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The human metabolic profile 
reflects macro- and micronutrient 
intake distinctly according to 
fasting time
A. Sedlmeier1,2, A. Kluttig1, I. Giegling3, C. Prehn  4, J. Adamski  4,5,6, G. Kastenmüller6,7,8 & 
M. E. Lacruz1

Although the impact of dietary patterns on human serum metabolites has been examined, the fasting 
effect on the metabolic profile has not yet been considered. The aim of this cross-sectional study is to 
investigate the influence of fasting regarding the association between dietary patterns, reflected by 
macro- and micronutrient intake, and human serum metabolites in a population-based cohort. A total 
1197 non-diabetic German adults aged 45 to 83 years, who participated in baseline of the CARLA study 
2002–2006 and had metabolite quantification were selected for this study. Macro- and micronutrient 
intakes were estimated from a food frequency questionnaire (FFQ). Concentrations of 134 serum 
metabolites were measured by targeted metabolomics AbsoluteIDQ p150 Kit. The association of 
dietary patterns with serum metabolites was calculated by means of linear regression and the influence 
of the fasting status was considered by including interaction terms with each macro- and micronutrient. 
Higher self-reported intake of alcohol and lower self-reported intake of organic acids were associated 
with higher concentrations of acylcarnitines and phosphatidylcholines. Mainly the associations 
between dietary patterns and acylcarnitines and hexose were altered after including interaction terms, 
suggesting effect modification by fasting status. No effect from fasting time was seen for amino acids 
and saturated, mono- and polyunsaturated phosphatidylcholines.

Human health is a complex interaction of genetic predisposition and environmental factors1. Nutrition is a mod-
ifiable risk factor for chronic disease2 and one of the most influential environmental factors over the life course3. 
Dietary patterns of individual foods, recorded in a food frequency questionnaire, are an effective approach to 
examining the relationship between diet and the risk of chronic diseases4. The analysis of dietary patterns consid-
ers the effects of overall diet and has a broader representation of nutrient consumption. Thus, it has been found 
that specific dietary patterns, more than individual foods, are predictors of morbidity5 and mortality.

Metabolomics is the study of small molecules (metabolites) of an organism at a given time point6,7. Those 
metabolites reflect not only genetic components but also the influence of environmental factors (i.e. drugs, toxins, 
micro biotic activity of the gut or nutrition)8.

Several epidemiological studies have used a metabolomics approach to investigate the effect of nutrition 
on the metabolic state. A study with data from the EPIC (European Prospective Investigation into Cancer and 
Nutrition) cohort with 2380 participants investigated the association of food groups assessed by a food frequency 
questionnaire (FFQ) and the metabolic profile9. They reported that nutrition has only a subordinated role on 
the metabolite profile variation. The TwinsUK-study examined also the association between dietary patterns, 
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determined by factor analysis and metabolic profile10. They found that especially coffee, fruit and vegetable con-
sumption were associated with concentrations of acylcarnitines, glycerophospholipids and sphingomyelins. 
Finally a study with data from the KORA (Cooperative Health Research in the Augsburg Region) cohort inves-
tigated how self-reported consumptions of different food groups (18 items) were related to concentrations of 
metabolites in blood11. A clear association was found between self-reported nutrition habits and differences in 
human metabolic profiles and concluded mainly concentrations of subgroups of phosphatidylcholines reflected 
the self-reported nutritional intake.

While some studies showed an effect of dietary patterns on serum metabolites10,11, others reported a lack of 
association9, leading to contradictory results. This contradiction can be partially due to differences in the concep-
tualization of nutrition, but also in the statistical analysis. Furthermore, those previous studies did not consider 
the impact of the fasting status on the metabolic profile. Thus, the objective of the present study is to investigate 
whether there is an association between dietary patterns, represented by macro- and micronutrient intake, and 
serum metabolites in participants of the CARLA-cohort. Furthermore the moderator effect of fasting status will 
be examined, because the postprandial status can greatly influence concentrations of metabolites in blood12.

