with the B value used in that study

and the calculated blood volume Vpat.

within 365 days is generated. A λPV where that number of
treatments is in [1, 26] is accepted. Otherwise, the value is
rejected. The interpretation is that the PV patient should be so
much affected by the disease that treatment with phlebotomy
at least once in a year is necessary. However, it should not be
needed more often than twice a month. For patients that are
even more sick, physicians proceed with chemotherapy anyway.
This process was repeated until, for each subject, five distinct λPV
were found.

This process yielded 140 artificially generated parameter sets
of PV patients. The generated values for the five λPV for each
subject were on average in the interval

[

0.34(±0.12), 0.6(±0.16)
]

with an overall average number of treatments of 15.56±6.56. The
subject parameters with generated λPV can be found in Table 2.

2.4. Computational Methods
In this section, the numerical methods and optimization
approaches are described. First, a parameter estimation problem
is solved on the available clinical data for proof-of-concept
simulations. Then, optimization approaches for the generation of

Frontiers in Physiology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 328

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lilienthal et al. Optimized Phlebotomy Schedules for PV

treatment schedules for PV patients are presented and discussed.
The software used to evaluate the approach is stated in the
corresponding subsection. Themost relevant parts of the code are
available on GitHub (https://github.com/tetschke/PVschedule).

One main focus in this paper is the generation of optimal
treatment schedules for phlebotomies of PV patients. Important
properties of a suitable treatment schedule include the following:

1. Respecting an upper bound: the principle goal of treatment
is to decrease the density of RBCs in the blood (measured in
Hct) to reduce the symptoms of the disease and to reduce the
risk of fatal complications. For this purpose, with the help of
physicians, an upper limit for tHb (X3,up) is identified, which
should not be exceeded.

2. Minimizing the number of treatments: with a good choice
of dates for when treatments will be performed, one might
reduce the number of necessary treatments without violating
the proposed critical thresholds. This reduces the amount of
days in which the patient might have side effects because of
the treatment.

3. Incorporating restrictions of the physician: procedures in
hospitals or medical practices should be limited to regular
working hours. That is, weekends and night times should
not be regarded as feasible in an optimal schedule. Other
restrictions of the physicians can also be incorporated into
the schedule.

4. Varying the volume of a phlebotomy: in clinical practice, a
standard amount (500 ml) of blood is typically withdrawn in
a phlebotomy (Lichtman et al., 2006). This restriction can be
replaced with an interval of possible volumes, which can be
chosen individually for each patient.

5. Incorporating preferences of the patient: a patient suffering
from PV usually has a normal life span and can live a normal
live with all its obligations. Thus, it might be advantageous to
give the patient the means to prioritize possible time slots for
therapy. For instance, job-related appointments or a vacation
can be included in the planning with the help of a weighted
objective function.

The focus of this work lies on the first three properties. Properties
1 and 3 will be incorporated as constraints of the optimization
problem. The minimization of the number of treatments is
reflected in the objective function J. This can have the structure

J =

∫ T

0
u(t)dt (4)

in the case of a continuous problem formulation. In the integer
case it is

J =
∑

i∈T

Ui, (5)

where T is a subset of the used time discretization. A phlebotomy
is a continuous process in a very short amount of time compared
to the relevant time horizon for treatment planning. Therefore,
the interpretation as an integer control is physiologically sensible.

In contrast, the continuous objective function formulation
corresponds to a minimization of the removed blood volume.
Nevertheless, the latter one enables us to thoroughly analyze
the structure of the resulting optimal control and yields insights
into model properties. This justifies the use of these continuous
solutions for the generation of integer solutions with low
computational cost, as detailed in the next subsections.

For improved readability, the schedules generated by the
methods presented in the following sections are abbreviated
as follows:

• H-Schedule: Heuristic approach without constraints given by
the test case (section 2.4.2).

• HC-Schedule: Heuristic approach with constraints given by
the test case (section 2.4.2).

• C-Schedule: Solution of continuous optimal control problem
(OCP) (section 2.4.3).

• IP-Schedule: Integer programming approach (section 2.4.4).
• SUR-Schedule: Sum up rounding (SUR) (section 2.4.5).
• BB-Schedule: Rounding via branch and bound (B&B) (section

2.4.6).
• DP-Schedule: Dynamic programming (DP) (section 2.4.7).

The number of treatments for such a schedule is then abbreviated
by n∗, where ∗ is the one-, two-, or three-letter code of the
corresponding method. For example, nH describes the number
of treatments according to the heuristic approach without
constraints. This indexing with the respective letter code also
holds for other occurring variables.

As a general test setup for evaluating the optimization
methods, a time horizon of 365 days (October 1st to
September 30th) is considered. Treatments are possible
from Monday to Friday, where the first of October is
considered a Monday. In addition, restrictions of the clinic
are included as blocked times on days 81–95 and days
280–301. The interpretation of these blocked times is that,
around the winter and summer holidays, there are reduced
personnel in the clinic, such that routine treatments are not
performed. In Figure 2 an illustration of the restrictions can
be found.

The evaluations were performed on 140 in-silico-generated
PV patients, as described in section 2.3.2. All computations
were performed on a server with 8 cores (Intel Xeon E5-2640
v3, 2.6 GHz) and 64 GB of RAM, running Ubuntu 18.04.3
LTS. Time measurements were performed using the “clock()”
function from the Python package “time,” which, on Unix
systems, displays the used CPU time without interruptions by
other processes.

To present the following methods, it is sufficient to have a
model based on ordinary differential equations, that characterizes
PV. In section 3.1.1, themodel fPV is presented. For our purposes,
it here suffices to state that the model includes a fraction λPV
of affected progenitor cells, which influence the severity of the
disease. The model dynamics have the following structure:

ẋ(t) = fPV(t, x(t), λPV, u). (6)
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FIGURE 2 | Graphical view on the general test setup including restrictions of the clinic in red. Phlebotomies are only allowed during times denoted in white.

