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Abstract

Subject of this work is the geometric evolution equation called mean curvature flow.

It evolves a surface pointwise into the direction of its normal with a velocity that is

given by the mean curvature at that point. We restrict our attention to surfaces in

R3 of torus type. The aim is to approximate a reparametrized version of the flow and

derive error estimates for the fully discrete problem. Our strategy is to apply a variant

of the well-known DeTurck trick for the reparametrization. The generated evolution

equation depends on a parameter α that determines a tangential velocity. Using a

finite difference method, we discretize this flow and derive a family of semi-implicit

fully discrete approximations. In the convergence proof we obtain optimal-order error

bounds in discrete analogs to different Sobolev norms like a discrete H2-norm as well

as a discrete L∞-norm. This analysis is complemented with a numerical simulation of

the approximated flow. We compute the experimental order of convergence to support

the theoretical results and provide an illustration of the influence of α on the approxi-

mation.

Kurzzusammenfassung

Gegenstand dieser Arbeit ist der Mean Curvature Flow. Diese geometrische Evolu-

tionsgleichung bewegt eine Fläche punktweise in Richtung ihrer Normalen mit einer

Geschwindigkeit, die gleich der mittleren Krümmung in diesem Punkt ist. Wir beschrän-

ken uns auf Flächen im R3 vom Typ des Torus. Das Ziel ist, eine Umparametrisierung

des Flusses zu approximieren und Fehlerabschätzungen für das vollständig diskrete

Problem herzuleiten. Die Vorgehensweise besteht dabei darin, eine Variante des bekan-

nten DeTurck Tricks für die Umparamterisierung anzuwenden. Dies führt auf eine

Evolutionsgleichung, welche von einem Parameter α abhängt und eine durch diesen

Parameter bestimmte Geschwindigkeit in tangentialer Richtung besitzt. Der modi-

fizierte Fluss wird mittels einer Finite-Differenzen-Methode diskretisiert und somit eine

Familie von semi-impliziten, vollständig diskreten Approximationen erzeugt. Der Kon-

vergenzbeweis liefert Fehlerschranken optimaler Ordnung in verschiedenen diskreten

Normen, welche als Analogon von Sobolev-Normen wie der H2- und der L∞-Norm

betrachtet werden können. Die Analyse wird durch eine numerische Simulation des

Flusses ergänzt. Wir berechnen zum einen die experimentelle Konvergenzordnung, um

die theoretischen Ergebnisse zu stützen, zum anderen illustrieren wir den Einfluss von

α auf die Approximation.
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1 Introduction

A family of hypersurfaces {Γ(t)}t∈[0,T ] ⊂ Rn+1 is said to move according to mean

curvature flow, if at each point it moves into the direction of the normal with a velocity

that is given by the mean curvature. That is, if

V = H, (1.1)

where H denotes the mean curvature, defined as the sum of the principal curvatures,

and V is the normal velocity of Γ(t). For n = 1, i.e. for curves, one obtains the curve

shortening flow, where the mean curvature is replaced by the curvature. Note that for

the unit outward normal ν we let the sign of the mean curvature of a sphere be negative

in our sign convention. One can show that the first variation of the area functional of

a surface in direction of the normal can be represented by the mean curvature. This

gives rise to the interpretation of mean curvature flow as the L2-gradient flow of the

area functional, moving a surface pointwise into the direction of the steepest descent

of its area. In particular, for the total area it holds that

d

dt
|Γ(t)| = −

∫
Γ(t)

H2 dA,

compare e.g. [37]. The flow therefore appears naturally in situations where a surface

energy is involved. Imagine for example boundaries between the phases of a system

that are formed in a way such as to minimize their energy given by the area of the

interfaces. Applications to the flow by mean curvature are various, and for further

explanations we refer to [16].

As a matter of fact, the sphere is one of the few exact solutions of the mean curvature

flow. It shrinks to a point without changing shape, which can be seen in the following

way: Let Γ(t) = ∂BR(t)(x) ⊂ Rn+1 be a family of spheres. On ∂BR(t)(x), we have that

V = R′(t) and H = −n/R(t), and so (1.1) reduces to the ordinary differential equation

R′(t) = − n

R(t)
,

for which we assume the initial datum R(0) = R. The solution to the mean curvature

flow are hence spheres with radius R(t) =
√
R2 − 2nt that tends to zero as t approaches

the maximal time of existence R2/(2n). The absence of a broader range of exact solu-

tions is one reason for an interest in numerical approximations of the flow, which we

will make the subject of our discussion later.

Huisken’s work [31], where he actually proved that convex hypersurfaces shrink to

points with asymptotically spherical shape in finite time, was seminal. In the case

of curves the result is even stronger. By the curve shortening flow, closed embedded
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1 Introduction

plane curves become convex, [25], and then shrink to a ‘round’ point in finite time,

[24]. This does not hold for surfaces, where non-convexity can lead to the formation

of singularities before the extinction. Indeed, developing a singularity in finite time

is a rather typical behaviour. It occurs when the curvature at a point becomes un-

bounded for some reason. Grayson in [26] was the first to rigorously prove the existence

of a surface with such evolution, the dumbbell shape: Two spheres, connected by a

thin tube that shrinks much faster than the spheres do. The tube, also called neck,

then pinches off, and the two spheres each continue to flow by their mean curvature un-

til they vanish. A collection of results on the study of singularities can be found in [33].

Investigating the problem of the flow by mean curvature can be approached in several

ways. One is the parametric formulation that will be used throughout this work. It

is based on tracking the evolution of a parametrization F (·, t) : M → Rn+1, where

t ∈ [0, T ), such that Γ(t) = F (·, t)(M), whereM⊂ Rn+1 is a reference manifold. This

fixes the topological type of the hypersurface and is thus a limitation since we know

that topological changes can occur, like in the example of the dumbbell. Describing

M by a local parametrization x̂ : Ω→ Rn+1, where Ω ⊂ Rn, and setting x = F ◦ x̂ we

can write

xt = Hν (1.2)

to define the flow by mean curvature. Multiplication by ν restores the description in

(1.1).

Defining the metric on Γ(t) through gij(u, t) = xui(u, t) · xuj(u, t) for (u, t) ∈ Ω× [0, T ]

and i, j ∈ {1, . . . , n}, Mean Curvature Flow can equivalently be represented by

xt =
n∑

i,j=1

1
√
g

(
gij
√
gxuj

)
ui

=
n∑

i,j=1

gijxuiuj −
n∑

i,j,k,l=1

gijgkl(xuiuj · xuk)xul , (1.3)

where (gij) = (gij)i,j∈{1,...,n} denotes the matrix of the induced metric coefficients, g =

det(gij) the area element and gij the components of the inverse matrix of (gij). A

derivation of the identity in (1.3) and how this follows from (1.2) will be given in the

subsequent chapter of this work.

The spatial operator in (1.3) clearly depends on the metric and the metric evolves in

time. In particular, the evolution equation is nonlinear and degenerate in the tangential

direction. By degeneration we mean that the partial differential equation describing

mean curvature flow is not strongly, but weakly parabolic. For a formal derivation of the

link between the degeneration and the notion of weak parabolicity see [3]. The author

also provides a proof of the invariance of the flow under tangential reparametrization.

More detailed information on the mean curvature flow from a parametric point of view,

including important analytic results and references to further literature, are thoroughly

prepared in [37]. Ecker in [21] also provides a comprehensive introduction to Mean

Curvature Flow including some examples and basic results.
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Another possibility to study the flow is given if the surfaces can be written as the graph

of a function u, i.e. Γ(t) = {(x, u(x, t)) | x ∈ Ω ⊂ Rn}. Note that it is not sufficient

if this is true for the initial surface since this feature can be lost during the evolution.

The flow is given by a scalar nonlinear parabolic partial differential equation for u in

non-divergence form. It has for instance been investigated in [32], where the author

proved a global existence result under some regularity assumptions.

Brakke in [9] considered mean curvature flow from the viewpoint of geometric measure

theory. By extending the evolution from manifolds to varifolds, he introduces weak

solutions that can be described through and beyond singularities.

A further approach is to represent the hypersurface and its evolution by the level sets

of a function u, i.e. Γ(t) = {x ∈ Rn+1 | u(x, t) = 0}. This turns the evolution equation

into a nonlinear degenerate and singular partial differential equation for u. Both the

works of Chen, Giga and Goto, [10], and Evans and Spruck, [23], supplied the basis for

the theory which utilizes the notion of viscosity solutions. The level set formulation of

the motion by mean curvature also allows to define a global solution including times

after the appearance of a singularity.

Another way that enables a global description of solutions is the phase field approach.

Like the level set formulation, it is implicit and makes use of a level set function uε,

here called phase field function. However, one considers a diffuse interface Γε(t) of

width O(ε) that approximates Γ(t) as ε tends to zero. The corresponding evolution

equation is formulated for uε and reads

uεt = ∆uε +
1

ε2
uε(1− (uε)2).

It is a nonlinear equation of reaction-diffusion type that appears as a model equation

in many applications.

As stated above, research has also been highly interested in approximating mean curva-

ture flow. Dziuk in [18] has achieved pioneering work in presenting the first numerical

approximation of mean curvature flow in the parametric setting. His finite element

method is based on approximating the surface Γ(tm) by a polyhedron Γmh and on find-

ing, in each time step, xm+1
h ∈ Xm

h such that

1

τ

∫
Γm
h

(xm+1
h − id) · ϕh dA+

∫
Γm
h

∇Γm
h
xm+1
h · ∇Γm

h
ϕh dA = 0 ∀ϕh ∈ Xm

h ,

where Xm
h is the space of all continuous, piecewise linear functions on the polyhedral

surface Γmh . Here, τ denotes the time step size, id the identity map on Γmh and ∇Γm
h

is

the tangential gradient. The new surface is defined as Γm+1
h = xm+1

h (Γmh ). The author

presented numerical examples that can be computed to a point of time very close to

singularities. Still, to our knowledge, up to now no convergence proof has been found
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1 Introduction

for this algorithm.

The scheme in [6] by Barrett, Garcke and Nürnberg is related to the approximation of

Dziuk in [18] but adds intrinsic discrete tangential motion. This does not change the

given evolution because the evolution in (1.1) is defined only by the normal part of

the velocity. The authors have employed this technique in a series of papers including

works on the curve shortening flow, e.g. in [7], and on the mean curvature flow, e.g.

in [6]. Their motivation is that, when simulating geometric evolution equations such

as the mean curvature flow, mesh degeneration seems to be a typical issue. In fact,

as the evolution equation for the flow only determines the normal component of the

velocity, numerical schemes based on (1.2) only move nodes in normal direction. As a

consequence, in regions of high curvature nodes can concentrate, while in other regions

the opposite can occur and as a result the mesh degenerates or causes lower accuracy.

To avoid this, the algorithm in [6] includes a remeshing within the computation of the

flow. Like in Dziuk’s method, polyhedral surfaces Γmh are constructed to approximate

Γ(tm) and, in each time step, the new surface is parametrized via Γm+1
h = xm+1(Γmh ).

The idea of the scheme is to find xm+1
h and κm+1

h such that

1

τ

∫
Γm
h

(xm+1
h − id) · (φhνm) dA−

∫
Γm
h

κm+1
h φh dA = 0 ∀φh ∈ Xm

h ,

∫
Γm
h

κm+1
h νm · ϕh dA+

∫
Γm
h

∇Γm
h
xm+1
h · ∇Γm

h
ϕh dA = 0 ∀ϕh ∈ (Xm

h )3,

where Xm
h is the space of all continuous, piecewise linear, scalar functions on Γmh and

νm is the outward unit normal to Γmh . The second equation imposes a condition on

the normal that induces the desired tangential motion. The authors provide a proof

for the good redistribution of mesh points for the semidiscrete problem. In the fully

discrete case, they give numerical examples that show a good mesh behaviour. As

the tangential motion in the scheme is added artificially, the discrete solution cannot

converge toward the solution of the mean curvature flow, whose tangential velocity is

zero. Whether the approximation converges to another limit, for example a flow by

mean curvature with a prescribed tangential velocity, is an open question.

Recently in [35], Kovács, Li and Lubich chose a different approach to derive a surface

finite element approximation of mean curvature flow. Instead of using (1.2) combined

with a weak formulation of ∆Γid as done in [6] and [18], they discretize a weak formu-

lation of the system of (1.2) together with the evolution equations of the unit normal

and the mean curvature found by [31],
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v = Hν,

∂•ν = ∆Γ(t)ν + |∇Γ(t)ν|2ν,
∂•H = ∆Γ(t)H + |∇Γ(t)ν|2H,

where v(x, t) is the velocity at a point x ∈ Γ(t) and ∂• denotes the material derivative.

∇Γ again is the tangential gradient and ∆Γ is the Laplace-Beltrami operator on Γ. For

the discretization, they use an evolving surface finite element method for the spatial

variable together with a linearly implicit backward difference formula for the time

variable. The authors derive convergence results for x, v, ν and H in the semi- as

well as the fully discrete case and are the first to present an error analysis for an

approximated mean curvature flow in the parametric setting. The estimate for the

fully discrete version with respect to the spatial grid size h and the time step size τ in

a norm of the error in the position on the surface then reads

‖(xnh)L − id‖H1(Γ(tn)) ≤ c(hk + τ q),

where q is given by the choice of the q-step backward difference formula for q ≤ 5

and k ≥ 2 is the degree of the polynomials used in the finite element method. Here,

(xnh)L is the lift of the position on the discrete surface onto the exact surface Γ at time

tn. The condition k ≥ 2 arises from the requirement of controling the W 1,∞-norm of

the position error, where the H1-error bound and an inverse inequality enter. Thus,

for second order convergence with respect to h in the H1-norm, quadratic polynomials

are necessary. Still, for the cost of solving four additional equations, Kovács, Li and

Lubich get error estimates for ν and H that do not result from an approach that is

only based on (1.2). Yet the authors remark that it would be desirable to improve

their algorithm with the help of tangential redistribution of mesh points, which is not

provided by their approximation.

Because of the described issues connected to mesh degeneration and the question of

convergence of an approximation of the flow by mean curvature with an additional tan-

gential velocity, Elliott and Fritz in [22] presented a “built-in” approach. That means,

they introduce intrinsic tangential movement to the evolution equation before the dis-

cretization. The invariance of the flow under tangential reparametrization implies that

specifying a tangential velocity in the mean curvature flow leads to a solution that can

be traced back to the solution of the original problem by reparametrization. In the

literature, this has been exploited by making use of the so called DeTurck trick. It

originates in a paper by DeTurck, [17], and was further specified in [28]. The concept

was introduced in order to prove short-time existence for the Ricci flow, but has been

used for similar results on other flows like the mean curvature flow, see for instance

[3] and references therein. The idea of the trick consists in reparametrizing the mean

curvature flow with diffeomorphisms that are solutions to the harmonic map heat flow.
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1 Introduction

Combining the heat flow with the reparametrized equation generates a flow which

still represents the evolution of mean curvature flow but which is non-degenerate and

strongly parabolic. It can be written as

xt =
n∑

i,j=1

gijxuiuj +

(
1

α
− 1

) n∑
i,j,k,l=1

gijgkl(xuiuj · xuk)xul (1.4)

and will be called Mean Curvature DeTurck Flow in the following. The parameter α

has the meaning of an inverse diffusion constant in the heat flow and will determine

the scale of the tangential motion in the resulting equation.

Although the DeTurck trick originally was an analytic tool, it supplies a nice option

that is of interest for numerical analysis and numerics of mean curvature flow, too, as

the work [22] of Elliott and Fritz demonstrates. Note that the elliptic part of the Mean

Curvature DeTurck Flow is not in divergence form and does not admit a weak formu-

lation. For realizing a finite element approximation, the authors in [22] consequently

aimed to simplify the spatial term. A first step in achieving this is another trick they

performed on (1.4), by which the parameter α is shifted onto the time derivative and

this way weights and separates the time components. This is motivated by the special

case of the curve shortening flow, where this shifting leads to an equation from which

a weak formulation can be derived directly. However, in the general case, this trick

does not immediately yield a divergence form and some computations are necessary

beforehand. For this reason, Elliott and Fritz also introduced a second variant of the

DeTurck trick for which the resulting flow is almost in divergence form after the shift-

ing of the parameter α. For both variants, the authors obtained a weak formulation

and implemented it, but did not give an analytical convergence proof. Both algorithms

induce tangential motion that leads to a redistribution of mesh points on the discrete

surface. The experiments in [22] illustrate how this increases the mesh quality of their

schemes, e.g. compared to the algorithm of Barrett, Garcke and Nürnberg in [6]. The

latter performs well in many cases, but yet fails to converge in an example found by

Elliott and Fritz, where the approximation in [22] leads to a good behaviour of the

mesh.

In the case of curves, the authors in [22] provided a convergence analysis. In this case,

the scheme can be considered as a generalization of the approximation in [14], which

in turn results from [22] for α = 1. Error bounds have been given in [14] and the proof

has been adapted by the authors in [22]. The choice α = 0, which is only possible after

the trick that splits the time derivative, unveils a link to the scheme in [7] for curves.

As mentioned above, no error analysis exists for the schemes of Barrett, Garcke and

Nürnberg. The error bound in [22] indicates a possible reason: The constant depends

exponentially on α−1 and thus blows up for α approaching zero.

The above approximations all have in common that they are based on the finite ele-

ment method. Seemingly, discretizing via finite differences has not yet been used for

6



parametric mean curvature flow. However, in [11], the authors applied the finite differ-

ence method to the level set formulation of the flow. A corresponding error estimate

has been proved in [12]. Other convergence results have been obtained for the mean

curvature flow of graphs, see e.g. [13] and [15]. In both works, optimal error bounds

were obtained. A general overview of numerical approximations of geometric evolution

equations like the mean curvature flow can be found in [5], [16] and [20].

In this thesis, we let n = 2 and consider the flow of hypersurfaces of torus type.

We choose the reference manifold M to be the standard torus and parametrize it

globally on Ω = [0, 2π]2 so that Γ(t) = x(Ω, t) for a map x : Ω × [0, T ] → R3, which

we suppose to be 2π-periodic in both spatial variables. The aim is to construct an

approximation based on the Mean Curvature DeTurck Flow (1.4), which we use in

order to prescribe a tangential velocity and thus to overcome the obstacles connected to

the degeneration. Moreover, the goal is to prove error estimates for the approximation

of the reparametrized flow.

Our approach differs widely from that of Elliott and Fritz in [22]. First of all, we do

not make use of their trick that separates the time components but discretize (1.4)

directly despite the, to some extent, difficult spatial differential operator. Secondly, in

order to avoid a weak formulation, we discretize via a finite difference method. For a

spatial grid size h = 2π
N

and a time grid size τ = T
M

with uk,l = (kh, lh) and ts = sτ we

define the mesh G = {(uk,l, ts)}k,l∈{0,...,N},s∈{0,...,M} ⊂ [0, 2π]2× [0, T ]. The fully discrete

problem reads:

For a function xh : G → R3 that is 2π-periodic with respect to the spatial grid we

demand that for all k, l ∈ {0, . . . , N} and s ∈ {0, . . . ,M − 1}: x0
k,l = x0 and

xs+1
k,l − xsk,l

τ
=

2∑
i,j=1

gij,sk,l ∆ijx
s+1
k,l +

(
1

α
− 1

) 2∑
i,j,m,n=1

gij,sk,l g
mn,s
k,l (∆ijx

s+1
k,l ·∆mx

s
k,l)∆nx

s
k,l,

where ∆ij denote second order and ∆r denote first order difference operators, xsk,l is

the evaluation of xh at a gridpoint (uk,l, t
s) ∈ G and gij,sk,l are suitable discrete inverse

metric coefficients. By choosing a semi-implicit time differencing, the nonlinearity in

the unknown of the numerical scheme is removed. Hence, in each time step, a linear

system of equations has to be solved.

We assume that (1.4) has a smooth solution x : Ω× [0, T ]→ R3 that is regular in the

sense that g ≥ 2c̄ > 0. We denote by esk,l the evaluation of the error eh := x − xh at

the grid points. Our main results are the following optimal order error estimates in

discrete integral norms.

Theorem. Let α ∈ (0, 1]. There exist positive constants c, c′ and h∗, such that for all

0 < h ≤ h∗ and τ ≤ c′h2 the estimates

7



1 Introduction

max
s∈{0,...,M}

(
h2

N∑
k,l=1

|esk,l|2 + h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2

)1/2

≤ c(h2 + τ),

(
τ

M∑
s=1

(
h2

N∑
k,l=1

|es+1
k,l − esk,l|2

τ 2
+ h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijesk,l|2

h4

))1/2

≤ c(h2 + τ),

max
s∈{0,...,M}

max
k,l∈{1,...,N}

|esk,l| ≤ c| ln(h)|
1
2 (h2 + τ)

hold and the constants only depend on x, T and α−1.

We use energy methods to derive these estimates from the error equation for our fully

discrete approximation. For the sake of convenience, we supply the reader with an

illustration of some key steps in a continuous example. Consider the solution (1.4) for

α = 1 and test the equation with −∆x:

−
2∑
r=1

∫
Ω

xt · xurur = −
2∑

i,j,r=1

∫
Ω

gijxuiuj · xurur .

Integration by parts yields

1

2

d

dt

2∑
r=1

∫
Ω

|xur |2 =
2∑
r=1

∫
Ω

xtur · xur = −
2∑

i,j,r=1

∫
Ω

gijxuiur · xujur +

∫
Ω

G(x),

where G(x) summarizes lower order terms. The sum of second spatial derivatives of x

can then be estimated by the smallest eigenvalue λ of (gij) and a norm of the second

derivatives,

λ

2∑
i,r=1

|xuiur |2 ≤
2∑

i,j,r=1

gijxuiur · xujur ,

so that
1

2

d

dt

2∑
r=1

∫
Ω

|xur |2 + λ
2∑

i,j=1

∫
Ω

|xuiuj |2 ≤
∫
Ω

G(x).

By controlling the integral of G, integrating over t and applying the lemma of Gronwall

we can infer bounds on the L2(Ω)-norms of first and second derivatives. To obtain the

discrete L2-norms of first and second order differences displayed above, we transfer this

proceeding onto a discrete level. That means testing the error equation with a suitable

discrete Laplacian, summation by parts and applying the lemma of Gronwall in a dis-

crete version. The most interesting and involved of the results are the estimates for the

discrete first order spatial derivatives, where superconvergence effects lead to a second

order convergence in space. This enables us to control the geometry of the discrete
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surface within an inductive argument. In particular, due to the quadratic convergence

in the discrete H1
0 -norm, an inverse estimate yields a W 1,∞- bound for eh that is linear

in the spatial grid size h. This is crucial to infer a uniform in space bound on the

discrete area element by imposing a smallness condition on h.

In the numerical illustrations of this work we are interested in the tangential motion

induced by our scheme, especially in a comparison for different choices of α. Because

of the good results in [22] for small α, we expect similar results in our experiments.

Note that, in contrast to [22], we are not able to choose α = 0 in our equations. In the

case α = 1, our scheme approximates the differential equation

xt =
2∑

i,j=1

gijxuiuj .

Although an analog equation for curves has been approximated and analysed in [14],

this seems not to be the case for surfaces. Apparently, no existing approximation with

a convergence proof for mean curvature flow of surfaces can be linked to the DeTurck

trick so far.

The outline of this thesis is as follows. Chapter 2 supplies basic notation and sketches

how the reparametrization works. In Chapter 3 some information on the chosen finite

differences in combination with the setting are collected. This explains how the periodic

boundary conditions are integrated into the analysis. In particular, some formulae for

summation by parts are presented since they are one important instrument in the proof

of convergence. The fully discrete approximation is presented and its consistency is

shown. This estimate makes for a first contribution to the convergence proof which

is conducted in Chapter 4. We set up an induction to derive some necessary bounds

from the induction hypothesis in the first paragraph. The error estimates for discrete

first and second order derivatives, where superconvergence effects occur, are achieved

in the induction step and can be considered as the main part of the work. Estimates

in other discrete norms are of interest, too, but are less involved and can be derived

directly once the convergence of the first and second discrete derivatives is established.

Chapter 5 is devoted to numerical examples for torus-like surfaces. These comprise an

illustration of the shrinking property of the flow by mean curvature, a study of the

mesh quality for different choices of the parameter α and the experimental order of

convergence. The results are recapulated and resumed in the last part of the thesis,

where finally a short outlook on possible pursuing work is given.
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2 Background information

The first part of this chapter is devoted to providing basic knowledge that is needed for

the approximation and the convergence analysis presented in this work. In the second

part, a derivation of the Mean Curvature DeTurck Flow is given.

2.1 Basics

Elementary inequalities

The following inequality is known in a more general formulation and proved as such

in the literature given below. We state a special case that we frequently use in our

analysis.

2.1 Theorem (A Young inequality). For a, b ≥ 0 and ε > 0 we have

ab ≤ εa2 +
1

4ε
b2. (Y)

Proof. Follows from IV.2.15 in [1] for ξ =
√

2εa, η = 1√
2ε
b and p = p′ = 2.

We now formulate a discrete analog of the lemma of Gronwall.

2.2 Theorem (A discrete lemma of Gronwall). Let m ∈ N, I = {0, . . . ,m} and K be

a nonnegative constant. Suppose (zi)i∈I and (wi)i∈I are nonnegative sequences in R. If

for all l ∈ I

zl ≤ K +
l−1∑
i=0

wizi,

then for all l ∈ I

zl ≤ K exp

(
l−1∑
i=0

wi

)
.

Proof. See [29].

Basic differential geometry

We next aim to introduce some basic facts from differential geometry and thereby settle

some notation. These explanations are restricted on formulations in local coordinates.

For further information we refer to [36].

In what follows, let Ω ⊂ R2 and Γ an immersed surface that is locally parametrized

by x : Ω → R3. That means Γ = x(Ω) and at each u ∈ Ω the Jacobi matrix Dx(u)

has rank 2. We suppose x ∈ C1(Ω). Let p = x(u) with coordinates u = (u1, u2) ∈ Ω.

We make use of the convention to sum over repeated indices. By · we denote the

11



2 Background information

Euclidean scalar product in R3 and by | · | its induced norm. To shorten the notation

of the partial derivative of f , we index the function with the corresponding variable:

fui := ∂f
∂ui

. Sometimes, ∂γ = ∂(γ1,γ2,γ3) is used as a differential operator with multi-index

when partial derivatives of order three or four occur to shorten the notation.

2.3 Definition (Tangent plane). At each u ∈ Ω we define the tangent plane as

Tux := span{xu1(u), xu2(u)}.

Formally, the first fundamental form maps each point p ∈ Γ at the restriction of · on the

tangent plane at p. Because we always have a basis of Tux due to the parametrization

x(u) = p, we can represent the scalar product by a matrix and thus formulate the

following definition that is not the most general, but sufficient for our setting.

2.4 Definition (First fundamental form). At each p = x(u) ∈ Γ, the first fundamental

form can be represented by the positive definite matrix (gij). For i, j ∈ {1, 2} the matrix

entries are

gij = xui · xuj .

We will also refer to the gij as metric coefficients. The determinant of (gij) is denoted

by g, i.e.

g = det((gij)) = |xu1|2|xu2|2 − (xu1 · xu2)2.

With a small abuse of notation we will call g the area element instead of
√
g.

