
Clear-cut methodology for Arabic OCR and post-correction with
low technical skilled annotators

Alicia González Martínez
Universität Hamburg
ERC-Project COBHUNI
Edmund-Siemers Allee 1

Hamburg 20146
alicia.gonzalez@uni-hamburg.de

Tillmann Feige
Universität Hamburg
ERC-Project COBHUNI
Edmund-Siemers Allee 1

Hamburg 20146
tillmann.feige@uni-hamburg.de

Thomas Eich
Universität Hamburg
ERC-Project COBHUNI
Edmund-Siemers Allee 1

Hamburg 20146
thomas.eich@uni-hamburg.de

ABSTRACT
This paper describes an efficient and straightforward methodology
for OCR-ing and post-correcting Arabic text material on Islamic em-
bryology collected for the COBHUNI project. As the target texts of
the project include diverse diachronic stages of the Arabic language,
the team of annotators for performing the OCR post-correction
requires well-trained experts on language skills. While technical
skills are also desirable, highly trained language experts typically
lack enough technical knowledge. Furthermore, a relatively small
portion of the target texts needed to be OCR-ed, as most of the
material was already on some digital form. Thus, the OCR task
could only require a small amount of resources in terms of time and
work complexity. Both the low technical skills of the annotators
and the resource constraints made it necessary for us to find an
easy-to-develop and suitable workflow for performing the OCR
and post-correction tasks. For the OCR phase, we chose Tesser-
act Open Source OCR Engine, because it achieves state-of-the-art
levels of accuracy. For the post-correction phase, we decided to
use the Proofread Page extension of the MediaWiki software, as it
strikes a perfect balance between usability and efficiency. The post-
correction task was additionally supported by the implementation
of an error checker based on simple heuristics. The application of
this methodology resulted in the successful and fast OCR-ing and
post-correction of a corpus of 36,132 tokens.

CCS CONCEPTS
• Information systems→ Information integration; •Applied
computing → Optical character recognition; Arts and humanities;

KEYWORDS
Optical character recognition, Arabic optical text recognition, post-
correction, error checking, Arabic, Classical Arabic, Modern Stan-
dard Arabic, Arabic digital humanities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DATeCH2017, June 01-02, 2017, Göttingen, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5265-9/17/06. . . $15.00
https://doi.org/http://dx.doi.org/10.1145/3078081.3078103

ACM Reference format:
Alicia González Martínez, Tillmann Feige, and Thomas Eich. 2017. Clear-cut
methodology for Arabic OCR and post-correction with low technical skilled
annotators. In Proceedings of DATeCH2017, Göttingen, Germany, June 01-02,
2017, 4 pages.
https://doi.org/http://dx.doi.org/10.1145/3078081.3078103

1 INTRODUCTION
Arabic literary and cultural heritage stands out for containing one
of the most productive and valuable collections of libraries in the
world. Traditionally, researchers used to focus their attention on
relatively small amounts of texts to carry out their studies. How-
ever, in recent years, a lot of digitalization projects have emerged.
These projects have made it possible to research huge libraries of
accumulative knowledge right away [2]. One of these new projects
that stands out in the field of Arabic Corpus linguistics is the Open
Arabic project, developed by Maxim Romanov in Leipzig University
[6]. This project aims at building a corpus of pre-modern texts in
Arabic to encourage computational analysis of the Arabic written
tradition. Up to now, the size of the corpus reaches the amount of
64,448,901 words [6]. To OCR the collection of texts, the project
has used a novel software called Kraken, developed by Benjamin
Kiessling [3], which relies on neural networks and has proven to
be very successful in dealing with different Arabic scripts [7]. Yet,
there is still a lot of work to be done–a vast amount of texts are
waiting to be digitalised.

2 THE COBHUNI PROJECT
The COBHUNI project aims at diversifying our understanding of
how pre-natal life is conceptualized in texts of Islamic normativity.
To achieve this, we built a corpus of texts related with Islamic
embryology and, in a following step, annotated them with semantic
information. The annotation process is still an ongoing task.

2.1 The Arabic language
The target texts for building the COBHUNI corpus are exclusively
in Arabic language. Yet, as the project spans over many different
periods of the Islamic history, we are going to encounter instances
of both classical Arabic (CA) and Modern Standard Arabic (MSA).
CA dates back to the early stages of Islam and constitutes the
traditional language variety of the Islamic high culture. One special
type of CA is Quranic Arabic (QA), the language of the Holy Quran.
In turn, MSA is the language currently used in formal registers of
society. In general, CA differs fromMSAmore in the lexical stratum
than in the grammar [8]. The Arabic writing system uses a cursive

https://doi.org/http://dx.doi.org/10.1145/3078081.3078103
https://doi.org/http://dx.doi.org/10.1145/3078081.3078103

DATeCH2017, June 01-02, 2017, Göttingen, Germany A. González Martínez et al.