Methods
Study population. The CARLA-Study is a population-based cohort in an elderly population of the city of 
Halle/Saale in eastern Germany. Study design and methods were described in detail elsewhere13,14. In brief, sub-
jects were recruited randomly from the population registry in a multi-stage process. At baseline, 1779 subjects 
(46% women) aged 45 to 83 years were examined between July 2002 and January 2006 with a response rate of 
64%. The current analysis included a total of 1197 participants, who were free of diabetes mellitus (defined by 
self-report and/or medication), had metabolite measurements and completed a food frequency questionnaire 
(Fig. 1). The CARLA study was carried out in accordance with the declaration of Helsinki. All participants gave 
their written informed consent. The study was approved by the local ethics commission of the Medical Faculty of 
the Martin-Luther-University Halle-Wittenberg.

Metabolomics measurements. For this study, blood serum samples of the study participants were ana-
lysed using a targeted metabolomics approach. Blood collections were spread throughout the day 8 am to 8 pm; 
approximately 40% of the samples were collected between 8 and 12 am; and 45% between 1 and 4 pm. Blood sam-
ples were taken after a supine rest of 30 minutes. After a 10-min centrifugation (20 °C, 1500 RPM), the serum was 
collected and after a clotting time of 30 minutes, deep frozen to −80 °C on the same day and stored until analysis 
of the metabolites.

Metabolite quantification was performed in the Genome Analysis Center at the Helmholtz Zentrum 
München. Out of 10 µL blood serum we quantified simultaneously a panel of 163 metabolites that included free 
carnitine, 40 acylcarnitines (acylC), 14 amino acids (AA), hexoses (sum of hexoses), 92 glycerophospholipids 
(15 lyso-phosphatidylcholines (lysoPC) and 77 phosphatidylcholines (PC)), and 15 sphingomyelins (SM) using 
flow injection analysis-tandem mass spectrometry (FIA-MS/MS) and the AbsoluteIDQ p150 Kit (Biocrates 
Life Sciences AG, Innsbruck, Austria). The assay was performed on a double-filter 96 well plate containing 
isotope-labelled internal standards which were taken as reference for metabolite quantification. The procedures 
for sample preparation and mass spectrometric measurements as well as the metabolite nomenclature have been 
described in detail previously15. The method has been successfully applied in multiple academic and industrial 
settings. For a full-list of all quality-controlled metabolites, see Supplementary Table 1. Two metabolites (lys-
oPC a C6:0 and PC ae C38:1) were excluded as the number of missing values within lab analysis exceeded 5% 
(values = 0). The remaining missing values (1‰ of all values) were imputed using the SAS procedure MI with 
the MCMC (Markov chain Monte Carlo) method. Imputations were done with minimum and maximum val-
ues defined from the CARLA population and every single imputation was plausibility checked. Additionally, 27 
(13 acylC, 9 PC and 5 SM) further metabolites were excluded from the analysis as their experimental variation 
assessed through the coefficient of variation (CV) of 173 measured aliquots of a reference plasma sample (5 on 
each plate) exceeded 25%. Since blood samples were analysed on thirty-five plates (batches), a so-called batch 
variable was included in analyses as a random factor in order to avoid possible effects due to technical issues or 
different time points of analyses. No outliers, defined as greater than mean ± 5 standard deviations of the particu-
lar metabolite over the whole population, were found16.

Figure 1. Flow chart of the study population.
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To account for differences in chemical structures and physiological function, we created 11 
metabolite-subgroups: amino acids were divided in essential or indispensable (Phe, Val, Thr, Trp, Met, xLeu, His) 
and non-essential or dispensable (Arg, Gln, Gly, Orn, Pro, Ser, Tyr). Acylcarnitines were allocated to short- (C2 to 
C5), medium- (C8 to C10) or long-chain (C12 to C18) groups. Phosphatidylcholines were separated in saturated 
PC (PC only with single bonds), monounsaturated (PC with a double bond) or polyunsaturated (PC with two or 
more double bonds). Sphingolipids, lysoPC and Hexose were considered each as a separate group.

