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Abbreviations 

AAS  - antibiotic antimycotic solution 

AFM  - atomic force microscopy 

AP  - alternative pathway 

APTES  - 3-amino propyl triethoxy silane 

ARD  - ankyrin repeat–containing domain 

ARDS  - acute respiratory distress syndrome 

ATIII  - antithrombin III 

BCP  - biphasic calcium phosphate 

BSA  - bovine serum albumin 

Chi  - chitosan 

CLSM  - confocal laser scanning microscopy 

COPD  - chronic obstructive pulmonary disease 

COS  - chitosan oligosaccharide 

CP  - classical pathway 

CS  - chondroitin sulfate 

DAMPs  - danger-associated molecular patterns 

DCs  - dendritic cells 

DC-STAMP  - dendritic cell-specific transmembrane protein 

DD  - deacetylation degree 

DEX  - dexamethasone 

DSMO  - dimethyl sulfoxide  

ECM  - extracellular matrix 

EDC  - 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide 

ELISA  - enzyme-linked immunosorbent assay 

FBGCs  - foreign body giant cells 

FBR  - foreign body response 

FBS  - fetal bovine serum 

FGF  - fibroblast growth factor 

FITC  - fluorescein isothiocyanate 

FXII  - factor XII 

GAG  - glycosaminoglycan 

GM-CSF  - granulocyte macrophage colony-stimulating factor 

HA  - hyaluronic acid / hyaluronan 

HEMA  - hydroxyethyl methacrylate 

Hep  - heparin 
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HMW-HA  - high molecular weight hyaluronic acid 

IBD  - inflammatory bowel diseases 

IF  - immunofluorescence 

IFN-γ  - interferon- γ 

IL-1ra  - interleukin 1 receptor antagonist 

IL-1β  - Interleukin-1β 

LbL  - layer-by-layer 

LBP  - LPS-binding protein 

LMW-HA  - low molecular weight hyaluronic acid 

LPS  - lipopolysaccharide 

MBL  - mannose-binding lectin 

MCP  - monocyte chemoattractant proteins 

M-CSF  - macrophage colony-stimulating factor 

MES  - acid 2-(N-morfolino) etansolfonico 

MIP  - macrophage inhibitory protein 

MMP  - matrix metalloproteinases 

MR  - mannose receptors 

MSCs  - mesenchymal stem cells 

NaOH  - sodium hydroxide 

NF-κB  - nuclear transcription factor-κB 

NHS  - N-hydroxysuccinimide 

NK  - natural killer 

NLRs  - nod-like receptors 

NPs  - nanoparticles 

PAMPs  - Pathogen-associated molecular patterns 

PCL  - poly-ε-caprolactone 

PDGF  - platelet-derived growth factor 

PEG  - polyethylene glycol 

PEI  - poly (ethylene imine) 

PEMs  - polyelectrolyte multilayers 

PEO  - poly(ethylene oxide) 

pHEMA  - poly(2-hydroxyethyl methacrylate) 

PLGA  - poly(lactic-co-glycolic acid) 

PMA  - phorbol 12-myristate 13-acetate 

PRRs  - pattern recognition receptors 

PSS  - polystyrene sulfonate 

PZC  - point of zero charge 
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QCM  - quartz crystal microbalance 

RA  - rheumatoid arthritis 

RCA  - regulator of complement activation 

RFU  - relative fluorescence unit 

RHD  - Rel homology domain 

RNS  - reactive nitrogen species 

ROS  - reactive oxygen species 

SEM  - scanning electron microscopy 

SR  - scavenger receptors 

TAD  - C-terminal transactivation domain 

TF  - tissue factor 

TGF-β1  - transforming growth factor-β1 

TH1  - T-helper 1 

TH2  - T-helper 2 

TIMPs  - tissue inhibitors of metalloproteinases 

TLR  - toll-like receptor 

TNF  - tumour necrosis factor 

Treg  - regulatory T-cell 

VEGF  - vascular endothelial growth factor 

WCA  - water contact angle 

XPS  - X-ray photoelectron spectroscopy 

ZP  - Zeta potential 

α-MSH  - alpha melanocyte-stimulating hormone 
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Graphical abstract 

 

General overview on thesis chapters. Two different methods were applied to model 

substrata of glass or silicone (grey base layer with negative charge). A priming layer 

of 3-aminopropyltriethoxysilane or poly (ethylene imine) (blue layer with positive 

charge) was adsorbed first. Then, glycosaminoglycans were immobilized either 

covalently as a monolayer or adsorptively as a multilayer using the layer-by-layer 

technique, which is based on alternating adsorption of the polyanions heparin or 

hyaluronan (pink layer with negative charge) and the polycation chitosan (purple layer 

with positive charge). THP-1 monocyte derived macrophages were utilized for the 

biological studies in attempt to evaluate the macrophage-related inflammatory 

responses. The work was focusing on the evaluation of anti-inflammatory activity of 

glycosaminoglycans in terms of physicochemical properties (wettability, surface 

charge and topography) as well as the potential mechanism toward the nuclear 

transcription factor-κB signalling pathway. Thereafter, an integration of multiple anti-

inflammatory strategies was approached by incorporating Naproxen-encapsulated 

nanoparticles together with heparin. The work hypothesis was to investigate the 

cellular responses by showing short and potential long-term anti-inflammatory effects. 

Finally, preclinical in vivo studies were performed with covalent immobilization of 

glycosaminoglycans on biphasic calcium phosphate particles to investigate tissue 

response with subcutaneous implantation in mice. 
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Abstract 

Chronic inflammation and fibrous encapsulation, which can occur after the implantation 

of biomaterials, severely limit the function of implants. This work was aimed to develop 

novel implant coatings for various biomedical applications using glycosaminoglycans 

such as hyaluronan, and heparin, since heparin and high-molecular hyaluronic acid 

are known to have anti-inflammatory effects. The glycosaminoglycans were 

immobilized either covalently as a monolayer or adsorptively as a multilayer using the 

layer-by-layer technique on model materials. An extension of the pharmaceutical 

effects of glycosaminoglycans should be achieved by application of nanoparticles 

containing Naproxen. The coatings were characterized by physical methods with 

respect to layer formation, wettability, zeta potential and topography. Macrophages are 

important effector cells that play a crucial role in inflammation. The effect of the 

coatings on macrophages in terms of cell adhesion, subsequent formation of foreign 

body giant cells and release of the pro-inflammatory cytokine IL-1β compared to pro-

inflammatory controls showed that these parameters were significantly reduced. In 

order to elucidate the mechanism of action of the immobilized glycosaminoglycans, 

studies were conducted that focused on the signal transduction of the nuclear 

transcription factor-κB, which plays a central role in the expression of genes in 

leukocytes during inflammatory reactions. By using confocal laser scanning 

microscopy and immunoblotting, it could be shown an inhibition of the activation and 

translocation into the nucleus of the p65 subunit of nuclear transcription factor-κB by 

heparin and hyaluronic acid. It was also illustrated that heparin in particular was taken 

up by cells through endocytosis and that both glycosaminoglycans were associated 

with the cell membrane of macrophages. Overall, it was observed that heparin has the 

strongest inhibitory effect on macrophages, which was related to the inhibition of the 

nuclear transcription factor-κB signalling pathway. In order to investigate the anti-

inflammatory effect of immobilized heparin and hyaluronic acid after successful in vitro 

detection, it was necessary to investigate whether this effect can also be found in vivo. 

Therefore, biphasic calcium phosphate materials were coated with both 

glycosaminoglycans and subcutaneously implanted into mice for 15 and 30 days. The 

histological studies showed a decrease in the number of multinucleated giant cells and 

a reduced vascularization of the tissue with both glycosaminoglycans. On the one 

hand, biphasic calcium phosphate-HA suppressed inflammatory reactions, but allowed 

the formation of new bone-like tissue. On the other hand, biphasic calcium phosphate-
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Hep allowed osteogenesis in the subcutaneous bone-forming model and delayed the 

onset of the inflammatory reaction.  

As a general conclusion, it can be stated that the designed systems represent novel 

approaches for biomaterials coating, which could represent promising strategies for 

achieving an inherent anti-inflammatory effect.
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Zusammenfassung 

Chronische Entzündungen und fibröse Verkapselungen, die nach der Implantation von 

Biomaterialien auftreten können, schränken die Funktion von Implantaten stark ein. 

Diese Arbeit zielte daher darauf ab, neuartige Beschichtungen für verschiedene 

biomedizinische Anwendungen zu entwickeln, bei denen Glykosaminoglykane wie 

Hyaluronan und Heparin eingesetzt werden, da vor allem Heparin und hochmolekulare 

Hyaluronsäure für eine entzündungshemmende Wirkung bekannt sind. Die 

Glykosaminoglykane wurden entweder kovalent als Monoschicht oder adsorptiv als 

Multischicht mit Hilfe der Layer-by-Layer-Technik auf Modellmaterialien immobilisiert. 

Eine Erweiterung der pharmazeutischen Wirkung sollte durch Auftragung von 

Nanopartikeln erreicht werden, die Naproxen enthalten.  Die Beschichtungen wurden 

mit physikalischen Methoden hinsichtlich Schichtbildung, Benetzbarkeit, Zetapotential 

und Topographie charakterisiert. Makrophagen stellen dabei wichtige Effektorzellen 

dar, die eine entscheidende Rolle im Entzündungsgeschehen spielen. Die Wirkung der 

Beschichtungen auf Makrophagen hinsichtlich der Zelladhäsion, der anschließenden 

Bildung von Fremdkörper-Riesenzellen und die Freisetzung des pro-

inflammatorischen Zytokins IL-1β im Vergleich zu entzündungsfördernden Kontrollen, 

zeigte das diese Parameter signifikant vermindert waren. Um den Wirkmechanismus 

der immobilisierten Glykosaminoglykane aufzuklären, wurden Studien durchgeführt, 

die sich mit der Wirkung der Glykosaminoglykane auf die Signaltransduktion des 

nukleären Transkriptionsfaktors-κB konzentrierten, der eine zentrale Rolle bei der 

Expression von Genen in Leukozyten bei Entzündungsreaktionen spielt. Dabei konnte 

mit konfokaler Laser-scanning-Mikroskopie und Immunoblotting gezeigt werden, dass 

eine Hemmung der Aktivierung und Translokation in den Zellkern der p65-Untereinheit 

Signaltransduktion des nukleären Transkriptionsfaktors-κB durch Heparin und 

Hyaluronsäure verursacht wird. Dabei konnte auch gezeigt werden, dass vor allem bei 

Heparin eine Aufnahme in Zellen durch Endozytose stattfindet und beide 

Glykosaminoglykane mit der Zellmembran der Makrophagen assoziiert sind. 

Insgesamt wurde deutlich, dass Heparin die stärkste Hemmwirkung auf Makrophagen 

besitzt, was mit der Hemmung der Signaltransduktion des nukleären 

Transkriptionsfaktors-κB Signalwegs in Zusammenhang steht. Nach erfolgreichem in 

vitro-Nachweis der entzündungshemmenden Wirkung von immobilisiertem Heparin 

und Hyaluronsäure wurde untersucht, ob diese auch in vivo zu finden ist. Deshalb 

wurden biphasische Kalziumphosphatmaterialien mit beiden Glykosaminoglykane 
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beschichtet und subkutan in Mäuse für 15 und 30 Tage implantiert. Die histologischen 

Studien zeigten eine Abnahme der Anzahl vielkerniger Riesenzellen sowie eine 

verminderte Vaskularisierung des Gewebes bei beiden Glykosaminoglykane. 

Einerseits unterdrückte biphasische Kalziumphosphatmaterialien-HA 

Entzündungsreaktionen, erlaubte aber die Bildung neuen knochenähnlichen 

Gewebes. Auf der anderen Seite erlaubte biphasische Kalziumphosphatmaterialien-

Hep die Osteogenese im subkutanen knochenbildenden Modell und verzögerte den 

Beginn der Entzündungsreaktion. Insgesamt lässt sich schlussfolgern, dass es sich 

bei den entwickelten Systemen um neuartige Ansätze der Beschichtung von 

Biomaterialien handelt, die vielversprechende Strategien zur Erzielung einer 

inhärenten entzündungshemmenden Wirkung bei Implantaten darstellen könnten.
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Chapter 1 

Introduction 

This cumulative thesis consists of five publications. The first chapter represents a 

general introduction to the content of this thesis. Out of the five manuscripts, four have 

already been published and are assembled as chapter 2, 3, 4 and 6 including a 

summary at the beginning of each chapter. The fifth manuscript has been submitted to 

Journal of Biomedical Materials Research (JBMR) part A and represents chapter 5.
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1. Biomaterials, biocompatibility and implant-related complications 

Biomaterials are recognized for their importance in increasing the quality of the lives 

of patients in terms of replacing or augmenting a tissue, organ or restoring a biological 

function in the body [1]. Biomaterials science is a field that encompasses a steady and 

strong growth in different areas [2]. The interdisciplinary field of biomaterials brought 

researches in physics, chemistry and biology together. The first attempt of joint 

implantation was documented in the 1890s [3] while the first fully implantable 

pacemaker was reported in 1958 [4]. During these developments, the outcome of 

implantation became heavily dependent on the materials used for the devices. So far, 

metals and metal alloys, carbon, ceramics, polymers and composite materials thereof 

have found diverse usage in biomaterials field [5]. Polymers can be divided into two 

classes: non-biodegradable and degradable polymers. For instance, degradable 

polymers can be of either synthetic or biological origin. In addition, the degradation 

process can be based on  either enzymatic and non-enzymatic hydrolysis [6]. For these 

processes the kind of bonds between the monomeric units of polymers plays an 

important role. Many of the natural polymers like glycosaminoglycans (GAGs) undergo 

enzymatic degradation, since the glycosidic bond is relatively stable against chemical 

hydrolysis [7]. By contrast, polyesters that are often used as synthetic, degradable 

polymers in medical applications degrade by chemical hydrolysis [8]. Moreover, 

biopolymers were the first biomaterials that were used clinically [9]. On the other hand, 

non-degradable polymers are beneficial when long-lasting biomaterials are needed like 

poly (methyl methacrylate) to be used as intraocular lenses, etc. [10, 11].  