Table 1: Size of the corpus

Sources No. tokens No.types
Complete COBHUNI Complete COBHUNI

altafsir.com 12,601,880 1,306,233 466,145 125,024
hadith.al-islam.com 11,482,139 144,122 313,846 22,608
physical books 36,132 8,038
TOTAL 24,120,151 11,486,487

script with the special feature that consonants and long vowels
are always written down, while short vowels are optional–they
may be written or not–the only exception to this being QA, in
which all vowels are expected to be written in an effort to minimise
semantic ambiguity. As a consequence of this, Arabic texts exhibit
an artificially high type token ratio.

The intrinsic heterogeneity of the language in this project made
it necessary to have annotators with high language skills that also
had a background on Islamic embryology.

2.2 The COBHUNI Corpus
The texts of the corpus have been collected from different sources
and they rely on diverse areas of knowledge, from religious liter-
ature to medical or legal topics. As we already pointed out, the
project has also a diachronic dimension, so it includes different
synchronic stages of Arabic, ranging from old CA to MSA. Up to
now, we have three main sources of texts for our corpus (see Table
1):

(1) The website http://altafsir.com, the largest online reposi-
tory for Quranic commentary literature.

(2) The website http://hadith.al-islam.com, which contains
one of the largest collections of hadith1 material on the
internet. All these texts includes vocalization.

(3) A small collection of physical books that are not available
in digital form.

We decided to download all texts from the websites and then
make a selection of the texts that are relevant for the COBHUNI
project, based on the experience of human experts. Thus, we can
have a larger corpus for general purpose research, and a specialised
one directly meant for the COBHUNI project. The texts from all
three sources have been sanitized and stored along with relevant
metadata, i.e., name of book, chapter, and so on.

The task of digitalizing the physical books is the problem de-
scribed and solved in the following sections of this paper.

3 THE OCR PHASE: TESSERACT
Amongst the most well known OCR systems that support Arabic
language are the Tesseract Open SourceOCREngine andNovoVerus.
We didn’t consider Kraken, the software mentioned in the intro-
duction, because it was not available until very recently. Tesseract
was originally developed by Hewlett-Packard and it’s now being
developed by Google [10]. Although it is considered one of the most
accurate open source OCR software products, the levels of accuracy
for Arabic are not very high yet–it achieves over 80% accuracy

1Hadiths are collections of texts containing the words, actions and habits of the Islamic
prophet Muhammad.

Table 2: Human correctors

Corrector Native Group
A yes 1
B no 1
C yes 2
D no 2

on correct words detection [1]. This is due to the fact that Arabic
uses a cursive script, which poses a significant challenge to the
task of word segmentation [9]. NovoVerus is presented as an OCR
solution for Middle Eastern and Asian scripts and it’s supposed to
achieve a high accuracy too [5]. Propriety software usually claim
to achieve accuracy rates not far below 100%. Yet, their evaluation
texts are usually applied on texts with simplified typesets and no
vocalization. Tests using high quality scans of classical texts reach
accuracy rates in the range of 65% to 75%[7].

As the propriety OCR engines didn’t seem to beat in reality
the levels of accuracy of open source software, we focused our
attention on Tesseract and NovoVerus. We applied some tests on
both systems to compare their performance in our text material.
Our findings show that, while NovoVerus works better on modern
texts, Tesseract surpasses it on classical texts stored in good quality
images. We carried out a simple experiment using the Tesseract
engine–we took 137 random characters from our data and found a
rate of up to 83% of correctly recognised words. Consequently, we
chose Tesseract for OCR-ing the physical books of our corpus.

We stored our scans in 300 dpi uncompressed tiff files. We dis-
carded using 600 dpi because the images ended up being over-
detailed and this tends to confuse the OCR engine. The size of the
OCR subset of the corpus was 36,132 tokens.

4 THE POST-CORRECTION PHASE
For correcting the output of the previously generated OCR, we
needed a team of annotators, an easy-to-use platform in which the
annotators could work without much training, and a quality control
system.

4.1 Human resources
We hired four student assistants to correct the OCR-ed subset of
the corpus. All students were pursuing a Master degree in areas
related to the project and they had limited technical background.
They were organised in pairs, each of which included one native
speaker and one non-native speaker, but fluent in Arabic (see Table
2).

http://altafsir.com
http://hadith.al-islam.com

Clear-cut methodology for Arabic OCR and post-correction with low technical skilled annotatorsDATeCH2017, June 01-02, 2017, Göttingen, Germany

4.2 The Wiki Proofread Page extension
For carrying out the post-correction task, we decided to use theWiki
Proofread Page extension of the web-based MediaWiki software
[4]. There were several reasons for taking this decision.

