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Chapter 1

Introduction

1.1 Motivation

Set optimization is a modern, dynamic field that subsumes scalar and vector optimiza-
tion, and therefore provides an important extension in optimization theory. Due to a large
number of applications, such as duality principles in vector optimization, gap functions
for vector variational inequalities, inverse problems for partial differential equations and
variational inequalities, fuzzy optimization, image processing, optimal control problems
with differential inclusions, viability theory, medical image registration or in mathemat-
ical economics, set optimization has recently expanded as a distinct branch of applied
mathematics. As a result, set optimization became a bridge between different areas in
optimization.

For an introduction, let us briefly describe how set optimization arises from uncertain
multiobjective problems. Many optimization problems are faced with conflicting goals
which have to be minimized simultaneously. Such problem structures lead to multi-
objective optimization programs, where different conflicting functions are optimized in
parallel, meaning at the same time. Almost any real-world application of mathematics
has conflictive multiple criteria; see, for example, the problem of choosing a portfolio
in financial mathematics (compare [82]). Optimal elements of a feasible set are then
defined by the concept of Pareto optimality (see, for example, [21]). If one expands this
concept even further (for instance to infinite dimensional spaces), it is possible to define
optimality in more general settings. Then one arrives at vector optimization, compare,
for example, [5, 53].

Moreover, most complex multi-objective problems arising in Operational Research
are contaminated with uncertain data. The reasons for this can be diverse, and include,
among others, rounding errors or numerical inaccuracy, errors in measurements, incom-
plete information or broad estimations leading to contaminated data. For instance, in
traffic optimization, uncertain weather conditions, construction works, or traffic jams
can highly influence the computed optimal solutions of a train schedule or shortest path
problem (compare, for example, [36]). Several examples for uncertain programming can
be found in medicine. For instance, in intensity-modulated radiation therapy, Eichfelder
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CHAPTER 1. INTRODUCTION 2

and Pilecka [27, 28] explain that for safety purposes one might prefer to do necessary
calculations of the optimal radiation dose based on several data sets. Portfolio optimiza-
tion is subject to uncertainty on account of unreliable predictions, political decisions
influencing the markets, etc. Moreover, network flow and network design problems are
also heavily faced with uncertainty (see, for instance, [72]).

Uncertainty here means that some parameters are not known. Instead, only an esti-
mated value or a set of possible values can be determined. As inaccurate data can have
severe impacts on the model and therefore on the computed solution, it is important to
take such uncertainty into account when modeling an optimization problem.

If uncertainty is included in the optimization model, one is left with not only one ob-
jective function value, but possibly a whole set of values. This leads to a set optimization
problem, where the objective map is set-valued. This non-probabilistic approach gained
recognition since the fundamental paper by Ehrgott et al. [22], who introduced robust
solutions for uncertain multiobjective optimization problems, and has since been studied
intensively, see, for example, [50, 51].

For instance, several diverse concepts of robustness for dealing with uncertainties in
vector optimization can be described using approaches from set-valued optimization (see
[51]). The concept of interval arithmetics for computations with strict error bounds [83]
is also a special case of dealing with set-valued mappings. An interesting application
of set optimization in welfare economics is given in [84]. We refer to [59] for a recent
introduction to set optimization and its applications.

An important part of set optimization includes comparing sets by means of set re-
lations, which are binary relations among sets. There is a variety of set relations based
on convex cones known in the literature (for an overview, see [59, Chapter 2.6.2]), and
several authors have discussed which set relations are appropriate for certain applications
(compare [51]).

This work is concerned with dealing with set optimization problems, i.e., the problem
of minimizing a set-valued mapping over a set of feasible elements. In particular, we will
introduce and examine more general set relations, where the involved sets do not nec-
essarily have to be convex. This necessarily includes the definition of the corresponding
solution concepts as well. So far, in the literature convexity of the involved sets plays a
crucial role, for instance, when representing set relations by means of linear functionals.
In this thesis, we will show that it is possible to characterize set relations without any
convexity assumptions through nonlinear functionals. In addition, we provide efficient
algorithms for solving set optimization problems, where our approach is two-fold: When
dealing with continuous problems, we derive a derivative-free descent method. When only
a finite number of sets is known, we propose some extensions of so-called Jahn-Graef-
Younes methods. Both algorithm types make use of the aforementioned characterization
of set relations by means of nonlinear functionals. We furthermore study various exam-
ples that confirm that the use of the nonlinear functionals is applicable.

Moreover, we study set optimization problems with a variable domination struc-
ture. Variable domination structures for vector optimization problems play a key role
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in medicine, for example, in medical image registration [25]. We will show in this thesis
that, when allowing uncertain parameters, this problem structure leads to a set-valued
optimization problem w.r.t. a variable domination structure, i.e., the set that defines the
ordering varies among the variables.

Furthermore, we derive notions for approximate solutions of set optimization prob-
lems, and apply some of our results to uncertain programming.

Below we describe the content of this thesis in more detail.
The present chapter contains a short description of the results derived in this thesis,

and Chapter 1.2 covers notation, some preliminary results and the problem formulation.
The set relations that we present in Chapter 2 involve sets that describe the domina-

tion structure; in contrast to traditional approaches found in the literature (see [76, 77]),
they do not need to be convex or cones. This is a novel approach and shall be motivated
in this thesis. We then characterize these new generalized set relations by means of a
scalarizing functional that is well known from vector optimization. Our generalized set
relations are broader than the ones found in the literature, and the assumptions for their
representation by means of the scalarizing functional are more general.

The easy structure of the nonlinear scalarizing functional allows for a convenient
computation to check whether two sets fulfill the considered new set relations. This will
enable us to derive efficient algorithms for solving set optimization problems, which shall
constitute a significant part of this thesis.

In addition to deriving descent methods for computing minimal solutions of set opti-
mization problems (see Chapter 2.3.1), we will also present methods for obtaining min-
imal elements of a family of finitely many sets (compare Chapter 2.3.2). The condition
of dealing with a finite number of sets is not a difficult restriction, as most set opti-
mization problems, even if given in a continuous framework, need to be handled in a
discrete manner concerning computations. Therefore, given a finite discrete family of
sets, in Chapter 2.3.2, we propose several methods that sort out non-minimal elements
and determine all minimal elements of the family of sets. An according approach for
approximate minimal solutions of set optimization problems is presented in Chapter 4.4.
Numerical tests justify that our approaches are useful and the numerical effort is drasti-
cally reduced.

Chapter 3 is concerned with set relations based on a variable domination structure and
their corresponding set optimization problems. Variable domination structures enable the
decision-maker to include specific information into the data while modeling the problem.

From the theory of optimization, it is well-known that minimal solutions do not
always exist and one needs to consider approximations thereof. In accordance with this
knowledge, in Chapter 4 we introduce notions of approximate minimality in set-valued
optimization. Theoretical investigations as well as algorithmic findings are presented in
that chapter.

Finally, Chapter 5 presents unified concepts to uncertain programming problems
based on three approaches, namely, the vector-valued approach, set-valued approach and
a nonlinear scalarization approach. In particular, using the set-valued approach by means
of the techniques derived in this thesis shows that it is possible to handle a number of
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concepts from uncertain scalar programming.
The results presented in this work have been selected from the the following publica-

tions:

• J. Chen, E. Köbis, M. A. Köbis and J.-C. Yao: A New Set Order Relation in Set
Optimization. Journal of Nonlinear and Convex Analysis 18(4), 637–649, 2017.

• C. Gutiérrez, L. Huerga, E. Köbis and Chr. Tammer: Approximate Solutions
of Set-Valued Optimization Problems Using Set-Criteria. Applied Analysis and
Optimization 1(3), 501–519, 2017.

• N. Hebestreit and E. Köbis: Representation of Set Relations in Real Linear Spaces.
Journal of Nonlinear and Convex Analysis 19(2), 287-296, 2018.

• K. Klamroth, E. Köbis, A. Schöbel and Chr. Tammer: A Unified Approach to
Uncertain Optimization. European Journal of Operational Research 260(2), 403–
420, 2017.

• E. Köbis: Variable Ordering Structures in Set Optimization. Journal of Nonlinear
and Convex Analysis 18(9), 1571–1589, 2017.

• E. Köbis, D. Kuroiwa and Chr. Tammer: Generalized Set Order Relations and
Their Numerical Treatment. Applied Analysis and Optimization 1(1), 45–65, 2017.

• E. Köbis and M. A. Köbis: Treatment of Set Order Relations by Means of a Non-
linear Scalarization Functional: A Full Characterization. Optimization 65(10),
1805–1827, 2016.

Most of the results presented in this thesis have been gained in collaboration with
co-authors. The following sections were solely obtained by the author:

• Section 2.1, Section 2.2, Section 2.3.2, Section 2.4.1, Section 2.4.2, Section 2.5;

• Chapter 3;

• Section 4.3.1, Section 4.4;

• Section 5.1.2, Section 5.1.3, Section 5.2, Section 5.3, Section 5.4.

1.2 Preliminaries and Problem Formulation

Throughout this work, unless stated otherwise, we consider a set-valued optimization
problem in the following setting: Let X be a real linear space, Y a real linear topological
space or Y a real linear space, and let a set-valued mapping F : X ⇒ Y (the objective
map that is to be minimized) and a set relation �, which is a binary relation among sets,
be given. P(Y ) is the power set of Y . By P(Y ), we denote the power set of Y without
the empty set, i.e., P(Y ) := {A ⊆ Y | A is nonempty}.
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For two elements A, B of P(Y ), we denote the sum of sets by

A+B := {a+ b | a ∈ A, b ∈ B}.

The set C ⊆ Y is a cone if for all c ∈ C and λ ≥ 0, λc ∈ C holds true. The cone C
is convex if C + C ⊆ C. We say that a set C is proper (or nontrivial) if C 6= {0} and
C 6= Y . The cone C is pointed of C ∩ (−C) = {0} holds. We call the cone C reproducing
if C − C = Y .

Below we give some properties of a cone.

Remark 1.2.1 (See [5, Section 1.1]). (a) A cone C may or may not be convex.

(b) A cone C may be open, closed or neither open nor closed.

(c) A set C is a convex cone if it is both convex as well as a cone.

(d) If C1 and C2 are convex cones, then C1 ∩ C2 and C1 + C2 are also convex cones.

(e) If C is a cone, then the convex hull of C, coC is a convex cone.

(f) If C1 and C2 are convex cones, then C1 + C2 = co(C1 ∪ C2).

The following figures illustrate the notion of a (convex) cone.

R

R

C

Figure 1.1: A proper, pointed, convex cone C in R2.

R

R
C

Figure 1.2: A cone C in R2 which is not convex.

In the following, we collect a few examples of cones.
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x+ yx

y

λx

Figure 1.3: A convex cone in R3.

Example 1.2.2 ([59, Example 2.1.10]). 1. Let

Rn+ := {x ∈ Rn | xi ≥ 0 ∀ i ∈ {1, . . . , n}} (1.1)

be the nonnegative orthant in Rn. Obviously, Rn+ is a cone in the linear space Rn,
which is convex, proper, reproducing and pointed. We call Rn+ the natural ordering
cone in Rn.

2. Let C[0, 1] be the linear space of all real functions defined and continuous on the
interval [0, 1] ⊂ R. Addition and multiplication by scalars are defined, as usual, by

(x+ y)(t) = x(t) + y(t), (λx)(t) = λx(t) ∀ t ∈ [0, 1]

for x, y ∈ C[0, 1] and λ ∈ R. Then

C+[0, 1] := {x ∈ C[0, 1] | x(t) ≥ 0 ∀ t ∈ [0, 1]} (1.2)

is a convex, nontrivial, pointed, and reproducing cone in C[0, 1]. Note that the set

Q := {x ∈ C+[0, 1] | x is nondecreasing} (1.3)

is also a convex, nontrivial, and pointed cone in the space C[0, 1], but it is not
reproducing in general: Q − Q is the proper linear subspace of all functions with
bounded variation of C[0, 1].

3. Consider the set C ⊂ Rn defined by

C := {x = (x1, . . . , xn)T ∈ Rn | x1 > 0, or
x1 = 0, x2 > 0, or

. . .

x1 = · · · = xn−1 = 0, xn > 0, or
x = 0}.

Then the cone C is convex, proper, reproducing and pointed.
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If Y is a real linear topological space, then Y ∗ denotes the topological dual space of
Y . The topological interior of F ⊂ Y will be denoted by intF and its topological closure
by clF .

The positive dual set of a set F is given by F ∗ := {` ∈ Y ∗ | ∀ y ∈ F : `(y) ≥ 0}
and the nonnegative orthant of Rp is denoted by Rp+. A nonempty set F ⊂ Y is called
K-proper if F +K 6= Y . If there is no confusion, for some y ∈ Y , we write y instead of
{y} in the single-valued case.

1.2.1 Binary Relations

In this section, our objective is to study some useful order relations. We begin by recalling
that given a nonempty setM , byM×M we represent the set of ordered pairs of elements
of M, that is,

M ×M := {(x1, x2) | x1, x2 ∈M}.

The following definition gives the notion of an order relation.

Definition 1.2.3. Let M be a nonempty set and let R be a nonempty subset of M ×M .
Then R is called an order relation (or a binary relation) on M and the pair (M,R)
is called a set M with order relation R. The containment (x1, x2) ∈ R will be denoted
by x1Rx2. The order relation R is called:

(a) reflexive if for every x ∈M, we have xRx;

(b) transitive if for all x1, x2, x3 ∈ M, the relations x1Rx2 and x2Rx3 imply that
x1Rx3;

(c) antisymmetric if for all x1, x2 ∈ M , the relations x1Rx2 and x2Rx1 imply that
x1 = x2.

Moreover, an order relation R is called a preorder on M if R is transitive and a
partial order on M if R is reflexive, transitive, and antisymmetric. In both cases, the
containment (x1, x2) ∈ R is denoted by x1 ≤R x2, or simply by x1 ≤ x2 if there is no risk
of confusion. The binary relation R is called a linear or total order if R is a partial
order and any two elements of M are comparable, that is

(d) for all x1, x2 ∈M either x1 ≤R x2 or x2 ≤R x1.

Furthermore, if each nonempty subset M ′ of M has a first element x′ (meaning that
x′ ∈M ′ and x′ ≤R x ∀x ∈M ′), then M is called well-ordered.

We recall Zermelo’s theorem: For every nonempty set M there exists a partial order
R on M such that (M,R) is well-ordered.

An illustrative example of a relation is ∆M := {(x, x) | x ∈ M}, which is reflexive,
transitive, and antisymmetric, but it satisfies (d) only when M is a singleton.
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We recall that the inverse of the relation R ⊂M ×M is the relation

R−1 := {(x1, x2) ∈M ×M | (x2, x1) ∈ R},

and if S is a relation on M , then the composition of R and S is the relation

S ◦ R := {(x1, x3) | ∃x2 ∈M | (x1, x2) ∈ R, (x2, x3) ∈ S}.

Using these two notations, the conditions (a), (b), (c), and (d) are equivalent to
∆M ⊂ R, R ◦R ⊂ R, R∩R−1 ⊂ ∆M and R∪R−1 = M ×M , respectively.

In the following result, we characterize the relations between order relations and
cones:

Theorem 1.2.4. Let Y be a linear space and let C be a cone in Y . Then the relation

RC := {(x1, x2) ∈ Y × Y | x2 − x1 ∈ C} (1.4)

is reflexive and satisfies

∀x1, x2 ∈ Y, ∀λ ∈ R : x1Rx2, 0 ≤ λ⇒ λx1Rλx2 (1.5)

and
∀x1, x2, x ∈ Y : x1Rx2 ⇒ (x1 + x)R(x2 + x). (1.6)

Moreover, C is convex if and only if RC is transitive, and, respectively, C is pointed if
and only if RC is antisymmetric. Conversely, if R is a reflexive relation on X satisfying
(1.5) and (1.6), then C := {x ∈ X | 0Rx} is a cone and R = RC .

Proof. See [37, Theorem 2.1.13].

The above result shows that when ∅ 6= C ⊂ X, the relation RC defined by (1.4) is
a reflexive preorder iff C is a convex cone, and RC is a partial order iff C is a pointed
convex cone.

Let Y be a linear topological space, partially ordered by a proper pointed convex
closed cone C ⊂ Y . Denote this order by “ ≤C ”. Its ordering relation is described by

y1 ≤C y2 if and only if y2 − y1 ∈ C for all y1, y2 ∈ Y. (1.7)

In the sequel, we omit the subscript C if no confusion occurs.

Definition 1.2.5. Let R be an order relation on the nonempty set M and let M0 ⊂ M
be nonempty. An element x0 ∈ M0 is called a maximal (minimal) element of M0

relative to R if for every x ∈M0,

x0Rx⇒ xRx0 (xRx0 ⇒ x0Rx). (1.8)

The collection of all maximal (minimal) elements of M0 with respect to (w.r.t. for
short) R is denoted by Max(M0,R) (Min(M0,R)).
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Note that x0 is a maximal element of M0 w.r.t. R if and only if x0 is a minimal
element of M0 w.r.t. R−1, and hence Max(M0,R) = Min(M0,R−1).

Remark 1.2.6 ([59, Remark 2.1.3]). 1. If the order relation R in Definition 1.2.5 is
antisymmetric, then x0 ∈M0 is maximal (minimal) if and only if for every x ∈M0

x0Rx⇒ x = x0 ( xRx0 ⇒ x0 = x). (1.9)

2. If R is an order relation on M and ∅ 6= M0 ⊂ M , then R0 := R ∩ (M0 ×M0) is an
order relation on M0. In such a situation, the set M0 will always be endowed with
the order structure R0 if not stated explicitly otherwise. If R is a preorder (partial
order, linear order) on M , then R0 is a preorder (partial order, linear order) on
M0. Therefore, x0 is a maximal (minimal) element of M0 relative to R iff x0 is a
maximal (minimal) element of M0 relative to R0.

In the following, we give some examples to illustrate the above notions.

Example 1.2.7 ([59, Example 2.1.4]). (1) Assume that X is a nonempty set and M :=
P(X) represents the collection of subsets of X. Then the order relation R :=
{(A,B) ∈ M ×M | A ⊂ B} is a partial order on M . However, if X contains at
least two elements, then R is not a linear order.

(2) Assume that N is the set of non-negative integers and

RN := {(n1, n2) ∈ N× N | ∃ p ∈ N : n2 = n1 + p}.

Then N is well-ordered by RN. Note that RN defines the usual order relation on N,
and n1RNn2 will always be denoted by n1 ≤ n2 or, equivalently, n2 ≥ n1.

(3) Let R be the set of real numbers and let R+ := [0,∞[ be the set of non-negative real
numbers. The usual order relation on R is defined by

R1 := {(x1, x2) ∈ R× R | ∃ y ∈ R+ : x2 = x1 + y}.

Then R1 is a linear order on R, but R is not well-ordered by R1. In the following,
the fact x1R1x2 will always be denoted by x1 ≤ x2 or, equivalently, x2 ≥ x1.

(4) Given n ∈ N, n ≥ 2, we consider the binary relation Rn on Rn defined by

Rn := {(x, y) ∈ Rn × Rn | ∀ i ∈ {1, . . . , n} : xi ≤ yi},

where x = (x1, . . . , xn), y = (y1, . . . , yn). Then Rn is a partial order on Rn, but
Rn is not a linear order. For example, the elements e1 and e2 are not comparable
w.r.t. Rn, where ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn. As usual, by ei we denote the
vector whose entries are all 0 except the ith one, which is 1.
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Remark 1.2.8 ([59, Remark 2.1.5]). Every well-ordered subset W of R (equipped with
its usual partial order defined above) is at most countable. Indeed, every element y ∈W ,
except the greatest element w of W (provided that it exists), has a successor s(y) ∈ W .
Clearly, if y, y′ ∈ W , y < y′, then s(y) ≤ y′. Therefore, fixing qy ∈ Q such that
y < qy < s(y) for y ∈ W \ {w}, we get an injective function from W \ {w} into Q, and
so W is at most countable.

We emphasize that even when R is a partial order on M , a nonempty subset M0 of
M may have zero, one, or several maximal elements, but if R is a linear order, then every
subset has at most one maximal (minimal) element.

Definition 1.2.9. Let ∅ 6= M0 ⊂M and let R be an order relation on M . Then:

1. M0 is lower (upper) bounded (w.r.t. R) if there exists a ∈ M such that aRx
(xRa) for every x ∈ M0. In this case, the element a is called a lower (upper)
bound of M0 (w.r.t. R).

2. If, moreover, R is a partial order, we say that a ∈M is the infimum (supremum)
of M0 if a is a lower (upper) bound of M0 and for any lower (upper) bound a′ of
M0 we have that a′Ra (aRa′).

In set-valued optimization, the existence of maximal elements w.r.t. order relations
is an important problem. For this, the following Zorn’s lemma plays a crucial role.

Lemma 1.2.10 (Zorn). Let (M,≤) be a reflexively preordered set. If every nonempty
totally ordered subset of M is upper bounded, then M has maximal elements.

1.2.2 Problem Formulation: Minimal Elements of a Family of Sets and
Minimal Solutions of Set Optimization Problems

When studying optimization problems with a set-valued objective map, one is usually
looking for feasible elements that satisfy some kind of optimality notion. One possibility
for such a definition is the following one (see Definition 1.2.5).

Definition 1.2.11 (Minimal Elements of a Family of Sets). Let A be a family of nonempty
subsets of Y and let a set relation � on P(Y ) be given. A ∈ A is called a minimal el-
ement of A w.r.t. � if

A � A, A ∈ A =⇒ A � A .

The set of all minimal elements of A w.r.t. � is denoted by Amin.

Note that if the elements of A are single-valued, D ⊂ Y is a convex cone, and ≤D:=�,
where ≤D is defined by A1 ≤D A2 :⇐⇒ A1 ∈ A2−D (see (1.7)), then Definition 1.2.11 re-
duces to the standard notion of minimality in vector optimization (compare, for example,
[53, Definition 4.1]).

Moreover, we are looking for minimal elements w.r.t. the set relation � in the
sense of Definition 1.2.11 of the problem

min
x∈S

F (x) . (1.10)
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Definition 1.2.12 (Minimal Solutions of Problem (1.10)). We say that x̄ ∈ S is a
minimal solution of (1.10) w.r.t. � if F (x̄) is a minimal element of the family of sets
F (x), x ∈ Rn w.r.t. �. The family of sets F (x), x ∈ S, is denoted by A.



Chapter 2

Generalized Set Relations

In this chapter, we formulate generalizations of existing set relations that are useful
for applications in uncertain programming. In addition to motivating the necessity of
these new relations, we will give equivalent characterizations of these set relations by
means of a well-known scalarization functional in Section 2.2. Moreover, our intention is
to study set-valued optimization problems with these general set relations and to derive
corresponding algorithms in order to determine (approximate) solutions (see Section 2.3).
In addition, we will propose a new set relation which is able to act as a weighting function
between two important set relations and therefore balances out possible gaps that can
occur in modeling set optimization problems (see Section 2.4). Finally, in Section 2.5 we
will no longer assume that the objective space is a priori equipped with a topology. We
will then show characterizations of set relations in real linear spaces as an extension of
Section 2.2.

2.1 Preparatory Work

Throughout this chapter, unless stated otherwise, let Y be a linear topological space.
Note that in Chapter 2.5, we will drop the topology assumption on Y and consider linear
spaces. We assume that D ∈ P(Y ) is a closed proper set satisfying the inclusion

D + [0,+∞) · k ⊆ D (2.1)

for some k ∈ Y \ {0}. In R2, a set D (that is not necessarily a cone) satisfying (2.1)
for k = (1, 1) is, for instance, the set R2

+ − {(0, 1)}. If the relation (2.1) is fulfilled, the
functional zD,k : Y → R ∪ {±∞} =: R defined by

zD,k(y) := inf{t ∈ R | y ∈ tk −D} (2.2)

is well-defined. We call zD,k nonlinear scalarizing functional, as it plays an important role
in scalarization methods for obtaining efficient solutions of a vector-valued optimization
problem. It can be shown that for a given vector k ∈ Y \ {0} and by a variation of
the set D satisfying the property (2.1), all efficient elements of a vector optimization

12
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problem without any convexity assumptions can be found. The functional zD,k was
used to obtain a separation theorem for not necessarily onvex sets, see Gerstewitz [33],
Gerstewitz and Iwanow [34] and also Gerth and Weidner [35]. Additionally, numerous
applications of zD,k are known in the literature, for instance, coherent risk measures in
financial mathematics (see [47]) and uncertain optimization (in particular, in robustness
theory, compare [60]). Many properties of zD,k can be found in [35, 37, 34, 104]. It is
interesting to notice that the construction of zD,k was mentioned by Krasnoselskĭı [75]
(see Rubinov [97]) in the context of operator theory.

Definition 2.1.1. Let Y be a linear space and D̃ ∈ P(Y ). A functional z : Y → R ∪
{±∞} is D̃-monotone if

y1, y2 ∈ Y : y1 ∈ y2 − D̃ ⇒ z(y1) ≤ z(y2).

Important properties of the functional zD,k which will be used in this work are given
in the following theorem.

Theorem 2.1.2 ([37, Theorem 2.3.1]). Let Y be a linear topological space, D ∈ P(Y ) a
closed proper set, D̃ ∈ P(Y ) and let k ∈ Y \ {0} be such that (2.1) is satisfied. Then the
following properties hold for z = zD,k:

(a) z is lower semi-continuous.

(b) (i) z is convex ⇐⇒ D is convex,

(ii) [∀ y ∈ Y, ∀ r > 0 : z(ry) = rz(y)] ⇐⇒ D is a cone.

(c) z is proper ⇐⇒ D does not contain lines parallel to k, i.e., ∀ y ∈ Y ∃ r ∈ R : y+
rk /∈ D.

(d) z is D̃-monotone ⇐⇒ D + D̃ ⊆ D.

(e) z is subadditive ⇐⇒ D +D ⊆ D.

(f) ∀ y ∈ Y, ∀ r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk −D.

(g) ∀ y ∈ Y, ∀ r ∈ R : z(y + rk) = z(y) + r.

(h) z is finite-valued ⇐⇒ D does not contain lines parallel to k and Rk −D = Y .

(i) Let furthermore D + (0,+∞) · k ⊆ intD. Then z is continuous.

The following examples illustrates the choice concerning the set D and the vector k
in the formulation of the functional zD,k.

Example 2.1.3 (Compare [68, Example 2.3]). (a) Pascoletti, Serafini [90] use a spe-
cial optimization problem related to the functional zD,k in the special case Y = Rn.
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Given a function f : Ω → Rn, where Ω ⊆ Rm, a closed convex cone D ⊂ Rn with
nonempty interior, parameters a ∈ Rn, r ∈ intD, they propose the problem

min t

s.t. x ∈ Ω

f(x) ∈ a+ tr −D
t ∈ R.

(b) Many well known concepts of proper efficiency (compare [59, Chapter 2.4]) also fit
into the general approach of the nonlinear scalarizing concept with the functional
zD,k. Since many of them are based on a certain kind of generalized linear scalariza-
tion, they are endowed with a polyhedral structure: In [105], Weidner characterizes
properly efficient elements in the sense of Geoffrion by solutions of the auxiliary
problem

min
y∈Rn

max
i=1,...,n

(〈vi, y〉 − νi)

with vi ∈ intRn+,
∑n

j=1 v
j
i = 1, νi ∈ R, i = 1, . . . , n. Without effort, we can verify

that these auxiliary problems coincide with the problem miny∈Rn z
D,k for D := {y ∈

Rn : ∀ i = 1, . . . , n : 〈vi, y〉 − νi ≥ 0} and k := (1, . . . , 1)T ∈ Rn.

(c) Kaliszewski [58] characterizes efficiency in vector optimization with respect to poly-
hedral cones by some inconsistency assertions. He uses a polyhedral cone D given
by

D := {y ∈ Rn : 〈−bi, y〉 ≥ 0, i = 1, ...,m}

with bi ∈ Rn, i = 1, . . . ,m. The inconsistency notions he uses can equivalently be
represented by means of the functional zD,k, as was shown by Tammer and Winkler
in [102].

Most of the set relations to be defined in Section 2.2 rely on set inclusions, where
the set D is attached pointwise to the considered sets A,B ∈ P(Y ). In that spirit, the
following result relates A−D by means of the functional zD,k.

Lemma 2.1.4 ([67, Corollary 2.13]). Let D ⊂ Y be a closed proper set in Y , k ∈ Y \{0}
such that (2.1) is fulfilled, A ∈ P(Y ), and let D̃ ⊆ Y such that 0 ∈ D̃ and D + D̃ ⊆ D.
Then it holds

sup
a∈A

zD,k(a) = sup
y∈A−D̃

zD,k(y) .

Proof. Under the given assumptions, zD,k is D̃-monotone. Because A − D̃ ⊆ A − D̃, it
holds

∀ y ∈ A− D̃, ∃ a ∈ A : zD,k(y) ≤ zD,k(a) ,

hence, sup
y∈A−D̃ z

D,k(y) ≤ supa∈A z
D,k(a). The converse inequality follows directly from

the definition of the supremum and A ⊆ A− D̃, as 0 ∈ D̃.
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Remark 2.1.5 ([67, Remark 2.14]). Note that the assumption 0 ∈ D̃ in Lemma 2.1.4 is
only necessary for the validity of the inequality

sup
a∈A

zD,k(a) ≤ sup
y∈A−D̃

zD,k(y) . (2.3)

For the inequality
sup

y∈A−D̃
zD,k(y) ≤ sup

a∈A
zD,k(a) ,

0 ∈ D̃ is not required. It is important to mention that the assumption 0 ∈ D̃ in
Lemma 2.1.4 cannot be dropped in order for (2.3) to hold true. Consider, for exam-
ple, the selection D = R2

+, D̃ = R2
+ + d, where d ∈ intR2

+, A = {(0, 0)} and k = (1, 1).
Then, clearly 0 /∈ D̃ and supa∈A z

D,k(a) = 0 6≤ sup
y∈A−D̃ z

D,k(y) < 0.

When D is a proper closed convex cone, we immediately obtain the following result
from Lemma 2.1.4.

Corollary 2.1.6 ([66, Corollary 2.2]). Let C ⊂ Y be a proper closed convex cone and
k ∈ C \ {0}. For two sets A, B ∈ P(Y ) it holds

sup
b∈B

zC,k(b) = sup
y∈B−C

zC,k(y) ,

inf
a∈A

zC,k(a) = inf
y∈A+C

zC,k(y) .

Let C ⊂ Y be a proper closed convex cone. Notice that it is possible that the function
value zC,k(b) may be +∞, if there is no t ∈ R with b ∈ tk − C, and by convention
inf ∅ = +∞. This can be the case if k ∈ bdC. Then the relations in Corollary 2.1.6 hold
true, because supb∈B z

C,k(b) = supy∈B−C z
C,k(y) = +∞, as 0 ∈ C. Similarly, for instance

if C is a halfspace and k ∈ bdC, then function values −∞ are possible. In that case,
zC,k is not proper, because C contains lines parallel to k (see Theorem 2.1.2 (c)). For
example, consider the halfspace C = {y = (y1, y2)T ∈ R2 | y2 ≥ 0}, k = (0,−1)T ∈ bdC,
b1 = (−1,−1)T , b2 = (1, 1)T and B = {b1, b2}. Then zC,k(b1) = −∞, zC,k(b2) =
inf ∅ = +∞. Because 0 ∈ C, we get that supb∈B z

C,k(b) = supy∈B−C z
C,k(y) = +∞ and

infb∈B z
C,k(b) = infy∈B−C z

C,k(y) = −∞. If k ∈ intC, the functional is finite-valued,
see [37, Corollary 2.3.5.]. Throughout this work, unless stated otherwise, we will assume
that k ∈ Y \{0}, such that zC,k is an extended real-valued functional, i.e., function values
±∞ are possible.

2.2 Generalized Set Relations and Representation by Means
of a Scalarizing Functional

In this chapter, we formulate generalizations of known set relations. In addition to
describing the need for these new relations, our intention is to study set-valued optimiza-
tion problems with these general set relations and, afterwards, to derive corresponding
algorithms in Section 2.3. The findings presented in this chapter are based on [66, 67, 68].
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In the following definition, we introduce a generalized set relation w.r.t. a nonempty
subset D of Y , which is not assumed to be convex or a cone. The following set relation
generalizes the upper set less relation by Kuroiwa [76, 77], where the involved set D is a
convex cone.

Definition 2.2.1 (Generalized Upper Set Less Relation, [67, Definition 2.1]). Let D ∈
P(Y ). The generalized upper set less relation �uD is defined for two sets A,B ∈
P(Y ) by

A �uD B :⇐⇒ A ⊆ B −D,

which is equivalent to
∀ a ∈ A, ∃ b ∈ B : a ∈ b−D.

Figure 2.1 illustrates this definition.

D

B

A

B −D

D

B

A
B −D

D

B A
B −D

Figure 2.1: Illustration of the relations A �uD B in the first image, A 6�uD B in the
second illustration, and A �uD B in the right picture.

Remark 2.2.2. Notice that �uD is transitive if D + D ⊆ D. If D is a cone, then
D +D ⊆ D implies that D is convex. If, for instance, D = R2

+ \ {0}, then D +D ⊆ D
is fulfilled, but D is not a cone. Moreover, �uD is reflexive if 0 ∈ D. Therefore, �uD is a
preorder if D +D ⊆ D and 0 ∈ D.

In the following remark, we note what kind of set relations are comprised by the
generalized upper set less relation �uD.

Remark 2.2.3 ([67, Remark 2.2]). Let Y = Rq for q ∈ N, q > 0, and A,B ∈ P(Rq).
If D = Rq+, then the relation �uD has been used to model robust solutions of uncertain
multiobjective optimization problems (compare [22]). If D = {0}, then the relation �uD
describes set-inclusions. In case D = {d}, where d ∈ Rq, the relation �uD can be used to
judge whether one set A is a relocation of another set B (compare Figure 2.2).

The following result gives a necessary condition for the generalized upper set less
relation to hold by means of the nonlinear scalarizing functional zD,k.

Theorem 2.2.4 ([67, Theorem 2.10]). Let D ∈ P(Y ) be a closed proper set in Y ,
k ∈ Y \ {0} such that (2.1) is fulfilled, D̃ ⊆ Y such that D + D̃ ⊆ D, and A,B ∈ P(Y ).
Then it holds

A ⊆ B − D̃ =⇒ sup
a∈A

zD,k(a) ≤ sup
b∈B

zD,k(b).
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(a)

A

B
B − R2

+

(b)

B

A

(c)

A

B

Figure 2.2: The relation �uD includes, among others, (a) worst-case-oriented set compar-
isons, (b) set-inclusion and (c) relocations of a set.

Proof. Choose an arbitrary vector k ∈ Y \ {0} such that (2.1) is satisfied, and let A ⊆
B − D̃. Then, we have

∀ a ∈ A, ∃ b ∈ B : a ∈ b− D̃ .

The monotonicity property of the functional zD,k (compare Theorem 2.1.2 (d)) yields

∀ a ∈ A, ∃ b ∈ B : zD,k(a) ≤ zD,k(b) .

Therefore, we conclude with the stated inequality.

The example below illustrates Theorem 2.2.4 for the case that D = D̃ coincides with
the natural ordering cone in R2 and verifies that the inverse implication of the assertion
in Theorem 2.2.4 is generally not satisfied, even if the underlying sets are convex (and
even singletons).

Example 2.2.5 ([66, Example 3.2]). Let Y := R2, a := (−1/4,−1/4)T , A := {a},
a := (3/4, 3/4)T , A := {a}, B := {(s, 1− s)T | s ∈ [0, 1]}, k := (k1, k2)T , k1, k2 > 0, and
consider the natural ordering cone D = D̃ = C = R2

+, see Figure 2.3. It holds

sup
b∈B

zC,k(b) = sup
s∈[0,1]

max

{
s

k1
,
1− s
k2

}
= max

{
1

k1
,

1

k2

}
> 0

and
sup
ã∈A

zC,k(ã) = zC,k(a) = −1

4
min

{
1

k1
,

1

k2

}
< 0 < sup

b∈B
zC,k(b)

corresponding to A ⊆ B − C as well as

sup
ã∈A

zC,k(ã) = zC,k(a) =
3

4
max

{
1

k1
,

1

k2

}
< sup

b∈B
zC,k(b)

but clearly
A 6⊆ B − C .

The following result, shown in [67], gives an equivalent representation for A �uD B.
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B − C
1

1

B

A = {a}

A = {a}

Figure 2.3: Illustration of Example 2.2.5.

Theorem 2.2.6 ([67, Theorem 2.8]). Let D ∈ P(Y ) be a closed proper set in Y , and
k ∈ Y \ {0} satisfying (2.1). For two sets A,B ∈ P(Y ), the following implication holds:

A ⊆ B −D =⇒ sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 .