The biomaterial-associated adverse reactions are still an obstacle to their clinical 

application and therefore assessment of biocompatibility is essential for suitability of 

an implant. For example, toxicity and immunogenicity are factors evaluating the 

tolerability of an implant [12]. The potential cell death, impairment of cellular or tissue 

functions as well as chronic inflammation are signs of a low biocompatibility profile [13, 

14]. After the surgical procedure of implantation, a trauma and injury of tissues occurs 

with a complex cascade of biological events including inflammatory responses and 

wound healing mechanisms. In addition, the healing procedure is sometimes interfered 

with the persistence of adverse reactions leading to additional complications such as 

immense pain, excessive inflammation, tissue destruction or even isolation and 

rejection of the implant [15]. In this regard, the implant surface properties in terms of 

shape mechanical properties, topography, porosity, and chemical composition have 
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been found to be essential variables influencing the host responses [16]. Other factors 

affecting the functioning and longevity of the implant are the age, sex, pharmacological 

status as well as the general health condition and lifestyle of the host [17]. Research 

efforts were applied for decades in attempt to control and reduce  the adverse tissue-

material response. Therefore, a systematic assessment in terms of biocompatibility 

and analysis of reasons for adverse effects is usually required. Effective technologies 

to control host responses elicited by the biomaterial can be only developed by a 

thorough understanding of the in vitro and in vivo tissue-material interactions [18]. 

 

2. General overview on inflammation in health and disease  

The immune system provides an essential mechanism during infection or tissue injury 

defined as inflammation, which is considered as a key biochemical process evolved in 

higher organisms that acts as a self-protection [19]. Two types of immunity exist in the 

human body, which are specified as innate and adaptive.  The non-specific and 

naturally existing in the body since birth is the innate one. In contrast, the adaptive 

immunity is specific to one pathogen and it is acquired when an infective agent invades 

the body or upon vaccination [20]. Moreover, it is well documented that inflammation 

has a close connection to innate immunity. The inflammatory pathways and their target 

tissue vary significantly between bacterial and viral infection [19]. For instance, it has 

been well established that immune cells sense pathogens of bacterial source 

immediately through specific receptors, which in turn modifies the vascular endothelial 

permeability. Subsequently, a systemic effect with excessive inflammatory cytokine 

production will be reached and will mediate acute phase proteins secretion like C-

reactive protein and coagulation factors by the liver cells [19]. In contrast, the viral 

infection has a distinct signalling pathway through the production of another class of 

cytokines such as type-1 interferons (IFNs) (play central roles in antiviral responses) 

and also involves cytotoxic T lymphocytes [21]. Furthermore, there are symptoms 

associated with the inflammare (original Latin word of inflammation), which has a 

modern acronym called PRISH.  It represents the classical symptoms of inflammation 

including pain, redness, immobility, swelling and heat [22]. In the case of tissue injury, 

a phase of acute inflammation, which is deemed as part of the innate immunity and the 

first line of inflammatory response against foreign invaders and danger molecules 

starts a few seconds to minutes after injury. The acute inflammation phase is 
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characterized by the presence of neutrophils (polymorphonuclear leukocytes, PMNs) 

[23]. In addition, irritation causes mast cells to recognize the foreign stimuli by cell-

surface receptors and secrete factors like histamine, proteases, and tumour necrosis 

factor (TNF). Histamine mediates vasodilation to ease the permeability of white blood 

cells and some proteins [24, 25]. While, the released interleukin-4 and 13 (IL-4, IL-13) 

play a role in determining the extent and degree of the subsequent development of the 

foreign body reaction [26, 27]. In addition, the protease triggers protein catabolism 

while TNF causes cell death. Usually, IL-10, transforming growth factor-β (TGF-β) and 

glucocorticoids are the dominant anti-inflammatory mediators in inflammation’s 

resolution as well as in involving monocytes for the clearance of cell debris [28]. 

However, the persistence of acute inflammation without resolution will lead to a chronic 

phase, which is generally essential to eliminate the persistence stimulus like infection 

or chronic cellular injury [29]. The chronic inflammation is a major hallmark of abnormal 

inflammatory responses, which usually lasts from several months to years and 

eventually causes inflammatory diseases. Indeed, neurodegenerative diseases, 

chronic obstructive pulmonary disease (COPD), obesity, type 2 diabetes, asthma, 

acute respiratory distress syndrome (ARDS), inflammatory bowel diseases (IBD), 

rheumatoid arthritis (RA) and cancer are examples of clinical disorders related to 

chronic inflammation [30, 31]. On the other hand, it should be emphasized here that 

wounds would never heal without the aid of the inflammation process. 

 

Figure 1: illustrative overview of an established state of inflammation at the site of 

infection as a result of the innate immunity. The figure is adopted from [32]. 
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3. Host response to biomaterials

3.1. Protein adsorption, opsonisation, activation of coagulation and complement 

Host responses following the injury of an implantation process can be followed by a 

sequence of events represented as blood-material interaction, provisional matrix 

formation, inflammation, foreign body response (FBR) and fibrous encapsulation [33]. 

However, a desired immune response can be established with an appropriate 

engineering of the implant surface in terms of composition and properties [34]. 

Indeed, wettability and charge of a biomaterial are highly influencing protein 

adsorption and subsequent cell adhesion. For instance, proteins tend to adsorb at 

higher ratios on positively charged surfaces when compared to negatively charged 

ones due to the strong Coulomb attractive forces [35]. In addition, certain 

hydrophilic surfaces allow less protein adsorption due to steric repulsion as 

a result of hydrophilic macromolecules immobilization like poly(ethylene oxide) 

(PEO) [36].  Subsequently, it is well documented that an activation of the coagulation 

cascade, complement system, fibrinolytic system, kinin-generating system and 

platelets take place after protein adsorption [37, 38].  

The damages to tissue and blood vessels trigger activation of the intrinsic and extrinsic 

pathways of the coagulation cascade by initiators named as factor XII (FXII) and tissue 

factor (TF) that are causing platelet activation and fibrin polymerization, respectively 

[39, 40]. The TF is a cellular lipoprotein released from damaged cells or expressed in 

activated monocytes, granulocytes and endothelial cells. While, the contact activation 

(FXII) is an inducer for the intrinsic system on negatively charged substrates followed 

by generation of thrombin as a result of the downstream cascade of protein reactions 

[41]. However, contact activation of FXII is limited and cannot induce clot formation 

alone and thus it is not sufficient for the whole coagulation cascade [42]. Therefore, a 

combination of contact activation, platelet adhesion and activation as well as the 

presence of leukocytes is all together required for the biomaterial-associated blood 

coagulation [42, 43]. For instance, the platelets activate the co-factor V into co-factor 

Va while both the intrinsic and extrinsic coagulation pathways activate the factor X into 

FXa, which eventually allow the cleavage of prothrombin into thrombin. Thus, thrombin 

initiates fibrin formation, which will form at the end a stable fibrous mesh [44]. A 

provisional matrix around the implant is formed by the fibrin clot, which has major tasks 

to stop bleeding, to attract and activate blood platelets as well as to act as a reservoir 

of cytokines, chemokines, growth factors and other bioactive compounds.  
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Moreover, fibrin is a major component of the provisional matrix, which will aid in 

angiogenesis [45]. 

Furthermore, an activation of the complement system can be initiated with biomaterial 

contact if surfaces are rich in nucleophilic groups like hydroxyl and amino groups [46]. 

The complement systems acts either by involving leukocyte function of innate immunity 

or by direct lysis in destroying and removing the microorganisms and apoptotic cells 

[47]. It consists of nearly 30 tightly regulated proteins. Three biochemical pathways are 

involved in the complement system activation by the C3 convertase; the classical 

pathway (CP), the mannose-binding lectin (MBL) and the alternative pathway (AP) 

[23]. The C3a, C3b, C5a and the membrane attack complex C5b-9 products are formed 

from the C3 convertase, which is the most abundant complement protein in blood [46]. 

Mast cell degranulation, PMNs and monocyte recruitment, release of reactive oxygen 

and nitrogen species (ROS, RNS) as well as platelet adhesion are all triggered by the 

anaphylatoxins C3a and C5a [47]. However, the regulator of complement activation 

(RCA) proteins adjusts the complement activation by inhibiting the C3 and C5 

convertase, which eventually prevent the release of anaphylatoxic peptides C3a and 

C5a in order to avoid possible damage to the host tissue [46, 48]. Moreover, the 

adsorbed protein layer on biomaterials is associated with the classical complement 

activation mainly via C1. For instance, IgG binds to C1q providing initiation of the C3 

convertase, which will eventually initiate an onset of the inflammatory responses as 

well as the alternative complement pathway [39, 49].  

The tight crosstalk among the extent of injury and nature of implant material (during 

the surgical procedure), the different activated systems, as well as the provisional 

matrix should be well orchestrated to limit the following inflammatory cascades. 

Therefore, an appropriate engineering of the surface composition and properties is 

highly essential to establish a desired immune response. For instance, surface 

wettability, charge, and surface topography influence greatly the inflammatory process 

[35]. 
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Figure 2: Schematic overview of the immune response toward biomaterials in terms 

of inducing the complement activation and thrombosis. An activation of the 

complement system leads to C3 convertase formation, which will further promote the 

inflammatory activation (left). The formation of fibrin clot is resulted by the binding of 

coagulation factors and activation of platelets (right). The figure is adopted from [50]. 

 

3.2. Macrophages as key players during acute and chronic inflammation  

The initiation of inflammation is usually accompanied and orchestrated by immune 

cells that leave the circulation to the site of injury. Indeed, neutrophils reach the injury 

site within 24 h while the macrophages and lymphocytes reach there after 48 h. Other 

immune cells involved in the inflammation process are dendritic and mast cells [51]. In 

addition, non-immune cells such as epithelial, endothelial and fibroblast cells also 

contribute to the inflammatory processes [19]. The monocytes are signalled by chemo-

attractants (such as complement factors C3a, C3b, C5a and C5b-9) to leave the bone 

marrow, to enter the bloodstream and finally to reach the target tissues. In addition, 

monocytes are precursors that undergo differentiation into macrophages [52]. 

Macrophages are essential components of the innate immune system performing a 

multitude of functions as effector cells in monitoring tissue damage as well as presence 

of pathogens by generating and resolving the inflammatory reaction. Moreover, 

macrophages play a role by shaping tissue architecture and development and clearing 

apoptotic cells, which means they are regenerating tissues through maintaining tissue 

homeostasis [53]. Pattern recognition receptors (PRRs) are macrophage-related and 

are able to recognize pathogen-associated molecular patterns (PAMPs; specialized 

molecular structures found on pathogens) and damage- or danger-associated 

molecular patterns (DAMPs; or alarmins, endogenous equivalent of PAMPs released 



Chapter 1 – Introduction  20 
 

 
 

from cells at implant site). Thus, the PRR upregulate transcription of genes, which 

encode pro-inflammatory cytokine release and other inflammatory responses [15]. The 

alarm signals that are defined as alarmins include ATP, uric acid and heat shock 

proteins and are recognized by macrophages and other immune cells like dendritic 

cells (DCs). Transmembrane proteins such as Toll-like receptors (TLRs), C-type lectin 

receptors or cytoplasmic proteins such as Nod-like receptors (NLRs) are PRR related. 

In bacterial infection, phagocytosis take place by activation of several surface 

receptors such as scavenger receptors (SR) and mannose receptors (MR) [54]. 

Moreover, macrophages are able to alter their own phenotype through autocrine 

signalling and thus make them very heterogeneous in their functions and effects. 

Monocyte derived macrophages (M0) are classified as classically activated, wound 

healing and regulatory. They undergo endogenous stimuli released by either the innate 

or adaptive immunity. The natural killer (NK) cells and the interferon- γ (IFNγ) released 

by T-helper 1 (TH1) during innate and adaptive immunity respectively as well as the 

granulocyte macrophage colony-stimulating factor (GM-CSF) are priming monocyte 

differentiation into M1 macrophages [55, 56]. In addition, TNF-α or gram-negative 

bacterial endotoxin lipopolysaccharide (LPS) in combination with IFNγ induce also 

differentiation to classically-activated M1 phenotype [53, 57]. During the cell-mediated 

immune response, the pro-inflammatory M1 macrophages possess microbicidal and 

tumoricidal functions by releasing cytotoxic substances such as ROS like superoxide 

and hydroxyl radicals, as well as lysosomal content including elastase, hydrolases [58, 

59]. In addition, the secretion of pro-inflammatory cytokines such as Il-1, IL-6, and TNF 

as well as IL-12 and IL-23 by classical macrophages play a role in host response [60, 

61]. However, production of IL-1, IL-6, and IL-23 lead to recruitment of a subset of pro-

inflammatory T helper cells named as TH17 cells that also related to regulatory T cells 

(Treg) formerly known as suppressor T cells. The  recruitment of TH17 cells lead to 

release of IL-17 that contributes to polymorphous leukocyte recruitment, which 

eventually cause immunopathology like RA and IBD [60, 61]. Furthermore, IL-4 

produced from basophils and mast cells in innate immunity or by T-helper 2 (TH2) cells 

in adaptive immunity allow transformation of monocytes and macrophages (M0) into 

the so-called wound-healing or M2 macrophages [55]. In addition, macrophage colony-

stimulating factors (M-CSFs) act as a priming agent while IL-13 and IL-10 may also 

activate M2 phenotype [62]. Furthermore, the M2 macrophages are related to a 

resolution phase associated with repair, wound healing and tissue remodelling. They 
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express low levels of IL-12 and IL-23 and high levels of IL-10 (an anti-inflammatory 

cytokine), growth factors such as vascular endothelial growth factor (VEGF), TGF-β, 

fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) [23, 63]. In 

addition, the M2 macrophages have increased expression of SR, MR as well as 

galactose receptors [64]. Thereafter, the regulatory macrophages limit inflammation 

and dampen the immune response through IL-10 release [65]. It is well documented 

that the monocyte-derived macrophages are not terminally differentiated into M1 or 

M2, however the phenotype is highly dependent on the microenvironment signals [66, 

67]. For instance, M1 macrophages resistant to TLR responses lead to a stop of pro-

inflammatory cytokines release and achieve the ability to release anti-inflammatory IL-

10 [67, 68]. While M2 macrophages upon exposure to IFN and LPS, can express 

cytokine phenotypes characteristic of M1 phenotype. Therefore, a protective feature, 

which allows healing and repair together with rapid response to a pathogen is 

represented by the complex remarkable state of macrophage plasticity, making 

macrophages an interesting target in the context of immunomodulation [69, 70]. At the 

site of inflammation, increased infiltration of monocytes and macrophages occurs 

through chemoattractants released by macrophages such as IL-8, GM-CSF, G-CSF, 

monocyte chemoattractant proteins (MCP-1-4), macrophage inhibitory protein (MIP-1α 

and β). However, upon the resolution of inflammation, no further recruitment of cells 

as well as no more secretion of these chemokines are noticed [63]. 

