Synthese und Charakterisierung von Spezialzementen unter Verwendung von Mineralisatoren

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.)

Der

Naturwissenschaftlichen Fakultät III Agrar- und Ernährungswissenschaften, Geowissenschaften und Informatik

> der Martin-Luther-Universität Halle-Wittenberg,

> > vorgelegt von

Frau Sabrina Galluccio geb. am 08.03.1990 in Wolfsburg

Gutachter:

- 1. Prof. Dr. Dr. Herbert Pöllmann
- 2. Prof. Dr. Bernhard Middendorf

Tag der Verteidigung: 30.11.2020

Inhaltsverzeichnis

Danksagung	g IV
Nomenklatu	r und Abkürzungsverzeichnis V
Kurzzusamn	nenfassungVI
Abstract	
1. Einle	itung1
1.1. Mir	neralisatoren in der Zementherstellung1
1.1.1.	Fluor als Mineralisator2
1.1.2.	Bor als Mineralisator4
1.2. Spe	ezialzemente7
1.2.1.	Calciumsulfoaluminat Zement7
1.2.2.	Belit-Fluoroaluminatzement9
1.2.3.	Calciumaluminatzement10
1.3. Auf	gabenstellung und Motivation11
2. Expe	rimentelle Methoden13
2.1. Rö	ntgenpulverdiffraktometrie13
2.1.1.	in situ XRD Hydratationsversuche15
2.2. Rö	ntgenfluoreszenzanalyse17
2.3. Me	ssung der spezifischen Oberfläche17
2.3.1.	Oberflächenbestimmung nach Blaine17
2.3.2.	Oberflächenbestimmung nach BET18
2.4. Wä	rmeflusskalorimetrie
2.5. Ra	sterelektronenmikroskopie19
2.6. Flu	orid-Elektrode20
2.7. Syr	nthesemethode22
3. Syntl	nese von Klinkermineralen und Charakterisierung
3.1. Boi	rate23
3.1.1.	CaO•B ₂ O ₃
3.1.2.	CaO•2B ₂ O ₃
3.1.3.	2CaO•B ₂ O ₃

	3.1.	4.	3CaO•B ₂ O ₃	.30
	3.1.	5.	2CaO•Al ₂ O ₃ •B ₂ O ₃	.31
	3.2.	Fluc	oride	.33
	3.2.	1.	11CaO•7Al ₂ O ₃ •CaF ₂	.34
	3.2.	2.	3CaO•2SiO ₂ •CaF ₂	.38
	3.2.	3.	3CaO•3Al ₂ O ₃ •CaF ₂	.39
4.	S	ynth	ese von Fluor-Ye'elimitzementen	.44
	4.1.	Syn	these und Charakterisierung von Ye'elimit	.44
	4.2.	Syn	these und Charakterisierung von	47
		3Ca	$aO•3Al_2O_3•xCaF_2•(1-x)CaSO_4$ mit $0 \le x \le 1$	47
	4.2.	1.	Hydratationsverhalten	53
	4.2.	1.1.	Beschleunigung durch Lithiumcarbonat	58
5.	S	ynth	ese von Belit-Fluoroaluminatzementen	59
	5.1.	Syn	theseparameter	.59
	5.2.	Bes	timmung der Phasenzusammensetzung	60
	5.2.	1.	Mineralisation mit Flussspat	60
	5.2.	2.	Mineralisation mit Kryolith	69
	5.3.	Hyd	Iratationsverhalten	78
	5.3.	1.	Mineralisation mit Flussspat	78
	5.3.	1.1.	Beschleunigung durch Lithiumcarbonat	83
	5.3.	2.	Mineralisation mit Kryolith	.84
	5.3.	2.1.	Beschleunigung durch Lithiumcarbonat	88
6.	S	ynth	ese von Bor-Tonerdezementen	88
	6.1.	Syn	theseparameter	88
	6.2.	Bes	timmung der Phasenzusammensetzung	.89
	6.3.	Hyd	Iratationsverhalten	97
	6.3.	1.	Beschleunigung durch Lithiumcarbonat1	06
7.	S	ynth	ese von Fluor-Tonerdezementen1	06
	7.1.	Syn	theseparameter1	06
	7.2.	Bes	timmung der Phasenzusammensetzung1	07

7	.3.	Hydratationsverhalten	121
7.3.1. Beschleunigung durch Lithiumcarbonat		8.1. Beschleunigung durch Lithiumcarbonat	136
8.	Z	Zusammenfassung und Diskussion	137
8	.1.	Reinphasige Synthesen	137
8	.2.	Ye'elimit und Fluor-Ye'elimitzement	138
8	.3.	Belit-Fluoroaluminatzement	139
8	.4.	Bor-Tonerdezement	140
8	.5.	Fluor-Tonerdezement	140
8	.6.	Diskussion	141
9.	L	Literaturverzeichnis	144
10.	A	Abbildungsverzeichnis	156
11.	т	Tabellenverzeichnis	168
12.	A	Anhang	170
1	2.1.	Analysen der Rohstoffe	170
1	2.2.	Gitterparameter und Reflexlisten der Reinphasen	175
1	2.3.	Eidesstattliche Erklärung	191
1	2.4.	Lebenslauf	192

Danksagung

An dieser Stelle möchte ich zuallererst meinem Doktorvater Prof. Dr. Dr. Pöllmann für die Möglichkeit zur Promotion, die großartigen Arbeitsmöglichkeiten am Institut, die fachliche Unterstützung und die Eigenschaft jederzeit bereit zum Scherzen zu sein, danken.

Den Geschäftsführern des Zentrums für Werkstoffanalytik Lauf, Dr. Jürgen Göske und Dipl.-Ing. Werner Kachler, sowie Dipl.-Ing. Susanne Winter möchte ich ganz herzlich für die Messmöglichkeiten und Unterstützung am REM danken.

Besonderer Dank geht auch an Dr. Tobias Beirau, Dr. Anton Niksch, Dr. Flora Feitosa Menezes, M.Sc. Sophie Kretschmer, M.Sc. Claudia Reissner und M.Sc. Chimednorov Otgonbayar für ihre konstruktiven Vorschläge und Denkansätze, sowie ihrer Freundschaft.

Den Laborantinnen Gabriele Kummer und Diana Becher möchte ich für ihre Hilfe im Labor und der moralischen Unterstützung danken. Den technischen Mitarbeitern Juri Buchantschenko und Gerald Berthold danke ich für ihre stetige Hilfsbereitschaft.

Auch allen weiteren Mitgliedern der Arbeitsgruppe Mineralogie danke ich herzlich für die zahlreichen Diskussionsrunden und den freundschaftlichen Umgang, der zu einer angenehmen Arbeitsatmosphäre führte.

Zu guter Letzt möchte ich mich bei meinem Freund Markus für sein Verständnis und meiner Familie für ihre Unterstützung während der vergangenen Jahre bedanken.

Nomenklatur und Abkürzungsverzeichnis

Zementchemische Notation

$S = SiO_2$	$s = SO_3$	C = CaO	$c = CO_2$
$B=B_2O_3$	$H = H_2O$	$F = Fe_2O_3$	$A = AI_2O_3$

Abkürzungen

AFm	= Aluminat-Ferrit-Monosulfat (Al ₂ O ₃ -Fe ₂ O ₃ -mono)
AFt	= Aluminat-Ferrit-Trisulfat (Al ₂ O ₃ -Fe ₂ O ₃ -tri)
AMCSD	= American Mineralogist Crystal Structure Database
BET	= Brunauer-Emmett-Teller
BSE	= backscattered electrons
CAC	= Calciumaluminatzement
COD	= Crystallography Open Database
CSA	= Calciumsulfoaluminat Zement
C-S-H	= Calciumsilikathydrat
dest.	= destilliert
DIN	= Deutsches Institut f ür Normung e.V.
EDX	= Energy Dispersive X-Ray Spectroscopy
ICSD	= Inorganic Crystal Structure Database
LDH	= layered double hydroxides
LOI	= Loss on ignition
OPC	= Ordinary Portland Cement
REA-Gips	= Rauchgasentschwefelungsanlagen-Gips
REM	= Rasterelektronenmikroskop / Rasterelektronenmikroskopie
TISAB	= total ionic strength adjustment buffer
w/z-Wert	= Wasser/Zement-Wert
XRD	= X-Ray Diffraction

Kurzzusammenfassung

Da die Zementindustrie für 5-7 % der weltweiten anthropogenen CO₂-Emissionen verantwortlich ist (GARCÍA-DÍAZ et al., 2011), ist die Produktion von nachhaltigem Zement in den letzten Jahren immer weiter in den Fokus von Forschung und Entwicklung gerückt. Im Rahmen dieser Arbeit wurden daher Spezialzemente (Fluor-Ye'elimitzement, Belit-Fluoroaluminatzement, Bor-Tonerdezement und Fluor-Tonerdezement) synthetisiert, die aufgrund der Bildung neuer Klinkerminerale im Vergleich zur Portlandzementproduktion weniger CO₂ bei ihrer Produktion ausstoßen. Die Hauptphasen der unterschiedlichen Spezialzemente sind Ye'elimit, Fluor-Sodalith, Fluor-Mayenit, Belit und Calciumaluminat. All diese sind calciumärmer als die Hauptphase Alit von Portlandzement, wodurch weniger Calciumcarbonat eingesetzt werden muss, das für den CO₂-Ausstoß verantwortlich ist. Durch den Einsatz von Mineralisatoren (Flussspat, Kryolith und Boroxid) konnten bei der Synthese der Spezialzemente mehrere Vorteile erzielt werden, wie die Erhöhung der Effizienz des Sinterprozesses sowie die Entlastung der Umwelt durch Reduzierung der CO₂-Emissionen und eine energieeffizientere Klinkerproduktion. Die synthetisierten Spezialzemente erfordern aufgrund der Verwendung der Mineralisatoren Sintertemperaturen zwischen 1000 °C und 1350 °C. Der gewöhnliche Portlandzement benötigt hingegen 1450 °C. Neben der niedrigeren Sintertemperatur brachte die Verkürzung der Haltezeit eine zusätzliche Energieersparnis.

Im Fokus der Synthesen stand die Quantifizierung des Phasenbestands mittels Rietveld Methode zur Bewertung der Spezialzementklinker. Um die neu enstandenen Hauptklinkerphasen besser zu verstehen, wurden diese zunächst reinphasig synthetisiert und auf ihre Hydraulizität untersucht. Auch das hydraulische Verhalten und die entstandenen Hydratphasen der Spezialzementklinker wurden durch die Methode der Kalorimetrie und anschließender Röntgendiffraktometrie bestimmt. Ergänzende REM-Untersuchungen wurden am ZWL durchgeführt um die Mikrostruktur der Klinker und der hydratisierten Zemente zu untersuchen.

VI

Abstract

Since the cement industry is responsible for 5-7 % of the world's anthropogenic CO₂ emissions (GARCÍA-DÍAZ et al., 2011), the production of sustainable cement has become an increasingly important focus of research and development in recent years. Within the scope of this work, special cements (fluoro-ye'elimite cement, belite-fluoroaluminate cement, boron-alumina cement and fluorine-alumina cement) were synthesized, which emit less CO₂ during their production due to the formation of new clinker minerals compared to Portland cement production. The main phases of the different special cements are ye'elimite, fluor-sodalite, fluor-mayenite, belite and calciumaluminate. All of these are lower in calcium than the main phase alite of Portland cement, which means that less calcium carbonate has to be used, which in turn is responsible for CO₂ emissions. The use of mineralizers (fluorspar, cryolite and boron oxide) in the synthesis of the special cements has resulted in several advantages, such as increased efficiency of the sintering process and reduced environmental impact by reducing CO2 emissions and a more energy-efficient clinker production. The synthesized special cements require sintering temperatures between 1000 °C and 1350 °C due to the use of mineralizers. The ordinary Portland cement, in contrast, requires 1450 °C. In addition to the lower sintering temperature, the reduction of the holding time brought additional energy savings.

The focus of the syntheses was on quantifying the phase composition using the Rietveld method for evaluating the special cement clinker. In order to better understand the newly formed main clinker phases, they were first synthesized in pure phase and investigated for their hydraulicity. The hydraulic behaviour and the hydrate phases of the special cement clinker were also determined by calorimetry and subsequent X-ray diffraction. Additional REM investigations were performed at the ZWL to investigate the microstructure of the clinker and hydrated cements.

1. Einleitung

1.1. Mineralisatoren in der Zementherstellung

Der weltweite Blick auf die Klimaveränderungen durch den Ausstoß von CO₂ setzt auch die Zementindustrie unter Druck, denn pro Tonne produzierten Zement werden 850 kg CO₂ ausgestoßen. Damit ist die Zementindustrie für 5-7 % der weltweiten anthropogenen CO₂-Emissionen verantwortlich (GARCÍA-DÍAZ et al., 2011). Eine Möglichkeit für die Zementindustrie die Umwelt zu entlasten, d.h. die CO₂-Emissionen zu reduzieren und die Klinkerproduktion energieeffizienter zu gestalten, ist der Einsatz von Mineralisatoren (ENGELSEN, 2007, PÖLLMANN, 2015). Über die Verwendung von Mineralisatoren in der Portlandzementherstellung wurde bereits 1882 berichtet (LEA, 1971, GHOSH, 1983). Die allgemeine Motivation für den Einsatz von Mineralisatoren besteht in der Verbesserung und Kontrolle der Reaktivität der Klinkerphasen, um die Effizienz des Sinterprozesses zu erhöhen (ENGELSEN, 2007).

Mineralisatoren sind meist anorganische Verbindungen, die den Prozess der Reaktionen in den festen und flüssigen Grenzflächen beim Sintern von Zementklinker beeinflussen (ENGELSEN, 2007) und die Eigenschaften der Schmelzphase verändern (KLEMM et al., 1979, ODLER & ABDUL-MAULA, 1980). Die möglichen Auswirkungen können laut ENGELSEN (2007) in Veränderungen der chemischen, mineralogischen, strukturellen, mechanischen und physikalischen Eigenschaften zusammengefasst werden. Bei der Temperatursenkung der Schmelzbildung sollte nur die Mindestmenge der Schmelzphase erreicht werden, denn je mehr Schmelzphase vorliegt, desto mehr Energie muss aufgewendet werden, um den entstandenen Klinker zu mahlen (GHOSH, 1983).

Die Wirkung der Mineralisatoren kann oft auf bestimmte Elemente in der Mischung, die dem Rohmehl zugesetzt wird, bezogen werden. Bereits geringe Mengen an Fremdionen können die Eigenschaften der Schmelze erheblich verändern. Mineralisatoren können dem Rohmehl als reine Verbindung, Bestandteile von Abfällen, alternativen Brennstoffen oder Sekundärrohstoffen zugesetzt werden. Als Mineralisatoren eingesetzt werden können Sulfate, Borate, Alkali-/ Erdalkalioxide (Na, K, Li, Ba), Übergangsmetalloxide (Cd, Co, Cr, Cu, Fe, Mn, Ti, V), Halogene (F, Cl, Br, I) und Korrekturmaterialien (Silicasand, Bauxit, Hochofenschlacke, Flugasche) (ENGELSEN, 2007).

1.1.1. Fluor als Mineralisator

Fluor ist der früheste bekannte Mineralisator (KURDOWSKI, 2014) und reduziert sowohl die Temperatur der anfänglichen Schmelzbildung als auch die Zwischenphasen, Bildungstemperatur der dessen Zersetzungsprodukte die Klinkerminerale bilden (JOHANSEN & CHRISTENSEN, 1979, SMART & ROY, 1979, KLEMM et al., 1979). Mehrere Studien zeigten, dass die Sintertemperatur dadurch reduziert werden kann, ohne die Klinkerqualität herabzusetzen (MOIR, 1982, BLANCO-VARELA et al., 1984, HEWLETT, 1998). Fluor wirkt auch als Flussmittel, da es die Viskosität der Schmelzphase und die Oberflächenspannung reduziert. Laut PÖHLMANN (1986) wirkt sich eine niedrige Viskosität positiv auf die Reaktionen in der Schmelzphase aus und eine niedrige Oberflächenspannung soll zu einer porösen und feinkörnigen Klinkerbildung führen, woraus wiederum ein geringer Sinterschwund und eine gute Mahlbarkeit resultieren. Allerdings nimmt die Klinkerstaubigkeit zu und beeinflusst den Temperaturgradienten bei technischen Prozessen negativ (PÖHLMANN, 1986).

CaF2 senkt die Bildungstemperatur der Klinkerminerale durch Erhöhung der Kalzinierung, der Schmelz- und Alitbildungsrate (VOGEL, 1959, ODLER & ABDULal., MAULA, 1980, BAEKER et 1983) und durch Verbesserung der Festkörperdiffusionen (PÖHLMANN, 1986). Die Zugabe von CaF2 verändert zudem die Klinkerbestandteile und Alite mit Fluor oder Fluor-Mayenit können sich beim Sintern bilden. Mit Anwesenheit von Mineralisatoren bilden sich häufig neue, untypische Zwischenphasen, die in den Mischungen ohne Mineralisatoren nicht vorkommen (KURDOWSKI, 2014). Fluor-Spurrit (2C₂S•CaF₂) und Pseudoalit (3C₃S•CaF₂) bilden sich als solche neuen ternären Zwischenphasen (GUTT & OSBORNE, 1968) und beschleunigen die indirekte Kalkbindung (PÖHLMANN, 1986). Fluor-Spurrit wird bei etwa 950 °C gebildet und bei 1040 °C in α'-C₂S und CaF₂ zerlegt. Pseudoalit bildet sich bei 1130 °C, schmilzt inkongruent bei 1175 °C und zerfällt in C₃S, α'-C₂S und Schmelze (modifiziert nach KURDOWSKI, 2014):

$$C_{2}S + CaF_{2} \xrightarrow{950 \circ C} (C_{2}S)_{2} \cdot CaF_{2} \xrightarrow{1040 \circ C} \alpha' \cdot C_{2}S + CaF_{2}$$

$$C_{3}S + CaF_{2} \xrightarrow{950 \circ C} (C_{2}S)_{2} \cdot CaF_{2} + CaO \xrightarrow{1040 \circ C} \alpha' \cdot C_{2}S + CaF_{2} + CaO$$

$$\downarrow 1130 \circ C$$

Das System CaO-SiO₂-CaF₂ ist in Abbildung 1 dargestellt und zeigt, dass das C₃S-Stabiliätsfeld deutlich vergrößert ist und die Temperatur des invarianten Punktes sich auf 1170 °C erniedrigt hat.

Abb. 1: Teil des Systems CaO-SiO₂-CaF₂ (nach GUTT, 1968)

Die Umwandlung von β - zu γ -C₂S kann insbesondere bei langsam gekühlten Klinkern zunehmen, wenn der CaF₂-Zusatz höher als 2 % ist (BEI, 1990). Die Fluormenge im Rohmehl muss zudem begrenzt werden, da sich die Eigenschaften des Zements ändern können. Zemente mit fluorhaltigem Klinker erhärten laut BEI (1990) langsam. Die maximale Fluormenge beträgt laut SPRUNG (1982) ca. 0,25–0,6 Gew.-% (0,5– 1,2 Gew.-% CaF₂) und laut BEI (1990) 0,5 Gew.-%. Da Fluor leicht verdunstet und im Ofen zirkuliert, kann es im kühlen Bereich des Ofens kondensieren und mit überschüssigem CaO zu CaF₂ reagieren (SPRUNG, 1982). Die Bindungsrate von Fluor im Klinker beträgt laut MALATA-CHIRWA (2012) bis zu 85 % und nach Messungen von SPRUNG & SEEBACH (1968) 88–98 %. Das Flussmittel-/ Mineralisatorpaar CaF₂/ CaSO₄ hat eine zweifach positive Wirkung auf die Portlandzementklinker-Herstellung, da es die Schmelztemperaturen senkt und die Alitbildung beschleunigt (BLANCO-VARELA et al., 1995, BLANCO-VARELA et al., 1996, PUERTAS et al., 1996, BLANCO-VARELA et al., 1998). Nach YAMASHITA & TANAKA (2011) verbessert der SO3-Gehalt im Klinker die Brennbarkeit und verstärkt die Mineralisatorwirkung von CaF₂. Sie begründeten die Mineralisatorwirkung von CaF₂ durch niedrigeren Freikalk-Gehalt im OPC Klinker mit zunehmendem F-Gehalt bei gleicher Sintertemperatur. Die verbesserte Brennbarkeit eines Klinkers mit hohem Fund SO₃-Gehalt lässt sich nicht nur durch eine geringere Viskosität und Oberflächenspannung der Oxidschmelze erklären, sondern auch durch eine erhöhte Schmelze. Durch die eutektische Bildung von Fluorid- und Sulfatgemischen, wird die Bildung von Alit bei niedrigen Temperaturen ermöglicht (MOIR & GLASSER, 1992, BORGHOLM, 1995). Mit 2,2 % SO3 und 0,067 % F konnten YAMASHITA & TANAKA (2011) die Sintertemperatur von OPC Klinkern um 100 °C senken. Zudem entsprachen die Abbinde- und Aushärteeigenschaften des mineralisierten Zements, der bei 1350 °C gesintert wurde, denen von normalem, bei 1450 °C gesintertem, Portlandzement.

GARCÍA-DÍAZ et al. (2011) erhöhten durch Verwendung von CaSO₄ den C₂S-Gehalt und stabilisierten dessen β -Modifikation im Belit-Zement. CaF₂ erhöhte hingegen den Alit-Gehalt, da es dessen Stabilitätsfeld vergrößert. Der C₄AF-Gehalt stieg ebenfalls und der C₃A-Gehalt im Belit-Zement sank (GARCÍA-DÍAZ et al., 2011). Die XRD-Ergebnisse von DOMINGUEZ et al. (2010) zeigten, dass der Alit-Gehalt im Portlandzementklinker bis zu 15 % höher war, wenn CaF₂ während des Sinterprozesses anwesend war. Die mechanischen Eigenschaften wurden um ca. 20 % verbessert, wenn dem Klinker 0,4 Gew.-% CaF₂ hinzugefügt wurden (DOMINGUEZ et al., 2010).

1.1.2. Bor als Mineralisator

Von den bekannten Borreserven der Welt befinden sich 70 % in der Türkei. Dabei gibt es mehr als 230 natürliche Borminerale (BORON REPORT, 2011), von denen die wichtigsten Borerze Borax (Tinkal), Colemanit und Ulexit sind (BONCUKCUOGLU et al., 2005). Während der Borgewinnung entstehen industrielle Abfälle, die Böden und Wasserquellen verschmutzen können, sodass deren Verwendung für die

4

Zementproduktion erhebliche ökologische Vorteile bringen würde (KULA et al., 2002, OLGUN et al., 2007). Auch Gipsabfälle können bis zu 10 % Borverbindungen enthalten und dadurch den Naturgips für die Zementproduktion ersetzen, da REA-Gips und Chemogips als Nebenprodukt in der Chemie- und Energiewirtschaft in großen Mengen produziert werden (ERDOGAN et al., 1994, DEMIBRAS & KARSLIOGLU, 1995, BONCUKCUOGLU et al., 2001, BENHELAL et al., 2012). Weitere Motivation für die Verwendung von borhaltigen Abfällen für die Zementproduktion sind verbesserte Betoneigenschaften und Kostensenkung in der Zementherstellung (KULA et al., 2001). Bor senkt die Viskosität der Klinkerschmelze (KURDOWSKI, 2014) und hilft als Sinteradditiv die Verdichtung bei niedrigen Temperaturen zu beschleunigen mit dem Ziel, den Energieverbrauch zu senken (GIOVANNELLI MAIZO et al., 2017).

Mit Erhöhung des B₂O₃-Gehaltes sinkt die Temperatur, bei der die Schmelzbildung beginnt. Bei einer Zugabe von 2,5 Gew.-% B₂O₃ beobachteten KOUMPOURI & ANGELOPOULOS (2016) die niedrigste Sintertemperatur für Belit-Zemente von 1310 °C. Und bei einer Zugabe von bis zu 1,13 Gew.-% B₂O₃ zum Rohmehl wurde die späte Festigkeitsentwicklung des Belit-Zements verbessert. Als optimale B₂O₃-Zugabe gaben KOUMPOURI & ANGELOPOULOS (2016) 0,38 Gew.-% an. Die aktiven Belit-Zemente von LIU & ZHENG (2013) zeigten mit Boroxid zwar eine langsame Festigkeitsentwicklung im frühen Alter, aber eine sehr hohe Druckfestigkeit nach 28 Tagen (>70 MPa). Auch die Belit-Zemente von KAVAS et al. (2015) gewährleisteten mit Zugabe von 5 bzw. 10 Gew.-% borhaltigen Abfällen (mit 11,8 % B₂O₃) eine gute Druckfestigkeit nach 28 Tagen (~40 MPa). MUTUK & MESCI (2014) addierten Borabfälle zu Portlandzement und untersuchten ebenfalls die Druckfestigkeit nach 28 Tagen. Bei Zugabe von bis zu 5 Gew.-% Borabfällen (mit 15,5 % B₂O₃) lagen die Druckfestigkeitsergebnisse innerhalb der Norm.

Bei der Produktion, von mit 3 Gew.-% B_2O_3 modifiziertem aktivem Belit-Zement mit α - oder α '-Belit als Hauptkomponente, werden die CO₂-Emissionen gegenüber der Portlandzement-Produktion um bis zu 25 % reduziert. Zudem wird aufgrund der geringen Sintertemperatur um 1325 °C eine erhebliche Menge an Energie gespart (SAĞLIK et al., 2008).

Die Untersuchungen von LIU & ZHENG (2013) und KOUMPOURI & ANGELOPOULOS (2016) zeigten, dass die Zugabe von Bor als Mineralisator die Verringerung der Sintertemperatur von Belit-Zementen sowie die Stabilisierung der oberen Belit-Polymorphe begünstigt. Der Einbau von Bor-Ionen in das Kristallgitter von Belit stabilisiert α '- und β -Polymorphe, wobei α '-Belit reaktiver ist als β -Belit (GHOSH et al., 1979, LAWRENCE, 2003). Während der Einbau von Bor in Belit dessen Reaktivität erhöht, wird die Reaktivität von Ye'elimit durch die Dotierung mit Bor gesenkt (GARTNER & SUI, 2018). Laut LI et al. (2019) fördert die Dotierung mit Bor die Bildung von kubischem Ye'elimit.

Eine weitere positive Auswirkung von der Bor-Zugabe zum Zement ist die Abschirmung von Neutronen- und Gammastrahlung als Strahlenschutzbeton. (VANVOR, 2000). Untersuchungen von KHARITA et al. (2011) ergaben, dass die Zugabe von bis zu 1 Gew.-% Borax (Na₂B₄O₇) keinen signifikanten Einfluss auf die Festigkeit von Beton, aber signifikante Auswirkungen auf die Abschirmwirkung bei dicken Betonschilden hat (100 cm).

Zudem sind Borate als Abbindeverzögerer bekannt (HALEY, 1980, KHARITA et al., 2011, KURDOWSKI, 2014, CAU DIT COUMES et al., 2017) und erniedrigen die Belit-Hydratationsrate (KURDOWSKI, 2014). Aufgrund der stark verzögernden Wirkung von Bor, ist daher die Verwendung von borhaltigen Abfällen begrenzt (KULA et al., 2002). Die verzögernde Wirkung wird mit der Erhöhung der Löslichkeit von Portlandit bei Anwesenheit von Bor erklärt. Dadurch kommt es zur Bildung einer Schutzschicht um die Zementkörner, die deren Kontakt mit Wasser verhindert (BENSTED et al., 1991, APAGYI & CSETENYI, 2001). Die charakteristische Verzögerung der Abbindezeit der fließfähigen Zementmischung ist jedoch bei massiven Betonflächen wie großen Dämmen wünschenswert, um eine Verlegung und Konsolidierung ohne Kaltfugen zu ermöglichen oder um übermäßige Wärmeentwicklung zu verhindern (HALEY, 1980). Um die drastische Verlängerung der Aushärtezeit von Portlandzementen, die für die

Immobilisierung von borsäurehaltigem Atommüll verwendet werden, zu verstehen, untersuchte KADIYSKI (2008) das System CaO-Al₂O₃-B₂O₃-H₂O und synthetisierte erstmals Johachidolite (CaAl[B₃O₇]). Die Phasenbeziehungen im ternären System CaO-Al₂O₃-B₂O₃ wurden von SCHÄFER & KUZEL (1967) untersucht. Sie synthetisierten die zwei ternären Verbindungen CaAlBO₄ und CaAl₂B₂O₇ und beschrieben eine

hexagonale Tieftemperatur-Modifikation von CaAl₂B₂O₇ (α), die oberhalb von 830 °C in eine Hochtemperatur-Modifikation mit monokliner Struktur (β -CaAl₂B₂O₇) übergeht.

Zudem verringert Bor die Frühfestigkeit (TARGAN et al., 2002). OLGUN et al. (2007) erhöhten die Frühfestigkeit von Zement mit borhaltigen Colemaniterz-Abfällen durch Zugabe von Naturgips. Mit Aktivatoren wie Na₂SO₄ oder CaCl₂ konnte auch die Festigkeitsentwicklung beschleunigt werden. CAU DIT COUMES et al. (2017) wirkten der verzögerten Abbindung von CSA-Zement durch Natriumborat mit Lithiumsalzen entgegen. Bei einem gipsfreien Zement fördert Lithium die anfängliche Ausfällung einer borierten AFm-Phase (Aluminat-Ferrit-Monosulfat), die später bei beschleunigter Hydratation in eine borierte AFt-Phase (Aluminat-Ferrit-Trisulfat) umgewandelt wird.

CSA-Zemente bilden während der Hydratisierung große Mengen an AFm- und AFt-Phasen, die Borationen in ihre Struktur aufnehmen können, (WENDA & KUZEL, 1983, CSETENYI & GLASSER, 1993, PÖLLMANN et al., 1993, BOTHE & BROWN, 1998, CHAMPENOIS et al., 2012) wodurch ihre Hydratationsgeschwindigkeit weniger verzögert wird als die von Portlandzement (CHAMPENOIS et al., 2015). KUZEL & PÖLLMANN (1991) und PÖLLMANN et al. (1993) beschrieben die Phasen als Bor- $(C_3A \cdot Ca[B(OH)_4]_2 \cdot 2Ca(OH)_2 \cdot 36H_2O$ Ettringite und C₃A•2Ca[B(OH)₄]₂•Ca(OH)₂•30H₂O), die Mischkristalle mit Sulfatettringit bilden können. WENDA (1984) nannte die Phasen Boratettringite und untersuchte zusätzlich die Möglichkeit der Bildung von Mischkristallreihen mit Hydroxid-, Chlorid- und Carbonatettringten. BOTHE & BROWN (1998) beschrieben später die Hoch-Bor-Ettringite (6CaO•Al₂O₃•2B₂O₃•39H₂O und 4CaO•Al₂O₃•1/2B₂O₃•12H₂O) mit einer LDH (layered double hydroxide)-Struktur, die mit dem Mineral Hydrocalumit verwandt ist.

1.2. Spezialzemente

1.2.1. Calciumsulfoaluminat Zement

Calciumsulfoaluminat Zement (CSA) enthält als hydraulisch aktive Hauptphasen Ye'elimit (C₄A₃s), Larnit (C₂S), Brownmillerit (C₄AF) und Anhydrit (Cs) in unterschiedlichen Verhältnissen (ARJUNAN et al., 1999, PÉRA & AMBROISE, 2004, IACOBESCU et al., 2013). Nebenphasen sind unter anderem Ternesit, Gehlenit und

7

Einleitung

Wollastonit (GALLUCCIO et al., 2019). Haupthydratationsprodukte sind Ettringit, Monosulfat, Aluminiumhydroxid, Strätlingit und C-S-H-Phasen (LOTHENBACH & WINNEFELD, 2017). Da die CSA Zementmischung 1961 von Alexander Klein patentiert wurde (KLEIN, 1961), wird Ye'elimit auch als "Klein's compound" bezeichnet. CSA Zement zeichnet sich durch eine hohe Frühfestigkeit, gute Alkalität, kurze Abbindezeit und Volumenstabilität Haltbarkeit, geringe in Abhängigkeit von der zugegebenen Gipsmenge aus (CUBEROS et al., 2010, GARCÍA-MATÉ et al., 2013, SHEN et al., 2014, GARCÍA-MATÉ et al., 2015). Seit den 1970ern wird er in China als high-performance Zement unter dem Namen "Third Cement Series" verwendet (GARTNER, 2004). In Europa ist die Anwendung aufgrund fehlender Normen für Spezialzemente bisher eingeschränkt (ÁLVAREZ-PINAZO et al., 2012, CUESTA et al., 2014). Mit CSA Zement wurde eine Vielzahl innovativer Baustoffe entwickelt, wie z.B. Beton mit hoher Frühfestigkeit, selbstnivellierender Estrich und Mörtel oder glasfaserverstärkte Hochleistungsverbundwerkstoffe (PÉRA & AMBROISE, 2004). CSA Zement wird in der Regel aus Bauxit, Kalkstein und einer Calciumsulfatquelle hergestellt (WINNEFELD & LOTHENBACH, 2010, PÖLLMANN et al., 2013, STÖBER & PÖLLMANN, 2014). Um die positiven Auswirkungen auf die Umwelt zu erhöhen, ist ein Ersatz natürlicher Ressourcen durch sekundäre Rohstoffe wie industrielle Reststoffe wünschenswert und bisher Gegenstand vieler Studien (ARJUNAN et al., 1999, GARCÍA-MATÉ et al., 2013, IACOBESCU et al., 2013, PÖLLMANN et al., 2013, GALLUCCIO et al., 2019).

In den letzten Jahren gewann CSA Zement immer mehr an Bedeutung, da die CO₂-Emissionen um bis zu 35 % geringer sind als bei der Produktion von Portlandzement (CUBEROS et al., 2010, MARTÍN-SEDEÑO et al., 2010, PÖLLMANN & SCHOLLBACH, 2011, CUESTA et al., 2012). Bei der Produktion von 1 t OPC werden 0,97 t CO₂ frei (MARTÍN-SEDEÑO et al., 2010), während bei der Produktion von 1 t CSA-Klinker je nach Zusammensetzung 0,63-0,73 t CO₂ freigesetzt werden (ARANDA & DE LA TORRE, 2013). Darüber hinaus kann CSA Zement bei einer 200 °C niedrigeren Sintertemperatur (1250 °C) als OPC-Klinker (1450 °C) hergestellt werden (MARTÍN-SEDEÑO et al., 2010, WINNEFELD & LOTHENBACH, 2010, ÁLVAREZ-PINAZO et al., 2012). Auch beim Mahlen der Klinker wird bis zu 40 % Energie eingespart, da CSA-Klinker poröser sind als OPC-Klinker (JUSTNES, 2012). Aufgrund dieser Vorteile kann CSA Zement laut SHEN et al. (2014) als nachhaltige Alternative zu OPC betrachtet werden.

1.2.2. Belit-Fluoroaluminatzement

Belit-Fluoroaluminatzement besteht aus den Hauptmineralphasen Larnit (Belit, C₂S) und Fluor-Mayenit (C₁₁A₇CaF₂), wobei der Fluor-Mayenit-Gehalt in der Regel zwischen 40 bis 80 % und der Larnit-Gehalt zwischen 10 und 55 % liegt (ODLER, 2000). Fluor-Mayenit wird zwischen 1050 °C (SAHU, 1994) und 1100 °C (GIMÉNEZ-MOLINA & BLANCO-VARELA, 1998) gebildet. Variable Mengen der Ferritphase können ebenfalls im Zement enthalten sein (KNÖFEL & WANG, 1992, LIU et al., 1992, PANDA, 2016). Belit-Fluoroaluminatzement wird üblicherweise aus Kalkstein, Bauxit und Flussspat bei 1250-1400 °C hergestellt (LIU et al., 1992) und zeichnet sich durch eine kurze Abbindezeit und eine hohe Frühfestigkeit aus (NAJAFI KANI & ALLAHVERDI, 2010).

Im Vergleich zu Portlandzement benötigt Belit-Fluoroaluminatzement eine niedrigere Sintertemperatur (OPC: 1350-1450 °C) und weist niedrigere CO₂-Emissionen durch die Bildung von Fluor-Mayenit auf, das 0,34 g CO₂ pro g gebildeter Phase freisetzt, während Alit, die Hauptklinkerphase des Portlandzements, 0,58 g CO₂ pro g gebildeter Phase freisetzt. Die ersten Calciumfluoroaluminatzemente wurden 1971 von Greening patentiert und später in Japan unter dem Namen Jet Cement (Alit-Fluoroaluminatzement) (YOUNG & AFRIDI, 2004) weiterentwickelt. Die hohe Reaktivität von Fluor-Mayenit kann durch die Zugabe von unterschiedlichen Mengen an Calciumsulfat-Halbhydraten gesteuert werden (YOUNG & AFRIDI, 2004), wodurch sich Ettringit bei der Hydratation als Hauptprodukt bildet (ODLER, 2000). Die Freisetzung der Hydratationswärme erfolgt schneller und die Gesamtwärme der Hydratation ist höher als bei Portlandzement (LIU et al., 1992). Die Porosität einer hydratisierten Belit-Fluoroaluminat-Paste ist deutlich geringer als die eines Portlandzementleims. Diese geringe Porosität wirkt sich positiv auf die Undurchlässigkeit und die Korrosionsbeständigkeit des Materials aus (ODLER, 2000). Belit-Fluoroaluminatzement eignet sich besonders für Notfallreparaturen, bei denen ein extrem schnelles Abbinden und eine frühe Festigkeitsentwicklung erforderlich sind (ODLER, 2000).

1.2.3. Calciumaluminatzement

Untersuchungen an Calciumaluminatzement (CAC) gibt es seit der Zeit um 1850. Ziel war es einen Zement zu entwickeln, der stabil gegen Sulfatkorrosion ist (PÖLLMANN, 2012). Das erste Patent für die Herstellung von CAC wurde 1908 von Bied in Frankreich eingereicht (LEA, 1971, ODLER, 2000). Die Zusammensetzung von CAC variiert und setzt sich aus mind. 40 % Monocalciumaluminat (CA) als hydraulisch aktive Hauptphase und Mayenit (C₁₂A₇) zusammen (SCRIVENER & CAPMAS, 2004). Calciumdialuminat (CA₂) entsteht in CAC mit hohem Al₂O₃-Gehalt. Geringe Mengen an Gehlenit (C₂AS) und Larnit (C₂S) entstehen dagegen in CAC mit geringem Al₂O₃-Gehalt. Bei weißfarbenem CAC wird die Ferritphase gering gehalten (ODLER, 2000).

Calciumaluminatzemente werden durch Schmelzen (Tonerdeschmelzzement) oder Sintern (Tonerdezement) einer Mischung aus Kalkstein und Bauxit hergestellt (ODLER, 2000, SCRIVENER & CAPMAS, 2004). Tonerdeschmelzzement wird bei Temperaturen von 1450-1600 °C in modifizierten Schachtöfen (ODLER, 2000), offenen Flammöfen oder elektrischen Lichtbogenöfen hergestellt (SCRIVENER & CAPMAS, 2004). Die resultierenden Klinker sind sehr schwer zu mahlen. Um höhere Aluminiumgehalte (60-80 % Al₂O₃) zu erzielen, wird die Sinterung in Drehrohröfen eingesetzt (SCRIVENER & CAPMAS, 2004). Die Herstellung ist teurer als die von Portlandzement. Aufgrund folgender Eigenschaften CAC für ist einige OPC: Spezialanwendungen jedoch besser geeignet als schnelle Festigkeitsentwicklung, niedrigen auch bei Temperaturen; hohe Temperaturbeständigkeit / feuerfest; Beständigkeit gegen chemisch aggressive Medien (SCRIVENER & CAPMAS, 2004). Nach einigen Gebäudeeinbrüchen in Großbritannien Anfang der 70er Jahre (SCRIVENER & CAPMAS, 2004) und weiteren Zusammenbrüchen von Konstruktionen aus CAC in verschiedenen Ländern, wurde die Verwendung von CAC auf Spezialanwendungen eingeschränkt (ODLER, 2000).

Die Hydratation von CAC ist stark temperaturabhängig. So entsteht zwischen 5 und 15 °C metastabiles CAH₁₀, das sich mit der Zeit in metastabiles C₂AH₈ umwandelt, woraus wiederum der thermodynamisch stabile Hydrogranat (C₃AH₆) entsteht. Zwischen 15 und 25 °C bildet sich neben CAH₁₀ auch C₂AH₈ aus CA. Bei Temperaturen über 25 °C bilden sich nur C₂AH₈ und C₃AH₆. Zudem entsteht begleitend immer Gibbsit (γ -AH₃) (PÖLLMANN, 2012). Mit der Umwandlung in C₃AH₆

erhöht sich durch Volumenänderung die Porosität der Mikrostruktur, was zu Schäden an Bau- und Konstruktionsmaterialien führt (PÖLLMANN, 2012). Der Zement verliert an Festigkeit, worunter die Langzeitbeständigkeit leidet (ODLER, 2000).

1.3. Aufgabenstellung und Motivation

In der vorliegenden Arbeit werden Spezialzemente unter Verwendung von Mineralisatoren hergestellt. Bei der Synthese der Spezialzemente entstehen neue Klinkerminerale, die für ein besseres Verständnis der neuen zementären Systeme charakterisiert werden müssen. Dazu werden im Vorfeld Synthesen von Reinphasen durchgeführt, die in den synthetisierten Spezialzementen zum Teil auftreten. Im Fokus der Arbeit steht die Synthese von Fluor-Ye'elimitzement, Belit-Fluoroaluminatzement, Bor-Tonerdezement und Fluor-Tonerdezement. Untersucht werden verschiedene Mineralisatoren (Flussspat, Kryolith, Calciumborat. Calciumsulfat) sowie unterschiedliche Anteile an Mineralisator-Zumischungen. Schwerpunkt bei den Synthesen bildet die Optimierung der Phasenzusammensetzung, die mittels Rietveld Methode inklusive des amorphen Anteils quantifiziert wird. Alle Proben werden zudem auf ihre spezifische Oberfläche, Hydraulizität und Mikrostruktur untersucht.

Durch die Bildung der neuen Klinkerminerale wird eine Reduzierung der CO₂-Emissionen erreicht. Zudem führt der Einsatz von Mineralisatoren zu einer Erniedrigung der Sintertemperatur und einer Verkürzung der Haltezeit, woraus wiederum Energieersparnisse resultieren. Neben den vielen positiven Aspekten, gibt es auch einige einschränkende Aspekte beim Einsatz von Mineralisatoren. Beide Seiten werden im Folgenden näher erläutert:

1. Reduzierung der CO₂-Emissionen

Da bei der Temperatureinwirkung auf den Hauptrohstoff Calciumcarbonat CO₂ frei wird, kann eine Reduzierung der CO₂-Emissionen durch eine Reduzierung des Calciumcarbonateinsatzes erreicht werden. Dies ist möglich, da bei der Spezialzementherstellung als Hauptphasen neue calciumärmere Klinkerphasen entstehen wie Ye'elimit, Fluor-Sodalith, Fluor-Mayenit, Belit und Calciumaluminat (Tab. 1). Im Vergleich zu den neuen Klinkerphasen werden bei der Bildung der Hauptphase von gewöhnlichem Portlandzement (Alit) 58 % CO₂ frei (Formel 1).

$$3\text{CaCO}_{3} + \text{SiO}_{2} \rightarrow 3\text{CaO} \cdot \text{SiO}_{2} + 3\text{CO}_{2} \qquad \frac{M(3CO_{2})}{M(3CaO \cdot SiO_{2})} * 100 \% = \frac{132,03 \frac{g}{mol}}{228,32 \frac{g}{mol}} * 100 \% = 58 \%$$
(1)

Tab. 1: Prozentanteile des freiwerdenden CO₂, die bei der Bildung der Hauptklinkerphasen von Portlandzement und der Spezialzemente frei werden (berechnet nach Formel 1)

Klinkerphase	freiwerdendes CO ₂ [%]
Alit (C ₃ S)	58
Belit (C ₂ S)	51
Fluor-Mayenit (C ₁₁ A ₇ CaF ₂)	34
Calciumaluminat (CA)	28
Fluor-Sodalith (C ₃ A ₃ CaF ₂)	24
Ye'elimit (C₄A₃s)	22

Im Hinblick auf eine zukünftige CO₂-Steuer, erfolgt durch die Synthese von Spezialzementen mit reduziertem CO₂-Ausstoß eine Kostenersparnis.

2. Erniedrigung der Sintertemperatur (Energieersparnis)

Bei der Herstellung dieser Spezialzemente können niedrigere Sintertemperaturen verwendet werden, woraus Energieeinsparungen resultieren. Für gewöhnlichen Portlandzement werden Temperaturen um die 1450 °C benötigt (KURDOWSKI, 2014). Die Spezialzemente werden zwischen 1100 und 1350 °C gesintert. Damit erfolgt eine Temperaturerniedrigung um 7-24 %. Die Erniedrigung der Sintertemperatur ist aufgrund des Einsatzes der Mineralisatoren und der niedrigeren benötigten Bildungstemperatur für die neuen Klinkerminerale möglich.

3. Verkürzung der Haltezeit (Energieersparnis)

Eine zusätzliche Energieersparnis kann durch die Verkürzung der Haltezeitzeit der max. Sintertemperatur erreicht werden. Laborversuche mit Mineralisatoren werden im Muffelofen mit einer Haltezeit von einer und zwei Stunden durchgeführt und mit Versuchen ohne Mineralisator verglichen.

4. Nebenwirkungen

Bei der Synthese der Spezialzemente entstehen unter der Verwendung von Mineralisatoren neue Klinkerminerale, die untersucht werden müssen. Mögliche Nebenwirkungen der Mineralisatoren wie die bekannte Verzögerung der Hydratation von Zement durch Fluor und Bor (ALTUN, 1999, KURDOWSKI, 2014), werden durch Zugabe von üblichen Beschleunigern wie Lithiumcarbonat vermieden. Aufgrund des erhöten Bedarfs in der Batterieherstellung, wird die Preisentwicklung für Lithium in Zukunft tendentiell steigen. Dafür sind die Preise der Mineralisatoren relativ gering (265 US\$/t Flussspat, Deutsche Rohstoffagentur 01/2019, 170 US\$/t Colemanit, Industrial Minerals 01/2019). Die Menge des Mineralisatorgehalts wird bei den Synthesen optimiert um möglichst wenig einzusetzen. Volatile bor- und fluorhaltige Materialien können bei hohen Temperaturen freigesetzt werden, wenn sie nicht in die Mineralbildung eingebunden werden. Langzeituntersuchungen hinsichtlich der Mikrostruktur und Stabilität der ausgehärteten Zemente und ihrer Anwendung sind zukünftig noch zu bewerten. Auch Untersuchungen zur Recyclebarkeit von Rauchgasreinigungsprodukten und die Verwendung von Fluoranhydrit sind zukünftig geplant.