Of importance is also the matrix (gij) = (gij)
−1, where

(gij) =
1

g

(
|xu2|2 −(xu1 · xu2)

−(xu1 · xu2) |xu1|2

)
,

containing what we call inverse metric coefficients. Note that this relation implies that

gijg
jk = δik, where δik is the Kronecker-Delta.

2.5 Definition (Unit normal field). A map ν : Ω → R3 is called unit normal field of

Γ, if ν(u) ⊥ Tux and |ν(u)| = 1. In terms of local coordinates we can compute

ν = ± xu1 × xu2
‖xu1 × xu2‖

.

Like for the first fundamental form, also for the second fundamental form we do not

give a general definition, but restrict it to a formulation that is possible due to the

local parametrization.

2.6 Definition (Second fundamental form). At each p = x(u) ∈ Γ, the second funda-

mental form can be represented by the matrix (hij). For i, j ∈ {1, 2} the matrix entries

12
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are

hij = ν · xuiuj .

In the literature, the mean curvature H is defined as the sum (or the arithmetic mean)

of the principal curvatures of a surface, that is the sum (or the arithmetic mean) of

the eigenvalues of the Weingarten map. This way of introducing the curvature is not

necessary here: Having the second fundamental form at hand and working in local

coordinates, we can give the following formula.

2.7 Definition (Mean curvature). At each p = x(u) ∈ Γ, the mean curvature H of a

surface Γ is given as

H = gijhij.

2.8 Remark. ν and hence H are up to a sign independent of the choice of parametriza-

tion. Since a change of the sign in ν implies a change of sign in H, the product Hν is

independent of parametrization and sign.

The following statements justify the use of the definitions of mean curvature flow given

in (1.2) and (1.3).

2.9 Lemma. With H, ν and gij given as above, the following identity holds:

Hν = gijxuiuj − gijgkl(xuiuj · xuk)xul . (2.1)

Proof. Note that gijgkl(xuiuj ·xuk)xul ∈ Tux is the projection of gijxuiuj onto the tangent

plane. To see this, we show that for any vector w ∈ R3 the term w − gkl(w · xuk)xul is

orthogonal to Tux:

(w − gkl(w · xuk)xul) · xum = w · xum − gkl(w · xuk)glm = w · xum − δkm(w · xuk) = 0.

The right hand-side of (2.1) is thus a vector of normal direction and we can write

gijxuiuj − gijgkl(xuiuj · xuk)xul = βν

for some β ∈ R. Multiplying by ν we infer

β = gijxuiuj · ν − gijgkl(xuiuj · xuk)(xul · ν) = gijxuiuj · ν.

The above definitions of H and hij yield

H = gijxuiuj · ν = β

and thus the proof is completed.
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2 Background information

2.10 Lemma. With g and gij given as above, the following identity holds:

1
√
g

(
gij
√
gxuj

)
ui

= gijxuiuj − gijgkl(xuiuj · xuk)xul . (2.2)

Proof. Because of

1
√
g

(
gij
√
gxuj

)
ui

= gijxuiuj + (gij)uixuj +
1
√
g
gij(
√
g)uixuj , (2.3)

it remains to find the derivatives of gij and
√
g. Since

(gij)ur = (gik)urδkj = (gik)urgklg
lj = −gik(gkl)urglj,

where equality in the last step holds through 0 = (gikgkl)ur = (gik)urgkl + gik(gkl)ur , we

have that

(gij)ui = −gikglj(gkl)ui .

Furthermore, from

gui =
∂g

∂gkl

∂gkl
∂ui

= gklg(gkl)ui

it follows that

(
√
g)ui =

1

2
√
g
gui =

1

2

√
ggkl(gkl)ui .

Thus,

(gij)uixuj +
1
√
g
gij(
√
g)uixuj =− gikglj(gkl)uixuj +

1
√
g
gij

1

2

√
ggkl(gkl)uixuj

=− gikglj(xukui · xul)xuj − gikglj(xuk · xului)xuj

+
1

2
gijgkl(xukui · xul)xuj +

1

2
gijgkl(xuk · xului)xuj .

By renaming indices in the summand gikglj(xuk ·xului)xuj successively, precisely i to k,

k to l and then l to i, the term is reformulated to gklgij(xul · xuiuk)xuj . Hence

(gij)uixuj +
1
√
g
gij(
√
g)uixuj =− gikglj(xukui · xul)xuj

− 1

2
gijgkl(xukui · xul)xuj +

1

2
gijgkl(xuk · xului)xuj .

Switching k and l in the last term and making use of the symmetry of gkl we obtain

(gij)uixuj +
1
√
g
gij(
√
g)uixuj = −gikglj(xukui · xul)xuj (2.4)

and the assertion of the lemma holds.
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2.2 Mean Curvature DeTurck Flow

2.11 Corollary. Equations (1.2) and (1.3) yield equivalent definitions of the motion

by mean curvature.

Proof. The assertion is a direct consequence of (2.1) and (2.2).

2.2 Mean Curvature DeTurck Flow

In what follows we explain the derivation of the Mean Curvature DeTurck Flow as

given in (1.4). The flow arises when the mean curvature flow is reparametrized with a

solution to the harmonic map heat flow. Showing every detail exceeds the intention of

this work, we rather want to give the idea of this procedure, which is a variant of the so

called the DeTurck trick. In contrast to a derivation which is given by the authors in

[22], we only work with local coordinates here, as our further computations are entirely

based on these fomulations.

Let x : [0, 2π]2× [0, T ]→ R3 be a smooth parametrization of a family of hypersurfaces

Γ(t) of torus type that move according to mean curvature flow. Recall that we choose

the reference manifold M to be the standard torus that can be parametrized globally

on [0, 2π]2. Let gij denote the metric coefficients with respect to the coordinates u1, u2,

i.e. gij(u, t) = xui(u, t) · xuj(u, t), gij the corresponding inverse metric coefficients and

g = det((gij)).

The Harmonic Map Heat Flow is given by

αηαt =
1
√
g

(
gij
√
gηαuj

)
ui
, (2.5)

where α is a positive constant. We assume ηα(·, t) : [0, 2π]2 → [0, 2π]2 to be a diffeo-

morphism for every t ∈ [0, T ] with the initial condition ηα(·, 0) = id(·) for the identical

map id on [0, 2π]2. We also require the Jacobi matrix of ηα to fulfill det(Dηα) > 0.

We reparametrize by defining, for every fixed t, x̄α := x ◦ (ηα)−1. That means, with

ηα = (ηα1 , η
α
2 )T we have that

x(u1, u2, t) = x̄α(ηα1 (u1, u2, t), η
α
2 (u1, u2, t), t) ∀(u1, u2, t) ∈ [0, 2π]2 × [0, T ].

Let ū1 = ηα1 (u1, u2, t) and ū2 = ηα2 (u1, u2, t) denote the new coordinates. In what

follows, we compute both flows with respect to ū1 and ū2. We have

xuj = (x̄α ◦ ηα)uj = ηαk,uj(x̄
α
ūk
◦ ηα) (2.6)

as well as

xt = x̄αt + ηαk,t(x̄
α
ūk
◦ ηα).
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For the sake of simplicity, we omit the composition with ηα in the subsequent calcu-

lations and advise the reader to keep in mind that x and x̄α are defined for different

parameters.

Let ḡ = det(ḡij) and (ḡij) = (ḡij)
−1 be defined through the parametrization x̄α in

the coordinates ūi, in particular ḡij = x̄αū1 · x̄
α
ū2

. Let ḡ denote the corresponding area

element. Note that the metric depends on α.

2.12 Lemma. The reparametrized mean curvature flow is given as

x̄αt + ηαk,tx̄
α
ūk

=
1√
ḡ

(
ḡij
√
ḡx̄αūj

)
ūi
. (2.7)

Proof. The time derivative of x in the mean curvature flow is given as the product of

the mean curvature H with the normal field ν and this product is independent of the

choice of parametrization, compare Remark 2.8. Thus,

xt =
1
√
g

(
gij
√
gxuj

)
ui

= Hν =
1√
ḡ

(
ḡij
√
ḡx̄αūj

)
ūi
. (2.8)

2.13 Lemma. The harmonic map heat flow can be expressed by

αηαk,tx̄
α
ūk

= (ḡij)ūix̄
α
ūj

+
1√
ḡ
ḡij(
√
ḡ)ūix̄

α
ūj
. (2.9)

Sketch of the proof. We will not execute every computation in detail. To begin with,

we explain how to prove the following intermediate result:

gijxuiuj = gijηαk,uiuj x̄
α
ūk

+ ḡijx̄αūiūj . (2.10)

We use (2.6) to calculate

xuiuj = ηαk,uiuj x̄
α
ūk

+ ηαk,uiη
α
l,uj
x̄αūkūl .

Because of x = x̄α ◦ ηα, for the induced metric we have (gij) = (Dηα)T (ḡij)Dη
α and

for the inverse (gij) = (Dηα)−1(ḡij)(Dηα)−T . Thus, (ḡij) = Dηα(gij)(Dηα)T and, since

Dηα = (ηαi,uj)i,j∈{1,2},

ḡij = ηαi,ukg
klηαj,ul .

We infer

gijxuiuj − ḡijx̄αūiūj = gijηαk,uiuj x̄
α
ūk

+ gijηαk,uiη
α
l,uj
x̄αūkūl − η

α
i,uk
gklηαj,ulx̄

α
ūiūj

= gijηαk,uiuj x̄
α
ūk
,

i.e. the above claim (2.10) is true.
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2.2 Mean Curvature DeTurck Flow

Reformulating the harmonic map heat flow and thereby applying (2.3) repeatedly we

finally have that

αηαk,tx̄
α
ūk

(2.5)
= gijηαk,uiuj x̄

α
ūk

+ (gij)uiη
α
k,uj

x̄αūk +
1
√
g
gij(
√
g)uiη

α
k,uj

x̄αūk

(2.6)
= gijηαk,uiuj x̄

α
ūk

+ (gij)uixuj +
1
√
g
gij(
√
g)uixuj

(2.8)
= gijηαk,uiuj x̄

α
ūk

+
1√
ḡ

(
ḡij
√
ḡx̄αūj

)
ūi
− gijxuiuj

(2.10)
= (ḡij)ūix̄

α
ūj

+
1√
ḡ
ḡij(
√
ḡ)ūix̄

α
ūj
.

Proceeding with the DeTurck trick, we combine the reparametrized mean curvature

flow (2.7) with the harmonic map heat flow (2.9).

2.14 Corollary. The Mean Curvature DeTurck Flow can be written as

x̄αt = ḡijx̄αūiūj +

(
1

α
− 1

)
ḡij ḡkl(x̄αūiūj · x̄

α
ūk

)x̄αūl .

Proof. Combining the reparametrized evolution equations we conclude

x̄αt
(2.7)
= −ηαk,tx̄αūk +

1√
ḡ

(
ḡij
√
ḡx̄αūj

)
ūi

(2.9)
= − 1

α

(
(ḡij)ūix̄

α
ūj

+
1√
ḡ
ḡij(
√
ḡ)ūix̄

α
ūj

)
+

1√
ḡ

(
ḡij
√
ḡx̄αūj

)
ūi

(2.3)
= ḡijx̄αūiūj +

(
1− 1

α

)(
(ḡij)ūix̄

α
ūj

+
1√
ḡ
ḡij(
√
ḡ)ūix̄

α
ūj

)
.

Applying (2.4) yields the evolution equation for the Mean Curvature DeTurck Flow

presented in (1.4).

2.15 Remark.

• Note that by Corollary 2.11, the non-reparametrized mean curvature evolution is

given by

xt = gijxuiuj − gijgkl(xuiuj · xuk)xul .

In comparison with the Mean Curvature DeTurck Flow, observe the additional

term that has tangential direction.

• As the Mean Curvature DeTurck Flow is a strongly parabolic equation, a short

time existence result follows from the theory of parabolic partial differential equa-

tions. We mentioned in our introduction that this fact can then be used to prove
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short time existence for the original mean curvature flow problem, since a solu-

tion to (1.3) exists if a solution to (1.4) exists, compare Proposition 3.27 in [3].

The same applies for the uniqueness of this solution.

In what follows, we set ūi = ui and write x and instead of x̄α, but keep in mind that a

whole family of solutions of (1.4) depending on α exists.
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3 Finite Difference Approximation

In this chapter, a finite difference approximation of the Mean Curvature DeTurck Flow

is introduced. In the first section some basic properties of the difference operators in

use are explained. After presenting the scheme for the discretization of the flow in the

second section, we calculate the consistency error.

3.1 Difference operators on the spatial grid

In the following section we introduce notations for some finite differences which are

relevant in this work as well as relations between them. The latter is connected to the

given setting of periodic boundary conditions and only concerns the spatial variable.

Since in addition to that the time discretization which we want to employ is rather

simple, we restrict our attention to the spatial one in this section.

First of all, we need a grid in [0, 2π]2 on which the discrete equations can be defined.

That means a domain for the so called grid function that approximates the smooth

solution x of (1.4).

To begin with, we consider one space dimension case. Let {uk}k∈{0,...,N} ⊂ [0, 2π] with

N ∈ N be a grid dividing [0, 2π] into subintervals of equal length h, i.e. uk = kh

and h = 2π/N . For a function f : {uk}k∈{0,...,N} → R3 we denote by fk := f(uk) the

evaluation of f at the grid points. For the forward and backward differences we write

∆+fk := fk+1 − fk and ∆−fk := fk − fk−1.

Note that we have

∆+fk = ∆−fk+1 and ∆−fk = ∆+fk−1. (3.1)

By addition respectively composition of ∆+ and ∆− we derive useful central differences,

namely
∆fk := 1

2
(∆+ + ∆−)fk = 1

2
(fk+1 − fk−1),

∆+∆−fk = fk+1 − 2fk + fk−1.
(3.2)

In two dimensions, a second direction is added to the one-dimensional grid in order

to divide [0, 2π]2 into squares of equal edge length. The resulting mesh is denoted by

{uk,l}k,l∈{0,...,N}, where uk,l = (kh, lh). By fk,l we denote the evaluation f(uk,l) of a

function f defined on the grid. We call h the mesh size of the grid. An index i ∈ {1, 2}
is attached to the forward and backward difference operators ∆± as well as ∆, referring

to the first respectively second component of the vector uk,l and therefore indicating

for which direction the difference is formed.

We aim to construct a finite difference method that is consistent of order two. For

xui and xuiui , i ∈ {1, 2}, this order can be achieved by using the central differences in
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3 Finite Difference Approximation

(3.2). We approximate the mixed derivative xu1u2 with the help of the difference

∆12 :=1
2
(∆+

1 ∆+
2 + ∆−1 ∆−2 )fk,l

=1
2
(fk+1,l+1 − fk+1,l − fk,l+1 + 2fk,l − fk,l−1 − fk−1,l + fk−1,l−1)

since it has the required order of consistency. Moreover, it can be analyzed because of

the grid points that are involved. For alternative approximations of xu1u2 as well as

general information on finite differences we refer to [27].

3.1 Remark. In general, an explicit treatment of the mixed derivative via finite dif-

ferences is not trivial. As the author in [27] points out, it is therefore desirable to have

spatial operators in divergence form. This is of course also the case for finite element

methods, where a weak formulation has to be found. We explained in our introduction

how this has been handled in the literature for the mean curvature flow, which is not in

divergence form. Compared to the issues that occured there, choosing a finite difference

method with the above approximation for xu1u2 seems to be a rather practicable way.

Despite the necessity to use a relatively complex approximation that includes seven

grid points for the mixed derivative, in the formulation of our convergence result only

the backward difference ∆−1 ∆−2 is used. This is due to the fact that the forward part

can later be traced to the backward part (as shown in 2. in Lemma 3.5). The orders

of the approximations will be proved in the next section when the time variable is

considered. This needs to be taken into account because of our semi-implicit choice of

time discretization.

As a compact notation for difference operators of second order we introduce

∆ij =

{
∆+
i ∆−i for i = j ∈ {1, 2},

1
2
(∆+

1 ∆+
2 + ∆−1 ∆−2 ) for i 6= j.

(3.3)

3.2 Remark. All difference operators work componentwise. They commute in the

sense that

∆◦1i ∆◦2j fk,l = ∆◦2j ∆◦1i fk,l,

where ◦1 and ◦2 stand for + or −. This can be seen by the symmetry of the differences

they produce in the case i = j or ◦1 = ◦2. A short computation shows the commutativity

in the remaining cases. Furthermore, the product rule

∆−(f1,kf2,k) = f1,kf2,k − f1,k−1f2,k−1 = ∆−(f1,k)f2,k + f1,k−1∆−(f2,k) (3.4)

holds.

In order to understand the effect of periodic operands, we first give the following two

definitions.
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3.3 Definition.

• A function f : {uk}k∈{0,...,N} → Rn is called 2π-periodic on {uk}k∈{0,...,N}, if

f0 = fN . We then define fN+1 := f1 and f−1 := fN−1.

• A function f : {uk,l}k,l∈{0,...,N} → Rn is called 2π-periodic on {uk,l}k,l∈{0,...,N}, if

for all k, l ∈ {0, . . . , N} the identities f0,l = fN,l and fk,0 = fk,N hold.

We then define fk,N+1 := fk,1, fN+1,l := f1,l, fk,−1 := fk,N−1 and f−1,l := fN−1,l

for all k, l ∈ {0, . . . , N} as well as fN+1,N+1 := f1,1 and f−1,−1 := fN−1,N−1.

3.4 Definition.

C0
per([0, 2π];Rn) = {f : [0, 2π]→ Rn continuous | f(0) = f(2π)},

C0
per([0, 2π]2;Rn) = {f : [0, 2π]2 → Rn continuous |f(u1, ·), f(·, u2) ∈ C0

per([0, 2π];Rn)}.

Thus, elements of the just defined spaces fulfill Definition 3.3 when being restricted on

the grid {uk}k∈{0,...,N} or {uk,l}k,l∈{0,...,N}, respectively, and can be extended accordingly.

The main advantage of periodicity is that by the periodic extension of a function f to

points outside the domain, we can apply the established difference operators to fk,l for

all grid points uk,l, k, l ∈ {0, . . . , N}. This also yields that the sum over all mesh points

is independent of the concrete index (i.e. grid point). For a 2π-periodic function f on

{uk}k∈{0,...,N} that means

N∑
k=1

fk+1 =
N+1∑
k=2

fk =
N∑
k=1

fk + fN+1 − f1︸ ︷︷ ︸
=0

=
N∑
k=1

fk,

N∑
k=1

fk−1 =
N−1∑
k=0

fk =
N∑
k=1

fk + f0 − fN︸ ︷︷ ︸
=0

=
N∑
k=1

fk.

(3.5)

Adding the second variable, i.e. an index over which we sum, does not change the

asserted equations since we can fix the value of the index for the second variable as

shown in the proof of 1. in Lemma 3.5.

From (3.5) we can deduce some important relations between the operators, as it is

shown in the following lemmata.

3.5 Lemma.

1. For a 2π-periodic function f : {uk,l}k,l∈{0,...,N} → Rn we have for r ∈ {1, 2}

N∑
k,l=1

|∆+
r fk,l|2 =

N∑
k,l=1

|∆−r fk,l|2.
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2. For a 2π-periodic function f : {uk,l}k,l∈{0,...,N} → Rn we have

N∑
k,l=1

|∆+
1 ∆+

2 fk,l|2 =
N∑

k,l=1

|∆−1 ∆−2 fk,l|2.

Proof. 1. Let r = 1. Applying (3.5) to f̃k+1,l := |fk+1,l − fk,l|2 for fixed l yields

N∑
k,l=1

|∆+
1 fk,l|2 =

N∑
l=1

N∑
k=1

|fk+1,l − fk,l|2 =
N∑
l=1

N∑
k=1

|fk,l − fk−1,l|2 =
N∑

k,l=1

|∆−1 fk,l|2.

For r = 2 the steps are the same after renaming indices.

2. Using (3.5) for each direction of the mesh we obtain

N∑
k,l=1

|∆+
1 ∆+

2 fk,l|2 =
N∑

k,l=1

|fk+1,l+1 − fk+1,l − fk,l+1 + fk,l|2

=
N∑

k,l=1

|fk,l+1 − fk,l − fk−1,l+1 + fk−1,l|2

=
N∑

k,l=1

|fk,l − fk,l−1 − fk−1,l + fk−1,l−1|2 =
N∑

k,l=1

|∆−1 ∆−2 fk,l|2.

For brevity, the following lemma is formulated for a one-dimensional grid. As demon-

strated above, this is easily transferred to a two-dimensional grid.

3.6 Lemma. Let f, f̄ : {uk}k∈{0,...,N} → Rn, β : {uk}k∈{0,...,N} → R be 2π-periodic grid

functions. Then the differences ∆+fk and −∆−fk result from each other by summation

by parts. Two variants are possible, precisely

1.
N∑
k=1

βkfk · (∆+f̄k) = −
N∑
k=1

βk(∆
−fk) · f̄k −

N∑
k=1

(∆−βk)fk−1 · f̄k. (3.6)

In particular, for β ≡ 1 we have

N∑
k=1

fk · (∆+f̄k) = −
N∑
k=1

(∆−fk) · f̄k. (3.7)

2.
N∑
k=1

βkfk · (∆+f̄k) = −
N∑
k=1

βk−1(∆−fk) · f̄k −
N∑
k=1

(∆−βk)fk · f̄k. (3.8)

22



3.2 Approximation and consistency

Proof. The sum on the left-hand side is the same in the first and second claim and can

be rewritten as follows:

N∑
k=1

βkfk · (∆+f̄k) =
N∑
k=1

βkfk · (f̄k+1 − f̄k)

=
N∑
k=1

βkfk · f̄k+1 −
N∑
k=1

βkfk · f̄k

(3.5)
=

N∑
k=1

βk−1fk−1 · f̄k −
N∑
k=1

βkfk · f̄k.

For the resulting terms, there are two possibilities to rejoin them. On the one hand

N∑
k=1

βk−1fk−1 · f̄k −
N∑
k=1

βkfk · f̄k

= −
N∑
k=1

βk(fk − fk−1) · f̄k −
N∑
k=1

(βk − βk−1)fk−1 · f̄k

= −
N∑
k=1

βk(∆
−fk) · f̄k −

N∑
k=1

(∆−βk)fk−1 · f̄k,

which corresponds to the assertion in 1. On the other hand

N∑
k=1

βk−1fk−1 · f̄k −
N∑
k=1

βkfk · f̄k

= −
N∑
k=1

βk−1(fk − fk−1) · f̄k −
N∑
k=1

(βk − βk−1)fk · f̄k

= −
N∑
k=1

βk−1(∆−fk) · f̄k −
N∑
k=1

(∆−βk)fk · f̄k,

by which the equation in 2. is proved.

3.2 Approximation and consistency

In the following we present the approximation of the Mean Curvature DeTurck Flow

xt = gijxuiuj + (
1

α
− 1)gijgmn(xuiuj · xum)xun

which will be studied in the further course of this work. We will also estimate the cor-

responding consistency error. That is, the error that results from inserting the solution

x of the differential equation into the difference equation.
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3 Finite Difference Approximation

In addition to the established spatial grid we introduce the grid {ts}s∈{0,...,M} in the

time interval [0, T ]. Let T = Mτ for a time step size τ and ts = sτ be the grid points

for s ∈ {0, . . . ,M}. We choose a forward difference quotient to approximate the time

derivative and propose the following

Finite Difference Approximation of Mean Curvature DeTurck Flow.

Find xh : {uk,l}k,l∈{0,...,N}×{ts}s∈{0,...,M} → R3, with evaluation xsk,l = xh(uk,l, t
s) at the

mesh points, such that for each k, l ∈ {1, . . . , N} and s ∈ {0, . . . ,M − 1} the function

solves

xs+1
k,l − xsk,l

τ
= gij,sk,l ∆ijx

s+1
k,l +

(
1

α
− 1

)
gij,sk,l g

mn,s
k,l (∆ijx

s+1
k,l ·∆mx

s
k,l)∆nx

s
k,l (3.9)

where

g11,s
k,l =

|∆+
2 x

s
k,l||∆−2 xsk,l|
gsk,l

, g22,s
k,l =

|∆+
1 x

s
k,l||∆−1 xsk,l|
gsk,l

,

g12,s
k,l = −

∆1x
s
k,l ·∆2x

s
k,l

gsk,l
= g21,s

k,l ,

gsk,l = |∆+
1 x

s
k,l||∆−1 xsk,l||∆+

2 x
s
k,l||∆−2 xsk,l| − (∆1x

s
k,l ·∆2x

s
k,l)

2.

(3.10)

We obtain a complete difference scheme by specifying the initial and boundary condi-

tions: For all s ∈ {0, . . . ,M}

x0
k,l = x(uk,l, t

0), ∀k, l ∈ {0, . . . , N},
xs0,l = xsN,l, ∀l ∈ {0, . . . , N},
xsk,0 = xsk,N , ∀k ∈ {0, . . . , N}.

(3.11)

3.7 Remark. Note that the operators defined at the beginning of this chapter are dif-

ferences, not difference quotients. Division by some corresponding power of the spatial

grid size h to approximate the derivatives is of course taken into account in all calcu-

lations. Still, when describing the objects in words, for simplicity we do not make a

distinction. For instance, |∆+
i xk,l||∆−i xk,l| are called the discrete versions of the squared

length elements though they need to be divided by h2 to approximate the squared length

elements, as can be seen in Lemma 3.10.

3.8 Remark. The equations in (3.9) are formulated for uk,l with k, l ∈ {1, . . . , N},
while information on uk,0, u0,l ∈ {uk,l}k,l∈{0,...,N} is given via (3.11). In (3.9) the nature

of the chosen differences additionally requires involving the points uk,N+1 and uN+1,l

for k, l ∈ {1, . . . , N} as well as uN+1,N+1 when operating on functions evaluated at

uk,l for k = N or l = N . As given in definition 3.3, these values are provided by
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3.2 Approximation and consistency

the periodicity of the function. This definition also allows for function evaluations at

uk,−1 und u−1,l, which are not directly involved in the above difference equation. Their

application will become more obvious later on within the scope of summation by parts

and some preliminary considerations in the next chapter. There we have differences of

the quantities gij and we apply our difference operators to functions which are evaluated

at uk−1,l and uk,l−1, respectively.

In order to avoid an extra index, just like in the continuous case we omit the fact that

the discrete solution xh depends on the parameter α and we thus actually have a family

of solutions. During the analysis of the approximation, the dependence on α will enter

into the constant of the estimate. In the numerical part of this work, the influence of

the parameter will be considered explicitly.

Scheme (3.9) is semi-implicit and requires a linear system of equations to be solved.

Under certain assumptions on the discrete solution at ts this system has a unique

solution (xs+1
1,1 , . . . , x

s+1
N,N), as we show in the subsequent lemma. These assumptions

will be ensured by conducting an induction within the convergence proof, where it

becomes apparent that the constants C̄m, Cij
O , i, j,m ∈ {1, 2}, depend on x but not on

h or τ . Bounding τ by h2 as postulated below is necessary for the convergence analysis

as well and is thus no further restriction.