Dietary pattern. The examinations at baseline investigations included a standardized computer-assisted per-
sonal interview, self-administered questionnaires, a medical examination by trained personnel, and drawing of a 
venous blood sample. The standardized, computer-assisted interview collected information on socio-economic 
status and life-style variables. Dietary patterns were determined based on the self-administered food frequency 
questionnaire (FFQ) of the EPIC-cohort17–20. Participants were asked how often (on average) they ate during the 
last year the following 148 food items (e.g. whole meal products, vegetables, chocolate, and meat). The answers 
could be ranked according to 10 categories. Habitual self-reported macronutrient intake data were derived from 
the validated self- or interviewer-administered country-specific FFQ or dietary histories taken at baseline, with 
nutrient composition derived from the EPIC Nutrient DataBase21. Nutrients were categorised into the following 
seven macro- and micronutrient groups (grams per day): alcohol, dietary fiber, protein, fats, carbohydrates, min-
eral nutrients and organic acids. Macro- and micronutrient groups were log-transformed and standardised to 
allow comparison among groups18.

Statistical analysis. The statistical analysis system SAS version 9.4 (SAS Institute Inc.; Cary, NC) was used 
for the statistical analysis. Metabolite groups, alcohol and organic acids were log-transformed since in most cases 
the log-transformed concentrations were closer to a normal distribution than the untransformed values and 
normalized to unit standard deviation.

The association of the 7 macro- and micronutrients with the 11 metabolite subgroups (indispensable and dispen-
sable amino acids; short-, medium- and long-chain acylcarnitines; saturated, monounsaturated and polyunsaturated 
PC; sphingolipids, lysoPC and hexose) was calculated by means of linear regression. We identified minimally suffi-
cient adjustment sets using directed acyclic graphs (DAG) that represent the relations among the exposure, outcome, 
and other variables22. The minimally sufficient adjustment set for the total effect in the association of dietary patterns 
on metabolites included sex, age, BMI, smoked pack-cigarettes per year and physical activity.

To examine whether the fasting time influences the association between dietary patterns and metabolite patterns, 
interaction analyses (macro- and micronutrient*fasting time) were performed with p-values < 0.1 as a cut-off.

Results
Table 1 shows the main characteristics of the study population. Only apparently metabolically healthy partici-
pants were considered for this study (n = 169 participants with self-reported diabetes or intake of antidiabetic 
medication were excluded). Thus, the study population comprises 1197 participants, 659 men with a median age 
of 63 years and 538 women with a median age of 62 years. The mean fasting time was 200 minutes. The mean (SD) 
concentrations of individual serum metabolites of the population are presented in Supplementary Table 1 and the 
mean intake of the 7 macro-and micronutrients is presented in Supplementary Table 2.

Beta-estimators for serum metabolite levels from Generalized Linear Models are shown in Table 2. All 
analyses were adjusted for sex, age, BMI, smoked pack-cigarettes per year and physical activity. None of the 
beta-estimators of macro- and micronutrients for dispensable amino acids, hexose and sphingomyelins were 
significant. Dietary intake of organic acids was inversely associated with all types of acylcarnitines and with all 
groups of phosphatidylcholines. The estimators ranged from −0.14 to −0.08. Alcohol intake was positively asso-
ciated with saturated, mono- and polyunsaturated phosphatidylcholines. For each of these three beta-estimators 
the p-values were statistically significant, even after correcting for multiple testing with Bonferroni. Alcohol also 
showed associations with short- and long-chain acylcarnitines and with lyso-phosphatidylcholines. The macro-
nutrient carbohydrate was correlated with medium- and long-chain acylcarnitines with beta-estimators of 0.12. 
Carbohydrates, as well as fats, were inversely associated with indispensable amino acids.

