
Mathematical Programming Computation (2019) 11:421–455
https://doi.org/10.1007/s12532-019-00154-6

FULL LENGTH PAPER

Solving quadratic programs to high precision using scaled
iterative refinement

Tobias Weber1 · Sebastian Sager1 · Ambros Gleixner2

Received: 20 November 2017 / Accepted: 22 December 2018 / Published online: 6 February 2019
© The Author(s) 2019

Abstract
Quadratic optimization problems (QPs) are ubiquitous, and solution algorithms have
matured to a reliable technology. However, the precision of solutions is usually limited
due to the underlying floating-point operations. This may cause inconveniences when
solutions are used for rigorous reasoning. We contribute on three levels to overcome
this issue. First, we present a novel refinement algorithm to solve QPs to arbitrary
precision. It iteratively solves refined QPs, assuming a floating-point QP solver oracle.
We prove linear convergence of residuals and primal errors. Second, we provide an
efficient implementation, based on SoPlex and qpOASES that is publicly available
in source code. Third, we give precise reference solutions for the Maros andMészáros
benchmark library.

Keywords Quadratic programming · Iterative refinement · Active set · Rational
calculations

Mathematics Subject Classification 90C20 · 90-08 · 90C55

The software that was reviewed as part of this submission was given the DOI (Digital Object Identifier)
https://doi.org/10.5281/zenodo.2532184.

This project has received funding from the European Research Council (ERC) under the European Unions
Horizon 2020 research and innovation programme (Grant Agreement No 647573), from the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)—314838170, GRK 2297 MathCoRe, and
from the German Federal Ministry of Education and Research as part of the Research Campus MODAL
(BMBF Grant Number 05M14ZAM), all of which is gratefully acknowledged.

B Tobias Weber
Tobias.Weber@ovgu.de

Ambros Gleixner
gleixner@zib.de

1 Institute of Mathematical Optimization, Otto von Guericke University, Universitätsplatz 2,
02-204, 39106 Magdeburg, Germany

2 Department of Mathematical Optimization, Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-019-00154-6&domain=pdf
http://orcid.org/0000-0003-0391-5903
https://doi.org/10.5281/zenodo.2532184

422 T. Weber et al.

1 Introduction

Quadratic optimization problems (QPs) are optimization problems with a quadratic
objective function and linear constraints. They are of interest directly, e.g., in portfo-
lio optimization or support vector machines [1]. They also occur as subproblems in
sequential quadratic programming, mixed-integer quadratic programming, and non-
linear model predictive control. Efficient algorithms are usually of active set, interior
point, or parametric type. Examples of QP solvers are BQPD [5], CPLEX [2], Gurobi
[15],qp_solve [12],qpOASES [4], and QPOPT [7]. These QP solvers havematured
to reliable tools and can solve convex problems with many thousands, sometimes
millions of variables. However, they calculate and check the solution of a QP in
floating-point arithmetic. Thus, the claimed precision may be violated and in extreme
cases optimal solutionsmight not be found. Thismay cause inconveniences, especially
when solutions are used for rigorous reasoning.

One possible approach is the application of interval arithmetic. It allows to include
uncertainties as lower and upper bounds on the modeling level, see [16] for a survey
for the case of linear optimization. As a drawback, all internal calculations have to be
performed with interval arithmetic. Standard solvers can not be used any more and
their conversion to interval arithmetic becomes non-trivial when division by intervals
containing zero is encountered. In any case, computation times increase and solutions
may be very conservative.

We are aware of only one advanced algorithm that solves QPs exactly over the
rational numbers. It is designed to tackle problems from computational geometry with
a small number of constraints or variables [6]. Based on the classical QP simplex
method [23], it replaces critical calculations inside the QP solver by their rational
counterparts. Heuristic decisions that do not affect the correctness of the algorithm
are performed in fast floating-point arithmetic.

In this paper we propose a novel algorithm that can use efficient floating-point
QP solvers as a black box. Our method is inspired by iterative refinement, a standard
procedure to improve the accuracy of an approximate solution for a system of lin-
ear equalities [22]: The residual of the approximate solution is calculated, the linear
system is solved again with the residual as a right-hand side, and the new solution is
used to refine the old solution, thus improving its accuracy. A generalization of this
idea to the solution of optimization problems needs to address several difficulties:
most importantly, the presence of inequality constraints; the handling of optimality
conditions; and the numerical accuracy of floating-point solvers in practice.

For linear programs (LPs) this has first been developed in [9,10]. The approach
refines primal-dual solutions of the Karush–Kuhn–Tucker (KKT) conditions and uti-
lizes scaling and calculations in rational arithmetic. We generalize this method further
and discuss the specific issues due to the presence of a quadratic objective function.
The fact that the approach carries over from LP to QP was remarked in [8]. Here
we provide the details, provide a general lemma showing how the residuals bound
the primal and dual iterates, and analyze the computational behavior of the algorithm
based on an efficient implementation that is made publicly available in source code
and can be used freely for research purposes.

123

Solving quadratic programs to high precision using… 423

The idea to refine QP solutions has been explored before. In [18] a reference QP
is solved in floating-point precision by an active-set method and its basis matrix fac-
torization is used to set up and solve a transformed QP. The error introduced by this
matrix approximation is then corrected by an iterative refinement procedure. This leads
to a sequence of QPs with differing right-hand side vectors that compute refinement
steps converging to a solution of the original QP in floating-point precision. The main
purpose here is to speed up the QP solution process by avoiding to factorize the basis
matrix of the QP.

Othermethods use iterative refinement to deal with errors introduced by the implicit
treatment of the constraints. In [20] one part of the constraints of a nonlinear program-
ming problem is treated implicitly inside a sequential quadratic programming scheme.
The nullspace of these equations is only approximated and the refinement equation for
the error is included into the QPs to stabilize the inexact newton scheme. In [13] a QP
is solved by a conjugate gradient algorithm implicitly treating all constraints. In order
to cope with numerical inaccuracies in the projection of the iterates onto the feasi-
ble set, different iterative refinement extensions to the algorithm are proposed. These
approaches use iterative refinement on a lower level inside of a dedicated algorithm.
In contrast, the iterative refinement scheme is designed to employ any floating-point
QP algorithm as a black-box subroutine.

The paper is organized as follows. In Sect. 2 we define and discuss QPs and their
refined and scaled counterparts. We give one illustrating and motivating example for
scaling and refinement. In Sect. 3 we formulate an algorithm and prove its conver-
gence properties. In Sect. 4 we consider performance issues and describe how our
implementation based on SoPlex and qpOASES can be used to calculate solutions
for QPs with arbitrary precision. In Sect. 5 we discuss run times and provide solutions
for the Maros and Mészáros benchmark library [19]. We conclude in Sect. 6 with a
discussion of the results and give directions for future research and applications of the
algorithm.

In the following we will use ‖ · ‖ for the maximum norm ‖ · ‖∞. The maximal
entry of a vector maxi {vi } is written as max{v}. Inequalities a ≤ b for a, b ∈ Qn hold
componentwise. Q+ denotes the set of positive rationals.

2 Refinement and scaling of quadratic programs

In this section we collect some basic definitions and results that will be of use later
on. We consider convex optimization problems of the following form.

Definition 1 (Convex QP with Rational Data) Let a symmetric matrix Q ∈ Qn×n , a
matrix A ∈ Qm×n , and vectors c ∈ Qn, b ∈ Qm, l ∈ Qn be given. We consider the
quadratic optimization problem (QP)

min
x

1
2 x

T Qx + cT x

s.t. Ax = b
x ≥ l

(P)

123

424 T. Weber et al.

assuming that (P) is feasible and bounded, and Q is positive semi-definite on the
feasible set.

A point x∗ ∈ Qn is a global optimum of (P) if and only if it satisfies the Karush–
Kuhn–Tucker (KKT) conditions [3], i.e., if multipliers y∗ ∈ Qm exist such that

Ax∗ = b (1a)

x∗ ≥ l (1b)

AT y∗ ≤ Qx∗ + c (1c)

(Qx∗ + c − AT y∗)T (x∗ − l) = 0. (1d)

The pair (x∗, y∗) is then called KKT pair of (P). Primal feasibility is given by (1a)
and (1b), dual feasibility by (1c), and complementary slackness by (1d). Refinement
of this system of linear (in-)equalities is equivalent to the refinement of (P).

Definition 2 (Refined QP) Let the QP (P), scaling factors ΔP ,ΔD ∈ Q+ and vectors
x∗ ∈ Qn, y∗ ∈ Qm be given. We define the refined QP as

min
x

1

2
xT

ΔD

ΔP
Qx + (ΔDĉ)

T x

s.t. Ax = ΔP b̂
x ≥ ΔP l̂,

(PΔ)

where ĉ = Qx∗ + c − AT y∗, b̂ = b − Ax∗, and l̂ = l − x∗.
The following theorem is the basis for our theoretical and algorithmic work. It is a
generalization of iterative refinement for LP and was formulated and proven in [8,
Theorem 5.2]. Again, primal feasibility refers to (1a) and (1b), dual feasibility to (1c),
and complementary slackness to (1d).

Theorem 3 (QP Refinement) Let the QP (P), scaling factors ΔP ,ΔD ∈ Q+, vectors
x∗ ∈ Qn, y∗ ∈ Qm, and the refined QP (PΔ) be given. Then for any x̂ ∈ Rn, ŷ ∈ Rm

and tolerances εP , εD, εS ≥ 0:

1. x̂ is primal feasible for (PΔ)within an absolute tolerance εP if and only if x∗+ x̂
ΔP

is primal feasible for (P) within εP/ΔP .
2. ŷ is dual feasible for (PΔ) within an absolute tolerance εD if and only if y∗ + ŷ

ΔD
is dual feasible for (P) within εD/ΔD.

3. x̂ , ŷ satisfy complementary slackness for (PΔ) within an absolute tolerance εS

if and only if y∗ + ŷ
ΔD

, x∗ + x̂
ΔP

satisfy complementary slackness for (P) within
εS/(ΔPΔD).

For illustration, consider the following example.

Example 4 (QP Refinement) Consider the QP with two variables

min
x

1

2
(x21 + x22) + x1 + (1 + 10−6)x2

s.t. x1 + x2 = 10−6

x1, x2 ≥ 0.

123

Solving quadratic programs to high precision using… 425

−1 −0.5 0.5

−0.5

0.5

1
x1 + x2 = 10−6

x∗level curve x1

x2

0.5 1 1.5

−0.5

0.5

1

x1 + x2 = 1

x∗ x̂

level curve

x1

x2

Fig. 1 Illustration of nominal QP (left) and of refined QP (right) for Example 4. The scaled (and shifted)
QP (PΔ) acts as a shift and zoom for (P), allowing to correct the solution x∗ (orange dot) from (0, 0) to
(10−6, 0)

An approximate solution to a tolerance of 10−6 is x∗
1 = x∗

2 = 0 with dual multiplier
y∗ = 1. This solution is slightly primal and dual infeasible, but the solver can not
recognize this on this scale. The situation is depicted in Fig. 1 on the left.

The point x∗ seems to be the optimal solution satisfying the equality constraint
and the brown circle representing the level curve of the objective function indicates
the optimality. The corresponding violations are l̂ = (0, 0)T , b̂ = 10−6, and ĉ =
(0, 10−6)T . The refined QP is

min
x

1

2
(x21 + x22) + x2

s.t. x1 + x2 = 1
x1, x2 ≥ 0

with scaling factors ΔP = ΔD = 106. The optimal solution to this problem is
x̂1 = 1, x̂2 = 0 with multiplier ŷ = 1. This situation is depicted in Fig. 1 on the right.
The initial point x∗ is obviously not the optimal solution and the solution to the refined
problem is x̂ . The refined solution is x∗ + x̂/ΔP = (10−6, 0)T and y∗ + ŷ/ΔD =
1 + 10−6. These values are primal and dual feasible in the original problem.

Note that we restrict the presentation to QPswith rational data because this parallels
the implementation on which the computational study in Sect. 5 is based. However,
the method is applicable to QPs over any field that is dense in R and contains the
floating-point numbers returned by the QP solver. In practice, it is merely required
that we can perform exact arithmetic over the field and that numbers from the field can
be rounded to a floating-point approximation with small error. This certainly holds for
Q, for which software support is provided by several libraries.

