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A B S T R A C T

The spine is the most common body part to develop bone metastases
from various primary tumours with increasing case numbers over the
last decades. The drastic effects on the quality of life evoked by spinal
metastases, such as severe pain symptoms or neurological deficits due to
nerve root and spinal cord compressions, demand a fast-acting, yet gentle
therapeutic solution, as enabled by minimally invasive interventions like
radiofrequency ablations. For this purpose, one or multiple applicators
with electrode needle tips are placed within the tumour volume and
necrotise the cancerous tissue by high frequency-induced tissue heating.
The entire clinical workflow of such a minimally invasive intervention
is based on medical imaging, starting from the initial diagnosis over
image-guidance during the intervention to therapy control via follow-up
scans. Computer-assisted strategies can support the radiologists to obtain
more relevant information from the acquired images and to transfer these
to subsequent processing steps. This enables a more sophisticated work-
flow, while reducing the required time and workload of the radiologists.
However, the specific image processing aspects to achieve this goal are
challenging with regard to the required expert-like performance, high
level of automatisation, and short computational times.
This thesis focuses on various aspects throughout the clinical workflow of
radiofrequency ablations of spinal metastases. For this purpose, the thesis
is structured following the chronological sequence of the clinical process
and contains approaches to support the radiologist during the pre-, intra-
and post-interventional phase. Limitations and gaps in the existing state
of the art of each aspect led to the development and implementation of
novel strategies to provide suitable and applicable solutions. In detail,
segmentation approaches of involved anatomical structures like vertebral
bodies, metastases and resulting necrosis zones have been developed - the
latter two being, to the best of the author’s knowledge, the first of their
kind. Furthermore, an image registration method is presented, which is
able to cope with the poor image quality of interventional imaging and
the specific issue of spinal deformations due to different patient position-
ing. Finally, a novel framework is proposed to automatically visualise and
quantify the treatment outcome of spinal metastasis interventions. Each
of the above-mentioned methods has been evaluated on a wide range of
patient data in order to demonstrate robustness, reliability, accuracy, and
speed to meet the clinical objectives.
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Z U S A M M E N FA S S U N G

Die Wirbelsäule ist die muskuloskelettale Struktur, in der sich am häu-
figsten Knochenmetastasen verschiedenster Primärtumore entwickeln
und dies mit stetig steigenden Fallzahlen in den letzten Jahrzehnten.
Wirbelsäulenmetastasen verursachen eine drastische Beeinträchtigung der
Lebensqualität der meisten Patienten, bedingt durch eine ausgeprägte
Schmerzsymptomatik sowie teilweise durch neurologische Ausfallerschei-
nungen aufgrund von Nervenwurzel- und Rückenmarkkompressionen.
Dies wiederum erfordert eine unverzögert wirksame, aber im Hinblick
auf das fortgeschrittene Alter der meisten Patienten trotz allem scho-
nende therapeutische Lösung, wie sie insbesondere minimal-invasive
Eingriffe, beispielsweise die Radiofrequenzablation, versprechen. Hier-
bei werden ein oder mehrere Applikatoren mit Elektroden an deren
Spitze in dem Tumorvolumen platziert, welche anschließend das metas-
tasierte Gewebe mittels hochfrequenzinduzierter Gewebeerhitzung nekro-
tisieren. Die medizinische Bildgebung spielt während des gesamten
klinisch-therapeutischen Prozesses einer minimal-invasiven Intervention
eine entscheidende Rolle; angefangen bei der initialen Diagnose, über
die bildgestützte Durchführung des Eingriffs, bis hin zur abschließen-
den Therapiekontrolle mittels Bildgebung. Computergestützte Strategien
können Radiologen gezielt dabei helfen, aus den generierten Bildern
zusätzlich relevante Informationen zu gewinnen und diese auch auf nach-
folgende Prozessschritte zu übertragen. Dies eröffnet die Perspektive auf
einen insgesamt fortschrittlicheren klinischen Arbeitsablauf und reduziert
darüber hinaus die zeitliche und mentale Arbeitsbelastung der beteiligten
Radiologen. Die spezifischen Bildverarbeitungsaspekte zur Erreichung
dieses Ziels sind jedoch im Hinblick auf ihre Komplexität sowie die er-
forderliche methodische Genauigkeit und die kurzen Berechnungszeiten,
eine Herausforderung.
Diese Dissertation thematisiert verschiedene Aspekte des klinischen Ar-
beitsablaufs bei der Radiofrequenzablation von Wirbelsäulenmetastasen.
Hierzu folgt die Arbeit dem chronologischen Ablauf des klinischen
Prozesses und beinhaltet Strategien für die zielgerichtete Unterstützung
der Radiologen während der prä-, intra- und post-interventionellen Phase.
Bestehende Limitationen oder Lücken im derzeitigen Stand der Tech-
nik jedes einzelnen Aspektes erforderten die Entwicklung und Umset-
zung neuer Lösungsstrategien, welche auf geeignete Art und Weise die
klinischen und technischen Anforderungen erfüllen. Im Detail wurden
Verfahren zur Segmentierung von relevanten anatomischen Strukturen,
wie bspw. der Wirbelkörper, der Metastasen und der resultierenden
Nekrosezonen entwickelt, sowie ein Bildregistrierungsverfahren, das der
schlechteren Bildqualität interventioneller Bildgebung und dem spezifis-
chen Problem der Wirbelsäulendeformationen aufgrund unterschiedlicher
Patientenpositionierung gerecht wird. Abschließend wird ein Framework
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vorgestellt, welches eine automatische Quantifizierung und Visualisierung
des Behandlungserfolges nach tumorbedingten Wirbelsäuleninterventio-
nen ermöglicht. Jede der oben genannten Methoden bzw. Lösungsstrate-
gien wurde mithilfe einer Vielzahl von klinischen Patientendaten evaluiert,
um die benötigte Robustheit, Genauigkeit und Geschwindigkeit der Ver-
fahren zu demonstrieren.
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1
I N T R O D U C T I O N

1.1 motivation

Due to the enhancement of medical treatment and diagnostic procedures,
life expectancy has increased steadily over the last decades. However,
this lifetime gain promotes also age-related diseases like cardiovascular
diseases, as well as cancer and cancer-induced malicious metastases. Both
of them are the most common causes of death nowadays. The survival
time of most malicious carcinomas has increased with improved diagno-
sis and treatment, though, this also promotes spreading of metastases.
Besides liver and lung, bone metastases are the third likely, and thereof
between two thirds (Harrington, 1986; Wong et al., 1990) and over 90%
(Frangou and Fourney, 2009) are located in the spine, varying according
to the reference. The most common primary malignancies that lead to
bone metastases are listed in Table 1.1.

Table 1.1: The incidence of skeletal metastases, based on autopsy studies (Mac-
cauro et al., 2011).

Tumour Incidence

Mammary carcinoma 73 %

Prostatic carcinoma 68 %

Thyroid carcinoma 42 %

Bronchial carcinoma 36 %

Renal carcinoma 35 %

Rectal carcinoma 11 %

Esophageal carcinoma 6 %

Gastrointestinal carcinoma 5 %

Studies showed that most metastases occur in the thoracic spine, fol-
lowed by the lumbar segment, where as the cervical region is the least
involved (Klimo and Schmidt, 2004). More than half of the patients with
spinal metastases have lesions in multiple, partly non-contiguous spine
segments (Togawa and Lewandrowski, 2006). Following the mechanistic
theory, tumour cells will metastasise anatomical regions near to their
primary site, e.g. mammary carcinomas preferably infiltrate vertebrae of
the thoracic region and prostate cancer usually metastasise the lumbar-
sacral spine (Algra et al., 1992; Gilbert et al., 1978). The initial anatomical
location of spinal metastases is generally the posterior portion of the
vertebral body, gradually followed by the anterior body, lamina and pedi-
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intra-compartmental

pedicle
extension

epidural
extension

extra-compartmental

involvement of
multiple vertebrae

paravertebral
extension

Figure 1.1: Illustrations of different degrees of vertebral involvement in spinal
metastases with corresponding exemplary patient cases.

cles with increasing tumour stages (Eleraky et al., 2010; Georgy, 2008).
The vertebral involvement in spinal lesion diseases largely influences
the treatment strategy and therapeutic decision-making (see Figure 1.1).
Osseous metastases can be typically classified as osteolytic, i.e. with in-
creased osteoclastic activity and therefore bone resorption, or osteoblastic
(sclerotic), i.e. enhanced osseous tissue production, as well as a mixed
combination of the two types (Eleraky et al., 2010). The infiltration of
tumour cells causes an imbalance of osteoclastic and osteoblastic activity
leading to a release of growth factors, which stimulate bone remodelling
and further growth factor production. This results in a dire cycle of bone
destruction and local tumour growth (Lipton, 2004; Yin et al., 2005). In
some cases, certain types of metastases can be assigned to different pri-
mary tumours, e.g. prostate or thyroid tumours predominantly develop
osteoblastic metastases, bronchial and renal carcinomas often result in
osteolytic types, and mammary carcinomas could lead to mixed sclerotic
and lytic lesions (Yin et al., 2005).

Regarding the biomechanics of metastatic vertebrae, destabilisation
due to fractures both, under traumatic or normal physiological stress
is one of the most common consequences (Georgy, 2008; Whyne et al.,
2003), especially if osteolytic metastases weaken the internal bony matrix
structures. Spinal stability in a clinical sense includes mechanical stability,
as well as the absence of pain, deformity and any neurological signs
(Panjabi, 2003). However, spinal metastases could tremendously affect
the quality of life and the primarily therapeutic indications are vigorous
pain by fractures, bruises, spinal cord and nerve root compressions and
therefore, neurological deficits (Klimo and Schmidt, 2004). The latter
often occure in advanced stages due to growing extravertebral masses
(Guillevin et al., 2007). Once tumours spread and develop metastases, full
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recovery is rarely possible and the therapeutic goal is often to stop, delay
or shrink its growing masses. Although, a complete cure is often no longer
possible, palliative treatment of spinal metastases is indicated with regard
to pain palliation and the release of stenosis-related neurological deficits
and an overall improved life quality. However, the relative survival rate
at five years of metastatic tumours drastically decreases compared to
non-metastatic tumours, e.g. for prostate cancer about 70 %, colon cancer
about 25 % or renal tumours about 18 % (American Cancer Society, 2019).

To detect spinal metastases, a wide variety of imaging methods can
be applied, such as scintigraphs, X-ray radiography, computed tomogra-
phy (CT), magnetic resonance imaging (MRI) as well as some functional
imaging methods like positron emission tomography (PET) and single
photon emission computed tomography (SPECT). Conventional radiogra-
phy may be useful to first detect abnormalities due to lytic or sclerotic
bone remodelling, but lacks more detailed information about shape and
bone marrow integrity. Furthermore, it commonly detects metastases in
later stages with advanced osseous structural loss (Shah and Salzman,
2011). CT imaging is superior in terms of a detailed morphology, its
high spatial resolution and an increased soft-tissue contrast. However,
similar to X-ray radiography the appearance of metastases depends on
their mineralisation and therefore it requires noticeable bone remodelling
to be recognised. Thus, early detection of infiltrated bone marrow is
hampered and CT scans as a diagnostic imaging technique may be un-
suitable. In CT imaging, lytic lesions often appear as soft tissue regions
with irregular margins and hypointense image signals compared to os-
seous structures. In contrast, sclerotic metastases predominantly show
hyperdense bone matrix structures with bright image signals, comparable
to cortical bone (see Figure 1.2). In comparison to the aforementioned
imaging techniques, MRI overcomes restrictions of radiation exposure
and combines detailed morphology and high soft tissue contrast as well
as enhanced bone marrow visualisation, which makes it an adequate and
useful technique for early stage metastasis detection. In addition, MRI
is suitable for the assessment of spinal cord compressions and thus for
the clarification of symptomatic neurological deficits (Shah and Salzman,
2011). The displayed signal intensities vary with regard to the acquisition
sequence and metastatic type due to their degree of mineralisation (see
Figure 1.2). Sclerotic metastases predominantly appear hypointense in
both T1- and T2-weighted sequences compared to healthy bone marrow
image signals. Lytic lesions show mainly intermediate to hypointense
signals in T1- and hyper- or isointense signals in T2-weighted sequences.
Furthermore, a contrast agent-induced signal enhancement is usually
present with metastases of the lytic type (Shah and Salzman, 2011). The
drawback of MRI is the more challenging distinction between remaining
active tumour tissue and scarred, necrotised or fractured bone tissue
in post-therapeutic scans (Even-Sapir, 2005; Wong et al., 1990). These
limitations can be partially compensated by contrast-enhanced sequences,
e.g. with gadolinium-based contrast-enhancing agents, since it adds a
dynamic component to the imaging process (Kim et al., 1982; Kim et al.,
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a b c d e

Figure 1.2: Appearance differences of sclerotic (upper row) and lytic (bottom
row) spinal metastases (arrows) in MRI and interventional CT imag-
ing. Displayed are two exemplary patient cases with sagittal T1-
weighted (a), T2-weighted (b), and STIR (c) MRI sequences as well
as their corresponding interventional FP-CT scans in a mid-sagittal
(d) and an axial cross-section (e). Especially in X-ray-based imaging,
the different physiological processes regarding the bone alteration of
both lesion types can be vividly visualised.

2003). The major advantage of SPECT or PET imaging as functional and
nuclear imaging techniques lies in their potential to detect pathological
biochemical and physiological abnormalities due to carcinomas with high
specificity (Van Dort et al., 2008). PET imaging with specific radioligands
like [18F] flouride could furthermore support the distinction between
lytic and sclerotic metastasis types (Barzilai et al., 2018; Even-Sapir, 2005).
The decisive disadvantage of these imaging procedures for diagnostic
or interventional purposes is their comparatively limited spatial reso-
lution, which could be partly overcome in hybrid imaging techniques
like PET/CT, SPECT/CT or even PET/MRI, whose limited availability in
clinical routine practice is slowly growing (Shah and Salzman, 2011).

The advances of treatment strategies for metastatic spinal lesions led
to the development of the "NOMS" framework, comprising Neurological,
Oncological, Mechanical, and Systemic assessments to support complex
decision-making for therapy techniques across disciplines (Zuckerman
et al., 2018). With the aid of NOMS, various key aspects like presence of
epidural spine compressions, expected tumour control, vertebral stability,
and the risk-benefit ratio of different treatment strategies are assembled
to optimise patient care and overall survival (Barzilai et al., 2018).

Historically, the method of choice to treat osseous metastases was con-
ventional external beam radiation, i.e. the target area was radiated by one
or two beams. The major drawback of this treatment strategy regarding
spinal metastases is the relatively widespread target area including risk
structures like the spinal cord, which limits the applied radiation doses
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and lead to the necessity of increased fractioning (Barzilai et al., 2018).
Hence, the treatment response is commonly delayed and transient. In
contrast, spine stereotactic radiosurgery can deliver high-dose ablative
radiation in typically one to five fractions to the target (Huo et al., 2017).
It utilises image-guided intensity-modulated radiation delivery and steep
dose gradients due to highly focused beams, which results in effective
doses within the target structures, while protecting adjacent organs at risk
(Huo et al., 2017). Therefore, spine stereotactic radiosurgery commonly
ensures a fast and durable symptomatic response, i.e. high local tumour
control and pain relief. However, radiation therapies are constrained in
terms of radioresistant tumours and do not address spinal instabilities,
requiring adjuvant procedures like vertebroplasty or balloon kyphoplasty
(Barzilai et al., 2018; Georgy, 2008). Chemotherapy or hormonal therapy
often tend to fail the desired relief of symptoms of osseous metastases and
take time to be effective (Rosenthal and Callstrom, 2012). Owing to the
short life span and morbidity of most patients, surgical interventions may
often be beyond dispute. These range from the resection of individual
vertebrae, discs and surrounding ligaments to ensure en-bloc excisions to
intra-tumoural surgeries in order to reduce compressive stress on neural
structures. Since it is highly challenging to achieve satisfying resection
margins, the risks associated with such procedures often contradict a
surgical intervention (Barzilai et al., 2018).

Besides, percutaneous minimally invasive therapies gain reception as
promising methods to treat spinal metastases or tumours. These include,
among others, various thermal therapies, like microwave ablation, laser
ablation, cryoablation and radiofrequency ablation (RFA), which cause
necrotisation due to target tissue heating or freezing. Microwave ablation
utilises electromagnetic waves with frequencies between 900 - 2450 MHz
to heat up the target tissue via molecule agitation, which leads to coagu-
lative necrosis. The main drawback is the low availability of commercial
systems, which is probably also the reason why the related literature
is rather scarce, especially for spinal metastases (Zhang, 2016). Laser
ablation is based on heating up the tumour tissue by infrared light en-
ergy through optical fibers and, therefore, induces tissue necrotization
of smaller regions. However, there are only very few studies considering
laser ablation of bone or spinal metastases (Evans et al., 2020; Rothrock
et al., 2020). In contrast to the above, cryoablation rapidly cools the tis-
sue to temperatures of -100◦C through partially insulated probes, which
insert gaseous or liquid nitrogene or more recently argon into the target
tissue (Chu and Dupuy, 2014; Skanes et al., 2004). While cryoablation
has the advantage of good visibility in MRI or ultrasound (US) imaging
with an easily recognisable ablation zone due to the ice ball formed at
the needle tip, its applicability is limited to rather small lesions with a
radius of roughly 2 - 2.5 mm, since the cooling effect rapidly declines with
increasing distance from the cryogenic center (Khairy et al., 2003; Skanes
et al., 2004).

Radiofrequency ablation represents an effective method to treat rela-
tively small tumours and metastases, if surgical resection is inapplicable
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and pain reduction is attempted within several hours or few days follow-
ing the intervention. It has been used to reduce lower back pain caused
by facet osteoarithritis (Cho et al., 1997) or osteoid osteoma (Rosenthal
et al., 1998) and was introduced approximatley a decade ago to treat
osseous spinal metastases (Dupuy et al., 2010). Overall, the number of
RFA sessions per year has steadily increased over the last decade (Starr
et al., 2019) and is expected to continue to grow immensely (Transparency
Market Research, 2019). However, RFA treatment of metastases is - with a
few exceptions - not curative, but suitable for pain palliation, to regain
lost neurological function, and to contain local tumour growth (Posteraro
et al., 2004). RFA utilises frequencies within the range of 300 - 3000 kHz,
with no stimulation or interference with neuromuscular or electrolytic
processes (Ni et al., 2005). The basic setup consits of a radiofrequency (RF)
generator as the source of the RF voltage, a needle-like applicator with
electrodes at its tip and a grounding which closes the current circuit with
the patient’s body as an active element. When the generator is switched
on, a high induction flux forms around the active electrodes at the needle
tip due to the impedance characteristic of the target volume (Hong and
Georgiades, 2010; Kline, 2000).

The physics underlying the RFA is based on the reaction of the target
tissue’s dipole molecules, i.e. primarily water molecules, which align in
the direction of the current and begin to oscillate at the same frequency.
This molecular oscillation leads to a friction-induced rise in temperature,
which in the end results in coagulation and therefore, target tissue necro-
tisation (see Figure 1.3). It is worth mentioning, that the electrode at the
needle tip itself is not hot or the thermal source of heating, but triggers
ionic movement within the adjacent tissue that causes the heating (Hong
and Georgiades, 2010). However, this means that the electrical and thermal
conductivity of the tissue is of critical importance for successful ablation
procedures. In addition, it is essential that the tissue temperature is rising
not too fast and not beyond 105◦C, since consequent carbonisation or
vaporisation could restrict any further energy transmission and lead to
incomplete ablation zones (Hong and Georgiades, 2010). At temperatures
above 60◦C cells start to necrotize (Carrafiello et al., 2007; Frangou and
Fourney, 2009) due to irreversible protein denaturation and the destruc-
tion of key enzymes (Goldberg and Gazelle, 2001). Furthermore, studies
showed that temperatures around 45◦C could result in apoptosis, which
is of crucial importance regarding the protection of surrounding risk
structures like spinal cord or peripheral nerves (Vujaskovic et al., 1994;
Yamane et al., 1992). Thus, a typical ablation zone consists of a core region
of full necrosis around the needle tip electrodes with an adjacent area
of moderate necrotisation and a further zone characterised by apoptosis.
These biochemical effects of RFAs occur within seconds to a few minutes,
leaving both micro- and macroscopically visible effects, in particular a mi-
crocavitation caused by the applicator access path, the ablated tumoural
and peri-tumoural tissue, a necrosis-related dark rim and an outer area of
inflammation or oedema (Ni et al., 2005). Regarding the RFA devices, it
can be noted that almost all medical generators use frequencies between
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a b

c d

Figure 1.3: Illustration of the procedure of RFA of spinal metastases. Subsequent
to the calibration of the image-guided navigation system at the begin-
ning of the intervention (a) the radiologist creates access pathways
for the RFA applicators using trocars (b). After the insertion of either
single or multiple applicators, an expanding ablation zone develops
w.r.t. the elapsed time and the induced energy (c). The resulting shape
of the necrosis zone can be influenced by timed switching between
various configurations of active pairs of electrodes (d).

450 - 600 KHz, while probe types differ more fundamentally in design,
circuitry and feedback mechanism, e.g. monopolar, bipolar, internally
cooled, single- or multi-array needle tips (Zhang, 2016).

The following sections deal with the current clinical workflow in detail
and show existing limitations and constraints, as well as the potential for
improvement through computer-assisted methods.

1.2 current workflow

The following description of the workflow refers primarily to clinical pro-
cedures in the Department of Neuroradiology at the University Hospital
of Magdeburg, but could partly be transferred to related facilities, which
treat vertebral metastases by RFA. The whole clinical workflow of RFAs
of spinal metastases could be subdivided into three major phases: the pre-
interventional therapy planning phase, the image-guided interventional
phase and the post-interventional therapy control phase (see Figure 1.4).
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Pre-interventional
Phase

Post-interventional
Phase

Interventional
Phase

� diagnostic image acquisition
(MRI, CT)

� therapy decision-making
(applicability of RFA)

� mental intervention planning

� calibration of navigation
system (skin marker, FP-CT)

� image-guided instrument
navigation by biplanar
angiography and FP-CT

� RFA process monitored by
power generator
(impedance, time, induced
energy)

� follow-up MR imaging
� qualitative and subjective

treatment outcome
validation (visual
exploration, symptom
reduction)

Figure 1.4: Current workflow of spinal metastasis treatment using RFA in the
Department of Neuroradiology of the University Hospital of Magde-
burg.

pre-interventional phase Patients with unresolved backpain or
with suspected metastases are examined using various imaging pro-
tocols. Starting with spinal MRI, containing sagittal and axial native
T1- and T2-weighted sequences as well as sagittal short tau inversion
recovery (STIR)/spectral presaturation with inversion recovery (SPIR)
sequences to enhance oedemata typical due to cancerous and metastatic
processes. Native T1- and contrast-enhanced T1-weighted sequences are
commonly the most useful in terms of spinal lesion diagnosis, since
intra-vertebral image signals hypointense to surrounding muscles, discs,
and normal bone marrow strongly indicate abnormality and marrow re-
placement (Shah and Salzman, 2011). The different MRI protocols mainly
serve the purpose of providing intra-sequence image contrasts, which
are highly tissue-specific due to the biochemical composition and the
characteristic differences of various MRI sequences in displaying fat and
water. Adjuvant CT imaging is used to highlight fracture patterns and
bone density alterations, i.e. osteolytic or sclerotic processes due to metas-
tases (Halvorson et al., 2006; Shah and Salzman, 2011). Especially, the
integrity of the ventral vertebral rim is assessed in CT scans, since it
affects therapeutic decision-making w.r.t. post-interventional stabilisation
of the ablated vertebrae. Accordingly, only if the ventral vertebral rim
is unimpaired, kyphoplasty comes into question. The circumstance that
diagnostic imaging is most commonly performed in the supine position
will be of great relevance for the following interventional image-guidance.
In general, the current clinical diagnostic and therapeutic decision-making
does not include advanced image processing or interactive procedures
and is mainly based on image exploration and the experience of the
radiologists involved. This applies to the decision whether RFA is feasible
and, if so, to the mentally planning of interventional access routes and
RFA needle positioning.

interventional phase The first step during the intervention is
to place skin markers on the patient’s back, calibrate and initialise the
CAScination navigation system with a flat-panel detector computed to-
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Figure 1.5: Current setting in the operating room in the Department of Neu-
roradiology of the University Hospital of Magdeburg. On the right
hand side, the CAScination navigation system is located (with a 3D
model of the patient’s thorax on screen; built from the FP-CT vol-
ume). The left monitor displays angiographic images, taken regularly
to track the RFA needle and guide the metastasis puncture. The
power generator for the radiofrequency current is covered by the left
monitor.

mography (FP-CT) scan using a rotational C-arm (Siemens Dyna-CT,
Doerfler et al., 2015). Subsequently, the CAScination system creates a
volume from the Dyna-CT scan for optical navigation and tracking (see
Figure 1.5). For the purpose of RFA needle placement, the radiologist
hammers and/or drills a trocar into the vertebral bone structure, most
commonly through the vertebra’s pedicle, i.e. transpedicular, as this is
most likely to preserve the structural integrity of the vertebrae (Chen et al.,
2016). This is typically feasible only for lumbar and lower thoracic verte-
brae, since their pedicles ensure enough space for a stability-preserving
insertion through the narrow corridor of cancellous bone tissue. Depen-
dent on factors like age, sex, and height, the pedicle diameter usually
varies between 3 to >10 mm from cervical to lumbar vertebrae (Charles
et al., 2015; Christodoulou et al., 2005; Liu et al., 2010; Scoles et al., 1988). If
spatial restrictions contradict a transpedicular pathway creation, typically
for upper thoracic and cervical vertebrae, parapedicular pathways, i.e.
along the outside of the pedicles, are used to access the target region
(Kothe et al., 2001). For both approaches, biplanar angiographic shots
and FP-CT scans are performed to track the current position. However,
both image modalities do not directly display the metastases, but rather
indicate their location and extent due to advanced alterations of the bone
matrix structure. Moreover, metal artifacts caused by inserted instruments
further aggravate an accurate tumour localisation (see Figure 1.6). Fol-
lowing the resulting pathways, RFA needles are inserted. Electrodes on
the needle tip trigger molecular friction due to 300 - 500 kHz current
phase changes and therefore, rising tissue temperature (see Figure 1.7).
The metastatic tissue is treated with temperatures above 70◦C leading to
coagulation necrosis and cell death (Palussiere et al., 2012).