2. Experimentelle Methoden

2.1. Röntgenpulverdiffraktometrie

Für die pulverdiffraktometrischen Untersuchungen stand ein X'Pert³ Powder Diffraktometer (CuK $\alpha_1 \lambda$ = 1,5418 Å, Spannung = 45 kV, Stromstärke = 40 mA) der Firma PANalytical B.V. mit Bragg-Brentano Geometrie und PIXcel^{1D} Detektor zur Verfügung (Abb. 2). Die Messungen wurden in einem Winkelbereich von 5-70 °20 durchgeführt. Die Maskengröße betrug standardmäßig 15 mm, die Größe der Soller Slits 0,04 rad, der Divergenzblende 1/4° und der Streustrahlblende 1/2°. Die Schrittweite betrug 0,0131 °2O und die Messzeit pro Schritt 20,4 s. Sämtliche trockenen Proben wurden auf Standardprobenträgern mit 27 mm Durchmesser mittels der "back-loading" Methode präpariert. Der Präparathöhenfehler konnte durch Zumischung von Silizium (≥ 99 %, Sigma-Aldrich) korrigiert werden. Die noch hydratisierten Zementproben wurden nach kalorimetrischen feuchten den Messungen mittels "front-loading" Methode in Standardprobenträgern mit 16 mm Durchmesser präpariert. Hierfür wurde eine 10 mm große Maske verwendet sowie eine ¹/₈° große Divergenzblende und eine ¹/₄° große Streustrahlblende.

Abb. 2: X'Pert³ Powder Diffraktometer der Firma PANalytical B.V. mit PIXcel^{1D} Detektor

Für die Auswertung stand das Programm HighScore Plus in den Versionen 3.0–4.8 der Firma PANalytical B.V. zur Verfügung (DEGEN et al., 2014). Die Verfeinerung der Gitterkonstanten erfolgte mittels Pawley-Fit nach der Methode der kleinsten Quadrate ("Least-Squares Verfahren"). Für diese Methode werden die Gitterkonstanten und die Raumgruppe der zu verfeinernden Phase benötigt.

Quantifizierungen von Phasengemischen wurden nach der Rietveld-Methode (RIETVELD, 1967 und 1969) durchgeführt. Durch die Rietveld-Methode war es möglich neben dem Phasenbestand auch den amorphen Anteil der Proben guantitativ zu bestimmen (WESTPHAL et al., 2009). Hierzu wurde den Proben 10 Gew.-% Rutil (≥ 98,5 %, Kronos 2900) als interner Standard zugemischt. Für die Rietveld-Analysen wurden die benötigten Kristallstrukturdaten der ICSD (Inorganic Crystal Structure Database) (Tab. 2), der AMCSD (American Mineralogist Crystal Structure Database) und der COD (Crystallography Open Database) (Tab. 3) entnommen. Ye'elimit bildete sich in den Fluor-Ye'elimitzementen in orthorhombischer Struktur aus, weshalb hier nur die orthorhombischen Kristallstrukturdaten aufgeführt sind. Für die Rietveld-Verfeinerungen wurden folgende Parameter in der angegebenen Reihenfolge verfeinert: Untergrund, Skalierungsfaktoren, Gitterkonstanten, die Profilvariablen w und u, die Reflexform und die Nullpunktverschiebung. Die Verfeinerung der Profilvariablen erfolgte dabei über die pseudo-Voigt Funktion. Bei einzelnen Phasen musste anschließend die Vorzugsorientierung verfeinert werden. Der Untergrund wurde polynomial angepasst oder zu Beginn manuell gelegt, wenn er komplex war.

Phase	ICSD-Code		Phase	ICSD-Code	
CA	260		Freikalk	60704	60199
CA ₂	34487	44519	γ -C ₂ S	68753	
СВ	62430	30282	Gehlenit	24588	
CB ₂	200081		Hatrurit	201469	
C ₂ AB	27647		Korund	85137	30024
C ₂ B	66516		Larnit	39006	963
C ₃ B	1894		Mayenit	6287	62040
Cuspidin	64710	34339	Rutil	9161	
Fluor-Mayenit	2593		Tiefcristobalit	47221	
Fluor-Sodalith	7221623		Tiefquarz	71395	200721

Tab. 2: Verwendete Kristallstrukturdaten aus der ICSD

Tab. 3: Verwendete Kristallstrukturdaten aus der AMCSD und COD

Phase	Datenbank Code	Datenbank	
C ₃ A	9531	AMCSD	
Ye'elimit	4001772	COD	

2.1.1. in situ XRD Hydratationsversuche

Für in situ-Messungen der Hydratation der Zementproben wurde ein spezieller Probenträger der Firma MESICON mit Temperaturregelung (MAETRE= Mesicon AdvancEd TempeRaturE control) und einer Auflösung von 0,1 °C verwendet. Während der Messung wurde die Temperatur des Probenträgers mithilfe eines Peltier-Elements konstant auf 23 °C gehalten. Um das Austrocknen oder Carbonatisieren der Probe zu vermeiden, wurde eine Kapton[®] Polyimide Folie von Chemplex[®] Industries, Inc. mithilfe eines Ringes über die Probe gespannt. Die Messung der Folie ohne Probe ergab, dass mehrere deutliche amorphe Buckel detektiert werden (Abb. 3). Für die Korrektur des Präparathöhenfehlers wurden die Proben mit 10 Gew.-% Rutil als internem Standard gemessen. Als w/z-Wert wurde derselbe gewählt wie für die kalorimetrischen Untersuchungen (w/z=1).

Abb. 3: Diffraktogramm der Kapton® Polyimide Folie.

Die Messungen erfolgten an einem X'Pert Pro MPD Diffraktometer der Firma PANalytical B.V. mit Bragg-Brentano Geometrie, einem X'Celerator Detektor und einer Kupfer-Röntgenröhre (Abb. 4). Verwendet wurden eine variable Blende, 0,04 rad Soller Slits und eine 20 mm große Maske. Der Winkelbereich der Messungen betrug 5–70 °20, die Schrittweite 0,0167 °20 und die Messzeit pro Schritt 27,94 s. Die Messung wurde je nach Probe über 35 bis 80 h wiederholend durchgeführt, sodass am Ende bis zu 300 Diffraktogramme pro Probe entstanden.

Abb. 4: X'Pert Diffraktometer mit MESICON Probenträger und Temperaturregler

2.2. Röntgenfluoreszenzanalyse

Die chemischen Analysen der Edukte wurden mit Hilfe des wellenlängendispersiven Röntgenfluoreszenzspektrometers SRS 3000 mit einer Rhodium-Röhre und LiF, Ge, PET und OVO Analysator-kristallen der Firma Siemens durchgeführt (Abb. 5). Hierfür wurden die Proben als Wachstabletten, bestehend aus 8 g Probe und 2 g Paraffinwachs, aufbereitet.

Abb. 5: Wellenlängendispersives Röntgenfluoreszenzspektrometer SRS 3000 von Siemens

2.3. Messung der spezifischen Oberfläche

2.3.1. Oberflächenbestimmung nach Blaine

Die Bestimmung der spezifischen Oberfläche wurde nach dem genormten Blaine-Prüfverfahren (DIN EN 196-6) mit Hilfe eines Blaine Gerätes der Firma Toni Technik mit einem mit mineralischem Hydrauliköl gefüllten U-Rohr durchgeführt (Abb. 6). Bei dieser Methode wird der Widerstand eines definierten Pulverbetts mit bekannter Dichte und Volumen gegen hindurch strömende Luft gemessen. Die Luftdurchlässigkeit wird dabei durch die Anzahl und Größe der Poren bestimmt. Als Referenzmaterial stand ein Quarzsand mit bekannter spezifischer Oberfläche zur Verfügung.

Jede Probe wurde zweimal präpariert und dabei die Messungen jeweils zweimal durchgeführt. Aus den vier

Abb. 6: Blaine Gerät einzelnen Ergebnissen wurde für jede Probe jeweils ein der Firma Toni Technik Mittelwert gebildet. Sämtliche Untersuchungen fanden bei Normalbedingungen statt.

2.3.2. Oberflächenbestimmung nach BET

Die Messung der spezifischen Oberfläche nach Brunauer-Emmett-Teller (BRUNAUER et al., 1938) wurde mit dem Flowsorb II 2300 von Micromeritics durchgeführt (Abb. 7). Die Proben wurden vor dem Versuch für 15 min bei 150 °C getrocknet und entgast. Als Adsorptivgas diente Stickstoff. Bei der Methode wird die Menge des gasförmigen Stickstoffs bestimmt, die notwendig ist, um auf der Probenoberfläche eine monomolekulare Adsorptionsschicht zu bilden.

Abb. 7: BET-Gerät "Flowsorb II 2300" von Micromeritics

2.4. Wärmeflusskalorimetrie

Anhand der Wärmeflusskalorimetrie ist es möglich Aussagen über den Wärmefluss während der Hydratation zu treffen und dadurch Rückschlüsse auf die Reaktivität der Proben zu ziehen. Erste Messungen mit Wärmeflusskalorimetern wurden im Bereich der Bindemittelforschung durchgeführt (TIAN, 1923) und die Methodik seitdem fortführend verbessert wie an Beispielen des Kalorimeters mit einer (FORRESTER, 1970) oder mehreren (PROSEN et al., 1985) Messzellen zu sehen ist. Innerhalb dieser Arbeit kam das isoperibole Wärmeflusskalorimeter mit einer Vierlingsanordnung von einer Referenzzelle und drei Messzellen (KUZEL, 1984, PÖLLMANN et al., 1991) zum

Einsatz (Abb. 8). Die Messzellen wurden jeweils durch das Aufsetzen eines Hochpräzisionswiderstandes von 10 k Ω und das Anlegen einer Spannung von 10 V kalibriert.

Abb. 8: Wärmeflusskalorimeter mit Vierlingsanordnung (drei Messzellen und eine Referenzzelle)

Für die Probenpräparation kam die Injektionsmethode zum Einsatz, bei der die Wärmeflussaufzeichnung ab initio erfolgt. Hierbei wird dest. Wasser durch ein kleines Loch im Deckel des Kupfertiegels mittels Spritze hinzugegeben. Als Wasser-Zement-Wert wurde 1 gewählt mit der Einwaage von 1 g. Sowohl der Kupfertiegel mit Probe als auch das in der Spritze befindliche Anmachwasser wurden für einen thermischen Ausgleich vor dem Versuchsstart für 24 h im Kalorimeter gelagert. Das im Tiegeldeckel befindliche Loch wurde mittels Vakuumfett versiegelt. Die Bestimmung des Zeitpunkts (tmax) des maximalen Wärmeflusses (mWmax/g) konnte durch das Auftragen des aufgezeichneten Wärmeflusses (mW/g) gegen die Zeit durchgeführt werden. Die gesamte freigewordene Hydratationswärme (J/g) wurde durch Integration des Wärmeflusses über die Zeit berechnet.

2.5. Rasterelektronenmikroskopie

Mit Hilfe der Rasterelektronenmikroskopie (REM) konnten die verschiedenen Syntheseprodukte hinsichtlich ihrer Mikrostruktur charakterisiert werden. Zusätzlich wurden einige Partikel mittels energiedispersiver Mikroanalyse (EDX) chemisch charakterisiert. Für diese Untersuchungen standen die Feldemissions Geräte LEO 1530 VP Gemini und Zeiss Gemini 300 im Zentrum für Werkstoffanalytik Lauf (ZWL) zur Verfügung. Für hochauflösende Aufnahmen sind beide Geräte mit einem High-Efficiency InLens-Detektor ausgestattet.

Um einen Überblick über die Elementverteilung zu bekommen, wurde ein Elementmapping mit dem Tabletop Mikroskop TM4000Plus der Firma HITACHI bei einer Beschleunigungsspannung von 15 kV durchgeführt (Abb. 9). Das Tabletop Mikroskop ist mit einem High-Sensitivity 4-segment BSE-Detektor und einem Quantax75 EDX-Detektor der Bruker Nano GmbH ausgestattet. Um eine Aufladung unter Elektronenbeschuss zu verhindern, wurden die Proben mit einer leitenden Schicht aus Kohlenstoff bedampft.

Abb. 9: Tabletop Mikroskops TM4000Plus von HITACHI

2.6. Fluorid-Elektrode

Da sich Fluorid bei hohen Brenntemperaturen verflüchtigen kann, wurden die fluorhaltigen Proben auf ihren verbliebenen Fluoridgehalt hin untersucht. Hierfür stand eine perfectION™ Fluorid-Kombinationselektrode der Firma Mettler Toledo mit einer Nachweisgrenze von 10⁻⁶ mol/L zur Verfügung (Abb. 10). Es handelt sich dabei um eine ionenselektive Fluorid-Elektrode, deren Potential von der Flouridionenkonzentration abhängt.

Abb. 10: Titrator mit angeschlossener perfectION™ Fluorid-Kombinationselektrode der Firma Mettler Toledo

Vor Beginn der Messungen wurde die Elektrode mit einem fluoridhaltigen Standard (NaF), welcher im Verhältnis von 1:1 mit einer TISAB IV (total ionic strength adjustment buffer) Lösung versetzt wurde, mittels serieller Verdünnung über vier Punkte kalibriert (0,1 ppm, 1 ppm, 10 ppm und 100 ppm) (Tab. 4).

	Konzentration [ppm]			
Hergestellte Standardlösung	0,1	1	10	100
Messung der Standardlösung mit Fluorid- Elektrode	0,183	1,214	10,131	101,630

Tab. 4: Überprüfung der Kalibrierung der Fluorid-Elektrode

Zur Bestimmung des Fluoridgehalts wurden jeweils 0,5 g einer Probe in 19%iger Salzsäure aufgelöst. Im Anschluss wurde ein Teil der Probelösung mit 20%iger Natriumacetatlösung versetzt um den pH-Wert von <0 auf ca. 5 anzuheben. Sämtlichen Probelösungen wurden vor Messbeginn TISAB IV (Verhältnis Probe:TISAB IV von 1:1) zugegeben um eine einheitliche Gesamtionenstärke von Kalibrier- und Messlösungen zu gewährleisten und das Störion Al³⁺ zu komplexieren. Jede Probe wurde bis zum Erhalt eines konstanten Wertes gemessen.

2.7. Synthesemethode

Alle Zementklinker und alle Reinphasen wurden mittels Festkörpersynthese hergestellt. Die Methode der Festkörpersynthese bietet im Vergleich zu der häufig verwendeten nasschemischen Pechini Methode (PECHINI, 1967) Zeitersparnis und benötigt deutlich weniger Aufwand bei der Durchführung.

Die Ausgangsstoffe wurden auf einer Feinwaage mit einer Genauigkeit von 0,0001 g eingewogen und anschließend in einem Achatmörser mit Pistill per Hand homogenisiert. Die homogenisierten Pulver wurden in Korund-Tiegel überführt und verdichtet. Die Sinterung erfolgte im Muffelofen bei unterschiedlichen Temperaturen und Haltezeiten (Tab. 5) mit einer Aufheizrate von 10 °C/min. Ein Korund-Tiegeldeckel verminderte den Verlust von volatilen Bestandteilen. Nach Ablauf der Haltezeit der maximalen Sintertemperatur wurden die Proben aus dem Muffelofen geholt und im Exsikkator bei Raumtemperatur abgekühlt. Die abgekühlten Proben wurden im Achatmörser für ca. 10 min per Hand pulverisiert.

Syntheseprodukt	Sintertemperatur	Haltezeit der
		Sintertemperatur
CaO•2B ₂ O ₃	960 °C	15 h
CaO•B ₂ O ₃	900 °C	1 h
2CaO•B2O3	900 °C	2 h
3CaO•B ₂ O ₃	900 °C	4 h
2CaO•Al2O3•B2O3	980 °C	15 h
CaO•Al ₂ O ₃	1300 °C	16 h
11CaO•7Al ₂ O ₃ •CaF ₂	1250 °C	2 h
3CaO•2SiO₂•CaF₂	1140 °C	3 h
3CaO•3Al ₂ O ₃ •CaF ₂	1350 °C	15 min / 30 min / 60 min
3CaO•3Al ₂ O ₃ •CaSO ₄	1350 °C	15 min / 30 min / 60 min
3CaO•3Al ₂ O ₃ •xCaF ₂ •(1-x)CaSO ₄	1350 °C	30 min
Belit-Fluoroaluminatzementklinker	1100 °C / 1150 °C	2 h
Bor-Tonerdezementklinker	1300 °C	1 h / 2 h
Fluor-Tonerdezementklinker	1300 °C	2 h

Tab. 5: Sintertemperaturen und Haltezeiten der max. Sintertemperaturen im Muffelofen mit einer Aufheizrate von 10 °C/min für alle durchgeführten Synthesen

Alle für die Synthesen eingesetzten Chemikalien und natürlichen Rohstoffe sind in Tabelle 6 aufgelistet. Die Ausgangsmaterialien wurden mittels XRD und RFA (bis auf die fluor- und borhaltigen) auf ihre chemische Zusammensetzung und möglichen Verunreinigungen untersucht (siehe Anhang). Für die Berechnung der Syntheseeinwagen wurde der Glühverlust aller Ausgangsmaterialien bestimmt.

Verbindungsname	Formel	Reinheitsgrad	Hersteller
Calciumcarbonat	CaCO ₃	≥ 98,5 %	AppliChem
Siliziumdioxid	SiO ₂	≥ 97 %	Sigma-Aldrich
Aluminiumoxid	α -Al ₂ O ₃	≥ 97 %	Fluka
Aluminiumoxid	γ-Al ₂ O ₃	≥ 99 %	Merck
(γ-Tonerde)			
Calciumfluorid	CaF ₂	≥ 98 %	Merck
Calciumsulfat-	CaSO ₄ •2H ₂ O	≥ 98 %	Carl Roth
Dihydrat			
Kryolith	Na ₃ [AIF ₆]	≥ 97 %	Sigma-Aldrich
Borsäure	H ₃ BO ₃	≥ 99,5 %	Fluka
Calciumborat	Ca(OH) ₂	-	Rantzauer
	CaB ₂ O ₄ •5H ₂ O		Töpferbedarf
	CaB ₆ O ₁₀ •5H ₂ O		
	Ca2B10O17•5H2O		

Tab. 6: Auflistung der verwendeten Chemikalien und natürlichen Rohstoffe

3. Synthese von Klinkermineralen und Charakterisierung

3.1. Borate

Es wurden einzelne Reinphasen synthetisiert, die in den später synthetisierten zementären Systemen vorkommen können. So konnten die neuen Klinkerminerale genauer betrachtet und ihr Hydratationsverhalten untersucht werden. Es wurden alle reinen Calciumborate aus dem System CaO-B₂O₃ synthetisiert, die stabil sind (CB₂, CB, C₂B, C₃B), sowie aus Gründen der Stöchiometrie C₂AB, was eine Kombination von CA und CB ist (Abb. 11). CA wurde synthetisiert, da es für die Synthese von C₂AB als Ausgangsstoff benötigt wurde und ebenfalls als Hauptphase in den Spezialzementen auftritt.

Abb. 11: Stabile Phasen im System B_2O_3 -Al₂O₃-CaO. Die sechs blau gekennzeichneten Verbindungen wurden synthetisiert

3.1.1. CaO•B₂O₃

Für die Synthese von CB wurde ein preiswerter Rohstoff der Firma Rantzauer Töpferbedarf verwendet, der aus einem Gemisch aus Portlandit, Gowerit (CaB₆O₁₀•5H₂O) und Ca₂B₁₀O₁₇•5H₂O besteht. Der Rohstoff wurde für 1 h bei 900 °C gesintert. Es entstand reinphasiges CB. Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = 11,5970(1) Å, b = 4,2778(0) Å, c = 6,2179(9) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 308,4(7) Å³ mit der Raumgruppe Pbcn (Abb. 12). Diese Daten stimmen mit den von MAREZIO et al. (1963) und KIRFEL (1987) bestimmten Gitterkonstanten überein. Rasterelektronenmikroskopische Aufnahmen zeigten, dass die CaO•B₂O₃-Kristalle als Rekristallisationsprodukt als rechtwinklige längliche Stängel ausgebildet sind (Abb. 13). Durch die Entgasung des Wassers sind Löcher entstanden.

Abb. 12: Pawley-Fit des Röntgendiffraktogramms von CaO•B2O3

Abb. 13: REM-Aufnahmen von rechtwinkligen orthorhombischen CaO•B₂O₃-Kristallen. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

CB ist hydraulisch aktiv und zeigte bei einer spezifischen Oberfläche von 1,34 m²/g einen schnellen Reaktionsbeginn mit Wasser bei einem w/z-Wert von 1. Das Hydratationsmaximum wurde nach 2,5 h mit einem Wärmefluss von 6,7 mW/g erreicht (Abb. 14). Die Reaktionsdauer war sehr lang und endete nach ca. 80 h. Die Probe wurde anschließend feucht geröntgt. Die Präparation erfolgte mittels frontloading in einem kleinen Standardprobenträger (Durchmesser: 16 mm). CB ist laut XRD-Untersuchung zu monoklinen Hexahydroborit (CBH₆) hydratisiert (Abb. 15), dessen Kristalle überwiegend in rundlicher Form ausgebildet sind (Abb. 16).

Abb. 14: Wärmeflusskurve von CaO•B₂O₃ (w/z-Wert = 1, spezif. Oberfläche = 1,34 m²/g)

Abb. 15: Hydratationsprodukte von CB; XRD nach 80 h Hydratation mit w/z-Wert = 1.

Abb. 16: REM-Aufnahmen von rundlichen CBH₆-Kristallen und nicht hydratisierten länglichen CB-Kristallen. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung

3.1.2. CaO•2B₂O₃

Für die Synthese von CB2 wurde zu dem Portlandit-/Calciumborathydrat-Rohstoff (Rantzauer Töpferbedarf) Borsäure (H₃BO₃) hinzugegeben. Das theoretische prozentuale Massenverhältnis der Rohstoffe lautet 50,4:49,6 (CB:H₃BO₃). Das prozentuale Rohstoffverhältnis für die erfolgreiche reinphasige Synthese lautete 33,7:66,3 (CB:H₃BO₃), also die Einwaage für CB₃. Aufgrund des thermisch bedingten Bor-Verlustes während der Sinterung, musste ein Borüberschuss eingewogen werden. Die homogenisierten Rohstoffe wurden bei 960 °C für 15 h im Muffelofen gesintert. Es bildete sich reinphasiges CB₂. Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = 7,7972(9) Å, b = 9,8998(0) Å, c = 14,3878(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 121,55^{\circ}$, V = 946,2(7) Å³ mit der Raumgruppe P2₁/c (Abb. 17). Es wurden zwar monokline Strukturdaten von CB₂ in der Literatur gefunden, jedoch mit anderen Gitterkonstanten (z. B. ZAYAKINA & BROVKIN, 1977: a = 12,34(2) Å, b = 9,95(1) Å, c = 7,85(1) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 92,1(1)^{\circ}$, V = 963,2(0)Å³, P2₁/n). Kalorimetrische Untersuchungen zeigten, dass CB₂ nicht hydraulisch aktiv ist. In REM-Aufnahmen erscheinen die monoklinen CB₂-Kristalle in eckiger Form und miteinander verwachsen (Abb. 18).

Abb. 17: Pawley-Fit des Röntgendiffraktogramms von CaO•2B2O3

Abb. 18: REM-Aufnahmen von monoklinen CB₂-Kristallen mit deutlich sichtbaren Kanten. Links: 200x-Vergrößerung, rechts: 500x-Vergrößerung

3.1.3. 2CaO•B2O3

Um C₂B aus dem Portlandit-/Calciumborathydrat-Rohstoff (Rantzauer Töpferbedarf) zu synthetisieren, musste Calciumcarbonat hinzugefügt werden. Das theoretische prozentuale Massenverhältnis der Rohstoffe lautet 44,3:55,7 (Cc:CB). Aufgrund des thermisch bedingten Bor-Verlustes während der Sinterung, musste ein Borüberschuss eingewogen werden. Das prozentuale Rohstoffverhältnis für die erfolgreiche reinphasige Synthese lautete 42,9:57,1. Die homogenisierten Rohstoffe wurden bei 900 °C für 2 h im Muffelofen gesintert. Es bildete sich reinphasiges C₂B.

Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = 7,2178(6) Å, b = 5,1773(4) Å, c = 11,5026(1) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 92,83^{\circ}$, V = 429,3(1) Å³ mit der Raumgruppe P2₁/c (Abb. 19). Diese Daten stimmen mit den von JI et al. (1993) und LIN et al. (1999) bestimmten Gitterkonstanten überein. Kalorimetrische Untersuchungen zeigten, dass C₂B nicht hydraulisch aktiv ist. In den REM-Aufnahmen erscheint C₂B in sehr kleinen gerundeten Kristallen (<1 µm), die sich z.T. zu Würfelformen akkumulieren (Abb. 20).

Abb. 19: Pawley-Fit des Röntgendiffraktogramms von 2CaO•B2O3

Abb. 20: REM-Aufnahmen von monoklinen gerundeten $2CaO \cdot B_2O_3$ -Körnern. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

3.1.4. 3CaO•B2O3

Für die Synthese von C₃B musste dem Portlandit-/Calciumborathydrat-Rohstoff (Rantzauer Töpferbedarf) Calciumcarbonat hinzugefügt werden. Das theoretische prozentuale Massenverhältnis der Rohstoffe lautet 61.4:38,5 (Cc:CB). Die Synthese von C₃B war erfolgreich bei einem reinphasige prozentualen Massenverhältnis von 60,4:39,6. Die homogenisierten Rohstoffe wurden bei 900 °C für insgesamt 4 h im Muffelofen gesintert. Nach 2 h Haltezeit und Abkühlung auf Raumtemperatur wurde die Probe zwischengemörsert und geröntgt, wobei noch eine Restmenge CaO detektiert wurde. Nach einer Sinterung von weiteren 2 h wurde das Calciumoxid vollständig verbraucht und es resultierte reinphasiges C₃B. Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = b = 8,6347(3) Å, c = 11,8597(4) Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$, V = 765,7(8) Å³ mit der Raumgruppe $R\bar{3}c$ (Abb. 21). Diese Daten stimmen mit den von MAJILING et al. (1974), VEGAS et al. (1975) und KUSACHI et al. (1995) bestimmten Gitterkonstanten überein. Kalorimetrische Untersuchungen zeigten, dass C₃B nicht hydraulisch aktiv ist. In REM-Aufnahmen erscheint C₃B in abgerundeter zum Teil länglicher Form mit noch nicht vollständig ausgebildeten Kristallflächen (Abb. 22).

Abb. 21: Pawley-Fit des Röntgendiffraktogramms von 3CaO•B2O3

Abb. 22: REM-Aufnahmen von hexagonalen 3CaO•B₂O₃-Kristallen mit noch nicht vollständig ausgebildeten Kristallfächen. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

3.1.5. 2CaO•Al₂O₃•B₂O₃

Für die Synthese von C₂AB musste dem Portlandit-/Calciumborathydrat-Rohstoff (Rantzauer Töpferbedarf) Calciumcarbonat und γ -Aluminiumoxid hinzugefügt werden. Dieser Syntheseweg führte nicht zur gewünschten Reinphase. Neben C₂AB lagen stets C₂B und nicht umgesetztes Aluminiumoxid vor. Alternativ wurden zunächst nacheinander CB (siehe 4.1.2) und CA aus Calciumcarbonat und γ -Aluminiumoxid mittels Festkörpersynthese synthetisiert. CA kristallisierte im monoklinen Kristallsystem (P2₁/n) mit den Gitterkonstanen a = 8,6968(1) Å, b = 8,0987(0) Å, c = 15,2115(3) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 90,16^{\circ}$, V = 1071,3(8) Å³ aus (Abb. 23). Die Werte wurden mittels Pawley-Fit bestimmt und stimmen mit den Literaturdaten (HOERKNER & MUELLER-BUSCHBAUM, 1976) überein.

Abb. 23: Pawley-Fit des Röntgendiffraktogramms von CaO•Al₂O₃

Mit dem theoretischen prozentualen Massenverhältnis von 55,7:44,3 (CA:CB) reagieren CA und CB zu C2AB. Mit einem geringen Borüberschuss und dem prozentualen Massenverhältnis 54,8:45,2 (CA:CB) entstand bei einer Sintertemperatur von 980 °C und nach einer Haltezeit von 15 h die reine Phase C₂AB. Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = 8,2746(7) Å, b = 15,2412(7) Å, c = 5,7380(4) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 723,6(6) $Å^3$ mit der Raumgruppe Ccc2 (Abb. 24). Diese Daten stimmen mit den von SCHÄFER & KUZEL (1967) und SCHUCKMANN (1968) bestimmten Gitterkonstanten überein. Kalorimetrische Untersuchungen zeigten, dass C₂AB nicht hydraulisch aktiv ist. In REM-Aufnahmen erscheint C2AB in unregelmäßiger, rundlicher bis länglicher Form mit noch nicht vollständig ausgebildeten Kristallflächen (Abb. 25).

Abb. 24: Pawley-Fit des Röntgendiffraktogramms von 2CaO+Al₂O₃+B₂O₃

Abb. 25: REM-Aufnahmen von orthorhombischem 2CaO•Al₂O₃•B₂O₃ mit unregelmäßig ausgebildeten, zum Teil länglichen, Kristallen. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

3.2. Fluoride

Es wurden einzelne Reinphasen synthetisiert, die in den später synthetisierten zementären Systemen vorkommen (Abb. 26). Dadurch konnten die neuen Klinkerminerale genauer betrachtet und ihr Hydratationsverhalten untersucht werden. Zu den synthetisierten Fluoriden gehören Fluor-Mayenit (C₁₁A₇CaF₂), Cuspidin (C₃S₂CaF₂) und Fluor-Sodalith (C₃A₃CaF₂).

Abb. 26: Links: Stabile Phasen im System CaF₂-Al₂O₃-CaO. Rechts: Stabile Phasen im System CaF₂-SiO₂-CaO. Die blau gekennzeichneten Verbindungen wurden synthetisiert

3.2.1. 11CaO•7Al₂O₃•CaF₂

Für die Synthese von Fluor-Mayenit (C11A7CaF2) wurden Calciumcarbonat, Aluminiumoxid und Calciumfluorid mit dem prozentualen Massenverhältnis von 43,8:50,7:5,5 (CaO:Al₂O₃:CaF₂) eingewogen und nach dem Homogenisieren bei 1250 °C für 2 h gesintert. Es entstand reinphasiger Fluor-Mayenit. Die Einwaage mit theoretischen Masseverhältnissen überein. Aus stimmt den der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = b = c = 11,9625(8) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 1711,8(8) Å³ mit der Raumgruppe I $\overline{4}$ 3d (Abb. 27). Diese Daten stimmen mit den von YU et al. (1967) und COSTA & BALLIRANO (2000) bestimmten Gitterkonstanten überein. REM-Aufnahmen von Fluor-Mayenit zeigen, dass sich miteinander verwachsene, bis zu 9 µm große, relativ isometrische gerundete Kristalle gebildet haben (Abb. 28).

Der Fluorgehalt des synthetisierten Fluor-Mayenits wurde mit einer ionenselektiven Fluorid-Elektrode bestimmt (15,6 ppm) und mit dem gemessenen Fluorgehalt der Ausgangsstoffe verglichen (16,3 ppm). Die Messungen ergaben, dass es während der Sinterung zu einem geringen Fluorverlust von ca. 4 % gekommen ist.

Abb. 27: Pawley-Fit des Röntgendiffraktogramms von 11CaO•7Al₂O₃•CaF₂

Abb. 28: REM-Aufnahmen von isometrischen, rundlichen Fluor-Mayenit-Körnern. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung

Fluor-Mayenit ist hydraulisch aktiv und zeigt im Kalorigramm drei Reaktionen mit Wasser bei einem w/z-Wert von 1 und einer spezifischen Oberfläche von 1800 cm²/g (Abb. 29). Diese drei Peaks sind in ihrer zeitlichen Abfolge laut RAMACHANDRAN et al. (2002) typisch für Fluor-Mayenit. Die erste Reaktion findet nach 18 min statt mit einem Wärmefluss von 12,5 mW/g. Bei der zweiten Reaktion werden nach 1,4 h maximal 9,6 mW/g frei. Das Haupthydratationsmaximum findet mit einem Wärmefluss von 21,4 mW/g nach 23 h statt. Nach etwa 30 h ist die Hydratation vollständig abgelaufen. Nach der 3-tägigen kalorimetrischen Messung wurden mittels XRD die Hydratphasen CAH₁₀, C₂AH₈ und C₃AH₆ detektiert (Abb. 30). Hexagonales

Bei der zweiten Reaktion bilden sich laut CAH₁₀ bildet sich als erstes. kubisches C₃AH₆ RAMACHANDRAN et al. (2002)und hexagonale Calciumaluminathydrate wie C₂AH₈ und C₄AH₁₃, die sich beim dritten Peak in kubisches C₃AH₆ umwandeln. Laut ODLER (2000) entsteht zudem noch amorpher Gibbsit (γ -AH₃). Verbliebener Fluor-Mayenit hydratisiert im letzten Peak ebenfalls. REM-Aufnahmen bestätigen die XRD-Ergebnisse und zeigen wie CAH10 in feinen Nadeln auskristallisiert ist, C₂AH₈ Plättchen gebildet hat und C₃AH₆, auch Hydrogranat genannt, Deltoidikositetraederformen bildete (Abb. 31). Laut PARK (1998) stabilisiert das Fluor aus dem Fluor-Mayenit C₃AH₆, sodass sich C₃AH₆ bereits zu einer früheren Zeit und in größeren Mengen bildet als bei der Hydratation von C₁₂A₇. Den Fluoreinbau in Hydrogranat bestätigen auch die EDX-Messungen (Abb. 32).

Abb. 29: Wärmeflusskurve von Fluor-Mayenit ($11CaO \cdot 7Al_2O_3 \cdot CaF_2$, w/z-Wert = 1, spezif. Oberfläche = 0,31 m²/g)

Abb. 30: Hydratationsprodukte von Fluor-Mayenit; XRD nach 55 h Hydratation mit w/z-Wert = 1

Abb. 31: REM-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH₈-Plättchen, feine CAH₁₀-Nadeln und Hydrogranate in Deltoidikositetraederform (C₃AH₆). Links und rechts: 5kx-Vergrößerung

Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C_2AH_8 -Plättchen, feine CAH₁₀-Nadeln und Hydrogranate (C_3AH_6) mit eingebautem Fluor. Links: 10kx-Vergrößerung

3.2.2. 3CaO•2SiO2•CaF2

Für die Synthese von Cuspidin (C₃S₂CaF₂) wurden Calciumcarbonat, Siliziumdioxid und Calciumfluorid verwendet. Das theoretische prozentuale Massenverhältnis der Rohstoffe lautet 45,9:32,8:21,3 (CaO:SiO₂:CaF₂). Die reinphasige Synthese von erfolgreich bei einem prozentualen Cuspidin war Massenverhältnis von 45,1:33,2:21,7 (CaO:SiO₂:CaF₂). Die homogenisierten Rohstoffe wurden bei 1140 °C für 3 h im Muffelofen gesintert. Aus der Gitterkonstantenverfeinerung mittels Pawley-Fit resultierten die Gitterparameter a = 7,5335(6) Å, b = 10,5306(9) Å, c = 10,9007(1)Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 70,46^{\circ}$, V = 815,0(2) Å³ mit der Raumgruppe P2₁/c (Abb. 33). Diese Daten stimmen mit den von SABURI et al. (1977) und SMIRNOVA et al. (1955) bestimmten Gitterkonstanten überein. Der Fluorgehalt des synthetisierten Cuspidins wurde mit einer ionenselektiven Fluorid-Elektrode bestimmt (54,04 ppm) und mit dem gemessenen Fluorgehalt der Ausgangsstoffe verglichen (54,23 ppm). Die Messungen ergaben, dass es während der Sinterung zu keinem Fluorverlust gekommen ist. Kalorimetrische Untersuchungen zeigten, dass Cuspidin nicht hydraulisch aktiv ist - auch ODLER & ABDUL-MAULA (1987) kamen zu diesem Ergebnis. REM-Aufnahmen zeigen, dass Cuspidin in überwiegend stängeliger Form mit bis zu einer Länge von 22 µm auskristallisiert (Abb. 34).

Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO₂•CaF₂

Abb. 34: REM-Aufnahmen von 3CaO•2SiO₂•CaF₂ mit überwiegend stängeliger Ausbildung. 2kx-Vergrößerung

3.2.3. 3CaO•3Al₂O₃•CaF₂

(C₃A₃CaF₂) wurde aus Calciumcarbonat, Aluminiumoxid Fluor-Sodalith und Calciumfluorid synthetisiert. Die reinphasige Synthese von Fluor-Sodalith war erfolgreich einem prozentualen Massenverhältnis von 30,5:55,4:14,1 bei (CaO:Al₂O₃:CaF₂), welches auch mit den theoretischen Masseverhältnissen von Fluor-Sodalith überein stimmt. Die homogenisierten Rohstoffe wurden bei 1350 °C für 15 min, 30 min und 60 min im Muffelofen gesintert. Die 15- und 30-minütigen Haltezeiten führten zur reinphasigen Synthese. Mit der Verlängerung der Haltezeit auf 60 min, entstand als Nebenphase Fluor-Mayenit. Aus der Gitterkonstantenverfeinerung der 30-minütigen Synthese mittels Pawley-Fit resultierten die Gitterparameter a = b = 17,3146(4) Å, c = 6,9946(0) Å, $\alpha = \beta = 90^{\circ}$, γ = 120°, V= 1816,0(2) Å³ mit der Raumgruppe R $\overline{3}$ (Abb. 35). Diese Daten stimmen mit den von LEARY (1962) und ZHIGUO et al. (2014) bestimmten Gitterkonstanten überein. Die Gitterparameter der 15-minütigen und 60-minütigen Synthese weichen lediglich in der zweiten Nachkommastelle ab. Der Fluorgehalt der synthetisierten Fluor-Sodalithe wurde mit einer ionenselektiven Fluorid-Elektrode bestimmt und mit dem gemessenen Fluorgehalt der Ausgangsstoffe verglichen (Tab. 7). Die Messungen ergaben, dass es mit zunehmender Haltezeit der max. Sintertemperatur zu einem größeren Fluorverlust kommt. Dennoch war der Fluorverlust während der Sinterung gering (0,3% bis 3,2%).

Abb. 35: Pawley-Fit des Röntgendiffraktogramms von $3CaO\cdot 3Al_2O_3\cdot CaF_2$ (gesintert für 30 min)

Tab. 7: Mit der Fluorid-Elektrode gemessene Fluorid-Konzentrationen der Ausgangstoffe von Fluor-Sodalith und von Fluor-Sodalith nach unterschiedlichen Haltezeiten der max. Sintertemperatur

	F ⁻ -Konzentration	Fluorverlust
	[ppm]	[%]
vor der Sinterung	34,89	-
nach 15 min Haltezeit bei 1350 °C	34,79	0,3
nach 30 min Haltezeit bei 1350 °C	34,44	1,3
nach 60 min Haltezeit bei 1350 °C	33,79	3,2

REM-Aufnahmen der einstündigen Fluor-Sodalith-Synthese zeigen, dass sich bis zu 7 µm große, rundlich bis längliche Körner gebildet haben, die miteinander verwachsen sind (Abb. 36).

Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Kalorimetrische Messungen zeigten, dass Fluor-Sodalith hydraulisch aktiv ist, jedoch sehr langsam abbindet (Abb. 37). Die Sinterdauer beeinflusste dabei das hydraulische Verhalten. Die 15 min lang gesinterte Probe zeigte ihr Hydratationsmaximum nach ca. 152 h mit einem Wärmefluss von 7,5 mW/g. Eine doppelt so lange Sinterung (30 min) verschob das Hydratationsmaximum nur wenig (auf ca. 149 h) und reduzierte den Wärmefluss auf 4,6 mW/g. Eine weitere Verdopplung der Sinterzeit auf 60 min verlangsamte die Hydratation, sodass das Hydratationsmaximum erst nach 214 h mit einem Wärmefluss von 5,9 mW/g auftrat. Zusätzlich wurden die integralen Wärmemengen Q mittels der Software Origin2018b

berechnet. Mit steigender Sinterdauer sank die freigewordene Wärme während der Haupthydratation (15 min; 131,8 J/g, 30 min; 127,1 J/g, 60 min; 100,9 J/g).

Die spezifische Oberfläche der Proben ist in Tabelle 8 zu sehen und beträgt zwischen 0,30 und 0,37 m²/g. XRD-Untersuchungen zeigten, dass die Hydratation von Fluor-Sodalith zur Bildung von CAH₁₀, C₂AH₈, C₃AH₆ und γ -AH₃ führte (Abb. 38). REM-Aufnahmen bestätigen diese Ergebnisse (Abb. 39). C₂AH₈ bildet dünne Plättchen mit hexagonalem Querschnitt. γ-AH₃-Kristalle sind als kleine Plättchen zu erkennen, die akkumuliert auftreten. In der rechten REM-Aufnahme sind unterschiedlichen Polyederformen Hydrogranate (C₃AH₆) mit zu erkennen (Rhombendodekaeder, Deltoidikositetraeder). EDX-Aufnahmen zeigen, dass das Fluor in die Hydrogranate eingebaut wurde (Abb. 40). Zudem ist das Fluor in würfelförmigen Calciumkryolithen enthalten (Abb. 41).

Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1)

Tab. 8: Spezifische Oberfläche der unterschiedlich lang gesinterten Fluor-Sodalithe; bestimmt nach BET

Probe	Spezifische Oberfläche [m²/g]
Fluor-Sodalith, 15 min gesintert	0,30
Fluor-Sodalith, 30 min gesintert	0,37
Fluor-Sodalith, 60 min gesintert	0,31

Abb. 38: Hydratationsprodukte von Fluor-Sodalith (1 h gesintert); XRD nach 190 h Hydratation mit w/z-Wert = 1.

Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale C₂AH₈-Platten, γ -AH₃-Plättchen, Calciumkryolith-Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 40: REM- und EDX-Aufnahme C₃AH₆-Deltoidikositetraeder. 5kx-Vergrößerung

Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung

4. Synthese von Fluor-Ye'elimitzementen

4.1. Synthese und Charakterisierung von Ye'elimit

Ye'elimit (C₃A₃Cs), das sulfathaltige Analogon zu Fluor-Sodalith, wurde aus Calciumcarbonat, Aluminiumoxid und Calciumsulfat mittels Festkörpersynthese synthetisiert. Das theoretische prozentuale Massenverhältnis der Rohstoffe lautet 27,6:50,1:22,3 (CaO:Al₂O₃:CaSO₄) und führte zur reinphasigen Synthese von Ye'elimit. Die homogenisierten Rohstoffe wurden bei 1350 °C für 15 min, 30 min und 60 min im Muffelofen gesintert. Alle drei Haltezeiten führten zur reinphasigen Synthese. Aus der Gitterkonstantenverfeinerung der 30-minütigen Synthese mittels Pawley-Fit resultierten die Gitterparameter a = 13,0256(6) Å, b = 13,0350(8) Å, c = 9,1641(7) Å, $\alpha = \beta = \gamma = 90^{\circ}$, V = 1555,9(9) Å³ mit der Raumgruppe Pcc2 (Abb. 42). Diese Daten stimmen mit den von CALOS et al. (1995) und CUESTA et al. (2013) bestimmten Gitterkonstanten überein. Die Gitterparameter der 15-minütigen und 60-minütigen Synthese weichen lediglich in der dritten Nachkommastelle ab.

Abb. 42: Pawley-Fit des Röntgendiffraktogramms von Ye'elimit (gesintert für 30 min)

REM-Aufnahmen der einstündigen Ye'elimit-Synthese zeigen, dass sich bis zu 1 μ m kleine, rundliche Körner gebildet haben, die zu einzelnen Gebilden zusammengeballt sind (Abb. 43).

Abb. 43: REM-Aufnahmen von rundlichen Ye'elimit-Körnern der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Kalorimetrische Messungen zeigten, dass Ye'elimit hydraulisch hoch aktiv ist (Abb. 44). Eine höhere Sinterdauer verlangsamte die Hydratation. Die 15 min lang gesinterte Probe zeigte ihr Hydratationsmaximum nach ca. 13 h mit einem Wärmefluss von 22,2 mW/g. Eine doppelt so lange Sinterung (30 min) verlangsamte die Hydratation um ca. 5 h (21,2 mW/g). Und eine weitere Verdopplung der Sinterzeit

auf 60 min verschob das Hydratationsmaximum auf ca. 20 h (27,4 mW/g). Mit steigender Sinterdauer sank zunächst die freigewordene Wärme während der Haupthydratation und stieg bei einer 60-minütigen Haltezeit nur minimal wieder an (15 min; 167,4 J/g, 30 min; 155,6 J/g, 60 min; 157,4 J/g).

Da die gesinterten Proben per Hand gemörsert wurden, war es nicht möglich für die Hydratationsversuche eine einheitliche spezifische Oberfläche zu gewährleisten. Die spezifischen Oberflächen zwischen 0,75 liegen und 0,89 (Tab. 9). Pulverdiffraktometrische Aufnahmen zeigten, dass die Hydratation von Ye'elimit zur Bildung von Ettringit (Ca₆Al₂(SO₄)₃•26H₂O), Monosulfat (Ca₄Al₂O₆(SO₄)•14H₂O) und Kuzelit (Ca₄Al₂(SO₄)(OH)₁₂•6H₂O) führte (Abb. 45). Die Mikrostruktur mit bis zu 180 µm langen Ettringitnadeln und Monosulfat- sowie Kuzelit-Plättchen mit hexagonalem Querschnitt wurde mittels REM untersucht (Abb. 46).

Abb. 44: Vergleich der Wärmeflusskurven von Ye'elimit, gesintert für 15 min, 30 min und 1 h (w/z-Wert = 1)

Tab. 9: Spezifische Oberfläche der unterschiedlich lang gesinterten Ye'elimite; bestimmt nach BET

Probe	Spezifische Oberfläche [m²/g]
Ye'elimit, 15 min gesintert	0,75
Ye'elimit, 30 min gesintert	0,81
Ye'elimit, 60 min gesintert	0,89

Abb. 45: Hydratationsprodukte von Ye'elimit (15 min gesintert); XRD nach 109 h Hydratation mit w/z-Wert = 1

Abb. 46: REM-Aufnahmen der Hydratationsprodukte der einstündigen Synthese von Ye'elimit: Ettringitnadeln und Monosulfat- und Kuzelit-Plättchen mit hexagonalem Querschnitt. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

4.2. Synthese und Charakterisierung von $3CaO\cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4 \text{ mit } 0 \le x \le 1$

Anschließend wurde bei dem Syntheseverfahren von Ye'elimit der CaSO₄-Anteil in 0,1 Mol-Schritten durch CaF₂ ausgetauscht, also C₃A₃•0,1CaF₂•0,9Cs bis C₃A₃•0,9CaF₂•0,1Cs (GALLUCCIO & PÖLLMANN, 2019 und 2020). Die Sinterung erfolgte für 30 min bei 1350 °C. XRD-Messungen zeigten, dass mehrere Phasen nebeneinander vorlagen (Abb. 47). Bei dem CaSO₄-Austausch durch 0,1 mol CaF₂, bildete sich neben 87 % Ye'elimit, 6 % Fluor-Mayenit und 7 % CA₂. Erst ab einem

CaF₂-Gehalt von 0,2 mol bildete sich Fluor-Sodalith. Ye'elimit, Fluor-Mayenit und CA₂ bildeten sich weiterhin. Dieselben vier Phasen bildeten sich auch bei den CaSO₄-Austauschen durch 0,4 mol bis 0,9 mol CaF₂.