Assume on the other hand, that there exists k0 ∈ Y \ {0} satisfying (2.1) such that
infb∈B z

D,k0(a− b) is attained for all a ∈ A, then the converse is also true, i.e.,

sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 =⇒ A ⊆ B −D .

Proof. Let A ⊆ B −D. This means

∀ a ∈ A, ∃ b ∈ B : a ∈ b−D =⇒ ∀ a ∈ A, ∃ b ∈ B : a− b ∈ −D .

Because of Theorem 2.1.2 (f) with r = 0 and y = a− b, we have

∀ a ∈ A, ∃ b ∈ B : zD,k(a− b) ≤ 0 ,

and this implies
sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 .

Conversely, let k0 ∈ Y \{0} be given such that for all a ∈ A the infimum infb∈B z
D,k0(a−b)

is attained. Let
sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 , (2.4)

but assume that A 6⊆ B −D. Thus, there exists some ā ∈ A with ā /∈ B −D. So for all
b ∈ B it holds ā − b /∈ −D and with Theorem 2.1.2 (f) with r = 0 and y = ā − b, we
obtain

∃ ā ∈ A, ∀ b ∈ B : zD,k0(ā− b) > 0 =⇒ ∃ ā ∈ A : inf
b∈B

zD,k0(ā− b) > 0 .

Because the last infimum is attained by assumption, one concludes that

sup
ā∈A

inf
b∈B

zD,k0(ā− b) > 0 ,

in contradiction to the inequality (2.4).
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The following example illustrates the statements in Theorems 2.2.4 and 2.2.6 and
verifies again that the inverse implication of the assertion in Theorem 2.2.4 is generally
not fulfilled.

Example 2.2.7 ([67, Example 2.11]). Let Y := R2, A := {(0, 0)} =: {a}, Ā :=
{(3/4, 7/4)T } =: {ā}, B := {(s, 1− s)T | s ∈ [0, 1]}, k := (k1, k2)T , k1, k2 > 0, D̃ = R2

+,
D = R2

+ − {(0, 1)}, see Figure 2.4. So we have A ⊆ B −D. It holds for y ∈ R2

zD,k(y) = inf{t ∈ R|y ∈ tk −D}
= inf

{
t ∈ R|(y1, y2)− (0, 1) ∈ t(k1, k2)− R2

+

}
= max

{
y1

k1
,
y2 − 1

k2

}
.

Thus, we obtain

sup
a∈A

inf
b∈B

zD,k(a− b) = inf
b∈B

zD,k(a− b)

= inf
b∈B

max

{
a1 − b1
k1

,
a2 − b2 − 1

k2

}
= inf

b∈B
max

{
−b1
k1

,
−b2 − 1

k2

}
= min

s∈[0,1]
max

{
−s
k1
,
s− 2

k2

}
≤ 0 .

Moreover, it holds Ā 6⊆ B − D, and it can be shown that supā∈Ā infb∈B z
D,k(ā − b) =

mins∈[0,1] max
{

3/4−s
k1

, s−1/4
k2

}
> 0, in accordance with Theorem 2.2.6. Furthermore, it

holds A ⊆ B − D̃, and D + D̃ ⊆ D. So, the assumptions in Theorem 2.2.4 are satisfied.
Thus, we obtain

sup
a∈A

zD,k(a) = max

{
0,
−1

k2

}
= 0 ,

and

sup
b∈B

zD,k(b) = sup
s∈[0,1]

max

{
s

k1
,
(1− s)− 1

k2

}
= sup

s∈[0,1]
max

{
s

k1
,
−s
k2

}
=

1

k1
.

Therefore, we obtain supa∈A z
D,k(a) ≤ supb∈B z

D,k(b). Furthermore, we have

sup
ā∈Ā

zD,k(ā) = max

{
3

4k1
,

3

4k2

}
,

and for k = (k1, k2) = (1, 1) we obtain

sup
ā∈Ā

zD,k(ā) =
3

4
< 1 = sup

b∈B
zD,k(b) ,

but Ā 6⊆ B − D̃. This shows that the converse implication of the assertion in Theo-
rem 2.2.4 is not fulfilled.
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B − D̃

B −D

y1

y2

1

1

B

Ā = {ā}

A = {a}

Figure 2.4: Illustration of Example 2.2.7.

Remark 2.2.8. The generalized upper set less relation �uD can be used for the treatment
of set optimization problems to compare sets. Theorems 2.2.4 and 2.2.6 are useful to
decide whether two sets fulfill the relation �uD in a numerical manner. Furthermore,
these results even give a quantification by means of the extremal points of the functional
values zD,k(a−b). Therefore, Theorems 2.2.4 and 2.2.6 can be used to derive algorithms,
for instance an iterative pattern search where in each iteration the minimal function value
is determined to specify the locally best search direction (i.e., a so-called descent method,
compare [55]). Such algorithm types are very useful for solving set optimization problems
and will be presented in Chapter 2.3.

As our goal in this work is to study different extensions of several known set relations
(and their corresponding representation by means of the functional zD,k), we continue
with introducing the following extension of the lower set less relation by Kuroiwa [76, 77].

Definition 2.2.9 (Generalized Lower Set Less Relation, [68, Definition 3.5]). Let D ∈
P(Y ). The generalized lower set less relation �lD is defined for two sets A,B ∈ P(Y )
by

A �lD B :⇐⇒ B ⊆ A+D,

which is equivalent to
∀ b ∈ B, ∃ a ∈ A : b ∈ a+D.

Remark 2.2.10 ([68, Remark 3.6]). Notice that �lD is transitive if D + D ⊆ D and it
is reflexive if 0 ∈ D. Therefore, �lD is a preorder if D +D ⊆ D and 0 ∈ D.

If the setD in Definition 2.2.9 is replaced by a convex cone C ⊂ Y , then this definition
coincides with the definition of the lower set less relation introduced by Kuroiwa [76, 77],
and B ⊆ A+ C can be replaced by

∀ b ∈ B, ∃ a ∈ A : a ≤C b ,
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where ≤C relates to the order relation induced by the convex cone C, thus, a ≤C b means
that a ∈ b− C.

The following theorem gives a first insight into the relations between the generalized
lower set less relation and the functional zD,k.

Theorem 2.2.11 ([68, Theorem 2.7]). Let D ∈ P(Y ) be a closed proper set in Y ,
k ∈ Y \{0} such that (2.1) is fulfilled, let D̃ ⊆ Y such that D+D̃ ⊆ D, and A,B ∈ P(Y ).
Then it holds

B ⊆ A+ D̃ =⇒ inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

Proof. Choose an arbitrary vector k ∈ Y \ {0} such that (2.1) is satisfied, and let B ⊆
A+ D̃. Then, we have

∀ b ∈ B, ∃ a ∈ A : b ∈ a+ D̃ .

The monotonicity property of the functional zD,k (compare Theorem 2.1.2 (d)) yields

∀ b ∈ B, ∃ a ∈ A : zD,k(a) ≤ zD,k(b) .

Therefore, we conclude with the stated inequality.

A consequence of Theorem 2.2.11 is comprised in the following corollary, which was
proven in [66, Theorem 3.15].

Corollary 2.2.12 ([68, Corollary 3.8]). Let D ∈ P(Y ) be a closed proper convex cone in
Y , k ∈ Y \ {0}, A,B ∈ P(Y ). Then it holds

B ⊆ A+D =⇒ inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

We derive the following result in correspondence with Theorem 2.2.6 for the general-
ized lower set less relation.

Theorem 2.2.13 ([68, Theorem 3.9]). Let D ∈ P(Y ) be a closed proper set in Y , and
k ∈ Y \ {0} satisfying (2.1). For two sets A,B ∈ P(Y ), the following implication holds:

B ⊆ A+D =⇒ sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .

On the other hand, assume that there exists k0 ∈ Y \ {0} satisfying (2.1) such that
infa∈A z

D,k0(a− b) is attained for all b ∈ B, then

sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 =⇒ B ⊆ A+D .

Proof. Let B ⊆ A+D. This means

∀ b ∈ B, ∃ a ∈ A : b ∈ a+D =⇒ ∀ b ∈ B, ∃ a ∈ A : a− b ∈ −D .

Because of Theorem 2.1.2 (f) with r = 0 and y = a− b, we have

∀ b ∈ B, ∃ a ∈ A : zD,k(a− b) ≤ 0 ,
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and this implies
sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .

Conversely, let k0 ∈ Y \{0} be given such that for all b ∈ B the infimum infa∈A z
D,k0(a−b)

is attained. Let
sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 .

That means
∀ b ∈ B : inf

a∈A
zD,k0(a− b) ≤ 0 .

Because for all b ∈ B the infimum infa∈A z
D,k0(a− b) is attained, we obtain

∀ b ∈ B ∃ a ∈ A : zD,k0(a− b) = inf
a∈A

zD,k0(a− b) ≤ 0 .

By Theorem 2.1.2 (f) with r = 0 and y = a− b, we conclude with

∀ b ∈ B ∃ a ∈ A : a− b ∈ −D,

thus B ⊆ A+D.

Example 2.2.14 (Weighted Sum Scalarization, [66, Corollary 3.12]). Let Y := Rm, a
vector w := (w1, . . . , wm)T ∈ Rm with wi ≥ 0, i = 1, . . . ,m, D := {y ∈ Rm | wT y ≥ 0}
(note that D is a convex cone, but D is not pointed) and k := (k1, . . . , km)T ∈ intD be
given. Then we have for A,B ∈ P(Rm), a ∈ A and b ∈ B:

zD,k(a− b) = inf{t ∈ R | a− b ∈ tk −D}

= inf{t ∈ R | w(a− b) ≤ wT tk}

= inf{t ∈ R | w(a− b) ≤ t · wTk}

k∈intD
= inf{t ∈ R | 1

wTk
·
m∑
i=1

wi(ai − bi) ≤ t}

=
1

wTk
·
m∑
i=1

wi(ai − bi) .

This leads to

sup
a∈A

inf
b∈B

zD,k(a− b) = sup
a∈A

inf
b∈B

1

w(k)
·
m∑
i=1

wi(ai − bi)

= sup
a∈A

1

wTk
·
m∑
i=1

wiai − sup
b∈B

1

wTk
·
m∑
i=1

wibi

=
1

wTk
·
(

sup
a∈A

m∑
i=1

wiai − sup
b∈B

m∑
i=1

wibi

)
.
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Hence, with the above definitions of D and k and weights wi > 0, i = 1, . . . ,m, we obtain
due to Theorems 2.2.6 and 2.2.13

A ⊆ B −D ⇐⇒ ∀ k ∈ intD :
1

wTk
sup
a∈A

m∑
i=1

wiai ≤
1

wTk
sup
b∈B

m∑
i=1

wibi

⇐⇒ sup
a∈A

m∑
i=1

wiai ≤ sup
b∈B

m∑
i=1

wibi and, in analogy,

B ⊆ A+D ⇐⇒ ∀ k ∈ intD :
1

wTk
inf
a∈A

m∑
i=1

wiai ≤
1

wTk
inf
b∈B

m∑
i=1

wibi

⇐⇒ inf
a∈A

m∑
i=1

wiai ≤ inf
b∈B

m∑
i=1

wibi.

Note that we only considered k ∈ intD here in order to exclude division by zero for
this rather algorithmic example. Moreover, the attainment of the infima and suprema,
respectively, is implicitly required.

Example 2.2.15 (Natural Ordering [66, Corollary 3.13]). Let again Y := Rm, D := Rm+
and k := (k1, . . . , km)T ∈ intC. Then we have

zD,k(a− b) = sup
i=1,...,m

(a− b)i
ki

.

Hence, with the above definitions of D and k, the assertions in Theorems 2.2.6 and 2.2.13
lead to

A ⊆ B −D ⇐⇒ ∀ k ∈ intD : sup
a∈A

inf
b∈B

max
i=1,...,m

(a− b)i
ki

≤ 0,

B ⊆ A+D ⇐⇒ ∀ k ∈ intD : sup
b∈B

inf
a∈A

max
i=1,...,m

(a− b)i
ki

≤ 0.

Example 2.2.16 (Polyhedral Cones [66, Corollary 3.14]). More generally, if Y = Rm
and the cone D is given by D := {y ∈ Rm | (Wy)i ≥ 0 for all i = 1, . . . , l} for a given
matrixW ∈ Rl,m, wij ≥ 0 for all i = 1, . . . , l, j = 1, . . . ,m, where every row of the matrix
W cannot be the zero vector, the value of the nonlinear scalarizing functional zD,k(y) can
be obtained by

zD,k(y) = max
i=1,...,l

(Wy)i
(Wk)i

.

Note that k ∈ intD implies (Wk)i 6= 0 for all i = 1, . . . , l, such that this value is well
defined and also that Examples 2.2.14 and 2.2.15 are special cases with l = 1 andW = Im
(identity matrix), respectively.

In the following definition, we extend the notion of the set less relation (see Young
[111] and Nishnianidze [85]).
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Definition 2.2.17 (Generalized Set Less Relation, [68, Definition 3.10]). Let D ∈ P(Y ).
The generalized set less relation �sD is defined for two sets A,B ∈ P(Y ) by

A �sD B :⇐⇒ A �uD B and A �lD B.

The next result follows directly from Theorems 2.2.6 and 2.2.13.

Corollary 2.2.18. Let D ∈ P(Y ) be a closed proper set in Y , and k ∈ Y \{0} satisfying
(2.1). For two sets A,B ∈ P(Y ), we have

A �sD B =⇒ sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0.

If, on the other hand, there exists k0 ∈ Y \{0} satisfying (2.1) such that infb∈B z
D,k0(a−b)

is attained for all a ∈ A, and if there exists k1 ∈ Y \ {0} satisfying (2.1) such that
infa∈A z

D,k1(a− b) is attained for all b ∈ B, then

A �sD B ⇐= sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k1(a− b) ≤ 0.

The following definition is an extension of the certainly less relation (see Jahn, Ha
[56], Eichfelder, Jahn [26]).

Definition 2.2.19 (Generalized Certainly Less Relation, [68, Definition 3.12]). Let D ∈
P(Y ). The generalized certainly less relation �cD is defined for two sets A,B ∈ P(Y )
by

A �cD B :⇐⇒ (A = B) or (∀ a ∈ A, ∀ b ∈ B : a ∈ b−D) .

Figure 2.5 illustrates Definition 2.2.19.

D

B

A
D

B

A

Figure 2.5: Illustration of the relations A �cD B in the first image and A 6�cD B in the
second picture.

The following result does not require any attainment property. We omit its proof, as
it is similar to that of Theorem 2.2.13.

Theorem 2.2.20 ([68, Theorem 3.13]). Let D ∈ P(Y ) be a closed proper set in Y , and
k ∈ Y \ {0} satisfying (2.1). For two sets A,B ∈ P(Y ), the following equivalence holds:

∀ a ∈ A, ∀ b ∈ B : a ∈ b−D ⇐⇒ sup
(a,b)∈A×B

zD,k(a− b) ≤ 0 .
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Applying Theorem 2.2.20 to the definition of the generalized certainly less relation,
we obtain the following result.

Corollary 2.2.21 ([68, Corollary 3.14]). Let D ∈ P(Y ) be a closed proper set in Y ,
k ∈ Y \ {0} such that (2.1) is fulfilled, A,B ∈ P(Y ). Then we have the following
equivalence for the generalized certainly less relation:

A �cD B ⇐⇒ (A = B) or

(
sup

(a,b)∈A×B
zD,k(a− b) ≤ 0

)
.

Example 2.2.22. Note that adding the possibility that A equals B in Corollary 2.2.21
is necessary in order to get the classification A �cD B. If, for example, A = B ⊂ R2 is
the unit ball in R2 and the natural ordering is considered by D = C = R2

+, we have

∀ k ∈ intC ∃ a, b ∈ A : zC,k(a− b) > 0,

but clearly A �cC B, see Figure 2.6. If C is pointed (that is, C ∩ (−C) = {0}), note that

sup
a,a′∈A

zC,k(a− a′) ≤ 0 ⇐⇒ ∀a, a′ ∈ A : zC,k(a− a′) ≤ 0

⇐⇒ ∀a, a′ ∈ A : a− a′ ∈ −C
⇐⇒ A−A ⊆ −C
⇐⇒ A−A ⊆ (−C) ∩ C = {0}
⇐⇒ A is a singleton.

A−B

A = B

k

1−1

1

−1

2−2

2

−2

Figure 2.6: sup(a,b)∈A×B z
C,k(a− b) > 0 for A = B in Example 2.2.22.
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Remark 2.2.23. Notice that it is remarkable that the result in Corollary 2.2.21 holds
true for arbitrary k ∈ Y \ {0} fulfilling (2.1). Therefore, we conclude that A �cD B is
equivalent to

(A = B) or

(
∀ k ∈ Y \ {0} satisfying (2.1): sup

(a,b)∈A×B
zD,k(a− b) ≤ 0

)
.

The next definition is a more general form of the possibly less relation (see [17, 56]).

Definition 2.2.24 (Generalized Possibly Less Relation, [68, Definition 3.15]). Let D ∈
P(Y ). The generalized possibly less relation �pD is defined for two sets A,B ∈ P(Y )
by

A �pD B :⇐⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b−D.

The following result shows that the nonlinear scalarizing functional zD,k is useful for
the characterization of the generalized possibly less relation.

Theorem 2.2.25 ([68, Theorem 3.16]). Let D ∈ P(Y ) be a closed proper set in Y , and
k ∈ Y \ {0} satisfying (2.1). For two sets A,B ∈ P(Y ), the following implication holds:

∃ a ∈ A, ∃ b ∈ B : a ∈ b−D =⇒ inf
(a,b)∈A×B

zD,k(a− b) ≤ 0. .

If there exists k0 ∈ Y \ {0} satisfying (2.1) such that inf
(a,b)∈A×B

zD,k0(a − b) is attained,

we have:

inf
(a,b)∈A×B

zD,k0(a− b) ≤ 0 =⇒ ∃ a ∈ A, ∃ b ∈ B : a ∈ b−D .

Remark 2.2.26 ([68, Remark 3.17]). Of course, many other set relations can be found
in the literature. Some of them can be generalized in the way we conducted so far. For
example, the minmax less relation and the minmax certainly less relation, given in Jahn,
Ha [56] can be generalized and expressed via the nonlinear scalarizing functional zD,k.
Moreover, in Kuroiwa et al. [79] the following set relations are presented (with D being
a proper closed convex cone):

A �(ii) B :⇐⇒ ∃ a ∈ A : ∀ b ∈ B, a ∈ b−D

and
A �(iv) B :⇐⇒ ∃ b ∈ B : ∀ a ∈ A, a ∈ b−D.

Under appropriate attainment properties and if D and k ∈ Y \ {0} satisfy (2.1), these
relations are concerned with

inf
a∈A

sup
b∈B

zD,k(a− b) ≤ 0 and inf
b∈B

sup
a∈A

zD,k(a− b) ≤ 0.

However, we will not pursue them any further, as they are similar to �uD as well as �lD,
and coincide by simply interchanging the infima and suprema.
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2.3 Algorithms for Determining Minimal Elements

This section is concerned with presenting several algorithms for finding minimal elements
(minimal solutions, respectively) of a family of sets with respect to the generalized set
relations that we introduced and characterized in Section 2.2. The results presented in
this section rely mainly on [66] and [68].

2.3.1 A descent method

In the literature, there already exist some algorithms for solving set-valued optimization
problems based on descent methods. For example, Jahn [55] proposes a descent method
that generates approximations of minimal elements of set-valued optimization problems
under convexity assumptions on the considered sets. In [55], the set less relation is
characterized by means of linear functionals. More recently, in [66], the authors propose
a similar descent method for obtaining approximations of minimal elements of set-valued
optimization problems. In [66], several set relations are characterized by the nonlinear
scalarizing functional zD,k, where D is assumed to be a proper convex cone. Since the
nonlinear functional zD,k is used in [66], no convexity assumptions on the considered
outcome sets F (x) are needed. Note that the approaches in [55, 66] all rely on set
relations where the involved domination structure is given by cones, whereas in this
section, we consider arbitrary nonemtpy sets D ⊂ Y .

Here we consider the set-valued optimization problem (1.10) with X = Rn and Y =
Rm, thus, we have the following setting: The objective map is F : Rn ⇒ Rm and a
set relation � is given. In this section, we are looking for approximations of minimal
solutions w.r.t. the relation � in the sense of Definition 1.2.12 of the problem

min
x∈Rn

F (x) .

The results in Section 2.2 provide us with a possibility to decide whether two sets
fulfill the set relation or not in a numerical manner and even give a quantification by
means of the extremal points of the functional values zD,k(a−b), zD,k(b−a), respectively.
So a natural way of constructing an algorithm for solving problem (1.10) is an iterative
pattern search where in each iteration the minimal function value is determined to specify
the locally best search direction. For this reason we refer to Algorithm 2.3.2 below as a
descent method, cf. [55].

For the following algorithm it is very important to have an easy way to calculate the
functional zD,k. With this aim, in the following example, we consider a special structure
of the set D in the definition of zD,k to exemplarily show how the functional zD,k can be
computed numerically. In order to study such a special structure, we introduce a set Aγ
in the following way (see Tammer, Winkler [102]):

Example 2.3.1 (Compare [66]). Let γ be a norm on Rm which is characterized by its
(closed) unit ball

Bγ := {y ∈ Rm | γ(y) ≤ 1}.
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A norm γ is called a block norm, if its unit ball Bγ is polyhedral (a polytope). Let
ȳ ∈ Rm. The reflection set of ȳ is defined by

R(ȳ) := {y ∈ Rm | |yi| = |ȳi| ∀ i = 1, ...,m}.

A norm γ is called absolute, if γ(y) = γ(ȳ) for all y ∈ R(ȳ). A block norm γ is called
oblique, if γ is absolute and satisfies (y−Rm+ )∩Rm+∩bdBγ = {y} for all y ∈ Rm+∩bdBγ.

Let γ be a block norm with unit ball Bγ, given for ai ∈ Rm, αi ∈ R, i = 1, ..., n, by

Bγ = {y ∈ Rm | 〈ai, y〉 ≤ αi, i = 1, ..., n}.

The number of halfspaces that define the ball Bγ coincides with the dimension of the
decision space of problem (1.10). Using ai from this formula for Bγ, we define a set
Aγ ⊂ Rm by

Aγ := {y ∈ Rm | 〈ai, y〉 ≤ αi, i ∈ I} (2.5)

with the index set

I := {i ∈ {1, ..., n} | {y ∈ Rm : 〈ai, y〉 = αi} ∩Bγ ∩ intRm+ 6= ∅}.

The set I is exactly the set of indices i = 1, ..., n for which the hyperplanes 〈ai, y〉 = αi
are active in the positive orthant.

Let γ be an absolute block norm with unit ball Bγ and the corresponding set Aγ
defined as in (2.5), let vectors k ∈ intRm+ and w ∈ Rm be given. We define a functional
zAγ+w,k : Rm → R by

zAγ+w,k(y) = inf{τ ∈ R | y ∈ τk +Aγ + w}, y ∈ Rm. (2.6)

The functional zAγ+w,k depends on the norm γ and the parameters k and w.
Let γ be an oblique block norm with unit ball Bγ and the corresponding set Aγ; let

k ∈ intRm+ and w ∈ Rm be arbitrary. Then the functional zAγ+w,k defined by formula
(2.6) is strictly Rm+ -monotone.

For given y ∈ Rm, we can calculate the value zAγ+w,k(y) by the following formula
(see Tammer, Winkler [102]):

Let γ be an absolute (oblique) block norm with unit ball Bγ and the corresponding
set Aγ defined as in (2.5), let vectors k ∈ intRm+ and w ∈ Rm be given. We consider
the functional zAγ+w,k : Rm → R defined by (2.6). Then zAγ+w,k is a finite-valued,
continuous, convex, Rm+ -monotone (strictly Rm+ -monotone) functional with

zAγ+w,k(y) = max
i∈I

〈ai, y〉 − 〈ai, w〉 − αi
〈ai, k〉

. (2.7)

With the formula (2.7) it is very easy to compute the objective function values zD,k(a−
b) in the following algorithm.

The following algorithm calculates an approximation of a minimal solution of the
set-valued problem (1.10), where � is assumed to be a preorder. It is presented in [66]
for the case that D is a convex cone, and given here more generally.
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Algorithm 2.3.2. (A descent method for finding an approximation of a minimal solution
of the set-valued problem (1.10))

Input: F : Rn ⇒ Rm, set D, preorder �, starting point x0 ∈ Rn, a set K of vectors
ki0 ∈ D \ {0} to determine the required attainment property, maximal number imax of
iterations, number of search directions ns, maximal number jmax of iterations for the
determination of the step size, initial step size h0 and minimum step size hmin

% initialization
i := 0, h := h0

choose ns points x̃1, x̃2, . . . , x̃ns on the unit sphere around 0Rn

% iteration loop
while i ≤ imax do

check F (xi+hx̃j) � F (xi) for every j ∈ {1, . . . , ns} by evaluating the extremal
term (e. g. supa∈A infb∈B z

D,ki0(a−b) for A = F (xi+hx̃j) and B = F (xi), when
�=�uD for some ki0 ∈ K fulfilling the required attainment property). Choose the
index n0 := j with the smallest function value extremalterm.
if extremalterm ≤ 0 then

xi+1 := xi + hx̃n0 % new iteration point
j := 1
while F (xi + (j + 1)hx̃n0) � F (xi + jhx̃n0) and j ≤ jmax do

j := j + 1
xi+1 := xi+1 + hx̃n0 % new iteration point

end while
else

h := h/2
if h ≤ hmin then

STOP x := xi

end if
end if
i := i+ 1

end while

Output: An approximation x of a minimal solution of the set-valued problem (1.10) w.r.t.
�.

For one given starting point x0, Algorithm 2.3.2 approximates one minimal solution
of problem (1.10). To find more than one approximation of minimal solutions, one needs
to vary the input parameters, such as choosing a different starting point x0 ∈ Rn, or
modifying the vector k0 ∈ D\{0} (which should fulfill the required attainment property).
Determining efficient ways to ensure that all minimal solutions are well-approximated will
be the topic of future research.

We emphasize that for Algorithm 2.3.2, we do not need any convexity assumptions
on the considered sets. So in the following numerical example we turn our attention to
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a set-valued map with nonconvex images.

Example 2.3.3. Let ∆t := 2π/40 and T := {j ·∆t, j = 0, . . . , 40}. We define the set
valued mapping F : R2 ⇒ R2 by

F (x) :=

{(
x2

1 + x2
2 · sin(2t)

x2
2 + x2

1 · cos(3t)

) ∣∣∣∣ t ∈ T }
where x = (x1, x2)T . The example is chosen such that the unique minimizer is attained
at x = 0R2.

We apply Algorithm 2.3.2 to the problem with starting point x0 := (6, 5)T using the
natural ordering cone D := R2

+ and the upper set less relation �uD. Initial and minimal
step lengths h0 := 2.5 and hmin := 10−4 have been used.

For this discrete example the attainment property is trivially fulfilled such that any
k ∈ D \ {0} can be used in order to get the equivalences in Theorem 2.2.6. For the
numerical example presented here k0 := 1

2(
√

2,
√

2)T and ns := 5 search directions were
chosen.

Numerical results are depicted in Figure 2.7. On the diagrams to the left the iterates
xi ∈ R2 are shown with their corresponding image sets in the right diagrams. For this
setup the algorithm performed 35 main iterations and the objective function F is evaluated
240 times which is the appropriate measure of computational effort for realistic problems.

For the chosen minimal step length hmin the algorithm terminates at x35 ≈ 10−5 ·
(−3.894, 3.991)T which is clearly within a ball of radius hmin around the actual minimum.

Example 2.3.4 ([66, Example 4.7]). As a second example, we propose a set-valued
extension F : R2 ⇒ R2 of the linear-quadratic objective function

f(x1, x2) =

(
x2

1 + x2
2

2(x1 + x2)

)
.

To this end, the values are clustered on a circle around f similar to the previous example:

F (x1, x2) =

{
f(x1, x2) +

1

4

(
sin(t)
cos(t)

)
|t ∈ T̄

}
,

(
T̄ =

{
2π

14
· i|i = 0, 1, . . . , 13

})
.

Since functions with a similar form as f(x1, x2) form the basis of the Markowitz stock
model [82], this may—apart from the rather simple mathematical structure—be regarded
as a representative example for a large class of real-world applications. In this example we
do not consider convex objective sets only to simplify the reasoning that the optimal solu-
tions are aligned along the line x1 = x2, x1 ≤ 0 with objective values forming discretized
circles around the Pareto front {(f1, f2) : f2 ≤ 0, f1 = f2

2 /8}, where we considered again
the upper set less order relation and the natural ordering cone D = R2

+. The results for
algorithmic parameters k0 = (1, 1), imax = 40, jmax = 15, ns = 16 (equally distributed
search directions) are displayed in Figures 2.8 and 2.9 for the arguments and objective
values, respecively. Initial and minimal step sizes h0 = 1.1 and hmin = 10−4 have been
chosen and a series of 20 different starting points. It can clearly be seen that the algo-
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Figure 2.7: Numerical results for Example 2.3.3
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Figure 2.8: Iterates for Example 2.3.4: Argument space
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Figure 2.9: Iterates for Example 2.3.4: Objective space
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rithm robustly approximates different minimal solutions for varying starting points. For
better visualization we indicate the Pareto front of f and its respective argument values in
the plots as well. To judge the accuracy and efficiency of the method we also added some
performance statistics in Figure 2.10. It is verified that the algorithm approximates the
minimal elements sufficiently well, i. e. with errors smaller than the minimal step length.
The average error in argument values for all 20 experiments was 4.92 · 10−5 while in the

Figure 2.10: Performance statistics for Example 2.3.4

objective space (calculated as distance of the center points from the Pareto front) it was
on average even 1.61 · 10−9. The lower two plots in Figure 2.10 show that also regarding
efficiency the method performed satisfyingly. The average number of steps was found to
be 21.55 with an average number of function evaluations of 392.4.

2.3.2 Jahn-Graef-Younes Methods

In this section, our aim is to present algorithms for computing all minimal elements of
a nonempty finite family of sets A ⊆ P(Y ) with respect to a set relation � defined on
the power set P(Y ) of a real linear space Y . These algorithms are inspired from two
methods originally conceived for vector optimization problems:
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(i) Graef-Younes method, proposed by Younes [110] and formulated algorithmically
by Graef, as mentioned by Jahn [53, Sec. 12.4];

(ii) Jahn-Graef-Younes method, also called Graef-Younes method with backward it-
eration, proposed by Jahn [52, 53], Jahn and Rathje [57], and reformulated in a more
general setting by Eichfelder [24];

Our approach in this section is two-fold: First, we extend the well-known Jahn-
Graef-Younes method from vector to set optimization. The Jahn-Graef-Younes method
in vector optimization selects minimal elements of a set of finitely many elements. Its
advantage is that this method reduces the numerical effort by excluding elements which
cannot be minimal for a given set. Here we extend this method to the set-valued case
in order to obtain minimal elements of a family of finitely many sets. We propose
several extensions of the Jahn-Graef-Younes method under different assumptions on the
generalized set relations introduced in Section 2.2.

Secondly, when the involved sets are compared by means of any of those proposed set
relations, we use the results from Section 2.2 to evaluate A � B by using the nonlinear
scalarizing functional zD,k. The results presented in this chapter can be found in [68].

When the family of sets A is given by a large number of elements, it may take a long
time to compare the sets pairwise according to Definition 1.2.11. We propose a method
that significantly reduces the number of comparisons of sets. Reducing the numerical
effort is especially useful if each comparison is rather expensive. The following algorithm
filters out elements of a family of sets which cannot be minimal. This procedure extends
the Jahn-Graef-Younes method which is given in the dissertation by Younes [110], Jahn
and Rathje [57] (compare also Jahn [53, Section 12.4]) for minimal elements in the vector-
valued case, where Y = Rn. Eichfelder [25] formulated corresponding algorithms for
vector-valued problems with a variable ordering structure. We extend the idea of such
a method to set optimization problems, where we assume that a family of finitely many
sets A is given and minimal elements of A are to be identified.

Algorithm 2.3.5 ([68, Algorithm 4.2]). (Jahn-Graef-Younes method for sorting out non-
minimal elements of a family of finitely many sets)

Input: A := {A1, . . . , Am} ⊂ Rn, set relation �
% initialization
T := {A1},
% iteration loop
for j = 2 : 1 : m do

if (A � Aj , A ∈ T =⇒ Aj � A) then
T := T ∪ {Aj}

end if
end for
Output: T

Algorithm 2.3.5 is a reduction method which sorts out sets that cannot be minimal.
Moreover, it is a self learning method which becomes better and better in each step.
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In the if-statement of Algorithm 2.3.5, each element is compared only with elements
that have been considered so far (which belong to the set T ), so it is not necessary to
compare all elements with each other pairwise, which can reduce the computation time
of determining minimal elements significantly. Notice that the conditions A � Aj and
Aj � A in the if-statement in Algorithm 2.3.5 can be evaluated by means of computing
the nonlinear scalarizing functional zD,k (compare Theorems 2.2.6, 2.2.13, 2.2.25 and
Corollaries 2.2.18 and 2.2.21 for representations of different set relations by means of
zD,k). This will be done on page 38. Below we show that all minimal elements of the
family of sets A are contained in the output set T generated by Algorithm 2.3.5.

Theorem 2.3.6 ([68, Theorem 4.3]). 1. Algorithm 2.3.5 is well-defined.

2. Algorithm 2.3.5 generates a nonempty set T ⊆ A.

3. Every minimal element of A also belongs to the set T generated by Algorithm 2.3.5.

Proof. As 1. and 2. are obvious, we only prove part 3. Let Aj be a minimal element of
A, but assume that Aj /∈ T . Clearly j 6= 1. As Aj is a minimal element of A, we have

A � Aj , A ∈ A =⇒ Aj � A.

Since T ⊆ A, we have
A � Aj , A ∈ T =⇒ Aj � A.

But then the condition in the if-statement is fulfilled and Aj is added to T , which is a
contradiction to our assumption.

As mentioned before, the conditions A � Aj and Aj � A in the if-statement in
Algorithm 2.3.5 shall be evaluated by means of the nonlinear scalarizing functional zD,k

for all introduced set relations. In order to prepare this evaluation, we first consider the
following attainment properties:

Assumption 2.3.7 (Attainment Property). (u) Assume that there exist ku0 , k
u
1 ∈ Y \

{0} satisfying (2.1) such that infa∈Aj z
D,ku0 (a − a) is attained for all a ∈ A and

infa∈A z
D,ku1 (a− a) is attained for all a ∈ Aj.

(l) Assume that there exist kl0, k
l
1 ∈ Y \{0} satisfying (2.1) such that infa∈A z

D,kl0(a−a)

is attained for all a ∈ Aj and infa∈Aj z
D,kl1(a− a) is attained for all a ∈ A.

(s) Assume that there exist ks0, k
s
1, k

s
2, k

s
3 ∈ Y \{0} satisfying the inclusion (2.1) such

that infa∈Aj z
D,ks0(a−a) is attained for all a ∈ A, infa∈A z

D,ks1(a−a) is attained for
all a ∈ Aj, infa∈A z

D,ks2(a − a) is attained for all a ∈ Aj and infa∈Aj z
D,ks3(a − a)

is attained for all a ∈ A.

(p) Assume that there exist kp0, k
p
1 ∈ Y \ {0} satisfying the inclusion (2.1) such that

inf(a,a)∈A×Aj z
D,kp0 (a− a) and inf(a,a)∈A×Aj z

D,kp1 (a− a) are attained.
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Remark 2.3.8 ([68, Remark 4.5]). The attainment properties above are important for
the representation of the introduced generalized set relations by means of the nonlin-
ear scalarizing functional zD,k (compare Theorems 2.2.6, 2.2.13, 2.2.25 and Corollary
2.2.18). Sufficient conditions ensuring the existence of solutions of corresponding op-
timization problems (extremal principles) are given in the literature. The well-known
Theorem of Weierstrass says that a lower semi-continuous function on a nonempty com-
pact set has a minimum. An extension of the Theorem of Weierstrass is given by Zeidler
[113, Proposition 9.13]: A proper lower semi-continuous and quasi-convex function on a
nonempty closed bounded convex subset of a reflexive Banach space has a minimum. Tak-
ing into account that the functional zD,k0 is lower semi-continuous and convex if D ⊂ Y
is a proper closed convex cone and k0 ∈ D \ {0} (compare Theorem 2.1.2), we get that
the attainment property for infa∈A z

D,k0(a − b) (with b ∈ B fixed) is fulfilled if A is a
nonempty closed bounded convex subset of a reflexive Banach space and D is a proper
closed convex cone.