 

Figure 3: Macrophage classifications of different phenotypic profiles leading to 

different host response, wound healing, and immune regulation. The figure is adopted 

from [23].  
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3.3. The nuclear transcription factor NF-κB signalling pathway 

The nuclear transcription factor-κB (NF-κB) pathway, which was discovered in 1986 by 

David Baltimore [71], is considered to be essential in physiological processes. It is well 

documented that the development and regulation of the immune system, cell 

proliferation, cell death as well as inflammation are all regulated by the NF-κB [72]. A 

wide variety of illnesses like auto immunity diseases, atherosclerosis, 

neurodegeneration, and cancer are also associated with NF-κB pathway [73]. The 

structural homologous transcription factors related to this signalling pathway are 

named as NF-κB1, NF-κB2, RelA, RelB, and c-Rel, which are binding to κB enhancers 

as homo- or hetero-dimers [74]. Furthermore, a Rel homology domain (RHD; 

responsible for dimerization, inhibitor binding, nuclear translocation and DNA-binding) 

is shared in all NF-κB subunits. In contrast, C-terminal transactivation domain (TAD) 

(enable the binding of nuclear co-activators and subsequent positive regulation of gene 

expression) is only found in p65, RelB and c-Rel [75, 76]. Furthermore, a long, ankyrin 

repeat–containing domain (ARD) at their C terminus instead of the TAD domain are 

found in p50 (p105 precursor) and p52 (p100 precursor) and therefore cannot activate 

target gene expression as a homodimer [77]. A wide variety of signals induce the NF-

κB transcription factors, such as viral and microbial toxins, cytokines, ROS, exogenous 

peroxides, pathogens, injuries, immunoreceptors (TLP receptors, mainly TLR4 present 

in human monocytes and macrophages), antigen receptors, growth factor receptors, 

as well as physical, oxidative and genotoxic stress [78, 79]. Furthermore, there are two 

distinct pathways leading to NF-κB activation, which are called canonical (classical) 

and non-canonical (alternative). The inhibitory proteins IκBs kinase (IKK) complex 

consists of NF-κB essential modulator (NEMO), a scaffold sensing protein and catalytic 

kinase subunits of IKKa and/or IKKb [80]. The activation of IkB kinase is considered 

the common regulatory step for both pathways. In details, the canonical pathway is 

activated by (IKK)b and utilizes the three canonical IkB proteins IkBa, IkBb and IkBe 

while the non-canonical pathway is activated through IKKa, and utilizes the p52 

precursor protein p100 [81]. In un-stimulated cells and by focusing on the canonical 

pathway, the inhibitory proteins IκBs sequester the NF-κB proteins in the cytoplasm. 

However, activation of IκBs (IKK-mediated) and phosphorylation allow the degradation 

and translocation of IkB to the nucleus as well as the activation of specific target gene 

expression [82]. Therefore, NF-κB is considered a rapid acting (transient) and cyclical 

transcription factor in the presence of continual inducers [73, 80]. As an example, a 
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repeated degradation and re-synthesis of IkB (activation and inactivation of NF-κB) will 

cause nuclear NF-κB DNA-binding activity to appear and disappear approximately 

every 30–60 min in mouse fibroblasts [80, 83]. In this thesis, LPS, potent microbial 

initiator of inflammation, which binds to LPS-binding protein (LBP) in serum and is 

recognized by CD14 was used [84]. Studies have shown that LPS is also recognized 

by TLRs (TLR4 and TLR2) and integrins CD11c and/or CD18, which activate different 

signalling pathways [84]. In this context, specifically important is the nuclear factor NF-

κB pathway that is responsible for pro-inflammatory gene expression. An illustration 

scheme of the activation and deactivation of the classical signalling pathway of NF-κB 

is shown in Figure 3. 

 

Figure 4: Illustration scheme of the canonical (classical) nuclear factor‑κB(NF‑κB) 

signalling pathway. A wide variety of signals activate the NF-κB transcription factor like 

tumour necrosis factor (TNF), IL‑1 and Toll‑like receptor (TLR) ligands, such as 

lipopolysaccharide (LPS). The IKK kinase will phosphorylate the IκBα protein leading 

to the dissociation of IκBα with further proteasomal degradation. The activated subunits 

p50 and p65 will be translocated into the nucleus and will bind to specific sequences 

of DNA. Pro‑inflammatory cytokines, chemokines and growth factors such as TNF, 

IL‑1, IL‑6 and vascular endothelial growth factor (VEGF) will be released. 
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3.4. Role of cytokines and metallomatrix proteinases in inflammation  

Cytokines are cell regulators acting at nano-to-pico molar concentrations playing an 

important role in many physiological responses of the cell and tissue activities during 

inflammation and FBR [85]. They also modulate haematopoiesis, neurogenesis, 

embryogenesis, and oncogenesis [85, 86]. Moreover, cytokines are defined as a 

diverse group of soluble proteins and peptides released by a wide variety of cells 

including B cells, mast cells, neutrophils, basophils and eosinophils. However, the 

predominant producers of cytokines are macrophages and T helper cells [87]. 

Monokines (produced from monocytes), lymphokines (produced from lymphocytes) 

and interleukins (produced from leukocytes) are synonyms of cytokines [88]. In 

addition, cytokines possess autocrine action on cells that secret them, paracrine on 

nearby cells or endocrine on distant cells. They are acting either synergistically, 

antagonistically or redundantly (similar functions can be stimulated by different 

cytokines) [87, 88]. 

Cytokines are also classified as pro- or anti- inflammatory as well as pro- or anti- wound 

healing depending on the exerted effects [87]. Examples of cytokines with effects as 

pro-inflammatory and anti-wound healing are TNF-α, IL-6, IL-2 and IL-8 because of 

their collective ability in  promoting inflammation [16, 89]. In contrast, interleukin 1 

receptor antagonist (IL-1ra), TGF-β, IL-4 and IL-13 are examples of an anti-

inflammatory and pro-wound healing that either inhibit cytokines release or suppress 

the cell receptor binding, which cause hindering of the inflammation cascade [89]. In 

addition, the cytokine family consists of two unique cytokines named as IL-1β and IL-

10 because they adapt the extremes of responses [63]. For instance, IL-10 is the most 

potent cytokine as it suppresses inflammatory and wound healing cells activation as 

well as pro-inflammatory cytokines production and thus is considered as anti-

inflammatory and anti-wound healing [87]. Moreover, IL-1β activates the monocytes, 

lymphocytes and fibroblast and therefore it is classified as pro- inflammatory and pro-

wound healing cytokine. In addition, gram-negative bacterial endotoxins such as LPS 

trigger also the secretion of IL-1β [89, 90]. The activity of IL-1β is related to bacterial 

infection causing pathophysiology [90]. Nevertheless, IL-6 is classified as both pro- 

and anti- inflammatory cytokine. It is reported that IL-6 downregulates pro-inflammatory 

cytokines IL-1 and TNF-α by up-regulating IL-1ra and soluble TNF-α receptor 

respectively [91]. It also develops cell-specific and humoral immune responses by B 

cell and T cell proliferation and activation as well as immunoglobulin secretion in 
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chronic inflammation [92]. Besides, a new classification of cytokines in TH1 and TH2 

subcategories was pointed out by Brodbeck et al. The TH1 represents TNF-α, IL-1β 

and IL-8 while TH2 subgroup includes IL-6, IL-10 and IL-1ra [16]. Apart from cytokines, 

certain enzymes are also involved in inflammatory as well as tissue regeneration 

process. Especially important among the proteolytic enzymes is the class of matrix 

metalloproteinases (MMPs), which can be classified into different groups such as 

gelatinases (MMP-2,-9), matrilysins (MMP-7,-26), collagenases (MMP-1, -8, -13, -18) 

and stromelysins (MMP-3,-10) [93]. MMPs are secreted by adherent macrophages and 

foreign body giant cells (FBGCs) and their functionality involves decomposition of 

extracellular matrix (ECM) proteins, promotion of cell migration, growth, differentiation, 

fibrous capsule formation, angiogenesis and tissue remodelling [31, 63]. The MMPs 

are zinc-depended protein and they are either anchored to the cell surface or secreted 

into the extracellular space [31, 94]. In addition, tissue inhibitors of metalloproteinases 

(TIMPs) lead to activity loss of the MMPs and may result in diseases such as arthritis, 

cancer, atherosclerosis, aneurysms, nephritis, tissue ulcers, and fibrosis [93, 94]. 

 

3.5. Foreign body giant cell formation and fibrosis on biomaterial implants 

A persistent stage of inflammation upon biomaterial implantation is driving the 

activated macrophages to take cues from the microenvironment in attempt to resolve 

the foreign material [66]. Hence, the wide range of transient polarization states of 

macrophages play a significant role in the inflammation cascade and as a morphologic 

variant, they can coalesce into FBGCs [95, 96]. Moreover, multinucleated giant cell 

formation will be triggered when macrophages fail to engulf foreign material with a 

particle size between 10-100 μm [48]. In addition, cytokines as well as adhesion 

molecules are two main factors in FBGCs formation. The FBGCs are regarded as a 

hallmark of chronic inflammation and FBR [45, 97]. For instance, activated T 

lymphocytes at the implant site are assumed to be the source of IL-4 and IL-13, which 

induce macrophage fusion on biomaterial surfaces in vivo and in vitro [96, 98]. 

Moreover, collagen, fibronectin, laminin, fibrinogen, and vitronectin are a variety of 

proteins that also promote FBGC formation. It is reported that only vitronectin supports 

macrophage adhesion and fusion even all proteins support initial monocyte adhesion 

[99]. In addition, chemotaxis like the chemoattractant CCL2 guides macrophage to 

each other in attempt to form FBGCs [100]. Furthermore, fusogenic molecules 
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including MR CD44 [101], (CD206) [102], CD47 [103], dendritic cell-specific 

transmembrane protein (DC-STAMP) [104] and E-cadherin [105] are required for cell-

cell fusion and allow fusion on the biomaterial [23, 106]. Literature pointed out that the 

surface physicochemical properties play a significant role in the fusion extent dictated 

by protein adsorption and integrin receptors [107]. For example, IgG and complement 

factors as well as β1 and β2 integrin receptors mediate macrophage adhesion and 

fusion [108, 109]. However, the β1 and β2 integrins have distinct roles. For instance, 

mediation of initial monocyte adhesion by interactions with a diversity of ligands 

including fragments of complement C3, fibrinogen, factor X, and high-molecular weight 

kininogen is accomplished by β2 integrins [110]. While β1 integrin is dominating in 

monocyte differentiation into macrophages and is strongly expressed in FBGCs [109, 

111]. IL-4 and IL-13 cytokines are not only responsible for FBGCs formation but also 

for the activation of wound healing M2 phenotype, therefore FBGCs have an anti-

inflammatory cytokine expression [112]. In addition, the pro-inflammatory effect of 

ROS, degradative enzymes and the secretion of pro-inflammatory chemokines is 

antagonized by the anti-inflammatory cytokines secreted by fused macrophage [113]. 

The release of enzymes like collagenase, elastase and proteinase, which aid with 

angiogenesis and tissue regeneration is also achieved by FBGCs [97]. Subsequently, 

IL-4 stimulates FBGCs release of FGF, transforming growth factor-β1 (TGF-β1), PDGF 

and VEGF, which eventually induce the fibroblast growth and differentiation into 

myofibroblast [114, 115]. In addition, not only the growth factors secreted by FBGCs 

but also the alternatively activated “M2” phenotype produce pro-fibrotic factors (PDGF 

and TGF-β1), which stimulate fibroblasts proliferation and collagen synthesis [33, 116]. 

Hence, the fibrous encapsulation is considered the final stage of host response toward 

implanted biomaterials. This phase is represented by the dynamic interaction between 

macrophages and fibroblasts. The fibroblast cells will differentiate into myofibroblasts 

[117]. The latter enhances α-smooth muscle actin expression, wound healing 

promotion and scar formation [118]. Thereafter, an increased secretion of collagen and 

tissue contraction will further cause fibrosis and scarring [118, 119]. Thus, the formed 

fibrous capsules around the biomaterial will eventually lead to impaired functionality 

and longevity of drug delivery devices, various biosensors, tissue-engineering 

scaffolds as well as artificial organs [120, 121]. Therefore, implant modification, which 

is leading to reduced number of adherent macrophages, limited recruitment of 

additional immune cells as well as polarization of M2 phenotype during early host 
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response will mitigate an impaired implantation process [122]. An illustrative scheme 

of the host response of biomaterial implantation in shown in Figure 5. 