Abb. 47: Mineralphasenbestand von $3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1$

Quantfizierungen der kristallinen Bestandteile nach der Rietveld Methode zeigten, dass mit einem steigenden Fluorgehalt der Ye'elimit-Gehalt sank und der Fluor-Sodalith-Gehalt stetig stieg (Abb. 48). Der Fluor-Mayenit-Gehalt lag zwischen 6 und 13 % und der CA₂-Gehalt reichte von 2 bis 7 %. Aufgrund der Bildung der Nebenphase Fluor-Mayenit und der Verschiebung des Bildungsbeginns von Fluor-Sodalith auf 0,2 mol, ist der gleichwertige Anteil von Ye'elimit und Fluor-Sodalith von 0,5 mol auf 0,6 mol CaF₂ verschoben.

Abb. 48: Ergebnisse der Quantfizierung der kristallinen Bestandteile von $3CaO-3Al_2O_3-xCaF_2-(1-x)CaSO_4$ mit $0 \le x \le 1$ mittels Rietveld Methode

Mittels Pawley-Fit wurde das Zellvolumen von Ye'elimit bestimmt. Bei Gehalten von 0,6 bis 0,9 mol CaF₂ ist dieses leicht erhöht, so dass man von einem geringen Austausch (max. 10 %) von Sulfat durch Fluorid ausgehen kann (Abb. 49). Bei der Einwaage von 0,2 bis 0,5 mol CaF₂ ist hingegen das Zellvolumen von Fluor-Sodalith erhöht, was zu der Annahme führt, dass ein geringer Anteil Fluorid durch Sulfat ausgetauscht wurde. Die Bildung einer vollständigen Mischkristallreihe ist aufgrund der unterschiedlichen Kristallstrukturen von Ye'elimit (Raumgruppe Pcc2) und Fluor-Sodalith (Raumgruppe $R\overline{3}$) nicht realisierbar. Zudem ist die Substitution eines Sulfat-Anions durch zwei Fluorid-Anionen nicht möglich.

Abb. 49: Veränderung des Zellvolumens von Ye'elimit bzw. Fluor-Sodalith bei unterschiedlichen CaF₂-Gehalten im Rohmehl. Im Vergleich dazu ist in rot das Zellvolumen der idealisierten Mischreihe dargestellt.

Mit einer Fluorid-Elektrode wurde der Fluorgehalt der gesinterten Proben gemessen. Während der Sinterung kam es zu geringen Fluorverlusten von 2,1 % bis maximal 5,2 % (Abb. 50). Ab einem CaF₂-Gehalt von 0,6 mol liegt der Fluorverlust mit durchschnittlich 3,1 % höher als bei niedrigen CaF₂-Gehalten. Bei sehr geringen CaF₂-Gehalten wie 0,1 mol und 0,2 mol macht ein geringer Fluorverlust einen größeren Prozentsatz aus, wodurch der Fluorverlust in diesem Bereich höher erscheint (3,5 % und 5,2 %). Die tatsächlichen CaF₂-Gehalte der gesinterten Proben wurden auf Grundlage der Fluorid-Messungen korrirgiert und sind in Tabelle 10 dargestellt.

Abb. 50: Fluorgehalt des Fluor-Ye'elimitrohmels und der Klinker nach einer Haltezeit der max. Sintertemperatur von 1 h, gemessen mit der ionenselektiven Fluorid-Elektrode

Tab. 10: Korrigierter CaF₂-Gehalt nach Messung der gesinterten Proben mit der Fluorid-Elektrode

Einwaage CaF ₂	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0
[mol]										
Gehalt CaF₂ nach	0,095	0,19	0,29	0,39	0,49	0,58	0,68	0,78	0,87	0,97
Sinterung [mol]										

Die Mikrostruktur der Fluor-Ye'elimitklinker wurde mittels REM untersucht (Abb. 51-Abb. 53). Bereits bei einem CaSO₄-Austausch durch 0,1 mol CaF₂ (Abb. 51) ist ein deutlicher Unterschied zu dem Ye'elimit ohne Fluorzugabe zu sehen (Abb. 43). Es haben sich größere und isometrische Ye'elimite mit kurzprismatischer Form gebildet. Dies korreliert mit der gemessenen abnehmenden spezifischen Oberfläche bei zunehmendem CaF₂-Gehalt. Fluor-Sodalith ist überwiegend in hexagonalen Prismen auskristallisiert.

Abb. 51: REM-Aufnahmen von 3CaO•3Al₂O₃•0,1CaF₂•0,9CaSO₄. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 52: REM-Aufnahmen von 3CaO•3Al₂O₃•0,6CaF₂•0,4CaSO₄. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 53: REM-Aufnahmen von 3CaO•3Al₂O₃•0,9CaF₂•0,1CaSO₄. Links: 2kx-Vergrößerung, rechts: 3kx-Vergrößerung

4.2.1. Hydratationsverhalten

Die spezifischen Oberflächen wurden nach BET bestimmt und liegen zwischen 0,31 und 0,81 m²/g und nehmen mit zunehmenden Fluor-Gehalt ab (Tab. 11). Die kalorimetrischen Untersuchungen zeigten, dass die schnelle Hydratation von Ye'elimit mit einem Wärmeflussmaximum von 21,2 mW/g nach ca. 19 h durch die Substitution durch Calciumfluorid verzögert wurde sowie der freiwerdende maximale Wärmefluss auf fast ein Fünftel verringert wurde (von 21,2 auf 4,6 mW/g) (Abb. 54). Der Haupthydratationspeak von Fluor-Sodalith erschien erst nach ca. 149 h mit einem Wärmefluss von ca. 4,6 mW/g, gefolgt von einer breiten Schulter, dessen Wärmefluss nach ca. 175 h abgeklungen war. Die Hydratationsmaxima aller Proben mit CaSO₄-Austausch lagen zwischen den Hydratationsmaxima der Endglieder. Die Verzögerung der Hydratation nahm dabei konsequent (mit Ausnahme der violetten und hellgrauen Kurve) mit einem höheren CaF₂-Gehalt zu (Abb. 54).

Probe	Spezifische Oberfläche [m²/g]
3CaO•3Al ₂ O ₃ •CaSO ₄	0,81
3CaO•3Al ₂ O ₃ •0,1CaF ₂ •0,9CaSO ₄	0,44
3CaO•3Al ₂ O ₃ •0,2CaF ₂ •0,8CaSO ₄	0,57
3CaO•3Al ₂ O ₃ •0,3CaF ₂ •0,7CaSO ₄	0,51
3CaO•3Al ₂ O ₃ •0,4CaF ₂ •0,6CaSO ₄	0,42
3CaO•3Al ₂ O ₃ •0,5CaF ₂ •0,5CaSO ₄	0,45
3CaO•3Al ₂ O ₃ •0,6CaF ₂ •0,4CaSO ₄	0,33
3CaO•3Al ₂ O ₃ •0,7CaF ₂ •0,3CaSO ₄	0,34
3CaO•3Al ₂ O ₃ •0,8CaF ₂ •0,2CaSO ₄	0,31
3CaO•3Al ₂ O ₃ •0,9CaF ₂ •0,1CaSO ₄	0,35
3CaO•3Al ₂ O ₃ •CaF ₂	0,37

Tab.	11:	Spezifische	Oberflächen	der	Synthesereihe	3CaO•3Al ₂ O ₃ •xCaF ₂ •(1-x)CaSO ₄ m	nit
0 ≤ x	≤ 1;	bestimmt na	ch BET				

Abb. 54: Wärmeflusskurven von $3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1$ (w/z-Wert = 1)

Nach den kalorimetrischen Messungen wurden von den hydratisierten Proben XRD-Aufnahmen gemacht. In Abbildung 55 ist eine Abnahme des Ye'elimit-, Ettringit- und Monosulfat-Gehalts mit zunehmendem Fluor-Gehalt zu erkennen. Als weitere Hydratphasen haben sich CAH₁₀, C₂AH₈ und C₃AH₆ gebildet.

Abb. 55: XRD-Phasenbestand der hydratisierten Proben $3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1$ (w/z-Wert=1)

REM-Aufnahmen zeigen die Mikrostruktur der hydratisierten Proben. Bei einem geringen Fluorgehalt von 0,1 mol CaF₂ sind überwiegend hexagonale Monosulfat-Platten, lange Ettringitnadeln und Kügelchen, die aus γ -Al(OH)₃-Plättchen bestehen, zu sehen (Abb. 56). Bei einem mittleren Fluorgehalt von 0,6 mol CaF₂ bilden sich hexagonale C₂AH₈-Platten, die zum Teil laut EDX-Analyse Fluor in ihre Struktur eingebaut haben (Abb. 57). Die Zahl der γ -Al(OH)₃-Plättchen ist deutlich gestiegen. Ettringitnadeln sind hingegen nicht mehr zu finden und die Zahl der Monosulfat-Plättchen ist gesunken. In der rechten Abbildung ist ein angelöstes Ye'elimitkorn zu sehen. Das Gefüge der Probe mit 0,9 mol CaF₂ wird dominiert von C₂AH₈-Platten und Löchern, umsäumt von γ -Al(OH)₃-Plättchen und gefüllt mit Hydrogranaten (Abb. 58). Durch das geringe Volumen der Hydrogranate kam es zur Bildung eines poröseren Gefüges. Das Elementmapping der Probe zeigt deutlich den Calcium- und Aluminiumgehalt der Platten, sodass diese eindeutig als C₂AH₈ identifiziert werden können (Abb. 59). Der breite Saum um die Löcher erscheint im Elementmapping ausschließlich in der für Aluminium gewählten Farbe Rot, was für γ-Al(OH)₃ spricht (Abb. 60). Die Füllung der Löcher besteht aus Calcium, Aluminium und Fluor, wodurch sie als fluorhaltige Hydrogranate identifiziert werden können. Aufgrund der 55 Einwaage von nur 0,1 mol CaSO₄ ist im Mapping nur wenig Schwefel zu finden, vor allem in nicht reagierten Ye'elimit-Körnern. Das große Korn unten links im BSE-Bild (Abb. 59) ist nicht hydratisierter Fluor-Sodalith, der einen geringen Anteil an Schwefel eingebaut hat.

Abb. 56: REM-Aufnahmen der Hydratationsprodukte von 3CaO•3Al₂O₃•0,1CaF₂•0,9CaSO₄: Monosulfat-Platten und Ettringitnadeln. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 57: REM-Aufnahmen der Hydratationsprodukte von 3CaO•3Al₂O₃•0,6CaF₂•0,4CaSO₄: C₂AH₈(F)-Platten, Monosulfat, Gibbsit-Plättchen und Ye'elimit. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 58: REM-Aufnahmen der Hydratationsprodukte von 3CaO•3Al₂O₃•0,9CaF₂•0,1CaSO₄: C₂AH₈-Platten, Gibbsit-Plättchen und Hydrogranatpolyeder. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 59: Verteilung der Elemente Aluminium, Calcium, Fluor und Schwefel über die Fläche der hydratisierten Probe $3CaO\cdot 3Al_2O_3\cdot 0,9CaF_2\cdot 0,1CaSO_4$. Gestapelte Plättchen in grün: C₂AH₈, Säume in rot: γ -Al(OH)₃, Füllung der Poren: fluorhaltiges C₃AH₆

Abb. 60: Elementmapping von einzelnen Elementen zur besseren Veranschaulichung der Elementverteilung der Fläche der hydratisierten Probe 3CaO•3Al₂O₃•0,9CaF₂•0,1CaSO₄ (Oben links: Al, oben rechts: Ca, unten links: F, unten rechts: S)

4.2.1.1. Beschleunigung durch Lithiumcarbonat

Die verzögernde Wirkung von Fluor kann durch den Einsatz üblicher Beschleuniger wie Lithiumcarbonat vermieden werden. Es wurden Untersuchungen des Hydratationsverhaltens von Ye'elmit, Fluor-Sodalith und von den beiden langsam reagierenden Synthesen 3CaO•3Al₂O₃•0,9CaF₂•0,1CaSO₄ und 3CaO•3Al₂O₃•0,8CaF₂•0,2CaSO₄ jeweils mit destilliertem Wasser und einer 0,01 molaren Li₂CO₃-Lösung durchgeführt (Abb. 61). Alle Proben ließen sich deutlich beschleunigen. Das Hydratationsmaximum von Ye'elimit verschob sich von ca. 13 h auf 7 h und die Maxima der fluorhaltigen Proben von >146 h auf 50 min.

Abb. 61: Wärmeflusskurven der Reaktion von Ye'elimit, Fluor-Sodalith, $3CaO \cdot 3Al_2O_3 \cdot 0,9CaF_2 \cdot 0,1CaSO_4$ und $3CaO \cdot 3Al_2O_3 \cdot 0,8CaF_2 \cdot 0,2CaSO_4$ jeweils mit dest. Wasser und mit 0,01 M Li₂CO₃-Lösung (w/z-Wert = 1).

5. Synthese von Belit-Fluoroaluminatzementen

5.1. Syntheseparameter

Mittels Festköpersynthese wurden verschiedene Belit-Fluoroaluminatzemente aus den Ausgangsmaterialien Calciumcarbonat, Siliziumdioxid, Aluminiumoxid und den fluorhaltigen Mineralen Flussspat (CaF₂) und Kryolith (Na₃[AlF₆]) synthetisiert (GALLUCCIO & PÖLLMANN, 2017, 2018a und 2018b). In Abhängigkeit der Flussspatund Kryolith-Gehalte im Rohmehl (1,5 %, 3 %, 4 %, 5 %) und den Sintertemperaturen Haltezeit: 1150 °C (Heizrate: 10 °C/min, 1100 und 2 h) wurde die Zementphasenbildung untersucht. Die Belit-Fluoroaluminatrohmehle wurden dabei stets so hergestellt, dass ein molares Verhältnis von Belit:Fluor-Mayenit von 1:1 im Zement erzielt wird.

5.2. Bestimmung der Phasenzusammensetzung

5.2.1. Mineralisation mit Flussspat

Homogenisierte Einwaagen von Calciumcarbonat (55 % CaO), 26 % Aluminiumoxid und 19 % Siliziumdioxid wurden bei 1100 °C und 1150 °C gesintert. Larnit (19 % / 19%), CA (11 % / 12%) und C₃A (13% / 18%) wurden bei beiden Sintertemperaturen (1100 °C, 1150 °C) gebildet (Tab. 12). Dabei verblieb jedoch ein hoher Anteil an nicht verbrauchten Edukten (CaO: 25 % / 15 %, SiO₂: 8 % / 7 %) in den gesinterten Proben (Abb. 62). Nach Erhöhung der Sintertemperatur auf 1400 °C erfolgte eine vollständige Umsetzung der Edukte unter Bildung der Hauptmineralphasen Mayenit, CA und der hydraulisch inaktiven γ -Modifikation von Belit (Tab. 12). Die folgenden Versuche zeigen, dass eine um 300 °C niedrigere Sintertemperatur für den vollständigen Verbrauch der Ausgangsstoffe, bei gleichzeitiger Ausbildung der hydraulisch aktiven β-Modifikation von Belit (Larnit) ausreicht, sobald dem Rohmehl Fluor als Mineralisator zugesetzt wird. Der Phasenbestand sämtlicher Klinker wurde mithilfe der Rietveld-Methode guantifiziert (Abb. 63). Um den amorphen Anteil zu bestimmen wurde 10 % Rutil als interner Standard zu den Proben gegeben.

Phasengehalt [%]								
Sintertemperatur [°C]	1100	1150	1400					
C ₁₂ A ₇	1,1	2,4	19,4					
β-C ₂ S	18,9	19,4	8,8					
γ-C ₂ S	0	6,3	42,9					
C ₃ S	0	0	0					
CaO	25,1	14,5	0					
Al ₂ O ₃	11,5	6,1	0					
SiO ₂ (Quarz)	5	2,9	0					
SiO ₂ (Cristobalit)	2,6	3,6	0					
CA	11,1	11,7	24,7					
C ₃ A	12,6	18	0					
amorph	12,2	15,2	4,2					

Tab. 12:	Phasenzusammensetzung	der	Proben	zusammengesetzt	aus	55	%	CaO,	26	%
Al ₂ O ₃ und	d 19 % SiO₂, gesintert bei 11	00 °	°C, 1150	°C und 1400 °C						

Abb. 62: XRD-Diagramme der Proben zusammengesetzt aus 55 % CaO, 26 % Al_2O_3 und 19 % SiO₂, gesintert bei 1100 °C (rot), 1150 °C (blau) bzw. 1400 °C (schwarz)

Abb. 63: Rietveld-Quantifizierung der Probe zusammengesetzt aus 55 % CaO, 26 % AI_2O_3 und 19 % SiO₂, gesintert bei 1400 °C; mit Zumischung von 10 % Rutil als interner Standard

Bei einer konstanten Temperatur von 1150 °C konnte mit steigendem Flussspat-Anteil ein paralleler Anstieg der Gehalte der Hauptphasen Larnit (max. 36 %) und Fluor-Mayenit (max. 38 %) und eine zunehmende Umsetzung der Ausgangsstoffe beobachtet werden (Tab. 13). Bei Zugabe von 3 % CaF₂ sank der Gehalt an Freikalk bereits auf akzeptable 2,7 % und bei Zugabe von 4 % bzw. 5 % CaF₂ betrug der Freikalk-Gehalt 0 %. Ein CaF₂-Anteil von mehr als 4 % führt zu der Bildung der hydraulisch inaktiven γ -Modifikation von Belit (AKIN ALTUN, 1999 und MALATA-CHIRWA, 2012) bei gleichzeitiger Abnahme des Fluor-Mayenit-Gehaltes (Abb. 64).

Phasengehalt [%]									
Flussspat-Gehalt	0 %	1,50 %	3 %	4 %	5 %				
C ₁₁ A ₇ CaF ₂	0	21,2	34,4	38,2	30,4				
C ₁₂ A ₇	2,4	0	0	0	0				
β-C ₂ S	19,4	25,9	28,3	36,3	21,1				
γ -C ₂ S	6,3	0	0	0	15,8				
C ₃ S	0	0	0	4,7	0				
CaO	14,5	17,5	2,7	0	0				
Al ₂ O ₃	6,1	6,1	0	0	0				
SiO ₂ (Quarz)	2,9	4,4	0	0	0				
SiO ₂ (Cristobalit)	3,6	1,5	0	0	0				
Ca ₄ Si ₂ O ₇ F ₂ (Cuspidin)	0	0	0	0	2,7				
CA ₂	0	3,2	0	0	0				
CA	11,7	0	0	0	0				
C ₃ A	18,0	0	0	0	0				
amorph	15,2	20	34,5	20,8	29,9				

Tab. 13: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von Flussspat als Mineralisator gesintert wurden

Abb. 64: Entwicklung der Phasenzusammensetzung von bei 1150 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Flussspat-Gehaltes in den Rohmehlen (1,5 % (rot), 3 % (grün), 4 % (dunkelblau), 5 % (hellblau))

Bei einer Sintertemperatur von 1100 °C konnte mit einer Zugabe von 4 % CaF₂ zum Rohmehl die maximale Menge an Fluor-Mayenit (38 %) erreicht werden (Tab. 14, Abb. 65). Der Freikalk-Gehalt betrug dabei 2 %. Für eine vollständige Umsetzung der Ausgangsstoffe bei 1100 °C Sintertemperatur wurden 5 % CaF₂ benötigt. Es kam dabei zu der Bildung von 2 % Cuspidin, jedoch nicht zu der Bildung des hydraulisch inaktiven γ -Belits.
Phasengehalt [%]										
Flussspat-Gehalt	0 %	1,50 %	3 %	4 %	5 %					
C ₁₁ A ₇ CaF ₂	0	18,2	28,8	38,4	32,7					
C ₁₂ A ₇	1,1	0	0	0	0					
β-C ₂ S	18,9	24,2	32,4	32,4	34,2					
C ₃ S	0	0	0	5,8	6,3					
CaO	25,1	21,8	9	2,1	0					
Al ₂ O ₃	11,5	8,1	4,7	0	2,4					
SiO ₂ (Quarz)	5	4,9	1,4	0,4	0,5					
SiO ₂ (Cristobalit)	2,6	1,3	0,5	0	0					
Ca4Si2O7F2 (Cuspidin)	0	2,3	3	0	1,9					
CA	11,1	5	2,5	0	0					
C ₃ A	12,6	0	0	0	0					
amorph	12,2	14,2	17,6	20,8	22					

Tab. 14: Phasenzusammensetzung der Klinker, die bei 1100 °C mit Zugabe von Flussspat als Mineralisator gesintert wurden

Abb. 65: Entwicklung der Phasenzusammensetzung von bei 1100 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Flussspat-Gehaltes in den Rohmehlen (1,5 % (rot), 3 % (grün), 4 % (dunkelblau), 5 % (hellblau))

Die besten Ergebnisse in Bezug auf die mineralische Zusammensetzung konnten demnach durch Zugabe von 3 % Flussspat bei 1150 °C Sintertemperatur oder durch Absenken der Temperatur auf 1100 °C bei gleichzeitiger Erhöhung des Flussspat-

Anteils auf 5 % erreicht werden. Die Phasenzusammensetzungen der entstehenden Klinker waren sehr ähnlich (Abb. 66), wobei sich im Klinker mit 5 % CaF₂ jedoch 6 % Alit und 2 % Cuspidin als Nebenphasen bildeten.

Abb. 66: Ähnliche Phasenzusammensetzung des bei 1150 °C gesinterten Klinkers mit 3 % Flussspat-Zusatz (grün) und des bei 1100 °C gesinterten Klinkers mit 5 % Flussspat-Zusatz (hellblau)

Vergleicht man die beiden Synthesereihen bei 1100 °C und 1150 °C Sintertemperatur, so ergab sich jeweils die höchste Menge an Fluor-Mayenit bei 4 % Flussspat-Zusatz (Abb. 67). Der höchste Gehalt an Larnit bildete sich bei einer Sintertemperatur von 1100 °C mit 5 % Flussspat-Zusatz. Bei 1150 °C Sintertemperatur ergab sich der höchste Larnit-Gehalt bei 4 % Flussspat im Rohmehl, wobei mit 5 % Flussspat-Zusatz Larnit teilweise in γ -Belit umgewandelt wurde.

Abb. 67: Phasenzusammensetzungen von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Flussspat-Gehalten in den Rohmehlen

Die Ausgangsstoffe wurden mit höherem Mineralisierungsgrad zunehmend verbraucht - mit Ausnahme des bei 1100 °C gesinterten Klinkers mit 5 % Flussspat, der etwa 2 % Quarz enthielt (Abb. 68). Der amorphe Anteil des bei 1100 °C gesinterten Klinkers stieg in etwa linear mit höherem Mineralisierungsgrad an. Der amorphe Anteil des bei höheren Temperaturen gesinterten Klinkers war bis zu 15 % höher. Höhere amorphe Anteile bei höheren Sintertemperaturen können durch eine teilweise Aufschmelzung erklärt werden, die auch in den REM-Aufnahmen zu erkennen ist (Abb. 69).

Abb. 68: Nicht umgesetzte Ausgangsstoffe und amorpher Anteil von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Flussspat-Gehalten in den Rohmehlen

Mittels REM wurden die Klinker auf ihre Mikrostruktur hin untersucht. Die einzelnen Körner sind unregelmäßig geformt mit einer durchschnittlichen Länge von 6 µm (Abb. 69). Die Körner sind zum Teil miteinander verwachsen. Dennoch sind einige Poren zu sehen, was die gute Mahlbarkeit der Klinker erklärt.

Abb. 69: REM-Aufnahmen von Belit-Fluoroaluminatzementklinker mineralisiert mit 3 % Flussspat, gesintert bei 1150 °C. 2kx-Vergrößerung

Mit einer Fluorid-Elektrode wurde der Fluorgehalt des Rohmehls mit Flussspat-Zumischung und der Klinker nach der Sinterung bestimmt. Vergleicht man die Fluorgehalte der bei unterschiedlichen Temperaturen gesinterten Klinker, ist kaum ein Unterschied festzustellen (Abb. 70). Schlussfolgernd geht eine höhere Sintertemperatur nicht mit einem höheren Fluorverlust einher. Im Vergleich zu den Fluorgehalten des Rohmehls tritt während der Sinterung jedoch ein Fluorverlust von 9,8-20,2 % auf, sodass eine Korrektur der Fluorgehalte gemäß Tabelle 15 vorgenommen werden muss. Bei einer Zumischung von 4 % CaF₂ war der Fluorverlust am niedrigsten. Dies korreliert mit dem Fluor-Mayenit-Gehalt, der bei diesen Klinkern am höchsten war und somit mehr Fluor binden konnte.

Tab. 15: Korrigierte Fluorgehalte der Belit-Fluoroaluminatzementklinker mineralisiert mit Flussspat nach der Fluorid-Bestimmung mittels Fluorid-Elektrode

Fluorgehalt [Gew%]										
Flussspat-Gehalt im Rohmehl [Gew%]	1,50	3,00	4,00	5,00						
Rohmehl	0,73	1,46	1,95	2,44						
Klinker gesintert bei 1100 °C	0,63	1,17	1,76	2,18						
Klinker gesintert bei 1150 °C	0,64	1,16	1,76	2,18						

5.2.2. Mineralisation mit Kryolith

Bei der Verwendung von Kryolith als Mineralisator entstehen höhere Mengen an Larnit und Fluor-Mayenit als bei der Verwendung von Flussspat. Bei einer Sintertemperatur von 1150 °C wurden mit 3 % Kryolith die höchsten Anteile an Larnit (41 %) und Fluor-Mayenit (42 %) erreicht (Tab. 16). Bei höheren Kryolith-Anteilen (4-5 %) stieg der Gehalt an Gehlenit (C₂AS). Gehlenit verbraucht das für Larnit benötigte Silizium, wodurch sich der Larnitgehalt verringert (Abb. 71).

Phasengehalt [%]											
Kryolith-Gehalt	0 %	1,50 %	3 %	4 %	5 %						
C ₁₁ A ₇ CaF ₂	0	24	41,7	40,5	34,6						
C ₁₂ A7	2,4	0	0	0	0						
β-C ₂ S	19,4	38,7	40,6	35,7	29,1						
γ-C ₂ S	6,3	0	0	0	0						
C ₃ S	0	0	0	0	0						
CaO	14,5	4,4	0	0	0						
Al ₂ O ₃	6,1	0	0	0	0						
SiO ₂ (Quarz)	2,9	0	0	2	3,4						
Ca ₄ Si ₂ O ₇ F ₂ (Cuspidin)	3,6	0	0	0	4,8						
C ₂ AS	0	1,9	4,8	8,2	7,4						
CA	11,7	4,3	0	0	0						
C ₃ A	18	0	0	0	0						
amorph	15,2	26,7	12,9	13,6	20,7						

Tab. 16: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von Kryolith als Mineralisator gesintert wurden

Abb. 71: Entwicklung der Phasenzusammensetzung von bei 1150 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Kryolith-Gehaltes in den Rohmehlen (1,5 % (rot), 3 % (grün), 4 % (dunkelblau), 5 % (hellblau))

Nach Reduzierung der Sintertemperatur auf 1100 °C wurde mit 4 % Kryolith-Zusatz der höchste Anteil an Fluor-Mayenit (41 %) erreicht (Tab. 17, Abb. 72). Bereits bei Verwendung von 3 % Kryolith im Rohmehl sank der Freikalk-Gehalt auf 0 %.

Phasengehalt [%]										
Kryolith-Gehalt	0 %	1,50 %	3 %	4 %	5 %					
C11A7CaF2	0	20,7	38,3	40,5	35					
C ₁₂ A ₇	1,1	0	0	0	0					
β-C ₂ S	18,9	33,5	41,5	34,8	27					
C ₃ S	0	0	0	0	5,9					
CaO	25,1	7,4	0	0	0					
Al ₂ O ₃	11,5	3,7	0	0	0					
SiO ₂ (Quarz)	5	0,7	0	2	1,7					
SiO ₂ (Cristobalit)	2,6	0	0	0	0					
Ca ₄ Si ₂ O ₇ F ₂ (Cuspidin)	0	0	1,3	0	0					
C ₂ AS	0	0	2,8	6	8,8					
CA	11,1	5	0	0	0					
C ₃ A	12,6	1,7	0	0	0					
amorph	12,2	27,3	16,1	16,6	21,6					

Tab. 17: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von Kryolith als Mineralisator gesintert wurden

Abb. 72: Entwicklung der Phasenzusammensetzung von bei 1100 °C gesinterten Belit-Fluoraluminatzementen mit Erhöhung des Kryolith-Gehaltes in den Rohmehlen (1,5 % (rot), 3 % (grün), 4 % (dunkelblau), 5 % (hellblau))

Die besten Ergebnisse in Bezug auf die mineralische Zusammensetzung konnten demnach durch Zugabe von 3 % Kryolith bei 1150 °C oder 1100 °C Sintertemperatur erreicht werden. Die Phasenzusammensetzungen der entstehenden Klinker waren sehr ähnlich (Abb. 73). Im bei 1150 °C gesinterten Klinker bildeten sich jedoch 5 % Gehlenit als Nebenphase, während im bei 1100 °C gesinterten Klinker nur 3 % Gehlenit und 1 % Cuspidin gebildet wurden. Daher kann der Klinker bei niedrigerer Sintertemperatur favorisiert werden, insbesondere aufgrund von Kosten- und Energieeinsparungen.

Abb. 73: Ähnliche Phasenzusammensetzung des bei 1150 °C gesinterten Klinkers mit 3 % Kryolith-Zusatz (oben) und des bei 1100 °C gesinterten Klinkers mit 3 % Kryolith-Zusatz (unten)

Vergleicht man die beiden Synthesereihen bei 1100 °C und 1150 °C Sintertemperatur, verschiebt sich das Maximum des Fluor-Mayenit-Gehaltes bei einer niedrigeren Sintertemperatur in Richtung höherem Mineralisierungsgrad (Abb. 74). Gehlenit und Cuspidin verbrauchten in beiden Synthesereihen Silizium, das für die Bildung von Larnit benötigt wurde. Der Larnit-Gehalt sinkt somit ab einer Zumischung von mehr als 3 % Kryolith. Im Vergleich zur Verwendung von Flussspat als Mineralisator wird jedoch kein γ -Belit bei Verwendung von Kryolith gebildet.

Abb. 74: Phasenzusammensetzungen von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Kryolith-Gehalten in den Rohmehlen

Die Ausgangsstoffe wurden, mit Ausnahme von Siliziumdioxid, mit steigendem Mineralisierungsgrad zunehmend verbraucht (Abb. 75). Bei beiden Sintertemperaturen nahm der amorphe Anteil des Klinkers zunächst ab und stieg bei höherer Mineralisierung wieder an - mit 1,5 % Mineralisierung war der Anteil am höchsten und mit 3 % Mineralisierung am niedrigsten.

Abb. 75: Nicht umgesetzte Ausgangsstoffe und amorpher Anteil von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Kryolith-Gehalten in den Rohmehlen

Bei Betrachtung des Freikalk-Gehaltes im Klinker konnte eine erhebliche Verbesserung durch Verwendung der Mineralisatoren festgestellt werden im Vergleich zu den Klinkern, die ohne Mineralisatoren hergestellt wurden. Bei Verwendung von Kryolith als Mineralisator wurde eine schnellere Abnahme des Freikalk-Gehalts beobachtet als bei Verwendung von Flussspat (Abb. 76). Bei nur 3 % Kryolith-Zumischung betrug der Freikalk-Gehalt bereits 0 %. Bei Verwendung von Flussspat sank der Freikalk-Gehalt langsamer und erreichte 0 % erst bei Verwendung von 4 % bei 1150 °C bzw. 5 % bei 1100 °C. Ohne Mineralisierung betrug der Freikalk-Gehalt 25 % bzw. 15 %.

Abb. 76: Reduzierung der Freikalk-Bildung bei Verwendung von Mineralisatoren bei unterschiedlichen Sintertemperaturen

Mittels REM wurden die Klinker auf ihre Mikrostruktur hin untersucht. Die einzelnen Körner sind rundlich geformt mit einem mittleren Durchmesser von 2 µm (Abb. 77). Die Körner eines vergleichbaren Klinkers, der ohne Mineralisator gesintert wurde, haben eine vergleichbare Größe, sind jedoch unregelmäßiger geformt und deutlich mehr miteinander verwachsen, was das Aufmahlen der Klinker erschwert (Abb. 78).

Abb. 77: REM-Aufnahmen von Belit-Fluoroaluminatklinker mineralisiert mit 3 % Kryolith, gesintert bei 1100 °C. Links: 500x-Vergrößerung, rechts: 3kx-Vergrößerung

Abb. 78: REM-Aufnahmen eines Klinkers bestehend aus 55 % CaO, 26 % Al_2O_3 und 19 % SiO₂ ohne Zugabe von Fluor, gesintert bei 1100 °C. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung

Mithilfe einer Fluorid-Elektrode wurde der Fluorgehalt des Rohmehls mit Kryolith-Zumischung und der Klinker nach der Sinterung bestimmt. Vergleicht man die Fluorgehalte der bei unterschiedlichen Temperaturen gesinterten Klinker, ist ein geringer Unterschied zu sehen (Abb. 79). Jedoch ist festzuhalten, dass eine höhere Sintertemperatur nicht mit einem höheren Fluorverlust einhergeht, da in den niedriger gesinterten Klinkern ein etwas höherer Fluorverlust verzeichnet wurde. Im Vergleich zu den Fluorgehalten des Rohmehls tritt während der Sinterung ein Fluorverlust von 6,3-15,8 % auf, sodass eine Korrektur der Fluorgehalte gemäß Tabelle 18 vorgenommen werden muss. Mithilfe einer Rauchgasreinigung könnte der verlorene Fluoranteil wiederverwendet und die Umwelt entlastet werden. Dies war im Rahmen dieser Untersuchungen jedoch nicht möglich.

Abb. 79: Fluorgehalt des Belit-Fluoroaluminatrohmehls und der Klinker mineralisiert mit Kryolith und gesintert bei 1100 °C bzw. 1150 °C; gemessen mit der ionenselektiven Fluorid-Elektrode

Tab. 18: Korrigierte Fluorgehalte der Belit-Fluoroaluminatzementklinker mineralisiert mit Kryolith nach der Fluorid-Bestimmung mittels Fluorid-Elektrode

Fluorgehalt [Gew%]									
Kryolith-Gehalt im Rohmehl [Gew%]	1,50	3,00	4,00	5,00					
Rohmehl	0,81	1,63	2,17	2,72					
Klinker gesintert bei 1100 °C	0,73	1,35	1,87	2,29					
Klinker gesintert bei 1150 °C	0,79	1,40	1,87	2,35					

5.3. Hydratationsverhalten

5.3.1. Mineralisation mit Flussspat

Die Proben wurden nach dem Sintern per Hand aufgemahlen und die spezifischen Oberflächen wurden nach dem Blaine-Verfahren bestimmt. Die spezifischen Oberflächen lagen zwischen 2470 und 3470 cm²/g und nahmen mit zunehmendem Flussspat-Gehalt ab (Tab. 19).

Tab. 19	3: Spezfische	Oberfläche de	r Belit-Fluoroa	luminatzemente	mineralisiert	mit Flussspat;
bestimr	nt nach Blaine	e				

	Spezifische Oberfläche [cm²/g]					
Flussspat-Gehalt	gesintert bei 1100 °C	gesintert bei 1150 °C				
0,0 % CaF ₂	3470	3360				
1,5 % CaF ₂	2980	2720				
3,0 % CaF ₂	2750	2540				
4,0 % CaF ₂	2510	2440				
5,0 % CaF2	2480	2470				

Bei Verwendung von Flussspat Mineralisator benötigten Belitals die Fluoraluminatzemente max. 50 h für die vollständige Hydratation. Der max. Wärmefluss betrug ca. 10 mW/g (Abb. 80 und Abb. 81). Beide Maxima wurden mit 5 % CaF₂ und 1150 °C als Sintertemperatur erreicht. Die Hydratation der Zemente wurde durch den Gehalt an Fluor-Mineralen im Rohmehl beeinflusst. Je höher der Flussspat-Anteil, desto größer waren der freigesetzte Wärmefluss und die Verzögerung der Hydratation. Die Proben mit 4 und 5 % CaF₂ zeigten im Kalorigramm jeweils drei Peaks bei 1100 °C und 1150 °C Sintertemperatur. Dies deutet auf mehrere Hydratationsreaktionen, basierend auf verschiedenen Zementphasen, hin. Diese Proben wiesen etwa 5-6 % Alit auf, während die Probe mit 5 % CaF₂/1150 °C keinen Alit enthielt. Fluor-Mayenit und Alit sind für die frühere Hydratation und Belit für die späte Hydratation verantwortlich. Die Probe mit 3 % CaF₂ war bei einer Sintertemperatur von 1150 °C reaktiver und zeigte ein bei Hydratationsmaximum. Der Unterschied bestand darin, dass einer Sintertemperatur von 1100 °C noch Edukte (Al₂O₃, SiO₂) vorhanden waren. Bei den restlichen Proben verschmelzen die Hydratationspeaks zu Beginn der Messung mit der Benetzungswärme.

Abb. 80: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Flussspat-Gehalten in den Rohmehlen, gesintert bei 1100 °C (w/z-Wert = 1)

Abb. 81: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Flussspat-Gehalten in den Rohmehlen, gesintert bei 1150 °C (w/z-Wert = 1)

In Proben ohne Mineralisator (1100 °C/ 1150 °C) bildeten sich nur die Hydratationsprodukte Portlandit und Katoit. Die Hydratation von Fluor-Mayenit führte zu der Bildung von C₂AH₈ und CAH₁₀ sowie CaF₂. Larnit reagierte zu Strätlingit und anderen C-S-H Phasen. Strätlingit, C₂AH₈ und CAH₁₀ bildeten sich nur mit mindestens 3 % Mineralisator (Abb. 82). Die hydraulisch inaktiven Minerale γ -Belit (Ca-Olivin), Gehlenit und Cuspidin blieben unverändert. In Abbildung 83 sind beispielhaft die Hydratationsprodukte im Röntgendiffraktogramm der Probe mit 5 % CaF₂, gesintert bei 1150 °C, dargestellt. C₂AH₈ weist den höchsten Gehalt auf, gefolgt von CAH₁₀.

Abb. 82: Vergleich der Phasenzusammensetzung aller hydratisierten Belit-Fluoroaluminatzemente mit Flussspat als Mineralisator; XRD nach 50 h Hydratation mit w/z-Wert = 1

Abb. 83: Hydratationsprodukte von Belit-Fluoroaluminatzement mit 5 % Flussspat als Mineralisator, gesintert bei 1150 °C; XRD nach 50 h Hydratation mit w/z-Wert = 1

Um die Änderung der Phasenzusammensetzung während der Hydratation zeitlich mitverfolgen zu können, wurden in situ XRD-Messungen über 80 h durchgeführt. Die Temperatur des Probenhalters wurde während der Messungen konstant auf 23 °C gehalten. Das ist dieselbe Temperatur wie im verwendeten Kalorimeterlabor. Untersucht wurde ein Belit-Fluoroaluminatzement mit 5 % Flussspat als Mineralisator, der bei 1150 °C gesintert wurde (Abb. 84). Die Intensität von Fluor-Mayenit sinkt zunächst deutlich und ist nach ca. 55 h bis auf 0 Counts abgeklungen. Die deutliche Intensitätsabnahme der Fluor-Mayenit-Reflexe korreliert zeitlich mit dem ersten Hydratationsmaximum im zugehörigen Kalorigramm (Abb. 81). Als neue Phase bildet sich zeitgleich C₂AH₈. C₂AH₈ ist nur zeitweise vorhanden – von ca. Stunde 20 mit einem Maximum bei Stunde 35 bis nach ca. Stunde 70 die Intensität wieder auf 0 Counts gesunken ist. Die Bildung und Auflösung des C2AH8 korreliert zeitlich mit dem zweiten Hydratationsmaximum im zugehörigen Kalorigramm (Abb. 81). Während die Intensität von C₂AH₈ sinkt, bildet sich nach ca. 40 h Strätlingit mit bis zum Ende der Messung steigendem Gehalt. Das Silizium im Strätlingit scheint aus dem amorphen Anteil des Klinkers zu kommen, denn die Intensität des langsam reagierenden Larnits sinkt während der ersten 80 h der Hydratation nicht – sie nimmt nach ca. 55 h sogar zu. Es kann angenommen werden, dass dies anhand der Stabilisierung des Larnits durch Fluor erklärt werden kann, da das Fluor zur selben Zeit durch die Auflösung des Fluor-Mayenits frei wird. Vergleichende Literatur wurde von KACIMI et al. (2009) gefunden, die die Wirkung von NaF als Stabilisator für β -C₂S beschreibt.

Abb. 84: Diffraktogramme eines Belit-Fluoroaluminatzements mit 5 % Flussspat als Mineralisator, gesintert bei 1100 °C, während der ersten 80 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew.-% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt

REM-Aufnahmen der hydratisierten Proben zeigten gestapelte hexagonale Plättchen (Abb. 85). Diese Kristalle sind die Haupthydratationsprodukte Strätlingit und C₂AH₈, die beide eine ähnliche Morphologie aufweisen. Die Plättchen haben einen Mindestdurchmesser von 10 μ m und bilden die stabile Mikrostruktur der hydratisierten Zemente.

Abb. 85: Lamellare Hydratphasen von Belit-Fluoroaluminatzement mit 3 % Flussspat-Gehalt im Rohmehl, gesintert bei 1150 °C. 2kx-Vergrößerung

5.3.1.1. Beschleunigung durch Lithiumcarbonat

Die verzögernde Wirkung von Fluor kann durch den Einsatz üblicher Beschleuniger Lithiumcarbonat vermieden werden. Es wurden Untersuchungen wie des Hydratationsverhaltens von Belit-Fluoroaluminatzement mineralisiert mit 5 % Flussspat, gesintert bei 1100 bzw. 1150 °C, jeweils mit destilliertem Wasser und einer 0,01 molaren Li₂CO₃-Lösung durchgeführt (Abb. 86). Das Hydratationsmaximum der bei höheren Temperaturen gesinterten Probe verschob sich von ca. 29 h auf 1 h und das Maximum der niedriger gebrannten Probe von 20 h auf 2 h.

Abb. 86: Wärmeflusskurven der Reaktion von Belit-Fluoroaluminatzement mit 5 % Flussspat-Gehalt im Rohmehl, gesintert bei 1100 °C und 1150 °C, jeweils mit dest. Wasser und mit 0,01 M Li₂CO₃-Lösung (w/z-Wert = 1)

5.3.2. Mineralisation mit Kryolith

Die Proben wurden nach dem Sintern per Hand aufgemahlen und die spezifischen Oberflächen wurden nach dem Blaine-Verfahren bestimmt. Diese lagen zwischen 2430 und 3470 cm²/g und nahmen mit zunehmenden Kryolith-Gehalt ab (Tab. 20).

	Spezifische Ob	erfläche [cm²/g]
Kryolith-Gehalt	gesintert bei 1100 °C	gesintert bei 1150 °C
0,0 % Kryolith	3470	3360
1,5 % Kryolith	2960	2790
3,0 % Kryolith	2640	2650
4,0 % Kryolith	2590	2540
5,0 % Kryolith	2440	2430

Tab. 20: Spezfische Oberfläche der Belit-Fluoroaluminatzemente mineralisiert mit Kryolith; bestimmt nach Blaine

Durch Verwendung von Kryolith als Mineralisator wird ebenfalls das Hydratationsverhalten der Zemente beeinflusst. Der maximale Wärmefluss aller Proben betrug ca. 14 mW/g (Abb. 87 und Abb. 88). Die Hydratation dauerte max. 35 h. Bei Verwendung von 3 % und 4 % Kryolith waren die Zemente am reaktionsfähigsten mit drei Wärmeflussmaxima. Ein Gehalt von 5 % Kryolith führte zu einer sehr lang anhaltenden Hydratation (mehr als 50 h) mit geringem Wärmefluss.

Abb. 87: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Kryolith-Gehalten in den Rohmehlen, gesintert bei 1100 °C (w/z-Wert = 1)

Abb. 88: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Kryolith-Gehalten in den Rohmehlen, gesintert bei 1150 °C (w/z-Wert = 1)

der Belit-Fluoroaluminatzemente mit Die Hydratationsprodukte Kryolith als Mineralisator waren die gleichen wie bei der Verwendung von Flussspat. Strätlingit, C₂AH₈ und CAH₁₀ wurden ebenfalls nur ab mind. 3 % Mineralisator-Zusatz gebildet. Unterhalb von 3 % wurden nur Portlandit und Katoit gebildet (Abb. 89). In die AbbildungAbb. 90 sind beispielhaft Hydratationsprodukte im Röntgendiffraktogramm der Probe mit 4 % Kryolith, gesintert bei 1100 °C, dargestellt. Strätlingit weist den höchsten Gehalt auf, gefolgt von C₂AH₈ und CAH₁₀.

Abb. 89: Vergleich der Phasenzusammensetzung aller hydratisierten Belit-Fluoroaluminatzemente mit Kryolith als Mineralisator; XRD nach 50 h Hydratation mit w/z-Wert = 1

Abb. 90: Hydratationsprodukte von Belit-Fluoroaluminatzement mit 4 % Kryolith als Mineralisator, gesintert bei 1100 °C; XRD nach 50 h Hydratation mit w/z-Wert = 1

REM-Aufnahmen der hydratisierten Proben zeigten gestapelte hexagonale Plättchen (Abb. 91). Diese Kristalle sind die Haupthydratationsprodukte Strätlingit und C₂AH₈, die beide eine ähnliche Morphologie aufweisen. Die Plättchen haben einen Mindestdurchmesser von 10 μ m und bilden die stabile Mikrostruktur der hydratisierten Zemente.

Abb. 91: Lamellare Hydratphasen von Belit-Fluoroaluminatzement mit 3 % Kryolith-Gehalt im Rohmehl, gesintert bei 1150 °C, Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

5.3.2.1. Beschleunigung durch Lithiumcarbonat

Die verzögernde Wirkung von Fluor kann durch den Einsatz üblicher Beschleuniger wie Lithiumcarbonat vermieden werden. Es wurden Untersuchungen des Hydratationsverhaltens von Belit-Fluoroaluminatzement mineralisiert mit 3 % und 4 % Kryolith, gesintert bei 1100 bzw. 1150 °C, jeweils mit destilliertem Wasser und einer 0,01 molaren Li₂CO₃-Lösung durchgeführt (Abb. 92). Das Hydratationsmaximum beider Proben verschob sich von ca. 18 h auf 1 h.