In the following, we will give an implementation of the implication A � Aj , A ∈
T =⇒ Aj � A in Algorithm 2.3.5 in order to show how we are using the results
from Section 2.2 for deriving the algorithm. Especially in Step 5 of the following imple-
mentation of Algorithm 2.3.5 it can be seen that the results concerning the scalarizing
functional zD,k are important for computing minimal elements of the set A. In the fol-
lowing, we assume that the set relation used in Algorithm 2.3.5 is given by �tD, where
t is replaced by u, l, s, c, p for the generalized upper set less relation �uD, lower set
less relation �lD, set less relation �sD, certainly set less relation �cD or possibly set less
relation �pD, respectively.

We use the following implications (see Theorems 2.2.6, 2.2.13, 2.2.25 and Corollar-
ies 2.2.18 and 2.2.21) in our implementation of Algorithm 2.3.5 (note that these are
equivalent to A � Aj =⇒ Aj � A under appropriate attainment properties):
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sup
a∈A

inf
a∈Aj

zD,k
u
0 (a− a) ≤ 0 =⇒ sup

a∈Aj
inf
a∈A

zD,k
u
1 (a− a) ≤ 0 (Iu)

sup
a∈Aj

inf
a∈A

zD,k
l
0(a− a) ≤ 0 =⇒ sup

a∈A
inf
a∈Aj

zD,k
l
1(a− a) ≤ 0 (Il)

sup
a∈A

inf
a∈Aj

zD,k
s
0(a− a) ≤ 0 ∧ sup

a∈Aj
inf
a∈A

zD,k
s
2(a− a) ≤ 0

=⇒ sup
a∈A

inf
a∈A

zD,k
s
1(a− a) ≤ 0 ∧ sup

a∈A
inf
a∈Aj

zD,k
s
3(a− a) ≤ 0

(Is)


(A = Aj) ∨ sup

a∈A
sup
a∈Aj

zD,k(a− a) ≤ 0

=⇒ (A = Aj) ∨ sup
a∈Aj

sup
a∈A

zD,k(a− a) ≤ 0
(Ic)

inf
a∈A

inf
a∈Aj

zD,k
p
0 (a− a) ≤ 0 =⇒ inf

a∈Aj
inf
a∈A

zD,k
p
1 (a− a) ≤ 0 (Ip)

The following implementation of Algorithm 2.3.5 checks whether the implication
A � Aj , A ∈ T =⇒ Aj � A in the if -statement in Algorithm 2.3.5 is fulfilled for
some input Aj , given T , and t ∈ {u, l, s, c, p} for �tD:=� which was chosen in the input
of Algorithm 2.3.5. If this implication is satisfied for all A ∈ T , then the set Aj is added
to the family of sets T . Then the for-loop in Algorithm 2.3.5 continues with j := j + 1.
If this implication is not fulfilled for some A ∈ T , then the for-loop in Algorithm 2.3.5
continues with j := j + 1, but the set Aj is not added to the family of sets T . Note that
the set K := {k ∈ Y \ {0} | D+ [0,+∞) ·k ⊆ D}, which is necessary for the definition of
the functional zD,k, as k ∈ K, should be determined at the beginning of Algorithm 2.3.5.
Furthermore, notice that the set D and t ∈ {u, l, s, c, p} were already chosen in the input
of Algorithm 2.3.5.

Realization the implication A �tD Aj , A ∈ T =⇒ Aj �tD A in Algorithm 2.3.5:

Input: T and j

Step 1: Set T̃ := T . Go to Step 2.

Step 2: If T̃ = ∅, then the implication A �tD Aj , A ∈ T =⇒ Aj �tD A

holds and STOP. Otherwise, go to Step 3.

Step 3: Choose A ∈ T̃ . Set T̃ := T̃ \ {A}. Go to Step 4.
Step 4: When t ∈ {u, l, p, s}, choose ktr ∈ K (r = 0, 1 if t ∈ {u, l, p},

r = 0, 1, 2, 3 if t = s) such that Assumption 4.3 (t) is fulfilled.
When t = c, choose k ∈ K. Go to Step 5.

Step 5: If the implication (It) is true, then go to Step 2.
Otherwise, the implication does not hold and STOP.

Remark 2.3.9 ([68, Remark 4.6]). The above implementation of the implication A �tD
Aj , A ∈ T =⇒ Aj �tD A Algorithm 2.3.5 is especially easy for the generalized certainly
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less relation �cD (when t = c), as no attainment property needs to be fulfilled for this
particular set relation (compare Theorem 2.2.20).

Example 2.3.10 ([68, Example 4.7]). Let D := R2
+ and �:=�cD. We have randomly

computed 1,000 sets, for easy comparison each set is a ball of radius one in R2. Out of
those 1,000 sets, a total number of 93 are minimal w.r.t. to �. Algorithm 2.3.5 generates
103 sets in T , which is already a reduction of 897 sets. In Figure 2.11 the elements of
the set T are the filled circles.

Figure 2.11: A randomly generated family of sets. The filled circles belong to the set T
generated by Algorithm 2.3.5.

Remark 2.3.11. Notice that the set relation � does not need to be transitive in Algorithm
2.3.5, in contrast to descent methods (see Jahn [55]), which rely on the transitivity of the
considered set relation.

Example 2.3.12 ([68, Example 4.9]). Let D := R2
+, �:=�cD, A1 := B1(3, 3), A2 :=

B1(5, 5), A3 := B1(0, 0) (where B1(y1, y2) denotes the closed ball of radius one around the
point (y1, y2) ∈ R2). Let the family of sets be given by these balls, i.e., A := {A1, A2, A3}.
The only minimal element of A w.r.t. � is A3 = B1(0, 0). Algorithm 2.3.5 generates the
set T := {A1, A3}.

In the following, we will apply the for-loop in Algorithm 2.3.5 backwards. This will
lead to Algorithm 2.3.15 presented on page 40, which determines all minimal elements
of a family of sets under an external stability assumption on the set of minimal elements
A�, when the set relation is antisymmetric. For example, the generalized certainly less
relation �cD is antisymmetric if D is a pointed cone (see Proposition 2.3.22). We use the
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following notion of external stability of the set Amin, i.e., the set of all minimal elements
of A w.r.t. the set relation �.

Definition 2.3.13. If for all non-minimal elements A ∈ A\Amin there exists a minimal
element A ∈ Amin with A � A, then Amin is called externally stable.

Remark 2.3.14 ([40, Remark 2.2]). It is well-known that every nonempty finite subset
of a general preordered set is externally stable (see, e.g., Podinovskĭı and Nogin [92, p.
21]). Thus, whenever A is nonempty and finite and � is a preorder, the set Amin is
externally stable.

Algorithm 2.3.15 ([68, Algorithm 4.11]). (Jahn-Graef-Younes method with backward
iteration for finding minimal elements of a family of finitely many sets, where Amin is
externally stable)

Input: A := {A1, . . . , Am} ⊂ Rn, antisymmetric set relation �
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if (A � Aj , A ∈ T =⇒ Aj � A) then
T := T ∪ {Aj}

end if
end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if (A � Aj , A ∈ U =⇒ Aj � A) then
U := U ∪ {Aj}

end if
end for
Output: U

Theorem 2.3.16 ([68, Theorem 4.12]). Let the set relation � be antisymmetric and the
set of minimal elements Amin be nonempty and externally stable. Then the output U of
Algorithm 2.3.15 consists of exactly all minimal elements of the family of sets A.

Proof. Let U := {A1, . . . , Aq}. By assertion 3 of Theorem 2.3.6, we know that all minimal
elements of A are contained in T as well as in U . Now we prove that every element of U
is also a minimal element of the set A. Let Aj ∈ U be arbitrarily chosen. By the forward
iteration of Algorithm 2.3.15, we obtain

∀ i < j (i ≥ 1) : Ai � Aj =⇒ Aj � Ai.
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The backward iteration of Algorithm 2.3.15 yields

∀ i > j (i ≤ q) : Ai � Aj =⇒ Aj � Ai.

This means that
∀ i 6= j (1 ≤ i ≤ q) : Ai � Aj =⇒ Aj � Ai. (2.8)

(2.8) implies that

∀ Ai ∈ U \ {Aj} : Ai � Aj =⇒ Aj � Ai.

Then Aj is a minimal element of U . Now suppose that Aj is not a minimal element in
A, then Aj /∈ Amin. Then, as Amin was assumed to be externally stable, there exists
a minimal element A in Amin (especially, A 6= Aj) with the property A � Aj . Since A
is a minimal element in A, Theorem 2.3.6, 3. implies that A ∈ U . Therefore, by (2.8),
Aj � A, as Aj is minimal in U and A ∈ U . By the antisymmetry of the set relation �,
we obtain A = Aj , a contradiction.

It is again possible to formulate an implementation the implication A � Aj , A ∈
T =⇒ Aj � A of Algorithm 2.3.15. This can be performed for the first for-loop
analogously to the process on page 38, and for the second for-loop simply by replacing
T by U and changing j := j + 1 to j := j − 1.

Example 2.3.17 ([68, Example 4.13]). We return to Example 2.3.12. The backward
iteration in Algorithm 2.3.15 generates the set U = {A3}, which is exactly the minimal
element of A w.r.t. �.

Example 2.3.18 ([68, Theorem 4.14]). The minimal elements of the randomly generated
family of sets of Example 2.3.10 are illustrated as dark filled circles in Figure 2.12. The
remaining elements which are lighter belong to the set T , but not to U .

In the following, we give a sufficient condition for the set of minimal elements Amin
to be externally stable (see also Remark 2.3.14).

Lemma 2.3.19 ([68, Lemma 4.15]). Let a family A of finitely many nonempty subsets
of Y be given and let the set relation � be transitive and antisymmetric. Assume that
the set of minimal elements w.r.t. �, denoted as Amin, is nonempty. Then Amin is
externally stable.

Proof. Let some A ∈ A, and A is assumed to be not minimal w.r.t. �. Then there
exists some A1 ∈ A such that A1 � A and A 6� A1. If A1 ∈ Amin, then there is nothing
to show. If A1 /∈ Amin, then there exists some A2 ∈ A with A2 � A1 and A1 6� A2.
As � is transitive, we get A2 � A. As A consists of finitely many elements and � is
antisymmetric, this procedure stops with a minimal element.
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Figure 2.12: A randomly generated family of sets. The minimal elements w.r.t. �cD are
dark, the lighter sets belong to the set T generated by Algorithm 2.3.15.

Remark 2.3.20 ([68, Remark 4.16]). Let us briefly explain the difference between our
extension of the Jahn-Graef-Younes-Algorithm to set optimization to the originally intro-
duced version by Younes (compare [53, Section 12.4]) in vector optimization. Let Y = Rn
with the ordering ≤C induced by a closed convex cone C. The if-statement in the original
Jahn-Graef-Younes-Algorithm in vector optimization reads

for all y ∈ T \ {y} : y 6≤C yj ,

and transferring this notion to our set optimization setting would yield the condition

for all A ∈ T \ {Aj} : A 6� Aj .

However, then the set T generated by Algorithm 2.3.5 would possibly not contain all
minimal elements. The reason for this is the following: We work with the minimality
notion given in Definition 1.2.11:

A � A, A ∈ A =⇒ A � A . (2.9)

However, the implication (2.9) does not imply

∀ A ∈ A \ {A} : A 6� A, (2.10)

unless � is antisymmetric. We note that (2.10) always implies (2.9), even if � is not
antisymmetric. We exemplarily illustrate this with a small example in vector optimiza-
tion. Let a = (a1, a2) ∈ R2 be given, C := {y ∈ R2 | aT y ≥ 0}, A = {y ∈ R2 | aT y = 0}
and A ∈ A arbitrarily given. The binary relation ≤C :=� is defined as y1 ≤C y2 :⇐⇒



CHAPTER 2. GENERALIZED SET RELATIONS 43

y1 ∈ y2−C. Then all elements in A are minimal w.r.t. �. Then (2.9) is satisfied for all
A = y ∈ A. However, we have for all y1, y2 ∈ A the relation y1 ≤C y2. Therefore, (2.10)
does not hold true for any A = y ∈ A. The reason, of course, is that the cone C is a
halfspace and therefore not pointed, hence the binary relation ≤C is not antisymmetric.

The above remark also relates to the following proposition:

Proposition 2.3.21 ([68, Proposition 4.17]). We consider the statements

@ A ∈ A \ {A} : A � A (2.11)

and
A � A, A ∈ A =⇒ A � A. (2.12)

Then we have (2.11) =⇒ (2.12). Conversely, if � is antisymmetric, then (2.12) implies
(2.11).

Proof. Let (2.11) be true, and suppose that (2.12) is not fulfilled. Then there is some
A ∈ A \ {A} such that A � A, but A 6� A. Because of (2.11), we obtain A = A, a
contradiction.

Conversely, let (2.12) be fulfilled, but suppose that (2.11) does not hold. Then there
exists some A ∈ A \ {A} with the property A � A. By (2.12), we get A � A. As � was
assumed to be antisymmetric, this yields A = A, a contradiction.

By the above results, it is possible to replace the if-condition in Algorithms 2.3.5
and 2.3.15 by A 6� Aj for all A ∈ T (and A 6� Aj for all A ∈ U in the backwards-
iteration of Algorithm 2.3.15) under the assumption that the set relation � is antisym-
metric. However, among our introduced generalized set relations, only the generalized
certainly less relation �cD is antisymmetric if D is a pointed cone (i.e., the cone D fulfills
D ∩ (−D) = {0}). One possibility to overcome this issue is to use different notions of
minimality, as it has been done in Köbis and Le [69]. In [69], strict, strong and ideal min-
imal solutions have been introduced and numerical methods based on Jahn-Graef-Younes
algorithms have been presented and analyzed.

Notions similar to antisymmetry, that are fulfilled by �uD, �lD and �sD, are summa-
rized below (see [59, Chapter 2.6.2]).

Proposition 2.3.22 ([68, Proposition 4.18]). 1. If D is a convex cone, then A �uD B
and B �uD A imply that A−D = B −D.

2. If D is a convex cone, then A �lD B and B �lD A imply that A+D = B +D.

3. If D is a convex cone, then A �sD B and B �sD A imply that A−D = B −D and
A+D = B +D.

4. If D is a pointed cone, then the generalized certainly set relation �cD is antisym-
metric. Moreover, A �cD B and B �cD A imply that the set A = B is single-valued.
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Proof. The first three assertion are obvious. Concerning the last statement, the assertions
a− b ∈ −D for all a ∈ A and for all b ∈ B and a− b ∈ D for all a ∈ A and for all b ∈ B
imply that a = b all a ∈ A and for all b ∈ B.

Though �uD, �lD and �sD are not antisymmetric in A, we can use Algorithm 2.3.15
effectively to some antisymmetric subfamily of A. This analysis is presented in [68] along
with an algorithm to create such an antisymmetric subfamily.

Finally, we propose the following algorithm that does not rely on antisymmetry or
external stability of the set relation �. The idea stems from Eichfelder [25, Algorithm 1],
who gave a similar numerical procedure for finding minimal elements in vector optimiza-
tion with a variable domination structure. In the following algorithm, a third for-loop is
added which compares the elements that were obtained in the set U by Algorithm 2.3.15
with all remaining elements in A \ U .

Algorithm 2.3.23 ([68, Algorithm 4.21]). (Jahn-Graef-Younes method with backward
iteration for finding minimal elements of a family of finitely many sets)

Input: A := {A1, . . . , Am} ⊂ Rn, set relation �
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if (A � Aj , A ∈ T =⇒ Aj � A) then
T := T ∪ {Aj}

end if
end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if (A � Aj , A ∈ U =⇒ Aj � A) then
U := U ∪ {Aj}

end if
end for
{A1, . . . , Aq} := U
V := ∅
% final comparison
for j = 1 : 1 : q do

if (A � Aj , A ∈ A \ U =⇒ Aj � A) then
V := V ∪ {Aj}

end if
end for
Output: V
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Theorem 2.3.24 ([68, Theorem 4.22]). Algorithm 2.3.23 consists of exactly all minimal
elements of the family of sets A.

Proof. Let Aj be an arbitrary element in V. Then Aj ∈ U , as V ⊆ U , and

A � Aj , A ∈ A \ U =⇒ Aj � A.

Suppose that Aj is not minimal in A. Then there exists some A ∈ A such that A � Aj
and Aj 6� A. If A /∈ U , then this is a contradiction. If A ∈ U , then A is also minimal in
U (compare the proof of Theorem 2.3.16). Since Aj ∈ U , and Aj is also minimal in U ,
we obtain from A � Aj that Aj � A, a contradiction.

Conversely, let Aj be minimal in A. Then we get

A � Aj , A ∈ A =⇒ Aj � A.

Now suppose that Aj /∈ V. Then there exists some A ∈ A \ U with A � Aj and Aj 6� A.
As Aj is minimal in A, we get Aj � A, a contradiction.

Remark 2.3.25 ([68, Remark 4.23]). Note that it is again possible to evaluate the im-
plication

A � Aj , A ∈ T (U , A \ U , resp.) =⇒ Aj � A

in Algorithm 2.3.23 by means of the nonlinear scalarizing functional zD,k. This can be
done analogously to the proposed process on page 38, but we refrain from repeating it here
due to its similarities.

Example 2.3.26 ([68, Example 4.24]). Let D := R2
+ and �:=�uD. We use the same

family of randomly computed sets from Example 2.3.10. Out of the considered 1.000 sets,
a total number of 5 are minimal w.r.t. to �. Algorithm 2.3.23 first generates 18 sets
in T , which is already a huge reduction, and finally collects all minimal elements within
the set U , which coincides with V. In Figure 2.13 the minimal elements are darkly filled,
while the lighter sets are those elements that are not minimal, but belong to the set T . Of
course, in our case the set of minimal elements is externally stable because of the unified
structure of the sets.

Example 2.3.27 ([68, Example 4.25]). Let D := R2
+, �:=�pD, A1 := {(0, 0)}, A2 :=

{(1, 1), (2,−1)}, A3 := {(3,−0.5)}. The family of sets is given as A := {A1, A2, A3}.
The only minimal element of A w.r.t. � is A1 = {0, 0}. Algorithm 2.3.5 generates the
sets T := {A1, A3} and U = {A3, A1}. A final comparison then yields V = {A1}.

Remark 2.3.28 ([68, Example 4.26]). A finite family of sets A can also be computed
by an appropriate discretization of the outcome sets of the considered (continuous) set
optimization problem.

Note that our generalizations of Jahn-Graef-Younes methods have recently been ex-
tended to obtain different solution concepts, namely, to strict and strong solutions of
set-valued optimization problems (see [69]).
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Figure 2.13: The lightly filled circles belong to the set T generated by Algorithm 2.3.23
and the darkly filled circles are the elements which are minimal w.r.t. �uD (see Example
2.3.26).

2.4 A New Set Relation in Set Optimization

In this section, it is our goal to introduce a new set relation that can be regarded as
a “weighting” between two prominent set relations, namely the relations �uD and �lD.
We discuss its properties, formulate a set optimization problem by means of this new
set relation, give an existence theorem and propose a numerical method for obtaining
approximations of minimal elements. The results in this section rely mainly on [16].

2.4.1 Formulation of the New Set Relation and its Properties

So far, we have recalled and extended different set relations from the literature in order
to compare sets in abstract spaces. Among those, the set relations �uD and �lD play
a crucial role in applications involving uncertainty (see Chapter 5). The upper set less
relation �uD is widely used to model robust solutions of uncertain vector optimization
problems, whereas the lower set less relation �lD can be utilized in order to obtain solu-
tions that work well in the best-case scenario (so-called optimistic solutions). However,
these relations are somewhat counterparts of each other and do not reflect well the at-
titude of a decision maker who is looking for a compromise. In this section, we will
introduce a new set relation that resolves this issue. The new relation, that is based on
the characterizations given in Theorems 2.2.6 and 2.2.13, will involve both the upper as
well as the lower set relation as special cases, and allows to alternate between the two in
a continuous manner.

Throughout this section, we assume that the attainment properties in Theorems 2.2.6
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and 2.2.13 are satisfied. For this reason we need some further assumptions on the sets
A,B ∈ P(Y ) (see Assumption 2.4.1 below).

Assumption 2.4.1. Let Y be a real quasicompact topological linear space, D ∈ P(Y ) a
closed proper convex cone with nonempty interior, k ∈ intD, and assume that A,B ∈
P(Y ) are closed and bounded.

Now we are ready to present a new set relation.

Definition 2.4.2 ([16, Definition 2.5]). Let Assumption 2.4.1 be satisfied, and let λ ∈
[0, 1]. The weighted set relation �λD is defined for two sets A,B ∈ P(Y ) by

A �λD B :⇐⇒ λgu(A,B) + (1− λ)gl(A,B) ≤ 0,

where

gu(A,B) := sup
a∈A

inf
b∈B

zD,k(a− b),

gl(A,B) := sup
b∈B

inf
a∈A

zD,k(a− b).

Remark 2.4.3 ([16, Remark 2.6]). We assume that D has nonempty interior in As-
sumption 2.4.1, because we need this property in order to show that �λD is reflexive (see
Proposition 2.4.6, (iii), below). This assumption facilitates the presumption of the attain-
ment properties in Theorems 2.2.6 and 2.2.13: According to Theorem 2.1.2, the functional
zD,k (with k ∈ intD and D a proper closed convex cone) is continuous. Therefore, by
the well-known Theorem of Weierstrass, we get that the attainment properties in Theo-
rems 2.2.6 and 2.2.13 are fulfilled if the involved sets are nonempty closed bounded subset
of a real quasicompact topological linear space Y . If Assumption 2.4.1 is fulfilled, then we
can assume that for any k ∈ intD, infb∈B z

D,k(a− b) and infa∈A z
D,k(a− b) are attained

for each a ∈ A, b ∈ B, respectively.

Remark 2.4.4 ([16, Remark 2.7]). Obviously, if λ = 1, then A �λD B if and only if
A �uD B. For λ = 0, we have A �λD B if and only if A �lD B. If A �uD B and
A �lD B hold, then A �λD B is true for all λ ∈ [0, 1]. The converse is not true, and this
is exactly the intention of introducing �λD: The parameter λ serves as a weight factor
which indicates the importance of either of the two relations �uD and �lD. The relation
which is more important should be associated with a higher weight factor. For instance,
if gu(A,B) ≤ 0 and gl(A,B) > 0, then, for large enough λ, A �λD B can hold and then
A �uD B “outweighs” the effects of A 6�lD B.

Proposition 2.4.5 ([16, Proposition 2.8]). Let Assumption 2.4.1 be satisfied. Then
A 6⊆ A− intD and A 6⊆ A+ intD.

Proof. Suppose that A ⊆ A− intD. Then A−D ⊆ A− intD −D ⊆ A− intD. Since A
is nonempty, closed and bounded, ∅ 6= A −D 6= Y and ∅ 6= A − intD 6= Y . It is worth
noting that A−D is a closed set and A− intD is an open set. Taking into account that
A− intD ⊆ A−D, we have A−D = A− intD. This implies that A−D = ∅ (or, Y ) and
A − intD = ∅ (or, Y ), which is a contradiction. The case A 6⊆ A + intD can be derived
similarly.
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Proposition 2.4.6 ([16, Proposition 2.9]). Let Assumption 2.4.1 be satisfied and, addi-
tionally, let C ∈ P(Y ) be closed and bounded. Then the following assertions hold:

(i) We have

gu(A,C) ≤ gu(A,B) + gu(B,C),

gl(A,C) ≤ gl(A,B) + gl(B,C).

(ii) gu(αA,αB) = αgu(A,B) and gl(αA,αB) = αgl(A,B) for any α ≥ 0.

(iii) For any λ ∈ [0, 1] the relation �λD is reflexive and transitive. Hence, �λD is a
preorder.

(iv) The relation �λD is compatible with nonnegative scalar multiplication, i.e., for given
A,B ∈ P(Y ) and any α ≥ 0, we have

A �λD B =⇒ αA �λD αB.

Proof. (i) Choose b ∈ B such that supa∈A z
D,k(a− b) := supa∈A infb∈B z

D,k(a− b). Such
a b always exists according to Assumption 2.4.1 (see also Remark 2.4.3). Then

gu(A,C) = sup
a∈A

inf
c∈C

zD,k(a− c) = sup
a∈A

inf
c∈C

zD,k(a− b+ b− c)

≤ sup
a∈A

inf
c∈C

(
zD,k(a− b) + zD,k(b− c)

)
(as zD,k is subadditive)

= sup
a∈A

zD,k(a− b) + inf
c∈C

zD,k(b− c)

= sup
a∈A

inf
b∈B

zD,k(a− b) + inf
c∈C

zD,k(b− c)

≤ sup
a∈A

inf
b∈B

zD,k(a− b) + sup
b∈B

inf
c∈C

zD,k(b− c).

The triangle inequality for gl follows a similar pattern, so the proof is omitted here.

(ii) We have for any α > 0,

gu(αA,αB) = sup
a∈αA

inf
b∈αB

zD,k(a− b)

= sup
a
α
∈A

inf
b
α
∈B

zD,k(a− b)

= sup
ã∈A

inf
b̃∈B

zD,k(ãα− b̃α) (with ã :=
a

α
, b̃ :=

b

α
)

= sup
ã∈A

inf
b̃∈B

αzD,k(ã− b̃) (as zD,k is positive homogeneous)

= α sup
ã∈A

inf
b̃∈B

zD,k(ã− b̃) = αgu(A,B).

For α = 0, gu(0, 0) = 0 is obvious. The proof for gl is similar and left out.
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(iii) Here we show that, for arbitrary sets A ∈ P(Y ), gu(A,A) = 0. We already know
that gu(A,A) ≤ 0, as A ⊆ A − D is fulfilled, and according to Theorem 2.2.6, this is
equivalent to gu(A,A) ≤ 0. Suppose now that gu(A,A) < 0. Then we have

sup
a∈A

inf
a∈A

zD,k(a− a) < 0.

This means that for all a ∈ A, infa∈A z
D,k(a − a) < 0. Due to Assumption 2.4.1,

for all a ∈ A there exists some ã ∈ A such that zD,k(a − ã) < 0. It follows from
Theorem 2.1.2 (iv) that a − ã ∈ −intD, and so, A ⊆ A − intD, which contradicts the
fact that A 6⊆ A− int D.

Note that A ⊆ A + D, as 0 ∈ D. Again, from Theorem 2.2.13, it yields that
gl(A,A) ≤ 0. The case gl(A,A) = 0 can be proven similarly, leading to the contradiction
that A ⊆ A+ intD when assuming gl(A,A) < 0.

Therefore, gu(A,A) = gl(A,A) = 0, which implies A �λD A, and �λD is reflexive.
Now we show that �λD is transitive for arbitrary λ ∈ [0, 1]. Let the sets A,B,C be

given according to Assumption 2.4.1, and let A �λD B and B �λD C. Then

λgu(A,B) + (1− λ)gl(A,B) ≤ 0,

λgu(B,C) + (1− λ)gl(B,C) ≤ 0.

It follows that

λ (gu(A,B) + gu(B,C)) + (1− λ)
(
gl(A,B) + gl(B,C)

)
≤ 0.

Due to the triangle inequality of gu and gl (see (i) above), we immediately obtain

λgu(A,C) + (1− λ)gl(A,C) ≤ 0,

which corresponds to A �λD C. That means that �λD is transitive. Hence, �λD is a
preorder.

(iv) Let A �λD B. From Definition 2.4.2, one has

λgu(A,B) + (1− λ)gl(A,B) ≤ 0.

This, together with (ii) shows that

λgu(αA,αB) + (1− λ)gl(αA,αB) = α
(
λgu(A,B) + (1− λ)gl(A,B)

)
≤ 0,

for all α ≥ 0, as required.

We provide an example below to illustrate the new relation �λD and discuss the role
of the parameter λ.
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Example 2.4.7 ([16, Example 2.10]). Let A := [a, a] and B := [b, b] be compact sets in
R. We choose D = R+ and k = 1. We have

gu(A,B) = sup
a∈A

inf
b∈B

zD,k(a− b) = sup
a∈A

inf
b∈B

inf{t ∈ R | a− b ≤ t}

= sup
a∈A

inf
b∈B

(a− b) = sup
a∈A

a− sup
b∈B

b = a− b,

gl(A,B) = a− b, gu(B,A) = b− a, gl(B,A) = b− a.

Let, for example, a = 5, a = 10, b = 0, b = 11. Then B 6�uD A, but B �lD A. Also,
A �uD B, but A 6�lD B. However, we can see that the “amount” of B that is bigger than
the supremum of A is very small compared to how the lower bound of B is smaller than
the lower bound of A. In that sense, when a decision-maker has no clear understanding
of how to choose a set, the new set relation �λD can be helpful. We have gu(A,B) = −1,
gl(A,B) = 5. So, in order for A �λD B to hold, λ ∈

[
5
6 , 1
]
. Similarly, as gu(B,A) = 1,

gl(B,A) = −5, λ ∈
[
0, 5

6

]
for B �λD A to hold true.

2.4.2 Formulation of Set Optimization Problems Using the New Set
Relation

For the remainder of Chapter 2.4, we assume that S ⊆ Rn. We use the following definition
of semicontinuity of a set-valued map w.r.t. a preorder � (see [56]).

Definition 2.4.8 (Semicontinuity). Let S ⊆ Rn. The set-valued mapping F : S ⇒ Rm
is called semicontinuous at x̄ ∈ S w.r.t. the preorder � if F (x̄) ∈ V, where V := {T ∈
A | T 6� V } for some V ∈ P(Rm), implies that there exists a neighborhood U of x̄ in Rn
such that F (x) ∈ V for all x ∈ U . In other words, F is semicontinuous at x̄ if

F (x̄) 6� V for some V ∈ P(Rm) =⇒ ∃ U(x̄) : F (x) 6� V ∀ x ∈ U.

F is called semicontinuous w.r.t. � if F is semicontinuous w.r.t. � at every x̄ ∈ S.

We provide the following example for a set-valued mapping that is semicontinuous
w.r.t. the the weighted set relation �λD introduced in Section 2.4.2.

Example 2.4.9 ([16, Example 3.3]). Let S = R and consider the set-valued mapping
F : S ⇒ R2 given by

F (x) := [(1− x, x), (1, 1)] ,

where [(a, b), (c, d)] is the line segment between (a, b) and (c, d), and the preorder �λD,
D = R2

+ and k ∈ D \ {0}. We can see that F is semicontinuous w.r.t. the weighted set
relation �λD for any λ ∈ [0, 1]: For λ = 1, we have, for V = {(0, 0)}, F (x) 6�λD V for all
x ∈ R. Therefore, for λ = 1, F is semicontinuous w.r.t. �λD. Similarly, for λ = 0 and by
choosing V = {(0, 0)}, we get that F (x) 6�λD V for all x ∈ R. That means that for λ = 0,
F is semicontinuous w.r.t. �λD. Since gu(F (x), V ) > 0 and gl(F (x), V ) > 0 for all
x ∈ R, we also obtain that λgu(F (x), V ) + (1−λ)gl(F (x), V ) > 0 for arbitrary λ ∈ [0, 1].
Therefore, we can conclude that F is semicontinuous w.r.t. �λD for any λ ∈ [0, 1].
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Definition 2.4.10 (Upper / Lower Semicontinuity, see [6]). Let S ⊂ Rn. A set-valued
mapping F : S ⇒ Rm is said to be

(i) upper semicontinuous at x̄ ∈ S if, for any neighborhood V of F (x̄), there exists a
neighborhood U (x̄) of x̄ such that

F (u) ⊆ V, ∀u ∈ U (x̄) .

(ii) lower semicontinuous at x̄ ∈ S if, for any x ∈ F (x̄) and any neighborhood V of x,
there exists a neighborhood U (x̄) of x̄ such that

F (u) ∩ V 6= ∅, ∀u ∈ U (x̄) .

We say that F is upper semicontinuous and lower semicontinuous on S if it is upper
semicontinuous and lower semicontinuous at each point x̄ ∈ S, respectively. We say that
F is continuous on S if it is both upper semicontinuous and lower semicontinuous on S.

For the sake of brevity, we give the following assumptions.

Assumption 2.4.11. Let D be a closed proper convex cone of Rm with nonempty inte-
rior, k ∈ intD, and the mapping F : S ⇒ Rm be nonempty and compact-valued (i.e., for
each x ∈ S, F (x) ∈ P(Rm) is a nonempty compact set ).

Assumption 2.4.12. Let x ∈ S. If F (x) 6�λD V for some V ∈ P(Rm), there exists a
closed and bounded set V̄ ∈ P(Rm) such that F (x) 6�λD V̄ .

Now we have the following existence result for problem (1.10) w.r.t. the new set
relation �λD introduced in Definition 2.4.2.

Corollary 2.4.13 ([16, Corollary 3.7]). Let Assumption 2.4.11 be satisfied. Suppose
that S is compact and that F is semicontinuous w.r.t. the preorder �λD on S. Then the
problem (1.10) has a minimal solution w.r.t. the preorder �λD.

Proof. The result follows immediately by [56, Theorem 5.1], since �λD is a preorder due
to Proposition 2.4.6.

Proposition 2.4.14 ([16, Proposition 3.8]). Let Assumptions 2.4.11 and 2.4.12 be sat-
isfied and F be continuous on S. Then F is semicontinuous w.r.t. the preorder �λD on
S.

Proof. Let x̄ ∈ S. If F (x̄) 6�λD V for some closed and bounded set V ∈ P(Rm), then

λgu(F (x̄), V ) + (1− λ)gl(F (x̄), V ) > 0.

From [6, Propositions 19 and 21], λgu(F (x), V ) + (1− λ)gl(F (x), V ) is continuous w.r.t.
x on S. So, there exists a neighborhood U of x̄ with US := U ∩ S such that

λgu(F (x), V ) + (1− λ)gl(F (x), V ) > 0, ∀ x ∈ US .

Definition 2.4.2 implies that F (x) 6�λD V for all x ∈ US .
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By the definition of minimal solutions of the problem (1.10) w.r.t. the preorder �λD,
we know that if x̄ ∈ S is a minimal solution of the problem (1.10) w.r.t. the preorder �λD
and F (x̃) �λD F (x̄) for some x̃ ∈ S, then x̃ is a minimal solution of the problem (1.10)
w.r.t. the preorder �λD. Denote

[F (x̄)]−1 :=
{
x ∈ S : F (x) �λD F (x̄), F (x̄) �λD F (x)

}
.

Let λ ∈ [0, 1]. We now define a function gλ : S × S → R ∪ {±∞} by

gλ(x, y) := λgu(F (x), F (y)) + (1− λ)gl(F (x), F (y)). (2.13)

Below, we propose a sufficient and necessary condition for minimal solutions of the
problem (1.10) w.r.t. the preorder �λD.
Theorem 2.4.15 ([16, Theorem 3.9]). Let Assumption 2.4.11 be satisfied and x̄ ∈ S.
Then x̄ is a minimal solution of the problem (1.10) w.r.t. the preorder �λD if and only if
the following system (in the unknown x):

gλ(x, x̄) ≤ 0, x ∈ S \ [F (x̄)]−1, (2.14)

is impossible.

Proof. Let x̄ ∈ S be a minimal solution of the problem (1.10) w.r.t. the preorder �λD.
For x ∈ S \ [F (x̄)]−1, we have F (x) 6�λD F (x̄). It follows from Definition 2.4.2 that

gλ(x, x̄) > 0.

This implies that the system (2.14) in the unknown x is impossible.
Conversely, assume that the system (2.14) in the unknown x is impossible. Then we

have for any x ∈ Rn, gλ(x, x̄) > 0 or, x 6∈ S \ [F (x̄)]−1. Particularly, one has for x ∈ S,

λgu(F (x), F (x̄)) + (1− λ)gl(F (x), F (x̄)) > 0 or, x ∈ [F (x̄)]−1.

This means that we have for x ∈ S, F (x) 6�λD F (x̄) or, x ∈ [F (x̄)]−1. Consequently,
x̄ ∈ S is a minimal solution of the problem (1.10) w.r.t. the preorder �λD.

Proposition 2.4.16 ([16, Proposition 3.10]). Let Assumption 2.4.11 be satisfied and F
be continuous on S. Then gλ(·, x) is continuous on S for all x ∈ S, and for each x̄ ∈ S,
gλ(x̄, ·) is continuous on S.

Proof. The result follows immediately by [6, Propositions 19 and 21].

Proposition 2.4.17 ([16, Proposition 3.11]). Let Assumption 2.4.11 be satisfied, x̄ ∈ S
and S \ [F (x̄)]−1 6= ∅. Suppose that S is convex and that F is continuous on S. If x̄
is a minimal solution of the problem (1.10) w.r.t. the preorder �λD, then there exists
x̃ ∈ [F (x̄)]−1 such that gλ(x̃, x̄) = 0.