3.9 Lemma. Let s ∈ {0, . . . ,M − 1} and xsh : {uk,l}k,l∈{0,...,N} → R3 the discrete

solution at ts. Assume that there are constants C̄m, Cij
O , i, j,m ∈ {1, 2}, such that

|∆mx
s
k,l| ≤ 2C̄mh and |gij,sk,l | ≤ Cij

Oh
−2. Then there exists a constant c′ > 0 only

depending on xsh such that (3.9) has a unique solution provided that τ ≤ c′h2.

Proof. The system is of the form

(xs+1
1,1 , . . . , x

s+1
N,N)− τA(xs+1

1,1 , . . . , x
s+1
N,N) = (xs1,1, . . . , x

s
N,N)

for a matrix A ∈ R3N2×3N2
with entries Aij. For X ∈ R3N2

the corresponding homoge-

neous system reads X − τAX = 0, from which we infer that for each i ∈ {1, . . . , 3N2}

|Xi| = τ

∣∣∣∣∣
3N2∑
j=1

AijXj

∣∣∣∣∣ ≤ cτ max
j
|Aij|max

j
|Xj|.

Note that c corresponds to the number of non-zero entries of A in a row and is inde-

pendent of h. Thus, if we can bound

cτ max
j
|Aij| ≤ 1

2
,

we obtain that |Xi| ≤ 1
2

maxj |Xj|. In particular, this holds for the maximum over all

i ∈ {1, . . . , 3N2}, which yields
1
2

max
i
|Xi| ≤ 0.
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3 Finite Difference Approximation

Hence, the homogeneous system has the unique solution X = 0 ∈ R3N2
and the

inhomogeneous system has the unique solution (xs+1
1,1 , . . . , x

s+1
N,N) ∈ R3N2

.

It remains to show that A can be bounded as required. The non-zero entries of A

define the coefficients of the points on the surface. Let x
s,(q)
k,l denote the components of

such a point xsk,l ∈ R3. Depending on k, l and q, the entries of A are, except constants

that are determined by the coefficients in ∆ij, given by

2∑
i,j=1

gij,sk,l +

(
1

α
− 1

) 2∑
i,j=1

3∑
r=1

gij,sk,l g
mn,s
k,l ∆mx

s,(r)
k,l ∆nx

s,(q)
k,l

or (
1

α
− 1

) 2∑
i,j=1

3∑
r=1

gij,sk,l g
mn,s
k,l ∆mx

s,(r)
k,l ∆nx

s,(q)
k,l .

All in all, each entry of A is hence bounded by cAh
−2 and cA only depends on xsh.

Making use of the condition τ ≤ c′h2, where c′ = 1
2ccA

, leads to the desired estimate.

In what follows, by a solution to (3.9), we mean a 2π-periodic function that can be

extended as in Definition 3.3 and consequently automatically fulfills the boundary con-

ditions in (3.11). They are integrated into the error estimate because they allow the

use of one equation for all grid points including those on the boundary.

The choice of the above discretization is motivated on the following pages. For this

aim, first a consistency estimate for the length elements is given. Since the assertion

is valid for both directions of the spatial grid and independently of time, the consid-

erations are restricted on a one-dimensional spatial grid. We then continue to prove

consistency for the area element, where we also omit the time dependence.

3.10 Lemma. Let x ∈ C0
per([0, 2π];R3) ∩ C3([0, 2π];R3) with ∂γx ∈ C0

per([0, 2π];R3)

for |γ| ≤ 2 and let |xu| ≥ cL > 0. Then the restriction of x onto the grid {uk}k∈{0,...,N},
x̃k = x(uk), satisfies for all k ∈ {1, . . . , N}

|∆−x̃k||∆+x̃k| = h2|xu(uk)|2 +Qk, (3.12)

where |Qk| ≤ ch4 and c only depends on x.

Proof. Considering the periodic boundary conditions described above, we can see that

the following assertions are valid for all k ∈ {1, . . . , N}, where the periodicity require-

ment for its derivatives is necessary to ensure that they can be evaluated at grid points

on the boundary. Let thus uk ∈ {uk}k∈{0,...,N} for arbitrary k ∈ {1, . . . , N}. According

to Taylor’s formula, we have
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3.2 Approximation and consistency

x̃k±1 = x(uk ± h) = x(uk)± hxu(uk) +
1

2
h2xuu(uk)±

1

6
h3xuuu(ζ

±
k ), (3.13)

where xuuu(ζ
±
k ), with a little abuse of notation, denotes the evaluation of the vector

xuuu at (possibly) different points for each component, i.e.

xuuu(ζ
±
k ) = (x(1)

uuu(ζ
(1),±
k ), x(2)

uuu(ζ
(2),±
k ), x(3)

uuu(ζ
(3),±
k ))

and ζ
(q),−
k ∈ (uk−1, uk) respectively ζ

(q),+
k ∈ (uk, uk+1) for q ∈ {1, 2, 3}. For the sake

of brevity, the argument uk of the derivatives is omitted, whereas the evaluation of

functions at points in between is always given in the abbreviated notation xuuu(ζ
±
k ).

From (3.13) we infer

|∆−x̃k| = |x̃k − x̃k−1| = |hxu −
1

2
h2xuu +

1

6
h3xuuu(ζ

−
k )|

and

|∆+x̃k| = |x̃k+1 − x̃k| = |hxu +
1

2
h2xuu +

1

6
h3xuuu(ζ

+
k )|.

In order to further rewrite |∆−x̃k| as well as |∆+x̃k| we make use of the fact that the

euclidean norm of a vector can be defined as the square root of the standard scalar

product of the vector with itself:

|∆−x̃k|

=

((
hxu −

1

2
h2xuu +

1

6
h3xuuu(ζ

−
k )

)
·
(
hxu −

1

2
h2xuu +

1

6
h3xuuu(ζ

−
k )

))1/2

=

(
h2|xu|2 −

1

2
h3xu · xuu +

1

6
h4xu · xuuu(ζ−k )− 1

2
h3xu · xuu +

1

4
h4|xuu|2

− 1

12
h5xuu · xuuu(ζ−k ) +

1

6
h4xu · xuuu(ζ−k )− 1

12
h5xuu · xuuu(ζ−k ) +

1

36
h6|xuuu(ζ−k )|2

)1/2

= h|xu|

(
1− hxu · xuu

|xu|2
+ h2

(
1

4

|xuu|2

|xu|2
+

1

3

xu
|xu|2

· xuuu(ζ−k )

)

− 1

6
h3 xuu
|xu|2

· xuuu(ζ−k ) +
1

36
h4 |xuuu(ζ−k )|2

|xu|2

)1/2

= h|xu|
(

1− hxu · xuu
|xu|2

+Q−k

)1/2

,

where in the radicand terms of order two and higher are resumed in Q−k , i.e. |Q−k | ≤ ch2

holds. Note that this requires |xu| > cL as assumed and also note that the constant c

only depends on x. Abbreviations of this kind will be introduced repeatedly in order

to keep the calculations as clear as possible.
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3 Finite Difference Approximation

For further approximation, the square root is reformulated by the Taylor series expan-

sion √
1 + y = 1 +

1

2
y + r(y),

where |r(y)| ≤ cy2 for |y| ≤ 1
2
. This yields

|∆−x̃k| = h|xu|
(

1− 1

2
h
xu · xuu
|xu|2

+
1

2
Q−k + r−k

)
with |r−k | ≤ ch2 and |Q−k | ≤ ch2, if | − hxu·xuu|xu|2 + Q−k | ≤ ch ≤ 1

2
, i.e. if h is sufficiently

small.

Analogously,

|∆+x̃k| = |hxu +
1

2
h2xuu +

1

6
h3xuuu(ζ

+
k )|

= h|xu|

(
1 + h

xu · xuu
|xu|2

+ h2

(
1

4

|xuu|2

|xu|2
+

1

3

xu
|xu|2

· xuuu(ζ+
k )

)

+
1

6
h3 xuu
|xu|2

· xuuu(ζ+
k ) +

1

36
h4 |xuuu(ζ+

k )|2

|xu|2

)1/2

= h|xu|
(

1 + h
xu · xuu
|xu|2

+Q+
k

)1/2

= h|xu|
(

1 +
1

2
h
xu · xuu
|xu|2

+
1

2
Q+
k + r+

k

)
,

where |r+
k | ≤ ch2 as well as |Q+

k | ≤ ch2.

We therefore have

|∆−x̃k||∆+x̃k|

= h2|xu|2
(

1− 1

2
h
xu · xuu
|xu|2

+
1

2
Q−k + r−k

)(
1 +

1

2
h
xu · xuu
|xu|2

+
1

2
Q+
k + r+

k

)
= h2|xu|2

(
1 +

1

2
h
xu · xuu
|xu|2

+
1

2
Q+
k + r+

k

− 1

2
h
xu · xuu
|xu|2

− 1

4
h2

(
xu · xuu
|xu|2

)2

− 1

4
h
xu · xuu
|xu|2

Q+
k −

1

2
h
xu · xuu
|xu|2

r+
k

+
1

2
Q−k +

1

4
h
xu · xuu
|xu|2

Q−k +
1

4
Q−kQ

+
k +

1

2
Q−k r

+
k

+ r−k +
1

2
h
xu · xuu
|xu|2

r−k +
1

2
r−k Q

+
k + r−k r

+
k

)
= h2|xu|2 +Qk,

where |Qk| ≤ ch4.
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3.2 Approximation and consistency

3.11 Lemma. Let x ∈ C3([0, 2π]2;R3)∩C0
per([0, 2π]2;R3) with ∂γx ∈ C0

per([0, 2π]2;R3)

for |γ| ≤ 2 and let x̃k,l := x(uk,l) denote the restriction of x onto the mesh {uk,l}k,l∈{0,...,N} ⊂
[0, 2π]2 with (uk,l) = (kh, lh), h = 2π

N
. Furthermore, let

g̃k,l = |∆−1 x̃k,l||∆+
1 x̃k,l||∆−2 x̃k,l||∆+

2 x̃k,l| − (∆1x̃k,l ·∆2x̃k,l)
2

denote the approximation of the area element g. Under the regularity assumption that

0 < 2c̄ ≤ g, we have that for all k, l ∈ {1, . . . , N}

g̃k,l = h4g(uk,l) +Rk,l, (3.14)

where |Rk,l| ≤ ch6 and c only depends on x. In particular, if h ≤ h0 for some h0 > 0,

the restriction of the area element satisfies

g̃k,l ≥ c̄h4. (3.15)

Proof. Due to the periodicity of x, we can formulate the following computations for

all k, l ∈ {1, . . . , N}. The central differences ∆r, which were defined at the beginning

of this chapter in (3.2), can be expressed by the Taylor expansion in (3.13): For all

k, l ∈ {1, . . . , N} we have that

2∆1x̃k,l = x̃k+1,l − x̃k−1,l = 2hxu1(uk,l) +R
(1)
k,l ,

2∆2x̃k,l = x̃k,l+1 − x̃k,l−1 = 2hxu2(uk,l) +R
(2)
k,l ,

(3.16)

with |R(1)
k,l | ≤ ch3, |R(2)

k,l | ≤ ch3. This yields

∆1x̃k,l ·∆2x̃k,l =
1

2
(x̃k+1,l − x̃k−1,l) ·

1

2
(x̃k,l+1 − x̃k,l−1)

= (hxu1 +
1

2
R

(1)
k,l ) · (hxu2 +

1

2
R

(2)
k,l )

= h2(xu1 · xu2) +
1

2
hxu1 ·R

(2)
k,l +

1

2
hxu2 ·R

(1)
k,l +

1

4
R

(1)
k,l ·R

(2)
k,l

= h2(xu1 · xu2) +R
(3)
k,l ,

(3.17)

where |R(3)
k,l | ≤ ch4.

We use the statement of the preceding lemma, which says that

|∆−1 x̃k,l||∆+
1 x̃k,l| = h2|xu1|2 +R

(4)
k,l ,

|∆−2 x̃k,l||∆+
2 x̃k,l| = h2|xu2|2 +R

(5)
k,l

(3.18)

with |R(4)
k,l | ≤ ch4, |R(5)

k,l | ≤ ch4 and k, l ∈ {1, . . . , N}. The boundedness

|xur | ≥ cLr , (3.19)
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3 Finite Difference Approximation

which is necessary for the application of Lemma 3.10, follows from the assumed lower

boundedness of g by means of a compactness argument. Consequently,

|∆−1 x̃k,l||∆+
1 x̃k,l||∆−2 x̃k,l||∆+

2 x̃k,l| = (h2|xu1|2 +R
(4)
k,l )(h

2|xu2 |2 +R
(5)
k,l )

= h4|xu1|2|xu2|2 + h2|xu1|2R
(5)
k,l + h2|xu2|2R

(4)
k,l +R

(4)
k,lR

(5)
k,l

= h4|xu1|2|xu2|2 +R
(6)
k,l ,

where |R(6)
k,l | ≤ ch6.

For the approximation g̃k,l of the area element it follows that

g̃k,l = |∆−1 x̃k,l||∆+
1 x̃k,l||∆−2 x̃k,l||∆+

2 x̃k,l| −
(
∆1x̃k,l ·∆2x̃k,l

)2

= h4|xu1|2|xu2|2 +R
(6)
k,l −

(
h4(xu1 · xu2)2 + 2h2(xu1 · xu2)R

(3)
k,l + (R

(3)
k,l )

2
)

= h4(|xu1|2|xu2|2 − (xu1 · xu2)2) +R
(7)
k,l ,

= h4g +R
(7)
k,l ,

where |R(7)
k,l | ≤ ch6. This way we can also derive a lower bound for g̃k,l. Since we

presumed g ≥ 2c̄, we have

g̃k,l ≥ h4g − |R(7)
k,l | ≥ 2c̄h4 − ch6 ≥ c̄h4,

in case h ≤
√
c/c̄.

We advise the reader to bear in mind that this result means that g(uk,l) is approximated

by g̃k,l/h
4, compare Remark 3.7. Despite this fact, we often call g̃k,l the approximated

area element for simplicity.

After these preliminary results we are ready to formulate the consistency statement for

the whole difference scheme.

3.12 Theorem. Let x ∈ C4([0, 2π]2 × [0, T ];R3) ∩ C0([0, T ];C0
per([0, 2π]2;R3)) be the

solution of the continuous problem (1.4) with ∂γx ∈ C0([0, T ];C0
per([0, 2π]2;R3)) for

|γ| ≤ 3. For k, l ∈ {0, . . . , N} and s ∈ {0, . . . ,M} let x̃sk,l := x(uk,l, t
s) denote the

restriction of x to the mesh {(uk,l, ts)}k,l∈{0,...,N},s∈{0,...,M} with (uk,l) = (kh, lh), h = 2π
N

,

and ts = sτ , τ = T
M

, as well as

g̃11,s
k,l =

|∆−2 x̃sk,l||∆+
2 x̃

s
k,l|

g̃sk,l
, g̃22,s

k,l =
|∆−1 x̃sk,l||∆+

1 x̃
s
k,l|

g̃sk,l
,

g̃12,s
k,l = −

∆1x̃
s
k,l ·∆2x̃

s
k,l

g̃sk,l
= g̃21,s

k,l ,

g̃sk,l = |∆−1 x̃sk,l||∆+
1 x̃

s
k,l||∆−2 x̃sk,l||∆+

2 x̃
s
k,l| − (∆1x̃

s
k,l ·∆2x̃

s
k,l)

2.

(3.20)
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3.2 Approximation and consistency

If 0 < 2c̄ ≤ g, h ≤ h0 for some h0 > 0 and τ ≤ c′h2 for some c′ > 0, then for all

k, l ∈ {1, . . . , N} and s ∈ {0, . . . ,M − 1} the following equation holds:

x̃s+1
k,l − x̃sk,l

τ
= g̃ij,sk,l ∆ijx̃

s+1
k,l +

(
1

α
− 1

)
g̃ij,sk,l g̃

mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l + R̃α,s

k,l ,

(3.21)

where |R̃α,s
k,l | ≤ cR̃(h2 + τ) and cR̃ only depends on x and α.

Proof. Again, the subsequent assertions hold for all points of the spatial grid, i.e.

for all k, l ∈ {1, . . . , N}, because of the periodicity of the solution function and its

derivatives. In the previous lemmata, the difference operators of first order have been

investigated. In order to examine the remaining differences in view of their consistency,

we need Taylor polynomials of higher degree and therefore now additionally require the

derivatives of third order to fulfill the periodic boundary conditions. The evaluation of

differences of second order at time ts+1, s ∈ {0, . . . ,M−1}, also requires to include the

time variable in the expansion. Note that we did not consider a time dependence so

far and that the quantities we studied only appear at time ts in our difference scheme.

We can thus directly transfer these results without addressing the further variable in

the Taylor expansions. For clarification, we add the index s to the remainder terms

obtained earlier.

Since we always expand around (uk,l, t
s), we do not note the argument of derivatives

except from the case of the Lagrangian remainder. For the remainder, analogously to

(3.13), we write ∂γx(ξ) but mean that each component of the derivative is evaluated

at a different ξ. Let s ∈ {0, . . . ,M − 1} if not stated otherwise. We have

x̃s+1
k±1,l = x(uk,l ± he1, t

s + τ) = x((k ± 1)h, lh, (s+ 1)τ)

= x̃sk,l + τxt ± hxu1 +
1

2
(h2xu1u1 ± 2hτxu1t + τ 2xtt)

+
1

6

(
± h3∂(3,0,0)x+ 3h2τ∂(2,0,1)x± 3hτ 2∂(1,0,2)x+ τ 3∂(0,0,3)x

)
+

∑
|(γ1,0,γ3)|=4

1

γ1!γ3!
(±h)γ1τ γ3∂(γ1,0,γ3)x(ξ±k,s),

where ξ−k,s ∈ ((k − 1)h, kh) × {lh} × (sτ, (s + 1)τ) and ξ+
k,s ∈ (kh, (k + 1)h) × {lh} ×

(sτ, (s+ 1)τ). Likewise it holds that

x̃s+1
k,l±1 = x̃sk,l + τxt ± hxu2 +

1

2
(h2xu2u2 ± 2hτxu2t + τ 2xtt)

+
1

6

(
± h3∂(0,3,0)x+ 3h2τ∂(0,2,1)x± 3hτ 2∂(0,1,2)x+ τ 3∂(0,0,3)x

)
+

∑
|(0,γ2,γ3)|=4

1

γ2!γ3!
(±h)γ2τ γ3∂(0,γ2,γ3)x(ξ±l,s),

where ξ−l,s ∈ {kh} × ((l − 1)h, lh) × (sτ, (s + 1)τ) and ξ+
l,s ∈ {kh} × (lh, (l + 1)h) ×
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3 Finite Difference Approximation

(sτ, (s + 1)τ). The expansions in both spatial variables and in time of x̃s+1
k+1,l+1 and

x̃s+1
k−1,l−1 at (uk,l, t

s) are

x̃s+1
k±1,l±1 = x(uk,l ± h(1, 1), ts + τ) = x((k ± 1)h, (l ± 1)h, (s+ 1)τ)

= x̃sk,l + τxt ± hxu1 ± hxu2

+
1

2
(h2xu1u1 + 2h2xu1u2 + h2xu2u2 ± 2hτxu2t ± 2hτxu1t + τ 2xtt)

+
1

6

(
± h3∂(3,0,0)x+ 3h2τ∂(2,0,1)x± 3hτ 2∂(1,0,2)x± 3h3∂(2,1,0)x± 3h3∂(1,2,0)x

+ h2τ∂(1,1,1)x± h3∂(0,3,0)x+ 3h2τ∂(0,2,1)x± 3hτ 2∂(0,1,2)x+ τ 3∂(0,0,3)x
)

+
∑
|γ|=4

1

γ!
(±h,±h, τ)γ∂γx(ξ±k,l,s),

where for the arguments of the remainders ξ−k,l,s ∈ ((k − 1)h, kh) × ((l − 1)h, lh) ×
(sτ, (s+1)τ) and ξ+

k,l,s ∈ (kh, (k+1)h)× (lh, (l+1)h)× (sτ, (s+1)τ) hold, respectively.

Besides we have

x̃s+1
k,l = x̃sk,l + τxt +

1

2
τ 2xtt(uk,l, ϑ

s), (3.22)

where ϑs ∈ (sτ, (s+ 1)τ).

We obtain the order of consistency of the operators ∆ij, i ∈ {1, 2}, compare (3.3) and

previous notations, by inserting the above expressions into the corresponding differ-

ences:

∆11x̃
s+1
k,l = x̃s+1

k+1,l − 2x̃s+1
k,l + x̃s+1

k−1,l

= x̃sk,l + τxt + hxu1 +
1

2
(h2xu1u1 + 2hτxu1t + τ 2xtt)

+
1

6
(h3∂(3,0,0)x+ 3h2τ∂(2,0,1)x+ 3hτ 2∂(1,0,2)x+ τ 3∂(0,0,3)x)

− 2x̃sk,l − 2τxt − τ 2xtt(uk,l, ϑ
s)

+ x̃sk,l + τxt − hxu1 +
1

2
(h2xu1u1 − 2hτxu1t + τ 2xtt)

+
1

6

(
− h3∂(3,0,0)x+ 3h2τ∂(2,0,1)x− 3hτ 2∂(1,0,2)x+ τ 3∂(0,0,3)x

)
+

∑
|(γ1,0,γ3)|=4

1

γ1!γ3!
(±h)γ1τ γ3

(
∂(γ1,0,γ3)x(ξ+

k,s) + ∂(γ1,0,γ3)x(ξ−k,s)
)

= h2xu1u1 +R
(8)
k,l,s,

(3.23)

where |R(8)
k,l,s| ≤ c(τ 2 + h2τ + h4), and analogously

∆22x̃
s+1
k,l = x̃s+1

k,l+1 − 2x̃s+1
k,l + x̃s+1

k,l−1 = h2xu2u2 +R
(9)
k,l,s, (3.24)

where |R(9)
k,l,s| ≤ c(τ 2 + h2τ + h4).
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3.2 Approximation and consistency

Furthermore,

2∆12x̃
s+1
k,l

= x̃s+1
k+1,l+1 − x̃

s+1
k+1,l − x̃

s+1
k,l+1 + 2x̃s+1

k,l − x̃
s+1
k,l−1 − x̃

s+1
k−1,l + x̃s+1

k−1,l−1

= x̃sk,l(1− 1− 1 + 2− 1− 1 + 1) + τxt(1− 1− 1 + 2− 1− 1 + 1)

+ hxu1(1− 1− (−1) + (−1)) + hxu2(1− 1− (−1) + (−1))

+
1

2
hτxu1t(2− 2− (−2) + (−2)) +

1

2
hτxu2t(2− 2− (−2) + (−2))

+
1

2
h2xu1u1(1− 1− 1 + 1) +

1

2
h2xu1u2(2 + 2) +

1

2
h2xu2u2(1− 1− 1 + 1)

+ 2
1

2
τ 2xtt(uk,l, ϑ

s) + (
1

2
τ 2xtt +

1

6
τ 3(∂(0,0,3)x))(1− 1− 1− 1− 1 + 1)

+
1

6
h3(∂(3,0,0)x)(1− 1− (−1) + (−1)) +

1

6
h3(∂(0,3,0)x)(1− 1− (−1) + (−1))

+
1

6
h3((∂(2,1,0)x) + (∂(1,2,0)x))(3 + (−3))

+
1

6
h2τ((∂(2,0,1)x) + (∂(0,2,1)x))(3− 3− 3 + 3) +

1

6
h2τ(∂(1,1,1)x)(1 + 1)

+
1

6
hτ 2((∂(1,0,2)x) + (∂(0,1,2)x))(3− 3− (−3) + (−3))

+
∑

|(γ1,0,γ3)|=4

1

γ1!γ3!
(±h)γ1τ γ3

(
∂(γ1,0,γ3)x(ξ+

k,s) + ∂(γ1,0,γ3)x(ξ−k,s)
)

+
∑

|(0,γ2,γ3)|=4

1

γ2!γ3!
(±h)γ2τ γ3

(
∂(0,γ2,γ3)x(ξ+

l,s) + ∂(0,γ2,γ3)x(ξ−l,s)
)

+
∑
|γ|=4

1

γ!
(±h,±h, τ)γ

(
∂γx(ξ+

k,l,s) + ∂γx(ξ−k,l,s)
)

= 2h2xu1u2 +R
(10)
k,l,s,

(3.25)

where |R(10)
k,l,s| ≤ c(τ 2 + h2τ + h4).

Inserting the continuous solution function x into the difference equation we obtain for

each k, l ∈ {1, . . . , N} the consistency error

R̃α,s
k,l :=

x̃s+1
k,l − x̃sk,l

τ
− g̃ij,sk,l ∆ijx̃

s+1
k,l −

(
1

α
− 1

)
g̃ij,sk,l g̃

mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l. (3.26)

In view of the definitions of g̃ij,sk,l and the appearance of the product g̃ij,sk,l g̃
mn,s
k,l , we

multiply this equation by (g̃sk,l)
2. By replacing the differences by the expressions we

obtained from the Taylor expansions, we calculate the consistency error of the approx-

imated Mean Curvature DeTurck Flow. Remember that, compared to Lemmas 3.10

and 3.11, we indicate the time dependence of x and the remainder terms by a further

index. We start with the following intermediate computation using the definition of
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3 Finite Difference Approximation

g̃ij,sk,l in (3.20) as well as (3.17), (3.18) and (3.24), (3.25):

g̃sk,lg̃
ij,s
k,l ∆ijx̃

s+1
k,l

= |∆+
2 x̃

s
k,l||∆−2 x̃sk,l|∆11x̃

s+1
k,l − 2(∆1x̃

s
k,l ·∆2x̃

s
k,l)∆12x̃

s+1
k,l + |∆+

1 x̃
s
k,l||∆−1 x̃sk,l|∆22x̃

s+1
k,l

= (h2|xu2|2 +R
(5)
k,l,s)(h

2xu1u1 +R
(8)
k,l,s)

− 2(h2(xu1 · xu2) +R
(3)
k,l,s)(h

2xu1u2 +R
(10)
k,l,s)

+ (h2|xu1|2 +R
(4)
k,l,s)(h

2xu2u2 +R
(9)
k,l,s)

= h4|xu2 |2xu1u1 + h2|xu2|2R
(8)
k,l,s + h2R

(5)
k,l,sxu1u1 +R

(5)
k,l,sR

(8)
k,l,s

− 2(h4(xu1 · xu2)xu1u2 + h2(xu1 · xu2)R
(10)
k,l,s + h2R

(3)
k,l,sxu1u2 +R

(3)
k,l,sR

(10)
k,l,s)

+ h4|xu1|2xu2u2 + h2|xu1|2R
(9)
k,l,s + h2R

(4)
k,l,sxu2u2 +R

(4)
k,l,sR

(9)
k,l,s

= h4|xu2|2xu1u1 − 2h4(xu1 · xu2)xu1u2 + h4|xu1|2xu2u2 +R
(11)
k,l,s

= h4ggijxuiuj +R
(11)
k,l,s,

(3.27)

where |R(11)
k,l,s| ≤ ch2(τ 2 + h2τ + h4). From this we infer with the help of (3.14) that

(g̃sk,l)
2g̃ij,sk,l ∆ijx̃

s+1
k,l

(3.27)
= g̃sk,l(h

4ggijxuiuj +R
(11)
k,l,s)

(3.14)
= (h4g +R

(7)
k,l,s)(h

4ggijxuiuj +R
(11)
k,l,s)

= h8g2gijxuiuj + h4g(R
(11)
k,l,s +R

(7)
k,l,sg

ijxuiuj) +R
(7)
k,l,sR

(11)
k,l,s

= h8g2gijxuiuj +R
(12)
k,l,s,

(3.28)

where |R(12)
k,l,s| ≤ ch6(τ 2 +h2τ+h4). Likewise we have for m,n ∈ {1, 2} because of (3.27)

and (3.16), that

g̃sk,lg̃
ij,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)

= (h4ggijxuiuj +R
(11)
k,l,s) · (hxum + 1

2
R

(m)
k,l,s)

= h5ggij(xuiuj · xum) + 1
2
h4ggij(xuiuj ·R

(m)
k,l,s) + h(R

(11)
k,l,s · xum) + 1

2
(R

(11)
k,l,s ·R

(m)
k,l,s)

= h5ggij(xuiuj · xum) +R
(13)
k,l,s,

where |R(13)
k,l,s| ≤ ch3(τ 2 + h2τ + h4), and hence

g̃sk,lg̃
ij,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l

=
(
h5ggij(xuiuj · xum) +R

(13)
k,l,s

)(
hxun + 1

2
R

(n)
k,l,s

)
= h6ggij(xuiuj · xum)xun + 1

2
h5ggij(xuiuj · xum)R

(n)
k,l,s + hR

(13)
k,l,sxun + 1

2
R

(13)
k,l,sR

(n)
k,l,s

= h6ggij(xuiuj · xum)xun +R
(14,m,n)
k,l,s ,
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3.2 Approximation and consistency

where |R(14,m,n)
k,l,s | ≤ ch4(τ 2 + h2τ + h4).