Owing to the poor visibility of metastatic tissue during the intervention,
the radiologists have to largely infer the location of the metastases from
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a b c

Figure 1.6: Pre-interventional MRI (upper row) and interventional FP-CT scans
(lower row) of three exemplary patient cases (a-c) are shown. The
overall image quality and the soft tissue contrast of the interven-
tional scans suffer noticeably due to low-dose protocols, as well as
beam hardening, streak, and dark band artifacts from the inserted
applicators.

the pre-interventionally acquired MRI data and mentally match those
images with the intra-interventional imaging. Thus, an exact localisation
is only possible to a limited extend and this may result in suboptimal
RFA applicator positions and time-consuming corrections.

In contrast to diagnostic imaging, each image during the intervention
is moreover acquired in prone patient position, causing intervertebral
joint movements and an altered spine flexion compared to the diagnostic
images, particularly in thoracic and cervical spine segments. This aspect
further increases the cognitive demands of the radiologists for a precise
metastasis puncture. In addition, the ablation progress itself cannot be
visualised on the interventional images and must be inferred from RF
power generator parameters. With progressing ablation of the metastases
the impedance will increase due to the absence of conducting tissue, and
along with the overall ablation time and energy the radiologist could
estimate the coagulation and ablation progress, respectively. Currently,
there is no more accurate approach, such as a suitable MRI thermome-
try or transferred patient-specific necrosis zone predictions as a result
of pre-interventional simulations. Subsequent to the ablation process,
stabilisation methods are applied if necessary, e.g. kyphoplasty or verte-
broplasty (Posteraro et al., 2004).
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Figure 1.7: Patient’s back with both, skin markers for the navigation and the
inserted RFA applicators. In the background stands the power gener-
ator for the radiofrequency current displaying the induced energy,
the ablation time and the current tissue impedance, which are the
parameters to estimate the ablation progress.

post-interventional phase A few days after the intervention,
post-operative MRI scans are acquired to evaluate the treatment outcome,
which is currently done by separately exploring and mentally matching
metastasis and necrosis zone from pre- and post-interventional images
(see Figure 1.8). This, however, is challenging due to the difficulties of
correlating spatial positions in both image volumes and estimating the
correct spatial extension in three-dimensional space. However, various
studies have shown that a reliable assessment of the ablation zone is
generally possible by means of follow-up imaging, since they found a
strong correspondence between macroscopically and MRI-based mea-
sured ablation zones (Palussiere et al., 2012). Therefore, an image-based
and quantitative assessment of the necrosis area would be convincing
regarding the treatment outcome. Despite this, there are currently no
image processing methods like registration or segmentation approaches
involved in the post-interventional workflow, leading to time-consuming,
inconvenient and rather subjective assessments without any quantitative
conclusions of the treatment outcome.

1.3 intended workflow

The current clinical workflow offers various possibilities to enhance or
speed up processing steps by means of computer-assistance, regardless
whether pre-, intra- or post-interventional (see Figure 1.9). Addition-
ally, data generation associated with computer-aided methods promotes
comprehensibility, reproducibility and clinical documentation.
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Figure 1.8: Pre- (upper row) and post-treatment (lower row) MRI scans of
three exemplary patient cases (a-c) with corresponding metastases
and necrosis zones (arrows). Shown are T1-weighted (pre-RFA) and
contrast-enhanced T1-weighted (follow-up) scans.

pre-interventional phase Following the image acquisition, diag-
nosis and decision for RFA treatment, a patient-specific simulation of the
RFA can predict the coagulation area considering state-dependent tissue
parameters, such as electric and thermoconductive properties (Kröger et
al., 2006; Weihusen et al., 2010). In order to assign those tissue parameters
to patient-specific anatomical structures, a preceding detection and seg-
mentation step, either manual, semi-automatic or fully automatic needs
to be implemented. This includes first and foremost the metastases itself,
as well as the surrounding tissues like vertebral bodies, intervertebral
discs and organs at risk like the spinal cord. Since manually performed
segmentations tend to be highly time-consuming and tedious considering
the amount of tomographic image data, automatised approaches are to
be preferred. The overall goal of computer-assistance during the ther-
apy planning phase is to define a patient-specific optimal intervention
strategy using a numerical simulation which predicts the ablation zone,
considering optimised RFA applicator positioning, induced energy per
time, and state-dependent tissue parameters of the involved structures
(Matschek et al., 2017; Weihusen et al., 2010).

interventional phase Immediately before intervention begin, the
previously created and patient-individually optimised treatment plan
could be digitally accessed and thus enables a rapid mental prepara-
tion to the upcoming intervention. Additionally, pre-interventionally
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� diagnostic image acquisition
(MRI, CT)

� therapy decision-making
(Applicability of RFA)

� mental intervention planning

� patient-individual RFA
simulation (applicator
access path, ablation
process, necrosis zone
prediction)

� calibration of navigation
system (skin marker, FP-CT)

� pre- and intra-operative
image fusion (transfer of
planning data onto intra-
operative images)

� image-guided instrument
navigation by biplanar
angiography and FP-CT

� RFA process monitored by
power generator
(impedance, time, induced
energy)

� follow-up MR imaging

� quantitative and objective
treatment outcome
validation

� qualitative and subjective
treatment outcome
validation (visual
exploration, symptom
reduction)

Pre-interventional
Phase

Post-interventional
Phase

Interventional
Phase

Figure 1.9: The current clinical procedure can be improved by integrating
computer-assisted methods (in green) in each of the main work-
flow phases. These approaches replace in particular time-consuming
tasks based on mentally demanding work (in grey). In contrast to
the support during the intervention and the subsequent treatment
outcome validation, this thesis will not cover the actual RFA simula-
tion itself, but approaches to provide necessary prerequisites for its
feasibility.

acquired information could be transferred onto intra-interventional image
data via manual or automatised image fusion. Thus, overlays of previ-
ously segmented metastases, risk structures, predicted ablation zones and
preferable applicator pathways could be projected onto the intra-operative
images, which would enhance metastasis puncture precision and speed
and thus, positively affect the treatment outcome. Supporting visual con-
text information could reduce the radiologists’ cognitive effort arising
from the mentally mapping of diagnostic image and planning informa-
tion onto intra-operative images. However, largely automatic registration
methods are to be preferred, since manual fusion would considerably
delay the start of the intervention. Considering navigation support by
optimised applicator pathways, a real-time tracking of the needle tips
could further reduce the required cognitive effort of the radiologists.
There are various existing approaches in literature and also commercial
solutions regarding this tracking task, which could also enable live up-
dates of the intervention plan (Hirooka et al., 2016; Tomonari et al., 2013).
Subsequent to the metastasis puncture, the ablation process is performed
under consideration of the parameter settings, i.e. induced energy and
ablation time, defined during the preceding simulation.

post-interventional phase After the RFA, follow-up MRI scans
can be used as an input for a computer-supported assessment of the treat-
ment outcome. With the aid of a framework that covers every step of the
post-treatment process, i.e. target structure segmentation, image fusion of
pre- and post-RFA images, and the computation of quantitative valida-
tion measures, the intervention outcome can be reliably and objectively
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evaluated. Information regarding tumour coverage and safety margins
towards organs at risk, for instance, can enhance prediction performance
of tumour recurrence and survival time. Furthermore, by comparison
with the pre-interventional RFA simulations, the results of the treatment
validation can contribute to the optimisation of prospective ablation zone
predictions, in the sense of a feedback loop. Considering such an ad-
vanced computer-supported post-treatment workflow, the framework
should consist of widely automatised, precise, and fast image processing
methods.

1.4 thesis objectives

The previous section has pointed out, that there are various indications
to establish a more sophisticated and computer-assisted workflow of RFA
interventions of spinal tumours and metastases, as it is done at present.
The main purpose of this thesis is to provide solutions in terms of widely
automatised image processing approaches to reduce the radiologists’
workload and time needed for recurring and time-consuming tasks, to
enhance precision and speed of interventional procedures, and to support
clinical decision-making. It is of crucial importance that such methods are
suitable to be integrated into clinical routine by meeting the requirements
defined by radiologists.

Therefore, various aspects throughout the clinical workflow with promis-
ing potential of improvement were identified, starting from approaches
to support therapy and intervention planning, to approaches that provide
relevant assisting information during the intervention, as well as meth-
ods to enable a quantitative and reliable treatment outcome validation
afterwards. For this purpose, multiple objectives regarding each task
were defined in cooperation with the clinical partner in order to develop
suitable and adequate solutions. In addition, various aspects of this thesis
can also be transferred to analogous clinical issues or interventions, which
makes the findings of this work relevant beyond the particular underlying
subject matter.

1.5 thesis structure

Since this thesis covers computer-assisted methods supporting various
processing steps throughout the clinical workflow of spinal RFAs, it
seemed to be most appropriate to align the following chapters with the
chronological order of the clinical procedures. This implies that the author
will follow the general clinical sequence of a pre-interventional phase,
an interventional phase and a post-treatment phase, as introduced in
Section 1.3, and subdivide each of the key aspects of this thesis into the
usual sections "Introduction", "State of the Art", "Materials and Methods",
"Results", "Discussion", and "Conclusion", without losing sight of the
overall purpose of the work. This hopefully contributes to the thematic
coherence of the individual parts and the readability of the whole thesis.
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P R E - I N T E RV E N T I O N A L P H A S E

Subsequent to the initial diagnosis of spinal metastases or lesions and the
resulting decision to treat them by minimally invasive RF ablations the
therapy and intervention planning phase represents the first part of the
treatment workflow. In terms of computer-assistance, the segmentation
of relevant anatomical structures represents a pivotal step towards a
prospective patient-individual ablation simulation and support during
the intervention. In order to numerically simulate heat propagation and
related tissue necrotisation volumetric models of all involved tissues
are required, i.e. metastases, vertebral bodies and risk structures like
the spinal cord. This thesis focuses on the segmentation of the first
two structures, as there were still open research issues or limitations in
the related literature, while for instance, spinal cord segmentation was
adequately addressed in the past by several studies (De Leener et al.,
2015; Prados et al., 2016). It is worth mentioning, that this chapter of
the thesis does not cover the implementation and design of a numerical
simulation itself, which is in development by the cooperation partner
Frauenhofer MEVIS (Kröger et al., 2010; Kröger et al., 2006; Weihusen
et al., 2010). However, it addresses automatised approaches to provide
required prerequisites, which otherwise would have to be produced
manually in a very time-consuming and tedious manner. The content of
this chapter is based on Hille et al. (2018b) and Hille et al. (2020).

2.1 vertebral body segmentation

2.1.1 Introduction

Although this thesis focuses in particular on minimally invasive interven-
tions of spinal metastases, it is noteworthy that with advancing computer-
assisted medicine the segmentation of spinal structures like the vertebral
bodies becomes increasingly relevant in other medical fields, too. Prior to
the relevance in spinal oncology, the quantitative recording of the spine
and thus the vertebrae has a considerable impact on various orthopedic
and neuroradiological diagnoses, ranging from scoliosis, stenosis and
osteoporosis to vertebral fractures (Brinjikji et al., 2015; Parizel et al., 2010).
Besides the diagnostic and therapeutic purposes, automatised segmenta-
tion procedures become increasingly important for processing the vast
amounts of image data acquired for epidemiological studies (Rak and
Tönnies, 2017).

Basically, segmentation methods can be categorised according to the
degree of automation, starting with completely manual methods, fol-
lowed by semi-automatic methods, which for example only require user
initialisation, up to fully automatised solutions (Smistad et al., 2015). Each

15
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category offers advantages, but always with the drawback of restrictions
or limitations regarding other aspects. While manually performed seg-
mentations most commonly represent the gold standard with regard to
the segmentation accuracy and are used as a ground truth for evalua-
tion purposes of more automatised methods, they come at the cost of
being highly time-consuming and tedious. With increasing degree of
automation, the more challenging and ambitious it becomes to formulate
adaptive and generalisable model terms from a priori knowledge and
available image information to provide suitable solutions for specific
segmentation tasks. In general, it constitutes a balancing act between
defining descriptive features as precisely as possible, while being gener-
alisable and capable of representing shape and appearance variabilities
of the target structures due to their natural variety as well as different
imaging protocols. The goal of most automatised approaches is to reduce
the required time and user effort to perform the segmentation task. This,
however, usually comes at the cost of a lowered accuracy, since it is hardly
possible to represent the vast appearance variability of anatomical struc-
tures in a specific model. With the increasing relevance of learning-based
methods, the formulation of model terms has been largely eliminated
and replaced by the automatised generation of distinctive image features.
This has the great advantage that even features can be extracted which
would either not have been noticed as important in a manually crafted
model, or the implementation of such image information as a model term
was not sufficiently applicable. However, learning-based systems must be
fed with sufficiently large amounts of training data to widely represent
the inherent variance of the data. Since clinical image data is often highly
limited, the amount of available patient cases is usually a restricting factor
in learning-based segmentation strategies.

While most of the related spine segmentation approaches that focus
on CT or radiography (Darwish et al., 2015; Hammernik et al., 2015;
Lessmann et al., 2019) benefit from the high contrast of bone tissue as
well as the mostly high spatial resolutions, diagnostic MRI became an
indispensable technique in clinical decision-making due to amplified soft
tissue contrasts and the avoidance of radiation exposure. Besides, CT
and radiographic imaging cannot adequately deal with some pathologies
like bone tumours and metastases, particularly in early stages (Shah and
Salzman, 2011). Therefore, MRI is often essential for diagnostic purposes,
for instance, for the scenario addressed in this thesis. However, some
characteristics of routine spine MRI tremendously hamper the automation
of segmentation approaches. Firstly, highly anisotropic spatial resolution
results in partial volume effects and, thus, in blurred delineations between
different tissue types especially among adjacent cross-sections (see Figure
2.1). Furthermore, bias field artifacts cause non-homogenous intensities
between central and marginal areas. In addition, the image quality and
emphasis of different tissues is affected by various imaging parameters,
since standarised measurement units like the Houndsfield unit (HU)
in CT do not exist in MRI. This means, however, that even native MRI
sequences sometimes considerably vary in their image contrasts and
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a b c

Figure 2.1: Two reconstructed axial (a and b) and one native sagittal slices (c) of
a clinical routine T1-weighted MRI scan demonstrate the difficulty in
distinguishing vertebrae from adjacent structures due to the partial
volume effects (PVE) caused by high anisotropy. With large sagittal
slice spacing, this becomes particularly pronounced at the lateral
ends of the vertebrae.

in absolute intensities when it comes to different scanner models or
parameter settings. Therefore, a segmentation method that is relevant in
clinical settings has to deal with a large variety of MRI sequences and
imaging protocols.

2.1.2 State of the Art

There are various works in literature regarding vertebral body segmenta-
tion in MRI, which differ in their applied methods and the used image
data. Besides approaches that were applied to mid-sagittal 2D images
(Athertya, Kumar, et al., 2016; Ghosh et al., 2014; Huang et al., 2009),
which disregarded valuable spatial information of tomographic imaging,
various 3D methods were presented for spinal MRI that will be described
in detail below.

Besides largely obsolete approaches based on thresholding, water-
sheds, and region-growing, segmentation strategies using deformable
models, e.g. active contour models (ACM) (Caselles et al., 1997; Kass
et al., 1988) or active shape models (ASM) (Cootes et al., 1995) were
applied to vertebral body segmentation in spinal MRI. Davatzikos et al.
(2002), for instance, trained a deformable shape model to register image
data with template images and achieved on average a Dice similarity
coefficient (DSC) of 81.5 ± 3.6 % on routine images of 14 young healthy
volunteers. They used solely T1-weighted MRI scans with a spatial reso-
lution of 0.93 × 0.93 × 3 mm3.

Štern et al. (2011) also applied a model-based approach, while optimis-
ing 29 shape parameters by maximisation of the dissimilarity between
inner and outer object intensities driven by image gradients. Their ap-
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proach was initialised by marking of each vertebrae in terms of an user
input and by approximately specifying the vertebral size as a selection
of the respective spine segment (upper/lower thoracic and lumbar). The
applied evaluation set contained solely T2-weighted MRI sequences with
in total 75 vertebral bodies of nine healthy subjects, three of them with
a resolution of 0.4 × 0.4 × 3 mm3 and six with isotropic spatial reso-
lution (1 × 1 × 1 mm3). Their approach resulted in an average surface
distance (ASD) between the segmented object surface and ground truth
points of 1.85 ± 0.47 mm. Štern et al. (2011) stated a processing time
ranging from one to 15 min per vertebra.

Neubert et al. (2011) and Neubert et al. (2012) used ASM to segment
both, vertebral bodies and intervertebral discs. They tested their approach
on T2-weighted MRI scans of 14 healthy volunteers with in total 132
vertebrae, acquired with high resolution (0.34 × 0.34 × 1 to 1.2 mm3)
and achieved a mean DSC of 91 % and a mean Hausdorff distance (HD)
of 4.08 mm. However, the average run time per vertebra of 35 min was
considerably long. A 10-fold processing time reduction decreased their
DSC from 90.8 % (Neubert et al., 2012) to 85 % (Neubert et al., 2011).

Ayed et al. (2012) pursued the idea of formulating the segmentation
as a distribution-matching problem. By using an augmented Lagrangian
method the distribution of vertebral appearance features was matched
to an a priori known reference distribution in order to classify vertebral
foreground and non-vertebral background voxel. A mean mid-sagittal 2D-
DSC of 85 % was achieved, which leads to the assumption that volumetric
quality measures would certainly drop, since most segmentations have
difficulties at the lateral ends of the vertebrae due to partial volume
effects caused by low laterolateral resolutions or large slice spacings,
respectively.

Kadoury et al. (2013) included shape and pose relations between var-
ious vertebrae to extend the concept of statistical shape models and
to avoid any ambiguities. Using non-linear manifold embeddings im-
proved the shape space representations in contrast to common ASM.
They achieved a ASD of on average 2.93 ± 1.83 mm, while applying solely
T1-weighted sequences of eight subjects with almost isotropic spatial
resolution (1.3 × 0.9 × 1 mm3).

Zukić et al. (2014) combined edge- and intensity-based features, i.e.
Canny edges and thresholded gradient magnitudes to a multifeature-
based model. Their approach was initialised by a preceding vertebral
center detection step using a Viola-Jones detector. The surface mesh of
their model was enlarged by balloon forces and constrained by a smooth-
ness term and the approximated vertebral body size. They achieved an
average DSC of 79.3 % and a mean ASD of 1.76 ± 0.38 mm. Their method
was evaluated on clinical routine datasets consisting of a variety of MRI se-
quences including both healthy and pathological vertebrae. Therefore, in
contrast to the above mentioned works, their evaluation set was designed
to reflect clinical routine imaging.

Chu et al. (2015) fully automatically localised vertebral bodies to define
a region of interest (ROI) for a subsequent segmentation step, where



2.1 vertebral body segmentation 19

they were using random forest classification for estimating the fore- or
background likelihood of each pixel within the produced ROIs. The
results were combined with a learned probability map to segment each
vertebral body via thresholding. Chu et al. (2015) tested their approach
on 23 T2-weighted images, without stating any pathologies, achieving an
overall DSC of 88.7 %, a mean ASD of 1.5 ± 0.2 mm and an average HD
of 6.4 ± 1.2 mm. The average computational time per dataset was about
1.3 min.

Korez et al. (2016) introduced a convolutional neural network (CNN)-
based approach in spine MRI segmentation. Their method linked active
shape models with likelihood maps of the vertebral bodies and achieved
an overall DSC of 93.4 %, an average HD of 3.83 mm and a mean ASD
of 0.54 mm. Korez et al. trained and tested their methods on the 23
T2-weighted images made publicly available from Chu et al. (2015).

Goankar et al. (2017) presented a machine learning-based system for
vertebral body segmentation on clinical MRI scans of the lumbar spine. In
contrast to Chu et al. (2015) and Korez et al. (2016) they examined the ap-
plicability of their method to different MRI sequences, though they trained
only on T2-weighted images. The implementation of superpixel-based
multiparameter ensemble learning was followed by some morphological
post-processing to increase segmentation scores. Goankar et al. had in
total 48 sagittal T2-weighted and 15 T1-weighted MRI scans and randomly
selected six T2-weighted image volumes for training procedure. The spa-
tial resolution varied in-plane from 0.34 × 0.34 to 1.1 × 1.1 mm and the
slice thickness was between 0.5 to 5.0 mm. Applying their approach to
T2-weighted images resulted in a mean DSC of 83 %. The segmentation
of vertebrae in T1-weighted images after training on T2-weighted images
expectably resulted in lower DSC scores (on average 75 %).

It is noteworthy that in the time since the elaboration and publication
of the work presented in this section, a few more relevant works have
been published. Rak et al., 2019, which was the most promising among
them, presented a whole-spine segmentation approach for MRI data com-
bining graph cuts including star-convexity constraints and convolutional
neural networks, which considerably built on their previous work (Rak
and Tönnies, 2017). After a required vertebral patch extraction, a CNN
provides likelihood maps in terms of appearance and shape priors, which
were the input for a graph cut formulation based on encoding swaps to
avoid ambiguous segmentations of neighbouring vertebrae. To evaluate
their approach, two databases were used, including T1- and T2-weighted
image volumes of 64 healthy subjects from an epidemiologic study and 23
T2-weighted scans from a publicly available source (Chu et al., 2015). Rak
et al. (2019) reported a mean DSC of 94.9 %, an average ASD of 0.93 mm
and run times below two seconds per vertebra.

The analysis of the existing literature regarding vertebral body seg-
mentation showed that each of the related work was limited by either
one or more of the following aspects: insufficient segmentation accuracy,
long computational time, limitation to a single MRI sequence or applying
image data of higher quality for non-clinical study purposes including
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healthy subjects. Accordingly, despite various existing approaches from
the related literature, there was still a need for a solution strategy that
addresses the specific requirements of the particular clinical purpose in
this thesis.

2.1.3 Objectives

Considering the settings of clinical routine and the aforementioned goal
of supporting therapy planning of spinal metastasis interventions, the
following objectives were defined in cooperation with the clinical partner:

• Computational time per patient case < 1 min on current consumer
hardware

• Applicable to various MRI sequences for diagnostic purposes (T1-,
T2-, contrast-enhanced T1-weighted etc.)

• Segmentation accuracy in the range of the inter-reader variability of
field experts

In clinical procedures time plays an important role, expecting suit-
able computerised approaches to fit into the clinical workflow without
significant delay or excessive workload. Supplementary and novel ap-
proaches to be integrated should optimally support physicians in clinical
decision-making and with repetitive tasks, which tend to be tedious and
monotonous, and thus, susceptible to errors due to fatigue. Typically,
manual segmentations are repetitive tasks, especially with stacks of slices
acquired during 3D tomographic imaging like MRI. Therefore, the sup-
port provided by computer-assisted and widely automatised methods in
spinal segmentation can drastically reduce the required effort and time.
Subsequent to the analysis of the related literature and in consideration of
the required time of a manually performed vertebral body segmentation
(>10 min per patient case), the objective of a computational time of less
than 1 min per patient case was defined. This means a significant reduc-
tion of the required time compared to a manual contouring, whereby user
interaction, e.g. for initialisation purposes, is still feasible.

Furthermore, approaches with a wide-ranging applicability to clinical
routine spinal MRI should deal with various imaging sequences, parame-
ter settings, spatial resolutions, spine sections and healthy vertebrae as
well as pathological altered due to fractures, bruises, or metastases. In
order to verify the compliance with this requirement, a comprehensive
and diverse evaluation set has been compiled with particular focus on
clinical data, which is usually highly anisotropic and diverse regard-
ing the imaging protocols. Previous works often shifted away from the
challenges of clinical settings by applying their approaches to only one
particular MRI sequence or healthy subjects for study purposes.

In order to provide effective support in clinical routine of spinal inter-
ventions the segmentation quality should be close to that of an experi-
enced radiologist and in the range of the inter-reader variability (IRV). The
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IRV represents an appropriate and robust estimate of an expert-like seg-
mentation accuracy. Methods that produce significantly worse accuracies
are only of limited use, since the required post-processing and correction
effort would outweigh the time saved by an automatic solution.

Summarising, an approach with reasonable clinical applicability for
the addressed scenario should cope with various MRI sequences and
imaging protocols, highly anisotropic data, multiple pathological findings
in any spine segment, it should require only short computational time,
and provide a segmentation accuracy in the range of the IRV.

2.1.4 Materials and Methods

Image Data

In order to demonstrate the suitability of the proposed method, an evalu-
ation set was assembled, which included image data of various clinical
and research purposes. It consisted of four different databases, including
63 sagittal MRI datasets with overall 419 vertebral bodies of the cervical,
thoracic and lumbar spine. The patients or subjects differed in age, sex
and presence of spinal pathologies. The evaluation data was acquired
in different hospitals and research facilities with various MRI scanners
and comprised multiple imaging sequences and protocols (see Table 2.1).
Besides this variety, a key characteristic of most datasets was their high
anisotropy factor (slice spacing divided by in-plane pixel spacing), rang-
ing from 1.6 to 8.19.

The first database consisted of pre-interventionally acquired MRI data
before RFAs of spinal metastases and was representative for the main
application case which this thesis addresses. This image data included
both vertebrae with metastases from different primary tumours and their
adjacent healthy neighbours.

Commonly, the comparison of segmentation approaches and their
results between entirely different datasets must be considered as indirect.
To overcome this limitation, the evaluation set furthermore consisted
of overall 39 image volumes made publicly available together with the
related work of Zukić et al. (2014) and Chu et al. (2015). Hence, the
produced results could be matched directly with those works. The data
from Zukić et al. (2014) included both healthy and pathological spines,
e.g. with scoliosis, spondylolisthesis, and vertebral fractures and consisted
of various MRI sequences. The third database, published with the work
of Chu et al. (2015), comprised 23 T2-weighted magnetic resonance (MR)
images of thoracolumbar spines of voluntary subjects and represented
common image data used for research purposes.

