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Natura quidem suas habet consuetudines, natas ex reditu causarum, sed non nisi ωζ επι τo πoλν.
[Nature has established patterns originating in the return of events [latin in original], but
only for the most part [greek in original].]

Gottfried Wilhelm Leibniz in a letter to Jacob Bernoulli, Dec 3, 1703
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1 Introduction

Moving from a Ptolemaean to a Copernican worldview has been one of the most important

developments in the history of modern science and western thought (see Kuhn (1957)). The

proposition that our place in the universe is not ’special’ and that we are subject to the

same laws of motion as the astronomical bodies around us is deeply thought provoking and

has been viewed as one of the most important catalysts of the renaissance and the scientific

revolution: Kuhn argues ’The significance of ’De revolutionibus [orbium coelestium]’ lies

[...] less in what it says itself than what it caused others to say [...] it is a revolution-making

rather than a revolutionary text [...].’ In addition to its important conceptual contribution,

it also serves as one of the prime early examples where observations are used to reject a

theory and propose a new one that explains the observations in a better way.

Today, in any quantitative scientific field, researchers are interested in the derivation

of underlying principles from data. By relying on quantification and statistical analysis it

is possible to deduce aspects of a potential underlying mechanism. However, when one is

performing such an analysis, one is limited by the aspects that are visible to us through

our statistical techniques. Statistical techniques only work properly in the situations for

which they have been designed and their limitations are determined by their specific set of

assumptions. In order to arrive at viable statistical conclusions it is necessary to build the

statistical techniques used in a data analysis on structural properties of the data set itself.

Typically, the more structure one imposes on the object of study ex ante, the easier the

job of analyzing it. This leads to an incentive to oversimplify the analysis by imposing too

much assumptions up front. In addition, it leads to a deep conceptual relationship between

statistical techniques and the problems for which they have been designed.

The machinery of modern statistics has been developed with physics in mind. The

corresponding set of assumptions that one can reasonably impose on a physical system ex

ante is extensive: One can credibly argue that neither time nor location play a role when

performing the same controlled experiment since the laws of nature are typically considered

to be universal, i.e. stable across space and time. Due to the conceptual contribution of ’De

revolutionibus’, which questions any exceptionality of our current perspective, this concept

is now known as the ’Copernican Principle’ (see Bondi and Gold (1952)). In such a setup,
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every data point is a manifestation of the same underlying principles. Furthermore, under

the assumption of universal laws of nature it is possible to repeat experiments and, as a

consequence, it is possible to collect arbitrarily large data sets for any statistical analysis.

Therefore, any statistical technique leading to definite conclusions with arbitrarily large

data sets can be used in order to arrive at definite conclusions of (some aspects of) the

underlying principles governing the outcome of any experiment. Hence, there is a very tight

connection between the repeatability of an experiment, universal underlying laws, and the

possibility of deducing those principles via statistical techniques (see Uzan (2003)).

In physics it has been realized early on that this methodological setup contains a blind

spot which may be a detriment to a thorough understanding of our environment. By as-

suming that time and location of an experiment are irrelevant, we close ourselves to even

the possibility of seeing the opposite. The ’Copernican Principle’ might have conceptually

enabled the scientific revolution but it also contains a universality assumption which is

an institutionalized blind spot. Consequently, it is not surprising that the possibility that

some aspects of the laws of nature are not universal has been discussed in physics literature.

In fact, it was initiated by none other than Paul Dirac (see Dirac (1937), Dirac (1938)).

This idea lead to a decade-long research inquiry culminating in a variety of theoretical and

experimental results proving Dirac’s suspicion was right (see Uzan (2003) for a review of

the literature summarizing 70 years of experimental and theoretical developments on this

topic). In view of these results it is possible that - even in physics - past experimental

evidence might not be representative of the current state of the underlying principles gov-

erning the system and that the ’Copernican Principle’ does not hold. While it is credible

and reasonable to assume that the change in the laws of nature is negligible for practically

all situations of interest, it is not clear to which degree this effect can be ignored in other

fields. Furthermore, since most of our statistical techniques have been developed for physics

applications it is also necessary to explore the impact of this effect of potential variabil-

ity on those techniques and their applicability in those other fields. The objective of this

thesis is to start with this investigation. In this endeavour I start from the fundamental

assumption that the object of study is genuinely changing over time, i.e. a conceptual

violation of the ’Copernican Principle’. In addition, I assume that one can develop an
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opinion about the degree to which the object changes, but the argument developed here

works under any arbitrary dynamic of this type. As a special case this includes the opin-

ion that the object does not change, i.e. classical ’asymptotic theory’ leading to definite

conclusions with arbitrarily large data sets is conceptually imbedded in the framework of

this thesis. Since scientific exploration starts with observation, the interesting question in

this context is how to optimally observe such a changing system. The main contribution of

this thesis is to introduce a methodology that is able to identify an optimal data quantity

which balances the statistical benefits of more data with representativeness issues caused

by instability of the underlying laws. The other parts of this thesis address generalizations

and implications of the data identification method and its conceptual impact on modern

finance theory. The modern economic and financial system is undoubtedly one of the most

profound innovations of humanity and has objectively increased the standard of living for

billions of people worldwide over hundreds of years. Given the profound role this system

plays in governing our lives, it is of paramount importance to explore potentially faulty

reasoning in its intellectual underpinnings. The objective of the next section is to document

what I believe is such a mistake which is directly related to the argument developed so far.

1.1 The role of time in Finance and Economics

1.1.1 Ergodicity

The usefulness of statistics is based on the presumption that the past is representative of

the present and the future. If one accepts the Copernican Principle, then the past is fully

representative of the present. In this context it is useful to distinguish between tempo-

rary and non-temporary effects. In 1884 Ludwig Boltzmann introduced the corresponding

statistical assumption, called the ’ergodicity’ property, in order to precisely analyze, in

mathematical terms, the properties of a closed thermodynamical system, i.e. a system that

does not exchange any energy with its environment (see Boltzmann (1884)). Such a system

will typically settle in a state of maximum entropy called the ’thermodynamical equilib-

rium’ after some time. In such a state the properties of the system are characterized solely

by the properties of the gas molecules (velocities and positions in phase space, i.e. the space

of possible states of the physical system, here the 6-dimensional real numbers). If one is
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interested in the analysis of those properties this greatly simplifies the problem. Boltzmann

literally called the ergodicity assumption a ’trick’ [Kunstgriff] in his paper. Since entropy

is always increasing and a small contained system eventually reaches its ’state of maximum

entropy’, all the temporary effects can be accounted for by simply waiting a while. This

argument justifies an assumption that the state of the system is independent of its initial

condition and, if one also accepts that the fundamental principles governing the system are

stable over time, then the current state of maximum entropy is representative of the past

and the future. Hence, the concept of thermodynamical equilibrium reduces the number

of parameters that are relevant to fully describe a system and the assumption of ergodicity

allows us to learn the properties of a given system over time. Formally, ergodicity can

be defined as follows (after Kirstein (2015) who, in turn, relies on Lebowitz and Penrose

(1973)):

Definition

A system is called ergodic if the following equality holds for all T and t ≤ T :

lim
t→−∞

1

T − t

∫ T

t

f(ϕm(x)) dm =

∫
S
f(x)µ(dx)

µ(S)
, (1)

where S is the energy surface of the system in phase space, ϕm is the state of the system at

time m, µ is the measure which describes the volume in phase space and f is an arbitrary

µ-integrable real valued function.

Intuitively, in ergodic systems time averages (left) are equal to ensemble averages (right),

or, in other words, the state space at one point in time (right) can be deduced by observing

the history of the system (left).

1.1.2 Ergodicity and Economic Methodology

Given the considerations so far, it is somewhat surprising that the ergodicity assumption

made it into the economic toolbox at all. The degree to which the past is representative of

the present is very different in physics and in economics and, consequently, the criticality

of the assumption is very different. Given the degree of the problem one would expect that

economists should, by sheer transitivity, give more attention to the problem than physicists.

Unfortunately, this is not the case. In fact, Paul Samuelson famously defended the ergodic

assumption as follows:
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’[...] interesting [...] assumption implicit and explicit in the classical mind. It was a

belief in unique long-run equilibrium independent of initial conditions. I shall call it the

‘ergodic hypothesis’ by analogy to the use of this term in statistical mechanics. [...] Now,

Paul Samuelson, aged 20 [...] as an equilibrium theorist he naturally tended to think of

models in which things settle down to a unique position independently of initial conditions.

Technically speaking, we theorists hoped not to introduce hysteresis phenomena into our

model, as the Bible does when it says ‘We pass this way only once’ and, in so saying, takes

the subject out of the realm of science into the realm of genuine history. [...] we envisaged

an oversimplified model with the following ergodic property: no matter how we start [...]

after a sufficiently long time it will become [...] a unique ergodic state.’

(see Samuelson (1968), p.12). In this quote Samuelson equates the ergodicity assump-

tion with the possibility of economics to be a science. This is a comment he, reportedly,

made repeatedly (see North (1999)). For a person who is responsible like no other for trans-

posing physical and statistical methodology into economics (see, Lo (2017) and Kirstein

(2015)) his indifference towards the cautionary qualifications in the field from which he

obtains his tools might be surprising. However, from a practical perspective it is highly

understandable why Samuelson’s position has such an appeal: In an ergodic system, ar-

guments can be ’objectively’ settled, markets can ’efficiently’ incorporate information and

one can ’optimize’ decisions along various dimensions. Consequently, in ergodic systems,

one can answer questions simply by looking at the data and one can credibly argue that

any question can be settled if only there would be enough data.

At this point it has to be noted that even Samuelson himself apparently did not fully

trust his own work on efficient markets: In a 2010 account of the hedge fund industry

(Mallaby (2010)) reports in a chapter entitled ’Paul Samuelson’s Secret’ that Samuelson

was invested heavily in a prominent hedge fund (’Commodities Corporation’) specialising

first in fundamental research, which is consistent with the weak form of the efficient market

hypothesis, and later (with an additional investment commitment of Samuelson) in what

we today would call ’chart trading’, which under Samuelson’s own Efficient Market Hypoth-

esis would not be considered a viable investment business: ’Do I really believe what I have

been saying? I would like to believe otherwise. But a respect for evidence compels me to
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incline toward the hypothesis that most portfolio decisionmakers should go out of business,

take up plumbing, teach Greek [and Latin], or help produce the annual GNP by serving as

corporate executives. Even if this advice to drop dead is good advice, it obviously is not

counsel that will be eagerly followed.’ (see Samuelson (1974)). Given the unconvincing

intellectual history of the idea (see Kirstein (2015)) and the personal conduct of even its

most ardent proponents, a variety of economists have tried to work without the ergodicity

assumption (most notably Keynes (1936)) founding the school of Postkeynesianism in the

process, see, e.g., Davidson (2012) but see, e.g., also North (2005)). Their post-ergodic

position, however, is typically unmarketable since their ergodic counterparts have num-

bers and quantitative models to back up their claims and, as such, can fulfill better the

’demand for precision’ which is one of the features of Economics in the 20th century (Bern-

stein (1998)). A more compelling method to overcome the ergodic assumption would be

working out the viability of and eventually establishing a quantitative non-ergodic model

of economic activity. A quantitative non-ergodic model would illustrate the shortcomings

of the perceived precision of the ergodic model while simultaneously competing with it in

terms of being ’quantitative’.

1.1.3 The role of data - Efficient and Adaptive Markets

One of the implications of a non-ergodic environment is that one cannot fully trust data

from the past. Consequently, due to the amount of data being limited it is impossible

to fully determine the current state of the world around us based on statistical analysis

alone. In this context, any definition that is based on actions assumed to be determined by

knowledge received through some statistical techniques must be checked for their viability.

For example, in Finance and Economics the most prominent definition of this kind is

’market efficiency’ which states that prices reflect ’available information’. Here, ’available

information’ is typically considered to be quantifyable statistical properties. If there is a

limit on ’statistical perception’ this definition cannot reliably differentiate between given

situations. In fact, as part of this thesis I will show that this definition is not even well-

defined when one replaces ’available information’ by ’optimal available information’ since

the data set yielding the ’optimal available information’ may be not unique (see chapter
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2).

Hence, in a non-ergodic world ’market efficiency’ is conceptually flawed. Furthermore,

given the recent failures of current quantitative techniques (e.g. in the 2008 financial crisis

as well as earlier, such as when a nobel laureate staffed hedge fund brought the financial

system to the brink of collapse in 1998, see Lowenstein (2000) ) that are conceptually

based on ergodicity, there has been much support for an adaptive further development of

economic and financial methodology (see, e.g., Colander et al. (2010), Mirowski (2013)).

In this thesis I will rely conceptually on the ’Adaptive Market Hypothesis’ where the

term ’adaptive markets’ refers to ’the multiple roles that evolution plays in shaping behavior

and financial markets’ (see Lo (2017)). In quantitative circles this literature is relatively

new but the call to base our understanding of finance and economics on concepts from

biology rather than physics can be traced back far in the history of economics (see, e.g.,

Niman (1991)). In this thesis I assume that there exists some fundamental force that

changes core aspects of an economic system over time. There can be a variety of reasons

for this evolution to take place: Adaption of market participants (e.g. through a revision of

expectations (see, e.g., Lucas (1976)) or simply through individual adaptive behavior (see,

e.g., Hommes (2005))), changes in institutions and regulation (see, e.g., North (2005)), or

technical innovation (see, e.g., Schumpeter (1949), Romer (1990)). It has to be noted that

in the following I only assume the existence of such a force and provide no general model for

it. Instead, the model has to be developed on a case-by-case basis. However, an application

can be found in chapter 2.

1.1.4 The need for objectification

In the presence of ongoing structural change it is impossible to determine the current state

of any system out of discrete observations. However, one should not confuse a limited

understanding with no understanding at all. In perception, all of our senses are limited

and we still use them to go about our daily lives. In the context of Economics those senses

have not had time to adapt to the environment of a global financial system (see Lo (2017)).

In a situation, such as economic behavior, in which our subjective judgments based on

personal perception and observation are comparatively more inadequate than in our daily
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lives the need to rely as much as possible on objective information is understandable. Even

the most ardent Post-Keynesians do not argue against models and objectification per se

(see Davidson (2012)). The interesting question in this contest is ’What are the limits to

our understanding of the world around us?’ (see North (1999)). The objective of this thesis

is to probe the statistics angle of this question, i.e. the possible degree of quantification

which is needed in the face of flawed human judgment. As such, the arguments in this

thesis also deal with the distinction between rationality and ecological rationality (see, e.g.,

Gigerenzer and Todd (1999), Gigerenzer and Selten (2002), and Gigerenzer (2015)). This

strand of literature introduces a spectrum of rationality with a fluid environment, bounded

rationality, and decisions via heuristics on one end and a static environment, rationality

and decisions via constrained optimization on the other end, i.e. the decision paradigm is

depending on structural properties of the environment. In this context it would be very

nice to know where to draw the line, i.e. in which situations one can reasonably argue

for one decision paradigm over another based on ’stability’ properties of the environment.

The arguments in this thesis deal with the question how near we can get to a ’rational’

environment in which all decision-relevant parameters can be inferred.