The increased arithmetic cost of rational arithmetic stems from storing arbitrarily
large integer numerators and denominators and reducing them to be co-prime by
regularly computing their greatest common divisor. Floating-point numbers such as

123

426 T. Weber et al.

standard double-precision numbers specified by the IEEE Microcomputer Standards
Committee [17] are rational numbers usually stored in binary representation

±1.q1q2q3 . . . q52 · 2e

with qi ∈ {0, 1} and e ∈ {−1022,−1021, . . . , 1023}, plus special bit patterns for
zero, plus andminus infinity, and the result of undefined arithmetic operations (“not-a-
number”). This gives 15 to 17 significant decimal digits to which each rational number
can be rounded. Specifically, we will round the rational data of the QPs P and (PΔ)
defined above in order to pass their floating-point versions P̃ and P̃Δ, respectively, to
the underlying QP solver. Conversely, each floating-point number is a rational number,
so no precision is lost when using solutions from the QP solver for a correction step
as in Theorem 3. For further details on rational and floating-point arithmetic we refer
to [11,14].

3 The iterative refinement algorithm for quadratic programming

To solve quadratic programs to arbitrary, a priori specified precision, we apply the
refinement idea from the previous section iteratively as detailed in Algorithm 1.
Algorithm 1 expects QP data (Q, A, c, b, l) in rational precision, primal and dual ter-
mination tolerances (εP , εD), complementary slack termination tolerance (εS), scaling
limit α > 1 and iteration limit kmax . First the rounded QP (P̃) is solved with a floating-
point QP solver oracle which returns optimal primal and dual solution vectors (Line2).
In Line3 the main loop begins. The primal violations for constraints (b̂, Line4) and
for bounds (l̂, Line5) are calculated. The maximal primal violation is saved as δP in
Line6. The reduced cost vector ĉ and its maximal violation δD are calculated in Lines
7–8. In Line9 the scaling factor Δk is chosen as the maximum of αΔk−1 and the
inverses of the violations δP and δD . The complementary slack violation δS is calcu-
lated in Line10. If the primal, dual and complementary slack violations are already
below the specified tolerances the loop is stopped (Lines11–12) and the optimal solu-
tion is returned (Line17). Else (Line13) the refined, scaled, and rounded QP (P̃Δk) is
solved with the floating-point QP oracle in Line14. We save the floating-point optimal
primal and dual solution vectors (Line15). We scale and add them to the current iterate
(xk, yk) to obtain (xk+1, yk+1), Line16.

Note that all calculations except the expensive solves of the QPs are done in rational
precision. Algorithm 1 uses only one scaling factorΔk for primal and dual infeasibility
to avoid the scaling of the quadratic term of the objective. Keeping this matrix and
the constraint matrix A fixed gives QP solvers the possibility to reuse the internal
factorization of the basis system between refinements, as the transformation does not
change the basis. Hence one can perform hotstarts with the underlying QP solver
which is crucial for the practical performance of the algorithm. This comes at the cost
of only scaling either primal or dual infeasibilities as required, especially if they differ
a lot, possibly slowing convergence.

To investigate the performance of the algorithm we make, in analogy with the LP
case [10, Ass. 1], the following assumption.

123

Solving quadratic programs to high precision using… 427

Algorithm 1 Iterative QP Refinement (IQPR)
1: Input: (P) in rational precision, termination tolerances εP and εD and εS , scaling limit α > 1, iteration

limit kmax
2: Initialization: Δ0 ← 1, solve (P̃) approximately, save optimal (x1, y1)
3: for k ← 1, 2, ..., kmax do
4: b̂ ← b − Axk
5: l̂ ← l − xk
6: δP ← max

{
0, ‖b̂‖,max{l̂}

}

7: ĉ ← Qxk + c − AT yk
8: δD ← max

{
0,max{−ĉ}}

9: Δk ← min
{
δ−1
P , δ−1

D , αΔk−1

}

10: δS ← ∑
i l̂i ĉi

11: if δP ≤ εP and δD ≤ εD and δS ≤ εS then
12: break
13: else
14: solve (P̃Δk) approximately
15: (x∗, y∗) ← KKT pair returned as optimal

16: (xk+1, yk+1) ← (xk , yk) + (x∗,y∗)
Δk

17: Return: (xk , yk)

Assumption 5 (QPSolver Accuracy)We assume that there exists ε ∈ [0, 1) and σ ≥ 0
such that the QP solver oracle returns for all rounded QPs (P̃Δk) solutions (x̄, ȳ) that
satisfy

‖Ax̄ − Δk b̂‖ ≤ ε

x̄ ≥ Δk l̂ − 1ε

Qx̄ + Δk ĉ ≥ AT ȳ − 1ε

|(Qx̄ + Δk ĉ − AT ȳ)T (x̄ − Δk l̂)| ≤ σ

with respect to the rational input data of QPs (PΔk).

Note that this ε corresponds to a termination tolerance passed to a floating-point solver,
while the algorithm uses overall termination tolerances εP and εD and a scaling limit
α > 1 per iteration. We denote ε̃ = max{1/α, ε}.
Lemma 6 (Termination and Residual Convergence) Algorithm 1 applied to a primal
and dual feasible QP (P) and using a QP solver that satisfies Assumption 5 will
terminate in at most

kmax = max { log(εP)/ log(ε̃), log(εD)/ log(ε̃), log(εS/σ)/(2 log(ε̃)) + 1 } (2)

iterations. Furthermore, after each iteration k = 1, 2, . . . the primal-dual iterate
(xk, yk) and the scaling factor Δk satisfy

Δk ≥ 1/ε̃k (3a)

123

428 T. Weber et al.

‖Axk − b‖ ≤ ε̃k (3b)

xk − l ≥ −1ε̃k (3c)

Qxk + c − AT yk ≥ −1ε̃k (3d)

|(Qxk + c − AT yk)
T (xk − l)| ≤ σ ε̃2(k−1). (3e)

Proof We prove (3) by induction over k, starting with k = 1. As ε̃ ≥ ε, the claims
(3b–3e) follow directly from Assumption 5. Using Lines 6, 4–5, and Assumption 5
we obtain

δP = max
{
0, ‖b̂‖,max{l̂}

}
= max{0, ‖Ax1 − b‖,max{l − x1}} ≤ ε

and with Lines 8,7 and Assumption 5

δD = max
{
0,max{−ĉ}} = max

{
0,max{Qx1 + c − AT y1}

}
≤ ε.

Thus from Line9 we have

Δ1 = min
{
δ−1
P , δ−1

D , αΔ0

}
≥ min

{
ε−1, ε−1, α

}
≥ ε̃−1

and hence claim (3a) for the first iteration.
Assuming (3) holds for k we know that δP,k, δD,k ≤ ε̃k and Δk ≥ 1/ε̃k . With the

scaling factor Δk using x∗ = xk and y∗ = yk we scale the QP (P) as in Theorem 3
and hand it to the QP solver. By Theorem 3 this scaled QP is still primal and dual
feasible and by Assumption 5 the solver hands back a solution (x̂, ŷ) with tolerance
ε ≤ ε̃. Therefore using Theorem 3 again the next refined iterate (xk+1, yk+1) has a
tolerance in QP (P) of ε̃/Δk ≤ ε̃k+1, which proves (3b–3d).

With the same argument the solution (x̂, ŷ) violates complementary slackness by
σ in the scaled QP (Assumption 5) and the refined iterate (xk+1, yk+1) violates com-
plementary slackness in QP (P) by σ/Δ2

k ≤ σ ε̃2k proving (3e).
We have now δP,k+1, δD,k+1 ≤ ε̃k+1. Also it holds that αΔk ≥ α/ε̃k ≥ 1/ε̃k+1.

Line9 of Algorithm 1 gives

Δk+1 ≥ 1/ε̃k+1,

proving (3a).
Then (2) follows by assuming the slowest convergence rate of the primal, dual and

complementary violations and by comparing this with the termination condition in
Line11 of Algorithm 1

ε̃k ≤ εP , ε̃k ≤ εD, σ ε̃2(k−1) ≤ εS .

This is equivalent to (2). 	

123

Solving quadratic programs to high precision using… 429

The results show that even though we did not use the violation of the complementary
slackness to choose the scaling factor in Algorithm 1, the complementary slackness
violation is bounded by the square of ε̃.

Remark 7 (Nonconvex QPs)Algorithm 1 can also be used to calculate high precision
KKT pairs of nonconvex QPs. If the black box QP solver hands back local solutions
of the quality specified in Assumption 5 Lemma 6 holds as well for nonconvex QPs
then Algorithm 1 returns a high precision local solution.

However, assuming strict convexity, an even stronger result holds. Inspired by
the result for the equality-constrained QP [3, Proposition 2.12] we investigate how
this right-hand side convergence of the KKT conditions is related to the primal-dual
solution.

Lemma 8 (Primal and Dual Solution Accuracy) Let QP (P) be given and be strictly
convex, the minimal and maximal eigenvalues of Q be λmin(Q) and λmax(Q), respec-
tively, and theminimal nonzero singular value of A be σmin(A). Let the KKT conditions
(1) hold for (x∗, y∗, z∗), i.e.,

Ax∗ = b (4a)

AT y∗ + z∗ = Qx∗ + c (4b)

z∗T (x∗ − l) = 0 (4c)

x∗ ≥ l (4d)

z∗ ≥ 0 (4e)

and the perturbed KKT conditions for perturbations e ∈ Qm, g, f , h ∈ Qn, and
i ∈ Q hold for (x, y, z), i.e.,

Ax = b + e (5a)

AT y + z = Qx + c + g (5b)

zT (x − l) = i (5c)

x ≥ l + f (5d)

z ≥ h. (5e)

Denote

a := λmax(Q)‖e‖2
2σmin(A)

+ λmax(Q)λmin(Q)‖g‖2/2
d := λmax(Q)‖i − hT (x∗ − l) − z∗T f ‖2.

Then

‖AT (y − y∗) + (z − z∗)‖2 ≤ a +
√
a2 + d (6)

123

430 T. Weber et al.

and

‖x − x∗‖2 ≤ λmin(Q)(a +
√
a2 + d) + λmin(Q)‖g‖2. (7)

Proof By (4a) and (5a) we have that A(x − x∗) = e and taking the Moore-Penrose
pseudoinverse A+ of A we define δ = A+e with Aδ = e and ‖δ‖2 ≤ σmin(A)−1‖e‖2.
Using this we can start to derive the dual bound by taking the difference of (4b) and
(5b)

AT (y − y∗) + (z − z∗) = Q(x − x∗) + g. (8)

Multiplying from the left with Q−1(AT (y − y∗) + (z − z∗)) transposed gives

‖AT (y − y∗) + (z − z∗)‖2Q−1 = (AT (y − y∗) + (z − z∗))T ((x − x∗) + Q−1g)

= (AT (y − y∗) + (z − z∗))T Q−1g + (y − y∗)T A(x − x∗)︸ ︷︷ ︸
Aδ

+(z − z∗)T (x − x∗)

= (AT (y − y∗) + (z − z∗))T (Q−1g + δ) + (z − z∗)T (x − x∗ − δ). (9)

The second term of (9) can be expressed as

(z − z∗)T (x − l − (x∗ − l) − δ) = zT (x − l)︸ ︷︷ ︸
i

+ z∗T (x∗ − l)︸ ︷︷ ︸
0

− zT (x∗ − l)︸ ︷︷ ︸
≥hT (x∗−l)

− z∗T (x − l)︸ ︷︷ ︸
≥z∗T f

(z − z∗)T (x − l − (x∗ − l) − δ) ≤ i − hT (x∗ − l) − z∗T f .

With this and (9) we bound from above the term ‖AT (y − y∗) + (z − z∗)‖2
Q−1 = ∗

giving the inequality

∗ ≤ (AT (y − y∗) + (z − z∗))T (Q−1g + δ) + i − hT (x∗ − l) − z∗T f .

Taking the norm on the right and reordering terms gives

‖Q‖−1
2 ‖AT (y − y∗) + (z − z∗)‖22 ≤ ‖AT (y − y∗) + (z − z∗)‖2‖Q−1g + δ‖2

+‖i − hT (x∗ − l) − z∗T f ‖2.

This is a quadratic expression in ‖AT (y − y∗) + (z − z∗)‖2 = m

m2 − m‖Q−1g + δ‖2‖Q‖2 − ‖i − hT (x∗ − l) − z∗T f ‖2‖Q‖2 ≤ 0.