Abb. 92: Wärmeflusskurven der Reaktion von Belit-Fluoroaluminatzement mit 4 % Kryolith-Gehalt im Rohmehl, gesintert bei 1100 °C, und mit 3 % Kryolith-Gehalt im Rohmehl, gesintert bei 1150 °C, jeweils mit dest. Wasser und mit 0,01 M Li₂CO₃-Lösung (w/z-Wert = 1)

6. Synthese von Bor-Tonerdezementen

6.1. Syntheseparameter

Mittels Festköpersynthese wurde eine Reihe von Tonerdezementen synthetisiert, die auf den Einfluss verschiedener Boroxid-Zumischungen als Mineralisator untersucht wurde. Als Ausgangsmaterialien wurden Calciumcarbonat und γ-Tonerde (Al₂O₃) verwendet. Calciumborat (Rantzauer Töpferbedarf) diente als Boroxidquelle, wovon 0,5 %, 1 %, 1,5 %, 2 % und 2,5 % dem Rohmehl hinzugefügt wurden. In Abhängigkeit der Zumischung und der Haltezeit der Sintertemperatur von 1300 °C für

1 h und 2 h (Heizrate: 10 °C/min) wurde die Zementphasenbildung untersucht. Die Rohmehle wurden so hergestellt, dass Calciumoxid und Aluminiumoxid, auch bei Zumischung von Calciumborat, im Verhältnis von CA (Monocalciumaluminat) vorliegen und es zu keiner Mehreinwaage von CaO kommt.

6.2. Bestimmung der Phasenzusammensetzung

mit Nach dem Sintern verschiedenen Rohmehle unterschiedlichen der Mineralisatorzugabemengen, wurden die Klinker aufgemahlen und der Phasenbestand inklusive amorphem Anteil mittels Rietveld Methode bestimmt (Abb. 93). Die Quantifizierungsergebnisse der Klinker, die bei 1 h Haltezeit gesintert wurden, sind in der Tabelle 21 zusammengefasst.

Abb. 93: Rietveld-Quantifizierung der Probe ohne Zumischung eines Mineralisators, gesintert für 1 h bei der max. Sintertemperatur 1300 °C; mit Zumischung von 10 % Rutil als interner Standard

Phasengehalt [%]										
Boroxid- Gehalt	0 %	0,5 %	1 %	1,5 %	2 %	2,5 %				
CaO	3,9	0	0	0	0	0				
Al ₂ O ₃	18,5	11,5	11,5	0	0	0				
C ₁₂ A ₇	17,1	24,1	13,2	1,6	0	0				
CA	25,7	33,6	44,8	66,1	60,2	51,9				
CA ₂	17,8	13,3	12,6	18,3	22,4	27,4				
C ₃ A	12,4	4,5	4,6	2,3	0	0				
C ₃ B	0	1	2,5	3,9	5,2	6,2				
Amorph	4,6	12	10,9	7,9	12,2	14,4				

Tab. 21: Mittels Rietveld Methode ermittelte Phasenzusammensetzung von Bor-Tonerdezementklinkern, die bei 1300 °C mit einer Haltezeit von 1 h gesintert wurden.

Bei einer Haltezeit von 1 h bei 1300 °C entstand ohne Einsatz eines Mineralisators ein CA-Klinker, der zu ca. 26 % aus CA, 17 % Mayenit, 12 % C₃A, 18 % CA₂ und 5 % amorphen Anteil bestand (Abb. 94 und Abb. 95). Von den Ausgangsstoffen wurden 4 % CaO und 18 % Al₂O₃ nicht umgesetzt. Bei Zugabe von bereits 0,5 % B₂O₃ sank der Freikalk-Gehalt auf 0 % und der Korund-Gehalt auf ca. 11 %. Die Gehalte der Hauptphasen Mayenit und CA stiegen beide um ca. 7 %. Mit höherer Mineralisator-Zugabe stieg der CA-Gehalt weiter an. Bei 1,5 % B₂O₃-Zugabe erreichte CA sein Maximum mit ca. 66 % und der Korund-Gehalt sank auf 0 %. Mit höherer Mineralisierung sank der CA-Gehalt wieder. Mayenit sank bei 2 und 2,5 % B₂O₃-Zugabe auf 0 %. Der Gehalt der nicht hydraulisch aktiven Phase CA₂ stieg ab 1,5 % B₂O₃-Zugabe auf bis ca. 27 % an. Der Gehalt der stark hydraulisch reaktiven Phase C₃A sank kontinuierlich mit höherem Mineralisatorgehalt bis er ab 2 % B₂O₃-Gehalt 0 % betrug. Das Bor baute sich in der ganzen Versuchsreihe in C₃B ein, welches ebenfalls nicht hydraulisch aktiv ist (siehe Kapitel 3.1.4.), sodass sich max. ca. 6 % C₃B bildeten.

Abb. 94: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 % (rot), 1 % (grün), 1,5 % (blau), 2 % (hellblau), 2,5 % (pink) B₂O₃ (Haltezeit: 1 h) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz (schwarz)

Abb. 95: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % B_2O_3 (Haltezeit: 1 h) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz

Bei Erhöhung der Sinterhaltezeit auf 2 h, entstand ohne Einsatz eines Mineralisators ein CA-Klinker, der zu ca. 29 % aus CA, 17 % Mayenit, 11 % C₃A, 19 % CA₂ und 5 % amorphem Anteil bestand (Tab. 22, Abb. 96 und Abb. 97). Von den Ausgangsstoffen wurden 3 % CaO und 16 % Al₂O₃ nicht umgesetzt. Damit ist der Umsatz der Ausgangsstoffe nur wesentlich höher als bei einer Sinterhaltezeit von 1 h. Bei Zugabe von bereits 0,5 % B₂O₃ reduzierte sich der CaO-Gehalt auf 0 % und der Al₂O₃-Gehalt auf ca. 4 %. Der CA-Gehalt erreichte sein Maximum von 75 % bei einer Zumischung von 1 % B₂O₃, wobei der Mayenit- und der C₃A-Gehalt bereits 0 % betrugen. Bei höherer Zumischung von Boroxid sank der CA-Gehalt wieder auf minimal 54 %. Gleichzeitig stieg der Gehalt an CA₂ auf max. 30 %. Der C₃B-Gehalt betrug max. 7 % bei einer Zumischung von 2,5 % B₂O₃.

Tab.	22:	Mittels	Rietveld	Methode	ermittelte	Phasenzusammensetzung von	Bor-
Toner	dezei	mentklink	kern, die be	ei 1300 °C r	mit einer Ha	ltezeit von 2 h gesintert wurden	

Phasengehalt [%]										
Boroxid- Gehalt	0 %	0.5 %	1 %	1.5 %	2 %	2.5 %				
CaO	3,3	0	0	0	0	0				
Al ₂ O ₃	16,1	4,3	0	0	0	0				
C ₁₂ A ₇	16,7	8,8	0	0	0	0				
CA	28,7	63,6	75	67,3	60,3	53,9				
CA ₂	19,6	5,8	8,5	18,6	22,6	30,4				
C ₃ A	10,9	0	1	0	0	0				
C ₃ B	0	0,9	0,4	3,4	4,8	7,2				
Amorph	4,7	16,6	15,1	10,7	12,4	8,5				

Abb. 96: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 % (rot), 1 % (grün), 1,5 % (blau), 2 % (hellblau), 2,5 % (pink) B₂O₃ (Haltezeit: 2 h) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz (schwarz)

Abb. 97: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % B_2O_3 (Haltezeit: 2 h) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz

Wird das selbe Tonerdezement-Rohmehl ohne Mineralisator gesintert, so werden 4 h Haltezeit benötigt um den Freikalk-Gehalt auf 0 % zu senken und mindestens 6 h um ähnliche Korund- und CA-Gehalte zu erreichen wie mit 0,5 % B₂O₃ und 2 h Haltezeit (Tab. 23, Abb. 98). Dies spricht für die Mineralisatorwirkung von B₂O₃.

Tab.	23:	Mittels	Rietveld	Me	ethode	ermittelte	Phasenz	usam	mensetzung	der
Calciu	malum	ninatzeme	ntklinker,	die	ohne	Mineralisato	orzugabe	bei	unterschiedli	chen
Haltez	eiten b	oei 1300 °	C gesinter	wurd	den					

Phasengehalt [%]					
Haltezeit	1 h	2 h	4 h	6 h	16 h
CaO	4,9	2,4	0	0	0
Al ₂ O ₃	15,4	12,5	5,4	3,4	0
C ₁₂ A ₇	20,1	22,9	28,8	20,9	3,3
CA	27,6	32,8	53,9	66,9	92,4
CA ₂	18,5	18,2	11,9	8,7	4,3
C ₃ A	13,4	11,3	0	0	0

Abb. 98: Entwicklung der Phasenzusammensetzung von Tonerdezement ohne Zumischung eines Mineralisators in Abhängigkeit der Haltezeit der max. Sintertemperatur 1300 °C

Die Mikrostruktur der verschiedenen Bor-Tonerdezementklinker wurde mittels REM untersucht (Abb. 99 - Abb. 103). Es haben sich vorwiegend prismatische Körner ausgebildet, die bei längerer Haltezeit der Sintertemperatur zunehmend

aufgeschmolzen sind. Zum Teil sind Tröpfchen zu erkennen, die durch eine Schmelzphase entstanden sind. Gemäß der XRD-Aufnahmen sind die Körner hauptsächlich als CA und zweitrangig als CA₂ zu identifizieren. Die REM-Aufnahmen des Klinkers, der ohne Mineralisator gesintert wurde, zeigen überwiegend rundliche Körner, die zu großen Quadern akkumuliert sind und große längliche Risse aufweisen.

Abb. 99: REM-Aufnahmen von hauptsächlich CA- und CA₂-Körnern eines Tonerdezementklinkers, gesintert für 2 h bei 1300 °C ohne Mineralisator. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 100: REM-Aufnahmen von CA- und CA₂- und C₁₂A₇-Körnern eines Bor-Tonerdezementklinkers, mineralisiert mit 1 % B_2O_3 , gesintert für 1 h bei 1300 °C. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 101: REM-Aufnahmen von hauptsächlich CA- und CA₂-Körnern eines Bor-Tonerdezementklinkers, mineralisiert mit 1 % B₂O₃, gesintert für 2 h bei 1300 °C. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 102: REM-Aufnahmen von hauptsächlich CA- und CA₂-Körnern eines Bor-Tonerdezementklinkers, mineralisiert mit 2 % B_2O_3 , gesintert für 1 h bei 1300 °C. Links: 1kx-Vergrößerung, rechts: 1,5kx-Vergrößerung

Abb. 103: REM-Aufnahmen von hauptsächlich CA- und CA₂-Körnern eines Bor-Tonerdezementklinkers, mineralisiert mit 2 % B_2O_3 , gesintert für 2 h bei 1300 °C. Links: 1kx-Vergrößerung, rechts: 1,5kx-Vergrößerung

6.3. Hydratationsverhalten

Die spezifischen Oberflächen der gemahlenen Klinker wurden nach BET bestimmt und liegen zwischen 3,22 und 0,15 m²/g und nehmen mit zunehmendem Boroxid-Gehalt ab (Tab. 24).

Mineralisator-	Spezifische Oberfläche [m²/g]		
Gehalt	1 h gesintert	2 h gesintert	
0,0 % B ₂ O ₃	3,22	2,29	
0,5 % B ₂ O ₃	1,85	0,41	
1,0 % B ₂ O ₃	1,28	0,39	
1,5 % B ₂ O ₃	0,39	0,18	
2,0 % B ₂ O ₃	0,26	0,17	
2,5 % B ₂ O ₃	0,15	0,20	

Tab. 24: Spezifische Oberfläche der Bor-Tonerdezemente; bestimmt nach BET

Durch Untersuchung des Hydratationsverhaltens mittels isoperiboler Wärmeflusskalorimetrie der Bor-Tonerdezemente wird eine zeitliche Korrelation zwischen dem Auftreten des Hydratationsmaximums und der Zumischung von B2O3 zum Rohmehl ersichtlich. Die Zumischung von B2O3 verzögerte bei einer Sinterhaltezeit von 1 h die Hydratation der Zemente (Abb. 104). Je höher der Mineralisierungsgrad, desto später fand die Haupthydratationsreaktion statt. Nach ca. 36 h war auch der langsamste Zement durchreagiert. Ebenso senkte eine zunehmende Mineralisierung den freiwerdenden Wärmefluss. Nicht in das Muster passte lediglich die Zumischung von 0,5 % B₂O₃, die einen doppelt so hohen Wärmefluss beim Hydratisieren erzeugte wie der CA-Zement ohne Mineralisator-Zumischung. Eine Erklärung hierfür könnte der Mayenit-Gehalt (ca. 24 %) sein, der im Zement mit 0,5 % B₂O₃-Zumischung höher war als in allen anderen Zementen. Außer der Probe ohne Mineralisator-Zumischung zeigten alle Zemente nur ein Hydratationsmaximum. Die Probe ohne Mineralisator-Zumischung hatte zwei Maxima. Das erste Maximum resultiert aus der schnellen Hydratation von C₃A, von dem in dieser Probe der höchste Gehalt (ca. 12 %) vorhanden ist. Das zweite Maximum wird durch die Hydratation von $C_{12}A_7$ und CA erzeugt.

Abb. 104: Hydratationsverhalten von Tonerdezementen mineralisiert mit 0,5 bis 2,5 % Boroxid in 0,5er Schritten, gesintert bei 1300 °C für 1 h (w/z-Wert = 1)

Die für 2 h gesinterten Proben hatten ebenfalls einen geringeren Wärmefluss mit Mineralisator-Zumischung als ohne. zeigten iedoch keine kontinuierliche Wärmeflussabnahme (Abb. 105). Den größten Unterschied zu der Probereihe mit 1 h Haltezeit zeigte die Probe mit 0,5 % B2O3-Zumischung. Sie hatte einen halb so hohen Wärmefluss und zeigte ihr Maximum nach ca. 12 h anstatt nach ca. 4 h. Hierfür kann der Mayenit-Gehalt verantwortlich sein. Dieser betrug nur ein Drittel des Mayenit-Gehaltes der Probe, die nur 1 h gesintert wurde. Außerdem ist die spezifische Oberfläche der kürzer gesinterten Probe 4,5-mal höher, was die schnellere Hydratation begründet (Tab. 24). Ein weiterer großer Unterschied im Hydratationsverhalten der beiden Probereihen zeigte die Probe mit 1,5 % B₂O₃. Hier führte eine längere Sinterhaltezeit zu einer Verschiebung des Zeitpunktes des von Stunde maximalen Wärmeflusses 11 nach Stunde 22. Die schnell hydratisierenden Mineralphasen Mayenit und C₃A waren in der länger gesinterten Probe nicht mehr vorhanden und die spezifische Oberfläche war nur noch circa halb so groß (Tab. 24).

Abb. 105: Hydratationsverhalten von Tonerdezementen mineralisiert mit 0,5 bis 2,5 % Boroxid in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Nach den etwa 40-stündigen kalorimetrischen Messungen wurden die Zementphasen mittels XRD bestimmt. Aufgrund der Restfeuchte, wurden sie mit der "front-loading" Methode präpariert. In allen Proben beider Sinterhaltezeiten bildeten sich die Hydratphasen CAH₁₀, C₂AH₈ sowie Ca₄Al₂O₆CO₃•11H₂O. Ab 1 % Mineralisator-Zugabe wurden CA und die hydraulisch inaktiven Phasen CA₂ und C₃B detektiert. Bei den Proben ohne Mineralisator-Zugabe konnten zudem Korund, Gibbsit und die stabilere Calciumaluminat-Hydratphase C₃AH₆ im hydratisierten Zement nachgewiesen werden (Abb. 106 und Abb. 107).

Abb. 106: Vergleich der Phasenzusammensetzung der hydratisierten (Bor-) Tonerdezemente mit 0–2,5 % B_2O_3 als Mineralisator, gesintert für 1 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 107: Vergleich der Phasenzusammensetzung der hydratisierten (Bor-) Tonerdezemente mit 0–2,5 % B_2O_3 als Mineralisator, gesintert für 2 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1

Beispielhaft wird das Röntgendiffraktogramm einer hydratisierten Probe, dessen Klinker mit 1 h Haltezeit gesintert wurde und 2 % B₂O₃ enthielt in Abbildung 108 gezeigt. Der Klinker enthielt ca. 60 % CA und zeigte nach einer 40-stündigen Hydratisierung noch immer CA-Reflexe mit hoher Intensität. Die Hydratphasen mit den höchsten Gehalten waren C₂AH₈ und CAH₁₀. In Abbildung 109 ist das Röntgendiffraktogramm einer hydratisierten Probe, die zuvor mit 2 h Haltezeit und 1 % Mineralisator gesintert wurde. Die Intensität des CA-Reflexes ist im Vergleich zum Klinker deutlich gesunken und CAH₁₀ bildete sich als Haupthydratphase.

Abb. 108: Hydratationsprodukte von Bor-Tonerdezement mit 2 % B_2O_3 als Mineralisator, gesintert für 1 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 109: Hydratationsprodukte von Bor-Tonerdezement mit 1 % B_2O_3 als Mineralisator, gesintert für 2 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1

Um die Änderung der Phasenzusammensetzung während der Hydratation zeitlich mitverfolgen zu können, wurden in situ XRD-Messungen über 50 h durchgeführt. Die Temperatur des Probenhalters wurde während der Messungen konstant auf 23 °C gehalten. Das ist dieselbe Temperatur wie im verwendeten Kalorimeterlabor. Untersucht wurde ein Tonerdezement, der 1 % B₂O₃ im Rohmehl enthielt und für 2 h bei 1300 °C gesintert wurde. Bis zu einer Hydratationszeit von ca. 25 h ist eine deutliche Senkung der Peakintensitäten von CA zu sehen (Abb. 110). Dies fällt mit dem Zeitpunkt zusammen, bei dem der Wärmefluss im Kalorigramm abebbt (Abb. 105). C₃A•CH•C₂B₂H₈•H₃₀ bildet sich bereits zu Beginn der Messung und der Gehalt steigt leicht bis zum Ende der Messung an. Ab ca. 10 h beginnt die Bildung von C₂AH₈ und ca. 3 Stunden später bildet sich CAH₁₀. Diese Zeitpunkte liegen beide innerhalb des Wärmeflussmaximums im zugehörigen Kalorigramm (Abb. 105).

Abb. 110: Diffraktogramme eines Tonerdezements mineralisiert mit 1 % B_2O_3 , gesintert für 2 h bei 1300 °C, während der ersten 50 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew.-% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt

Alle REM-Aufnahmen der hydratisierten Bor-Tonerdezemente zeigen eine scheinbar typische Stuktur von radialstrahlig gewachsenen hexagonalen C₂AH₈-Platten, die in Rosetten angeordnet sind. Untersucht wurden jeweils die Proben mit 1 % und 2 % B₂O₃, die für eine und zwei Stunden bei max. Sintertemperatur gesintert wurden (Abb. 111 - Abb. 114) sowie eine Probe, die ohne Mineralisator für 2 h bei 1300 °C gesintert wurde (Abb. 115). In jeder Probe sind neben den C₂AH₈-Platten kurzprismatische Bor-Ettringitstängel mit hexagonalem Querschnitt zu sehen. Zudem sind in allen Proben, die mit B₂O₃ gesintert wurden, Gibbsit-Plättchen zu sehen, die sich zu Kügelchen zusammenballen.

Abb. 111: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 1 h mit 1 % B_2O_3): C_2AH_8 -Platten, γ -AH₃-Plättchen und kurzprismatische Bor-Ettringitstängel. Links: 200x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 112: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 1 h mit 2 % B_2O_3): radialstrahlig gewachsene gestapelte C_2AH_8 -Platten, γ -AH₃-Plättchen und kurzprismatische Bor-Ettringitstängel. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 113: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 2 h mit 1 % B₂O₃): C₂AH₈-Platten und kurzprismatische Bor-Ettringitstängel. Links: 500x-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 114: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 2 h mit 2 % B₂O₃): radialstrahlig gewachsene C₂AH₈-Platten und angehäufte Bor-Ettringitstängel. Links: 500x-Vergrößerung, rechts: 500x-Vergrößerung

Abb. 115: REM-Aufnahmen der Hydratationsprodukte von Tonerdezement (gesintert für 2 h, ohne Mineralisator): gestapelte C₂AH₈-Platten. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

6.3.1. Beschleunigung durch Lithiumcarbonat

Die verzögernde Wirkung von Bor kann durch den Einsatz üblicher Beschleuniger wie Lithiumcarbonat vermieden werden. Es wurden Untersuchungen des Hydratationsverhaltens von Bor-Tonerdezement mineralisiert mit 1,5 % und 2,5 % B₂O₃, gesintert für 1 h bzw. 2 h bei 1300 °C, jeweils mit destilliertem Wasser und 0.01 einer molaren Li₂CO₃-Lösung durchgeführt (Abb. 116). Das Hydratationsmaximum aller Proben verschob sich von >10 h auf ca. 1 h.

Abb. 116: Wärmeflusskurven der Reaktion von Bor-Tonerdezement, mineralisiert mit 1,5 % und 2,5 % B_2O_3 , gesintert für 1 h und 2 h bei 1300 °C, jeweils mit dest. Wasser und mit 0,01 M Li₂CO₃-Lösung (w/z-Wert = 1)

7. Synthese von Fluor-Tonerdezementen

7.1. Syntheseparameter

Analog zu den Bor-Tonerdezementen wurde mittels Festköpersynthese eine Reihe von Tonerdezementen synthetisiert, die auf den Einfluss verschiedener Fluorid-Zumischungen als Mineralisator untersucht wurde. Als Ausgangsmaterialien wurden Calciumcarbonat und γ-Tonerde verwendet. Calciumfluorid diente als Fluorquelle, von dem so viel dem Rohmehl hinzugefügt wurde, dass es 0,5 %, 1 %, 1,5 %, 2 % und 2,5 % Fluor enthielt. In Abhängigkeit der Mineralisator-Zumischung wurde die Zementphasenbildung bei einer Sintertemperatur von 1300 °C und einer Haltezeit 106 von 2 h (Heizrate: 10 °C/min) untersucht. Die Rohmehle wurden so hergestellt, dass Calciumoxid und Aluminiumoxid, auch bei Zumischung von Calciumfluorid, in folgenden Verhältnissen vorlagen: 1:1, 1,1:1, 1,2:1, 1,5:1, 2:1. Somit wurde die optimale Rohstoff-Einwaage für einen möglichst geringen CA₂-Anteil im Klinker ermittelt.

7.2. Bestimmung der Phasenzusammensetzung

Nach dem Sintern der verschiedenen Rohmehle mit unterschiedlichen Mineralisatorzugabemengen, die Klinker wurden aufgemahlen und der Phasenbestand inklusive amorphen Anteils mittels Rietveld Methode quantifziert (Abb. 117). Alle Ergebnisse sind in den Tabellen 25 bis 29 zusammengefasst. Die zugehörigen Röntgendiffraktogramme sind in den Abbildungen 118 bis 122 zu sehen.

Abb. 117: Rietveld-Quantifizierung des Klinkers mit einem CaO:Al₂O₃ Verhältnis von 1:1 und 0,5 % Fluor-Gehalt; mit Zumischung von 10 % Rutil als interner Standard

Phasengehalt [%]								
Fluor-Gehalt	0 %	0,5 %	1 %	1,5 %	2 %	2,5 %		
CaO	3,3	0	0	0	0	0		
Al ₂ O ₃	16,1	8,2	2,1	0	0	0		
CA	28,7	23,1	31	19,9	3,9	4,9		
CA ₂	19,6	18,4	22,4	33,2	37,4	33,4		
C11A7CaF2	0	29,7	32,4	37	41,5	32,4		
C ₁₂ A7	16,7	0	0	0	0	0		
C ₃ A	10,9	4,0	0	0	0	0		
C ₃ A ₃ CaF ₂	0	0	0	0	9	21,8		
Amorph	4,7	16,5	12,1	9,9	8,2	7,5		

Tab	OE.	Quantifiziar	Indoordohniooo	dar	Klinkar	mit	ainam	$\sim \sim \sim$		Varhältnia	100	1.1
Tab.	20.	Guanunzien	indsergeomisse	aer	niinker	THE	einem	Udu	J. AI2U3	vemaiinis	VOIT	1.1
							•					

Tab. 26: Quantifizierungsergebnisse der Klinker mit einem CaO:Al₂O₃ Verhältnis von 1,1:1

Phasengehalt [%]								
Fluor-Gehalt	0 %	0,5 %	1 %	1,5 %	2 %	2,5 %		
CaO	7,6	7,9	2,1	0	0	0		
Al ₂ O ₃	19,5	12,9	4,2	0	0	0		
CA	21,3	17,3	22,5	18,8	6,3	4,1		
CA ₂	14,5	16,3	14,3	22,9	29	25,8		
C11A7CaF2	0	27,4	39,7	45,3	50	43,2		
C ₁₂ A ₇	14,9	0	0	0	0	0		
C ₃ A	11,4	2,7	0	0	0	0		
C ₃ A ₃ CaF ₂	0	0	0	0	2,9	18,3		
Amorph	10,8	15,3	17,2	13,1	11,9	8,6		

Tab. 27: Quantifizierungsergebnisse der Klinker mit einem CaO:Al₂O₃ Verhältnis von 1,2:1

Phasengehalt [%]								
Fluor-Gehalt	0 %	0,5 %	1 %	1,5 %	2 %	2,5 %		
CaO	7,7	5	4,4	0,8	0	0		
Al ₂ O ₃	16	8,5	5,5	1,5	0	0		
CA	22,6	19,9	21,8	16,3	7,7	5,3		
CA ₂	13,5	15,2	15,4	13,8	21,5	19,9		
C11A7CaF2	0	29,1	46,4	49	54,2	51,5		
C ₁₂ A ₇	17,5	0	0	0	0	0		
C ₃ A	11,6	9,2	0	0	0	0		
C ₃ A ₃ CaF ₂	0	0	1,1	0,8	2,3	6,7		
Amorph	11,1	13,1	5,4	17,7	14,4	16,5		

Phasengehalt [%]								
Fluor-Gehalt	0 %	0,5 %	1, %	1,5 %	2 %	2,5 %		
CaO	11,9	15,3	9,5	4,4	1,4	0		
Al ₂ O ₃	14,3	11,7	4	0	0	0		
CA	17,8	15,7	14	11,4	7,3	5,4		
CA ₂	10,3	12,9	10,2	8,5	7,4	5,6		
C11A7CaF2	0	25,4	40	53,7	58,4	63,6		
C ₁₂ A ₇	18,6	0	0	0	0	0		
C ₃ A	13,1	0,7	0	0	0	0		
C ₃ A ₃ CaF ₂	0	0	0	0	0	0		
Amorph	14,1	18,2	22,3	21,9	25,6	25,4		

Tah	28. Ouantifiziarun	rearganniega da	r Klinkar mit air	nom Convillene	Vorhältnie von 1 5·1
i au.		1961 1601 11996 16			
		5 5			,

Tab. 29: Quantifizierungsergebnisse der Klinker mit einem CaO:Al $_2O_3$ Verhältnis von 2:1

Phasengehalt [%]								
Fluor-Gehalt	0 %	0,5 %	1 %	1,5 %	2 %	2,5 %		
CaO	15,6	18,2	16,5	13,1	8,7	7,1		
Al ₂ O ₃	10,4	8	3,1	1,5	0	1,7		
CA	16,3	12,3	10,7	6,8	3,6	1,4		
CA ₂	8,1	10,7	7,5	6,4	4,3	2		
C11A7CaF2	0	23,9	40,7	51,1	56	59,3		
C ₁₂ A ₇	18,6	0	0	0	0	0		
C ₃ A	13,2	10,2	0,9	0	0	0		
C ₃ A ₃ CaF ₂	0	0	0	0	0	0		
Amorph	17,9	16,7	20,5	21,1	27,4	28,5		

Abb. 118: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 1:1

Abb. 119: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 1,1:1

Abb. 120: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 1,2:1

Abb. 121: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 1,5:1

Abb. 122: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 2:1

Mit höheren Calciumfluorid-Gehalten im Rohmehl erhöhte sich im Klinker der Fluor-Mayenit-Anteil (max. ca. 63 %, Abb. 126), da das Fluor den Mayenit stabilisiert hat. Ab 2,5 % Fluor bildete sich auch Fluor-Sodalith in den Klinkern (Abb. 123 bis Abb. 125), außer in denen mit einem CaO:Al₂O₃-Verhältnis von 1,5:1 und 2:1 (Abb. 126, Abb. 127). Der Gehalt an CA sank hingegen mit höherem Mineralisierungsgrad, da Calcium- und Aluminiumoxid für die Bildung von Fluor-Mayenit größtenteils verbraucht wurden. Unabhängig vom CaO:Al₂O₃-Verhältnis, bildete sich C₃A nur bis zu einem Fluor-Gehalt von 0,5 %. Mit zunehmender Mineralisierung stieg die chemische Umsetzung von CaO und Al₂O₃, wodurch die Freikalk- und Korund-Gehalte im Klinker auf 0 % sanken. Mit höherem CaO-Gehalt im Rohmehl war dazu ein höherer Fluor-Gehalt notwendig. So reichten bereits 0,5 % Fluor bei einem CaO:Al₂O₃-Verhältnis von 1:1 aus, um den Freikalk-Gehalt auf 0 % zu senken. Wie bereits in Abbildung 98 zu sehen war, wurde eine etwa doppelt so hohe Haltezeit benötigt um beim Sintern des gleichen Rohmehls ohne Mineralisator den Freikalk-Gehalt auf 0 % zu senken (Kapitel 6.1.). Bei einem CaO:Al₂O₃-Verhältnis von 1,1:1 und 1,2:1 wurden dazu 1,5 % Fluor benötigt. Im Klinker mit dem CaO:Al₂O₃-Verhältnis von 2:1 reichte der maximal verwendete Fluor-Gehalt von 2,5 % nicht aus um den Freikalk-Gehalt auf 0 % zu senken (Abb. 127). Hier konnte jedoch durch das Calciumüberangebot der Gehalt an der hydraulisch inaktiven Phase CA₂ bis auf 2 % gesenkt werden. Mit höherem CaO-Gehalt im Rohmehl konnte wie erwartet beobachtet werden, dass der Gehalt der hydraulisch inaktiven Phase CA₂ stetig sank.

Abb. 123: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al₂O₃ im Verhältnis 1:1

Abb. 124: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und AI_2O_3 im Verhältnis 1,1:1

Abb. 125: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und AI_2O_3 im Verhältnis 1,2:1

Abb. 126: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und AI_2O_3 im Verhältnis 1,5:1

Abb. 127: Entwicklung der Phasenzusammensetzung von Tonerdezement bei Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al_2O_3 im Verhältnis 2:1

Die Mikrostruktur der Fluor-Tonerdezementklinker wurde mittels REM untersucht (Abb. 128 - Abb. 137). Bei den Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,1:1 und 1,2:1 ist eine deutliche Vergrößerung der Körner mit höherem Fluorgehalt zu sehen. Der Klinker, der ohne Fluor gesintert wurde, hat nochmals deutlich kleinere Körner (Abb. 128). Weitere Tendenzen in der Mikrostruktur bezüglich höherem Fluor-oder CaO-Gehalt sind nicht zu erkennen. Bei allen Proben sind die Körner unregelmäßig, meist eckig geformt. Teilweise sind die einzelnen Körner zu größeren Quadern akkumuliert (Abb. 130, Abb. 133).

Abb. 128: REM-Aufnahmen von Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1:1 ohne Fluorzumischung (Hauptphasen: CA, CA₂, C₁₂A₇, Al₂O₃). Links: 500x-Vergrößerung, rechts: 4kx-Vergrößerung

Abb. 129: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1:1 mit 0,5 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA, CA₂) Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 130: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1:1 mit 2,5 % Fluor (Hauptphasen: CA₂, C₁₁A₇CaF₂, C₃A₃CaF₂). Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 131: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,1:1 mit 1 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA, CA₂). Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 132: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,1:1 mit 2,5 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA₂, C₃A₃CaF₂). Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 133: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,2:1 mit 1 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA, CA₂). Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 134: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,2:1 mit 2,5 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA₂). Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 135: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 1,5:1 mit 1 % Fluor (Hauptphasen: $C_{11}A_7CaF_2$, CA). Links: 2kx-Vergrößerung, rechts: 4kx-Vergrößerung

Abb. 136: REM-Aufnahmen von Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 2:1 ohne Fluorzumischung (Hauptphasen: C₁₂A₇, CA, C₃A). Links: 800x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 137: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 2:1 mit 1 % Fluor (Hauptphasen: $C_{11}A_7CaF_2$, CaO, CA). 1kx-Vergrößerung

Mit einer Fluorid-Elektrode wurden die Fluorgehalte des Rohmehls und der Fluor-Tonerdezementklinker nach der Sinterung bestimmt (Abb. 138). Es trat während der Sinterung ein Fluorverlust von 0,3-20,1 % auf, sodass eine Korrektur der Fluorgehalte gemäß Tabelle 30 vorgenommen werden musste. Begutachtet man den Fluorverlust in Abhängigkeit der Fluor-Zumischung oder der unterschiedlichen Rohmehl-Einwaageverhältnisse, ist keine Tendenz abzuleiten, da auch die mineralogische Zusammensetzung in Betracht gezogen werden muss. Zudem kann auch im amorphen Anteil Fluor enthalten sein. Die "C1,5A" und "C2A" Klinker mit höheren Fluor-Zumischungen hatten die höchsten Fluor-Mayenit-Gehalte im Vergleich zu den anderen Klinkern, so dass sich die höhere Fluorbindung erklären lässt. Der max. Fluorverlust (16,6 %) bei Zumischung von 2 Gew.-% Fluor ist niedriger als der Fluorverlust bei Zumischung von 1,5 und 2,5 Gew.-%. Dies korreliert mit dem höheren Fluor-Mayenit-Gehalt, denn die "CA", "C_{1,1}A" und "C_{1,2}A" Klinker haben dort das Maximum der Fluor-Mayenit-Bildung erreicht.

Abb. 138: Fluorgehalt der Fluor-Tonerdezementrohmehle und der Klinker; gemessen mit der ionenselektiven Fluorid-Elektrode

Tab. 30: Korrigierte Fluorgehalte der Fluor-Tonerdezementklinker nach der Fluorid-Bestimmung mittels Fluorid-Elektrode

Fluorgehalt [Gew%]								
Rohmehl	0,50	1,00	1,50	2,00	2,50			
"CA" -Klinker	0,48	0,95	1,20	1,70	2,14			
"C _{1,1} A"-Klinker	0,43	0,95	1,28	1,81	2,46			
"C1,2A"-Klinker	0,42	0,88	1,48	1,67	2,01			
"C _{1,5} A"-Klinker	0,41	0,93	1,50	1,79	2,23			
"C₂A" -Klinker	0,46	0,93	1,50	1,90	2,41			

7.3. Hydratationsverhalten

Durch Untersuchung der Fluor-Tonerdezemente mittels isoperiboler Wärmeflusskalorimetrie wurde eine Beeinflussung des Hydratationsverhaltens durch Zumischung von CaF₂ zum Rohmehl deutlich. Bei einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1:1 bewirkte Fluor ab einer Zumischung von 1 % eine Aufspaltung der Hydratationsreaktion in zwei Peaks und eine Verzögerung der Hydratation (Abb. 139). Mit zunehmendem Fluor-Gehalt nahm der maximale Wärmefluss des zweiten Hydratationspeaks ab: von 16,1 mW/g nach 3,7 h ohne Fluor auf 9,6 mW/g nach 22,2 h mit 2,5 % Fluor.

Abb. 139: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Bei einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,1:1 bewirkte Fluor ab einer Zumischung von 1 % eine zunehmende Verzögerung der Hydratation (Abb. 140). Mit zunehmendem Fluor-Gehalt nahm die Verzögerung des zweiten Hydratationspeaks zu. Der maximale Wärmefluss blieb in etwa gleich (Ø 13 mW/g). Bei einer Zumischung von 0,5 % Fluor sank hingegen der Wärmefluss auf max. 3,6 mW/g und bei Zumischung von 1,5 % Fluor war nach dem zweiten Hydratationspeak nach ca. 20,7 h noch eine dritte Reaktion erkennbar.

Abb. 140: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,1:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Bei einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,2:1 gab es erst eine Aufspaltung in zwei Hydratationspeaks ab einer Zumischung von 1,5 % Fluor (Abb. 141). Der max. Wärmefluss dieser zweiten Hydratationsmaxima lag zwischen 11 und 15 mW/g. Die Verwendung von 0,5 % Fluor bewirkt auch hier wieder eine Senkung des max. Wärmeflusses auf etwa 5,3 mW/g. Eine Verzögerung der Hydratation fand, gegenüber des Tonerdezements ohne Fluor, nur bei einer Zumischung von 1,5 %, 2 % und 2,5 % Fluor statt.

Abb. 141: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,2:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Bei einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,5:1, zeigte der Tonerdezement bereits ohne Zugabe von Fluor eine starke Verzögerung der Hydratation gegenüber den vorigen Rohmehl-Einwaageverhältnissen. Eine zusätzliche Verzögerung der Hydratation durch Zugabe von Fluor fand nicht statt (Abb. 142). Erst ab einer Zugabe von 2 % Fluor wurde ein zweiter Hydratationspeak deutlich sichtbar, der bei 2,5 % Fluor-Zugabe mit einem Wärmefluss von 12,1 mW/g noch deutlicher hervortrat. Dieses Hydratationsmaximum fand nach 20,4 h statt und damit früher als ohne Fluorzumischung (21,7 h).

Abb. 142: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,5:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Bei einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 2:1, zeigten alle Zemente nur Hydratationsreaktionen, die nicht vom Einspritzpeak zu trennen sind (Abb. 143). Mit zunehmender Fluor-Zumischung nahm die integrale Wärmemenge kontinuierlich ab. Eine Verzögerung der Hydratation ist hier durch Zugabe von Fluor nicht aufgetreten.

Abb. 143: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 2:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)

Alle Proben wurden nach dem Sintern per Hand aufgemahlen, wodurch keine einheitliche spezifische Oberfläche gewährleistet werden konnte. Was jedoch auffällt, ist, dass die spezfische Oberfläche mit zunehmendem Fluorgehalt abnahm (Tab. 31). Dies erklärt auch die teilweise beschriebene verlangsamte Hydratation.

Fluor-	Spezifische Oberfläche [m²/g]								
[%]	1CaO:1Al ₂ O ₃	1,1CaO:1Al ₂ O ₃	1,2CaO:1Al ₂ O ₃	1,5CaO:1Al ₂ O ₃	2CaO:1Al ₂ O ₃				
0,0 %	2,29	2,29	2,02	2,10	1,99				
0,5 %	1,52	1,96	1,79	1,89	1,52				
1,0 %	1,08	1,14	1,16	1,09	1,21				
1,5 %	0,44	0,40	0,54	0,54	0,60				
2,0 %	0,29	0,26	0,23	0,23	0,29				
2,5 %	0,39	0,30	0,34	0,23	0,33				

Tab. 31: Spezifische Oberfläche der Fluor-Tonerdezemente; bestimmt nach BET

Nach den etwa 40-stündigen kalorimetrischen Messungen wurden die Zementphasen mittels XRD bestimmt. Aufgrund der enthaltenen Restfeuchte der 125 Proben, wurde die "front-loading" Methode bei der Päparation angewendet. Bei der Hydratation bildeten sich die Hydratphasen CAH₁₀, C₂AH₈, C₃AH₆, γ-AH₃ und Ca₄Al₂O₆CO₃•11H₂O (Abb. 144 - Abb. 148). Bei höheren Calciumoxidgehalten im Rohmehl bildete sich bei der Hydratation erst ab 2 % Fluor C₃AH₆. In den anderen Synthesereihen nahm der C₃AH₆-Gehalt mit höheren Fluorgehalten zu. Der C₂AH₈-Gehalt nahm mit höheren Fluorgehalten hingegen soweit ab, dass sich in einigen Proben kein C₂AH₈ bildete. Mit zunehmendem Calciumoxidgehalt war dazu mehr Fluor nötig. Bei den Rohmehl-Einwaageverhältnissen CaO:Al₂O₃ von 1:1 und 1,1:1 bildete sich ab 1 % Fluor kein C₂AH₈ mehr - bei 1,2:1 ab 1,5 % Fluor und bei 2:1 ab 2 % Fluor. Statt C₂AH₈ bildete sich bei höheren Fluorgehalten CAH₁₀. Nur in den Proben mit CaO:Al₂O₃ von 1:1 bildete sich CAH₁₀ unabhängig vom Fluorgehalt immer. In den Proben mit dem Rohmehl-Einwaageverhältnis von 2CaO:1Al₂O₃ bildete sich kein CAH₁₀, dafür bildeten sich C₄AH₁₃ und Ca₄Al₂O₆(CO₃)_{0,5}(OH)•11,5H₂O.

Abb. 144: Vergleich der Phasenzusammensetzung der hydratisierten (Fluor-) Tonerdezemente mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h, XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 145: Vergleich der Phasenzusammensetzung der hydratisierten (Fluor-) Tonerdezemente mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,1:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h, XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 146: Vergleich der Phasenzusammensetzung der hydratisierten (Fluor-) Tonerdezemente mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,2:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h, XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 147: Vergleich der Phasenzusammensetzung der hydratisierten (Fluor-) Tonerdezemente mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,5:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h, XRD nach 40 h Hydratation mit w/z-Wert = 1

Abb. 148: Vergleich der Phasenzusammensetzung der hydratisierten (Fluor-) Tonerdezemente mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 2:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h, XRD nach 40 h Hydratation mit w/z-Wert = 1

Beispielhaft wird das Röntgendiffraktogramm eines hydratisierten Tonerdezements mit einem CaO:Al₂O₃-Rohmehl-Einwaageverhältnis von 1,2:1, der mit 1 % Fluor mineralisiert wurde, in Abbildung 149 gezeigt.

Abb. 149: Hydratationsprodukte von Tonerdezement mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,2:1, mineralisiert mit 1 % Fluor, gesintert bei 1300 °C für 2 h; XRD nach 40 h Hydratation mit w/z-Wert = 1

Um die Änderung der Phasenzusammensetzung während der Hydratation zeitlich mitverfolgen zu können, wurden in situ XRD-Messungen über 35 h durchgeführt. Die Temperatur des Probenhalters wurde während der Messungen konstant auf 23 °C gehalten. Das ist dieselbe Temperatur wie im verwendeten Kalorimeterlabor. Bei einem Tonerdezement mit einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,1:1, mineralisiert mit 2,5 % Fluor, ist mit fortschreitender Zeit eine deutliche Senkung der Peakintensitäten der Phasen Fluor-Mayenit und Fluor-Sodalith zu sehen (Abb. 150). Die Bildung von C₂AH₈ nach ca. 20 h fällt zeitgleich mit dem zweiten Wärmeflussmaximum im Kalorigramm zusammen (Abb. 140). Nach 28 h bildet sich aus C₂AH₈ die neue Phase C₃AH₆, die durch den Einbau von Fluor stabilisiert wird.

Abb. 150: Diffraktogramme eines Tonerdezements mit einer Rohmehl-Einwaage von CaO und Al_2O_3 im Verhältnis 1,1:1 (mineralisiert mit 2,5 % Fluor) während der ersten 35 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew.-% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt

Mittels REM wurde die Mikrostruktur ausgewählter hydratisierter Fluor-Tonerdezemente untersucht (Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1 mit 0 %, 0,5 % und 2,5 % Fluor, von 1,1:1 mit 1 % und 2,5 % Fluor, von 1,2:1 mit 1 % und 2,5 % Fluor, von 1,5:1 und 2:1 mit 0 % und 1 % Fluor) (Abb. 151 - Abb. 160). Ohne Fluor und bei niedrigem Fluorgehalt (0,5-1 %) ist das Gefüge dicht und es haben sich hauptsächlich hexagonale C₂AH₈-Platten sowie γ-AH₃-Plättchen gebildet, die zu kleinen Kügelchen akkumuliert sind. Mit höherem Fluorgehalt (2,5 %) wird das Gefüge poröser aufgrund der Bildung von Hydrogranat, der in Deltoidikositetraeder auskristallisiert. Es entstehen Löcher, da die neugebildeten Hydrogranate dichter sind und ein geringeres Volumen haben als die zuerst entstandenen Calciumaluminathydrate CAH₁₀ und C₂AH₈. Diese Mikrostruktur führ zu einer Festigkeit des abgebundenen Zements. geringeren Bei einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 2:1 hat sich auch bei einem geringen Fluorgehalt (1 %) bereits eine große Menge von Hydrogranatpolyedern gebildet, die das Gefüge porös machen. Die Deltoidoikositetraeder haben einen Durchmesser von bis zu 22 µm.

Abb. 151: REM-Aufnahmen der Hydratationsprodukte von Tonerdezement ohne Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1: dichtes Gefüge mit gestapelten C₂AH₈-Platten. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 152: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 0,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1: dichtes Gefüge mit C₂AH₈-Platten. Links: 200x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 153: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1: poröses Gefüge mit Löchern, die durch die Bildung weniger voluminöser Hydrogranate entstanden sind. Links: 200x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 154: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1,1:1:. Links: Negativ eines Quasiwürfels in 2kx-Vergrößerung, rechts: C₂AH₈-Platten und feine Überzüge von γ -AH₃-Plättchen in 2kx-Vergrößerung

Abb. 155: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1,1:1. Links: Loch gefüllt mit Hydrogranaten in 1kx-Vergrößerung, rechts: feine γ -AH₃-Plättchen in 5kx-Vergrößerung

Abb. 156: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1,2:1: dichtes Gefüge mit großer Ansammlung von gestapelten C₂AH₈-Platten, zum Teil überzogen mit γ -AH₃-Plättchen. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung

Abb. 157: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1,2:1. Links: poröses Gefüge mit Löchern, gefüllt mit Hydrogranaten in 200x-Vergrößerung, rechts: gestapelte C₂AH₈-Platten in 2kx-Vergrößerung

Abb. 158: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1,5:1: Hexagonale C₂AH₈-Platten und Kügelchen bestehend aus γ -AH₃-Plättchen. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 159: REM-Aufnahmen der Hydratationsprodukte von Tonerdezement ohne Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 2:1,1: Hexagonale C₂AH₈-Platten. Links: 1kx-Vergrößerung, rechts: 3kx-Vergrößerung

Abb. 160: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit 1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 2:1,1: Sehr poröses Gefüge mit großen Hydrogranatpolyedern mit bis zu 22 μ m Durchmesser. Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Von der Probe mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1 wurde zusätzlich ein Elementmapping aufgenommen (Abb. 161, Abb. 162). Die Matrix ist aluminiumreich und könnte aus γ -AH₃-Plättchen und CAH₁₀ bestehen, die aufgrund ihrer sehr feinen Nadelbildung kaum in den REM-Aufnahmen zu erkennen sind. Fluor und Calcium konzentrieren sich vor allem an der Umrandung der mit Hydrogranaten gefüllten Poren. Aufgrund der Tiefe gelangte kein EDX-Signal in die Poren.