 

Figure 5: Host responses toward implanted biomaterials. First, immediate serum 

proteins adsorb (■, ●, ▲) on implanted biomaterial. Second, immune cells of 

neutrophils and monocytes are recruited to the implant site. “M1” phenotypic 

macrophages are differentiated from monocyte during acute inflammation while “M2” 

phenotype with pro-healing capacities is polarized during chronic inflammatory stage. 

The M2 macrophages fuse to form foreign body giant cells (FBGCs) in order to 

increase the phagocytic ability. Activated fibroblasts differentiate into myofibroblasts 

allowing collagen deposition. Eventually, failure of the implant is reached with the 

formed thick fibrotic capsule around the biomaterial. 

 

4. Control of inflammation by non-steroidal anti-inflammatory drugs (NSAIDs) and 

glycosaminoglycans 

4.1. Nanoparticle-based systems for drug delivery of NSAID and other anti-inflammatory 

drugs 

NSAIDs belong to a wide range of chemical classes such as propionic acids 

(Naproxen, Ibuprofen), acetic acids (Indomethacin, Diclofenac) and enolic acids 

(Piroxicam), acetylated (Aspirin) and non-acetylated (sodium and magnesium 

salicylate) carboxylic acids. They are essential classes of medications for their anti-
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inflammatory effects in the treatment of musculoskeletal sprains, RA, osteoarthritis 

beside their analgesic and anti-pyritic effects [123]. NSAIDs comprise a wide variety of 

inhibitory mechanisms including prevention of neutrophil chemotaxis and adhesion, 

inhibition of platelet aggregation, reduction in release of ROS and other lysosomal 

enzymes and most importantly and mainly the suppression effect on the COX enzymes 

by reducing prostaglandin production [124]. Focusing in particular on the Naproxen 

NSAID, which anti-inflammatory effects are due to the inhibition of COX-2 activity while 

the side effects are related to inhibiting of COX-1 including irritation of gastric mucosa 

and headaches. However, it is classified as a non-selective inhibitor of both COX 

isoforms, which greatly supresses functions of leukocytes at the site of inflammation. 

In addition, Naproxen is used in diseases such as ankylosing spondylitis and RA [124]. 

Naproxen as well as most of other NSAIDs are considered weakly acidic, having a pKa 

value between 3 and 5 [125]. Besides, it also has a hydrophobic nature making its 

encapsulation within a shell preferable for a sustained release and dissolution of drug 

as it allows low permeability of water [126]. Therefore, a new advancement in the 

biomaterial field was accomplished with the development of drug-encapsulated 

nanoparticles (NPs) that can be fabricated by natural or synthetic polymers. The outer 

shell can be prepared by organic materials like dextrans, poly(lactic-co-glycolic acid) 

(PLGA), poly-L-arginine, poly-ε-caprolactone (PCL) as well as poly  (1-vinylimidazole) 

[127, 128]. Drug-encapsulated NPs have a multitude of advantages including 

controlled time-dependent release, co-loading of multiple drugs, tissue-targeted 

delivery, reduced toxicity and lower risk of enzymatic degradation [128, 129]. It can be 

also used in a wide variety of different applications as anti-cancer drug and gene 

delivery systems, etc. [128]. Furthermore, stimuli (temperature, ionic strength, pH as 

well as enzymatic activities )-responsive NPs were investigated in order to improve the 

efficacy in terms of drug release at the target site [130]. In addition, the diffusion and 

biodegradation of the outer polymer shell that forms further the NPs is playing an 

essential role in the release of the encapsulated drug. Moreover, NPs can be prepared 

of two biopolymers named as block copolymer or as gradient copolymer [131, 132]. 

The amphiphilic nature of a controlled gradient copolymer composition along the 

macromolecular chain tend to form micelles and allow high drug loading capacity. 

Suarez et al. prepared in their studies polymer drug conjugates using gradient 

copolymerization made of poly (1-vinylimidazole) hydrophilic shell, which is 

encapsulating different NSAIDs like Ibuprofen and Naproxen that form the hydrophobic 
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core region [133]. Indeed, the imidazole-based ligands are able to chelate metal ions 

like Zn2+ and thus inhibiting the MMP functionality [133]. The combined anti-

inflammatory effects of 1-vinylimidazole and Naproxen gave importance for these NPs 

to be studied thoroughly for their anti-inflammatory effects when immobilized in 

multilayer system as biomaterial modification tool, which was analysed herein [134]. 

The structure of Naproxen encapsulated NPs is shown in the following Figure 6. 

 

Figure 6: The chemical structure of the Naproxen-encapsulated nanoparticles. The 

synthesis of the hydroxyethyl methacrylate (HEMA) derivatives of naproxen were 

carried out through a carbodiimide mediated Steglich esterification reaction.  The 

copolymer poly(HNAP-co-VI) was synthesized by free radical polymerization in 

solution combining HNAP and 1-vinylimidazol (VI). The Naproxen is located in the core 

while outer shell is made of 1-vinylimidazole. 

 

4.2. Chemistry and biology of hyaluronan, heparin and chitosan 

Hyaluronic acid (HA) is the only non-sulphated GAG.  It is an anionic molecule due to 

the presence of carboxyl and hydroxyl groups in its backbone structure. HA is not 

covalently bound to a core protein to form proteoglycans [7]. It has a chemical structure 

consisting of repeating disaccharide units of D-glucoronic acid and N-acetyl-D 

glucosamine linked together via alternating β-1,4 and β-1,3 glycosidic bonds that form 

the linear polysaccharide [135, 136].  
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Figure 7: The chemical structure of hyaluronic acid (HA) consisting of D-glucoronic 

acid and D-N-acteyl glucosamine. Adopted from [137]. 

Notably, the equatorial side chains cause the formation of a polar and hydrophilic face 

while the axial hydrogen atoms of about eight CH groups form a non-polar and 

relatively hydrophobic face [138]. Hence, HA is anionic under acidic pH as it has a pKa 

value of nearly 3.0. In addition, it has a molecular mass up to  ~4 million Daltons and 

an average disaccharide length of ~1 nm [139]. Furthermore, HA is abundant in 

animals and bacteria and highly distributed throughout synovial fluid, vitreous humour 

and connective, epithelial and neural tissues of mammals like humans [140]. HA has 

many advantages, which allow its utilization as drug delivery vehicles; it is also 

biodegradable, biocompatible, non-toxic, and an important joint lubricant [141]. The 

consistency, biocompatibility and hydrophilicity of HA have made it an excellent 

moisturizer in cosmetic creams as well as to be used as dermal filler [140, 142]. In 

addition, HA in the ECM mostly is bound to hyaluronan-binding proteins (versican and 

aggrecan) [143]. Different size and amount of HA is found after injuries.  High molecular 

weight (HMW)-HA can be degraded to low molecular form of HA through action of 

hyaluronidases, ROS as well as by mechanical forces. Both forms of HA will remain in 

the injured tissue until a resolution state of inflammation is accomplished. In addition, 

the size of HA plays a significant role towards inflammation. It is reported that the 

HMW-HA has anti-inflammatory properties while the low molecular weight (LMW)-HA 

has pro-inflammatory characteristics [144]. In contrast, other literature such as a work 

by Mizrahy et al. pointed out that LMW-HA oppose the ability to proliferate cells through 

its activation of the immune system and thus having anti-inflammatory effects [145, 

146]. Furthermore, Zhou et al. explained the HA related effects with TLR in promoting 

and inhibiting the inflammation. It was reported that LMW-HA interacts with TLR-2 and 

TLR-4 (TLR-4 is activated PAMPs, like LPS) and thus activates the TLR signalling [33, 
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144]. Activation of the TLR will eventually lead to NF-κB activation and thus 

translocation to the nucleus. It will also cause an increase of the pro-inflammatory 

cytokine release such as IL-1β, TNFα, and IL-6, driving chemokine expression, 

inducing cleavage of CD44 and inhibit its cross-linking ability [144]. In contrast, the 

HMW-HA inhibits the TRL signalling through its binding to CD44 receptors mediated 

by low-affinity hydrogen bonds and thus suppressing the NF-κB signalling pathway [33, 

147].  HMW-HA prevents also cell growth and differentiation and increases expression 

of anti-inflammatory cytokines like IL-2, IL-10 and TGF-β. The binding of HMW-HA to 

CD44 receptors is of particular importance as it is considered a major cell surface 

glycoprotein expressed by many different cell types. It also interprets cues from the 

ECM into signals that affect growth, activation, survival and differentiation as well as 

plays a role in immune homeostasis, eliminate the LMW fragments of HA, and reduce 

phagocytosis by macrophage [148]. 

Heparin has the highest negative charge density among all known biomacromolecules 

due to the presence of a large number of negatively charged functional groups such 

as sulfate monoesters, sulfamido groups and carboxyl groups [149]. Its chemical 

structure is composed of alternating saccharide units of N-acetylated or N-sulfated D-

glucosamine, that are α(1-4)- or β(1-4)-linked to uronic acids (L-iduronic or D-

glucuronic acid) [150]. In particular, the main disaccharide of heparin is composed of 

iduronic acid, which is sulfated at the carbon 2 (IdoA2S) and N-sulfated glucosamine, 

which is additionally sulfated at C6 (GlcNS6S) [7]. The structure of Hep is illustrated in 

Figure 8. 

 

Figure 8: The chemical structure of disaccharide repeating unit of heparin consisting 

of 2-O-sulfated iduronic acid and 6-O-sulfated, N-sulfated glucosamine. The structure 

illustrates the L-iduronic acid (left) and the glucosamine (right). The negatively 

charged groups are (a) carboxyl, (b) sulfamido and (c) sulfate monoesters. Adopted 

from [150].  
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Moreover, heparin has a molecular weight of 5-25 KDa; at physiological pH both 

carboxyl and sulfate groups are ionized. The carboxylate group has a pKa ~3.3 and the 

O-sulfo and N-sulfo have pKa value between ~1.0-1.5 [151, 152]. Notably, heparin is a 

hydrophilic polymer holding ~2-10% water. The negative charge of heparin is 

maintained through a wide pH range, which makes the ionic interactions with a wide 

variety of ECM proteins, enzymes, cytokines and growth factors at physiological 

conditions possible. Heparin is released by mast cells due to external stimuli such as 

interaction of antigens with cell-surface bound IgE antibodies [153]. It has many 

therapeutic applications in the treatment of burns, ulcerative colitis, pulmonary disease, 

cancer, neurodegenerative diseases, and venous thrombosis [154]. Besides, the anti-

coagulant property of heparin is an important feature. This effect is established through 

the binding of heparin to antithrombin III (ATIII) mediated pathways, which further 

inhibits the initial activation coagulation enzymes and thus prevents clot growth [152]. 

Moreover, literatures reported anti-inflammatory effects of heparin in its soluble form 

while less research was adduced toward the immobilized form. Reports showed that 

heparin suppresses the complement system, which is part of the initiation cascade of 

inflammation, inactivates chemokines and improves blood compatibility through its 

anticoagulant effects [154]. Heparin prevents also the activation and recruitment of 

inflammatory cells into tissue through inhibition of the selectin-mediated cell adhesion 

[155]. In details, heparin inhibits the binding of L-selectin and P-selectin (responsible 

of loose interaction between the endothelium and the neutrophils) to counter-ligands 

[156, 157]. Additionally, heparin inhibits leukocyte activation, migration and adhesion, 

making it a useful as anti-inflammatory agent [156]. In addition, it was reported to exert 

inhibitory effects on the canonical NF-κB signalling pathway, which eventually 

downregulates gene expression of adhesion molecules as well as the pro-inflammatory 

cytokine release [158, 159]. Two different mechanisms of actions were addressed 

toward the NF-κB pathway. One is based on the inhibition of the phosphorylation of 

NF-κB from the cytoplasm into the nucleus through the electrostatic conjugation 

between the negatively charged Hep and the positively charged subunits p50-p65 of 

NF-κB [159]. The second is based on the translocation of phosphorylated p65 into the 

nucleus. Here, the uptake of Hep molecules through endocytosis will block the binding 

of the translocated NF-κB to the DNA [160]. 

Chitosan (Chi) is a bioactive polysaccharide of marine or fungi origin, which is 

composed of N-acetyl-D-glucosamine linked together by glycosidic β (1–4) bond [161, 
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162]. In addition, the linear biopolymer Chi has an amino group (C2) and 2 hydroxyl 

groups (C3 and C6) [161]. Chi is usually derived from alkaline deacetylation of chitin 

[163]. The viscosity of Chi is related to the molecular weight as well as the 

deacetylation degree (DD) of chitin, which is considered the most essential parameter 

in determining the properties as well as the applications of Chi [164]. For instance, the 

DD of Chi is usually between 60 to 95% however the ~85% DD is resulting in the 

presence of a large number of free amine groups. Conversely, some researches 

indicate that a DD of 50% is considered Chi [165]. 

 

Figure 9: Schematic presentation of chitin deacetylation with alkaline. Adopted from 

[166]. 

Furthermore, the pKa value of Chi is ranging between 6.46 and 7.32 and therefore the 

amino groups are protonated under acidic pH [167]. It is insoluble in water with pH 

above pKa value as well as in alkaline solutions. In contrast, the polycationic character 

of Chi through amino groups protonation allow its dissolution in water and is also 

related to the interaction with wide variety of ions and molecules [168]. This eventually 

make Chi an attractive molecule in fabricating functional materials to be used in 

biomedical, pharmaceutical, tissue engineering, drug delivery and gene therapy 

applications [169]. Hence, Chi has many biological activities as antioxidant, 

antimicrobial, anticoagulant and anti-inflammatory [166]. Furthermore, Chi can be 

slowly degraded by chitosanases as well as lysozymes [163]. It is considered a 

biodegradable, bioresorbable, biocompatible and nontoxic molecule [170]. In addition, 

the three-dimensional structure of Chi can absorb and retain high amounts of water, 

allowing it to swell without the need to completely dissolve and thus behaving as a 
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hydrogel [165, 171]. Chi has an anti-bacterial activity on diverse type of 

microorganisms, including fungi, viruses and bacteria due to its cationic nature, which 

leads to its biocidal properties [172, 173]. In addition, the anti-inflammatory activity of 

high and low molecular weight (MW) Chi was test by Davydova et al. [174]. Indeed, 

Chi with MWs of both 115 kDa and 5.2 kDa have shown induction of anti-inflammatory 

IL-10 cytokine expression in animal blood and suppression of colitis progress. It was 

concluded that the MW has no influence on the anti-inflammatory activity of Chi [166, 

174]. In addition, it is reported that the chitosan oligosaccharide (COS) has inhibitory 

effect toward the NF-κB [175]. The diverse properties of Chi making it an attractive 

molecule, which was also extensively used in multilayers formation for biomedical 

applications [176, 177]. 