It has two roots, but only one is greater than zero and bounds ‖AT (y − y∗) + (z −
z∗)‖2(= m) from above

m ≤ ‖Q−1g + δ‖2‖Q‖2/2
+√

(‖Q−1g + δ‖2‖Q‖2)2/4 + ‖i − hT (x∗ − l) − z∗T f ‖2‖Q‖2. (10)

123

Solving quadratic programs to high precision using… 431

This can be expressed as

‖AT (y − y∗) + (z − z∗)‖2 ≤ a +
√
a2 + d (11)

where a and d are defined as above. This proves (6). To prove the primal bound we
multiply equation (8) from the left with Q−1

(x − x∗) = Q−1(AT (y − y∗) + (z − z∗) − g).

Taking norms gives the inequality

‖x − x∗‖2 ≤ ‖Q−1‖2‖AT (y − y∗) + (z − z∗)‖2 + ‖Q−1g‖2. (12)

Combining the dual bound (11) and (12) we get the final primal bound

‖x − x∗‖2 ≤ λmin(Q)(a +
√
a2 + d) + λmin(Q)‖g‖2

which proves (7). 	

Note that λmax(Q)λmin(Q) is the condition number of Q. The above assumption and
lemmas can be summarized to a statement about the convergence of the algorithm for
a strictly convex QP.

Theorem 9 (Rate of Convergence) Algorithm 1 with corresponding input and using a
QP solver satisfying Assumption 5 solving the QP (P) that is also strictly convex has
a linear rate of convergence with a factor of ε̃1/2 for the primal iterates, i.e.

‖xk − x∗‖ ≤ ε̃1/2‖xk−1 − x∗‖,

with x∗ being the unique solution of (P).

Proof By Assumption 5 and Lemma 6 we know that the right-hand side errors of the
KKT conditions are bounded by

‖e‖ ≤ ε̃k, ‖g‖ ≤ ε̃k, ‖ f ‖ ≤ ε̃k, ‖i‖ ≤ σ ε̃2(k−1), ‖h‖ = 0.

Here we set the violations h of the inequality KKTmultipliers z to zero and count them
as additional dual violations g for simplicity. Also note that in Lemma 8 the bound
is just depending on the norm of the right-hand side violation vectors, two different
violation vectors with the same norm give the same bound. Therefore we just consider
the norms. Combining the above with Lemma 8 we get

‖xk − x∗‖ ≤ c1ε̃
k +

√
c2ε̃k + c3ε̃2k

for the primal iterate in iteration k with constants

c1 = λmin(Q)λmax(Q)

(
1

λmax(Q)
+ λmin(Q)

2
+ 1

2σmin(A)

)

123

432 T. Weber et al.

c2 = λmax(Q)‖z∗‖
c3 = (c1 − λmin(Q))2 + λmax(Q)σ/ε̃2.

Looking at the quotient

‖xk − x∗‖
‖xk−1 − x∗‖ ≤ c1ε̃k +

√
c2ε̃k + c3ε̃2k

c1ε̃k−1 +
√
c2ε̃k−1 + c3ε̃2(k−1)

and seeing that

‖xk − x∗‖
‖xk−1 − x∗‖ ≤ ε̃k/2(c1ε̃k/2 +

√
c2 + c3ε̃k)

ε̃(k−1)/2(c1ε̃(k−1)/2 +
√
c2 + c3ε̃k−1)

= ε̃1/2γk

with γk ≤ 1 proves the result. 	

This theoretical investigation shows us two things. First, we have linear residual con-
vergence with a rate of ε̃. In contrast to usual convergence results our algorithm
achieves this rate in practice by the use of rational computations if the floating-point
solver delivers solutions of the quality specified in Assumption 5. This is also checked
by the rational residual calculation in our algorithm in every iteration. Second, this
residual convergence implies primal iterate convergence with a linear rate of ε̃1/2 for
strictly convex QPs.

4 Implementation

Following previous work [10] on the LP case we implemented Algorithm 1 in the
same framework within the SoPlex solver [24], version 2.2.1.2, using the GNU
multiple precision library (GMP) [14] for rational computations, version 6.1.0. Note
that SoPlex is not used to solve LPs but provides support functionalities. These
are functionalities to read and write mps files (extended to qps files) and to save
the corresponding QP problems in rational and floating-point precision. Additionally
SoPlex provides rational and floating-point calculations with operator overloading
reducing implementation complexity (based on GMP). As underlying QP solver we
use the active-set solver qpOASES [4] version 3.2. This version of qpOASES was
originally designed for small to medium QPs (up to 1000 variables and constraints).
Furthermore, we implemented an interface to a pre-release version of qpOASES 4.0,
which can handle larger, sparse QPs of a size up to 40,000 variables and constraints.
Compared to the matured qpOASES 3.2, this version is not yet capable of hotstarts
and in some cases is less robust. Nevertheless, it allows us to study the viability of
iterative refinement on larger QPs. The source code of our implementation is available
for download in a public repository [21].

In order to treat general QPs with inequalities, our implementation recovers the
form (P) by adding one slack variable per inequality constraint. Note that not only

123

Solving quadratic programs to high precision using… 433

Table 1 IQPR parameters

Parameter set s1 s2 s3 s4 s5
qpOASES version 3.2 3.2 4.0 4.0 3.2

Primal tolerance (εP) 1e−100 1e−100 1e−100 1e−100 1e−10

Dual tolerance (εD) 1e−100 1e−100 1e−100 1e−100 1e−10

Maxscaleincrement (α) 1e12 1e12 1e12 1e12 1e12

Sparse No No Yes Yes No

Max num backstepping (lmax) 10 10 10 10 1

Refinement limit (kmax) 300 50 50 50 10

Ratfac minstalls 2 0 0 51 30

lower, but also upper bounds on the variables need to be considered. However, this is
a straightforward modification to our algorithm and realized in the implementation.

One advantage of using the active-set QP solver qpOASES is the returned basis
information. We use the basis in three aspects: first, to calculate dual and complemen-
tary slack violations; second, to explicitly set nonbasic variables to their lower bounds
after the refinement step in Line16 of Algorithm 1; and third, to compute a rational
solution defined by the corresponding system of linear equations. This is solved by a
standard LU factorization in rational arithmetic. If the resulting primal-dual solution
is verified to be primal and dual feasible, the algorithm can terminate early with an
exact optimal basic solution.

Since the LU factorization can be computationally expensive, we only perform this
step if we believe the basis to be optimal. When the QP solver returns the same basis
as “optimal” for several iterations this can be used as a heuristic indicator that the
basis might be truly optimal, even if the iteratively corrected numerical solution is not
yet exact. Hence, the number of consecutive iterations with the same basis is used to
trigger a rational basis system solve. This can be controlled by a threshold parameter
called “ratfac minstalls”, see Table 1.

If the floating-point solver fails to compute an approximately optimal solution, we
decrease the scaling factor by two orders ofmagnitude and try to solve the resultingQP
again. The scaling factor is reduced either until the maximum number of backstepping
rounds is reached or until the next backstepping round would result in a scaling factor
lower than in the last refinement iteration (k − 1).

The default parameter set (s1) of our implementation is given in Table 1. The other
four parameter sets (s2–s5) are used for our numerical experiments to derive either
exact or inexact solutions.

We exploit the different features of the two qpOASES versions. Version 3.2 has
hotstart capabilities that allow reusing the internal basis system factorization of the
preceding optimal basis. Therefore we start in the old optimal basis and build on the
progress made in the previous iterations instead of solving the QP from scratch at
every iteration. Additionally we increase the termination tolerance and relax other
parameters that ensure a reliable solve. This speeds up the solving process and is pos-
sible because the inaccuracies, introduced by the floating-point solution, are detected
anyway and handed back to the QP solver in the next iteration for correction. If the QP

123

434 T. Weber et al.

Table 2 qpOASES options in
Version 3.2

Option Fast Reliable

Standard settings set MPC Reliable

NZCTests Enabled Enabled (default)

DriftCorrection Enabled Enabled (default)

Ramping Enabled Enabled (default)

terminationTolerance 1e−3 1.1105e−9 (default)

numRefinementSteps 0 (default) 10

enableFullLITests 0 0

solver fails we simply change to reliable settings and resolve the same QP from the
same starting basis before downscaling. Hence, in Algorithm 1 each ‘solve’ statement
means: try fast settings first and if this fails switch to slow and reliable settings of
qpOASES 3.2. These two sets of options are given in Table 2. In this Table we only
state the options chosen differently from the standard qpOASES settings sets (MPC,
Reliable) which are given in the “Appendix” in Table 5.

For the pre-release version 4.0 we use default settings and no resolves. We either
factorize after each iteration or not at all (see Table 1).

5 Numerical results

For the numerical experiments the standard testset of Maros and Mészáros [19] was
used. It contains 138 convex QPs that feature between two and about 90,000 variables.
The number of constraints varies from one to about 180,000 and the number of nonze-
ros ranges between two and about 550,000. The computations were performed on a
cluster of 64-bit Intel XeonE5-2660 (v3) CPUs at 2.6GHz with 25MB L3 cache and
125GB main memory.

We conduct two different experiments. The goal of the first experiment is to solve
as many QPs from the testset as precisely as possible in order to analyze the itera-
tive refinement procedure computationally and to provide exact reference solutions
for future research on QP solvers. In the second experiment we want to compare
qpOASES (version 3.2, no QP refinement, one solve, default settings) to low accuracy
refinement (low tolerance of 1e−10 in Algorithm 1, using also qpOASES 3.2). This
allows us to investigate whether refinement could also be beneficial in cases that do
not require extremely high accuracy, but a strictly guaranteed solution tolerance in
shortest possible runtime.

Experiment 1 We use the three different parameter sets (s2–s4) given in Table 1 to
calculate exact solutions. The first set (s2) contains a primal and dual termination
tolerance of 1e−100, enables rational factorization in every iteration, and allows for
50 refinements and 10 backsteppings using a dense QP formulation with qpOASES
version 3.2. In contrast the other two sets (s3, s4) with qpOASES version 4.0 use a
sparse QP formulation, either with factorization in every iteration or without factor-
ization. For this experiment, a time limit of three hours is imposed per instance and
solver.

123

Solving quadratic programs to high precision using… 435

Table 3 Results for the three exact parameter sets (s2–s4) over all 138QPs in the testset: number of instances
according to terminal solution accuracy for each setting, for the virtual best setting, and the average number
of nonzeros over the instances in the “best” categories

Accuracy reached s2 s3 s4 best avg. nnzs

Exact (no viol.) 73 74 1 91 6.76e+03

High (≤ 1e−100) 33 45 118 39 1.45e+04

Low (> 1e−100) 11 18 18 8 9.34e+04

Fail (not returned) 21 1 1 0

Table 3 states for each setting the number of instances which were solved exactly,
for which tolerance 1e−100 was reached, for which only low tolerance solutions were
produced, and the number of instances which did not return from the cluster due to
memory limitations. In total these three strategies could solve 91 out of the 138 QPs
in the testset exactly and 39 instances within tolerance 1e−100. For eight instances no
high-precision solution was computed. These “virtual best” results stated in the fifth
column consider for each QP the result of the individual parameter sets that resulted
in the smallest violation. It should be emphasized that for each of the three parameter
sets there exists at least one instance for which it produced the most accurate solution.

The last column reports the average number of nonzeros of the QPs in the three “vir-
tual best” categories. This suggests that for problems with fewer nonzeros a higher
accuracy was reached. In the third and fourth column one problem did not return
(BOYD1 with over 90000 variables). For the parameter set s4 without rational fac-
torization we see that one QP is solved exactly while for all others the algorithm
terminates with violations greater zero.

In order to solve the 197 (= 33 + 45 + 118) QPs to high precision the algorithm
needed on average 8.84 refinements. This confirms the linear convergence because
we bounded the increase of the scaling factor in each iteration by α = 10e+12 and
terminate after reaching a tolerance of 1e−100. If qpOASESwould consistently return
solutionswith an accuracy of 1e−12wewould expect the algorithm to need 9 iterations
(100/12 ≈ 8.33 . . . rounded up). We see that qpOASES usually delivers solutions of
a tolerance below 1e−12.

Detailed results can be found in the “Appendix” in Tables 6, 7, and 8. The column
“Status” reports “optimal” if a solution of tolerance below 1e−100 is computed. Oth-
erwise, if the tolerance is not reached the status is declared “fail”. If the objective value
found differs from the value in literature [19] by more than 1e−7, then the status is
reported as “inconsistent”.1 If we exceed the timelimit, then the status is “timeout”.
The status “error” is an internal algorithmic error, e.g., the QP solver fails to solve one
of the QPs in the sequence and hence the algorithm stops. If the maximum number
of algorithm iterations is reached (e.g., because the solutions calculated by the QP
solver violate Assumption 5) the status is “abort” and results in “NaN” (not a number)
in the other columns. The column “Iterations” counts all QP solver iterations (active
set changes) summed over all algorithm iterations. The algorithm iterations are the

1 For 5 QP problems our solution is more precise using parameter set 2, for parameter sets 3 and 4 this are
6 QP problems. For zero problems our solution is not precise with the second parameter set while the sets
3 and 4 produce 4 and 7 imprecise solutions.