The concluding database consisted of epidemiological image data from
the Study of Health in Pomerania (SHIP) study (Völzke et al., 2011)
and featured spine MR images including T1- and T2-weighted sequences.
Using this data in particular served the purpose to understand the limits
of the presented method regarding low spatial resolution and image
quality.
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Table 2.1: Characterisation of all datasets used for the evaluation of the proposed
method. The individual datasets differed regarding the used MRI
sequences (spin echo (SE), turbo spin echo (TSE), fast spin echo (FSE),
turbo inversion recovery magnitude (TIRM)), pixel spacing Px,y and
slice thickness Sz (both stated in mm), the size of the acquisition matrix
M, the anisotropy factor FA, the number of labelled vertebral bodies
#V , the displayed spine segment SpS (C - cervical, T - thoracic, L -
lumbar), the presence of pathology (n.s. - not stated), age, sex, and
from whom the reference segmentations originated (neuroradiologists
N, trained field experts T ). The horizontal lines subdivide the used
datasets according to their source (first section - pre-interventionally
acquired before RFAs, second section - publicly released by Zukić et al.
(2014), third section - publicly released by Chu et al. (2015), fourth
section - part of the SHIP (Völzke et al., 2011).

Dataset MRISeq Px,y Sz M FA #V SpS R Path. Age Sex

preRFA_1 T1 TSE 0.5 3.3 640 x 640 x 20 6.6 5 C7 - T4 T - 54 F

preRFA_2 T1 TSE 0.78 3.3 512 x 512 x 20 4.23 7 T1 - T7 T + 70 M

preRFA_3 T1 TSE 0.68 3.3 512 x 512 x 20 4.85 6 T12 - L5 T + 61 M

preRFA_4 T1 TSE 0.49 3.3 528 x 528 x 17 6.73 7 T3 - T9 T + 76 M

preRFA_5 T1 TSE 0.49 3.3 528 x 528 x 15 6.73 8 T7 - L2 T + 74 M

preRFA_6 T1 TSE 0.46 3.3 640 x 640 x 17 7.17 5 T12 - L4 T + 76 M

Aka2 T2 FSE 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 21 F

Aka3 T1 FSE 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 21 F

Aka4 TIRM 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 21 F

Aks5 T2 FSE 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 22 F

Aks6 T1 FSE 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 22 F

Aks7 TIRM 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 22 F

Aks8 T1 FSE 0.70 4 512 x 512 x 15 5.69 8 T10 - L5 T + 22 F

C002 T2 TSE 1.12 3.3 448 x 448 x 31 2.96 12 T6 - L5 N + 74 F

DzZ_T2 T2 TSE 0.55 4.4 640 x 640 x 12 8.05 8 T10 - L5 T - 27 M

DzZ_T1 T1 TSE 0.68 4.4 512 x 512 x 12 6.44 8 T10 - L5 T - 27 M

F02 T2 SE 0.5 3.85 768 x 768 x 18 7.7 8 T10 - L5 N + 51 M

F03 T2 TSE 1.19 3.3 320 x 320 x 25 2.77 6 T12 - L5 N + 72 M

F04 T2 TSE 1.12 3 448 x 448 x 23 2.69 12 T6 - L5 N + 69 F

S01 T2 SE 0.47 3.85 640 x 640 x 16 8.19 6 T12 - L5 N + 65 M

S02 T2 SE 0.47 3.85 640 x 640 x 16 8.19 7 T11 - L5 N + 55 F

St1 T2 SE 0.5 3.85 704 x 704 x 20 7.7 7 T11 - L5 N + 71 M

Chu (1-23) T2 TSE 1.25 2.0 305 x 305 x 39 1.6 7 T11 - L5 T n.s. n.s. F, M

SHIP (1-9) T1/T2 TSE 1.12 4.4 448 x 448 x 15 3.67 5 L1 - L5 N, T n.s. 29-65 F, M
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Methodology

The major steps of the proposed method were as followed (see also Fig-
ure 2.2):

1. Initially, a Gaussian filter-based intensity correction was imple-
mented as a pre-processing step to deal with bias field artifacts. The
filter kernel size was set to 120 × 120 × 30 mm3 and σ to 20 mm to
estimate the bias field of each image volume. In order to remove it,
the original image was divided by the bias field estimation. Subse-
quently, each image volume has been upsampled to ensure spatial
isotropy.

2. User interaction initialised the presented approach with three points
in a selectable mid-sagittal cross-section to approximate the size, cen-
ter and sagittal orientation of each vertebral body. For this purpose,
both corners of the superior endplate as well as the posterior corner
of the inferior endplate were marked. The lateral flection angle
could be deduced from interpolating the landmarks’ z-coordinates
(i.e. in slice direction) of consecutive vertebral bodies.

3. Intensity-based features, e.g. median and variance, were obtained
from a cube within the vertebral center and with variable edge
length, i.e. two fifths of the specific vertebral body height and
length.

4. An abstracted vertebral body shape model was placed upon each
vertebral center with the approximate vertebral body length, height
and orientation.

5. Within this shape, a pre-segmentation was performed based on
adaptive thresholding. The previously gained intensity-based fea-
tures ensure patient and MRI sequence independence and therefore
avoid common difficulties regarding thresholding in MRI. Subse-
quently, the result was morphologically filtered, first by hole filling
and dilating with a 3 mm diameter ball structuring element and
followed by removing objects smaller than 1 cm3. To yield the
vertebral body probability map P, the resulting binary image was
distance-transformed by a Gaussian convolution (kernel size of
10 mm3 and σ of 2 mm) and multiplied with the original image
volume. This weakened local constraints at the boundaries of the
pre-segmented object and enabled level-set convergence away from
disadvantageously placed shape models.

6. Boundary feature maps G of each vertebral body were computed
by dilating the extracted boundaries of the fitted vertebral body
shape model using a 3 mm diameter ball structuring element, sub-
sequently distance-transforming them likewise the probability map
and multiplying them with the gradient magnitude images. This
feature ensured level-set convergence towards object boundaries
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Segmentation Results

Bias Field Correction and Initialisation 3D Feature Maps

Hybrid Level-Sets

Figure 2.2: Illustration of the pipeline of the proposed vertebral body segmenta-
tion approach.

within the range of the model contours. The probability map P

and the boundary feature map G defined both terms of the hybrid
level-set formulation 2.1.

The proposed 3D bias field-corrected hybrid level-sets (BC-HLS) ap-
proach was based on the work presented by Zhang et al. (2008) and
combined regional intensity and boundary features with an approxima-
tive geometry of the target object in order to steer and constrain the curve
towards vertebral body boundaries. Hence, the region information formed
a counterweight to attenuate leakage problems frequently emerging in
boundary-based methods. The level-set functional to be minimised was
defined as:

E(φ) = −α

∫
Ω

P ·H(φ)dΩ+β

∫
Ω

G · |∇H(φ)|dΩ (2.1)

where H(φ) represented the Heaviside function, Ω was the image
domain and the weights α and β were used to balance both terms. The
ratio of α to β was empirically determined and set to 4 : 3. The probability
map P encouraged the level-set contours to enclose regions of a specific
per-vertebra intensity range and was defined as:

P = g(Is(x),σ) · I(x) (2.2)

where I(x) was the pre-processed image from step 1 and g(Is(x),σ)
the result of the distance-transformed and morphologically filtered pre-
segmentation Is(x) in step 5. The boundary feature map G was the
functional of the geodesic active contour term in the hybrid level-set
formulation and was defined as:
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G = g(Sc(x),σ) · |∇I(x)| (2.3)

where |∇I(x)| was the gradient magnitude image and g(Sc(x),σ) the
result of the distance transformation via Gaussian convolution of Sc(x),
which represented a binary image of the extracted and dilated shape
model contour.

With φt defined as a signed distance function:

φt = αP+βdiv(G∇φ) (2.4)

which could be derived as a simplified iterative approximation of a
partial differential equation from the gradient flow applied to 2.1. Like
Zhang et al. (2008) initally proposed each iteration step i started with a
re-initialisation of φi and subsequently the embedded function φ evolved
as an intermediate step with a predefined time step using:

φ̄i = φi +4tαP (2.5)

After re-initialising φ̄i, it was updated to φi+1 by solving the partial
differential equation:

φt = βdiv(g∇φ̄i) (2.6)

Evaluation

Ground truth segmentations were available for each dataset created by
a radiologist or a trained field expert. For both, the pre-RFA and the
SHIP datasets a second reader produced an additional reference segmen-
tation to assess the IRV. In order to quantify the segmentation accuracy,
overlap-based and distant-based measures were applied. For that purpose,
DSC, ASD, and HD were used to ensure comparability with as many
related works as possible. The overlap-based Dice similarity coefficient
was defined as:

DSC =
2 |R1 ∩ S1|
|R1|+ |S1|

(2.7)

with R1 and S1 as foreground voxels of the reference and the produced
segmentation. Both distant-based measures referred to the surface delin-
eation of the automatically produced and the reference, i.e. ground truth
segmentation. The average surface distant was defined as:

ASD(R,S) = |x− y| =
√∑

|x− y|2 (2.8)
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where ASD was the mean Euclidean distance between any point x ∈ R
and their nearest neighbour y ∈ S with R and S being the surface point
sets of the reference and the produced segmentation. The Hausdorff
distance HD, which was defined as:

HD(R,S) = max{Ȟ(R,S), Ȟ(S,R)} with (2.9)

Ȟ(R,S) = max{min{|x,y|}} (2.10)

being the maximum of both directed Hausdorff distances Ȟ between
the two surface point sets R of the reference and S of the produced
segmentation in each direction. Ȟwas the maximum distance between any
point x ∈ R and their nearest neighbour y ∈ S and therefore, represents
the worst contour misalignment. Besides the HD, the 95th percentile
Hausdorff distance (HD95) can be used especially for learning-based
segmentation tasks w.r.t. a more robust percentile than the common 100 %
in order to reduce the punishment by single outlier voxels in an otherwise
good segmentation.

2.1.5 Results

As mentioned before, the IRV was computed for the pre-RFA and the
SHIP datasets, ranging from 85.6 % to 91.3 % DSC with on average
88.3 ± 1.6 %, which was similar to the findings of Zukić et al. (2014) (91 %).
The mean ASD was 0.84 ± 0.41 mm. Since some of the segmentations
were performed by trained field experts, it was additionally examined
whether there were significant discrepancies between those segmentations
in comparison to two radiologists. The DSCs of both IRV variants barely
differed with on average 88.1 % compared to 88.7 %. Similar levels of the
IRV were also found for segmentation tasks regarding other organs or
structures (Geets et al., 2005; Zou et al., 2004). The proposed BC-HLS
approach achieved on average 86.0 ± 3.9 % DSC, 1.59 ± 0.24 mm ASD
and 6.86 ± 1.06 mm HD. Average per-vertebra computational time was
5.4 s, whereas the required time was dependent on the spatial resolution
and vertebra size. This became apparent considering the computational
time differences between the datasets of Zukić et al. (2014) with partially
twice the spatial resolution of those datasets of Chu et al. (2015) (see Table
2.2). The complete evaluation results for each dataset are given in the
Appendix (see Tables A.1 and A.2).

2.1.6 Discussion

In this section, a segmentation approach for vertebral bodies in spinal
MRI was presented placing particular importance on clinical require-
ments and settings. Most of the previously published works regarding
this issue were limited solely to study data of healthy subjects and single
MRI sequences and thus, largely ignored the difficulties of clinical routine
imaging. Furthermore, some of the presented works achieved insufficient
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a b c

Figure 2.3: Overlay of segmentations produced by the proposed BC-HLS ap-
proach (green) and the ground truth (red contours) of dataset F03
(top row) and preRFA_3 (bottom row). Mid-sagittal (a and b) and a
lateral cross-section are shown (c). The mean DSC of those datasets
was 84.3 % and 86.7 %, respectively.

segmentation accuracy or were too time-consuming w.r.t. the above de-
fined objectives. These limitations, however, made them unsuitable for
the clinical application addressed in this thesis, and therefore, a novel
solution strategy with the BC-HLS approach was presented.

The overall mean DSC achieved with the proposed approach was
86.0 ± 3.9 %, the mean ASD was 1.59 ± 0.24 mm and the mean HD was
6.86 mm. With regards to the previously defined objectives, a compar-
ison with the IRV was of critical importance. The latter resulted in on
average 88.4 % DSC, indicating that the proposed approach with 86.0 %
DSC provided almost expert-like segmentation accuracy, though the stan-
dard deviation was considerably higher (1.6 % vs. 3.9 %). Nevertheless,
the presented BC-HLS approach achieved on average segmentation ac-
curacies within the range of the IRV (85.6 % to 91.3 %) and thus met the
defined clinical objective (see Section 2.1.3). In addition, the required
computational time of less than one minute was maintained in all cases,
which represents a significant improvement over manual segmentation
procedures.

Most discrepancies between the reference and BC-HLS segmentation
arose from lateral slices and the impact of PVE, which hamper the detec-
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tion of object boundaries (see Figure 2.3). Non-learning-based segmen-
tation strategies are typical trade-offs between data- and model-driven
terms, which is why the latter were strengthened at locations of weak im-
age boundaries to avoid leakage problems common for level-set methods
(Zhang et al., 2008). However, this increased the dependence on model
assumptions, for example the spatial extent of the vertebral body model,
promoting under- or oversegmentation at such locations. The correlation
of image data and model knowledge is a fundamental issue for any
segmentation method based on model knowledge (Neubert et al., 2012;
Štern et al., 2011; Zukić et al., 2014). To attenuate level-set convergence
towards disadvantageously placed model boundaries, distance-based fea-
tures were integrated in both the probability and the boundary feature
map, in order to enable convergence towards image gradients within the
close surrounding. Additionally, pathologies like vertebral fractures or
metastases hamper segmentation approaches due to deformations and
atypical intensities within and around vertebral bodies, especially if the
cortical structures are affected. The latter manifests itself as weak or dis-
continuous delineations towards surrounding tissues, promoting level-set
leakage problems, which could be largely compensated via strengthened
local model terms. Nevertheless, the limitations of the presented approach
were observed in such rare cases if the vertebra was severely damaged or
if the image quality was excessively poor due to artifacts.

A slight difference could be observed in the segmentation quality be-
tween T1- and T2-weighted sequences, where the latter suffered especially
from over-segmentation problems due to similar intensities within the
vertebral body and the cerebrospinal fluid of the adjacent spinal cord.
This effect was further intensified by PVE due to low spatial resolutions
as commonly used in clinical routine spine MRI.

With regard to clinical applicability, the accuracy and precision of seg-
mentation approaches are of primary importance. The overall accuracy of
the proposed method was comparable to the state of the art (see Table 2.2),
achieving mainly superior results (Goankar et al., 2017; Kadoury et al.,
2013; Schwarzenberg et al., 2014; Štern et al., 2011; Zukić et al., 2014),
even though few works showed higher accuracies (Korez et al., 2016;
Neubert et al., 2012; Rak et al., 2019). However, most of the related work
focused only on one particular MRI sequence, despite clinical settings
suggesting an applicability for various imaging sequences according to
the diagnostic purposes. Furthermore, the high accuracy of the work of
Neubert et al. (2012) came at a cost of a considerably longer processing
time per vertebra of 35 min (vs. 5.4 s of the proposed BC-HLS method)
on recent hardware. A 10-fold processing time reduction decreased their
average DSC from 90.8 % (Neubert et al., 2012) to 85 % (Neubert et al.,
2011), which was on a par with the results of the presented method, but
still unsuitably time-consuming.

Comparable to the evaluation set applied here, only Zukić et al. (2014),
Goankar et al. (2017) and the most recent work of Rak et al. (2019) tested
their methods on at least two MRI sequences. The first two works each
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Table 2.2: Related works and the presented BC-HLS approach in comparison w.r.t. the used MRI sequences, the number of datasets #DS, the number of
segmented vertebral bodies #V , the spine segment SpS (C - cervical, T - thoracic, L - lumbar) as well as the achieved results (DSC, ASD, HD) and
the required computation time tC per vertebra. The superscript to the related works and the proposed approach refer to the used database (Z -
datasets publicly provided by Zukić et al. (2014), C - datasets publicly provided by Chu et al. (2015)).

2D / 3D Works MRISeq #DS #V SpS DSC [%] ED [mm] HD [mm] tC

2D
Huang et al., 2009 T2 - 52 C, T, L 96 - - -
Ghosh et al., 2014 T2 13 - L 84.4± 3.8 - - -

Athertya, Kumar, et al., 2016 T1 16 - T, L 86.7± 4.1 - 5.40± 1.12 5.6 s

3D

Štern et al., 2011 T2 9 75 T, L - 1.85± 0.47 - 1-15min
Kadoury et al., 2013 T1 8 136 T, L - 2.95± 1.85 - -
Neubert et al., 2012 T2 14 132 T, L 90.8± 1.8 0.67± 0.17 4.08± 0.94 35min

Zukić et al., 2014Z T1, T2, TIRM 17 153 T, L 79.3± 5.0 1.76± 0.38 11.89± 2.56 8.3 s
Schwarzenberg et al., 2014 T2 2 10 L 81.3± 5.1 - - 19 s

Chu et al., 2015C T2 23 161 T, L 88.7± 2.9 1.5± 0.2 6.4± 1.2 -
Korez et al., 2016C T2 23 161 T, L 93.4± 1.7 0.54± 0.14 3.83± 1.04 -
Goankar et al., 2017 T1, T2 57 - T, L 79± 5.0 - - -

Rak et al., 2019 T1, T2 128 1412 T, L 93.8± 2.6 1.06± 0.23 4.06± 1.14 1.35 s
Rak et al., 2019C T2 23 161 T, L 96.0± 1.0 0.79± 0.25 3.85± 2.20 0.9 s

3D
BC-HLS T1, T2, TIRM 63 419 T, L 86.0± 3.9 1.59± 0.24 6.86± 1.06 5.4 s

BC-HLSZ T1, T2, TIRM 17 153 T, L 84.1± 2.5 1.68± 0.24 7.89± 1.12 14.0 s
BC-HLSC T2 23 161 T, L 88.2± 1.9 1.66± 0.28 6.01± 1.01 1.3 s
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lacked segmentation accuracy to be considered as sufficiently precise and
moreover, Goankar et al. (2017) did not state any computational times.

Nevertheless, a comparison of different segmentation approaches must
be considered as indirect, since the evaluated datasets commonly differ
from each other and therefore should be interpreted cautiously. Consid-
ering this, it is of great benefit if publicly available data could be used
for benchmarking purposes. For instance, a straightforward comparison
with the work of Zukić et al. (2014) was possible, since they publicly
provided a large part of their evaluation datasets with corresponding
patient-individually stated results. The following findings and results will
refer solely to these shared datasets. Both in mean DSC (79.4 % vs. 84.1 %)
and distance measures like mean ASD (1.81 mm vs. 1.68 mm) and HD
(12.36 mm vs. 7.89 mm) the presented BC-HLS approach was more precise.
Nonetheless, their approach did not inevitably require manual user input,
but was based on the detection accuracy of a Viola-Jones detector. Their
mean execution time per vertebra was shorter than the presented method
(∼8.3 s vs. ∼14.0 s), however, the beforehand defined objective regarding
the computational time could still be met by the proposed method.

Publicly provided datasets of Chu et al. (2015) enabled the direct
comparison with their results and those of Korez et al. (2016) and Rak
et al. (2019), who applied the same data to their approaches. Again,
following results and findings will refer solely to these shared datasets.
The results achieved with the proposed BC-HLS approach were on a par
with the work of Chu et al. (2015), differing only in the decimal place
of the mean DSC or the mean distance measures. Korez et al. (2016)
and their deep learning-based method achieved superior results, but
aroused doubts about an applicability in clinical settings concerning
the computational time. While not stating any information about the
processing time, their approach was re-implemented in the course of
working on this section’s task. To predict a medium sized patch on a
consumer GPU it took about 3.75 min, and thus considerably longer
than the time required by the proposed BC-HLS approach (1.26 s per
vertebra). Additionally, the evaluation data used by Chu et al. (2015) and
Korez et al. (2016) included solely T2-weighted MRI sequences of healthy
subjects, whereby no conclusions could be drawn about the transfer to
and performance on other MRI sequences or clinical routine patient data.
Goankar et al. (2017) rather reported a loss of segmentation quality on
unseen MRI sequences. Most recently, Rak et al. (2019) published a work,
which surpassed the segmentation accuracy of the proposed BC-HLS
approach. They evaluated their method on, amongst others, the publicly
available data from Chu et al. (2015) and achieved a DSC of on average
96.0 % and an ASD of on average 0.79 mm, while requiring only 0.9 s per
vertebra. Nonetheless, the clinical applicability of CNN-based vertebrae
segmentation strategies still needs to be verified with regard to the variety
of MRI sequences and pathologically altered vertebrae present in clinical
routine imaging.
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2.1.7 Conclusion

A BC-HLS approach to segment vertebral bodies in diagnostic spinal MRI
was implemented and comprehensively evaluated. The method combined
regional intensity and boundary features to steer and constrain level-
set curves towards vertebral body boundaries. The bias field correction
and semi-automatic initialisation with vertebral body size approxima-
tion increased the robustness of the segmentation w.r.t. the spine section,
imaging sequence and appearance altering pathologies. The segmentation
accuracy was sufficient considering the beforehand defined objectives by
the clinical partner, while the presented approach was also applicable
to a large variety of MRI sequences and parameter settings. By provid-
ing results within seconds and requiring only minimal user input for
initialisation purposes, the presented method could well be integrated
into the pre-interventional workflow. Furthermore, it could be applied to
image data with presence of pathologies like fractures, scoliosis or spinal
metastases. These are essential requirements for the clinical applicability,
which were rarely taken into account by related works so far.

2.2 spinal mestastasis segmentation

2.2.1 Introduction

The relevance of treating spinal lesions will further gain importance in
the future due to the increased survival time of most malicious carcino-
mas and the associated probability to develop metastases (Transparency
Market Research, 2019). The symptoms make therapeutic solutions with
the most immediate effect necessary, since spinal metastases can tremen-
dously affect the quality of life by evoking vigorous pain by fractures,
bruises, spinal cord and nerve root compressions or neurologic deficits
(Klimo and Schmidt, 2004). Diagnosis and therapy planning can be done
with multiple radiological imaging techniques, e.g. planar X-ray radiog-
raphy, CT, SPECT or MRI. The latter overcomes restrictions of radiation
exposure of the aforementioned imaging techniques and offers enhanced
soft tissue contrast and direct bone marrow visualisation, which facilitates
early lesion detection as well as a robust and reliable assessment of the
spatial size and location. Futhermore, the diagnosis and grading of any
associated spinal cord compressions is only depictable in MRI (Shah and
Salzman, 2011).

Depending on their origin, there are two common types of bone metas-
tases: lytic and sclerotic lesions. The specific type considerably affects the
appearance of the metastases in different MRI sequences, ranging from
hypo- to hyperintense image signals compared to surrounding spinal
structures and non-pathological vertebral bone marrow (see Figure 2.4).

With regard to minimally invasive image-guided interventions like
RFA, the segmentation of vertebral metastases represents a pivotal step
during the therapy and intervention planning process. Above all, a patient-
individual intervention simulation including both the optimisation of the
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a b c

Figure 2.4: Examples of the appearance variability of spinal lesions (arrows) of
different types in STIR (a), T1- (b) and T2-weighted MRI sequences
(c). Displayed is an epidural metastasis with an osteolytic vertebral
body lesion (top row). The sagittal T1-weighted MR image shows
hypointensity with a paraspinal mass, while both the STIR and T2-
weigthed images display the lesion hyperintense. The mid row shows
hyperintensity in all acquired MR images, which is typical for benign
haemangioma. Sclerotic metastases are displayed in the bottom row,
showing characteristic hypointense signals compared to bone marrow
in both T1-weighted and T2-weighted MRI.

applicator access paths and needle tip positioning, as well as the numeri-
cal simulation of the ablative process require an accurate segmentation of
the metastases (see Figure 2.5). Furthermore, pre-interventionally defined
and segmented target zones transformed onto the intra-operative images
can enhance navigation and orientation. This can particularly improve ac-
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Figure 2.5: Segmentation of spinal metastases can support multiple aspects
throughout the therapeutic workflow: interactive visualisations of
spatial relations to risk structures (a) and applicator pathway opti-
misation (b) during the intervention planning, as well as navigation
support and visual target zone enhancement during the interven-
tion (c).

curacy and duration of the metastasis puncture, and therefore have a ben-
eficial effect on the treatment outcome. During the post-treatment phase,
metastasis segmentations are required in order to perform a computer-
assisted treatment outcome validation. Besides these major use cases,
other aspects can additionally benefit from such segmented lesions, for
instance patient-specific visualisations for pre-interventional patient in-
formation (Hille et al., 2017).

In summary, an automatic computer-assisted segmentation of spinal
metastases can considerably improve the clinical workflow in several
aspects, while drastically reducing the required time and effort, which is
generally associated with segmentation tasks of volumetric image data.

2.2.2 State of the Art

Segmentation tasks in medical image processing have a long history
and numerous solution strategies for a wide range of applications have
been developed to date, focussing on all kinds of imaging techniques as
well as different structures and organs. The relevance of cancerous dis-
eases suggests that the segmentation of lesions and metastases presents
an important subtask within this topic. Besides well-established seg-
mentation methods like threshold-based, region-based, classification- or
model-based approaches, deep learning-based techniques have been in-
troduced more recently to lesion detection and segmentation tasks. To
this day, however, there are only few publications regarding computer-
assisted methods dealing particularly with spinal lesions and most of
them are focused on the detection of a specific metastatic type, especially
in CT imaging. Therefore, this section will discuss both relevant literature
regarding deep learning-based methods of spinal metastases, as well
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as some publications focussing on the segmentation of lesions of other
organs, i.e. liver and brain tumours in both CT and MRI.