 

5. Different approaches towards anti-inflammatory surfaces 

5.1. Brief survey on anti-inflammatory strategies of materials’ modification 

The adverse tissue-implant effects are reported as chronic inflammation and fibrotic 

encapsulation, which may eventually lead to implant failure. Therefore, several 

approaches were developed to obtain anti-inflammatory surfaces. Chemical and 

physical modifications, cell-based strategies, controlled release of anti-inflammatory 

agents as well as immunomodulatory strategies have been extensively studied to 

modulate the immune response. Examples of chemical and physical modifications are 

highly focused on surface geometry, topography, wettability, charge and surface 

chemistry as described earlier in section 3.1. In fact, tailoring surface properties of 

biomaterials provided beneficial outcomes [178]. For instance, different size, shape, 

and geometric alignment will lead to a significant influence toward many cell population 

in terms of adhesion, migration, arrangement and differentiation [179, 180]. Moreover, 

passivation of biomaterials by using non-biofouling coatings is another approach to 

minimize protein adsorption due to steric repulsion and hydration forces, which will 

lead to less activation of coagulation and complements, less immune globulins 

adsorption, less adhesive protein binding and hence less recruitment and adhesion of 

leukocytes at the implantation site [15, 181]. Examples of anti-fouling materials are 

poly(2-hydroxyethyl methacrylate) (pHEMA), poly(acrylamide) and polyethylene glycol 

(PEG) however PEG has proved to be most efficient [158]. Furthermore, Zhou et al. 

investigated different terminal methyl (CH3), amine (NH2), hydroxyl (OH) and carboxyl 
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(COOH) groups in an in vitro co-culture model of macrophage and fibroblast. The 

outcome of the study showed that the highest level of inflammatory reactions was 

found on the hydrophobic CH3 surface, while the lowest was observed on 

hydrophilic/anionic COOH surface [182]. Another promising strategy is the 

incorporation of tissue-specific or stem cells into a scaffold or suitable hydrogel, which 

can be efficiently used in tissue regeneration.  It is essential to know that a cross talk 

between embedded cells and immune cells (such as macrophages) will have an impact 

on the host response. For instance, macrophages interact with stem cells through 

paracrine or juxtacrine signalling [183]. In addition, mesenchymal stem cells (MSCs), 

for example, exerts an immunomodulatory effect when embedded in a PEG hydrogel 

and allow reduction of fibrotic responses in vivo [184]. Furthermore, the most effective 

biomolecular method is to naturally modulate the immune response by decorating 

biomaterials with endogenous molecules as was previously addressed by Kim et al. 

[15, 185]. In addition, biomolecules such as  ECM proteins, complement and 

thrombotic inhibitors, growth factors as well as cytokines can be combined in attempt 

to reach synergistic effects [185]. Dexamethasone (DEX), alpha melanocyte-

stimulating hormone (α-MSH), NSAIDs and superoxide dismutase are other 

pharmacological anti-inflammatory agents [15, 158].  

Figure 10: Schematic representation of different anti-inflammatory strategies. (A) 

Physical (surface topography), chemical and anti-fouling coatings (PEG- polyethylene 

glycol) modification. (B) Incorporation of anti-inflammatory agents (DEX- 

dexamethasone; α-MSH - alpha melanocyte-stimulating hormone; IL-1Ra - interlukin-

1 receptor antagonists; GAGs- glycosaminoglycans). (C) Immunomodulation 
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approaches using bioactive molecules. All are examples of different methods that can 

alter the immune response. Adopted from [33]. 

 

6. Aim of the thesis 

Although the attenuation of undesired effects of implants poses a challenge, studies 

were conducted to make biomaterials more biocompatible. Therefore, the aim of the 

thesis was to develop novel approaches of anti-inflammatory surface coatings based 

on immobilization of GAGs such as HA and Hep together with an extension involving 

Naproxen-conjugated NPs. Preclinical in vivo studies were also performed in terms of 

tissue responses of subcutaneous implants in mice. The anti-inflammatory properties 

of GAGs were studied based on their physicochemical properties in terms of wettability 

and surface charge as well as the potential mechanism of action toward the canonical 

signalling pathway of NF-κB. 

THP-1 derived macrophages were used, since macrophages play an essential role 

during the inflammation process. In all studies of this work, physicochemical 

characterizations were performed to examine the immobilization process of GAGs and 

resulting surface properties. In addition, different macrophage related inflammatory 

responses such as adhesion, fusion and pro-inflammatory cytokine (IL-1β) release 

were the parameters in evaluating the anti-inflammatory properties of GAGs. 

Furthermore, immunofluorescence (IF) staining, immunoblotting, flow cytometry as 

well as confocal laser microscopy (CLSM) studying the uptake or association of GAGs 

by macrophages were performed to evaluate the mechanism of action of GAGs toward 

the NF-κB signalling pathway. Moreover, the in vivo studies focused on histological 

analysis in terms of multinucleated giant cell formation, vascularization, expression of 

vasculogenic-related genes and expression of osteogenic genes. Overall, the different 

approaches of biomaterial coatings showed promising outcomes in achieving anti-

inflammatory surface modifications. The results are reported herein. 
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Chapter 2 

Summary – Covalent immobilization of glycosaminoglycans to reduce the inflammatory 

effects of biomaterials: 

The incorporation of GAGs for their anti-inflammatory potential together with their 

ability to bind cytokines like growth factors, chemokines and enzymes (like 

lipoprotein lipase and heparin cofactor II), is of great importance to modulate the 

inflammatory responses to implanted biomaterials. Therefore, HA, chondroitin 

sulfate (CS), and Hep were used in this study to investigate their effects on 

macrophage responses. The three different GAGs were immobilized covalently on 

amino-functionalized substrata by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

(EDC)/N-hydroxysuccinimide (NHS) crosslinking chemistry. Physicochemical 

characterizations were performed in attempt to evaluate the successful 

immobilization method by water contact angle (WCA) and zeta potential (ZP) 

measurements. Results showed significant increase in wettability as well as in 

negative charges on all GAGs-modified surfaces. Moreover, the high content of 

sulfate monoesters and sulfamido groups in Hep resulted in making the Hep-

modified surfaces the highest in wettability and negative surface charge. THP-1-

derived macrophages were used to investigate the anti-inflammatory potential of the 

GAGs-modified samples. Macrophage adhesion, spreading, FBGC formation, β1 

integrin expression as well as pro-inflammatory cytokine of interleukin-1β (IL-1β) 

production were studied as essential parameters to evaluate the inflammation 

process. This study illustrated that the HA-modified surfaces with their hydrophilicity 

and some steric effects of HA expressed a slightly higher reduction of initial 

macrophage adhesion and spreading compared to CS- and Hep-modified surfaces. 

In contrast, it was observed that the different GAGs showed no pivotal significant 

difference among them toward the studied macrophage responses. Eventually, the 

covalent immobilization approach was used here because of its advantage of stable 

coating resulted from chemical bonding, which further could be used in an in vivo 

model to reduce adverse biomaterial-induced inflammatory responses.
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Chapter 3 

Summary – Study on the potential mechanism of anti-inflammatory activity of 

covalently immobilized hyaluronan and heparin: 

This chapter concentrates on the mechanism of anti-inflammatory effects of GAGs with 

a particular focus on the canonical signal transduction pathway of NF-κB. According 

to the aforementioned results in chapter 2, two distinct GAGs were chosen for the 

current study due to their significant results in reducing macrophage related 

inflammatory responses. Thus, HA and Hep were also covalently immobilized on 

amino-terminated surfaces by using EDC/NHS cross-linking chemistry. Additional 

physicochemical characterizations toward surface topography was performed with 

atomic force microscopy (AFM). WCA and ZP measurements were performed here as 

well to give an evidence of a successful surface modification process. The 

physicochemical results illustrated covalent immobilization of HA and Hep represented 

by lower contact angles and more negative surface potentials in comparison to the 

control amino-terminated surface. Macrophages differentiated from THP-1 monocytes 

were used to investigate the potential mechanism of the anti-inflammatory properties 

of GAGs in terms of NF-κB. IF staining of p65 subunit was used to evaluate the nuclear 

to cytoplasmic ratio of p65 translocation. In addition, immunoblotting as well as the 

association or the uptake of fluorescein isothiocyanate (FITC)-labelled GAGs by 

macrophages were done. Besides, macrophage inflammatory responses were also 

studied in terms of the number and the aspect ratio of adherent macrophages, the 

fusion extent and the pro-inflammatory cytokine of IL-1β release. Results pointed out 

that Hep had the highest partial inhibitory effect toward translocation of the p65 into 

the nucleus followed by HA. However, again no significant difference was shown 

between the different GAGs. Thereafter, both GAGs demonstrated lower expression 

of NF-κB in the whole cell lysate with immunoblotting and macrophages showed a 

capability to associate or take up the FITC-labelled GAGs. The following outcomes 

are related to HA suppression to TLR signalling as well as binding to CD44 receptor. 

While, Hep either activates phosphorylation of p65 allowing its translocation to the 

nucleus with further inhibition of NF-κB binding to DNA sequences or inhibits partially 

the NF-κB translocation through the electrostatic binding of the positively charged 
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transcription factor to the anionic Hep, taken up by endocytosis. These effects of both 

GAGs will finally lead to down regulation of pro-inflammatory cytokine production and 

other inflammatory activities. 
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Chapter 4 

Summary – Studies on the mechanisms of anti-inflammatory activity of heparin- and 

hyaluronan-containing multilayer coatings-targeting NF-κB signalling pathway: 

In the study described in this chapter another method named as polyelectrolyte 

multilayers (PEMs) formation was utilized. The PEMs were fabricated with layer-by-

layer (LbL) technique represented by alternating adsorption of polyanions of either HA 

or Hep in combination with the polycation Chi on top of a priming layer of poly (ethylene 

imine) (PEI). This study was performed to shed a light on the potential mechanism of 

anti-inflammatory effects of GAGs toward NF-κB signalling pathway. To evaluate 

surface properties with physical adsorption of GAGs, various physicochemical 

characterizations were carried out in terms of wettability, thickness and topography. 

The characterization results showed significant higher thickness and hydrophilicity 

with the multilayer formation when compared to the control PEI samples. In addition, 

surface topography, which was identified by scanning electron microscopy (SEM) and 

AFM visualized complete coverage of surfaces with the PEMs. The surface 

characterization results were important for studying the macrophage related 

inflammatory responses with GAGs immobilization. The same set of experiments as 

described in chapter 3 was performed by also using THP-1 derived macrophages. 

Macrophage inflammatory responses in terms of adhesion, fusion and IL-1β were all 

significantly reduced on GAGs-modified samples. Moreover, partial inhibitory effect of 

p65 translocation into the nucleus together with lower expression profiles of NF-κB 

blots in the whole macrophage lysates were illustrated on the PEMs in comparison to 

the control PEI samples. In addition, macrophages showed the ability to associate or 

uptake FITC-labelled GAGs. However, the Hep-based system demonstrated the most 

significant inhibitory effects of both macrophage inflammatory responses as well as of 

NF-κB pathway. The physical adsorption of GAGs with LbL introduced an advantage 

of allowing substantial quantities of GAGs adsorption on the surfaces, which may 

significantly modulate the biomaterial- host induced reactions. In conclusion, the 

potential anti-inflammatory effect of GAGs was not solely related to the hydrophilic and 

anionic nature the GAGs but also to their partial inhibition on the NF-κB signalling 

pathway.   
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Chapter 5 

Summary – Tissue response to biphasic calcium phosphate covalently modified with 

either heparin or hyaluronic acid in a mouse subcutaneous implantation model: 

The encouraging results of in vitro studies with macrophages on the anti-inflammatory 

effects of GAGs spiked further for in vivo investigations in mice. In this chapter, a 

special focus is set on tissue response in terms of ectopic bone-formation together 

with limiting inflammatory responses studied in a mouse subcutaneous implantation 

model. Biphasic calcium phosphate (BCP) was used as reference control for its 

resorption/degradation properties while either HA or Hep were covalently immobilized 

on top of the BCP particles by using EDC/NHS cross linking chemistry as described 

in chapter 2. Surface characterizations investigated the topography by SEM, the ZP 

measurements and the surface composition with X-ray photoelectron spectroscopy 

(XPS) in attempt to examine the immobilization process of the GAGs. Results 

displayed an increase of the negative ZP on BCP-HA and BCP-Hep coated particles 

in comparison to the control BCP particles, giving an indication of a successful 

immobilization process. However, the focus of the study was placed on the histological 

analysis, which indicated that both BCP-HA and BCP-Hep coated particles showed 

reduced vascularization as well as higher vasculogenic-related genes (Flt1 and 

Vcam1) expression after 30 days in comparison to plain BCP. In contrast, the 

osteogenic genes Sp7 and Bglap after 30 days had the highest expression with the 

control BCP followed BCP-Hep while the lowest expression was in BCP-HA.  