1.1.5 Ergodicity and Stationarity

So far I dicussed the notion of fundamental change in terms of the ergodicity assumption

since this is typically the concept used in the literature on economic history. However,

since I am interested in quantitative measurement I need a concept that allows me to

manipulate the stochastic properties of a system over time, i.e. a concept that allows for

structured violations of the ergodicity assumption while also remaining recognizable to the

methodology typically used in stochastics. Non-stationarity serves this purpose: It is a

stronger concept than ergodicity (i.e. a process can be stationary but not ergodic, see

Kirstein (2015) for an example) and it is typically modeled as a parametric property, i.e.

there is a parameter that can be manipulated in order to arrive at a degree of nonstationary

behavior. In this context it is useful to rely on a class of stochastic processes whose

stationarity properties can be easily manipulated by a small set of parameters. Semi-

martingales, in general, and time-inhomogeneous diffusion processes, in particular, serve
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that purpose: Most of the stochastic properties of semi-martingales are governed by their

’characteristics’ which are appropriate generalsations of the well-known Lévy-Khintchin

triplet (drift coefficient, diffusion coefficient, jump measure) of Lévy Processes (see Jacod

and Shiryaev (2003)). Restricting myself to the class of semi-martingales has the additional

advantage that a stalemate of the mathematical finance techniques, stochastic calculus,

is still accessible in this setup since semi-martingales are the largest class of stochastic

integrands for which one can construct stochastic integrals in a convenient way (see Protter

(2005)). Within the class of semi-martingales I restrict myself further: Dealing with more

than one aspects of the characteristics would entail dealing with a very complex filtering

problem which would not be directly related to the data identification argument introduced

here. Consequently, I restrict myself to driftless, time-inhomogeneous semi-martingales

with deterministic characteristics without jumps or simpler, independent increment time-

inhomogeneous diffusion processes (see Jacod and Shiryaev (2003) and Protter (2005) for

a background on the related concepts).

1.2 Objective of the Thesis

The objective of this thesis is to provide quantitative statistical and modelling methods for

financial and economic questions in a framework in which the stationarity and ergodicity

assumption is violated. As pointed out above, a non-ergodic environment implies that one

cannot rely on market efficiency. After introducing a method to optimally extract statistical

knowledge from a changing environment by means of an optimal data set choice and an

argument that is used for the generalisation of this concept, I use market inefficiency as a

modelling tool in the context of electricity markets.

1.3 Outline of the Thesis

1.3.1 Representativeness vs Convergence: Optimal Data Selection in Non-

Stationary Systems

In statistics the advantage of more data is quantitatively measureable in a better estimator

convergence. However, under the assumption of a non-stationary environment data from
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the past is only partially representative of the current situation. By deriving convergence

rates for independent but not identically distributed (i.-non-i.d.) normal random variables,

this paper aggregates those two sources of errors and arrives at a functional form of the

aggregated error. The combined error function can be minimised which leads to the iden-

tification of optimal data sets. I then discuss the existence and uniqueness of optimal data

sets and support my derivations with appropriate simulations. In addition, I analyse the

impact of a rule found in the foundational document for banking regulation (Basel 3 frame-

work) which, apparently, is based on a non-ergodic worldview and illustrate the severity of

its consequences.

1.3.2 A Convergence Speed Dependent Data Quantity Definition for Weighted

Observations

This part serves as a preparation for the generalisations of the methodology introduced in

section 2. Section 2 indentifies an optimal data window, i.e. an optimal data quantity,

in order arrive at minimum variance estimators. Since there are different methods to

downweight data from the past, it is interesting to ask whether similar optimality criteria

can be constructed for those other weighting methods. In order to pursue this question one

first needs to find convergence errors for those alternative weighting methods for which it

is necessary to define an implicit data quantity of a specific weighting method. This paper

introduces this connection. As such, this paper is a substantial correction of an argument

that can already be found in the literature (see Meucci (2012)). I document that this paper

contains an unjustified step leading to an erroneous conclusion implying confidence bands

that are unjustifiably narrow. In addition, I provide a formal argument to identify the

correct candidate within the set of possible data quantity functions constructed in Meucci

(2012). In an appendix to the paper, I perform a simulation similar to the one in section

2 in order to show that the error aggregation and possible data identification mechanism

introduced there can be extended beyond the case of classical data windows. Analytic

results are currently out of reach.
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1.3.3 Introducing Stylized Facts of Electricity Futures Through a Market Im-

pact Model

This part of the thesis provides an alternative way to introduce some of the distinctive

qualitative features of electricity futures by embracing market specific inefficiencies and

problems. Specifically, it provides an alternative rationale for the ’Samuelson Effect’ (see

Samuelson (1965)) postulating that the volatility of futures is increasing throughout their

life span due to an increase of relevant ’short-term’ information (see Benth et al. (2008a)).

In this part I induce an increase in futures volatility and other characteristic behavioral

aspects of electricity futures out of an objective information process with constant volatility

which is increasingly amplified by the impact of the behavior of market participants trading

towards their target. Since electricity is currently not storable on an industrial scale supply

and demand have to be cleared at every point in time. For this reason quantity risk and

the corresponding notions of market impact and optimal liquidation behavior play a major

role in electricity markets. This paper provides a stochastic model introducing the stylized

facts of electricity futures out of those considerations. Conceptually, this paper provides

one example how to induce non-stationary futures behavior out of a stationary information

process by utilizing market specific inefficiencies.

1.4 Further Research

1.4.1 Uncertainty and Risk

Economics and Finance are based on individual decisions. Decisions are influenced by

our observations and understanding of the world around us. In Finance and Economics

one (typically) distinguishes between the notions of risk and uncertainty. Risk refers to a

situation where the probability distribution of the problem in question is known. Uncer-

tainty, on the other hand, refers to a situation where the distribution (Knight (1921)) or

even the possible states (see Keynes (1921) and North (1999)) are not known. When one

confronts economic subjects with decisions in those two frameworks, one can find signifi-

cant differences in behavior (see Ellsberg (1961)), i.e. the distinction is decision-relevant.

Uncertainty and non-ergodicity are closely related and one of the outcomes of the method-
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ology presented in section 2 is that one always operates under limited statistical perception

but one does so under varying degrees. Consequently, one can base decisions (like, e.g.,

portfolio management decisions) based on the degree of uncertainty given in the particular

circumstances: The more data one has, the more one can rely on techniques that require

estimates in order to optimally act in a given context (e.g. Markowitz portfolio optimisa-

tion). However, the less data one has, the less knowledge one has about the distribution of

the problem and, consequently, the more one has to base the decision on some paradigma

regading how to act under uncertainty, i.e. the decision is viewed out of a perspective of

a degree of ecological rationality (see Gigerenzer (2015)). This question goes beyond the

scope of this thesis and is currently under preparation.

1.4.2 Optimal Sampling Frequencies for Low-Frequency Signal Inference

In Finance and Economics one frequently encounters arguments that the qualitative prop-

erties of time series are different on different time scales. In Quantitative Finance an entire

subfield, high frequency finance, exists precisely for this reason. If one only has access to

a limited time series, say, 3 years of data, and one is interested in the extraction of a long-

term signal, i.e. a signal on low frequencies, say, a yearly volatility, it could be beneficial

to set up a bias variance argument similar to the one in section 2 where one does inference

on higher frequencies (e.g. monthly) in order to have access to more data. However, in

this context one has to take care of the qualitative difference (bias) that can be found on

other time scales. In order to set up this problem properly, one needs to move away from

self-similar processes, i.e. one needs to employ, e.g., fractional processes. However, with

fractional processes one loses the possibility to employ the usual mathematical finance tool-

box and, thus, it is not clear to which extent the results of this approach can be integrated

into a practical, say, portfolio management problem.

1.4.3 Decidability & Replication Crisis

One basic objective of this thesis is to find optimal data sets. A natural follow up question

is for which purpose those data sets can be used, i.e. to decide whether the data set can

be used for the justification of some statement. In a non-ergodic world, the truth-value
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of statements can change over time. Consequently, reality is shifting over time and one

can only be interested in the truth-value of a statement at some point in time. Given a

limited amount of data one has to find a method to translate the number of data points

and the signal within them in a decision topology of statements. This is a challenging

task. However, if one acknowledges that the truth-value of statements can shift over time

one also has a new way to look at the so-called ’replication crisis’. Currently, a variety

of fields grapple with the finding that the results published even in the best journals are

not replicable and sometimes not even reproducible (see, e.g., Open Science Coll. (2015),

Christensen and Miguel (2018)). Currently, the blame for this perceived failure to replicate

is targeted primarily on statistical techniques and the misincentives imbedded into them

(see Ioannidis (2005), Bailey et al. (2014)). While I acknowledge that current statistical

techniques carry misincentives, it is still conceivable that additional forces are at play,

namely that the underlying signal has changed over time. Given the abundance of studies

of relationships between economic measures and measures of social well-being, e.g. suicides,

it is not unfathomable that certain psychological studies are influenced by the Zeitgeist and

that the same study on the same demographic simply cannot replicate results due to changes

in culture and other society-wide issues. This view has been formulated in psychology (see

Greenfield (2017)). However, this argument is interesting in the context of this thesis since

the failure to replicate can serve as a measure of representativeness. When studies fail to

replicate results, this can be an indicator that aspects of the society are transforming.
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2 Representativeness vs Convergence: Optimal Data

Selection in Non-Stationary Systems

Abstract

Starting from the premise that economic and social systems change fundamentally over

time and that, consequently, data from the past is only partially representative of the

current situation this paper aims to identify data sets yielding minimal bias estimators.

As an application an impact study of a paragraph in the banking regulation framework is

performed as an illustration of the proposed methods to identify such data sets. 1

2.1 Introduction

It is widely recognized that parameter instability is a crucial issue when analyzing financial

and economic time series (see, e.g., Stock and Watson (1996), Pesaran and Timmermann

(2007), Giacomini and Rossi (2009), Giraitis et al. (2013), Inoue et al. (2017)). In order

to handle such instability, instead of using all observations, it is quite common to reduce

the number of data points in an estimation. In Finance, e.g., it is very common to rely

on rolling windows and other data-weighting techniques that attempt to strike a balance

between using as much objective information as possible while, simultaneously, not relying

too much on outdated information. In this context, however, it is of crucial importance to

clarify to which degree one should limit the possible input to some statistical techniques.

So far, the arguments that are used to rationalize the size of rolling windows or, more

generally, ’data quantity’ are either the experience of the researcher, or arguments based

on statistical significance (see, e.g., Christoffersen (2011), Alexander (2009)) as well as

a ’standard in the literature’ which can be traced back to either of the first two options.

Given the subjective nature of the first method and the incompatibility of some asymptotic

argument with any genuine ’parameter instability’, which is considered to be the driving

force of our economic activities (see Schumpeter (1949)), a quantitative method is needed

1An earlier version of this paper has received a YITP price at the XIX Quantitative Finance Workshop

2018. I want to thank the committee and the sponsor (ACRI) for their interest and support and the staff

at Scuola Normale Superiore for their hospitality during the corresponding research visit.
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in order to justify the size of the data set used in an analysis. The introduction of such a

quantitative criterion is the primary objective of this paper.

My data identification method is based on a perception of statistical instability which

will be formalized in the concept of a ’representativeness metric’. As a special case, this

perception can be that the economic environment is perfectly stable, i.e. that the past

is fully representative of the present (see Samuelson (1968) for a defence of the related

ergodic hypothesis) and in this situation it is natural to use all the possible data that

is available since any additional observation reduces estimator convergence errors. Given

that it is commonplace that rolling window estimation is utilised in Empirical Finance and

Economics studies, there is a fundamental disconnection between empirical practice, where

data sets are restricted on a regular basis, and economic theory assuming that the past is

fully representative of the current situation.2

The problem of an optimal data reduction in the presence of parameter instability

consists of two parts: A detection of a change in the stochastic underpinnings of a time

series and, subsequently, a rationalisation of the corresponding data reduction. In the

context of this paper I circumvent the first problem by introducing a generic formal tool,

the representativeness metric, to keep track of changes in parameter values over time.

However, my approach allows for more: Instead of tying the representativeness metric to

actual movements in parameters (which will be the definition for the formal derivation)

one can also use this tool to keep track of changes in the institutional environment that

have yet to materialise in actual movements of the parameters like, e.g., credit-buildup

in a volatility estimation (see Danielsson et al. (2018)) and more generally, indicators of

economic change. Thus, if one is motivated by movement of parameters, natural choices for

the representativeness metric are given by (but not limited to) jump detection techniques

(see, e.g., see Pesaran and Timmermann (2007), Giacomini and Rossi (2009), Giraitis et al.

(2013), Inoue et al. (2017), Aı̈t-Sahalia and Jacod (2014)) and techniques to infer ongoing

2Note, that in Physics the question whether the laws of nature are stable across space and time has been

debated since the 1930s (see Dirac (1938), Uzan (2003), Webb et al. (2011), Webb et al. (2001)). Given

that physicists cared about the stability of their fundamental assumptions for a period of almost a century,

economists may benefit from attention to this question by sheer transitivity and this paper provides a tool

to perform inference in such an unstable system.
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structural change (see, e.g., Phillips et al. (2017) and Giraitis et al. (2013)) while other

choices include indicators of economic change like liquidity metrics or measures of systemic

risks (see Danielsson et al. (2018)). Consequently, the objective of this paper is the second

question introduced above, i.e. which degree of data reduction is justified in a situation

where one already has arrived at an understanding of whether and, if so, to which degree

the underlying parameter or the system governing the parameter has changed. In order

to set up an optimization one has to define an appropriate target that can be optimized:

The choice of my target function is the first main difference to the current econometric

literature on the problem: Instead of minimizing forecasting errors, i.e. considering the

problem

min
data

ET
[
(yT+1 − ỹT+1,data)

2
]
, (2)

where ỹT+1,data denotes a forecast for some time series (yt)t at time T + 1 using the in-

formation in data and where ET [·] denotes the conditional expectation operator given the

information at time T , I am interested in optimal inference, i.e.

min
data

ET
[
(σT − σ̃T,data)2

]
(3)

for some statistical quantity σT and its estimator σ̃T . The Econometric Literature men-

tioned above minimizes forecasting errors while I am interested in minimizing estimation

errors. For the first problem one needs to introduce a model for the forecast ỹ and, sub-

sequently, performs a goodness of fit calibration which depends on the model parameters

of the forecasting model. The second problem addresses the minimization of the distance

between two statistical properties σT and σ̃T,data. The difference between the two problems

is profound: While the second optimization attempts to approximate the current statistical

state to an optimal degree, the first addresses model dependent optimal forecasts of a time

series.

To the best knowledge of the author, the literature on econometrics has focussed exclu-

sively on the first problem. However, it is noted (see Giraitis et al. (2014)) that forecasting

in the second framework is possible by setting the forecasts to the end-of-observed-sample

values. A variation of the second problem has been discussed in the literature on acous-

tics and signal processing under the name of ’optimal segment length’ (see Dahlhaus and

Giraitis (1998))). However, to the knowledge of the author this literature focusses on the
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question of optimal data intervals around a data point (see Theorem 2.3 in this paper)

and not at the end of the data set which is the question that is typically the one in which

one is interested in financial and economic settings. In addition, the techniques used in

this literature (non-stationary processes with an evolutionary spectral representation) are

more technical and highly different from the methodology used here (convergence speeds

of moments of mixture distributions). See also the literature review below. Furthermore,

in Giraitis et al. (2014) it is argued that the class of models from this strand of literature,

i.e. the methodology in Acoustics and Signal Processing, ’ [have] not really been influential

in applied macroeconometric analysis [...]’ which warrants the conclusion that it is not

a common technique in the Economic and Finance Literature at large. The second main

difference to the Econometrics Literature is that I am situating myself in a setup that

is suitable for quantitative finance purposes. Below I will utilize a semimartingale setup

which is the largest class of processes for which one can conveniently define stochastic in-

tegrals (see Protter (2005)) which are a powerful tool in Quantitative and Mathematical

Finance. To sum up, I consider the so-called ’bias-variance’ tradeoff within the realm of

’estimation techniques’, i.e. optimal inference, instead of ’learning techniques’, i.e. opti-

mal predictions, (see Geman et al. (1992), Breiman (2001)) within a framework that is

suitable to answer quantitative finance questions and that is typically formally excluded in

econometric analysis (see below).