Inclusion of interaction terms (multiplicative scale) between macro- and micronutrients and fasting status 
altered the results in part, suggesting effect modification by fasting status (Table 3). For all types of acylcarni-
tines, hexose, sphingomyelins and lyso-phosphatidylcholines at least one interaction term was significant. The 
greatest influence of fasting time before blood sampling was seen for acylcarnitines. In the subgroup of acyl-
carnitines, each beta-estimator for fasting status was highly significant and the interaction terms protein*ft and 
mineral nutrients*ft for medium-chain acylcarnitines and dietary fiber*ft for long-chain acylcarnitines showed 
also significant p-values at a significance level of p < 0.1. Dietary fiber and protein showed a positive association 
with hexose and carbohydrates were negatively correlated. These associations were altered, when considering the 
corresponding interaction terms and changed the directions of the relationship. Fasting status also influenced 
concentrations of sphingomyelins and lyso-phosphatidylcholines. Especially the effect of protein intake on sphin-
gomyelins was affected by fasting time. Fasting time showed no relevant effect modification on the metabolite 
subgroups amino acids and saturated, mono- and polyunsaturated phosphatidylcholines.

Figure 2 compares the adjusted R2 for models without and with including interaction terms for fasting time. 
The results showed only marginal changes with the highest increase in the proportion of explained variation for 
acylcarnitines, reflecting the influence of fasting time.
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Discussion
In a cross-sectional cohort study with 1197 middle-aged participants, we showed that self-reported macro- and 
micronutrients were associated with metabolite groups but had a very low prediction level. In the multivaria-
ble adjusted model, the proportion of explained variation (adjusted R2) by macro- and micronutrients ranged 
between 1% for dispensable amino acids and 10% for both medium- and long-chain PC (Fig. 2). These results 

Indispensable amino acids 
(n = 7)

Dispensable amino acids 
(n = 7)

Short-chain acylcarnitines 
(n = 5)

Medium-chain 
acylcarnitines (n = 6)

Long-chain acylcarnitines 
(n = 8) Hexose (n = 1)

Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Alcohol −0.01 0.03 0.74 −0.02 0.03 0.52 0.09 0.03 0.01 0.05 0.03 0.13 0.10 0.03 <0.0001* 0.05 0.03 0.13

Dietary fiber 0.13 0.06 0.05 0.10 0.06 0.11 −0.04 0.06 0.50 −0.04 0.06 0.53 −0.10 0.06 0.09 0.07 0.06 0.29

Protein 0.08 0.09 0.36 −0.01 0.09 0.91 0.03 0.09 0.71 0.07 0.09 0.39 −0.03 0.09 0.75 0.14 0.09 0.12

Fats −0.15 0.07 0.04 −0.10 0.07 0.19 −0.11 0.07 0.12 −0.05 0.07 0.50 −0.03 0.07 0.72 −0.12 0.07 0.09

Carbohydrates −0.15 0.06 0.01 −0.01 0.06 0.91 −0.04 0.06 0.54 0.12 0.06 0.04 0.12 0.06 0.05 −0.08 0.06 0.16

Mineral 
nutrients 0.13 0.11 0.23 0.02 0.11 0.83 0.14 0.11 0.18 −0.08 0.10 0.45 0.04 0.10 0.72 −0.03 0.11 0.76

Organic acids −0.06 0.04 0.13 −0.03 0.04 0.40 −0.13 0.04 <0.0001* −0.10 0.04 0.01 −0.14 0.04 <0.0001* −0.04 0.04 0.37

Saturated 
phosphatidylcholines 
(n = 12)

Monounsaturated 
phosphatidylcholines 
(n = 11)

Polyunsaturated 
phosphatidylcholines 
(n = 49)

Sphingomyelins 
(n = 19)

Lyso-phosphatidylcholines 
(n = 9)

Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Alcohol 0.13 0.03 <0.0001* 0.21 0.03 <0.0001* 0.14 0.03 <0.0001* −0.03 0.03 0.33 0.07 0.03 0.05

Dietary fiber −0.02 0.06 0.76 −0.15 0.06 0.02 0.02 0.06 0.71 −0.05 0.06 0.40 0.00 0.06 0.97

Protein −0.05 0.09 0.58 −0.07 0.09 0.40 0.02 0.09 0.79 0.08 0.09 0.38 0.06 0.09 0.53

Fats 0.00 0.07 0.95 −0.05 0.07 0.44 −0.05 0.07 0.49 0.01 0.07 0.92 −0.06 0.07 0.43