Proof. From the proof of Theorem 2.4.15, we know that

gλ(x, x̄) > 0, x ∈ S \ [F (x̄)]−1.

Note that gλ(x̄, x̄) ≤ 0. It thus follows from Proposition 2.4.16 that there exists x̃ ∈
[x, x̄] ∩ [F (x̄)]−1, where x ∈ S \ [F (x̄)]−1 and [x, x̄] is the line segment between x and x̄,
such that gλ(x̃, x̄) = 0.
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2.4.3 Computing Approximations of Minimal Elements of Set Opti-
mization Problems Using a New Set Relation

As already pointed out, the set relation �λD is reflexive and transitive under the require-
ments in Assumption 2.4.1, such that a descent method is an appropriate tool to generate
approximations of minimal solutions of problem (1.10) w.r.t. �λD, where S = Rn. The
idea is that for a given starting point x0, neighboring points x are tested whether they
fulfill F (x) �λD F (x0). The advantage of the new set relation is that it provides us
with a possibility to decide whether two sets fulfill the set relation or not in a numerical
manner and even give a quantification by means of the extremal points of the functional
values gλ(x, x0) =: extremalterm. The point x with the smallest value extremalterm is
then chosen. This procedure continues until a maximal number of iterations is reached.
Moreover, the parameter λ is chosen from [0, 1], such that the output generates approx-
imations of minimal solutions of problem (1.10) w.r.t. �λD in terms of λ. This gives the
practitioner the chance to choose a solution based on his preferences.

Algorithm 2.4.18. (A descent method for finding an approximation of a minimal solu-
tion of the set-valued problem (1.10))
1: Input: F : Rn ⇒ Rm, S = Rn, ordering cone D with nonempty interior, preorder
�λD,

2: starting point x0 ∈ Rn, k ∈ intD, maximal number imax of iterations, number of
search

3: directions ns, maximal number jmax of iterations for the determination of the step
size,

4: initial step size h0 and minimum step size hmin, {λ1, . . . , λN} ⊂ [0, 1]
5: for p = 1 : 1 : N do
6: % initialization for the descent method
7: i := 0, h := h0

8: choose ns points x̃1, x̃2, . . . , x̃ns on the unit sphere around 0Rn

9: % iteration loop
10: while i ≤ imax do
11: check F (xi + hx̃j) �λpD F (xi) for every j ∈ {1, . . . , ns} by evaluating the

extremal
12: term (e. g. λpgu(A,B) + (1−λp)gl(A,B) for A = F (xi +hx̃j) and B = F (xi)).
13: Choose the index n0 := j with the smallest function value extremalterm.
14: if extremalterm ≤ 0 then
15: xi+1 := xi + hx̃n0 % new iteration point
16: j := 1

17: while F (xi + (j + 1)hx̃n0) �λpD F (xi + jhx̃n0) and j ≤ jmax do
18: j := j + 1
19: xi+1 := xi+1 + hx̃n0 % new iteration point
20: end while
21: else
22: h := h/2
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23: if h ≤ hmin then
24: STOP. Output: x(λp) := xi

25: end if
26: end if
27: i := i+ 1
28: end while
29: end for
30: Output: A set of approximations x of minimal solutions of the set-valued problem

(1.10) w.r.t. �λD depending on λ.

For one given starting point x0, Algorithm 2.4.18 approximates for each considered
λ ∈ [0, 1] one minimal solution of problem (1.10). Algorithm 2.4.18 is a descent method.
For one given starting point x0 and an approximation xi, we get that F (xi) �λD F (x0)
due to the transitivity of the set relation �λD.

We have the following easy corollary.

Corollary 2.4.19 ([16, Corollary 4.1]). Algorithm 2.4.18 is well-defined for arbitrary
input values.

In the following we use the definition of the functional gλ : S×S → R∪{±∞} given
in (2.13) by

gλ(x, y) = λgu(F (x), F (y)) + (1− λ)gl(F (x), F (y)).

We now set N0 := N ∪ {0}. In order to show a convergence result for Algorithm 2.4.18,
we need the following modifications in the algorithm:

(A) Assume that the pattern contains at least one direction of descent whenever a set
F (xi) (i ∈ N0) can be improved.

(B) Let some β ∈ (0, 1) and an arbitrary null sequence (εi)i∈N0 with εi < 0 for all i ∈ N0

be given. While gλ(xi+1, xi) ≤ εi, set h := βqh for q := 0, 1, 2, . . . after line 27 of
Algorithm 2.4.18.

Specification (A) means that if xi (i ∈ N0) is not the final iteration point, then
there exists a descent direction and a point x ∈ Rn such that gλ(x, xi) < 0. Due to
Proposition 2.4.16, the functional gλ is continuous under Assumption 2.4.11. It follows
that there exists some ball B(x, δ) around x with radius δ such that for all x ∈ B(x, δ),
gλ(x, xi) < 0. Therefore, refining the grid (that means allowing for different step sizes
and more search directions) will eventually lead to a descent direction, and specification
(A) can easily be fulfilled.

Specification (B) characterizes a certain kind of step length control.

Theorem 2.4.20 ([16, Theorem 4.2]). Let λ ∈ [0, 1] be given. Furthermore, let Assump-
tion 2.4.11 be satisfied, let Algorithm 2.4.18 with the additional specifications (A) and
(B) generate an iteration sequence (xi)i∈N0 and let the level set

Lx0 :=
{
x ∈ Rn | F (x) �λD F (x0)

}
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be compact, where x0 denotes the initial iteration point in Algorithm 2.4.18. Then

lim sup
i→+∞

gλ(xi+1, xi) = 0.

Proof. Since Algorithm 2.4.18 is a descent method by construction and the set relation
�λD is transitive by our assumptions, we have xi ∈ Lx0 for all i ∈ N0. Since the function
gλ is continuous due to Proposition 2.4.16, and because of the compactness of the level
set Lx0 , the function values gλ(xi+1, xi) with i ∈ N0 are bounded. Consequently, the limit
superior exists. We assume now that lim supi→+∞ gλ(xi+1, xi) 6= 0. Then there exists a
subsequence (xir)r∈N with limr→+∞ gλ(xir+1, xir) =: α 6= 0. By the specification (A),
we have F (xi+1) �λD F (xi) for all i ∈ N0, and we immediately obtain by definition of the
preorder

∀ i ∈ N0 : gλ(xi+1, xi) ≤ 0.

This means that α < 0. Then there exists some N1 ∈ N with

∀ r ≥ N1 : gλ(xir+1, xir) ≤ α

2
< 0.

As (εi)i∈N0 is a null sequence, there is some N2 ∈ N with the property

∀ r ≥ N2 :
α

2
≤ εir < 0.

This results in
∀ r ≥ max{N1, N2} : gλ(xir+1, xir) ≤ α

2
≤ εir .

This is a contradiction to specification (B).

2.5 Representation of Set Relations in Real Linear Spaces

Until now, we have performed our analysis on the real linear topological space Y . Quite
recently (see [43] and the references therein), the nonlinear scalarizing functional zD,k

has been extended to the case where no topology on the space Y is assumed. It is our
goal in this section to characterize the set relations from Section 2.2 in a real linear space.
The findings presented in this section rely mainly on [45].

2.5.1 Preliminaries

Throughout Section 2.5, let Y be a real linear space. For a nonempty set F ⊂ Y , we
denote by

corF := {y ∈ Y | ∀v ∈ Y ∃λ > 0 s.t. y + [0, λ]v ⊂ F}

the algebraic interior of F and by

vclF := {y ∈ Y | ∃v ∈ Y ∀λ > 0 ∃λ′ ∈ [0, λ] s.t. y + λ′v ∈ F}
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its vector closure. For any given k ∈ Y , let

vclk F := {y ∈ Y | ∀λ > 0 ∃λ′ ∈ [0, λ] s.t. y + λ′k ∈ F}

and
ovcl+∞k F := {y ∈ Y | ∀λ > 0 ∃λ′ ∈ [λ,+∞] s.t. y + λ′k ∈ F}.

We say that F is k-vectorially closed if vclk F = F , F is vectorially closed if vclF = F
and F is algebraically solid if corF 6= ∅. Obviously, it holds F ⊂ vclk F for all k ∈ Y .

Throughout Chapter 2.5, we consider the following set relations for A,B ∈ Y , A,B 6=
∅, A,B 6= Y :

1. generalized upper set less relation: A �uD,rls B :⇐⇒ A ⊆ B −D;

2. generalized lower set less relation: A �lD,rls B :⇐⇒ A+D ⊇ B;

3. generalized set less relation: A �sD,rls B :⇐⇒ A �uD,rls B and A �lD,rls B,

where the notion �··,rls indicates that we are working in a real linear space.
Let us recall the functional zD,k under more general assumptions: Let ∅ 6= D ⊂ Y

and k ∈ Y \ {0}. Then, we define zD,k : Y → R from Gerstewitz [32] (see Section 2.1)

zD,k(y) :=

{
+∞ if y /∈ Rk −D,
inf{t ∈ R | y ∈ tk −D} otherwise .

Below we provide some properties of the functional zD,k without any topology posed
on Y .

Proposition 2.5.1 ([44]). Let D and E be nonempty subsets of Y , and let k ∈ Y \ {0}.
Then the following properties hold.

(a) ∀ y ∈ Y : zD,k(y) ≤ 0 ⇐⇒ y ∈ (−∞, 0]k − vclkD.

(b) ∀ y ∈ Y : zD,k(y) < 0 ⇐⇒ y ∈ (−∞, 0)k − vclkD.

(c) zD,k is E-monotone if and only if E +D ⊂ [0,+∞)k + vclkD.

(d) ∀ y ∈ Y, ∀ r ∈ R : zD,k(y + rk) = zD,k(y) + r.

As the above set relations rely on set inclusions where the set D is attached pointwise
to the considered sets A,B ∈ P(Y ), we consider the following corollary that relates A+D
and A−D respectively by means of the functional zD,k in a real linear space Y which is
not a priori equipped with a given topology.

Corollary 2.5.2 ([45, Corollary 2.3]). Let D ⊂ Y a convex cone, A ∈ P(Y ) and k ∈
Y \ {0}. Then it holds

sup
a∈A

zD,k(a) = sup
y∈A−D

zD,k(y) and inf
a∈A

zD,k(a) = inf
y∈A+D

zD,k(y) .



CHAPTER 2. SET RELATIONS IN REAL LINEAR SPACES 57

Proof. We will only prove the first assertion, as the second one can be proven in a similar
manner. Let c ∈ D and a ∈ A be given. Because D is a convex cone, D + D ⊆
D ⊆ vclkD = {0} + vclkD ⊆ [0,+∞)k + vclkD holds true. Then one can use the
D-monotonicity of the functional zD,k (see Proposition 2.5.1 (c) with E = D) to show

zD,k(a) ≥ zD,k(a− c),

as a− c ∈ a−D implies zD,k(a− c) ≤ zD,k(a). Then we directly obtain

sup
a∈A

zD,k(a) ≥ sup
y∈A−D

zD,k(y).

The converse, i.e., supa∈A z
D,k(a) ≤ supy∈A−D z

D,k(y), follows directly from the defini-
tion of the supremum and 0 ∈ D, or in particular A ⊆ A−D.

2.5.2 Representation of Set Relations in a Real Linear Space

The following theorem shows a first connection between the upper set less relation and
the nonlinear scalarizing functional zD,k, where the space Y is not a priori equipped with
a topology.

Theorem 2.5.3 ([45, Theorem 3.2]). Let D ⊂ Y be a convex cone, A,B ∈ P(Y ) and
k ∈ Y \ {0}. Then

A �uD,rls B =⇒ sup
a∈A

zD,k(a) ≤ sup
b∈B

zD,k(b).

Proof. Because D is a convex cone, it holds D + D ⊆ D ⊆ vclkD = {0} + vclkD ⊆
[0,+∞)k+ vclkD. Due to Proposition 2.5.1 (c), we obtain the D-monotonicity property
of zD,k. Now let A ⊆ B−D. Then for all a ∈ A, there exists b ∈ B such that a ∈ b−D.
This immediately yields supa∈A z

D,k(a) ≤ supb∈B z
D,k(b).

The converse implication in Theorem 2.5.3 is not generally fulfilled, even if the un-
derlying sets are convex, see [66, Example 3.2]. However, we have the following result.

Theorem 2.5.4 ([45, Theorem 3.3]). Let D ⊂ Y . For two sets A,B ∈ P(Y ) and
k ∈ Y \ {0}, it holds

A �uD,rls B =⇒ sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B z
D,k0(a− b)

is attained for all a ∈ A, D is k0-vectorially closed and [0,+∞)k0 +D ⊆ D. Then

sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 =⇒ A �uD,rls B .
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Proof. Let A ⊆ B −D. This corresponds to

∀ a ∈ A ∃ b ∈ B : a− b ∈ −D ⊆ − vclkD .

Due to Proposition 2.5.1 (a), we obtain

∀ a ∈ A ∃ b ∈ B : zD,k(a− b) ≤ 0

and this directly implies the assertion, i.e., supa∈A infb∈B z
D,k(a−b) ≤ 0. Conversely, let

supa∈A infb∈B z
D,k0(a− b) ≤ 0. This means that for all a ∈ A, we have infb∈B z

D,k0(a−
b) ≤ 0. Because for all a ∈ A, infb∈B z

D,k0(a− b) is attained, we obtain

∀a ∈ A ∃b̄ ∈ B : zD,k0(a− b̄) = inf
b∈B

zD,k0(a− b) ≤ 0.

This implies
∀a ∈ A ∃b̄ ∈ B : a− b̄ ∈ (−∞, 0]k0 − vclk0 D.

Therefore, A ⊆ B + (−∞, 0]k0 − vclk0 D ⊆ B −D.

Remark 2.5.5 ([45, Remark 3.4]). (1) Note that for any A,B ∈ P(Y ), the set relation
A �uD,rls B by Theorem 2.5.4 also implies supk∈Y \{0} supa∈A infb∈B z

D,k(a− b) ≤ 0.
(2) Let A,B ∈ P(Y ) and D ⊂ Y . If there exists an element k0 ∈ D \ {0} such that
infb∈B z

D,k0(a−b) is attained for all a ∈ A, D is k0-vectorially closed and [0,+∞)k0+D ⊆
D, then it follows from Theorem 2.5.4 that

A �uD,rls B ⇐⇒ sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0

⇐⇒ sup
k∈Y \{0}

sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0.

The following example shows that the attainment property in Theorem 2.5.4 cannot
be omitted.

Example 2.5.6 ([45, Example 3.5]). Let Y = R2, A := {(0, 0)T }, B := {(y1, y2) ∈
R2 | y1, y2 ∈ (−1, 0)}, D = R2

+ and k0 = (1, 1)T . We have vclk0 D = D and [0,+∞)k0 +
D ⊆ D. It holds that supa∈A infb∈B z

D,k0(a − b) ≤ 0, however, A 6�uD,rls B. This is
because infb∈B z

D,k0(a− b) is not attained for a = (0, 0)T .

In the second part of Theorem 2.5.4, we need the assumption that there exists a
k0 ∈ Y \{0} such that infb∈B z

D,k0(a−b) is attained for all a ∈ A. As already mentioned
in Remark 2.3.8, sufficient conditions for such an attainment property, i.e., assertions
concerning the existence of solutions of the corresponding optimization problems (ex-
tremal principles) are given in the literature. Since the functional zD,k0 is studied here
in the context of real linear spaces that are not endowed with a particular topology,
we cannot rely on continuity assumptions. Therefore, we propose the following theorem
without any attainment property.
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Theorem 2.5.7 ([45, Theorem 3.6]). Let D ⊂ Y , A,B ∈ P(Y ) and k0 ∈ Y \ {0} such
that (−∞, 0)k0 − vclk0 D ⊆ −D and vcl−k0(B −D) ⊆ B −D. Then

sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 =⇒ A �uD,rls B .

Proof. Let supa∈A infb∈B z
D,k0(a− b) ≤ 0. This means that for all a ∈ A, the inequality

infb∈B z
D,k0(a− b) ≤ 0 holds true. Therefore, for all ε > 0 and for all a ∈ A there exists

b ∈ B such that zD,k(a− b) < ε. By means of Proposition 2.5.1 (d), we obtain

∀ ε > 0, ∀ a ∈ A, ∃ b ∈ B : zD,k0(a− b− εk0) < 0.

This implies by Proposition 2.5.1 (b) that

∀ ε > 0, ∀ a ∈ A, ∃ b ∈ B : a− b− εk0 ∈ (−∞, 0)k0 − vclk0 D.

This results in

∀ ε > 0 : A ⊆ B + εk0 + (−∞, 0)k0 − vclk0 D ⊆ B + εk0 −D ⊆ vcl−k0(B −D) ⊆ B −D.

We illustrate by the example below that the assumption vcl−k0(B −D) ⊆ B −D in
Theorem 2.5.7 cannot be dropped.

Example 2.5.8 ([45, Example 3.7]). We return to Example 2.5.6. We have vclk0 D = D,
and because k0 ∈ corD, (−∞, 0)k0 − vclk0 D ⊆ −D holds true. Moreover, the inequality
supa∈A infb∈B z

D,k0(a − b) ≤ 0 is fulfilled. Because A 6�uD,rls B, due to Theorem 2.5.7,
vcl−k0(B−D) ⊆ B−D cannot be satisfied. This is immediate, as vcl−k0(B−D) = −R2

+.

Because A �uD,rls B is equivalent to−B �lD,rls −A, we obtain the following corollaries
from Theorems 2.5.3, 2.5.4 and 2.5.7.

Corollary 2.5.9 ([45, Corollary 3.9]). Let D ⊂ Y be a convex cone, A,B ∈ P(Y ) and
k ∈ Y \ {0}. Then

A �lD,rls B =⇒ inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

Corollary 2.5.10 ([45, Corollary 3.10]). Let D ⊂ Y . For two sets A,B ∈ P(Y ) and
k ∈ Y \ {0}, it holds

A �lD,rls B =⇒ sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that
infa∈A z

D,k0(a−b) is attained for all b ∈ B, D is k0-vectorially closed and [0,+∞)k0+D ⊆
D. Then

sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 =⇒ A �lD,rls B .
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Corollary 2.5.11 ([45, Corollary 3.11]). Let D ⊂ Y , A,B ∈ P(Y ) and k0 ∈ Y \ {0}
such that (−∞, 0)k0 − vclk0 D ⊆ −D and vcl−k0(−A−D) ⊆ −A−D. Then

sup
b∈B

inf
a∈A

zD,k0(a− b) ≤ 0 =⇒ A �lD,rls B .

For the set less relation, we immediately obtain the following results.

Corollary 2.5.12 ([45, Corollary 3.13]). Let D ⊂ Y be a convex cone, A,B ∈ P(Y ) and
k ∈ Y \ {0}. Then

A �sD,rls B =⇒ sup
a∈A

zD,k(a) ≤ sup
b∈B

zD,k(b) and inf
a∈A

zD,k(a) ≤ inf
b∈B

zD,k(b).

Corollary 2.5.13 ([45, Corollary 3.14]). Let D ⊂ Y . For two sets A,B ∈ P(Y ) and
k ∈ Y \ {0}, it holds

A �sD,rls B =⇒ sup
a∈A

inf
b∈B

zD,k(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k(a− b) ≤ 0 .

Assume on the other hand that there exists a k0 ∈ Y \ {0} such that infb∈B z
D,k0(a− b)

is attained for all a ∈ A, and there exists k1 ∈ Y \ {0} such that infa∈A z
D,k1(a − b) is

attained for all b ∈ B, D is both k0- and k1-vectorially closed, [0,+∞)k0 + D ⊆ D and
[0,+∞)k1 +D ⊆ D. Then

sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k1(a− b) ≤ 0 =⇒ A �sD,rls B .

Corollary 2.5.14 ([45, Corollary 3.15]). Let D ⊂ Y , A,B ∈ P(Y ) and k0, k1 ∈ Y \ {0}
such that (−∞, 0)k0−vclk0 D ⊆ −D, (−∞, 0)k1−vclk1 D ⊆ −D, vcl−k0(B−D) ⊆ B−D
and vcl−k1(−A−D) ⊆ −A−D. Then

sup
a∈A

inf
b∈B

zD,k0(a− b) ≤ 0 and sup
b∈B

inf
a∈A

zD,k1(a− b) ≤ 0 =⇒ A �sD,rls B .

Now we intend to study set optimization problems in terms of (1.10) with Y being
a real linear space. By the definition of minimal solutions of the problem (1.10) w.r.t.
the relation �, we know that if x ∈ S is a minimal solution of the problem (1.10) w.r.t.
� and F (x̃) � F (x) for some x̃ ∈ S, then x̃ is a minimal solution of the problem (1.10)
w.r.t. � as well. Therefore, let us denote

[F (x)]−1
� := {x ∈ S : F (x) � F (x), F (x) � F (x)} .

We now consider problem (1.10) with �=�uD,rls, where D ⊂ Y is a nonempty set
(not necessarily convex). We define a function gu : S × S → R ∪ {±∞} by

gu(x, x) := sup
y∈F (x)

inf
y∈F (x)

zD,k(y − y).

Assumption 2.5.15. For D ⊂ Y , k ∈ Y \ {0}, and x ∈ S we assume that
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1. D is k-vectorially closed, [0,+∞)k + D ⊆ D, and for all x ∈ S \ [F (x)]−1
�uD,rls

and

y ∈ F (x), infy∈F (x) z
D,k(y − y) is attained; or

2. (−∞, 0)k − vclkD ⊆ −D and vcl−k(F (x)−D) = F (x)−D.

The following proposition will be useful in the theorem below.

Proposition 2.5.16. x ∈ S is a minimal solution of the problem (1.10) w.r.t. � if and
only if for any x ∈ S \ [F (x)]−1

� , we have F (x) 6� F (x).

Proof. First note that x ∈ S \ [F (x)]−1
� means that x ∈ S such that F (x) 6� F (x) or

F (x) 6� F (x). Let x ∈ S be a minimal solution of the problem (1.10) w.r.t. �. Then we
have to consider two cases:
Case 1: For x ∈ S and F (x) 6� F (x), there is nothing left to show.
Case 2: For x ∈ S and F (x) 6� F (x), we obtain F (x) 6� F (x) due to x’s minimality, as
desired.

Conversely, assume that for all x ∈ S \ [F (x)]−1
� , F (x) 6� F (x) holds true. Suppose,

by contradiction, that x is not a minimal solution of the problem (1.10) w.r.t. �. This
implies the existence of some x ∈ S with the properties F (x) � F (x) and F (x) 6� F (x),
in contradiction to the assumption.

We next present a sufficient and necessary condition for minimal solutions of the
problem (1.10) w.r.t. the relation �uD,rls.

Theorem 2.5.17 ([45, Theorem 4.3]). Let Assumption 2.5.15 be satisfied. Then x is a
minimal solution of the problem (1.10) w.r.t. �uD,rls if and only if the following system
(in the unknown x)

gu(x, x) ≤ 0, x ∈ S \ [F (x)]−1
�uD,rls

,

is impossible.

Proof. First note that, due to Proposition 2.5.16, x ∈ S is a minimal solution of the
problem (1.10) w.r.t. �uD,rls if and only if for x ∈ S \ [F (x)]−1

�uD,rls
, we have F (x) 6�uD,rls

F (x). Furthermore, we have

gu(x, x) ≤ 0, x ∈ S \ [F (x)]−1
�uD,rls

is impossible

⇐⇒ @x ∈ S \ [F (x)]−1
�uD,rls

: sup
y∈F (x)

inf
y∈F (x)

zD,k(y − y) ≤ 0

⇐⇒ ∀x ∈ S \ [F (x)]−1
�uD,rls

: sup
y∈F (x)

inf
y∈F (x)

zD,k(y − y) > 0

⇐⇒ ∀x ∈ S \ [F (x)]−1
�uD,rls

: F (x) 6�uD,rls F (x).
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Furthermore, let us consider problem (1.10) with �=�lD,rls. We define the function
gl : S × S → R ∪ {±∞} by

gl(x, x) := sup
y∈F (x)

inf
y∈F (x)

zD,k(y − y).

Assumption 2.5.18. For D ⊂ Y , k ∈ Y \ {0}, and x ∈ S we assume that

1. D is k-vectorially closed, [0,+∞)k + D ⊆ D, and for all x ∈ S \ [F (x)]−1
�lD,rls

and

y ∈ F (x), infy∈F (x) z
D,k(y − y) is attained; or

2. (−∞, 0)k − vclkD ⊆ −D and for all x ∈ S \ [F (x)]−1
�lD,rls

, vcl−k(−F (x) − D) =

−F (x)−D.

In the following, we present a sufficient and necessary condition for minimal solutions
of the problem (1.10) w.r.t. �lD,rls.

Corollary 2.5.19 ([45, Corollary 4.5]). Let Assumption 2.5.18 be satisfied. Then x is a
minimal solution of the problem (1.10) w.r.t. �lD,rls if and only if the following system
(in the unknown x)

gl(x, x) ≤ 0, x ∈ S \ [F (x)]−1
�lD,rls

,

is impossible.

Finally, we have the following result for minimal solutions of the problem (1.10) w.r.t.
�sD,rls.

Corollary 2.5.20 ([45, Corollary 4.6]). Let Assumptions 2.5.15 and 2.5.18 be satisfied
for the same k ∈ Y \ {0}. Then x is a minimal solution of the problem (1.10) w.r.t.
�sD,rls if and only if the following system (in the unknown x):

gu(x, x) ≤ 0 and gl(x, x) ≤ 0, x ∈ S \
(

[F (x)]−1
�uD,rls

∪ [F (x)]−1
�lD,rls

)
,

is impossible.



Chapter 3

Variable Domination Structures in
Set Optimization

3.1 Introduction

It is well known that for certain applications, the solution concept given in Definition
1.2.11 together with one of the set relations from Chapter 2 is not sufficient. As one
possible resolution, variable domination structures have been introduced when defining a
solution concept. This chapter, which is based on [65], presents a concept for dealing with
variable ordering structures in set optimization by equipping the upper set less relation
�uD with a variable cone D. Note that in this thesis, the notions variable domination
structure and variable ordering structure are used simultaneously.

Going back to Yu [112], variable domination structures generalize the concept of
ordering structures in vector optimization and have since been intensely studied in the
field of vector optimization. Motivated by applications in medical image registration
[24, 25], variable domination structures in vector optimization gained recognition as they
allow to introduce a specification of the decision-maker’s preferences into the model. Due
to these important applications, variable domination structures have gained increasing
interest, compare Durea, Strugariu, Tammer [20], or Eichfelder, Bao, Soleimani, Tammer
[7] for an analysis of Ekeland’s variational principle with variable ordering structures.
Note that Chen et al. [15] consider a vector approach to set optimization with a variable
ordering structure. In addition, Bouza and Tammer [14] have introduced a nonlinear
scalarizing functional to characterize and compute minimal points of a set with respect
to a variable domination structure.

Variable domination structures play a crucial role, for example, in medical image reg-
istration, which has been used widely in medical treatment, for instance in radiotherapy
(treatment verification, treatment planning, treatment guidance), orthopaedic surgery,
and surgical microscope. The problem of image registration is finding a transformation
matching two given sets of data (images). The similarity of the transformed data set
to the target set can then be measured by several distance measures. As a multitude
of measures exist that evaluate distinct characteristics, such as the sum of square differ-
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ences, mutual information or cross-correlation, it is necessary to decide which distance
measure to use. It is well known that different measures can lead to different best trans-
formations. According to [25], some measures fail on special data sets, i.e. they lead
to mathematically correct, but useless results. Thus it is important to combine several
measures. Possible approaches are a weighted sum of different measures. But difficulties
appear, such as badly scaled or nonconvex functions. Instead, Wacker [103] proposed
to collect all available distance measures in a vector-valued function and minimizes this
function. This leads to a vector-valued optimization problem. This connection with vari-
able domination structures in vector programming has first been analyzed in Wacker [103]
and further developed by Eichfelder [24] (see also [25, Section 10.3]). Recently, variable
domination structures have been introduced to set optimization problems in [64, 65, 70].
This is particularly useful if uncertainties appear in the objective function, i.e., in the
function that comprises the distance measures, for example due to inaccuracies of the
data, or movements of the patient during the procedure. Then it is possible to convert
the uncertain vector optimization problem into a set optimization problem and compute,
for example, robust solutions. This is one of the main motivations why recently it has
also been of great interest to consider set-valued optimization problems equipped with
a variable domination structure by following a set approach. Recently, Köbis [64, 65]
and Eichfelder and Pilecka [27] have introduced several set relations for the case that the
order is given by a cone-valued map. A very general scalarization scheme for solving set
optimization problems w.r.t. variable domination structures has been proposed in [70]
(see also [71]).

In this chapter, we modify the upper set less relation given by Kuroiwa [77, 76] (see
Definition 2.2.1, where D is a convex cone) in order to compare sets. We equip the
upper set less relation with a variable domination structure in Section 3.2, formulate
an optimality concept in Section 3.3 and we discuss optimal elements of sections of
feasible elements in Section 3.4. Furthermore, Section 3.5 is concerned with providing
scalarization results. We conclude this chapter with an application to image registration
in medical engineering. Note that some of the results presented in this chapter can be
formulated for other set relations, too; compare [64] for an overview.

3.2 Variable Upper Set Less Relation

Throughout this chapter, let Y be a real linear space.
Let us now recall the definition of variable ordering by Eichfelder [25] (see also Yu

[112]) in vector optimization.

Definition 3.2.1 (Variable Domination Structures, [25]). Let C : Y ⇒ Y be a set-valued
map such that for every y ∈ Y , C(y) is a convex cone. Then we define for y1, y2 ∈ Y

y1 ≤1 y2 :⇐⇒ y1 ∈ y2 − C(y1), (3.1)
y1 ≤2 y2 :⇐⇒ y1 ∈ y2 − C(y2). (3.2)

Now our aim is to combine the above definition with the upper set less relation �uD
and hence introduce an upper set less relation for variable ordering cones as follows:
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Let C : Y ⇒ Y be a set-valued map such that for every y ∈ Y , C(y) is a convex
cone. Then we define two variants of the upper set less order relation with variable
ordering for two sets A,B ∈ P(Y ) by

A �uC,1 B :⇐⇒ ∀ a ∈ A, ∃ b ∈ B : a ∈ b− C(a),

A �uC,2 B :⇐⇒ ∀ a ∈ A, ∃ b ∈ B : a ∈ b− C(b).

These definitions were recently introduced and further investigated by Eichfelder,
Pilecka in [27, 28]. From a practical perspective, however, it may not seem appropriate
to obtain A �uC,1 B, but A �uC,2 B. Therefore, one may wish to exclude these cases. To
this end, we define:

A �uC,1,2 B :⇐⇒ ∀ a ∈ A, ∃ b ∈ B : a ∈ b− C(a) and a ∈ b− C(b)

⇐⇒ ∀ a ∈ A, ∃ b ∈ B : a ∈ b− C(a) ∩ C(b)︸ ︷︷ ︸
=:D(a,b)

,

with D : Y × Y ⇒ Y . Note that for every y1, y2 ∈ Y , D(y1, y2) is a convex cone as it
represents the intersection of convex cones C(y1) and C(y2). This motivates the following
more general definition:

Definition 3.2.2 ([65, Definition 2.3]). Let A,B ∈ P(Y ), and let D : Y ×Y ⇒ Y . Then
we define the variable upper set less relation by

A �uD,v B :⇐⇒ ∀ a ∈ A, ∃ b ∈ B : a ∈ b−D(a, b). (3.3)

Note that the v in the notion �uD,v indicates that we are dealing with a variable
domination structure.

Remark 3.2.3 (Compare also [65, Remark 2.4]). If D in Definition 3.2.2 is given by
a constant map, then the above definition coincides with Definition 2.2.1. Therefore,
Definition 3.2.2 extends the definition of the generalized upper set less relation.

Our approach can be justified by the following example.

Example 3.2.4 (Modeling of Uncertainties, [65, Example 2.5]). As discussed in the lit-
erature (see, for instance, [53, p. 384] and [22, 50, 51]), set optimization is an important
application of uncertain vector optimization. As an example, we consider the case where
the data of a vector ã ∈ R2 is perturbed and only an approximation Ã ⊂ R2 is known (see
Figure 3.1). Similarly, the data of a vector b̃ is disturbed and only an estimated set B̃
can be generated. In order to compare the set Ã to the set B̃, the upper set less relation
�uD with D = R2

+ shall be used. The relation �uD compares sets based on their upper
bounds. Assume that, moreover, we would also like to compare Ã and B̃ with respect to
their lower bounds, such that B̃ ⊆ Ã+D. This is the lower set less relation (see Kuroiwa
[77] and Definition 2.2.9 for the generalized case), which corresponds to −B̃ �uD −Ã.
This relation ensures that the lower bounds of B̃ are not “worse” than those of Ã.



CHAPTER 3. VARIABLE DOMINATION STRUCTURES 66

We can see in Figure 3.1, (a), that Ã �uD B̃ and −B̃ �uD −Ã. Since the data are
uncertain, it seems likely that there exist undesired elements located far from where most
uncertain data is found. If there exists such an element ā belonging to the set A := Ã∪{ā},
then A �uD B̃ may not hold anymore (see Figure 3.1).

Similarly, we assume that there exists an element b̄ /∈ B̃ which is located far away
from B̃, such that −B 6�uD −A, where B := B̃ ∪ {b̄}. In order to still include ā and b̄ in
the analysis but to obtain the result that the set A is, for the “most” part, preferred to B,
a planner can introduce a variable ordering structure in the following way: Let b ∈ B̃,
a ∈ Ã and D : Y × Y ⇒ Y with

D(y1, y2) :=


D1 if y1 = ā, y2 = b,
D2 if y1 = −b̄, y2 = −a,
R2

+ else,

where D1 is a cone with the property ā ∈ {b}−D1 (D1 = D(ā, b)) and D2 is a cone which
fulfills b̄ ∈ {a} + D2 (D2 = D(−b̄,−a), see Figure 3.1, (b)). Then we have A �uD,v B
and −B �uD,v −A. This ensures that all estimated elements are taken into account, as
nondesired elements can be handled by using variable ordering cones that depend on two
variables.

Remark 3.2.5 ([65, Remark 2.6]). If we replace A by {y1} and B by {y2} in Definition
3.2.2 and if D1 : Y ⇒ Y is given as a set-valued map that only depends on the first
variable such that D1(y1) := D(y1, y2) is a convex cone for all y1, y2 ∈ Y , then we have
the following equivalence:

{y1} �uD1
{y2} ⇐⇒ y1 ∈ {y2} −D1(y1)⇐⇒ y1 ≤1 y2,

where ≤1 is given by equivalence (3.1) for C = D1. If, on the other hand, D2 : Y ⇒ Y is
given as a set-valued map that only depends on the second variable such that D2(y2) :=
D(y1, y2) is a convex cone for all y1, y2 ∈ Y , then we have the following equivalence:

{y1} �uD2
{y2} ⇐⇒ y1 ∈ {y2} −D2(y2)⇐⇒ y1 ≤2 y2,

where ≤2 is given by (3.2) for C = D2.

The following properties of the relation �uD,v defined in equivalence (3.3) are to be
mentioned. Note that for the special case considered in Remark 3.2.5 above, some of
these properties are proved in [25, Lemma 1.10], and the proof that we provide below is
inspired by [25, Lemma 1.10].

Proposition 3.2.6 ([65, Proposition 2.7]). Let D : Y ×Y ⇒ Y be a set-valued map such
that for every y1, y2 ∈ Y , D(y1, y2) is a cone. Then the following assertions hold true.

1. The relation �uD,v defined in (3.3) is reflexive.

2. The relation �uD,v defined in (3.3) is transitive if for all y1, y2, y3 ∈ Y and for every
d1 ∈ D(y1, y3), d2 ∈ D(y3, y2), it holds

D(y1, y1 + d1) +D(y2 − d2, y2) ⊆ D(y1, y2). (3.4)
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(a)

Ã

B̃

(b)

Ã

B̃

{ā}

{b}

{b} −D(ā, b)

{b̄}

{a}

{a}+D(−b̄,−a)

Figure 3.1: Visualization of the problem formulated in Example 3.2.4.

3. Suppose that for every y1, y2 ∈ Y , we have D(y1, y2) = D(y2, y1). Furthermore, for
A,B ∈ P(Y ), suppose that

D[A×B] :=
⋃

a∈A, b∈B
D(a, b).

is a convex cone. Then

A �uD,v B and B �uD,v A =⇒ A−D[A×B] = B −D[A×B].