2.4.1. Proof-of-Concept Simulations
To get a first impression regarding the validity of the extended
model in 3.1.1, the data sets of PV patients presented in
2.3.1 were used to obtain patient specific parameter vectors
p. This parameter vector includes the formerly relevant model
parameters β and γ as well as the fraction λPV introduced by the
model extension.

The following parameter estimation problem with the least-
squares objective is formulated:

min
p

1

2

nη
∑

i=0

(

ηi − x3(ti)
)2

σ 2
i

+ φ(p) (7)

s.t. ẋ(t) = fPV(x(t), λPV, p, u(t)) (8)

x(0) =
(

x01, x
0
2, η0

)

(9)

where

• {t0 = 0, t1, . . . , tnη } are the time points where tHb
measurements were taken.

• ηi is the measurement value of tHb at time ti.
• x3(ti) is the corresponding model response at time ti.
• σi is the standard deviation of the measurement at time ti. As

all considered data were collected by the same method under
similar conditions, σ1 = 1 for all measurements.

• p is the chosen parameter vector with np entries (including x
0
1

and x02).

and the regularization φ is selected as

φ(p) =

np
∑

i=1

(

pi − p
prior
i

p
prior
i

)2

(10)

Here, φ(p) is a term that can be used to incorporate a priori
information. In our setting, regularization to known parameter
values for healthy subjects was taken from Tetschke et al. (2018).
The initial base value B was computed as the average over

all tHb measurements with a corresponding Hct value of 45%
or lower. This optimization problem is solved formulated as a
deterministic OCP using ampl_mintoc, a package for mixed-
integer optimal control problems (MIOCP), based on AMPL
(Fourer et al., 2002) and using IPOPT (3.12.10, Wächter and
Biegler, 2006).

2.4.2. Heuristic Approach
As displayed in 2.1.2 the aim of the treatment is to keep the
patient’s Hct level below 45%. To realize this, the standard
procedure in clinical practice is the following. The Hct value of
the patient is checked at regular intervals, selected in a fashion
that ensures the critical threshold is not exceeded. As soon as the
value becomes too high, a phlebotomy of constant volume takes
place. Transferring this idea into algorithmic notation yields
the following:

Algorithm 1: Heuristic approach

1: Set initial value X0 ⊲ (Initialization)
2: for i ∈ I \ {0} do
3: Xi = Xi−1 + F(Xi−1, fPV,1t) ⊲ (Integration)
4: if Xi,3 > X3,up: then ⊲ (Check for violation)
5: if i ∈ T : then ⊲ (Treatment if allowed)
6: Xi,3 = Xi,3 −

Vmax
Vpat

· Xi,3

7: else ⊲ (Shift treatment)
8: Find largest i∗ ∈ T with i∗ + idwell < i and
9: Set i = i∗

10: Xi,3 = Xi,3 −
Vmax
Vpat

· Xi,3

where

• I = {0, . . . ,N} is the index set corresponding to the
equidistant integration grid with step size 1t.

• T ⊂ I denotes the integration points in which a treatment
is possible.
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• F is the forward quadrature scheme (here, the Runge-Kutta-
scheme of order 4) with regard to Model (16).

• Vmax and Vpat are the constant blood volume per treatment
and total blood volume of the patient, respectively.

• idwell is the dwell time of the system, which represents the
minimal distance between two treatments.

For I = T , heuristic treatment schedules without test constraints
are generated (H-Schedules). Using T as in the general test
case described above, HC-Schedules are computed. One major
advantage to this approach is that both types of treatment plans
can be computed quickly (within a few seconds). However, the
treatment plans are not guaranteed to be optimal. Moreover,
this heuristic does not take the lower bound X3,lo into account.
Therefore, it is necessary to inspect other approaches.

2.4.3. Continuous Optimal Control Problem
Another point of view is to see the desired treatment schedule as a
solution to an OCP. To apply the solution in clinical practice, we
are interested in a mixed integer solution. The next two sections
deal with the generation of feasible and optimal integer solutions.
First, we showcase the relaxed OCP and generate continuous
treatment schedules (C-Schedules). An interpretation of these
schedules is that a phlebotomy can be done arbitrarily often with
arbitrarily withdrawn blood volumes. An exemplary illustration
of a continuous solution with the corresponding tHb trajectory
is displayed in Figure 3. Some of the rounding strategies in the
following sections are based on these relaxed solutions. Further,
the theoretical investigation of the solution structure can yield
insights into the underlying structure of the problem.

The continuous OCP for minimizing the number of
phlebotomies while allowing fractional treatments reads
as follows:

min
u(.)

∫ T

0
u(t)dt

s.t. ẋ(t) = fPV(x(t), λPV) t ∈ [0,T]
x(0) = x0
X3,lo ≤ x3(t) ≤ X3,up t ∈ [0,T]
u(t) ∈ [0, 1] t ∈ [0,T]

(11)

The objective function only indirectly accounts for the number
of necessary treatments. Actually, this formulation minimizes the
amount of withdrawn blood over the time horizon. A theoretical
analysis of the problem solution is given in Appendix A. This
analysis yields unique optimal control u∗ of the structure:

u∗(t) =

{

0 , x3(t) < X3,up

upath(t) , x3(t) = X3,up
(12)

This optimal control is intuitive in the sense that no treatment
is applied when unnecessary. Alternatively, phlebotomies are
reduced to a minimum, such that they approach the threshold
X3,up. The existence of this solution shows that, in general,
the OCP is solvable. Computationally, this problem is solved
with a non-linear programming formulation in CasADi (3.5.1)

(Andersson et al., 2019) using IPOPT (3.12.3, Wächter and
Biegler, 2006).