Carbohydrates −0.07 0.06 0.28 0.09 0.06 0.14 −0.03 0.06 0.64 0.06 0.06 0.34 0.02 0.06 0.72

Mineral 
nutrients 0.13 0.11 0.22 0.16 0.11 0.14 0.05 0.11 0.66 −0.02 0.11 0.84 0.05 0.11 0.66

Organic acids −0.08 0.04 0.04 −0.10 0.04 0.01 −0.10 0.04 0.01 −0.04 0.04 0.26 −0.11 0.04 <0.0001*

Table 2. Detailed results of the Generalized Linear Modela in the CARLA study – beta estimators for the 
association between macronutrients (n = 7) and metabolite groups (n = 11), significance level < 0.05. *p < 0.004 
(0.05/11; Bonferroni-corrected). aAdjusted for sex, age, BMI, smoked pack-cigarettes per year and physical 
activity.

Men (n = 659) Women (n = 538)

Median/n Q3–Q1/% Median /n Q3–Q1/%

Age 63.2 71.7–55.0 62.3 68.3–53.8

BMI [kg/m2] 27.4 30.0–25.2 27.1 30.3–24.3

Fasting time [Min] 202.0 264.0–153.0 210.0 273.0–158.0

Total cholesterol [mmol/l] 5.3 5.9–4.8 5.7 6.4–5.0

HDL-Cholesterol [mmol/l] 1.2 1.5–1.1 1.6 1.9–1.3

LDL-Cholesterol [mmol/l] 3.2 3.7–2.6 3.4 4.0–2.8

Triglycerides [mmol/l] 1.7 2.5–1.2 1.3 1.8–1.0

Cardiovascular diseasesa 75 11.4% 23 4.3%

Hypertensionb 489 74.2% 361 67.1%

Cardiovascular medication (ATCcodes C02/03/07/08/09) 1.0 2.0–0.0 1.0 2.0–0.0

Smoker

  Current 144 21.9% 76 14.1%

  Ex 329 50.0% 96 17.8%

  Never 186 28.2% 366 68.0%

Pack-years tobacco 27.0 37.1–15.4 19.1 25.7–9.1

Coffee [cups /day] 2.0 4.0–2.0 2.0 3.0–2.0

Tea [cups/day] 0.0 1.0–0.0 0.0 1.0–0.0

Sports-Index (1 = low, 5 = high) 2.3 3.0–2.0 2.3 3.0–1.8

Table 1. Characteristics of the study population (n = 1197). aParticipants with self-reported diagnosis of 
heart infarction, CABG (coronary artery bypass graft), PTCA (percutaneous transluminal angioplasty), stroke 
or Carotis-OP. bSystolic blood pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg and/or anti-
hypertensive medication (ATC codes C02/03/07/08/09).
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are consistent with previous statements from the EPIC study9. Floegel et al. concluded that diet had only a minor 
association with the whole metabolic profile (proportion of explained variation ranged between 2% for hexose 
and amino acids and 6% for PC). The study design, a typical epidemiological investigation, is informative for the 
interpretation and design of cohort studies with non-fasting blood.

Two macronutrients were associated with most of the metabolite subgroups. Higher alcohol consumption and 
lower ingestion of organic acids were associated with higher levels of AcylC and PC. These results have been shown 
in several other studies. Krähenbühl showed increased levels of carnitines (long- and short-chain) in alcoholics 
compared to non-alcoholics23. Further, in a recent epidemiological study, alcohol consumption was associated with 
higher levels of monounsaturated PC24. Organic acids are produced from the catabolism of amino acids and are 
intermediates in metabolic pathways25. The association of self-reported amount of “organic acids” ingested and 
acylcarnitines is not unexpected, as the acylcarnitines are intermediate metabolites from organic acid metabolism26.