Abb. 161: Verteilung der Elemente Aluminium, Calcium und Fluor über die Fläche des hydratisierten Fluor-Tonerdezements mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1: Matrix in rot aus γ -AH₃-Plättchen und CAH₁₀, Poren gefüllt mit C₃AH₆, oben links in grün C₂AH₈.

Abb. 162: Elementmapping von einzelnen Elementen zur besseren Veranschaulichung der Elementverteilung der Fläche des hydratisierten Fluor-Tonerdezements mit 2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al₂O₃ von 1:1 (Oben links: Ca, oben rechts: Al, unten links: F)

7.3.1. Beschleunigung durch Lithiumcarbonat

Die verzögernde Wirkung von Fluor kann durch den Einsatz üblicher Beschleuniger wie Lithiumcarbonat vermieden werden. Es wurden Untersuchungen des Hydratationsverhaltens von Fluor-Tonerdezement mineralisiert mit 2,5 % Fluor, jeweils mit destilliertem Wasser und einer 0,01 molaren Li₂CO₃-Lösung durchgeführt (Abb. 163). Es wurden alle synthetisierten CaO:Al₂O₃-Verhältnisse im Rohmehl (1:1, 1,1:1, 1,2:1, 1,5:1, 2:1) für die Beschleunigungsversuche verwendet. Das Hydratationsmaximum aller Proben verschob sich von >20 h auf ca. 35 min.

Abb. 163: Wärmeflusskurven der Reaktion von Fluor-Tonerdezement mit 2,5 % Fluor-Gehalt im Rohmehl und unterschiedlichen CaO:Al₂O₃-Verhältnissen im Rohmehl, jeweils mit dest. Wasser und mit 0,01 M Li₂CO₃-Lösung (w/z-Wert = 1)

8. Zusammenfassung und Diskussion

8.1. Reinphasige Synthesen

Mittels Festkörpersynthese wurden fünf borhaltige (CB₂, CB, C₂B, C₃B, C₂AB) und drei fluorhaltige Reinphasen (Fluor-Mayenit, Cuspidin, Fluor-Sodalith) synthetisiert. Alle Phasen wurden ausführlich mittels XRD, REM und Kalorimetrie untersucht. Die Gitterkonstanten wurden mittels Pawley-Fit bestimmt (Tab. 32) und mit Literaturdaten verglichen. Von den synthetisierten borathaltigen Phasen ist CB die einzige, die hydraulisch reagiert. Aus CB entstand nach der 80-stündigen kalorimetrischen Messung CBH₆. Fluor-Mayenit und Fluor-Sodalith sind ebenfalls hydraulisch aktiv und reagieren beide zu CAH₁₀, C₂AH₈, C₃AH₆ und γ -AH₃. Die fluorhaltigen Phasen wurden zusätzlich mit einer ionenselektiven Fluorid-Kombinationselektrode nach einem eventuellen Fluorverlust während der Sinterung untersucht. Es kam zu einem geringen Fluorverlust von 0,3-4 %.

Phase	a [Å]	b [Å]	c [Å]	α [°]	β [°]	γ [°]	V [ų]	Raum-
								gruppe
СВ	11,5970(1)	4,2778(0)	6,2179(9)	90	90	90	308,4(7)	Pbcn
CB ₂	7,7972(9)	9,8998(0)	14,3878(2)	90	121,55	90	946,2(7)	P21/c
C ₂ B	7,2178(6)	5,1773(4)	11,5026(1)	90	92,83	90	429,3(1)	P21/c
C ₃ B	8,6347(3)	8,6347(3)	11,8597(4)	90	90	120	765,7(8)	R3c
C ₂ AB	8,2746(7)	15,2412(7)	5,7380(4)	90	90	90	723,6(6)	Ccc2
C ₁₁ A ₇ CaF ₂	11,9625(8)	11,9625(8)	11,9625(8)	90	90	90	1711,8(8)	l43d
C ₃ S ₂ CaF ₂	7,5335(6)	10,5306(9)	10,9007(1)	90	70,46	90	815,0(2)	P21/C
C ₃ A ₃ CaF ₂	17,3146(4)	17,3146(4)	6,9946(0)	90	90	120	1816,0(2)	R3

Tab. 32: Mittels Pawley-Fit bestimmte Gitterparameter der synthetisierten bor- und fluorhaltigen Verbindungen

8.2. Ye'elimit und Fluor-Ye'elimitzement

Bei 1350 °C wurden durch den partiellen Austausch von CaSO4 durch CaF2 im Syntheseprozess von Ye'elimit die hydraulischen Zementphasen Ye'elimit, Fluor-Mayenit und Fluor-Sodalith gebildet. Als weitere Nebenphase entstand max. 7 % CA2. Auf Basis des berechneten Zellvolumens von Ye'elimit und Fluor-Sodalith, wurde eine geringe Substitution von Sulfat durch Fluorid und andersherum bei Gehalten von 0,2-0,9 mol CaF₂ angenommen. Während der Sinterung kam es zu geringen Fluorverlusten von 2,1 % bis maximal 5,2 %. Damit beträgt die Bindungsrate von Fluor im Klinker 95-98 %. Der Mineralisierungseffekt von Fluor konnte anhand der Mikrostruktur mittels REM veranschaulicht werden. Die Kristalle hatten größere Dimensionen und eine idealisierte Form. Dies wurde auch durch Messungen der spezifischen Oberfläche beobachtet. Mit zunehmendem Fluorgehalt nahm die spezifische Oberfläche ab, was für die Bildung größerer Partikel spricht, die wiederum langsamer hydratisieren. Mit zunehmendem Fluor-Gehalt ist eine zunehmende Verzögerung der Hydratation gemessen worden. Versuche mit Lithiumcarbonat haben gezeigt, dass dieser Verzögerung entgegengewirkt werden kann.

8.3. Belit-Fluoroaluminatzement

Mit den fluorhaltigen Mineralen Flussspat und Kryolith konnten verschiedene Belit-Fluoroaluminatzemente bei den Sintertemperaturen 1100 °C und 1150 °C synthetisiert werden. Die Hauptphasen der Klinker waren Larnit mit maximal 42 % und Fluor-Mayenit mit maximal 38 %. Bei Verwendung von Flussspat ist darauf zu achten, dass sich die hydraulisch inaktiven Phasen y-Belit (AKIN ALTUN, 1999) und Cuspidin nicht bilden. Ab 3 % Kryolith im Rohmehl bildeten sich geringe Mengen an Gehlenit (3-8 %). Bei einer Sintertemperatur von 1150 °C wurden 3 % Flussspat für eine optimale Phasenzusammensetzung benötigt, während 5 % Flussspat bei 1100 °C erforderlich waren. Daher ist es eine wirtschaftliche Frage ob eine höhere Temperatur oder eine höhere Mineralisator-Zugabe bevorzugt wird. Diese Frage sollte mit Hilfe des aktuellen Flussspatpreises beantwortet werden (265 US\$/t Flussspat, Deutsche Rohstoffagentur 01/2019). Bei Betrachtung der mineralogischen Zusammensetzung führte die Zugabe von 3 % Flussspat (Sintertemperatur 1150 °C) zum optimalen Klinker. Allerdings waren 5 % Flussspat (Sintertemperatur 1100 °C) in Bezug auf das Hydratationsverhalten am besten geeignet. Bei Sintertemperaturen von 1100 °C und 1150 °C war die Phasenzusammensetzung bei Verwendung von bereits 3 % Kryolith optimal, da Kryolith einen um 5,6 % höheren Fluorgehalt als Flussspat aufweist. Das beste Hydratationsverhalten zeigte der Zement mit 3 % Kryolith (Sintertemperatur 1100 °C). Die Haupthydratationsprodukte sind Strätlingit und C₂AH₈. Beide kristallisierten in teilweise idiomorphen hexagonalen, tafelförmigen Plättchen aus, die überwiegend gestapelt waren. Während der Sinterung kam es zu Fluorverlusten, die jedoch bei beiden Sintertemperaturen in etwa gleich hoch waren. Bei der Verwendung von Flussspat war der Fluorverlust mit ca. 10-20 % höher als bei der Verwendung von Kryolith (6-16 %). Damit beträgt die Bindungsrate von Fluor 80-90 % (mit CaF₂) bzw. 84-94 % (mit Kryolith). im Klinker Belit-Fluoroaluminatzemente können gleichermaßen gut mit Flussspat oder Kryolith synthetisiert werden. Eine geringere Menge von Kryolith reduziert jedoch den Freikalk-Gehalt effektiver als Flussspat und die Fluorbindung im Klinker ist höher. Versuche mit Lithiumcarbonat haben gezeigt, dass die verzögernde Wirkung von Fluor auch vermieden werden kann.

8.4. Bor-Tonerdezement

Aus Calciumcarbonat, γ -Tonerde und Calciumborat (Rantzauer Töpferbedarf) konnten bei 1300 °C verschiedene Bor-Tonerdezemente synthetisiert werden. Die Hauptphasen der Klinker waren CA mit maximal 75 % und Mayenit mit maximal 24 %. Bei Verwendung von mind. 1,5 % B₂O₃ entstanden durch die Bildung von C₃B und dem damit einhergehenden zusätzlichen Calciumoxid-Verbrauch 18 bis 30 % der hydraulisch inaktiven Phase CA2. Die Zugabe von Boroxid ermöglichte die Synthese von Tonerdezement bei 150 - 200 °C niedrigerer Sintertemperatur als üblich (BIER, 2011) und reduzierte die Haltezeit auf 1 h. Ohne Mineralisator hätte das Rohmehl für einen vollständigen Umsatz der Ausgangsstoffe bei gleicher Sintertemperatur mind. 6 h gesintert werden müssen. Gleichzeitig wird die Hydratisierung von Tonerdezement durch Zugabe von Boroxid verzögert. Versuche mit Lithiumcarbonat haben gezeigt, dass die verzögernde Wirkung von Boroxid auch vermieden werden kann. Als Haupthydratationsphasen CAH₁₀, C₂AH₈ entstanden und Ca₄Al₂O₆CO₃•11H₂O. Für einen Phasenbestand mit geringem Anteil hydraulisch inaktiver Phasen (< 9 % CA₂, < 1 % C₃B) und einer Hydratationsverzögerung unter 8 h, sollte eine Mineralisator-Zugabe von 1 % bei einer Sinterhaltezeit von 2 h nicht überschritten werden. Dies führte zu einem Klinkerbestand mit ca. 75 % CA. Wird das Rohmehl nur 1 h gesintert, sind für einen hohen CA-Gehalt (ca. 66 %) 1,5 % B₂O₃ nötig.

8.5. Fluor-Tonerdezement

Aus Calciumcarbonat, γ-Tonerde und Calciumfluorid konnten bei 1300 °C mit einer Haltezeit der max. Sintertemperatur von 2 h verschiedene Fluor-Tonerdezemente synthetisiert werden. Die Mineralisierung mit Calciumfluorid führte zu einer Änderung der Phasenzusammensetzung und damit zu einer Änderung des Zementtyps und seiner Anwendung. Anstelle des CA, das normalerweise die Hauptphase im Tonerdezement ist, bildete sich Fluor-Mayenit mit max. ~64 % als Hauptphase. Durch die schnell erhärtenden Eigenschaften des Fluor-Mayenits ist der Zement dadurch eher als Schnellreparaturzement einsetzbar, wie auch die Kalorigramme gezeigt haben. Mit höherem Mineralisierungsgrad sanken der CA-Gehalt sowie auch die Freikalk- und Korund-Gehalte im Klinker. Ohne Mineralisator hätte das Rohmehl für einen vollständigen Umsatz der Ausgangsstoffe bei gleicher Sintertemperatur mind. 6 h gesintert werden müssen. Durch Variation der Rohmehl-Einwaagen konnte 140 der Gehalt der hydraulisch inaktiven Phase CA₂ gesenkt werden. Im Hinblick auf einen geringen CO₂-Ausstoß bei der Sinterung, ist eine Einwaage von möglichst wenig Calciumcarbonat zu bevorzugen. Während der Sinterung kam es zu Fluorverlusten von 0.3-20,1 %. Damit beträgt die Bindungsrate von Fluor im Klinker 80-100 %. Eine Fluorverlust-Tendenz in Abhängigkeit der Fluor-Zumischung oder der Rohmehl-Einwaageverhältnisse war nicht zu sehen, da vor allem die mineralogische Phasenbildung dazu betrachtet werden musste, d.h. mit höheren Bildungsraten der stabilen fluorhaltigen Phase Fluor-Mayenit war auch der Fluorverlust geringer. In Abhängigkeit der Rohmehl-Einwaagen wurde die Hydratation der Zemente durch die Zugabe von Fluor verzögert. Versuche mit Lithiumcarbonat haben gezeigt, dass die verzögernde Wirkung von Fluor auch vermieden werden kann. Als Haupthydratationsphasen entstanden CAH₁₀, C_2AH_8 C₃AH₆, v-AH₃ und Ca₄Al₂O₆CO₃•11H₂O. Für einen Phasenbestand mit hohen Fluor-Mayenit- und CA-Gehalten, einem möglichst geringen Anteil an CA2 und einem Freikalk-Gehalt von unter 2 % sind die in Tabelle 33 zusammengefassten Rohmehl-Einwaageverhältnisse und Fluor-Zumischungen zu wählen.

CaO:Al ₂ O ₃ -	Fluor-	Fluor-Mayenit-	CA-	CA ₂ -	CaO-
Verhältnis	Zumischung	Gehalt	Gehalt	Gehalt	Gehalt
1:1	1,0 %	32,4 %	31,0 %	22,4 %	0,0 %
1,1:1	1,0 %	39,7 %	22,5 %	14,3 %	2,1 %
1,1:1	1,5 %	45,3 %	18,8 %	22,9 %	0,0 %
1,2:1	1,5 %	49,0 %	16,3 %	13,8 %	0,8 %
1,5:1	2,5 %	63,6 %	5,4 %	5,6 %	0,0 %

Tab. 33: Zusammenfassung der unterschiedlichen Klinker mit gutem Phasenbestand

8.6. Diskussion

1. Einsatz von Mineralisatoren

Durch den Einsatz von Mineralisatoren (Flussspat, Kryolith und Boroxid) konnten bei der Synthese der Spezialzemente mehrere Vorteile erzielt werden, wie die Erhöhung der Effizienz des Sinterprozesses, eine energieeffizientere Klinkerproduktion sowie die Entlastung der Umwelt durch Reduzierung der CO₂-Emissionen aufgrund der Bildung neuer Klinkerminerale. Die Hauptklinkerphasen der Spezialzemente Ye'elimit, Fluor-Mayenit und Calciumaluminat zeigen eine hohe Reaktivität mit Wasser, während Belit langsamer abbindet und Fluor-Sodalith die langsamste Reaktion mit Wasser zeigt.

2. Reduzierung der CO₂-Emissionen

Eine Reduzierung der CO₂-Emissionen konnte der Synthese bei von Spezialzementen (Fluor-Ye'elimitzement, Belit-Fluoroaluminatzement, Bor-Tonerdezement, Fluor-Tonerdezement) im Vergleich zur Portlandzementproduktion aufgrund der Bildung neuer Klinkerminerale erreicht werden. Die Hauptphasen der unterschiedlichen Spezialzemente sind Ye'elimit, Fluor-Sodalith, Fluor-Mayenit, Belit und Calciumaluminat. Diese Phasen sind calciumärmer als die Hauptphase Alit von Portlandzement, wodurch weniger Calciumcarbonat eingesetzt werden muss, das für den CO₂-Ausstoß verantwortlich ist.

3. Erniedrigung der Sintertemperatur

Die synthetisierten Spezialzemente erfordern aufgrund der Verwendung der Mineralisatoren Sintertemperaturen zwischen 1000 und 1350 °C (Tab. 34). Der gewöhnliche Portlandzement benötigt hingegen 1450 °C.

Zementtyp	Sintertemperatur
Portlandzement	1450 °C
Fluor-Ye'elimitzement	1350 °C
Bor-Tonerdezement	1300 °C
Fluor-Tonerdezement	1300 °C
Belit-Fluoroaluminatzement	1100 °C / 1150 °C

Tab. 34: Sintertemperaturen für verschiedene Zementtypen

4. Verkürzung der Haltezeit

Neben der niedrigeren Sintertemperatur brachte die Verkürzung der Haltezeit eine zusätzliche Energieersparnis. Vergleichende Synthesen von Tonerdezement ohne Mineralisator benötigten die dreifache Haltezeit für eine ähnliche Phasenzusammensetzung bei Verwendung von Boroxid als Mineralisator (Tab. 35). Durchgeführt wurden statische Versuche in einem Muffelofen mit einer Heizrate von 10 °C/min und unterschiedlichen Haltezeiten bei einer konstanten Temperatur von 1300 °C.

Tab. 35: Mittels Rietveld Methode ermittelte Phasenzusammensetzung von (Bor-) Tonerdezementen, die bei 1300 °C bei unterschiedlichen Haltezeiten und mit unterschiedlichen Mineralisatorgehalten (0-1 % B_2O_3) gesintert wurden

		Phasenge	ehalt [%]		
Boroxid-					
Gehalt	1 %	0,5 %	0 %	0 %	0 %
Haltezeit	2 h	2 h	2 h	4 h	6 h
CaO	0	0	2,4	0	0
Al ₂ O ₃	0	5,2	12,5	5,4	3,4
C ₁₂ A ₇	5,1	10,5	22,9	28,8	20,9
CA	80,4	76,3	32,8	53,9	66,9
CA ₂	10,6	7,0	18,2	11,9	8,7
C ₃ A	1,6	0	11,3	0	0
C₃B	2,3	1,0	0	0	0

5. Ausblick

Eine weitere Umweltentlastung kann durch den Ersatz der Laborchemikalien durch industrielle Reststoffe sowie durch das Recycling von Rauchgasreinigungsprodukten erzielt werden. Bei den sulfathaltigen Proben könnte direkt Fluoranhydrit verwendet werden, sodass ein zusätzlicher Einsatz von fluorhaltigen Mineralisatoren erspart wird. Bei den borhaltigen Klinkern und Reinphasen sollte zudem der volatile Borverlust durch die Sinterung analytisch untersucht werden. Für die Zukunft sind auch Untersuchungen zur Langzeitstabilität der Spezialzemente nötig sowie die genaue Ermittlung der Anwendungsgebiete.

9. Literaturverzeichnis

- Akin Altun, I., 1999, Effect of CaF₂ and MgO on sintering of cement clinker. Cem. Concr. Res., 29, 1847–1850.
- Álvarez-Pinazo, G., Cuesta, A., García-Maté, M., Santacruz, I., Losilla, E. R., De la Torre, A. G., León-Reina, L., Aranda, M. A. G., 2012, Rietveld quantitative phase analysis of Yeelimite-containing cements. Cem. Concr. Res., 42, 960– 971.
- Apagyi, Z., Csetenyi, L. J., 2001, Phase equilibrium study in the CaO-2K₂O-2B₂O₃-2H₂O system at 25 °C. Cem. Concr. Res., 31, 1087–1091.
- Aranda, M. A. G., De la Torre, A. G., 2013, Sulfoaluminate cement. In: Pacheco-Torgal F., Jalali, S., Labrincha J., John V. M. (Eds.), Eco-efficient concrete. Woodhead Publishing, Cambridge.
- Arjunan, P., Silbsee, M. R., Roy, D. M., 1999, Sulfoaluminate-belite cement from lowcalcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res., 29, 1305–1311.
- Baeker, C., Lampe, F., Worzola, H., 1983, Einfluss von Mineralisatoren auf die Alitbildung, Silikattechnik, 32, 81–82.
- Bei, R., 1990, Herstellung und Eigenschaften von Portlandzementen mit niedrigerem Kalkstandard, Dissertation, Rheinisch Westfälische Technische Hochschule, Aachen.
- Benhelal, E., Zahedi, G., Hashim, H., 2012, A novel design for green and economical cement manufacturing. J. Cleaner Prod. 22, 1, 60–66.
- Bensted J. B., Callaghan I.C., Lepre A., 1991, Comparative study of the efficiency of various borate compounds as set-retarders of class G oilwell cement. Cem. Concr. Res., 21, 663–668.
- Bier, T., 2011, Bindemittel, Spezialzemente und Ternäre Systeme. Die Aktuelle-Wochenschau© der GDCh – Bauen und Chemie, 06.
- Blanco-Varela, M. T., Palomo, A., Vázquez, T., 1984, Effect of fluorspar on the formation of clinker phases. Cem. Concr. Res., 14, 397–406.
- Blanco Varela, M. T., Palomo, A., Puertas, F., Vásquez, T., 1995, Influence of the join incorporation of CaF₂ and of CaSO₄ in the clinkerization process. Obtainment of new cements. Materiales de Construcción, 45, 21–39.

- Blanco Varela, M. T., Puertas, F., Vásquez, T., Palomo, A., 1996, Modelling of the burnability of White cement raw mixes made with CaF₂ and CaSO₄. Cem. Concr. Res., 26, 457–64.
- Blanco Varela, M. T., Palomo, A., Puertas, F., Vásquez T., 1998, Fluxes and mineralizers: fluoro-sulfate cements, In: Skalny Jan, Midness Sidney, editors. Materials science of concrete V. The American Ceramic Society.
- Boncukcuoğlu, R., Yilmaz, M. T., Kocakerim, M. M Tosunoğlu, V., 2002, Utilization of borogypsum as set retarder in Portland cement production. Cem. Concr. Res., 32, 3, 471–475.
- Boncukcuoğlu, R., O. İçelli, O., Erzeneoğlu, S., Kocakerim, M. M., Tosunoğlu, V., 2005, Cem. Concr. Res., 35, 1082–1087.
- Borgholm, H. E., Herfort, D., Rasmusen, S., 1995, A new blended cement based on mineralised clinker. World Cem., 8, 27–33.
- Bothe Jr., J. V., Brown, P. W., 1998, Phase formation in the system CaO-Al₂O₃-B₂O₃- H_2O at 23 ± 1 °C, J. Hazard. Mater., B 63, 199–210.
- Brunauer, S., Emmett, P., Teller, E., 1938, Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 60, 309–319.
- Calos, N. J., Kennard, C. H. L., Whittaker, A. K., Davis, R. L., 1995, Structur of calcium aluminate sulfate Ca₄Al₆O₁₆S. J. Solid State Chem., 119, 1–7.
- Cau Dit Coumes, C., Dhoury, M., Champenois, J. B., Mercier, C., Damidot, D., 2017, Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement. Cem. Concr. Res., 97, 50–60.
- Champenois, J. B., Mesbah, A., Cau Dit Coumes, C., Renaudin, G., Leroux, F., Mercier, C., Revel, B., Damidot, D., 2012, Crystal structures of Boro-AFm and Boro-AFt phases. Cem. Concr. Res., 42, 1362–1370.
- Champenois, J.B., Dhoury, M., Cau Dit Coumes, C., Mercier, C., Revel, B., Le Bescop, P., Damidot, D., 2015, Influence of sodium borate on the early age hydration of calciumsulfoaluminate cement. Cem. Concr. Res., 70, 83–93.
- Costa, U., Ballirano, P., 2000, Improved powder X-ray data for the cement phase Ca₁₂Al₁₄O₃₂F₂ (C11A7f). Powder Diffraction, 15, 56.
- Csetenyi, L. J., Glasser, F. P., 1993, Borate substituted ettringites, Proc. Mat. Res. Soc. Symp., 294, MRS Publ., Pittsburgh, PA, USA, 273–278.

- Cuberos, A. J. M., De la Torre, A. G., Álvarez-Pinazo, G., Martín-Sedeño, M. C., Schollbach, K., Pöllmann, H., Aranda, M.A.G., 2010, Active Iron-Rich Belite Sulfoaluminate Cements: Clinkering and Hydration. Environ. Sci. Technol., 44, 6855-6862.
- Cuesta, A., Losilla, E. R., Aranda, M. A. G., Sanz, J., De la Torre, A. G., 2012, Reactive belite stabilization mechanisms by boronbearing dopants. Cem. Concr. Res., 42, 598–606.
- Cuesta, A., De la Torre, A. G., Losilla, E. R., Peterson, V. K., Rejmak, P., Ayuela, A., Frontera, C., Aranda, M. A. G., 2013, Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite, Chem. Mater., 25, 9, 1680–1687.
- Cuesta, A., Álvarez-Pinazo, G., Sanfélix, S. G., Peral, I., Aranda, M. A. G., De la Torre, A. G., 2014, Hydration mechanisms of two polymorphs of synthetic ye'elimite. Cem. Concr. Res., 63, 127–136.
- Degen, T., Sadki, M., Bron, E., König, U., Nénert, G., 2014, The Highscore suite. Powder Diffr., 29, 13–18.
- Demirbaş, A., Karslioğlu, S., 1995, The effect of boric acid sludges containing borogypsum on properties of cement. Cem. Concr. Res., 25, 7, 1381–1384.
- Deutsche Rohstoffagentur, Bundesanstalt für Geowissenschaften und Rohstoffe, Preismonitor Rohstoffe Januar 2019, 1-14.
- DIN EN 196-6, 1989, Prüfverfahren für Zement Teil 6: Bestimmung der Mahlfeinheit nach Blaine.
- Dominguez, O., Torres-Castillo, A., Flores-Velez, L. M., Torres, R., 2010, Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF₂. Mat. Charact., 61, 459– 466.
- Engelsen, C.J., 2007, Effect of mineralizers in cement production. Sintef Report SBF BK A07021.
- Erdoğan, Y., Demirbaş A., Genc, H., 1994, Partly-refined chemical by-product gypsums as cement additives. Cem. Concr. Res., 24, 4, 601–604.

Eti Mine Works General Management, 2011, Boron Sector Report (Türkei)

Forrester, J. A., 1970, A conduction calorimeter for the Study of Cement Hydration. Cem. Technol., 1, 95–99.

- Galluccio, S., Pöllmann, H., 2017, Synthese und Charakterisierung von Belit Fluoroaluminatzement. GDCh Tagung Bauchemie, Weimar, Monographie Bd. 52, 91–94.
- Galluccio, S., Pöllmann, H., 2018a, Studies on the influence of different fluorine minerals portions on the mineral composition of belite-fluoroaluminate cements. 20. ibausil Weimar, Tagungsband 2, ISBN: 978-3-00-059951-4, 429–436.
- Galluccio, S., Pöllmann, H., 2018b, Studies on the influence of different fluorine minerals portions on the mineral composition of belite-fluoroaluminate cements. Proceedings of the fortieth international conference on cement microscopy, Deerfield Beach, USA, 100–116.
- Galluccio, S., Beirau, T., Pöllmann, H., 2019, Maximization of the reuse of industrial residues for the production of eco-friendly CSA-belite clinker. Construc. Build. Mat., 208, 250–257.
- Galluccio, S., Pöllmann, H., 2019, Mineralizer to calcium sulfoaluminate. GDCh Tagung Bauchemie, Aachen, Monographie Bd. 54, 136–143.
- Galluccio, S., Pöllmann, H., 2020, F⁻ and SO₄⁻ containing calcium sulfoaluminate $3CaO\cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ with $0 \le x \le 1$. Calcium Aluminates: Proceedings of International Conference, Cambridge (submitted)
- García-Díaz, I., Palomo, J. G., Puertas, F., 2011, Belite cements obtained from ceramic wastes and the mineral pair CaF₂/CaSO₄. Cem. Concr. Compos., 33, 1063–1070.
- García-Maté, M., De la Torre, A. G., Léon-Reina, L., Aranda, M. A. G., Santacruz, I., 2013, Hydration study of calcium sulfoaluminate cements blended with fly ash. Cem. Concr. Res., 54, 12–20.
- García-Maté, M., De la Torre, A.G., León-Reina, L., Losilla, E. R., Aranda, M. A. G.,. Santacruz, I., 2015, Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cem. Concr. Compos., 55, 53–61.
- Gartner, E., 2004, Industrially interesting approaches to "low-CO2" cements. Cem. Concr. Res., 34, 1489–1498.
- Gartner E., Sui, T., 2018, Alternative cement clinkers. Cem. Concr. Res., 114, 27–39.
- Ghosh, S. N., Rao, P. B, Paul, A. K., Raina, K., 1979, The chemistry of dicalcium silicate. Mineral. J. Mater Sci., 14, 1554–1556.

- Ghosh, S. N., 1983, Advances in cement technology: Critical reviews and case studies on manufacturing, quality control, optimisation and use. Pergamon Press. Oxford, United Kingdom.
- Giménez-Molina, S., Blanco-Varela, M. T., 1998, Solid state compatibilities in CaO-CaO.Al₂O₃-CaSO₄-CaF₂ system. J. Mater. Sci., 33, 2961–2964.
- Giovannelli Maizo, I. D., Luz, A. P., Pagliosa, C., Pandolfelli, V. C., 2017, Boron sources as sintering additives for alumina-based refractory castables. Ceram. Int., 43, 10207–10216.
- Gutt, W., 1968, Manufacture of Portland cement from phosphatic raw materials. 5th ICCC Tokio, 1, 93–105.
- Gutt, W., Osborne, G. J., 1968, The calcium silicofluoride of tentative composition (3CaO · SiO₂)₃ · CaF₂, Trans. Brit. Ceram. Soc. 67, 125–133.
- Haley, G. D., 1980, Cement bonded agglomerate containing boron. US Patent, 4210619
- Hewlett, P.C., 1998, Lea's chemistry of cement and concrete, Arnold Publishers, London.
- Hoerkner, W., Mueller-Buschbaum, H., 1976, Zur Kristallstruktur von CaAl₂O₄. J. Inorg. Nucl. Chem., 38, 983–984.
- Iacobescu, R. I., Pontikes, Y., Koumpouri, D., Angelopoulos, G. N., 2013, Synthesis, characterization and properties of calcium ferroaluminate belite cements produced with electric arc furnace steel slag as raw material. Cem. Concr. Compos., 44, 1–8.
- Ji, Y., Liang, J., Xie, S., Zhu, N., Li, Y.,1993, Structure of 2CaO.B₂O₃. Acta Crystallogr., C49, 78–79.
- Johansen, V., Christensen, N. H., 1979, Rate of formation of C₃S in the system CaO-SiO₂-Al₂O₃-Fe₂O₃-MgO with addition of CaF₂. Cem. Concr. Res., 9, 1–6.
- Justnes, H., 2012, Alternative Low-CO₂ "Green" Clinkering Processes. Rev. Mineral. Geochem., 74, 83–99.
- Kacimi, L., Simon-Masseron, A., Salem, S., Ghomari, A., Derriche, Z., 2009, Synthesis of belite cement clinker of high hydraulic reactivity. Cem. Concr. Res., 39, 559–565.

- Kadiyski, M., Armbruster, T., Günther, D., Reusser, E., Peretti, A., 2008, Johachidolite, CaAl[B₃O₇], a mineralogical and structural peculiarity. Eur. J. Mineral., 20, 965–973.
- Kavas, T., Angelopoulos, G. N., Iacobescu, R. I., 2015, Production of belite cement using boron and red mud wastes. Cement, Wapno, Beton, 5, 328–334.
- Kharita, M. H., Yousef, S., AlNassar, M., 2011, Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energ., 53, 207–211.
- Kirfel, A., 1987, The electron density distribution in calcium metaborate, Ca(BO₂)₂. Acta Crystallogr., B43, 333–343.
- Klein, A., 1961, Calciumaluminosulfate and Expansive Cements Containing Same. US Patent, 3155526 A.
- Klemm, W. A., Jawed I., Holub K. J.,1979, Effects of calcium fluoride mineralization on silicates and melt formation in Portland cement clinker. Cem. Concr. Res., 9, 489–496.
- Knöfel, D., Wang, J. F., 1994. Properties of three newly developed quick cements. Cem. Concr. Res., 24, 801–812.
- Koumpouri, D., Angelopoulos, G. N., 2016, Effect of boron waste and boric acid addition on the production of low energy belite cement. Cem. Concr. Compos., 68, 1–8.
- Kula, İ., Olgun, A., Erdoğan, Y., Sevinç, V., 2001, Effects of colemanite waste, coal bottom ash and fly ash on the properties of cement. Cem. Concr. Res., 31, 491–494.
- Kula, I., Olgun, A., Sevinç, V., Erdoğan, Y., 2002, An investigation on the use of tincal ore waste, fly ash, and coal bottom ash as Portland cement replacement materials. Cem. Concr. Res., 32, 227–232.
- Kurdowski, W., 2014, Cement and Concrete Chemistry. Springer, London.
- Kusachi, I., Henmi, C., Kobayashi, S., 1995, Takedaite, a new mineral from Fuka, Okayama Prefecture, Japan. Mineral. Mag., 59, 549–552.
- Kuzel, H.-J., 1984, Ein leistungsfähiges Wärmeleitungskalorimeter. TIZ-Fachberichte 108 (1), 46–52.

- Kuzel, H. J., Pöllmann, H., 1991, Hydration of C₃A in the presence of Ca(OH)₂, CaSO₄• 2H₂O and CaCO₃, Cem. Concr. Res., 21, 885–895.
- Lawrence, C.D., 2001, The Production of Low-energy Cements. In: Hewlett P.C., Lea's Chemistry of Cement and Concrete. 4. Ed., Butterworth-Heinemann, Oxford, 421–470.
- Lea, F. M., 1971, The chemistry of cement and concrete. Chemical Publishing Company, Inc. New York, USA.
- Leary, J. K., 1962, New compound in the system CaOAl₂O₃-CaF₂. Nature, 194, 79–80.
- Li, C., Wu, M., Yao, W., 2019, Effect of coupled B/Na and B/Ba doping on hydraulic properties of belit-ye'elimite-ferrite cement. Construc. Build. Mat., 208, 23–35.
- Lin, Q.-S., Cheng, W.-D., Chen, J.-T., Huang, J.-S., 1999, Calcium pyroborate, Ca₂B₂O₅. Acta Crystallogr., C55, 4–6.
- Liu, K. et al., 1992, Study on cement in the C₁₁A₇CaF₂ system. Proceedings 9th ICCC, New Delhi, 3, 268–276.
- Liu, Y., Zheng, Y., 2013, Mineral Waste Coupled with Boron Oxide for Producing Active Belite Cement Clinker. Appl. Mech. Mater., 405-408, 2564–2575.
- Lothenbach, B., Winnefeld, F., 2017, Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements. In: Pöllmann, H., cementitious Materials – Composition, Properties, Application. De Gruyter, Berlin, 103–143.
- Majling, J., Figusch, V., Hanic, F. Wiglasz, V., Cora, J., 1974, Crystal data and thermal expansion of tricalciumborate. Mater. Res. Bull., 9, 1379–1382.
- Malata-Chirwa, C. D., 2012, Manufacture and properties of fluoride cement. Graduate Theses and Dissertations. Paper 12838.
- Marezio, M., Plettinger, H. A., Zachariasen, W. H., 1963, Refinement of the calcium metaborate structure. Acta Crystallogr., 16, 390–392.
- Martín-Sedeño, M. C., Cuberos, A. J. M., De la Torre, A. G., Álvarez-Pinazo, G., Ordónez, L. M., Gateshki, M., Aranda, M. A. G., 2010, Aluminum-rich belite sulfoaluminate cements: Clinkering and early age hydration. Cem. Concr. Res., 40, 359–369.

Moir, G. K., 1982, Mineralised high alite cements. World Cem., 12, 374–382.

- Moir, G. K., Glasser, F. P.,1992, Mineralisers, modifiers and activators in the clinkering process. Proceedings of the 9th International Congress on the Chemistry of Cement, 1, 125–152.
- Mutuk, T., Mesci, B., 2014, Analysis of mechanical properties of cement containing boron waste and rice husk ash using full factorial design. J. Clean. Prod., 69, 128–132.
- Najafi Kani, E, Allahverdi, A., 2010, Fast Set and high early strength cement from limestone, natural puzzolan and fluorite. Int. J. Civil Eng., 8, 4, 362–369.
- Odler, I., Abdul-Maula, S., 1980, Einfluss von Mineralisatoren auf das Brennen des Portlandzementklinkers, ZKG, 3, 132–136.
- Odler, I., Abdul-Maula, S., 1987, Hydration Reactions in the System CaO-SiO₂-CaF₂. J. Am. Ceram. Soc., 70,1, 39-42.
- Odler, I., 2000, Special inorganic cements Modern Concrete Technology, E & FN Spon, London.
- Olgun, A., Kavas, T., Erdoğan, Y., Once, G., 2007, Physico-chemical characteristics of chemically activated cement containing boron. Build. Environ., 42, 2384– 2395.
- Panda, H., 2016, The Complete Technology Book on Asbestos, Cement, Ceramics and Limestone. 273, Asia Pacific Business Press Inc.
- Park, C.-K., 1998, Characteristics and hydration of C_{12-x}A₇•x(CaF₂) (x=0~1.5) minerals. Cem. Concr. Res., 28, 1357-1362.
- Pechini, M. P., 1967, Method of preparing Lead and Alkaline Earth Titanites and Niobates and Coating Method using the same to Form a Capacitor. U. S. Pat. No. 3, 330 697.
- Péra, J. Ambroise, J., 2004, New applications of calcium sulfoaluminate cement. Cem. Concr. Res., 34., 671–676.
- Pöhlmann, R., 1986, Zur Brennbarkeit von Portlandzementrohmehlen. Dissertation, Rheinisch Westfälische Technische Hochschule, Aachen.

- Pöllmann, H., Kuzel, H.-J., Meyer, H. W., 1991, Heat-flow Calorimetry in Cement Chemistry - Construction and Application of a low cost, high-sensitive Calorimeter. Proc. 13th Int. Con. Cem. Micr., 254–272.
- Pöllmann, H., Auer, S., Kuzel, H. J., Wenda, R., 1993, Solid solution of Ettringite: Part II: Incorporation of B[OH]₄⁻ and CrO₄²⁻ in 3CaO·Al₂O₃·3CaSO₄·32H₂O. Cem. Concr. Res., 23, 2, 422–430.
- Pöllmann, H., Schollbach, K., 2011, Hydrating behaviour of activated belite sulfoaluminate cements. 13th ICCC.
- Pöllmann, H., 2012, Calcium Aluminate Cements Raw Materials, Differences, Hydration and Properties. Rev. Mineral. Geochem., 74, 1–82.
- Pöllmann, H., Stöber, S., Schmidt, R., 2013, Synthesis and characterization of Sulfoaluminate-(Belite) cements from industrial residues. 1st ICSAC, 366–384.
- Pöllmann, H., 2015, Mineralogical Strategies to reduce CO₂ in the fabrication of alternative cements. 19. ibausil, Weimar, Tagungsbericht Bd. 1, 111–129.
- Prosen, E. J., Brown, P. W., Frohnsdorff, G., Davis, F., 1985, A Multichambered Microcalorimeter for the Investigation of Cement Hydration. Cem. Concr. Res., 15, 703–710.
- Puertas, F., Blanco Varela, M. T., Vásquez, T., Palomo, A.,1996, Influence of sand nature on burnability of white cement raw mixes made using CaF₂ and CaSO₄ fluxing/ mineralizer part. Cem. Concr. Res., 26, 1361–1367.
- Ramachandran, V. S., Paroli, R. M., Beaudoin, J. J., Ana H. Delgado, A. H., 2002, Thermal Analysis of Construction Materials. Kapitel 3.1. Hydration of 11CaO•7Al₂O₃•CaF₂, 422–424, William Andrew, New York.
- Rietveld, H. M., 1967, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr., 22, 151–152.
- Rietveld, H. M., 1969, A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr., 2, 65–71.
- Saburi, S., Kawahara, A., Henmi, C., Kusachi, I., Kihara, K.,1977, The refinement of the crystal structure of cuspidine. Min. J., 8, 286–298.

- Sağlik, A., Sümer, O., Tunç, E., Kocabeyler, M. F., Çelik, R. S., 2008, The Characteristics of Boron Modified Active Belite (BAB) Cement and its Utilization in Mass and Conventional Concrete. 11DBMC International Conference on Durability of Building Materials and Components, Istanbul, Türkei, 11.-14. Mai.
- Sahu, S., 1994, Developments in low energy clinkers. Ceramics Silikáty, 38, 191– 200.
- Schäfer, U. L., Kuzel, H. J., 1967, Kompatibilitätsbeziehungen und ternäre Verbindungen im System CaO-Al₂O₃-B₂O₃. N. Jb. Miner., Mh. 4/5, 131–136.
- Schuckmann, W., 1968, The Structure of Calcium Aluminoborates, CaAl[O/BO₃]. Neues Jahrb. Mineral., Monatsh. 3/4, 80.
- Scrivener, K. L., Capmas, A., 2004, Calcium Aluminate Cements. In: Hewlett P.C., Lea's Chemistry of Cement and Concrete. 4. Ed., Butterworth-Heinemann, Oxford, 713–782.
- Shen, Y., Qian, J., Chai, J., Fan, Y., 2014, Calcium sulphoaluminate cements made with phosphogypsum production issues and material properties. Cem. Concr. Compos., 48, 67–74.
- Smart, R. M., Roy, D. M., 1979, The system CaO-Al₂O₃-Fe₂O₃ with added fluoride flux. Cem. Concr. Res., 9, 269–274.
- Smirnova, R. F., Rumanova, I. M., Belov, N. V., 1955, The crystal structure of cuspidine. Zap. Vses. Miner. Obšč, 84, 159–169.
- Sprung, S., Seebach, H. M., 1968, Fluorhaushalt und Fluoremissionen von Zementöfen, ZKG, 21,1–8.
- Sprung, S., 1982, Technologische Probleme beim Brennen des Zementklinkers. Ursache und Lösung, Habilitationsschrift, Rheinisch Westfälische Technische Hochschule, Aachen.
- Stöber, S., Pöllmann, H., 2014, Investigations on commercial and synthetic calciumsulfoaluminate cements, 36th ICMA, 471–508.
- Targan, S., Olgun, A., Erdoğan, Y., Sevinç, V., 2002, Effects of supplementary cementing materials on the properties of cement and concrete. Cem. Concr. Res., 32, 1551–1558.

- Tian, M., 1923, Utilisation de la méthode calorimetrétrique en dynamique chimique. Bulletin de la Sociéte Chimique de France, 23, 427.
- Vanvor, D., 2000, Strahlenschutzbeton und Strahlenschutzmantel. Int. Patent, WO 00/10935.
- Vegas, A., Cano, F. H., García-Blanco, S., 1975, The Crystal Structure of Calcium Orthoborate: a Redetermination. Acta Crystallogr., B31, 1416.
- Vogel, E., 1959, Die Wirkung von CaF₂ und Kiesabbrand auf den Reaktionsverlauf von Zementrohmehlen unterhalb von 1100 °C. Silikattechnik, 10, 415–418.
- Wenda, R., Kuzel, H. J., 1983, Incorporation of B³⁺ into calcium aluminate hydrate. Fortschritte Miner., 61, 217–218.
- Wenda, R., 1984, Untersuchungen zur Kristallchemie der Hydratationsprodukte borathaltiger Zemente. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg.
- Westphal, T., Füllmann, T., Pöllmann, H., 2009, Rietveld quantification of amorphous portions with an internal standard Mathematical consequences of the experimental approach. Powder Diffr., 24, 3, 239–243.
- Winnefeld, F., Lothenbach, G., 2010, Hydration of calcium sulfoaluminate cements-Experimental findings and thermodynamic modeling. Cem. Concr. Res., 40, 1239–1247.
- Yamashita, M., Tanaka, H., 2011, Low-temperature burnt Portland cement clinker using mineralizer, Cem. Sci. Concr. Technol., 65, 82–87.
- Young, F., Afridi, M. U. K., 2004, Innovative Cements. Chapter 9.3 in Innovations in Portland cement Manufacturing, editor in chief: J.I. Bhatty, 1149–1239, Portland Cement Association.
- Yu, Q.-J., Sugita, S., Feng, X.-J., Mi, J.-X., 1997, On the preparation of single crystals of 11CaO 7Al₂O₃ CaF₂ and the confirmation of its crystal structure. Cem. Concr. Res., 27, 1439–1449.
- Zayakina, N. V., Brovkin, A. A., 1977, Crystal structure of CaB₄O₇. Kristallografiya, 22, 275–280.

Zhiguo, X., Molokeev, M., Oreshonkov, A., Atuchin, V., Ru-Shi, L., Cheng, D., 2014, Crystal and local structure refinement in Ca₂Al₃O₆F explored by X-ray diffraction and Raman spectroscopy. Phys. Chem. Chem. Phys., 16, 5952– 5957.