Note that (3.17) and (3.18) can be resumed to

g̃sk,lg̃
mn,s
k,l = h2ggmn +R

(15,m,n)
k,l,s , m, n ∈ {1, 2}, (3.29)

where |R(15,m,n)
k,l,s | ≤ ch4. Thus

(g̃sk,l)
2g̃ij,sk,l g̃

mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l

= g̃sk,lg̃
mn,s
k,l g̃sk,lg̃

ij,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l

= (h2ggmn +R
(15,m,n)
k,l,s )

(
h6ggij(xuiuj · xum)xun +R

(14,m,n)
k,l,s

)
= h8ggmnggij(xuiuj · xum)xun + h2ggmnR

(14,m,n)
k,l,s

+R
(15,m,n)
k,l,s h6ggij(xuiuj · xum)xun +R

(15,m,n)
k,l,s R

(14,m,n)
k,l,s

= h8ggmn(ggijxuiuj · xum)xun +R
(16)
k,l,s,

(3.30)

where |R(16)
k,l,s| ≤ ch6(τ 2 + h2τ + h4).

From (3.14) we conclude that

(g̃sk,l)
2 = h8(g)2 + 2h4gR

(7)
k,l,s + (R

(7)
k,l,s)

2 = h8(g)2 +R
(17)
k,l,s,

where |R(17)
k,l,s| ≤ ch10. So, using (3.22), (3.26), (3.28) and (3.30)

(g̃sk,l)
2R̃α,s

k,l

= (g̃sk,l)
2
x̃s+1
k,l − x̃sk,l

τ
− (g̃sk,l)

2g̃ij,sk,l ∆ijx̃
s+1
k,l − (

1

α
− 1)(g̃sk,l)

2g̃ij,sk,l g̃
mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l

=
(
h8g2 +R

(17)
k,l,s

)(
xt +

1

2
τxtt(kh, lh, ϑ

s)

)
− h8g2gijxuiuj −R

(12)
k,l,s

− (
1

α
− 1)(h8ggmnggij(xuiuj · xum)xun +R

(16)
k,l,s)

= h8g2

(
xt − gijxuiuj − (

1

α
− 1)gijgmn(xuiuj · xum)xun

)
+

1

2
τh8g2xtt(kh, lh, ϑ

s)

+
1

2
τR

(17)
k,l,sxtt(kh, lh, ϑ

s) +R
(17)
k,l,sxt −R

(12)
k,l,s − (

1

α
− 1)R

(16)
k,l,s

=
1

2
τh8g2xtt(kh, lh, ϑ

s) +
1

2
τR

(17)
k,l,sxtt(kh, lh, ϑ

s) +R
(17)
k,l,sxt −R

(12)
k,l,s − (

1

α
− 1)R

(16)
k,l,s,

where in the last step we inserted the differential equation for the parametrization x

being evaluated at (uk,l, t
s). Finally,

|R̃α,s
k,l | ≤

1

|g̃sk,l|2
(ch8τ + ch10 + ch6(τ 2 + h2τ + h4)) ≤ c(h−2τ 2 + τ + h2), (3.31)
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3 Finite Difference Approximation

since |g̃sk,l| ≥ c̄h4 > 0 by Lemma 3.11. Recalling that the relation τ ≤ c′h2 is assumed,

|R̃α,s
k,l | ≤ cR̃(h2 + τ) as stated in (3.21). The constant clearly depends on x and, since

| 1
α
− 1| needs to be bounded in (3.31), also on α−1.

The uniform boundedness of the area element g(u) (and hence of its approximation g̃sk,l
according to (3.15)) is one of the essential requirements for our study of convergence.

The discrete area element gsk,l can be expected to fulfill a similar bound as g̃sk,l as we

will explain in the course of the next chapter.
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4 Convergence analysis

Recalling the notation x̃sk,l for the restriction of the solution x of the Mean Curvature

DeTurck Flow onto the grid G = {uk,l}k,l∈{0,...,N} × {ts}s∈{0,...,M} as well as xsk,l for the

evaluation of the solution xh of the fully discrete problem at mesh points, we define

the error function eh : G → R3 by

eh := x− xh

and denote by esk,l its evaluation at (uk,l, t
s).

The aim of this chapter is to prove convergence for the fully discrete scheme given in

(3.9) for fixed α ∈ (0, 1]. To this end, in the first section we investigate how to control

several differences and discrete geometric quantities, respectively. In the second sec-

tion, optimal order of convergence is proved in different norms, starting with discrete

L2-norms on {uk,l}k,l∈{0,...,N} of the first and second discrete spatial derivatives of eh.

Assertions on convergence in other norms on the spatial grid, namely discrete L2-norms

of eh and its discrete time derivative as well as an L∞-norm of eh, follow.

As mentioned before, in the convergence theorem the second order differences will

not be estimated in the form in which they are given in (3.3). The central difference

for approximating xu1u2 was chosen to the benefit of a consistency of order 2. In

the convergence estimate, however, instead of ∆12 we only make use of the backward

difference contained in ∆12. The forward difference can be turned into a backward

difference when summed over all mesh points, compare Lemma 3.5. This will be

carried out in relevant situations. Thus we are going to switch to the notation

∆∗ij =

{
∆ij for i = j = 1, 2,

∆−1 ∆−2 for i 6= j
(4.1)

when appropriate.

The primary goal of the convergence analysis is to show that the estimates

max
s∈{0,...,M}

(
h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2

)1/2

≤ c(h2 + τ)

(
τ

M∑
s′=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

h4

)1/2

≤ c(h2 + τ)

(4.2)

hold. Error bounds for other norms then follow from (4.2). Recall that the spatial

difference operators are not difference quotients, but merely differences and are thus

divided by powers of h in the presented estimates. For the analysis it is crucial to
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4 Convergence analysis

control certain quantities on the grid, as shown in the following section.

4.1 Control of the geometry of the discrete surfaces

The proof of the estimates in (4.2) is conducted by means of an inductive argument with

regard to the time grid. To begin with, we present the precise estimates of the induction

claim without specifying any prerequisites yet. We then draw important conclusions

from the induction hypothesis to control the geometry of the discrete surface. The

induction step is then proved in the subsequent section.

4.1 Induction claim. There exists a constant W > 0 depending on x, T and α such

that

h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2
≤ W (h2 + τ)2,

τ

s∑
s′=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

h4
≤ (h2 + τ)3/2

(4.3)

for all s ∈ {0, . . . ,M}.

In consequence of the C4-regularity of the solution x, the periodocity of its derivatives

and the condition 0 < 2c̄ ≤ g on the area element, which were both postulated in the

consistency estimation of the last chapter and shall be kept throughout the analysis,

the following can be assumed to hold:

The approximations of the length elements as well as the approximation of the area

element are uniformly bounded, i.e. for all k, l ∈ {1, . . . , N} and for all s ∈ {0, . . . ,M}
the corresponding differences satisfy

c̄1h ≤ |∆−1 x̃sk,l| ≤ C̄1h,

c̄2h ≤ |∆−2 x̃sk,l| ≤ C̄2h,
(4.4)

as well as

c̄h4 ≤ g̃sk,l ≤ C̄h4. (4.5)

Furthermore,

|∆∗ijx̃sk,l| ≤ ĉh2. (4.6)

The constants c̄1, c̄2, C̄1, C̄2, C̄, ĉ only depend on x. Due to (3.1) and the fact that the

inequalities in (4.4) hold for all mesh points, the same bounds are valid for |∆+
i x̃

s
k,l|,

i ∈ {1, 2}. A proof for the lower bound of g̃sk,l for the given bound on g can be found

in the previous chapter, see (3.14) and (3.15). In the same manner lower bounds on

|∆−i x̃sk,l| follow from bounds on xui , i ∈ {1, 2}. More precisely, we can choose c̄i = 2cLi

with cLi
as in (3.19) and impose a smallness condition on h similar to that in the proof

of (3.15).
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4.1 Control of the geometry of the discrete surfaces

We assume that the norms of interest of the error function fulfil estimates the form in

(4.3) at a point of time ts, where s ∈ {0, . . . ,M − 1} is arbitrary but fixed. This is

formulated in the following induction hypothesis (IH). The bounds are trivially satisfied

in the base case s = 0 because x0
k,l = x̃0

k,l.

4.2 Induction hypothesis. We assume there exists a constant W > 0 depending on

x, T and α such that

h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2
≤ W (h2 + τ)2,

τ

s∑
s′=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

h4
≤ (h2 + τ)3/2

(4.7)

for one s ∈ {0, . . . ,M − 1}.

Note that this implies that the second inequality holds for all preceding s0 ∈ {0, . . . , s}
since for all i, j ∈ {1, 2}, k, l ∈ {1, . . . , N} we have

s0∑
s′=0

|∆∗ijes
′

k,l|2 ≤
s∑

s′=0

|∆∗ijes
′

k,l|2.

For the grid point ts constraints on the discrete length elements |∆−r xsk,l| and discrete

area element gsk,l follow. The corresponding bounds in (4.4) and (4.5) only need to be

weakened slightly as presented in the next corollary. It is also important to control

discrete second derivatives of xh as formulated in corollary 4.4.

4.3 Corollary. Let s be chosen as in the induction hypothesis. Then there exists a

constant h1 > 0, such that for h ≤ h1 and for all k, l ∈ {1, . . . , N}

c̄1

2
h ≤ |∆±1 xsk,l| ≤ 2C̄1h,

c̄2

2
h ≤ |∆±2 xsk,l| ≤ 2C̄2h,

c̄

2
h4 ≤ gsk,l ≤ 2C̄h4.

(4.8)

4.4 Corollary. Let s be chosen as in the induction hypothesis and k, l ∈ {1, . . . , N}
arbitrary. If τ ≤ c′h2 for a constant c′ > 0, then

1. there exists a constant c2 > 0 such that

τh−4

2∑
i,j=1

|∆∗ijxsk,l|2 ≤ c2h; (4.9)
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4 Convergence analysis

2. there exists a constant h2 > 0, such that for h ≤ h2

τ
s∑

s′=1

h−4

2∑
i,j=1

|∆∗ijxs
′−1
k,l |

2 ≤ 8ĉ2T + 1. (4.10)

We begin with the first statement.

Proof of Corollary 4.3. (4.7) together with τ ≤ c′h2 implies

|∆−r esk,l|2 ≤
N∑

k,l=1

2∑
r=1

|∆−r esk,l|2 ≤ c∗h4. (4.11)

On the one hand, it follows for each r ∈ {1, 2} that

|∆−r xsk,l| ≤ |∆−r esk,l|+ |∆−r x̃sk,l| ≤
√
c∗h2 + C̄rh ≤ 2C̄rh,

if
√
c∗h2 ≤ C̄rh, i.e. if h ≤ C̄r/

√
c∗, and on the other hand for r ∈ {1, 2}

|∆−r xsk,l| ≥
∣∣|∆−r esk,l| − |∆−r x̃sk,l|∣∣ ≥ |∆−r x̃sk,l| − |∆−r esk,l| ≥ c̄rh−

√
c∗h2 ≥ 1

2
c̄rh,

if
√
c∗h2 ≤ 1

2
c̄rh, i.e. if h ≤ c̄r/2

√
c∗. The first two lines of the asserted inequalities are

thus satisfied. Hence, for the central differences ∆ix
s
k,l of xh, and analogously for those

of x because of (4.4), we get

|∆ix
s
k,l| = 1

2
|∆+

i x
s
k,l + ∆−i x

s
k,l| ≤ 1

2
(2C̄ih+ 2C̄ih) = 2C̄ih,

|∆ix̃
s
k,l| = 1

2
|∆+

i x̃
s
k,l + ∆−i x̃

s
k,l| ≤ 1

2
(C̄ih+ C̄ih) = C̄ih,

(4.12)

both of which will be frequently used during the convergence analysis.

The established estimates are now used to prove the remaining inequalities for the

discrete area element in (4.8) by finding further upper bounds on the spatial grid size

h. To this end, at first the difference between g̃sk,l and gsk,l is examined in such a way

as to trace it back to the difference between x and xh. More precisely, in what follows

we will show that

|g̃sk,l − gsk,l| =
∣∣|∆+

1 x̃
s
k,l||∆−1 x̃sk,l||∆+

2 x̃
s
k,l||∆−2 x̃sk,l| − (∆1x̃

s
k,l ·∆2x̃

s
k,l)

2

− |∆+
1 x

s
k,l||∆−1 xsk,l||∆+

2 x
s
k,l||∆−2 xsk,l|+ (∆1x

s
k,l ·∆2x

s
k,l)

2
∣∣

≤ ch3
(
|∆−1 esk,l|+ |∆+

1 e
s
k,l|+ |∆−2 esk,l|+ |∆+

2 e
s
k,l|
)
.

(4.13)

For simplicity, within the scope of this intermediate demonstration we will omit the

time index s since no other point of time is treated here.
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4.1 Control of the geometry of the discrete surfaces

Using (4.4) and the estimates from (4.8) which have already been proved we have∣∣|∆−r xk,l||∆+
r xk,l| − |∆−r x̃k,l||∆+

r x̃k,l|
∣∣

≤
∣∣|∆−r xk,l| − |∆−r x̃k,l|∣∣ |∆+

r xk,l|+ |∆−r x̃k,l|
∣∣|∆+

r xk,l| − |∆+
r x̃k,l|

∣∣
≤
∣∣|∆−r xk,l| − |∆−r x̃k,l|∣∣ 2C̄rh+ C̄rh

∣∣|∆+
r xk,l| − |∆+

r x̃k,l|
∣∣

≤ 2C̄rh|∆−r (xk,l − x̃k,l)|+ C̄rh|∆+
r (xk,l − x̃k,l)|

≤ 2C̄rh
(
|∆−r ek,l|+ |∆+

r ek,l|
)
.

(4.14)

This implies, again together with (4.4) and the first two lines of (4.8), that∣∣|∆−1 x̃k,l||∆+
1 x̃k,l||∆−2 x̃k,l||∆+

2 x̃k,l| − |∆−1 xk,l||∆+
1 xk,l||∆−2 xk,l||∆+

2 xk,l|
∣∣

=
∣∣|∆−1 x̃k,l||∆+

1 x̃k,l||∆−2 x̃k,l||∆+
2 x̃k,l| − |∆−1 xk,l||∆+

1 xk,l||∆−2 x̃k,l||∆+
2 x̃k,l|

+ |∆−1 xk,l||∆+
1 xk,l||∆−2 x̃k,l||∆+

2 x̃k,l| − |∆−1 xk,l||∆+
1 xk,l||∆−2 xk,l||∆+

2 xk,l|
∣∣

≤
∣∣|∆−1 x̃k,l||∆+

1 x̃k,l| − |∆−1 xk,l||∆+
1 xk,l|

∣∣ |∆−2 x̃k,l||∆+
2 x̃k,l|

+ |∆−1 xk,l||∆+
1 xk,l|

∣∣|∆−2 x̃k,l||∆+
2 x̃k,l| − |∆−2 xk,l||∆+

2 xk,l|
∣∣

(4.14)

≤ 2C̄1h
(
|∆−1 ek,l|+ |∆+

1 ek,l|
)
|∆−2 x̃k,l||∆+

2 x̃k,l|
+ |∆−1 xk,l||∆+

1 xk,l|2C̄2h
(
|∆−2 ek,l|+ |∆+

2 ek,l|
)

≤ 2C̄1h
(
|∆−1 ek,l|+ |∆+

1 ek,l|
)

(C̄2h)2 + (2C̄1h)22C̄2h
(
|∆−2 ek,l|+ |∆+

2 ek,l|
)

≤ ch3
(
|∆−1 ek,l|+ |∆+

1 ek,l|+ |∆−2 ek,l|+ |∆+
2 ek,l|

)
.

Furthermore, since

|∆rx̃k,l −∆rxk,l| = |∆r(x̃k,l − xk,l)| = |∆rek,l| ≤ 1
2

(
|∆+

r ek,l|+ |∆−r ek,l|
)
,

applying (4.12) we obtain∣∣∆1x̃k,l ·∆2x̃k,l −∆1xk,l ·∆2xk,l
∣∣

≤ |∆1x̃k,l||∆2x̃k,l −∆2xk,l|+ |∆1x̃k,l −∆1xk,l||∆2xk,l|
≤ C̄1h

1
2

(
|∆+

2 ek,l|+ |∆−2 ek,l|
)

+ 1
2

(
|∆+

1 ek,l|+ |∆−1 ek,l|
)

2C̄2h

≤ ch
(
|∆−1 ek,l|+ |∆+

1 ek,l|+ |∆−2 ek,l|+ |∆+
2 ek,l|

) (4.15)

which in combination with (4.4) and their analogs for the discrete solution in (4.8)

yields

|(∆1xk,l ·∆2xk,l)
2 − (∆1x̃k,l ·∆2x̃k,l)

2|
= |∆1xk,l ·∆2xk,l + ∆1x̃k,l ·∆2x̃k,l||∆1xk,l ·∆2xk,l −∆1x̃k,l ·∆2x̃k,l|

≤ ((2C̄1h)(2C̄2h) + (C̄1h)(C̄2h))
( ∣∣∆1x̃k,l ·∆2x̃k,l −∆1xk,l ·∆2xk,l

∣∣ )
≤ ch3(|∆−1 ek,l|+ |∆+

1 ek,l|+ |∆−2 ek,l|+ |∆+
2 ek,l|).

That means the claimed estimate in (4.13) is valid at ts.
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4 Convergence analysis

Because ∆+
r can be traced back to ∆−r by means of periodicity within the summation

over all k and l, compare Lemma 3.5, the above estimate together with (4.11) implies

|gsk,l − g̃sk,l|2 ≤ ch6

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2 ≤ cc∗h10.

Therefore using (4.5) gives,

gsk,l ≤ |gsk,l − g̃sk,l|+ |g̃sk,l| ≤
√
cc∗h5 + C̄h4 ≤ 2C̄h4,

if
√
cc∗h5 ≤ C̄h4, i.e. if h ≤ C̄/

√
cc∗, as well as

gsk,l ≥ |g̃sk,l| − |gsk,l − g̃sk,l| ≥ c̄h4 −
√
cc∗h5 ≥ c̄

2
h4,

if
√
cc∗h5 ≤ c̄

2
h4, i.e. if h ≤ c̄/2

√
cc∗.

Proof of Corollary 4.4. Observe that the second part of (4.7) together with τ ≤ c′h2

implies

τh−2

s∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2 ≤ c∗∗h3, (4.16)

where c∗∗ = (1 + c′)3/2 and the constant c′ was determined in the proof of Lemma 3.9.

1. Recalling the bound of second order differences of x in (4.6), for the discrete

second order derivatives of xh we infer that for all k, l ∈ {1, . . . , N}

τh−4

2∑
i,j=1

|∆∗ijxsk,l|2 ≤ 2h−4τ
2∑

i,j=1

|∆∗ijx̃sk,l|2 + 2τh−4

s∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

≤ 8ĉ2c′h2 + 2c∗∗h−4h5

≤ c2h.

2. Though the aim is to control differences of xh of second order as already done

before, the summation over s′ makes a slight difference. This is briefly recorded

in the following estimate where we obtain another smallness condition for the

spatial mesh size h. We make use of (4.6) and (4.16) again to infer

τ

s∑
s′=1

h−4

2∑
i,j=1

|∆∗ijxs
′−1
k,l |

2 ≤ 8ĉ2sτ + 2c∗∗h ≤ 8ĉ2T + 1,

if h ≤ (2c∗∗)−1.
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4.1 Control of the geometry of the discrete surfaces

Note that the estimate for the discrete solution xsh in (4.12) was used to prove existence

for the discrete solution at ts+1 in Lemma 3.9 and that the bound does not depend on

h or τ . The same holds for the estimates in the first claim of the next lemma.

4.5 Lemma. Let k, l ∈ {1, . . . , N} be arbitrary and s be chosen as in the induction

hypothesis. Then there exists a constant h3 > 0 such that for h ≤ h3 the following

holds:

1. There exist positive constants such that

C̃11
U h
−2 ≤ g̃11,s

k,l ≤ C̃11
O h
−2, C11

U h
−2 ≤ g11,s

k,l ≤ C11
O h
−2,

C̃22
U h
−2 ≤ g̃22,s

k,l ≤ C̃22
O h
−2, C22

U h
−2 ≤ g22,s

k,l ≤ C22
O h
−2,

|g̃12,s
k,l | ≤ C̃12

O h
−2, |g12,s

k,l | ≤ C12
O h
−2.

(4.17)

2. For all i, j ∈ {1, 2} we have

|gij,sk,l − g̃
ij,s
k,l | ≤ ch−3

2∑
r=1

(
|∆+

r e
s
k,l|+ |∆−r esk,l|

)
. (4.18)

3. Let λsk,l be an eigenvalue of (gij,sk,l ). Then there exists a constant c0 > 0 such that

c0h
−2 ≤ λsk,l. (4.19)

In particular, (gij,sk,l ) is positive definite.

4. For all i, j, r ∈ {1, 2} we have

|∆−r g
ij,s
k,l | ≤ ch−3

(
max
k,l
|∆∗rrxsk,l|+ max

k,l
|∆∗12x

s
k,l|
)
. (4.20)

Proof. Since s is the only time index occuring here, for simplification we will not

indicate the time dependence throughout the whole proof.

1. Follows directly from the definitions of gijk,l (see (3.10)) and their analogs g̃ijk,l as

well as from (4.4), (4.5), (4.8) and (4.12), respectively.

2. We first consider the case i 6= j. Here we have

|g12
k,l − g̃12

k,l| =
∣∣∣∣∆1x̃k,l ·∆2x̃k,l

g̃k,l
− ∆1xk,l ·∆2xk,l

gk,l

∣∣∣∣
=

∣∣∣∣gk,l(∆1x̃k,l ·∆2x̃k,l)− g̃k,l(∆1xk,l ·∆2xk,l)

gk,lg̃k,l

∣∣∣∣
≤
|gk,l − g̃k,l| |∆1x̃k,l ·∆2x̃k,l|+ g̃k,l

∣∣∆1x̃k,l ·∆2x̃k,l −∆1xk,l ·∆2xk,l
∣∣

gk,lg̃k,l
,
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4 Convergence analysis

which is why we can make use of the intermediate result (4.13) giving an estimate

for the difference between restricted and discrete area elements. Together with

(4.5) and (4.8) as well as (4.12), (4.13) and (4.15) we obtain

|g12
k,l − g̃12

k,l|

≤
|gk,l − g̃k,l| |∆1x̃k,l ·∆2x̃k,l|+ g̃k,l

∣∣∆1x̃k,l ·∆2x̃k,l −∆1xk,l ·∆2xk,l
∣∣

gk,lg̃k,l
(4.12)

≤ ch−8
(
|gk,l − g̃k,l|(C̄1h)(C̄2h) + C̄h4

∣∣∆1x̃k,l ·∆2x̃k,l −∆1xk,l ·∆2xk,l
∣∣)

(4.13),(4.15)

≤ ch−8
(
ch3+2(|∆−1 ek,l|+ |∆+

1 ek,l|+ |∆−2 ek,l|+ |∆+
2 ek,l|)

+ ch4+1(|∆−1 ek,l|+ |∆+
1 ek,l|+ |∆−2 ek,l|+ |∆+

2 ek,l|)
)

≤ ch−3(|∆−1 ek,l|+ |∆+
1 ek,l|+ |∆−2 ek,l|+ |∆+

2 ek,l|).

With the help of the (intermediate) estimates that have been proved so far, the

assertions for |g11
k,l− g̃11

k,l| and |g22
k,l− g̃22

k,l| can be seen as well: For r ∈ {1, 2}, using

the essential bounds on the approximated and discrete area elements in (4.5) and

(4.8) again, yields∣∣∣∣ |∆−r x̃k,l||∆+
r x̃k,l|

g̃k,l
− |∆

−
r xk,l||∆+

r xk,l|
gk,l

∣∣∣∣
=

∣∣∣∣gk,l|∆−r x̃k,l||∆+
r x̃k,l| − g̃k,l|∆−r xk,l||∆+

r xk,l|
gk,lg̃k,l

∣∣∣∣
≤
|gk,l − g̃k,l| |∆−r x̃k,l||∆+

r x̃k,l|+ g̃k,l
∣∣|∆−r x̃k,l||∆+

r x̃k,l| − |∆−r xk,l||∆+
r xk,l|

∣∣
gk,lg̃k,l

(4.13),(4.14)

≤ ch−8
(
ch3(|∆−1 ek,l|+ |∆+

1 ek,l|+ |∆−2 ek,l|+ |∆+
2 ek,l|)|∆−r x̃k,l||∆+

r x̃k,l|
+ g̃k,lch(|∆−r ek,l|+ |∆+

r ek,l|)
)

(4.4)

≤ ch−3(|∆−1 ek,l|+ |∆+
1 ek,l|+ |∆−2 ek,l|+ |∆+

2 ek,l|).

3. Before considering the matrix (gijk,l) that corresponds to the metric induced by

the discrete solution xh, we treat the continuous case. As the matrix (gij(u)),

representing the inverse metric tensor, is positive definite, by a compactness

argument we can deduce that for any u ∈ [0, 2π]2 and w ∈ R2 with |w| = 1,

wT · (gij(u)) · w ≥ 4c0

for a suitable constant c0 > 0: If the product was not bounded from below, we

would have infu∈[0,2π]2 w(gij(u))w = 0. Moreover, the infimum would be attained

by some u∗ ∈ [0, 2π]2, which contradicts the positive definiteness.