2.4.4. End Time Optimization Using Integer Approach

on Non-linear Program
Continuous blood withdrawal, as seen in the case of the relaxed
problem, can not be performed in clinical practice with currently
available tools. To find an approach that is closer to clinical
practice, an MIOCP with a discrete formulation is used. Let U =

{U1, ...,UN} and X = {X1, ...,XN}. Then the discrete formulation
is given by

min
U,X

∑

i∈T

Ui

s.t. Xi+1 =

(

1− Ui+1 ·
Vmax

Vpat

)

·
(

Xi + F(Xi, f (Xi),1t)
)

∀i ∈ I \ {N}

X3,lo ≤ Xi+1,3 ≤ X3,up ∀i ∈ I \ {N}

X0 = x0
Ui ∈ {0, 1} ∀i ∈ T

Ui = 0 ∀i ∈ I \ T

(13)

Here, I, T ,F ,Vmax, and Vpat are the same as in subsection 2.4.2.
Using this objective function, the system solution is not

unique. In fact, a solution with
∑

Ui = minU,X
∑

Ui does
not take into account when the next treatment will take place
after the end of the time horizon. A possible extension to avoid
this problem is to include the time point of the next necessary
treatment Tf after the end of the schedule. Although it is possible
to combine those two objectives, it is unclear how exactly the
individual components should be weighted. To circumvent this
problem, an iterative approach is proposed.

Using the heuristic approach with schedule constraints
T leads to a feasible treatment schedule, which gives an
upper bound uup for the necessary number of treatments.
Starting with uup, we fix the number of treatments in the
optimization problem and maximize Tf . We decrement the
number of treatments and repeat, until there are no more
feasible solutions. The optimization problem that needs iterative
solving is

min
U,X,XN+1 ,...,XNT

,Tf
−Tf

s.t. Xi+1 =

(

1− Ui+1 ·
Vmax

Vpat

)

·
(

Xk + F(Xi, f (Xi),1t)
)

∀i ∈ ITf \ {NTf }

X3,lo ≤ Xi+1,3 ≤ X3,up ∀i ∈ ITf \ {NTf }

X0 = x0
XNT = X3,up

Ui ∈ {0, 1} ∀i ∈ T
∑

i∈T

Ui = usum

Ui = 0 ∀i ∈ I \ T

(14)
Here, ITf = I ∪ {N + 1, . . . ,NTf } is an expansion of the former
integration index set I for additional integration points after

Frontiers in Physiology | www.frontiersin.org 8 April 2020 | Volume 11 | Article 328

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lilienthal et al. Optimized Phlebotomy Schedules for PV

FIGURE 3 | Exemplary result for an optimal relaxed treatment schedule. The continuous control function u (blue) is zero, as long as the tHb-value (black) is below the

upper bound (dashed, purple). As soon as the upper bound is reached, the control function increases exactly as much as necessary to keep the tHb-value at the

upper bound.

the times where controls are possible. Thus, T ⊂ I is selected
such that ∀i ∈ T : i ≤ N. The objective of minimizing −Tf

reflects the aim of postponing for as long as possible the first
phlebotomy after the end of the schedule with the given number
of treatments. The algorithm, then, is as follows:

Algorithm 2: Mixed Integer OCP with Tf

1: Solve the heuristic algorithm (1) and set uup to objective
2: usum = uup
3: Solve (14)
4: while feasible do
5: usum = usum − 1
6: Solve (14)

This problem is solved with BONMIN (Bonami et al.,
2008) using a non-linear programming formulation in CasADi.
Integer schedules (IP-Schedules) derived using this MIOCP
formulation have the advantage of being realizable in clinical
practice while still including the main ideas for optimal
treatment. However, this problem leads to an MIOCP, that is
computationally expensive. In general, MIOCP problems are
NP-hard. This already holds true for the linear, discretized
version of this problem class (Kannan and Monma, 1978). Thus,
for large |T | in particular, the problem is difficult to handle.
For rather small |T |, this approach can be investigated and
compared to the heuristic approach presented in subsection
2.4.2. In addition, using BONMIN on a non-linear problem
does not guarantee global optimality. The performance of
the software depends on the options used. In this paper, we
used the following options: variable_selection = most-fractional,
and tree_search_strategy = dive.

2.4.5. Sum-Up Rounding
Owing to the size of the MIOCP, as described in the previous
subsection, computations with standard solvers are only feasible
for a rather small number of possible integer control points.
Larger problem sizes might be more relevant. Indeed, more
control points per week or longer overall time horizons can be
included. Thus, it is worthwhile to inspect rounding strategies
and to compare them to the heuristic approach.

The SUR approach (Sager, 2005) exclusively uses the optimal
solution of the relaxed problem (11) to compute a binary
treatment schedule. Basically, the idea is to collect the relaxed
control in time and set the integer solution to one, as soon as a
certain threshold uT is reached. This collection is then reduced
by one, and, afterwards, the previous process is repeated.

We use the multiple shooting method on an equidistant time
grid for the computation of the relaxed solution u∗. The integer
solution at the discretization point ti using SUR can then be
computed as follows:

Ui =

{

1 , if
∑i

j=0 u
∗
j −

∑i−1
j=0 Uj ≥ uT

0 , else
(15)

In the standard SUR approach, uT is set to 1
2 . Owing to the

problem structure, we instead use uT = ε for SUR-Schedules,
where ε > 0 is close to zero. This is necessary because only the
relaxed solution is non-zero. If the upper bound X3,up is already
reached, treatment must be done immediately.