Internetquellen

Fastmarkets Industrial Minerals (2019): Pricing News https://www.indmin.com/BoratesBoronMinerals.html (abgerufen am 27.11.2019)

10. Abbildungsverzeichnis

Abb.	1: Teil des Systems CaO-SiO ₂ -CaF ₂ (nach GUTT, 1968)	. 3
Abb.	2: X´Pert ³ Powder Diffraktometer der Firma PANalytical B.V. mit PIXcel ^{1D}	
	Detektor	14
Abb.	3: Diffraktogramm der Kapton® Polyimide Folie	16
Abb.	4: X'Pert Diffraktometer mit MESICON Probenträger und Temperaturregler	16
Abb.	5: Wellenlängendispersives Röntgenfluoreszenzspektrometer SRS 3000 von	
	Siemens	17
Abb.	6: Blaine Gerät der Firma Toni Technik	17
Abb.	7: BET-Gerät "Flowsorb II 2300" von Micromeritics	18
Abb.	8: Wärmeflusskalorimeter mit Vierlingsanordnung (drei Messzellen und eine	
	Referenzzelle)	19
Abb.	9: Tabletop Mikroskops TM4000Plus von HITACHI	20
Abb.	10: Titrator mit angeschlossener perfectION™ Fluorid-Kombinationselektrode	
	der Firma Mettler Toledo	21
Abb.	11: Stabile Phasen im System B ₂ O ₃ -Al ₂ O ₃ -CaO. Die sechs blau	
	gekennzeichneten Verbindungen wurden synthetisiert	24
Abb.	12: Pawley-Fit des Röntgendiffraktogramms von CaO•B ₂ O ₃	25
Abb.	13: REM-Aufnahmen von rechtwinkligen orthorhombischen CaO•B ₂ O ₃ -	
	Kristallen. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung	25
Abb.	14: Wärmeflusskurve von CaO•B ₂ O ₃ (w/z-Wert = 1, spezif. Oberfläche = 1,34	
	m²/g)	26
Abb.	15: Hydratationsprodukte von CB; XRD nach 80 h Hydratation mit w/z-Wert =	1.
		26
Abb.	16: REM-Aufnahmen von rundlichen CBH ₆ -Kristallen und nicht hydratisierten	
	länglichen CB-Kristallen. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung	9
		27
Abb.	17: Pawley-Fit des Röntgendiffraktogramms von CaO•2B ₂ O ₃	28
Abb.	18: REM-Aufnahmen von monoklinen CB ₂ -Kristallen mit deutlich sichtbaren	
	Kanten. Links: 200x-Vergrößerung, rechts: 500x-Vergrößerung	28
Abb.	19: Pawley-Fit des Röntgendiffraktogramms von 2CaO•B ₂ O ₃	29
Abb.	20: REM-Aufnahmen von monoklinen gerundeten 2CaO•B2O3-Körnern. Links:	
	2kx-Vergrößerung, rechts: 5kx-Vergrößerung	29
Abb.	21: Pawley-Fit des Röntgendiffraktogramms von 3CaO•B ₂ O ₃	30
Abb.	22: REM-Aufnahmen von hexagonalen 3CaO•B2O3-Kristallen mit noch nicht	
	vollständig ausgebildeten Kristallfächen. Links: 2kx-Vergrößerung, rechts: 5k	۲X-
	Vergrößerung	31
Abb.	23: Pawley-Fit des Röntgendiffraktogramms von CaO•Al ₂ O ₃	32
Abb.	24: Pawley-Fit des Röntgendiffraktogramms von 2CaO•Al ₂ O ₃ •B ₂ O ₃	33
Abb.	25: REM-Aufnahmen von orthorhombischem 2CaO•Al ₂ O ₃ •B ₂ O ₃ mit	
	unregelmäßig ausgebildeten, zum Teil länglichen, Kristallen. Links: 2kx-	
	Vergrößerung, rechts: 5kx-Vergrößerung	33

 synthetisiert
 Abb. 27: Pawley-Fit des Röntgendiffraktogramms von 11CaO•7Al₂O₃•CaF₂
 Abb. 28: REM-Aufnahmen von isometrischen, rundlichen Fluor-Mayenit-Körnern. Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung 35 Abb. 29: Wärmeflusskurve von Fluor-Mayenit (11CaO+7Al₂O₃+CaF₂, w/z-Wert = 1, spezif. Oberfläche = 0,31 m²/g) 36 Abb. 30: Hydratationsprodukte von Fluor-Mayenit; XRD nach 55 h Hydratation mit w/z-Wert = 1 37 Abb. 31: REM-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH₈- Plättchen, feine CAH₁₀-Nadeln und Hydrogranate in Deltoidikositetraederform (C₃AH₆). Links und rechts: 5kx-Vergrößerung 37 Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH₈-Plättchen, feine CAH₁₀-Nadeln und Hydrogranate (C₃AH₆) mit eingebautem Fluor. Links: 10kx-Vergrößerung 38 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO+2SiO₂+CaF₂ 39 Abb. 35: Pawley-Fit des Röntgendiffraktogramms von 3CaO+2SiO₂+CaF₂ (gesintert für 30 min) 40 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 39: REM-Aufnahmen von Fluor-Sodalith (1 h gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1) 42 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith. Hxagonale C₂AH₈-Plätten, γ-AH₃-Plättchen, Calciumkryolith /Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx- Vergrößerung, rechts: 5kx-Vergrößerung 43 Abb. 40: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung 44 Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung
Links: 1kx-Vergrößerung, rechts: 5kx-Vergrößerung 35 Abb. 29: Wärmeflusskurve von Fluor-Mayenit (11CaO•7Al₂O3•CaF₂, w/z-Wert = 1, spezif. Oberfläche = 0,31 m²/g) 36 Abb. 30: Hydratationsprodukte von Fluor-Mayenit; XRD nach 55 h Hydratation mit w/z-Wert = 1 37 Abb. 31: REM-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH ₈ -Plättchen, feine CAH10-Nadeln und Hydrogranate in Deltoidikositetraederform (C₃AH6). Links und rechts: 5kx-Vergrößerung. 37 Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH ₈ -Plättchen, feine CAH10-Nadeln und Hydrogranate (C₃AH6) mit eingebautem Fluor. Links: 10kx-Vergrößerung 38 Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: c₂AH ₈ -Plättchen, feine CAH10-Nadeln und Hydrogranate (C₃AH6) mit eingebautem Fluor. Links: 10kx-Vergrößerung 38 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO₂•CaF₂ 39 Abb. 34: REM-Aufnahmen von 3CaO•2SiO₂•CaF₂ mit überwiegend stängeliger Ausbildung. 2kx-Vergrößerung 39 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 42 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1) 42 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, 1 h gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1) 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodal
Abb. 29: Wärmeflusskurve von Fluor-Mayenit (11CaO•7Al₂O3•CaF₂, w/z-Wert = 1, spezif. Oberfläche = 0,31 m²/g)
Solarizational control for the analysis of the
Abb. 30: Hydratationsprodukte von Fluor-Mayenit; XRD nach 55 h Hydratation mit w/z-Wert = 1
 Abb. 30: Hydratationsprodukte von Hudrivalyenit, XrtD Hadri Son Hydratation Hilt w/z-Wert = 1
 Abb. 31: REM-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH₈-Plättchen, feine CAH₁₀-Nadeln und Hydrogranate in Deltoidikositetraederform (C₃AH₆). Links und rechts: 5kx-Vergrößerung
 Abb. 31. REM-Admaintender Hydratationsprodukte von Fluor-Mayenit. C2AH8-Plättchen, feine CAH10-Nadeln und Hydrogranate in Deltoidikositetraederform (C3AH6). Links und rechts: 5kx-Vergrößerung
CaAH6). Links und rechts: 5kx-Vergrößerung. 37 Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C2AH8-Plättchen, feine CAH10-Nadeln und Hydrogranate (C3AH6) mit eingebautem Fluor. Links: 10kx-Vergrößerung. 38 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO2•CaF2. 39 Abb. 34: REM-Aufnahmen von 3CaO•2SiO2•CaF2 mit überwiegend stängeliger 39 Ausbildung. 2kx-Vergrößerung. 39 Abb. 35: Pawley-Fit des Röntgendiffraktogramms von 3CaO•3Al2O3•CaF2 (gesintert für 30 min). 40 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1). 42 Abb. 38: Hydratationsprodukte von Fluor-Sodalith (1 h gesintert); XRD nach 190 h Hydratation mit w/z-Wert = 1. 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale C2AH8-Platten, γ-AH3-Plättchen, Calciumkryolith-Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx-Vergrößerung. 43 Abb. 40: REM- und EDX-Aufnahme C3AH6-Deltoidikositetraeder. 5kx-Vergrößerung 44 Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung 44
Abb. 32: REM- und EDX-Aufnahmen der Hydratationsprodukte von Fluor-Mayenit: C2AH8-Plättchen, feine CAH10-Nadeln und Hydrogranate (C3AH6) mit eingebautem Fluor. Links: 10kx-Vergrößerung 38 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO2•CaF2 39 Abb. 34: REM-Aufnahmen von 3CaO•2SiO2•CaF2 mit überwiegend stängeliger 39 Ausbildung. 2kx-Vergrößerung 39 Abb. 35: Pawley-Fit des Röntgendiffraktogramms von 3CaO•3Al2O3•CaF2 (gesintert für 30 min) 40 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1) 42 Abb. 38: Hydratationsprodukte von Fluor-Sodalith (1 h gesintert); XRD nach 190 h 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 43
 Abb. 32: REM- und EDX-Aumanmen der Hydratationsprodukte von Fluor-Mayenit: C₂AH₈-Plättchen, feine CAH₁₀-Nadeln und Hydrogranate (C₃AH₆) mit eingebautem Fluor. Links: 10kx-Vergrößerung
C2AH8-Plattchen, feine CAH10-Nadein und Hydrogranate (C3AH6) mit eingebautem Fluor. Links: 10kx-Vergrößerung 38 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO2•CaF2 39 Abb. 34: REM-Aufnahmen von 3CaO•2SiO2•CaF2 mit überwiegend stängeliger 39 Ausbildung. 2kx-Vergrößerung 39 Abb. 35: Pawley-Fit des Röntgendiffraktogramms von 3CaO•3Al2O3•CaF2 (gesintert für 30 min) 40 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1) 42 Abb. 38: Hydratationsprodukte von Fluor-Sodalith (1 h gesintert); XRD nach 190 h 43 Hydratation mit w/z-Wert = 1 43 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale 22AH8-Platten, γ-AH3-Plättchen, Calciumkryolith-Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 43 Abb. 40: REM- und EDX-Aufnahme C3AH6-Deltoidikositetraeder. 5kx-Vergrößerung 44 Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung 44
 Abb. 33: Pawley-Fit des Röntgendiffraktogramms von 3CaO•2SiO₂•CaF₂
 Abb. 33: Pawley-Fit des Rontgendiffraktogramms von 3CaO+2SiO₂•CaF₂
 Abb. 34: REM-Aufnahmen von 3CaO+2SiO₂•CaF₂ mit überwiegend stangeliger Ausbildung. 2kx-Vergrößerung
 Ausbildung. 2kx-Vergroßerung
 Abb. 35: Pawley-Fit des Röntgendiffraktogramms von 3CaO•3Al₂O₃•CaF₂ (gesintert für 30 min)
 für 30 min)
 Abb. 36: REM-Aufnahmen von rundlich bis länglichen Fluor-Sodalith-Kristallen der einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1)
 einstündigen Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung 41 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1)
 Abb. 37: Vergleich der Wärmeflusskurven von Fluor-Sodalith, gesintert für 15 min, 30 min und 60 min (w/z-Wert = 1)
 30 min und 60 min (w/z-Wert = 1)
 Abb. 38: Hydratationsprodukte von Fluor-Sodalith (1 h gesintert); XRD nach 190 h Hydratation mit w/z-Wert = 1
 Hydratation mit w/z-Wert = 1
 Abb. 39: REM-Aufnahmen der Hydratationsprodukte von Fluor-Sodalith: Hexagonale C₂AH₈-Platten, γ-AH₃-Plättchen, Calciumkryolith-Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung
 C₂AH₈-Platten, γ-AH₃-Plättchen, Calciumkryolith-Würfel, Hydrogranate ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung
ausgebildet als Rhombendodekaeder und Deltoiddikositetraeder. Links: 2kx- Vergrößerung, rechts: 5kx-Vergrößerung
Vergrößerung, rechts: 5kx-Vergrößerung
Abb. 40: REM- und EDX-Aufnahme C ₃ AH ₆ -Deltoidikositetraeder. 5kx-Vergrößerung 44 Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung
44 Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung
Abb. 41: REM- und EDX-Aufnahme von Calciumkryolith Würfeln. 5kx-Vergrößerung
Abb. 42: Pawley-Fit des Röntgendiffraktogramms von Ye'elimit (gesintert für 30 min)
Abb. 43: REM-Aufnahmen von rundlichen Ye'elimit-Körnern der einstündigen
Synthese. Links: 2kx-Vergrößerung, rechts: 5kx-Vergrößerung
Abb. 44: Vergleich der Wärmeflusskurven von Ye'elimit, gesintert für 15 min, 30 min
und 1 h (w/z-Wert = 1) 46
Abb. 45: Hydratationsprodukte von Ye'elimit (15 min gesintert); XRD nach 109 h

Abb. 46: REM-Aufnahmen der Hydratationsprodukte der einstündigen Synthese von
Ye'elimit: Ettringitnadeln und Monosulfat- und Kuzelit-Plättchen mit
hexagonalem Querschnitt. Links: 500x-Vergrößerung, rechts: 2kx-
Vergrößerung47
Abb. 47: Mineralphasenbestand von $3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1.48$
Abb. 48: Ergebnisse der Quantfizierung der kristallinen Bestandteile von
$3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1$ mittels Rietveld Methode 49
Abb. 49: Veränderung des Zellvolumens von Ye'elimit bzw. Fluor-Sodalith bei
unterschiedlichen CaF2-Gehalten im Rohmehl. Im Vergleich dazu ist in rot das
Zellvolumen der idealisierten Mischreihe dargestellt
Abb. 50: Fluorgehalt des Fluor-Ye'elimitrohmels und der Klinker nach einer Haltezeit
der max. Sintertemperatur von 1 h, gemessen mit der ionenselektiven Fluorid-
Elektrode51
Abb. 51: REM-Aufnahmen von 3CaO•3Al ₂ O ₃ •0,1CaF ₂ •0,9CaSO ₄ . Links: 2kx-
Vergrößerung, rechts: 5kx-Vergrößerung 52
Abb. 52: REM-Aufnahmen von 3CaO•3Al ₂ O ₃ •0,6CaF ₂ •0,4CaSO ₄ . Links: 500x-
Vergrößerung, rechts: 2kx-Vergrößerung 52
Abb. 53: REM-Aufnahmen von 3CaO•3Al ₂ O ₃ •0,9CaF ₂ •0,1CaSO ₄ . Links: 2kx-
Vergrößerung, rechts: 3kx-Vergrößerung 52
Abb. 54: Wärmeflusskurven von $3CaO \cdot 3Al_2O_3 \cdot xCaF_2 \cdot (1-x)CaSO_4$ mit $0 \le x \le 1$ (w/z-
Wert = 1)
Abb. 55: XRD-Phasenbestand der hydratisierten Proben 3CaO•3Al ₂ O ₃ •xCaF ₂ •(1-
x)CaSO ₄ mit $0 \le x \le 1$ (w/z-Wert=1)
Abb. 56: REM-Aufnahmen der Hydratationsprodukte von
3CaO+3Al ₂ O ₃ +0,1CaF ₂ +0,9CaSO ₄ : Monosulfat-Platten und Ettringitnadeln.
Links: 500x-Vergroßerung, rechts: 2kx-Vergroßerung
Abb. 57: REM-Autnahmen der Hydratationsprodukte von
$3GaO \cdot 3Al_2O_3 \cdot 0,6GaF_2 \cdot 0,4GaSO_4: G_2AH_8(F)-Platten, Monosulfat, Gibbsit-$
Plattchen und Ye'elimit. Links: 2kx-Vergroßerung, rechts: 5kx-Vergroßerung 56
Abb. 58: REM-Authanmen der Hydratationsprodukte von
3CaO+3Al ₂ O ₃ +0,9CaF ₂ +0,1CaSO ₄ : C ₂ AH ₈ -Platten, Gibbsit-Plattchen und
Hydrogranatpolyeder. Links: 500x-vergroiserung, rechts: 2kx-vergroiserung 57
Abb. 59: Verteilung der Elemente Aluminium, Calcium, Fluor und Schwefel über die
Flache der hydratisierten Probe 3CaO+3Al ₂ O ₃ +0,9CaF ₂ +0,1CaSO ₄ . Gestapelte
Plattchen in grun: C ₂ AH ₈ , Saume in rot: γ -Al(OH) ₃ , Fullung der Poren:
fluornaltiges C ₃ AH ₆
Abb. 60. Elementmapping von einzeinen Elementen zur besseren
2CoOt2AloOte0 0CoEtt0 1CoSOt (Oben linke) Al oben reabte: Co. unten linke:
5CaO+5Ai2O3+0,9CaF2+0,1CaSO4 (Oben links. Al, oben rechts. Ca, unten links.
Abb. 61: Wärmeflusskurven der Decktion von Vo'alimit. Elver Sedelith
ADD. UT. Watthenusskulven der Reaklich von Telennik, Fluch-Soudalikh, $3C_2O_{\bullet}3\Delta I_2O_{\bullet}O_{\bullet}O_{\bullet}O_{\bullet}O_{\bullet}O_{\bullet}O_{\bullet}O_{\bullet}$
$5 CaC^{3}CAC^{3}C, 3 CaC^{2}C, 1 CaSC4$ und $5 CaC^{3}CAC^{3}C, 0 CaC^{2}C, 2 CaSC4$
jewens mit dest. wasser und mit 0,01 W Li2CO3-Losung ($W/2$ -weft = 1) 59

Abb.	62: XRD-Diagramme der Proben zusammengesetzt aus 55 % CaO, 26 % Al ₂ O ₃ und 19 % SiO ₂ , gesintert bei 1100 °C (rot), 1150 °C (blau) bzw. 1400 °C
Abb.	(schwarz)
Abb.	64: Entwicklung der Phasenzusammensetzung von bei 1150 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Flussspat-Gehaltes in den
Abb.	 65: Entwicklung der Phasenzusammensetzung von bei 1100 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Flussspat-Gehaltes in den Rohmehlen (1.5 % (rot), 3 % (grün), 4 % (dunkelblau), 5 % (hellblau))
Abb.	 66: Ähnliche Phasenzusammensetzung des bei 1150 °C gesinterten Klinkers mit 3 % Flussspat-Zusatz (grün) und des bei 1100 °C gesinterten Klinkers mit 5 % Flussspat-Zusatz (hellblau)
Abb.	67: Phasenzusammensetzungen von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Flussspat-Gehalten in den Rohmehlen 66
Abb.	68: Nicht umgesetzte Ausgangsstoffe und amorpher Anteil von Belit- Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und
Abb.	Flussspat-Gehalten in den Rohmehlen
Abb.	 70: Fluorgehalt des Belit-Fluoroaluminatrohmehls und der Klinker mineralisiert mit Flussspat und gesintert bei 1100 °C bzw. 1150 °C; gemessen mit der 68
Abb.	 71: Entwicklung der Phasenzusammensetzung von bei 1150 °C gesinterten Belit-Fluoroaluminatzementen mit Erhöhung des Kryolith-Gehaltes in den Dehmehlen (1.5.% (art), 2.% (artin), 4.% (durtkelklau), 5.% (hellklau))
Abb.	 70: Ronmenien (1,5 % (rot), 3 % (grun), 4 % (dunkeiblau), 5 % (neiblau))
Abb.	 Rohmehlen (1,5 % (rot), 3 % (grun), 4 % (dunkelblau), 5 % (hellblau))
Abb.	 74: Phasenzusammensetzungen von Belit-Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und Kryolith-Gehalten in den 73
Abb.	73: Nicht umgesetzte Ausgangsstoffe und amorpher Anteil von Belit- Fluoroaluminatzementen mit unterschiedlichen Sintertemperaturen und
Abb.	 Kryolith-Gehalten in den Rohmehlen

Abb. 77: REM-Aufnahmen von Belit-Fluoroaluminatklinker mineralisiert mit 3 % Kryolith, gesintert bei 1100 °C. Links: 500x-Vergrößerung, rechts: 3kx-
Vergrößerung75
Abb. 78: REM-Aufnahmen eines Klinkers bestehend aus 55 % CaO, 26 % Al ₂ O ₃ und 19 % SiO ₂ ohne Zugabe von Fluor, gesintert bei 1100 °C. Links: 2kx- Vergrößerung, rechts: 5kx-Vergrößerung
Abb. 79: Fluorgehalt des Belit-Fluoroaluminatrohmehls und der Klinker mineralisiert mit Kryolith und gesintert bei 1100 °C bzw. 1150 °C; gemessen mit der ionenselektiven Eluorid-Elektrode
Abb. 80: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Flussspat-Gehalten in den Rohmehlen, gesintert bei 1100 °C (w/z-Wert = 1)
Abb. 81: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Flussspat-Gehalten in den Rohmehlen, gesintert bei 1150 °C (w/z-Wert = 1)
Abb. 82: Vergleich der Phasenzusammensetzung aller hydratisierten Belit- Fluoroaluminatzemente mit Flussspat als Mineralisator; XRD nach 50 h Hydratation mit w/z-Wert = 1
Abb. 83: Hydratationsprodukte von Belit-Fluoroaluminatzement mit 5 % Flussspat als Mineralisator, gesintert bei 1150 °C; XRD nach 50 h Hydratation mit w/z-Wert = 1
Abb. 84: Diffraktogramme eines Belit-Fluoroaluminatzements mit 5 % Flussspat als Mineralisator, gesintert bei 1100 °C, während der ersten 80 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt
Abb. 85: Lamellare Hydratphasen von Belit-Fluoroaluminatzement mit 3 % Flussspat- Gehalt im Rohmehl, gesintert bei 1150 °C. 2kx-Vergrößerung
Abb. 86: Wärmeflusskurven der Reaktion von Belit-Fluoroaluminatzement mit 5 % Flussspat-Gehalt im Rohmehl, gesintert bei 1100 °C und 1150 °C, jeweils mit dest. Wasser und mit 0,01 M Li ₂ CO ₃ -Lösung (w/z-Wert = 1)
Abb. 87: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Kryolith-Gehalten in den Rohmehlen, gesintert bei 1100 °C (w/z-Wert = 1)
Abb. 88: Hydratationsverhalten von Belit-Fluoroaluminatzementen mit unterschiedlichen Kryolith-Gehalten in den Rohmehlen, gesintert bei 1150 °C (w/z-Wert = 1)
Abb. 89: Vergleich der Phasenzusammensetzung aller hydratisierten Belit- Fluoroaluminatzemente mit Kryolith als Mineralisator; XRD nach 50 h Hydratation mit w/z-Wert = 1
Abb. 90: Hydratationsprodukte von Belit-Fluoroaluminatzement mit 4 % Kryolith als Mineralisator, gesintert bei 1100 °C; XRD nach 50 h Hydratation mit w/z-Wert = 1

Abb. 91: Lamellare Hydratphasen von Belit-Fluoroaluminatzement mit 3 % Kryolith- Gehalt im Rohmehl, gesintert bei 1150 °C. Links: 1kx-Vergrößerung, rechts:
2kx-Verarößerung
Abb. 92: Wärmeflusskurven der Reaktion von Belit-Fluoroaluminatzement mit 4 %
Kryolith-Gebalt im Rohmehl, desintert bei 1100 °C, und mit 3 % Kryolith-
Cobalt im Pohmobil gosiptort boi 1150 °C, jowoils mit dost. Wassor und mit
$0.01 \text{ M} \text{ Lis} CO_2 \text{ Lissung (w/z Wort = 1)}$
0,01 W El2CO3-EUSuing (W/2-Weit = 1)
gesintert für 1 h bei der max. Sintertemperatur 1300 °C; mit Zumischung von
10 % Rutil als Interner Standard
Abb. 94: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0,5 % (rot), 1 % (grün), 1,5 % (blau), 2 % (hellblau), 2,5 %
(pink) B ₂ O ₃ (Haltezeit: 1 h) im Vergleich zu Tonerdezement ohne
Mineralisatorzusatz (schwarz)91
Abb. 95: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % B_2O_3 (Haltezeit: 1 h) im
Vergleich zu Tonerdezement ohne Mineralisatorzusatz
Abb. 96: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0,5 % (rot), 1 % (grün), 1,5 % (blau), 2 % (hellblau), 2,5 %
(pink) B ₂ O ₃ (Haltezeit: 2 h) im Vergleich zu Tonerdezement ohne
Mineralisatorzusatz (schwarz)93
Abb. 97: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0,5 %, 1 %, 1,5 %, 2 %, 2,5 % B ₂ O ₃ (Haltezeit: 2 h) im
Vergleich zu Tonerdezement ohne Mineralisatorzusatz
Abb. 98: Entwicklung der Phasenzusammensetzung von Tonerdezement ohne
Zumischung eines Mineralisators in Abhängigkeit der Haltezeit der max.
Sintertemperatur 1300 °C 94
Abb. 99: REM-Aufnahmen von hauptsächlich CA- und CA ₂ -Körnern eines
Tonerdezementklinkers, gesintert für 2 h bei 1300 °C ohne Mineralisator.
Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung
Abb. 100: REM-Aufnahmen von CA- und CA2- und C12A7-Körnern eines Bor-
Tonerdezementklinkers, mineralisiert mit 1 % B ₂ O ₃ , gesintert für 1 h bei 1300
°C. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung
Abb. 101: REM-Aufnahmen von hauptsächlich CA- und CA2-Körnern eines Bor-
Tonerdezementklinkers, mineralisiert mit 1 % B ₂ O ₃ , gesintert für 2 h bei 1300
°C. Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung
Abb. 102: REM-Aufnahmen von hauptsächlich CA- und CA2-Körnern eines Bor-
Tonerdezementklinkers, mineralisiert mit 2 % B ₂ O ₃ , gesintert für 1 h bei 1300
°C. Links: 1kx-Vergrößerung, rechts: 1,5kx-Vergrößerung
Abb. 103: REM-Aufnahmen von hauptsächlich CA- und CA2-Körnern eines Bor-
Tonerdezementklinkers, mineralisiert mit 2 % B ₂ O ₃ , gesintert für 2 h bei 1300
°C. Links: 1kx-Vergrößerung, rechts: 1,5kx-Vergrößerung
Abb. 104: Hydratationsverhalten von Tonerdezementen mineralisiert mit 0,5 bis 2,5
% Boroxid in 0,5er Schritten, gesintert bei 1300 °C für 1 h (w/z-Wert = 1) 98

Abb. 105: Hydratationsverhalten von Tonerdezementen mineralisiert mit 0,5 bis 2,5 % Boroxid in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1) 99
Abb. 106: Vergleich der Phasenzusammensetzung der hydratisierten (Bor-) Tonerdezemente mit 0–2,5 % B ₂ O ₃ als Mineralisator, gesintert für 1 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1
Abb. 107: Vergleich der Phasenzusammensetzung der hydratisierten (Bor-) Tonerdezemente mit 0–2,5 % B ₂ O ₃ als Mineralisator, gesintert für 2 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1
Abb. 108: Hydratationsprodukte von Bor-Tonerdezement mit 2 % B ₂ O ₃ als Mineralisator, gesintert für 1 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1
Abb. 109: Hydratationsprodukte von Bor-Tonerdezement mit 1 % B ₂ O ₃ als Mineralisator, gesintert für 2 h bei 1300 °C; XRD nach 40 h Hydratation mit w/z-Wert = 1
 Abb. 110: Diffraktogramme eines Tonerdezements mineralisiert mit 1 % B₂O₃, gesintert für 2 h bei 1300 °C, während der ersten 50 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt
 Abb. 111: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 1 h mit 1 % B₂O₃): C₂AH₈-Platten, γ-AH₃-Plättchen und kurzprismatische Bor-Ettringitstängel. Links: 200x-Vergrößerung, rechts: 2kx- Vergrößerung.
 Abb. 112: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 1 h mit 2 % B₂O₃): radialstrahlig gewachsene gestapelte C₂AH₈- Platten, γ-AH₃-Plättchen und kurzprismatische Bor-Ettringitstängel. Links: 1kx- Vergrößerung, rechts: 5kx-Vergrößerung
Abb. 113: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 2 h mit 1 % B ₂ O ₃): C ₂ AH ₈ -Platten und kurzprismatische Bor- Ettringitstängel. Links: 500x-Vergrößerung, rechts: 5kx-Vergrößerung 105
 Abb. 114: REM-Aufnahmen der Hydratationsprodukte von Bor-Tonerdezement (gesintert für 2 h mit 2 % B₂O₃): radialstrahlig gewachsene C₂AH₈-Platten und angehäufte Bor-Ettringitstängel. Links: 500x-Vergrößerung, rechts: 500x- Vergrößerung
Abb. 115: REM-Aufnahmen der Hydratationsprodukte von Tonerdezement (gesintert für 2 h, ohne Mineralisator): gestapelte C ₂ AH ₈ -Platten. Links: 1kx- Vergrößerung, rechts: 2kx-Vergrößerung
Abb. 116: Wärmeflusskurven der Reaktion von Bor-Tonerdezement, mineralisiert mit 1,5 % und 2,5 % B ₂ O ₃ , gesintert für 1 h und 2 h bei 1300 °C, jeweils mit dest. Wasser und mit 0,01 M Li ₂ CO ₃ -Lösung (w/z-Wert = 1)
 Abb. 117: Rietveld-Quantifizierung des Klinkers mit einem CaO:Al₂O₃ Verhältnis von 1:1 und 0,5 % Fluor-Gehalt; mit Zumischung von 10 % Rutil als interner Standard

Abb. 118: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %,
1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu
Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al ₂ O ₃
im Verhältnis 1:1 110
Abb. 119: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %,
1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu
Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al ₂ O ₃
im Verhältnis 1,1:1 110
Abb. 120: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0,5 %, 1 %,
1,5 %, 2 %, 2,5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu
Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al ₂ O ₃
im Verhältnis 1,2:1 111
Abb. 121: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0.5 %, 1 %,
1.5 %, 2 %, 2.5 % Fluor (2 h gesintert bei 1300 °C) im Vergleich zu
Tonerdezement ohne Mineralisatorzusatz bei Einwaage von CaO und Al ₂ O ₃
im Verhältnis 1.5:1
Abb. 122: XRD-Phasenbestand von Tonerdezement bei Zumischung von 0.5 %. 1 %.
1.5 %, 2 %, 2.5 % Fluor (2 h gesintert bei 1300 °C) im Veraleich zu
Tonerdezement ohne Mineralisatorzusatz bei Finwaage von CaO und Al $_2O_3$
im Verhältnis 2·1
Abb 123 ⁻ Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0.5 %, 1 %, 1.5 %, 2 %, 2.5 % Eluor (2 h gesintert bei 1300
°C) im Verdleich zu Tonerdezement ohne Mineralisatorzusatz bei Finwaage
v_{0} CaO und Al ₂ O ₃ im Verhältnis 1:1 113
Abb 124: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0.5 % 1 % 1.5 % 2 % 2.5 % Eluor (2 h gesintert bei 1300
°C) im Verdleich zu Toperdezement ohne Mineralisatorzusatz bei Finwaage
$v_{\text{on}} \text{ CaO} \text{ und } \text{Al}_{2}\text{O}_{2} \text{ im Verbältnis 1 1:1}$ 114
Abb. 125: Entwicklung der Phasenzusammensetzung von Toperdezement bei
Zumischung von 0.5 % 1 % 1.5 % 2 % 2.5 % Eluor (2 h gesintert bei 1300
$^{\circ}$ C) im Verdleich zu Toperdezement ohne Mineralisatorzusatz bei Finwaage
von CaO und AlaOa im Verhältnis 1.2:1
Abb. 126: Entwicklung der Phasenzusammensetzung von Tonerdezement bei
Zumischung von 0.5 % 1 % 1.5 % 2 % 2.5 % Eluor (2 h desintert bei 1300
$^{\circ}$ C) im Vergleich zu Teperdezement ohne Mineraliesterzusstz bei Einwage
von CoO und AlcOs im Vorbältnis 1.5:1
Abb. 127: Entwicklung der Desenzusammensetzung von Tenerdezement bei
Abb. 127. Entwicklung der Fridsenzusammensetzung von Tonerdezement bei
\mathcal{C} im Varabieb zu Teperdezement ehne Minereliesterzusetz hei Eiswesse
von CoO und ALO- im Vorhöltnig 2:1
Von Gau unu Al2O3 ini vernalinis Z.T
ADD. 120. KEIVI-AUINANIMEN VON TONERGEZEMENTKIINKERN MIT KONMENI-EINWAAGE-
vernalinissen von CaO:Al2O3 von 1:1 onne Fluorzumischung (Hauptphasen:
CA, CA2, C12A7, AI2O3). LINKS: 500X-Vergroiserung, rechts: 4KX-Vergroiserung

Abb. 129: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-	
Einwaage-verhältnissen von CaO:Al ₂ O ₃ von 1:1 mit 0,5 % Fluor (Hauptphase	en:
C11A7CaF2, CA, CA2) Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung11	16

Abb. 131: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaage-verhältnissen von CaO:Al₂O₃ von 1,1:1 mit 1 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA, CA₂). Links: 1kx-Vergrößerung, rechts: 2kx-Vergrößerung 117

Abb. 133: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaage-verhältnissen von CaO:Al₂O₃ von 1,2:1 mit 1 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA, CA₂). Links: 500x-Vergrößerung, rechts: 2kx-Vergrößerung

Abb. 135: REM-Aufnahmen von Fluor-Tonerdezementklinkern mit Rohmehl-Einwaage-verhältnissen von CaO:Al₂O₃ von 1,5:1 mit 1 % Fluor (Hauptphasen: C₁₁A₇CaF₂, CA). Links: 2kx-Vergrößerung, rechts: 4kx-Vergrößerung 118

Abb. 136: REM-Aufnahmen von Tonerdezementklinkern mit Rohmehl-Einwaageverhältnissen von CaO:Al₂O₃ von 2:1 ohne Fluorzumischung (Hauptphasen: C₁₂A₇, CA, C₃A). Links: 800x-Vergrößerung, rechts: 2kx-Vergrößerung...... 119

Abb. 140: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,1:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)...... 122

- Abb. 143: Hydratationsverhalten von Tonerdezementen mit einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 2:1, mineralisiert mit 0 bis 2,5 % Fluor in 0,5er Schritten, gesintert bei 1300 °C für 2 h (w/z-Wert = 1)...... 125

- Abb. 150: Diffraktogramme eines Tonerdezements mit einer Rohmehl-Einwaage von CaO und Al₂O₃ im Verhältnis 1,1:1 (mineralisiert mit 2,5 % Fluor) während der ersten 35 h der Hydratation mit dest. Wasser (w/z-Wert = 1). 10 Gew.-% Rutil wurde zur Korrektur des Präparathöhenfehlers zugemischt. Die Temperatur des Probenhalters wurde während der Messung konstant auf 23 °C geregelt

Abb. 153: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
2,5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 1:1:
poröses Gefüge mit Löchern, die durch die Bildung weniger voluminöser
Hydrogranate entstanden sind. Links: 200x-Vergrößerung, rechts: 2kx-
Vergrößerung
Abb. 154: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 1,1:1:.
Links: Negativ eines Quasiwürfels in 2kx-Vergrößerung, rechts: C ₂ AH ₈ -Platten
und feine Überzüge von γ-AH ₃ -Plättchen in 2kx-Vergrößerung
Abb. 155: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
2.5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von
1.1:1. Links: Loch gefüllt mit Hydrogranaten in 1kx-Vergrößerung, rechts: feine
v-AH ₃ -Plättchen in 5kx-Vergrößerung
Abb. 156: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 1.2:1:
dichtes Gefüge mit großer Ansammlung von gestapelten C2AH8-Platten, zum
Teil überzogen mit v-AH ₃ -Plättchen, Links: 1kx-Vergrößerung, rechts: 5kx-
Vergrößerung
Abb. 157: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
2.5 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von
1.2:1. Links: poröses Gefüge mit Löchern, gefüllt mit Hydrogranaten in 200x-
Vergrößerung, rechts: gestapelte C2AH8-Platten in 2kx-Vergrößerung 133
Abb. 158: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 1.5:1:
Hexagonale C ₂ AH ₈ -Platten und Kügelchen bestehend aus γ -AH ₃ -Plättchen.
Links: 1kx-Verarößeruna, rechts: 2kx-Verarößeruna
Abb. 159: REM-Aufnahmen der Hydratationsprodukte von Tonerdezement ohne
Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 2:1.1:
Hexagonale C ₂ AH ₈ -Platten, Links: 1kx-Vergrößerung, rechts: 3kx-
Vergrößerung
Abb. 160: REM-Aufnahmen der Hydratationsprodukte von Fluor-Tonerdezement mit
1 % Fluor und einem Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 2:1.1:
Sehr poröses Gefüge mit großen Hydrogranatpolvedern mit bis zu 22 um
Durchmesser, Links: 500x-Verarößerung, rechts: 2kx-Verarößerung
Abb. 161: Verteilung der Elemente Aluminium. Calcium und Fluor über die Fläche
des hydratisierten Fluor-Tonerdezements mit 2.5 % Fluor und einem
Rohmehl-Einwaageverhältnis von CaO:Al ₂ O ₃ von 1:1: Matrix in rot aus γ -AH ₃ -
Plättchen und CAH ₁₀ . Poren gefüllt mit C ₃ AH ₆ , oben links in grün C ₂ AH ₈ , 135
Abb. 162: Elementmapping von einzelnen Elementen zur besseren
Veranschaulichung der Elementverteilung der Fläche des hydratisierten Fluor-
Tonerdezements mit 2.5 % Fluor und einem Rohmehl-Einwaageverhältnis von
CaO:Al ₂ O ₃ von 1:1 (Oben links: Ca. oben rechts: Al unten links: F) 136
Abb. 163: Wärmeflusskurven der Reaktion von Fluor-Tonerdezement mit 2.5 %
Fluor-Gehalt im Rohmehl und unterschiedlichen CaO·Al ₂ O ₂ -Verhältnissen im

Rohmehl,	jeweils mit dest.	Wasser un	d mit 0,01	M Li ₂ CO ₃ -Lö	sung (w/z-Wert =
1)					137

11. Tabellenverzeichnis

Tab.	1: Prozentanteile des freiwerdenden CO ₂ , die bei der Bildung der	
	Hauptklinkerphasen von Portlandzement und der Spezialzemente frei werde	n
	(berechnet nach Formel 1)	12
Tab.	2: Verwendete Kristallstrukturdaten aus der ICSD	15
Tab.	3: Verwendete Kristallstrukturdaten aus der AMCSD und COD	15
Tab.	4: Überprüfung der Kalibrierung der Fluorid-Elektrode	21
Tab.	5: Sintertemperaturen und Haltezeiten der max. Sintertemperaturen im	
	Muffelofen mit einer Aufheizrate von 10 °C/min für alle durchgeführten	
	Synthesen	22
Tab.	6: Auflistung der verwendeten Chemikalien und natürlichen Rohstoffe	23
Tab.	7: Mit der Fluorid-Elektrode gemessene Fluorid-Konzentrationen der	
	Ausgangstoffe von Fluor-Sodalith und von Fluor-Sodalith nach	
	unterschiedlichen Haltezeiten der max. Sintertemperatur	41
Tab.	8: Spezifische Oberfläche der unterschiedlich lang gesinterten Fluor-Sodalithe	;
	bestimmt nach BET	42
Tab.	9: Spezifische Oberfläche der unterschiedlich lang gesinterten Ye'elimite;	
	bestimmt nach BET	46
Tab.	10: Korrigierter CaF ₂ -Gehalt nach Messung der gesinterten Proben mit der	
	Fluorid-Elektrode	51
Tab.	11: Spezifische Oberflächen der Synthesereihe 3CaO•3Al ₂ O ₃ •xCaF ₂ •(1-	
	x)CaSO ₄ mit $0 \le x \le 1$; bestimmt nach BET	53
Tab.	12: Phasenzusammensetzung der Proben zusammengesetzt aus 55 % CaO,	26
	% Al ₂ O ₃ und 19 % SiO ₂ , gesintert bei 1100 °C, 1150 °C und 1400 °C	60
Tab.	13: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von	
	Flussspat als Mineralisator gesintert wurden	62
Tab.	14: Phasenzusammensetzung der Klinker, die bei 1100 °C mit Zugabe von	
	Flussspat als Mineralisator gesintert wurden	64
Tab.	15: Korrigierte Fluorgehalte der Belit-Fluoroaluminatzementklinker mineralisier	rt
	mit Flussspat nach der Fluorid-Bestimmung mittels Fluorid-Elektrode	68
Tab.	16: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von	
	Kryolith als Mineralisator gesintert wurden	69
Tab.	17: Phasenzusammensetzung der Klinker, die bei 1150 °C mit Zugabe von	
	Kryolith als Mineralisator gesintert wurden	70
Tab.	18: Korrigierte Fluorgehalte der Belit-Fluoroaluminatzementklinker mineralisier	rt
	mit Kryolith nach der Fluorid-Bestimmung mittels Fluorid-Elektrode	77
Tab.	19: Spezfische Oberfläche der Belit-Fluoroaluminatzemente mineralisiert mit	
	Flussspat; bestimmt nach Blaine	78
Tab.	20: Spezfische Oberfläche der Belit-Fluoroaluminatzemente mineralisiert mit	
	Kryolith; bestimmt nach Blaine	84
Tab.	21: Mittels Rietveld Methode ermittelte Phasenzusammensetzung von Bor-	
	Tonerdezementklinkern, die bei 1300 °C mit einer Haltezeit von 1 h gesinter	t
	wurden	90

Tab. 22: Mittels Rietveld Methode ermittelte Phasenzusammensetzung von Bor- Tonerdezementklinkern, die bei 1300 °C mit einer Haltezeit von 2 h gesintert wurden
Tab. 23: Mittels Rietveld Methode ermittelte Phasenzusammensetzung der Calciumaluminatzementklinker, die ohne Mineralisatorzugabe bei unterschiedlichen Haltezeiten bei 1300 °C gesintert wurden 94
Tab. 24: Spezifische Oberfläche der Bor-Tonerdezemente; bestimmt nach BET 97 Tab. 25: Quantifizierungsergebnisse der Klinker mit einem CaO:Al ₂ O ₃ Verhältnis von
1:1
1,1:1
Tab. 28: Quantifizierungsergebnisse der Klinker mit einem CaO:Al ₂ O ₃ Verhältnis von 1,5:1
Tab. 29: Quantifizierungsergebnisse der Klinker mit einem CaO:Al2O3 Verhältnis von2:1
Tab. 30: Korrigierte Fluorgehalte der Fluor-Tonerdezementklinker nach der Fluorid-Bestimmung mittels Fluorid-Elektrode
Tab. 31: Spezifische Oberfläche der Fluor-Tonerdezemente; bestimmt nach BET 125Tab. 32: Mittels Pawley-Fit bestimmte Gitterparameter der synthetisierten bor- und fluorhaltigen Verbindungen
Tab. 33: Zusammenfassung der unterschiedlichen Klinker mit gutem Phasenbestand 141
 Tab. 34: Sintertemperaturen f ür verschiedene Zementtypen

12. Anhang

12.1. Analysen der Rohstoffe

Abb. 1: Für die Synthesen verwendetes gefälltes Calciumcarbonat von AppliChem

Abb. 2: Für die Synthesen verwendetes Siliziumdioxid von Sigma-Aldrich mit geringen Mengen an Mikroklin

Abb. 3: Für die Synthesen verwendetes α -Aluminiumoxid von Fluka mit geringen Mengen an Na₂O(Al₂O₃)₁₁

Abb. 4: Für die Synthesen verwendetes γ-Aluminiumoxid von Merck

Abb. 5: Für die Synthesen verwendetes Calciumfluorid von Merck

Abb. 6: Für die Synthesen verwendetes Calciumsulfat-Dihydrat von Carl Roth mit geringen Mengen an Anhydrit und Bassanit

Abb. 7: Für die Synthesen verwendeter Kryolith von Sigma-Aldrich

Abb. 8: Für die Synthesen verwendete Borsäure von Fluka

Abb. 9: Für die Synthesen verwendetes Calciumborat-Pentahydrat vom Rantzaue
Töpferbedarf mit großen Mengen an Calciumhydroxid

				CaSO₄	
[%]	α -Al ₂ O ₃	γ -Al ₂ O ₃	CaCO₃	•2H ₂ O	SiO ₂
LOI	0,14	6,05	44,41	22,06	0,23
Na ₂ O	0,37	0,30	0,00	0,00	0,00
MgO	0,00	0,00	0,31	0,00	0,00
Al ₂ O ₃	99,44	93,51	0,07	0,06	0,48
SiO ₂	0,00	0,07	0,16	0,21	98,64
P ₂ O ₅	0,00	0,00	0,00	0,00	0,00
SO ₃	0,00	0,03	0,05	50,69	0,00
K ₂ O	0,00	0,00	0,00	0,00	0,56
CaO	0,05	0,01	54,97	28,46	0,03
Sc ₂ O ₃	0,00	0,00	0,00	0,00	0,00
TiO ₂	0,00	0,00	0,00	0,00	0,06
V_2O_5	0,00	0,00	0,00	0,00	0,00
Cr ₂ O ₃	0,00	0,00	0,00	0,00	0,00
MnO	0,00	0,00	0,01	0,00	0,00
Fe ₂ O ₃	0,00	0,02	0,02	0,00	0,00
NiO	0,00	0,00	0,00	0,00	0,00
ZnO	0,00	0,00	0,00	0,00	0,00
Rb ₂ O	0,00	0,00	0,00	0,00	0,00
Ga_2O_3	0,00	0,01	0,00	0,00	0,00
Y ₂ O ₃	0,00	0,00	0,00	0,00	0,00
ZrO ₂	0,00	0,00	0,00	0,00	0,01
Nb ₂ O ₅	0,00	0,00	0,00	0,00	0,00
SrO	0,00	0,00	0,01	0,01	0,00
BaO	0,00	0,00	0,00	0,00	0,00
PbO	0,00	0,00	0,00	0,00	0,00

					CaO•B	2O3 (CB)					
a = 11,5970(1) Å			b = 4,2778(0)) Å			c = 6,2179(9)) Å		
α = 90°				β = 90°				γ = 90°			
V = 308,4(7)	Å ³			RG: Pbcn				GoF = 1,03			
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°2θ]	d-Wert [Å]	Rel. Int. [%]	h	k	I
15,2853	5,79197	9,5	2	0	0	54,3868	1,68557	9,78	2	2	2
22,1479	4,01038	0,04	1	1	0	54,6006	1,67948	11,96	3	1	3
26,4272	3,3699	45,18	1	1	1	55,354	1,65839	0,11	4	2	1
28,7075	3,1072	23	0	0	2	55,9895	1,64106	7,05	6	0	2
29,6556	3,00998	17,77	2	1	1	57,4397	1,60303	1,07	3	2	2
29,7435	3,00129	100	1	0	2	58,8354	1,56829	2,46	4	1	3
30,8326	2,89771	18,59	4	0	0	59,4245	1,55414	0,79	0	0	4
31,1757	2,86659	10,68	3	1	0	59,8309	1,54455	0,93	7	1	0
32,6723	2,73863	21,58	2	0	2	60,01	1,54037	0,04	1	0	4
34,4239	2,60317	40,95	3	1	1	60,3639	1,53218	2,32	6	1	2
36,546	2,45674	0,12	1	1	2	60,7197	1,52405	0,25	5	2	1
37,095	2,42163	0,01	3	0	2	61,5485	1,5055	9,4	4	2	2
39,0224	2,30634	1,44	2	1	2	61,7463	1,50115	9,18	2	0	4
40,2626	2,23812	12,68	4	1	1	61,845	1,49899	8,11	7	1	1
42,2337	2,13811	34,52	0	2	0	62,3462	1,48814	0,72	0	2	3
42,6208	2,11958	18,6	4	0	2	62,9156	1,47604	0,79	1	2	3
42,881	2,10732	0,52	3	1	2	63,6006	1,46178	0,01	7	0	2
44,4095	2,03827	4,19	5	1	0	64,0186	1,45324	1,14	5	1	3
44,7888	2,02189	0,72	0	2	1	64,212	1,44933	0,1	8	0	0
45,1619	2,00605	9,03	2	2	0	64,215	1,44927	0,13	1	1	4
45,5021	1,99184	1,77	1	2	1	64,5797	1,44196	0,48	3	0	4
46,8699	1,93685	59,57	5	1	1	64,6067	1,44142	0,25	2	2	3
46,9891	1,93221	1,06	6	0	0	64,9942	1,43376	0,68	6	2	0
47,592	1,90913	2,28	2	2	1	65,8879	1,41646	0,05	2	1	4
47,8567	1,89919	6,72	4	1	2	65,965	1,415	0,22	1	3	0
48,9726	1,85849	1,29	5	0	2	66,6094	1,40286	0,44	5	2	2
49,468	1,84103	38,55	1	1	3	66,92	1,3971	0,95	6	2	1
50,9293	1,79159	0,01	3	2	1	67,3743	1,38878	0,07	3	2	3
51,4354	1,77514	0,4	2	1	3	67,6803	1,38325	0,14	7	1	2
51,8581	1,76166	6,42	0	2	2	67,8767	1,37972	2,72	1	3	1
52,4982	1,74167	8,59	1	2	2	68,4393	1,36974	2,76	4	0	4
53,1873	1,72072	4,15	4	2	0	68,6291	1,36642	0,4	3	1	4
53,7322	1,70455	0,03	5	1	2	69,5048	1,35133	0,59	2	3	1
54,0854	1,69425	1,3	6	1	1						