4. (Compatibility with nonnegative scalar multiplication). Let A,B ∈ P(Y ). Then

A �uD,v B, λ > 0 =⇒ ∀ a ∈ A, ∃ b ∈ B : λa ∈ {λb} −D(λa, λb)

holds if
∀ a ∈ A, ∀ b ∈ B, ∀ λ > 0 : D(a, b) ⊆ D(λa, λb). (3.5)

5. (Compatibility with addition). Let A,B,C,E ∈ P(Y ). Then

A �uD,v B, C �uD,v E =⇒ A+ C �uD,v B + E
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holds if

∀ a ∈ A, ∀ b ∈ B, ∀ c ∈ C, ∀ e ∈ E : D(a, b) +D(c, e) ⊆ D(a+ c, b+ e). (3.6)

Proof. 1. Holds true because for every y ∈ Y , D(y, y) is assumed to be a cone, and
thus 0 ∈ D(y, y).

2. A �uD,v B is equivalent to: For all a ∈ A there exists b ∈ B : a ∈ {b} − D(a, b).
Similarly, B �uD,v C means that for all b ∈ B there exists c ∈ C : b ∈ {c}−D(b, c).
(3.4) yields D(a, a + d1) + D(c − d2, c) ⊆ D(a, c) for d1 := b − a ∈ D(a, b) and
d2 := c− b ∈ D(b, c), which altogether yields A �uD,v C.

3. A �uD,v B implies that for all a ∈ A, a ∈ B − D[A × B]. This leads to A ⊆
B−D[A×B]. Similarly, B �uD,v A implies B ⊆ A−D[A×B]. Thus A−D[A×B] ⊆
B −D[A × B] and B −D[A × B] ⊆ A −D[A × B], as D[A × B] was assumed to
be a convex cone.

4. Let a ∈ A and b ∈ B. b− a ∈ D(a, b) and λ > 0 is equivalent to λ(b− a) ∈ D(a, b),
as D(a, b) is assumed to be a cone, and the inclusion (3.5) yields the assertion.

5. A �uD,v B is defined by

∀ a ∈ A, ∃ b ∈ B : a ∈ {b} −D(a, b)

and C �uD,v E corresponds to

∀ c ∈ C, ∃ e ∈ E : c ∈ {e} −D(c, e).

This yields

∀ a ∈ A, ∀ c ∈ C, ∃ b ∈ B, ∃ e ∈ E : a+ c ∈ {b}+ {e} −D(a, b)−D(c, e).

Then the inclusion (3.6) implies the assertion.

Remark 3.2.7 ([65, Remark 2.8]). Let D : Y × Y ⇒ Y be a set-valued map such that
for every y1, y2 ∈ Y , D(y1, y2) is a cone. Then the subadditivity property on the whole
space Y

∀ y1, y2, y3, y4 ∈ Y : D(y1, y2) +D(y3, y4) ⊆ D(y1 + y3, y2 + y4) (3.7)

implies that D is a constant map (compare [25, Lemma 3.23]): Set y1 = −y3 and y2 =
−y4 in (3.7). Then D(y1, y2) + D(−y1,−y2) ⊆ D(0, 0) for every y1, y2 ∈ Y . Since
D(−y1,−y2) is a cone, it holds 0 ∈ D(−y1,−y2), and this yields D(y1, y2) ⊆ D(0, 0) for
every y1, y2 ∈ Y . On the other hand, (3.7) implies that D(y1, y2) +D(0, 0) ⊆ D(y1, y2),
and hence D(0, 0) ⊆ D(y1, y2), and we obtain D(y1, y2) = D(0, 0) for all y1, y2 ∈ Y .

Remark 3.2.8 ([65, Remark 2.9]). Let A,B ∈ P(Y ) be given, and let D1, D2 : Y ×Y ⇒
Y . Suppose that for all a ∈ A and b ∈ B, D1(a, b) ⊆ D2(a, b) is satisfied. Then the
implication A �uD1,v

B =⇒ A �uD2,v
B holds.



CHAPTER 3. VARIABLE DOMINATION STRUCTURES 69

3.3 Optimality Notions

From now on, we assume that D : Y × Y ⇒ Y is a set-valued map such that for all
y1, y2 ∈ Y , D(y1, y2) is a convex cone. Recall that the algebraic interior of a nonempty
set Ω ⊂ Y is the set

cor Ω := {ȳ ∈ Ω | for every y ∈ Y there exists λ̄ > 0 with ȳ + λy ∈ Ω

for all λ ∈ [0, λ̄]}.

Whenever we deal with corD(y1, y2), we suppose that this set is nonempty. We introduce
a set-valued map F : X ⇒ Y that we wish to minimize on a nonempty set S ⊆ X, where
X is a linear space. We denote the minimization problem

min
x∈S

F (x) (Pvar)

and define optimal solutions of (Pvar) in the following way.

Definition 3.3.1 (Optimality, [65, Definition 3.1]). x0 ∈ S is called an optimal (a strictly
optimal / a weakly optimal) solution of the set-valued problem (Pvar) w.r.t. �uD,v if

@ x ∈ S \ {x0} : F (x) �u[D\{0}/D/ corD,v] F (x0),

which is equivalent to

@ x ∈ S \ {x0} : ∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} − E(y, y0), (3.8)

where E(y, y0) := D(y, y0) \ {0} (E(y, y0) := D(y, y0), E(y, y0) := corD(y, y0), respec-
tively). If D is given by a constant set-valued map C, then we say that x0 ∈ S is an
optimal (a strictly optimal / a weakly optimal) solution of the set-valued problem (Pvar)
w.r.t. �uC if condition (3.8) is fulfilled with E = C\{0} (E = C, E = corC, respectively).

Remark 3.3.2 ([65, Remark 3.2]). Note that the above definition of optimality is an
extension of the concepts of nondominated and minimal solutions given in Yu [112]
and Chen et al. [15], respectively, see also Eichfelder [25]. If the objective to be minimized
is not a set-valued map, but a vector function f : X → Y , and the ordering cone is given
by a set-valued map D1 : Y ⇒ Y , then a solution f(x0) = y0 is called nondominated
(weakly nondominated) if there does not exist x ∈ X with f(x) = y such that

y0 ∈ {y}+D1(y) \ {0} (y0 ∈ {y}+ corD1(y), respectively),

coinciding with the above definition of optimality (weak optimality) for the special case
D := D1 and F := f . Furthermore, a solution f(x0) = y0 is called minimal (weakly
minimal) if there does not exist any x ∈ X with f(x) = y such that

y0 ∈ {y}+D1(y0) \ {0} (y0 ∈ {y}+ corD1(y0), respectively).
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Remark 3.3.3 (See also [65, Remark 3.3]). Notice that Definition 3.3.1 differs from the
usual definition of optimal solutions in set optimization. Typically, a solution x0 ∈ S is
called minimal w.r.t. � if the following implication is fulfilled (see Definition 1.2.11):

x ∈ S : F (x) � F (x0) =⇒ F (x0) � F (x).

Here, in this chapter, we work with a stronger notion than minimality, which has also
been used in [22, 50, 51] for fixed ordering cones.

Coming back to Definition 3.3.1, we notice the following connection between optimal
solutions:

Lemma 3.3.4 ([65, Lemma 3.4]). If x0 is a strictly optimal solution of (Pvar) w.r.t.
�uD,v, then x0 is an optimal solution w.r.t. �uD,v. If x0 is an optimal solution of (Pvar)
w.r.t. �uD,v, then x0 is a weakly optimal solution of (Pvar) w.r.t. �uD,v.

Proof. Follows from corD(y1, y2) ⊆ D(y1, y2) \ {0} ⊆ D(y1, y2) for every y1, y2 ∈ Y .

In order to get an insight into the issue of set optimization problems equipped with
a variable ordering structure, we provide an example below, for a visualization see Fig-
ure 3.2.

Example 3.3.5 ([65, Example 3.5]). In this example we are looking for optimal solutions
of a set-valued optimization problem with respect to the variable upper set less relation
�uD,v introduced in Definition 3.2.2. The problem reads

min
x∈S

F (x), (P1)

with X = R, Y = R2, S = [0, 1] and F : S ⇒ Y is given by

F (x) :=


[(1, 1), (2, 2)] if x = 0,
[(0, 0), (3, 3)] if x ∈ (0, 1),
[(1,−1), (1.5,−1.5)] if x = 1,

where [(a, b), (c, d)] := {(y1, y2) ∈ R2 | a ≤ y1 ≤ c, b ≤ y2 ≤ d} denotes a rectangle.
Furthermore, the variable ordering is given by

D(y1, y2) =

{
{α(1, 1) + β(0.5, 1) | α, β ≥ 0} if y2 ∈ [(1, 1), (2, 2)] , y1 ∈ R2,
R2

+ otherwise.

Then the strictly optimal solutions of (P1) w.r.t. �uD,v in the sense of Definition 3.3.1
are S0 := {0, 1}, because

@ x ∈ S \ {0} : ∀ y ∈ F (x), ∃ y0 ∈ F (0) : y ∈ {y0} −D(y, y0) and

@ x ∈ S \ {1} : ∀ y ∈ F (x), ∃ y0 ∈ F (1) : y ∈ {y0} −D(y, y0).
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Figure 3.2: Image set of F , as described in Example 3.3.5. The left plot shows the
three sets F (0), F (1) and F (x) for x ∈ (0, 1). The middle picture illustrates the sets
{(2, 2)} −D

(
(0, 0), (2, 2)

)
and {(2, 1)} −D

(
(0, 0), (2, 1)

)
. The right plot depicts the sets

{(2, 2)} − R2
+ and {(3, 3)} − R2

+.

If we replace D by the constant ordering cone R2
+, then x0 = 1 is the only strictly optimal

solution w.r.t. �uR2
+
, since

@ x ∈ S \ {1} : ∀ y ∈ F (x), ∃ y0 ∈ F (1) : y ∈ {y0} − R2
+.

x0 = 0 is not strictly optimal w.r.t. �uR2
+
, as

∃ x = 1 : ∀ y ∈ F (1), ∃ y0 ∈ F (0) : y ∈ {y0} − R2
+.

The following remark shows the connection between optimal solutions w.r.t. different
ordering cones:

Remark 3.3.6 ([65, Remark 3.6]). Let D1, D2 : Y ×Y ⇒ Y be set-valued maps such that
for all y1, y2 ∈ Y , D1(y1, y2) and D2(y1, y2) are convex cones with nonempty algebraic
interior. Let A,B ∈ P(Y ) be given. From Remark 3.2.8, we obtain that if it holds

∀ a ∈ A, ∀ b ∈ B, D1(a, b) ⊆ D2(a, b),

then
A �uD1,v B =⇒ A �uD2,v B.

Based on this relation, the following property holds: Assume that

∀ y1, y2 ∈ Y : D1(y1, y2) ⊆ D2(y1, y2)

is satisfied. If x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of
the set-valued problem (Pvar) w.r.t. �uD2,v

, then x0 ∈ S is an optimal (a strictly optimal
/ a weakly optimal) solution of (Pvar) w.r.t. �uD1,v

.
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The assertions in Remark 3.3.6 can be generalized as follows:

Proposition 3.3.7 ([65, Proposition 3.7]). Let x0 ∈ S and two set-valued maps D1, D2 :
Y × Y ⇒ Y satisfy

∀ y1 ∈
⋃

x∈S\{x0}

F (x), ∀ y2 ∈ F (x0) : D1(y1, y2) ⊆ D2(y1, y2). (3.9)

If x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of the set-valued
problem (Pvar) w.r.t. �uD2,v

, then x0 ∈ S is an optimal (a strictly optimal / a weakly
optimal) solution of (Pvar) w.r.t. �uD1,v

.

Proof. We proceed by contraposition. Let x0 ∈ S not be an optimal (a strictly optimal
/ a weakly optimal) solution of (Pvar) w.r.t. �uD1,v

. Then there exists x ∈ S \ {x0} such
that

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} − E(y, y0), (3.10)

where E(y, y0) := D1(y, y0) \ {0} (E(y, y0) := D1(y, y0), E(y, y0) := corD1(y, y0), re-
spectively). (3.10) together with the inclusion (3.9) implies

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} −G(y, y0),

where G(y, y0) := D2(y, y0) \ {0} (G(y, y0) := D2(y, y0), G(y, y0) := corD2(y, y0), re-
spectively). That means x0 ∈ S is not an optimal (a strictly optimal / a weakly optimal)
solution of (Pvar) w.r.t. �uD2,v

, as was to be proved.

For the next results we introduce the abbreviations

A := F [S] :=
⋃
x∈S

F (x) (3.11)

D[A×A] :=
⋃

y1,y2∈A
D(y1, y2), (3.12)

D :=
⋂

y1,y2∈A
D(y1, y2). (3.13)

We assume that D[A × A] is a convex cone with nonempty algebraic interior, and we
suppose furthermore that corD 6= ∅.

Remark 3.3.8 ([65, Remark 3.8]). The convexity assumption of D[A×A] will be impor-
tant in Theorem 3.4.2, yet this assumption seems to be very strong. A sufficient condition
that ensures the convexity of D[A × A] is the following: Let D1, D2 be convex cones in
R2 such that there exists some k, k 6= 0, with k ∈ D1 ∩D2. Furthermore, for all d1 ∈ D1

and d2 ∈ D2 with d1, d2 /∈ D1 ∩D2, we suppose that d1 and d2 are linearly independent.
Then D1 ∪D2 is a convex cone. Figure 3.3 illustrates this result.
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Figure 3.3: Visualization of two convex cones D1 and D2. (a) and (b) show that D1∪D2

is a convex cone, because k 6= 0 lies in both D1 and D2. In (c), D1 ∪D2 is not convex,
because the vectors a and b (a 6= b) are not linearly independent.

Example 3.3.9 ([65, Example 3.9]). We illustrate the variable upper set less relation
with the above sets D[A × A] and D in a small example. Let S := {x1, x2} ⊆ Rn,
F : S ⇒ R2, F (x1) := {(0, 0)} and F (x2) := {(1, 1)}. Then, with the above notation,
A = {(0, 0), (1, 1)}. Let furthermore the variable ordering be given by D : Y × Y ⇒ R2

with

D(y1, y2) =

{
D1 if y1 = (0, 0), y2 = (1, 1),
D2 otherwise,

where D1 := {d ∈ R2|d = λ1(0.5, 1) + λ2(1, 0.5), λ1, λ2 ≥ 0} and D2 := {d ∈ R2|d =
λ1(0.5, 0.5)+λ2(2, 0.5), λ1, λ2 ≥ 0}. Then D[A×A] = D1∪D2 = {d ∈ R2|d = λ1(0.5, 1)+
λ2(2, 0.5), λ1, λ2 ≥ 0} and D = {d ∈ R2|d = λ1(0.5, 0.5) + λ2(1, 0.5), λ1, λ2 ≥ 0}. Then
we have F (x2) 6�uD,v F (x1), therefore x1 is strictly optimal w.r.t. the variable upper set
less order relation. It also holds F (x1) �uD,v F (x2). The relations F (x1) �uD[A×A] F (x2)

and F (x1) �u
D
F (x2) correspond to F (x1) ⊆ F (x2) − D[A × A] and F (x1) ⊆ F (x2) −

D, respectively. However, we have F (x2) 6�uD[A×A] F (x1) as well as F (x2) 6�u
D
F (x1).

Therefore, x1 is strictly optimal w.r.t. �uD[A×A] and �
u
D
.

x2 is not strictly optimal w.r.t. �uD[A×A] and �
u
D
, as F (x1) �uD[A×A] F (x2) as well

as F (x1) �u
D
F (x2). Finally, it holds F (x1) 6�u

corD
F (x2). Thus, x2 is weakly optimal

w.r.t. �u
D
.

The following theorem can be derived by using Proposition 3.3.7.
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Theorem 3.3.10 ([65, Theorem 3.10]). (a) If x0 ∈ S is an optimal (a strictly optimal
/ a weakly optimal) solution of the set-valued problem (Pvar) w.r.t. �uD[A×A], then
x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of (Pvar)
w.r.t. �uD,v.

(b) Let D̃ ⊃ D[A × A] be a convex cone in Y with nonempty algebraic interior. If
x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of the set-
valued problem (Pvar) w.r.t. �uD̃, then x

0 ∈ S is an optimal (a strictly optimal / a
weakly optimal) solution of (Pvar) w.r.t. �uD[A×A].

(c) If x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of the set-
valued problem (Pvar) w.r.t. �uD,v, then x0 ∈ S is an optimal (a strictly optimal /
a weakly optimal) solution of (Pvar) w.r.t. �uD.

(d) Let D ⊂ D be a convex cone with nonempty algebraic interior. If x0 ∈ S is an
optimal (a strictly optimal / a weakly optimal) solution of the set-valued problem
(Pvar) w.r.t. �uD, then x

0 ∈ S is an optimal (a strictly optimal / a weakly optimal)
solution of (Pvar) w.r.t. �u

D
.

(e) Let x0 ∈ S be an optimal (a strictly optimal / a weakly optimal) solution of (Pvar)
w.r.t. �uD(y0,y0) for every y0 ∈ F (x0). Furthermore, suppose that for all y ∈⋃
x∈S F (x) and for every y0 ∈ F (x0), the inclusion

D(y, y0) ⊆ D(y0, y0)

holds true. Then x0 ∈ S is an optimal (a strictly optimal / a weakly optimal)
solution of the set-valued problem (Pvar) w.r.t. �uD,v.

(f) Define D(x) :=
⋂
y∈F (x)D(y, y) for some x ∈ S. Let x0 ∈ S be an optimal (a

strictly optimal / a weakly optimal) solution of (Pvar) w.r.t. �uD,v and suppose
that

∀ y ∈
⋃
x∈S

F (x), ∀ y0 ∈ F (x0) : D(y0, y0) ⊆ D(y, y0).

Then x0 ∈ S is an optimal (a strictly optimal / a weakly optimal) solution of the
set-valued problem (Pvar) w.r.t. �uD(x0)

.

Proof. The assertions are proved using Proposition 3.3.7 with y1 ∈ ∪x∈S\{x0}F (x) and
y2 ∈ F (x0). In (a), the desired result can be obtained by choosing D1(y1, y2) = D(y1, y2)
and D2(y1, y2) = D[A × A] in Proposition 3.3.7. (b) can be derived with D1(y1, y2) =
D[A× A] and D2(y1, y2) = D̃. Moreover, (c) is proved by selecting D1(y1, y2) = D and
D2(y1, y2) = D(y1, y2). For the result in (d), we choose D1(y1, y2) = D and D2(y1, y2) =
D. (e) can be obtained by D1(y1, y2) = D(y1, y2) and D2(y1, y2) = D(y2, y2). Finally, (f)
is derived by choosing D1(y1, y2) = D(x0) (where D(x0) ⊆ D(y0, y0) for all y0 ∈ F (x0))
and D2(y1, y2) = D(y1, y2).
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3.4 Optimal Elements of Sections

In the following we use the optimality notion from Definition 3.3.1 to define efficient
solution sets.

Definition 3.4.1 ([65, Definition 4.1]). A solution set F (x0) is efficient (strictly effi-
cient, weakly efficient, respectively) w.r.t. �uD,v if x0 is an optimal (a strictly optimal
/ a weakly optimal) solution of the set-valued problem (Pvar) w.r.t. �uD,v. If D is given by
a constant set-valued map C, then we say that the solution set F (x0) is efficient (strictly
efficient, weakly efficient, respectively) w.r.t. �uC if x0 ∈ S is an optimal (a strictly
optimal / a weakly optimal) solution of the set-valued problem (Pvar) w.r.t. �uC .

In vector optimization, often so-called sections are considered. A section in vector
optimization is a set (y−C)∩A, where y ∈ Y , A ⊂ Y is the image set of feasible elements
and C ⊂ Y is a convex cone. Then an efficient element (in the sense of vector optimiza-
tion) in this section is also an efficient element (in the sense of vector optimization) of
the whole set A (see [53, Lemma 6.2]). Eichfelder [25] formulated a corresponding result
for vector optimization problems equipped with a variable ordering structure. We extend
this analysis to set optimization with the variable upper set less relation. Theorem 3.4.2
shows that the corresponding result goes in line with the standard theory from vector
optimization. To this end, we introduce for an element B ∈ P(Y ) the set

AB := (B −D[A×A]) ∩A,

which is denoted as a section w.r.t. B. Note that A and D[A×A] are defined by (3.11)
and (3.12), respectively. For a visualization of a section AB in set optimization, see
Figure 3.4.
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Figure 3.4: Visualization of a section (B − D[A × A]) ∩ A with B = {y} in (a) and
B = F (x5) in (b), where D[A×A] = R2

+.

Theorem 3.4.2 ([65, Theorem 4.2]). If F (x0) ⊂ AB is efficient (strictly efficient /
weakly efficient) in AB for an element B ∈ P(Y ) w.r.t. �uD[A×A], then F (x0) is efficient
(strictly efficient / weakly efficient) in A w.r.t. �uD,v.

Proof. Let F (x0) be efficient (strictly efficient / weakly efficient) in AB w.r.t. �uD[A×A],
i.e., there does not exist x ∈ S \ {x0} with F (x) ⊂ AB such that for G := D[A×A] \ {0}
(G := D[A×A], G := corD[A×A], respectively)

F (x) ⊆ F (x0)−G. (3.14)

Suppose that F (x0) is not efficient (strictly efficient / weakly efficient) in A w.r.t. �uD,v.
Then there exists x ∈ S \ {x0} such that for E(y, y0) := D(y, y0) \ {0} (E(y, y0) :=
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D(y, y0), E(y, y0) := corD(y, y0), respectively)

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} − E(y, y0),

implying

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} − E(y, y0) ⊆ F (x0)−G ⊆ AB −G,

because F (x0) ⊆ AB. Since D[A × A] is a convex cone, we conclude with F (x) ⊆ AB
and F (x) ⊆ F (x0)−G, a contradiction to the inclusion (3.14).

The converse statement of the preceding theorem is possible by means of an appro-
priate selection of the ordering cone.

Theorem 3.4.3 ([65, Theorem 4.3]). If F (x0) ⊂ AB for some B ∈ P(Y ) and F (x0)
is efficient (strictly efficient / weakly efficient) in A w.r.t. �uD,v, then F (x0) is efficient
(strictly efficient / weakly efficient) in AB w.r.t. �u

D
, where D is given by (3.13).

Proof. Suppose that F (x0) is not efficient (strictly efficient / weakly efficient) in AB
w.r.t. �u

D
. Then there exists x ∈ S \ {x0} with F (x) ⊆ AB such that for G := D \ {0}

(G := D, G := corD, respectively)

F (x) ⊆ F (x0)−G,

implying
∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} −G ⊆ {y0} − E(y, y0),

where E(y, y0) := D(y, y0) \ {0} (E(y, y0) := D(y, y0), E(y, y0) := corD(y, y0), respec-
tively), in contradiction to F (x0)’s efficiency (strict efficiency / weak efficiency) in A
w.r.t. �uD,v.

3.5 Scalarization

Let Y again be a real linear space, where Y ′ denotes the algebraic dual space. The
algebraic dual cone to a cone D(y1, y2), y1, y2 ∈ A and A defined by (3.11), is denoted
by

D′(y1, y2) := {y′ ∈ Y ′ | ∀ d ∈ D(y1, y2) : y′(d) ≥ 0}.
Note that D′(y1, y2) might reduce to the trivial cone if D(y1, y2) is not pointed.

The algebraic quasi-interior of D′(y1, y2), y1, y2 ∈ A, is defined as

D#
Y ′(y1, y2) := {y′ ∈ Y ′ | ∀ d ∈ D(y1, y2) \ {0} : y′(d) > 0}.

Now we set

D
′
:=

⋂
y1,y2∈A

D′(y1, y2),

D
#
Y ′ :=

⋂
y1,y2∈A

D#
Y ′(y1, y2).
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Theorem 3.5.1 ([65, Theorem 5.1]). Consider for y′ ∈ D
′ the scalar minimization

problem
min
x∈S

sup
y∈F (x)

y′(y). (P uy′)

(a) If x0 ∈ S is an optimal solution of (P uy′) with y′ ∈ D#
Y ′ and maxy∈F (x) y

′(y) exists
for all x ∈ S, then x0 is an optimal solution of (Pvar) w.r.t. �uD,v.

(b) If x0 ∈ S is a unique optimal solution of (P uy′) with y′ ∈ D
′ \ {0}, then x0 is a

strictly optimal solution of (Pvar) w.r.t. �uD,v.

(c) If x0 ∈ S is an optimal solution of (P uy′) with y′ ∈ D′ \ {0} and maxy∈F (x) y
′(y)

exists for all x ∈ S, then x0 is a weakly optimal solution of (Pvar) w.r.t. �uD,v.

Proof. Suppose, to the contrary, that x0 ∈ S is not an optimal (a strictly optimal, a
weakly optimal, respectively) solution of (Pvar) w.r.t. �uD,v. This is equivalent to the
existence of some x ∈ S \ {x0} such that

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} − E(y, y0),

which is equivalent to

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y0 − y ∈ E(y, y0),

where E(y, y0) := D(y, y0) \ {0} (E(y, y0) := D(y, y0), E(y, y0) := corD(y, y0), re-
spectively). Because y′ ∈ D

#
Y ′ (y′ ∈ D

′ \ {0}, y′ ∈ D
′ \ {0}, respectively), we have

y′ ∈ D#
Y ′(y, y

0) (y′ ∈ D′(y, y0) \ {0}, y′ ∈ D′(y, y0) \ {0}, respectively). This implies

∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y′(y) [< / ≤ / <] y′(y0),

which yields
sup

y∈F (x)
y′(y) [< / ≤ / <] sup

y0∈F (x0)

y′(y0),

in contradiction to the assumption that x0 is an optimal (the unique, an optimal, respec-
tively) solution of (P uy′).

At this point it is interesting to investigate whether it is possible to provide assump-
tions that ensure the inverse statement in Theorem 3.5.1 (b) to hold true. Below we
follow an approach by Jahn [54, Lemma 2.1] which we adapt to our variable ordering
setting. To this end, let Y be a real locally convex linear topological space, where Y ∗

denotes the dual space. The dual cone to the cone D(y1, y2), y1, y2 ∈ A, is denoted by
D∗(y1, y2) := {y∗ ∈ Y ∗ | ∀ d ∈ D(y1, y2) : y∗(d) ≥ 0}. We set D∗ :=

⋂
y1,y2∈AD

∗(y1, y2)

and assume that D∗ 6= {0}.
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Theorem 3.5.2 ([65, Theorem 5.2]). For every x ∈ S, let the set F (x) − D, with D
given by (3.13), be closed and convex. If x0 is a strictly optimal solution of (Pvar) w.r.t.
�uD,v, then there does not exist x ∈ S \ {x0} such that for all y∗ ∈ D∗ \ {0}

sup
y∈F (x)

y∗(y) ≤ sup
y0∈F (x0)

y∗(y0).

Proof. x0 ∈ S is a strictly optimal solution of (Pvar) w.r.t. �uD,v if

@ x ∈ S \ {x0} : ∀ y ∈ F (x), ∃ y0 ∈ F (x0) : y ∈ {y0} −D(y, y0),

in other words,

∀x ∈ S \ {x0} : ∃ y ∈ F (x), ∀ y0 ∈ F (x0) : y /∈ {y0} −D(y, y0).

This implies

∀x ∈ S \ {x0} : ∃ y ∈ F (x), ∀ y0 ∈ F (x0) : y /∈ {y0} −D,

which leads to
∀x ∈ S \ {x0} : F (x) 6⊆ F (x0)−D.

Since F (x0)−D is closed and convex, we use a separation theorem such that we get

∀ x ∈ S \ {x0} : ∃ y ∈ F (x), ∃ y∗ ∈ Y ∗ \ {0}, ∃ α ∈ R ∀ y ∈ F (x0)−D :

y∗(y) > α ≥ y∗(y), (3.15)

and this yields

∀ x ∈ S \ {x0} : ∃ y∗ ∈ Y ∗ \ {0}, α ∈ R :

sup
y∈F (x)

y∗(y) > α ≥ sup
y∈F (x0)−D

y∗(y). (3.16)

Furthermore,

sup
y∈F (x0)−D

y∗(y) = sup
y0∈F (x0)

y∗(y0) + sup
d∈−D

y∗(d) = sup
y0∈F (x0)

y∗(y0). (3.17)

To show that y∗ ∈ D∗, suppose that y∗ /∈ D∗, which means that there is some d ∈ D
such that y∗(d) < 0. With (3.15), we obtain for any y0 ∈ F (x0) and some λ ≥ 0

α ≥ y∗(y0 − λd) = y∗(y0)− λy∗(d)
λ→+∞→ +∞,

a contradiction. (3.16) and (3.17) imply

∀ x ∈ S \ {x0} ∃ y∗ ∈ D∗ \ {0} : sup
y∈F (x)

y∗(y) > sup
y0∈F (x0)

y∗(y0).
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3.6 Application to Image Registration

Here we consider an application of set optimization problems with a variable order rela-
tion in medical image registration. The importance of variable ordering structures in set
optimization in the medical field, specifically for intensity-modulated radiation therapy,
has also recently been discussed by Eichfelder and Pilecka [27, 28]. Given two sets of
data, A and B, the problem consists of finding a transformation t of all possible trans-
formations T which gives a sufficient characterization of the sets. This problem was first
modeled in [103] and was the motivation of introducing a variable ordering structure in
vector optimization [23, 24, 25]. The objective in [103] is to minimize a vector-valued
function f : T ×A×B → Rm, which comprises m distance functions. The problem can
be formulated as

min
t∈T

f(t, A,B).

Eichfelder [23] noted that using the natural ordering cone Rm+ for defining optimality for
this problem is not adequate here, as solutions with one minimal distance measure, but
several other relatively high function values could be chosen to be optimal. While this
corresponds to the usual definition of efficiency, it is not satisfying in this application.
Therefore, a variable ordering structure is introduced in order to define optimality.

The original approach discussed in [23] attaches to every value y := f(t, A,B) a
nonnegative weight vector w(y) ∈ Rm+ , which depends on the element y in the objective
space Rm. This weight vector is incorporated in the variable ordering D : Rm ⇒ Rm in
the following way:

Dw := D(w(y)) := {d ∈ Rm |
m∑
i=1

sgn(di)wi(y) ≥ 0},

where

sgn(di) :=


1 (di > 0)
0 (di = 0)
−1 (di < 0).

Dw is called the cone of preferred directions. Notice that wi(y) ∈ R+ for every i =
1, . . . ,m. The cone Dw for all possible weights w ∈ R2

+ is calculated in Eichfelder [23].
In contrast to the original approach, we suppose that the objective function is given

by a set-valued map F : T × A×B ⇒ Rm, where the individual distance measures are
supposed to be set-valued, i.e., Fi : T × A × B ⇒ R, i = 1, . . . ,m. This could be due
to incomplete information of the acquired data, uncertain data in the sensors or move-
ments of the patient during the tomography, and it means that we wish to consider all
possible values that the distance map may attain. This also fits into the set optimization
framework, as uncertain multi-objective optimization actually is an application of set
optimization, as was noted in [53, Example 14.3], compare also [51].

Regarding the calculations for an optimal radiation treatment in intensity-modulated
radiation therapy, Eichfelder and Pilecka [27, 28] discuss the significance of variable or-
dering structures for set optimization problems. They explain that for safety purposes
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one might prefer to do necessary calculations based on several data sets. Moreover, for
calculating the dose stress various approaches exist that need to be taken into consider-
ation simultaneously.

Coming back to the image registration topic, we assign every two elements y1, y2 ∈ Rm
in the objective space a weight vector w(y1, y2) ∈ Rm+ , which depends on both y1 and
y2. The cone of preferred directions for each given pair y1, y2 ∈ Rm is introduced as a
set-valued map Dset : Rm ⇒ Rm defined by

Dw
set := Dset(w(y1, y2)) := {d ∈ Rm |

m∑
i=1

sgn(di)wi(y1, y2) ≥ 0}.

Then the problem of finding an adequate transformation function in image registra-
tion can now be formulated as

min
t∈T

F (t, A,B). (SP )

Now that the problem has been formulated, it is necessary to define an optimality
concept for solving (SP ). Since the problem is set-valued, there are several possibilities.

On the one hand, a vector approach can be considered. That means that the set Y :=
∪t∈TF (t, A,B) is computed and optimal elements (in the sense of vector optimization)
can be determined. By taking into account the variable ordering cone Dw, we arrive
at two optimality notions: A transformation t0 ∈ T is called nondominated if t 6≤1 t

0

for all t ∈ T \ {t0} (see (3.1) in Definition 3.2.1). An element t0 ∈ T is called minimal
if t 6≤2 t

0 for all t ∈ T \ {t0} (see (3.2)). However, by using such a vector approach,
solution sets F (t0, A,B) are chosen based on their “best” element y0 ∈ F (t0, A,B). This
approach does not take the whole set F (t0, A,B) into account. Therefore, a set approach
is considered to be more appropriate.

By using such a set approach, it is necessary to determine how to compare the sets
F (t, A,B), t ∈ T . There exist several set relations in the literature, for example the upper
set less relation (see Definition 2.2.1), the lower set less relation (see Definition 2.2.9),
or the certainly less relation (see Definition 2.2.19). However, none of the known set
relations incorporate a variable ordering cone. If a fixed ordering cone is used instead,
the information gathered in the variable ordering cone Dw

set would be lost. Therefore, we
suggest to use the variable upper set less relation �uD introduced in Definition 3.2.2.

Then a feasible transformation t0 ∈ T of the set optimization problem (SP ) is optimal
(strictly optimal / weakly optimal) w.r.t. �uDwset if

@ t ∈ T \ {t0} : ∀ y ∈ F (t, A,B) ∃ y0 ∈ F (t0, A,B) : y ∈ y0 − E(y, y0),

where E(y, y0) = Dw
set(y, y

0) \ {0} (E(y, y0) = Dw
set(y, y

0), E(y, y0) = corDw
set(y, y

0),
respectively).

From a practical perspective, using the variable upper set less relation leads to a
robust approach, since the sets of worst cases in every set F (t, A,B) are compared with
one another. For the single objective case, this corresponds to the robust optimization
approach studied by Ben-Tal, El Ghaoui and Nemirovski [9], and was extended to uncer-
tain multi-objective optimization in Ehrgott, Ide, Schöbel [22], see also [50, 51, 63]. Of
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course, it is also possible to perform the analysis proposed in this chapter for other set
relations. The usefulness for certain applications then needs to be discussed.

Remark 3.6.1. Let us mention that the application of variable domination structures
in the field of uncertain programming has also been investigated in [4, Section 5], where
a characterization of optimistic solutions of uncertain vector optimization problems is
derived.



Chapter 4

Approximate Solutions of
Set-Valued Optimization Problems
Using Set-Criteria

4.1 Motivation

It is well known that minimal elements of vector and set optimization problems do not
always exist, and hence some approximate minimality notions have been widely investi-
gated in the literature (see [3, 19, 41, 59, 81] and the references therein). This chapter is
devoted to introducing and studying approximate minimal elements of set optimization
problems. We consider a family of nonempty sets and define three notions of approxi-
mate minimality by following a set approach using the lower-type set relation, which is a
binary relation among sets (see [76, 77, 79] and Definition 2.2.9). Our definitions extend
those given in the literature; we also show that some of the approximate minimality
notions known from the literature are obtained as special cases.

This chapter is based on the results derived in [42] and is organized as follows: Sec-
tion 4.2 recalls some definitions and a preliminary result on approximate minimal el-
ements of vector and set optimization problems. We introduce three new notions of
approximate minimal element for a family of sets. In Section 4.3, we propose solution
methods for obtaining approximate minimal elements of a family of sets. In this section,
the family of sets may be given by an infinite number of sets. We divide our analysis into
two parts: In Subsection 4.3.1, we propose linear scalarization results to obtain approxi-
mate minimal elements, where convexity of the considered sets plays an important role.
Omitting any convexity assumptions, we present nonlinear scalarization results in Sub-
section 4.3.2. In case that the number of given sets is finite, we derive efficient solution
procedures for obtaining approximate minimal elements in Section 4.4.

83
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4.2 Preliminaries on Approximate Minimality

Throughout this chapter, let Y be a real topological vector space. Here, we study ap-
proximate minimal elements w.r.t. the generalized lower set relation �lD (compare Defi-
nition 2.2.9).

It is well known that usually, the existence of minimal elements (see Definition 1.2.11)
can only be guaranteed under additional assumptions (for an existence result of minimal
elements, see, for example, [56]). Because the set Amin may be empty, it is necessary to
introduce a weaker notion of minimality. For this reason, we introduce three new notions
of approximate minimality.

Definition 4.2.1 ([42, Definition 2.4]). Let A be a family of elements of P(Y ), D,H ∈
P(Y ), and D,H 6= Y .