This approach has the advantage that it is easy to implement
and the computations are extremely fast, once the relaxed
problem is solved. Moreover, if the relaxed problem includes
blocked times tj, u

∗(tj) will be zero and Uj = 0 automatically.
The big disadvantage to SUR is that it is not obvious how to

include path constraints. The strategy only takes into account
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the relaxed solution. There is no guarantee that the upper bound
X3,up will be respected.

To summarize, although fast and intuitive to implement, SUR-
Schedules risk endangering the patient, owing to violations of the
treatment aim. Therefore, in clinical applications, the use of this
approach should be combined with safety strategies, such as the
use of a stricter upper bound X3,sumup, up < X3,up.

2.4.6. Rounding via Combinatorial Integral

Approximation
Another approach to generating integer solutions from the
relaxed solution is to adopt so-called combinatorial integral
approximation (Sager et al., 2011). For this, we used open-source
software called pycombina (Buerger et al., 2019). Here, a B&B
algorithm is implemented, that is able to include combinatorial
constraints with regard to binary controls. The standard B&B tree
is organized in a fashion, that branches forward in time.

Originally, the algorithmwas designed to approximate relaxed
controls with binary ones. For this purpose, it does not need to
take into account the actual states. Therefore, it is unable to deal
with path constraints and suffers from the same disadvantage as
the SUR approach.

This is why we adapted the algorithm to take into account
the states (and especially x3) in each iteration through forward
integration. If at time point ti one of the conditions X3,lo ≤

x3(ti) ≤ X3,up is violated, the corresponding branch of the
tree is no longer feasible and can be disregarded. This not only
helps to include path constraints, but also decreases the size of
the B&B tree.

This modified B&B version is able to generate feasible
solutions, if we also fix the control u to zero when no treatments
are possible. We used the prefixing option in pycombina to
include this into our problem formulation.

The overall quality of BB-Schedules generated by this
approach depends on the maximum number of iterations. As
the B&B tree tends to become very large, relatively few iterations
search through only part of that tree. This can lead to instances
where no solution can be determined, however, even though we
implemented the additional pruning of the tree for infeasible
solutions. Nevertheless, a large number of iterations leads to very
large run times. For our numerical results, we used the default of
five million iterations.

2.4.7. Dynamic Programming
A completely different algorithmic idea for the solution of (13) is
to generate treatment schedules by dynamic programming (DP-
Schedules). Here, discretization is done not only in time, but also
in the state space. This approach goes back to Bellman (1957).
Details can be found in Bertsekas (2012).

First, we introduce an equidistant grid x0 < x1 < · · · < xnx

with resolution 1x in state space and tabulate state transitions:
for each possible combination of a state value and a possible
control value, the corresponding result of an integration over the
next time interval must be stored. The result of the integration
usually does not match one of the grid points. This is why
rounding toward a valid grid point is necessary.

In our provided code this tabulation is stored with the help
of indices. Thus, the rounding is done in the following fashion:
Let i be a fractional value of a result of an integration. This value
is a convex combination of the two grid points closest to the
result. The value i is then rounded toward a valid grid point
i∗, if −0.5 · 1x ≤ i − i∗ − o · 1x ≤ 0.5 · 1x holds. For
the offset o = 0.0, rounding half up is applied, whereas for
o > 0, a more conservative rounding is applied. We test both
o = 0.0 and o = 0.4.

The tabulation is then used to compute a so-called cost-to-go
function. For each time point and state grid point this function
indicates the best possible choice from that state and that time
onwards. This is computed backwards in time. The last step is
the computation of the optimal control starting in suitable grid
points close to x0 with the help of the tabulation.

This approach is globally optimal with regard to the grid used,
as every possible combination of states and controls is evaluated.
However, this approach suffers from practical drawbacks, when
systems with many states are used, or when there are too many
grid points for each state. In the case of the MIOCP (13), only
three states have to be regarded and we consider only binary
control. For this reason, the algorithm might be a good choice.
We used 400 grid points for each of the three states.

After the initial tabulation, the algorithm has a linear
complexity in the time discretization. Therefore, this
approach is especially suited for schedule generation with
large time horizons. It is also easy to include constraints.
In our implementation, we worked with sparse matrix
structures to account for the exponential growth of the
state transition tabulation.

3. RESULTS

In this section, the results based on the previously introduced
methods are presented. The model proposed by Tetschke et al.
(2018) is extended, and we discuss necessary assumptions for the
biological process. The plausibility of this extended model is then
examined with both steady-state analysis and numerical proof-
of-concept simulations using clinical data from PV patients.
Then, the numerical results from heuristic generations of
treatment schedules are compared to those of other numerical
approaches on in silico patient configurations.

3.1. Mathematical Modeling of
Erythropoiesis in PV Patients
The three-compartment model by Tetschke et al. (2018) captures
the basic physiological processes of healthy erythropoiesis in
adults. We extend this model to capture PV as well. The small
number of free parameters in the original model also motivated
its suitability for this purpose: the amount of clinical data
describing PV patients is usually insufficient for large models.

In this section, we describe the proposedmodel for PV, analyze
its properties, and discuss simulation results using clinical data.
We generated suitable treatment plans using heuristic and
optimization-based approaches. The overall goal of treatment
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was to ensure the safety of the patient, while aiming to improve
quality of life.