• As we are working with Arabic script, multilingual sup-
port is a critical requirement for us. This reduces the list
of available software we can use for the post-correction
task. The MediaWiki software supports Unicode and bi-
directionality.

• The MediaWiki, together with the Wiki Proofread Page
extension, is an easy-to-use tool for users with limited
technical background. Most people have used a wiki before,
albeit not contributing.

• We were already using MediaWiki for documentation pur-
poses.

• And last but not least, it provides a configurable front-
end, so features such as font size or text alignment can be
customized.

The Wiki Proofread Page renders the OCR-ed text beside the
original scanned image. Our human correctors only had to edit the
text–as they would do in a normal wiki–following the reference
of the scan. In relation with the directionality, we only had to
edit the mediawiki-localization to right-align the Arabic texts. For
improving readability, we increased the font-size from 13px to 17px.
This was greatly appreciated by the correctors, as Arabic fonts tend
to be too small, causing usability problems and resulting in errors
such as the lack of space between words.

4.3 An ad hoc error checker
In any manual task performed by humans, errors are unavoid-
able, but we can minimise their presence. Thus, to support the
post-correction process we implemented an error checker based
on simple heuristics. The error checker splits the text into tokens
and check each token separately, excluding those tokens corre-
sponding to punctuation. When the student assistants finished the
post-correction task, we passed the corrected texts through the
error checker, which yields a log file with errors and warnings
2. Error messages indicate with total certainty that something is
wrong in the text. Warning messages indicate that something in the
text is suspicious and must be re-checked by the human corrector.

A warning message is given if:

• The token contains a character that doesn’t belong to the
Arabic charset. This checking uncovered spurious noise
yielded by the OCR engine.

• The token is considered too long. Based on some tests
we performed, we set the threshold in a maximum of 8-
character length token excluding diacritics. This checking
was very useful to discover words with no space in be-
tween them. This was one of the most common errors
encountered in the texts.

An error message is given if:

2The code for the error checker can be found at https://gitlab.com/alrazi/ini_
xmiconverter/blob/master/src/main/java/ini_xmiconverter/XmiConverterOcred.java

Table 3: Working packages for correctors

Document No. tokens Group Corrector Reviewer
Al-Taufi 744 1 A B
Al-Mulaqqin 1525 1 A B
Fakihani 2557 1 A B
Farhud 4012 1 A B
Fashni 2143 1 B A
Ibn Hajar 8965 1 B A
Ibn Rajab 3739 2 C D
Munawi 5538 2 C D
Qadi Iyad 1398 2 C D
Qurtubi 1666 2 D C
Nabrawi 3845 2 D C

• A letter ta marboota �
è is found in a position other than last

or penultimate within the token. This is an obvious error
according to Arabic orthography.

• More than one short vowels are written together. Again,
this is illegal orthography. Either they are to be replaced
by a tanwin vowel or simplified to one occurrence.

4.4 The workflow
The complete workflow is as follows–we scan the texts and store
them into tiff files.We take these files andOCR them using Tesseract.
Then, we convert the tiff images into dvju and insert the OCR texts
into the same file. In order to have all the images corresponding
to the same book together, we merge them into the same dvju file.
At this point, we upload the OCR text along with its image into
MediaWiki. Here, we perform two stages of post-correction: first,
the student assistants correct the texts assigned to them, and in
a second step, they review the already corrected texts that have
been assigned to the other group of students. The two correctors of
each group share feedback between themselves, but not with the
other group. In this way, we guarantee a blind review. The working
packages of each annotator can be seen in the Table 3.

When the correction and the revision are finished, the texts are
exported from the wiki to json files. This is done with a python
program created specifically for this project 3. The json files are
then converted into xmi. We perform this conversion because xmi
is a format supported by WebAnno, the annotation tool we are
using for annotating semantically the texts. To carry out the xmi
conversion, we built a java program that uses the DKPro Core
toolkit, a collection of software components for natural language
processing based on the Apache UIMA framework [11] 4. Just before
dumping the data into xmi format, we pass the texts through the
error checker. Togetherwith the second phase of the post-correction
step, this serves as a quality control measure. The student assistants
must check the resulting log file and assure there are no errors or
problematic warnings. Otherwise, they must go back into the wiki,
correct the errors indicated in the log file, and apply the export and
the conversion again. When the error checker doesn’t yield more
typos to correct, the process is finished.