For the sake of completeness I want to give a short overview of a prominent strand of

literature dealing with inference of parameters of either non-stationary stochastic processes

or time series exhibiting structural change. Naturally, there is a deep relation between

those two questions. In the following I will primarily rely on the article Dahlhaus (2012)

reviewing the literature on locally stationary processes (which have been utilised extensively

in financial econometrics, see, e.g., Stǎricǎ and Granger (2005) since their introduction in

Dahlhaus (1997)), i.e. one popular class of ’non-stationary processes’. However, note

that time-inhomogeneous brownian motions constitute continuous-time ’random walks’,

i.e. unit root processes. Unit root processes are notoriously difficult to deal with in a

classic time series context and are typically excluded from the analysis. This is also the

case in the context of this review article (see Dahlhaus (2012), condition on α [Notation
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from the paper] after equation (1), pg.3 ). Thus, ’non-stationarity’ in the literature on

inference of non-stationary processes and structural change refers to a time-dynamics of

the autoregression parameter while ’non-stationarity’ in the context of this paper refers to

non-stationarity of the volatility of the (continuous time) error terms. See, especially eq.

(76) in Dahlhaus (2012) which formulates explicitly a condition on stationarity necessary

to achieve the main representation used in this literature.

Nonetheless, for the sake of completeness let us consider the setup in this review article:

Dahlhaus (2012) primarily discusses processes with with a time varying spectral represen-

tation, i.e. processes of the form

Xt =

∫ π

−π
exp(iλt)Āt(λ)dξ(λ), t ∈ Z (4)

with an orthogonal increment process ξ(t) and a time varying transfer function Āt(λ) (see

Dahlhaus (2012) for details and Kayhan et al. (1994) eq.(1) - (8) for a concise derivation

of the formula above in a special case). Originally, this setup of analysis has been intro-

duced in Priestley (1965). The main technical tool used in the literature summarised by

the review article are ’infill asymptotics’ where the transfer function Āt(λ) is replaced with

some function A( t
T
, λ) (see Dahlhaus (2012), especially eq. (78), for details). Thus, time

structure between the Xt is introduced by means of the transfer function A(·, ·). However, ’

[...] processes which can be described with this infill asymptotics are processes which locally

at each time point are close to a stationary process but whose characteristics (covariances,

parameters, etc.) are gradually changing in an unspecified way as time evolves.’ (see

Dahlhaus (2012), pg. 2), i.e. the framework using infill asymptotics uses local structural

assumptions, mainly differentiability of the parameter function of the autoregression pa-

rameter over time, which is not needed for the data identification method developed in this

paper. As such the modeling framework considered in this paper is substantially different

from the one in Dahlhaus (2012) and, for this reason, this framework is not considered fur-

ther. However, Dahlhaus (2012) references additional work on processes with time-varying

parameters that does not use infill asymptotics (see pg. 2). All the papers mentioned in

this context, i.e. Subba Rao (1970), Hallin (1986), Grenier (1983), Kayhan et al. (1994),

consider only stochastic processes that have connections to time series modeling. Specif-

ically, all those papers either exclude the unit root case explicitly or implicitly (by using

24



some form of the ’Wold Representation’ (see, e.g.,Greene (2012)) which requires a covari-

ance stationary time series, i.e. a constant autocovariance structure which is, in general,

not fulfilled by time inhomogeneous brownian motions 3 and are, as a consequence, not ap-

plicable within the framework considered in this paper). Additional reviews on forecasting

in non-stationary environments (see Giacomini and Rossi (2015)) and general structural

breaks in time series (see Casini and Perron (2019)) are available. However, to the knowl-

edge of the author, there are no results on the identification of optimal data windows for

time-inhomoegeneous brownian motions, their generalizations, or their discrete analogue,

i.e. ’unit root processes’.

While the primary objective of this literature review is to demonstrate a degree of nov-

elty of the methodology developed in this paper it has to be noted that the literature on

financial econometrics struggles with non-stationarity in a broader sense. One prominent

paper, Mikosch and Stǎricǎ (2005), on non-stationarity in return time series argues that

non-stationarity can be used in order to explain certain time series puzzles (specifically,

the ’IGARCH effect’). However, the authors come to the following conclusion (Mikosch

and Stǎricǎ (2005), pg. 388f): ’As for the question whether there is [a statistical property]

in the absolute log-returns or not, we believe that, because one cannot decide about the sta-

tionarity of a stochastic process on the basis of a finite sample, that question will certainly

keep the academic community busy in the future.’ As such the analysis boils down to the

question whether one believes that there is non-stationarity in the data. The representa-

tiveness metric is designed to circumvent this problem altogether. It serves as a formal tool

which allows to incorporate any subjective opinion regarding the degree of non-stationarity

(including ’no non-stationarity’) of the data generating process.

In order to construct data sets based on an opinion regarding the dynamics of the

underlying process I proceed as follows: In section 2.2 I introduce a class of non-stationary

3By the Levy Characterisation of the brownian motion (see, e.g., Karatzas and Shreve (1998)) it is known

that cov(Bs, Bt) = min(s, t) for a standard brownian motion. However, for a time-inhomogeneous brownian

motion B̃ it follows that cov(B̃s, B̃t) = E[B̃sB̃t]) = E[B̃s(B̃s + (B̃t − B̃s))] = E[B̃2
s ] = V ar(B2

s ) = σ2
s · s

where σ2
s measures the average variance of the process from its starting point up to s. For a non-stationary

process this means that the covariance structure changes over time. Thus, such a process is not necessarily

covariance stationary.
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stochastic processes whose stationarity properties can be easily manipulated. In addition, a

metric measuring the degree of nonstationarity is introduced. In section 2.3 I introduce the

representativeness and estimator convergence errors that are present in the nonstationary

setup from section 2.2. In section 2.4 I combine the errors and discuss the existence and

uniqueness of a minimal bias data set. Section 2.5 is devoted to applications. First, I apply

the framework to a setup with different jump sizes in order to illustrate the mechanic

developed beforehand and afterwards I perform an impact analysis of a paragraph in the

banking regulation framework. In section 2.6 I draw conclusions.

2.2 Setup

The objective of this section is to fix a class of processes whose stationarity properties can

be conveniently manipulated. To this end, I will rely on a subclass of semimartingales which

are a prominent tool in quantitative finance since they are the largest class of processes for

which one can conveniently define stochastic integrals (see Protter (2005)). The stochastic

properties of general semimartingales can be expressed through their ’characteristics’ which

will be introduced below (see Jacod and Shiryaev (2003)). The notion of ’characteristics’

of a semimartingale is designed to extend the three terms drift, variance and Lévy measure

that characterise the distributional properties of Lévy Processes. Let (Ω, F, P, (Ft)t) be a

stochastic basis fulfilling the usual hypothesis (see Protter (2005)).

Definition A stochastic process X = {Xt : t ≥ 0} is said to be a Lévy process if it

satisfies the following properties:

1. X0 = 0 almost surely.

2. For any 0 ≤ t1 < t2 < ... < tn < ∞, the corresponding increments Xt2 −Xt1 , Xt3 −

Xt2 , ..., Xtn −Xtn−1 are independent.

3. For any s < t, Xt −Xs is equal in distribution to Xt−s.

4. For any ε > 0 and t ≥ 0 it holds that

lim
h→0

P (| Xt+h −Xt |> ε) = 0 .
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The distribution properties of a Lévy process are determined by its characteristic function,

which is given by the well-known Lévy-Khintchin formula (see, Protter (2005), Ch.1 Thm.

43):

Theorem If X = {Xt : t ≥ 0} is a Lévy process, then its characteristic function ψX(θ)

is given by

ψX(θ)(t) := E
[
eiθXt

]
(5)

= exp

{
t

(
aiθ − σ2θ2

2
+

∫
{|x|≥1}

(1− eiθx)ν(dx) +

∫
{|x|<1}

(1− eiθx + iθx)ν(dx)

)}
,

(6)

where ν(dx) is a Lévy measure, i.e. ν fulfills ν(0) = 0 and
∫
R

min(1, x2)ν(dx) <∞, where

R denotes the real numbers.

Since the characteristic function uniquely determines the probability distribution of

the corresponding random process each Lévy process is uniquely determined by its Lévy-

Khintchine- or characteristic triplet (a, σ, ν). Given the characteristic function it is clear

(see, Jacod and Shiryaev (2003), pg. 75) that the process

Mt :=
exp(iθXt)

exp(ψX(θ)(t))
(7)

is a martingale. For more general processes eq. (7) is the condition that is used in order

to define the characteristics. In the following I will consider a subclass of semimartingales.

Semimartingales are defined as follows:

Definition (see, Jacod and Shiryaev (2003), pg. 43, Def I.4.21.): A semimartingale is

a process X of the form

X = X0 +M + A , (8)

where X0 is finite-valued and F0-measurable, where M is a local martingale, i.e. a process

that satisfies the martingale property for some sequence of stopping times, such that M0 = 0

and where A is an adapted process with finite variation such that A0 = 0.

Concerning its characteristics, for a semimartingale X the objective is to find two
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processes a(t) and σ(t) and a random measure ν such that

ψX(θ)(t) = exp

{
iθa(t)− θ2σ2(t)

2
+

∫
0c
eiθx − 1− iθ1|x|<1ν([0, t]× dx)

}
(9)

is the characteristic function of X and

Mt :=
exp(iθXt)

exp(ψX(θ)(t))
(10)

is a martingale. Here, 0c denotes the complement of 0. In the context of non stationary

processes the jump measure nu can be different at different points in time, thus one has to

allow for an additional degree of freedom related to time which is typically introduced via

the notation used above (see Karatzas and Shreve (1998)). For stationary processes eq. (9)

collapses to eq. (6) with σ2(t) = σ2 · t and a(t) = a · t and an according transformation of

the jump measure. It can be shown that for every semimartingale there exists a unique set

of predictable processes a(t), σ(t) and a random measure ν that fulfills those conditions.

This set of objects is called the characteristics of the semimartingale X (see Jacod and

Shiryaev (2003), Def II.2.6 and Proposition II.2.9).

If one considers semimartingales with independent increments, one can show that the

corresponding set of characteristics has to be indistinguishable (see Karatzas and Shreve

(1998), Def. 1.3) from a deterministic process (see Jacod and Shiryaev (2003), Theorem

II.4.15)4, i.e. the characteristics of such a process have to be deterministic functions of

time. This is a convenient setup to work in since now the distributional properties of the

process are parametric and can be inferred using classical statistical techniques. In this

class of processes I restrict myself further: Since in data sets we observe only the combined

behavior of all the characteristics one would have to first separate this combined signal

into its parts, i.e. one would have to decide which attribute of an increment was caused

by the drift or the diffusion part or the jump measure. Testing for jumps in a discretely

observed process is a challenging problem (see, e.g., Aı̈t-Sahalia and Jacod (2009) and Aı̈t-

Sahalia and Jacod (2014)) and since the objective of this paper is to provide a rationale

for optimal data identification rather than a contribution to this strand of literature, I

4In Jacod and Shiryaev (2003) the authors use the terminology ’version’, which is not defined in the book,

for the same property that is called ’indistinguishability’ in Karatzas and Shreve (1998). See Jeanblanc,

Yor and Chesney (2009) for a formal identification of the two properties.
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will circumvent this problem by assuming that the available observations are the result

of a single characteristic. To this end, I assume that there is no drift and that there are

no jumps and that the only characteristic that is present is given by the variance of the

diffusion part. This restriction leaves me with driftless, continuous semimartingales with

independent increments.

Since the objective of this paper is to construct optimal data sets out of a conception of

stochastic instability, I also need a device measuring this instability. From a mathematical

perspective, it is convenient to tie the instability measure to the dynamics of the parameter

governing the stochastic behavior:

Definition LetX be a driftless continuous semimartinagle with independent increments

and characteristics σ(t) defined on (−∞, T ]. Let t1 < t2 ≤ T . The quantity

R(t1, t2) =

∫ t2

t1

|∂σ(s)

∂s
|dξ (11)

is called the representativeness metric of the processX on the interval [t1, t2]. For notational

purposes one has to assume that σ is differentiable. However, in discrete samples it is not

decidable whether the dynamics of a continuous parameter is differentiable or not. As such,

it is natural to consider the finite approximation of the integral above whenever necessary,

i.e. finite differences as approximations of the derivative and a discrete-valued measure ξ

assigning a weight of 1 for elements in the finite approximation and zero otherwise. In this

regard, the differentiability assumption is not critical for the data identification method

developed in this paper.

This is a formulation of the representativeness metric that does not take into account

changes in the institutional environment (as mentioned in the introduction) but only the

time dynamics of the actual parameters involved. For formal derivations this is a useful

definition. However, in applications one has to have a model of the representativeness metric

(see section 2.5). Formally, the representativeness metric serves as a distance measure on

the space of stochastic processes from ’stationary behavior’ when considering the process

at different points in time. For a stationary process in our model class, i.e. a brownian

motion with characteristics σ, the metric is zero since σ is constant over time and neither a

derivate nor a finite sum of differences will be nonzero. On the other hand, a process with
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a jump of size κ at time s in its characteristics exhibits representativeness R(s − ε, s1) =

κ,∀ε > 0, s1 ≥ s. Note that the second process can also have a representativeness metric

of zero if s is not in the time interval under consideration. Thus, the representativeness

metric measures deviations from stationary behavior within the time frame defined by its

arguments.

Given that the objective of the paper is optimal inference based on a perception of insta-

bility, it is clear that the degree of data reduction should be higher for data sets generated

by processes that exhibit a higher degree of non-stationarity, i.e. higher levels of R(·,·) over

some time frame (for an example, see section 2.5.1). Furthermore, the representativeness

metric has the purpose of measuring what is genuinely ’new’ about a situation. In a math-

ematical context ’new’ means that the values of the parameters have to be at levels that

have not been attained in the history of the sample. Consequently, for the formal deriva-

tion it is necessary for identification purposes to assume a monotone dynamics of σ(t) in

order to ensure that ’novelty’ as measured by the representativeness metric corresponds

to ’novelty’ in terms of stochastic behavior. Hence, for the next two sections I assume a

monotone behavior of σ(t) and the representativeness metric will not appear again until

the application in section 2.5. This type of monotonicity assumption, which can be veiled

by the assumption that there is just one isolated structural break, is common in order to

have proper identification mechanism (see Pesaran and Timmermann (2007), sect 3.6) and

constitutes a generalization of the setup that is used in this paper since it allows for both

continuous change and jumps (see section 2.5).

However, when considering applications then the situation is typically different: When

looking at specific risk metrics, the same market at different times can exhibit the ’same

risk’, i.e. the monotonicity assumption used in the formal derivation is violated. If one

would assume that past periods of, e.g., low volatility are comparable to current periods

of low volatility then one could argue in favor of, e.g., state-space conditioning (see, e.g.,

Meucci (2012)) in order to shore up the size of data sets. However, given that the underlying

structure of the market is changing over time, it is important to distinguish between periods

where the measurable risk criteria are similar, i.e. in applications one encounters situations

where the mathematical notion of ’novelty’ does not correspond to the economic notion
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of ’novelty’. Consequently, it is useful to define the representativeness metric on the basis

of indicators of economic change and adaptation of expectations. Prime examples for this

are liquidity metrics or extreme values which indicate an update of expectations. A simple

version of the latter will be utilised in section 2.5.