We now show that the matrix (g̃ijk,l) of the approximated inverse metric coefficients

satisfies a similar estimate. From (3.14) and (3.29) we know that
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4.1 Control of the geometry of the discrete surfaces

g̃k,l = h4g(uk,l) +Rk,l,

g̃k,lg̃
ij
k,l = h2g(uk,l)g

ij(uk,l) +R
(15,i,j)
k,l , i, j ∈ {1, 2},

where |Rk,l| ≤ ch6 and |R(15,i,j)
k,l | ≤ ch4. Hence

(h4g(uk,l) +Rk,l)g̃
ij
k,l = h2g(uk,l)g

ij(uk,l) +R
(15,i,j)
k,l

and further

h4g(uk,l)g̃
ij
k,l = h2g(uk,l)g

ij(uk,l) +R
(15,i,j)
k,l −Rk,lg̃

ij
k,l.

We conclude

g̃ijk,l = h−2gij(uk,l) +G
(i,j)
k,l ,

where |G(i,j)
k,l | ≤ c due to the constraints obtained in (4.17) and the boundedness

of g. Since |w| = 1, it follows that

wT · (g̃ijk,l) · w =
2∑

i,j=1

wiwj g̃
ij
k,l ≥ h−2

2∑
i,j=1

wiwjg
ij(uk,l)−

∣∣∣∣∣
2∑

i,j=1

wiwjG
(i,j)
k,l

∣∣∣∣∣
≥ 4c0h

−2 − 2c

≥ 2c0h
−2,

if h ≤
√
c0/c. Combining this bound with the estimate for |gijk,l − g̃

ij
k,l| in (4.18)

and the error bound in (4.11), we obtain

wT · (gijk,l) · w =
2∑

i,j=1

wiwjg
ij
k,l ≥

2∑
i,j=1

wiwj g̃
ij
k,l −

2∑
i,j=1

|wi||wj|
∣∣gijk,l − g̃ijk,l∣∣

≥ 2c0h
−2 − 2ch−3

2∑
r=1

(
|∆+

r ek,l|+ |∆−r ek,l|
)

≥ 2c0h
−2 − 4c

√
c∗h−1

≥ c0h
−2,

in case h ≤ c0/(4c
√
c∗). Note that this also implies the positive definiteness of

(gijk,l), which we will need later on.

According to the formula of Rayleigh, [30], the eigenvalues λk,l of the matrix (gijk,l)

can, with the help of their corresponding eigenvectors wk,l, be estimated by

λk,l =
wk,l(g

ij
k,l)wk,l

wk,l · wk,l
=

wk,l
|wk,l|

(gijk,l)
wk,l
|wk,l|

≥ c0h
−2.
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4 Convergence analysis

4. In the following proof we sometimes need to shift grid functions by ±h in one

direction of the grid, where the direction depends on that of the operator ∆−r . In

order to avoid a case differentiation and conduct the proof for both r ∈ {1, 2} at

once, we introduce the notation E±r , r ∈ {1, 2}, for shift operators. Although for

a function f we would have to write (E±r f)k,l, we use the following notation for

convenience and shortness since these operators are often applied to a product of

several factors:

E±r (fk,l) :=

{
fk±1,l for r = 1,

fk,l±1 for r = 2.
(4.21)

Thus we have ∆−r fk,l = fk,l − E−r (fk,l) and ∆+
r fk,l = E+

r (fk,l)− fk,l.

We study the effect of ∆−r , r ∈ {1, 2}, on the entries of the inverse of the metric

corresponding to the discrete solution xh, that is gijk,l. Recalling the definitions in

(3.10) we therefore consider the expressions (gk,l)
−1(gij)k,l, where

(gij)k,l =

{
|∆+

i xk,l||∆−i xk,l| for i = j,

∆1xk,l ·∆2xk,l for i 6= j.

With the help of the bounds from (4.8) and (4.12) we find that for i, j ∈ {1, 2}

|(gij)k,l| ≤ (2C̄ih)(2C̄jh). (4.22)

The differences of interest can be rewritten as

∆−r

(
(gij)k,l
gk,l

)
=

(gij)k,l
gk,l

− E−r ((gij)k,l)

E−r (gk,l)

=
(gij)k,lE

−
r (gk,l)− E−r ((gij)k,l)gk,l
E−r (gk,l)gk,l

=
−(gij)k,l∆

−
r (gk,l) + ∆−r ((gij)k,l)gk,l
E−r (gk,l)gk,l

,

(4.23)

and hence we need to have a closer look at the expressions ∆−r ((gij)k,l) and

∆−r (gk,l). For the first one, respresenting the difference of discrete metric coeffi-

cients at neighboured mesh points, we distinguish gij for i = j and i 6= j. In the

case i = j we have

|∆−r ((gii)k,l)| =
∣∣|∆+

i xk,l||∆−i xk,l| − E−r (|∆+
i xk,l||∆−i xk,l|)

∣∣
=
∣∣|∆+

i xk,l|∆−r (|∆−i xk,l|) + ∆−r (|∆+
i xk,l|)E−r (|∆−i xk,l|)

∣∣
(4.8)

≤ 2C̄ih|∆−r (|∆−i xk,l|)|+ |∆−r (|∆+
i xk,l|)|2C̄ih.
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4.1 Control of the geometry of the discrete surfaces

For the resulting differences we obtain∣∣∆−r (|∆±i xk,l|)
∣∣ =

∣∣|∆±i xk,l| − E−r (|∆±i xk,l|)
∣∣

≤
∣∣∆±i xk,l − E−r (∆±i xk,l)

∣∣
=
∣∣∆−r ∆±i xk,l

∣∣.
Note that for i = r, ∆−r ∆±i xk,l is defined for all k, l ∈ {1, . . . , N} due to the peri-

odic boundary conditions, see (3.11) and Remark 3.8. Applying this is necessary,

since for example for r = i = 2 we have that ∆−2 ∆−2 xk,l = xk,l − 2xk,l−1 + xk,l−2

and for l = 1 we thus evaluate at points which are not contained in the grid.

Prior to an examination of ∆−r ∆±i xk,l, let us see how the case i 6= j results in the

same expression. For i 6= j we compute

|∆−r ((gij)k,l)|
=
∣∣∆1xk,l ·∆2xk,l − E−r (∆1xk,l ·∆2xk,l)

∣∣
=
∣∣∆1xk,l ·∆−r (∆2xk,l) + ∆−r (∆1xk,l) · E−r (∆2xk,l)

∣∣
= 1

2

∣∣∆1xk,l ·∆−r (∆+
2 + ∆−2 )xk,l + ∆−r (∆+

1 + ∆−1 )xk,l · E−r (∆2xk,l)
∣∣

(4.12)

≤ 1
2

(
2C̄1h(|∆−r ∆+

2 xk,l|+ |∆−r ∆−2 xk,l|) + (|∆−r ∆+
1 xk,l|+ |∆−r ∆−1 xk,l|)2C̄2h

)
.

For making sense of ∆−r ∆±i xk,l and tracing it back to the established differences

of second order ∆ij, we now are in need of a case differentiation. To begin,

remember that ∆+
r = ∆−r E

+
r (see (3.1)) and recall (3.3) and (4.1). This yields

the identities

∆−r ∆+
i xk,l =

{
∆−r ∆+

r xk,l = ∆∗rrxk,l for i = r ∈ {1, 2},
∆−r ∆−i E

+
i (xk,l) = ∆∗12E

+
i (xk,l) for i 6= r,

∆−r ∆−i xk,l =

{
∆−r ∆+

r E
−
r (xk,l) = ∆∗rrE

−
r (xk,l) for i = r ∈ {1, 2},

∆−1 ∆−2 xk,l = ∆∗12xk,l for i 6= r.

(4.24)

The shifted terms can be bounded by the maximum over all indices k, l, i.e.

|∆∗12E
+
i (xk,l)| ≤ max

k,l
|∆∗12E

+
i (xk,l)| = max

k,l
|∆∗12xk,l|,

|∆∗rrE−r (xk,l)| ≤ max
k,l
|∆∗rrE−r (xk,l)| = max

k,l
|∆∗rrxk,l|,

and so some of the single cases can be condensed again. For the estimation of

∆−r ((gij)k,l) with i = j this means in practice
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4 Convergence analysis

|∆−r ((gii)k,l)| ≤ 2C̄ih|∆−r ∆−i xk,l|+ |∆−r ∆+
i xk,l|2C̄ih

≤

{
4C̄ihmaxk,l |∆∗rrxk,l| for i = r ∈ {1, 2},
4C̄ihmaxk,l |∆∗12xk,l| for i 6= r.

If i 6= j we obtain

|∆−r ((gij)k,l)|
≤ 1

2

(
2C̄1h(|∆−r ∆+

2 xk,l|+ |∆−r ∆−2 xk,l|) + (|∆−r ∆+
1 xk,l|+ |∆−r ∆−1 xk,l|)2C̄2h

)
≤ ch(max

k,l
|∆∗rrxk,l|+ max

k,l
|∆∗12xk,l|)

and finally

|∆−r ((gij)k,l)| ≤


chmaxk,l |∆∗rrxk,l| for i = j = r,

chmaxk,l |∆∗12xk,l| for i = j 6= r,

ch(maxk,l |∆∗rrxk,l|+ maxk,l |∆∗12xk,l|) for i 6= j.

(4.25)

Because of (4.23), it remains to estimate |∆−r gk,l|. Using the product rule (3.4)

it holds

∆−r gk,l

= ∆−r
(
|∆+

1 xk,l||∆−1 xk,l||∆+
2 xk,l||∆−2 xk,l|

)
−∆−r

(
(∆1xk,l ·∆2xk,l)

2
)

= |∆+
1 xk,l||∆−1 xk,l|∆−r

(
|∆+

2 xk,l||∆−2 xk,l|
)

+ ∆−r
(
|∆+

1 xk,l||∆−1 xk,l|
)
E−r (|∆+

2 xk,l||∆−2 xk,l|)
−
(
∆−r (∆1xk,l ·∆2xk,l)

) (
∆1xk,l ·∆2xk,l

)
−
(
E−r (∆1xk,l ·∆2xk,l)

) (
∆−r (∆1xk,l ·∆2xk,l)

)
.

Again, the appearance of ∆−r ∆±r xk,l and E−r requires to apply the implications of

the periodic boundary conditions.

With the help of the last intermediate result (4.25) together with some basic

results obtained earlier we derive

|∆−r gk,l|
(4.8),(4.12)

≤ (2C̄1h)2
∣∣∆−r (|∆+

2 xk,l||∆−2 xk,l|
) ∣∣+

∣∣∆−r (|∆+
1 xk,l||∆−1 xk,l|

) ∣∣(2C̄2h)2

+
(
(2C̄1h)(2C̄2h) + (2C̄1h)(2C̄2h)

) ∣∣∆−r (∆1xk,l ·∆2xk,l
) ∣∣

(4.25)

≤ ch3(max
k,l
|∆∗rrxk,l|+ max

k,l
|∆∗12xk,l|).
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4.2 Error estimation

Alltogether we arrive at

∣∣∣∣∆−r ((gij)k,l
gk,l

)∣∣∣∣ ≤|∆−r (gij)k,l||gk,l|+ |(gij)k,l||∆−r gk,l|
E−r (gk,l)gk,l

(4.8),(4.22)

≤ |∆−r (gij)k,l|2C̄h4 + (2C̄ih)(2C̄jh)|∆−r gk,l|
ch8

≤ch5−8(max
k,l
|∆∗12xk,l|+ max

k,l
|∆∗rrxk,l|)

and the assertion in (4.20) holds.

With these conclusions from the induction hypothesis we can prove the induction step

in the next section.

4.2 Error estimation

Apart from the completion of the induction, this section adresses the derivation of fur-

ther estimates for different discrete norms of the error function. Nevertheless, proving

an analog estimate to (4.7) for ts+1 constitutes the largest part of it.

By subtracting the difference equations for the functions x and xh for an arbitrary but

fixed position uk,l in the spatial grid,

x̃s+1
k,l − x̃sk,l

τ
= g̃ij,sk,l ∆ijx̃

s+1
k,l + (

1

α
− 1)g̃ij,sk,l g̃

mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l + R̃α,s

k,l ,

xs+1
k,l − xsk,l

τ
= gij,sk,l ∆ijx

s+1
k,l + (

1

α
− 1)gij,sk,l g

mn,s
k,l (∆ijx

s+1
k,l ·∆mx

s
k,l)∆nx

s
k,l,

we obtain the starting point of our estimates:

es+1
k,l − esk,l

τ
= gij,sk,l ∆ije

s+1
k,l + (g̃ij,sk,l − g

ij,s
k,l )∆ijx̃

s+1
k,l + R̃α,s

k,l

+ (
1

α
− 1)

[
gij,sk,l g

mn,s
k,l (∆ije

s+1
k,l ·∆mx

s
k,l)∆nx

s
k,l

+ gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆me

s
k,l)∆nx

s
k,l

+ gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆ne

s
k,l

+ (g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn,s
k,l )(∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)∆nx̃

s
k,l

]
.

(4.26)
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4 Convergence analysis

Testing the error equation with −(∆11 + ∆22)es+1
k,l and summation over k and l yields

− 1

τ

2∑
r=1

N∑
k,l=1

(es+1
k,l − e

s
k,l) ·∆rre

s+1
k,l

=−
2∑
r=1

N∑
k,l=1

gij,sk,l ∆ije
s+1
k,l ·∆rre

s+1
k,l −

2∑
r=1

N∑
k,l=1

(g̃ij,sk,l − g
ij,s
k,l )∆ijx̃

s+1
k,l ·∆rre

s+1
k,l

− (
1

α
− 1)

[
2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ije

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

+
2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆me

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

+
2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)(∆ne

s
k,l ·∆rre

s+1
k,l )

+
2∑
r=1

N∑
k,l=1

(g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn,s
k,l )(∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)(∆nx̃

s
k,l ·∆rre

s+1
k,l )

]

−
2∑
r=1

N∑
k,l=1

R̃α,s
k,l ·∆rre

s+1
k,l

=: S1 + · · ·+ S7.

(4.27)

In the following assertion, the constant c′ does not have to meet any further condition

than being positive. Yet, it is determined by an estimate in Lemma 3.9, where τ ≤ c′h2

has to be presumed to prove existence of the discrete solution at ts+1. This yields that

c′ only depends on the discrete solution at ts and thus on x.

4.6 Induction step. Let α ∈ (0, 1] and let s be chosen as in the induction hypothesis.

If τ ≤ c′h2 for some c′ > 0, then there exists a constant h∗ > 0, such that the estimates

h2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |2

h2
≤ W (h2 + τ)2

τ

s+1∑
s′=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

h4
≤ (h2 + τ)3/2

(4.28)

hold provided that 0 < h ≤ h∗.

We present the main steps of the proof of (4.28) in form of the following auxiliary

results.
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4.2 Error estimation

4.7 Lemma. With S2, . . . , S7 as in (4.27) we have that

1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2) + c0h
−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 ≤ S2 + · · ·+ S7 + S12,

(4.29)

where c0 depends on x, T and α and where

|S12| ≤ cεh−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
c

ε
h−4

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

4.8 Lemma. For S3 in (4.27) we have that

S3 ≤ ( 1
α
− 1)(P1 + P2), (4.30)

where

|( 1
α
−1)(P1+P2)| ≤ cεh−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2+
c

ε
h−4

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

4.9 Lemma. The following estimate holds

|S2 + S4 + S5 + S6 + S7| ≤
c

ε
(h2 + τ)2 + cεh−2

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2 +
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

Proof of Lemma 4.7. With the help of summation by parts according to (3.7), the

product of the test function with the discrete time derivative on the left hand-side of

equation (4.27) can be rewritten. That means, with respect to the notation ∆rr =

∆+
r ∆−r we have for r ∈ {1, 2}

− 1

τ

2∑
r=1

N∑
k,l=1

(es+1
k,l − e

s
k,l) ·∆rre

s+1
k,l

=
1

τ

2∑
r=1

N∑
k,l=1

∆−r (es+1
k,l − e

s
k,l) ·∆−r es+1

k,l

=
1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2) +
1

2τ

2∑
r=1

N∑
k,l=1

|∆−r es+1
k,l −∆−r e

s
k,l|2

≥ 1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2).
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4 Convergence analysis

This implies

1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2) ≤ S1 + · · ·+ S7 (4.31)

and to proceed, S1 is estimated and reformulated as follows in order to carry out

summation by parts for some assignments of indices. At the same time, the notation

∆12 is resolved into 1
2
(∆+

1 ∆+
2 + ∆−1 ∆−2 ). We obtain

S1 =−
2∑
r=1

N∑
k,l=1

gij,sk,l ∆ije
s+1
k,l ·∆rre

s+1
k,l

=−
N∑

k,l=1

(g11,s
k,l ∆11e

s+1
k,l + 2g12,s

k,l ∆12e
s+1
k,l + g22,s

k,l ∆22e
s+1
k,l ) · (∆11e

s+1
k,l + ∆22e

s+1
k,l )

=−
N∑

k,l=1

2∑
r=1

[
grr,sk,l |∆rre

s+1
k,l |

2 + g12,s
k,l ∆−1 ∆−2 e

s+1
k,l ·∆rre

s+1
k,l

]
−

N∑
k,l=1

2∑
r=1

[
grr,sk,l ∆22e

s+1
k,l ·∆11e

s+1
k,l + g12,s

k,l ∆+
1 ∆+

2 e
s+1
k,l ·∆rre

s+1
k,l

]
.

(4.32)

The summands in the last row are now each reformulated by applying (3.6) twice. To

start with, for each r ∈ {1, 2} the operator ∆+
1 in

grr,sk,l ∆22e
s+1
k,l ·∆11e

s+1
k,l = grr,sk,l ∆22e

s+1
k,l ·∆

+
1 (∆−1 e

s+1
k,l )

is turned into −∆−1 by shifting it to the other factors. The resulting difference of third

order becomes one of second order again by using the summation by parts formula

again, this time applying it to ∆+
2 . In detail this means

−
N∑

k,l=1

grr,sk,l ∆22e
s+1
k,l ·∆11e

s+1
k,l

(3.6)
=

N∑
k,l=1

∆−1 (grr,sk,l )∆+
2 ∆−2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l +

N∑
k,l=1

grr,sk,l ∆−1 ∆+
2 ∆−2 e

s+1
k,l︸ ︷︷ ︸

=∆+
2 (∆−1 ∆−2 e

s+1
k,l )

·∆−1 es+1
k,l

(3.6)
=

N∑
k,l=1

∆−1 (grr,sk,l )∆+
2 ∆−2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l

−
N∑

k,l=1

∆−2 (grr,sk,l )∆−1 ∆−2 e
s+1
k,l ·∆

−
1 e

s+1
k,l−1 −

N∑
k,l=1

grr,sk,l ∆−1 ∆−2 e
s+1
k,l ·∆

−
2 ∆−1 e

s+1
k,l︸ ︷︷ ︸

=|∆−1 ∆−2 e
s+1
k,l |2

.

In this calculation, the fact that the gij,sk,l , just like xh, are periodic in space is of

importance. Firstly, this is the main feature in the proof of (3.6), which leads to
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4.2 Error estimation

a cancelling of the boundary terms. Secondly, expressions like ∆−2 (grr,sk,l ) require to

evaluate xh at points outside of the spatial grid which are defined with the help of

periodic extension.

Although we treat the second term in the last row of (4.32),

2∑
r=1

g12,s
k,l ∆+

1 ∆+
2 e

s+1
k,l ·∆rre

s+1
k,l = g12,s

k,l ∆+
1 ∆+

2 e
s+1
k,l · (∆

+
1 (∆−1 e

s+1
k,l ) + ∆+

2 (∆−2 e
s+1
k,l )),

analogously, this is carried out in detail to further illustrate summation by parts in

principle. This will help understanding the method when applied to S3, where there

are more factors and a more compact notation. We obtain

−
N∑

k,l=1

g12,s
k,l ∆+

1 ∆+
2 e

s+1
k,l · (∆

+
1 (∆−1 e

s+1
k,l ) + ∆+

2 (∆−2 e
s+1
k,l ))

=
N∑

k,l=1

∆−1 (g12,s
k,l )∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l +

N∑
k,l=1

∆−2 (g12,s
k,l )∆+

1 ∆+
2 e

s+1
k,l−1 ·∆

−
2 e

s+1
k,l

+
N∑

k,l=1

g12,s
k,l ∆−1 ∆+

1 ∆+
2 e

s+1
k,l︸ ︷︷ ︸

=∆+
2 (∆−1 ∆+

1 e
s+1
k,l )

·∆−1 es+1
k,l +

N∑
k,l=1

g12,s
k,l ∆−2 ∆+

1 ∆+
2 e

s+1
k,l︸ ︷︷ ︸

=∆+
1 (∆−2 ∆+

2 e
s+1
k,l )

·∆−2 es+1
k,l

=
N∑

k,l=1

∆−1 (g12,s
k,l )∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l +

N∑
k,l=1

∆−2 (g12,s
k,l )∆+

1 ∆+
2 e

s+1
k,l−1 ·∆

−
2 e

s+1
k,l

−
N∑

k,l=1

∆−2 (g12,s
k,l )∆−1 ∆+

1 e
s+1
k,l ·∆

−
1 e

s+1
k,l−1 −

N∑
k,l=1

∆−1 (g12,s
k,l )∆−2 ∆+

2 e
s+1
k,l ·∆

−
2 e

s+1
k−1,l

−
N∑

k,l=1

g12,s
k,l ∆−1 ∆+

1 e
s+1
k,l︸ ︷︷ ︸

=∆11e
s+1
k,l

·∆−2 ∆−1 e
s+1
k,l −

N∑
k,l=1

g12,s
k,l ∆−2 ∆+

2 e
s+1
k,l︸ ︷︷ ︸

=∆22e
s+1
k,l

·∆−1 ∆−2 e
s+1
k,l .

Combining these results with the unaltered terms in (4.32) yields

S1 =−
N∑

k,l=1

2∑
r=1

[
grr,sk,l |∆rre

s+1
k,l |

2 + 2g12,s
k,l ∆−1 ∆−2 e

s+1
k,l ·∆rre

s+1
k,l + grr,sk,l |∆

−
1 ∆−2 e

s+1
k,l |

2
]

+
N∑

k,l=1

[ 2∑
r=1

(
∆−1 (grr,sk,l )∆22e

s+1
k−1,l ·∆

−
1 e

s+1
k,l −∆−2 (grr,sk,l )∆−1 ∆−2 e

s+1
k,l ·∆

−
1 e

s+1
k,l−1

)
+ ∆−1 g

12,s
k,l ∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l + ∆−2 g

12,s
k,l ∆+

1 ∆+
2 e

s+1
k,l−1 ·∆

−
2 e

s+1
k,l

−∆−2 g
12,s
k,l ∆11e

s+1
k,l ·∆

−
1 e

s+1
k,l−1 −∆−1 g

12,s
k,l ∆22e

s+1
k,l ·∆

−
2 e

s+1
k−1,l

]
= : −S11 + S12.

(4.33)
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4 Convergence analysis

Recalling notation (4.1), which replaces ∆rr by ∆∗rr and ∆−1 ∆−2 by ∆∗12, we can refor-

mulate

S11 =
N∑

k,l=1

[
g11,s
k,l |∆11e

s+1
k,l |

2 + 2g12,s
k,l ∆∗12e

s+1
k,l ·∆11e

s+1
k,l + g22,s

k,l |∆
∗
12ek,l|2

+ g22,s
k,l |∆22e

s+1
k,l |

2 + 2g12,s
k,l ∆∗12e

s+1
k,l ·∆22e

s+1
k,l + g11,s

k,l |∆
∗
12ek,l|2

]
=

N∑
k,l=1

2∑
r=1

gij,sk,l ∆∗ire
s+1
k,l ·∆

∗
jre

s+1
k,l .

For an estimate, the following well-known result from linear algebra is helpul:

Let (λsk,l)min be the smallest eigenvalue of the symmetric matrix (gij,sk,l ). Then

wT · (gij,sk,l ) · w ≥ (λsk,l)min‖w‖2 (4.34)

for all w ∈ R2.

Applying this as well as (4.19) we conclude that

2∑
r=1

gij,sk,l ∆∗ire
s+1
k,l ·∆

∗
jre

s+1
k,l =

2∑
r=1

(∆∗1re
s+1
k,l ,∆

∗
2re

s+1
k,l ) · (gij,sk,l ) · (∆∗1res+1

k,l ,∆
∗
2re

s+1
k,l )T

≥ (λsk,l)min

2∑
r=1

(|∆∗1resk,l|2 + |∆∗2resk,l|2)

= (λsk,l)min

2∑
i,j=1

|∆∗ijesk,l|2

≥ c0h
−2

2∑
i,j=1

|∆∗ijesk,l|2

holds for any fixed k, l ∈ {1, . . . , N}. That means

S1 = −S11 + S12 ≤ −c0h
−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 + S12,

and, together with (4.31), the inequality in (4.29) follows.

It remains to show the estimate for S12, which uses the inequalities of Cauchy-Schwarz,

denoted by (CS), and Young, marked by (Y). The differences of gij,sk,l with respect to

each direction of the variable uk,l, which arise in
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4.2 Error estimation

S12 =
N∑

k,l=1

[
∆−1 (g22,s

k,l + g11,s
k,l )∆22e

s+1
k−1,l ·∆

−
1 e

s+1
k,l −∆−2 (g22,s

k,l + g11,s
k,l )∆−1 ∆−2 e

s+1
k,l ·∆

−
1 e

s+1
k,l−1

+ ∆−1 g
12,s
k,l ∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l + ∆−2 g

12,s
k,l ∆+

1 ∆+
2 e

s+1
k,l−1 ·∆

−
2 e

s+1
k,l

−∆−2 g
12,s
k,l ∆11e

s+1
k,l ·∆

−
1 e

s+1
k,l−1 −∆−1 g

12,s
k,l ∆22e

s+1
k,l ·∆

−
2 e

s+1
k−1,l

]
,

are bounded by different discrete second derivatives of xh, see (4.20). For instance

|∆−r g
12,s
k,l | ≤ ch−3(max

k,l
|∆rrx

s
k,l|+ max

k,l
|∆∗12x

s
k,l|),

which appears in the second and third line of S12. For the whole second line we thus

have ∣∣∣∣∣
N∑

k,l=1

[
∆−1 g

12,s
k,l ∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
1 e

s+1
k,l + ∆−2 g

12,s
k,l ∆+

1 ∆+
2 e

s+1
k,l−1 ·∆

−
2 e

s+1
k,l

]∣∣∣∣∣
≤

N∑
k,l=1

[
ch−3(max

k,l
|∆11x

s
k,l|+ max

k,l
|∆∗12x

s
k,l|)|∆+

1 ∆+
2 e

s+1
k−1,l||∆

−
1 e

s+1
k,l |

+ ch−3(max
k,l
|∆22x

s
k,l|+ max

k,l
|∆∗12x

s
k,l|)|∆+

1 ∆+
2 e

s+1
k,l−1||∆

−
2 e

s+1
k,l |
]
.

Instead of estimating all its terms seperately, we consider one summand exemplarily. In

addition to applying the inequalities of Cauchy-Schwarz and Young, ∆+
1 ∆+

2 is changed

into ∆−1 ∆−2 = ∆∗12, see (4.1), according to Lemma 3.5. After that we make use of the

periodicity of eh on the spatial grid as demonstrated in (3.5).