(a) A ∈ A is called an H1–approximate minimal element of A w.r.t. �lD if

A �lD A, A ∈ A =⇒ A �lD A+H .

The set of all H1–approximate minimal elements of A w.r.t. �lD will be denoted
by AH1.

(b) A ∈ A is called an H2–approximate minimal element of A w.r.t. �lD if

A+H �lD A, A ∈ A =⇒ A �lD A+H .

We call the set of all H2–approximate minimal elements of A w.r.t. �lD AH2.

(c) A ∈ A is called an H3–approximate minimal element of A w.r.t. �lD if A +
H 6�lD A, for all A ∈ A. We call the set of all H3–approximate minimal elements
of A w.r.t. �lD AH3.

Definition 4.2.1 (a) is a natural formulation for approximate minimality. It states that
A is H1-approximate minimal if the statement “an element A dominates A” (A �lD A)
implies that “A dominates a perturbation of A” (A �lD A + H). Definition 4.2.1 (b) is
derived from the standard notion of approximate efficiency for vector-valued maps (see
part 3 of Remark 4.2.2) where the minimality notion in the vector case is replaced by
the minimality notion for families of elements of P(Y ) from Definition 1.2.11. Definition
4.2.1 (c) is an approximate version of the well-known nondomination concept of vector
optimization. Note that, if H = {0}, Definition 4.2.1 (a) and (b) recover Definition 1.2.11
given in Section 1.2.2.

Remark 4.2.2 ([42, Remark 2.5]). 1. Definition 4.2.1 (b) is equivalent to

@ A ∈ A : A+H �lD A and A 6�lD A+H.

Then it is obvious that AH3 ⊆ AH2. The inclusion AH2 ⊆ AH3 does not generally
hold; see Examples 4.2.5 and 4.2.6. On the other hand, if H = {0}, then the defini-
tions of H1– and H2–approximate minimal element coincide with Definition 1.2.11.
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2. Note that AH2 ⊆ AH1 ⊆ Amin if 0 ∈ H. Moreover, if 0 ∈ H + D, then the set of
H3–approximate minimal elements is empty, since for all A ∈ A, A+H �lD A.

3. In case the family A and H consist of single-valued sets, Definition 4.2.1 is closely
related to well-known notions of approximate efficiency. For example, if H = {ε},
then set AH1 coincides with a notion of approximate solution of vector optimization
problems due to White (see [106]).

Furthermore, if 0 ∈ D, D is pointed (i.e., D ∩ (−D) = {0}) and H = {ε}, the
concept of H2-approximate minimality introduced in Definition 4.2.1 (b) coincides
with the concept introduced by Kutateladze in [80], the most popular notion of ap-
proximate efficient solutions in vector optimization. Indeed, from Definition 4.2.1
(b) for this special case, we get that ȳ ∈ AH2, if

{y}+ {ε} �lD {ȳ}, y ∈ A =⇒ {ȳ} �lD {y}+ {ε},

i.e., taking into account the definition of �lD

{ȳ} ⊆ {y}+ {ε}+D, y ∈ A =⇒ {y}+ {ε} ⊆ {ȳ}+D.

Since D is pointed, it holds that ȳ ∈ AH2, if

y ∈ ȳ − ε−D, y ∈ A =⇒ y = ȳ − ε.

4. Let K ⊂ Y be a convex cone with nonempty topological interior, δ ∈ R, δ > 0,
D = intK, e ∈ intK, ε := δ · e and H := {ε}. In [19], the authors call A ∈ A
ε-l-weak efficient if there is no A ∈ A such that A + H �lD A. Thus, it is clear
that this definition is a particular case of Definition 4.2.1 (c).

5. Suppose that Y is normed. Then, Definition 4.2.1 (b) contains the notion of ε-lower
minimality presented in [3] if the set H is single-valued: Due to [3], given ε > 0,
a set A ∈ A is said to be an ε-lower minimal set of A if there exists αε ∈ Y with
||αε|| < ε such that

A �lD A− αε, A ∈ A =⇒ A− αε �lD A .

Then, if we denote the unit open ball of Y by B, it follows that A ∈ A is an ε-lower
minimal set of A if and only if there exists y ∈ εB such that it is a {y}2-approximate
minimal element of A.

Remark 4.2.3 ([42, Remark 2.6]). It is easy to observe that if H ⊆ H̃, then A
H̃1 ⊆ AH1

holds true.

Lemma 4.2.4 ([42, Lemma 2.7]). Assume that D is a convex cone and H ⊆ D. Then
the inclusion Amin ⊆ AH1 ⊆ AH2 holds.
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Proof. Choose A ∈ Amin and assume that there exists some A ∈ A such that A �lD A.
By the minimality of A, we get A �lD A. This means A ⊆ A + D, which implies
A+H ⊆ A+H +D ⊆ A+D. This corresponds to A �lD A+H.

Now let A ∈ A be an H1–approximate minimal element of A w.r.t. �lD and assume
that there exists some A ∈ A with A+H �lD A. This means that A ⊆ A+H +D. As
H ⊆ D and D is a convex cone, we obtain A ⊆ A + D, corresponding to A �lD A. By
the H1–approximate minimality of A, we obtain A �lD A+H.

The inverse inclusion, namely AH2 ⊆ AH1 , does not generally hold, as the following
example shows (see also the numerical tests in Example 4.4.11 on page 97).

Example 4.2.5 ([42, Example 2.8]). Consider Y = R2, the family A = {(y1, y2) ∈
R2 | y1, y2 ≥ 1} consisting of infinitely many single-valued sets, D = R2

+, ε = 1, e =
(0.5, 1) and H = {εe}. The set of all H1–approximate minimal elements of A is AH1 =
A ∩ {(y1, y2) ∈ R2 | y2 ≤ 2, y1 ≤ 1.5}. We can see that AH2 = AH1 ∪ {(y1, y2) ∈
R2 | 1.5 ≤ y1, 1 ≤ y2 < 2} ∪ {(y1, y2) ∈ R2 | 2 ≤ y2, 1 ≤ y1 < 1.5}. Moreover, it
holds that Amin = {(1, 1)}. Notice that AH3 = AH2\{(1.5, 2)}, because, for a family
of single-valued sets, the set relation �lD reduces to the usual partial order (i.e., �lD is
antisymmetric) in vector optimization. See Figure 4.1 for an illustration.

y1

y2

1 2 3 4

1

2

3

4

εe

A

AH2
AH1

Figure 4.1: AH2 ⊆ AH1 does not hold (see Example 4.2.5).

The next example also shows that AH2 ⊆ AH3 does not hold true in general.

Example 4.2.6 ([42, Example 2.9]). Let Y = R2, D = R2
+, H = {(0, 2)}, A =

{(y1, y2) ∈ R2 | y1, y2 ∈ [0, 2]}, A = {(y1, y2) ∈ R2 | 0 ≤ y1 ≤ 1, −2 ≤ y2 ≤ −1},
A = {A,A}. Then A is an H2–approximate minimal element of A, but A /∈ AH3 . For
an illustration, see Figure 4.2.
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y1
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Figure 4.2: A ∈ AH2 , but A /∈ AH3 (see Example 4.2.6).

4.3 Scalarization Results

In this section, we present some characterizations for approximate minimal elements of
a family of sets w.r.t. �lD by means of linear and nonlinear scalarization methods.

4.3.1 Linear Scalarization

Throughout this subsection, D ∈ P(Y ) is taken such that D 6= Y ; for some results,
however, we need D ∈ P(Y ) to be a convex cone and this particular assumption will be
stated in the respective assertion.

The following result is closely related to a vectorization approach by Jahn [54, Lemma
2.1].

Theorem 4.3.1 ([42, Theorem 3.1]). If for all A ∈ A\{A} there exists some ` ∈ D∗\{0}
such that

inf
a∈A

`(a) < inf
a∈A

`(a) (4.1)

holds, then A ∈ Amin.

It is straightforward that under the assumptions stated in Lemma 4.2.4, that is, if
D is a convex cone and H ⊆ D, then A ∈ AH1 ∩ AH2 also holds whenever condition
(4.1) is fulfilled due to the inclusion Amin ⊆ AH1 ⊆ AH2 . Similar to Theorem 4.3.1, we
will provide a scalarization approach for obtaining H3-approximate minimal elements of
A w.r.t. �lD in Theorem 4.3.5. First, we are interested in obtaining H1-approximate
minimal elements of A w.r.t. �lD via linear scalarization. After the following result, we
will discuss the single-valued case and note that the assumptions in Theorem 4.3.2 are
quite strong.
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Theorem 4.3.2 ([42, Theorem 3.2]). Let Y be a real locally convex vector space. Assume
that D ⊂ Y is a convex cone. If for all A ∈ A and for all ` ∈ D∗

inf
a∈A

`(a) ≤ inf
a∈A+H

`(a) (4.2)

holds and A+D is closed and convex, then A ∈ AH1.

Proof. Suppose to the contrary that there exists some A ∈ A such that A �lD A, but
A 6�lD A + H. This means that A + H 6⊆ A + D. Thus, there exists some a0 ∈ A + H
such that a0 /∈ A + D. Since A + D is closed and convex, we are able to apply a
classical separation argument (for example, [53, Theorem 3.18]) such that there exists
α ∈ R, ` ∈ Y ∗ \ {0} such that

∀ a ∈ A+D : `(a0) < α ≤ `(a). (4.3)

Because D is a convex cone, we get ` ∈ D∗ \ {0}. The inequality (4.3) implies

inf
a∈A+H

`(a) < α ≤ inf
a∈A

`(a),

contradicting the assumption (4.2).

Note that under the assumptions stated in Theorem 4.3.2 and Lemma 4.2.4 (that is,
if H ⊆ D), A ∈ AH2 holds as well if condition (4.2) is true.

Theorem 4.3.2 leads to the following result for H = {0} and if the sets in A are
single-valued.

Corollary 4.3.3 ([42, Corollary 3.3]). Assume that D is a closed convex cone in the
real locally convex vector space Y and H = {0}. Furthermore, let all elements in A be
single-valued. If for all a ∈ A and for all ` ∈ D∗

`(a) ≤ `(a) (4.4)

holds, then a ∈ Amin.

Let us mention that for Example 4.2.5, all H1-approximate minimal elements of A
w.r.t. �lD can be found by means of Theorem 4.3.2, as can be easily seen by visualization.
This observation is a motivation for the following consequence of Theorem 4.3.2:

Corollary 4.3.4 ([42, Corollary 3.4]). Let Y be a real locally convex vector space. Assume
that D ⊂ Y is a closed convex cone, ε ∈ Y and H = {ε}. Furthermore, let all elements
in A be single-valued. If for all a ∈ A and for all ` ∈ D∗

`(a) ≤ `(a+ ε)

holds, then a ∈ AH1.
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It is clear that the assumptions in Corollaries 4.3.3 and 4.3.4 are very strong; in fact,
under the assumptions of Corollary 4.3.3 and if ā ∈ A satisfies (4.4), it follows by the
bipolar theorem (see, for instance, [29, Proposition 2.1 (1)]) that ā �lD a, for all a ∈ A,
i.e., ā is a strongly minimal element of A (see [53, Definition 4.8(a)]). Analogously, if the
assumptions of Corollary 4.3.4 are satisfied, we deduce that ā �lD a + ε, for all a ∈ A,
so in this case ā is an ε-strongly minimal element of A (see [29]). Therefore, a recourse
to actually obtain H1-approximate minimal elements of A w.r.t. �lD is presented in
Section 4.3.2 using a nonlinear scalarization functional.

Theorem 4.3.5 presents a sufficient condition for H3-approximate minimal elements
of A w.r.t. �lD.

Theorem 4.3.5 ([42, Theorem 3.5]). If for all A ∈ A\{A} there exists some ` ∈ D∗\{0}
such that

inf
a∈A

`(a) < inf
a∈A+H

`(a)

holds, then A ∈ AH3.

Proof. Suppose by contradiction that A /∈ AH3 . Then there exists some A ∈ A such
that A + H �lD A. From this relation, we immediately obtain for all ` ∈ D∗ \ {0} the
inequality infa∈A+H `(a) ≤ infa∈A `(a), contradicting the assumption.

The following result gives a necessary condition for the H2-approximate minimal
elements.

Theorem 4.3.6 ([42, Theorem 3.6]). Let Y be a real locally convex vector space and let
D ⊂ Y be a convex cone. Assume that for all A ∈ A, A+H +D is a closed convex set
and let A ∈ AH2. Then for all A ∈ A there exists some ` ∈ D∗ \ {0} with the property

inf
a∈A

`(a) ≤ inf
a∈A+H

`(a).

Proof. Suppose to the contrary that there exists some A ∈ A such that

∀ ` ∈ D∗ \ {0} : inf
a∈A

`(a) > inf
a∈A+H

`(a). (4.5)

Then we obtain by [54, Lemma 2.1] A + H �lD A. By the H2-minimality of A, we get
A �lD A + H. This directly yields the equality A + D = A + H + D, in contradiction
with (4.5).

The proof of the following theorem is skipped, as it is similar to that of Theorem 4.3.6
(or can be directly obtained from Lemma 4.2.4).

Theorem 4.3.7 ([42, Theorem 3.7]). Let Y be a real locally convex vector space and let
D ⊂ Y be a convex cone. Assume that H ⊂ D and that for all A ∈ A, A+H +D is a
closed convex set and let A ∈ AH1. Then for all A ∈ A there exists some ` ∈ D∗ \ {0}
with the property

inf
a∈A

`(a) ≤ inf
a∈A+H

`(a).
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Under less restrictive assumptions, we have the following assertion.

Theorem 4.3.8 ([42, Theorem 3.8]). Let Y be a real locally convex vector space and let
D ⊂ Y be a convex cone. Assume that 0 ∈ H and that for all A ∈ A, A+D is a closed
convex set and let A ∈ AH1 . Then for all A ∈ A there exists some ` ∈ D∗ \ {0} with the
property

inf
a∈A

`(a) ≤ inf
a∈A

`(a).

Remark 4.3.9 ([42, Remark 3.9]). The convexity assumptions of A+H +D and A+D
for all A ∈ A in Theorems 4.3.7 and 4.3.8, respectively, are indeed necessary. Consider,
for instance, the space Y = R2, the sets D = R2

+, H = {0}, A = {(1, 1), (2, 0.5)}, A =
{(1.5, 0.8)} and A = {A,A}. Then we have A 6�lD A, thus, A ∈ AH1 , but infa∈A `(a) <
infa∈A `(a) for all ` ∈ D∗ \ {0}.

4.3.2 Nonlinear Scalarization

In this section, we present characterizations of approximate minimal elements of A w.r.t.
�lD without any convexity assumptions. Throughout this section, we assume that D ⊂ Y
is a convex cone with nonempty interior, k ∈ intD, and A ∈ P(Y ) is D-proper. Let
∆D,k,A : P(Y )→ 2R be defined by

∀ A ∈ P(Y ) : ∆D,k,A(A) := {t ∈ R | A �lD tk +A}.

We recall the following nonlinear scalarizing functional zD,k,A : P(Y )→ R∪{±∞}, given
by

zD,k,A(A) :=

{
+∞ if ∆D,k,A(A) = ∅,
inf{t ∈ R | A �lD tk +A} otherwise.

Some useful properties of the functional zD,k,A are collected below.

Proposition 4.3.10 ([43, 46]). 1. Monotonicity property:

A1, A2 ∈ P(Y ), A1 �lD A2 ⇒ zD,k,A(A1) ≤ zD,k,A(A2).

2. Let A ∈ P(Y ), r ∈ R. Then zD,k,A(A) ≤ r ⇐⇒ rk+A ⊆ cl(A+D). In particular
we have zD,k,A(A) ≤ 0.

The following result is easily obtained.

Theorem 4.3.11 ([42, Theorem 3.11]). If zD,k,A(A) > 0 for all A ∈ A \ {A}, then
A ∈ Amin.

Proof. Suppose the opposite. Then there exists some A ∈ A\{A} such that A �lD A and
A 6�lD A. By the monotonicity property of zD,k,A, we obtain zD,k,A(A) ≤ zD,k,A(A) ≤ 0.
But this is a contradiction to the assumption, and the result follows.
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Under the assumption stated in Theorem 4.3.11, A also belongs to AH1 ∩ AH2 for
any H ⊆ D. Notice that if the family of sets A is only given by single-valued sets,
Theorem 4.3.11 reduces to a separation theorem for not necessarily convex sets (see [37,
Theorem 2.3.6]). A sufficient condition for H3-approximate minimal elements is given
in Theorem 4.3.12. The proof is similar to the one of Theorem 4.3.11 and is therefore
omitted.

Theorem 4.3.12 ([42, Theorem 3.12]). If zD,k,A(A+H) > 0 for all A ∈ A \ {A}, then
A ∈ AH3.

The following theorem describes a necessary condition for H1-approximate minimal
elements.

Theorem 4.3.13 ([42, Theorem 3.13]). For all A ∈ A, assume that A+D is closed. If
A ∈ AH1, then zD,k,A(A) > 0 for all A ∈ A \ {A} with A 6�lD A+H.

Proof. Suppose by contradiction that there exists some A ∈ A \ {A} with A 6�lD A+H
such that zD,k,A(A) ≤ 0. This is equivalent to A �lD A. Using the H1-approximate
minimality of A, we immediately obtain that A �lD A + H, a contradiction. So, the
result is proved.

The following result gives a necessary condition for H2-approximate minimal ele-
ments.

Theorem 4.3.14 ([42, Theorem 3.14]). Assume that for all A ∈ A, A+H+D is closed.
If A ∈ AH2, then zD,k,A(A+H) > 0 for all A ∈ A \ {A} with A 6�lD A+H.

Proof. Suppose that there exists some A ∈ A\{A} with A 6�lD A+H such that zD,k,A(A+

H) ≤ 0. This is equivalent to A + H �lD A, which implies by the H2-approximate
minimality of A that A �lD A+H, in contradiction to the assumption. Then, the proof
is complete.

Remark 4.3.15 ([42, Remark 3.15]). The results obtained in this section can be helpful
to derive numerical methods for computing approximate minimal elements of a family of
(possibly infinitely many) sets. In case that the family of sets is given by a finite number
of sets, we develop efficient numerical methods in Section 4.4.

4.4 Finding H1- and H2-Approximate Minimal Elements of
a Family of Finitely Many Elements

In this section, we present algorithms that filter out elements of a family of finitely
many sets which cannot be H1- (H2-, respectively) approximate minimal and that find
all H1- and H2-approximate minimal elements. A first approach as a filter method for
sorting out non-minimal elements of a family of finitely many sets has been proposed in
Section 2.3.2. In this section, the idea of such a method is generalized to set optimization
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problems, where we assume that a family of finitely many sets A is given and we are
looking for H1- (H2-, respectively) approximate minimal elements of A.

The following algorithm is a reduction method that excludes sets that cannot be H1-
(H2-, respectively) approximate minimal. Moreover, it is a self learning method that
improves with each step. The reason for this is that if the if-statement of Algorithm 4.4.1
is not fulfilled for some Aj (j ∈ {2, . . . ,m}), then Aj is not added to the set T and
therefore, it can be excluded from all further investigation. In addition, due to the if-
statement of Algorithm 4.4.1, each element is compared only with elements that have
been under consideration before, that is, which belong to the set T . That implies that
it is not necessary to compare all elements with each other pairwise according to the
definition of H1- (H2-, respectively) approximate minimality, which can strongly reduce
the computation time of determining approximate minimal elements.

Algorithm 4.4.1 ([42, Algorithm 4.1]). (Method for sorting out elements of a family of
finitely many sets which are not H1- (H2-, respectively) approximate minimal elements)

Input: A := {A1, . . . , Am}, set relation �lD, H ⊂ Y
% initialization
T := {A1},
% iteration loop
for j = 2 : 1 : m do

if
(
A �lD Aj , A ∈ T =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ T =⇒ Aj �lD A+H

)
, respectively

)
, then

T := T ∪ {Aj}
end if

end for
Output: T

Below we note that all H1- (H2-, respectively) approximate minimal elements of the
family of sets A are contained in the output set T generated by Algorithm 4.4.1. We
refrain from giving a proof, as the results can be proven in a similar way as Theorem 2.3.6.

Theorem 4.4.2 ([42, Theorem 4.2]). 1. Algorithm 4.4.1 is well-defined.

2. Algorithm 4.4.1 generates a nonempty set T ⊆ A.

3. Every H1- (H2-, respectively) approximate minimal element of A also belongs to
the set T generated by Algorithm 4.4.1.

It was shown in Chapter 2.3.2 that all minimal elements of a family of finitely many
sets are found if the if-loop in Algorithm 2.3.5 is run backwards on the set T and if the set
relation is antisymmetric and the set of minimal elements is externally stable. Since �lD
is not antisymmetric, we cannot rely on our previously derived procedure, and hence we
propose the following algorithm that does not rely on antisymmetry or external stability.
The basic idea of the proposed method can be found in Eichfelder [25, Algorithm 1] in
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the context of finding minimal elements in vector optimization, where the domination
structure is equipped with a variable ordering cone. The following algorithm consists
of the first if-loop of Algorithm 4.4.1, the backwards iteration of the if-loop which finds
a set U ⊆ T , and a third for-loop, which is added to compare the elements that were
obtained with all remaining elements in A \ U .

We further need the following assumption.

Assumption 4.4.3. Let D be a convex cone and H ⊆ D.

With the above assumption, the implications

∀ Ai ∈ U \ {Aj} : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ Ai ∈ U \ {Aj} : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively),

and

∀ Ai ∈ U : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ Ai ∈ U : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively),

are equivalent, which will be useful in Lemma 4.4.5 and Theorems 4.4.6 and 4.4.10.

Algorithm 4.4.4 ([42, Algorithm 4.4]). (Method for finding all H1- (H2-, respectively)
approximate minimal elements of a family of finitely many sets under Assumption 4.4.3)

Input: A := {A1, . . . , Am}, set relation �lD, H ⊂ Y
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if
(
A �lD Aj , A ∈ T =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ T =⇒ Aj �lD A+H

)
, respectively

)
, then

T := T ∪ {Aj}
end if

end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if
(
A �lD Aj , A ∈ U =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ U =⇒ Aj �lD A+H

)
, respectively

)
, then

U := U ∪ {Aj}
end if

end for
{A1, . . . , Aq} := U
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V := ∅
% final comparison
for j = 1 : 1 : q do

if
(
A �lD Aj , A ∈ A \ U =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ A \ U =⇒ Aj �lD A+H

)
, respectively

)
, then

V := V ∪ {Aj}
end if

end for
Output: V

The following lemma will be useful for showing that every element of the set V is an
H1- (H2-, respectively) approximate minimal element of A.

Lemma 4.4.5 ([42, Lemma 4.5]). Let Assumption 4.4.3 be fulfilled. Every element of
U generated by Algorithm 4.4.4 is also an H1- (H2-, respectively) approximate minimal
element of U .

Proof. Let Aj ∈ U = {A1, . . . , Aq}. By the forward iteration, we obtain

∀ i < j (i ≥ 1) : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ i < j (i ≥ 1) : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively).

The backward iteration yields

∀ i > j (i ≤ q) : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ i > j (i ≤ q) : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively).

This means that

∀ i 6= j (1 ≤ i ≤ q) : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ i 6= j (1 ≤ i ≤ q) : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively).
(4.6)

(4.6) implies that

∀ Ai ∈ U \ {Aj} : Ai �lD Aj =⇒ Aj �lD Ai +H

(∀ Ai ∈ U \ {Aj} : Ai +H �lD Aj =⇒ Aj �lD Ai +H, respectively).

Then Aj is an H1- (H2-, respectively) approximate minimal element of U .

Now we are ready to show that all elements in the output V of Algorithm 4.4.4 are
H1- (H2-, respectively) approximate minimal elements of A.

Theorem 4.4.6 ([42, Theorem 4.6]). Let Assumption 4.4.3 be fulfilled. Algorithm 4.4.4
generates exactly all H1- (H2-, respectively) approximate minimal elements of A.
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Proof. Let Aj be an arbitrary element in V. Then Aj ∈ U , as V ⊆ U , and

A �lD Aj , A ∈ A \ U =⇒ Aj �lD A+H

(A+H �lD Aj , A ∈ A \ U =⇒ Aj �lD A+H, respectively).
(4.7)

Suppose that Aj is not H1- (H2-, respectively) approximate minimal in A. Then there
exists some A ∈ A such that A �lD Aj (A+H �lD Aj , respectively) and Aj 6�lD A+H.
If A /∈ U , then this is a contradiction to (4.7). If A ∈ U , then due to the H1- (H2-
, respectively) approximate minimality of Aj in U (see Lemma 4.4.5), we obtain from
A �lD Aj (A+H �lD Aj , respectively) that Aj �lD A+H, a contradiction.

Conversely, let Aj be H1- (H2-, respectively) approximate minimal in A. Then we
get

A �lD Aj , A ∈ A =⇒ Aj �lD A+H

(A+H �lD Aj , A ∈ A =⇒ Aj �lD A+H, respectively).

Now suppose that Aj /∈ V. Thus, there exists some A ∈ A\U with A �lD Aj (A+H �lD
Aj , respectively) and Aj 6�lD A + H. As Aj is H1- (H2-, respectively) approximate
minimal in A, we get Aj �lD A+H, a contradiction.

The next algorithm produces from a family of finitely many sets those that are im-
proved for some other sets in the family in the approximate minimality sense. It is
motivated by a similar one introduced in [68] that computes a so-called antisymmetric
subfamily of A. An antisymmetric subfamily of A is a family of sets A∗ ⊆ A upon
which the set relation �lD fulfills the antisymmetry condition (although �lD is not anti-
symmetric itself). In the context of H1- (H2-, respectively) approximate minimality, we
introduce a similar notion called proper subfamily A∗ of A. Later on, we will compute
all H1- (H2-, respectively) approximate minimal elements of A∗ without making use of
the third for-loop in Algorithm 4.4.4.

Algorithm 4.4.7 ([42, Algorithm 4.7]). (Method for finding a proper subfamily A∗ of
A)

Input: A := {A1, . . . , Am}, set relation �lD, H ⊆ Y
% initialization
A∗ := ∅
% iteration loop
for i = 1 : 1 : m do

if 6 ∃ A ∈ A \ {Ai} such that Ai �lD A and A �lD Ai +H
(Ai +H �lD A and A �lD Ai +H, respectively)
then A∗ = A∗ ∪ {Ai}

end if
end for
Output: A∗
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Let A∗ denote a proper subfamily of A. By A∗H1 (A∗H2 , respectively), we denote the
set of H1- (H2-, respectively) approximate minimal elements of A∗.

Now it is our goal to apply the for-loop in Algorithm 4.4.1 backwards in order to
obtain a method which determines all H1- (H2-, respectively) approximate minimal
elements of a family of sets under an external stability assumption.

Definition 4.4.8 ([42, Definition 4.8]). If for all elements A ∈ A \ AH1 (A ∈ A \ AH2,
respectively) there exists some A ∈ AH1 (A ∈ AH2 , respectively) with A �lD A (A+H �lD
A, respectively), then A is called externally stable by AH1 (AH2, respectively).

Algorithm 4.4.9 ([42, Algorithm 4.9]). (Method for finding H1- (H2-, respectively)
approximate minimal elements of a proper subfamily A∗ of finitely many sets, where A∗
is externally stable by A∗H1 (A∗H2, respectively) under Assumption 4.4.3)

Input: A∗ := {A1, . . . , Am}, set relation �lD, H ⊂ Y
% initialization
T := {A1}
% forward iteration loop
for j = 2 : 1 : m do

if
(
A �lD Aj , A ∈ T =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ T =⇒ Aj �lD A+H

)
, respectively

)
, then

T := T ∪ {Aj}
end if

end for
{A1, . . . , Ap} := T
U := {Ap}
% backward iteration loop
for j = p− 1 : −1 : 1 do

if
(
A �lD Aj , A ∈ U =⇒ Aj �lD A+H

)((
A+H �lD Aj , A ∈ U =⇒ Aj �lD A+H

)
, respectively

)
, then

U := U ∪ {Aj}
end if

end for
Output: U

Theorem 4.4.10 ([42, Theorem 4.10]). Let Assumption 4.4.3 be fulfilled. Let the set
A∗ be a proper subfamily of A externally stable by the set of H1- (H2-, respectively)
approximate minimal elements A∗H1 (A∗H2, respectively). Then the output U of Algorithm
4.4.9 consists of exactly all H1- (H2-, respectively) approximate minimal elements of the
family of sets A∗.

Proof. Let U := {A1, . . . , Aq}. By part 3 of Theorem 4.4.2, it is clear that all H1- (H2-,
respectively) approximate minimal elements of A∗ are contained in T as well as in U .
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Conversely, we prove that every element of U is also an H1- (H2-, respectively)
approximate minimal element of the set A∗. Let Aj ∈ U be arbitrarily chosen. Then, by
Lemma 4.4.5, Aj is an H1- (H2-, respectively) approximate minimal element of U . Now
suppose that Aj is not an H1- (H2-, respectively) approximate minimal element in A∗,
then Aj /∈ A∗H1 (Aj /∈ A∗H2 , respectively). Thus, as A∗ was assumed to be externally
stable by A∗H1 (A∗H2 , respectively), there exists an H1- (H2-, respectively) approximate
minimal element A (especially, A 6= Aj) with the property A �lD Aj (A + H �lD Aj ,
respectively). Since A is an H1- (H2-, respectively) approximate minimal element in A∗,
part 3 of Theorem 4.4.2 implies that A ∈ U . Because Aj is an H1- (H2-, respectively)
approximate minimal element of U , we get Aj �lD A + H. But this is a contradiction
since A∗ is proper and the proof finishes.

Example 4.4.11 ([42, Example 4.11]). We exemplarily demonstrate the usefulness of our
proposed algorithms by a numerical example. In Figure 4.3, we have randomly generated
150 single-valued sets in the box [0, 50] × [0, 50] ⊂ R2. Let D = R2

+ and H = {(5, 5)T }.
Concerning H1-approximate minimal elements, Algorithm 4.4.1 first generates 20 ele-
ments in the set T , which are the darkly filled circles in the left image, while the backward
iteration in Algorithm 4.4.4 finds 12 elements in the set U , denoted with a cross. The
third for-loop, i.e., the final comparison, finds that U = V.

In the right picture in Figure 4.3, we deal with H2-approximate minimal elements by
Algorithms 4.4.1 and 4.4.4. We can see all 39 elements in T and 35 elements of the set U ,
which are denoted by a cross. The final for-loop finds that U = V. The minimal elements
of the family of single-valued sets are depicted in the lower illustration in Figure 4.3 for
comparison. They have been obtained using the standard Jahn-Graef-Younes method (see
[53]), where all 14 elements of the set T are plotted in black circles and all 8 minimal
elements are noted by a cross.

Example 4.4.12 ([42, Example 4.12]). In this example, we compute H1- (H2-, re-
spectively) approximate minimal elements of a family of finitely many starshaped (not
necessarily convex) sets, where D = R2

+. Using a radial function, we construct piecewise
starshaped sets F (x), where x ∈ R2. First we clarify the notion of piecewise starshaped-
ness. A nonempty compact set A ⊂ Rm is called piecewise starshaped, if there are finitely

many compact subsets A1, . . . , Ar of A (with r ∈ N) so that A =

r⋃
i=1

Ai and every subset

Ai (with i ∈ {1, . . . , r}) is starshaped with respect to some ŷi ∈ Ai, i.e.

λy + (1− λ)ŷi ∈ Ai for all λ ∈ [0, 1] and all y ∈ Ai.

Given a set-valued map F : R2 ⇒ R2 with piecewise starshaped images, it is our goal to
select H1- (H2-, respectively) approximate minimal of this family of finitely many sets.
To this end, we choose an element x̂ = (x̂1, x̂2)T ∈ R2 and compute its reference point
ŷ(x̂) in the objective space. In this example, such an element is given by(

ŷ1(x̂)
ŷ2(x̂)

)
=

(
2 · x̂2

1

2 · x̂2
2

)
.
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Figure 4.3: Left: H1-approximate minimal elements. Right: H2-approximate minimal
elements. Below: Minimal elements (see Example 4.4.11).
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Figure 4.4: H1-approximate minimal elements of a family of star-shaped sets (see Ex-
ample 4.4.12).

In a next step, the following radial function is selected:

R(x, t) :=
9

x2 + 5
· sin(5 · t) + 1.2 + x2

1 for t ∈ [0, 2π].

Now we are able to construct star-shaped sets F (x) w.r.t. a reference point ŷ. In order
to discretize the elements on the boundary of the sets F (x), we compute for x ∈ R2(

y1(x)
y2(x)

)
=

(
ŷ1(x̂) +R(x, t) · cos(t)
ŷ2(x̂) +R(x, t) · sin(t)

)
.

At first, 40 reference points are selected randomly and the corresponding sets are
constructed (see Figure 4.4). In the left picture, all sets are visible. We first choose
H = {(5, 5)T }. Concerning H1-approximate minimal elements, 23 elements belong to
the set T generate by Algorithm 4.4.4 (highlighted in black), and all 14 elements which
are H1-approximate minimal are contained in the set U = V (depicted in blue color).

There exist 29 H2-approximate minimal elements, and in this example, we have T =
U = V (see Figure 4.5).
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Figure 4.5: H2-approximate minimal elements of a family of star-shaped sets (see Ex-
ample 4.4.12).
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Figure 4.6: Minimal elements of a family of star-shaped sets (see Example 4.4.12), which
were obtained using Algorithm 4.4.4.

Now we choose H = {(0, 0)T } (see Figure 4.6). Out of all 40 sets, 19 sets are selected
within the set T (in black color). Finally, 9 sets belong to U = V (depicted in blue color).



Chapter 5

Application: Unified Approaches to
Uncertain Programming

In this chapter, we will present unified concepts to uncertain programming problems
based on three approaches, namely, the vector-valued approach, set-valued approach and
by using the nonlinear functional zD,k defined in (2.2). Allowing uncertain parameters in
optimization problems is extremely important, as most real-world problems are contami-
nated by uncertainty and the computed solutions can highly depend on it. In particular,
using the set-valued approach shows that it is possible to handle a number of concepts
from uncertain programming using the theory derived in this thesis. We will describe
each approach separately in Section 5.1. The results presented here can, in more detail,
be found in Klamroth et al. [61].

Many optimization problems involve uncertainties that are, for example, due to un-
known future developments, measurement and/or manufacturing errors, or incomplete
information in model development. Uncertainties can be induced by future demands that
have to be predicted in order to adapt a production process or the design of a network. In
risk theory, assets are naturally affected by uncertainties due to market changes, chang-
ing preferences of customers and unforeseeable events. If such uncertainties are not taken
into account when solving practical optimization problems, this may result in solutions
that perform very poorly under some scenarios, or that are even infeasible in some cases.

Two prominent approaches for handling uncertain optimization problems are robust
optimization and stochastic programming, respectively. In robust optimization it is typ-
ically assumed that the uncertain parameters belong to a set that is known prior to
solving the optimization problem. The focus lies on looking at the worst case or the
worst case regret of a solution, hence no probability distribution for the uncertain data is
needed. The goal typically is to ensure that the solution is feasible and performs reason-
ably well in every possible future scenario, regardless of how likely this scenario may be.
Robust optimization problems were introduced by Soyster [100] in 1973 and have been
extensively studied in the literature. We refer to Kouvelis and Yu [74] and to Ben-Tal,
El Ghaoui and Nemirovski [9] for extensive collections of results. For a survey on recent
developments and new robustness concepts, see Goerigk and Schöbel [38].

101
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On the other hand, stochastic programming assumes that the uncertain parameter is
probabilistic with known probability distribution. Instead of focusing on the worst case
scenario, objective functions are usually based on the expected performance of a solution,
or on criteria induced by stochastic dominance. Stochastic programming models often
involve two-stage and multi-stage processes that reflect the situation that the knowledge
on the realization of the uncertain paramters increases over time. We refer to Birge and
Louveaux [13] for a general introduction to stochastic programming.

Several related concepts can be mentioned. Examples are online optimization, where
decisions have to be made ad hoc in real time and without knowing all problem parame-
ters (see, for example, Grötschel, Krumke and Rambau [39]), and a posteriori approaches
like parametric optimization (see, for example, Klatte and Kummer [62]).

As a consequence of the fundamental difference in modeling assumptions (probability
distribution not known or known, respectively), robust optimization and stochastic pro-
gramming have mostly been treated separately in the literature. However, an analysis
from the perspective of multiobjective optimization reveals that, assuming that the sce-
nario set is finite and defining one objective function for each scenario, both concepts lead
to solutions that are nondominated with respect to the same multiobjective counterpart
problem. Taking this perspective, Klamroth et al. [60] develop a unifying framework
covering both robust and stochastic optimization. Moreover, it is shown that the non-
linear scalarizing functionals introduced in Gerstewitz [32], applied to the multiobjective
counterpart problems, induce many of the classical concepts from robust optimization
and stochastic programming.