Our results suggested that saturated, mono- and polyunsaturated PC and amino acids are very stable bio-
markers that seem unaffected by fasting status in a nutritional metabolomics setting. It has been known for years 
that only a small amount (1 to 6%) of the total free amino acid pool can be found in serum or plasma27,28. Thus, 
the metabolomic profile of serum amino acids has been used as nutritional marker very rarely29 but has an estab-
lished, recognized utility as an indicator of nutritional deficiency states (i.e. limiting amino acid)30,31. Animal 
experiments in the 1960s have shown that plasma amino acid concentrations returned to a post-absorption steady 
state (reflective of the free total amino acid pool status) after 8 to 16 hours for dispensable and non-dispensable 

Indispensable amino 
acids (n = 7)

Dispensable amino 
acids (n = 7)

Short-chain acylcarnitines 
(n = 5)

Medium-chain 
acylcarnitines (n = 6)

Long-chain acylcarnitines 
(n = 8) Hexose (n = 1)

Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Alcohol −0.12 0.09 0.16 −0.15 0.09 0.09 0.05 0.08 0.52 −0.01 0.08 0.94 0.06 0.08 0.50 −0.04 0.09 0.61

Dietary fiber 0.21 0.16 0.19 0.17 0.16 0.31 −0.19 0.15 0.21 0.10 0.16 0.53 −0.34 0.15 0.03 0.42 0.16 0.01

Protein 0.28 0.26 0.27 0.20 0.26 0.43 0.25 0.24 0.32 −0.34 0.25 0.17 −0.11 0.24 0.65 0.63 0.25 0.01

Fats −0.30 0.19 0.11 −0.19 0.19 0.34 −0.09 0.18 0.63 0.05 0.18 0.77 −0.06 0.18 0.74 −0.32 0.19 0.09

Carbohydrates −0.28 0.16 0.09 −0.10 0.17 0.54 0.00 0.16 0.98 −0.06 0.16 0.71 0.22 0.15 0.15 −0.37 0.16 0.03

Mineral nutrients 0.17 0.28 0.54 0.06 0.29 0.82 0.06 0.27 0.83 0.36 0.27 0.18 0.35 0.26 0.18 −0.31 0.28 0.27

Organic acids −0.08 0.10 0.44 −0.17 0.10 0.10 −0.10 0.10 0.29 −0.16 0.10 0.09 −0.19 0.09 0.04 −0.07 0.10 0.49

Fasting time (ft) −0.06 0.06 0.33 −0.06 0.06 0.31 0.46 0.06 <0.0001* 0.18 0.06 <0.0001* 0.45 0.06 <0.0001* −0.09 0.06 0.12

Alcohol*ft 0.09 0.06 0.16 0.11 0.07 0.11 0.03 0.06 0.65 0.05 0.06 0.43 0.04 0.06 0.53 0.08 0.06 0.21

Dietary fiber*ft −0.08 0.12 0.51 −0.06 0.12 0.60 0.13 0.11 0.25 −0.10 0.12 0.38 0.20 0.11 0.08 −0.29 0.12 0.01

Protein*ft −0.17 0.20 0.40 −0.18 0.21 0.38 −0.18 0.19 0.36 0.36 0.19 0.07 0.08 0.19 0.69 −0.41 0.20 0.04

Fats*ft 0.12 0.14 0.40 0.07 0.15 0.65 −0.01 0.14 0.96 −0.08 0.14 0.56 0.04 0.14 0.78 0.15 0.14 0.28

Carbohydrates*ft 0.10 0.13 0.42 0.08 0.13 0.53 −0.04 0.12 0.76 0.15 0.12 0.21 −0.09 0.12 0.45 0.23 0.13 0.07

Mineral 
nutrients*ft −0.02 0.22 0.92 −0.02 0.22 0.93 0.07 0.21 0.76 −0.40 0.21 0.06 −0.28 0.21 0.18 0.24 0.22 0.27

Organic acids*ft 0.01 0.07 0.86 0.11 0.08 0.16 −0.03 0.07 0.67 0.05 0.07 0.45 0.04 0.07 0.54 0.03 0.07 0.72

Saturated 
phosphatidylcholines 
(n = 12)

Monounsaturated 
phosphatidylcholines 
(n = 11)