123

436 T. Weber et al.

number of refinements (plus one) given in the “Refinement” column. The QP solver
iterations were only counted for the parameter set s2 and hence are zero for the other
two settings.

If an exact solution is found qpOASES usually returns the optimal basis in the first
three refinement iterations. The optimal basis was found in the first iteration (without
refinement) for 55 instances when using parameter set s2, with set s3 and s4 this where
74 and one instances. Subsequently, the corresponding basis system is solved exactly
by a rational LU factorization.2 For six problems we found that the objective values
given in [19] differ from our results by more than 1e−7: GOULDQP2, HS268, S268,
HUESTIS, HUES-MOD, and LISWET8. This might be due to the use of a floating-
point QP solver with termination tolerance about 1e−7 when originally computing
the values reported. The precise objective value can be found in the online material
associated with this paper.

Experiment 2 In the following the iterative refinement algorithm is set to a termina-
tion tolerance 10−10 and the rational factorization of the basis system is disabled. The
refinement limit is set to 10 and the backstepping limit is set to one (parameter set s5).
We compare this implementation toqpOASES 3.2with the three predefined qpOASES
settings (MPC, Default, Reliable) that include termination tolerances of 2.2210e−7,
1.1105e−9, and 1.1105e−9, respectively. For these fast solves we select only part of
the testset, including the 73 problems that have no more than 1,000 variables and con-
straints. This corresponds to the problem size for which qpOASES 3.2 was originally
designed. In order to allow for a meaningful comparison of runtimes, the evaluation
only considers QPs which were solved by all three qpOASES 3.2 settings and by
refinement to “optimality”, where optimality was certified by qpOASES 3.2 (with its
internal floating-point checks) or rational checks in our algorithm, respectively. For
this experiment, a time limit of one hour is imposed per instance and solver.

An overview of the performance results is given in Table 4. We report runtime, QP
solver iterations, and the final tolerance reached, each time as arithmetic and shifted
geometric mean. To facilitate a more detailed analysis, we consider the series of
subsets “> t” of instances, for which at least one algorithm took more than t seconds.
Equivalently, we exclude the QPs for which all settings took at most 0.01 s, 0.1 s, 1 s,
and 10s. Defining the exclusion by all instead of one method only avoids a biased
definition of these sets of increasing difficulty.

The results show that in no case is the mean runtime of the refinement algorithm
larger than the runtime of qpOASESwith reliable setting. At the same time, the accu-
racy reached is always significantly higher. Compared to qpOASES Default, which
results in an even lower level of precision, refinement is faster in arithmetic and slightly
slower in shifted geometric mean. The QP solver iterations of the refinement are com-
parable to the MPC setting. When looking at the different subsets we see that for QPs
with larger runtime the refinement approach performs relatively better (smaller run-
time, iterations and lower tolerance) than the three qpOASES 3.2 standard settings.
The refinement guarantees the tolerance of 1e−10 if it does not fail. To achieve this

2 This is not the case for the parameter set s4 where we disabled this option. Nevertheless an exact primal
and dual solution was found by the QP solver for one instance (HS21).

123

Solving quadratic programs to high precision using… 437

Table 4 Performance comparison for inexact solves (runtimes are in seconds)

Measure Subset IQPR s5 qpOASES with standard settings

MPC Default Reliable

Time: arith. mean
(% rat. time)

All 2.54 (0.16) 1.03 2.77 19.58

> 0.01 3.25 (0.16) 1.32 3.55 25.08

> 0.1 4.02 (0.12) 1.64 4.40 31.07

> 1 5.66 (0.12) 2.31 6.27 44.60

> 10 7.19 (0.11) 2.77 9.06 69.39

Time: shifted geo. mean, shift
= 0.01 (% rat. time)

All 0.16 (1.68) 0.08 0.10 0.16

> 0.01 0.36 (0.98) 0.15 0.20 0.36

> 0.1 0.60 (0.54) 0.24 0.32 0.64

> 1 0.94 (0.49) 0.43 0.67 1.66

> 10 0.54 (1.00) 0.26 0.51 1.51

QP solver iterations: arith.
mean

All 283.75 260.53 389.92 386.96

> 0.01 362.16 332.44 496.91 493.09

> 0.1 436.67 400.96 591.35 586.96

> 1 520.91 479.38 765.59 761.56

> 10 353.00 348.25 837.15 832.75

QP solver iterations: shifted
geo. mean, shift = 1

All 38.43 36.86 62.08 61.68

> 0.01 85.18 80.86 113.98 112.72

> 0.1 108.12 101.95 124.46 123.05

> 1 105.41 100.22 144.20 142.88

> 10 36.21 35.23 69.62 69.39

Tolerance: arith. mean All 1.49e−12 1.29e−08 1.10e−08 2.28e−09

> 0.01 1.91e−12 1.65e−08 1.40e−08 2.92e−09

> 0.1 2.10e−12 2.03e−08 1.74e−08 3.62e−09

> 1 8.89e−13 2.21e−08 2.48e−08 4.98e−09

> 10 5.29e−14 1.42e−08 3.92e−08 7.32e−09

Tolcerance: shifted geo.
mean, shift = 1e−20

All 1.29e−16 2.14e−12 1.62e−15 4.34e−15

> 0.01 8.71e−17 1.00e−11 4.91e−15 1.13e−14

> 0.1 3.57e−17 8.45e−12 6.92e−15 2.10e−14

> 1 1.94e−17 1.08e−12 2.44e−15 6.02e−15

> 10 9.36e−19 6.86e−15 3.21e−16 2.45e−16

tolerance, for 9 QPs two refinements were necessary, for 21 QPs only one refinement
was necessary, and for 35 instances no refinement was necessary at all. The rational
computation overhead stated in brackets after the runtime and is well below 2%. The
details are shown in Table 9 in the “Appendix”. Also note that due to exclusion of fails

123

438 T. Weber et al.

(which mainly occur with the qpOASES MPC settings) the summarized results have
a slight bias towards qpOASES.

6 Conclusion

We presented a novel refinement algorithm and proved linear convergence of residuals
and errors. Notably, this theoretical convergence result also carries over to our imple-
mentation due to the use of exact rational calculations. We provided high-precision
solutions for most of the QPs in the Maros and Mészáros testset, correcting inaccura-
cies in optimal solution values reported in the literature. This is beneficial for future
research on QP solvers that are evaluated on this testset.

In a second experiment we saw that iterative refinement provides proven tolerance
solutions with smaller or equal computation times compared to qpOASESwith “Reli-
able” solver settings. It can therefore be used as a tool to increase the reliability and
speed of standard floating-point QP solvers. The related approach in [18] is designed
to speed up QP solutions without extended-precision or rational arithmetic. One could
think of combining the two approaches, only using extended precisionwhen necessary,
e.g., when convergence stalls.

If optimal solutions are needed for rigorous reasoning or to make decisions in the
real world the algorithm presented is useful because it is able to fully ensure a specified
tolerance. This tolerance then can be adapted to the necessity of the application at hand.
At the same time this comes with little overhead in rational computation time, which
is important for practical applications.

Regarding algorithmic research and solver development, our framework also pro-
vides the possibility to compare different floating-point QP solvers by looking at the
number of refinements neededwith each solver to detect optimal bases or solutions of a
specified tolerance as a measure for solver accuracy. Solver robustness can be checked
precisely because violations are computed in rational precision. In the future, it would
be valuable to extend the implementation to handle cases of unbounded or infeasible
QPs and to experiment with more general variable transformations that apply, e.g., a
different scaling factor for each variable. As a final remark, we hope that the idea of
checking numerical results of floating-point algorithms in exact or safe arithmetic will
become a future trend when applying or analyzing numerical algorithms.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

7 Appendix

The following tables contain a list of detailed parameter settings for the QP solver
qpOASES and instancewise results for the different experiments described in Sect. 5.

123

http://creativecommons.org/licenses/by/4.0/

Solving quadratic programs to high precision using… 439

7.1 Detailed QP solver options

See Table 5.

Table 5 Standard parameter values for different qpOASES 3.2 settings (EPS = 2.221e−16)

Option Default Reliable MPC

enableRamping Enabled Enabled Disabled

enableFarBounds Enabled Enabled Enabled

enableFlippingBounds Enabled Enabled Disabled

enableRegularisation Disabled Disabled Enabled

enableFullLITests Disabled Enabled Disabled

enableNZCTests Enabled Enabled Disabled

enableDriftCorrection 1 1 0

enableCholeskyRefactorisation 0 1 0

enableEqualities Disabled Disabled Enabeld

terminationTolerance 5.0e6 * EPS 5.0e6 * EPS 1.0e9 * EPS

boundTolerance 1.0e6 * EPS 1.0e6 * EPS 1.0e6 * EPS

boundRelaxation 1.0e4 1.0e4 1.0e4

epsNum − 1.0e3 * EPS − 1.0e3 * EPS − 1.0e3 * EPS

epsDen 1.0e3 * EPS 1.0e3 * EPS 1.0e3 * EPS

maxPrimalJump 1.0e8 1.0e8 1.0e8

maxDualJump 1.0e8 1.0e8 1.0e8

initialRamping 0.5 0.5 0.5

finalRamping 1.0 1.0 1.0

initialFarBounds 1.0e6 1.0e6 1.0e6

growFarBounds 1.0e3 1.0e3 1.0e3

initialStatusBounds Lower Lower Inactive

epsFlipping 1.0e3 * EPS 1.0e3 * EPS 1.0e3 * EPS

numRegularisationSteps 0 0 1

epsRegularisation 1.0e3 * EPS 1.0e3 * EPS 1.0e3 * EPS

numRefinementSteps 1 2 0

epsIterRef 1.0e2 * EPS 1.0e2 * EPS 1.0e2 * EPS

epsLITests 1.0e5 * EPS 1.0e5 * EPS 1.0e5 * EPS

epsNZCTests 3.0e3 * EPS 3.0e3 * EPS 3.0e3 * EPS

enableDropInfeasibles Disabled Disabled Disabled

dropBoundPriority 1 1 1

dropEqConPriority 1 1 1

dropIneqConPriority 1 1 1

enableInertiaCorrection Enabled Enabled Enabled

rcondSMin 1.0e−14 1.0e−14 1.0e−14

123

440 T. Weber et al.

7.2 Detailed results

See Tables 6, 7, 8 and 9.