Starting with spinal metastases detection, Yao et al. (2006) presented
a computer-aided detection system to find lytic metastases in the spine.
Their first step was to automatically segment the spine by thresholding,
morphological filtering and a region growing algorithm. After extract-
ing the spinal cord a watershed algorithm was implemented to detect
potential lytic vertebral lesions. Subsequently, they assembled a set of 26
features including density, shape, location etc. for each detection and clas-
sified them by using support vector machines (SVM). Unfortunately, the
authors did not state any quantitative results, neither detection rates and
false positives, nor processing times. Furthermore, there was no detailed
information whether they tested their method on independent data or
how the datasets were split into training and evaluation sets.

Contrary to Yao et al. (2006), Wiese et al. (2012) presented an approach
for sclerotic spinal metastases detection in CT images. Their method
initially segmented the spine and subsequently detected candidate lesions
with a watershed algorithm. Furthermore, 30 features for every detection
within the overall 12 clinical cases were computed to train an SVM. They
reported a sensitivity rate of 71.2 % with 8.8 false positives per patient
case on an independent test set.

Roth et al. (2015) implemented a deep CNN as a second layer in a
two-layered cascade framework to spot candidate lesions in CT imaging.
Their approach started with a simple thresholding and region growing
to coarsely segment the spine. Axial 2D cross-sections were then divided
into sub-segments by a following watershed algorithm to spot regions
of interest with higher attenuation. After merging neighbouring cross-
sections of high attenuation to form 3D seed points for a subsequent
segmentation via level-sets, they further classified those candidate lesions
with a feature-trained SVM as ’true’ or ’false’. This coarse-to-fine method
forwarded candidate lesions to the second tier of their detection frame-
work, where a CNN classified them. Each ROI was randomly translated
and rotated, resulting in 100 image patches per ROI with 32 × 32 pixel
patch size. While running on high-end hardware, the classification of each
ROI took about 30 s. The evaluation set consisted of 532 metastases of 49
patients and they achieved a maximum sensitivity rate of approximately
92 %, though to the account of average 50 false positives per patient. Re-
ducing the sensitivity rate to 80 % and further to 60 % lowers the number
of false positives per volume to an average of 9.5 and 1.2, respectively.
Similar to Wiese et al. (2012) they focused solely on the detection of the
sclerotic lesion type.

While the above-mentioned publications addressed spinal metastases
detection in CT imaging, there were even less studies regarding lesions
in spine MRI so far. Jerebko et al. (2007) initially started with a spinal
cord segmentation and centerline extraction. A median intensity projec-
tion along the spinal cord was used to locate discs for separation of the
spine into single vertebrae. In a subsequent step the user had to man-
ually place reference points in an axial cross-section to fit an abstract
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vertebral body model represented by an ellipse. Within those regions
an automatic sclerotic metastases detection was applied, consisting of a
primary lesion detection and a subsequent false positive reduction step.
To coarsely find candidate lesions a simple adaptive thresholding was
implemented, followed by a classification algorithm based on Fisher’s
linear discriminant (FLD) analysis, which aimed to positively classify at
least one candidate of a true lesion, even though multiple false positives
were taken into account. Jerebko et al., 2007 tested their approach on
21 patients with 9 diagnosed osteolytic vertebral metastases, resulting
in a sensitivity rate of 84.6 % with average 5 false positives per patient.
Computational time was stated with approximately 2 min.

More recently, Wang et al. (2017) introduced deep CNNs to verte-
bral metastases detection in spine MRI. To target the vast variability of
size, location and shape they implemented a Siamese deep neural net-
work (SdNN) approach with multiresolution analysis and a weighted
averaging of neighbouring cross-sections to benefit from the similarities
and to aggregate the detection results. The multiresolution approach
produced patches with various spatial resolutions, yielding in total three
different representations of the local neighbourhood, while keeping the
size of the image matrices constant for a simplified usability within the
network. The SdNN comprised three identical multilayer sub-networks
to process each image patch resolution. The classification was done on
thresholded likelihood maps of each MRI slice predicted by the SdNN.
In order to reduce false negatives, they aggregated their 2D likelihood
maps using a weighted combination. Wang et al. (2017) assembled their
training data from 26 clinical cases, yielding pixel-wise 50 % metastatic
samples and 50 % non-metastatic samples. The latter comprised 70 %
of randomly selected samples from normal vertebral regions and 30 %
from background regions, w.r.t. the more challenging distinction between
metastases and healthy vertebral tissue compared to metastases and back-
ground. Ten-fold cross-validation resulted in on average 0.2 false positives
at a true positive rate (TPR) of 90 %. Most false positives were found in
the cerebellum and could be eliminated, e.g. using spine or spinal cord
detection.

Even though Wang et al. (2017) and their proposed method can accu-
rately detect spinal metastases resulting in a thresholded likelihood map,
those were far from being coextensive with the lesion in the sense of a
segmentation task. Their automatic spinal metastases detection can rather
be used as an initial step towards subsequent segmentation approaches,
either as seed points or as initial contours. To the best of the author’s
knowledge, the only work addressing the segmentation of spinal metas-
tases has been proposed by Chmelik et al. (2018). They focused on CT
images and presented a voxel-wise classification based on a deep CNN
with subsequent post-processing to simplify object shapes and produce
smooth contours. Starting with an automatic vertebra detection to pro-
vide 3D bounding boxes, 16 × 16 × 3 voxel sized patches around each
of the bounding box voxels were fed into the CNN to classify them into
three categories, i.g. healthy, lytic or sclerotic. Random Forests were used
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to reduce false positives as a post-processing step. Their evaluation set
consisted of 31 patient cases, including whole spine CT scans, as well as
thoracolumbar sections with a spatial resolution of 0.65× 0.65× 1.00 mm3.
Chmelik et al. (2018) achieved a voxel-wise sensitivity rate of 74 % for
sclerotic and 71 % for lytic lesions and a specificity rate of 88 % (sclerotic)
and 82 % (lytic). The computational time for analysing a whole-spine CT
scan using an NVIDIA Titan Xp GPU was approximately 2 min.

In contrast to the state of the art in spinal metastases, there are var-
ious publications addressing the segmentation of hepatic and cerebral
lesions. So far, multiple conventional methods were applied to segment
brain or liver tumours, starting from thresholding and region-based meth-
ods, over clustering approaches to deformable model-based methods
(Bauer et al., 2013; Liu et al., 2014). More recently, various learning-based
approaches were introduced, either patch-based or with CNNs of an
auto-encoder-based architecture. The following analysis will focus on the
most promising approaches.

Havaei et al. (2017) applied 2D patch-based networks consisting of
two paths, one processed small patches for local features and the other
incorporated larger patches to generate rather global and contextual
features. Furthermore, they proposed a two-phase training scheme to
deal with the highly unbalanced nature of brain tumour segmentation,
where the healthy tissue comprises commonly up to 98 % of the total
voxel number. The first phase applied data with equiprobable healthy
and pathological patches and the subsequent second training phase was
performed with a more representative patch distribution. Havaei et al.
(2017) trained their approach on the 2013 brain tumour segmentation
challenge (BRATS) datasets, consisting of 30 patient cases. They achieved
a mean DSC of 88 % on the ten patient cases comprising test set with an
average prediction time of 25 s per case on high-end hardware.

In order to incorporate information of the third dimension without
drastically increasing the computational costs and the needed graphics
processing unit (GPU) memory, works like Lyksborg et al. (2015) tried
a compromise solution. They applied an ensemble of three multiplanar
reconstructions, i.e. an axial, a coronal and a sagittal view of an MRI
volume to a convolutional neural network and applied a subsequent grow
cut algorithm to refine the merged segmentations. They achieved a mean
DSC of 80 % on the 2014 BRATS challenge data, which consisted of 131
glioma patient cases (91/40 training-test-split).

In contrast to patch-based approaches, auto-encoder-like networks in-
corporate whole images or volumes, although 3D data is commonly
processed as 2D slices due to the required GPU memory and computa-
tional costs. Isensee et al. (2017) presented a U-net-like CNN architecture
(Ronneberger et al., 2015), while replacing the de-convolutions with up-
scaling layers and using an exponential linear unit instead of the rectified
linear unit (ReLU). They applied their CNN to the 2015 and 2017 BRATS
challenge data and achieved on average whole tumour DSC scores of
89.6 % and 85.5 %, respectively.
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Shaikh et al. (2017) combined densely connected CNNs with a post-
processing dense conditional random field (CRF). The former consisted of
the common down-sampling path but intertwined with blocks of densely
connected layers. The dense CRF was applied to reduce false positives
and to smoothen the segmentation. In total, their approach took less than
30 s for the proposed pipeline of segmentation and post-processing, while
achieving a mean DSC of 83 % on the 2017 BRATS challenge test data.

Besides the above-mentioned publications regarding cerebral lesions,
there are various works focussing on liver tumour segmentation. Christ
et al. (2017) trained two cascade networks to segment both the liver
and its lesions in MRI and CT images. After pre-processing the image
data, a fully connected CNN segmented the liver (achieving 94.3 % mean
DSC on CT data) and forwarded the predicted ROI to the subsequent
U-net in order to segment lesions within it. A 3D CRF likewise to the
work of Shaikh et al. (2017) was applied to further refine the resulting
segmentations, resulting in a lesion DSC of on average 85 % on CT data.
Applying MRI data to their cascade CNN instead resulted in a mean liver
DSC of 87 % and on average 69.7 % DSC w.r.t. the lesions. Christ et al.
(2017) stated a computational time of less than 100 s for both segmentation
steps combined.

Another promising approach towards liver lesion segmentation in CT
imaging was presented by Li et al. (2017). They combined two densely
connected U-Nets: the first extracts 2D intra-slice features, while the
following incorporates the original 3D data together with the output of
the former network in order to aggregate volumetric context. Therefore,
they could alleviate common limitations of 2D approaches, which largely
ignore the volumetric context and reduce the computational costs of
3D convolutions by transforming the feature and score maps obtained
from the 2D Dense-U-net to a volumetric shape. Data from the 2017 liver
tumour segmentation challenge (LITS) was used for evaluation purposes,
resulting in averaged DSC scores of 96 % for the liver and 72.2 % regarding
the liver lesions. Computational time per patient case ranged between
30 s to 200 s depending on the number of available slices.

In conclusion, while there are several works addressing lesion segmen-
tation in brain and liver, spinal metastases segmentation continues to be a
great challenge and is a hardly addressed issue so far, despite the increas-
ing relevance. Currently, the state of the art regarding computer-assisted
methods for spinal lesions focuses almost exclusively on the detection
both in CT and MRI images. To the best of the author’s knowledge, be-
sides the work of Chmelik et al. (2018), no segmentation approaches,
especially in MRI, have been published so far.
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2.2.3 Objectives

Similar to the previous section about vertebral body segmentation, the
following objectives were defined in cooperation with the clinical partner:

• Computational time per lesion on average < 1 min on current con-
sumer hardware

• Segmentation accuracy in the range of the inter-reader variability of
field experts

Likewise to most medical segmentation tasks, a computer-assisted and
automatised approach dealing with spinal lesions should relief radiolo-
gists from the time-consuming and tedious task of manually performed
contouring of target structures, while providing a segmentation accuracy
comparable to the gold standard. Since this task is not part of the current
clinical process (see Section 1.2), it is of great importance that an integra-
tion into the intended workflow as described in Section 1.3 would result in
as little delay and additional workload as possible. Moreover, any added
effort must be justified by the quality of the results, which is essential for
the implementation of new routines and procedures. Therefore, the goal
of this task was to provide expert-like segmentation accuracy with mini-
mum time and interaction requirement. In cooperation with the clinical
partner a maximum computational time of one minute was defined in
order to significantly reduce the time needed for an alternatively manual
segmentation, which usually requires between 5-10 min per metastasis.
Since it is difficult to define a particular accuracy value as a threshold
for sufficient and satisfactory segmentation results, it seemed to be most
appropriate to define an accuracy in the range of the IRV as the goal.

Despite the increasing relevance of this clinical issue, there is hardly
any state of the art regarding the automatised segmentation of spinal
metastases, which is most likely due to the difficulty and complexity of
this ambitious task. Spinal metastases are highly variable in terms of their
shape, texture and the emitted image signals, which is particularly de-
pendent on their lesion type and the used MRI sequences. This led to the
conclusion that model-based approaches might be unsuitable, since they
require substantial a priori knowledge, which is difficult to model in this
case. Learning-based approaches, in particular deep convolutional neural
networks, are well suited for such tasks due to their ability to automati-
cally find and extract descriptive and distinctive features. Therefore, to
meet the clinical objectives the implementation of a deep learning-based
approach seemed to be the most promising and suitable.

2.2.4 Materials and Methods

Image Data

The evaluation set, which was applied to the proposed approach con-
tained patient cases that underwent radiofrequency ablations of both
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single and multiple spinal metastases, mostly in advanced tumour stages.
In total, 40 metastases were assembled for this work, originating from
renal cell, prostate, cervical, colon, pancreatic, breast, bladder, stomach,
lung, caecal, urothelial and spinocellular carcinomas. For diagnostic and
therapy planning purposes spinal MRI was performed including sagittal
native T1- and T2-weighted MRI sequences. Acquisition settings, e.g. mag-
netic field strength or repetition time, varied within the datasets. The scan
resolution ranged from 0.45 to 1.25 mm in-plane and from 3.3 to 4.8 mm
in-depth. The acquired MRI data was pre-processed by registering cohe-
sive MRI sequences patient-wise to the respective T1-weighted image and
by cubic resampling of each image volume to a total number of 64 sagittal
slices. Hence, the image data was of almost isotropic spatial resolution,
while maintaining a fixed slice number to simplify any further processing.
A field expert trained by neuroradiologists manually contoured each
metastasis slice-wise, producing a binary 3D segmentation mask with a
defined center point mc.

Data Augmentation

Although deep learning-based methods have become evermore popular
and were applied to various medical image segmentation tasks, they
commonly suffer from the challenge of accumulating sufficiently large
datasets to ensure promising training with CNNs, which usually consist
of millions of parameters to be optimised. The generalisation ability of
such networks, i.e. the performance on unseen test data and the avoid-
ance of overfitting to the training data, can be significantly improved by
data augmentation techniques. Besides strategies regarding the network’s
architecture itself, as well as functional regularisations, data augmenta-
tion methods artificially generate new training samples by manipulating
and transforming the original images and their correspondingly labelled
ground truth (Shorten and Khoshgoftaar, 2019). Accordingly, it is possi-
ble to provide larger training datasets for clinical image analysis tasks
with comparatively few original patient cases and - equally important -
without the vast manual effort of experts for labelling the data. In addi-
tion, the amount of available image data acquired during expensive and
time-consuming MRI examinations is usually even more limited. Nev-
ertheless, despite all the merits of data augmentation in medical image
processing, the differences between artificially altered training images
and unseen test data, especially due to the complex natural variety of
anatomical structures, constitute the limits of such strategies (Shorten and
Khoshgoftaar, 2019).

Considering the segmentation of spinal metastases, the number of 40
available patient cases was considerably small for a CNN-based approach.
Therefore, each of the original T1- and T2-weighted MRI volumes was
augmented using the following techniques:

• Mirroring: Flips were applied to each patient volume in all direc-
tions. Although for example vertical, i.e. craniocaudal, flips did not
occur in the original data and seemed to be inappropriate, it had
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proven to be advantageous for the final results, since it prevents fast
overfitting.

• Scaling: The image volumes were scaled with randomly chosen
factors between 0.6 and 1.4.

• Rotation: The image volumes were rotated in the range of ± 30 ◦

around the transversal axis and between ± 20 ◦ around the sagittal
axis.

• Elastic deformations: Elastic deformations were applied using random
displacement fields with subsequent Gaussian smoothing the grid
with a σ ranging between [0, 0.3] (cf. Ronneberger et al., 2015).

• Gaussian blur: A Gaussian filter with σ in the range of [0, 0.5] was
applied to blur the images.

• Gamma transformation: Gamma transformations were applied with γ
in the range of [0.5, 2] to modify image intensities.

• Random cropping: Each patient volume was translated in a range
of ± 20 voxels in sagittal and vertical direction w.r.t. the center of
the metastasis mc in a random cropping manner and resulted in
patches of size 128 × 128 × 64.

In conclusion, each augmented volume was whitened by mean subtrac-
tion and a subsequent division by the standard deviation. With respect
to a stratified cross-validation, the patient data was grouped into 8 folds,
splitting each fold into varying 35 training and 5 test patient cases. By
using these augmentation techniques 5,250 volumetric and 336,000 cross-
section training samples, respectively were generated per fold.

CNN Architecture

With regard to the fact that the commonly used U-net architecture from
Ronneberger et al. (2015) was still state of the art in terms of various
medical segmentation tasks (Isensee et al., 2018), a minimally modified
U-net was implemented, which incorporated 2D image data. In addition,
an extension to volumetric data, called vU-net (Milletari et al., 2016)
was used to incorporate 3D image volumes. Both variants represented
encoder-decoder architectures well suited for medical images, whose
decoder paths combined semantic information from the deeper layers of
the networks with higher resolution feature maps from the encoder paths
via skip connections (see Figure 2.6). The implemented U-nets processed
2D patches of size 128 × 128, the vU-nets volumes of size 128 × 128 × 64.
In both network variants each convolutional layer was followed by a batch
normalisation and had a kernel size of 3 × 3 (× 3), except for the last
one which applied a 1 × 1 (× 1) kernel to reduce the dimensionality
to the desired output size. Furthermore, up-convolutions were replaced
by simplified upsampling layers, which have been found to be equally
effective while being less computationally expensive (Isensee et al., 2017).
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2D U-nets    ~1,400,000

3D vU-nets  ~4,000,000

Trainable Parameters

Figure 2.6: The U-net architecture used for 2D image input, with convolutional
layers including batch normalisation, strided convolutions for down-
sampling and upsampling layers. The vU-net architecture for 3D
input was analogous, but with an additional dimension for all layers
and convolutional kernels. A significant difference between the two
variants was the number of trainable parameters, which was about
2.85 times higher for the vU-net variants.

A ReLU was used as activation function for all convolutional layers, except
for the last one again, where a sigmoid function was applied to provide
values between 0 and 1. Multimodal image input was incorporated in the
most straightforward way, i.e. each MRI sequence was represented by an
input channel.

The training set of each fold consisted of 5,250 randomly shuffled
volumes as 3D input of the vU-nets or 336,000 randomly shuffled slices
as 2D input of the U-nets. A single epoch was used, while the number
of iterations was equal to the number of available samples. A modified
form of the Tversky index (Tversky, 1977) was used as a loss function.
The Tversky loss (TL), as proposed by Salehi et al. (2017), was defined as

TL(α,β) =
2
N∑
i=1

(r0ip0i)

N∑
i=1

(r0ip0i) +α
N∑
i=1

(r1ip0i) +β
N∑
i=1

(r0ip1i)

(2.11)

where p0i was the probability for a voxel i to be a lesion and p1i to be
non-lesion. For a lesion voxel r0i is 1 and for a non-lesion voxel r0i is
0, vice versa for r1i. The weights α and β affect the penalties for false
positives and false negatives. Adam was used as an optimizer (Kingma
and Ba, 2014) with a starting learning rate of 0.01 and mini-batch sizes of
two volumetric samples for the vU-nets and 32 for the slice-wise input
data of the U-nets. Finally, a threshold of 0.5 was applied within the
output layer to producing binary images. The chosen hyperparameters
were investigated in preliminary studies with smaller training sets (see
Table A.3).

Experimental Design

Multiple network configurations were assessed in terms of their ability
to segment spinal metastases. For this purpose, the augmented data was



42 pre-interventional phase

applied to both network architectures as described above. Despite of
the additional dimension of the vU-nets, the basic architecture for both
variants was not changed in order to largely exclude further influencing
factors and to ensure comparability of the results. The experiments were
subdivided according to the used dimensionality, i.e. U-nets and vU-nets,
and the input modalities, i.e. single or combined MRI sequences. The
training design consisted of stratified 8-fold cross-validation over disjunct
subsets of five patients per validation set. The stated results represent
the average of all 8 cross-validation folds. Due to the small amount of
available data and since no training and design decisions were based
on intermediate validation results (no look-ahead bias), it was decided
to refrain from a separate test set, as it would have resulted in too few
samples for a promising training.

Evaluation

Expertly annotated lesion segmentations were manually produced using
co-registered MRI sequences of each patient within a segmentation frame-
work designed for this purpose. Following the ground truth preparation,
the resulting labelled image data was fed into the networks described
above. To quantify the produced segmentation quality, DSC was used
to measure the percentage of volume overlap, as well as voxel-wise TPR
and true negative rate (TNR), since some of the related work used both
as quality measurements. The DSC was already defined in Section 2.1.4
and the sensitivity (TPR) and specificity (TNR) are defined as follows:

TPR =
|R1 ∩ P1|

|R1|
, TNR =

|R0 ∩ P0|
|R0|

(2.12)

with R1 and P1 as foreground voxels of reference and prediction, and
analogously R0 and P0 as corresponding background voxels. However,
sensitivity and specificity are not commonly used to evaluate medical
image segmentations since they are highly sensitive to the segment size
(Taha and Hanbury, 2015), but they were taken into account since a part
of the related work used them as quality measures. The given quantitative
results were generated exclusively on patient volumes, even if the U-
nets predicted slice-wise segmentation masks, which were subsequently
merged patient-wise.

Furthermore, the required manual input to mark the approximate cen-
ter of each ROI around the metastases for the prediction step meant that
the proposed approach was not fully automated end-to-end. However,
this prerequisite was justified by the clinical setting which particularly
focused on the support of the therapeutic workflow and thus the ap-
proximate location of a specific lesion is known due to the diagnostic
procedures. However, a preceding automatic detection step as presented
by Wang et al. (2017) could substitute this manual user interaction.
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2.2.5 Results

In order to reasonably classify the achieved results, it was mandatory to
investigate the inter-reader variability to get an impression of the con-
gruence, if two expertly annotated segmentations of a specific metastasis
were matched. Therefore, a second ground truth was produced from a
randomly chosen subset of 15 metastases by a neuroradiologist and after-
wards matched with the corresponding primary segmentation masks. For
this purpose, DSC, ASD, and HD95 were determined. The computed DSC
values per metastasis ranged from 70.4 % to 89.7 %, with an average of 79.4
± 6.2 %. The surface distances between two expert segmentations were on
average 1.81 ± 0.59 mm ASD and 7.83 ± 3.59 mm HD95. The averaged
results regarding the segmentation accuracy of the proposed automatic
approach can be found in Table 4.1. Averaged over all cross-validation
folds, DSC values up to 77.6 ± 10.8 %, mean sensitivity rates of 78.9 ±
15.8 % and mean ASD of 2.21 ± 1.57 mm could be achieved dependent on
the applied MRI sequences and the used network variant. Predicting the
segmentation of a patient case required approximately 0.29 s (4.51 ms per
slice) for the U-nets and on average 0.23 s for the vU-net architecture.

2.2.6 Discussion

The segmentation of spinal metastases was of high importance for the
addressed scenario of this thesis, since multiple aspects throughout the en-
tire workflow can benefit from the results if these are sufficiently accurate.
Therapy planning and simulation, enhanced visual support during the
intervention, as well as post-RFA treatment outcome validation require
segmentation masks of the metastatic tissue. Since there hardly existed
any state of the art regarding this particular issue, a novel approach had
to be developed and tested w.r.t. its clinical applicability. For this purpose,
an automatic and deep learning-based segmentation method for spinal
MRI was proposed.

In order to assess the achieved results of the experiments regarding their
general segmentation quality, it was convenient to compare them with
the inter-reader variability of manually produced expert segmentations,
which could be seen as an indicator of the complexity of a segmentation
task. With on average 77.6 % DSC, the results achieved with the U-net
incorporating combined T1- and T2-weighted input were close to the mean
IRV with 79.4 % and well within the its standard deviation of ± 6.2 %.
A similar conclusion could be drawn considering the surface distance
measures like ASD, where the IRV showed on average slightly minor
discrepancies compared to the automatically produced segmentations
(1.81 ± 0.59 mm vs. 2.21 ± 1.57 mm). In general, it could be concluded
that the achieved results were largely on a par with expertly annotated
segmentations, but lacked their robustness and reliability with regard
to a few more challenging patient cases, which was reflected in the
significantly higher standard deviation (10.8 % vs. 6.2 %).
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Table 2.3: Experimental results of each input configuration depending on the
used modalities (T1-, T2-weighted MRI sequences), as well as a slice-
wise (U-net) or volumetric (vU-net) processing. Dice scores (DSC),
sensitivity rates (TPR), specificity rates (TNR), average surface dis-
tances (ASD) and 95th percentile Hausdorff distances (HD95) were
averaged over all cross-validation folds.

U-net vU-net

T1 T2 [T1 + T2] T1 T2 [T1 + T2]

DSC [%]

mean 77.4 65.4 77.6 73.7 64.7 74.8

median 81.8 73.8 80.2 77.5 71.8 78.3

std 12.4 21.7 10.8 15.6 20.8 13.6

TPR [%]

mean 76.2 71.9 78.9 71.9 65.2 73.7

median 82.6 77.4 82.7 76.5 72.2 79.6

std 17.4 21.6 15.8 20.2 24.51 18.6

TNR [%]

mean 98.5 97.5 98.4 98.4 97.85 98.33

median 99.3 98.4 99.2 99.5 98.7 99.2

std 2.0 3.3 1.9 2.1 2.7 2.1

ASD [mm]

mean 2.40 2.97 2.21 2.62 3.50 2.61

median 2.00 1.91 1.79 2.06 2.37 1.84

std 1.60 2.24 1.57 1.93 2.54 1.88

HD95 [mm]

mean 11.55 12.90 11.12 12.83 15.22 12.28

median 11.26 7.30 11.14 9.88 10.45 9.50

std 6.85 11.04 6.57 8.98 12.37 8.11

Besides a sufficient segmentation accuracy, the required time to com-
pute these results was of critical importance and thus defined as an
objective of this task. Regardless of the input configuration and network
variant the trained models required well under half a second to pre-
dict the segmentation masks. In contrast to the time-consuming manual
contouring of metastases, the proposed CNN-based approach instantly
provided results and therefore will not constitute any delay if integrated
into the clinical workflow. Even with a manual post-correction based
on the predicted segmentation masks, significantly less time would be
required compared to a fully manual alternative.