12.2. Gitterparameter und Reflexlisten der Reinphasen

					CaO•2B	2O3 (CB2)					
a = 7,7972(9)	Å			b = 9,8998(0) Å				c = 14,3878(2)	Å		
α= 90°				β = 121,55°				γ = 90°			
V = 946,2(7) Å	3			RG: P2₁/c				GoF = 1,50			
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I
11,4378	7,7302	8,33	0	1	1	54,045	1,69542	5,56	3	2	2
13,2717	6,66585	12,48	1	0	0	54,2287	1,69011	1,65	-1	3	7
13,5399	6,53444	8,47	-1	0	2	54,3194	1,6875	3,39	-2	2	8
14,3942	6,14846	6,88	0	0	2	54,6143	1,67909	0,57	-4	3	4
14.4092	6.14211	9.5	-1	1	1	54,6696	1.67752	0.62	-1	1	8
16 0101	5 53135	1.62	1	-	0	54 8915	1 67126	0.47	-4	2	1
16 23/1	5 /5553	0.94	-1	1	2	55 015	1 6678	3 7/	-1	3	3
16,2341	5,45555	7 16	-1	1	2	55,015	1,0078	5,74	-4	5	3
10,9505	3,22471	7,10	0	1	2	55,1505	1,00405	5	2	3	4
17,8005	4,90004	0,74	0	2	1	55,1919	1,00288	0,55	-5	2	0
19,2832	4,59922	3	0	2	1	55,215	1,66223	0,2	4	0	0
20,2609	4,37945	17,31	1	1	1	55,3188	1,65936	0,14	-4	3	5
20,6173	4,30453	3,57	-1	1	3	55,5774	1,65225	2,07	0	2	7
21,206	4,18634	11,96	-1	2	1	55,6087	1,65139	2,31	3	4	0
22,3393	3,97645	3,87	1	2	0	55,6333	1,65072	0,53	0	6	0
22,5026	3,94798	1,23	-1	2	2	55,8008	1,64616	0,67	-4	2	7
22,7546	3,90482	2,28	-2	0	2	56,0555	1,63929	2,12	4	1	0
23,036	3,85774	2,9	0	2	2	56,1793	1,63597	0,74	0	6	1
23,4896	3,78427	4,32	0	1	3	56,2859	1,63312	1,06	-3	4	6
24,3062	3,65895	100	1	0	2	56,4207	1,62954	0,79	-4	0	8
24,4841	3,63277	23,35	-2	1	2	56,5051	1,62731	0,01	-4	3	2
24,7561	3,59347	7,1	-1	0	4	56,5068	1,62726	1,01	2	5	1
25.4073	3.50282	8.94	-2	1	1	56.6519	1.62344	1.05	-1	5	5
25.598	3.47715	22.13	1	2	1	56,6619	1.62317	0.56	1	2	6
25 696	3 46412	0.66	-2	- 1	3	56,9541	1,61554	5.06	-2	5	5
25,050	3 /2028	8 87	-1	2	2	56 9777	1 61/02	0.05	-1	5	1
25,0040	2,43320	0,07	-1	2	2	50,3777	1,01492	0,05	-1	2	5
25,9565	3,43227	91,20 6 21	1	1	2	57,101	1,01173	0,20	-4	3	0
20,3024	3,37804	0,21	-1	1	4	57,1827	1,00902	1,22	-1	2	°
26,7709	3,32742	11,35	2	0	0	57,2495	1,6079	0,26	-4	1	8
27,3187	3,26192	18,04	-2	0	4	57,4319	1,60323	2,26	3	1	3
27,9411	3,19066	1,88	0	3	1	57,4784	1,60204	0,94	1	6	0
28,2555	3,15587	4,88	0	2	3	57,5386	1,60051	0,47	2	4	3
28,2709	3,15418	4,1	2	1	0	57,6035	1,59886	0,33	2	3	4
28,7925	3,09822	1,06	-2	1	4	57,797	1,59397	0,02	0	6	2
29,0675	3,06952	5,69	0	0	4	57,9171	1,59095	0,67	2	1	5
29,0982	3,06636	21,97	-2	2	2	58,2238	1,58329	1,1	3	3	2
29,3303	3,04262	1,86	-1	3	1	58,2745	1,58204	1,29	-2	4	7
29,8893	2,98698	37,29	-2	2	1	58,4852	1,57684	0,2	-2	3	8
30,1779	2,95907	12,48	1	3	0	58,5344	1,57563	1,55	-3	5	3
30,3016	2.94727	17.55	-1	3	2	58,7538	1.57027	0.56	-3	1	9
30 3481	2 94285	6 64	1	2	2	58 9415	1,56572	1.06	-2	-	9
30 4639	2 9319/	3.85	0	- 1	4	58 95/	1 565/1	0.91	-3	5	2
30 716	2,00104	1 1	-1	2	1	59 0307	1 56356	0,31	-1	3	1
22 2602	2,30043	7,1	1	1	7	50,037	1,50550	1 02	1	5	1
32,3092	2,70337	1,05	1	1	5	59,057	1,50541	1,95	1	5	1
32,3901	2,70184	1,48	2	2	0	59,1721	1,50010	0,41	-3	5	4
32,6077	2,7439	0,43	2	1	1	59,2542	1,5582	0,29	5	4	1
32,7164	2,73503	15,64	1	3	1	59,5235	1,55179	1,13	-5	0	4
32,8316	2,7257	3,17	-1	1	5	59,5815	1,55042	0,95	1	4	5
32,8523	2,72403	12,85	-2	2	4	59,6856	1,54796	0,4	0	3	7
33,2949	2,68882	9,28	-2	1	5	59,6918	1,54781	1,99	-4	2	8
34,3458	2,60892	3,91	0	2	4	59,8695	1,54364	0,77	3	2	3
34,8805	2,57014	18,27	0	3	3	59,8845	1,54329	0,93	-5	0	6
35,0757	2,55628	0,03	-3	0	2	59,8992	1,54295	0,08	-4	3	7
35,3996	2,53363	1,69	-3	0	4	59,9738	1,54121	1,75	0	5	5
35,5818	2,52107	2,14	-2	3	2	59,9837	1,54098	0,41	-5	1	5
35,6544	2,51611	7,18	-3	1	3	60,0143	1,54027	0,38	-1	4	7
36,0687	2,48815	2,89	1	2	3	60,1208	1,53779	0,7	-3	4	7
36.2335	2,47721	8.77	0	4	0	60.1532	1.53704	0.33	2	5	2
36.746	2 47630	1 98	-7	ג	- 1	60 307	1 533/0	3.6	0	0	- 8
36 26/2	2,7,033	8 57	-2	1	2	60 2252	1 52207	3,0	-5	1	1
30,2040 36 30F0	2,4/314	0,07	-5 n	1 2	۲ ۲	60 4172	1,0000	3,22 0.22	-5	т г	4
30,2858	2,4/3/0	0,48	2	2	1	00,4172	1,53095	0,23	-3	5	1
30,4898 36,5706	2,40039	10,49	-1	2	5	00,4318	1,53062	1,02	U	D A	5
36,5796	2,45456	2,1	-3	1	4	60,6899	1,524/3	1,41	4	1	1
36,6337	2,45106	3,2	1	3	2	60,7233	1,52397	0,98	1	3	6
36,8353	2,43811	5,52	2	0	2	60,7266	1,52389	1,05	-2	5	6
36,9128	2,43317	14,15	-2	2	5	60,8464	1,52118	0,62	-3	5	5
36,9458	2,43107	0,66	-1	3	4	60,8962	1,52005	2,26	-2	6	2

37,6588	2,38666	0,76	-2	0	6	61,0372	1,51688	0,22	-4	4	5
37 0760	2 2674	12 61	2	1	2	61 0708	1 51502	1 /12	1	5	4
57,9709	2,5074	42,01	2	1	2	01,0798	1,51592	1,42	1	5	4
38,3477	2,34536	0,77	-3	1	1	61,1027	1,51541	0,5	0	1	8
38.3799	2.34346	14.8	2	3	0	61.1587	1.51416	0.49	-3	2	9
20,002	2 2 2 7	20.02	-	0	6	C1 2414	1 51000	2,72	-	-	-
38,6622	2,327	28,63	-1	0	6	61,3414	1,51008	2,77	-2	6	T
38,7796	2,32023	0,3	-2	3	4	61,3419	1,51007	0,39	-2	2	9
38 7798	2 32022	0.69	-7	1	6	61 4834	1 50694	0 44	-7	6	3
50,7750	2,52022	0,05	2	-	U	01,4034	1,50054	0,44	2	U	5
38,8609	2,31556	0,01	-1	4	2	61,6037	1,50428	2,48	1	6	2
38.9463	2.31068	5.89	-3	1	5	61.6981	1.50221	0.75	-5	1	3
20,0025	2,20204	5,55	2	-	2	C1 01 C1	1,40002	0,70	-	-	4
39,0825	2,30294	5,06	-3	2	3	61,8161	1,49962	0,72	-1	6	4
39,1892	2,29692	10,91	0	4	2	62,091	1,49364	0,63	1	1	7
20 6477	2 2714	0.52	-2	2	2	62 1101	1 /0222	0.75	-1	1	٥
39,0477	2,2714	0,52	-5	2	2	02,1101	1,49323	0,75	-4	T	5
39,7592	2,26529	3,47	-1	1	6	62,1543	1,49227	0,26	-4	4	2
39 9398	2 25546	10.76	-3	2	4	62.36	1 48784	2.26	-5	2	5
40,0011	2,24702		-	-		(2,4020	1 4000	1.00	-	-	
40,0811	2,24783	7,33	0	5	4	62,4039	1,4869	1,06	-5	T	/
40,663	2,217	6,57	3	0	0	62,5155	1,48452	0,1	4	3	0
40 8313	2 20825	4 71	1	4	1	62 6539	1 48157	0.82	-1	1	9
10,0010	2,20020	2,27	-		-	62,6565	1, 10030	0,02	-	-	,
41,0044	2,19933	3,27	0	2	5	62,694	1,48072	2,3	-5	2	4
41,0216	2,19844	1,66	-1	4	3	62,7169	1,48023	0,66	-4	4	6
11 5162	2 17228	0 71	-2	0	6	62 8063	1 /792/	0.45	2	6	0
41,5105	2,17550	0,71	5	0	U	02,0005	1,47034	0,45	2	0	U
41,6004	2,16918	8,28	1	3	3	62,8803	1,47678	0,19	3	5	0
41.793	2.15963	2.97	2	3	1	63.0505	1.4732	0.99	4	2	1
12 1 172	2 1/220	, , , ,	2	2	E	62 102	1 47024	0,62	2	4	4
42,1475	2,14229	2,5	-5	2	5	05,192	1,47024	0,05	2	4	4
42,351	2,13246	2,06	-2	3	5	63,2893	1,46822	1,79	-5	0	2
42.4503	2.1277	2.39	1	2	4	63.2921	1.46816	3.52	3	0	4
42 5522	2 12204	2,02	-	1	6	62,4545	1 46470	0.0	0	2	0
42,5522	2,12284	3,92	-5	T	0	03,4545	1,40479	0,9	0	Z	0
42,9099	2,10597	6,14	-1	2	6	63,509	1,46367	0,79	-3	5	6
13 23/13	2 00002	1 73	-2	4	2	63 63//	1 /6108	1 07	-1	3	8
+3,23+3	2,05052	1,75	2	-	2	03,0344	1,40100	1,07	-	5	0
43,8003	2,0652	2,35	-2	4	1	63,7793	1,45811	0,44	3	4	2
43,98	2,05718	3,68	-2	4	3	63,8056	1,45757	0,91	3	3	3
11 0816	2 05267	0 71	2	1	2	61 0102	1 152/1	0.73	0	6	4
44,0610	2,03207	0,71	2	1	5	04,0102	1,45541	0,75	U	0	4
44,1321	2,05044	0,26	1	4	2	64,0272	1,45306	0,01	-2	4	8
44 2501	2 04525	6 25	0	0	6	64 0374	1 45286	0.27	-5	2	3
44 75 42	2,01020	1.01	2	2	0	64,007	1 44602	0,27	5	-	0
44,7542	2,02337	1,01	3	2	0	64,3315	1,44692	0,77	-5	0	8
44,8092	2,02101	20,84	-3	3	2	64,4222	1,4451	0,26	1	2	7
11 9703	2 01/15	11 1/	-2	1	7	61 1109	1 ///73	0.01	-1	2	٩
++,5705	2,01415	11,14	2	-	,	04,4405	1,444/5	0,01	-	2	5
45,0739	2,00976	8,57	-3	3	4	64,5449	1,44265	0,4	-4	4	1
45,5453	1,99005	9,11	-3	2	6	64,676	1,44005	1,76	2	5	3
45 620	1 00610	0.20	2	4	0	61 7200	1 420	0.07	E	2	7
45,059	1,90010	0,39	2	4	0	04,7200	1,439	0,97	-5	2	/
45,9867	1,97197	9,16	-2	4	4	64,7486	1,43861	0,9	-3	0	10
46 0419	1 96973	0.07	0	3	5	64 7888	1 43781	1 17	2	0	6
40,0410	1,50575	0,07	0	5	5	04,7000	1,45701	1,17	-		0
46,1433	1,96564	0,87	3	1	1	64,8173	1,43725	0,17	-3	4	8
46,2574	1,96106	19,96	2	3	2	64,9739	1,43416	1,8	-1	2	9
16 5227	1 05000	1 1/	1	1	5	65 000	1 /2171	0.06	-5	1	Q
40,3327	1,55005	1,14	-	-		05,055	1,451/1	0,00		-	0
46,5738	1,94847	0,75	-3	3	1	65,111	1,43147	1,45	1	6	3
46,9437	1,93398	12,36	-2	3	6	65,2523	1,42871	0,39	2	6	1
47.0965	1 02044	0.42	2	2	-	65 2544	1 42672	0.00	4	0	2
47,0805	1,92844	9,45	-3	3	Э	05,3544	1,42075	0,09	4	0	Z
47,1255	1,92694	6,22	0	4	4	65,3639	1,42655	1	-2	5	7
47.1717	1.92516	3.19	-3	1	7	65.3707	1.42641	0.69	-4	4	7
47 2002	1 02022	1.67	1	-	1	65,2057	1 42612	0.45	1	6	-
47,5005	1,92022	1,67	-1	5	T	05,3657	1,42012	0,45	-1	0	Э
47,4727	1,91365	0,23	-4	1	4	65,5134	1,42365	0,03	-3	1	10
47.7866	1.90181	1.2	-1	3	6	65.5534	1.42288	0.04	2	1	6
47,0420	1,00007	1.02	-	2		CE 5704	1 42255	0.27	_	-	6
47,8439	1,89907	1,02	-2	Z	/	05,5704	1,42255	0,27	0	Э	0
47,8704	1,89868	14,31	1	5	0	65,6636	1,42076	1,68	-2	6	5
47.9154	1.897	1.78	-4	1	3	65,8865	1.41649	0.17	-2	0	10
40,0007	1 00027	0,02		-	6	CC 1550	1 41120	0,52	-	4	
48,0967	1,89027	0,02	0	Z	6	66,1558	1,41138	0,53	1	4	6
48,2322	1,88528	17,78	0	5	2	66,2117	1,41032	0,26	-5	3	5
48 467	1 87669	0 54	1	4	3	66 2822	1 40899	0 71	3	5	1
40,407	1,07005	0,54	-	-	5	66,2622	1,40055	0,71	5	5	-
48,6361	1,87056	0,25	-4	0	2	66,3568	1,40759	0,11	-5	2	2
48,638	1,87049	3,48	2	4	1	66,3595	1,40754	0,06	3	2	4
18 7992	1 86/69	0.42	-1	4	5	66 4745	1 /0538	1	0	7	1
40,7992	1,00403	0,42	-1	4		00,4745	1,40000	1	0	,	1
48,9638	1,8588	2,14	3	2	1	66,5352	1,40425	0,01	-5	3	4
49,2971	1,84701	8,42	-4	0	6	66,6321	1,40244	0,05	-1	4	8
10 2262	1 9/15/	6.6	1	2	E	66 9746	1 20704	0.20	E	2	6
+3,3302	1,04004	0,0	1	2	5	00,0740	1,39/94	0,20	-5	5	U
49,4885	1,84032	4,71	3	3	0	66,8807	1,39783	0,28	4	3	1
49,554	1.83804	2.33	-4	1	2	66.9967	1.39569	0.04	-1	5	7
40 6220	1,00004	2,00	-	-	-	67,0000	1,00005	1.20	-	5	,
49,6329	1,8353	2,31	1	5	1	67,0969	1,39385	1,36	-3	5	/
49,7963	1,82966	7,3	-1	5	3	67,1223	1,39338	0,67	-3	6	3
49 8274	1 87850	4 68	-1	2	7	67 1994	1 20107	0.07	-1	7	1
	1,02033		-1	2	/	07,1394	1,39197	5,67	-1	,	-
49,8528	1,82772	1,29	2	0	4	67,2723	1,39064	1,34	0	3	8
49,948	1,82446	2,51	-3	2	7	67,3371	1,38946	0,26	-4	5	4
E0 2224	1 01510	0 1 4	-	-	c.	67.266	1 20002	0.04	-	-	
50,2224	1,01513	0,14	-3	3	o	07,300	1,30893	0,04	-5	T	T
50,2365	1,81465	1,79	-4	2	4	67,3739	1,38879	0,06	-5	2	8
50.5368	1 80/158	2.43	3	0	2	67.5111	1,3863	0.37	-3	6	2
	$\pm 00 = 00$				~		2,0000			· ·	
50 6612	1,00430	6 02	4	р	2	67 655	1 20260	0.22	1	7	~

50,7544	1,79735	0,14	2	1	4	67,7422	1,38213	4,45	-4	1	10
50,8785	1,79325	4,62	-3	4	3	67,7812	1,38143	0,48	-3	2	10
50,9828	1,78983	12,44	-4	2	5	67,8205	1,38073	0,52	2	2	6
51,1958	1,78288	0,06	0	5	3	67,838	1,38041	1,43	-5	3	3
51,3393	1,77824	0,78	-3	4	2	67,8688	1,37986	0,19	4	4	0
51,4296	1,77532	0,02	3	1	2	67,9462	1,37848	0,19	0	7	2
51,5747	1,77067	1,63	2	3	3	67,9609	1,37822	0,34	-4	5	5
51,5783	1,77055	0,96	-3	4	4	68,2117	1,37376	0,3	1	3	7
51,7137	1,76624	1,45	-2	1	8	68,2299	1,37344	0,09	-4	3	9
51,7375	1,76548	1,52	-3	0	8	68,4587	1,3694	0,04	0	6	5
52,2082	1,75067	0,86	-2	5	1	68,5097	1,36851	0,06	-5	3	7
52,2362	1,74979	0,07	-4	2	2	68,7107	1,365	1,18	-5	1	9
52,3053	1,74764	7,39	-4	1	1	68,7479	1,36435	0,64	-1	3	9
52,4992	1,74164	0,9	1	5	2	68,8938	1,36181	0,01	-2	2	10
52,6028	1,73846	1,7	0	3	6	68,9418	1,36098	0,15	-4	4	8
52,6158	1,73806	2,61	-3	1	8	69,0172	1,35968	0,04	-4	5	2
52,7345	1,73443	1,76	-1	5	4	69,0815	1,35857	0,66	1	7	1
52,9389	1,72821	0,56	-3	4	1	69,1063	1,35814	0,31	3	4	3
53,014	1,72594	5,34	0	1	7	69,1605	1,35721	0,04	-2	6	6
53,2447	1,719	0,78	-4	1	7	69,215	1,35628	0,08	-1	7	3
53,2722	1,71818	0,08	1	0	6	69,2723	1,35529	0,28	-3	6	5
53,2758	1,71807	0,13	-2	4	6	69,5446	1,35065	0,16	2	4	5
53,3931	1,71458	1,97	2	2	4	69,5505	1,35055	0,17	-4	5	6
53,4061	1,71419	4,97	-3	4	5	69,5702	1,35022	0,72	0	1	9
53,6598	1,70668	6,7	1	4	4	69,604	1,34964	1,07	-5	2	1
53,7664	1,70355	3,8	1	3	5	69,7241	1,34761	0,35	1	0	8
53,8147	1,70213	1,35	-1	0	8	69,8229	1,34595	0,24	-1	6	6
53,8282	1,70174	1,19	2	5	0	69,9745	1,3434	0,78	-4	2	10

					2CaO•B	₂ O ₃ (C ₂ B)					
a = 7,2178(6) Å				b = 5,1773(4) Å				c = 11,5026(1) Å			
α= 90°				β = 92,83°				γ = 90°			
V = 429,3(1) Å ³				RG: P2₁/c				GoF = 1,24			
Pos. [°2θ]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I
12,2468	7,22132	2,05	1	0	0	53,8283	1,70174	0,33	-3	2	2
15,3921	5,75202	5,19	0	0	2	53,8716	1,70047	0,86	3	1	4
18,7637	4,72537	9,73	0	1	1	54,0134	1,69634	0,31	4	0	2
19,2382	4,60988	3,07	-1	0	2	54,033	1,69577	4,51	-4	1	1
20,2008	4,39234	7,26	1	0	2	54,3627	1,68626	0,6	-1	2	5
21,0889	4,20932	2,39	1	1	0	54,6212	1,67889	0,36	1	3	0
22,2627	3,98998	1,61	-1	1	1	54,7862	1,67423	0,76	2	2	4
22,6875	3,91621	2,66	1	1	1	54,8322	1,67293	0,76	4	1	1
23,088	3,84918	18,66	0	1	2	55,0271	1,66746	0,79	3	2	2
24,0084	3,60747	4,9	2	0	0	55,1516	1,66399	0,32	-1	3	1
25,0525	2 2 4 0 0 4	1,40	-1	1	2	55,3494	1,00002	0,51	1	3	5
28 5332	3 1 2 5 7 8	7.93	-2	0	2	55 3737	1,05052	0.45	2	2	6
28,9575	3 08093	42.39	0	1	3	55 5386	1,65331	13 36	0	3	2
29.8652	2,98933	2.02	2	0	2	56,6664	1,62305	0.21	-3	2	3
30,1667	2,96014	48.37	2	1	0	56.8398	1.61851	1.01	-3	-	5
30,8608	2,89513	39.57	-2	1	1	56,9169	1,61651	1,15	-1	3	2
31.0841	2,87483	24.87	-1	1	3	57.304	1.6065	0.37	1	3	2
31.0938	2.87396	29.53	0	0	4	58.2142	1.58353	2.26	-4	1	3
31,4885	2,83883	100	2	1	1	58,4021	1,57888	0,08	2	1	6
32,0156	2,79328	6,57	1	1	3	58,584	1,57441	0,09	-2	2	5
32,9473	2,71639	1,51	-1	0	4	58,6074	1,57384	0,18	0	3	3
33,4578	2,6761	1,99	-2	1	2	58,9738	1,56493	2,61	0	1	7
34,1237	2,62539	1,47	1	0	4	59,0858	1,56223	2,75	-4	0	4
34,6027	2,59013	4,35	0	2	0	59,304	1,55701	5,19	2	3	0
34,6189	2,58896	4,23	2	1	2	59,7064	1,54747	0,01	3	1	5
35,4993	2,52674	4,32	0	2	1	59,7132	1,54731	0,08	-2	3	1
35,7012	2,51292	20,31	0	1	4	59,8327	1,5445	0,12	-1	1	7
36,8427	2,43763	4,87	1	2	0	59,8463	1,54419	1,44	-1	3	3
37,3525	2,40553	2,36	-1	1	4	60,0889	1,53853	1,57	2	3	1
37,5601	2,39271	1,91	-1	2	1	60,224	1,5354	1,86	-3	0	6
37,6093	2,38969	0,15	-2	1	3	60,4086	1,53115	2,16	1	3	3
37,8258	2,37651	3,72	1	2	1	60,9759	1,51826	0,59	-1	2	6
38,0792	2,36128	0,82	0	2	2	61,3019	1,51096	0,15	-2	3	2
38,411	2,34164	0,74	1	1	4	61,9991	1,49564	2,82	-4	1	4
39,0708	2,3036	2,11	-2	0	4	62,0405	1,49474	1,35	2	3	2
39,1791	2,29748	5,78	2	1	3	62,0717	1,49406	1,6	4	0	4
39,892	2,25805	2,28	-3	0	2	62,0853	1,49377	0,28	1	2	6
39,8997	2,25764	1,04	-1	2	2	62,7441	1,47966	2,54	0	3	4
40,4037	2,23063	0,45	1	2	2	62,7527	1,47948	1,19	4	2	0
41,0899	2,19495	4,96	2	0	4	62,8196	1,47806	0,6	3	2	4
41,3713	2,18066	0,14	3	1	1	62,9662	1,47497	0,32	-4	2	1
41,7001	2,16027	3,34	-3	1	2	63,5415	1,46299	0,75	3	0	7
42,0792	2,1450	0,19	2	2	3	63,0433	1,4009	0,06	-2	2	1
42,9505	2,10473	5.05	2	2	-	63 8447	1,45500	1.24	-1	2	1
43 4769	2,10333	11 64	-2	2	1	64 5668	1,43070	0.99	1	3	4
43 6438	2,07001	10.66	-1	2	3	64 8374	1 43685	1 01	-2	2	6
43,6976	2.06982	3.45	-3	1	2	64,8594	1,43642	0.66	0	0	8
43,9472	2.05863	11.82	2	2	1	64.9065	1,43549	0.56	4	1	4
44.3206	2.04216	1.09	-1	1	5	65.0987	1.43171	0.67	2	3	3
44.3456	2.04106	4.08	1	2	3	65.5327	1,42328	0.26	-3	2	5
44,8122	2,02088	3,8	2	1	4	65,7624	1,41886	0,06	4	2	2
45,4508	1,99397	0,04	-2	2	2	65,9438	1,4154	0,09	-5	0	2
45,4718	1,9931	11,04	1	1	5	66,1565	1,41136	0,61	2	1	7
46,3559	1,95712	3,53	2	2	2	66,3419	1,40787	0,23	3	1	6
46,9759	1,93273	0,1	-3	1	3	66,6519	1,40207	0,21	3	3	0
47,2113	1,92364	1,3	0	2	4	66,7813	1,39967	0,03	-4	1	5
47,4244	1,91549	6,67	0	0	6	66,8003	1,39931	0,05	-4	2	3
48,0949	1,89034	0,53	-3	0	4	66,9471	1,3966	0,07	-3	3	1
48,5367	1,87416	3,09	-1	2	4	66,9742	1,3961	0,05	2	2	6
48,7449	1,86664	19,89	-2	2	3	67,0045	1,39555	0,1	1	0	8
49,1527	1,8521	14,43	-2	1	5	67,3475	1,38927	0,25	5	1	0
49,3985	1,84346	0,11	1	2	4	67,476	1,38694	0,27	3	3	1
49,8175	1,82893	7,27	1	0	6	67,5039	1,38643	0,34	0	2	7
50,0294	1,82168	19,89	2	2	3	67,631	1,38413	0,03	0	1	8
50,5874	1,80289	13,12	4	0	0	67,7119	1,38268	1,84	5	0	2
50,6643	1,80033	2,46	3	0	4	67,7915	1,38125	0,02	-2	3	4
50,78	1,7965	0,33	0	1	6	67,849	1,38022	0,77	0	3	5
51,2678	1,78055	9,24	2	1	5	68,1844	1,37424	0,19	3	2	5
51,4179	1,//57	0,86	-3	1	4	68,3019	1,37216	0,58	-1	2	(
51,8313	1,76251	0,18	-1	1	6	68,3409	1,37148	0,5	-1	1	8
51,8548	1,76176	4,2	3	2	U	68,3425	1,37145	0,4	5	1	1
52,3897	1,74503	0,27	-4	U	2	69,133	1,35/68	0,02	-2	U	8
52,8134	1,73202	0,03	3	2	1	69,1892	1,356/2	1,2/	2	3	4
52,968	1,72/33	1,08	-2	U	0 A	60 524 4	1,35311	0,06	3 1	3	2
53,1/8/	1,72098	0,26	-2	2	4	09,5214	1,35105	0,01	1	2	/ E
53,2452	1,71899	2,94	0	2	5 1	70 1 405	1,34821	0,19	1	3	5 7
53,0420	1,70719	0,33	1	э 1	0	70,1405	1,34003	0,44	-3	I	1
55,1310	1,10203	0,14	4	1	v	1					

					3CaO•	B ₂ O ₃ (C ₃ B)						
a = 8,6347(3)	Å			b = 8,6347(3) Å				c = 11,8597(4)	Å			
α= 90°				β = 90°				γ = 120°				
V = 765,7(8)	Å ³			RG: R3c		GoF = 1,57						
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°2θ]	d-Wert [Å]	Rel. Int. [%]	h	k	I	
19,0794	4,64789	10,35	1	0	-2	56,3292	1,63197	2,65	4	1	0	
20,5488	4,31873	9,46	1	1	0	58,2956	1,58151	1,21	4	0	4	
28,1864	3,16345	2,04	2	0	2	59,1182	1,56146	0,73	3	1	5	
30,6322	2,91621	100	1	1	3	59,6455	1,5489	7,82	3	0	-6	
32,4519	2,75672	56,81	1	0	4	59,6455	1,5489	7,82	3	0	6	
35,1388	2,55183	1,82	2	1	-2	61,4133	1,50849	5,46	4	1	-3	
35,9953	2,49306	42,53	3	0	0	61,4133	1,50849	5,46	4	1	3	
38,7225	2,32351	0,41	2	0	-4	62,492	1,48502	3,13	3	2	4	
41,806	2,15899	22,02	2	2	0	63,7886	1,45792	4,08	2	2	6	
44,2953	2,04326	25,25	3	1	-1	63,9672	1,45428	1,09	1	0	-8	
45,8661	1,97687	16,05	0	0	6	64,0166	1,45328	0,05	2	1	7	
46,335	1,95795	5,34	3	1	2	64,1647	1,45028	1,31	5	0	2	
47,9732	1,89485	83,35	2	2	3	64,7169	1,43923	4,16	3	3	0	
50,1637	1,81712	6,73	2	1	-5	66,5823	1,40337	1,48	4	2	-1	
50,7522	1,79742	6,93	1	1	6	67,298	1,39017	0,22	3	2	-5	
51,1872	1,78316	1	4	0	-2	67,9621	1,3782	0,65	2	0	8	
53,8997	1,69965	0,05	3	1	-4	68,1535	1,37479	0,46	4	2	2	
53,9546	1,69805	6,43	3	2	1	69,4419	1,3524	0,14	3	3	3	
55,7285	1,64813	4,13	3	2	-2							

	•			•	CaO•Al ₂	2O3 (CA)					
a = 8,6968(1)	A			b = 8,0987(0) A				c = 15,2115(3) A			
V = 1071.3(8)	Å ³			β = 90,10 RG P2₁/n				γ = 50 GoF = 1.45			
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	<u> </u>
11,6124	7,61434	1,63	0	0	2	54,3065	1,68787	0,26	1	2	8
11,7134	7,54894	1,17	1	0	1	54,483	1,68282	2,86	-4	3	-1
12,3586	7,15626	1,54	0	1	1	55,201	1,66262	1,37	-1 1	3	7
14,9224	5,932	3.88	-1	1	2	55,262	1,66093	0,26	-5	3 1	2
16,0122	5,53065	1,96	-1	1	1	55,2829	1,66035	0,36	-1	0	9
18,9362	4,6827	17,08	-1	1	2	55,3349	1,65892	0,31	-5	1	-2
20,2176	4,38873	1,55	-1	0	3	55,3415	1,65873	0,78	-3	3	5
20,2695	4,3776	0,07	1	0	3	55,3485	1,65854	0,58	1	0	9
20,6376	4,30035	0,15	0	2	0	55,4508	1,00072	0,04	-1	3	5
22,6929	3,91529	1,29	0	2	1	55,493	1,65456	1,09	1	4	5
23,0295	3,85883	0,2	-1	1	3	55,5092	1,65412	1,27	-2	4	4
23,0754	3,85126	0,74	1	1	3	55,5152	1,65395	0,78	-4	3	2
23,1856	3,8332	0,74	-2	1	0	55,5459	1,65311	1,27	-4	0	6
23,3601	3,80495	0,54	-2	0	4	55,5673	1,05253	0,09	-3	4	4 -1
23,5653	3.77229	1,20	2	0	2	55,7202	1.64835	0,02	4	0	6
23,9058	3,71932	8,64	-2	1	1	55,8772	1,64409	0,88	-5	0	-3
23,9353	3,7148	0,72	-2	1	-1	56,5346	1,62653	0,58	-1	1	9
24,2127	3,67287	1,14	-1	2	0	56,5992	1,62482	0,07	1	1	9
24,8778	3,57616	1,59	0	2	2	56,7265	1,62148	0,68	-3	4	-2
24,9121	3,57132	0,22	-1	2	1	56,7938	1,01972	0,38	-4 4	1	6
25,849	3,44395	1,62	0	1	4	57,0132	1,614	0,58	-5	1	3
25,9811	3,42674	2,08	-2	1	2	57,1203	1,61123	0,02	-5	1	-3
26,0357	3,41968	0,65	2	1	2	57,2649	1,60751	0,89	-4	3	3
26,9214	3,30915	4,91	-1	2	2	57,3504	1,60531	0,94	-4	3	-3
26,9479	3,30596	1,31	1	2	2	57,5626	1,5999	0,29	-3	2	7
27,8135	3,20501	3,89	-1	1	4	57,5907	1,59918	0,33	2	2	8
28,1671	3,16557	3.52	0	2	3	57,8492	1,59265	0.31	-1	5	0
29,1426	3,06179	5,2	-2	1	3	57,9491	1,59014	0,12	-5	2	1
29,9975	2,97645	2,32	-1	2	3	57,9844	1,58926	0,47	-5	2	-1
30,0335	2,97297	100	1	2	3	58,1991	1,58391	1,18	1	5	1
30,1198	2,96464	5,73	-2	2	0	58,2613	1,58236	3,48	0	4	6
30,6884	2,91099	4,43	-2	2	1	58,3992	1,57896	0,08	-2	3	1
31 0776	2,90662	57	-2 -1	2	-1	58,4139	1,57659	1 49	-3	4	3
31,1356	2,8702	0.22	1	0	5	58,4977	1,57653	3	2	3	7
31,2539	2,8596	6,2	2	0	4	58,7229	1,57102	0,73	2	4	5
31,3581	2,85033	5,78	-3	0	1	58,9658	1,56513	0,43	-5	2	2
32,2544	2,77314	1,14	0	2	4	59,0357	1,56344	1,04	-5	2	-2
32,4072	2,76042	2,23	2	2	2	59,1742	1,56011	0,74	-3	3	6
32,7730	2,73037	0,65	-3 -1	1	5	59,1778	1,56003	0,13	-1	2	9
33,1974	2,6965	0.63	2	1	4	59.2341	1,55868	0.24	1	5	2
33,3289	2,68615	0,45	-3	1	-1	59,2915	1,55731	1,37	-1	4	6
33,6793	2,65901	0,35	0	3	1	59,2998	1,55711	0,31	3	3	6
33,8797	2,64374	0,31	-1	2	4	59,3333	1,55631	0,13	1	4	6
33,9226	2,64049	0,42	1	2	4	59,3963	1,55481	0,26	0	3	8
34,7551	2,57912	1,38	-1	3	0	59,4155	1,55435	0,4	-5 -5	1	4
34,9161	2,5676	0.09	-3	1	-2	59.6795	1,5481	1.75	-2	1	9
35,3637	2,53612	19,86	0	0	6	59,7753	1,54585	0,46	4	3	4
35,5875	2,52068	22,19	-3	0	3	59,8044	1,54517	0,79	2	1	9
35,6801	2,51435	8,77	3	0	3	59,8886	1,5432	0,67	0	5	3
36,776	2,4419	4	1	3	2	60,1879	1,53624	1,97	-1	2	9
36,9137	2,43311	0,14	0	2	5 6	60,2501	1,5348	6,04	-1	2	9
37,3316	2,40683	14,24	-3	1	3	60,4371	1,5305	7	-4	2	6
37,4204	2,40132	9,14	3	1	3	60,4627	1,52991	0,2	1	3	8
37,6661	2,38622	2,28	-2	1	5	60,6024	1,52672	2,47	4	2	6
37,7082	2,38365	0,84	0	3	3	60,6483	1,52567	5,25	-5	2	3
37,7641	2,38025	0,59	2	1	5	60,7514	1,52333	1,08	-5	2	-3 4
38 361	2,3579	0,41	-3 -1	2	5	60,7883	1,52249	2,90	-3 1	4	4
38,4092	2,34174	1,76	1	2	5	60,9822	1,51812	5,82	-2	5	0
38,4307	2,34048	1,96	-2	2	4	61,3245	1,51046	0,98	-2	5	-1
38,5529	2,33335	1,52	-1	1	6	61,4278	1,50817	1,08	4	1	7
38,5947	2,33092	2,6	-3	2	1	62,0168	1,49525	0,17	0	1	10
38,6105	2,33	0,46	1	1	6	62,3042	1,48904	1,09	-2	5	2
30,0∠35 39,1300	2,32924 2 20060	2,22	-3 -1	∠ 3	-1	02,3313 62,3599	1,48846	0.25	∠ -2	э 4	∠ 6
39,1684	2,29808	2,35	1	3	3	62,441	1,48611	1,32	2	4	6
39,2369	2,29423	1,96	-2	3	0	62,5936	1,48285	0,16	5	1	5
39,6897	2,26909	1,73	-2	3	1	62,6697	1,48123	2,22	-4	3	5
39,7085	2,26806	2,86	-2	3	-1	62,8	1,47847	0,2	3	2	8
39,9725	2,25369	0,09	-3	2	2	62,8045	1,47838	0,13	4	3	5
40,0285	2,25067	0,37	-3	2	-2	62,9532	1,47524	0,55	-4	4	1
40,5884 40 9533	2,2209	0,00 2,28	-3	3	4 4	02,9904 63.0637	1,47434	0,00	-1	1	10
41.0413	2,19743	4.36	-2	3	2	63.0997	1,47217	0.01	-5	2	-4
41,0778	2,19556	4,47	2	3	2	63,2637	1,46875	1,21	1	5	4
41,2256	2,18804	1,97	2	0	6	63,3412	1,46714	0,9	2	2	9
41,4877	2,17481	2,14	-4	0	0	63,518	1,46348	0,16	-3	3	7
42,0005	2,14944	1,7	0	2	6	63,5445	1,46293	0,24	2	3	8
42,1943	2,14001	0,18	-3	2	3	63,5716	1,46237	3,35	-5	3	0

40.0745	0 10614	2.44	2	2	2	62 5700	1 46004	1 10	2	0	0
42,2745	2,13014	3,41	3	2	3	03,5790	1,40221	1,40	-3	0	9
42,2886	2,13546	3,25	-1	3	4	63,6372	1,46103	1,62	-1	4	/
42,3242	2,13375	0,21	1	3	4	63,6586	1,46059	0,47	3	3	7
42,4966	2,12549	0,37	-2	2	5	63,766	1,45838	6,69	-3	4	5
42,818	2,11028	1,55	-1	0	7	63,8662	1,45634	0,73	3	4	5
42 9876	2 10234	1 81	-3	0	5	63 8826	1 456	0.26	-5	3	1
12,007.0	2,00622	0.90	2	0	5	62 09 47	1 45202	1 20	2	5	2
43,1193	2,09623	0,09	3	0	5	03,9647	1,45595	1,29	2	5	3
43,1969	2,09264	1,34	-4	0	2	64,1941	1,44969	6,34	-6	0	0
43,2669	2,08942	0,42	-4	0	-2	64,7279	1,43902	0,7	-4	2	7
43,2748	2,08905	0,34	2	3	3	64,8118	1,43736	0,25	-2	0	10
13 3006	2 08786	0.01	-1	2	6	6/ 8/38	1 /3672	0.33	-5	з	2
40,0000	2,00700	0,01	-1	2	0	04,0430	1,43072	0,00	-5	5	2
43,4755	2,07900	2,11	-4		-1	04,9134	1,43535	1,1	4	2	1
44,3218	2,0421	0,35	-1	1	/	64,9442	1,43475	0,22	2	0	10
44,3819	2,03948	0,07	1	1	7	65,0031	1,43359	0,5	-4	0	8
44,7115	2,0252	5,04	0	4	0	65,0446	1,43277	0,61	0	3	9
44,7587	2.02318	3.77	-4	1	-2	65,1889	1.42995	1	0	5	5
45 1276	2 00749	0.53	0	4	1	65 3401	1 42701	0.18	-6	1	0
45,1270	2,00740	0,00	0	-		00,0401	4 40 40	0,10	0		10
45,1596	2,00614	0,85	-3	2	4	65,4848	1,4242	0,16	0	2	10
45,261	2,00189	0,27	3	2	4	65,5321	1,42329	0,37	-6	0	-2
45,885	1,9761	0,76	-3	3	0	65,5368	1,4232	0,55	-4	4	3
45,9751	1,97244	0,09	-1	4	0	65,6158	1,42168	0,15	-4	4	-3
46 1204	1 96656	0.47	1	3	5	65 6432	1 42115	0.07	-6	1	1
46 1290	1,00000	1 71		2	4	65 6927	1 42020	0.02	6	1	
40,1309	1,90302	1,71	-2	5	4	05,0027	1,42039	0,02	-0	1	-1
46,2054	1,96314	0,44	2	3	4	65,8808	1,4166	0,1	-5	2	5
46,2804	1,96014	2,41	-3	3	1	65,9521	1,41524	0,35	-2	1	10
46,3053	1,95914	0,53	-3	3	-1	66,0027	1,41428	0,28	-1	3	9
46.7262	1.94247	1.74	-4	1	3	66.0449	1.41348	0.41	5	2	5
46 8249	1 9386	01	-4	1	-3	66.0617	1 41316	0.21	1	3	q
47,0243	1,00004	7.50	-4	1	-5	00,0017	1,41075	0,21		3	10
47,0769	1,92001	7,55	-2	2	0	00,0033	1,41275	0,33	2		10
47,1751	1,92503	9,82	2	2	6	66,1417	1,41164	0,07	-4	1	8
47,4108	1,91601	8,67	-4	2	0	66,1951	1,41063	0,17	5	1	6
47,7845	1,90189	0,66	0	0	8	66,2395	1,4098	0,32	-4	3	6
47,7924	1,90159	0.03	-4	2	1	66.2588	1.40943	1.26	2	5	4
17 9249	1 00029	0.26	4	2	1	66 21 9	1 40922	0.17	2	5	1
47,0240	1,90030	0,30	-4	2	-1	00,310	1,40032	0,17	-3	5	1
48,031	1,8927	0,26	-2	1	/	66,3376	1,40795	0,13	-3	5	-1
48,0956	1,89031	0,3	-4	0	4	66,3512	1,40769	0,39	4	1	8
48,1437	1,88853	0,11	2	1	7	66,3965	1,40684	0,07	4	3	6
48.2243	1.88557	0.35	4	0	4	66.4363	1.4061	0.45	-1	2	10
48 3555	1 88076	0.6	0	4	3	66 5017	1 40487	0.39	1	2	10
49,6000	1,00070	0,07	1	-	7	66 5292	1,40410	0,00	-	2	2
40,012	1,07143	0,07	-1	2	<u>/</u>	00,5362	1,40419	0,17	-5	3	-3
48,6679	1,86941	0,64	1	2	7	66,5874	1,40327	0,12	-2	4	7
48,8851	1,86161	0,82	3	2	5	66,5877	1,40327	0,15	-6	1	2
48,9163	1,8605	0,5	-3	1	6	66,666	1,40181	0,38	-6	1	-2
48 9556	1 8591	0.14	-4	2	2	67 3078	1 38999	0.36	-3	4	6
40.0101	1 95694	0,65		-	2	67 4247	1 20707	0.1	ž		6
40,0101	1,05004	0,00		2	-2	07,4247	1,00707	0,1	5	7	0
49,0592	1,85541	0,31	3	1	6	67,5145	1,38624	0,04	0	4	8
49,169	1,85152	0,14	0	1	8	67,8678	1,37988	0,24	4	4	4
49,2555	1,84848	1,14	0	3	6	68,1252	1,37529	0,61	-3	2	9
49.4267	1.84247	0.98	-3	3	3	68.16	1.37468	0.75	-6	1	3
49 4735	1 84084	0.83	-4	1	4	68 2762	1 37262	0.21	-6	1	-3
40,5502	1 92796	1.09	1		2	69 2005	1 27221	0.02	ž	2	0
40,5002	1,007.00	1,30		-	3	00,2333	1,07221	0,03	5	2	0
49,5996	1,83646	0,7	4	1	4	68,3371	1,37154	0,51	-3	3	8
49,6161	1,83588	1,71	-2	4	0	68,4584	1,36941	0,46	-1	4	8
49,7729	1,83047	1,59	2	3	5	68,5099	1,3685	0,05	1	4	8
50,0085	1,82239	0,68	-2	4	-1	68,6237	1,36651	0,35	-1	0	11
50 3155	1 81199	0.56	-1	1	8	68 7023	1 36514	0.21	0	5	6
50 4540	1 90721	1 16	1	2	6	69 71 92	1 26/96	0,21	6	2	0
50,4549	1,00731	1,10		3	0	00,7103	1,30400	0,0	-0	2	0
50,8603	1,79385	0,54	-4	2	3	68,7785	1,36382	0,83	-5	3	-4
50,953	1,79081	0,19	-4	2	-3	68,8417	1,36272	0,1	-3	5	3
51,0523	1,78756	0,29	0	4	4	68,894	1,36181	0,55	-2	3	9
51,1573	1,78413	1,2	2	4	2	68,9953	1,36006	0,34	-5	0	7
52.0713	1,75495	1.96	-3	3	4	69,1241	1.35784	0.4	2	5	5
52 1030	1 75111	0.76	2	2	7	60 21 08	1 35610	0.79	5	0	7
52,1353	1,75111	0,70	2	2		03,2130	1,00010	0,73	5	0	
52,2141	1,75048	1,03	1	4	4	69,2358	1,35592	0,41	-0	0	4
52,4102	1,74439	1,35	-2	0	8	69,3156	1,35455	0,57	-2	2	10
52,6597	1,73671	1,03	3	0	7	69,3607	1,35378	0,29	-5	2	6
52,9121	1,72902	1,38	-5	0	1	69,3896	1,35329	0,06	-6	0	-4
52,923	1,72869	0.09	-3	2	6	69,4437	1.35237	0.08	2	2	10
53 0581	1 72/61	0.45	2	2	â	69 5006	1 351/	0.13		- 2	2
52 1610	1 72140	0,40	0	2	0	60 FE 20	1 25054	0,10	F	2	6
53,1619	1,72149	0,00	0	2	8	09,5528	1,35051	0,48	5	2	6
53,4499	1,71289	0,35	-4	2	4	69,7053	1,34793	0,44	4	2	8
53,5692	1,70935	0,35	4	2	4	69,7328	1,34747	0,24	-1	1	11
53,7967	1,70266	0,18	-3	1	7	69,8031	1,34628	0,12	1	1	11
53,8032	1,70247	0,13	-2	3	6	69,8981	1.34468	0.29	0	6	1
53 926	1 7019	0.46	2	1	0	60,0262	1 3//0/	0.72	_6	5	· 2
53,020	1,7010	0,40	2	1	0	70 0100	1,34404	0,73	-0	2	2
53,8561	1,70092	1,03	-5	1	U	70,0128	1,34276	1,58	-6	2	-2
53,8923	1,69987	0,57	2	3	6	70,1017	1,34128	0,29	-5	1	7
54,1248	1,69311	1,15	0	3	7	70,3247	1,33757	0,25	5	1	7
54.2007	1,69092	0.35	-5	1	1	70.3391	1,33733	1.94	-4	3	7
54,2474	1,68957	0.47	-1	2	8	70.3405	1.33731	2.39	-6	1	4