3.1.1. Model Extension
Here, we discuss our extension of the model (1) to reflect
the relevant dynamics of erythropoiesis in PV patients. For
this, we follow the idea in Eaves and Eaves (1978) stated in
subsection 2.1.1. According to this study, a fraction of CFU-
E cells proliferates at a maximal rate, independent of EPO or
fractional blood loss. We introduce a parameter λPV, which
corresponds to this fraction and can take values between [0, 1].
Correspondingly, there is a fraction of cells 1−λPV that responds
in a normal way to EPO. A person not affected by PV will
correspond to λPV = 0, whereas higher values give means to
quantify the severeness of the disease. As the compartment x1
mainly consists of CFU-E cells, an intuitive model extension of
(1) is given as follows:

ẋ1 = β ·
(

X0 − k1 · x1
)

+ (1− λPV) · Fb(x3) · x1

+ λPV · γ ∗ · x1

ẋ2 = β ·
(

k1 · x1 − k2 · x2
)

(16)

ẋ3 = β ·
(

k2 · x2 − α · x3
)

Fb(x3) = γ ·
(

1−
x3

B

)

with γ ∗ denoting the growth rate of affected cells in x1. A
phlebotomy can be incorporated in the same way as Equation (2)
in section 2.2.

The model components are here discussed with respect to
their plausibility in the case of PV.

• β , k1, k2, γ : using this model extension by cell partition with
λPV leads to the assumption that cells affected by PV only
proliferate faster in x1, and otherwise behave like a healthy
cell. We note that there might be physiological processes not
covered by this model that affect other components, such as
the transition times between the compartments. However, we
assume that this is not the case and use the model variables
β , k1, k2, and γ as in Tetschke et al. (2018).

• α: there are conflicting studies regarding the average life span
of erythrocytes in PV patients. Depending on the investigation,
the average life span is either shortened or normal (see London
et al., 1949; Huff et al., 1950; Berlin et al., 1951). We will not
discuss this further here. We used α = 1

120 as in the healthy
case. We note that α might be different in PV patients and
might depend, for example, on progression of the disease,
reflected by λPV, or on patient-specific factors. This could be
inspected in a follow-up investigation, once suitable clinical
data are available.

• γ ∗: the model variable γ ∗ has a significant impact on
proliferation in PV patients, especially in those with a higher
number of affected cells described by high values of λPV.
To our knowledge, however, no study has investigated the
proliferation rate of CFU-E in PV patients based on the
fraction of affected cells. Therefore, an accurate guess for
the value of γ ∗ is not possible. In case of unknown model

variables, a numerical estimation based on suitable data is
optimal. However, there are many unknown patient-specific
variables, such as β , γ , λPV, and (in most cases) B. The
additional estimation of γ ∗ is unreasonable, given that data
of exceptional quality and quantity are unavailable. As the
available data do not often meet these criteria, one might opt
for a heuristic approach by assuming a dependency of γ ∗ on
other model variables, such as γ or β . By definition, γ reflects
a proliferation amplification of EPO-affected cells, such that
the use of the EPO-independent factor β seemsmore intuitive.
For our investigation, we used γ ∗ =

β
10 .

• X0: the model variable X0 reflects the inflow from
hematopoietic stem cells to the erythrocyte lineage. As
the proliferation rate of PV-affected stem cells might also
be increased, one might assume X0 to be higher and to be
dependent on λPV. We assumed that a potentially enhanced
stem cell inflow is compensated by the proliferation rate γ ∗,
and we used X0 as in Tetschke et al. (2018).

3.1.2. Steady State Analysis
In most cases, the system’s steady state for the erythrocyte
mass x̄3 = BPV of PV patients should be at sufficiently
high levels such that long, before it is reached, treatment is
administered to prevent possibly fatal complications. However,
deriving information about the system’s steady states often yields
useful information about the system’s properties. In this case, we
inspected the relation between the new steady state erythrocyte
mass BPV and the steady state erythrocyte mass B without the
model extension.

Following the calculations in Appendix B, the steady state
erythrocyte mass BPV is given by

BPV(λPV) = B ·



















−
β·k1−(1−λPV)·γ−λPV·γ

∗

2·(1−λPV)γ
for λPV < 1

+

√

(

β·k1−(1−λPV)·γ−λPV·γ
∗

2·(1−λPV)γ

)2
+

β·k1
(1−λPV)·γ

,

β·k1
β·k1−γ ∗ , for λPV = 1

(17)

As described in the Appendix, we also found that this function
(using γ ∗ =

β
10 ) is continuous for λPV ∈ [0, 1], such that only

the case where λPV = 1 must be thoroughly investigated. With
similar calculations, one can also show that BPV(λPV) increases
monotonously for λPV ∈ [0, 1].

To summarize the results, BPV is a continuous, monotonously
increasing function with BPV(λPV) ∈ [B, 5 · B] for λPV ∈ [0, 1].
This means that an increasing fraction of affected cells can
indeed lead to physiological complications, as the system tends to
reach critical erythrocyte levels. This is consistent with the main
physiological assumptions about the process.

3.2. Numerical Results
In this section, the numerical results using the proposed model
are presented. First, clinical data are evaluated in a proof-of-
concept simulation. Then, the computed treatment schedule
given by the heuristic method in section 2.4.2 is compared to
schedules computed by the other approaches given in 2.4.
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FIGURE 4 | Erythrocyte trajectories as a result of parameter estimation on three clinical data sets. The computed measurement values are given in red, and the

healthy base value B is displayed in purple.

In 22 of the available 140 test cases, no H-Schedules
could be generated, owing to the constraints. The remaining
118 H-Schedules were thus compared to the schedules from
other methods.

3.2.1. Proof of Concept Simulation
The three data sets of patients suffering from PV presented in
section 2.3.1 were used to assess the applicability of the model to
real-world data. The method described in section 2.4.1 was used
to obtain the patient-specific parameter vector p = (β , γ , λPV).
The results are displayed in Figure 4 and summarized in Table 3.