Moreover, the BCP- HA coated particles limited inflammatory responses with 

formation of new bone-like tissue while BCP-Hep coated particles delayed the onset 

of inflammation and permitted the osteogenesis in this subcutaneous bone-forming 

model. In conclusion, the present study showed for the first time the covalent 

immobilization of HA and Hep on BCP to be eventually used for tissue response 

modulation in bone tissue regeneration as well as of ectopic bone formation. 
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Abstract 

Biphasic calcium phosphate materials (BCP) are widely employed as bone substitute 

materials due their resorption/degradation properties. Inflammation after implantation 

of such materials represents a pre-requisite for bone tissue repair and regeneration 

but can be also problematic if not only transient followed by fibrosis and scarring. Here, 

we modified BCP covalently with hyaluronan (HA) and heparin (Hep), 

glycosaminoglycans that possess anti-inflammatory properties. Beside the 

characterization of particle surface properties, the focus was on in vivo tissue response 

after subcutaneous implantation in mice. Histological analysis revealed a decrease in 

signs of inflammatory response to BCP when modified with either HA or Hep. Reduced 

vascularization after 30 days was noticed when BCP was modified with either HA or 

Hep with greater cellularity in all examined time points. Compared to plain BCP, 

expression of vasculogenic-related genes Flt1 and Vcam1 was higher in BCP-HA and 

BCP-Hep group at day 30. Expression of osteogenic genes Sp7 and Bglap after 30 

days was the highest in BCP group, followed by BCP-Hep, while the lowest expression 

was in BCP-HA group which correlates with collagen amount. Hence, coating of BCP 

particles with HA seems to suppress inflammatory response together with formation of 

new bone-like tissue, while the presence of Hep delays the onset of inflammatory 

response but permits osteogenesis in this subcutaneous bone-forming model. 

Transferring the results of this study to other coated materials intended for biomedical 

application may also pave the way to reduction of inflammation after their implantation. 

 

Keywords: glycosaminoglycans, biphasic calcium phosphate, covalent modification, 

subcutaneous tissue reaction, ectopic osteogenesis 
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1. INTRODUCTION 

Inflammation represents one of the major factors that direct the course and outcome 

of bone repair after injury as well as the fate of any biomaterial used for guided bone 

regeneration. In cases of biomaterials implantation into the defect site, these 

processes are largely influenced by the properties of used material such as chemical 

composition, surface and mechanical properties and stability versus degradability [1]. 

Although it is necessary, prolonged and excessive inflammation can lead to the scar 

tissue formation and inappropriate tissue regeneration and repair [2]. There are various 

types of biomaterials that are used in bone tissue engineering and regeneration. 

Important characteristics of the most suitable biomaterial for bone tissue regeneration 

are, besides biocompatibility, to be biomechanically stable, moderately resorbable, not 

inducing chronic inflammation and foreign body reaction, to integrate into surrounding 

tissue and to initiate and enable appropriate formation of new bone [3,4].  

Calcium phosphate-based synthetic biomaterials are commonly used in guided bone 

regeneration due to their osteoconductive properties, osteogenic and osteoinductive 

potential [5,6]. This is based on the ability of these materials to adsorb proteins 

supportive for bone tissue formation and to be resorbed by releasing calcium ions and 

phosphate, which can be used by progenitor cells to form new bone [7]. A challenge in 

the development of these materials is to achieve degradation and resorption in an 

appropriate time frame that permits the formation of sufficient new bone tissue. To 

address this issue biphasic calcium phosphate have been developed, which 

represents a mixture of faster degrading calcium phosphate and hydroxyapatite which 

degrades slowly [7-9].  

Since the inflammatory response to biomaterials is crucial for functional integration of 

implants on one hand, but also is responsible for adverse events like fibrosis and 

scarring on the other, modification of biomaterials with anti-inflammatory agents and 

immunomodulatory molecules is an emerging area of research [10]. Some 

glycosaminoglycans (GAGs) like heparin and hyaluronan represent very good 

candidates due to their immunomodulatory and especially anti-inflammatory properties 

[11-14]. Hyaluronic acid (HA) is a component of tissue extracellular matrix (ECM) which 

plays a key role in various processes such as cell adhesion, chemotaxis, 

differentiation, proliferation, cellular migration, wound healing, inflammation, 
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angiogenesis and tissue regeneration via specific receptors and signaling pathways 

[15-18]. Heparin is a highly sulfated GAG that is used as anti-coagulant drug but exerts 

other biological activities such as anti-inflammatory, inhibiting leukocyte adhesion to 

endothelium and accumulation of cells in inflamed tissues by binding directly to several 

adhesion molecules expressed during inflammation [12, 19-21]. Due to its high affinity 

for large variety of cytokines and growth factors it is also used as a carrier and as a 

component of drug delivery systems and scaffolds in tissue engineering [22]. 

In recent years potential benefits of blending hyaluronic acid with BCP were analyzed. 

Some studies revealed that the addition of HA to BCP did not significantly enhance 

bone regeneration [23], while others reported beneficial effects of HA addition on bone 

healing [24,25]. It has been also reported that the effects HA on osteoblasts are varying 

and dependent on the molecular weight and concentration of HA added to bone 

substitute materials [16, 26]. For example, the addition of high doses of HA to a 

biphasic bone substitute significantly decreased the occurrence of pro-inflammatory 

macrophages during the healing of rat calvaria defects [27]. Unlike HA, there are little 

data in the literature on the use of heparin as additive to bone substitutes. However, 

there are some in vitro studies that examined heparinized substrates on stem cells and 

it has been shown that these substrates support adhesion and proliferation of MSCs 

and enhance osteogenic differentiation [14]. Heparin loading onto PCL-ɑ-TCP 

membrane, which was engineered as a drug carrier to be used as hemocompatible 

and bioactive substrate for bone tissue engineering, was shown to enhance MSCs 

attachment and proliferation in heparin concentration-dependent manner [28]. 

Increased proliferation and osteogenic differentiation of hBMSC was also observed in 

vitro when these cells were cultured within heparin-modified scaffolds [29]. 

In summary, there is a lack of data on the effect of covalently immobilized HA and Hep, 

on bone substitute materials regarding inflammatory response and osteogenic 

processes in vivo as well as the connection of their osteogenic and vasculogenic 

potential. In the present study, tissue response, osteogenic and vasculogenic potential 

of the biphasic calcium phosphate (BCP) covalently modified with either hyaluronic 

acid or heparin was analyzed in a mouse subcutaneous bone-forming model. Results 

are reported herein. 
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2. MATERIALS AND METHODS 

2.1. Chemicals 

As biomaterial in this study Maxresorb® (Botiss, Germany) was used. Maxresorb® is 

100% synthetic bone graft substitute, biphasic calcium phosphate (BCP), with 

homogenous, biphasic composition of 60% hydroxyapatite (HA) and 40% beta-

tricalcium phosphate (β-TCP). 3-Aminopropyltriethoxysilane (APTES), 98% was 

delivered from abcr GmbH & CO. KG (Karlsruhe, Germany). Heparin (Hep) and 

hyaluronic acid (HA) were obtained from Serva (Heidelberg, Germany) and Innovent 

e.V. Technologie (Jena, Germany), respectively. In addition, 1-(3-

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, 98+% (EDC) was purchased 

from ThermoFischer Kandel GmbH (Karlsruhe, Germany), while N-hydroxy-

succinimide 98% (NHS) was obtained from Sigma-Aldrich (Taufkirchen, Germany). 

Acetone ≥ 99.5% was provided from Roth (Karlsruhe, Germany) and ethylene diamine 

from Sigma-Aldrich (Taufkirchen, Germany). 2-(N-morpholino) ethaneulphonic acid 

monohydrate (MES) was purchased from VWR International Ltd (Hunter Boulevard, 

England).  

 

2.2. Animals 

C57BL/6 mice used in this study were purchased from Military Medical Academy, 

Belgrade, Serbia and kept in the Vivarium of the Faculty of Medicine, University of Niš, 

Serbia, where experiments were performed. Mice were 8 to 10 weeks old and held in 

standard laboratory conditions at a temperature of 23 oC and 12/12 hours day-night 

regime. They were allowed to eat and drink ad libitum during the whole experimental 

period. All animal procedures in this study were performed in accordance with the 

Animal Welfare Act (Republic of Serbia), which is in compliance with European Union 

guidelines for experimental animals. On the request of the Ethical Committee of the 

Faculty of Medicine University of Niš, the animal procedures were approved by the 

Veterinary Directorate of the Ministry of Agriculture, Forestry and Water Management 

of the Republic of Serbia. 
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2.3. Preparation of BCP particles 

2.3.1. Preparation of the amino-terminated BCP particles 

Biphasic calcium phosphate (BCP) particles were first wetted with 70% followed by 

99% ethanol and subsequently with acetone for three times.  All wetting steps were 

done for 5 min. Thereafter, APTES was used to obtain amino groups on BCP for 

subsequent covalent immobilization of GAG. Two percent solution (v/v) of APTES in 

99.8% acetone was prepared and BCP particles were immersed for 2 h at room 

temperature (RT). Subsequently, the BCP particles were rinsed for 5 min with acetone 

and then washed with autoclaved and filtered MilliQ water (8×5 min).   

2.3.2. Immobilization of GAGs onto amino-terminated BCP particles  

Both GAGs were immobilized on BCP particles following a protocol developed by Zhou 

et al. [13]. MES buffer (50 mM, pH 4.70) was prepared by dissolving MES in pre-

autoclaved and filtered MilliQ water. Hyaluronic acid (HA, Mw ≈ 1.3 MDa) and heparin 

(Hep, Mw ≈ 15 kDa) were dissolved in MES buffer at a concentration of 2 mg mL-1. 

Subsequently, EDC and NHS (concentration 5 mg mL-1 and 3 mg mL-1, respectively) 

were added for 1 hour at RT to GAG solutions. The EDC/NHS-activated GAG solutions 

were added to APTES-modified BCP particles for 24 h under light protection. 

Afterwards, an inactivation of the remaining reactive carboxyl species was achieved 

by immersing the materials in 1 M ethylene diamine solution for 10 min. The BCP 

particles were rinsed with 99% ethanol for 5 min and washed with pre-autoclaved and 

filtered double-distilled water (6x5 min). The wet particles were placed in a vacuum 

chamber for 24 h to insure complete and sterile drying. The dry particles were stored 

in the desiccator using sealed sterile tubes until use.  

 

2.4. Characterization of surface properties of BCP particles 

2.4.1. Scanning electron microscopy (SEM) 

Philips ESEM XL 30 FEG (Endoven, Netherlands) with high vacuum (p = 10-6 mbar) 

was used to study the topography of the plain or GAG-modified BCP particles. 
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2.4.2. Zeta potential measurements 

The zeta potential of BCP particles was determined by a SurPASS device (Anton Paar, 

Graz, Austria). Two identical filters discs were added on both sides of the fiber 

measuring cell (Anton Paar) that was filled with particles. One mM potassium chloride 

was used as electrolyte for streaming potential measurements. A flow rate between 

100-150 mL min-1, not exceeding 300 mbar as the maximum pressure was adjusted 

during the experiment. Hydrochloric acid (HCl) at concentration of 1 M was used to 

adjust the pH value of KCl to pH 3.0. Then, 100 mM sodium hydroxide (NaOH) was 

used for pH titration.  Measurements were carried out by an automated titration 

program using titration steps of 0.02 μL from pH 3 to pH 11.0. 

2.4.3. X- ray photoelectron spectroscopy (XPS) 

X- ray photoelectron spectroscopy was performed to study the atomic composition of 

plain and GAG-modified BCP particles using a Kratos UltraDLD spectrometer with a 

monochromated Al Kα source (emission: 10 mA, anode: 15 kV). For survey spectra 

(binding energy 0-1200 eV; measured area 300 x 700 µm2), a pass energy of 160 eV 

and charge neutralization were applied. The pressure in the analysis chamber was at 

1x10-8 Torr. All spectra were normalized to the C1s peak (285 eV). The obtained 

spectra were analyzed using the software CasaXPS 2.3.15. 

 

2.5. Subcutaneous implantation in mice 

Experimental groups were formed based on the biomaterials’ coatings that were 

examined and were as follows: 1) BCP pure particles (BCP); 2) BCP with covalently 

immobilized hyaluronic acid (BCP/HA) and 3) BCP with covalently immobilized heparin 

(BCP/Hep). All biomaterials were shortly soaked with sterile saline solution prior to 

implantation to form compact constructs. Prior to implantation of materials, animals 

were anesthetized by intraperitoneal administration of the ketamine/xylazine mixture 

according to the guidelines for mouse anaesthesia. Interscapular skin was shaved, 

washed with povidone iodine and small incision was made. Two implants made of the 

same biomaterial were implanted per animal, subcutaneously, into the interscapular 

region using biopsy needle as previously published [30-34]. Each experimental group 

consisted of ten animals carrying the same material. Implants were extracted and 
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analyzed after 15 and 30 days (five animals from each group were sacrificed per each 

experimental period). Extracted implants were further used for different analyses. For 

gene expression analysis explants were immediately stored in RNA stabilization 

reagent (RNAlater, Qiagen, Venlo, the Netherlands) at -80 oC until subsequent RNA 

isolation. For histological analysis explants were fixed in 10% neutral buffered formalin 

(NBF) until further tissue processing. 

 

2.6. Histological procedures  

After fixation in 10% NBF, extracted implants were decalcified in 10% 

ethylenediaminetetraacetic acid (EDTA) solution (pH 7.4). Tissue dehydration was 

performed by applying ascending concentrations of ethanol. Implants were then 

cleared in xylene, embedded in paraffin and sliced on a microtome CUT 5062 (SLEE 

medical GmbH, Mainz, Germany). The haematoxylin and eosin (H&E) and Azan 

trichrome (AT) staining were performed on tissue sections from at least four different 

animals per group for each experimental period. 