For finite uncertainty sets, the interrelation between uncertain scalar optimization
problems and associated deterministic multiobjective counterparts has already been dis-
cussed in earlier works, see, for example, Hites et al. [48] for a critical evaluation. There
often is a particular focus on specific robustness concepts and on transferring ideas from
one modeling paradigm to another. As an example, Kouvelis and Sayin [73, 98] transfer
methods from uncertain scalar optimization to deterministic multiobjective optimization
to derive efficient solution algorithms for the latter. Conversely, multiobjective counter-
part problems have been used to derive approximation algorithms for several classes of
robust optimization problems, see, for example, Aissi, Bazgan and Vanderpooten [1, 2].
Similarly, multiobjective counterpart problems can be used to motivate new robustness
concepts, see, for example, Ogryczak [86, 87, 88], Ogryczak and Śliwiński [89], and Perny
et al. [91].

For infinite uncertainty sets, a deterministic multiobjective counterpart problem with
a finite number of objectives is in general not sufficient to fully represent the problem. It
is the goal of this chapter to discuss possible generalizations of the ideas derived in [60]
to the infinite dimensional case. We show that concepts from vector optimization can
be used in place of multiobjective models, and we analyze the relation to concepts from
set-based optimization. Nonlinear scalarizing functionals are again a versatile tool to
relate deterministic vector optimization counterparts with many classical concepts from
robust optimization and stochastic programming, as has been demonstrated in [61].

Parts of our analysis on deterministic vector optimization counterparts are closely
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related to recent work of Rockafellar and Royset [93, 94, 95, 96] who investigate decision
making under uncertainty in a unified framework involving risk measures. This relation
will be discussed in more detail in Remark 5.1.5 below. Deterministic vector optimization
counterparts have also been analyzed in Engau [30], who generalizes the concept of
proper efficiency to the case of a countably infinite number of objective functions. In
this way, weakly efficient solutions can be avoided, not only in the context of uncertain
optimization problems. A review on recent developments in robust optimization, also
including a discussion on the relation between different modeling paradigms, can be
found in Gabrel, Murat and Thiele [31].

We consider optimization problems (Q(ξ)) which depend on uncertain parameters
ξ ∈ U ⊆ RL. For fixed parameters ξ ∈ U (called a scenario) the problem to be solved is
given as

f(x, ξ)→ inf

s.t. Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,
(Q(ξ))

where f : Rn × U → R, Fi : Rn × U → R, i = 1, . . . ,m.
Let us denote the set of feasible solutions of (Q(ξ)) by

X (ξ) = {x ∈ Rn : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}.

We assume that for every fixed scenario ξ ∈ U the optimization problem (Q(ξ)) has an
optimal solution; in particular, X (ξ) 6= ∅.

ξ models the parameters which are uncertain. Such uncertainties occur in many
real-world optimization problems and can e.g. be caused by measuring errors, modeling
assumptions or simply because a future parameter is not known prior to solving an
optimization problem. Throughout this work, we assume that the parameters ξ are
unknown, but stem from an uncertainty set U that is nonempty and compact, and that is
in general not finite. This is a common assumption in the context of robust optimization.
Examples include interval based uncertainties (e.g. [12]), polyhedral uncertainties (e.g.
[99]), or ellipsoidal uncertainty sets (e.g. [9]).

An uncertain optimization problem P (U) is defined as a family of parametrized op-
timization problems

(Q(ξ), ξ ∈ U). (5.1)

We denote by ξ̂ ∈ U the nominal value, i.e., the value of ξ that we believe is true today.
(Q(ξ̂)) is called the nominal problem.

Concepts for handling uncertain optimization problems often rely on the formulation
of a deterministic counterpart problem in order to identify a most preferred solution under
varying modeling assumptions. In the following we illustrate this approach by giving a
small example from robust optimization and from stochastic programming, respectively.

Example 5.0.1 (Uncertain linear optimization problem, [61, Example 1]). Consider
f(x, ξ) := c(ξ)Tx, where x ∈ Rn is the decision variable and c(ξ) = c0 +

∑L
i=1 ξic

i ∈ Rn
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for given ci ∈ Rn, i = 0, . . . , L and ξ ∈ RL. ξ ∈ U is the uncertain parameter and
U := {ξ ∈ RL| − 1 ≤ ξi ≤ 1, i = 1, . . . , L}. We would like to solve

(c0 +
L∑
i=1

ξic
i)Tx→ inf

x∈Rn
,

where ξ ∈ U is unknown, leaving us with an uncertain optimization problem (Q(ξ), ξ ∈
U).

Strictly robust solution. A prominent robustness concept is to minimize the worst
case objective function value, i.e., we aim at solving

sup
ξ∈U

(c0 +

L∑
i=1

ξic
i)Tx→ inf

x∈Rn
.

Minimizing the expectation. If a probability distribution over U is known we can also
minimize the expected objective value, i.e., solve

E
(
(c0 +

L∑
i=1

ξic
i)Tx

)
→ inf

x∈Rn
.

In this chapter, we propose a unifying framework for uncertain optimization prob-
lems. We choose strict robustness, optimistic robustness, regret robustness, reliability and
adjustable robustness as examples, and refer to [61] for a detailed analysis on a larger
number of concepts for uncertainty. In [61], it is also shown that our framework mo-
tivates the definition of new concepts, and some that might be useful in practice are
presented there. As an example, we introduce here the concept certain robustness as a
novel approach to uncertain programming using set optimization techniques.

5.1 Three Unifying Concepts for Uncertain Optimization

In this section we present the basic ideas which allow for a unified treatment of concepts
from robust optimization and stochastic programming.

5.1.1 Vector Optimization as Unifying Concept

The first concept generalizes the idea of multiobjective counterpart problems, formulated
for finite uncertainty sets in Klamroth et al. [60], to the case of infinite uncertainty sets.
The underlying idea of this approach is not new, see Rockafellar and Royset [93, 94, 95, 96]
or Engau [30], but it has never been studied as broad as we will do in Section 5.2 and in
[61].

If U = {ξ1, . . . , ξq} is finite, each scenario can be interpreted as an objective function.
For a solution x ∈ Rn we then obtain a vector Fx ∈ Rq which contains f(x, ξi) in its ith
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coordinate. In order to compare two solutions x and y, order relations for the vectors
Fx and Fy are used. In this way, many concepts of robust optimization and of stochastic
programming can be characterized using multiobjective counterpart problems, see [60].
If U is not a finite set, we obtain not vectors but functions, i.e., Fx : U → R where
Fx(ξ) = f(x, ξ) contains the objective function value of x in scenario ξ, ξ ∈ U . In
order to compare two solutions x and y, we hence need order relations in the real linear
functional space RU of all mappings F : U → R.

In order to describe the vector optimization approach formally, let (Q(ξ), ξ ∈ U) be
the given uncertain optimization problem. Let Y = RU be the space of all functions
F : U → R. For a fixed solution x ∈ Rn we define

Fx ∈ Y : Fx(ξ) := f(x, ξ).

In order to compare elements of Y , we consider different order relations on the space Y ,
which are denoted by ≤. In the context of vector optimization, (partial) order relations
can, for example, be defined based on cones: Let C ⊆ Y be a proper (C 6= Y and
C 6= {0}), closed, convex, and pointed cone. Such a cone C induces an order relation
≤:=≤C by

y1 ≤C y2 :⇐⇒ y1 ∈ y2 − C (⇐⇒ y2 ∈ y1 + C)

see, for example, [53], or (1.7). Whenever we are working with the interior of an ordering
cone, we assume that Y = C(U ,R), i.e., that the functions Fx = f(x, ξ) are continuous
in ξ for all feasible values of x. A particular order relation which is of interest later on is
given in the next definition.

Definition 5.1.1 ([61, Definition 1]). The natural order relation ≤Y + (see (1.7) with
C = Y +) is given by the cone

Y + := {F ∈ Y |∀ξ ∈ U : F (ξ) ≥ 0}

inducing for all F,G ∈ Y that

F ≤Y + G ⇐⇒ G ∈ F + Y +

⇐⇒ F (ξ) ≤ G(ξ) for all ξ ∈ U .

In the following it will be important to identify (weakly) minimal elements in subsets
of Y (compare Definition 1.2.5). To this end, let F be a nonempty subset of Y .

Definition 5.1.2. Let F ⊆ Y and let ≤ be an order relation on Y . F ∈ F is a minimal
element of F in Y w.r.t. ≤ if

for all G ∈ F : G ≤ F =⇒ F ≤ G.

Moreover, if ≤ is induced by a proper closed convex cone C in Y with int(C) 6= ∅, then
we set ≤=:≤C and call F ∈ F a weakly minimal element of F in Y w.r.t. ≤C if

(F − int(C)) ∩ F = ∅.
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Note that if ≤ is induced by a cone C, we define ≤C :=≤. Then an element F ∈ F is
a minimal element of F in Y w.r.t. ≤C if and only if (F−C)∩F ⊆ F+C. Moreover, if C
is a proper closed convex cone with int(C) 6= ∅, then minimality implies weak minimality.

Given an order relation ≤ and a set F , the vector optimization problem asks for
minimal elements of F in Y w.r.t. ≤. According to [61], many concepts for uncertain
optimization can be interpreted as solving such a vector optimization problem, and con-
versely, every order ≤ induces a concept for handling uncertainty. While not all such
concepts necessarily have a meaningful interpretation in the context of uncertain opti-
mization, this relationship provides a systematic means of devising and understanding
deterministic counterparts of an uncertain optimization problem.

Example 5.1.3 ([61, Example 2]). In the case of the natural order relation ≤Y + of Y
introduced in Definition 5.1.1, an element F ∈ F is a minimal element of F in Y w.r.t.
≤Y + if and only if

6 ∃G ∈ F \ {F} : ∀ξ ∈ U : (G− F )(ξ) ≤ 0.

If Y = C(U ,R), then int(Y +) = {F ∈ Y |∀ξ ∈ U : F (ξ) > 0}, and an element F ∈ F is
a weakly minimal element of F in Y w.r.t. ≤Y + if and only if

6 ∃G ∈ F : ∀ξ ∈ U : (G− F )(ξ) < 0. (5.2)

Remark 5.1.4 ([61, Remark 1]). Note that the concept of minimality introduced above is
also known as (Edgeworth) Pareto minimality in the context of vector or multi-objective
optimization. In particular, a solution which is minimal with respect to the natural order
relation ≤Y + is often called a Pareto solution.

Remark 5.1.5 ([61, Remark 26]). As mentioned before, the general idea of the vector
optimization approach to uncertain optimization problems is not new. However, to the
best of our knowledge it has not been applied at the same level of broadness in the lit-
erature. We mention the related works of Rockafellar and Royset [93, 94, 95, 96] who
suggest a similar unifying concept for handling uncertainty in a decision making process.
By interpreting the uncertain outcome Fx of a solution x ∈ Rn as a random variable,
they show that many concepts from robust optimization and stochastic programming can
be represented by risk measures. More precisely, let Y be a space of random variables.
A measure of risk is a functional R : Y → R ∪ {±∞} that assigns to a response or cost
random variable y a number R(y) as a quantification of the risk in y. An examination
of superquantiles and their broad applications to risk and random variables is given in
[93]. In [94], the authors present how risk measures provide an enlarged set of models for
handling uncertainty, covering for example worst case optimization (see Section 5.2) and
expected value minimization. In [95], the definition of measures of residual risk is in-
troduced, which extends the notion of risk measures by considering an additional random
variable. This approach is motivated by tradeoffs detected by forecasters and investors,
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and it provides profound connections to regression, surrogate models and distributional
robustness. Other risk measures considered in [93, 94, 95, 96] include quantiles, safety
margins, superquantiles and utility functions.

In the recent work of Engau [30], uncertain optimization problems with a countably
infinite uncertainty set are considered, and a vector optimization problem is formulated
as a deterministic counterpart also in this case. This counterpart problem is then used
to apply generalized concepts of proper efficiency in the context of uncertain optimization
problems in order to avoid weakly efficient solutions.

5.1.2 Set-based Optimization as Unifying Concept

In this section, we derive an approach to uncertain scalar optimization based on set-
valued optimization. In the literature, there already exist some concepts for uncertain
vector (or multi-objective) optimization that deal with concepts from set-valued opti-
mization. Ide et al. [51] investigate uncertain vector-valued optimization problems and
relationships to set order relations (compare also Ide, Köbis [50] and Crespi et al. [18]).
They define robust solutions to families of uncertain vector-valued problems and use
techniques from set optimization. Specifically, in [18] the authors use an embedding
approach from set optimization as a vectorization, that is, to transfer the set optimiza-
tion problem into a vector optimization problem. Moreover, well-posedness by means of
certain convexity notions on the objective map is studied in [18]. In this chapter, we
focus on uncertain scalar optimization problems with infinite uncertainty set and their
correspondence to vector-valued, set-valued and scalarizing counterparts. The relation
to these counterparts is naturally derived by means of the uncertainty set. The coun-
terparts are then deterministic. The set-based unifying concept, which will be described
in this section, is a special case of the approach considered in [18] for uncertain scalar
optimization problems.

In our second approach we associate a solution x with the set of possible objective
values which can occur if x is chosen. These objective values are given by

Bx := f(x,U) := {f(x, ξ) | ξ ∈ U} ⊆ R.

In order to compare two solutions x and y in this setting we have to define order relations
between their corresponding sets Bx and By.

Let Z := P(R) be the set of all subsets of R. For a given x ∈ Rn the set Bx ∈ Z
is hence the image of the mapping Fx under U . Note that Bx ⊆ R is an interval for
example in case that f(x, ·) is a continuous function on a convex uncertainty set U .

In order to compare elements of Z we consider set order relations, which we denote
by �. Many examples for set order relations can be found, for example, in [59] and [26].

Example 5.1.6 ([61, Example 3]). An example for a set order relation is the lower-type
set-relation introduced in [76, 77, 79] and defined as follows (see also Definition 2.2.9):
Let A,B ∈ Z be nonempty sets. Then

A �lR+
B :⇐⇒ B ⊆ A+ R+ (5.3)
⇐⇒ inf A ≤ inf B.
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We are again interested in finding minimal elements of Z. To this end, let B be a
nonempty subset of Z. Given an order relation� and a set B ⊆ Z, set-valued optimization
asks for minimal elements (in the sense of Definition 1.2.11) of B in Z w.r.t. �. It is
reported in [61] that some (but not all) concepts for uncertain optimization can be
interpreted as solving such a set-valued optimization problem, and that every set order
relation � induces a concept for handling uncertainty.

In the special case U = {ξ1, . . . , ξq} (q ∈ N) we obtain that

Bx = {f(x, ξ) | ξ ∈ U} = {f(x, ξ1), . . . , f(x, ξq)} ⊆ R

is a set of finitely many elements in R.

5.1.3 The Nonlinear Scalarizing Functional as Unifying Concept

Many concepts of robust and stochastic optimization can also be interpreted using the
following nonlinear scalarizing functional for general vector optimization problems. Intu-
itively, whenever a robust counterpart problem generates (weakly) minimal elements of
an associated vector optimization problem in the sense of Section 5.1.1, these solutions
can also be generated using appropriate scalarizing functionals. Depending on the prop-
erties of the involved parameters, these scalarizing functionals possess a variety of useful
properties, especially monotonicity and continuity properties. Consequently, this gives
rise to a third unifying framework.

Let Y be a linear space, k ∈ Y \ {0} and let F be a nonempty, proper subset of
Y (denoting the set of feasible elements of Y ). In the following, we are particularly
interested in the special case that Y = RU is the linear space of all real-valued functions
F : U → R, c.f. Section 5.1.1. Now let B be a closed proper subset of Y satisfying

B + [0,+∞) · k ⊆ B (5.4)

and introduce the functional zB,k : Y → R (compare Chapter 2.1),

zB,k(y) := inf{t ∈ R|y ∈ tk −B}. (5.5)

An important question is whether the nonlinear scalarizing functional zB,k can be used
as a tool to characterize solutions of the robust counterpart problems. For a finite
uncertainty set, the answer to this question is positive, as discussed in [63]. Using the
scalarizing functional we can define the following minimization problem, which will be
used later on to represent concepts of robust and stochastic optimization.

Definition 5.1.7 ([61, Definition 4]). Let F ⊆ Y and let zB.k be defined as in (5.5). An
element F ∈ F is a minimal element of F in Y w.r.t. zB,k if

∀G ∈ F : zB,k(F ) ≤ zB,k(G),

i.e., F solves the scalar optimization problem

zB,k(F )→ inf
F∈F

. (Pk,B,F )
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We remark that many scalarization concepts that are suggested in the literature are
special cases of the above nonlinear scalarization concept. For example, in the case
of (finite-dimensional) multiobjective optimization, this scalarization method comprises
weighted-sum, Tschebyscheff- and ε-constraint-scalarizations, and many others.

The functional has many interesting properties, some of which we collect below in
the case that Y is a linear topological space and B is a proper closed convex cone in Y
with nonempty interior and k ∈ intB (see Theorem 2.1.2 for the more general case when
B is not necessarily a proper closed convex cone with nonempty interior).

Lemma 5.1.8 ([37]). Let Y be a linear topological space, B be a proper closed convex
cone in Y with nonempty interior and k ∈ intB. Then z = zB,k, defined by (5.5), is a
finite-valued continuous sublinear and strictly (intB)-monotone functional such that

∀y ∈ Y, ∀r ∈ R : z(y) ≤ r ⇐⇒ y ∈ rk −B,

∀y ∈ Y, ∀r ∈ R : z(y) < r ⇐⇒ y ∈ rk − intB.

5.2 Strict Robustness

The three general concepts introduced in Section 5.1 allow for a unified treatment of a
large variety of models from robust optimization and stochastic programming. In the
following, we exemplarily review the classical and most prominent concept, namely strict
robustness, and interpret this model in terms of vector optimization, set-based optimiza-
tion and using nonlinear scalarizing functionals. A similar analysis is performed for a
wide range of concepts from uncertain programming in [61]. As reported in [61], it turns
out that, under relatively mild assumptions, solutions that are optimal for robust opti-
mization or stochastic programming models are typically obtained as (weakly) minimal
solutions of an appropriately formulated deterministic vector optimization counterpart.
Similarly, nonlinear scalarizing functionals, which yield (weakly) minimal solutions of the
respective vector optimization counterparts, can be applied to achieve similar results.

Strict robustness (also called minmax robustness) has been introduced by Soyster
[100] and extensively researched since then, see Ben-Tal et al. [9] for a collection of
results on various uncertainty sets. Strict robustness is a conservative concept in which
a robust solution is required to be feasible for every scenario ξ ∈ U . In the objective
function one considers the worst case. Formally, the strictly robust counterpart (RC)
of the uncertain optimization problem (Q(ξ), ξ ∈ U) is defined by

ρRC(x) = sup
ξ∈U

f(x, ξ)→ inf

s.t. ∀ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

(RC)

A feasible solution to (RC) is called strictly robust and we denote the set of strictly
robust solutions by

Astrict := {x ∈ Rn| ∀ ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}.
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5.2.1 Vector Optimization Approach for Strict Robustness

The strictly robust counterpart (RC) can be formulated as a vector optimization problem
in the functional space Y = RU as follows. We denote the set of strictly robust outcome
functions in Y by

Fstrict := {Fx ∈ Y | x ∈ Astrict}. (5.6)

Let two functions Fx, Fy ∈ Y be given. We consider the following order relation on Y :

Fx ≤sup Fy :⇐⇒ sup
ξ∈U

Fx(ξ) ≤ sup
ξ∈U

Fy(ξ).

In the special case of a finite uncertainty set U = {ξ1, . . . , ξq}, q ∈ N, ≤sup corresponds
to the max-order relation in multiobjective optimization (see, for example, Ehrgott [21]).
We will thus refer to ≤sup as the sup-order relation in the following. As in the finite
dimensional case, the sup-order relation ≤sup is not compatible with addition, i.e., for
three elements Fx, Fy, Fz ∈ Y , Fx ≤sup Fy does not necessarily imply (Fx + Fz) ≤sup

(Fy +Fz). Consequently, ≤sup cannot be represented by an ordering cone. Nevertheless,
it has the following properties.

Remark 5.2.1 ([61, Remark 2]). ≤sup is reflexive and transitive. Furthermore, ≤sup is
a total preorder.

The order relation ≤sup allows to represent the strictly robust optimization problem
as a vector optimization problem.

Theorem 5.2.2 ([61, Theorem 1]). A solution x ∈ Rn is an optimal solution to (RC) if
and only if Fx is a minimal element of Fstrict with respect to the sup-order relation ≤sup.

Proof. Let x ∈ Astrict. Then

x is an optimal solution to (RC) ⇐⇒ sup
ξ∈U

f(x, ξ) ≤ sup
ξ∈U

f(x, ξ) for all x ∈ Astrict

⇐⇒ sup
ξ∈U

Fx(ξ) ≤ sup
ξ∈U

Fx(ξ) for all x ∈ Astrict

⇐⇒ Fx ≤sup Fx for all x ∈ Astrict,

⇐⇒ Fx ≤sup G for all G ∈ Fstrict,

and the result follows since ≤sup is a total preorder.

This means that optimal solutions of the strictly robust counterpart (RC) correspond
to outcome functions whose suprema are minimal.

We now analyze the relation between the sup-order relation ≤sup and the natural
order relation ≤Y + introduced in Definition 5.1.1.

Remark 5.2.3 ([61, Remark 3]). F ≤Y + G =⇒ F ≤sup G for F,G ∈ Y .
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However, this does in general not imply that every minimal element w.r.t. ≤sup is also
a minimal element w.r.t. ≤Y + , or vice versa, or, in other words, an optimal solution to
(RC) need not be a Pareto solution, or vice versa. Under some additional assumptions,
Iancu and Trichakis [49] have shown that there exist optimal solutions to (RC) which
are Pareto, and call them PRO robust solutions.

The only general relation on (Pareto) minimal elements is the following:

Lemma 5.2.4 ([61, Lemma 2]). Let Y = C(U ,R). Assume that every F ∈ Fstrict attains
its supremum on U . If F ∈ Fstrict is a minimal element of Fstrict w.r.t. ≤sup, then F is
a weakly minimal element of Fstrict w.r.t. the natural order relation ≤Y +.

Proof. Let F ∈ Fstrict be a minimal element of Fstrict in Y w.r.t. ≤sup. Since ≤sup is a
total preorder, this means that

sup
ξ∈U

F (ξ) ≤ sup
ξ∈U

G(ξ) for all G ∈ Fstrict. (5.7)

Now suppose that F is not a weakly minimal element of Fstrict in Y w.r.t. the natural
order relation ≤Y + of Y . Thus, there exists G ∈ Fstrict s.t.

∀ ξ ∈ U : G(ξ) < F (ξ),

see, (5.2). Since G attains its supremum on U , this means that

sup
ξ∈U

G(ξ) = G(ξ) < F (ξ) ≤ sup
ξ∈U

F (ξ),

with some ξ ∈ U , a contradiction to (5.7).

Using this relation together with Theorem 5.2.2 we obtain that Fx is weakly Pareto
minimal for all optimal solutions x to (RC).

Corollary 5.2.5 ([61, Corollary 1]). Let Y = C(U ,R) and let the worst case be attained
for every solution x ∈ Astrict. Then for every optimal solution x to the strictly robust
counterpart (RC), Fx is a weakly minimal element of Fstrict w.r.t. the natural order
relation ≤Y + in Y .

The following example illustrates the preceding results. Other concepts of robustness,
as presented in [61], can be discussed analogously.

Example 5.2.6 ([61, Example 4]). In many applications in mathematical finance, the
risk is to be minimized. Especially one could use the variance as risk measure such that
one has an uncertain quadratic optimization problem of the following type. We consider
the uncertain quadratic optimization problem with linear constraints

xTA(ξ)x→ inf

s.t. (D(ξ)x− d(ξ))i ≤ 0, i = 1, . . . ,m,

x ∈ Rn
(5.8)
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where A(ξ) ∈ R(n,n) is the covariance matrix, which is assumed to be positive definite,
D(ξ) ∈ R(m,n), d(ξ) ∈ Rm, and ξ ∈ U for a given uncertainty set U . The strictly robust
counterpart of (5.8) reads

sup
ξ∈U

xTA(ξ)x→ inf

s.t. ∀ξ ∈ U : (D(ξ)x− d(ξ))i ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

(5.9)

For x ∈ Rn let Fx(ξ) := xTA(ξ)x and Fstrict := {Fx ∈ RU | ∀ξ ∈ U : (D(ξ)x− d(ξ))i ≤
0, i = 1, . . . ,m}. Theorem 5.2.2 says that x ∈ Rn is an optimal solution to (5.9) if
and only if Fx is a minimal element of Fstrict with respect to the sup-order relation ≤sup.
Moreover, if we assume Y = C(U ,R) (that means every function Fx is continuous in ξ
for each x ∈ Rn), then Lemma 5.2.4 states the following. Assume that every F ∈ Fstrict

attains its supremum on U . If Fx ∈ Fstrict is a minimal element of Fstrict w.r.t. ≤sup

(that means that x is an optimal solution to problem (5.9)), then Fx is a weakly minimal
element of Fstrict w.r.t. the natural order relation ≤Y +. That means that for computing
weakly minimal solutions of Fstrict w.r.t. ≤Y + , we can make use of the scalar problem
(5.9) (see Corollary 5.2.5).

5.2.2 Set-Valued Optimization Approach for Strict Robustness

In this section we interpret the strictly robust counterpart (RC) as a set-valued opti-
mization problem. We denote the set of strictly robust outcome sets in the power set
Z = P(R) by

Bstrict := {Bx ∈ Z| x ∈ Astrict}.
For Bx, By ∈ Z, the upper-type set-relation �uR+

is defined as

Bx �uR+
By :⇐⇒ Bx ⊆ By − R+

⇐⇒ supBx ≤ supBy,

see Kuroiwa [76, 77] and Kuroiwa et al. [79] (compare also Definition 2.2.1).

Remark 5.2.7 ([61, Remark 4]). �uR+
is reflexive and transitive. Furthermore, it is a

total preorder.

We obtain the following relation between �uR+
and ≤sup.

Lemma 5.2.8 ([61, Lemma 3]). Let x, y ∈ Rn and let Fx, Fy their corresponding outcome
functions and Bx, By their corresponding outcome sets. Then

Bx �uR+
By ⇐⇒ Fx ≤sup Fy.

Proof.

Bx �uR+
By ⇐⇒ sup Bx ≤ sup By

⇐⇒ sup{Fx(ξ)|ξ ∈ U} ≤ sup{Fy(ξ)|ξ ∈ U}
⇐⇒Fx ≤sup Fy.
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The order relation �uR+
allows to represent the strictly robust optimization problem

as a set-valued optimization problem.

Theorem 5.2.9 ([61, Theorem 2]). A solution x ∈ Rn is an optimal solution to (RC) if
and only if Bx is a minimal element of Bstrict w.r.t. the order relation �uR+

.

Proof. We know from Theorem 5.2.2 that x ∈ Astrict is an optimal solution to (RC) if
and only if Fx ≤sup Fx for all x ∈ Astrict. According to Lemma 5.2.8 this is equivalent to
Bx �uR+

Bx for all x ∈ Astrict and the result follows.

Example 5.2.10 ([61, Example 5]). We return to the uncertain quadratic optimization
problem (5.9) that we discussed in Example 5.2.6. By defining Bstrict := {Bx ∈ Z | ∀ξ ∈
U : (D(ξ)x − d(ξ))i ≤ 0, i = 1, . . . ,m}, we are able to define solutions of (5.9) as
minimal elements of a set-valued optimization problem. Theorem 5.2.9 says that for
every optimal solution x ∈ Rn of (5.9), Bx is a minimal element w.r.t. �uR+

, and vice
versa.

5.2.3 Nonlinear Scalarizing Functional for Strict Robustness

We finally represent the strictly robust counterpart (RC) using the nonlinear scalarizing
functional (5.5) introduced in Section 5.1.3. Our basic result again holds for the general
case that Y = RU .

Theorem 5.2.11 ([61, Theorem 3]). Let Y = RU , B := Y +, and k :≡ 1 ∈ Y . Then
x ∈ Rn is an optimal solution to (RC) if and only if Fx solves problem (Pk,B,F ) with
F = Fstrict.

Proof. B+ [0,+∞) ·k ⊆ B holds, thus inclusion (5.4) is satisfied and the functional zB,k

can be defined. Furthermore, we have

zB,k(Fx) = inf{t ∈ R|Fx ∈ tk −B}
= inf{t ∈ R|Fx − tk ∈ −Y +}
= inf{t ∈ R|∀ξ ∈ U : Fx(ξ) ≤ t}
= sup

ξ∈U
f(x, ξ).

Thus, Fx is minimal for (Pk,B,Fstrict
) if and only if x ∈ Astrict minimizes supξ∈U f(x, ξ),

i.e., if and only if x is an optimal solution to (RC).

Remark 5.2.12 ([61, Remark 5]). If Y = C(U ,R), we have the following properties.
Since B = Y + is a proper closed convex cone and k ∈ int(Y +), Lemma 5.1.8 implies
that the functional zB,k is continuous, finite-valued, Y +-monotone, strictly (intY +)-
monotone and sublinear, and

∀ Fx ∈ Y, ∀ t ∈ R : zB,k(Fx) ≤ t ⇐⇒ Fx ∈ tk − Y +,
∀ Fx ∈ Y, ∀ t ∈ R : zB,k(Fx) < t ⇐⇒ Fx ∈ tk − int(Y +).
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Note that in the special case of a discrete uncertainty set U = {ξ1, . . . , ξq}, Theo-
rem 5.2.11 simplifies to

min
Fx∈Fstrict

zB,k(Fx) = min
x∈Astrict

max
ξ∈U

f(x, ξ)

with B := Rq+ and k := (1, . . . , 1)T . This is equivalent to a reference point approach of
Wierzbicki [107] using the origin as reference point, and in the case that f(x, ξ) ≥ 0 for all
ξ ∈ U and x ∈ Astrict, to a weighted Tchebycheff scalarization, see Steuer and Choo [101],
(with equal weights) applied to the corresponding multiobjective optimization problem

vmin
x∈Astrict

(f(x, ξ1), . . . , f(x, ξq)),

where “vmin” is to be understood in the sense of Definition 5.1.2 with an order relation
≤Rq+ induced by the natural ordering cone Rq+ in Rq

y1 ≤Rq+ y2 :⇐⇒ y2 ∈ y1 + Rq+

for all y1, y2 ∈ Rq.

Example 5.2.13 ([61, Example 6]). We again consider the strictly robust quadratic
optimization problem with linear constraints (5.9). We use the same notation as in
Example 5.2.6. By Theorem 5.2.11, we know that x ∈ Rn is an optimal solution to
(5.9) if and only if Fx solves the problem (Pk,B,Fstrict

), where B is the natural ordering
cone in Y (that is, B = Y +) and k is the constant function k ≡ 1.

Remark 5.2.14 ([61, Remark 6]). If the worst case is attained for every solution x ∈
Astrict, Corollary 5.2.5 says that for every optimal solution x of the scalarization problem
(Pk,B,Fstrict

), Fx is a weakly minimal element w.r.t. the natural order relation ≤Y +. This
is not always satisfactory, and particularly in the context of scalarizing functionals it is
common practice to apply methods that guarantee minimal (instead of weakly minimal)
elements w.r.t. ≤Y +. This can, for example, be realized by a second stage optimization
applied on the set of optimal solutions of (Pk,B,Fstrict

) as suggested in Iancu and Trichakis
[49], or by using an appropriate augmentation term for zB,k in the first stage (see, for
example, Jahn [53]).

5.3 Optimistic Robustness

While strict robustness focuses on the worst case and can thus be viewed as a pessimistic
model, optimistic robustness aims at minimizing the best realization of the objective
value of a feasible solution over all scenarios. We consider the optimization problem

ρoRC(x) = inf
ξ∈U

f(x, ξ)→ inf

s.t. ∀ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn,

(oRC)
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which we call optimistically robust counterpart. (oRC) resembles the optimistic
counterpart introduced in Beck and Ben-Tal [8] in the context of duality theory in robust
optimization. In contrast to [8], in the present work, a feasible solution to (oRC) is
required to be strictly robust, the set of feasible solutions of (oRC) is hence given by
Astrict.

5.3.1 Vector Optimization Approach for Optimistic Robustness

The optimistically robust counterpart (oRC) can be formulated as a vector optimization
problem in the functional space Y = RU as follows. We again use the set of strictly
robust outcome functions Fstrict = {Fx ∈ Y | x ∈ Astrict} in Y (see (5.6)). Now let two
functions Fx, Fy ∈ Y be given. We consider the following order relation on Y :

Fx ≤inf Fy :⇐⇒ inf
ξ∈U

Fx(ξ) ≤ inf
ξ∈U

Fy(ξ). (5.10)

This order relation will be referred to as the inf-order relation in the following. Note that
the inf-order relation is closely related to the sup-order relation (5.2.1). More precisely,

inf
ξ∈U

F (ξ) ≤ inf
ξ∈U

G(ξ) ⇐⇒ sup
ξ∈U

(−G(ξ)) ≤ sup
ξ∈U

(−F (ξ)), and thus

F ≤inf G ⇐⇒ (−G) ≤sup (−F ). (5.11)

Hence, the inf-order relation ≤inf defines a total preorder (see also Remark 5.2.1). Like
≤sup, it cannot be represented by an ordering cone in Y .

Remark 5.3.1 ([61, Remark 7]). ≤inf is reflexive, transitive, and total. Therefore, ≤inf

is a total preorder.

Analogous to Theorem 5.2.2, the order relation ≤inf can be used to characterize the
optimistically robust optimization problem (oRC) as a vector optimization problem.

Theorem 5.3.2 ([61, Theorem 4]). A solution x ∈ Rn is an optimal solution to (oRC)
if and only if Fx is a minimal element of Fstrict w.r.t. the inf-order relation ≤inf .

Proof. For x ∈ Astrict we have

x is an optimal solution to (oRC) ⇐⇒ inf
ξ∈U

f(x, ξ) ≤ inf
ξ∈U

f(x, ξ) for all x ∈ Astrict

⇐⇒ inf
ξ∈U

Fx(ξ) ≤ inf
ξ∈U

Fx(ξ) for all x ∈ Astrict

⇐⇒ Fx ≤inf Fx for all x ∈ Astrict,

and the result follows since ≤inf is a total preorder.

In order to analyze the relation between the inf-order relation ≤inf and the natural
order relation ≤Y + , first note that the natural order relation ≤Y + satisfies

F ≤Y + G ⇐⇒ (−G) ≤Y + (−F ). (5.12)

Together with (5.11) above, Remark 5.2.3, Lemma 5.2.4 and Corollary 5.2.5 can be easily
adapted to this case:
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Remark 5.3.3 ([61, Remark 8]). F ≤Y + G =⇒ F ≤inf G for F,G ∈ Y .

Lemma 5.3.4 ([61, Lemma 4]). Let Y = C(U ,R). Assume that every F ∈ Fstrict attains
its infimum on U . If F ∈ Fstrict is a minimal element of Fstrict in Y w.r.t. ≤inf , then F
is a weakly minimal element of Fstrict in Y w.r.t. the natural order relation ≤Y +.

As in Corollary 5.2.5 this means that Fx is weakly Pareto minimal for all optimal
solutions x to (oRC).

Corollary 5.3.5 ([61, Corollary 2]). Let Y = C(U ,R), and let the best-case be attained
for every solution x ∈ Astrict. Then for every optimal solution x to the optimistic robust
counterpart (oRC), Fx is a weakly minimal element of Fstrict w.r.t. the natural order
relation ≤Y + in Y .

5.3.2 Set-Valued Optimization Approach for Optimistic Robustness

Using the lower-type set-relation, we can interpret the optimistically robust counter-
part (oRC) as a set-valued optimization problem. The set of optimistically robust out-
come sets in the power set Z = P(R) is Bstrict := {Bx ∈ Z| x ∈ Astrict} as before.
The optimistically robust counterpart (oRC) minimizes the best case objective value of
a solution x ∈ Astrict. This corresponds to minimizing the infimum of the outcome sets
Bx ⊆ R with x ∈ Astrict in the set-based interpretation: We hence use the lower-type
set-relation �lR+

as in (5.3). Like for �uR+
we have:

Remark 5.3.6 ([61, Remark 9]). �lR+
is reflexive and transitive. Furthermore, it is a

total preorder.