To go into detail, some representative cases are shown in Figure 2.7,
depicting satisfactory results as well as challenging cases with exemplary
inaccuracies. Among the latter, falsely positive classified voxels, mostly in
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Figure 2.7: Comparison of expertly annotated data (green contours) and auto-
matically produced segmentations (blue contours) using U-nets for
three exemplary cases (rows). DSC scores in the lower right corners
indicate the segmentation accuracy for each patient case w.r.t. the
used MRI sequences. From left to right: (a) original T1-weighted MRI
sequence, (b) original T2-weighted MRI sequence, (c) result with only
T1-weighted image data, (d) result with only T2-weighted image data,
(e) result with combined T1- and T2-weighted image data.

the adjacent tissue of the vertebral bodies, and inaccurate segmentations
at the transverse and spinous processes were the most common. Segmen-
tation tasks in this particular area are highly ambitious, since a variety
of anatomical structures with similar intensities and textures are in close
proximity. Paravertebral and epidural extensions of the metastases were
particularly difficult to distinguish from surrounding tissues, which even
hampered manual contouring by experts as indicated by the relatively
low agreement of two experts. Furthermore, exceptionally shaped metas-
tases, especially if they were not roughly star-convex or metastases with
highly heterogenous image signals represented a challenging task for
automatic approaches like CNNs. This, however, was very likely due to
the fact that the required level of variance was not represented within the
provided training set and could only be moderately addressed by data
augmentation, which was also indicated by the high standard deviation.
Hence, the limited amount of unique training data remained a restricting
factor, as previously outlined in Section 2.2.4.

Regarding the used MRI sequences, it was found that T1-weighted
images were the most valuable, since the best results could be achieved
in experiments either with T1-weighted data alone or if it was part of
a multimodal image input (see Figure 2.8). This could be attributed to
the predominantly uniform appearance of the metastases in T1-weighted
images, whether lytic or sclerotic, which appear hypointense compared
to surrounding bony structures. This conclusion has also been confirmed
by findings of relevant literature, according to which T1-weighted MRI
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Figure 2.8: Measured DSC and ASD scores depending on the imaging modality
and input dimension. Box edges mark the 25th and 75th percentiles,
the central box line marks the median value and the whisker marks
the most extreme values not considered as outliers.

sequences were found to be most suitable in order to detect any abnormal-
ities of the vertebral bone marrow (Shah and Salzman, 2011). Combining
T1-weighted images with T2-weighted MRI data showed no significant
differences in the mean accuracy compared to an input of exclusive T1-
weighted images (77.6 % vs. 77.4 %), although the standard deviation
could be reduced (12.4 % to 10.8 %). The experiments using solely T2-
weighted images yielded the worst results, presumably due to the fact
that lytic and sclerotic lesions most notably differ in this particular imag-
ing sequence and therefore, present conflicting information to the CNNs
if in the same training set. Hence, T2-weighted images rather supported
and improved the robustness in combination with T1-weighted input than
yielding satisfactory results themselves.

The conclusions above regarding imaging sequences hold true for both
network variants, i.e. for slice-wise and volumetric input data. In general,
the achieved DSCs with the U-nets were on average 2.4 % higher than
with vU-nets. As previously indicated in Section 2.2.4, the ratio between
available image data and the number of trainable parameters of CNNs
considerably influences their performance. Hence, the discrepancy in
the results could be attributed to the increased complexity and number
of trainable parameters (1,400,000 vs. 4,000,000) to be optimised when
extending the network from 2D U-nets to 3D vU-nets.

It is difficult to compare the achieved results with related works, since
there are, to the best of the author’s knowledge, no studies regarding
automatic spinal metastases segmentation in MRI. Thus, the discussion re-
ferred to CNN-based segmentation approaches of liver and brain lesions
as well as a work by Chmelik et al. (2018) for spinal CT data. Depending
on the used datasets, CNN-based brain tumour segmentations in MR
images achieved a DSC up to 88 % (Havaei et al., 2017) in the BRATS
challenge 2013, 89.6 % (Isensee et al., 2017) in the BRATS challenge 2015
and 85.5 % (Isensee et al., 2017) in the BRATS challenge 2017. The segmen-
tation of liver lesions in MR images achieved Dice coefficients of 69.7 %
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(Christ et al., 2017) and in CT images up to 72.2 % (Li et al., 2017). The
stated results enabled an assessment of the segmentation accuracy of the
presented method compared to the state of the art in other lesion segmen-
tation tasks. However, the differences between the individual application
scenarios are perhaps more complex than their similarities.

Chmelik et al. (2018) were one of the first to adapt a CNN to vertebral
metastases segmentation in CT images. They achieved a mean voxel-wise
sensitivity rate of 74 % for sclerotic and 71 % for lytic lesions as well as a
mean specificity rate of 88 % (sclerotic) and 82 % (lytic). In comparison, the
results achieved by the proposed approach including T1-weighted images
are somewhat better (mean sensitivity of 77.6 %), though the experiments
using solely T2-weighted MRI data clearly lacked accuracy. Additionally,
it is important to account for the differences in spatial resolution (slice
thickness of 0.67 mm in the work of Chmelik et al. (2018) vs. average
3.50 mm of the data applied to the presented approach) and the effects
of high spatial anisotropy, i.e. partial volume effects, which considerably
hamper the segmentation.

2.2.7 Conclusion

In this section a novel approach towards spinal metastasis segmenta-
tion in diagnostic MR images based on deep CNNs was presented. For
this purpose, a dataset including metastases of both lytic and sclerotic
type was comprised and the impact of various input modalities and
network configurations on the segmentation accuracy was examined. The
achieved experimental results have been quantitatively compared to the
inter-reader variability and results in literature, although the latter mostly
focused on other organs or imaging modalities. Due to the absence of
directly comparable works and the beforehand defined clinical objec-
tives, the IRV was used to assess the quality of the achieved results. With
77.6 % DSC on average the result of the best network configuration of
the presented automatic segmentation approach was on a par with the
IRV (79.4 %), indicating reasonably accurate segmentation quality and a
promising approach towards this ambitious and challenging task. Accord-
ingly, the presented approach met the clinical requirements defined in
Section 2.2.3 regarding the required maximum computational time and
segmentation accuracy. Therefore, it could be integrated into the intended
workflow without delaying it, while automatically producing results of
almost expert-like accuracy.





3
I N T E RV E N T I O N A L P H A S E

After the diagnosis of spinal metastases and the decision for RFA as the
most suitable treatment method, the interventional phase of the clinical
workflow starts. As already described in Section 1.3 within the intro-
ductory chapter, the intervention is performed using image guidance of
FP-CT scans and partly biplanar angiography to ensure subcutaneous nav-
igation and tumour puncture. During the intervention, at least one, com-
monly two applicator needle tips are placed within the lesion (Matschek
et al., 2017) and coagulate the surrounding tissue due to high-frequency
current-related heating. Based on the continuous measurement of the
specific tissue impedance, the ablation time and induced energy, the
progress of the ablation and the resulting necrosis zone can be approxi-
mately derived. If the impedance value exceeds a certain threshold, since
the current flow by means of ionic movement and molecular friction no
longer leads to significant tissue heating, this indicates a finished ablation
within the target zone and thus the achievement of the interventional goal.
A more detailed assessment of the results of the ablation process can only
be achieved by the examination of follow-up MRI scans subsequent to the
intervention. While the post-RFA procedures will be discussed in Chapter
4, this chapter will address computer-assistance during the intervention
itself with the content based on Hille et al. (2018a).

3.1 multisegmental spine image registration

3.1.1 Introduction

Following the survey work of Viergever et al. (2016) and Maintz and
Viergever (1998), respectively, medical image registration considerably
gained relevance throughout the last two decades, in particular in the
fields of radiotherapy and interventional radiology. Therapy planning,
interventional navigation, response monitoring and treatment outcome
validation, respectively benefit from image registration techniques, with
more and more works that have made the transition from research to
clinical settings (Viergever et al., 2016). Likewise, the motivation for this
aspect of this thesis was the support of interventional navigation and
lesion puncture during RFAs of spinal metastases using a fast and precise
multimodal image fusion.

FP-CT and CT angiography are the most common imaging methods
regarding image guidance during osseous RFAs (Kavakebi et al., 2017;
Palussiere et al., 2012; Posteraro et al., 2004). However, low-dose protocols
like intra-interventional FP-CT scans provide a reduced image quality and
weak soft tissue contrasts compared to native CT or MRI. This, however,
manifests in a decreased signal-to-noise ratio (SNR), beam hardening and
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a b c

Figure 3.1: Image fusion of pre- and intra-operative images represents a sig-
nificant improvement of the interventional routine. As a result of
the image registration (left; background: MRI, overlay: FP-CT) a
transformation matrix could be used to transfer and display pre-
interventionally produced information like contoured metastases
within the intra-interventional images (middle, right).

scatter artifacts, which hamper precise and reliable metastasis localisation
during the interventions. Due to the poor visibility, the radiologists have
to infer the metastasis location from pre-interventionally acquired MRI
data and mentally match those images with the intra-interventionally
acquired FP-CT scans. Thus, an exact localisation is only feasible to a
certain degree by orientation on the visible cortical bone structures of
the vertebrae. Moreover, each interventional image during the RFA is
acquired in prone patient position, causing intervertebral joint movements
and altered spine flexion compared to the diagnostic MR images. This as-
pect further increases the cognitive load of the radiologists for metastasis
puncture, particularly if several metastases are treated in a single proce-
dure or if metastases developed large paravertebral extensions that may
involve multiple vertebrae (Greenwood et al., 2015; Wallace et al., 2016).
These limitations could be overcome by fusing diagnostic MR images
with the intra-interventional scans in order to benefit from the typical
high soft tissue contrast of MRI during the interventions. Furthermore,
additional image information generated during the therapy planning
phase, e.g. segmented metastases, predicted ablation zones or optimised
RFA applicator trajectories (Baegert et al., 2007; Merten et al., 2019; Seitel
et al., 2011), can be visualised in the interventional images and make
metastasis puncturing faster and more accurate while less cognitively
demanding for the radiologist (see Figure 3.1).

3.1.2 State of the Art

Multimodal image registration is well studied in the field of medical
imaging. CT and MRI are essential diagnostic procedures and a fusion of
them yields hybrid images combining the advantages of each imaging
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technique, which enhances the informative content and can support the
interpretation of conspicuous structures. Registration methods are com-
monly categorised regarding the dimensionality, the transformation type
and whether they are driven by intrinsic or extrinsic information. Espe-
cially registration techniques that base on intrinsic image information, i.e.
anatomical landmark-based or intensity-based (voxel-based) approaches
became prevalent in recent years (Viergever et al., 2016). They offer the
great advantage of fusing multimodal images, where extrinsic information
like matching scanner coordinate systems or external tracking systems are
not existent. Accordingly, voxel-based image registration of multimodal
pre- and intra-operative images are suitable to support interventions with
changing patient positioning and percutaneous instrument navigation.

Although various registration approaches have been investigated, only
few publications are available regarding musculoskeletal surgery and
spinal tumour interventions. The most common limitations in fusing
interventional CT and spinal MR images are differences in patient po-
sitioning causing intervertebral joint movements and the overall lower
image quality of interventional imaging. Since medical image registration
is a wide-ranging field with numerous methods and applications that
differ fundamentally or only in details, the following analysis of the state
of the art will particularly focus on registration approaches for MR/CT
spine imaging.

To start with, Kaminsky et al. (2004) introduced a multisegmental im-
age fusion approach, applied to cervicothoracic spine MRI and spiral CT
images of one patient. Nine corresponding reference points were placed
on each vertebra in both image volumes. Subsequently, each vertebra had
to be segmented within the CT image volume for the following multi-
segmental registration, using thresholding and manually post-correction.
The centers of both point clouds were translationally registered and
conclusively, the CT volume was rotated in accordance with Procrustes
superimposition (Gower, 1975). Fusion time referred to the landmark
positioning and took approximately 8 min, although the authors did not
state any time needed for the required preceding segmentation procedure.
The registration accuracy, defined as the mean fiducial registration er-
ror (FRE), was 1.53 mm. While overcoming the limitations of intervertebral
joint movements in spine image fusion via their multisegmental approach,
it required substantial manual user input to define the corresponding
landmark pairs.

Sohn et al. (2009) presented a multisegmental image fusion approach
for improved targeting of spinal tumours in image-guided stereotactic
radiosurgery. Pre-operative MRI and CT scans of 20 patients with spinal
tumours and metastases were acquired and registered via manually
defined reference points and delineation of individual vertebral bodies
to ensure multisegmental registration. Therefore, similar to Kaminsky
et al. (2004), discrepancies caused by patient positioning were widely
avoided by multiple rigid registrations of individual vertebrae or spine
segments. Sohn et al. (2009) evaluated their registration approach via
manual inspection and found it successfully, though not stating any
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quantitative registration accuracy measures or the required fusion time.
Nevertheless, they assessed discrepancies of the gross tumour volume
(GTV), previously segmented in both image modalities and the fused
images. Mean relative discrepancies between the GTV from the pre-
operative datasets and the fused images were 30.5 % (CT-based GTV) and
14.5 % (MRI-based GTV).

Karlo et al. (2010) presented a feasibility study on MR/CT image fusion
of the lumbar spine after spondylosis. Two readers, a radiologist and a
spine surgeon registered ten clinical datasets, five with correct and five
with incorrect implant positioning, using the OsiriX software (Pixmeo
SARL, Switzerland) and applying a landmark-based registration. Fusion
time and accuracy were assessed, the latter defined as the largest deviation
between MR and CT images at the ventral corner of the cranial endplate
of the most cranial vertebra in a midsagittal plane. Karlo et al. (2010)
performed two manual registration experiments with different numbers
of used landmarks. In session 1 each vertebra was marked with a single
reference point in a midsagittal cross-section of the T2-weighted MRI
sequence and the CT image. In contrast, two reference points per vertebra
were placed in session 2. The average fusion time was 102 s (first session)
and 107 s (second session), the mean discrepancies were 1.02 mm (first
session) and 1.91 mm (second session), respectively.

Miles et al. (2013) fused CT/MR spine images in order to allow physi-
cians to visually explore corresponding soft tissue and bony structures
in a single dataset. The study included 20 patients who underwent MRI
and CT scans of the lumbar spine. Both volumes were registered by a
versor-based transformation and mutual information (MI) using the In-
sight Toolkit, Kitware Inc, USA. For this purpose, the CT images were
thresholded to enhance soft tissue details and the user initialised the
approach with two corresponding points in each volume. Miles et al.
(2013) evaluated their method by the use of 17 anatomical landmarks per
image pair and achieved a mean target registration error of 1.9 mm. In
contrast to the above-mentioned studies, Miles et al. (2013) presented a
spine registration method based on voxel-wise image information and not
solely on corresponding landmark pairs and thus, reduced the user ini-
tialisation effort. However, they did not state any required computational
time and applied a globally rigid transformation, which is less critical for
registrations of the rather inflexible lumbar spine, but can considerably
affect cervicothoracic spine segments.

After the development and subsequent publication (Hille et al., 2018a)
of the content covered in this section, Rashad et al. (2019) presented a
hybrid registration method of cervicothoracic spinal MRI and CT images,
where locally rigid transformations of single vertebrae were embedded
into a global deformation field to fuse both image volumes. For this
purpose, the authors used a novel commercial software by Brainlab AG,
Germany, which started with an automatic vertebrae segmentation in
the CT scans. Subsequently, ROIs were defined based on the preceding
segmentations and an initial prealignment was performed by the user,
which served as a starting point for the automatic rigid registration of the
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first vertebra. The ROIs of adjacent vertebrae were iteratively registered
using MI as an image similarity metric, while previous transformations
were taken into account to constrain translational and rotational steps.
Afterwards, the resulting multiple rigid registrations were embedded into
a gloabl deformation field, which has been smoothed between the seg-
mented and rigidly registered vertebrae. Rashad et al. (2019) achieved an
FRE of 1.54 mm averaged over 10 patients with multiple MRI sequences
each. However, their evaluation procedure casts doubt on the validity of
their results, since they transferred landmarks manually defined within
the CT scans to the MRI volumes by automatic vertebra-specific rigid
registrations using MI, instead of separately defining them in both im-
age volumes. Therefore, Rashad et al. (2019) used the same approach to
define corresponding landmark pairs for evaluation purposes, as their
proposed method, which generated the results that should thus be eval-
uated. Hence, the stated results should be considered with reservations.
Nonetheless, Rashad et al. (2019) showed the importance of a multiseg-
mental registration strategy, particularly for the cervicothoracic spine,
since they additionally fused CT and MRI data of each patient using glob-
ally rigid registrations, which led to significantly higher FREs (7.12 mm
vs. 1.54 mm).

Most recently, Zhang et al. (2020) presented a case series study regard-
ing the intra-operative localisation of spinal cord lesions. Pre-treatment
spinal MRI scans of 22 patient cases were fused with O-arm CT images
during interventions using the commercially available software Synergy
Cranial from Medtronic, Ireland. However, their publication does not
state any information w.r.t. the used registration method and whether it
is based on a manual or automatic approach. They evaluated the accuracy
of each patient case by a single distance measurement of the maximum
discrepancy between the tumour surfaces in both images after fusion.
Using this measure, Zhang et al. (2020) stated mean errors of 1.6 ± 0.9 mm
and an average computation time of approximately 15 min.

Even though, there were few studies approaching multimodal spine
image registration, the clinical applicability of the proposed solutions was
limited either by considerably high user interaction and time needed for
manual landmark-based registrations, since globally rigid approaches
could not sufficiently cope with intervertebral joint movements, or be-
cause the registration accuracy could not be assessed due to a lack of
information. This led to the conclusion that there remained a need for a
precise, fast and automatic fusion of MR and interventional FP-CT.

3.1.3 Objectives

Considering an image fusion of pre- and intra-operatively acquired im-
ages during spine lesion RFAs, the following objectives shall be met:

• Computational time per patient case on average < 5 min on current
consumer hardware

• Registration error (FRE) on average < 3 mm
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a b

Figure 3.2: Comparison of the image quality between conventional CT (a) and
intra-interventionally acquired FP-CT (Dyna-CT) images (b) of the
lumbar spine. Overall, weaker image contrast due to low-dose proto-
cols and artifacts like beam hardening at cortical bone structures or
metal artifacts from inserted applicators aggravate precise metastasis
localisation and puncture.

For efficient and convenient applicability within the interventional
workflow, the total procedure should not exceed 5 min and should require
only minimal user interaction, in order to be applicable between the
calibration of the navigation system and the beginning of the metastasis
puncture during the intervention. Most of the relevant state of the art
works used landmark-based registration approaches, which is - w.r.t. the
above defined objectives - too time-consuming due to the necessity of
precisely marking multiple corresponding reference points in both image
volumes.

A sufficient level of registration accuracy is generally not known and
heavily dependent on the specific task w.r.t. the field of application, the
spatial image resolution or the displayed anatomical structures. Addi-
tionally, the evaluation of registration results is cumbersome and prone
to errors. For instance, in case of calculating accuracies using sets of
corresponding landmark pairs, which is a common practice, the user
introduces a permanent error within the ground truth due to inaccurate
fiducial localisation (fiducial localisation error (FLE)). Considering the
application addressed in this section, the mean FRE should be less than
3 mm for being sufficiently precise, which was based on the mean di-
ameter of the vertebral pedicles, ranging from thoracic 3 mm to lumbar
10 mm (Charles et al., 2015; Liu et al., 2010; Scoles et al., 1988). The reason
for this was that for most patient cases the RF applicators are inserted
via the pedicles into the vertebral body, which is both the narrowest, as
well as the pathway with the closest proximity to the spinal cord as a risk
structure.

Furthermore, an important aspect of this registration task was the appli-
cation to intra-operative low-dose FP-CT images, which commonly lack
image quality and are more prone to artifacts (see Figure 3.2). Therefore,
the intended method should combine a multisegmental and voxel-based
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registration approach, to cope with patient positioning-induced spine
deformations and to overcome limitations of reduced structural infor-
mation and the increased presence of image artifacts due to low-dose
interventional imaging.

3.1.4 Materials and Methods

Image Data

19 patients who underwent RFAs of both, single or multiple vertebral
metastases at the Department of Neuroradiology of the University Hospi-
tal of Magdeburg, were chosen retrospectively. For evaluation purposes,
sagittal native T1-weighted or contrast-enhanced T1-weighted MRI se-
quences and intra-interventionally acquired FP-CT scans (Dyna-CT) of
each patient were used. Additionally, five patients were randomly chosen
to test the influence of T2-weighted sequences on the presented registra-
tion approach. The in-plane image resolution of the MRI data ranged
from 0.47 mm to 1.25 mm (on average 0.63 mm) and the slice spacing was
3.30 mm for all scans. The FP-CT scan resolution ranged from 0.22 mm to
1.10 mm (on average 0.65 mm) in-plane and had a slice spacing ranging
from 0.46 mm to 3.00 mm (on average 1.28 mm).

Image Fusion

The presented registration approach was selected due to both the physi-
cal characteristics of the spine and the available multimodal images. In
the main case of application, in which most patients were in advanced
tumour stages and had several vertebral metastases, the interventional
target region was not limited to a single vertebra, but partially covered
entire spinal segments. A multisegmental, i.e. piecewise rigid registra-
tion procedure appeared to be the most suitable approach in order to
accurately model the deformation of spine structures, caused by different
patient positioning. Therefore, a globally non-rigid image fusion problem
was split into multiple local rigid registrations of individual vertebrae
or spine segments. A globally deformable registration approach with
incorporated regions of local rigidity, as presented by König et al. (2016),
was disregarded due to the required time-consuming delineations of rigid
structures in both image volumes. Figure 3.3 illustrates the proposed
method and its specifications. First, the user had to roughly mark each
vertebra or spine segment which should be registered in both modalities
as an initialisation. Following this, regions cropped to single vertebrae or
segments were transformed so that their centers coincided in the coordi-
nate origin, taking into account the patient orientation and voxel spacing
specified in the DICOM tags. This led to a coarse initial image registra-
tion. The anteroposterior length l of those regions was set to 10 cm, the
laterolateral width corresponded to the MRI volume. The craniocaudal
height h was defined depending on the distance between each adjacent
marker. Each of the ROIs thus defined was aligned parallel to the verte-
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a b c

Figure 3.3: For initialisation purposes, the user had to roughly mark the centers
(green points) of each region which had to be registered in both
imaging modalities (a and b). Subsequently, 3D-ROIs (green con-
tours) were automatically defined and coarsely translated onto the
interventional FP-CT image. The proposed multisegmental registra-
tion approach then precisely and piecewisely registers each ROI and
embeds it in a fused image (c).

bral endplates by rotating it by the orthogonal angle of the connecting
line of two adjacent marker points.

Subsequently, a three-level multiresolution and voxel-based rigid regis-
tration approach precisely registers each ROI with the interventional im-
age combining normalised gradient fields (NGF) (Haber and Modersitzki,
2006) as the image similarity measure and a Quasi-Newton optimizer,
which proved to be the most promising combination in a preliminary
study regarding accuracy and computational time. Starting with a rather
coarse image resolution, the transformation was subsequently refined on
images of increasing resolution until full resolution was reached (down-
sampling factor was 0.63). NGF are based on a pointwise (continuous)
or voxel-based (discrete) distance measure D of the angle between two
image gradients, which is defined as

D(T ,R) =
1

2

∫
Ω

d(T ,R)dx; d(T ,R) = ||n(R, x)×n(T , x)||2 (3.1)

with two corresponding spatial coordinates x in reference image R
and template image T, as well as their related gradient vectors n(R, x)
and n(T , x) in the image domain Ω (Haber and Modersitzki, 2006). Both
vectors form an angle θ(x) and since the gradient fields are normalised,
the cross product of both vectors is related to the sine of θ(x). To find a
reasonable image registration, the objective function

D(R, T(t)) := D→ min (3.2)
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has to be minimised, for instance by minimising the square of the sine
of θ(x). With respect to the problem of differentiability if image areas are
constant, a regularisation term is introduced with

nε(I, x) :=
∇I(x)√

∇I(x)T∇I(x) + ε2
(3.3)

The parameter ε can be used to regulate the effect of regions with weak
gradients ∇ I(x) and can be automatically determined with

ε =
η

V

∫
Ω

|∇I(x)|dx (3.4)

with η as a noise level estimation of the image and V as the volume of
the domain Ω (Haber and Modersitzki, 2006). Since NGF are computed
by solely taking derivatives into account, it is well suited for multimodal
image registration, particularly for intra-operative imaging due to com-
monly weak image contrasts and high noise levels. The transformed
image T(t) := T ◦ t is mapped onto the reference image R by a rigid
transformation t. Therefore, each transformation TR resulted from the
initial translation Itr, multiplied by the image-based registration t and
thus TR = t · Itr.
Fusing all transformed and labelled ROIs in a joint image was the last step
in the proposed procedure. Image intensities of voxels x with more than
one label, e.g. within the area of two overlapping ROIs, were weighted
depending on their distance to the specific ROI centers:

ix =

2∑
r=1

ixr

1+ e−20(||dxr||−0.5) (3.5)

where ix was the resulting voxel intensity, determined by a distance-
based sigmoid function and the intensities ixr of each voxel x of two
overlapping regions r. dxr represented the relative normalised distances
between such voxels and the nearest two centers of the transformed ROIs
with

∑
dxk = 1. An otherwise linear weighting resulted in a largely

blurred and fuzzy display of the anatomical structures.