N∑
k,l=1

ch−3 max
k,l
|∆∗12x

s
k,l||∆+

1 ∆+
2 e

s+1
k−1,l||∆

−
1 e

s+1
k,l |

(CS)

≤

(
h−2

N∑
k,l=1

|∆+
1 ∆+

2 e
s+1
k−1,l|

2

)1/2(
ch−6h2 max

k,l
|∆∗12x

s
k,l|2

N∑
k,l=1

|∆−1 es+1
k,l |

2

)1/2

(Y)

≤ εh−2

N∑
k,l=1

|∆+
1 ∆+

2 e
s+1
k−1,l|

2 +
c

ε
h−4 max

k,l
|∆∗12x

s
k,l|2

N∑
k,l=1

|∆−1 es+1
k,l |

2

= εh−2

N∑
k,l=1

|∆−1 ∆−2 e
s+1
k−1,l|

2 +
c

ε
h−4 max

k,l
|∆∗12x

s
k,l|2

N∑
k,l=1

|∆−1 es+1
k,l |

2

= εh−2

N∑
k,l=1

|∆∗12e
s+1
k,l |

2 +
c

ε
h−4 max

k,l
|∆∗12x

s
k,l|2

N∑
k,l=1

|∆−1 es+1
k,l |

2.

(4.35)
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4 Convergence analysis

Proceeding like this for the whole second line of S12, we infer∣∣∣∣∣
N∑

k,l=1

2∑
r=1

∆−r g
12,s
k,l ∆+

1 ∆+
2 e

s+1
k−1,l ·∆

−
r e

s+1
k,l

∣∣∣∣∣
≤ εh−2

N∑
k,l=1

|∆∗12e
s+1
k,l |

2 +
c

ε
h−4

2∑
r=1

(max
k,l
|∆rrx

s
k,l|2 + max

k,l
|∆∗12x

s
k,l|2)

N∑
k,l=1

|∆−r es+1
k,l |

2.

Note that, compared to this example, for other terms in S12 we obtain summands in

the bound like maxk,l |∆∗iixsk,l|2|∆−r es+1
k,l |2 for i 6= r. This is due to the coupling of ∆−1

and ∆−2 within one product in some of the terms in S12, e.g.∣∣∣∣∣
N∑

k,l=1

∆−2 g
12,s
k,l ∆11e

s+1
k,l ·∆

−
1 e

s+1
k,l−1

∣∣∣∣∣
≤ εh−2

N∑
k,l=1

|∆11e
s+1
k,l |

2 +
c

ε
h−4(max

k,l
|∆22x

s
k,l|2 + max

k,l
|∆∗12x

s
k,l|2)

N∑
k,l=1

|∆−1 es+1
k,l |

2.

Approaching the rest of S12 in the same manner and thereby replacing ∆rr by ∆∗rr, see

(4.1) again, we get

|S12| ≤ cεh−2

N∑
k,l=1

(
|∆∗11e

s+1
k,l |

2 + |∆∗12e
s+1
k,l |

2 + |∆∗22e
s+1
k,l |

2
)

+
c

ε
h−4

(
max
k,l
|∆∗11x

s
k,l|2 + max

k,l
|∆∗12x

s
k,l|2 + max

k,l
|∆∗22x

s
k,l|2
) N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

The proofs of Lemma 4.8 and Lemma 4.9 are conducted both at once since we wish to

postpone the estimation of the term |P1 + P2| to the end of the argumentation.

Proof of Lemma 4.8 and Lemma 4.9. We examine S3 similarly to S1 by summation by

parts. This time, we make use of the formula in 2. in Lemma 3.6. Since summation

by parts involves a shifting into neighboured mesh points and since we now apply the

lemma for both variables u1 and u2, we want to take up a notation from the proof of

Lemma 4.5, where we defined

E±r (fk,l) :=

{
fk±1,l for r = 1,

fk,l±1 for r = 2.

Note that ∆−r fk,l = fk,l − E−r (fk,l) and ∆+
r fk,l = E+

r (fk,l) − fk,l and that, again,

we actually mean (E±r f)k,l, but use the above notation as an abbreviation since the

operators will be applied to products. This enables us to carry out the summation by
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4.2 Error estimation

parts with respect to ∆±r without specifiying r ∈ {1, 2}. To this end, the following

re-sorting is helpful, where, without loss of generality, we suppose that α 6= 1:

(
1

α
− 1)−1S3 =−

2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ije

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

=−
2∑
r=1

N∑
k,l=1

[
grr,sk,l g

mn,s
k,l (∆rre

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

+ g12,s
k,l g

mn,s
k,l (∆−1 ∆−2 e

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

]
−
∑
i 6=r

N∑
k,l=1

[
gii,sk,l g

mn,s
k,l (∆iie

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

+ gir,sk,l g
mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

]
= : S31 + S32.

Terms where i = j = r as well as terms with ∆−1 ∆−2 when i 6= j are summarized in S31

and are not reformulated. For each of the other terms, i.e. for those where i = j 6= r

and those with ∆+
i ∆+

r ek,l for i 6= j = r, we perform summation by parts twice, as

presented below. We apply (3.8) for a first time to find

S32
(3.8)
=
∑
i 6=r

N∑
k,l=1

E−r
(
gii,sk,l g

mn,s
k,l (∆+

i ∆−i e
s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r
(
gir,sk,l g

mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

∆−r
(
gii,sk,l g

mn,s
k,l (∆+

i ∆−i e
s+1
k,l ·∆mx

s
k,l)
)

(∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

∆−r
(
gir,sk,l g

mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆mx

s
k,l)
)

(∆nx
s
k,l ·∆−r es+1

k,l ).

Note that here, the additionally defined evaluations of xh and x at points outside of

the spatial grid (see Remark 3.8), appear, e.g. in E−1 (∆1x
s
k,l) = xk,l − xk−2,l for k = 1.

Moreover, the periodicity of the discrete length elements is used again.

The product rule for the operator ∆−r , which we recorded in (3.4), gives
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∆−r
(
(gmn,sk,l gii,sk,l ∆+

i ∆−i + gmn,sk,l gir,sk,l ∆+
i ∆+

r )es+1
k,l ·∆mx

s
k,l

)
= E−r

(
(gmn,sk,l gii,sk,l ∆+

i ∆−i + gmnk,l g
ir,s
k,l ∆+

i ∆+
r )es+1

k,l

)
·∆−r ∆mx

s
k,l

+ ∆−r
(
(gmn,sk,l gii,sk,l ∆+

i ∆−i + gmn,sk,l gir,sk,l ∆+
i ∆+

r )es+1
k,l

)
·∆mx

s
k,l

= E−r
(
(gmn,sk,l gii,sk,l ∆+

i ∆−i + gmnk,l g
ir,s
k,l ∆+

i ∆+
r )es+1

k,l

)
·∆−r ∆mx

s
k,l

+
(
∆−r (gmn,sk,l gii,sk,l )E−r (∆+

i ∆−i e
s+1
k,l ) + ∆−r (gmn,sk,l gir,sk,l )E−r (∆+

i ∆+
r e

s+1
k,l )

)
·∆mx

s
k,l

+
(
(gmn,sk,l gii,sk,l ∆−r ∆+

i ∆−i + gmn,sk,l gir,sk,l ∆−r ∆+
i ∆+

r )es+1
k,l

)
·∆mx

s
k,l,

where the last row now contains differences of third order that are of special interest

in our further steps. Thus

S32 = P1 +
∑
i 6=r

N∑
k,l=1

gii,sk,l g
mn,s
k,l (∆−r ∆+

i ∆−i︸ ︷︷ ︸
=∆+

i (∆−r ∆−i )

es+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

gir,sk,l g
mn,s
k,l (∆−r ∆+

i ∆+
r︸ ︷︷ ︸

=∆+
i (∆−r ∆+

r )

es+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆−r es+1

k,l ),

where

P1 =
∑
i 6=r

N∑
k,l=1

E−r
(
gii,sk,l g

mn,s
k,l (∆+

i ∆−i e
s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r
(
gir,sk,l g

mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r (gii,sk,l g
mn,s
k,l (∆+

i ∆−i e
s+1
k,l ·∆

−
r ∆mx

s
k,l))(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r (gir,sk,l g
mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆

−
r ∆mx

s
k,l))(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

∆−r (gmn,sk,l gii,sk,l )E−r (∆+
i ∆−i e

s+1
k,l ) ·∆mx

s
k,l(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

∆−r (gmn,sk,l gir,sk,l )E−r (∆+
i ∆+

r e
s+1
k,l ) ·∆mx

s
k,l(∆nx

s
k,l ·∆−r es+1

k,l ).

(4.36)

Note that again we apply the periodic boundary conditions. This concerns for instance

E−2 (g11
k,l), which leads to the difference

E−2 (|∆+
2 xk,l||∆−2 xk,l|) = |xk,l − xk,l−1||xk,l−1 − xk,l−2|.
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4.2 Error estimation

S32 contains the discrete third derivatives ∆+
i (∆−r ∆−i )es+1

k,l and ∆+
i (∆−r ∆+

r )es+1
k,l of eh.

The order of the difference is reduced again by the second summation by parts which

yields

∑
i 6=r

N∑
k,l=1

gii,sk,l g
mn,s
k,l (∆+

i (∆−r ∆−i )es+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

gir,sk,l g
mn,s
k,l (∆+

i ∆rre
s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆−r es+1

k,l )

(3.8)
= −

∑
i 6=r

N∑
k,l=1

(∆−r ∆−i e
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmn,sk,l gii,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

(∆rre
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmns,k,l gir,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

∆−i
(
gii,sk,l g

mn,s
k,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

(∆−r ∆−i e
s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

∆−i
(
gir,sk,l g

mn,s
k,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

(∆rre
s+1
k,l ·∆mx

s
k,l).

Here, among others, E−1 (g11,s
k,l ) requires the evaluation of xh in uk−2,l and thus uses the

periodic extension again. The next step is to use the product rule for the remaining

difference ∆−i . We calculate a general case:

∆−i (gij,sk,l g
mn,s
k,l (∆nx

s
k,l ·∆−r es+1

k,l )) = ∆−i (gij,sk,l g
mn,s
k,l )E−i ((∆nx

s
k,l ·∆−r es+1

k,l ))

+ gij,sk,l g
mn,s
k,l (∆−i ∆nx

s
k,l · E−i (∆−r e

s+1
k,l ))

+ gij,sk,l g
mn,s
k,l (∆nx

s
k,l ·∆−i ∆−r e

s+1
k,l ).

Applying this for j = i and j = r we can therefore write

S32 =−
∑
i 6=r

N∑
k,l=1

gii,sk,l g
mn,s
k,l (∆nx

s
k,l ·∆−r ∆−i e

s+1
k,l )(∆−r ∆−i e

s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

gir,sk,l g
mn,s
k,l (∆nx

s
k,l ·∆−r ∆−i e

s+1
k,l )(∆rre

s+1
k,l ·∆mx

s
k,l) + P1 + P2

=−
2∑
r=1

N∑
k,l=1

grr,sk,l g
mn,s
k,l (∆nx

s
k,l ·∆−1 ∆−2 e

s+1
k,l )(∆−1 ∆−2 e

s+1
k,l ·∆mx

s
k,l)

−
2∑
r=1

N∑
k,l=1

g12,s
k,l g

mn,s
k,l (∆nx

s
k,l ·∆−1 ∆−2 e

s+1
k,l )(∆rre

s+1
k,l ·∆mx

s
k,l) + P1 + P2,

where
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P2 =−
∑
i 6=r

N∑
k,l=1

(∆−1 ∆−2 e
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmn,sk,l gii,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

(∆rre
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmns,k,l gir,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

∆−i (gii,sk,l g
mn,s
k,l )E−i ((∆nx

s
k,l ·∆−r es+1

k,l ))(∆−1 ∆−2 e
s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

gii,sk,l g
mn,s
k,l (∆−i ∆nx

s
k,l · E−i (∆−r e

s+1
k,l ))(∆−1 ∆−2 e

s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

∆−i (gir,sk,l g
mn,s
k,l )E−i ((∆nx

s
k,l ·∆−r es+1

k,l ))(∆rre
s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

g12,s
k,l g

mn,s
k,l (∆−i ∆nx

s
k,l · E−i (∆−r e

s+1
k,l ))(∆rre

s+1
k,l ·∆mx

s
k,l).

(4.37)

Recall that we split S3 into S31 and S32. Reassembling the parts we get

(
1

α
− 1)−1S3 =−

2∑
r=1

N∑
k,l=1

[
grr,sk,l g

mn,s
k,l (∆rre

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

+ g12,s
k,l g

mn,s
k,l (∆−1 ∆−2 e

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

]
−

2∑
r=1

N∑
k,l=1

[
grr,sk,l g

mn,s
k,l (∆nx

s
k,l ·∆−1 ∆−2 e

s+1
k,l )(∆−1 ∆−2 e

s+1
k,l ·∆mx

s
k,l)

+ g12,s
k,l g

mn,s
k,l (∆nx

s
k,l ·∆−1 ∆−2 e

s+1
k,l )(∆rre

s+1
k,l ·∆mx

s
k,l)
]

+ P1 + P2.

In what follows next we concentrate on the summands of S3 that are not listed in P1 or

P2. We utilize notation (4.1) to replace ∆rr by ∆∗rr and ∆−1 ∆−2 by ∆∗12. Summarizing

terms in a suitable way we arrive at

(
1

α
− 1)−1S3 =−

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆∗i1e

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆∗j1es+1

k,l )

−
N∑

k,l=1

gij,sk,l g
mn,s
k,l (∆∗i2e

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆∗j2es+1

k,l ) + (P1 + P2)

=−
N∑

k,l=1

2∑
r=1

gij,sk,l g
mn,s
k,l (∆∗ire

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆∗jres+1

k,l ) + (P1 + P2)

=:− P3 + P1 + P2.
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4.2 Error estimation

Hence, we aim show that

−(
1

α
− 1)P3 ≤ 0.

Remember that we assumed 0 < α ≤ 1, which reformulates to 1
α
− 1 ≥ 0.

Since (gij) is symmetric and positive definite, see the proof of Lemma 4.5, the matrix

can be expressed as the square of another, likewise symmetric and positive definite,

matrix B with entries bij:

gij = bivδvtb
tj.

For reasons of clarity, we introduce the notations aim := (∆∗ire
s+1
k,l ·∆mx

s
k,l) as well as

bivaim = bviaim =: cvm, with r ∈ {1, 2} arbitrary but fixed, and do not make use of the

sum convention for the rest of this part of the proof. For all k, l ∈ {1, . . . , N} we infer

−
2∑

i,j,m,n=1

gij,sk,l g
mn,s
k,l (∆∗ire

s+1
k,l ·∆mx

s
k,l)(∆nx

s
k,l ·∆∗jres+1

k,l )

=−
2∑

i,j,m,n=1

gijk,lg
mn
k,l aimajn

=−
2∑

i,j,m,n,v,t=1

bivδvtb
tjgmnk,l aimajn

=−
2∑

m,n,v,t=1

cvmδvtc
t
ng

mn
k,l

=−
2∑

m,n,v=1

cvmc
v
ng

mn
k,l .

Together with (4.34) we derive

−
2∑

m,n,v=1

cvmc
v
ng

mn
k,l ≤− λmin

2∑
m,v=1

(cvm)2

=− λmin

2∑
m,n,v,t=1

δvtδ
mncvmc

t
n

=− λmin

2∑
i,j,m,n,v,t=1

δvtδ
mnbivaimb

tjajn

=− λmin

2∑
i,j,m=1

gijk,laimajm

≤− λ2
min

2∑
i,m=1

a2
im

≤ 0.
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Thus, −P3 can be bounded from above by zero as claimed and (4.30) holds. Before

starting to estimate P1 + P2, we prove Lemma 4.9. The proceeding is then the same

for the terms in P1 + P2, which seem to be more complex at first sight.

This analysis is again based on the inequalities of Cauchy-Schwarz, which is denoted

by (CS), and Young, which is marked by (Y). Apart from that, specific arguments are

used to control some of the differences. For the examination of S2 we make use of (4.18)

in Lemma 4.5. This gives an upper bound for the difference between the discrete and

approximated inverse metric coefficients. For i, j ∈ {1, 2} we have

|gij,sk,l − g̃
ij,s
k,l | ≤ ch−3

(
|∆+

2 e
s
k,l|+ |∆−2 esk,l|+ |∆+

1 e
s
k,l|+ |∆−1 esk,l|

)
.

This yields

|S2| =

∣∣∣∣∣
N∑

k,l=1

2∑
r=1

(gij,sk,l − g̃
ij,s
k,l )∆ijx̃

s+1
k,l ·∆rre

s+1
k,l

∣∣∣∣∣
≤

N∑
k,l=1

ch−3
(
|∆+

2 e
s
k,l|+ |∆−2 esk,l|+ |∆+

1 e
s
k,l|+ |∆−1 esk,l|

) 2∑
i,j,r=1

|∆ijx̃
s+1
k,l ||∆rre

s+1
k,l |

and the further estimation is again demonstrated for one summand exemplarily. The

consistency proof in the last chapter entails assertions on the order of approximation

with respect to the spatial grid size h for the discrete second derivatives of x. More

precisely, (3.23), (3.24) and (3.25) can be summarized to

|∆ijx̃
s+1
k,l | ≤ h2|xuiuj(uk,l, ts)|+ c(τ 2 + h2τ + h4) ≤ ch2 (4.38)

for i, j ∈ {1, 2}. For a comparison with a second derivative xuiuj we advise the reader

again to take into account that the difference operators ∆ij have to be divided by h2

for an approximation, which is thus bounded by c. Hence for r ∈ {1, 2}

N∑
k,l=1

ch−3|∆+
2 e

s
k,l||∆ijx̃

s+1
k,l ||∆rre

s+1
k,l |

(CS)

≤

(
N∑

k,l=1

|∆+
2 e

s
k,l|2
)1/2( N∑

k,l=1

ch−6|∆ijx̃
s+1
k,l |

2|∆rre
s+1
k,l |

2

)1/2

(Y)

≤ 1

4ε

N∑
k,l=1

|∆+
2 e

s
k,l|2 + ch−6ε

N∑
k,l=1

|∆ijx̃
s+1
k,l |

2|∆rre
s+1
k,l |

2

≤ 1

4ε

N∑
k,l=1

|∆+
2 e

s
k,l|2 + ch−2ε

N∑
k,l=1

|∆rre
s+1
k,l |

2.

Obtaining the backward difference of eh is achieved through Lemma 3.5 due to the
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4.2 Error estimation

summation over all mesh points and so

N∑
k,l=1

ch−3|∆+
2 e

s
k,l||∆ijx̃

s+1
k,l ||∆rre

s+1
k,l | ≤

1

4ε

N∑
k,l=1

|∆−2 esk,l|2 + ch−2ε

N∑
k,l=1

|∆∗rres+1
k,l |

2.

Using the same strategy for the rest of S2 yields

|S2| ≤
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2 + ch−2ε

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2.

In each S4 and S5, the operator denoted by ∆r = 1
2
(∆+

r + ∆−r ) appears twice. Altough

it consists of two different operators, ∆rx
s
k,l is not split for it can be estimated by

(4.12). When applied to esk,l, we will decompose ∆r and study only one resulting term.

As demonstrated before, this can easily be transferred to the other operator by means

of the given periodicity. So for

S4 = −(
1

α
− 1)

2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·

1

2
(∆+

m + ∆−m)esk,l)(∆nx
s
k,l ·∆rre

s+1
k,l )

we will show how to analyse the part that contains ∆+
m. Again we use the inequalities of

Cauchy-Schwarz und Young to obtain L2-norms. Furthermore, the prerequisites from

(4.8), (4.12) and (4.17) as well as (4.38) can be applied. Using the periodicity relation

between ∆+
m and ∆−m from Lemma 3.5, for all i, j,m, n, r ∈ {1, 2} the following holds

∣∣∣∣∣−1

2
(

1

α
− 1)

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆

+
me

s
k,l)(∆nx

s
k,l ·∆rre

s+1
k,l )

∣∣∣∣∣
(CS)

≤ 1

2
(

1

α
− 1)

(
N∑

k,l=1

|∆+
me

s
k,l|2
)1/2( N∑

k,l=1

|gij,sk,l |
2|gmn,sk,l |

2|∆ijx̃
s+1
k,l |

2|∆nx
s
k,l|2|∆rre

s+1
k,l |

2

)1/2

(Y )

≤ c

ε
(

1

α
− 1)

N∑
k,l=1

|∆+
me

s
k,l|2 + cε(

1

α
− 1)

N∑
k,l=1

|gij,sk,l |
2|gmn,sk,l |

2|∆ijx̃
s+1
k,l |

2|∆nx
s
k,l|2|∆rre

s+1
k,l |

2

≤ c

ε
(

1

α
− 1)

N∑
k,l=1

|∆+
me

s
k,l|2 + cε(

1

α
− 1)h−4−4+4+2

N∑
k,l=1

|∆rre
s+1
k,l |

2

=
c

ε
(

1

α
− 1)

N∑
k,l=1

|∆−mesk,l|2 + cε(
1

α
− 1)h−2

N∑
k,l=1

|∆∗rres+1
k,l |

2.

An analog proceeding including the decomposing of ∆ne
s
k,l, application of the men-

tioned inequalities and constraints as well as the usage of (4.4) instead of (4.8) in
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4 Convergence analysis

S5 = −(
1

α
− 1)

2∑
r=1

N∑
k,l=1

gij,sk,l g
mn,s
k,l (∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)(

1

2
(∆+

n + ∆−n )esk,l ·∆rre
s+1
k,l )

provides

|S4 + S5| ≤
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2 + cεh−2

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2.

Here we had to bound | 1
α
−1|, so that the constants on the right depends on α−1. This is

also the case in the estimation of the next summand. Apart from the established tech-

niques, S6 requires to control a further difference between discrete and approximated

inverse metric coefficients. From (4.17) and (4.18) we infer that for i, j,m, n ∈ {1, 2}

|g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn,s
k,l | ≤ |g̃

ij,s
k,l ||g̃

mn,s
k,l − g

mn,s
k,l |+ |g̃

ij,s
k,l − g

ij,s
k,l ||g

mn,s
k,l |

≤ ch−2−3

2∑
r=1

(
|∆+

r e
s
k,l|+ |∆−r esk,l|

)
.

(4.39)

That means

|S6| =

∣∣∣∣∣−(
1

α
− 1)

2∑
r=1

N∑
k,l=1

(g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn,s
k,l )(∆ijx̃

s+1
k,l ·∆mx̃

s
k,l)(∆nx̃

s
k,l ·∆rre

s+1
k,l )

∣∣∣∣∣
≤ ch−5

2∑
i,j,m,n,r=1

N∑
k,l=1

(
|∆+

r e
s
k,l|+ |∆−r esk,l|

)
|∆ijx̃

s+1
k,l ||∆mx̃

s
k,l||∆nx̃

s
k,l||∆rre

s+1
k,l |

and here, too, we illustrate the further estimate with the help of an example. Using

(4.12) together with (4.38) and Lemma 3.5, for any i, j,m, n, r ∈ {1, 2} we arrive at

ch−5

N∑
k,l=1

|∆+
r e

s
k,l||∆ijx̃

s+1
k,l ||∆mx̃

s
k,l||∆nx̃

s
k,l||∆rre

s+1
k,l |

(CS)

≤ c

(
N∑

k,l=1

|∆+
r e

s
k,l|2
)1/2(

ch−10

N∑
k,l=1

|∆ijx̃
s+1
k,l |

2|∆mx̃
s
k,l|2|∆nx̃

s
k,l|2|∆rre

s+1
k,l |

2

)1/2

(Y )

≤ c

ε

N∑
k,l=1

|∆+
r e

s
k,l|2 + cεh−10

N∑
k,l=1

|∆ijx̃
s+1
k,l |

2|∆mx̃
s
k,l|2|∆nx̃

s
k,l|2|∆rre

s+1
k,l |

2

≤ c

ε

N∑
k,l=1

|∆+
r e

s
k,l|2 + cεh−10+4+2+2

N∑
k,l=1

|∆rre
s+1
k,l |

2

=
c

ε

N∑
k,l=1

|∆−r esk,l|2 + cεh−2

N∑
k,l=1

|∆∗rres+1
k,l |

2.
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Therefore, S6 can be controlled by our discrete first and second derivatives of eh just

like in the former estimates:

|S6| ≤
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2 + cεh−2

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2.

From the bound of the consistency error we derived in Theorem 3.12 in the previous

chapter, i.e. from |R̃α,s
k,l | ≤ cR̃(h2 + τ), it follows

|S7| =

∣∣∣∣∣
2∑
r=1

N∑
k,l=1

R̃α,s
k,l ·∆rre

s+1
k,l

∣∣∣∣∣
(CS)

≤

(
2∑
r=1

N∑
k,l=1

h2|R̃α,s
k,l |

2

)1/2(
h−2

N∑
k,l=1

2∑
r=1

|∆rre
s+1
k,l |

2

)1/2

(Y)

≤ 2

4ε

N∑
k,l=1

h2|R̃α,s
k,l |

2 + εh−2

N∑
k,l=1

2∑
r=1

|∆rre
s+1
k,l |

2

≤ 1

2ε
N2h2(cR̃)2(h2 + τ)2 + εh−2

N∑
k,l=1

2∑
r=1

|∆rre
s+1
k,l |

2

=
c

ε
(h2 + τ)2 + εh−2

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2,

where we inserted N = 2π
h

. Note that cR̃ and thus c in c
ε
(h2 + τ)2 depends on α−1.

Alltogether,

|S2 + S4 + S5 + S6 + S7| ≤
c

ε
(h2 + τ)2 + cεh−2

N∑
k,l=1

2∑
r=1

|∆∗rres+1
k,l |

2 +
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

as claimed in lemma 4.9.

For the proof of Lemma 4.8, it remains to look at ( 1
α
− 1)P1 and ( 1

α
− 1)P2, both of

which originated during the summation by parts of S3 and are given in (4.36) and

(4.37), respectively. We will estimate P1 and P2 and keep in mind that the factor

( 1
α
− 1) again has to be bounded by a suitable constant. After re-sorting of the terms

we have that for all m,n ∈ {1, 2}
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P1 + P2 =
∑
i 6=r

N∑
k,l=1

E−r
(
gii,sk,l g

mn,s
k,l (∆∗iie

s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r
(
gir,sk,l g

mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r (gii,sk,l g
mn,s
k,l (∆∗iie

s+1
k,l ·∆

−
r ∆mx

s
k,l))(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

E−r (gir,sk,l g
mn,s
k,l (∆+

i ∆+
r e

s+1
k,l ·∆

−
r ∆mx

s
k,l))(∆nx

s
k,l ·∆−r es+1

k,l )

−
∑
i 6=r

N∑
k,l=1

(∆−1 ∆−2 e
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmn,sk,l gii,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

(∆rre
s+1
k,l ·∆

−
i ∆mx

s
k,l)E

−
i

(
gmns,k,l gir,sk,l (∆nx

s
k,l ·∆−r es+1

k,l )
)

−
∑
i 6=r

N∑
k,l=1

gii,sk,l g
mn,s
k,l

(
∆−i ∆nx

s
k,l · E−i (∆−r e

s+1
k,l )

)
(∆∗12e

s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

g12,s
k,l g

mn,s
k,l

(
∆−i ∆nx

s
k,l · E−i (∆−r e

s+1
k,l )

)
(∆∗rre

s+1
k,l ·∆mx

s
k,l)

+
∑
i 6=r

N∑
k,l=1

∆−r (gmn,sk,l gii,sk,l )
(
E−r (∆∗iie

s+1
k,l ) ·∆mx

s
k,l

)
(∆nx

s
k,l ·∆−r es+1

k,l )

+
∑
i 6=r

N∑
k,l=1

∆−r (gmn,sk,l gir,sk,l )
(
E−r (∆+

i ∆+
r e

s+1
k,l ) ·∆mx

s
k,l

)
(∆nx

s
k,l ·∆−r es+1

k,l )

−
∑
i 6=r

N∑
k,l=1

∆−i (gii,sk,l g
mn,s
k,l )E−i

(
(∆nx

s
k,l ·∆−r es+1

k,l )
)

(∆∗12e
s+1
k,l ·∆mx

s
k,l)

−
∑
i 6=r

N∑
k,l=1

∆−i (gir,sk,l g
mn,s
k,l )E−i

(
(∆nx

s
k,l ·∆−r es+1

k,l )
)

(∆∗rre
s+1
k,l ·∆mx

s
k,l)

=:P̃1 + · · ·+ P̃12.