2.3 Individual Errors

In terms of the setup from the last section, the objective of this paper is to estimate σ(T )

by choosing an optimal data set of discrete observations {xi}i ⊂ [0, T ] of the process X

utilising knowledge on R(·, ·). For the purpose of deriving the optimality condition I will

operate under perfect knowledge, i.e. for the purpose of the following two sections I assume

full knowledge of the history of the process up to time T, i.e. {σ(t)}t≤T . The optimization is

set up between data quantity which carries the incentive to use as much data as possible and

data quality which does the opposite. The objective of this section is to derive estimator

convergence and representativeness errors as a (data) interval dependent properties.

2.3.1 Representativeness Error

When one uses non-representative data to estimate some quantity, one makes an error. The

objective of this subsection is to derive the extent of the error for the variance estimator,

i.e. for the characteristic of the process that is still present in our setup. The situation one

encounters is the following: Given one is situated at the end of a data set that spans the

interval [0, T ] one is interested in deriving the difference between the current state of the

characteristics, i.e. σ(T ), and the value of the estimator one would have of this quantity

using some data set [t1, t2] ⊂ [0, T ] which I will denote by σ̂[t1,t2]. For convenience I will

assume t2 = T . I am now interested in the moments of σ̂[t1,T ] as a function of t1.

Since I operate under the assumption of knowing {σ(t)}t∈[0,T ], I can immediately pro-

ceed to calculate σ̂[t1,T ] by appealing to results on mixture distributions since σ̂[t1,T ] is the

standard deviation of the random variable created by mixing the normal distributions with

local standard deviation σ(t) over the time interval [t1, T ]. For this purpose t is considered

to be equally distributed on the interval [t1, T ]. The result can be summarised as follows.

Proposition For a driftless semimartingale with independent increments and without
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jumps

X(T ) =

∫ T

0

σ(s)dW (s) (12)

the variance of the random variable X[t1,T ] := X(T ) − X(t1), where t1 > 0, is given by

the mixture distribution of the Wiener process W with diffusion term σ(t) and t. More

specifically, X is locally distributed according to a centralised normal distribution with

parameter σ(t) and t is uniformly distributed in the time interval [t1, T ]. Consequently, the

distribution of X restricted to the interval [t1, T ] can be calculated as

fX[t1,T ]
(x) =

∫
f(x|σ2(t))fσ2(t)dt (13)

=
1

T − t1

∫ T

t1

1√
2πσ2(t)

exp

{
− x2

2σ2(t)

}
σ2(t)dt , (14)

where f is the density of a normal distribution and f 2
σ denotes the distribution of σ2 with

respect to its latent parameter t. Specifically, the variance is given by

σ̂2
[t1,T ]

= VX[t1,T ]
= Et

[
V (x|σ2(t))

]
+ Vt

[
E(x|σ2(t)

]
(15)

=
1

T − t1

∫ T

t1

σB(t)2dt+ 0 , (16)

where Et[·] and Vt[·] denote expectations and variances with respect to the distribution of

t.

Proof The results above are basic properties of mixture distributions, see, e.g., Lindsay

(1995).

Given this result it is possible to define the difference between the statistically perceived

variance, i.e. the estimator if estimated using the mean of a uniform distribution, within

an interval and the current state of the process.

Definition

Let t1 < T , t1 ∈ [0, T ]. The representativeness error βσ of the parameter σ that is

caused by using data from the interval [t1, T ] is given by

βσ(t1, T ) =

∣∣∣∣ 1

T − t1

∫ T

t1

σ2(s) ds− σ2(T )

∣∣∣∣ . (17)
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Figure 1: Example - Nonrepresentativeness Error: In the left panel an example data

set for the situation from the example is displayed. In the right panel the corresponding

average simulated (blue) and theoretical (black) representativeness error βB(x, 10) is shown.

Here, the simulated errors are the average results of a monte carlo simulation of 100.000

data sets comparable to the one on the left. It is visible that for small data quantities (in

the vicinity of 10) estimator convergence is still an issue and leads to more scattered errors.

Example

Let [0, T ] = [0, 10] and σ(t) = t. Then the representativeness error is given by

βσ(t, 10) =

∣∣∣∣ 1

10− t

∫ 10

t

s2ds− 102

∣∣∣∣ (18)

which is easily solvable and can be contrasted against a simulation (see Figure 1). It can

easily be seen that the representativeness error is low when only using data that is in the

immediate vicinity of 10 and becomes larger the more data is used.

In the example as well as in the definition it is easily discerned that the representative-

ness error is increasing in the amount of data that is used to estimate σ(T ) and consequently

constitutes an incentive to use as few data as possible when estimating parameters in a

non-stationary environment. However, when performing any statistical analysis some data
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is necessary to achieve any form of estimator convergence. To calculate the quantitative

benefits of additional data in the context of mixture distributions is the objective of the

next subsection.

2.3.2 Convergence Error

The value of more data is given by an increased estimator convergence. Consequently, it has

to be assessed how beneficial additional data is in the context of mixed normal distributions.

Since data is discrete and the ultimate answer to the question how much data should be

used in an estimation will also be discrete any argument related to estimator convergence

will naturally only depend on natural numbers (data quantity). Thus, the calculations in

this section will involve largely finite sums. However, given the prevalence of continuous

time models in quantitative finance I set up the problem in a continuous time frame-work

and will embed the discrete considerations of this section into this framework. The first

problem that has to be addressed in this context is to define the object to which the

estimator is converging. In the context of the mixture distribution above this is given by

σ̂[t1,T ], i.e. when calculating the estimator convergence the heterogeneity will also play a

role in the target of the convergence. The following theorem extends the convergence speed

results for i.i.d. normal random variables to i.-non-i.d. normal random variables.

Theorem

Let (Xi)i∈N be a family of independent and N(0, (σ2
i )i∈N) distributed random variables

and let

S2
n :=

X2
1 + ....+X2

n

n
(19)

be the sample variance. Here, σi denotes σ(ti).

Then the convergence speed of Sn towards 1
n

∑
σ2
i in quadratic norm, i.e. the variance

of the error, is

E

[(
S2
n − (

1

n

∑
σ2
i )

)2
]

= 2
1
n

∑
σ4
i

n
. (20)

Proof Using only elementary properties of normal distributions regarding higher mo-

ments (see Shao (1998)) one calculates
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E

[(
S2
n − (

1

n

∑
σ2
i )

)2
]

= E

[(
1

n
(X2

1 + ...+X2
n)− (

1

n

∑
σ2
i )

)2
]

(21)

= E

[(
1

n
(X2

1 + ...+X2
n)

)2
]

(22)

− 2(
1

n

∑
σ2
i )E

[(
1

n
(X2

1 + ...+X2
n)

)]
+ (

1

n

∑
σ2
i )

2 (23)

= E

[(
1

n
(X2

1 + ...+X2
n)

)2
]
− (

1

n

∑
σ2
i )

2 (24)

=
1

n2
E
[(
X2

1 + ...+X2
n

)2]− (
1

n

∑
σ2
i )

2 (25)

=
1

n2

(∑
i

E
[
X4
i

]
+ 2

∑
i,j,i6=j

E
[
X2
iX

2
j

])
− (

1

n

∑
σ2
i )

2 (26)

=
1

n2

(
3
∑

σ4
i + 2

∑
i,j,i6=j

σ2
i σ

2
j

)
−

(
1

n2

(∑
σ4
i + 2

∑
i,j,i6=j

σ2
i σ

2
j

))
(27)

= 2
1

n2

∑
σ4
i (28)

= 2
1
n

∑
σ4
i

n
. (29)

Remark Since every data interval only contains a finite number of data points this

statement is sufficient. However, given an equidistantly spaced data set with frequency η

and assuming that the (Xti)i∈{0,...,n} spans the interval [t1, T ] and includes the endpoints,

i.e. Xtm = Xt1+
m
n
(T−t1), the statement above can be restated to

E

[(
S2
n − (

1

n+ 1

∑
σ2
i )

)2
]

= 2

1
η(T−t1)

∫ T
t1
σ4
sζ(ds)

η(T − t1)
(30)

for the discrete measure ζ assigning a weight of 1 at the points ti and zero otherwise.

Definition The convergence error ασ(t1, T ) for a finite family of centered i-non-i.d.

normal random variables (Xti)i∈{0,...,n} that includes the endpoints of the intervals and that

is equally spaced with frequency η is defined by

α2
σ(t1, T ) := E

[(
S2
n − (

1

n+ 1

∑
σ2
i )

)2
]

= 2

1
η(T−t1)

∫ T
t1
σ4(s)ζ(ds)

η(T − t1)
. (31)
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2.4 Error Combination and Minimal Bias Data Sets

The objective of this section is to combine the errors derived in the last two sections.

When aggregating different sources of errors one can rely on classical results from the field

of Error Analysis (see Ku (1966)) which is a field concerned with the question in which

way individual results and their corresponding errors (typically experimental results with

some measurement error) are propagated when one looks at functional relationships of

the individual results. Specifically, given the individual errors ασ(t, T ) and βσ(t, T ) and

assuming that they are independent, it is known that the average measurement error of

some function of the errors, f(ασ(t, T ), βσ(t, T )) = ασ(t, T ) + βσ(t, T ), is given by

sd(f(ασ(t, T ), βσ(t, T ))) =

√
∂f

∂ασ(t, T )
· α2

σ(t, T ) +
∂f

∂βσ(t, T )
· β2

σ(t, T ) (32)

=
√
α2
σ(t, T ) + β2

σ(t, T ) . (33)

Here, sd(·) denotes the standard deviation (measurement error) of some quantity. If the

time dynamics of the characteristics process is deterministic then the representativeness

error is deterministic and, consequently, it is independent of the other error by construction

and the conditions of the statement above are satisfied. If one would like to have the time

dynamics of the process σ(t) to be random one can, in principle, model the dynamics of

σ(t) as a subordinator, i.e. an almost surely increasing Lévy Process (see (Clark, 1973)) in

order to have both, a random measurement quantity as well as the correspondence between

’statistical novelty’ and ’novelty’ as measured by the representativeness metric laid out in

section 2.2.

Given those considerations the overall error γσ(t, T ) associated with a data set spanning

the interval [t, T ] is given by

γσ(t, T ) =
√
α2
σ(t, T ) + β2

σ(t, T ). (34)

Given this functional form it is natural to restrict the space of possible data sets. It is

natural to ask which of the most recent observations can be used to optimally estimate

the current value of some parameter, i.e. to find the optimal data set within the set

{[x, T ];x ≤ T}. The optimal data set is defined as the data set minimizing γσ(t, T ), i.e. by
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Figure 2: Simulation: Depicted are the theoretical and empirical γσ(5, x), i.e. in this

graphics we consider the problem from the left and try to infer σ(5) with data from the

interval [5, x], for the situation where σ(t) = t and the data set spans the time interval

[5, 10]. The results of the simulation are based on 10.000 simulations per time step and a

data density of η = 200. The blue line is the theoretical magnitude of the error combination

procedure from the definition. The panel on the right depicts one sample data set.

the condition

argminx∈[0,T ]γσ(x, T ) =
√
α2
σ(x, T ) + β2

σ(x, T ) (35)

=

√√√√
2

1
η(T−x)

∫ T
x
σ4(s)ζ(ds)

η(T − x)
+

(
1

T − x

∫ T

x

σ2(s) ds− σ2(T )

)2

.

(36)

For an illustration comparing this theoretical prediction with a simulation, see Figure 2.

2.4.1 Existence of the optimal data set

Given the combined error it is immediately possible to show the formal existence of an

optimal data set:

Theorem

Under the assumption that σ(t) is an integrable function there exists an x∗ ∈ [x, T −2η]

that minimizes the expression above. Here, η refers to the data frequency.
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Proof Let g(x) =
√
α2
σ(t, T ) + β2

σ(t, T ). Since σ(t) is integrable all integrals in the

expression above are continuous functions. Hence, g is a combination of continuous func-

tions and the functions in the denominator are non-zero for x ≤ T − 2η. Consequently, g

is continuous. It is also bounded on the compact interval [0, T − 2η] and therefore has a

minimum in this interval (see, e.g., Rudin (2013)).

The 2η in the statement above is chosen since one needs to have at least two data points

in order to estimate a variance and one can consequently ignore the singularity in the first

term of the expression.

2.4.2 Uniqueness of the optimal data set

The purpose of this subsection is to illustrate that, in general, it cannot be guaranteed that

the optimal data set is unique. See Figure 3 for an example where two data sets exhibit

the same combined error. Here, one data set is longer with a higher representativeness

error and a smaller estimator convergence error while the other one is shorter with a

smaller representativeness error and a higher estimator convergence error. From a numerical

perspective this nonuniqueness can make the length of the data set a very unstable quantity,

since any data driven algorithm can change from one minimum to the other with only

small perturbations. However, this is exactly the insecurity one would like to mimic in the

presence of structural breaks: In a setup where structural breaks are possible one cannot

be sure whether the informational content of some new data point is based on a change in

the underlying structure and, consequently, constitutes a sample from a new distribution

or rather due to an outlier drawn from the old distribution. Hence, if there is an action

tied to the value of estimators (as, e.g., in the case of banking regulation, see below) this

change in the data set and the corresponding change in the estimators can translate into

a very fluid business strategies. An example of a repeated oscillation between two data

sets of different lengths can be seen in Figure 5 in the summer of 2013. However, it is also

briefly present in the financial crisis and in 2015.
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Figure 3: Nonuniqueness of optimal data sets: This figure shows the combined error

γσ(0, x) (left) of data sets generated by observations from a process with characteristics

σ(t) as shown on the right.

2.5 Applications

The objective of this section is to go through two simple examples for which the method

introduced above can be applied. As mentioned in the introduction the problem of an

optimal data reduction consists of two parts: First, one has to have an opinion of the

degree of non-stationarity and then one has to derive an optimal data set based on the

degree of non-stationarity. The first example compares single jumps of different sizes in the

characteristics. The purpose of the example is to support the basic intuition that a smaller

jump in the characteristics should lead to ’less data reduction’ after the jump. In the next

subsection I perform an impact analysis of a paragraph in the Basel 3 framework.

2.5.1 Jumps and Data Reduction

In this section I briefy demonstrate how the results are infuenced by the degree of nonsta-

tionarity. To this end, consider a data set of length 500 with a single structural break of

size κ in the underlying characteristic σ at data point 250, i.e. before the break the value of

the characteristic is given by σ = 1 while after the break it is at σ = 1 +κ. We expect that

larger κ’s lead to increased data reduction and less usage of prebreak data while smaller κ’s

have the opposite effect. Implementing eq. (36) for this particular example yields results

that are fully compatible with this intuition (see figure 4). Here the values of the κ’s are set

to 0.002 (black), 0.01 (red), 0.05 (blue), and 0.1 (green). When the jump is small enough
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Figure 4: Optimal Data Length for Jumps of different sizes: This figure displays

the degree of data reduction due to different jump sizes κ ∈ {0.002, 0.01, 0.05, 0.1}. In the

right panel the representativeness error for the last data point is shown, i.e. βσ(x; 500) for

κ = 0.1. For x > 250 the error is zero since only post break data is used while for x < 250

some non-representative data is in the sample. The left panel displays the length of the

data window at the respective point in time. It can be seen that prior to the break all data

is used while the data window collapses after the break. The collapse is more severe the

larger the jump is.

almost all of the prebreak data is still used at the end of the sample (black line) while

larger jumps lead to higher degrees of data reduction.