Evaluation

For each patient, ground truth landmarks were given in both, the diag-
nostic MRI and the intra-interventionally acquired FP-CT image volumes.
Three landmark pairs were determined per vertebra within the sagittal
plane of symmetry and on the vertebral rim (superior-anterior, superior-
posterior and inferior-posterior corner). The number of labelled vertebrae
per patient depended either on the field of view (FOV) of the FP-CT
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images or on previously defined target regions. The ground truth data of
all patients was prepared by a field expert trained by neuroradiologists.
To evaluate the registration quality, the mean FRE via Euclidean distances
between N pairs of corresponding landmark pairs (transformed MRI
landmark T(p) and the FP-CT landmark q) was determined as

FRE =

√√√√ 1

N

N∑
i=1

(T(pi) − qi)2 (3.6)

This was done for the multisegmental approach (FREMS), as well as for
a globally rigid registration (FREGR) with the same optimizer and metric
settings, to verify the need for a multirigid approach to meet clinical
accuracy requirements for this particular task. In order to compare the au-
tomatic and voxel-based strategy with a manually performed registration,
the landmark sets of both image volumes per patient case were directly
registered via Horn’s quaternion-based method (Horn, 1987). Hence, the
resulting minimal fiducial registration error (mFRE) represented the accu-
racy of an optimal global registration using landmark sets and therefore,
indicated the challenge of localising corresponding landmarks in two
image volumes. The results reported in the following were averaged over
all landmark pairs per patient and subsequently over all patients cases.

Furthermore, to check the inter-reader variability of the ground truth,
two additional field experts provided landmark sets in both the MRI and
the FP-CT images for a subset of five randomly chosen patients out of the
original 19 cases. Additionally, the first reader created a second ground
truth of the same five patients 24 h after the first ground truth preparation
to check the intra-reader variability. Both FLEs were used to demonstrate
that the measured registration accuracy considerably depends on the
individual users and their fiducial localisation accuracy, as well as the
challenge of a consistent identification of anatomical landmarks. The
impact of these introduced inaccuracies within a ground truth are a rarely
addressed issue when it comes to evaluating registration approaches
(Viergever et al., 2016).

3.1.5 Results

As mentioned above, IRV was checked w.r.t. the image modality and
resulted in mean FLEs of 1.36 mm for MRI and 1.28 mm for FP-CT scans.
The intra-reader variability was on average 1.05 mm for MRI and 1.03 mm
for FP-CT images. Manual, i.e. landmark-based registrations of each
patient case resulted in a mean mFRE of 1.70 mm. The required time to
localise corresponding landmark pairs in both image volumes ranged
between 2 and 3 min per vertebra.

Voxel-based and multisegmental registrations of individual vertebrae
or spine sections resulted in average FREMS of 2.35 mm (T1-weighted
MRI) and 2.55 mm (T2-weighted MRI). Globally rigid registrations of both
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Figure 3.4: Resulting average registration accuracies of both, the globally rigid
image registration (FREGR) and the presented multisegmental ap-
proach (FREMS). ’2nd T1’ refers to the additionally produced ground
truth of the first reader. The red line at 3 mm represents the clinical
accuracy objective derived from the pedicle diameter.

Table 3.1: Intra- and inter-reader variability was determined for five randomly
chosen patient cases.

MRI FP-CT

FLEintra [mm] 1.05 1.03

FLEinter [mm] 1.36 1.28

image datasets resulted in mean FREGR of 3.79 mm (using T1-weighted
MRI data) and 3.87 mm (using T2-weighted MRI data). The computational
time per vertebra was on average 24 s and the overall required time per
patient, including initialisation, did not exceed 5 min for any patient case
on consumer hardware.

3.1.6 Discussion

Image fusion has been successfully applied to radiation therapy for the
purpose of delineation and enhancement of target fields (Dalah et al.,
2008) or to support image-guided interventions (Mauri et al., 2015; Ne-
mec et al., 2007; Sohn et al., 2009). However, in musculoskeletal radiology,
especially in neuroradiology of the spine, image fusion applications have
rarely been reported. Image fusion of diagnostic MRI and interventional
FP-CT scans can efficiently support image-guided interventions of spinal
metastases due to the valuable gain in image information. MRI is consid-
ered the method of choice regarding tumour and metastasis delineation
as well as for assessing compressions of spinal nerve roots and the spinal
cord, due to its emphasised soft tissue contrast. However, RFAs are per-
formed under FP-CT image guidance, which besides a pronounced image
contrast of cortical bone structures withholds relevant image information
regarding soft tissues like metastases. Therefore, fusion of both modal-
ities can provide various additional information to support applicator
guidance and needle tip placement beyond the established methods of
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a b c d e

Figure 3.5: Comparison of fused images using a globally rigid (a) and a multiseg-
mental (b) registration approach. Shown are a mid-sagittal (top row)
and lateral (bottom row) cross-section of an exemplary patient case.
Additionally, the masks of previously segmented metastases were
transformed according to the resulting transformation matrices of the
globally rigid (red contours) and the proposed multirigid approach
(green contours). Sagittal (c), coronal (d) and axial (e) cross-sections
of the FP-CT scan are shown with overlayed metastasis contours. The
FREGR of this patient case was 4.58 mm and the FREMS was 1.84 mm.

current navigation systems (Kavakebi et al., 2017; Wallach et al., 2014).
Considering this, the proposed multisegmental voxel-based (MS-VB) reg-
istration approach represents a key aspect of this thesis and the intended
intervention support.

Table 3.2 displays an overview of relevant information about the pre-
sented and related state of the art works, although some of the latter did
not state any quantitative results, which restricts comparability. In con-
trast to the related work of spinal image fusion, the presented approach
focused on interventional rather than native CT imaging, which meant
qualitatively inferior images due to low-dose protocols. So far, either
landmark-based approaches (Kaminsky et al., 2004; Karlo et al., 2010;
Sohn et al., 2009) or MI as a registration metric (Čech et al., 2006; Hu and
Haynor, 2004; Miles et al., 2013) have been used. The former usually have
the disadvantage of a time-consuming initialisation procedure, which
grows proportionally with the number of used landmarks. Automatised
landmark detection approaches, e.g. by edge detection, come at the cost
of solving the complex correspondence problem between two sets of land-
marks. In contrast to the mean computational time of 24 s per segment
of the proposed MS-VB approach, the study of Zhang et al. (2020) for
instance, required on average 15 min, while Hu and Haynor (2004) re-
ported an overall required time of approximately 60 min per patient case,
which is hardly compatible with any clinical procedures. Additionally, the
registration accuracy of manual procedures is highly dependent on the
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user’s precision and care, whereas especially a high workload and lack
of time in clinical routine could negatively affect the results. Likewise, a
preceding vertebrae segmentation to define the regions to be registered,
as presented by Čech et al. (2006) or Hu and Haynor (2004), is yet more
time-consuming, if manually performed or if automatically performed
requires similar user initialisation as the proposed MS-VB approach (Chu
et al., 2015; Rak et al., 2019; Zukić et al., 2014). The presented MS-VB
method, however, required only an approximate marking of the vertebrae
to be registered, which reduced the required time for an initialisation as
well as the cognitive load of radiologists and could therefore, be more
easily integrated into the clinical workflow. However, this manual initial-
isation can be replaced in the future by automatic vertebra and spinal
metastases detection procedures like presented by Chen et al. (2015), Rak
and Tönnies (2016), and Wang et al. (2017). Yet it remains to be seen, how
robust vertebra detection in the immediate vicinity of metastases per-
forms. After the implementation and publication of the proposed MS-VB
approach, Rashad et al. (2019) presented a largely similar registration
strategy using a new commercially available software. They followed the
pipeline of vertebra-specific multirigid registrations and the subsequent
embedding in fused images. As already mentioned in Section 3.1.2, their
results should be considered with reservations, since their evaluation
strategy was unsuitable to unbiasedly assess the registration accuracy of
their proposed method. In addition, their registration accuracy was highly
dependent on the initial prealignment, which partially led to FREs over
2 cm, if the outmost segmented vertebrae were used as starting points.
However, the findings of Rashad et al. (2019) indicated the importance of a
multisegmental approach to cope with spine deformations (mean FREMS

of 1.54 mm vs. mean FREGR of 7.12 mm) and the impact of the spatial
resolution on the registration accuracy (mean FREMS of 0.91 mm with
high resolution images vs. mean FREMS of 1.77 mm with low resolution
images).

Similar to the findings of Rashad et al. (2019) regarding the impact
of spine deformations, the average FREMS with 2.35 mm achieved with
the proposed multisegmental approach was significantly lower than the
average FREGR of 3.82 mm using a global transformation (see Figure 3.5).
The latter would not have met the clinical objectives. This was also evident
considering the individual patient cases (see Table A.4), with 9 out of
the total 19 patient cases not meeting the accuracy criteria if registered
globally. Applying the MS-VB approach in contrast, resulted only in two
cases with an insufficient accuracy (one of them achieved 3.12 mm instead
of the required 3 mm). The worst patient case resulted in an FREMS of
4.43 mm averaged over 9 pairs of corresponding landmarks, although the
mFRE, i.e. the mean error of a manual registration of this case, was among
the largest with 2.37 mm (1.70 mm overall patient cases). Accordingly, the
actual image registration could have been sufficiently precise, but the
considerably high mFRE indicated difficulties in accurately identifying
corresponding landmarks and thus also had a negative impact on the
measured registration accuracy of the proposed approach. In general, the
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Table 3.2: Related work and the presented MS-VB approach in comparison w.r.t. the used image modalities (MRI, CT, FP-CT), the number of patient cases
NP, the usage of interventional imaging data (IInt), the registration metric (MI - mutual information, NGF - normalised gradient fields, LMB -
landmark-based), the used transformation type, as well as the achieved average fiducial registration error FRE and the required computational
time per dataset t (t∗ - average time required per vertebra). The results of Rashad et al. (2019) were questionable w.r.t. to their evaluation strategy.

Works Image Data NP IInt Metric Transformation FRE [mm] t

Hu and Haynor, 2004 MRI / CT 1 - MI multirigid n.s. >60 min

Kaminsky et al., 2004 MRI / CT 1 - LMB multirigid 1.53 >8 min∗

Čech et al., 2006 MRI / CT 3 - MI multirigid n.s. n.s.

Sohn et al., 2009 MRI / CT 20 - LMB globally rigid n.s. n.s.

Karlo et al., 2010 MRI / CT 10 - LMB globally rigid 1.46 ∼2 min

Miles et al., 2013 MRI / CT 20 - MI globally rigid 1.90 n.s.

Rashad et al., 2019 MRI / CT 10 - MI multirigid (1.54) n.s.

Zhang et al., 2020 MRI / CT 22 - n.s. globally rigid 1.6 ∼15 min

MS-VB MRI/FP-CT 19 + NGF multirigid 2.35 24 s∗
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magnitude of the mFRE can be explained in particular by the voxel size
of the MRI scans, which had a diagonal of approximately 3.5 mm. Besides
the spatial resolution component, it is not trivial to identify correspond-
ing anatomical landmarks in images of different modalities, since the
representation and display of the same tissue types differ considerably.
Hence, the mean mFRE of 1.70 mm demonstrated the challenging task of
landmark localisation in two image volumes even for field experts.

Furthermore, intra- and inter-reader variability regarding the FLE were
investigated. As expected, average intra-reader variability was signifi-
cantly lower than the inter-reader variability (1.04 mm vs. 1.32 mm), since
various readers subjectively interpret the given landmark positioning
guidelines slightly different. Even though, the anatomical landmark posi-
tions were clearly defined in theory, inaccuracies occurred, because, e.g.
the vertebral rim was several voxels wide and the sagittal plane of symme-
try was partially difficult to determine objectively and reproducibly. For
instance, the choice of the respective sagittal cross-section could already
lead to significant discrepancies between different readers. The FLEs of
landmarks placed in the MR images were slightly higher than those in
the interventional FP-CT, which was due to the lower spatial resolution of
the MRI. With 0.8 ± 0.4 mm, a similar FLE of the intra-reader variability
in MRI (spatial resolution of 0.3 × 0.3 × 3 mm) was found by Miles et al.
(2013).

Considering the used MRI sequences, slightly higher FREs have been
observed when using T2- instead of T1-weighted MR images. This could
partly be attributed to the somewhat better contrast of the T1-weighted
images at the transition between the dorsal vertebral rim and the spinal
canal, while the image intensities of both, vertebral bone marrow and
cerebrospinal fluid were roughly similar in the T2-weighted MR images.

In terms of the used registration metric, NGF proved superior to MI (av-
erage FREMS of 2.35 mm vs. 2.87 mm). This could most likely be attributed
to the overall reduced tissue contrast and SNR of low-dose interventional
FP-CT imaging. In most FP-CT scans only the cortical bone of the ver-
tebra emitted sufficient imaging signals and high image contrast, while
surrounding tissues or the cancellous bone was hardly visible and thus
contributed scarcely to the MI criterion.

3.1.7 Conclusion

In this section, a precise registration approach was presented, which
fused diagnostic MR and interventional FP-CT images for the purpose
of intervention support. The proposed registration strategy combined a
voxel-based and multisegmental approach and took interventional image
data into account. The choice of the image fusion method was determined
by both physical characteristics of the spine as well as the requirements
of the workflow during RFA interventions of spinal metastases. It could
be shown, that a multisegmental approach with NGF as an image simi-
larity measure could cope with spine deformations due to patient posi-
tioning and avoid the time-consuming initialisation of landmark-based
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registration approaches. The sufficient registration accuracy and short
computational times enabled the presented method to provide practical
and applicable intervention support without significantly delaying the
clinical workflow or inducing too much additional workload.



4
P O S T- I N T E RV E N T I O N A L P H A S E

Subsequent to the intervention, follow-up MRI scans are performed to
assess the treatment outcome. Primary goal of most interventions is to
reduce pressure on the spinal cord and peripheral nerves, as well as on
the periosteum of the vertebrae, which is highly sensitive to pressure
pain (Guillevin et al., 2007; Klimo and Schmidt, 2004). This results in a
relief from severe pain, neurological deficits, and paralysis in particu-
larly advanced stages. Apart from these overall qualitative assessments
of the treatment outcome, it is a crucial step forward to an enhanced
and computer-assisted therapeutic workflow to produce quantitative
and reproducible evidence. For instance, both, the ablated and the resid-
ual tumour volume (partial remission) in relation to the pre-operative
metastases, as well as the remaining safety margin of the ablation zone
to nearby risk structures are key parameters for the evaluation of the
therapy outcome. Based on the combination of such quantitative and
qualitative assessments, a more accurate and reliable prediction about
recurrent and progressive metastases can be made, and thus whether
further interventions or adjuvant therapies are indicated. The base for
such quantitative validations is a segmentation of the necrosis zones and
an image fusion of follow-up MRI scans with the pre-operative images, in
order to superimpose necrosis zones and former metastases. Both issues
are addressed in the following sections and based on Steffen and Hille et
al. (2020) and Hille et al. (2019).

4.1 necrosis zone segmentation

4.1.1 Introduction

Follow-up MRI scans are used to qualitatively assess the treatment out-
come subsequent to the RFA intervention. Conventionally, this assessment
is carried out by side-by-side comparison of diagnostic and follow-up
imaging in order to compare geometric properties like size and shape of
both the former metastases and the resulting necrosis zones. This, how-
ever, is challenging due to the difficulties of correlating spatial positions
in separate image volumes or estimating the correct spatial extension
in three-dimensional space, as well as the considerably high interaction
effort, as the user has to slice through each volume separately. Hence,
the conventionally required mental image fusion is highly demanding,
time-consuming, prone to human error, and hardly lead to a reliable and
robust assessment of the treatment outcome. Since tumour recurrence
due to a partial remission after RFAs can be diagnosed comparatively
early by size and geometry alterations observed in follow-up scans (Egger
et al., 2015), a precise volumetrisation of the necrosis zone is of crucial

65
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metastasiselectrode current flow necrosis zone boundary

a b c

Figure 4.1: Basic configurations of the current flow between active pairs of elec-
trodes at the applicator needle tips w.r.t. mono- or multipolar ab-
lation concepts (top row). While monopolar RFAs result in ellip-
soidal shapes (a), multiple applicators could shape more complex
geometries (b and c) due to timed switching between the electrode
configurations (bottom row).

importance. Additionally, it constitutes the basis for any computation
of quantitative validation measures such as tumour coverage, residual
tumour volume or maintained safety margins towards adjacent organs
at risk. Beyond the benefit of the individual therapy, such acquired data
can yield additional insights in the context of retrospective studies. For
instance, it can contribute to a better understanding of the causes of
tumour recurrence or it can further improve ablation protocols and proce-
dures by comparison with previously predicted ablation zones during the
therapy planning phase. Nowadays, the manufacturers of RFA devices
commonly state a prospective size of the ablation zones, which could be
used as a good approximation, although the extent is generally rather
overestimated (Kröger et al., 2010; Matschek et al., 2017). Accordingly,
accurate segmentations of the resulting necrosis zones can provide ben-
eficial feedback for the simulation and outcome prediction of ablative
procedures.

Nevertheless, some specific aspects of necrosis zone segmentations
tend to make this a highly challenging and ambitious task, e.g. hardly no-
ticeable intensity differences between necrosis and remaining metastasis,
inflammation processes caused by the coagulation or possible hematomas.
Moreover, an overall high shape variability of the necrosis zones due to
the former metastases shapes, the configuration of multipolar RFA, as
well as the tissue-specific heat propagation of target and adjacent struc-
tures hampers automatic segmentation approaches. Regarding the shape
of necrosis zones, there are two basic concepts: for monopolar RFAs only
one applicator needle is inserted, resulting in rather small and ellipsoidal
ablation zones, whereas for multipolar RFAs two or more needles are
inserted with their tips placed within the tumour tissue (see Figure 4.1).
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Besides increased ablation zones, the major advantage is the additional
degree of freedom, since multiple configurations of active pairs of needle
electrodes can shape more sophisticated ablation zones and allow a finer
control of the induced temperatures (Matschek et al., 2017). This becomes
even more relevant when considering that the heat transfer abilities differ
notably between the cancellous and cortical bone of the vertebrae (Green-
berg et al., 2014). Therefore, the intra-vertebral location of the metastases
and thus the positioning of the RFA applicator needle tips significantly
influences the ablation process and consequently the resulting shape of
the necrosis zones. A segmentation approach will have to cope with these
challenges to be suitable and applicable in clinical settings.

4.1.2 State of the Art

With the increasing number of ablative procedures on the spine (Starr
et al., 2019, Transparency Market Research, 2019) the subject of a volumet-
ric assessment of resulting necrosis zones is gaining relevance. Despite
this, regardless of the application area, there currently are only few works
addressing ablation zone segmentation subsequent to any ablation pro-
cedure. To the best of the author’s knowledge, all published research
works focused on liver tumour treatment in CT and none of them dealt
with spinal necrosis zones or MRI. Therefore, the following state of the
art analysis will focus on related approaches for ablative interventions of
hepatic lesions. Segmentation approaches regarding metastatic lesions,
as mentioned in Section 2.2.2 could be considered relevant in a broader
sense, but will not be discussed here once more.

Bricault et al. (2006) developed a computer-aided analytical tool, which
focused on assessing local recurrences of liver metastases after RFA treat-
ment in CT. For this purpose, a semi-automatic 3D segmentation approach
based on a watershed algorithm was implemented. On average, the seg-
mentation took approx. 4 min, but accuracy results were not stated.

Keil et al. (2010) proposed a semi-automatic and user-initialised seg-
mentation approach of liver lesions and subsequent ablation zones in
CT imaging combining a 3D region growing approach with various mor-
phological operations. Evaluating their approach with 49 patient cases
resulted in a mean 99 % concordance correlation coefficient with a 95 %
confidence interval. However, their approach included a manual correc-
tion possibility by iteratively adapting the region growing thresholds and
no distinction was made between pre- or post-correction results w.r.t. the
accuracy.

Weihusen et al. (2010) presented a workflow-oriented software support
for CT image-guided RFA of focal liver malignancies. In their treatment
outcome validation tool they also included a semi-automatic necrosis
zone segmentation based on a morphological region growing algorithm,
though Weihusen et al. (2010) stated no quantitative results whatsoever.

Passera et al. (2013) proposed a semi-automatic approach to segment
hepatic lesions in diagnostic and ablation zones in post-interventional CT
scans of the liver. The input of their segmentation approach consisted of
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a binary mask of the liver generated by a preceding user-guided live-wire
algorithm and up to three reference pixels within the lesion or necrosis
marked by an operator. A fuzzy C-means clustering with additional
morphological filtering subsequently segmented the target structures.
Their approach was applied to pre- and post-interventional images of 10
patient cases and took on average approximately 10 min, while achieving
a mean TPR of approximately 96 %. Both segmentations were part of a
processing pipeline to quantitatively assess tumour coverage after RFAs of
liver lesions, whereby the following Section 4.2.2 will focus in particular
on strategies for treatment outcome validation.

The currently most advanced method was proposed by Egger et al.
(2015), whose semi-automatic graph cut-based approach was used to
segment ablation zones in hepatic CT imaging. They included an inter-
active refinement option by manually dragging the seed point around
and generating new segmentations based on the current set of graph
nodes. Egger et al. (2015) achieved a mean accuracy of 77 % DSC on their
evaluation set of 12 patients and reported computational times of a few
seconds.

In conclusion, the previous studies focused solely on post-interventional
CT imaging of liver tumour ablations, which is hardly transferable to
necrosis zone segmentation after ablative interventions of spinal metas-
tases in MRI. Primarily differences in shape and appearance of the abla-
tion zones due to the different heat propagation processes among soft
tissues and osseous structures, as well as the variety of adjacent tissues
in the complex geometry of the spinal region distinguish hepatic and
spinal necrosis zone segmentation. Furthermore, the different imaging
techniques, i.e. CT imaging in most state of the art works and MRI in
this specific use case, as well as the so far predominantly manual proce-
dures in literature, required a fundamentally new approach towards this
ambitious and challenging segmentation task.

4.1.3 Objectives

Analogous to the segmentation task described in Section 2.2, the following
objectives were defined in cooperation with the clinical partner:

• Computational time per necrosis zone on average < 1 min on current
consumer hardware

• Segmentation accuracy in the range of the inter-reader variability of
field experts

Since there are no directly related works regarding an automatic and
fast segmentation of necrosis zones after RFAs of spinal metastases, a
novel approach had to be developed to meet the defined clinical objectives.
First of all, a thorough problem analysis has been carried out in order to
find a principally suitable segmentation strategy from the existing state of
the art of medical image segmentation. Subsequently, the most promising
approach had to be adapted to the specific requirements of this task.
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Likewise to most segmentation tasks, the time required plays a decisive
role, since a reasonable support must reduce the radiologist’s workload
and occupy as little time as possible. Preliminary studies and the prepara-
tion of the ground truth have shown that manually performed contouring
of a single necrosis zone took approximately 5-10 min. In order to con-
siderably speed up this task and to ensure that even in the case of a
necessary manual post-correction significantly less time is required, the
objective of a maximum computational time of one minute per necrosis
zone was defined.

Besides, a reliable and feasible segmentation approach must provide a
sufficient accuracy to be considered applicable for clinical purposes. Ac-
cordingly, the resulting average segmentation accuracy must be within the
range of the inter-reader variability of this particular or related tasks, e.g.
spinal metastases segmentation, and thus reflect expert-like performance.

The conceptual similarity of this task and its requirements to the seg-
mentation of spinal metastases as presented in Section 2.2.1 w.r.t. the
image modality, the region of interest as well as the shape and appear-
ance variability of the target structures suggested the implementation of
a similar segmentation approach. Hence, a state of the art deep learning-
based approach seemed to be suitable and most promising.

4.1.4 Materials and Methods

Image Data

In order to evaluate the proposed method a dataset was assembled, con-
sisting of 26 follow-up MR images of patients who underwent RFAs of
spinal metastases at the Department of Neuroradiology of the Univer-
sity Hospital of Magdeburg. These images were acquired between one
and three days after the intervention including, among others, sagittal
contrast-enhanced T1-weighted and native T2-weighted MRI sequences.
Both sequences were chosen since they are most commonly used for
visual examination regarding treatment outcome validation by neurora-
diologists in this particular case. The image data differed w.r.t. specific
acquisition parameters and scanner configuration. The scan resolution
within a slice ranged between the individual patient cases and imag-
ing sequences from 0.45 mm to 1.25 mm, the spacing between adjacent
slices ranged from 3.3 mm to 4.8 mm. The image volumes of each patient
case were pre-processed by a cubic interpolation between the original
number of slices (between 15 and 25) to a fixed number of 64 to yield
almost isotropic spatial resolution and simplify any following processing
steps. An experienced neuroradiologists manually contoured each necro-
sis slice-wise. Thus, the input data could be used for training purposes as
individual slices or as patient-wise merged volumes.
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Data Augmentation

Due to the relatively small amount of available data, each of the 26
original MRI volumes were extensively augmented using the following
techniques:

• Gaussian blur: The images were blurred with a Gaussian filter with
σ in the range from 0 to 0.5.

• Gamma transformation: Gamma transformations with γ in the range
from 0.5 to 2 were applied to modify image intensities.

• Mirroring: Each patient volume was flipped in all directions. This
included vertical flips, i.e. craniocaudal. Even though it may appear
inappropriate, preliminary studies have proven it to be advanta-
geous for the final results due to the avoidance of fast overfitting.

• Scaling: The image volumes were scaled with randomly chosen
factors between 0.6 and 1.4.

• Rotation: Rotations were applied to the image volumes in the range
of ± 30 ◦ around the transversal axis and between ± 20 ◦ around
the sagittal axis.

• Elastic deformations: Random displacement fields with subsequent
Gaussian smoothing the grid with a σ ranging between 0 and 0.3
were used to elastically deform the image volumes (cf. Ronneberger
et al., 2015).

• Random Cropping: Finally, each patient volume was translated in a
random cropping manner within a range of ± 20 voxels in sagittal
and vertical direction w.r.t. the centers of the necroses mc and
subsequently cropped to patches of a fixed size of 128 × 128 × 64
voxels.