Polyunsaturated 
phosphatidylcholines 
(n = 49)

Sphingomyelins (n = 19) Lyso-phosphatidylcholines 
(n = 9)

Estimate SE p Estimate SE p Estimate SE p Estimate SE p Estimate SE p

Alcohol 0.07 0.09 0.43 0.23 0.09 0.01 0.08 0.09 0.38 −0.10 0.09 0.27 0.05 0.09 0.60

Dietary fiber −0.13 0.16 0.44 −0.07 0.16 0.66 0.13 0.16 0.42 −0.07 0.16 0.67 0.07 0.16 0.66

Protein −0.02 0.26 0.95 0.26 0.25 0.30 0.21 0.26 0.42 −0.35 0.26 0.17 0.13 0.25 0.62

Fats −0.05 0.19 0.80 −0.29 0.19 0.12 −0.11 0.19 0.57 0.10 0.19 0.59 −0.12 0.19 0.52

Carbohydrates −0.12 0.16 0.45 0.00 0.16 1.00 −0.17 0.17 0.30 0.17 0.16 0.30 0.20 0.16 0.22

Mineral nutrients 0.26 0.28 0.36 0.06 0.28 0.82 −0.10 0.28 0.72 0.19 0.28 0.50 −0.18 0.28 0.52

Organic acids −0.08 0.10 0.45 −0.11 0.10 0.25 −0.02 0.10 0.81 −0.09 0.10 0.36 −0.10 0.10 0.33

Fasting time (ft) 0.07 0.06 0.22 0.05 0.06 0.41 0.02 0.06 0.75 0.12 0.06 0.04 0.18 0.06 <0.0001*

Alcohol*ft 0.05 0.06 0.45 −0.02 0.06 0.75 0.05 0.07 0.44 0.05 0.06 0.42 0.02 0.06 0.76

Dietary fiber*ft 0.08 0.12 0.48 −0.06 0.12 0.62 −0.09 0.12 0.45 0.02 0.12 0.86 −0.05 0.12 0.67

Protein*ft −0.03 0.20 0.89 −0.28 0.20 0.17 −0.16 0.20 0.44 0.36 0.20 0.08 −0.07 0.20 0.74

Fats*ft 0.04 0.14 0.78 0.19 0.14 0.18 0.05 0.15 0.75 −0.08 0.14 0.60 0.06 0.14 0.67

Carbohydrates*ft 0.05 0.13 0.70 0.07 0.13 0.57 0.12 0.13 0.36 −0.09 0.13 0.48 −0.15 0.13 0.23

Mineral 
nutrients*ft −0.10 0.22 0.64 0.08 0.22 0.71 0.13 0.22 0.57 −0.20 0.22 0.37 0.18 0.22 0.40

Organic acids*ft −0.01 0.07 0.94 0.01 0.07 0.93 −0.06 0.08 0.41 0.04 0.07 0.57 −0.01 0.07 0.88

Table 3. Detailed results of the Generalized Linear Modela with interaction terms included – beta estimators 
for the association between macronutrients (n = 7) and metabolite groups (n = 11), significance level < 0.1. 
*p < 0.004 (0.05/11; Bonferroni-corrected). aAdjusted for sex, age, BMI, smoked pack-cigarettes per year and 
physical activity.
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amino acid31. An example of the direct response of protein metabolism to carbohydrate intake is the reduction 
in plasma amino acid level (12% in the first hour), which occurs after the administration of glucose to fasting 
subjects32. We obtained similar results in our study, as shown in Tables 2 and 3, where carbohydrates had an 
independent negative effect, especially on indispensable amino acids, regardless of fasting status. More recent 
studies presented results similar to those reported in this paper; the reproducibility of amino acids was not par-
ticularly influenced by fasting status, possibly reflecting the genetic regulation of amino acid homeostasis33,34. 
However, medium- and long-chain AcylC, SM and Hexose showed nominal moderator effect of fasting on the 
associations between macro- and micronutrients and metabolites. These findings are also consistent with pre-
vious studies33,34. Carayol et al. measured the reproducibility of 16 acylcarnitine compounds and found out that 
they were particularly affected by fasting status. The authors suggested that this could be due to the fact that fatty 
acid oxidation is dynamically controlled by fasting time. Thus, if nutritional metabolomics studies in an epide-
miological setting collecting non-fasted blood, fail to control for fasting time, results are expected to be partially 
biased. To our knowledge, this was the first study that examined the impact of fasting status on metabolite levels 
in a nutritional setting. Our results suggest that these metabolite subgroups can be reliably measured regardless 
of sample processing delay allowing flexibility to blood sample processing protocols of future studies measuring 
lipids and amino acids.