First of all, it is helpful to understand the discrete second derivatives ∆−r ∆nx
s
k,l, whose

precise form depends on r and n as well as on the part of ∆n = 1
2
(∆+

n + ∆−n )xsk,l being

considered. In order to restore the variants of discrete derivatives that were introduced

at the beginning, similarly to (4.24) in the proof of Lemma 4.5, the shift operators E±r
defined in (4.21) are exerted again. With these we have

66



4.2 Error estimation

∆−r ∆nx
s
k,l =

{
1
2
(∆−r ∆+

r + ∆−r ∆−r )xsk,l = 1
2
(∆∗rr + E−r (∆∗rr))x

s
k,l if n = r,

1
2
(∆−r ∆+

n + ∆−r ∆−n )xsk,l = 1
2
(E+

n (∆∗12) + ∆∗12)xsk,l if n 6= r.

In what follows we will study those summands of P1 +P2 containing the second deriva-

tives that we have just characterized, namely P̃1 to P̃8. Whilst proceeding to the

maximum as in

|E−r (∆∗rr)x
s
k,l| ≤ max

k,l
|E−r (∆∗rrx

s
k,l)| = max

k,l
|∆∗rrxsk,l|,

the dependence on the spatial grid point can be eliminated. For the bounds on the

differences of first order and on the metric coefficients such a dependence does not exist.

Thus, (4.17) holds despite a shifting along grid lines. Making use of this together with

(4.12) after the usual application of the Cauchy-Schwarz and Young inequalities to P̃1

yields

|P̃1| =

∣∣∣∣∣∑
i 6=r

N∑
k,l=1

E−r
(
gii,sk,l g

mn,s
k,l (∆∗iie

s+1
k,l ·∆mx

s
k,l)
)

(∆−r ∆nx
s
k,l ·∆−r es+1

k,l )

∣∣∣∣∣
(CS),(Y)

≤ cε
∑
i 6=r

2∑
m,n=1

N∑
k,l=1

|E−r (gii,sk,l )|2|E−r (∆∗iie
s+1
k,l )|2|∆mx

s
k,l|2

+
c

ε

2∑
m,n,r=1

max
k,l
|∆∗rnxsk,l|2

N∑
k,l=1

|E−r (gmn,sk,l )|2|∆−r es+1
k,l |

2

≤ cεh−2

2∑
r=1

N∑
k,l=1

|∆∗rres+1
k,l |

2 +
c

ε
h−4

2∑
r,n=1

max
k,l
|∆∗rnxsk,l|2

N∑
k,l=1

|∆−r es+1
k,l |

2.

The approach is the same for P̃2 to P̃8. Note that additional terms occur in the con-

straint on the right hand-side of the resulting inequality. Apart from the examination

of other second order differences of eh, this is because of the simultaneous appearance

of the factors ∆−i ∆mx
s
k,l and E−i (∆−r e

s+1
k,l ) or, more precisely, of the operators ∆−i and

∆−r for i 6= r, for instance in P̃5. Out of this results a summation over all indices

i, j ∈ {1, 2} in the product of maxk,l |∆∗ijxsk,l|2 with |∆−r es+1
k,l |2 for both r ∈ {1, 2}:

|P̃1 + · · ·+ P̃8| ≤ cεh−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
c

ε
h−4

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

The remaining terms in P1 +P2 all have the factor ∆−r (gmn,sk,l gij,sk,l ) in common. Observe

that, by means of (4.17) and (4.20),
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|∆−r (gmn,sk,l gij,sk,l )| = |∆−r (gmn,sk,l )gij,sk,l + E−r (gmn,sk,l )∆−r (gij,sk,l )|
≤ ch−2(|∆−r (gmn,sk,l )|+ |∆−r (gij,sk,l )|)

≤ ch−2h−3

(
max
k,l
|∆∗rrxsk,l|+ max

k,l
|∆∗12x

s
k,l|
)
.

We look exemplarily at P̃9. With the help of the inequalities of Cauchy-Schwarz and

Young and a suitable splitting of the factor h−2h−3 as well as with (4.12) we derive

|P̃9| =

∣∣∣∣∣∑
i 6=r

N∑
k,l=1

∆−r (gmn,sk,l gii,sk,l )
(
E−r (∆∗iie

s+1
k,l ) ·∆mx

s
k,l

)
(∆nx

s
k,l ·∆−r es+1

k,l )

∣∣∣∣∣
(CS),(Y)

≤ cεh−4
∑
i 6=r

N∑
k,l=1

2∑
m,n=1

|E−r (∆∗iie
s+1
k,l )|2|∆mx

s
k,l|2

+
c

ε
h−6

2∑
m,n,r=1

N∑
k,l=1

|∆−r es+1
k,l |

2|∆nx
s
k,l|2

(
max
k,l
|∆∗rrxsk,l|2 + max

k,l
|∆∗12x

s
k,l|2
)

≤ cεh−2

2∑
i=1

N∑
k,l=1

|∆∗iies+1
k,l |

2

+
c

ε
h−4

2∑
r=1

(
max
k,l
|∆∗rrxsk,l|2 + max

k,l
|∆∗12x

s
k,l|2
) N∑
k,l=1

|∆−r es+1
k,l |

2.

Note that the shifting of ∆∗iie
s+1
k,l is reversed by means of the periodicity. This also

applies to E−r (∆+
i ∆+

r e
s+1
k,l ) in P̃10, which is treated like the second order difference of

eh in (4.35).

The given estimate is representative for P̃9, . . . , P̃12. Again, further combinations of i, j

and r are obtained following the same principle as before, so that we have

|P̃9 + · · ·+ P̃12| ≤ cεh−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
c

ε
h−4

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

The proof of Lemma 4.8 is thus completed.

We finally combine the estimates from Lemmas 4.7, 4.8 and 4.9 in the
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Proof of the induction step. Applying Lemmas 4.7 and 4.8 we infer

c0h
−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2)

(4.29)

≤ S12 + S2 + · · ·+ S7

(4.30)

≤ S12 + S2 + S4 + · · ·+ S7 + ( 1
α
− 1)(P1 + P2),

so that Lemma 4.9 gives

c0h
−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
1

2τ

2∑
r=1

N∑
k,l=1

(|∆−r es+1
k,l |

2 − |∆−r esk,l|2)

≤ c

ε
(h2 + τ)2 + cεh−2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 +
c

ε

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

+
c

ε
h−4

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2.

Summation over all points of the time grid ts
′
, s′ ∈ {0, . . . , s}, and multiplication by τ

yields

τ
s∑

s′=0

N∑
k,l=1

2∑
i,j=1

c0h
−2|∆∗ijes

′+1
k,l |

2 +
1

2

s∑
s′=0

N∑
k,l=1

2∑
r=1

(|∆−r es
′+1
k,l |

2 − |∆−r es
′

k,l|2)

≤ c

ε
(s+ 1)τ(h2 + τ)2 +

c

ε
τ

s∑
s′=0

N∑
k,l=1

2∑
r=1

|∆−r es
′

k,l|2 + cετh−2

s∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′+1
k,l |

2

+
c

ε
τh−4

s∑
s′=0

2∑
i,j=1

max
k,l
|∆∗ijxs

′

k,l|2
N∑

k,l=1

2∑
r=1

|∆−r es
′+1
k,l |

2.

This inequality can be rewritten as

(c0 − cε)τh−2

s+1∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

+ (
1

2
− c

ε
h−4τ

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2)

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2

≤ c

ε
T (h2 + τ)2 +

c

ε
τ

s∑
s′=1

(
1 + h−4

2∑
i,j=1

max
k,l
|∆∗ijxs

′−1
k,l |

2
) N∑
k,l=1

2∑
r=1

|∆−r es
′

k,l|2,

since |e0
k,l|2 = 0. Choosing ε such that 0 < c1 ≤ c0 − cε provides the following lower
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bound:

s+1∑
s′=0

N∑
k,l=1

2∑
i,j=1

c1τh
−2|∆∗ijes

′

k,l|2 ≤
s+1∑
s′=0

N∑
k,l=1

2∑
i,j=1

(c0 − cε)τh−2|∆∗ijes
′

k,l|2.

In order to find constraints for the factors containing second order derivatives of xh on

either sides of the estimate, we take up the induction hypothesis in form of Corollary

4.4. The bound in (4.9) implies

1

2
− ch−4τ

2∑
i,j=1

max
k,l
|∆∗ijxsk,l|2 ≥

1

2
− cc2h ≥ c3,

if h ≤ (1
2
− c3)(cc2)−1, and for the overall estimate we infer

c1τh
−2

s+1∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2 + c3

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2

≤ c4(h2 + τ)2 + c5τ
s∑

s′=1

(
1 + h−4

2∑
i,j=1

max
k,l
|∆∗ijxs

′−1
k,l |

2
) N∑
k,l=1

2∑
r=1

|∆−r es
′

k,l|2.

(4.40)

Note that c4 = c4(x, T, α−1), c5 = c5(x, α−1) and all of the other constants only depend

on x. This is important to note because the lemma of Gronwall gives

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2 ≤ c4

c3

(h2 + τ)2exp

(
c5

c3

τ
s∑

s′=1

(
1 + h−4

2∑
i,j=1

max
k,l
|∆∗ijxs

′−1
k,l |

2
))

and the right hand-side consequently depends exponentially on α−1.

To proceed we make use of the induction hypothesis in form of Corollary 4.4 again.

We apply (4.10) to estimate

τ
s∑

s′=1

(1 + h−4

2∑
i,j=1

max
k,l
|∆∗ijxs

′−1
k,l |

2) ≤ sτ + 8ĉ2T + 1 ≤ (1 + 8ĉ2)T + 1.

Therefore

N∑
k,l=1

2∑
r=1

|∆−r es+1
k,l |

2 ≤ c4

c3

(h2 + τ)2exp

(
c5

c3

(1 + 8ĉ2)T

)
exp(1) = W (h2 + τ)2

as claimed in (4.28). So the first inequality in (4.3) is true for each s ∈ {0, . . . ,M}
under the assumption that for the preceding point of time the second part of (4.3) holds.

Since the latter is true for all s′ ∈ {0, . . . , s} according to the induction hypothesis, the

estimate for the discrete first derivatives holds for all s′ ∈ {0, . . . , s+ 1}. Inserting this
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into (4.40) we infer

τh−2

s+1∑
s′=0

N∑
k,l=1

2∑
i,j=1

|∆∗ijes
′

k,l|2

≤c4

c1

(h2 + τ)2 +
c5

c1

W (h2 + τ)2τ

s∑
s′=1

(
1 + h−4

2∑
i,j=1

max
k,l
|∆∗ijxs

′−1
k,l |

2
)

≤c4

c1

(h2 + τ)2 +
c5

c1

((1 + 8ĉ2)T + 1)W (h2 + τ)2

≤(h2 + τ)3/2,

if h ≤ (2c∗∗)−1, see the proof of (4.10), and (h2 + τ)1/2 ≤ ( c4
c1

+ c5
c1

((1 + 8ĉ2)T + 1)W )−1.

Consequently, also the second part of the induction step is proved.

Thus, the induction is completed. Note that this also means that auxiliary results

derived from the induction hypothesis for the concrete point ts are now valid for all

s ∈ {0, . . . ,M}. In particular, this is true for (4.8), (4.12) and (4.17)-(4.20). We can

proceed with improving the estimate for the second order differences.

4.10 Theorem. Let α ∈ (0, 1] and let x ∈ C4([0, 2π]2 × [0, T ];R3) be the solution

of the continuous problem (1.4) with x(·, t) ∈ C0
per([0, 2π]2;R3) for all t ∈ [0, T ] and

∂γx ∈ C0([0, T ];C0
per([0, 2π]2;R3)) for |γ| ≤ 3. Let also 2c̄ ≤ g for a constant c̄ > 0.

For k, l ∈ {1, . . . , N} and s ∈ {0, . . . ,M} let x̃sk,l = x(uk,l, t
s) denote the restriction of

x to the mesh {(uk,l, ts)}k,l∈{0,...,N},s∈{0,...,M} with (uk,l) = (kh, lh), h = 2π
N

, and ts = sτ ,

τ = T
M

. Let xh be the solution of the discrete problem (3.9) with xsk,l = xh(uk,l, t
s) and

let esk,l = eh(uk,l, t
s) = x̃sk,l − xsk,l. Then there exist positive constants c, c′ and h∗, such

that for all 0 < h ≤ h∗ and τ ≤ c′h2 the estimates

max
s∈{0,...,M}

(
h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2

)1/2

≤ c(h2 + τ),

(
τ

M∑
s=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijesk,l|2

h4

)1/2

≤ c(h2 + τ)

(4.41)

hold and the constants only depend on x, T and α−1.

Proof. It remains to show that the order of convergence for the discrete second deriva-

tives is the same as for the first derivatives. We insert the first assertion of (4.28) into

(4.40) again. This time, we can use the full exponent of (h2 + τ) and so we infer for
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each s ∈ {0, . . . ,M}

c1

M∑
s=0

N∑
k,l=1

2∑
i,j=1

τh−2|∆∗ijesk,l|2 ≤ c4(h2 + τ)2 + c5((1 + 8ĉ2)T + 1)W (h2 + τ)2

≤ c(h2 + τ)2.

4.11 Remark. Reducing the order of convergence for the second order differences

within the induction statement (4.3) compared to the final convergence result presented

in Theorem 4.10 is necessary for technical reasons: The splitting (h2 + τ)3/2+1/2 makes

it possible to impose another smallness condition on the mesh sizes in order to obtain

exactly the constant in the constraint of the induction hypothesis again in the induction

step.

Apart from the discrete spatial derivatives we can also control the discrete time deriva-

tive of eh in a L2-norm on the grid by some term of second order in h and first order

in τ , as we display in the following.

4.12 Theorem. Under the assumptions of Theorem 4.10 there exists a constant c > 0

as well as an h0 > 0, such that for all 0 < h ≤ h0 the estimate(
τ
M−1∑
s=0

h2

N∑
k,l=1

|es+1
k,l − esk,l|2

τ 2

)1/2

≤ c(h2 + τ) (4.42)

holds and the constant c only depends on x, T and α−1.

Proof. Let k, l ∈ {0, . . . , N} and s ∈ {0, . . . ,M − 1}. Equation (4.26) yields∣∣∣∣∣es+1
k,l − esk,l

τ

∣∣∣∣∣ ≤ |gij,sk,l ||∆ije
s+1
k,l |+ |g̃

ij,s
k,l − g

ij,s
k,l ||∆ijx̃

s+1
k,l |+ |R̃

α,s
k,l |

+

∣∣∣∣ 1α − 1

∣∣∣∣ [|gij,sk,l g
mn,s
k,l ||∆ije

s+1
k,l ||∆mx

s
k,l||∆nx

s
k,l|

+ |gij,sk,l g
mn,s
k,l ||∆ijx̃

s+1
k,l ||∆me

s
k,l||∆nx

s
k,l|

+ |gij,sk,l g
mn,s
k,l ||∆ijx̃

s+1
k,l ||∆mx̃

s
k,l||∆ne

s
k,l|

+ |g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn
k,l ||∆ijx̃

s+1
k,l ||∆mx̃

s
k,l||∆nx̃

s
k,l|
]
.

Using (4.17) and (4.18), to control g̃ij,sk,l , gij,sk,l and their difference, together with

|g̃ij,sk,l g̃
mn,s
k,l − g

ij,s
k,l g

mn,s
k,l | ≤ch

−2−3

2∑
r=1

(
|∆+

r e
s
k,l|+ |∆−r esk,l|

)
,
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compare (4.39), we obtain

1

τ
|es+1
k,l − e

s
k,l|

≤ ch−2

2∑
i,j=1

|∆ije
s+1
k,l |+ ch−3

(
2∑

i,j=1

|∆ijx̃
s+1
k,l |

)(
2∑
r=1

(|∆+
r e

s
k,l|+ |∆−r esk,l|)

)
+ |R̃α,s

k,l |

+ ch−4

(
2∑

m,n=1

|∆mx
s
k,l||∆nx

s
k,l|

)(
2∑

i,j=1

|∆ije
s+1
k,l |

)

+ ch−4

(
2∑

i,j=1

|∆ijx̃
s+1
k,l |

)(
2∑
r=1

(|∆rx
s
k,l|+ |∆rx̃

s
k,l|)

)(
2∑
r=1

(|∆+
r e

s
k,l|+ |∆−r esk,l|)

)

+ ch−5

(
2∑

i,j=1

|∆ijx̃
s+1
k,l |

)(
2∑

m,n=1

|∆mx̃
s
k,l||∆nx̃

s
k,l|

)(
2∑
r=1

(|∆+
r e

s
k,l|+ |∆−r esk,l|)

)
.

The constraints on first order differences of xh and x, see (4.4), (4.8) and (4.12) as well

as the boundedness of second order differences of x as given in (4.38) yield

1

τ
|es+1
k,l − e

s
k,l| ≤ c(h−2 + h−4+1+1)

2∑
i,j=1

|∆ije
s+1
k,l |

+ c(h−3+2 + h−4+2+1 + h−5+2+1+1)
2∑
r=1

(|∆+
r e

s
k,l|+ |∆−r esk,l|) + |R̃α,s

k,l |.

After squaring and summation over k and l we have

1

τ 2

N∑
k,l=1

|es+1
k,l − e

s
k,l|2

≤ ch−4

N∑
k,l=1

2∑
i,j=1

|∆ije
s+1
k,l |

2 + ch−2

N∑
k,l=1

2∑
r=1

(|∆+
r e

s
k,l|2 + |∆−r esk,l|2) + c

N∑
k,l=1

|R̃α,s
k,l |

2.

We replace ∆+
r by ∆−r as well as ∆+

1 ∆+
2 by ∆−1 ∆−2 (and therefore also ∆ij by ∆∗ij),

compare Lemma 3.5. Furthermore, with the help of the estimate for the consistency

error
N∑

k,l=1

|R̃α,s
k,l |

2 ≤ c2
R̃
N2(h2 + τ)2 = ch−2(h2 + τ)2

it follows that

1

τ 2

N∑
k,l=1

|es+1
k,l − e

s
k,l|2 ≤ ch−4

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |

2 + ch−2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2 + ch−2(h2 + τ)2.
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Multiplying by h2 and inserting (4.28) for the differences of first order yields

h2

τ 2

N∑
k,l=1

|es+1
k,l − e

s
k,l|2 ≤ c(h2 + τ)2 + ch2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |2

h4
.

Summation over all s ∈ {0, . . . ,M − 1} and multiplication by τ allows to estimate the

differences of second order analogously, which is why we have

τ

M−1∑
s=0

h2

N∑
k,l=1

|es+1
k,l − esk,l|2

τ 2
≤ cMτ(h2 + τ)2 + cτ

M−1∑
s=0

h2

N∑
k,l=1

2∑
i,j=1

|∆∗ijes+1
k,l |2

h4

≤ cT (h2 + τ)2 + c(h2 + τ)2

≤ c(h2 + τ)2

as asserted.

With the aid of this result, we can show the convergence of second order in h and first

order in τ for the discrete L2-norm of the error function eh itself in a few steps. This

is demonstrated in the following theorem.

4.13 Theorem. Under the assumptions of Theorem 4.10 there exists a constant c > 0

as well as an h0 > 0, such that for all 0 < h ≤ h0 the estimate

max
s∈{0,...,M}

(
h2

N∑
k,l=1

|esk,l|2
)1/2

≤ c(h2 + τ) (4.43)

holds and the constant c only depends on x, T and α−1.

Proof. Let s ∈ {0, . . . ,M − 1} arbitrary but fixed. e0
k,l = 0 implies

N∑
k,l=1

|es+1
k,l |

2 =
s∑

s′=0

N∑
k,l=1

(|es′+1
k,l |

2 − |es′k,l|2)

=
s∑

s′=0

N∑
k,l=1

(
2(es

′+1
k,l − e

s′

k,l) · es
′+1
k,l − |e

s′+1
k,l − e

s′

k,l|2
)

≤
s∑

s′=0

N∑
k,l=1

(
2(es

′+1
k,l − e

s′

k,l) · es
′+1
k,l

)
(CS)

≤ 2
s∑

s′=0

(
N∑

k,l=1

1

τ
|es′+1
k,l − e

s′

k,l|2
)1/2(

τ

N∑
k,l=1

|es′+1
k,l |

2

)1/2

(Y)

≤ 1

2ε

s∑
s′=0

N∑
k,l=1

1

τ
|es′+1
k,l − e

s′

k,l|2 + 2ετ
s∑

s′=0

N∑
k,l=1

|es′+1
k,l |

2.
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4.2 Error estimation

Subtraction of 2ετ |es+1
k,l |2 for every k, l ∈ {1, . . . , N} and a suitable choice of ε so that

c6 ≤ 1− 2ετ for a constant c6 > 0 we have

c6

N∑
k,l=1

|es+1
k,l |

2 ≤ 2
M−1∑
s′=0

N∑
k,l=1

1

τ
|es′+1
k,l − e

s′

k,l|2 + 2τ
s∑

s′=0

N∑
k,l=1

|es′k,l|2

(4.42)

≤ ch−2(h2 + τ)2 + 2τ
s∑

s′=0

N∑
k,l=1

|es′k,l|2,

where we made use of the result of the preceding theorem to estimate the difference of

the error function regarding time.

The lemma of Gronwall then gives

N∑
k,l=1

|es+1
k,l |

2 ≤ ch−2(h2 + τ)2exp(c
s∑

s′=0

τ) ≤ ch−2(h2 + τ)2exp(cT ),

so that after multiplication by h2 and extracting the square root(
h2

N∑
k,l=1

|es+1
k,l |

2

)1/2

≤ c(h2 + τ).

The estimate holds for all s ∈ {0, . . . ,M − 1} and so does (4.43).

The next theorem states an estimate in a discrete maximum norm. Since n = 2, an

embedding H1(Ω) ↪→ C(Ω̄) does not exist and so the H1-bound does not immediately

imply an L∞-estimate. Still, we can show a slightly weaker estimate that originates

from the theory of finite element approximations.

4.14 Theorem. Under the assumptions of Theorem 4.10 there exists a constant c > 0

as well as an h0 > 0, such that for all 0 < h ≤ h0 the estimate

max
s∈{0,...,M}

max
k,l∈{1,...,N}

|esk,l| ≤ c| ln(h)|
1
2 (h2 + τ) (4.44)

holds and the constant c only depends on x, T and α−1.

Proof. To begin with we consider the domain [0, 2π]2, which was divided into squares

of edge length h by defining the grid {uk,l}k,l∈{0,...,N}. These squares can be divided in

half by their diagonals from the top left to the bottom right corner. That means, by

connecting uk−1,l to uk,l−1 for all k, l ∈ {1, . . . , N} we add new grid lines and obtain a

mesh of traingles {κk,l, κk,l}k,l∈{1,...,N}. We denote

κk,l = {(u1, u2) ∈ [0, 2π]2|(k − 1)h ≤ u1 ≤ kh, (l + k − 1)h− u1 ≤ u2 ≤ lh},
κk,l = {(u1, u2) ∈ [0, 2π]2|(k − 1)h ≤ u1 ≤ kh, (l − 1)h ≤ u2 ≤ (l + k − 1)h− u1}.

(4.45)
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Let Ih : [0, 2π]2 → R3 be the continuous linear interpolant that coincides with eh at

the corners of such a triangle and is extended to be linear in between. For arbitrary

k, l and u = (u1, u2) ∈ κk,l we thus have that Ik,lh [eh](u) := ak,lu1 + bk,lu2 + ck,l and the

coefficients are uniquely defined by

Ik,lh [eh](uk,l, t
s) = esk,l,

Ik,lh [eh](uk−1,l, t
s) = esk−1,l,

Ik,lh [eh](uk,l−1, t
s) = esk,l−1.

(4.46)

Analogously, for u = (u1, u2) ∈ κk,l we let Ih;k,l[eh](u) := ak,lu1 + bk,lu2 + ck,l so that

it coincides with eh in uk−1,l, uk,l−1 and uk−1,l−1 and the coefficients are given by a

corresponding system of equations.

For all s ∈ {0, . . . ,M} we have

max
k,l∈{1,...,N}

|esk,l| = max
u∈[0,2π]2

|Ih[eh](u, ts)|.

Since Ih[e
s
k,l] is continuous and piecewise linear, Lemma 6.4 in [41] implies that the

estimate

max
u∈[0,2π]2

|Ih[eh](u, ts)| ≤ c| ln(h)|
1
2

( ∫
[0,2π]2

(|Ih[eh(ts)]|2 + |∇Ih[eh(ts)]|2) du

) 1
2

holds. Hence (4.44) is true if

∫
[0,2π]2

(|Ih[eh(ts)]|2 + |∇Ih[eh(ts)]|2) du ≤ ch2

N∑
k,l=1

(
|esk,l|2 +

2∑
r=1

|∆−r esk,l|2

h2

)
, (4.47)

for we have already shown the convergence of second order in h and first order in τ in

the discrete H1-norm of eh. In what follows, we thus aim to prove this inequality and

therefore make use of the triangulation of [0, 2π]2.

Due to the fact that ∇Ik,lh [eh](u) = (ak,l, bk,l), the evalution of the L2-norm of the

gradient in the upper triangle κk,l yields∫
κk,l

|∇Ik,lh [eh]|2 du = (|ak,l|2 + |bk,l|2)

∫
κk,l

du = (|ak,l|2 + |bk,l|2)
1

2
h2.

Solving the linear equation system (4.46) gives

ak,l =
ek,l − ek−1,l

h
=

∆−1 ek,l
h

and bk,l =
ek,l − ek,l−1

h
=

∆−2 ek,l
h

and we make use of the same proceeding for κk,l to find
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4.2 Error estimation

ak,l =
ek,l−1 − ek−1,l−1

h
=

∆−1 ek,l−1

h
and bk,l =

ek−1,l − ek−1,l−1

h
=

∆−2 ek−1,l

h
.

This implies∫
[0,2π]2

|∇Ih[eh(ts)]|2 du =
1

2
h2

N∑
k,l=1

(
|∆−1 esk,l|2 + |∆−2 esk,l|2

h2
+
|∆−1 esk,l−1|2 + |∆−2 esk−1,l|2

h2

)

=h2

N∑
k,l=1

|∆−1 esk,l|2 + |∆−2 esk,l|2

h2
,

where we used the periodicity of eh in the last step, compare the first result in Lemma

3.5.