Table 6 Detailed results for exact solve of large QP set with parameter set s2

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

AUG3D Optimal 3492.32 0 2.56e−113 8 0 0

AUG3DC Optimal 219.36 0 00 0 0 0

AUG3DCQP Optimal 218.64 540 00 1 0 0

AUG3DQP Optimal 3092.52 324 2.15e−110 8 0 0

BOYD1 Abort NaN NaN NaN NaN NaN NaN

BOYD2 Abort NaN NaN NaN NaN NaN NaN

CONT-050 Optimal 4306.67 1 00 0 0 0

CONT-100 Timeout 10814.69 3 NaN 7 6 0

CONT-101 Timeout 10830.68 2 NaN 7 6 0

CONT-300 Abort NaN NaN NaN NaN NaN NaN

CVXQP1_L Fail 15786.74 4010 55500 0 0 0

CVXQP1_M Optimal 16.78 412 00 0 0 0

CVXQP1_S Optimal 0.04 36 00 0 0 0

CVXQP2_M Optimal 25.97 651 00 0 0 0

CVXQP2_S Optimal 0.01 62 00 0 0 0

CVXQP3_L Timeout 10803.72 2990 NaN 1 0 0

CVXQP3_M Optimal 5.95 231 00 1 0 0

CVXQP3_S Optimal 0.00 22 00 0 0 0

DPKLO1 Optimal 2.23 0 00 0 0 0

DTOC3 Fail 19121.42 0 4.40e−15 0 0 0

DUAL1 Optimal 0.26 26 00 1 0 0

DUAL2 Optimal 1.05 4 00 1 0 0

DUAL3 Optimal 1.90 14 00 1 0 0

DUAL4 Optimal 0.21 13 00 0 0 0

DUALC1 Optimal 0.11 31 00 0 0 0

DUALC2 Optimal 0.07 28 00 0 0 0

DUALC5 Optimal 0.07 3 00 0 0 0

DUALC8 Optimal 0.39 13 00 0 0 0

EXDATA Optimal 8964.52 6738 00 1 0 0

GENHS28 Optimal 0.00 0 00 0 0 0

GOULDQP2 Inconsistent 6.70 585 00 2 0 0

GOULDQP3 Optimal 1.84 176 00 0 0 0

HS118 Optimal 0.00 24 00 0 0 0

HS21 Optimal 0.00 3 00 0 0 0

HS268 Inconsistent 0.00 0 00 0 0 0

123

Solving quadratic programs to high precision using… 441

Table 6 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

HS35 Optimal 0.00 1 00 0 0 0

HS35MOD Optimal 0.00 0 00 0 0 0

HS51 Optimal 0.00 0 00 0 0 0

HS52 Optimal 0.00 0 00 0 0 0

HS53 Optimal 0.00 0 00 0 0 0

HS76 Optimal 0.00 4 00 0 0 0

HUESTIS Inconsistent 9782.42 554 00 0 0 0

HUES-MOD Inconsistent 9408.64 554 00 0 0 0

KSIP Optimal 31.56 1080 00 1 0 0

LASER Optimal 593.20 2838 00 0 0 0

LOTSCHD Optimal 0.00 5 00 0 0 0

MOSARQP1 Optimal 445.13 1528 00 0 0 0

MOSARQP2 Optimal 21.45 332 00 0 0 0

PRIMAL1 Optimal 0.51 77 00 0 0 0

PRIMAL2 Optimal 2.66 94 00 0 0 0

PRIMAL3 Optimal 4.37 117 00 0 0 0

PRIMAL4 Optimal 21.04 88 00 0 0 0

PRIMALC1 Optimal 0.11 234 00 0 0 0

PRIMALC2 Optimal 0.17 237 00 0 0 0

PRIMALC5 Optimal 0.23 288 00 0 0 0

PRIMALC8 Optimal 1.86 515 00 0 0 0

Q25FV47 Optimal 372.89 7362 00 0 0 0

QADLITTL Optimal 0.09 232 00 0 0 0

QAFIRO Optimal 0.00 30 6.15e−107 7 0 0

QBANDM Optimal 2.93 1164 00 0 0 0

QBEACONF Optimal 0.91 305 8.07e−110 9 0 0

QBORE3D Optimal 0.87 536 1.97e−111 9 0 0

QBRANDY Optimal 1.07 450 4.86e−108 8 0 0

QCAPRI Optimal 2.95 1051 1.76e−106 8 0 1

QE226 Optimal 4.66 1396 1.71e−101 8 0 0

QETAMACR Optimal 4.75 559 5.17e−102 9 0 0

QFFFFF80 Error 44.78 1079 NaN 9 3 5

QFORPLAN Optimal 2.20 1174 00 0 0 0

QGFRDXPN Optimal 29.31 1423 00 0 0 0

QGROW15 Optimal 8.11 632 2.54e−105 8 0 0

QGROW22 Optimal 32.92 944 2.86e−109 10 0 0

QGROW7 Optimal 0.83 298 7.99e−112 8 0 0

QISRAEL Optimal 0.38 290 00 0 0 0

QPCBLEND Optimal 0.06 66 00 1 0 0

123

442 T. Weber et al.

Table 6 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

QPCBOEI1 Optimal 3.64 435 00 1 0 0

QPCBOEI2 Optimal 0.23 175 00 0 0 0

QPCSTAIR Optimal 2.76 257 00 0 0 0

QPILOTNO Optimal 573.39 7442 1.99e−102 13 0 0

QPTEST Optimal 0.00 1 00 0 0 0

QRECIPE Optimal 0.07 48 9.74e−110 7 0 0

QSC205 Optimal 0.78 106 1.50e−107 8 0 0

QSCAGR25 Optimal 6.17 1076 00 0 0 0

QSCAGR7 Optimal 0.14 329 00 0 0 0

QSCFXM1 Optimal 8.05 801 1.13e−112 11 0 1

QSCFXM2 Optimal 81.35 1891 1.25e−108 10 0 0

QSCFXM3 Optimal 319.56 2510 1.77e−107 10 0 0

QSCORPIO Optimal 2.43 233 1.08e−101 7 0 0

QSCRS8 Optimal 49.19 2016 00 1 0 0

QSCSD1 Optimal 8.78 2054 00 1 0 0

QSCSD6 Optimal 106.56 6015 4.11e−101 9 0 0

QSCSD8 Optimal 1560.58 19564 2.22e−104 8 0 0

QSCTAP1 Optimal 11.22 1474 2.63e−103 8 0 0

QSCTAP2 Optimal 860.50 3862 6.58e−113 10 0 0

QSCTAP3 Optimal 2156.04 6964 2.49e−101 8 0 0

QSEBA Optimal 26.60 1677 00 0 0 0

QSHARE1B Optimal 0.51 782 00 1 0 0

QSHARE2B Optimal 0.19 359 00 1 0 0

QSHELL Optimal 119.14 3306 7.69e−109 9 0 1

QSHIP04L Optimal 398.29 4847 1.67e−106 8 0 0

QSHIP04S Optimal 130.24 2908 2.11e−107 8 0 1

QSHIP08L Optimal 3711.96 7911 3.68e−102 8 0 0

QSHIP08S Optimal 738.69 3997 1.86e−110 9 0 0

QSHIP12L Optimal 8386.98 9765 4.22e−109 8 0 1

QSHIP12S Optimal 1176.10 3821 2.30e−109 8 0 0

QSIERRA Error 996.02 6421 NaN 0 0 1

QSTAIR Optimal 13.43 1136 7.18e−111 9 1 2

QSTANDAT Optimal 26.45 1222 00 3 0 0

S268 Inconsistent 0.00 0 00 0 0 0

STADAT1 Optimal 8013.74 9995 00 0 0 0

STADAT2 Optimal 6437.65 6527 00 1 0 0

STADAT3 Timeout 18337.54 2144 NaN 0 0 1

STCQP1 Optimal 604.13 353 1.05e−103 7 0 0

STCQP2 Optimal 419.60 105 00 0 0 0

123

Solving quadratic programs to high precision using… 443

Table 6 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

TAME Optimal 0.00 0 00 0 0 0

VALUES Optimal 0.10 143 00 2 0 1

YAO Optimal 659.58 2001 00 1 0 0

ZECEVIC2 Optimal 0.00 3 00 0 0 0

Iter. iterations, Tol. tolerance, Ref. refinements, Back. backstepping, Res. resolves