Taking into account all the problems with the collected data,
the fits of the trajectories appear satisfying from visual inspection.
Objectively, the R2 value of the three fits was 0.7. However, for
subjects 02 and 03, the parameters β and γ were both equal to
the lower bound set, owing to numerical restrictions. This might
be a sign of errors in the assumption of B, or in the calculation
of tHb values from Hct. More precise information about those
factors will drastically improve the numerical performance of
the method.

The good fit achieved by this method suggests that our
proposed model captures the essential dynamics of this
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TABLE 3 | Results of proof-of-concept simulation of clinical data from three

patients.

Patient ID β γ λPV B BPV R2

01 0.6 0.3 0.89 768.25 1314.20 0.89

02 0.2 0.1 0.62 501.04 607.02 0.76

03 0.2 0.1 0.61 540.17 650.21 0.45

TABLE 4 | Results of integer approach run time demonstration.

Days per week nH nHC nIP 1Tf[d] CPU time MIOCP (s)

1 4 5 5 0 954.8

2 4 5 5 0 17960.4

3 4 5 5 0 72239.5

4 4 5 5 0 195409.4

process. However, this must be verified using higher-quality
clinical data.

3.2.2. Evaluation of Integer Approach
In this section, we compare the HC-Schedules and the IP-
Schedules of the MIOCP approach in Algorithm 2. For
demonstration purposes, the IP-Schedule was compared to the
corresponding H-Schedule and HC-Schedule in one modified
test case. For this test case, subject 20 with λPV = λ2 was
used with a time horizon of T = 103 days. Per allowed day,
one time point for treatment was possible. Four sets of test
restrictions on weekdays were tested: treatments were exclusively
allowed on Monday (Mo), Monday and Wednesday (Mo, Wed),
Monday, Wednesday, and Friday (Mo, Wed, Fri), or Monday,
Wednesday, Friday, and Sunday (Mo,Wed, Fri, Sun)—beginning
the simulation with the first day being a Monday. An integrator
step size of 1

6 days was used. The results are displayed in Table 4.
Here, 1Tf[d] = TfHC − TfIP, where both TfHC and

TfIP are computed as the respective time points in which
the first treatment after the observed time horizon occurs. In
the documentation, we set 1Tf : = 0 when |1Tf| < 1

6 .
The interpretation is that a time deviation below this step
size is irrelevant, and small numerical differences should not
be incorporated.

In this test case, the results of the IP-Schedules and HC-
Schedules were without notable differences. However, whereas
the generation of HC-Schedules had a constant run time of only a
few seconds, the run time of IP-Schedules dramatically increased
(up to 2.3 days for the largest test case). This demonstrates that
the MIOCP approach is only suitable for very small test cases.
Therefore, applications for this approach to the general test case
in subsection 2.3.2 are unfeasible.

To compare the heuristic approach with theMIOCP approach
further, both algorithms were applied to a modified version of
the test case. It was modified with a smaller end time T = 103
permitting treatments only on 1 day per week (Mo) and only at
one time point per day.

In three cases, theMIOCP approach did not produce a feasible
solution. In all other cases, the number of treatments nIP and
nHC were equal. In those cases, differences only occurred with
different 1Tf. In two of the latter cases, the MIOCP schedules
were worse by |1Tf| = 3.62± 0.911 days. In five other treatment
schedules, the heuristic solution produced better results by
|1Tf| = 0.402 ± 0.1. Another six subjects were excluded, as no
treatment was necessary owing to the shortened time horizon. In
the other 124 cases, no significant differences between the two
approaches were found.

Exemplary results from three patient configurations are
displayed in Figure 5. Patient 01 with λPV = 0.51 is an example
of the general case, in which both generated treatment schedules
were identical. By contrast, for patient 02 with λPV = 0.56, the
IP-Schedule was worse, owing to a treatment at approximately
t = 84 days. As solutions generated using BONMIN can be
especially sensitive to the algorithmic options, this results could
likely be improved by testing more configurations. There are also
examples where the IP-Schedule was slightly better, such as the
case of patient 26 with λPV = 0.71.

The MIOCP optimization approach using BONMIN only
rarely yielded an improvement over the heuristic approach. The
original problem size (see subsection 2.3.2) had to be reduced
by a factor of 17 in terms of the number of integer variables,
to produce results in a reasonable amount of time. Nonetheless,
the run-times were long (920.22 ± 845.71 s). Therefore, the
use of standard integer optimization solvers seems inappropriate
for this problem. This motivated the investigation of other
heuristic approaches, such as rounding schemes, for generating
treatment plans.

3.2.3. Sum-Up Rounding
In this section, the HC-Schedules and the SUR-Schedules are
compared. One relevant property is the difference in the number
of treatments ndiff = nHC − nSUR of the schedules. The sum-up
method does not directly take into account the critical threshold
X3, up. Therefore, we evaluated the number of days in which the
threshold was violated (dviol).

In all 140 test cases, SUR-Schedules were successfully
computed. In 118 cases where the heuristic also found a feasible
solution, the sum-up approach on average had a lower objective
function value than the respective HC-Schedules, by an average
of n̄diff = 1.15 ± 3.92 treatments. However, using these 118
treatment SUR-Schedules, the patients tHb was above the critical
level for d̄viol = 58.93± 70.81 days of that year. This was also the
case for the 22 SUR-Schedules, with which the heuristic method
did not find a valid solution (d̄viol = 74.53 ± 38.4). There was
no case in which the SUR-Schedule was better (by having fewer
treatments or being the only approach that worked), with zero
days of violation.

We investigated the reduction in treatment ndiff by the sum-
up method and plotted it over the respective days of violation
dviol (see Figure 6). The data show that violations by the method
increased with further reduction in the number of treatments.
This was emphasized by a linear regression with a positive slope
(dviol, reg(ndiff) = 17.61 · ndiff + 30.04[days] with R2 = 0.42). The
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FIGURE 5 | Erythrocyte trajectories of three exemplary patients using IP-Schedules and HC-Schedules. The upper threshold (red, dashed) and the end of the time

horizon at T = 103 days (gray, dashed) are marked.