2.5.2 Application: Impact Analysis of a Paragraph in Basel III

The objective of this section is to apply the methodology introduced above on a risk

management application for which the sensitive modeling choice of the methodology is

largely taken out of my hands. To this end one has to make two adjustments to the formal

methodology above: First, ’novelty’ has been defined as genuine new values of parameters

in order to ensure that stochastic novelty and novelty as measured by the representativeness

metric coincide. In applications that is not a necessary requirement: Different periods of,
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say, low volatility realise themselves in different institutional frameworks and, consequently,

are ’novel’ in their own regard. Hence, I will simply drop this assumption. One also has to

provide an implementable algorithm of the methodology above: In Equation (36) the right

term is modeled via the representativeness metric. In the left term I will use the sample

fourth moment.

Quantitative Risk Measures like Value-at-Risk or Expected Shortfall are employed when

determining the capital requirements of financial institutions. The following paragraph

from the Basel 3 framework is dealing with the data sets that have to be used in order

to calculate quantitative risk measures, specifically under which conditions they can be

contracted:

’The supervisory authority may also require a bank to calculate its Expected Shortfall

using a shorter observation period if, in the supervisor’s judgement; this is justified by a

significant upsurge in price volatility. In this case, however, the period should be no shorter

than 6 months.’ Basel-Committee (2016)

This paragraph contains all the ingredients that are part of the methodology introduced

in this paper: Under a significant inflow of new information (measured by a ’significant

upsurge in price volatility’) the supervisory authority can require banks to reduce the re-

liance on older data. The interesting question here is to which degree the triggering of this

paragraph can influence the dynamics of risk metrics. In order to approach this question

one first needs to establish a connection between the parameter discussed in the method-

ology, i.e. variance, and the risk metric mentioned here: I assumed the data generating

process is locally gaussian, i.e. that the aggregate distribution over an interval is a cen-

tered gaussian mixture distribution. Centered Mixture distributions exhibit excess kurtosis

and since excess kurtosis is a measure of extreme values Westfall (2014) it is adequate to

conclude that the expected shortfall of a gaussian mixture distribution is bounded from

below by the expected shortfall of the gaussian distribution with the same variance as the

gaussian mixture distribution. However, the expected shortfall of a gaussian distribution is

a deterministic function of its variance. More specifically, the expected shortfall of a nor-

mal distribution is given by the value-at-risk, i.e. a quantile, times a quantile dependent
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constant. Consequently, the variance estimator can be used to establish a lower bound on

the expected shortfall of the mixture distribution.

I also need to specify the representativeness metric that is used. Here, I again rely on

the fourth moment since extreme events naturally signify a structural break (see Westfall

(2014)) and since an increase in a higher even moment is also highly related to an increase

in variance. In order to avoid very short time series I also use a normalising constant of

100 and arrive at the representativeness metric

R(t1, t2) =

t2∑
k=t1

r4k
100

. (37)

Note that the representativeness metric serves as a model of change of the underlying

parameter of a time series. There is no clear connection between the occurence of extreme

events in some time series and some form of non-stationarity. Here, the occurence of

extreme events serves as an indicator of non-stationarity. The better the indicator the

more weight it can receive. Since my goal is a simple illustration of the concept I am

acknowledging the imperfections of using extreme events and fourth moments as indicators

of non-stationarity by severely downweighting them (a weight of zero would lead to using

the full historical data set for every point in time while larger weights would increase the

representativeness error which would yield shorter data sets).

For this particular choice of representativeness metric the corresponding data windows

can easily be calculated by constructing time point dependent backward looking repre-

sentativeness errors and convergence errors (see eq. (36)). Subsequently, the estimated

variance can be used in order to calculate the lower bound on the value-at-risk mentioned

above. For a DAX data set of daily closing prices spanning the time frame from April 1st

2001 to August 31st 2017 the results are depicted in Figure 5. In order to achieve a certain

comparability I also depict the results for the Value-at-risk for a fixed rolling window esti-

mation for which the rolling window is fixed to the average of the adaptive data window,

i.e. 372 data points.

It can be noted that the average value of the risk measure is lower for the adaptive

data method whereas the volatility is higher. The author is not aware of a discussion

of the interesting question regarding what the optimal tradeoff between the mean and

variance of different risk metrics is. Recent papers have, however, focused on the mean
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Figure 5: Empirical Example Depicted are the optimal data windows (left panel, blue)

as well as the levels of the DAX (left panel, red). In the right panel the corresponding

97.5% value-at-risk estimates that are based on the adaptive data method (blue) and a

fixed rolling window (black) are depicted.

as a quality criterion (see, e.g., Lau (2015b)) since it can be interpreted as bound capital

and consequently it is desirable for it to be as low as possible. However, since especially

in times of crisis it is extremely difficult to acquire new capital it is not clear whether an

average low capital requirement is actually desirable.

In addition, it is also clear from the analysis that the data reduction takes place at the

beginning of the financial crisis of 2007 and that the increase in risk assessment is much

steeper than for the rolling window estimation. This is not surprising since ’a significant

increase in price volatility’ is typically the outcome of a beginning financial crisis and a

data reduction in this scenario leads to a relative increase of crisis data in the data set used

for the estimation of the risk metric. It is fair to assess that triggering this statute at the

beginning of a financial crisis would lead to a significant increase in capital requirements in

a market environment that is already in turmoil. As such, triggering this paragraph would

add to the problem of procyclicality that is inherent to tying the capital requirements of

banks to the risks of their assets (see, e.g., Danielsson et al. (2001), Pennacchi (2005))

Consequently, one could argue that the regulator has a tool in hand that he could use to

effectively shut down the financial system. The flipside of the argument, however, is equally

disturbing: If at the beginning of a financial crisis the only thing that keeps a bank alive
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from a quantitative risk management perspective are the smoothing effects from data prior

to the crisis (which is, arguably, not relevant anymore) this is not comforting.

2.6 Conclusion

Data plays a crucial role in our understanding of the world around us. In Economics and

Finance observations from the past have always been eyed with suspicion by empirical

researchers and have regularly been either down-weighed or excluded from their studies.

At the same time Economic and Finance theory have worked under the assumption that

the past is fully representative of the present while, for a much longer period, physicists

have devoted significant ressources to discuss the validity of this assumption. Given that

data restriction is common practice and given the influence that empirical research has on

policy issues it is of utmost importance to derive a quantitative criterion for data selection

purposes. Otherwise, it is a degree of freedom which can be exploited. For a special

situation this paper introduced a method to solve this problem. In the process I did not

address the question which ’representativeness metric’ is good for a particular situation

since I believe it to be a problem specific issue which has to be argued for on a case-by-

case basis. If one is interested, e.g., in the current risk metrics of some oil futures then

any action by the OPEC or Russia regarding their oil exporting policy should appear in

my related model of representativeness. However, this particular model does not play a

role when one is interested in the risk metrics of, say, a european life insurance company

since the oil market and the european life insurance market can assumed to be unrelated.

Instead, in a life insurance context, one might want to build a model of representativeness

based on, e.g., progress in medicine and geriatrics.

However, in order to arrive at optimal data sets one has to acknowledge that economic

reality shifts over time and that data from different points in time is qualitatively different.

This assertion is incompatible with a variety of concepts that lie at the heart of not only

Finance and Economics but the scientific method in general: In Finance, a shifting reality

can only mean that the concept of ’efficiency’ is not clearly defined because it is based on

a perfect statistical perception which, in view of the results in this paper, is impossible to

achieve. In fact, I even showed that the ’optimal degree’ of statistical perception is not
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unique. Given how deeply rooted efficiency and the related notion of rationality are in

Economics it is somewhat elusive what would be a good substitute in a world that is not

stable over time. However, very recently, in the aftermath of the 2007-2009 financial crisis

the finance literature has moved on towards adaptive markets where the term ’adaptive’

refers to the multiple roles that evolution plays in shaping behavior and financial markets

(see Lo (2017)) and the method presented here can serve as a quantitative modeling device

which can carry evolutionary information.

More generally, a ’shifting reality’ also sheds a light on the so-called replication crisis

(see Open Science Coll. (2015)). Currently, the blame for the missing degree of replicability

of studies in many fields of the social sciences is placed at the feet of statistical techniques

(see, e.g., Ioannidis (2005) and in a financial context also Bailey et al. (2014)) and while

I acknowledge the misincentives that are inherent to some statistical techniques, it is also

perfectly conceivable that the underlying object that is studied is changing over time and

that, as a consequence, some experiments do not replicate because the behavior of subjects

is shaped by some form of ’Zeitgeist’ and cultural evolution. This point has already been

raised in the psychology literature (see Greenfield (2017)) but it is worthy noting since the

underlying concept here, again, is ergodicity which is a notion that social scientists are

rarely aware of.

In addition to these conceptual questions the technique presented here spawns a host

of formal problems that can be followed up on: In order to keep the presentation to its

essential parts I restricted myself to a subclass of semimartingales but it is natural to

perform the analysis for more general semimartingale processes. In this context, however,

one has to deal with a variety of complicated filtering problems since one has to deal

with the attribution problem pointed out in section 2.2. In this paper I worked under the

assumption that I know precisely the location and size of structural breaks since I wanted to

focus on the problem of an optimal data identification. In the statistics literature, however,

jump detection is a notoriously difficult problem with a large number of possible solution

techniques. Hence, it is natural to combine different possible representativeness metrics or,

more generally, one can treat the representativeness metric as a stochastic process in its

own right (e.g. by assuming it to be a subordinator). However, in this instance the two
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individual errors will not be independent anymore and one would have to develop additional

methods for the error aggregation step in order to solve the corresponding data selection

problem. If one is in a situation where the data generating process is not self-similar and

one has qualitatively different behavior on different time-scales it is also conceivable to leave

the class of semimartingales and consider, e.g., fractional processes to set up a problem of

an optimal sample frequency where one is interested in the extraction of a long-term signal

from a data set of limited length and an increase in sampling frequency leads to an increase

in data quantity but introduces a bias caused by the non-self similarity. Lastly, in this

paper I restricted myself to processes that are locally normal distributed and argued on

the basis of the convergence speed of mixture distributions which also leaves room for a

variety of generalisations regarding distributional assumptions.
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3 A Convergence Speed Dependent Data Quantity

Definition for Weighted Observations

The results of this part of the thesis have been published as Krause (2019b).

Abstract

Data Quantity plays a crucial role in the estimation of risk measures since ’more data’

leads to a better estimator convergence and consequently to a better risk assessment. The

objective of this paper is to use this relationship between data quantity and estimator con-

vergence to formally derive a measure of data quantity for estimators based on weighted

observations. For the case of a variance estimation and using exponentially weighted obser-

vations this procedure leads to analytical formulas for the implied measure of data quantity.

As such, this paper specifies the theoretical underpinnings of measures of data quantity

which have been present in the literature (Effective Number of Scenarios) and, as an appli-

cation, demonstrates the effect of the specific measure of data quantity on risk assessment.

3.1 Introduction

It is widely recognized that parameter instability is a crucial issue when analyzing finan-

cial time series (see, e.g., Stock and Watson (1996), Pesaran and Timmermann (2007),

Giacomini and Rossi (2009), Inoue et al. (2017)). In a situation where one is faced with

making an evidence-based business or investment decision it is crucial to conceptually in-

clude this instability in the analysis and the corresponding decision making process. In

principle, there are two formal methods to cope with statistical instability: On the one

hand one can attempt to accurately model the instability and analyze a given situation

in light of the chosen model. Given the tendency of economic and financial systems to

induce ’unintended consequences’ this approach should be used with caution and only for

contained situations of managable complexity. The alternative is to restrict the data input

to some statistical technique which estimates a decision-relevant quantity by excluding or

downweighting data one does not deem representative or relevant for the problem at hand.

In Quantitative Finance we typically rely on the latter method which gives rise to popular
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techniques such as rolling-window estimation and data weighting procedures that attempt

to strike a balance between using as much objective information as possible while fading out

information that is deemed irrelevant for the current situation. In this context, however, it

is of crucial importance to clarify to which degree one should limit the possible input data

to some statistical technique or, more precisely, which degree of data quantity is justified in

a particular setup. This question is relevant for a variety of reasons: First, it is a degree of

freedom that has to be chosen and therefore one would like to have an argument that goes

beyond ’experience of the researcher’ or ’standard in the literature’ which are the common

arguments in the finance literature (see Inoue et al. (2017)). Second, ’data quantity’ de-

fines the amount of evidence one can utilise in statistical techniques. As such, it is directly

related to concepts like confidence intervals and estimation errors. In a world that obeys

the statistical assumptions an infinite amount of data would lead to definite conclusions.

As such, one has to be aware that the reliance on any form of data reduction conceptually

acknowledges fundamental change as well as the awareness that statistical techniques do

not yield incontrovertable evidence and have to be augmented with additional arguments

in order to justify a decision.

In order to determine an appropriate degree of data reduction one first has to have a

concept of data quantity. While it is clear how much data is used when estimating some

quantity with data from a rolling window of, say, 500 data points, it is not immediately clear

how much data one is effectively using when one relies on, say, an exponential weighting

scheme with a data decay parameter of 0.99 in which the final observation receives a

normalized weight of 1 and every observation before the final one receives a normalized

weight of 0.99n where n denotes the distance to the final observation. Suitable candidates

for such measures of data quantity which are called ’Effective Number of Scenarios’ (ENS)

have been derived in Meucci (2012) who also coined the term ENS. However, what is

currently missing from the literature is a framework that specifies the relevant parameters

and concepts that are needed to pick an appropriate candidate within this general class of

candidate measures. To introduce this framework and document the assumptions one has

to put into place in order to arrive at an appropriate choice is the objective of this paper.

I start from the premise that the value of more data is given by a lower estimation error
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(as measured by some loss function). Consequently, there is a natural relationship between

data quantity and estimation errors. Hence, it is natural to define the effective number

of scenarios of some weighting scheme by the (rounded) number of the data quantity of a

window estimator that yields the same average convergence error. The formal introduction

of this definition is the objective of section 3.2. In section 3.3 I calculate an explicit example

and derive the ENS-formula for a class of exponentially weighted variance estimators. In

section 3.4 I document that the choice of the a particular ENS measure can have significant

effects on the size of confidence intervals of risk metrics. In section 3.5 I conclude.

3.2 Convergence Rate Based ENS

The objective of this section is to provide an analytical condition that can be used in order

to calculate the ENS of weighted observations. The condition introduced here is based on

convergence errors. Consequently, in order to connect the properties of different estimators

of the same quantity via convergence errors it is useful to assume that they are unbiased.

For unbiased estimators the target of two alternative estimation techniques of the same

quantity is the same for any data quantity and consequently the difference to the true

value can be used as a quantitative criterion. Consequently, I assume to have access to a

class of unbiased estimators σ̂2(ω, ·) of the same quantity σ2 that is defined across different

weight vectors ω, i.e.

σ̂2 : W ×Xn → R , (ω, (X1, ..., Xn)) 7→ σ̂2(ω, (X1, ..., Xn)) , (38)

where Xn denotes a set of n i.i.d. random variables X1, ..., Xn. In this setup I am interested

in assigning the ENS as a function of the weights. However, the following definition should

be seen as being conditional on the estimation technique.

Definition: The Effective Number of Scenarios (ENS) is a function denoted by

ENSσ̂
2
(·) that maps a vector of weights ω ∈ W to a real number, i.e.

ENSσ̂
2

: W → R, ω 7→ ENSσ̂
2

(ω) . (39)

Here, ω = (α1, α2, ...) ∈ W denotes a vector of weights, i.e. it fulfills
∑∞

i=1 αi = 1 and

αi ≥ 0. From now on I will drop the superscript.
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One needs to impose the condition that ENS(ωn) = n, where ωn ∈ W denotes the

vector ( 1
n
, ..., 1

n
, 0, ...) which has the entry 1

n
in the first n components and zero otherwise.