Participants of the CARLA cohort had fasted on average 200 minutes. Thus most of them cannot be classified 
as fasted, although it has been previously shown that the effect of food intake on the metabolic profile is already 
eliminated after 6 to 8 hours12. Thereby, we have with a median fasting time of 6.5 hours in the investigated sub-
cohort, an acceptable range for fasted participants. It is generally accepted that the effect of diet on the metabolic 
profile in fasted participants with 12 or more hours of fasting, should be even greater. However, the requirement 
of 12 hours fasting time could have probably reduced considerably the participation willingness in the CARLA 
study. A further consideration deals with the fact that the metabolite concentrations changes rapidly in blood and 
not so fast in urine. Therefore urine probes are probably more suitable for nutritional metabolomics12. However, 
because of the high costs and very specialized technical competence associated with this technique, metabolomics 
is unlikely to be appropriate for screening of very large populations or for the routine clinical practice. And con-
sequently ascertains the need to develop lower-cost procedures.

Metabolites determined in blood after a meal can be greatly altered. Also the digestion and resorption of 
metabolites can confound the association between nutrition and metabolomics12,35. Further factors influencing 
the concentrations of metabolites in blood, such as seasonal or circadian factors, or hormonal changes need to 
be considered. In order to investigate the effect of a dietary pattern on the metabolomics profile is recommended 
to standardise the blood withdrawal and choose only fasted participants (or at least correct for fasting time). A 
further strength of this study was the use of the good validated food frequency questionnaire from the EPIC 
cohort18,19. This questionnaire evaluates the nutritional pattern over a year and thus represents an average nutri-
tional pattern. However, we also need to accept that, as with every questionnaire, there is an associated informa-
tion bias. On the one hand, a “healthy” nutrition is socially desirable, and thus, the consumption of “unhealthy” 
ingredients is probably underestimated. On the other hand, a period of a year needs to be challenged, as the rec-
ollection ability can be impaired in such a long period. Finally, the population used in this study are older adults 
with a median age of 63 for men and 62 for women. The reported nutritional patterns reflect eventually, only the 
practices in mid-life. In order to generalise the results, younger adults and children need to be considered. The 
CARLA cohort is also known because of the high proportion of cardiovascular diseases and risk factors (74% of 
the men and 67% of the women are hypertensive)36. Therefore, the nutritional patterns could be distorted due to 
the cardiovascular profiles and be somewhat different in a healthy population.

Figure 2. Explained variation of metabolites by macro- and micronutrients: adjusted R2-values comparing 
the multivariable adjusted models without and with interaction terms for fasting time included. The 
multivariable model was adjusted for sex, age, BMI, smoked pack-cigarettes per year and physical activity. ess_
aa=indispensable amino acids; none_aa=dispensable amino acids; sc_acylC=short-chain acylcarnitines; 
mc_acylC=medium-chain acylcarnitines; lc_acylC=long-chain acylcarnitines; sat_PC=saturated 
phosphatidylcholines; mo_PC=monounsaturated phosphatidylcholines, po_PC= polyunsaturated 
phosphatidylcholines; SM=Sphingolipids; lysoPC=lyso-phosphatidylcholine and H=Hexose.
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Conclusion
In summary, nutrition has an effect on metabolic products and can influence disease states. Particular dietary 
patterns play a role in the development and prevention of chronic diseases. It is also important to standardise 
the sampling of blood examinations to produce meaningful results. In this respect, fasting status is particularly 
relevant.
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