2CaO+Al ₂ O ₃ +B ₂ O ₃ (C ₂ AB)											
a =8,2746(7)	Á			b =15,2412(7)	Å			c = 5,7380(4)	Å		
α= 90°				β = 90°				γ = 90°			
V = 723,6(6) Å	3			RG: Ccc2				GoF = 1,44			
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I
11,5735	7,63984	34,73	0	2	0	53,9464	1,69829	9,88	1	7	2
12,1318	7,28953	67,81	1	1	0	54,1107	1,69352	3,5	2	2	3
19,6632	4,51119	4,96	1	1	1	54,6275	1,67871	6,45	4	0	2
20,4681	4,33557	82,7	1	3	0	55,0754	1,66612	30,79	3	5	2
21,4312	4,14285	1,45	2	0	0	55,3027	1,65981	4,13	1	9	0
23,2979	3,81496	60,8	0	4	0	55,3857	1,65752	7,28	2	8	1
24,433	3,64024	100	2	2	0	55,8079	1,64597	2,1	5	1	0
25,728	3,45987	7,23	1	3	1	56,0507	1,63941	4,45	4	2	2
29,0217	3,07427	88,22	2	2	1	56,0809	1,6386	1,27	3	7	1
31,1203	2,87157	10,49	0	0	2	57,3737	1,60472	2,33	4	6	0
31.2173	2.86287	42.2	1	5	0	57.7778	1.59445	4.64	1	9	1
31.8758	2.80521	84.14	2	4	0	57.9306	1.59061	0.47	1	5	3
32.9472	2.7164	15.96	3	1	0	58,269	1.58217	2.43	5	1	1
33,315	2.68725	25.94	0	2	2	58.3366	1.5805	0.95	2	4	3
33.5235	2.67101	88.63	1	- 1	2	58,5935	1.57418	1.86	5	3	0
34,9962	2.5619	1.85	1	5	1	59.0092	1,56408	1.46	3	1	3
35.2768	2.54217	25.36	0	6	0	59,7934	1,54543	2.46	4	6	1
35.5926	2.52033	2.34	2	4	1	60,1874	1,53625	0.41	4	4	2
36 5679	2 45532	13.3	3	1	1	60,6909	1 5247	1.05	0	10	0
37 0292	2,10002	23	3	3	0	60 983	1 5181	6.25	5	3	1
37 5507	2,39329	32 34	1	3	2	61 7034	1,0101	0,20	3	3	3
38 1125	2,00020	2.26	2	0	2	62 617	1,00205	3.2	2	8	2
39 2497	2,00020	1 16	0	4	2	63 2623	1,46878	2 33	3	7	2
39,9705	2 2538	0.43	2	2	2	63 0358	1,45070	2,55	5	5	0
40 3323	2 23441	2 93	3	3	1	64 4941	1,40402	0,29	3	0	0
40,5525	2,20441	2,33	2	5	0	64 8438	1,44507	5.84	1	9	2
42,8893	2,10012	5.42	1	7	0	64 9313	1 / 35	1.85	0	0	2
42,0095	2,10095	2,95	1	,	0	64,0006	1 / 2292	2.05	2	6	-
43,0337	2,0033	2,05	3	5	0	65 1528	1,43066	2,05	2	10	0
44,2232	2,04043	6.90	1	5	2	65 2022	1,43000	0,15	5	10	2
44,0744	2,0200	7,59	2	5	2	65,0007	1,42772	0,40	1	7	2
44,0794	2,02058	7,30	2	2	0	66 2172	1,41020	0.01	0	2	3
45,5047	1,99733	21,11	4	2	1	66 2427	1,41022	0,91	1	2	4
45,8419	1,97730	26.77	2	1	2	66 6626	1,40785	0,29	1	0	4
43,907	1,97277	20,77	2	5	2	66 734	1,40185	1.03	4	6	0
47,1096	1,92755	1	3	5	1	66,734	1,40054	1,03	4	0	2
47,6705	1,90617	2,24	0	8	0	66,7613	1,40004	0,9	3	9	1
47,7579	1,90288	25,13	0	6	2	66,9021	1,39743	0,01	3	5	3
48,1978	1,88654	4,89	4	2	1	67,7739	1,38156	0,19	4	2	3
49,1398	1,85256	1,32	3	3	2	67,8553	1,3801	4,63	5	3	2
49,192	1,85071	6,42	1	1	3	07,8863	1,37955	0,08	ь	U	U
50,1106	1,81892	12,95	4	4	U	68,5976	1,36697	0,27	1	11	U
52,2174	1,75038	5,39	1	3	3	68,8754	1,36213	1,22	1	3	4
52,7514	1,73391	2,9	4	4	1	69,1445	1,35749	0,09	6	2	0
52,837	1,/313	0,18	2	8	U	69,2446	1,35577	0,11	2	U	4
52,9181	1,72884	1,04	2	6	2	69,7964	1,34639	0,04	0	10	2
53,5545	1,70979	19,47	3	7	0	70,0031	1,34292	0,21	0	4	4

				1	1CaO•7Al ₂ O ₃ ·	CaF ₂ (C ₁₁ A ₇ CaF	2)				
a =11,9625(8)	Å			b =11,9625(8)	Å						
α= 90°				β = 90°			γ = 90°				
V = 1711,8(8)	Å ³			RG: 143d				GoF = 1,39			
Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	I
18,1558	4,8822	96,17	1	2	1	54,1765	1,69162	4,52	3	5	4
20,9932	4,22829	4,72	0	2	2	55,3401	1,65877	31,9	0	6	4
23,5038	3,78201	13,51	0	3	1	56,4876	1,62777	4,02	1	7	2
27,8889	3,19651	30,99	1	3	2	56,4876	1,62777	4,02	2	5	5
29,8573	2,99011	49,08	0	4	0	56,4876	1,62777	4,02	3	6	3
33,4786	2,67449	100	0	4	2	57,62	1,59844	33,36	2	6	4
35,1642	2,55005	17,71	2	3	3	58,7384	1,57064	0,85	0	7	3
36,7822	2,4415	47,91	2	4	2	60,9368	1,51914	4,37	1	6	5
38,3412	2,34574	5,74	0	5	1	60,9368	1,51914	4,37	2	7	3
38,3412	2,34574	5,74	1	4	3	62,0184	1,49522	4,85	0	8	0
41,3094	2,18379	41,64	1	5	2	63,0892	1,47239	8,4	1	7	4
44,1119	2,05133	6,68	0	5	3	64,15	1,45058	0,58	0	8	2
46,7794	1,94038	14,07	1	6	1	65,2013	1,42971	1,22	3	6	5
46,7794	1,94038	14,07	2	5	3	66,2438	1,40971	0,46	0	6	6
48,07	1,89126	1,03	0	6	2	66,2438	1,40971	0,46	2	8	2
49,335	1,84568	3,75	1	5	4	67,278	1,39054	5,92	0	7	5
51,796	1,76362	5,43	1	6	3	67,278	1,39054	5,92	1	8	3
52,9956	1,7265	8,67	4	4	4	67,278	1,39054	5,92	3	7	4
54,1765	1,69162	4,52	0	7	1	69,3237	1,35442	2,56	2	7	5

				30	CaO+2SiO2+0	aF ₂ (C ₃ S ₂ CaF ₂)					
a =7,5335(6) Å				b =10,5306(9) Å				c = 10,9007(1)	Å		
α = 90°				β = 70,46°				γ = 90°			
V = 815,0(2) Å ³				RG: P2₁/c				GoF = 1,52			
Pos. [°2θ]	d-Wert [Å]	Rel. Int. [%]	h	k	1	Pos. [°20]	d-Wert [Å]	Rel. Int. [%]	h	k	
12,0574	7,33432	7,06	0	1	1	51,1116	1,78562	1,84	-2	1	4
12,4887	7,08201	4,52	1	0	0	51,1695	1,78374	1,73	3	2	5
15 1493	5 84365	1 13	1	1	1	51,5231	1,77232	0,24	4	2	5
16.8563	5.25552	5.42	0	2	0	51.647	1,76836	2.22	2	1	6
17,2809	5,12736	3,52	0	0	2	51,938	1,75914	0,16	3	4	0
17,6221	5,02884	1,32	1	0	2	52,0947	1,75421	0,15	0	6	0
18,9553	4,67803	1,23	0	2	1	52,2359	1,7498	0,17	4	2	1
19,2409	4,60924	1,3	0	1	2	52,2481	1,74942	0,67	4	1	0
19,3604	4,58106	1,28	-1	1	1	52,4472	1,74325	0,23	4	2	3
19,549	4,53728	5,11	1	1	2	52,6701	1,7364	0,62	4	1	4
21,0198	4,22301	2,83	1	2	0	52,7781	1,7331	5	-2	5	1
21,078	4,21147	1,11	1	2	1	52,9069	1,72918	3,3	0	5	1
24,2175	3,65786	0,03	-1	2	2 1	53 2905	1,72073	0.18	-1	2	5
24 4656	3 63547	1 64	1	2	2	53 4379	1 71324	0.2	-2	2	4
24,5639	3.62114	1.32	-1	0	2	53,5005	1,71139	0.25	0	0	6
25,0952	3,54567	2,36	2	0	0	53,5769	1,70913	0,24	1	2	6
25,1205	3,54215	0,45	2	1	1	53,7854	1,70299	0,51	1	6	0
25,2919	3,51854	2,62	2	0	2	53,9569	1,69798	0,34	2	2	6
26,0012	3,42414	5,08	-1	1	2	54,2597	1,68922	3,26	0	1	6
26,2389	3,39366	1,1	1	1	3	54,5402	1,68119	0,37	4	2	0
26,5055	3,36012	2,75	2	1	0	54,6363	1,67846	0,25	3	0	6
26,6925	3,33701	2,59	2	1	2	54,6809	1,6772	0,32	1	4	5
26,8491	3,3179	1,58	0	3	1	54,6959	1,67678	0,22	-3	1	3
27,3953	3,25298	32,83	0	1	3	54,9222	1,6704	0,29	-1	5	3
28,3709	3,14329	0.28	1	3	1	55,0054	1,00007	0,04	3	5	5
29 1578	3,15055	100	2	2	1	55 2936	1,00041	1 21	0	6	- 2
29,9283	2,98317	1.48	-1	2	2	55,4074	1,65692	0.89	-2	4	3
30,1373	2,96296	0,77	1	2	3	55,8129	1,64584	0,79	2	4	5
30,3724	2,94056	12,47	2	2	0	56,119	1,63758	1,12	-4	1	1
30,4741	2,93098	4,93	-2	1	1	56,2222	1,63482	0,55	4	3	3
30,5375	2,92504	11,75	2	2	2	56,4851	1,62783	1,07	0	5	4
30,8026	2,90046	2,05	2	1	3	56,6741	1,62285	0,72	-2	5	2
30,8585	2,89533	25,02	0	3	2	56,7214	1,62161	0,72	4	1	5
31,1606	2,86796	51,48	0	2	3	56,8201	1,61903	0,73	0	4	5
32,883	2,72155	2,18	1	0	4	57,0272	1,61364	0,07	-1	3	5
33,/33/	2,65484	0,96	-1	1	3	57,1081	1,01	1,97	-2	3	4
33,929	2,04001	0.22	-2	2	4	57,5910	1,59510	0.64	2	2	6
34.057	2,63038	0.65	0	4	0	57,9479	1,59017	0.26	2	6	1
34,2277	2,61765	1,15	2	2	3	58,223	1,58331	1,54	4	3	0
34,9361	2,56618	2,19	0	0	4	58,3075	1,58122	2,27	-4	2	1
34,9419	2,56576	3,51	2	3	1	58,5174	1,57605	0,89	1	6	3
35,1917	2,54812	6,04	0	4	1	58,6157	1,57364	0,19	4	3	4
35,2108	2,54678	1,4	-2	0	2	58,6556	1,57266	0,49	3	5	0
35,5997	2,51985	1,52	-1	3	2	58,6561	1,57265	1,62	2	6	0
35,6439	2,51682	2,76	2	0	4	58,754	1,57026	0,77	2	6	2
35,779	2,50763	0,85	1	3	3	58,8757	1,56731	2,03	3	5	3
35,901	2,49401	2,09	2	3	1	59,1207	1,50125	0,28	-3	4	3
36 0878	2,48687	2 09	3	0	2	59 6802	1 54809	1.58	-2	1	5
36,1232	2,48452	0.49	2	3	2	60.0941	1,53841	0.42	3	4	5
36,2613	2,47537	2,02	-2	1	2	60,1001	1,53827	0,47	0	3	6
36,3971	2,46645	1,43	1	4	0	60,2599	1,53457	1,22	2	1	7
36,4324	2,46414	0,02	1	4	1	60,3118	1,53338	0,04	-1	1	6
36,6616	2,44926	5,15	0	3	3	60,4121	1,53107	0,37	4	4	2
36,9174	2,43288	1,32	-1	2	3	60,6242	1,52622	0,54	1	1	7
37,0127	2,42683	0,24	3	1	1	60,8455	1,5212	0,2	-2	6	1
37,1605	2,41751	2,94	1	2	4	61,0368	1,51689	0,11	2	6	3
38,0192	2,36486	0,94	3	0	0	61,0548	1,51648	0,31	4	4	1
38 58/3	2,34111	0.76	1	4	2	61 1060	1,51423	0,03	1	5	5
39 0045	2,33132	0,70	3	4	2	61 3009	1,51099	0,72	-4	1	2
39.0169	2,30666	1.66	0	2	4	61,5563	1,50533	0.3	-3	5	-
39,087	2,30268	6,19	-2	3	1	61,6496	1,50327	0,12	5	0	2
39,3027	2,29054	4,26	3	1	3	61,8457	1,49898	0,22	-4	3	1
39,3516	2,2878	2,62	2	3	3	61,8741	1,49836	0,29	-2	5	3
39,6619	2,27062	1,01	2	2	4	61,9124	1,49752	0,14	3	5	4
39,97	2,25382	0,72	3	2	1	62,1437	1,4925	0,6	-2	4	4
40,0676	2,24856	1,14	3	2	2	62,2699	1,48978	1,33	1	4	6
41,1757	2,19057	1,11	-1	0	4	62,3441	1,48819	1,81	5	1	2
41,7578	2,16137	0,77	-1	3	3	62,6157	1,48238	0,21	2	4	6 7
41,0429	2,13/1/ 2,15624	0,97	3	<u>ک</u>	1	62 8001	1,40029	0,44	-1	2	2
41 9772	2,10034	0.11	<u>د</u> 1	4	4	63 140	1 47111	0,12	-1	7	0
42 1244	2,1434	0,4	3	2	3	63 1724	1,47065	1.58	1	7	1
42.379	2,13111	0.59	1	1	5	63.5218	1.4634	0.19	4	4	4
42,4027	2,12998	0,31	3	0	4	63,6729	1,46029	0,36	5	1	1
42,4257	2,12888	0,24	-1	4	2	64,0223	1,45316	0,34	5	1	4
42,5805	2,1215	0,22	1	4	3	64,0289	1,45303	0,49	0	1	7
42,7551	2,11323	0,47	2	4	0	64,124	1,4511	0,21	4	2	6
42,8782	2,10745	0,98	2	4	2	64,2513	1,44854	1,13	0	6	4
43,2553	2,08995	0,6	-2	1	3	64,4263	1,44502	0,58	-2	6	2
43,3046	2,08768	0,57	3	1	4	64,5175	1,4432	0,41	0	7	2
43,3455	2,08581	1,59	0	4	3	64,5179	1,44319	0,51	5	2	3

43,6619	2,07143	0,58	0	3	4	64,6306	1,44095	0,02	1	7	2
43,874	2,0619	7,7	0	5	1	64,9221	1,43518	0,4	3	6	1
43,89	2,06119	1,11	-2	3	2	65,3311	1,42718	0,42	-3	4	3
44,2508	2,04521	6,04	2	3	4	65,7079	1,41991	0,08	5	2	1
44,6222	2,02905	0,57	3	3	2	65,7296	1,41949	0,25	5	0	0
44,9115	2,01665	2,19	1	5	1	65,8002	1,41814	0,21	-3	5	2
44,941	2,01539	8	0	1	5	66,0515	1,41335	1,02	5	2	4
45,0423	2,0111	0,44	1	2	5	66,058	1,41323	0,15	0	2	7
45,473	1,99305	3,76	-2	4	1	66,2682	1,40925	0,02	3	6	0
45,4866	1,99248	1,8	-3	2	1	66,4005	1,40677	0,36	5	1	0
45,7072	1,98337	3,9	2	4	3	66,4736	1,4054	0,04	3	6	3
45,8778	1,9764	1,33	-2	2	3	66,6135	1,40279	0,25	-4	4	1
45,925	1,97448	1,14	3	2	4	66,7594	1,40007	0,01	-4	3	2
46,2552	1,96114	1,3	3	3	0	66,9485	1,39658	0,37	2	7	1
46,3422	1,95767	1,25	2	2	5	67,1591	1,39271	0,03	4	4	5
46,5153	1,95079	0,93	3	3	3	67,1915	1,39212	0,03	4	5	1
46,5975	1,94753	0,79	0	5	2	67,3604	1,38904	0,16	-1	7	2
46,738	1,94201	0,7	1	5	2	67,4736	1,38698	0,12	1	7	3
47,3512	1,91828	0,93	-3	0	2	67,6016	1,38466	0,21	2	7	0
47,49	1,91299	0,4	0	2	5	67,6374	1,38402	0,16	-4	1	3
47,8536	1,8993	0,54	-1	4	3	67,6921	1,38303	1,23	2	7	2
48,0508	1,89197	0,67	1	4	4	67,8693	1,37985	0,27	5	3	3
48,1796	1,88721	0,13	-3	1	2	68,0367	1,37687	0,14	0	7	3
48,3164	1,88219	16,65	4	0	2	68,0991	1,37576	0,14	-1	5	5
48,7663	1,86587	0,6	3	1	5	68,2798	1,37255	0,44	-2	0	6
48,9784	1,85829	0,48	-1	3	4	68,3467	1,37137	0,09	1	5	6
49,2274	1,84947	0,6	1	3	5	68,3931	1,37056	0,02	5	2	0
49,5722	1,83741	0,16	0	4	4	68,4469	1,36961	1,06	-1	6	4
49,5765	1,83726	0,16	2	5	1	68,9087	1,36156	0,72	2	0	8
49,7791	1,83025	8,93	-2	4	2	68,9543	1,36077	0,08	5	2	5
50,0533	1,82087	0,79	3	3	4	68,9874	1,36019	0,09	-3	6	1
50,0735	1,82018	8,81	-1	5	2	69,0299	1,35946	0,17	5	3	1
50,3192	1,81187	0,54	-2	0	4	69,1833	1,35682	0,04	4	5	0
50,3635	1,81038	0,27	2	5	0	69,323	1,35443	0,09	3	6	4
50,3636	1,81037	2,85	3	4	1	69,3654	1,3537	0,51	5	3	4
50,445	1,80764	3,55	3	4	2	69,3717	1,35359	0,34	0	3	7
50,6035	1,80235	0,35	-3	2	2	69,5408	1,35072	0,43	4	5	4
50,8606	1,79384	0,49	2	0	6	69,8108	1,34615	0,25	2	7	3
50,8848	1,79305	0,62	0	5	3						

					3CaO+3Al2O3+0	CaF ₂ (C ₃ A ₃ CaF ₂)					
a =17,3146(4)	Å			b =17,3146(4)	Å			c = 6,9946(0) Å			
α = 90°	• 2			β = 90°				γ = 120°			
V = 1816,0(2)	A ³			RG: R3				GoF = 1,29			
Pos. [°20]	d-Wert [A]	Rel. Int. [%]	<u>h</u>	k	1	Pos. [°20]	d-Wert [A]	Rel. Int. [%]	<u>h</u>	k	<u> </u>
5,8803	15,01763	0,41	0	1	0	52,969	1,7273	0,16	1	1	2
11 7852	0,00400 7 50300	2,04	0	2	0	53,2023	1,72027	0,11	4	6	0
12 6365	6 9 9 9 5	0.93	0	2	1	53 715	1,72027	1 35	0	4	3
13 9508	6 34289	0,95	0	1	1	53,713	1,70300	6.05	0	2	4
15 6141	5 67074	0.17	1	2	0	53 8025	1,70249	10.65	1	8	1
15.6141	5.67074	0.17	2	-	0	53.8025	1,70249	10.65	8	1	1
16,2697	5.44366	0.56	1	1	1	54.0892	1,69414	0.17	3	4	3
17,3159	5,11706	0.38	0	2	1	54.0892	1,69414	0.17	4	3	3
17.7218	5.00077	0.96	0	3	0	54.8324	1.67292	12.65	2	5	3
20.1404	4,40536	16.95	1	2	1	54.8324	1,67292	12,65	5	2	3
20,1404	4,40536	16,95	2	1	1	54,8955	1,67115	0,95	1	2	4
20,4923	4,3305	7,25	2	2	0	54,8955	1,67115	0,95	2	1	4
21,8287	4,06831	0,16	0	3	1	54,9188	1,6705	2,26	4	6	1
24,1508	3,68213	0,19	2	2	1	54,9188	1,6705	2,26	6	4	1
24,8794	3,57593	25,44	1	3	1	55,068	1,66632	1,22	0	9	0
24,8794	3,57593	25,44	3	1	1	55,2092	1,66239	0,28	3	6	2
26,1343	3,40701	22,58	0	1	2	55,2092	1,66239	0,28	6	3	2
26,9546	3,30516	8,46	0	4	1	55,5766	1,65227	3,04	0	8	2
27,2229	3,27318	2,96	1	4	0	55,6315	1,65077	0,59	0	3	4
27,2229	3,27318	2,96	4	1	0	56,0199	1,64024	1,48	3	7	1
28,1233	3,1704	45,19	0	2	2	56,0199	1,64024	1,48	7	3	1
28,8914	3,08783	87	2	3	1	56,299	1,63277	0,05	1	6	3
28,8914	3,08783	87	3	2	1	56,299	1,63277	0,05	6	1	3
29,7582	2,99983	0,01	0	5	0	56,6693	1,62298	1,27	2	7	2
29,9908	2,97709	6,82	1	2	2	56,6693	1,62298	1,27	7	2	2
29,9908	2,97709	6,82	2	1	2	57,0844	1,61216	7,61	1	3	4
30,1192	2,9647	0,45	1	4	1	57,0844	1,61216	7,61	3	1	4
30,1192	2,9647	0,45	4	1	1	57,8244	1,59328	0,02	2	8	1
30,9547	2,88656	100	3	3	0	57,8244	1,59328	0,02	8	2	1
31,1792	2,86628	0,31	0	3	2	58,0978	1,58643	5,33	4	4	3
31,5376	2,83453	0,39	2	4	0	58,1585	1,58491	2,48	0	4	4
31,5376	2,83453	0,39	4	2	0	58,4533	1,57762	0,16	0	7	3
32,4482	2,75702	9,37	0	5	1	58,4533	1,57762	0,16	3	5	3
33,4419	2,67734	65,43	1	3	2	58,4533	1,57762	0,16	5	3	3
33,4419	2,67734	65,43	3	1	2	58,8148	1,56878	0,63	1	8	2
33,5584	2,66831	1,84	3	3	1	58,8148	1,56878	0,63	8	1	2
34,1014	2,62705	15,14	2	4	1	59,2204	1,55901	1,84	2	3	4
34,1014	2,62705	15,14	4	2	1	59,2204	1,55901	1,84	3	2	4
35,0537	2,55784	23,7	0	4	2	59,3846	1,55509	9,58	4		0
35,687	2,51388	7,06	1	5	1	59,3846	1,55509	9,58	/	4	0
35,687	2,51388	7,06	5	1	1	59,5118	1,55206	0,02	2	6	3
35,896	2,49972	14,04	0	6	0	59,5118	1,55206	0,02	6	2	3
36,6033	2,45303	4,48	2	3	2	59,5192	1,55189	0,29	5	5	2
30,0033	2,45505	4,40	3	2	2	59,0094	1,54305	4,71	4	6	2
37,4153	2,40163	0,49	2	2	0	59,0094	1,54305	4,71	1	4	2
37,4155	2,40103	0,49	5	2	0	60,2925	1,0002	3,55	5	9	1
37,0050	2,30332	0,00	1		2	60 2925	1,53382	3,55	6	5	1
38 2024	2,35304	0.07	0	6	1	60,2025	1,53382	3 55	9	1	1
38 5756	2,33394	5.83	0	0	3	60 9129	1,53362	3,07	3	7	2
38 6887	2,32547	2 25	3	4	1	60,9129	1,51968	3.07	7	3	2
38 6887	2 32547	2,25	4	3	1	61 2511	1,51209	5 46	1	7	3
39.0579	2.30433	0.21	0	1	3	61.2511	1.51209	5.46	7	1	3
39,5453	2.27705	6.88	0	5	2	61.3099	1.51078	0.49	0	5	4
40.008	2.25177	13.22	1	1	3	61.6026	1.50431	0.2	0	9	2
40,9493	2.20216	6.6	2	4	2	61.8144	1,49966	0.1	0	10	0
40,9493	2,20216	6,6	4	2	2	62,3391	1,48829	0,48	2	4	4
41,5056	2,17392	0,54	1	6	1	62,3391	1,48829	0,48	4	2	4
41,5056	2,17392	0,54	6	1	1	62,3605	1,48783	0,36	3	8	1
41,6897	2,16474	5,39	4	4	0	62,3605	1,48783	0,36	8	3	1
42,3147	2,1342	24,04	1	5	2	62,6218	1,48225	0,01	4	5	3
42,3147	2,1342	24,04	5	1	2	62,6218	1,48225	0,01	5	4	3
42,7526	2,11335	51	0	3	3	62,629	1,4821	0,02	2	8	2
43,4771	2,0798	0,15	2	6	0	62,629	1,4821	0,02	8	2	2
43,4771	2,0798	0,15	6	2	0	62,8388	1,47765	0,03	2	9	0
44,0725	2,05307	4,81	2	2	3	62,8388	1,47765	0,03	9	2	0
44,1739	2,04859	8,63	0	7	1	63,3008	1,46798	5,02	3	6	3
44,1739	2,04859	8,63	3	5	1	63,3008	1,46798	5,02	6	3	3
44,1739	2,04859	8,63	5	3	1	63,3586	1,46678	3,89	1	5	4
44,5055	2,0341	0,04	1	3	3	63,3586	1,46678	3,89	5	1	4
44,5055	2,0341	0,04	3	1	3	63,3799	1,46634	1,38	0	10	1
44,5146	2,03371	0,51	0	6	2	63,6388	1,46099	0,3	0	8	3
44,9442	2,01526	1,86	3	4	2	64,3902	1,44575	2,56	2	9	1
44,9442	2,01026	1,00	4	3	4	64,3902	1,445/5	2,00	9	2	1
45,4609	1,99355	7,02	2	6	1	64,0207	1,44304	0,13	0 4	a	0
45,4609	1,99355	7,02	6	2	1	04,9881	1,43388	2,27	1	9	2
45,6321	1,98646	33,2	1 7	1	U	04,9881	1,43388	2,27	5	6	2
45,0321	1,98646	33,2	1	1	U	64,9881	1,43388	2,21	a a	C ₄	2
40,1001	1,90010	0.2	0	4	3	65 274 2	1,43388	Z,Z/ 1 00	3	1	<u>ک</u>
45 701	1 97082	0,2	<u>د</u> 5	5	2	65 3712	1 4264	4,50	4	7	-+ 4
47 0375	1 02022	0,2	5	2	2	65 5264	1 1001	+,50 8 8 8	1	10	4 0
47 0375	1,00000	0,49	∠ ૨	2	3	65 5264	1 4234	8 88	10	1	0
47 458	1 91421	10 99	1	6	2	65 6537	1 42005	0.32	4	7	2
47 458	1,91421	10,99	6	1	2	65 6537	1,42095	0.32	7	4	2
47.8585	1,89912	16.79	1	4	3	66.0347	1,41367	0.03	2	5	4
47.8585	1,89912	16.79	4	1	3	66.0347	1,41367	0.03	5	2	4
,	, <u>-</u>	-, -		-	-	1	,	.,.=	-	-	

48,118	1,88948	2	3	6	0	66,386	1,40704	0,25	5	7	1
48,118	1,88948	2	6	3	0	66,386	1,40704	0,25	7	5	1
48,5228	1,87466	0,31	0	8	0	66,9746	1,3961	2,43	3	8	2
49,1637	1,85171	3,46	4	5	1	66,9746	1,3961	2,43	8	3	2
49,1637	1,85171	3,46	5	4	1	67,0444	1,39481	0,12	1	10	1
49,8743	1,82698	16,48	0	7	2	67,0444	1,39481	0,12	10	1	1
49,8743	1,82698	16,48	3	5	2	67,2959	1,39021	5,86	5	5	3
49,8743	1,82698	16,48	5	3	2	67,3724	1,38882	0,42	4	8	1
49,9583	1,82411	0,26	3	6	1	67,3724	1,38882	0,42	8	4	1
49,9583	1,82411	0,26	6	3	1	67,5048	1,38642	1,13	3	9	0
50,2604	1,81385	13,56	3	3	3	67,5048	1,38642	1,13	9	3	0
50,3521	1,81076	8,76	0	8	1	67,6233	1,38427	0,12	4	6	3
50,6525	1,80072	0,24	2	4	3	67,6233	1,38427	0,12	6	4	3
50,6525	1,80072	0,24	4	2	3	67,7975	1,38114	0	1	1	5
51,0506	1,78761	1,11	2	6	2	67,9568	1,37829	0,85	0	10	2
51,0506	1,78761	1,11	6	2	2	68,1237	1,37532	5,07	0	2	5
51,5205	1,77241	2,5	2	7	1	68,9322	1,36115	1,08	2	9	2
51,5205	1,77241	2,5	7	2	1	68,9322	1,36115	1,08	9	2	2
51,8159	1,76299	0,22	1	5	3	69,098	1,35829	0,7	1	2	5
51,8159	1,76299	0,22	5	1	3	69,098	1,35829	0,7	2	1	5
52,0608	1,75527	0,32	1	8	0	69,2491	1,35569	2,51	0	9	3
52,0608	1,75527	0,32	8	1	0	69,3043	1,35475	3,73	0	7	4
52,2649	1,7489	0,26	0	0	4	69,3043	1,35475	3,73	3	5	4
52,6463	1,73713	1,08	0	1	4	69,3043	1,35475	3,73	5	3	4
52,8237	1,73171	0,88	5	5	0	69,744	1,34728	0,07	0	3	5
52,969	1,7273	0,16	1	7	2						

				3	CaO+3Al ₂ O ₃ +C	CaSO ₄ (C ₃ A ₃ Cs)					
a = 13,0256(6)	Å			b = 13,0350(8)	Å			c = 9,1641(7) Å			
$\alpha = 90^{\circ}$	13			β = 90°				γ = 90°			
V = 1555,9(9) A	A ⁻	Pol Int [9/]	h	RG: Pcc2		Doc [°20]	d-Wort [Å]	GOF = 1,54	h	k	
6 7729	13 0404	3 25	<u>n</u>	<u> </u>	0	53 1775	1 72102	0.59	<u>n</u>	<u> </u>	4
6,7778	13.03097	0.86	1	0	0	53.184	1,72082	0.33	3	4	4
9,5885	9,21651	1,59	1	1	0	53,1891	1,72067	0,15	4	3	4
13,5724	6,51886	1,46	0	2	0	53,5264	1,71062	0,09	7	3	0
13,5823	6,51414	1,02	2	0	0	53,6765	1,70619	0,21	1	5	4
13,6144	6,49885	0,33	1	1	1	54,1021	1,69377	0,11	4	5	3
15,1859	5,82967	0,94	1	2	0	54,1086	1,69358	0,1	5	4	3
15,1925	2,02714	0,00	2	2	1	54,4964	1,00230	0,34	3 7	3	1
18.0249	4,91737	2.03	2	1	1	54,5376	1,68127	0,77	4	6	2
19,2479	4,60758	1,76	2	2	0	54,5518	1,68086	1,31	6	4	2
19,3533	4,58273	0,3	0	0	2	54,7661	1,67479	0,74	1	3	5
20,4203	4,3456	0,9	0	3	0	54,7717	1,67463	0,7	3	1	5
20,4353	4,34246	0,52	3	0	0	54,9884	1,66855	0,37	5	6	0
20,5265	4,32336	1,75	0	1	2	54,9962	1,66833	0,17	6	5	0
20,5282	4,32301	1,54	1	0	2	55,0189	1,66769	0,66	2	/	2
21,5395	4,12227	0,3	1	3	2	55,0507	1,0000	1,03	5	2	2
23.6468	3.75947	76.43	1	3	1	55.9711	1,64156	0.23	5	6	1
23,6583	3,75766	100	3	1	1	55,9788	1,64135	0,11	6	5	1
23,7147	3,74886	10,84	0	2	2	56,0495	1,63945	0,18	3	6	3
24,6072	3,61487	0,05	2	3	0	56,0684	1,63894	0,62	6	3	3
24,6921	3,60263	0,3	1	2	2	56,225	1,63475	0,59	2	3	5
24,6963	3,60203	0,68	2	1	2	56,2285	1,63465	0,67	3	2	5
26,4846	3,36273	0,48	2	3	1	56,424	1,62945	1,45	0	8	0
27,3429	3,25909	6.25	4	4	0	56 6133	1,02027	4,00	4	4	4
27,4287	3.24909	8.07	2	2	2	56,9037	1,61685	0.03	1	8	0
28,2029	3,16163	0,94	1	4	0	56,9141	1,61658	0,01	4	7	0
28,2213	3,15962	0,71	4	1	0	56,9472	1,61572	0,14	8	1	0
28,2802	3,15317	1,96	0	3	2	57,4572	1,60258	0,53	7	3	2
28,2912	3,15197	1,2	3	0	2	57,5618	1,59992	0,15	3	5	4
29,1147	3,06466	0,01	1	3	2	57,8649	1,59226	0,12	1	8	1
29,1242	3,06368	0,15	3	1	2	57,8752	1,592	0,27	4	1	1
29,0709	2,90070	1,03	1	4	1	57 908	1,59145	0,32	8	4	1
30.6499	2,91456	3.34	2	4	0	58,138	1,58543	0.87	4	1	5
30,6636	2,91329	3,95	4	2	0	58,3274	1,58073	1,13	2	8	0
30,6738	2,91234	4,64	3	3	1	58,3682	1,57972	1,82	8	2	0
30,8101	2,89977	2,85	1	1	3	58,4235	1,57836	1,66	1	7	3
31,4972	2,83807	1,97	2	3	2	58,4398	1,57795	2,05	5	5	3
31,5027	2,83758	1,24	3	2	2	58,4561	1,57755	1,71	7	1	3
32,2027	2,77748	0,3	2	4	1	58,5236	1,5759	1,13	6	0	4
32,2157	2,77639	0,28	4	2	3	58 854	1,57394	0.16	5	6	5
33.0823	2,70562	0.38	2	- 1	3	58.8615	1,56765	0.03	6	5	2
33,7206	2,65585	46,78	0	4	2	58,9679	1,56508	0,6	1	6	4
33,7373	2,65457	3,8	4	0	2	58,9916	1,5645	0,27	6	1	4
34,369	2,60721	0,19	0	5	0	59,2739	1,55773	0,47	2	8	1
34,3782	2,60653	0,14	3	4	0	59,3684	1,55547	0,08	4	6	3
34,3854	2,606	0,12	4	3	0	59,3818	1,55515	0,07	6	4	3
34,3946	2,60533	0,12	5	4	2	59,5326	1,55157	0,24	2	4	3
34.4511	2,60118	0,81	4	1	2	59.8544	1,544	0.54	7	2	3
35,0725	2,55651	0,38	1	5	0	60,2112	1,5357	0,93	6	6	0
35,0967	2,5548	0,41	5	1	0	60,2299	1,53527	1,1	0	8	2
35,2207	2,54609	0,52	2	2	3	60,2726	1,53428	1,68	8	0	2
35,7868	2,5071	1,92	3	4	1	60,3609	1,53225	0,74	2	6	4
35,7937	2,50663	1,1	4	3	1	60,3822	1,53176	2,97	6	2	4
36,4577	2,46249	1,23	5	5	1	60,5718	1,52742	0,58	3	8	0
36,5075	2,45924	3,16	2	4	2	60,6898	1,52473	0,13	8	3	0
36,5192	2,45848	2,54	4	2	2	60,6906	1,52471	0,11	1	8	2
36,5826	2,45437	3,24	1	3	3	60,7005	1,52448	0,16	4	7	2
36,5903	2,45387	1,65	3	1	3	60,7224	1,52399	0,73	7	4	2
37,1133	2,42048	0,89	2	5	0	60,7324	1,52376	1,14	8	1	2
37,1335	2,41921	1,4	5	2	0	60,8282	1,52159	0,25	4	5	4
38,435	2,34023	0,35	2	5	1	61,0302	1,52145	0,01	5	4	4
38,5544	2,33326	0.08	2	3	3	61.0308	1,51702	0.31	1	0	6
38,559	2,33299	0,16	3	2	3	61,1378	1,51463	0,03	7	5	0
39,0706	2,30361	6,85	4	4	0	61,1398	1,51458	0,19	6	6	1
39,2911	2,29119	3,36	0	0	4	61,4872	1,50685	0,14	1	1	6
39,7448	2,26607	0,61	0	5	2	61,5779	1,50485	0,03	3	8	1
39,753	2,26563	1,05	3	4	2	61,8311	1,4993	0,39	3	4	5
39,1593	2,26528	1,28	4	3	2	62 0424	1,4992	0,25	4	3	5
39,1015	2,20484	1,00	0	1	2 4	62 0582	1,49409	0,30	5	5	1
39.9197	2,25655	1.07	1	0	4	62.0602	1,49431	0.81	2	8	2
40,3173	2,23521	0,32	3	5	0	62,0996	1,49346	1,95	8	2	2
40,3316	2,23445	0,12	5	3	0	62,1161	1,4931	2,45	3	7	3
40,3379	2,23411	0,02	4	4	1	62,1423	1,49253	2,99	7	3	3
40,5393	2,22348	0,01	1	1	4	62,2788	1,48959	3,45	1	5	5
41,0522	2,19687	1,93	1	4	3	62,2945	1,48925	0,77	5	1	5
41,0655	2,1962	0,59	4	1	3	0∠,3935 62.20€4	1,48713	0,26	U	2	6
41 5625	2,17107	11 53	6	0	0	62 6411	1,48184	0.02	2	6	4
41,5669	2,17085	13,83	5	3	1	62,6587	1,48147	0,36	6	3	4
41,6648	2,16598	18,97	3	3	3	62,8448	1,47753	0,14	1	2	6

41,7547	2,16152	4,78	0	2	4	62,8468	1,47749	0,24	2	1	6
41,7582	2,16135	1,21	2	0	4	63,4763	1,46434	0,22	5	6	3
42,1899	2,14023	0,38	2	5	2	63,4834	1,46419	0,55	6	5	3
42,208	2,13935	1,22	5	2	2	63,6287	1,4612	0,29	2	5	5
42,353	2,13236	1,65	1	2	4	63,6423	1,46092	0,37	5	2	5
42,3555	2,13224	0.57	2	2	4	64 2585	1,4572	0,21	4	0	0
43.3547	2,08539	0.16	6	1	1	64.3409	1,44673	0.46	8	3	2
43,8943	2,06099	0.12	2	6	0	64,4234	1,44508	0.13	0	7	4
43,921	2,0598	0,31	6	2	0	64,6292	1,44098	0,24	0	3	6
43,9579	2,05816	0,71	4	4	2	64,6349	1,44086	0	3	0	6
44,1082	2,05149	0,05	2	2	4	64,7591	1,4384	0,06	5	7	2
44,4784	2,03527	1,54	4	5	0	64,7744	1,4381	0,15	7	5	2
44,4858	2,03495	1,39	5	4	0	64,8669	1,43627	0,03	1	7	4
44,6769	2,02669	0,58	0	3	4	64,8822	1,43597	0	5	5	4
44,6843	2,02637	0,82	3	0	4	64,8976	1,43566	0,09	1	1	4
45,05	2,01077	0,05	2	5	1	65.0710	1,43420	0,15	4	4	5
45,1005	2,00030	0,34	3	1	2	65 2365	1,43224	0 09	1	8	3
45.6224	1.98687	1.03	4	5	1	65,2461	1,42884	0,00	4	7	3
45,6297	1,98657	1,66	5	4	1	65,2671	1,42843	0,16	7	4	3
45,7262	1,98259	0,32	4	3	3	65,2767	1,42824	0,1	8	1	3
46,2053	1,96315	0,44	0	6	2	65,6457	1,4211	0,33	9	1	1
46,2342	1,96199	0,83	6	0	2	65,77	1,41872	0,34	6	4	4
46,2704	1,96053	1,33	1	5	3	65,8445	1,41729	0,48	3	5	5
46,2897	1,95976	0,53	5	1	3	66,0456	1,41346	0,16	6	7	0
46,7133	1,94297	0,27	3	6	0	66,0538	1,41331	0,23	7	6	0
46,7348	1,94213	0,32	6	3	0	66,0741	1,41292	0,1	9	2	0
46,9132	1,93516	0,68	2	3	4	66 2007	1,41023	0,42	2	2	4
40,9171	1,93301	0,57	3	6	4	66 3938	1,40095	0,34	2	2	6
47,9283	1,89652	0.7	5	2	3	66.5536	1,4039	0.05	2	8	3
48.3867	1.87961	0.72	2	6	2	66,9083	1.39732	0.04	2	9	1
48,4115	1,87871	2,69	6	2	2	66,9568	1,39642	0,15	9	2	1
48,5326	1,87431	1,09	0	4	4	67,1486	1,3929	0,19	1	6	5
48,5449	1,87386	0,42	4	0	4	67,1706	1,3925	0,35	6	1	5
48,8674	1,86225	0,09	0	7	0	67,3804	1,38867	0,87	4	8	2
48,9051	1,8609	0,09	7	0	0	67,4105	1,38812	6,78	8	4	2
48,929	1,86004	0,63	4	5	2	67,692	1,38304	1,84	0	4	6
48,9359	1,8598	0,87	5	4	2	67,8032	1,38104	0,44	0	9	2
49,0652	1,8552	1,09	1	4	4	67,8031	1,38104	0,02	8	5	0
49,0767	1,00479	0,65	4	1	4	68 1245	1,30013	0,15	9	0	2
49,5187	1,83926	0.3	4	4	3	68 1338	1,37514	0,75	4		6
49,5988	1,83648	0.05	3	3	4	68,2354	1.37334	0.05	1	9	2
50,4546	1,80732	0,16	4	6	0	68,2453	1,37316	0,1	9	3	0
50,4553	1,8073	0,32	1	7	1	68,2853	1,37246	0,19	9	1	2
50,4696	1,80682	1,02	6	4	0	68,56	1,36763	0,09	3	3	6
50,4734	1,80669	1,24	5	5	1	68,7204	1,36482	0,21	3	8	3
50,4914	1,80609	1,45	7	1	1	68,7546	1,36423	0,12	8	3	3
50,5576	1,80388	1,03	3	5	3	68,8842	1,36198	0,18	4	5	5
50,5696	1,80348	2,09	5	3	3	68,8898	1,36188	0,05	5	4	5
50,638	1,8012	1,1	2	4	4	69,0697	1,35877	0,61	3	9	1
50,9962	1,78939	0.05	7	2	0	69 1592	1 35723	0.77	5	7	3
51.0142	1.7888	0.49	3	6	2	69,1741	1,35698	1.27	7	5	3
51,0343	1,78814	1,11	6	3	2	69,4143	1,35287	0,72	2	4	6
51,5115	1,77269	0,2	6	4	1	69,4217	1,35274	0,77	4	2	6
52,0305	1,75623	0,17	7	2	1	69,5242	1,351	0,21	2	9	2
52,0895	1,75438	0,05	1	6	3	69,544	1,35066	0,12	6	7	2
52,1152	1,75357	0,51	6	1	3	69,5521	1,35053	0,16	7	6	2
52,2776	1,74851	0,38	1	2	5	69,5718	1,35019	0,37	9	2	2
52,2798	1,74844	0,5	2	1	5	69,6561	1,34876	0,11	5	6	4
53,0382	1,72521	0,06	0	7	2	69,6629	1,34865	0,03	6	5	4
530/3/	1./2414	0.37	(0	2	1					

12.3. Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die Arbeit selbstständig und ohne fremde Hilfe verfasst, keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Datum

Unterschrift

12.4. Lebenslauf

Persönliche Daten

Vor- und Zuname	Sabrina Galluccio
Geburtsdatum	08.03.1990
Geburtsort	Wolfsburg
Staatsbürgerschaft	deutsch
Familienstand	ledig

Schulausbildung

1996 – 2000	Eichendorff Grundschule, Wolfsburg
2000 - 2002	Eichendorffschule, Wolfsburg
2002 - 2009	Theodor-Heuss-Gymnasium, Wolfsburg

Hochschulstudium

2009 – 2012	Bachelorstudium der Angewandten Geowissenschaften an der
	Martin-Luther-Universität Halle-Wittenberg
2012 – 2015	Masterstudium der Angewandten Geowissenschaften an der
	Martin-Luther-Universität Halle-Wittenberg
2015 – 2019	Promotionsstudium an der Martin-Luther-Universität Halle-
	Wittenberg, Institut für Geowissenschaften und Geographie,
	Arbeitsgruppe Mineralogie/ Geochemie

Berufliche Tätigkeit

2015 – 2019 Wissenschaftliche Mitarbeiterin, Arbeitsgruppe Mineralogie/Geochemie an der Martin-Luther-Universität Halle-Wittenberg

Halle (Saale),

Sabrina Galluccio