The L2-norm of Ih itself is evaluated by another interpolation. Let Jh : [0, 2π]2 → R
be the continuous, piecewise linear function which coincides with |Ih[eh]|2 in each of

the corners of a triangle κ. Since Jh is linear, we can make use of the quadrature rule

([39]) ∫
κ

Jh[|Ih[eh]|2](u1, u2) du = |κ|Jh[|Ih[eh]|2](Sx, Sy), (4.48)

where |κ| is the area of κ and (Sx, Sy) are the coordinates of the centroid of κ. It holds

that |κ| = 1
2
h2 and

(Sx, Sy) =

{
(1

3
h+ (k − 1)h, 1

3
h+ (l − 1)h) for κ = κk,l,

(2
3
h+ (k − 1)h, 2

3
h+ (l − 1)h) for κ = κk,l.

Determining the coefficients of Jk,lh [|Ih[eh]|2](u) for the triangle and inserting the cor-

responding centroid into the quadrature rule yields∫
κk,l

Jk,lh [|Ih[eh]|2](u1, u2) du = h2 1

6

(
|ek,l|2 + |ek−1,l|2 + |ek,l−1|2

)
.

Using the same method to calculate the integral of Jh;k,l over κk,l we arrive at

∫
[0,2π]2

Jh
[
|Ih[eh(ts)]|2

]
du = h2

N∑
k,l=1

(
1

6
|esk,l|2 +

1

3
|esk−1,l|2 +

1

3
|esk,l−1|2 +

1

6
|esk−1,l−1|2

)

= ch2

N∑
k,l=1

|esk,l|2,

where equality in the last step again holds because of the periodicity of the solution

functions x and xh on the spatial grid. Observing that Ih[eh] is continuous and piecewise
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linear, and letting κ = κk,l and κ = κk,l, respectively, we have the following well-known

estimate, which is used e.g. in [8]:∫
κ

|Ik,lh [eh]|2 du ≤
∫
κ

Jk,lh [|Ih[eh]|2] du.

This way, (4.47) is verified as well as is the asserted error estimation.
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5 Numerical experiments

In what follows we want to demonstrate some numerical results for the family of fully

discrete approximations introduced in (3.9). Firstly, we compute the experimental

order of convergence for several discrete norms to give numerical evidence for the

estimates obtained in the previous chapter. In the second section, we consider examples

illustrating the evolution of a torus and the shrinking of the surface area for different

choices of α. Furthermore, we are interested in a visualization of the quality of the

generated mesh, where we focus on the influence of α as the parameter that determines

the tangential velocity rather than on producing meshes with small mesh sizes h and

τ .

5.1 Experimental order of convergence

In the first part of this chapter we compute the experimental convergence rate of our

approximation. Since the torus is not an exact solution to the Mean Curvature DeTurck

Flow, we are going to modify evolution equation (1.4) accordingly. The parametrization

x(u1, u2, t) =

(r(t)cos(u1) +R)cos(u2)

(r(t)cos(u1) +R)sin(u2)

r(t)sin(u1)

 , (u1, u2, t) ∈ (0, 2π]2 × [0, T ),

satisfies the inhomogeneous equation

xt − gijxuiuj +

(
1

α
− 1

)
gijgmn(xuiuj · xum)xun = f(u1, u2, t), (5.1)

where

f(u1, u2, t) =
1

r(t)cos(u1) +R

cos(u2)

sin(u2)

0

+

(
1

α
− 1

)
sin(u1)

r(t)cos(u1) +R

sin(u1)cos(u2)

sin(u1)sin(u2)

−cos(u1)

 ,

if we choose rt = −1
r

with r(0) = 1, i.e. r(t) =
√

1− 2t.

Corresponding to the analytical results the difference between exact solution x(uk,l, t
s)

and numerical solution xsk,l is computed in the following discrete norms:

EH1
0
(h) := max

s∈{0,...,M}

(
h2

N∑
k,l=1

2∑
r=1

|∆−r esk,l|2

h2

)1/2

,

E∆t(h) :=

(
τ
M−1∑
s=0

h2

N∑
k,l=1

|es+1
k,l − esk,l|2

τ 2

)1/2

,
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EL2(h) := max
s∈{0,...,M}

(
h2

N∑
k,l=1

|esk,l|2
)1/2

,

EL∞(h) := max
s∈{0,...,M}

max
k,l∈{1,...,N}

|esk,l|.

For each of these quantities measuring the absolute errors, we define the experimental

order of convergence as

EOC(h1, h2) = log

(
E(h1)

E(h2)

)(
log

(
h1

h2

))−1

.

In Table 1, the corresponding values are gathered for the radii R = 2 and r(0) = 1.

r(t) =
√

1− 2t implies the maximal time of existence T = 0.5. Thus, for reliable results

away from the extinction, we let Mτ = 0.4 in our computations. The parameter α was

chosen to be 0.01 and we let τ = h2/25. These results confirm the theoretical estimates

that have been established in this work. The experiments for the discrete L2-norm of

the discrete second derivatives yield similar values as those for the discrete L2-norm of

the discrete time derivative. In the maximum norm over both spatial and time variable,

compared to the other norms, the order of convergence with respect to h is reduced

by the factor | ln(h)| 12 . This apparently does not manifest in the computations. For

different choices of radii, i.e. also in the case of a fat torus with an appropriate choice

of T , as well as different values of α, similar results are obtained and thus not listed

here.

hi EH1 EOC E∆t EOC EL2 EOC EL∞ EOC
0.2094 1.0749 - 1.6354 - 0.9240 - 0.1936 -
0.1571 0.6093 1.97 0.9236 1.99 0.5216 1.99 0.1091 1.99
0.1257 0.3910 1.99 0.5924 1.99 0.3340 2.00 0.06978 2.00
0.1047 0.2716 2.00 0.4116 2.00 0.2318 2.00 0.04840 2.01
0.08378 0.1743 1.99 0.2641 1.99 0.1486 1.99 0.03100 2.00
0.06981 0.1212 1.99 0.1837 1.99 0.1033 1.99 0.02160 1.98

Table 1: Error in different discrete norms of eh and of its dicrete time derivative as well
as convergence rate in each norm for R = 2, r = 1, τ = h2/25, T = 0.4 and
α = 0.01.

5.2 Surface evolution, mesh quality and area decrease

From [40] it is known that the different evolutions of a torus that flows by its mean

curvature can be grouped into three: a family of “thin” tori shrinking to a circle, a

family of “fat” tori trying to merge to a sphere and one torus at the limit. Although

the classification of the evolution is effected by the ratio of the small radius and the

big radius, no exact value for the limit case has been determined yet. In [34], the evo-
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5.2 Surface evolution, mesh quality and area decrease

lution of tori as rotational surfaces of some generating curve is considered. The author

derives a condition on the shape of the generating curve that assures the asymptotic

tranformation to a circle before it becomes a point and the torus thus becomes a circle.

This gives a lower bound for the critical radius.

Numerical examples showing the two families of tori are for instance given in Figure

4.7 in [16] and also in Figures 5 and 6 in [6] and in Figures 2 and 3 in [4]. A numerical

approximation for the critical radius at the transition between the thin and the fat

torus is presented in [38]. In [4], where surfaces of rotation are considered, the authors

also delimit the critical radius numerically. In what follows, we will both verify that

our approximation leads to the evolution of thin and fat tori as well as determine an

interval for the critical radius for two choices of α.

A torus that evolves by its mean curvature can have a self-similar shape, found by and

named after Angenent, see [2]. Self-similarity plays an important role in the study of

singularities and is hence of huge interest. Producing the Angenent torus numerically

would be an intersting task to try with our approach. Yet it exceeds the scope of this

work and is not considered in the following.

In this experimental chapter we are mainly interested in the influence of α on the ap-

proximation and its solution. The parameter α appeared within the reparametrization,

which was introduced in order to specify a tangential velocity in the Mean Curvature

Flow. This induces a tangential movement of nodes on the discrete surfaces when

simulating the Mean Curvature DeTurck Flow. In particular, small choices of α are

expected to produce meshes with a good behaviour, that is, meshes that do not de-

generate or have distorted cells. However, the constant of the error bounds obtained

in our analysis depend exponentially on α−1 and thus small values of alpha could be

a disadvantage, too. In order to evaluate the mesh behaviour systematically, we turn

the rectangular mesh on the surface into a triangular one and measure the skewness of

its angles. Dividing each rectangle with edges xk−1,l−1, xk−1,l, xk,l−1 and xk,l into two

triangles T k,l and Tk,l by connecting xk−1,l with xk,l−1, allows us to compute

σmax = max
T ∈{T k,l,Tk,l}k,l∈{1,...,N}

L(T )

R(T )

where L(T ) is the longest side of T and R(T ) denotes the radius of the inscribed

circle of the triangle. If σmax is small, there is no triangle with sharp angles and the

mesh quality is considered as good. This quantity seems to be a typical measure in

the literature and can be found in several works on the numerical analysis of partial

differential equations, e.g. in [19] and [22].

A characteristic property of the flow by mean curvature is the decreasing of the surface

area. We computed the area with the help of linear interpolants and the quadrature

rule (4.48) we used in the proof of Theorem 4.14. That means, we divide the para-
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meter domain [0, 2π]2 into triangles κk,l, κk,l by connecting certain points of the grid

{uk,l}k,l∈{0,...,N}, compare (4.45). We define interpolants Ik,lh , Ih;k,l that coincide with√
gsk,l in the corners of the corresponding triangle. This yields the formula

Area(ts) ≈ 1

3

N∑
k,l=1

(
√
gsk,l + 2

√
gsk−1,l + 2

√
gsk,l−1 +

√
gsk−1,l−1).

Since our focus lies on a visualization of the influence of α, with few exceptions we

restrict our computations on a spatial grid size h ≈ 0.1 and a time grid size τ = 10−4 to

keep the expense fair. We implemented the algorithm in MATLAB. The linear system

of equations that results from the fully discrete scheme in (3.9) has 3N2 variables

with a matrix that is nearly tridiagonal. Additional non-zero-entries result from scalar

products and the periodic boundary conditions.

Example 1

As initial surface we consider the parametrization

x0(u1, u2) =

(rcos(u1) +R)cos(u2)

(rcos(u1) +R)sin(u2)

rsin(u1)

 , (u1, u2) ∈ (0, 2π]2, (5.2)

of a torus. Its projection onto the grid for the choices R = 1 and r = 0.6 as well

as R = 1 and r = 0.7 is shown in Figure 1. The characteristic evolution of these

surfaces can be observed in Figures 2 and 3, where we let N = 60, i.e. h ≈ 0.1047, and

τ = 10−4.

(a) Discretized surface (5.2)
for R = 1 and r = 0.6

(b) Discretized surface (5.2)
for R = 1 and r = 0.7

Figure 1: Initial surface (5.2), discretized with N = 60, for different initial radii repre-
senting the two families of evolution.
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5.2 Surface evolution, mesh quality and area decrease

(a) Surface at t = 0.1 (b) Surface at t = 0.2

Figure 2: Simulation of the scheme in (3.9) for the initial surface in Figure 1(a). We
chose N = 60, τ = 10−4 and α = 1.

In Figure 2 we show two steps of the evolution of a thin torus for α = 1. The surface

appears to be only marginally different for other values of α, which we therefore do

not display. A consideration of σmax still shows differences in the mesh behaviour as

explained below.

The change in topology in the case of a fat torus can not be calculated by means of our

parametric approach, but we can observe how the torus pinches around the x3-axis,

see Figures 3 and 4. The latter is an enlarged section of Figures 3(e) and 3(f), where

we show a projection of the discrete surfaces from Figures 3(c) and 3(d) onto the x1x3-

plane at x2 = 0. We compare two values of α that illustrate the tangential movement

of nodes induced by our scheme. For α = 0.001 this movement is much larger than

for α = 1 and the resulting mesh for α = 0.001 produces rectangles with perceiveably

differing sizes of grid cells. Still, as the enlarged part of the torus in Figure 4 indicates,

the skewness is relatively small for α = 0.001. In a study of σmax in Figure 6, one can

see that the triangles contained within the rectangles indeed do not have any sharp

angles. We display σmax for the whole time interval to give an overview, but also show

the behaviour for times away from the singularity to emphasise the difference between

the graphs. For the thin torus an analog is shown, see Figure 5. Although for this

choice of radii no significant difference is visible on the surface, the mesh quality clearly

depends on α. The behaviour of the mesh is similar in both types of development in

the beginning of the evolution. Despite the maintaining of the good mesh quality for

α = 0.001 during the whole time of existence, the singularity occurs faster for this

value of the parameter in the case of a fat torus, but slower in the case of a thin torus.

In general and for both families of tori, smaller values of α lead to smaller values of

σmax.

83



5 Numerical experiments

(a) Surface at t = 0.05 (b) Surface at t = 0.05

(c) Surface at t = 0.075 (d) Surface at t = 0.075
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(e) Cut surface at t = 0.075
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(f) Cut surface at t = 0.075

Figure 3: Simulation of the scheme in (3.9) for the initial surface in Figure 1(b). We
chose N = 60, τ = 10−4 and α = 1 in the left column as well as α = 0.001
in the right column. In (e) and (f), the projection of the discrete surfaces in
(c) and (d) onto the plane at x2 = 0 is shown.
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(a) Enlarged section of the surface at t = 0.075
for α = 1
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(b) Enlarged section of the surface at t = 0.075
for α = 0.001
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(c) Enlarged section of the surface at t = 0.075
for α = 1
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(d) Enlarged section of the surface at t = 0.075
for α = 0.001

Figure 4: Simulation of the scheme in (3.9) for the initial surface in Figure 1(b). We
chose N = 60, τ = 10−4 and α = 1 on the left as well as α = 0.001 on the
right.
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Figure 5: Mesh quality σmax during the evolution of a torus with initial radii R = 1
and r = 0.6 of the scheme in (3.9), comparing α ∈ {1, 0.1, 0.01, 0.001}. We
have N = 60 and τ = 10−4.

0 0.02 0.04 0.06 0.08

time

0

5

10

15

20

25

30

35

40

45

m
a

x

=1

=0.1

=0.01

=0.001

0 0.01 0.02 0.03 0.04 0.05 0.06

time

4

5

6

7

8

9

10

11

12

13

m
a

x

=1

=0.1

=0.01

=0.001

Figure 6: Mesh quality σmax during the evolution of a torus with initial radii R = 1
and r = 0.7 of the scheme in (3.9), comparing α ∈ {1, 0.1, 0.01, 0.001}. We
have N = 60 and τ = 10−4.

In Figures 7 and 8 we study the influence of the parameter α on the process of area

decrease. Again, we performed the computations for the thin and the fat torus. Note

the increase of the surface area for small times when α = 0.001. This phenonemon

appeared as well in [22], Example 1, for small α.
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(a) Area for the initial surface in Figure 1(a)
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(b) Enlarged section of area evolution

Figure 7: Surface area as a function of time under the approximated Mean Curvature
DeTurck Flow for a thin torus with radii R = 1 and r = 0.6, comparing
α ∈ {1, 0.1, 0.01, 0.001} with N = 60 and τ = 10−4.
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(b) Enlarged section of area evolution

Figure 8: Surface area as a function of time under the approximated Mean Curvature
DeTurck Flow for a fat torus with radii R = 1 and r = 0.7, comparing
α ∈ {1, 0.1, 0.01, 0.001} with N = 60 and τ = 10−4.
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5 Numerical experiments

We also determined an interval for the critical radius between the two families of thin

and fat tori and thereby tested the influence of α on the development. As we can see in

Figures 9 and 10, the critical radius r∗ changes for different choices of the parameter.

For α = 1, our simulations indicate that r∗ ∈ (0.641, 0.642), while for α = 0.01 we

obtained that r∗ ∈ (0.64, 0.641).

(a) Surface at t = 0.28 for r = 0.641 (b) Surface at t = 0.2395 for r = 0.642

Figure 9: Simulation of the scheme in (3.9) with α = 1 for a torus with different initial
radii. For R = 1 and r = 0.641 (left) we obtain a thin torus, while for R = 1
and r = 0.642 (right) we obtain a fat torus. We chose N = 60 and τ = 10−5.

(a) Surface at t = 0.282 for r = 0.64 (b) Surface at t = 0.2583 for r = 0.641

Figure 10: Simulation of the scheme in (3.9) with α = 0.01, N = 60 and τ = 10−5 for
a torus with different initial radii. For R = 1 and r = 0.640 (left) we obtain
a thin torus, while for R = 1 and r = 0.641 (right) we obtain a fat torus.
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5.2 Surface evolution, mesh quality and area decrease

Example 2

For the second example, we let the initial surface be parametrized by

x0(u1, u2) =

(rcos(u1) +R)cos(u2)

(rcos(u1) +R)sin(u2)

rsin(u1) + 1
5
sin(6u2)

 , (u1, u2) ∈ (0, 2π]2. (5.3)

Note that compared to the parametrization in Example 1, a term is added in the third

component. In Figure 11, we present the initial surfaces for R = 1 and r = 0.6 or

r = 0.7 and two subsequent steps in their evolution. Like for the torus in Example 1

we observe a shrinking toward a circle and a merging to a sphere. For a comparison

with the results obtained by Elliott and Fritz in [22], where this surface was investigated

as well, we chose N = 90, which leads to a similar number of vertices on the surface.

This example demonstrates the smoothing effect of geometric flows, i.e. the flattening

of the surface during the process of shrinking.

The authors in [22] also considered a surface with an initial radius between that of

the thin and the fat torus observed above, more precisely they chose R = 1 and

r = 0.65. Their algorithm converges in a situation where the algorithm by [6] leads to

a degenerate mesh, see Figure 27 in [22], where the authors chose α = 1 and τ = 10−5.

In Figure 12 we see that the mesh produced by our approximation for α = 1, τ = 10−5

and N = 90 does not degenerate either. Note that although we used the DeTurck trick

like the authors in [22], their method leads to a completely different approximation than

ours, also in the special case α = 1. Still, both approximations have in common that

they induce tangential motion that is advantageous for the mesh properties, especially

for small α.

A study of the mesh property σmax for our scheme with R = 1 and r = 0.65 is given

in Figure 14, where we returned to the choice of N = 60 and τ = 10−4. We observe

that, as long as the surface does not become singular, the mesh quality for α = 0.001

is better than for any other choice of the parameter. Apparently, for different α, i.e.

different numerical schemes, different singularities can occur since we chose an initial

radius in between r = 0.6 and r = 0.7, which both lead to different evolutions. This can

also be guessed by Figure 13, which shows the decreasing of the area of the computed

surface. For the two smallest values of α, the computations stop at a point of time

when the surface has positive area, while for the two larger values of α, the algorithm

converges and the surfaces vanish. To be able to compare σmax for different α for one

kind of singularity, we repeat the computations for r = 0.635. The results are shown

in Figures 15 and 16. Here, in all cases the surface converges toward a circle and a

better mesh quality can be observed for smaller α.
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5 Numerical experiments

(a) Discrete initial surface (r = 0.6). (b) Discrete initial surface (r = 0.7).

(c) Surface at t = 0.1. (d) Surface at t = 0.08.

(e) Surface at t = 0.2. (f) Surface at t = 0.09.

Figure 11: Evolution of (5.3) under the scheme in (3.9) for α = 0.01 with different
initial radii. We chose N = 90, τ = 10−4, R = 1. In (a),(c),(e), the small
radius is r = 0.6, in (b),(d),(f) r = 0.7.
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5.2 Surface evolution, mesh quality and area decrease

Figure 12: Evolution of (5.3) with initial radii R = 1 and r = 0.65 at t = 0.11 for
α = 1, N = 90 and τ = 10−5.
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Figure 13: Surface area as a function of time under the approximated Mean Curvature
DeTurck Flow for the initial surface given by (5.3) whereR = 1 and r = 0.65,
including a comparison for α ∈ {1, 0.1, 0.01, 0.001}. We have N = 60 and
τ = 10−4.
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Figure 14: Mesh quality measured by the quantity σmax during the evolution of the
initial surface given by (5.3) where R = 1 and r = 0.65 under the approx-
imated MCDTF, including a comparison for α ∈ {1, 0.1, 0.01, 0.001}. We
have N = 60 and τ = 10−4.

0 0.05 0.1 0.15 0.2 0.25 0.3

time

0

5

10

15

20

25

30

a
re

a

=1

=0.1

=0.01

=0.001

Figure 15: Surface area as a function of time under the approximated Mean Curvature
DeTurck Flow for the initial surface given by (5.3) where R = 1 and r =
0.635, including a comparison for α ∈ {1, 0.1, 0.01, 0.001}. We have N = 60
and τ = 10−4.
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Figure 16: Mesh quality measured by the quantity σmax during the evolution of the
initial surface given by (5.3) where R = 1 and r = 0.635 under the approx-
imated MCDTF, including a comparison for α ∈ {1, 0.1, 0.01, 0.001}. We
have N = 60 and τ = 10−4.
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6 Conclusions

In the present work, we approximated a reparametrization of the evolution equation

describing the flow by mean curvature. The reparametrized flow, which depends on a

parameter α, is generated by applying a variant of the DeTurck trick. It is called Mean

Curvature DeTurck Flow and has the desirable property of being strongly parabolic.

That means, in contrast to the original mean curvature flow, it has a prescribed tan-

gential velocity, which seems to be advantageous not only from an analytic point of

view but also for the numerical analysis. We introduced the trick in order to derive a

finite difference approximation for surfaces of torus type in R3 that allows for a con-

vergence analysis. The choice of a finite difference method, though requiring a high

smoothness assumption on the solution to the Mean Curvature DeTurck Flow, enables

to handle the spatial operator, which is not in divergence form. The resulting family of

fully discrete schemes presented in this work is semi-implicit. With the help of energy

methods, we proved optimal order error bounds in several discrete integral norms. The

crucial regularity assumption of a uniformly bounded area element g can be ensured

as long as the curvature stays bounded. Together with superconvergence effects in the

first spatial derivatives this yields a W 1,∞-bound by an inverse estimate which was

essential to control the geometry on the discrete surface via smallness conditions on

the mesh sizes h and τ .

To our knowledge, this is only the second convergence proof for the mean curvature flow

problem for surfaces. Compared to the first convergence result obtained by Kovács,

Li and Lubich in [35] for a surface finite element method, we do not have to intro-

duce further variables to our scheme like the mean curvature and the normal vector

to solve the system. In addition, our approximation has a built-in tangential mo-

tion that is an advantage in the simulation of the flow because it can prevent mesh

degeneration. The latter is also true for the scheme presented by Elliott and Fritz in

[22], where the DeTuck trick is used in combination with a finite element method. Still,

no convergence proof has been given for this approximation of mean curvature flow yet.

The present error estimates were confirmed by numerical computations. Experiments

with varying choices of α showed that, in particular, small values of the parameter

lead to good mesh properties in the sense that the generated meshes do not exhibit

any skewed angles. Yet, we learned that the constants in our error estimates depend

exponentially on α−1. Hence, small values of alpha have a negative effect on the error

in the computed solution, too. In any case, a rigorous proof that the quality of the

generated meshes is good and that this feature is maintained during the evolution is

an open problem as well.

Another interesting question for future research is, whether our approach could be used
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6 Conclusions

to produce self-similar solutions of the flow by mean curvature numerically. A solution x

that maintains its shape throughout the evolution has to satisfy the stationary equation

1

2T
(x · ν)ν = H(x)ν,

where T is the time of the singularity of the surface, compare e.g. [21]. Defining a

tangential component and constructing an approximation with the help of the methods

presented in this work would lead to the problem to find xh(uk,l) such that for all

k, l ∈ {1, . . . , N}

1

2T
xk,l = gijk,l∆ijxk,l +

(
1

α
− 1

)
gijk,lg

mn
k,l (∆ijxk,l ·∆mxk,l)∆nxk,l.

This system of equations is nonlinear and solving it would require to apply a Newton

method.

Furthermore, since our considerations are restricted to surfaces of torus type, it is

natural to ask whether our approach is suitable for surfaces of the type of the sphere.

While tori can be treated by means of the periodic boundary conditions which we

imposed on the domain [0, 2π]2, mapping a rectangle onto a sphere is impossible without

singularities. In addition, choosing a finite difference method implies rectangular mesh

cells, which might cause issues such as mesh degeneration near the poles of a sphere. It

is thus not clear how our approximation could be transferred to the case of a spherical

surface.
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List of symbols

· Euclidean scalar product

| · | Euclidean norm

∂
∂v
f = fv partial derivative with respect to the variable v

∂γ = ∂(γ1,γ2,γ3) differential operator with multi-index

Cm space of m times continuously differentiable functions

Lp, Hp Sobolev spaces

C0
per([0, 2π]2;Rn)space of continuous functions on [0, 2π]2

ui, i ∈ {1, 2} parameters

[0, 2π]2 domain of parameters

h spatial mesh size, h = 2π
N

{uk,l}k,l∈{0,...,N} spatial grid with uk,l = (kh, lh)

τ time step size, τ = T
M

{ts}s∈{0,...,M} time grid with ts = sτ

fk,l function evaluation at uk,l

∆+
1 fk,l = fk+1,l − fk,l

∆−1 fk,l = fk,l − fk−1,l

∆+
2 fk,l = fk,l+1 − fk,l

∆−2 fk,l = fk,l + fk,l−1

∆1xk,l = 1
2
(fk+1,l − fk−1,l)

∆2xk,l = 1
2
(fk,l+1 − fk,l−1)

∆11fk,l = fk+1,l − 2fk,l + fk−1,l

∆12fk,l = 1
2
(fk+1,l+1 − fk+1,l − fk,l+1 + 2fk,l − fk,l−1 − fk−1,l + fk−1,l−1)

∆22fk,l = fk,l+1 − 2fk,l + fk,l−1

∆∗11fk,l = ∆11fk,l

∆∗12fk,l = fk,l − fk,l−1 − fk−1,l + fk−1,l−1

∆∗22fk,l = ∆22fk,l

E±r fk,l =

{
fk±1,l for r = 1,

fk,l±1 for r = 2



ν unit normal field of a surface

H mean curvature of a surface

x solution of the Mean Curvature DeTurck Flow

gij coefficients of the induced metric

gij entries of (gij) = (gij)
−1

g determinant of (gij)

x̃sk,l = x(uk,l, t
s) restriction of x onto the grid

(g̃ij)
s
k,l approximation of gij(uk,l, t

s), compare (3.20)

g̃ij,sk,l approximation of gij(uk,l, t
s), compare (3.20)

g̃sk,l approximation of g(uk,l, t
s), compare (3.20)

R̃α,s
k,l consistency error at (uk,l, t

s)

xh solution of the approximation of the Mean Curvature DeTurck Flow

xsk,l = xh(uk,l, t
s)evaluation of xh in the mesh points (uk,l, t

s)

(gsij)k,l discrete version of gij that corresponds to xh, compare (3.10)

gij,sk,l discrete version of gij that corresponds to xh, compare (3.10)

gsk,l discrete version of g that corresponds to xh, compare (3.10)

eh = x− xh error function

esk,l = e(uk,l, t
s) evaluation of eh at grid points
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satzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die Strafverfol-

gungsbehörden begründen kann.

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder ähnlicher
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