After the augmentation each image volume patch was whitened by
mean subtraction and a subsequent division by the standard deviation.
It was ensured that each patch contained at least fractions of necrotised
tissue. For the purpose of a stratified cross-validation, the patient data was
grouped into six folds with a 21/5 (training/validation) split for two folds
and a 22/4 split for the remaining four. Each patient volume within the
training set was augmented 150 times, yielding in total 3,150 volumetric
and 201,600 cross-section training samples, respectively for both 21/5-
split folds, and 3,300 and 211,200, respectively for the remaining four
folds.

CNN Architecture

Likewise to the similar data augmentation strategy implemented for the
spinal metastases segmentation (see Section 2.2.4), U-net and vU-net ar-
chitectures were applied to this task (see Figure 4.2). Again, a patch size
of 128 × 128 pixels for 2D slices as U-net input and 128 × 128 × 64 voxels
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Figure 4.2: The U-net architecture used for multimodal 2D image input. The vU-
net architecture for 3D input was analogous, but with an additional
dimension for all layers and convolutional kernels. A significant
difference between the two variants was the number of trainable pa-
rameters, which was about 2.85 times higher for the vU-net variants.

for volumetric vU-net input was defined, while an additional dimension
contained either one or multiple MRI sequences as channels. According
to the implemented network variant, the convolutional layers had a kernel
size of 3 × 3 (× 3), except for the last one, which applied a 1 × 1 (× 1)
kernel to reduce the dimensionality to the desired output size. Subsequent
to each convolutional layer a batch normalisation followed. Downsam-
pling was performed by strided convolutions (stride of 2) and simplified
upsampling layers replaced the commonly used up-convolutions (Isensee
et al., 2017). ReLU was implemented as the activation function of each
convolutional layer, except for the last layer, where a sigmoid function
was used to transform the resulting values in the range between zero
and one. Again, only a single epoch was used with iterations equal to
the number of available training samples, Tversky loss was implemented
as a loss function and Adam was used as an optimizer with a starting
learning rate of 0.01. With regards to the limited GPU memory resources,
especially if incorporating image volumes, mini-batch sizes were defined
as 2 for volumetric input of the vU-nets and 32 for 2D image slices as
U-net input. Finally, a threshold of 0.5 was applied to produce binary
output images.

Experimental Design

Similar to the experimental design described in Section 2.2.4, various input
and network configurations were tested. Thus, different MRI sequences
were applied either as monomodal or multimodal input to both, the
U-nets and vU-nets. Dependent on the number of available patient cases,
stratified 6-fold cross-validation over disjunct subsets was performed,
with either four or five patients within each validation set. The results
stated in the following refer to the average over all 6 cross-validation
folds. The problem of limited training data was even more critical for this
task, as only two thirds of the patient data were available compared to the
spinal metastases segmentation of Section 2.2.4. Hence, a separate test set
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was not comprised, since it would further reduce the available samples
which hardly seemed to indicate promising training results. This, however,
did not lead to biased results or undermined an un-biased evaluation of
the trained models, since no training and design decisions were based on
intermediate validation results (no look-ahead bias).

Evaluation

Reference, i.e. ground truth, segmentations of the necrosis zones were
performed by a neuroradiologist using contrast-enhanced T1-weighted
and native T2-weighted MRI sequences of each patient. For this purpose,
a manual segmentation framework was set up to enable slice-wise con-
touring of the necrosis zones with subsequent 3D merging to volumetric
masks. These segmentations were fed to the CNNs along with the cor-
responding image data in order to train the model, which subsequently
predicted binary segmentation masks of unseen necrosis zones. DSC,
sensitivity and specificity, as well as ASD and HD95 were used as quality
measures to evaluate the produced segmentations. Those measurements
always referred to 3D patient volumes, which were either directly pro-
duced by the vU-nets or as patient-wise merged 2D predictions by the
U-nets.

4.1.5 Results

For the purpose of assessing the segmentation accuracy of the proposed
method and to classify the results as sufficient or not, the IRV was used
as a benchmark. Therefore, a second ground truth segmentation of each
patient was produced in order to match it with those of the first expert.
The DSCs between these two expert segmentations ranged between 75.2 %
and 88.9 % with on average 82.4 ± 5.9 %. The surface distances were on
average 1.43 ± 0.52 mm ASD and 6.71 ± 3.10 mm HD95. Table 4.1 shows
the automatically produced results by the specific CNNs. Depending on
the applied MRI sequences and network variant, the proposed method
achieved DSC scores up to 77.2 ± 15.6 %, sensitivity rates up to 86.4
± 15.4 % and ASD of 1.59 ± 1.09 mm. Prediction time was on average
4.29 ms per slice and therefore approximately 0.28 s per patient case for
the 2D U-nets, and on average 0.21 s per patient case for the 3D vU-net
configurations.

4.1.6 Discussion

The segmentation of RFA-induced necrosis zones either done manually
or with the aid of computer-assisted methods, is a necessary prerequisite
for any objective therapy outcome validation, e.g. as presented in the
following section. To perform quantitative and volumetric evaluations
of tumour coverage and to draw conclusions about the protection of
risk structures, segmentation masks of the resulting necrosis zones are
indispensable. With regards to clinical applicability, the accuracy, degree
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Table 4.1: Experimental results for each input configuration depending on the
used modalities (contrast-enhanced (ce) T1-, T2-weighted MRI se-
quences), as well as a slice-wise (U-net) or volumetric (vU-net) pro-
cessing. Dice scores (DSC), sensitivity rates (TPR), specificity rates
(TNR), average surface distances (ASD), and 95th percentile Hausdorff
distances (HD95) were averaged over all cross-validation folds.

U-net vU-net

ceT1 T2 [ceT1 + T2] ceT1 T2 [ceT1 + T2]

DSC [%]
mean 76.7 62.2 77.2 72.7 60.4 75.9

median 83.5 65.9 82.3 78.1 63.3 80.7

std 19.0 21.7 15.6 18.7 27.4 17.2

TPR [%]
mean 81.4 69.2 81.6 77.7 63.1 77.8

median 84.5 76.9 86.4 86.2 71.1 82.6

std 17.1 20.3 15.4 21.5 26.5 19.6

TNR [%]
mean 99.2 98.8 99.2 99.1 98.7 99.2

median 99.6 99.1 99.5 99.4 99.0 99.6

std 0.9 1.0 0.8 0.9 1.3 0.9

ASD [mm]
mean 1.59 2.49 1.69 2.18 2.99 1.90

median 1.14 2.25 1.18 1.68 2.69 1.52

std 1.09 1.53 1.08 1.60 1.76 1.42

HD95 [mm]
mean 6.27 10.16 7.28 9.11 10.89 7.32

median 3.99 7.12 4.38 4.85 8.70 6.42

std 5.75 10.56 6.92 9.28 11.24 6.42

of automatisation, and the required computational time are of crucial
importance. Manual segmentation procedures have proved to be time-
consuming and tedious due to their limitation to slice-by-slice processing
and required up to 10 min per necrosis zone. The presented automatic
approach, however, could reduce the required computational time per
patient case to well below half a second and thus drastically speed up the
post-interventional treatment validation procedure.

With respect to the segmentation accuracy, the inter-reader variability
was the defined benchmark. The best results were achieved combining 2D
patches of the contrast-enhanced T1- and the T2-weighted MRI sequences
applied to a U-net and resulted in a mean DSC of 77.2 %. Although the
results were on average qualitatively not quite at an IRV level (mean
DSC of 82.4 %), they were still within the defined objective range of the
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Figure 4.3: DSC and ASD scores depending on the imaging modality and input
dimension. Box edges mark the 25th and 75th percentiles, the central
box line marks the median value and the whisker marks the most
extreme values not considered as outliers.

expert variability (75.2 % and 88.9 % DSC). Nonetheless, five patient cases
out of the total 26 did not achieve the required accuracy with this best
input and network configuration and would have needed a manual post-
correction to meet the clinical objective. These patient cases were either
hampered by distinctly poor image contrasts or constituted an anomalous
exception due to the presence of inflammation processes and hematomas
(see Figure 4.4). As indicated above, the best results were achieved with
either the contrast-enhanced T1-weighted data alone or if it was part of
a multimodal image input (see Figure 4.3). This could most likely be
attributed to the predominantly high image contrasts between necrosis
and surrounding bone marrow signals, which were additionally enhanced
by the injection of contrast agents. Although, the segmentation accuracy
could only be slighty improved in combination with T2-weighted MRI
data, the standard deviation could be reduced considerably from 19.0 % to
15.6 % for the 2D U-nets (see Table 4.1). Applying solely T2-weighted im-
ages yielded worse results, most likely due to the inferior image contrast
between necrosis and surrounding tissues. Hence, they rather supported
and improved robustness in combination with the contrast-enhanced
T1-weighted input. Similar findings have already occurred with regard
to spinal metastasis segmentations, and likewise, it was found that on
average the 2D U-nets yielded more accurate segmentation results than
the 3D vU-net variants. Again, it is reasonable to assume that the higher
number of trainable parameters to be optimised in 3D CNNs (4,000,000 vs.
1,400,000) and, therefore, the increased network complexity had a rather
disadvantageous effect if applied to such a limited amount of training
data.

Since this was, to the best of the author’s knowledge, the first study
to tackle necrosis zone segmentation in spinal MRI, a comparison with
existing literature was only possible to a limited extent. Moreover, almost
all relevant works regarding necrosis zone segmentation did not state any
quantitative results, except for the work of Egger et al. (2015). The best
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Figure 4.4: Three exemplary patient cases, representing very high (top row),
average (middle row) and unsatisfactory (bottom row) segmentation
accuracies produced with 2D image input. Corresponding DSC scores
are stated in the lower right corners. Green contours display the
expertly annotated data as ground truth and blue contours represent
the automatically produced segmentations. From left to right: (a)
original T1-weighted MRI sequence, (b) original T2-weighted MRI
sequence, (c) result with only T1-weighted image data, (d) result
with only T2-weighted image data, (e) result with combined T1- and
T2-weighted image data.

results achieved with the presented approach were on a par with those
of their semi-automatic method (77.2 % vs. 77.0 %). Due to the lack of a
directly related state of the art, it might be interesting to take works of
automatic lesion segmentation as a similar issue into consideration. For
instance, Chmelik et al. (2018) adapted a CNN to vertebral metastasis
segmentation in CT images and achieved voxel-wise sensitivities of 74 %
for sclerotic and 71 % for lytic lesions as well as specificities of 88 %
(sclerotic) and 82 % (lytic). Section 2.2.5 of this thesis showed the results of
a spinal metastasis segmentation in MRI that applied the same approach
as described above. Considering spinal metastases, the best network
configuration achieved a mean DSC of 77.6 %, which is on a par with
the average 77.2 % DSC of the necrosis zone segmentation presented in
this section. Although the results were quite similar, the segmentation of
spinal metastases represented a more ambitious task due to the higher
appearance variability depending on the lesion type (lytic, sclerotic or
mixed) and MR sequences. In contrast, necrosis zones predominantly emit
hypointense image signals in almost all MRI sequences w.r.t. surrounding
bone marrow. Accordingly, higher accuracies could be expected for this
task, but these were presumably undermined by even less available
training data, which further restricted generalisability of the CNNs. In
addition, the segmentation of necrosis zones in spine MRI was hampered
by distinct difficulties, e.g. the challenging delineation from remaining
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metastases and inflammation processes or since possible hematomas
could overlap with the necrosis zones (see Figure 4.4).

4.1.7 Conclusion

Automatic necrosis zone segmentation in follow-up MRI scans after RFAs
of spinal metastases has the potential to quantify and objectify the treat-
ment outcome validation. Additionally, it can provide important informa-
tion regarding the improvement of ablation procedures and may help to
understand and predict possible tumour recurrence more reliably. In this
section, a CNN-based segmentation approach was presented and it was
examined how various input modalities and dimensions affected the seg-
mentation accuracy. The best network and input configuration achieved
on average 77.2 % DSC with a median of 82.3 %, showing overall sufficient
segmentation accuracy, although rare deficient cases have been observed.
The latter could be attributed in particular to a distinctly poor image qual-
ity and the presence of inflammatory processes and hematomas. Overall,
the presented method indicated promising results in the vast majority
of the patient cases with expert-like segmentation quality, and therefore,
constitutes a valuable approach towards this ambitious and challenging
issue.

4.2 treatment outcome validation

4.2.1 Introduction

A framework for a comprehensive and automatised evaluation of the
treatment outcome of RFAs of spinal metastases represented the con-
cluding step of a computer-aided and advanced therapeutic workflow.
In order to assess and quantify the results of the ablation process, it is
essential to compare pre-interventional and follow-up MRI scans and
evaluate the congruence of both the former metastasis and the necrosis
zone via distance and volume overlap measures. Furthermore, to draw
conclusions regarding the integrity or potential impairment of surround-
ing risk structures, such as the spinal cord, the automatic computation
and visualisation of safety margins towards the ablation zone is equally
important.

Currently, the treatment outcome validation is done by separately ex-
amining and mentally matching the pre- and post-interventional images
without any computer-assisted image fusion or superimposed segmenta-
tion masks. Accordingly, the current procedure is inconvenient and highly
demanding for any radiologist due to the mental fusion of 3D image
volumes, which takes considerably long time without being very accurate
or reproducible. For instance, only small contrasts between necrosis and
residual tumour tissue as well as inflammation processes significantly
hamper the assessment of tumour coverage and may lead to misinterpre-
tations. These aspects hardly enable the radiologists to draw objective,
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quantifiable, robust and reliable conclusions about the RFA outcome.
However, at this very point an appropriate computer-assisted validation
tool can help to remedy this lack in clinical practice and support the radi-
ologists in their mandatory assessment, without any additional workload.
For this purpose, such a framework should cover all necessary steps and
aspects of a post-RFA treatment validation procedure and automatise and
speed up the entire process itself.

4.2.2 State of the Art

There are several works regarding computer-assisted approaches for
treatment outcome validation based on image registration of pre- and
post-treatment images, however, they mainly focused on hepatic lesions in
CT imaging. McCreedy et al. (2006) presented a tool to guide physicians
through segmentation, registration and visualisation steps in order to eval-
uate ablation procedures of liver tumours. Multiple registration methods
were included in their tool, ranging from user-guided landmark-based to
automatic voxel-based approaches. Besides the computational times of
8 - 10 min for affine and 2 - 3 h for deformable methods, no quantitative
results regarding the registration accuracies were stated. In addition, they
did not provide any information about the computation of treatment
validation measures, but rather focused on supporting visualisations.

Fujioka et al. (2006) proposed an automatic rigid registration and
subsequent fused visualisation of pre- and post-interventional liver CT
data. In 16 out of their 20 patient cases, the automatic registration based
on normalised correlation coefficients was sufficient enough to avoid
manual post-correction and achieved registration errors of on average
3.3 ± 1.2 mm. The total time required for their image fusion was <10 min.
Again, no treatment validation measures were computed.

Based on their previous work regarding a user-initialised automatic
rigid registration of pre- and post-RFA CT images (Rieder et al., 2012),
Rieder et al. (2014) assessed an outcome validation software in a retrospec-
tive clinical study regarding hepatic lesions. They focused in particular
on validation support via suitable visualisations, including traffic light
colour-coded tumour coverage and a spherical mapping of the tumour
surface, which was previously presented in Rieder et al. (2010). The mean
registration accuracy measured as FRE was 6.24 mm and the mean com-
putational time per registration was 45 s (Rieder et al., 2012). The main
finding of their study was that in contrast to the conventional image read-
ing, a validation tool, as presented, increased the percentage of correctly
identified local tumour recurrence, while the prediction performance was
noticably affected by the registration accuracy.

Passera et al. (2013) presented a tool to register pre- and post-treatment
CT images of hepatic lesions to quantitatively assess the therapeutic suc-
cess of RFAs. Considering this, they included segmentation (described in
Section 4.1.2), registration as well as validation and visualisation proce-
dures. B-spline deformations with normalised mutual information (NMI)
as similarity measure were used for the image registration and required
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approximately 40 min on medium consumer hardware. In 2 out of their
10 patient cases their registration approach failed, although no accura-
cies w.r.t. the successful cases were stated whatsoever. Subsequent to the
preceding segmentation and registration of the lesion and ablation zone,
an overlap measure classified the tumour coverage in fully or not-totally
treated, which additionally was shown in 2D and 3D visualisations of
the segmentation masks as well as colour-coded volumes of ablated and
residual tumour tissue.

Similar to Passera et al. (2013), the work of Laura et al. (2016) imple-
mented a deformable registration approach for liver CT images of mini-
mally invasive interventions. They combined surface landmarks obtained
from a preceding liver segmentation with information from internal vessel
segmentations to register pre- and post-interventional images via a finite
element method in a more physiologically accurate way as, for instance,
with solely liver surface-driven approaches. They used manually identi-
fied landmarks on hepatic vessel structures for evaluation purposes and
achieved a mean FRE of 1.2 mm. However, no required computational
time was stated. Subsequent to a semi-automatic segmentation of the
former lesion and resulting necrosis zone, the treatment efficiency was
quantitatively measured via tumour coverage and a classification was
provided in order to support the physician’s decision-making regarding
re-treatment of residual tumours.

In contrast to the above-mentioned works, which all focused on liver
lesion ablations in CT imaging, von Dresky et al. (2018) stated tumour
coverage measures, while optimising generator modulation and electrode
positions for RFAs of spinal metastases. However, they neither described
any registration procedure nor stated the accuracy, which is crucial for
such a validation tool to be reliable, since the subsequent treatment
outcome assessments are based on these results, as demonstrated by
Rieder et al. (2014).

In conclusion, while there are several works regarding a computer-
assisted treatment outcome validation of minimally invasive interventions
like RFA, except for the work of von Dresky et al. (2018), all focused on
hepatic lesions and CT imaging. Besides, all of the above-mentioned
works were limited by either one or multiple of the following constraints:
inaccurate registration accuracy (respectively no stated accuracy), long
computational time or considerably large user input was required. Hence,
there was still a need for an RFA outcome validation framework that
combines target structure segmentations, a fast, precise and automatic
image registration of spinal MRI as well as the computation and intuitive
visualisation of quantitative validation measures for decision support of
radiologists.
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4.2.3 Objectives

In order to support the radiologist with a computer-assisted treatment
outcome validation framework, the following objectives were defined in
cooperation with the clinical partner:

• Framework must provide all image processing aspects necessary
for a throughout treatment validation support

• Computational time of the integrated image registration per patient
case on average < 1 min on current consumer hardware

• FRE in subvoxel range of each patient case (half of the diagonal of
a voxel)

• Automatic computation and visualisation of relevant validation
measures

Since all related works focused on hepatic interventions or had lim-
itations, a novel framework had to be designed and implemented for
this specific task. First, such a computer-assisted tool must guide and
support the radiologist throughout each step of the validation procedure,
i.e. segmentation support for the purpose of metastasis and necrosis con-
touring, a precise and fast image registration, as well as the computation
of relevant quantitative validation measures. Additionally, interactive 2D
and 3D visualisations should help the radiologist to quickly and com-
prehensively capture the tumour coverage or possibly violated safety
margins. Considering the segmentation support, the intended framework
should offer automatic segmentations as proposed in Section 2.2.1 and
4.1.1, as well as an assisted but largely manually performed method as a
post-correction or fall-back solution. Since both automatic segmentation
approaches were described and discussed in previous sections of this
thesis, they will not be addressed once more in the following. This section
will mainly focus on the required registration and subsequent treatment
outcome validation.

Analogous to the objectives of the previous tasks, short computational
times were also critical for this step of the workflow. Manual image regis-
tration, especially in 3D, is commonly time-consuming, cumbersome and
unnecessarily ties up valuable resources. This was proven, for instance,
during the preparation of the ground truth of a single patient case, which
consisted of multiple corresponding landmark pairs in the pre- and post-
interventional MRI and required approximately 10 min. This procedure
should be shortened significantly through the implementation of an auto-
matic registration approach, which should not exceed one minute while
being sufficiently accurate at the same time. A particular threshold re-
garding the registration accuracy in order to classify a result as sufficient
should be chosen with particular care, since the subsequent computation
of validation measures and their effect on the decision support of the
radiologists depends on the registration accuracy (Rieder et al., 2014).
Therefore, the threshold was set as low as possible and yet as high as
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reasonably achievable. For this purpose, a maximum FRE of half the diag-
onal of a voxel was defined, ensuring a registration accuracy of subvoxel
size. In conclusion, the required treatment validation framework had
to combine segmentation support, precise image registration, as well as
compute and visualise relevant RFA validation measures like the tumour
coverage or the safety margin towards risk structures.

4.2.4 Materials and Methods

The outcome validation tool was developed as an application prototype
in the modular medical image processing and visualisation framework
MeVisLab (MeVis Medical Solutions AG, Germany). The graphical user
interface (GUI) as well as most of the features of the proposed tool were
based on such available software modules and integrated third party
libraries and techniques. To start with, the pre- and post-RFA MRI scans
could be imported as DICOM or Nifti image data, which represent the
most common types of medical image data. The segmentation tasks
could be performed within the presented tool either interactively with a
live-wire-based approach or previously performed segmentations could
be imported and edited as 3D binary masks or as MeVisLab internal
contour segmentation objects (CSO). Automatic segmentations could be
performed with the approaches presented in the Sections 2.2.4 and 4.1.4.

The implemented registration approach was initialised by a superpo-
sition of the centers of mass of both segmentation masks. Subsequently,
a multiresolution image-based rigid registration approach precisely reg-
isters both corresponding image volumes combining NMI and a Quasi-
Newton optimizer. NMI was used as it is established as one of the most
common metrics for multimodal registrations. NMI binning was set to 32
and depending on the original image resolution 4 to 6 multiresolution
levels were used, which was automatically determined.

Following the image fusion step, various treatment outcome validation
measures were automatically calculated (see Figure 4.5). Starting with the
residual tumour size TR, which was defined by all voxels belonging to
the tumour mask but were not included in the contoured necrosis zone
(in relation to the whole metastasis volume). Furthermore, surrounding
non-cancerous tissue should be spared as much as possible, which was
also considered as a validation index NNC. It is defined as the fraction of
necrotised non-cancerous tissue with regard to the total ablation volume.
The distance dC between the centers of mass of metastasis and necrosis
zone was computed, providing a measure to assess RFA applicator place-
ment and the resulting ablation zones w.r.t. the target volumes. Finally, a
minimal surface distance dR between the necrosis zone and any adjacent
and defined risk structure was computed to ensure the integrity of critical
safety margins. For qualitative validation support, a slice-wise visuali-
sation including superimposed segmentations of the metastasis and the
corresponding necrosis as well as an interactive volume-rendered scene
have been integrated. A traffic light colour scheme showed the individual
volume fractions of residual tumour (red), ablated non-cancerous tissue
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Figure 4.5: Illustration of the proposed computer-assisted treatment outcome validation framework: First, the target structures, i.e. metastasis and necrosis
zone, are segmented in the pre- and post-RFA MR images. Subsequent to an initial prealignment an automatic voxel-based registration fuses
both image volumes and enables the computation of quantitative outcome validation measures as well as joint visualisations. A traffic colour
light scheme simplifies the interpretation of spatial relationships and context information, e.g. the tumour coverage TC (green), the fraction of
necrotised non-cancerous tissue NNC (yellow) or the residual tumour volume TR (red). Additionally, dR as the minimal distance between the
necrosis zone N and a risk structure R (e.g. spinal canal) and dC as the distance between the centers of the metastasis and necrosis after the
registration process are computed.
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(yellow) and ablated tumour (green). A visualised margin surrounding
the metastasis, as commonly integrated in RFA validation softwares of
hepatic lesions did not seem to be useful for this particular task. It was
not implemented, since ablations beyond the size of the metastases in the
confined space of the vertebral bodies are scarcely possible, especially due
to the natural limitation by surrounding cortical bone tissue (Greenberg
et al., 2014).

In terms of an application example, the proposed framework was
applied to a retrospective study of 30 patients who underwent RFAs of
spinal metastases at the Department of Neuroradiology of the University
Hospital of Magdeburg. Each patient case consisted of pre-interventional
T1- and follow-up contrast-enhanced T1-weighted MRI sequences, which
are typically used for diagnostic and validation purposes (Shah and
Salzman, 2011). The in-plane image resolution ranged from 0.47 mm to
1.25 mm (average 0.63 mm) and the slice spacing was 3.30 mm for all scans.
In addition, a radiologist contoured metastases and necrosis zones of each
patient case using the integrated semi-automatic and live-wire-supported
segmentation tool.

4.2.5 Results

Image Registration

Since the accuracy of the image registration was of crucial importance
for the following treatment outcome validation, it was examined for each
patient case. The ground truth for this evaluation consisted of correspond-
ing pairs of manually placed landmarks on the vertebrae adjacent to the
metastasis and necrosis zone, respectively in both image volumes. Thus,
a field expert marked four fiducials within the sagittal plane of symmetry
of the vertebra; two on the cranial endplate of a vertebra above and two
on the caudal endplate below the metastasised vertebra. For this purpose,
the slice spacing was interpolated to provide a quasi-isotropic spatial
resolution in order to reduce the FLE to a minimum. Registering both
fiducial sets of each patient directly via Horn’s quaternion-based method
resulted in mFRE of average 0.72 ± 0.15 mm. The mFRE represented
both, the result of a manual registration by landmarks and the minimum
possible registration error that can be achieved, while measuring accu-
racy with the given fiducials. The average FRE, i.e. the accuracy of the
integrated automatic voxel-based registration approach was computed
between each pair of corresponding fiducials per patient via Euclidean
distances. The discrepancies were averaged over all fiducial pairs per
patient and subsequently over all patient cases and resulted in an FRE of
1.57 ± 0.32 mm. The entire registration procedure never exceeded 15 s.