This condition is at the heart of assigning the ENS for weighted estimators since one can

clearly say how many data points are used when employing equally weighted independent

observations. In statistics, the value of more data is given by a lower estimation error. Con-

sequently, there is a fundamental relationship between estimation errors and data quantity.

It is natural to define the effective number of scenarios of a given weighting scheme by the

(rounded) number of data quantity of a window estimator that yields the same average

convergence error. In this context one has to specify a loss function d(·, ·) that measures

the convergence error. Hence, the ENS notion already depends on a loss function d and

the convergence speed of the estimators σ̂2.

Definition: Two vectors of observation weights ω1 and ω2 exhibit the same ENSd, i.e.

ENSd(ω1) = ENSd(ω2) (40)

if the following condition is fulfilled:

E
[
d
(
σ̂2(ω1, X), σ2

)]
= E

[
d
(
σ̂2(ω2, X), σ2

)]
. (41)

Thus, if one can show that

E
[
d
(
σ̂2(ωn, X), σ2

)]
= E

[
d
(
σ̂2(ω2, X), σ2

)]
. (42)

where ωn denotes the vector with equal weights one can conclude that ENSd(ω2) = n. The

most common choice of the loss function is given by a quadratic function, i.e. d(a, b) =

(a− b)2, which will be used from now on.

Since the ENS definition is only based on expectations it is suitable to find the function

ENS(·) via Monte Carlo simulation. While not necessary, it is also helpful to assume

that the unbiased estimator based on ωn is efficient, i.e. has minimum variance. This

ensures that a weighted estimator based on a data set of n observations always has a

lower ENS than n. Also note that the same weighting scheme can lead to a different

ENS in a situation where the efficiency of the weighted estimators are not similar: The
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more efficient an estimator the less data is needed in order to reach a certain convergence

error. Consequently, if one would have a situation where one has two estimators of the

same quantity that are based on the same weighting scheme and have different levels of

efficiency then using them on the same data set would yield a higher ENS for the more

efficient estimator.

3.3 The ENS formula for the exponentially weighted variance

estimator

3.3.1 Infinite Number of Observations

Definitions

For specific choices of ω and σ and d it is possible to provide analytical results for the

function ENSd(·). In this section I calculate ENS2(·) for the (weighted) sample variance

estimator. Here ENS2 stands for an ENS definition based on a quadratic loss function. The

subscript is ommited from now on. In order to simplify the analysis further, let X1, X2, ...

be a countable collection of i.i.d. N(0, σ2) distributed random variables and let ωα denote

the following vector of weights

ωα = (α0, α1, α2, ...) ; α ∈ [0, 1]. (43)

Here, α is called a ’data decay parameter’.

As for the estimators, let

σ̂(ω,X∞) = lim
n→∞

σ̂(ω,Xn) :=

 1
n

∑n
i=1 x

2
i ω = ωn

( 1−α
1−αn )

∑n−1
i=0 α

ix2i+1 ω = ωα
. (44)

Note that those estimator are unbiased since I assume to have knowledge on the mean.

The variance estimator using equal weights also is efficient, i.e. it has minimum variance

in the class of unbiased estimators, since it fulfills the Cramer-Rao lower bound (see Shao

(1998) and Appendix A).
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Derivation of the ENS function

It can easily be shown that the sample variance for i.i.d. N(0, σ2) distributed random

variables is given by

E
[(
σ̂2(ωn)− σ2

)2]
= 2

σ4

n
. (45)

This result is a special case of the calculation given in section 2 (eq. (21) - (29)). Conse-

quently, if one can argue that

E
[(
σ̂2(ωn)− σ2

)2]
= E

[(
σ̂2(ωα)− σ2

)2]
(46)

for some α, then ENS(ωα) = n.

E

({(1− α)
∞∑
i=0

αix2i+1

}
− σ2

)2
 (47)

= E

{(1− α)
∞∑
i=0

αix2i+1

}2

− 2σ2

{
(1− α)

∞∑
i=0

αix2i+1

}
+ σ4

 (48)

= E

{(1− α)
∞∑
i=0

αix2i+1

}2
− σ4 (49)

= (1− α)2

{
∞∑
i=0

α2iE
(
x4i+1

)
+ 2

∞∑
i=0

∞∑
j=i+1

αi+jE
(
x2i+1x

2
j+1

)}
− σ4 (50)

= σ4

(
3

(1− α)2

(1− α2)
+ 2

α(1− α)

(1− α2)
− 1

)
(51)

= 2σ41− α
1 + α

. (52)

Thus, using equations (46) and (53) it can be concluded that

1 + α

1− α
= n . (53)

This function passes an initial screening: For α close to 1 (i.e. almost no down-weighting of

past observations) the corresponding number of scenarios n is infinitely large. On the other

hand, for an α = 0 the corresponding estimator is based solely on x21 and consequently the

number of scenarios should be equal to 1. This is also the case.
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3.3.2 finite number of observations

Next, consider the more general situation, where one only has access to a finite number

of observations X1, ..., Xn, i.e. where one is interested in σ̂(·, Xn). In this situation the

objective is to calculate

E

({ 1− α
1− αn

n−1∑
i=0

αix2i+1

}
− σ2

)2
 (54)

= E

{ 1− α
1− αn

n−1∑
i=0

αix2i+1

}2

− 2σ2

{
1− α
1− αn

n−1∑
i=0

αix2i+1

}
+ σ4

 (55)

= E

{ 1− α
1− αn

n−1∑
i=0

αix2i+1

}2
− σ4 (56)

=

(
1− α
1− αn

)2
{
n−1∑
i=0

α2iE
(
x4i+1

)
+ 2

n−1∑
i=0

n−1∑
j=i+1

αi+jE
(
x2i+1x

2
j+1

)}
− σ4 (57)

= σ4

(
1− α
1− αn

)2{
3

1− α2n

1− α2
+ 2

(αn − 1)(αn − α)

(α− 1)2(α + 1)

}
− σ4 (58)

= 2σ4 (α− 1)(αn + 1)

(α + 1)(αn − 1)
. (59)

Consequently it can be concluded that

n =
(α + 1)(αn − 1)

(α− 1)(αn + 1)
. (60)

Given this equation one can make the following observations:

1. For n→∞ this formula simplifies to the expression derived in section 3.1.

2. This function is a member of the class of candidate data quantity measures that has

been derived in Meucci (2012). In the paper it is argued that any function from the

class

ENSd(ωα, n, γ) =

(
(1− α)γ(1− αnγ)
(1− αn)γ(1− αγ)

)−( 1
γ−1)

(61)

can serve as a reasonable candidate for the definition of effective number of scenarios

since they all fulfill minimal reasonability assumptions. In this context the reason-

ability is associated to a variety of desirable properties of which, in this paper, only

the condition ENS(ωn) = n is used. Using only elementary algebra it can be seen
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that the definition resulting from the calculation above corresponds to the choice

γ = 2 in the class of functions presented in Meucci (2012).

3. The result derived above is based on the convergence rate of the sample variance

estimator for i.i.d. normal distributed random variables and a quadratic loss function.

Consequently, it uses the structural properties of the distribution as well as those of

the estimator. For other estimators and/or other distribution assumptions and/or

other estimation methods of the same quantity the corresponding convergence rates

can be different and, as a consequence, the definition of effective number of scenarios

might differ as well. This observation leaves room for a variety of follow up questions.

3.4 The effect of different ENS definitions

The objective of this section to illustrate the practical effects of the alternative definition

of ENS introduced in this paper. To this end, I want to rely on the procedure for the

calculation of confidence intervals of risk metrics presented in Meucci (2012) and perform

a side-by-side analysis. The procedure consists of the following three steps:

1. Specify an empirical scenario probability fX , i.e. an empirical density of risk factors

X, e.g. P&L’s or returns, with corresponding probabilities pj:

fX ≈ {xj, pj}j=1,...,J .

2. Specify a weighting scheme and calculate the ENS J̃1, J̃2 and round them to the

nearest integer. Here, J̃1 and J̃2 denote the ENS definitions that correspond to the

choices of γ = 1 and γ = 2, respectively, in the set of possible candidate measures

defined by eq. (61). In this context γ = 1 corresponds, in the limit, to the exponential

of the Shannon entropy (see Meucci (2012)) while γ = 2 is the choice based on the

considerations above.

3. Repeat the following a number of times: Draw J̃{1,2} indepedent equally weighted

scenarios from the empirical distribution and calculate the respective risk numbers

{σ̃2(s)}s=1,...,S.
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After going through those steps one has access to a distribution of the σ̃2(s). The confidence

band is then specified by an appropriate upper and lower quantile of the distribution of

{σ̃2(s)}s=1,...,S (see Meucci (2012)).

In the following I carry out the analysis for two situations. In the first one I rely on a

simulated data set while in the second I use an actual financial data set.

3.4.1 Approximately normally distributed data

In order to start one needs to specify the empirical distribution. In this section I use a

10000 point sample from the normal distribution, i.e.

fX =

{
xj,

1

2π
exp

(
−xj

2

)}
j=1,...,10000

. (62)

The next step of the method requires me to specify a weighting scheme. To this end, I

will view the sample above as ordered in time. In view of the results in this paper I will

choose exponential weighting with a data decay parameter of α = 0.99. The corresponding

number of scenarios is given by

J̃1 = e−
∑J
j=1 pj ln pj = 270.467 ≈ 270 (63)

J̃2 =
(α + 1)(αn − 1)

(α− 1)(αn + 1)
= 199 . (64)

The next step of the method requires us to repeatedly, say 1000 times, draw equally

weighted samples of size J̃1 and J̃2 from the original sample of 10000 data points and

calculate the standard deviation for every of the runs.

Given the corresponding histogram (see Figure 6, left) it is easily visible that the lower

number of independent draws from the distribution in the case of the ENS definition from

this paper leads to more scattered estimates while the larger number of independent draws

J̃1 yields estimates that are less scattered.

3.4.2 Volatility Estimation for a DAX data set

In this subsection I perform a similar analysis to the one in the last subsection. I estimate

the standard deviation of daily returns using DAX data set spanning the time frame from

2001 to 2016. One can observe the same qualitative behavior as in the last subsection (see,
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Figure 6: Effect of different ENS definitions: This graphics depicts the histogram

of the σ̃s based on the different ENS methods following the procedure laid out in Meucci

(2012) for normally distributed data (left) and a DAX data set (right). The blue bars reflect

the exponential of the Shannon entropy, i.e. γ = 1 in the class of appropriate candidates

given by eq. (61), while the red bars reflect the ENS measure derived in this paper, i.e.

γ = 2 .
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Figure 6, right), i.e. tighter estimates in the case of J̃1 and more scattered estimates in the

case of J̃2. Consequently, the corresponding confidence intervals are smaller for J̃1 than for

J̃2. As such, this simulation provides an example that data quantity measures can have a

significant influence on the size of confidence intervals and can constitute a critical choice

in an analysis process.

3.5 Conclusion

The objective of this paper was to introduce a formal framework to specify measures of

data quantities (ENS) for weighted estimations based on statistical considerations. This

question is crucial in order to quantify the significance of results when calculating, e.g.,

risk metrics with weighted estimators. I documented the assumptions that are necessary to

identify the appropriate candidate in the general class of data quantity measures derived in

Meucci (2012). In order to derive the explicit results in section 3.3 I needed to impose i.i.d.

normally distributed random variables, exponential weights, access to a set of unbiased

estimators and a quadratic loss function to measure the estimation error and only under

all those conditions one can derive a valid ENS formula. The host of assumptions leads

to the conclusion that one has to argue for an appropriate ENS formula based on the

situation at hand, i.e. one has to go through a seperate argument for every estimator and

weighting scheme. In addition, the results in this paper can be used in order to generalise

the concept of convergence rates and consistency to weighted estimators. This paper also

underlines the need to consider the role of data quantity definitions for the assessment

of statistical confidence: In times of ’big data’ one can easily be fooled into believing

that one has access to an abundance of data and that, consequently, convergence errors

are negligible. While it is true that there currently is a flood of data that can be used for

analysis it has to be acknowledged that economic time series are typically highly correlated,

codependent and that their informational value changes over time and it is of paramount

interest to assess the role of those interconnections to the notion of data quantity and

the corresponding results drawn from statistical analysis. To this end it would be highly

desirable to approach a relaxation of the independence assumption in the argument in this

paper. The last subsection shows that a wrong measure of data quantity can lead to an
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unjustified sense of security.

Appendix A

Suppose X is a normally distributed random variable with i.i.d. realisations X1, ..., Xn,

known mean µ = 0 and unknown variance σ2. Consider the statistics

S =
1

n

n∑
i=1

X2
i (65)

Then S is unbiased, since E[S] = σ2.

The variance of S is given by

V ar(S) = V ar

(
1

n

n∑
i=1

X2
i

)
(66)

=
1

n2
V ar

(
n∑
i=1

X2
i

)
(67)

=
1

n2

n∑
i=1

V ar(X2
i ) (68)

=
1

n
V ar(X1) (69)

=
1

n
E
[
E
[
X4

1

]
− E

[
X2

1

]2]
(70)

=
1

n

[
3(σ2)2 − (σ2)2

]
(71)

=
2(σ2)2

n
. (72)

The steps follow from the i.i.d. assumption and the centralised moment formula for normal

distributions, specifically E [X4] = 3σ4 (see Shao (1998)).

The Fisher Information (see Shao (1998)) of a sample of n observations is given by

I(n, σ2) = n ·
(
−E

[
∂

∂σ2

(
∂

∂σ2
log

[
1√

2πσ2
e−

X2

2σ2

]]))
(73)

= n ·
(
−E

[
∂

∂σ2

(
X2

2(σ2)2
− 1

2(σ2)

)])
(74)

= n ·
(
−E

[
− X2

(σ2)3
+

1

2(σ2)2

])
(75)

=
n

2(σ2)2
. (76)
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Since eq. (72) is the inverse of eq. (76) the Cramer-Rao lower bound which states that

V ar(S) ≥ 1

I(n, σ2)
(77)

is attained and, as a consequence, the estimator is efficient.

Appendix B

This paper serves different purposes regarding its role in this thesis and as a contribution

to the literature: Within this thesis the main objective is to generalise the methods of

a optimal data set choice laid out in section 2. However, this is not a question that is

currently discussed in the literature in which data quantity for weighted observations plays

a role. In this strand of literature data quantity is used in order to rationalise the size of

confidence intervals and statistical significance. Since the paper has to be marketable it

has to be imbedded into literature on the topic that is currently citable. As a consequence

I wrote the paper tailored to the literature on risk management and only allude to its role

within the scope of this thesis.

The objective of this appendix is to perform an analysis similar to the one carried

out in section 2, i.e. to apply the results derived here in order to approach the problem

of an optimal data quantity or, in this case, an optimal weighting scheme. Since the only

analytic formulas have been derived for the case of a data decay parameter, i.e. exponential

weighting, I restrict myself to this case.

Analysis

Given the functional form of the combined error for the window case one has to express all

terms of the combined error equation (eq. (36)) in terms of the data decay parameter, i.e.

one has to express convergence errors as well as representativeness errors in terms of the

data decay parameter ’α’. In order to have a connection between stochastic novelty and

representativeness I again assume a monotone dynamics of σt over time (see the argument

in section 2). The convergence error is now called ξσ instead of α, since α is reserved for

the data decay parameter. βσ is again the bias or representativeness error.
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Representativeness Error

As before the representativeness error in this setup is defined as

βσ(α, t, T ) =| 1

T − t

∫ T

t

αT−sσ2
sds− σ2

T | . (78)

Given the assumption of a monotone dynamics of σt it can be concluded that βσ(α, t, T )

is increasing in α. An α of 0 discards all information from the past, i.e. only relies on

current information and consequently, leads to a representativeness error of 0. An α of 1

corresponds to an equal weighting of past observations, i.e. one uses all information from

the interval [t, T ] in an equal manner and, consequently, has the highest representativeness

error.