 

2.7. Histomorphometrical analysis 

Histomorphometrical measurements were performed in NIS-Elements software 

version 3.2 (Nikon, Tokyo, Japan) on imaged tissue slides. The images were obtained 

on a microscope Leica DMLS equipped with the camera CMEX-10 Pro (Euromex 

Microscopen BV, Netherlands) at × 100 magnification. Total implant area, total vessel 

area, area of material granules and number of blood vessels on H&E stained tissue 

sections were measured using “Annotations and Measurements” software tool. Results 

are presented as percentage of infiltrated tissue per total implant area, percentage of 

vascularization per total implant area, percentage of vascularization in infiltrated tissue, 

vessel density per total implant area and vessel density in infiltrated tissue. 
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2.8. Quantitative real time polymerase chain reaction (Real-Time qPCR) 

Isolation of total RNA from extracted implants was performed by using RNeasy Mini 

Kit (Qiagen, Venlo, The Netherlands) according to the manufacturer's instructions. 

During RNA purification, DNase I RNase free set (Qiagen) was used for on-column 

digestion of residual genomic DNA, according to manufacturer's instructions. 

Concentration of RNA in samples was determined immediately after RNA isolation on 

BioSpec-nano Micro-volume UV-Vis Spectrophotometer (Shimadzu, Japan). Isolated 

RNA was stored at -80 oC until it was reversely transcribed prior to quantitative real 

time polymerase chain reaction (Real-Time qPCR). Total RNA was reversely 

transcribed into single-stranded cDNA by using High-capacity cDNA Reverse 

Transcription Kit (Applied Biosystems®, Thermo Fisher Scientific, Waltham, MA, USA) 

according to the manufacturer's protocol. Reactions were performed in PCR thermal 

cycler SureCycler8800 (Agilent Technologies, Santa Clara, CA, USA) according to the 

following protocol: 10 minutes at 25 oC; 120 minutes at 37 oC, 5 minutes at 85 oC and 

cooling at 4 oC. Obtained cDNA was stored at -80 oC until the further use for gene 

expression analysis. Quantitative Real-Time PCR reactions were performed, 

monitored and analyzed by real time thermal cycler Stratagen Mx3005P (Agilent 

Technologies, Santa Clara, CA, USA). The qPCR reactions were prepared by using 

SYBR Fast Universal 2x qPCR Master Mix (Kapa Biosystems, Wilmington, MA, USA), 

according to the manufacturer's instructions. ROX dye was used as a reference dye. 

Pre-designed primer sets (QuantiTect primer assay kits) were purchased from Qiagen. 

Primer kits, consisted of both forward and reverse primers, were used for the following 

endothelial- and osteogenic-related genes: Flt1 (QT00096292), Vcam1 

(QT00128793), Sp7 (QT00293181), Bglap (QT01057049) and Actb (QT01136772). 

The protocol conditions were: (1) enzyme activation: 3 min at 95 °C (1 cycle); (2) 

denaturation: 3 s at 95 °C and annealing/extension (with data acquisition): 30 s at 60 

°C (40 cycles). The specific binding of primers was confirmed by melting curve analysis 

and specific length product visualization on electrophoresis gel. The expression level 

of each target gene was normalized to the expression of β-actin gene (Actb) in the 

same sample. The relative gene expression data analysis was performed by the 

relative quantification method 2–∆∆Ct. Mouse XpressRef Universal Total RNA (338114, 

Qiagen) was used as calibrator for all qPCR reactions. 
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2.9. Statistics  

All quantitative data were statistically processed. One-way analysis of variance 

(ANOVA) was used for statistical calculations followed by post-hoc Tukey’s test as well 

as Mann–Whitney U-test using Origin 8 Pro software (Origin Lab, Northampton, 

Massachusetts, USA). All data are represented as mean values ± standard deviations 

(SD). The statistical significance is shown by asterisks in the figures for p ≤ 0.05. 

 

3. RESULTS 

3.1. Characterization of BCP particle surface properties 

Figure 1 (A) shows surface topography of modified materials by using SEM. The 

immobilization of hyaluronic acid (HA) and heparin (Hep) resulted in slight changes of 

the surface topography of BCP particles. It can be seen, that there is a deposition of 

material after the immobilization of GAGs, which is considered as a result of coating of 

BCP with either HA or Hep. Figure 1 (B) shows the zeta potentials of samples in 

dependence on the pH of electrolyte solution (1 mM KCl). Here it is apparent that pure 

BCP particles possess higher potentials throughout the range of pH during the titration 

compared to GAG-modified BCP particles that have lower, more negative zeta 

potentials. However, a strong difference of zeta potentials between BCP-HA and BCP-

Hep particles was not observed.  
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Figure 1. (A) Scanning electron microscopy images visualize surface topography of 

pure BCP particles (BCP) and BCP-modified by covalent immobilization of either 

hyaluronic acid (BCP-HA) or heparin (BCP-Hep). (B) Zeta potentials of plain BCP and 

after covalent immbilization of either HA or Hep, abbreviated as [BCP (■), BCP-HA (▲) 

and BCP-Hep (●)]. Results are presented as means ± SD in the pH range from 3.0 to 

11.0. 

3.2. X- ray photoelectron spectroscopy (XPS) 

The elemental composition of the particle surfaces was determined by XPS 

measurements comparing pure BCP, after the silanization with APTES and covalent 

immobilization of hyaluronic acid and heparin (Figure 2). Figure 2 shows that BCP 

particles predominantly contain calcium, phosphorus and oxygen as expected by their 

composition. However, it was also found that considerable quantities of carbon were 

found (around 20%) and also some sulfur (2.3%). The activation of BCP with APTES 

reduced those quantities of Ca, P, and O slightly, while the carbon content increased. 

A new peak of silicon was found (3.5%) that is related to the chemical composition of 

APTES as silane. Sulfur was not detectable anymore, which indicates that a coating 

of BCP with APTES was achieved. Furthermore, the elemental composition illustrates 

a decrease of Si percentage after hyaluronic acid as well as heparin immobilization 

together with an emerging presence of nitrogen and an increase of carbon compared 

to the plain BCP particles. 
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Figure 2. X-ray photoelectron spectroscopy (XPS) of atomic ratio percentage of BCP, 

BCP with a silanization step of APTES (BCP-APTES) and BCP-modified with either 

hyaluronic acid (BCP-HA) or heparin (BCP-Hep). 

 

3.3. Histological analysis 

More cellularity and presence of various cell populations can be observed on H&E 

stained histological slides of explants BCP-HA and BCP-Hep compared to BCP 

material at both examined time points, 15 days (Figure 3) and 30 days (Figure 4). Large 

cell infiltrates in close proximity to the materials’ granules can be seen, consisting of 

fibroblast, immune cells and mesenchymal stem cells. Higher number of 

multinucleated giant cells (MNGCs) can be observed in BCP group compared to GAGs 

immobilized materials at day 15. At this time point signs of material resorption can also 

be seen in BCP group while this process is continued at day 30 at which premature 

bone-forming like structures can be seen indicating the primary steps of ectopic bone 



Chapter 5 – Covalent immobilization - Tissue responses (in vivo) 104 
 

 
Submitted to the Journal of Biomedical Materials Research (JBMR) part A, Sanja Stojanović, Hala AlKhoury, Milena 
Radenković, Vladimir Cvetković, Magdalena Jablonska, Christian E.H. Schmelzer, Frank Syrowatka, Jelena M. 
Živković, Thomas Groth and Stevo Najman (2020), Tissue response to biphasic calcium phosphate covalently 
modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. 

tissue formation. At day 30, greater number of MNGCs can be seen in group BCP-Hep 

compared to other examined groups at this time point. Also, osteoclast-like cells can 

be seen in BCP-Hep group at day 30 (Figures 4f, 6f)) and signs of material resorption. 

 

Figure 3. Tissue sections of implants explanted after 15 days, H&E staining, 

brightfield, objective magnification 5x (a, c, e) and 10x (b, d, f), scale bars show 100 

μm; ellipse denotes MNGCs. 
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Figure 4. Tissue sections of implants explanted after 30 days, H&E staining, 

brightfield, objective magnification 5x (a, c, e) and 10x (b, d, f), scale bars show 100 

μm; ellipse denotes MNGCs, rectangle denotes osteoclast-like cells. 

 

Greater amount of collagen, visualized by Azan Trichrome staining and indicated as 

blue colored fibers on images, can be observed at day 30 (Figure 6) compared to day 

15 (Figure 5) in all examined groups. However, noticeable difference in collagen 

amount can be seen among groups. More collagen fibers are observed in BCP and 

BCP-Hep compared to BCP-HA group at both time points). 
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Figure 5. Tissue sections of implants explanted after 15 days, Azan Trichrome staining 

for collagen, brightfield, objective magnification 5x (a, c, e) and 10x (b, d, f), blue color 

on the images indicates collagen staining. 
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Figure 6. Tissue sections of implants explanted after 30 days, Azan Trichrome staining 

for collagen, brightfield, objective magnification 5x (a, c, e) and 10x (b, d, f); blue color 

on the images indicates collagen staining. 

 

3.4. Histomorphometrical analysis 

No statistically significant difference was observed in the percentage of infiltrated 

tissue among examined groups and analyzed time points (Figure 7a). Higher 

percentage of vascularization per total implant area was observed in BCP group at day 

30 compared to other examined groups and the same group at day 15 (Figure 7b), 

while lower percentage of vascularization per total implant area was observed in both 

BCP-HA and BCP-Hep groups at day 30 compared to day 15. These changes from 15 

to 30 days were not statistically significant while there is a significant difference 

between all examined groups at day 30. Statistically significant decrease in 
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vascularization was observed at day 30 in BCP-Hep group compared to BCP group. 

Percentage of vascularization in infiltrated tissue showed the same trend (Figure 7c).  

 

Figure 7. Histomorphometrical parameters measured on stained tissue sections of 

implants explanted after 15 and 30 days, results are presented as mean ± SD, (*) p ≤ 

0.05. 

 

Vessel density calculated per total implant area was higher in all groups at day 15 

compared to the day 30 while in both time points it was the highest in BCP group 

compared to both BCP-HA and BCP-Hep coated material. Differences among groups 

and time points were noticeable but not statistically significant. Noticeable decrease in 

vessel density per infiltrated tissue was observed in BCP-HA and BCP-Hep groups 

compared to BCP group especially at day 30, however, no statistically significant 

probably due to the large SD.   
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3.5. Gene expression analysis 

To analyze the effects of covalent immobilization of hyaluronic acid and heparin on the 

ectopic osteogenic and vasculogenic potential of synthetic resorbable BCP, 

endothelial- and osteogenesis-related genes’ expression was analyzed. Results of the 

expression of endothelial-related genes Flt1 and Vcam1 are presented in Figure 8.  

 

Figure 8. Relative expression of Flt1 (a) and Vcam1 (b) genes in implants explanted 

after 15 and 30 days, results are presented as mean ± SD, (*) p ≤ 0.05. 

 

Slightly lower expression of Flt1 was observed in BCP-HA and BCP-Hep compared to 

BCP at 15 days, but not statistically significant (Figure 8a). At day 30, statistically 

significant difference in Flt1 expression was observed among examined groups with 

the highest expression in BCP-HA group (Figure 8a). Statistically significant increase 

in Flt1 expression in BCP-HA group was observed at day 30 compared to day 15. 

Expression of Vcam1 was significantly lower in all examined groups at day 30 

compared to day 15 (Figure 8b). Expression of Vcam1 was significantly different 



Chapter 5 – Covalent immobilization - Tissue responses (in vivo) 110 
 

 
Submitted to the Journal of Biomedical Materials Research (JBMR) part A, Sanja Stojanović, Hala AlKhoury, Milena 
Radenković, Vladimir Cvetković, Magdalena Jablonska, Christian E.H. Schmelzer, Frank Syrowatka, Jelena M. 
Živković, Thomas Groth and Stevo Najman (2020), Tissue response to biphasic calcium phosphate covalently 
modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. 

among examined groups at day 30 with the same expression pattern as for Flt1 at this 

time point.   

Higher expression of both examined osteogenesis-related genes Sp7 (gene for early 

osteoblast marker Osterix) and Bglap (gene for late osteoblast marker osteocalcin) 

was observed in group BCP compared to groups BCP-HA and BCP-Hep at both 

examined time points, with pronounced increase at day 30 (Figure 9). Statistically 

significant difference among groups was observed only for Bglap at day 30. Significant 

increase in Bglap expression from day 15 to day 30 was observed in groups BCP and 

BCP-Hep but not in the group BCP-HA.  

 

Figure 9. Relative expression of Sp7 (a) and Bglap (b) genes in implants explanted 

after 15 and 30 days, results are presented as mean ± SD, (*) p ≤ 0.05. 

 

4. DISCUSSION 

In the present study, we covalently modified the synthetic resorbable bone substitute 

material, Maxresorb®, which represents a biphasic material composed of calcium 

phosphate and hydroxyapatite in a well-balanced ratio, with two GAGs, heparin and 
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hyaluronic acid, separately. In our previous studies, we have shown that covalent 

monolayer and adsorptive multilayer immobilization of GAGs on model surfaces led to 

the reduction of inflammatory response of macrophages [13,35]. In the present study, 

we wanted to examine how the covalent immobilization of these two GAGs onto BCP 

will influence the tissue response in vivo regarding the course of osteogenesis and 

vasculogenesis/angiogenesis in subcutaneous bone-forming model in mice. The 

ectopic bone-forming model in mice was used because it is a suitable model for 

analyzing the osteogenic potential of the biomaterial itself without any influence of the 

surrounding bone-related factors that are present in orthotopic bone-forming models 

[36]. 

Based on protocols that were developed recently, we immobilized both GAGs 

covalently after modification of BCP by APTES [13,37]. Studies on SEM revealed the 

deposition of GAGs by the change in surface topography. Stronger evidence for the 

success of surface immobilization of both GAG was obtained by zeta potential 

measurements, which showed more negative zeta potentials of BCP after 

immobilization of GAGs related to the presence of carboxylic groups in HA and 

carboxylic and sulfate groups in Hep [20]. XPS studies were somewhat difficult to 

interpret because of the presence of sulfur in the plain BCP particles and also a larger 

quantity of carbon that was not expected. Indeed, it is known that synthetic calcium-

phosphate based biomaterials may have certain impurities. The presence of carbon is 

probably due to adsorption of carbohydrates from the environmental air [38] or 

originated from the starting material in synthesis since it is known that calcium 

carbonate or associated compounds are used for synthesis of calcium phosphate [39]. 