Table 7 Detailed results for exact solve of large QP set with parameter set s3

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

AUG2D Timeout 10865.56 0 NaN 1 0 0

AUG2DC Timeout 10836.45 0 NaN 6 5 0

AUG2DCQP Optimal 155.71 0 1.47e−101 8 0 0

AUG2DQP Timeout 10801.84 0 NaN 6 5 0

AUG3D Error 7.60 0 NaN 1 0 0

AUG3DC Optimal 112.66 0 00 0 0 0

AUG3DCQP Optimal 19.50 0 00 0 0 0

AUG3DQP Optimal 7.62 0 00 0 0 0

BOYD2 Abort NaN NaN NaN NaN NaN NaN

CONT-050 Optimal 4224.16 0 00 0 0 0

CONT-100 Timeout 10806.77 0 NaN 7 6 0

CONT-101 Timeout 10809.28 0 NaN 7 6 0

CONT-200 Timeout 10802.04 0 NaN 7 6 0

CONT-201 Timeout 10801.56 0 NaN 7 6 0

CONT-300 Abort NaN NaN NaN NaN NaN NaN

CVXQP1_L Optimal 6641.26 0 1.90e−101 9 0 0

CVXQP1_M Optimal 8.02 0 00 0 0 0

CVXQP1_S Optimal 0.02 0 00 0 0 0

CVXQP2_L Timeout 11041.07 0 NaN 5 4 0

CVXQP2_M Optimal 19.13 0 00 0 0 0

CVXQP2_S Optimal 0.03 0 2.25e−110 7 0 0

CVXQP3_L Error 7587.33 0 NaN 6 1 0

CVXQP3_M Optimal 2.33 0 00 0 0 0

CVXQP3_S Reached 0.48 0 NaN 50 0 0

DPKLO1 Optimal 2.26 0 00 0 0 0

DTOC3 Optimal 2611.08 0 00 0 0 0

DUAL1 Optimal 0.15 0 00 0 0 0

123

444 T. Weber et al.

Table 7 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

DUAL2 Optimal 0.53 0 00 0 0 0

DUAL3 Optimal 0.78 0 00 0 0 0

DUAL4 Optimal 0.20 0 00 0 0 0

DUALC1 Optimal 0.07 0 00 0 0 0

DUALC2 Optimal 0.05 0 00 0 0 0

DUALC5 Optimal 0.08 0 00 0 0 0

DUALC8 Optimal 0.19 0 00 0 0 0

EXDATA Optimal 1407.82 0 00 0 0 0

GENHS28 Optimal 0.00 0 00 0 0 0

GOULDQP2 Inconsistent 0.24 0 1.50e−110 7 0 0

GOULDQP3 Optimal 0.11 0 00 0 0 0

HS118 Optimal 0.00 0 00 0 0 0

HS21 Optimal 0.00 0 00 0 0 0

HS268 Inconsistent 0.00 0 00 0 0 0

HS35 Optimal 0.00 0 00 0 0 0

HS35MOD Optimal 0.00 0 00 0 0 0

HS51 Optimal 0.00 0 3.14e−108 6 0 0

HS52 Optimal 0.00 0 00 0 0 0

HS53 Optimal 0.00 0 00 0 0 0

HS76 Optimal 0.00 0 00 0 0 0

HUESTIS Inconsistent 40.17 0 00 0 0 0

HUES-MOD Inconsistent 21.27 0 00 0 0 0

KSIP Optimal 2.38 0 00 0 0 0

LASER Optimal 41.47 0 00 0 0 0

LISWET1 Optimal 57.85 0 00 0 0 0

LISWET10 Optimal 645.20 0 1.60e−105 15 0 0

LISWET11 Optimal 54.26 0 00 0 0 0

LISWET12 Optimal 63.22 0 00 0 0 0

LISWET2 Optimal 704.57 0 4.17e−107 17 0 0

LISWET3 Optimal 306.45 0 1.20e−101 14 0 0

LISWET4 Optimal 317.64 0 2.60e−107 15 0 0

LISWET5 Optimal 324.42 0 4.27e−106 15 0 0

LISWET6 Optimal 325.27 0 3.68e−102 14 0 0

LISWET7 Optimal 54.87 0 00 0 0 0

LISWET8 Inconsistent 56.98 0 00 0 0 0

LISWET9 Optimal 64.09 0 00 0 0 0

123

Solving quadratic programs to high precision using… 445

Table 7 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

LOTSCHD Optimal 0.00 0 00 0 0 0

MOSARQP1 Optimal 0.96 0 00 0 0 0

MOSARQP2 Optimal 0.52 0 00 0 0 0

POWELL20 Optimal 44.65 0 00 0 0 0

PRIMAL1 Optimal 0.20 0 00 0 0 0

PRIMAL2 Optimal 0.71 0 00 0 0 0

PRIMAL3 Optimal 1.45 0 00 0 0 0

PRIMAL4 Optimal 0.76 0 00 0 0 0

PRIMALC1 Optimal 0.01 0 00 0 0 0

PRIMALC2 Optimal 0.01 0 00 0 0 0

PRIMALC5 Optimal 0.01 0 00 0 0 0

PRIMALC8 Optimal 0.02 0 00 0 0 0

Q25FV47 Optimal 9.14 0 3.75e−114 9 0 0

QADLITTL Optimal 0.01 0 00 0 0 0

QAFIRO Optimal 0.00 0 00 0 0 0

QBANDM Optimal 0.20 0 1.17e−103 6 0 0

QBEACONF Inconsistent 0.16 0 NaN 50 0 0

QBORE3D Inconsistent 0.18 0 NaN 50 0 0

QBRANDY Optimal 0.18 0 4.04e−106 9 0 0

QCAPRI Optimal 0.11 0 00 0 0 0

QE226 Optimal 0.19 0 4.36e−107 8 0 0

QETAMACR Optimal 1.24 0 3.85e−106 10 0 0

QFFFFF80 Optimal 0.99 0 3.05e−114 9 0 0

QFORPLAN Optimal 0.23 0 1.88e−113 8 0 0

QGFRDXPN Optimal 0.45 0 3.34e−104 9 0 0

QGROW15 Optimal 0.37 0 00 0 0 0

QGROW22 Optimal 0.90 0 00 0 0 0

QGROW7 Optimal 0.22 0 00 0 0 0

QISRAEL Optimal 0.11 0 00 0 0 0

QPCBLEND Optimal 0.03 0 00 0 0 0

QPCBOEI1 Optimal 0.58 0 5.70e−114 10 0 0

QPCBOEI2 Optimal 0.10 0 00 0 0 0

QPCSTAIR Optimal 0.96 0 1.04e−109 11 0 0

QPILOTNO Inconsistent 40.49 0 NaN 50 0 0

QPTEST Optimal 0.00 0 00 0 0 0

QRECIPE Inconsistent 0.04 0 NaN 50 0 0

QSC205 Optimal 0.30 0 1.27e−107 11 0 0

QSCAGR25 Optimal 0.32 0 1.06e−104 7 0 0

123

446 T. Weber et al.

Table 7 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

QSCAGR7 Optimal 0.02 0 3.71e−107 8 0 0

QSCFXM1 Optimal 0.20 0 1.79e−112 7 0 0

QSCFXM2 Optimal 0.73 0 5.01e−112 9 0 0

QSCFXM3 Optimal 1.46 0 3.59e−101 8 0 0

QSCORPIO Optimal 0.16 0 2.31e−101 8 0 0

QSCRS8 Optimal 0.36 0 1.58e−108 13 0 0

QSCSD1 Optimal 0.12 0 7.72e−110 7 0 0

QSCSD6 Optimal 0.18 0 2.69e−111 7 0 0

QSCSD8 Optimal 1.16 0 00 0 0 0

QSCTAP1 Optimal 0.18 0 6.15e−106 7 0 0

QSCTAP2 Optimal 0.55 0 5.86e−111 6 0 0

QSCTAP3 Optimal 1.04 0 00 0 0 0

QSEBA Optimal 0.24 0 1.15e−103 9 0 0

QSHARE1B Optimal 0.07 0 00 0 0 0

QSHARE2B Optimal 0.04 0 00 0 0 0

QSHELL Optimal 0.82 0 3.16e−103 9 0 0

QSHIP04L Optimal 0.60 0 7.13e−110 9 0 0

QSHIP04S Optimal 0.43 0 5.88e−109 9 0 0

QSHIP08L Optimal 2.14 0 2.31e−110 7 0 0

QSHIP08S Optimal 1.21 0 2.31e−108 9 0 0

QSHIP12L Optimal 2.78 0 3.71e−113 8 0 0

QSHIP12S Optimal 3.00 0 2.82e−104 9 0 0

QSIERRA Error 0.95 0 NaN 6 0 0

QSTAIR Optimal 0.58 0 4.32e−101 8 0 0

QSTANDAT Optimal 0.06 0 3.62e−107 7 0 0

S268 Inconsistent 0.00 0 00 0 0 0

STADAT1 Optimal 9.82 0 00 0 0 0

STADAT2 Optimal 9.89 0 00 0 0 0

STADAT3 Optimal 40.23 0 00 0 0 0

STCQP1 Optimal 47.09 0 1.91e−107 11 0 0

STCQP2 Optimal 25.77 0 5.65e−102 9 0 0

TAME Optimal 0.00 0 00 0 0 0

UBH1 Optimal 136.35 0 00 0 0 0

VALUES Optimal 0.03 0 00 0 0 0

YAO Optimal 1.53 0 00 0 0 0

ZECEVIC2 Optimal 0.00 0 00 0 0 0

Iter. iterations, Tol. tolerance, Ref. refinements, Back. backstepping, Res. resolves

123

Solving quadratic programs to high precision using… 447

Table 8 Detailed results for exact solve of large QP set with parameter set s4

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

AUG2D Error 55.14 0 NaN 1 0 0

AUG2DC Optimal 56.77 0 4.76e−109 7 0 0

AUG2DCQP Optimal 154.49 0 1.47e−101 8 0 0

AUG2DQP Optimal 320.54 0 3.10e−107 7 0 0

AUG3D Error 1.54 0 NaN 1 0 0

AUG3DC Optimal 6.38 0 7.59e−108 7 0 0

AUG3DCQP Optimal 4.73 0 1.52e−102 6 0 0

AUG3DQP Optimal 3.31 0 8.00e−103 6 0 0

BOYD2 Abort NaN NaN NaN NaN NaN NaN

CONT-050 Optimal 53.31 0 2.25e−108 8 0 0

CONT-100 Optimal 1076.87 0 2.86e−102 7 0 0

CONT-101 Optimal 1029.04 0 5.89e−101 7 0 0

CONT-200 Timeout 13506.53 0 NaN 4 0 0

CONT-201 Timeout 11449.02 0 NaN 3 0 0

CONT-300 Abort NaN NaN NaN NaN NaN NaN

CVXQP1_L Optimal 6853.92 0 1.90e−101 9 0 0

CVXQP1_M Optimal 5.74 0 4.34e−107 9 0 0

CVXQP1_S Optimal 0.05 0 8.55e−102 8 0 0

CVXQP2_L Optimal 550.82 0 9.00e−109 9 0 0

CVXQP2_M Optimal 0.98 0 1.12e−108 9 0 0

CVXQP2_S Optimal 0.02 0 2.25e−110 7 0 0

CVXQP3_L Error 7293.07 0 NaN 6 1 0

CVXQP3_M Optimal 18.06 0 3.73e−111 9 0 0

CVXQP3_S Reached 0.45 0 NaN 50 0 0

DPKLO1 Optimal 0.09 0 8.39e−108 9 0 0

DTOC3 Optimal 112.18 0 1.48e−114 7 0 0

DUAL1 Optimal 0.07 0 3.21e−103 10 0 0

DUAL2 Optimal 0.06 0 1.54e−101 6 0 0

DUAL3 Optimal 0.06 0 2.48e−103 6 0 0

DUAL4 Optimal 0.04 0 1.37e−104 6 0 0

DUALC1 Optimal 0.05 0 8.05e−106 6 0 0

DUALC2 Optimal 0.07 0 1.44e−106 6 0 0

DUALC5 Optimal 0.06 0 6.55e−107 6 0 0

DUALC8 Optimal 0.22 0 7.30e−105 6 0 0

EXDATA Error 560.71 0 NaN 5 0 0

GENHS28 Optimal 0.00 0 1.25e−110 6 0 0

GOULDQP2 Inconsistent 0.22 0 1.50e−110 7 0 0

GOULDQP3 Optimal 0.36 0 4.48e−108 11 0 0

123

448 T. Weber et al.

Table 8 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

HS118 Inconsistent 0.02 0 NaN 50 0 0

HS21 Optimal 0.00 0 00 0 0 0

HS268 Inconsistent 0.00 0 6.35e−112 9 0 0

HS35 Optimal 0.00 0 9.00e−106 6 0 0

HS35MOD Optimal 0.00 0 4.03e−108 6 0 0

HS51 Optimal 0.00 0 3.14e−108 6 0 0

HS52 Optimal 0.00 0 4.97e−106 6 0 0

HS53 Optimal 0.00 0 2.34e−108 6 0 0

HS76 Optimal 0.00 0 3.83e−108 6 0 0

HUESTIS Inconsistent 37.99 0 6.05e−104 7 0 0

HUES-MOD Inconsistent 18.39 0 4.21e−108 7 0 0

KSIP Optimal 2.11 0 3.89e−105 6 0 0

LASER Optimal 2.94 0 7.30e−105 12 0 0

LISWET1 Optimal 768.27 0 1.01e−107 15 0 0

LISWET10 Optimal 638.05 0 1.60e−105 15 0 0

LISWET11 Optimal 586.91 0 4.47e−103 13 0 0

LISWET12 Optimal 574.81 0 6.47e−106 12 0 0

LISWET2 Optimal 699.25 0 4.17e−107 17 0 0

LISWET3 Optimal 299.09 0 1.20e−101 14 0 0

LISWET4 Optimal 309.00 0 2.60e−107 15 0 0

LISWET5 Optimal 312.78 0 4.27e−106 15 0 0

LISWET6 Optimal 316.60 0 3.68e−102 14 0 0

LISWET7 Optimal 1189.62 0 3.11e−108 37 0 0

LISWET8 Inconsistent 659.38 0 1.63e−104 15 0 0

LISWET9 Optimal 671.45 0 2.04e−104 10 0 0

LOTSCHD Optimal 0.00 0 2.70e−107 6 0 0

MOSARQP1 Optimal 2.14 0 2.01e−115 10 0 0

MOSARQP2 Optimal 0.83 0 1.11e−107 9 0 0

POWELL20 Optimal 127.81 0 2.82e−110 9 0 0

PRIMAL1 Optimal 0.14 0 1.35e−112 7 0 0

PRIMAL2 Optimal 0.27 0 2.38e−103 7 0 0

PRIMAL3 Optimal 0.39 0 1.38e−102 6 0 0

PRIMAL4 Optimal 0.72 0 1.06e−112 7 0 0

123

Solving quadratic programs to high precision using… 449

Table 8 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

PRIMALC1 Optimal 0.04 0 1.56e−104 6 0 0

PRIMALC2 Optimal 0.01 0 8.59e−107 6 0 0

PRIMALC5 Optimal 0.01 0 1.63e−103 6 0 0

PRIMALC8 Inconsistent 0.15 0 NaN 50 0 0

Q25FV47 Optimal 9.15 0 3.75e−114 9 0 0

QADLITTL Optimal 0.03 0 2.11e−111 7 0 0

QAFIRO Error 0.01 0 NaN 9 0 0

QBANDM Optimal 0.24 0 1.17e−103 6 0 0

QBEACONF Inconsistent 0.21 0 NaN 50 0 0

QBORE3D Inconsistent 0.15 0 NaN 50 0 0

QBRANDY Optimal 0.18 0 4.04e−106 9 0 0

QCAPRI Optimal 0.27 0 8.03e−116 10 0 0

QE226 Optimal 0.21 0 4.36e−107 8 0 0

QETAMACR Optimal 1.24 0 3.85e−106 10 0 0

QFFFFF80 Optimal 0.97 0 3.05e−114 9 0 0

QFORPLAN Optimal 0.23 0 1.88e−113 8 0 0

QGFRDXPN Optimal 0.41 0 3.34e−104 9 0 0

QGROW15 Optimal 0.32 0 2.68e−107 9 0 0

QGROW22 Optimal 0.58 0 1.77e−107 9 0 0

QGROW7 Optimal 0.10 0 4.66e−109 9 0 0

QISRAEL Optimal 0.19 0 9.15e−104 9 0 0

QPCBLEND Optimal 0.03 0 4.29e−114 9 0 0

QPCBOEI1 Optimal 0.50 0 5.70e−114 10 0 0

QPCBOEI2 Optimal 0.12 0 6.52e−105 9 0 0

QPCSTAIR Optimal 0.95 0 1.04e−109 11 0 0

QPILOTNO Inconsistent 40.22 0 NaN 50 0 0

QPTEST Optimal 0.00 0 2.66e−110 6 0 0

QRECIPE Inconsistent 0.02 0 NaN 50 0 0

QSC205 Optimal 0.27 0 1.27e−107 11 0 0

QSCAGR25 Optimal 0.32 0 1.06e−104 7 0 0

QSCAGR7 Optimal 0.02 0 3.71e−107 8 0 0

QSCFXM1 Optimal 0.16 0 1.79e−112 7 0 0

QSCFXM2 Optimal 0.68 0 5.01e−112 9 0 0

QSCFXM3 Optimal 1.50 0 3.59e−101 8 0 0

QSCORPIO Optimal 0.16 0 2.31e−101 8 0 0

123

450 T. Weber et al.

Table 8 continued

QP Name Status Time [s] Iter. [#] Tol. [–] Ref. [#] Back. [#] Res. [#]