Convergence Error

In general the convergence error, which is now called ξ instead of α, is given by

ξσ(α, t, T ) = E
[(
σ̂2
α,t,T − σ2

α,t,T

)2]
(79)

= E

( 1− α
1− αT

T∑
t=1

αT−tσ2
t − σ2

t,T,α

)2
 , (80)

where σα,t,T denotes the true value of the mixture distribution induced by α on the data set

spanning the time frame from t to T . Unfortunately, the combination of a sum containing an

exponential term within a squared term is mathematically unapproachable to the author.

However, given the behavior of convergence errors for i.-non-i.d. mixture distributions

derived in part 2 one can identify the following expression as a candidate for the solution :

ξσ(α, t, T ) = 2
σ4
α,t,T

ENS(α, t, T )
. (81)

Using the ENS definition derived in part 3 this candidate, in turn, can be checked via

simulations.

Error Combination and Simulation

Given the functional form of the individual errors one can combine the errors analogously

to the procedure laid out in section 2. The corresponding function of the combined error
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Figure 7: Combined Error using exponential weights: Depicted is the empirical

combined error (black dots) against the theoretical prediction (blue solid line) as a function

of the implied effective number of scenarios ENS(α, 5, 10).

can be checked via simulation. Here, I rely on the same setup as in section 2, i.e. a data

set whose generating characteristics is given by σ(t) = t, 5 ≤ t ≤ 10 and where my goal is

to infer the overall error γα,5,x as a function of x. The results are depicted in Figure 7.

Remark

The minimal error associated to the optimal data window in section 2 or the optimal data

decay parameter derived in section 3 are not necessarily equal, i.e. for a data window the

optimal data quantity could be 250 while for the same situation the optimal data decay

paramter could have an implied ENS of less or more than 250. As a rule of thumb one can

expect that the rolling window method will yield lower optimal errors in the situation of

rare, severe structural breaks since the estimator will be unbiased for post structural break

data while an exponential weighting scheme that utilises the whole history of the process

will immediately, i.e. for any α > 0, be biased since it uses pre-structural break data. Say,

one has a sample of 500 data points with a structural break at 250. Then the last 250
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data points will be homogeneous and the window estimator will be unbiased for that data

set while the weighted estimator with an ENS of 250 will have a significant bias due to its

reliance on data from before the structural break.
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4 Introducing Stylized Facts of Electricity Futures Through

a Market Impact Model

The results of this part of the thesis have been published as Krause (2020).

Abstract

The objective of this paper is to provide an alternative way to introduce some of the

more prominent stylized facts of electricity futures. For non-storable commodities forward

looking information is not necessarily incorporated in the price history. In contrast to con-

temporary electricity finance models I introduce a mechanic that is based on the trading

behavior of market participants and their corresponding market impact by exploiting char-

acteristic initial positions and quantity risk considerations. For large time to maturities I

end up with a market influenced by hedging pressure whereas for small time to maturities

quantity risk comes into play and yields an increased volatility. In addition, prices can also

be negative. The model is accompanied by an empirical analysis that shows that param-

eters which are typically only relevant on small time scales have a significant dynamics in

daily returns over the period of years which allows access to the tool box usually reserved

for higher frequencies.

4.1 Introduction

The debate over the origin of futures risk premia has been intense since Keynes connected a

downward sloping shape of the futures curve (backwardation) with the desire of producers

to hedge their production (see Keynes (1930)). The counterposition is taken by a long list

of authors starting with Working (1949) who relate the risk premium to issues of storage

and inventories rather than hedging pressure and risk transfer. This position mostly implies

an upward sloping shape of the futures curve (Contango).

The underlying assumption in mathematical finance models is that one has access to

the underlying and that it is possible to store the underlying in some form. Consequently,

those models are built in the spirit of the theory by Working (1949). In some commodity

markets, like precious metals or agricultural products, this assumption is mostly fulfilled
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while in others it is not and it is dubious to use classical spot models in the description

of futures markets on non-storable commodities. In fact, it has been noted that it is

fundamentally wrong to do so (see Benth and Meyer-Brandis (2009)). However, it is still

very prominent to use spot price models in, e.g., electricity markets since they are able

to produce the market specific stylized facts one would like to model (see Benth et al.

(2008a)). The objective of this paper is to introduce those stylized facts in an alternative

way by exploiting nonstorability and the symptoms of the related problem of continuous

supply and demand matching.

Electricty Futures exhibit a variety of characteristic stylized facts: Prices can be neg-

ative, they can experience a significant drift and their risk profile and volatility change

over their life span (see Benth et al. (2008a)). So far, those features have been modeled

utilising either Long-Term/Short-Term spot models (see Schwartz and Smith (2000)) or

Heath-Jarrow Morton approaches (see Heath et al. (1992)). However, the Heath-Jarrow

Morton approach has a low explanatory power in electricity markets (see Koekebakker and

Ollmar (2005)) and for spot price models the critique mentioned above applies.

In order to proceed I have to make sure that the qualitative assumptions of the Keynes

(1930) theory are fufilled, i.e. I have to argue for limited liquidity, i.e. against market

efficiency. Qualitatively one can say that the documented stylized fact of hedging pressure

in electricity markets (see, e.g., Benth et al. (2008b) among others) is not compatible with

market efficiency and, more specifically, requires limited liquidity: In order for the hedging

pressure argument to hold one needs to assume that market participants are not able to

achieve their desired position size in arbitrarily short time frames, i.e. hedging pressure

only works in a world where liquidity and market efficiency are limited and the visible

asset prices are the outcome of an optimization between the hedging premium (market

impact) and portfolio risk considerations, i.e. optimal liquidation (see the seminal paper

by Almgren and Chriss (2001)). This qualitative argument leads to the hypothesis that

instead of borrowing the models from other commodity and financial markets it might be

helpful to look at the electricity market through the lense of high frequency finance, i.e.

to check whether the parameters that are typically discussed in this field of literature are

present in electricity futures markets and whether the returns of futures can be related to
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the position size. To check this hypothesis empirically is the first objective of this paper

and is investigated in Section 2. Subsequently, a model is set up that is able to capture

the known stylized facts of electricity futures utilising market specific information and non-

storability. In addition, a strategy is provided how this model can be used to infer aspects

of the trading behavior of market participants. In section 4 I conclude.

4.2 Liquidity and Daily Returns

This section has the objective of providing evidence for an analogy between intraday block

trading and electricity portfolio liquidation over the time frame of several years. I relate

return anomalies of a buy and hold trading strategy to the time dynamics of liquidity

metrics. In principle electricity producing companies are faced with the following problem:

For a date in the far future the electricity price risk is concentrated entirely in the hands

of very few energy producing companies through their production facilities. Consequently,

they have enormous positions and should have an incentive to reduce their exposure by

giving out discounts. It is an intricate problem to find a balance between position reduction

and market impact but in the market microstructure literature there are models that deal

with this type of problem (see, e.g., the seminal paper by Almgren and Chriss (2001)).

For large times to maturity it can be expected that this position reduction influences the

prices more severely than for short time to maturities since the positions are bigger and

the associated price risk is more concentrated on the sell-side. Since the energy producing

companies own the large positions they want to find buyers. Consequently, it can be

expected that the prices are lower for large time to maturities. One point that makes the

problem more intricate in the context of electricity markets is also that one encounters

severe quantity risk (see Pérez-González and Yun (2013)), i.e. that the amount that is

liquidated is constantly changing and one has to trade towards a moving target since the

market has to be cleared at every point in time and electricity demand is fluctuating. This

observation implies that liquidity concerns play again a role also for short time to maturities.

Since limited liquidity is typically related to an increasing risk it can be expected that the

effect on the prices is again negative and one has to compensate the counterparty in order

to trade which implies lower prices.
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4.2.1 Data Description

The data set used in this study consists of price and volume data from the Norwegian

Energy Exchange ’NASDAQ OMX Commodities’ and its predecessor ’Nord Pool’. The

futures contracts are financially settled quarterly contracts stretching from 2004 to 2013.

To be precise, the handles of the contracts are ENOQX -YY , where X∈ {1, 2, 3, 4} and YY

∈ {06, 07, 08, 09, 10, 11, 12, 13}. The data set also includes yearly contracts ENOYR-YY,

where YY refers to the years from 2006 to 2013 and FWYR-YY where YY refers to the

years 1999 to 2005. Throughout this time period NASDAQ OMX and its predecessor Nord

Pool repeatedly changed the product specifications of the contracts. Most notably contracts

with maturity prior to 2006 are quoted in NOK/MWh while the remaining contracts are

quoted in Euro/MWh. I do not use exchange rates to convert prices prior to 2006 to

EUR due to the nature of my research question which is concerned with the behavior of

single contracts over their lifespan (cf. Lau (2015b)). For the quarterly contracts there are

between 500 (2 trading years) and 700 (2 trading years and 9 trading months) data points

available per individual contract while for the yearly contracts individual time series can

have up to 1256 data points (5 trading years). Differences in the length of the quarterly

time series stem from the contract specificifation rules applied by Nasdaq (see (Benth et

al., 2008a)): At the beginning of each calender year, say Jan 1 2020, the quarterly contracts

of the whole ’cal + 2’, i.e. 2022, become tradable. This implies that the Q1 contracts are

tradable for 2 years (with approximately 250 trading days per year) while Q2 contracts are

traded for 2 years and a quarter and so on. In the analysis below only the contracts up

to ’YY’ = 12 are used since the time series for the 2013 contracts are incomplete. Volume

and bid-ask spread data is only available for the EN contracts, i.e. for the contracts with

delivery beginning in 2006, i.e. 7 yearly contracts and 28 quarterly contracts.

Throughout the whole of the paper I adopt the language from the electricity literature

and speak about ’futures’ instead of ’swaps’ and use ’time to maturity’ instead of ’time to

delivery’ (see (Benth et al., 2008a)) .
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4.2.2 Returns of Liquidity Exploitation Strategies

The simple strategy below is based on the following two intuitions. First, Benth et al.

(2008b) show that their notion of ’market power’ changes over the life span of the contracts

and document first order price effects. Thus, if one is always on the right side of market

power, one should be able to earn a return. Since the paper was published in 2008 it is

interesting to test whether the effect has been robust to revelation which is known to be

an issue in financial markets (see the seminal paper on the ’wandering weekday effect’ by

Doyle and Chen (2009)). In addition, since the authors utilise data from Germany between

2002 and 2006, a time frame that included a significant change in legislative circumstances

targeting the phase out of nuclear power, testing the hypothesis on a different data set is of

importance. I find that the effect is persistent in the sense that there are profitable liquidity

exploitation strategies. This is an indication that this finding is not a ’statistical arbitrage’

but serves an economic purpose that is prevalent on electricity markets in general.

The second intuition is the asymmetry in the initial distribution of market participants

layed out in the introduction. A party liquidating a large block of assets has to optimize

between their market impact and the risk on their book. This typically involves a high

market impact at the start of the liquidation period and therefore it would be beneficial to

buy the contracts at inception and earn a premium for liquidity provision which is in line

with the hedging pressure arguments by Benth et al. (2008b).

Consequently, a simple strategy exploiting those intuitions is the following:

i) buy the contract at inception

ii) sell the contract at some time to maturity (2 times)

iii) buy the electricity in the spot market

The mean profitability of this strategy is depicted in Figure 7 (left column) depending on

the time to maturity where the position is liquidated and switched against a short position.

Only the quarterly contracts are shown. Due to cascading effects the pattern for yearly

contracts looks similar. As mentioned before the findings are consistent with the intuitions.

It is, however, very interesting to observe that the contracts for the different quarters show

very similar behavior that is not connected to a time to maturity dependent event but
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rather connected to a date, namely the first of January in the year prior to maturity which

is highlighted by a vertical line. Note that the time to maturity of the first of January is

different for the different classes of quarterly contracts: For the Q1-contracts it is, typically

and in line with a variety of implied option pricing models, at 252 trading days. For the

respective other quarters the time to maturities are at 252 + 0.25*252 = 315 for the Q2

contracts, 252 + 0.5*252 = 378 for the Q3 contracts and 252+0.75*252 = 441 for the

Q4 contracts. When one turns to possible explanatory variables one finds that there is a

similar delayed shape in a variety of (il)liquidity metrics. Liquidity is an elusive concept

and in the following I use a variety of different liquidity metrics. While it is clear what is

meant by trading volume and bid - ask spreads an additional measure of liquidity that I

will employ in the following is the Amihud illiquidity metric (see Amihud (2002)). In its

simplest form it is defined as

Amihudt =
|rt|
V olt

, (82)

where rt denotes the return at time t and V olt the corresponding trading volume. Con-

sequently, ’liquid markets’ are markets in which the absolute value of returns are low and

trading volume is high while illiquid markets are characterised by either high absolute re-

turns or low trading volumes. It is a prominent measure of liquidity that can be easily

calculated from data that is readily available for most markets for long time frames and

has been used extensively in the literature on market microstructure (see , e.g. Foucault et

al. (2013) and the references therein). I take the average 5 day amihud illiquidity, which is

a common adaption that has been proposed in the original study by Amihud, and I also use

the log of the trading volume instead of the absolute number since in electricity markets

the trading volume changes several orders of magnitude throughout the life span of the

contracts.

Given the liquidity metrics one can analyse their dynamics and relate them to the re-

turns of the liquidity exploitation strategy. In Figure 8 one can see that the leveling out

of the Amihud illiquidity metric falls together with the peak of the return of the strategy

in the left column. In Figure 9 it can be seen that average and median autocorrelation

continuously changes in level throughout the life span of the contracts. For large time to

maturities autocorrelation is negative which is consistent with market microstructure liter-
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ature (see, e.g., Zhang et al. (2005)) and for short-time to maturities it is slightly positive.

Since positive autocorrelation is not compatible with the stylized facts of asset returns (see

Cont (2001)) this observation already indicates that liquidity might play a role for low

time to maturities as well. However, the quintessential point is that the autocorrelation

is changing over time and since autocorrelation is one of the simple indicators of liquidity

concerns it can be expected that the degree of liquidity in the market is also changing over

time.

Those observations point to the assessment that electricity futures do not only exhibit

time to maturity dependent behavior (a feature that can be introduced by means of a

short-term component in spot price models as in Schwartz and Smith (2000) and its gen-

eralisations) but also show aspects of seasonal behavior, i.e. informative signals that are

located around certain dates with corresponding similar behavior in liquidity metrics. This

is also a point not sufficiently addressed by current electricity finance models.