Indeed, also the slight changes in the occurrence of nitrogen that is present in the 

amino sugar subunits of HA and Hep after covalent binding of GAG provided additional 

evidence for the presence of both GAGs after the chemical immobilization protocol on 

BCP particles.  

Beside the physicochemical data, evidence for the effect of immobilized GAG on the 

coated BCP granules is based on the different tissue response in terms of mobilization 

and adhesion of larger number of different cell types onto the material compared to 

pure BCP, which can be noticed in the histological images. GAGs are major component 

of ECM and cell surfaces that are involved in the binding of cytokines and mediate 
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cell–cell and cell–ECM interactions [40]. The finding of greater cellularity in BCP-HA 

and BCP-Hep implants is in accordance with physiological functions of GAGs [20]. It 

seemed also that the coating of BCP with GAGs made them less resorbable or 

postponed the process of resorption for some time. Multinucleated giant cells (MNGCs) 

appear as a reaction to implanted biomaterials [41-43]. The number of these cells and 

their persistence greatly influence the further inflammation course of the tissue and 

healing outcome and are greatly dependent on the physico-chemical properties of 

implanted biomaterials [41,42,44]. These cells are also very important in regeneration 

and healing process since they are involved in the biodegradation of the biomaterial 

and are related to expression of both pro- and anti-inflammatory molecules, which 

represent signals for other cells and events that lead to tissue regeneration [41, 42]. In 

our study lesser number of MNGCs was noticed after 15 days in both BCP-HA and 

BCP-Hep group, suggesting anti-inflammatory properties of the coated material are in 

line with our previous in vitro studies showing that HA and Hep-modified glass surfaces 

significantly reduced the formation of MNGCs [13,45]. Interestingly, in the present 

study, we noticed larger number of MNGCs in BCP-Hep group after 30 days compared 

to other groups and earlier time point which indicates a delayed reaction to the BCP 

material. Moreover, among MNGCs some of them look like osteoclasts and indicate 

intensive resorption of the material. Recently, similar findings to ours were reported by 

Diez-Escudero et al. [37] who showed that functionalization of biomimetic calcium-

deficient hydroxyapatite with covalently immobilized heparin fostered the formation and 

activity of osteoclasts in vitro. In BCP-HA group, these cells are very rare which 

indicates strong suppressive effect of covalently bound HA that is line with the 

anticipated anti-inflammatory effect of high molecular weight HA also observed in other 

studies [27]. Since greater vascularization can be considered as a sign of inflammation, 

decreased vascularization obtained by histomorphometrical analyses in BCP-HA and 

BCP-Hep group compared to BCP group at both time points, 15 and 30 days, might 

indicate that both HA and Hep immobilization onto BCP granules led to the lowering 

inflammatory tissue response caused by pure BCP as it was expected from our 

previous in vitro studies [13,45]. These differences were statistically significant at day 

30.  
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Although vascularization can be an indicator of the course of inflammation, it also plays 

a crucial role in bone regeneration. Vasculogenesis/angiogenesis and osteogenesis 

are tightly coupled and have to be well regulated for successful bone regeneration and 

function [46]. Here, we analyzed the expression level of the two endothelial-related 

genes: Flt1, gene for vascular endothelial growth factor receptor-1 (VEGFR-1) and 

Vcam1, gene for vascular cell adhesion molecule 1 (VCAM-1) and the two 

osteogenesis-related genes: Sp7, gene for Osterix (transcription factor that regulates 

osteoblast differentiation and bone  development) and Bglap, gene for osteocalcin, 

mature osteoblasts’ marker that plays a significant role in the mineralization process 

during osteogenic differentiation.  

VEGF protein family and VEGF receptors, the most important regulators of vascular 

development and angiogenesis, play also an important role in bone repair and 

regeneration and skeletal development [47]. It has been shown that VEGFR-1 plays 

an important role in the recruitment of endothelial precursor cells during 

vasculogenesis and that its activation by VEGF induces cell migration [48]. Higher 

expression of VEGFR-1 compared to VEGFR-2 was found in osteoblasts and 

fibroblast-like cells in mandibular distraction osteogenesis suggesting that VEGFR-1 

plays crucial role in osteogenesis [48]. Some non-endothelial cells express VEGF and 

VEGF receptors as well, including osteoprogenitors, pericytes, MSCs, osteoblasts and 

osteoclasts, and all of them respond to VEGF signalling by increased recruitment, 

differentiation and activity [46,49]. Although expression of VEGF receptors in 

osteoblasts is reported to be variable, there are indications that VEGF directly affect 

osteoblast differentiation and has indirect effects on postnatal bone homeostasis 

maintenance and development through autocrine and paracrine mechanisms by 

affecting various cell types involved in the process [46,49]. It has been shown that 

expression of VEGFR1 is dependent on the differentiation state of osteoblasts and low 

levels of VEGFR1 were only detected in differentiating osteoblasts during the 

mineralization phase [50]. Slightly lower Flt1 expression in BCP group but significantly 

higher in BCP-HA and BCP-Hep groups at day 30 compared to day 15 was observed 

in our study. This increase in Flt1 expression in GAGs immobilized groups might be 

due to the presence of greater number of osteoprogenitors, pericytes and MSCs in 

these groups. VCAM-1 (CD106) is predominantly expressed in endothelial cells and 
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its expression is induced by various factors such as proinflammatory cytokines and 

reactive oxygen species (ROS) [51,52]. VCAM-1 is minimally expressed in resting 

vascular endothelial cells and is inducible in many tissue vascular beds following injury 

or stress [51,52]. It is constitutively expressed in bone marrow (BM) stromal/endothelial 

cells and certain classes of hematopoietic cells [53] but also in MSCs [54]. CD106 was 

reported to be strongly expressed in MSCs, but its expression was decreased after 

osteogenic differentiation [54]. Other authors also reported that expression of CD106 

decrease during osteogenic differentiation in vitro indicating the usefulness of CD106 

as a differentiation-predicting marker of BMSC [55]. Lower expression of Vcam1 at day 

30 compared to day 15 in all examined groups in our study could indicate that starting 

inflammatory response, which was induced by implantation of the biomaterial, was 

lowered at day 30. Slightly, but significantly higher expression of Vcam1 in BCP-HA 

and BCP-Hep groups compared to BCP group might indicate as well the late response 

of cells to BCP or is a consequence of the presence of greater number of hematopoietic 

cells and MSCs in the groups with immobilized GAGs compared to the pure BCP, 

which can be seen on histological images and which is in accordance with the Flt1 

expression pattern. 

Both Sp7 and Bglap genes were expressed in greater extent in BCP group compared 

to the other examined groups at both examined time points, with pronounced increase 

in expression after 30 days. The lowest expression of these osteogenesis-related 

genes was noticed in BCP-HA group and these differences among groups are 

statistically significant at day 30. This means that ectopic osteogenic process had 

occurred in BCP group and had progressed from day 15 to day 30. In groups of GAGs 

immobilized BCP, osteogenic process obviously started at day 30 in BCP-Hep group 

since both Sp7 and Bglap gene expression increased compared to day 15 while no 

increase in expression of these genes was noticed in BCP-HA group. On the other 

hand, expression of Flt1 gene was the highest in BCP-HA group at day 30 which may 

indicate different pattern and dynamic of ectopic bone formation. This osteogenesis-

related gene expression pattern corresponds to the collagen content in examined 

groups, analyzed by AT staining, and increase in collagen content can be observed in 

BCP and BCP-Hep groups from day 15 to day 30. Positive correlation between 
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collagen amount and expression of Sp7 and Bglap was also observed in our previous 

study in the same model but different implant composition [30].  

Our results are among the first showing the comparative osteogenic and vasculogenic 

potential of BCP covalently modified with hyaluronic acid and heparin in subcutaneous 

bone-forming model in vivo, and comparison of the BCP tissue response modulation 

by these two GAGs with anti-inflammatory properties. 

 

5. CONCLUSION 

Based on obtained results we can conclude that the covalent immobilization of either 

hyaluronic acid or heparin, representing GAGs with anti-inflammatory properties, on 

biphasic calcium phosphate material significantly influences the tissue response to this 

biomaterial. Osteoinductive potential of BCP was changed by immobilization of GAGs 

while osteogenic process and vasculogenesis/angiogenesis were at different stages in 

examined groups and time points. The results of this study are promising in the field of 

bone tissue regeneration since they show, for the first time, that hyaluronic acid and 

heparin can be used for covalent modification of the biphasic calcium phosphate for 

modulation of the tissue response to this biomaterial and ectopic bone formation. 

However, further studies including prolonged observation periods and orthotopic bone 

formation analysis may also be required prior to the application of this approach in 

bone tissue engineering. 
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Chapter 6 

Summary – Anti-inflammatory surface coatings based on polyelectrolyte multilayers of 

heparin and polycationic nanoparticles of Naproxen-bearing polymeric drugs: 

In this chapter, studies were expanded for the integration of multiple anti-inflammatory 

strategies in an in vitro release system. The novelty of the work based on combining 

the short-term anti-inflammatory effects of Hep as polyanion with the long-term and 

potential release of Naproxen from polymeric nanoparticle (NP) as a polycation. The 

LbL technique was used to build up PEMs. The PEMs were characterized with quartz 

crystal microbalance (QCM) to testify the exponential growth, SEM and AFM to 

visualize the surface topography as well as ZP measurements. In this study, PEI was 

used as a positive control. In addition, polystyrene sulfonate (PSS) and Chi were used 

here as alternative polyanion and polycation respectively in multilayer formation. The 

physicochemical characterization showed complete surface coverage of multilayers 

containing NPs with certain roughness while multilayers containing only Hep, PSS as 

well as Chi had smoother surface coatings. In addition, NP-containing multilayers 

expressed a viscoelastic behaviour and had negative ZP. By contrast, reference PEM 

composed of Hep/Chi and PSS/Chi had lower ZP. THP-1-derived macrophages were 

used to study the short and long term anti-inflammatory activity of Hep and NPs, 

respectively. Short-term studies showed reduced cell adhesion and IL1-β secretion 

with Hep when compared to PSS. The long-term study was related to a reduced 

FBGCs formation after 15 days of NP-containing multilayers in comparison to PEM 

that contained Chi. Macrophages also showed the ability to take up NPs by 

endocytosis, indicating release of Naproxen by digestion of NP in the lysosomal 

compartment. This work represents a proof-of-concept study in reducing inflammatory 

responses as the mechanism of action was not examined. In conclusion, novel 

biomaterial coating was established here by having the potential to attenuate foreign 

body reaction after implantation and thus improve the longevity of implants such as 

sensors and other soft or hard tissue implants. 
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Chapter 7  

Summary and future perspectives  

In conclusion, this PhD thesis provided a demonstration of the anti-inflammatory 

properties of GAGs as well as Naproxen-conjugated NPs that are meant to control the 

inflammation process as well as to reduce or avoid the fibrotic encapsulation of 

implants. The studies provide an insight on the anti-inflammatory effects of GAGs like 

HA and Hep based on their physicochemical properties as well as on the mechanism 

of action toward the canonical NF-κB signalling pathway. In addition, the integration of 

multiple anti-inflammatory strategies such as Naproxen-conjugated NPs provided a 

potential long-term anti-inflammatory effect. Thereafter, a specific novelty was 

established by animal studies in an attempt to expand the screening toward studying 

tissue reaction in vivo. Surface characterization of the two used methods of covalent 

immobilization as well as PEMs formation involved investigation of wettability, ZP and 

topography. THP-1 derived macrophages were used in all studies since they are 

considered as key dominant cells in the inflammatory cascade. Results showed that 

the anti-inflammatory properties of GAGs were based on one hand by making GAGs-

modified samples more hydrophilic and anionic, which in turn had an effect in 

significantly reducing macrophages adhesion, fusion and IL-1β pro-inflammatory 

cytokine release in comparison to control surfaces. On the other hand, HA and Hep 

inhibited significantly the NF-κB signalling pathway in terms of p65 subunit 

translocation into the nucleus, which was related to findings of immunoblotting and flow 

cytometry showing the ability of macrophages to associate with or uptake the labelled 

GAGs. Indeed, the Hep-coated samples showed the most significant inhibitory effect 

toward the canonical NF-κB pathway with both immobilization methods. Moreover, 

NPs resulted in potential long-term anti-inflammatory effect, which was shown by 

reduced macrophage fusion after 15 days. In addition, tissue responses illustrated that 

both BCP-HA and BCP-Hep coated particles reduced multinucleated giant cell 

formation as well as the vascularization after 30 days, which was taken as a sign of 

reducing inflammatory in vivo response.  

Based on these findings, additional experiments should focus on the amount of 

immobilized GAGs as well as the release ratio at different time points. Employing 

toluidine blue dye binding assay, for example, could be used to estimate the amount 

of immobilized GAGs by calculating the difference in the absorbance of the GAG 
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solution before and after the immobilization process. In addition, future perspectives 

shall focus on the medical application of the coatings developed in this work to treat 

various inflammatory related diseases. For instance, multilayer coatings with 

hyaluronic acid on glucose biosensors on one hand would eventually delay the fibrous 

capsule formation and thus enable a long-term measurement of glucose levels. On the 

other hand, the pharmacokinetics and pharmacodynamics of heparin is improved by 

attaching to solid supports, which will eventually lead to a reduced metabolic turnover. 

Hence, it can be covalently immobilized on poly(lactic acid-co-glycolic acid) (PLGA) by 

using EDC/ NHS cross linker chemistry to enhance the poor blood biocompatibility of 

the PLGA polymer. Eventually, it is essential to apply different modification methods to 

reach biocompatible biomaterials to be used in the market. 
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