QSCRS8 Optimal 0.36 0 1.58e−108 13 0 0

QSCSD1 Optimal 0.09 0 7.72e−110 7 0 0

QSCSD6 Optimal 0.23 0 2.69e−111 7 0 0

QSCSD8 Optimal 8.62 0 2.23e−106 10 1 0

QSCTAP1 Optimal 0.19 0 6.15e−106 7 0 0

QSCTAP2 Optimal 0.55 0 5.86e−111 6 0 0

QSCTAP3 Optimal 0.92 0 7.96e−110 6 0 0

QSEBA Optimal 0.30 0 1.15e−103 9 0 0

QSHARE1B Optimal 0.04 0 5.84e−112 7 0 0

QSHARE2B Optimal 0.05 0 1.65e−105 9 0 0

QSHELL Optimal 0.80 0 3.16e−103 9 0 0

QSHIP04L Optimal 0.58 0 7.13e−110 9 0 0

QSHIP04S Optimal 0.43 0 5.88e−109 9 0 0

QSHIP08L Optimal 2.06 0 2.31e−110 7 0 0

QSHIP08S Optimal 1.18 0 2.31e−108 9 0 0

QSHIP12L Optimal 2.67 0 3.71e−113 8 0 0

QSHIP12S Optimal 2.92 0 2.82e−104 9 0 0

QSIERRA Error 0.95 0 NaN 6 0 0

QSTAIR Optimal 0.66 0 4.32e−101 8 0 0

QSTANDAT Optimal 0.11 0 3.62e−107 7 0 0

S268 Inconsistent 0.00 0 6.35e−112 9 0 0

STADAT1 Optimal 15.69 0 2.28e−107 8 0 0

STADAT2 Optimal 16.69 0 2.33e−110 11 0 0

STADAT3 Optimal 116.94 0 8.80e−104 12 1 0

STCQP1 Optimal 47.31 0 1.91e−107 11 0 0

STCQP2 Optimal 25.51 0 5.65e−102 9 0 0

TAME Optimal 0.00 0 3.12e−112 6 0 0

UBH1 Optimal 203.99 0 3.28e−111 7 0 0

VALUES Inconsistent 0.08 0 NaN 50 0 0

YAO Optimal 23.19 0 1.58e−106 10 0 0

ZECEVIC2 Optimal 0.00 0 2.66e−110 6 0 0

Iter. iterations, Tol. tolerance, Ref. refinements, Back. backstepping, Res. resolves

123

Solving quadratic programs to high precision using… 451

Ta
bl
e
9

D
et
ai
le
d
re
su
lts

fo
r
in
ex
ac
ta
nd

fa
st
so
lv
es

of
m
ed
iu
m

Q
P
se
tw

ith
pa
ra
m
et
er

se
ts
5
an
d
th
e
th
re
e
st
an
da
rd

q
p
O
A
S
E
S
op
tio

n
se
ts

Q
P
N
am

e
R
efi
ne
m
en
tT

ol
.1

e−
12

q
p
O
A
S
E
S
w
ith

st
an
da
rd

se
tti
ng
s

M
PC

D
ef
au
lt

R
el
ia
bl
e

T
im

e
[s
]

It
er
.(
R
ef
.)
[#
]
([
#]
)

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

C
V
X
Q
P1

_M
9.
53

41
2
(1
)

8.
50

e−
21

6.
94

40
4

2.
17

e−
10

23
.9
2

17
05

2.
21

e−
11

16
9.
24

17
05

2.
34

e−
11

C
V
X
Q
P1

_S
0.
02

36
(0
)

2.
73

e−
13

0.
02

36
4.
05

e−
12

0.
02

13
9

4.
39

e−
13

0.
06

13
9

3.
88

e−
13

C
V
X
Q
P2

_M
10

.5
0

65
1
(0
)

1.
05

e−
12

9.
48

66
3

5.
65

e−
11

6.
84

71
2

1.
50

e−
12

44
.6
1

71
3

8.
41

e−
13

C
V
X
Q
P2

_S
0.
02

62
(0
)

7.
47

e−
14

0.
02

60
1.
29

e−
11

0.
01

68
9.
94

e−
14

0.
01

68
5.
82

e−
14

C
V
X
Q
P3

_M
4.
52

23
1
(2
)

8.
10

e−
22

3.
86

22
9

5.
40

e−
09

79
.1
2

38
67

3.
95

e−
10

30
7.
04

38
69

3.
20

e−
10

C
V
X
Q
P3

_S
0.
02

22
(0
)

7.
18

e−
12

0.
02

24
5.
30

e−
11

0.
07

18
9

4.
73

e−
13

0.
05

18
1

2.
50

e−
13

D
PK

L
O
1

0.
02

0
(0
)

2.
67

e−
14

0.
02

0
2.
67

e−
14

0.
14

32
1

5.
75

e−
15

0.
31

32
1

7.
32

e−
15

D
U
A
L
1

0.
03

26
(1
)

5.
14

e−
17

0.
02

28
1.
09

e−
11

0.
04

75
8.
78

e−
16

0.
02

75
7.
06

e−
16

D
U
A
L
2

0.
04

4
(1
)

6.
32

e−
17

0.
03

4
3.
05

e−
11

0.
05

92
6.
06

e−
16

0.
05

92
7.
44

e−
16

D
U
A
L
3

0.
05

14
(1
)

2.
53

e−
17

0.
03

14
1.
68

e−
12

0.
06

97
1.
03

e−
15

0.
06

97
9.
27

e−
16

D
U
A
L
4

0.
01

13
(0
)

1.
01

e−
15

0.
01

13
1.
51

e−
11

0.
03

62
1.
04

e−
15

0.
02

62
8.
03

e−
16

D
U
A
L
C
1

0.
08

31
(0
)

4.
40

e−
12

0.
01

31
2.
18

e−
10

0.
01

4
6.
20

e−
13

0.
00

4
6.
25

e −
13

D
U
A
L
C
2

0.
14

28
(1
)

1.
91

e−
21

0.
01

30
2.
17

e−
09

0.
00

5
2.
33

e−
13

0.
00

5
2.
73

e−
13

D
U
A
L
C
5

0.
10

3
(0
)

3.
32

e−
13

0.
01

3
1.
30

e−
09

0.
01

5
2.
68

e−
13

0.
00

5
8.
70

e−
14

D
U
A
L
C
8

0.
60

13
(1
)

6.
10

e−
19

0.
02

11
8.
95

e−
10

0.
01

6
5.
15

e−
11

0.
01

0
N
aN

G
E
N
H
S2

8
0.
00

0
(0
)

3.
47

e−
16

0.
00

0
3.
47

e−
16

0.
00

14
6.
80

e−
16

0.
00

14
5.
13

e−
16

G
O
U
L
D
Q
P2

6.
53

58
5
(2
)

9.
00

e−
21

3.
77

57
3

7.
77

e−
14

15
.4
4

24
09

1.
13

e−
09

24
7.
95

24
09

1.
13

e−
09

G
O
U
L
D
Q
P3

1.
68

17
6
(0
)

7.
52

e−
15

1.
54

17
6

5.
94

e−
13

2.
98

74
0

8.
40

e−
15

17
.5
2

74
0

8.
16

e−
15

H
S1

18
0.
00

24
(0
)

4.
71

e−
15

0.
00

24
6.
76

e−
13

0.
00

27
6.
92

e−
15

0.
00

27
5.
56

e−
15

H
S2

1
0.
00

3
(0
)

8.
80

e−
16

0.
00

3
1.
28

e−
17

0.
00

1
5.
55

e−
17

0.
00

1
5.
55

e−
17

H
S2

68
0.
00

0
(1
)

1.
69

e−
16

0.
00

0
2.
62

e−
12

0.
00

11
8.
60

e−
07

0.
00

12
7.
87

e−
13

123

452 T. Weber et al.

Ta
bl
e
9

co
nt
in
ue
d

Q
P
N
am

e
R
efi
ne
m
en
tT

ol
.1

e−
12

q
p
O
A
S
E
S
w
ith

st
an
da
rd

se
tti
ng
s

M
PC

D
ef
au
lt

R
el
ia
bl
e

T
im

e
[s
]

It
er
.(
R
ef
.)
[#
]
([
#]
)

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

H
S3

5
0.
00

1
(0
)

3.
61

e−
16

0.
00

1
2.
22

e−
16

0.
00

4
7.
77

e−
16

0.
00

4
3.
06

e−
16

H
S3

5M
O
D

0.
00

0
(0
)

1.
01

e−
15

0.
00

0
9.
98

e−
16

0.
00

4
1.
66

e−
16

0.
00

4
1.
66

e−
16

H
S5

1
0.
00

0
(0
)

2.
54

e−
16

0.
00

0
2.
54

e−
16

0.
00

5
8.
16

e−
15

0.
00

5
8.
16

e−
15

H
S5

2
0.
00

0
(0
)

1.
22

e−
15

0.
00

0
1.
22

e−
15

0.
00

10
2.
29

e−
15

0.
00

10
1.
13

e−
15

H
S5

3
0.
00

0
(0
)

3.
89

e−
16

0.
00

0
3.
89

e−
16

0.
00

9
1.
00

e−
15

0.
00

9
8.
30

e−
16

H
S7

6
0.
00

4
(0
)

3.
16

e−
17

0.
00

4
2.
78

e−
16

0.
00

4
6.
36

e−
16

0.
00

4
6.
36

e−
16

K
SI
P

24
.2
6

10
80

(1
)

1.
63

e−
18

0.
15

10
88

3.
61

e−
15

0.
21

10
19

1.
89

e−
16

0.
20

10
19

3.
68

e−
17

L
O
T
SC

H
D

0.
00

5
(0
)

8.
82

e−
15

0.
00

5
5.
30

e−
13

0.
00

18
1.
82

e−
14

0.
00

18
2.
27

e−
14

M
O
SA

R
Q
P2

18
.2
5

33
2
(0
)

1.
18

e−
15

2.
54

33
2

6.
33

e−
13

8.
99

10
12

1.
83

e−
15

31
7.
07

10
12

1.
32

e−
15

PR
IM

A
L
1

0.
38

77
(0
)

1.
92

e−
16

0.
17

75
1.
76

e−
11

0.
50

39
9

2.
29

e−
16

6.
14

39
9

1.
05

e−
15

PR
IM

A
L
2

3.
49

94
(0
)

8.
16

e−
16

0.
52

96
4.
02

e−
11

3.
04

74
2

1.
45

e−
15

85
.8
4

74
2

1.
68

e−
15

PR
IM

A
L
3

2.
95

11
7
(0
)

1.
21

e−
15

0.
69

10
1

4.
77

e−
11

4.
86

84
1

1.
48

e−
15

13
4.
65

84
1

1.
83

e −
16

PR
IM

A
L
C
1

0.
17

23
4
(1
)

2.
69

e−
22

0.
10

22
2

2.
47

e−
09

0.
02

27
6.
50

e−
13

0.
01

27
1.
01

e−
12

PR
IM

A
L
C
2

0.
16

23
7
(1
)

1.
01

e−
22

0.
11

23
7

6.
00

e−
13

0.
00

10
8.
05

e−
16

0.
00

10
1.
66

e−
13

PR
IM

A
L
C
5

0.
27

28
8
(1
)

7.
11

e−
23

0.
17

29
2

3.
15

e−
10

0.
03

23
2.
50

e−
14

0.
02

23
2.
58

e−
14

PR
IM

A
L
C
8

2.
76

51
5
(1
)

3.
87

e−
17

0.
70

51
9

2.
34

e−
09

0.
07

25
1.
91

e−
14

0.
05

26
4.
08

e−
12

Q
A
D
L
IT
T
L

0.
05

23
4
(1
)

1.
92

e−
17

0.
03

18
9

5.
93

e−
09

0.
02

13
2

3.
31

e−
13

0.
02

12
4

1.
39

e−
10

123

Solving quadratic programs to high precision using… 453

Ta
bl
e
9

co
nt
in
ue
d

Q
P
N
am

e
R
efi
ne
m
en
tT

ol
.1

e−
12

q
p
O
A
S
E
S
w
ith

st
an
da
rd

se
tti
ng
s

M
PC

D
ef
au
lt

R
el
ia
bl
e

T
im

e
[s
]

It
er
.(
R
ef
.)
[#
]
([
#]
)

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

Q
A
FI
R
O

0.
00

30
(0
)

5.
49

e−
15

0.
00

29
8.
37

e−
11

0.
00

16
3.
48

e−
15

0.
00

16
3.
48

e−
15

Q
B
A
N
D
M

2.
85

11
64

(0
)

1.
54

e−
13

1.
59

87
0

1.
61

e−
08

5.
43

15
12

2.
23

e−
13

7.
69

15
12

9.
62

e−
14

Q
B
E
A
C
O
N
F

0.
43

30
4
(2
)

1.
18

e−
18

0.
24

30
2

2.
44

e−
08

0.
09

13
3

1.
30

e−
11

0.
09

13
3

1.
31

e−
11

Q
B
O
R
E
3D

0.
78

52
2
(1
)

5.
27

e−
13

0.
25

15
5

N
aN

0.
30

22
1

4.
61

e−
13

0.
31

22
1

2.
76

e−
11

Q
B
R
A
N
D
Y

0.
56

44
4
(0
)