3The code for this subproject can be found at https://gitlab.com/alrazi/wiki_export
4The code for this subproject can be found at https://gitlab.com/alrazi/ini_xmiconverter

https://gitlab.com/alrazi/ini_xmiconverter/blob/master/src/main/java/ini_xmiconverter/XmiConverterOcred.java
https://gitlab.com/alrazi/ini_xmiconverter/blob/master/src/main/java/ini_xmiconverter/XmiConverterOcred.java
https://gitlab.com/alrazi/wiki_export
https://gitlab.com/alrazi/ini_xmiconverter

DATeCH2017, June 01-02, 2017, Göttingen, Germany A. González Martínez et al.

Figure 1: Workflow of the OCR and post-correction phase of the project

5 CONCLUSIONS
Arabic digital humanities is experiencing a golden era thanks to the
dramatic improvements in computer technologies made in recent
years. The first endeavour has obviously been directed to digitalise
in a consistent and systematic way the text collections of the Arabic
cultural heritage. A clear example of this is the recent creation of
the OpenArabic Corpus. Yet, two main problems persist–the limited
technical skills of the human correctors that prevent them to use
advanced software, and the lack of universal Unicode support for bi-
directional scripts, i.e., the intermingling of RLT and LTR charsets.
New tools such as Kraken are starting to make the difference. We
will take it into consideration for future works.

From our methodology we can conclude that the united forces of
the Tesseract Engine and the Proofread Page extension of the Me-
diaWiki software, together with a well established quality control
workflow methodology for the team of correctors and an automatic
error checker, turned out to be an outstanding strategy to perform
fast and successful Arabic OCR and post-correction without invest-
ing too much effort developing highly sophisticated software.

ACKNOWLEDGMENTS
The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP7/2007-2013)/ ERC grant agreement n°
647490.

REFERENCES
[1] Bare’a OCR engine. 2017. Bare’a vs Google Tesseract OCR.

https://arabicocr.wordpress.com/2015/07/11/barie-vs-google-tesseract-ocr.

(2017). Accessed: 2017-01-16.
[2] Stefan Jänicke, Greta Franzini, Muhammad Faisal Cheema, and Gerik Scheuer-

mann. 2015. On Close and Distant Reading in Digital Humanities: A Survey and
Future Challenges. (2015).

[3] Benjamin Kiessling. 2017. kraken 0.9.0. https://pypi.python.org/pypi/kraken.
(2017). Accessed: 2017-01-16.

[4] MediaWiki. 2017. Proofread Page extension.
https://www.mediawiki.org/wiki/Extension:Proofread_Page. (2017). Ac-
cessed: 2017-01-16.

[5] NovoDynamics. 2017. NovoVerus software.
https://www.novodynamics.com/novoverus. (2017). Accessed: 2017-01-
16.

[6] Maxim Romanov. 2017. OpenArabic Project.
https://github.com/OpenArabic/Annotation. (2017). Accessed: 2017-01-
16.

[7] Maxim Romanov, Matthew Thomas Miller, Sarah Bowen Savant, , and Benjamin
Kiessling. 2016. Important NewDevelopments in Arabographic Optical Character
Recognition (OCR). (October 2016).

[8] Karin C Ryding. 2006. A Reference Grammar of Modern Standard Arabic. Cam-
bridge University Press, New York. get-book.cfm?BookID=19243

[9] Ray Smith, Daria Antonova, and Dar-Shyang Lee. 2009. InMOCR ’09: Proceedings
of the International Workshop on Multilingual OCR. http://doi.acm.org/10/1145/
1577802.1577804

[10] Ray Smith and Zdenko Podobny. 2017. Tesseract Open Source OCR Engine.
https://github.com/tesseract-ocr/tesseract. (2017). Accessed: 2017-01-16.

[11] Ubiquitous Knowledge Processing Lab (UKP) at the Technische Universität Darm-
stadt. 2017. DKPro Core. https://dkpro.github.io/dkpro-core/. (2017). Accessed:
2017-01-16.

get-book.cfm?BookID=19243
http://doi.acm.org/10/1145/1577802.1577804
http://doi.acm.org/10/1145/1577802.1577804

	Abstract
	1 Introduction
	2 The COBHUNI project
	2.1 The Arabic language
	2.2 The COBHUNI Corpus

	3 The OCR phase: Tesseract
	4 The post-correction phase
	4.1 Human resources
	4.2 The Wiki Proofread Page extension
	4.3 An ad hoc error checker
	4.4 The workflow

	5 Conclusions
	Acknowledgments
	References