FIGURE 6 | Duration of constraint violation dviol over the difference in the number of treatments for each of the 140 test cases (blue). The purple dashed line shows a

linear regression over all instances with ndiff ≥ 0.
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TABLE 5 | Results of BB-Schedule in comparison to HC-Schedule.

Method # Successful n̄
*

Average CPU time (s)

HC 118 15.78± 7.34 7.3± 13.3

BB small 111 15.47± 7.21 26.9± 3.54

BB large 112 15.54± 7.21 7.3± 13.3

regression only considered the instances with a lower objective
function value in the SUR-Schedules.

In summary, the SUR-Schedules either had fewer treatments
than the respective HC-Schedules, with considerable
endangerment to the patient, or were similar or worse than
schedules with only slight endangerment in most cases. To
overcome these constraint violations, we can decrease the critical
threshold X3, up, although this would lead to more treatments.
Based on our investigation, the sum-up method performed
considerably worse, because it did not directly take the upper
bound into account.

3.2.4. Rounding via Branch and Bound
The BB-Schedule was considered as a rounding approach.
In contrast to the SUR-Schedule, the BB-Schedule respects
constraints. As a complete B&B tree grows exponentially in the
number of variables, the computations were run with a maximal
number of iterations. In Table 5 we present the default results of
pycombina (5 million iterations) and results from decreasing that
number to half a million iterations, which increased the speed of
the computations by a factor of nearly 10, omitting the time for
the solution of the C-Schedule (on average 26.48 s).

In comparison to the HC-Schedule, the results of the approach
are similar: 22 cases were not feasible with either approach.
Additionally, the BB-Schedule failed to find a feasible solution
with six patients in the version with a large iteration number (and
with seven patients in the faster version). In both cases, there
were 13 cases where the heuristic saved one phlebotomy, and two
cases where even two phlebotomies were saved in comparison to
the BB-schedule.

The results for the BB-Schedule can be improved by increasing
the permitted number of iterations even further, although this
would increase the average computation time.

3.2.5. Dynamic Programming
The DP approach generates treatment schedules by exploring
all possible schedules on a chosen grid. Those DP-Schedules
were compared to the corresponding HC-Schedules. Relevant
properties were the difference in the number of treatments
ndiff,0 = nHC − nDP,0 and ndiff,0.4 = nHC − nDP,0.4, and the
number of failed attempts for both rounding offsets. Moreover,
the computation time and the used RAM were documented. The
latter was the limiting factor of the approach.

Of all 140 patient data sets, the system memory was exceeded
in four configurations of subject 08 (λ1, λ2, λ4, and λ5) for both
offsets. Therefore, only the results for the other 136 data sets
were available. The system memory per configuration in most
cases was close to themaximum availablememory (∼50GB). The
results are presented in Figure 7.

Using the conservative rounding rule with offset o = 0.4,
in an additional 12 cases, no DP-Schedule could be produced.
The remaining 124 schedules on average were worse than the
heuristic schedules by n̄diff,0.4 = −3.06±1.71 treatments, with an

average violation of d̄viol = 0.2± 0.89 days. There was no case in
which a DP-Schedule needed fewer treatments than its respective
HC-Schedule.

For the commercial rounding rule with o = 0.0, in five
data sets, no feasible solution was produced by the DP method.
However, this approach was successful in four cases, in which
no HC-Schedule could be generated. For the 126 cases in
which both approaches succeeded, an average improvement of
the DP-Schedules by n̄diff,0.0 = 0.076 ± 1.69 treatments was

achieved with an average cost of d̄viol = 9.09 ± 8.52 days of
violation. For the four cases in which the heuristic rule did not
produce a schedule, the DP method had an average violation of
d̄viol = 5.08 ± 1.17 days.

There was no case in which an improvement from the DP
method had zero days of violation. However, in some cases, DP-
Schedules with only minor violations and a significant reduction
in the number of treatments were generated. For example, for
subject 02 with λ1, there was a violation of dviol = 32.33
days with very small offset from the upper bound, which then
reached its BPV, slightly below that threshold. As that threshold
would probably be selected with some safety region, this subject
might not need any treatment at all. Following the HC-Schedule,
three treatments were applied, because the upper bound must be
strictly respected. A similar case was inspected for subject 04 with
λ2, where the number of treatments was reduced by one when
dviol = 5.5 days of violation were tolerated. There were also some
cases in which the DP-Schedules were clearly sub-optimal (see
subject 25 with λ1).

Using DP with o = 0.4 often produced solutions, which were
feasible, but on average significantly worse than the heuristic
schedules. Using commercial rounding with o = 0.0 provided
the opportunity of finding better schedules, which only slightly
endangered the patient but increased the quality of life of the
patient. Therefore, this approach seems suitable for producing
alternative treatment schedules, which, in clinical practice, can
be compared to one another.

4. DISCUSSION

4.1. Model
To our knowledge, this is the first time that erythropoiesis
in PV patients has been described in a framework that
can simulate the dynamics of the disease. This is a first
step toward clinical decision support, with which medical
doctors can use simulation results to predict follow-up
treatments. Such a framework has the potential to improve
the treatment of PV patients significantly, while decreasing the
work-load of clinical personnel by reducing the number of
necessary appointments.

There are some drawbacks to the proposed model, however,
and these will be addressed in future work. First, the different
stages of erythropoiesis are simplified and summarized in few
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FIGURE 7 | Erythrocyte trajectories using DP-Schedules for both rounding approaches and HC-Schedules for three exemplary patients. X3,up is shown as the red

dashed line.

compartments. One can argue that too much information is lost
through the agglomeration of complex underlying phenomena.