Lemma 5.3.7 ([61, Lemma 5]). Let x, y ∈ Rn and let Fx, Fy their corresponding outcome
functions and Bx, By their corresponding outcome sets. Then

Bx �lR+
By ⇐⇒ Fx ≤inf Fy.

Consequently, we can reformulate (oRC) as the following set-valued optimization
problem.

Theorem 5.3.8 ([61, Theorem 5]). A solution x ∈ Rn is an optimal solution to (oRC)
if and only if Bx is a minimal element of Bstrict w.r.t. the order relation �lR+

.

5.3.3 Nonlinear Scalarizing Functional for Optimistic Robustness

In the following we show that the optimistically robust counterpart (oRC) can be char-
acterized using the nonlinear scalarizing functional (5.5) from Section 5.1.3. Again, the
basic reformulation holds for the case that Y = RU .

Theorem 5.3.9 ([61, Theorem 6]). Let Y = RU , Binf := {F ∈ Y |∃ ξ ∈ U : F (ξ) ≥ 0},
and k ≡ 1 ∈ Y . Then x ∈ Rn is an optimal solution to (oRC) if and only if Fx solves
problem (Pk,Binf ,Fstrict

).
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Proof. We first note that Binf + [0,+∞) · k ⊆ Binf holds. Hence the inclusion (2.1) is
fulfilled and the functional zBinf ,k is well-defined. Now we have the following relation:

zBinf ,k(Fx) = inf{t ∈ R|Fx ∈ tk −Binf}
= inf{t ∈ R|Fx − tk ∈ −Binf}
= inf{t ∈ R|∃ ξ ∈ U : Fx(ξ) ≤ t}
= inf

ξ∈U
f(x, ξ).

That means that Fx is minimal for (Pk,Binf ,Fstrict
) if and only if x ∈ Astrict minimizes

infξ∈U f(x, ξ), i.e., if and only if x is an optimal solution to (oRC).

Remark 5.3.10 ([61, Remark 10]). If we choose Y = C(U ,R), notice that Binf is a
proper convex cone and k ≡ 1 ∈ int(Binf) since Y + ⊆ Binf and intY + 6= ∅. Taking into
account Binf = Y \ int(−Y +), we get the closedness of Binf . Therefore, Lemma 5.1.8
implies that the functional zBinf ,k is continuous, finite-valued, Binf-monotone, strictly
(intBinf)-monotone and sublinear, and it holds

∀ Fx ∈ Y, ∀ t ∈ R : zBinf ,k(Fx) ≤ t ⇐⇒ Fx ∈ tk −Binf ,
∀ Fx ∈ Y, ∀ t ∈ R : zBinf ,k(Fx) < t ⇐⇒ Fx ∈ tk − int(Binf).

For a discrete uncertainty set U = {ξ1, . . . , ξq} (q ∈ N), Theorem 5.3.9 reduces to

min
Fx∈Fstrict

zBopt,k(Fx) = min
x∈Astrict

min
ξ∈U

f(x, ξ),

where Bopt := {y ∈ Rq|∃i ∈ {1, . . . , q} : yi ≥ 0} = Rq \ int(−Rq+) and k := (1, . . . , 1)T .
An optimal solution to (oRC) will thus be minimal for at least one of the individual
objective functions. Note that this does not hold for strict robustness in general.

The duality relation between the optimistically robust counterpart (oRC) and the
strictly robust counterpart (RC) gives rise to an alternative formulation as a maximiza-
tion problem using the natural ordering cone Y +.

Theorem 5.3.11 ([61, Theorem 7]). Let Y = RU and B := Y +, k ≡ 1. Then x ∈ Rn is
an optimal solution to (oRC) if and only if Fx ∈ Fstrict minimizes sup{t ∈ R|Fx ∈ tk+B}.

Proof. Analogous to the proof of Theorem 5.2.11 we obtain

sup{t ∈ R|Fx ∈ tk +B} = sup{t ∈ R|Fx − tk ∈ Y +}
= sup{t ∈ R|∀ξ ∈ U : Fx(ξ) ≥ t}
= inf

ξ∈U
f(x, ξ).

Thus, Fx ∈ Fstrict minimizes sup{t ∈ R|Fx ∈ tk +B} if and only if x ∈ Astrict minimizes
infξ∈U f(x, ξ), i.e., if and only if x is an optimal solution to (oRC).

Remark 5.3.12 ([61, Remark 11]). As in the case of strict robustness (see Remark
5.2.14), a second stage optimization or an augmented scalarization can be applied to
avoid weakly minimal elements w.r.t. ≤Y +, see Corollary 5.3.5 above.
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5.4 Regret Robustness

The next robustness concept we consider is known under the names min max regret
robustness or deviation robustness. In this concept one evaluates a solution by comparing
it with the best possible solution for the realized scenario in the worst case, i.e., the
function to be minimized is supξ∈U (f(x, ξ) − f∗(ξ)), where f∗(ξ) ∈ R is the optimal
value of problem (Q(ξ)) for the fixed parameter ξ ∈ U . This robustness concept has
been used in applications, e.g., in scheduling or location theory, mostly in cases where
no uncertainty in the constraints is present (see Kouvelis and Yu, [74]) and has been
researched also for spanning trees and in matroids, see Yaman et al. [108, 109].

The regret robust counterpart of the uncertain optimization problem (Q(ξ), ξ ∈ U)
can be formulated as

ρrRC(x) = sup
ξ∈U

(f(x, ξ)− f∗(ξ))→ inf

s.t. ∀ξ ∈ U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m,

x ∈ Rn.

(rRC)

Note that we require x ∈ Astrict, i.e., we only allow strictly robust solutions as feasible
solutions for the regret robust counterpart.

Let f∗ ∈ RU be the function f∗ : U → R given by

f∗(ξ) := inf{Fx(ξ)|x ∈ Astrict}. (5.13)

Note that the inf can be replaced by min in (5.13) since we assumed that for every fixed
scenario ξ an optimal solution exists.

We refer to f∗ as the ideal solution of problem (Q(ξ)). It is in general not a feasible
solution to (rRC), i.e., there does not exist x ∈ Astrict with f(x, ξ) = f∗(ξ) for all ξ ∈ U .
The regret robust counterpart (rRC) thus minimizes the maximum deviation (over all
scenarios) between the objective value of the implemented solution f(x, ξ) and the ideal
solution f∗(ξ).

5.4.1 Vector Optimization Approach for Regret Robustness

Similar to the strictly robust counterpart (RC), the regret robust counterpart (rRC)
can be directly reformulated as a vector optimization problem in the functional space
Y = RU . We consider Fstrict as in (5.6). For two functions Fx, Fy ∈ Y , we use the order
relation ≤regret on Y given by

Fx ≤regret Fy :⇐⇒ sup
ξ∈U

(Fx(ξ)− f∗(ξ)) ≤ sup
ξ∈U

(Fy(ξ)− f∗(ξ)).

We have the following relation to the sup-order relation ≤sup (as introduced in
(5.2.1)):

Remark 5.4.1 ([61, Remark 12]).

Fx ≤regret Fy ⇐⇒ (Fx − f∗) ≤sup (Fy − f∗).
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In comparison to ≤sup, we can interpret ≤regret as a sup-order relation with reference
point f∗, while the sup-order relation ≤sup has the origin f0 :≡ 0 ∈ Y as reference point.
Intuitively, we have shifted the reference point from the origin f0 (for ≤sup) to the ideal
solution f∗ (for ≤regret). Analogous to the sup-order relation ≤sup, we have:

Remark 5.4.2 ([61, Remark 13]). The sup-order relation ≤regret with reference point f∗

is reflexive and transitive. Furthermore, ≤regret is a total preorder.

Note that ≤regret is (as ≤sup) not compatible with addition and can thus not be
represented by an ordering cone. We first state that ≤regret can be used to represent
regret robustness as a vector-valued optimization problem.

Theorem 5.4.3 ([61, Theorem 8]). A solution x ∈ Rn is an optimal solution to (rRC)
if and only if Fx is a minimal element of Fstrict w.r.t. ≤regret.

Proof. Let x ∈ Astrict. Then

x is an optimal solution to (rRC)
⇐⇒ sup

ξ∈U
(f(x, ξ)− f∗(ξ)) ≤ sup

ξ∈U
(f(x, ξ)− f∗(ξ)) for all x ∈ Astrict

⇐⇒ (Fx − f∗) ≤sup (Fx − f∗) for all x ∈ Astrict

⇐⇒ Fx ≤regret Fx for all x ∈ Astrict

⇐⇒ Fx ≤regret G for all G ∈ Fstrict

and the result follows as before since ≤regret is a total preorder.

We easily see that:

Remark 5.4.4 ([61, Remark 14]). Let F,G ∈ Y . Then we have: F ≤Y + G =⇒
F ≤regret G.

Similar to ≤sup we obtain the following relation between minimal solutions w.r.t.
≤regret and weakly minimal solutions w.r.t. ≤Y + .

Lemma 5.4.5 ([61, Lemma 6]). Let Y = C(U ,R). Assume that every function F − f∗
attains its supremum on U for all F ∈ Fstrict. If F ∈ Fstrict is a minimal element of
Fstrict in Y w.r.t. ≤regret, then F is a weakly minimal element of Fstrict in Y w.r.t. the
natural order relation ≤Y + .

Proof. Let F ∈ Fstrict be a minimal element of Fstrict in Y w.r.t. ≤regret. Since ≤regret is
a total preorder, this means that

sup
ξ∈U

(F (ξ)− f∗(ξ)) ≤ sup
ξ∈U

(G(ξ)− f∗(ξ)) for all G ∈ Fstrict. (5.14)

Now suppose that F is not a weakly minimal element of Fstrict in Y w.r.t. the natural
order relation ≤Y + of Y . Thus, there exists G ∈ Fstrict with

∀ ξ ∈ U : G(ξ) < F (ξ), and hence (G(ξ)− f∗(ξ)) < (F (ξ)− f∗(ξ)).
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Since (G− f∗) attains its supremum on U , this means that

sup
ξ∈U

(G(ξ)− f∗(ξ)) = G(ξ)− f∗(ξ) < F (ξ)− f∗(ξ) ≤ sup
ξ∈U

(F (ξ)− f∗(ξ)),

with some ξ ∈ U , a contradiction to (5.14).

As in Corollary 5.2.5 we obtain that Fx is weakly Pareto minimal also for all optimal
solutions x to (rRC).

Corollary 5.4.6 ([61, Corollary 3]). Let Y = C(U ,R) and let the worst case regret be
attained for every solution x ∈ Astrict. Then for every optimal solution x to the regret
robust counterpart (rRC), Fx is a weakly minimal element of Fstrict w.r.t. the natural
order relation ≤Y + in Y .

5.4.2 Set-Valued Optimization Approach for Regret Robustness

The set-valued interpretation of the strictly robust counterpart (5.2) presented in Section
5.2.2 does not directly transfer to the case of regret robustness, since we have in general
that

sup{f(x, ξ)− f∗(ξ)|ξ ∈ U} 6= sup

{f(x, ξ)|ξ ∈ U}︸ ︷︷ ︸
=Bx

−{f∗(ξ)|ξ ∈ U}

 .

For x ∈ Astrict we thus define the regret robust outcome set

Bf−f∗
x := {f(x, ξ)− f∗(ξ)|ξ ∈ U}

as the set of possible outcomes of the regret function f(x, ξ)− f∗(ξ), ξ ∈ U .

Bregret := {Bf−f∗
x ∈ Z| x ∈ Astrict}

is called the set of regret robust outcome sets. The regret robust counterpart (rRC)
minimizes the worst case regret value of a solution x ∈ Astrict, which is equivalent to
minimizing the supremum of the regret robust outcome sets Bf−f∗

x ∈ Bregret. This
corresponds to using the upper-type set relation �uR+

introduced in (5.10) on Bregret.

Theorem 5.4.7 ([61, Theorem 9]). A solution x ∈ Rn is an optimal solution to (rRC) if
and only if Bf−f∗

x is a minimal element of Bregret with respect to the upper-type set order
relation �uR+

.

Proof. Let x ∈ Astrict. We know that supBf−f∗
x = supξ∈U (f(x, ξ) − f∗(ξ)). We hence

obtain

x is an optimal solution to (rRC)
⇐⇒ sup

ξ∈U
(f(x, ξ)− f∗(ξ)) ≤ sup

ξ∈U
(f(x, ξ)− f∗(ξ)) for all x ∈ Astrict

⇐⇒ supBf−f∗
x ≤ supBf−f∗

x for all x ∈ Astrict

⇐⇒ Bf−f∗
x �uR+

Bf−f∗
x for all x ∈ Astrict.

⇐⇒ Bf−f∗
x �uR+

B for all B ∈ Bregret,
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and the result follows since �uR+
is a total preorder.

Note that Theorem 5.4.7 can alternatively be proven using the relation between≤regret

and ≤sup and between ≤sup and �uR+
, see Lemma 5.2.8.

5.4.3 Nonlinear Scalarizing Functional for Regret Robustness

As in the case of strict robustness (see Section 5.2 above), the formulation of the regret
robust counterpart (rRC) as a vector optimization problem in the functional space Y =
RU gives rise to a representation using nonlinear scalarizing functionals.

As compared to Section 5.2.3, the dominating set B ⊆ Y is now shifted by the ideal
solution f∗ ∈ RU of problem (Q(ξ)).

Theorem 5.4.8 ([61, Theorem 10]). Let Y = RU , Bregret := Y +−f∗ and consider again
k ≡ 1. Then x ∈ Rn is an optimal solution to (rRC) if and only if Fx solves problem
(Pk,Bregret,Fstrict

).

Proof. First note that Bregret + [0,+∞) · k ⊆ Bregret holds and thus (2.1) is satisfied.
Moreover,

zBregret,k(Fx) = inf{t ∈ R|Fx ∈ tk −Bregret}
= inf{t ∈ R|∀ξ ∈ U : Fx(ξ)− t ≤ f∗(ξ)}
= inf{t ∈ R|∀ξ ∈ U : f(x, ξ)− f∗(ξ) ≤ t}
= sup

ξ∈U
(f(x, ξ)− f∗(ξ)).

Thus, Fx is minimal for (Pk,Bregret,Fstrict
) if and only if xminimizes supξ∈U (f(x, ξ)−f∗(ξ)),

i.e., if it is optimal for (rRC).

Lemma 5.4.9 ([61, Lemma 7]). Let Y = C(U ,R). Then the functional zBregret,k is
continuous, finite-valued, Y +-monotone, strictly (intY +)-monotone, convex and

∀ Fx ∈ Y, ∀ t ∈ R : zBregret,k(Fx) ≤ t ⇐⇒ Fx ∈ tk − (Y + − f∗),
∀ Fx ∈ Y, ∀ t ∈ R : zBregret,k(Fx) < t ⇐⇒ Fx ∈ tk − int(Y + − f∗).

Proof. Since f∗ ∈ Y we obtain for all k ∈ intY +

zY
+−f∗,k(y) = zY

+,k(y − f∗),

i.e., we have zBregret,k(Fx) = zB,k(Fx− f∗) for all Fx ∈ Y . Applying this shift and taking
into account that the functional zB,k is continuous, finite-valued, Y +-monotone, strictly
(intY +)-monotone and convex (see Theorem 2.1.2), we have these properties for the
functional zBregret,k as well. Furthermore, we get

∀ Fx ∈ Y, ∀ t ∈ R : zBregret,k(Fx) ≤ t ⇐⇒ Fx ∈ tk − (Y + − f∗),
∀ Fx ∈ Y, ∀ t ∈ R : zBregret,k(Fx) < t ⇐⇒ Fx ∈ tk − int(Y + − f∗).

from the corresponding properties of the functional zB,k.
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In the special case of a discrete uncertainty set U = {ξ1, . . . , ξq}, q ∈ N, the scalar-
ization problem (Pk,Bregret,Fstrict

) simplifies to

min
Fx∈Fstrict

zBregret,k(Fx) = min
x∈Astrict

max
ξ∈U

(f(x, ξ)− f∗(ξ))

with Bregret := Rq+ − (f∗(ξ1), . . . , f∗(ξ1))T and k := (1, . . . , 1)T , see [60]. In light of the
associated multiobjective optimization problem vminx∈Astrict

(f(x, ξ1), . . . , f(x, ξq)), this
is equivalent to a reference point approach with reference point f∗, and if f(x, ξ) ≥ 0 for
all ξ ∈ U and x ∈ Astrict, to a weighted Tchebycheff scalarization with reference point f∗

(and with equal weights).

Remark 5.4.10 ([61, Remark 15]). As before (see Remarks 5.2.14 and 5.3.12), a sec-
ond stage optimization or an augmented scalarization can be applied also in this case to
guarantee minimal (instead of weakly minimal) elements w.r.t. ≤Y +.

5.5 Reliability

Requiring a strictly robust solution x is known as a very conservative approach. In case
that Astrict is empty or only contains solutions with a high objective function value,
a less conservative approach is the concept of reliability. Here, some buffer is added
to the right-hand-side values of the constraints, i.e., the constraints Fi(x, ξ) ≤ 0 are
relaxed to Fi(x, ξ) ≤ δi for some given δi ∈ R+, i = 1, . . . ,m. Nevertheless, it is
required that the original constraints must be satisfied for the nominal scenario ξ̂, i.e.,
Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m. Formally, the reliable counterpart of (5.1) proposed by
Ben-Tal and Nemirovski in [11], is defined by

ρRely(x) = sup
ξ∈U

f(x, ξ)→ inf

s.t. Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m,

∀ξ ∈ U : Fi(x, ξ) ≤ δi, i = 1, . . . ,m,

x ∈ Rn.

(Rely)

A feasible solution to (Rely) is called reliable. If δi = 0 for all i = 1, . . . ,m, the
reliable counterpart (Rely) reduces to the strictly robust problem (RC). On the other
hand, the reliable counterpart can be interpreted as a strictly robust counterpart with the
uncertain constraint functions F ′i (x, ξ) = Fi(x, ξ) − δi and the deterministic constraint
Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m. This interpretation already suggests that many results can
be transferred from strict robustness to reliability. This is in fact the case, and we will
hence leave out the proofs in this section and just state the results.

We denote by

Arely := {x ∈ Rn|∀ξ ∈ U : Fi(x, ξ) ≤ δi, Fi(x, ξ̂) ≤ 0, i = 1, . . . ,m}

the set of reliable solutions.
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5.5.1 Vector Optimization Approach for Reliability

Similar to the strictly robust counterpart (RC), the reliable counterpart (Rely) can be
formulated as a vector optimization problem in the functional space Y = RU . Towards
this end, denote the set of reliable outcome functions in Y by

Frely := {Fx ∈ Y | x ∈ Arely}. (5.15)

We consider the order relation ≤sup that has been introduced in Section 5.2.1 and transfer
the results obtained there. First, finding a minimal element of Frely w.r.t. ≤sup solves
the reliable counterpart:

Theorem 5.5.1 ([61, Theorem 11]). A solution x ∈ Rn is an optimal solution to (Rely)
if and only if Fx is a minimal element of Frely with respect to the sup-order relation ≤sup.

Also for the concept of reliability we have an analogous relation between optimal
reliable solutions and (Pareto) minimal elements w.r.t. the natural ordering ≤Y + .

Lemma 5.5.2 ([61, Lemma 8]). Let Y = C(U ,R). Assume that every F ∈ Frely attains
its supremum on U . If F ∈ Frely is a minimal element of Frely w.r.t. ≤sup, then F is a
weakly minimal element of Frely w.r.t. the natural order relation ≤Y + .

As before, this means that Fx is weakly Pareto minimal for all optimal solutions x to
(Rely).

Corollary 5.5.3 ([61, Corollary 4]). Let Y = C(U ,R) and let the worst case be attained
for every solution x ∈ Arely. Then for every optimal solution x to the reliable counterpart
(Rely), Fx is a weakly minimal element of Frely w.r.t. the natural order relation ≤Y + in
Y .

5.5.2 Set-Valued Optimization Approach for Reliability

Analogously, we can interpret the reliable counterpart (Rely) as a set-valued optimization
problem. We denote the set of reliable outcome sets in the power set Z = P(R) by

Brely := {Bx ∈ Z| x ∈ Arely}. (5.16)

In order to compare two sets of Brely we use the upper-type set-relation �uR+
as introduced

in (5.10). The reliable counterpart (Rely) minimizes the worst case objective value of a
solution x ∈ Arely which is equivalent to minimizing the supremum of the outcome sets
Bx ⊆ R with x ∈ Arely in the set-based interpretation:

Theorem 5.5.4 ([61, Theorem 12]). A solution x ∈ Rn is an optimal solution to (Rely)
if and only if Bx is a minimal element of Brely with respect to the order relation �uR+

.

Proof. As for Theorem 5.2.9, this result follows from Theorem 5.5.1 and Lemma 5.2.8.
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5.5.3 Nonlinear Scalarizing Functional for Reliability

The following theorem describes how the reliably robust optimization problem can be
represented using the same nonlinear scalarizing functional zB,k as for strict robustness
(see Theorem 5.2.11), but with feasible set Frely instead of Fstrict.

Theorem 5.5.5 ([61, Theorem 13]). Let Y = RU , B = Y +, and k ≡ 1 ∈ Y . Then x is
an optimal solution to (Rely) if and only if Fx solves problem (Pk,B,Frely

).

Since the scalarizations (Pk,B,Frely
) and (Pk,B,Fstrict

) (for reliable robustness and for
strict robustness, respectively) differ only in their respective feasible sets, they have a
similar interpretation in the case that the scenario set is finite: Then (Pk,B,Frely

) simpli-
fies to a reference point approach with the origin as reference point, which corresponds
to a weighted Tchebycheff scalarization (with equal weights) of the corresponding mul-
tiobjective optimization problem vminx∈Arely

(f(x, ξ1), . . . , f(x, ξq)) if f(x, ξ) ≥ 0 for all
ξ ∈ U and x ∈ Arely.

Remark 5.5.6 ([61, Remark 16]). As in the cases of strict, optimistic and regret robust-
ness (c.f. Remarks 5.2.14, 5.3.12 and 5.4.10), the scalarization by the functional zB,k

gives rise to a second stage optimization or an appropriate augmentation in order to
avoid weakly minimal elements.

5.6 Adjustable Robustness

Adjustable robustness is a two-stage approach in robust optimization which assumes that
there are two types of variables: These are the here-and-now variables x whose values
have to be fixed before the scenario realizes and the wait-and-see variables u which may
be decided after the scenario becomes known. These variables are then chosen such
that the objective function (for the fixed x and the realized scenario ξ) is minimized.
Adjustable robustness has first been introduced in Ben-Tal et al. [10] and extensively
studied in [9].

The adjustable robust counterpart asks for a solution x which, if adjusted optimally
in the second stage, achieves the best overall objective value in the worst case. We hence
reformulate (Q(ξ)) in terms of the here-and-now variables x ∈ Rn and the wait-and-see
variables u ∈ Rp and obtain an uncertain problem with n+ p variables.

f(x, u, ξ)→ inf

s.t. Fi(x, u, ξ) ≤ 0, i = 1, . . . ,m

x ∈ Rn, u ∈ Rp.
(Q(ξ))

Let us define

G(x, ξ) := {u ∈ Rp : Fi(x, u, ξ) ≤ 0, i = 1, . . . ,m}
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as the set of feasible second-stage variables u for given first-stage variables x and a given
scenario ξ. Then the second-stage optimization problem can be written as

Q(x, ξ) = inf f(x, u, ξ)

s.t. u ∈ G(x, ξ).
(5.17)

We assume that (Q(ξ)) has an optimal solution for every fixed scenario ξ ∈ U , and that
Q(x, ξ) also has an optimal solution for all ξ ∈ U and x ∈ Rn. We can hence replace inf
by min and Q(x, ξ) is well-defined.

A solution x ∈ Rn is called adjustable robust if it can be completed to a solution
(x, u) which is feasible for (Q(ξ)) for every scenario ξ ∈ U , i.e., if G(x, ξ) 6= ∅ for every
scenario ξ ∈ U . The set of adjustable robust solutions is given as

Aadjust := {x ∈ Rn | ∀ ξ ∈ U ∃ u ∈ Rp : Fi(x, u, ξ) ≤ 0, i = 1, . . . ,m}
= {x ∈ Rn | ∀ ξ ∈ U : G(x, ξ) 6= ∅}

and the adjustable robust counterpart then reads

ρaRC(x) = sup
ξ∈U

Q(x, ξ)→ inf
x∈Aadjust

. (aRC)

Note that, similar to the case of reliability (see Section 5.5), the adjustable robust
counterpart is closely related to the strictly robust counterpart discussed in Section 5.2.3,
only with a modified feasible set.

5.6.1 Vector Optimization Approach for Adjustable Robustness

Let Y = RU . For x ∈ Rn we define the functions Fx ∈ Y through

Fx(ξ) := Q(x, ξ)

= inf{f(x, u, ξ)|u ∈ G(x, ξ)}.

Furthermore, we define

Fadjust := {Fx ∈ Y | x ∈ Aadjust}.

We obtain
ρaRC(x) = sup

ξ∈U
Fx(ξ).

As ordering relation we again consider the sup order relation

Fx ≤sup Fy :⇐⇒
(

sup
ξ∈U

Fx(ξ) ≤ sup
ξ∈U

Fy(ξ)

)
.

Theorem 5.6.1 ([61, Theorem 14]). A solution x ∈ Rn is an optimal solution to (aRC)
if and only if Fx is a minimal element of Fadjust with respect to the order relation ≤sup.
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Proof. For x ∈ Aadjust we have

x is an optimal solution to (aRC) ⇐⇒ sup
ξ∈U

Q(x, ξ) ≤ sup
ξ∈U

Q(x, ξ) for all x ∈ Aadjust

⇐⇒ sup
ξ∈U

Fx(ξ) ≤ sup
ξ∈U

Fx(ξ) for all x ∈ Aadjust

⇐⇒ Fx ≤sup Fx for all x ∈ Aadjust

⇐⇒ Fx ≤sup G for all G ∈ Fadjust

and the result follows since ≤sup is a total preorder.

Also on the new set Fadjust we can compare elements w.r.t the natural order relation
≤Y + . Since the result of Lemma 5.2.4 only depends on the order relations ≤Y + and ≤sup

but not on the subset of functions F ⊆ Y considered, its consequence Corollary 5.2.5
also holds for the case of adjustable robustness. This means for every optimal solution x
to (aRC) its outcome function is weakly Pareto minimal, i.e., there is no other solution
x̄ which is strictly better for every scenario ξ ∈ U .

Lemma 5.6.2 ([61, Lemma 9]). Let Y = C(U ,R). Assume that every F ∈ Fadjust

attains its supremum on U . If F ∈ Fadjust is a minimal element of Fadjust w.r.t. ≤sup,
then F is a weakly minimal element of Fadjust w.r.t. the natural order relation ≤Y + .

Corollary 5.6.3 ([61, Corollary 5]). Let Y = C(U ,R) and let the worst case be attained
for every solution x ∈ Aadjust. Then for every optimal solution x to the adjustable robust
counterpart (aRC), Fx is a weakly minimal element of Fadjust w.r.t. the natural order
relation ≤Y + in Y .

5.6.2 Set-Valued Optimization Approach for Adjustable Robustness

A similar analysis can be applied using the set optimization approach. Let Z = P(R),
and let Fx(ξ) = Q(x, ξ) as before. We define

Bx := {Q(x, ξ)|ξ ∈ U} = {Fx(ξ)|ξ ∈ U}

and denote the set of adjustable robust outcome sets by

Badjust := {Bx ∈ Z| x ∈ Aadjust} ⊆ Z.

For Bx, By ∈ Z we use the set order relation �uR+
.

Due to its relation to ≤sup (see Lemma 5.2.8), we can again use the order relation
�uR+

for a representation of the adjustable robust counterpart as a set-valued optimization
problem.

Theorem 5.6.4 ([61, Theorem 15]). A solution x ∈ Rn is an optimal solution to (aRC)
if and only if Bx is a minimal element of Badjust with respect to the order relation �uR+

.

Proof. Let x ∈ Aadjust. Then we know from Theorem 5.6.1 that x is an optimal solution
to (aRC) if and only if Fx ≤sup Fx for all x ∈ Aadjust. According to Lemma 5.2.8 this is
equivalent to Bx �uR+

Bx for all x ∈ Aadjust.
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5.6.3 Nonlinear Scalarizing Functional for Adjustable Robustness

Theorem 5.6.5 ([61, Theorem 16]). Let Y = RU , B := Y +, and k ≡ 1 ∈ Y . Then
x ∈ Rn is an optimal solution to (aRC) if and only if Fx solves problem (Pk,B,Fadjust

).

Proof. The proof is completely analogous to the proof of Theorem 5.2.11, with the
adapted feasible set Fadjust instead of Fstrict.

Again, the scalarizations (Pk,B,Fadjust
) and (Pk,B,Fstrict

) (for adjustable robustness
and for strict robustness, respectively) differ only in their feasible sets. Thus, for finite
scenario sets problem (Pk,B,Fadjust

) also corresponds to a reference point approach with
the origin as reference point.

Remark 5.6.6 ([61, Remark 17]). As before, a second stage optimization can be per-
formed, or an appropriate augmentation term can be appended to the scalarizing func-
tional zB,k in order to avoid weakly minimal elements.

5.7 Certain Robustness as a New Concept Based on Set
Relations

In the following, we motivate a new concept of robustness by means of the set-based
optimization approach. As is reported in [61], a set-based interpretation given through a
set order relation� always implies a corresponding interpretation as a vector optimization
problem by defining Fx ≤ Fy :⇔ Bx � By. Note that the converse is not true in general,
since � is not well-defined through Bx � By :⇔ Fx ≤ Fy.

We hence could have motivated the following concept also based on a vector opti-
mization model. However, in the case discussed in this section the set-valued approach is
better suited to highlight the particular problem characteristics and their interpretation.
Let the sets Bx, By ∈ Z be given. We use an order relation �certR+

(see Eichfelder and
Jahn [26], compare also Definition 2.2.19) given by

Bx �certR+
By :⇐⇒ Bx ⊆ By − R+ and By ⊆ Bx + R+

⇐⇒ supBx ≤ supBy and inf Bx ≤ inf By.

This means that a set Bx dominates a set By if both the upper bound as well as the
lower bound of the set Bx is smaller than the respective upper or lower bounds of the set
By. We have the following relationship between the order relations �uR+

, �lR+
and �certR+

:

Bx �certR+
By =⇒ Bx �uR+

By as well as Bx �lR+
By.

Conversely to our approaches in in Section 5.2, 5.3, 5.4, 5.5 and 5.6, we now use �certR+

to define certainly robust solutions. To this end, let Bstrict ⊆ Z be defined as the set of
strictly robust outcome sets (see (5.2.2)).

x is certainly robust :⇐⇒ Bx is a minimal element of Bstrict w.r.t �certR+
.
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This approach is useful if a decision maker is interested in solutions that are not
dominated either by their upper or by their lower bounds. Note that by using the order
relation �certR+

, we obtain a rather weak concept. Nonetheless, the concept of certain
minimality filters out solutions which are obviously bad choices.

5.8 Discussion of the Set-Valued Approach to Uncertain
Programming

Since the set-based interpretation does not reflect distributional information as needed,
for example, when minimizing the expectation or in 2-stage stochastic programming
models, its applicability is mainly restricted to concepts from robust optimization. We
present a summary in Table 5.1.

Concept Order
relation

Bx, By ∈ Z : Bx � By ⇐⇒ A

Strict robustness
(Sec. 5.2.2) �u

R+
supBx ≤ supBy

Astrict = {x ∈ Rn| ∀ ξ ∈
U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}

Optimistic robust-
ness (Sec. 5.3.2) �l

R+
inf Bx ≤ inf By

Astrict = {x ∈ Rn| ∀ ξ ∈
U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}

Regret robustness
(Sec. 5.4.2) �u

R+
supBf−f∗

x ≤ supBf−f∗

y
Astrict = {x ∈ Rn| ∀ ξ ∈
U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}

Reliability
(Sec. 5.5.2) �u

R+
supBx ≤ supBy

Arely = {x ∈ Rn|∀ξ ∈
U : Fi(x, ξ) ≤ δi, Fi(x, ξ̂) ≤
0, i = 1, . . . ,m}

Adjustable robust-
ness (Sec. 5.6.2) �u

R+
supBx ≤ supBy

Aadjust = {x ∈ Rn|∀ ξ ∈ U ∃ u ∈
Rp : Fi(x, u, ξ) ≤ 0, i =
1, . . . ,m}

Certain robustness
(Sec. 5.7) �cert

R+

supBx ≤ supBy and
inf Bx ≤ inf By

Astrict = {x ∈ Rn| ∀ ξ ∈
U : Fi(x, ξ) ≤ 0, i = 1, . . . ,m}

Table 5.1: Summary of interpretations using set-based counterparts

Table 5.1 shows that the role of the order relation ≤ in the vector optimization
approach is now taken by the set order relation � while the other important characteristic
is still the feasible set A. The relation � is hence important to consider if we want to
derive a comparison or classification of different robustness concepts, e.g., a measure
for the level of conservatism. This can be illustrated looking at the concepts strict
robustness, optimistic robustness, and certain robustness, which use the same sets Bx,
the same feasible set A, but the three different set order relations �uR+

,�lR+
, and �certR+

.
Comparing the definitions of these three set order relations, we see that �uR+

is only
defined by using the supremum (i.e., the worst case over all scenarios), hence it is the most
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conservative of these three concepts. �lR+
does not at all consider the supremum; and

in fact, nobody would call this a conservative concept. It is rather a very risky concept,
which is well-suited for a risk-affine decision-maker. Finally, �certR+

lies somewhere in
between, trying to get as much as possible while still looking at the worst case.

Note that we have also seen that the set order relation � is closely connected to
the order relation ≤: �uR+

corresponds to ≤sup (Lemma 5.2.8), �lR+
corresponds to ≤inf

(Lemma 5.3.7). Changing the notation for regret robustness slightly by defining

Bx �regret By :⇐⇒ Bf−f∗
x �uR+

Bf−f∗
y ,

we analogously receive that

Bx �regret By ⇐⇒ Fx ≤regret Fy,

i.e., again a correspondence. We remark that any set relation � can be used to define a
corresponding order relation ≤ by setting

Fx ≤ Fy :⇐⇒ Bx � By,

but not vice versa. The reason is that the function

ϑ : Y → Z, ϑ(Fx) := {Fx(ξ) : ξ ∈ U}

is well-defined, but not injective, i.e., Bx is uniquely determined by Fx while Fx cannot be
determined uniquely from Bx. This shows again that the idea of using vector optimization
is more flexible in this context.

Evidently, set order relations � play a significant role in the unifying concept based
on set optimization. There are several set order relations known in the literature. A
classification of set order relations can be found in Khan et al. [59, Chapter 2.6.2] (see
also Chapter 2) and Kuroiwa [76], and an embedding approach of set optimization is
presented in Kuroiwa and Nuriya [78]. Of course, it would be very interesting to classify
robustness concepts based on a classification of the underlying set order relations �.



Chapter 6

Conclusions

This work presents some novel directions in the optimization process of set-valued map-
pings, with a focus on sets that do not necessarily need to be convex. We present exten-
sions of set relations, where the involved sets as well as the set describing the domination
structure are arbitrary, nonempty sets. In particular, characterizations of generalized set
relations by means of a nonlinear functional are presented and a new set relation is de-
rived based on these characterizations. This new relation comprises the upper and lower
set less relation as special cases and builds a compromise between the two. We more-
over show an existence result for this new set relation. Several algorithmic methods are
proposed to facilitate computing minimal solutions of set optimization problems. Specifi-
cally, we develop a descent method that can be used for solving continuous problems, and
Jahn-Graef-Younes-type methods that filter out sets that cannot be minimal and finally
return all minimal elements. Moreover, our analysis is extended to the case when the ob-
jective space is not a priori equipped with a particular topology. Therefore, our analysis
shows that extensions to linear spaces are not only possible, but also useful. In order to
include as much of the decision-maker’s expertise into the model as is possible and useful,
we furthermore propose to include a variable domination structure when defining set re-
lations. Since variable domination structures possess various applications in the medical
field, for instance in medical image registration, our concepts prove to be very valuable
for decision-making under uncertainty. We analyze optimal elements of sections and give
scalarization results for set optimization problems involving a variable domination struc-
ture. As it is well known that minimal elements of set optimization problems do not
always exist, we investigate several new notions of approximate solutions. These notions
are analyzed and treated in term of linear and nonlinear scalarization functionals. When
the family of sets is finite, we propose efficient algorithms to compute the approximate
minimal solutions. Finally, an application is given in the field of uncertain programming,
and it is shown, among others, that a large number of concepts from robust optimization
can be treated in a unifying framework using set optimization techniques.
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