4.
69

e−
12

0.
28

41
4

2.
53

e−
08

0.
85

85
4

2.
43

e−
13

1.
16

85
4

3.
13

e−
13

Q
C
A
PR

I
2.
69

10
50

(1
)

3.
62

e−
19

1.
06

10
08

9.
68

e−
08

0.
64

45
7

4.
83

e−
10

0.
91

45
7

4.
34

e−
10

Q
E
22

6
3 .
24

13
93

(1
)

1.
07

e−
13

0.
95

14
31

2.
59

e−
08

1.
17

82
5

2.
36

e−
14

2.
07

81
3

3.
78

e−
14

Q
E
TA

M
A
C
R

4.
12

55
8
(2
)

6.
05

e−
16

2.
15

49
3

2.
14

e−
09

7.
86

13
54

2.
30

e−
07

23
.1
3

13
54

2.
30

e−
07

Q
FF

FF
F8

0
19

.0
5

10
08

(1
)

2.
26

e−
13

7.
76

10
05

9.
90

e−
08

20
.8
5

22
93

1.
59

e−
11

73
.2
2

17
22

N
aN

Q
FO

R
PL

A
N

2.
21

11
80

(1
)

7.
31

e−
22

1.
53

19
30

2.
39

e+
06

1.
28

79
6

8.
03

e−
10

1.
81

80
4

7.
13

e−
10

Q
G
R
O
W
15

4.
07

62
9
(1
)

8.
55

e−
18

2.
66

53
1

1.
04

e−
07

3.
29

60
0

4.
28

e−
09

4.
17

58
9

6.
40

e−
09

Q
G
R
O
W
22

15
.3
0

93
4
(2
)

1.
52

e−
20

7.
62

62
1

1.
14

e−
07

10
.7
1

88
8

3.
69

e−
07

14
.6
4

88
1

4.
97

e−
08

Q
G
R
O
W
7

0.
45

29
6
(1
)

1.
56

e−
19

0.
28

26
6

5.
07

e−
08

0.
42

34
0

1.
88

e−
09

0.
45

29
8

3.
22

e−
09

Q
IS
R
A
E
L

0.
41

29
0
(0
)

3.
11

e−
12

0.
11

36
0

3.
99

e−
08

0.
08

25
8

4.
81

e−
12

0.
12

25
8

5.
03

e−
12

Q
PC

B
L
E
N
D

0.
03

66
(1
)

2.
25

e−
16

0.
01

64
8.
38

e−
14

0.
02

17
6

7.
56

e−
16

0.
02

17
6

9.
67

e−
16

Q
PC

B
O
E
I1

3.
18

43
5
(2
)

2.
12

e−
13

1.
08

44
1

2.
15

e−
09

1.
32

65
2

2.
74

e−
11

7.
68

65
2

3.
20

e−
11

Q
PC

B
O
E
I2

0.
30

17
5
(0
)

6.
07

e−
11

0.
07

17
7

7.
37

e−
10

0.
07

22
4

4.
21

e−
10

0.
16

22
4

3.
00

e−
10

123

454 T. Weber et al.

Ta
bl
e
9

co
nt
in
ue
d

Q
P
N
am

e
R
efi
ne
m
en
tT

ol
.1

e−
12

q
p
O
A
S
E
S
w
ith

st
an
da
rd

se
tti
ng
s

M
PC

D
ef
au
lt

R
el
ia
bl
e

T
im

e
[s
]

It
er
.(
R
ef
.)
[#
]
([
#]
)

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

T
im

e
[s
]

It
er
.[
#]

To
l.
[–
]

Q
PC

ST
A
IR

1.
32

25
7
(0
)

1.
58

e−
11

0.
54

23
9

9.
26

e−
11

2.
29

90
8

8.
77

e−
12

3.
67

90
8

8.
06

e−
12

Q
PT

E
ST

0.
00

1
(0
)

7.
40

e−
16

0.
00

1
1.
22

e−
15

0.
00

2
3.
89

e−
16

0.
00

2
3.
89

e−
16

Q
R
E
C
IP
E

0.
07

48
(0
)

5.
90

e−
15

0.
02

42
1.
04

e−
10

0.
02

88
1.
64

e−
14

0.
02

88
1.
64

e−
14

Q
SC

20
5

0.
29

93
(1
)

4.
22

e−
18

0.
04

43
7.
63

e−
08

0.
08

21
5

3.
84

e−
16

0.
08

21
5

4.
35

e−
16

Q
SC

A
G
R
25

7.
38

10
77

(2
)

1.
77

e−
18

36
.3
4

0
N
aN

6.
12

13
27

1.
09

e−
11

8.
88

12
99

1.
43

e−
11

Q
SC

A
G
R
7

0.
19

32
9
(0
)

3.
88

e−
12

0.
06

34
9

3.
18

e−
10

0.
22

41
8

4.
58

e−
12

0.
22

41
8

5.
03

e−
12

Q
SC

FX
M
1

4 .
18

79
9
(2
)

1.
25

e−
15

1.
73

98
8

1.
32

e−
07

1.
69

58
0

9.
14

e−
12

2.
69

61
2

1.
48

e−
11

Q
SC

FX
M
2

42
.7
4

18
90

(2
)

3.
82

e−
18

16
.5
3

21
89

1.
62

e−
07

17
.4
5

14
54

6.
84

e−
11

26
.2
2

13
70

3.
92

e−
11

Q
SC

O
R
PI
O

0.
87

23
3
(0
)

5.
22

e−
14

0.
12

0
N
aN

0.
87

47
0

3.
20

e−
11

1.
19

46
9

1.
06

e−
11

Q
SC

SD
1

8.
81

20
54

(1
)

3.
44

e−
22

6.
51

10
75

8.
77

e−
11

0.
64

20
4

4.
77

e−
13

0.
57

15
3

1.
38

e−
10

Q
SC

TA
P1

6.
77

13
74

(1
)

7.
45

e−
15

30
.1
5

0
N
aN

1.
00

50
0

9.
20

e−
12

1.
44

50
3

1.
54

e−
08

Q
SH

A
R
E
1B

0.
59

78
2
(2
)

1.
25

e−
16

0.
18

46
8

2.
49

e−
08

0.
34

51
7

1.
21

e−
09

0.
51

49
7

3.
70

e−
11

Q
SH

A
R
E
2B

0.
12

35
9
(1
)

2.
00

e−
13

0.
02

35
5

5.
33

e−
10

0.
06

20
7

1.
35

e−
12

0.
05

19
6

1.
25

e−
12

Q
ST

A
IR

3.
18

79
2
(0
)

6.
37

e−
12

1.
28

78
4

1.
92

e−
08

1.
68

74
0

4.
39

e−
12

2.
67

74
0

4.
41

e−
12

S2
68

0.
00

0
(1
)

1.
69

e−
16

0.
00

0
2.
62

e−
12

0.
00

11
8.
60

e−
07

0.
00

12
7.
87

e−
13

TA
M
E

0.
00

0
(0
)

1.
11

e−
16

0.
00

0
1.
11

e−
16

0.
00

2
1.
95

e−
16

0.
00

2
1.
95

e−
16

V
A
L
U
E
S

0.
10

14
2
(0
)

1.
46

e−
12

0.
04

0
N
aN

0.
05

14
2

4.
29

e−
16

0.
04

14
2

2.
45

e−
15

Z
E
C
E
V
IC

2
0.
00

3
(0
)

1.
25

e−
16

0.
00

3
1.
15

e−
12

0.
00

2
2.
22

e−
16

0.
00

2
2.
22

e−
16

It
er
.i
te
ra
tio

ns
,T
ol
.t
ol
er
an
ce

123

Solving quadratic programs to high precision using… 455

References

1. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah? ACM SIGKDD Explor.
Newsl. 2(2), 1–13 (2000)

2. CPLEX, IBM ILOG: 12.7 user’s manual. https://www.ibm.com (2016). Accessed 25 Oct 2019
3. Dostál, Z.: Optimal Quadratic ProgrammingAlgorithms:WithApplications toVariational Inequalities,

1st edn. Springer Publishing Company, Incorporated, Berlin (2009)
4. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a parametric active-set

algorithm for quadratic programming. Math. Program. Comput. 6(4), 327–363 (2014)
5. Fletcher, R., Leyffer, S.: User manual for filterSQP. Numerical Analysis Report NA/181, Department

of Mathematics, University of Dundee, Dundee, Scotland (1998)
6. Gärtner, B., Schönherr, S.: An efficient, exact, and generic quadratic programming solver for geometric

optimization. In: Proceedings of the Sixteenth Annual Symposium on Computational Geometry, pp.
110–118. ACM (2000)

7. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for QPOPT 1.0: A Fortran package for quadratic
programming. Technical report (1995)

8. Gleixner, A.M.: Exact and fast algorithms for mixed-integer nonlinear programming. Ph.D. thesis,
Technische Universität Berlin (2015)

9. Gleixner, A.M., Steffy, D.E., Wolter, K.: Improving the accuracy of linear programming solvers with
iterative refinement. In: ISSAC 2012. Proceedings of the 37th International Symposium on Symbolic
and Algebraic Computation, pp. 187–194. ACM (2012)

10. Gleixner, A.M., Steffy, D.E., Wolter, K.: Iterative refinement for linear programming. INFORMS J.
Comput. 28(3), 449–464 (2016). https://doi.org/10.1287/ijoc.2016.0692

11. Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACMCom-
put. Surv. 23(1), 5–48 (1991). https://doi.org/10.1145/103162.103163

12. Goldfarb, D., Idnani, A.: Dual and primal-dual methods for solving strictly convex quadratic programs.
In:Hennart J.P. (eds.)NumericalAnalysis. LectureNotes inMathematics, vol 909. Springer,Heidelberg
(1982)

13. Gould, N.I., Hribar, M.E., Nocedal, J.: On the solution of equality constrained quadratic programming
problems arising in optimization. SIAM J. Sci. Comput. 23(4), 1376–1395 (2001)

14. Granlund, T., theGMPDevelopmentTeam:GNUMP.TheGNUMultiple PrecisionArithmetic Library.
Edition 6.1.0. https://gmplib.org/. Accessed 25 Jan 2019

15. Gurobi Optimization, I.: Gurobi optimizer reference manual. Technical Report Version 7.5 (2017).
http://www.gurobi.com. Accessed 25 Oct 2017

16. Hladık, M.: Interval linear programming: a survey. In: Mann, Z.Á. (ed.) Linear programming–new
frontiers in theory and applications, pp. 85–120. Nova Science Publishers, New York (2012)

17. IEEE, New York, NY, USA: IEEE Std 754-2008, Standard for Floating-Point Arithmetic (2008).
https://doi.org/10.1109/IEEESTD.2008.4610935

18. Johnson, T.C., Kirches, C., Wächter, A.: An active-set method for quadratic programming based on
sequential hot-starts. SIAM J. Optim. 25(2), 967–994 (2015)

19. Maros, I., Mészáros, C.: A repository of convex quadratic programming problems. Optim. Methods
Softw. 11(1–4), 671–681 (1999)

20. Quirynen, R., Gros, S., Diehl, M.: Inexact newton-type optimization with iterated sensitivities. SIAM
J. Optim. 28(1), 74–95 (2018)

21. Weber, T., Gleixner, A.: QPRefinement (2019). https://doi.org/10.5281/zenodo.2532184. https://
github.com/TobiasWeber/QPRefinement

22. Wilkinson, J.H.: Rounding errors in algebraic processes. In: IFIP Congress, pp. 44–53 (1959)
23. Wolfe, P.: The simplex method for quadratic programming. Econom. J. Econom. Soc. 27, 382–398

(1959)
24. Wunderling, R.: Paralleler und Objektorientierter Simplex-Algorithmus. Ph.D. thesis, Technische Uni-

versität Berlin (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://www.ibm.com
https://doi.org/10.1287/ijoc.2016.0692
https://doi.org/10.1145/103162.103163
https://gmplib.org/
http://www.gurobi.com
https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.5281/zenodo.2532184
https://github.com/TobiasWeber/QPRefinement
https://github.com/TobiasWeber/QPRefinement

	Solving quadratic programs to high precision using scaled iterative refinement
	Abstract
	1 Introduction
	2 Refinement and scaling of quadratic programs
	3 The iterative refinement algorithm for quadratic programming
	4 Implementation
	5 Numerical results
	6 Conclusion
	7 Appendix
	7.1 Detailed QP solver options
	7.2 Detailed results

	References