Second, further investigation in this area is limited by the
data available. As PV is a rather rare disease, data sets are
difficult to come by. In addition, clinical measurements are
performed using Hct, rather than with more precise values, such
as tHb. The inclusion of tHbmeasurements in the clinical routine
would drastically improve the results provided by a modeling
framework, as discussed in Tetschke et al. (2018). Overall, the
use of more patient data with higher density and more precise
measurement techniques is necessary for the success of model-
based decision support.

Finally, PV is not yet fully understood. This makes the
modeling process difficult, as more black-box components must

be introduced. However, the modeling framework can support
medical research in this field. For example, investigations are
warranted regarding the shortened life span of RBCs which often
occurs in PV patients, and regarding the connection between
the fraction of affected cells λPV and the JAK2V617F allele
burden. Additional medical parameters might be introduced
into this model framework for this purpose, which can, in
combination with more clinical data, lead to new insights into
the disease.

4.2. Optimization
In the second part of this paper, we evaluated different methods
of generating treatment schedules for PV patients based on the
proposed model. An overview over the results is given in Table 6.
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TABLE 6 | Summary of relevant properties of the investigated methods for

generating treatment schedules.

Schedule H HC C IP SUR BB DP (0.0/0.4)

Integer solution X X x X X X X

No constraint violation X X X X x X x

Respecting restrictions of clinic x X X X X X X

Extension for weighted dates x x X X X (X) (X)

Run time practicable X X X x X (X) (X)

Memory practicable X X X X X X x

# Computed schedules (of 140) 140 118 140 0 140 112 136/136

# Feasible instances (of 140) 140 118 140 0 33 112 8/94

Fields with a Xshow that the respective method fulfills this property. In cases of a Xin

brackets, the method has this feature formally but with practical drawbacks. Unfulfilled

properties are marked with an “x”.

The heuristic method of generating schedules follows the
intuitive treatment design practiced by medical doctors. The
resulting H-Schedules and HC-Schedules can be derived quickly
and the schedules are integer solutions by design. Unfortunately,
the heuristic is less flexible with regard to the inclusion of new
features. As this method was sub-optimal in a formal sense, the
quality of this approach was evaluated in comparison to formally
derived optimization methods.

The investigated methods led to treatment schedules that
in most cases had an equal or higher number of treatments
in the observed time horizon, or included violations of safety
constraints. Both the I-Schedules and the BB-Schedules were
often similar to the respective HC-Schedules. The BB-Schedules
were in a few cases even slightly better than the HC-Schedules.
However, those approaches are difficult to realize, owing to high
run times. The generation of I-Schedules is only possible for
very limited time horizons and reduced treatment options. BB-
Schedules can be generated relatively quickly, but need a higher
run time for an increased rate of successful computation.

It is crucial to respect safety constraints to prevent
endangering patients. Therefore, the SUR-Schedules and the
DP-Schedules, which do not respect these safety constraints,
must be used carefully. The SUR-Schedules were in most
cases worse than the corresponding HC-Schedules, and often
had significant violations of the constraints. Any strategy
that uses this approach will require tighter safety constraints.
Consequently, this might lead to feasible treatment schedules,
but they would be significantly worse than the HC-Schedules.
Therefore, the sum-up approach is not recommended for
generating treatment schedules. By contrast, DP-Schedules in
many cases demonstrated comparable quality, without any
or with only minor constraint violations. There were even
cases in which the acceptance of a minor violation led to
considerably improved treatment plans. The major drawback
here is that the order of magnitude of the violations depends
on the selected discretization. This considerably influences
memory consumption. Although DP-Schedules can be used in
conjunction with the corresponding HC-Schedules, the high
demand for system memory renders the approach difficult
to realize.

Based on our investigation using a test configuration, the
heuristic method with its HC-Schedules seemed to be the
method of choice for generating treatment schedules. However,
the heuristic method is difficult to extend when the properties
of the treatments change. For example, as a quality-of-life
feature for the patient, day-based weights might be introduced,
assigning more weight to inconvenient days that are preferably
avoided. This would give the patient the opportunity to realize
treatment on more convenient days—offering more flexibility
than a strictly optimal treatment schedule. The patient can thus
avoid appointments that conflict with personal commitments.
Such day-based weights can be incorporated into all of the
other investigated methods. This would make BB-Schedules,
DP-Schedules, and (in smaller instances) IP-Schedules desirable
suggestions for patient treatment. In all cases, treatment
schedules can be used to support decision-making by medical
doctors when planning therapy.

Continuous treatment schedules were briefly discussed, but
only as a foundation for other approaches, such as the sum-up
method and the B&Bmethod. Currently, continuous phlebotomy
is technologically impractical in clinics, which makes C-
Schedules inapplicable. With increasing technological progress,
however, such a method might be derived in the future. Based
on the results of this paper, this would lead to superior treatment
compared to discrete approaches.

4.3. Conclusion
In this paper, a novel compartment model for PV patients was
derived from the data-driven model in Tetschke et al. (2018).
Theoretical model analysis and proof-of-concept simulations
on clinical data emphasize that this model delivers a plausible
description of changes in erythropoiesis from PV.

This gives the opportunity to simulate the disease patient
individually and to provide phlebotomy schedules based on this
information. Due to the model structure this can be achieved
using tools of mathematical optimization. Thus, in the future
many different further aspects of the clinical practice can be
included in the treatment design. For example, also a treatment
with chemotherapy could be included into the model to also
capture more severe cases of the disease. This is a first step toward
clinical decision support in the case of the disease PV.
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