Outcome Validation

Table 4.2 lists the results obtained with the outcome validation tool for
each patient of the retrospective study. The metastasis sizes of the exam-
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ined clinical dataset ranged from 2.85 cm3 to 52.88 cm3 with a mean of
24.84 ± 13.28 cm3. In less than 15 % of the given patient cases the necrosis
zone was larger than the corresponding metastasis, resulting in a mean
size of 17.06 ± 8.69 cm3 (min. 3.83 cm3, max. 42.11 cm3). Due to the re-
strictions imposed by limited intravertebral space and the need for safety
margins towards surrounding risk structures, there was no patient case
with an entirely covered tumour (the closest to this were 98.1 % coverage
of patient 22, see Table 4.2). On average 44.1 ± 20.82 % of the original
tumorous tissue was not covered by the necrosis zone in the follow-up
scans and therefore remained untreated aside from apoptotic impacts. In
addition, on average 23.26 ± 24.87 % of the segmented necrosis zone did
not overlap with the metastasis mask and thus could be labelled as necro-
tised non-cancerous tissue. The minimum surface distance dR between
the necrosis zone and the spinal canal as an adjacent risk structure was on
average 3.58 ± 1.86 mm with no intersection between the two structures
in any patient case. The distance between the centers of mass of each
metastasis and corresponding necrosis was on average 3.05 ± 2.84 mm
with a minimal distance of 0.17 mm (patient 6) and a maximum distance
of 13.46 mm (patient 13).

4.2.6 Discussion

A pre- and post-interventional image registration with preceding seg-
mentation procedures can be a valuable tool for efficient and objective
treatment outcome validation (Laura et al., 2016; Rieder et al., 2014).
Figure 4.6 shows the prototypal GUI of the presented framework, com-
bining automatically generated quantitative measures with interactive
visualisations. This supports the radiologist with a straightforward and
intuitive representation of the spatial relationships of the individual struc-
tures, which is considerably more challenging to comprehend if both
images were viewed separately in individual viewers or even on differ-
ent monitors as it is common practice. Furthermore, measures derived
from the overlap of pre-interventional metastasis and post-RFA necro-
sis zone quantify the treatment outcome and enable a comprehensible,
reproducible, and more objective validation. It has already been proven
that this can improve clinical decision-making, for instance, in terms
of identifying local tumour recurrence (Rieder et al., 2014). However,
the prediction performance with the aid of computer-assisted validation
frameworks largely depends on the accuracy of the integrated registration
procedures (Rieder et al., 2014). Therefore, it is required to ensure high
precision, which means FREs ideally in a subvoxel range. The registration
approach integrated in the proposed treatment outcome validation frame-
work achieved accuracies of less than half the patient-individual voxel
diagonals (on average 1.71 mm vs. on average 1.57 mm FRE) for each
patient case. Considering additionally the mFRE of on average 0.72 mm,
it indicated sufficient image fusion accuracy of the presented tool.

Since the patients in this particular study underwent RFAs of spinal
metastases for palliative treatment due to advanced tumour stages and of-
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Table 4.2: Quantitative validation results of a retrospective study concerning RFAs of spinal metastases. For each patient case (ID - patient case) the tumour
size T , the necrosis zone size N, the percentage of residual tumour TR w.r.t. the pre-RFA size, the percentage of necrotised non-cancerous tissue
NNC w.r.t. the total ablation zone, the minimum distance dR between necrosis zone and a risk structure, and the distance dC between the centers
of mass of metastasis and necrosis zone were automatically computed.

ID T [cm3] N [cm3] TR [%] NNC [%] dR [mm] dC [mm] ID T [cm3] N [cm3] TR [%] NNC [%] dR [mm] dC [mm]

1 22.51 14.91 45.33 17.46 5.07 1.52 16 11.55 3.83 70.50 11.14 6.15 1.99

2 10.19 9.85 68.37 67.26 3.99 4.11 17 16.24 13.41 33.21 19.13 4.88 2.12

3 30.92 16.77 50.95 9.57 1.06 2.05 18 30.78 19.23 41.70 6.69 4.05 0.02

4 32.84 22.40 35.41 5.32 0.25 5.96 19 2.90 14.02 26.41 84.76 5.26 3.95

5 17.61 13.33 27.38 4.05 3.16 3.57 20 4.59 2.91 42.06 8.75 0.64 2.82

6 42.30 18.03 79.39 51.65 3.77 0.17 21 52.88 11.92 78.57 4.91 8.91 3.37

7 2.85 9.26 13.66 73.47 3.78 3.36 22 13.41 18.84 1.87 30.19 2.27 6.64

8 27.34 29.58 18.85 25.00 3.83 1.86 23 20.62 11.41 47.01 4.27 3.25 0.60

9 46.19 16.29 70.10 15.24 5.58 1.16 24 38.61 28.40 29.09 3.59 1.77 2.35

10 25.88 42.11 35.96 60.65 3.32 0.82 25 30.37 23.28 27.63 5.59 0.90 1.85

11 38.90 17.29 56.29 1.67 3.14 0.43 26 28.72 17.69 40.44 3.30 4.65 1.65

12 34.65 19.66 45.85 4.58 3.72 1.70 27 13.55 12.72 13.50 7.82 4.16 9.56

13 18.48 9.01 53.76 5.21 2.17 13.46 28 11.46 5.16 73.31 40.78 1.86 4.68

14 31.73 30.59 56.78 55.17 3.81 1.17 29 30.41 26.95 20.34 10.10 5.22 1.67

15 14.26 9.41 69.04 53.08 6.15 3.75 30 42.55 23.57 48.68 7.36 1.63 3.20
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ten highly space-occupying metastases, there were no tumours classifiable
as fully-treated. The percentage of residual tumour tissue was between
1.9 % and 79.4 % with a mean of 44.1 %. This was primarily due to the
spatial limitations within the vertebrae and the required safety margins
between necrosis zones and adjacent surrounding risk structures, such as
the spinal cord or nerve roots. Compliance with the safety requirements
for this study was proven by the fact that no intersection between necrosis
zone and spinal canal could be observed in any patient case.

The centers of mass distance between the metastasis and necrosis
represents a valuable measure for validating and optimising applicator
placement and configurations of multipolar RFAs. Especially the intra-
vertebral position of the applicator needle tip has a crucial impact on the
resulting ablation zone, since cortical bone tissue notably differs from
cancellous bone and bone marrow w.r.t. heat propagation and thus influ-
ences the time-dependent development of the necrosis zone differently
(Greenberg et al., 2014). Therefore, the distance between the centers of
mass of both segmentations may play an important role in therapy plan-
ning and simulation of RFAs in addition to the outcome validation. The
retrospective comparison of both the simulation and the actual treatment
outcome enables a successive adaptation and improvement of future
simulations for more precise and reliable outcome predictions.

Considering the related work, almost all of the previous studies focused
on hepatic tumour coverage and CT images, only one study was found
dealing with RFAs of spinal metastases (von Dresky et al., 2018). Each of
the relevant works showed limitations regarding either the registration
accuracy (Rieder et al., 2012), the required computational time of their
approaches (Fujioka et al., 2006; McCreedy et al., 2006; Passera et al., 2013)
or they did not provide information on at least one of these matters (Laura
et al., 2016; McCreedy et al., 2006; Passera et al., 2013), which limited
the assessment of their clinical applicability. In contrast to all relating
studies, the proposed framework also included surrounding risk struc-
tures in the treatment validation, since in RFAs of vertebral metastases
the spinal canal in particular must be protected from necrotising effects
and therefore, constitutes a critical indicator for the treatment outcome.
Regarding RFAs of spinal metastases, von Dresky et al. (2018) evaluated
their proposed approach on two patient cases and stated tumour cov-
erages of 91.8 % and 85.3 %, as well as 46.4 % and 24.1 % necrotisation
of non-metastasised tissue w.r.t. the total ablation zone. In comparison
with the tumour coverage results given above, on average a substantially
larger fraction of the metastases was ablated in the study of von Dresky
et al. (2018), while the proportion of necrotised non-tumorous tissue was
similar. However, due to the comparatively small dataset (n = 2) and the
lack of any information about the registration approach and its accuracy,
significance of the results and the conclusions was limited.
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Figure 4.6: Graphical user interface of the proposed treatment outcome valida-
tion tool with both 2D and 3D visualisations, as well as quantitative
measures for a patient-individual outcome validation.

4.2.7 Conclusion

This section presented a novel framework to provide the radiologists with
qualitative and quantitative information to support treatment outcome
validation of RFAs of spinal metastases. The proposed framework cov-
ered each aspect of a computer-assisted post-treatment workflow: target
structure segmentations, image fusion of pre- and post-RFA images, and
the computation and visualisation of all relevant validation measures. The
integrated image registration proved to be fast and accurate, which is of
crucial importance for a reliable assessment of the interventional results
and clinical decision-making. The framework itself can be integrated at
the end of the clinical workflow to finally evaluate and document the
results and outcome of the preceded treatment, without additional time
and work effort for the radiologists. This is therefore the concluding step
of a more sophisticated and purposeful computer-assisted workflow as
presented in the introductory chapter in Section 1.3.



5
S U M M A RY

With increasing survival time of most patients with carcinomas due to
advanced diagnosis and treatment strategies, the incidence of spinal
metastases is steadily rising. Currently, about 60-70 % of all patients with
systemic cancer will develop spinal metastases. Accordingly, there is a
growing need for computerised approaches to support and relieve radiol-
ogists with the steadily increasing number of spinal interventions. In the
past decades, various medical image processing methods for a vast num-
ber of purposes have been proposed, but only few were tailored to the
specific requirements and needs of clinical routine. In contrast, this thesis
presented novel strategies to support radiofrequency ablations of spinal
metastases, which were primarily developed for this clinical scenario and
were comprehensively evaluated on data of numerous patient cases. For
that purpose, a thorough analysis in cooperation with the clinical partner
from the Department of Neuroradiology of the University Hospital of
Magdeburg was done to identify multiple aspects of the current treat-
ment workflow, which could be improved by novel computer-assisted
approaches. The focus was set on reducing the radiologists’ workload
and time needed for recurring routine procedures, to enhance precision
and speed of interventional procedures like metastasis puncture, and
to support decision-making and post-treatment validation tasks. In this
respect, the state of the art in medical image processing was analysed
and the existing gaps and limitations were overcome by the proposed
approaches in order to ensure suitable and applicable assistance starting
from the therapy and intervention planning phase, to the intervention
itself, to the subsequent assessment of the treatment outcome.

Considering the support of the pre-interventional planning phase, a
precise, fast and robust vertebral body segmentation and a novel seg-
mentation method for spinal metastases were presented. The former
consisted of a hybrid level-set approach combining regional intensity
and boundary features with a preceding bias field correction. A wide
range evaluation set comprised of image data from different sources, e.g.
patient cases with various spinal pathologies as well as healthy study
participants, demonstrated sufficient accuracy with a mean DSC of 86.0 %,
short computational times with only 5.4 s per vertebra and robustness
towards multiple MRI sequences and protocols, all of which is indispens-
able for clinical applicability. In addition, this thesis addressed the highly
challenging task of spinal metastasis segmentation in MRI and presented
- to the best of the author’s knowledge - the first approach for this pur-
pose. The main challenge of this task was the high shape and appearance
variability of the metastases, which differ in dependence of their origin,
lesion type, spine and intra-vertebral location as well as dependent on
the applied MRI sequences. Patient data with spinal metastases of vari-
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ous origins and different lesion types were applied to U-net-like CNNs
in order to investigate the most suitable input configuration w.r.t. MRI
sequence, 2D or 3D patches and mono- or multimodal image input. With
up to 77.6 % DSC, the proposed approach achieved on average almost
expert-like segmentation accuracy, while only rare outliers lowered the
mean accuracy and the vast majority of the patient cases showed DSCs
of >80 %, resulting in a slightly higher median DSC compared to the
inter-reader variability. Additionally, computational times under half a
second represent an enormous advantage over manual procedures and do
not cause any delay in the clinical workflow. Both of the above-mentioned
methods, the vertebral body and spinal metastases segmentation, were
able to meet all of the beforehand defined objectives by the clinical partner.
Nevertheless, it is noteworthy that a crucial part regarding an enhanced
therapy and intervention planning is in development by the cooperation
partner MeVis Medical Solutions AG, Germany. This refers to a numerical
simulation of the ablation process with a resulting necrosis zone predic-
tion, which previously have been published focusing on hepatic lesions
and metastases.

In order to assist the radiologists during the intervention itself, an image
fusion method was presented to transfer planning data and supporting
visual information, respectively onto the intra-operatively acquired im-
ages. A voxel-based and multiresolution registration approach precisely
and rapidly matched diagnostic and poor quality interventional image
data, while additionally addressing spine deformations due to differ-
ent patient positioning by a multisegmental strategy. With a mean FRE
of 2.35 mm and 24 s per segment the proposed approach demonstrated
suitable applicability w.r.t. the defined clinical objectives.

Regarding the post-interventional phase of RFAs of spinal metastases,
this thesis proposed a novel necrosis zone segmentation approach as well
as an innovative framework to support the radiologist in the treatment
outcome validation. The volumetry of the resulting necrosis zones after
the ablation process is a crucial requirement for a reliable and objective
assessment of the therapy results. For this purpose, a CNN-based necrosis
zone segmentation strategy for follow-up MRI scans was presented, which
was, to the best of the author’s knowledge, the first for this particular issue.
With a mean DSC of 77.2 % and an average ASD between the produced
and the ground truth segmentation of 1.59 ± 1.09 mm the proposed
method demonstrated sufficient segmentation accuracy, while keeping
the computational times well under half a second. The thus produced
necrosis zone segmentations can be used in combination with masks of
the former metastases as an input to the subsequently presented treatment
outcome validation framework. The superposition of the centerpoints
of both segmentations initialised a precise image registration, which
is required to compute quantitative validation measures, such as the
tumour coverage. The presented framework automatically computes
decisive validation measures and furthermore provides intuitive 2D and
3D visualisations of all relevant structures. Studies have already shown
that computer-assisted tools for treatment outcome assessment - like the
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presented framework - have the potential to enhance prediction of local
tumour recurrence. The proposed framework concludes the intended
computer-assisted workflow of RFA of spinal metastases.

With regard to future work, most of the presented methods in this
thesis were applied retrospectively, i.e. a comprehensive integration into
a future workflow is still pending and much development work is still
required. This of course applies in particular to the certification processes
regarding medically used software. Besides, with learning-based meth-
ods still on the rise, some of the presented approaches of this thesis
could further benefit from deep learning techniques. For instance, the
integration of computerised detection approaches could make the pro-
posed segmentation methods fully automatic or could overcome manual
user initialisation of the pre- and intra-operative image fusion. More-
over, a deep learning-based joint framework combining segmentation
and registration could elastically register multimodal images consider-
ing pre-defined rigidities of multiple segmented anatomical structures
(Estienne et al., 2019). Nonetheless, common limitations regarding such
strategies will remain challenging, for instance, the limited amount of
clinical data or the time-consuming preparation of labelled reference data.
However, active learning strategies indicate promising results in order to
identify the most informative data samples and could therefore, reduce
the amount of required labelled data to ensure promising training.

In conclusion, all of the proposed approaches were in particular tailored
for clinical needs and thus were able to meet the defined objectives of
their specific tasks. Using real patient data and ground truth annotations
from radiologists and trained field experts for evaluation purposes, each
method proved its suitability and applicability to clinical data. Existing
gaps and limitations of the state of the art were appropriately identi-
fied and elaborated, while the relevance and novelty of the presented
approaches have been proven by publications in recognised journals as
well as in proceedings of national and international conferences. Most of
the presented approaches could be adapted to similar application fields
and interventional treatment procedures, e.g. for lung or liver lesions as
well as osseous metastases apart of the spine, which makes them relevant
beyond the particular underlying subject matter of this thesis.
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Table A.1: Complete evaluation results of the proposed BC-HLS approach (Part
1 of 2). This part refers to the pre-RFA and SHIP datasets. Since a
second ground truth was available for each case, the IRV could be
computed.

DSC [%] ASD [mm] HD [mm]

dataset BC-HLS IRV BC-HLS IRV BC-HLS IRV

preRFA_1 78.4 87.6 1.3 0.3 7.5 2.6

preRFA_2 81.9 87.6 1.4 0.4 7.7 4.0

preRFA_3 86.2 86.7 1.3 0.6 7.6 5.3

preRFA_4 85.0 89.3 1.1 0.3 7.0 4.4

preRFA_5 83.7 90.0 1.3 0.3 9.0 3.7

preRFA_6 84.4 91.3 1.5 0.3 8.6 3.4

mean ± std 83.3 ± 2.8 88.7 ± 1.7 1.3 ± 0.1 0.4 ± 0.1 7.9 ± 0.7 3.9 ± 0.9

SHIP_1_T1 85.7 88.4 1.5 1.1 7.2 5.6

SHIP_1_T2 84.0 - 1.7 - 7.9 -

SHIP_2_T1 84.6 86.9 1.5 1.2 6.7 5.6

SHIP_2_T2 81.9 - 1.8 - 7.7 -

SHIP_3_T1 84.9 88.2 1.5 1.1 7.1 5.2

SHIP_3_T2 83.6 - 1.7 - 7.8 -

SHIP_4_T1 84.4 89.6 1.5 0.9 6.4 4.4

SHIP_4_T2 83.1 - 1.7 - 6.9 -

SHIP_5_T1 85.2 85.6 1.7 1.5 8.1 5.5

SHIP_5_T2 83.7 - 1.9 - 8.6 -

SHIP_6_T1 87.3 90.9 1.5 1.0 7.3 5.0

SHIP_6_T2 86.1 - 1.6 - 7.1 -

SHIP_7_T1 81.0 87.3 2.0 1.2 8.9 6.3

SHIP_7_T2 80.7 - 2.0 - 8.6 -

SHIP_8_T1 82.9 88.5 1.7 1.1 7.5 5.7

SHIP_8_T2 81.5 - 1.9 - 8.0 -

SHIP_9_T1 85.4 87.3 1.6 1.3 6.9 5.9

SHIP_9_T2 84.9 - 1.7 - 7.2 -

mean ± std 83.9 ± 1.8 88.1 ± 1.5 1.7 ± 0.2 1.1 ± 0.2 7.6 ± 0.7 5.5 ± 0.5
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Table A.2: Complete evaluation results of the proposed BC-HLS approach (Part 2
of 2). This part refers to the publicly available data and corresponding
results of Zukić et al., 2014 and Chu et al., 2015.

DSC [%] ASD [mm] HD [mm]

dataset BC-HLS Zukić et al. BC-HLS Zukić et al. BC-HLS Zukić et al.

AKa2 88.1 82.3 1.6 1.7 7.7 10.8

Aka3 83.2 81.6 1.9 1.6 8.8 10.8

Aka4 85.7 83.2 1.7 1.6 6.9 9.3

Aks5 86.4 84.2 1.4 1.4 6.5 10.8

Aks6 83.1 80.6 1.6 1.8 8.0 10.6

Aks7 84.8 78.0 1.5 2.0 6.6 11.3

Aks8 85.1 83.7 1.5 1.5 7.5 9.1

C002 77.9 74.5 1.8 1.8 7.8 11.8

DzZ_T2 86.4 84.3 1.6 1.8 8.5 12.0

DzZ_T1 87.8 78.9 1.3 2.0 7.2 13.6

F02 80.2 74.2 2.0 2.0 8.6 15.7

F03 84.0 76.1 1.9 2.2 8.6 14.1

F04 84.7 72.6 1.5 2.2 6.0 11.4

S01 83.6 76.7 2.1 2.1 9.8 19.6

S02 82.5 79.7 1.6 1.4 7.6 9.7

St1 82.8 79.9 2.1 1.9 10.3 17.2

mean ± std 84.1 ± 2.5 79.4 ± 3.8 1.7 ± 0.2 1.8 ± 0.3 7.9 ± 1.1 12.4 ± 3.0

dataset BC-HLS Chu et al. BC-HLS Chu et al. BC-HLS Chu et al.

#1 89.6 88.6 1.6 1.7 5.7 6.5

#2 89.1 86.9 1.3 1.6 5.9 8.3

#3 89.5 86.7 1.5 1.8 6.1 8.1

#4 85.4 85.1 1.9 1.9 7.0 8.3

#5 89.6 88.4 1.5 1.5 5.5 6.7

#6 86.6 89.2 1.6 1.5 6.3 6.2

#7 88.3 88.2 1.7 1.6 5.8 7.3

#8 87.6 87.1 1.9 1.6 6.2 6.2

#9 87.7 88.3 1.6 1.6 5.4 5.9

#10 87.7 89.5 1.4 1.4 5.3 5.1

#11 87.0 89.5 1.8 1.4 6.1 7.8

#12 88.6 89.9 1.7 1.4 5.8 5.6

#13 86.7 86.6 1.7 1.5 5.2 6.1

#14 87.8 88.5 1.5 1.6 5.6 5.5

#15 87.7 88.0 1.8 1.7 6.9 7.0

#16 86.7 87.3 2.0 1.6 6.2 6.9

#17 90.2 91.8 1.7 1.3 5.3 6.1

#18 87.5 91.0 1.8 1.3 6.5 4.6

#19 87.7 87.3 1.7 1.5 5.7 7.4

#20 90.0 91.2 1.5 1.3 5.7 5.0

#21 86.7 87.9 1.8 1.5 6.9 6.6

#22 89.6 91.9 1.7 1.3 6.0 4.3

#23 89.8 91.7 1.5 1.3 5.1 4.7

mean ± std 88.2 ± 1.9 88.7 ± 2.9 1.7 ± 0.3 1.5 ± 0.2 6.0 ± 1.0 6.4 ± 1.2
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Table A.3: Preliminary study on the effect of different learning rates (lr) and
optimizers (Adam, SGD - stochastic gradient descent) on the quality
of spinal metastasis segmentation. DSC scores were computed over
all cross-validation folds for the 2D multimodal image input.

Adam SGD

lr 0.1 0.01 0.001 0.0001 0.1 0.01

DSC [%]
mean 74.92 76.06 76.02 73.18 73.89 75.75

std 13.40 13.17 14.45 16.48 14.02 15.04
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Table A.4: Registration accuracy of the proposed MS-VB registration approach for pre- and intra-interventional images of spinal metastases. For each patient
case the registration accuracy (fiducial registration error of the globally rigid approach (FREGR), fiducial registration error of the multisegmental
approach (FREMS), the fiducial registration error of a manual registration (mFRE)) and the specific spatial resolution (internal voxel diagonals) for
the MRI (SMRI) and FP-CT (SFP-CT) scans are stated. Values marked with an asterisk symbol denote, that the used pre-interventional images were
T2-weighted MRI sequences instead of the otherwise used native T1- or contrast-enhanced T1-weighted data.

patient case Ø

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 mean std

FREGR [mm] 7.67 1.89 3.57 2.64 5.37 8.07 3.07 2.35
2.49

5.23 2.77 2.92
4.58 4.13

2.60 3.16
2.64 3.37

3.46
3.79 1.72

3.28* 5.83* 3.96* 2.30* 3.96* 3.87* 1.29*

FREMS [mm] 4.43 2.08 3.12 2.02 3.03 3.00 2.86 1.47
2.16

2.11 2.59 1.78
1.84 2.28

1.63 2.28
2.06 1.83

1.96
2.34 0.70

2.67* 2.11* 2.79* 2.25* 2.93* 2.55* 0.35*

mFRE [mm] 2.37 1.41 1.98 0.88 1.53 1.28 1.74 1.32 0.97 4.66 2.46 1.06 0.98 1.38 2.15 1.60 1.62 1.67 1.24 1.70 0.85

SMRI [mm] 3.39 3.34 3.33 3.34 3.37 3.34 3.37 3.37 4.43 3.81 4.43 3.37 3.34 3.34 3.39 3.39 3.37 3.35 3.34 3.49 0.35

SFP-CT [mm] 0.66 0.66 0.66 0.66 0.66 0.66 0.69 0.69 0.68 0.68 0.68 1.05 0.61 1.06 1.27 1.27 1.23 1.23 0.66 0.83 0.26
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Zukić, D., Vlasák, A., Egger, J., Hořínek, D., Nimsky, C., and Kolb, A.
(2014). “Robust detection and segmentation for diagnosis of vertebral
diseases using routine MR images.” In: Computer Graphics Forum 33.6,
pp. 190–204.



E H R E N E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfs-
mittel angefertigt habe; verwendete fremde und eigene Quellen sind als
solche kenntlich gemacht. Insbesondere habe ich nicht die Hilfe eines
kommerziellen Promotionsberaters in Anspruch genommen. Dritte haben
von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Ar-
beiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Ich habe insbesondere nicht wissentlich

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht,
um Daten in ungerechtfertigter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs-
und Schadensersatzansprüche des Urhebers sowie eine strafrechtliche
Ahndung durch die Strafverfolgungsbehörden begründen kann. Die Ar-
beit wurde bisher weder im Inland noch im Ausland in gleicher oder
ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch
nicht veröffentlicht.

Magdeburg, 16. Juni 2020

Georg Hille


	Abstract
	Abstract
	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Current Workflow
	1.3 Intended Workflow
	1.4 Thesis Objectives
	1.5 Thesis Structure

	2 Pre-interventional Phase
	2.1 Vertebral Body Segmentation
	2.1.1 Introduction
	2.1.2 State of the Art
	2.1.3 Objectives
	2.1.4 Materials and Methods
	2.1.5 Results
	2.1.6 Discussion
	2.1.7 Conclusion

	2.2 Spinal Mestastasis Segmentation
	2.2.1 Introduction
	2.2.2 State of the Art
	2.2.3 Objectives
	2.2.4 Materials and Methods
	2.2.5 Results
	2.2.6 Discussion
	2.2.7 Conclusion


	3 Interventional Phase
	3.1 Multisegmental Spine Image Registration
	3.1.1 Introduction
	3.1.2 State of the Art
	3.1.3 Objectives
	3.1.4 Materials and Methods
	3.1.5 Results
	3.1.6 Discussion
	3.1.7 Conclusion


	4 Post-interventional Phase
	4.1 Necrosis Zone Segmentation
	4.1.1 Introduction
	4.1.2 State of the Art
	4.1.3 Objectives
	4.1.4 Materials and Methods
	4.1.5 Results
	4.1.6 Discussion
	4.1.7 Conclusion

	4.2 Treatment Outcome Validation
	4.2.1 Introduction
	4.2.2 State of the Art
	4.2.3 Objectives
	4.2.4 Materials and Methods
	4.2.5 Results
	4.2.6 Discussion
	4.2.7 Conclusion


	5 Summary
	A Appendix
	References
	Declaration