4.2.3 Test Design

In this section I am interested in the qualitative statement whether liquidity metrics show

a significant directional dynamics throughout the life spans of the contracts. In order

to detect non-stationary behavior one needs to have a time series of the parameters in

question. For returns and trading volume the original time series can be used. However,

the centralised moments and liquidity measures have to be estimated. A rolling window of

50 subsequent data points is used for this purpose.5

In a next step it is tested whether the time series of the parameter in question reveals

a drift by employing a (modified) Kendall-Mann test. This test is a drift test which can be

modified to achieve robustness with respect to the existence of autocorrelation (see Hamed

and Rao (1998)). In a last step the number of contracts who show a significant drift for the

parameter in question is counted and it is tested whether the distribution of positive and

negative drifts is symmetric by using a binomial test with parameter p = 0.5. The intuition

behind this last step is that if there is no time-to-maturity dependent behavior then the

5The results are stable with respect to the length of the rolling window. 75 and 100 data points yield

similar results (not shown).
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Figure 8: Time to delivery dependent amihud illiquidity ratio and profitability

of the buy and hold strategy for the Q1 contracts (first row), Q2 contracts

(second row), Q3 contracts (third row), and Q4 contracts (fourth row)
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number of paths that show a positive drift (as determined by Mann-Kendall) should be

roughly equal to the number of negative paths. Anything else indicates that parameters

are more likely to grow or decline as a function of time to maturity. To sum up, the steps

are the following:

i) Calculate time to maturity dependent time series for the first four centralised mo-

ments and the autocorrelation for every contract based on a 50 data point rolling

window.

ii) Apply a modified Mann-Kendall test in order to detect possible drifts in those time

series. In table 1 #contracts +,-,0 denote the number of contracts that exhibit

a significant (positive, negative) or insignificant drift, respectively. Here signs are

with respect to an increasing time to maturity, i.e., e.g., variance is decreasing with

increasing time to maturity.

iii) Count the number of positive and negative drifts and test whether it is reasonable to

assume that they are B0.5-distributed. The p-value of this test is shown in the last

column of table 1.

The following table contains the results for this test procedure applied on the return time

series for the electricity forward data introduced before. 6 7

6For returns I use classical percent changes of the futures price. If one interprets futures returns as

’return on investment’ this implies that I assume a 100 percent margin requirement (cf Lau (2015b)).
7For the analysis all quarterly contracts from 2006-2012, i.e. overall 7*4 = 28 contracts are used. The

contracts have between 501 (Q1 2008) and 692 (Q4 2011) data points). For the yearly contracts, ’FWYR-

{99, 00, 01, 02} have between around 300 and 700 data points while ’FWYR-{03, 04, 05}’ and ’ENOYR-

{06, 07, 08, 09}’ were tradable for 3 years (i.e. they have around 750 data points each). The time series of

the remaining contracts are longer and top out at 1256 data points (5 trading years) for ENOYR-12 due

to several changes in contract specifications (cf Lau (2015b)). The length of the available time series is

increasing over time due to increasing liquidity in the market and demand for longer running contracts,

e.g. in order to hedge financing exposure. Currently, contracts at NASDAQ are tradable up to 10 years in

advance. All data points for all the contracts mentioned in this footnote are used.
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Table 1: Drift Test Results

Parameter Contracts #contracts + #contracts - #contracts 0 pvalue

Mean quarterly 18 8 2 0.076

yearly 3 7 3 0.344

Variance quarterly 1 26 1 < 0.001

yearly 1 11 1 0.031

Skewness quarterly 7 20 1 0.019

yearly 3 7 3 0.344

Kurtosis quarterly 19 4 5 0.003

yearly 9 3 1 0.146

Autocorrelation quarterly 8 18 2 0.076

yearly 7 3 3 0.344

trading volume quarterly 0 28 0 < 0.001

yearly 0 7 0 0.016

bid-ask spread quarterly 28 0 0 < 0.001

yearly 7 0 0 0.016

Amihud illiquidity quarterly 28 0 0 < 0.001

yearly 7 0 0 0.016

Results

From the data compiled above the following conclusions can be drawn

i) Except for the liquidity metrics and variance yearly contracts do not show signifi-

cant results. Thus, the takeaways in the following focus on results for the quarterly

contracts.

ii) A decreasing autocorrelation with increasing time to maturity.

iii) Although the signal is not particularly significant, one finds a drift in the mean of

the returns of quarterly futures. The mean return becomes more positive for higher

time to maturities. This result is compatible with the idea that for higher time to
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maturities the market for electricity is a buyers market due to hedging pressure. Note

that the information set of the quarterly and the yearly contracts is highly different

due to the different time frames (the data series for the yearly contracts starts in 1996

while for the quarterly it starts in 2004).

iv) One finds that the variance of returns (volatility) is decreasing with increasing time

to maturity, i.e. the method is able to detect the so-called Samuelson Effect.

v) A decreasing skewness with increasing time to maturity.

vi) An increasing kurtosis with increasing time to maturity. This result is particular

interesting since kurtosis can be seen as a measure for extreme events (see (Westfall,

2014)).

vii) All the (il)liquidity metrics point to a gradual worsening of the liquidity situation

for higher maturities. However, this assessment is not yet plausible for the autocor-

relation since only negative autocorrelations can be associated with a bad state of

liquidity. In order to support the claim one has to check whether the autocorrelation

is negative for high time to maturities. This is indeed the case: (Lau, 2015b) reports

a negative first autocorrelation coefficient for the same data set. The result above

points out that autocorrelation becomes more negative for higher time to maturi-

ties. Therefore it can be concluded that autocorrelation is negative for higher time

to maturities. See also Figure 9.

All the reported results are compatible with the assertion that electricity futures exhibit

severe non-stationary features especially for the quarterly contracts where even the returns

show an informative change of behavior. So far the qualitative assessment of this fact has

been at the heart of the considerations. In a next step characteristic returns of a buy

and hold strategy are presented. Note that the version of the Amihud illiquidity metrics

used here is based on the traded log-volume since the volume grows by several orders of

magnitudes throughout the life span of the contracts, i.e. the results above would be more

drastic when using the unmodified volume data.
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Figure 9: Mean (solid line) and Median (dashed line) first order autocorrelation

coefficient

4.2.4 Price Dynamics and Cumulative Trading Volume

In the presence of hedging pressure and imbalanced initial endowments it is reasonable

to assume that the cumulative trading volume since inception is a price-relevant quantity.

The objective of this section is to show that this intuition is justified. However, since the

market consists not only of producers and consumer but also contains liquidity suppliers it

is reasonable to assume that trading behavior at inception is only from producers to either

consumers or liquidity suppliers who both benefit from the risk management considerations

of producers. Therefore, it can be expected that earlier trading volume is highly informative

for the returns of the hedging pressure strategy while later trading can also be between

liquidity suppliers and consumers. As such, it is reasonable to assume that earlier trading

volume is more relevant for the hedging pressure argument than later trading volume.

Hence, I use a concave transformation f(·) of cumulative trading volume in the regression,

i.e. f(
∫ t
0
Vsds), where s = 0 corresponds to the inception date of the contract and Vs

is the trading volume at time s. One can now regress the levels of the future prices on

cumulative trading colume while controlling for time-to-maturity dependent behavior. The

results are depicted in table 2 and support the assertion that cumulative trading volume is

a price-relevant quantity for the average of all the contracts in the four quarters.
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Table 2: Regression Results for the Quarterly Contracts.

Contracts intercept time to maturity cumulative log trading volume

ENOQ1-(07-13) 37.367150(***) −2.515 · 10−3(*) 1.296177(***)

ENOQ2-(07-13) 21.557004(***) 6.455 · 10−3(***) 1.895912(***)

ENOQ3-(07-13) 22.90(***) 5.419 · 10−3(***) 1.615(***)

ENOQ4-(07-13) 29.16(***) 4.336 · 10−3(***) 1.541(***)

4.2.5 Liquidity for small time to maturities

The conceptual difference to the setup one usually encounters in a market microstructure

environment comes into play for short time to maturities: In equity or foreign exchange

markets the number of assets one wants to sell or buy is typically known whereas for

electricity markets the demand is random and expected future production is a stochastic

process changing over time. With the data set used above it is not possible to isolate the

corresponding signal since it would involve building a model for expected future production

and a corresponding liquidation strategy. However, it has to be noted that liquidity plays

a role for large and small time to maturities and the model below introduces both effects

with only one tool.

4.3 A limited liquidity model for stylized facts of electricity fu-

tures

The objective of this section is to set up a mathematical model that is able to capture the

results of the empirical analysis and to provide a strategy how this model can be used to

answer questions on trading behavior of market participants.

4.3.1 A simple liquidity based model

I assume that the price of a future with maturity at T , denoted by F T
t , is given by

F T
t = STt + LTt , (83)
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where STt denotes a current expectation of the future spot price under a risk neutral mea-

sure, i.e.

STt = EQ
[
S(T ) | IT (t)

]
. (84)

For a non-storable commodity like electricity it is fundamentally wrong to use only the

information filtration generated by the asset (Benth and Meyer-Brandis, 2009). One way

to circumvent this problem is to model the information set on a per contract basis, (here

expressed by the superscript T in IT ), i.e. I assume that every future has its own price

determination process. Since this paper is solely concerned with the effects of liquidity on

the qualitative properties of the futures price I focus my attention solely on the latter part,

i.e. LtT and the spot price component will be ignored in the following. However, it can

be noted that it is very elegant to think of the pricing equation (83) as a representation

dividing the futures price in a component that can be analysed using classical mathematical

finance techniques (i.e. concepts that are based on the notion of storability) in the spot

price (e.g. through structural models and hedging through the fuel markets Aı̈d et al.

(2009)) and a distortion that captures the effects that stem from the non-storable nature

of electricity.

Non-storability implies that the energy that is produced at one point in time has to

be consumed at the same time. Since electricity demand is random this gives rise to a

challenging trading problem where one has to trade towards a moving target in a notoriously

illiquid environment. The objective of this paper is to use this problemspecific information

to set up a model that produces the stylized facts of electricity futures.

In the following I take a hedging pressure perspective where the position imbalance of

the market participants and their corresponding trading activity in order to achieve goals

for risk management or supply-demand balancing has a direct influence on the price. I

assume that the price of the liquidity component can be modelled as

LTt := − α

T − t
P T
t , (85)

where P T
t is the difference to the desired position size of electricity producing companies

or, alternatively, the difference to the equilibrium of the market. In this context α can

be interpreted as an illiquidity parameter since α = 0 implies that LTt = 0 and that the

futures price is not influenced by any market impact.
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In order to proceed it is necessary to specify the process P T
t . I assume that this process

is a brownian process with an initial condition P T
0 = η (the total amount of the current

estimate of future demand at the start of trading). In addition, I assume that the market

has to clear at maturity, i.e. that the difference to the desired position is zero, since supply

has to match demand due to non-storability, i.e. P T
T = 0. Augmenting this information

into a brownian motion leads to a brownian bridge dynamics, i.e.

dP T
t =

−P T
t

T − t
dt+ dBT

t . (86)

The solution of this process can be derived by a standard variations of parameters argument

and is given by

P T
t =

T − t
T

P T
0 +

∫ t

0

T − t
T − s

dBT
s . (87)

Note that this is an implicit assumption on the trading behavior of the market participants,

i.e. the drift in this process can be interpreted as the solution to some optimal liquidation

problem that balances between risk management needs and market impact. Consequently,

it is also an assumption on limited liquidity since in a perfectly liquid market the opti-

mal liquidation speed is infinite and there is no tradeoff between market impact and risk

management considerations (see, e.g., Almgren and Chriss (2001)).

For the market impact component one obtains

LTt := − α

T − t
P T
t = − α

T − t

(
T − t
T

P T
0 +

∫ t

0

T − t
T − s

dBT
s

)
(88)

= −α
T
P T
0 −

∫ t

0

α

T − s
dBT

s . (89)

The process LTt displays all the stylized facts that we are interested in, i.e.

i) The stochastic integral is added and consequently the sign of LTt is not determined

which implies that the overall prices can be negative since the futures price was

modelled by adding up a spot price process and the liquidity premium.

ii) The volatility of the process is increasing througout the life span due to the functional

form of the integrand in the stochastic integral which exhibits a singularity at T .
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iii) The process LTt exhibits a drift stemming from the initial condition. As such this

process captures the phenomenon of hedging pressure.

This model can easily be simulated (see Figure 10). As before the trading behavior is

defined by the superposition of two forces: updates of the expected future production, i.e.

dBT
t and the trading intensity towards the target, i.e. −Y Tt −ZTt

T−t , where Yt represents the

current position while ZT
t represents the desired position, i.e. expected future production.

In this instance

ZT
t = η +

∫ t

0

dBT
s .

Since only the difference to the desired position size is modeled here, i.e.

d(Y T
t − ZT

t ) := −Y
T
t − ZT

t

T − t
dt+ dBT

t

it is sufficient to specify only the initial value of Y T
0 = 0 in order to have a determined

dynamics. With P T
t := Y T

t − ZT
t this observation yields the equations above. This obser-

vation implies that the only necessary process that has to be simulated in order to know

the dynamics of LTt is the brownian motion representing expected future production. The

upper panel shows the expected future production (solid line) and the corresponding filled

position ZT
t = Y T

t − P T
t (dashed line) with an initial expectation of η = 100. The middle

panel shows the corresponding market impact and the bottom panel shows the price of a

future assuming a driftless geometric brownian motion that is independent of BT for the

spot model. For the seed of the simulation I picked the first seed that lead to a negative

futures price close to maturity in order to demonstrate that this feature can be achieved.

4.3.2 Empirical Strategy

While the primary objective of this paper is to introduce stylized facts, i.e. qualitative

aspects, of electricity futures the model introduced here can be used for empirical, i.e.

quantitative, considerations as well: Starting from the setup, i.e. F T
t = STt + LTt , one can

specify appropriate models for all the individual parts, i.e. a spot price model for STt , a

futures model for F T
t and a model for the open position and the corresponding trading

behavior impact, LTt . In this case the specific model parameters of F T
t and STt can be

estimated from individual time series data of spot and futures prices. After subtraction
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Figure 10: Simulation of the market impact model.
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one is in a situation where one has access to the process LTt and can estimate its properties.

Since LTt is a combination of trading behavior and the difference to the desired position

size, knowledge on either can be used to infer knowledge on the other, i.e. if one would be

able to correctly model future supply and demand shocks, e.g. through weather forecasts

or power plant shutdown schedules, one could use the framework introduced above in order

to infer aspects trading behavior or vice versa.

For the qualitative argument presented here, I chose a brownian model for all the

components due to its simplicity and because this choice leads to an analytical solution

for the dynamics from which one can immediately obtain the stylized facts. Conceptually,

however, this argument is not limited to diffusion processes and one can simply use, e.g., a

jump-diffusion for the spot price model or - since the spot is not a traded asset and cannot

interfere with no-arbitrage principles - even non-semi martingale processes like fractional

processes. A similar breadth of choices is available for all the other components. Since this

makes the space of possible models very large the corresponding model selection problem

is an intricate one and is beyond the scope of the current paper.

4.4 Conclusion

The objective of this paper was to provide an alternative way to introduce some of the

stylized facts of electricity futures. The disadvantage of most models used in electricity

finance is that they are build on the premise of having access to the underlying which

is an assumption that is currently not valid in electricity markets. Since mathematical

models have to be judged by the credibility of their assumptions it is useful to provide a

mechanic that is able to introduce the stylized facts using market specific information. Due

to the interplay between price risk management and quantity risk the liquidation problem

in electricity markets is an intricate one and the large trading departments that can be

found in electricity producing companies are a testimony to this statement. Consequently,

it is useful to have a model that incorporates those market specific properties and translates

them into the stylized facts of the products traded in those markets. This paper also uses

the natural synergy between models in high frequency finance and electricity markets since

both fields use additive models. Further exploration of this synergy potential yields a host
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of interesting questions. In addition, the mechanic provided here is a natural extension

to any spot price model due to its additive structure and the appearance of a liquidity

parameter which can be tuned to the properties of the market. In addition, in contrast

to the setup in high frequency finance using a model that can yield negative prices is a

positive property in the context of electricity markets. Throughout the argument I used an

ad-hoc assumption regarding the liquidation speed that market participants use. From a

theoretical perspective it would be interesting to find the corresponding optimal liquidation

problem that yields the assumed behavior as its solution.
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